-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathdbignite_patient_sample.py
606 lines (482 loc) · 24.8 KB
/
dbignite_patient_sample.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
# Databricks notebook source
# MAGIC %md # Install DBIgnite for FHIR
# COMMAND ----------
# DBTITLE 1,Installing DBIgnite
# MAGIC %pip install git+https://github.com/databrickslabs/dbignite.git
# COMMAND ----------
# MAGIC %md # Read in FHIR Data (C-CDA Messages)
# COMMAND ----------
# DBTITLE 1,Read in Sample Data
from dbignite.fhir_mapping_model import FhirSchemaModel
from pyspark.sql.functions import *
from pyspark.sql.types import *
import uuid
from dbignite.readers import read_from_directory
sample_data = "s3://hls-eng-data-public/data/synthea/fhir/fhir/*json"
#Read data from a static directory and parse it using entry() function
bundle = read_from_directory(sample_data)
df = bundle.entry()
# COMMAND ----------
# DBTITLE 1,Print Patient Schema
df.select(col("Patient")).printSchema()
# COMMAND ----------
# MAGIC %md # ETL Using Dataframe API
# MAGIC Working with Patient Data and Write Results to Tables
# MAGIC
# MAGIC Note: Synthetic data uses SNOWMED coding system. In Healthcare, ICD10 PCS, ICD CM, CPT4, HCPCS are the accepted codes
# COMMAND ----------
# MAGIC %md ## Conditions
# COMMAND ----------
# DBTITLE 1,Patient Conditions Sample Data
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("Condition")).select(col("Patient"), col("bundleUUID"), explode("Condition").alias("Condition")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("patient.birthDate").alias("Birth_date"),
col("Condition.clinicalStatus.coding.code")[0].alias("clinical_status"),
col("Condition.code.coding.code")[0].alias("condition_code"), #can use the explode() function to pivot a column into a row. i.e. one row per patient per condition
col("Condition.code.coding.system")[0].alias("condition_type_code"),
col("Condition.code.text").alias("condition_description"),
col("Condition.recordedDate").alias("condition_date")
).filter(col("Patient").like("efee780e%") | col("Patient").like("1a5e6090%")).show()
#Selecting 2 patients here. However, if this was the same patient in separate fhir bundles, you would be working with one row per FHIR bundle. So 2 patients in 2 FHIR bundles = 2 rows
# COMMAND ----------
# DBTITLE 1,Save Conditions as a Table
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("Condition")).select(col("Patient"), col("bundleUUID"), explode("Condition").alias("Condition")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("patient.birthDate").alias("Birth_date"),
col("Condition.clinicalStatus.coding.code")[0].alias("clinical_status"),
col("Condition.code.coding.code")[0].alias("condition_code"), #can use the explode() function to pivot a column into a row. i.e. one row per patient per condition
col("Condition.code.coding.system")[0].alias("condition_type_code"),
col("Condition.code.text").alias("condition_description"),
col("Condition.recordedDate").alias("condition_date")
).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.patient_conditions")
# COMMAND ----------
# MAGIC %md ## Claims
# COMMAND ----------
# DBTITLE 1,Claim Detail Sample Data
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("Claim")).select(col("Patient"), col("bundleUUID"), explode("Claim").alias("Claim")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("claim.patient").alias("claim_patient_id"),
col("claim.id").alias("claim_id"),
col("patient.birthDate").alias("Birth_date"),
col("claim.type.coding.code")[0].alias("claim_type_cd"),
col("claim.insurance.coverage")[0].alias("insurer"),
col("claim.total.value").alias("claim_billed_amount"),
col("claim.item.productOrService.coding.display").alias("prcdr_description"),
col("claim.item.productOrService.coding.code").alias("prcdr_cd"),
col("claim.item.productOrService.coding.system").alias("prcdr_coding_system")
