-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVisualization.py
75 lines (62 loc) · 3.48 KB
/
Visualization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import os
import matplotlib
matplotlib.use('Agg')
from matplotlib import pyplot as plt
from matplotlib.patches import Rectangle
import numpy as np
class Visualization:
def __init__(self, model, FLAGS):
self.num_glimpses = FLAGS.num_glimpses
self.num_scales = len(FLAGS.scale_sizes)
self.scale_sizes = FLAGS.scale_sizes
self.img_shape = FLAGS.img_shape
self.path = FLAGS.path
self.img_shape_squeezed = (self.img_shape[:2] if self.img_shape[2] == 1 else self.img_shape)
os.makedirs(os.path.join(FLAGS.path, 'glimpses'), exist_ok=True)
self.model = model
self.vars = ['step', 'batch_xs', 'batch_ys', 'locs', 'gl_composed', 'preds', 'step_preds']
self.fetch = [model.global_step, model.x, model.y, model.locs, model.glimpses_composed,
model.prediction, model.intermed_preds]
def __call__(self, sess, prefix, handle, nr_obs_overview=8, nr_obs_reconstr=6):
feed = {self.model.is_training: False,
self.model.handle: handle}
out = sess.run(self.fetch, feed_dict=feed)
d = dict(zip(self.vars, out))
# extract_glimpses: (-1,-1) is top left. 0 is y-axis, 1 is x-axis. Scale of imshow shifted by 1.
d['locs'] = np.clip(d['locs'], -1, 1)
d['locs'] = (d['locs'] / 2 + 0.5) * self.img_shape[1::-1] - 1 # in img_shape y comes first, then x
self._plot_overview(d, prefix, nr_obs_overview)
def _plot_img_plus_locs(self, d, ax, n, nr_examples):
ax.imshow(d['batch_xs'][n].reshape(self.img_shape_squeezed), cmap='gray')
ax.set_title('Label: {} Prediction: {}'.format(d['batch_ys'][n], d['preds'][n]))
for i in range(0, self.num_glimpses):
c = ('green' if d['preds'][n] == d['batch_ys'][n] else 'red')
if i == 0:
m = 'x'; fc = c
else:
m = 'o'; fc = 'none'
# plot glimpse location
ax.scatter(d['locs'][n, i, 1], d['locs'][n, i, 0], marker=m, facecolors=fc, edgecolors=c,
linewidth=2.5, s=0.25 * (5 * nr_examples * 24))
# connecting line
ax.plot(d['locs'][n, i - 1:i + 1, 1], d['locs'][n, i - 1:i + 1, 0], linewidth=2.5, color=c)
# rectangle around location?
# ax.add_patch(Rectangle(locs[n,i][::-1] - FLAGS.scale_sizes[0] / 2, width=FLAGS.scale_sizes[0], height=FLAGS.scale_sizes[0], edgecolor=c, facecolor='none'))
ax.set_ylim([self.img_shape[0] - 1, 0])
ax.set_xlim([0, self.img_shape[1] - 1])
ax.set_xticks([])
ax.set_yticks([])
def _plot_composed_glimpse(self, d, ax, n, t):
ax.imshow(d['gl_composed'][t][n].reshape(2 * [np.max(self.scale_sizes)] + [self.img_shape[-1]]).squeeze(), cmap='gray')
ax.set_title('class {}: {:.3f}'.format(d['step_preds'][t][0][n], d['step_preds'][t][1][n]))
ax.set_xticks([])
ax.set_yticks([])
def _plot_overview(self, d, prefix, nr_examples):
f, axes = plt.subplots(nr_examples, self.num_glimpses + 1, figsize=(6 * self.num_glimpses, 5 * nr_examples))
axes = axes.reshape([nr_examples, self.num_glimpses + 1])
for n in range(nr_examples):
self._plot_img_plus_locs(d, axes[n, 0], n, nr_examples)
[self._plot_composed_glimpse(d, axes[n, t + 1], n, t) for t in range(self.num_glimpses)]
f.tight_layout()
f.savefig('{}/glimpses/{}_{}.png'.format(self.path, d['step'], prefix), bbox_inches='tight')
plt.close(f)