forked from Meituan-AutoML/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProcessor.py
306 lines (264 loc) · 13.8 KB
/
Processor.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
import cv2
import tensorrt as trt
import numpy as np
import time
import torch
import torchvision
from collections import OrderedDict, namedtuple
def torch_dtype_from_trt(dtype):
if dtype == trt.bool:
return torch.bool
elif dtype == trt.int8:
return torch.int8
elif dtype == trt.int32:
return torch.int32
elif dtype == trt.float16:
return torch.float16
elif dtype == trt.float32:
return torch.float32
else:
raise TypeError('%s is not supported by torch' % dtype)
def torch_device_from_trt(device):
if device == trt.TensorLocation.DEVICE:
return torch.device('cuda')
elif device == trt.TensorLocation.HOST:
return torch.device('cpu')
else:
return TypeError('%s is not supported by torch' % device)
def get_input_shape(engine):
"""Get input shape of the TensorRT YOLO engine."""
binding = engine[0]
assert engine.binding_is_input(binding)
binding_dims = engine.get_binding_shape(binding)
if len(binding_dims) == 4:
return tuple(binding_dims[2:])
elif len(binding_dims) == 3:
return tuple(binding_dims[1:])
else:
raise ValueError('bad dims of binding %s: %s' % (binding, str(binding_dims)))
def letterbox(im, new_shape=(640, 640), color=(114, 114, 114), auto=True, scaleup=False, stride=32, return_int=False):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
if auto: # minimum rectangle
dw, dh = np.mod(dw, stride), np.mod(dh, stride) # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
if not return_int:
return im, r, (dw, dh)
else:
return im, r, (left, top)
class Processor():
def __init__(self, model, num_classes=80, num_layers=3, anchors=1, device=torch.device('cuda:0'), return_int=False, scale_exact=False, force_no_pad=False, is_end2end=False):
# load tensorrt engine)
self.return_int = return_int
self.scale_exact = scale_exact
self.force_no_pad = force_no_pad
self.is_end2end = is_end2end
Binding = namedtuple('Binding', ('name', 'dtype', 'shape', 'data', 'ptr'))
self.logger = trt.Logger(trt.Logger.INFO)
trt.init_libnvinfer_plugins(self.logger, namespace="")
self.runtime = trt.Runtime(self.logger)
with open(model, "rb") as f:
self.engine = self.runtime.deserialize_cuda_engine(f.read())
self.input_shape = get_input_shape(self.engine)
self.bindings = OrderedDict()
self.input_names = list()
self.output_names = list()
for index in range(self.engine.num_bindings):
name = self.engine.get_binding_name(index)
if self.engine.binding_is_input(index):
self.input_names.append(name)
else:
self.output_names.append(name)
dtype = trt.nptype(self.engine.get_binding_dtype(index))
shape = tuple(self.engine.get_binding_shape(index))
data = torch.from_numpy(np.empty(shape, dtype=np.dtype(dtype))).to(device)
self.bindings[name] = Binding(name, dtype, shape, data, int(data.data_ptr()))
self.binding_addrs = OrderedDict((n, d.ptr) for n, d in self.bindings.items())
self.context = self.engine.create_execution_context()
assert self.engine
assert self.context
self.nc = num_classes # number of classes
self.no = num_classes + 5 # number of outputs per anchor
self.nl = num_layers # number of detection layers
if isinstance(anchors, (list, tuple)):
self.na = len(anchors[0]) // 2
else:
self.na = anchors
self.anchors = anchors
self.grid = [torch.zeros(1, device=device)] * num_layers
self.prior_prob = 1e-2
self.inplace = True
stride = [8, 16, 32] # strides computed during build
self.stride = torch.tensor(stride, device=device)
self.shape = [80, 40, 20]
self.device = device
def detect(self, img):
"""Detect objects in the input image."""
resized, _ = self.pre_process(img, self.input_shape)
outputs = self.inference(resized)
return outputs
def pre_process(self, img_src, input_shape=None,):
"""Preprocess an image before TRT YOLO inferencing.