).filter(col("Patient").like("efee780e%") | col("Patient").like("1a5e6090%")).show()
# COMMAND ----------
# DBTITLE 1,Save Claims as a Table
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("Claim")).select(col("Patient"), col("bundleUUID"), explode("Claim").alias("Claim")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("claim.patient").alias("claim_patient_id"),
col("claim.id").alias("claim_id"),
col("patient.birthDate").alias("Birth_date"),
col("claim.type.coding.code")[0].alias("claim_type_cd"),
col("claim.insurance.coverage")[0].alias("insurer"),
col("claim.total.value").alias("claim_billed_amount"),
col("claim.item.productOrService.coding.display").alias("prcdr_description"),
col("claim.item.productOrService.coding.code").alias("prcdr_cd"),
col("claim.item.productOrService.coding.system").alias("prcdr_coding_system")
).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.patient_claims")
# COMMAND ----------
# MAGIC %md ## Medications
# MAGIC
# MAGIC Note: The synthetic dataset does not adhere to FHIR standards. In the next cell we extend our schema to support this non-standard structure, medicationCodealeConcept
# COMMAND ----------
med_schema = df.select(explode("MedicationRequest").alias("MedicationRequest")).schema
#Add the medicationCodeableConcept schema in
medCodeableConcept = StructField("medicationCodeableConcept", StructType([
StructField("text",StringType()),
StructField("coding", ArrayType(
StructType([
StructField("code", StringType()),
StructField("display", StringType()),
StructField("system", StringType()),
])
))
]))
med_schema.fields[0].dataType.add(medCodeableConcept) #Add StructField one level below MedicationRequest
# COMMAND ----------
#reconstruct the schema object with updated Medication schema
old_schemas = {k:v for (k,v) in FhirSchemaModel().fhir_resource_map.items() if k != 'MedicationRequest'}
new_schemas = {**old_schemas, **{'MedicationRequest': med_schema.fields[0].dataType} }
#reread in the data
bundle = read_from_directory(sample_data)
df = bundle.entry(schemas = FhirSchemaModel(fhir_resource_map = new_schemas))
# COMMAND ----------
# DBTITLE 1,Show Medication Requests Data
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("MedicationRequest")).select(col("Patient"), col("bundleUUID"), explode(col("MedicationRequest")).alias("MedicationRequest")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("MedicationRequest.status"),
col("MedicationRequest.intent"),
col("MedicationRequest.authoredOn"),
col("MedicationRequest.medicationCodeableConcept.text").alias("rx_text"),
col("MedicationRequest.medicationCodeableConcept.coding.code")[0].alias("rx_code"),
col("MedicationRequest.medicationCodeableConcept.coding.system")[0].alias("code_type")
).filter(col("Patient").like("efee780e%") | col("Patient").like("1a5e6090%")).show()
# COMMAND ----------
# DBTITLE 1,Save Medication Requests Data
df.select(explode("Patient").alias("Patient"), col("bundleUUID"), col("MedicationRequest")).select(col("Patient"), col("bundleUUID"), explode(col("MedicationRequest")).alias("MedicationRequest")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("patient.id").alias("Patient"),
col("MedicationRequest.status"),
col("MedicationRequest.intent"),
col("MedicationRequest.authoredOn"),
col("MedicationRequest.medicationCodeableConcept.text").alias("rx_text"),
col("MedicationRequest.medicationCodeableConcept.coding.code")[0].alias("rx_code"),
col("MedicationRequest.medicationCodeableConcept.coding.system")[0].alias("code_type")
).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.medication_requests")
# COMMAND ----------
# MAGIC %md ## Providers
# COMMAND ----------
# DBTITLE 1,Show Provider Data
# Note: providers can be any of (Practitioner, Organization, PractitionerRole)
# For this example we show practitioners
df.select(col("bundleUUID"), col("Practitioner")).select(col("bundleUUID"), explode("Practitioner").alias("Practitioner")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("practitioner.active"),
