-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathplotting.py
183 lines (162 loc) · 6.8 KB
/
plotting.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import numpy as np
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
# Plot image examples.
def plot_img(img, title):
plt.figure()
plt.imshow(img, interpolation='nearest')
plt.title(title)
plt.axis('off')
plt.tight_layout()
def img_stretch(img):
img = img.astype(float)
img -= np.min(img)
img /= np.max(img)+1e-12
return img
def img_tile(imgs, aspect_ratio=1.0, tile_shape=None, border=1,
border_color=0, stretch=False):
''' Tile images in a grid.
If tile_shape is provided only as many images as specified in tile_shape
will be included in the output.
'''
# Prepare images
if stretch:
imgs = img_stretch(imgs)
imgs = np.array(imgs)
if imgs.ndim != 3 and imgs.ndim != 4:
raise ValueError('imgs has wrong number of dimensions.')
n_imgs = imgs.shape[0]
# Grid shape
img_shape = np.array(imgs.shape[1:3])
if tile_shape is None:
img_aspect_ratio = img_shape[1] / float(img_shape[0])
aspect_ratio *= img_aspect_ratio
tile_height = int(np.ceil(np.sqrt(n_imgs * aspect_ratio)))
tile_width = int(np.ceil(np.sqrt(n_imgs / aspect_ratio)))
grid_shape = np.array((tile_height, tile_width))
else:
assert len(tile_shape) == 2
grid_shape = np.array(tile_shape)
# Tile image shape
tile_img_shape = np.array(imgs.shape[1:])
tile_img_shape[:2] = (img_shape[:2] + border) * grid_shape[:2] - border
# Assemble tile image
tile_img = np.empty(tile_img_shape)
tile_img[:] = border_color
for i in range(grid_shape[0]):
for j in range(grid_shape[1]):
img_idx = j + i*grid_shape[1]
if img_idx >= n_imgs:
# No more images - stop filling out the grid.
break
img = imgs[img_idx]
yoff = (img_shape[0] + border) * i
xoff = (img_shape[1] + border) * j
tile_img[yoff:yoff+img_shape[0], xoff:xoff+img_shape[1], ...] = img
return tile_img
def conv_filter_tile(filters):
n_filters, n_channels, height, width = filters.shape
tile_shape = None
if n_channels == 3:
# Interpret 3 color channels as RGB
filters = np.transpose(filters, (0, 2, 3, 1))
else:
# Organize tile such that each row corresponds to a filter and the
# columns are the filter channels
tile_shape = (n_channels, n_filters)
filters = np.transpose(filters, (1, 0, 2, 3))
filters = np.resize(filters, (n_filters*n_channels, height, width))
filters = img_stretch(filters)
return img_tile(filters, tile_shape=tile_shape)
def scale_to_unit_interval(ndar, eps=1e-8):
""" Scales all values in the ndarray ndar to be between 0 and 1 """
ndar = ndar.copy()
ndar -= ndar.min()
ndar *= 1.0 / (ndar.max() + eps)
return ndar
def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0),
scale_rows_to_unit_interval=True,
output_pixel_vals=True):
"""
Transform an array with one flattened image per row, into an array in
which images are reshaped and layed out like tiles on a floor.
This function is useful for visualizing datasets whose rows are images,
and also columns of matrices for transforming those rows
(such as the first layer of a neural net).
:type X: a 2-D ndarray or a tuple of 4 channels, elements of which can
be 2-D ndarrays or None;
:param X: a 2-D array in which every row is a flattened image.
:type img_shape: tuple; (height, width)
:param img_shape: the original shape of each image
:type tile_shape: tuple; (rows, cols)
:param tile_shape: the number of images to tile (rows, cols)
:param output_pixel_vals: if output should be pixel values (i.e. int8
values) or floats
:param scale_rows_to_unit_interval: if the values need to be scaled before
being plotted to [0,1] or not
:returns: array suitable for viewing as an image.
(See:`PIL.Image.fromarray`.)
:rtype: a 2-d array with same dtype as X.
"""
assert len(img_shape) == 2
assert len(tile_shape) == 2
assert len(tile_spacing) == 2
# The expression below can be re-written in a more C style as
# follows :
#
# out_shape = [0,0]
# out_shape[0] = (img_shape[0] + tile_spacing[0]) * tile_shape[0] -
# tile_spacing[0]
# out_shape[1] = (img_shape[1] + tile_spacing[1]) * tile_shape[1] -
# tile_spacing[1]
out_shape = [(ishp + tsp) * tshp - tsp for ishp, tshp, tsp
in zip(img_shape, tile_shape, tile_spacing)]
if isinstance(X, tuple):
assert len(X) == 4
# Create an output numpy ndarray to store the image
if output_pixel_vals:
out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype='uint8')
else:
out_array = np.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype)
#colors default to 0, alpha defaults to 1 (opaque)
if output_pixel_vals:
channel_defaults = [0, 0, 0, 255]
else:
channel_defaults = [0., 0., 0., 1.]
for i in range(4):
if X[i] is None:
# if channel is None, fill it with zeros of the correct
# dtype
out_array[:, :, i] = np.zeros(out_shape,
dtype='uint8' if output_pixel_vals else out_array.dtype
) + channel_defaults[i]
else:
# use a recurrent call to compute the channel and store it
# in the output
out_array[:, :, i] = tile_raster_images(X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals)
return out_array
else:
# if we are dealing with only one channel
H, W = img_shape
Hs, Ws = tile_spacing
# generate a matrix to store the output
out_array = np.zeros(out_shape, dtype='uint8' if output_pixel_vals else X.dtype)
for tile_row in range(tile_shape[0]):
for tile_col in range(tile_shape[1]):
if tile_row * tile_shape[1] + tile_col < X.shape[0]:
if scale_rows_to_unit_interval:
# if we should scale values to be between 0 and 1
# do this by calling the `scale_to_unit_interval`
# function
this_img = scale_to_unit_interval(X[tile_row * tile_shape[1] + tile_col].reshape(img_shape))
else:
this_img = X[tile_row * tile_shape[1] + tile_col].reshape(img_shape)
# add the slice to the corresponding position in the
# output array
out_array[
tile_row * (H+Hs): tile_row * (H + Hs) + H,
tile_col * (W+Ws): tile_col * (W + Ws) + W
] \
= this_img * (255 if output_pixel_vals else 1)
return out_array