-
Notifications
You must be signed in to change notification settings - Fork 27
/
Copy pathclassifier_bert.py
80 lines (65 loc) · 3.41 KB
/
classifier_bert.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# @Time : 2020/9/16 11:20
# @Author : Huatao
# @Email : [email protected]
# @File : classifier_bert.py
# @Description :
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import Dataset, TensorDataset, DataLoader
import train
from config import load_dataset_label_names
from models import BERTClassifier, fetch_classifier
from statistic import stat_acc_f1
from utils import get_device, handle_argv \
, IMUDataset, load_bert_classifier_data_config, Preprocess4Normalization, \
prepare_classifier_dataset
def bert_classify(args, label_index, training_rate, label_rate, frozen_bert=False, balance=True):
data, labels, train_cfg, model_bert_cfg, model_classifier_cfg, dataset_cfg = load_bert_classifier_data_config(args)
label_names, label_num = load_dataset_label_names(dataset_cfg, label_index)
data_train, label_train, data_vali, label_vali, data_test, label_test \
= prepare_classifier_dataset(data, labels, label_index=label_index, training_rate=training_rate,
label_rate=label_rate, merge=model_classifier_cfg.seq_len, seed=train_cfg.seed
, balance=balance)
pipeline = [Preprocess4Normalization(model_bert_cfg.feature_num)]
data_set_train = IMUDataset(data_train, label_train, pipeline=pipeline)
data_loader_train = DataLoader(data_set_train, shuffle=True, batch_size=train_cfg.batch_size)
data_set_test = IMUDataset(data_test, label_test, pipeline=pipeline)
data_loader_test = DataLoader(data_set_test, shuffle=False, batch_size=train_cfg.batch_size)
data_set_vali = IMUDataset(data_vali, label_vali, pipeline=pipeline)
data_loader_vali = DataLoader(data_set_vali, shuffle=False, batch_size=train_cfg.batch_size)
criterion = nn.CrossEntropyLoss()
classifier = fetch_classifier(method, model_classifier_cfg, input=model_bert_cfg.hidden, output=label_num)
model = BERTClassifier(model_bert_cfg, classifier=classifier, frozen_bert=frozen_bert)
optimizer = torch.optim.Adam(params=model.parameters(), lr=train_cfg.lr)
trainer = train.Trainer(train_cfg, model, optimizer, args.save_path, get_device(args.gpu))
def func_loss(model, batch):
inputs, label = batch
logits = model(inputs, True)
loss = criterion(logits, label)
return loss
def func_forward(model, batch):
inputs, label = batch
logits = model(inputs, False)
return logits, label
def func_evaluate(label, predicts):
stat = stat_acc_f1(label.cpu().numpy(), predicts.cpu().numpy())
return stat
trainer.train(func_loss, func_forward, func_evaluate, data_loader_train, data_loader_test, data_loader_vali
, model_file=args.pretrain_model, load_self=True)
label_estimate_test = trainer.run(func_forward, None, data_loader_test)
return label_test, label_estimate_test
if __name__ == "__main__":
train_rate = 0.8
label_rate = 0.01
balance = True
frozen_bert = False
method = "base_gru"
args = handle_argv('bert_classifier_' + method, 'bert_classifier_train.json', method)
if args.label_index != -1:
label_index = args.label_index
label_test, label_estimate_test = bert_classify(args, args.label_index, train_rate, label_rate
, frozen_bert=frozen_bert, balance=balance)