col("practitioner.gender"),
col("practitioner.telecom.system")[0].alias("primary_contact_method"),
col("practitioner.telecom.value")[0].alias("primary_contact_value"),
col("practitioner.telecom.use")[0].alias("primary_use")
).show()
# COMMAND ----------
# DBTITLE 1,Save Provider Data
df.select(col("bundleUUID"), col("Practitioner")).select(col("bundleUUID"), explode("Practitioner").alias("Practitioner")).select(
col("bundleUUID").alias("UNIQUE_FHIR_ID"),
col("practitioner.active"),
col("practitioner.gender"),
col("practitioner.telecom.system")[0].alias("primary_contact_method"),
col("practitioner.telecom.value")[0].alias("primary_contact_value"),
col("practitioner.telecom.use")[0].alias("primary_use")
).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.providers_practitioners")
# COMMAND ----------
# MAGIC %md # ETL Using SQL
# MAGIC Write FHIR as is to Table and Use SQL to manipulate
# COMMAND ----------
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.Patient")
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.Condition")
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.Claim")
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.MedicationRequest")
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.Practitioner")
bundle.bulk_table_write(location="hls_healthcare.hls_dev"
,write_mode="overwrite"
,columns=["Patient", "Condition", "Claim", "MedicationRequest", "Practitioner"]) #if columns is not specified, all resources are written by default
# COMMAND ----------
# MAGIC %md ## Conditions
# COMMAND ----------
# DBTITLE 1,Select Patient Condition Information
# MAGIC %sql
# MAGIC select p.bundleUUID as UNIQUE_FHIR_ID,
# MAGIC p.Patient.id,
# MAGIC p.patient.birthDate,
# MAGIC c.Condition.clinicalStatus.coding.code[0] as clinical_status,
# MAGIC c.Condition.code.coding.code[0] as condition_code,
# MAGIC c.Condition.code.coding.system[0] as condition_type_code,
# MAGIC c.Condition.code.text as condition_description,
# MAGIC c.Condition.recordedDate condition_date
# MAGIC from (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.patient) p --all patient information
# MAGIC inner join (select bundleUUID, explode(condition) as condition from hls_healthcare.hls_dev.condition) c --all conditions from that patient
# MAGIC on p.bundleUUID = c.bundleUUID --Only show records that were bundled together
# MAGIC
# COMMAND ----------
# MAGIC %md ## Claims
# COMMAND ----------
# DBTITLE 1,Select Claims Information
# MAGIC %sql
# MAGIC select p.bundleUUID as UNIQUE_FHIR_ID,
# MAGIC p.Patient.id as patient_id,
# MAGIC p.patient.birthDate,
# MAGIC c.claim.patient as claim_patient_id,
# MAGIC c.claim.id as claim_id,
# MAGIC c.claim.type.coding.code[0] as claim_type_cd, --837I = Institutional, 837P = Professional
# MAGIC c.claim.insurance.coverage[0],
# MAGIC c.claim.total.value as claim_billed_amount,
# MAGIC c.claim.item.productOrService.coding.display as procedure_description,
# MAGIC c.claim.item.productOrService.coding.code as procedure_code,
# MAGIC c.claim.item.productOrService.coding.system as procedure_coding_system
# MAGIC from (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.patient) p --all patient information
# MAGIC inner join (select bundleUUID, explode(claim) as claim from hls_healthcare.hls_dev.claim) c --all claim lines from that patient
# MAGIC on p.bundleUUID = c.bundleUUID --Only show records that were bundled together
# MAGIC limit 10
# COMMAND ----------
# MAGIC %md ## Medications
# COMMAND ----------
# MAGIC %sql
# MAGIC select p.bundleUUID as UNIQUE_FHIR_ID,
# MAGIC p.Patient.id as patient_id,
# MAGIC p.patient.birthDate,
# MAGIC m.medication.intent,
# MAGIC m.medication.status,
# MAGIC m.medication.authoredOn as date_requested,
# MAGIC m.medication.requester as rx_requester,
# MAGIC --m.medication.medication --This is where medication should be, but looks like this isn't a compliant FHIR resource.
