-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathconfig.py
197 lines (158 loc) · 6.64 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# !/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 8/1/2021
# @Author : Huatao
# @Email : [email protected]
# @File : config.py
# @Description :
import json
from typing import NamedTuple
import os
# from bunch import bunchify
class PretrainModelConfig(NamedTuple):
"Configuration for BERT model"
hidden: int = 0 # Dimension of Hidden Layer in Transformer Encoder
hidden_ff: int = 0 # Dimension of Intermediate Layers in Positionwise Feedforward Net
feature_num: int = 0 # Factorized embedding parameterization
n_layers: int = 0 # Numher of Hidden Layers
n_heads: int = 0 # Numher of Heads in Multi-Headed Attention Layers
#activ_fn: str = "gelu" # Non-linear Activation Function Type in Hidden Layers
seq_len: int = 0 # Maximum Length for Positional Embeddings
emb_norm: bool = True
@classmethod
def from_json(cls, js):
return cls(**js)
class ClassifierModelConfig(NamedTuple):
"Configuration for classifier model"
seq_len: int = 0
input: int = 0
num_rnn: int = 0
num_layers: int = 0
rnn_io: list = []
num_cnn: int = 0
conv_io: list = []
pool: list = []
flat_num: int = 0
num_attn: int = 0
num_head: int = 0
atten_hidden: int = 0
num_linear: int = 0
linear_io: list = []
activ: bool = False
dropout: bool = False
@classmethod
def from_json(cls, js):
return cls(**js)
class TrainConfig(NamedTuple):
""" Hyperparameters for training """
seed: int = 0 # random seed
batch_size: int = 0
lr: int = 0 # learning rate
n_epochs: int = 0 # the number of epoch
# `warm up` period = warmup(0.1)*total_steps
# linearly increasing learning rate from zero to the specified value(5e-5)
warmup: float = 0
save_steps: int = 0 # interval for saving model
total_steps: int = 0 # total number of steps to train
lambda1: float = 0
lambda2: float = 0
@classmethod
def from_json(cls, file): # load config from json file
return cls(**json.load(open(file, "r")))
class MaskConfig(NamedTuple):
""" Hyperparameters for training """
mask_ratio: float = 0 # masking probability
mask_alpha: int = 0 # How many tokens to form a group.
max_gram: int = 0 # number of max n-gram to masking
mask_prob: float = 1.0
replace_prob: float = 0.0
@classmethod
def from_json(cls, file): # load config from json file
return cls(**json.load(open(file, "r")))
class DatasetConfig(NamedTuple):
""" Hyperparameters for training """
sr: int = 0 # sampling rate
# dataset = Narray with shape (size, seq_len, dimension)
size: int = 0 # data sample number
seq_len: int = 0 # seq length
dimension: int = 0 # feature dimension
activity_label_index: int = -1 # index of activity label
activity_label_size: int = 0 # number of activity label
activity_label: list = [] # names of activity label.
user_label_index: int = -1 # index of user label
user_label_size: int = 0 # number of user label
position_label_index: int = -1 # index of phone position label
position_label_size: int = 0 # number of position label
position_label: list = [] # names of position label.
model_label_index: int = -1 # index of phone model label
model_label_size: int = 0 # number of model label
@classmethod
def from_json(cls, js):
return cls(**js)
def create_io_config(args, dataset_name, version, pretrain_model=None, target='pretrain'):
data_path = os.path.join('dataset', dataset_name, 'data_' + version + '.npy')
label_path = os.path.join('dataset', dataset_name, 'label_' + version + '.npy')
args.data_path = data_path
args.label_path = label_path
save_path = os.path.join('saved', target + "_" + dataset_name + "_" + version) # + "_temp"
if not os.path.exists(save_path):
os.mkdir(save_path)
args.save_path = os.path.join(save_path, args.save_model)
# log_path = os.path.join('log', target + "_" + dataset_name + "_" + version) # + "_temp"
# if not os.path.exists(log_path):
# os.mkdir(log_path)
# args.log_dir = log_path
if pretrain_model is not None:
if target.count('_') > 2: # bert_classifier
model_path = os.path.join('saved', 'pretrain_' + target.split('_')[2] + "_" + dataset_name + "_" + version, pretrain_model)
else:
model_path = os.path.join(save_path, pretrain_model)
args.pretrain_model = model_path
else:
args.pretrain_model = None
return args
def load_model_config(target, prefix, version
, path_bert='config/limu_bert.json', path_classifier='config/classifier.json'):
if "bert" not in target: # pretrain or pure classifier
if "pretrain" in target:
model_config_all = json.load(open(path_bert, "r"))
else:
model_config_all = json.load(open(path_classifier, "r"))
name = prefix + "_" + version
if name in model_config_all:
if "pretrain" in target:
return PretrainModelConfig.from_json(model_config_all[name])
else:
return ClassifierModelConfig.from_json(model_config_all[name])
else:
return None
else: # pretrain + classifier for fine-tune
model_config_bert = json.load(open(path_bert, "r"))
model_config_classifier = json.load(open(path_classifier, "r"))
prefixes = prefix.split('_')
versions = version.split('_')
bert_name = prefixes[0] + "_" + versions[0]
classifier_name = prefixes[1] + "_" + versions[1]
if bert_name in model_config_bert and classifier_name in model_config_classifier:
return [PretrainModelConfig.from_json(model_config_bert[bert_name])
, ClassifierModelConfig.from_json(model_config_classifier[classifier_name])]
else:
return None
def load_dataset_stats(dataset, version):
path = 'dataset/data_config.json'
dataset_config_all = json.load(open(path, "r"))
name = dataset + "_" + version
if name in dataset_config_all:
return DatasetConfig.from_json(dataset_config_all[name])
else:
return None
def load_dataset_label_names(dataset_config, label_index):
for p in dir(dataset_config):
if getattr(dataset_config, p) == label_index and "label_index" in p:
temp = p.split("_")
label_num = getattr(dataset_config, temp[0] + "_" + temp[1] + "_size")
if hasattr(dataset_config, temp[0] + "_" + temp[1]):
return getattr(dataset_config, temp[0] + "_" + temp[1]), label_num
else:
return None, label_num
return None, -1