"""
input_shape = input_shape if input_shape is not None else self.input_shape
image, ratio, pad = letterbox(img_src, input_shape, auto=False, return_int=self.return_int, scaleup=True)
# Convert
image = image.transpose((2, 0, 1))[::-1] # HWC to CHW, BGR to RGB
image = torch.from_numpy(np.ascontiguousarray(image)).to(self.device).float()
image = image / 255. # 0 - 255 to 0.0 - 1.0
return image, pad
def inference(self, inputs):
self.binding_addrs[self.input_names[0]] = int(inputs.data_ptr())
#self.binding_addrs['x2paddle_image_arrays'] = int(inputs.data_ptr())
self.context.execute_v2(list(self.binding_addrs.values()))
if self.is_end2end:
nums = self.bindings['num_dets'].data
boxes = self.bindings['det_boxes'].data
scores = self.bindings['det_scores'].data
classes = self.bindings['det_classes'].data
output = torch.cat((boxes, scores[:,:,None], classes[:,:,None]), axis=-1)
else:
output = self.bindings[self.output_names[0]].data
#output = self.bindings['save_infer_model/scale_0.tmp_0'].data
return output
def output_reformate(self, outputs):
z = []
for i in range(self.nl):
cls_output = outputs[3*i].reshape((1, -1, self.shape[i], self.shape[i]))
reg_output = outputs[3*i+1].reshape((1, -1, self.shape[i], self.shape[i]))
obj_output = outputs[3*i+2].reshape((1, -1, self.shape[i], self.shape[i]))
y = torch.cat([reg_output, obj_output.sigmoid(), cls_output.sigmoid()], 1)
bs, _, ny, nx = y.shape
y = y.view(bs, -1, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
if self.grid[i].shape[2:4] != y.shape[2:4]:
d = self.stride.device
yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
self.grid[i] = torch.stack((xv, yv), 2).view(1, self.na, ny, nx, 2).float()
if self.inplace:
y[..., 0:2] = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
y[..., 2:4] = torch.exp(y[..., 2:4]) * self.stride[i] # wh
else:
xy = (y[..., 0:2] + self.grid[i]) * self.stride[i] # xy
wh = torch.exp(y[..., 2:4]) * self.stride[i] # wh
y = torch.cat((xy, wh, y[..., 4:]), -1)
z.append(y.view(bs, -1, self.no))
return torch.cat(z, 1)
def post_process(self, outputs, img_shape, conf_thres=0.5, iou_thres=0.6):
if self.is_end2end:
det_t = outputs
else:
det_t = self.non_max_suppression(outputs, conf_thres, iou_thres, multi_label=True)
self.scale_coords(self.input_shape, det_t[0][:, :4], img_shape[0], img_shape[1])
return det_t[0]
@staticmethod
def xywh2xyxy(x):
# Convert boxes with shape [n, 4] from [x, y, w, h] to [x1, y1, x2, y2] where x1y1 is top-left, x2y2=bottom-right
y = x.clone() if isinstance(x, torch.Tensor) else np.copy(x)
y[:, 0] = x[:, 0] - x[:, 2] / 2 # top left x
y[:, 1] = x[:, 1] - x[:, 3] / 2 # top left y
y[:, 2] = x[:, 0] + x[:, 2] / 2 # bottom right x
y[:, 3] = x[:, 1] + x[:, 3] / 2 # bottom right y
return y
def non_max_suppression(self, prediction, conf_thres=0.25, iou_thres=0.45, classes=None, agnostic=False, multi_label=False, max_det=300):
"""Runs Non-Maximum Suppression (NMS) on inference results.
This code is borrowed from: https://github.com/ultralytics/yolov5/blob/47233e1698b89fc437a4fb9463c815e9171be955/utils/general.py#L775
Args:
prediction: (tensor), with shape [N, 5 + num_classes], N is the number of bboxes.
conf_thres: (float) confidence threshold.
iou_thres: (float) iou threshold.
classes: (None or list[int]), if a list is provided, nms only keep the classes you provide.
agnostic: (bool), when it is set to True, we do class-independent nms, otherwise, different class would do nms respectively.
multi_label: (bool), when it is set to True, one box can have multi labels, otherwise, one box only huave one label.
max_det:(int), max number of output bboxes.
Returns:
list of detections, echo item is one tensor with shape (num_boxes, 6), 6 is for [xyxy, conf, cls].
