diff --git a/.buildinfo b/.buildinfo new file mode 100644 index 0000000..7f141ef --- /dev/null +++ b/.buildinfo @@ -0,0 +1,4 @@ +# Sphinx build info version 1 +# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done. +config: cbd6834f28465f1e61c88d3b52d6572b +tags: 645f666f9bcd5a90fca523b33c5a78b7 diff --git a/.doctrees/citation.doctree b/.doctrees/citation.doctree new file mode 100644 index 0000000..a778d29 Binary files /dev/null and b/.doctrees/citation.doctree differ diff --git a/.doctrees/environment.pickle b/.doctrees/environment.pickle new file mode 100644 index 0000000..855dac3 Binary files /dev/null and b/.doctrees/environment.pickle differ diff --git a/.doctrees/getting_started/algorithm.doctree b/.doctrees/getting_started/algorithm.doctree new file mode 100644 index 0000000..2d4afb2 Binary files /dev/null and b/.doctrees/getting_started/algorithm.doctree differ diff --git a/.doctrees/index.doctree b/.doctrees/index.doctree new file mode 100644 index 0000000..9f15317 Binary files /dev/null and b/.doctrees/index.doctree differ diff --git a/.doctrees/io.doctree b/.doctrees/io.doctree new file mode 100644 index 0000000..ee6f892 Binary files /dev/null and b/.doctrees/io.doctree differ diff --git a/.doctrees/methodology/baseline.doctree b/.doctrees/methodology/baseline.doctree new file mode 100644 index 0000000..9a66585 Binary files /dev/null and b/.doctrees/methodology/baseline.doctree differ diff --git a/.doctrees/methodology/fitting.doctree b/.doctrees/methodology/fitting.doctree new file mode 100644 index 0000000..487b2b4 Binary files /dev/null and b/.doctrees/methodology/fitting.doctree differ diff --git a/.doctrees/methodology/peak_detection.doctree b/.doctrees/methodology/peak_detection.doctree new file mode 100644 index 0000000..ec53d2c Binary files /dev/null and b/.doctrees/methodology/peak_detection.doctree differ diff --git a/.doctrees/methodology/problem.doctree b/.doctrees/methodology/problem.doctree new file mode 100644 index 0000000..bd6a5b1 Binary files /dev/null and b/.doctrees/methodology/problem.doctree differ diff --git a/.doctrees/methodology/scoring.doctree b/.doctrees/methodology/scoring.doctree new file mode 100644 index 0000000..3b3dee1 Binary files /dev/null and b/.doctrees/methodology/scoring.doctree differ diff --git a/.doctrees/nbsphinx/getting_started/algorithm.ipynb b/.doctrees/nbsphinx/getting_started/algorithm.ipynb new file mode 100644 index 0000000..8177fc2 --- /dev/null +++ b/.doctrees/nbsphinx/getting_started/algorithm.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methodology\n", + "**Note: This notebook is under active development and will change *a lot*.**\n", + "\n", + "## The Problem\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. The resulting data is a chromatogram, which may look something like \n", + "this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the \n", + "chromatogram that contain either singular or highly overlapping peaks, allowing \n", + "one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 663.24it/s]\n", + "Deconvolving mixture: 100%|██████████| 3/3 [00:08<00:00, 2.96s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1574500.67428623250.3493872.790042e+061
013.170.5828663.83986042250.7839745.070094e+062
014.450.353036-3.01915335229.5835554.227550e+063
015.530.3125631.63078714891.0414521.786925e+064
016.520.3442661.98416710770.6567321.292479e+065
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.157450 0.674286 23250.349387 2.790042e+06 1\n", + "0 13.17 0.582866 3.839860 42250.783974 5.070094e+06 2\n", + "0 14.45 0.353036 -3.019153 35229.583555 4.227550e+06 3\n", + "0 15.53 0.312563 1.630787 14891.041452 1.786925e+06 4\n", + "0 16.52 0.344266 1.984167 10770.656732 1.292479e+06 5" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgURfoH8G/33JP7Pgg5IcUNAiq6KCAKoojirj9RRFc88UARBBQUBVFURAyusnIriAq6qKwHi+CBIiKKcqVJQhLITUKuuaeP3x8zgyEkkEwmySS8n+fhYaa7uromPZPM21X1FqcoCgghhBBCCCHkQsC3dwMIIYQQQgghpK1QAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWCo27sBnVgVAB2A4nZuByGEEEKaLg6AHUBoO7eDENJKOFoItdVYFUXRyzL9fP0Bz3Oga+Ef6Fr4D7oW/oOuhf/geQ4cx9kAGNq7LYSQ1kE9QK2nmOO4lJoaC0RRbu+2XNDUah5hYQGga9H+6Fr4D7oW/oOuhX8JDw+ASsXR6A1COjGaA0QIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUBY4QgghhBA/t2/fviC41iiim9eEnE0GUDxo0KDaphRu9wCIMaYB8ByASQDCAOwHMEsQhJ/c+wcAeAPAYAAVADIEQVhc53gewDwA97qP3wXgIUEQsuuUaXEdhBBCCCFtbd++fTyApzmOv5PjOA0Arr3bRIgfUhRFce7bt+9dAC8OGjTonGsKtHsABGAugMkA7gJwDMAsAF8yxnrCtRLz/wBsAfAggCEA3mKMVQiCsMZ9/DPufXcDKATwivv43oIgOBhjES2tozVfPCGEEELIOTytUqmnBAeHObRavYXjOFoxl5B6FEXhHA6bsaamcookiQDwwrnK+0MAdCOA9wVB2AYAjLHpcPXEXAYgHa4gaIogCCKAI4yx7nAFSWsYY1oA0wHMFAThC/fxtwIoAnAzgA8A3O+DOgghhBBC2tS+ffuCOY6/Mzg4zBEUFFbR3u0hxJ/pdAYrgIiqqoo79+3b98a5hsP5wzjSCgBjGWPJjDEV/gpY9gO4AsD37sDFYwcAxhiLBjAAQJB7GwBAEIQqAL8BuNK9yRd1EEIIIYS0tViO4zRard7S3g0hpCNw95Jq4Jov1yh/6AF6DMCHAHIBSHBNYvqHIAg5jLEEAAfqlS9y/58IIMH9+EQDZRLdj31Rh9dUKn+IMS9snmtA16L90bXwH3Qt/AddC//C+dcMGx4AR8PeCGka92eFw3k6efwhAOoJoBLATXDNv7kPwLuMsSsBGOHqDarL5v5f796PRsqEux/7og6vBQcbWloF8RG6Fv6DroX/oGvhP+haEEJI22jXAIgxlgRgA4CRgiD84N78K2OsF4DnAVgB6Oodpnf/b3bvh7uMtV4Zs/uxL+rwWk2NFZJ0zkQUpJWpVDyCgw10LfwAXQv/QdfCf9C18C8hIQbwPPXGEdKZtXcP0CUANAD21tv+M4DrAOQDiK+3z/O80H2sZ1tOvTJ/uB+f8EEdXpMkGaJIf9D8AV0L/0HXwn/QtfAfdC38g0KDzTq9jIwl8Tt2bIvYsuWr+lMk/FJm5mF9QUGB7uqrR1W3d1s6i/a+xeGZd9Ov3va+ALIAfA/gCndyBI+RAARBEMrgClBqAAz37GSMhQIYCMDTo+SLOgghhBBCCGlzs2dP73748MGA9m5HZ9LePUC/wBVkrGOMPQSgAMCdAK4GMBSudYFmAljFGHsFrh6jx+FasweCINgZY28CeJkxdhJAHoBX4QqsPnGfY7UP6iCEEEIIIaQdULekr7VrACQIgswYuxGuxYrWAgiDK2PbSEEQfgYAxthoABlwpaUuBvCkIAjr6lTzLFyvYyUAA1w9PqM9C5gKglDW0joIIYQQQvyFLMuwWCztMorHaDTKzZ0jNXTo4EF///utxd9++02E0+nk33jj7Uyj0SgvW/Z6wp9//h5sNptVISEh4ogRV1c89tiMwiNHDhseeOCfvd56a+WRfv0GWADg8ccfSjt48M/gr7769ne1Wg1FUXD99Vf3v+uuyYW33jqxvP45y8tPqpcseSXht9/2hkiSxKWn9zA98cSsE2lp3U4nvXrnnbditm7dElNbW6vu1q27efbsZ/M8+xtqc0JCV8e///2vuO++2xFRWVmp6dKli23SpLuLrr32+ioA2LTpg4iNG9+Lu/vuewtXrXonobq6StOzZ+/auXOfz1u7dlXst99uj1Cr1cq4cTeXPvjgIyUAYLfbuTfffD1+167vw06dqtDq9Qa5f/8B1bNnP3M8PDxCuumma/uWl5drP/ro/bgDB/YHrVjxrlBZeUr15ptLu+zd+3NobW2tOiUlzXz//Q8VDhlyucnz2rZs+Th8w4Z1cSdPntQlJiZaR4y4pmLVquVdd+36dZ8314Tnea9en79q7x4gCIJQCeBh97+G9u+Fa1HUxo6X4FrUdNY5yrS4DkIIIYSQ9ibLMm6//e89MjOPtMuQqB49epnef3+z0NwgaNu2L6Jeeum1LEkSue7d0+233/73XiEhoc6XX156NCgoSPruux2hK1a83bVXrz7m0aOvq4qMjHTs3v1jcL9+AyySJOHw4YNBdrud//33fQEXX3ypef/+34y1tTXqq666pqr+uURRxGOPTUkHOOW5517MiYiIEJctez1h+vRH0zdv/vwAAJSXl2sPHvwz6KWXlmQ5HHbuxRefT3nxxeeTV616T2iszY8//lDasWM5xkcfnXY8JSXN9tVX/w1fuPC5NJ7ns0eNGlMNABUV5drPPvtP9AsvvJJtsZj5Z56Z1f3uuyf2HjnymvK33lp15IsvPotYv35tl2HDRlT17Nnb9tprixL27NkdOmvWnLyuXRPtgiAYFi9+Mfnf//5X/FNPPXti5cr3jkyePLHX3/427NT9908pliQJU6c+mO50OrlZs+bmRkVFOz/88P3o2bOfSF+69K3MAQMGWrZv/zpkyZKXU+68c3LB8OEjq/bs+Sl45crlXVt6Tbx5fc16k7Shdg+ACCGEEEJIc3S8dYGGDbuqYsCAgRYAsFqt3FVXXVMxevSYyq5dkxwAkJx8T9mmTR/EZmcfNYwefV3V4MGXVv32295gACX79/8WoFKplfT0Hqa9e/cEXXzxpeYffvgutHt3ZoqKihbrn+vHH78Pzs/PM6xZ8/7B7t3T7QAwZ85zeWvXrow9dapCDQAqlUpZsODl3JCQEAkAxowZe3L9+rVdGmvz0aOZ+l9//SX0uecWZl999ehqAHjkkceLjx3LNm7YsC7OEwBJksQ98cSsfM+X/759+9ccPZoZ+OSTTxdwHIf773+4+KOPNsZlZR019OzZ29azZy/ziBEjKy+7bKgJALp2TXL8739f1eTlHTMAQGRklMjzvGIwGOSwsHBpx47/BefmHjOuWLHukOccc+c+f/zo0cyADRvWxQ4YMPDYBx9siB0y5PJT9977YCkAdOvW/WRBwQnd559viWnJNfHm9bXkPdOaKAAihBBCCOkgeJ7H++9vFjrSEDgASEjoenromcFgUCZNurvsiy8+D1u/fl1AUVGhLj8/11hVVamRJJkDgCuuGF49b97TUVarlduzZ3dQ7959art06Wr744/fggGU7N27J+TKK4efauhcWVlHDUajUfIEPwAQExMrzpo1t8DzPCQkRPQEPwAQFBQsORyOM15Y3TYLQqYBAAYPvtRUt0zfvgNq3313VULdbd26/XVenU4nR0XF2Dn3Crt6vV4BALvdzgPA+PG3nPrhh++Clix5uUthYYGuoOCEoaioUN+jR88zzuORnZ1lMBiMUt3gguM49OrVx/Tbb78GA0Be3jHj0KFXVtY9rn//i0z1A6DmXhNvXp+/ogCIEEIIIaQD4XkegYGBHSpnuk6nP91ei8XCP/DAP5nNZuOvuGJY5ahRYyr69x9w/JFH7u/hKXPZZX+r1WjU8s8//xj0++/7gkeMGHkqKSnZ/tlnn8SeOJGvzcs7ZnzuuYXHGjqXSqVWPF/IG8Pz/Hl70eq2ubFEBLIscSqV6oydGo3mjOc833hb5s9/JvHHH78PHz58ZMWQIX+r7tGjV/GGDetiKypOahsqrygNvzRZlqFWqxXX+XhFaUI+9+ZeE29en7+iAIgQQgghhLSZ777bEZybe8z4ySf//SM6OkYEgMrKU6rq6mq1J9DQarVK//4X1Xz//behWVlHA2fPfiY/IaGrg+M45a23lsXHxcXb6iY0qCs1Nc1mNptVx47l6FJT0+wAUFFRrr7ttpv7vPDCK1netDk9vYcVAH79dU+gZwgcABw48Edgly5drd7UeepUhWrbti+jZs2ac+yGG8af7rEpKDiu1+sNdYKvvwKMbt3SrRaLRXXkyCF93V6gw4cPBSYkJNoAICkp2Xr48KFAAGWe/YcOHTjnnLGmXJPOxK+7pwghhBBCSOcSExPrAIDPPvtPxIkT+do9e3YHzpgxtZskSZzD4Tz9bf/yy4dW7dz5TWRwcJCYltbNrtPpFMZ6mnbt+i5iyJDLqxqr/4orhtWkpKRZ5s+fm7Jv396AzMzD+ueem5McEhLq7N//Ios3bWasp23AgIHVGRlLErdv/zokOztL9+abS+P27dsb+n//d1upN3UGB4dIBoNR2rXr+9Bjx3J0hw8fNMyb93RSXl6u0en86+eg1+ulwsICXVlZqXrYsBHVXbsmWefPfyb1p59+CDp6NFO/YMGziQUFxw0TJtxeCgC3335n8Z49P4WtWvXvmGPHcnSbN38Y8d//fh59rrY09Zp0FtQDRAghhBBC2szAgYMtkyfff2LLlo9jNmxY1yUsLNxxxRXDT0VGRjkE4a/sdiNGXF29dOlirk+f/jWebRddNKjmwIE/gocNu6qqsfp5nscrr7yevWTJK11nz57eHQB69+5Tu2TJsiydTud1d8aiRUuOLV36apclS15Jtlgsqq5du1qffvq5nDFjrm+0LeeiVqsxd+7zx5YvX5Zwzz139A4ICBT79OlXe8cd/yzcvPmDOLPZzAcEBMg33vj3stWr/53w2GMPGTZu/PhwRsbbR5cseSXh+efnpjmdIpeSkmpZtGjJ0UGDLjEDwIgRV9eUlZXmf/DBhtj33lvTJSUl1TJ69JiTX365tdEgqKnXpLPgmjJGkHjlGICUykozRLFDDdPtdNRqHmFhAaBr0f7oWvgPuhb+g66FfwkPD4BKxecCSG3vtuzbt68Hz6u+io7uYtJq9X6bUYv4l927dwVGRkY76yaBePvtZbHbtn0Z+Z//fHGwPdvW2hwOm76srDBQlqVrBw0alNlYOeoBIoQQQgghpJP4+eefQr79dkf4zJlP5yUlJdsPHz5k+Oyz/8SMGTP2ZHu3zV9QAEQIIYQQQkgn8dBDjxVZrVZ+0aIXUmpra9Th4RGOG2+8ufS++6aUtHfb/AUFQIQQQgghhHQSOp1OefrpeScAnGjvtvgrygJHCCGEEEIIuWBQAEQI8Vs7dvwPs6ZPxU8/fNveTSGEEEJIJ0EBECHEL2VnH8W655/BbadOQb9qJU7s/rG9m0QIIYSQToACIEKIX/rww40QZRlWSUKgWo2yDe+B0vYTQgghpKUoACKE+B1FUfDDD9/iUG0Nvo6LgyjLCLLZ4CgoaO+mEUIIIaSDowCIEOJ3srOPoqSkGDqdDg88PgP7a6oAABW/7mnfhhFCCCGkw6MAiBDid37duwd/C4/AsEEXIy4uHgUcBwCoPNipF7AmhJBOaejQwYM2bfogoqnlv/32m+Dx46/rM3z4kIEvv7wwoTXb1hQZGUvib7rp2r6+rLM5P5OCguPazz77T5gvz3+ho3WACCF+p+DPP/FYandITgmy0wE5Lh6wWKEUF7V30wghhDTTxx9v/SM4OERqavkVK95OiImJtb/xxltHAwODmnxcR9Kcn8nzzz+THB0d7Rg3bnxla7frQkE9QIQQv6MczwMAiNEx4DVaRKYzyIoCmyRBdjrbt3GEEEKaJSYmVjQYDE3OYmM2m1W9evU2JyYmO8LDIzplANS8n4nCtW5rLjzUA0QI8StWqxUBZgtgDEQw6wEA6NanH+5Y9W+kdk/HRxpNO7eQEELan2S1NnoTm+N5hdfplNYu21RDhw4e9NhjM/JuuWVCxZw5TybLssyFhYU7d+78JsJut/H9+g2oeeqpZ/NjYmLFoUMHDwKAjz7aGPfRRxvj3n9/84GuXZMcK1a8HfPll1ujq6ur1LGxcfZbbrmtZPz4f5wCgJ9++iFo5sxp6XfeObng448/iouMjLK/8MLLxyZN+r8+t902qei///0sWqvVyGvXfnCY4zgsWfJywi+/7A4VRZFLSUmzPPTQ1IIBAwZaPO3duPG9yE2bPoitrDyl7d//ouro6BjHuV7ffffdyXr37ldbWXlK8+OP34drNBp57NibykaNGnNq0aIFyceOZQfExsbbZs58Ou+iiwZZ6v5Mrrnm2qo77/y/3snJqZaMjOXZAPD9998GzZnzZPpTTz2b85//bIo5cuRw4JEjhwNvuunaoC1bvjpw003X9r3qqlEVU6c+UVS3DdHRMfaFC1/Na+jn8e67HxwpLS3RvP76q1337/8tWKXilfT0HubHHptxIi2tm72517SjowCIEOJXjh3LRorRCAAI6+EKgFJSUiAqCk6cOAFFUcBxdDOMEHJhy3l0ykWN7TOks+quM5/K9jw/9sTU/orT2WBgo0tOMSXNnSd4nufOmt5Xtlga/H6oje9iSZ6/8EhL2g0Au3f/GDZ06LBTb7zxllBUVKh96aUFqW++ubTLggWL8j/+eOsf9913Z6+//W3YqX/+856SyMgo8fXXX+ny3Xc7wx99dNrxtLTutl9/3RP4r38tTTKZTKpJk/550lPvnj27Q996a+URi8XCq1S8AgDffvtN+OuvvylYrVY+JCREmjz5jh5qtVp+4YVXsoODg6XPP98S8fjjD/VYtuzfR/r27W/97LP/hC1f/mbivfc+eOKyy4bWfPPNtrD169d2iYiIOGcQtGXL5thbbrmteOXK9w7997+fRmzc+F78N99si3jwwUdOJCR0dbz88gtJS5a8nPTeex+d8fMLDQ2VnnxyTu7TT89I//TTT8KvuGJY9SuvLEwZOXJU+XXX3VB12WV/q33iiUe6R0ZGOWbNmnu8OT/nuj8Pm83GP/roAyw5OcXy+uv/ElQqXtmw4d3Yhx66p+eaNe8fio/vckENr6AAiBDiV07k5yHR4AqA9InJAIC4uC7gOA5WqwWVlacQHt7kubSEEEL8jMFgkObNeyFfo9Eo6ek9bLt3/1ixb9/eEMA1NIznecVgMMgxMbGi2WzmP/98S8yMGU/lXn316GoASElJtRcXF+k+/viD2LoB0K233l7i6c04fjxPCwDXXz/uJGM9bQDwww/fBWVlCQFbtnz5R2RklAgATzwxq/Dw4UOBH3ywPqZv3/55n3zyUczllw+tnDTp7pMA0K1b95IjRw4F5OUdM57rNXXtmmh9+OHHigHg7rvvL924cX38FVcMPzVq1JhqABg1akzFihXLuzZ07BVXDKsdM+aGsuXL3+z6zTfbwgMCAiRPsBMWFi6p1WpFq9XKnjY3Vd2fx4cfboisra1RL1q0JFej0SgAMH/+S3k333x9382bP4yq25t0IaAAiBDiVyqyjiKV5+HkOGiiowEAWq0WwxKTMdJgRMm6NQifNqOdW0kIIe0rbdnbvze2j+P5M4appS7J+KOpZVNefu1AU8t6KyYm1u75Eg4AAQGBkiiKDXbtHz2aqXc6ndxrry1KXrLk5WTPdkmSOVF0clar9fRxyckpZw3lSkxMsnkeZ2YeNgLArbfedEZGN1EUOafTwQHAiRPHDcOHjzxVd3+vXn1M5wuA4uMTTp/HaDTKANClS5fT7dFqdbIoOhsdvvDEEzMLfvttb8hvv/0a8vbbqw83Z85UY+r+PI4eFYxWq1V17bXDB9Qt43Q6+RMn8vUtPVdHQwEQIcSvOE64evgtgYHg+L9GbMRGRoJxKtiKLqibVIQQ0iCVwSC3d1lv1Q1+/tLw931ZljkAePrpecdSU7vZ6u/X1ZmTpNfrz2q7Xq8/vV+WZc5gMEj//vfas4bxabVaGQA4joNSrylqtfq8wYharTqrDMc1PddYaWmJpqqqUqNSqZTdu3cF9+3bz3ruI848nShKZwVXdX8esiwjLi7etmjRkuz65QICAjploolzoSxwhBC/su9UBV7LOQpLnzOXXDBExwAAOFNtezSLEEJIO+jWLd2mUqmU4uIibWpqmt3z7/vvd4a8997qGJ5v+lfZtLTuVqvVqnI47FzdutauXRm7Y8f/QgEgKSnZcvDgH4F1jxOEIwG+fVVnkmUZ8+fPTUlKSrE89NDU4++//26XgwcPGP4qwZ0R7ahUasVkMqvqHl9WVqo91zlSU9Os5eXl2uDgYMnzuhMTk+xvvrm0yy+/7A7y9WvydxQAEUL8inDiOPZUnkL4JUPO2B6a4Bo6rXE6oUgX3M0qQgi5IIWEhEjXXHPtyffeW9Plk08+Cs/Ly9Vu3vxhxNq1qxLCwsKbNSdmxIiR1UlJydZ5855O27Xr+6Bjx3J0r7yyMGHnzu2RKSlpNgC47bY7S3755eewFSvejsnJydatW7cqes+e3a26COk777wVm5uba5wz57m8W2+dWN6zZ+/aF154NsVut3MAYDAY5LKyUl1hYYEGAHr27GXateu78N27fwzMzs7SzZ//TJLValGd6xzjxt18KjAwQJo1a1ravn2/BGRlCfpnnpmVsn//vpDu3dl5eps6HwqACCF+w2az4eTJMgBA165nzhWNSEyCKMvgAYjV1e3QOkIIIe1h9uxnTtx4482l7767pss//3lbnw0b1sVNmDCx6NFHmzdxX6VSISNj+dHu3dPNCxfOS7333km9/vxzf9Dcuc/nXHHFsFoAuPrqUdUzZz59bNu2LyPvuWdS7127vg8dN258aeu8MuDAgT8NH3ywPn7SpH8Wpqam2QHgqaeeyS8vP6l7/fVXugDAuHE3nzxx4rh+8uSJvSVJwiOPTCtMT2emOXNmdn/00Qd6BAcHi5dffsU5F0kNCQmRli17JzMkJFScPXtG9ylT7ulZVlaqffHFxVk9evQ6a2hhZ8cp9Qc6El85BiClstIMUWz14bTkHNRqHmFhAaBr0f7Ody2yjhzGu48/jFMAln35DeoObdizZzfENzMQpdOh69PPwJCa1oYt73zoc+E/6Fr4l/DwAKhUfC6A1PZuy759+3rwvOqr6OguJq1Wf8F9SSWkuRwOm76srDBQlqVrBw0alNlYOUqCQAjxG6VHDmNS1ySYFRn1x3VHRUXjoNOBKJ0OYuUpABQAEUIIIaT5aAgcIcRvVOfmAABq1Zqz9kVHx6DMbkOZ3QaHjW6EEkIIIcQ71ANECPEbzpJiAIAYHHzWvoCAAKwqKYbVmoNPE7qClkIlhBBCiDfaPQBijA0HsLOR3bmCIKQyxgYAeAPAYAAVADIEQVhcpw4ewDwA9wIIA7ALwEOCIGTXKdPiOgghrUvlTm6gjok5ax/HcYiKisLx4/k4ebIMSUnJbdw6QgghhHQG/jAE7icAcfX+jQIgAniRMRYB4H8AjsIVvMwDsIAxdnedOp4B8CCA+wBcBtfqUF8yxrQA4Is6CCGtL9DuAAAENRLcRLvXAvJkiiOEEEIIaa527wESBMEBoMTznDGmAfA6gI8FQVjJGHsKgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cddwKoAjAzQA+AHC/D+oghLQip9OJCHfigyjWo8EyvULDML5HH4R+uxMYM7Ytm0cIIYSQTsIfeoDqexhAVwDT3M+vAPC9O3Dx2AGAMcaiAQwAEOTeBgAQBKEKwG8ArvRhHYSQVlR6LAd6lQqyoiA2veEAKCw0FN0DA6GvqWnj1hFCCCGks2j3HqC6GGN6AHMALBUEodi9OQHAgXpFPQtfJbr3A8CJBsok+rAOr6hU/hhjXlg814CuRfs717UorizHi4cPoFdCV7wcaGzweGNkJJCXD60oQq2m69kS9LnwH3Qt/AvHtXcLCCGtza8CIACTABgAZNTZZoRr+Fpdnhy4evd+NFIm3Id1eCU42NCSw4kP0bXwHw1di4qqcuRazEjt2gVhYQENHhed3BX4dR80ioJgoxoqna61m9rp0efCf9C1IISQtuFvAdCdcM39qaizzQqg/rccvft/s3s/3GWs9cqYfViHV2pqrJAkWtm7PalUPIKDDXQt/MC5roUn4WJsbBdUVjb8sdMGhsIpy9DwPCpOlEATEdnqbe6s6HPhP+ha+JeQEMNZCzH7I46DiuO4Nm+ooiiyokBq6/MS4kt+EwAxxqIAXA7gxXq7TgCIr7fN87wQgKbOtpx6Zf7wYR1ekSQZokh/0PwBXQv/0dC10GVn47roWKSGhTd6nYJDwlEjOhGh1cFeWQMupEUdtAT0ufAndC38g6K0dwvOj+OgkjkuzmIT2/x7nFGvFnkoxf4WBGVkLInfsWNbxJYtX9Wf8nBe2dlZuvvv/2evtWs3HEpMTHa0RvuIf/GbAAiu4EcB8F297d8DeJAxphIEwfNhGwlAEAShjDFWDaAGwHC4gxfGWCiAgQDe9GEdhJBW1K3WhKsSk1GlbXxYW3h4OIpEERFaHcSa6jZsHSGE+A+O43iLTVT/fLBYttjaLmo26tX8kD5x6iC9mlcUxa8CIG8dPnzQMHv29G4Oh93/u/2Iz/hTANQfwDFBECz1tq8GMBPAKsbYKwAuAfA4XGv2QBAEO2PsTQAvM8ZOAsgD8CpcvT6f+LAOQkgrURQFIXDddo3s1r3RcuHh4Siz2xGgUiHCZkVgWzWQEEL8kMUmymars627DTtNoPDWWxmxmzd/ENelS4Lt1KkKWvfxAuJPAVAsgIr6G909NKPhSozwG4BiAE8KgrCuTrFn4XotK+FKovA9gNHuNYZ8UgchpPVUFBchRO0aiRrXq0+j5QwGI/5VeAI2mxVb47u0VfMIIYS0wNChgwdNmfLo8W+++V94bm5OQExMrG3y5PsLR40ac7orf/v2r0PWrl0ZX1hYYAgLC3dceeWIU1OmPFqs0+kUAMjMPKxfvvzNLkeOHA6y2ax8RESk44Ybxpfdffe9Da6MvXbtyui1a1cmPPXUs8dGj76uqqEy+/b9EvLkk0/nhoSESDNnTktvlRdP/JLfBECCIDx0jn17AVx2jv0SXIuazmrNOgghraPw8EEYAJgkCYbQ0HOWDQ8PR1FRIU6dqkBCQtc2aR8hhJCWWbNmRcJdd91T8NRTz+Z9+uknkQsWPNstLCw88+KLLzXv3Lk9eOHC59LuvffBE5dffkXN8eN5umXLXk8sKDiuX7w445jFYuGnT5+a3rdv/9ply5ZnqtUaZcuWzZGrVi3vOnjwJbV9+/arm8AK69evjVq3blXC3Lnzc66+elSj46VXrVovAMBPP/0Q1Nqvn/gXvwmACCEXrspjOTAAqGnCOihhYZ4A6FTrN4wQQohPjBhxdfmkSXefBIAZM2YXHjz4R9CmTRujL7740tz169fGjRw5qnzixLtOAkBKSqpdrVbnz5r1RPrx43laozFAHjdufNltt00qCw4OlgHgkUemFX3yyabYrKxMQ90AaOPG9ZGrV7+TMG/eC9nDh4+kVbNJg5odADHGIgCMhyuJQAqAEADlAPIBfAngv4IgVPmwjYSQTs5cWAgAcBgbXgC1rouDgjGxZx9od/8EDL+qtZtGCCHEBwYOHFxb9zljPc379/8WDAC5ubnGnJzsgJ07t0d49nuy8WVnZ+mvuuqamttvv7Ns69ZPw3NysoyFhQW6/PxcIwBIknx66drKykrN229nJKlUKiUhIbH+2o6EnNbkAIgxFglgDoB73ccdgStZQBaAMAB9AUwAYGeMLQfwsiAIDY7LJISQuuRTrul/fNj501qH6A3oJkqorKps7WYRQgjxEbVafUaCcUVRwPMqxfVY5m666R8l48aNP2sueExMrLOsrFR9//3/7BkUFCwOGXJ51aBBl9T069fffOutN/WrW5bjeMyf/2LW6tXvxC9c+FzKqlXvZXaENZ1I22tSAMQY+wdc6aD3AbgfwKcNZGsDYywYwBgADwA4zBh7SBCEj3zYXkJIJ/R5dRXW5mThoeuuP29ZVWAAYDIBNlsbtIwQQogvHD58MOCaa649PR8nM/NwYFpamgUAEhISrSdO5OtTU9NO99rs3r0r8MMP34956qln87du/TTCZKpVb9r02UGNRqO46zO4Sv4VV4WGhjiHDRtREx0d7Xjwwcm91qxZEXPPPQ+UttFLJB1IU3uAHgNwnSAIv52rkCAINQA+BPAhY+xSAEsAUABECDmn7IITOGU2I65Hz/OW1QQFAyWlUDkoQSMh5MJm1KvbtHujJef7/PMtMUlJKbY+ffqZP/74o6j8/DzDrFnP5AHAhAkTSxYtWpCakbEk/rrrbqgoKSnWvvbaouTIyEhHTEysGBMT67Db7fzWrZ+GXXzxJaacnGz9W29ldAUAh8NxVpt69uxtGz/+lpING9bFDx8+siotrRsNhyNnaFIAJAjCFc2tWBCEPQD+1uwWEUIuKGazCafcQ+ASEhLPW14bFAwAUEtiq7aLEEL8laIoslGvFof0iVOjjdflMerVoqIozV57aNSoMSc3b/4gZunSxYakpCTLSy8tzurdu48VAK6/flyloijHNm58L+6TTz6KNRoDpMGDL6maNm1mgWd/ZuaRkhUr3u66bNkSPjIyyjF69HXlu3f/GHrkyKEAACfrn2/KlEeLf/zx+7CFC59LXrnyXYGGwpG6OEVRzl+KeOMYgJTKSjPEtlukmTRAreYRFhYAuhbtr6FrIez7FV88NweVHIf5n3113jq+/GAD0rb/DyKAXivXtm6DOzH6XPgPuhb+JTw8ACoVnwsgtb3bsm/fvh48r/oqOrqLSavVnzHul+Og4jiuzb/VK4oiKwqk5hwzdOjgQY89NiPvllsmnDXHhxBfcjhs+rKywkBZlq4dNGhQZmPlmjoHaHVzTi4IwuTmlCeEXLhOZh7G9TFxKJeb9sXPGO5KEqQGIDsc4LW0eDch5MKjKJAURWlWIEIIcWnqHKCrUHeWGRAPQAPgOIBiABFw3SmxA/jDlw0khHRuNSeOIxqAVadrUvngyEjUOJ0QeQ6y3UYBECGEEEKapalzgJI9jxljtwN4GcDfBUH4pc72XgC2wJUEgXRgZVs+xrpDBxDVpQvuuutecBx3/oMI8ZKjzJUtXwkJaVL5oOAQ/OOPfQgNDcW37vlAhBBC/NeuXb/ua+82EFKXN2NHFwKYXTf4AQBBEA4DmAtgpi8aRtqH8+RJVG39HH0PHsQbS1/Dd9/tbO8mkU6Or3Ut1K2Ljm60jErr+gcAIe5AqaamBnITh80RQgghhHh4EwBFAqhuZJ8IIND75pD2Zsk8DACwyTIUAN98s619G0Q6PYPdlZ00ODGpwf0ajQpl1pMot1VArVYhONgVAMmyDLPZ3GbtJIQQQkjn4E0A9DOAeYyxiLobGWNxAJ4HQF0GHZgpNxcAoON53N01GZqjQju3iHRmTqcDYe4kRtHd0xssI3EiTlQVobCmFOBl6HQ6TE5OxYs9++DUvr1t2VxCCCGEdAJNTYJQ13QA3wHIY4zthiv3egyAywGcAvC4z1pH2lzNsWyoAGh4HmNiYrGn8hRsNhv0en17N410QoW5uQjWaAAAUd3ZWfs5joNVsqDaZoJWpYFdtkMFLboYA9DNGABrGS3wTQghhJDmaXYPkCAIfwLoDWA5gCAAgwEYACwG0E8QhDxfNpC0LanClaI/W+XKyBWl1SEvL7c9m0Q6scKyUtyz/1f8q6YKaqPxrP0qFQeL0wqzwwKLwwq7ZAfPc5DUrns3tpqatm4yIYQQQjo4b3qAIAhCEYAnfdwW0s4USYLaagUAVASEAE4TIrRaFBUVoEePnu3cOtIZnSg4gVpRBBcf3+B+juNQaa2GoiiwiXZYRTuCdRxkd6+Rvba2LZtLCCF+oyMthEqIv/EqAGKM6QBMBnANgDgAdwMYDuC3+tnhSMchVlWCB+CUZZjDYoAyE0I0Gggnjrd300gnVVDgem8lJHRtcL8ECbV20+nntfZaxBliAK0OcDohmk0NHkcIIZ0Zx0Fl4J1xisPi1fe4Fp1baxStsqaYgiDSkTX7g8MYiwSwA0BPAEfgGg5nBHA9gCWMsZGCIOz2aStJm+B1evyPAwoLjkPX+wqIZceghoJKCoBIKwk6dgx3dU1C9+CG1wASFSesTtvp5ya7GTJk8HpXACRZLG3VVEII8Rscx/GKw6I2CXtk2W5ts/UAeJ2BD2SXqjlNKK8oil8FQBkZS+J37NgWsWXLVweaesymTRsjPv74o5iysjJdWFiYc9Soa8vvvXdKiUqlas2mEj/gzZ2DxQCC4QqA8gA43NtvAfA1gPlw9QyRDkYVGIivS0twvKwE/wyLhk2jRaDTDkd5RXs3jXRScSYTesTEwaTRnbWP4zg4ZCdsTvvpbXbJCUmRoDIagVoTZJvtrOMIIeRCIdutsmQzt/WCaG0+7K41bNnycfi//vVG0oMPPnr80ksvqz106IAxI+O1JIfDyT366LTi9m4faV3evIlvADBXEIRsAIpnoyAINriCo0E+ahtpY4qioLTU9ZkPDouEXW9wba9tbNknQrwnSRKC3AuZRnbrdtZ+nufgkBxnBEAO0QEJEtQBgTCJIhyS2GbtJYQQ0nl89tl/ooYNu6piwoSJ5SkpqfaxY2+svPHGv5f+739fRbZ320jr8yYA0sOV7rohIgCt980h7alCOIJUjRahGg2CQyIh9Lkck3//Fbsqytu7aaQTKikuQpTW1fMTnX52Cmye52B1WiEpf93cdIhOOCUnzMnJmLz/V+wwUHp2Qgjxd0OHDh60YcO6qMmT72AjRlw2cMKE8b22bfvyjLHP27d/HXLHHbf0HDHisoE333x9n6VLF8fb7XbOsz8z87D+8ccfShs9eviAYcMuHXjzzdf3WbNmZXRj51y7dmX08OFDBn799RehDe1/8MFHCiZNuruk/naz2dTm86pI2/MmANoL4KFG9k0E8Kv3zSHtqWL7//B8j964PiEJao0GfEQcTJKIU6cai3cJ8V7hUQFanoekKNBFRp21n+OAWof5jG0OyQlREREYGAgAMJnMZx1HCCHE/6xZsyJhxIiRp955Z92hwYMvrV6w4Nlue/fuCQCAnTu3By9c+FzamDFjy1ev3nDoscemH9+167vwOXOeTAEAi8XCT58+NV2vN8jLli3PXLPm/UNDh15ZuWrV8q4HDvxpqH+u9evXRq1btyph7tz5OaNHX1fVUHsuuWSIuVu37qeHGFRVVam+/HJrVP/+F9H6ChcAb6LcZwBsZ4ztB/AFXMPgbmOMPQ9gtPsf6YCcVZXQAnCoXXfl9UbXzZmammo4nQ5oNNS5R3ynPCcLoQBMPAeugQmnMmRYnNYztjklEaIsIigoCABgMlEabEII6QhGjLi6fNKku08CwIwZswsPHvwjaNOmjdEXX3xp7vr1a+NGjhxVPnHiXScBICUl1a5Wq/NnzXoi/fjxPK3RGCCPGze+7LbbJpUFBwfLAPDII9OKPvlkU2xWVqahb99+p/9YbNy4PnL16ncS5s17IXv48JFNCmZMJhM/Y8bUbk6ng586dfqJ1nj9xL80OwASBOEHxtg1AF4CMBMAB+AJAL8BuF4QhJ2+bSJpK5J7TRW7e0J6kLkG9yalosJuw6lTpxATE9uezSOdTK07u6DDcPYCqAAgKiLsouOMbQoU2JwOBPM85qb3QAC4Bo8lhBDiXwYOHHzGHSvGepr37/8tGAByc3ONOTnZATt3bo/w7Ffcs8yzs7P0V111Tc3tt99ZtnXrp+E5OVnGwsICXX5+rhEAJEk+/YegsrJS8/bbGUkqlUpJSEi0owlKS0vUM2ZM7V5aWqJbtGjJ0eTkFMf5jyIdnbcLoX4P4G+MMQOAMAA1giCYAIAxphYEgWYmd0CcexFUp971hVRjNWFUVDSyzSZUVJRTAER8ylHumlvGhYY1uF9URDhE51nbLaIVAYGB6BccCllRoCgKOI4CIUII8WdqtVqp+1xRFPC8SnE9lrmbbvpHybhx489KOxsTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N99660396pblOB7z57+YtXr1O/ELFz6XsmrVe5k83/hsj6wsQT9jxmPdJUnili59S+jVq4+10cKkU2n2HCDG2DHGWH8AEATBKghCUZ3g5xIApT5uI2kjKrvrZolkcM2vkHSuYbXBajUqKigVNvGtLaUluHf/r+CvvOKsfTzPQZRFOMSzb8TZRDsCwlxBE89xUOxNuslHCCGkHR0+fDCg7vPMzMOBaWlpFgBISEi0njiRr09NTbN7/pWWFmsyMl5LMJlq+c8/3xJhMtWqV69en/nww48VjxlzfVV1dZX7Jv5fcVVoaIhz2LARNbNnz807dizbuGbNipjG2pOfn6d9/PGH0/V6vbx8+eojFPxcWJrUA8QYuw2Axv00GcB4TxBUz8g65UgHIjud0EjuNc0CXXN/JJ2rJyhQrUYeZYIjPiTLMgoKjsMuiujCep21n+M4OCUnHNLZPUBOyQlDaBRMigIVx0GyWsDrKRscIeTCw+sMbbomT0vO9/nnW2KSklJsffr0M3/88UdR+fl5hlmznskDgAkTJpYsWrQgNSNjSfx1191QUVJSrH3ttUXJkZGRjpiYWDEmJtZht9v5rVs/Dbv44ktMOTnZ+rfeyugKAA6H46w29ezZ2zZ+/C0lGzasix8+fGRVWlq3s+6UvfDCvGRRdPLPPLMgS6PRKKWlJae/E8fExNJIpk6uqUPgBgOY5n6sAHj2HGVfa1GLSLuQLa5sWrKiQBXourvu6QEyqtSorapst7aRzqe0tBR2ux1qtRpxcfFn7ec4wC46IcpnLzTulEQYgwNglSQEqtWwVlVCExbeFs0mhBC/oCiKzGmNYiC7VI02XpiU0xpFRVaavfjqqFFjTm7e/EHM0qWLDUlJSZaXXlqc1bu3q9fl+uvHVSqKcmzjxvfiPvnko1ijMUAaPPiSqmnTZhZ49mdmHilZseLtrsuWLeEjI6Mco0dfV75794+hR44cCgBwsv75pkx5tPjHH78PW7jwueSVK98V6g6FKy4u0hw5cigIAB588O6z7sLt2vXrvua+PtKxNDUAegpABlwJD44BuBnA7/XKSACqBUGgtEwdEKfVYRtklBacgLHvcACApNVDhus3q7WSAiDiOydyczAjLR1WnRZn539zDYGrnwHOQ5RE6I360wGQ+VQlglNat72EEOJPFAWSVdYUc5rQNg1+AECRFVlRcPbdqfNISUmzzpw5p6Cx/WPH3lg5duyNDX7Z4DgOM2bMLpwxY3Zh3e333PPA6WkXU6c+UTR16hNFnuc6nU7ZtOmzQw3VFxcX76Qg58LWpABIEAQHgHwAYIylACgC0EcQhN/d22IBXALgy1ZqJ2llKoMBOysrkVNajEkBwa6NPA8Hr4JeluCorm7fBpJOpeSogEvCwuEAgAZSYAOA2WlpcLsoi5Ahw+Ye922tpuCcEHLhURRIiqI0OxAhhHiXBU4CsB+AHkCae9sAAFsA7GWMXS8IQrMmjDDG7gQwG0AqgBwAzwmCsMm9bwCAN+AahlcBIEMQhMV1juUBzANwL1wZ6XYBeEgQhOw6ZVpcx4Wgyj3MzRgYfHqbQ6WGXpYg1tK6YMR3qvLyAQBWrbbBDG4SpAYTIACAKEuQFAl2AGZRhNbccKBECCGEENIQb7pOXwWgAnCrZ4MgCF8B6A8gCMCi5lTGGLsDwGoA/wbQB8AHAD5gjF3GGIsA8D8AR+EKXuYBWMAYu7tOFc8AeBDAfQAug2uO0peMMa27/hbXcSFwVJQjThQRo9PBGBByevvu9P6Y/PuvyLJSchTiO7aSYgCAHBLS4H5JkRpMgAAAoiRBkmWstlpw9/5fYYqObrV2EkIIabldu37dd8stEyidLPEb3vQAjQRwvyAIv9bdKAjCAcbYswCWNbUixhgHYAGA1wVBeMO9eQFjbCiA4e5/dgBT3GsLHWGMdQcwC8Aad4AyHcBMQRC+cNd5K1xD9G6GK5i63wd1dHqVv/yMZ7v3wM+nKmAICPprR0gkTJKIWhP1ABHfUaqrAZ0euqiGgxdJkeCUGk7CI8oiJEVCYKArXbvJRNMOCSGEENJ03vQAaQE0lv3DBlcvUFMxuNJqv193oyAIowVBeAnAFQC+r7ew6g4AjDEWDdfQuyD3Ns+xVQB+A3Cle5Mv6uj0rJVVAACLIkOj1Z3ernMvilpTQwEQ8Q1FUWCw2wAAwYlJZ+3nOA6iIsLZwCKogGsInCiLCAx0LSlhMplar7GEEEII6XS86QHaDWAaY+xLQRBOf0NhjGkAPA5gTzPqSnf/H8AY+xrARQByAbwgCMLnABIAHKh3jCfDR6J7PwCcaKBMovuxL+rwmkrV5glavOJ09/DYORV4/q85GbG1lbgnMRnHZRlqdcd4LfV5rkFHuRadmUrFo7i4GNFq1+jSaMbOel/xPAezKEFUxDPei3WJsoiBGi2u7N4DxqyjHfa92Z7oc+E/6Fr4lwamJRJCOhlvAqC5cCUJyGWMfQmgDEAUgGsBRMI1bK2pPLPt3wXwPFzD0v4O4FPG2DUAjHANX6vL5v5f796PRsp4FgbxRR1eCw42tLSKNqFYXRPJHSoVDIa/pj4ZrSb0iI7FtvIyhIYaG5yw3lF0lGvR2e3//ReEaFzrJcf27AZDWMBZZWqqq6DS8tCjkWl4KhnRGg3SQ0JRaqpBWAN1kKahz4X/oGtBCCFto9kBkCAI+xhjl8KVOGAsgAgAVQB+ALBAEIT9zajOk+bpVUEQ1rkf72eMDQTwBAArAF29YzxLvpvd++EuY61Xxux+7Is6vFZTY4UkNXu9sDZnr66BDoBTpYbV+lf2La3G9QfZwHEoLq6AwdDx/kCrVDyCgw0d5lp0ZioVj2O5uZjzxz6MHT4CPbUBsFWe+TFTq3nUWiywWs9auPs0k9UKaF3BkcNsQWVliz+qFxz6XPgPuhb+JSTEgLqLZhJCOh9veoAgCMKfAG7xwfk9C2LVH6J2CK7gKg9A/WXiPc8LAWjqbMupV+YP9+MTPqjDa5IkQxT9/w+aZHH1ADnVOsiycnq7onfdWTeq1Dh1qgoxMfVjyY6jo1yLzi4725VdPjI5DZIMQD7zmvA8B7PDesb7sD6raAevd93HUOwOuq4tQJ8L/0HXwj8ojf/q8SscBxXHcW2/EKri3UKohPgTrwIgAGCMjQFwDYA4AE/DNX9nnyAI+c2o5ncAtQCGwDWszqMvgGwAPwF4kDGmEgTB82EbCUAQBKGMMVYNoAauYXc57naFAhgI4E13+e99UEfnZ3ONCpQ0ZwY4ktbdA6RSoba2BjExMW3eNNK5eAKg5OSURstYRVuj+wBAkiSoja7Rq5yz4WQJhBDSWXEcVIpairNIVq+/x3nLoDaInKgq9rcgKCNjSfyOHdsitmz5qv5N9UatW7cq+rPP/hNdUVGhjYmJsf/97/9X8n//dzul674ANPuDwxgzwrXo6dVwBQ5BcK0NNAXARYyxYYIgHGpKXYIgWBljrwB4ljFWCOAXABMAjIIrSDkMYCaAVe5yl8CVaOFB9/F2xtibAF5mjJ2Eq8foVbh6fT5xn2a1D+ro9I7HxOB34TBqU/qcsV12B0RGdwBESEt1KSnD9LR0pDVym1VSJDgayQDnIcoSVJ4ASGw4XTYhhHRWHMfxFsmq/qVgv2x12tqs29Cg0fOXJAxQB3BBvKIofhUANdeGDeui1q1b3WXatBl5/fpdZP7pp13Bb765NDkoKEQaM+b6qvZuH2ld3tw5eBHAILgClB/w1zyeSQC+hmtdn5ubWpkgCC8wxiwAFgLoAuAIgJsFQfgWABhjowFkwJWWuhjAk3XmCwHAs+7XsRKAAa4en9GCIDjc9Ze1tI4LQY5eh/8UF+FvvS8/Y7us9QRAapjNNM+CtIzFYkYXWcGlYeEI1GgaLCNBgtjIIqiny8gSdO402Cq5Q/8NJoQQr1mdNtnssLb1uMlOMUHKZDKp7rzz7sIbbhhfCQBJScnlW7duif711z3BFAB1ft4EQLcCeEoQhJ2MMZVnoyAIJYyxFwD8q7kVCoKwBMCSRvbtBXDZOY6V4MoeN+scZVpcR2fn6d3R6c/MpiVpXfMsAlQqlFEARFooLy8PsTpXUB2S1PAQOFmRG10E1UOSJWiDAiErChSZ5kwQQog/Gzp08KApUx49/s03/wvPzc0JiImJtU2efH/hqFFjqj1ltm//OmTt2pXxhYUFhrCwcMeVV444NWXKo8U6nU4BgMzMw/rly9/scuTI4SCbzcpHREQ6brhhfNndd99b1tA5165dGb127cqEp5569tjo0ddV1d//wAMPl3geO51O7r///SyssLBAP2nS3UX1y5LOx5soPhSuYWINqQQQ6G1jSPtQJAkBp04hyWCEXm88Y58jMAxvg8fUg/thsVAARFomL/cYYnWuoFoTffZ8Mo5zDYFzyucOgERZgiY1BRP27cHik6Wt0lZCCCG+s2bNioQRI0aeeueddYcGD760esGCZ7vt3bsnAAB27twevHDhc2ljxowtX716w6HHHpt+fNeu78LnzHkyBQAsFgs/ffrUdL3eIC9btjxzzZr3Dw0demXlqlXLux448OdZ6WnXr18btW7dqoS5c+fnNBT81PXzzz8FXnXV5QMXL34p5YorhlecrzzpHLwJgA4CmNjIvhvc+0kHIlnMuMFkwau9+8FgrLeeikoFq96IWlGkIXCkxQqFTOhUKsgANBERZ+3nOA6iIjapB0hvdP3Ns7gzGBJCCPFfI0ZcXT5p0t0nu3dPt8+YMbswLa2bedOmjdEAsH792riRI0eVT5x418mUlFT7sGFX1Uyb9mT+zz//FHb8eJ7WYjHz48aNL3v66Xn56ek9bKmpafZHHplWBABZWZlnBEAbN66PXL36nYR5817IvvrqUdUNtaWutLRutrffXn146tQn8nbv3hX+2muLurTOT4D4E2+GwL0A4D+MsQgAnwNQAAxjjN0NV2KB23zYPtIGZHcGOJskQWcMOmu/Tu/5okkBEGmZqrxcAIDDYACnPvvXD8cBoiTBeb45QIoMncE1lI4CIEII8X8DBw6urfucsZ7m/ft/CwaA3NxcY05OdsDOndtP3xnz5MnJzs7SX3XVNTW3335n2datn4bn5GQZCwsLdPn5uUYAkCT59ArtlZWVmrffzkhSqVRKQkJi44vJ1REVFS1GRUWLffr0tVZWVmo2blwfP3Xq9CKtVttBEqITb3izEOqnjLE7ACwCcJ1782sAygA8KAjCZh+2j7QBxRMAyRL0BuNZ+y8RneiWmAypsrKtm0Y6GWdZGaA3ggsPb3A/x3EQZRHieRIbSLIEjVaFJ1K7Q69SwWmzQaPXn/MYQggh7UetVp8RUCiKAp5XKa7HMnfTTf8oGTdu/FkpqGNiYp1lZaXq++//Z8+goGBxyJDLqwYNuqSmX7/+5ltvvalf3bIcx2P+/BezVq9+J37hwudSVq16L7OxRW137PhfcEJCV0d6eo/T6y6kpXW3iqKTO3WqQh0bG0drLHRizR4CxxjrKQjC+4IgJALoCWAogD4A4gVBWOXrBpLW5+kBskgStLqzAyBmM2N0dCw4U+1Z+whpKlmWYamshEOWEZCQ0GAZjuNgE8+ffFGSJegDjRgSHoEBIaGwVlf5uLWEEEJ86fDhg2eMsc/MPByYlpZmAYCEhETriRP5+tTUNLvnX2lpsSYj47UEk6mW//zzLREmU6169er1mQ8//FjxmDHXV1VXV7lv4v8VV4WGhjiHDRtRM3v23Lxjx7KNa9asaHTxwpUrlyesWbMytu62Q4f+DAgMDBSjo2Mo+OnkvJkD9DVj7E7AtZKoIAg/CYJwWBAESsXUQdUdAqfVnX0XXVK5fsdIFmubtot0LsXFRdhSeAKTD/yO5LvubrAMxwG28yyCCgCSLEOj18Hu7imyUABECCF+7fPPt8Rs2fJxeHZ2lu7llxcm5OfnGW677c5SAJgwYWLJL7/8HJaRsSQ+OztLt2vX90GvvPJiitlsUsfExIoxMbEOu93Ob936aVhBwXHtd9/tCH7++bmpAOBwOM76LtuzZ2/b+PG3lGzYsC4+JydbV3+/65x3FO/a9V3Ee++tjTp2LEe3ceN7kVu2fBx7++13FjXWa0Q6D2/mAKkBnPR1Q0j7Ed1zKKyyDK22oQBIA8AK2U4BEPFeTk4WACCtWzdojUaIYsP3TKxNCIAUKJAUGXZZgY4HrNXnnedKCCGdjkGjb9Nv6i0536hRY05u3vxBzNKliw1JSUmWl15anNW7dx8rAFx//bhKRVGObdz4Xtwnn3wUazQGSIMHX1I1bdrMAs/+zMwjJStWvN112bIlfGRklGP06OvKd+/+MfTIkUMBaOB76ZQpjxb/+OP3YQsXPpe8cuW7Qv2gZty48ZWSJOZ+8MGGuFWr/t01MjLS8cADjxyfMGFiubevkXQc3gRAzwBYxhhbCFfGt7Ny0AqCcLylDSNtx+Ee2ubqATormyQk94KVsq1J8wkJaVB2tisAYow1WkZSJIjiuTPAeTglJxzuWbL2WhqeSQi5cCiKIhvUBvGShAFqtPHCpAaVQVREpdmjflJS0qwzZ84paGz/2LE3Vo4de2ODk405jsOMGbMLZ8yYXVh3+z33PHD6O+jUqU8UTZ36xOk1fHQ6nbJp02eHztWm8eNvOTV+/C2nmv4qSGfhTQC0HIAKwCrUHXh5JlUj24kfUqKjsbHwOEptdlyt0Z61X9a4e48d55+bQUhjyoRMvNqrLwLExhPryJDPuwaQh1N2wunO/UMBECHkQqIokDhRVRzABbX5WC1FVGRFwbkz1RDi57wJgO71eStIu3KGR+A/xUXQ6vQY1cC4V8UdFHFOmhNIvGctOIEkYwCkc/TwyJDOuwaQh1MS4eRcEZDdbPJJGwkhpKNQFEiKolAgQogXvAmAugD4VBCEc3Yrko7DanXNAWpo/g8AKO7tvEgBEPGOJElQV1UBhgAEJiU2Xk6RITYxAHJIDkjugN1JawERQojf2rXr133t3QZC6vKm63QmgK6+bghpP9biIiQZjAg1BDS4vzR9MB498Du2lBQ1uJ+Q8ykoOI4Yd09iZHp6g2VcawBJTR4CJ8oSvjDocOuvP+NkZKTP2koIIYSQzs2bAOgogL6+bghpP9yuXXi1dz8MDQlpcL8SHI5Sux0VJhMUhRZGJs2XnZ2FLnpXgg1j14bvn3AcIClik3uAZFmGLiAACv7qxSSEEEIIOR9vhsBtBfACY2wsGs4CpwiCsKDFLSNtRra50ls7VQ2/HdTuIXCKosBqtcBobLiniJDGZGcdxaV61/vIkNAFDaXT4DgOotT0HiBJkWA0uhbutVopRTshhBBCmsabAOg59/9XuP/VpwCgAKgDUeyu9NZiIwFQgKkatyckosJuh9lspgCINFtxdhaMajUUAIb4ODhMZ4dAHAc4JGeTexklWUY3UcK01O4IPnHCxy0mhBBCSGfV7ABIEARaHrezcae3ltVnp8AGAK2pCjfFxuOoqRYWi7ktW0Y6idL8PBzX6hAf3wW8RgM00AfEcRzsYtPXmpIVGWGKgu7hEcitqfFhawkhhBDSmXnTA3QaY6wHgFAAJwVByPFJi0ib86S3lhpYAwgAFPdCqHpeBbOZAiDSPA6HA3tzc7BbFLHt9YxGy3EcB2szAiBJlsDrXWtUUYp2QgghhDSVVwEQY+w2AIsBxNbZVgLgKUEQ3vVR20gb4d3rspxe8LQeSe3arldRAESaLy8vF6IoIjAwEHFxcY2WUyDD0awASD4dAIFStBNCLjAcBxXHcW2/EKpCC6GSjq/ZARBj7AYA6wHsAPA0gBIA8QDuALCGMVYhCMJ/fdpK0qp4T9atRtYBkt09QwYVDxMNgSPNJAhHAADp6T3AuRcubYikyHBKTf+bKikyVAbXe5Y7x+KqhBDS2XAcVDrZGSdZLC0ayeMNldEo2nlNsb8FQRkZS+J37NgWsWXLVweae6yiKHjooXu7i6KTX7HiXaE12kf8izcfnLkANgmCMKHe9jWMsQ8APAWAAqAOQlEUHA0LQ9bBgxB7JzdY5nQAxKtQSj1ApJkyjxzGyv6DIBoCINbUAGENJ9GQIUFsYgY4AJBlCWqDK7U2L8k+aSshhHQEHMfxksWirtizRxYt1jb7Bag2GviISy9Vc0GhvKIofhUAtcSaNSuiDxz4I7hnz16m9m4LaRveBEB9AcxrZN9aAJu8bg1pcxzHYb9Bjy2Fx3HN4KsbLOMZGqfmeVhNtW3ZPNIJlApHEKzRQHY6oQoMbLScrMhNXgMIcPUA6Y2uAEilUABECLnwiBarLJrNbf0LsFMlwzp8+KDhgw/Wx3fr1p3u8F5AvHkTlwOIaGRfJBpK70T8mmdej6axIXB1ssPZKNsWaQZFUeAsKgQAcNHR4PjGf+VIStPXAAJcc4A0Aa51gNQyLdBLCCH+aujQwYM2bFgXNXnyHWzEiMsGTpgwvte2bV+esfr69u1fh9xxxy09R4y4bODNN1/fZ+nSxfF2u/30uOnMzMP6xx9/KG306OEDhg27dODNN1/fZ82aldGNnXPt2pXRw4cPGfj111+ENlbGZrNx8+c/kzJx4l1FXbok2HzyYkmH4E0AtB3A84yxxLobGWNJcPUMbfNFw0jbkB0OGExmRGl10OoMDRfieXwUFIGpB/aj1kHxLWm6oqJCRLvn6AalpjVajuM4SIoEUW76iApZkcAnd8Wdv/2CF4poHSBCCPFna9asSBgxYuSpd95Zd2jw4EurFyx4ttvevXsCAGDnzu3BCxc+lzZmzNjy1as3HHrssenHd+36LnzOnCdTAMBisfDTp09N1+sN8rJlyzPXrHn/0NChV1auWrW864EDf5715WX9+rVR69atSpg7d37O6NHXVTXWptdeW5QQFhbuvPPOyWWt9sKJX/JmCNzTAH4FIDDGdsOVBCEWwGUATgGY7bvmkdbmKC7CHU4RY3r0wk5dw1ngAKAmIBAldhssNrpBQpouM/MwkgyuXhpDYlKj5TgOEGWpWUPgZEWBLtAImyzDZLG0uK2EEEJaz4gRV5dPmnT3SQCYMWN24cGDfwRt2rQx+uKLL81dv35t3MiRo8onTrzrJACkpKTa1Wp1/qxZT6QfP56nNRoD5HHjxpfddtuksuDgYBkAHnlkWtEnn2yKzcrKNPTt28/qOc/GjesjV69+J2HevBeyhw8f2eiwlZ07twf/8MO34WvWvH/4XAl6SOfkzUKoJYyxgQCmAxgGYDBcgU8GgCWCIJT6tomkNcl2V9phuyw33gOEv4bH2SgAIs2QmXkEfd0BkC6ha6PlPD1AzRkCBwAadxpsq9UCRVHOmWWOEEJI+xk4cPAZk4gZ62nev/+3YADIzc015uRkB+zcuf30FAvFPbI5OztLf9VV19TcfvudZVu3fhqek5NlLCws0OXn5xoBQJLk07/4KysrNW+/nZGkUqmUhITERtdVKC8/qV68eFHyI49MOx4XF0/rKFyAvE2fWAHgA0EQZgEAYywOwMVwBUKkA1EcfwVAjc0BAgBmMyOoS1eoamkOEGm6Y0cO4Rq9632l65LQaDmOAxySE4rSvLk8ag54MCkVOp6HzWKBIaDhDHOEEELal1qtPuMXvKIo4HmV4nosczfd9I+ScePGV9Q/LiYm1llWVqq+//5/9gwKChaHDLm8atCgS2r69etvvvXWm/rVLctxPObPfzFr9ep34hcufC5l1ar3MvkG5p5+++2OkOrqKs3rr7+S/PrrryQDgCiKnCzL3MiRf7to4cJXs4YMuZwywnVi3qwDlADXPB8dAM+g/v4AtgDYyxi7XhCEcp+1kLQq2e6a02OXJGh1jQdA3WqrMCSuC7aZaahRZ3LgwB8oLCzApZdejrCwMJ/WrSgKjmdlYU9gIAb36gtVUFCjZTmOg11q/vwytVaNq6Jcc2CttTUUABFCiJ86fPhgwDXXXFvteZ6ZeTgwLS3NAgAJCYnWEyfy9ampaad7bXbv3hX44Yfvxzz11LP5W7d+GmEy1ao3bfrsoEajUdz1uYet/BVXhYaGOIcNG1ETHR3tePDByb3WrFkRc889D5w1Mmn06OsqBw4cfEaA8+abrydUVJRr5s1bmBsXF08Tnjs5b3qAXoUrecKtng2CIHzFGOsP4EMAiwDc65vmkdZWtwdIe44eIEmtcT1w0u+EzkBRFLzyykJs3LgeABAUFIw33ngLAwcO9tk5iouLkFVajDcq1Ni14dzZ8TmOg83Z/OGVslYFWVHAcxysNTVAbJy3zSWEkA5HbTS0aUrqlpzv88+3xCQlpdj69Oln/vjjj6Ly8/MMs2Y9kwcAEyZMLFm0aEFqRsaS+Ouuu6GipKRY+9pri5IjIyMdMTGxYkxMrMNut/Nbt34advHFl5hycrL1b72V0RUAHA7HWW3q2bO3bfz4W0o2bFgXP3z4yKq0tG5nDIcLCgqSg4KCzthmMBgkrVarrhuEkc7LmwBoJID7BUH4te5GQRAOMMaeBbDMJy0jbUKyNW0OkCcA4igLXKfw+edbsOXDjRgZGY2Q4BD873gupk6dgo8+2oL4+C4+OceBA38CANLTe0Cvbzy4dlFgF5v/3pIUCQ5FgZ7jYDfRaAVCyIVBURRZZTSKEZdeqkYbr8ujMhpFUWn+4mujRo05uXnzBzFLly42JCUlWV56aXFW7959rABw/fXjKhVFObZx43txn3zyUazRGCANHnxJ1bRpMws8+zMzj5SsWPF212XLlvCRkVGO0aOvK9+9+8fQI0cOBQA4Wf98U6Y8Wvzjj9+HLVz4XPLKle8KDQ2FIxcubwIgLYDG3vg2AI2PcyF+R7S5hrTZZQkB5+gB8iyGyos0V7CjczgcWJXxOl7u1Rex7sDkxrBwLBIOY/78Z7B8+WqfnOfAgf2I0GrRt0/f85aVIEFsZgIEABAlEU5FgR6AjeanEUIuEIoCyc5rirmg0Db/Vi8qiqwoaPqaBW4pKWnWmTPnFDS2f+zYGyvHjr2xsqF9HMdhxozZhTNmzC6su73u8LapU58omjr1iSLPc51Op2za9NmhprZv4cJX85palnR83gRAuwFMY4x9KQjC6W/DjDENgMcB7Gluhe41hPIa2HWfIAgrGWMDALwBV8a5CgAZgiAsrnM8D9caRPcCCAOwC8BDgiBk1ynT4jo6IyU6Fp+VFCHXYsbIc6TBVjSuxVA5sdm/84if+frrL2CqqYIUnwBVaChUegNQUozZ3Xvg6f2/4aefduHyy4e2+DzZf/6Bt/sNhFhYBNnpAK/RNlpWUpqXAvuv42Q43eO/HRZaxJsQcuFQFEiKotAfZUK84M2dg7kAhgDIZYytYIwtZIy9AyAHwOUAnvKizn5w9R7FA4ir828DYywCwP8AHIUreJkHYAFj7O46xz8D4EEA98G1HpEC4EvGmBYAfFFHZyV3icf6guPYU1sLnlc1Wk5Ru34MvES/azu6LVs+RoXDgby//Q2Js+Yg8dnnYUhnMKhUeDSlO1avWt7iczidDqDIdaNOExR0zuAHABTIcDZjEVQPWZEhwpUB1WGiAIgQQggh5+fNOkD7GGOXwhUwjAUQAaAKwA8AFgiCsN+LdvR1VS0U19/BGHscgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cx9wKoAjAzQA+AHC/D+rolCzuBSTPNf8HABT38DiVF19Sif+orKzE77/vAwCMGnsjNFFRAIC4B6bg2JynkAogLP8YDh06gN69zz90rTGCIKCb3vWeCurZ+7zlJUX2agicJMsQeVcA5LRShkJCCPFHu3b9uq+920BIXV6NHRUE4U9BEG4RBCFOEAStIAjRgiD83cvgB3D1AB1uZN8VAL53By4eOwAwxlg0gAFwzTvaUad9VQB+A3ClD+volGzlJxGl1SHwHCmwAaAiuTdmHT6AzUWF5yxH/Nuu7V/jqvBIXNSjF7rUWZdHHRKK6H/cAsFgwE+nKrB+/boWnefAgf3oGRgMADCmp5+zLMdxkGQJohe9i7IiY4tWhbt+34tKH6fxJoQQQkjn5O1CqL7WF0AxY+wHAOkAsuDqTfoaQAKAA/XKeya5Jbr3A8CJBsokuh/7og6vqFT+nXVE2fEN/tXvImyuqgbPc40XDI1ErnuOBc8DHSmbiuca+Pu1aAsVP/2I+5NTUWM0wqiVAUWGxOshSTIir74a6XGxMP+wE9u3f425c59FSEioV+c5+Ps+TDQaAQCBPXtCrT7zGtS9FjzPwSLKkBXp3O/BBiiQwRmNsEoSHE7H6fOQ86PPhf+ga+FfuOb9GiKEdEDtHgC5h5+lAzADeBKACcAdcM2/uQaAEa7ha3V5FgzRu/ejkTLh7se+qMMrwcHnHlrW3jh36mFZrYHB0Pg8DZ4LPP3YYFDBaDQ2WtZf+fu1aAvGslLAYERAv15A8RHIohPGxF5Qh0UAAIYOvRS9e/fGoUOHsHPH17h78uRmn0NRFFQeOgh1XAIQHISY7klnlal/LWprqqHS8dArzZtyp9aqEBDgqUtEWBgthNpc9LnwH3QtCCGkbbR7ACQIgoMxFgpAFATBE4DsY4z1BDADgBVA/fRknvFaZvd+uMtY65XxzIr2RR1eqamxQpKanS6/zYgWG9QARF4Nq7XxdVhU1VW4MTYeJlFEUVE5IiIi2q6RLaRS8QgONvj9tWhthQUnkKZxreeUOKAnqo/nAIoMUVFBm9gXDtl19/nWEVfD5pBQsukTVI6/9VxVNignJxtd3QtzB/bohcrKvz5CDV0LlYqHxWaHxdL8hVCtih3dnBIeSEoBdyz/jHORc6PPhf+ga+FfQkIMHWqUAyGk+do9AAIAQRAa+tZyAMC1cA1Li6+3z/O8EICmzracemX+cD/2RR1ekSQZoui/f9AUx189QLKsNFrOUFOJiQmJyLOYYTKZERLS8eZb+Pu1aG0HduxAoloDu6LAGKKDo9q1bo617ARU4XGAMRqiKOPSHr1R/fMeWCQRB/fuRY+LBjXrPD///DP2VVchqUsCxl0ypMGfed1rwXEcbE77Od9/jRElGbFOCalRMcg+VXlBX19vXeifC39C18I/KM3/VUQI6WBafIuDMaZnjHk9YpYx1o8xZmKM1V94ZDCAQwC+B3AFY6xujuaRcGWNK4MrQKkBMLxOnaEABsKVmQ4+qqNzcrqWclLOk6ZYdvcc6HkVrFbrOcsS/1R96CAAoMqoh9NcdXq77LDDebIAas71xSv6b1egQqWCUaWGsHF9s8+zd+8eZJtNMF9yKQIHXHTe8hwH2MT6o0+bRlZkwP3e9ATzhBByIeA4qHie07T1P45D42tmENJBeNUDxBhjAOYDuAZAMIBLGGP3AjgiCMKyZlZ30P3vbcbYFADlcKWtvgzAxQBKAcwEsIox9gqAS+BacPVBABAEwc4YexPAy4yxk3AtqPoqXL0+n7jPsdoHdXROoisxnmedn8bI7v06nqcAqKMqLQHAQRUdAUV0nrHLUX0SWnsteHUwZBnQDBsG7NiBpJPlsFZWwtDEDGuiKOLnn38CAFxyyZAmN61FAZDW3YHrdJ67MCGEdBIcBxXP8XEOm9jmI3m0erUoQy5WFNC6GKTDavYHhzE2AK4elTIAGwA85N7lALCUMVYjCEKTc+gKgiAzxm4AsAjAJgChcKWfvkYQhAPuc44GkOHeXgzgyXrneNb9WlYCMLjbN1oQBIf7HGUtraOzOr2wqfbcabAVtetLpk7Fw2aj9VY6GkVREGa3Azo9wpNiz9ovWUyQayugigyFLEsYcMtt2PX1V4jXaPHn2lW4dNqMJp3njz9+xyCdDs6gIPRiPZt0jAwZotT8NYAAQJIlcDp38C56VwchhHQ0HMfxDpuoPnKwWLbb2m7cpE6v5nv2iVNr9CpeURS/CoAyMpbE79ixLWLLlq/qZ/1t1H333ZV+5MihoLrb0tN7mFavXi/4voXEn3hz52AxgF8BjHI/fxgABEF4nDFmBPAYgGYtIiIIwkkA95xj/164eoQa2y/BtajprNasozPKDw5GfuYROFjCOct5eoD0vAo1FuoB6miKigqxIPMQWHAIXrtvPICz/146Kkuhj+gKJ1RQazQo756O+Lw8GA4dhGS1QmU4f4aq3d/txD2JKdCrVBCLiqBJTT3vMZIiwellACQrMnidK78JTwEQIeQCY7eJss3qbOuJY50mQ8SJE/mGKVMePX711aMrPdu0Wi3NArsAePMmvgzA6+5FReu/ST6AK6U16SD2BRiw4nguJH3gOcvJ7h4gnuNgM1OmrY7m2LEcVDqdOBUaDHUjtz1EUxVgN59ei+fSO+9GgdUKPYCC/37epPNU7t0DvUoFR0Ag9CkpTTpGhgxRbkEAZHAFQJwXC6kSQgi5MBUXF2lMJpO6X7+LTDExsaLnX1hYOP0xuQB4EwDZ8Ne6OfVF4K/1dUgH4JnPo9WdewicXGeOkN1U26ptIr6Xl3cMAJDSJQ5QGr5ZKNkskM1Vpxdj7JqYhF8MeryTdwxfnyw97zmOHctBd3cvTNjlfwPXxNUEZUWGKHv390ZWFKj0rveuSqbsWYQQ4o+GDh08aMOGdVGTJ9/BRoy4bOCECeN7bdv2ZUjdMtu3fx1yxx239Bwx4rKBN998fZ+lSxfH2+32039IMjMP6x9//KG00aOHDxg27NKBN998fZ81a1ZGN3bOtWtXRg8fPmTg119/EdrQ/szMwwaO49C9ezp9b70AeRMAbQPwPGNnjJlSGGOBcK3bs90nLSOtTpEkcLUmBKrU5w2AwPPYyGvw1JEDMNNQow5HPngA/4jrgj7hoecs56wqgwp/Xd++4/+B7eVl+M9n/4F0nh6WnZ9+gv7Brvqjhg1vUrs4zjUEzts5QABgT+mKB//4De+aaryugxBCSOtas2ZFwogRI0+98866Q4MHX1q9YMGz3fbu3RMAADt3bg9euPC5tDFjxpavXr3h0GOPTT++a9d34XPmPJkCABaLhZ8+fWq6Xm+Qly1bnrlmzfuHhg69snLVquVdDxz486zx2evXr41at25Vwty583NGj76uqqH2ZGdnGYzGAGn+/GeSbrhhVL9bbhnXu37QRTovbwKgmQACAQhwJQpQALzmfp4I4CmftY60KrGqCnfbHfh3/4HQnCcJAgCU6AOQYzbDavcuYxdpP1Hl5fi/Ll2Roj13tj/RUgPOaYWn82bkyGsQGhqK4uIifPvNNoi1DQcZiqJA/OVnqDgOlqhoaGPjmtQujuMgyZLXPUAAoA4w4JTTgWobzU0jhBB/NWLE1eWTJt19snv3dPuMGbML09K6mTdt2hgNAOvXr40bOXJU+cSJd51MSUm1Dxt2Vc20aU/m//zzT2HHj+dpLRYzP27c+LKnn56Xn57ew5aammZ/5JFpRQCQlZV5RgC0ceP6yNWr30mYN++F7KuvHlXdWHtyc48ZnE4n16/fANMrr7x+9Lbb7ij++usvop57bk5S6/4kiD9odhIEQRBOMMb6A3gCwFVwLRwaCOB9AEsEQSj2bRNJa5HdgYxdlqHVnX+Cu6eXyGqlLHAdTbAoAhotwuIizllOtNRCtpmgCgyEKMrQ6/W45Zbb8P3G9Qj88AOUHDiILtOmg6u3Svpv33+Ly/WukbGJf/9Hk9vFcXAHQN73AGn0rvlplJ6dEEL818CBg88YP89YT/P+/b8FA0Bubq4xJyc7YOfO7af/SHkWpM3OztJfddU1NbfffmfZ1q2fhufkZBkLCwt0+fm5RgCQJPl0j01lZaXm7bczklQqlZKQkHjOu7ULFizKM5lMJ0JCQiQA6Nmzt02t1iivvLIwtaystCA6OoaGu3RiXuWPFwShAsAcH7eFtDHPwpE2WYK2CT1APWQRwTFx4GpoqFFHUlVehkh3EovYrjHnLizLEGvLoQr+K1X2rbfejq83vgejLMNy5BAqv/4S4WOuP+Owz/+zGUPtdhhCQ9F90MVNbhvHcRBbOARO7XTizoQkaM7Tu0UIIaT9qNXqMxJnKYoCnlcprscyd9NN/ygZN258Rf3jYmJinWVlper77/9nz6CgYHHIkMurBg26pKZfv/7mW2+9qV/dshzHY/78F7NWr34nfuHC51JWrXovk+cbHuykUqngCX480tOZFQCKi4u0FAB1bt4uhBoCV+9PABoYRicIwrstbBdpA7LDdXPEIcvnnwMEoL+lFiO7JuGHWkqC0JEc378feo6DWZKQGBJw3vJSbTU0kgOeXw+RkVEYct04rN2xHQ8kp6L8k83gAwIQeuVwAEBWloBPv9uB/wJ4f8W7TU5+4MLBITrPSifZHFqew9jYONgoCxwhhPitw4cPBlxzzbWnh6RlZh4OTEtLswBAQkKi9cSJfH1qatrpXpvdu3cFfvjh+zFPPfVs/tatn0aYTLXqTZs+O6jRaBR3fe6hK3/9BQkNDXEOGzaiJjo62vHgg5N7rVmzIuaeex5oMIvP5Ml3sK5dE23PP/9ivmfbgQN/BqjVaiUlJY0SI3Ry3iyEOgauBUsbywSnAKAAqANQ3EPgbJLcpDlAkkoNOO2QbfR7oSOpOCqgC4AqHk0KTkSrCXBawamCobjHIDz44MO44b+fIrG0BGNiYlH27lrU/LgLuqRkvPbdN1AUBcOuHo3ug5ve+wO4hsDZpZbNKfOkwdarVHDY7dC61wUihJDOTqdXt+maPC053+efb4lJSkqx9enTz/zxxx9F5efnGWbNeiYPACZMmFiyaNGC1IyMJfHXXXdDRUlJsfa11xYlR0ZGOtzpqR12u53fuvXTsIsvvsSUk5Otf+utjK4A4HA4zmpTz569bePH31KyYcO6+OHDR1alpXU76w/NiBEjT61cubzrxo3vmS+7bGjNgQP7A1av/nfCjTfeXBocHExpRTs5b3qAXgJwBK45QAVoaEVF0iH8NQdIatIcIFnlersoDkqC0JHYiosAAA5904aISTYzFLsZqqAQiKIrAAoPj8ADDzyM15e8AgsU3BzXBbacbNhysqHkHIVWq8Wjj05rdts4joNNdDT7uDPqMP4VvNtMJgqACCGdnqIoslavFnv2iVOjjRcm1erVoqw0f92BUaPGnNy8+YOYpUsXG5KSkiwvvbQ4q3fvPlYAuP76cZWKohzbuPG9uE8++SjWaAyQBg++pGratJkFnv2ZmUdKVqx4u+uyZUv4yMgox+jR15Xv3v1j6JEjhwIAnKx/vilTHi3+8cfvwxYufC555cp3hfpD4SZNuvskz/P4z382x/z7328lhoaGOseNu7n0gQceLvHuJ0M6Em8CoB4AbhQE4QdfN4a0Lac7mYErCcL5vzR6FkNVnM5WbRfxLbnKtcA1H3j+IBcAoCgQa8qhCulyxuY77vgn9uz5GR/++D12lJXiyoRE1NZUI89ixpNPPo2kpORmt02BDIfYsoBaVScAstZUIzji3IkeCCGko1MUSDLkYo1e1abBDwDIiiwrCpo95jglJc06c+acgsb2jx17Y+XYsTdWNrSP4zjMmDG7cMaM2YV1t9cd3jZ16hNFU6c+UeR5rtPplE2bPjt0rjZNnHjXyYkT7zoreCKdnzcfnHwAwb5uCGl7SnAwtp8sxf7qqiYNgfMEQJyzZXfsSdvaYjbhsQP7ISfFnr+wm2SuAV9vaBrP83jttQxce+11OGm34eOco9hZdQqTHn0Ct9wywau2yWhZCmwAUHjXPDYAsNH8NELIBUJRIMmy4mzrf94EP4T4G2+HwM1jjO0VBCHPx+0hbUiMjcM7+blQqdS4xB3cnIuscQ2h4mgh1A7lRFEhSuw2REWHNfkY0WYG57SBUwWdngcEAHq9HosWLcEDDzyCoqJC9OzZG+Hh4V63TVLkFmWAAwBJliEpCrQA7CZTi+oihBBCSOfnTQA0EUAXADmMsZMA6i8KowiCkNbilpFWZ7O5Ll1T5v8AgKJ2DZPjRbr501E4nQ6UlblGCMSGBTX5OMlmgeywQBUYfHoeUF0pKalISUltcfsUyHC2tAdIkSG6swDZTJSinRBC/M2uXb/ua+82EFKXNwFQgfsf6eAslZUwqlTQNXHSeElCd7z7zRYgJAT3tG7TiI+UZGfjgcRknHQ6ER4c2PQDZRlSbSW4oLjWaxzcPUAtWATVU8cqSy1yc/PwwuR7fdQyQgghhHRWzQ6ABEG4uzUaQtqe9N23WHvRxfiiiQubOkOjcLC2BqFtP+eSeKlMyMSIyGiUi85mrs8DSOYq6BQnnK2UYIjjOEhyyxZBBQBZkWHRanHSYYfVQfPTCCGEEHJuTQqAGGOJAIoFQXC6H5+TIAjHW9wy0uok93o+Mq9qUnm1xpUowUbrAHUYNSeOIwiA2YugVbRZoBftAJqYPa6ZOA4QlZYnQZBlGXqD571p9UXTCCGEENKJNbUHKBfAZQB+AZAHnHfh9qZ9oybtyrOgqcg37W0Q4LDh6sho1IoiZFlG/Zz6xP/YS13LGYi68ye5qE+ymaE4rVDpAyBJvl/ui+M4SJIveoAU9Fdr0TMhESgqOv8BhBBCCLmgNTUAmgwgp87j8wVApANQ3MOF5CZkgAOAIFMV7k9ORWZtDWw2K4zGgNZsHvEBuaoKQDPWAKpDEZ2QrbXgjVGQWiHvBccBoixCUloWXMmKjO7gkBobj+MV5T5qHSGEEEI6qyYFQIIgrKvzeG2rtYa0qeYGQJze9SVap1LBaqUAqCPQ2KwAOOhCmpEAoQ6x9hQ0kck+bZMHx3GwSy2fsyMpMhSVCoB4elgnIYR0dhwHFcdxbT4UQ1EUrxZCJcSfNHUO0J3NqFMRBOE9L9tD2pLTCQBQ1NomFVc0rmxxOp6H1UpzLToCgygBajUCQr0LViWrGTrRAaD5Q+jOh+MAm2g/f8HzkGUZikYNWO2QKQkCIeQCwHFQqTgxzmm3eJPNt0U0OqMoQV3sb0FQRsaS+B07tkVs2fLVgaYek52dpVu69NWuR44cCtLp9PLllw+tfOKJWQVGo9H3476JX2nqB2dtM+pUAFAA1AF4FjSVtU1Lg624e4r0vIomm3cAiqIgyJ35LSQy1Ks6JJsFimgDp9KesSCqr9h9EQApMqBxvTcVe8vrI4QQf8dxHO+0W9Q5h36THXZbm31Z1+r0fFrvgWqVLoRXFMWvAqDmOnWqQjV16oM9UlPTzP/614ojpaWl2ldeWZi8ePFLePbZBZTMq5NragCU0qqtIO2iOMCIssIC2FOattaL7O4pcvUA0VAjf2c2m3HfH/sQptHgg7tGe1WHZLdAcVihCgxpcEHUlpAhw9nCBAiAOwDSunsx3b2ahBByIXDYbbLdamnr3opOkQFp/fp1MWq1Slm8OCNHr9crPXr0shUXFxVt3bolSlGUZi8dQTqWps4Bym9sH2NMD8AuCAIlRuhgfg8KxObcbFzV+/ImlffMFdLxPMw2S2s2jfhAWVkpHLIMi1oFoztNdLMpCiRTVassiCopUosXQQVcARCndQ/REykAIoQQfzN06OBBU6Y8evybb/4XnpubExATE2ubPPn+wlGjxlR7ymzf/nXI2rUr4wsLCwxhYeGOK68ccWrKlEeLdTqdAgCZmYf1y5e/2eXIkcNBNpuVj4iIdNxww/iyu+++t6yhc65duzJ67dqVCU899eyx0aOvq6q/f9++vcFDhvytUq/Xn/7+OmHCxPIJEyZSNp0LgFdRPHP5kDF2CoAJwEWMsbcYY4/6tnmkNVksriBGq2val2NZ47rLruZ5WE3mVmsX8Y2yslIAQFR4WIvqkcxVUKHlgUp9vusBUsDpXO9Nz7BOQggh/mXNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs9Kcrl+/NmrdulUJc+fOz2ko+AGAkpIifUREpHPRogUJ48aN7nvzzdf3efXVFxNsNht1/VwAmh0AMcYGANgLYBCADQA8bxQHgKWMsbt81jrSahRFgWgxgwOg0TYxAFJr8b7dgQVHj8BK2bb8nungAUxJTsWwiMgW1SPZrYAP5urUJytyixdB9ahOjMf0g39gB/3ZIoQQvzRixNXlkybdfbJ793T7jBmzC9PSupk3bdoYDQDr16+NGzlyVPnEiXedTElJtQ8bdlXNtGlP5v/8809hx4/naS0WMz9u3Piyp5+el5+e3sOWmppmf+SRaUUAkJWVeUYAtHHj+sjVq99JmDfvheyrrx5V3VBbAMBqtao+/vjDWIfDwS9YsCjnvvumFHz33c7w55+fm9S6PwniD7zJHrIYwK8ARrmfPwwAgiA8zhgzAngMwLpGjiV+QnE4cK/JinsHD8HHTUyDDZ5HjlqLAzXVsDlosrm/kwsLMCIyGtktzBEk2SyA0wZea4As+26kq6S0fBFUDz44CCdsVkTbKTAnhBB/NHDg4Nq6zxnrad6//7dgAMjNzTXm5GQH7Ny5PcKz35N3Jzs7S3/VVdfU3H77nWVbt34anpOTZSwsLNDl5+caAUCS5NO3viorKzVvv52RpFKplISExHN+UVGr1XJcXBebJ+FB//4XWSRJ4hYtWpB68mRZQVRUNA0p6MS8+Wp0GYAJgiCIjDFVvX0fALi95c0irU2uE8Dw+qanSNa6M8ZRGmz/J1dXuR4Ympblr9F6HDYodgt4fQRkH/XYcBwHSfbNHCAA0OhcQTwl5yCEEP+kVqvPuIOmKAp4XqW4HsvcTTf9o2TcuPEV9Y+LiYl1lpWVqu+//589g4KCxSFDLq8aNOiSmn79+ptvvfWmfnXLchyP+fNfzFq9+p34hQufS1m16r1Mnm94sFNYWLgzKSnpjC8z3bunWwHgxInjWgqAOjdv5gDZABgb2Rfh3k/8nGcRVIcsQ6s/a/hso3qoVBgZGQ2ppqa1mkZ8hHfP8VIHNv36NkY0VaKRvyFe4Ti4AyDfBFR6pwN/j+uCwZSKhRBC/NLhwwfPuNuamXk4MC0tzQIACQmJ1hMn8vWpqWl2z7/S0mJNRsZrCSZTLf/551siTKZa9erV6zMffvix4jFjrq+qrq5y38T/6xd/aGiIc9iwETWzZ8/NO3Ys27hmzYqYxtrTu3ef2qysowF1l3g4ejTTwPM8EhOTaFG5Ts6brzTbADzPGEuos01hjAUCmAFgu09aRlqV7F4vxS5LTZ4DBADDRDseSE4F7+ldIH5L6w5yDSGN3a9oOslqAi/77u8Bx3EQfTgETud04tYuXTGkiQk9CCGEtK3PP98Ss2XLx+HZ2Vm6l19emJCfn2e47bY7SwFgwoSJJb/88nNYRsaS+OzsLN2uXd8HvfLKiylms0kdExMrxsTEOux2O79166dhBQXHtd99tyP4+efnpgKAw+E467tsz569bePH31KyYcO6+Jyc7AaHQUyaNLmktLRUN3/+3MTs7Czdt99+E7xixdtdr7xyREVkZBT1/nRy3gyBmwlgNwABwH64Qu/XADC4AqoJvmocaT2eBSPtkgytruk9BCLPA7IEiYbA+b1A912t4PCQFtcl2SzgJAeAlvcmeThEJ3zVYcMbXYGP1kf1EUJIR6DV6dt0TZ6WnG/UqDEnN2/+IGbp0sWGpKQky0svLc7q3buPFQCuv35cpaIoxzZufC/uk08+ijUaA6TBgy+pmjZtZoFnf2bmkZIVK97uumzZEj4yMsoxevR15bt3/xh65MihAAAn659vypRHi3/88fuwhQufS1658l2h/lC47t3T7a+9liH8619vdL3vvjt7GwxGafjwqyoee2xGobevkXQczQ6ABEE4wRjrD+AJAFcByAEQCOB9AEsEQSj2bRNJa5DdvQM2WYZW1/Q5IhKvAuCERJPN/ZosSQjkXVP0QiNCW1yfa0FUG3id0SeJEDiOg13yXSINzuh6D2to4TpCyAVAURRZozOKab0HqtHGC5NqdEZRUpRmL76akpJmnTlzTkFj+8eOvbFy7NgbKxvax3EcZsyYXThjxuwzgpN77nmg1PN46tQniqZOfaLI81yn0ymbNn126FxtuuiiQZaVK98Vmv4qSGfhVX4oQRAqAMzxcVvAGEsH8BuARwRBWOveNgDAGwAGA6gAkCEIwuI6x/AA5gG4F0AYgF0AHhIEIbtOmRbX0dmI7vkhDllqVg+QpHK9ZTxD6Ih/qiouAs9xkBUF4VGhLa5PcTog281QGSN9kgiB4wCb6LshdWqj6z2s43nIsozGJr0SQkhnoCiQJKiLVbqQNv9lJymKrCjwzQROQtqJtwuhXskYu9z9OIkx9l/G2J+MsWe8bQhjTAPXukIBdbZFAPgfgKNwBS/zACxgjN1d59BnADwI4D64MtQpAL5kjGl9VUdn5NRqsftUBQ7U1DRrDpAnAILD2UotI75Q5XDgjt9+wewcAVqtb97GkqkSvupgURQFDh+uLaQKcAVAPMfBbqZFegkhnZ+iQJJlxdnW/yj4IZ1Bs3uAGGN3wLXOz2sAfgKwHMBQuIKMOYwxhyAIL3vRlucB1Nbbdj8AO4ApgiCIAI4wxroDmAVgjTtAmQ5gpiAIX7jbdyuAIgA3w5WW2xd1dDpSVBReP5YFnufxTFPXAQIgu8sqtA6QX6uoKIdDlsH5IAOch2Q1QyM5ANTPfu9FXZDglHz3N1Qd8NfrtNZUwxAU5LO6CSGEtMyuXb/ua+82EFKXN0PgpgNYKwjCTMZYNIBrAMwWBGExY2w6gAcANCsAYoxd6T5uAIDjdXZdAeB7d+DisQPAU+5zJwMIcm8DAAiCUMUY+w3AlXAFL76ow2sqlX8OxXE4XHN4tDpDs9qoqF29CZwkQa32z9dWn+f1+eu1aA1VVacAAOHBQeB533TbKA4reMUBtbrp60bV57kGCmTIkHzWNl6rhlOWoeF5OC2mDvPebE8X4ufCX9G18C80lZCQzs+bAKgHgGnux2MAcAA+dT/fC+CF5lTGGAsF8B6AR90JFuruTgBwoN4hngluie79AHCigTKJPqzDa8HBvrsD70sFxyVwAHR6AwyGpg+RKk1Mw+afdyAoJQVhYd5/EW4P/notWoMqJwtTklOhBIdA34zrey4cL0ILEQE+uO4qLQ9ezfmsbWqtCq8U5KGq1oR14UEd7r3Zni6kz4W/o2tBCCFtw5sAqAquHhMAuA5AviAIWe7naQDKm1nf2wB2C4LwfgP7jHANX6vLk35Mj78WZG2oTLgP6/BaTY0VktTsZCmt7tTWr/Dh4CHYWVsLq7Xpk9GrAyPwS1UlupuiUFnZMeZaqFQ8goMNfnstWoN0/ARGREbjqJqHrRnX99wcUNdWw6YNgyh693P0XAurzQ6z1QqbzTdts/F2FAE4abXg5KlaRHaQ92Z7uhA/F/6KroV/CQkxUCIVQjo5bwKgbwA8xxjrA9ccmcUAwBj7O4AFAL5uakWMsUlwDVHr20gRK4D6OZo9M/bN7v1wl7HWK+P5BuSLOrwmSbLXXxZbk8NqhRqAwqualdaYV7nu2FssFr98Xefir9eiNcgm11uX1+t8krbaw1lbCVVYUot/jqIswiGKPmubJMnQ610fa5PJfMFcZ1+4kD4X/o6uhX9QfPcrkxDip7y5xfEYXL08z8KV+OBF9/bX4Zq/81Qz6poMIAbACcaYiTFmcm9fzhg7BNewtPh6x3ieF+KvYWsNlfHkmvdFHZ2OZHV1gkmq5k1oDxCduDwsAkmgQdL+TGVzXV9NQNMz/DWFZDWD98H6PaIsQZR8t9C2pMgYEhSCm+O6wF5S4rN6CSGEENL5eLMQagWA0Q3sGioIwvEGtp/LHTh7afksuIKrDwHcBuBBxphKEARPyqiRrmYIZYyxagA1AIbDtSCrZ07RQABvust/74M6Oh3ZvZCpxDfvLRBeU4HH07rjT1P9hH3En+hEEeB56IN8O6dAslvASU54uYTYX/XIEkTZdwGQoii4VKdHYpeuqCgtPf8BhBBCCLlgef0thjEWA0ALnO4K4BljvQFcIQjC8qbUIQhCYf1t7iQIZYIg5DPGVgOYCWAVY+wVAJcAeByuNXsgCIKdMfYmgJcZYycB5AF4Fa5enU/cVfqijk5HcbjmXsiq5r0FOK3rC7VGUaAoCjhKl+OXjO4xHIFhvk0HLdmsUJw2qPRGSJL340ScshOyD8eZSIoMyT1mX7RZfFYvIYT4K46DiuO4Np+spNBCqKQT8GYdoP4ANgJgjRRR4FobqMXcPTSjAWQA+A1AMYAnBUFYV6fYs3C9jpVw9SZ9D2C0IAgOX9XRGXkCIEndvCxcnN6VM0LHq+BwOKDT1Z9eRdqbLEkIcAcDIRFhPq1bER2Q7WbwxkhILVjHxyb69qMlKzJkFQ9ICkSr7fwHEEJIB8ZxUOlVqjg4pJZ1x3tDqxJtklTsb0FQRsaS+B07tkVs2fJV/cy/Dbrppmv7lpeXN/gl6NVX3xAuu+xvpob2kc7Bmw/OqwDCAMwAMBau7Gmfw5URbgxcQ8m8JggCV+/5XgCXnaO8BNeiprPOUabFdXQ6TicAQGnGIqgAwBlcAZBexcNms1IA5IdqSkvAcxxkRUF4pG8DIACQTJVQhSe1qA676NuFdGVZhqxWA5ITko0CIEJI58ZxHA+HpK7NKpdle9ulDuR1Kj6oe6SaU3O8oih+FQA118qV7x2peyNPkiTuyScf72Y0GuSLL76Ugp9OzpsA6FIATwiCsMqdtGCSIAhvA3ibMbYZwFQAu3zZSOJ7FXod8goLYOsS1azjPEPgdDwPq9WKkJDQVmgdaYlqpwMT9+1BbFAgNutv8nn9ktUMjewA0LwEGh6yLMPm6wBIkaGoVYDdCdnh27oJIcRfyXZJluxtnjqwU+QIj4yMOmMi6vLlb8aWlZXq1q//6KBa3fYda6RtefMm1gE46n6cCaBfnX1rcI6eFuI/fg8KxEtZmSg3hjTrONndY6TjVbDZrOcpTdpDRUUFnIoCGFtnUUXJbgXXgiFsouLbDHCAJwBy/cFS7BQAEUKIPxk6dPCgDRvWRU2efAcbMeKygRMmjO+1bduXZ3wB2b7965A77ril54gRlw28+ebr+yxdujjebrefHhWUmXlY//jjD6WNHj18wLBhlw68+ebr+6xZszK6sXOuXbsyevjwIQO//vqL0PO1r7i4SLNp08a4O++cXBgTE+vbP1DEL3kTAB0HkOp+nAUgmDGW7H5uhw8WDyWtz2p1BS9aXfPSJMvuOUN6noeNhhr5pYoK11rE4SG+TYDgIdtdiRB43rsEGKIswunDDHAAICsKFK17OKez007dI4SQDmvNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs+72rV+/NmrdulUJc+fOzxk9+rqq87Vt1ap/xwYHhzhvv33SSZ+/cOKXvAmAPoYrY9o/BEEogasXaCFjrC+A6XCnkib+zWJ2LZSp1TYvAJL0RqyvrERGbjasFsq25Y+kw4cxJTkVFwc1r3evqWSnHYrdApXKu1EQrhTYvh06LisySmKj8EzmIRwKCPBp3YQQQlpuxIiryydNuvtk9+7p9hkzZhempXUzb9q0MRoA1q9fGzdy5KjyiRPvOpmSkmofNuyqmmnTnsz/+eefwo4fz9NaLGZ+3LjxZU8/PS8/Pb2HLTU1zf7II9OKACArK/OMAGjjxvWRq1e/kzBv3gvZV189qvp87aqsrFTt3Lk98pZbJpSomrk2Ium4vBnk+DyAbnAtYroZwDQA/wEwAYDk/p/4ucm1ZvzzoouxrZlprBWVGvslGccrT+FO6gHyS6rSEoyIjEamtvVSlIvmKqjCu3p1rOTjRVBP1xscCMFUi+4ijV4ghBB/M3Dg4DMWEGSsp3n//t+CASA3N9eYk5MdsHPn9gjPfs9KCdnZWfqrrrqm5vbb7yzbuvXT8JycLGNhYYEuPz/XCACSJJ/+Y1dZWal5++2MJJVKpSQkJDZpPPS2bV+EKQowbtzNp1r+KklH4c1CqDYAtzDGNO7nXzPG+gAYBOA3QRCoB8jPKbIMLQCoVOCbOQQO+GvYHM0B8k+KxdW7xxual+K8OSSrCWpZRHM7kTkOEH28CKqHRud6vfS+JIQQ/6NWq89Y/E1RFPC8SnE9lrmbbvpHybhx4yvqHxcTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N996601156GD43jMn/9i1urV78QvXPhcyqpV72Xy/Ln/Tv344w+hgwYNrg4MDGzrZBKkHbUkzYWRMXYZXCmxywB8KQgCpQ3sABR3CmwA4A2BzT6+h16PqLBw2KtrfNks4iO8zXXTS21ovRTlst0CXnIAaF4AzXGcKwBqwRpCjQkURYyJjkWcyezzugkhhLTM4cMHA6655trTQ9IyMw8HpqWlWQAgISHReuJEvj41Ne10r83u3bsCP/zw/Zinnno2f+vWTyNMplr1pk2fHdRoNIq7PvfQt7/iqtDQEOewYSNqoqOjHQ8+OLnXmjUrYu6554HSc7VLEDID77prcoFPXyzxe94shMrDNQzuMQABADxdj2bG2EJBEBb5sH2kFch1smSpDM2fL3GTRoXgtHRknTrrRg3xAxr3EDCtsfUCIMmTCEFrgCwr5z+gjtZIggAAwTYH7k5MRqGThsARQi4MvM7LyZjtcL7PP98Sk5SUYuvTp5/5448/isrPzzPMmvVMHgBMmDCxZNGiBakZGUvir7vuhoqSkmLta68tSo6MjHTExMSKMTGxDrvdzm/d+mnYxRdfYsrJyda/9VZGVwBwOBxntalnz9628eNvKdmwYV388OEjq9LSujU4HK6g4LjWbDapundnNHTgAuNND9CzAGYDWAbgE7h6f2IB3AbgBcaYSRCEN33XROJrinudFLskQatvfqpkERwABaKVfl/4I50sAbwK+iBjq51DdtihOKzg9eHNCoA4joNTEiErvh9pwLl7vNStUDchhPgTRVFkaFViUPdINdp6XR6tSlSk5i++OmrUmJObN38Qs3TpYkNSUpLlpZcWZ/Xu3ccKANdfP65SUZRjGze+F/fJJx/FGo0B0uDBl1RNmzazwLM/M/NIyYoVb3ddtmwJHxkZ5Rg9+rry3bt/DD1y5FAAgLOyt02Z8mjxjz9+H7Zw4XPJK1e+KzQ0FK6srEwNAKGhYXTn7ALjTQA0GcALgiA8X2fbUQDfM8Zq4EqKQAGQH5PtrjTBdlmGVutFAMTzgCxBtFIWOH9kcHfKBrZSGmwP0VQJVWhCs47hOMDu40VQT9O75gCpm9chRQghHY6iQLJJUjGn5tp8UVJFkmRFQbPHMaekpFlnzpzT6FCzsWNvrBw79sbKhvZxHIcZM2YXzpgxu7Du9rrD26ZOfaJo6tQnijzPdTqdsmnTZ4fO1aaBAwdbdu36dV/TXwXpLLwJgCIB/NTIvq8APOp9c0hbkNyTxO2yDI0XSRBEXgXIEiTKAud3JIcDBvddruCw4FY9l2w1QSOL+GsU7PlxHAdrKwVAKveQP1q/mxByIVAUSIqi+H5CJSEXAG/uHHyDxlNdXwPgR++bQ9qCU1Gwv7oKmaaaZi+ECgCSO08+BUD+x+Z04I7ffsGUP35DSCsHQJLdCkjNC2YUKLC1UgDEu4fAtWL2b0IIIYR0Ak26WcoYu7PO090AnmOMxQL4CEAJXJngrgXwdwBP+LqRxLfEsDC8mJUJjuPwrKb5E+Ul3vW28cwlIv6jqqoKDlmGSa3AoGu9NNgAINksgNPerEQIstI6KbABQBXgmvOk5XgoigKumWtcEUIIaR00zIz4m6aOFlnbwLYx7n/1LQewwtsGkdZnsbjm7mh1eq++JMpqDQBAcTh82i7ScpWVruHToUGBrR4AyA47FKcVvD6syQGQpMgQ5dYZscEHuOazqTgOstMJlbZ1A0BCCCGEdExNDYBSWrUVpE3VDYC8kR8eg6//3Ivw3n182SziAxYhE1OSU1Gj17TB2RRIpipwwV2afITUij1A6gA9XjyaCbssYY0oUgBECCGEkAY1NQAqEgTBef5iZ2KMabw5jrQu5y8/Y+2AwfjNyzk8laHR2FlxEkOoB8jvOAoLMCIyGoLUNtdGstZCqzQ9EUJr9gCpDTrsr6kCANidDujRemnACSGEENJxNTUJwgHG2I3NqZgx9g8AB5vfJNLanGYzjGo1NO5kBs2lcc8bsttpHSB/46xxLbItqb27ts0l2azg5KYFWxzHQVIkSK3UA8TxHDQaV8+XldaoIoQQQkgjmtoDdCeAtYyxhQDWA9gsCEJ2/UKMsV4ArgNwHwAVgEm+aijxHU/2Nonz7ktyoCxjQHAowuzUA+RvZJPJ9UDbNsmgJbs7EYJGf955QBwHiLLYaj1AsiLjiqhoaJwirOUngdi4VjkPIYQQQjq2Jn1LEgThF8bYRQAehmuh04WMsSoAeQDMAEIBJAAIgWs13lcAvCUIAuVJ9kOedYBEL3uAYmsq8HR6Dxyw0+X1O+7FaXldW8wBAmSHDYrTBl4X2oQAiIMktd4cIFlRcHNULKI1GthLSoA+/VrlPIQQQgjp2Jp8m1gQBDuAJYyxZQCuAjACQCpcQc8JAFsBbAPwgyAItDCXH5PtrvTVMu9dL4GidSVPUMuyz9pEfEPl7pVTG5qf3twrigLZXAU++Py9LRwHOGQnZKVpGeOaS5ZleCYcOszmVjkHIYQQQjq+Zi+EKgiCUxCErwVBmC0Iwv8JgjBaEISJgiA8LQjCtxT8+D9PACSpWxgA+axFxFc0oqt3RRtoaLNziuYacE1YjJzjONhbaRFUwDUETnTnYqAAiBBCOg+z2cy/996aKM/zOXOeTL7vvjtZa56zoOC49rPP/hPWkjo2bfogYujQwYMa298Wr2Po0MGDNm36IKI1z9FWjh/P0w4dOnjQTz/9ENTSupodAJFOwOnqJZBV3g2T4vSu7FptM8iKNIfO3StnCA5os3PKdiv4JmSd4zgOtlYOgCTe9StNdA8FJIQQ0vGtXv1OzMcffxjreT5z5twTr7yy9Ky56L70/PPPJO/Z81NIa56DtB+6iX8BqlGpUWmqhSUq3KvjeXcApHXP6VB5OZeI+N6zBfmwV1ZiyeiBbXZOyW6FItrBqXRQzjG8TYEMm7M1AyClTgBEWeAIIaSzUBTljLUWQkJC2mC0kdK6q4mTdkUB0AVof0gwPsw8hGEp/dHdi+N5vat3Qc+rYLNZERAQ6NsGEq8oioKyU6cgik6EBre4d7jJJLsVisMGVWAIRLHxAEhSJDhbKQEC4O4BUvGApECiBB2EkE5MUQCL2D6jeIxqyFwzQ4Pq6mrVkiUvJ/zyy+5QURS5lJQ0y0MPTS0YMGCgBQAsFgu/aNH8rr/+ujfUYrGounTpYrvjjn8WjRkztiojY0n8Rx+9Hwe4hnO9//7mA//+97/iy8pKdStWvCv89NMPQbNnT09/6aXFR99447XEsrIyXXJysmXu3Pm527Z9GbZ165YYSZK4K64YXjFnznMnOI6DoihYuXJ5zLZtX0aePFmm02g0co8evUwzZjx1PCkp2XHffXeyI0cOBx45cjjwppuuDdqy5asDDoeDy8h4Lf7bb3dEWK0WVUJConXy5PuKhg27qsbzOr/88r+h69atjC8tLdGnpXU3DxgwsKaxn4mHJMlYuPC5rt9++02EWq1Wrrnm2vKpU6cXqt3TFH755eeA1avfic/JyQpwOp18TEys/fbb7yy+8cabT3nq+PTTT8I//HBDbHFxkT40NMw5duyNZffc80Bp/XOdPFmmfvjh+1hoaJhz6dK3so1Go/zddzuCV6x4u0thYYEhOjrG/ve//19JRsaS5Pff33wgMTHZcdNN1/a99NLLq37/fV9wdXW15tln5+cMGfK32nXrVkV/8cXn0eXl5drIyEjH3/9+a8ltt91RDgA//fRD0MyZ09I9dQCu4Wu33/6Pvq+88vrRyy+/onbOnCeTZVnmwsLCnTt3fhNht9v4fv0G1Dz11LP5MTGxIgAcOXJI//rrryZmZ2cFhIWFOW+99fbi5r3zGkcB0AXIYnHNj9C65/I0l2cInJ7nYbVSAOQvLBYzRNGVBiA0sA0XAVVkyJYa8MGx5ywmQ4YotW4ApKhVgCRC9nKRX0II8XeKAtzxlbGHUKlqu7HOdfQIk0zvXWsRmhoEKYqCxx9/qLtarZZfeOGV7ODgYOnzz7dEPP74Qz2WLfv3kb59+1uXLVsSn5eXa1y06LWskJBQ8eOPP4xatGhBau/efQ5Onnx/idVq5X/88bvwFSvePRwZGXXWHxJZlvHWWxldZ82a8//t3XeYXGXZ+PHvOdNntrdssunthISEkFAEqQICggo21NdXxA76Kj9RsIKKWFCkiCiogKKgINKkKr0T0utJr7vZzdbZ6XPK748zGzbJJtkybXfvz3XttbszZ55z754p5z7P89zPVq/Xb1199benfeUrXzji6KMXdt188+/0RYveLLnttlsmvetdJ4bPPPPsrrvu+kPdAw/cN/Zb3/rullmzjojv2LHdd8MNv5h0443XT7jppts2XX/9TRu/8Y2vzqipqU1dddX3twP84AdXTd6+fXvgO9/5wZb6+nGpF154tuLqq78z/Qc/uHbTmWe+t2vRojdDP/3pD6d99KOfaHrf+97f9vbbb5XefvutEw/3/1m/fl1JdXV1+je/uX3dzp07fL/+9fWTE4mE+t3vXrOjsXGX59vf/sbMs88+b8+VV35vu2Gklb/85a76G2/85eQTTnh3uK5ujPH4449W/upXP5vyqU99ZteZZ57dsWbNquCNN14/ORQqMT/+8f9p7dlPW1ur+6tf/aJWXV2T+vWvb90YCATslStXBK6++jvTzz//gy3XXHPd5nXrVgdvvfWmSfvH+PTTT9b++Mc/21BWVmYeccSc+C9+cd2EF198tvrSS7+2fe7co6KvvfZy2e233zoxlUqqF1/8uZb+PTPg9ddfrTzppFPbb775Nr2xcZf3Zz+7duqtt97UcO21P9/W1dXluuKK/9NmzpwVue22P6xtbm723njjLw6IbbD6lQBpmna2rutPZ2unorB6Fon0+gY3Ud4MlPLXpl10JxJcISeaRaN9wwYumzyNlnQKv8+b132b0U489qGrAlpYOSuBDc4H4IayEh557Q3OOPronO1HCCEKTYHclNPMgVdeeal0wwY99PDDTy7vSV6+8Y2rdq1Zs7rk73//65i5c4/a2tTU6AsEguakSVOS5eXl5te//s1dRx+9sLu8vNIsKSmxAoGApaqq3dMz0JdLLvnCroULj4sCnHjiSZ3//vcjdVdffe22YDBozZihJf761z83bNq0IXDmmWd3TZgwMfnNb35ny1lnndMFMGHCpNSbb77e8dJLL1QCVFZWmW632/Z6vVZNTa2xefMm36uvvlx16613rO3ptZo2bXrzpk0bA//4x1/rzzzzvV0PPHBf3cyZWuRrX/tGI8D06TOSmzdvCjzxxKN1h/r/lJdXpK+99hdb/H6/PWvW7MSePXt23X77rRMvv/xbu1KplPLxj3+q8fOf/3KzmhnifcklX2h64YVnqzdv3uSvqxsT+ec//z7mhBPe3f6lL31ldyauZCwWdfn9gb0fyuFwl/urX/3SzJqa2uQNN/xmk9/vtwHuu++eMVOmTI1961vf3QkwY8bMZHt7u+cPf/jdhN4xHn30gq5TTjmt22krrD799OO1n/vcl3ZccMGH2zP73NPYuMv3j3/cO/bTn/5svxOgQCBgXnPNT7Z5PB575sxZiddff7Vt8eJF5QCPP/5IZSqVUn/0o59tLS8vN2fNmp2Ix2M7fvKTa6b1t/1D6W8P0JOapu0A7gTu0nV9ezZ2Lgrjw11hPjzvaN44zAnrwVheHy9GI3R1dnCZTDYvGuHt2zitppZtyfzPfzGTcXxmEug78epZBDVtGjkrvWLaFtGyEpZ0dXLQkjtCCDHMKQrcc05MHy5D4NatWxMEuOiiC+b2vt0wDCWdTikAn/rUZ3Z///tXTv/gB88+asaMmdEFC47tOvfc89sHMtdnypRpe6/I+nx+q7y8Ih0MBvee6Hi9HiuZTKkAZ511TtfixYtCt9xyw7hdu3b6du7cEdi5c4e/srIy3Vfba9asCgJcccX/7VOxzTRNJRgMmgDbtm0NHn30wq7e98+dOy9yuARo2rTpsZ6EBGDevPlRwzCUTZs2+ubOnRf/8Ic/1vaXv9xZt23bFv+uXbv8W7duDgJYlqkAbN++LXDKKe9p793mRRe90/MDcM89dzeYpqHsv6/NmzcG9x+mt2DBsd3wu31ibGgYv/d/u3Hjer9pmsrRRx8T6b3N/PkLIo899vCYPXta+j26bMyY+qTH49kbTyhUYhqGU8918+ZNwTFjxiZ6PwcWLjw20lc7g9HfID8EfBr4DvADTdOeBf4APKLrep9PFlG8QpaN3+vD5R38WjFO71EHCekBKhrx9jY8QHKgg7OzwCmEkDpoIQRFUTAtM6cJEIDP7yRgiYQUQRBCjFyKAiEPw2IxPsuylEAgYN5++91r97/P6/VaAMccc1z0oYeeXPHyyy+ULVr0ZtkzzzxZ8/e//3XcT35y/YaTTz61uz/78Xjc+3z4qOrBPwvvuOO2Mffdd0/D6aef2Tp//oLuj33sEy0vvPBcxcsvv9BndSg7c8H4pptuWxcKlezzf3e5XPY72+1bOMHt9hy2p05V1X22sSznfN/n89obNuj+r371i7MmT54aW7jw2K6TTjqtq6qqKv1///elI3rv/3Af+3Pnzgu/730faL3uumumPf/8f9tPP/3McOaxWNbhiz14vb4D/kZlv51amSq0vROa3qcD6bRxwH56b/uO3jcN/P/ZX/06FdF1/WFd1z8EjAMuByqA+4FdmqbdoGnaEYd4uCgyPeWr1cDg54nMCJVwVFk58fBh5/eJPEl2dACQdhUiAYpBOnHQDxxFUTBsM6dD4AAqbIVTq2soy/wvhBBCFNa0aTPi8XjclUollalTpyV7vu6++4/1zz33nwqAW265Ydxbb71R+t73ntv1ve/9cMc///nYqrq6Mcnnn/9vJYCiKFkd8nf//feO+/jHP9V49dXXbv/EJ/63deHC46K7du3073v97p19zpihxQGam5u9vf+GRx55sOahh/5ZAzB16rTY2rWr95kUvXbtqsPO09q6dXPQ6rWw/JIlb5d6vV5r0qQpyfvvv6+2rKw8ffvtd63/4hcvaz7jjLO6Wlv3eIC9FxsbGiYkdH3tPvv52c9+POHyyy/bO1TslFNO7zj33PM6TzzxpPYbb7x+cjgcVgEmT54S2/+xK1cuO2TM06fPTLhcLnvJkkX7/K3Lli0pLS+vSFdUVJoej5PYhsPhvWWCt23bMqCr7jNmzIw1NTX62tpa93bWrFixNGvz3gZ0LVbX9XZd12/Vdf14YA7OkLiPAqs0TXtN07TPaZpWkEl5on9sw8CVydp7qrkNxhcrKvjezCNIt7UefmORF0a3k4xa7gKUJbcszFj4EAmQMwTOsHJbuXRMIslXpkxnakdnTvcjhBCif04//YyuSZMmx6+55rvTXnnlpdLNmzf5rr/+uvHPP//fmp5ha7t27fLddNMvJ77yykulO3Zs8z7++KOVra17fHPnzosABAIBKxqNujZu3OBLp9NDvspXXV2TWrJkUZmur/Vv2LDed+ONvxz31ltvVKTT6b3nxYFAwGppafbt2rXTM2vW7MSCBcd03XLLryY988yT5Vu3bvH+8Y+/H/Ovfz1Q39DQkAT45Ccv3r1t29bAL35x3fiNGzf4Hnron1VPPvnv2oNH4Whra/P+4AdXTV63bo3/iSceq7j33r+Mu+CCjzT7fD67rm5Mqr29zfvcc/8p27Fjm/fJJ/9dccstv54EkEo5wwc/+cn/bXrttVcq7777j3Vbtmz2PfroQ5XPPPNk7Uknndq5/76uvPJ7O1KplPKrX/10AjhDD7ds2RT61a9+3rBx4wbfU089XnHPPXc3wIE9PD3Ky8vNM888u/Vvf/tzw8MPP1i1efMm3z333FX79NNP1F544UeaFUVh1qzZcb/fb9111x/Gbt68yff666+W/OlPt48/WJt9Of/8C9rLysqN733vyimrVq0MvP76KyW//e3NEw7/yP4ZdBU4XdfXAt/WNO07wHuAjwHXAb8G+r1wlKZpdcANwDlAAHgR+Jau62sy988HbgaOAdqAW3Rd/1Wvx6vANcDngUrgFeAyXdc39tpmyG2MFFbynXVY1MDgE6A0zpM4FY0OOSaRHVY0MzTWW5glas1oJx6l7xEZziKoh18sdch8zt+u5LDanBBCiP5zuVzccsvv19944/Xjr7vumqnJZFIdN64h8f3v/2hTz/C2733vh9tuuOHnE37+8x9PiUQi7pqa2tTFF39u54UXfrQd4L3vPafj6aefqPn85z8954YbbtGHGtP3vvfDLb/+9S8mXnrp547w+/3WjBla5LLLvrbtd7/7zaTt27d6J06cnPrABz6051e/+unkz372f+Y88cRzy37+819vvvnmXzXccssNkyKRqLuuri75la9cvu2jH/1EG8DcufPiP/nJ9Rtuv/3W8U8++e+68ePHxz/60U80/eUvd44/VCzHHHNcp8vlsr/ylS8c4fP5rHPOOb/lK1/5eiPApz/92Zbt27f5f/GL66aapqGMGTM28ZnPfH7XPffcNW7VqpWh008/M3zWWed0dXZ2brv//nvr7777j+Orq2tSX/jCpds/8pGL2vbfV01NrfGFL1y288Ybr5/8nvc823HaaWeEf/CDH2/84x9/P/7f/354zNix4xLve9/7W/7xj7+N83i8B+11+853rt5+2203G3feeUdDONzlGTOmPvmlL311e08Z7NLSUuuqq76/+Y9//P34z372f+aMHTsucemlX9vx/e9fObO/xygUClm33PI7/frrfzrx61//8qxQqMT49Kc/23jTTb+c3N82DkU51MKF/aFpmht4H/AR4HzApev6QBKgNwAL+BoQBa4FTgSm4yRE64CHcRKrdwG34SQnd2Uefw1wGXAJsAu4HpgKzNF1PaVpWvVQ2xjEvwVgMzCloyOKYRTPMN10eztbrvwGhmXx+vlfpLp23KDaqbv7x9QosPWEE3jv576U5Sizy+1WqawMUWzHItte+NpljIvFWF3u5X2fODfv+/dW1hGYeRwJ88AEzOt1oXduZF3LRvwBL4l4CsvKfhGj9BOLmb1Mp1FROO0Pd2W9/ZFktLwuhgM5FsWlqiqEy6VuwTkPKKjFixfPUlXXU3V1DRGv1y+TbkVWLV26OOh2u+25c4/aO3H24YcfrLrppl9N/u9/X17SsxbRcJJKJfwtLbtKLMs8Z+HChesOtt2g/zJN004CPoWT+FQCrwL/D3hgAG1UA1uAn+i6vjpz27XAMpwhdmcCSeBSXdcNYK2maTOAq4C7NE3zAlcAV+q6/kTm8RcBjTiFG/4OfDELbYwYVmaByKRlDXodIABDUQAbIy6TzYuFK+X07nmCgz+uQ2EmYihGEkX10Nd1lbiRh8/uTPlvtyUnkUIIIcShrFu3NnjnnXeM/9a3vrNl9uw58a1bt/ruueeuce9+90ntwzH5GYgB/XWaps0G/gf4JDAR2I1TDe5OXdc3DHTnuq63AZ/o1f4Y4JvATmAN8CPgpUzi0uM54DuZoXOTgdLMbT1tdmqatgQ4BSd5OTkLbYwYqXSaDZEIScvE6xtCAqSqYJmSABWRew0DfflS/t+8DxZk/2Yyjp1OoAbKMM19ExDTNjGM3A9LUwJOAuQaYs+2EEIIMdJ9/OP/09rW1ur53e9+M7Gjo91TVlZmnHzyae1f/er/21Xo2HKtvwuhXoGT+BwFmMDjOEPWntB1PSuzmjVNuwP4Ak5vzQd0XY9qmjYeWLnfpo2Z7xOBnnGVO/rYpmf13Wy0MWguV0HK9B+UXVHO99atAuCHfv8hy0QeiqG6wDKxkwnc7uL6G/fXcwyK7VhkW1u4k/Z0isrKskEf16GxsBIRPGVj2X+eo62aGLaBkolLUZWcVMN2BZwiMx7son9eFtpoeV0MB3IsiksBVhIQoiAUReGrX7286atfvbyp0LHkW397gH6JM4/m28CfdV3v9yqvA3ATcDtwKfBwZohdECch6q1nHI0/cz8H2aanlns22hi0srLAUJvIqkjEWSvL6/URCg0+NtPtBiOFahlUVg6Pwn/FdiyyraurE4Da6nL8gb4XJM01V7KbUNCN4tq3dzGcjKC6FXyZIgU937MtVeY8Fz0ow+Z5WWgj/XUxnMixEEKI/OhvAnSSruuv5TKQXlXfvgicAHwViAP71w3vObOKZu4ns018v216ypNlo41BC4fjBwwHKqSmJqdstdfnJx4ffFWuHaEKXt6whobxDXR0FHclOJdLpawsUHTHIpuM7m4+GiqjY7yPoMcpMlAIVnc3Snc3KXvfBCypJIjG4yRTaXw+D8lkGjsHRRDs0hA3bdqAJxRiYZE/LwttNLwuhgs5FsWlvDyAqhZNb5wF2PsvsCmE6FvmtWLDoRcK7lcCtH/yo2naOJyS0hUH2f4v/Wk3MwfnDOD+nqF0uq5bmqatARpwhqXtX6as5/ddvLOm5zhg037bLM/8nI02Bs00raKq6hNbsoTb5h7NutTQqnA1llbzePNuPmCZRfX3HUqxHYts6ty5i1Oqqgmn05QFAzmpsNYf6UQUfyqBqbr3FkJQFIW0YpBKv5P02JadkxhdQT+vdbQRTMZH7LHOtpH8uhhu5FgUhyKbQrjbtu10KpUI+nwBmXQrxGGkUomgbdtp4JDD+gZc4iFTIe1uDuxV6WED/UqAcJKMe4FmMkUINE3zAAuARzO3f1nTNFevuUZnALqu6y2apnUBYeA0MsmLpmkVmcffmtn+pSy0MWKkw2FqfD5Khnjy6fE6hz+RkKqcxSDcvBuAbtPA7yvM8DcAK3FgIQRVBcM0SFu5L4Lgyfzt8Xgc27YPupCbEEIMBwsXLgwvXrz4L+Fwx6VAtdfrjymKUlwpmhBFwLZtJZVKBMPhDq9tW39auHBh96G2H0yNu58Ai4DLcRYVHYrlwNPAbZqmfQHoAL6HU1b7Rpx5OFcCf9I07XrguMx+vwyg63pS07RbgV9omrYH2IozX2kH8K/MPu7MQhsjRjoWA8AcYvd+SFGYESrBLwuhFoXulhY8QILCfi7alokZ60YNjcHMXG5QFAXDMkibRs6LM7i9bo6pqCSgukiEwwTK+70kmRBCFKufmqZBZ2fbpxVFCQJyZUeIA9m2badt2/oT8NPDbTyYBGgc8DVd15cM4rH70HXdzvQo/Qz4B86QupeBk3Vd3w6gadrZwC3AEpzurG/puv7nXs1cjfN3/BFn4dSXgLN7FjDN9PIMqY2RxIg7CZChuobUzpTuDj54xJGsSY64f9GwlOhoxwMki6DHw4x24ql7ZxiPoigkjPw8T9weN1+dPI2g201sT4skQEKIYW/hwoUW8JPFixffbNuMhZwU0RRiuLOApsP1/PQYTAL0OqABTw7isQfQdb0LuCzz1df9i3CKIhzs8SbOoqZXHWKbIbcxUpiZIWuma2gLXNkeZ6iRamalCroYolRnBwBGEZTRNRMxvGaKnul1ipKnRVABxaWStC2n9GN3v94DhRBiWMic2MkbmxBZMJiz4MuAxzRNKwfeBGL7b6Dr+ktDDUzkhpV0qn1bQ02AvE4hPZclE3aLgZE52Tc9Q+vZywYzEUMxkiiqFzszmzhh7F9lPjcs28bo2Wd3OC/7FEIIIcTwMpiz4JlAPXBN5vfekw56Ss8V/ixM9MlOOUORLPcQ12HJJEDuIiuXM1pZmblYSo7W1xkIMxnHTiVQg2WYpo1pm6SMdH72bVv07CkVjeRln0IIIYQYXgaTAP0K2IIzb2d3dsMRuRZVYGc8RiJYObSGfM76sR7Jf4rC6+VlPP3Cf7no7FMKHQpYJmYsjFriFEIwMTHM/CRAVu8EKCIFOoQQQghxoMEkQJOAD+i6/p9sByNyb0lJCf9cvYLTz5vH+CG0o/icFcsL398gANrDXXSk04RKg4UOBQAz2oEnswaZZVukzdyXwAawLIt0phCEEZMESAghhBAHGsyM6ZUwpHNnUUDxTBU4rzcwpHbUQMhpR1X2zvMQhdPR4RRBKC8pkgQoEUc1UygKmLaZlzWAwEm2DLUnATpgeqIQQgghxKB6gC4H7tM0zY1TEe6AmcY9JaxF8YllTgq9vqElQHZ5Nffv2kHENJiXSBAIDK09MTSnJ1PMGj+RSr+/0KEAYCZj2EYC1ePLrAGUvyFwKzwqz23cwAfPem9e9imEEEKI4WUwCdCzOCOfboeDrrooRRCK1Pu6o5w3Zx7rrKGdkKollfyzaRcAV8ZjkgAVkJVMcozXB/XjiIeKpAcoUwjB5a/AMM28DYEzbYsWv4/X2tt4j2fkD9D0eFwogGFaWJb0xAohhBD9MZgE6MtZj0LkTYVtUR4IssnjG1I7qqri9wdJJGLEYjGqqqqzFKEYKCPilMA2LIvyitICR5NhWVixLtyV40ibaQwrP+tF2baNz+88txOJeF72WQjJXbtQkzHUshKMri7iO3cS3dVE3Sf/t9ChCSGEEEVvwAmQrut/7s92mqYpwJ+AH8qQuOLhtgHlnTk8QzG5tBzTpRLt6oLxE4YenBiUaGsrAGHDoKF06Mc1W4xoJx6svK0B1KPK5ebYiko8LS153W8+tT30T6IrV9A0eTItkQjzmpsBKDvxJPyTpxQ4OiGEEKK45XLZeBW4GKjJ4T7EAPkyFbLUwNCHSn1vwgSuO+JI4iP4RHM46G52qtFHTBO/z1vgaN5hJmKotkksnd+emCmWzbema9Tv3JnX/eZLcucOIsuWYhoGP3v4QX7y+CO81tkOQPtjjxQ4OiGEEKL45TIBAmdhVFEkbNPE3ZMA+UuG3F4i8z3Z3TXktsTgRfbsASCRKTtdLKxkHMtIkTRSed2v7XXm/ijp/BReyLfw668BsKizgw7LZEJNLf/Y4XSyR1YsJ93eXsjwhBBCiKKX6wRIFBEr+c5QJFdw6HNFek5rk93dQ25LDF48c8KbUovreoOZjJM2khhDLLgxUHsTICM/hRfyybYs2l95CYCX21u57lOf4Y5Lv0b9uAbWdIfBtgm/9kqBoxRCCCGKmyRAo0gyEgHAtG28waH3AKUV5+mTyrQrCiPV5awBZLiK7OVs2xhGnHSeCiDs5XeGAbrMPO83D5LbtqJEo8QMg7qp0zhq8lQ8bjdXfPDDvNrhJMLNmQRJCCGEEH0rsjMmkUvxSDe74nGaEgk8Q1wHCN5JgIxYdMhticHbMmYMX1q+mFXe4uoBQlUx0kmMPBdBUAJOFbiRmAA1Znp3VnWH+ei7T9l7e31lJTVTpmDZNu7WVozOjkKFKIQQQhQ9SYBGkaTfz/9bvZyr1q/F5Rr6Uk1Gpg0js7iqKIzO7jAd6TS+0uJYA6iH6vaSMlKkzcThN87mfoPOYrBue+Sti9P69iIAOn0+Gqr3rS9z/okns6Y7zOLODnZt3lyI8IQQQohhQRKgUSSWSVR8/uwsWmq4nCrqViK/J7hiX52dnQCUh4prMVrF7SFtpkmnEihK/nqnehIgzwhMgG7evplfb1rPmOkzDrhvTEUlj1sGv9io88zitwoQnRBCCDE8SAI0isTj2U2AtgfLeKBxJ7tVeRoV0rTGRj49fhJ13uIpgQ2g9iRAyThKHgs0KOWl/GHbFh6Ojay5aTt2bGf1pk0sCndx3Jy5fW5zxtyjAHjiicewR2ACKIQQQmSDnLmOIqk1a/jl7Ll8orYuK+3tKq/hgcad7JQTrYKankhwfv1YKvy+QoeyD9XtIWEkMVOxvNbDd5cG+c+eZl4dYfNgXn3VKW4wb8pUQn5/n9u8e9YcfF4v4Z070Zcuzmd4QgghxLAx4ARI07RnNU37H03TDtmNoOu6CUwBVg42OJFdRlcnk4Ihqj2erLTXU0ghJkUQCsa2bfyZ/DNUNvTKftmkuL3E03FsI4Vi568ggTdTBa6nx3OkSL34Ah8dN56TJk896DYhv59vz5nH745awBZZFFUIIYTo02B6gNLA3UCTpml3aJp2wsE21HV9m67rI3M1wmGop1hBWhl6AQSAgMtNgz+AJzqyhhoNJ3YyiSczv6asYuhrO2WVy008ncAy0mAZeVsW2eP3opWUork8mCOkQIdpmsyKx/nouPHMrR1zyG1DlVUAWNu25SM0IYQQYtgZcAKk6/o5wETgp8CJwKuapumapn1H07SGbAcosseMx53vWagABzAp2sWNRx7FSUnJcQvFyCxCm7IsysqLKwEyPS5S6SS2kQbTyFshBI/Py9enTueKKdOINzbmZZ+5tmXFMircHgzbZsLUaYfcdvy06QA02BadmbWBhBBCCPGOQc0B0nW9Sdf163VdPxI4HngU+CywVdO0JzVNu0DTtCJblERYSadaW0/1tiHzOkPg3Ple6FLs1d3SDEDYSFNZFipwNPuyXG5SRhLbsrDSyTwmQB4SmTWAEuGuvOwz1za//hoA7ZaJ5zDFLmobxpOwLIIuN0v+81Q+whNCCCGGlWwUQfBkvno+lWuA+4HVmqb1XapIFERPuWrTlZ05QPidE+6RWG54uAg37wYgapr4sjS3KytUF6aqkEo7i6DaqTgK+XmeKC4XycxzMj5CEqDODToAqX5UcFQUhXDmudCYWTdICCGEEO8YVAKkadpUTdOu0TRtA/AycB5wOzBJ1/Vjgck4c4XuzVagYuiUVAoA052dcslKwEmAiqv48ugSbd0DQLGtxKRmhmv1JECWkUaxjLzs27ItUpmfk5khgsPeHuc4+ysr+7W5u8LZzm7clbOQhBBCiOFqMFXgXgU2AFcCrwPv0XV9hq7rP9V1vREg8/1fwIRsBiuGJm5btKdSpL3ZKZesBJyqY768FjkWvbXV1vKl5Yt5IllcJ/qq24OBRdrI9ADtLYSQ++eKZVsYmf2kRkCBjnA4TE2mR6tuXP+mWdY2ONuNsWza2lpzFpsQQggxHA2mB8gDXAaM1XX907quv3iQ7R4Gzh5sYCL7XgkE+PKKJWwtP3QVqf5yhZxJ935VxTDyc3Vf7Ksz3EVHOo0Sys7ittmieLykbZO04fTFWEYa20jnI/9xEqDMwqvpEZAArV+7mqrMvJ+y2tp+PaZ0TD2vxqI81NTI4sVv5zI8IYQQYtgZTAJ0K/BPXdfD+9+haVq9pmlXAui6vlzX9TeHGqDInp51UTy+vhdRHChXsAwAn8tFdKQMNRpmOjs7AagoCRY2kP2obi+J9L4D86xUPC99haZl7q10mI7G87DH3Fq/aQOXLH2be4wUSj9fu6rfz676Mbze0caSJTIPSAghhOhtMAnQXcDBVuKbD/x40NGInIpGnQVLvb7s9BYowRKeaGnmn407ictiqAVRvnEjF0+YxCR/dpLabFHcbqLpfZMPO51Esa2c79uyLTZ4VP60bQtd1VU531+u6fo6bKC6fuyAKunNnTgJgGXLluYoMiGEEGJ46lc9ZE3T/g3MzvyqAA9rmpbsY9MxwKYsxSay7MK0yfmz5rDdzlLZatXFA+2tRCPdfDzZ19NB5Fp1exuzx4xltbuIKsABtttDIr5fD1DPPCCyMwftYCzbpiUU4NU9zRzry+2+8mH9eqcC3NS6ugE9bmZ1LUeUlFLa0kwikcBfZEmyEEIIUSj9XRDmp8AXMj9PBpYCe/bbxgQ6cXqIRBEapygESkpp9mbvRMjvDxKNdBOLxbLWpug/d9pZhNZbZHOATLd7bwW4HraRxjbzs2iuP+A8x3uGfQ5X6XSaU+IJzpwynSkD7LktTyT50aw5NCXirFu3hvnzF+QoSiGEEGJ46VcCpOv6a8BrAJqmAVyr6/rmbASgaVoVToJ1PlAGrAC+rev6K5n75wM3A8cAbcAtuq7/qtfjVeAa4PNAJfAKcJmu6xt7bTPkNoY727bxZobP9JSvzoaaYAif30+sqzNrbYr+85kWKArBoloEVcFyuUnuNwfItizsdH56Css8XmaXluHas/91muFl27YtzC8ro9rroyQwsATIXVEBwFh/gLeXLZUEaABs2ya6cgXxdWtxV1RSduK7cZWUFDosIYQQWTLgOUC6rl+SreQn4+/Au4CPA8cCS4BnNE2bpWlaNfAfYD1O8nINcK2maZf0evwPgC/j9FCdANjAk5qmeQGy0cZIYKfTuDIJkCtUlrV2L6uu5qYj55PeuiVrbYr+sW2bnlPiYHnxnJwpbrdTAruPZMdKxrGtLA3BPIRJls0PtdlM2rYt5/vKpc26TnWmbL27dGCvW9XrJZEpBtG8cnnWYxupbMti951/oPGWG+l45in23H8f2350NcmdOwodmhBCiCzp7xwgEzhB1/W3NE2z4JBLutu6rve33enAWcC7M71MaJr2deBc4JNAHEgCl+q6bgBrNU2bAVwF3JVJUK4ArtR1/YnM4y8CGoEP4SRXX8xCG8OemXhnQro7U746G9KKk0Mnuw8oCihyzIrH9ia15RXZS2qHSvV4SWIf0AMEmWFwRppBrsHcfz7n2oVq5GfIXa60rF/HZJyFblXvwK/H2KWl0NlJasf2bIc2YrU+9CDdr7+GrSi01NRQFY+jJOIY4XCOZ68JIYTIl/7OAfoxsLPXz4dKgAaiFTgPWNxzg67rtqZpClCFU23upUzi0uM54DuaptXhzEcqzdzW8/hOTdOWAKfgJC8nZ6GNYS+eKZecME18gez1FhiqC7BIRaQKXL4lOzoBiJsm9RXZS2qHSnV7MbAOmAMEYBkpMA0UxUf23kb64HeSBZeR+96mXIpkEpekZ3BFLkpqajE7O6lIpejo6KCysjKb4Y04ia1baX/qCRTg5o3reW3R64RcLqaNbeDyRBwZRCiEECNDf+cA/ajXzz/M1s51Xe8Enuh9m6ZpHwWmAU8D1wEr93tYY+b7RGB85uf9xyY0Zu4ns81Q2xg0lyvHV7r7KRHudL5bFj6ff0DldA/FcLvBSGHGY7jdxfG37q/nGBTLsciWaGszAN2GgVYaRFXzscrO4bm8XhJGErAOXPjUMrGMJKrPj23nLl4l6BRBcFlW0T4v+8NubQWvDyUUGtTxDVZV0g1MCYZYu3Ylp5xy2t77RurrYig2vvkqhmGwpLODLX4vZ51xOkuWLmfFzu186UuXcNttd3DCCe/O+n7lWBSXfCzYLIQorP72AO1D07SpgF/X9TWaplXgJCoTgAd0Xb9nsMFomvZu4E7gEV3XH9M07Uac4Wu99Yyr8QM9qz/2tU3PAiDBLLQxaGVlxVGdazcGHakU3ZZFMJi9gRxxjxeMFEo6SWVlMU3EP1CxHItsaR5XyxeXL6aurJQHQ8VT4tgTChI3o7g9rj7vt5NxPCWVeLyDevvpXwzlzsvaa9tF/7w8GMuy8Eaj4PVRVl1FIDDwIXCeMbV0A+P9AZZt0vngB887YJuR9roYrPb2dq648w66W1s5/ZRTufeqy+ls2UX8ovdz8x1/4a23l3HfD3/AxEs+y5GXfiknMcixEEKI/BjwGYimaecAjwC/Ab4J/B74ME4vy92apnl1Xf/TINr9IHAv8AbwiczNcQ5cNKTnTC+auZ/MNvH9tukZk5WNNgYtHI5jmrlf/PFw9ri8fGnFEqpr6vl6PJW1dk2XMzQnFYnS0VGcw+BcLpWyskDRHIts2b6zmc50mgqfh0QWj+lQ2aZCJBHFSB84/ExRFFQjhZFMYdi5u9pt+ZyXuNe2aW/rRlGH35X1pqYmVMvCsC3KyiuID+IY24qbDTXV3P3yi0ypqtjnNTpSXxeD9cMf/pjm5mamTZvG9350NY2b15FKJACFSy/+JJ5wjC+XVdH51DPsPvUMfGPHZm3fciyKS3l5AHUYvmcIIfpvMJdgrwaeAX6kaVo5cCHwM13Xr9Y07SfA14EBJUCapn0Vp0z1v4BP6bre0xuzAxi33+Y9v+8CPL1u27TfNj1lj7LRxqCZpoVhFP4DraurGwBfIIhlZW/uhelxcks7mSyKv/NQiuVYZEtraysAFaUlWT2mQ5V2uUmmEth9hmTvXQ/IVnzYfW80ZEqJkwApikIqEsMVDB7mEcVn48aN3LxlI9NS4/n92IZBH+Pg9BlseOpxEvq6Pp//I+11MRibVq9i9dNPAfDDa64l2tFKotfaZm6Xmw98/EMsue9hFpRXsPTOP3HMVd/NehxyLIpDjt6WhBBFZDCXOI4CbtJ1vRs4GyeJ+mfmvv8AMwbSmKZpl+L0Jt0KXNQr+QF4CThZ07TeY2nOAHRd11twEpQwcFqv9iqABcDLWWxj2ItGI4CzcGk2dZZW80RzE5sN4/Abi+xas4aLJ0xiTpGtT2K5XX0WQOhhmwa2kcrpOHtvaYi/7dzOAx1tKK6+h+IVu61bndUGJtTXD6kHa0p1DQA7dmynu7s7K7GNNG/d+Qd+PGsOP3vXScw5Ygad7a0HbDOuvo7YVGdaqKqvw0wVT6+rEEKIgRnMp2qcd3qOzgWadV1fkfm9Hujsb0Oaps3E6fl5CPgZUKdpWn3mqxxnPlAZ8CdN02ZrmvYZ4PLMtmSSpVuBX2ia9gFN0+YB/8Dp9flXZjfZaGPYU9eu5UfabE4PZTcBaq9p4O4d21gWi2S1XXF4/qZdnDdmLBO8xTP/R3F7MbBJ9VEC+x02VjKetUIcffEFfDyyu5Enm5tQfcOzePGWLc7aWhNq64bUTtC0uGDKNM4bU8+GDXo2QhtRWlqaqW5qAmDKKafQ3bGHZDzW57ZHnnkKnek0JarKa/f8OZ9hCiGEyKLBJECvAN/UNO0TwMfIJAmapi3EWWT0lQG09RGcIWgXAk37fd2c6aE5G9BwFki9BviWruu9P3muxhly90fgVcAAztZ1PQWQjTZGAqWzgyNKy6hxD66c7sF4Mj1KkYhcWc43Je5MWVP9xbNer+pxEqC+1gDqzUonUezc9Rr6MlXgotEoljU8hxS5t2zmullHspChJYpWIs4nq2v52LgJ6OvWZCm67LAti/annmDr97/N1h98h/ann8Q281u6/Kl/3MvkYBDLttE+eD5dbXsOum0wFKSlxikl3vHyC/kJUAghRNYNZg7Q/wMeB/4GrAF+krn9cZyiAd/ub0O6rv8U+OlhtlkEnHCI+02cRU2vymUbw52VWQjVyHICFPAGqPB48MYPfcIrss+VdPJzT6h4ejhUj5e0bR6mBwhsIwWWAYovJwPuPX4fY31+KjwewrubqBjXkPV95Jqno4MZFZXElaFNxnaFSjCBgMvFrtWrshNclrT87S90vfjC3t9bH/gHqR3bGfPZL+SlcIVt2zS+/BKUlZOsrcV0KUQPs6hz/YkL4ckXmaq6WL10MXOOXpjzOIUQQmTXgBMgXde3aJo2B6jTdb25110XAEv3m8MjioSdcE5ITU92ewuqU1HuOGohLSk57Pnmy8y78pcUT5ln1eMllk4ctriBZaSxjTSq10cu6jeoHhdfmDyVI0vLCK9YPuwSoEQiQVmmJyRYUTGkthRVJR0M4orFiG/dOvTgsiS+YQNdL76ADTzY1k5XpIuLJ04m/MbrqA3jqTv3wJLd2bZixTImZ3oIx510Mt0drZhG+pCP8dfX0ako7I5G2PDg/ZIACSHEMDSoS2y6rtv7JT/ouv6GJD/FS8lM2O2p2pYtrpIKAIKqi3T60CcOInts2yaQSTJCFcVTBEFxe4mm+54/sQ/bxkrFclYIwbYtUpnGE+Gu3Owkh3bt2slYvzOML1hWMeT2fFXOkmb+cBfpdHGM7A3OnMHi+nru27md+7es5+k9zfx5+1YSpsl9999LJJL7eYVPPfYIR5aVA1C5YD6RzILRh6QotL/3ZK7W1/DAf58hfpD5QkIIIYrXYNYBqgVuAs4HQnDAAHVb1/XcrXAoBkXNJCemJ7sT5vcmQC4X3eEwVdXVWW1f9M2KxXBlTvDLq8oLHM07LI+HWDR++A0BO5VEsS0OfAsZOtO2SLuc6zup8KGHNBWjnTu2MTazlpErC1X+QlXVxHbuZILfz+bNm9G0WUNuc6geffQhfvHvhwG48P2f4dSTzkNfv5zvPXgbOzrb2fidK7j55t/lbD0Wy7JoeusNvHX1mKEQSk0F8aZNh38gMGHCOMY3NLBz1y5eeOE5zj33/JzEKIQQIjcG88lyG07Rgn8C1wE/3u/r2qxFJ7LGZWQmFme5DDYBZ/iVqihEOtqy27Y4qHRXJwBRw6CqsqywwfRiut2kUv1LgKx0Cqw0uegGMi0L0+2Uv07noSch23Zv2ULI7cbGxhUa+hBHV6nzHJkcCKHra4fc3lC1t7Xw858700c/eN6ned97P04oWMqC+SfxmS/+CK/Hy8svv8iDD96fsxjWrFnNyzu28dMtm2j430+TiHaTSvZvLqNtWZx60omEXC5efOKxnMUohBAiNwbTU3MOcLmu63dkOxiRO2nLImlZ4M/ufBHb5SZtW3gUlWhbG0zPavPiIGI+P19YtpiQ28UDpRcUOhyHqmK51MNWgOuRy3lAlm1ieZyCH0Ysmt3G8yC8zSmBHVddWVnHyF1Whg1Ueb28sWolfODCIbc5WInt29j202t5T0kZK6sbeN97L9rn/okTZvCpj3+JRY/8hSV/uZP3vvccyssrsh7HCy88i2nb1By9gOp3vYsdG5YN6PHvCZVy/vxjeHb7Drq6OnMSoxBCiNwYTA9QCtic7UBEbv2+u4v/XbqI7uqx2W1YUUhkzl5jHe3ZbVscVHtHO11GmqjbhdtdHAt9qh4fadsimepnRUDbxkrGcrIekGXb2D6n4IcV71+PVDHpaG5hdyJBKktrGCluN5umTuZzy95m5aYNWWlzsFpeepGQYTA9VMJHLvg8qnrg8/ekCUfwg5lH8LHqOv