forked from Naresh1318/GANs_N_Roses
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
203 lines (171 loc) · 9.3 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
from ops import *
from utils import *
import os
import time
import datetime
import mission_control as mc
from scipy.misc import imsave as ims
from tensorflow.contrib.layers import batch_norm
def discriminator(image, reuse=False):
"""
Used to distinguish between real and fake images.
:param image: Images feed to the discriminate.
:param reuse: Set this to True to allow the weights to be reused.
:return: A logits value.
"""
df_dim = 64
if reuse:
tf.get_variable_scope().reuse_variables()
h0 = lrelu(conv2d(image, 3, df_dim, name='d_h0_conv'))
h1 = lrelu(batch_norm(conv2d(h0, df_dim, df_dim * 2, name='d_h1_conv'),
center=True, scale=True, is_training=True, scope='d_bn1'))
h2 = lrelu(batch_norm(conv2d(h1, df_dim * 2, df_dim * 4, name='d_h2_conv'),
center=True, scale=True, is_training=True, scope='d_bn2'))
h3 = lrelu(batch_norm(conv2d(h2, df_dim * 4, df_dim * 8, name='d_h3_conv'),
center=True, scale=True, is_training=True, scope='d_bn3'))
h4 = dense(tf.reshape(h3, [-1, 4 * 4 * df_dim * 8]), 4 * 4 * df_dim * 8, 1, scope='d_h3_lin')
return h4
def generator(z, z_dim):
"""
Used to generate fake images to fool the discriminator.
:param z: The input random noise.
:param z_dim: The dimension of the input noise.
:return: Fake images -> [BATCH_SIZE, IMAGE_SIZE, IMAGE_SIZE, 3]
"""
gf_dim = 64
z2 = dense(z, z_dim, gf_dim * 8 * 4 * 4, scope='g_h0_lin')
h0 = tf.nn.relu(batch_norm(tf.reshape(z2, [-1, 4, 4, gf_dim * 8]),
center=True, scale=True, is_training=True, scope='g_bn1'))
h1 = tf.nn.relu(batch_norm(conv_transpose(h0, [mc.BATCH_SIZE, 8, 8, gf_dim * 4], "g_h1"),
center=True, scale=True, is_training=True, scope='g_bn2'))
h2 = tf.nn.relu(batch_norm(conv_transpose(h1, [mc.BATCH_SIZE, 16, 16, gf_dim * 2], "g_h2"),
center=True, scale=True, is_training=True, scope='g_bn3'))
h3 = tf.nn.relu(batch_norm(conv_transpose(h2, [mc.BATCH_SIZE, 32, 32, gf_dim * 1], "g_h3"),
center=True, scale=True, is_training=True, scope='g_bn4'))
h4 = conv_transpose(h3, [mc.BATCH_SIZE, 64, 64, 3], "g_h4")
return tf.nn.tanh(h4)
def form_results():
"""
Forms a folder for each run and returns the path of the folders formed
:return: path of the folders created
"""
path = './Results/{}/'.format(mc.DATASET_CHOSEN)
results_folder = '{0}_{1}_{2}_{3}_{4}_{5}' \
.format(datetime.datetime.now(), mc.Z_DIM, mc.BATCH_SIZE, mc.N_ITERATIONS, mc.LEARNING_RATE, mc.BETA_1)
results_path = path + results_folder
tensorboard_path = results_path + '/Tensorboard'
generated_images_path = results_path + '/Generated_Images'
saved_models_path = results_path + '/Saved_Models'
if not os.path.exists(path + results_folder):
os.mkdir(results_path)
os.mkdir(generated_images_path)
os.mkdir(tensorboard_path)
os.mkdir(saved_models_path)
return results_path, tensorboard_path, generated_images_path, saved_models_path
def get_latest_trained_model_path():
"""
Used to find the latest saved model's path.
:return: path of the latest model's Tensorboard, Generated_Images and Saved_Models.
"""
latest_run_dir = os.listdir("./Results/roses")
latest_run_dir.sort()
latest_run_dir = latest_run_dir[-1]
saved_models_path = "./Results/roses/" + latest_run_dir + "/Saved_Models"
generated_images_path = "./Results/roses/" + latest_run_dir + "/Generated_Images"
tensorboard_path = "./Results/roses/" + latest_run_dir + "/Tensorboard"
return tensorboard_path, generated_images_path, saved_models_path
def train(z_dim, batch_size, learning_rate, beta1, n_iter, image_size, load=False):
"""
Function used to train a DCGAN
:param z_dim: Dimension of the input noise which will be feed as the input to the generator.
:param batch_size: Batch size of the images to train on.
:param learning_rate: Learning rate for both the Generator and the Discriminator.
