-
Notifications
You must be signed in to change notification settings - Fork 31
/
Copy pathwildkeccak.c
198 lines (173 loc) · 8.09 KB
/
wildkeccak.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
// Copyright (c) 2012-2013 The Cryptonote developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
// Modified for CPUminer by Lucas Jones
// Memory-hard extension of keccak for PoW
// Copyright (c) 2014 The Boolberry developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
//#include "cpuminer-config.h"
#include <string.h>
#include "miner.h"
#include "reciprocal_div64.h"
enum {
HASH_SIZE = 32,
HASH_DATA_AREA = 136,
};
#define KK_MIXIN_SIZE 24
__attribute__((const)) static inline uint64_t rotl641(uint64_t x) { return((x << 1) | (x >> 63)); }
__attribute__((const)) static inline uint64_t rotl64_1(uint64_t x, uint64_t y) { return((x << y) | (x >> (64 - y))); }
__attribute__((const)) static inline uint64_t bitselect(uint64_t a, uint64_t b, uint64_t c) { return(a ^ (c & (b ^ a))); }
static __always_inline void keccakf_mul(uint64_t *s)
{
uint64_t bc[5], t[5];
uint64_t tmp1, tmp2;
int i;
for(i = 0; i < 5; i++)
t[i] = s[i + 0] ^ s[i + 5] ^ s[i + 10] * s[i + 15] * s[i + 20];
bc[0] = t[0] ^ rotl641(t[2]);
bc[1] = t[1] ^ rotl641(t[3]);
bc[2] = t[2] ^ rotl641(t[4]);
bc[3] = t[3] ^ rotl641(t[0]);
bc[4] = t[4] ^ rotl641(t[1]);
tmp1 = s[1] ^ bc[0];
s[0] ^= bc[4];
s[1] = rotl64_1(s[6] ^ bc[0], 44);
s[6] = rotl64_1(s[9] ^ bc[3], 20);
s[9] = rotl64_1(s[22] ^ bc[1], 61);
s[22] = rotl64_1(s[14] ^ bc[3], 39);
s[14] = rotl64_1(s[20] ^ bc[4], 18);
s[20] = rotl64_1(s[2] ^ bc[1], 62);
s[2] = rotl64_1(s[12] ^ bc[1], 43);
s[12] = rotl64_1(s[13] ^ bc[2], 25);
s[13] = rotl64_1(s[19] ^ bc[3], 8);
s[19] = rotl64_1(s[23] ^ bc[2], 56);
s[23] = rotl64_1(s[15] ^ bc[4], 41);
s[15] = rotl64_1(s[4] ^ bc[3], 27);
s[4] = rotl64_1(s[24] ^ bc[3], 14);
s[24] = rotl64_1(s[21] ^ bc[0], 2);
s[21] = rotl64_1(s[8] ^ bc[2], 55);
s[8] = rotl64_1(s[16] ^ bc[0], 45);
s[16] = rotl64_1(s[5] ^ bc[4], 36);
s[5] = rotl64_1(s[3] ^ bc[2], 28);
s[3] = rotl64_1(s[18] ^ bc[2], 21);
s[18] = rotl64_1(s[17] ^ bc[1], 15);
s[17] = rotl64_1(s[11] ^ bc[0], 10);
s[11] = rotl64_1(s[7] ^ bc[1], 6);
s[7] = rotl64_1(s[10] ^ bc[4], 3);
s[10] = rotl64_1(tmp1, 1);
tmp1 = s[0]; tmp2 = s[1]; s[0] = bitselect(s[0] ^ s[2], s[0], s[1]); s[1] = bitselect(s[1] ^ s[3], s[1], s[2]); s[2] = bitselect(s[2] ^ s[4], s[2], s[3]); s[3] = bitselect(s[3] ^ tmp1, s[3], s[4]); s[4] = bitselect(s[4] ^ tmp2, s[4], tmp1);
