-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlosses.py
184 lines (160 loc) · 7.49 KB
/
losses.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import numpy as np
np.random.seed(0)
import torch
torch.manual_seed(0)
import torch.nn as nn
from torch.autograd import Function
from scipy.spatial.distance import directed_hausdorff
import SimpleITK as sitk
def mean_dist(box_output, box_gt):
mean_distance = 0
for p in range(len(box_output)):
q = np.sqrt(((np.array(box_output[p]) - np.array(box_gt[p]))**2).sum())
mean_distance +=q
mean_distance = mean_distance/len(box_output)
return mean_distance
def hausdorff_distance(input, target):
_, result = input.max(1)
result = torch.squeeze(result)
target = torch.squeeze(target)
result_np = result.data.cpu().numpy()
label_np = target.data.cpu().numpy()
output_indexes = np.where(result_np == 1.0)
sitk_output = sitk.GetImageFromArray(result_np)
label_indexes = np.where(label_np == 1.0)
sitk_label = sitk.GetImageFromArray(label_np)
if (result_np.sum()==0) or (label_np.sum()==0):
h_dist = 0
else:
# Note the reversed order of access between SimpleITK and numpy (z,y,x)
if len(output_indexes) == 3:
physical_points_output = [sitk_output.TransformIndexToPhysicalPoint([int(x), int(y), int(z)]) \
for z,y,x in zip(output_indexes[0], output_indexes[1], output_indexes[2])]
physical_points_label = [sitk_label.TransformIndexToPhysicalPoint([int(x), int(y), int(z)]) \
for z,y,x in zip(label_indexes[0], label_indexes[1], label_indexes[2])]
if len(output_indexes) == 2:
physical_points_output = [sitk_output.TransformIndexToPhysicalPoint([int(x), int(y)]) \
for y,x in zip(output_indexes[0], output_indexes[1])]
physical_points_label = [sitk_label.TransformIndexToPhysicalPoint([int(x), int(y)]) \
for y,x in zip(label_indexes[0], label_indexes[1])]
h_dist_lo, u_ind, v_ind = directed_hausdorff(u = physical_points_label, v = physical_points_output)
h_dist_ol, u_ind, v_ind = directed_hausdorff(u = physical_points_output, v = physical_points_label)
h_dist = max(h_dist_lo, h_dist_ol)
return h_dist
class DiceLoss(Function):
def __init__(self, **kwargs):
pass
@staticmethod
def forward(ctx, input, target):
eps = 1e-6
_, result = input.max(1)
result = torch.squeeze(result)
target = torch.squeeze(target)
if (target.is_cuda) or (input.is_cuda):
result = torch.cuda.FloatTensor(result.to(torch.float32))
target = torch.cuda.FloatTensor(target.to(result.device,torch.float32))
else:
result = torch.FloatTensor(result.to(torch.float32))
target = torch.FloatTensor(target.to(torch.float32))
ctx.target = target
intersect = (result*target).sum()
# binary values so sum the same as sum of squares
result_sum = torch.sum(result)
target_sum = torch.sum(target)
uni = (result+target) > 0
union = torch.sum(uni.to(torch.float32))
sum_of_pixels = result_sum + target_sum + (2*eps)
ctx.save_for_backward(input, target, intersect, sum_of_pixels)
ctx.IoU = intersect / (union + eps)
dice = 2*intersect/sum_of_pixels
ctx.dice = dice
out = torch.FloatTensor(1).fill_(ctx.dice).to(input.device)
ctx.intersect, ctx.union, ctx.sum_of_pixels = intersect, union, sum_of_pixels
tn_ind = (result+target) == 0
tn = torch.sum(tn_ind.to(torch.float32))
subtraction_of_pixels = result_sum - target_sum
ctx.VS = 1-torch.abs(subtraction_of_pixels/sum_of_pixels)
ctx.sensitivity = intersect/(target_sum + eps)
ctx.specificity = tn/(tn+result_sum-intersect)
return out
@staticmethod
def backward(ctx, grad_output):
input, target, intersect, sum_of_pixels = ctx.saved_tensors
gt = torch.div(target, sum_of_pixels)
IoU2 = intersect/(sum_of_pixels*sum_of_pixels)
pred = IoU2*input[0, 1]
dDice = 2*gt-4*pred
grad_input = torch.cat((torch.mul(dDice, -grad_output[0])[None,...],
torch.mul(dDice, grad_output[0])[None,...]),0)[None,...]
return grad_input, None
@classmethod
def metrics(cls, input, target):
eps = 1e-6
_, result = input.max(1)
result = torch.squeeze(result)
target = torch.squeeze(target)
if (target.is_cuda) or (input.is_cuda):
result = torch.cuda.FloatTensor(result.to(torch.float32))
target = torch.cuda.FloatTensor(target.to(result.device,torch.float32))
else:
result = torch.FloatTensor(result.to(torch.float32))
target = torch.FloatTensor(target.to(torch.float32))
cls.target = target
intersect = (result*target).sum()
# binary values so sum the same as sum of squares
result_sum = torch.sum(result)
target_sum = torch.sum(target)
uni = (result+target) > 0
union = torch.sum(uni.to(torch.float32))
sum_of_pixels = result_sum + target_sum + (2*eps)
iou = intersect / (union + eps)
cls.IoU = iou
dice = 2*intersect/sum_of_pixels
cls.dice = dice
return dice, iou
class DiceCrossEntropyLoss(nn.Module):
"""This criterion represents linear compination of dice lossand cross-entropy.
Args:
loss ('DCE','CE','D'): type of loss, 'CE' for cross-entropy, 'D' for dice loss and 'DCE' - their combination
logging_name (str): path to the logging file.
ce_weights (list): a manual rescaling weight given to each class. Default is [1, 1].
dce_weight: a weight given to dice part of the loss. Default is 1.
nll (True, False): if it is True, then nn.NLL function is used as cross-entropy, otherwise nn.CrossEntropy.
The value should be True for current modification of Unet3d
"""
def __init__(self, loss='CE', logging_name=None, ce_weights=[1., 1.], dce_weight = 1., nll = False,**kwargs):
super(DiceCrossEntropyLoss, self).__init__()
self.loss = loss
self.logging_name = logging_name
self.ce_weights = ce_weights
self.dce_weight = dce_weight
self.nll = nll
pass
def forward(self, input, target):
d_loss = DiceLoss()
dl = 1- d_loss.apply(input, target)
m = d_loss.metrics(input, target)
dice, IoU = m[0], m[1] # d_loss.dice.item()
# self.IoU = d_loss.IoU.item()
self.dice, self.IoU = dice.item(), IoU.item()
# self.specificity = d_loss.specificity.item()
# self.sensitivity = d_loss.sensitivity.item()
# self.VS = d_loss.VS.item()
if self.nll:
ce_loss = nn.NLLLoss(weight=torch.Tensor(self.ce_weights).to(input.device)) #[0.25, 0.75]
ce = ce_loss(torch.log(input), target.long())
else:
ce_loss = nn.CrossEntropyLoss(weight=torch.Tensor(self.ce_weights).to(input.device))
ce = ce_loss(input, target.long())
self.ce = ce.item()
if self.loss == 'CE':
out = ce
elif self.loss == 'D':
out = dl
else: # self.loss == 'DCE'
out = torch.add(dl, self.dce_weight*ce)
if self.logging_name is not None:
file = open(self.logging_name, 'a')
file.write('CrossEntropy: {:.3f}\t Dice: {:.3f}\n'.format(ce.item(),self.dice))
file.close()
return out