-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathequation_parser.h
executable file
·259 lines (240 loc) · 8.95 KB
/
equation_parser.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
/*
* Copyright (C) 2000, 2013 Thierry Crozat
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* Contact: [email protected]
*/
#ifndef equation_parser_h
#define equation_parser_h
#include <stdlib.h>
#include "str.h"
#include "strlist.h"
class ParserOperator;
/*! \class EquationParser
*
* Parser class. This is the only class that you need to take care about.
* To parse an equation, call the parse() method. To evaluate a parsed equation,
* call the evaluateDouble() or evaluateFloat() method.
* If you have arguments, you either need to give them as arguments to the evaluateDouble()
* or evaluateFloat() functions or you need to set them using the variables_dbl() or
* variables_flt() functions.
*
* This parser uses the C syntax for equations.
*
* The recognized constants are:
* - PI
*
* The recognized functions are:
* - sqrt(x), the square root of x.
* - cbrt(x), the cubic root of x.
* - pow(x, y), x raised to the power of y.
* - exp(x), the exponential of x (e raised to the power of x).
* - log10(x), the base 10 logarithm of x.
* - log(x) or ln(x), the natural logarithm of x.
* - round(x), round x to the nearest integer.
* - ceil(x), round x up (the smallest integer bigger or equal to x).
* - floor(x), round x down (the biggest integer smaller or equal to x).
* - fabs(x) or abs(x), absolute value of x (x if x is positive, -x otherwise).
* - sign(x), the sign of x (-1 for a negative value, 1 otherwise).
* - sin(x), the sine of x.
* - cos(x), the cosine of x.
* - tan(x), the tangent of x.
* - asin(x), the arc sine of x.
* - acos(x), the arc cosine of x.
* - atan(x), the arc tangent of x.
* - atan2(y, x), the angle between the x axis and the segment defined by the points (0,0) and (x,y), which corresponds to the phase of the complex number x + iy.
* - sinh(x), the hyperbolic sine of x.
* - cosh(x), the hyperbolic cosine of x.
* - tanh(x), the hyperbolic tangent of x.
* - asinh(x), the arc hyperbolic sine of x.
* - acosh(x), the arc hyperbolic cosine of x.
* - atanh(x), the arc hyperbolic tangent of x.
* - degToRad(x), converts an angle in degrees to radians.
* - radToDeg(x), converts an angle in radians to degrees.
* - min(value1, value2), the minimum of the two given values.
* - max(value1, value2), the maximum of the two given values.
* - urand(min, max), a random number between min and max (uniform distribution).
* - nrand(mean, sigma), a random number with a normal (Gaussian) distribution.
* - rands(s), set a seed for the urand() and nrand() functions and return the seed.
* - if (x, y, z), if x is true (not equal to zero) return y, otherwise return z.
* - print(x), print the value of x and return that value.
*
* The recognized operators are:
* - x + y, add y to x.
* - x - y, substract y from x.
* - x * y, multiply x and y.
* - x / y, divide x by y.
* - x % y, floating-point remainder of dividing x by y.
* - x^y, raise x to the power of y (same as pow(x, y)).
* - +x or -x, unary plus and minus operators (change the sign of x).
* - x && y, logical and (return true - i.e. 1 - if x and y are not null).
* - x || y, logical or (return true - i.e. 1 - if either x or y - or both - is not null).
* - x == y, test equality (return true - i.e. 1 - if x is equal to y).
* - x != y, test inequality (return true - i.e. 1 - if x and y are different).
* - x < y, return true if x is smaller than y.
* - x <= y, return true if x is smaller or equal than y.
* - x > y, return true if x is greater than y.
* - x >= y, return true if x is greater or equal than y.
* - x = y, asignement (set x to y and return y).
* - x += y, add y to x and store the result in x.
* - x -= y, substract y from x and store the result in y.
* - x *= y, multiply x and y and store the result in y.
* - x /= y, divide x by y and store the result in y.
* - ++x, prefix increment operator (add 1 to x).
* - --x, prefix decrement operator (remove 1 from x).
*
* And you can of course use parenthesis to make sure the expressions are evaluated in the
* order than you want them to be. The priority of the operators is the same than in C.