tmp1 = s[5]; tmp2 = s[6]; s[5] = bitselect(s[5] ^ s[7], s[5], s[6]); s[6] = bitselect(s[6] ^ s[8], s[6], s[7]); s[7] = bitselect(s[7] ^ s[9], s[7], s[8]); s[8] = bitselect(s[8] ^ tmp1, s[8], s[9]); s[9] = bitselect(s[9] ^ tmp2, s[9], tmp1);
tmp1 = s[10]; tmp2 = s[11]; s[10] = bitselect(s[10] ^ s[12], s[10], s[11]); s[11] = bitselect(s[11] ^ s[13], s[11], s[12]); s[12] = bitselect(s[12] ^ s[14], s[12], s[13]); s[13] = bitselect(s[13] ^ tmp1, s[13], s[14]); s[14] = bitselect(s[14] ^ tmp2, s[14], tmp1);
tmp1 = s[15]; tmp2 = s[16]; s[15] = bitselect(s[15] ^ s[17], s[15], s[16]); s[16] = bitselect(s[16] ^ s[18], s[16], s[17]); s[17] = bitselect(s[17] ^ s[19], s[17], s[18]); s[18] = bitselect(s[18] ^ tmp1, s[18], s[19]); s[19] = bitselect(s[19] ^ tmp2, s[19], tmp1);
tmp1 = s[20]; tmp2 = s[21]; s[20] = bitselect(s[20] ^ s[22], s[20], s[21]); s[21] = bitselect(s[21] ^ s[23], s[21], s[22]); s[22] = bitselect(s[22] ^ s[24], s[22], s[23]); s[23] = bitselect(s[23] ^ tmp1, s[23], s[24]); s[24] = bitselect(s[24] ^ tmp2, s[24], tmp1);
s[0] ^= 0x0000000000000001ULL;
}
static void wildkeccak(uint64_t *restrict st, const uint64_t *restrict pscr, uint64_t scr_size, struct reciprocal_value64 recip)
{
uint64_t x, i = 0;
uint64_t idx[KK_MIXIN_SIZE];
goto skipfirst;
for (; i < KK_MIXIN_SIZE; ++i)
{
/* force CPU to prefetch cache line from RAM in the background */
for (x = 0; x < KK_MIXIN_SIZE; x++)
{
idx[x] = reciprocal_remainder64(st[x], scr_size, recip) << 2;
prefetch1(&pscr[idx[x]]);
}
#if defined(__AVX2__)
#warning using AVX2 optimizations
__m256i *st0 = (__m256i *)st;
for(x = 0; x < KK_MIXIN_SIZE >> 2; ++x)
{
*st0 = _mm256_xor_si256(*st0, *((__m256i *)&pscr[idx[x*4 + 0]]));
*st0 = _mm256_xor_si256(*st0, *((__m256i *)&pscr[idx[x*4 + 1]]));
*st0 = _mm256_xor_si256(*st0, *((__m256i *)&pscr[idx[x*4 + 2]]));
*st0 = _mm256_xor_si256(*st0, *((__m256i *)&pscr[idx[x*4 + 3]]));
st0++;
}
#elif defined(__SSE2__)
#warning using SSE2 optimizations
__m128i *st0 = (__m128i *)st;
for(x = 0; x < KK_MIXIN_SIZE >> 2; ++x)
{
st0[0] = _mm_xor_si128(st0[0], *((__m128i *)&pscr[idx[x*4 + 0]]));
st0[0] = _mm_xor_si128(st0[0], *((__m128i *)&pscr[idx[x*4 + 1]]));
st0[0] = _mm_xor_si128(st0[0], *((__m128i *)&pscr[idx[x*4 + 2]]));
st0[0] = _mm_xor_si128(st0[0], *((__m128i *)&pscr[idx[x*4 + 3]]));
st0[1] = _mm_xor_si128(st0[1], *((__m128i *)&pscr[idx[x*4 + 0] + 2]));
st0[1] = _mm_xor_si128(st0[1], *((__m128i *)&pscr[idx[x*4 + 1] + 2]));
st0[1] = _mm_xor_si128(st0[1], *((__m128i *)&pscr[idx[x*4 + 2] + 2]));
st0[1] = _mm_xor_si128(st0[1], *((__m128i *)&pscr[idx[x*4 + 3] + 2]));
