-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathmain_tokenizer.py
254 lines (216 loc) · 10.3 KB
/
main_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import numpy as np
import torch
from torch import nn
import os
import argparse
import random
import sys
sys.path.append("/home/yc146/github_open_ltsm/ltsm")
from ltsm.data_provider.data_factory import get_datasets,get_test_datasets
from ltsm.data_provider.data_loader import HF_Dataset
from ltsm.data_provider.data_processing.tokenizer_processor import TokenizerConfig
from ltsm.models import get_model, LTSMConfig
from peft import get_peft_model, LoraConfig
from transformers import (
Trainer,
TrainingArguments,
EvalPrediction,
set_seed,
)
def get_args():
parser = argparse.ArgumentParser(description='LTSM')
# Basic Config
parser.add_argument('--model_id', type=str, default='test_run', help='model id')
parser.add_argument('--model_name_or_path', type=str, default="gpt2-medium", help='model name')
parser.add_argument('--seed', type=int, default=2024, help='random seed')
parser.add_argument('--device', type=str, default="cuda:0")
parser.add_argument('--checkpoints', type=str, default='./checkpoints/')
# Data Settings
parser.add_argument('--data_path', nargs='+', default='dataset/weather.csv', help='data files')
parser.add_argument('--test_data_path', type=str, default='dataset/weather.csv', help='test data file')
parser.add_argument('--test_data_path_list', nargs='+', required=True, help='test data file')
parser.add_argument('--prompt_data_path', type=str, default='./weather.csv', help='prompt data file')
parser.add_argument('--data_processing', type=str, default="standard_scaler", help='data processing method')
parser.add_argument('--train_ratio', type=float, default=0.7, help='train data ratio')
parser.add_argument('--val_ratio', type=float, default=0.1, help='validation data ratio')
# Forecasting Settings
parser.add_argument('--seq_len', type=int, default=336, help='input sequence length')
parser.add_argument('--pred_len', type=int, default=96, help='prediction sequence length')
parser.add_argument('--prompt_len', type=int, default=133, help='prompt sequence length')
# Model Settings
parser.add_argument('--lora', action="store_true", help='use lora')
parser.add_argument('--lora_dim', type=int, default=128, help='dimension of lora')
parser.add_argument('--gpt_layers', type=int, default=3, help='number of gpt layers')
parser.add_argument('--d_model', type=int, default=1024, help='dimension of model')
parser.add_argument('--n_heads', type=int, default=16, help='number of heads')
parser.add_argument('--d_ff', type=int, default=512, help='dimension of fcn')
parser.add_argument('--dropout', type=float, default=0.2, help='dropout')
parser.add_argument('--enc_in', type=int, default=1, help='encoder input size')
parser.add_argument('--c_out', type=int, default=862, help='output size')
parser.add_argument('--patch_size', type=int, default=16, help='patch size')
parser.add_argument('--pretrain', type=int, default=1, help='is pretrain')
parser.add_argument('--local_pretrain', type=str, default="None", help='local pretrain weight')
parser.add_argument('--freeze', type=int, default=1, help='is model weight frozen')
parser.add_argument('--model', type=str, default='model', help='model name, , options:[LTSM, LTSM_WordPrompt, LTSM_Tokenizer]')
parser.add_argument('--stride', type=int, default=8, help='stride')
parser.add_argument('--tmax', type=int, default=10, help='tmax')
# Training Settings
parser.add_argument('--eval', type=int, default=0, help='evaluation')
parser.add_argument('--itr', type=int, default=1, help='experiments times')
parser.add_argument('--output_dir', type=str, default='output/ltsm_train_lr0005/', help='output directory')
parser.add_argument('--downsample_rate', type=int, default=100, help='downsample rate')
parser.add_argument('--llm_layers', type=int, default=32)
parser.add_argument('--decay_fac', type=float, default=0.75, help='decay factor')
parser.add_argument('--learning_rate', type=float, default=0.0001, help='learning rate')
parser.add_argument('--batch_size', type=int, default=512, help='batch size')
parser.add_argument('--num_workers', type=int, default=10, help='number of workers')
parser.add_argument('--train_epochs', type=int, default=1, help='number of epochs')
parser.add_argument('--lradj', type=str, default='type1', help='learning rate adjustment type')
parser.add_argument('--patience', type=int, default=3, help='early stopping patience')
parser.add_argument('--gradient_accumulation_steps', type=int, default=64, help='gradient accumulation steps')
args, unknown = parser.parse_known_args()
return args
def seed_all(fixed_seed):
random.seed(fixed_seed)
torch.manual_seed(fixed_seed)
np.random.seed(fixed_seed)
def freeze_parameters(model):
freeze_param_buf = ["gpt2"]
for n, p in model.named_parameters():
if any(fp in n for fp in freeze_param_buf):
p.requires_grad = False
print(f"{n} has been freeezed")
trainable_param_buf = ["ln", "wpe", "in_layer", "out_layer", "lora"]
for n, p in model.named_parameters():
if any(fp in n for fp in trainable_param_buf):
p.requires_grad = True
def print_trainable_parameters(model):
for n, p in model.named_parameters():
if p.requires_grad:
print(f"{n} is trainable...")