*
* Example:
* \code
double result = 0.;
double variable[2] = { 1. , 2. };
StringList var_names;
var_names << "x" << "y";
EquationParser parser;
if (parser.parse("x + 2 * y", var_names))
result = parser.evaluate(variable);
* \endcode
*
* The same code could also be written as follow:
* \code
double result = 0.;
StringList var_names;
var_names << "x" << "y";
EquationParser parser;
if (parser.parse("x + 2 * y", var_names)) {
parser.variablesValue()[0] = 1.;
parser.variablesValue()[1] = 2.;
result = parser.evaluate();
}
* \endcode
*/
class EquationParser {
enum TokenType { DELIMITER , VARIABLE , FUNCTION , NUMBER , STRING, NONE };
public:
EquationParser();
~EquationParser();
bool parse(
const String& equation,
const StringList& variables_names,
bool auto_add_variables = false,
double* variable_array = NULL
);
double evaluate(double *var = NULL);
double *variablesValue();
int nbVariables() const;
const StringList& variablesName() const;
int nbErrors() const;
const String& getError(int) const;
const String& getLastError() const;
#ifdef PARSER_TREE_DEBUG
struct ParserTreeNode {
String description_;
List<ParserTreeNode> children_;
};
ParserTreeNode getParserTreeDescription() const;
ParserTreeNode buildNode(const ParserOperator*) const;
static void debugPrint(const ParserTreeNode&, const String& prefix = String());
#endif
private:
void getToken();
ParserOperator *eval_exp(); // Operator =, +=, -=, *=, /=
ParserOperator *eval_exp1(); // Operator ||
ParserOperator *eval_exp2(); // Operator &&
ParserOperator *eval_exp3(); // Operator ==, !=
ParserOperator *eval_exp4(); // Operator <, <=, >, >=
ParserOperator *eval_exp5(); // Add or subtract two terms
ParserOperator *eval_exp6(); // Modulo, multiply or divide two factors
ParserOperator *eval_exp7(); // Operator ^
ParserOperator *eval_exp8(); // Unary + or - and prefix ++ or --
ParserOperator *eval_exp9(); // Parenthesized expression
ParserOperator *eval_exp10(); // Functions, constant number and variable
bool isdelim(char c);
void syntaxError(int type);
void clearArguments();
private:
// Equation parsing
String equation_;
const char *expression_;
char token_[512];
TokenType token_type_;
bool auto_add_args_;
// Equation evaluation
int max_nb_args_;
double *args_double_;
bool own_args_double_;
StringList args_names_;
ParserOperator *start_point_;
StringList errors_;
static String nullStr_;
};
/*! \fn double *EquationParser::variablesValue()
* Return the variables array. The variable are sorted in the same order
* as the one for the variables names given to the parse() function.
* This function can be used to set the variables value in double precision
* mode before the evaluateDouble() function is called (but after the equation
* has been succesfully parsed):
* \code
parser->variablesDouble()[0] = 12.327;
double result = parser->evaluateDouble();
* \endcode
*/
inline double *EquationParser::variablesValue() {
return args_double_;
}
/*! \fn int EquationParser::nbVariables() const
*
* Return the number of variables (given to parse() or auto-detected).
*/
inline int EquationParser::nbVariables() const {
return args_names_.size();
}
/*! \fn const StringList& EquationParser::variablesName() const
*
* Return an array containing the name of the variables.
* This can be usefull when using the 'auto-add variables'
* features.
*/
inline const StringList& EquationParser::variablesName() const {
return args_names_;
}
/*! \fn int EquationParser::nbErrors() const
*
* Get the number of error messages since the last call to parse.
*/
inline int EquationParser::nbErrors() const {
return errors_.size();
}
/*! \fn const String& EquationParser::getError(int i) const
*
* Get error at index i (between 0 and nb_errors()-1).
* Returns an empty string if the index is invalid.
*/
inline const String& EquationParser::getError(int i) const {
if (i < 0 || i >= errors_.size())
return nullStr_;
return errors_[i];
}
/*! \fn const String& EquationParser::getLastError() const
*
* Get the last error message or 0 is there is no errors.
*/
inline const String& EquationParser::getLastError() const {
if (errors_.isEmpty())
return nullStr_;
return errors_.last();
}
#endif