st0 += 2;
}
#else
#warning using non-optimized 64bit operations
for(x = 0; x < KK_MIXIN_SIZE; x += 4) {
st[x+0] ^= pscr[idx[x + 0] + 0] ^ pscr[idx[x + 1] + 0] ^ pscr[idx[x + 2] + 0] ^ pscr[idx[x + 3] + 0];
st[x+1] ^= pscr[idx[x + 0] + 1] ^ pscr[idx[x + 1] + 1] ^ pscr[idx[x + 2] + 1] ^ pscr[idx[x + 3] + 1];
st[x+2] ^= pscr[idx[x + 0] + 2] ^ pscr[idx[x + 1] + 2] ^ pscr[idx[x + 2] + 2] ^ pscr[idx[x + 3] + 2];
st[x+3] ^= pscr[idx[x + 0] + 3] ^ pscr[idx[x + 1] + 3] ^ pscr[idx[x + 2] + 3] ^ pscr[idx[x + 3] + 3];
}
#endif
skipfirst:
keccakf_mul(st);
}
}
static void __always_inline wild_keccak_hash_dbl(const uint8_t *in, size_t inlen, uint8_t *md, const uint64_t* pscr, uint64_t scr_size)
{
uint64_t st[25] __aligned(32);
struct reciprocal_value64 recip;
uint8_t temp[144];
size_t i;
const size_t rsiz = HASH_DATA_AREA;
const size_t rsizw = HASH_DATA_AREA / 8;
scr_size >>= 2; /* scr_size now in crypto::hash units (32 bytes) */
recip = reciprocal_value64(scr_size);
// Wild Keccak #1
memset(st, 0, sizeof(st));
for ( ; inlen >= rsiz; inlen -= rsiz, in += rsiz) {
for (i = 0; i < rsizw; i++)
st[i] ^= ((uint64_t *) in)[i];
wildkeccak(st, pscr, scr_size, recip);
}
// last block and padding
memcpy(temp, in, inlen);
temp[inlen++] = 1;
memset(temp + inlen, 0, rsiz - inlen);
temp[rsiz - 1] |= 0x80;
for (i = 0; i < rsizw; i++) {
st[i] ^= ((uint64_t *) temp)[i];
}
wildkeccak(st, pscr, scr_size, recip);
// Wild Keccak #2 - st[0]..st[3] already contains resulting hash of #1
memset(&st[5], 0, 160);
st[4] = 0x0000000000000001ULL;
st[16] |= 0x8000000000000000ULL;
wildkeccak(st, pscr, scr_size, recip);
memcpy(md, st, 32);
}
void wild_keccak_hash_dbl_use_global_scratch(const uint8_t *in, size_t inlen, uint8_t *md)
{
wild_keccak_hash_dbl(in, inlen, md, (uint64_t*)pscratchpad_buff, (uint64_t)scratchpad_size);
}
int scanhash_wildkeccak(int thr_id, uint32_t *pdata, const uint32_t *ptarget, uint32_t max_nonce, unsigned long *hashes_done)
{
uint32_t *nonceptr = (uint32_t*) (((char*)pdata) + 1);
uint32_t n = *nonceptr - 1;
const uint32_t first_nonce = n + 1;
const uint32_t Htarg = ptarget[7];
uint32_t hash[HASH_SIZE / 4] __attribute__((aligned(32)));
do {
*nonceptr = ++n;
wild_keccak_hash_dbl_use_global_scratch((uint8_t*)pdata, 81, (uint8_t*)hash);
//if (unlikely( *((uint64_t*)&hash[6]) < *((uint64_t*)&ptarget[6]) ))
if (unlikely(hash[7] < ptarget[7])) {
*hashes_done = n - first_nonce + 1;
return true;
}
} while (likely((n <= max_nonce && !work_restart[thr_id].restart)));
*hashes_done = n - first_nonce + 1;
return 0;
}