:param beta1: The exponential decay rate for the 1st moment estimates.
:param n_iter: The number of iterations to train the GAN on.
:param image_size: Dimension of the images to be created.
:param load: True to load the latest saved model, False to train a new one.
"""
# Create a folder for this run under the Results folder
if not load:
results_path, tensorboard_path, generated_images_path, saved_models_path = form_results()
else:
tensorboard_path, generated_images_path, saved_models_path = get_latest_trained_model_path()
# Size of the image to be formed
imageshape = [image_size, image_size, 3]
start_time = time.time()
# Read the images from the database
real_img = load_dataset(mc.DATASET_PATH, data_set=mc.DATASET_CHOSEN, image_size=image_size)
# Placeholders to pass the image and the noise to the network
images = tf.placeholder(tf.float32, [batch_size] + imageshape, name="real_images")
zin = tf.placeholder(tf.float32, [None, z_dim], name="z")
G = generator(zin, z_dim) # G(z)
Dx = discriminator(images) # D(x)
Dg = discriminator(G, reuse=True) # D(G(x))
# Loss
d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dx, targets=tf.ones_like(Dx)))
d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, targets=tf.zeros_like(Dg)))
gloss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=Dg, targets=tf.ones_like(Dg)))
dloss = d_loss_real + d_loss_fake
# Get the variables which need to be trained
t_vars = tf.trainable_variables()
d_vars = [var for var in t_vars if 'd_' in var.name]
g_vars = [var for var in t_vars if 'g_' in var.name]
with tf.variable_scope(tf.get_variable_scope(), reuse=False) as scope:
d_optim = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(dloss, var_list=d_vars)
g_optim = tf.train.AdamOptimizer(learning_rate, beta1=beta1).minimize(gloss, var_list=g_vars)
# Used to save the model
saver = tf.train.Saver(max_to_keep=5)
# Used as the input to D to display fake images
display_z = np.random.uniform(-1, 1, [batch_size, z_dim]).astype(np.float32)
logdir = tensorboard_path
tf.summary.scalar('Discriminator Loss', dloss)
tf.summary.scalar('Generator Loss', gloss)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
tf.global_variables_initializer().run()
writer = tf.summary.FileWriter(logdir=logdir, graph=sess.graph)
if not load:
for idx in range(n_iter):
batch_images = next_batch(real_img, batch_size=batch_size)
batch_z = np.random.uniform(-1, 1, [batch_size, z_dim]).astype(np.float32)
for k in range(1):
sess.run([d_optim], feed_dict={images: batch_images, zin: batch_z})
for k in range(1):
sess.run([g_optim], feed_dict={zin: batch_z})
print("[%4d/%4d] time: %4.4f, " % (idx, n_iter, time.time() - start_time))
if idx % 10 == 0:
# Display the loss and run tf summaries
summary = sess.run(summary_op, feed_dict={images: batch_images, zin: batch_z})
writer.add_summary(summary, global_step=idx)
d_loss = d_loss_fake.eval({zin: display_z, images: batch_images})
g_loss = gloss.eval({zin: batch_z})
print("\n Discriminator loss: {0} \n Generator loss: {1} \n".format(d_loss, g_loss))
if idx < 2000:
# Display the initial training part
if idx % 20 == 0:
# Save the generated images every 20 iterations
sdata = sess.run([G], feed_dict={zin: display_z})
print(np.shape(sdata))
ims(generated_images_path + '/' + str(idx) + ".jpg", merge(sdata[0], [3, 4]))
else:
if idx % 200 == 0:
# Save the generated images every 200 iterations
sdata = sess.run([G], feed_dict={zin: display_z})
print(np.shape(sdata))
ims(generated_images_path + '/' + str(idx) + ".jpg", merge(sdata[0], [3, 4]))
if idx % 1000 == 0:
saver.save(sess, saved_models_path + "/train", global_step=idx)
else:
"""
Automatically loads the latest saved model
"""
print("Loading saved model from {}".format(saved_models_path))
saver.restore(sess, tf.train.latest_checkpoint(saved_models_path + "/"))
print("Model loaded!!")
display_z = np.random.uniform(-1, 1, [batch_size, z_dim]).astype(np.float32)
sdata = sess.run([G], feed_dict={zin: display_z})
print("Output Shape {}".format(np.shape(sdata)))
ims(generated_images_path + '/' + "Trained_model_image_{}".format(datetime.datetime.now())
+ ".jpg", merge(sdata[0], [3, 4]))
train(z_dim=mc.Z_DIM, batch_size=mc.BATCH_SIZE, n_iter=mc.N_ITERATIONS,
learning_rate=mc.LEARNING_RATE, beta1=mc.BETA_1, image_size=mc.IMAGE_SIZE, load=mc.LOAD)