# MAGIC --Upon further inspection the resource is located at the places below
# MAGIC
# MAGIC m.medication.medicationCodeableConcept.coding.code[0] as rx_code,
# MAGIC m.medication.medicationCodeableConcept.coding.system[0] as rx_code_type,
# MAGIC m.medication.medicationCodeableConcept.coding.display[0] as rx_description
# MAGIC from (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.patient) p --all patient information
# MAGIC inner join (select bundleUUID, explode(MedicationRequest) as medication from hls_healthcare.hls_dev.MedicationRequest) m --all medication orders from that patient
# MAGIC on p.bundleUUID = m.bundleUUID --Only show records that were bundled together
# MAGIC limit 10
# COMMAND ----------
# MAGIC %md ## Providers
# COMMAND ----------
# DBTITLE 1,Show Provider Contact Information
# MAGIC %sql
# MAGIC select p.bundleUUID as UNIQUE_FHIR_ID,
# MAGIC p.practitioner.id as provider_id, --in this FHIR bundle, ID is the FK to other references in various resources (claim, careTeam, etc)
# MAGIC p.practitioner.active,
# MAGIC p.practitioner.gender,
# MAGIC p.practitioner.telecom.system[0] as primary_contact_method,
# MAGIC p.practitioner.telecom.value[0] as primary_contact_value,
# MAGIC p.practitioner.telecom.use[0] as primary_use
# MAGIC from (select bundleUUID, explode(practitioner) as practitioner from hls_healthcare.hls_dev.Practitioner) as p
# MAGIC limit 10
# MAGIC
# COMMAND ----------
# DBTITLE 1,Associate Providers to a Claim Resource
# MAGIC %sql
# MAGIC select p.bundleUUID as UNIQUE_FHIR_ID,
# MAGIC p.practitioner.id as provider_id, --in this FHIR bundle, ID is the FK to other references in various resources (claim, careTeam, etc)