74u1tzEsdLLz0PwOmnn4FpJEhEB5YoB8fW4lIUjior4+WXXshBhEIIIXJlMAnQv4BPZDsQkVvRqDMMyBfIfsWwntPdeOfwm2w+XLW1OSvVV5WXFjiSd6geL2kskv0cAgc984Bysx5QTwLUUwFxOHmtaSdfW7WMsKZlrc36yVPpNgx0fd1hq/Tlim3btL/xGgBb3H60GfP63M6sn0wqWELI7ab1xedpb8/uxZX29jbGtbVzyYTJHD9xMulknPgAewrNuipMBcb4/Cx7/tmsxieEECK3BjMEbglwnaZp04A3gP1L4Ni6rss8oCLTU1HJl+05QMAqWyHW3MQRVu4WthT7Sq5czsUTJhErL6YS2D4SRgpzAM8Dy0iBaYCa/fWAwqUh7lurM2vSJN6V1ZZzy7Isdu3aCUB9WfYKXIwvq8DtdhOJdNPYuItJkyZmre3+im3bRjCRIG1Z1B171sE3VFTU+afAa09wckUlf//7X7nssq9lLY5Fi97k1Jpa5pSW4W3bQyxScdjy1wfweEjXVOPa00Z6vU46ncKT5WUGhBBC5MZgeoB+C1QApwBXAj/s40sUESPSzRVjG7hquobPF8h6+294A/x5xzZkAFz+KDt2cN6YsUwLZD+hHSzV4yOSGthVdMtIYRsp1ByUw05UlfFQUyObsjCHJp9aWppJp9O4XS5qS7LYwxeL8mVtNl+eNJX16/XstTsA6x9/FIA1sRhHH3P6IbeNjZ+NrShMD5Xw0kP/JJXKXvnuJa+/yqzM/7Z03jyiXR2Dasc3bRIARwQCvP32oqzFJ4QQIrcGsxBq7pfnFlkV7+hgVkkpcdNkXQ6GwPkDTpnefKzbIRx2pBsA1V88V5xtj4dofICVAG2wkjFUf/aH8vmDThnpSOZ/NVzs2L6NW+ceTQwbxTAgawmcwimBIJY/wMtrVnHWWYfogcmR6OpVhICu6rFMdnsOua0dKEGZMgs2r2W+18dzz/2Hc87JzuKokZUrcFVWY5SX46oqI9G0cVDtGGNr8QBHlpbzxPP/5YQT3p2V+IQQQuTWkJIZTdPKNU2bpWmaT9O04XWZdRSJtjknpTHTxOPN7jpAAMFAiHK3h7gUQcgbJe7Ma3EHs7uw7VCYHs+A5v/0sFIJlBwMn/QHfEwKBCnpGl5z03Zv2kCdz8dErw/Fc+gkYSBUn4+ky4WqKLTp67LWbn8lI91UJZ21ssvnnNCvx6SmOnOETq6q4V8PPpCVOHbt2skk0wKgcuExGKkEyfjgKgXaFWWkfV68qsruRW8VbG6VEEKIgRlUAqRp2mmapr0JtAOrgDnAvZqm3ZDN4ER2xDud4R1xy8rJooInpmL8Yf5CJjU2Zr1t0TdPZmFbf2mRDIFTVUyXSmIwCVBmHlC2q8GFXC5+OWceH04ksS0rq23nUtcWpwR2VFVRsvx6tcucnjarKf+v1cWvvcrLbXvYGI8zcfZx/XpMfMx0bK+PpGWxYdnivXOjhmLRW28wv9yZW1V17LEkYlHSgx1epyi4jl/AH7ZvZfGO7ezYsX3I8QkhhMi9AX+6apr2HuAZIA5cxTvLuC8Fvq5p2jeyF57IhlgmAUrmqH2rZ15RIld7EPvzZ07oQxXFUQXunRLYA0+AbMPANpIoWZ4I5M4UiFAUBSs5fJ6bqebdzndv9oc3hqprAahMpQiHw1lv/1BeWrKI323dzHN1E1Fd/Rx97fbgueRb3B8K0JFO89RTjw85jk2vvkyFx4uhqoRmziQaHtz8nx72rKm0NdTTZaR5883XhxyfEEKI3BvM5cXrgId1XT8NuIlMAqTr+s+B64HPZys4kR2JzBCglJKb6Vt2ZnFVNZ29Scri4GzDIJjpLSmvyl6VsKFQPT5SAyyB3ZuViKKQ3V4abyhIKpMoWrH9i1UWL7WzEwAllP35eoHKSgAmBUN5L4TwRqb89ayZRw/ocVElwFnvdeb+DDUBsm2bHfo6WpJJ7EmTQbFIxIf23DANg6PnzQXgjTdeHVJbQggh8mMwZ8TzgTszP+8/4PkZYPIQ4hE5kMxc6U3nYPgbAJkiCC5DymDnQzpzgmxYFpXVxZEAubw+4ukkpmUO6vFWOpn1eUC+UIBI5jlpRodPgY5AprcqUFqW9bZdpU6P4cRAEH3t6qy3fzC7tmxGaWnBparMmNr32j8Hk4inOf7YUwh4vLRu3cLGjYNfyHXz5k28sGMbV6xfw/Sv/T+MdJLkEBMggLnjx3F27Ri6V63CNAf3GhBCCJE/gzkj7gLGHuS+iZn7RRFJJuKkLIu0K3sTqntTQ85JuNeSCcD5EHOpfH7Z23xrzUqqyopjCJzi8dGdGnySYaVTYKSzOgzOG/C9kwB1D49KcOFwF7WZqm/lNTVZb18NhjAUhbRlsWPNmqy3fzBrnnqCX8yey/VHLSQYLBnw41MrVvKHoxZwyYTJPP30E4OO4623nCFq8+cvJFRZTjqZIJkYXK9lb+Na2/ncpCm8KxhizZpVQ25PCCFEbg0mAXoEZyHUY3rdZmuaNh74LvDvrEQmsmZLdTWfWvIWz/oGfuLRH67SCgD8irOIo8it9o4OwoZB2KXg9QxmLePsszxeYsnBX0m3Lcsph53FQgjeoI+I6SRAw6VC4Y7t22hOJmlLpwlUVGa9fUVR2HbkHC5Z9jZLNg2u9PNgtK92kgKjbHB/U8JfiRdYUFHJC08/OehqayveeAMVOP74d6GqCvFoOCsFMowxTrI6t6ycN16XYXBCCFHsBpMAfRtoAd4Eekre3AfoOEPivpOd0ES2dHc7Q+B8wdz0FrjLqgAIudx79yVyp62tFYDq8uLo/QEwvR4SqaENJbJScRQ7e8PgXB43kcxwpGjmf1bsdu7axS826twWDeMK5qbC36Sx4wDYuHE96Uw1wVyyLAtfu1OK3zNh5qDaiPmrUOvG4FVVGqJRdH3tgNswTZO5u5v44/xjOL68EtsyiXVnZ8CCVVuFqaqUezxsfvO1rLQphBAidwacAOm63gEcD3wZeAn4L7ACuBJYqOv68DjTGEV6qj35/Lk5obJLKnils4PnW1vozMxPEbmTXLaUSyZMYkFlVaFDAUBxe0grNokh9AABWKkkmOmslcO2bIvlqQT37dpOvLwiK23m2q5dOwBoyMHwtx61gRChYJBUKsWmTZtytp8emzZtZLLXWa+qZNrACiD0sFFwzXEGHZxUXcMzzzw14DbWrlzBnGCIErebyUfNxzJTJBOJQcVzAJcLc2wdAP6m3cSzMK9ICCFE7gymDPYpgEfX9T/ouv4JXdffq+v6x3Rd/y3g1TTt49kPUwzF3N3NXDl9Jg1ZLjPcw/IFuLeri3t2bicclilguaZs38a5Y8YyLUc9BAOlev2kbWtQawD1Zhlp7HT2ymGbtsUmr5uHmhrp9Gd/AeBc2LHd6VQfW5G75NaOx7lq5hH87IgjWbM694UQNrzxGkG3m5Rto1TVD7qd9KQjATiytIw3nn1mwMPgNjz3HwIuF1FFoWT6dIxUkmQie4mKZ8oEJ76SUpYuXZK1doUQQmTfYIbAPQ8ccZD7jgbuGnw4IhfqkkmOqagi5Mn+uiI9QpmKVdIDlHt2ZkK/GvAVOBKHy+sjYaVJpYd+NT2b5bBNy6Qss+BlV1dnVtrMtZk7d3LHUQs4Mof7UNxuZro9TAuVsHHpshzuydG2cjkAHb4AqK5BtxN1hXBPnIyqKExJJFi3bmBFHNJrne1j48bhcrtIJROksrh2WXpMNQCzSkpZLOsBCSFEUevXDGpN0/4MTMj8qgC/0zStr8keM4HdWYpNZInPtkBRIZT9sro9ykrKqPR4CA+TuRbDmTtTtcpXWjw9QN3JaFbastJJXKYBivvAIvsDZFomNeWlTAwEie/YfvgHFIFgIkGF3w+B3B1bxeUi4fMRTCbp0HO/FpC6ezd4fRg144bUjmFYeOcdi7F9K++ucobBHXHEnH49Nh6PMzGZAq+X+pNOQVEUYt2dDPlJ1ltZKUmfF1c8wY7Fi7LXrhBCiKzrbw/QP3ESn56xKUofXxbwBnBJlmMUQ2DbNoHMYVNCFTnbz+e8Hm4/aiFs3ZqzfQiHL1PaOVRRHEUQbI+XSDI76+yYqSS2kcxKNTgbmOH186s582hYuXLoweVYOp2iKvNnl1dX53RfrkzPmN3cMuiKav0Ri0V5dMsm/rFrB56ZC4fcXnLCbDqPnMvNmzfwzDP9rwa38j9PU+X1krQsJp96OtgGiViW14ZSFMyzT+ezy97mv2tWyXBgIYQoYv3qAdJ1/THgMQBN054HLtMHU4ZH5J2dSuHOnEy6B1mCtj9Sbg8YKdLyoZ9TtmEQsAEFKmpzdzwHwvB6iXdmaS6FbWMlo6hZKtmulgahtQs1lcpKe7nUuGMHtZliARU1dTndV1ltLcmWFsagsGdPC1VVtTnZz+rVq9C7w7T7A5wzqX+9NYcSs73M/uyX6Pr7PSR27WTt2tXMnn34AYNtr75MBbA7GGSu14tpJLOy/s/+/GNrGTNhAtu2bWPx4rc5/fQzsr4PIYQQQzeYKnCnS/IzfBiZ+SKGZeHJrNeTC2mPc+JmRLJ8VVXsI93VhaooGJZFdREkQIrbg6EqxLM0BA7ASiZQrOyUw3aVOYmUx8heee1c2b12DaqikLAs1BwXbfBmquJNC4VYty53b+erVq0AYOaM2VlpLxFPY1tuTj31dIB+V4P79/ZtPNi4E/fCY1BVBSOdmwTISKc4+qi5wDuLrgohhCg+A15FUdO0IPA94HwgxIFJlK3r+rQsxCayoGf9k27DwD+IFdj7y/D6Id4NMSn/mkvhxl0AdBlpZleWFzgacHn9JGxzyCWwe7NSCTBSKJ4gtjW04VmuCmfem9e2sS0LRR1M3Zf86NyymUqgCxiXxQVh++Iur8ACqr0+Fq1YzoknnpKT/bQuWcyxFZUcMWF61trsbI/xgfkLmL9pM6teegH761ccsnR6e3s7r651FmL94gcuQFUVUok46WT2CiD0dnJJKccdcSRLli3NSftCCCGGbjDLyN8MfBZ4AVgGWSrZJHIi0tFO0jSJmiYeT+6qhpn+EHTtQU1maV0N0ad2n5fPLXub+tJS/ur1FDocVK+fhJmdCnA9bMvCSsZQvUHMIbblqXTmSamAlYjjCoaGHF+uJDLJbcKT++OquN1EvR6aOzrYuWF9TvZh2zaT29r44HSNRnUwHzV9i3anmOb1U1tRSaA7zOrVqzjyyLkH3f6VV14EYObMWVRX16CqCvFI7obq1geCeEIlNLW10tbWSnV17tZ0EkIIMTiD+VT6MPBdXdd/ke1gRPbFq6r536WLqCir5PIcXlW2g5kTzWEw12I427NnD92GwZgiqgDXmeyrIOTQmMkYnhKTwVXqf4e/spSEaeJ3uTAj0aJOgJq6w5jhLvzjJxx+4yzomDuX795+G5Pj2Ru+2FtTUyOTMslcaOrBE5SBikaTjD/hVDqffJzZpWW88si/DpoAGeEwvif+zbyyck447T0AWKZBPJq7obrKhHpYvpp5ZeW89ebrnPu+9+dsX0IIIQZnMGcXbuCtbAcicqOnEpE3lLvhbwCUOPNRvOZQr9mLQ2lpaQagrgiGvwFYPh/RRPZPoPcOgxvioqiBkiCRzPwfs8jnp72wp5kfr1+LNW5o5aL7a0q1U/hg27atxOPZH7q67s3XqfB4MWwbarKX1FmmTdT2k5g6BYCqtWsOWg2u9b/PMMUw+di48Zz+nrMyj0+RTOSup9qqriCtKJR7PKx/9ZWc7UcIIcTgDSYBeho4N9uBiNzozhRBCARye+VbqZvAi617eLN1D+l0Oqf7Gs3cq1dyyYTJzC4tghLYioLh8RBLZD+xsE3TGQY3xF7LQEmIJ1p2c9/O7RAqjl6zvti2zY7MWkVjK/JT3KIyEKC6shI3sGF99tcDal66BIBOjxfc2R3W192VYMb/XoJp28z2B1j19BMHbGPGYnQ8+x8AXksl0bRZTgGEVJJUDgog7OVykah2jqGxMTfDC4UQQgzNYIbA/QP4vaZpdTjr/hxw6VDX9b8MNiBN074PnKnr+mm9bpuPM/foGKANuEXX9V/1ul8FrgE+D1QCr+CU6t6YzTaGI9eK5Vw1XWNTMMcnzOOm8LvtW7Esk690tFNXNya3+xulypqbOXdMPat9uZvP1V+q108Km3iW1gDan5WI4g5VMJRhcN6Alyf2NGNZFpepKoGsRZddHW1tGHHnpLw+TwmQbdt8b8p06lHYsPht5h11dFbbN3fuANVFsmoM2Z7VFIum8E1vYFMwwMx4gsRD/8I64yxUj3fvNu2PP4YrmWRXPE71CSeiKAqqqpJKxkmnclMAoYd/+hRobWeSDbt27aShYXxO9yeEEGJgBnNmcT9QBXwauA24e7+vuwYbjKZplwM/3u+2auA/wHqc5OUa4FpN03ovuPoD4MvAF4ATcNZAfFLTNG+22hiu1D0tLKyopM6X27K6qqpSXlEFQFum8pzIPm/COXHzlRd+LovLFyBpG8RzMAQOwMzCMDhLsSmvcIYLdnZ2ZCu0rGtc8jb3LDiO6488Cl8eiiAAKIpC0OfHrap0rlmd1bbT6TSVmWFmvokzs9o2QDJhEO1OMu2Sz9KZTlFumux++aW998fWrqEjUyL7rzu38YELPgyAqkI03Jn1eA7Q4KzjdERJKW+/8Wru9yeEEGJABpMATTnM19SBNqhpWoOmaU8CPwH2H4vxRSAJXKrr+lpd1+8CbgSuyjzWC1wBXKPr+hO6ri8HLgIagA9lsY1hyc6UpTa9uU2AAKoqqqj0eNjT3JzzfY1Gtm1TYjlzrCrHVBU4GqcEdncqimXnphCkbZpYiShDmQZkmiZ1FRVMCgQJb92SveCyrHOz09Fsu7JXLa0/3FUVACi7m7La7oa1q5nkd/rbfBOHvgBqXzrb48w97l08hc19O7fzYGbNociK5ez6zU1g2zzf2kJi/ARmzNAAsK00yVhuEvbe7LISOn0e3upoZ8Vbb+Z8f0IIIQZmMAuhbjvc1yDiWAB0APOA/T8tTgZe0nW990qGzwFaZhjefKA0c1tPjJ3AEuCULLYxLCmZstRmIMdFEIBrKiu5/aiFdGfmMojsMmMxfIrzkq0dW1vgaMD2+emMZ78CXG9mMjakRVENy+SUiip+OWceyuuvZTGy7Eo0NjrfPflNgGoaGgAYY1lEslgkYuWa1Vyxejn/RsEqyU2yHo0kSSdNTrr4czy0u5G/3fsXdu9uwopEsFMpVkQi/HHbFi6++HN7H2Ma6ZwsgHoARaHl9BO5ectGXly86KBFGoQQQhRGvz5tNU27E7hW1/UtmZ8PxdZ1/XOH2WYfuq4/BjyW2df+d48HVu53W2Pm+8TM/QA7+thmYhbbGBSXq7ALL3oyBQmUYBnqECtqHU5cVfHbFrHWPbjdxbPgZM8xKPSxGKrWbU4PRjidZnZ9dc6P5+GYPh/xzggDqVPQs2Cl8/3wJ4V2KgFmCpc3NKhFUS1MKA1BNIXd3V1Uz8velI7M8LxAIG/HVVUVqsePp2nJMiYFgugrl3L8yadmpe1Vq1fQnExiTJuNmqPXXSKeJhFPc845Z/PXvy5kyZLFXHXVN7jxBz/kv34ff3j7DabP0Dj77LNxuVRUVSEZTZJOJfLyP548fiw+n4/W1j1s376FadMOvhjsSHmPGilyvA6xEKII9Pdy4+k4BQQA3sOhz1yyfakriDN8rbeeGqb+zP0cZJueS4/ZaGNQysoKO+3ab1mAgruqhkAgt9OZkl4fJONY4U4qKws/R2V/hT4WQ7Wh0elc7bJMSgu8DpDi8RHzqCSNGG6Pa8CPdw0gEVFSMbwlZaAM/ORQATxVFRBtwRWPF+XzEiCQKYAQqqzI+et0Xx7C2JQpCs1LFlH5gfdlpdXVq53rTTNnzMEfyN2cpmgkRcPESm655Wbe9773sXz5Ut7zkQ8C4Ha7ueWWm6ipKdu7fXN4N243uN35+R/PO3IOTavXsmbJWxxzzFGH3X64v0cJIcRw0a8ESNf1Kb1+npyzaPoWB/YvedUzoSWauZ/MNvH9tukZ7J2NNgYlHI5jmrmZI3E4tmEQwLmUZYbKicdzu0ip4gtAMk6irY2OjtyPs+8vl0ulrCxQ0GORDbvXb6IaiLsUEjk+lofjdoeIpVN0R7qwrP6v/aQoCi63imlY/R4WZMUiEIhjKoM7kXZXVcCOFlzJZFE9L3vYhkGFbYOiEKioyvnrtIeqKvh8HuLBIGWxOOE167Ly/+nq6uQMw2b2mLE0VI4jEc9dWfyO1iidHTEqKur4/e//xJVXfoOdO3dQUVHBz3/+KyZMmLb3b3K7VTra2vL62rm4pJy6I4/i+edeoOOjnzzodiPlPWqkKC8PoKrSGyfESJbfAeeDswPYf2XAnt93wd4Kq+OATfttszyLbQyKaVoYRmE+0IxwhIRl4VEU3GU1WIMYQjSg/flLINwOkWjB/uZDKeSxyIa1Ph9/WrqIc9+1gLNyfCwPR/UG6Ex0Yw544Vsnbtu26e+0CDOZwErFwe/FGsTJobeuGgCfbZOKJ/YplVwMwpu34FYU4qZJff24nL9O9+etG8PrSxaz0kzz8Sy8Ppa/9jpn1Y3Bsm1iriBmDv+e7nCSWDRFqNTH7NlzefjhJ2ls3MWYMfX4fL59X+9WmkQ0ktf/r6e+FjZtJ9DcTDKZxuU6dG/pcH+PGilkypYQI99wuMTxEnCypmm9PznOAHRd11twEpQwcFrPnZqmVeAUVng5i20MP8EgFy9dxMVLFxEsrcj57qwSp9ywJ5nbNTZGq6bdjURNk/LqikKHgu0L0BnvytPObMxYNyqDOzEM1FSStpzHmuHcFm0YjMbm3fx3TzNvd3dRHsr/EL3xR8zmlq2b+O+2rTRnoYJj49tvAdDpcmO6cptsmqZFV0d875wet9vNxImT8O23TpaigGmm8lMAoZfgDGfwxBGBIOv1tXndtxBCiIMbDgnQnUAZ8CdN02ZrmvYZ4HLgZwC6rieBW4FfaJr2AU3T5uEs1roD+FcW2xh2wuEwtm2TsiwCuV4IFbBKnelSftOUqkc50JipFFZfVXaYLXNMUUh7PUTj3XnbpZWMg5HcW0RhIEKVpXRmioEYXXlK2gZgW7iLO7Zt4Xlz8NXuhiLg9TI1s1Dn6tUrhtxeMlNuPFFZPeS2+qO7M4F5mF4TVVUxUsm8J0DKmBpS2JR7PKx87tm87lsIIcTBFX0ClOmhORvQcMpSXwN8S9f1P/fa7GrgT8AfgVcBAzhb1/VUttoYjnoWfgyGSg879CIr6ifzYuseFne0EQ4X34nmcHdCV5hLJkyioTT3Jc0PxeULksQimuMS2L1ZRtpZE2gQ71gllWU80dLE33Zuh1Bhi0f0ZVumut/4qpqCxXDEhImM8/vZMsRS4bZtU9rtJMaeCdlfALUvke4kibhxyApqqqoQj0YwjTwnmS4XnZnnXGTlkEZTCyGEyKKimwOk6/pn+rhtEXDCIR5j4ixqetUhthlyG8NN5K03uGq6xro8jXk36ifxt65OOjva+FTjLsrLK/Ky39EgGYtxjM+POmYsntrKgsbiCoSImkniyfwWFDDjETzBcmBgyby/JMDTba0YhsGXLZtiq7PVtWkjHkWhobJwx/WUsgo+deR8tmzcOKR2tm7ZxGSfU1+mdPpRB5TVzIV02qSrM05JmZeDTUlTsIh2d+QhmgOpkxpgzUZqwmHS6RSeIpuDJoQQo1HR9wCJwUvv2snCikrGB/M3r6Cmrh6ApqbGw2wpBqJxzSrUzET5MWMK11MAoPiDtMc7875fMxnHTsUHvK6MaZnUjRkDwO7du3MR2qBZ6RTvb23nngXHMbmicAnQuMnOXJXxikJ3R/ug29FffAG/y0XctjFK8/c8DXfEMdIHHwZnmmlS8fwOf+tRMnsGADODIVa99VZBYhBCCLEvSYBGMDMz3yHp3r8CeO7UVo+h2uulccf+a8qKoWhe50yg7rDN/AxnPATT7yccLcAQR9vGjIVR7YFVnjMsg4ljxzIpEKR1zeocBTc4qaYmVEUhZpqMqxtTsDhq68fSbqTxqCrr/vP0oNtpXreGtGXRESrFtPK3mmR3OEEy0fcwOEVRMFIJEvFY3uLpTS0r5VXV4ifr17Jo5bKCxCCEEGJfkgCNZJEIAAmv/zAbZs/nzRS/m7eA2JbNedvnaNC1zVkENeEp7KhV1esnqUAkXxXg9mMmYmAkUNT+n1ynTZPjKir55Zx5lC15O4fRDVxrJrHdGY8xtrpwPXuKorDH7awG0L5k8aDbeXTjBj6zdBEdR5+YrdD6JZ0y6eqI43Id+LxwuRTSyQSpPBdA6C2qTWVVd5i33pYeICGEKAaSAI1g7kQCgHQgf5Pm05lkK97akrd9jgbpPU55YqWksDNY3MESYlY6rwUQerNNwymJPYDOhbSZxlvnJBfuaHEthNqxXgegzbbxugub3LqqnaptoT2De+12d3ezefNG0rbNeG1BNkPrl872WJ/D4FRVIdrdWdDKlLOmOUMMly1bSnd3/qonCiGE6JskQCOUbdv4ekr/ZtbnyQcj6CRbRkdn3vY5GrgyJ02BytyXMz8U1V9CW7y9oCeTZjyCMoCS2IZlEBg/FoCAYWBbxbPQZHqnM1Q06vEcZsvcGz9tBpZtU6eodDc1DfjxK1csw7ZtGhom4Pfm/3naHU6QiKUPGAZnW2nikcKu/1RfV8vxkybxP2PHsfT++woaixBCCEmARiwrHseTOUlVKuvyt99y5yqyu0Dj7UcqT8qpxl5ZX1XQOIyAn85IZ0FjsNIprER3v0tiW7ZN2aQGLNvGTfEshmrbNp4OpzKZXVLY0uYAY+vq2JZ0eo3XP/7ogB/f/p+nuX72XD40fSbJRDrb4R2WkbboaI/tMwxOUcBIpwo2/6e3syZN4rwxY0ktXlToUIQQYtSTBGiEMiMRErZFxDAIVtTmbb92pVMFrhyFcJGcaA53nZ0dfHPlMj637G0atMkFi8PlDxJXbMLRwpQT7s2IdqOYqX73AlXU19CeSSJTrXtyGVq/Ge3t+EwTw7KoHFNf6HBQFIXNoRA/27COZ1sGXi3Ps3Mnk4MhxlWNoVAdhF0dcdLJd4pkqKpKOhknGSt8AhQ8UgNgXDJFvL2twNEIIcToJgnQCOWtq+OrG3S+vGIJJWX5K69rlDo9QLVeH42NO/O235FswwZnnkhpVSWhUOHmALmDpUTMBLFE4ecwWKkEVrz/vUChqjJa004CtGfT0Na6yRbF6+HB1j083rybyfWFT4AAGqZNZ2lXJy+++vKAhjnGw2EaMkMLy+e+K1fhHVZ3V4JoNIXb7TwxXC6FeCSMaeZ5AdQ+jJ+tsS0Rx60orHnwn4UORwghRjVJgEaoVCpFONxFyrIoKcvfsKl0Zr5Rrc/L1q1b8rbfkWzt2jUAzJoyobCBBEtoibQWNoZezFi4371AJubeeTbtGzfkOrR+CadT/GPrJu5t3MHk2sKVwO7t6MlT8bjd7Nq1c0Cv33XPPIlXVWkz0lRMmZPDCA/Nsmza90RRcJ4TtmUSCRe+xxKc3qhdZc6abOllSwocjRBCjG6SAI1QbW3OMB+320MgmL/5BanSStZ7fTy7p4XNRXKlfbizly7hqukaJ2eqdBWC4nKT9HrpihTHySSAmex/L1DaTNNcVcnfdm5naz+HzeXahg3rAWioqsbv9RY4GkfA5+PkGTP5RMMEdtz1x34/ruNtZ15Lc6iEZGJg6zRlW1dHnGTCQFUVTCNJogiGv/UIzp2FadtUJZPEd0kPuRBCFIokQCNUx6OP8O3pGseNaej3PIlssLx+Vs08in807mTTZkmAsiHQ2srCikomhIIFi8EdKiNmG4Qj7QWLoS9GtKtfFeFSZhpVm84juxtZ3V74Xizbtml/5WXG+HxMLuACqH1ZMGEiF45toK5xF0ZX52G3ty2Lsj3OBRfX9CMwjMJW2YtFU3R1xvF4XKQTMRKxSEHj6W3mnFmsijhDSDc89GCBoxFCiNFLEqARyty2lQUVlVSH8l9dqq5+IgCbN2/K+75Hmng8RqXpnFDWTSjcibIaLKMl1o5h5r+616FYqSRWPIyqHnq+SsowmDR5EgBbimCR3nTzbqatXcsNc45iapElQEfNnose6UZFoem/zxx2+9ZlSyhTFGKGwZiFp+U+wH5oa4lg2zbR7k5Mo/Dzf3q43W5aqsrpTKdYtUXeH4UQolAkARqhlEwFtngeF0HtUV0zjlqvj2hTE+nMxHMxOOvXrqHB7ywuW12oBEhVSQf8tHcXR/W0/RmRLpR0AuUQq6OmzTQTp06mwe+npLERo8ALosYz85A2RiNMqR9b0Fj2N7ayCj1TAKH9xRcOWwxh6bq1vNC6h6WmQXllcRRzCHcmSMWTxLq7Ch3KAeqPP5pLVyzl1tdfIR6PFzocIYQYlSQBGoGsdBpPwlnPI12a/3Vj6tct5bfzjub9dWPYtm1r3vc/kmxY9BZuVSWFjaukMBXgPKEyoopFZ3fhh471xTLSmJFOXBx86FXKTDFh6kSumjGLrzRMYOfbb+UxwgNF9HUA6JFuZjUUuLhFH6qmTiVumgRiMaIrVxxy26cXv8VtWzfRfczxxKPF0UOoqgrRSIR4EQ1/6zFzxjSqq6uIxWK89NLzhQ5HCCFGJUmARiCjrQ0FSJgmnqr8LYLaIxFykq6x/gCbNskwj6FoWrEcgKTfm9e5XL2pJRU0R9tIpZMF2X9/GLEwdjKC6ur7Lc2ybUws2t1uAHYvX57P8A7QvW4tAE2mSW15eUFj6ctJc+bx3z3NADT+64GDbpdMJnnttVcBOO6Yk0mnC1sAoUewxEssHKa7q/uQPYOFoCgKJx67AAVY9uD9pJqbCx2SEEKMOpIAjUDpPS0AtCSTlFflf9hUIlN2e5zfj66vzfv+RwrLsrCbGgHwjylMBTjF5SYVCNDaVdwnabZlYXR3oJoHL4gQTccwa2oAiG8rXIl2o6sLtcOppueuzH8PbX9UlZbSWl1F2rJg506iq1cdsI1tWSz/zU3UYFNfP5b6usn5D/QggiEPne2txLoTBbtwcCinnXg8n580hQst2P7A3wsdjhBCjDqSAI1AycZdAOxKxCmvrM37/lNlzsl6jdfHuhWFvdI+nG3YsB4znSJhmdROLszcCk9pBWE7RUeRzv/pzUzEMKOduA5SECGailGhzQTA19mZx8j2FVu7GoDN0SiTGhoKFsfhnLngOJ7Z08zz7W2kqg5M1MKvv0bFurX8WJvDBee+n0SsOIa/KYqC32cT7uggFk1hpM2iS4JqqqtoriwFwFi2lHR7cVVXFEKIkU4SoBHITqWImQY7E3HKK/M/BM70B0n7nZLN4c2bMM3iGBYz3Cxe/BZ/3rGNO1STspnjCxKDUlZJY3g3plk8lbQOxYh0Yif6HgqXNFLMPPVkAKqAaHtbnqNzxNY4C9uuDHdxxPjim//TY96kybxmW/xu8wbu/vvf9rkv3d5Oc+a2h3c3cua5FxCNFkfBk2CJF8tKEO7oJJ02iUfTRTcMDmDOqe9mdXcYFdj92COFDkcIIUYVSYBGohNP4DNL3+aR5iZKyysLEoJZ51zZHutS2ZipeCUG5tVXXwFg4ZwZKC5X3vfvCpQQcavs6WjK+74HyzZNjHAbqnFgVbikkaJ+1gxajTSqorDmP4cv8ZyTGE8/jRs2rueljlZmjitMYtsfiqJwyRnvBeDee//Czq1baH3kIcKvvcrOX/4c4nE2RyMkjjyS0lANlnnoanH5UlLiJRbuIJV05qxFI0mnF6jIkqDZM6fzctJZpLXzxRdJFbBXUgghRhtJgEag5ubdAATKq1HV/J84AyQyc48mB0KsXLmsIDEMZ+FwmLfefB2AU+bPLkgM7vIaWhKdRGLFV0r4UMxkHDPSjgsTep3zJtJJ0pZBV1kZAM0FqgT31vKlvNnZTllNLUGfryAx9NexU6Zx7JwjSafTvPbja2h/7BF23/kH0ntaaEkm+PXmjXz285fS3ZUodKgAKAoEgtDR+s6QzXTaJBZJFd0wOEVR0E49kQ2RCC7LYtOf/1rokIQQYtSQBGiEsW2bbdu3A1BRgAIIPbrGTGVDTR1vdLSxbNnSgsUxXL388ot8YfxEfnv0MVR35D8BUb0+kqEAjW078r7vbEhHurCinbh7vcMljRQpM0nl6e/hhk3ruWvVcizr4KWzc+X1V18GYOHU6Xnf90ApisLX338hJaEQD61fi25bdIVCPNW6h++uXcVZH/koU6fMJNJdHBUCQyU+bCtB535zaqKRJOmkgVpkvUAnHLuAp+LdALQ99zzJxsYCRySEEKODJEAjTGTJYsY++igfb5hAde24gsURrZ9M8uT3srI7zBtvvFaQE83h7Nn/Ps28snJqXe6CvEo9lXW0JLtpD7fkf+fZYNukw23Y8TAul3PSa2MTTkY5/oILWZlMsKmpkeXL85ucN/7+t1Rt2EjI5WLhtBl53fdg1QeC/PzyK9hmmvxg8Vt84cVnuXPrJo5YeCzf/OZVdHXESaeKY55faZmPSGcrqcS+CZlhWES6kxxmTde8U1WV+WedyqKOdrbEY7S37C50SEIIMSpIAjTCJLduIZhKUeZ2U11X2ApTDVNmEwyGaG3dw9pM5StxeG1trWx6602qvF5wqfjr81sqWfX6SYRK2N66FbvYzhgHwDZN0l17IBnZmwSFE2E8Pg9nnnk2AA/ksQRxqqmRyNuLOL+qhoDXx6yG4p3/s7+5VTU8cOfdXHTRJznttDO46qrv8Zvf3I5L9dLVES90eAC43Cp+v0V7S99JeyySIhFP4zrIWlGFcuz8eTxJmu+sXsEv/3JXocMRQohRobg+CcSQJbY665tsjEaoKmAPEEAymuAjxxzPrJJSXnrphYLGMpw89NA/ObIkBEBgQj2KO7/zuLzV9TQnO2nrHP5Xo610mnRnC6SiqC6FWDpB2k7z8fdfwIfGNjBp7dq9c+ZyLZyZ07WyO8yR06bjKkBhi8FKR6LU2fDD7/+Am276LZ/4xP8SCPhJxFKEu4ojASqvCJBOddPR1ndJacu26e5KkC6yggiqqvKpT3wERVV55pmnefnl57Glx1wIIXJKEqARxDYMEls2A7AxGi14D5Br6RucH4txQf04Xnzx+YLGMlwYhsGDD97PcRVOr09gQn7XcXKHyokEfGxp3oTN8O396c1KJUl3tKCkoiTNBEkzhTZD46PjxnN6dQ333XxDzmOwDYOul18C4IXWFk47cl7O95ltkR07MVpb8XicxM2lKrS3RjHShT9ZVxQoLXPRtrsR6xBl95NJg0g4MzyueHIgJo4fxwfOOQMVWHzjDWz59fWSBAkhRA5JAjSCxDdvwkokCKfT7EjEqawZW9B4wvVTADiyrJzN69exceP6gsYzHDzyyL+I7dmDVuIskhiYlMdCFqoLtaaerd1NdEUKs0ZOrlipBOmOZmKRPSStOL6aKpjpLIpauW4db731Rk73H1m6BLOri45UitWJOMdNn5nT/eWCmUjSvXETaiKGqqokEwYd7bFChwVAabkfrBitu5sPu22kO0kskkJVi+vj7+MXnsexUyZzZkUVxrp17Hn8sUKHJIQQI1ZxfQKIIYmvWQU4CyxW1Y7D4/EWNJ5kRR1WWQVeVeXI0jIefPCBgsZT7BKJBLff/ltOqa5BVRR842pxlwTytn9/bQO7SbCtaWSu22SlkqTadtPWuQufB6Z96tPYwAlV1dxxzXfZtm1rTvZr2zYdTz8JwLOtLZx51AK8Hk9O9pVrsabdxLdvx+9V6eqIv9ObUkCKAhWVPtqbd5JMHL4ct23bhDvjJOPpPhfMLRSv18MnP/+/3NvsVIJrf+QhOt56s8BRCSHEyFQ87/5iyKIrlgOwPNxF/fhpBY4GUBQiEzQATqis5t//foR4vDjmCxSjO+74LS0tzez2eSk79mhKj5iUt317K2rpCvlZ37iWtJHK237zzTLStDZvJR7eTdn4Okrf/W4APlNTxxWXfo5169ZkfZ+RxYtIbN1C3DR5Zk8zHzjuXVnfR97YNt3bthPvCNO6J1LoaAAorwyC1c3unf0vIW0YFp3tcVJJo6iSoNrqKhZ87IM839aKCjTd8Ttal7xd6LCEEGLEKZ53fjEktmlSctR8OhSFtzs7qG+YWuiQAGibNAeAE6qrMWJR/v73vxU4ouK0YsUy7r77TwBcfMUVjH3fSYRm5GcOl6e0gmR1DetaNtLZPbKGvvWlq7uVru5WUrvWMfFD5+KqqqLO5+eLFVX832f/lzvuuI1YLJq1/XknTmKFkebR3Y0cP2ce46trstZ2IfirKtmzvZVwUweqq7ATadxulYpKNy27tvWr96e3VMqgsz3mrA9UREnQrBnTqHj/mbzd1YEbaP7tb1j370cLHZYQQowoxfOuL4ZEdbspef+FXL1zFxHToH58cSRA8ZoGjOoxeBWVM2rquPPOOwiH87+wZzFraWnmiiu+hmVZnHfe+znzhGNIdeRn/R1PWRXp2rGsa99KU+u2vOyz0GKJCO3JbmwjRWLHaiZf8hFcpSXUB0NgGNx22y2cc857+PWvf8HKlSuGXAr89nv/zE+WLeapjjY+856zsvRXFIa3rBSzpIod63YSb2mGZKKgSVDd2BISkZYB9f70lkwYdLTFSCWKKwmaM2smZRecw4poBI+ikHzwAW7+xU9ob++7wp0QQoiBKZ53fDEkbrfKhi2NNDdtB2DchCJZZFFR2DPreACOGlNPd3eYX/3q5wUOqnh0dHTw1a9+iT17WvjEEXO4dOw4ohtWYqUGdjV74BS81WNJ1NSxun0z25pGV4GK3Z2NpEtKsVJJjGgzDR87C+0Ln+LbP/4hEydOIhLuYvnD/+LT//sxzjrrFL75za9xzz138eabr9PS0tyvpKjlzdf56XXXcOfddwJw+fkXUFtenuO/LHdUjxv/hIk0t0QJ7wljRGIkmpshHi9IElRdF8KtRtm2ccMhK78dTjJp0N4aJR5JoapK0ZTInjxlEuM+/RFWYvGXHdu4676/ct55Z3DddT9ixYplw3qNLiGEKDR3oQMoFpqmqcA1wOeBSuAV4DJd1zcWNLB+aH3oQdwTJvL8ik0A1I2dRKi0eE60OqbOJTS+gclVLtQvfJpHH32I448/kfPOe3+hQyuobdu28o1v/B+bNm3gqPpxXFheSWzZcjpKoXTO5Jzt1+UP4a4dS5sb9KbV7OkY3NXz4WxPZxPttVOorawl1bYbxWOBEuH0adWc9adbeOuJFyh7+XVaUyneaG9j0Ruv89x/n6GnMHFJSSnjx0+grq6OuroxVFVV4/P58Hg8RDo7qV+3liNTaapbW1AUhS+9932cPveogv7NQ6G4XJRMnUJHXGWX/s7zxYjEiJu78ddU4yopxbIhH+flVTUhSkMG2zasIxruHnJ76bRJe1uUkpSPUKkPj8eFma8/5hDKyssou+QiUmvXs/2p/7Jh4ybWP/0Ez7/xGj81DWYecxzHHns8Rxwxm0mTpuAZpsU1hBAi3xS5iuTQNO0a4DLgEmAXcD0wFZij6/pgZoVvBqZ0dEQxjNyt5xB+/VV2/+kPANzlLefJ157m+FM/wLkf+XLO9jkYigJHTqvh6Yfv5p4/3k5aUbnhhps59dT35HzfbrdKZWWIXB+L/rIsi3//+xGuv/46IpEIJ4yfwP+bMh3icYJTxlHz3mNQlOxfhXYFS/CU1xAL+NkZa2NL03riyfxOZFcUcHtcGGmz0OeWjK2ZyPy6WSi7tmIl9y3OEd20m/aXl2El3qlylga2p1Ksam/lkaZGIqYBQMjlosztoc7n48jSck6rqaU8cyL6n0iY6ce9i4XTiqRHthdVVQgEvMTjKSzr4AfD5fMRmjKZsOln47JtJGMHVn5T3C58FRV4KsrB68Oy7JwcX5dLpba+BJ83zo6N6/pV9nqgvF43JaU+/EEPLreKbdvYh/j/ZIOqKvgDXhKHOBa2bbNp6w4aXnyTcsvGtG0Wd3bwansrS7o6MVUXkydPZty4BurrxzF27FhqamopLy+nvLwi872SsrKyYbUIbyFUVYVwudQtOOcAQogRSBIgQNM0L9AKXKnr+u8zt1UAjcBndV3/+yCazWkCZHR10vHkE3Q8+x+wbTrmnsg3//Vnurva+PgXr2bW3OKrNOX1qBzREKL5J99ma3srD+1u4qxPX8LFn/l8Tq9cFksClEqleO65/3DPPXezevVKpgRDfHLWHI5yucC28dXXUHfucai+7PwvFLcHlz+IK1CCFSwh5oLmeAe72rbTEd6TlX0MOKYiSoAUReGISfOZ5q/G2r0TM7Fv4QPLMEnsaCG+o5XYll1Y8XdO/H1f/z8aI1F2726m8s03GNe6b/GIhNeLOWcODePGF916Mz0OlwCpHg/+2hpc1bW0hy22rt5BKn7oa0Euvx9veSmuUAmK14ut9iQQQ4vV43FRVuGntEwlFW9n+8YNhDs6h9boYfh8bgJBL/6AB7dHdYbG2U5il+3Pzf4kQADYNkpjC+7V61F2Nu292bRtNkejvNbRyuPNuw+7P6/Xi98fIBAI4Pf78fvf+R4I+PH7/bhcblwu1z5fqurC7Xb1ed87X25cLnXvNqqq7v1SFBWXy/muqgoul2vvz6rqymyjZB6nZLZ3oShKpg1XZtt3ft63zb6/9t+mr+0VRdl74UkSICFGPhkC55gPlALP9dyg63qnpmlLgFOAwSRAdO5p467vXY+iALaCojiLjyfcXtbXTobMG+7sli34jdTeN1+l11fK42PthDkEyiqpGT+D2W8+SrBpM/6W7Sg4H5Q7jjyD/5RNorurDV+wjMD8D7GzwGsAHUz3W8s5yoYF5ZUsKK8k/MorPPnSK3gaplEyQaPrqNOIj3U+c7wdzZTrb4LS9wlkZNIc4pnFVj1drVSsfb3P7RQFklPnEa6bhG2DO9JB5cqXDxpjZNx0wvVTsS0TNdJJzaqXsG3LuQpsW9i2hWU63zsr62mtnYBlGKiJCJM2L8O2rMz2FkY6STLcTqpzD4t3bOT1FufkRKuo4drp050d2jZts45nx7svwPL4DvHfyzyBMt8VFPY+qVCdHxUXtqpgKQo2NoZpY3SbJNqTpFNJDCsEjIeCXQBWUCywVYDCX3zZtFOhLFhB0DUVlx9sI41tmc7QJ7cNU3C+Trbwd7QQ2rOdYOsuGu0jUMo9UOXBvyOCGX6TdFkN8ZrxdE48krYxMzBNC2dlLgWw+/5r8/4veKdnUVFAdbmwXJZzu6qgqC4UtwvV7cZUXJimQmxrklh3HEKzIdSPXZigRFRUtxvF7UZxq6A4J7EoCraiOFHYNrbSE1Xm/TFzn6IqqC4lc5IM2BZWOEWsqZtYt4ptzQR/1v85B4qDknR6nlSX4nxXnb9D7XkNZux7KAd+YF1pF6bRj7lMNcCpZ1LSsZux21dRv20Vge42ZpSU4J82F6thDuG2JiJ7Grkq2kTEtggbBt3pFPF0iqRlkTQt1ke7eS6TLCnAx8aNxwYs28ba+93GsGFnMsGizo69Ibx/zMEX2d6TSvJGxzvFGs6tq8d9kB7t9nSKV9vfuXhwVm0dPrXvN6eudJqX21v3/n56TS3Bg/RkRQ2TF9reuchzSnUNpe6+T3cSpsWzrU7RGUVVeXdVDbc+/m9qx+enCqcQojAkAXKMz3zfsd/tjcDEwTbqNw2Obz5wCtH2WIxbHv7T3t/fO+coGgJ9L3jZnEzwswfv2Pv7z45cSLXf6SHQyzUemvxRllfNx/rHRQCktAu5Z2vtYEPOg1OoP246F2x5gGNbXqPMA2UArduhdTsPvvwiL9W9G6qns8Cd5sot9x20pbtmfp7/jHfWGTqio50fLL33oNv+dfEG/u2ZDMkupsYa+am56qDbPtC4kwcadwIw3h/g10cefO7Go7sb+etOp/BErdfHb+cd3feGCsT9fl4vqUeZ90l2zv0o8WXfYXn10Tw54f1sKNdgy0F3I4rCFFCOh1qg99On5mtwUq/fDZxBtCIHxhQ6gCIyG+reA3VQE29hVucaur1lLK9YABVQMb4d96tfoEJRqfB6wbvvRTHvjPfy4rgPQjqOO9XNh7f97qB7ekut5m33TLAMsEz+x1py0ApKyw0vb9aVgW2Bmeaiim6CBxnRuzZl86p/srOtbfGRsT4qD1KNb3MixcuGf++2F45roN7bd295YyLBCx2de7d9/5ixTAr2nb23ppJ7EyDbsjinppaQW4YICjHSSQLkCGa+7z+4PQFUDbbRJAqLlIAzZCJzBdjGpivgZ9yC92HbFtg2y5QEG03Lubf3trZNVAlSO+vdJDqbibRs4f4dm3ApCluSaUqPncb4iigz19/E2u2vorp9nPWxLxMq5vwHgHE0zv86jxmXEmpcQ/rNf5Lc8AbeZIQdne1Y614CYE8gyPNj6nGpLlSXB0V1QWY4A0Dbq7/CF7sWy0wTURVeqizDNk3nCv5+dmy4B6urE4Cw18fz4w5+dW9LrzVgoqbBc3syJalVBQU103PnDJnYjptAVQOqy4PL4+alWBJQUDJxKqoLNVCGXVKFveDjXHjMh1EyQ6IeW3A3lsvDEcARQ/+nCiFGrTqgjiqgZ/lkxSrn0Sm344t14o934U3FcBlJ3OkELiOFXTmeD06ZB4BqptFf34ZiWyi2hZr5rljO2EVX7TQunPu+vXvb+vytKAcZBmhVTeTC+R/c+3vTi79DNdN9bpsuH8eHFn5k7+97Xv4DXalYn9vGS2v50OWf3Pt752t3kYiH+9w2EazgQ5dfvPf36Bt/ZWtkT2bY7TvFLWzbIukNcd5n/4JtOclSdMVjmO58dC8KIQpJ5gABmqZ9GPgnENR1Pd7r9vsBn67rHzzogw9uMzAlHI5jmtmZdxKJRHjhhef4y1/uZs2aA3swLr/8Cj7/+S9lZV/5Zts2Gzas57XXXmHt2jVs2bKZbdu2Eo0OfkHKYDBEaWkJJSWlVFVVEgw6P5eVlVJaWpb5KqWszPleWlpGWVkZJSWl+HzefcayF+s8juHG5VIpKwuQzdeFGBw5FsVDjkVxKS8PoKoyB0iIkUx6gBw9Q9/GAZt63T4OWD6Uhk3TytrEe78/yDnnnM/ZZ5/H4sWL+Ne/HmDp0sWUlpbyoQ99jIsu+mRRVDkbrKlTZzB16r7VspLJJJ2dnYTDnaTTadLpNKlUCtu2cbudSbZutxu324Pb7cbv91NaWkooVLK30tFQiyBYllO5TWRPNl8XYmjkWBQPORbFQa4LCzHySQLkWA6EgdPIJECZKnALgFsLFtVBKIrCMcccxzHHHFfoUHLO5/MxZswYxoyRsf9CCCGEEGLoJAECdF1Papp2K/ALTdP2AFuBX+L0DP2rkLEJIYQQQgghskcSoHdcjfP/+CMQAF4Czh7kIqhCCCGEEEKIIiQJUIau6yZwVeZLCCGEEEIIMQJJaSshhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUUGzbLnQMI1Uc8JumVeg4BOByqcixKA5yLIqHHIviIceieKiqgqIoCSBQ6FiEELkhCVDudAI+oKnAcQghhBCi/8YCSaCiwHEIIXJEEiAhhBBCCCHEqCFzgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUcBc6gJFE07TvA2fqun5ar9vmAzcDxwBtwC26rv+qIAGOIgc5Fu8HrgaOAFqBB4CrdV2PFyTIUaKvY7Hf/X8AztJ1fXI+4xqNDvK6GAv8GjgXMIGngK/rut5akCBHkYMcj2OAG4AFQCdwH/ADXdeThYhxpNI0rQr4KXA+UAasAL6t6/ormfvnI5/dQoxY0gOUJZqmXQ78eL/bqoH/AOtx3kSvAa7VNO2SvAc4ihzkWJwMPAQ8CMwHvgxcBNyW5/BGlb6OxX73XwB8Pl/xjGYHeV34cN6jpgJnAufhnHj/Jd/xjTYHOR41OAnoWuBo4AvAZ4Dr8hzeaPB34F3Ax4FjgSXAM5qmzZLPbiFGPukBGiJN0xqAPwInA/p+d38RSAKX6rpuAGs1TZsBXAXclddAR4HDHIsvAc/puv7zzO8bNU37LnCXpmlflqur2XWYY9GzzVjgDuBFYHLeghtlDnMsPoHzv5+m63pzZvvLgds0TSvTdT2cx1BHhcMcj5OAauBbuq5347xP/RU4G/hmXgMdwTRNmw6cBbxb1/XXMrd9HacX9JNAHPnsFmJEkx6goVsAdADzgDf3u+9k4KXMG2iP5wBN07S6PMU3mhzqWNwAfKuPx7iB0hzHNRod6ligaZoC/Bm4B3ghr5GNPoc6FucAz/YkPwC6rj+t6/o0SX5y5lDHoy3z/VJN01yapk0G3ge8kb/wRoVWnN7OxT036LpuAwpQhXx2CzHiSQ/QEOm6/hjwGICmafvfPR5Yud9tjZnvE4GWnAY3yhzqWOi6vrT375qmeYErgCUy1yH7DvO6APh/wFjg/cB38hfZ6HOYYzETeEnTtB8AFwMe4GngSl3XO/MY5qhxmPeplzVN+zlwLc78FBfOBYL/y2+UI1vmuf1E79s0TfsoMA3n+X8d8tktxIgmPUC5FcTpRu8tkfnuz3MsIkPTNDdOz8Ns4LIChzPqaJo2D2dM/f/I0MOCK8NJfI7CGfrzRZxhWI9keulEHmmaVoGTlP4WOA74KDAd+F0BwxrxNE17N3An8EgmQZXPbiFGOOkByq044Nvvtp43z2ieYxGApmmlwP3A6cBHdF0/YHiWyB1N0/zAvcBPdF1fUeh4BCkgAnxC1/U0gKZpFwNv4Uz+XlTA2EajXwAVuq5/OPP7Ek3TOoD/app2k67rywsY24ikadoHcd6T3sCZEwfy2S3EiCc9QLm1Axi33209v+/KcyyjXmbS/cvAicC5mSt9Ir+OB+YAP9Q0LaJpWgT4LjAx8/v/FDa8UWcnoPckPxmrM9+nFCCe0e4kDkw6e+b/zMxzLCOepmlfBf6FMxzufb2WRJDPbiFGOEmAcusl4GRN01y9bjsD54RDxhDnkaZplTiTWGuBk3Rdf77AIY1WbwEzcIZczc98/R5nfP184NECxTVavQQcpWlaoNdtczPfNxYgntFuB05xhN56jseGPMcyommadinwG+BW4KL9huPKZ7cQI5wMgcutO4ErgT9pmnY9zpjuy3HWoBH5dSPOWifnAHs0Tavvdd8eXdfNwoQ1umSusO5zYq1pWjtg6LouJ9z593vgq8C9mUII5Znbntd1fUlBIxudfg08pWnatcDdwCSctcqe0HV9WQHjGlE0TZuJs8jpQ8DPgLpeBSniyGe3ECOe9ADlUOZK0dmAhrPI2jU46zv8uaCBjTKapqk4i556cXqBmvb7mlC46IQonEwFxJNxqr+9iVOd7C3gwkLGNVrpuv4McD7OGjXLcE7EnwA+VsCwRqKP4DznL+TAz4Ob5bNbiJFPsW270DEIIYQQQgghRF5ID5AQQgghhBBi1JAESAghhBBCCDFqSAIkhBBCCCGEGDUkARJCCCGEEEKMGpIACSGEEEIIIUYNSYCEEEIIIYQQo4YkQEIIIYQQQohRQxIgIcSwpGmaUugYhBBCCDH8SAIkhBh2NE37APDnzM+naZpma5p2WmGjGjpN07ZqmnZ3oeMQQgghRjJ3oQMQQohB+Eavn5cAJwBrChRLNl0IhAsdhBBCCDGSSQIkhBjWdF0PA28UOo5s0HV9aaFjEEIIIUY6xbbtQscghBD9pmnaC8CpvW46HXgeOF3X9Rc0Tfsh8HHg28BPgOnAOuBSwAZuBuYBm4Cv67r+bK+2jwR+DpySuelZ4Apd1zcPMMatwF1AOfBpwAc8CnwJ+Arwf0Ap8F/gi7qut/V63Au6rn9G07TJwBbgY8BFwNmAATwIXK7remQgMQkhhBDCIXOAhBDDzWXA0szXCUBZH9tMAH4NXIeTQFQB/wTuA/6AkyCpwN81TQsAaJo2E3gNqAM+A3wOmAq8qmla3SDi/AYwKbOvnwKfBN4G3gt8Efgh8EHgx4dp53ZgK3ABcD3wWeB7g4hHCCGEEMgQOCHEMKPr+hpN08KZn984SPGDIHCZrutPAWiaNhv4GfA5XdfvzNzmxkmKNGAZcA0QB87MDKtD07Rngc3AtzJfA9ENXKTrugH8V9O0i4FxwPG6rncBT2ia9h7g3Ydp53Fd17+Z+flZTdPOAs4HvjPAeIQQQgiBJEBCiJHrtV4/7858+kcirAAAAaFJREFU7z1XqC3zvSLz/QycoXSxTHIETkGCl4GzBrH/tzLJT+8Ywpnkp3cMcw/Tzuv7/b4TmDyIeIQQQgiBJEBCiBGqpxdnP7FDPKQaZ67NRX3ct2cQIQx0/wez/2MsZPiyEEIIMWiSAAkhhKMTpyjBDX3cZ/RxmxBCCCGGIUmAhBDDkQm4stzmi8BsYFnP0DVN0xTgr8BGnHlCQgghhBjmJAESQgxHncAJmSIC5Vlq88c4823+rWna74AETtnqC4CPZGkfQgghhCgwGUcuhBiObgXSwJNAIBsN6rq+AjgZZ62ge3AqxI0FLtB1/V/Z2IcQQgghCk8WQhVCCCGEEEKMGjIETggh+kHTNJV+9JrvV/paCCGEEEVGhsAJIUT/3Ikz7O6QX5qmTS5UgEIIIYQ4POkBEkKI/vkhztyjw2nMcRxCCCGEGAKZAySEEEIIIYQYNWQInBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFHj/wNWMk1OIxk4dwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "import hplc.quant\n", + "chrom = hplc.quant.Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "peaks = chrom.fit_peaks()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence).\n", + "3. Clipping of the chromatogram into \"peak windows\" which contain at least one \n", + "peak. Regions of the chromatogram which are stacked with heavily overlapping signals\n", + "are grouped into single windows. \n", + "4. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "5. Given best-fit parameters for each distribution, the expected signal of the \n", + "compound across the entire observation window is computed. The integrated signal \n", + "over the entire peak is computed and stored.\n", + "6. The estimated mixture of all compounds is computed given the parameter estimates \n", + "of each distribution. \n", + "\n", + "The rest of this notebook will examine in detail how each of these steps is \n", + "implemented.\n", + "\n", + "#### Step 1: Correcting for a Drifting Baseline\n", + "\n", + "#### Step 2: Identification of Peak Maxima and Including Obscured Peaks\n", + "\n", + "#### Step 3: Clipping the Chromatogram Into Windows\n", + "\n", + "#### Step 4: Per-Window Estimation of Constituent Signals\n", + "\n", + "#### Steps 5 & 6: Integration of Signal and Evaluating Composition of Mixture" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/getting_started_algorithm_1_1.png b/.doctrees/nbsphinx/getting_started_algorithm_1_1.png new file mode 100644 index 0000000..2ef6199 Binary files /dev/null and b/.doctrees/nbsphinx/getting_started_algorithm_1_1.png differ diff --git a/.doctrees/nbsphinx/getting_started_algorithm_3_2.png b/.doctrees/nbsphinx/getting_started_algorithm_3_2.png new file mode 100644 index 0000000..7335229 Binary files /dev/null and b/.doctrees/nbsphinx/getting_started_algorithm_3_2.png differ diff --git a/.doctrees/nbsphinx/methodology/baseline.ipynb b/.doctrees/nbsphinx/methodology/baseline.ipynb new file mode 100644 index 0000000..806e6da --- /dev/null +++ b/.doctrees/nbsphinx/methodology/baseline.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Baseline Correction\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What's in a baseline?\n", + "\n", + "In liquid chromatographic analysis, compounds are carried through an absorptive substrate \n", + "(termed a stationary phase) by a solvent (termed the mobile phase). In an ideal world, the column is saturated with the mobile phase and is held at a stable temperature and pressure. This sets baseline signal that can be subtracted from \n", + "the signal detected over the course of the chromatographic separation, allowing \n", + "for quantitation.\n", + "\n", + "However, we don't live in a perfect world. Often, variations in the column temperature or ineffective equilibration of the column with the solvent, resulting \n", + "in a drifting baseline. For complex samples, such as whole-cell metabolomic extracts,\n", + "a drifting baseline may result from the sheer number of compounds present in the sample at low abundance that convolve to a \"bumpy\" baseline. \n", + "\n", + "For quantitative analysis, we would like to correct for a drifting baseline, so we \n", + "can more effectively tease out what signal is due to our compound of interest and \n", + "what is due to nuisance. Take for example the following chromatogram with a known\n", + "\"true\" drifting baseline." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7KElEQVR4nO3dd3hUZd7G8e+U9J5AEhIC6YReJIB0qRYsiGV1ce1iX3QVX8WCq6xl7WIFVOysoK4oFrAgCNJ7gJBKEkhCei8zc94/ZmcyQ50kk8xk5ve5Li9Pzpw558nDQO48VaUoioIQQgghhAtQO7oAQgghhBD2IsFGCCGEEC5Dgo0QQgghXIYEGyGEEEK4DAk2QgghhHAZEmyEEEII4TIk2AghhBDCZUiwEUIIIYTLkGAjhBBCCJehdXQBHEFRFAwG+y+4rFarOuS+rkjqqnWkvmwndWU7qSvbSV3ZrqPqSq1WoVKpznqdWwYbg0GhrKzWrvfUatWEhPhRVVWHTmew671djdRV60h92U7qynZSV7aTurJdR9ZVaKgfGs3Zg410RQkhhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLsMtBw8LIYQ4NYPBgF6vc3QxnIrBoKKhQUNTUyN6vcyMOpO21pVGo0Wttk9biwQbIYQQKIpCVVUZ9fU1ji6KUyopUWMwyIwoW7S1rnx8/AkMDLVpSveZSLARQghhDjX+/iF4enq1+4eLq9FoVNJaY6PW1pWiKDQ1NVJTUw5AUFBYu54vwUYIIdycwaA3hxp//0BHF8cpabVqWcPGRm2pK09PLwBqasoJCAhpV7eUDB4WQgg3p9frgZYfLkI4gunz194xXhJshBBCAEj3k3Aoe33+JNgIIYQQwmVIsBFCCCGEy5BgI4QQwm0sXfoOV1xxsaOLYRft/V7Gjh3O6tWr7FiiMzt27Chjxw5nx45tHfocCTZCALm5OVx33dVce+0VZGdnObo4QgjR4f773x+YPHmqo4thdxJshNtTFIVHH32IvXt3k5a2jyeffNTRRRJCiA4XFtYNLy9vRxfD7mQdG+H28vPz2Lt3t/nrXbt2UFRUSEREpANLJYRoi6qqShYvfps//vidiooK+vRJ4fbb72bw4KFW133wwRJWrPic5uZmJk+exj333I+Pjw8Amzb9wZIlb5OTk4WPjy/nnjuG++57AF9ffwBycrJZtOhldu/eia+vL8OGpXL33XMJC+sGwN1330Z0dE+ysjLJy8tl7twHefrpJ/j44y+IjY0zl2Hu3DsJCwvjsceeoqamhjfeeJX163+lubmZPn36cued95KS0s98/X//+yWffvohx48fZ+TIUURE9DhjXeTlHeHll//N/v17MBgUBg4cxF13zSUhIREwdkU98sgTXHihsTvrP//5jC+++IzS0lIGDhzMkCFD+e67b1ixYhXHjh3lyisv4Z//fJbPPvuIzMzDhIV15/rrb2LGjEsBaGpq4r333uXXX9dSVFSIr68fqakjuf/+eQQFBbfjT7V1JNgIt7dt25aTzm3evIlLLpnpgNII4Tx++ukH3nrrNWprazv92X5+ftx5571MnXq+ze/R6/Xcd9/dNDc38eijTxIaGsbKlf9h7tw7eeutpeaQUFh4jG3btvDSS4uora3l+ecX8uST83n22ZeoqKhg/vwHufvu+xg9eizFxUU89dQTvP76Kzz00KOUlBznrrtuYfLkadx99300NDTw3nvvcPvtN/Phh5+bw9Hq1at47LGnSExMIiwsjB49ovnpp++57bY7ASgpKWHHjm28+OLrKIrCgw/ei1brwXPPvYK/vz8//PAdd9xxM++88z7JySmsXfsjL730HPfe+w9SU0fy+++/8u67bxIeHnHa+njiiUdITExiyZKP0Ol0vPHGKzzyyAMsX/71SdeuXPkf3nlnEffdN49Bg4bw669rWbr0nZPuv2jRy9x//zxiYnrz+ecf8/zzCxk2bDhRUdG8+eZrrF//G48//k8iInqQlZXJwoVPsGzZUu699x82/zm2lwQb4fZ279550rmDBw9IsBFub9mypQ4dc7Zs2XutCjZbtvzJoUMH+PDDz4mPN7ZK3H//PNLS9vHppx/xz38+A4Cnpyf//OczhIaGma+57767yc/Po76+jqamJiIiIomM7EFkZA+ee+4lVCrjFgFffbWCsLBu3H//Q+bn/vOfz3LRRZP59de15taPpKRkpk1rKfsFF1zE999/Zw42a9b8QLdu3TnnnFS2b9/K3r17WLVqDSEhIQDMmXMXe/fu5osvPmf+/AV88cXnTJkyjVmzrgJg9uwb2L9/L4cPp5+2Po4ezWfEiFH06BGFVqvl4YcfJzc3B4PBcNLKvp999hFXXnmNufXl+utvJj39IIcOHbS67i9/+Stjx04A4K675rJq1dfs37+XqKho+vbtx4QJ53HOOcPR6QxERvZgxIhzyczMsPnP0B4k2Ai3l5WVedK5Q4cOOKAkQjiXG264mTffdFyLzfXX39Sq92RlZeDv728ONWBc9G3w4CFs3rzJfC4mppc51AD06zfgf+/PZPz4iUyZMp2HHrqP8PAIUlNHMnr0WCZMmAhAevpBcnNzmDp1nNWzm5qayMnJNn/ds2cvq9cvuGAG77+/mL17dzNw4GB+/HE106dfiFqtJj3dGB6uuuqSk+7Z2Nho/t6mTJlu9fqAAYPOGGxuvfVOXnvtRb7+egXDhqUycuS5TJo09aRQU1lZQWHhMQYMGGh1fvDgoScFm969W7rS/P2NXXM6nXGl4OnTL2Tbti289dbr5OYeIScnmyNHchg0aMhpy9gRJNgIt6Yoivkfo8jIHuj1Oo4fP37KsCOEu5k69fxWtZg4mqIowMmr1xoMBrTalh93J/5g1+uN+xp5eHgAsGDBQm666Vb+/HMjW7duZsGC+QwaNJhXX30bg0Fh2LDh/OMf/3fSc/z9A8zHXl7W21P06BHF0KHn8NNPP+Dn509GRrq5BclgMODn58fSpR+fdE9TmUD1v++vheX3dCqzZl3FpElT2LTpD7Zv38I777zBe++9w/vvf2oV7DQa7f/KcfaNK1vK08JUrhdeeJaff/6Jiy6awejRY7n++pv47LOPKS4uOut97UlmRQm3Vl5eRlVVJQCxsXHExPQ2n6+r6/zfUoUQbZeQkEhNTTVZWdZdH3v27LIatJuXd8Tq7/eePbtQqVTExcWzb99eXnvtRXr1iuWqq67l3/9+lYcffpzt27dRXl5GfHwCubk5hIdH0LNnDD17xhAYGMhrr7140nNPdMEFM/j9919Ys+YHBgwYRK9exn9v4uMTqa2tpampyXzPnj1j+OSTZWzYsA4wdm3t2bPL6n4HDqSd9lllZaW89NJzNDc3c+GFF/PYY0+xbJlxYPDOnTusrvX39ycysgf79++1Or9//74zfj+WKisr+PrrFTzwwP8xd+4DXHjhxSQl9bFqxeosEmyEW8vNzTUfx8bGER3d0/x1QUG+I4okhGij1NRRJCQk8eSTj7JjxzZycrJ58cXnyMzM4MorrzVf19TUxGOPPUx6+kG2bv2Tl19+nvPPv4jIyB74+fnx5Zdf8Oabr5Gfn0dmZgZr1/5ITEwvgoKCmTnzCmpqaliwYD6HDx8iI+MwCxbMJy1tP3Fx8Wcs33nnTaG+voGVK//DBRfMMJ8fOfJckpKSefzxh9m+fSv5+Xm88carfPfdN+aun9mzb+D333/l008/JC/vCCtWfM66db+c9lmBgUFs3LiB555byOHDhygoyOerr1bg4eFBSkrfk66fPft6Vq5czvfff0t+fh7Ll3/Cr7+utXn/Jj8/f/z9/Vm/fh15eUfIzMzguecWkp5+kKamJpvuYS/SFSXcWnFxofk4MjKKhoZ689cFBQUkJfVxRLGEEG2g1Wp55ZU3WLToFebPn0dzcxN9+vTl1Vffsho/0qdPX5KSkrn33tsBFVOmGGc4AcTFxbNw4b95//3FfPXVF6jVaoYNS+Xll19HrVYTFRXNokXv8Pbbi7jzzlvQaDT07z+I1157i5CQ0DOWz9vbm0mTpvDTTz8waVLLwngajYaXX36TN998lSeeeJj6+np6945j4cLnGT58BACjR4/liSee5r333mXJkrfp338gf/nLbNas+eG0dfHCC6/xxhuv8Pe/30lDQwNJSck8//wrVr/AmVx22RVUVVXx7rtvUllZwZAh53DBBTNOaiU6U90/9dSzLFr0CrNnX01AQCDDhg1nzpy7+PDD96mvrz/7TexEpZzYaecG9HoDZWX27WbQatWEhPhRXl6LTmew671djTPV1YcfvsdLLz0PwDPPvIBer+fRR42zHR544GFmz77ekcUDnKu+nJ3Ule0s66q+voHS0mOEhfXAw8PT0UVzSlqt2qU/U3/+uZG4uHir9buee24hR4/m8+qrb7XqXm2tq+bmpjN+DkND/dBozt7RJC02wq1ZDmqLiIhEr9ef8jUhhHBlP/64mpycLP7xj4fp1q0bO3du56efVp9ykLSzk2Aj3FpRkXWw0emazV+XlBx3RJGEEKLT3Xffg7z++ss88sgD1NRUExXVk3vv/Yd5XZ6uRIKNcGtFRS1jbLp3D6e5uWWQ2/HjxY4okhBCdLrAwCDmz1/g6GLYhcyKEm7N1N0UEhKKp6cnfn7++Pj4AtJiI4QQXZEEG+G29Hq9uVXGcsBc9+7dATh+XIKNEEJ0NRJshNuqqCg3DxY2hRnL45qa6k6doiiEEKL9JNgIt1VeXm4+tlx/olu3cPOxdEcJIUTXIsFGuK3y8jLzsWWwCQvrZj4uLS3p1DIJIYRoHwk2wm2drsUmJCTEfFxZWdGZRRJCCNFOEmyE26qoaAk2wcHBFsctwcYy/AghnN/YscNZvXqVo4vRZgsXLuDuu29zaBlWr17F2LHDzV9fccXFLF36jgNL1Dqyjo1wW5ZdUaGhLS02liGnoqKiE0skhBDOZ/HiD/Hy8nJ0MWwmwUa4rdONsbFssbFs1RFCCHdk2T3fFUhXlHBb1l1RLX9xLf8SS7ARousqLy9j9uwruffe22loaGD16lVcccXFfP/9t1x99WWcd9653HLL39i3b4/5PY2NDSxe/BZXXnkpkyaN5sYbr+X3338DICPjMGPHDufQoYPm6x9++AGmTh2PTqcDQFEULrlkOt9++7VNzzsVvV7PK6/8m+nTJzBjxhTeeecN8/0B9uzZxdy5dzJ9+gTOO+9crrvuKqtdvsvLy3j00Ye46KLJTJo0hjvuuImdO7ebX29ububNN1/jsssuYOrUcdx22w1s2fLnactj2RW1dOk73H33bXzyyTJmzryQSZNGc++9t3PkSI75+pqaap57biEzZkxh+vQJ3Hvv7Rw8mHbG79meJNgIt3W6wcPSYiNE11dRUcG9995O9+7h/Pvfr+Dt7Q0Yl3D4+uuVPPbYU7z99vuoVCqefvoJFEUBYMGC+Xz//bf8/e//4IMPPmP8+POYP/9Bfv99HYmJSURG9mDrVmMI0Ov17Ny5nYaGeg4c2A/AwYNpVFSUM2bMeJuedyp79+6mrKyMt956j4cffoLvvvuGRYteAYxbvdx3310kJiazdOnHvP/+p/Tt259nnvknZWWlALzwwjM0Njbw+uvv8uGHnxMT05uHH/6HeV2uhQsXsHnzJh5//Cnee+8TJk2awrx5c9m4cYNNdbt//1527drB88+/wiuvvElh4TFefPE5wBjs7rvvXvLzj/Dcc6/w7rvL6N9/IHfccTPp6QfPcmf7kK4o4bZMXVEeHh74+fmZzwcFBVtcI8FGuLePD3jw6UHPs17XJ9TAyxOsF7S8b50Ph8rO/vvztSlNzO7bsgFtbTN8leFhda41qqoq+fvf7yAiIpKFC/9tNT5Ep9PxwAP/R1JSHwD+9rcbefjhBygtLaWmppr169fx3HMvM2bMOABuvPFWMjLS+eCDpYwePY4xY8axdetmZs++gYMHD6DVahk0aAg7dmxj4MDBbNy4gf79B5p/WTrT87p168aphIWFMX/+Ary8vIiPT+CWW27n5Zef5/bb76apqYmbbrqNa665DrXaWLfXXXcjq1evIi/vCKGhYRQUFJCQkEB0dE+8vLz4+9//wdSp56NWq8nPz2Pt2h9ZsuRDUlL6AfCXv8wmI+Mwn376IaNHjz1r/ep0Oh577J8EBgYBcMUVf+Gtt14DYPv2rezdu5tVq9aYW7/nzLmLvXt388UXn3fKflQSbITbMoWWkJBQVCqV+byHhwf+/gHU1FRLi41we7XNKorrzx5OIhpOboGoaLDtvbXNKquvlVOca413332T5uZm+vRJOeWg196948zHfn7+AOh0zWRmZgAwaNAQq+sHDx7GO+8sAmDs2PGsWvU1jY0NbNu2maFDzyEmphc7dmzj+utvZtOmP5g0aYpNzzudlJR+VuXu128Azc3N5OXlkpTUh4suupSVK/9DTk4WeXlHSE8/BGBeSf3GG2/lqaceY926Xxk8eBgjR45i0qRpeHl5ma+95545Vs/U6XT4+wectkyWQkNDzaEGwN/fn+Zm4/djapW56qpLrN7T1NREY2OjTfdvLwk2wi0pimIONpZdTyYhISESbIQA/DwUwn0MZ70u2PvkYBPsbdt7/Tys36s6xbnWGD58BBdddCnz5z/IpElTGTVqtNXrnp4nt0AZu4ZO/UyDQY9GY/xxOWTIOXh4eLBz5w62bdvC5MnT6NWrN59//gmFhcc4dOgATzzxtI3POzW1WnPS8wE8PDzJzc3h9ttvIjk5hREjRjJ27HiCg0O49dbrzddPmHAe55zzA5s3b2Tbti188smHLF78Nu+88z6KYvzzeOONxfj6+lk9x9QCdDYeHqdvwTMYDPj5+bN06UeneJ+HTfdvLwk2wi3V1dWaf2OynN5tEhwcQl7eESorK9HpdGi18ldFuKfZfZvb3CV0YteUrfw8aPMzASZOnMyECecxefI0nn9+IR99tNzcUnIm8fGJgHFwrqkrCmD37l3ExRlbXTw8PBgx4lw2bFjH/v17mTdvPhERkahUsHjxW/TuHUtMTK82lx3g8OFDGAwGc9DYs2cXXl5eREVF8+abrxIaGsqrr75pvn7Dht/Nx01NTbzzziKmT7+QyZOnMXnyNBoaGrj00uls2rSBc881djWVlJQwenSK+X3vvPMGarWaW2+9o11lj49PpLa2hqamJuLjE8znn3vuaRITk5g16+p23d8WMnhYuKXq6mrzcWBg4EmvWzaz1tRUn/S6EML5zZ374P8G0b5s0/VxcfGce+4YXnzxWf74Yz1HjuTy/vuL2bBhHX/969/M140ZM47Vq1cRHBxCTEwvPD09GTRoCGvW/MC4cRPbXe7i4iKeeeafZGVl8ttvP7N06btce+3f8PT0JDw8guLiIjZt+oPCwmOsW/cLL774LGAMNZ6enqSl7eP55//Fvn17OXbsKN999w11dXUMGDCI+PgERo8exwsvPMOGDesoKMjn008/4uOPPyAqKrrdZR858lySk/vw+OMPs337VvLz83jjjVf57rtvrLrkOpL8GircUlVVlfk4ICDopNcDAlr6mqurq0/ZXSWEcG4hISHcffd9LFy4gPPOm3L2NwBPPvkM77yziOeee5qammri4hJ4+unnmTRpMjqdsRtn9Oix6PV6hg1rWZ13+PARbN26mbFjJ7S73GPHTkCj0TBnzg14e/swc+YV3HDDLYBxoG5ubg5PPfU4zc3NxMTEcNttd/Lee++SlraPUaNG89RTz/Haay/xf/93P7W1NfTqFcsTTzzN4MFDAfjnP5/h3Xff4N//fobq6iqioqKZN28+F110yZmKZRONRsNrr73Ja6+9whNPPEx9fT29e8excOHzDB8+ot33t4VKOVNHn4vS6w2UldXa9Z5arZqQED/Ky2vNH35xas5QV9u3b+Xmm68D4G9/u4n7759n9fq//vVP/vOfTwH49NMV9Os3oNPLaOIM9dVVSF3ZzrKu6usbKC09RlhYjzOOn3BnWq1aPlM2amtdNTc3nfFzGBrqh0Zz9o4m6YoSbsmyxeZUXVGWLTaW1wohhHBuEmyEW6qutuyKOlWwCTzltUIIIZybBBvhls4+eLjlnLTYCCFE1yHBRrilqqpK8/GpW2ysBw8LIYToGhwebAoKCujTp89J/33xxRcAHDhwgNmzZzNkyBAmTpzI0qVLHVxi4QpaM91buqKEEKLrcPh070OHDuHl5cXatWutlrUPCAigvLycG2+8kSlTpvDkk0+ya9cunnzySYKDg5k1a5YDSy26uta02EhXlHAXbjhJVjgRe33+HB5s0tPTiYuLIzw8/KTXli1bhqenJwsWLECr1ZKQkEBubi6LFy+WYCPaxXLRPcsQ03JOBg8L96HRGJfwb2pqxNPz5L2VhOgMTU3GvaRM21e0lcODzaFDh0hMTDzla9u2bSM1NdVqOftRo0bxzjvvUFpaSlhYWGcVU7gY6wX6zjx4WMbYCFenVmvw8fGnpsa4N5qnp5dVC7oAg0GFXi8tWrZobV0pikJTUyM1NeX4+PjbvGfV6Tg82KSnp9O9e3euvfZacnJy6N27N3feeSfjxo2jsLCQ5ORkq+tNLTtHjx5tV7DRau07vMi0aJAtiwe5O2eoK1NY8fLyws/P56TXg4Jagk1NTZXdPy+t4Qz11VVIXdnuxLoKDe1GRYXKHG6EJRVqtQqD4fQbZQqTtteVn18AwcFh7Q7VDg02TU1N5OTk4OPjw7x58/D19eWbb77h1ltv5f3336ehoeGkXVFNW7m3Z/tztVpFSIjf2S9sg8DAk39IilNzZF3V1BhbbIKDg0/7WfD396empoba2poO+7y0hny2bCd1ZTvLugoN9Uev19Pc3PYNKIVoCw8PD3OXaHs5NNh4enqydetWtFqtOcAMGDCAzMxMli5dire3N01NTVbvMQUaX1/fNj/XYFCoqqpre8FPQaNRExjoQ1VVPXq9LLt9Js5QV5WVxmDj5+dPefmpt9cICAikpqaG8vKK017TGZyhvroKqSvbSV3ZTurKdm2tq/p6/VmvCQz0sak11uFdUacKKMnJyWzYsIHIyEiKi4utXjN9HRER0a7ndtSeH3q9QfYTsZGj6qq5uZm6OmNQCQgIPG0ZAgICOHbMOHjYGf5M5bNlO6kr20ld2U7qynaOrCuHdkQfPHiQoUOHsm3bNqvz+/btIzExkdTUVLZv345e35LkNm3aRFxcnAwcFm1WU1NjPj7VwOGW14yzpZqamtrV9SmEEKLzODTYJCcnk5SUxJNPPsm2bdvIzMzkmWeeYdeuXdx+++3MmjWLmpoa5s+fT0ZGBl9++SXLli1jzpw5jiy26OIs17A51eJ8JgEBLYv0Wb5HCCGE83JosFGr1bz99tsMHDiQuXPnMnPmTHbv3s37779Pnz59CAsLY8mSJWRnZzNz5kwWLVrEvHnzmDlzpiOLLbo4y+nbp1rDxsTf3998XFtbc9rrhBBCOA+Hj7EJDQ3lX//612lfHzRoEMuXL+/EEglXd7advU0sg01NjeMGDwshhLCdLPYg3I7lqsP+/qdvsfHzkxYbIYToaiTYCLdTW9vS+uLvf/r1aaQrSgghuh4JNsLtWAYbX9/TBxvLFhvZVkEIIboGCTbC7Vi2vli2ypxIuqKEEKLrkWAj3I5li41leDmRZTeV5XuEEEI4Lwk2wu1Ytr74+dnWFWW5qJ8QQgjnJcFGuB3bW2ykK0oIIboaCTbC7Vi32Jwp2LRMBZcWGyGE6Bok2Ai305auKGmxEUKIrkGCjXA7tbV1AGi1Hnh6ep72OsvQI4OHhRCia5BgI9yOqfXFz88XlUp12us8PT3NwUe6ooQQomuQYCPcjimknGl8jYnpGumKEkKIrkGCjXA7dXXGbqUzLc5nYrpGgo0QQnQNEmyEW2lubqaxsRE483YKJqYWm5qaWhRF6dCyCSGEaD8JNsKtmFprwNauKGP40emaaWpq6rByCSGEsA8JNsKtWA4CPtNUbxPL7qqaGtkIUwghnJ0EG+FWbF11+FTXyMwoIYRwfhJshFuxDDaWm1yejizSJ4QQXYsEG+FWLMOJLYOHAwIk2AghRFciwUa4FesWm9Z2Rcnqw0II4ewk2Ai3YusGmKe6RlpshBDC+UmwEW7F1g0wTaxnRUmwEUIIZyfBRriV9syKkhYbIYRwfhJshFtpfYuN5Q7fEmyEEMLZSbARbqU9LTbV1RJshBDC2UmwEW7FOtjYso5NyzWW2zEIIYRwThJshFtp7ZYK1mNsJNgIIYSzk2Aj3Ir1Jpita7GRMTZCCOH8JNgIt2IKJ56ennh4eJ71em9vH9Rq9f/eKy02Qgjh7CTYCLdi6oqyZeAwgEqlMm+9IC02Qgjh/CTYCLdi6oqyZTsFE9O1MnhYCCGcnwQb4VZM+z3ZsgGmial1R/aKEkII5yfBRriNpqYmdLpmwHrhvbPx8/MFoL6+Dr1e3yFlE0IIYR8SbITbsJ7qbXtXlOW1dXV1di2TEEII+5JgI9yG5eDf1nVFyZRvIYToKiTYCLdhOV27NYOHZZE+IYToOiTYCLfR1hYby2ulxUYIIZybBBvhNtraYmN5rbTYCCGEc5NgI9yGZWtLawYPS4uNEEJ0HRJshNuwDja2d0VJi40QQnQdEmyE27AMJa0JNtJiI4QQXYcEG+E22hpsLBfzq62VdWyEEMKZSbARbsMeC/RJi40QQjg3CTbCbVhuYtm6YCNdUUII0VVIsBFuw7rFpvWbYIIMHhZCCGcnwUa4DWmxEUII1yfBRrgNabERQgjXJ8FGuA1TKPH29kGj0dj8Pi8vL/P10mIjhBDOTYKNcBumrqjWbKcAoFKpzK020mIjhBDOzamCTXZ2NkOHDuXLL780nztw4ACzZ89myJAhTJw4kaVLlzqwhKIrM3VF+fr6tvq9pq4rCTZCCOHcnCbYNDc388ADD1BX17IAWnl5OTfeeCOxsbGsXLmSe+65h1dffZWVK1c6sKSiK1IUpc0tNiDBRgghugqtowtg8vrrr580oPM///kPnp6eLFiwAK1WS0JCArm5uSxevJhZs2Y5qKSiK2poaECv1wOtmxFlYtpWoaGhHp1Oh1brNH91hBBCWHCKFputW7eyfPlynnvuOavz27ZtIzU11eqHyKhRo8jOzqa0tLSziym6sLZugGli2cpj2aoohBDCuTj8186qqirmzZvHo48+So8ePaxeKywsJDk52epceHg4AEePHiUsLKzNz9Vq7ZvpNBq11f/F6Tmirhob683H/v7+rf7ztww2jY11aLXB9iraWclny3ZSV7aTurKd1JXtnKGuHB5sFixYwJAhQ7j44otPeq2hoQFPT0+rc15eXgA0Nja2+ZlqtYqQkNb/1m6LwECfDrmvK+rMusrL05uPQ0ODW/3nHxoabD5Wq/Ud9vk5E/ls2U7qynZSV7aTurKdI+vKocHm66+/Ztu2baxateqUr3t7e9PU1GR1zhRo2jKzxcRgUKiqsm93gkajJjDQh6qqevR6g13v7WocUVfHjpWYjz08vCgvb90gYA8Pb6t7RUR03iBi+WzZTurKdlJXtpO6sl1H1lVgoI9NLUEODTYrV66ktLSUiRMnWp1/4oknWLp0KVFRURQXF1u9Zvo6IiKiXc/W6Trmw6nXGzrs3q6mM+uqqqrafOzt7dfq5/r4tATpqqoqh/wZy2fLdlJXtpO6sp3Ule0cWVcODTYvvPACDQ0NVuemTZvGvffey4UXXsh3333H559/jl6vN6/8umnTJuLi4to1vka4H8tp2v7+re9Gst4vSqZ8CyGEs3LoSKiIiAh69+5t9R9AWFgY0dHRzJo1i5qaGubPn09GRgZffvkly5YtY86cOY4stuiCLGdFmaZut4YEGyGE6Bqceoh3WFgYS5YsITs7m5kzZ7Jo0SLmzZvHzJkzHV000cVYt9i0ZYE+2QhTCCG6AofPijrRoUOHrL4eNGgQy5cvd1BphKuwb4uNbIQphBDOyqlbbISwF2mxEUII9yDBRrgFabERQgj3IMFGuAXTBpjQ/hYb0y7hQgghnI8EG+EWLMNIe1tsLEOSEEII5yLBRrgFyzDSllWrrcfYSIuNEEI4Kwk2wi3U1BiDjY+Pr3mxx9bw9PREq/UAoLZWdvcWQghnJcFGuAVTi01bVh0GUKlU+PkZW3qkxUYIIZyXBBvhFkxjbNoyvsbE1B0l072FEMJ5SbARLk9RFHOLjeVYmdYyDSCWFhshhHBeEmyEy2toqMdgMO4yazm7qbVMoaixsZHm5ma7lE0IIYR9SbARLs+y68geLTYgU76FEMJZSbARLs+y68geLTbGe0qwEUIIZyTBRri8jmixkXE2QgjhnCTYCJdnvxablvea1sURQgjhXCTYCJdnGULaE2wsp4rLGBshhHBOEmyEy7MMIe0JNpabZ8pGmEII4Zwk2AiXZxlC2jfGpuW90mIjhBDOSYKNcHmWIcSy1aW1rMfYSIuNEEI4Iwk2wuVZhhB7bKkA0mIjhBDOSoKNcHnWY2xkurcQQrgyCTbC5VmPsZEF+oQQwpVJsBEuT1pshBDCfUiwES7PXuvYSIuNEEI4Pwk2wuVZttj4+vq2+T7WLTYSbIQQwhlJsBEuz9Rt5Ovri1rd9o+8p6cnHh4egEz3FkIIZyXBRrg8U+tKe8bXmJhabWS6txBCOCcJNsLlmVps2jO+xsQUjmTwsBBCOCcJNsKlKYpi5xYbU7CRFhshhHBGEmyES6uvr0NRFMBeLTbGezQ1NdHc3NTu+wkhhLAvCTbCpVm2rNizxebEewshhHAOEmyES7McC2PPFhvjvSXYCCGEs5FgI1xadXVLsGnPzt4mEmyEEMK5SbARLq2mptp87O8f0O77ybYKQgjh3CTYCJdm/2AjY2yEEMKZSbARLq26uiXYBARIi40QQrg6CTbCpXVki41sqyCEEM5Hgo1waZbhIyDAvoOHZVsFIYRwPhJshEuz7IqSFhshhHB9EmyES6uurjIf23tWlLTYCCGE85FgI1yadVeUvVtsJNgIIYSzkWAjXFpHrmMjLTZCCOF8tI4ugBAdydRio9Vq8fb2bvf9LIONjLERzmrTpj/4+OMP0Ol0XHPNdUycOMnRRRKi09gUbL7++utW3fSyyy5rQ1GEsD9Ti42/vz8qlard95MWG+HsfvvtF+6//24MBgMAmzdv4plnXuCCC2Y4uGRCdA6bgs3//d//2XxDlUolwUY4DdPgYXt0QwF4eHji6elJU1OTLNAnnE5VVRVPPvmoOdSY/Otf/2TUqDGEhIQ4qGRCdB6bgs3PP//c0eUQwu4URTF3F9lj4LCJn58/TU1lsqWCcDorVnxOeXkZABMnTsLb25sfflhNdXUVn376IXfd9XcHl1CIjmdTsImOjrb5hoqitLkwQthTQ0M9er0esF+LDRi7o8rLyzq0xaa+vp6MjHR6944lNFR+yxZn19zczGeffQQYW87vv/8hvLy8WLPmR/R6PStX/ofbbrsDDw9PB5dUiI7VpsHD3333HVu2bKG5udkcZBRFoa6ujl27dvH777/btZBCtIW9F+czMU357qjp3vv27eXee2+nrKwUb28fnn3231x55cwOeZZwHVu3bub48eMATJw4mV69egNw3nlTWLv2R8rKStm8+U/Gjh3vyGIK0eFaHWwWLVrEokWLCAgIQKfT4eHhgVarpaysDLVazZVXXtkR5RSi1ayDTfu3UzAxDSDW6ZppamrC09N+vwHX1NRw3313UlZWChhbnR566B+MGDGMwMBudnuOcD1r1vxoPr7ooovNxxdeeDFr1xpf+/nnNRJshMtr9To2X331FZdccglbtmzhhhtu4LzzzmPjxo2sWLGC4OBgkpKSOqKcQrSavdewMenIKd+fffaR+bduk8bGRl544QW7Pke4Fp1Ox6+/rgHA29uHMWNawsu5544xL3Xw228/nzSwWAhX0+pgU1RUxKWXXopKpaJ///7s3LkTgAEDBnD77bfzxRdf2L2QQrSFvVcdNumoKd96vZ7//OdTADQaDZ9//iXBwcEArFq1ipKS42d4t3BnaWn7qKioAGDs2PH4+PiYX/Px8WHUqNEAlJeXkZFx2BFFFKLTtDrY+Pr6mtcDiY2NJT8/n4aGBgD69u1Lfn5+q+5XWlrKgw8+yKhRoxg6dCi33XYbGRkZ5tcPHDjA7NmzGTJkCBMnTmTp0qWtLbJwU5YtNvaeFdXyDPu12GzevMncWjNu3ERSUvpx+eXGrt3m5mZWr/7Wbs8SrmXz5j/Nx6NHjz3p9dTUUebjrVs3d0qZhHCUVgebgQMH8tVXXwHQq1cvNBoNGzduBCAzM7PV4w3uuOMO8vLyWLx4MStWrMDb25sbbriB+vp6ysvLufHGG4mNjWXlypXcc889vPrqq6xcubK1xRZuqKMHDwN2nRm1Zs0P5uOLL74UgBkzLjOf+/nnNXZ7lnAtW7e2BJuRI8896fXhw0dYXCvBRri2Vg8evv3227nxxhuprq7m7bff5pJLLuH//u//GDlyJBs2bGDKlCk236u8vJyePXtyxx13mMfm3HnnnVx66aUcPnyYTZs24enpyYIFC9BqtSQkJJCbm8vixYuZNWtWa4su3ExHDR62bP2xfEZ7KIrCpk1/AODl5WUeIxEfn0BcXBzZ2dns2LGdsrIyQkND7fJM4RoaGxvZtWsHAFFR0URH9zzpmqSkZIKCgqisrGTHjm2yLIdwaa1usUlNTWXFihVccMEFADz++ONMnz6drKwszj//fB599FGb7xUSEsJLL71kDjUlJSUsXbqUyMhIEhMT2bZtG6mpqWi1Lflr1KhRZGdnU1pa2tqiCzfTUYOHAwODzMdVVZV2uWdOTjaFhccAGDZsuNW+VhMnTgaM4Ud+2xYn2r9/L01NTQCkpo485TVqtZrBg4cCxs/skSO5nVY+ITpbm9axSUlJISUlBTD+dvnUU0+1uyCPPfYY//nPf/D09OStt97C19eXwsJCkpOTra4LDw8H4OjRo4SFhbX5eVqtfTc212jUVv8Xp9dZdVVX19JNFBwcZLc/85CQYPNxbW21Xe67efNG8/GYMWOt7jl69Gjef38JANu3b+Giiy5q9/NclTv+Pdy/f6/5eOjQYaf9PA4cOIjff/8NgEOH0khOTgTcq67ayh0/V23lDHXVpmBTXV3Nn3/+SV1d3SmbNNuyV9T111/P1VdfzWeffcZdd93Fp59+SkNDw0ljdry8vABj82tbqdUqQkL8zn5hGwQG+pz9IgF0fF01Ntabj6Ojw+32Zx4VFW4+bmqqt8t99+3bZT6eOnWS1T0nTBiLVqtFp9OxbdvmDvvsuhJ3+nt46NB+8/HYsaNO+/kYNSqVN94wHh8+fIDAwKsB96qr9pK6sp0j66rVwWbdunXMnTuX+vr6U77e1k0wExONvz089dRT7Nq1i48//hhvb29zE6uJKdD4+vq2+hkmBoNCVVVdm99/KhqNmsBAH6qq6tHrZZ2IM+msuiopKbP4ypPycvtMzVarvczHRUXH7XLf7duNYyR8fHyJjOxldU+NRs3gwYPZvn07WVlZZGXlERIi42xOxR3/Hlp+drp3jz7t5zE2tmWNsR07dlJVVe92ddVW7vi5aquOrKvAQB+bWoJaHWxeeukl4uPjefjhh4mIiECtbntzU2lpKZs2beKCCy5Ao9EAxr7ghIQEiouLiYyMpLi42Oo9pq8jIiLa/FwAna5jPpx6vaHD7u1qOrquTOt6APj4+NntWZazoioqKtt935KS4xw7dhSAfv36oyiqk+45dOhQtm/fDsDu3Xtk9dizcJe/h7Z8dkwCAoKJiorm6NEC0tLSaGpqBnzcpq7sQerKdo6sq1ankqysLObOncvw4cOJiYkhOjr6pP9sVVxczD/+8Q+2bNliPtfc3ExaWhoJCQmkpqayfft280aGAJs2bSIuLq5d42uEezAN7PXz88PDw8Nu9w0IsBw8XNXu++3du8d8PGDAoFNeM3ToUPOx5ZgK4d727Wv5LJzus2OpX7/+ANTX15GXd6TDyiWEI7U62ERFRdltUbKUlBTGjh3Lk08+ybZt20hPT+ehhx6iqqqKG264gVmzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8cuzxeuzRQ6LGcx2YPldG97zIrat68l2AwceOofToMHDz7l9cK9WYbcAQMGnvX6xMSWyRiHD6d3SJmEcLRWB5s5c+bwxhtvtHqF4VNRqVS88sorjBo1irlz53LllVdSWVnJJ598QlRUFGFhYSxZsoTs7GxmzpzJokWLmDdvHjNnyk7H4swURTGHjqCgYLve28PDwzzGq7q6/S021sFm8CmviY2NNQe0/fv3yTokAoD09IPm4379Bpz1+sTElnE2EmyEq2r1GJtVq1ZRVFTE1KlTCQ0NtVpvA4xhZe3atTbfLyAggAULFrBgwYJTvj5o0CCWL1/e2mIKN1dXV4tOpwMgMDDQ7vcPDAyirq6u3V1RiqJw8GAaAN26dSciIvKU16lUKgYMGMjGjRsoKyvl2LGjREXZ3u0rXFN6+iHA2N3ao0fUWa+3DDayZ5RwVa0ONpGRkURGnvofXyGchWXgsHdXlPGegRQWHqOqqhJFUcz7p7VWeXkZlZXGliXLHzqnYgo2AAcPHpBg4+aqq6vNA4cTE5NtmsgRE9MbT09PmpqaOHz4UEcXUQiHaHWweeaZZzqiHELYlSksAAQFdUSwMd6zubmZhoYGq92UWyMzs2XD1/j4xDNem5zcx3yckZHOpEm2b18iXE9GRktXkuVn40w0Gg3x8YkcPJhGbm6ueQNjIVxJq4PN0aNHT/uaWq3G19e3Q5r+hWgNy0G9HRlsjM+qanOwycrKNB/Hxyec8dqkJBn4KVqYuqEAkpJsCzZgbBk8eDANg8FARkYG0dFxHVE8IRym1cFm0qRJZ212DwoK4m9/+xt33nlnmwsmRHtUVlaYjy2nZ9uLZXivrq5s87pKWVktLTYJCWdusendO9bcjWD527pwT5ZdSa0JNgkJLV2e6enpEmyEy2l1sHn22Wd5/PHHGTFiBDNmzKBbt26Ulpby448/8ttvv3HnnXdSW1vLW2+9RXBwMNdee21HlFuIM7IcY9MxLTYtwaY9A4gtW2zi4uLPeK1WqyUuLoFDhw6Qm5tDY2OjeYsR4X4sZ0RZtuadjeXnLCsri/POs2uxhHC4Vgeb7777josuuuiksTaXXnopTzzxBPv27ePtt98mMDCQzz77TIKNcIiO7oqy1yJ9pmATFtaN4OCQs16flJTMoUMHMBgMZGVl0Ldv/zY/W3RdBoOBw4eNs5qio3vi7+9/lne06N071nycmZl5+guF6KJavY7Nli1bmDFjxilfmzZtGn/++ScA55xzDnl5ee0rnRBtZDl4uKNmRbU8q6JN96ioKKe0tAQ4e2uNiSywJgAKCvKprzfud9eabiiAnj17mrewycrKsnvZhHC0Vgeb4OBgDh48eMrXDh48aP7Noa6urs0DKoVor84MNm1tscnObvmhcrYZUSaWXQ4yzsZ9ZWe3tLScbWzWiTw8PImK6gkYg40s9ihcTauDzcUXX8xrr73GsmXLKCoqorm5maKiIj766CMWLVrExRdfTGVlJcuWLbNaBl6IzlRd3Xmzotq6+rD1VO8zz4gykRYbASeGYts+O5ZiY2MB4y+gxcVF9iqWEE6h1WNs5s6dS2lpKc8++yzPPvus+bxarWbWrFncd999/Pjjj6SlpbFs2TK7FlYIW3X8OjaWLTZt2y/KcuBwQoJtP5zCw8MJDAyiqqrS6v3CveTkZJuPe/du/aym3r1jWb9+nfleYWHhdiubEI7W6mCj1Wp55plnuOOOO9i8eTPl5eVEREQwbNgwYmJiABg/fjzr16/H09PT7gUWwhamYOPh4YG3t/27RC1bbCxDVGtYTvW2tStKpVIRGxvHnj27KCoqpLa2Bj8/2weOCtdgGWxiY1sfbCzfk5OTwznnjLRLuYRwBq0ONia9evWiV69ep3ytI35DFqI1TN1DgYFBbd7u4ExCQlpmMFVUlLfpHqYWl6CgIEJDw2x+X1xcPHv27AIgNzfHps0PhWvJyTF2RXXv3r1VM6JMLGdGWYYkIVyBTcFm8uTJvPHGG6SkpJx1gb7WboIpREcoLzeGDXvv7G0SEBCIVqtFp9OZn9Ua1dXV5rEN8fGJrQpfcXEt3VbZ2dkSbNxMRUW5+TMXG2vbbLoTWXZfSbARrsamYDNixAj8/PzMxx3xG7AQ9lJfX09DQz1g3bJiTyqViuDgEEpKjlNeXtbq91vOamnt4M+4OMsfSjJd1920txsKoHv3cHx9/airq5VgI1yOTcHGcjG+Z599lpqaGmpra4mIiKCpqck8Q2ratGmMGDGiwworhC0sg0ZISGiHPSckpCXYtHaHb+s9olo3Xdfyt3TL2THCPVgHm7a12KhUKmJiYjh06CDHjh1Fp9Oh1bZ5ZIIQTqXV07337NnDpEmT+OijjwB4+umneemll/jmm2+44YYb+Pnnn+1eSCFao/OCjfHeTU1N1NXVtuq91gOHW9diEx3dE63WA5AWG3dkjxYbgJ49jZM9dDodRUWF7S6XEM6i1cHm5ZdfJj4+nquvvpqGhgZWrVrFNddcw5YtW7jiiit4++23O6KcQtjMcsxLR3VFAVZbIFRUVLTqvZZL2be2xUar1dKrV2/AOHhYr9e36v2ia7N3sAHjSsZCuIpWB5vdu3dzxx13EBMTw6ZNm2hoaODSSy8F4MILLzTvXyKEo1i32HRcsLG8d1lZ68bZmFps/P39CQ9v/RoipnE2zc3NHD1a0Or3i67L1Ern5eVFjx5Rbb5PTEzLrNb8fNn+RriOVgcbtVptXp9m3bp1BAYGMmjQIABqamrw9va2bwmFaKXO7oo68ZlnU1dXy7FjRwFjN1RbBuPLOBv31NzcbA4hvXvHola3+p9wM9O6YyDBRriWVv+tGDBgACtWrGDnzp18//33TJw4EZVKRWlpKYsXL2bAAJl6KhzLuivK+YJNW/aIOpHlppkyzsZ9FBTkodPpgLYPHDaRrijhqlodbObNm8emTZu45ppr0Gg03HHHHQDMmDGDnJwc5s6da+8yCtEqjmmxsX0tG+sZUa3f5wdObLGR6bruwvLPuj3jawCioqLMrYXSYiNcSavn9/Xr14+ffvqJzMxMkpKS8PX1BWDBggUMGzaM7t27272QQrSGI8bYtKbFpj1TvU1kLRv3ZK+Bw2Da5TuKgoICCgok2AjX0aYOWn9/fwYPHmwONQDTp0+XUCOcgmXIsJy5ZG9t3VahPVO9Tfz8/AkPjwAk2LgTyz/r9gYbwLwtTkVFBdXV1e2+nxDOoO0jz4RwUqZuoYCAQDw8PDrsOW0dY2NqsfHx8SUyskebn28aZ1NeXt6mbR1E12PPFhuA3r17m49lnI1wFRJshMsxhYyO7IYC632obA0WDQ0N5vEMcXHx7ZrVYr1Ds4yzcQemFpuIiEh8ff3afT/LjYylO0q4Cgk2wqU0NjZSU1MDdOzAYTAulBccHAxASclxm96Tk5ONoihA27uhTCxnRlnuPSVcU3l5OZWVlYB9WmvAusVGBhALVyHBRrgUy4DRGWO+uncPNz/XFFjOxB7ja0wsZ0bJOBvXZ+/xNWDdYpOfL11RwjVIsBEu5fjxYvOxKXR0JNMA3ubmZpu2VbDHjCiTuLiWYJSVJcHG1Vmuf9QxLTZH7HJPIRxNgo1wKZYtNt26dV6LDViHqtOxxxo2JuHh4fj5GcdZSIuN67PHrt4nCg0NNY/VkRYb4Sok2AiX4uzBJiMjHQBvb2+io3u269kqlcr8A66gIJ+GhoZ23U84t47oilKpVPTsafwcHjtWIBuqCpcgwUa4lOPHHTPGBqC4uOiM1544I0qj0bT7+aYBxIqicORIbrvvJ5yXqcXG29uHiIhIu93XtLWCTqejqKjQbvcVwlEk2AiXYj14uPPG2MDZW2xycrIwGAwAJCQk2eX5MjPKPTQ3N5nXmYmNjWvXMgEnMrXYgKxlI1yDBBvhUizDRbduHR9sLFuFzhZsMjIOm487JtjIOBtXlZeXZ+4mio2Nteu9LbtEJdgIVyDBRrgUU4uNVuthXmOmI7WmKyozs2Wqd2KivYJNywBkCTauy3p8jX0GDptER7fs8n30aIFd7y2EI0iwES7FNMame/fu5p2LO1JoaJi5W+DsLTbp5uOEhPZN9Tbp2TMGrda4l610Rbkue2+lYEm6ooSrkWAjXEZzc7N5O4XOmBEFxtWHw8K6AVBUZFuLja+vLz16RNnl+R4eHsTEGBdZy83NkVktLqojg01UVLT5WIKNcAUSbITL6Oyp3iamkFJaWkJ9ff0pr6mrqzU38yckJNm1NcnUHdXY2MixY0ftdl/hPCyDTe/esXa9t6+vrzmcS7ARrkCCjXAZlj/U7dUiYgvTdFk4/RiFzMyWbiJ7ja8xsfwNXsbZuKbcXGOwiYiIxMfH1+73j442ttocP15MY2Oj3e8vRGeSYCNchmWocFSwOd0OyYcOHTAf22tGlInlCsYyzsb1dMTmlyeKimoZZyMDiEVXJ8FGuAzLFpuoqM4LNpbTZU+3Q/LBg2nm4759+9n1+ZazZKTFxvVYd0N1TLCRKd/ClUiwES7j6FHHd0Wdbr+dtLT9gHEJ+5SUvnZ9flycdEW5MlM3FNh/DRsTCTbClUiwES7j2DHLrqjoM1xpX2frimpubuLw4UOAceCnn5+/XZ/v5+dvXmI/OzsTRVHsen/hWB05I8pEgo1wJRJshMswdUV5e/t0yuJ8Jt27h+Ph4QEYV4g9UWZmJs3NzQCkpNi3G8rE1B1VWVlJeXl5hzxDOEZnd0UdPSrBRnRtEmyES1AUhcLCY4BxXY7OWJzPRK1W06tXLABHjuSaQ4zJgQP7zcf9+vXvkDLEx8ueUa7K1BXl5eXVYV2sERGR5oUmpcVGdHUSbIRLKC0tMU9T7czxNSZJSckA6HTNVmMiAHbu3G4+HjBgUIc833oAsQQbV6HT6cytgL169bbr5peWPDw8zN2ZBQUyK0p0bRJshEs4ciTXfBwTE3OGKztGcnIf83F6+iGr10zBxsPDg/79B3bI8y1bbLKyZACxqygoyEenM7YAdlQ3lImpO6qqqpLq6uoOfZYQHUmCjXAJnTHA8kySkk4dbIqLi8jLOwIYW2u8vLw65PmWa+NkZh4+w5WiK7GeEdU5wQakO0p0bRJshEvIzc0xH5vGu3Qm6xabg+Zjy26oYcOGd9jzQ0PDzMvip6cflJlRLqIzA7sMIBauQoKNcAmd+ZvtqYSHR5iDxZ49u8ybUW7Y8Lv5mnPO6bhgAy3jfMrLyyktLenQZ4nO0RkzokykxUa4CocHm4qKCh5//HHGjx/PsGHDuOaaa9i2bZv59QMHDjB79myGDBnCxIkTWbp0qQNLK5yV6QeAl5cXkZE9Ov35KpXK3CJTU1PDoUMH0Ol0rF//G2DcaHD48JEdWoYzjfMRXZNlYLf35pcnkmAjXIXDg83999/P7t27eemll1ixYgX9+/fn5ptvJjMzk/Lycm688UZiY2NZuXIl99xzD6+++iorV650dLGFE9HpdOatDDpy5sjZDB8+wnz8xx/r2bZtCxUVFQCMHj0WT0/PDn1+YmKy+di0IKDo2nJycgBjV2NgYGCHPkuCjXAVWkc+PDc3lz/++IPPPvuMYcOGATB//nx+//13vv32W7y9vfH09GTBggVotVoSEhLIzc1l8eLFzJo1y5FFF04kJycbnU4HQFxcwlmu7jjjxk3gmWeMx9999w0HDrTsDzVt2oUd/nzLFpvDh9M7/HmiY1VXV5u7FDuje7Vbt+54eXnR2NgowUZ0aQ5tsQkJCeHdd99lwIAB5nMqlQpFUaisrGTbtm2kpqai1bbkr1GjRpGdnU1paakjinxadXV1/LRpHwfzSjEYZOBmZzp0qGWwbp8+KQ4rR1RUtHkcTU5ONr/8sgaAsLBunHfepA5/flxcAhqNBpCuKFfQmeNrwPhvb1SUcSuSo0cLZAC66LIc2mITGBjIhAkTrM59//33HDlyhLFjx/Lyyy+TnJxs9Xp4eDhg3PAwLCyszc/Wau2X6fR6PbNnX01G3M2oB/8VGivxqSugm7qS2IBmBkZ5MzKxGwNju6NWd96KuM5Ko1Fb/b+90tMPmI/79+9v1z/b1rrlljls377N6twdd9yNj493m+9pa31ptT7ExsaRmZnxvz2j9OatHtyFvT9bjpSXl2M+jo+Pt/vn+lR11bNnT7Kzs2hoaKCysoxu3brb9ZldlSt9rjqaM9SVQ4PNibZv384jjzzC5MmTmTRpEs8888xJ4xJM64CYVpltC7VaRUiIX7vKaslgMFBcXIRq+P9CmFcQ9V5B5AF5wPpCeLMQ+KUG7/oC+jTt4vyoEpKTk0lKSiImJsZh40IcKTDQxy73ycxs6XYZOfIcu/7ZttYll1zIrl1zeOeddwCYNWsWc+bcbJc/X1vqa8CA/mRmZtDc3Ex5eRF9+vQ563tckb0+W4509OgR8/GAASkd9rm2rKv4+DjWrzfO5KusLCEpKbZDntlVucLnqrM4sq6cJtisXbuWBx54gMGDB/PSSy8B4O3tTVNTk9V1pkDj6+vb5mcZDApVVXVtL+wpfPLJcp74oYSc8l1UeUZi8Is8+SJPfxo8k9nx+1dsf/8182kvv0C0f/0vYZTT27+JfpGepMaHMiwhAk8PjV3L6Qw0GjWBgT5UVdWj1xvadS9FUdi7dx9gHCPg4eFHeXmtPYrZZvfc8w+uuOIampub6dWrN5WV9e26X2vqKza2ZYzR1q07CQ/veYarXY89P1uOlpbW0hIZGRlj98/1qeqqW7eWf7cOHswgIaGvXZ/ZVbnS56qjdWRdBQb62NQS5BTB5uOPP2bhwoVMnTqVF154wdxKExkZSXFxsdW1pq8jIiLa9Uydzr4V3rt3HP/9vwGUl9ei0xkoqSpi48EidudVcbgMjjb5Uq0NR+cfBaXWAzsbfaPRBydzFDgKbCqBpSXAxga8avIIpYxefo30i/BiekoA8b2iXaKFR683tPvPITMzg8rKCgD69x9g9z/Xture3fgDwp7lsaW+kpJaxhjt3buH6dMvstvzuxJ7fLYc7fDhDMC4W31ERFSHfT+WdWW5z9qRI3ldvg7tzRU+V53FkXXl8GDz6aef8tRTT3HdddfxyCOPWP3ATk1N5fPPP0ev15sHRW7atIm4uLh2ja/pDN0CfblkRByXjLA+X1FTypGhc8jLnkxm5mGys7PYXx9BqUGPSn1C64zWm8bgJI4Bx4DNZbD4LwPwpp64uHgSEpIITDyXwB7JjEoKY1BsuNuN4dmxo2U8S0eu7NtVWO5FtX//PgeWRLRHQ0MD+fnGrqj4+PhO+0VGVh8WrsChwSY7O5t//etfTJ06lTlz5ljNdPL29mbWrFksWbKE+fPnc8stt7Bnzx6WLVvGk08+6cBSt0+wvzfB/foyqJ91E29VXTl/Hipk55Eq0kv0FDT4UKHpTrN/NCq18Y9JqSmGhnIagAMH0jhwIA311JGoPUeypBT4vQbvunzCVeXEBeoYFOXDmD7diY8McdnAs337VvPxsGGpDiyJcwgJCSE6uicFBfkcOLAfnU5nNatQdA05OVnmWUnx8Ymd9lxZy0a4Aof+i/fjjz/S3NzMmjVrWLNmjdVrM2fO5Nlnn2XJkiUsXLiQmTNn0r17d+bNm8fMmTMdVOKOE+jrxbShvZk21Pp8VV0FW9KL2J5bydHaUtTnTSEz8zD5+XkYDAZU3SwGh3r60+CZwhHgCLDuGLx+DFT1ZYQXrmW8djuJickkJSWTmJiEr6/jBtnag8FgYNu2LYCxuT4lRcYDgLHVpqAgn4aGBrKyMq3WtxFdQ2Zmpvk4IaHzgk1gYBD+/gHU1FRLsBFdlkODze23387tt99+xmsGDRrE8uXLO6lEzifQ14spQ3oxZYjpzETAOIg6OzuLVQcb2F+ynoJGP6q0EegDok+6h+ITyrGj+Xz2x8ctJ9VavG5dR5ChlF4+dfQL1zAyIZTUxMguM2B5//59lJQcB2DkyFFuN7X5dAYMGMhPP30PwP79eyXYdEGWO7R3ZrABY6vNoUMHKCw8Ji1+okuST2wX5eXlRUpKX1JOWI+upKqIPw4UsuNINellKgp1AdR49UA5ftD6wpB49EGxlBFLGbCrCj7dCWypx7v2COGqMhKDdQzt6cfUARF0C+nY5dzb4tdfW1r5Jkzo+AXwugrLcTb79u1h5swrHFga0RZZWRnm44SEpE59ds+exmCj1+spKiq06p4SoiuQYONiugX6cunIeC49Yb/FsssfJTPzSg4fTufw4cPsqvAjr6kWPE/ojvLwoSG4j7E7S4Ff8uC5h4fRI0BDcnIf+vTpS3jiUOLjkxkS77jByjqdjlWr/guARqNhwoTzHFIOZ9S3bz/UajUGg0EGEHdRmZktM6IsZyp1hhMHEEuwEV2NBBs3ERoaQmjoKFJTR5nP6fQ6dmSm82dGGfuLmsmt86FcG4HOPxqVyjgLQ6krg5oijtXAsWNHWbfuV9STFqAefiGsr8KvLpcobQV9w2BUQjDj+kXh49XxXUIbNvzO8ePGqf/jx59HWFi3Dn9mV+Hr60d8fAIZGYfJyEinoaEBb++2r3wsOpdxRpRxU9fOnBFlEhXVEmTy8/NJlTH5oouRYOPGtBo1I5J7MCK5h9X5kqrjrE87xrbcao41lGEYMozDhw9RW2tcIEwV3t94oVcgtV4DOAwcboJvDgB7G/CuyiJKU8KIsBouHBBCYmKyXXe2VhSFJUveNn99+eVX2u3erqJ//4FkZBxGp9Nx8GAaQ4YMc3SRhI0cNSPKRGZGia5Ogo04SbdAX2aOSmCmuXFnEgaDgYKCfA4dOsAXOfVkle+g0jPq5BWWtd40hPYjC8j44w0+/tetaLUeJCYmkdK3Hx59LmR8Shjnj+nf5vL9979fsm/fHsC4o/WYMePafC9XNXjwUP773y8B41o/Emy6DlM3FHT++BqQYCO6Pgk2wiZqtZqYmF7ExPRiisX5nKJ8ftt/jJ0F9WRUe1OiiUIfYPyHUTm2CwCdrpmDB9M4WFiLNulVvkqDuVuL8a3KpKe2hIHdYVxSKMMHJOLjc+atMv78cyPPPPNP89d///sDLrEKs72dc05L/8G2bVu46abbHFga0RqOnBEFmHf4Bgk2omuSYCPaJTYiiBsigrjB4tyx8kLW7iuk8ZIR5Bz0IC1tv7F5vccQ8zUqv3Dq/cKN3VjAl4dB2ZqLb9U+eqiPM9Y/h7iYaIKCgvD19aOoqIgtWzbxzTdfmZvpL7/8SmmtOY1evXrTvXs4x48Xs3PnDpqbm2U6fBeRleWYNWxMvL296datOyUlxzl6tKDTny9Ee0mwEXbXI8SP68YlwLgE4C8A1NfX8fPuPL7P2k5mrS9lHj0xeAZYvU8V3Jv64N5kNlaR/mo/QLG46VBQDKD2AH0T48dP5OGHH+u8b6qLUalUDB8+gu+//5b6+joOHNjPoEFDHF0sYYPDh417yfn4+Hb6jCiTqKhoSkqOU1JyXAafiy5Hgo3oFD4+vswY1YcZo0CrVRMc7MfWw+Ws3VfMtvwmsur8qPCMQtF4oxTuxSrUAOqxD6KOmwD6JrqryuiRFML3Rwz0CzMQF2jAhg1f3Y4p2ICxO0qCjfOrqqoyd/8kJSU7rJs1Orone/bsAuDo0QLi4xPO/AYhnIgEG+EQKhUkdfckblwUt/7vnM7QTEZ5EwWFkahHvcGxYwXU1NRQXVPNlxEjaQTQeHKcSFZmwsr/tdj7aBVSQvT0CzNwQWwzKaGy+y4Yg42JjLPpGtLTWxbSTEnp57BynDiAWIKN6Eok2AinoVVDSpiKlLBw6D/ZfL5ZDz0zYH9pM2llanKr1Ci0LAxYr1Ox87iWncehT4jeKtjUNMPBMg39w/T4uNmnvVev3oSHR1BcXMSOHdukS6ELOHjwgPm4T5+UM1zZsWRmlOjK3OyfetEVeWjg6j7NQDPQElb2l2rYX6omrVRDYZ2xyb5fmN7qvTuKNNz/uy8alUKfEAODuukZ3F3PkO56uvsqJz7KpahUKsaMGcdXX62goaGBrVs3M27cBEcXS5zBoUMtwcaRm7qeuPqwEF2JBBvR5fh7wPAIPcMjWkJMWYOKtFI1vQKsw8ruEuOGnnpFRVqZhrQyDZ8bx2YS7W9gyP9CztBwHbGBrhd0xo2byFdfrQDg999/k2Dj5EzBRqPRkJiY7LBySIuN6MpkyKVwCaHeCmOj9Zy4ddU54XpmJjQRH6Q/6T0FNWq+y/Zg4RZvHt/oc9LrigvknFGjzjVP816//jfzVHnhfJqamsxTvePi4vHy8nJYWSIiItFojL8UFBTIlG/RtUiLjXBpo6P0jI4yhpqqJthzXMPu4xp2HTd2ZTUZjEloSPeTg89fv/elm4/CsHA9w8J19AszoO1ivwr4+vqRmjqSjRs3UFh4jLS0fVa7fwvnkZlp3AIDHDtwGECr1RIZ2YOCgnxpsRFdjgQb4TYCPWFstJ6x0cYQ06SHA2Vqdh7XMqy7zurawloV6RUa0itg4zEt4IW3RmFwdz3nROgZFq6nf6geD03nfx+tNXnyNDZu3ADA999/K8HGSTnLwGGT6OieFBTkU11dRVVVJYGBQY4ukhA26WK/fwphP54aGNzdwA39mhjU3XqK+NFaNWHe1uca9Co2F2p5c7cXt6zxZeIKf+78xYfiuhP6v5zM1KnT0WqN3VE//rgavf7k1inheM4ycNhExtmIrkqCjRCnMCxczw8za1k5o4b5Ixq4ILaZcB/roNOoV7H7uIYQL+txKwfL1BwqV2NwkuEsgYFBjB07HoDjx4+zbdsWB5dInIpli01ysuNbbKKiJNiIrkm6ooQ4DZUKegcq9A5sZmZiM4oC+TUqthdr2V6kYXuRhrggw0ndUYv3ebIu34MgLwPnhOsZEalnRISOmAAFlYMady688GJ+++1nAL7+eiUjR57rmIKIU9LpdBw8mAZAjx5RBAUFO7ZAQHS0bIYpuiYJNkLYSKWCmACFmIBmLkswBp0666E56A2wvcj416qyUc0veWp+yTN2A0X6GkiN1DMyUseISD2h3p3XpDNhwnmEhIRQXl7OmjU/cv/98+jePbzTni/OLCMjnYaGBgCn2frCuitKZkaJrkO6ooRoI5UK/E7YMFunwO2DGpnYs5kAD+vgUlinZlWWB49u9GHal/58n915v1d4eXkxc+aVxjLqmvnii8877dni7Pbs2W0+HjhwsANL0iImppf5OC8v14ElEaJ1JNgIYUdeGvhLn2ZeGN/A2lk1fDi9lrsHNzIiQoen2jro9D1hleT0cjUfHfDgcLm6Q9bQueqqa8xrkyxf/gnV1dX2f4hok717W4LNoEHOEWxCQkLx9w8AICcn28GlEcJ20hUlRAfRqKFfmIF+YU3c0B8a9bD7uIYthRoyKjT0PmGV5LVHtLy334tXgTBvAyMj9YyO0jG6p4EQO5QnMrIHF1wwg2+//S+VlZV8+OF73HXX3+1wZ9FepmDj4eHh8DVsTFQqFbGxcezbt4djx45SX1+Pj8/JC1kK4WykxUaITuKlgRGReu4e0sQrE+tPGkj857GW3zNKG9SszjF2W03+jy8zPoPXd3qws1iDrh2bl99xxz3mqd8ff7yMkpLjbb+ZsIvKygpzi0jfvv3w9PR0cIlaxMbGmY+PHJHuKNE1SLARwkn8c3Q9D5zTwNgoHT7altYcBRV7i2HpXk9uXevLC9vbvtR+dHRPrrjiKgDq6+t4+ukFss2Cg+3bt9d8PHDgEMcV5BR6924JNtIdJboKCTZCOInYQIW/9GnmlYn1/Dyrhrcn1/G3vo0kh1iPxUmNsP66ohEW7fK0uTXnttvuIiQkFIDffvuZr79eabfvQbTe7t07zcfOMr7GJDY21nycmyvBRnQNMsZGCCfkqWnZwfx+rY4mTz9+ONDIhnw1IyOt55j/eUzLB2lefJAGgZ4Ko3roGBOlY3QPPSGnmFIeGhrK448/xX333QXA88//i8GDhxIfn9Ap35uwtmPHNvOxs0z1NrHsipIWG9FVSIuNEF1AhB9ckqDjX2Ma8D9hCMYmi7E5VU0qfsr14IlNPkz70o8bf/RlyV5PDpZZz7Q677zJzJx5BWDskrrzzlsoKirsjG9FWGhsbGTPnl2AsZuwR48oxxboBDExvVH9bzCYBBvRVUiwEaKL+/vQRhaMqmdqL+u1cxRU7C3V8PZeL2b/4Mfff7Oe0fLggw+bZ+AUFh7jhhuu5fDhQ51adne3d+9umpqaABg+fISDS3Myb29vc9jKzc2W8ViiS5BgI0QXF+qtMCNexzNjG1gzq4Z3p9Rxfb9GEoKsx+IM7Gb9tY+PH3957GOi4/sDcOzYUW644VrWrPmh08ru7iz37XLGYAMt3VG1tbUyi050CRJshHAhWrVxA897hjSx/KI6vr20hv9LNc60Oi/GemxOVqWap3dHUHLljwTe9C2qYTdSqw7iwQfn8o9/3EN+fp6Dvgv3sXXrn+bjc85JdWBJTi82Nt58LN1RoiuQYCOEC4v0U7giyTjTKjHYesrUugLj2By9oqKu21A0U55Ge8dWNNf/wC/1A7j0lvt5ZP48MjIOO6LoLq+6uppdu4wzomJiehMVFX2WdziG5QBimRklugKZFSWEmzq3h47yBhW/52spqG35HUcVMRBNxEAY+wA/Vubxw6tfMYYXuOyyWYwfPxEPD+dZQK4r27JlE3q9sXtw7NhxDi7N6VkGm8zMTAeWRAjbSLARwk31DTXQN7SR+4c1klGhZl2+lnUFWg6UaczXqIJiUELiWP/Nc6xfv47g4GCmT7+QydMuYvjQoajV0ujbVhs2rDcfjxkz3oElObPExCTzcWamtN4J5yfBRgg3p1JBUoiBpJAmbhnYRGGtit8LtPx6RMX2Ii3+xZup+N+1FRUVLF/5JSvCH8Fj7R4G+RZzdWo4E1MHmjfYFGenKAp//PE7YNx53VkHDgOEhoYRGhpGWVkphw+nO7o4QpyVBBshhJVIP4Wrkpu5KhlqmppQXfEAu7eP4ZtvvuLXX9fSFDMOlU8Iuphx7AB2ZIHmzz300eZx6YAALh7d36n2O3JG6emHKC4uAoyzoby9vR1cojNLSkpm8+ZNlJeXUVZWSmhomKOLJMRpSbARQpyWcTFADaNHj2X06LFUV1ezaG02qyrLaPIMNV+nDx9EGoNIOwrPLsmhV3M60xM9+OvEvvj5+Tms/M5q7dofzcfjxk10XEFslJCQxObNmwA4fDidkSPPdXCJhDg96SAXQtgsICCAh2cO4o/rPXhn/HHGe+3Dt856WrgSHEtu92m8k9WTSZNG8/e/38HXX6+kvLzcQaV2LoqimNcKUqlUTJkyzcElOrukpGTzsXRHCWcnLTZCiFZTqeCcnt6c07M3AJklJXy0sYA/irwp90kEtQbl8I80Njaybt2vrFv3KxqNhu5XvcmwGB+uHxtLn17hDv4uHCMjI928HsywYefQrVt3B5fo7BITW4JNRoYEG+HcJNgIIdotoZsXCy4xLuRWUlPJxxvzONazlu3duptXq9X7R1MSM4OfgB9/1+NbnsbQoDKuHRHJqBTn2iOpI33//bfm46lTz3dgSWyXmJiISqVCURRpsRFOT4KNEMKuuvl7MHdaPEy7E8MDt7N3725++WUtq/KCqPrfNSq1hvqwgWwENu4Aj1+z6e+Vx9VDQ5k8uBdqtcqR30KH0el0rFr1NQBarZZp0y5wbIFs5OPjS8+eMeTlHSEzMwODwSBT/YXTkmAjhOgwarWawYOHMnjwUO41KPyw+wBf7qogrSmK5oDe5uuag+LYRRy7DoB2UyZXNn7I1MlTGDBgkEv9AN24cQPHjxtbsMaPP69LzS5KSEgiL+8IDQ315Ofn0atX77O/SQgHkGAjhOgUGrWKi4b25KKhPQH489BhPt1SyM6qbtSH9DVf11SSxUdfLuGjZUuIiIhk0qQp9B93GdNS++Lp0bXXyvn884/Nx5deOtOBJWm95OQ+/PbbzwAcPHhAgo1wWhJshBAOMapPJKP6RAKwPzebDzfms7ksmOrDq83XFBUV8tny5Wi6P8yTB/T0bkrjwmQt14xNxMfLw1FFb5P09ENs3LgBgOjonowdO8HBJWqd/v0HmI/T0vYxbVrXGB8k3I8EGyGEw/Xv3Y3nencDoPza+1i3bjBr1/7E5s0b0UWfi8o7GAXI8RnNm0Xw5icVRDfs4/wENdeNT8Tfx/kXBPzoo/fNx9ddd0OXW6m5b9/+5uMDB/Y7sCRCnJkEGyGEUwkJCeGyy2Zx2WWzqK6u5tNf9/JV3jZKAgaA9n8r9HoHU+B9LktLYenyGiLr0pjaW8+cqUmEhDjfgoC5uTnm2VCBgUFceunlDi5R64WHR9C9ezjHjxezf/8+FEVBpXLNQd6ia3OdUXlCCJcTEBDAnEtG88NdffhpZiV/DdxERMUWaKppucjTn8LgEXyY14uJE0Zx6623snr1t9TW1pz+xp3s1VdfRKfTAXDttdfh4+Pr4BK1jak7qqammry8Iw4ujRCnJi02QoguITTAl/tmDOA+oKqugY9+38ePWQpHffqBVxBK+moa6utZvXo1q1evxtPTk6irXmN4fAg3TYgjKizQIeXeuHEDv/yyBoBu3brzt7/d6JBy2EPfvv357bdfAOM4GxlALJyRBBshRJcT6OvFXef35y6grrGJzzZs4WC342wLCTFv3dDkGUp+1MXkN8DXq5sIqtzH2PBabhwfS2xkcKeUs6qqkgUL5pu/vuuuv+Pr63xdZbbq189yAPF+zj//IgeWRohTc6pg8+abb7Jp0yY++ugj87kDBw6wcOFC9u3bR3BwMNdddx0333yzA0sphHAmvl6e3Dy5L0zuC4/cRXr6Plau/JrV+YHUmy7SeFIZOozvdPDtWh2BFfsYGVrB7FE9GBDfMaseNzc388gj88y7eI8aNZrLLpvVIc/qLJYzo/bu3e3Akghxek4TbD744ANee+01UlNTzefKy8u58cYbmTJlCk8++SS7du3iySefJDg4mFmzuvY/EEII+9NqtYwZM4Z+/Ybwj/pmvt6yk6/315KhSsLgFwGASq2lOnQIa4E1G/V4/3cnl/MtE8ePZ/DgoWi17f9n0WAw8M9/PsaGDesACAgI5Mkn/9XlB9uGhoYRE9ObvLxc9u3bQ2NjI15eXo4ulhBWHB5sioqKmD9/Ptu3bycuLs7qtf/85z94enqyYMECtFotCQkJ5ObmsnjxYgk2Qogz8vTQcNWYRK4aA3qDwrfb9rByTzWHDHHo/Y2tNCq1hvqGBj5avpiPli0mICCQMWPGMWLsFCaNHUVwcEirn1tTU8MTTzzMzz8bx9V4enry8suLiIiItOv35yjDhp1DXl4uzc3N7N+/l2HDhju6SEJYcfisqP379xMUFMQ333zD4MGDrV7btm0bqampVr9BjRo1iuzsbEpLSzu7qEKILkqjVnHpiDg+vGUQm27x51/90hiq24xnbQEc/t58XXV1FT/8+D0Lj05g8tJSZixYwcvvL2fr1j+prKw44zPq6+tYsWI5l156vjnUqNVq/vWvfzN8+IiO/PY61dCh55iPd+zY5sCSCHFqDm+xmTRpEpMmTTrla4WFhSQnJ1udCw8PB+Do0aOEhXWdfVaEEM5BrVYxbUgM04aAokDp5XPY/Gc/fv/9N/74Yz01wf1Q+UeAfwSFPYbyCfDxhr0Yln5KaOlm+kZ4Exsbi79/AAaDgfz8PPLzj3D48GHq6+vMz/H39+eZZ15k3LiutcLw2Vi20Ozcud2BJRHi1BwebM6koaEBT0/rFUVN/bmNjY3turdWa9/GKo1GbfV/cXpSV60j9WW7ttRVZEQYl156GZdeehnNzc18vD6HZdmFVHi0dB2pIgaiiRhIJbDp+EE2pq/GcOg7KDl4yntOmTKNBx/8P6Kje7br++lIbf1cxcXF0q1bd0pKjrNr1w5UKqXLraLcWvJ30HbOUFdOHWy8vb1pamqyOmcKNL6+bV/gSq1WddjqpIGBPh1yX1ckddU6Ul+2a09d3T9rCPcD2eXwydYyVh9WKNC1tA6ruqcY/xvyN/RvDgXFAEBkZCSTJ0/mL3/5C8OGDWvvt9Bp2lJXo0aN5Ntvv6W2tpajR3MYNGhQB5TM+cjfQds5sq6cOthERkZSXFxsdc70dURERJvvazAoVFXVnf3CVtBo1AQG+lBVVY9eb7DrvV2N1FXrSH3Zzp51FQzclerFXalQUFPHL0c0rM3Vsvu4sXVibGQdVy16i+jonkRH98THx4fPD2qp8DVQWlaL2sknQLWnroYMOYdvvzVuEfHjj2uJiUnoiCI6Dfk7aLuOrKvAQB+bWoKcOtikpqby+eefo9frzU2dmzZtIi4urt3ja3S6jvlw6vWGDru3q5G6ah2pL9vZu64ivOGaZD3XJDdRXKfi1zwtA7qF0T+sZfxMSY3Cv7d6oldUhHkbmBSjY1KMjqHheuzc821XbamrUaPGmo/Xr1/HDTfcau9iOSX5O2g7R9aVE/91g1mzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8fRRRNCuKlwX4Wr+zTTP8z6H+11BRr0irGZprRBzReHPbnjF1+mf+nPk396s75AQ6PeESW2v549Y8zbKezevYvq6moHl0iIFk4dbMLCwliyZAnZ2dnMnDmTRYsWMW/ePGbOnOnoogkhhJXzYnQsGFXP+OhmPNWK+Xxlk4pVWR7ct86XaSv9mf+HN67QmzFmzHgAdDodW7f+6eDSCNHCqbqinn322ZPODRo0iOXLlzugNEIIYbtAT5gRr2NGvI7aZthQoOW3fC0bjmqp1xlbcmp1Ko7VqjlxmECzHjy62MSiMWPG8dlnxu1vfv31ZyZNmurgEglh5FTBRgghXIGfB0yP1TE9VkeDDrYUavg134N1+VomxTRbXasocMW3fvTwNzCxp46JPXVE+imnubPzSE0dib+/PzU1Nfz66880Nzfh4eF59jcK0cEk2AghRAfy1sL4nnrG99SjM8CJ4ykPlKkpqDX+t61IywvboV+onokxOs7rqSMuyDn7rby8vJgwYRLfffcNNTXVbNq0kfHjJzq6WEI49xgbIYRwJVq1MehYqmhU0dPfOryklWl4c7cXV37nx6xvfVm0y5N9JWoUJ2vImTr1fPPxTz99f4Yrheg8EmyEEMKBRkfp+eriWj6/sJY5AxtJDrGeOpVbpeGDNC/u/c0XvZMFm3PPHYO/vz8Av/yyhtraGgeXSAgJNkII4XAqFSQGG7h1YBOfXlDHfy+p4b5hDQztrkOFMc2Mi9adtB7Okn2efJulpaLBMasBenl5cf75FwFQV1fH999/55ByCGFJxtgIIYSTifZX+GtKM39NaaasQcXvBVriAq1bcmqajcFGZ1ChVikM6qZnfLSO8dF6egcaUHVS1pk16ypWrDDOXF25cjlXXHF15zxYiNOQYCOEEE4s1FvhsoTmk85vPqZFZzCmF4OiYtdxLbuOa3ltF8T4GxjfU8e4aB1Dunfsysd9+/anX7/+pKXt58CBNHbs2Ga1A7gQnU26ooQQogua2FPHkil1XNe3idgTWnPyatR8ctCT2382rnxc03Sam9jJNddcZz5euvTdjn2YEGchwUYIIbogjRqGhOv5+9BGVsyo48sZNcwd2sCwcB0aVcso40g/A/4nLC+zs1hDfrX9+qrOP/8ievSIAuCPP35nz55ddru3EK0lwUYIIVxAr0CF2X2beXdKPT9dXsNT59YztVcz58eevCDgk396M+MrX6Z+DK/t8GBviRpDO2ZceXh4cPPNt5m//ve/n0Fxtrnpwm1IsBFCCBcT5AUXxOl4ZmwD1/W1DjY5VWrya4z/9KeXwnv7PLnxJz/O/8qPJ//05rc8LfW61j/zssuuID4+EYC9e3fz3/9+2e7vQ4i2kGAjhBBuJMBT4e7BjQzqrseyM6qsQc2qLA8eWO/D5BX+/P03H4rrbO+u0mq1PPDAQ+avn332abKzs+xYciFsI8FGCCHcSDcfhRv6N/HhBQ1suxUWjG7kvJ7NeGtauo6aDCp2FmsI9rLuTiqpV520JYSl0aPHMXPmlQA0NNQzb95cGhoaOuT7EOJ0JNgIIYSb6uYLlyXq+Pf4Bn6+ooZXJ9YxK7GJcB8Do3ro8Dxhx/GFW7yZvNKfeeu9+TrTg+OnaNGZN+8REhKSADh8OJ158+bS2NjYGd+OEACoFDcc4aXXGygrq7XrPbVaNSEhfpSX16I70680QuqqlaS+bCd1Zbsz1ZWiQG0zVrOpGvUweYU/DXrrMJMYrOfcHnpG9zCumeOhgczMDP761ytpaKgHYOTIc3n55UX4+vp1+PfVEeRzZbuOrKvQUD80mrO3x0iLjRBCCCsqFSdNEa9pUjGxp44gT+vfhTMqNHx0wJM7fvFl0kp/7l/nDWHJvP762/j4+AKwefMmrr/+GjIyDnfWtyDcmAQbIYQQZxXmo/D0mAZ+uryG96fVcsuARvqF6s17WQHU61T8XuCBl1YhNXUk77zzHgEBgeATwuHcAv7yl8t58cVnqaqqdOB3IlydbKkghBDCZho1DOxmYGC3Jm4f1ERFg4o/CzVsOqZl0zENvlro6W8MO4MGDeGDDz7l1g8PUJl4JcrRHXyc+Ttf3vQAM1LjuPyyy+nTJ8XB35FwNRJshBBCtFmwt8L5sTrOj9VhUIwzpywlJCQSPmIgVZVaiBmJJmYkjcCKhkq++OwPIhv/5JLB3bjmgnEEBQU55psQLkWCjRBCCLtQqyDc13oMjkGBYREGmgwGjlS3jH5QeQehSr6QYmCJAZZ8lk/vvHeZkahm3LjxJCQkoeqsLcqFS5FgI4QQosOoVTBveCPQyLFaFZuPadmQZ+DPY2oa8G65MLAnWQf38up3a3j11ReIjOzB8HHnEz7kQi4fEUPP7sGO+hZEFyPBRgghRKfo4adwWWIzlyWCQdGTXq7n271l/JrVQLE6CiVvo/nawsJjfHegFk3caJb9qMe7MoN4j2LGx3lx2YhedA/qmlPHRceTYCOEEKLTqVWQEmogZUIwD0wAncFAwcSVbNjwO3/88Tvbtm1B13ssACq1hsaQPhygDweOw9urdPhWHSbBs4Rxcd5cmtqLboG+Dv6OhLOQBfrsRBZwsp3UVetIfdlO6sp2zl5X9fV1fLIhm19zDGTrImkKij/9xdm/0u/Qvxk+fATDhqUyZMgw/P397VYWZ68rZ+IMC/RJi40QQgin4+Pjyy1T+3PL/77OKszj6235bMpXyCMaXWBv87X6I5vYs2c3e/bs5r33FqPWeOB3wzf08qpiVIyWS87pSe9wmXHlLiTYCCGEcHrxkcHcPyPY/HV6QS7/3V7A5qMK9Y2HKbC41tAthfqwQRwCDpXDsrXgUZlFT1Uh50QqXDg4kkFx4Z39LYhOIsFGCCFEl5McHcqD0aHGL25/jZKS42zfvo0dO7byW0kYpSdc3xwUTzbxZNfBik2gXnOMcF0e14TtJXXoYBISEtFoNCc9R3Q9EmyEEEJ0ed26dWf69AuYPv0CHgZyi/P577Z8NufryNGF0xAYj0rd8iPP4N+DY1UK/35mJgD+/v4MGjSE0GGXkxCfwEXDehIeLDOvuiIJNkIIIVxO7/Ag7r2wZVxNSWUpq7bn8UdOPZn1wVT7J6AUbDW/XlNTw8aNG9DEP4SqcBiLvjPgVZVNtKqIoZEwc2RP+ptaiIRTk2AjhBDC5XUL8uXGSX248X9f1zc2sPtgDw4n/x+7dm1n9+5dlFRUQ8RAAFQqNU1BCWSTQHYdfPkr0FBOcH0OiX41XJgAk4Ym2nX2lbAPme5tJzId0HZSV60j9WU7qSvbSV1ZUxSF7LyjLN9exs4iyDd0pzEwHpX61ONu9Cv+Btm/kJCQSL9+A4jrew7d4wczcWAM/r7ep3yPO5Dp3kIIIYQTUKlUxPeK5uFe0eZzxRXH+X5nPpuPNJBR50+ZV2/wDgFAObYTFIWMjMNkZBxGleWB5sIbUQ7W4V2VSQ91KX1DDYxJDGb8wF74ens56ltzOxJshBBCiFMID/bj+vP6cPP/WiFKS2vYdCCddWnHaJ4xnX37dpOefgi9Xo8qahgAKg9fGsMGkgPkKPD9YSCtDq+qLKLUpQwOa+TS/n4kJ/fBy0vCTkeQYCOEEELYQK1WMbJPD0b26QEzjUGmoaGBw4cPsWJfAzsqd3Bc0wOdXw/rN3r40hg2gGwgM30NK569Cq1WS0JCEv36DcAr5XyGJkYwfkAvfLw8O/8bczESbIQQQog28vb2ZuDAwQwc2HKuqLKEX/YfY0tuLYcrvSjRRLaEnaI9AOh0Og4dOsCh9HQ0c59hxSEf2FeHd3U2PdQl9AtTGJMYzLgBMRJ2WkmCjRBCCGFHEUFeXDM6lmtGt5wrrDjOL/uPUUEkx0IvIy1tP9nZmRhCE1F5+Bgv8vClIbQ/2UC2Hr47hEXYKeXC8KOM6h9LYmISHh4Sdk5Hgo0QQgjRwSKDvbl2TByMiQMuAYwbfW7el8XXhzdxuMqLEk0P9KfoxjKFnVdfTeXV6qN4eHiQlNSHyKEX4tPrHFJjAxjfL5LQANnhHCTYCCGEEA7h4+PLxNQBTExtOXesoohf9hay5UgdGVVelGiNYUepLYHqowA0NzeTlraPg5FXoI4ey4+ZoGQY8KjOI1RfRKxfA4N6eDG2T3f69eqGWq1y0HfoGBJshBBCCCfRI9iXv46L568W546WF7L5QB61DzxMWto+DhzYT05ONoT3N1+jUqnRBfammN4UA1tKYclG4JcKwgvXMkGzlaSkPiQl9SExMQkfH5/O/tY6jQQbIYQQwolFhfgxc3QKjE4xn6utreH7nQVsOfI7GZUeFCmhNPrHgvaEKeTewRQeO8Zn6z82n1KpNXjd8gtBSgW9fOrpF65lZEIowxMj8PTo+huBSrARQgghuhg/P3+uGNuHKyzONTTV8eehLP7MLCPtuEJBkz9VnlEox9Os3qsE9UIXnEgpUArsrIJPdgJbG/CqOUIYZcQFNDGwhzdT+4XSq0c4KlXX6c6SYCOEEEK4AG9PLRMH9mTiwJ5W58uveJiMjMtJT08nPf0gu8t8yW+uB48TuqO03jQGJ3MUOAr8UQyLnkzFX6kmMTGJxMQkguNTCYpKYnRyd+J7hDhl4JFgI4QQQriwkJAQUlNHkZo6ynyuqbmR7ZlH2JxZRlqRjiP13lRowmn272neH0tprILqo9QAu3btYNeuHajP64M6dTivHgVVfRl+DQWEa6tJCDIwMMqH8f0jCQnxc9B3aiTBRgghhHAznh4azk2J4tyUKKvzlbVlbDxUyPacKvKrytGMGU9WVgbHjhlnZBGWbL5W8QmlxieUGiDLAGvy4aV8CP/nE7wx9zLi4hI78TtqIcFGCCGEEAAE+XlzwbBYLhhmOjMBgOrqarKyMvjmkI608g0U6gKp8eqB4tv9pHscPfgnP//sxy23SLARQgghhBMKCAhg8OChDB5sfT63OJ9Nh4rYW1BHRqWaIl0QQwb35tJLL3dMQZFgI4QQQog26h0eRO/wIP7yv6+1WjUhIe9SXl6LTmdwSJnUDnmqEEIIIUQHkGAjhBBCCJchwUYIIYQQLqNLBBuDwcBrr73GuHHjGDx4MDfddBO5ubmOLpYQQgghnEyXCDZvvvkmn3/+OU8//TTLly9HpVJx66230tTU5OiiCSGEEMKJOH2waWpq4r333uOee+5hwoQJpKSk8PLLL1NUVMSaNWscXTwhhBBCOBGnDzYHDx6ktraWUaNaloIODAykX79+bN261YElE0IIIYSzcfp1bAoLCwHo0aOH1fnw8HCOHTvW5vtqtfbNdBqN2ur/4vSkrlpH6st2Ule2k7qyndSV7Zyhrpw+2NTX1wPg6elpdd7Ly4vKyso23VOtVnXYJl2BgT5nv0gAUletJfVlO6kr20ld2U7qynaOrCunDzbe3t6AcayN6RigsbERH5+2VZzBoFBVVWeX8ploNGoCA32oqqpHr3fMaotdhdRV60h92U7qynZSV7aTurJdR9ZVYKCPTS1BTh9sTF1QxcXF9OrVy3y+uLiYlJSUNt+3o5Z61usNDltGuquRumodqS/bSV3ZTurKdlJXtnNkXTl9h2FKSgr+/v5s3rzZfK6qqoq0tDSGDx/uwJIJIYQQwtk4fYuNp6cns2fP5oUXXiA0NJTo6Gj+/e9/ExkZydSpUx1dPCGEEEI4EZWiKIqjC3E2er2el156iS+//JKGhgZSU1N5/PHH6dmzZ5vupygKBoP9v22NRi39rzaSumodqS/bSV3ZTurKdlJXtuuoulKrVahUqrNe1yWCjRBCCCGELZx+jI0QQgghhK0k2AghhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNHRgMBl577TXGjRvH4MGDuemmm8jNzXV0sZzOm2++yXXXXWd17sCBA8yePZshQ4YwceJEli5d6qDSOV5FRQWPP/4448ePZ9iwYVxzzTVs27bN/LrUVYvS0lIefPBBRo0axdChQ7ntttvIyMgwvy51dWrZ2dkMHTqUL7/80nxO6qpFQUEBffr0Oem/L774ApC6OtHXX3/NhRdeyMCBA7nooov4/vvvza85tK4U0W6vv/66cu655yq//fabcuDAAeWmm25Spk6dqjQ2Njq6aE7j/fffV/r06aPMnj3bfK6srEwZOXKkMn/+fCUjI0NZsWKFMnDgQGXFihUOLKnj3Hjjjcoll1yibN26VcnMzFSeeuopZdCgQUpGRobU1QmuvPJK5eqrr1b27NmjZGRkKPfcc48yZswYpa6uTurqNJqampTLL79cSU5OVlauXKkoivwdPNHPP/+sDBw4UCkqKlKKi4vN/9XX10tdneDrr79W+vbtq3zwwQdKTk6OsmjRIiUlJUXZsWOHw+tKgk07NTY2KkOHDlU+/fRT87nKykpl0KBByrfffuvAkjmHwsJC5eabb1aGDBminH/++VbB5u2331bGjRunNDc3m8+9+OKLyvTp0x1RVIfKyclRkpOTle3bt5vPGQwGZerUqcorr7widWWhrKxMue+++5T09HTzuQMHDijJycnK7t27pa5O48UXX1Suu+46q2AjdWXtrbfeUi655JJTviZ11cJgMCjnnXee8uyzz1qdv+mmm5S3337b4XUlXVHtdPDgQWpraxk1apT5XGBgIP369WPr1q0OLJlz2L9/P0FBQXzzzTcMHjzY6rVt27aRmpqKVqs1nxs1ahTZ2dmUlpZ2dlEdKiQkhHfffZcBAwaYz6lUKhRFobKyUurKQkhICC+99BJJSUkAlJSUsHTpUiIjI0lMTJS6OoWtW7eyfPlynnvuOavzUlfWDh06RGJi4ilfk7pqkZWVRUFBARdffLHV+aVLlzJnzhyH15UEm3YqLCwEoEePHlbnw8PDOXbsmCOK5FQmTZrEiy++SExMzEmvFRYWEhkZaXUuPDwcgKNHj3ZK+ZxFYGAgEyZMwNPT03zu+++/58iRI4wdO1bq6jQee+wxxowZww8//MDChQvx9fWVujpBVVUV8+bN49FHHz3p3ympK2vp6emUlpZy7bXXMnr0aK655hrWr18PSF1ZysnJAaCuro6bb76Zc889lyuvvJJffvkFcHxdSbBpp/r6egCrH0gAXl5eNDY2OqJIXUZDQ8Mp6w1w+7rbvn07jzzyCJMnT2bSpElSV6dx/fXXs3LlSi655BLuuusu9u/fL3V1ggULFjBkyJCTfrsG+TtoqampiZycHGpqapg7dy7vvvsuAwcO5NZbb2XTpk1SVxZqamoAeOihh5gxYwbvvfceY8aM4c4773SKutKe/RJxJt7e3oDxL4XpGIx/eD4+Po4qVpfg7e1NU1OT1TnTh97X19cRRXIKa9eu5YEHHmDw4MG89NJLgNTV6Zi6DZ566il27drFxx9/LHVl4euvv2bbtm2sWrXqlK9LXbXw9PRk69ataLVa8w/lAQMGkJmZydKlS6WuLHh4eABw8803M3PmTAD69u1LWloa77//vsPrSlps2snUtFtcXGx1vri4+KSmOGEtMjLylPUGEBER4YgiOdzHH3/MPffcw/jx41m8eLE5LEtdtSgtLeXbb79Fr9ebz6nVahISEsx/76SujFauXElpaSkTJ05k6NChDB06FIAnnniCiy66SOrqBL6+vie1NCQnJ1NUVCR1ZcH0sy05OdnqfGJiIvn5+Q6vKwk27ZSSkoK/vz+bN282n6uqqiItLY3hw4c7sGTOLzU1le3bt1v9gNq0aRNxcXGEhYU5sGSO8emnn/LUU0/x17/+lVdeecXqH1ipqxbFxcX84x//YMuWLeZzzc3NpKWlkZCQIHVl4YUXXmD16tV8/fXX5v8A7r33Xt59912pKwsHDx5k6NChVmtHAezbt4/ExESpKwv9+vXDz8+P3bt3W51PT0+nV69ejq+rTpl75eJeeuklZcSIEcratWvN69hMmzZN1rE5wUMPPWQ13bukpERJTU1VHnroIeXw4cPKypUrlYEDBypffvmlA0vpGFlZWUr//v2Vu+66y2r9jOLiYqWqqkrqyoLBYFBuuukmZfr06crWrVuVQ4cOKffdd5+SmpqqFBQUSF2dheV0b6mrFnq9XrnyyiuVGTNmKFu3blUyMjKUf/3rX8qAAQOUgwcPSl2d4I033lCGDh2qrFq1SsnNzVXefPNNJSUlRfnzzz8dXlcSbOxAp9Mpzz//vDJq1ChlyJAhyq233qrk5eU5ulhO58RgoyiKsnv3buWqq65SBgwYoJx33nnKRx995KDSOdZbb72lJCcnn/K/hx56SFEUqStLVVVVyhNPPKGMGTNGGTRokHLTTTdZrWsjdXV6lsFGUaSuLJWWlioPP/ywMmbMGGXgwIHK1VdfrWzdutX8utSVtffee0+ZNGmS0r9/f+WSSy5R1qxZY37NkXWlUhRF6fh2ISGEEEKIjidjbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVyGBBshhFOSlSiEEG0hwUYI4XR+/vlnHnroIQA2b95Mnz59rLYtEUKI05HdvYUQTueDDz4wH/fv35/ly5ebd/IWQogzkWAjhHBq/v7+DBkyxNHFEEJ0EdIVJYRwKtdddx1btmxhy5Yt5i4oy66o119/nfPPP5+1a9cyY8YMBg4cyKWXXsrOnTvZtWsXV155JYMGDWLGjBls2rTJ6t7p6enMmTOHYcOGMWzYMO666y7y8vIc8W0KITqIBBshhFN54okn6NevH/369WP58uXU1NScdE1hYSHPPPMMt99+O6+88gqVlZXce++93H///Vx11VW89NJLGAwG7rvvPhoaGgDIzs7mL3/5C6WlpTz77LMsXLiQvLw8rrnmGkpLSzv72xRCdBDpihJCOJXExET8/f0BGDJkyCkHDdfX1/PEE08wfvx4ADIzM3nxxRdZuHAhV1xxBQB6vZ57772X7Oxs+vbty6JFi/D29uaDDz4w3//cc89lypQpLFmyxDxYWQjRtUmwEUJ0ScOGDTMfd+vWDcBqLE5wcDAAVVVVAPz555+MHDkSb29vdDodYBy/M3z4cDZu3Ng5hRZCdDgJNkKILsnU6mLJ29v7tNdXVFSwevVqVq9efdJroaGhdi2bEMJxJNgIIdxCQEAAo0eP5sYbbzzpNa1W/ikUwlXI32YhhNNRq9UYDAa73nPEiBFkZGTQt29fc5BRFIUHHniA3r1707dvX7s+TwjhGDIrSgjhdAIDA8nOzmbTpk3mMTLtdeedd3LkyBHmzJnD2rVrWb9+Pffccw/fffcdKSkpdnmGEMLxJNgIIZzOX//6Vzw8PLj11lvN07XbKyUlhU8++QSVSsW8efO49957OX78OG+88QbTpk2zyzOEEI6nUmSnOSGEEEK4CGmxEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVzG/wO7xz1RQ0Z1HQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a dataset with a known drifting baseline\n", + "df = pd.read_csv('data/sample_baseline.csv')\n", + "\n", + "# Plot the convolved signal and the known baseline\n", + "plt.plot(df['time'], df['signal'], '-', color='k', label='observed signal', lw=2)\n", + "plt.plot(df['time'], df['true_background'], '--', color='dodgerblue',\n", + " label='known baseline', lw=2)\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This chromatogram was simulated as a mixture of three peaks with a known (large) \n", + "drifting baseline (dashed blue line). But what if we don't know what the baseline is?