def run(args):
print(args)
model_config = LTSMConfig(**vars(args))
model = get_model(model_config)
if args.lora:
peft_config = LoraConfig(
target_modules=["c_attn"], # ["q", "v"],
inference_mode=False,
r=args.lora_dim,
lora_alpha=32,
lora_dropout=0.1
)
model = get_peft_model(model, peft_config)
model.print_trainable_parameters()
elif args.freeze:
freeze_parameters(model)
print_trainable_parameters(model)
model_optim = torch.optim.Adam(model.parameters(), lr=args.learning_rate)
lr_scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(model_optim, T_max=args.tmax, eta_min=1e-8)
# Load Tokenizer Config, Reference: https://github.com/amazon-science/chronos-forecasting
context_length = args.seq_len+args.pred_len
prediction_length = args.pred_len
n_tokens = 1024
n_special_tokens = 2
config = TokenizerConfig(
tokenizer_class="MeanScaleUniformBins",
tokenizer_kwargs=dict(low_limit=-3.0, high_limit=3.0),
n_tokens=n_tokens,
n_special_tokens=n_special_tokens,
pad_token_id=0,
eos_token_id=1,
use_eos_token=0,
model_type="causal",
context_length=context_length,
prediction_length=prediction_length,
num_samples=20,
temperature=1.0,
top_k=50,
top_p=1.0,
)
tokenizer = config.create_tokenizer()
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds)
if preds.shape != p.label_ids.shape:
label_ids = np.squeeze(p.label_ids)
else:
label_ids = p.label_ids
return {
"mse": ((preds - label_ids) ** 2).mean().item(),
"mae": (np.abs(preds - label_ids)).mean().item()}
def compute_loss(model, inputs, return_outputs=False):
outputs = model(inputs["input_data"])
B, L, M, _ = outputs.shape
loss = nn.functional.cross_entropy(outputs.reshape(B*L,-1), inputs["labels"][:,1:].long().reshape(B*L))
return (loss, outputs) if return_outputs else loss
def collate_fn(batch):
return {
'input_data': torch.from_numpy(np.stack([x['input_data'] for x in batch])).type(torch.float32),
'labels': torch.from_numpy(np.stack([x['labels'] for x in batch])).type(torch.float32),
}
@torch.no_grad()
def prediction_step(model, inputs, prediction_loss_only=False, ignore_keys=None):
input_data = inputs["input_data"].to(model.module.device)
labels = inputs["labels"].to(model.module.device)
scale = labels[:,0]
labels = labels[:,1:]
outputs = model(input_data)
indices = torch.max(outputs, dim=-1).indices
output_value = tokenizer.output_transform(indices, scale)
label_value = tokenizer.output_transform(labels.unsqueeze(-1).long(), scale)
loss = nn.functional.mse_loss(output_value, label_value)
return (loss, output_value, label_value)
training_args = TrainingArguments(
output_dir=args.output_dir,
per_device_train_batch_size=args.batch_size,
per_device_eval_batch_size=args.batch_size,
evaluation_strategy="steps",
num_train_epochs=args.train_epochs,
fp16=False,
save_steps=100,
eval_steps=25,
logging_steps=5,
learning_rate=args.learning_rate,
gradient_accumulation_steps=args.gradient_accumulation_steps,
save_total_limit=10,
remove_unused_columns=False,
push_to_hub=False,
load_best_model_at_end=True,
)
# Training settings
train_dataset, eval_dataset, _ = get_datasets(args)
train_dataset, eval_dataset= HF_Dataset(train_dataset), HF_Dataset(eval_dataset)
trainer = Trainer(
model=model,
args=training_args,
data_collator=collate_fn,
compute_metrics=compute_metrics,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
tokenizer=None,
optimizers=(model_optim, lr_scheduler),
)
# Overload the trainer API
if not args.eval:
trainer.compute_loss = compute_loss
trainer.prediction_step = prediction_step
train_results = trainer.train()
trainer.save_model()
trainer.log_metrics("train", train_results.metrics)
trainer.save_metrics("train", train_results.metrics)
trainer.save_state()
# Testing settings
for data_path in args.test_data_path_list:
trainer.compute_loss = compute_loss
trainer.prediction_step = prediction_step
args.test_data_path = data_path
test_dataset, _ = get_test_datasets(args)
test_dataset = HF_Dataset(test_dataset)
metrics = trainer.evaluate(test_dataset)
trainer.log_metrics("Test", metrics)
trainer.save_metrics("Test", metrics)
if __name__ == "__main__":
args = get_args()
seed_all(args.seed)
run(args)