"""
num_classes = prediction.shape[2] - 5 # number of classes
pred_candidates = prediction[..., 4] > conf_thres # candidates
# Check the parameters.
assert 0 <= conf_thres <= 1, f'conf_thresh must be in 0.0 to 1.0, however {conf_thres} is provided.'
assert 0 <= iou_thres <= 1, f'iou_thres must be in 0.0 to 1.0, however {iou_thres} is provided.'
# Function settings.
max_wh = 4096 # maximum box width and height
max_nms = 30000 # maximum number of boxes put into torchvision.ops.nms()
time_limit = 10.0 # quit the function when nms cost time exceed the limit time.
multi_label &= num_classes > 1 # multiple labels per box
tik = time.time()
output = [torch.zeros((0, 6), device=prediction.device)] * prediction.shape[0]
for img_idx, x in enumerate(prediction): # image index, image inference
x = x[pred_candidates[img_idx]] # confidence
# If no box remains, skip the next process.
if not x.shape[0]:
continue
# confidence multiply the objectness
x[:, 5:] *= x[:, 4:5] # conf = obj_conf * cls_conf
# (center x, center y, width, height) to (x1, y1, x2, y2)
box = self.xywh2xyxy(x[:, :4])
# Detections matrix's shape is (n,6), each row represents (xyxy, conf, cls)
if multi_label:
box_idx, class_idx = (x[:, 5:] > conf_thres).nonzero(as_tuple=False).T
x = torch.cat((box[box_idx], x[box_idx, class_idx + 5, None], class_idx[:, None].float()), 1)
else: # Only keep the class with highest scores.
conf, class_idx = x[:, 5:].max(1, keepdim=True)
x = torch.cat((box, conf, class_idx.float()), 1)[conf.view(-1) > conf_thres]
# Filter by class, only keep boxes whose category is in classes.
if classes is not None:
x = x[(x[:, 5:6] == torch.tensor(classes, device=x.device)).any(1)]
# Check shape
num_box = x.shape[0] # number of boxes
if not num_box: # no boxes kept.
continue
elif num_box > max_nms: # excess max boxes' number.
x = x[x[:, 4].argsort(descending=True)[:max_nms]] # sort by confidence
# Batched NMS
class_offset = x[:, 5:6] * (0 if agnostic else max_wh) # classes
boxes, scores = x[:, :4] + class_offset, x[:, 4] # boxes (offset by class), scores
keep_box_idx = torchvision.ops.nms(boxes, scores, iou_thres) # NMS
if keep_box_idx.shape[0] > max_det: # limit detections
keep_box_idx = keep_box_idx[:max_det]
output[img_idx] = x[keep_box_idx]
if (time.time() - tik) > time_limit:
print(f'WARNING: NMS cost time exceed the limited {time_limit}s.')
break # time limit exceeded
return output
def scale_coords(self, img1_shape, coords, img0_shape, ratio_pad=None):
# Rescale coords (xyxy) from img1_shape to img0_shape
if ratio_pad is None: # calculate from img0_shape
gain = [min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1])] # gain = old / new
if self.scale_exact:
gain = [img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]]
pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding
else:
gain = ratio_pad[0]
pad = ratio_pad[1]
coords[:, [0, 2]] -= pad[0] # x padding
if self.scale_exact:
coords[:, [0, 2]] /= gain[1] # x gain
else:
coords[:, [0, 2]] /= gain[0] # raw x gain
coords[:, [1, 3]] -= pad[1] # y padding
coords[:, [1, 3]] /= gain[0] # y gain
if isinstance(coords, torch.Tensor): # faster individually
coords[:, 0].clamp_(0, img0_shape[1]) # x1
coords[:, 1].clamp_(0, img0_shape[0]) # y1
coords[:, 2].clamp_(0, img0_shape[1]) # x2
coords[:, 3].clamp_(0, img0_shape[0]) # y2
else: # np.array (faster grouped)
coords[:, [0, 2]] = coords[:, [0, 2]].clip(0, img0_shape[1]) # x1, x2
coords[:, [1, 3]] = coords[:, [1, 3]].clip(0, img0_shape[0]) # y1, y2
return coords