# MAGIC p.practitioner.active,
# MAGIC p.practitioner.gender,
# MAGIC p.practitioner.telecom.system[0] as primary_contact_method,
# MAGIC p.practitioner.telecom.value[0] as primary_contact_value,
# MAGIC p.practitioner.telecom.use[0] as primary_use,
# MAGIC c.*
# MAGIC from (select bundleUUID, explode(practitioner) as practitioner from hls_healthcare.hls_dev.Practitioner) as p
# MAGIC inner join (select claim.id as claim_id,
# MAGIC substring(claim.provider, 82, 36) as provider_id,
# MAGIC claim.type.coding.code[0] as claim_type_cd, --837I = Institutional, 837P = Professional
# MAGIC claim.insurance.coverage[0] as insurance,
# MAGIC claim.total.value as claim_billed_amount
# MAGIC from (select explode(claim) as claim from hls_healthcare.hls_dev.claim)) as c
# MAGIC on c.provider_id = p.practitioner.id
# MAGIC limit 10;
# MAGIC
# COMMAND ----------
# DBTITLE 1,The above returned 0 records for practitioners, why?
# MAGIC %sql
# MAGIC select claim.type.coding.code[0] as claim_type_cd, --837I = Institutional, 837P = Professional
# MAGIC count(1)
# MAGIC from (select explode(claim) as claim from hls_healthcare.hls_dev.claim) as c
# MAGIC group by 1
# MAGIC -- Only institutional and Rx claims present, no professional claims submitted
# MAGIC limit 10
# COMMAND ----------
# MAGIC %md # Deduping FHIR Messages
# COMMAND ----------
# DBTITLE 1,Reread same dataset as above
df = read_from_directory(sample_data).entry()
# COMMAND ----------
# DBTITLE 1,Stage the new data to check for duplicate records
#claim & patient info
df.select(col("bundleUUID"), col("Patient")).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.staging_patient")
df.select(col("bundleUUID"), col("Claim")).write.mode("overwrite").saveAsTable("hls_healthcare.hls_dev.staging_claim")
# COMMAND ----------
# MAGIC %md ## Lookup patient query to dedupe records
# COMMAND ----------
# MAGIC %sql
# MAGIC --Lookup by patient_id
# MAGIC select stg.bundleUUID as fhir_bundle_id_staging_
# MAGIC ,p.bundleUUID as fhir_bundle_id_pateint
# MAGIC ,stg.patient.id as patient_id
# MAGIC ,case when p.patient.id is not null then "Y" else "N" end as record_exists_flag
# MAGIC from (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.staging_patient) stg
# MAGIC left outer join (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.patient) p
# MAGIC on stg.patient.id = p.patient.id
# MAGIC limit 20;
# MAGIC
# COMMAND ----------
# MAGIC %md ## Lookup claim query to dedupe records
# COMMAND ----------
# MAGIC %sql
# MAGIC --Lookup by claim_id
# MAGIC select stg.bundleUUID as fhir_bundle_id_staging_
# MAGIC ,c.bundleUUID as fhir_bundle_id_pateint
# MAGIC ,stg.claim.id as claim_id
# MAGIC ,case when c.claim.id is not null then "Y" else "N" end as record_exists_flag
# MAGIC from (select bundleUUID, explode(claim) as claim from hls_healthcare.hls_dev.staging_claim) stg
# MAGIC left outer join (select bundleUUID, explode(claim) as claim from hls_healthcare.hls_dev.claim) c
# MAGIC on stg.claim.id = c.claim.id
# MAGIC limit 20;
# COMMAND ----------
# MAGIC %md # Seeing a Patient in Real Time in a Hospital
# MAGIC
# MAGIC Through ADT Feeds
# COMMAND ----------
import os, uuid
from pyspark.sql.functions import *
from dbignite.readers import read_from_directory
from dbignite.hosp_feeds.adt import ADTActions
#Side effect of creating the UDF to see actions from ADT messages
#SELECT get_action("ADT") -> action : "discharge" , description : "transfer an inpatient to outpatient"
ADTActions()
sample_data = "file:///" + os.getcwd() + "/../sampledata/adt_records/"
bundle = read_from_directory(sample_data)
