-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathgrid_cells.py
130 lines (114 loc) · 5.53 KB
/
grid_cells.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
#!/usr/bin/python
import numpy
from nupic.algorithms.spatial_pooler import SpatialPooler, realDType
from nupic.algorithms.temporal_memory_shim import TemporalMemoryShim as TemporalMemory
class GridCells(SpatialPooler):
"""
"""
def __init__(self, b1, b2, *args, **kw_args):
self.b1 = b1
self.b2 = b2
SpatialPooler.__init__(self, *args, **kw_args)
self.reset()
def reset(self):
self.R_act = numpy.zeros(self.getNumColumns(), dtype=realDType)
self.R_inact = numpy.zeros(self.getNumColumns(), dtype=realDType)
self.prevPermChanges = {}
def compute(self, inputVector, learn, activeArray):
"""
This is the primary public method of the SpatialPooler class. This
function takes a input vector and outputs the indices of the active columns.
If 'learn' is set to True, this method also updates the permanences of the
columns.
:param inputVector: A numpy array of 0's and 1's that comprises the input
to the spatial pooler. The array will be treated as a one dimensional
array, therefore the dimensions of the array do not have to match the
exact dimensions specified in the class constructor. In fact, even a
list would suffice. The number of input bits in the vector must,
however, match the number of bits specified by the call to the
constructor. Therefore there must be a '0' or '1' in the array for
every input bit.
:param learn: A boolean value indicating whether learning should be
performed. Learning entails updating the permanence values of the
synapses, and hence modifying the 'state' of the model. Setting
learning to 'off' freezes the SP and has many uses. For example, you
might want to feed in various inputs and examine the resulting SDR's.
:param activeArray: An array whose size is equal to the number of columns.
Before the function returns this array will be populated with 1's at
the indices of the active columns, and 0's everywhere else.
"""
if not isinstance(inputVector, numpy.ndarray):
raise TypeError("Input vector must be a numpy array, not %s" %
str(type(inputVector)))
if inputVector.size != self._numInputs:
raise ValueError(
"Input vector dimensions don't match. Expecting %s but got %s" % (
inputVector.size, self._numInputs))
self._updateBookeepingVars(learn)
inputVector = numpy.array(inputVector, dtype=realDType)
inputVector.reshape(-1)
self._overlaps = self._calculateOverlap(inputVector)
# Divide by the total synaptic input strength.
sum_synapses = numpy.empty(self.getNumColumns())
self.getConnectedCounts(sum_synapses)
self._overlaps = self._overlaps / sum_synapses
# Apply fatigue and update the fatigue variables
self._overlaps = self._fatigue(self._overlaps)
# Apply boosting when learning is on
if learn:
self._boostedOverlaps = self._boostFactors * self._overlaps
else:
self._boostedOverlaps = self._overlaps
# Apply inhibition to determine the winning columns
activeColumns = self._inhibitColumns(self._boostedOverlaps)
activeColumns = numpy.array(activeColumns, dtype=numpy.int)
if learn:
self._adaptSynapses(inputVector, activeColumns)
self._updateDutyCycles(self._overlaps, activeColumns)
self._bumpUpWeakColumns()
self._updateBoostFactors()
if self._isUpdateRound():
self._updateInhibitionRadius()
self._updateMinDutyCycles()
activeArray.fill(0)
activeArray[activeColumns] = 1
def _fatigue(self, overlaps):
self.R_act += self.b1 * (overlaps - self.R_inact - self.R_act)
self.R_inact += self.b2 * (overlaps - self.R_inact)
return self.R_act
def _adaptSynapses(self, inputVector, activeColumns):
"""
The primary method in charge of learning. Adapts the permanence values of
the synapses based on the input vector, and the chosen columns after
inhibition round. Permanence values are increased for synapses connected to
input bits that are turned on, and decreased for synapses connected to
inputs bits that are turned off.
Parameters:
----------------------------
:param inputVector:
A numpy array of 0's and 1's that comprises the input to
the spatial pooler. There exists an entry in the array
for every input bit.
:param activeColumns:
An array containing the indices of the columns that
survived inhibition.
"""
inputIndices = numpy.where(inputVector > 0)[0]
permChanges = numpy.zeros(self._numInputs, dtype=realDType)
permChanges.fill(-1 * self._synPermInactiveDec)
permChanges[inputIndices] = self._synPermActiveInc
allPermChanges = {}
for columnIndex in activeColumns:
perm = self._permanences[columnIndex]
maskPotential = numpy.where(self._potentialPools[columnIndex] > 0)[0]
columnPermChanges = permChanges[maskPotential]
allPermChanges[columnIndex] = numpy.array(columnPermChanges, copy=True)
# Filter out permanence changes which are repeated on consequtive cycles.
try:
columnPrevPermChanges = self.prevPermChanges[columnIndex]
except KeyError:
columnPrevPermChanges = numpy.zeros(len(maskPotential), dtype=realDType)
columnPermChanges[columnPermChanges == columnPrevPermChanges] = 0.
perm[maskPotential] += columnPermChanges
self._updatePermanencesForColumn(perm, columnIndex, raisePerm=True)
self.prevPermChanges = allPermChanges