forked from Meituan-AutoML/YOLOv6
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathexport_torchscript.py
72 lines (60 loc) · 2.58 KB
/
export_torchscript.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
import argparse
import time
import sys
import os
import torch
import torch.nn as nn
ROOT = os.getcwd()
if str(ROOT) not in sys.path:
sys.path.append(str(ROOT))
from yolov6.models.yolo import *
from yolov6.models.effidehead import Detect as NormDetect
from yolov6.models.heads.effidehead_lite import Detect as LiteDetect
from yolov6.layers.common import *
from yolov6.utils.events import LOGGER
from yolov6.utils.checkpoint import load_checkpoint
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--weights', type=str, default='./yolov6lite_s.pt', help='weights path')
parser.add_argument('--img-size', nargs='+', type=int, default=[320, 320], help='image size, the order is: height width') # height, width
parser.add_argument('--batch-size', type=int, default=1, help='batch size')
parser.add_argument('--device', default='0', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
args = parser.parse_args()
args.img_size *= 2 if len(args.img_size) == 1 else 1 # expand
print(args)
t = time.time()
# Check device
cuda = args.device != 'cpu' and torch.cuda.is_available()
device = torch.device(f'cuda:{args.device}' if cuda else 'cpu')
assert not (device.type == 'cpu' and args.half), '--half only compatible with GPU export, i.e. use --device 0'
# Load PyTorch model
model = load_checkpoint(args.weights, map_location=device, inplace=True, fuse=True) # load FP32 model
# Switch export mode
model.export = True
for layer in model.modules():
if isinstance(layer, RepVGGBlock):
layer.switch_to_deploy()
elif isinstance(layer, nn.Upsample) and not hasattr(layer, 'recompute_scale_factor'):
layer.recompute_scale_factor = None # torch 1.11.0 compatibility
# Input
img = torch.zeros(args.batch_size, 3, *args.img_size).to(device) # image size(1,3,320,192) iDetection
model.eval()
for k, m in model.named_modules():
if isinstance(m, (NormDetect, LiteDetect)):
m.export = True
print("===================")
print(model)
print("===================")
y = model(img) # dry run
# TorchScript export
try:
LOGGER.info('\nStarting to export TorchScript...')
export_file = args.weights.replace('.pt', '.torchscript') # filename
trace_model = torch.jit.trace(model, img)
trace_model.save(export_file)
except Exception as e:
LOGGER.info(f'TorchScript export failure: {e}')
# Finish
LOGGER.info('\nExport complete (%.2fs)' % (time.time() - t))