# COMMAND ----------
# DBTITLE 1,Create tables for Patient and MessageHeader resources
bundle.entry() #must evaluate the DataFrame before writing
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.Patient")
spark.sql("DROP TABLE IF EXISTS hls_healthcare.hls_dev.MessageHeader")
bundle.bulk_table_write(location="hls_healthcare.hls_dev"
,write_mode="overwrite"
,columns=["Patient", "MessageHeader"]) #if columns is not specified, all resources are written by default
# COMMAND ----------
# DBTITLE 1,Query all Patient / Action statuses and their timestamps
# MAGIC %sql
# MAGIC Select
# MAGIC --SSN value for patient matching
# MAGIC filter(patient.identifier, x -> x.system == 'http://hl7.org/fhir/sid/us-ssn')[0].value as ssn
# MAGIC ,adt.timestamp as event_timestamp
# MAGIC
# MAGIC --ADT action
# MAGIC ,adt.messageheader.eventCoding.code as adt_type
# MAGIC ,get_action(adt.messageheader.eventCoding.code).action as action
# MAGIC ,get_action(adt.messageheader.eventCoding.code).description as description
# MAGIC ,adt.messageheader.eventCoding.code
# MAGIC ,adt.messageheader.eventCoding.system
# MAGIC
# MAGIC --Patient Resource Details
# MAGIC ,patient.name[0].given[0] as first_name
# MAGIC ,patient.name[0].family as last_name
# MAGIC ,patient.birthDate
# MAGIC ,patient.gender
# MAGIC --Selecting Driver's license number identifier code='DL'
# MAGIC ,filter(patient.identifier, x -> x.type.coding[0].code == 'DL')[0].value as drivers_license_id
# MAGIC --Master Patient Index Value for patient matching
# MAGIC ,filter(patient.identifier, x -> x.type.text == 'EMPI')[0].value as empi_id
# MAGIC
# MAGIC from (select timestamp, bundleUUID, explode(MessageHeader) as messageheader from hls_healthcare.hls_dev.MessageHeader) adt
# MAGIC inner join (select bundleUUID, explode(Patient) as patient from hls_healthcare.hls_dev.Patient) patient
# MAGIC on patient.bundleUUID = adt.bundleUUID
# MAGIC order by ssn desc, timestamp desc
# MAGIC limit 10
# COMMAND ----------
# MAGIC %md # Writing Data into OMOP CDM
# COMMAND ----------
# DBTITLE 1,Transforming data into CDM Person
# MAGIC %sql
# MAGIC
# MAGIC --https://github.com/databrickslabs/dbignite/blob/main/dbignite/omop/utils.py#L14-L42
# MAGIC drop table if exists hls_healthcare.hls_dev.OMOP_PERSON;
# MAGIC create table hls_healthcare.hls_dev.OMOP_PERSON as
# MAGIC SELECT foo.p.id as person_id,
# MAGIC foo.p.name as name,
# MAGIC foo.p.gender as gender_source_value,
# MAGIC year(foo.p.birthDate) as year_of_birth,
# MAGIC month(foo.p.birthDate) as month_of_birth,
# MAGIC dayofmonth(foo.p.birthDate) as day_of_birth,
# MAGIC foo.p.address as patient_address
# MAGIC from
# MAGIC (SELECT explode(patient) as p
# MAGIC FROM hls_healthcare.hls_dev.Patient
# MAGIC ) foo
# MAGIC ;
# MAGIC
# COMMAND ----------
# MAGIC %md # Writing FHIR Data
# MAGIC
# MAGIC For this next section, files need downloaded from CMS SynPUF into Databricks (https://www.cms.gov/data-research/statistics-trends-and-reports/medicare-claims-synthetic-public-use-files/cms-2008-2010-data-entrepreneurs-synthetic-public-use-file-de-synpuf)
# MAGIC
# MAGIC
# COMMAND ----------
from dbignite.writer.fhir_encoder import *
from dbignite.writer.bundler import *
import json
data = spark.sql("""
select
--Patient info
b.DESYNPUF_ID, --Patient.id
b.BENE_BIRTH_DT, --Patient.birthDate
b.BENE_COUNTY_CD, --Patient.address.postalCode
c.CLM_ID, --Claim.id
c.HCPCS_CD_1, --Claim.procedure.procedureCodeableConcept.coding.code
c.HCPCS_CD_2, --Claim.procedure.procedureCodeableConcept.coding.code
c.ICD9_DGNS_CD_1, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
