-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathsyntheticroc.py
110 lines (90 loc) · 4.33 KB
/
syntheticroc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
#!/usr/bin/env python
# script to generate ROC plot from multiple GM-PHD runs with different bias levels
# (c) 2012 Dan Stowell and Queen Mary University of London.
"""
This file is part of gmphd, GM-PHD filter in python by Dan Stowell.
gmphd is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
gmphd is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with gmphd. If not, see <http://www.gnu.org/licenses/>.
"""
from gmphd import *
import matplotlib.pyplot as plt
import matplotlib.cm as cm
from syntheticexamplestuff import *
###############################################################
# user config options:
niters = 100
nruns = 20
birthprob = 0.1 # 0.05 # 0 # 0.2
survivalprob = 0.975 # 0.95 # 1
detectprob = 0.95# 0.999
clutterintensitytot = 5 #2 #4 # typical num clutter items per frame
biases = [1, 2, 4, 8, 16] # tendency to prefer false-positives over false-negatives in the filtered output
obsntypenames = ['chirp', 'spect']
transntype = 'vibrato' # 'fixedvel' or 'vibrato'
###############################################################
# setting up variables
transnmatrix = transntypes[transntype]
birthintensity1 = birthprob / len(birthgmm)
print "birthgmm: each component has weight %g" % birthintensity1
for comp in birthgmm:
comp.weight = birthintensity1
rocpoints = {}
for obsntype in obsntypenames:
obsnmatrix = obsntypes[obsntype]['obsnmatrix']
directlystatetospec = dot(obsntypes[obsntype]['obstospec'], obsnmatrix)
clutterintensity = clutterintensityfromtot(clutterintensitytot, obsntype)
print "clutterintensity: %g" % clutterintensity
rocpoints[obsntype] = [(0,0)]
# NOTE: all the runs are appended into one long "results" array! Can calc the roc point in one fell swoop, no need to hold separate.
# So, we concatenate one separate resultlist for each bias type.
# Then when we come to the end we calculate a rocpoint from each resultlist.
results = { bias: [] for bias in biases }
for whichrun in range(nruns):
print "===============================obsntype %s, run %i==============================" % (obsntype, whichrun)
### Initialise the true state and the model:
trueitems = []
g = Gmphd(birthgmm, survivalprob, 0.7, transnmatrix, 1e-9 * array([[1,0,0], [0,1,0], [0,0,1]]),
obsnmatrix, obsntypes[obsntype]['noisecov'], clutterintensity)
for whichiter in range(niters):
print "--%i----------------------------------------------------------------------" % whichiter
# the "real" state evolves
trueitems = updatetrueitems(trueitems, survivalprob, birthprob, obsnmatrix, transnmatrix)
# we make our observations of it
(obsset, groundtruth) = getobservations(trueitems, clutterintensitytot, obsntype, directlystatetospec, detectprob)
print "OBSSET sent to g.update():"
print obsset
# we run our inference using the observations
updateandprune(g, obsset)
for bias in biases:
resultdict = collateresults(g, obsset, bias, obsntype, directlystatetospec, trueitems, groundtruth)
results[bias].append(resultdict)
for bias in biases:
gt = [moment['groundtruth'] for moment in results[bias]]
ob = [moment['estspec'] for moment in results[bias]]
rocpoints[obsntype].append(calcroc(gt, ob))
print "rocpoints"
print rocpoints
rocpoints[obsntype].append((1,1))
###############################################################
# plot the results
fig = plt.figure()
plt.hold(True)
plt.plot([p[0] for p in rocpoints['spect']], [p[1] for p in rocpoints['spect']], 'r+--', label='spect')
plt.plot([p[0] for p in rocpoints['chirp']], [p[1] for p in rocpoints['chirp']], 'b*-', label='chirp')
plt.legend(loc=4)
plt.title('GMPHD, synthetic data (%s, %i runs per point, avg clutter %g)' % (transntype, nruns, clutterintensitytot))
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.xlim(xmin=0, xmax=0.4)
plt.ylim(ymin=0, ymax=1)
plt.savefig("plot_synthroc.pdf", papertype='A4', format='pdf')
fig.show()
raw_input("Press Enter to continue...")