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Subtraction using the SNIP algorithm\n", + "In reality, we don't know this baseline, so we have to use clever filtering\n", + "tricks to *infer* what this baseline signal may be and subtract it from our\n", + "observed signal. There are many ways one can do this, ranging from [fitting of polynomial functions](https://www.sciencedirect.com/science/article/pii/S0169743905001589?via%3Dihub) to [machine learning models](https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an00868h) and beyond. In `hplc-py`, we employ \n", + "a method known as [**Statistical Non-linear Iterative Peak (SNIP) clipping**](https://www.sciencedirect.com/science/article/pii/0168583X88900638). his is \n", + "implemented in the `hplc-py` package as method `correct_baseline` to the `Chromatogram` class. The SNIP algorithm works as follows.\n", + "\n", + "### Log-transformation of the signal\n", + "First, the dynamic range of the signal $S$ is reduced through the application of an [LLS operator](https://cds.cern.ch/record/264009/files/P00023745.pdf). This prevents enormous peaks \n", + "from dominating the filtering, leading to the erasure of smaller (yet still important) peaks. Mathematically, the compression $S \\rightarrow S_{LLS}'$ is achieved by computing\n", + "$$\n", + "S_{LLS} = \\ln\\left[\\ln\\left(\\sqrt{S + 1} + 1 \\right) + 1\\right] \\tag{1},\n", + "$$\n", + "where the application of the square-root operator selectively enhances small peaks while the log operator compresses the signal across orders of magnitude. Applying \n", + "this operator to signal in our simulated chromatogram yields the following" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa4ElEQVR4nO3dd3zTdf4H8Nc3O2maDroHe5Q9ZCMiKE4c5+kp95NT8TjXieJCz4GeIjgATxE5PRTPfe6Fg6EIgmxURsvs3itpm518f3+kCRQKpG3Sb8br+XjwEDO+33c/pPDqZwqiKIogIiIiikAyqQsgIiIiChYGHSIiIopYDDpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOERERRSyF1AWEAlEU4XYHZ4NomUwI2rUjDdvKf2wr/7Gt/Me28h/bqm2C0V4ymQBBEM74OgYdAG63iNrapoBfV6GQISEhBiaTGU6nO+DXjyRsK/+xrfzHtvIf28p/bKu2CVZ7JSbGQC4/c9Dh0BURERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYnEyMhERUQC53W64XE6pywgZbrcAq1UOu90Gl8u/lVdyuQIyWWD6Yhh0iIiIAkAURZhMtbBYGqUuJeRUV8vgdrdtxZVWq4fBkOjXEvLTYdAhIiIKAG/I0esToFKpO/wPdCSRywW/e3NEUYTdbkNjYx0AIC6uS4fuzaBDRETUQW63yxdy9HqD1OWEHIVC1qY9dFQqNQCgsbEOsbEJHRrG4mRkIiKiDnK5XACO/QNNHedty47Od2LQISIiChAOVwVOoNqSQYeIiIgiFoMOERERRSwGHSIiIopYXHVF1ArR7YZp4wY4qqtgmHA2VKlpUpdERNSpRFHE119/gc8//wRHjx4GACQlJWPIkGG4/fa7EB8fL22BfmLQIWpF5dtvwvjTegBA/Y/r0PWRx6FKSZG4KiKizrNw4ZNYu/Z7XHPNdNx88y1wuVzIy9uPb775Cmp1+KwuY9AhOoE5L9cTcgQBivh4OOvqUPXe28i86x6pSyMi6hS7du3A119/gcceewoXXHCR7/EJEybipptmhdXqMs7RITpB3ervAABxEych6765gCCg6fffYCsplrgyIqLOsXPndgDAyJGjTnounEIOwKBD1IKzvh5Nv+4GACRMvQCq1DToh40AAJg2bZSwMiKizqPV6gAAr7zyEgoLCySupmM4dEV0nMbfdgOiCE2PnlClZwAAYseMReOuHWjcsQNJV18bdj/NEJF0RFGEaLdLdn9BpWrX31nTpl2OdetW45tvvsI333yFzMwsTJkyFX/603QkJCQGodLgYdAhOk7T7l0AgJihw3yPxQweAkGlgqO6CvbSEqgzsySqjojCiSiKKFo4H9bDhySrQdO7D7Ln/qPNYcdgiMOrr67E7t07sWHDemzatAFvvfUGVq36AitXvo+EhARs3PgT3n33v1i27D8t3nuqx5uaGvHvf7+MPXt+h91uhyi6ce+9D2LEiJEd/jpPh0GHqJnodMKcux8AoD8u6MjUamh794F5316Y83IZdIjIf2HcAyyTyTBixEiMGDESd911L1as+DfeeOM1rF+/Dlde+UccOnQAffr0Pel9p3r8uecWoHv3Hlix4i0IgoDq6mrIZMFvHwYdombWwkKIdjtkuhioTggz2n45MO/bC0teLhKmnC9RhUQUTgRBQPbcf4Tl0FVrxowZhzfeeA325q/nwIE8jB8/4aTXnerxLVs246qrrvHVk5SUFJC6zoRBh6iZ9fBBAIC2d28Ispbz9HV9c1ADwJKXB1EUOU+HiPwiCAKEMNpzBgBqa2uQmNjlpMc3bFgPQRB8K7EOHjyAG264+aTXnerxs88+B/feOxtjx47HhAkTcf75F0KhCH4MYdAhamY55A06fU56TtOjBwSFAq7GBjiqq6BK5uaBRBSZHn30QWg0Wpx33lRkZGTCaDRiw4Yf8d13qzBjxk3o2bM3GhsbUVVVgR49erZ476keB4CHH34c06fPwM8/b8Drr7+KjRt/wlNPPRP0r4dBh6iZpXnCoKaVoCMoFFBlZsFWkA9bQQGDDhFFrIsvnoYff1yL//xnOerqaqFWq9Gv3wA8/fRzmDjxXADAwYN56NatO1QqVYv3nupxr549e6Fnz17o1q07li5dEuwvBQCDDhEAwGk0wlVfDwgCNN26t/oaTbfusBXkw1qQj9hWNtEiIooE06ZdgWnTrjjtaw4ezEPv3idPOD7V45s2/YyhQ4dDrdbAbrdj/fp1GD/+7IDVfDoMOkQAbMVFAABlSipkpxhPVzcHIFtBfidVRUQUmg4ePICff/4JV199me+x+fOfO+XjP/30A55/fiG0Wi0EQYZx4ybgpptmdUqtDDpEOBZ01FmnXjru7emxFhZwQjIRRbWHH368TY8PHPgInE538Ao6DR4BQYTjgk5211O+RpWZAQgC3I2NcJlMnVUaERF1AIMOEQC7r0cn+5SvkSlVUDZPQraXlXZKXURE1DEMOhT1RKcTtlJPcDnd0BUAqDI851/ZS0uCXhcREXUcgw5FPXtlJeByQVBroOhy+p06vQd92tijQ0QUFhh0KOo5KsoBAKq0tDNOMFb7enQYdIiIwgGDDkU9uzfopKad8bWq9EzPexh0iKgVoihKXULECFRbMuhQ1PMGHWVq6hlfq0pPBwC4GkxwNTYGtS4iCh9yuRwAYLfbJK4kcnjbUi7v2E443EeHop6jogKAZ+jqTGRqNRQJCXDW1cFeWQGtXh/s8ogoDMhkcmi1ejQ21gEAVCo199o6jtstwOXyr4dGFEXY7TY0NtZBq9VDJutYnwyDDkW9tgxdAYAyOQXOujo4qiqh7dkrmKURURgxGBIBwBd26BiZTAa3u20bBmq1el+bdgSDDkU1l8UCl9EIwHP8gz+UKSmwHMiDo7IymKURUZgRBAFxcV0QG5sAl8spdTkhQy4XEBeng9Fo9rtXRy5XdLgnx4tBh6Kad9hKbjBArtP59R7vpoEMOkTUGplMBpms9dO7o5FCIYNGo4HF4pLkGAhORqao1tZhKwBQNff82KsYdIiIQh2DDkU1h2/Flf9B51iPTkVQaiIiosBh0KGo5qiuAgAok5P9fo8yxfNal8kEt9UalLqIiCgwGHQoqjlqawEAyi5d/H6PXBcDWfOycgeHr4iIQlpIBZ1ly5ZhxowZfr3W7Xbj5ptvxksvvRTkqiiSOWuqAQCKRP+DDgCovKeYc0IyEVFIC5mgs3LlSrz44ot+vdZqteL+++/Hxo0bg1wVRTLR7W5Xjw5w3Dyd5qEvIiIKTZIvL6+oqMDDDz+MHTt2oEePHmd8/c6dO/Hwww/D4XDAYDB0QoUUqVwmI+ByAYIARXxCm96raA5G3h4hIiIKTZL36OzduxdxcXH44osvMHTo0DO+fsOGDZg6dSo+++wzxMbGdkKFFKkcNTUAAEVCAoTmc2r85e0B8l6DiIhCk+Q9OlOmTMGUKVP8fv1dd90VlDoUisBnPrlc1uK/dGpStJXb6NmmXdmlS5v//NXNK6+ctTVB+eycDj9X/mNb+Y9t5T+2VdtI3V6SB51QIJMJSEiICdr1DQZt0K4daTqzrZqaTACAmPS0Nv/5q3tkoQieoBPMz87p8HPlP7aV/9hW/mNbtY1U7cWgA8DtFmEymQN+XblcBoNBC5PJAper87e9DidStJWpuAwAIMbGoa6uqU3vdSs94cbVZEZ1SZXfx0cEAj9X/mNb+Y9t5T+2VdsEq70MBq1fvUQMOs2Cef6Gy+WW5HyPcNSZbWVvnl8jT0hs+z0VKshiYuBuaoK1sgrqrOwgVHh6/Fz5j23lP7aV/9hWbSNVe3GAkaJWe/fQ8VJ2SQLACclERKEspIOOy+VCVVUVrNxmn4LAUdO+PXS8uMSciCj0hXTQKSsrw9lnn41Vq1ZJXQpFGLfVArfZMy+n3T06iVxiTkQU6kJqjs7ChQtb/H9WVhby8vJO+fp169YFuySKUN7eHJlOB7m2fSsBuJcOEVHoC+keHaJgcdY2bxbYzt4c4Lihq1oGHSKiUMWgQ1HJ0Tyvpr3zczzv5WRkIqJQx6BDUcnZfJhnIHp0XMZ6uB2OgNRFRESBxaBDUcnbC6PsQNCR62MhqFQAjgUnIiIKLQw6FJW882o6MnQlCAIUiYme69Ux6BARhSIGHYpKvpPLOxB0AECZwJVXREShjEGHoo7ocsFZf+zk8o5QdGnu0eHKKyKikMSgQ1HHWV8PuN2AXA65Ia5D1/JtGsigQ0QUkhh0KOr45uckJEKQdexbwLtqi5ORiYhCE4MORR3vHjodnZ8DHBv6YtAhIgpNDDoUdbyhpCNLy728q64ctTUQRbHD1yMiosBi0KGoc2zFVWKHr6VI8FxDtNngbmrq8PWIiCiwGHQo6hzbLDCpw9eSqVSQx8Z6rssJyUREIYdBh6KO70DPAMzRATghmYgolDHoUFQRRfG4Hp2OD115rsNTzImIQpVC6gKIOpPbbIZoswLo2IGex/PO9XGwR4dClOh2w3LoIFxGIzS9+0CZkCB1SUSdhkGHooq310Wuj4VMrQ7INdmjQ6HMUVODsuUvw3r0iOcBmQxJV16FxEumSVsYUSfh0BVFlUCdcXU83xJznndFIcbV2IjiJc/BevQIZBoN1NnZgNuN6k8+Qt3330pdHlGnYI8ORRXvyqhA7KHjFezJyC6zGdUf/Q8NO7ZBHqNH0rRpSLjikqDciyJL5Xtvw1FeDkViIrLn/gPKLkmo/XYVqj/6H6o+/hC6/gM94YcogrFHh6KKM4B76Hj5hq7q6yC6XAG7LgC47XaUvLAIxp9+hLupCY7KCpS9vgLFn3wW0PtQ5DHv34eGLb8AgoCM2/4OZRfPdgoJF16MmOEjAJcLVR99IHGVRMHHoENRJZB76HjJDQZALgdE0XNgaADVfP4JrEcOQ6aLQeZd9yDxsisAAAVvvQPzoYMBvRdFDlEUUf35pwCA+MlToOnR0/ecIAhI+dN0QC6Hee8eWA4ekKpMok7BoENR5dgeOoHr0RFkMt9S9UBOSLZXlKNu9fcAgLSbZyFm8BB0ufxKxI0bD7jdKH/nHYhud8DuR5HDciAP1kMHISgUSLzkspOeVyYnI27C2QCAujXfd3Z5RJ2KQYeiSjDm6ADHjoII5O7Itd+sAtxuxAwZCv3QYQA8P42nXjcdMo0G1qNHYN67J2D3o8hRv3Y1AMAwYSIU8fGtviZ+yvkAgMbdu+A0GjurNKJOx6BDUUN0OuFq/gtd0SVwQ1ee6zXP0wnQyiun0QjT5p8BAImXtvyJXBEXh7QLPP9I1a3+LiD3o8jhbDCh8dfdADzDVqeizsqGpmcvwOWCadPGTqqOqPMx6FDUcNTVAqIIQaHwnU8VKN4eokBtGtiwZTPgckHTsye0vXqf9Hz6tEsBQYB5317Yy8sDck+KDA2bNwEuF9Tde0CddfoVVYazJ3res21rZ5RGJAkGHYoazuP20BEEIaDXVgRw00BRFGH82fMTtmHCxFZfo0lNgX7wYACAacvmDt+TIofpF8/nIe7s1j87x9MPHwEIAmyFBbBXVga7NCJJMOhQ1AjGiisvZQCPgbAXF8NeUgxBoUDsqNGnfJ1h7DgAQMPWXyCKYofvS+HPUVUFW2EBIAiIPWvUGV+viDVA2y8HAGDasT3Y5RFJgkGHokYwVlx5BbJHp3H3TgCAbtBgyHUxp3xd7PAREFQqOCoqYMs/2uH7Uvhr3OX57Gj79vN7eFY/4izPe3fvDlZZRJJi0KGocaxHJ7ArrjzX9IQnt9kMl8XSoWt5J5J6V1qdilyrRcyQoZ737N7VoXtSZGjctQPAsfDij5iBniFQ86GDHf7sEoUiBh2KGsfm6AR+6Eqm0UKm03nu04HhK2d9nad3RhAQM2TYGV+vb35N02+/tvueFBmcRiMszZtI6oeP8Pt9ypQUKJKSAJcLxr37glUekWQYdChqOGqrAQDKAB7oeTzf8FVd+4evGn/1BBZNj55QxMWd8fW6wYM9k0mLCuGoq2v3fSn8mfftBUQR6q7d2tRrKQgCYgYMAgDU72ZgpsjDoENRQXS7fT06yiD06ADHhq8cNe3v0Wna8xsAIOYMw1ZeiliDb3t/9upEN/O+vQAA3YCBbX6v9z3GX38LaE1EoYBBh6KCy2SC6HQCggBFQkJQ7uHbNLCdE5JFt9t37pCu/wC/3xczeAgAwLyPuyRHK1EU0dQcdGIGDmrz+3XNK6/MhUVwNTYGtDYiqTHoUFRw1HiGrRQJCRAUiqDcQ9nBYyDsZWVwNzZCUKmg6drN7/fpcjyhyJyXy7OvopS9tBQuYz0EpRKa3idvMHkm8thYqNLSAADmQ4cCXR6RpBh0KCoEe9gK6PgxEJYDeQAAba8+bQpjmh49IKjVcDc2wl5S0q57U3jz9uZp+/aDTKlq1zV0ffp4rtU8oZkoUjDoUFTw9egEYWm5l9K3l0775uhYDjYHnb592/Q+QaGAto/nPeZcrpqJRub9nj/39szP8dL29nyGvMOnRJGCQYeigm8PnaQg9uh4z7uqq23zEJIoijDneYNOvzbfW5fTHwBgzt3f5vdSeBPdbt+ycu9cm/bw9uhYjhzxzGcjihAMOhQVnN4enSAtLQcARXw8IAiAywWXydSm9zoqKz1zLBQK3yqqtvDO07EcyOM8nShjLyuF22yGoFZDnd213ddRpadDERsL0eGAtbAggBUSSYtBh6KCd+gqmHN0BLnct6KrrROSvcNWmh49IVO1fY6FumtXCGoN3BYL5+lEGe9Qk7ZnLwhyebuvIwgCYvt6JjLbCvIDURpRSGDQoYgniuKxoasg9ugAgKJ55VVbl5j7JiL3adv8HC9BJoO2Zy/PtQ5zMmk08Q5baXr36fC1Ynp6ehOtDDoUQRh0KOK5m5og2mwAgjsZGTgWpBxtXHllOdD8U3kH5lh4lxVbuGomqnj/vLUBCDr6Xp6wzB4diiQMOhTxvMNWcoOhXcNCbXHsGAj/V145amvgqK4CZDJom/+haQ/vP3TWw9wHJVo46urgrK4GBKFDnx0vfW9Pj46ttBRuh73D1yMKBQw6FPEc1VUAgrviyst7DISzDcdAeOdYqLt2g0yjbfe9NT16AoIAR1UVnMb6dl+Hwoe1uTdHnd21Q58dL1VSEuSxsYDLBXtxcYevRxQKGHQo4jkqKwEAyuTUoN/Lt8S8uRfJH5bmZeW6diwrP55cp4MqM8tzTe5uGxV8E5EDMGwFeCYka7p5duXmPB2KFAw6FPEcVc1BJyUl6PdSpnjClL2iAqIo+vUe30TkDgYdAND28szTsXKeTlSw5h8FAGgCMGzlpenew3NtBh2KEAw6FPHszT06qs4IOsnJgCBAtFnhMhrP+HqnyQR7eRmAwPxU7r2GhfN0Ip7odsNWXAQA0HTrHrDrapvPWePQFUUKBh2KeI7KCgDHeluCSaZUQpmUDACwV5Sf8fXe/XNUmVmQ6/Udvr935ZW1IJ+TSSOcvbwMot0OQa0O6GdbneUZ/rSVlnDzSYoIDDoU0dx2u+/sqc4YugIAZarnFGi/go53WXkAhq0AQJmUDLnBALhcsOVzd9tIZivw/Pmqs7tCkAXur3JVaioEhQKizdamuWZEoYpBhyKad8WVTKuFXB/bKfdUpXl+unb4FXQCMxHZSxAEaJrn6ViOcPgqktmaj2nQdG3/sQ+tEeRyqNIzAHD4iiIDgw5FtGMrrlIgCEKn3FPl69GpOO3rXOYm3xyL9u6I3JpjE5IZdCKZ9zwqdfOcmkBSeYevShh0KPwx6FBE8wWdTpif4+UdunKUn75Hx3LgACCKUKameQ4EDRDtcT06/q78ovAiiqKvRycYQUfdvE2BnUGHIgCDDkU0e/NE5M5YceXl69GpqoTodJ7ydea8XACALqf9xz60Rt2tOyCXw2U0enbNpYjjqK6C22IB5HKoMzIDfn1v0GGPDkUCBh2KaN6l26q09E67pyIxETKt1rO7bPP9W2PJ3Q+gY+dbtUamUkHT/FM+5+lEJl9vTmYWBIUi4Nf3bjxpLy+H2+EI+PWJOhODDkU0e0kJAECVkdFp9xQEAeqsbACAraiw1de4Ght983N0AQ46wLEN5HjuVWTyrbgKwrAVACgSEiDT6QC3+4xDsEShjkGHIparoQGuBhOAzu3RAQB1tjfoFLX6vOVgHiCKUKVnQBEXH/D7a3s1bxzICckRyVroCdDe4xoCTRCEY8NXpRy+ovDGoEMRy1ZWCgBQdOkCmUbTqfdWZ3mW/J4q6Hjn5wR62MrL26NjKy6C22YLyj1IOrbCfADB69EBAGVa81wz9uhQmGPQoYhlbw46qvTAT9Y8E3Xz3ibWooJWVz6Z9+wBAOhy+gfl/srELlAkJAJuN6xHjwTlHiQNZ309XCYTcNwQaTB4e0HtZaeeZ0YUDhh0KGLZSz1BR92J83O8VM2TRN2NjSdtHGivqPBMUpbLoRswMGg1+ObpHDkctHtQ5/Pun6NKS4dMrQ7afbxBx1HBoEPhjUGHIpa9tPMnInvJlEpoenqChveYB6+m33YD8GwSKNfpglaDbz8dTkiOKMHcP+d4vh6digqeeUVhjUGHIpIoirAedxaQFLR9Pbsdm5sP7vRq3L0LAKAfOiyo9/ceBWE9fJgbB0aQY0EnuJ9rZVISIJdDtNvhrKsN6r2Igimkgs6yZcswY8aM076mrq4O9957L0aNGoVRo0bh0Ucfhdls7qQKKVw4q6vhNjcBcjlUQdhQzR/avp6Jxua9e3w/ETtqanznW+mHjwjq/TVdu0FQKOBqbPCd4E7hzzt0penWPaj3EeRyqFI9O4pzng6Fs5AJOitXrsSLL754xtfNnj0bRUVFvtf//PPPeOKJJzqhQgon1oJ8AJ4N1WRKpSQ16Pr2g0yng8tkguXQQQCAadNGQBShzekPZVJyUO8vKBRQd+8BgMvMI4Wrqcm323Vn9FSqUpuHr7jyisKY5EGnoqICf/3rX/Gvf/0LPXr0OO1rd+3aha1bt2LBggUYOHAgxo0bh3/+85/4/PPPUXGGAxQpuniDjqZ7d8lqEBQK6Id5em2MP/0It82G+nVrAABxEyZ2Sg1a34RkBp1I4B22UiYlQx4TE/T7qdK9QYc9OhS+JA86e/fuRVxcHL744gsMHTr0tK/dvn07kpOT0av5L28AGD16NARBwI4dO4Jdapu5bTaILpfUZUQlm7dHJ8jd+2cSP+V8AEDDll9QvOgZuBoaoExKRuyo0Z1yf41348DDXHkVCaydND/Hy3tALYMOhbPAH5LSRlOmTMGUKVP8em1FRQXS01vucKtSqRAfH4+yDo4hKxSBzXwNu3eh6F8vQJDLoUxKgiolBcrkFKhSUqBKTYUqJRXK5GTJhlVCjVwua/HfjhBdLt+San3v3gH/s20Lfe+eiBs3HsbNm2A9cgQQBKTfeCOUGlW7r9mWtort2wdl8JxCLThskGu17b5vOArk5yoU2JuPFNF27xHwz3VrbaXN8sxvc5SXS/p9FGoi7XMVbFK3l+RBpy0sFgtUqpP/gVCr1bB1YPdXmUxAQkJgu4HlaUko1engamqCvby89TFuQYA6OQmatDRo0tOgSUuDNiMdmvR0aNJSIQ/iHhmhymDo+D/EDQcPwW21Qh4Tg7TB/SDI5QGorP0Mc/6OovQUmAuLkHbxhUgceVZgrutPWyXEoCAlBbbKSigqSxA/7PS9ppEqEJ+rUHC0+Xy0pIF9A/53ltfxbRWb0wv5AJz1dYhVC1AEcTuEcBQpn6vOIlV7hVXQ0Wg0sNvtJz1us9mg68A3oNstwmQK8MqttGz0X/YKNA4zag4XwlpWBntlJeyVlXBUVcJeUQG31QpbZRVslVUw/vb7SZdQxCdAlZoCVWqapxfI+yslNagbhUlBLpfBYNDCZLLA5erYnh0123cDALS9+6DeZA1AdR0Xd/lViGv+fV1dU4eu1da2UvfsBVtlJSp374HYrXeH7h1uAvm5kprbZoOl+ZBaV5e0Dn+OTnSqtpIb4uAyGVGZexjaHj0Des9wFUmfq84QrPYyGLR+9RKFVdBJS0vDmjVrWjxmt9tRX1+P1OZlkO3ldAb+w6pQyKBOToZWoYOyV98Wz4miCFdDAxwVFZ7gU1kOR2UV7JUVcFRWwG02w1lfB2d9Hcx5eSdfOyERyubgo0xJ9YShtDQok5IhKMLqj7UFl8vd4T+Lxv37AQCavv2C8ucaKvxtK3XPXsAvm9F08CASIrg9TicQnyupWfILAFGEPC4O0BuC9vWc2FaqtDRYTEZYikuhzO4elHuGq0j4XHUmqdorrP5FHDVqFJ5//nkUFBSgW/OpvVu2bAEAjBgR3D1JAk0QBCgMBigMBmj79DnpeVdjoy/02Cs8/3VUNvcEmZvgrKuFs64Wltz9Ld8ok0GZlOwJQM3hR5WWDlVaGuRx8RAEoZO+Qmm4bTaY9+8DAOj6D5C4mtDg3SHZeuQwRLcbgozzCsKRd4K9Jsg7Ip9ImZoKy4E82LkXE4WpkA46LpcLtbW1iI2NhUajwdChQzFixAjMmTMHjz/+OMxmM+bNm4crr7yywz06oUau10Or10Pbs9dJz7kaG2GvKIejogL2inJPEKooh72yAqLN1hyKKoDff2vxPplG0zL8pKdDlZYOZWoqZMr2T44NJeb9+yDa7VB06SLZjsihRp2VDUGlgttshr28DGqJNlCkjrEWeiYiB/vohxOpklMAAI6qyk69L1GghHTQKSsrw3nnnYcFCxbgqquugiAIWLp0KZ544gnccMMNUKvVuOiii/DQQw9JXWqn8oSg3r6f1L1EUYSzvt4TesrLjgWg8nI4qio9c4IK8n0/GfoIgmdlWFo6VOkZngCUngFVekan7NURSI27dgIA9EOHR3zvlb8EuRya7j1gOZAH6+FDDDphqrPOuDqRMsXzQ6SjkkGHwlNIBZ2FCxe2+P+srCzknTA/pUuXLn7toByNBEGAMiEByoQE6HL6t3hOdDo9E6EryjyrwMrKPGGorBRuiwWOqio4qqrQdEIvkDwuzhd61BkZUGVkQp2RCXlsbGd+aX5xW61o2L4NAKA/a6TE1YQWbe8+sBzIg+XwIcRNnCR1OdRGotMJW0kxAAmGrlKae3QYdChMhVTQoeARFAqoMzxh5XiiKMJlMsFeVtocfDzhx15WBmddLVxGIyxG40lzgeSxBqgyMz3hJzML6owsqDIzg3oa95k0bN0C0WaFMjUV2r79JKsjFHlPUrdy48CwZCstAVwuyHQ6KJKSOvXequag42psgMvcBLkuvHp5iRh0opwgCFDExUERF3dSL5DLYmkOPiWwl5bCXloCW2kJnDU1cDWYYMk1nRSAFF26QJ2ZBXVWNtRZ2VBlZUOVmhr0vWxEpxO1364CAMSdcy6HrU7gHea0l5XC1dQUdkOS0e74YavO/mzLNFrIDQa4TCY4Kqsg787PDoUXBh06JblWC23PntD2bLl3httqga20DPbSEtjLSmArKYG9pMSzEqymBs6aGjT99qvv9YJC4Rnyysry9P40hyBFXNyJt2y3+vU/wFFZAXlsLOInTQ7YdSOFPDYWytRUOCoqYD1yGDGDh0hdErWBtaD5xPJOHrbyUqakNgedCknPjyNqDwYdajOZpvUA5Gpqgq2kGPbiItiKi2ErLoKtpBiizQZbYYHvp1IveawB6mxP6NF26wbVoL4QYxLQ1iPYbEWFqP74QwBAl8uvhEyj6dDXF6m0vXrDUVEBy+FDDDphxtbJZ1ydSJWSAuuhg1xiTmGJQYcCRh4TA13fftAdNz9GdLvhqKluGX6Ki+GorICrwQTzvr0w79uLOgClACCXeyY+NwcgdVY21NldoTAYTrqfKIpo+nU3Kla+DtFuh67/QMSxN+eUNL16w7TpZ1gOHZS6FGoD0e2Grci7tLy7JDVw5RWFMwYdCipBJoMqOQWq5BTohx8748lts3mGvIqLYCsuhL3EE4JcTWbYi4tgLy5Cw3HXkRsMUKWlQxYTA7lW63l/UZFnvyB4TilPv+12boZ3Grp+OQAA66GDcNtsEXeMSKRyVJRDtNshqFRQpaVJUoNv5RX30qEwxKBDkpCp1S2GvxQKGeLjdag8VAhzfoGn56eo8Fjvj8kEi8l00nUElQrxk6egyxVXQdbKga90jDI1DYouXeCsqYE5Lxf6IdF5wGe4sXqHrbK7ShbkvZsGcuiKwhGDDoUMQRCgSkqCLD4R+mHDfY97en+K4aiugttigdtshiCXQ5mWDm3vPpIuaQ8ngiAgZuBgGH/6Eea9exh0woTU83OAY0NXLqMRbquV8+AorDDoUMjz9P70avU4DGob3cBBMP70I5r2/i51KeQnqVdcAZ75d7KYGLibmuCoqoI6O1uyWojaihMaiKKIrn9/QCaDo7wcjppqqcuhMxBFETaJzrg6kaq5V4fDVxRuGHSIoohcFwNND8+8qKY9eySuhs7EWVMNt7nJsxpR4jPKeBQEhSsGHaIo491Dp2n3TokroTPxnViekQmZUilpLb4l5lXs0aHwwqBDFGX0IzzL/M3798FlNktcDZ2OrTAfAKDuJu2wFXD8yiv26FB4YdAhijLqjEyo0tIhOp0nnVZPoSVU5ucAgLI56DiqqySuhKhtGHSIopC3V6dx53aJK6HT8a24yg6FoJMMAHDW1EB0OiWuhsh/DDpEUUg/YiQAoOn33+CyWCSuhlrjNNbDZawHBCEklnPL4+IgKJWAKMJRWyt1OUR+Y9AhikLqbt08w1d2Oxq3bZW6HGqFtSAfAKBKTQuJDfoEQfD16vAoCAonDDpEUUgQBBgmngMAMP68QeJqqDW25mErdffu0hZyHGVSc9DhPB0KIww6RFHKMHY8IJPBevgQbKWlUpdDJ/D26Gi6dZe0juP5JiRXMehQ+GDQIYpSirg4xDSfd2XasF7iauhEtuagow6poMOhKwo/DDpEUSzunEkAAOPGn7inTghxGo1w1tUBgiDpGVcn8g1dsUeHwgiDDlEUixk0BKqMDLgtFhjX/yh1OdQs1CYie3EvHQpHDDpEUUyQyZBw4cUAgLo138Fts0lcEQGhOWwFAMqkJACA22yGq6lJ4mqI/MOgQxTlDGPGQZGUBJfRiLrvv5W6HMJxE5FDaMUVAMjUasjj4gBw+IrCB4MOUZQTFAok//FPAIDab76Go65O4oooVHt0gOOXmHNCMoUHBh0ign7kKGh69YZot6Pynf9CFEWpS4paoToR2evYyiv26FB4YNAhIgiCgNTrbwDkcjTt3gXTpp+lLilqhepEZC/upUPhhkGHiAAA6uxsdLnsCgBA5dtvwpp/VOKKopP16BEAobUj8vG4xJzCDYMOEfkkXjINMUOGQnQ4ULL0X3DUVEtdUtSxHjkMAND26i1xJa3zDV1xjg6FCQYdIvIRZDKkzboVqowMuOrrUfTMAtgrKqQuK2qIbrcv6GhCNug0D13V1EB0uSSuhujMGHSIqAW5VovMOfdDmZoGZ20NCuf/E017fpe6rKhgLy+D22KBoFJBnZkldTmtUsTFQVAoALcbztpaqcshOiMGHSI6iTIhAdkPPAhNz55wm5tQ8q/FqPrf+3BZLFKXFtF8vTnde0CQyyWupnWCTMZTzCmsMOgQUasUcfHIuv8hz3lYooi6779F/iMPwrR5E5efB4nl8CEAgKZnL4krOT3vPB07D/ekMMCgQ0SnJFMqkfqXm5Axew6UKalwGY0oX/EqihbOR9Oe3xh4Asx6xLPiKlQnIntxLx0KJwqpCyCi0KcfMhS6/gNQv/o71Hz9JayHD6HkhcVQd+2GxIsugf6skSE71BIuXGYz7KUlAMKgRyeJe+lQ+GDQISK/yJRKJF4yDYbxE1D33beo/+lH2AoLUPbqK1AkJCLu3MmIO2cSFLEGqUsNS9ajRwBRhDIpGYrm86RC1bEl5gw6FPoYdIioTRTxCUi+djoSL70M9evWoP6HtXDW1aLm049R++XniB09BvGTz4OmR0+pSw0rlrxcAICmTx+JKzmzY0NXnKNDoc+voPPZZ5+16aJXXnllO0ohonAi1+vR5fIrkXDxpWjcvhV1a9fAln8Upk0/w7TpZ6i790D8uVMQO3oMZCqV1OWGPHNz0NH16y9xJWfmXXXlbmqCy9wEuS5G4oqITs2voPPggw/6fUFBEBh0iKKITKmEYdwExI4dD+vRI6hftwaN27fBln8UFStXoOp/7yPu7ImImzQZqtRUqcsNSW6bzXfkhq5fjsTVnJlMo4E8Lg4uoxGOyirIuzPoUOjyK+isXbs22HUQUZgTBAHanr2g7dkLzmunw7RxA+rX/wBndTXqvv8Wdd9/C92gwYifcj5iBg2GIOOiTy/LoYOAywVFYhcokpKkLscvqpRUWIxGOCoroAnRc7mIAD+DTmZmpt8X5HJTIlLEGpB48aVIuPBiNO35DcYf1qFpz+8wN/9SpqQifsp5MIw/G3KdTupyJeedn6PLyYEgCBJX4x9lcjIsBw/AXskjQii0tWsy8tdff42tW7fC4XD4go0oijCbzdi9ezd++umngBZJROFJkMmgHzIM+iHDYK+shPGHtTBu/AmOygpUvf8uqj/9GIbxExA/+XyoMzKkLlcy3vk52jAYtvJSpniGIbnEnEJdm4PO0qVLsXTpUsTGxsLpdEKpVEKhUKC2thYymQzXXHNNMOokojCnSklB8rXT0eWKP8D0yybUr1sDe2kpjD+sg/GHddANHISEqRdAN3Bw2PRqBILbagmr+TleypTmvXTYo0Mhrs2D5J9++ikuv/xybN26FTfeeCMmT56MTZs24aOPPkJ8fDz6hMHSSCKSjkyjQfy5U9DtifnIuvcBxAwbDggCzHv3oOSFxSh47GHUr/8BbptN6lI7hXn/PsDlgjI52beaKRyomk8xt1dyiTmFtjYHnYqKClxxxRUQBAEDBw7Erl27AACDBg3Crbfeig8//DDgRRJR5BEEAbr+A5D597vQ/elnEH/+BZBpNLCXlaLyrTdx5IF7UP3px3Aa66UuNaiafv8NABAzeKjElbSNd+jKZayPmlBK4anNQUen0/m6lbt3747i4mJYrVYAQP/+/VFcXBzYCoko4qmSU5By3Z/R47klSL52OpRJyXA3NaH26y9xdO59KF/5OmzNxyNEElEUjwWdIeEVdOQxMZDFeJaVc+NACmVtDjqDBw/Gp59+CgDo2rUr5HI5Nm3aBAA4fPgwVNwYjIjaSa7VImHqhej+9DNIv+3v0PTqDdHphGnjTyh47GGUvLgE5tz9EbO601ZUCGddHQSVCtp+/aQup82UHL6iMNDmyci33norbrrpJjQ0NGD58uW4/PLL8eCDD2LMmDHYuHEjzj///GDUSURRRJDJEHvWSMSeNRKWQwdR9/23aNy1E02//Yqm336FunsPJF58KfTDR4T1fjxNv/0KAND1HwCZMvx+SFSlpMKWf5Q9OhTS2hx0Ro0ahY8++gh5eXkAgMceewwymQw7d+7ERRdd1KZdlImIzkTbuw+0vfvAXlGOutXfw/TzBtjyj6LslaVQpqUh8aJLEDtmHGRKpdSltlnjzh0AgJghw6QtpJ248orCQbv20cnJyUFOjmcZpFqtxpNPPhnQooiITqRKTUPq9X9Bl8uvRP261ahftxaO8nJUrHwdNZ9/ioSpFyFu0rmQqdVSl+oXe0UFbIUFgEyG2BFnSV1Ou3iHrhwcuqIQ1q6g09DQgF9++QVms7nVsXKedUVEwaIwGJB05R+ReNElqF//I+pWfwdnXR2q/vcealZ9iYTzpiJ+8nmQ6/VSl3paDdu3AvAMW8ljYyWupn1UzSuv7By6ohDW5qCzfv163H333bBYLK0+z0M9iagzyDRaJF54MeKnnI+GzZtQ+83XcFRVoubzT1H33TeIm3weki++GEgIvQMnRVFEw5ZfAACxI0dJXE37eYeunDU1cDscYTl8SJGvzUFn8eLF6NmzJx566CGkpqZCFsYTAYko/MmUSsSdMwmGCWejYcc21K76GvbiItR98zXq165G40UXIGbKBRD0BqlL9bEeOQx7aQkElQr6s0ZKXU67yQ0GCGoNRJsVzppqqNLSpS6J6CRtDjpHjhzBsmXLMHJk+H5zElHkEeRyGEaPReyoMWj6dTdqvvoCtvyjKP3iKwirvoNh4jlIvPhSKBMTpS4Vxg3rAQCxZ42CXBd6PU7+EgQBqpRk2IqKYK+sYNChkNTmoJORkYHGxsZg1EJE1GGCIEA/bDhihg6DLXcv6lZ9hYb9uTD+sBamDeuPCzxdJKnPZbGgYesWAEDcOZMkqSGQlCmpsBUVwVHJwz0pNLU56Nxyyy14+eWXMXjwYGRlZQWjJiKiDhMEAfrBQ5A1cSxKNm1H5aefwHLwAIw/rINpw08wTJiIxEundXrgMf74A0S7HaqMDGh6h//ZgMdWXnGJOYWmNgedL7/8EhUVFZg6dSoSExOh0WhaPC8IAtasWROwAomIOkIQBMQMGIDsvjkw5+5HzRefwXIgD8b1P8C48SfETZyExEumdcqQltthR92a7wAACRdeHBGntHsnJHN3ZApVbQ46aWlpSEtLC0YtRERBpcvpD11Of5jzclHz5eew5O6H8cd1MG38CQZv4ElICNr969esgctohCIxEYYx44J2n87kXWLO3ZEpVLU56CxYsCAYdRARdRpdvxzo+p3Qw9M8hyfunHORcNHFAR/ScjaYULvqSwBAlyuugqBo1zZmIce3O3J1FUSXC4JcLnFFRC21+TuttLT0lM/JZDLodDoYDKGzjJOI6FR0Of2h7ZcDS14uaj7/FJaDB1C/bg3q1/8Aw7jxSLzokoCsJBJFEZXvvAW3xQJ1124wjBsfgOpDgyI+AYJCAdHphLO2FsrkZKlLImqhzUFnypQpZxxXjouLw1/+8hfcfvvtZ7ye2+3G0qVL8eGHH8JkMuGss87CvHnz0K1bt1ZfX1RUhPnz52Pnzp1QKpW4+OKLce+990Kr1bb1SyEigiAIxwJP7n7PkNaBPJg2boDp543QjzgLiRdPg6Z793bfw7RpIxq3bwPkcqT+5aawPoj0RIJMBmVyCuxlpbBXVTLoUMhp83fbwoULoVQqMWHCBCxYsACvvfYaFi5ciMmTJ0MQBNxxxx34wx/+gFdeeQXvvvvuGa+3bNkyvP/++3jqqafwwQcfQBAEzJo1C3a7/aTXNjQ0YPr06TAajfjPf/6D5cuXY8+ePbjjjjva+mUQEbUgCAJ0/Qcg+4GHkP3QI4gZNhwQRTTu2I7Cpx5H8aLnYN6/r9Vjb06ncfcuVL71JgCgy7TLOxSYQhUP96RQ1uYena+//hqXXnrpSXN1rrjiCsybNw979uzB8uXLYTAY8N577+HPf/7zKa9lt9vx+uuv4/7778ekSZ79JJYsWYKJEydi9erVuPTSS1u8/tNPP0VjYyNefvllJDavkFiyZAkmT56M7du3cxNDIgoIba/eyPz7XbCVFKP221Vo2PILzPv3wrx/L9Tde8Awbjz0w0ZA2eXU83hEtxvGn35E5btvA2439GeNROKll3XiV9F5eLgnhbI29+hs3boV06ZNa/W5Cy64AL/84jm/5ayzzkJRUdFpr5Wbm4umpiaMHTvW95jBYMCAAQOwbdu2k15/9OhR9OzZ0xdyACA9PR0JCQnYunVrW78UIqLTUmdmIf3mv6HH088gbvJ5EJRK2PKPouq9d3B07r0oePJx1Hz1Baz5+XA1NsJtt8NRUwPTls0ofPpJVL79X8DthmH8BKT/7baIGrI6nsq3xJw9OhR62tyjEx8fj9zcXEyYMOGk53Jzc6FvPjHYbDafcd5MeXk5AE9YOV5KSgrKyspOen1ycjKqqqrgcrkgb57Z39jYCKPRiJqamrZ+KS0oFIH/C0gul7X4L50a28p/bCv/BaqtFGmpyLzhBqReeSWMmzehYedOmA8egK0gH7aCfNR89kmr75NpNEi+4g9IvPDCkA85HWkrTYbn73BHRXlQ/i4NNfwebBup26vNQeeyyy7Diy++CIVCgYsuugiJiYmora3F999/j6VLl+K6666D0WjEm2++iaFDh572Wt4T0FUqVYvH1Wo1jEbjSa+/9NJLsXz5cjz99NO455574HK58MQTT0AQhFbn9PhLJhOQEMQTjg0GTpT2F9vKf2wr/wWsrRJikNz9amD61bDXG1G3bRtqftmKhrw8OBuaj8aRyRDTvRsSRgxH+rRLoArivjzB0J620uX0RiE8Q1dxsWrIImTp/Jnwe7BtpGqvNn8a7777btTU1GDhwoVYuHCh73GZTIY//vGPmDNnDr777jvs27cPb7755mmv5d1V2W63t9hh2Waztdob1K1bN7z00kt47LHH8M4770Cj0WDGjBkYNGiQryepPdxuESaTud3vPxW5XAaDQQuTyQKXyx3w60cStpX/2Fb+C25bKaAaOQ7pI8chHYDbbofodEKm0fh6b5oANNU1Bfi+wdGRthLlGsg0GritVlTmHYE6IzNIVYYGfg+2TbDay2DQ+tVL1Oago1AosGDBAtx2223YsmUL6urqkJqaihEjRiA7OxsAcM4552DDhg0n9dScyDtkVVlZia5du/oer6ysRE5OTqvvmTRpEtavX4+qqirExsZCo9Fg/PjxuOqqq9r6pbTgdAbvw+pyuYN6/UjCtvIf28p/ndJWMgWgUsDlBuAO3z+X9raVMi0dtvyjMBeVQJ4SHaeY83uwbaRqr3b3L3bt2rVFODleXFycX9fIycmBXq/Hli1bfNcymUzYt28frr/++pNev2PHDixZsgSvv/46kpv3ati6dSvq6uowfnzkbMBFRBRuVOmeoGMvO/WmskRS8CvonHfeeXj55ZeRk5Nzxg0D23Kop0qlwvXXX4/nn38eiYmJyMzMxHPPPYe0tDRMnToVLpcLtbW1vp6bXr164eDBg3j66adx8803o6ioCA888ACuu+46X28SERF1PnV6BhoA2FtZSEIkJb+CzujRoxETE+P7fSBP3J09ezacTiceeeQRWK1WjBo1CitWrIBKpUJxcTHOO+88LFiwAFdddRXi4+Px6quvYsGCBbjsssuQkJCA6667DrfddlvA6iEiorZTNU9FYI8OhRpBbOs2n/As6W5qakJqairsdjvefPNNVFRU4IILLsDo0aODUWdQuVxu1NYGfsKgQiFDQkIM6uqaOI57Bmwr/7Gt/Me28l9H28peXob8Rx6CoFKh99LlIb+cviP4uWqbYLVXYmKMX5OR2/xJ/O233zBlyhS89dZbAICnnnoKixcvxhdffIEbb7wRa9eubXu1REQU1pTJKYBcDtFuh7OuTupyiHzaHHSWLFmCnj174tprr4XVasWXX36J6dOnY+vWrbj66quxfPnyYNRJREQhTJDLoUpNBcDhKwotbQ46v/76K2677TZkZ2dj8+bNsFqtuOKKKwAAl1xyCQ4ePBjwIomIKPSp0jMAMOhQaGlz0JHJZL79cdavXw+DwYAhQ4YA8MzdOX7jPyIiih7HJiRz5RWFjjbvozNo0CB89NFH0Gg0+Oabb3DuuedCEATU1NTgtddew6BBg4JRJxERhThvj46ttETiSoiOaXOPzgMPPIDNmzdj+vTpkMvlvqXd06ZNQ35+Pu6+++5A10hERGFAneXZ+NVeXAQxjHeHpsjS5h6dAQMG4Pvvv8fhw4fRp08f6HQ6AMDjjz+OESNG+HYsJiKi6KJKS4OgUMBttcJRXQ1VSorUJRG1vUcHAPR6PYYOHeoLOQBw4YUXMuQQEUUxQS6HKjMLAGArKpC4GiKPyN3RiYiIOp062zN8ZSsqkrgSIg8GHSIiChh1V2/QKZS4EiIPBh0iIgoYdZbngGUGHQoVDDpERBQw3qDjrK2Fq7FR4mqIGHSIiCiA5DodlM0LU2zFnKdD0mPQISKigPLup2Mr5PAVSY9Bh4iIAso7IdnKJeYUAhh0iIgooNTdugMArEeOSFsIERh0iIgowLQ9ewEAHBXlnJBMkmPQISKigJLr9VCmpQEALEcOSVwNRTsGHSIiCjhtz94AAOvhwxJXQtGOQYeIiAJO08sTdCyH2aND0mLQISKigNP28szTsR49AtHlkrgaimYMOkREFHCqjEzINBqINhtsJcVSl0NRjEGHiIgCTpDJjg1fHTggcTUUzRh0iIgoKHQ5/QEA5v17Ja6EohmDDhERBYVuwEAAgCUvF6LTKXE1FK0YdIiIKCjU2V0h0+vhtlphzT8qdTkUpRh0iIgoKASZDLqcAQAA8z4OX5E0GHSIiChodAM8Qadp7x6JK6FoxaBDRERBEzNoCADAeuQwHHV1EldD0YhBh4iIgkaZmAhN7z6AKKJx+1apy6EoxKBDRERBFTt6DACgYdsWiSuhaMSgQ0REQRV71khAEGA9cgSOqiqpy6Eow6BDRERBpYiL920e2MDhK+pkDDpERBR0+lGjAQANWzl8RZ2LQYeIiIIudsRIQC6HragQttISqcuhKMKgQ0REQSfX6xEz2LPUvH7dWomroWjCoENERJ0i4fwLAACmTRvhamyUuBqKFgw6RETUKbT9cqDOzoZot6P+B/bqUOdg0CEiok4hCAISLroUAFD3/bfs1aFOwaBDRESdJnbUaKgys+C2WFD77Sqpy6EowKBDRESdRpDJkPSHPwIA6teuhr2qUuKKKNIx6BARUaeKGToM2pz+EB0OVLz5BkS3W+qSKIIx6BARUacSBAGpM26EoFLBkrufE5MpqBh0iIio06lSU5F8zbUAgOqP/gdrfr60BVHEYtAhIiJJxE2ajJghQyE6HChd9iKcRqPUJVEEYtAhIiJJCDIZ0v56C5SpaXDW1qLkX4vhMjdJXRZFGAYdIiKSjFynQ+add0Mea4CtsAAlLyyG22qRuiyKIAw6REQkKVVaGrLuuR+ymBhYjxxGyYsvwGU2S10WRQgGHSIikpw6OxtZc+6DTKuF5UAeihY8BXtFhdRlUQRg0CEiopCg6d4DWffNhSIhAfayUhQ+/U+Y9++TuiwKcww6REQUMjTduqPrw/Og6dET7qYmFC95HvU/rJO6LApjDDpERBRSFPHxyHrgQcSOGQe43ah857+oeOe/EJ1OqUujMMSgQ0REIUemVCHtr39D0lVXA4IA4w/rUPzCIp54Tm3GoENERCFJEAQkXjINGbffCUGthiV3Pwrn/xO2okKpS6MwwqBDREQhTT98BLo++AgUXbrAUVWJwqefhHHjBqnLojDBoENERCFPnZ2Nbo8+Ad2gIZ5Tz1euQPnKFXDb7VKXRiGOQYeIiMKCXK9H5uy70eXKqwBBgGnjBhQ+/ST326HTYtAhIqKwIchk6DLtcmTOuQ/y2FjYi4tQ+NTjaNi5Q+rSKEQx6BARUdiJGTAQ3eb9E5peveG2WFC27CVUffg+l6DTSRh0iIgoLCniE5B9/4NIuOAiAEDdd9+ieNGzcNbXSVwZhRLJg47b7caLL76IiRMnYujQoZg5cyYKCgpO+fqqqircc889GDNmDMaMGYO77roL5eXlnVgxERGFCkGhQPKfrkP6bX/3nJN18AAK/jkP5tz9UpdGIULyoLNs2TK8//77eOqpp/DBBx9AEATMmjUL9lPMpJ8zZw7Kysrwxhtv4I033kB5eTluv/32Tq6aiIhCSexZI9H1kXlQZWXDZTKhePFzqP12FURRlLo0kpikQcdut+P111/HnXfeiUmTJiEnJwdLlixBRUUFVq9efdLrTSYTtm3bhlmzZmHAgAEYMGAA/va3v2Hv3r2oq2NXJRFRNFOlpqHrQ48gdtx4wO1G9Uf/Q+myl+Aym6UujSQkadDJzc1FU1MTxo4d63vMYDBgwIAB2LZt20mvV6vV0Ol0+Oyzz9DY2IjGxkZ8/vnn6N69O+Li4jqzdCIiCkEytRppM2chZcYNEBQKNO3aicInH4etuEjq0kgiCilv7p1bk56e3uLxlJQUlJWVnfR6tVqN+fPn45///CdGjhwJQRCQnJyMt99+GzJZxzKbQhH4zCeXy1r8l06NbeU/tpX/2Fb+i7S2SjrvPMT06IHil1/y7aacceNMxI0f3+FrR1pbBZvU7SVp0LFYLAAAlUrV4nG1Wg2j0XjS60VRRF5eHoYPH46//vWvcLlcWLJkCe644w6899570Ov17apDJhOQkBDTrvf6w2DQBu3akYZt5T+2lf/YVv6LpLZKOGswkl9YhAOLlqB+968oeXU53KWF6H7jXyBTKjt8/Uhqq84gVXtJGnQ0Gg0Az1wd7+8BwGazQas9uUG+/vprvPvuu/jhhx98oWb58uWYPHkyPv74Y9xwww3tqsPtFmEyBX4MVy6XwWDQwmSywOVyB/z6kYRt5T+2lf/YVv6L3LaSIX32HCg+/QTVX36Bsq9WoT7vILLvuBOK+Ph2XTFy2yo4gtVeBoPWr14iSYOOd8iqsrISXbt29T1eWVmJnJyck16/Y8cO9OjRo0XPTVxcHHr06IH8/PwO1eJ0Bu/D6nK5g3r9SMK28h/byn9sK/9FalslXnEVVF27o/z112A5eBCH5z2GjFtvh7ZP33ZfM1LbKlikai9JBxhzcnKg1+uxZcsW32Mmkwn79u3DyJEjT3p9eno6CgoKYLPZfI9ZLBYUFxejW7dunVIzERGFJ/3wEej68DyoMjLgMtaj6PlnUL9uDZegRzhJg45KpcL111+P559/HmvXrkVubi7mzJmDtLQ0TJ06FS6XC1VVVbBarQCAK6+8EgBw9913Izc31/d6lUqFq666SsKvhIiIwoEqLQ1d//EYYkeNBlwuVL77NireWAG3g6egRyrJp4zPnj0bV199NR555BFMnz4dcrkcK1asgEqlQllZGc4++2ysWrUKgGc11rvvvgtRFHHDDTfgpptuglKpxHvvvQeDwSDxV0JEROFAptEg7W+3Iemaaz2noG/aiKJnFsBRUyN1aRQEgsg+O7hcbtTWNgX8ugqFDAkJMaira+I47hmwrfzHtvIf28p/0dpWTfv2ouzVV+BubIRcH4v0W2+HLqf/ad8TrW3VXsFqr8TEGL8mI0veo0NERCSVmAED0e3Rx6Hu2g2uxgYUL34Odau/47ydCMKgQ0REUU3ZJQnZDz7sOzqi6oP3UP76a3Cf4sxFCi8MOkREFPVkKhXSZs5C8nV/BmQyNGzehKJnnoajlvN2wh2DDhEREQBBEJBw/gXIuud+yPR62AryUfjkEzAfyJO6NOoABh0iIqLj6HL6o9sj86DOzoarwYTiRc+ifv2PUpdF7cSgQ0REdAJlUjKyH3wE+pHN++28tRIV/10J0emUujRqIwYdIiKiVsjUaqTfchuSrroaEAQYf/oRxYuehdNkkro0agMGHSIiolMQBAGJl0xDxp13Q6bVwnLwAI48/hgajxyVujTyE4MOERHRGeiHDEXXfzwKZWoanLW1+P3Bh2HatlXqssgPDDpERER+UKVnoOs/HkXMoEFw22wofnkpqj//FKKbuyOHMgYdIiIiP8ljYtB1zr3IuOIyAEDtl5+j7N/L4LbZJK6MToVBh4iIqA0EuRw9Zt6IjJv/CsjlaNyxHUULn+KhoCGKQYeIiKgd4ieeg+z7HoQ81gBbUREKn/4nLEcOS10WnYBBh4iIqJ20ffqg6yPzoMrMgstoRPGzC2Daslnqsug4DDpEREQdoOzSBV0fehgxQ4dBdDpR/tq/Uf3px5ykHCIYdIiIiDpIptEi447ZSLj4UgBA7ddfomz5y5ykHAIYdIiIiAJAkMmQ/MdrkHbzLAgKBRp37mg+Ab1W6tKiGoMOERFRABnGTUDWfXMhj42FrbAAhfOfgDWfOylLhUGHiIgowLS9W05SLnp2ARp37ZC6rKjEoENERBQEyi5JyH7wYegGDoJot6N02VLUfvcNRFGUurSowqBDREQUJHKtFpmz5yBu8hRAFFH94Qeo+O8bEJ1OqUuLGgw6REREQSTI5Uj58wwkX/dnQBBg2vATSv61GK6mJqlLiwoMOkREREEmCAISzr8AGXfMhqBWw7x/H4oWzoejukrq0iIegw4REVEn0Q8bjuy5/4AiIQH2slIUzn8S1qNHpC4rojHoEBERdSJN127IfuhRqLKy4Wowoei5hWjctVPqsiIWgw4REVEnUyYmInvuP45bkfUS6taslrqsiMSgQ0REJAG5VovMO+9G3DnnAqKIqvffQeX77/CMrABj0CEiIpKIoFAgZcYNSPrjnwAA9WtWo/SVpTwjK4AYdIiIiCQkCAISL74E6X+7DYJCgaZdO1H03EI4jUapS4sIDDpEREQhIHb0GGTd+wBkMTGw5R9F4YInYS8vl7qssMegQ0REFCK0ffqi6z8ehTI5Bc7qahQufAqWw4ekLiusMegQERGFEFVqGrIfegTq7j3gbmxE8aJn0bh7l9RlhS0GHSIiohCjMBiQfd9c6AYN8Sw/f/lF1P/0o9RlhSUGHSIiohAk02iQ+ffZMEyYCIgiKv+7EtWff8rTz9uIQYeIiChECQoFUm+cicRplwEAar/8HBVvvgHR5ZK4svDBoENERBTCBEFA0pV/RMr1f/Gcfr7xJ5S+/CL32vETgw4REVEYiD93CjJuvxOCUomm335F8fPPwNlgkrqskMegQ0REFCb0w0f49tqxHj2CogXzYa+qlLqskMagQ0REFEa0vfug64MPQ9GlCxyVFSha8BSshQVSlxWyGHSIiIjCjCo9A10fehTq7Gy4TCYUP7cQ5gN5UpcVkhh0iIiIwpAiPh5Z9z8IbZ++cFssKFn8HBp37ZC6rJDDoENERBSm5LoYZM65DzHDhkN0OlG6bCmMGzdIXVZIYdAhIiIKYzKVChm3/d23sWDFyhWo/e4bqcsKGQw6REREYU6Qy5F640wkXHgxAKD6ww9Q/clH3EUZDDpEREQRQRAEJF9zLZL+eA0AoHbVV6h8+78Q3W6JK5MWgw4REVEESbz4UqTMuBEQBBjX/4Dy/7wK0emUuizJMOgQERFFmPhJ5yJ91q2AXI6Grb+gdNlLcNvtUpclCQYdIiKiCBQ7egwy/36X78iIkiXPw2WxSF1Wp2PQISIiilAxg4cgc859kGm1sBw8gOJFz8LV2Ch1WZ2KQYeIiCiC6fr2Q9Z9cyHT62HLP4qi55+B0xQ9h4Ey6BAREUU4TbfuyL7/Qcjj4mAvLkLRs0/DUVsjdVmdgkGHiIgoCqgzs5D9wENQJCbCUV6O4mcXwlFdJXVZQcegQ0REFCVUqWnIfvBhKFNS4aiuQtEzC2CvKJe6rKBi0CEiIooiysQuyLr/QajSM+Csq0XRswthKy2VuqygYdAhIiKKMsqEBE/YycyCy1iP4ucWwFZSInVZQcGgQ0REFIUUBgOy75sLddducDU0oPi5hbAWFkhdVsAx6BAREUUpeWwssu65H+ruPeBqbEDxomcjLuww6BAREUUxuV6PrHvuh6ZHT7ibmlD8fGSFHQYdIiKiKCfX6ZA55z5oevWG29wcdgrypS4rIBh0iIiIyBN27r4Xmp69PGFn8XMR0bMjedBxu9148cUXMXHiRAwdOhQzZ85EQUHrDfvSSy+hX79+rf566KGHOrlyIiKiyCLXaj09Oz17eYaxFj0LW1Gh1GV1iORBZ9myZXj//ffx1FNP4YMPPoAgCJg1axbsrRwnP3PmTGzcuLHFr7vvvhsajQY33HCDBNUTERFFlmNhxzNnp2jRs7AVF0ldVrtJGnTsdjtef/113HnnnZg0aRJycnKwZMkSVFRUYPXq1Se9PiYmBsnJyb5fFosF//73v/Hggw8iJydHgq+AiIgo8si1Ws8wVo+ecDc2enp2SsNznx1Jg05ubi6ampowduxY32MGgwEDBgzAtm3bzvj+hQsXok+fPrj22muDWSYREVHUketikHn3vVB36+7ZZ+f5Z2AvC78dlBVS3ry83HO+Rnp6eovHU1JSUFZWdtr3/v7771i7di3efPNNyGQdz2sKReAzn1wua/FfOjW2lf/YVv5jW/mPbeW/aGorRVwsut//AAqeXQhrYSGKFz2H7g/9A6rUVL+vIXV7SRp0LBYLAEClUrV4XK1Ww2g0nva9K1euxNChQ1v0BrWXTCYgISGmw9c5FYNBG7RrRxq2lf/YVv5jW/mPbeW/qGmrhBjEzX8Cv//jUViKilG06FkMfvpJqJOT23QZqdpL0qCj0WgAeObqeH8PADabDVrtqRvEbDZj9erVmDdvXkDqcLtFmEzmgFzreHK5DAaDFiaTBS6XO+DXjyRsK/+xrfzHtvIf28p/0dlWcmTfNxf5Tz8FW0UFfnt4Hro/9DAU8fFnfmeQ2stg0PrVSyRp0PEOWVVWVqJr166+xysrK087uXjDhg1wu92YOnVqwGpxOoP3YXW53EG9fiRhW/mPbeU/tpX/2Fb+i7q2iolF5r1zUfTMfNgrKpD/7DPIfuAhyPV6v94uVXtJOsCYk5MDvV6PLVu2+B4zmUzYt28fRo4cecr37dixAwMHDoTBYOiMMomIiAiAMjERWffOhTw+HvbSEhQveR6u5mkooUrSoKNSqXD99dfj+eefx9q1a5Gbm4s5c+YgLS0NU6dOhcvlQlVVFaxWa4v35ebmom/fvhJVTUREFL1UKSnIuucByPWxsBXko/SlF+BuZe+7UCH5lPHZs2fj6quvxiOPPILp06dDLpdjxYoVUKlUKCsrw9lnn41Vq1a1eE91dTXi/RgXJCIiosBTZ2Qgc869kGm1sBzIQ9nylyE6nVKX1SpBFEVR6iKk5nK5UVvbFPDrKhQyJCTEoK6uKbrGcduBbeU/tpX/2Fb+Y1v5j211jPlAHkpeWATRbkfs6DFI++stEE7Y8iVY7ZWYGOPXZGTJe3SIiIgoPOn69kP6rXcAcjkatm5B5XtvI9T6Txh0iIiIqN30Q4YibeYsQBBg/GEdar/8XOqSWmDQISIiog4xjBmLlD/PAADUfPEZ6tetkbiiYxh0iIiIqMPiJ09Blyv+AACofO8dNOw485mVnYFBh4iIiAIicdrliJs0GRBFlL/2b5gP5EldEoMOERERBYYgCEj5vxmIGT4CotOJ0qX/grWoUNKaGHSIiIgoYASZDOmzboWmdx+4zWYULlkMe12dZPUw6BAREVFAyVQqZN55N1Rp6XDW1qJ223bJapH0UE8iIiKKTPKYGGQ98BAsv/+KpLPPRoNNms0V2aNDREREQaEwGJAwaRIUOq1kNTDoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYjHoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLEEURVHqIqQmiiLc7uA0g1wug8slzdH04YZt5T+2lf/YVv5jW/mPbdU2wWgvmUyAIAhnfB2DDhEREUUsDl0RERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBp0gcLvdePHFFzFx4kQMHToUM2fOREFBgdRlhZxly5ZhxowZLR7bv38/rr/+egwbNgznnnsuVqxYIVF10quvr8djjz2Gc845ByNGjMD06dOxfft23/Nsq2Nqampw//33Y+zYsRg+fDj+9re/4dChQ77n2VatO3r0KIYPH45PPvnE9xjbqqWSkhL069fvpF8ffvghALbXiT777DNccsklGDx4MC699FJ88803vuckayuRAu6ll14Sx40bJ/7444/i/v37xZkzZ4pTp04VbTab1KWFjDfeeEPs16+feP311/seq62tFceMGSM+/PDD4qFDh8SPPvpIHDx4sPjRRx9JWKl0brrpJvHyyy8Xt23bJh4+fFh88sknxSFDhoiHDh1iW53gmmuuEa+99lrxt99+Ew8dOiTeeeed4oQJE0Sz2cy2OgW73S5eddVVYt++fcWPP/5YFEV+D7Zm7dq14uDBg8WKigqxsrLS98tisbC9TvDZZ5+J/fv3F1euXCnm5+eLS5cuFXNycsSdO3dK2lYMOgFms9nE4cOHi++++67vMaPRKA4ZMkT86quvJKwsNJSXl4s333yzOGzYMPGiiy5qEXSWL18uTpw4UXQ4HL7HFi1aJF544YVSlCqp/Px8sW/fvuKOHTt8j7ndbnHq1KniCy+8wLY6Tm1trThnzhzxwIEDvsf2798v9u3bV/z111/ZVqewaNEiccaMGS2CDtvqZK+88op4+eWXt/oc2+sYt9stTp48WVy4cGGLx2fOnCkuX75c0rbi0FWA5ebmoqmpCWPHjvU9ZjAYMGDAAGzbtk3CykLD3r17ERcXhy+++AJDhw5t8dz27dsxatQoKBQK32Njx47F0aNHUVNT09mlSiohIQGvvvoqBg0a5HtMEASIogij0ci2Ok5CQgIWL16MPn36AACqq6uxYsUKpKWloXfv3myrVmzbtg0ffPABnnnmmRaPs61OlpeXh969e7f6HNvrmCNHjqCkpASXXXZZi8dXrFiBW265RdK2YtAJsPLycgBAenp6i8dTUlJQVlYmRUkhZcqUKVi0aBGys7NPeq68vBxpaWktHktJSQEAlJaWdkp9ocJgMGDSpElQqVS+x7755hsUFhbi7LPPZludwqOPPooJEybg22+/xfz586HT6dhWJzCZTHjggQfwyCOPnPT3FNvqZAcOHEBNTQ3+/Oc/Y/z48Zg+fTo2bNgAgO11vPz8fACA2WzGzTffjHHjxuGaa67BunXrAEjbVgw6AWaxWACgxT9QAKBWq2Gz2aQoKWxYrdZW2w1A1Lfdjh078I9//APnnXcepkyZwrY6hRtuuAEff/wxLr/8ctxxxx3Yu3cv2+oEjz/+OIYNG3bST94AvwdPZLfbkZ+fj8bGRtx999149dVXMXjwYMyaNQubN29mex2nsbERADB37lxMmzYNr7/+OiZMmIDbb79d8rZSnPkl1BYajQaA5xvE+3vA8wep1WqlKissaDQa2O32Fo95vwF0Op0UJYWENWvW4L777sPQoUOxePFiAGyrU/EOMTz55JPYvXs33n77bbbVcT777DNs374dX375ZavPs61aUqlU2LZtGxQKhe8f6UGDBuHw4cNYsWIF2+s4SqUSAHDzzTfjD3/4AwCgf//+2LdvH9544w1J24o9OgHm7QqurKxs8XhlZeVJ3XbUUlpaWqvtBgCpqalSlCS5t99+G3feeSfOOeccvPbaa77wzLY6pqamBl999RVcLpfvMZlMhl69evm+79hWHh9//DFqampw7rnnYvjw4Rg+fDgAYN68ebj00kvZVq3Q6XQn9UT07dsXFRUVbK/jeP9969u3b4vHe/fujeLiYknbikEnwHJycqDX67FlyxbfYyaTCfv27cPIkSMlrCz0jRo1Cjt27GjxD9bmzZvRo0cPdOnSRcLKpPHuu+/iySefxP/93//hhRdeaPGXLdvqmMrKStx7773YunWr7zGHw4F9+/ahV69ebKvjPP/881i1ahU+++wz3y8AmD17Nl599VW21Qlyc3MxfPjwFvtXAcCePXvQu3dvttdxBgwYgJiYGPz6668tHj9w4AC6du0qbVsFfV1XFFq8eLE4evRocc2aNb59dC644ALuo3OCuXPntlheXl1dLY4aNUqcO3euePDgQfHjjz8WBw8eLH7yyScSVimNI0eOiAMHDhTvuOOOFnt3VFZWiiaTiW11HLfbLc6cOVO88MILxW3btol5eXninDlzxFGjRoklJSVsqzM4fnk526oll8slXnPNNeK0adPEbdu2iYcOHRKffvppcdCgQWJubi7b6wQvv/yyOHz4cPHLL78UCwoKxGXLlok5OTniL7/8ImlbMegEgdPpFJ999llx7Nix4rBhw8RZs2aJRUVFUpcVck4MOqIoir/++qv4pz/9SRw0aJA4efJk8a233pKoOmm98sorYt++fVv9NXfuXFEU2VbHM5lM4rx588QJEyaIQ4YMEWfOnNliXx221akdH3REkW11opqaGvGhhx4SJ0yYIA4ePFi89tprxW3btvmeZ3u19Prrr4tTpkwRBw4cKF5++eXi6tWrfc9J1VaCKIpicPuMiIiIiKTBOTpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOEYUF7oRBRO3BoENEIW/t2rWYO3cuAGDLli3o169fi2NWiIhOhaeXE1HIW7lype/3AwcOxAcffOA7qZyI6HQYdIgorOj1egwbNkzqMogoTHDoiohC2owZM7B161Zs3brVN2R1/NDVSy+9hIsuughr1qzBtGnTMHjwYFxxxRXYtWsXdu/ejWuuuQZDhgzBtGnTsHnz5hbXPnDgAG655RaMGDECI0aMwB133IGioiIpvkwiChIGHSIKafPmzcOAAQMwYMAAfPDBB2hsbDzpNeXl5ViwYAFuvfVWvPDCCzAajZg9ezbuuece/OlPf8LixYvhdrsxZ84cWK1WAMDRo0dx3XXXoaamBgsXLsT8+fNRVFSE6dOno6amprO/TCIKEg5dEVFI6927N/R6PQBg2LBhrU5CtlgsmDdvHs455xwAwOHDh7Fo0SLMnz8fV199NQDA5XJh9uzZOHr0KPr374+lS5dCo9Fg5cqVvuuPGzcO559/Pv7zn//4Jj8TUXhj0CGiiDBixAjf75OSkgCgxVye+Ph4AIDJZAIA/PLLLxgzZgw0Gg2cTicAz/yfkSNHYtOmTZ1TNBEFHYMOEUUEb6/M8TQazSlfX19fj1WrVmHVqlUnPZeYmBjQ2ohIOgw6RBSVYmNjMX78eNx0000nPadQ8K9GokjB72YiCnkymQxutzug1xw9ejQOHTqE/v37+4KNKIq477770K1bN/Tv3z+g9yMiaXDVFRGFPIPBgKNHj2Lz5s2+OTYddfvtt6OwsBC33HIL1qxZgw0bNuDOO+/E119/jZycnIDcg4ikx6BDRCHv//7v/6BUKjFr1izf8vCOysnJwTvvvANBEPDAAw9g9uzZqKqqwssvv4wLLrggIPcgIukJIk/KIyIiogjFHh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxPp/1KcZtkcixEEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Apply the LLS operator to the signal and visualize\n", + "import numpy as np\n", + "S = df['signal'].values\n", + "S_LLS = np.log(np.log(np.sqrt(S + 1) + 1) + 1) \n", + "plt.plot(df['time'], S_LLS, '-', color='r', label=\"$S_{LLS}$\")\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the y-axis has been compressed to a small range and that the first peak \n", + "is now comparable in size to the other two peaks.\n", + "\n", + "### Iterative Minimum Filtering\n", + "\n", + "With a compressed signal, we can now apply a minimum filter over a given window \n", + "of time $W$ over several iterations $M$. For each time point $t$ in the compressed signal, the filtered value $S'_{LLS}$ for iteration $m$ is computed as \n", + "$$\n", + "S'_{LLS_m}(t) = \\min\\left[S_{LLS_{m-1}}(t), \\frac{S_{LLS_{m-1}}(t-m) + S_{LLS_{m-1}}(t + m)}{2}\\right] \\tag{2}\n", + "$$\n", + "Note that the average value of the signal at time $t$ is compared to the average \n", + "of the window boundaries, with the window increasing in size from one iteration \n", + "to the next. To see this in action, we can plot the filtering result over the first 200 iterations of this \n", + "procedure applied to the above compressed signal. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuM0lEQVR4nOydd3hUVf7/X3d6yqRXEkISqrTQpSNNLIis4qrooqjsV3+uuLiytmVXFEVc0BVdlWUtqKuiuyqogF0EFKSGGkJCeiZl0mcy/d7fHzeZEEIJkFDP63l4mLnlnDMnd+687+d8iqQoioJAIBAIBALBRYjmXA9AIBAIBAKBoL0QQkcgEAgEAsFFixA6AoFAIBAILlqE0BEIBAKBQHDRIoSOQCAQCASCixYhdAQCgUAgEFy0CKEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQCC4aNGd6wGcDyiKgiy3T4JojUZqt7YvNsRctR4xV61HzFXrEXPVesRcnRrtMV8ajYQkSSc9TggdQJYVKivtbd6uTqchPDyI2tp6vF65zdu/mBBz1XrEXLUeMVetR8xV6xFzdWq013xFRASh1Z5c6IilK4FAIBAIBBctQugIBAKBQCC4aBFCRyAQCAQCwUWLEDoCgUAgEAguWoQzskAgEAjOCWrEq4ws+871UE4JWZZwOrW43S58PhF5dTJOZ760Wh0aTdvYYoTQEQgEAsFZRVEUHA4bNlvNBSdyGrFaNciyiLhqLaczXwEBwYSERLQqhPxECKEjEAgEgrNKbW0lDocNkykIkykQjUZ7xj9mZxutVhLWnFPgVOZLURTcbhc2WxUAoaGRZ9S3EDoCgUAgOGvIsg+Hw05wcBjBwaHnejinjU6nETl0ToFTnS+DwQiAzVaF2Rx+RstYwhlZIBAIBGcNn88HKBiNpnM9FMF5TqPY8fm8Z9SOEDoCgUAgOAdcWEtVgrNPWy1nCqEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQHAajBw5iDVrPgfA6/WycuV/zkq/mzZtICfnMAA7dmxj5MhBWCzF7drn9u1bufvu3zFu3AhuueU3rFv3Zbv215YIoSMQHIO8kjoWvredP7/2M59tOIwsizBSgUDQnFWr1jF+/EQAvvlmHS+//GK791lSYuGRR+ZQVVUJQJ8+aaxatY6YmNh26zMvL5e5c//IsGEjePvt/zBlyg0sXPgU27b92m59tiUivFwgOIqqOhd//2An9S7V03/1plwApo5KPYejEggE5xuRkVH+14pydh6Gju5Hr9c3G0d7sHLlf+jSpSv33HMvANOnJ5OZmcH777/LoEFD2rXvtkBYdASCo/jvj9l+kdPIl7/kYa1xnKMRCQSC85HGpas1az7n2Wfn+7ft2LENUJeY7rrrdsaNG8HNN09l+fLXcLvdzc7/179e5cYbJzNlyiTy83MpKyvlqafmcd11VzJmzOXccMO1LFv2T2RZxmIp5qabpgAwe/a9vPHGshZLVy6Xk+XLX+Omm65n3LjhzJw5nZ9++tHf55o1nzNt2nWsXfsFN988lbFjh3HPPTPYu3f3cT/n7t27GDhwcLNtAwcOZvfunWdN4J0JwqIjEBxBjc3FrwdKAQgy6RjcI4YfdxXjkxW+317Eb8d1OccjFAguXrZmlPHZhsM43We/LITJoOU3o1IZ1CPmlM8dP34iNpuNpUuXsGrVOkJCQtm8+WfmzXuU2bPnMHjwUIqKCnnxxefJz8/j6aef85+7evUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB58cM6S7rKysxdJYVFQUTqeTmpoawsLCTnnOziZC6AgER/DLvlJ8Df44Y/olcOWQjmzcU4LXJ/PLvhKmje2M5gJLVS8QXCis25KHpaL+nPW/dkv+aQkdo9FEcHAw0LSc9c47bzJ58hSmTp0GQEJCInPnPs7s2fdisRQTH98BgEmTrqFHj56Aao2ZNOkaxo4dT1xcPADTpt3Ce++tIDs7i1GjriAsLBwAszmEwMDAZuPIzc1hw4b1LFr0IiNGjAJg5sxZZGVlsmLFm36h4/V6efjhR+natTsAM2bM5LHHHqaiooKoqJbLYC6XE71e32xbYzI/t9t1yvN1thFCRyA4gl2Hyv2vR/aNJyTQQO+UCHZlWamxu8kuqqFrYti5G6BAcBFz9eWd+PQcWnSuvjypzdrLzMzgwIF9rF37hX9b4zJPbm6OX+gkJjb1aTSauPHG3/Ljj9/x0UfvU1hYQFbWIazW8oaM0icmOzsLgL59+zXbnpY2gNdff6XZtk6dUvyvg4JUkeb1eo7ZrsFgxONpvq9R4JhMAScd17lGCB2BoAGbw8OhohoAOkdAWManOOxVjI2+jF1ZqhVnV5ZVCB2BoJ0Y1CPmtCwq5yOyrDB9+gyuvnpyi31HOg8bjUb/a6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67H9ZWTZh07X/OfeYDC0PPs4/jaxsbFYreXNtlmtVgICAv2WrPMZIXQEggb251aiKBAkOblH9zWevdUAJLONocZhbHZ1JTO/+pyOUSAQnJ8c7duSmtqZvLxcEhM7+rft3Lmdjz76gIcffpSAgJaWkC1bfubgwQOsXv0VERFqxe7a2hoqKyuO20/zPlUfwt27d/mXrgDS03eRnJxyvNNOSlpaf3bu3N5s27Ztv9KnT9oZFds8W5z/IxQIzhJZhao159qAXQR6q5vtuyFoGyFSPTmWOpzuMyswJxAILj4ahUtGxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurPW44eHS0as366qu1lJRYSE/fxaOP/gmv1+uP1mrs5/DhLGw2W7PzU1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hjem699fbT/mw33ngz+/fv5bXXXiYvL5cPPniPH3/8jttum3HabZ5NhEVHIGggq6iGUKmeocZD6ga9CW10Cr7iAxjxMNqUwReOAWQV1tA7NfLcDlYgEJxXDBgwmJ49e3PffXcxb97TjBs3gfnz4d133+S9997GbA5hxIhR3Hff7OO20bNnbx54YA4rV77P8uWvER0dzfjxVxITE8v+/XsBCA0N49prp/Dqq0spLCxg9OixzdqYP38hy5a9wqJFC7DZ6khJ6cyCBc8zZszYY3XZKlJTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRcj5+YqkXAhB8O2MzydTWWlv83Z1Og3h4UFUVdnxeuU2b/9i4lzPlcvt4/4Xf2K8MZ3JgbsAMAyYgr7nOOzv/wlkH3Wyib9WT+P6UZ25bsTpm4HPlHM9VxcSYq5az9maK4/HTUWFhcjIePT6ln4iFwo6nUZcU6fA6czXya6ViIggtNqTL0yJpSuBAMix1CIrCoONhxu2SOi7j0YTGIYueQAAZo2TLroSckvqzt1ABQKBQHBKCKEjEAD5pXVEauqI1dYCoI3risasrqPrUpvMs30MBeSVCqEjEAgEFwpC6AgEQEG5jZ76Iv97bce+/te6xD6gUd3ZeukLqax1UVvvbtGGQCAQCM4/hNARCICCMhuXHSF0dB37+F9LhgC0cV0BiNTaCdfYyBfLVwKBQHBBIISO4JLHJ8tYrDZSdWUASAEhaCKbZ0jVxnf3v+6iK6XI2vbO6wKBQCBoe4TQEVzylFQ6iKSaAI2a4lwb27VFUq5mQkdfSrEQOgKBQHBBIISO4JKnoKyOZF1TenNtbOcWx2hjOoNGC0CyrpziCiF0BAKB4EJACB3BJU+xtZ5kbZPQ0cS0FDqSzoAmIhGAGE0NFdaa49aFEQgEAsH5gxA6gkue0sp6knVWABRJgzb62MkAtVHJAGgkiPCVUWMXkVcCgUBwviOEjuCSp6KillitWudKE5GIpDt2tlZNg9AB6KitEH46AsElzsiRg1iz5nMAvF4vK1f+56z0u2nTBnJy1OSmO3ZsY+TIQVgsxe3a55dfrmbGjJuZMGEkt9zyG9599218Pp9/v8vlYsmSRUyePJGJE0fzl788QlVVZbuOqbUIoSO4pFEUBaW2GI2kLkNpj4q2OhJtdLL/dUddpRA6AsElzqpV6xg/fiIA33yzjpdffrHd+ywpsfDII3P8IqJPnzRWrVpHTExsu/X59dfrWLx4ITfddCsrVnzI739/P//5zwpWrHjDf8ySJc+xdetmnnnm77z00qsUFxcyb96j7TamU0EIHcElTbXNTYxS4X+vjeh43GM1EYkokuqQnKCtpKzK0e7jEwgE5y+RkVEYjSaAs+azd3Q/er2eyMgotFptu/X56acfc9VVk7nuuqkkJCQybtwEbrnlNr74YhUA5eVlrFv3JX/841zS0vrRs2dvnnzyWXbt2sHevXvabVytRQgdwSVNSWU9HXTV/veayOMLHUmrhxD1qSlGW0t5la29hycQCM5jGpeu1qz5nGefne/ftmPHNkBdYrrrrtsZN24EN988leXLX8Ptdjc7/1//epUbb5zMlCmTyM/PpayslKeemsd1113JmDGXc8MN17Js2T+RZRmLpZibbpoCwOzZ9/LGG8taLF25XE6WL3+Nm266nnHjhjNz5nR++ulHf59r1nzOtGnXsXbtF9x881TGjh3GPffMYO/e3cf9nPfd9wC33np7i+11dWrJnN270wHo33+gf19SUieio2NIT99xOlPbpujO9QAEgnNJaWU9HbRV/veNkVXHQx+ZgLemGJ0k46sube/hCQSCC4Dx4ydis9lYunQJq1atIyQklM2bf2bevEeZPXsOgwcPpaiokBdffJ78/Dyefvo5/7mrV3/C4sVL8Xp9JCUlc+ed0wkPD+eFF14mMDCIX37ZyD/+sZiePXsxfPgoli9fwaxZd/DMM88zePBQMjL2NxvLk08+wcGDGTz00CMkJXXiu+++5okn5rJw4WJGjhwDgNVazmef/Y95855Gr9ezePFCFiz4Gx988EmLHGIAffv2a/a+rq6Ozz77H0OGDAWgvLyU0NAwjEZjs+OioqIoLS1piyk+I4TQEVzSlFTY6d4gdHwGM5qAkBMerwlPBLYCYLCXIMsKGk3LG4NAIDh1PId/xb3tUxSP86z3LelNGAbdgP6IIr6txWg0ERwcDKjLWQDvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfHxHQCYNOkaevToCajWmEmTrmHs2PHExcUDMG3aLbz33gqys7MYNeoKwsLCATCbQwgMDGw2jtzcHDZsWM+iRS8yYsQoAGbOnEVWViYrVrzpFzper5eHH36Url3VRKgzZszksccepqKigqioqBN+1vr6eh577E+4XC7+3/97EACn04ler29xrMFgbGbBOlcIoSO4pKmtKCdY4wJAOoF/TiOa8A7+1zFSNVV1LiJDTe02PoHgUsKdvha52nJO+lYa+j8doXMsMjMzOHBgH2vXftHUR4N/TW5ujl/oJCY2BUAYjSZuvPG3/Pjjd3z00fsUFhaQlXUIq7W8WYTT8cjOzgJaWmDS0gbw+uuvNNvWqVNTGo2gIFWkeb2eE7ZfUWHlz3+eQ1FRIS+88DIJCYn+cXs8Lc91u12YTAEnHXd7I4SO4JJGqWm6qRqiWyF0IhL8r+O01ZRV1QuhIxC0EYa0a3Bv++TcWXTSrm6z9mRZYfr0GVx99eQW+xqtPkCz5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxHaJl2YdO1/zn3mBomUbjRA7VeXm5PPTQH/D5fPzzn8vp3LmLf19MTCy1tTV4PJ5mlh2r1UpMTEwrx95+CKEjuGSRFQWjwwoNDxzasPiTnqMJiUWWtGgUH3HaaizVDi5r53EKBJcK+tTBbWZROdsc7duSmtqZvLxcEhObHqB27tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiIhIAGpra6isbIoMPZYPTVOfqvjYvXuXf+kKID19F8nJx06E2hqKi4uYPfv/MJtDWbJkKbGxcc32p6X1Q5Zl0tN3MmjQEADy83MpLy+jb9/+p91vWyGirgSXLHV2N1FStf+9JjTu+Ac3IGm0eIPUJxQ18krk0hEIBPiFS0bGAVwuJ7fdNoP167/njTeWkZ+fx/btW3n22aeoq6ttZtE5kuho9d7y1VdrKSmxkJ6+i0cf/RNer9fv69LYz+HDWdhszSM/U1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hj+mNGTbWWhQufwu328Le/LUCn01FRYfX/A4iKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nHa/bcV5ZdF59dVX+eWXX3j33XdPeqwsy8yaNYt+/frxwAMPnIXRCS42KmpdxGhq/e81YScXOv7jbBa0kkJ9RQnQrZ1GKBAILhQGDBhMz569ue++u5g372nGjZvA/Pnw7rtv8t57b2M2hzBixCjuu2/2cdvo2bM3Dzwwh5Ur32f58teIjo5m/PgriYmJZf/+vQCEhoZx7bVTePXVpRQWFjB69Nhmbcyfv5Bly15h0aIF2Gx1pKR0ZsGC5xkzZuyxujwpVms5O3duB2DmzOkt9m/cqIbS//nPT7B06RIef3wuAEOHDmfOnLmn1WdbIynnSWXCt99+m+eee47BgwefVOg4nU6eeOIJvvjiC/7whz+csdDx+WQqK9v+yVyn0xAeHkRVlR2vV27z9i8mzsVcbc0oI+qHp4jS2vBqDITdveyEZuFGHFs+xpv+JQD/017LnXff1N5DbYa4rlqPmKvWc7bmyuNxU1FhITIyHr3+2OVWLgR0Oo24pk6B05mvk10rERFBaLUnX5g65xad0tJSnnjiCbZv305KysnXEHfs2METTzyBx+MhJOTEocACwYmorKqjm0Y1/XoCY1olcgB0YXF4G14bHRUnPFYgEAgE55Zz7qOzb98+QkNDWb16NWlpaSc9fsOGDUycOJHPPvsMs9l8FkYouFhxV1rwp8AJaX2dGCm06dgQuQqX++RhnwKBQCA4N5xzi864ceMYN25cq49/8MEH22UcOl3ba75Gk1prTGuXOudirpTaMv9rY1RCq68BTUQ8jVWuojV1VNtdJAQGt8MIj424rlqPmKvWc7bmSpYv/ASbjcZfSYLzw/nj/OZM50urlc7oN/qcC53zAY1GIjw8qN3aDwk59wmTLhTO5lwZHOX+1zEpqYS08hpQwgKp0BjRyS6itbU4fbTr9XM8xHXVesRctZ72niunU4vVqjnjH6/zASGgT41TnS9ZltBoNISGBmIynX6+MiF0UBM71dbWt3m7Wq2GkJAAamsd+HzCae1EnIu5CnBa/d8AlzGSqiNCxQ9X5/F9/gbqPQ76RvdkVOJQtJqm6sDugEh09mIiNHZ2F1jpHHd2LTriumodYq5az9maK7fbhSzL+HzKBevMK0nqfPl8srDotILTnS+fT0GWZWpq6nE4WroIhIQEXBjOyOcL7fmF8/nkC/YLfbY5W3PlcvsIU6r975WgGH+/Pxdv5f2M/6I0ZBndV3GQnaV7+b++d2LQqlk/leAYsBejkRTqyi14vUkt+mhvxHXVesRctZ72niuf78JXBo0/1kLktI4zna8zFcXC7ia4JKmodRKhVS04Dk0gkl5Nw364Jq+ZyGkko+oQn2Q11azRhzfl3JFFFXOBQCA4bzmvhY7P56O8vByn8+zXPRFc3FRW2wiR1OVKl0GtBiwrcjORMyZxBP8v7W4MGtWKs6HoF/JqCwAIiGoq7qmxlyEQCASC85PzWuhYLBZGjhzJmjVrzvVQBBcZddZSf2i5HBgBwK7yvVjsqnUmyZzAjV0m0yuyO9elTvKftybnGwAMEU11sQzOyrM0aoFAIBCcKueVj85zzz3X7H1iYiIHDx487vHff/99ew9JcJHiqmpabtKao1AUha9ym66n61Kv8jsfj04czvcFG6lyVbO3IoP8ukISzU21aoJ9NXh9MjoRgSEQCATnHeLOLLgk8dU2hZYbwmPJrS2g0FYMqNacyyKa6lfpNDqu7NRUJ2ZT0RakwFB8qEIoQmOnqs51lkYuEAjOF0aOHMSaNZ8D4PV6WbnyP2el302bNpCTcxiAHTu2MXLkICyW4rPSt6IoPPTQH/jDH37fbLvL5WLJkkVMnjyRiRNH85e/PEJV1flh7RZCR3BJoqlv+gIGR8Xxi2Wr//3ohOEtykEMieuPQavWWtlWmo5H9uHQhwIQobVRUe1AIBBcWqxatY7x4ycC8M0363j55Rfbvc+SEguPPDLHLyL69Elj1ap1xMS0Prv7mfDRR+/z66+bW2xfsuQ5tm7dzDPP/J2XXnqV4uJC5s179KyM6WQIoSO4JDG6qv2vdeGR7CjbrW7XGugf07fF8SadiQHR6nanz8mByky8JtW3xyh5qa4UNa8EgkuNyMgojEY1kd3Zqo99dD96vZ7IyCi0Wu1xzmg7srOzeOutf9OrV59m28vLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tPu4ToYQOoJLDllWCJZr/O9zfHYcXtUi0zvyMkw64zHP6x/T9OVOL98LR/jpOCtK2mm0AoHgfKVx6WrNms959tn5/m07dmwD1CWmu+66nXHjRnDzzVNZvvw13G53s/P/9a9XufHGyUyZMon8/FzKykp56ql5XHfdlYwZczk33HAty5b9E1mWsViKuemmKQDMnn0vb7yxrMXSlcvlZPny17jppusZN244M2dO56effvT3uWbN50ybdh1r137BzTdPZezYYdxzzwz27t19ws/qcrmYP/8J7rnn/0hK6tRs3+7d6QD07z/Qvy0pqRPR0TGkp+84zdltO84rZ2SB4GxQbXMR3lC1vF4KYm/VIf++vlE9j3te9/AuGLUGXD43e60HmBjSFxqWxb211nYds0BwKbCjbDdfHP4al+/s+7wZtUYmp17JgGNYdE/G+PETsdlsLF26hFWr1hESEsrmzT8zb96jzJ49h8GDh1JUVMiLLz5Pfn4eTz/dFHizevUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB5+0WLZv5LXXlhIVFc2NN97sF3WNlJeXEhoahtHY/CExKiqK0tJz/xAohI7gkqOyyk6sRrXgOAyh7LaqNwqNpKFnZPfjnqfX6ukV2YMdZbuxe+spidDSpWGfZBNCRyA4U77NW09p/bnLS/Vt/vrTEjpGo4ngYLUMTGSkaul95503mTx5ClOnTgMgISGRuXMfZ/bse7FYiomPV3NxTZp0DT16qA9YLpeTSZOuYezY8cTFqSkspk27hffeW0F2dhajRl1BWJia98tsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZV73czZszksccepqKigqioKI5m8+af+eabdaxY8eExhZDT6USv17fYbjAYm1mwzhVC6AguOWqtFhrd9sqDQ7E6VP+aLqEpBOoDj38ikBbd2+/PkyXV+oWO3nV+RBcIBBcyEzqNOacWnQlJY9qsvczMDA4c2MfatU0Z1Rv9a3Jzc/xCJzGxqXyM0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fla1no6muzsLAD69u3XbHta2gBef/2VZts6dUrxvw4KUkWa1+tp0WZVVRULF87nT396jKio6GP2azSa8Hhanut2uzCZzn1BXSF0BJcczsqmJ8Zcc9NXoE/UZSc997KIbkhIKChkOkq5qmF7kLcGRVGOa/YVCAQnZ0BM39OyqJyPyLLC9OkzuPrqyS32NVp9gGbLPU6nk/vvn4XT6WDcuIlMmnQtc+b04v77Z7Wy12M7RMuyD52u+c+9wWBoefYxHKo3b95ERUUFCxfOZ+FCdcnK7XajKAoTJ45i8eKlxMTEUltbg8fjaWbZsVqtxMTEtHLs7YcQOoJLDu8ROXQKDV5oqBV32QmWrRoJ0gfS0ZxAfl0hxfVlVGgNRPrchEt12J1eggNamm8FAsHFz9EPOampncnLyyUxsaN/286d2/noow94+OFHCQhoaenYsuVnDh48wOrVXxEREQlAbW0NlUdEdZ7oYSo1VbUx7969y790BZCevovk5JTjnXZCxowZS58+ac22vfbaUsrKyvjb3xYQHR1NXV0dsiyTnr6TQYOGAJCfn0t5eRl9+/Y/rX7bEhF1JbjkkOyqP40MFCq1AATrg4gLbN2TR4+Irv7XGcFqLp1wjZ3Kmvq2HahAILhgaBQuGRkHcLmc3HbbDNav/5433lhGfn4e27dv5dlnn6KurraZRedIoqPVe9BXX62lpMRCevouHn30T3i9Xr+vS2M/hw9nYbPZmp2fkpLKsGEjWLLkOTZt2kB+fh5vvbWcjRvXc+utt5/W5woMDCIxsWOzf4GBQRiNRhITO2I0moiKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nLyTdkZYdASXHAZXFQAlBh1ORV1X7hKW2uplp25hnfk67wcA8gNNjKgBnSRTU14OcaHtM2iBQHBeM2DAYHr27M19993FvHlPM27cBObPh3fffZP33nsbszmEESNGcd99s4/bRs+evXnggTmsXPk+y5e/RnR0NOPHX0lMTCz79+8FIDQ0jGuvncKrry6lsLCA0aPHNmtj/vyFLFv2CosWLcBmqyMlpTMLFjzPmDFjj9Vlm/HnPz/B0qVLePzxuQAMHTqcOXPmtmufrUVSzlaWo/MYn0+mstLe5u3qdBrCw4OoqrLj9cpt3v7FxNmcq72vzaWTtpyNoQF8EW0GYFrXKYztOLJV5zu8Tub+9DcUFKJ9Bv6UUwjA/m73cPkVrWvjTBDXVesRc9V6ztZceTxuKiosREbGo9e39BO5UNDpNOKaOgVOZ75Odq1ERAShbUWNQbF0JbikqHd6CZNUc2/WEWvkXcNSW91GgM5Eh+A4AKxaN64GS5C35tyFxQoEAoHg2AihI7ikqKyqI1TjQAEKAtSV2wBdgF+4tJbU0GRAjXHINzWsAItcOgKBQHDeIYSO4JKiplzN0lmr1WBvKA3TyZyIRjq1r0JqaFMK9DyTGmmlc1a1zSAFAoFA0GYIZ2TBJYWjoSZVoanp0k8KSTzldhotOgD5DUInwFN9RmMTCNqL7OIaNqRbqKt30yUhlCv6JxBgFLd/waWBuNIFlxSeGjWHTpGxKd9NJ/OpC51IUzghBjO17jryTAZkIESpwyfLaDXCUCo4f1i7JY///pDtTyW385CVH3cVMfeW/kSFnfustQJBeyPuyIJLisaaVIVHPM12PA2hI0mS36rj0kqUGbSEaexU1zjaZJxH43B52Xu4guziGmQRKCloJZv2WPi4QeRIyOhQywiUVztZ8lE6LvfJywoIBBc6wqIjuKTQu6pQgKKG5aZgfRARprDTais1tBO7yvcAqp9OnNtJRVkJkeGd22i0Ktsyynh7bQb1Li8AyfFm5t01FL2oNiE4AZW1Tt77JpNAycl1ATsYEpCHTvFQRCwf1Q4gtzKa/63PZvrEbud6qAJBuyIsOoJLigBPDdU6DfaG3AtJ5sTTrk91pENyo5+OvcEHqK3Yc7iC11bt9YscgFxLHX9Z9jP1Tu8JzhRc6nz0QxYGj40HQ75iuCkLXUNyzARKecD8FT31hXy/o4iyKpHRW3BxI4SO4JLB65MJoY7CI/xzTscRuZGE4A5IqCKpxKAaR91VbZdLp97p5c01B1AUkFAY1klHcri6z2K185+vD7ZZX4KLi2KrnW0HSpkRvIE4bY26UW9CMqvVp3WSzB3BPxEu1fLFz3nncKQCQfsjhI7gkqG6IYdO0ZERV6fhn9OIQasnNlD94Sgxqt4PShvm0lm7JY8am5vOulKejPqCW+reZI70Dv8X8gPBkoMNuy3kltS2WX+Ci4c1m/MYYTxIN71qYZSCwgm68WmCbn4OXcogAEySl2mBW9i834LN4TmXwxUI2hUhdASXDNVl6k2/WcTVGVh0ABKC4wHwSRLlBi1aR+UZtddIvdPL9zsK6aIr4T7zN4TJTTl6euoKmB3yFQGSizWb89ukP8HFg83hIf1AIVcFpPu3mcb+Hk1INJJGi2nM3UhBEQD0NBSTLJXw8x7LuRruBc3IkYNYs+ZzALxeLytX/ues9Ltp0wZycg4DsGPHNkaOHITFUtyufebn5zF37oNMnDiKKVMm8cILi3A6nf79LpeLJUsWMXnyRCZOHM1f/vIIVVVtcz88U4TQEVwy1FeUoNAUcWU2BBNqCDmjNhPNHfyvLQYdJnf1GbXXyMbdxUhuOzOCN6CX1PowmsiOSAHqeGO1tdwS9AvbD5ZhrW6fSC/Bhckve0sYod9PsMYFgK7zUHQdLvPvlwwBGIdM87+fGLCHn3YLoXM6rFq1jvHjJwLwzTfrePnlF9u9z5ISC488MscvIvr0SWPVqnXExMS2W581NdX84Q+/B2DZsreZN28+69d/zyuv/MN/zJIlz7F162aeeebvvPTSqxQXFzJv3qPtNqZTQQgdwSWDu6acSp0GR4MjcqczcERuJCG4SegUG/WY5TNfSlIUhY17LFwbsItQjSpitIm9CfzN3wicOg/JGARAP0M+3bTFrE9v3yc5wYWDoij8nF7AaFOG+l7SYBz0mxbH6Tpf7vfX6aG34KssoqjcdlbHejEQGRmF0WgC1Lk/Gxzdj16vJzIyCq1W2259/ve/K9HpdCxY8DypqZ0ZPHgo99xzH/v370VRFMrLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tNu4WosQOoJLBqXO6g8rhzPzz2kk8QihYzHqCJHs1Nc7T3DGyckvtWGvKGWoMUvdoDepyw0aHRpzNAEjb/cfe13gDrbsLzlrN1nB+U2x1U5k7QHMGvUa1KcMRBPa8klf0mgx9J7ofz/UmMXWA6Io7anSuHS1Zs3nPPvsfP+2HTu2AeoS01133c64cSO4+eapLF/+Gm63u9n5//rXq9x442SmTJlEfn4uZWWlPPXUPK677krGjLmcG264lmXL/oksy1gsxdx00xQAZs++lzfeWNZi6crlcrJ8+WvcdNP1jBs3nJkzp/PTTz/6+1yz5nOmTbuOtWu/4OabpzJ27DDuuWcGe/fuPu7n3LLlF0aPHovRaPRvu+66qbz55ntIksTu3eoyaf/+A/37k5I6ER0dQ3r6jjOc5TNH5NERXDLonZUcDjmz0g9HE2o0Y9YHU+exYTHqkCTVFygwOfm029y8v4Txpn3oGpasDL0nogkK9+83dBuGd983uEsO01FXSVhtHoeLe9M5IfRMP47gAmd7ZjkjjU3RePqe4497rL7rcJxbPkKSvQw2Hmb5AQszr+9zNoZ5XOq2/UrFZ58iu87sYeF00BhNRE69AfOgwad87vjxE7HZbCxduoRVq9YREhLK5s0/M2/eo8yePYfBg4dSVFTIiy8+T35+Hk8//Zz/3NWrP2Hx4qV4vT6SkpK5887phIeH88ILLxMYGMQvv2zkH/9YTM+evRg+fBTLl69g1qw7eOaZ5xk8eCgZGfubjeXJJ5/g4MEMHnroEZKSOvHdd1/zxBNzWbhwMSNHjgHAai3ns8/+x7x5T6PX61m8eCELFvyNDz745JhW7oKCfEaPvoKXX36BH374Dr1ez5gxY7n77nsxGo2Ul5cSGhrWTAgBREVFUVratik3TgchdASXDCZPdfPQ8jaw6IDqp3OgMhO7VkOdVkO91QKnKXQURWHvIQuzjdnqBp0RQ59JzY6RJA1hQ6+n7DPVH+AK03427x8khI6ArIPZjNWrlhklJA5tfPfjHiuZgtF36oc3ZxtmjRNTVTblVY5z+qNQuW4t7pJz5y9U9dXa0xI6RqOJ4OBgQF3OAnjnnTeZPHkKU6eq/lAJCYnMnfs4s2ffi8VSTHy8ag2eNOkaevToCajWmEmTrmHs2PHExamBDtOm3cJ7760gOzuLUaOuICxMfegxm0MIDAxsNo7c3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1etjxoyZPPbYw1RUVBAVFdXi89XX23nvvRVMmDCJZ59dTGmphRdf/DsVFRXMm/cUTqcTvV7f4jyDwdjMgnWuEEJHcEmgKApmuZYio3ozCjWEEGo8M0fkRhKC4zlQmQlAsVGHqbL0tNsqqawn0X4AU7CaDFDf5XIkU3CL44J6DIWgcLBX0UtfxNeH8lEmdD1jnyPBhUt5tYOY2v3Q8Ntn7Db8pNeDLnUI3hx1maWvIZ9dmWUM6tbyh+5sEXHVNVR89sk5s+iET7q6zdrLzMzgwIF9rF37hX9b4xJzbm6OX+gkJib59xuNJm688bf8+ON3fPTR+xQWFpCVdQirtRyf7+TlOrKz1eXuvn37NdueljaA119/pdm2Tp1S/K+DgtR7jNd77DQDOp2OpKROPPyw6lzco8dl+Hwyf/3ro/zhD3/EaDTh8bQ81+12YTKd+3pqQugILglsdXbcRg+uxozIbbBs1cjRfjqd6k4/l86uLCvDGn1zAH2PK455nKTVYeo+EueOz9FICimuDIqtQ0mIbimKBJcGOw9ZGWDI9b/Xd778pOfoOvZB0eiQZC99DAV8e/DcCh3zoMGnZVE5H5FlhenTZ3D11ZNb7Gu0+gDNlnucTif33z8Lp9PBuHETmTTpWubM6cX9989qZa/H9tWTZR86XfOfe4PB0PLs4/j6RUfHkpravLRNSkoqABZLMTExsdTW1uDxeJpZdqxWKzExMa0ce/shnJEFlwRVJRYshqYv+pHi5ExpzKUDaoi5xn76uSOyDx4mRa9WWJdDOqCJTjnusYZuw/2vBxlzSM+uOO1+BRc++Yey6KhTrz1fWNIxnZCPRjIEoE3oBUCoxkF59n5RNPY0Odp6lpramby8XBITO/r/lZeX8c9/vkR9vf2YbWzZ8jMHDx7g5ZeXcffd/8f48RMJCgqisrLpu30iK11qahcAdu/e1Wx7evoukpOPfy85Gf369efAgX3NhNDhw1lotVri4xNIS+uHLMukp+/078/Pz6W8vIy+ffufdr9thRA6gksCm7WEEuORQif+BEefGrGB0egkNbTTYtRhdFed5IxjU+/0ElK5z//e1G3oCW9q2ogEfOGq2TtJV0FeZtZxjxVc3Hi8PgKtTU6pAd1Obs1pRJ/c9EOU6M2noFSEmZ8OAQHqEk1GxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurbWbROZLoaNX68dVXaykpsZCevotHH/0TXq/X7+vS2M/hw1nYbM3/VikpqQwbNoIlS55j06YN5Ofn8dZby9m4cT233no7p8v06b+jqKiQxYsXkp+fx5Ytv/DPf77EpEnXEB4eTlRUNBMmTGLRomfYsWMbBw7s48knn6B//4H07n1uHdxBLF0JLhHc1WWUGJryTHQIjjvusd6aaur37cNdYsFdVorPZiOoVx/CJ16JpGv5ldFqtHQIjie/rhCrXoterjmtMWYV1dBX35TpWJc66KTnBHQdivtX9Rxz1QGc7jGYDOJrfamRVVhDN22B/72uU+ufonUJvXA1vO6ut5BZUE1CVFAbj/DiZ8CAwfTs2Zv77ruLefOeZty4CcyfD++++ybvvfc2ZnMII0aM4r77Zh+3jZ49e/PAA3NYufJ9li9/jejoaMaPv5KYmFj2798LQGhoGNdeO4VXX11KYWEBo0ePbdbG/PkLWbbsFRYtWoDNVkdKSmcWLHieMWPGHqvLVpGUlMzLLy/jn/98iTvvnE5wcDCTJl3DrFn3+Y/585+fYOnSJTz++FwAhg4dzpw5c0+7z7ZEUkQCDnw+mcrKY5sSzwSdTkN4eBBVVXa8XrnN27+YaO+52rFyGZ+FHqTCoEOPlhfGPoNGamnQrP11M6VvvYFyDMc6Y1In4mbeg7Fjxxb7/nPgY362bAXg/xVU0mP6q2j1LdfAT8Tqb9MZk/0iGglcgbFE3b7omMcdOVcuayH1Hz0OwCFPLPqr/0yf1MhT6vdi5lL5Dn76/QGuOPR3dJKM2xhGxIwXm1kDnV4Xlc4qwoyhBOpbOodWv/cntPUVeBUNn8Q+wN1T22+5weNxU1FhITIyHv0pfkfOJ3Q6zUV9TbU1pzNfJ7tWIiKC0GpPvjAlHv0ElwSK00pllGrRiTVFHVPk1G3bSsnyZXAc7e/KzyNvwZNETLqayKk3IGma2kgwd4CGqFiLUUdCeQlhHZKO2c5xKdiJpuG3yZAy8MTHNqAJjccdEIXBYSVVV8YPh4uF0LkEsefu9udd0iel+UWOzWPn06wv+bVkB7Iio5E0DIjpy7SuUzAbmhzXDR174zu4Hp0k47FkAufer0IgaCuEj47gksBODUrDzT8xtGXElW33LizLX/eLHPPgISQ8+BDJzyyi42N/wdAhQT3Q56NyzRdUrVvT7PzEZqUgdNSVn1ouEJfHR3R9tv99UPchzfbLiozdU49Pbh5iKkmS38dCKyl48tIRXFrYnR6ibE3XTmCqej1UOatZsv2fbLZsQ1ZUESQrMttKd/H3ba9Q6WzyJdMn9vK/jnXnU1l79sO7BYL2Qlh0BJcEdQYHoJrsE0MSmu2rzzyI5dVXoCFPRciIUcTeMbPJYhMbS9K8J6n8cjWVX6iViiu+WE3woCEYGkInE47w+bEY9DgrTi2XzuHCKrroVHHk1AQSHKlag+rcNr44/BXbSnfh9LkwaPT0i+nNjIE3oG/4PIGdB+I48A0AUfWHsTs9BJlaJu8SXJxkFdbQQ6+m//ehRdvhMtw+D8t2v01ZvZrqIEAXwGURXTlYlYXdU0+Fs5LXd7/N3IF/QK/Vo43v5m8vRVdOVlENQ0JM5+TzCARtjbDoCC567HV2aoxNy1EdgppEiezxUPrmv1G8aoI+8+AhzUVOAxq9nqipNxI2Qa0PpLjdlK54E0VWn5QDdAGYGzK1lRi1eGpPrW5QaeZeTJI6BmdkdyRJw+GaXBZsWcLG4i04faq7qFv28GvJTv789bMcqFCTFGpju+CVVGHTTW8hM+/0or4EFyYFOXlEatXoG2doMpLeyKrsNRTYVPETZYrgscF/5O7et/P4kDlEB6hLm0U2C1/kfA2AJjAMT8P2JJ2V7ILTT5EgEJxvCKEjuOipLi2i5IhIpCMjrqq//xaPVc1bE9CtO3F3/76FyDmSqKk3ootUfxAcBzOo+OwT/75Yk2rdcWs01DrLT22Qlqaw8uDUNIptJby869/YPKqTvElrpEd4V4L0qpiq9zj45863yKnJQ9LqcIWrybxCNQ4sOdkt2xdctHiKDvhfByT1pKCumPWFPwOg1+j5v753Ehmglg0IM4Yyq88MdBr1+/BDwUbK6tVr1dChq3qOJFNvOXw2P4JA0K4IoSO46LGXWyhtEDoBstbvhOmrq6Pyi9XqQZJEzK23HTN8/Eg0JhNxd94NDf4+lWu+oPr7bwHoGNbkfFxF60PMvT6ZaEeO/70+pTvL9qzA7VPzZnQP78Lfhv2ZB/rPYv6wR+kbrdbF8cgelu95F7unnoDk3v7zZcsBBJcGHq9MiC3X/z6oUy8+OfQ5SkOG3GuSJ7RIpZAQHM+EJLXmkU/x8cVh1aoTkNBUF8tUk4ssX/IBuYKLBCF0BBc91VWF2HTqpR4hmf3bras+RXY4AAgZMRJjx9ZFSQVe1pPoW29rauezT5E9bjpHdfJvq9I5Wj2+vLwSEjXWhvOi+TD/O6wONRNqx+AO3Nv3TkIM6rgDdCZ+nzaDy6LVp+8ady0fZX5GcEpff3uR9Tl4RNjrJUFeSR2pWrU6tA8tuUYtmdWqRS86IJJxSaOOed7EpCsI1qu5cnaU7cbqqEAb19W/P0lTiqWyvp1HLxCcHYTQEVz0VDibIqBiTNEAuAoLqFn/AwCS0UTU1BtPqc3wcRMIbqjJI9fbse3YQZK5ycm5wgiK13W805thPbjDH1Z+KLYjO8t2AxCkD2RWnzswaJvnj9BrdDw49C4Cdaoz8rbSXeRovDg16rJWF10JeZbqU/o8gguT/MO5RDX459Sbk/iq8Cf/vknJ4/1LVEdj0hm5InEkAAoK3xdsRBuRiE+r1l1K1pWTV1LbzqMXCM4OQugILnqq5Wr/68TwTiiKQvnKD/yh5JHXTkYXFnbK7YaNHe9/XbP+ByJM4eh9qmIpNupwVbXOIVlbmgGAD/jJ3PTjckOXyX7fiqOJCAzjhm7X+t9/kv0l9jC1yJ5J8lCSdfCUPovgwsRR0LRMWdshhf0V6t89whTOkNgT58IZnTgMg0Z1Yv+1ZAcexYccoVolwzQOLIWnliJBIDhfEUJHcNFTo23KCdIlvgvO7CzqD6h1gfRR0YRNvPK02g3o1h1DnFozy5F5EFd+HuFe9Ym4VqelpCT3pG34fDIxTtU/Z3twAFavKnRSQpIYEjfghOeOSBjijyDLqy2gIL6pSrC7OOOUP4/gwkJRFAJrmpyG94Y0+dSMSRyOVqM91ml+gvSB9I9RlzwdXge7yvYS0rFp+cpVmnO8UwUNjBw5iDVr1JQTXq+XlSv/c1b63bRpAzk56t9+x45tjBw5CIuluF37/PXXzdx99++YMGEkv/3t9fznPyuaFfl0uVwsWbKIyZMnMnHiaP7yl0eoqjo/oveE0BFc1MiyTJWhKcleorkD1Q1LVgAR101Bc5pp6CVJaiaSKtd8QYQU6n+fYz155Epxbh7hGjsy8ENkiH/71C7XHjN785FoJA1TOl/lf79F21ThOKg2F1Hd5eKmvMZJoqTma3Kj4dc6VZjoJC1D405eJw1gWHzTcT8Xb8Wc1CR09LWFwiH5JKxatY7x49WUE998s46XX36x3fssKbHwyCNz/CKiT580Vq1aR0zMyavVny55ebk8+uhDjBw5mhUrPuT//u8PvPnmv/jkk4/8xyxZ8hxbt27mmWf+zksvvUpxcSHz5j3abmM6FYTQEVzU1FrLKTeqT7Zmr4Te6cW29VcANIFBmAe3vsrzsQgZOhytWXUUtm3fRpfKpkR9pY6TJw2sOKRmMt4fZKRKr/6odA5NoUtYSqv67xXZg/gg9QaXU28hM0D100mSSiivbr1DtODCo7CwjDitGt23PTwGu1d1Hu4X04dgQ+uKcnYJSyXKFAFARsUhnBFNP5YdJCvlNeIaOhGRkVEYjWpixbP1YHF0P3q9nsjIKLTaE1vwzoQtW37GZApg5sxZJCQkMn78RC6/fDhbtmwGoLy8jHXrvuSPf5xLWlo/evbszZNPPsuuXTvYu3dPu42rtQihI7ioyS/KwtWQFyfcZ6T2503+5IAhw0egMZxZUUGN0UjUjTf53ydvycDkVCOeqnx1J2+g9CAK8EN4oH/TpORxre9f0jAx6Qr/+58jVJ+eYI2LgkOHWt2O4MKjNr/JD2tvWFOhzhEdhhzr8GMiSRIDYtMA1Sk5vb4Mr0b9TiRqKyksa/tixxcTjUtXa9Z8zrPPzvdv27FjG6AuMd111+2MGzeCm2+eyvLlr+F2u5ud/69/vcqNN05mypRJ5OfnUlZWylNPzeO6665kzJjLueGGa1m27J/IsozFUsxNN00BYPbse3njjWUtlq5cLifLl7/GTTddz7hxw5k5czo//fSjv881az5n2rTrWLv2C26+eSpjxw7jnntmsHfv7uN+zpCQUGpra/jmm3UoikJ2dha7d++iVy81rcXu3eoDW//+TTX6kpI6ER0dQ3r6jjaY6TNDCB3BRU1hVZOfQbhkbrZsFTbmijbpI2TEKAIbvvBaez39DqpP1jWaE0ddybJMlDOPQwEGihpKNnQM7kDPiG4nPO9oBsSm+UOFDwV4sTeEcNnzRT6di5qGpVGHRiJXq15zoYYQujQ4pbeWtOimOle/FqXjaYgejNDaKSs5tQzflyrjx09k9uw/AepyVp8+aWze/DPz5j3KlClTeffdlfzpT4/y/fff8PTTf2127urVn/DMM8/z7LOLSUpK5s9/VpelXnjhZd5//39Mn/473n33LTZt+omYmFiWL18BwDPPPM+tt/6uxViefPIJ1q79ggcf/BNvv/0Bo0eP5Ykn5rJx43r/MVZrOZ999j/mzXua119/C0mSWLDgb8e1Sk2YMIlrrrmOp5/+K1dcMZQ77riFQYOGMGPGXQCUl5cSGhqG0Whsdl5UVBSlpSWnP7FthKh1JbioqXCUNJa4IrVSh6fhSxfQvQeG+A4nOLP1SJJE7B0zyfmzeqPrUuhic1owVfoT57Ipzc8jVKrnw4gw/7Yrk8f5K0+3Fr1Gx+XxA/ku/yd8KGwPMTG62oGhSmS3vZgx1xeCRl329DUkCBwQ0/ekvl1Hk2ROJMwYSrWrhj2lGVwT3QVq1AcEZ0kO0OvEDbQh2Rnl/LohF4/be9b6bERv0DFkVDKde0Sf8rlGo4ngYDURaWRkFADvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfEN959Jk66hRw81CajL5WTSpGsYO3Y8cQ2BDtOm3cJ7760gOzuLUaOuICxMtdqazSEEBgY2G0dubg4bNqxn0aIXGTFCzaE0c+YssrIyWbHiTUaOVBNFer1eHn74Ubp2VZNEzpgxk8cee5iKigqioqJafL7KygpKS0u5++7/Y9iwEWRmHuSVV/7BW28t5667fo/T6USvb1lfz2AwNrNgnSuE0BFc1FT7mjIUdzjU9HQaPnFSm/ajj4jElJKKM+cwkTU+zHYfdUFaqmoqCA+NPOY51oO7qDXoyAlQlwpiA6PpF937mMeejJEdLue7fDWHyuaQQEZWO4j3FuFweQkwiq/5xUZ1nYME1Ot5V3DTj13jMtSpoJE0pEX3Zn3hJryyl6KoYHpkqft0NQVtMt7WsmtLAdUV5ypRoZtdWwpOS+gci8zMDA4c2MfatV/4tzVaTHJzc/xCJzGxKVGp0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fl8nIzsbPUP17dvv2bb09IG8PrrrzTb1qlTkx9gUJAq0rxezzHbfe65p4mLi+OOO+4GoFu3HoDC4sXPccMNv8VoNOHxtDzX7XZhMgW02H62EXdAwUVNjc4JSERVedAVqD8M+thYgvqe+g/CyQjqm4azIeQzpcjF7m6BHMrfx5A+o499QslBfg1tqhB9ReLIU34abyQmMJpu4V3IrMqi0qClwKSjk9NOQU4e3Xp0Pq02BecvxYdz6KhxU6+RyA5Ub+PhxjCSQzqeVnu9I3uwvnATAIcUBz0atge7yvF4ZfS6s+Pl0O/yjufUotPv8tObv2MhywrTp8/g6qsnt9jXaPUBmi33OJ1O7r9/Fk6ng3HjJjJp0rXMmdOL+++f1cpej730JMs+dEeVtzEcwz/xeEtXu3fv4g9/+GOzbT179sHr9WKxFBETE0ttbQ0ej6eZZcdqtRITE8O5RggdwUWLz+driGSSGLK/6SkxfMKkExbuPF2C0vpRsepTAFIL3ezuFkixNRtoKXRkWcbsymOnWfWtMWgMDI47cYK3kzE0biCZVeoT3a5gE52cNqqy94EQOhcd9gLVETkz0IDcsNLZP6bPaQvlLmEp6DQ6vLKXA/YirkFCi0K8tgpLhZ2kWPPJG2kDOveIbjOLytnm6CXn1NTO5OXlkpjYJJ527tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiAjVElxbW0NlZVPqiBMtbaemdgFUYdK4dAWQnr6L5OTWRXIei5iYWLKyspptO3w4C0mSSEjoSHR0DLIsk56+k0GDVGf4/PxcysvL6Nv3zO5rbYFwRhZctBSV5ODUajC5ZDrnq47BmsAgQoaPaJf+jB2T/JXNk0rchNh8WO3Hzi5bmnOY7BDFHxE2KLYfATrTMY9tLX2je/lT/u8JNuEDsIpK5hcjUqXqQ5MR1GQN6BPV87TbM2gNdG1IaVDprKYoSLU4xGprKCoVpSBaQ6Nwycg4gMvl5LbbZrB+/fe88cYy8vPz2L59K88++xR1dbXNLDpHEh2tWj+++motJSUW0tN38eijf8Lr9fp9XRr7OXw4C5vN1uz8lJRUhg0bwZIlz7Fp0wby8/N4663lbNy4nltvvf20P9stt9zO559/yscff0hxcREbNvzIyy+/wNSp0wgJCSEqKpoJEyaxaNEz7NixjQMH9vHkk0/Qv/9Aevfuc9r9thXCoiO4aMkqVLMfdy5woWmwyIaOGInmqMiAtkKSJEJHX0HFp/9DAgbtt3O4d0sHPQDroXR+DWl6ohuZcGb5fEAt+Nk7sge7yvdi02k4HKAnzF6ArChoTtHBWXB+E+ooQpbgYKC6/GDSmugcmnxGbV4W2Y0DlWpKguywUJLs5egkmarifOibcJKzBQMGDKZnz97cd99dzJv3NOPGTWD+fHj33Td57723MZtDGDFiFPfdN/u4bfTs2ZsHHpjDypXvs3z5a0RHRzN+/JXExMSyf/9eAEJDw7j22im8+upSCgsLGD16bLM25s9fyLJlr7Bo0QJstjpSUjqzYMHzjBkz9lhdtoopU36DXq9n5cr3WbbsFaKiYvjNb27i9tvv9B/z5z8/wdKlS3j88bkADB06nDlz5p52n22JpIj0qfh8MpWVbZ8vQqfTEB4eRFWVHa+oJn1C2mOu/vP1K/ysy+f6H6pJtqhPQx0f/ysBqacWfnsqeOtqyXl0LopLtSBtHBjMXfe90uK4bz94ik9j1aexWH0E80Y+0upoqxPN1Y6y3byx9z0ABtY6uLHURv31fyc+7thPkBc7F+N3sK7Ohvz+A+QH6Hg9UY3A6R/dh3v6tAw1PhVKHCU8/csLAPTQhHFnZiYA3wddw/W3/fbMBn0EHo+bigoLkZHx6E8zK/n5gE6nuWiuqbPB6czXya6ViIggtNqTL0wJi47goqXSXYlekUksVUWOLiICU8rpr1O3Bp05hKjf3Ej5h+8DMHSnjcLcDBKTe/iP8ck+DgVUAuoXd1zKWL/Iqc88iNdqxVtTjX13Oo7D2ejDIzAmp2BMSCCgazfMvY6/RNE78jJMWiNOn4v9QUZukOoozdxLfNwV7faZBWeXsuxDxEgKGYFNN/5eUZedcbsJwfGYjcHUuWzkU4+M6tugt537PCgCwZkghI7goqVWspNU4kbX8BARlNbvlHPUyLJCTqaVnENWAgL0pHSPIiwikF9/ysXp8HD5mBTCI5vnsggbP5H9P64iusSOToacreubCZ3DB9I5YFaXtEw+iSHxA1BkGeun/6Nq7ZctxuCxluOxlmPb1vA5evXGdN8sCG5Z2dyg1dMrsgfby9JxaDXkBOjxFGcCV5zS5xacv9QVZRMDZAQdIXQiu59xu5Ik0SOqM1uL0qmX3ZQZtMS5fYR6zm7klUDQ1gihI7go8fl8VBl89CpqSlYVfFRuiWOhKArZGeUcSLdQWV5Pvb15sqvd24qavS/Or+aam/qg12v4cV0moeEBjL2mO+7UJChRMxO78pqXYtiR8yO+QFVwDagyU/Xhh7gtxTgyWmYy1ppDkB31/rIVAPZ9e9n14ENEXjuZ8MnXt4ggS4vuxfYyNSX7viAj/ay5J/3cgguIyjxqtRpKjKpYTjInEmJom6ioy6K7sLVIvXayTSbi3HbitdWUVTtIiGpd/SyB4HxDCB3BRYmlJBePItG5QPWVkYxGAnr0OO7x1ZX1HNxTSk6mlapTSFjmcnpZ9Z9daDQSXq9MWXEd0bHBdBx8Bb6fD+DQh2C0Nq95lS2pSwHB9T4G/VRAjfOIsE1JIqhff4J69yWwRw8MsXEoXi/usjKch7OoWL0Kb2UFis+HdfUqnEVFxM+6F+mIHBk9I3ugk7R4FR/7g4xMKi/DXu8gKPDcJ+4SnDlBDgtZ5iZrzqmWDDkRl0U3VS/PDg5mRK2dSE0d2WVVQugILliE0BFclOzP3UX3PCdGj+prbx40BM0xnNkURWHXr4X8+lMOsq+5X74pUE9IqIngECOde0Tj86nLWPY6F2ERAZSV2KiuqEeWFWS56dxtm/K57d4hrIkbQmlwL8zOcvpWVRIaHkF23gFqZR8Gt8S1m2qRnE3ZRLXmEGJn3k3wUckMJZ0OY4cOGDt0wDz4cqq/Xov189Ugy9i2b8MiLVPFTkP14gCdiW4RXdhfcZAavRarCbQHM+jW/9znsxCcGU6Hkyilkp8CmkRH94gubdZ+clgiRq0Rl89FgUmDAmgkqLPkQc/ENutHIDibnFdC59VXX+WXX37h3XffPe4xVVVVLFiwgJ9+UtPdX3XVVTz22GMtan4ILm2KanLoc8jhfx92RcvQynq7m43fZJGdUd5se2xCCINGdKJjSngLn57uvWP9r31emY3fZZGxu6SZSHK7vKz89zbqg9UaQXWmaDav/pJJd/yOfeve57Yddgw+J0e23OH+2QT26n3Sauoao5GY39xAdN+eZCz8O4rXg23bVkq0OuLunuVfxkqL6sX+CjWp3P4gI8n5B0AInQueksNZREgy2Q1lQ/QaHSkhndqsfa1GS2pYJw5UZFKn8VGl0xDhlXFXFLdZHwLB2ea8ETpvv/02S5cuZfDgwSc8bvbs2bhcLt5++21qa2t54oknmD9/PosWLTpLIxVcCHgrSomtVP1alNhojEdkBXW7vOzYnM+ebUV4PU3hjmlDEuk3pCOBwa0LedXqNIyZ1I0R47ugyAoul5eV/96K2+Vr4dtjLfThcjqpL+7MxpQJJFXtoWvFNtBqSXxoLoHdj7+sdiwiBg0kcfZsCl76B/h81G35BUNcHJHXXQ9A76jLQNU5HAw00KVEFPi8GKgtOISi11KjV613nUNT0GuPnavpdOkalsKBCjW0PCfAQESdE6mutE37EAjOJufcjb60tJR77rmHl156iZSThP7u3LmTX3/9lYULF9KrVy+GDRvGU089xapVqygtFV9EQRPxeU3ZXKMnXuW3zLhdXlZ/kM7OXwr8Ikdv0HLVjb0YPq5zq0XOkeh0GvQGLcFmI1ff2BujqeXzg11K5IvX3qYqQL3G88P7oCR3J3HOw6cschox902jw733Q8Nnq1j9GfUH1CSJYcZQEoPVooFFJj0mXzE+n8j5caEjV+SRFdAkbLqHt92yVSOdw5L9rwsbCsIGuKzHrYMkEJzvnHOhs2/fPkJDQ1m9ejVpaScutLht2zaio6Pp3Lmpds+QIUOQJInt27e391BPiV1bf+E/X/yX1955i9WfriRjz65zPaRLhqKiLDo1RFt5dBJhw0YCqj/Od19kUF6iJurTaCV6D+jArbMGk9K1bRLqdUgK47Z7L+eam3pz6+8HEyqrJRh8Gj1lrua5TqpG3YyxS3e2bshlzX/3Ul156lWbg/sPIPL636hvFAXLv17HW10FqIUaGykKlinJzz/NTyU4XwisLyb7iPw5J/LPUWQZx6FDVH39FVXffEV9xgEU+eRit1NIIlLDwmq+Se0rimpqj7JSCgQXCud86WrcuHGMGzeuVceWlpYSHx/fbJvBYCAsLAyL5dg1hVqLro1zRPzicVEQ2VTjY6MTAn7dTYhsw+yxEeSox1RfT6isofvAwSSmdjnlHC8XE43ZLVuT5fJkZP7yNQkNTsiVccEYggJQFIVN3x0m95BaHM9g1HHjjP5ExQafcX9Hows20Lm7Wphw4KQ+/PhVDbKm5fLCrs2FZO0ro65WjQxz1Lv57cyBJ70Ojp6rmClTcGZnYd+zG19dLaUr3iLpoT/RN7Yn6/K+B+BgkIGYw3vp1LX9skKfj7TldXWu8bjdRMhWsgMiAAjUBZAS3vGYhTxte/dQ+v77uIqbp0PQR0URe+t0QgYOanFO4xwFm4KIDYqmxF6GxajFC8Roaymvricy7Mwj92T5wr/PNX5FJQmEoevknOl8abXSGf1Gn3Ohcyo4HI5jlpY3Go24GlLunw4ajUR4eNuGTuplb4ttDikAhzaAUm00mICGfG8by2yElGzA7LET5KwnoM6Ood5BZFQEvYaPomNK6iUjgkJCzvxG6slpyltj6NoF2avw/ZqDHNitimFJgmkzBtClR8wZ93UyRl41joLM5eQeDsOjDSDYW0Ri/15k7KlGURS/yAEoK65j3w4LfQYkYC2zEREVRMQJQnqPnCvzn+ew68E/4a6sxL5nN97d2xkwehSB24zUyy4OBRoYVp7V5tf5hUJbXFfnmuw9OVQYNdQ3CJJesd2IjGieP0dRFPLfe5/C/35yzDY8ViuFLy8lcdoNJN0+/Zj3lZCQALpFp1BiL0OWJCxGHR1dXuyVZYT3Tzrjz+F0arFaNWf843U+MGLEIP7ylyeZPHkKXq+Hjz9eeUbFM1vLxo0/kZCQSEpKKtu3b+P++3/PJ598QYcOHdq97/z8PGbMuJX33/9vs/5cLhdLl77A999/i8vlYujQ4Tz88KNERET4j9m5cxuvvPISOTmHiY6O4e67Z3H11ZOP25csS2g0GkJDAzGZTr/o8QUldEwmk7+C65G4XK4zirqSZYXa2lNfNjgRt/Ybwlfrv6I+IIB6YwB2XSB1UjBOqeUfq55A6jWBlBgBIxCqbg/Ayc/7D2HevYvABgFkrKlF4/USmpxEStrlxMXGXxQiSKvVEBISQG2t44x9SUJKm/LWBKSO5bXn1zcL/77i6u5Exqr1j04HRVFQZBnZ58Xn8yL7fGh1OvTGgGP+La763XRcbieVllLiO41t+HwHydjTMrX+D2sP8sNa1YtYo5WYOr0fCZ3Cmh1z7LnSEvu7Oyh46UUAct56B22PPvSM7M628t24NBqqPfmn/ZkvVNryujrXFO7fQ8ER/jnJwZ1a/D3LPvkf1tWr/O8DUjsTNmYMSBI1v/zi9+Eq/O8nuLwK0VN/4z/2yLnqYGr6ASsw6eno8lKRf5iqqjMvNeF2u5BlGZ9PuWBrRUmSOl+rV68jKCgYr1dm7dq1vPTSC9x00/R27bukxMLDD/+RpUtfp2PHZHr27MOqVesICwtv9/nMzs5i7twHcTqd+Hxys/4WLXqW3bt3sWDB39HrdSxevJDHH/8zr7zyLyQJCgryeOihB5k+/Xf89a9Ps3HjBhYsmE94eBSDBg05Zn8+n4Isy9TU1ONw+FrsDwkJuPhqXcXFxfHtt9822+Z2u6muriY2NvY4Z7WOtr5AgoJD+O31N7coKJixL51DednU6bTUBwRh0wdRozHjklpW1HZgwqExUWJALYsUAiRAIPWEKbUcyNyJefcmAm12dFU2PDYHkllPdJdupPYcQnhYRIs2z3eO/vKcKpbsDCKqVWtaWXgQh7ba/CLHFKBj9KRudO4RfcI+ZFnGYaumrqqc2ooSaitLGv4vxeN2Ivt8QEv7q0ajxRQcijk8GnNYDOaIGEIiYomMT0ZvMBGd0NHf79hruzNwRBIej0xEVCBbN+axfVNe83H4FL76dB/X39aP0PCWFomj5yqgTxpB/fpj37UTb3U1ZV98Qe/Le7GtfDcApYEuqqyVmMPCTmlOLwbO9Lo6H/CU5pAb2CR0Us3JzT5T7S+bmkSOJBF90y2ETbzSL76Dh42k+vtv1TpsikL5Z5+ii4vHfNSPjM8nkxTclDOnoMEhWa60tMkc+nwX/lpP4/JLRETUEdvOzuc6uh+9Xk9kZPsX7V2x4g3eeedNkpNTKStrHvxTXl7GunVf8vzz/yAtrR8ATz75LNOn38jevXvo3bsPH374H7p06co999wLwPTpyWRmZvD+++8eV+g0cqai+IISOoMHD2bx4sXk5eXRqZOaO2LLli0ADBgw4FwOrdX06JVGj17Nna4VRcFaXcWe/bspc9iwGYzY9EHUas3HtwBJgaBH/WcG4hVCsBGm1FDhtVG48xsC6+rRV9tx1jlx4SY0oQOJlw0kKbUHBn3bhqSeLxz48TMab9E5kcNx1qsJ+TokhXLVDceOiAJw2mspyt5LUdZuSgsykX0tlx5Phiz7qK+tpL62ktK8g/7tkkZDVIdU4pMvo0Pn3oRExCFJEiFH+DsMGZVMdFwwmXtLkX0KuVmqL5Hd5ubDf28lNj6EDkmh9BmUgDnk+Cbc6Gk3Y9+zG3w+qr5aS7dhf0VSQJEgI9DIgIzdmIeOPuXPJjj3GO1F5Eaq31uDxkBCcJO/orvEQul77/jfR988nfAJE5udL0kS4eMnoni9WD9eCUDpO29j6twVfXjzumkdguPRSlp8io9CU0OfzrJ2+VwXMiNHDuLxx/8GwLPPzvdvW7r0dQYMGMSmTRt4441l5ObmEB0dzYQJk7jjjrv9LhgjRw5ixoy7+OqrNXg8Hl55ZRkmUwCvv/4KW7duoba2hsjIKCZNuoZZs+6jtLSEm26aAsDs2fcyc+Ys+vcfyOzZ9/Lxx6uJj++Ay+XknXfe4uuv11FRUU6nTsnMnPl7Ro++AoA1az7nzTf/xd13/x9vv/1vyspK6dy5K3/848P07t33uJ91y5Zf+Otfn