c.ICD9_DGNS_CD_2, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
"http://www.cms.gov/Medicare/Coding/HCPCSReleaseCodeSets" as hcpcs_cdset
from hls_healthcare.hls_cms_synpuf.ben_sum b
inner join hls_healthcare.hls_cms_synpuf.car_claims c
on c.DESYNPUF_ID = b.DESYNPUF_ID
""")
# COMMAND ----------
maps = [Mapping('DESYNPUF_ID', 'Patient.id'),
Mapping('BENE_BIRTH_DT', 'Patient.birthDate'),
Mapping('BENE_COUNTY_CD', 'Patient.address.postalCode'),
Mapping('CLM_ID', 'Claim.id'),
Mapping('HCPCS_CD_1', 'Claim.procedure.procedureCodeableConcept.coding.code'),
Mapping('HCPCS_CD_2', 'Claim.procedure.procedureCodeableConcept.coding.code'),
#hardcoded values for system of HCPCS
Mapping('ICD9_DGNS_CD_1', 'Claim.diagnosis.diagnosisCodeableConcept.coding.code'),
Mapping('ICD9_DGNS_CD_2', 'Claim.diagnosis.diagnosisCodeableConcept.coding.code')
]
#For the complex mapping of multiple diagnosis and procedure codes, we override the standard mapping functions
em = FhirEncoderManager(
override_encoders ={
"Claim.procedure.procedureCodeableConcept.coding":
FhirEncoder(False, False, lambda x: [{"code": y, "system": "http://www.cms.gov/Medicare/Coding/HCPCSReleaseCodeSets"}
for y in x[0].get("code").split(",")]),
"Claim.diagnosis.diagnosisCodeableConcept.coding":
FhirEncoder(False, False, lambda x: [{"code": y, "system": "http://terminology.hl7.org/CodeSystem/icd9cm"} for y in x[0].get("code").split(",")])
})
m = MappingManager(maps, data.schema, em)
b = Bundle(m)
result = b.df_to_fhir(data)
# COMMAND ----------
#pretty print 10 values
print('\n'.join([str(x) for x in
result.map(lambda x: json.loads(x)).map(lambda x: json.dumps(x, indent=4)).take(10)]))
# COMMAND ----------
# MAGIC %md ## Inspect a single value
# COMMAND ----------
# MAGIC %sql
# MAGIC select
# MAGIC --Patient info
# MAGIC b.DESYNPUF_ID, --Patient.id
# MAGIC b.BENE_BIRTH_DT, --Patient.birthDate
# MAGIC b.BENE_COUNTY_CD, --Patient.address.postalCode
# MAGIC c.CLM_ID, --Claim.id
# MAGIC c.HCPCS_CD_1, --Claim.procedure.procedureCodeableConcept.coding.code
# MAGIC c.HCPCS_CD_2, --Claim.procedure.procedureCodeableConcept.coding.code
# MAGIC c.ICD9_DGNS_CD_1, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
# MAGIC c.ICD9_DGNS_CD_2, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
# MAGIC "http://www.cms.gov/Medicare/Coding/HCPCSReleaseCodeSets" as hcpcs_cdset
# MAGIC from hls_healthcare.hls_cms_synpuf.ben_sum b
# MAGIC inner join hls_healthcare.hls_cms_synpuf.car_claims c
# MAGIC on c.DESYNPUF_ID = b.DESYNPUF_ID
# MAGIC where c.CLM_ID = 737363357976870
# COMMAND ----------
data = spark.sql("""
select
--Patient info
b.DESYNPUF_ID as DESYNPUF_ID, --Patient.id
b.BENE_BIRTH_DT, --Patient.birthDate
b.BENE_COUNTY_CD, --Patient.address.postalCode
c.CLM_ID, --Claim.id
c.HCPCS_CD_1, --Claim.procedure.procedureCodeableConcept.coding.code
c.HCPCS_CD_2, --Claim.procedure.procedureCodeableConcept.coding.code
c.ICD9_DGNS_CD_1, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
c.ICD9_DGNS_CD_2, --Claim.diagnosis.diagnosisCodeableConcept.coding.code
"http://www.cms.gov/Medicare/Coding/HCPCSReleaseCodeSets" as hcpcs_cdset
from hls_healthcare.hls_cms_synpuf.ben_sum b
inner join hls_healthcare.hls_cms_synpuf.car_claims c
on c.DESYNPUF_ID = b.DESYNPUF_ID
where c.CLM_ID = 737363357976870
""")
m = MappingManager(maps, data.schema, em)
b = Bundle(m)
result = b.df_to_fhir(data)
# COMMAND ----------
#pretty print 10 values
print('\n'.join([str(x) for x in
result.map(lambda x: json.loads(x)).map(lambda x: json.dumps(x, indent=4)).take(1)]))
# COMMAND ----------