8ZsDmH27Hub7du9Wy0b0r//QP+2pKROREfHkJ6+g969+7Br105Gjbqi2XkDBw7mpZcWoyhKu65MnNdCx+fzUVlZidlsxmQykZaWxoABA5gzZw5PPvkk9fX1/O1vf2Pq1KlnbNE5l0iSRHR4BONGXNFiX63DQcbhTPIryqhGok4fRI3WjLuFBUiiFjO1krlJAAWDJt5HGHWEU43La6PespvCrC1oapw4a9zYHQ4CYszEdulJ6mWDCA0Na/8P3J4UqFaRYnNXbA2Sx2jSMWHKZc1Ejsthx5K7n7rKMkrzD1JhyeNYVpojCQgOxRgQjEarQ6vVodFq0WjU/31eD876Ouy1lXhcjmbnKbJMeWEW5YVZ7N74OUGhkXRI7U1Kr8sJj2l6ck7pGuWP/qq3u1n9QTpV1npkn4KlsAZLYQ2Z+8r47V0Dj+trY4iLI2zsOKq//QbF7cbx+VriUsOwKNWUGXWUFO+hK0LoXGj4vD40UiW1ujAAUkM7odWouXQUrxfLv15HafBTDBk5uoXIOZLwK6/ClZdL3a9bkOvrKXtvBQkP/LHZMXqNjsTgDuTVFVBu0OHUSIS6K/HJMlpN+/nVFGTuZM/Pa/C6ne3Wx/HQGUz0GX4NHbudemLN8eMnYrPZWLp0CatWrSMkJJTNm39m3rxHmT17DoMHD6WoqJAXX3ye/Pw8nn76Of+5q1d/wuLFS/F6fSQlJXPnndMJDw/nhRdeJjAwiF9+2cg//rGYnj17MXz4KJYvX8GsWXfwzDPPM3jwUDIy9jcby5NPPsHBgxk89NAjJCV14rvvvuaJJ+aycOFiRo4cA4DVWs5nn/2PefOeRq/Xs3jxQhYs+BsffPDJcQXHq6/+G4AdO7a12FdeXkpoaBhGY/PfpaioKEpL1SX6srIyYmJiW+x3Op3U1NQQ1o6W5vNa6FgsFsaPH8/ChQu54YYbkCSJV155hfnz53PHHXdgNBr9mZEvVkICAhjSK40jDXuKolDr9nDYUkhOiQWr10utNpAabTA+qfmfVEZLJWFUEqb+tXVAEOhjPIRTQzjV4LNR7irCvikLyebFUevDZnOgMeuJTEmhS++hxESf/75A1dZSokrcZEUMIC+8KeJt1JVdCQpWv4BOey0Ht/9AVvpGvJ5jO7AHBIcREZtEcFgUIZGxhETEERIZh8F4codWRVFwOWzUVZVRV1lGVVkBJbkZ2Gqs/mPsNRUc2rmeQzvXE9OxK90HjiM+5TKkI6JnAoMM/Ob2/uzcnM+h/WXYGpyW62qcfL5yN7f/fuhxxxA5+Xpqf/4Zud5O7S+bGJg8li+kagBKvAUn/QyC84/yglyKA5uujy5hTTnHqr//Dle+KvANcfHE3HrbCduSJImY6b+j/uBBfDXV2NN3UX9gPyF9ejc7rlNIR/Lq1OulwKgj3ltDZa2L6DaIvDoeGVu/o67yXOVEqyFj2/enJXSMRhPBwWoEZ+My0jvvvMnkyVOYOnUaAAkJicyd+zizZ9+LxVJMfLzqBzVp0jX06NETAJfLyaRJ1zB27Hji4lSL3bRpt/DeeyvIzs5i1KgrCAtTrW9mc0gL39Tc3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1ar3M2bM5LHHHqaiooKoqFNfBnM6neiPsUpgMBj9frUuV8tjDAb1vux2n34wUWs4r4TOc8891+x9YmIiBw8ebLYtMjKSpUuXns1hnXdIkkSo0UD/5FT6JzeFC8uKQqXTQ0GllZzSEsqcLqo1Ruo0QShHhaB60FNGFGVEgRYIVP+Zop1ESDVEUE2Irw63q5KcHZ+QbVdw1kJdnRtMGqI7daLrgBFERcWcNwJoy6fvUtJhCvWGMP+2Xv1jiQivpyBzJ8U5+8nP2H7MZamQyDgSOvclsUtfwmM7nvZnkiQJU6AZU6CZ6ITOwDAA6qrKKc7ZS3H2PsqLsvz5TMoKDlFWcAhzeAzdBo4l+bLB6BpqchlNOoZekcrQK1Kpqqjn8w/SsdvclBXX8c/nfmDg8CR6DUhoEbmiDQ4mcsr1qi8G0PXXHBiigCRhMTnxelzo9C19wgTnL1W5meSYmn4kOjcIHW9tLRWrP1U3ShKxd81CYzz531YbHEzUDdMofUt9Si//eCXmXj2bHZMUkggN0enFRj1dHfUUlpYTHXbmkVfHo8fg8efUotNjUOtSnbSGzMwMDhzYx9q1X/i3NfrX5Obm+IVOYmLTfBqNJm688bf8+ON3fPTR+xQWFpCVdQirtRyfr6Uz7tFkZ6sFgvv27ddse1raAF5//ZVm2zp1ahLLQUGqSPN6PZwORqMJj6fluW63C5MpoOEYY4tjGgVO4zHtxXkldARnhkaSiAowEJXQgf4JTVETXlnB6nRTVFtLXnkZFruDavTYtS0j1ZyYKFZMFBOrppMMUP8FR9qIlGqIoIYQuRbZXUbezg/JrtfgqgNbnRuvXkt89250TxtGaGh4i7bbE1mWqSqOoN4YBoAkKfRKM1BTsJJv91W0OF6j1ZLSayhxnXoQHtuRoJD2ddw2h0fTPXws3QeMxe2sJ//gdg5u/xFbtVpnq66qjO3frmTvpi/o2n8M3QZcgd7Q5IsTHhnItb/tw5cf78Fe58bl9PLz94fZt9PCdbf0xRza3G8n7IpxVP/wHZ7SUuTsXHrEh5GRZOBwoJ6izH106nVh+LQJVDzlueSGqEJHg0RyiPrjWLVuDbJTFQUhI0cRkNr6PEkhw4ZT/e1XuAoKcOXnYUtPJ2LcSP/+jsFN9xBLg0OyraQAuref0OnYrf9pWVTOR2RZYfr0GccMnz7SefjI5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxl99l2YdO1/zn/lipWk7XoTomJpba2ho8Hk8zq43VaiUmJsZ/jNXavK6g1WolICDQbw1rL4TQuQTQaSTiAo3EBUYzMC7av93lkylzuCm22SmoqMBir6dK0ePUtPwC2AjGpgSTRwJIgBEko0xYeB0RUjURUg2hcg2KK5vsrRl47HqcNqi3e/GY9CSn9ad7z0EY28mS8O0HH1JlVDNma2UbfQc6yd+/AUVp7qmvMxjp3GcE3QeOJSA4tF3GcjIMpkC6pI2ic98RFB/ex8HtP1BeqD6JuRx29v68hkM713PZkCvpkjYSrU69cUTGBDPtzoFs/SmXA7stKArUVDn44qM9/Ob2fpiOCD2WdDqip/2W4n++DMDQfU4yOurxaCQOFGwVQucCw2svxBql3q4TA+MxaPV4a2qo/lFNCCnp9URdf8MptSlpNERefwPFr7wEgPXLz+k4doR/f1xQjN8hudig9u2qPLPErBczR1uBU1M7k5eXS2JiR/+2nTu389FHH/Dww48SENDSirFly88cPHiA1au/IiIiEoDa2hoqK5se1k5kbU5NVTNl7969y790BZCevovkI+r9tTVpaf2QZZn09J3+CKr8/FzKy8vo21cVrv37D2DnzuYVDLZt+5U+fdLQtKPfFwihc0lj1GroGGyiY7CJy+Mi/dttHi+lDjcl9S4Kq6qw2OxUKjq8R/n/KGioIpQqJZTsxgcBI+iMXsJDa9QlMKmGCLkKn20zB37ajLtej9MmUe9QwBxCt2EjSUnozJlQV1tLSb6NYP1mJJzoNZXk7Wt6MgmLTiCxaxrhMYnEdOyGVqtHrnHiOlSBXOdGMmiRjFokjYTiVVA8PhS3+g9AE6BHCtAhaRtvMBKSUYsm2IDGbEA6zay7kqQhoXMfEjr3obI0n4Pbf6Dg4E4URcblsLNr/adk7viRPiMn06nHICRJIjDIwPjrejBqQlc+fHMrNVUOqivq+WLlHq6Z1rtZra6gfgMwJnXClZ9HaJWTlGIjOQlG8lzCT+dCQpZ91OmrAPWpt1tUVwCqvlqL0uD/EDpmLLrTcOYM6puGoUMC7uIiHFlZ1O7bDwnJAOg0OuKDYim0FVNu0OKRgDoReXU8GoVLRsYBUlJSuO22Gfz1r4/xxhvLmDjxKsrLy3juuQXExsYeNxw8Olq1fnz11VrGjh1PaWkpy5a9gtfr9fu6NPZz+HAW3bo1r5OXkpLKsGEjWLJEdQPp2DGJ7777mo0b1/PUUwvb5XMDREWpEWWLFj3DY4/NIyAggL///Vn69x9I796qv+RNN93CjBm38tprL3PNNdfx888b+fHH73jhhVdO0vqZI4SOoAXBeh3Beh2dQwIhTl2CUhSFarcqgEodLopq6rDY7FTJWuSj/H+86CgnknIlssmSagCzwUZUaBVRUhVRVBGhlOHK/5jdmXrcDj0uuwanW4MmMpa+I8cSGRxxUl8Zt8vB1/96nbCAGjyKC6/iQUIiSBtGjDGJTuF9MXhNSPkapBIt9TuzkZ1eaKucKhJoggxoQgxozEa0IUY0IUa04SY0Qa0vEBoRm8Swa+6g97Cr2fvzWvIPqk8+9XVVbFn7LoWH0hk04WZMgWom3NgOIVw/PY3/vr2Derub8pI6/vfODq66oRfRceoxkiQRed31FP9T9WkbssdOTgcDhUZHu4dzCtqOyuIiio5yRPbW1jaz5kRcdc1ptS1pNERcfS0lb/wLgKJPVxH/hwf9+xPNHSi0FaNIEiUGHQZny2VggcqAAYPp2bM39913F/PmPc24cROYPx/effdN3nvvbczmEEaMGMV9980+bhs9e/bmgQfmsHLl+yxf/hrR0dGMH38lMTGx7N+/F4DQ0DCuvXYKr766lMLCAkaPHtusjfnzF7Js2SssWrQAm62OlJTOLFjwPGPGjD1Wl23Gn//8BEuXLuHxx+cCMHTocObMmevfn5rameeee4HXXlvKxx9/QHx8B/761wUMHDi4XccFICmiJC0+n0xlZdtnjNXpNC0SBl5s+GSFCpeHUoeLEocbi82Opa6eGlnTVODkBATg8AufaKmSKKmKIMWO06XD5TTirtfjsutwufWYYuLoPngw0RFx1NbUsmf1GkIdwSQYm4oQnk9ozAZ0ccHqv/hgNAGtz11UVV7Eno2fY8lpCh01BgTRd9T1dE0bSkSEmaoqO6XFtXz58V7sdapTn06nYdzkHnTuoS5RKopC/lN/xVWgWnE+uyKUvA5G/phyG11TTlxE92LgYvgOHtzwLZ/UfenPZ/P8qCepX/UFVevWABA2YSIxt5w40upEKD4fOY/NxVtZCRoNXf++BKnBx+6Hgo3899BqAH5TVktCVSDd712C5gxEssfjpqLCQmRkPHp96x8Gzjd0Os0Fe02dC05nvk52rUREBF18mZEF5x9ajURMgIGYAAOqgVJdAnP7ZMqdbiz1LorrXRTZHJTUu/AcJUgcBFCgBFBAB7/1x4iLaEMlMYYKYkIriZEqCJSc+GQL5Rl7yHPqsTl12IJ0FGqr2O2xEEwgZgIIwoQBHRISXnz4kAkwBhAsBWL2GtFrdUhGLdrwALRRgWjDTCg+GcXlA1kBrQbJoFGXswxakBUUh1e1AjWWkVAUZKcXuc6NXOvCV+sCT8svsFznxl1XiftQJQCaUKNf9Ohig9EcJ3khQHh0AqN/cy+Fh9LZ9u2HuBx2XA47W79+n9x9m5n427uR9KGq384dA1j3yV5Ki+vwemW+XX2AILOBuIRQJEkiYvL1WF5TzcND9tWTF29gW/Yvl4TQuRiwlWZRHK5eKxFSMAGKDstP6wHVF+t0rTmNSFotoaPGULHqU5Blqjf8RPjk6wFIPMohOU1TS3Wtk4jQC792mODSQQgdQbtg0GpICDKRENQUDSQrClanxy9+iuudFNtdOI6qQeTCSKESTyHxfvETjJ1oqZIYYwUxxgoSwyoxSGqYuMcrYXPqsTt1VDt12Bx66l06ZKVBVB1RHi3IFIw5KASdrEdXqUNXq0Ov1xMaGk5EVCRhYWEtohNOhqIoKE5vg+hRxY+33I6vvL5JHAFyjQt3jQv3QdX8r4sLRp8ahqFTmCqqjkFi1zSiOqSw44f/UZC5E4DyosN8uPRv9Bs9hS79xhAYbGDK9H6sX3uQzH1lyLLC15/u5ze/64851ERw/wEYOnTAXVxMh3IPCWUeckOFn86FQrWrELnBgpIckkzd1i3I9aoFOnjwEHRhZx7hGDJiFBWrPwNFoeqn9YRdcx2SRkOiuSn7crFBj0myYSktJyK0/SKvBIK2RggdwVlDIzVZf9IiVT8Sv++Py02lTybLWkeBzYnd2zxnhI0gbEoQOUpjBINCOLVESxXEaCqJCaogPqgarSQ3tAv1Lq1fANU59Ngceux2G3a77bhjlCSJ4GAzAQGBBAQEEhgYRGBgIGFh4URGxhyzgq4kSUgBejQBenRHJP5UvDLeMjveEhveEhs+a32z6M/G7Y7NReg7hqBPCUefaG7h3GwKCmH45JmU5A1n+3cfYasuR/Z52fHDJ5TkHWTIpNsxBgQx9toe2GpdFBfUYLe5+fKjPUxtiMaKuHqy3w9j8D47n1+hx+FxEKAXT+bnM4qiUKWvBdTr7rK4HtS8vc6/P+yKtsn7oo+IILhvX2zp6XgrK3EcyiSwew8CdAFEmSKwOispMWqRgbqyQugmhI7gwkEIHcE5RZIkwo16ooOMqi9FtB2Px0eN20uB3UmR3dXwvxO3fKQ7meSP+MpU1NwhGnxEUk2sZCVOKifOaCXW1Lwcg8ujpc7RKHzU/93eJmuKoijU1dVSV1d7zPGazSFERcUQGRlFREQU4eGRLdKe+0eo06DvYEbfoUHUuX2q8LHY8BTUINc1mJpkBU9eDZ68GiSDFn1yKMbLotGGNRdVcZ26M+l3j7B/8xoObFUdUYsP7+Ordxcx7No7iE7ozJW/6cmn7+6ipspBVUM01pRb+2IecjkVqz7FYy2nU4mH0Dofm/f+yNj+V7f6byU4+9SWlWAJaFruTa7TY8s5DICxY0dMqWcWsXgkocNGYEtXaxbVbdlMYHc1oifR3AGrsxK3RkOFXourorjN+hQIzgZC6AjOOyRJIsyoJ8yop0+EKhJkRaHc6abQ7qLQ5qTQ7qTE4eLIQsgyWn+0115FTW0ejJ04yUqsVE6cZCVSV01UiIuokCNSjmuC8BKKzWmivFrBWuXG5T52FtJGEZSTk+XfFhQUTEREFBERkURFxRAdHXvMZFySQYs+MQR9YgimQfH4rA7cOVV4cqpRnOoynOL24c6sxJ1ZiS7BjLF3DLrYIH+ElE5vYMDYG+jSK42vVy7H5bDhsFXzw0cv03v41Vw2ZCKTb+7Dp+/tot6mRmOt+e9erv1tH8LGT6B85QcApGU6OGDaxViE0DmfKTt8kPwGJ2SjrEHza7p/X+gV49s0cs7cvz8akwnZ6aRu21Zipt+OpNORGJzArnI14qfYqEOqKz9JSwLB+YUQOoILAo0kERtgJDbAyMCoEAA8skxJvZtCuyp8CuxOrM7mKcZtBJGlBJGlqNXudXiJlazEYiVeKidWsmKQ7eiwE2aAsBjoGqNBHxCDxhCLTwrH6Q2motqB1WqlosKKLDcXQY3LYQUFuf5tYWERxMTEEh2t/jObQ5r9KEmShC46EF10IMqgDngtdbgPV+PJr/GHvnuL6vAW1aGNDMDYKxp9pzAkjdpGp+59uebOR9n4+duUF2ahKDJ7Nn1JhSWXodfcwXU39+Wz/+zC5fRiKajh60/3c+U1Iyn/5L/g8XDZYQd7elaIMPPznJKyDOrN6lJmvBKObdtWACSDgZDLj1/v7HTQGI1EXj6E8vU/Idfbse/dQ3C//iQEx/mPKTXo6FRlPUErAsH5hxA6ggsWvaYp4WEjDq+PfJuTPJuDfJsqfjxHLHl50VGkxFFEHCggoRAtVRFPKR2kMuKkcoySB4+jBBxq1V0dEG8KpFO3BAyB3XETSU0dVFZVUFlZQVVVZYsaMdXVlVRXV5KZeQCAgIBAEhOTSEzsRHx8QjOHZ0kjoU8IQZ8QguLx4TpUiWt/OYpdbdNX4aD+p3w0wSUYe0ah7aEmGws0h3HFtD+wf/M69m/5CkVRKD68j+9XvsTo39zL5Jv7svqDdDxuH/mHK0nfZabjyNHU/PAdeh90zHeSXZRJl8Tu7fL3EZw5Ze4i/+u0uuAmJ+T+A9Acw1/sTIkaPZLy9T8BUPfrZoL79afDEUKnxKCjl7dKCGTBBYUQOoKLigCdlu5hQXQPCwLUPD8lDhd5R4ifGndTUU8FiTIlgjIiSFcuAxSiNDbilWI6SGXES2WYJDeytx5n7SGctYfUfrQBpMYk0zM1BWPwCBxuHZWVVsrKSikvL6WqqqJZ3RiHo55DhzI4dCgDrVZLXFwCCQkdSUjoiNkc4j9O0msx9YzG2CMKT241rn3l+CpVPyPZ5sbxazHO3WVIwzqiJIWg0WjoPfwaohI688sXb+F21VNdXsS3H7zA6N/cy9U39ubzD9NRFNi2KY/oK4fBD98B0O9gPZv3fyuEznlMpc4GqEtXnQqbcn2ZLx/WLv2F9UtDGxyMz2bDtmsnsstFhCkcg9aA2+em1KAlUlNLrc1FqLnthZZA0B4IoSO4qNFqJH+Y+/DYMACqXR7ybE5ybQ5y6hyUOY6IP0fCKpux0p09DX4+Udp6Eiimg1JEvFSGQfIi+xw4qg/gqFYtNlp9CCHmFKK7JGPq3wdFCqCiopyyshLKykooKbH4l7x8Ph9FRfkUFeUDEBISSmJiJ5KTOxMZGaVGcWkkDKnh6FPC8JbYcO0rx1tUB4Di9GL9IQdNoB5jnxgMXSOI69Sd8bfOYf0nr1FfW0l9XRXfrfwHI667m0Ejk9m6IRdFge/Wl5LWqRvmvExC6mXknMyz84cQnDL2qgpKTKrVxOiW0Rw4hAJog80E9ezVLn1qdDpCBg2m6scfUNxu6vfvJbj/QOKDYsmrLaBSr0Wj8VJRVk6ouePJGxQIzgOE0BFccjQ6OjeGuNs8XnLrnOTUOcitq6fE4W5WA9jqC8RKF9LpggaFOJ2deKWARIqIoQKtJOPz1GKvTMdeqTqL6oyRmMwpdElKoXfPsfgUHSUlxRQW5lFYmI/DUe9vv7a2hv37d7N//27M5hBSUrqQnNyZsLBwJElCH29GH2/GV+XAubsMT241AHK9B8eWIlz7yjH1j8OcEsOEWx9iw6evU1VWiMflYP3//kmfkVNITI6iMLcal9PL/tBR9NfmY/A5ST5sp9xaTHRUBwTnF4XZ+yhtyK/UJ8+H4lGXMoMHD0Y6xVxPp0LwgAFU/fgDALZduwjuP5AOQXHk1RagSBJlBh3u0kLoLISO4MKgfUuGCgQXAMF6Hb0jgrmuUzQP9O7EX/qn8ruu8YyMDSMh0Ngsl7OMRLE3mO2+y1jlm8Db8k2s42rS5Z5UKqE0rlZ5XRXYrNuw5nxM4Z6/U5H9NsGaQ/TrlcANN/yWyZNvoH//wcTExDXzdairq2X37h2sXv0xn3/+X/bs2ekPddeGBxA0phNhU7sT1CWiaUw2N/Ub8rGtyULv0jP2tw8Sn6I+8SuKwu4Nq4gI2kFElLrUYKuX2ZE4AZ+kJa7Cy9Zv32/fCRacFrml+1Earo3uBU0+YCHttGzVSFCPy5AaUibYd+9CkWU6BDUliCox6EQV8wZGjhzEmjWfA+D1elm58j9npd9NmzaQ05BmYMeObYwcOQiL5eyE/efn5zFhwsgW/ZWWlvC3vz3OlCmTuOqqsTz00AMcPpzd7Jjt27dy992/Y9y4Edxyy29Yt+7LszJmYdERCI4iQKflsrBgLgtTq0XXe30crnWQXVdPdm19s8guj6Ih1xtGLmH8QhpmrZckqZwEXzYJUglGST3W7bDgdlioK/sZJC3GoEQ6xXTjsm6j8CoB5OfnkJubTUlJ082jqqqSqqpKdu7cSnR0LN26XUanTqmYIgOJntqTsswy7FuL8VrUBIg+az22LzIxXhbNiGvuYv+2r9i/5WsACg/tJDqxHpczDbvNh10fzcHoYfQs24hx/6GzNbWCU6DUbYEACHTIRJaqf2NdVBSmzl3atV+NwUBQr97YdmzHV1eHMzubDpFNGZJLDDo614oq5gCrVq0jOFi9T3zzzTpefvlFbr759OuOtYaSEguPPDKHpUtfJyUllT590li1ah1hbZAh+2RkZ2cxd+6DOJ3OZtvdbjdz5z5IeHgEzz//DwwGA2+//W8efPA+3nlnJeHh4eTm5jB37h+ZPv13/O1vT7Nx4wYWLnyKqKhoBg0a0q7jFkJHIDgJgTotvSOC6R2h3tBq3B6yax1k1arCp87TFG5e59OxzxfPPuKRUEgwOEmkiARfFlFUqXVOFR8uWx4uWx7Vxd+gD4glNrQHyaMG45GDyM/PIScnG6u16cekvFx1ct669Re6du3G4MED0UcHEXxlZzxFdTi2FiHXuEAB1/5y3LnVdB88kvDrOrJl3bt4PW7KCw/SIV4hx9Ubr0fCEtKVGFsuCZZCMnZsoseAEWd7agUnoEJrA7R0zXciNVgKQ4YMPSvRTkFp/bDt2A6Afe9u4q+50r+v1KilR7UIMQeIjIzyvz5b9bGP7kev1zcbR3uxYsUbvPPOmyQnp1JWVtpsX3r6Tg4fzuazz14hKkotKPyXv8znmmvGsWnTT0yefD0ffvgfunTpyj333AvA9OnJZGZm8P7777a70BFLVwLBKRJq0DMgKoTfpsbxaFoKD/ZO4tqOUXQLDUR3xI+QgkShO4DN7i78z3cV73ELG3TXkKvpjkdpesbwOEqpKVlPScYyavLeJi6khPFjBjF16s307z+k2ZOa2+1i3749vP3223z55SqyszORYgMwX9cNU/840Kr9K/Ue6tfnEZYTzOgr/w9dQ+XfCksmcWFbkFAjuTJihiNLegq/+d/ZmDpBK7HX1lLaENR0WU7T03N7RVsdTVCvPk1j2beXEEMwQbpAQLXoBHmrzso4zncal67WrPmcZ5+d79+2Y8c2QF1iuuuu2xk3bgQ33zyV5ctfw+12Nzv/X/96lRtvnMyUKZPIz8+lrKyUp56ax3XXXcmYMZdzww3XsmzZP5FlGYulmJtumgLA7Nn38sYby1osXblcTpYvf42bbrqeceOGM3PmdH766Ud/n2vWfM60adexdu0X3HzzVMaOHcY998xg797dJ/ysW7b8wl//+jT33/9gi32pqZ35+99f8oscUHOFKYpCba269L5r104GDhzc7LyBAweze/fOdheJwqIjEJwB0hGJDEfEheORZXLqHGTW1JNZY2+2zGX3SezzhbKPAWilASQZXXQin0TPfoIl1TnZ66qkruwX6sp+Qas3kxDWnS5XDKDWEcChQwfJzT3sj94qLbVQWmrh1183kZLSlZ49+2BO7o7j1yJ/hJbXYkNfAlf0vouf9q7A7XFQX1NEhKmSGtfluHSR7I8ZSZf8H7HXVRFkbn/zt+DkZB3aSZ1OS2idl9hKNR2CsWNHjAkJZ6V/XVgYhsSOuAsLcOXlIttsdAiO41D1Yep0WkyaKtweLwZ92/6EuHOrce4qQfHIJz+4jZH0Gkz94jAkh53yuePHT8Rms7F06RJWrVpHSEgomzf/zLx5jzJ79hwGDx5KUVEhL774PPn5eTz99HP+c1ev/oTFi5fi9fpISkrmzjunEx4ezgsvvExgYBC//LKRf/xjMT179mL48FEsX76CWbPu4Jlnnmfw4KFkZOxvNpYnn3yCgwczeOihR0hK6sR3333NE0/MZeHCxYwcOQYAq7Wczz77H/PmPY1er2fx4oUsWPA3Pvjgk+NaDF999d8AfhF3JJGRUQwb1tyq9PHHH+B2uxkyRE1sWVZWRkxMbLNjoqKicDqd1NTUEBYWdmqTfgoIoSMQtCF6jYZuoUF0Cw0Coql0esistXOoRl3maqzX5VMgx2kkh65AV2INXjpJFhK9+4mmEkkCn6cOm3UbNus2NFoTl3XsRp8eQ7CU+8jKzqKyshIAj8dDZuZ+MjP3k5SUQq+0voR2i8Txa5GadFABbb6HK+JvZ1fN95TVZKPIDsz6n7B7B1AenIzZ1ZeKD19l/Kwnzt3kCfwcLt8PBuie21Sq5GxZcxoJ6tUbd2EBKAr2/fvoEK4KHYAqIxjKyohLaNtoPdfeMnUJ9hygAK595acldIxGk99Xp3EZ6Z133mTy5ClMnToNgISERObOfZzZs+/FYikmPl6du0mTrqFHj56Aao2ZNOkaxo4dT1yc6hc1bdotvPfeCrKzsxg16gq/hddsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZVU2jMmDGTxx57mIqKCqKiznwZbP3671m27J9Mm3YLXbp09X82vV7f7DiDQXV6d7vb928uhI5A0I5EmPQMNYUxNCYMryxzuM7BgWo7GdX2ZokLS906SunIr3QkWCuTorXSybufeErQSgqyz4m9cjdU7iZIo2d0/+445F4cLnCRk5uL16u2lZ+fQ35+DjExcVw2sBfR1eG495aDrCDZZfrrr6AkNpW9pT/gw0uQdhuKouNw5AA6Z/2A2+3y33wE545SVwnoFbrnNSxbSRLmIZef1TEE9e5D1VdrAajft4f4SU3LWaVGHaaSojYXOsbeMefUomPsFX3yA1tJZmYGBw7sY+3aL/zbGpdocnNz/EInMbGpErzRaOLGG3/Ljz9+x0cfvU9hYQFZWYewWsvx+Y5df+9IsrPVGnx9+/Zrtj0tbQCvv/5Ks22dOqX4XwcFqSLt6Azvp8Nnn/2XF1/8O+PHX8kDD8zxbzcajXg8zdtvFDgmU8AZ93sihNARCM4SuiOsPVOSFCwONxnVNg5U2Smqb3qisfk07PHFsIcYAjQKqboqknwHSFQK0UoyiuyhumwvsJfEID2dh3ajwmZm78ESHA71h7ExUWFwsJnuvboTX2RCU6lad+K8SURFT2d/zc9Y3FkE636lzjuS3NCRfL/iX1w164FzNEOCRip09cRUeYmoVX/cArp2Qx8ReVbHYOrSFclgQHG7se/bR/xvJvj3lRq0xFrbPsTckBx2WhaV8xFZVpg+fQZXXz25xb4jnYeNxqYHC6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67F9XWTZ16zsDHDMwsNn6ivz2msv85//rGDatFt48ME/NVsGi4mJxWptXhDWarUSEBDot4a1F0LoCATnAEmS6BBopEOgkXEdIql1e8losPRk1dbjbbjhOGSJfa4I9jECg0YhVV9LJ99BEuVc9JIPRfbgrNlHEDCsRzBuKYHMPDdlFaqzsc1Wx/a929Dr9aTEdCS5PAyTokcn6+lrHkNHTw/22TcCm7AxFEtpEnVVVZjDha/OuaKutoYyIwzbf4QT8tCzu2wFoNHrCezeA/ue3fhqqompbnoaL9Pr8NWUnuDsS4+jfVtSUzuTl5dLYmJTYsWdO7fz0Ucf8PDDjxIQ0NKKsWXLzxw8eIDVq78iokHY1tbWUFlZcdx+mvepph7YvXuXf+kKID19F8nJKcc7rU149dWlvP/+O/y///cg06f/rsX+/v0HsHPn9mbbtm37lT590tBo2jcuSkRdCQTnASEGHUNiQpnRrQNP9E/l1s5x9IkIxqBpuqm5ZYkMZyhfeYbwjvJbvtNOJovOeBQ1e67staHzHKRnhxyu6O+jR4oRnUZdAvB4PGSWH+Y7TTr7zRYcqJEf4fpYhoZeR4yhA8G6n1EMVtb8e+XZnwCBn72ZW/BK0C2/wcqn1WIeMKhV5zodHoryqjiQbuHXDbns+CWfkqKa035SDzwi+krOyCJYq/qElBl06OpFiPmRNAqXjIwDuFxObrttBuvXf88bbywjPz+P7du38uyzT1FXV3vccPDo6BgAvvpqLSUlFtLTd/Hoo3/C6/X6o7Ua+zl8OAubzdbs/JSUVIYNG8GSJc+xadMG8vPzeOut5WzcuJ5bb729vT46O3Zs4/3332HatFuYNOlqKiqs/n/19WqgxU033cL+/Xt57bWXycvL5YMP3uPHH7/jtttmtNu4GhEWHYHgPMOo1dAnwkyfCDMeWSartp59lTYOVNtx+BqEiwyHXGYOMQS9NJhUfRXJ3n0kScVoJRm85cQFQ1xvLfXeSLILfVTU6vDJPrJs+WRrCuigjSLZE02EFEx/80QOO3aR7diJyxfL1u+/ZfC4CScZqaA9yLUeIK7WS7BD/VsH9eqN9iSm/dLiWjZ+k0WZpe6Y+0MjAkgbnEj3PnHodK1/vg3q3ZvGxQb7vj3Ej43jUM1hbDoNeCtb3c6lwIABg+nZszf33XcX8+Y9zbhxE5g/H959903ee+9tzOYQRowYxX33zT5uGz179uaBB+awcuX7LF/+GtHR0YwffyUxMbHs378XgNDQMK69dgqvvrqUwsICRo8e26yN+fMXsmzZKyxatACbrY6UlM4sWPA8Y8aMPVaXbcI333wFwH//+yH//e+HzfbNnDmLu+/+P1JTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRch5eyApZyvL0XmMzydTWWk/+YGniE6nITw8iKoqO17v2Xeuu5AQc3VyfLLC4bp69tfY2V9lp+4IZ+ZGjJJMqraEVPkgCVIpGqnp6+1TTBRZ9VgqjTjcTc84oUogXUkgnnBqvRXst22kyu3l6rv/SPhZ9gtpay7E6+qlz/9C1KFKBu9Xn4Rj77yL0JGjj3msx+Nj64Zcdm8tpDV38sAgA6MndSWlW0uLwrHmSlEUch6bi9dqRdLp2HX/VfxY/isAMwvqGPC7f57ysoPH46aiwkJkZDx6fUs/kQsFnU5zwVxT5wOnM18nu1YiIoLQak9+/QmLjkBwgaDVSHQNDeKySDN3hQWyPc/KrvIa9lbZqG+4gbgUDQe8HThABwI0PjoreXSWDhNHOVrJSVK0k6ToOmodRoorjJTXmKiR69nGIcKUIHrpOjE09HqKXYf44c1/M3n2nGM6LQraD6veyZDChmUrSSLoqAiaRiwFNXz/ZQa11U2+PGGRgXRMDicsIoDgECOOeg+Ze0spLqgBoN7uZt0n+xh6RQr9hyYds90jkSSJoF69qVn/I4rXS0drU+RPtVHBVl1FyAUuhgUXP0LoCAQXIBpJoktoIMlBJq5LiiGrtp7dlXXsr7LjklXR45C17CWVvaRi1rjoKmfRTZNDmFRHSICLkEQXXTvYKK8xYKkKpNqusIn9xBFON1MCow3JbF32IcP/8LuzUnZAACVlBchOmcjGaKsuXdGFhDQ7RlEUtv+cz7aNuX4rjlYrMWhkMmlDEls84V6WFk95SR1bN+SSl60uN23+MQefT2HQiE4nHVNg98uoWf8jABGWWohTt5cZdFRZCoXQEZz3CKEjEFzgaDUS3cOC6B4WhEeWOVitip6Mars/eqtONrKDXuzw9SJWU01XDtFFysekcRMX7iQu3InDpcVSFYClysdP3iqiNaF0C0lh1+uf0mPmJAJMQef4k1787M7cQmphU6qBoH79WxyzZX0OOzcX+N/HJYZwxdXdCY8MbHFsI9FxZq6e1psdv+Tz60+5AGzdkItGIzFg2IktO6au3fyv9fklRwgdLfXlxUBaKz6ZQHDuEEJHILiI0Gs0/gKkLp/MgWobuyrqOFRT78+wUSqHUcpgfmYQnaRiukmHSZKKCTD6SI2zkRxjo7zGRFGlm0311UQEmnG++xWxQzqTmiZ+1NqTgppsUouaaiEFpzUXOgfSLc1EzpBRyfQfloRGc3KLmyRJDBzeCa1Wwy8/qBmOt6zPITDIQI++ccc9Tx8ejj4qGo+1HG9uHgEDY3BovZTpdXirSv5/e/cdH1WZLnD8d6ZkJr333kMKJRTpHXFR0VWxlwVlbVdWV13doq5r96J4saEu2AsqCNJURFF6L1ICJCQkgdRJb5PMzLl/TBiIgCRImBCe7+eTj8k7p7znMcw8eWtHH1GIc04SHSG6KYNWQ29/L3r7e1HbYmGHqZZt5TUUNdo/SG0o5Krh5KrhGJUW4sklSZNLkFJBsG8Twb5N1DbqOGxqJKfKlaLttRzYtI0xf7r5hMXHxNlR02QitLx1vRp/P1xCjiUghw9V8fO3Bxw/D7s4gfTMju991fuiSGw2lQ0/5QKwctk+vP1ciYw59dpJrolJtJSXoVosJNUY2eFbR7VeS0uDrKUjuj5ZR0eIC4CnXsfQEF/uS4/mvrQohoX44KnXOl5vUvXsVpP4yjqeL2wT2GlLplF1wdPVQkpEDYNSSgkKLaPavYGlH37CT59/6cSn6Z5aWlpwNTWiaW168+k7wPFadWUj3361G1vrXmkZfcPPKMk5qs/ASDL62c9XVfhxyT5aWk69xYDrcd1XsdXHktwGm0wxF12f/FkmxAUm1M1AqFsgF0cEkFPTwLbyWvZU1dHS+iFaoXqzVs1kPb2JVQpIUQ4SoS0mKrCByIAGKmprOWxyY/GcD3A3ujDqxuud/ETdw659m4gsOtZt5dknEwBzUwtLv/gFc5N9OYHIOF8Gj4n/XfdSFIXBo+MpPVJDyZFaqisb2fBTLpdPOnnXpGvSsUQnqLQBYuzf12sbflc9hDgXJNER4gKlVRTH3ltNViu7KurYXF5Dfp19urINDTlqNDlqNB7Uk6I5SLJyEH+vBvy9zDSYazhicmPRB3NwadEw7MZJuLnKgOUzdaBwK6mtiU6LixZjvH05/5++OUBVhX1LD98AN8ZNTG3XmJzT0WgURl2awhdzNmO1qmzfUMiAobG4GLUnHKsPDkHr6YW1tgZjYRlKPy9UjUK1QaWloQa9m9dJ7iBE1yBdV0IIjFot/QK9uatHJPenRzM02Ad33bEPvDrc2WzL4GPrRJZYR5Jji8TgopIQVkt6WiHeMWX8uPBjlr41m6JDOU58kvOX+UgeLhZ7q5o1NhpFoyH3QDk5Wfa1iQ1GHROuScdgPHt/n/r6u5E52D7FXFVVls7bddLtIhRFwTUx0f59kxn/anvrUomLjqqiwrNWHyE6gyQ6Qog2glxdmBAVyCO9YrkxPoQkbzeOtR8oFKihLLcN5SPrRDZaM2hQ3AjzayQjuZiItFL2bPuGZW/PYdOKZU58ivOLqqp4lh7btyh86BiazRZWfXds8PHQcQl4+Zy4EeTv1fuiSLx97dctyK0ga+fJZ1IdP04nstSe6JTptdSWHD7rdTpfDB3aj6VLFwFgsViYO/fjc3LfNWtWkZtrnzm3detmhg7tR1HRkXNy7/z8Q4wdO/Q377djxzaGDx/A1q2b25Rv2bKJ22+/hdGjh3D99X/km2+WdHZ1gXZ2XS1YsKBDF73yyivPoCpCiK5Ep1FI9/Mk3c+TKnMLW001bCmrobJ164lGXNmqprPNmkqUcoQ0JZtItyJ8ok2YwzSUVFTz3XtHUDVWRlx3G0aDwclP1HUdyNtLeGu3lU0Bn96ZrFmZS32tvSwyzpfE1KBOubdOp2HYxQksnvsLAGtW5BAZ54fRVd/mONfEZMf30WUq25KhQq+lvuLcfMB2RQsXfoNH6z5ky5d/w6uvzuC6627q1HsWFxfxyCMPMHPmLGJj48jI6MXChd/g43PqWXNnS05ONg8//BeamppOeUxdXR1PPfU4Nlvb7R7y8nJ5+OH7ufHGW3jiiadYvXoVzz33HwICAunXb8AprnZ2tCvRefTRR9t9QUVRJNERopvxMegZHebPyFA/cmoa2FhWw97KOmyAioZDagSH1Ag8qSNVk02K7iBRwbXYAmsprXJl9Zcf0lhVT78/Xk1oWISzH6fLObD9BxLr7R8M1QFuFJU0sXubPYHQ6TUMvzipU1enjoz1IyE1iOw9pTQ2tLDh51xGjE9qc4whMhLFYEQ1NxFcZgbVFVVRqGoo6rR6dXXH70J+rraN/PV99Hr9KXdDP5vef382H3wwh5iYOEpLT72swPTpzxEeHkFxcdvfi88++5iEhETuuOMuAG68MYb9+7P45JMPu0ais2LFik6thBDi/KBR7PttJXq7U9NsYVNZNZvKaqhpsbfy1OLBBltvNpFBnFJAmuYAIb7lhPg1UlHrwr61S9hSZCa4X0/6DRwhW0u0suZmO75XYxP5cek+x8+DRsbh5WPs9DoMG5tAfo6JZrOVvduL6D3gWJcWgKLV4pqQQMPuXRgbW/Cus1LtqaPWVtXpdeuqhg7txz/+8QQAzz77pKNs5sxZZGb2Y82aVcye/RZ5ebkEBgYydux4brvtdsf+cUOH9uPWW6fw7bdLaWlp4bXX3sJodGXWrNfYtGkDNTXV+PsHMH78BKZOvZuSkmImTZoIwLRpdzF58lT69OnLtGl38cUXXxMaGobZ3MQHH7zLd999g8lURnR0DJMn/5nhw0cCsHTpIubMeZvbb7+T9977L6WlJcTHJ3L//Q+Rnt7zlM+6YcM6Hn/8KTw9vZg27a6THvPtt0vZvfsXnn/+ZW67re1szO3btzFs2Mg2ZX379uf//m86qqp26ntBuxKd8PD2r9cgm6ELcWHwctExJtyfkWF+7KuqZ0NpNQdq7NONbWjJVmPItsbgRxXpmv0keuTh51lCfbiO8rLdLHtjL0qwjlGX3YLR2Pkf5F2V1WrF57jxOTU+w6g7WA9AeLQPaZlh56QeHl4GBo9KYOU3+1BV2L6hgBGXtG3VcU1MomH3LgDCylqo9tRRp208J/XrysaMGUddXR0zZ77EwoXf4OXlzfr1a3nssUeZNu0B+vcfyOHDhcyY8SL5+Yd46qnnHed+/fV8pk+ficViJSoqhj/96UZ8fX15+eVXcXNzZ9261bzyynRSU9MYPHgY77zzPlOn3sYzz7xI//4Dycra06Yu//73P9m3L4u//vURoqKiWbHiO/75z4d57rnpDB06AoDy8jIWLJjHY489hV6vZ/r053j66Sf49NP5p0w43njjvwAnjLs5qqjoCK+8Mp3nn38JN7cTtyMpLS0lKCi4TVlAQABNTU1UV1fj4+PT7nh31BkN31+yZAkbN26kpaXFkdioqkpDQwPbt2/n559/PquVFEJ0XVpFIdXXg1RfD0xNzWwsq2ZLeY1jR/UKfPjZNoAN9KKHkkO64QDRkSaaQzSUmjz5+YMPqNWUM2jCLYSFRTr5ac69A3s3E2Syt4gV+EWS05rk6F20jPxD8jlt9RowNIY1P2TT0mwl65di+g2Nxt3j2Ngq14REx/dhZS3sjXOl2kXFam5Aazj1XlvtlZd3kB07NtPS0vK7r9VRer2e3r37ER0d1+FzDQajY6zO0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERQkPtCez48RNISUkFwGxuYvz4CYwaNYaQkFAArrnmej766H1ycrIZNmykYyyOp6fXCQlFXl4uq1b9xAsvzGDIkGEATJ48lezs/bz//hxHomOxWHjooUdJbB13deutk/n73x/CZDIRENDxbjCr1cpTTz3OFVdcRa9efU46UNlsbkKvbzvuy8XF/rvV3Gw+4fizqcOJzmuvvcZrr72Gp6cnFosFvV6PTqejoqICjUbDpEmTOqOeQojzgL/RhT9EBjI23J9dFXVsKK0mv94+cNGMge1qKjusKcQqhWTo9hEeXI4tqJqySnf2Lv+G9dVFxA8bRa8+w5z8JOfOoQ3LiVXtW3Lk+Q10lA8eHX9OuqyOZ3TVk9E3jK3rCrBZVXZuOsygUcc++I1x8aDVgtVKeKk9GSnTa6kuLsQvOulUl2233bt3UF1d9buv83vufyaJzsns35/F3r27WbZssaPsaMNAXl6uI9GJiDi2qarBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1lOvXH1UTo69C7Rnz95tynv1ymTWrNfalEVHxzq+d3e3J2kWy5klmB9++C6NjQ3cfvudpzzGYDCckMAeTXCMxrM/m/B4HU50vvrqKyZOnMgLL7zAzJkzOXLkCC+88AK7du3iz3/+M4mJiae/iBCiW9NrNPQJ8KJPgBeF9U2sK6liZ0UtVtU+ePmgGsVBaxQBVJCh2U+C3yGC/eqpqDVQuW8vX61chXdaLMNGX4Nepz/9Dc9j+gL79OxizwSasX/ghEZ606PXqTfa7Ey9B0SyfWMhNqvK7m1HyBwU5Vi7R+PigjEmlqacbHxrrbg12ig16Kg5S4lOenovtm93XotOWtrZ27TWZlO58cZb+cMfLjvhteMHDxuOm43Y1NTEvfdOpampkdGjxzF+/KU88EAa9947tZ13PfnQEZvNesL+dEfHCbU5+wyHnixZ8jXl5WVMmDC6zXUeeugv9OnTl5demklQUDDl5WVtzisvL8fV1c3RGtZZOpzolJSUcMUVV6AoCmlpaSxZYp8Hn56ezl133cUXX3zBzTfffNYrKoQ4P0W4G5kUF8IlkQFsLK1mQ2k1dRb7X6fl+PGjbSDr6U2qkk2q5wH8vYqpjdRTWVrFsldnooRpGXXpHZ3+ZugMjY31BJQ2YUPDQf/ejvKBI2KdNlDb3dNASkYIe7YX0dJsZdfWw/RtXVQQ7N1XTa0tByGmFg5GGCg35R/dFeJ3iY6OO2stKufar/9/xcXFc+hQHhERx7pjt23bwueff8pDDz2Kq+uJrRgbNqxl3769fP31t/j5+QNQU1NNRYXplPdpe0/7ato7d253dF0B7NixnZiY2FOd9ru9+upbWCwWx89lZaXcd9+dPProv+jTpy8Affpksm3bljbnbd68kYyMXmg0nbukX4ev7ubm5gh0TEwMhYWFjjn1PXr0oLBQVskUQpzIU28fvPy3XjFMig0m3O3YX7KNGNmipvOxdSI/Wi+ixdWNqJgyUgY3EuCuZdV77zHvv09SVNS9Fqfb9t08jM0qh72TMevsiVxUvB8hEd5OrVfviyI5+nm6c/PhNht+Ht2aAiCkdad1U9PJFxm8kBxNXLKy9mI2N3HTTbfy008/MHv2W+TnH2LLlk08++x/qK2tOeV08MBA+1pJ3367jOLiInbs2M6jjz6IxWKhubm5zX0OHsymrq6uzfmxsXEMGjSEl156njVrVpGff4h3332H1at/4oYbOq8BIiQklIiISMfX0fFFAQGBjmeaNOl69uzZxZtvvsqhQ3l8+ulHrFy5gptuurXT6nVUh1t0MjIy+Oqrrxg8eDBRUVFotVrWrl3L6NGjycnJOWlzmBBCHKVr7dbq7e9Jfl0Ta0uq2N26Jo8NLfvUOPZZ44hUjtBbl0VYWAnBIQqmCm92L1rEmubD9Bw7iaSUU0+FPV807N2KRdGR63usy2TAsBjnVaiVt68r8SmBZO8to6mhhX07i0nva5996xp3rMXlaKJTY6t2Sj27kszM/qSmpnP33VN47LGnGD16LE8+CR9+OIePPnoPT08vhgwZxt13TzvlNVJT07nvvgeYO/cT3nnnTQIDAxkz5mKCgoLZs8c+283b24dLL53IG2/MpLCwgOHDR7W5xpNPPsdbb73GCy88TV1dLbGx8Tz99IuMGDHqZLc8Z+Li4nn++Zd5882ZfPHFp4SGhvH440/Tt2//Tr+3onawU27Tpk1MnjyZoUOHMmvWLP75z3+yfPlyLrroIlavXs3YsWP53//9386qb6ewWm1UVNSf9evqdBp8fd2prKzHYrGd/oQLmMSq/bpjrKqbW1hXUs3GsmqarG2fKYAKemmyiFPy0aBSUe1GdYEnZaYjxA8dSWb/U7+Bd+VYWa1Wtj04lXJ9T3L9+wCQ0COQcVekOqU+v45VeUkdX7xr72rw9DJww50D0GrtnQAH//YglgoTLVp4c1IgmbUWpvxxRrvu09LSjMlUhL9/KHr9+fuHsU6n6XK/U13ZmcTrdL8rfn7ujt/J37x3h+4K9O/fny+//JJ9++wLWj3++ONoNBq2bt3KJZdc0qFVlIUQAsDbRc8lkQGMCvNjc1k1a0qqqGrdaqIcP1bYBrOBXmRo9tHDOwd/nxIC6l2pyt3HvJ/XEtQ3nSHDL+/0vv6zae/6H9A1uXMoKAOw7yY+YHjnjaPoqIBgD6Li/Mg/WEFtjZm8AybiUwIBcI2Pp7bChN4K/tUWKg0qtuYmNC4X7npIous6o3V0UlJSSElJAewjxp966qmzWikhxIXJoNUwJMSXgcE+7K6oY1VxJYcb7FNQ63BnnS2TLaTTQ8khw20fUYmlBETqqCw+wqL/m4FHcjAjxl+PTnv2dvjuLEfWfkdF0GBsGntd0zLD2qxE3BX07B9O/sEKALJ+KXYkOsa4eGo3bQQgtNxCXqwLdaVH8Io4PwcSi+7tjN4NamtrWb9+PQ0NDSedjiZ7XQkhfg+totDT35MMPw/y6ppYVVxJVpW9e7kZF3aoPfjFmkSykktvw17CY8rwD9NQUVrFt6+/iSbUhdETJ6PTdc0WBovFgtXkQ6WPfS0Vo6vCRe1ozVFVlaqyQkoLskEBF4MbeoMrehcDWp0Lehcjnn5BaDTas1LPiBhfPLwM1NWYKThYQX2tGXdPg309nVYh5S38kuhKSVGuJDqiS+pwovPTTz9x//3309h48mW/ZVNPIcTZoigKsZ6uxHq6UtrYzJqSSraV12JRVWxo2asmkGWNI14poI9+D2ERFQSGKJjKvflpzhyaPc1cd+cDzn6ME2xfsZAi996On0dflobe5cTkxGazUl9dQbWpCNORXAr2b6O+puI3r2108yS6R3/iew7B0zfwd9VTURSS04PZsjYfVYX9u0voMzAKQ1Q0ik6HarEQ2joguagyD1lFTXRFHU50Xn75ZeLi4vj73/9OcHDwedUnLoQ4fwW5uvDHmGDGhvuztqSK9aXVmK02VDRkq9FkW6OJUg6Tqd1DSEg5gUFgqvDk6/+bRb2+ltHX3ImHe9dYi+fQlkOY9fb1Rdx0JqLj/du8brPZyNmxml3rltLc1NChazc11LJvyw/s2/IDIdEpJPQeRmhs2hm/VydnhLBlbT4AWb+U0PuiSDR6PYaoaJoO5uBba8VotmFqLj2j6wvR2Tqc6Bw8eJA33niDfv36dUZ9hBDiN3nqdYyPCGB4iC8bSu0Dl+tbFyDMV8PJt4YTSimZmt1E+BcT6F+LqcqNTV9+Sk1LDaOuuwMvT+etU1NecoQaa6JjFbMBY3q0ff1ILlt/+ILK0hPXJFMUDUFRiYTHZeBidKOluZFmcyOW5mYsLWYaaiooytuDrXW7gOJDWRQfysLN05f0IZcS06N/hxci9PZ1JTTSm6KCaqpMDZQW1RIc5oUxLp6mgzmAvfuq2qPmDKIhROfrcKITFhZ2wiJFQghxrrnqtIwM82NwsA+by2tYVVxJdetMrSKCWGILIoAKMjW7ifUpJMC3gcoaI9sXz6Wqup5hN/wJX2/fc17vVXMX0qS3TyF3s5XQo88IzI31FBzYTv7ezZQdzmlzfEh0Cn4hUfgEhhMYkYDRzfM3r29urOPgrvXk7Fjt6OZqqK1k4zcfcfjADvqNvQ6ju1eH6pySEUJRgX2tnKxfigkO88I1Lp6qo3U0tVDp3bkbMwpxpjqc6Nx55528/vrrZGRkEBER0Rl1EkKIdnPRahgc7MOAQG92VNTyU1EF5U32cSPl+PGdbRh+VNFXs4s4zwJ8U4qpqdeza/lcqspaGHz9Dfj7dnzH5jNhNjdRVRPmeOeNTDbwy5rFZG3+AZvV0uZY74Aw+o65lsDwjg3wNbh60KP/WJL7jqY4by/Z21dRlLcHgMM5v1B2+CD9xl5LZFKfdl8zLjmAVcsPYGmxkb2nlCGj4zHGtx2QfDDFiGppRtGdv2vjiO6pw4nOokWLKCkpYdy4cfj5+WE0tp3VoCgK33///VmroBBCtIdOo9A3wIs+/p7sqaxjZVElR1qnplfgw3LbUHypoq9mN3FuBXjFlxIQrmPPyi+oLoF+V11OSFDn/vH27bsf06Szb6HgZinGaGhgz4ZtbY7x9A0iKXMEcRmDf9fsKY1GQ1hcGmFxaRRm72Tz93MxN9TS3FTP2sXvknrREdIHT2hXV5aLQUd8ciD7dpXQbLaSe8BEQo9AtF5eWGtqCK6wUK7TUFtWiFeozLwSXUuHE52QkBBCQpyzq64QQpyORlFI9/MkzdeDnLpGfiyuJLfKPqC3Eh++tw3Bl2p7C4+hgOiYMhpCtOxbu5CtJS70vnwcYWExZ71e9fV1mMr9QQcaGnD32knB/lrAPvYmvucQ4jIG4hMYcdY39IxI6ElAWCxbVnxO4YEdAOzZ8C1NDbX0HXNtuwYqJ2eEsG9XCQBZO4tJTA3CGBNL/c4dGJtVPOtt5B7eRy9JdEQX0+FE57nnnuuMegghxFmlKAopvh4MjA1iQ14Zy/PLya+3b0BciTff24bgQzV9NbuJN+QTG22yJzybF7O92I3EkQNJTDp72zEsnfUJzboI3LQ7MGhysbYOoNbq9Ay+bAphcWln7V4nY3TzZPBlUziw7Se2rfwKUDn4y1psVgv9L76R0+3xHBbljZePkZqqJgrzKqmtbsIYG0f9TnviFGyyUORWQK/fvEr3MnRoP/7xjyeYMOFyLBYL8+bN5brrbur0+65Zs4qwsHBiY+PYunUz06bdxRdffE1oaFin3zs//xBTptzEhx9+fsL9PvnkQ7766ktMpnJiY+O4996/kJl5bOLSli2beOONmeTmHiQoKIg//ekOLrnk0k6vc4fnGx45cuSUX8XFxdTUyMh7IUTXoSgKyT7u3NkjgslJYUR7HOtur8KbFbbBfG6dwH5bNEYXG/GRFcT3LCI/63uW/Pc9dmzd9LvrsO3nH2myVeGt/wajNhtFsSc5ru7ejLzmfzo9yTlKURSSMkcyaMKtKK2tOHl7NrLx24+x2X57HyJFUUjpeaw1P+uXYowxxxY5DDa1UG4u65yKd1ELF37DmDHjAFi+/BtefbV9+339HsXFRTzyyANUVtoHmmdk9GLhwm8ICgru9Hvn5GRz//330NTUdMJr7733X+bMeYupU+/i/fc/pUePNB555AGOHDkMQF5eLg8/fD+DBg3hvfc+ZuLEq3juuf+wefPGTq93h1t0Ro8efdpmVW9vb2699Vbuueee017PZrPx2muv8cUXX1BTU0Pfvn154okniI6OPunxBQUFPPPMM2zduhW9Xs8f/vAHHnzwQcfW9UIIcTKKopDo7U6Clxs5tY38cNhEXp39DbsKL36wDWYbqfTX/EKsSyGJkVU0BdeQf7iaxdv34BcVzuCxYzt834qSIvZu+BEXbZWjTKvVE5s+kIwhl+JidDtbj9huUSl90Wh1rF3yLqrNxqG9m1AUmHDTXb95XnJ6CJtW5aGqsG9nMX1uPtbiFVxhYZd6Yc3I9fc/Noi9g/tjn7Ff30ev17epR2d5//3ZfPDBHGJi4igtLWnzWmNjIx9//D533z2Niy/+AwAPPPAwv/yyg507txMWFs5nn31MQkIid9xh/x278cYY9u/P4pNPPqRfvwGdWvcOt+g8//zz6PV6hgwZwnPPPcc777zD888/z6hRo1AUhXvvvZc//vGPvPnmm3zyySenvd4bb7zBZ599xtNPP83cuXNRFIWpU6fS3Nx8wrG1tbXccMMNVFdX89///pdZs2axa9cu7r333o4+hhDiAqUoCglebkxNieD25HBiPI/9kVSJD9/ZhjHfejH5tlAMehtJEdUkpRXQ0LSLhe+9x4pP57b7Q+3woVy+eX8W2tYkR1U1xKQN5fI/P0nfMZOckuQcFZHYiyGXTXEMeM7bs4nvv3jnN5/Nw8tAZKwfALU1ZopMFjR+9p8DKy1UaU983+7Ohg7tx9Kli1i6dBHPPvuko2zr1s2AvYtpypSbGT16CNdddyXvvPNmm8+2oUP78fbbb3D11ZcxceJ48vPzKC0t4T//eYzLL7+YESMu4qqrLuWtt17HZrNRVHSESZMmAjBt2l3Mnv0WW7duZujQfhQVHQHsM/veeedNJk26gtGjBzN58o38/PNKxz2XLl3ENddczrJli7nuuisZNWoQd9xxK7t27fzNZ92wYR2PP/4U9977lxNe27FjG01NTYwbN95RptVqef/9Tx1dU9u3b6Nv3/5tzuvbtz87d27r9CSxwy06S5Ys4dJLLz1hrM4VV1zBE088wa5du5g1axZeXl58+umn3Hjjjae8VnNzM3PmzOHhhx9mxIgRAMyYMYNhw4axfPlyLr20bd/dV199RV1dHa+//jp+rf+4ZsyYwahRo9i8ebMsYiiEaDdFUYj3ciPey42cmgaWF5ocY3jK8GepbSQhlDJAu5MwlzKSwmswB9WRX+bOVx+8i7FJITQ9md6DB520lfvH+XMpztmBVmdv5VBVLUFRfblo/LXn9Dl/S3hCTwZfPoW1i+Zgs1nZv309Hr5hJPYZecpzUnqGODb6zN5bRnJsHHUVFbhYVGyNNqwWM1qd4Yzq01C5h6qilai2c78mj6Ix4BM6Ejffjo/LGjNmHHV1dcyc+RILF36Dl5c369ev5bHHHmXatAfo338ghw8XMmPGi+TnH+Kpp553nPv11/OZPn0mFouVqKgY/vSnG/H19eXll1/Fzc2ddetW88or00lNTWPw4GG88877TJ16G8888yL9+w8kK2tPm7r8+9//ZN++LP7610eIiopmxYrv+Oc/H+a556YzdKj9c7a8vIwFC+bx2GNPodfrmT79OZ5++gk+/XT+KXts3njjvwCOJO54BQX5eHp6kZ19gHfeeZOCgnxiYmK58857yciwj9oqLS09oXstICCApqYmqqur8fHx6XDc26vDic7GjRt54403TvraxRdf7Ghd6du3L2+99dZvXisrK4v6+noGDhzoKPPy8iI1NZVNmzadkOjk5uYSFxfnSHIAQkND8fX1ZePGjZLoCCHOSLyXG3E9XNlX3cDywyaKWqelFxPE19axRChF9NfsJFhfQWJYLebAegrK3Nmd8wt5Bw7gZtFibFHQoaK36fDSeZKijyDRP4QGazV1lhps7u70HDAa84EKbLVmbA0taDxc0AW4oQ1yR3OSva7OhfD4DAZdNpk1X9s/yLb/tBC/kFj8Q08+fCA6wR+dXoOlxUbeARMZCTGwxf7h51dpobgkh/DwMxvEXVO6Fou5/IzO/f1qqSlde0aJjsFgxMPDvr3I0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERx0De8eMnkJJiv6fZ3MT48RMYNWoMISGhAFxzzfV89NH75ORkM2zYSHx87Itcenp64ebWtkUwLy+XVat+4oUXZjBkyDAAJk+eSnb2ft5/f44j0bFYLDz00KMkJiYDcOutk/n73x/CZDIRENDxbrD6+jrM5iZefPFZ7r77fwgODmXhwvn85S93M2fOx8TExGI2N6HX69uc5+JiT4ibmzs3se1wouPj40NWVhZDhgw54bWsrCzH/+yGhobTjpspLi4G7MnK8YKCgigqKjrh+MDAQMrKyrBarWi19jeFuro6qqurMZlMHX2UNnS6s79nl1arafNfcWoSq/aTWLVfR2OVHuBJqr8Huyrq+K6gnNJGezdDoRpKoTWUGKWQ/pqd+OurSQirJSqwnoJyd45UuGJ10eCvehJDEIH4om0dGeCh9SHIBVChYWXeCfc8+hav9TGiGHUoGvtf1IpBi0uUN4ZobxR95yZBMSm9qSq9mN3rv8Nms7Ju6Xv84bZHMJyka02n0xCT4E/23jKaGluo8zm29lBwhYWDRfuJjk4/5b1stlOP8fQKGuzUFh2voMHtO7Yds//3789i797dLFu22FF2tIsmLy/XkehEREQ5XjcYjFx99bWsXLmCzz//hMLCArKzD1Bebv/cO52cnGwAevbs3aa8V69MZs16rU1ZdPSxgeTurXvAWSwtp3+wk9Dr9ZjNZv7ylwcZNMieGyQn/4Ndu3Ywb97nPPTQIxgMhhOufzTBMRp/O1fQapXf9Rnd4UTn8ssvZ+bMmeh0Oi655BL8/PyoqKjgu+++47XXXuP666+nurqa999/n169fnui4dEd0F1c2q6kaTAYqK6uPuH4Sy+9lFmzZvHss8/y17/+FavVypNPPomiKCcd09NeGo2Cr6/7GZ9/Ol5eMlC6vSRW7Sexar+OxmqEnwdD44LZcKSCrw8UYWpNePLUCPKs4SQrufTT/IKnvoH40FoiA+soLHfnsMnGFlstLqqOCAKIVgPxVNo3DsdadeJMlubcKup1GtxifHCN8MYlwA0XP1d0noazvtbO8MsmYTqSQ3F+DvXVJjYv/4RLb77PMTvreBmZEWTvtc+wKm/x4OiGEkEVForrjvzm+2lTk5bycs1JP7y8AtPxCjx1ktQVaTT259C0JqhHn0lVVW6++TYmTLjshHMCAgIdx7m6Gh3fNzU1cs89d9DY2MjYseOYMOEyUlPTueuu2x33OT55//XPR/9X6XSaX8VWRafTtamnm9ux2YdHr3H0Hr/l1/cHHGvrJScntTk/Li6e4uIjaLUagoKCMZnK27xeUWHCzc0NHx+vk67lZLMpaDQavL3dTlicuCM6nOjcf//9mEwmnn/+eZ5//lg/o0aj4eqrr+aBBx7g22+/Zc+ePbz//vu/ea2jFW9ubm7zEGaz+aStQdHR0bz66qs8/vjjfPzxxxiNRm655RbS09MdLUlnwmZTqanp2A7B7aHVavDycqWmphGr9benbl7oJFbtJ7Fqv98bqx7uRhJ7xrCptJoVhSZqWiyAwj41jmxrDOnKPjI1uzHoWogLqSMyoJ78MncOm9w4qBZzUCkmLDicaP8IQo2BuGj0KDoNWk8XNK56rDVmWkrqaSmpsyc61hMHZaoWG/XZFdRnVzjKFIMWY0oArmmBaFz1J5xzJrRaDeNvuJvPZj6BubGevL3bWf3tAtIHjj/h2MBQdzQaBZtNJWuviT6eHuhr6wisbGF3XSmVlfWnvE9zsxmbzYbVqmKxnJ+/v4py7APfZrM/x9HxtEefKTY2ntzcXEJDj7V4bdu2hc8//5SHHnoUvd7Q5nyANWvWkJW1l6+//hY/P/uO9jU11VRUmBzH2Wz2G1mtNiwWm+P32mq1ERNj35Zj69atjq4r+323EhMT2+b842N//DVO9//kZMemp/dCURR27NjBqFH2mYmqqpKTk0O/fv2xWm306ZPJli2b21x/48YNpKf3wmbjpMsbWK0qNpuN6uoGGhtPbNHy8nJtV2tthxMdnU7Hc889x913382GDRuorKwkODiYzMxMIiMjARg+fDirVq06oaXm1452WZWWlhIVdaz5rrS0lJSUlJOeM2LECH766SfKysrw9PTEaDQyePBgrrrqqo4+Shud+Q+uPb88wk5i1X4Sq/b7vbHqH+BFbz8P1pVUs7KogiarDSsadqg9yLIl0Uf5hXRlP3qdlfjQOiIDG8gvdedIhRtHSg5zpOQwiqIQEhJGYmIKUcGxoNGg9TGijfLGSGu3hlUFVQUVrBWNNOdW0ZJfjdrUdh8s1WylcUcJjbtKcUnww9AjAK33mf/Fe5Svrz+DL7uNH794E1DZuWoxvkFRBEcltzlOq9MSHu1DQa594cDmiB7o925CbwVrbe1vxtp6kmTufHOySUJH/zjPytpLbGwsN910K48//ndmz36LceMuoayslOeff5rg4OBTTgcPDAwC4NtvlzFq1BhKSkp4663XsFgsjl6Lo/c5eDCbpKS2n5OxsXEMGjSEl16yN0JERkaxYsV3rF79E//5T+ct9hscHMKll07klVemYzQaiYiI4ssvP6Oo6DBXXfUiqgqTJl3PrbfewJtvvsqECZezdu1qVq5cwcsvv3ba6//epLjDic5RUVFRbZKT43l7e7frGikpKXh4eLBhwwbHtWpqatizZw8333zzCcdv2bKFGTNmMGfOHAIDAwH74OjKykoGD25f36oQQpwJvUbD8FBf+gV68VNRBetKqrGoKmZVy3q1N7s1qfRVt5Kk5OGis9nH8AQ1kFfiRlGlG6oKRUWHKSo6jIeHJ6mpPYmPT3IM0FQUBXTHuqN0IR7oQjxQLwrHWtmItaIJW3UT1qomLEV1YLMnRs37TDTvM6HxNqCP8cElzhet15nNegIIi00lfdAl7Fq3DFVVWbfkfS6++W+4efq0OS4mMYCC3EoAqn2TcMe+sKKhthlVVc9611pXl5nZn9TUdO6+ewqPPfYUo0eP5ckn4cMP5/DRR+/h6enFkCHDuPvuaae8RmpqOvfd9wBz537CO++8SWBgIGPGXExQUDB79uwCwNvbh0svncgbb8yksLCA4cNHtbnGk08+x1tvvcYLLzxNXV0tsbHxPP30i4wYMepktzxrHnrIntS98MIz1NTUkJSUzIwZrxMVFQPYu7Gef/5l3nxzJl988SmhoWE8/vjTJ0w57wyK2o4J7GPGjOH1118nJSXltAsGdnRTzxkzZvDZZ5/x7LPPEh4ezv/+7/9SWFjIokWL0Gq1VFRUOFpuqqqqGD9+PH/4wx+4/fbbKSgo4G9/+xvjxo3jiSeeaPc9f81qtVFRceqm1jOl02nw9XWnsrJe/vI+DYlV+0ms2q8zY1VlbuH7wya2mWo5/k3UX9vIAHUjUcoRx6BVq+rKoTIv8ksAjr1/6vUuJCQkkZychpdX+/5ABLDVN2PeU455vwl+/VwKGHoEYuwd3KFBzMfHqqXFws9fvUVx3l77M4XFMvrav7QZR1FfZ+aD19YD4Omuof+O2SjAjkRXRv/P0/i7+5/0Pi0tzZhMRfj7h6LXn787net0Gvn31wFnEq/T/a74+bmfva6rAQMG4O7u7vj+bGbq06ZNw2Kx8K9//Yumpib69+/P7NmzcXFxobCwkDFjxvDcc89x1VVX4ePjw9tvv81zzz3H5Zdfjq+vL9dffz133333WauPEEK0h49BzzVxIQwJ8eW7wnL2VdvH+ZmsrixjBJH6Ggba1uCvVKFVGokLaiQuzI8Ckz85+TWAQktLM3v37mLv3l2EhoaTmNiDyMhox6zSU9G4u+DaPwxDzyCasytpya/CWto6zlAF854ymvOqcL0oHJeo9idQRymKhoF/uJXvPnqRhtpKTEdyObhrHQk9j822dfcwEB7tw+FDVdTW26g2BuHTVEpwRQv78/cwqMew37iDEOdOu1p0fq2uro76+nqCg4Npbm7m/fffp6SkhIsvvpgBAzp3KefOIC06ziexaj+JVfudy1gdrGngm8JyCuuPTY1WgDSXEjKta3FTjs2q0hojOFIVxP6DJSdMGzYajSQlpdKjRwYGQ/u7oGwNLZj3mzDvKm0zqFkX4YVrvzC03r99rZPFqrQwmx8/nwmAi9GNCZMfw+B6bEbVvl+K+WHJPgBC6veTVrQGiwZ23TiCa0dOPul9pEXnwuTMFp0OT0zfuXMno0eP5sMPPwTg6aef5uWXX+brr7/mT3/6EytWrOjoJYUQ4rwX5+XG3T0iuT4+BF8Xe2O5CuxqDuYz9Y/s1FyERbW/5VqbCgk2bmXsQC/69knHw8PTcZ2mpiZ27tzK/PmfsGPHlnYvnaFx0+PaOwTPK5LRhR+7nqWwhtqFWTRsKMT2q0HNpxMUkUBUSl8Ampsa+GXN4javxyUHotPbn6nMLQYbGnQ2aCo+1KH7CNGZOpzozJgxg7i4OK677jqamppYtGgRN9xwAxs3buSaa65h1qxZnVFPIYTo8hRFoaefJ/dnRDM+wh9D65iWZhusbY7jC+VaDmpSHLN2zDV78bT+yMgBfowdM4bo6DjHOJiWlhZ27NjC/PmfsHPn1nYnPFpPA+5jYnEbEY3i2jo6QYXmLBM18/fSnFPx2xf4ld7Dr0TXOhU6Z+daKkoKHK/pXbTEJtlnEFkVF8rd7TNvdaaqDt1DiM7U4URnx44d3H333URGRrJu3Tqampq44oorAJgwYQIHDhw465UUQojziV6jYUSoHw/2jGZAoJdj+HG1ReG75j4s1l1DmdK6Irxqpa5sA1bTl/RJceWKiVeTmJjiGAvZ3NzM9u2bmT//U375ZRstLadPeBRFwSXGB68/pmDsHQxHF2lrsdGwuoCGtQWo7exGcPXwJm3gJa0/qWz94QtU9di5yenH9i8q8bSvtutxksUPhXCWDic6Go3GsT7OTz/9hJeXFz179gTsY3d+z+qFQgjRnXjodVwZE8x9aVEkeB1bIfmwWc+8lpH8rJ9IA/bFTlWrmaojK6gp+ICeKf5cccW1JCQkH5fwmNm2bRPz53/Grl3baWk5/XL9il6LsVcIXn9MQR/v6yhvPlBB7dIDWKvbt9VCYuYIPH3ta7yYivLI27PJ8Vp4tC/G1kULy90isSo6/Kos1DbVtuvaQnS2Dic66enpfPnll2zbto1ly5YxcuRIFEXBZDLxzjvvkJ5+fi3fLYQQnS3EzcDkpDBuSwwj0HhsJeM9je58ZpvIHsNorEfH7zRXY8qbR2PxV/TrncQVV1xLXFyiI+Exm5vYunUjX331Gbt378RiOf24G42bHvehUbgNjXS07tgqm6hdsp/mvKrTnq/V6sgcdbXj5x0/L8DcaN+VXaNRHN1XNo2OCrcwAqosHDi4o33BEaKTdTjR+dvf/sa6deu44YYb0Gq1jqndl112GXl5edx///1nu45CCHHeUxSFZB93pqVFc3lUIK7ao+N3VH6uD2a+9gZKjH0cx5vr8yne9w4tlT8x6KL+TJw4idjYBMfrTU2NbNmynq+++ozs7H20ZwKtS7wfnhMS0RydgdVio+GnQ9SvzsfW/NubRobE9CAisbe9bo31bPtxvuO1mMRja+aY3MLQqFCyd+tp6yPEudDhlZFTU1P57rvvyMnJITEx0bFN/L///W8yMzMdKxYLIYQ4kVajMCjYh17+nnxXaGJTWTUqYGq28VVzCsnuyVxkW4Vby2EA6iu201C1B++QYQwdMpyMjD7s3LmFvLyDADQ2NrB27U/s27ebfv0GERwc+tv39zXieWkiDesLaTlYBUBLTiU1NWZ8ru/5m+dmjr6Gkvx9tJgbOZS1maiUvoTFpREe5ePY+6rCNRwA65HC3xcoIc6SM9r33MPDg169ejmSHIDx48dLkiOEEO3kptNyZUwQ96RGEuVxbGzjvnqFT5pG8Iv7FVg09vdY1dZM1ZEVFGXNwqCUMXz4WC6//BoiIqId55lM5Xz77SJWrvyOmpqq37y3otfiNjQK1yGR0Do93FLWwJEvd2Mzn7orzNXdiz4jj+0ruPn7ubQ0m9G7aAmJsO9h3ujiRYPOE0OFjNERXcMZJTpCCCHOjnB3I3emRDApNhjP1i0bLKrKmmo3vlSv4oj7CFTVPj7HYq6g7OBnlOZ8gocbjB49nnHjLsXX189xvfz8PBYu/IJNm9b+5oBlRVEwJPjheUkCisF+36aiWmq+yf7NZCcmdQDB0fZNPhvrqsjZuQaAyNhjdahwC8Orun3T4c9nQ4f2Y+nSRQBYLBbmzv34nNx3zZpV5ObaW/S2bt3M0KH9KCo6ck7unZ9/iLFjh55wv4aGeqZPf54rrhjPJZeM5MEHpznqeNSWLZu4/fZbGD16CNdf/0e++WbJOamzJDpCCOFkiqLQJ8CLBzKiGRbig6Z1PnpVi5Wvq8NY4XoTTa6JjuObarIp3juL6uKfCQkO5tJLr2LQoOGOna1VVWXv3l0sWvQlR07ThaT1c8VjfDyK0T6SwVLeSN23OdgaT54kKYpC5sirObpn174tP2C1tBAZe2xWV4VbON61VirKS840JOeFhQu/YcyYcQAsX/4Nr746o9PvWVxcxCOPPEBlpX09pIyMXixc+A1BQcGnOfP3y8nJ5v7776Gp6cTlA15++UW2bdvM00+/yKxZ76LVannwwfswm+0z+/Lycnn44fsZNGgI7733MRMnXsVzz/2HzZs3dnq9JdERQoguwqjV8ofIQKalRbeZjp5dZ+Wjuv7s9ZoEOh8AVNVCddFKirLeork+j8TEFK688np69err2Currq6W779fytq1P/3mgoNaX1e8JySgdbfPCLNVNlG7+ACWsoaTHu/lH0JEon08T1N9Dbm71xMQ7IHRzX5+hVsYKlqyN/z4u2PSlfn7B2Aw2Lsdz2A3pTPy6/vo9Xr8/QNOuz/a7/X++7P5859va9N6eLzVq3/ij3+8hoyMXsTExPLnP99DaWmJo1Xns88+JiEhkTvuuIuoqBhuvPEWRo0ayyeffNip9QZJdIQQossJcnVhclIYN8aH4qVvbWlRVX6q0PGlejmV3iM52qJiMZsozf6I8rz5aGiiV6++XH75NW0GJWdn7+Prr7/g8OH8U95T5+tKxHU90bQmO2pDC3XfZNN8sPKkx/cYMM7x/d5NK1BtNqLj7B+CVo2eStdQalt3P++ujnZdLV26iGeffdJRtnXrZsDexTRlys2MHj2E6667knfeebNNwjl0aD/efvsNrr76MiZOHE9+fh6lpSX85z+PcfnlFzNixEVcddWlvPXW69hsNoqKjjBp0kQApk27i9mz3zqh68psbuKdd95k0qQrGD16MJMn38jPP6903HPp0kVcc83lLFu2mOuuu5JRowZxxx23smvXzt981g0b1vH4409x771/OenrXl7e/PDD91RWVtDc3MySJV/j7e1NRIR9tezt27fRt2//Nuf07dufnTu3dXqS2OFZV0IIITqfoiik+3mQ6O3GisMm1pZUYQPKzRbmmkPp6X0LA2yr0DXmAtBQuYvG6gP4hI3CM6AfF198GQcO7GXz5g1YLC00NNSzYsU3xMUl0q/foJMu7uri54rPxGSqVxy074ZuU2lYlY/abMWQEtDmWL/gKEJielCct5eGmgpyd28gLjmJfbvs3VWlHjF4mbZ16Jl/qajl+8MmzNZz0zpyPINWYWy4Pxl+nqc/+FfGjBlHXV0dM2e+xMKF3+Dl5c369Wt57LFHmTbtAfr3H8jhw4XMmPEi+fmHeOqp5x3nfv31fKZPn4nFYiUqKoY//elGfH19efnlV3Fzc2fdutW88sp0UlPTGDx4GO+88z5Tp97GM8+8SP/+A8nK2tOmLv/+9z/Zty+Lv/71EaKiolmx4jv++c+Hee656QwdOgKA8vIyFiyYx2OPPYVer2f69Od4+ukn+PTT+Y71mn7tjTf+C+BI4n7t0Ucf45ln/s3ll1+MVqvFaDQyY8breHjYF8QsLS09oXstICCApqYmqqur8fHx6XDc20tadIQQogszaDVMiArk3rQoIt2PJSc7q1v4qGEweT5/RNG0js2xmaks/IaSfbNpbjhCUlIqEydeQ2houOO8gwcP8PXXn5Obm33Sv6Q1bno8Lo7HJfFYF0XjhsM0H6o+4djUi8Y7vv9l7RKCw9yObfLpHoVbO1dePmpVcSVlTS3UtFjO+VdZUwurik/eenU6BoPR8YHu7x+AXq/ngw/mcNllE7nyymsID49gwICBPPzwP/jxx+/bDOQdP34CKSmppKdnYDY3MX78BB555F8kJiYTHh7BNddcT0BAIDk52Wi1Wnx87GOhPD292sx8Bvs4mFWrfuLBBx9l6NDhREVFM3nyVIYPH8n7789xHGexWHjooUdJT88gOTmFW2+dTGFhASaT6YyeH+DgwWwiIiKZMeN1Xn/9v2Rm9udf/3qEsrJSwN7SpNfr25zj4mJfz6m5uWO/Jx0lLTpCCHEeCHUzcGePCDaX1fBtYTmNVhtNVhvflBuJcJvEaOM+3Go2ANDcWETJ/tl4Bl6Ed9hoxo6dQHb2PjZvXk9LSzNNTU2sWvUDBw8eYNCg4bi5ube5l6LV4DooAsWgxbyrDICGVYfQuMajCzp2bGB4HBGJvSg8sANzQy37t35PTGIi2XtKsWgN2FqCqKs24eHtT3sMC/F1aovOsBDf0x/YTvv3Z7F3726WLTu24/vRxDIvL5fQ0DAAIiKijtXBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1t9e0BHsg4UBevbs3aa8V69MZs16rU1ZdHSs43t3d3uSZrGcfluRk9m1ayf/938v8cUXiwgJCQHgqaee58Ybr+bTTz9k2rQHMRgMJ8wCPJrgGI2uZ3Tf9pJERwghzhMaRWFAkDepvu4sKyhnm8m+Vk1hQwsfNcYx2C+RjKbvUc3FANSWbaCxej9+UZeRmJhCeHgkGzeuIT8/D4DDhwtYvHg+I0aMIzw8rM29FEXBmBmKrcFCy8FKsKrU/5CLxx8S0R5dWRnoNewKjhzchc1qZf/WH0kdmkx2a29KmXsMe9d/T//x17Xr+TL8PM+o66grstlUbrzxVv7wh8tOeM3f/1g3oMFwLJZNTU3ce+9UmpoaGT16HOPHX8oDD6Rx771T23nXkyeINpsVna7tx/3RPSvbnH2GY2V27tyOr6+fI8kB0Ol0JCWlUFBgHxcWFBRMeXlZm/PKy8txdXVztIZ1Fum6EkKI84yHXsekuBDuSA537J1lU2G1ycoXloup8bsElNY1eZorKc3+EFP+YowGLSNHXsyIEeNwdbV3ezQ1NfLdd4vYtWvHCR90iqLgNjgCXWjrxqNmK/XfH2wz9dzDJ4DkzFH2OlitlB/6EQV760OZRzQV2W3HkHRXvx7bEhcXz6FDeURERDq+yspKef31/6Ohof6k19iwYS379u3l1Vff4vbb72TMmHG4u7tTUXGsS+lUY2js97RvEbJz5/Y25Tt2bCcmJvYkZ5wdQUHBVFdXUV5e7iiz2Wzk5R10tFj16ZPJtm1b2py3efNGMjJ6odF0bioiiY4QQpyn4rzcuC8titFhfmhbP//KzS18UurLZs9bwO3Yh1u9aStFe9+koXof0dGxXH751YSE2FtxVFVl48Z1LFq06ITxEopWg/vIGDS+9vFBtrpm6lfkorYc60rpcdF4XD28ASjO24Ovp337ihatEbPpwviYObqGUVbWXszmJm666VZ++ukHZs9+i/z8Q2zZsolnn/0PtbU1bVp0jhcYaN8h/ttvl1FcXMSOHdt59NEHsVgsjtlaR+9z8GA2dXV1bc6PjY1j0KAhvPTS86xZs4r8/EO8++47rF79EzfccHNnPTpDhgwnNDScxx77G7t37yIvL5cXX3yGkpJiJk26HoBJk65nz55dvPnmqxw6lMenn37EypUruOmmWzutXkddGL+BQgjRTek0GsaG+/M/vxqsvLnCzCeNQyj3uxxFY++msLbUUn5wLuV589HrVMaOnUB6em/HOQcOHGDhwnkndDEoLlo8xsShtK6TYzU1Urf8oGMjUL2LgV7Dr3Qc76I5AK2tOs2Wtl1i3VVmZn9SU9O5++4prFmzmlGjxvLkk8+xevVP3Hbb9Tz55L/o168/zz47/ZTXSE1N5777HuCLLz7lxhuv4dln/03v3pmMHTuePXt2AeDt7cOll07kjTdm8t//vnnCNZ588jmGDRvBCy88zZ/+dAOrV//M00+/yKhRYzvt2V1dXXn11VmEhITxj388yF13TaGkpJg335xDWJh9IHxcXDzPP/8y69evYfLkG1m8eAGPP/70CVPOO4OinqtVjrowq9VGRcXJmxJ/D51Og6+vO5WV9VgstrN+/e5EYtV+Eqv2u9BiZVNV1pdW811hOc22Y2/tad4GBrMObf0+R5lG54ZfxARcfXpQWHiINWtWOloNNBoNmZkD6NEjo01XibWykbpvclBbExytnyvu4+LQGHWoqsqPn8+k7HAOAPUtmZjVWPTWJsZfHUZkSgYALS3NmExF+PuHotefOE7kfKHTaS6I36mz5UzidbrfFT8/d7Ta07fXSIuOEEJ0ExpFYXCwD39JjybJ+9jU493VZj6q60eB71UomtYuKEsD5XlfYsqbR1hoMFdccQ2hofZFBm02G5s3r+fHH79ts9y/1rftdhHWikZ7N5ZNRVEUMoZe7jjWVWtPqlq0Rnau2tDpzy7EqUiiI4QQ3YyvQc9tiWFcGxeMm87+Nt9otbGkzMD3huuxeGQ4jm2o2kPx3jfR2kq57rrryMjo5XitsDCfxYvnUVJS5Chz7I3l2prslDfQtMM+yysgLBafQHtXhUZTj1axr0tTU37BdxwIJ5JERwghuiFFUejt78X96dH0Pm7K9oFaMx/V9qTQ7xpH647VUkfx/o84vH8hfTP7MmbMJY49nBoa6lm+fAkHDx5wXEPrY8R9dOzRXSgw/1KKpaQORVFI6DXUcZxRY+/GMltPPvhWiHNBEh0hhOjGPPQ6ro0P4dbEUDz19innTVYbi0v1rDBch8U92XFsWcE6Du+eRYCPps2sLJvNxurVP/LLL8f2JdIFuGHs3bpuigr1q/KxmS1E9+iH3sWeJLlo8lFopFHnR37rYnZCnGuS6AghxAUgxceDv6RH08f/WOvO/tpm+9gdn4mg2LuiWswVlOx/l+bqjYwZM56kpB6O47dt28TatT85Vuk1pAehbV0pWa1voWFlHlqNnvieQwBQFBVX7X4AdqxY86saSXeW+G1na66UJDpCCHGBcNNpmRQXwi0JbVt3lpS786Prjdg84luPVKkpXkXpgffI7JlEnz4DHNfIydnPt98uoqGhAUWj4D4syjE42VJcT8PaApIyR6LV2aeiGzQHUWiktrx1ppZWCyiYzccGOQtxMkfXdNJqf98mDjK9HJle3hVIrNpPYtV+EqtTa7BYWXyojO0VtY4yN52W0d4mwqu+RVFa46Vo8Qkbi6nOn7XrjrXmuLq6MWrUxQQEBGEpa6Du22xo3aPK0COArPoN7N+2EgCzNQqLOYk//eMyNBoN1dUmGhvrMBrdMRrd0Gi0v7nib1ek1SpYnbAn1/mqI/FSVZXmZjN1dZW4unrgfYq90to7vVwSHSTR6QokVu0nsWo/idXp7amsY0FeKXWWYysdp3hqGWJbgd58bLaV0SsRjedQVv78s2MLA41Gy6BBw4iPT6I5v5qGlXmOHildmi/fbXidFnMjANUtI8m8yId+I0ejqiqNjfXU1VVhs51+s8quSKPRYLPJ71R7nUm8XF098PLyO2USLIlOB0ii43wSq/aTWLWfxKp9GixWFheUsb38WOuOh07DxZ6HCapd6SjT6j3xCJnAus37KC0tdpSnpvYkM3MALTmVNK4tdJTXhTWy5pdPALDYfNFpwrjur3c6XldVFZvNdt4lO1qtgre3G9XVDdKq0w5nEi+tVnfaPbDam+jI7uVCCHGBc9NpuTExjEFRzXywM596i5U6i435laFket9A36bFaK21WFtqqS6Yy0UZQ8jKT+LAAftA4z17dlJbW8Pw4WMwNtto2nwEAI8jrgS6xVLWkItOU0mLuW0XhKIoaLXa1nE75w+dToPRaKSx0SoJdDs4O14yGFkIIQQAmSG+/LVXDMnHraq8tRrmqVdQYTy2yGBt6Rpi/Q8ysH8fR7dCQUEeK1d+hzbJB0NGkOPY3v5jUFo/arQu+fyyYf05ehoh7CTREUII4eDpouPWxDCuiA5Cr7EnMRXNVr6oS2en2+VYVfvHRnN9Ia4tPzBqSIqjRebw4QK++24xtiQvtP72XbY1DSoxRvvGjRqlmT1rfnTCU4kLmSQ6Qggh2lAUhYuCvLnvuB3RVWBtjQdL9NdTo7Nv86Bazdiqf2REPw8MLvZkx2QqY9k3CzCnezhWTk50T8NbFwiAzVp31tZHEaI9JNERQghxUgFGF/7cI4Kx4X6OD4sjTSpfmEew3zCco/mKrWEfQ9Ib8Pex7zDd0FDP8nXfUhFtP0BBoafHaPSKCxptLasXf+WEpxEXKkl0hBBCnJJWURgd5s9dPSIJMNoXAWxRVX6oD2eFYRJNin1lZFtLJRlRRcRFtB7T0sKa/E3keVQA4Kb1oLfnWBQ0HM7a5ZyHERckSXSEEEKcVoSHkf9JjWJgkLejLLtBx5fqFRTpUuwFagtRvgX0SVJRFBVVVdlZf4BftIewoeKnDyXdYxiqppqSw/lOehJxoZFERwghRLu4aDVMjA7itsQw3HX2MTl1FpWFTX3Y7DLOMVDZ21DC4LRGjHoLALm2YjYrB7BhI8yQQIp7b376/GOnPYe4sEiiI4QQokOSfdyZlh5FotexaeibGwJYrLuGauwtPnqlhotSagjwagagmEq2cRAVlVjXnkS6BFFbW+WM6osLjCQ6QgghOsxTr+O2pDD+EBmAtnV2VZFZyzzbBLI1aagqKDSTHl1BfGgdCiqHFRPbOIgNlR4e/dj6gQxKFp1PEh0hhBBnRKMoDAvx5a4ekfgb7IOQm23wfXNPftKOp1m1L74fGVBH77gKXHRWCpVyNrMfKzaSXVMoys115iOIC4AkOkIIIX6XcHcj/5MWRd8AL0dZVrMf85SrKFHt6+d4u7fQL9GEj7uZYqWKNewBrY6iZVucVW1xgZBERwghxO9m0Gq4OjaY6+JCMLRutFht0bLAOpYd9EZVwUVno1dsJRH+9VQpdfzMLnzcgln3+Xwn1150Z5LoCCGEOGt6+XtyX1oUUcetqLzO0oNvlUtoVF1QFEgIq6VHZDXNmmbWKftwqXOhsqj4ty8sxBmSREcIIcRZ5WfQM7VHBCNDfY/uAkGexZf5XEGRGgBAsE8TmfEm9C7N7NYeYdviH2lubnZepUW3JYmOEEKIs06rKFwcEcCfko6tuVNr1fG1dSzb1XRUFTxcLfRNMOHraabQUMsP733q5FqL7kgSHSGEEJ0m0dud+9KiiPW072auorDemsE3jKVRdUGvU+kZU0lUYB2lhia+eec951ZYdDuS6AghhOhUXi46piSHMyrUz9GVdcgayDzb5RSpASgKxIXUkRZdRYXRLMmOOKsk0RFCCNHptIrCuAj/Nl1ZdaoLX1vHss3WA1WFQG8zmYnl1Hk2suztd51cY9FdSKIjhBDinDlZV9YGW2+W2kbRqLrgZrCSmVCONaCOpW+/j01VnVxjcb6TREcIIcQ55ejKCjvWlVWghjDPNoES1Q+dViUjphLXiAqWzfkAU2mZU+srzm+S6AghhDjntIrCuHB/JieFH9eV5cpC6zh22RIAiA+tJTC2hNXLlrBz7VpnVlecxyTREUII4TQJ3m78T1oU0R72BQZtaFht688PtkG0qFpCfJuITygiJ3cPP3w618m1FecjSXSEEEI4lbeLjjuSIxgS7OMoO6DGMN96MVWqJ15uLaQnFlOrLWfZOzJIWXSMJDpCCCGcTqtRuDQqkBviQ3DR2EfuVOLDPOt4DtoiMOht9Io3oQmuYdk7H1BVYXJyjcX5QhIdIYQQXUaGnyf3pEYRZHQBoAU939mGsc7aG1VR6BFZjVdMKeu+WsqOjWucXFtxPpBERwghRJcS5OrC3amR9PTzcJTtUHuw2DqaetVIZEADoYmHKcrK4duPpCtL/DZJdIQQQnQ5Bq2G6+JCuDwqEG3rHPQigvjSeglH1ED8PJuJSSxA1aosfPVVWiwtzq2w6LIk0RFCCNElKYrCoGAfpqZE4KXXAdCIK4uso/nFloSrwUpiwmGMoTq+e/NdCgoPObnGoiuSREcIIUSXFuXhyv+kRRLvdXQ1ZQ1rbH350TYQRashOa4MY0wjexb9yKoflji5tqKrkURHCCFEl+eh1zE5KZzhIb6Osv1qLAusY6nHjcSIajwTymk8WMGXc15Fla0jRCunJzo2m42ZM2cybNgwevXqxZQpUzh06NTNj2VlZfz1r3/loosu4qKLLuIvf/kLxcXF57DGQgghnEGjKFwSGcD18SHoW6egl+PHPOslHLYFExHQQGDSYby1Psx9ZTo1dbVOrrHoCpye6Lzxxht89tlnPP3008ydOxdFUZg6dSrNzc0nPf6BBx6gqKiId999l3fffZfi4mLuueeec1xrIYQQztLTz5O7e0TiZ9AD0ISBxbaR7LCl4OfRTERSPv7BgXw/6z12Z+10cm2Fszk10WlubmbOnDncd999jBgxgpSUFGbMmEFJSQnLly8/4fiamho2bdrE1KlTSU1NJTU1lT//+c/s3r2byspKJzyBEEIIZwhxM3BvaiRJ3m6AfdzOOlsfVtgG42KAuMQCPGMM5H2znmWLPnVybYUzOTXRycrKor6+noEDBzrKvLy8SE1NZdOmTSccbzAYcHNzY8GCBdTV1VFXV8fChQuJiYnB29v7XFZdCCGEk7nqtNyaGMbI0GPjdrLVaBZYx9GodSMxrhi3ODP6/CY+fft/aW6RKegXIp0zb350bE1oaGib8qCgIIqKik443mAw8Mwzz/Cf//yHfv36oSgKgYGBfPTRR2g0vy9n0+nOfs6n1Wra/FecmsSq/SRW7Sexar/zOVYTYoKI8nTls+wimm0qJnyZZx3PWM1a4iOLKTC0EH4olM9nTmf8bZMJDQn7Xfc7n2PlDM6Ol1MTncbGRgBcXFzalBsMBqqrq084XlVV9u3bR58+fbjjjjuwWq3MmDGDe++9l08//RQPD48TzmkPjUbB19f9jM5tD6/WKZHi9CRW7Sexaj+JVfudr7Ea5utOfLA3b2w9SEm9GTMGlthGchE76B24l3JDC9G5Mfww+zPSLhvAqJHjf/c9z9dYOYuz4uXURMdoNAL2sTpHvwcwm824up4YkCVLlvDJJ5/w448/OpKaWbNmMWrUKObNm8dtt912RvWw2VRqahrO6NzfotVq8PJypaamEavVdtav351IrNpPYtV+Eqv26w6xcgXuSY3ks+wi9lbWAwobbL0xKT6M9NqIMTkXmy6afUu2k713J1dfdzeKonT4Pt0hVudSZ8XLy8u1Xa1ETk10jnZZlZaWEhUV5SgvLS0lJSXlhOO3bNlCbGxsm5Ybb29vYmNjycvL+111sVg675fVarV16vW7E4lV+0ms2k9i1X7ne6z0KNwUH8oPRyr44UgFANlqDNVWT8YbVxGWnIvNJYKGAjMfvPYMV976F9zdz6xF/3yP1bnmrHg5tYMxJSUFDw8PNmzY4Cirqalhz5499OvX74TjQ0NDOXToEGaz2VHW2NhIYWEh0dHR56TOQgghujaNojA23J+bEkJxaV1vpwx/5lnHU6nzJSa+ANdoCLEGMX/WTHJz9zm5xqIzOTXRcXFx4eabb2b69OmsWLGCrKwsHnjgAUJCQhg3bhxWq5WysjKampoAuPLKKwG4//77ycrKchzv4uLCVVdd5cQnEUII0dWk+XpwV49IfF2O7ZP1tXUMB5QY4mNK0Mc0EOcRydpPl7Fq9UIn11Z0FqcPGZ82bRrXXHMN//rXv7jhhhvQarXMnj0bFxcXioqKGDp0KEuXLgXss7E++eQTVFXltttuY/Lkyej1ej799FO8vLyc/CRCCCG6mhA3A/ekRhHraR/3aUPLSttA1tn6EBVWjTauhISgMApXFTLvs1ew2qQrqrtRVNkQBKvVRkVF/Vm/rk6nwdfXncrKeunHPQ2JVftJrNpPYtV+3T1WVpvK4oIyNpQem9EboRQxTrOGuloNzXnxFJYW0+RhYuLNf8XT0/OU1+rusTrbOitefn7u7RqM7PQWHSGEEKKzaTUKV0QHcWV0EK3DdihUQ5lnHY/G04Bn4n6CwwLwbvJn0VuvcFDG7XQbkugIIYS4YAwI8ub25AjcdFoAavBkvvViTIYgghOz8Qz3JMQQzMaPF7F61RIn11acDZLoCCGEuKDEerpyb2okIa72xWpb0LPMNpw92mQi4w6hiYCYgGAKVh7kq7n/h03G7ZzXJNERQghxwfE16LmrRyRpvkfXZbMvLriSQURGldISWUlySChNOXrmvv1vGhrP/qKy4tyQREcIIcQFyUWr4Yb4EMaE+TnKstUYFtvGEBjaREvsIVJCItDWBrPotefILzjoxNqKMyWJjhBCiAuWRlEY86vFBUsIYL71Ylz8dBC/l7igcIy6IDbOmcvGdcudXGPRUZLoCCGEuOCl+Xrw5x6ReOvtiwvW4c4C6zjqPPxxTdxDYFAInr5eHPomi0WfzURWZjl/SKIjhBBCAGFuBu5OjSTC3QAcG6R80BCPf8I+XIO8CQkyULXHhXeefhBzs/k0VxRdgSQ6QgghRCsvFx1TUyLIOG6Q8jpbJhu1fQmLz8MSrCExyJ26iggWvPQEZaZSp9ZXnJ4kOkIIIcRx9BoN18WHMPq4Qcp71QS+UUYSGlNOXWgVPYP8aSSCVW+8Ttberc6rrDgtSXSEEEKIXzm6A/q1ccHoWldSPqIGs1Adh19kM7Xh+fT0j6TFzZe9ny7n5+VfOrfC4pQk0RFCCCFOobe/F3ekRODeupJyNV58ZR2HNsiVpugskvwS0PrqKV1VzNcfvySDlLsgSXSEEEKI3xDl4co9qZEEt66kbMbAEttIKnzCUOJ3EeIfj1eAlfpsL+bP+hdN5kYn11gcTxIdIYQQ4jSOrqSc7O0GgA0NP9sGkOWWhlvCblwDQokMsNJQEcuSV/9NaWmxk2ssjpJERwghhGgHg1bDLYlhDAv1dZTtVFNY7TIY/4SDNAe4kupvpM4aw9q3XmXPrk1OrK04ShIdIYQQop00isLlMUHckh7l+ADNV8NZqozBP66cqsAGMn2DqTMGcWDud6z6/nOn1ldIoiOEEEJ02PCoAO5IjcCotU/JqsCHr7kYj5gWTCFH6OOXQJOPgfIfi1j06XTZAd2JJNERQgghzkCCtzv3pEbhb7BvG9GIkcW2MVjDPakM30+aXxpKgJmGvd589c6/aG5udnKNL0yS6AghhBBnKMDowt2pUcR5GgGwomWFbTAlATHUR+8ixi8dT/8qGkuS+fr1f1FZVeHkGl94JNERQgghfgc3nZbJSRH0D/RylG1R09nl1Qdb3C4CfBMJ9a2kviGdlW++QG7uPifW9sIjiY4QQgjxO2k1CldGBzEhMgCwLxqYo0azyjgUfWI2Bv9QEn2aqFYS2fXeR2zZ9KNzK3wBkURHCCGEOAsURWFoiC+3Joahb902ooRAvtWNxphQRHOgkZ4+rpjcgzmyYA0rln7o3ApfICTREUIIIc6iFB8P/twjEs/WTbJq8GSJMhaX2AaqAuvp6xtOjY8rdavLWfjxizIjq5NJoiOEEEKcZeHuRu5OjSbYaJ+RZcbAUkZiizZQHnyYPr4pmP3NtOz1Yv5//0lzs9nJNe6+JNERQgghOoGPQc+dqVEkerkCYEPLD+pgqsJDKQ/fT7pvb/QBlViOJLJw1t+prjI5ucbdkyQ6QgghRCcxarXcmhhO/4BjM7I22XqSG5hKddRu4rwz8fEtp6m6Dz/MepZD+fudWNvuSRIdIYQQohNpNQpXxgQxPtzfUbZPjWOrzwDq43YT6JtKhI+Jalsvdr47m507Vjmxtt2PJDpCCCFEJ1MUhRFhftwQH4JWsU8/P6yGsMptOC3xObj6RpHgXU+5IYWCL5bz84/znVzj7kMSHSGEEOIcyfDzZGpKJG5a+8+VeLPcZRSWhGJsfj5keCuUeoVTs3wvS7+a5dzKdhOS6AghhBDnUJSHK3enRuPvYv8IbsSV77SjaIlvotYfMr19qfD1xLKxgfkfPoNVpp//LpLoCCGEEOeYv9GFu9NiiHbXA2BBxwplCLVxrpgCq+jrE02dvw1lry/zZv9DNgT9HSTREUIIIZzATafl9pQoevm6tZYorFczKY4KozS4gD6+abT410B+AgveeZTammqn1vd8JYmOEEII4SQ6jYZr48MYFerjKNulJrM/LI2SsGzSfXuj8y3DWtqLb2Y/QWnxYedV9jwliY4QQgjhRIqiMC4ikKtjgtC0bgh6SI1gW0B/yqIPkOSbiZdvEea6vqx5bzoHDvzi5BqfXyTREUIIIbqAvoHe/Ck5AhfFPvi4DH/WeA2jPD6HML90grxLqLH2IevT99i6WXY/by9JdIQQQoguIsHLjbvTYvDS2Vt26nBnpesIKhKK8PGLJ9q7CpO+JyULv+OnH75wcm3PD5LoCCGEEF1IsKuBe9LiCDHYf27GhR/1wyhPrEPvH0Syt5lij0Qavt/FssX/dW5lzwOS6AghhBBdjJeLjjvT4kn0tO9+bkPLas1AihJcMAcY6O3tQrFPGOqaYhbMnY6qqk6ucdcliY4QQgjRBRm0Gm5NjqG/v6ujbCsZ5MUGUxnUSF+fAMr9fNBvszLvo6ewWmVhwZORREcIIYToorSKwpWx4YwP83aU7SeerMhkysPKyPSJoirAgGG3J1+890/MZllY8Nck0RFCCCG6MEVRGBEexHWxgWiwt9oUEsq24ExKow7Tyzee+kArxpwI5r//KHV1dU6ucdciiY4QQghxHugV4MPtyZEYFCsAJnxZ7zeI4rjDpPqmYAmoxyU/mUUf/IsKk8nJte06JNERQgghzhOxXm7cnRaHl9ae7NThzmqPYRQnlhDnn4zGvwptUQbfffIkR44UOLm2XYMkOkIIIcR5JMjVhXszEghxsXdjNePCz8YhHEmqITwwAVf/cjBlsvrT/yUnZ4+Ta+t8kugIIYQQ5xlPvY470xOJd1cA+/TztbqBHEpU8A2Kxtu3nJb6vuz4chZ792xxcm2dSxIdIYQQ4jxk0Gr4U0o8mb56R9k2TQbZiT64hgYR7FtBXUtfshZ+yPbta5xYU+eSREcIIYQ4T2k1ClfHRzMu1MNRtp94dsfGoInwJsqnlhpbHw4tnseG9d87sabOI4mOEEIIcR5TFIVREaFcG+PvmH5+mFC2RmTQEutGnK+ZKm0GJd8t4+efFzm5tueeJDpCCCFEN9A70I/bk8Ix0AJABT5sDMqkMVFLoi9U6FOp/mEVK77/3Mk1Pbck0RFCCCG6iVhvD+5Oj8dLY18huR531voMpCYFevgbMBkTaPp5C98t+9DJNT13JNERQgghupEgVwP/0zOZYJ092WnGhTXugyhLVUkL9KLcPZaWNXtY/PVbTq7puSGJjhBCCNHNeOh13NWzB7FGCwBWtKw1XERBqoa0IF8qvSLQbDjE1/NndvudzyXREUIIIbohg1bDlLQUMjyPlihs1vUhK9WN5NAAqn1C0W8q46t5L3frZEcSHSGEEKKb0moUrk9OYIj/sbV29mhS2JocSExkEDUBgRi31PDVF9O7bbIjiY4QQgjRjSmKwqVxMVwa5o7SOv38kBLJ+vhoQmOCaAj0w7C9kflf/C82m83JtT37JNERQgghLgBDwsO4Oc4ffev08zL8WR2VjG9SEC2BPrhsb2H+5y9i7WbJjiQ6QgghxAWih38Ad6ZE4U4TAHV4sCq4J4a0IDTBXrjsggVzn+9WyY4kOkIIIcQFJMzTg//pmYS/Ug+0Tj/37Y2tVxCGIA90u7V8Nfe5bpPsSKIjhBBCXGC8DQbu7Z1BlLYOsO9+vs69D7WZoXiGe6PfrWfBZ890i2RHEh0hhBDiAmTUaZnauzcphvrWEoWthp4U9Q7HJ9IX7V4DC+ee/8mO0xMdm83GzJkzGTZsGL169WLKlCkcOnTopMe++uqrJCcnn/Tr73//+zmuuRBCCHF+02oUbsnoxQCPZkfZbl0K2b2jCYwJRNljZMFnz57XyY7TE5033niDzz77jKeffpq5c+eiKApTp06lubn5hGOnTJnC6tWr23zdf//9GI1GbrvtNifUXgghhDi/KYrClT3SGOMHYF9LJ0cTy46MOEISg1GyDCz87MXzdp0dpyY6zc3NzJkzh/vuu48RI0aQkpLCjBkzKCkpYfny5Scc7+7uTmBgoOOrsbGRt956i0cffZSUlBQnPIEQQgjRPYyJT+SPoQY0qhWAQiWMNT1SCEiLgH16Fsx96bxMdpya6GRlZVFfX8/AgQMdZV5eXqSmprJp06bTnv/888+TmJjIdddd15nVFEIIIS4I/SOiuSnGF71q71WpwJef49LwzoxE3afw9ef/d94lOzpn3ry4uBiA0NDQNuVBQUEUFRX95rm//PILK1as4P3330ej+f35mk539nM+rVbT5r/i1CRW7Sexaj+JVftJrNqvu8cqIywUXzcjc/bkUqe404ArP4VlMMCoo2VDPkvmvc6V109r9/WcHS+nJjqNjY0AuLi4tCk3GAxUV1f/5rnvvfcevXr1atMadKY0GgVfX/fffZ1T8fJy7bRrdzcSq/aTWLWfxKr9JFbt151j5evrzuNBvkxfuZ5SxRcLOtb6pTNgmELz2jyWzX+bG29/oEPXdFa8nJroGI1GwD5W5+j3AGazGVfXUwekoaGB5cuX88QTT5yVethsKjU1DWflWsfTajV4eblSU9OI1Xr+jlg/FyRW7Sexaj+JVftJrNrvQorVtAH9mL1xHblKEKCw0SOd/sNU6lcf5pM5/8cf/njHaa/RWfHy8nJtVyuRUxOdo11WpaWlREVFOcpLS0t/c3DxqlWrsNlsjBs37qzVxWLpvF9Wq9XWqdfvTiRW7Sexaj+JVftJrNrvQoiVBg139B/Mh5vXkUUgAJtcM+gzTIN53RG+03/E6EtubNe1nBUvp3YwpqSk4OHhwYYNGxxlNTU17Nmzh379+p3yvC1btpCWloaXl9e5qKYQQghxwVIUhVv6DSJDU+Uo22ZMo3ZwJE27avh5xQKn1a09nJrouLi4cPPNNzN9+nRWrFhBVlYWDzzwACEhIYwbNw6r1UpZWRlNTU1tzsvKyiIpKclJtRZCCCEuLIqicH1mP/q61DjKfjGkUDI4lrodxaxffeKSMF2F04eMT5s2jWuuuYZ//etf3HDDDWi1WmbPno2LiwtFRUUMHTqUpUuXtjmnvLwcHx8f51RYCCGEuAApisLVvfoyxLXOUXZAH0f24AxKdh5k+5Y1TqzdqSnq+TYhvhNYrTYqKupPf2AH6XQafH3dqays7/b9uL+XxKr9JFbtJ7FqP4lV+0ms4Md9O1lR44INLQCeai0pe7eR2i+T5LQ+bY7trHj5+bm3azCy01t0hBBCCHF+GZXck0lBKkbVPrSkVvFke+pAdh3YR27OfifXri1JdIQQQgjRYb2iezA52hdfWxUALbiwJTyTtXlZFB7KdW7ljiOJjhBCCCHOSGRwBHelpxDRcnQ3A4XdXj349lA25SXFTq3bUZLoCCGEEOKMebp7MnXAYHrUZzvKclxjWHDgF6orTU6smZ0kOkIIIYT4XfQ6HbeM/AN9KnajYB9wfNAQw+e7t1HfcPYn+3SEJDpCCCGEOCsmjb+SPqZjyU6uIZpP1v2M2Wx2Wp0k0RFCCCHEWXPNJVfRu2yXI9k54BbH219+7rT6SKIjhBBCiLNq0oSr6Vmx1/FziVeQ0+oiiY4QQgghzrrrxl9Jb9MvhFhLiS4rdFo9nLp7uRBCCCG6r2svuarNysjOIC06QgghhOi2JNERQgghRLcliY4QQgghui1JdIQQQgjRbUmiI4QQQohuSxIdIYQQQnRbkugIIYQQotuSREcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbktRVVV1diWcTVVVbLbOCYNWq8FqtXXKtbsbiVX7SazaT2LVfhKr9pNYdUxnxEujUVAU5bTHSaIjhBBCiG5Luq6EEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG5LEh0hhBBCdFuS6AghhBCi25JERwghhBDdliQ6ncBmszFz5kyGDRtGr169mDJlCocOHXJ2tbqcN954g1tuuaVN2d69e7n55pvp3bs3I0eOZPbs2U6qnfNVVVXx+OOPM3z4cDIzM7nhhhvYvHmz43WJ1TEmk4mHH36YgQMH0qdPH/785z+TnZ3teF1idXK5ubn06dOH+fPnO8okVm0dPnyY5OTkE76++OILQOL1awsWLGDChAlkZGRw6aWXsmzZMsdrTouVKs66V199VR00aJC6cuVKde/eveqUKVPUcePGqWaz2dlV6zLeffddNTk5Wb355psdZRUVFepFF12k/vOf/1Szs7PVL7/8Us3IyFC//PJLJ9bUeSZPnqxOnDhR3bRpk5qTk6M+9dRTas+ePdXs7GyJ1a9MmjRJve6669SdO3eq2dnZ6n333acOGTJEbWhokFidQnNzs3rVVVepSUlJ6rx581RVlX+DJ7NixQo1IyNDLSkpUUtLSx1fjY2NEq9fWbBggdqjRw/1vffeU/Py8tTXXntNTUlJUbdu3erUWEmic5aZzWa1T58+6ieffOIoq66uVnv27KkuXrzYiTXrGoqLi9Xbb79d7d27t3rJJZe0SXRmzZqlDhs2TG1paXGUvfTSS+r48eOdUVWnysvLU5OSktQtW7Y4ymw2mzpu3Dj1lVdekVgdp6KiQn3ggQfU/fv3O8r27t2rJiUlqTt27JBYncJLL72k3nLLLW0SHYnVid5880114sSJJ31N4nWMzWZTR40apT7//PNtyqdMmaLOmjXLqbGSrquzLCsri/r6egYOHOgo8/LyIjU1lU2bNjmxZl3D7t278fb25uuvv6ZXr15tXtu8eTP9+/dHp9M5ygYOHEhubi4mk+lcV9WpfH19efvtt0lPT3eUKYqCqqpUV1dLrI7j6+vLyy+/TGJiIgDl5eXMnj2bkJAQEhISJFYnsWnTJubOncsLL7zQplxidaJ9+/aRkJBw0tckXsccPHiQw4cPc/nll7cpnz17NnfeeadTYyWJzllWXFwMQGhoaJvyoKAgioqKnFGlLmX06NG89NJLREZGnvBacXExISEhbcqCgoIAOHLkyDmpX1fh5eXFiBEjcHFxcZQtW7aM/Px8hg4dKrE6hccee4whQ4bwzTff8Mwzz+Dm5iax+pWamhr+9re/8a9//euE9ymJ1Yn279+PyWTixhtvZPDgwdxwww2sWrUKkHgdLy8vD4CGhgZuv/12Bg0axKRJk/jhhx8A58ZKEp2zrLGxEaDNBxSAwWDAbDY7o0rnjaamppPGDbjgY7dlyxb+8Y9/MGbMGEaPHi2xOoXbbruNefPmMXHiRO699152794tsfqVf//73/Tu3fuEv7xB/g3+WnNzM3l5edTV1XH//ffz9ttvk5GRwdSpU1m3bp3E6zh1dXUAPPLII1x22WXMmTOHIUOGcM899zg9VrrTHyI6wmg0AvZ/IEe/B/v/SFdXV2dV67xgNBppbm5uU3b0H4Cbm5szqtQlfP/99zz00EP06tWLl19+GZBYncrRLoannnqK7du389FHH0msjrNgwQI2b97MokWLTvq6xKotFxcXNm3ahE6nc3xIp6enk5OTw+zZsyVex9Hr9QDcfvvt/PGPfwSgR48e7Nmzh3fffdepsZIWnbPsaFNwaWlpm/LS0tITmu1EWyEhISeNG0BwcLAzquR0H330Effddx/Dhw/nnXfecSTPEqtjTCYTixcvxmq1Oso0Gg3x8fGOf3cSK7t58+ZhMpkYOXIkffr0oU+fPgA88cQTXHrppRKrk3BzczuhJSIpKYmSkhKJ13GOfr4lJSW1KU9ISKCwsNCpsZJE5yxLSUnBw8ODDRs2OMpqamrYs2cP/fr1c2LNur7+/fuzZcuWNh9Y69atIzY2Fn9/fyfWzDk++eQTnnrqKW666SZeeeWVNm+2EqtjSktLefDBB9m4caOjrKWlhT179hAfHy+xOs706dNZunQpCxYscHwBTJs2jbffflti9StZWVn06dOnzfpVALt27SIhIUHidZzU1FTc3d3ZsWNHm/L9+/cTFRXl3Fh1+ryuC9DLL7+sDhgwQP3+++8d6+hcfPHFso7OrzzyyCNtppeXl5er/fv3Vx955BH1wIED6rx589SMjAx1/vz5Tqylcxw8eFBNS0tT77333jZrd5SWlqo1NTUSq+PYbDZ1ypQp6vjx49VNmzap+/btUx944AG1f//+6uHDhyVWp3H89HKJVVtWq1WdNGmSetlll6mbNm1Ss7Oz1WeffVZNT09Xs7KyJF6/8vrrr6t9+vRRFy1apB46dEh944031JSUFHX9+vVOjZUkOp3AYrGoL774ojpw4EC1d+/e6tSpU9WCggJnV6vL+XWio6qqumPHDvXaa69V09PT1VGjRqkffvihk2rnXG+++aaalJR00q9HHnlEVVWJ1fFqamrUJ554Qh0yZIjas2dPdcqUKW3W1ZFYndrxiY6qSqx+zWQyqX//+9/VIUOGqBkZGep1112nbtq0yfG6xKutOXPmqKNHj1bT0tLUiRMnqsuXL3e85qxYKaqqqp3bZiSEEEII4RwyRkcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSHEeUFWwhBCnAlJdIQQXd6KFSt45JFHANiwYQPJyclttlkRQohTkd3LhRBd3nvvvef4Pi0tjblz5zp2KhdCiN8iiY4Q4rzi4eFB7969nV0NIcR5QrquhBBd2i233MLGjRvZuHGjo8vq+K6rV199lUsuuYTvv/+eyy67jIyMDK644gq2bdvG9u3bmTRpEj179uSyyy5j3bp1ba69f/9+7rzzTjIzM8nMzOTee++loKDAGY8phOgkkugIIbq0J554gtTUVFJTU5k7dy51dXUnHFNcXMxzzz3HXXfdxSuvvEJ1dTXTpk3jr3/9K9deey0vv/wyNpuNBx54gKamJgByc3O5/vrrMZlMPP/88zzzzDMUFBRwww03YDKZzvVjCiE6iXRdCSG6tISEBDw8PADo3bv3SQchNzY28sQTTzB8+HAAcnJyeOmll3jmmWe45pprALBarUybNo3c3Fx69OjBa6+9htFo5L333nNcf9CgQYwdO5b//ve/jsHPQojzmyQ6QohuITMz0/F9QEAAQJuxPD4+PgDU1NQAsH79ei666CKMRiMWiwWwj//p168fa9euPTeVFkJ0Okl0hBDdwtFWmeMZjcZTHl9VVcXSpUtZunTpCa/5+fmd1boJIZxHEh0hxAXJ09OTwYMHM3ny5BNe0+nkrVGI7kL+NQshujyNRoPNZjur1xwwYADZ2dn06NHDkdioqspDDz1EdHQ0PXr0OKv3E0I4h8y6EkJ0eV5eXuTm5rJu3TrHGJvf65577iE/P58777yT77//nlWrVnHfffexZMkSUlJSzso9hBDOJ4mOEKLLu+mmm9Dr9UydOtUxPfz3SklJ4eOPP0ZRFP72t78xbdo0ysrKeP3117n44ovPyj2EEM6nqLJTnhBCCCG6KWnREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG7r/wGAGBXLInHb8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a function to compute the minimum filter\n", + "def min_filt(S_LLS, m):\n", + " \"\"\"Applies the SNIP minimum filter defined in Eq. 2\"\"\"\n", + " S_LLS_filt = np.copy(S_LLS)\n", + " for i in range(m, len(S_LLS) - m): \n", + " S_LLS_filt[i] = min(S_LLS[i], (S_LLS[i-m] + S_LLS[i + m])/2)\n", + " return S_LLS_filt\n", + "\n", + "# Apply the filter for the first 100 iterations and plot\n", + "S_LLS_filt = np.copy(S_LLS)\n", + "for m in range(200):\n", + " S_LLS_filt = min_filt(S_LLS_filt, m)\n", + " # Plot every ten iterations\n", + " if (m % 20) == 0:\n", + " plt.plot(df['time'], S_LLS_filt, '-', label=f'iteration {m}', lw=2)\n", + "\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the number of iterations increases in the above example, the actual peak signals \n", + "become smaller and smaller, eventually approaching the baseline. \n", + "\n", + "### Inverse Transformation and Subtraction\n", + "Once the signal has been filtered across $M$ iterations, the filtered signal $S'_{LLS}$ can \n", + "be passed through the inverse LLS operator to expand the dynamic range back to the scale of the observed data. This inverse operator, converting $S'_{LLS} \\rightarrow S'$ is defined as\n", + "$$\n", + "S' = \\left(\\exp\\left[\\exp\\left(S'_{LLS}\\right)-1\\right] - 1\\right)^2 - 1. \\tag{3}\n", + "$$\n", + "\n", + "Performing the subtraction $S - S'$ effectively removes the baseline signal leaving \n", + "only the \"true\" signal\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTR0lEQVR4nOzdd3wb5f3A8c+dTtO2LG/Hzk4IAbIhEDaEETZNgdL2By2UUsJqwygtUEooZRbCKIUUGtq0lA1lljJbVsNIIDSE7DjTcbyHbO273x+yJTlObNmWLFn+vl+vvHI6ne4ePz5ZXz3j+yiGYRgIIYQQQmQANdUFEEIIIYRIFAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDC3VBUgFwzDQ9cQnXFZVJSnnzURSV70j9RU/qav4SV3FT+oqfsmqK1VVUBSlx+OGZGCj6wb19a0JPaemqeTlZdHc3EYwqCf03JlG6qp3pL7iJ3UVP6mr+EldxS+ZdZWfn4XJ1HNgI11RQgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyxpAcPCyEGNp0XScUCqa6GCml6wperwm/30coJLN9uiN1Fb++1pXJpKGqiWlrkcBGCDFkGIZBc3M9Ho871UVJC7W1Krous3ziIXUVv77Wld2ejdOZH9eU7u5IYCOEGDI6gprs7DwsFmu//4AOdiaTIi0QcZK6il9v68owDPx+H253AwC5uQX9ur4ENkKIIUHXQ5GgJjvbmeripAVNUyUvS5ykruLXl7qyWKwAuN0N5OTk9atbSgYPCyGGhFAoBET/gAoh0kvHe7O/498ksBFCDClDvftJiHSVqPemBDZCCCGEyBgS2AghhBAiY0hgI4QQg0xVVRXvvPNmqovRxW23LeCKK34yoNe84oqfcNttCwb0miK9pVVgU1FRwfTp03nxxRcj+1avXs15553HtGnTOOaYY1i8eHEKSygyVaC+nm133c6WWxfg31mZ6uII0a3bbruZTz9dmupidPGzn13L7bf/LtXFEENc2gQ2gUCAa6+9lra2tsi+hoYGLrzwQkaPHs0LL7zAlVdeyQMPPMALL7yQwpKKTFT7/LN41q/Dt2Uzu574a6qLI0S3DCM986lkZ2fjdOamuhhiiEubPDa///3vycrK6rTv2WefxWKxsGDBAjRNY9y4cWzZsoXHHnuMs846K0UlFZnGCAZxr/gCAOuIEZReNLBN6UL0xhVX/IQVK75gxYov+PLL5Tz//KucffbpHHXUMXz22SfU19fz29/exeOPP8qwYWXceOOCyGtvu20BO3dW8tBDjwJQXV3NAw/cy6efLsVkMjFp0hSuuOIqRowYucdrh0Ih/vjHP/DOO2/S0FDPsGFlfOc73+Nb3zp7j+dfs2Y1v//9Qtas+Yb8/EIuvnget922gPvu+wMzZhzEFVf8hIkT96elpZn3338PXTc46qhjuPrqX+BwOAD46KMP+Pvf/8KGDesJhUKMGzeen/zkcmbOPCSJtSwGs7QIbD7//HOeeeYZXnrpJY455pjI/mXLljFz5kw0LVrMWbNm8cc//pG6ujoKCvqXnVAIAH/VTgy/HwDLsDLM+fkpLpEYSJ+vqealDzfh9YdScn2bxcTcI8dy0MTiuI6//fbfcd11V1FcXMJVV10X2f/SSy9w1133kZOTw9ix43s8j8fj4bLLLmb8+An8/vePYjKpPP303/nJTy7gr399mqKiruX5xz+e49//fpdbbrmdoqJiPv74A+65507GjBnP1KnTOh1bW1vDz342jyOOOJprr72eqqqd3HPPHZF8Qh1eeOEZvvvd83j00SWsX7+W225bwPDhI7jggh+zZs1qbrjhWi699KfcdNOttLa28thjD/Ob39zEiy++jtlsjqvOxNCS8sCmubmZ6667jl/96lcMGzas03NVVVVMmDCh077i4vCbrbKysl+BjaYlthfOZFI7/S/2Lt3qyl25PbLtzS9N+L3RX+lWX+msu7rS9T3nyPjXp1vYWde2x+cGyhufbo07sHE6c9E0DavVSl5eXmT/rFmH96oV491336SpqZFbbrkNkyn8UfDLX97El18u55VX/sFFF13S5TU7duzAbrdRVlZOQUEhZ511LiNHjmbkyK4tPC+//CLZ2Tlcf/2v0TSNMWPGctVV1/HLX17d6bhRo8ZwySWXAzBy5Cjeeect/ve/FUD49/izn13LWWd9J3L8Oed8l6uuuoL6+jpKSkrj/nn7oyO9iqJAmvYCpo1E1JXJpPTr73DKA5sFCxYwbdo0Tj/99C7Peb1eLBZLp31Wazgzoc/n6/M1VVUhLy+r5wP7wOm0J+W8mShd6qqpdldk++9fuTl5Wg0nHTo6dQXai3Spr8FgT3Xl9ZqorVW7/NE89bDRvPCfjSltsTn1sFG9+kOuKAqK0vnnGDlyZKfHezomdt/69WtpbW3lpJOO7XRuv9/P1q2b91iec845lw8//Ddz557CxIn7c8ghszjuuBMoKirscv5169YwceJ+2GzRv+EHHnggEA5YNE1FURTGjBnT6Vo5OTm0trrRNJX99tuPvDwXTz31V7Zu3cLWrVtYt25t+7WInGP3nzNZ5MtF/PpSV7quoKoqubkObDZbn6+d0sDmpZdeYtmyZbz66qt7fN5ms+Fv7yLo0BHQdPS/9oWuGzQ3J/Ybmsmk4nTaaW72EArJeiLdSbe6atm+M+aRwfvPvcN+nok4p09PWZlipVt9pbPu6srv96HrOqGQ0Wkdmxn7FDFjn6KBLmoXvVlbxzAMDKPzz2E2Wzo9NgwDXdc77QsEApHXhUI6I0eO4q67Fnb5Zm232/dYnrKy4Tz99Et8+eUyPv/8U95//9/85S+LueGGmzn55NM6lUtVTV2u37EdCoX3G4aBppn3Wu4VK77g6quvYNasw5k6dRqzZ5+A1+vl+uuv7XSO3esi0RQlfG+FQrq02PSgP3UVCoV/901NbXg8Xb9oOJ32uAKmlAY2L7zwAnV1dZ3G1QDcfPPNLF68mLKyMqqrqzs91/G4pKSkX9dO1pug480mepYudeWtrY1sf7vqP2iGTuXfPsMxeWoKS9VVutTXYLCnusqklZnjST1vNptpbXV32rd9+7ZIq/eYMeP4179ex+HIjnRpBYNBFiy4gWOPPZ7jjjuxyzmfe+5p8vLyOP74OcycOYvLLvsZ8+dfxrvvvsXJJ5/W6djx4/fh9ddfIRgMRsZJfvPN1736OZ966m9Mn35Qpynkzz//NDCwM8M6LiVBTc8SUVe7f/norZS2q91zzz3885//5KWXXor8A/jpT3/Ko48+ysyZM1m+fHmnwWZLly5lzJgxMnBYJIyvtg6ANtVKnTk8VTXU0IARSk3XhBA9sdsd7NxZSXX1rr0eM3nyVD7//FM++ugDduzYzuLFf2TTpg2R5+fMOQWnM5cbb/w5X3+9ki1bNnPHHbewdOnHjBkzbo/nrK+v47777uajj96nqmonn3zyX9avX8ukSVO6HPvtb5+D2+3mrrt+y+bNFSxb9hkLF94FxL8mUHFxKRs3ruerr1awc2clr7/+Cn/60yIg3PokxJ6kNLApKSlh1KhRnf4BFBQUUF5ezllnnYXb7ebGG29kw4YNvPjiiyxZsoRLLuk6qE2IvjBCIWhpBqDZnEWzOTz2SjF0Qi0tqSyaEHv1rW+dRUXFRn74w+91mWXU4bvf/T+OOeY4br31Ji666Dzq6mr5zne+H3k+OzubRYv+RF5eHtdeeyU//vEP2LlzJwsXPsTYsXsObC666BJOPfVMFi68m+9979v87ne3M3fuOZx//oVdjs3Ly+feex9k8+ZNXHjh97n77ts488xwmo54ZzP9+MeXcMABk/jFL+Zz4YXf59VXX+L663+N1WrtdeuPGDoUI80yPe27777ccccdfPvb3wbgf//7H7fddhvffPMNRUVF/OhHP+K8887r1zVCIZ36+tZEFDdC01Ty8rJoaGiV7oIepFNdGbrOq0//m7WrNhNSTIxt28G05vUAjPz1LdhGjkpp+SC96ivddVdXgYCfurqdFBQMw2y27OUMQ4umqUm7pyoqNtHS0syUKdMi+1au/IpLL72IF154bcBmNCVKMusq0/S1rnp6j+bnZ6X/GJs9Wbt2bafHU6ZM4ZlnnklRaUSmU1SVTeZCVueEm8ZLfHWR50LNTakqlhCDXm1tNdde+zN++cubmD79QGpra3jwwYVMmzZj0AU1YnBJu8BGiIFW0+gBwKypkJUDDeH9wabmFJZKiMFt5sxZzJ//c5544i/87ne3k5WVzRFHHMWll16Z6qKJDCeBjRjy6pvDKQQKnDZU1RnZ72+UFhsh+mPu3LOZO/fsVBdDDDES2IghrWXLVsoat+IxWSmwjURTowv4eerrU1gyIYQQfSGBjRjS6j/8kHN3vgvAFyO+g5bnijzna2hMTaGEEEL0mQQ2YkjzxYyjseQ6sea3JypTVAxfMFXFEkII0UcS2IghLdDSQkdGDUdeLll5Tu4Z+32CqsZ5x03ggJSWTgghRG/Jil5iSNPd0ZTzWfkuXE4bQTUc7ze6/Xt7mRBCiDQlgY0Y2trCiRq9qplcp50cRzQjqtsjKduFEGKwkcBGDGkmTziw8Zhs5GZZybJJYCPS3xFHHMQ///lqSstwxRU/4bbbFgDwxRfLOOKIg9i5szKlZerJP//5KkcccVC3xzQ1NfLaay8ltRyGYfDGG6/R0NC/mZdnn306ixf/sU+vjacuEm3x4j9y9tmnJ/06EtiIIcvQdbSAFwgvgJnjMJNtN3NA80ZOqPmUiZ+/QsjjSXEphUh/kydP5eWX/0VxcUmqi9Jvf/jDA/zrX/9M6jVWrPiC225bgNfrTep1unPccSfw8sv/Stn1k0kGD4shS/dGgxafyYLDpmE1mxjnqWT/lgpoglBLCya7PYWlFCL9mc1mCgoKU12MhBiI5RPTYYlGq9WG1WpLdTGSQgIbMWTpbW2Rbb9qwWo2oSgKIYst5pjELpYqRKJs2bKZSy+9iLVrV1NePpyf/vRqZs6cBYQ/OJ966m+8/vorVFbuwGKxMHXqdObP/zllZeUALF36MYsXL6KiYhN2u4NDDz2cK6+8GqcznH178+YKHnroPr766kscDgczZszkiivm7zGA+eKLZfz0p/N47rlXGDasjLPPPp1vfessVq9exWeffYLFYmHOnFO47LKfoWnhj52VK79i0aKHWL36G1wuF4cffhTz5l1OVlb2Xn/mbdu2ct99v2PVqv+h6waTJ0/h8svnM27ceCDcRXfDDTdzyinR7o6zzz6dk08+jYsuuiSy79VXX+Lxxx+lpaWZWbMO55prfkleXh633baAN954LXKujz5axhVX/ITy8uFUVGxi69bNzJ//c2bPPoHHH3+U9957m+rqXTgcWcyceQhXX30dubkuABoaGvjDH+5n6dKPCAaDTJ48lZ/97Fpqaqr56U/nAXDOOWdEyttTfbjdbu6//3d89NH7aJqZH/yg64rqu3vjjdf4+9//SmXldpzOXI499nguvfRKLBYL//znq9x++y189NGySHnvv/9uPv10KSaTiVNPPZM1a75h6tTpXHTRJSxe/Ee+/HI5hx56OM8//wxNTY1MmjSFa6/9JSNHjgZg06aNPPbYw3z11Qra2lopKSnlrLPO5Tvf+V6PZU0k6YoSQ5bu8xNUTACELFYUJbwQpm6NttCEWiWwEenpueeeYs6cU/jLX57iqKOO5eqrr2TNmtUAPPvsk/z1r3/m0kt/ylNPvcgdd9zL1q1b+P3v7wOgsbGRG2/8OaeddiZ///vz3H7771ix4ksefvgBAGpra7j88h9TVlbOY4/9lbvuup/WVjfz5l2EJ87u2ccff5Rp0w7k8cf/zo9+9BOee+5p3nnnTQA2bFjPz352GTNnHsKSJU9x8823sXbtaq666opuWzNuvvkGCgsL+dOf/sajj/4FVVW54YZre113zz//NL/5zR089NBj1NRUc/XVl2MYBj/72bXMnn0CkyZN6dRN889/vsq5536Phx9ezKGHHs7DDz/I22//i1/+8iaefvof/OpXt7Bs2acsWbIYgGAwyNVXX86mTRu4/fZ7ePTRJaiqiauvvoLJk6dy2213A/DYY0s47rgT4qqPX//6l6xevYq77rqP++57iI8//pCqqp17/Rk3bFjP3XffxkUX/YQnn3yR66//Nf/61+s8+eRfuxyr6zrXXTefbdu2cc89D7Jw4R/45puv+fLL5Z2OW7VqJStWfMHdd9/P/fc/TFXVTu699y4AvF4vV111GXa7gz/+cTFPPPEcs2efwIMP3sv69Wu7XDOZpMVGDFnW8nL+sP8P8Hn9lLpszG3fr9gdkWP8LS1kpaZ4YgA1vPUvGt5+s8fjrCNHUX7l/E77dvz+fnxbt/T42rwT5pB34kmRx7rXw+abbuiyP17f+tZZfOtbZwFw8cWX8sUXn/Pss0/y61/fSnn5CH71qwUcccRRAJSWDuPYY4/n3XffAqCmZhd+v5/S0lJKS4dRWjqMu+5aSCgUAuAf/3iegoJCrr76F5Hr/eY3d3Lqqcfx73+/06lFZG8OOeRQzjnnuwCMGDGS1157mf/9bwUnnXQqTz31Vw46aCYXXPDjyPMLFtzGd75zJl9+uZwZM/Y8qLWycjsHHzyLYcPK0DSN66//NVu2bEbXdVQ1/u/pv/rVb9hnnwnt27fwve99m2XLPmPmzEOwWq1omtapZWqffSYwZ87JBIM6APvttz9HH30s06cfGKnfgw8+lI0bNwDhFqz169fx5JPPR1ozfvGLG3nyyb/R0tJMTk64VczlysNqtfVYH4WFhXz22Sfcf//DTJ06HYCbb/5ttwNxKyt3oCgKw4aVt/+eS7nvvodwOLr+RVux4gtWr17Vqby33nonZ53V+fzBYJCbbvoNTmd46Zmzz/4ujzzyIAAej4dzzvkec+eeTW6uk2BQ50c/+gl/+9uf2bhxA/vss2+cv53+k8BGDFm6buDxhUAxYcuKttIoMW98T2MLeakonBhQIY+HYENDj8dpefldX9vSEtdrdx+IbhgQbGjo8wD1jg+4DvvvP4nly8PdCkcccRSrVn3N4sV/ZNu2rWzZUsGmTRspKioGYJ999uX44+dw7bXzKS4uYebMQzjssCM4/PBwILRu3Rq2bNnMCScc2ekafr+fzZsr4irfqFFjOj3OysomGAxn8167di3bt2/tcn4Id7HV1tbwu9/dHtk3Zcp07r33QS6++DIefPBeXnrpeWbMmMkhhxzK7Nkn9CqocTiyIkENhIOInBwnFRUbmTnzkD2+ZvjwkZ0ez5lzCsuWfcYf//gHtm3byubNFWzdupkpU6YB4daS7OycSJAAUFBQyJVXXgXQpQ57qo+mpkYgHFB1yM8viHQr7skhhxzKpElT+PGPz2f48JHMnHkIRx55NPvuu1+XY9euXUNOjrNTefPy8hk5clSn4/Lz8yNBDUB2djaBQKD9+Dy+/e1zeOedt9i0aT1bt25l/fp1QLhFaCBJYCOGrLaYJRMctuhbwZQVDWxil1wQmctkt6Pl9RzCmnJy9rgvrtfuNghdUUDLy+vz4PTdP8xDIR2zOZyu4O9/X8LixY9yyimnM336gZx99nf56KP3I11BAAsW3MbFF1/Cxx9/xOeff8qCBTcyefJUHnxwEbpuMGPGQVxzzS+7XDc7u2sd7ElHWWJ1dKsYhs6JJ57MD37woy7HuFx5qKrC/vtPiuyzWq0AnHXWd5g9+3iWLv2Y5cvDgcXjj/+RP//5SfLzCzpdo0NHMNVhT0GQYeiYzZa9/iwd1+9wzz138u67b3Hyyady2GFH8MMf/oinnnqC6updAGiaFunajkdP9fH5558A4S9jsUymvX+EW61WHnxwEevWreHTTz/h888/4eWXX+Ckk07lhhtu3u08Jgyj5+Cjuzqqr6/jkksuJDfXxVFHHcP06TPZb7/9+fa3T+3xvIkmgY0Yslq90Tw1sflrLFkxXVHuNkTmyzvxpD51BwFduqbipdrsjP3dfX16LYS/ZR955DGRxytXfsX48fsAsGTJ4/zoRxdz3nkXRJ5/6qm/Rj70v/56Je+99xZXX/1zystH8p3vfJ+33nqD3/zmJhoa6hk7dhzvvvsWxcUlWCzhD7Pm5iZ++9ub+e53z9trV1G8xowZR0XFRoYPHxHZt3XrZh566AHmzbucsWPHd+kyqa+v4y9/+RPnnXcBp5xyOqeccjo1NdXMnXsKX375BccddwKaptHaGs0m3trq7pIrxu1uYceO7ZSXDwdg48YNuN1uxo4dB9BjQNLU1MhLLz3PLbfcznHHnRjZv3lzBQ6Ho/3nG0NLSzPbt2+L/IyNjY1897tzufvu+7pco6f6mDBhIhD+HR922BEAtLS0sGPHtr2Wc+nSj1mz5hsuvPBiJkyYyPnnX8CSJYv5618f7xLYjB+/D263my1bNjNq1Ggg/Pvevn1rt3UR66233qCpqYmnnnoRm81CMKhHuuYGehaYBDZiyHJ/+QUnVn+CT7VgDxwe2a/FBDZBjwQ2Ij0988zfKS8fzgEHTOKll15g06YN3HzzbwEoLi7h888/5fDDj8JkUvnXv/7J++//O9KqkZWVxYsvPofFYuG0076Fz+fjnXfeZPjwkeTmupg792xefvlFFiy4kQsv/DGKovLwww+wbt1axowZ2++yf/e753H55T/md7+7nbPP/i5tbW3ce++dtLW1den26eB05vLf/37Ejh07mDfvchyOLF5//RXMZjMTJ4a7V8L5dF5k6tQZmM0ajz32SGQWVgdVVfn1r6/nqquuA+Cee+5g2rQZka49u91ObW0tlZU79tjVk5WVTXZ2Nh9++D777rsfPp+P559/hnXr1kRamQ488GAmTtyfW2/9NT/96TXY7XYWLfo9+fn5TJy4P5s2bQRg/fp15Oa6eqwPi8XCsccez3333d0+tb6ARYv+EOkG2hNNM/HnPz+Gw+HgyCOPobm5iY8//pBJk6Z2OXbGjIM44IDJ3Hrrr5k//+dYrVYWLXoIr9cbd8tTcXEpXq+H9957mxkzZrBpUwUPPrgQgEBgYJenkVlRYsjyb9rAjOZ1HNr4Nc5QdJyDNTv6TVES9Il0dcEFP+a5557mhz/8Hl9+uZy7774/Mibippt+g9fr5cc/Pp/LL/8JmzZt4Nprr6ehoZ6dOysZM2Yst932O5Yv/5wLL/w+l112ESaTxr33PoiqqpSVlfPQQ3/E6/Vw2WU/5oorLkZRVB588BHy9jDOqLcmTZrMwoUPsWnTBi666Hyuu+5nlJcP5/77H460EO1O0zTuuedBVFXhZz+7jPPPP5flyz/n7rvvj7S+XHvt9RQUFHLppT/i2mt/xvTpB3b5IHe58pgz5xSuv/4arrrqMkaNGs1vf3t35PmTTz4Nn8/L+ed/h9ra2j2W49Zb76SiYiM/+MF3ueaaK/H5vFxyyeVUVGzC4/Ggqip33nkvpaWlXHPNFZH6XbjwISwWC+PGjefQQw/n5puv5+WXX4yrPn71qwXtr7mByy67mDFjxu5xvEyHmTNn8ctf3sRrr73M+ed/h2uuuTIyKHlPbrvtboqKipk//1Lmz7+U/fbbn5KS0j12Ke7Jsccex/e+dz4PPXQ/5557Fg8+eC+nnXYG06bN4JtvVsV1jkRRjHTIFDTAQiGd+vrETuPVNJW8vCwaGlojI+fFnqVLXa188GGs//sMgO3fvpTZp4QHDv738400/e1xfKqZYdMmccgFZ6esjJA+9TUYdFdXgYCfurqdFBQM63aswFCiaarcU3HK5LpqbGxk1aqVHHLIoZEWrkAgwCmnHMc11/yCk07q3TiZvtZVT+/R/PwsTKae22OkK0oMWaG2PbfS2HOd/KnsOAC+PaH/ze5CCJHOTCYTN998PWeeeRZz555NIBDgqaf+hsViZtasw3s+QZqRwEYMWUbMkgo2Z3Smh90afVt4fJ1nVAghRKbJycnh7rvv57HHHuaVV/6BoihMmTKVBx/8Iy6XK9XF6zUJbMTQFbMAXVZuTIuNBDZCiCFmxoyDeOSRx1NdjISQwcNiyFL84cDGr2jY7dE8FXarKbLt8YcGvFxCCCH6TlpsxJBlag9sfKqZophgxm7V+PbOf1PqrcO61YAzHklVEYUQQvSSBDZiyDIFfAD4VAs2S/StYLdq2EM+nKE2CIERDKJo8lbJFENwIqgQg0Ki3pvSFSWGJEPX0ULh5FY+1YzNEm2x0UwqQVM0d4MeMxZHDF4mU/h37Pf7UlwSIcSedLw3u1sqIh7yNVQMSUYoyJbC8QTaPNRbcrFonWP8oDk65kb3eDBlZw90EUWCqaoJuz0btzu8YKXFYu3Vej6ZSNcVQiFpwYqH1FX8eltXhmHg9/twuxuw27N7tajpnkhgI4Yk1WzhvbHHs6u+DYdV47zdPuD02MBGWmwyhtMZzprbEdwMdaqqDvjKy4OV1FX8+lpXdnt25D3aHxLYiCHL2z6V2xYzcLiDYYkGNkFPG9YuR4jBSFEUcnMLyMnJIxQa2lP5TSaF3FwHTU1t0hLRA6mr+PW1rkwmrd8tNR1SHtjU1dVx55138uGHH+Lz+Zg5cybXXXcd48ePB+D666/nxRdf7PSakpISPvjgg1QUV2QQb/tU7tiBwx0Miy2y7WtpJavLEWIwU1UVVR3ayypomorNZsPjCWXsUgGJInUVv3Soq5QHNpdeeimqqvLYY+FVSB944AEuuOAC3n77bex2O2vXrmXevHmcd955kdd0DAIUoq90w8AXCAc2dkvX+0m1xQQ27sSuKyaEECJ5UhrYNDQ0MHz4cC699FL22WcfAC677DLOPPNM1q9fzwEHHMCGDRu47LLLKCoqSmVRRYZp+up/XFbxPAFVY7t5JnBQp+dVmz2yLYGNEEIMHikNbPLy8li4cGHkcW1tLYsXL6a0tJTx48ezefNmfD4f48aNS2EpRSbyNrVE8tTU0jW7sGKPttgEWz1dnhdCCJGeUt4V1eGmm27i2WefxWKx8Mgjj+BwOFi3bh2KorBkyRI++OADVFXl6KOPZv78+eTk5PR80m5oWmJT+HQspR7PkupDXTrUVTBmppNqs3a5H/SS4bxRNIuAqnHGPvsn/H7pjXSor8FC6ip+Ulfxk7qKXzrUVdoENj/84Q8599xzeeqpp7j88st58sknWb9+PaqqUl5ezqJFi9iyZQt33XUX69atY8mSJX0eQa2qCnl5yRkO6nTaez5IAKmtqy16dEaMLSery/2QNbyMr3InAPDtsvKk3S+9IfdW/KSu4id1FT+pq/ilsq7SJrDpmAV16623smLFCp544gluv/12LrjgApxOJwATJkygqKiIc889l5UrVzJ16tQ+XUvXDZqb2xJWdghHp06nneZmD6GQjJrvTjrUVUt9cyTttq6ZaWjoPI7GCEW7p2ob2ro8P5DSob4GC6mr+EldxU/qKn7JrCun0x5XS1BKA5u6ujqWLl3KySefHJnppKoq48aNo7q6GkVRIkFNhwkTwt+iq6qq+hzYAEmbhhYK6TIdME6prKtAmzeSm8ZktXUphznmzdPmDaTF71TurfhJXcVP6ip+UlfxS2VdpbTDsLq6mmuuuYbPPvsssi8QCPDNN98wbtw4rrnmGi666KJOr1m5ciUQbeERoi9C3uiAYLOja5OpVVPI9zdR6q1Fr9o5kEUTQgjRDykNbCZOnMgRRxzBLbfcwrJly1i3bh2/+MUvaG5u5oILLuC0007j448/5pFHHmHr1q28//773HDDDZx22mkyU0r0i+6LLoRoyeoa2NgI8pOtL3PB9n/i+u8bA1k0IYQQ/ZDSrihFUbj//vu59957mT9/Pi0tLRx00EH8/e9/p6ysjLKyMh544AEWLVrEokWLyMnJ4fTTT2f+/PmpLLbIAIYvOivK4nB0ed4aG+zIatBCCDFopHzwcE5ODgsWLGDBggV7fH7OnDnMmTNnYAslMp/PH9m07qnFxmalVVHRDB0l4O/yvBBCiPSU8sBGiFSoHD+TTYFCLHqQOTldp3JbLSYaFQ3N8KMGJbARQojBQgIbMSRV54/gq1wzAGfaui6GaDWb8Ktm7LofNRgY6OIJIYToI0mjKIYkX8w0RKu56yKYNosJvxqO+03SYiOEEIOGBDZiSPIHogn4LOaubwOr2URAaQ9sQgEMwxiwsgkhhOg7CWzEkGSv30m+vwlH0LPHFhtVVQiawl1VCmD4pdVGCCEGAxljI4YcwzA45vOnORaotBZg1k7Z43Gh9sAGQPf7UK3WPR4nhBAifUiLjRhyDL8fpX07aDKjKMoej9O16KBiwyu5bIQQYjCQFhsx5MRmHQ6Zus6I6vDFuCN5vXYGhsXCQ4WFA1E0IYQQ/SSBjRhy9JiswyHNvPcDs7Jpa9RBB90wMO2lZUcIIUT6kK4oMeTEdivFdjftzhYzqNjnlxV9hRBiMJDARgw5sS02unnvgY3VEm3Q9MVMDxdCCJG+pCtKDDkBjyeybXQT2OS31XFIw9dY9ACtm4aRN3W/gSieEEKIfpDARgw5gbZoi023gY27moPqvgDAt3V/kMBGCCHSnnRFiSEn4IkGNko3gU1s3ppgzGuEEEKkLwlsxJAT8MYENpa9BzYmmy2yLYGNEEIMDtIVJYaeyTP5/bIAmhFkxqhRez0sNrAJeSWwEUKIwUACGzHk+BWVVs0OgMnu2Otxmj0a2OiSeVgIIQYF6YoSQ44/EM1JY7V0XQCzQ2xgYwQksBFCiMFAAhsx5PhjctJYtL2/BcwxXVGyurcQQgwO0hUlhhx97SoOafiagKJhC5Xt9TizIzoryvAHBqJoQggh+kkCGzHkmNZ8xbHt+Wl2BQ/b63HWmK4oAtJiI4QQg4EENmLI0WO6lbSYXDW7M9ttVFpcBBQNLSd/IIomhBCinySwEUNO7HgZS2yrzG6sVjOPjzwDgCMmD+PIpJdMCCFEf8ngYTH0xHQrxY6j2Z01ZmCxPyiLYAohxGAggY0YeoLRgcAW294DG4s5OhXc55fARgghBgMJbMSQo7S32AQUExaLea/HWWMCG39Q3+txQggh0oeMsRFDjtLeYhNQNHLN3eSxMaucWP0Jxf4GHFXA96YPUAmFEEL0lQQ2YshROwIb1dSpu6nLcYpCSaCRcm8NAEYwiKLJW0YIIdKZdEWJIUcNBQEIKlqnAcJ7EjJFAxk9IEn6hBAi3aU8sKmrq+PnP/85s2bNYvr06fzkJz9hw4YNkedXr17Neeedx7Rp0zjmmGNYvHhxCksrMkFLVj41FhcNZme3LTYAuik6Bsfwy3pRQgiR7lIe2Fx66aVs27aNxx57jOeffx6bzcYFF1yAx+OhoaGBCy+8kNGjR/PCCy9w5ZVX8sADD/DCCy+kuthiEHtv+tksHnkGz5fNxtLNGBsAXYsGNrqsFyWEEGkvpQMGGhoaGD58OJdeein77LMPAJdddhlnnnkm69evZ+nSpVgsFhYsWICmaYwbN44tW7bw2GOPcdZZZ6Wy6GIQ61gEUzMpmNTuAxsjtsXGJy02QgiR7lLaYpOXl8fChQsjQU1tbS2LFy+mtLSU8ePHs2zZMmbOnIkWM2Bz1qxZVFRUUFdXl6pii0HOHwhP3bZo3XdDARjmaGAT8HqTViYhhBCJkTZTPG666SaeffZZLBYLjzzyCA6Hg6qqKiZMmNDpuOLiYgAqKyspKCjo8/W0HgaN9pbJpHb6X+xdquuqI4uw1WLq+T6wRBP4hXz+hN838Uh1fQ0mUlfxk7qKn9RV/NKhrtImsPnhD3/Iueeey1NPPcXll1/Ok08+idfrxWKxdDrO2r5ooa8f3QKqqpCXl9Wv8u6N02lPynkzUSrqyrOzitPWvILPUKkuGUde3kndHm+KyUxsVvSk3TfxkHsrflJX8ZO6ip/UVfxSWVdpE9iMHz8egFtvvZUVK1bwxBNPYLPZ8O82YLMjoHE4HH2+lq4bNDe39b2we2AyqTiddpqbPYRCkqW2O6msK09lDWVtuwDwewtpaGjt9nhdjb5FGmubcfZwfDLIvRU/qav4SV3FT+oqfsmsK6fTHldLUEoDm7q6OpYuXcrJJ5+MyRQe76CqKuPGjaO6uprS0lKqq6s7vabjcUlJSb+uHUxSivxQSE/auTNNKurK3+aJbBuaucfrtxUN5+O8yQQUjRPzilL6u5V7K35SV/GTuoqf1FX8UllXKe0wrK6u5pprruGzzz6L7AsEAnzzzTeMGzeOmTNnsnz5ckKh6AKES5cuZcyYMf0aXyOGroAnpgvTvPd1ojr4S0fxYcF0PsmfTDCvf8G0EEKI5EtpYDNx4kSOOOIIbrnlFpYtW8a6dev4xS9+QXNzMxdccAFnnXUWbrebG2+8kQ0bNvDiiy+yZMkSLrnkklQWWwxifk+0xQazZe8HtovNc+MLygrfQgiR7lIa2CiKwv3338+sWbOYP38+55xzDk1NTfz973+nrKyMgoIC/vSnP1FRUcHcuXN56KGHuO6665g7d24qiy0GsdgWG8XSc2DTaYXvgAQ2QgiR7lI+eDgnJ4cFCxawYMGCPT4/ZcoUnnnmmYEtlMhYwZhcNPEENhZNRdODmI0gfncrUJTE0gkhhOivlAc2QgykoLd3LTbZDZVcu+lJAFo/OhSmSzeoEEKkM8k2JIaUUExgY7Laejxes0WP0X2yVpQQQqQ7CWzEkBKKSeyoWntusYkNbIyABDZCCJHupCtKDCm+sjGsyJuEWQ9R7Mrv8XiLI5p5GFndWwgh0p4ENmJI8YwYzwcF4QDl/wp6HghsscekBQ8EklUsIYQQCSJdUWJIiZ2ybYljQUuLPWYcTlBabIQQIt1JYCOGFH8gmuLbEpOjZm+sNjOh9reJImNshBAi7UlgI4aUQFsbJj0EhtEpq/DeWM0mAmr7OmZB6YoSQoh0J2NsxJAy7K0n+fmuLRhAULm7x+MtZhMBRcNGADUUTH4BhRBC9Iu02Iihpb07yUDBEsd0b6tZJaCG4381JC02QgiR7qTFRgwpSnt3UkAx4bD0PMZGM6m8WnokhgHFxblMTnYBhRBC9IsENmJI6QhsgqoW1+BhRVGozynB5w+hWrKSXTwhhBD9JF1RYkjp6E4KKFpc070BrO3HyereQgiR/iSwEUOKGgwPAA6oprhabCA6LVwCGyGESH/SFSWGDMMwMOntXVGKhjXOwGaYr46ilmrsrTohz0GYYrMRCyGESCsS2IihIxRCNQwAAqqGZlLietl+1asYW70GgGDDKZjs5UkrohBCiP6RrigxZOgxK3uHVA1FiS+wMczmyHbA4+vmSCGEEKkmgY0YMvSY1bl1k7mbI3ejRfPd+No8iSySEEKIBJOuKDFkmLKzeWH8GfjavNhyszk53hdaYlps2rxJKZsQQojEkMBGDBmq2cw2SwFeQpTlxp+TRjFbI9sBrwQ2QgiRzqQrSgwZhmFEVveON4cNgGKJdkUFvTLGRggh0pkENmLICOkGevusqHhz2ACosYGNDB4WQoi0Jl1RYshoq65hYstmAqpGbqAXgU3MYplBn3RFCSFEOpPARgwZres38K1dHwCwNvdo4Oi4Xqdao2NsQj5psRFCiHQmgY0YMoIxA39jx830xGSz41XNBBUNlfhbeoQQQgw8CWzEkBHwxAQ21vgDG330eO4f+z0ALpw6MeHlEkIIkTgyeFgMGSFfNEGfyWLt5sjOrFq0lcYnC2EKIURak8BGDBmxXVFqL1psYmdQ+YN6QsskhBAisSSwEUOGHttiY+1Fi405+jbxS4uNEEKkNRljI4YM3R+d0WSy2eJ+nYUQJ1f/F00PkvfFFjhybDKKJ4QQIgFSHtg0NjaycOFC/vOf/+B2u9l333255pprOOiggwC4/vrrefHFFzu9pqSkhA8++CAVxRWDWGyLjWaLv8XGbFaZ2rwBgOYq6YoSQoh0lvLA5uqrr6auro6FCxeSn5/Pk08+yUUXXcSLL77IuHHjWLt2LfPmzeO8886LvMZkkim3ovdiV/c296IrymKzEWjfVoL+bo8VQgiRWikdY7NlyxY+/vhjbr75Zg466CDGjh3LjTfeSElJCa+99hqhUIgNGzYwefJkioqKIv/y8/NTWWwxSOmKgk/R0FEw23sxxsZiwq+EvwMowUAPRwshhEillLbY5OXl8eijjzJp0qTIPkVRMAyDpqYmNm/ejM/nY9y4cSkspcgU2w//Fi8bU8EwuMrlivt1FrOJoGLCYgRRJbARQoi0ltLAxul0cvTRndPav/HGG2zdupUjjjiCdevWoSgKS5Ys4YMPPkBVVY4++mjmz59PTk5Ov66t9WJ153iYTGqn/8XepaqugqH28TGKgt1mjvseyLKZCaga6D7UUDDh905P5N6Kn9RV/KSu4id1Fb90qKuUj7GJtXz5cm644QaOO+44Zs+ezYMPPoiqqpSXl7No0SK2bNnCXXfdxbp161iyZAmq2reKU1WFvLysBJc+zOm0J+W8mWig60qJuV8KC7Livgd03SDQ3hVlCgWTdu/0RO6t+A31ujJ0ndqP/ounspL8gw8ie+zeZ/IN9brqDamr+KWyrtImsHnnnXe49tprmTp1KgsXLgTgyiuv5IILLsDpdAIwYcIEioqKOPfcc1m5ciVTp07t07V03aC5uS1hZYdwdOp02mlu9hAKycyZ7qSqrprc0QR9Po+fhobWuF8bNGkQAFMoQH29G0VRklHEPZJ7K35SV2AYBjsfX0zjh+GZo9uefZ6RP7uK7ClTOh0ndRU/qav4JbOunE57XC1BaRHYPPHEE9x2222ccMIJ3HPPPVjaFyhUFCUS1HSYMGECAFVVVX0ObACCScogGwrpSTt3phnouhr5xducVNeC22THpBzaq2uH1PBbRcUg6AugaAP/1pF7K35Dua5aV/4vEtQAEApR+efHGf3bOzqtVB99eujWVW9JXcUvlXWV8g7DJ598kltvvZX/+7//4/77748ENQDXXHMNF110UafjV65cCcD48eMHtJxi8CvZvpppzes5wF3RaZmEeOiaObodk+hPiHRT/+YbXfYFG+pp+fyzFJRGiIGX0sCmoqKC22+/nRNOOIFLLrmEuro6ampqqKmpoaWlhdNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdFraig8oymgmLD2MrDZlVvO1zljWZm3Lygp/z4gxF6Vzbsc/ZSzWecax1+HnxzZ3/SRJDUVQ0NKu6LefPNNAoEAb7/9Nm+//Xan5+bOncudd97JAw88wKJFi1i0aBE5OTmcfvrpzJ8/PzUFFoOWYRhoehCAgKJhNvcuOFk38kC2Wt2YVIWz7DKAUKQvN2Ye2uKkrfBwMAxqLC6K/I14N6wn2NSIlutKdRGFSKqUBjbz5s1j3rx53R4zZ84c5syZM0AlEpnKCETzz4RMGmovB/92dF2FdINgSEeTaZ8iTf3zk620+cJBPIrCuqwRFPkbAWj9+mtyDz8idYUTYgDIX2cxJBgxyynoau/jeWtM7pqADB4UacoXCPHRyp0AmDWVs44eS4WjDB2FpoLhmBzS2igyX1rMihIi2WIH/MYOBI5X7GBjfyCE3SpvHZFePOvXseHdjyitN7PdXszB+43g+ING8MbSCh6wnAs2Ow9Onp7qYgqRdNJiI4YEwx/titJNvQ9sxm5bwU83PcPVG5/E/b8VCSyZEInR+vVKrMs+4Nyd7zK2bQeH7FeC1Wxi+oQSfCYLvkCIddsbU11MIZJOAhsxJMS22Bh9aLHRFAOH7sNiBAl4ZLq3SD/ezRWR7brsEvYd6QJg8riCyP6VG+sGulhCDDgJbMSQEPL1L7BRLdHEZgGvBDYivRiGQVtFOLBpNdkYPm44Zi3cfbr/6Hw6hsqv3daIEQymqJRCDAwZKCCGBN1iY1X2GMxGkNbcol6/XrFGE0eGJLARaSZQWwNt4SVCdloL2GeEK/Jctt3MiDwLB696g+LNDWxr+ICRV12TopIKkXwS2IghQS8s5dXSIwGYNrKw1683xaSiD3m93RwpxMDzbd4c2a6yFnBEeW6n50cNz2f48hpsuh/v1q0DXDohBpZ0RYkhwR8IRbYtvUzOB527omK7tYRIB75t0WBll72Q0aU5nZ4fN9xFtSUv/KCliZDbPZDFE2JASWAjhoTOgU3vllMA0GzRrijd5+/mSCEGXtv27ZFtS/nwLvf42GFOaqyuyGPf9m0DVTQhBpwENmJI8Mck1evtOlEAms0W2ZZFMEW68bYHNn5Fo2hUWZfnSwsc1FrzI499O7Z3OUaITCFjbMSQ4P/oPa6o+BdBRaNu1BnAhF693twpsJEWG5E+dL8fo6EOBaiz5DK8OLvLMZpJRSkuherwY2/lzoEtpBADSFpsxJAQam0jO+TFFXRj6eU6UQBmR3SMjSGBjUgjht9P9ZipbLMVU2krZHhR18AGIHt4eWS7dfuOgSqeEANOWmzEkBDy+SI3u8lm7fbYPTE7c3mt+HACqsYBE8cltnBC9IMpO5uPRh7JerUJgDOLsvZ4XMnwQjyqBbvuJ7CraiCLKMSAksBGDAmx3Ud9CWwsWQ6+doYDmuHO0oSVS4j+MgyD7TXhHDb5TisO254TUJYX5VBndlLuq8XkbkL3+YA9B0FCDGZxBTYvvfRSr076rW99qw9FESJ5YgMbzdqHwCZminjsDCshUq2+2YfHF84mvLduKAgPIF5vCQc2AP5du6A0f6/HCzFYxRXY/PKXv4z7hIqiSGAj0k7suBizvS+BTczq3jEzrIRItR1VDZHt8r10QwEUOm2scu3DZvswtKISriqVlkeRmeIKbN59991kl0OIpDICMS02dls3R+6ZVVMp9DVg0YPYq/3AAQksnRB9YxgGloW/5go0NjuGUVJw8V6PVVUFf/lYNte2ogVV6MOaaUIMBnEFNuXl5T0f1M4wjD4XRoikiWmxsfZljI3ZxLmV75AT8uCpzQZOSmDhhOibUFMjaihANgFsIR8l+Y5ujy/Js1NZ20owpFPX5KWgYO9dV0IMVn0aPPz666/z2WefEQgEIoGMYRi0tbWxYsUKPvjgg4QWUoj+UoKByLa5Dy02FrNKUNUgBGpIVkcW6cFfXR3ZbjTnUJJn7/b40gIHrA9v76xvY8LYZJZOiNTodWDz0EMP8dBDD5GTk0MwGMRsNqNpGvX19aiqyjnnnJOMcgrRP+2BTRCVnJjlEeJlUlWCSvjtYtIlsBHpIVATDWxa7blk27vvXirNc5DnbyY/0Ezzx2446P+SXUQhBlyvE/T94x//4IwzzuCzzz7jggsu4Nhjj+W///0vzz//PC6Xi3322ScZ5RSiXzZNPILXiw/j7aKD+7QIJkDIFA5sND2IocsAYpF6vl27IttKQSFKD8knS/IdfKvqfc7Z+R55/34JIyQz/ETm6fVf+F27dnHmmWeiKAoHHHAAX375JQCTJk1i3rx5PPfccwkvpBD9VZU/mpXO8XyVOwGL1vu1oiAa2AAYgUA3RwoxMFp2RJdGsBWX9Hh8kctOozm88rdi6Pjq6pJWNiFSpdeBjcPhiHwrGD16NNu3b8fr9QKw3377sX27LK4m0k9s7pm+LIIJEDJFm/llWQWRDjrG2BiAs3xYj8fnZltosUQHDHurdnVztBCDU68Dm8mTJ/OPf/wDgJEjR2Iymfjvf/8LwMaNG7FYej9+QYhkiw1s+toVZcRMj5WFMEVaqA+3uLRoDoqLcno8XFUUgjl5kcfeXRLYiMzT68HD8+bN48ILL6SlpYVFixZxxhln8Mtf/pJDDjmEjz76iOOPPz4Z5RSizwzDILuhkiKfH79mRTP1P7AJ+XxIFhCRSqG2Nky+NgAatRzG9TDVu4OSXwBbw9vN26soOihZJRQiNXod2MycOZPnn3+etWvXAvDrX/8aVVX54osvOOmkk3qVpViIgWD4/Zz41QsAbMsqBU7r23liAht/m5feTxoXInFiZ0Q1mHMocnU/1buDtbg4st28YydFCS+ZEKnVpzw2EydOZOLEiQBYrVZuvfXWhBZKiESKHQ8TUvvezmKYo92sfo+nX2USor8sZWW8vP+3Mepq8NlzONsW35/z7JJoKOOrqU1W8YRImT4FNi0tLXzyySe0tbXtMdOwrBUl0okes5yC3o808tv2O5yXlX0IqCbuGDEmEUUTou80M+tDOQRzsikvyupxqneHgiIXXtWMTQ8QbKhPciGFGHi9Dmzef/995s+fj2cv31hlEUyRbmJbbAytT7E8ACabHZ8p3GoTCMrSISK1mtx+gqHwfVjojL9jtDDXxk4tC5u/EbWlSXIyiYzT67/yCxcuZOzYsVx//fWUlJSgqn0biNmhsbGRhQsX8p///Ae3282+++7LNddcw0EHhUe0rV69mttuu42vv/4al8vF+eefz0UXXdSva4qhJeTzRbYNU99n7cXOpvIFJLGZSK26Zm9kuyC3F4GNy85aLQtnsJVAVi661wsWGTEmMkevA5tNmzbx8MMPRwKP/rr66qupq6tj4cKF5Ofn8+STT3LRRRfx4osvkp+fz4UXXsjxxx/PLbfcwooVK7jllltwuVycddZZCbm+yHxBT/QDAHPfu6IsMflv/BLYiBRr+vxTJrgradKyKMwdH/frnA4zr42YjTekMLw4m0McDoJBabURmaPXgU1ZWRlutzshF9+yZQsff/wxTz31FDNmzADgxhtv5IMPPuC1117DZrNhsVhYsGABmqYxbtw4tmzZwmOPPSaBjYibzxPTYmPue4tNtruOw+r/h1kPEtiYDSMPTkTxhOgT279f49utzbSabIRyj477dYqikOfKYmddGzWNnj2OkxRiMOt1P9Ill1zCH/7wh4RkGM7Ly+PRRx9l0qRJkX2KomAYBk1NTSxbtoyZM2eixYyLmDVrFhUVFdRJKnARp0DMeDClHy02Wa0NHFW/gkMbv8bYVpGIognRJ4auo7W1AOHkfL3pigLIy7EC4POHaPPKoq4is/S6xebVV19l165dnHDCCeTn52OzdX5DKYrCO++8E9e5nE4nRx/d+ZvGG2+8wdatWzniiCO47777mDBhQqfni9tzMFRWVlJQUNDb4kdoWv/GBu3O1J70zdTH5G9DyUDXVWyWYMVi7fPv3myP3uu635/we2hv5N6K31Cpq0BDE0p7S0uL5qAk39Gr+7EgZrBxY6uf8sKshJcxkwyV+yoR0qGueh3YlJaWUlpamoyysHz5cm644QaOO+44Zs+ezR133NFliQartf2bRsyA0N5SVYW8vOS8kZ3O+JJkiYGrq+1GdPyAJcve5999tiu6xo5JDybtHtobubfil+l11VK9I7LdaslmZLkr7uneAMNdGnOqPyEn2Ir71Sryrr4kGcXMOJl+XyVSKuuq14HNHXfckYxy8M4773DttdcydepUFi5cCIDNZsO/25o8HQGNwxFf+vA90XWD5ua2vhd2D0wmFafTTnOzh1BIBuJ1Z6DrqnWfqdw/5lzMRpCjRo6loaG1T+cJKjGzolo9fT5Pb8m9Fb+hUldNW6KBjZ6dS2Nj7/6e2axmpjevA8C7Xhuwe3mwGir3VSIks66cTntcLUG9DmwqKyv3+pyqqjgcDpxOZ6/O+cQTT3DbbbdxwgkncM8990RaaUpLS6muru50bMfjkpKSXpa8s2TNAgiFdJlhEKeBqitvwMBrsuLFimqz9/mappgpsbrPN+C/Z7m34pfpddVcWRPZVnNdvf5Zc13ZtKlWHLoPmhozuq4SKdPvq0RKZV31OrCZPXt2j02eubm5/OAHP+Cyyy7r8XxPPvkkt956K+effz433HBDp7w4M2fO5OmnnyYUCmEyhafaLl26lDFjxvRrfI0YWhKxsjeA2W6NPgjI6t4iddzV0cDG0oe/hXk5NjZrDhx+H1pbM4auo/QzJ5kQ6aLXd/Kdd96J2Wzm8MMP54477uCxxx7jzjvv5Nhjj0VRFC6//HLmzp3LI488wpNPPtntuSoqKrj99ts54YQTuOSSS6irq6OmpoaamhpaWlo466yzcLvd3HjjjWzYsIEXX3yRJUuWcMkl0h8s4ufrFNiYujmye7GDh41AoF9lEqI/fLXRWaFZxYW9fn1ejpVmLTxGTDEMgk1NCSubEKnW6xab119/nVNPPbXLWJszzzyTm2++ma+//ppFixbhdDp56qmn+P73v7/Xc7355psEAgHefvtt3n777U7PzZ07lzvvvJM//elP3HbbbcydO5eioiKuu+465s6d29tiiyFMWb+KQ+tXElQ1bMHhfT6PxW6jY8i6Ii02IoVCjQ2R7dxhvV+fO8um0WrNhvahOcH6Osx5eYkqnhAp1evA5rPPPuPhhx/e43Mnnngil19+OQAHHnggf/zjH7s917x585g3b163x0yZMoVnnnmmt8UUIsK8fhVH168AoDFwZJ/PY7Vbo4FNUFpsROp4VTOGGu4aLSjo3ZhGCKflCGU5oT0+CjY2JrB0QqRWrwMbl8vFmjVrOPzww7s8t2bNGrKzw1Ni29rasNtlapxIPcMfTQ1gsfV9TRyr1cx2WxEGCkp2778lC5Eon0w5g6821qEaIe7pZXK+DqozN7LtqasnJ1GFEyLFeh3YnH766Tz44INomsZJJ51Efn4+9fX1vPXWWzz00EN897vfpampiSVLljB16tRklFmIXokdD2N29D2wsZhVnhh+MgCTxuYzu98lE6JvGlrCwbpi0nBm9W2ZEM3limy31kgmd5E5eh3YzJ8/n7q6Ou68807uvPPOyH5VVTnrrLO46qqrePPNN/nmm29YsmRJQgsrRJ/EBDYWW99bEa2dFsGUKZ8iderbAxtXthW1F4n5YtkL8yPb3rr6hJRLiHTQ68BG0zTuuOMOLr30Uj799FMaGhooKSlhxowZjBgxAoCjjjqKDz/8sEvWYCFSQQlGB/paHNZujuyeSVVQFQXdMGR1b5EygWAItyccrHes+dQX2aXFrMwZi9tkZ+KIfRNVPCFSrteBTYeRI0cycuTIPT6Xm5u7x/1CpET7QN+gopJr7fsimIqiYDGreP0h/JKkS6TIrg8/5js73qZFy8I77LA+nyevyMVfSo4AwFU0JlHFEyLl4gpsjjvuOP7whz8wceLEHhP09WYRTCEGghoJbLR+5bEBmL3rU4rcu7Bt1zGCB6Joff5uIESftFZsZqxnJwDrtYP7fJ78nOh4s/pmb7/LJUS6iOuv8sEHH0xWVlZkuzeLrQmRah2BTUAxYe1H5mGA/EAzw3zhgZZ6IIBJAhsxwPz19XR0QNmLep+cr0NsN1ajW/IyicwR11/l2GR8d955J263m9bWVkpKSvD7/SxZsoRdu3Zx4okncvDBff8GIUQyqKEgAAG1/y02uinalWX4fSApDcQA02OS82WX9D2wyXaYMakKeiiEv64OPRBANfe9q1aIdNHrr6//+9//mD17Nn/7298A+O1vf8vChQt55ZVXuOCCC3j33XcTXkgh+qMhq4Aqaz51FhdaHCvDdseIaaHRfb5ujhQiOZSW8PIHXtVCfkHfxzOqisIJzV9x3cYnmLv8r/i2bklUEYVIqV7/lb/vvvsYO3Ys5557Ll6vl1dffZXvfe97fPbZZ5x99tksWrQoGeUUos/enHg6fxlxGv8cfXy/z2Vo0Zl+AY+MSxADyzAMLJ4WAJo1R79mRQFoDjsdAwv8DQ3dHivEYNHrwOarr77i0ksvZcSIESxduhSv18uZZ54JwCmnnML69esTXkgh+qNjanZ/u6EAjJimel+btNiIgRVyt6Dq4fvZrTnIze5fSg1TbnR9KEnSJzJFrwMbVVUj+Wnef/99nE4nU6ZMAcDtdmPrR8p6IZLB155Mz6r1P7BRYgIbv8fT7/MJ0RvBmFYVry2n312rlvxoYNNWI0n6RGbo9ZSOSZMm8fzzz2Oz2XjjjTc45phjUBSFuro6HnvsMSZNmpSMcgrRZ4lsscEc2xUlLTZiYPnroq0qoez+5wvLKi6IbPvqJbARmaHXgc11113Hj3/8Y15//XXy8/O59NJLATjttNPQdZ3FixcnvJBC9JWvehffrXiNoGKiXh8P9G/WnmKJjmkIemWMjRhYLVU1kW3F6er3+bKLo4u5hpqb+n0+IdJBrwOb/fffn7feeouNGzeyzz774HA4AFiwYAEzZsygqEhWPRbpw9fkpsxXC0DIV9Lv8ymWaFdUUFpsxADzFAzj47wp5ARbMZWW9ft8eSV5eFDR0KFFAhuRGfqUXSw7O7vLyt1z5sxJSIGESCR/W1tk20jA2mX+khF8mD+VgKJxZFH/P1iE6I1GZykfFkwD4KxRo/t9voJcO2s0B66gG1NrS7/PJ0Q6kLSpIqP522K6i8z9D2yM0uF8nB/O0npIXnG/zydEbzS0RFsJ+zvVGyDfacOt2XEF3Zj9HknSJzJC/4bUC5HmAjEzl5QEtNhYYmZW+YKywrcYWJ0Dm/7PQHVmW2nVotmzZZyNyATSYiMyWuw4GMXS/w8CS8xaU/5A8lb4bl76X+rffAMtN5fhl8yDvKykXUsMDoZh4Nm1C5MRIqSYyE9Ai41JVVhZfhCfufdHceZyS15+AkoqRGpJYCMyWtDrjWRWVW39b7GxagrWkB+zESTY3AwkfpyN+6sVVC1+FADnwYdgyslJ+DXE4KO3tnLou49xKLA6exSunKMTct5g8TB2hFpQgmCgIEsci8FOAhuR0YJeLx0jBlRr/1tsrM31XFXxNADNlulw5MR+nzOWoevUvvAsADkHzyL3mNkoinzUCAg2RPPM6JoFayLyMgF52VY204JhQHObH1d2/1uChEglGWMjMprujXZFmaz9/4NtdkSDIyMJi2B6N27EX1kJQKCuFlVWDxftAjEJ9ELZzoSdNzaQaXL7E3ZeIVJFAhuR0UIxwYdm739gY4kJNBR/4gObls8/jWy7jjlWWmtEhLs6mpwPZ97eD+wll01hH/dWpjetpXn5soSdV4hUka4okdHaysfxRUUTZiPIeFdBzy/ogSXLTuQ7bSDx325bV60EwFBNPLXNSnbzWk7b14anajN+zU7WQf3LnCwGr9ZdtZFtLc+VsPPm2VXOqvoPAL5ldXDqsQk7txCpIIGNyGjNpWP5qCA8e2m/ggQENjYLHhRMGCgJDmyCjY0Edu0CoNKSz6ebmskJ7GTmcy8AYJ8wQQKbIcxXWxf5g20rTFyG99wCF0FFRTN0DHdzws4rRKpIV5TIaB0LYELnqdp9ZTVrBNTwcGQ1mNjAxrN+XWR7iz28/EOLOYs6c3g8hWfjRnRZn2rICjZGV/bOKilM2Hlzc2y4TeGlcST7sMgEEtiIjOaLCWwSMYvEYlbxq+HvzaYEBzZt69ZGtrfZoutabWsPcgiF8G3bmtBrikGkpREAv6KRV9D/lb075OVYcbcn6TP7PRjBYMLOLUQqSGAjMlrI3YpF96MYOpYEBDZWswm/Em6xMQUD/T5fLN/WLZHtSlsR3z9+H8aWOdlpjXaheTdXJPSaYnAwDANzezdRi+bA5ex/6oIOziwzrabooPhgk2QfFoObjLERGW3Cf/7OjKZqQqhYzIf2+3xmTSXQ0WITCmAYRsJmLpWc9wOefuLfhOrr8JssHLx/CcGQwfubYgObzQm5lhhcdE8bplA4kG7RHAnJOtzBpKr4bdnQGn4cbGrEnIDxaEKkigQ2IqOp7a0qflXDqvW/gVJRFIKm9jE2GBjBAEoCFtcE8BWU8r4yAgpGMLIkG6fDwvR9Cnn+vejgTu8WabEZilSbnWenn09bTR1mzcQJ1sT+6dazsqEuvB1obESyJ4nBLK0Cm4cffpilS5fyt7/9LbLv+uuv58UXX+x0XElJCR988MFAF08MQh0DfAOqhsWSmEytH5Qfhs/rJyc3mxtMiXsLrd3aGNnef3R4zZ7iPDvOHDvVlnzKfLUEqqrQvR5Um3z0DCmKwg6vhs9WSEm+I+H5jRSnK7LdWlNH4tL/CTHw0iaw+ctf/sKDDz7IzJkzO+1fu3Yt8+bN47zzzovsM5kS8wElMl9H831A0bBqiblv2nIKqDN8+DQLipq4YWoVldGpthNGuIBwC9GEkXlUb3JR5gvnMfHv3IltzNiEXVekP48vFBkIn8huqA4mZ3QwclttfTdHCpH+Uh7Y7Nq1ixtvvJHly5czZsyYTs+FQiE2bNjAZZddRlFR4vI2iKHDFArP8AioGuYETPcGIoOQE7m6t/urFXi+qSA3oNKkZTO6NLrw5b4jXKyxuCKPfZWVEtgMMQ3uaJbrvCQENtaCfNrU8OyoPDUxXatCpErKZ0WtWrWK3NxcXnnlFaZOndrpuc2bN+Pz+Rg3blyKSicGMyMYRDXCwUdQNaMmqPneonUENqEejoxf7fPPcuiKl7l468u4ss2d1u8ZW+ak2uKi1pxLbdkEtNzETfUVg0PjZ59yYONqJri3kG9P/J9t+4gRPDj2XB4feQb1+89K+PmFGEgpb7GZPXs2s2fP3uNz69atQ1EUlixZwgcffICqqhx99NHMnz+fnJycPb4mXloCBpLGMpnUTv+LvRuougr5otOxQ5o5Yb/zwkAj2c2bsRhBAnWTsJeU9Pyibhi6jr86nHG4wexkdJmrU1lHDXOyLauMPznOZFRpDkdNm7q3Uw15mfo+NJYt5YTa9QDsdByRkHs5tq7yc6PTx5vb/An/+zjYZep9lQzpUFcpD2y6s379elRVpby8nEWLFrFlyxbuuusu1q1bx5IlS1D7OL5BVRXy8rISXNowp1MGdcYr2XXlC0Wz9OqaOWG/81FNW5hQ/TEARvUR5E3sX7eQt6oKQuHWn3qzk4mjC7qUtbw4m2273OyoaSU7x45ZPni6lWnvQ8Udzi0TUEyUjylN6N8vp9POiGHRVkBPQE/a38fBLtPuq2RKZV2ldWBz5ZVXcsEFF+B0hsfoT5gwgaKiIs4991xWrlzZpesqXrpu0NzclsiiYjKpOJ12mps9hEKJG3uRiQaqrny7ooMgQyYzDQ2tCTmvrkXHIDRUN+Do53nd66JTuOvNOUx2WjqV1WRSGVOWy7ZdboIhnW82VDOypH8tlpkqU9+HSnM4sGnRHDhNSkLu5di6MhlGZP+uutaEvVcyRabeV8mQzLpyOu1xtQSldWCjKEokqOkwYcIEAKqqqvoc2AAEg8m5OUMhPWnnzjTJrit/myeybWiWhF1LsUTHv3jdbf0+r6dyZ2S7weKkxGXvcs6xZbl88OUOACp2NDLMZUOR2YF7lUnvw5DHgxYMDx5u0bJw2s0J/dlCIZ0sm8aBjasZ27aDgp0+vLNvQst1JewamSKT7qtkS2VdpXVgc80119DY2MjixYsj+1auXAnA+PHjU1UsMUioxaX8ecSpmPUgxcOLE3deWzSwCXj6vyhlYFdVZLve4qQ4z9HlmFHDnOzr3sIR9V9R8Ac37ot/Qo6s9D0kBBuii1+6NQc5WYmftaSZVIbpLYxrq2y/ZqMENmLQSuuO+tNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdGjgKKxy1rAdnsJQVfiVkPWYpLjBWNahfrKXxUNbNTCkj2OnxlenA0YFPkbUUNBAtXV/b6uGByCDdEuVb/DmbDZfbsLOaLdm4GYlcSFGGzSusXm2GOP5YEHHmDRokUsWrSInJwcTj/9dObPn5/qoolBwOuPrlKciJW9O5js0RkkIW//W2y87UGKTzGTV5y/x2OK8hy4rdEBnn4JbIYMX21dZNvISd5UfyUn2u3fVluPjOISg1VaBTZ33nlnl31z5sxhzpw5KSiNGOx8/mieGWuCllMA0ByJC2wMXSfU0IACNJmzGFaYvcfjTKqCpbgI2hcA75geLjKfe1dNZFt15SXtOqaY/EhtNXXdHClEekurwEaIRPLs2M4BzRsJqBo5wcR907XEdEXpPl83R/ZM93oJ5uRhNDXQrGVRWtB1fE2HwtJwdliH7sO3SwKbocIb02Jjyd9zi14iWPOjQZO3XrqixOAlgY3IWIHVX3N6e76ZrU2JW5LDkh0NbAxv/wIbk8PBijkX8+6ybWhGiGvz9x7YDMt30GDOweHzYTQ1ovv9qBZJf5/pPNZsmqz55ATbcBQnbqzY7hwFBZHtYFNj0q4jRLJJYCMyVsjjo6MDymRL3Po6FocDj2rBr5rRzf0/b32zFxSFoKJR5Np7UqthhVnssDgpb18MM1BTg7W8vN/XF+lt56QjebZmGACXFBf0cHTfZRflYQAKYLTnzRFiMJLARmSsUEw3UexMpv6y5WRx59jvAjDn4BEc0s/z1TWHx+mYVIXcbqbyDitwsEqLjsEJ1FRLYDMENLQkdwHMDi6ngxaTjayQF7W1JWnXESLZ0nq6txD9ofuiA3vNMTOZ+ssWMxDZ6+//Qpj1zeEPrrwcK6q696m8JXkOGizRmSsBGUA8JMSu7O1KYmCTm23BbQp/AdC8rRi6JKITg5O02IiMpfv8kW2LIzmBja+fgU3VM09z4qZVNGtZVA47pttjs+xmPA5X5LG/RqZ8DwUNLdEAPS87eWOqXNkWVjrHsSHkw1GYz766Dn1cj0+IVJLARmQswx/9pmvO2vug3N6yWaJvm/622LhXr2ZC6zYMoM11So/Hq8WlvOGeRbM5m5+feFK/ri3SX9vaNRz/yRMcpNpZU7QfZi15y2iYNROrS6fQ6g1SlGvjXE0+HsTgJHeuyFwxXVHWBAY2VouJI+u+pMDfRG6jCc6e0udzhRrqUQC3yU6eq+cVlV2FuSyrC6+X1qw5SFw7lEhH/ppq8nyN5NFIrSn5y8jkZltp9QZpdPsxDAMlSVmOhUgmaWcUGUuJabGxZiVu8LBFUxnt2cnE1q0Mq63o81gEPRBAaR+k2axlUeDsOUyJnTVV09j/rMcivbXuqo1sK0lMztfB1d7VFQjqeHzBHo4WIj1JYCMylhoIj7HxKxo2mzlh51UUhaApOtZB72P24djFDZvNWeT3OrDp/zpVIr15aqKBTTKT83XIzbKiGiGcATf1lTKGSwxO0hUlMpbfZEFVLfhVDVsC14oCCMXkr9G9HkyO3nd1BeujGWXDLTY9z3gpctlxBD0U+psILm8gMHo25rzkf5MXqeGvq4v8kbYXJS85X4dhvlqu2/h3ANxvVcO8Hyf9mkIkmgQ2ImN9eNA5fLM53CrycALXigIIaTEtNp4+ttjUR1dtbtbibbGxMbV5PUfXr4BK8E4fhfnAg/p0fZH+jPYMwEFFxVmY/ADWHrOsQqCxMenXEyIZpCtKZKzYqdiWBLfY6JZo60rI09ancwRiWmx8did2a8/fM/KdNprN0SR9wTpZrDCTqS2NALRoWeTFEfj2V05RtLtLb5Hsw2JwksBGZCxvIBzYWM0m1ATP7jAs0Q8Zv7u1T+cIxAQl8a7arJlUcEU/fAJ1td0cLQYz3evBFAgPgG/WHEnNOtzB5cqiTQ1fR3U3J/16QiSDBDYiY3W02FgT3A0VPmk0sPG5+9Zi440ZGGotjH8NIEvMYoXempo+XVukv0DMCtstWtaABDa52RbcWnv2YY8bwzCSfk0hEk3G2IiMFGxs5Nj1b9FmmGgoGAEckdgL2PrfYhOcdCCfVhlkB9vI7sX4ieySQkIomDDwVUtgk6mCDdExWK2WrLi6KvvLlWWl1WQHGjHpIfS2NkxZPedXEiKdSGAjMlKopYVxzZsBWO9I/DddNWZRzUBr31psGkdP4t/tE13Ozo0/z06By0GLloUr6EaP+fATmcUyrIy3hx2O3dtCS9GoAUmWZ7WY8Fgc0J5JINjUKIGNGHQksBEZKRAzoNcwJ359nZCrkJU54/CpZg4qGtanc3Ss6g2QH8dU7w4FThtN5nBgo/g8hNra+jTdXKS3YJaT5VnjIAsmlrkG7LohRw60jxsONTVBmawgLwYXGWMjMpLfHZO8zpL4FhujtJzXSw7nnaKD8Q0f16dzxAY28WQd7lCYa6NJk5lRma5z4Dtwi2cY2dEV5Ntq5N4Sg48ENiIj+WO7h5IQ2PR3IcxQWyvu6jpoH5zZm8CmwGmjWYt2D8jMqMxU3xxdEqQ3LXr9ZXLmRrZbayWwEYOPdEWJjORvjQ7oVayJ/7Zri5lp5fX3fk2dlk8/4Zj3/saRqLxeegS52cfE/VpXjpUmSzYhVNps2Rih/q0wLtJTy/r1uPzNtMSZvDFRQqPHs2TXKbhNdi6bPmvAritEokhgIzJSoC3aFaXakhjYGAZej6/7g/egI4eNCR0tOwuTGn/jqWZSqRy2H7/LHke2w8KDknk44xiGQf5LjzMv6KfO7CQrZ8aAXTs7P4+dtvCo9kZP3xZ4FSKVJLARGSnY5qFjDolqT0JgY1b56aZnsOp+/M3lcMhve/V6f0wTvyk//hw2HfJcDurcAdyeAL5ACGuCMyuL1NI9HkzB8CKuLZqDEQPYFeXKiQ62b3T3PmgXItVkjI3ISMGYFbdNtvinUsfLYbdgMkKYMMDX+7WivLXRcTH2wt4vblgY0zVR39y3tapE+orNYdOiZfVqDFZ/ubKiQVST2z9g1xUiUSSwERkpdmFKzZH4wMZu1fCp4W+2aqD3gUXHAphtqhVXfk6vXx875qKuSQKbTBO7QGqbNXtAkvN1yM22MKqtkhmNa3Ate3fAritEokhXlMhInuLhrM0Zh0UPkJfT+8ChJ3arCb9qhhCYAr37VmuEQtC+wGCzOYuCPnQzFOTamNa0llGeKlj8Hvqvb0K1Dlx3hUguf0xgY+S4BvTarmwrhzV8Hb63akH3/qBTQkoh0p0ENiIjNYyZzD8rwn+M5/Whq6cnDquGTzUDoAX9GLqOEucA4GBTI4oRHpTZrGUxvA/dDAVOG8M91ezn3gLu8JRvqyRSyxhtMUtlxLtAaqLYLCbazDHZhxubsJRKYCMGD+mKEhnJ44tOwU5GM77NqoVbbNrpvvgHWQbrot/Gm/s4fqIg10aTWZL0Zaq26tgFUvO7OTLxFEUhaI+5t5oaB/T6QvSXBDYiI3l80dwudkviAxtVUQiao10/uif+9aICDdEgJBzY9KErymmVJH0ZLBATqDqKigb8+kZ2tPvWWyfrkYnBJa0Cm4cffpjzzz+/077Vq1dz3nnnMW3aNI455hgWL16cotKJwcTjj22xSc5U6FDMGlSxg5V7Etti47X1bWCozaLhc0QzxAakxSajGE0NAPgUDVdhbg9HJ57qdEW23dVyb4nBJW3G2PzlL3/hwQcfZObMmZF9DQ0NXHjhhRx//PHccsstrFixgltuuQWXy8VZZ52VwtKKdHfgG49wkM9LgzkHu/WwpFzDsES7kHrTYuM6/gTu+CJElq8Fc+mwPq/abMrPhy3hbWmxyRyGYaC0uQFoMmdT0IuV3xPFHDOuR1psxGCT8sBm165d3HjjjSxfvpwxY8Z0eu7ZZ5/FYrGwYMECNE1j3LhxbNmyhccee0wCG9EtLeDFrPux6IFO6zolkm6NfuAE3K3E+/Hj9hvUmbKoc2QxuaDv4ydsRdFB0d5dNd0cKQYTRVH4z4lXsHrVVqy6n58PYHK+DvaCaGDjb2wc8OsL0R8p74patWoVubm5vPLKK0ydOrXTc8uWLWPmzJloWvSDadasWVRUVFAnTe9iLwxdR2vP2upTzZ3WdUqkuvJ9ebH0GJ4sOxG9fFT8r+u0qnffP7Ty8nNoNYVbjYL18n7IJA0tPlo1O/WWXPJzBj6wySqKBtyh5qYBv74Q/ZHyFpvZs2cze/bsPT5XVVXFhAkTOu0rLi4GoLKykoKC3qei76BpiY3pTCa10/9i75JdV6HW6HIKAc2KJUmBjVFYyrpd7de02uO+pxpbo3lvCl09v25v9VWcZ6dJyyYr5MVoacaEjqKl/C2dUpnyPqxvCc+yc2ZZsNvMPRzdN93VVX6RC7+iYTGCKO7mhP+9HGwy5b4aCOlQV2n9V9Dr9WKxWDrts7YnIfP1Ynrt7lRVIS8vq+cD+8DplHwP8UpWXXkD0ZW9Q2Zr0n7XrtzoGBuTRYvrOiGfD+U/bzC1qZVqaz4jy2bEXb7d62tkmYvV5izKfLUoGNiDHuxFpb37ITLUYH4fBkN6ZI2m4jx70u7fDnuqq5HlIT61uMLLhrhKkl6GwWIw31cDLZV1ldaBjc1mw+/vnNW1I6BxOBx9Pq+uGzQ3xz/YMx4mk4rTaae52UMoJCvidifZdeWtinbLhMxWGhpauzm672LfPLtq3BRmW/Z6bAdfZSWOT97lZODrnLHYTHN6LN/e6stmUtjkKKfVZKdoVBkT/AbeJP2sg0UmvA+3vf4mx9Z8SZOWhTb2kKTdv93Vlarr/HXEKQBMGpPPUXJfDfr7aqAks66cTntcLUFpHdiUlpZSXV3daV/H45KSkn6dOxhMzs0ZCulJO3emSVZd+Zqjf4R1iy1pvw+ryaDcU41N9+NZl0VwxCE9vsZbE5291Kw5cGVZ4i7f7vXlyraw0jmelcCkknxOcGTLvdduML8Pm79YzsGNawBYkXV40n+OPdWVRVPRTCrBkE6D2zdo6zLRBvN9NdBSWVdp3WE4c+ZMli9fTigUTba2dOlSxowZ06/xNSKz+VrckW3DmrxVkbOUEOfv+Bfn7HwP09L34npNbIbgFi0LVz8GhubYzVjaxz7UyQrfGSPUPhDcr2jkFQ1s1uEOiqLgam+BbGzpe7e/EKmQ1oHNWWedhdvt5sYbb2TDhg28+OKLLFmyhEsuuSTVRRNpzBsT2JDExfuszui4AyPOPDaBmNlLoRwXWj8G2CmKQkH7OJ+6Ji+GYfT5XCI9GIaB2hxOztdkzqbQlbpxCh1Bd6s3iD8Q6uFoIdJHWgc2BQUF/OlPf6KiooK5c+fy0EMPcd111zF37txUF02kMX9MYJPMVYkddhve9vWiFK8nrtf4a6NdUaa8/i9uWOC0gWFg8rXRsGV7v88nUivU3IQaCmfNbtKyUhrYjDCa+U7lO1y09WWqXn01ZeUQorfSaozNnXfe2WXflClTeOaZZ1JQGjFYBcbtz/PDjsUW8jOqbHTSruOwajSoFmx6ADXOwMYTM8bGloA1gApzbVy25QWcwTZqH3qH/HsW9vucInUCMYFvkzm7TwukJorLYWZsWyUAbTsqU1YOIXorrVtshOgLn93JhqwRfO0ch6mgsOcX9JHdasJjCjfXm/yeuLqCOsbYeFUzuQX9XwOoINeGRw2XwWhuxNBlYONgFrs0hsfmxGFL3XdPR0k08A42yLIKYvCQwEZkHI8/Oh4gWcspADhsZrxqeIClaugYPeRWMnQdmhsBaNYS8228INdGkzkbAEXXCTY29PucInViuypxpWbgcOTyhXkElHByS6OpMaVlEaI3JLARGcfjS/7K3gDZdg2vGp3VFGrtPtdHqLkJRQ8HXc1aFvkJWAOoMNdOsxYdxBzblSEGH/fOXZFtcxJbG+ORn2uL3Fuau0kGp4tBQwIbkXH0rRWM8FRR7KvHbkneLW7WTPjNsYGNu5ujwQgEaSgeQ605lzqLMzEtNs5oiw10nk4uBh/frmjeLntJ/8dg9Ue+00aLFk6EagoFerWCvRCplFaDh4VIBNd/3+D/asIzhLzmo5J6rVDMCt96W/d/+M1FRXw05QxWbQ53F81NQGCTm23BbYkGNrFjNMTg4x42hp272sgKesgrSW2urhyHGbc5C9rHxQfr6zE5ZGkFkf4ksBEZR/GFk9X5FQ2HPckrI9vC32i9qhnd33Mis7rm8DFWs4msBAwMVRUFxZUP7ZNWAtJiM6htHXcwr+4KL/T70xRO9YbwvRXIckJz+HGgvh7r8BEpLZMQ8ZDARmQc1R8ObHyqGVcSx9gAbB93IG9p4zAUlYcmTOr2WMMwqG/PEJzvtKIoSrfHx8tSGB2L4aupScg5RWrUNkUzSBfmpm6qd4QzD3aGNz01tWR3f7QQaUHG2IiMYwqEW0V8qoUsmzmp18rKsmEo4beR2xvo9tgWTwB/+9opicxP4ix04VfC31H8Mnh4UKtriuZDSofARotJIumukqBZDA7SYiMyihEKoYXCAYZPNSc9D0iWPRo4tXoC0E33wa6Fd3PBznoazDk0TftewspQ4HLQZM6iyN+E3liPYRgJaw0SA0f3+6ltD2yy7eakpiqIl7msnI/zJtOsZXH8uANSXRwh4pL6d44QCRRqi0659mq2yCKRyZId0yLk9nTfYqPv3E6pz4tVD6Al8Nt4odPGK8VHEFA15hw/mX0lqBmUql98gQtXvEOTls2yySelujgA5JQW81LBdACm22XhYTE4SGAjMooek0smaLElveUi22bi6NovcIS86G9vhUsu2ONxoba2yKDmZi0rsnhlIhTk2thlC3/o1LRK5uHBqrVyJ2YjRGGgCWd+/7NSJ0JeTJdpvawgLwYJCWxERolNkhc7FTtZsh1WDmxag8UI4t/QtNfjYvPLNGlZjHEmrmyxYzHq5MNn0ApUV6MCIVRyS4tTXRwA8nOiswrrW3qe9SdEOpDBwyKjBFqaI9t6+1TsZMqym2k1hQMLtW3vCfr8NdHEa43mnIS22LiyrZjUcMtU7KwaMXgYhgEN4eC30ZxNSWF65IvJd9pQDJ3cQAvq5vXocS72KkQqSYuNyCjeljZ0FFQMFHvyA5tsu5k6k428oBvN58EIBlG0rm+rQExg02zJITfbkrAyqKpCcZZKXuV6ippaafrYR+7hRybs/CL5Qk2NqO2D3hvMOUzIS/69G48sm8YJ9cuZ0bAatoDvhInY95mQ6mIJ0S0JbERGMQ6Ywd3jfFj1AAeOLUn69bLtGm2aDdpb6UPuFjRXXpfjAtXRNYAMVwFqgsf+FOWYOWXXRwA0/tcrgc0g46+qimw3mJ0U56U2OV8HRVEI5uRB+9qq/poaCWxE2pOuKJFRWr1BUBR8Jgu2rOR/681xWGg1RT+Egs3NezzOWxUNbLSixI+fcOa7IiuN+2OCKDE4+HfujGw3O1zk2JObf6k31JjFON2VVd0cKUR6kMBGZJS2mCR5jiQn5wOwWzV85mhgE9pLYOOvDndFeVUzOYWuhJej0GWnwZwDgN7YgB7ofuq5SC/enZWRbaOwJK3yEFmLooFNa5UEzSL9SWAjMkqrNxjZTsRaTPHQs3Ii28HGxi7PG8EgemO4Lb/RnENhbuK7GQpybZHARjEMgrIY5qDSuj0a2NhKh6WwJF1lDyuNbAdqJfuwSH8yxkZkFHXpexxXsxWPyYrDPH5Arqk7XZFt314Ciuo53+d/y9YSUDVmJiFVfmGujXXmaIDlr96FJc0+IMXeBXbtRCXcoucqTa9EeIXFLjyqBbvuh4b6VBdHiB5JYCMyinX9SmY2VaKj0OZI3LIF3YkdLOyp7hrYKJrGFucIlrvCDaSnJmFgaJHLToPZGXkcqK7u5miRbipPu4gP/70Ce8jH4fnpMdW7Q2Gunc3mHOy+OrTW5r3O/BMiXUhXlMgoircNAK9qIcueuCnV3TEXFFFhH8ZXOePxDx+zx2OqG6L5P4qTMJXXlWOl2Rob2MhYiMFkZ8DCFkcZa3LGpM2MqA5FLhtNWnhdbwWDgLTaiDQnYbfIKCZfOIDwmiwUDMDgYYCsglyeKT8BgHHjJu/xmI7AxmYx4XQkvlyqooRnW20LP/ZLi82gUtXQFtlORuDbHw6bGbfNCe1JvYO1tViSMLNPiESRFhuRMYxQCC0QTijjUa1kD9CUWVdWtGWoqdXf5fmmL77AUrUVa8hPcZ49aTNenEX5+JTwdxVvlUzLHUx21oWjBodVS0rg2196bri7NaioBPYy80+IdCEtNiJjdFrZ2zRwgU1sFuEmd9f1dKqXPM55rW7cJjufHHB50spRnO9gu70EzQgyctQ4DMNIq2nDYs9qP/qY4du+xmFxYi8bn5a/M/e4yfxBL6LF5ODufaemujhCdEsCG5ExQi0tkW2f2Y5ZG5gGydys6EKBzU2t6IEAqjkcVAWbmzFaw2tI1VpyKUni+IniPDtPlB0HwAWHTWTfNPyAFF3V/+ufnFKzAx2FTw6alOri7JGr0EVLRfj9VdPkpdCVXuOAhIglgY3IGLHJ8YIDsABmB1eOlSlN6zm6/kuyNnhpHXY5OQfOBMBfuSNyXK3FxYgkBzYddsWM2RDpywiFMGp2oQD1ZifDSnJTXaQ9KooJZGobPTCq67IhQqQLGWMjMkagqSmyrTtyujkysZwOMyGzlaxQeGXt2PT4uwc2JUkcGBo76DR2FpZIX/5du1BC4aSSNVYXZWmyqvfuCmNyL9U0yb0l0psENiJjeOobow+yswfsuoqioBdEZ4n4Y9Lje7dsiWxXW/IozU9eYFPgtGJSw91P1Q0e9EDXgcwivfh3bI9s11jyGFaQXjOiOhTn2RndVskxtcspefMpgu2ZtIVIR9IVJTKGP8vFmqxROEJecA1s9lZLSQn6SgUVA8+OmMBmcwUAIRTa8opxZiUvt45JVSnNNnH0N69TWNFEZdN4hl91bdKuJ/rPt2NbZLvBkU++M/FZqROhyGVnbFslBzd+A4RbJfe0ir0Q6UACG5ExvGMm8tKw8NiSOSNGDOi18/OyaTRnkx9oIbirCkPXMfy+SFdUjTWP0uLkj5/IK8ih2N+ATffj3bGj5xeIlPJujQY2SmkZapoO+NZMKoHcAmgMP/ZV7cSx3/4pLZMQezMouqJ27NjBvvvu2+Xfc889l+qiiTTS0hZd0Xqgpnp3KHTZqLG0f4MN+PHv3Im3ogIMA4Cd1gLKi5LfPVaSl0WtJRxA6Y0NhDwyHiKdebaFAxu/opFblt5re5mKSyLb7m2V3RwpRGoNihabtWvXYrVaeeeddzrleMjJGbgBoiL9uT3RMSU5joFZTqFDYa6d5bZC9m3dCoB34wb8NdHsv9vsJRxUlPyBocV5dmotLoZ7w6sw+3dWYh87LunXFb2nez0YDXUA1FhclA3A/dEfWWVlke22SglsRPoaFC0269atY8yYMRQXF1NUVBT5Z7OlZ3+0SA23J3UtNsPyHeywRQcQt61fi5bjpC0nH4DN9mEML0x+i01pgSPSYgPglw+gtOWL6SqssbooK0jvwKagvBh/e2brUI0s2SHS16BpsRk/fnyqiyHS3Ognfse8kMJOWwHZ9hkDeu3SAgc19kJ8iobVCNK64ktKfnAhL2x10VhVg8/iYGRJ8gObYQUOai2uyOPY6eYivSgmE1XF47HXV7LLWsDsAbg/+qOkIIsai5NSXz2m5npZ5VukrUFxV65bt46ioiK+//3vs3nzZkaNGsVll13GkUce2edzagnOSmsyqZ3+F3uXjLrSfT7MvlZcQHMwi4JcW8J/x93RNJWiohzW7xrJpJZNWIYNw+92U1nbiqE5GF2cjaOPrUi9qa/ifAfNjuhslUBV5YDWQ6oNpvdh9vhxvFx+LA1OHw6riZJ8x4Aup9DbuiovymKtORzYKIZBqK4aW/nwZBYxbQym+yrV0qGu0j6w8fv9bN68GbvdznXXXYfD4eCVV17h4osv5s9//jOHHnpor8+pqgp5eclp9nU6JdV4vBJZV95d7sh2m8nGqOF52K0De3uPK3exfNtEttuKuOjan1DfGsBof26/MQX9vufira/88hK8m8zY9AD+nTuTdq+ns8HwPmxy+2hoCa8tNm54Hvn5qWmxibeuXC4HL9jzwb0ZAK2hlrxJ+yaxZOlnMNxX6SKVdZX2gY3FYuHzzz9H0zQslvCA0EmTJrFx40YWL17cp8BG1w2amxObct5kUnE67TQ3ewiF9ISeO9Mko65aK6JdLm3WLLxtPrxtXRekTKZh+XY+sBWy01bI8tW7qGmMzkgaVZxFQ0NrN6/eu97WV3GegzpzLuW+Wvw1NdRW1mKyD40/yIPpffj1prrIdlmBvc/3R1/1pa5ChaUQHpdO7er1aJOmJa+AaWQw3Veplsy6cjrtcbUEpX1gA+BwdM3GOWHCBD766KM+nzMYTM7NGQrpSTt3pklkXfnqoh8SQYczJb+DCSNcke2vK+qpqgt/UCnAxFF5/S5TvPVVmu+gxuqi3FcLQNvWbdjHDa0xaun+PtR9Piq210ceDy/KTll5e1NXWlk5mzYPo9aax9Flo9O6jpMh3e+rdJLKukr7DsM1a9Ywffp0li1b1mn/119/LQOKRYSvNhrYkJOahQRHleREur+Wralme004sBk9zIlzAKeflxVmsTJnPK+UHMGGb12GbczYAbu2iE/jf95jzF9u5wfbXqfcU82I4vQeONwhf0QZz5afwHuFB7Erd2CTYAoRr7QPbCZMmMA+++zDLbfcwrJly9i4cSN33HEHK1asYN68eakunkgTbTXRwEbJS02qd1VVmLFPYZf9h08uHdByDCtwsMNezDc5Y9kcdKCoaf82H3J8mytQ9RBlvjpCmjltF7/c3fCYAGxbtbubI4VInbT/i6eqKosWLWLy5MnMnz+fuXPn8tVXX/HnP/+ZffcdWgPXxN756qLN+ta8/JSV4/iDRhA7ryU328KhBwxsYFOcZ48shrmzdmDHbYj4tG3cCEBAMWErK0cbJLNthsckEdxeI4GNSE+DYoxNfn4+t99+e6qLIdJYqKEeU/u2oyh1gc2o0hx+ePJEnv/PRrJsGhedtv+Az84yqSql+Q521LZSVd9GMKQPmg/OoSBQX0eoPtzCWGkrZMyIwbOYZKHLjtVswucP0rR9J4HaYZgLi1JdLCE6GRSBjRA9MVqaAGg12XA6U9usf9TUMo6aWtbzgUk0ojibxqpayr01bHnqGUYcfyyW0oFtORJ75lm/LrK93VbCvmXOFJamd1RFYX+bhyPX/gOH7qPmn1WU/eCHqS6WEJ1IYCMywtbDz2TVik2ohs7x2QO7TlQ6GlmSQ9BdwfG1ywhVgWdkmQQ2acKzLhrYbLMXc0pZaga795VrRCmOL8OpFNztXWpCpBNpnxYZYbu9lFU5Y1npHE9+jjXVxUm5kSXZ7LIWRB57t2xOXWFEJx0tNjoKjbnDKM4bXDmGSssKqDOHW5mMnTswgsEUl0iIziSwERmhvtkb2c53yuKoI0ty2GXNR28fyuzdtCHFJRIAoZaWyPpdVdZ8Ro4sHNBlFBJheFE2O9uDZkUP4duxPcUlEqIzCWxERqhrD2wcVm3AB+umo2y7mRxXNjXtC2L6tm8n1JbYbNui91pXr4psb7WXMnYQja/pMKI4mypbTGvg5ooUlkaIriSwEYNe24YNuCo3ku9voiC7bwtNZqIRxTlstxeHHxgG3k0yHiLV/Dt3RtYPq3CUMW6Qja+BcNDsKYgOjvdUSGAj0osENmLQq3nrTc6qfJefbH2ZEZqn5xcMESNLstluK4489mxY183RYiAUnjmXp6b9gFdKjmCno4Tx5YMvsAHIGTs60s3pXi/dnCK9SGAjBj1fdXVk215aksKSpJdRpTEtNoBng3wApVp9s5etbvgmZyyjhudhtZh6flEaGjWikGprOP+OvmsnIbck6xPpQwIbMejpdeHFHptNDvLzBseaOwNhXFkuLVoWTVo4r4934wZ0vz/FpRraVm9piGzvN2rwJObb3ZhhTrbawl8iFAw8G9anuERCRElgIwa1UEsLqie8bECDJUdmRMVwZlkozrNT4RgGgBEI4Fm3NsWlGroMXWdNhgQ2o0py2OYIBzZ+k4VQc3OKSyRElEwfEYOar33qLECtxcWEfEcKS5N+xpfnUrGtnGHeOkoOnoG5sOsinSL5AnW1bP3tbyiwlDHMPoa67BLGDsKBwx2sFhOhkeN5XMum1uLigYMPS3WRhIiQFhsxqPljApsaS96gS3aWbOPLc1mbNZI/jzydTfsdjaV0WKqLNCS1LPucUEsz+9etYUzbTiaOysOsDe4/v2PHFFNtzUdXVNZta0x1cYSIGNzvLDHk+XZEAxtPbqHksNnN+OG50J4Abv32xtQWZghr+fyzyPaa7FFM22fwt5ztG7N459qtjakriBC7kcBGDGqe7dGsp+bS1C48mY7KCrPIsoWDvbVbGwnpeopLNPT4tm3D157Ebpclj3pLLlPHDf7AZsKIaFfa2m2NsrSCSBsS2IhByzAM/O3p3FtMdvJL8lNcovSjKgr7jw7XS5svSMXXG2l8/98pLtXQ0vTh+5Htr5z7MGaYk7wMWM8sx2FheFEW05rWcujyF9h0/XUYEjiLNCCBjRi09LY2AgWl+BWNKmsBpTJweI8OGBMObE7d9RH6g7dR/bcl+HdVpbhUQ4Pu99P8yVIAAoqJVTljmZ4B3VAdJo7KY1zrDkZ7qgg11MvyCiItSGAjBi1TVharjv4+9439Lv8sOYyyQgls9uSA9habGkt0TETz0v+mqjhDStOH76O3hdMRrM0ehc9k4cB9i1JcqsSZOq6Q9dkjIo9b2oM4IVJJAhsxqG3b1YKhqHhMNkaW5KS6OGmpINdGab6Db3LGRNLgN33wHxkTkWRGMEjDv96IPP7MtT9jhjkZVpCVwlIl1oQRLja7xhBUwh8lLZ9/KveVSDkJbMSgZRgGW3aFU7k7HWZysywpLlH6mjKuALfmYF1W+Nt1qLmZluXLUlyqzNb8yX8JNtQDsMFRTrU1n8Mnl6a4VIll1lTGjx/G+o77qqWF1lVfp7hUYqiTwEYMSnrAT0NjG25PAIARJTko7dOaRVczJ4bXjPoid2JkX/0/X5PBnklkLixCKw5n5/1v3hRMqsLB+2XeWmbTxheyKmds5HHz0o9TWBohJLARg1TLZ59Rc8NVfHvnvxnmrWVksawR1Z0xZeGZOFvtJVTawoNX/Tu207Lssx5eKfrKMXE/Kr51KS+XHEmlvYhD9i8h225OdbESbsaEQrbmDKfVFF7OxP3FcgLt67cJkQoS2IhBqfWrL1ECfia0bsNkhMKJ6MReqYrCQfsWg6LwYd7UyP7a555B93pSWLLMpesGb31RyeqcMQDMOXhkikuUHA6bmcnji/nSOSG8Q9dpePut1BZKDGkS2IhBJ9TaSuv/vgKg1WRjh62IfYa7UluoQeCIKeHlFCocZexwhT9kgw0N1Dz3TCqLlVF0rwc9EO4e/WzNLmoavQAcMDqPERncqnjopFKWuyYSUExAeHB6oL4+xaUSQ5UENmLQafnsk8jMi1XZYygrysnIJv5EG1GczbhyJygKr+QeCFq4znSvT8baJIDu87HjgfvYdsdvaduxkxff3xR57qRZo1JYsuSbOr4AR14uK9pbbUz7T0ExyceLSA1ZWEcMKkYoRMNbb0Yef+0cx+RRed28QsQ6Zlo5G3c002TO4at9j+X4SQW4jj9RBl73U7ClmZ1/fATP+nUAVPzuLupLTgXFxAGj8yK5hDKVSVU57sARvNwwhbXZI9lnnxmMzXWlulhiiJKQWgwqjf95j0BNNQAV9mFUW/MzKpNrsh2yfwkFznA6/zd8pdQfMKtTUGPouoy56aW2NavZsuDXeNasDu+w2ni64Ah0xYSiwNnHjE9tAQfIkVOHgc3BdnsJH3xVSVV9W6qLJIYoCWzEoOHfWUndP16IPP4ofyp2q8aEEa7UFWqQ0Uwqpx42OvL46XfWoxtG5HHTB/+h4oZfUPvyP/Bs3CDJ1rrhr6qi6i+L2X7v3YSaGgFQnU7e2udkdpjDLTRzDh7JqNKhkTgyy2bmxJnt+Wx0g2ff2wCAd8tmQq2tqSyaGGKkK0oMCv6qnWy79250b3gw5grneHbYizli3yI06cvvlSMmD+Otz7ZRVd/Gxspm/v3FDo47cDjB5mZqX3weva2N+ldfpv7Vl1GsVuzj98FSVo7mcqHl5qLaHdjGjkXLcUbOqft8BJuawuMqFBXFpKKoJlBVUNVwq5CqgqKgmgf3eKjmT5fS+M7beCs2ddpv329/3iw7ii+2hFsqSvMdfOuIMakoYsqcPGskH/yvkia3nxUbalnx0ltkvfkc5qIihs27AmtZWaqLKIYACWxEWjJ0HUWNBixqVha6JxzU1DsKeLdwJhAeMyJ6RzOp/GDOvtz91JcAPPPeekYPy2GkXcex/wG4ly+D9lYcw+ejbdXXtO2WTbb8qmvRDpgUedy2+hsqH3qgx2srmsY+i/7UaV/100/S9MF/wr/vSCCkQntwpJjC+xz7HUDJeT/o9Nqdjy4i2NyEoqooJhOqprHLZiEQMjDUaHDlnHUojon7RV4XbGyk/o3XMUIh0EMYwVB0O9TxT4dQiNKfXNIpiPNu2tQpqFHtdnJPOpVXjNH89+twN6nNYuLyb0/GYjb1WCeZxGbR+M4x43nstW+whvwY/3oZIxjAX1nJ1t/8mryTTyXvuBMwZWfuDDGReoMisNF1nYceeojnnnuO5uZmDjzwQG6++WZGjcrsmQaDgWEYGIEAht+P7vdh+Hzofn/4sc+HdcRItNxojplAbQ31//2IRtXA09JGyOfHCPjR/X70tjb0tjZCnjYUk8aY2+6MvE7LcZJ34hx2LVvB32yHEFDNjC1zMmbY0GjmT7SJo/I47sDhvLt8O8GQwYPP/4/550xlzLzLCdTV0bpqJZ61a2hbsybSzRJLtVo7PTZCofgurHZtXTPa7xdjD4fHCg7r+m3fs2kDwdqek8HZRo3uFNiE2tpofPftHl8H4eCOmNvMUhYOpq0jRpBz8KH4phzCH97ayNZd4aBGVRQuOeMAygszZ02o3ph1QAlfbazls9XV/LX8JL6369+4vI0YwSD1r75MwxuvY993IlmTp2IbOxZLSSmmrKFZVyI5BkVg8/DDD/P0009zxx13UFJSwu9+9zsuvvhiXnvtNSwWWR+oJ4ZhYASDXboAfNu2EqitJdTWiu71dglKOoIVx8T9cB17XKfXbrruGkKtbgy/P/Ltfk+GXXoFOQceFHkcbGik9pWX4yp3qKUFU070EyU461ge3ejC4w9fb+5RY2U2Tz+cO3s823a1sG57Ey1tAe5+8ksuOnU/Dty3CNdRx+A66hgMwyBYV0ugvp5gYwOhpiZ0rxdzYecB21pePjmHzAJdx2j/RygU/t8wwvsNA8XUtQXDlJuLpXx45LXh/0OdH4d0VJut6w8RinOa+m7dlXsqx94Yu10je/oMHBMnohQU8cFXO3n+ma/x+cOBnWZSufj0/Zk6fugOaFcUhR/MmciO2lZ21MCfyk7huOaVTKtbhWLoGMFgl1bAsffch+aKWX3+06W4v1iOarWimM3h35dJQ1EVaG/FU1QT5qIinIce3un6Lcs+R29rC7f8qSqoSvt2R+ufCcVkwlJairkwutK6EQziq9wRbS00mcItfiYTWM0ENJ1QmxfdUMJl2kOQLtJD2gc2fr+fxx9/nJ///OccffTRANx3330ceeSRvP3225x66qkpLmFyGbqO3taGv7qaYH0djon7dWrG9W7ZTMtnn6B7veF/Hg8hdwuh1tZwfhKfF93nQ3O5GPu7+zqdu+71V3Ev+7zHMqhWK+wW2Oi+cCDUY/n9nY9RLD2MrzCZMDmyMOXkEGxqjAQ2GyubePgfq2hpD2oO3q8446fQJptmUrny7Cn8/vn/sW57E75AiIdf+ppJY/I5dkY5k8cWoJlUzIVFnT4A9sQ+diz2sfP6VI7CM+dSeObcPr12zB13h7uNdB2CQUwqOLOtNNa3EPQHwkGJoaPtNvVYy89jxA03dfrwUkztH3wmrX2/iqKZUCzR1ildN9jqhuVr3SxdtYFGtz/yXGm+g3lnHiCrzAMOm8bV35nG3U99ya76Nt50TeeTrPGcrGxhdEMFNDV0Ot6U3bnOfFu3hrtEe2CfuF+XwKbu1Zfx79je42sLz/oO+SefEnkccrew9Tc39/g6gFE3/wbriGgm6eZP/suuv/01fN9oJpT2eyhyX2nhxyank/Ir53c6V+O/38VbsQlF08L3nhbzz2RqD+w0rOXlOPbbv9Nr21Z/A0p7oGU2o2hm1I7tyD5tyAVhaR/YrFmzhtbWVmbNmhXZ53Q62X///fn888/TNrAxOr6lhkIYgQC6pw3d5wt/2y0o6PTtRPf7qfzDg+Hj2o/RPW3hVhS/v9N5R9zwa+wxgY1/ZyUNb/6rx/LoewhCVIt1D0d2FfL60HUDI6azwFw6DN3jQbVYUCwWFIu1fdva/tiCarWglpYRCIaijTr5hQz72dXk5OfQ6tPRVQ3FbEGxmFHsDhSzGVBodPv4uraNyv9uZv22Rr6uiGYxLS/M4gdzJiL6L8tm5prvTuNPr63m8zXhrpSvK+r5uqKebLuZ/UfnMao0h2KXndwsKzlZZmwWDatZxaKZUFUlfK9D9O4wOv5r379bg56x24GGEfOot68FQMVABU3DZFKw2rPwZakErXrknD7AaPV3OolRPHyP19B1A68vSKs3SKO7lZ11beysa6Wyto1dDW0Egl1biQ6fVMr/nTgBmyXt/6QOmLwcKzeefyB/fPlrVm1uoMmcw9NMgsIDGDesjammekpDzdgDHtbvdOPKsWKzmLBqJkLtkwR6sseWtziTTe6eQLBXSSrVztc1/AEMn7fH7lQtr2vOrba1a+L6guk87IgugU3lIw+FW6d6UHrxPJyHRD9DfZU7qPrTo+G/0x1/r2P/bw+SFJOJvDknd+p67viSHf4bb0W1WFGs1kjrWjpMtlYMo5t+hDTw1ltvceWVV/LVV19hi2mK/tnPfobX6+WPf/xjr88ZCuk0Nyc2V8fz/9mI7cW/MKJlO6qhY+rmFv+w6ECWFU6J/PE26UF+tvaJuK7z1IiT2G6PrhA83r2VuZX/7nKcVzXj7/inaPhUC8+Wn9CpVONbt1Hka8BrsuJXzQQUDb+qEVRMBBSNgKq17zPjM6VHl9/44bn89OwpuLLjC8oygcmk4nTaaW72EIq366WXDMPg89XVPPnOOuqbe26JE6AoMGNCEacfPoaxZc6eX5BmBuK+gvC99d+VVTz97nqaWv09vwAw6wHsIT8WApgMHZOhoxo6CgaqYaAaOioGHpOVKlvn1sR93Fuwhfyo6CiG0R726qiGgYLRfi6DiqwyKu3FkdfZQj6OrP1it2uEjzXRfn0jfK5/lR5Oizn6BXPf5s0cVrci/Jr2snWUueM8mqHTZM7mT+PO7lTeM7e/y3j3th7r5CvXBN4ddlinfT9d8zc0o+fxba+WH8sG52ggfN+Wte3iO5v/2ePrAB7e9//wx/z9n1X9JbNqV+z1+ICi8e9pZ3HueccyrMAR1zXi5XTaMcUxCzbtv154POEAZPexNFarlaampj6dU1UV8vISN1gtENR545MtnBkMYo7jJsvzNuALRI9TYqINHQW/quFTzfhUSyQwaTZn02jOpt6URUiPvmCrtYgnyucQUDV8SjiQ8Zqs6ErPv/wNWSPYkDWidz9sihS67Jx17HjmzBqNWUv9N4JUcDrtST3/nMOzOX7WaL5cV8N7y7bx2TdVkbEjAkyqwrDCLEaU5HDgxBJmTSolNwMC7GTfVwCnHT2eEw8bw4crdvDhih2s3FiHP7D3eyugmgmocaYF2O27+dqsXiw2GvO3tFWx8K+iWd0cvJtQ9LWrskaxKquHySztgZWxW4vfG4WzsObPaA/gQpFAzmSEMBHdbjDn4A90fu3SvEloegjNCGEywv93/DNF/tdpwtLpMyfkDxBERaPngLYlqHSaHKAEuw9OzUaQypoW/ldRz/7ju+/CTpa0D2w6Wmn8fn+nFhufz4fd3rc3pK4bNDcnNivmd4/bh9YXl1OPF0NR0BUVXVExFJWQYiKgWQiYzARVM81ZhQwvCgdWiqKAYfBswUWEVC0ckCgKexoTqygK+UA+EH06B5QiNMAOKDHP7G1cbef9ez5+b0NyYwfr7uU0nfbvaXCvooCmmQiF9PZujK5lyLKbKS/Morwwi7L2f6qq4G4ZellxB+qbdYdxpdmMO20/fnTKvuyoaWVbtZv6Zi9Nbj/NbX58gRA+v04gGIp8LnT83nb/bXf8/iP7dztu9/sj/FDZ8zkjjzs/H/taRVHQNBPBYMwf4piN7l7bcW5FCU9bdtg0chwWSgsclBVmUZJn75QzSQ8EaWgYvAkMB/q+ApgxvoAZ4wsIhnS217iprG2jocVLY4uPJnf7vRXQ8QdD6Hr3nQnx9DUYPXUOxXWO8D2kmlT0kN7lJf3v9Mju2uUKBNv/ddCA3b+Gbi3uPL6ou7IMJ/rjBhnPU6PGoxg6Jj2IFgqi6UE0PYApFMSkhzDpIRQMylydxz+1mEaz0mENHx8KRF4XPkf4/wnjijloQiENDYlNzJgxLTbDhoVXJK6urmbkyGgkXl1dzcSJfR9nEdxDP3l/nDBzBHknLqChoTXh5840mqaSl5fVq7rSdaPHP3SZLhTSB/zeKivIoqxg8EzF7cu9FTcj8X830kEq7iuA4YXZDC8cHPlsknpfDTqHdPuspqmcluK6Svs2/YkTJ5Kdnc2nn34a2dfc3Mw333zDQQcd1M0rhRBCCDHUpH2LjcVi4bzzzuOee+4hPz+f8vJyfve731FaWsoJJ5yQ6uIJIYQQIo2kfWAD8NOf/pRgMMivfvUrvF4vM2fOZPHixZKcTwghhBCdDIrAxmQy8fOf/5yf//znqS6KEEIIIdJY2o+xEUIIIYSIlwQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhmL0f831QccwkrNStMmkEgoN9ZVf4yN11TtSX/GTuoqf1FX8pK7il6y6UlUFRVF6PG5IBjZCCCGEyEzSFSWEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBTQLous6DDz7IkUceydSpU/nRj37Eli1bUl2stPPwww9z/vnnd9q3evVqzjvvPKZNm8YxxxzD4sWLU1S61GtsbOTXv/41Rx11FDNmzOB73/sey5YtizwvdRVVV1fHz3/+c2bNmsX06dP5yU9+woYNGyLPS13tWUVFBdOnT+fFF1+M7JO6itqxYwf77rtvl3/PPfccIHW1u5deeolTTjmFyZMnc+qpp/LGG29EnktpXRmi337/+98bhx56qPGf//zHWL16tfGjH/3IOOGEEwyfz5fqoqWNP//5z8a+++5rnHfeeZF99fX1xiGHHGLceOONxoYNG4znn3/emDx5svH888+nsKSpc+GFFxpnnHGG8fnnnxsbN240br31VmPKlCnGhg0bpK52c8455xjnnnuu8b///c/YsGGDceWVVxqHH3640dbWJnW1F36/3/j2t79tTJgwwXjhhRcMw5D34O7effddY/LkycauXbuM6urqyD+PxyN1tZuXXnrJ2G+//Yy//OUvxubNm42HHnrImDhxovHFF1+kvK4ksOknn89nTJ8+3XjyyScj+5qamowpU6YYr732WgpLlh6qqqqMiy66yJg2bZpx0kkndQpsFi1aZBx55JFGIBCI7Lv33nuNOXPmpKKoKbV582ZjwoQJxvLlyyP7dF03TjjhBOP++++XuopRX19vXHXVVca6desi+1avXm1MmDDB+Oqrr6Su9uLee+81zj///E6BjdRVZ4888ohxxhln7PE5qasoXdeNY4891rjzzjs77f/Rj35kLFq0KOV1JV1R/bRmzRpaW1uZNWtWZJ/T6WT//ffn888/T2HJ0sOqVavIzc3llVdeYerUqZ2eW7ZsGTNnzkTTtMi+WbNmUVFRQV1d3UAXNaXy8vJ49NFHmTRpUmSfoigYhkFTU5PUVYy8vDwWLlzIPvvsA0BtbS2LFy+mtLSU8ePHS13tweeff84zzzzDXXfd1Wm/1FVna9euZfz48Xt8TuoqatOmTezYsYPTTz+90/7FixdzySWXpLyuJLDpp6qqKgCGDRvWaX9xcTE7d+5MRZHSyuzZs7n33nsZMWJEl+eqqqooLS3ttK+4uBiAysrKASlfunA6nRx99NFYLJbIvjfeeIOtW7dyxBFHSF3txU033cThhx/Ov/71L2677TYcDofU1W6am5u57rrr+NWvftXl75TUVWfr1q2jrq6O73//+xx22GF873vf48MPPwSkrmJt3rwZgLa2Ni666CIOPfRQzjnnHN577z0g9XUlgU0/eTwegE4fSABWqxWfz5eKIg0aXq93j/UGDPm6W758OTfccAPHHXccs2fPlrraix/+8Ie88MILnHHGGVx++eWsWrVK6mo3CxYsYNq0aV2+XYO8B2P5/X42b96M2+1m/vz5PProo0yePJmLL76YpUuXSl3FcLvdAPziF7/gtNNO4/HHH///9u4upKk+jgP4V9FYtiIqqKsiHGuv5oazl4FUhAWNIkgrpIsMMRQHljS62oVYETWEsqBXIQu8MARrN62roOlWpBDDTJNaQa0GNYKi1N9zEZ62rB540s48z/cDg3HO2P776rYv//MGt9uNurq6rMgq798fQr+j0+kAfPtQTN4Hvv3x5s6dq9awZgWdTocvX75kLJv8py8oKFBjSFkhFAqhqakJq1evRiAQAMCsfmVys0FzczP6+/vR0dHBrNJ0d3fjwYMH6Onp+el6ZvXdnDlzEI1GkZeXp/wo22w2jIyM4PLly8wqTX5+PgDgwIED2LlzJwDAbDYjFovh6tWrqmfFGZs/NDm1m0gkMpYnEokpU3GUadmyZT/NDQCWLl2qxpBU19HRgYaGBpSVleHixYtKWWZW3yWTSdy6dQvj4+PKstzcXBQWFiqfO2b1TVdXF5LJJDZs2ACHwwGHwwEA8Pv92LZtG7P6QUFBwZSZBqPRiDdv3jCrNJO/bUajMWO5wWDAy5cvVc+KxeYPmUwm6PV69PX1KctSqRRisRhKSkpUHFn2c7lcePjwYcYPVDgcxsqVK7F48WIVR6aOGzduoLm5GVVVVWhtbc34gmVW3yUSCRw+fBiRSERZ9vXrV8RiMRQWFjKrNKdOnUIwGER3d7dyAwCv14sLFy4wqzSDg4NwOBwZ544CgMePH8NgMDCrNBaLBfPmzcPAwEDG8qGhISxfvlz9rP7KsVcaFwgEpLS0VEKhkHIem/Lycp7H5gc+ny/jcO93796Jy+USn88nT58+la6uLrHb7XLz5k0VR6mOZ8+eidVqlfr6+ozzZyQSCUmlUswqzcTEhFRXV8uWLVskGo3KkydPpLGxUVwul7x69YpZ/Yv0w72Z1Xfj4+NSUVEhHo9HotGoDA8Py7Fjx8Rms8ng4CCz+kFbW5s4HA7p6emR58+fy7lz58RkMklvb6/qWbHYTIOxsTE5efKkrF27VoqLi6Wmpkbi8bjaw8o6PxYbEZGBgQGprKwUm80mGzdulGvXrqk0OnWdP39ejEbjT28+n09EmFW6VColfr9f3G63FBUVSXV1dcZ5bZjVr6UXGxFmlS6ZTMrRo0fF7XaL3W6X3bt3SzQaVdYzq0xXrlyRTZs2idVqle3bt8udO3eUdWpmlSMiMvPzQkREREQzj/vYEBERkWaw2BAREZFmsNgQERGRZrDYEBERkWaw2BAREZFmsNgQERGRZrDYEFFW4pkoiOi/YLEhoqxz9+5d+Hw+AEBfXx9WrVqVcdkSIqJf4dW9iSjrtLe3K/etVis6OzuVK3kTEf0Oiw0RZTW9Xo/i4mK1h0FEswQ3RRFRVtm3bx8ikQgikYiyCSp9U9SZM2ewdetWhEIheDwe2O127NixA48ePUJ/fz8qKipQVFQEj8eDcDic8dxDQ0Oora2F0+mE0+lEfX094vG4Gm+TiGYIiw0RZRW/3w+LxQKLxYLOzk58/PhxymNev36N48eP4+DBg2htbcWHDx/g9Xpx6NAhVFZWIhAIYGJiAo2Njfj8+TMAYHR0FHv27EEymcSJEyfQ0tKCeDyOvXv3IplM/u23SUQzhJuiiCirGAwG6PV6AEBxcfFPdxr+9OkT/H4/ysrKAAAjIyM4ffo0WlpasGvXLgDA+Pg4vF4vRkdHYTabcfbsWeh0OrS3tyvPv27dOmzevBmXLl1SdlYmotmNxYaIZiWn06ncX7JkCQBk7IuzcOFCAEAqlQIA9Pb2Ys2aNdDpdBgbGwPwbf+dkpIS3L9//+8MmohmHIsNEc1Kk7Mu6XQ63S8f//79ewSDQQSDwSnrFi1aNK1jIyL1sNgQ0f/C/PnzsX79euzfv3/Kurw8fhUSaQU/zUSUdXJzczExMTGtz1laWorh4WGYzWalyIgImpqasGLFCpjN5ml9PSJSB4+KIqKss2DBAoyOjiIcDiv7yPypuro6vHjxArW1tQiFQrh37x4aGhpw+/ZtmEymaXkNIlIfiw0RZZ2qqirk5+ejpqZGOVz7T5lMJly/fh05OTk4cuQIvF4v3r59i7a2NpSXl0/LaxCR+nKEV5ojIiIijeCMDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERacY/ynqhxCE52igAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the inverse transform\n", + "S_prime = (np.exp(np.exp(S_LLS_filt) - 1) - 1)**2 - 1\n", + "\n", + "# Perform the subtraction and plot the reconstructed signal over the known signal\n", + "S_subtracted = S - S_prime\n", + "plt.plot(df['time'], df['true_signal'], '-', lw=2, label='true signal')\n", + "plt.plot(df['time'], S_subtracted, '--', lw=2, color='r', label='baseline-subtracted signal')\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With 200 iterations of the filtering, the baseline-subtracted signal is almost exactly overlapping the known signal, demonstrating the power of the SNIP algorithm.\n", + "\n", + "## How many iterations?\n", + "\n", + "The above is dependent on how many iterations are run. As described by Morhác and Matousek (2008), a good rule of thumb for choosing the number of iterations $M$ is\n", + "\n", + "$$\n", + "M = \\frac{W - 1}{2} \\tag{4},\n", + "$$\n", + "\n", + "where $W$ is the typical width (in number of time points) of the preserved\n", + "peaks. Choosing $W$ is dependent on your particular signal. In HPLC chromatograms,\n", + "the observed peaks are typically on the order of a minute or two wide. In\n", + "general, it’s advisable to be generous with the approximate peak widths as an\n", + "underestimation can result in subtracting actual signal.\n", + "\n", + "## Implementation in `hplc-py`\n", + "The above SNIP background subtraction algorithm is included as a method\n", + "`correct_baseline` of a Chromatogram object. The above steps can be called in a\n", + "few lines of code as in the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 187/187 [00:00<00:00, 490.64it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACycklEQVR4nOzddXgbV9bA4d+M2DKzwzxJGmqbppRiysywZYYtbhm2uG2/drfcbmlTSJmZmZtCmrQNTNjMDJKF3x8jOw5aliVLts/7PH5sS6OZq2vZPrpwjhIMBhFCCCGEGAjUeDdACCGEECJaJLARQgghxIAhgY0QQgghBgwJbIQQQggxYEhgI4QQQogBQwIbIYQQQgwYEtgIIYQQYsCQwEYIIYQQA4Y53g2IgwbABpTHuR1CCCGECF8B0A6kb+kgZRBmHnYFg0F7IBD9562qCrE470Al/RU+6avwSV+FT/oqfNJX4YtVX6mqgqIobsCxpeMG44hNeSAQHF1X1xrVk5rNKhkZTpqa2vD5AlE990Ak/RU+6avwSV+FT/oqfNJX4YtlX2VmOjGZlG5nW2SNjRBCCCEGDAlshBBCCDFgSGAjhBBCiAFDAhshhBBCDBiDcfGwEEL0qUAggN/vi3cz1hMIKLjdJjyedvx+2e2zJdJX4Yu0r0wmM6oanbEWCWyEECJGgsEgTU11uFwt8W7KJtXUqAQCsssnHNJX4Yu0rxyOZFJTM1EUpVfXl8BGCCFipCOoSU7OwGq19foPdrSZTIqMQIRJ+ip8Pe2rYDCIx9NOS0s9AGlpWb26vgQ2QggRA4GAvzOoSU5OjXdzNslsViUvS5ikr8IXSV9ZrTYAWlrqSUnJ6NW0lCweFkKIGPD7/cC6P9hCiC3r+F3p7Xo0CWyEECKGEm36SYhEFa3fFQlshBBCCDFgJNQaG03TJgALgAt0XX86dNsM4H5gJlALPKDr+n/i1UYhhBBCJK6EGbHRNM0CPA84u9yWBXwKLMcIbG4EbtU07bS4NFIIIUTczZ37GEcddXC8mxG21atX8cMP38W7GYNGwgQ2wM1A8wa3nQ20A+fpur5U1/WngHuBq/q6cWLg+/TTj3j66bn4fImVSE0I0b9dddWlLF26ON7NGDQSYipK07RdgXOAGUBRl7t2Ab7Rdb3rf5ovgGs0TcvVdb2q71opBrKlSxdzxRWXAGAyqZx0kgwKCiGiIxiU/Dd9Ke6BjaZp6cCzwIW6rhdrmtb17mHAnxs8pCz0eQQQcWBjNkd3sMpkUtf7LLYs0frrk08+XO/r0047I46tWV+i9VUiS6S+CgQ2vcMjGAzidrv6uDUGu93RufOkYwOKokB3/3dnz57JySefzscff4DX6+Whhx7Dbnfw6KMP8csv82lqaiQrK5t99z2As846j9WrV3Hqqcczd+5zaNpEAK655nJ+/fVnPvzwC8xmM8FgkEMP3Y+zzz6Pgw46bKNr1tfX8/DD9/Hjj9/h8/mYOnU6F198OcOHj+g85vnnn+H111+hoaGByZO34qqrru+8f1NtzsvLZ968p/jkk4+ora1m5MhRnHba2ey66+4AfPDBuzzzzFzOPvt8Hn30IWpra5kxYxuuvfafvPjis3zwwXuYzRaOOeb4zjc/Ho+HJ598nC+++JSqqkqSkpxst932/OMfV5KWls5RRx1MRUU5Tz31BL///hsPPfQ4TU2NPPHEo3z//Tc0NDSgaRM599wLmD59687n9sknH/HMM/+jvLyMsWPHsffe+/PAA3fz3Xe/RvQzUVV1s8/vmmv+yQsvPMuHH76HxbL+8+upnryuNsdkUnr1PzrugQ3wCPCjrusvbOK+JIypqK7coc/2SC+oqgoZGc7uD4xAaqojJucdqBKlv5YtW8yc7FyG2h28pi/D6bRgtVrj3az1JEpf9QeJ0Fdut4maGnW9P9LBYJCTTvobCxcuiEubtt56G+bNe3G9bbXhBoHvvPMG9977EH6/jzFjxnDSSceRkZHJ/fc/jNPp5Pvvv+Oee+5i6tSp7Lrr7uTnF/Dbbz+z1VaT8fv9LFz4G263i+XLlzJt2nSWLFlMQ0M9u+66+0b/xHw+H5dddgGgcOedd5OensGDD97HP/5xAa+++haqqlBRUc4ffyzk7rvvx+v1cvPN/+TOO2/l0UfnbrbNV175D3R9GZdffhUjR47i008/5rrrruDOO+9h1113Q1UVKisreOut17nrrntoa2vjiisu4eSTj+fggw9h7tx5fPzxBzz22MPsuutujB07jgceeJBvvvmSf/7zFoYMGcLq1au45ZYbefbZJ7nkkst56qnnOOWUv7HXXvtwyimnoyhB/vGPC/B6vdx44y1kZmbx2msvc8kl5/P4408xadJkvvvuG2677UbOP/9CdtllN3799Rfuv/9uYP035T39mWzu+Z1yivH8nnxy4+cXqUjeXAQCCqqqkpaWhN0e8b/4+AY2mqadhDHdNHUzh7iADbNbdTzb1kivGwgEaWpqi/Thm2QyqaSmOmhqcuH3S3bK7iRSfwWDQTyr13LpqDEANPu8LFjwZ+c7zXhLpL5KdInUVx5Pe6j4ZbAzC2u8pySCQfD5AiiKgqIY/eX3B8J6Z73vvgcwfrzxO9Ha2sY++xzAHnvMIT+/AIAjjjiGefOeYvny5ey0067svPMuzJ//I3/728ksXrwYk8nMtGkz+OWXn5k8eSrffvsNW201ldTU9I2y1P78888sX67zwguvMWLEKACuvPI6XnjhWerq6gkEgphMJv75z1tJTk4G4JBDDufxx/+73rm6tnnlylV8881X3Hnnvey44y4AnHLKmSxfrvPUU/9jp512IRAI4vP5uPTSKxg92vinvu22s1i8+E8uuOASAoEgf/vbqcyd+wQrVqxg5MgxaNokdtlld6ZP3waAnJx8Zs3agRUrVuDzBUhJSUNVVWw2O05nCj/88D3Lli1l3ryXGDPGuMYll1zJX3/9xbPPPsMtt9zBc8/NY/fd53DssSeGnttwCgsLefnl5zf7/ML5mWzp+Z177kUoirLR8+upnr6uuvL7gwQCARob23C5/Bvdn5rqCCtgiveIzelAHrDhFNSjmqZdARQCQzZ4TMf3pb25cKxSY/v9AUm73QOJ0F9VVZVMtlg6v98+I5MVK1YwduyEOLZqY4nQV/1FIvTVpmrlKIrCU089nxBTUR3/dML95zNs2LopIJvNzpFHHsNXX33OK6+8QElJMStXrqCmproz4/Ls2bvy7rtv0d7u5tdf57P11tsyfPgIFiz4lVNOOYMff/yePffca5PXWrlyBcnJKZ1BDUBWVjYXXnjpet93BDUAKSmptLevP8Dftc2rVq0EYNq0GesdM336Njz66EPr3db1una7nYKCISiKQjAYxGYz3mt7PB7ACC5+/fVnHnvsYYqLi1i7dg1FRWs3uk6H1atXkpyc3BnUgPG6mD59BvPn/wiAri/j7LPP36CdW/Pyy89v9vmF8zPp7vkZ51n/+fVUT19Xm9L1zUAk4h3YnAhsOGa8ArgBeBk4HjhX0zSTrusdP5k5gC4Lh0W0lJWVEujySzjCkcTPpSXxa5AY0BRFweFIinczeqzjHx6A2+3m738/C7fbxZ577s2++x7IpZduxd//flbnMTNmbIvFYuH33xfw668/M2fOPowYMZKXXnqeiopydH0pN974r01ey2w2d5uFNpxaQl3bDJv+TxsI+DGb1/9XuOH3W2rLf/7zf3z++Sfsv/+B7LTTbE455XRefPE5qqoqN3m8MWq38fkCgUDndU0mE8Fg9//Ye/ozieT59UdxDWx0Xd9o1CU0clOl63qhpmlPAlcCczVNuwuYBVwCnNuX7RQDW2VlBc+XFrEkN4fLrXYsQGvh2ng3S4iENX/+D+j6Ut5552MyM41KzE1NjdTV1XYeY7FYmDVrR7777msWL/6TK6+8jry8fBQFnnjiEUaOHLXeQuCuRo8eTXNzEyUlxQwbNhyAhoYGjjvucO66696I2twxQvLHHwvZeeddOm9ftGgho0aNjuicjY0NvPXWa9x88+3MmbNP5+1r164hKWld8No1cBg7dhwtLc2sXr1yvVGbP/5Y145x48azePH6+2aWLPlri20J52cyWMR/68AWhEZl9gU0jIzENwJX6Lr+TFwbJgaUiopyAPLy8vGkGlWYPVUyICjE5uTk5ALw8ccfUlFRzqJFC7n66svw+XzrTWHsvPMufPDBu6SnZzB8+AisVivTps3g008/Ypdddt/s+bfddhYTJ07m1ltvYPHiv1i9ehW3334TmZmZTJw4OaI2jx49hh133Jm77/4/vv/+W4qKCnnqqSf47ruvOf74EyM6p9OZTHJyMt9++zUlJcWsWrWSO++8jeXLl63XDw6Hg5KSYurqatluux0YO3Y8N998PQsW/MratWu4++47WbVqJUcf/TcATjzxVL766gteeuk5SkqK+fDD93jttZe22JZwfyaDQbynojai67qywfe/ADvGqTliEKioqAAgP7+A9slb8fdrLmfomLFc2s3jhBisJk+ewoUXXsrLL7/AE088Qk5ODnPm7ENubt56Iws77TQbv9/PNtvM7Lxt5sxZ/PLLfGbP3m2z51dVlf/7v7t58MF7QrujYOutZ3LPPQ/1arfizTffwWOPPcSdd/6LlpZmRo8ey7/+dRe77bZHROczm83ceuv/8dBD93HyyceRmprKNtvM5Jxz/s68eU/hcrlwOBwcddRxPPzwfaxevYpnnnmR++57mIceuo/rrrsSr9eDpk3i/vsfYcoUYx/NDjvsxBVXXMO8eU/x2GMPo2mTOPTQI3njjVc225ZwfyaDgRLvVfpxsNrvD4yuq4t4U9Ummc0qGRlO6utb475osT9IpP565MJzmdbQSGD8eHKP/RvHHnsYmZlZfPHF93FtV4dE6qtEl0h95fV6qK0tJyurAIslsVIHdDCb1bj3U3/Rl331+++/kZWVtd4i33nznuS9997mlVfe7pM29EakfdXd70xmphOTSV0DbHG7VkJPRQnRF0xNTeTYbDgtVrKyjLnphob6jXYSCCFEX/j555+49NILWLDgVyoqKvjuu6955ZUX2XffA+LdtH4h4aaihOhrFo8HLFZsmZkk+/ycOXI03kCAhoZ6srKy4908IcQgc9ppZ+Fyubj11htoaKgnNzePY4/9G3/728nxblq/IIGNGPTsoZEZR3Y2itfDPjl5NHq91NTUSGAjhOhzVquVSy65nEsuuTzeTemXZCpKDGoej4fkUD6M5Nw8TGnpAKRZLNRWy84oIYTobySwEYNafX09aWYj63ByfgGm5GQ6VtY0lZdt/oFCCCESkgQ2YlBraKgnPVROwZyahqKquEMjOK2byRwqhBAicUlgIwa1htoailxt1Pv9mNNCyflCgY63oSGOLRNCCBEJCWzEoNbQ3MT1yxbzuAqq3ShbFgglAPM2N8ezaUIIISIggY0Y1Orr6wHIyMhYd6PDCHCCrrZ4NEkIIUQvSGAjBrX6+joA0tPXBTZ1287k1N9/4SdPe7yaJcSA4nK5eP31deUAbrvtJi644OyYXrOiooLPPvu4V+f44IN3mT175mbv74vnMXv2TD744N2YXqOvlJeXMXv2TBYs+DWm15E8NmJQc5aW8NDUGbQ3t3TelpydTZvfT2NTUxxbJsTA8eKLz/LBB+9y5JHHAHDxxZcTCMQ2s/dtt91Ifn4Be+21b0yvIxKPBDZiUFNaW8m12alV1tVeTU1NB6BJAhshomLDmoTJycl9fk0xeEhgIwY3txsAJbSuBiDF1cZZI0fTqspMrRAALS0tPPzw/Xz77Zd4vV40bRLnn38REydOBsDtdnPfff/mhx++o6WlmZEjR3HqqWey2257MnfuYzz11BOAMa3y6qvv8OSTj1NeXsZDDz3OggW/cumlf+feex/mnnvupKyslPHjNa677ia+/PIzXnvtZXw+H/vssx+XXHIFiqIQDAZ58cVnef/9dygrK8VqtTJ9+tZccskVDBkylAsuOJuFCxewcOECfv/9N1577V28Xi9PPPEIn3zyIa2tLYwePZYzzzyXWbN26HyeX3/9JXPnPkpJSQmTJ2/Ftttu123f+P1+7rvv33z44XtYLBYOPvhwzjjjHMxm49/rH38s5MknH2fp0sV4PB6GDRvOySefzt5779d5jk8//Yjnn59HUVEhWVnZHHnk0Rx33IkbXau+vo4LLzyHzMws7rrrPux2Oz///BOPPvoQa9euYciQoRx33An83//dyquvvkNBwRCOOupgdt11d37++Sfq6ur417/uZPr0rXnttZd4663XqaysIC8vn+OPP4lDDjkcgAULfuWii87tPAcY00hHH30IDzzwKNtsM5PbbruJQMBPZmY2H374Hi5XG7Nm7cDll19DXl4uAKtXr+S++/7DkiV/kZ2dy4knnhLJy6/H5C+3GNRUj8f4nOTsvC3J72fvnDymOZIIBKTysYiuYBBcvvh8RDKIEQwGueKKiygpKeLOO+/j8cefYautpnLeeWewfPkyAJ544hFWrVrBv/99P8899yo77LAzN9xwDeXlZRx//Ekcd9yJ5Obm8fbbH5Gbm7fRNfx+Pw8+eA9XX30Djz32FPX1dZx77ukUFq7loYce55xz/s7rr7/CDz98B8Arr7zAvHlPcd55F/Hii29wxx13U1RUyIMP3gvA7bf/mylTprHnnnvzxBPzAGM9zPz5P3LDDbfy5JPPs+eee3HllZd0nvPPPxdx/fVXsttue/L00y+w774H8OyzT3fbP3/+uYi6ujoeeeRJrrnmRt5//x0eeug+AKqrq7j00r8zbtwE5s59jqeeeoFJk7bijjtuoa6uFoAvv/yMW2+9gb322odnnnmRc8+9gCeeeIR3331rves0NDRw0UXnkpOTy7//bQQ1K1boXHHFxcycuR1PP/08p512Jg8/fP9GbXzrrde5+OLLueeeB5kyZRoPPXQfTz89l9NOO5tnnnmJo446jnvvvYvXXnup+xdEF1988RmNjQ089NDj3H77f1i0aCGPP/5fwAiGL774fJxOJ48//gyXXXYlTz/9vx6dP1IyYiMGNZPXC1Ybli5D48k5ebQAySYzLS0tpKamxq+BYkAJBuGMT5P4o8YUl+tPz/Hxv71cdJl57dZvv/3Cn3/+wbvvftq5e/Ccc/7On38u4tVXX+K6626irKyEpKRkhg4dRnJyMmeeeS7Tp29NSkoqSUlJOBwOVFXdYu21M888jylTpgKw++578sorL3Lllddht9sZOXIUTz75OKtXr2LnnXdh6NDhXH/9TcyevSsA+fkF7LHHXnz++ScApKamYTabsdlsZGRkUFJSzGeffcz//jevc5TpuONOZOXKFbzwwjx22mk2r732MlOnTueMM84BYMSIkaxevYpXX31xi/2TlZXFddfdhM1mY8wYYxTo3nvv4txzL8Dj8XD66Wdz/PEnoYZGgE866TQ++OBdiouLyMzM4uWXX2CPPfbixBNPBWD48BG4XK3YbPbOazQ1NXLxxeeRl5fPbbf9G5vNBsDLL7/AxImTOf/8i0NtHkV9fR333fef9dq4ww47s9122wPQ2trCm2++yoUXXso+++zXec2yslLmzXuKI488dovPtyun08mVV16H2Wxm1KjR7LffAfz44/cAfPbZx7jdbq677maSk5MZM2YsF110GddeG/v6VxLYiEHNEiqAae0SvNgz0gFIMZtpbm6SwEZElaL0r7UfHaMyxxxzyHq3ezwe2tuNnYMnnHAKV111KQcfvDdbbTWVWbN2YM6cfXq0lmbEiJGdX9tsdjIzs7Db1/1zt1qteEI7FWfP3pXFi/9i7tzHKC4uorBwDatXryInJ3czz0EH4MILz1nvdp/PR3JyCmBMm3SdlgKYMmVat4HNxImTOwMNgMmTp+D1eikuLmT8eI0DDzyU119/hbVrV1NcXNTZFn/ob8+qVSvYc8+91zvnQQcdtt73jz/+39AU4MT1rrV8+bLOgKXD9Olbb9TGYcOGd35dWLgWn8/HtGkz1jtmxoytefnl5zt3ioZj6NDhnVNuAE5nMj6fDzD6c/jw4eu9BqZOnRb2uXtDAhsxqFlDY/O2UPFLAFNoWsphMtFYX8fQocPi0TQxACkK/G8vF+7YbgjaLLuJHo3WAAQCAZxOJ3PnPrfRfZZQlu4pU6bxxhvv88sv8/n115957723mTv3Me6++0FmzpwV1nW6/oMEOkc4NuX5559h7tzHOeCAg9l662056qjj+O67rze7vTsYNKaUH374CZK6TDtveJ0NFxxv2KZNUdX1R986dntZLFYKC9dy7rmnM2HCRGbN2p7Zs3clPT2Ds85at9bEZDKjdPNDmTlzFgceeCjXXXcFe+65NzvssFPosSYCge4D5a7B0LqnuP41O6bduz7nrv3REbB01fHz76rrYzbsT5Opb0IOWWMjBq1gMEi1202F240je90QudplIXFbD969CBEORQGHOT4fPQ1qAMaMGUdra2vnwteOj+eff4bvvvsagLlzH+OPPxYye/ZuXHLJFbz44hsMHTqMr776IvScI7jwFjzzzJOcfvpZXH751Rx66BFMmTKV4uLC9f6Rdr3m6NFjAaipqVnvObz//ju8//47AEyYoPHnn4vWu86yZUu6bcuKFfp6a/H++GMhNpuNIUOG8uabr5KZmcn99/+XE044hR13nE1tbe16jx89ejTLli1e77YHHriba665rPP73Xefw2677cGcOftw11230dpqpKcYN24Cixf/ud5jFy/+a4vtHTlyFCaTiT/++H292xct+p2srCxSUlI7A5aO6wCUlBR31xXrmTBBo6iokIYupWnC6c9okMBGDFouVxsPrF7BRX8tJHP6jM7bFbMZb+gPZFtDY5xaJ0Ri2H77HRk/fgI33HANv/32CyUlxTz88P28//47jBw5GjD+6f3733fw22+/UFFRzpdffkZFRUXn1IPDkURzcxNFRYWbfOffU7m5efzyy3zWrFlNUdFaHn/8v3z9tbFjq4PDkUR5eRlVVZWMGTOWnXbahf/85w6+++5rSktLeOGFZ3nuuacZMmQoYKy5WbFiOQ89dB9FRYV88smHvPHGK5trQqeqqkruuOMWVq9exVdffc7cuY/zt7+djNVqJTc3j6qqSn788XsqKsr5+usvuPvu/wOMqTyAE044lc8++4RXX32J0tISPvvsY9566w123XWPja51ySVX0N7u7lwkffzxJ6LrS3nkkQcpKirkm2++4n//exTYfDCZnJzMIYccwf/+9xiffPIRJSXFvP76K7z55mscd9xJKIrC2LHjSEpy8swzcykpKWbhwgU8/vjDPQpQ58zZl8zMLG666VpWrFjO77//xgMP3B3243tDAhsxaDWHkvKZTCbsdsd693lCv8DuJglsxOBmMpm4997/MnnyVtx44zWccspx/PbbL9x2212d00yXX3412247i1tu+SfHH38Ec+c+xnnnXci++x4AGIuBs7KyOfXU49H1Zb1u0z//eQtut5szzzyJv//9bFavXsnll19DfX0d5eVlABx22JGsWbOKU045Hr/fzy233MHuu+/Jv/99ByeddAwffPAOV155HQceaKwdGj9e4z//eYAFC37l1FOP56WXnufkk0/vti2zZ++GyWTinHNO5e677+Tww4/i1FPPBOCoo45jzz335tZbb+Ckk47lmWfmcvbZ51NQMIQlS/4KPX5Xrrrqet566zVOPPFo/ve/x7joon+w//4HbXStjIwMLrjgUt57723mz/+RMWPGcdtt/+aHH77llFOOY+7cRzniiKMBMJs3nibqcPHFl3HUUcfy6KMPctJJx/Dmm69x6aVXcvzxxhbzpCQnN9xwK2vXruWkk47h3nvv4vzzL97i9OCGHA4HDzzwKBaLhfPPP4Nbb72BE07om+3eyiBMYrTa7w+MrqtrjepJzWaVjAwn9fWt+HyyRbg7idBfq1at5MgjDyItLY2vv56/3n03/ONCPv/6Cy68/BqOO37jfBJ9KRH6qr9IpL7yej3U1paTlVWAxWKNa1s2x2xW495P/UUi9tXSpYsxmUxMmDCx87ZPPvmI//u/W/jkk2/CWiMUC5H2VXe/M5mZTkwmdQ0wZovX7/GVhRggWqqrjHIKqkowEEDp8m5ESUmh1e+nTQphCiES1IoVy/nvf+/n+utvZtw4jdLSYp588jHmzNknbkFNIhi8z1wMem319eTa7LQHg+sFNWBsWwQjyZQQQiSigw8+jNraGu6//x5qaqrIyMhkr7326czFM1hJYCMGLXdjAwCeTdw3rr2ds0aOxl5d1adtEkKIcCmKwmmnncVpp50V76YkFFk8LAatjoXBvk0siMt1u9k7Jw9ns4zYCCFEfyKBjRi02kNBi9+0cXp7pSPjaSjTqRBCiP5BAhsxaHlDyacClo1nZE1JSQCoHu9G9wkhhEhcEtiIQcvfseNpE9sKzaG066pPAhshhOhPJLARg5bL46XC7ca/Qe0YAGuKURjPHEisvBVCCCG2LO67ojRNywXuBvYDHMDXwBW6ri8J3f8UcOoGDyvVdV0qE4peWawEuf+vhVxz8CEb3WdNMSp6WySwEUKIfiURRmzeAcYC+wPbAS7gM03TkkL3TwNuBwq6fGxcl12IHmprM6aikpKSNrrPkZYGgHXQJeYWQoj+La4jNpqmZQFrgH/pur44dNutwEJgK03TFgCTgVt1Xa+IW0PFgLSlwCZl0lac+cfvtPl97On3Y9rEzikhBouKigr++msRe+21b7ybsp7bbruJ8vIyHnro8T675gUXnE1BwRCuu+6mPrum6Jm4Bja6rtcCx3d8r2laHnA5UAIsAcYD9tDXQkTVbv4Ax02aSlpF5Ub3JWdkUB3a6t3W1kZKaM2NEIPRbbfdSH5+QcIFNhdffDmBgD/ezRAJJu5rbDpomvY4cBbQDhyi63qrpmlTgSBwiaZp+wMB4APgel3Xe1V22WyO7iycyaSu91lsWSL0VyYwxunEa1I2ej2YzXYsFgterxe3u42MjLT4NJLE6Kv+IpH6KhBQ4t2ELQoVsEdRoLtayIlaLDk5OblPrtO1r8SW9eR1tTmmTfxN7omECWyA+4DHgPOAtzRNmw1MwQhm1gIHY4zg/AeYqmnanrquR7SyU1UVMjI23gkTDampjpicd6CKZ39ZQr91aTlZG70e/O3tnDJyNEGPBxVPzF4vPSGvrfAlQl+53SZqatRN/pEOtG8h8aOioFqtMT+2Q3dB4HnnncXChQtYuHABv//+G2+99T6HHXYgu+++Bz/99CN1dXXcccdd/O9/j1NQMIQbbri587G33HIj5eVlPPLIEwBUVVXxwAP38NNPP2AymZk6dRoXXfQPRowYsclr+/1+HnnkIT755CPq6+sYMmQoxx77N4444qhNnn/ZsiXcd9/dLF26lKysLM4++zxuvfVGHnjgEbbddibnnXcWkyZNprm5iS+//JxAIMjuu+/B5Zdf3Tkl/e23XzNv3tOsXLkcv9/PuHHjOffcC5g1a3tMJhVFUVCU3v3jHQwieXMRCCioqkpaWhL2jiSpEUiYwKbLLqizgR2BC4AzgHt1XW8IHfaXpmnlwI8YC43nR3KtQCBIU1N0qzabTCqpqQ6amlz4/bKTpjuJ0F+W0LuJgNlOfX3revcFvF72Sc8EoLKkkryCkX3dvE6J0Ff9RSL1lcfTTiAQwO8P4vOt35bl52y+to9z6jSGXvyPzu9XXPh3gp5NVTQDxwSN4Vde0/n9qsv+gb+leZPH2kaNZuT1N3Z+ryhGf/n9gS2+s77ttru48spLyc3N49JLr+x8Lm+88Rp33nkvKSkpjBkzjmAwSDC4/nPtepvL5eL8889i3LgJPPjg45hMKi+99DxnnHEy8+a9RE5O7kbXfu21l/n888+4+ebbycnJ5fvvv+Guu25n5MgxTJ8+Y73z19RU8/e/n8Ps2btx2WXXUFFRzn/+cwd+vx+/P4DPFyAYDPLqqy9x3HEn8vjjz7Bihc5tt93EkCHDOPXUM1m2bClXXXUZ5513Ef/85y20trbyxBP/5cYbr+Oddz5EVU2bfJ5inXBfV5vi9wcJBAI0Nrbhcm08xZia6ggrYIr34uFcYA7wiq7rfgBd1wOapi0Bhuq6HgQaNnjYn6HPw4gwsAFi9qLs+AUS4YlXfwUCAWyhMVNrcspGbQii4g8GMSkKrQ0NCfEzlddW+BKhr/z+xJy+6dDxT6e7fz6pqWmYzWZsNhsZGRmdt++ww85st932YV/v888/pqGhgZtuug2z2fjXc/XV/+T333/jnXfe3GRF6tLSUhwOO0OGDCUrK5sjjzyWESNGbXKE5+233yA5OYVrrrkBs9nM6NFjuPTSK7n66n+sd9zIkaM555y/AzBixEg+++wT/vhjIWD8Q7744ss58shjOo8/+ujjuPTSC6irqyUra+PgS6wv3NfVlmzqzUBPxHvEZgjwAlAJfAGgaZoF2AZ4R9O0F4AsXde7rljbLvRZFhSLiLW3u3GEdjo50tM3ul9RFDwYiZXcTZt+ByxEpMY9/Njm71TXX8gx9t4HN3/sBos+Rt/5n7CP7a1hw4b36Hhd12lra2X//fdY73aPx0Nh4dpNPuaII47mm2++5PDDD0DTJjFr1g7suefeZGRkbuL8y9C0SZ1BE8D06RtnBhk5ctR63ycnJ9MSGuUaP14jJSWN559/hqKiQoqLi1ixQgeI+wigCF+8A5tFwMfAfzVNOwuoB64DMoB7MXLYvKNp2nXAS8AE4GHgBV3Xl8anyWIgaGtr6wxs7KmpmzzGF/pH4GmVCt8iulSbLe7H9pZtE9facJGxz+frcl+AESNG8n//d89Gj3M4Nr0mavjwEbz88lv8/vuv/PLLfL799ivmzXuSa6+9kf33P2i9Y00mE8Fg98GHdRPrjDravXDhAv7xjwvYYYedmT59BnvttQ9ut5trrrm82/OKxBHX1U+hqaZjMUZrXgZ+xtissouu60W6rr8HHA0ciTEFNRd4A2PtjRARa21poc7jocnn66wLtaGOwMbbIoGNGNyUMEZ7LBYLrRu8CSgpKe78evTosVRUlON0JjNs2HCGDRtOfn4Bjz76IAsXLtjkOV999SW++upztttuB84//2LmzXuZbbfdjs8//2SjY8eNG4+uL1svmFqy5K9wnyIAL774LFtvPZPbb/83xx57AttttwOVlR0p1BJ7alGsE+8RG0Lbts8PfWzq/teB1/u0UWLAc7ndXPTXQrKzc/jMuZnAxqSCz4/XFd2F5kL0Nw5HEuXlZVRVVZKbm7fJY6ZOnc4LL8zju+++YfToMXz00fusXr2SSZO2AmDffQ/g+eef4brrruD88y8mJSWFefPm8uOP33P66RuvrwGoq6vl6aefwG63M27cBNauXcOKFTpHH338RsceccTRvPzyC9x557844YRTqKmp5p577gTCC8wAcnPz+fbbr1i0aCG5ubksWPAr//vfo4AxZSb6h7gHNkLEQ0fWYYdj46zDHQImM/j8+F2uvmqWEAnpsMOO5LbbbuSUU47nvfc+3eQxxx13AmVlpdx66z9RFIU999ybY475G3/+uQgw1rI89NDjPPzwfVx++YX4/QHGj5/APfc8xJgxYzd5zjPOOAe/388999xFfX0dmZlZHH740Zx00mkbHZuRkcnddz/AAw/czWmn/Y2cnFwOO+wo/vvf+7FYLGE9zzPPPIe6uhquuuoSAEaNGsM119zALbf8k8WL/2LYsPjtjhThUxI18VIMrfb7A6Pr6lq7P7IHzGaVjAwn9fWtcd+N0R/Eu79++OFbzj//LDRtEi+//OYmj3no9lt4+63XOfRvJ3LBJVf0cQvXiXdf9SeJ1Fder4fa2nKysgqwWDZe15EIzGY17v0ULWvWrKa5uYlp02Z03vbnn4s477wzeP3198jLy+/V+QdSX8VapH3V3e9MZqYTk0ldA4zZ0nkkw5AYlLylpdw+aQrHOzdfKkFJS6Pa006L292HLRNCRKKmpooLLzyHDz98j4qKcv766w8eeOAeZszYptdBjehfZCpKDErepibGOZOp2cLUe8dODZdMRQmR8LbbbgcuueQKnnvuaf7979txOpOZPXtXzjvvwng3TfQxCWzEoOQJrbEJqJsftMxzuThh6AgcDb0qSyaE6COHH34Uhx9+VLybIeJMpqLEoORzG6MwgVAum01Jb27h0IIh5MpUlBBC9BsS2IhBydcxvWTe/KClOTQVpfq8fdEkIYQQUSCBjRiUAu2hURjz5reBmkKBjcm/cTE2IcI1CHeeChGRaP2uSGAjBiV/e7vxxSbSq3ewOJMBMAVki6foOVNomtPjaY9zS4ToHzp+V0ym3i3/lcXDYlBq93pp8nphC7V1rKGMxOaAvOMWPaeqJhyOZFpa6gGwWm1hZ8DtK4GAkvBVyBOF9FX4etpXwWAQj6edlpZ6HI5k1C1s6giHBDZiUPqNIPcs+o0bDj1ss8dYk5PxAxapESMilJpqVKHuCG4SjaqqBGREMizSV+GLtK8cjuTO35nekMBGDEodJRWSkjZfUsGemkorYCWx3mWL/kNRFNLSskhJycDv93X/gD5kMimkpSXR2NgmIxHdkL4KX6R9ZTKZez1S00ECGzEohRPYOEeP4fzFf9Dm97OT15OwafFF4lNVFVVNrNeP2axit9txufxSKqAb0lfhS4S+ksBGDEqzgSMnTCKlsnKzxzjT0ykMVfZ2uVwS2AghRD8gu6LEoJSDwpTUNKy+zU8PWCxWzKHt4B0jPEIIIRKbjNiIQckcypdgTXJu9pigz8fRw4aD10tbczPkF/RV84QQQkRIAhsxKJlDa9o6tnRvkqpyeHYuAK7GxNzVIoQQYn0yFSUGnWAwiCW00WlLIzaKquINjey4m1v6omlCCCF6SQIbMeh4PB6sivHS3+KIDdBRJcrd3BzjVgkhhIgGCWzEoON2u7CF8iXYQmUTNqdjabGnrTXGrRJCCBENEtiIQcftduMLBvEEAliSHFs81q8ac1Ze2RUlhBD9Qo8XD2uaZgZ2B+YAo4E0oAYoBD4EftB1XVIzioTldru46K+FJCen8N2QoVs81q+q4A/gc7n6qHVCCCF6I+zARtM0K3AecBkwDKjHCGZageHAQcC1QJmmaXcCj+u6LmVtRcJxudwAOBz2bo8NqCbwB/C7JbARQoj+IKzARtO0WcAzgB94BHhF1/VVmzhuKnAAcBFwsaZpJ+m6/mMU2ytEr7lDQYrdvuVpKIAFOdl88enHHLT11rFulhBCiCgId8TmWeBqXdff3NJBuq7/CfwJ3Klp2jEYwdCE3jVRiOhqb2zk+gmTsDgcBINBFGXzRS49qamsdbXRuoUMxUIIIRJHuIuHp3YX1GxI1/VXgCk9b5IQseVpaWZaahrjzZYtBjWwblTHLVNRQgjRL4QV2Oi67onk5JE+TohY8rQaW7e9W45pAMhvb+ew/CGkNjTEtlFCCCGiItw1Njf05KS6rt8SWXOEiD1vqGK3n+4jm9ymZv42bASLWiSPjRBC9AfhrrG5aYPvg4CCsZi4BsgArIAHqAMksBEJyxvauu1Xux+wVG1W4wufd8sHCiGESAjhTkWpHR/A3kAtcBxg13W9QNd1O8ZuqFrgHzFrrRBR4Att9w4vsDG2hKuyeFgIIfqFSKp7PwT8M7Q4uJOu6x9pmnY9cBvwUrgn0zQtF7gb2A9wAF8DV+i6viR0/wzgfmAmRuD0gK7r/4mg3UIAdOakCZhM3R5rshuBjeL3x7RNQgghoiOSkgojgKLN3FcN5PXwfO8AY4H9ge0AF/CZpmlJmqZlAZ8CyzECmxuBWzVNOy2CdgsBgM/jwR8MEgwjsDGHdkWpgUCsmyWEECIKIglsFgEXappm6Xqjpml24EpgfrgnCgUua4CzdF3/Vdf1pcCtQAGwFXA20A6cp+v6Ul3XnwLuBa6KoN1CALDWZuX43+azcEL3KZbMDiOwMUlgI4QQ/UIkU1HXAB8DqzRN+4h1ozQHAE5gt3BPpOt6LXB8x/eapuUBlwMlwBLgZuAbXde7LnD4ArhG07RcXderImi/GOTcbmONjd3RfebhjiKZ5qCUPxNCiP6gx4GNrutfa5q2E0aAczCQibEz6jPgFl3XV0bSEE3THgfOwhihOUTX9VZN04ZhZDLuqiz0eQQQcWBjNke3sLnJpK73WWxZPPurvd0IbJKSkrp9HSRNmMA1yxaDw8HBUX7NhEteW+GTvgqf9FX4pK/Clwh9FcmIDbquLwCOjnJb7gMewyi0+ZamabOBJIxApyt36HP3FQw3Q1UVMjKckT58i1JTux8FEOvEo7/GtLVy+dgJjGhu6PZ1UDB2BEtbmrH7vDF7zYRLXlvhk74Kn/RV+KSvwhfPvooosAHQNG1/jK3fBRhVvbcGftN1vTCS83XZBXU2sCNwAcZCYtsGh3YENBFnTAsEgjQ1tUX68E0ymVRSUx00Nbnw+2U9Rnfi2V/ONjczMzJpaGimvn7LL6P2dmMKyu12U1vbjBrGFvFok9dW+KSvwid9FT7pq/DFsq9SUx1hjQT1OLDRNC0JeAvYC2gCUoB/Y4y0bK1p2m66ri8O81y5wByMauF+AF3XA5qmLQGGAsXAkA0e1vF9aU/b3pXPF5sXp98fiNm5B6J49Jfi84PJhGKzdXttk9fHvjl5qIpCa2sbDkdSH7VyY/LaCp/0Vfikr8InfRW+ePZVJG8/bwe2xQhIsqEzL/1JGMHGrT041xDgBbosOA7tttoGY/HwN8AumqZ13Zc7B9Bl4bCIlBowctKY7d3PZpoDAc4YOZoTho3A5XJ3e7wQQoj4iiSwORa4Rtf1LzFKKwCg63oF8C9gdg/OtQhjh9V/NU3bRdO0KcA8jBIN9wJPAqnAXE3TJmuadipwCXBHBO0WAli3dbsjR80Wjw0FP1ZVxdUm9aKEECLRRRLYpANrN3NfPZAc7ol0XQ9iBEpfAC8DP2PsstpF1/Wi0KjMvoAGLMBI0HeFruvPRNBuIYB1gY0pjO3eqnXdEi93S0vM2iSEECI6Ilk8/BdwAvDJJu47OHR/2HRdbwTOD31s6v5fMBYTCxEVHTlpLGGsl1Es6/JQtrc0xaxNQgghoiOSwOZfwJuhrMHvYkxH7RYqc3AuXRLuCZGIOhZsWZ3db99WVBVPMIhVUWhvkakoIYRIdD2eitJ1/W3gRGAa8AjG4uG7MfLanKvr+mtRbaEQURQIBLh2yZ+c8Nt8kqdOC+sx3tAIj6dVpqKEECLRRZqg7wXgBU3TNCALaACW6bou++BEQmtvN/I9eoNBHGGM2AD4FGPjn6cturmPhBBCRF8keWy+AM7XdX2Zruv6BvdNA57TdT28t8JC9LGOOlEANlt4yas/MqksW7qYEw86JFbNEkIIESVhBTah8gYd01a7Y6ypyd3EoQcBY6PTNCGiz+128fdRY1FNKsHWVkhN7fYxtUkOFjc30eb3dXusEEKI+Ap3xOZM4GSMhcJB4L8Ya2u6ljzuSNT3QtRaJ0SUud1uds7MwqyqBP3+sB5jD+Wy6TraI4QQIjGFG9hcDDyFEbx8AfwdIzNwV36MtTZhlVMQIh7crS2YQ/WeVKs1rMeMQmGfnDzUutpYNk0IIUQUhBXYhHLNfA2gadoewG9AcijbMJqmZQDDdV3vUQ4bIfqau6WFjiXDSpiBjeZys+fI0SytlcBGCCESXSSZhxcBbwJfdblte2ChpmlvhYpkCpGQ2luNXDSBYBDFHOaAZShJX8DTHqtmCSGEiJJIApv/A7YCru1y2xfAocBM4JYotEuImPCEAhsvoCjKlg/uEApsgh5PjFolhBAiWiIJbA4BLtd1/Y2OG3Rd9+i6/i5GsHNMtBonRLR5Q4UsfeEGNXQpq+D1xqJJQgghoiiSwCYFo9jlplQC2ZE3R4jY8oaS7Pl7ENiotlAhTK9s9xZCiEQXSWCzADhjM/edBvwReXOEiK16u42TFvzM22nd56/p0BnY+CSwEUKIRBdpEcwPNU37FWMRcRWQg7HGZluMJH1CJCR3ezvtgQBKUvhr3E2hDMWqJOgTQoiEF0kRzE+BgzGS890CPAbcihEkHarr+kdRbaEQUeRyuQCw2x1hPyYwZjR3rljGN+2yK0oIIRJdpEUwP8QYtbEDmUCjruutUW2ZEDGQVFvL+aPGktWDgpaWnDx+a2xgbHZODFsmhBAiGiJZYwOApmmTgLOBC4F0TdNma5qWErWWCRED9tZWds/OIa8H5RHWlVRwxapZQgghoiSS6t4m4FHgdNbVi3oVuBEYo2nabrqul0S1lUJESbAjyV7HFu4w2P0BdsnMxqaaYtQqIYQQ0RLJiM31wAkYhTHzWVf88jLABNwWnaYJEX3BUC4apQeBjbWlmQvHjOPg9IxYNUsIIUSURBLYnA7coOv6U0Bn8Rxd1/8AbgD2jlLbhIg6JbRlu3MLdxiszmQALIpCMBjs5mghhBDxFElgkwcs3Mx9JYC8rRUJqyOwCbcAJoA92QhsrIqKV7IPCyFEQosksFkJHLCZ+3YP3S9EQuoIbDpy04TDnmqsibepKu4eLDoWQgjR9yLZ7n0f8JimaVbgXYzFw+M1TdsDuBz4R/SaJ0R0qYEAmMBkDz+wsTicANhMJlxtraSmhp+1WAghRN+KJEHf/zAWEJ8KfICxePhFjEXD/9F1/dFoNlCIaHqpvpazFv6GMn1G2I8xdVmP425tiUGrhBBCREsk270zdF2/Q9O0h4EdgSygAfhJ1/W6KLdPiKhqdrtp9Hmx92DUpet6nPZmCWyEECKRRTIV9bOmadfruv4y8HG0GyRELHWskelJSQVFVZlXX0tlbQ0XBvyxapoQQogoiCSwyQBqot0QIfrCfqlpONPSsTY39+hxS4FVDfW4pcK3EEIktEh2Rd0P/FvTtD00TZPiOaLf8Pv97JiWwf55BZh7uG1byioIIUT/EMmIzcnASOAzAE3TNrw/qOt6RMU1hYil9nY3NtWI5Tty04RLs9tJz8zCU18fi6YJIYSIkkgCkOei3goh+oDb3Y41FNjYnM4ePXZP1UzumPEUVVXFomlCCCGiJJLAZg3wRbQKXWqalgncDhwEpAJ/AFfruv5d6P6nMLaWd1Wq6/qwaFxfDB5ut6tzxKYneWwAAqoKfj8+mYoSQoiEFskam3uAmVFsw0vADsBxwHbAAuATTdMmhu6fhhH4FHT52DqK1xeDhMvlwmYyKnQr1vBrRQEEQo/zS+ZhIYRIaJGM2FQB6dG4uKZp4zCKZu6s6/oPodsuBvYH/qZp2s3AZOBWXdcronFNMXi1tzR3vuDVHtSKAgh2BDbt7VFulRBCiGiKJLB5Ang4VELhL6BywwN0XZ8X5rlqgAOB37o8NqhpmgJkAuMBO7AkgnYKsR53SwsdS4Z7UgQTIGg2flUCEtgIIURCiySwuTv0+aTN3B8EwgpsdF1vwCjL0EnTtKOBsRjJ/6aGzneJpmn7A4HQ8dfrut7Y45Z3YTZHMgu3eSaTut5nsWXx6C+vCucs+o1J4ybwuLVnL33FagEg6PVE/bXTHXlthU/6KnzSV+GTvgpfIvRVJIHN6Ki3IkTTtJ2BJ4G3dV1/NzQVFQDWAgdjjOD8B5iqadqeuq4HIrmOqipkZPRsV0y4UlPDz2gr+ra/TBaFeq8Xj9PR45+/xWEsNjYH/DF77XRHXlvhk74Kn/RV+KSvwhfPvupxYKPremHH15qmJWHsZKrVdb1nGc82oGnaocALwE/A8aGbbwLuDY3sAPylaVo58CPGQuP5kVwrEAjS1NTWm+ZuxGRSSU110NTkwu+PKN4aVOLRXzU1DQCYzVbq61t79Ni6/AJe/uYbRmZu1+PH9pa8tsInfRU+6avwSV+FL5Z9lZrqCGskKKJEepqm7QLchRFcKKHbfgau1XX9ywjOdwFGRuM3gBN1XW8HY70NRoHNrv4MfR5GhIENgM8Xmxen3x+I2bkHor7sL29VNacMH0m6aurxNT3ZuXxbV4PZ643bz1deW+Eb7H3V2NjA5ZdfzIIFv7L//gdx4423YrFsel3ZYO+rnpC+Cl88+6rHk2Capu2EkXU4HbgVOB/4F8Zi3481Tduxh+c7D3gQeAg4tiOoCd33gqZpGxba3C70WRYUi55pbOTAvAImRvAuQkoqiP7khhuu4Zdf5uP3+3nvvbeZO/fxeDdJiD4TyYjNv4BvgX11Xe8sdRxaD/MxcDOwTzgn0jRtAsZIzZvAHUBulxINLoypqXc0TbsOI9/NBOBh4AVd15dG0HYxiHUk1+vISdMTzkCAbdPSyXLLriiR2BYt+p2vv/4Sk8nE8cefyHPPPcPTT8/lhBNOISUlJd7NEyLmIlm2PAu4v2tQAxBayPtg6P5wHQVYgMOB8g0+7td1/T3gaOBIjCmouRjTVWdE0G4xyHVs1Q5GENik1NZy1fiJ7BAMRrtZQkTVW2+9we5ZORy1z/5cdtnVjBkzDrfbxUcfvR/vpgnRJyIZsWnGCEY2xUpozU04dF2/HSOr8JaOeR14PezWCbEZnYGNuecve7PDWOFvksBGJLD29nYWfvU5d4wZj9LQiK+hgRP22of2L1Q++fA9jj76uHg3UYiYi2TE5nvgWk3T1iuPrGlaCnANxjSVEAmnM7leBIGNJcnY4i2BjUhkCxcuYKekZFRFIWn8BMxpaUxbtYqZ6ZlYC9fS3Nwc7yYKEXORjNhcjZEpeLWmae8BFUA+RhFLO3Ba9JonRPQEvR7jC8vmBhw3z5rkJMjmhyqFSATzf/qe2VlZAKTvvieKqpIxe1fq3n+X2RlZ/Pzzj8yZE9YSSCH6rR6P2Oi6vhLYEfgSOAC4PPT5S2AHXdf/iGoLhYiSoNdItdTTcgoAtmRjgFICG5HI1v7yC1lWGwGTCefUqQCkzDSWPW6VksrCX3+JZ/OE6BMR5TzWdX0JcLGu6/m6rlsxClXeFrpdiIT0G0Eu/nMh9et23oXNlmxMRVkVhaBMR4kE5HK1kV5XA4B1/ATUUN4a67Bh+Ox27CYTTUv+imcThegTkeSxSdc07VPgqy43zwIWapr2VigbsRAJp7G9nfJ2N5aMzB4/1p5sbJO1qirtUghTJKBly5YyOfQ6zdx2ZuftiqJgmzgJAGddHR6PJy7tE6KvRDJi83/AVsC1XW77AjgUmAncEoV2CRF1brcbALu95zVMHNk5PFG4hrmFayVJn0hIi//6kzFJxpSpY9yE9e7LmjodgLGOJJYtk4F1MbBFEtgcAlyu6/obHTfouu7Rdf1djGDnmGg1TohomhQIcOyQYThber4zxJqczFcNdXxbV9MZIAmRSBYv+Yu///k7f0yciHXo0PXuc4wdC0CaxcJyyW0qBrhIApsUoH4z91UC2ZE3R4jYmayaOHLIMOyNTRE9vmOkR0ZsRCJasuQvXH4/BTvujKKu/6fdOmQon2saly/+g+UrVsSphUL0jUgCmwVsPvPvaYDsihIJqSMHjcUZ2TKwKWnpbJ2WjltygYgE09raQmHhWgAmT56y0f2KqjIidPvKlcv7smlC9LlIa0V9qGnarxg1nqqAHIw1Ntti5LMRIuGYQ4GNNSmywObc3Hwc+UNoq6mNZrOE6LXVq1dzxohRmO12kgObLvI6fryx7mb5cl129okBrceBja7rn2qadjDGIuFbMEooBIGFwKG6rn8U1RYKESUdOWisSclbPG5zfKHPnraWqLRHiGhZvWoFe2TnYlVVgj7fJo8ZoihcN2ESTV4vFRXlDB8+rI9bKUTfiGTEBl3XP8QYtbEDmUCjruutUW2ZEFHk9/uxKsbMa0dOmp7yhaqgedraotUsIaKictlSJqkqPkXBkpOzyWPMZjPTU9No8HpYs2a1BDZiwIoosOmg67obKItSW4SImfZ2N9bQgkqrM8IRm1Bg5JPARiSYtqK1ALSnpGy0cLiDdchQgkC6xcqi5ctg1137roFC9KGIMg8L0d+43W5saseITWSBjV81hmy8LtkVJRKLqbYOAMuQIZs9RrXZaAuVE2lcvbpP2iVEPPRqxEaI/sLlcnH9sr9ItTt4PjuyjAQB1QQBH37Z7i0SiMvlIiO0riZj/JbLhQTS06GqivaK8j5omRDxISM2YlBwu92Uut2UE+ysodNTQZMJAL9bSiqIxFFYuIZhDiPHUvr4CVs81l5gjOiYGxtj3i4h4kUCGzEodCTVi6ScQofC9HSeLFpDrVVqfIvEsXrVSpJNxuC7bQtTUQDpY4wMxKl+v2TQFgNWRFNRmqZlA1cAewMFwL7A4cBCXdffjl7zhIgOd1MTRw8ZRlJaWsTnqMvK5KOqSvIUJYotE6J3ikuKuXbRbxx78GFcnZa+xWPTR4+h0u/D7fdTXFxEQUFW3zRSiD4USXXv0RjZhc8GSoBcjABpAvC6pmkHRrWFQkSBt7GBo4cMY68Ic9iAlFQQiam4uAiAnJGjULoJupMmTeYuVxv3r1lJaWlJXzRPiD4XyVTU3RjZhkcDR2Ak6EPX9ROAd1i/6rcQCaEj98ymU5eFJ1VRmJScgqVZEvSJxNERoAwbNrzbYxVFYWioQGZJiQQ2YmCKJLCZA9yq63oDRsbhrh4DNi5UIkSceVpDgU0vppGG1dZy88StGNskCy9F4pjS3MSV4yYw3Bte2D50qJGYT0ZsxEAV6Xbvzf0G2dg42BEi7nwuI7Dx9yKwUa02AJTNpKwXoq+5XC5GqiampaaTareH9Zht3e1sM2U6K9ZILhsxMEUyYvMtcI2maV3z0gc1TVOB84Dvo9IyIaLIF1oXEzBFvhHQZDcCG9Xvj0qbhOit0tIS8m3G2q/UEaPCekyazc4QuwO1sSmGLRMifiIZsbkaI3hZCXyJMUJzOTAZGAfsErXWCREl/tDWVr9qivgc5tDiYUUCG5EgSgrXkh/KJmzNzwvrMcnDhhFYugR7e7tU+RYDUo/fvuq6/hcwE/gC2APwY2z7XgnspOv6wmg2UIhoCLQbSfU6kuxFwhxKgmYKBKLSJiF6q3rFclRFwQOYUsNLZZA12shlk2EyUV9fH8PWCREfkVb3XgGcEOW2CBEzJTYrzy/9i30POpRIS/9ZkpIAMAXkXa5IDC2lxQC47fZut3p3SCooACDXaqOoqIiRI8fHrH1CxEOkCfoUYAbgZBOjPrquf9O7ZgkRXU1eHytbW5iTnh7xOToCG7OsjxcJwlNdDUAwzNEaAHOWUSst1WKhaOUqCWzEgNPjwEbTtFnAq8Cw0E0dbxOCoa+DQOTj/ULEQDRKKtjyhzCvpAiXycycaDVMiF5oaajH5XBiz80J+zGmpCTaFQVbMEjd2jUxbJ0Q8RHJiM29gBc4FSPzsCw4EAkvs7mZg/IKyG6PvD6OIz+ftyrKsFojK6IpRDQFg0FeXr2SZz0e3rvp1h49tikpicaqSmorq2LUOiHiJ5LAZhvguGjVhNI0LRO4HTgISMUo13C1ruvfhe6fAdyPsWC5FnhA1/X/ROPaYvAY6nZz4PCRVNc3RHyOjtEej8eD3+/H1IuFyEL0VkNDAx6PB4C8bopfbqhohx24887bOGD0iFg0TYi4iiSpRxXRHaV5CdgBOA7YDlgAfKJp2kRN07KAT4HlGIHNjcCtmqadFsXri0FA8RlbtNVQLppI2CwWRjmSmOBMpr0XIz9CRENlZQUAWVnZWCw9G0XMyzMWEJeXl0e9XULEWyQjNg8DV2ua9oWu6629ubimaeMwtorvrOv6D6HbLgb2B/4GuIB24Dxd133AUk3TxgNXAU/15tpicFH9PjCZMdnCy866KRa/n7u2mgaAq62NpCRnN48QInaqykq4a/JU2q02Ah4Pag+mSPPz8wEoKyuLVfOEiJtIApvxGMn4KjRNWwy0bXB/UNf1cNdW1gAHAr913KDrejC06yoTGAN8EwpqOnyBkfk4V9d1mSAWYVEDATCty0UTCVOXlPWupibIDn/BphDR1lBUyMQkJx5AsVh69NjMNhf3TZlOvdeL1+tFUWRaVQwckQQ244CFXb7fMHlC2MV4QoU0P+h6m6ZpRwNjgY+B24A/N3hYx1uMERjTYhExmyNPrb8pZa0mntGhwG5hapaPgmTZErwlplBpA1MvShz06HqhpHrWpKSIf/ZBdd00ls/dFvXX0Ob0dV/1Z4Opr9oqjGkkt9WCxdKzwCQjJ5shdgc2VaW2tob8/IJYNHHAGEyvq95KhL7qcWCj6/oesWgIgKZpOwNPAm/ruv6upmn3YkxFddWxuCHiOQVVVcjIiO40wr2L4JlFAFbAyrBU2HEY7DTM+FyQEtXLDRipqZGPoPRExws9LTu9Vz97TyCAVVUxB71Rfw11p6/6aiAYDH0VqK8DIJia2uPXonPscAqBDIuVpsYaJk0aF4MWDjyD4XUVLfHsq0ire0edpmmHAi8APwHHh252YVQM76ojoIl4fU8gEKSpacMZtN45UVNRcPBzSQC9TqGkSeHVJfDqEuP+ESkBdhziZ4cCP9vl+0ke5DuGTSaV1FQHTU0u/P7YZwwwh2ri+DBTXx/50jAvRuhaW1nbq/P0RF/3VX82mPrKXxcqh5Ca1uPXYjBgxk8Qk6JQuHgZE7SpMWjhwDGYXle9Fcu+Sk11hDUSFFZgo2maH9hR1/WfNU0LwBZTrwZ1Xe9RwKRp2gUYW7rfAE7Udb1jlKYY2HAfY8f3pT25xoZ8vuh2eI4dbt4d6utdNLkCLKw28WuliV8rzSyrVylqVinSVV7WLZiUIFtlBdg+38f2BX6mZPnpo1mNhOP3B6L+s9iUJ4rWYg8G+b+Ro3t1PW/os7u5uU/a3VVf9dVAMBj6yuJygd2BNSc3oufqUk0kBwLUFxUP+L6KlsHwuoqWePZVuAHILRjJ+Dq+jtoCEk3TzgMeBB4ALtV1vWtPfAOcq2maSdf1jpLKcwA9kRcOJ1lgpyF+dhriBzy0eODXSjPzK0zMrzBT1KzyR42JP2pMPPEXOM1Bts3zsX2+n+0LfIxMCRJm2RcRBr/fz4qmRgCSQunkIz5X6AfjdUV3xE+InggGgySH3g2nDhse0Tm8dju0tdEW2jYuxEARVmCj6/rNXb6+KVoX1zRtAsZIzZvAHUCupmkdd7sw1ttcCczVNO0uYBZwCXButNrQF5KtsPtwH7sP9wHtlLcqzC83Ap2fK8w0ehS+KbXwTamxsyEvKTSak+9nVr6fDLssRO6Nrjln7PbIt3sDLDKpVBUXsb2aMLO4YhBqbm7G7ffi9vvJGz0monMoqanQ1oa3ri7KrRMivsKdiupRQeQeFME8CrAAh4c+unpG1/VTNU3bF2M0ZwFQDlyh6/ozPWlPoilwBjlsnJfDxnkJBEGvV/kpFOgsqjZR2abyzmor76w2jtcy/J3TVjNy/NhkZ2aPuN1u9svNwxsIYgn2LkhcluTgq/JStpLdESKOqqoq+NfyZaSnp/OlNjGic5gLCli5aiXV7RKki4El3Ff0V6ybftrcJEmPi2Dqun47RjmFLR3zC7BjWK3sh1QFJmUGmJTp4bStwOWD36uMKav5FSZWNpjQ642PeUvBZgoyI2ddoDM+PYAq01Zb5Gpr4/QRo41vvN4tH9yNjhEft1syD4v4qaysBCA3Nx8lwnnrlH325fQnHiEzM4sro9k4IeIs3MAmZlu8xfoc5q7rc6DGpfBzxbpAp8alhr42w0LIsAWYlb8u0MlLkmmrDblb1+0YUW2Rl1QASLdYGeFIwh9asyNEPHSUU8jLy4v4HHl5RvbhurpavF4vlh4m+RMiUYW7xubrWDdEbFq2I8gBo30cMNpHMAirG9XORcgLqkzUt6t8XKjycaHxR2lUqt9YhJzvY5s8P8nyt4r2lqbOF7rSy8rcM5tbOGKraegVsuBSxE9g2VLumjyVNmvkgXp6ejoWiwWv1ytJ+sSAEtHkqqZp2cAVGHWeCoB9MdbILIxW1W+xMUWBsekBxqYH+NtEL14//FFj6gx0ltaprG0ysbbJxMvLrZiUIFOy/czKM4KdKdmDc1t5e0sLZsAbDKKoveyA0LvaoGfDvJFC9J1AbQ2jkpxU9LD45XrnaGnh3q2m4UShuqpKAhsxYPQ4sNE0bTTwPeAAvgWmh84zAfinpmmH6rr+flRbKTbJYoJt8/xsm+fn/OkemjzwS8W63VYlLSqLqs0sqjbzxF+QZA6yba6fWfk+dijwMyo1MCi2lXtaW3EC3ihkKVA6A5verdURoleamwEwp2dEfApTUhLZJjOqolBWXATTpkerdULEVSQjNndj1GjaHWgBPAC6rp+gaZoDuBaQwCYOUq0wZ4SPOSOMbeWlLcq6QKfSRGO7yrdlZr4tM37sHdvKdygwgp303i0/SVie0BobX/hlzDarYyor2MtFyEL0hsXdDlYrjtzI19goZjMuk4ozEKSptKT7BwjRT0QS2MwBTtd1vUHTtA13Pz0GvNL7ZoloGJocZGiXbeXL61V+rjDxU4WZhVXrbytXCDIpM8AOBUagMzXLTw/r6iWsjmR6vigMT6mhNQ2Kz9fNkULETpLf2FyQOnRor87jsdlwuty4qxM236kQPRZpAoPN/VW3EcWsxCJ6VAUmZgaYmBng5Mle3D5YWG3ix3IzP5WbWNVoYkmd8fHkYmPaamaeEeTskO9jeD/OhtxstfGv5UuZMm06O/TyXB27qiSwEfHS2tpCmsl415E5clTvTuZ0gsuNr16S9ImBI5LA5lvgGk3TPmNdpe2gpmkqcB7G+huR4OxmjKClwHjnV92mML/CCHTmV5hoaFfXy4Y8xLluNGe7PB8p/aiIZ2vAzx9NjRQ4k3t9LrPDyGOjBPzdHClEbFSWl5MeWuuVUrBhKb2eMWekQ00tgdCaHSEGgkgCm6sxgpeVwJcYIzSXA5OBccAuUWud6DM5SUEOGuPjoDG+zmmrn8rN/FhuYlGNibJWlTdWWnljJahKkClZoUAn38fkrEBC77bqSKbX23IKAOTm8XZ5Gf6sLA7u/dmE6LHqkmJa3C4ybHZMKSm9OpcjJwdWrMLkckWpdULEX48DG13X/9I0bSZwE7An4MfY9v01cLKu639GtYWiz62btvJw6lbQ5oUFVSYj0KkwUdhk6izi+fifNpItQbbP97HTEB87D/GT7Uis2UhTfT17ZucwtJflFABMw0fwfGkR4xwDdKW1SHgVjQ3cuPgPdtppNv/tZfqC1JEj+OPTzyhrl/QFYuCIaI2NrusrgBOi3BaRoJIsMHuon9lDjemXjiKeP4W2lTd5FD4vtvB5sTE8rmX4O4OcKVnxz52TWlfHuaPGUtLa+4rcUlJBxFtVlVFOoSNzcG+M2HsvDrrsHwBcJNmHxQARaYK+MYBd1/UlmqalA7cBw4FXdV1/NortEwmoaxFPfwCW1ql8X2bm+zIzS+rW1bZ6ajGkWoPsUOBjpwIfOw3xkxmPSuUej/HZ3Ptif3azhRyrjRRZPCzipKOcQm4vtnp3yMjIwGw24/P5qKurjUqwJES8RZKgbz/gbeBBjLU1jwJHAn8CT2uaZtV1fW5UWykSlkmFKdkBpmR7OGeahzq3wo/lJr4vM/NTuTGa80mhhU8KLZ1bynce4mPX4QF2TuubNga9RmCj9rKcAoC1sYGHp21NdUewJEQfG1lSwl2Tp2Jp7/1rUFVVsrNzqKgop6qyUgIbMSBE8hb2BuAT4GZN09IwSincoev6DZqm/Qu4GJDAZpDKtAc5cLSPA0f78AVgce260Ry9ft2W8if+gkwH7JBvY6cCLzsUxDBBoNcYXVF6WQATwOZMxgtY++ved9HvOVwuRiU5aXE4en2uYDDIDUOGk1IwjLqitZJ9WAwIkQQ204FDdF1v1jTtmNA5Xgvd9ylwWbQaJ/o3swrTcwJMz/Fw/nQPNS6FH8qM0Zz5FWbqXAofrDHzwRpz506rXYb62HWojzFp0Sv30JFzpreVvQHsKSm0AFZVlYrIIi4cPh9YrKQM6d1WbwBFUbCbTNiCQZrKy6PQOiHiL5LAxtXlcfsDlbqu/xH6Ph9oiEK7xACU7QhyyFgfh4z1EVRV1ridfLjUw3elJlY0rNtp9fAiG0OTA+w61Mduw3zMyOndAmQ1lKU1WoENgE1VcblcEtiIPuV2u0kL7YTKGDEqKuf0WK3Q3o5Lsg+LASKSwOY74HJN0zKBY4CnADRN2xa4MXS/EFtkUWH7oTAhycvfp7dT2abwXamZb0vN/FxhorRF5UXdyou6lRRL0FiXM8xYhJzcw6Uyqt8PJhNme++H7q1JTuOcioK7tYXU1NRen1OIcFVWlpMRqujd23IKHYJJSdDejkeyD4sBIpLA5lKMIpfPA0uAf4Vufx9ow0jgJ0SP5CUFOXK8lyPHe3H5YH65ma9LzXxXaqK+XeWjQgsfFVowKUG2zfOza2jKakhy97usPm9r4b2qSs445rhet9PUZdTH3dwMBb0+pRBhqy5cS6qqEggGsfSisndXamoq1NcTaGqKyvmEiLdIEvSt0TRtKyBX1/XKLncdBvyu67pkehK94jDD7sN97D7chz8Af9WqfFNq5psSM2uajNw5P1eY+c9vMC7dCHJ2H+ZjUuam1+WsaGmmtL6O8/N6vz1WMZvxB4OYFIX21pZen0+InmgoLiIVaFMUlCikLwCwZWZCYSEml+RmEgNDpAn6gkDlBrf9pGmaU9O0PXRd/ygqrRODnqnLAuQLZ3goalKMIKfUzMJqEysbjI8nF9vISwqw53Afew73MS3bjym0LscVShfvcCRFpU3ftrbQ3NLMPl7JZSP6Vn1NDYqrDUtaetTO6czLIwjYvJLCQAwMkeSxGQk8BuwGbG61g6k3jRJic0akBjkx1cuJk7w0tMMPZWa+LjHzQ7mZyrZ163Ky7AF2G2YEOVtZrPgysrBHqfD8R552VpcUsasSu2SDfr+f7777mpSUVGbNmhWz64j+ZWVbKy8v/oMzzzyXXaN0zvRRY/iltYXC5ibZ6ScGhEhGbO4FdgIeB3bGWFfzI7APMBU4ImqtE2IL0m1wwGgfB4z24fbBTxVmviw2pqxq3UbRztdXWHg4r4BMq5VlxT5yxxiVzXvDEcof4opR4cBgMMjVV1/Gp58aA5+XXXYV//jHRTG5luhfKiujV06hQ96sWdywYhk+n48TJfuwGAAi2US7G3C9rusXY+yIatd1/SpgJkYhzEOj2D4hwmI3w+7DfNy8o5tPjmjhoT3aOHych0xzG9bQ9tgH9Bz2fiOZq7+z80mhmVZvZNfKdCSRbbXiitFiy2+//bozqAG4//57KCkpicm1RP9SVWWUU8iLwnqxDqqqkpWVHTq/bPkW/V8kgU0ysDD09RJgBoCu637gYYyK30LEjcUEOxT4uW5WOy/MqcYeCmxS05Jx+RQ+K7Jw7fcO9nkjmSu+tfNpoRl3D5bLHK2q/HfaNqjFxTFp//PPzwPgtJNOY7uZs/D5vDz//PMxuZboXw4OwF2Tp5Ib5YW+2dk5ANRILhsxAEQS2JRjJOIDWAlkaprWsem1DojeWwkheqm9rQVzKLCZd2iQZ/Zt5ZTJ7QxPDtDuV/iy2MI13zvY6/Vkrv3ezlfFZtr9Wz5nwGQsIfPFYCqqtraGX375iTnZuey/fAX/sDnQkpN54403CAbjUEBUJAyv10OeycSoJCcZmVlRPfc5zhSe22YWLatXRfW8QsRDJIHN+8CtmqbtpOt6MVCCkbAvBTgdKI1mA4XoDVdTY+fXqs3KVlkBLpzh4Y2DW3luPyPIGeIM4PYbxTov/9YYybnhBzvflZrwbiLICZqMRTqxCGy+++4bCqxWzhw5Gvw+TO3tXDJ2AlVlZaxcuSLq1xP9R1VVFZmhQq7pw4ZF9dw2sxmrqtImIzZiAIi0COZM4BZgL+Ba4BngktD9f49Ky4SIAndLMzYgEAyimNft9lAUmJgZYGKmhwume1hcq/JpkYXPiozdVR+stfDBWgup1iB7DPey9wgfM/NCpR0sFnC78bdHP7BZsOBXDswrwKQoOCZOgmCQv1YuB+Cnn35k9OhxUb+m6B+qSopxhoJqS0ZmVM8dcDjA48FTJ9mHRf8XSYK+WmD7juknXdef1zStENgR+FnX9a+j3EYhItbe0oIN8BJE2UxVTUWBKdkBpmS3c/HW7fxRY+KTQjOfFxm7q95eZeXtVVYybAHmjPAxXTECJH979HNR/rHgV27MygUg66BDSJo4Cdu8J/HM/4GffvqB448/KerXFP1DXeFanIA7GES126N6biUlBRobCTRL9mHR/0W88VXX9XJN0yYCGUC5ruv/jl6zhIiONmDuquWMGD6CqWEcryowI8fPjBw/l23Tzu/VRpDzRbGZ+naV11ZYSW6zMxaobvCytlFlVFogKm2tqqokvamJpLwhmNIzcEzQANhuOyOPzaJFvxMMbj5AEwNbc5kxy++KUsbhrqwZmVBSgilGKQyE6EsR/YZomnYGxpTUsC63FQPX6Lr+YpTaJkSvtfl8/Fhfh3dsz6dwTCrMzPMzM8/PlTPb+bXSxMeFFnw/2MAHLS4fR73vZFKmn/1HedlnpI9sR+QLfBcv/os2v4/FXg+zt98eJbToeWxePrvm5FLW1kZZWSlDh0Z3fYXoH9zV1QD4HL0v5rqhpFxjlNDqkezDov+LJPPwBcADwFvAdUAVxi6p44HnNE3z6br+aiSN0TTtemAvXdd373LbU8CpGxxaquu6/HUX3VpXTqF3/wzMqrGFfIcCP58syOLTj36iPHUYJiXI0joTS+tM3Pd7kO3zjSBn92E+knqYwHX58mXoLS0sGDGCw49eV7Cz+csvuGDkGD6rrmTJkr8ksBmk6pubKHK1YR8+POrnTikYQivgxMh6bTJJ8njRf0WyK+pi4CFd14/Qdf05Xdc/0XV9nq7r+2Mk7LspkoZomnYJxoLkDU0Dbseoo9zxsXUk1xCDj6++ju0zMhlp3lz1j55Txo/jiaI11FtdfHR4K1fOdDMt208gqPBjuZkbfjR2Vl3/vZ3vy0z4wpypWr58GQATQlNQHZImTABgYnIKS5YsjtrzEP3LD/V1XL74Dzy7RKuYwjoZo0azsrWFwrZW6upqo35+IfpSJFNRw4B3N3Pfi8AJPTmZpmlDgf8BuwD6BveZgMnArbquV/S8qWKws1ZXc9nYCVRGcaFvRzHNtrY2MuxBjpng5ZgJXoqbFT5aa+HDtRaKmlU+KrTwUaGFTHuAfUf6OGSMl/EZm49ySlesIMdqY8L49QMbx/jxAAxzJPHO4r+i9jxE/1JZafwJzM2NfsmDpFGjuae6kpqaavaoqSYnJzfq1xCir0QyYvMLMGcz920N/NHD820D1GOMzMzf4L7xgB0jw7EQPeZ3Gxlag1FccJlkt+M0mcDVtt7tw1OCnDXVw+sHtfL0Pq0cO8FDhi1Andsoznn8h05O+DCJl3QLDe71FwC3trYw2u3m4Wlbk//rL+vdZ05OQckytvf6yyRN1GDk8/moqTHW2ESznEJXHdmHq0NreYTor8L6a69pWtexzxeBe0MJ+V4BKjB2Ru0HXASc05MG6Lr+LqERIE3TNrx7KhAELtE0bX8gAHyAUauqccODe8JsjiSm2zyTSV3vs9iyvuqvYMdiSIs5aj/z5NISntp6O3S3a7PnnJEPM/K9XD7Ly49lJt5ZZebrYhN6vQn9N2M9zm7D/Bwy1sdOQ/2sXbuaMUlOAFJHj17vvCaTStr48TTUzifD56W1tYm0tPSoPJeBZqD+HtbU1HH3pKn4CZKuROfv14Z9lZOTw7JlUFdbHfW/j/3dQH1dxUIi9FW4b2O/wggwOijAecC5G9wG8BIQ0eLhTZiCEcysBQ7GGMH5DzBV07Q9dV2PaJ+tqipkZDij1MT1paZGf8fCQBbr/lL9RqVLs90etZ95Rk4G9YA5GAzrnIdmwaFTod4Fby+H15bAn1UKnxcZuXJykmBiZSkHOo1zZW+lbXTetPHjaPhpPqMcTqqryxg1amhUnstANdB+D1ctr2FoaAF8ztBcLKnR+/vV0VdHKyrnbDOL1cVrY/b3sb8baK+rWIpnX4Ub2OwR01Zs3k3AvbquN4S+/0vTtHLgR2A7Np66CksgEKSpqa37A3vAZFJJTXXQ1OTC749OXpOBrK/6yxsqFhgwmamvb43KOQMmGwAWoK6upUd5ZQ4dYXysqFd4d5WF91abqW5TqF6wkrPtxh+CN+qGsFdFK2nGZTCZVJyjRwEwKimJhQv/ZNy4yVF5LgPNQP09XPvXMgoAXzBIs09BicJrecO+soTKKrSUV0Xtd2WgGKivq1iIZV+lpjrCGgkKK7CJVzZhXdeDQMMGN/8Z+jyMCAMbAF+4W1V6yO8PxOzcA1Gs+yvoMUZsFKs1atexOFMAsKsqra0u7BFkgR2dAhfN8HP+NPihzMQTn6zEZFZwYeLWpQX833LYfZiPw8d52WFogDRtAr8MG8rTH7zHPitWymusGwPt97C+qJgCoM1kwu8Psv4Aeu909pUzBZqa8TU2Dqi+i6aB9rqKpXj2VViTYJqmfaNp2oyenFjTtJmapn0XUavWneMFTdM+3uDm7UKfZUGx6JbiMwIb1Ra9FPSOtDQA7KqpM09OpMwq7DrMzxhPKKtsSgZaZgBvQOHTIgvnf5HEIW86eHRJMv7JW1PtaWfNGqnAPNi4QsUpvTZbzK5hyUgHQG2L7mi2EH0t3Kmo+4GPNE37FXgOeEfX9Y1e/aEFxftiLCDeGji/l+17AXhH07TrMNbuTAAeBl7QdX1pL88tBoEFnnZ+LC3hiP32i9o5zUnGdm+7yURbWysZGRm9Ol8gEMDS1ARJyWSPLOD5/dtYVqfy9iqjEGdJi8q/fwSldCsAlixfiS9gBEVicPDVG8Upg8kpMbuGI7QryuKV7MOifwt3Kup1TdO+xiij8D/ArGnaEmAN0AqkA8MxFvt6Q8ecqOt6ZW8ap+v6e5qmHY2R4fg6jGmpF4Dre3NeMXisdrWxvKaao4dEL1tvx+iPVVVpa2nu9fmqq6v4s6EOm6Jw1pnGpkKj8rhRlPPLUivvrLFRU2VmasFQSlxtHPSayiGamUPHehmaHL1pCZGgWlpANWHpZRC9JSn5BbiBpEBAapKJfi3s5B66rtcAF2madjNwFMaC4jFAGlADLMUY2Xk3VAG8x3RdP3UTt70OvB7J+YRYV1IhKWrnVO12FrS1Ut/aws6tvV9kWVi4Fr2lBXdWNlfssON699nNcPBYHyfPtPFT40r8Q4fzfW0Nv1WU8KRP48nFNmbl+zh8rJfdhvmwSib8Aam6uZkiq5X8obHbDZc+bDgVQJrJTGNjA+npsQuihIilHmctCwUtj4U+hEhow4NBMlPTiObGQ8Vs5jWPm5WFa9g6CkUDi4oKARg+fOQWjxsyZgjFwBCHg5MLlrM8ayzzK8z8HPpItwU4cLQR5ESr4riIv0AgwAtrVjLP5+Oju++P2XUceXmsdrkoa2tlSE21BDai34peOlYhEtCR6ZkMzx+KpaE+qudNCq2z6e3iYYDq0hK2SklldDdp7K0FRir9ApudKtcaHt7TRWmLwjurLLyz2kK1S+X5ZVaeX2Zl21wfR403inFaZBSnX6urq8Xn86GqKllZ2TG7jiUrm/+1t7FyzUomVVczbtyEmF1LiFiSwEYMWMFgEGtonYAtJbqLLpPsSSSZTLS1tPT6XO2lpdyoTcZdueUladbsHAKKgt1kombtGgCGJgc5b7qHs6Z6+LHcxBsrrXxfZuK3KjO/VZnJtAc4dIyXw8d5GSJrcfqljhpRWVnZWCw9LBnfQ9nZOaxcuYLq0C4sIfojCWzEgNXe3o5NNbYO2VPSonruU1HI3Ho7VpWV9Ppc3roaQCXYTfClmM14k5zYWlto3+C6ZhV2Gepnl6EuKloV3lpl4a1VFmpcKk8tsfH0Eis7DfFz5DgPOw/xI5nh+4/qwkKenDGTFlUlGAigqLH74XXUi6qRwEb0YxLYiAHL5XJhV415GEdaalTP7VdVCATwRWHxME3NkJqGOTOz20PVnGxobSFQV7fZY/KdQc6d5uHMKR6+LjHz+koLP1eY+b7M+MhLCnD4OC+HjfWS7ZBRnETXWFLEELMZRVFiGtQA7OVyc9w2s1i0enVMryNELMn7NjFgtbW2YDcZgY3FGd3aN/5QtXBfL9fYBAIBbO1G2YekvIJuj3cOMXbF2N1uvF7vFo81qzBnhI//7unijYNaOHGihzRrkMo2lUf/sHHgW06u/NbOzxUmAhLfJKy20BSlx2qN+bVsdjtWVcXf1Ksaw0LEVbjVvU/uyUl1XZ8XWXOEiB5XU1Pn19HMPAyAxQxuCLjdvTpNXV0tmWZj3UTq0O5z7RQcdCjHPf0EJc3NHF1RzvDhI8K6zojUIJds085509v5vMgYxVlUbeaLYgtfFFsYkRLgiHEeDhrjJT12yW1FBDx1RvaMYJSD800xpaVDZSVKNEYihYiTcKeinu7BOYOABDYi7tzNTViBQDCIEuVFl0GL8e450N7eq/OUl5eTFXonbsvJ6fZ4W24uSnYu3qYmiouLwg5sOh9vggNG+zhgtI8V9SpvrLTwwRoLRc0q9/1u57+LbOw1wscxEzxMyZYt44kg2NQEimoEHTHmyM6G5TqWXr6uhYincAOb0TFthRAx4PL5eGrtavJycrgyyllUlY6aPb38B1BZWU62NVQtPCsrrMcMHTqU1atXUlZW2qtrj88IcNV27Vw4o52PCi28tsLC8noTH6w1SjlMzvRz9AQPe4/wYZfVeHFjcrkgyYk9d8vpAKIhOb8AL2D3S/Zh0X+FW1KhMNwTapomvwkiIbT5vHxeU8VWeXlRP3dnYNPLujrlZWV8VFrMrImTGZvd/YhNMBhkd3sSk0eOoaq4qFfX7pBkgSPGeTl8rJfFtSqvrrDyaaGZJXUmbv7JwX2/G1vGjxovW8b7WjAYJMnvByBlyJCYXy992DCqgTSTidbWVpKTk2N+TSGiLaL3YZqmHQfsBliBjkBGBZzAjkD0CvMIEaHW0DoBZwzWJgSyc/hhwW80ZvcuYVplVQWf1VQxZMxBmBzd50dWFAWtpYWpObm8U9r7rebrnxumZAeYku3mkq0V3l5ljOJUtKnMW2rj2aVWZg/1c+wED7Py/ajyFibm6uvrqHC5SDObmTV6TMyv58zNoxrIsFqoqamSwEb0Sz0ObDRNuxG4EWgMPd4b+sgBAsAT0WygEJHy1NcxNTWN4bZoFlQw+CdM4L5HH2Racu9qUFVUlANQUND9jqgOgdRUqK3FV1vTq2tvSYY9yKlbeThpkodvy8y8stzYMv5tqfExIiXA0eONxcYpsd+sM2hVVlbwRNEasrNz+GzylJhfz5yeTqHXQ0VLCxMrKxk1KvbBlBDRFsl271OA54BM4F6Mopd5wHZALbA4es0TInKm8nL+OWESu/l8UT+302m8k21tbevVedwVFUxKTqEgNfwEgpbQImO1qfeVxbtjUmH3YcaW8dcOauG4CR6cliBFzSp3L7Cz/5vJ3P6zjZUNkjkiFioqjKzDeXn5fXI91e7gJbOJu1ctp6YuolrGQsRdJH+NhgLP6roeBH4DdgLQdf034DbgzOg1T4jI+UM5ZoLm6K98TU5ORgE8bb3bFjvW7ebmiVuRv3Jl+NceOtz47PPi7eUan54YlRrk8pntfHhYC1dv52ZMmh+3X+GNlVaO+8DJ2Z85+LTQjE82U0VNZWhEr68CG4CcUOBcU1PdZ9cUIpoi+YvfirGlG2AFMFrTNIeu6y5gIbKDSiQIvzsU2MSgvo6jopyXZ+7A2l4k6PN4PCSFRpOSQ4n3wpE6YgQuINdmo7KykmHDhkfchkgkWeCo8V6OHOfltyoTry638FWJmQVVxkeOI2AsRh4nmY17y7t6FU/OmEmzv++ixc6yClVSVkH0T5GM2PyMMR0FsArwAXuFvp8ESAIEkRACbuOlqMQgY6sjVHvKohjZgyNRWVnRmcMmpQeBjSVUBTzXaqe8vHdbvntDUWBmnp87d3HzzqGtnDmlnSx7gGqXymN/GpmNr/3ezsIqE0GJbyLSXlNDstmMwxzb4pddzWps4vltZpETpV13QvS1SAKb24FjNU17V9f1doz1Ns9omvY6cDfwcTQbKETEPKHAJtpZh4Gk9HQAHKoJlyuydTYVFT3PYQNgCe3EyrZaKS2J7s6oSOUlGfWp3ju0lX/t5GJ6jg9/UOGTQgtnfpbEiR8l8c4qM+3+eLe0fwk0NQBgSo9uEdctsSU5sagqtEj2YdE/9Tiw0XX9G2Am8HLopguA14CJwKvARVFrnRC9EPQYtZRM9ugHNvYUo6imXVVpifAfQEV5WWdgY84MP7Axp2fwQUE+py38lfLQGoxEYTHBfqN8zN3bxfP7t3LoWA82UxC93sQt8x0c+JaThxdZqWyTveLhMLUZU522MHIcRYs9FGSb23tXLkSIeIloVaWu638Af4S+dgNnR7NRQkSD6vMaqejDyA/TUx3ntJtMtLQ0kxdBEsDakhK0ULVmc0ZG2I9TVBXniFG0BwKUl5f1+Lp9RcsI8M/tjczGb6+y8upyIyfOU4ttzFtiZY/hPo6b4GV6jh9JcLuxQCCAI7QGK6Ug9sn5Ojjz8ggAthjsJhSiL0SaoC8N2BMjId9Goz5SBFMkgt/dLn6vqeagAw6K+rlVuzHSoioKbY0NEZ2jJVQSod1sRu3hAuchoSy0vS2r0BfSbXDKZA8nTPTwTamZl3ULv1WZ+azIwmdFFiZk+Dlugod9R/mwmeLd2sRRX19HZmhHX/qIntUE6420ocOpB1JVFbfbjT0GI55CxFIkCfr2x5hy2lxmMimCKRLCn81NFFVWcOSoUVE/t2JdVwK7taE+onMU1tXw+NrVHHTgIT1+7PD2ds4ZOZri+siuHQ9mFfYc7mPP4UYBzpeXW/hwrVGf6pb5Dh5YGODwsV6OHO8l3ymrjY3F5cbrzJ4T+zpRHVLyC6gHMixWamqq+3zXnRC9Fcni4TuApRglFcZibO/u+iGpKkVCaGszFvUmJUW/pIKiqujBAD/W1XaWbuip1ZWVfFZThW2HHXv82NTWNubk5DHE58fv738rcsdnBLh++3beP6yFC2e0k58UoKFd5aklNg59x8lV39r5fZDvpqooK2NVWwtVgQDmjMw+u64ltDA+2Wymujyx1nAJEY5IpqImAofquv5ttBsjRDTlBQJkOJNJikGCPoCPHQ6+++1nboowsKioMNbH5OeHX06hQ9qw4VQDWRYL1dVVEZ0jEXSdpvq21MxLoWmqz4stfF5sTFMdO8HDviMHX4Xxqpoq/m+Fzpw5ezO7D2s2qU4nhYEAFY31DKmq6LPrChEtkfypKARSo90QIaIpEAhw1pBhDLE7sEW4BqY7ycnGSFBLS0uPH9vc3MwIRYXkFHJTe/7rZA1lh82x2igvL+u3gU0Hswp7DPexR2ia6pXlFj4ITVPd2mWa6qhBNE21rpxC3/5sFUXh48x0PlvwM1c1NfbptYWIhkinom7UNG1UlNsiRNS0tbVhC+04sqfEJgeI02mUVWhr6XnNpoqKMk4YNoKbJ25FYO3aHj++Y3t4ttVKWVni7oyKxPiMANdt384Hh7Vw0Qw3+UkBGttVnu4yTbVgEExTrSun0PMdd73VkX24ulrKKoj+J5IRmxMw6kWt0jStGtgwO1lQ1/WxvW6ZEL3Q1taKXTW22NhTUmJyjd3q6jl25g78HkFgUV4eWXK+Dh2PSTKbqSwq7PHj+4M0G5w82cvfJnr5ttTMy8st/FrZZZoq3c+x2sCdphpbVcWTM2biren7YpQdgU1dtZRVEP1PJH8OSkIfQiSs1tYWHCYjsDElRT+PDdC5RTsQQebhqvIypoQe35PkfJ3XttnwmM1YfT5aSot7/Pj+pOs01coGlZf10DRVw8bTVMP6LkFvzJldLpKdyXj6cH1Nh0k1tbywzSx+q6zs82sL0Vs9Dmx0XT8tFg0RIpraGhqwhLK+qfbYBDaKzRhxCbp7nqG1vrgIVVHwKwqmCEeU/E4nNDbiGkTTBePSjWmqC2a08/YqC6+usFLeakxTzVtqZc/hfs6eBeNj8yPvM4FAgKTQovSUocP6/PpJKSmYVRVzBK9tIeItkjw2W8oUFQBadF1viLhFQkSBq7EBC+APBmNSBBNAdRipnBSPp8ePdVUaC0M9NhtKhGl32w84iLOvuJiCESMjenx/1jFNdUJomuql0DTVZ0VmPiuCCRl2jpngZb+R3n45TVVXV0tmaEQvIw4/36TQuh7JPiz6o0h+5ddiJOHbLE3T6oD7dV3/VySNEqK33I1NpAIeiDhw6I7ZaQQ2qtfb48f66mpBMRGMYEdUh4IJGu2BABUV5QSDwZg9z0RmUmH34T52D01TvbrCyvtrjN1U/5pv4sHfbRw2zsPR/Ww3VWVlBdkWIyC35/RdnagOaUOG0QQkA16vF0sPM2MLEU+R7Io6BeP/xSfAacD+odvexQh4bgGeBq7XNO28npxY07TrNU37aoPbZmia9rWmaa2aphVpmnZ5BG0Wg0yL38+84kLmq7H7Z29ONqaQTJG8q202dlJZMrMjvn5+fj6KouB2u6mvr4v4PAPFuPQA/9zRw/wz4JJtPBQ4AzR6FJ5ZYuOQd5xc8a2dXyv7x26qqpLizvxLkazB6q20oUMBSLdYqKvr+8XLQvRGJCM2xwMvbWKtzXOapj0CbKvr+iGapjUA5wGPhHNSTdMuwQiKvulyWxbwKfAWcC6wA/BfTdNqdV1/KoK2i0GiJeDjvcpydp80OWbXsIYqfFsCgR49zu/3801ZKaV1dVx62hkRXz9YU8NFEybR0NZKWVkZmXH4B5iI0u1w6hQvx09oX2+a6stiC18WWxib5udYzcv+o7w4EnSaqq5wLUMBt2IsFO9rlnSjKGuq2UJ1ZSV5efl93gYhIhXJiM3uwAubue8NYE7o6+8wSi5skaZpQzVN+xD4F6BvcPfZQDtwnq7rS0PBzL3AVRG0WwwiHWUOnM7ol1PoYM/LY2FjA6tae5agr7a2hrUtzXxZV0P+9j0vp9Ah0N7Ozimp7JiR1S+KYfa1jmmqR+e4eOmAVo4Y58FuCrKq0cTtP9s54M1k7ltgo7Ql8abwqquqWNBYT31ybFIVdMeUkkIgGERVFOpKBvauOzHwRBLY1ALTN3PfdKAp9HUyEE4RnW2AemAaMH+D+3YBvtF1vetY/xeApmla31WFE/2Ot76esU5nZxHBWEjbagq3r1jGs2tXE+jBqE1FKPFabm4e5l6Ue+iYosi0WqkY4Fu+e2tceoBrZ7XzweEtXLK1m6HJAZq9Cs8ts3LYO04u/drB/IrEmaZaXlfL/63QKd9++7hcX1FVCs1mfqqrpb528Oy6EwNDJH9Vnwdu0TTNC7wGVAG5wBHATcCjmqZlAJcAP3V3Ml3X38VYn4OmaRvePQz4c4PbOrKhjQhdOyJmcyQx3eaZTOp6n8WWxbq/MqoquWPSVMqbm6L+s+6QmWkM1weDQVyuVtLSwkuiUl1Vwc6ZWWQVDMFEAKWb4GZzfWXKSDO2iweDNJWWxOx59ifdva4yzXDqVD8nbeXiu1ITLy6z8FO5iW9LzXxbamZMWoBjNS8Hj/WRFMf1suXlxgjcsGHDY/Zz7a6vfh0xnFfnf895ba2D/rUlf9/Dlwh9FUlgcz1GIHNP6KNDAHgSuBY4Ctga2LOX7UvCmIrqqiOxgj3Sk6qqQkZGbKYoUlP7eQKNPhar/lI8xsvG4nTG7GcNThwOB26XC0Xxhn2dppoKLh4zHoC0VDumMNdQbKqv/E4nppYWvDVVMXye/U84r6vDsuCwabCyDp5ZBK8vhdWNKnf8bOOhhTaOngynTIdR6bFv74aqyo33b5MmjYv5z3VzfTVihLGAuKmpXl5bIfL3PXzx7KtIEvT5gNM1TbsN2APIxshE/L2u62sAQmtmhuq6vmFQ0lMuYMO/+h0BTTjTXJsUCARpaup5ttgtMZlUUlMdNDW58Pt7tph0MIp1f/naXAAELVbq6yN+qWyRv7WVRydNxaYoFK0pITU1vB1OVSvXshXgMZloavNB25Z3VW2xr1JToaUFd3VNzJ5nfxLJ6ypLgX/MgLMnwzurzLy0zEJRs8qTC+HJhbDzUB/HT/Sx0xA/Mdxk16mlpYXzcwsYM2oc6ppi6vOGx+Q63fVVSko6ClBWVDLoX1vy9z18seyr1FRHWCNBEU/w67q+Cli1mfvqIz3vBoqBIRvc1vF9r1ZL+nyxeXH6/YGYnXsgilV/GUnzFFRHUsx+HkGTBUeo0GZdVXXY13GF0tT7knrWtk31lTUnF8rKMLW0yuuui0heV3YVjhnv4ahxHn4qN/Hycivfl5n5vtT4GJES4JgJHg4a4yU5htNUxcXF5FhtOM1m7GmZMf+5bq6vRlRW8/w2s/i9sUleWyHy9z188eyrsAIbTdNWA4frur5I07Q1bDlBXzSLYH4DnKtpmknXdX/otjmAruu6VGcTm6X6fGC2YIlhnR3FbMYTDGJVFFp7kOsj0FgPVjtKWnqv25A6dBhNixZiDwZobm4mJUYFPwcTVYGdhvjZaYiLoiaFV1dYeWe1MYrzn9/s/HeRjQNHezl2gpdRadH/w11eWkJ2KFu2OSvyPEe9lZKZSVBVsUaQWVuIeAp3xOZr1u12+ppuMg9H0ZPAlcBcTdPuAmZhLEo+t4+uL/opk98PZgu2lMgz+4bDo6pYg0FcDeEPUppb28Bqx57T+419OfsfyCkP3k1lfT37lZeRkrLRAnzRCyNSg1y2bTvnTmvngzUWXlluYU2TiVdXWHl1hZXt830cp3nYqcBPtNZKVq9dQ76q4gfM6enROWkE0oePpB5IUVRcLhcOh6wvEf1DWIFN12R8uq6fGrPWbHzdKk3T9gUeABYA5cAVuq4/01dtEP1TR9I8ey9KFoTDbzKBz4eroSGs49vb23GG2pYSyu7aGyaHg8z8Airr6ykvL2XCBAlsYsFpgaMnGBXEf6408bJu4dtSM/MrjI+hyQGOHu/h0LFeUnpZmqy52Ni677JYUNT47SxJHTqUeiDbaqWyspxRo8bErS1C9EREa2w0TUsBUnVdL9U0zQpcDAwHXtN1/ZstP3rzNhU06br+CxB5FjMx6ASDQT6rquQPi4WTR8a2gGDAYgGfD0+oREJ3KisryApNMyQP6X1gA1BQMJSlS5dQXl7W/cGiVxQFts/3s32+n9IWhddWWHlrpYXSFpX7frfz6B82Dhjt5ZgJXsalRzZN1V5tzLL7YziNGg5zRiYAqRYLlaWlEtiIfqPHbwc0TZsFFAIXhm56ALgTOBH4QtO0Q6LXPCF6zu1282V1JS+XlZA2OlrLvTYtGApSfGFmHy4vL+Pl0mJeb2nCMTY6bdtXNXHt+InUFhVG5XwiPEOTg1y8tZH079pZbsam+XH7Fd5YaeW4D5yc+7mDL4vN9HhjSGj0Lx41orpSnU46yrvWrl0T17YI0RORjHPeBiwDHtM0zYER0PxX1/VMYC5wXRTbJ0SPtbQYoyeKopCUlBTTa3mysljY2ECd2939wRiBzdKWZooyMrBEaWHoEJebGWnptJXJiE08OMxwxDgvLx3QxqNz2thjuBdVCfJrpZkrvnVw6DtOnl5ipSHM5Bdr6utY0FhP0thxsW14NxRFwRVKHtkio4GiH4kksNkeuDWUs2YO4ACeDd33EjAlSm0TIiLNzc2MTXIyNiOTWKcdcW07k9tXLOOvtvDyfHRMFxUUbJjFoBfSjHVEPqnCHFeKAjPz/Px7FzfvHNLKqZPbSbMFqGhTeWihjQPfSubW+TaW12/+z67L1cZHxYX83wqdgv0O6MPWb1pjZiY/1tVS1YPF8ULEWyRrbAKsywZ8ANAA/Bz6PhWIbuY7IXqotaGeOyZPBSDoaUexx243R0po11VTU2NYxzeVlLBLZjYTorhby5KdA1VVqC09K8YpYiffGeSCGR7OnOLh40IzLy+3srzexNurrLy9ysr0HB9Hj/ey53AfVtO6x5WFRt2Sk1NIjfHC93A0bTeLez94h50LCuLdFCHCFklg8ytwpqZpLuBY4D1d14OhopRXh+4XIm5a6uqwAYFgEMUWceWNsHTUh2pqaurmSIO5qpILx4yjraIiam1IGTqM1iWLSfb7cbvd2O2xfc4ifHYzHDrWxyFjfCyqNvHycgtfFJtZVG18ZNoDHDrWy5HjvOQ7g5SWFONQTQyJ0sLy3srLywegsrI8zi0RInyRBDZXAB8BxwHVwL9Ct/+FMbW1b3SaJkRk2hoayAI8GOsEYslZVsZTM2ay1u0K63ilqQlSUqO6MNQ5dCitQI7VRkVFmexeSUCKAjNy/czI9VPdpvDWKgtvrLRQ7VJ5arGNZ5ZY2WWoj+ELV/LMNtvRqigEg8GYv367k59fgAI0VUuFb9F/9HiNja7rvwPjMLZgj9F1fUXorvOAKbqu/xbF9gnRY+2NDQB4+qCwjzMtDafZjFNV8XSToTUQCGBtNxYZO/Pzo9YGa2gRco7V1jmVIRJXTlKQs6Z6ePfQVu6c7WK7PB+BoMLXJRZ++cOoFNOuWmj2xjeoAUhvauT5bWZx+dDhtIW5jkyIeIsoj42u683A/A1uez0qLRKil7yh9S5eU8Sl0MLmzM4xsrOazTQ2NpCzhWzCdXW1ZJmNIkOpw6OXX8ecbQQ2NlWlvKxXJdREHzKrMGeEjzkjfKxpVHlthYXy98ogCUqUNC57M5l9R3o5eoKXSZnxqbnjzMnFrKpkW21UVFQwZkxs0ycIEQ3xS2spRIx4W413ln5z7AMbS2gRcLLJTEM3O0fKy8s7awDZc3tfTqGzDVnZvDFyJOf/+TvlFbIWoj8anRbgipntjAnWAdCWmku7X+Gd1VZO+sjJKR8n8d5qM+3+bk4UZR1J+pLNZipLivv24kJESAIbMeAEQoFNwNrL3PZhUEPZYW0mE3VVW67LWl5WSo7NBoAlK3prbBRVJW/YMOMakm+k3/L7/SS1GxtOd9l6CP/bu439Rnoxq0EW15q46ScHB7zl5P7fbZS09M00lSkpqXMLbH3R2j65phC9Ffu3tEL0sRKfl1VlJUzT5sT8Wqrdjp8gJhQaugkqqkuKGBWaHot2VtmOvDhlMhXVb1VVVZIbCsYzxoxldI6fGTl+LnUpvL3awusrLFS2qTy71MpzSy3sNMTP0eM97BjFApyb4raYsXl9NMv6LdFPyIiNGHBWtbXxclkJ3vETYn4tRVHwKMavUUtNzRaPLauq5Pbly/hz6FDU0MhNtAyrr+fa8RMZ2RhePh2ReEpKisgPpSdwDFmXwDHLEeT0rTy8c0grd+/axo4FPoIofF9m5pKvkzjiXSfPLLFS747NKI4/yQmAu5sRSSEShQQ2YsDpSJaXmprWJ9erdTpZ2NhAYzdJ+korK1nY1IB/q+gn507x+5mRlk6W34/X6+3+ASLhFBcW8mN9LWsVBcsmFqGbVNhtmJ8H93DxxkEtnDDRQ4olSGmryoMLbRzwlpNrv7fza6WJYDB67TKlZwDgb6iL3kmFiCEJbMSAY25ppsBmJ93p7JPrrdpqCrevWEaxa8tJt8vKSoAol1MISR0+AoBsi5Wqqsqon1/EXklZCXOL1vLr6NGo3SRZHJEa5NJt2vnw8BZu2N7F5Ew/3oDCJ4UWzv08iaPeT+K5pRYaojCKYx87lh/rallRJ4GN6B8ksBEDzmEOJ/dPnUFKFLP7bklmprFzpLZ281NRwWCQlLp6dsnMZlgMAi5rdg4AOTabrLPpp4qLjV1Hw4cPD/sxdjMcMtbHvP3aeG6/Vg4f5yHJHKSwycR9v9vZ/y0n139vZ0FV5KM4eXvtw72rV/BJ4Rp8Pl9kJxGiD0lgIwaUQCBAx3tdZxR3Hm1JVihBXt0W3tHW1dWye1oaF44ZR0r1ltfiRMLSJUlfqWzL7ZdqitbiUE2MHDkqosdPzAxw3SxjFOfaWW4mZhijOB8VWjj7sySOeT+JF5ZZaAyzyniH7OwcLBYLfr+fysq+ebMgRG9IYCMGlJaWFpwmo6pgcmgUI9Zyigp5asZM5vg3n0StuLiIbKuxYNielxf1NpizjFEjh8lE+ZrVUT+/iK1AIMBsX4BnttmOYWW9y0XktMAR47w8t38b8/Zt5bCxHhzmIGuaTNyzwM7+bybzzx/s/F6phjWKo6oqQwqGkGGxUFZa0qu2CdEXZLu3GFCamhpJCm2ptqen98k1k1JSsZjN2Nv8m63vU1JSTL41+jlsOqgWKx6rFavHQ1NxUdTPL2KroqKcnFBCycxRo6J23slZASZntXPJNu18tNaoT7W83sSHay18uNbC+F/g8LFm9hvpIXUzaZ+CgQD/yi3AllvAipUrYNYOUWufELEgIzZiQGlsqCcpNGKjOpL65JqpBQUApKjqZuvplK1dQ6rFKKdgDk0bRb8hqTR5vTTI4uF+Z+3a1eSHFgzb86O/uDzZAkeN9/L8fm08vU8rh4zxYDcHWVEHd/1iY/83k7nxRzuLqjcexVFUFU8o6GqUoFn0AzJiIwaUpupqskIjJqY+2hWVlJNLLZBusVJVVcXo0ckbt6uoEACP2YwpKTYBl+P0szjxmENxOp0JURlahK9o5Qq2sRhDJpbc2E2hKgpMyQ4wJbudK2Z5+arCybOL/CyvN/H+Ggvvr7EwJs3PIWO8HDDaR6bdiHJ8Tic0NtJeKUGzSHwyYiMGlJaaagA8BFH6oFYUgDk05ZVhsWy2CKU3lNwskBa73DrDRo5CURRaW1upr5etuf1J7apVAHhMJkxJfROQp1jh5Onw8kFuntqnlYPHeLGZgqxuDO2oetPJFd/Y+a7UhBqqGRVsbOiTtgnRGxLYiAGl0eXitbISFkc5s++WmFKNQpgWVaW6dNM7kkxNTQBYc6O/cLiDzWYjP9+YFisKjRCJ/sEdCoh9oddSX1IUmJod4MYd3Hx8eAvXbOdmqyw//qDClyUWLvk6iS/dRp4kS9uWczUJkQgksBEDSp3bxStlJegx2Hm0OarFikc1pn0aSjbeNdLU1MgHxWu5ffkycvbdP2bt8NZUc8nQEdyoTaZY1kL0K2q9URneGoPkjT2RbIUjx3t5Zt82XjqgleM1D2m2AEXOsQCkBAKc+ZGJ99eYcUtKG5GgJLARA0pjqFZSeh/tiOq8bloGCxrrqQlNhXW1evUqGrxeyh12sqZMjVkbFKuN0cCk5BRKCtfG7DoiulpbW1hUVcmnVZVkbTsz3s3pNC49wGXbtvPhYa0cvZuRNDDXZuP3leXc+KODfd9M5vafbSyuDW/buBB9RQIbMaB46mopsNnJSNp4AW8s1e26K/+3Qmd5be1G961ebayfGDNmbEzbYEpJwa+aUBWFhrVrY3otET2FhWtZ2NTA6y1N5O22R7ybsxGrCWZPzeYvr4fvamvYP1VniDNAq1fhjZVWTvnYyfEfJvHiMkvMCnEK0RMS2IgBZWRdHfdPncH4it4lOeupjrUtlZUbX7dw5XKOLBjKLtm5BAObT+LXW4qi4A+t0WiXDLH9xpo1awAYNWp0nFuyeaaUFH7IyeaF0mImqqt565BWHtmzjf1Gev+/vTuPb+OuEz7+0cxIlnzIt+M4ce54Eue+mqul6RGaNm0pfcrRhefZloUCXXg4W1hYFpYC+xS2QB+WhUJhWY7S0t1CaZ+W3k1zNPcdJxPndBLHjm/5kCzNaJ4/Rj4bl6SJPZL8fb9eeo08Go2+/mmk+er3+83vh0+xOdKq8tBOP2v+mMXn1/l5pUYjarkdtRit5HJvkVaUSAS8Pry5eSP6uj2JTVN9HfF4HEXp+83QcuwYHx5XjtnYiEcZ3t8SvjFjoLUFJdQ6rK8jLp+Thw8yOTOTislT3A7lbU2YMBFwOqYrHlhSarGk1CIUhb+c8PLsMS9VzSpvnPHyxhkvQZ/NuyfGWDs5xuzCODL6gBgpktiItKLFYuD1EUhMTDlSgnV1/GrBEg53tFNfXzdgBm+zvg4Ki/EUDdPAfP3klE+g3ThEbhza2lrJHeEET1y8SPVhHqycS1dzi9uhvK0J5RPJ93ppPHF8wPqgD95fEeP9FTGOtSk8d1zjueNezoUV/qvax39V+5iQE2ft5Bg3TY4xNks65IjhJU1RIm3Yto0v0dSTNULzRPXw5uSQqaqUZGRwvN9cTaFQiGA0CkD2xOFvasgsGwdAqd/fO1u0SG52YlJUb6LWL1lNO3uWR+YtYmZi6ILzmZIb51Pzozzznk5+fG0XN02K4VdtatoVfrI3g1uezuYTrwR45phGZ2wEgxejiiQ2Im10dHSQnZhOIXeETxI9s2sX+TI4nugsDFBVtZ9yfwCA7MnDn9h4S0oI2zbdlsVJuTIq6bW3txOMOWf4/GnTXI7m7eUnmspyLYvu7refIlxVYGmpxTdXRHjh9g6+sSzM4jHO9eHb6zX+eXOAG55yJuPcfFbFHL6uZ2IUSommKF3XJwInzvPQxwzDeHSEwxFJqrm5iWBitOFAweWfaPLtaAUFxAGfolB3tLp3/f79e6lIzFmVMW78sMcR0Gfw9MQJPLVjCx87IbN8J7sjR6oZF3AS35wk7jwMkD9lGp3AWL+f06dPMXXqhSViWV64eYrJzVNMznZ6eC4xdUNNu9I7GWehP87qCSZrJsWYJf1xxCVKicQGmAtEgClA/wbaNnfCEcmouamJHM2ZaFLNGdnLvT2qipWZidLVNeBSa2P/Pq5MjILsSzQTDWscHg9TpjgnnGPHjgz764lLc6TaoCJRo+cbO/zHx6XwlZYCUOzL4OSxoxec2PQ3Nsvm72ZH+cisKAeaFJ497uWlk16aIgqPH/bx+GEf47Lj3DAxxppJJlNypSpHXLxUSWzmAIZhGCN7Da9IKc1NDWw+e4bJY0qZljWyiQ04o8baR49g1Z8lFouhqirNh6pQxk8knpmJNkLD5feMl3OsX5OYSE5nDlYxT1WxPB58JSVuh/O21GCQqMeDD2ioNmD1De94X/0n4/zCwm621Km8cNLL66c1znQo/PJABr88kEFFnsUNk0xumBijVDodiwuUKonNXKDK7SBEcmtubeXJ2tOsqtD5G693xF8/d/p0Wo8eYazmpbraQFEUdtSd5b5wmN/8+8i1mI6vreWHs+fxcmMDsVgUb2LWaJF8IidPgKISCwZHbNLWd8rj8RAOBPB1ddF+8vLNReZV4cpxFleOswib8MZpjRdOamw6q3G4VeXwbpUf7c5gfrHJmkkm15eb5PklyRFDS+5PUp85wFld19cDFUA18IBhGC+80x1q2uXtN62qyoCleHvDUV6trc6M1sXFRZf9/b0QORUV7H7xL5zs6mL79i1EIhEAJs1fQMG8ue94vxdbVtkZPsr8Acr9fs6cOcW0adPf8WunmlT6HMbjcTYfPUKH389dN35yxI/Zd1JWalER1NRgNtQPS7w5GqydFmfttCht3VFePqnx/HGNHfUKuxs0djdo/Ot2m6VjLVZPtFhVbpLnv+xhvEUqHVduS4aySvrERtd1H04y0wncB3QAHwae13V9tWEYr1zsPhXFQ35+1uUNNCEYDAzLftPV5SyvaGsTZX4/5SVFw/b+vp38696FdeYEL//DP3Dm+WcJh8MA3H77bZclngstK6tiCo3AOH+AurpTLFky/5JfO9WkwufwyJEjnGhroT4a4Mcf/Vs0l2psLqasSlYs5fGtmzkUi5KXl4lnGHv55gMfLYWPLoW6DnjmMDxtwL5zHjbWamys1dC2ZLBiPNw0HW6YCgXD/LanwnGVLNwsq6RPbAzDiOq6ngeYhmH0XGO4Q9f1mcAXgYtObOJxm1Co6zJG6WSnwWCAUCiMZUmHt79mOMor+1QtP5w9n5bjp2hp6bws+7xYV155DT6fj4MHDzI2w89XZ8xitqVcUjwXW1axoHNF2Dh/gG179nPllde+49dONan0Ody0aSsAM2bMpL29G3j7S6gvt3dSVmOveTe//9L9WJaFYRxjzJjSYY7SkQHcMdm5nQx5ePGExksnVQ63qLxRA2/UwFdftVlSGuf6iSbXTjApuIw1Oal0XLltOMsqGAxcUE1Q0ic2AIZhnO+ssA9Y8073aQ7TwAmWFR+2faejy1le8fZ2UDW0vDzX3oOcnDw+/ZF7eOw/HmVhXh7zsnMI79qFee3qS973hZaVUlSCDWRpGrXV1aPyeEyFz+HBPXtYkV/I7KkVrsZ6MWWlql7Kyydw4sRxDOMwhYUj3+F5XCbcXWlxdyXUhDy8csrLyzUaRovK5rPO7V+2+FhUYnHdBJNryk0KLlOfnFQ4rpKFm2WV9ImNrutzgU3AGsMwNvR7aDFwwJ2oRDLSIhHIysZfOPxTFwyl9Y3XWbp9O0vWrMUTjUHDObLmLRjRGBSvFysYRAuF6DpVM6KvLS5cy6EqPjt1OrFz59wO5aLMmjKVzKYmThgHWbHiSldjmRC0uXtWlLtnRTnV7uGVGifJOdSisrVeY2u9xoPbbRaWWKwab7JqvClXV40CSZ/YAPsTt5/ouv5JoBG4B1gOLHEzMJE84vE4fsuZTjhYVvZXth4+WbPngqKgnDkDgEfTCC5bPuJx+MvGY4aqUFtbiUQi+P0j0MNSXDDTNFEaGmDsOHzjy90O56Lc0R0jS6/kVeOQ26EMUJ5jc9esKHfNinK63cPLp7y8UqNxsFlle73G9nqNf90Ben5fkjMtTwYDTEdJ38XbMIw4cAuwFXgS2AUsBVYbhrHPzdhE8mhubiI30fkyt2z4R/gdireggLxV1/T+XbD2FtTskR9TJ1hRwclIhC4zRnX14RF/ffH2jh8/yiSfM3Bj/sxKl6O5SIl52My6OpcDGdr4HJu7KqP8Zk0Xf7q1g88uiLCg2ETx2BgtKo/sy+DO57N4z5+zeGhHBtvrZVqHdJIKNTYYhtEA/J3bcYjkVV9fR15i7JqMEZ7Ze7DiD/wN/slT8Xi9ZC9a7EoMRbfexh//8iyb9jdylVHFnDnv/HJzcfnt37+PaYmEN/AORvB1U/bkydhnThNobycej6Moyf37eHy2zYdnxvjwzBgtEQ/rz6i8flpjS51GbafC7w0fvzd85Ppsrhrn1OQsG2viT4mzozgfeetEWjhXV8fYnukUgrmuxuJRVYLLV7gaA8CMGZVs2rSBgwdlbMtkc3D7Vu7I8GMD/iSfI2qw4srZnNuwnjKfj5qaE0yaNMXtkC5Yvt/m1qkmt041CZuw+azGutMa689otEU9PHvcy7PHvWSoNleMsVg5zuTKMpPx7n6liIskiY1ICw31dWyoPc3sSVOYnpPjdjhJYcaMSlSPh8OS2CSdkHEI8gqw8vJQMzPdDueiZE6YCEB5IJMD+/enVGLTX0CDa8qdq6bMOOxpcGpy1p12anLW12qsr3VOkdPz4lw/FZYUKVTmx3Fh/E9xESSxEWmhrrGB/z57Bu/Vq/AkedX4SJl6sIrfLFjCj2tOEIvF8LowzYR4q8bGBvLCYciDHH2G2+FcNG9JCabHg09RqNm7C26+1e2QLpmmwKIxFovGWHx+YTfVrQobajU2nNHY36RQ3apQvQN+QoAcr82ysSYry0xWllnky/QOSUcSG5EWzp2rB6CkZIzLkSSPrNxcLEVhvM/H8ePHqKjQ3Q5JADt37uC5+rN05ebyD9e92+1wLppHUTCDuWhtrYSOpN8M8h4PVOTHqch3ZiFv7Yat9V62NPh5/bhNW9TDSzVeXqrx4sGmsjDOlWUmy8eazCyII7MuuE8SG5EWOs6cZpzfz/gRGgk1FfgnTCTEeiZnZlFVtV8SmySxa9cOQqZJ5tx5BKakaDPOlVfxyI8f5mB3N1+0LFRVdTukYZOXATdNsfjQImhs6mJ3PWys1dhQq3G4ReVAk3N7ZF8GQZ/NkjEmy8ZaLBtrMlbGzHGFJDYiLVR2dnHv7PlYp067HUrSyCh3+kJMyszihT27uO22/+FyRAJg69bNACxcmLrDcE259TY2PPgtIpEwJ0+eYMqUqW6HNCJUBeYVx5lXHOXeeVHOdXnYVKux8azKtjqNUNQZCfmVU06z74ScOMvGmiwrNVk0xiJLWoNHhCQ2IuVFIhGyEoPz5U2c6HI0ySOjvBwbKPD5qN6zy+1wBFBXd5aS5iYWjStn0YQJbofzjqmqysyZlezatYOqqv2jJrEZrCTT5rZpMW6bFsOMQ1WTwpY6jc11KvsbVWraFWraffzhsA/VYzOnyGLJGIvFYyzmFFn40reiy1WS2IiUd+bMaYoynMHOcsaNczma5KH4/WjFJVgN5/A1NdHS0kJ+fr7bYY1qb765kasLi1mYl49ScwpmpNjgfP0smzKNwlOnOLJ7J9z8HrfDcZ2mwNziOHOLo3xsDnREYXu9k+RsPqtxukNhd4PG7gaNn++HDNVmXpHF4lKLxSUmlYVytdXlIomNSHlnzpyiyOcDwOviPFHJKKtCJ9RwjorsHPbs2cWqVaNnpu9k9ObG9XwoJwhAYEbqXRHV3/L2Dq6ZNIUnq2Q4gfPJ9sGqcpNV5SbQzekOD9vrNLbXq2yrV2mKKL3zWUEGmZrNghKLxWNMloyxmJ4nHZHfKUlsRMqrPXGchYnB+bSCQpejSS5Zs+ewf+d2jnd2krFrhyQ2LjJNk3N7dhOYOBnb7ycjxeaIGix3xky6N20gq72dUKiNoMsDYya78dk24xPNVrYNJ0IK2+pVtter7Kh3BgjcWKuxMTF2To7XZl6xxfwSi4XFzhVXXmm6uiCS2IiU13rsKAARTUMNBFyOJrnkLLmCSP1Ztqx/jdDWN90OZ1Tbu3c3UxPzmWXPrEz58ZYKZs/h7KYNzMjOYdeuHVx9tSTNF8rjgcm5cSbnxnl/RYy4DdWtCtvqnCRn5zmV9pjHGUun1qnRyVBtZhdaLCixmF9sMbfIIlM6I5+XJDYi5XWdPg14iMsvxvNavnwlAAcPVtHU1EihNNe54qWXXmBRntPHKXvuPJejuXSBxPABkzIzeXHrZklsLoHiAT0/jp4f58MznY7Ih1sUdjWo7DqnsrtBpbVbYcc5jR3nnNO26rHR8+PMLbKYm0h0xmTaMls5ktiINLDj1EnaFYX3rU69wc5GQkFBIStnzqbmxFE2b97E2rWpP1JsqonH42x77WXeO34iNpA1d77bIV0yLS+PaFY2vs4OmvfsdjuctKIpUFkYp7Iwzodm9DVd9SQ6u86p1HUpVDWrVDWrPH7YeV5xIM6cIifJmVtkMaMgPiqvvJLERqS05uYmDtTXUeXxcP+tt7kdTlJqfeVlPpOVzbaycjZuXC+JjQv27t2Nv7OTDsukcFoFWm561C5mV1YS3baV7NZWqQ0cRv2brm6fFgOgrtPD7gaVvY0q+xpVDrcoNIQVXj2l8GpiHB2vYjMjP5HsFDuXmI/JTP9BAyWxESnt6NFqAMaNG08gkFqTCY6UwPTpAMwKBvnlmxswTRNNk4/+SHr22afZ3x7ij2Vl/NO9n3Y7nMumYO586rZtpSI7h40b13Prre91O6RRozTLZk2WyZpJJgBhE6qanCRnb6PCvkaVlm6FfU0q+5pUHjOc543JdJqvemp2pufHyUizWh35dhMp7eiRapbk5VM6eQq2beORBua3yCifgJKdTWZHB0Uxkx07trF06XK3wxo1wuEunn/+WQBuve12vGk0llDm7NnsmjqVh578PVevXyeJjYsCWt9EngC2DWc6POxtVHtvR1oV6rsUXqpReKnGqdVRPTZTc+PoBXH0fKf5qiIvtTsmS2IjUtrJfXu5b5pOPBIFywKpiXgLj6KQVTmL9q1bmBfM5S9/eU4SmxH00ksvoHVHKR9fzqJFV7gdzmWl5QSZufYWok/8jjff3EA0GsWXGFNKuMvjgfE5NuNzTG6a7NTqdMWgqjnRfNWgsq9JobVb4XCryuFWlWdwshkPNhOCcWbk9yU7er5Fboab/9GFk7OASGmhI9UQzMPKy8cjSc2QMhOJzfzcPB589UW+8pWv4fXKCWi42bbNH/7wez4/dTqTC4uIHKkmM80mI509ey4lJWM4d66e9etf57oUnLF8tMj0wuLElA7g1OrUd3k41KJiNCscalYxWhTOhRVOhlROhlReONlXdVOW5SQ4ekGcGYmEpyiQfH125EwgUlZbWyuZHR0QzCN76jS3w0lqWXPmgcfDtKxsvOEwb7whJ6CRsHXrZs4dNpg5dwHEYvhKStwO6fKLxfjcwiWYJ47z3DNPy3GVQjwep69OaZbJqvF965vCHowWBaNF5VCzwqEWlTMdCrWdzu21fnMNF/rjvTU6MwrizCq2ycsb8X9lAElsRMrav38fkxIdhoPTJLF5O1puLoHpFYQPGyzNL+CJJx6TE9AI+MUvHuHdJWMAp9ZMy0uf/jU9PF4vU8NhyM7hmb17aG1tIS8N/8/RpDBgsyJgsaLM6l3XHqU30TFanJqdEyGFpojCxlqld8RkgPIgPPpuD4UuVQpLYiNS1o7tW7kiKxuAjAkyq/dfU3DzrTTX1/HyF/833fV1HD16hKlS0zVsdu3ayb7t27h33gIA8q673uWIhodHUchbvpLWl19kWW4ef/nLc3zwgx9yOyxxmeX4+jdjOZech02o7qnZaXGaso62KdR1eAjHAJcSm9Qe01uMalVvbqLA58P2ePBPmux2OEkvq3IW5ddcx8rECLG/+MUjLkeUvizL4nvf+zbXFheTqWr4SseSNXuu22ENm+DSZQAszsvnj0/8jng87nJEYiQENGdG8/dVxPja0m5+d2MXb97Zxd5PwKRc9/reSGIjUlJDwzkyGs4B4J0wEUWuxLhg99zzSQCef/5ZqqsNl6NJT0899SSHD1axtrQMgLzVN6T83FBvJ2PSZLQxpfhVlSmdXaxb95rbIQmXeFVcv1Q8fT9pIq29/PIL7Gxr4cloNyW3vMftcFJGvLubokOH+MkVK9CA73znm/Lr+jI7fvwYDz30IAty8yjy+tDy8wkuX+F2WMPK4/FQkJjS5MaSUn7+sx9jWdZfeZYQw0MSG5GSnnnmadpNk8lrbiR7/gK3w0kZHq+X0JsbKYzHWVM2nl27dvDEE79zO6y00dHRwZe+9DkikTCKPoNxX/oKJf/zrlFRoxhcvhJPIECp30+g9ix/+tN/ux2SGKUksREp58CBfVRV7UfTNNasWet2OCnFoygU3OiU2QcmTsbr8fDQQw+yc+d2lyNLfZFIhM9+9l4OHzbIzy/ggQf+D1nTK9JiJu8LoWRkkLfqWhpLSznW1cGPfvR9mpub3Q5LjEKS2IiU8/Of/5QbS0q5b+XVZMdMt8NJOcGVV6EVFOCLRvnclaswTZNPf/rjbN68ye3QUlZt7Rnuuedv2b59K8tKxvDjb3+XksRl3qNJ0e13cMU3vkXhxEm0trbyhS98mmg06nZYYpSRxEaklA0b3mDDule5o2wcCzo7iZ6tdTuklKN4vRTdfgcAS0yT1YuX0tnZyac+dQ+//vUvicViLkeYWtate5UPfvB29u7dw5ziEj43eRre3/6a8LFjboc24jweD5qm8d3v/pDs7Gyq9uziW9/6OradfKPTivQliY1IGTU1J/na177MlQVF5GhetPx8suak7yW0wyln6XICM2Zix2L8ffkE1t5wI6Zp8v3vf5cPfOA2/vCH33PqVI2ckIZgWRabN2/i4x//CJ/5zL2EQm2smj2Xr1XOwWNZZM6YiX/SJLfDdM2E4mJ+uvpGvjhN55k//5GvfvV+wuEut8MSo0RKDNCn67oCfB34KJAPbADuNQzjiKuBiRFh2zbr1r3GN77xFTrb2rhzwRIA8q5bjUdVXY4uNXk8Hkrv/ig1D3yDWH09X/ncF1m8bCUPP/yvHDt2lO98558BKCkZw6JFS5gyZRrFxcUUF5eQnZ2N3x/A7/fj8/lQFKXfTUVRPIOWCh6Pp/fW/+9UYNs2jY0NHDlSzZEj1VRXG2zcuJ6mpkYANE3jvptuYWFTM3ZnJxnlEyj92CfS+vLuv8Zqbyejvp55wVzumTSVnz33DHv27OL++7/CVVetQhnFZSOGnycVfpHpuv514F7gbuAM8F1gCjDLMIyLbcA9Zlnxyc3NnZc1Rk1TyM/PoqWlE9OUy2f/mv7lFYlE6e6OEIn03Wprz2AYBzGMQ1RV7efMGWdyks/PW8gyrw81L4/J334QJSNFppu9BMN5bIWrD6P4A2SUlwMQCoX44x+f5LXXXmH//n2Y5vA2S/UkQ6qq4PEoiWSo/30VVVUHJE+qqqFp6oDkSVVVNM1Z+v0ZxOM2Ho/S+1xn2XcfwDRjxGIxTNMkFjvffWfZ0dFBe3voLbHn5uaydvWN3JGXj7l7FwCBGTMp+8Tfo2ZnD2u5XQ7D/Z3Vvn0bZx/5d7BtdnR18vChA0TiccaNG8+7330jV1yxjJkzK1Ni+gX5fr9ww1lWBQVZqKpyHOf8P6SkT2x0XfcBjcD9hmH8NLEuD6gFPmIYxuMXuctRldjYtk002pc4OPe7iUa7iUQidHd3D/gyj8V6Ho8Si0UTy9iAW88X/vnWmabZu7+e+6bZ/76Z2NbEspztLmQcFb8/wFevXY1+zhmUr+xTnxk1l3mP5LEV2roZOxoj54qldFsWe/fuZteuHZw9W0tjYwMNDQ2Ew12Ew2EikTDRaJR43CYet9J6PBxFUSgvn8D06RVMnTqduXPnc8UVy+ja8ib1v/oleDwU3nobBWtvSZmampE4rkJvbqTuV78EyyKsafznyeO8dvYM/c86wWAupaWlZGVl4/f7CQQyE8sAGRn+fkmsMqDWDxhQEziwFtCDx0Pvc8CDovQ97vH0r0Uksc++1xhcq6hpKjk5ASIRE9umNxnvSa57kmiPx5NIovvW9d2chFzTNFRVG7Bu4H2tNyFPlVrN/pIhsUmFpqj5QA7was8KwzBadV3fCbwLuNjEJilYlkUoFCIa7UksokQiEcLhCF1dnXR2dhKJhAmHw4RCbbS3t2NZFqYZIxqN0d0dobs7ktgu0pu49Pzdk0zEYrGU6ifh9wcIBPzk5xeiV+jo+kxmzKykcrpO8//9AVGg8D3vHTVJzUiyOjo499hviXd00PDEY+QsuYLKWXNY+L4PouUX/NUTtm3b2LaNZVm9y3jcwrZ7Hotj2zbxuN37t7NNz/r+yziWFScet3qX8XiceDyOaVpYltn7dzxuJdZZQBy/X6O9PZxInp3nDVw6A8d5vT40TcPr9fYu+9/XNC+aouKPdlOEB7upkejZs/gnTiRv5VUABJetoH3bVgpuXEvmjJnD/RalnODylWiFRdT/x6PQ0MAnxpVzx5qbeK7hHDt3bqfhbC0doTYOh9rcDjUpOUnQ4MTIi8/nw+fz4fX6BhyzPesHb9N331mvqs72fn8Gfn+AjIyMRPNyz99+/H4/GRl+AgFn6fP5UibRSoXEpmcy9VOD1tcCE97pTjXt8v6qqqk5yRP/+BMCrW3OF3M8Tty2sRNfpqYZ48/tIVq7umhvb2ee10tldpD+h0n/Y+a3p2toN51LmZfnF7IgN69vu0Gv/diZGloSV7IszSvgisKi/nsdsP+nGxtpUyAjI4MFwTwWBbKc6vzEr5SeXy2KorAvmE04Mwufz0dZd5RJoVDvLxHnOUrv3826Try4GE3TyGpsJKe62vnFoygoOOOnOL+AFLwrVxCYNo38/BxCVYfpen2d8+vH0/Oe2JihEN21tZSvWEH2rNkAZH/ms3QerCL/6lWX8lalHFVVBiyHi5IVoOimtbS88jKxpiba3lhH2xvreoIg/+qrGfu/7gKcEYzP/PxnTh+n3sTZpueneKY+g4LrnUkf49EoZx75Kb0P9m7u3AlMn07RTX3jEdX88Adg23j7b5xY+CdPpuS9t/dt+/APsHuu4rKdY1xVFSwzjm/8eErv/JvebU/96GGsri5nX/1jBnxjyyi76+7ebU/8y3eINpzDCrVjmzEa+pVT5Gg1hatXO1/ymo9J991/IcWbdEbquApWziT72/9C03P/j+aXXmTpnR/iXWXOVBNnn/4TLX/6I/FAANPvx1QUTI8HEzDjcQ6WFNOpqth2nOLWNsaG2gHbedfsxL3EW1mVl0u7V8O2bUrDYSZ2dPVsCTbE7b7ag/2ZmbRoKrZtM6Y7yvTubucHYGKfzn3n2Xs0hQbF+a4rjMSYbcWxiWPH7cShFHeeZ9tsi3Zz0jSJxy1KPQor/H7suO2cC3qS+7hN3I6zvqWZ/W1tmGaM8f4AN48ZO2QZbmppYm8i+RuTkcHNpeMgDnRHnVs/21qb2dnWCkCh18cdZeMGPB5L3CLAurZWtrW2OO+TpvHBceVDxrC/PcSucBd+v588f4D3Fhb1JlyqqqKpGoqqoGkakUqdOz7xKTTNnbkVUiGxyUwsuwetjwAF72SHiuIhPz/rkoIa7Ac/eBz/7j1cXVQ8xItq/NvxY73JSsWESVxXXDLk/qpLirGynCrZK2NxprcO/Ytm4b0fxzd2LH6/H+/W7URfWzfktvf+8hfkTHdmdD791J84+Z+/GbiBbYNlgWXxns9/jtzZswA4+/+e59jPHh1yv8vu+TsKFi8CoP7lVznyyitDbjvlvbdQNMf5ddt44iTGgf1Dbqu2NPS9V/mTQR+9k10Gg4Fhf43CD70f+847aNt/gKaNm2g3quk6dQrbNPFnZfa+F9HWGO3btw25H39O37ZWROXQjqEHAPRlZgz4PFYl+qucj9erDtj20IEDxIcYJyXosQdse7i6GjP01r4yAErcGrDtsbYWzMTgch6vl8C4MjLHjydQPp7M8nLycwNp03F9JI4ryKLw7g8T/9D7B4zC3GJGwbZRurrwdXW9ZTLo1f/4ZbKnOK0Op578b2p++9iQr3Dz175CcOYMAGqfeZbjj/7HkNve8uX7yV8wH4C6F1/i6I9/OuS2773vixQuXwpAw7r1HP7+DwGl3zXFfcfB+++/j5JV7wKgactWDn3nwSH3e9dX/oHSG5xpKJp37uLgP39r6Bju+RiBq1ZimibhI0fp/Nkvhtx24TWraJg2he7ubtSmZiq37hhy26IJE8hUnMEl/eEI1/uGPhai8TibmpsIh8Pg7WDZuH71CjZgmmAC3VG+/bvHWLxmDYsXLx5yf8MpFfrY/A/gv4BMwzDC/db/AcgwDONiJwo6ZlnxyaFQ+K9veREaG8+x5Xe/Rm1uTdRo9O/sqOLz+bAXLSIzN4+srCwC9fVojY29HRkHy7/2OtRMJ6frPHiQ8PFBY2L0q97Ju/IqtJwcALqqqwkfPXLe7QByly5Dy8sDIHziOF3V1X2bDnpOzqJFePOd3DFy6hRdhwdNmNhv39lz5+ErcmqKumtr6TIODRlDVuUsAmNLCQYDNB45SWj/gX7bOgs1kEnGuDJ8JWPwaKmQfw8fVVUIBgOEQmEsa+T7sdiWhdnaikdVe48dKxymbeNG7LgFHs+gY8eDb2xpb02bbZq09NT84OnbLHHHW1zcuy1Ay7rXne08PZv09ZvQ8vPJnt23bdubm7Djdu+2iqIQCPiIRGJ4srMH7De0fRu2afWF0dPfAg9KVuaAbbuOVONRVdTsHLyFhSnTb+ZiuH1cAU6NdihErLUFs7WVeKSbeLQbOxrFtixyl69ACwYB6Dp6lHD14SH3FVy6tPf7KnziBF0HDw65bc7ixfiKnR+hkVM1dOwf+sdVzoKFZI4rIxgMcO7gEdp27hx623nzyRjn1JB019XR/jYJffbsOfgnTgQg2tBAaMvmIbfNqqwkMGUqALHmZto2bRxy20xdJ3N6BQBmW1u/z955tp02jayZlYDTFN386lt/kMYtC9OyYGwp9sRJzgUeoRDmls1Yie4OlmU5/SotE8u0UGfP5Pr33clb2xcuTTAYSJvOw1cAW4BphmEc7bd+A7DHMIy/v8hdjqrOw8lKyuvCSVldOCmrCydldeGkrC5cMnQeToWfIXuAELCqZ0XiqqiFwHp3QhJCCCFEMkr6On7DMLp1Xf834EFd1xuAE8D3cDoTP+VmbEIIIYRILkmf2CT8E06sjwIB4A3ghncwOJ8QQggh0lhKJDaGYVjAlxI3IYQQQojzSoU+NkIIIYQQF0QSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaUMSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaSPpZ/ceBmHbtv3x+OX/v1VVwbJk5tcLJeV14aSsLpyU1YWTsrpwUlYXbrjKSlE8eDyeCM7USkMajYlNK5ABnHU5DiGEEEJcuLFAN5D3dhuNxsRGCCGEEGlK+tgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbmtsBpANd1xXg68BHgXxgA3CvYRhHXA0syei6/o/A9YZhrOq3bj7wMLAYaAL+r2EY/+pKgC7Tdb0A+A5wMxAE9gJfNgxjQ+Lx+UhZAaDregnwELAGCADrgPsMw6hKPD4fKau30HW9AtgJfMowjF8l1s1HygoAXdcnAifO89DHDMN4VMpqIF3X/xfwZWAKcBT4hmEYTyYem49LZSU1NpfH14BPAB8DlgM28Lyu6z5Xo0oiuq5/FvjmoHWFwEvAYZyD/+vAA7qu3z3iASaHx4FlwAeBJTgnoBd1XZ8hZfUWfwamAjfilFUYeFnX9Uwpq/PTdd0L/A7I6rdOymqguUAEKAPG9rv9TspqIF3XPwz8EngEmI3z/fW4ruvL3S4rqbG5RInk5QvA/YZhPJdY9wGgFrgd580etXRdHwc8ClwFGIMevgfoBj5pGIYJHNR1fTrwJeA/RjRQl+m6Pg1YDaw0DGNTYt1ncE7cf4Nz4payovdkfBz4lmEYBxLrHgB2A7OA65GyOp9/BtoHrZPP4EBzAMMwjLODH0j8OJOyAnRd9wAPAD8wDOPhxOoHdF2/EliVuLlWVlJjc+nmAznAqz0rDMNoxfm1/S53QkoqC4EWnF9CWwY9dhXwRuLA7/EqoCeaGkaTRmAtsKNnhWEYNuABCpCy6mUYRpNhGHf2S2rGAF8ETgNVSFm9ha7r7wI+DvztoIekrAaai3MMnY+UVR8dmAQ81n+lYRg3GIbxL7hcVlJjc+nGJ5anBq2vBSaMcCxJxzCMZ4BnAHRdH/zweGDfoHW1ieUE4NywBpdEEsnwc/3X6br+PpzmlheAbyNl9Ra6rv8Mpwm4G7jVMIxOXdfluOpH1/U84DfApw3DODXocyhlNdAc4Kyu6+uBCqAaeMAwjBeQsuqvIrHM0nX9BWABfbWoz+ByWUmNzaXLTCy7B62PAP4RjiXVZHL+coNRXna6rq/Eab9+OvFFIWV1fj/EacP/LfAnXdcXImU12E+ANw3DeOw8j0lZJSS6FVTgdNz/R+AmYBtOf8nrkLLqL5hY/hqn1ubdwIvA08lQVlJjc+nCiWVGv/vgvHmdIx9OSgnjlFt/PQf9qC07Xdffg/NlsRm4M7Fayuo8+l0FdQ9Ox/1PIWXVS9f1/4nTLDBniE2krBIMw4gmardMwzB6Tso7dF2fidPUKWXVJ5pYfs8wjP9M3N+d+GHxeVwuK6mxuXQ9TVBlg9aX4bT5i6Gd4vzlBnBmhGNJCrqufwp4CqdZ6ibDMHqSZSmrBF3XS3Rdv1PXdbVnnWEYcZy+EeOQsurvI8AY4JSu6x26rnck1v9U1/UDSFkNYBhGZ7+kpsc+nKYVKas+Pee2wc1NB4DJuFxWkthcuj1ACKcXONDbpr0QWO9OSCnjDeCq/ico4DqcqxJGU3s1ALqufxL4EfBvwAcGfcFKWfUpw6nRurpnReJS5oU4yY2UVZ8PAzNxLnLouQH8E05Ti5RVgq7rcxPJ35WDHlqMc8KWsuqzC+cKu2WD1s8BjuByWXls2x7u10h7uq5/G+eKg4/gDO70PZwe43MMw4gO/czRRdf1XwGTegboS/SOP4QzJsl3gStw+gN8ol/15qiQGDhtP/AscO+gh3uqdaWs6L3U9Hmcz9jHcK66+ypwA86JO4KU1ZB0XbeBuw3D+JV8BvskBlrdhDPOzydxrlS8B+fzuASoR8qqV2LA1ftxzn1bccbf+iZOAlOFi2UlNTaXxz8Bv8AZr2UjYAI3SFLz9hKZ+w04lw7uxBnE6b7R+CUB3AF4gfcCZwfdHpay6pO4DP4DOJePPoHzpVoAXGUYRo2U1YWTsuqTaM68Bed4ehKnVmIpsNowjH1SVgMZhvEt4Bs4V2xWAe8DbjcM43W3y0pqbIQQQgiRNqTGRgghhBBpQxIbIYQQQqQNSWyEEEIIkTYksRFCCCFE2pDERgghhBBpQxIbIYQQQqQNSWyEEEkpMRCfEEJcFElshBBJR9f1W4H/TNxfpeu6rev6KnejEkKkApndWwiRjD7f7/5OnJm7q1yKRQiRQiSxEUIkNcMwQsBmt+MQQqQGmVJBCJFUdF1/nX4zdwPXAK8B1xiG8bqu69/AmXDvy8C3gGk4E+59ErCBh4G5wFHgM4ZhvNJv37OB/wO8K7HqFeALhmEcG8Z/SQgxgqSPjRAi2dyLMwHhLpwmqOB5tikHvo8zAd/7cSbB/C/g98DPcRIfBXhc1/UA9M6gvgkoAe4C/g6YAmxMzHIthEgDktgIIZKKYRhVQAgIGYaxOXF/sEzgXsMwfm8Yxp+BfwfKgAcMw3jUMIynga8BRTgzDIMzw3AYuN4wjKcMw3gSpzYoANw3rP+UEGLESB8bIUSq2tTvfl1i2b8vTlNimZdYXofTpNWl63rPd18IWA+sHqYYhRAjTBIbIURKSnQqHqzrbZ5SCHwgcRus4bIEJYRwnSQ2QojRohV4GXjoPI+ZIxuKEGK4SGIjhEhGFqBe5n2uAyqB3YZhmNA7uvFvgSPA7sv8ekIIF0hiI4RIRq3Acl3XrwVyL9M+vwm8CTyr6/pPgAjwceA24I7L9BpCCJfJVVFCiGT0b0AMeB7nqqVLZhjGXuAqnLFufoNzefhY4DbDMJ66HK8hhHCfDNAnhBBCiLQhNTZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdLG/weN9Vctp7byAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the dataframe as a chromatogram object\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Subtract the background given a peak width of ≈ 3 min\n", + "chrom.correct_baseline(window=3)\n", + "\n", + "# Show the chromatogram\n", + "fig, ax = chrom.show()\n", + "\n", + "# Plot the true signal\n", + "ax.plot(df['time'], df['true_signal'], 'r--', label='true signal')\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/methodology/fitting.ipynb b/.doctrees/nbsphinx/methodology/fitting.ipynb new file mode 100644 index 0000000..0331c8d --- /dev/null +++ b/.doctrees/nbsphinx/methodology/fitting.ipynb @@ -0,0 +1,405 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Fitting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "The meat of `hplc-py` is its ability to take in windowed regions of a chromatogram \n", + "and fit a number of peaks such that the chromatogram in that region is well reconstructed. \n", + "As is the theme in these notebooks, it's easier to look at a chromatogram and see \n", + "what the reconstituted signals should like than to do it quantitatively. \n", + "\n", + "Ideally, one would have a physical model that would describe how an analyte interacts \n", + "with the stationary phase of the chromatography column and a generative model that \n", + "would capture the statistical distribution of the measurements as a function of time.\n", + "However, having this in chromatography is exceedingly rare, so we are left with \n", + "phenomenological descriptions of peak shape that we relate to chemical species and \n", + "concentrations through calibration curves and control experiments. This is what \n", + "`hplc-py` excels at–phenomenological quantitative description of signals in a chromatogram.\n", + "It is important to note that `hplc-py` does **not** provide a model of the components \n", + "of the chromatogram but rather fits the parameters of a minimal number of convolved \n", + "signals that can capture the observed data in the chromatogram. In this notebook,\n", + "we outline how this fitting procedure is executed and how the total chromatographic \n", + "signal is reconstructed. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## The Skew-Normal Distribution \n", + "\n", + "In `hplc-py`, we consider that each detected maximum in a chromatogram results from \n", + "a single compound $i$ whose time-dependent signal intensity $S_i$ can be phenomenologically \n", + "well described by an amplitude-weighted [skew normal](https://en.wikipedia.org/wiki/Skew_normal_distribution) distribution. Mathematically, this is defined as\n", + "\n", + "$$\n", + "S_i(t) = \\frac{A}{\\sqrt{2\\pi\\sigma_i^2}} \\exp\\left[\\frac{(t - \\tau_i)^2}{2\\sigma_i^2}\\right]\\left[1 + \\text{erf}\\left(\\frac{\\alpha_i (t - \\tau_i)}{\\sqrt{2\\sigma^2}}\\right)\\right], \\tag{1}\n", + "$$\n", + "\n", + "where $\\text{erf}$ is the [error function](https://en.wikipedia.org/wiki/Error_function), $A$ is the amplitude, $\\tau$ is the retention time, $\\sigma^2$ is \n", + "the signal variance, and $\\alpha$ is the skew parameter. The skew normal distribution is \n", + "used because the skew parameter $\\alpha$ can break symmetry, allowing for heavily \n", + "tailed signals. When the distribution is unskewed, meaning $\\alpha = 0$, Eq. 1 simplifies to \n", + "a Normal distribution symmetric about $\\tau$. To get a sense of how $\\alpha$ \n", + "impacts the resulting signal, we can use `scipy.stats.skewnormal` to examine \n", + "the amplitude-weighted output," + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG3CAYAAABIcHTrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIKklEQVR4nOz9d3xU953vjz/Pma4y6oUi1CV6x4ALYDAGF2zjGjt24sQpTjbZzSbZ7C/JvXu33LT73U022WziTeLELW5xd9yxDRiMwfSqglABhHoZjUaaen5/nKkU1el8no8HD+acOed83kfSzLzmXSVFURQEAoFAIBAIkgQ51gYIBAKBQCAQhBMhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFQIcSMQCAQCgSCpEOJGIBAIBAJBUiHEjUAgEAgEgqRCiBuBQCAQCARJhRA3AoFAIBAIkgptrA0A6Ovr4+c//zlbt27FarVSXV3Nd77zHZYuXQrA97//fV566aWQcwoKCti+fXsszBUIBAKBQBDHxIW4+fa3v013dzc///nPyc7O5umnn+ahhx7ipZdeory8nNraWh5++GHuv/9+/zkajSaGFgsEAoFAIIhXpFjPlmpubub666/nmWeeYfHixQAoisKGDRu46aab+MY3vsGiRYv4+c9/znXXXRe2dRVFweMJ/63LshSR68YTyX6P4v4Sn2S/x2S/P0j+exT3N/HrSpI06nEx99xkZWXxu9/9jrlz5/r3SZKEoij09/fT1NSE3W6nvLw8rOt6PAo9PYNhvaZWK5OVlYrFYsPl8oT12vFCst+juL/EJ9nvMdnvD5L/HsX9TZzs7FQ0mgQQN2azmdWrV4fse+utt2hpaeHqq6+mrq4OSZJ4/PHH2b59O7Iss3r1ar71rW+Rnp4+qbW12vDmU2s0csj/yUiy36O4v8Qn2e8x2e8Pkv8exf1FnpiLm/PZt28fP/jBD1i3bh1r167lV7/6FbIsM23aNB555BGam5v52c9+Rl1dHY8//jiyPLEfnixLZGWlhtl6FbPZFJHrxhPJfo/i/hKfZL/HZL8/SP57FPcXOWKecxPMli1b+O53v8uCBQv4n//5H4xGI4qiMDAwgNls9h938OBB7rnnHp5//nkWLFgwobXcbg8Wy1C4TAdUlWo2m7BYhnC7k8/VCMl/j+L+Ep9kv8dkvz9I/nsU9zdxzGbTmDxCceO5eeqpp/jRj37E+vXr+fd//3f0ej2g5t8ECxuAqqoqANra2iYsboCIxTrdbk9SxlGDSfZ7FPeX+CT7PSb7/UHy36O4v8gRF+Lm6aef5t/+7d944IEH+MEPfhASavrOd75DX18fjz76qH/fkSNHAKioqIi6rQKBQCAQhBu1gteDx+OOtSmTxuORGB7W4HDYcbvHHhzSaLQTTjU5n5iLm8bGRn784x+zfv16vvrVr9Ld3e1/zmg0cvPNN/O1r32N3/72t9x00000Njbyr//6r9x8881hr6ASCAQCgSCaKIrC0JAVq7U/KYSNj64uGY9n/F4bkykNszl7TOXeIxFzcfPOO+/gdDp57733eO+990Ke27x5Mz/96U/55S9/ySOPPMIjjzxCeno6mzZt4lvf+lZsDBYIBAKBIExYLD0MDVkxGlMxGlOQZc2kP9jjAY1GGpfXRlEUHA47VmsvABkZOZNaP+bi5uGHH+bhhx8e8ZgNGzawYcOGKFkkEAgEAkHk8XjcDA0NkpaWSVpaRqzNCStarTzufBu93gCA1dpLenrWpEJUyVlkLxAIBAJBnONyuQEFg8EYa1PiBp/Acbtdk7qOEDcCgUAgEMQEX9gm8cNQ4SJcITkhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFTEvFpKIBAkN4qisL+uk60HznKmcxCjQcu8smxuXFFMZpoh1uaNi45zAxz4pIWOcwNIksSU6RksuGI6uQVpsTZNIBAEIcSNQCCIGEN2F4++cYL9dZ3+ff2DDtp7bOw+3s7f3jGf8mmJUQJ7ZN9Zdm45SfA0voH+YeqPt7PsmhIWr5yRFP1JBIJkQISlBAJBRBiyu/j5cwdDhE2aSYdGVgXAgM3JL54/RHuPLVYmjpm6Y+3seC8gbHR6DTq9BgBFgT3bm9j5fgNxNIdYIBgVRVF45ZUX+Nzn7mHt2iu5557b+PDDLXg8Hh544G6eeOKPsTZxwgjPjUAgCDseReF/XjtGQ6sFgFSjls9vnMmS6jwGbE4eefUoNS192OwuHnn1GP/r80vQhGmmTLix9A2z7a06//bC5UVcsaoERYEDu1rYu7MZgCN7z5JuNrLgiumxMlUgGDOKovBP//R9Pv74Ix566KtUVlbz5z8/zo9//C8MDg4yMDDA3XffF2szJ0x8vpsIBIKE5vWdTRxuUOfEpRq1fO++xSydmY8kSZhT9XzzjvlMyUkBoLl9gA/3n42luSPy8fsn/Z1WZ84vZMWaUjQaGa1WZtk1JVx7Y7X/2F0fNnDuTH+sTBUIxsybb77Ohx9u4R//8X9z332fY9my5XzhC19maGiI//7vX/LQQ1/FaEzc5oJC3AgEgrDS3DbAazsbAZAk+NptcynKD024NRm0fOGGWf7tv37chN0Zf0MDz53pp7FeFWkpqXquWld+QV7NzPmFLLlyBqCGqD74aw1OR/zdi0AQzIsvPk9ZWTnXX7/Rvy89PR2AnJwcbrxxU6xMCwtC3AgEgrDh9nj401sn/Lkpt15VyuyS7IseWzE9g2Uz8wGw2JxsP9gaLTPHzKHdp/2Pr1hVgt5w8Uj+0qtLKJxmBtQw1p6PGqNin0AwESwWC/X1tVx11aqQ/W636qH88pe/jkajiYVpYUOIG4FAEDbe33eWlnYrANPyUrlxZfGIx2+6ssT/+MMDZ+MqIbevx+b32qSm66maW3DJY2VZYu3NM9Fq1bfUo/ta6e0ajIqdAsF4OXv2NIqiMGXK1JD9r732MgCzZs2OhVlhRYgbgUAQFmzDLl7fGfBYPLhxJlrNyG8x0/PTqC7KBKCtx0Z9HOWr1Bxp8z+et2QamlHuJSPLxMIVRQB4PIqonhLELbKsemX6+nr9+2pqTvDaay8BJMXfrRA3AoEgLLy1u5nBYXWS74o5BWPuX7NqYeDb4/ZD8RGaUhSF+mMdgJo3VD2vcEznLVxeRJpZbUx4urGXs819kTJRIJgwpaVlZGZm8fzzT/Puu2+zZcs7/OM//j1r1qwDVA9Oe3vbKFeJb4S4EQgEk6Z3wM57n6r5KVqNxO3XlI353KXVeZi8uSwH6jtxeeP+seTc6X6sFjsARaXZpKTqx3SeTqdh+epS//anO5qS4luwILnQ6/X8+Mf/HwUFU/jJT/6F//iPn3HjjZv453/+Ebfcspk///lxdu3aEWszJ4XocyMQCCbNO3tacHjLpa9dNJ3cTNOYz9VpNSysyGHXsXaG7G5ONPcyrywnUqaOiVO1Xf7HlXPyx3Vuxax89n/cQm+3jbYzFs409VJUevGkaoEgVsyfv5BHH33ygv3f+94P+d73fhgDi8KL8NwIBIJJYR1yss1b6aTTyqMmEV+MxVUBAbGvtnOEIyOPoig0e3v0yLJEcfn4hJYsSyy9OvAz+HRHs/DeCARRRogbgUAwKT7Yd8bfo+aa+VPIGGMIJ5i5ZdnovZVGB092xVQM9PUMYekbBqBwegYG4/gd3OUz88jKVZsUtp+10HbGElYbBQLByAhxIxAIJozd4WbLvjMAyJLEhitmTOg6Bp2GmcVZAFgGHZztjF0ZdYvXawNQXD6xcJIkSSxaXuTfPrTn9AhHCwSCcCPEjUAgmDDbD7diHXICcMXsfPLGkWtzPsHN/o439UzatonS3BBYe6LiBqBidj6paaoXq7G+m74EGBAqECQLQtwIBIIJ4VEU3vd6bQBuWD7+XJtg5pRk+R8fa+od4cjI4XZ5aDurhpDSzAYyvfOvJoJGIzNv6TT/9uFP43d+lkCQbAhxIxAIJsTxxh46eocAmFWcdcH8qPEyNTeVDK+no/Z0b0xKwjvbBnB7q76mFmVeMEdqvMxeOAWtTn2brT3Shn3YOWkbBQLB6AhxIxAIJkSw12bt4umTvp4kScycoXpvHE4Ppzusk77meAme6D2laGxNCEfCYNQx09sA0OXyUHukfdLXFAgEoyPEjUAgGDedfUMc9ibeZpsNLKwMT1+aiqCuxg1noz+KofV0eMUNwJxFgQ7Mxw6eE2XhAkEUEOJGIBCMmw8PnMX3Eb1m4TQ0cnjeSoLFzckoixuPR6HN67kxpujIzJ54cnQw2XmpfqHU122jtSV+5mcJBMmKEDcCgWBcOF1uPvLOgNJqJFYtmDrKGWNnen4qem+OSrQ9N71dgzjsar+eKdMzJp1vE0yI9+ZAfMzPEgiSGTF+QSAQjIv9dV3+AZlLZ+ZjnkDTvkuhkWXKppipaemj22Knd8BOVrohbNcfiY5zA/7HhdPMYb12WXUuxhQdwzYnjXVd2KwOUtLC93MTCOIRl8vF+vXX4HSGJtJ/7nNf5Ctf+XpE1xbiRiAQjIsdhwOeh1Xzw+e18VE+LYOalj5A9d4snTm+2U4TpbM9kMCcVzi5yq/z0WhkZs0v5MAnp/F4FGqOtLF45cQaHgoEiUJzcxNOp5PHHnuGrKxAqweTaeItFsaKCEsJBIIx09U/xHFvD5q8TCNVMzLDvkbZlIDXpLl9YIQjw0tnkOcmtyA97NefvXCK/3HNkTaRWCxIehoaTpKWlkZFRSU5Obn+fykpQtwIBII44uMjbf5E4qvnTUEOY16KjxlBwiJa4sbt9tDtLT3PyDZNaJ7UaJgzTUydoSYW9/cM0d4q5k0JkpuGhnpKSspisrYISwkEgjHhURR2HDkHgARcNW/KyCdMkGyzgVSjlsFhFy3t0el109tlw+1WZVteYfi9Nj5mziv0V0vVHG6ncFp4ys0FycenNR288tEphh3uqK9t1GvYfE3ZpEPCp06dxO128e1vf4P6+jry8wu4++572bDhxjBZemmEuBEIBGOitrmXrn51Wvac0myyzcaIrCNJEjMK0jnR3Itl0EGf1U5mWmSTijvaAh6i/DDn2wRTVp3HR++dxOlw01DTwVXXlaPTaSK2niBxeXt3M+e6YzeP7K3dLWEQNw1otVoeeuhhcnJy+PjjHfz4x/+C0+nk5ptvDZOlF0eIG4FAMCY+8nptAK6eHxmvjY9ir7gBaGkfiLi46Q5JJo6c50an11BenUfNkTYcdjeNdV1UzSmI2HqCxOWG5cW8HEPPzQ3Lx5fw/sQTf+TJJ//k39648UaefvpFFEXBaFS/CFVWVtPR0c4zzzwpxI1AIIg9tmEn+2o7AUg1allUmRvR9WYUBLwnze1W5pdHdr3uzkH/4+y81IiuVT2/gJojbYA6b0qIG8HFWDozP2qVguHgttvuYO3a9f5tszkdg+HCLyVlZRW8++7bEbdHJBQLBIJR2VvbidM7UHL57AJ02siGUoKTilsinFSsKAo9XnGTmqbHaNJFdL0p0zMwZ6rfZM809THgDfUJBImM2ZzB9OlF/n8ajYaNG9fwzjtvhhxXU3Oc0tLIJxkLcSMQCEblk2Nt/sdXzo1sSAqgMDsFrUZ9e2rtGhzl6MlhG3Rg9zYljLTXBrwDQr3DNAHqjolhmoLkIyMjg6VLl/M///Pf7N69i9OnW3jyycd49923eOihr0Z8fSFuBALBiPQO2Kn1NtXLzzJROiVyOSk+ZFliSo7aC6O9ZwiX2xOxtXqCQ1K5kRc3AJVBoaj64x2i540gKfnhD/+ZtWvX87Of/V8+//nP8MEH7/Jv//Yzli9fGfG1Rc6NQCAYkd3H2/29bVbMLgjrzKWRmJqbyukOKx5Fob3HxrS8yFQx9XQGKlKi4bkBMGcaKZxupu2Mhd4uGz2dg+TkR65KSyCIBSaTiW9841t84xvfivrawnMjEAhG5JPjgZDUijmFIxwZXqbmBLqYtkawJLanK3rJxMFUzg4ki9Yf74jaugLB5YAQNwKB4JK0dg36G+mVFKZTmB35tuk+puYGPBlnOyPXzC84LJWVE737K5+Zh88JJkJTAkF4EeJGIBBckk+OB5JdV8yObsny1NzIe24URfF7bsyZRnT66DXUM6XoKSrNBsBqsdN2RoxjEAjChRA3AoHgoiiKwm5vSEqS4Iooi5v8LBMaWXVtnItQxdRAvx2XU01WjlYycTAiNCUQRAYhbgQCwUU51Wqhs0/twTKrOCviXYLPRyPLFHrDRG09tohUTPX3BjxCmVEMSfkoqcxBq1XfhhtqOnBHsCpMILicEOJGIBBclE+C+q8sj7LXxsfUHNWb4vYodPYNhf36fT2Ba2Zmm8J+/dHQG7SUVOYAMDzk4kxjb9RtEAiSESFuBALBBbg9HvbUqOJGq5FZUhWbNvBTg0JFrV3hz7vpDxI3GTEQNyBCUwJBJBDiRiAQXEBNSx8DNicACypySDHGpiVWQZDg6OgNv7jpCw5LRbESLJiismwM3p9vY30XzhgMShQIkg0hbgQCwQXsrQl4EK6YFbvBjgVZAcHRHgFx4/Pc6PQaTCmRnSl1KTQambLqPABcTg8tp3piYodAkEwIcSMQCEJwezz+CeB6rcz8spyY2VKQFey5CW/Ojdvl8Q+tzMw2Ra3z8sUonxmYet5Q0xkzOwSCSPHOO29y552boraeEDcCgSCEmpY+rENqSGp+eQ6GKPZ+OZ8Uo44075Tu9jCLG0vfEL6+eRkxCkn5mFachdGkhqaaG7pxOkVoSpA8vP/+u/z0p/8W1TWFuBEIBCEEh6SWzoxNInEwvryb3gE79jB+6PcFiaXMrNgkE/uQZYnSKtV743J6aGkQoSlB4jM4aOVf//V/86//+r8pLi6N6tpC3AgEAj/nh6QWlOeOckbkyc8MeFU6w+i9iYdKqWDKZ+b5H5+qFaEpQeLT2tqKxdLPH/7wBNdcszqqa4up4AKBwE9tHIWkfARXTLX32pgepunZse5xcz5TZ2RiMGqxD7toOtmNy+lGq4v9z18QG5yn9uDY+zKKczjqa0s6I/qlt6MrWzap61RWVvHv//4rALZv3xoGy8aOEDcCgcDPp3EWkoLzK6bC6LkJqr7KyIptzg2oVVOlVbnUHG7zV035qqgElx+OQ2/h6TsXk7UV7/qTFTexRIgbgUAAxGdICtQZUz7C2evGF5Yypuj8fWZiTfnMPGoOq/O8Gmo6hbi5jNEvuBHH3pdi57lZcMO4znniiT/y5JN/8m9v3Hgj3/nO98Nt2piJj1e0QCCIOcEhqXlxEpKC0HLw9p7weG5cTjeDVgcAGZnGsFwzHEwrFqEpgYqubFlCeU5uu+0O1q5d7982m9NjaI0QNwKBwEtwldSyOAlJQaAc3DrkpCNM86UGLHb/4/TM2Ofb+LgwNNVLWXV8eNAEgpEwmzMwmzP821qtjMsVu0GwolpKIBCoIam6+AtJ+cjzCpC+ATvOMLxhWoJEkjkjfjw3EFo11SCqpgSCCREX4qavr49/+qd/YtWqVSxevJh7772XvXv3+p8/ceIE999/PwsXLmTNmjU8+uijMbRWIEg+aoNmScVTSMpHrleAKEDPwORzEHydiQHS4ygsBYHQFECzNzQlEAjGR1yIm29/+9scOnSIn//857zwwgvMmTOHhx56iIaGBnp7e/nCF75ASUkJL774It/85jf55S9/yYsvvhhrswWCpGFvkIcgnkJSPnKDvCtdfeEVN/HmudFoZEorVc+Z0+HmdGNvjC0SCCbPQw99lRdeeD1q68U856a5uZmdO3fyzDPPsHjxYgB++MMfsn37dv76179iNBrR6/X88z//M1qtlvLycpqbm/n973/PHXfcEWPrBYLEx6MoHKhXxY1WIzO/PHazpC5FblBeTFf/5PNuLEECyRxnnhuAspm51BxRq6Ya67r83YsFAsHYiLnnJisri9/97nfMnTvXv0+SJBRFob+/n71797Js2TK02oAOW7FiBY2NjXR3d8fCZIEgqTjVaqHfWzk0tzQboz7m33kuIMRz0x8+z40kQWq6YdLXCzfTi7PQeUODTSe7cbtjl5gpECQiMX8XM5vNrF4d2pb5rbfeoqWlhauvvppf/OIXVFVVhTyfn6+6zVtbW8nJmfi3TK02vNpOo5FD/k9Gkv0eL8f7O1Df5X+8dGZ+2F8X4aAwJ9Bkr9syPKKNY/kd+sRNWroBgyHmb4MXoNXKlFTkUH+8A/uwi45WC0Wl2UDy/41C8t9jst+fJAX+9w2nHS8ajTSp96K4e1Xv27ePH/zgB6xbt461a9fyk5/8BL1eH3KMwaB+07Lb7Re7xJiQZYmsrNRJ2XopzOb4KS2NFMl+j5fL/SmKwkGvuJFliTXLZpCRFn+ejJS0gOemz+oY02v3Ur9D+7CT4SEXANl5qRF7H5gs85dMp/64Wp5/tqmP+YuLQp5P9r9RSP57TEszIsvypD/I45WJiDePR0KWZTIyUjAaJx4yjitxs2XLFr773e+yYMECfv7znwNgNBpxOBwhx/lETUrKxFumezwKFkv4up2C+os0m01YLENJ60ZO9nu83O7vdIeVc92DAFQXZeJxuujtdcXYyouTkaan3+rgXPcgvb2DlzxutN9hZ7vV/zglVT/itWJJbmEqGo2M2+3h+OFzLF9TiiRJSf83CpfP69BqHcbj8eB2KzHtCRNuJAn/3+54PTdut4LH46G/38bQ0IWVgmazaUyiKW7EzVNPPcWPfvQj1q9fz7//+7/7vTWFhYV0dHSEHOvbLigomNSakfpjcrs9SfWHejGS/R4vl/v79Hi7f9+iyty4vufcDCP9Vgf9Vge2ISf6UTr3Xup32Ncd+FKTZjbE7T3LGpnpJZk0N/QwOOCg9XQ/BVPN/ueT/W8Ukv8ek1G4QSAUNdGQFDBpwRcXfrCnn36af/u3f+Ozn/0s//mf/xkShlq2bBn79u3D7Q4ouF27dlFaWjqpfBuBQAD76wIl4Iur4nuOUW5GIETRbZl4UnFwpVQ8dSe+GMFVUo11XSMcKRAIgom5uGlsbOTHP/4x69ev56tf/Srd3d10dnbS2dnJwMAAd9xxB1arlR/+8IecPHmSl156iccff5yvfvWrsTZdIEhoOvuGaOlQQzQlhelkm+OvJDqYcFVMxXOPm/MpqczxJ2eequ1CmcxXYYHgMiLmYal33nkHp9PJe++9x3vvvRfy3ObNm/npT3/KH/7wB370ox+xefNm8vLy+N73vsfmzZtjZLFAkBwcSCCvDYRP3FiCuxPHubgxpeiZMj2D1tP99PcO0dtlI39KbAcSCgSJQMzFzcMPP8zDDz884jHz58/nueeei5JFAsHlQSKFpCA0LNU1iQGaVm9IS5YlUtL0oxwde0qrcmk93Q+ooSkhbgSC0Yl5WEogEEQfy6CD+jPqB2ZhdgpTc+OzHDqY3MzweG6s3ongqekGZFmatF2RJjjv5pTIuxHEMR6Ph0cf/R9uu+0GVq++kr//+7/hzJnTMbFFiBuB4DJkf10nvuyNJdXx77UByE4PiJuJDs90OtzYh9VS97Q47Ex8MdIzjOQVpgHQ1W4NSYgWCOKJxx77A6+88iL/+I8/5A9/eAxJkvjud/8Wp9MZdVuEuBEILkP21QbaKyRCSApAp5Uxp+gA6LFMrIGndSBwXpo5McQNnOe9CRpyKhDEC06nk2ef/TMPPfQVVq68msrKKv7lX35CZ2cH27Z9EHV7hLgRCC4zbMNOjjX2AJCVbqCkMHFyOLK8FV19Vjtuz/h7YFiDSsgTVdw0CHEjiEPq62ux2QZZvHiZf196ejpVVTM5ePBA1O2JeUKxQCCILntPtONyq0GpxZV5SFL85534yE430Nw2gKJAv9Ux7vJ1qyUxPTdZOSlkZJvo7xni3Ol+Bq0THz0jSAz2dxzmr6fexe6O/u/aoDFwc9n1LM6fP+ZzOjsv3lw3NzePjo62sNo3FoS4EQguM3YdOed/vDjII5AIhOTdWOzjFzfBYakEybkBkCSJsqpcDnxyGkWB2qPtlFaLJqbJzJbmbbTbOkY/MFLrt2wbl7gZHla9ojpdaAWiXq/HYrGE1baxIMSNQHAZ4XC52VejjlxINWqpmpEZW4PGSXaQt0VNKs4Y1/mhnpv47nFzPqVecQNQd0yIm2TnuuLVMfXcXDdj9fjO8Q60djodGAyB15bD4cBkiv5rTYgbgeAy4kRTL0N2dZTJwopcNHJipd1lBYubCSQVJ2pYCiB/SjopaXpsVgen6jpxOt0JFVIUjI/F+fPH5TmJNfn5ajiqq6uLadOm+/d3dXVSUVEVdXsS651NIBBMiuCuxIsSpEoqmMmWg/vCUlqtjMGYWN/tJEmipEL11rhcHk6f6omxRQJBgIqKKlJTUzlwYK9/38DAAHV1NSxYsDDq9iTWq1sgEEwYRVE4UK82gdNpZOaUZMfYovETHJbqHafnRlEUf7VUqtmQkF6Pkoocjh9Uc6Ya67qZUS5CU4L4QK/Xc/vtd/Pb3/4XmZlZTJs2jf/6r/8kP7+A1avXRt0eIW4EgsuElnYrvV7PxezSLAx6TYwtGj+ZaQYkQGH8nhuH3YXLqZaPpydYSMrHtOJMtDoZl9NDY30X12yoTIguy4LLgy996WHcbjc//en/xeGws2DBIn7+81+j0+mibosQNwLBZcKB+qCQVGXihaQAtBoZc5qefqtj3Dk3Ifk26YmVTOxDq9MwoyybU7VdDNmcdLRaKJw+vqRqgSBSaDQavv71v+XrX/9btFoZl2v8vajChci5EQguEw6d7PY/XliZWCXgwfjybiyDDlzusb95DgSJm9QE9dwAlAWV7zcF/U4FAkEAIW4EgsuAHsswze0DAFRMzxh3f5h4wpd3owB9A2P33iRypVQwJRU5+NKFGuuFuBEILoYQNwLBZcChhsCH4BWzC2NoyeQJrZgah7gJytFJpAZ+52NK1TPdmwze122jr8cWY4sEgvhDiBuB4DLgoLdKCuCKOQkubkJ63Yw9qXgwSTw3ANVzAi3um4T3RiC4ACFuBIIkZ9jh4kRzL6DOZiqbltgJqFnpwV2KJxiWSmDPDUCVEDcCwYgIcSMQJDnHGnv9ibcLqxJrUObFCM4XGpfnxuoAQG/QoDckdqFobn4amTkpALSd7WfI5oyxRQJBfCHEjUCQ5Bw6GQhJLUrgKikf2enjH8GgKIp/knZKWmJ7bXyUVakN/BQFWhqE90YgCEaIG4EgifF4FA41qOLGoNMwqyQrxhZNnow0vb9aqM86NnHjsLv9DfxS0/SjHJ0YlAYJVVE1JRCEIsSNQJDEnDpnYcAbsphTmo1em3hdic9HI8uYU1WBMlZxYws6LjVJPDeF0zMwmtTOr6cbe2LaME0giDeEuBEIkpjgKqmFFYkfkvKR6RUo/YMOPB5l1ON9+TYAqenJ4bmRZYniCrUk3OX0cNabNC4QxAN//OMf+MY3vhKz9YW4EQiSGF++jQTMT6Ihi1lecaMoYLE5RjkaBgeSz3MDUBIkWEXVlCBeeP75p/n9738bUxsSu2RAIBBcko6+Ic52DQJQPi3DH8pJBjKD8mb6rHa/J+dSBHtuUpIk5wagqDQLjUbC7VZoPtmNoigJXw0nSFw6Ozv46U//L4cPH2DGjOKY2iI8NwJBknIoKCS1oCJ5vDZAiJjpGxjdc2NLwrAUgE6vYbo3SXzQ6qCzzRpjiwSXM7W1NaSnp/PYY88wZ868mNoiPDcCQZJyMKgEfGGCTgG/FJlB5eC9Y0gqtiZpWAqgpDKH5oYeAJrqu8ifkh5jiwSXK1dfvYqrr14VazMAIW4EgqTENuyk7nQfAHmZRqZ6G74lC6Gem9HFTXC1VDKFpQCKy3OAekDNu7liVWlsDRKEhYG9e+h+5WU89rE3qgwXssFIzm23k750WdTXDhdC3AgESciRUz24vVVECysSvyvx+ZyfczMavpwbY4oOjSa5ovGp6Qbyp6TTcW6A7s5BLH3DmDMTd+q7QKXn7bdwtJ2L2fq977wlxI1AIIgvQkNSyVMC7iM4LNVnHTnnRlEUf85NsjTwO5+Syhw6zg0A0HSyi/lLp8fYIsFkyd54I92vvBQzz03Whhuivm44EeJGIEgyXG4PR7zt+E0GLZXTE3tQ5sVIM+nQyBJujzKq52bI5vT3wklN8IGZl6KkIoc925sANTQlxE3ik750WUJ7TmJNcvlnBQIB9Wf6sdldgNrbRptkYRgAWZL8oanRxE1IpVSSem6y81JJz1BDUedO92MfdsXYIoEgtiTfu55AcJkTPCgz2UrAg/ElFQ/YnDhHGD0Q3MAvWYZmno8kSZR4f9cej8Lpxp4YWyQQxBYRlhIIkghFUfwjFzSyxLyyJBY3QSGm/kE7uRmmix43eBl4bkDNuzmy7yyghqYqZuXH2CLB5cw//dO/xHTemfDcCARJxLluGx19QwBUTs8g1aiLsUWRI6QcfISk4sHgoZlJmnMDMKUoA71BHYza3NCD2y0GaQouX4S4EQiSiGRu3Hc+IeXgI/S6uRxybgA0GpkZZeogTYfdRdsZS4wtEghihxA3AkESESJukjjfBs733Fxa3CTr0MyLURz0O28K+lsQCC43hLgRCJIEi81Bw5l+AKbmppKflVxdic9nrL1ufDk3kgSm1OQN0wEUl2fj69fYVK8O0hQILkeEuBEIkoQjDd34PsqSuUrKR7DnpneEsJQv5yYlzZB0nZrPx2DUMaVI7Wtk6Rumr9sWY4sEgtggxI1AkCQcDJoCvqgiufNtALLGEJZyuz0MDTqB5M63CaakItCRuulkdwwtEQhihxA3AkES4HS5OertbZJm0lE21RxjiyKPyaBBr1Pfwi4lboYGL49k4mBKKoPybuqFuBFcnghxIxAkATUtfdidbkANSclycodfQG1c5wtNXUrcBPe4SUniMvBgMrJMZOWq+VZtZy3YBkeevSUQJCNC3AgESUBolVTyDcq8FJmpqjdmyO72i7tgLpcy8PMpCcq5amkQ3YoFlx9C3AgECY6iKP6RC1qNxJzS7BhbFD3MQXk3lot4KIK9Fimpl6e4EXk3gssRMX5BIEhwTndY6bGoYZlZxdkY9ZfPyzojSLD0DzrIywwdwRDsubmcxE3+VDPGFB3DNienG3twuTxoteK7rCCytLWd4847N12w/x//8X+xadNtUbXl8nkXFAiSlOAqqWg17lMUD57OJtxt9bi7m1Fs/SiOISSdAcmYhpw9HU1+OZopM5E0kXubCe5S3H+RXjchnpsIh6XcViu248cYbm7E0daGx2ZDcbvRpKaizcnFWFJCSvUsdHmRr2STZYmS8hxqjrThcno429xLcXnytwcQxJaTJ+vR6w08//yr6HSyf7ZUWlpa1G0R4kYgSHAOhEwBj2y+jcfWh/PoFpwnd6FYRwh3nPpU/V9vQle2DN28jWiypobdHnOQN8YyeGFScbC4MUXAc6MoCrZjR+jdsgXbiWPgvjDvx0e/939DSSkZ16zGfOWVyLrICa7iClXcgBqaEuJGEGlOnTrJjBnF5ObmotXKMR2cKcSNQJDA9A7YaW4bAGBGQRrZZmNE1lEcNux7X8F54kNwO8d+omMIZ812nDXb0ZZdgWHFPchp4fuQzUgduUtxiLhJCW93YltdLZ3PPo29pXlc59mbGuloaqT7tZfJuWUzGdesQpLDHzIqKs1Co5FwuxWa67tRrleSvomhILY0NNRTUlIaazMAIW4EgoTmUBSqpJynPsX+8Z9RbH2BnZKMZvpctMUL0eSXI6fngj4F3A4Uaw/urmZcLYdwNR8A5zAArlN7cDUfxHDFnejmrg/LB+35OTfnM+QVPEaTDo0mPALCPTRE5zNPYfl4Z8h+bXY26UuWYZo1C8P0GWjS05FkGffgII5zrQydrMe6b69fDLn7++l48jH6P9pG4Re+hGHatLDY50On1zCtJIuWhh4GrQ662q3kFaaHdQ1B5Gio6WTPR004Ha6or63Ta7nimhLKZ44vhNrQ0EBOTi5f//qXOH26henTi3jwwS+xfPnKCFl6aYS4EQgSmNAp4OEVN4rLgf3jp3HWbA3s1OrRzV6Lfv5G5JTMC0/SGpAypyBnTkFXsQLFMYSzZhuOg2+gDA+A24F919O4zhzFdO1XkIyTi8VnpAWHpULFjaIofs9NuPJthluaOffIb3B2tPv3GYpmkH3zLaQtWnxRD4zWbEZrNpNSPZOcmzYx3HiKnjffwHpgH6B6clp+9C/kfeY+Mq5ZHVbvSklFjr8UvKm+W4ibBOLg7tMxHJ/h4ODu0+MSN06nk9OnmzGZjHz9639Henoqb775Bt/97t/yi1/8N0uXXhFBey9EiBuBIEGxO9wcb+oF1MTa4oLwfXB5BnsZeuc/8XQFQi6aGQsxXnW/6qUZI5LehH7+RnTV12Df+xLOY+8D4D59mMFX/o2UG/4eOaNwwnamp+iQAAXoPy/nxmF34Xar07bCUSk1sG8vbb9/BMWlfpOWTSZy77iLjFVrxhVWMpaWMfVvvomttoaOPz+Bo7UVxeGg44nHsDc1kv/ZzyFpNJO2F/Dm2dQDat7NsmtKwnJdQeRZuLwopp6bhcuLxneOTsfbb29Fo9Gg1+vRamUqKmbS1NTEM888JcSNQCAYG8ebenC51YS9hRW5YfvG7+lrw/bm/xdIGNboMV79ANqqqye8hmRIxXjVA2hnLGR46+9RhiwolnZV4Gz8ezQFFRO6rkaWSU/VYxl0XBCWGgxjGXjfh+/T8fRT4J2ybSgpZcpXv4Y+L3/C10ypnsmM//XPdD7/LP1bPwCgf/s2nD09TH3468hG0yhXGJ00s4G8wjQ626x0tVuxWoZJi1BeliC8lM/MG3dYKNaYTBf+zZaXV7B798dRt0U0PhAIEpQDEQhJubuasb32I7+wkdJzSdn8v9FVXxMW8aQtmkfKbf+EnDVd3WEfxPbmf+DuaJjwNX15N/1WB4qi+PeH9LhJm3gyce9779Dx5yf9wsa88iqK/vEHkxI2PmS9noL7P0fhl7+KpFW/a9qOHuHsL3+BZ3h40tcH0dBPEB1Onqxn/fprOHToYMj+mprjlJaWRd0eIW4EggTEoygc9oobvU5mVnHWpK/p7m1l6M1/V3NjADm7iJRb/xea7PG5p0dDTs8l5dYfoJk6S93hHML2xr/j7myc0PV84sbtURgcDrjww9GduG/bVjqfe8a/nX3jzRR88UvIuvBWXpmXr2Tat/8BOSUVgKH6Os7+6hd47BefmTUeioW4EUSBsrJySkvL+Y//+AmHDh2kqamR//qvn3Ps2BE+97mHom6PEDcCQQLS2GrBYlNLsueUZKPTTi5Hw2PpZOiN/xcQNgUVpGz6/108aTgMSPoUTBu/FSJwht7+BZ6BznFfK6RiKmiAZrDnZiI9bgY+3UPHU4/7t3NuuY3c2++MWDl1SlU107/7vYDAqaul9de/8uf4TJTcgjRSvUNDzzb34bBHP4dDkPzIsszPfvYLZs2awz/90z/y+c/fx/HjR/nFL/6b8vKJhZ0nZU/UVxQIBJMmnIMyFfsgtrf+w1/qLecUk7Lx75EMqZO67mhIWgOmDd9CU1il2jFkYejtX6DYB8d1HXPaxcvBJ5NzM9x4irY//t4fisrasJHsTbeO6xoTwTijmOnf/gfkFHWqt+3EMdqffDwk3DZeJEmipFL13njcCqcbe8Niq0BwPllZWXz/+//Eq6++w7Ztu/jtb//IggWLYmKLEDcCQQLiEzcSMH8S4kbxuBl6/7co/WonWzlzCqYbvxNxYeND0hkwXf+3SN6KKU9vq2qPZ+ydTTODGvkFi5vQnJuxixtnby9nf/0rFKfqGTNfeTW5d94TtQZ4xpISpv3t3/tzcCw7P6Lnjdcndc3gvJtmEZoSXAYIcSMQJBidfUOc7VS9G2XTzCFhmfFi/+RZ3GeOAiAZ0jBt/DayyRwWO8eKZEwj5YZvIxnVUnb3maM49r865vMzLjFfyhZUGj5Wz43icnHut7/G3d8HgKmyivwHPh/1zr6mikoKv/QV/3b3Ky9hPS9RczxMm5GJTq+GLpsbuvF4Ju4JEggSASFuBIIEI1whKefJXTiPvqduyBqM138T2Ryb0lPZnI/xur8Br4hw7H8N1+kjYzo3tEtxQND4wlKyLGEwjq3rRdcrLzF8Sq3c0ubkMOXr3wh78vBYSV96Bbm33+nfbnv0dzg7x5+TBKDRyhSVqknnw0Mu2s9awmKjQBCvxJ24+c1vfsMDDzwQsu/73/8+1dXVIf9WrVoVIwsFgtgSOgV8YuLG3d/O8EeBZFnD1Z9DO6V60rZNBu3UmeiX+T7MFYY/+B88wSMfLoH5EiMYgrsTj8XzMnj0CL1vv6luaDRM/do30KZH14t1Plk33ETaoiUAeGw2Wh/5bzyOC8dMjIXQkvCuEY4UCBKfuBI3jz32GL/61a8u2F9bW8vDDz/Mjh07/P9eeeWV6BsoEMQY27CLutN9AORlGpmaO/7cGMXlZPDd//bPfNJWXoV+5upwmjlh9AtuQDNjIQCK3crw9j+NmkwbPDzTF5byuD0MDao5M2MJSbn6+2l79Hf+7bw77sIYBwMAJUmi4AsPocsvAMDe3ETHX56f0LVmlOf4HGM0newJl4kCQVwSF+Kmvb2dL33pS/zyl7+ktDT0DcXtdnPy5EnmzZtHXl6e/192dnaMrBUIYsfRxm7c3nyJBRPsStz94VO4O5sAkDIKMV79wMgnRBFJkjGueQjJm/fjbjmEs3b7iOeYDBr0WvWtzDdfanBwfGXgHU8/iXtALYNPnTefzOuun5D9kUCTksLUr/0Nkjc81vPeu/QdPDTu65hSdBRMU3+ufd02+npiNbdIEMD3+hU5UD4mUxkYTFyIm2PHjpGRkcFrr73GggULQp5ramrCbrdTXl4eI+sEgvghOCS1aAIhKefZE1j2/FXd0Ggxrfsaki6+2vHLxnSMq77g37bvegaP5dK5JpIk+UNTvrCU1RLIvUkdpVJqYO+nWPftBUCTlk7BF740rllR0cBQNIPcO+72b9f/6r9xD46vZB6gJKiTdVO9qJqKNVqtBpCw28PTjToZcDjU165GM7npUHExW2rt2rWsXbv2os/V1dUhSRKPP/4427dvR5ZlVq9ezbe+9S3S0yc3KFCrDe8bmEYjh/yfjCT7Pcbz/bncHg6fUj+QUgxaZpVmox2HnYrTjuXDR/3bphX3YCiMfejlYmjLl+CeuQpHzXZwDmPf+ThpN//DJT1VmekGuvqHsQ45UQDrQJC4STdc8rXusg7Q8fST/u3C+x/AmJ0ZzlsJG7nXr8d2+ACDx4/j6O6m/c9PMvUrD4/rGhUz8/jkw1OAWjW19KriSJg6aeL5dRgOfPel0+lITU3Dau3D5XJiNKYgy5qoV+eFG0kCj0fC41EYqyNGURQcDjtWax+pqeno9Ukgbkaivr4eWZaZNm0ajzzyCM3NzfzsZz+jrq6Oxx9/HHmC37BkWSIrKzK9PMzmyQ+8i3eS/R7j8f6OnOzC5h0vsHRWAXm54xP3Xe8+i8fSAYCxaBaFq29DkuL3wyPj5i9z+uwx3APduE4fRd92iLTZV1302LysFE6e6QfAjcxgkLjJy0+75Gu97rE/4LaolUPZy5dRvHFtXH+wpH777zjwd3+Pe9BG38cfU7jmGnKWj33aclZWKjl5qXR3DnLujAWDXheWiemRIh5fh+HEbDaRnj6D/v5+2ts7sFgub2+aJEFOThZTpkyZ9Osw7sXNN7/5TR588EHMZjVWXFVVRV5eHvfccw9Hjhy5IIw1VjweBYslvDFnjUbGbDZhsQzhdo+9CVkikez3GM/3t23/af/jOSVZ9PaOPSzhbK3F+qlaCSRp9ZjWPERf31DYbQw3xqvuZ/DtXwLQ+c4fcWRXIRlSLjjOpA+MnzjT1h8ibpC46M9q8MQJOreq+TxySgo5n7mfvr44z0PRmpjywOc488gjAJx85PcoRWVoLjKN+VLMKM+mu3MQxaNwaN9pZs4rjJS1EyaeX4fh4ML705GXNxWPx4Pb7SbRc3A0Gpm0NCNW6/A4fn8SWq0GWdaM+Do0m01j8ujFvbiRJMkvbHxUVant2tva2iYsbgBcrsi8aNxuT8SuHS8k+z3G2/0pisKBWjXvRJYkZpdkjdk+xe3CtvWP/u2sNfehpOfH1f1dCnnGIrTFi3A1H0Cx9TH4yQsYr7r/guPMKYFeNL2WYRwDgRwGg0l7wb0qLhfnngqEo3LvvBspPSMhfibpy1eSufsT+g4cxNXTQ/uLL5D/mc+O+fwZZdkc+EQVyqdqu6iYNfnp5pEi3l6H4ebC+5OQ5bj/WB4VjUbGaDQyNORGUcb++/N4wDOO7uQjEb8+aS/f+c53eOih0ImiR46ozb0qKqI/jEsgiAXnum10eD0tVUUZpBrH3ljOceRdPH3nANAUlJOx7MaI2BgpDFd+FrRq6MR5/H3cXc0XHBPcyK/P6ghJKL5Y2KVv6wc4zp5Rr19SSsbVidM3S5Ikyr/2FSS9el99729huGnsE9ULp2f4mxq2nOpJSs+IQBD34ubmm29m586d/Pa3v6WlpYVt27bxgx/8gJtvvllUUAkuG0K6EleOvYuwx9qNY/8r6oYkkbLq80jy5CaIRxs5PRf94tvUDUXBvuuZC8pFQ3rdDNpDEorPLwV39ffT/erL/u38+x6Iu+qo0TAWFJB322Z1Q1Fof+KxMc/jkmWJ4nK1oZ/T4aa1pS9CVgoEsSPuX9HXXnstv/zlL3n33XfZtGkTP/zhD7n++uv58Y9/HGvTBIKoETpyIWeEI0Ox73oGXGp5tG7WWrR5JeE2LSro512PZFYb2bnP1eBqPhDyfPB8qWDPjd6gQacLFXNdL7+IZ0j1gpmvXoWprCySpkeMnOs3oJ9eBIC9pZn+j0buBxSMb0o4iJJwQXISd8G9n/70pxfs27BhAxs2bIiBNQJB7LHYHDR4K4Gm5qaSn3VhQu3FcJ0+gqtR7d8iGdMxLLs9YjZGGkmjxbD8bobf+y8A7LufQ1s0H8nbCyNkvpTVjtHruTnfa2M/exbLzo8AkE2mkNlNiYak1ZJ/3/2c+X8/AaD75RdJX7YMTcroVaBFpVnIslqq23Sym6vXV8R1lZhAMF7i3nMjEFzuHGno9tdOLBij10bxuLF/8ox/27DiHiRDZFofRAttyWI03vlXSn87zuMf+J8LmS81YMdhV0vmz8+36XrxeXyNN7Jv3ITWHNvZUZMlpaqa9GVqKbjbOkD366+N6Ty9Qcu04kxAbXjY0zn+hoACQTwjxI1AEOeEdiUeW76Ns/YjPL2tAMj55WgrL94fJpGQJAnDinv92/b9r6LY1Q9lrUYmzaQmWQ8OBEYvBIsbW10tg4fVsQXarGwy110XDbMjTu6d9/hHM/R9sAXHudYxnRcySFOEpgRJhhA3AkEc43S5OdqoDjlMT9FRNnV0T4PiGMKx9yX/tnHFZ5Im5KDJK0FbeaW6YR/EceQd/3O+0NSQ7UJxoygKXS8859+fc+tmZH38Nq8bD7qcHLI2eivg3G46n392TOcVh0wJF+JGkFwIcSMQxDE1LX3YnW4A5pfnIMujixTH4bdQhtSuu9rSpWgKKyNqY7QxLNkM3oovx5F38Xjv1ReakoJKm1O8icbW/XsZPqWOHdBPm475ysT3ZAWTvfFGtFnqMOHBI4ex1ZwY9Zz0DCM5+WqosuPcQGjjQ4EgwRHiRiCIY4JDUgvHEJLyDPbiOPS2uiFrMFxxV6RMixmyOQ/dzNXqhnMYxyG187KvYkpLQACmpOpRPJ6Q0u/cO+5MuNLv0ZANBnJuCySMd734lzFNVw4OTTU39ETENoEgFiTXK1wgSCIURfGXgGs1MnNKs0Y9x/7pS+D2ln7PXoecURBRG2OFftEm0Kh5Js5j7+MZ7PWHpYLbG6ak6bHu24ujVc1DMZZXkDpv4l3N4xnzyivRT5sOwHDjKaz79416TmhJeNcIRwoEiYUQNwJBnNLSbqXXGyqYVZyFcZQpue7es7jqdqgb+hQMi2+JtIkxQ07NQjdnnbrhduI48Lq/kV+wuDGZtHS//qp/O+eW25Im/+h8JFkmd/Md/u3ul19EcbtHPCevMN0fujvT3IfTOfLxAkGiIMSNQBCnhHYlzh31eMe+V/AN3NMvvBnJmBYhy+ID/cKbQGcEwFmzjRyt2phPFxSWUk6dwNF6FlC9Nimz50Tf0CiSumAhxgo1x8rRdg7LxztGPF6SJH9oyu3ycKapN+I2CgTRQIgbgSBOCc63WVA+cn8bd1czrlOfAiCZzOjnrouobfGAbExHP8dbzu1xM7VT/SD3eW4kCQbfCfR9SWavjQ9Jksi7427/dvdrr+BxOEY4Q5SEC5ITIW4EgjikxzJMc/sAAMUF6WSbjSMer3ptVPSLNiFpDZc+OInQzbseNGpYJf3sJ6RJQ35xY9BJOC8jr40PU2UlqQsWAuDq7aV/24cjHj+tOBOtVv0oaD7ZPaZEZIEg3hHiRiCIQw41BL5BjxaScnec8s9aklKzA5VElwGyyYxulnq/ktvJasMJv7jRDVv8x+VsujXpvTbBBOfe9Lz95ojeG61Ow3RvsvqQzUl760DE7RMIIo0QNwJBHHIoZFDmyOLGHtSwT/XaJEdzurGin3+Dv+/NCkMjsjfnxidujGVlpMyZGzP7YoFhehFpS5YC4O7vp3/71hGPDykJFw39BEmAEDcCQZwx7HBx3JvYmZVuYEbBpRODXedqcZ85CoCUnouu+pqo2BhPyGnZ6KquBsATNAvY4LIB6gypy8lr4yNn063+xz1vvTGi90Z0KxYkG0LcCARxxtFTPbi8XXYXVuSO+MHs2B8oczYsvtU/JftyQ7/wJpAkhj2Biel69zD6KVNJnZ+cfW1GYzzem5RUPQVT0wHo6RzE0jcUDRMFgoghxI1AEGccqO/0P15cdemuxO6OBtxnjwMgmfMDM5cuQ2RzPtryFQx5AonXepeNrA03JF034vGQc/PYvTclQbldompKkOhcvq96gSAOcbk9HPKGBUwGLdUzMi95rH3/6/7H+oU3IXnzTi4Xhl3D1Pee4sPTO3im5kUeNyt8pA/q4qx18kJ6Iy/Uv8bHrZ/SYjmD23N5NakzFBWRtngJ4PPebLvksSUiNCVIIi5PH7ZAEKfUne7DZncBam8brebi3z/c3S24Ww4C3gqpyuQaBHkpuoZ62N9xiOPdtTT0N+FRPCHPX9FTis0bxWuc6uJg91EI+pw2aY1UZ1UwN2cWC/PnYdKOXGKfDORsutU/iqHnrTfIWL0GWae74Lis3BTMmUYsfcOcO92PfdiFwSg+IgSJifjLFQjiiP11gZDUohFCUo4Df/U/1i+4IalzbdweNwc7j7CjdQ91vScveVyqzU26VYdNTR3hZPGF/VqGXMMc7DzKwc6jPF/3Cgvz57F6+pWUmGdEyvyYYyiaQdqiJVgP7MPd34dl104yV6254DhJkiiuyOHI3rN4PAotp3qonJ0ffYMFgjCQvO+IAkGCoSgKB+p9gzIl5pZmX/Q4T9+5QDdiYzq6mauiZmM0cXlc7G7bx7vNW+kaujBMkmfKoTqrgqL0aUxLm4Lu7e3sDMqv+bv2c2gWf4XeNDNnredosrRQ23OSQW8VlcPjZE/bfva07acqq4KNxWupzq6I2v1Fk6wbbsJ6QPXe9L79FhlXr7poLlKJV9yAGpoS4kaQqAhxIxDECU1tA/5BmbNLsjEZLv7ytB98A98MKd38DUnZjfho1wlePPk6HbbQSdV5phxWTlnGovz55KcEEmA9djundn6CI0cdOyHjJg07upqPKbj+m8zMVucteRQPTZbTfNq2n0/bDzLkUquC6npPUtd7krk5M9lccTOFqcn1oW4qK8M0cxZDNSdwdrRj3beX9GVXXHDclKIM9AYNDrubloYe3G4PmkuERgWCeEaIG4EgTgiuklp0ia7EnoEuXPW71A19CvrZyTVDqnuol+frXuZod03I/uqsCq4vvpbqrIqLlsZbPtmFxzaII98EgF6yI0ngatqPp78dOaMAAFmSKcsopiyjmNsrbmZP+37ea95Kp9czdLS7huM9dawrWsVNpevRaS7MTUlUsm+8mbM1JwA19yZt6bILfpYajcyM8hxOHu/AYXfRdqafacVZF7ucQBDXCHEjEMQJB+pUL4XEpbsSOw69BYpa8aOfex2S3hQt8yKKoih8cm4vL9S/xrDb7t9fllHC5oqbKMsoHvHcvvffQ0HCqfFOCQ88i+PIuxivfuCC83QaHVdNXc7KKcv4tO0Ar516mz57Px7Fw3stWznSdZz7Z91NaUZy5OOkzJqNobgEe3MT9pZmbMeOkjp33gXHlVSo4gbUknAhbgSJiPA3CgRxQHuPjbNdgwCUT8sgI+3CUJNneABn7UfqhlaPfu710TQxYticNn535AmeqvmLX9hkGjL4wux7+fbir40obABsJ47jaD2LU2NAkdS3tD7FgMP73c1Z9xGKffCS58uSzPIpS/g/K/6BG0uuQyupJfVttg7+Y99/83bT+xdUZSUikiSRfeNN/u2et9646HEzyrKQZdWj0yQGaQoSFCFuBII4wJdIDLCo6uJeG+fxD8CtNmHTzVyNZLz0WIZE4fRAKz/99Fcc7jrm37eicCn/a/m3WVq4aExjE/q2vAuAQxPwYg0jsd+l5tngcuCs3THqdfQaPTeVXc8/Lvs7ZqRPB0BB4fVT7/Dbw3/C6ry0QEoU0hYtQVdQCMBQbQ1DDRdWnxmMOqYUZQBg6Rumt9sWVRsFgnAgxI1AEAfsD+5KXHlhCbjicuA8ukXdkCT08xLfa7OnbT//se/XdA/3AJCmS+Wr8z7PA7PvxqQdW7jN0d7O4JHDALgyA0nATuADa2XguOPvo4zR+zI1rZDvLvkbbixdj+Qdwnm8u5af7vklrda2MV0jXpFkmeyNN/i3L+W9CWnoJ7oVCxIQIW4EghjTP+ig4Uw/AFNzUynITrngGGf9xyjDAwBoS5chp1+6B068oygKb5x6l8ePP4vTozYsLE4v4h+X/S3z8+aM61p9H24Bb9hEO2eRf78TaPdk4imYqa5p6cB9+siYr6uRNdxUup5vLPwSabpUAHrtffzHvt9wortuXDbGG+krrkSbpebRDB48gKPt3AXHlFQGi5uuC54XCOIdIW4Eghhz6GQXvqyGi1VJKYoHx+G3/dv6BTdccEyi4Pa4ebrmBd5s2uLfd9XU5fz9kq+RbRxf4qp7aAjLDjUHSdLroSjQo8bl/d8642r/Psex98dt78zsSr5/xbf8Yaph9zC/OfxHdrbuHve14gVZpyPzuoDnr/e9dy84xpxpIjtPFXXtrQMMDtgvOEYgiGeEuBEIYkxwV+KLDcp0Nx9C6VfDIZop1WjySqNmWzhxuJ387sjjfHzO24AQiTsqbua+mXegk8dfuGnZuQPP8DAA5hUrGXYF8nOcXrnYmVaFlKZ6IdynD+Ppbx/3OpmGDL61+GHm56peJY/i4emaF9nScuk5TfFOxjWrkAxqZZnl4x24BwYuOKY0KPerUXhvBAmGEDcCQQwZsrs43tQLQFa6geLC9AuOcRx+y/84Ub02DreD/zn8mL9/jVbS8MW5n2XtjIl1V1Y8HjUk5SVz3XqGBgMTr32l4BabC11QL6CJeG8ADBo9X573ANcWBTxBL598g7catyRkNZEmJZWMa64BQHE66dv24QXHlAWJm1O1QtwIEgshbgSCGHKssQeXW010XViZi3xedZC7owF3m5rjIWdORVM0P+o2Tha728FvDz9GTW89oAqFbyz8EovzJ34vtpoTONtVL4xp5iwM06Zju4i46bfa0c9cBd5mfM66j1CcwxNaU5Zk7qy8hU1lG/z7/tr4Lq+dejshBU7WuuvB+/fW98EWPE5HyPM5+amYM1XvTmtLH8NDzguuIRDEK0LcCAQxZLQqKcehgNdGN38DkpRYL1mH28FvD/3RP/DSqDHwjYVfpjKrfFLX7d/6gf9x5pq1ANgG1Q9fWSPh9h036EAypqGrWOE1aAhn/ceTWntjyTpur7jZv/1u84e83TQxj1As0eXlkbZ4CQBui4WB3aF5RJIk+UNTiiKqpgSJxZjfKX/6059y5513XvS5U6dOUVNTg8eT+I2uBIJo4XJ7OHRS/cAwGbRUz8gMed5j6cDVpA47lExmdJVXRtvESeH2uPnD0aeo7zsFgElr5BsLvzxqU77RcPX1Yj14AABNRgZpC9UqKZ/nxpgSGJnQ792nm3Odf5/z2PuT9rSsm7GKe6pu82//tfFdPjj90aSuGQuyrt/of9z73jsX/FzKqoNCU3UiNCVIHMYsbvbs2cOcOaFlmk6nk4ceeoibbrqJzZs3c91117Fv376wGykQJCO1LX0M2dW6ngXlOWjPG1DoOPKuv8xZN3c9UgLNOfIoHp488TzHvDk2Ro2Bby78clhGGfR/tB28X6QyrlmFpNXi8SgM21TPTVpQd2eLV9xocovRFHiHZ/ae9Yf6JsOq6VeGeHBerH894aqoTOUVGMvVKjPH2TPYjh8Leb5gqpmUND0AZxp7cNhdF1xDIIhHxixuzp49y7Jly0L2vfTSS+zcuZOKigruuusuAL761a9y7tyFfRMEAkEo+2o7/I8XnVclpThsOOu8XXW1evSzro2maZNCURRerH+dT9tV74pW1vLw/AcpNhdN/tpuN/3bvVVKkkTGNWsAGLIF8kVS0/SkmlQh2B+Uh6ObHfgZOk9snbQtoHpwbixd799+puYlDnUeG+GM+CNrfSCHqPfdt0OeCw5Nud0KLad6omqbQDBRxixuBgcHKSgoCNn35ptvYjAYeOKJJ/jXf/1XXn75ZXJycvjjH/8YdkMFgmTC41H8JeB6rcy8suyQ5501H4E38VVXeVVCjVp4r2UrW8/sBNRy7y/O+eykc2x8DB45jKtX/YBNnb8AXY5a5m2zBkRMSpqerHTVexMsbrSlS8Gg9m5xNX6KMmwNi003llzHuiK16ktB4U/HnqbZcjos144GaYuXoMtVxbXt2FHsZ8+EPB9cNdUoQlOCBGHM4iYzM5POzkDyo8Ph4MCBAyxfvpwsb7fLjIwM7r33Xj76KPFizwJBNKk/04fFG0aZW5aDUR/o86J4PDiOBcqcdXPXX3B+vHKw4wivNgSSoD87804WjLPr8Ej0bQ2ULGesDnhihmyBSp6UVD1Z6WqVj93hZtihhlIkrR5dlbeU2+0KeMYmiSRJbK64iaUFCwFwepz89vCf6B5KDC+HJMtkXhf4G+t9952Q56cUZWAwqn+fzQ09uFwit1IQ/4xZ3CxZsoTXX3/dv71r1y4cDgfLly8POa6qqkqEpQSCUdhXG/iisKQ6NCTlbjmEMqA+r5k+F03W1KjaNlFaLGd47Piz/u2bSzewcuqyEc4YH87OTmzH1BEK2txcUufO8z93Kc8NBPJuAPSz1gSud2Jr2Eq4JUni/ll3U56hNlgccFj5zaE/YnMmxtDJjKuvQTap87wGdu/CZbH4n9NoZP84BqfDzRlvXyaBIJ4Zs7h58MEH2bp1K//wD//AK6+8wi9+8QskSWLNmjWhF5RlZDmxylUFgmjiURT2eUNSGlliQXnoyAXH0UA7fP3c60gE+uz9PHL4MZwe1YOyrGAxG0vWhneN7Vv9CdaZq9YgBb3PBOfcpKTqyQwSN8GhKTlzCpop6rwpT38b7nM1YbNPJ2v56vzPU5CiitU2Wwd/PPY0njEO7IwlstFExqrVACguF/3bt4Y8HxKaEg39BAnAmFXIokWL+D//5//w9ttv8/3vf5+amhrWr19PeXloLL2+vp7c3Avn4wgEApXGVgu93lk9c0qzSTEGQlLuntO4W08AIGUUJETTPl/34X6H+m2/LKOEz866E+m8hoSTweN0YtmxXd3QaDBfdU3I8yGem/PFjTW0OZ0u2Htz/MLOvJMhVZfC1xd80T9s80RPHa81vD3KWfFB5rXrAk39PvwAxRWojJpemo1Wp35cNNZ34fEkXtNCweXFuFwsn/nMZ9iyZQv/7//9P37zm9/wn//5nxcc88YbbzBr1qxw2ScQJB0hIanzqqScR9/zP9bPuS7um/YpisKztS/TMnAWgBxjFl+Z97kJzYoaCeuBff75R+mLl6DNyAh53hacc5MWyLmBUM8NgLZ0CZJRHXPhatqHZ8hCOMk15fClufcje39377VsZV/7wbCuEQl0uXmkensGufv7GNi/1/+cVitTXK6GpuzDLlpb+mJhokAwZsb9zllQUMCmTZtYu3btBeGnzs5OjEYja9eG1x0tECQLiqKw11sCLktSSAm4MmzFWb9L3dAZA8mvccyO1k/Y3ab2ttJr9Dw8/wuk68Nf2dUfnEi85sL3l/M9N1nmi4elACSNDl211/PjceOsDU9icTCVWeXcUbHJv/3Uib9wZqA17OuEm6x1gcTivve3hDwX3NBPVE0J4p2wfi3My8vjscce47bbbgvnZQWCpKGl3UpXv1riPbM4kzRToDGfo2YruFUPhK76GiS9KRYmjpkmSwsv1L3m375/5p1MTSsM+zqOc60M1dUCoC+cgqmq+oJjfDk3Wp2MTq8J8dxYzhM3ALqZq/2PnTVbUSKQF7N6+pUsL1THGzg8Tn535Im4TzA2Vc9EP206AMMNJxluavQ/N6MsG1mjhq0a67oScp6W4PIhvn3eAkGSsa8u0LhvSXW+/7HiceE85puXJKGP8/LvAYeVPxx5CpeiTnG6dvrVLPGWQoebfl+uDZCxas1Fc3l8nhtTih5Jki5ZLeVDzihAM00tUVcsHbjPngi32UiSxL3Vt1OcrjYv7B7u4akTf4lrUSBJEpnrAknswd4bvUFLUYna9mPQ6qC9dSDq9gkEY0WIG4EgSiiKwt4aNd9GAhZXBtz8rsb9KINqXxTNjAXI5vyLXSIu8CgeHjv2DL32PkBNIN5ccVNE1lJcLiwfq4MuJa0W88oL52u53R7sw2ryq29UgDnN4MuNpX/QftFrhyQWnwhvYrF/DY2OL897gFRtCgCHuo75GxzGK+blK5FT1ITogU934+rv9z9XFtS24FRQ7phAEG8IcSMQRInWrkHaetSwROX0DDKCZiCFJBLPuz7qto2H95q3UtNbD0C6Po2H5n4WjayJyFrWQwdxD6gJv6kLF6NJT7/gmKHBoGRi79BMjSxhTlGFzvk5Nz60JYuQTGYAXE0H8Nj6L3rcZMkyZvK52ff4t18++UZcdzCWDYZLloUXV+T4ReOpWhGaEsQvQtwIBFEitHFfwDPj7mzC3a6KBTlrGpqp8Vtt2NjfzF8b1T486miF+8g0ZIxy1sSxBIekrll10WNsQeLF5PXcAGR4H/dbHRf9EJZkbSCxWHHjqv84HCZflLm5s1g3Q7Xfrbh59OhT2JxDEVtvsmReuzZQFr71Q39ZuClFx7RiNTQ10D9MZ1t4RlgIBOFGiBuBIErsvURX4uCmfbq568PaHyacDLmG+NOxZ/xN6TaUrKUqqyJi6zl7ehg86u1InJNDyqzZF7drMLRSyofZ+9jtURgcvvg0a7+4AZw12yLqibi17AZKzepU9O7hXv5cE7/5N7qcXNIWLQa8ZeH7AmXh5bMCf7sNNR0XnCsQxANC3AgEUaC9x8aZTvVbbtlUM9lmtZrHY+vD1bBbPciQiq5yZaxMHBFFUXim5iW6h9W8oFJzMTeWRLZ7suXjHf6OxBlXrwrpSByM7RLiJiP10uXgPuSMQjRT1OorT38b7vaTk7b7UmhkDV+c+1lStGoV3MHOo+w692nE1pssmSFl4YGwaWllrj801XCiM24FmuDyRogbgSAK+HrbQKjXxnn8Q/CoFUf6mauRtIYLzo0HPmnbx76OQwAYNUa+MOfeiOXZgDo81F8lJUmYr7x0z59LiZvMoBCVxXrxpGIAXXUg3OWs2X7J48JBtjGL+2fd5d/+S/1rdNq6I7rmRDFVVaOfrlZ6DZ9qYOjUKXV/io7p3qqpAYudzjZRNSWIP4S4EQiiwN6L5NsoblegSkeS0c1ZFwvTRqXD1snzda/4t++beTs5puyIrmmrOYGrS20UlzJnLrqcnEseG5xQbEoN9A3KCBI3l/LcAGjLloK3p5Dr1G4UR2RzYRbkzeXKKVcA6uiKx48/g9srcOMJSZLICi4L/yDgvSmbGRDoJ0+IqilB/CHEjUAQYdp7bTR7v90WF6STn+n9IG38FMXb+l9bshg57dIf4LHCo3h44vjzONyqOLhyyrKI9bMJJiSR+OqLJxL7GEtY6mK9bnxIWgO6Cm840OXA6QsTRpA7KjeRa1J/342WFt5p/mCUM2JD+vKVyKm+svA9uPr7AHWQpr9qqkaEpgTxhxA3AkGE+fREICR1xaxAlZTjaKBBmm5OfE7/3tKyjUZLM6DOTLqj8paIr+m2WrHuV0c6aNLSSfPOO7oUIdVSqRdWS8HInhuIbmgKwKg18ODsz/jnT73V9D5NlpaIrzteZL2ejFVr1A23mz7vGAyjKTQ01XFOhKYE8YUQNwJBhNkTJG6WzVTFjbuzEU9HAwBy9nR/Ums8cdZ6jjdOBcq+PzfrHoxRyAmyfLLLX3psXnklknbkIZw+caPTa9DpAnlAwX2ERhM3cm4xco5ayeTpPIW7J/J9aEozitlYrM7J8jVGtLtHtjMWZF67FrzJ3P3bt/p/N+Uzg6umRGhKEF8IcSMQRJBz3YMhVVK53pCU41io1ybeyr9dHhdPHn/OP15h3YxVlGeWRHxdRVHo/2ibf9t8id42wfhKwYNDUgCZqWP33EiSFHXvDcDGknUUm9Wk3c6hbl5teCsq644HXXZOUFl4PwP71Aqv0qpcZFn9u20QoSlBnCHEjUAQQYK9Nld4vTaeIUug/FufEsj3iCPebnqf01Z1ivWU1AJuLo1O12R7UyOOs2cAMJZXYJg6bcTjXS4PDrsqwIKTiQFSjFq03kGP/dbRPSK6ypWgUb1EzvqPUdzOUc6YPBpZw4OzP4NOVm3fdmYn9b2nIr7ueMlcGzxvSk0sNpp0TCvJBMAqQlOCOEOIG4EgQiiKwp4T7f7tpV5x46zZDm7Vta+buQpJF1/l382W07zTrOZWyJLM52bdg06jG+Ws8ND/0egdiYO5VAM/UL0xvkZ+lkvMlwo53pCKtnSpumEfxNV0YCwmT5r8lDxuKd/o336q5i/+BO54IbQs/BTDjaoAKw9qa9AgqqYEcYQQNwJBhDjbOci57sAsqWyzEcXjxnk8aPr37LWxM/AiON1Onjj+nL8L8caSdcwwT4/K2h67nYE9nwAgGYykL71i1HMuVSnlI8O7b8DmxO3xjHq90NDUthGODC9rpl9FWUYJAF1D3bx26u2orT0WJEkiK8h70/uBGlYNCU3VitCUIH4Q4kYgiBB7aoKrpAoAcDUfCJr+PT/upn+/3fQ+bTbV7hnp0/wJr9FgYO8ePMPDAKRfcQWy0TjqOaOLG9UrpqAKnNHQTJ2JlK56I9xnj+MZiI43QpZk7p91FzpZDYttPb2Tk32NUVl7rKQvXxEoC9+jTgsPrpqyWuy0t4rQlCA+iDtx85vf/IYHHnggZN+JEye4//77WbhwIWvWrOHRRx+NkXUCwdhQFIVPvSEpSYKlXve989j7/mP0cVb+fWaglXdbtgKgkTQ8MOueiHYhPh/Ljo/8j0frbeNj6BJl4D7MwUnFY8i7kSQ5aN6UgrN2x5jsCAcFKXncXLbBu7LCn0/EV3hKNhjIuEadFo7b7Z8WHlo1JWZNCeKDuBI3jz32GL/61a9C9vX29vKFL3yBkpISXnzxRb75zW/yy1/+khdffDFGVgoEo9PSbqW9V+10W12USUaaAXfPGdytJwCQMgrRTJ8TSxNDcHvc/LnmL/5w1PXF1zI1rTBq6zvOtTJUXweAfuo0jGXlYzrPZg323FyYF5QxjoopH7rqa/wTsZ21H6GMIZwVLtYWXeMfrtkx1MXrp96J2tpj4WLTwkurckTVlCDuiAtx097ezpe+9CV++ctfUlpaGvLc888/j16v55//+Z8pLy/njjvu4MEHH+T3v/99jKwVCEZnT00gkXiZNyTlDCr/1s9ZhyTFxcsPgA/P7KBl4CwAhSn5bCiJbi5Q/3lem7GWxttswaMXLhKWCp4vNUZxI6dmoSmaD4Ay2IP77LExnRcO1PDU3Wi94akPT++gsb85auuPhi4nl7SFQdPC9+/FYNRRVKqGpgYHHJw73R9LEwUCIE7EzbFjx8jIyOC1115jwYIFIc/t3buXZcuWoQ1q5LVixQoaGxvp7o7PgXOCyxs1JKW652VJYkl1Hop9EGf9x+oBOiO6qksPgow2HbYu/hrUrO+zQbkf0UBxubB8vFPd0Ggwr7xyzOcGe25S0y6dUAzQP4aKKR+xSiwGKEzN95feKyg8XfNiXM2eygyeN/W+KtgrZgdyx+qPi9CUIPZE7x1sBNauXcvatRf/ptjW1kZVVVXIvvx89YXU2tpKzggD9UZDqw2vttNo5JD/k5Fkv8dw3F/D2X66+tXE2NklWWSbjQwf2gou9YPYUH01upTUSds6Ec6/P0VReLb2RZwe1QNy7YyrqMopveT5kcBy8BDuAXXGlnnxEgxZGWM+NzjnJj3DiEYjh9xjtjmQlDww5Bzza15Ttgi7yYwyZMHVfADZaUU2mcds12S5vnQ1+zoOcXrgLK2DbXxwZjs3lKmDVWP9GkyfMxvD9OnYz5xhuOEkzjPNVMwqYtvbdbicHk7VdrLmhqpJ2Rfre4w04v4iT1yIm5EYHh5Grw/9RmYwqBUQdvvYv4mdjyxLZGVF5gPGbDZF5LrxRLLf42Tu79BHgSqXa5fNIDPTxOnjgcGIeVdtQh+hv72x4ru/9xt2UNurjoHIS8nmwaV3YNSNXqUUTs7t2ul/PP2mDeN6XQ55w1IpqXpyc9NDnjObTcyYlhk41uEZ17WVBdfS/8mr4HGjOf0pmcsjP1crmL9Z8QDf3/IzFEXhjVPvsbZqBYXpAQ9JLF+DjltuouE3/wPA4PYPqfy7bzJzbiFHD7QyPOSip8NG1eyCSa8j3mcSm1jeX9yLG6PRiMMRGiv3iZqUlJQJX9fjUbBYbJOy7Xw0Ghmz2YTFMoTbHb0kxGiS7Pc42fvzeBS27Vc77GpkiVlFGXQe+gRXbxsA2ulzGNRkMdg7GFa7x0rw/XUP9vLEwUBi/r0z72DI6maI6Nnm7Omhd7/aLE+Xk4Myo5zeMf5sFEVhwKJ6yEypOv95wfeIKxDO6ewZHPO1AZTSK+GTVwHo27cFT+XaqI7JyJJyWTfjGrY0b8fpcfGbT57iW0u+glariflrULdgKXLKk3hsNjq37yDztjspqczh6AG1q/X+T5rJm5I24euL95nEJpL3ZzabxuQRintxU1hYSEdHaAzXt11QMLlvBi5XZP6o3G5PxK4dLyT7PU70/k409dA7oIrveWU5GHUabIff8z+vnb0uLn5ubreHZ068zJBLFQdXFC6mOrMy6rb1bN8O3uoa81XX4PYAY6xOGh5y4nGr56ak6i+w3e32oJElDHoNdoebPqtjfPeXXoCmsAp3Wx2e3rM4WuvRFFSM/fwwcEPxeva3H6FnuJeanno+PrOXq4qWATF+DWp0ZFyzit533kZxuej+4AOm3nAzBqMW+7CLU3VdDNmc6PSTayUg3mcSm1jeX9wH/JYtW8a+fftwuwPfwHbt2kVpaemk8m0Egkiw63igSmrFnAI8/W24Tx8GQErLQTtjYYwsC+VI53EOdh4FIE2Xyh2Vm6Jug+LxBHrbSBLmq8aXZB1aBn5hMrEPX1LxWEvBgwn0vAFnbXSGaQZj1Bq4p+o2//aLJ19nwGGNuh0XI3PNOn9ZeP+2D5EVj7/njcvpoemkKPgQxI64Fzd33HEHVquVH/7wh5w8eZKXXnqJxx9/nK9+9auxNk0gCMHpcrOvVvUqGvUaFlbk4jgWyLXRzV6HJMf+JWd3OXjmxMv+7TsqN5Gmi34O0FBtDc4utQNwyuw56HJyx3V+SHfii1RK+fCJmyG7C4dzfFVH2rIrwJuD5GzYg+IcHtf54WBu7iyW5KtVpINOGy/Uvh51Gy6GLi+P1AULAXD19mI9sJ/K4KqpY+2XOFMgiDyxf6cdhZycHP7whz/Q2NjI5s2b+fWvf833vvc9Nm/eHGvTBIIQDp3sZsg7oXpJdR46nDhrvZ4JjQ79zLF13Y00Lx5/k+7hXgCqMstZVrAoJnb07wgakjnGjsTBDA4ECgrGIm5g7L1ufEg6A7ryFeqGcxhXw57xGRkm7qi8BZNWTc785Nw+DrediIkd55O1br3/cd8HW5hSlEFquvrzPt3Yy/BQ5CerCwQXI+7EzU9/+lOefPLJkH3z58/nueee48iRI3zwwQfcf//9MbJOILg0u461+R+vmFOo9rVxql2KdRUrkYwTT7AMF63WNl6vUXOAtJKGz1RvjmqSrA/34CDWfXsBkNPSSF04foEV7LlJTbv0ZHXffCmAftsEQlNBotQRg9AUQIYhnc0VN/q3f7/3aRzu2AsH08xZ6KdOBWCovg776RYqZqneG49H4VStmBQuiA1xJ24EgkTEOuTkcIOaY5CRpmdmUWbIHCndnHWxMs2Poij8+fiLuL0jFtYXr6EgNTaDOwd270JxuQAwr1iJrLtwdMJoDI4x58Yc3KV4DPOlzkfOK0XOVieje9pP4u5tHfc1wsHKKcuoyFR7ELUPdvF24/ujnBF5JEkic21oU7/Q0JRo6CeIDULcCARhYG9tB26PWrmzfFYBSlsNnl51nIGmsApNbnEszQPgk7Z9/knTeaYcro/ixO/zOX/cwkQISSgeY1hqIknFkiSFdiyOkfdGlmTurb4djaRWIL3T+CHttth7RswrrkQ2qSGzgd27yEpRyMxWt1tP92O1RD9PSSAQ4kYgCAOfBCVPrpxTGHdeG6tzkJdP/tW/fe+s29Frxu8tCQfDLc3YW9R5SYaSUgzTiyZ0nbGKG/MkxQ2ArvJK8I6kcNXtRHG7JnSdyVKYWsD6EnUyt0tx83ztKzEfVCkbjZi9AlVxubDs2B7qvTkRewEmuPwQ4kYgmCTd/cPUne4DYEpOCtNThnE17wdASslEW7okhtapvHryTQadatPKK4uWMCe3Oma29H8UlEh8zcSTrH05N3qDBp3u0v1UJuu5AZCMaWhL1IGRyvAAruYDE7pOOLip7DryUrIBqOmtZ3/H4ZjZ4iPz2nVB08I/oHxmoPKt7mh7zAWY4PJDiBuBYJJ8cjw0kdhVs9XfmE4361qkKA6hvBgNfU18fO5TAIxaI59bdGfMbPE4HAzs3gWApNeTvmz5hK81aPV2Kh8h3wbOEzfWiY9sCU4s9lfBxQC9Rs8XFt/t336x/jV/M8ZYoc/PJ3WeOknd1dODtvkEBdPUWVw9nYN0tcdHbx7B5YMQNwLBJPkkuHFfVRbOE94p0rIG3azVMbJKxe1x82ztS/7t2yo2km3KjJk91gP78NhUD1L6kmVoJjhCxWF34XKqidEjhaQgNCw13lLwYDTTZiOlqY1D3WeO4LHGrknd0mkLmJc7C4B+xwBvNr43yhmRJzO4LPz9LVTPDXSQrzsqet4IoosQNwLBJGhpH+BspzqvqGJaBpndh1Hs6rdUbdkVyCmZMbQOPjj9Ea2DqmdpRvo0VhddGVN7gkNS5jCEpABSRigDB9BqZNJMan7RRMNSAJIkBxKLFQVn3Y4JXyscfGbmbei8XsGtZ3ZyZiA2VVw+UmbPQV84BYChulqK0h1oNGqoqu54R1LOUBLEL0LcCAST4OOjgZDUytn5OI4GvkHrY5xI3D3U6/9GLyFxb/UdyFLsXvKOzg6GatTmc7r8AkyVVRO+VnAyceooYSkIHcEwmfwPXfXVgPqB7az9CEWJ3Qd2bkoOG0vUvzGP4uG5upfxxNAetSw88Ddv2/kBJZVq7s2wzcnpUz2xMk1wGSLEjUAwQVxuj79xn1YjsyzXgqe7BfD2Rskvj6V5vHjydRwetdHbqulXMsM8Pab2WHYGl39fM6nmgYNjrJTy4QtNOV0ehh3jG8EQjJyWg2b6HACUgS7crTUTvlY4WDdjNfkpqoA41d/MJ+f2xdQe85VXBcrCP9lFRbnZ/1ytCE0JoogQNwLBBDnS0M2ATRUPi6ty0dQG5kjp510fk86/Po5113DIOxjTrE9nU9n1MbMFvEMyd+5UNyQJ85VXTep6Yy0D95GRNvmKKR+6mYE8KmdNbHre+NDJWu6pCoyieaXhDazOwZjZIxtN/gGoitOJ+fRhTClqSLDpZLcYxyCIGkLcCAQTZMeRc/7Hqyv055V/L4uVWTjdTp6ve9W/vbniJv9colhhO3YUV68alkidNx9tZtbkrjcYqHpKHYu4CVPFFIC2eBGSMR0AV9NelOHYVgLNzK4MGaz5WsNbMbUn89rr/GXhlq3vUzlLnRTucSucFD1vBFFCiBuBYAJYbA7/uIXMND0l/fsC5d+z1yJpYlf+vaVlG11Dqm0VmaUxG4wZTMiQzEkkEvsI9dyMnFAM582XmqTnRtJo0VZ6E7PdLpwnd03qeuHg9sqbMWrUe9zZuofG/uaY2aIvKCB17jwAXD3dTNf1+p+rC8pREwgiiRA3AsEE2H2s3T9u4erZWbjqvB/eGh26WWtiZlfXUA/vNKvhMVmSuacqNoMxg3ENWLAeVJveacxmUuctmPQ1xzpXykdwWKpvYHKeGyB0HEPN9pg3qcs0ZHBz2Qb/9rO1L+P2TDy3aNL2rAvMm5L3fkhOXioA7a0D9HbbYmWW4DJCiBuBYALsDApJXZPaBI7A9G/ZZL7EWZHnhfpXcXrU0QBrpl/F1LTCmNniY2DXx+BWP2jNK69C0k7eq+UrBddqZfSGS3cn9pEV5N3pnWRYCkCTPc2fMO7pOY2nq2nS15wsq6atZFqaWop9xtrK9rOx8yilzJ6LrkD92xuqOUF5UeDnL3reCKKBEDcCwThpaR+gpUPNsyibko6pKRBy0c1bf6nTIs6RruMc6VJLrTP0Zm4qjZ0tPhRFCQ1JXX1NWK7rC0ulpOnH5JnKSg8SN2Hw3MB5HYtjnFgMoJE1fKb6dv/2X0+9S7/dEhNbJFkOKQvPPXvQl4ZD3TExjkEQeYS4EQjGyc4jgbyBG2dYUPrVb6KaqbPQZE9sCORkcbid/KXuNf/27ZU3Y9QaY2JLMMONp3C0qs3ljBWV6KdMnfQ1XS4P9mHVOzWWSimAzCDPTTjCUgC6sitAq17XefITFFd4rjsZyjKKuXKKmsw+7B7m5ZNvxMwW85VXIxnUv0HHpx8xfUYGAFaLnTNNvSOdKhBMGiFuBIJxcH5vm0proK+Ifl7syq3fa/6Q7mG1Gqkqs9xfPRNrLCFem8knEsN5ycRjyLcBMOg1mAxqOKzPOrmEYh+S3oSu/Ap1wzmE69TesFx3stxafiOpWnWsxaftB6jrPRkTOzQmExm+snCHgxlyh/+5E4dEYrEgsghxIxCMg8MN3Vi9vTquLQPOHQdAMuejmREbQdFp6+bdlq2AmkR8d/VtMU8iBvAMD2PZvRsAyWAkfWl4yuNDy8BHr5Ty4QtN9VrtYQuLhCQW18Y+NAWQpk/llvKN/u3nal/B5c3DijaZawOJxSkH3vP3vGms62LIJnreCCKHEDcCwTjYfigwv2e1MdCdVj93PVIMRhsoisJf6l/1f3itK1rFlNSCUc6KDgN7dqPY1WnV5uXLkY3hCZMNDoyvgZ+PrLRAl+LB4fB82MsFFciZaqjNfa4WT198eCSunHoFxWY1RNpm6+DD07GZg6UvLCTFWxbu6eqkNF/d7/EooixcEFGEuBEIxkiPZZgjp9T+MdPNCult3pCUzoiu6uqY2HS46zjHulWRlWnI8M8aigf6tm/1P85YdW3YrjsYVO2Umj52z01mevjzbiRJQjczkCQdL94bWZL5TPVmJO8crDcb36N3uC8mtgR7b/Kbd/sfnzjUJhKLBRFDiBuBYIzsOHzO16eP26e2glt1q+uqVyHpo98B2OF28EJ9IIn4jspNGLVj/7CPJMPNTdibGgEwzCjGWFIStmsHe27G0p3YR0hScRjKwX1oK68CSS1Hd9btRIlhf5lgZqRP55ppKwFweJwhfyvRJHXuPHSFalm4pv4QBXne8GC3jfazsanmEiQ/QtwIBGPA41HYflgNSWklN2UDvkRiCf3c6y59YgR5p/lDeobVqpOZWZUsypsXEzsuRv/2bf7HGavXhPXagwMT89xEohwcQDaZ0ZaoXaCVoX7cLYfDdu3JsqlsA+m6NAAOdh7lWHdt1G2QZJms9YEcoGm2U/7HIrFYECmEuBEIxsDRxh56LOoH4i3TupCG+gDQFi9ENudH3Z4OWydbmrcCoJE03F11a1wkEYOaSDywW20gJxkMpF+xIqzXDxY3aeMRN2Fu5BdMcGKxo2bbCEdGlxSdic0VN/m3n697Bac7+om85pVXoklX53GZj36ITqd+9Jys6cBhj02ysyC5EeJGIBgD2w6e9T5SWCEFvpnrFtwYdVsUReH5uldxKWr4Y92MVRSkRl9gXYqBPbvxDKuJxOlXLEdjCm/Izjd6QW/QoNOP3p3YRyRybnxops9FSs0GwH36MJ7B+OnjckXhYioySwHoGurmPW9lXTSR9Xoyr1XzwTRuJ0XGAQBcTg8nT3SMdKpAMCGEuBEIRqHPaufQSTWReHF6J4ZBdfSCnF+OpqAi6vYc6jzKiZ46ALIMmXGVRAyhicSZq8OXSAyqsLN6hcl4QlJwfs5NeHrd+JBkGV21N6lc8cRNYjGoSc/3VG1G9lbzvdP8IZ227qjbkXHtWiSdWgqed/Ij/34RmhJEAiFuBIJR2HH4HB5vJvFNmXX+/fr5G6MeCrK7HbxQ/7p/+87KTRg0Y0+qjTTDLc0hicSG4pKwXt8+7MLt8gDjC0kBZKTqkb2/r3Dm3PjQzVyNb8aA88S2uEksBpiaVsi1Rar4cnlc/KX+1ahXKmnTzZhXXgVA2sA5Mk3q77Hj3ABd7dao2iJIfoS4EQhGwKMo/t42UzW95A6qyZBSeh7akiVRt+ftpvfptfcBMCu7igV5c6Nuw0j0b9vqf5yxanXYxV9IMvE4GvgByLLknw4e7pwbADktB+2MhQAogz24T8dPYjHAjSXryTSoIxCOdddwuOtY1G3IWh/o4j2l84j/8bGDrRc7XCCYMELcCAQjcKKpl65+NX9kc26gjb1+/gYkObovn7bBDt5vUcMd2jhLIobzEon1etKXrwz7GtaQSqnxe6x8oamBQQcutydsdvnQzQqE4RzHPwz79SeDUWvgjspN/u2/1L2G3R3e8Nxo6KdMJXW+2sk7v/0IWm/KVN3RdpFYLAgrQtwIBCOw9YCaSJwhDVLp8pbRGlLRVYVnuvVYURSFv9S9itubRHxd8RryU/KiasNoDHwanEi8IuyJxBBIJobx59wAZHo9NwpgGQz/B7tm+lyk9FwA3KeP4LF0hn2NybAobx4zsyoB6LX38XbT+1G3IWvDDQBoFSdTHWcANbG47mh71G0RJC9C3AgEl6C7f5j99eqH0/XmOiRF/aavn70WSRfdZnkHOo9Q01sPQLYxiw3F4U3UDQfBvW0yw9zbxsegZWI9bnxEqteND0mW0c1c491ScMZRWTioycV3V9+G1tt08P2W7bQNRrdayVRV7c/FKjwbGDZ69ECr6FgsCBtC3AgEl2DrwbMoChhwsELnTSSWtejmRLdp37BrmBdDkohvQR9HScSgJhIPN6r5SIaiGRhKSiOyTvDohfEmFEPkxQ2ArvqaQMfi2u0o7vgKtxSk5HFd8RoA3Iqb5+peiaqokCSJrOvVpn7pjl6yZTWZuLfLxrnT/VGzQ5DcCHEjEFwEp8vjTyS+ynQSrUf9INRVXYmckhFVW95qep8+u/qmPzdnJvNzZ0d1/bEQmki8JmK5QCGjFyaRcwORSSoGkFMy0JaqyebKkAVX0/6IrDMZNhRfS44xC4C63pPs6zgU1fXTlyxFm632BZrSGuS92S8SiwXhQYgbgeAi7DnRzoDNiYyH61IDLet18zaOcFb4abW28cFptSeIVtZyZ2V8JREDuG02LJ98DHg7Ei8Pb0fiYHwJxbJGwmjSjfv8kEZ+ERI3ALrZgbCh8/gHEVtnoug1eu6qutW//VL96wy5hqO2vqTVknXdBgDyrc0YJNW71VjXFeKdEwgmihA3AsFF2LL3NABL9I2ketRuqpoZC9BkTY2aDR7Fw7O1L+Hx5vpcP2MNeSk5UVt/rFh27USxqx9I5hVXoklJidhavlLw1DTDhERe8AiGcHcpDkYzZSZShjos0n2uBndf/Hkk5uXOZp7XC9jvGOCNxnejun7GqtXIqanIeJjScxxQZ7idOHguqnYIkhMhbgSC86g/3UvDWQsSCjekBXqB6BfeHFU7Pjm3j4b+JgDyTDlcH4dJxIqi0P9hwDORuTZy3ZJdTjf2YfUb/kRCUhCdnBtQ80r0s4K9N1sjttZkuKvyFnSy6gHbduZjzgxET4TJRiOZa9X8tWn9Nag1bHD84DncESjTF1xeCHEjEJzHGzvVDrvzdC3k0AeAprAKbWFl1GywOgZ55eQb/u17qjej04w/DBNphmpO4GhTv2mbqqoxTJsesbWCy8AnkkwMYDJoMXjnUUVS3ADoqq4C7+/MWbcDxRXdnjJjIceUzcaStYDqKXyu7mW/pzAaZK1bj2QwYHQNkmdTy8IHrQ4a67qiZoMgORHiRiAIYsDmYPuBs4DChpSj/v36RdH12rzc8AaDLhsASwsWMiu7Kqrrj5W+DwJ9UnyDESNFSHfiCYobgByzEYCeAXtEq4QkYxra8ivUDYcNV8PuiK01GdbNWE1+itqb51R/M7vP7Yva2pq0NDJWrQFgWu9x//6De85EzQZBciLEjUAQxLaDrThdHqq155iuUYcLyjnFaKbPi5oN9b2n+OScWkFi0hq5vWLTKGfEBmdPN9aDaiWQJiOTtEWLI7qeNUziJtt7rtPlYWDIOWm7RiI4NOU49n5c9nHRyVruqdrs336l4U0GnbaorZ+1fgNoNGQPtZLqVKsCz53up/V0X9RsECQfQtwIBF5cbg9bPlUTidebAnNv9ItujlqFksvj4tnal/zbt5TdQIYhPSprj5f+7VvB+2GdsWo1klYb0fWCPTcTDUsBZHs9NwC9lsiGpuT8cuTcEgA8XU14Ohoiut5EmZldyeL8+QBYnYO8durtqK2ty87GvPIqJKCoN+At3b29MWo2CJIPIW4EAi97azroGbBTou2gUqe2gpczCqM6IPP9lu202dSOscXmIq6etjxqa48HxeUKdCTWaCLWkTiYkB43aRNvYphjDgijbktky58lSUI/N9D00XH0vYiuNxnuCJowv/Psbpotp6O2dvbGG0GSKBxoQOftKXXsYCvWCItPQfIixI1AgFr1884er9fGGJRrs/CmqA3I7Brq5q2mLQBISNxbfTuyFJ8v0YF9e3FbLACkLVqMNjMr8msGCZG0DOMIR45MsOcm0uIGQFt2BZJR9b65Tu3FM9gb8TUnQqYhg5tK1andCkpIG4JIoy8sJG3JUjSKm2l9NYBaFn54r8i9EUyM+HznFAiiTN3pPprbB5iq6WGuXn1DlVKz0VaEf7L1xVAUhefqXsHpUUud1xRdRVH6tKisPRH6PoxeIrEPa7+3gZ8skZI6cc9NNMNSAJJWj27WGnVDceM8EV/TwoNZM/0qpqaq/XlaBs6y4+wnUVs7+0Y1aX96/wn/HLdjB1pxOt1Rs0GQPAhxIxCA32tzXbDXZsENSJrI5pH4ONh5lOPdaifkTEMGN3u/Qccjwy3NDJ9Uh3jqp07DVFUdlXV9npvUdAOyPPEcqGiGpXzoZq8FrxfOeWIrijuyicwTRSNruKc6kFz8asPb/tEfkcY4o5iUufMwuIcoGFDnlA0PucS0cMGEEOJGcNnT1mPj0MkuCuQ+FuubAJBM6ehmrorK+kOuYf5S96p/+87KWzBqJx52iTR9WwJ5I5nXrotKsrXTEWjgl26e3ET2rPTAz7YnSuJGTs1CW7oU8M6batgTlXUnQkVmKSunLANg2D3M87WvRG3tnJtuAWBGX6B55uFPz8RllZkgvhHiRnDZ897e0yjABtNhfJ/TxoU3Imkn9yE6Vl5reJt+h5q/MidnJgvz5kZl3Yng6u9jYI8aqpBTUjBfeVVU1g3JtzFPTvjptDJmb1irJ8KN/ELWnbve/9hxbEtcf2BvrriJdF0aAIe6jnGw48goZ4QHU2UlKbPmkO7oIXNIbQ7Z1zNEy6meqKwvSB6EuBFc1liHnOw8fI4CuY9FXq+NnGLGEFThEkka+pr46OwuAPSyjrurbou7wZjB9G39EMWlelAyVq1BNkRHAA70B8RNesbk1/SFpvoG7Lii1OpfU1CBnFsMgKezMW7LwgFSdSncVXWLf/v5ulewOYeisnbOLepAzxl9gaZ+Bz6JXuWWIDkQ4kZwWfPB/jM4XB42mA7jS+PIXHErki7yH9pOj4una15A8c7U2VS2gVxTdsTXnSgep4P+rd45UrIc0TlS5xNcEjxZzw1Atjc0pRDZAZrBSJKEfk5wWfiWqKw7URbnL2BuzkxAHaz5asObUVnXVFlF6pw55A62kOLoA9Smfm1nopP7I0gOhLgRXLbYHW627D0T4rWRjOmYl2yMyvrvNn0Q6GmTXsSaoqujsu5EGdi9G/eAOiE9fekydNnRm1AeKm4mLzyDK6aiGZrSli8PKgv/NG7LwkEVY/dUb/b3vtnRupuTfdFprJd3621IQHFvIBy2X3hvBONAiBvBZcu2Q61Yh5whXhvjohuR9ZFP5m21tvFOs1oSLEsyn511Z9z2tAG1VL33vXf825nXRbeaKzjnJn0SPW58xKJiCrxl4TNXqxuKG+ex90c+IcZkG7PYVBYQ+0/XvOhvVxBJUqqqyZg/j8KBUxicgwA0n+ymu3Mw4msLkoP4fTcVCCKI0+XhnT0tF3htopFr41E8PF3zAm5F7d9x/Yw1TEubEvF1J8NQzQkcZ9X+P8byCkxl5VFd39fjBiY3esFHiOcmiuIGQDdnHcjqZHLH8Q9QnNFdf7ysnn4lJeYZALTbOnin6YOorFv0mbuR8TCjL9Ce4eAnLVFZW5D4CHEjuCzZdayN3gF7iNdGv+DGqOTabD+7i0aL+iadn5LLxpLo5a5MlGCvTVaUvTYQ8NwYTTp0es2krxcqbqLb4l9OzQo0h3TYcNZ+FNX1x4ssydw38w6/Z/Hd5g9ptbZFfN2MObNJnT2baZY6dG71919/vANLX3yLQUF8IMSN4LLD7fHw5q5mpmh6Q7w2utlrI752z3AvrzW85d++r/pOdBpdxNedDI62NgYPHwJAm51D2uLozdoCtQ2/b2hmOPJtIHZhKR/6+YFQj+PIOyie+O7COy1tCutnrAHArbh5pvbFqIxmyL11MxrFxXRv5ZSiwKE9IvdGMDpC3AguO/bWdNLRN8RNpgNR9dooisJztS9jd6sDIK+eupzKrLKIrhkOere863+cue46JM3kPSfjYXDA7hs+HpZ8G4D0VD0a7y8/FuJGkz0dTdE8AJSBLlyN+6Juw3i5oWQd+aZcAE71N7PtzMcRXzO1upqUOXMp6j+BxqN2dT5xuA3boGOUMwWXO0LcCC4rFEXhjV1NlGg7mOefIZWl5kFEmD1t+znarQ4FzNCnc1vFjRFfc7K4LBYsO9WwiWQwknF1dLo2BxPuSikAWZLI8Qqlrv7hmDTU08+/wf/YcfituG7qB6DT6Lhv5h3+7Vcb3qLD1hnxdXM334nO42BavzqexO3ycHC38N4IRkaIG8FlxcGTXZzptLLJtN+/T7/kNiTtxAcxjoU+ez9/qX/Nv31P9e2YtKaIrhkO+t5/D8WpfmPOXL0GTWpq1G0IqZQKk7gByPOKG7vDjXUo+rOeNFNnIeeoibqezkbcbXVRt2G8VGaVs3r6lQA4PU6eOvGXiIenjCUlpC1dxoy+o8jeSq1j+1uF90YwIkLcCC4bPIrCKx81MkvXSoVO7S8jZRSiq4psfxlFUXi65kWGXGqH12UFi1mQNyeia4YDz/BQYPq3RkPm+g0xsSPcDfx85GUGxGVnDJJUJUlCvyDIe3PorRGOjh9uLb+RXKPabLKhv4mtZ3ZGfM3c227HoNiZZlG9Ny7hvRGMghA3gsuG/bWdnOkY4OYgr41h2e1IcmRzSD45t5djQeGo4Lb28Uzftq14bDYAzCuuRJeVFRM7wj16wUdukLjp6o/OaIHz0ZYtQ0pVhYK75SDuvtaY2DEeDBo998+6y7/9WsPbEQ9P6QunYL7yaop7j4R6b6zCeyO4OELcCC4LPIrCqzsaWahvYrpW7Qor55b4JzVHit7hPl6of92/fe/MO0jVpUR0zXDgcTpDy7833DDC0ZEluPTXnBm+UF5uUHJyZ19sxI0ka9HPC5TWOxPEe6OGp9ShqU6PkyejEJ7KueVWjJKTaRb1i4LL5eHAbtH3RnBxEkbcnD17lurq6gv+/eUvf4m1aYIEYG9NB+e6BrjJdNC/z3DFnUgR7AqsKAp/rnmBYW+PjuWFS5iXOzti64WTgd27cPf1AZC6aDGGqVNjZovFKzz0Bg0GozZs1411WMqHbuZq0KuC11n3MR5rd8xsGQ+3lt9ArkkdwXEqCuEpXXYOmdeuC/XeHDjHoDW6fYoEiUHCiJva2loMBgMfffQRO3bs8P/btGlTrE0TxDkej+q1ucpQS55GnY2kmToLzbTI5r183LqHEz1qkmiG3sydlYkRjlI8HnreDgxJzN4Yu6ouj0fx59yYM0xhnZieFwdhKQBJb0Lv64ytuHEcjM6Aysli0Oi5f2Z0w1PZN96MSQfT+1XvjdvlERPDBRclYcRNXV0dpaWl5Ofnk5eX5/9nNEZ+DpAgsdl9op2+nl5uMB3y7zNccVdYPyjPp3uolxdPBsJRn511Jym6+K+OAhg8dABnm9qB1lRVjam8Ima2WC3DeDxqibQ5K7yv9VSjFpNBzbeKVVjKh37u9aBV84mctdvw2Ppias9YqcwqY01QeOqJ48/jjmBDQk16Olkbb2RGX8B7c/xAa0jSuUAACSRuamtrqaiI3ZusIDFxuT28uqORDabDpMpq8qG2YiWa/Mg1z/MoHp488Zy/Wd/KKcuYkzMzYuuFE0VR6P5rQJRlxdBrA+fn24RX3EiSRG6GKjh7LHbcnsh33L2kLcY0dLOvVTfcLhyH346ZLePllqDwVKOlmXebt0Z0vazrN5KakcL0/hMAuN0Kn+5oiuiagsQjfAHsCFNXV0deXh733XcfTU1NFBcX8/Wvf51rrrlmwtfUasOr7TQaOeT/ZCTR7nHrwbMo/e1ck6GWkKLVk7rybuRL/O7DcX9vN26lvu8UAFnGTO6ZeUvY/9Ymymj3N3DwIPbmJgCMM2aQsWhhRD1coxH8jTwzO2VMP8fx/A7zs0yc7rDi9ihYbM6QUFW0SVl8I/3H3ge3E+fxD0lZugnZmH7BcfH2GtRqjXxx3r38f3v+GwWFN5veY25+NaUZMyZ8zRHvUWuk4K67Gfr9n2g1V+HSGKg90saSlTPIzot+H6aJEG+/w3ATD/eXEOLG4XDQ1NSEyWTie9/7HikpKbz22mt8+ctf5k9/+hMrV64c9zVlWSIrKzIvBLM5McIPkyER7tE27OTVHY3ckbIfraR+K89ccQvZM0Z/053o/Z3qaeG1BrXKSELi71Z+gan5uRO6ViS52P0pikLLG4FGgyX3fYbs7LRomnUB9iGX//G0oqxxvWbH8jssKjSzr1bNExl2KxF7TxgTWakoC9dh2fc2uOxIdR+StfreSx4eT6/BpVlzuGPwBl449iYexcPjx57lZxt+gFE7udL9S91j5sZ19H/wPsWdR2jIXYqiwN4dzdzzxWWTWi/axNPvMBLE8v4SQtzo9Xo+/fRTtFoter3aSXbu3Lk0NDTw6KOPTkjceDwKFostrHZqNDJmswmLZQi3O3Yu7kiSSPf44tYG8oZbWGBWy0WllAyYdT29vYOXPGcy9+dwO/jPTx715xxsKL2WKbppI64XbUa6v4FDh7DWnwTAUFSEVDU75rZ3tFn8jzVaaUz2jOd3mB5UfXWqpZeinNiW6Uuzr4cD74HHTf+eN6H6OiRDqE3x+hpcO2U1e08foclymnPWDv6w+1k+O/vOCV1rLPeYe/c9FP34J5zJnIVdm0rtsXaOHT7L1KLMSdxFdIjX32G4iOT9mc2mMXmEEkLcAKSkXPimU1VVxY4dOyZ8TZcrMn9UbrcnYteOF+L9Hvusdt7e3cQ3U/b69xmW3oFb0sMY7J7I/f2l9nXaBtXOx0Xp07ih+Lq4/Rmdf3+KotD5ysv+7eybb8XtAWKYhwLQ36sm+koSGFN14/p5juV3GDwdvL3XFvvflykbXeVVOGu3ozhs2A69i2Hxxavs4u81KPH52Z/hJ3v+E4fHyfYznzArq5r5k+jGPdI96ksryFiyhLLaA5woULuM79zSwG33xzaUOh7i73cYXmJ5fwkR8KupqWHRokXs3bs3ZP/Ro0dFkrHgory6o5FFch1F2h4A5JwitBEcs3C06wTbz+4CQCfreHD2vWjlhPnugO3YEYYb1Twh/bTppC1aHGOLVPp71YTiNLMxIvF7X0IxxLbXTTD6hTepag5wHH4bxR4/nr/RyE/JC2l58OeaF+i3D0Rsvbw77mLKUBMpjj4A2s5aaKpPjD5BgsiSEOKmqqqKyspK/uVf/oW9e/fS0NDAT37yEw4ePMjDDz8ca/MEcUZr1yB7D58KGY5pWHkfkhyZP/cBh5WnTgSaSd5ecTOFqfkRWSsSKIpC92uv+rdzNt0asZ/VeLAPO3HY1ZybcFdK+QjuUtwV43JwH3JGAdpKtbwahw3HkXdGPiHOuHLqFczPVb01VucgT9U8H7GJ57q8PLLXX09F9z7/vl1bTyVlqEcwPmL/DjYGZFnmkUceYd68eXzrW99i8+bNHDp0iD/96U9UV1fH2jxBHKEoCs9+UM9NxoOkyWqljbZ8OdqpsyKynkfx8PjxZxlwWgGYmzOLa6atiMhakcJ27CjDpxoAr9dm8ZIYW6QSyTJwH3qdhsw0NY+vvTc+xA2AYfGt4J155jjyLp7hyHk/wo0kSdw38w7S9Woy+vHuWt4/vT1i6+XctIlCvZXMIbU3U3/PEEf3nY3YeoLEICHEDUB2djY//vGP2bFjB4cPH+bZZ59l6dLIzgUSJB6HGrrpb65jpUHtDIzWgGHFZyK23pbmbf4uxOn6NO6fFdnmgOFG8XjoevlF/3bOzbfEhdcGIjdT6nwKstR8PuuQk8FhZ8TWGQ+yOU8dywDgHMZx8I3YGjRO0vVpfG7WPf7tVxveorE/MnOgZKOR/HvupbJrD3g9RHt3NGMbFEM1L2fi411MIAgDTpeHZ7fUcVfqbmSvvjAsvQ05NTLTrE/2NfJ6Y6Ds+8HZ9/q/rSYK1v17/X1tDEVFpC2Jny8MfT2BasaMrAiKm+xAsUJbT3grKCeDftEm0Kh5W85j7ydM12Ifs3Oqub5YbUzoUTz88difsTkj8/NNW7KUwvJCplrULxoOh5s92xsjspYgMRDiRpA0vPtpC+VDhynWqgmFcuZUdHPXR2Qtq2OQPx172j8JeWPJWmZmV0ZkrUihuFwhXpvc2++KG68NQF9PIEyUmR05cVMYJG7a40jcyKlZ6GavUzfcThz7Xx/5hDjk5tLrKcsoAaBnuJenal6ISP6NJEnk33c/5X2H0Hg7g5841EZnW+KE8wThJX7eyQSCSdA7YOfDXbWhScRXP4AUgYolj+LhiRPP0WfvB6Ays4wbSyMjoiJJ/8c7cLa3A+oMqZS582JsUSjBnhtzBD03hSGem/jJuwFv5ZRv5lTNVjwDkR1MGW40soYvzrmPVK36Mz7UeZRtZz6OyFr6wikUrr+Wst6D/n073jsZsWRmQXwjxI0gKfjL1pPcrNsVmB9VviJiScTvt2znWLc6lThNl8qDc+5FlhLrpeSx2+l+7RX/du4d8ZUrpCgKfd2q0EgzG9DpNBFbqyDIKxRPnhsA2WRG7/M+etzY97488glxSJYxkwdm3+3ffvnkX2mxnInIWtk3baJEbgspDa8/1hGRtQTxTWK9IwsEF+FEcy+Wun0sMTSpO/QpGFZeum39ZDjZ18hrp9Shhr48m0xDRkTWiiQ972/B3dcHQOrCRTGd/H0xhocCZeCZ2ZHtGpyXaUL2Crt4yrnxoV9wAxjUsRCu+o9xdSReLsm83NmsK1oFgEtx84ejT2J1hr9/j2wwUHj/A2pysZedW04yPBQfieKC6CHEjSChcbrcPPv2Ye5O+cS/z3jlfcgp4RccffZ+/nD0SX+ezfXF1zIrpyrs60Qa58AAXW/8Vd2QJHI3T6xFfiTxeW0gsvk2AFqNTJ631Ly914YnzsIYkiE1pEvx0MfPJmSo5ZbyjZSa1blu3cO9PHbsGf9rKZykzV9I6dwi8q2qCBwedvHJ1lNhX0cQ3whxI0ho/vpxM8vtH5OlUb9xa6bNCTRACyNOj4s/HHmSAYfaz6Y6q4KbEjDPBuD0s8/jGVS/NZtXXIlh2rQYW3Qhwfk2kfbcQKBiyuH00DdgH+Xo6KObvQ7JrDaGdLWewFa/d5Qz4g+trOWhufeTrlMrCk/01PH6qcg0KMy79z6qbUfReALJxa2n+yKyliA+EeJGkLCc7RrkxKd7uMZYC4Ci0WNc9WBEckdeqHuVRovapyPbmMUX53wWjRy5PJBIYW89y7k3vWE1vZ6czXfE2KKLE1wplRFhzw2cn1Qcf6EpSaPFcMVd/u2eD55AcbtGOCM+yTJm8tDcz/pz1N5t/pCDHUfCvo423cyMu26nPKhz8bY3a0Xn4ssIIW4ECYlHUXj6rSPcnRKovDBecQdyel7Y1/q4dQ87WncDoJO1fHneA6TpU8O+TjRof/ZZ/zDM7BtuQpedHWOLLk60PTfxWg4ejLZ0KZoCtd2As7sV+4mtsTVoglRmlbO54ib/9hMnnvMPnA0n6StWUjVdh3lYrTDr6x3m4Cenw76OID4R4kaQkGw72Mrs3g8p0FgAkPLK0M0Jf5ioydLCc7WBCpV7q+9gRvr0sK8TDQaPHsZ6+BAA2uxssq7fGGOLLk2/13Oj0UikZxhGOXryFMRxObgPSZIwrAx02x7e83JCDdUM5trpV7O0YCEAdreD3x15nCFXeH/ukiRR+LnPM6vvUyRvbs/enU30dCXmz0wwPoS4ESQcHX1DHNi2jVXecJRH1pFy7ZfD3oCuz97P7w4/gUtxA7B6+pUsnxIfc5fGi+J20/ncs/7tgrvuRjZEXjRMBLfbQ793zlNGdkpUStSDPTfnuuP3w0+TX46uQp1dpgwPYP/0pRhbNDHU+VN3MjW1EIB2WyePHv0zbo87rOvocnIpu/0GivqOAarT8v3XjuPxJF5CtmB8CHEjSCg8isKf/3qAu4w7/PtMK+5BzpwS1nWGXXYeOfQn+h2qZ6g8o4TbK24O6xrRpO/DD3CcawUgvboK84qVMbbo0vT3Dvk/fLJzIx+SAshM02MyqA0fz8b5N/uUlfcg6byN/U58gLurOcYWTQyDRs9X5n3e3+DvRE8dL54MfxfmjGtWM2+qy9/7pqvDxv5difkzE4wdIW4ECcWWvWdY1PsumbKaFyFNmY1uztqwruFRPPzxyNOctqpiINeYzZfnfQ5tBLodRwNXXy/drwTGLJQ+9IW4ath3Pj2dAXGRnRud3CZJkpiWp67VO2DHFicDNC+GnJ5D1tXe8n1FYXjnkygRKKmOBnkpOXx53gNoJDU5f9uZj9l6ZmdY15AkiakPfoF5A/vA+3Pat6OZrnZrWNcRxBdC3AgShnPdgzTsfM/frM+jNZGy9stIYe4O/PThVznUqbqxTVojX1vwhYQbiBlM53PP4BlWJ2xnrlpNenV89+YJETd50Uvcnh4kpFq74jOp2EfG8k3ImWpIx9N+Eld9ZEYaRIPKrHLurb7dv/1C3Wsc7aoJ6xrajAwq772Vkl61MsujwPuvHhXVU0mMEDeChMDl9vDCa7u40xR4E09Z9fmwT/zeeXYPr9W8C4AsyTw0534KUwvCukY0GTx2lIFP1W6tcloa+XffPcoZsacnSFhEU9xMywsI2DNd8f2tXtLoSLn6Af+2/ZPnEja5GGDl1GWsn7EGAAWF3x9+itP9rWFdI33xEuZXp5Jm7wGgp8fOp9tEc79kRYgbQULw6tY6rht6A6Ok9vaQy1f6EyvDxbHuWp46/oJ/+67KWxOyA7EPj9NBx5+f9G/n3XkP2rT0GFo0NnzVLFqtTHqGMWrrTgvy3JztjH+hoJsxD23pUsCbXLznLzG2aHLcUr6RBblzABh2DfPj7b+md7g/rGsU3ncf8x1H/dVTB/ac4UxTb1jXEMQHQtwI4p6jjd0Yj73MdK36JuRKKyBl1efDukaTpYU/HHnC3w5+7YyrWTU9fpNux0LPm2/g7PBO/a6swnxl+Ds3hxuX043FWymVmZOCLEcvN2hqXrC4iW/PjQ/DynsDU8NPbMXVeiLGFk0cWZL5/Jx7KUpXO2Z323r51f7fY3OGL0SoMZmo/vIDlPce8O6R2PLSEWyDjrCtIYgPhLgRxDX9gw52vfmmv+zbLWkxb/gGki583+jbBzv47aE/4fCoSaQrpi/mrupbRjkrvrGfOU3Pm975URoN+fd/Luyl8pGgt9uGb2xSNENSAOYUPeZUPRD/FVM+5LQcDFcEZoMNb38MxZW4H9QGjZ6vzf8iuSa1uWSrtY1HDj+Owx2+BG9jSQlLNswne1CdTD7kUHj/5cMJOa9LcGni/91OcNniURT+8upObtVs9+8zXfVZNDlFYVujz97Prw896p9QXJVVzjdWPOhvD5+IKG43bX96FNxqz5Cs6zdimJYYjQdjlW/jwxeaGrA5sSTIt3nd7HXIBepUd8XSjmPfK7E1aJJkGNL5uyVfwWxQc6Aa+ht57Hh4h2xmrV3HsgILepf693bmzCAHRXl4UpG47+CCpOfN7bWs7n8Fk6x+a1OKl6GftSZs17c5bfzm0B/pGVbDXdPSpvD1hQ+i1+jCtkYs6H3nLezNTQDop04l55bbYmrPeOgJCgdFq8dNMNOCBNWZBAlNSbKMcdUXwduqwHH4LdydjTG2anLkp+Ty/VXfwKBRPWmHOo/ybO3LYfOuSJJE8Rc/x/zhw/59u7c3cbZF5N8kC0LcCOKSg/UdZB95ikKNmlDoSCskfe1DYevPMuQa5teHHuWs9RwAOcYs/mbBQ5h0kR/SGEnsZ8/S/dor6oYkUfDgl5B1iSPWOtsCgiI3P/rl90VBaza3D0R9/YmiyZqKfrE3lKooDG99NKHDUwDl2cU8vPBBfw+cna27efHk62ETOJqUVOZ9+R5K+o8CoCDxzvOHsMbhVHjB+BHiRhB3tPfYaHznaebp1Zi4U2Mk6+Zvhy3PZthl5zeH/kizRR2il65L428WfokMgzks148VistF25/+gOJSK8qyNtyAqawsxlaNHUVR/I3VUlL1pKZHfzxESWHgb6C5LXHEDYB+4Y3I3pCtp/cM9k9fHOWM+Gd2ThWfm30PEuqXmg9P7+DVhrfCJnCMxSWsvGUR2bazANhdEm89vRe3S/S/SXSEuBHEFcMOF++8+CrX6Q8C4EEi/fq/QTbnh+X6DreT/zn8GKf6mwBI1aXwt4u+QkFK+KeJR5vu117B3qSGI/SFU8i59bbYGjROBvqHsQ+rwiyvMDZNE6fmpqDTqm+LiSZuJFmL8dqvgEYNTzmPvIPrzLEYWzV5lhYs5L6ZgaTp91q28mbje2G7fubKK7lqtgajU/19d/W62P7XI2G7viA2CHEjiBs8HoWXX3qfmzxb/Pu0S+5EVzQvLNd3up387sjj1PU1AGDSmvjGwi8xNa0wLNePJbaaE/S89Ya6odFQ+NCXkXX62Bo1TkJCUgWxETcaWWa6t5lfe+8QNq/YShQ02UUYrrjLvz289fcow4mROzQSV05dxmeqN/u332zawjtNH4Tt+tPuvosrUlqQPervu6amj8O7Ejtv6XJHiBtB3PDXdz9ldd/L6CW1ysc1Yxkpi28My7UdbgePHH6MEz11ABg1Bv5mwUPMSE+MKqKRcFuttD36O3w11Lm33Y6xNHHCUT46gzwleYWxazZYErT26Y7E8t4A6OauRzNNbYan2PoY/uixpChzvmbaSu6sDLRoeO3U27zV+H5Y7k2SZWY+/Hnm2I/69+3c1kxjbfukry2IDULcCOKCbbvrmNP4JOmyOgNpOKuczPVfCUsC8ZBrmF8ffJSa3noA9Bo9X1vwRUozZkz62rFGURTan3wMV69a5WGaOYusDTfE2KqJETzIMFZhKYDiIHHTlGChKQBJkjGu+RIY1MovV+NenCc+jLFV4eHaoqu5rTzwheevje+ELQdHk5rKFV//DKVW31wrifdePk7nOcukry2IPkLcCGLO4dpzZO77Pfka9YNkyJRP7i3fRgpDSfag08Z/Hfw9Df2qi9moMfLNhV+iIrN00teOB/refw/rvr0AyKmpFD70lYRo1nc+iqL4PTfGFF1Mkol9FBcExE2i5d34kFOzMK76gn/b/vHTCV8e7mN98Ro2V9zk336vZSvP170alj44///27js+juJu/Phn94pOvRf3Jqu4W64UG2xjjOndAUwI5kfNYwLBQEh5/OSVEBNC7/UBQsIT0wkdbDAG3OQCLrhJlizZ6u1U7nRt5/fHSSfJOskqJ13JvF8Infb29mY8W747MztjTE1l/vWLSG1yj3njQuWjf2ynsV4+QRVsgu8sKIWUvKJqmtc/xVh9JQA2XRRJF9+DEtb/Adzq7Q08vut5z1NRkfoIfjX9JsbGju73tgOB5dBBKt9a6/k77Rc3YIj37USig6XBbKPZ2tKZODXKZ4/898Ww5Ej0Ovf3FwTxXbthzEwMkxa7/9CcWL98KiT63wCcNfIMfpZ5iecpqo3HN/HP/W/j0lz93nbEuHQWXjSR2OYKAJpdOj743000W303SrI08GRwI/lNUWkdFR89Sbbe/RimQzEQe8FdqNFJ/d52uaWSh7Y/7RnHJtoYxR05tzAyJvj72AA46+ooff6ZtlGIl55H1PQcP6eq78qOt02QmDLUv4/k63Wqp/amvNZKvSV4x4sJm7MMNWUcAKKxGuuGFxE+HOnXn+YNO4Vrs6/0BDhbyrbz0t5/YHf1v7ziZs5g4SnxhDvcwW19s8oHL32P3RZcHcz/k8ngRvKLsupGjr7/FJP1hQA40RO59NcYUvrfXHTEfJSHdzxNdXMNAPFhcdyZc2tIPBUF7vFsSp9/BpfZHRBEZE8g6eJL/Zyq/ik/3lZDMmS4/8cbSh8e63mdf8y3M1MPJkWnJ/ys21BapjJwFf2Ifft7fk6V78wZMoMbJi33DPS3u2ofj+96gQZ7/2uo0pacxYKJeKZoqGlS+PB/v8fp6H/tkDTwZHAjDbqq2iYOvPUU03R5gLtd27R4JWHDs/u97R8r9/LErudpaplJeFjUEFbN/GVIjGMDLR2I//F3rIfdT33pExJIu+kWFJ3Ozynrn7JjbcFNypAACG6GxXleHz4evMENuCfXNC26BVpqOOy7PsSRt9m/ifKh6SmTuXXq9Zh07n5ahfVFPLTjaSoslf3e9shLzueMsVb0LveDDhVm+PjVTXKQvyAggxtpUFVUN7B/7WPMUN1PJGgo6M+8mfAxU/u1XSEE64s28uKe13G0jFWRGZ/OnTm3EBcWe5JPB4/azz6h/jv3RKKKXs+QW/4LfbT/g4H+sNucVLfM45SYHEmYSe/nFHWsuckL4pqbVvrhkwibu8zzd/M3L+Mqz/NjinwrOyGDO3NuJdboPhaqrNU8tONp8usK+7VdRVEYd9UlzBtmRqe5+9yUVGt8+PK3OGWAE9BkcCMNmtLKevLffIRpqvuRbA0FTruBqIw5/dquw+Xg9f1v8m7eRwjcj4TOSp3ObVNXEK4P7rmi2mvYnkvVO295/k5bcWNQTa/QlYrShtYhekgbHhiBaGykkZR4975TWFaPwxn8TRGGyUswZM13/+FyYv3iCbSGKv8myoeGRw/l7pn/xdBId/Nzk8PC47ue57vjW/q1XUVRyLzuCk5NrkJtCXBKa+HfL3yDQzZRBSwZ3EiD4nhZLcfefohJOvfjqC5UmHczsRNP79d262xmHtv1PFvLdniWnTN6ET+fsAy96v8aAF+x5h12D9TXIvHiS4me3b+gMFCUFLfVjKQNC5xaqPHD3IGW0yUoKA3OR8LbUxSFsNN+jm5IFgDCWo/1k4fQrMH7RNiJ4k1x/HrGrWTFjwfAJVz838F3+b+D7+LU+t4ZWFEUJt5wJaen1XpqcMrrVT547hvZyThAyeBGGnCH849T894DZOmKAHCgQ7fgl8Rmz+3Xdo+YC3kw9wkK693bNaoGbpi0nAvGLkFVQmfXthUXcfzxRxAO90k15tTTSDjvAj+nyneOH631vB46MjBqbgDGj4jzvD5YXOe3dPiSotMTvvi/UGLdtRuauQzrp48g7FY/p8x3wvXh3DZ1BQuGt904fXd8C0/sepF6e9+DVEVVmXD95cwf1Yiu5YmsyiYd7zy9gab65n6nW/Kt0LkCSAFp9w/7Ub/4K6N17mHM7egxLL6D6PEz+rxNTWh8eXQDj+58DnPLySo+LI5fz/glOSlTfJLuQGEvK+PYIw+hWd0Xn4jsiaT+/Hq/jgPjS3abk4oSdxnGJYQTFeObmd99IWtU25hBPxXU+DElvqWYoog4dxVKpDt/WlUh1i+eQDiD95H3E+lUHZdnXMi12Vd6anDzzQWs2fYYB2v63tdIURSyrrmYBRl29C73wH51dgNvP/stNWXB3zcrlMjgRhowm7/ZRNKWx0nRuau9LUoE4ef9hugxfZ8Is9HexLO7X+H9/E88I5KOjxvLvbNuZ0T0UJ+kO1A4qqs49siDuBrc/36mcekM/a/bUfSh09xWWmxG09wdboaNDqwBCFPiwj39bvKOm7GGUPODGp1E+LmrPFM0uEr2Y133NMIVWgPVzR0ykztzbvF0NK63N/DkDy/y4ZHP+zXg3/grzuPsHANhDndHeIsw8u4ruRw/VOKTdEv9J4MbyeccTo2v336LjAMve+aKMusTib/if4gYlt7n7R6qzWNN7mP8VH0QAAWFc0YvYuW0G4k2+m8uooFgr6ig+ME1OGvcNQZhI0Yw7Fd3oob5b1qCgXCssK1JaviowApuACaOSQDApQkOFtX5NzE+posfRsQ5d4LePXu8q+hHrF88GVI1OACjY0bym9m/IjshAwCB4LPC9Ty+6wVqm+v6vN1RSxdw/pKhRNnd+7BDMfDROwfYs2HvST4pDQYZ3Eg+VWduYttrjzKz5mPP7N414aMYevUfMcal9Gmbdpedtw59wOO7XqDO5q76jTZE8ctpN3DB2CXo1OAe4+VE9tISih/8C87qagAMqWkMu2MVuoj+T0kRaIpbghtFgWGjAqe/TatJoxM8r/eFUNNUK11qOuHtA5zi3SHXRAUQY4zmtqkruGjsUk9/vHxzAfdve4TNpdv7PPFmyuzpXHT1VBLs7qkaNEXHd1uqWf/3jbhc8lFxf5LBjeQzR/KLOP5/f2SKa49nWXXqHEZe/XtUU99qVgrMRazJfYwNx773LMuIG8d9s+/w3ImFEtuxYooffABXXR0AxqFDGXH3b9DHBt6Fv7/MtVZqq9yDLaYMjSHM1P+JUn0ta1Q8OtXdv2lvQbWfUzMw9EOzCV96F+jdtYKuY3uxfvowwtbk55T5lqqonD16AXfm3EJ8WBwAVmcz/9j/Js/veRWzrW9PjcWkj+GiWxcwUjvuWXaoRPDOE1/SZLb4IulSH8jgRuo3TRNs/uwzwr+8n5Gq+w7GKXQ0TruK0Rfd2qfZvZudNt7N+4iHdzxNhcU9FodB1XP5+AtZOf1GYsMC55FhX7Hs/4niv/7F08cmbMRIht/9G/Rxcf5N2AApONQ2xsqY8Yl+TEnXwsP0jGt5JLy81kppdWhd8Fvph2S6++AY3B26XaUHsfx7DVpj6NVWjY0dzW9n38HstLa52PZU7ef+rY+wtXRHn2pxTMlJLL37cqbHVqAId411tc3Ev575niM7QmewxGAigxupX2prG9j26sNMKvoXUar76YEGJQrd0nsZMntJn7b5Y+U+/rz1YdYXbfQMyjcqZgS/mXUHC0acHlKPebcyf/8txx572PNUlGnMWIavujfoRx/uTuHhtpqQ0eP7P1nqQMlpl7btB/s/pH+g0qeNJ+K8e1BM7klDtdpjWD74M66aY35Ome9FGCK4bsLPuGnydUQb3LXKTU4Lf9+/lsd3PU9pU3mvt6kajMy99QoWT9F55qOyK0Y+//I4X722Qc5JNchC7yohDQohBD9u2UrN2t8z0dnWga4yKpOUa+4nZmTvm4yqrTU8v/s1XtjzGrW2OgD0qp4Lxi7hrpzbSIvsW5+dQCY0jar33qH8lZc9M3xHTp3G8FX3oosMvT42rawWu2cm8LiEcOITI/ycoq7NyGzb73YcqPBjSgaeLmUsERf9DiXaPRebaKrB8sGfcRTuOMkng9PU5In8fs5dzEhpm/7lcN0R/rLtUd7P+wRbH2YYH3feGVx6eQZJzrZ95WCpwtpHv6A8r9Qn6ZZOLnSeKZUGTVVlDVv+/jRZ1h9QW8Jjh9DRNOlSxpx6bq/HYLE6rXxe+DVfH/uuwyiiWfHjWZZ5CSkRgXtX3x+uxkZKX3wOy7624DBu4SKSf3YNihra9x15+ys9Uy6MyQjs8k2MNTFmSDQFpQ0UVTRSUWshJT5wg7H+UmPTiLjo91g/fwytsgAczTR/8SRazoUYZ1yMEmI1p1HGSFZMuoY51TN48+D7VDXXuMfSKtpAbvkuLhi7hNlpOb2qMY7PGselq4ax5ZVP2FMXh1B01GsRvPfWAbKHH2T+NfMHMEcSgCL62k08yLlcGjU1vm0/1+tV4uMjqa1tCslJ1VwujT3ffk3igXeJU9v+7ar0qSSd+0ui00b2bnuai+9KtvJJwZc0Otq2F2OM5vLxF5CTMnXQB6sbrDJsLiyk5NknPU9EoSgkX/kz4s46e0DzHCj76Duv7aSiZUqDK2+YSWKy72qpBiKPn2w5ytsb8gG4+PQxXHj6GJ9sty8GqwyFw0bzxv/Fmb/Vs0w3YgqmM/8favjANpf6az+1uxx8cfRrvjz6NU7R1ow0LGoIl4w7j+zE3tdIF32Ty4ZvS2nStz0UEImF8y+fQkrWiJC8Vgxk+SUkRKLTnTzQlMGNDwXKhWMg5O/7CcumNxgt2trf7UJH3biljF14CUovHsd2aS62l//Ap4XrqLS29bvQq3oWDD+dJaMX+G3Cy4EuQ6Fp1H7+KVXvv+tphtJFRzPkpluJyJ7g8+87USDso7XVFv71Yi4ASSlRXLGi76NVezMQeaypb+buZzYhgKRYEw/ccgqqn0aJHswyFELg2P0Ztm1v0lrVpoTHYlpwI/rhkwbse/29n1ZYKnnn8IfsrT7QYXlW/HjOG3s2Y2NH9Wp7dnM93//9Sw42xiOUtnPl8EgL8y6bTdzQwOxQ31eBENzIZimpW5XllRR+8U/GW34kRWmLg8vDRpF27s2MS+75qMAuzUVu+S4+K1zfIagBmJEylYvGLSUxPKGLTwc/R1UlZS+/iPXwIc8y09hxDLnllxgSQjffJzq4p8zzOmNScPSjSogxMXFsAnuP1FBlbubA0VomjA79MlMUBePUpaiJI2n+6jlEcwPCasb6yUMYJi0mbPblKPrQGlgSICUimVunruBQbR7v5X1MUYP7Me8DtYc5sOMwmfHpLB19FuPjx/Zoe8bYGBasvIzxW35k47oCzHr3gJXHmiJY+9oPZA9VmHvFaRgjQu/f0l9kzY0P+ftuw5dqKqs5sv4dRpm3YVLa+sGYicZ02lWkTjkNl6tnu06z08aW0u18XfwtVc0dHy3NiBvHheOWMia2d01aA2UgylC4XNStX0fVB+8hbC0T7CkK8UuWknTxpYM6nYK/91GHw8XrT2/B1uxEVRWuvW0uEVFGn37HQOVx+4EKnnnf3T9qZlYKt108cDUX3fFXGWqWOpq/eRlXcds4Vkp0MqbTf45+RN+nVPHG3/tpe5rQ2Fmxm3/nf0b1Ceev9LgxLB55JhMSM3vcJ8dpbWbXm1/x4zEdDl3bXGpGzcbEcSZyLpqL0eTbY2KwyZobKeDUVFZz5Ov3GFm7lUzFAS017zahp3rEQrLOuYKk1ARqa5uA7oOb2uY6Nhz7nu9LtmJ1dpw1NyM+nXN7cecTrKz5eVT84zVsxcWeZfqkJNJW3EhERqYfU+Yfh/eVY2t2B8vp2ck+D2wG0tT0JGIiDNRbHOw4WBHyHYtPpEbEEX7OnTj2rce2dS24nIiGSqyfPow+fS5hc3+GGhHn72T6nKqozEydxvTkyWwt28nnhes9N2l5dQXk1RWQEpHEGcNPY27aTEwnqcnSh5s45YbzOb2pkY+f+5w8SxxCUbGrYewqEPz0yNdMSg9n2oXBH+T4k6y58aFAutvorWP5+VRs/oiRTXsIa1dT4xQqpQkzGLVoGZEJSSfNoyY0fqo+yKbSXPZU/eSZ3LJVVvx4zhm9KGCDGl+VoaOqkqoP3qNhy2ZPXwUUhdj5Z5B0+TJ04aHZp6g7miZY+/J26qrdY4Bcdl0OKUOiff49A5nHjzYV8u7GIwAsyBnGtWcPfoAaCOcZra6U5m9fxVV6sF3CwjBOPRfjlHNQDP1rXgmEPHaltc/gZ0fXewYYbWXSmThlyExOHTqboVFpXW6jff6O79zPlk/3UaIluOchaWHQbIwfopBzwSyik+IGKjsDIhBqbmRw40OBfEB643A6yd++BftPXzHKcQS1Xf9Il1AoiZvGiEXLiE5qO0i7ymOVtYbNpblsKd3umf/J8xlFx6y0HBaMOJ1hUUMGPF/90d8ydDU0UP3JR5i/Xo9wtgWJYSNGkLL8OsLH9X3iUF/w5z56cE8ZX33svhgOGR7LxcunDcj3DGQem5odrHp6EzaHC4NeZc1Nc0mIMZ38gz4UKOcZIQTOg9/SvHUttJuqQYmIwzjjYgwZp/VpdHIInDx2RxMae6r2s6H4Ow7V5Xd6f1T0CE4ZOpMZKdOIMHS8mfGWv5Lt+9i2/hClomNfLlW4GBllZcqZ2QydNGbQnyDtCxnc+NF/cnBTcfwYx7d8QVLVTuKUxg7v2YSe8oQchs+/mNjUzp2F2+exqqmWnRW72Vm+m4L6o53WjTFGc9rQOcwffgoxRt/foQ+Evpaho6aa2i8+x7xxA8LeNvCXGhlJ4gUXEbdgEYrO/xN8+msfdbk0/u+FXBrM7ubJi66eytCRcQPyXQOdxze/yuOzbUUAnDopjf93/sA/5dZeoJ1nNGs99h0f4Nj/NbSrqVUiEzBOXYoha36vOx0HWh5P5nhjKRuKv2Nb+a4OY3WBe9qYiYlZ5KRMYWJiNiZ9WLf5O5a7j50bDlHidDdXtRcjGhk/NorJS3IIjwvcc6oMbvzoPy24qa2sonj7RvTHdzLMdaxDLQ1AvYjEPPx0xs4/D1M3Q/7X2mvIa8rnu4Lt5NUVdHpfVVQmJmZx6pBZTEzMCroZu3tbhs2FhdR9tY76rZs9j3YDKAYDcWedTcLScwNqNm9/7aPbvysk9zt3ADxiTDznL5syYN810HlstDq47/nNNLX0HfrDdTMZM2TwpskI1POMq64E+9a3cB7d1WG5Eh6DIftMDFlnokb17AmzQM3jyTQ5LGwv/4HNpbkUNxzv9L5BNTAxMYuZaVM4NX06jia6zF9tfjE7PttFgTkcp9qx740qXKSFNTEuO5XxZ0wmLMI/zdxdkcGNH/0nBDeVJccp3b0V/bFdLQFNx6LWhEJJ2GiMWfMZPeN0dIbOVcgOzUl+XQH7qg+wt3p/pzbmVkMj05iZOo05Q2YQFxa8M1j3pAy1Ziv1W7di3rgB29HCDu8pRiOxp88jfun5GOLjByHFveOPfbS2qok3X9mB5hIoClz+ixkkpfZtlvieGIw8fpFbzL/WHwZgaFIkq38xE4N+cAL5QDvPnMhVkY9t54e4in7o+Iaioh81HcOEBeiGTuh2FO5Az2NPFDeUsLk0lx3lP3QYpLSVqqiMjR3FhIRMJiRmMTxqiNcmJ2uNmX2f53KooAmzGtd5O5qTtDALY7OSSD9tUkDU6Mjgxo9CMbix25op2rOLxvwfiDEfIplar+vVEkN92gxGzl1CTErHTm8OzcnR+mIO1x4hr+4IR8yF2DWH1+2kRqQwI2UKOalTGRKZ6vP8+ENXZajZ7TTt3UPj9m00/vgDwmbr8Dk1IoK4hWcRt+isgJ7scrD3UYfdxbuv76Km0n2sTZ87grlnDmxn8sHIo9Olcf/fd3C03D3K8qKc4Vxzdu9Hr+0Lf59nespVXYx914c4C7Z3aK4Cd22OftwcDOmnoCZ37kcSLHnsCZfmIq+ugJ2Vu/mhYo/XQAfczfjj48aSHjeG9LixpEWmdHi8XAhB2Y+H2PvdIY6ajR0eI29bSSNeaWRYahhjpo1i6JR0VD80h8vgxo9CIbhpqjdzfP8eLMX7MdUVkOIqx6B4n3m2lhjMiZNJmnI6aelZKIqCEIKa5jqKGo5R1HCMAvNRCuqLOrUZt2q905g9cirpkeNIMaUERee23mhfhs01dVj27aVpz+6WgKa50/pho0YTe8aZxMyei2oa3I6lfTGY+6imCdb9ez/5B9wzaccnRnD5L3LQGwb2ZDtYeTxe2cgfX83F2TLe08+XZHLm9GED9n2tgu3CrzXV4ti/AceBbxCWuk7vK1GJ6EdORT9yKrqh2Sh6Y9DlsadaA519tQfYX3OQkoauZx+PNESQHjuG0TEjGRkznJHRw4gwuIcecNrsFHy/m7zdJRxvCvMe6OB+4irB0ExqajjDs4YybOp49GED/3i5DG78KNiCm6b6BiqOHKTh+BGoKSLSWkKSqOnUd6aVJhTKdanYkrJInDCHxLHjqGqupqypnJLGMooajlPUcKzLu4hWcWGxZMSPY1JiFtkJGcSER4XkSQfA1dSE/egRtKNHqN6+k+ajnTtJg7uTcPTMWcTOOxPT6NGDm8h+GqyLhqYJNnxykIN73Sdvg1HHZdflDMrs34N5Ydz4Ywmvfuoeol9R4BdLs5g3peejdvdFsF74hebEefQHnIc34yz6EbzdROmM6IZkYBiWTULmNCzhabhEcPXb64nWMjx0vIjdFfvZV32AvLojJ52FPCk8kVHRwxkRPYwhkamkRaYSq0ZSuGkvhftKKDWrNOm6bvJVNSexqoX4KIXktBhS09NIzR7t84BHBje9oGkaTz31FG+99Rb19fXMmDGD1atXM2pU7+b4aBWIwY0QgobaGqqPHaWp/BiuulJ0jRVE2ytJUOpP+vlqEUNJzDCsQ0ejH56GGStlTeWUWsqptFQjTjLoHkCiKYH0uDGMjxvL+PixJJoSOtTOBOuJ9URasxXb8ePYjh2jueAIzfl52EtLulxfjYggKmcG0TNnE5GVPaijCvvSYJSf1WJn3b/3c6ywDgBVVVhy6URGpw/O/DmDvY+u/eown29rG6Rx6dyRXDJvLPoenID7IhSOQWFrwlmwA8eRbbhKDngPdAB0BnTJY1CTRqNLGoWaNAo1bkiv5rILRN7K0KW5ONZY4hkYMK/uCBan9aTbMqgG0iJTGBKZSmpECrFVKrb9DdSUuqhxhHdZq9NKES6ihYVok0ZcrJH4lBgSRyWTOHYYYVF9uxmRwU0vPPXUU7zxxhusWbOG1NRU/va3v1FcXMxHH32E0dj7qNMfwY1Lc9FYXYO5sgxLdQV2cyWiqQadtZYwh5lozUykYvOyZXABTTqVer1Kg07FrNNRro+kNiKapogwmgwuzI5GXMJ7s5Q3UYZIRsYMZ1T0cEZGD2dkzPCTdgYOphOr0DSctbU4KitwVFXiqKjAVnIc+7FjOKoqT/r5sJGjiJw0mYiJkwgflx60AU17A1l+LpfGwb3lbN1whGar+2KlqgqLL8pmbGayT7+rO4O9jwoh+L/1h1m3vW1S2VGp0SxbmE7WKN93Kg+mY7AnhKMZ5/F9uI7+iLN4t9emqw50BtS4oahxaaixaS2/h6DGJIMxIiiaynv04ILQKLdUUlR/zNN1oLihBEcXfSC9CVMMjKlLIqkiBtUcgcURQ3M3NTsnMrksROgcRBghKspAVKyJ2KQYYtISiBmSgCkuGtVLx3AZ3PSQ3W5n7ty53H333Vx11VUA1NfXM2/ePP7yl79w3nnn9XqbAxHcWOprKflhE9baKjRrA6qtEb2zkTCXBZOwEk4zQhXYFAW7qmBTFayqikXX+lvFqipYdSqWlt9NOoUGnY5GneqZCqG3DKqetIgU0iLTGBKZQlpkCiOihxEfFtfrE4G/T6xCCITdjma14Gqy4Ko34zTX4TSbcZnNOM0tf9fW4Kiq6vB4drd0OkwjRxGRnk7S1EkwcixEDNwTPf7i6/ITQlBTZSH/QCUH95TRWN8WnJsiDJxzyUSGjBjcp+f8sY8KIfgit5i3N+Tj0tpOqWOGRDNvylCmjEv02WB//j4GB5IQAlFfjig/jFqTj6VgL1qD9yc0vTKYUCMTUCLjUaMSUCITUCLiUExRKKbolp8oFFMkiuq/m5W+lqFLc1FmqeB4YymlTeWUNVVQ1lROpbVnNfMAEU06UiojiTVHY7TGIrR4mnUx0MO5sdpThAujZidMcWDSC0xGMJn0REYZGZU5lGFzJqD5eBcNqeBm9+7dXHHFFXz22WeMGTPGs/yqq64iMzOT//mf/+n1Nn0d3Lg0F9/+804OxkCz2ha82FsCGXvLazFAdxUm1UhieAKJpgQSw+NJDIsnKTyBtIgUEkzxqCdERm3FLjr84sTd4YT1dDqVuLgI6moacdqdCM2FcGnQ/remIVwucLV7fcJvYbejOewIuwPhsKPZ7S3LHAi7DWF3oDnsaFYrmsWCy2JBs1jQrJYOI//2hRIWhnHYcMKGDXf/HjEC0+gxqMaWjoxxkdTWeT/p9OVo6dMh1s1Hut1aF9/VutRr/rrZoMulYbe5sNuc2O1ObM1OGs02GszN1NVYKC+p99TStJeencxpi9L9MneUPy/+R0rqefXTAxyrbOz0Xmp8OCNSohiaFElCjImYSCOxkUbCw/QY9SpGgw6DXsWgU1EUurzxCOXgplX7PNobzWhVR3FVHXX/rj6KqK/o28HYnjECxRiOYjCBwYTS8oOx9XU46I0oOj3oDKDq217rDO1e692BkqpzBwiKCqqC0vras8z9W1FUdAYd8fHR1JmtODXaTbug4LmLVTz/O+lNqN3loMJSSbmlkurmGqqtNVQ311Jlraamue6kNfp6h0JCjYnY+nAiGyMx2KJAi8ahROHU9X0MnZnjXMy6YmGfP+9NSE2cWVZWBsCQIR2H7k9JSaG0tLTP29Xrfdcm7mhupqA0G7VoLOGKSu92h94HPN0d1tUoVOPgEOVA173xe/xdfQrIevoZBQhr+ekiXyoQpUBXFSl9DRhLW362++bfSYLR6YnMOG0kQ0fE+S0NrSe+npwAfS1jZBx/vnEO3+8p5YvcYo6WNXjeK6+1Ul5rhYMnbxKFtmubqiieYEfx/N26zwf8vWkfufPqjl9a8xgFTAQmosNFgtJAsmomSa0nWTETrzYSqzQRqzRh7OKp0Q7sFoTd4rd/QfPJV/HKXTHoLv/2aY9EYSwwFhDtzr8uoEGvw6xXadAr1OtUGvVtXRwaW5ZXplioSLUCHWc+N9gV4urCiGoMI8ISTpjNhM4RAVoYAhMuxYRTNXUaTRngWG0xp/jwOtsbQRHcWK3uTlUn9q0JCwvDbO7bLqKqCvHxvhs5Nsqqx+bMRATAEPuSNFjCIwwMHx3PmPFJTJg6hJjYwBkpNSbGf2m58MzxXHBGOnnH6sj9qZydBys4ctyMoxc1La3XddeJtawSAI1EU4S3AesEEYqNONVCvGohSrESqdqIUmxEqs1EKjai1GaiFBthioMwxdlhsuBA535C1tu+4H3/MAAml4tkF+C9SycAGu5Wh9buEZaW7hEWnYpFr9KcoGBLcrdANLW0TLS2TthQ0NmMhFmMRFgNhNkMOI02otKSfXqd7Y2gCG5MLeOH2O12z2sAm81GeB9nV9Y0QX29xSfpa5UzBg4VNKC1ViX2ZSNePtSr7XRTi9Hr9CheX3rGyHF/l9L6X9t3KydUpSpK221oy2/FfSuKoiot1bZelrVW7apq20e7TGsf8u3131pBp1NxaVo31d5dbLGbBHaf9q4W922D3eVXUVry59JOaC7z/ilVpxAWpscYpsMYpsdo1BEVYyImzkRMXDjRsWGecnZpGrW1vu3H1hc6nUpMTDj19VZcLv822yRFGVk6ewRLZ4/ApWlU1FopqWrC3GjH3OT+sdmd2J0adocLu0PD4dIQoqX/iQCB6Pi3ECiqgssV2sGOTtefPEYBidRCF0OZdqQIDQMOwnBgwIERB0bsGHCiw4UOF3o0VOFE7/nb1fKehh4XChoqAgWBiobiee19maoIFNG6DNoHJ0qH123vdX7tbX3vnz3xPa80948J90/rZBndXztEy08zGs04FXAYQehjGTnrIp+fE2JiwkOnWaq1OaqiooKRI0d6lldUVJCVldXn7fq6vfrUa8/ivP+gtvBQzKPMX++4Lz6BeZF1ubSAK8Pk2HCS+1m7Fer7KIR+HmX+Bp5/GsN6KSsri6ioKLZu3epZVl9fz08//cTMmTP9mDJJkiRJkgJNUNTcGI1Gli9fzkMPPURCQgLDhg3jb3/7G2lpaSxevNjfyZMkSZIkKYAERXADcPvtt+N0Ovn9739Pc3Mzs2bN4uWXX+7TAH6SJEmSJIWuoAludDodd999N3fffbe/kyJJkiRJUgALij43kiRJkiRJPSWDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQogghAnNK3wEmhEDTfJ91nU7F5Qq9WV7bC/U8yvwFv1DPY6jnD0I/jzJ/faOqCoqinHS9/9jgRpIkSZKk0CSbpSRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKTK4kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuOkFTdN44oknmDdvHlOnTmXFihUcPXq0y/Vra2u56667mDVrFrNmzeIPf/gDFotlEFPcO3V1dfz3f/838+fPJycnh6uuuort27d3uf57771HZmZmp5/u/k387fjx417T/NZbb3ldP9jKcOvWrV7zl5mZyaJFi7x+JpjK8ZlnnuHaa6/tsGz//v0sX76cadOmceaZZ/Lyyy+fdDuffvop5557LpMnT+aCCy5g48aNA5XkXvGWv6+++orLLruM6dOns3DhQv7617/S3Nzc7XYWLlzYqTxXrVo1kEnvEW/5u++++zqldf78+d1uJ1DLDzrn8dprr+3ymHz//fe73E4gleHJrg0BeQwKqceefPJJccopp4gNGzaI/fv3ixUrVojFixcLm83mdf3ly5eLK664Quzdu1ds2rRJLFiwQNxzzz2DnOqeu/7668WFF14ocnNzRX5+vvjTn/4kpkyZIvLy8ryuv2bNGrF8+XJRUVHR4cfpdA5yyntu/fr1YvLkyaK8vLxDmq1Wq9f1g60MbTZbp/L47rvvxIQJE8Sbb77p9TPBUo6vvPKKyMzMFMuXL/csq6mpEXPmzBG/+93vRF5ennj77bfF5MmTxdtvv93ldjZv3iwmTpwoXn/9dZGXlyceeOABMWnSpC7388HiLX+5ubkiOztbPP/886KwsFB888034owzzhC/+c1vutxOQ0ODyMzMFF9//XWH8qyvrx+MbHTJW/6EEOKSSy4RjzzySIe0VldXd7mdQC0/Ibznsba2ttOxddNNN4lzzjlHNDQ0eN1OoJVhd9eGQD0GZXDTQzabTUyfPl288cYbnmVms1lMmTJFfPTRR53W37lzp8jIyOhQWN9++63IzMwUZWVlg5Lm3igsLBQZGRlix44dnmWaponFixeLxx57zOtnrr/+evHnP/95sJLoE88++6y48MILe7RusJWhN3a7XZx33nnijjvu6HKdQC/HsrIyccMNN4hp06aJc845p8OF47nnnhPz5s0TDofDs+zhhx8WS5Ys6XJ7K1as6PTvsWzZMvGHP/zB94nvge7yd9ddd4nrr7++w/rvv/++mDBhQpc3VTt27BAZGRnCbDYPaLp7qrv8OZ1OMXnyZPHll1/2eHuBVn5CdJ/HE3344YdiwoQJ4sCBA12uE0hleLJrQ6Aeg7JZqocOHDhAU1MTc+fO9SyLiYlhwoQJ5Obmdlp/+/btJCcnM27cOM+y2bNnoygKO3bsGJQ090Z8fDwvvPACkyZN8ixTFAUhBGaz2etnDh48SHp6+mAl0Sd6k+ZgK0Nv/vnPf1JaWsp9993X5TqBXo779u0jNjaWf//730ydOrXDe9u3b2fWrFno9XrPsrlz51JQUEB1dXWnbWmaxs6dOzscxwBz5szptgl2IHWXvxUrVnDPPfd0+ozT6aSxsdHr9g4ePEhycjIxMTEDkt7e6i5/hYWF2Gy2DsdYdwKx/KD7PLZnsVh48MEHue6668jMzOxyvUAqw5NdGwL1GNSffBUJoKysDIAhQ4Z0WJ6SkkJpaWmn9cvLyzutazQaiYuL87q+v8XExHDGGWd0WPbpp59SVFTE6aef3mn9mpoaqqqqyM3N5fXXX6euro6pU6eyatUqxowZM1jJ7rVDhw6RnJzM1VdfTWFhIaNGjeK2225j3rx5ndYNtjI8kc1m47nnnuO6664jJSXF6zrBUI4LFy5k4cKFXt8rKysjIyOjw7LWvJaUlJCYmNjhvfr6eiwWC2lpaZ0+468y7S5/EyZM6PC33W7nlVdeYeLEiSQkJHj9zKFDh4iIiGDlypXs2rWLhIQELr30Un7+85+jqoN/P9td/g4dOoSiKLz22mts3LgRVVU544wzuOOOO4iOju60fiCWH3Sfx/b+9a9/0dTUxK233trteoFUhie7Njz66KMBeQzKmpseslqtgPvi1l5YWBg2m83r+ieu2936gWbHjh389re/ZdGiRV4P2kOHDgGg0+n461//yqOPPorFYuHqq6+mqqpqsJPbI3a7ncLCQhobG7njjjt44YUXmDx5MjfeeCObN2/utH6wl+EHH3yAzWbr1IGzvWAsx/aam5u9HpOA1zJq7Yjb0+M4kDidTu655x7y8vJYvXp1l+sdPnyYhoYGzj33XF5++WWWLVvG448/zpNPPjmIqe2Zw4cPo6oqw4YN47nnnuPee+/lm2++4bbbbkPTtE7rB3P5uVwuXn/9da6++mqvgVt7gVyGJ14bAvUYlDU3PWQymQD3BbL1NbgLLzw83Ov6dru903KbzUZERMTAJdQH1q1bx6pVq5g6dSqPPPKI13Xmzp3Ltm3biI2N9Sx7+umnWbBgAe+++y433XTTYCW3x4xGI7m5uej1es+BNWnSJPLz83n55Zc55ZRTOqwfzGUI8P7773P22WcTHx/f5TrBWI7teSuj1hOktzJqPel6+4y34zhQtAbkW7du5Yknnui26eOVV17BZrMRFRUFQGZmJk1NTTz77LOsXLnSL7U3XVm5ciW/+MUvPM0vGRkZJCcns2zZMvbs2dMpn8FafgDbtm2jpKSEK6+88qTrBmoZers2BOoxGDh7eYBrbZ6oqKjosLyioqJT9RpAWlpap3Xtdjt1dXWkpqYOXEL76R//+AcrV65k/vz5vPjiix0CuRO1vyCCe0cePnw45eXlA53MPouIiOh0x5CRkeE1zcFahuBubtq1axfnnnvuSdcNxnJs5a2MWv/2VkZxcXFERET0+DgOBBUVFVxzzTXs2rWLF1988aTNHwaDwXNRbJWRkYHFYumy/5y/KIrSqV9JaxNHa1eA9oKx/FqtW7eOKVOmMGLEiJOuG4hl2NW1IVCPQRnc9FBWVhZRUVFs3brVs6y+vp6ffvqJmTNndlp/1qxZlJWVdRgrpPWzOTk5A5/gPnjjjTf405/+xDXXXMNjjz3mtUmm/bpz5szpMN5GY2MjhYWFAds59cCBA0yfPr1Tp7W9e/d6TXMwlmGrnTt3oigKs2fP7na9YCzH9mbNmsWOHTtwuVyeZZs3b2bMmDGd2vrBfTHNyclh27ZtHZZv3bqVGTNmDHh6e8tsNnPddddRU1PDG2+80akT5ok0TWPhwoU8++yzHZbv2bOHpKSkbmvx/OGuu+7ihhtu6LBsz549AF73v2Arv/Z27Nhx0vKDwCzD7q4NgXoMyuCmh4xGI8uXL+ehhx5i/fr1HDhwgDvvvJO0tDQWL16My+WisrLSc5GYOnUqOTk53HnnnezevZstW7awevVqLr744oC86y8oKOAvf/kLixcv5uabb6a6uprKykoqKytpaGjolL8FCxYghOCee+7h8OHD7Nmzh5UrV5KQkMAll1zi59x4l5GRwfjx4/njH//I9u3byc/PZ82aNfzwww/ccsstQV+G7R04cIARI0Z0quYNhXJs77LLLqOxsZHf/e535OXl8e677/Laa69x8803e9ZpaGigpqbG8/f111/Pxx9/zCuvvEJ+fj4PPvgg+/fv57rrrvNHFrq1Zs0aiouL+dvf/kZCQoLnmKysrPRcTNrnT1VVlixZwksvveTp9Ll27VpeeuklfvWrX/kzK16df/75fP/99zz77LMUFRXxzTff8Nvf/pbzzz/f8wRVMJdfK5fLRV5eXqeOt60CuQxPdm0I2GPQZw+V/wdwOp3iwQcfFHPnzhXTpk0TN954oyguLhZCCFFcXCwyMjLEO++841m/qqpKrFy5UkybNk3MmTNHrF69WjQ3N/sr+d169tlnRUZGhtefe++912v+fvrpJ7FixQoxY8YMkZOTI1auXClKSkr8mIuTq66uFvfdd5847bTTxOTJk8WyZctEbm6uECL4y7C91atXiyuvvLLT8mAvx3vvvbfTGCI//vijuPLKK8WkSZPEggULxOuvv97pMwsWLOiw7L333hOLFy8WkydPFpdcconYtGnTgKe9J9rnz+VyicmTJ3d5XLaee07Mn8PhEM8884xYtGiRmDhxoliyZIlYu3atX/JzIm/l99lnn4mLL75YTJkyRZx22mnigQce6HCMBVP5CeE9j1VVVSIjI0Ns3Lixy88Eahme7NogRGAeg4oQQvguVJIkSZIkSfIv2SwlSZIkSVJIkcGNJEmSJEkhRQY3kiRJkiSFFBncSJIkSZIUUmRwI0mSJElSSJHBjSRJkiRJIUUGN5IkBSw5UoUkSX0hgxtJkgLS+vXruffeewH30OyZmZkdpj+RJEnqipwVXJKkgPTqq696Xk+cOJG1a9cGxXxXkiT5nwxuJEkKeFFRUUybNs3fyZAkKUjIZilJkgLOtddey7Zt29i2bZunOap9s9STTz7JOeecw7p16zj//POZPHkyF110Ebt27eKHH37giiuuYMqUKZx//vls3ry5w7YPHTrEzTffTE5ODjk5Ofzyl7+kuLjYH9mUJGmAyOBGkqSAs3r1aiZMmMCECRNYu3YtjY2NndYpKytjzZo13HLLLTz22GOYzWZuv/12fv3rX3PllVfyyCOPoGkad955p2cW9IKCAn72s59RXV3NAw88wP33309xcTFXXXUV1dXVg51NSZIGiGyWkiQp4KSnpxMVFQXAtGnTvHYktlqtrF69mvnz5wOQn5/Pww8/zP3338/ll18OgMvl4vbbb6egoIDs7GyeeuopTCYTr776qmf7p5xyCmeddRYvvfSSpwOzJEnBTQY3kiQFrZycHM/rpKQkgA59c+Li4gCor68HYMuWLcyZMweTyYTT6QTc/XlmzpzJpk2bBifRkiQNOBncSJIUtFprX9ozmUxdrl9XV8cnn3zCJ5980um9hIQEn6ZNkiT/kcGNJEn/MaKjozn11FO5/vrrO72n18vToSSFCnk0S5IUkFRVRdM0n25z9uzZ5OXlkZ2d7QlmhBCsWrWKUaNGkZ2d7dPvkyTJP+TTUpIkBaSYmBgKCgrYvHmzp89Mf912220UFRVx8803s27dOr799ltWrlzJxx9/TFZWlk++Q5Ik/5PBjSRJAemaa67BYDBw4403eh7l7q+srCz++c9/oigK99xzD7fffjuVlZU8/fTTnH322T75DkmS/E8RcmY6SZIkSZJCiKy5kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKf8f6IqaUphhN74AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np \n", + "import pandas as pd \n", + "import scipy.stats\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Set a range of skew parameters to demonstrate the signal as a function of time\n", + "alpha_range = [-5, -1, 0, 1, 5]\n", + "time = np.arange(0, 20, 0.01 )\n", + "\n", + "# Set constants for each signal\n", + "A = 100\n", + "tau = 10\n", + "sigma = 3\n", + "for alpha in alpha_range:\n", + " # Compute the skew normal distribution and plot the resulting signal.\n", + " signal = A * scipy.stats.skewnorm(alpha, loc=tau, scale=sigma).pdf(time)\n", + " plt.plot(time, signal, label=alpha, lw=2) \n", + "\n", + "# Add necessary labels\n", + "plt.xlabel('time')\n", + "plt.ylabel('$S$')\n", + "plt.legend(title=r'$\\alpha$')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the skew parameter $\\alpha$ is large and negative, the signal is heavily\n", + "skewed towards shorter retention times. Even though all signals in this plot\n", + "have different heights and locations of the maxima, they all have identical\n", + "values for $A$, $\\tau$, and $\\sigma$. The flexibility of $\\alpha$ in defining the \n", + "signal trace allows for a broad array of peak shapes to be well described by \n", + "this distribution." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## Fitting Peak Windows\n", + "As described in the notebook for Step 2, a chromatogram is broken down into\n", + "multiple \"peak windows\" which likely contain overlapping analyte signals. Each \n", + "window is fitted independently, which assumes that distant peaks have no influence \n", + "on each other. As an example, let's look at a real peak window from a sample chromatogram.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3935.20it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpT0lEQVR4nO3deVhUZf8G8HsWdhw2EdxFdlzYlczdzErNjPZo0TLT0l/1mlma2au2WuaSaYrma4uammVq5pJriICCC6CiiCuorLIzy++PaQZJVAbOcGa5P9flJc6ceeb7ZXC8Pc8zz5FoNBoNiIiIiKjBpGIXQERERGRuGKCIiIiIDMQARURERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYHkYhdgqTQaDdRq093kXSqVmHR9QmGfloV9Wh5r6ZV9mgepVAKJRNKgYxmgjESt1qCgoEzsMuoll0vh5uaEkpJyKJVqscsxGvZpWdin5bGWXtmn+XB3d4JM1rAAxSk8IiIiIgMxQBEREREZiAGKiIiIyEAMUEREREQG4iJyIiKiO1Cr1VCplE14vASVlTJUV1dBpTLfT6jdjTn0KZPJIZUKc+6IAYqIiKgeGo0GJSUFqKgobfJY169LoVab5yfTDGEOfTo4OEOhcG/wdgW3wwBFRERUD114cnZ2g62tXZP+wZXJJCZ7VkZIptynRqNBdXUVSksLAQAuLh5NGo8BioiI6F/UapU+PDk7K5o8nlwuNdu9kQxh6n3a2toBAEpLC9GihVuTpvO4iJyIiOhfVCoVgNp/cMly6F7TpqxrAxigiIiIbqup62TI9Aj1mjJAERERERmIAYqIiIjIQAxQREREBADo3TsKW7ZsavTjL1++jN69o3D4cLKAVTXMtm1b8Nhjw5vt+fgpPCKiZlJaWorU1MM4fDgJBQUFCA7ugu7dQxEUFMK1NmQSfv31Dzg7O4tdhsF27vwTn3wyEx4eLZvtORmgiIiMTKPR4OefV+PLLz9DZWWF/vaNG9cDAMLCIjBz5ido376DWCUSAUCzBhAhlJWV4osvPsXOnX/Cx8cXpaU3mu25OYVHRGREBQX5mDDhVXz00YeorKxA27btMGLEo3j55VfRq1dv2Ns7IDX1MJ544hFs2PCz2OXSXWg0GlRUlBv8q7zc8MfU90ujMWyTytGjn8VXX32u//O+fbvRu3cUduzYpr9t0aJ5GD/+ZQB1p/Bmz56BmTPfx9dfz8OwYYMxaNC9ePfd/yA//7r+sWfPZmHixFdx33298dRTjyIl5dAtNWzd+jteeOFpDBx4Lx57bDj+97/lUKvVUKvVGDZsMFav/l5/7Nq1P6F37ygcP35Mf9v770/BzJnv19vf5cuXUVJSjGXL/oc+ffoZ9L1pKp6BIiIykhs3buCVV15EVtZp2Nra4v/+bxKefjquzuZ9ly5dxPTp7yIlJQn//e/7kEqBMWNGi1g13Y5Go8GLLz6DtLQjotUQFhaBFSt+aPCU77339sWuXdv1f05OPgSJRIKUlGTcd98QAMDffx/AQw/Vv3Zo164dGDz4ASxc+C3y8nLx4YfT8O23i/Duu9NRWlqK//u/8ejatRu+/XYl8vOv4dNPZ9d5/Nq1P2Lx4oV47bU30KNHDDIy0vHll5+iuLgYEya8iXvuuRdJSYfw1FNxdeo7fDgJXbt2g1KpRFLSQbzzzrR66/P3D8CcOfMBAHv37m7Q90QoPANFRGQENTU1mDTp/5CVdRqenp748cf1ePbZ52/Z+bht23ZYunQlRo8eAwCYOXMGdu/eLULF1BDmtlbt3nv7IifnHPLycgFoA0rfvv1x5Ih2kfeVK5dx7txZ9O3bv97HOzk5YfLkqejUyQc9e96DBx54CEePpgIAduzYhsrKSkyd+iE6d/ZFdHQM3nxzkv6xGo0G33+/Eo8++gRiY59A+/YdcP/9D+Dll8di/fo1KC0txb339kFa2mFUV1dDqVQiNfUw+vbtr1+EfvRoKqqrq9GzZy/jfZMaiWegiIgEptFo8NFHHyIx8W84ODhiwYIl8PPzv+3xUqkUEya8hatXr+L333/FK6+8glWrVqNz59s/hpqfRCLBihU/1FnH1lAymRQqVdMvcWJv72BQiAsKCoanZyskJSWiZ897cPHiBUyfPgsvvRSHvLxc/P33fnTq1Bnt2rWv9/Ft27aHXF4bFZycnKFUanfwPns2C+3bt6+z6Lxbt1D910VFhSgoyEf37mF1xgwNjYBSqUROzjn06HEP1Go1jh1Lg42NDezs7PDII7GYMuU/qKmpQULCAURGRsPR0bHBPTcXBigiIoHt2rUdv/yyDlKpFJ99NhdBQSF3fYxEIsEHH8zEtWt5SEw8iGnT3sWqVWsgk8maoWJqKIlEAgcHw/8xF/Macb169UZS0kHIZDIEBYUgMDAI3t6tcfhwMhIS9t9x7ZCNjc0tt928Duvfa7JuDlu6+/6d99Rqtf5YR0dHhIVF4tChg7Czs0NERBS6dw+HRgOcOHEMCQn78cQTzxjcc3PgFB4RkYBu3LiBTz6ZCQB46aWxBi1stbGxxaeffgmFQoH09ONYs+YHY5VJVqR3775ISUlCUlIiIiKiAACRkdFISDiAw4dTGr34OiAgEOfP56CoqEh/W0bGCf3Xbm7ucHNzR1paap3HpaUdgY2NDdq2baevLynpIA4fTkZkZDTs7OzQrVt3/P77r8jJOYd77+3TqPqMjQGKiEhACxbMxbVr19ChQ0e8/PKrBj++ZcuWePfddwEAX389D3l5eUKXSFYmIiIaVVVV2L17JyIjowEAkZE9sHv3TigUCgQHd2nUuIMGDYG7uwdmzHgPp0+fwpEjKZg7d47+folEgqefjsOGDWuxYcPPuHjxAv788w8sX/4tHn54pH7q7957+yAr6zSOHz96U33R+PPPrejSpZvJbq3AAEVEJJCjR1Px888/AQCmTfsQdnZ2jRonLi4OoaFhKCsrw+effyRkiWSF7OzsEBXVE0DtGqWoqGhoNBr07t230QvjHRwcMH/+YtjY2GD8+Jcwc+Z0PPfci3WOeeaZ5zFu3ESsXfsj4uIex7Jl3+DZZ1/AxIn/0R/j5eUNX18/eHi01J+ViorqAbVajd69+zaqtuYg0Ri6qQQ1iEqlRkFBmdhl1Esul8LNzQmFhWWizck3B/ZpWcyhz5dffh7JyYcwbNgIzJr1aaPG0PWZkJCMJ54YCbVajdWrNzRoHZW5MeXXtKamGvn5V+Dh0Ro2NrZNHk/MNVDNyRz6vNNr6+7uBJmsYeeWeAaKiEgAycmHkJx8CHK5DV5//Y0mjxcUFIwhQx4CACxbtrjJ4xGRsBigiIgEsGTJ1wCAkSNj4e3dWpAxX3ppLABgx44/kZV1WpAxiUgYDFBERE2k+4STXG6D0aNfEWxcPz9/3Hff/QCA5cu/FWxcImo6Bigioib69ttFAIBHHnkUrVu3EXRs3Sf5/vhjM86fzxF0bCJqPAYoIqImOH36JBITEyCTyQQ9+6QTFBSC3r37Qa1WY+3aHwUfn+6Mn7OyPEK9pgxQRERNsHbtagDAgAGD0KZNW6M8x5NPandi3rRpI6qqqozyHFSXbgf46mp+vy2N7jWVyZp2MRZeyoWIqJFKS0uxefOvAGDUy0306tUb3t6tkZt7BTt2/ImhQ4cb7blISyqVwcHBGaWlhQAAW1u7Jl1IWK2WQKWy/LNZptynRqNBdXUVSksL4eDgfMuFvQ3FAEVE1Ei///4rysvL4ePTGdHRPY32PDKZDCNHPoZvvlmADRvWMEA1E4XCHQD0IaoppFKp/hpwlswc+nRwcNa/tk3BAEVE1AgajQZr12p3HX/iiaebdHaiIR555DEsWfI1UlKSkZ19Fj4+nY36fKS9FImLiwdatHCDSqVs9DgymQQuLo4oLi432bMzQjCHPmUyeZPPPOkwQBERNcLhw8k4ezYL9vYOGDbsEaM/n5eXF/r27Y/du3dh/fo1mDTpXaM/J2lJpVJIpY3fjVwul8Le3h4VFSqT36W7KaylTx0uIiciaoRNmzYCAB58cChatGjRLM/56KOPAwC2bPkdSmXjz4gQUdMxQBERGaiqqgo7dmwDAAwd+nCzPe899/SGq6srCgrykZx8qNmel4huxQBFRGSgvXv/QmlpKby9WyMiIqrZntfGxgaDBml3Jt+2bWuzPS8R3YoBiojIQFu2/A4AePDBYYItSG0o3QWGd+78EzU11c363ERUiwGKiMgAxcVF2LdvDwDgoYeGNfvzR0ZGw8OjJUpKinHwYEKzPz8RaTFAEREZYPv2bVAqaxAQEAh//8Bmf36ZTIbBg4cAALZt29Lsz09EWiYRoDZu3IiHHnoI3bp1w9ChQ7F1a+3cfkZGBuLi4hAWFob+/fsjPj6+zmPVajXmz5+PPn36IDQ0FKNHj0ZOTt0LbgoxBhERAGzdugkA8OCD4m1mOWTIUADAX3/t4KVdiEQieoD69ddf8d577+HJJ5/E77//joceeghvvfUWjhw5gsLCQowaNQqdOnXC+vXrMWHCBMybNw/r16/XP37RokVYvXo1Zs2ahTVr1kAikWDMmDGortauDRBiDCIiACgoyMfhwykAgCFDHhStjtDQMHh5eaOsrAyJiX+LVgeRNRM1QGk0GsybNw8vvPACXnjhBXTs2BGvvfYaevXqhUOHDmHt2rWwtbXFjBkz4Ovri9jYWLz44otYunQpAKC6uhrLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYiIAGD37l3QaDQICelitAsHN4RUKkW/fgMBAHv2/CVaHUTWTNQAdfbsWVy6dAnDh9c9FR4fH4+xY8ciOTkZ0dHRkMtrN0yPiYlBdnY28vPzkZmZibKyMsTExOjvVygUCAkJQVJSEgAIMgYREQDs2rUDADBgwGCRKwH69RsAANi7dzc0GtO8bAaRJRP1Ui7nzp0DAJSXl+Oll15Ceno62rVrh3HjxmHgwIHIzc1FQEBAnce0atUKAHD58mXk5uYCAFq3bn3LMVeuXAEAQcZoLLlc9BnSeslk0jq/Wyr2aVnE7rO0tFQ/XXb//fcb7e93Q/uMiYmBg4Mjrl27ilOnMtClS1ej1GNMYr+mzYV9WiZRA1RpaSkA4J133sHrr7+OSZMmYdu2bRg/fjxWrFiByspK2NrWvf6QnZ0dAO1OwBUVFQBQ7zHFxcUAIMgYjSGVSuDm5tToxzcHhcJB7BKaBfu0LGL1uXfvDtTU1MDX1xeRkd2NfvHgu/fphP79+2Hr1q1ITNyP3r17GrUeY+LPrmWxlj5FDVA2NjYAgJdeegkjR44EAAQHByM9PR0rVqyAvb39LQu5dZ84cXR0hL29PQDtOibd17pjHBy0L6AQYzSGWq1BSUl5ox9vTDKZFAqFA0pKKqBSWe4FH9mnZRG7z19/1X76rn//QSgqMt7fbUP67NWrL7Zu3Yo//tiG0aNfNVpNxiL2a9pc2Kf5UCgcGnwGTdQA5e3tDQC3TLH5+flh9+7daNu2La5evVrnPt2fvby89BfTvHr1Kjp06FDnmKCgIP1zNHWMxjL1q1GrVGqTr1EI7NOyiNFnVVWVfvPMAQMGN8vzN6TPe+/tC4lEgvT0E7h06Qq8vLyMXpcx8GfXslhLn6JOVIaEhMDJyQlpaWl1bj916hQ6dOiA6OhopKSkQKVS6e9LSEiAj48PPDw8EBQUBGdnZyQmJurvLykpQXp6OqKitNenEmIMIrJuSUmJKC8vR6tWXia11sjd3QPdunUHAOzbx0/jETUnUQOUvb09Xn75ZXz99df4/fffcf78eXzzzTc4cOAARo0ahdjYWJSWlmLq1KnIysrChg0bsHLlSowdOxaAdt1SXFwc5syZg507dyIzMxNvvvkmvL29MXiw9lMyQoxBRNbtwIG9AIA+ffoZfe2Tofr21X4aT3eGjIiah6hTeAAwfvx4ODg46Pde8vX1xYIFC9Czp3ZB5LJlyzB79myMHDkSnp6emDx5sn69FABMnDgRSqUS06ZNQ2VlJaKjoxEfH69fFO7h4dHkMYjIuu3frw1QvXv3E7mSW917bx8sXPgVkpMPoaamRr+2lIiMS6LhBiJGoVKpUVBQJnYZ9ZLLpXBzc0JhYZlFz1OzT8siVp85OecwYsQDkMttsHfvQTg6GvfTtYb2qVarMWjQvSgsLMSKFT8gPDzSqPUJiT+7lsUS+nR3d2rwInLr2KyBiKiRdGefIiOjjB6eGkMqlaJHj3sAAAkJB0Suhsh6MEAREd3B/v3atUW9e/cVuZLbi4npBQA4eJDXxSNqLgxQRES3UVFRjpQU7SWd7r3X9APU8eNHUVJSInI1RNaBAYqI6DaSkhJRXV2NNm3awsens9jl3Fbr1m3QsWMnqNVqJCcn3v0BRNRkDFBERLexf/8+ALUbVpoy3VmohARO4xE1BwYoIqLbOHhQuyi7V6/eIldydzEx9wLgOiii5sIARURUj8uXL+H8+RzIZDJERfUQu5y7io7uCZlMhgsXcnD58iWxyyGyeAxQRET1OHToIACgS5duaNGihcjV3J2zszOCg7sAgH7hOxEZDwMUEVE9dFNhurVF5iAyMhoAAxRRc2CAIiL6F7VajcTEBABAz573iFxNw+mmGhmgiIyPAYqI6F+ysk6jsLAA9vYO6N49VOxyGiw8PBJSqRQXLpxHXl6u2OUQWTQGKCKif0lM1E7fRUZGw8bGfC4q7uzsjKCgYABAcjLPQhEZEwMUEdG/HDyonb6LiTGf6Tud2mm8QyJXQmTZGKCIiG5SU1OtX0PUs6f5LCDX4UJyoubBAEVEdJPjx4+jsrICbm5u8PcPELscg4WHR0EikSAn5xyuXbsqdjlEFosBiojoJrqpr8jIHiZ/+Zb6KBQKBAQEAeBZKCJjYoAiIrpJcrI2QEVFRYtcSePppvEOH04RuRIiy8UARUT0j5qaGqSmHgEAs7h8y+2Eh0cAAFJTD4tcCZHlYoAiIvpHenrt+qfOnf3ELqfRwsK0ASor6xRKS0tFrobIMjFAERH9Qzd9FxERBanUfN8ePT1boW3bdlCr1Th6NFXscogskvm+QxARCUy36Nqcp+90dGehOI1HZBwMUERE0K5/OnJEGzYsKUClpR0RuRIiy8QARUQEIDMzHRUV5XBxcYGvr7/Y5TRZWFg4AODo0TQolUqRqyGyPAxQRESovXZcRES0Wa9/0vH19YezcwtUVJTj9OmTYpdDZHHM/12CiEgAqanaPZMiIqJErkQYUqkUoaFhALgOisgYGKCIyOppNBr9WiHd2iFLULuQnOugiITGAEVEVu/cuWwUFRXBzs4OQUFBYpcjGN06KJ6BIhIeAxQRWT1dwOjatRtsbGxFrkY4Xbt2h1QqRV5eLq5ezRO7HCKLwgBFRFZPF6BCQy1n+g4AHBwc4eur3VH9xInjIldDZFkYoIjI6ukClCWtf9Lp2jUUAHDsWJrIlRBZFgYoIrJqBQUFyMk5BwD6T61Zkq5duwEATpw4JnIlRJaFAYqIrJru03edO/vBxcVV3GKMoGvX7gC0AUqtVotcDZHlYIAiIqtWO30XLnIlxuHr6wd7eweUlpbqz7QRUdMxQBGRVbPk9U8AIJfLERLSBQDXQREJiQGKiKxWVVUV0tO1n06z1AAF1K6DOn6c66CIhMIARURWKz39BGpqauDu7oH27TuIXY7RdOmiXQd1/PhRkSshshwMUERktW6evpNIJCJXYzy6M1CnTp1EVVWVyNUQWQYGKCKyWmlplr2AXKdNm7Zwd/eAUlmDkyczxC6HyCKIHqAuXbqEwMDAW379/PPPAICMjAzExcUhLCwM/fv3R3x8fJ3Hq9VqzJ8/H3369EFoaChGjx6NnJycOscIMQYRWRZLvYBwfSQSyU3roDiNRyQE0QPUyZMnYWdnh3379mH//v36X8OHD0dhYSFGjRqFTp06Yf369ZgwYQLmzZuH9evX6x+/aNEirF69GrNmzcKaNWsgkUgwZswYVFdXA4AgYxCR5cnJyUZhYSFsbW0RFBQidjlGp9sP6tgxBigiIcjFLuDUqVPw8fFBq1atbrlv5cqVsLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHYq1a9c2eQwisjypqdqzT126dIOtreVcQPh2+Ek8ImGZxBkoPz+/eu9LTk5GdHQ05PLanBcTE4Ps7Gzk5+cjMzMTZWVliImJ0d+vUCgQEhKCpKQkwcYgIstj6fs//VuXLtoAdeFCDoqLi8QthsgCmMQZKE9PTzzzzDM4d+4cOnbsiPHjx6NPnz7Izc1FQEBAneN1Z6ouX76M3NxcAEDr1q1vOebKlSsAIMgYjSWXi55P6yWTSev8bqnYp2URuk/dAvLIyEiT+rtqrNfTw8MdHTt2Qk7OOWRmnsC99/YRdPzG4M+uZbGWPnVEDVDV1dU4d+4cHBwcMHnyZDg6OuK3337DmDFjsGLFClRWVt5yat3Ozg6AdgO8iooKAKj3mOLiYgAQZIzGkEolcHNzavTjm4NC4SB2Cc2CfVoWIfosKChAdnY2AKBfv3tN8u+qMV7PyMgI5OScw+nTGRg27AHBx28s/uxaFmvpU9QAZWtri6SkJMjlcn2A6dq1K86cOYP4+HjY29vfspBbt4eJo6Mj7O3tAWiDmO5r3TEODtoXUIgxGkOt1qCkpLzRjzcmmUwKhcIBJSUVUKks9+Ki7NOyCNnnnj0HAAA+Pp0hkdihsLBMiBIFYczXMyAgBMAGHDqUbBI982fXslhCnwqFQ4PPoIk+hefo6HjLbQEBAdi/fz+8vb1x9erVOvfp/uzl5QWlUqm/rUOHDnWOCQoKAgBBxmgspdK0f4BUKrXJ1ygE9mlZhOgzLU17Tbhu3UJN9ntmjNdTtw7q2LGjqKlRmczmofzZtSzW0qeoE5WZmZkIDw9HcnJynduPHz8OPz8/REdHIyUlBSqVSn9fQkICfHx84OHhgaCgIDg7OyMxMVF/f0lJCdLT0xEVFQUAgoxBRJZFtxdSt26hIlfSvAICgiCX26CwsACXL18SuxwisyZqgAoICIC/vz8+/PBDJCcn48yZM/j444+RmpqKV199FbGxsSgtLcXUqVORlZWFDRs2YOXKlRg7diwA7RRgXFwc5syZg507dyIzMxNvvvkmvL29MXjwYAAQZAwishwajUb/UX7dR/uthZ2dHQICAgFwQ02iphJ1Ck8qlWLx4sWYM2cO3njjDZSUlCAkJAQrVqxAYKD2L/myZcswe/ZsjBw5Ep6enpg8eTJGjhypH2PixIlQKpWYNm0aKisrER0djfj4eP2aKg8PjyaPQUSW4/z5HNy4UQJbW1v4+QXc/QEWpmvX7khPP47jx49iyJCHxC6HyGxJNBqNRuwiLJFKpUZBgfiLNOsjl0vh5uaEwsIyi56nZp+WRag+N2/ehKlT30b37mH43/9WC1ihMIz9em7atBHvvz8FYWER+O67HwUf3xD82bUsltCnu7tTgxeRW8dmDURE/9BNXekubWJtgoO7AABOnsysszaUiAzDAEVEVuXECV2Asq71Tzo+Pp1hb++Aiopy5OScE7scIrPFAEVEVqOmphqZmRkArPcMlEwmQ2CgdouWjIwTIldDZL4YoIjIapw+fQrV1dVQKFzQvn2Huz/AQoWEaKfx0tMZoIgaiwGKiKyGbvuCLl26mswmkmIICgoBAGRmMkARNRYDFBFZDWtfQK6jOwOVmZkBtdo8Py1FJDYGKCKyGidOHAdgvQvIdXx8fGFvb4+ysjKcP39O7HKIzBIDFBFZhbKyUpw9mwWg9ppw1koul+t3JOc6KKLGYYAiIquQnn4CGo0GrVu3QcuWnmKXIzrdflD8JB5R4zBAEZFVqF1Abt1nn3RqA1S6yJUQmScGKCKyCrUbaFr3AnIdXYDKzEznQnKiRmCAIiKroDsDZe0LyHU6d/aFra0tSktLceHCebHLITI7DFBEZPGuXbuK3NwrkEql+o/wWzsbGxsEBHBHcqLGYoAiIoun276gc2dfODo6iVyN6QgO1m6oyXVQRIZjgCIii8cNNOvHT+IRNR4DFBFZvNoAxfVPN9NNZ2ZkpEOj0YhcDZF5YYAiIoumVqtv2oGcZ6Bu5uvrBxsbG9y4UYKLFy+IXQ6RWWGAIiKLduFCDm7cKIGdnR18ff3FLsek2NjYwt8/AADXQREZigGKiCyabvuCoKAQ2NjYiFyN6eE6KKLGYYAiIoumW//EHcjrpwtQvCYekWEYoIjIop04wQ0076R2IfkJLiQnMgADFBFZrJqaamRmZgDgAvLb8fMLgFxug5KSYly+fEnscojMBgMUEVms06dPobq6GgqFC9q37yB2OSbJ1tYWfn7axfVcB0XUcAxQRGSxbr7+nUQiEbka08V1UESGY4AiIovFHcgbRrcOKjOTWxkQNRQDFBFZrJvPQNHtBQXVXhOPC8mJGoYBiogsUmlpKbKzzwDgFgZ34+8fAJlMhsLCAly9mid2OURmgQGKiCxSRsZxaDQatG7dBh4eLcUux6TZ29vDx6czAE7jETUUAxQRWaTa6Tuuf2qIm6fxiOjuGKCIyCLVLiDn9F1D6D6JxzNQRA3DAEVEFolnoAwTHMwzUESGYIAiIotz9Woe8vJyIZVK9cGA7iwwMAgAkJeXi4KCfJGrITJ9DFBEZHFOnDgOAPD19YOjo5PI1ZgHJydndOzYCQCn8YgaggGKiCxO7QWEOX1nCC4kJ2o4Bigisji6BeTc/8kwugCluwAzEd0eAxQRWRS1Wq2fwuMn8AyjWy/GKTyiu2OAIiKLcuFCDm7cKIGdnR18ff3FLsesBAUFAwAuXDiPkpISkashMm0MUERkUXTbFwQFhcDGxkbkasyLq6sbWrduAwA4eZLTeER3wgBFRBaldgNNLiBvDG6oSdQwJhWgsrOzER4ejg0bNuhvy8jIQFxcHMLCwtC/f3/Ex8fXeYxarcb8+fPRp08fhIaGYvTo0cjJyalzjBBjEJF5qN1Ak+ufGoMbahI1jMkEqJqaGkyaNAnl5eX62woLCzFq1Ch06tQJ69evx4QJEzBv3jysX79ef8yiRYuwevVqzJo1C2vWrIFEIsGYMWNQXV0t2BhEZB5qaqr1Z054BqpxAgO166D4STyiO5M35KCFCxc2+glef/31Bh23YMECODnV3fBu7dq1sLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHSrIGERkHk6dOomamhq4uLigXbv2YpdjlnRnoM6dO4uKinI4ODiKXBGRaTJqgJJIJA0KUElJSVizZg02btyI/v37629PTk5GdHQ05PLaMmNiYrBkyRLk5+fj0qVLKCsrQ0xMjP5+hUKBkJAQJCUlYejQoYKMQUTm4ebr30kkEpGrMU+enq3QsqUnrl+/hlOnTiI0NFzskohMUoMCFKA9G9S9e8NPiaempuLpp5++63ElJSWYPHkypk2bhtatW9e5Lzc3FwEBAXVua9WqFQDg8uXLyM3NBYBbHteqVStcuXJFsDEaSy43mRnSOmQyaZ3fLRX7tCwN6TM9XRugunXrbrJ//+7GFF7P4OAQ7Nu3B6dOZSAyMtJoz2MKvTYH9mmZGhSgIiIibpleu5sWLVogPPzu/3OZMWMGwsLCMHz48Fvuq6yshK2tbZ3b7OzsAABVVVWoqKgAgHqPKS4uFmyMxpBKJXBzM+1rcCkUDmKX0CzYp2W5U5/p6doNNO+5p4fJ//27GzFfz4iIMOzbtwdnzpxqlu8jf3Yti7X02aAAFRkZCZlMZtDAvr6++PHHH+94zMaNG5GcnIxNmzbVe7+9vf0tC7mrqqoAAI6OjrC3twcAVFdX67/WHePg4CDYGI2hVmtQUlJ+9wNFIJNJoVA4oKSkAiqVWuxyjIZ9Wpa79Xnjxg1kZWUBADp1CkBhYVlzlygIU3g9fXy0G5CmpqYZ9ftoCr02B/ZpPhQKhwafQWtQgFqxYgWWLVuGqKgoPP744xgyZIj+LE5TrF+/Hvn5+XXWPQHABx98gPj4eLRp0wZXr16tc5/uz15eXlAqlfrbOnToUOeYoKAgAIC3t3eTx2gspdK0f4BUKrXJ1ygE9mlZbtfnsWPHoNFo0KZNW7i4uJn990LM19PfX/vel5WVhfLyW8/iC83af3YtjbX02aCYtW/fPrz77rsoKyvD5MmT0bt3b/z3v/9FRkbTPuY6Z84cbNmyBRs3btT/AoCJEyfi22+/RXR0NFJSUqBSqfSPSUhIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6ejqioqIAQJAxiMj0nThRu4CcmqZNm7ZQKFygVNbgzJnTYpdDZJIaFKDc3Nzw/PPPY8OGDdi0aRMef/xx7NixA48++ihGjhyJH3/8ETdu3DD4yb28vNCxY8c6vwDAw8MDbdu2RWxsLEpLSzF16lRkZWVhw4YNWLlyJcaOHQtAu24pLi4Oc+bMwc6dO5GZmYk333wT3t7eGDx4MAAIMgYRmb7aHci5gWZTSSQSbqhJdBcN/hSejr+/PyZPnoxJkyZh//79+PXXX/HZZ5/hs88+w+DBg/HEE08gOjpakOI8PDywbNkyzJ49GyNHjoSnpycmT56MkSNH6o+ZOHEilEolpk2bhsrKSkRHRyM+Pl5/ylmIMYjI9N28hQE1XVBQCBITExigiG5DotFoNE0dpKysDLt27cLXX3+NnJycJk/tWQKVSo2CAtNcxCqXS+Hm5oTCwjKLnqdmn5blTn1evZqH++/vB6lUigMHks1680dTeT3/+GMzpkz5D7p1C8WqVWuM8hym0quxsU/z4e7uJOwi8js5fvw4Nm3ahO3bt+PKlSvo2bNnU4ckIjLIiRPa7Qt8ff3MOjyZEt0U3qlTmVAqlXU2IyaiRgaoCxcuYNOmTdi0aRPOnTsHLy8vjBw5ErGxsWjXrp3QNRIR3VHt+idO3wmlffuOcHR0RHl5Oc6dy4afn7/YJRGZlAYHqMLCQmzZsgWbNm1CWloa5HI5Bg4ciPfeew+9e/fmZROISDS69U9dunABuVCkUikCA4Nx5EgKMjPTGaCI/qVBAerVV1/F/v37oVQq4e/vjylTpuDhhx+Gm5ubsesjIrojtVrNLQyMJCgoBEeOpCAjIx3Dho0Quxwik9KgAJWcnIzY2FjExsYadD08IiJjO3/+HEpLb8De3h6+vn5il2NRdOugMjNPiFwJkelpUIDav39/ncucEBGZCt30XVBQCGxsbESuxrLUBqgMqNVqSKXWcZFYooZoUID6d3jatm0bDh8+jJKSkluOlUgk+Oijj4SpjojoLriBpvH4+PjCzs4OZWVluHDhPDp27CR2SUQmw+BP4c2ZMwfLli2Ds7MzFArFLfdzMTkRNSduoGk8crkc/v6BOH78KDIzMxigiG5icID65Zdf8MQTT+C///2vMeohImqwmppqnDyp3biXAco4goND/glQ6Rgy5EGxyyEyGQZPaFdVVeGBBx4wRi1ERAY5deokampq4OrqirZtuQedMQQGBgMAMjK4kJzoZgYHqPvvvx+7du0yRi1ERAap3f+pO5cPGEntQvJ0CHDlLyKLYfAU3nvvvYfHH38czz33HEJDQ29ZYC6RSPDaa68JViAR0e1wAbnx+fkFQC6Xo6ioCLm5V9C6dRuxSyIyCQYHqFWrViE7OxvZ2dlISkq65X4GKCJqLtxA0/js7OzQubMfTp3KREZGOgMU0T8MDlDff/89hg4dinfffRctW7Y0Rk1ERHd148YNZGefBcBLuBhbcHAITp3KRGZmOgYOvE/scohMgsFroMrLy/HEE08wPBGRqDIyTkCj0aBt23Zwd3cXuxyLdvM6KCLSMjhA9erVC4mJicaohYiowXTrn3j2yfiCgrQBKiODAYpIx+ApvBEjRmDatGnIyclBeHg4nJ2dbznmkUceEaI2IqLbqt1AkwHK2AICAiGRSHDt2lVcv34NLVt6il0SkegMDlATJ04EAGzevBmbN2++5X6JRMIARURGV/sJPC4gNzZHRyd06uSD7OyzyMzMQO/eDFBEBgeonTt3GqMOIqIGy8vLw9WreZBKpfr1OWRcQUEhyM4+i4yMdPTu3VfscohE16A1UPPmzUNeXh4AoG3btnf9BWjf4ObNm2e8yonIaum2L/Dz84eDg6PI1ViH2oXk3JGcCGhggFq8eLE+QDVUbm4uFi9e3KiiiIjupHYBOafvmkttgMoQuRIi09CgKTyNRoMZM2bUu2D8dkpLSxtdFBHRndRuoMkF5M0lMFAboC5duoiSkmIoFC4iV0QkrgadgYqOjoaTkxM0Gk2Dfzk5OSEqKsrY9RORlVGr1Thx4jgALiBvTgqFQn/BZm5nQNTAM1CrVq0ydh1ERA2Sk3MOpaU3YG9vD19fP7HLsSrBwV1w6dJFpKefQM+e94hdDpGoDN5Ik4hITEePpgHQfipMLjf4g8TUBLpNS3VTqETWjAGKiMzKsWPaANW9e6jIlVifLl26AgDS04+LXAmR+BigiMisHD2q20CTAaq5BQd3AQBcvnwJBQUFIldDJC4GKCIyGxUVFTh1KhMA0K0bF5A3txYtWqBjx04AeBaKiAGKiMzG8ePHoVQq0bKlJ7y9W4tdjlXSrYNigCJr16AVmBs3bjRoUF4Lj4iM4fDhwwC02xdIJBKRq7FOISFdsWXLJi4kJ6vXoAA1ZcqUBg/IiwkTkbEcOXIEAKfvxMQzUERaDQpQvIAwEZmC2gDFBeRiCQoKhlQqxbVr15CXlwcvLy+xSyISRYMClO4CwQ2h0WgaXQwR0e1cv34dFy9ehEQiQUhIV7HLsVoODg7w9fXD6dOnkJ5+nAGKrFajdqHbvHkzDh06hJqaGn1g0mg0KC8vR2pqKvbu3StokUREuv2f/Pz8DbouJwmvS5duOH36FE6cOIYBAwaJXQ6RKAwOUAsXLsTChQvRokULKJVK2NjYQC6Xo6CgAFKpFI8//rgx6iQiK6fbgZzrn8QXEtIVGzeu5zoosmoGb2Pwyy+/4OGHH8ahQ4fw4osvYsCAAfj777+xbt06uLq6wt/f3xh1EpGVO3o0FQB3IDcFuh3JT5w4xmUbZLUMDlB5eXkYMWIEJBIJunTpol/U2bVrV7z66qv4+eefBS+SiKybSqXC8ePaj81zAbn4/P0DIZfboLi4GJcuXRS7HCJRGBygHB0d9fuvdOrUCRcvXkRlZSUAIDg4GBcv8i8TEQkrO/ssysrK4OjoCD8/nuUWm62tLQICAgEAJ05wGo+sk8EBqlu3bvjll18AAB06dIBMJsPff/8NADhz5gxsbW2FrZCIrN7x49rr34WGhkImk4lcDQF1p/GIrJHBAerVV1/F1q1b8eqrr8LW1hYPP/wwpkyZggkTJuDTTz9F7969DRovPz8fb7/9NmJiYhAeHo5XXnkFWVlZ+vszMjIQFxeHsLAw9O/fH/Hx8XUer1arMX/+fPTp0wehoaEYPXo0cnJy6hwjxBhEJB7dJ/DCw8NFroR0uKEmWTuDA1R0dDTWrVuHBx98EAAwffp0DBkyBGfPnsUDDzyAadOmGTTeuHHjcOHCBSxduhTr1q2Dvb09XnzxRVRUVKCwsBCjRo1Cp06dsH79ekyYMAHz5s3D+vXr9Y9ftGgRVq9ejVmzZmHNmjWQSCQYM2YMqqurAUCQMYhIXMeOac9ARUREiFwJ6ejOQGVknIBarRa5GqLm16h9oIKCghAUFAQAsLOzw8yZMxv15IWFhWjXrh3GjRun//Te+PHjMWLECJw+fRoJCQmwtbXFjBkzIJfL4evri5ycHCxduhSxsbGorq7G8uXL8fbbb6Nfv34AgLlz56JPnz7Yvn07hg4dirVr1zZ5DCIST0VFObKyTgHgGShT4uPjC3t7e5SVlSEn5xx8fDqLXRJRs2pUgLpx4wYOHjyI8vLyej/C2tBr4bm5ueHLL7/U//n69euIj4+Ht7c3/Pz8sGDBAkRHR0Mury0zJiYGS5YsQX5+Pi5duoSysjLExMTo71coFAgJCUFSUhKGDh2K5OTkJo9BROI5ceI41Go1vLy84e3tjcLCMrFLIgByuRxBQSFITT2MEyeOMUCR1TE4QO3ZswdvvPEGKioq6r2/sRcTfv/99/Vni7755hs4OjoiNzcXAQEBdY5r1aoVAODy5cvIzc0FALRu3fqWY65cuQIAgozRWHK5wTOkzUImk9b53VKxT8uQnq5dpBwaqt2+wFL71DGn17Nr125ITT2M9PTjeOSRkQY/3px6bQr2aZkMDlBffvklOnfujHfffRdeXl6QSoX5Rr3wwgt48skn8dNPP+G1117Djz/+iMrKyls+1WdnZwcAqKqq0oe4+o4pLi4GAEHGaAypVAI3N6dGP745KBQOYpfQLNinecvMPAEA6NEjGoDl9vlv5tBnz55R+P77lTh5Mr1J73fm0KsQ2KdlMThAnT17FosWLUJUVJSghfj5+QEAZs6cidTUVHz//fewt7e/ZSF3VVUVAO1+VPb29gCA6upq/de6YxwctC+gEGM0hlqtQUlJeaMfb0wymRQKhQNKSiqgUlnu4k/2aRlSUlIAAAEBIQBgsX3qmNPr2amTdu3q8ePHcfVqEWxsbAx6vDn12hTs03woFA4NPoNmcIBq06YNSktLDS6qPvn5+UhISMCDDz6o39tFKpXC19cXV69ehbe3N65evVrnMbo/e3l5QalU6m/r0KFDnWN0i9yFGKOxlErT/gFSqdQmX6MQ2Kf5ysvLQ15eHmQyGYKCtAHKEvusjzn02bZtBzg7O6O0tBQnT57Uv0aGModehcA+LYvB829jx47F119/LciO41evXsV//vMfHDp0SH9bTU0N0tPT4evri+joaKSkpEClUunvT0hIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6err+DJkQYxCROI4e1V4qys8vAI6OjiJXQ/8mlUrRpYv24s66iz0TWQuDz0Bt2rQJeXl5GDx4MNzd3etMewHaReQ7duxo0FhBQUHo3bs3PvzwQ8yaNQsKhQKLFy9GSUkJXnzxRdjZ2WHZsmWYOnUqXn75ZRw9ehQrV67Ehx9+CEC7bikuLg5z5syBu7s72rZti88//xze3t4YPHgwACA2NrbJYxCRONLStAEqLIzbF5iq0NAwJCb+jaNHU/HEE0+LXQ5RszE4QHl7az9KLASJRIKvvvoKX3zxBd544w3cuHEDUVFR+OGHH9CmTRsAwLJlyzB79myMHDkSnp6emDx5MkaOrP20x8SJE6FUKjFt2jRUVlYiOjoa8fHx+kXhHh4eTR6DiMSRlpYKAAgNZYAyVd27hwEAjh5NFbUOouYm0dS3kRM1mUqlRkGBae5XI5dL4ebmhMLCMouep2af5q2yshK9e0dDqazB5s070LFjB4vs89/M7fUsLi5Cv37affT++isBbm5uDX6sufXaWOzTfLi7OxlvEfnly5dve59UKoWjoyMUCoWhwxIR1ZGRcQJKZQ08PT3Rpk1bscuh23BxcUWnTj44dy4bx46lom/fAWKXRNQsDA5QAwcOhEQiueMxLi4ueP755zF+/PhGF0ZE1i01Vbv+KTQ0/K7vOSSu7t3DcO5cNo4eTWOAIqthcID65JNPMH36dPTo0QPDhg1Dy5YtkZ+fj23btmH37t0YP348ysrK8M0338DV1RXPPPOMMeomIgunW0DO9U+mr3v3MPz22y9cB0VWxeAAtXnzZgwdOhQff/xxndtHjBiBDz74AMePH8fixYuhUCjw008/MUARkcE0Gg0DlBnRLSQ/fvwoVCqVfl8/Iktm8D5Qhw4dwrBhw+q97/7778fBgwcBAJGRkbhw4ULTqiMiq3ThwnkUFhbA1ta20ZszUvPx9fWDk5MTysvLceZMltjlEDULgwOUq6srMjMz670vMzMTzs7OAIDy8vImXQqFiKyX7uxTcHAXbidiBmQyGbp21W2oeUTkaoiah8EBavjw4Zg/fz5WrlyJvLw81NTUIC8vD6tWrcLChQsxfPhwFBcXY+XKlfqrpxMRGYLTd+ZHN42n27uLyNIZvAbqjTfeQH5+Pj755BN88skn+tulUiliY2Px5ptvYtu2bUhPT8fKlSsFLZaIrAN3IDc/3bpp/8N87Bgv6ULWweAAJZfL8fHHH2PcuHFITExEYWEhvLy8EBERgfbt2wMA+vbti3379vHUOxEZ7MaNG8jKOg2g9qwGmb7u3bUB6ty5bBQXF8HFxVXcgoiMzOAApdOhQwd06NCh3vtcXFwaXRARWbdjx9Kg0WjQrl17tGzpKXY51ECurm7o2LETcnLO4ejRNPTp00/skoiMqkEBatCgQfj6668RFBR01400DbmYMBHRv3H9k/nq1i0UOTnncOwYAxRZvgYFqB49esDJyUn/NXcFJiJjYYAyX6Gh4fj991+5kJysQoMC1M2bZt68cJyISEgqlQrHjx8FwABljmo31Ezjhppk8QzexgAASktLkZeXBwCorq7GsmXLMGvWLCQlJQlaHBFZl7Nns1BaWgpHR0f4+fmLXQ4ZyNfXDw4OjigrK8PZs9xQkyybwQHq6NGjGDhwIFatWgUAmDVrFubMmYPffvsNL7zwAnbu3Cl4kURkHXTTd926hfHshRmSy+Xo2rUbAODoUW5nQJbN4AA1d+5cdO7cGU8++SQqKyuxadMmPPPMMzh06BAee+wxLF682Bh1EpEVSE3VrX8KE7cQajTdNB4vLEyWzuAAlZaWhnHjxqF9+/ZISEhAZWUlRowYAQB46KGHcPr0acGLJCLroFt8zA00zZcu/DJAkaUzOEBJpVL9Bpl79uyBQqFA9+7aayCVlpbC3t5e2AqJyCpcv34NFy7kQCKRoGtXXgbKXHXrFgYAyM4+i6KiQnGLITIigwNU165dsW7dOhw5cgRbt25F//79IZFIkJ+fj6VLl6Jr167GqJOILNzhwykAAH//QCgUCpGrocZyc3ODj09nALVTskSWyOAANXnyZCQkJODpp5+GTCbDuHHjAADDhg3DuXPn8MYbbwhdIxFZgcOHtZ/ijYyMErkSaqrw8EgAwOHDySJXQmQ8Bl/KJSQkBH/++SfOnDkDf39/ODo6AgBmzJiBiIgIeHry0gtEZDjdP7YREQxQ5i4iIgobNvyMI0dSxC6FyGgadS08Z2dnhIbWXaMwZMgQQQoiIutTXFyE06dPAWCAsgS6M1AZGSdQUVEOBwdHkSsiEl6jNtIkIhJSauphaDQadOrkAw+PlmKXQ03Upk1beHl5Q6lU4tixo2KXQ2QUDFBEJLqUFE7fWRKJRMJ1UGTxGKCISHS6f2QjI6NFroSEogvDXAdFlooBiohEVV5ehoyMEwB4BsqSRERoz0ClpaWipqZG5GqIhMcARUSiOno0DSqVCq1bt0Hr1m3ELocE0rmzHxQKF1RWViAzM0PscogExwBFRKLi9gWWSSqVIjw8AgCQkpIkcjVEwmOAIiJR6f5xZYCyPFFRPQAAKSmHRK6ESHgMUEQkmurqahw7lgaAO5BbIl2AOnw4GUqlUuRqiITFAEVEojlx4hiqq6vh7u6Bjh19xC6HBBYQEIQWLRQoKytDRka62OUQCYoBiohEc/P0nUQiEbkaEppMJtNvTZGczGk8siwMUEQkmtr9nzh9Z6l003jJyYkiV0IkLAYoIhKFUqlEauphAEBEBDfQtFTR0T0BaDfU5H5QZEkYoIhIFCdPZqC8vBzOzi3g5+cvdjlkJP7+AXBxcUF5ebl+w1QiS8AARUSi0E3fhYdHQCaTiVwNGYtUKkVkpG4aj+ugyHIwQBGRKGovIMzpO0sXFaV9jZOSuA6KLAcDFBE1O5VKxQXkVqRHjxgA2nVQ1dXVIldDJAzRA1RRURGmT5+Ovn37IiIiAk8//TSSk5P192dkZCAuLg5hYWHo378/4uPj6zxerVZj/vz56NOnD0JDQzF69Gjk5OTUOUaIMYhIOCdPZqCkpBhOTk4ICekqdjlkZL6+/mjZ0hOVlZVISzssdjlEghA9QL311ltIS0vDl19+iXXr1qFLly546aWXcObMGRQWFmLUqFHo1KkT1q9fjwkTJmDevHlYv369/vGLFi3C6tWrMWvWLKxZswYSiQRjxozR/y9HiDGISFiJiQkAtB9xl8vlIldDxiaRSNCz5z0AgIMHE0SuhkgYogaonJwcHDhwAB988AGioqLQuXNnTJ06FV5eXvj999+xdu1a2NraYsaMGfD19UVsbCxefPFFLF26FID2MhDLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYhIWLoA1aPHPSJXQs2lNkD9LXIlRMIQNUC5ubnh22+/RdeutafwJRIJNBoNiouLkZycjOjo6Dr/Q42JiUF2djby8/ORmZmJsrIyxMTE6O9XKBQICQlBUpJ2h2MhxiAi4VRXV+v3f+rZM+YuR5Ol6NmzFwAgPf04iouLxC2GSACinjtXKBTo169fndu2bt2K8+fPo3fv3pg7dy4CAgLq3N+qVSsAwOXLl5GbmwsAaN269S3HXLlyBQCQm5vb5DEaSy4XfYa0XjKZtM7vlop9mqbDh9NQWVkJD4+WCAwMbPAlXMytz8ay1D7btm0NX18/nDmThZSUQ7j//gcsttd/Y5+WyaQWH6SkpOC9997DoEGDMHDgQHz88cewtbWtc4ydnR0AoKqqChUVFQBQ7zHFxcUAgMrKyiaP0RhSqQRubk6NfnxzUCgcxC6hWbBP05KWpv2QSN++feDu7mzw482lz6ayxD779+/3T4BKxJNPxupvt8Re68M+LYvJBKgdO3Zg0qRJCA0NxZdffgkAsLe3v2Uhd1VVFQDA0dER9vb2ALRTArqvdcc4ODgINkZjqNUalJSUN/rxxiSTSaFQOKCkpAIqlVrscoyGfZqm3bv3AADCw6NRWFjW4MeZW5+NZcl9RkT0QHx8PPbs2YvCwjKL7vVm7NN8KBQODT6DZhIB6vvvv8fs2bMxePBgzJkzR382yNvbG1evXq1zrO7PXl5eUCqV+ts6dOhQ55igoCDBxmgspdK0f4BUKrXJ1ygE9mk6SktLcfz4MQBAVFTPRtVrDn0KwRL7DAuLhFwux8WLF5CdfQ4+Pp0AWGav9WGflkX0icoff/wRM2fOxLPPPouvvvqqzlRadHQ0UlJSoFKp9LclJCTAx8cHHh4eCAoKgrOzMxITa3e3LSkpQXp6OqKiogQbg4iEkZJyCCqVCu3bd0CbNm3FLoeamZOTM0JDwwAAf/+9X9xiiJpI1ACVnZ2Njz76CIMHD8bYsWORn5+Pa9eu4dq1a7hx4wZiY2NRWlqKqVOnIisrCxs2bMDKlSsxduxYANp1S3FxcZgzZw527tyJzMxMvPnmm/D29sbgwYMBQJAxiEgYiYkHAdTuTE3W5957+wIADhzYK3IlRE0j6hTetm3bUFNTg+3bt9+y59LIkSPxySefYNmyZZg9ezZGjhwJT09PTJ48GSNHjtQfN3HiRCiVSkybNg2VlZWIjo5GfHy8/kyWh4dHk8cgImEcOqTd/0n3kXayPvfe2xfz53+JQ4cO/rMe1bQ/bEN0OxKNRqMRuwhLpFKpUVDQ8AWyzUkul8LNzQmFhWUWPU/NPk3L9evXcN99fQAAf/2VADc3N4Meby59NpWl96nRaHD//f1w7dpVLFmyHMOGDbHYXnUs/TXVsYQ+3d2dGryIXPQ1UERkHQ4d0k7fBQYGGxyeyHJIJBL07q2dxtu3b4/I1RA1HgMUETULXYDi7uOkC1D793MdFJkvBigiMjqNRsPr35Fez569IJfLce5cNs6dOyd2OUSNwgBFREZ38eIFXLlyGXK5DSIiIsUuh0Tm7OyMsLAIAMBff/0lcjVEjcMARURGpzv71L17KBwd+akrqt3OYOfOnSJXQtQ4DFBEZHS103dc/0Ra/foNAAAcOHAAZWWlIldDZDgGKCIyKqVSiYMH/wYAxMRw/yfS8vHpjA4dOqK6uhoHDnBXcjI/DFBEZFTHjx/FjRslUChc0LVrd7HLIRMhkUgwYMAgAMCuXTtErobIcAxQRGRUumuexcRoP3lFpDNwoDZA7d27BzU1NSJXQ2QYBigiMirdXj/33ttH5ErI1ISFRcDd3R0lJcVITU0RuxwigzBAEZHRFBTkIz39OACgV6/eIldDpkYmk+G+++4DAPz11y6RqyEyDAMUERlNQoJ28XhgYDA8PVuJXA2ZoiFDhgAAdu/eCV6alcwJAxQRGc2BA7rpO559ovr169cPdnZ2uHz5Ek6ezBS7HKIGY4AiIqNQq9VISNAuIO/Vi+ufqH4ODg76a+Nt3/6HyNUQNRwDFBEZxYkTx1FYWAgnJyeEhoaLXQ6ZsCFDHgSgDVCcxiNzwQBFREaxb99uANqzTzY2NmKWQiauX7/+sLW1xfnzOTh16qTY5RA1CAMUERnF3r27AQB9+/YXtQ4yfU5Ozujdux8ATuOR+WCAIiLB5eXlIjMzHRKJRH/RWKI7GTxY+2m8P//cymk8MgsMUEQkuH37dgMAunULhbu7u5ilkJno25fTeGReGKCISHC66bt+/QaIWwiZDScnZ/3Zyj//3CpyNUR3xwBFRIKqqKhAYmICAK5/IsM88MBDAICtW3+HWq0WuRqiO2OAIiJBJSUdRFVVFVq3bgM/vwCxyyEz0rfvADg5OeHy5UtISzsidjlEd8QARUSC2r1be02zPn36QyKRiFwNmRMHBwcMGnQ/AGDz5t9ErobozhigiEgwKpVKH6D69x8ocjVkjoYOfRgA8Oeff6C6ulrkaohujwGKiARz9GgaCgry4ezcAtHRPcQuh8xQVFQPeHq2QklJMfbv3yt2OUS3xQBFRIL566/tALSLx21sbEWuhsyRTCbDgw8OAwBs2cJpPDJdDFBEJAiNRoNdu3YAAAYOvE/kasic6abx9uz5C0VFhSJXQ1Q/BigiEkRW1ilcvHgBtra26NWrt9jlkBkLCAhEYGAwampqsGXLJrHLIaoXAxQRCUJ39umee+6Fo6OTyNWQOZNIJBg58jEAwIYNP/PSLmSSGKCISBC6ADVgAKfvqOkeemg47OzskJV1GsePHxO7HKJbMEARUZOdP5+DkyczIJPJ0K8fty+gplMoFBg8+AEAwC+//CxyNUS3YoAioibbvv0PAEB0dE+4ubmJXA1ZCt003h9/bEZ5eZnI1RDVxQBFRE3255/aAHX//Q+KXAlZkoiIKHTo0BHl5eXYunWz2OUQ1cEARURNkpOTjZMnMyCXy7l9AQlKIpHgsceeBACsWfMDF5OTSWGAIqIm0Z196tnzHri6cvqOhPXII7Gwt3fAqVMnceRIitjlEOkxQBFRk/z551YA0C/4JRKSQuGCoUOHAwB++ul7kashqsUARUSNdvbsGZw+fQpyuQ2n78honnrqWQDArl3bkZeXK3I1RFoMUETUaH/8oV3YGxPTCwqFi8jVkKXy9w9EZGQ0VCoVfv55tdjlEAFggCKiRtJoNPrLbDz00DCRqyFL9/TTcQCAdetWo6KiQuRqiEwsQC1atAjPPfdcndsyMjIQFxeHsLAw9O/fH/Hx8XXuV6vVmD9/Pvr06YPQ0FCMHj0aOTk5go9BRHUdPZqKixcvwMHBEQMGDBK7HLJw/fsPQrt27VFUVIRff10vdjlEphOgvvvuO8yfP7/ObYWFhRg1ahQ6deqE9evXY8KECZg3bx7Wr6/9y7No0SKsXr0as2bNwpo1ayCRSDBmzBhUV1cLNgYR3WrzZu3Zp0GDBsPBwVHkasjSyeVyPP/8aADA//63AkqlUuSKyNqJHqDy8vLw8ssvY968efDx8alz39q1a2Fra4sZM2bA19cXsbGxePHFF7F06VIAQHV1NZYvX44JEyagX79+CAoKwty5c5GXl4ft27cLNgYR1VVTU4M//9wCQHvNMqLm8PDDI+Hm5o7Lly/pP/1JJBbRA9SJEyfg4uKC3377DaGhoXXuS05ORnR0NORyuf62mJgYZGdnIz8/H5mZmSgrK0NMTIz+foVCgZCQECQlJQk2BhHVlZCwH0VFRWjZ0hM9esTc/QFEArC3t8czz2iXeXz3XTw31iRRye9+iHENHDgQAwfWf/HR3NxcBAQE1LmtVatWAIDLly8jN1f7cdbWrVvfcsyVK1cEG6Ox5HLR82m9ZDJpnd8tFfs0ns2bfwMAPPjgUNjb2zbLc/L1tDyN6fWZZ57F8uVLcepUJv7+ey/69RtgrPIEYy2vqbX0qSN6gLqTyspK2NrWfXO2s7MDAFRVVek/iVHfMcXFxYKN0RhSqQRubk6NfnxzUCgcxC6hWbBPYRUWFmL37l0AgGeeebLZf875eloeQ3p1c3PCiy++gG+++QZLlnyNESOGQiKRGLE64VjLa2otfZp0gLK3t79lIXdVVRUAwNHREfb29gC065h0X+uOcXBwEGyMxlCrNSgpKW/0441JJpNCoXBASUkFVCq12OUYDfs0jh9+WI2qqioEBgahXbvOKCwsM/pzAnw9LVFje3366Rfw3XcrcfToUfzyyyaT/xSotbymltCnQuHQ4DNoJh2gvL29cfXq1Tq36f7s5eWl/xTG1atX0aFDhzrHBAUFCTZGYymVpv0DpFKpTb5GIbBPYW3YoP0E6yOPxEKl0gBo3nUofD0tj6G9KhSuePpp7VTewoXz0bt3f7M4C2Utr6m19GnSE5XR0dFISUmBSqXS35aQkAAfHx94eHggKCgIzs7OSExM1N9fUlKC9PR0REVFCTYGEWllZJzAyZMZsLGx4afvSFTPPz8ajo6OOHkyA7t28RPT1PxMOkDFxsaitLQUU6dORVZWFjZs2ICVK1di7NixALTrluLi4jBnzhzs3LkTmZmZePPNN+Ht7Y3BgwcLNgYRaf3yi/bs08CBg+Hi4ipuMWTVXF3d8OyzLwAAvv56HveFomZn0lN4Hh4eWLZsGWbPno2RI0fC09MTkydPxsiRI/XHTJw4EUqlEtOmTUNlZSWio6MRHx+vXxQuxBhEpP1Ahu7SLY88EityNUTas1A///wTzp49g19+WYfHH39K7JLIikg03EjDKFQqNQoKmmdxraHkcinc3JxQWFhm0fPU7FNYv/32C6ZPfxetW7fB5s07IJU27wlsvp6WR4heV6/+Hp98Mgvu7h747bdtcHZ2FrjKprOW19QS+nR3d2rwInKTnsIjItOxdu1PAIDHHnuy2cMT0e3Exj6JDh06oqAgHytWLBW7HLIifBckors6ceIYjh8/ChsbG4wc+ZjY5RDp2djY4I033gYAfP/9d7h06aLIFZG1YIAiortas+ZHAMDgwQ/A3d1D5GqI6howYBCionqgqqoKn302W+xyyEowQBHRHRUVFWLbNu2Fg5988hmRqyG6lUQiwbvvTodcLseePX/pd8onMiYGKCK6o40bN6CqqgpBQSHo3j1M7HKI6uXr64fnnx8FAPj001moqDDNK0GQ5WCAIqLbqqmpwZo1PwDQnn0yh92eyXqNGTMOrVu3wZUrl/HNNwvFLocsHAMUEd3Wjh3bcOXKZbi7e3DncTJ5Dg6OmDJlGgBg1aoVSEs7InJFZMkYoIioXhqNBitXLgcAPP10HOzs7ESuiOju+vUbiGHDRkCj0WD69HdRWVkpdklkoRigiKheSUmJyMxMh729PXd4JrMyefJ78PT0RE7OOXz99Vdil0MWigGKiOqlO/s0YsSjcHV1E7kaooZTKFzw/vszAQCrVn2Hv//eL3JFZIkYoIjoFidPZuLAgb2QSCSIi3tR7HKIDNa3b3/9mdNp097B9evXRK6ILA0DFBHd4ttvvwYA3H//g2jfvoPI1RA1zn/+MwUBAYEoKMjH1KmToVKpxC6JLAgDFBHVcfr0SezcuR0SiQRjxowTuxyiRrO3t8enn86Fvb0DEhMT8M03C8QuiSwIAxQR1fHtt98AAO67bwj8/PxFroaoaXx8OuP99z8EACxbthh//vmHyBWRpWCAIiK9rKzT2LFjGwDglVd49oksw9ChD+O5514EAEyf/i5OnswUtyCyCAxQRKT3zTfzodFoMGjQYPj7B4pdDpFg/u//JuGee+5FZWUFJk58FXl5uWKXRGaOAYqIAACpqYexc+d2SKVSjB//f2KXQyQouVyOTz/9Ej4+nZGXl4vXXhuDkpISscsiM8YARUTQaDSYO/dzAMCIEbHw9fUTuSIi4SkULvj666Xw9PREVtZpvPnma9ypnBqNAYqI8NdfO5GWdgT29vYYN+51scshMpo2bdpiwYJv4eTkhJSUJPznPxNQVVUldllkhhigiKxcTU015s2bAwB49tkX0KqVl8gVERlXUFAw5s9fDHt7Bxw4sA+TJk1EdXW12GWRmWGAIrJy33+/Ejk55+Du7oEXX3xZ7HKImkVkZDQWLPgG9vb22LdvD9588zVUVJSLXRaZEQYoIit25cplLFmyCADw5ptvo0WLFiJXRNR8oqNjMG/eN/ozUWPHjkZxcZHYZZGZYIAismJffPEJKisrEB4eiWHDRohdDlGz69nzHixZshwKhQuOHk3FqFFxuHTpothlkRlggCKyUvv27cGOHX9CJpPhvfemQyKRiF0SkShCQ8OxfPn38PRshbNnsxAX9zgOH04WuywycQxQRFaopKQY//3v+wCAZ599nptmktXz8/PH99//jODgEBQWFuKVV0Zh7dqfoNFoxC6NTBQDFJEV+uyzj3Dt2lV07NgJ48ZNFLscIpPg5eWF5ct/wODBD0CprMFHH32Id9/9D8rKSsUujUwQAxSRldm9exd+//1XSKVS/Pe/H8PBwUHskohMhoODAz77bC7eemsyZDIZ/vhjC556KhapqYfFLo1MDAMUkRXJy8vDhx9OBQA899wohIaGi1wRkemRSCR4/vnRiI9fBW/v1rhwIQejR8dh/vwvuOkm6TFAEVmJmpoavPPOmygsLERQUAjGj+fUHdGdhIVFYO3aXzFs2Aio1WosX74Ujz/+MBITE8QujUwAAxSRlVi48Cukph6Gs7MzPv/8K9jZ2YldEpHJUygUmDXrU3z55QJ4enri/PkcjB07Cm+//QZycs6JXR6JiAGKyAps3fo7Vq6MBwB8+OFHaN++g8gVEZmXgQMHY8OGLXjqqWchkUiwffsfiI0dhtmzZ+Datatil0ciYIAisnBHjqRg+vR3AQDPPz8agwbdL3JFROapRYsWmDLlfaxZsxG9e/eDUqnEzz+vxvDhQ7BgwVzuYm5lGKCILFhOzjm8+eZrqKmpwcCBg/HGG5PELonI7AUEBGLhwiWIj1+F7t1DUVlZgfj4JRgyZABmz/4Q586dFbtEagYMUEQW6uLFCxg7dhSKiorQtWt3zJ79GaRS/pUnEkpkZDRWrlyNuXO/RmBgMCorK/Dzzz/hkUcewuuvj8XBg39DrVaLXSYZiVzsAohIeJcuXcSYMS8gN/cKfHw6Y968RdzvicgIJBIJBgwYhP79ByI5+RB++GEl9uz5C/v378H+/XvQpk1bDBv2MJ599il4eLQWu1wSkETDfeqNQqVSo6CgTOwy6iWXS+Hm5oTCwjIolZb7vyNr7fPMmSy8/voruHLlMjp27IRly/4HT89WYpfZZNb6eloyS+01J+ccfvppFTZt2oiystp/B7p06YoHHxyOAQMGoW3bdiJWaByW8Hq6uztBJmvYmXoGKCNhgBKfNfb5999/4623JqC09AY6duyEpUtXolUrL7FLFIQ1vp6W3Cdg+b1WVlZiz55d2LJlEw4c2AelUqm/z9fXH3379kffvgPQvXsoZDKZiJUKwxJeTwYoE8AAJT5r6tPV1RGLFi3BZ599DKVSifDwSMyduxCurm5ilycYa3o9raFPwHp6lculUKsr8dNPa/Hnn9uQmnoYKpVKf3+LFgpEREQiKqoHIiOjERgYbJaByhJeTwaoRlCr1Vi4cCF+/vlnlJSUIDIyEh988AE6duzYqPEYoMRnLX2WlhZj5szp2LZtGwDggQeG4sMPP7K4jTKt5fW0lj4B6+n1332WlBTjwIF92Lt3Nw4c2IeSkuI6xzs7O6Nbt1CEhHRFSEgXhIR0hbd3a0gkEpE6aBhLeD0ZoBph4cKF+PHHH/Hxxx/Dy8sLn3/+OS5cuIDff/8dtra2Bo/HACU+S+9To9Fgy5bf8eWXnyI//zpsbGzw1luT8dRTcSb/RtsYlv566lhLn4D19HqnPpVKJTIy0pGSkoSUlEM4ciQFpaWlt4zh5uaGgIAgdO7sB1/f2l8KhUtztXFXlvB6MkAZqLq6GjExMXj77bfx9NNPAwBKSkrQp08ffPTRRxg6dKjBYzJAic+S+0xLO4IFC+YiOfkQAMDX1xeffPIF/P2DRK7MeCz59byZtfQJWE+vhvSpUqlw6lQmjh8/hvT040hPP4EzZ07XWT91M1dXV7Rt2x5t27ZDu3bt0LZte7Rrp/2zl5c3bGxsjNFSvSzh9TQkQHEbAwCZmZkoKytDTEyM/jaFQoGQkBAkJSU1KkAZy/Xr15Cbm4va3Kv9XfdnjUZz09eo9xipVIIWLexRUlIBpVL1r2Nwy3j/Hrchx95aV/3H3nzcrePgrsdq+5HBxkYOudwGcrlc/7WdnS3c3VugvLwGMpkc9vaOcHBwgIODQ7O+qQhFrVYjMTEBK1fG4+DBvwEA9vb2eOWVcXjjjQkoL1ea7ZsWEWnJZDIEB3dBcHAX/W1VVVU4deokzpw5jTNnTuPs2TM4cyYLublXUFRUhKKiIpw4caze8dzc3NCypSdatvSEp2erf373hLt7S7i6usLFxQUKhQtcXFzg6OhkkWevjYUBCkBubi4AoHXrunt0tGrVCleuXBGjpHrl5eVi6ND7bvs/EWo4GxsbODg4wtFRG6oUChe4urrC1dUNLi6u+q9vvs3NTft7cy7u1Gg0OHkyA3v2/IXffvsFly5dBADI5XIMGzYCY8aMQ8eOHWBnZ4fycv5cEFkiOzs7dOvWHd26da9ze1lZKS5evIhLly7i0qULuHjxAi5duoRLly7g0qWLqK6uRmFhIQoLC3H69Km7Po9cLkeLFoo6ocrJyRmOjrr3ytrfHRwc/rndSf91ixbOqKhwQ0WFChKJDLa2trCxsbHYDXwZoABUVFQAwC1rnezs7FBcXFzfQxpELhf2h8bd3Q3h4ZH6f0R1/1Oo/Q+D5F+31/5e91gJZDIp1Oraszj1PabumLc/pr5j71bHrbU2tI66vWg0gFqtQk2NEkplDZRKJZRKJWpqtF+r1SpUV1ejpqYG5eXl+k++1NTUoKam+JbFm3cjlUrh6uoGD4+W8PDwgIdHS7Rs6QF3d486t3l4eMDd3R02Ng1fP6fRaHDt2lWcO3cOmZnpSEtLxeHDKXUuVNqiRQsMG/YwXnhhNNq1aw8A+tPNDT3tbK7Yp+Wxll6N1aeLiwIuLiHo0iXklvvUajWKiopw7dpVXL9+DdeuXcO1a1dx7do1XL9+Dfn511FSUoLiYu0ZrOrqaiiVShQWFqCwsEDQOrUzA7b6QGVrW/v1zbfLZDLI5TLIZHLIZFLIZHJIpVLI5drfb77dzs4Ojz76GPz9AwSt1aC+RHtmE2Jvbw9AuxZK9zWgPW3a2N2bpVIJ3NycBKlPx83NCRs3bhB0TGui0WhQXV2N8vLyOr9KS0tRVFSEwsJCFBQU6P/Hpvu6oKBAf5pcrVajoCAfBQX5OH367s/p6uqKli1bokWLFre8eSiVSlRWVqK0tBT5+fm4fv26PszfzMHBAX369MFDDz2EYcOG3fZnUqGwjp3G2aflsZZem7tPD48W8PVt36BjKyoq9O9zxcXF+vfE0tJSlJWV6d8vy8rKUFZWhoqKCv3XN99XWVmJmpqaOmPr/mNbUVEuaH+lpcVYuHChoGMaggEKtVN3V69eRYcOHfS3X716FUFBjVuUq1ZrUFIi7A+LUGQyKRQKB5SUVEClstw1M7fv0xaOjrZwdHQ1aLyamhoUFRUiP/+6PvAUFBT882ftbfn52tsKCvKhUqn0b0gNr1mGNm3aws/PH926dUdoaBjCwyP1Z0crK9WorCz712Os/fW0LNbSJ2A9vZpLn/b2Cnh7K+Dt3bjH6/osKipDZWUVampq/pkBqEZ1dbV+NkD3Z939ul9qtRoqlRIqVd3f1Wo1lEoV1GoVlEoVVColJBIJhg4djsJCYT+spVA4cBG5IYKCguDs7IzExER9gCopKUF6ejri4uIaPa6pL+hVqdQmX6MQhOpTIpHBza0l3Nxaws/vzseq1WoUFxf/E6jyUVFR/s+bhPbNo6amBnK5HLa2dnB0dISbmxvc3T3QunXreqf9GlI/X0/LYi19AtbTq7X0qdEAMpkNZDIb2Ns7GvW5xPx+MkBBu/YpLi4Oc+bMgbu7O9q2bYvPP/8c3t7eGDx4sNjlkRmSSqVwc3ODm5sbAH+xyyEiIoExQP1j4sSJUCqVmDZtGiorKxEdHY34+PhGbaJJRERElo0B6h8ymQxvv/023n77bbFLISIiIhNn2Z8dJSIiIjICBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGUii0Wg0YhdhiTQaDdRq0/3WymRSqFRqscswOvZpWdin5bGWXtmneZBKJZBIJA06lgGKiIiIyECcwiMiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGYgBioiIiMhADFBEREREBmKAIiIiIjIQAxQRERGRgRigiIiIiAzEAEVERERkIAYoIiIiIgMxQFmYRYsW4bnnnqtzW0ZGBuLi4hAWFob+/fsjPj7+jmOo1WosW7YMQ4YMQVhYGIYOHYqff/7ZmGUbTIg+b1ZdXY3hw4djypQpQpfaJEL1efToUTz77LPo3r07+vXrh/nz50OtVhurbIMJ1eemTZswdOhQhIaG4qGHHsL69euNVXKj1dcrAGRnZyMsLAwXL1686xg//PADBg0ahO7du+PJJ5/EsWPHjFFqkzS1z8rKSnzxxRcYOHAgwsPD8eijj2Lnzp3GKrfRhHg9dQoKCtC7d28sWLBAyBIFIUSfe/bswaOPPopu3brhvvvuww8//GCMUpuPhizGihUrNIGBgZq4uDj9bQUFBZqePXtqpk6dqsnKytKsW7dO061bN826detuO86iRYs00dHRmi1btmhycnI0a9as0XTp0kWzYcOG5mjjroTq82YzZ87UBAQEaN555x1jlW0wofo8e/asJjQ0VDNlyhTN2bNnNVu2bNGEhYVpvv322+Zo466E6vPvv//WhISEaH766SfN+fPnNd9//70mKChIs2vXruZoo0Hq61Wj0WgyMzM1/fr10wQEBGguXLhwxzE2bNigCQ0N1fz222+a06dPa95++21Njx49NPn5+cYs3SBC9Dl16lRN//79NXv37tWcO3dOs3jxYk1QUJDm4MGDxizdIEL0ebPx48drAgICNPPnzxe61CYRos/ExERNcHCw5osvvtDk5ORoVq9erQkODtZs3rzZmKUblVzsAEdNl5eXh6lTpyIlJQU+Pj517lu7di1sbW0xY8YMyOVy+Pr6IicnB0uXLkVsbGy9461evRqjR4/Ggw8+CADo0KED0tLSsG7dOowcOdLo/dyO0H3q7Nu3D1u3boW/v78xy28woftcsmQJ/Pz88NFHH0EikcDHxwenT5/G4cOHm6Od2xK6z127diEwMBBPPfUUAODZZ5/FunXrsH//fgwYMMDo/dzJnXr95ptvsHjxYvj6+uLKlSt3HWvx4sWIi4vD8OHDAQAfffQR7rvvPqxbtw6vvPKKUepvKKH6rKiowMaNG/Hxxx+jT58+AICxY8ciISEB69evR8+ePY3WQ0MI+XrqrFmzBtnZ2fD09BS63EYTss8FCxbgvvvuw1tvvQWg9t+V5ORkPPTQQ0ap39g4hWcBTpw4ARcXF/z2228IDQ2tc19ycjKio6Mhl9dm5ZiYGGRnZyM/P/+WsdRqNT755BM88sgjt9xXXFwseO2GELJPnYKCArz77ruYOXMm3NzcjFa7IYTuc9++fRg2bBgkEon+tokTJ+Kbb74xTgMNJHSfrq6uyMrKwsGDB6HRaJCYmIgzZ87cMrYY7tTrvn378Pnnn+Odd9656zj5+fk4d+4cYmJi9LfJ5XJERUUhKSlJ8LoNJVSfEokEixcv1oenm4n9PgQI16dOdnY25syZg88//xy2trZCl9toQvVZUVGB5ORkfejX+eijjzB9+nRBa25OPANlAQYOHIiBAwfWe19ubi4CAgLq3NaqVSsAwOXLl+Hh4VHnPqlUinvuuafObRcvXsTmzZv1/7MXi5B96kydOhUDBgzAwIEDsWLFCmELbiQh+ywtLcX169fRokULvPfee9i7dy8UCgUeeeQRvPTSS5DJZMZpogGEfj2ff/55HDt2DC+88AJkMhlUKhXGjBmDhx9+WPjiDXSnXn/88UcAQGJi4l3Hyc3NBQC0bt26zu2tWrVCZmZmE6tsOqH6tLe3R+/evevclpaWhoMHD2Lq1KlNL7SJhOoTAGpqavCf//wHL730Erp06SJYjUIQqs+cnByo1WrIZDJMnDgRSUlJaNWqFeLi4vD4448LWnNz4hkoC1dZWXnL/2js7OwAAFVVVXd9/LVr1/DKK6/Aw8MD48aNM0qNQmhMn6tXr8aZM2fw7rvvGr0+oRjaZ2lpKQDg008/RZs2bbB06VK8/PLLWLJkCRYuXGj8ghupMa/nlStXUFRUhOnTp2P9+vWYMmUK/ve//2HDhg1Gr7e5VFRUAEC935uG/H02V2fPnsVrr72Grl274sknnxS7HEHNnz8fdnZ2GDNmjNilGI3ufWj69OmIiorC8uXLMXLkSHz44YdYt26dyNU1Hs9AWTh7e3tUV1fXuU33Ruvo6HjHx549exavvPIKampqsGrVKri4uBitzqYytM+zZ8/i888/R3x8/F2/D6bE0D5tbGwAAL169cLrr78OAAgODkZBQQG+/vprTJw4sc7UnqlozM/txIkTMXz4cDz77LMAtH0WFxfj008/xSOPPAKp1Pz/v2hvbw8A9X5vHBwcxCjJ6A4fPozx48fD09MT3377rUlNcTXVoUOH8NNPP+GXX34R9WywselesxEjRuD5558HoP37mZOTgxUrVuCxxx4Ts7xGM/93FLojb29vXL16tc5tuj97eXnd9nEpKSl46qmnYGdnh9WrV6NDhw5GrbOpDO1zy5YtKCsrw6hRoxAeHo7w8HAkJydj06ZNCA8Px+XLl5ulbkMZ2qerqyvs7OxumQ7z9/dHeXk5CgoKjFdsExjaZ0FBAbKzs9GtW7c6t4eFhaGoqAhFRUVGq7U5tWnTBgDq/d54e3uLUZJRbd++HS+++CJ8fX3xww8/wN3dXeySBPXLL7+gvLwcDz/8sP596PLly1iyZAnCw8PFLk8wur+z/34f8vPzM2ibB1PDAGXhoqOjkZKSApVKpb8tISEBPj4+t10XdPToUbz88svw9/fHjz/+eMt6C1NkaJ9xcXHYtm0bNm7cqP/VtWtXDBw4EBs3btSvtzE1hvYpk8kQERGBtLS0OrefPHkSCoUCrq6uxi65UQzt09XVFQ4ODjh58mSd20+dOgWFQmEx//C6u7vDx8enzroTpVKJ5ORkREVFiViZ8Hbt2oU33ngD/fv3x4oVK6BQKMQuSXCTJk3C1q1b67wPtWrVCk899RQ2btwodnmC8fLy0n/q7manTp0y+f+c3wkDlIWLjY1FaWkppk6diqysLGzYsAErV67E2LFj9cfcuHFDfyZCqVRi0qRJ8PDwwCeffILq6mpcu3YN165dM9mzFYDhfbq6uqJjx451ftnb28PJyQkdO3as8+kvU2JonwAwbtw47Nu3DwsWLMD58+exdetWfPvtt/rF1qbI0D6lUileeOEFfPPNN9i4cSMuXLiAjRs3YvHixXUeY47+fQZt9OjRWLFiBX755RdkZWXhvffeQ2VlpdlOg+jc3GdxcTHeeecddOnSBVOnTkVxcbH+fcjczybe3KeHh8ct70NyuRwuLi7o2LGjuIU20b9/bl9//XWsWbMGP/zwAy5cuIA1a9Zg/fr1eOmll8QrsolM818JEoyHhweWLVuG2bNnY+TIkfD09MTkyZPr7Oc0e/ZsHDp0CLt27cLRo0eRk5MDALjvvvvqjNW2bVvs2rWrWetvKEP7NFeN6bNnz55YsmQJ5s6diyVLlsDT0xOvvPIKXn75ZbHauKvG9Dlx4kS4urpiyZIluHLlCtq1a4e3335b9E+PNtWECRMAAKtWrQIAPPHEE7hx4wa++uorFBUVoWvXrlixYoXZn2W7uc+9e/eipKQEaWlp6Nu3b53jevToof9emKN/v56W6t99jhgxAoB2X7qPP/4Ybdu2xQcffFDvljnmQqLRaDRiF0FERERkTjiFR0RERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUEZkN7rpCRKaCAYqIzMLOnTvxzjvv6P+cmJiIwMDAOpc1aU5TpkxBYGAgAgMDMWnSpCaNFRgYiAULFjT4+Kefflr/3IY8joiEw53IicgsfPfdd3X+3KVLF6xZswZ+fn7iFATA09MTCxcubPIu4GvWrDHoYsAzZ85EaWkpnnzyySY9LxE1HgMUEZklZ2dnhIWFiVqDra2tIDUYOoaYoZGItDiFR0Qm77nnnsOhQ4dw6NAh/bTdv6fwFixYgAceeAA7duzAsGHD0K1bN4wYMQJHjhxBamoqHn/8cXTv3h3Dhg1DQkJCnfFPnTqFsWPHIiIiAhEREXjttddw4cIFg+sMDAzETz/9hClTpiAyMhI9evTArFmzUFlZiU8//RQxMTHo2bMnpk6diqqqqjqP003F6fpKSEjA6NGjERoail69euHTTz+FUqlswneRiITEAEVEJu+DDz5ASEgIQkJCsGbNGnTp0qXe43Jzc/Hxxx/j1VdfxVdffYXi4mJMnDgRb731Fp544gl8+eWXUKvVePPNN1FZWQkAyM7OxlNPPYX8/Hx88sknmD17Ni5cuICnn34a+fn5Btc6Z84c2NraYuHChRgxYgRWrVqFRx55BFeuXMHnn3+Op556CuvWrbvrxWQnTZqEyMhILF68GMOHD8fy5cuxbt06g+shIuPgFB4RmTw/Pz84OzsDuPN0V0VFBT744AP07dsXAHDmzBl88cUXmD17Nh577DEAgEqlwsSJE5GdnY3g4GAsXLgQ9vb2+O677/TPcc899+C+++7DsmXL6ixcbwhfX1/897//BQBER0dj3bp1qKmpwZw5cyCXy9GnTx/s2rULhw8fvuM4jz/+OF577TV9PTt27MDu3bvx1FNPGVQPERkHAxQRWZSIiAj91y1btgRQN3S5uroCAEpKSgAABw8eRM+ePWFvb6+fInN2dkZUVBT+/vtvg58/PDxc/7VcLoebmxu6du0Kubz27dbV1RU3btxo8DgA4O3tjfLycoPrISLjYIAiIouiO4t0M3t7+9seX1RUhC1btmDLli233NeYT9fV9/wODg4Gj/PvmqVSKffBIjIhDFBEZNVatGiBXr16YdSoUbfcd/NZIyKim/HdgYjMglQqhVqtFnzcHj16ICsrC8HBwfrApNFoMGnSJHTs2BHBwcGCPycRmT9+Co+IzIJCoUB2djYSEhJQXFws2Ljjx4/H+fPnMXbsWOzYsQP79u3DhAkTsHnzZgQFBQn2PERkWRigiMgsPPvss7CxscGYMWOwd+9ewcYNCgrCDz/8AIlEgsmTJ2PixIm4du0avv76a9x///2CPQ8RWRaJhqsSiYgMNmXKFBw6dAi7du0SrYbAwEC8/vrrmDBhgmg1EFkrroEiImqk6upqpKamwt3dHR06dGi2583KykJpaWmzPR8R3YpTeEREjXTt2jU8+eSTmD9/frM+7/vvv88LCROJjFN4RERERAbiGSgiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiID/T9oZFtulprtswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd\n", + "\n", + "# Load an example chromatogram and correct the baseline\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "chrom.correct_baseline()\n", + "\n", + "# Assign the peak windows with a modified buffer and prominence filter\n", + "windows = chrom._assign_windows(buffer=50, prominence=0.01)\n", + "\n", + "# Get the first peak window and plot\n", + "first_peak = windows[(windows['window_type']=='peak') & (windows['window_id']==1)]\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To determine the properties of this peak (including its area which is proportional\n", + "to concentration), we will find the best-fit parameters using a non-linear least \n", + "squares [trust region](https://en.wikipedia.org/wiki/Trust_region) fitting method\n", + "as is implemented in `scipy.optimize.curve_fit` which is a robust estimation \n", + "algorithm for bounded problems. \n", + "\n", + "To do so, we must provide i) initial guesses for the parameters $[A, \\tau, \\sigma, \\alpha]$\n", + "and ii) reasonable bounds on their values. \n", + "\n", + "### Default settings for initial guesses of parameters\n", + "In `hplc-py`, initial guesses are set given the properties of the observed \n", + "chromatogram. These default parameter guesses are:\n", + "\n", + "* $A_0 \\rightarrow$ the observed value of the chromatogram at the location of the maxima\n", + "* $\\tau_0 \\rightarrow$ the observed time-location of the maxima \n", + "* $\\sigma_0 \\rightarrow$ one-half of the observed peak width at its half-maximal value\n", + "* $\\alpha_0 \\rightarrow$ 0, which guesses that the peak is approximately Gaussian.\n", + "\n", + "These values are determined using peak measurements returned by `scipy.signal.find_peaks`\n", + "and `scipy.signal.peak_widths`. These properties are accessible via the \n", + "chromatogram attribute `.window_props` " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[65992.999952423, 10.98, 0.16630057317687066, 0]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the initial guesses from the window properties\n", + "props = chrom.window_props[1]\n", + "p0 = [props['amplitude'][0],\n", + " props['location'][0],\n", + " props['width'][0] / 2, \n", + " 0]\n", + "p0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default bounds for parameters\n", + "By default, `hplc-py` applies broad, permissive bounds on these parameters given \n", + "information of the chromatogram. The default bounds given to each parameter are \n", + "\n", + "* $A \\in [0.1 \\times A_0, 10 \\times A_0]$ where $A_0$ is the initial guess for the amplitude.\n", + "* $\\tau \\in [t_{min}, t_{max}]$ where $t_{min}$ and $t_{max}$ correspond to the minimum and maximum times in the peak window.\n", + "* $\\sigma_{bounds} \\in [dt, \\frac{t_{max} - t_{min}}{2}]$ where $dt$ corresponds to the time sampling interval of the chromatogram.\n", + "* $\\alpha \\in (-\\inf, +\\inf)$.\n", + "\n", + "These bounds can be overridden for all peak inferences by providing a dictionary \n", + "of their values, as is specified in the documentation for `hplc.quant.Chromatogram.fit_peaks`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Give initial bounds for the parameters (lower, upper)\n", + "bounds = [[], []]\n", + "bounds[0] = [p0[0] * 0.1, first_peak['time_min'].min(), chrom._dt, -np.inf]\n", + "bounds[1] = [p0[0] * 10, first_peak['time_min'].max(), 0.5 * (first_peak['time_min'].max() - first_peak['time_min'].min()), np.inf]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optimization of parameters\n", + "Given initial guesses and parameter bounds, the best-fit parameters are estimated \n", + "by calling `scipy.optimize.curve_fit` on the observed data in the peak widow. The \n", + "cost function is defined as a method `_fit_skewnorms` of a `Chromatogram`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal parameters (amplitude, location, scale, skew) : [2.33773945e+04 1.09020036e+01 1.59217385e-01 7.03685471e-01]\n" + ] + } + ], + "source": [ + "import scipy.optimize\n", + "\n", + "# Perform the fit\n", + "param_opt, _ = scipy.optimize.curve_fit(chrom._fit_skewnorms, first_peak['time_min'],\n", + " first_peak['intensity_mV_corrected'],\n", + " p0=p0, bounds=bounds)\n", + "print(f'Optimal parameters (amplitude, location, scale, skew) : {param_opt}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the optimal parameters estimated, we can compare the inferred signal to \n", + "the observed chromatogram " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0JUlEQVR4nO3dd3wU1frH8c/sbnoIhAAJRXoJRXoUFYSLYm+IWFGsFxv8rFwVC17FckW9ICIiiFgQEBBF5CqCBaSGDgm9lwRIQkJ6sju/P5YsRIrZsGGSzff9euWVzezs2eckk8mTc545Y5imaSIiIiIiJWazOgARERGRikYJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeMlhdQD+yjRNXK7yu8i7zWaU6/h8Rf30L+qn/6ksfVU/KwabzcAwjBLtqwSqjLhcJqmpWVaHcUoOh43IyDAyMrIpLHRZHU6ZUT/9i/rpfypLX9XPiqN69TDs9pIlUJrCExEREfGSEigRERERLymBEhEREfGSEigRERERL6mIXEREyi2Xy4XTWWh1GGfF5TLIzbWTn5+H01lxr1D7OxWhn3a7A5vNN2NHSqBERKTcMU2TjIxUcnIyrQ7FJw4ftuFyVcwr07xREfoZEhJORET1Ei9XcDpKoEREpNwpSp7CwyMJDAw66z92VrPbjXI7KuNL5bmfpmmSn59HZmYaAFWrRp1Ve0qgRESkXHG5nJ7kKTw8wupwfMLhsFXYtZG8Ud77GRgYBEBmZhpVqkSe1XSeishFRKRccTqdwPE/diK+VHRcnW1tnRIoEREplyr6tJ2UT746rpRAiYiIiHhJCZSIiIiIl5RAiYiIlANdu3bmxx9nlfr1Bw7sp2vXzqxcGe/DqErmp59+5JZbrj/n72slXYUnInKOHTiwn5SUFJo1a05QkAqlxe277/5HeHi41WF4bd68n3nrrdeIiqphdSjnlBIoEZFzYPv+wwx550O2rFpA4ZG9ANjsATRrEcs9d93NNddcr6LpSq6iJSBZWZm8++7bzJv3M40aNSEz86jVIZ1TmsITESlDpglDJv7BzbfcSOKvX7uTJ5sDQiJxOQvYlLCOIUMG89RTA0lNTbE63HLNNE1ycrIt+zBN7xaIvP/+u/jvf9/xfL1gwW907dqZX375ybNt9OgRPProg0DxKbxhw4by2msv8eGHI7juul5cdtklPP/806SkHPa8dvv2rQwa9DCXX96V22+/mRUrlp8Uw5w5P9C//x307HkJt9xyPZ9//ikulwuXy8V11/Vi8uQvPftOnfo1Xbt2Zv36dZ5tL730HK+99tIp+7d//34yMtIZN+5zunXr7tX3xh9oBEpEpIy4TLj7pdFs+GGke0PNlti6D8GodwEEhELGXswN03AtGsGvv/7C2nVr+PKLr4mMbGlt4OWQaZrce++drFmzyrIY2rfvyIQJX5V4pPCSSy5l/vy5nq/j45dhGAYrVsRz+eVXArBo0Z9cc82pa4fmz/+FXr2uYtSosSQnJ/Hqqy8yduxonn/+ZTIzM/m//3uUNm3OZ+zYiaSkHOLtt4cVe/3UqZMYM2YUjz32BBdc0IXExATee+9t0tPTGTjwSS666BKWL1/G7bf3KxbfypXLadPmfAoLC1m+fAn/+teLp4yvWbPmDB/uPrb/+OO3En1P/IlGoEREyoDTBfe/M8OTPBlxD2O/eza2xv/ACAzDMAyMqudhu/hJ7PfMhqhmpBw+xCOPPERaWprF0ZdPFW2K85JLLmXXrp0kJycB7gTl0kt7sGqVu8j7wIH97Ny5nUsv7XHK14eFhTF48BAaNmzEhRdexFVXXcPatasB+OWXn8jNzWXIkFdp3LgJcXFdGDToac9rTdPkyy8ncvPNt9Knz62cd159rrjiKh58cADTp08hMzOTSy7pxpo1K8nPz6ewsJDVq1dy6aU9PEXoa9euJj8/nwsvvLjsvkkVmEagRETKwKtfL2L11+6pD9slT2O75KnT7mvUao391sk4v7yenTt38OCDDzJ69DhsNp2iixiGwYQJX5Gbm2NZDMHBIV4lcbGxLalZsxbLly8lIOAS9u7dw8svv84DD/QjOTmJRYsW0rBhY+rVO++Ur69b9zwcjuPHQFhYOIWF7tWzt2/fynnnnVes6Pz889t6Hh85kkZqagpt27Yv1ma7dh0pLCxk166dXHDBRbhcLtatW0NAQABBQUHcdFMfnnvuaQoKCli8+E86dYojNDS0xH2uTPTbKSLiYwsTk/h+xCAwnRht+mJc/OTfvsaoEoP9ls9xftWbJUuW8N//Duepp547B9FWHIZhEBJSsf6YX3xxV5YvX0JAgIPY2Fa0aBFLTExtVq6MZ/HihWesHQoICDhp24l1WH+tybLbHSc999d8z+Vy36fO4XAQGhpK+/adWLZsCUFBQXTs2Jm2bTtgmrBhwzoWL17Irbfe6XWfKwtN4YmI+FBOgcngoa9DfibU6YTtyv+UeNTCqNkSx/WjAPjyy89JTNxQlqHKOdC166WsWLGcZcuW0LFjZwA6dYpj8eI/WblyRamLr5s3b8Hu3bs4cuSIZ9vGjQmex5GR1YmMrM6aNauLvW7NmlUEBARQt249T3zLly9h5cp4OnWKIygoiPPPb8sPP3zHrl07ueSSbqWKrzJQAiUi4kPPT5hP9qZfwBaA/ep3MeyB3jXQ5HJssTfgcrl47bVXPDfWlYqpY8c48vLy+PXXeXTqFAdAp04X8Ntv84iIiKBly9alaveyy66kevUohg59gS1bNrNq1QpGjnzX87xhGNxxRz9mzJjKjBnfsHfvHn7++X98+ulYbriht2fq75JLurF16xbWr197Qnxx/PzzHFq3Pr/CLa1wLimBEhHxkS1JR/lt4qsAGF0ex4hqVqp2jJ5DIbAKCQnr+eabr30Wn5x7QUFBdO58IQDnn98OgM6d4zBNk65dLy11YXxISAgjR44hICCARx99gNdee5m77upfbJ8777yHRx4ZxNSpk+jXry/jxn3EXXf1L1ZsHh0dQ5MmTYmKquEZlerc+QJcLhddu15aqtgqC8P0dmELKRGn00VqapbVYZySw2EjMjKMtLQsCgtdVodTZtRP/1IR+tnnmXfZ9ssnENkY+31zMRzBpW9s1WcUzh1CeHgVfvzRPVrhb073My0oyCcl5QBRUbUJCPByBK+ccjhs5fa49aWK0M8zHV/Vq4dht5dsbEkjUCIiPrByRyrbfvsCAFvPoWeXPAFmu7shqjmZmUeZMmWSDyIUEV9SAiUi4gNDP5gAhblQuwNG455n3Z5hs2O/eCAAX331GdnZ5XNEW6SyUgIlInKW4rensvuPY6NPlzzluwUfW9wA1Rpy5MgRvvlmsm/aFBGfUAIlInKW/vPRCaNPjf7hs3YNmwPHRe5RqM8/n0Bubq7P2haRs6MESkTkLOxLOcrm374CwHbxkz6/3YjZqg9E1CUl5TA//PCdT9sWkdJTAiUichaGfz4LCrKhRguf1D79lWEPwN7pAQCmT5/i8/ZFpHSUQImIlFKh0+SP2e4r5Gwd7im7m9227gv2QBITE0hIWF827yEiXlECJSJSShP+F4/z8FYICMNo1afM3scIrY7R/BoApk3TKJRIeaCbCYuIlNKUqe5Vwo3WfTCCqpTpe9na3YUzcSZz5szm6af/RVhYeJm+X3mVlGVwJK+MRvr+RrUgk5gwrT0tbkqgRERKYfOegxxe+xPgnr4rc+ddBNWbkJO6jTlzZnPLLbeV/XuWM0lZBjfPCiPfZU0CFWgzmXF9lldJVNeunXnhhVe44YYbS7T/0qWLeffdtzh06CB9+tzG448/UcpofWP8+I+ZM+cHpk2bVarXF/X/mmuu93Fkp3bgwH769r2BkSPHeG7eXFaUQImIlMKHX30PphPqXYBRs2WZv59hGNjb3YXz13/z7bfTKmUCdSTPsCx5Ash3uUe/vEmgvvvuf54b95bEmDEfUKdOXUaM+IjQ0NDShFmueNv/ikQ1UCIiXjJNkyXz3UsK2Nqcw0SmVR8wbGzYsI49e3afu/eVUouKqkFQUMlv65OZmcn557ejdu06VK1arewCO0e87X9FogRKRMRLv67YRN7BLWAPwmhxzTl7XyOsBkaDrgD89NOP5+x9pfS6du3Mjz+6p7+GDRvKa6+9xIcfjuC663px2WWX8PzzT5OSctiz74ED+5kw4RPPY9M0+eqrifTteyOXXXYJ9957Jz//PMfT/sqV8XTt2pmvvprINddcxv3338W+fXvp2rUzn302jhtuuJJbbrmeo0ePkpmZydtvD+O66y7nyiu7M2jQw2zcmFAs3u++m8Ftt91Ez57u2I4ePXrG/u3Zs5unnhrIlVd2p1evS/m//3uUbdu2nrL/AFOnfk3fvjfQs+cl/N//PcqECZ9wyy3u6b0DB/bTtWtn5s//hYce6k/PnhfTt++NxdY/y8/PZ8yYUdx664306NGFa665jFdeeYH09COl+wGdBSVQIiJemjDtBwCMppdjBEWc0/e2xbr/2Jz4R1QqjvnzfyE9/QijRo3ljTeGs2bNasaOHQ24p7tq1Yrm9tv7eR6PHTuaGTO+4YknnuHzz6fQt+/tDB/+FjNmfFOs3UWLFvLxxxN4/vmXsdncf9p//nkOI0Z8xOuvv014eDjPPjuIvXt38/bb/2Xs2Im0bn0+jzzyAJs3bwTgl19+4r333ubWW+/ks88m0br1+cyYMfWM/XnllReoUaMG48Z9wdixn2Gz2XnhhWdOue/06VP5+ONR9O//AJ99NomOHTsxYcInJ+03atT79O9/PxMmTKJz5zj+859h7N+/D4DRo0cyd+7/eO65l5g8+VtefPFV4uOXMnHieO9+ED6gGigRES8UFjrZsPB7gDJduuC0ml0NP7/A5s2b2L59G40bNzn3MUiphYWFMXjwEBwOBw0bNuKqq65h8eI/Afd0l81mIyQkhKioGuTk5DBlyiReeulVLrmkGwB169YjKekAkyZ9zs039/W0e8cd/TjvvPqAeyQHoHfvvjRq1BiA+PhlrFu3llmz5hIZGQnAgAGPsW7dGr75ZjJDhgzlm28mc/nlV9Cnz60A9Ot3Lxs2rGPLls2n7c/+/Xu54IIu1K5dB4fDwYsvvsK2bdtxuVyeRK7I119/Qd++d3Ddde6C+v793cnbpk0bi+13++130bVrdwAee+wJZs2ayYYN66hTpy4tW7aie/d/0KFDJwBiYmpzwQUXFRv1OleUQImIeGH6/GW4Mg9CcDWMxr67711JGSGRGA0vxdw+j59++pFHHhl4zmOQ0qtb9zwcjuN/esPCwiksLDzlvjt3bic/P4/XX3+FN9541bPd6XSSn59PXt7xeyPWq1f/pNfXq3ee53HRKNOtt95QbB93O3kAbN++lcsvv7LY823atD1jAvXQQ48ycuS7zJw5jY4d47j44ovp3v3yk5Kn9PQjJCUdoE2b84ttb9euw0kJVIMGjTyPiwrQi75HV155DfHxy/j44w/Zs2c3O3fuYPfunbRt2/60MZaVcpFAzZw5k7Fjx7Jnzx7q16/P448/ztVXXw1AYmIiw4YNY/369VSrVo27776bBx54wPNal8vFqFGj+Oabb8jIyKBTp0688sorNGjQwLOPL9oQEQGY/v2x6bsW12HYAy2JwdbqBpzHEqiHH3687FZAF58LCAg4aZtpnvqqPpfLvf3f/36LBg0anqKt48dfUFDQSc+fuM3lchEWFsb48V+eISbjpFhOTPZOpU+fW+nZ83IWL/6TFSuWMXr0KD75ZAwTJkyievUoz352u6NYn87kTN+j4cPfYt68n7n66mu5+OKu9O9/P19//SUHDyb/bbu+ZnkN1HfffccLL7zAbbfdxg8//MA111zDU089xapVq0hLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/uef3o0aOZPHkyr7/+OlOmTMEwDB566CHy8/MBfNKGiAhAQUE+W+N/AcDWqrd1gTS5EuxB7Ny5g82bN1kXh5SpBg0aYrfbSUo6QL1653k+Fi/+k6+//uKkUZ4zady4KVlZWeTn5xdr66uvJrJw4e8ANGvWnLVrVxd7XWJiwilac0tNTeG9996moKCAa665npdeeo0vv5xCSkoKq1atLLZveHg4MTG12bBhXbHtGzaU/NZE6elHmDlzGs888xyDBj3NNddcT7NmLdi5c0eJ2/AlSxMo0zQZMWIE/fv3p3///jRo0IDHHnuMiy++mGXLljF16lQCAwMZOnQoTZo0oU+fPtx777188om76Cw/P59PP/2UgQMH0r17d2JjY3n//fdJTk5m7ty5AD5pQ0QE4Iff43HlpkNoDagbZ1kcRlAVjEbuGpHff59vWRxStsLDw7nppj588slH/O9/s9m3by9z5vzARx+NLDa6UxIXXngRzZo15+WXn2fFiuXs3buHDz8cwezZ33umzPr1u5c//viVSZM+Z8+e3UybNvmMx1dERFUWLVrI228PY8uWTezbt5cZM74hICCA2NiT10br168/06dPYc6cH9i7dw9TpnzFr7/+UuIR1LCwcMLDw1mw4Hf27t3Dtm1befvtYWzevNGSAQ9LE6jt27ezb98+rr+++Aql48ePZ8CAAcTHxxMXF1dsCLFLly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fDmAT9oQEQGYMcc9+mQ0uxLDZrc0FnvTywH4/fdfLY1DytbAgU9x++13MX78x/Tr15cJEz7hvvse4v77/+lVO3a7nfffH02rVq155ZXn6d//dlasWM6wYf+hc+cLALj44q688srrzJ79Pf37387vv//K7bf3O22bDoeD4cNHYrMZ/N//Pcrdd99GfPwy/vOf/1K3br2T9r/pplu45577GTt2NPfccxtLly7h6quv+9tpwhPf77XX3mLHjm3cc8/tPP30QPLychkw4DF27NhOTk6OV9+Ts2VpDdTOnTsByM7O5oEHHiAhIYF69erxyCOP0LNnT5KSkmjevHmx19SqVQuA/fv3k5SUBEDt2rVP2ufAgQMAPmmjtBwOy2dIT8lutxX77K/UT/9idT9dLheJy9yj0kazqy2J4URmY3cCtWHDOtLSDlOzZi2LI/Le6X6mrtOsNl4tyCTQZlp6K5dqQd7dC2/hwniKBlhefHEofy13euCBATzwwADP13+9ZYrD4eDeex/k3nsfPGX7HTt2ZuHC+GLbateuc9I2gGrVqvHCC6+cMd7LLruCyy67oti2AQMeO+3+DRs24p13RgBgGO6fpdPp8vTzxDiWLFnElVdewz333O/Z9vbbw6hVK/qMcZ+4LS6uCxMnTj5pn7vvvg+AkJCQU7ZxKna7cVZ/py1NoDIzMwH417/+xeOPP84zzzzDTz/9xKOPPsqECRPIzc0lMLB4kWZRUVxeXp4n2zzVPunp6QA+aaM0bDaDyMiwUr/+XIiICLE6hHNC/fQvVvVzzu/LKTx6CAKrYDS4xJIYTmSER0NMe0haTXz8Yu68806rQyq1v/5Mc3PtHD5sO+kPXL2q8N1NOZbeTLh2uAGU7v39/Z+cIqfr588/z2Hnzu0MHvw8UVE1WLVqJT//PIdnn33unA44uFwGNpuNqlVDCQ4u/SrpliZQRZX2DzzwAL17uwsyW7ZsSUJCAhMmTCA4OPikec2iyy1DQ493PD8/v9g3IS8vj5AQ9y+kL9ooDZfLJCMju9SvL0t2u42IiBAyMnJwOl1Wh1Nm1E//YnU/x02eDYDR5HLLrr77K3vTy3EmrebHH//H1VeX7Ga15cnpfqb5+Xm4XC6cTpPCwuI/65rB7g+rnGbFgTM61ciMP/q7fj7xxDN88MH7DB78NJmZR6lTpx6DBj3FVVddd9LPuSw5nSYul4v09GxycpzFnouICClxomtpAhUTEwNw0hRb06ZN+e2336hbty4HDx4s9lzR19HR0Z51IQ4ePEj9+vWL7RMbG+t5j7Nto7TO5QFRGk6nq9zH6Avqp3+xop+mabJ60c8AGM2tn77zaNILFg5n8eI/yczMPqv/pq3015+p0+lfWUZRMuHPyRP8fT8jIqoyZMjQcxbP3zlVgu4NS8cTW7VqRVhYGGvWrCm2ffPmzdSvX5+4uDhWrFiB03k8Q1y8eDGNGjUiKiqK2NhYwsPDWbp0qef5jIwMEhIS6Ny5M4BP2hCRym3Dps3kHt4FjmCMRud+8czTqtUaqtQhNzeXZcuWWB2NSKViaQIVHBzMgw8+yIcffsgPP/zA7t27+eijj/jzzz+577776NOnD5mZmQwZMoStW7cyY8YMJk6cyIAB7oK7wMBA+vXrx/Dhw5k3bx4bN27kySefJCYmhl69egH4pA0Rqdym/bQAAKP+JRiBoRZHc5xhGNiOXY33xx+6Gk/kXLJ8JfJHH32UkJAQz9pLTZo04YMPPuDCCy8EYNy4cQwbNozevXtTs2ZNBg8e7KmXAhg0aBCFhYW8+OKL5ObmEhcXx/jx4z1F4VFRUWfdhohUbov+/AMAo0lPiyM5hUY9YdXnnvup+ZPTrdAtcjZ8dVwZpo7QMuF0ukhNzbI6jFNyOGxERoaRlpbl1zUz6qd/saqfGRkZXNrjInA5sf9zMUa1k+85ZiUzPwvnyNbgKmDWrJ89N5StCE73M3W5nBw8uJfw8EjCwyMsjNB3HA6bX/9+FqkI/czMzCAzM41atc47aTX36tXDKkYRuYhIeffjb4vB5YTqTctd8gRgBIZBnY6wdylLliyqUAnU6dhsdkJCwsnMTAMgMDCowt/vz+Uy/K44/lTKcz9N0yQ/P4/MzDRCQsK9uhXOqSiBEhE5gx/nH6t/alwOp++OsTe6FOfepSxe/Cd9+95udTg+ERFRHcCTRFV0NpsNl6t8j8z4QkXoZ0hIuOf4OhtKoERETsPlcpG4wn2j1XJZ/1SkwaWw4B2WLVtCYWFhiW+NUZ4ZhkHVqlFUqRKJ01mKxZfKEbvdoGrVUNLTs8vt6IwvVIR+2u2Osx55KlLxf8tERMrIhoRECo4egoBQjLoXWB3O6cW0g6CqZGamk5CwnrZt21sdkc/YbDZstop9QY/DYSM4OJicHGe5rw86G5Wln0Uqx7ryIiKl8O0vCwEwGnTDcARZHM3pGTY7RoOLAff9xkSk7CmBEhE5jcWLjyVQjXpYGkdJGA27A/jlcgYi5ZESKBGRU8jOzuLAllUAGI26WxzN3zMaXgrA2rVryMrKtDgaEf+nBEpE5BQWL4sHVyFUrY9RrYHV4fwto1oDqHoeTmcha9assjocEb+nBEpE5BRm/+a+t5zRoJvFkZSc7bwuAMTHL7M4EhH/pwRKROQUVsW7i7GNhl0tjsQL510EQHz8cosDEfF/SqBERP7i8OFDpO3dBIBRv+IkUMaxBGrDhvXk5GRbHI2If1MCJSLyF78tck/fUasNRujZr1h8zlQ9D6rUweksZPVq1UGJlCUlUCIif/HzH0uB41e2VRSGYWCr7x6FWrFC03giZUkJlIjICUzTZP3KovqnilNA7nGeEiiRc0EJlIjICfbs2U126n6wB2LUjbM6HK8Zx67EW7duLTk5ORZHI+K/lECJiJzgzyXHlgCo3REjIMTaYEqjWkMIj6GwsIB169ZYHY2I31ICJSJygvmL3FNfxrFaoorGXQel9aBEypoSKBGRY0zTZMMad9JRNBVWIdW9EEArkouUISVQIiLH7N27h+y0JHf9U51OVodTakY9d+3WmrVrKCwstDgaEf+kBEpE5JjFS4vqnzpUzPqnIjVaQFAEuTnZbNmyyepoRPySEigRkWPmFdU/VeTpO8AwbBh1OgKwevVKi6MR8U9KoEREOFb/tPpY/VMFLSA/UdESDFqRXKRsKIESEQH27dtLZuoBsAVg1OlsdThn71gCtXKVRqBEyoISKBERYOmyY/VPdSp4/dMxRu0OYNg5dDCJAwf2Wx2OiN9RAiUiAvyxdAUARr0LLY7EN4zAUIzoNoDqoETKghIoERFg7Vp3klERb99yWnXdU5FKoER8TwmUiFR6qakppB3YCYBRt+Ku//RXhqcOSoXkIr6mBEpEKj3PlWo1WmAEV7M0Fl8qSqC2bt1ETk62xdGI+BclUCJS6f25vGj6zg+uvjuBUSUGqtTGdLlITEywOhwRv6IESkQqveUr3SNQflX/dIxRuz0A69atsTYQET+jBEpEKrW8vDz2btsA+GsC1QGAtevWWRyJiH9RAiUilVpCwnpchfkQVhOqNbA6HN+LaQ/AGiVQIj6lBEpEKrVlK44vX2AYhsXR+J4R0w4wOJy8j5SUw1aHI+I3lECJSKW2KL6o/sm/CsiLGEHhGDWaA7B+/VqLoxHxH0qgRKTSMk2TTev9t4Dcw1NIrgRKxFeUQIlIpbVz5w5yM9PAEQTHbnvij4oKyVesUR2UiK8ogRKRSmvVqmO3OInpgGEPtDaYMlSUQCUmrMPlclkcjYh/UAIlIpXW4qIC8nr+Wf/kUaMFOILIzcpg9+6dVkcj4heUQIlIpbVqVSWofwIMewBEtwVg/XpN44n4guUJ1L59+2jRosVJH9988w0AiYmJ9OvXj/bt29OjRw/Gjx9f7PUul4uRI0fSrVs32rVrx/3338+uXbuK7eOLNkTEv6SmpnJ4/w4AjDr+cwPh0ylakXz1WhWSi/iC5QnUpk2bCAoKYsGCBSxcuNDzcf3115OWlsZ9991Hw4YNmT59OgMHDmTEiBFMnz7d8/rRo0czefJkXn/9daZMmYJhGDz00EPk5+cD+KQNEfE/a9Ycu4FwVHOMkEhrgzkHiuqg4ldrBErEFxxWB7B582YaNWpErVq1Tnpu4sSJBAYGMnToUBwOB02aNGHXrl188skn9OnTh/z8fD799FOeffZZunfvDsD7779Pt27dmDt3Ltdeey1Tp0496zZExP+sWHV8Ac3KoCiB2r0tkfz8fAID/bdoXuRcKBcjUE2bNj3lc/Hx8cTFxeFwHM/zunTpwo4dO0hJSWHjxo1kZWXRpUsXz/MRERG0atWK5cuX+6wNEfE/S1ccq3/y9wLyIlXPg5DquJwFbNqUaHU0IhVeuRiBqlmzJnfeeSc7d+6kQYMGPProo3Tr1o2kpCSaN29ebP+ikar9+/eTlJQEQO3atU/a58CBAwA+aaO0HA7L89NTstttxT77K/XTv/iyn3l5eWzftB6oRCNQhoFRuz3m9vls2LCODh06WB2Sjl0/U1n6WcTSBCo/P5+dO3cSEhLC4MGDCQ0N5fvvv+ehhx5iwoQJ5ObmnjTMHBQUBLhPgDk5OQCn3Cc9PR3AJ22Uhs1mEBkZVurXnwsRESFWh3BOqJ/+xRf9XL48AWdhPoTWgGoNzz6oCsKo3RFz+3xWbUhgYDk6P+nY9S+VpZ+WJlCBgYEsX74ch8PhSWDatGnDtm3bGD9+PMHBwScVcufl5QEQGhpKcHAw4E7Eih4X7RMS4v4B+qKN0nC5TDIyskv9+rJkt9uIiAghIyMHp9N/F9VTP/2LL/u5cOFiwH31nT/eQPi0jl2Jt2LFStLSsqyNBR27/sYf+hkREVLiETTLp/BCQ0NP2ta8eXMWLlxITEwMBw8eLPZc0dfR0dEUFhZ6ttWvX7/YPrGxsQA+aaO0CgvL9wHkdLrKfYy+oH76F1/0c8Vq96X8Rh3rp7HOJaN2OwAO799JSkoqVatWszagY3Ts+pfK0k9LJyo3btxIhw4diI+PL7Z9/fr1NG3alLi4OFasWIHT6fQ8t3jxYho1akRUVBSxsbGEh4ezdOlSz/MZGRkkJCTQubO7MNQXbYiIf1m77til/MdGZCoLI6S6Z8pyw4b11gYjUsFZmkA1b96cZs2a8eqrrxIfH8+2bdt48803Wb16NQ8//DB9+vQhMzOTIUOGsHXrVmbMmMHEiRMZMGAA4J4C7NevH8OHD2fevHls3LiRJ598kpiYGHr16gXgkzZExH+kpqaQkrwXACOmncXRnHtFyxloQU2Rs2PpFJ7NZmPMmDEMHz6cJ554goyMDFq1asWECRNo0aIFAOPGjWPYsGH07t2bmjVrMnjwYHr37u1pY9CgQRQWFvLiiy+Sm5tLXFwc48eP99RURUVFnXUbIuI/PLcyqd4UIyjC2mAsYNRuj5n4LUtXreVRq4MRqcAM0zRNq4PwR06ni9RU64s0T8XhsBEZGUZaWpZfz1Orn/7FV/0cPXokY8eOxmh9C/ZrR/gwworB3Lcc51c3EVatJn/+tsDSWHTs+hd/6Gf16mElLiKvHIs1iIgcs3KtewSqaCqr0qnVBgwbWUcOcfBgstXRiFRYSqBEpNIwTZOEDUUJVHtrg7GIERACUc0ASEzcYHE0IhWXEigRqTT27t1D9tEjYA+Emi2tDscyRnQbAOLXJFgciUjFpQRKRCqN9euPXXlWqxWGI8jaYCxkRLcFYOV6JVAipaUESkQqjXXrKnn90zFGjDuB2rFZU3gipaUESkQqjeMF5O2tDcRqtVoDBtlHkjl8+JDV0YhUSEqgRKRSKCgoYOuxERcjpr21wVjMCAyDqKYAbEjQKJRIaSiBEpFKYdu2LRTm50FQBFRvbHU4ljOizwdg8SrVQYmUhhIoEakUigrIjZh2GIZOfUUJ1Or1GoESKQ2dRUSkUqisNxA+naJC8l1bNQIlUhpKoESkUlhV2Vcg/6tabQCDnLQDpKamWB2NSIWjBEpE/F5WViZ7dm4BdAVeESMo3FMLtnqdpvFEvKUESkT8XmJiApgmVKmNER5tdTjlRtGCmgtVSC7iNSVQIuL3NmzQ9N2pGDHuQvK1GzQCJeItJVAi4vfWrtMCmqd07Eq8vVuVQIl4SwmUiPi9NUVX4FXyBTT/quimwrlp+0lNTbU4GpGKRQmUiPi1lJTDHE7eBxieS/fFzQiKgMhGAKxQIbmIV5RAiYhf89Q/RTXDCKpicTTlT1Eh+YKViRZHIlKxKIESEb+2fr0W0DyTolG59bonnohXlECJiF9bu+7YLVyUQJ3asULyfSokF/GKEigR8VumabJuvZYwOJOiQvK8tL2kpaVZHI1IxaEESkT81p49u8k6mg72IKgZa3U45ZIRXBWqNQRg8WrVQYmUlBIoEfFb69cfm76Lbo1hD7Q4mvLLODaN96dWJBcpMSVQIuK3jheQa/ruTIoKyTeokFykxJRAiYjfWlc0AqUFNM/sWB3UgR0agRIpKSVQIuKXCgoK2JjoTgh0Bd6ZeQrJU3aRnpFhcTQiFYMSKBHxS1u3bqagIB+CqnpW25ZTM0KqQ0Q9AP5YucniaEQqBiVQIuKX1q8/fgNhwzAsjqb8KyokX7Ra03giJaEESkT8UtEVeFqBvGSKpvESE5VAiZSEEigR8Uvr1h0fgZISODYCdWCHrsQTKQklUCLid7KyMtmxYyugK/BKqmgKL+/gNo5mZVscjUj5pwRKRPxOQsIGTNOEiLoY4bWsDqdCMMJrQVg0YDJ/xWarwxEp95RAiYjfKSogt2n6zitFdVBL1my0OBKR8k8JlIj4nQ0bjhWQx2gFcq8UFZJvVCG5yN9RAiUifkcF5KVTVAd1YLsKyUX+jhIoEfErhw4dJDn5ABg2OHaPNykZTyF58iYysvMtjkakfFMCJSJ+ZcOG9e4HUc0wAsOsDaaiiagLwdXAVcj8VVutjkakXFMCJSJ+pWgBTRWQe88wDM8o1OLViRZHI1K+lasEaseOHXTo0IEZM2Z4tiUmJtKvXz/at29Pjx49GD9+fLHXuFwuRo4cSbdu3WjXrh33338/u3btKraPL9oQkYrh+ArkKiAvlWMJ1EatSC5yRuUmgSooKOCZZ54hO/v4Am5paWncd999NGzYkOnTpzNw4EBGjBjB9OnTPfuMHj2ayZMn8/rrrzNlyhQMw+Chhx4iPz/fZ22ISMXgcrk8U3iGEqhSKVrKQCuSi5yZoyQ7jRo1qtRv8Pjjj5dovw8++ICwsOL1ClOnTiUwMJChQ4ficDho0qQJu3bt4pNPPqFPnz7k5+fz6aef8uyzz9K9e3cA3n//fbp168bcuXO59tprfdKGiFQMe/bs4ujRDHAEQ40WVodTIRVN4eUnbyQtu5DI0BL9mRCpdMo0gTIMo0QJ1PLly5kyZQozZ86kR48enu3x8fHExcXhcBwPs0uXLnz88cekpKSwb98+srKy6NKli+f5iIgIWrVqxfLly7n22mt90oaIVAxFC2ga0W0w7AEWR1NBRTaEwHDIz+S3tbvo3aWJ1RGJlEsl/tdi6tSptG1b8kuCV69ezR133PG3+2VkZDB48GBefPFFateuXey5pKQkmjdvXmxbrVru2zLs37+fpKQkgJNeV6tWLQ4cOOCzNkrL4Sg3M6TF2O22Yp/9lfrpX0rSzw0btAL52TIMG9RqA3uXsHRNIn27Niuz99Kx618qSz+LlCiB6tix40nTa3+nSpUqdOjw9zUIQ4cOpX379lx//fUnPZebm0tgYGCxbUFBQQDk5eWRk5MDcMp90tPTfdZGadhsBpGR5fsS6oiIEKtDOCfUT/9ypn4mJrrrn8yYDhjnKiA/ZES3wdy7hE2bEomM/Pt/hM+Wjl3/Uln6WaIEqlOnTtjtdq8abtKkCZMmTTrjPjNnziQ+Pp5Zs2ad8vng4OCTCrnz8vIACA0NJTg4GID8/HzP46J9QkJCfNZGabhcJhkZ5fOO5na7jYiIEDIycnA6XVaHU2bUT//yd/0sKMhn/fqiAvL25zg6/2JEt8EE9m5dR1paVpm9j45d/+IP/YyICCnxCFqJEqgJEyYwbtw4OnfuTN++fbnyyis9ozhnY/r06aSkpBSrewJ45ZVXGD9+PHXq1OHgwYPFniv6Ojo6msLCQs+2+vXrF9snNjYWgJiYmLNuo7QKC8v3AeR0usp9jL6gfvqX0/UzISGRgoIC90KQ1Rqc+8D8SFEhecGBDSRlOKkRWrbjeZX92PU3laWfJUqzFixYwPPPP09WVhaDBw+ma9eu/Pvf/yYx8ewWWhs+fDg//vgjM2fO9HwADBo0iLFjxxIXF8eKFStwOp2e1yxevJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7cGcAnbYhI+ecpIK/dHsPQBN5ZiWrqvpKxIIvf1++xOhqRcqlECVRkZCT33HMPM2bMYNasWfTt25dffvmFm2++md69ezNp0iSOHj3q9ZtHR0fToEGDYh8AUVFR1K1blz59+pCZmcmQIUPYunUrM2bMYOLEiQwYMABw1y3169eP4cOHM2/ePDZu3MiTTz5JTEwMvXr1AvBJGyJS/mkFct8xbA6o2RLQiuQip+P1Ah/NmjVj8ODBPPPMMyxcuJDvvvuO//znP/znP/+hV69e3HrrrcTFxfkkuKioKMaNG8ewYcPo3bs3NWvWZPDgwfTu3duzz6BBgygsLOTFF18kNzeXuLg4xo8f7ykK90UbIlL+FV2BZ9ZWAbkvGNHnYx5YdWxF8iutDkek3DFM0zTPtpGsrCzmz5/Phx9+yK5du856as8fOJ0uUlPLrvjybDgcNiIjw0hLy/LreWr107+cqZ9Hjx7l0ksvwDRN7I+twQirYVGU/sO1ZhKun57F0bAry78dR1nMiurY9S/+0M/q1cN8W0R+JuvXr2fWrFnMnTuXAwcOcOGFF55tkyIiXklM3IBpmlD1PCVPPlJUSF6YtJ4DWVAn3OKARMqZUiVQe/bsYdasWcyaNYudO3cSHR1N79696dOnD/Xq1fN1jCIiZ1RU/2TEtLc2EH9SoznYAiD3CAs3JnNr52irIxIpV0qcQKWlpfHjjz8ya9Ys1qxZg8PhoGfPnrzwwgt07dpVV72IiGWKrsCz12lvbSB+xHAEue8neHA9S1YnKIES+YsSJVAPP/wwCxcupLCwkGbNmvHcc89xww03EBkZWdbxiYj8raIRKK1A7ltG9PmYB9eTmJgA/MPqcETKlRIlUPHx8fTp04c+ffp4dT88EZGylpyczMGDyWDY4FjdjviGEdMGcx0c3LkBlwk2ZaciHiVKoBYuXFjsNiciIuVF0fIF1GiBERhqbTB+xqjVBgBn0np2ZdhoVLViXlklUhZKlED9NXn66aefWLlyJRkZGSftaxgGb7zxhm+iExH5G54Cci2g6Xs1W7lH9rIOsmTLYRp1rm51RCLlhtdX4Q0fPpxx48YRHh5ORETESc+rmFxEzqWiESi7EiifMwJDoXpTSNnMkrWJ3NH5EqtDEik3vE6gvv32W2699Vb+/e9/l0U8IiIl5nK5TliBvKMKyMuAEd0GM2XzsUJyJVAiRUq23OYJ8vLyuOqqq8oiFhERr+zatZPMzEwICHGvWyQ+V7Sg5uGd6ylw/s3OIpWI1wnUFVdcwfz588siFhERrxTVPxHd1n0DXPG5ogTKlbyebele/8kQ8Vten3FeeOEF+vbty9133027du1OKjA3DIPHHnvMZwGKiJyOCsjPgejW7s8Z+1i2M4PY6rqniwiUIoH64osv2LFjBzt27GD58uUnPa8ESkTOlaIVyB2123PWd0WXUzKCIqBaQziyk2VrErmnY5zVIYmUC14nUF9++SXXXnstzz//PDVq6KadImKN/Px8Nm3aCICrtlYgL0tG9PmYR3aSkJgAKIESgVLUQGVnZ3PrrbcqeRIRS23atJHCwgIIjYII3cS8LBkx7jqotN0byC6wOBiRcsLrBOriiy9m6dKlZRGLiEiJbdhwrP4ppr3WnytrxwrJzeR1bEyzWxyMSPng9RTejTfeyIsvvsiuXbvo0KED4eEnFxTedNNNvohNROS0iuqfVEBe9opu6ULaDlbuyaJjLd3aS8TrBGrQoEEAzJ49m9mzZ5/0vGEYSqBEpMwVXYFnr6MC8rJmhFaHKnXg6H6Wrt3Eg53aWR2SiOW8TqDmzZtXFnGIiJRYRkYGO3fuAMAV014F5OeAEX0+5tH9bNqYACiBEilRDdSIESNITk4GoG7dun/7AZCcnMyIESPKLnIRqbQSEta7H1RrgBGiG9yeC0ULah7du57UXKWsIiVKoMaMGeNJoEoqKSmJMWPGlCooEZEzOb6AZgeLI6lEot11UGbyehJStCK5SImm8EzTZOjQoacsGD+dzMzMUgclInImKiA/94pGoEjZwur9+XStq6vxpHIr0b8RcXFxhIWFYZpmiT/CwsLo3LlzWccvIpWMaZqeESiHEqhzJzwawmqC6WLZus1WRyNiuRKNQH3xxRdlHYeISIkkJydz+PAhsNlx1mqjAvJzxDAMdyH59vls3rQB02yJlt+SykwT2SJSoaxbtwYAo0YsRkCIxdFUMjHuq+/y9q1hb6ayJ6nclECJSIWydq07gUIF5OecEdMWADNpLesPqwZKKjclUCJSoXhGoOoogTrXjGMjUKRsYfW+XGuDEbGYEigRqTAKCwvZsMG9BpRdCdQ5Z4RHQ3iMu5B8baLV4YhYSgmUiFQYmzZtIicnB1tQFVzVm1kdTqVUtHTE7i3ryHdaG4uIlUp0Fd7MmTO9alT3whORsrBy5UoAzJj22Az9/2cFI6Yd5pb/4Tqwhi1H+tE6ymV1SCKWKFEC9dxzz5W4Qd1MWETKyqpVq9wPNH1nnWN1UGbSatYftiuBkkqrRAmUbiAsIuVBUQJl0xV4lim6Eo8ju1i1J5PbWgRZG5CIRUqUQBXdILgkTNMsdTAiIqeTmZnJli1bAHcBucY9rGGEREK1hnBkJyvWrofLO1kdkoglSpRA/dXs2bNZtmwZBQUFnoTJNE2ys7NZvXo1f/zxh0+DFBFZv34tpmniiKyPK7Sm1eFUakZMW8wjO0nZuY70vE5U1SCUVEJeJ1CjRo1i1KhRVKlShcLCQgICAnA4HKSmpmKz2ejbt29ZxCkilVzRAprO6A5oCUdrGTHtMDd+j3lgDRtS7FxcR5fjSeXj9WUs3377LTfccAPLli3j3nvv5R//+AeLFi1i2rRpVKtWjWbNdGmxiPheUQKlBTStZ5xQSL5OK5JLJeV1ApWcnMyNN96IYRi0bt3aU9TZpk0bHn74Yb755hufBykilZtpmp4EyqYEynrR5wMGHD1A/PYUq6MRsYTXCVRoaCjGsVtwN2zYkL1795Kb617Sv2XLluzdu9e3EYpIpbd//z5SU1Mw7AEY0a2tDqfSM4LCIco927BhwwZcunZIKiGvE6jzzz+fb7/9FoD69etjt9tZtGgRANu2bSMwMNC3EYpIpbd+/VoAHDGtMe0hFkcjcHw5g5x9a9h91LA4GpFzz+sE6uGHH2bOnDk8/PDDBAYGcsMNN/Dcc88xcOBA3n77bbp27epVeykpKTz77LN06dKFDh068M9//pOtW7d6nk9MTKRfv360b9+eHj16MH78+GKvd7lcjBw5km7dutGuXTvuv/9+du3aVWwfX7QhItYpuoFwYbSm78qLolu6kLSG9aqDkkrI6wQqLi6OadOmcfXVVwPw8ssvc+WVV7J9+3auuuoqXnzxRa/ae+SRR9izZw+ffPIJ06ZNIzg4mHvvvZecnBzS0tK47777aNiwIdOnT2fgwIGMGDGC6dOne14/evRoJk+ezOuvv86UKVMwDIOHHnqI/Px8AJ+0ISLW8hSQawHNcqNoBMpMWsPaQ7qtjlQ+pVoHKjY2ltjYWACCgoJ47bXXSvXmaWlp1KtXj0ceecRz9d6jjz7KjTfeyJYtW1i8eDGBgYEMHToUh8NBkyZN2LVrF5988gl9+vQhPz+fTz/9lGeffZbu3bsD8P7779OtWzfmzp3Ltddey9SpU8+6DRGxTkFBPhs3JgDuBTRVblNO1GoNNgdkp7B8SxJcWN3qiETOqVIlUEePHmXJkiVkZ2efcuXxkt4LLzIykvfee8/z9eHDhxk/fjwxMTE0bdqUDz74gLi4OByO42F26dKFjz/+mJSUFPbt20dWVhZdunTxPB8REUGrVq1Yvnw51157LfHx8WfdhohYZ/PmTeTn5+MIrYZZrZHV4cgxhiMYasTCwfXs2bKOnMLuhJTqL4pIxeT14f7777/zxBNPkJOTc8rnS3sz4ZdeeskzWvTRRx8RGhpKUlISzZs3L7ZfrVq1ANi/fz9JSUkA1K5d+6R9Dhw4AOCTNkrL4Sifw9p2u63YZ3+lfvqHhIR17ge1O4ChYuXyxIhph3lwPc6ktWw6chmdY7y7wY6/H7tF1E//5HUC9d5779G4cWOef/55oqOjsdl8843q378/t912G19//TWPPfYYkyZNIjc396Sr+oKC3PcMyMvL8yRxp9onPT0dwCdtlIbNZhAZGVbq158LERGV42om9bNi27hxAwCumI7eF21KmTJqt8Nc+xUkrWZrVgi9IkvXjr8eu3+lfvoXrxOo7du3M3r0aDp37uzTQJo2bQrAa6+9xurVq/nyyy8JDg4+qZA7Ly8PcK9HFRwcDEB+fr7ncdE+ISHuH6Av2igNl8skIyO71K8vS3a7jYiIEDIycnA6/feWrOqnf4iPX+F+oALycuf4iuTr+HNHPrc3KfDq9f5+7BZRPyuOiIiQEo+geZ1A1alTh8zMTK+DOpWUlBQWL17M1Vdfjd3uvgzWZrPRpEkTDh48SExMDAcPHiz2mqKvo6OjKSws9GyrX79+sX2Kitx90UZpFRaW7wPI6XSV+xh9Qf2suNLTj7Br104AAuq0Q3dcK2dqtABHMORlsGLTbgq6R5dqltUfj91TUT/9i9cj4gMGDODDDz/0yYrjBw8e5Omnn2bZsmWebQUFBSQkJNCkSRPi4uJYsWIFTufx0+bixYtp1KgRUVFRxMbGEh4eztKlSz3PZ2RkkJCQ4Bkh80UbImKNouULgmo0xhlcyvkhKTOGPQCi2wCQuWsl+zJVoyaVh9cjULNmzSI5OZlevXpRvXr1YtNe4C4i/+WXX0rUVmxsLF27duXVV1/l9ddfJyIigjFjxpCRkcG9995LUFAQ48aNY8iQITz44IOsXbuWiRMn8uqrrwLuuqV+/foxfPhwqlevTt26dXnnnXeIiYmhV69eAPTp0+es2xARa6xZ477XZmHtOAz0x7k8Mup0wtwXj7l/JWsOX0+9KoVWhyRyTnidQMXExBATE+OTNzcMg//+97+8++67PPHEExw9epTOnTvz1VdfUadOHQDGjRvHsGHD6N27NzVr1mTw4MH07t3b08agQYMoLCzkxRdfJDc3l7i4OMaPH+8pCo+KijrrNkTEGkUJlFmns9Kncsqo08m9Ntf+Faw7bOfaRkqgpHIwzFMt5CRnzel0kZqaZXUYp+Rw2IiMDCMtLcuv56nVz4qtsLCQrl3jyM3NwX7/fIwaLawOSU7BPHoA50edwbDR9KX1TLu55JUh/nrs/pX6WXFUrx5WdkXk+/fvP+1zNpuN0NBQIiIivG1WRKSYLVs2kZubQ0BoBEaNplTM07H/M6rUhip14Oh+dmxaR1ZBO8ICrI5KpOx5nUD17NkT428us6hatSr33HMPjz76aKkDE5HKrWj6LqBuJ/LRzWrLM6NOJ8xN+zH3ryQhpSNxMbpeUvyf11fhvfXWWwQEBHDJJZfw5ptv8sknn/DWW2/xj3/8A8MweOyxx+jduzcfffQRkyZNKouYRaQSWL3anUDlRutq2PLOqNvJ/WD/CtYeVrIrlYPXI1CzZ8/m2muv5c033yy2/cYbb+SVV15h/fr1jBkzhoiICL7++mvuvPNOnwUrIpVH0QgUdZVAlXdGnY4AuPavZNVBrRcvlYPXR/qyZcu47rrrTvncFVdcwZIlSwDo1KkTe/bsObvoRKRSSk5O5sCB/RiGDXud9laHI3+nVhuwB0JOKqs278alS5OkEvA6gapWrRobN2485XMbN24kPDwcgOzs7LO6FYqIVF5r17pHn8LqtoSA8n1PSQHDEQTR5wOQs2cVO9I1CiX+z+uj/Prrr2fkyJFMnDiR5ORkCgoKSE5O5osvvmDUqFFcf/31pKenM3HiRNq1a1cWMYuInyuaviuI6YypFaAqBKOOuw7K3LeCNaqDkkrA6xqoJ554gpSUFN566y3eeustz3abzUafPn148skn+emnn0hISGDixIk+DVZEKoc1a1YDUBAT5/1/eWIJo24nzHhg/wpWH7Rzc1PvbiwsUtF4nUA5HA7efPNNHnnkEZYuXUpaWhrR0dF07NiR8847D4BLL72UBQsWaCVvEfFabm4uiYkJABgqIK8wigrJzUOJLN+Ta3E0ImXP6wSqSP369alfv/4pn6tatWqpAxKRyi0xcQOFhQWEVK2Fq2pdtKJQxWBUqQNVasPRAyTvWMfhnLbUCFE1ufivEiVQl112GR9++CGxsbF/u5CmNzcTFhH5q6L1nwLO60S2JvAqFPeCmj+4p/EOdeDy+rovnvivEiVQF1xwAWFhYZ7Hf7cSuYhIaRUVkGfVjFP5eAVzYgK15tAAJVDi10qUQJ24aOaJheMiIr5kmqYW0KzAPAtq7lvBimSNHop/K1UNVGZmJllZWURHR5Ofn8/nn39OUlISV155JXFxcb6OUUQqiT17dpOWloo9IBBbrdaogqaCiT7fs6Dmlh17yCmsQUipK21Fyjev/0VYu3YtPXv25IsvvgDg9ddfZ/jw4Xz//ff079+fefPm+TxIEakcikafws9r616cUSoU94KabQBw7l/JOq0HJX7M6wTq/fffp3Hjxtx2223k5uYya9Ys7rzzTpYtW8Ytt9zCmDFjyiJOEakEihKo/OjOuFQBVSEVLajJ/hWsOqgESvyX1wnUmjVreOSRRzjvvPNYvHgxubm53HjjjQBcc801bNmyxedBikjlUJRA5cWoFKCiKkqgXPtWsEIJlPgxrxMom83mWSDz999/JyIigrZt2wLu2qjg4GDfRigilUJGRgZbt7r/AfOMYkiFU1RIzqFE1u7PpUALeYmf8jqBatOmDdOmTWPVqlXMmTOHHj16YBgGKSkpfPLJJ7Rp06Ys4hQRP7d69UpM06RKdCMc4TWsDkdKyYioCxF1wXSSv3clG9N0NZ74J6+P7MGDB7N48WLuuOMO7HY7jzzyCADXXXcdO3fu5IknnvB1jCJSCaxcGQ+A7bwLcZqqf6rIjHoXuh/sXcLKg7oMT/yT10d2q1at+Pnnn9m2bRvNmjUjNDQUgKFDh9KxY0dq1qzp8yBFxP+tXLkcgMzoLiofr+CMehdgJszA3LOMFcl2+reyOiIR3yvVvwbh4eG0a9eu2LYrr7zSJwGJSOWTk5NNQsIG9xf1LrI2GDlrxnldADAPrGJlkhOnC+yayRM/o0NaRCy3du0aCgsLqRJVB3u1ulaHI2erelMIqQ6FueTsXce2dP2pEf+jo1pELLdihXv6LrjhhZhafrzCMwwDo94FAJh7l2o9KPFLSqBExHJFBeQZtbpgqgLKLxxPoJYRn6wESvyPEigRsVR+fj7r1q0BoLBOF4ujEV8puhLP3Luc5Uk2jSyK31ECJSKW2rBhPXl5eYRGVMeo3tjqcMRXottAQCjkpXN0/ybVQYnf0REtIpYqWr6gSuMLsdk0fecvDJvDs6K8uXcJKzSNJ35GCZSIWKqo/ikzugsuLaDpV4z67iUpzD1LVAclfkcJlIhYprCwkNWrVwKQG6P6J39jnHcxAObuxSxLsuFSHZT4ESVQImKZzZs3kpWVRXBoFajZ0upwxNdqt4OAEMhJJfPAFrarDkr8iI5mEbHMihXu6bvIJnE4tFS13zHsgRh14wAwd/+paTzxKzpjiYhliuqfcmK66AbCfsqoXzSNt4jlSqDEjyiBEhFLuFwuVq1yJ1BHo1X/5K88CdSeJSxXHZT4ESVQImKJ7du3ceTIEQKCQiD6fKvDkbIS3da9HlTuEbL2b2Rzmv7siH/QkSwiliiavqveuCMOR4DF0UhZMewBnlXJ0TSe+BElUCJiiaIFNPNrX6j6Jz9XNI3n2r2YxQccFkcj4htKoETknDNNk/h4dwKVXlP1T/7ueB3UYlYlmeQ7LQ5IxAcsT6COHDnCyy+/zKWXXkrHjh254447iI+P9zyfmJhIv379aN++PT169GD8+PHFXu9yuRg5ciTdunWjXbt23H///ezatavYPr5oQ0R8Z9u2rRw+fIiAwCCMup2sDkfKWvT5EFwN8jLI37+WdYc1jScVn+UJ1FNPPcWaNWt47733mDZtGq1bt+aBBx5g27ZtpKWlcd9999GwYUOmT5/OwIEDGTFiBNOnT/e8fvTo0UyePJnXX3+dKVOmYBgGDz30EPn5+QA+aUNEfGvZssUARDXtjCMgyOJopKwZNrtnFIqdf6gOSvyCpQnUrl27+PPPP3nllVfo3LkzjRs3ZsiQIURHR/PDDz8wdepUAgMDGTp0KE2aNKFPnz7ce++9fPLJJwDk5+fz6aefMnDgQLp3705sbCzvv/8+ycnJzJ07F8AnbYiIby1btgSAwnpdVf9USRgNugHg3LmARftVByUVn6UJVGRkJGPHjqVNmzaebYZhYJom6enpxMfHExcXh8Nx/JetS5cu7Nixg5SUFDZudN8GokuX4zUUERERtGrViuXL3fUVvmhDRHynsLCQ+PhlAKRFX2pxNHKuGA2P/az3ryQxKYfMAmvjETlblv4bEBERQffu3YttmzNnDrt376Zr1668//77NG/evNjztWrVAmD//v0kJSUBULt27ZP2OXDgAABJSUln3UZpORyWz5Cekv3YLTPsfn7rDPWzfNqwIYHMzExCwiPI1/pPlYYR2RCq1of03Tj3LGHN4a70bOheVbOiHLulVdF+R0ursvSzSLkaR12xYgUvvPACl112GT179uTNN98kMDCw2D5BQe56iby8PHJycgBOuU96ejoAubm5Z91GadhsBpGRYaV+/bkQERFidQjnhPpZvqxZ475IpFbsJSQ77BS6LA5IzhmjYTfMNV9h7PyDlamXc1Nb9/aKcuyeLfXTv5SbBOqXX37hmWeeoV27drz33nsABAcHn1TInZeXB0BoaCjBwcGAu46p6HHRPiEhIT5rozRcLpOMjOxSv74s2e02IiJCyMjIwen0379e6mf59NtvfwCQFXOxkqdKxmh4Keaar3DuXMDcrS6e6ZhXoY7d0qpov6Ol5Q/9jIgIKfEIWrlIoL788kuGDRtGr169GD58uGc0KCYmhoMHDxbbt+jr6OhoCgsLPdvq169fbJ/Y2FiftVFaheX8r4PT6Sr3MfqC+ll+5OTksGrVCsBd/6Ty8crFqH8JYEDKZvYlJbP7SFXaRFSMY9cX1E//YvlE5aRJk3jttde46667+O9//1tsKi0uLo4VK1bgdB5fdW3x4sU0atSIqKgoYmNjCQ8PZ+nSpZ7nMzIySEhIoHPnzj5rQ0R8Y/XqlRQUFBARFQ3Vm1gdjpxjRkgkxLQDwNz5O4v2azkDqbgsTaB27NjBG2+8Qa9evRgwYAApKSkcOnSIQ4cOcfToUfr06UNmZiZDhgxh69atzJgxg4kTJzJgwADAXbfUr18/hg8fzrx589i4cSNPPvkkMTEx9OrVC8AnbYiIbxQtX1Ct2SWU02sspIwZjf/hfrD9V/5UAiUVmKVTeD/99BMFBQXMnTv3pDWXevfuzVtvvcW4ceMYNmwYvXv3pmbNmgwePJjevXt79hs0aBCFhYW8+OKL5ObmEhcXx/jx4z0jWVFRUWfdhoj4xtKl7gU0j9a+VOs/VVK2xv/Aueh9XDv/YPFekwLd1kUqKMM0TdPqIPyR0+kiNTXL6jBOyeGwERkZRlpall/PU6uf5Ut6+hF69LgI0zSxP7ICo0qM1SGJBUyXE+eH7SAnDfsdM5j25IU0Cy3fx+7Zqii/o2fLH/pZvXpYiYvINYguIudEfPwyTNOkRt0mGFWirQ5HLGLY7BiNjk3j7ZjH77rtqFRQSqBE5JxYutRd/xTWpCt2zd5VakUJlHPbfObvsDgYkVJSAiUi50TRDYQP1eqm+qdKzmjUAzDgUCIbdhwgJcfigERKQQmUiJS55OQkdu7cgWGzkVfnYqvDEYsZodWhTgcAzO2/snBfuViSUMQrSqBEpMwVXX1Xq2Eb7CERFkcj5YGtUU/3g+3z+H2vljOQikcJlIiUuaL1n4yG3XDpul8BjCaXA+Da+Tt/7szXcgZS4SiBEpEy5XK5WLRoIQAptS4F3cBFAKLbQJU6UJBDzvY/WX1Io1BSsSiBEpEytWlTIqmpKQSFhOGqe4HV4Ug5YRgGRtMr3F9s/YkFqoOSCkYJlIiUqYULFwBQs8XFOBwBFkcj5YnR7EoAXNt+4bfd+nMkFYuOWBEpU4sWuROorHr/0PIFUoxxXhcIrAJZh9i3dTW7M3R8SMWhBEpEykxGRgZr1652P67b09pgpNwx7IEYjd3Hhbn1J/7QNJ5UIEqgRKTMLF26CKfTSfU6TbBVrWd1OFIOeabxtvzM/D1KoKTiUAIlImWm6Oq7oKY9rA1Eyi2j8T/AFgCpW1m7aQepuZrGk4pBCZSIlAnTNPnzT3f90+GYnphavkBOwQiKwGjQFQDXptks2KflDKRiUAIlImViy5bNHDyYTEBQMK56XawOR8oxI/Z6AMxNs/h1j67UlIpBCZSIlInff/8VgBotLsEREGRxNFKeGU2vAJsD89BGFq3fSXaB1RGJ/D0lUCJSJhYscCdQmef10vIFckZGSCRGg24AFG78gSVJKiaX8k8JlIj4XGpqCuvWrQUgu/7lFkcjFcHxabwf+FVX40kFoARKRHxuwYLfMU2Tmg3bYI+IsTocqQCOT+MlMn/1LvJ1c2Ep55RAiYjPLVjwGwCuxpfhMq2MRCqKE6fxchJmsTRJV+NJ+aYESkR8qqAg37P+05G6V4KWL5ASMlreAICZMJOfdmoaT8o3JVAi4lPx8cvJzs4mrFpNjJg2VocjFYjR7GpwBGOmbmX+8gRN40m5pgRKRHzqjz/cV9+FNu+JYegUIyVnBFXBaOq+tUvOuhksOaBpPCm/dHYTEZ8xTZNff50HQFq9q7T6uHjNaH0zAGbid/y0Q8ePlF9KoETEZxIS1pOUdIDA4FDMhpdaHY5UQEbD7hBSHbIPM3/BYk3jSbmlBEpEfGb+/F8AqBbbA7tWH5dSMOwBGC1vBCB3/bcs2q9icimflECJiM/8+qs7gUo772pcWn1cSsnWug8A5pY5fJeQY3E0IqemBEpEfGLnzu1s374NuyMAV2OtPi5nIaY9RDWDghwWzJ/N0XyrAxI5mRIoEfGJoum7qk27YA+uYnE0UpEZhoGt7R0AFK75mnl7AiyOSORkSqBExCeKEqiM+tdo+k7OmtH6FrAFQNIapi7cbHU4IidRAiUiZ+3Agf2sX78WwzAwj63jI3I2jNAojGbuYynx96kkZSkpl/JFCZSInLVffvkJgIjGcdir1LI4GvEXRts7ATA3zOCHLVrPQMoXJVAictZ+/vl/AGQ1vlHTd+IzRsNuEFEP8tKZPGsupm5MLeWIEigROSv79u1l3bo1GDYbZrOrrQ5H/Ihh2LC1c49CHV70GWsP60+WlB86GkXkrMyd656+C290IbZwTd+Jbxlt7wJ7IBxYxYR5CVaHI+KhBEpEzsrPP88BIKvxDbr3nficEVYDI/Z6ABb+8AVZBRYHJHKMEigRKbW9e/eQkLAew7Bhb3GN1eGIn7J1vB+AwsRZfLsu3eJoRNyUQIlIqf30048ABDW6GDM0yuJoxF8ZtdtD7Q7gzOfLr7+xOhwRQAmUiJSSaZrMnv09APktbgZN30kZKhqFSlr0OYkHCy2ORqScJVCjR4/m7rvvLrYtMTGRfv360b59e3r06MH48eOLPe9yuRg5ciTdunWjXbt23H///ezatcvnbYhIcRs3JrjvfRcQhKPFVVaHI37OiL0OqtSGrIO8+8Usq8MRKT8J1GeffcbIkSOLbUtLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/u2Wf06NFMnjyZ119/nSlTpmAYBg899BD5+fk+a0NETlY0+mQ0vQJXYFWLoxF/Z9gDsXV+CIAVsz8hPUcLa4q1LE+gkpOTefDBBxkxYgSNGjUq9tzUqVMJDAxk6NChNGnShD59+nDvvffyySefAJCfn8+nn37KwIED6d69O7Gxsbz//vskJyczd+5cn7UhIsUVFhbyv/+5659cLftYHI1UFkbbuyCoKmbqdkZ887vV4UglZ3kCtWHDBqpWrcr3339Pu3btij0XHx9PXFwcDofDs61Lly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fLnP2hCR4pYtW8Lhw4ewh0Zib9Td6nCkkjCCwjE69gdg9tSxuFxamlys4/j7XcpWz5496dmz5ymfS0pKonnz5sW21arlXqhv//79JCUlAVC7du2T9jlw4IDP2igth8Py/PSU7HZbsc/+Sv0sOz/+6J6+c7W4EcMeeM7eV8TW8QGcyz4mb+9qJs1dzr3Xdvn7F1lM5yL/ZHkCdSa5ubkEBhY/OQcFBQGQl5dHTk4OwCn3SU9P91kbpWGzGURGhpX69edCRESI1SGcE+qnb2VkZPDLLz8D4Gh9MxoDkHPJCKuB0e5OzJUTGDf2A564qyeGUTGuANW5yL+U6wQqODj4pELuvLw8AEJDQwkODgbcdUxFj4v2CQkJ8VkbpeFymWRkZJf69WXJbrcRERFCRkYOTqfL6nDKjPpZNqZO/Ybc3FxsNZrhqt1RixfIOWe78HGcayZxZNtyxk/9mT5XdLU6pDPSuajiiIgIKfEIWrlOoGJiYjh48GCxbUVfR0dHU1hY6NlWv379YvvExsb6rI3SKiws3weQ0+kq9zH6gvrpW9OnH1vIsM3tFeY/f/EvRpUYjPZ3Y64Yx4gPRnLDPy6qEMeizkX+pVxPVMbFxbFixQqczuOXqy5evJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7c2WdtiIjbli2b2LBhHdgc2Frr6juxju3Cx8ARTOqO1cyZv8DqcKQSKtcJVJ8+fcjMzGTIkCFs3bqVGTNmMHHiRAYMGAC465b69evH8OHDmTdvHhs3buTJJ58kJiaGXr16+awNEXH79lv3+mlG0ysgrKbF0UhlZoTXwuhwLwDvjni/2D/JIudCuZ7Ci4qKYty4cQwbNozevXtTs2ZNBg8eTO/evT37DBo0iMLCQl588UVyc3OJi4tj/PjxnqJwX7QhIu46wdmzvwPA3vY2i6MRAVuXx3CunUTK7kSmf/cdt958s9UhSSVimKapi2jKgNPpIjU1y+owTsnhsBEZGUZaWpZfz1Orn741Z84PPP/8MxAeg/3hZRg2e5m9l0hJuZaNwfXba4RFRvPLj/87q4t/yorORRVH9ephJS4iL9dTeCJSfkyZMgkAe7s7lTxJuWF0vBeqnkdWWjKffjbB6nCkElECJSJ/a9OmjaxevRJsDmjXz+pwRDwMRzC2S58H4LPPxpGcnGxxRFJZKIESkb81ZcpXANiaXY0RHm1xNCLFGbE3QJ1OFORl85/hb1kdjlQSSqBE5IwyMjL48ccfgGPTJSLljGEY2K94Ewwb8+bOYdGihVaHJJWAEigROaPvv/+W3NwcqNEC6l1odTgip2TUao3R8X4Ahr3xmueOEyJlRQmUiJyW0+lk0tdfAGDrcG+FWO1ZKi9b12cgPJp9e3cxbtwYq8MRP6cESkROa/78uezftxdCIjHa9LU6HJEzMoKqYLvs3wCM/3QsiYkbLI5I/JkSKBE5JdM0mfDZpwAYHe7FCCh/6+uI/JWtxXXYWlyHy+nkpZeeO+lm8iK+ogRKRE5p9eqVJGxYC/YgbMdumSFSERi93oDQKLZu3cKYMaOsDkf8lBIoETmlcRPGA2C0uQUjrIbF0YiUnBEaheOKNwD32lDx8cssjkj8kRIoETnJ1q1b+POP+QDYOv/T4mhESqH5dRhtbsXlcvH888+QmppqdUTiZ5RAichJRox2X8FkNL8GI6qpxdGIlI7t8texRTXl0KGDvPTSc7hcFfP+bFI+KYESkWK2b9/Ggl9/BMB28RPWBiNyFozAMGw3foQtIIg///yD8eM/tjok8SNKoESkmDdHjgHTxGh2FUat1laHI3J2arSCy4YB8OGHI/jtt/kWByT+QgmUiHhs2rqd5b/PBsB28ZMWRyPiG/a2txMS1x+AF154hq1bt1gckfgDJVAi4vHc2x+C6cJoegVGdBurwxHxCRODwu5DqdG8C9nZ2fzf/z3C4cOHrA5LKjglUCICwA9/rmPH8tmA4b4lhogfMW2BpF3xCVEx9dm3by8DBw4gKyvT6rCkAlMCJSIUOE3eGP4ucGzdJ9U+iR+yhUaS23sSVatVJzExgaefHqSVyqXUlECJCC99uZDsHUvcq453fdbqcETKhIlBYURDou+eSEhIKEuWLGLw4CcoKFASJd5TAiVSyS3f7+J/n78DgNHpAYyIuhZHJFJ2nKbBjpAOXPTIxwQFBfHbb/P517+epqCgwOrQpIJRAiVSiR3Nh6fenwQpmyEkEluXx6wOSaTMmRj84ejJ7f8aQ2BgIPPnz+XZZ/+P3Nxcq0OTCkQJlEgl5TLhuTlHOPr7+wDYug/BCK5mbVAi54zJlLxe/N/Q0Z6RqMcee5CjR49aHZhUEEqgRCqpT9cHsujrNyA/C+p0wjj/NqtDEjmHDFwmjM++iqHDxxMeHs6KFfE88EA/kpIOWB2cVABKoEQqoT/22hn9/RLMjd+DYcPe6w0MQ6cDqVxcGGQVwIcp3Xn3wy+JiqrB5s2buOuuvqxdu9rq8KSc0xlTpJLZmGrj+XkFuP7nXuvJ6HifFs2USstpGhzKMXh/X0dGj59C8+YtSEk5zIMP3sPMmdMxTdPqEKWcUgIlUonsPWrw2PwQcn55FY7uh2oNsXV7zuqwRCzlNA22p9t4NaEZI8dOokePnuTn5zN06BBeeuk5cnKyrQ5RyiElUCKVxOEcg0fmh5K+cT6udVMAA/vV72EEhlodmojlXKbB1nQbTy+uyStvjuLxx5/AZrPxww/fcccdfVi/fp3VIUo5owRKpBI4lG3w0NxQkpOTKfzxaQCMzg9inHehxZGJlB8u02DrERv3z63CtXc8wtixn1GzZk127txB//63M3r0SK1cLh5KoET8XFKWwf1zQ9l31En+949D9mGo2RJbt39ZHZpIueM0DfZnGfT/XygRTbrwzTffc9VV1+B0Ohk7djS33XYT8fHLrA5TygElUCJ+bOsRG/f9HMrBbIOCP4bD3iUQGI79xo8xAkKsDk+kXHKaBkfyDe79KZTl6TV56633ePvt96lePYodO7bz4IP38NxzT7N37x6rQxULKYES8VOL99u596dQUnINChJnYS4dBYDtquEY1ZtYHJ1I+eYyDQpc8PyfIYxYGcRlva5m5swf6dv3dgzD4H//m81NN13DW2+9RkrKYavDFQsogRLxMy4TPk8I4P9+CyHPCc698bhmPwGA0fkhbLHXWxugSAVhYgDw5cYA+v8UShrVGDJkKJMmTeOiiy6hsLCAyZO/4rrrrmD06JFkZGRYHLGcS4apRS7KhNPpIjU1y+owTsnhsBEZGUZaWhaFhS6rwykzlbGfh7NcvLwohEUHHACYaTtxfnk95KRiNL0S202fYNjsFkcsUvHYDRO7AYM65NG3WQF2GyxbtoQRI95lwwb3FXohIaHceGNv7rzzHurXb+B5bWU8F1XUflavHobdXrKxJSVQZUQJlPUqWz+nrc7l34sDOVpg4DINzPQ9OL++BTL2Qkw77LdP05IFIj7QPNLJSxfm0rK6C9M0mTfvZ8aMGcXWrVsAMAyDSy/tQb9+/enc+UICAuyV6lxUkfupBKocUAJlvcrSz8N5dv67OpT/bQMDExMDM30vzsm3QPoeiGyM/Y7pGOG1rA5VxC/YDBOXCdc0LOTRdnnEhJmYpsnSpYv58suJLFz4u2ffevXO47rrbuDOO2+jevUYvz4X+cM5VwlUOaAEynr+3s/sAvg8MZCJCYG4TAPnsd9kM2ULzml3H0ueGrlHnqrEWBusiB+yG+4qqd5NC+jfKp+YMPcv4c6d2/nqqy/44Yfviq1ifv75bbn66uvo0eMy6tSpa1HUZccfzrlKoMoBJVDW89d+ZhbA1M2BfJ4QSFbB8UJXANeuP3HNfAjy0qFaQ+x3TMOoUtvCaEX8n81w/xm9skEht7fIp3WU+3yTk5PNr7/OY86cWSxa9CdOp9PzmmbNmnPppf/g0kt70KZNW+z2il+b6A/nXCVQ5YASKOv5Wz93Zhh8szmQ77cFkOssnjiZpom5eiKueUPBVQB1O2Pv/SlGaJR1AYtUMnbDxGkatIh00rtpAb3qF1A1yH0uKizM5uuvv+Hnn//HmjWrcLmOn5OqVq1Kx45xdOoUR+fOcTRr1qJCJlT+cM5VAlUKLpeLUaNG8c0335CRkUGnTp145ZVXaNCgwd+/+BSUQFnPH/qZnge/7A7gh+0O1qU4PCfoE5k5abj+9yzmljkAGC2ux3btfzEcwVaELFLpGbj/rNoM6FLbSa8GTm5oE4Qtz30uOnIkjT//XMiCBb+ycOECMjOPFnt9eHgV2rVrT6tWbWjZsjWtW7ehVq1oDMM41duVG/5wzlUCVQqjRo1i0qRJvPnmm0RHR/POO++wZ88efvjhBwIDA71uTwmU9SpiP00TdmTYWHLAzq97HKw5ZMcFGBQfcXLva2Imfofr139DVjLYArD1GILR6cFyf6IVqSxsmMd+hw1aVHdyce1COkc7aRPlJDQACgoKSEzcwIoVy4mPX87q1SvIyjr5b0f16lE0b96CJk2a0bhxE5o0aUrjxk2JiIg49506jYp4zv0rJVBeys/Pp0uXLjz77LPccccdAGRkZNCtWzfeeOMNrr32Wq/bVAJlvYrQz5xC2JJmY32KnbWH7cQn2zmSZ/P8B/vXpKmIuX8lrj/ewtz9p3tD9SbYrxuFEdP2XIUuIl5zryXlNA1smDSu5uL8Gk5aVXfRrJqTxlVdBBqFbNqUyPr160hIWE9i4ga2bdtarH7qRJGRkdStex5169ajbt161Kt3HvXqub+uVSuagICAc9a7inDO/TveJFCOMo6lQti4cSNZWVl06dLFsy0iIoJWrVqxfPnyUiVQZSUl5TBJSQcoSnuP57+m5+uibcc/U2wfmw2qVAkhIyOHwkLnadrhL22c3G5J9j0xrtPtW7TfyXGf+jUn7uvujx2Hw0FAQAAOh+PYRwDBwQFUrx5BdnYBNpuDkJAQQkJCCQkJweE4d4d+oQsO5xjsy7SxP8tgd4aNHRk2NqfZOZBlYGJgYGIY7ttHuHt4cuJkmi7MXQsxl43B3HnsMmlHMLaLBmHEPYzhCDpnfRKR0jh+tawLg61H7OxMt/HtVvdzADVDXDSqegENGnemWVsX3cNNIu3ZZO7fyMHdm9mxfQvbt29j27atJCcnkZaWRlpaGuvXrz353QyDatUiqVmzJjVq1KRmzVrHPtekevUaVKtWjYiIqlStWpWIiAhCQ8M0eu0FJVBAUlISALVrF79aqVatWhw4cMCKkE4pOTmJa6/tRWFhgdWhVHiBgYGEhIQQGhpGSEgIERFVqVatGtWqRVK1arW/PI4kNKIaoVUiCQqLJN+0kVNokF1gkFUImfkGmQUGR/MN0vMNjuQZpOYaHMw2OJzj/vrEhMhhmDjNvxSBY3CqsWDTNOHgBsytc3Gtnwrpu91PGHaMNrdgu+gJjGr1y/rbJSJlpPAvNY2HcmwcyjFYmeyevnf/UxUCXIKNi6nS0KR6rEmjEJO2Zgb29N04j+wmP3U3WYf3cPTwHo4k7yEleQ+FBQWkpaWSlpbK5s2b/jYWh8NxQkLl/hwWFk5oaOgJ58uix6HFzqGhoaFUqRJOTk4kOTlODMNOYGAgAQEB2Gz+edc4JVBATk4OwEm1TkFBQaSnp5e6XYfDtwdNZGQ1Ys/vQML2fbhMKPqPBc9/DCd+/Zf/Ik65z7Gvz/Rcsa9P8VxJYvjrfzQl2vfU7Rsn7WNiulzuK8+cBe7PrsJjjwuPPc53f12QDaZ7xC0/P5/8/Hzvf76GDUKjILQGRlhNCK1x/HHYscehJzy2nzx8/tcTZhHTNCEzGdJ2YB5cj7l/JebeZZCZdHynwCoYrW/GFjcAo1rpLnAQkfLOoPAU/1C5cP+Tlp4POzIAqrs/QtpDXdwfx5imC3t2KmQlY2YehKyDkJmMWfQ5+zDkpkPOEchNA2c+hYWFpKamkJqa4tvu2BxgDzz9hyMQwxbg3s/mAJsdDPsJnx3uqROb4/h2exC33nILL13f2LexekEJFBAc7L5aKT8/3/MYIC8vj5CQkFK1abMZREaG+SS+IpGRYXz4+bfcPNV9dZZ4xzRNcOa5E6n8bPfngmzM/EzIPQI5aZCThpmTevLj3CPuD9MFWYcg6xDmocTjbZ/mPR2h1QiqUgNHSBVsjkAMewA2RyA2RyCmsxBnQS6FuZkUZKaQf/Qwzvyck9qwB4ZQPbYb0e2vIabjddgDS3dMioh/cwFZ+e5FdrMLbGSF1yC3sAY5ha3JP3UJFXDs3FiY606kco5Abjpm0TkxPxMKsjALciA/CwqyPOdQsyD7hG3Hni/Mdf8jWyywY//MFmSf6u3dMZSiv2tCUoi8Z1QpXukbSqA4PnV38OBB6tc/Ph1y8OBBYmNjS9Wmy2WSkXH6g6W0ogz4/baza8NutxER4a6BcjorZqFfSZy+n0HHPiK9aq+goIAjR9JISTlMSkoKhw8fJjU19djX7m0pKe5tqakpOJ1OCrOPUJh9pMTvYbPZqFOnLk2bNqNt23a0a9eeDh06nTA66gKKX5ygn6d/qSz9hMrT14rTz6rHPkqnqJ9HjmSRm5tHQUGBZ7Q/Pz+fggL3R35+gefr488V4HQ6cbmcFBa6PzudJ364cDoLPZ8Nw+Daa68nLc23F2tFRISoiNwbsbGxhIeHs3TpUk8ClZGRQUJCAv369St1u+X9KgSn01XuY/QFX/XTMOxERtYgMrIGTZueeV+Xy0V6evqxhCqFnJzsYyeKgmMnkQIcDgeBgUGEhoZSvXp1IiOrU7t2bQICTl42oyTx6+fpXypLP6Hy9LWy9NM0wW4PwG4PIDi4bG9gbuX3UwkU7tqnfv36MXz4cKpXr07dunV55513iImJoVevXlaHJxWQzWYjMjKSyMhIoJnV4YiIiI8pgTpm0KBBFBYW8uKLL5Kbm0tcXBzjx48v1SKaIiIi4t+UQB1jt9t59tlnefbZZ60ORURERMo5/1ycQURERKQMKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvGaZpmlYH4Y9M08TlKr/fWrvdhtPpsjqMMqd++hf10/9Ulr6qnxWDzWZgGEaJ9lUCJSIiIuIlTeGJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlJ8ZPXo0d999d7FtiYmJ9OvXj/bt29OjRw/Gjx9/xjZcLhfjxo3jyiuvpH379lx77bV88803ZRm213zRzxPl5+dz/fXX89xzz/k61LPiq36uXbuWu+66i7Zt29K9e3dGjhyJy+Uqq7C95qt+zpo1i2uvvZZ27dpxzTXXMH369LIKudRO1VeAHTt20L59e/bu3fu3bXz11VdcdtlltG3blttuu41169aVRahn5Wz7mZuby7vvvkvPnj3p0KEDN998M/PmzSurcEvNFz/PIqmpqXTt2pUPPvjAlyH6hC/6+fvvv3PzzTdz/vnnc/nll/PVV1+VRajnjil+Y8KECWaLFi3Mfv36ebalpqaaF154oTlkyBBz69at5rRp08zzzz/fnDZt2mnbGT16tBkXF2f++OOP5q5du8wpU6aYrVu3NmfMmHEuuvG3fNXPE7322mtm8+bNzX/9619lFbbXfNXP7du3m+3atTOfe+45c/v27eaPP/5otm/f3hw7duy56Mbf8lU/Fy1aZLZq1cr8+uuvzd27d5tffvmlGRsba86fP/9cdKNETtVX0zTNjRs3mt27dzebN29u7tmz54xtzJgxw2zXrp35/fffm1u2bDGfffZZ84ILLjBTUlLKMnSv+KKfQ4YMMXv06GH+8ccf5s6dO80xY8aYsbGx5pIlS8oydK/4op8nevTRR83mzZubI0eO9HWoZ8UX/Vy6dKnZsmVL89133zV37dplTp482WzZsqU5e/bssgy9TDmsTuDk7CUnJzNkyBBWrFhBo0aNij03depUAgMDGTp0KA6HgyZNmrBr1y4++eQT+vTpc8r2Jk+ezP3338/VV18NQP369VmzZg3Tpk2jd+/eZd6f0/F1P4ssWLCAOXPm0KxZs7IMv8R83c+PP/6Ypk2b8sYbb2AYBo0aNWLLli2sXLnyXHTntHzdz/nz59OiRQtuv/12AO666y6mTZvGwoUL+cc//lHm/TmTM/X1o48+YsyYMTRp0oQDBw78bVtjxoyhX79+XH/99QC88cYbXH755UybNo1//vOfZRJ/Sfmqnzk5OcycOZM333yTbt26ATBgwAAWL17M9OnTufDCC8usDyXhy59nkSlTprBjxw5q1qzp63BLzZf9/OCDD7j88st56qmngON/V+Lj47nmmmvKJP6ypik8P7BhwwaqVq3K999/T7t27Yo9Fx8fT1xcHA7H8Vy5S5cu7Nixg5SUlJPacrlcvPXWW9x0000nPZeenu7z2L3hy34WSU1N5fnnn+e1114jMjKyzGL3hq/7uWDBAq677joMw/BsGzRoEB999FHZdKCEfN3PatWqsXXrVpYsWYJpmixdupRt27ad1LYVztTXBQsW8M477/Cvf/3rb9tJSUlh586ddOnSxbPN4XDQuXNnli9f7vO4veWrfhqGwZgxYzzJ04msPg+B7/pZZMeOHQwfPpx33nmHwMBAX4dbar7qZ05ODvHx8Z6kv8gbb7zByy+/7NOYzyWNQPmBnj170rNnz1M+l5SURPPmzYttq1WrFgD79+8nKiqq2HM2m42LLrqo2La9e/cye/Zsz3/2VvFlP4sMGTKEf/zjH/Ts2ZMJEyb4NuBS8mU/MzMzOXz4MFWqVOGFF17gjz/+ICIigptuuokHHngAu91eNp0oAV//PO+55x7WrVtH//79sdvtOJ1OHnroIW644QbfB++lM/V10qRJACxduvRv20lKSgKgdu3axbbXqlWLjRs3nmWUZ89X/QwODqZr167Ftq1Zs4YlS5YwZMiQsw/0LPmqnwAFBQU8/fTTPPDAA7Ru3dpnMfqCr/q5a9cuXC4XdrudQYMGsXz5cmrVqkW/fv3o27evT2M+lzQC5edyc3NP+o8mKCgIgLy8vL99/aFDh/jnP/9JVFQUjzzySJnE6Aul6efkyZPZtm0bzz//fJnH5yve9jMzMxOAt99+mzp16vDJJ5/w4IMP8vHHHzNq1KiyD7iUSvPzPHDgAEeOHOHll19m+vTpPPfcc3z++efMmDGjzOM9V3JycgBO+b0pye9zRbV9+3Yee+wx2rRpw2233WZ1OD41cuRIgoKCeOihh6wOpcwUnYdefvllOnfuzKeffkrv3r159dVXmTZtmsXRlZ5GoPxccHAw+fn5xbYVnWhDQ0PP+Nrt27fzz3/+k4KCAr744guqVq1aZnGeLW/7uX37dt555x3Gjx//t9+H8sTbfgYEBABw8cUX8/jjjwPQsmVLUlNT+fDDDxk0aFCxqb3yojTH7aBBg7j++uu56667AHc/09PTefvtt7npppuw2Sr+/4vBwcEAp/zehISEWBFSmVu5ciWPPvooNWvWZOzYseVqiutsLVu2jK+//ppvv/3W0tHgslb0M7vxxhu55557APfv565du5gwYQK33HKLleGVWsU/o8gZxcTEcPDgwWLbir6Ojo4+7etWrFjB7bffTlBQEJMnT6Z+/fplGufZ8rafP/74I1lZWdx333106NCBDh06EB8fz6xZs+jQoQP79+8/J3F7y9t+VqtWjaCgoJOmw5o1a0Z2djapqallF+xZ8Lafqamp7Nixg/PPP7/Y9vbt23PkyBGOHDlSZrGeS3Xq1AE45fcmJibGipDK1Ny5c7n33ntp0qQJX331FdWrV7c6JJ/69ttvyc7O5oYbbvCch/bv38/HH39Mhw4drA7PZ4p+Z/96HmratKlXyzyUN0qg/FxcXBwrVqzA6XR6ti1evJhGjRqdti5o7dq1PPjggzRr1oxJkyadVG9RHnnbz379+vHTTz8xc+ZMz0ebNm3o2bMnM2fO9NTblDfe9tNut9OxY0fWrFlTbPumTZuIiIigWrVqZR1yqXjbz2rVqhESEsKmTZuKbd+8eTMRERF+84e3evXqNGrUqFjdSWFhIfHx8XTu3NnCyHxv/vz5PPHEE/To0YMJEyYQERFhdUg+98wzzzBnzpxi56FatWpx++23M3PmTKvD85no6GjPVXcn2rx5c7n/5/xMlED5uT59+pCZmcmQIUPYunUrM2bMYOLEiQwYMMCzz9GjRz0jEYWFhTzzzDNERUXx1ltvkZ+fz6FDhzh06FC5Ha0A7/tZrVo1GjRoUOwjODiYsLAwGjRoUOzqr/LE234CPPLIIyxYsIAPPviA3bt3M2fOHMaOHespti6PvO2nzWajf//+fPTRR8ycOZM9e/Ywc+ZMxowZU+w1FdFfR9Duv/9+JkyYwLfffsvWrVt54YUXyM3NrbDTIEVO7Gd6ejr/+te/aN26NUOGDCE9Pd1zHqroo4kn9jMqKuqk85DD4aBq1ao0aNDA2kDP0l+P28cff5wpU6bw1VdfsWfPHqZMmcL06dN54IEHrAvyLJXPvxLiM1FRUYwbN45hw4bRu3dvatasyeDBg4ut5zRs2DCWLVvG/PnzWbt2Lbt27QLg8ssvL9ZW3bp1mT9//jmNv6S87WdFVZp+XnjhhXz88ce8//77fPzxx9SsWZN//vOfPPjgg1Z142+Vpp+DBg2iWrVqfPzxxxw4cIB69erx7LPPWn716NkaOHAgAF988QUAt956K0ePHuW///0vR44coU2bNkyYMKHCj7Kd2M8//viDjIwM1qxZw6WXXlpsvwsuuMDzvaiI/vrz9Fd/7eeNN94IuNele/PNN6lbty6vvPLKKZfMqSgM0zRNq4MQERERqUg0hSciIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiFYZWXRGR8kIJlIhUCPPmzeNf//qX5+ulS5fSokWLYrc1OZeee+45WrRoQYsWLXjmmWfOqq0WLVrwwQcflHj/O+64w/Pe3rxORHxHK5GLSIXw2WefFfu6devWTJkyhaZNm1oTEFCzZk1GjRp11quAT5kyxaubAb/22mtkZmZy2223ndX7ikjpKYESkQopPDyc9u3bWxpDYGCgT2Lwtg0rk0YRcdMUnoiUe3fffTfLli1j2bJlnmm7v07hffDBB1x11VX88ssvXHfddZx//vnceOONrFq1itWrV9O3b1/atm3Lddddx+LFi4u1v3nzZgYMGEDHjh3p2LEjjz32GHv27PE6zhYtWvD111/z3HPP0alTJy644AJef/11cnNzefvtt+nSpQsXXnghQ4YMIS8vr9jriqbiivq1ePFi7r//ftq1a8fFF1/M22+/TWFh4Vl8F0XEl5RAiUi598orr9CqVStatWrFlClTaN269Sn3S0pK4s033+Thhx/mv//9L+np6QwaNIinnnqKW2+9lffeew+Xy8WTTz5Jbm4uADt27OD2228nJSWFt956i2HDhrFnzx7uuOMOUlJSvI51+PDhBAYGMmrUKG688Ua++OILbrrpJg4cOMA777zD7bffzrRp0/72ZrLPPPMMnTp1YsyYMVx//fV8+umnTJs2zet4RKRsaApPRMq9pk2bEh4eDpx5uisnJ4dXXnmFSy+9FIBt27bx7rvvMmzYMG655RYAnE4ngwYNYseOHbRs2ZJRo0YRHBzMZ5995nmPiy66iMsvv5xx48YVK1wviSZNmvDvf/8bgLi4OKZNm0ZBQQHDhw/H4XDQrVs35s+fz8qVK8/YTt++fXnsscc88fzyyy/89ttv3H777V7FIyJlQwmUiPiVjh07eh7XqFEDKJ50VatWDYCMjAwAlixZwoUXXkhwcLBniiw8PJzOnTuzaNEir9+/Q4cOnscOh4PIyEjatGmDw3H8dFutWjWOHj1a4nYAYmJiyM7O9joeESkbSqBExK8UjSKdKDg4+LT7HzlyhB9//JEff/zxpOdKc3Xdqd4/JCTE63b+GrPNZtM6WCLliBIoEanUqlSpwsUXX8x999130nMnjhqJiJxIZwcRqRBsNhsul8vn7V5wwQVs3bqVli1behIm0zR55plnaNCgAS1btvT5e4pIxaer8ESkQoiIiGDHjh0sXryY9PR0n7X76KOPsnv3bgYMGMAvv/zCggULGDhwILNnzyY2NtZn7yMi/kUJlIhUCHfddRcBAQE89NBD/PHHHz5rNzY2lq+++grDMBg8eDCDBg3i0KFDfPjhh1xxxRU+ex8R8S+GqapEERGvPffccyxbtoz58+dbFkOLFi14/PHHGThwoGUxiFRWqoESESml/Px8Vq9eTfXq1alfv/45e9+tW7eSmZl5zt5PRE6mKTwRkVI6dOgQt912GyNHjjyn7/vSSy/pRsIiFtMUnoiIiIiXNAIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4qX/B2D9wbLR1ok6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the amplitude-weighted skewnorm with the inferred parameters\n", + "fit = param_opt[0] * scipy.stats.skewnorm(param_opt[3], loc=param_opt[1], scale=param_opt[2]).pdf(first_peak['time_min'])\n", + "\n", + "# Plot the data and the observed peak\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.fill_between(first_peak['time_min'], fit, color='dodgerblue', label='inferred signal')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With an adequate reconstruction of the observed peak, the signal area is computed \n", + "by integrating the signal over the entire time range of the peak window, and \n", + "the procedure is repeated for the next peak window." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/methodology/peak_detection.ipynb b/.doctrees/nbsphinx/methodology/peak_detection.ipynb new file mode 100644 index 0000000..f5c4609 --- /dev/null +++ b/.doctrees/nbsphinx/methodology/peak_detection.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Detecting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peak detection is a common problem in time-series analysis. In some cases, they are very easy to spot by eye, but that can be difficult to define mathematically. This is particularly true for signals that are “noisy” or have pronounced variations in their baseline values. There are several Python libraries out there for automatically identifying peaks in time-series data, such as [findpeaks.py](https://erdogant.github.io/findpeaks/pages/html/index.html) and [PeakUtils](https://peakutils.readthedocs.io/en/latest/). In `hplc-py`, peak detection is executed using the [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html) which is very mature and actively maintained. In this notebook, we won’t cover the algorithms used under-the-hood for peak detection, but will outline how `hplc-py` leverages `scipy.signal.find_peaks` and `scipy.signal.peak_widths` to 1) identify peaks in chromatographic data and 2) clip the chromatogram into discrete peak windows which are used in the fitting procedure.\n", + "\n", + "## Selecting peaks by topographic prominence\n", + "Peaks are defined by a handful of quantitative properties. The most relevant \n", + "to `hplc-py` is the [topographic prominence](https://en.wikipedia.org/wiki/Topographic_prominence), \n", + "which is a measure of the relative height of a maxima in the signal to its nearest \n", + "baseline. For chromatographic data, peaks are often highly pronounced relative\n", + "to their surrounding signal, except in two limits:\n", + "\n", + "1) The concentration of the analyte is close to the sensitivity limit of the \n", + "detector \n", + "2) The peak overlaps with a nearby peak which is much higher in concentration, \n", + "drowning out or completely subsuming the signal.\n", + "\n", + "As an example, we can load a real chromatogram of a [minimal medium for \n", + "bacterial growth](https://www.sigmaaldrich.com/US/en/product/sigma/m9956) \n", + "which has a slew of compounds, some of which overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10.0, 20.0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCSklEQVR4nO3dd3xT9frA8U+SbrpLFxvKqOxVLMoShet1IaJXveIARVxw9So4QEUFx08UQcTBUK6L6d6AA1T2XmWWMgptKaVt2qZtmvz+iCdtZSXNSXKSPu/Xixc0OfnmS0/aPHm+z3m+OqvVakUIIYQQQqhG7+0JCCGEEEL4GwmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsgBvT8BfWa1WLBZpkq8Ver1OzodGyLnQDjkX2iHnQhv0eh06nU6VsSTAchOdTkdRUSlms8XbU6n3AgL0xMQ0kPOhAXIutEPOhXbIudCO2NgGGAzqBFiyRCiEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCKFZS5YsZPLkZ8nOPubtqQghhFMCvD0BIYQ4m19//ZnJk58FYMuWTSxa9CV6vXwmFEL4BvltJYTQpI8++sD+7/3797F+/VrvTUYIIZwkAZYQQnOMRiNbtmwCoFevdAB+++0Xb05JCCGcIgGWEEJz1q1bg9lsplmz5tx00y0AbNiwzsuzEkIIx0mAJYTQnHXrVgNw6aV96dixMwAHDx6gsrLCm9MSQgiHSYAlhNCc3bt3AdCpUxeSkpIJD4/AbK7k0KFML89MCCEcIwGWEEJTLBYLe/fuAaBdu4vQ6XS0bdsOwH67EEJonQRYQghNOXIki7KyUkJCQmjRoiUAbdq0BSTAEkL4DgmwhBCakpGRAUCbNu0wGAwApKS0AeDQoYNem5cQQjhDAiwhhKYcPpwFQMuWrey3NWnSBEA6ugshfIYEWEIITTl27AgATZs2s9/WqFHjv+47itVq9cq8hBDCGRJgCSE05ehRW4DVqFET+23JybYAq7S0lMLC096YlhBCOEUCLCGEphw7dhSoXhYECA4OJj4+vtb9QgihZRJgCSE0o7KykpycEwA0btyk1n1KFkvqsIQQvkACLCGEZpw4cRyLxUJISAhxcQ1r3acEXMeOSYAlhNA+CbCEEJpRs/5Kp9PVui8hIRGAvLxcj89LCCGcJQGWEEIzlCsIa9ZfKRo2tNVgnTyZ59E5CSFEXUiAJYTQDGX5r3Hjpmfcl5CQAMDJk5LBEkJonwRYQgjNUJYI/17gDtUZrNxcyWAJIbRPAiwhhGZUt2g4M4MlS4RCCF/i1QBr7dq1tGvX7qx/Lr/8cgB2797N8OHD6dq1KwMGDGDu3Lm1xrBYLMyYMYO+ffvSpUsXRo4cSVZWVq1j1BhDCOF+Sg1W48aNz7hP6YNVVlZKSYnRo/MSQghneTXA6tatG7///nutP/PmzSMgIID77ruPgoICRowYQYsWLVi6dCljxoxh+vTpLF261D7GrFmzWLBgAZMnT2bhwoXodDpGjRpFRUUFgCpjCCHcr7i4mMLCQuDsS4RhYQ0ICwsD5EpCIYT2eTXACgoKIj4+3v4nOjqal156icGDB3PTTTexaNEigoKCmDRpEikpKQwbNoy77rqL2bNnA1BRUcG8efMYM2YM/fv3JzU1lWnTppGTk8OyZcsAVBlDCOF+yvJgTEwsYWENznqMskyYlyfLhEIIbdNUDdbHH3/M8ePHefLJJwHYsGEDaWlpBAQE2I9JT08nMzOT/Px8MjIyKCkpIT093X5/ZGQk7du3Z/369aqNIYRwv+oWDWfWXymUAOvUqXyPzEkIIeoq4MKHeEZ5eTnvvPMOd955p/1y7BMnTtC2bdtaxyn3ZWdnc+KEbUuN5OTkM445fvy4amPUlcGgqfi13lLOg5wP7zvfuTh+3NaioUmTJgQEnP1cxcbGAlBUdPqcxwjHyM+Fdsi50I6/9Td2iWYCrC+//JLy8nJuv/12+20mk4mgoKBaxwUHBwO2gKysrAzgrMcotRxqjFFXkZGhLj1eqEvOh3ac7Vzk5dk+7LRu3YqYmLMvESYl2T4clZUZz3mMcI78XGiHnAv/opkA64svvmDw4MHExMTYbwsJCTmj0Ly8vByAsLAwQkJCAFsdlfJv5ZjQ0FDVxqiroqIyqqosLo0hXGcw6ImMDJXzoQHnOxcHDhwEoGHDJAoKSs76+LCwCACys0+c8xjhGPm50A45F9oRFRWKXq9OJlETAdapU6fYvHkzo0ePrnV7UlISubm1rxZSvk5MTMRsNttva9asWa1jUlNTVRujrqqqLJjN8sOiFXI+tONs5+LoUVuRe3Jy43Oep6go2wewU6cK5FyqRH4utEPOhfdZreqNpYkF302bNqHT6ejVq1et29PS0ti4cSNVVVX221avXk3Lli2Ji4sjNTWV8PBw1q5da7+/qKiIXbt20bNnT9XGEEK4l8VisV9FeLYWDQolw11QcMoj8xJCiLrSRICVkZFB06ZNz1iSGzZsGEajkQkTJrB//34+++wz5s+fb890BQUFMXz4cKZOncqKFSvIyMjgkUceISkpiUGDBqk2hhDCvfLy8qisrMRgMJCYmHTO46KjJcASQvgGTSwRnjx5kujo6DNuj4uLY86cOUyZMoWhQ4cSHx/P+PHjGTp0qP2YsWPHYjabmThxIiaTibS0NObOnWsvWldjDCGEeyktGpKTG9VqqfJ3ylWEp0+f9sS0hBCiznRWq5orjqKmgoISWU/XgIAAPTExDeR8aMC5zsVXX33OM888ycUX9+bdd98/5+Nzck7wj38MICAggPXrt6NT85rqekZ+LrRDzoV2xMY2UK1dhiaWCIUQ9Zsj9VdQvURoNpspLi52+7yEEKKuJMASQnidEmCdr4s72PrTKfsRnj5d4PZ5CSFEXUmAJYTwOkczWACRkVGA7WpfIYTQKgmwhBBed/Sorci9cePzZ7AAIiJszUaLilzbaUEIIdxJAiwhhFeZTCby8mzNfx3LYEUCSA2WEELTJMASQnjV8ePZADRo0OCs7Vr+LiLCtkRYXCwZLCGEdkmAJYTwqurlwSYOtV1QMlhSgyWE0DIJsIQQXlVd4H7h+iuAiAhZIhRCaJ8EWEIIr1K6uDdpcuH6K6iZwZIlQiGEdkmAJYTwqqNHHW/RALJEKITwDRJgiTMcOnSQ0aNHsmTJAm9PRdQDdV8ilABLCKFdmtjsWWjLiy8+z7p1a1i79k/S0y+9YHdtIerKarXalwglgyWE8CeSwRK1GI1GNm3aYP961apfvTUVUQ8UFp6mpKQEgEaNGjv0mOo2DRJgCSG0SwIsUcvu3Tsxm832r7dv3+bF2Qh/p9RfxcfHExIS4tBjpMhdCOELJMAStRw4sO9vX+/30kxEfVC9POj4MrSyVU5xcTFWq9Ut8xJCCFdJgCVqOXDgAACDB/8TgMzMA1gsFm9OSfgxZzZ5ViibPVssFvvyohBCaI0EWKKWnJzjAHTv3hO9Xk9FRQX5+Se9PCvhr2p2cXdUSEgIQUFBgCwTCiG0SwIsUUtOTg5ge8OLj08AqveKE0Jtx44dA5wLsEC6uQshtE8CLFFLbu4JABITk0hObgRIgCXc5+jRwwA0bdrMqcdJobsQQuskwBJ25eXlFBQUAJCQkEBCQiIAJ0/KEqFQX2VlJSdO2JaknSlyB2k2KoTQPgmwhF1urm15MDg4mKioaGJjYwE4dSrfm9MSfurEieNUVVURHBxMfHy8U49VAixpNiqE0CoJsISdEmAlJCSh0+mIjY0D4NSpU96clvBTR47YlgcbN26KXu/cr6Lw8HAASkvlKkIhhDZJgCXscnKU+ivb0qCSwSookAyWUJ9yBWGTJs4VuAM0aNAAQNo0CCE0SwIsYXfyZB4ADRvalmuqM1gSYAn1KQXuTZo4V+AOEmAJIbRPAixhd/r0aQBiYmL++luWCIX7KNvkNG3q/GbiDRrYlghLSoyqzkkIIdQiAZawO33adgVhVFQ0UHOJUAIsoT41MlhGowRYQghtkgBL2BUWngYgOjoaqF4iLCkpwWQyeWlWwh9ZrVaOHFFqsOqewZIidyGEVkmAJeyUJcLoaNsSYXh4OIGBgYBksYS68vPzKSsrRafTOd3FHSSDJYTQPgmwhJ2SwVKWCHU6HTEx0gtLqE+5gjAxMcm+r6AzJIMlhNA6CbCE3d+XCAGioqIA2fNNqKu6B5bz2SuoDrCMRgmwhBDaJAGWAGw1MQUFp4HqDBbIliTCPZQAy9k9CBXVbRpkiVAIoU0SYAnAttRiNlcCtTNYERERgGSwhLqUAKsuBe5QHWDJEqEQQqs0EWB98cUXXHXVVXTq1Imrr76a77//3n7f7t27GT58OF27dmXAgAHMnTu31mMtFgszZsygb9++dOnShZEjR5KVlVXrGDXG8HdKgXtQUBChoWH22yWDJdxBqcFyNYNlMpkwm82qzUsIIdTi9QDryy+/5KmnnuLmm2/mm2++4aqrruK///0vmzdvpqCggBEjRtCiRQuWLl3KmDFjmD59OkuXLrU/ftasWSxYsIDJkyezcOFCdDodo0aNoqKiAkCVMeqDmgXuOp3OfrtksIQ7KC0aGjd2LYMFksUSQmhTgDef3Gq1Mn36dO68807uvPNOAB588EE2bdrEunXrWLduHUFBQUyaNImAgABSUlLIyspi9uzZDBs2jIqKCubNm8e4cePo378/ANOmTaNv374sW7aMq6++mkWLFrk8Rn1QWFgIVBe1KySDJdRWWlpq35apLl3cAQIDgwgKCqKiogKj0UhkZNSFHySEEB7k1QzWwYMHOXbsGNdee22t2+fOncvo0aPZsGEDaWlpBARUx4Hp6elkZmaSn59PRkYGJSUlpKen2++PjIykffv2rF+/HkCVMeoDo9GWoQoPj6h1e3i47WotyWAJtRw+bKu/ioiIrHVBhbNkuxwhhJZ5NYN16NAhwPaJ9u6772bXrl00adKE+++/n4EDB3LixAnatm1b6zEJCQkAZGdnc+LECQCSk5PPOOb48eMAqoxRVwaD11dgHaYss0RERBAQUD1vJaNlNBbXut2XKOfBl86HvzIY9Paf+6ZNm7n0mgoPD6eg4BQmU5nPvja9SX4utEPOhXbUqJBxmVcDLKUL8+OPP85DDz3EY489xo8//sgDDzzA+++/j8lkOqMJYXBwMADl5eWUlZUBnPUYZclLjTHqKjIy1KXHe1JVVTkADRvGEhNTXd+SnBwPQFlZSa3bfZEvnQ9/dvDgQQDatm3t0msqMtKWbdXpzD7/2vQm+bnQDjkX/sWrAZayDcvdd9/N0KFDAbjooovYtWsX77//PiEhIWcUmpeX2wKBsLAwQkJCAKioqLD/WzkmNNT2QlVjjLoqKiqjqsri0hiekptr69QeFBRKQUF10bBebws8CwpO17rdlxgMeiIjQ33qfPgrg0FvD7CSk5u49JpSrnbNycn32demN8nPhXbIudCOqKhQ9Hp1MoleDbCSkpIAzljCa926Nb/++iuNGzcmNze31n3K14mJifbLs3Nzc2nWrFmtY1JTU+3P4eoYdVVVZcFs9o0flqIiW41VgwYNas05LCz8r/uLfOb/ci6+dD78mRJgNW3a3KXzoQRYRUXFcl5dID8X2iHnwvusVvXG8uqCb/v27WnQoAFbt26tdfvevXtp1qwZaWlpbNy4kaqqKvt9q1evpmXLlsTFxZGamkp4eDhr1661319UVMSuXbvo2bMngCpj1AfnKnKvvopQityFOpQAq3nzFi6NU71djhS5CyG0x6sBVkhICPfccw9vvfUW33zzDYcPH+btt9/mjz/+YMSIEQwbNgyj0ciECRPYv38/n332GfPnz2f06NGArW5q+PDhTJ06lRUrVpCRkcEjjzxCUlISgwYNAlBljPpAeZM6M8CyfV1WVkplZaXH5yX8S3FxMXl5thYNzZq1cGks6eYuhNAyry4RAjzwwAOEhoYybdo0cnJySElJ4c033+Tiiy8GYM6cOUyZMoWhQ4cSHx/P+PHj7fVaAGPHjsVsNjNx4kRMJhNpaWnMnTvXXrQeFxfn8hj1QXUGK7zW7X9v6OjKZfVCZGUdAiAurqE9eK8radMghNAyrwdYACNGjGDEiBFnva9z584sXLjwnI81GAyMGzeOcePGnfMYNcbwd+daIgwMDCIwMJDKykpKS0slwBIuUQKsFi1auDyWEvzLEqEQQouk6YYAoLjY9ial1FzVpLyRlZTIUoxwzaFDmYDr9VdguwoYsLdaEUIILZEASwBgNNq2womICD/jPuVqrbKyUo/OSfifw4dtm6i3aNHS5bHkdSmE0DIJsARWq9Wewfr7EiHULCaWNzLhGjUzWNUBlmSwhBDaIwGWoLy8HLPZdoXg2QIsZSlGlgiFK6xWa40aLNczWMrrUgJ/IYQWSYAlal3mrrxp1RQWZstgyVKMcMWpU/kYjUZ0Oh1Nmza78AMuQNlpQV6XQggtkgBL2JdYQkLOvkWAEmBJBku4QsleNW3aVJUWKFLkLoTQMgmwhD0DcK69F2UpRqghM9PWwb1Vq1aqjKe8XuV1KYTQIgmwhD0DcO4ASzpmC9cdPHgAgDZt2qgyXvXStWSwhBDaIwGWqBFgnVl/BTUzWBJgibo7eHA/cObm7nWlfCAwmcqwWGSDXCGEtkiAJexLLOfKYEmbBqEGtTNYNT8QmEySxRJCaIsEWOKCNVjKG5lksERdGY1GcnJOAOoFWCEhIeh0OkCCfyGE9kiAJS5YgyUZLOEqpcA9Pj6B6OhoVcbU6XSEhCitGiSDJYTQFgmwhMM1WNKmQdSVUn+VkpKi6rhyhasQQqskwBIOtGmQRqPCNUr9VatWrVUdV5qNCiG0SgIs4UCbBslgCdcoGaxWrdyTwZIlQiGE1kiAJRwOsGQZRtSVksFKSVE3g1VdgyWvTSGEtkiAJRyowZIlQlF3ZWVlZGcfA9QPsCSDJYTQKgmwRI0arAs1Gi3FarV6bF7CP2RlZWK1WomJiSE2NlbVsatbiEjwL4TQFgmwhL1J44XaNFgsFkwmk8fmJfzDgQO2+quWLdWtv4KaGSwJsIQQ2iIBlrhgDZZS5wLSbFQ4b+/ePQC0bq3OFjk1yYbPQgitCnDkoPXr19f5CdLS0ur8WOEZF1oi1Ov1hIWFUVpaSmlpKXFxnpyd8HV792YA0LZtO9XHrm7TIDVYQghtcSjAuv322+1bUjjKarWi1+vZtWtXnSYmPOdCGSywFbqXlpZKqwbhNCWD1a5dqupjKx8KJMASQmiNQwEWwNNPP03r1o5fAbRv3z4mT55cp0kJz3IkwKp+I5OlGOG4/PyT5OefRKfT0bq1OnsQ1iT7ZAohtMrhAKtjx4507tzZ4YGDg4PlijMfcaE2DVBd6C4ZLOEMJXvVtGmz876+6kopclcu1BBCCK1wqMj9nXfecSq4AujSpQs7d+6s06SEZ11oqxyAkJAQAMrL5SpC4bjq+iv1lwdBityFENrlUIB13333cdlllzFz5kyys7MdHtxgMNR5YsIzrFarQ0uESoAltS7CGe6svwJpNCqE0C6HAqyZM2fSoUMH3n33Xa644gruvvtufvjhByorK909P+Fm5eXl9qVcR2qwZClGOMOdVxCCNBoVQmiXQzVYV1xxBVdccQWnT5/mm2++4csvv+Thhx8mJiaGIUOGcNNNN5GSon4TQeF+NT/51+x39XfVGSxZIhSOqaioIDPzIABt2rgrwJK9CIUQ2uRUo9Ho6GiGDx/O4sWL+fbbbxk2bBg//PAD11xzDbfccguLFy+WT5I+RnljCg4OPu+SrhJ8SSd3/7F162YefHAUo0bdycqVv6g+/t69ezCbzURHR5Oc3Ej18aE6wJLXpRBCa+rcyT0lJYXHHnuMX375hXnz5tG2bVveeOMN+vbtq+b8hJs5Un8FNTNYEkD7g4yM3YwadSd//LGK9evX8p//PMBXX32u6nPs3LkdgPbtOzrdR89REvgLIbTK5a1yqqqqKC0txWQySU2WD3KkRYPtfnkj8xcWi4Xnn59IRUUF6emXcP31w7Barbz44nNkZWWq9jxKgNWxo3NXIDtDCfylNlAIoTUO98H6uw0bNvDVV1/x448/UlRURPfu3XnyySe58sor1ZyfcDNHWjTUvF/eyHzfmjV/sGvXTsLDw5k8+RViY+M4fjybtWtX89prrzBjxjuqPM/OnTsA6NChoyrjnY2SwaqoqKCqqkquXBZCaIZTGaz9+/czbdo0Bg4cyO23384vv/zCv/71L77//ns+/vhjhg4desE36r87duwY7dq1O+PP4sWLAdi9ezfDhw+na9euDBgwgLlz59Z6vMViYcaMGfTt25cuXbowcuRIsrKyah2jxhj+Sslgna/A3Xa/kimQDJavW7RoAQDXXjuUhg3j0ev1PPnk0+j1elau/JXt27e6/BylpSVkZh4AoEOHTi6Pdy7K6xKkR5sQQlscCrDmzZvH0KFDufbaa5k7dy4XXXQRb731Fr/++iuPPvooLVq0qPME9uzZQ3BwMKtWreL333+3/7n22mspKChgxIgRtGjRgqVLlzJmzBimT5/O0qVL7Y+fNWsWCxYsYPLkySxcuBCdTseoUaOoqKgAUGUMf+Z4DZZsqusPjEYjv/++EoBhw/5lv71Fi1ZcffV1AHz00XyXn2f37l1YLBYSE5No2DDe5fHOJTg42P5vCf6FEFri0BLh//3f/9GqVSseffRRhg4dSlxcnGoT2Lt3Ly1btiQhIeGM++bPn09QUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD8C0adPo27cvy5Yt4+qrr2bRokUuj+HPqpcIHa3BkgDLl61Z8wdmcyXNmjU/Y2/A2267k6+//oIVK34iNzeHhITEOj+PUn/lzuwVgF6vJyQkBJPJJMG/EEJTHMpgffLJJ3z33Xfcc889qgZXYMtgnWsT6Q0bNpCWlkZAQHUcmJ6eTmZmJvn5+WRkZFBSUkJ6err9/sjISNq3b8/69etVG8OfKQGTo1cRSpbAt61c+SsA/foNOOO+1NSL6NatB2azmSVLFrr0PDt2KAGW++qvFPLaFEJokUMZrO7du9f6Oicnhx07dlBcXHzW46+//nqHJ7B3717i4+P597//zaFDh2jevDkPPPAAffv25cSJE7Rt27bW8UqmKzs7mxMnTgCQnJx8xjHHjx8HUGWMujIYXL5I0+2UupUGDcIICDj3fBs0CLMff77jtEg5D75wPtxt0ybbh4a+ffud9TzeeuttbN68kW+//YqHHhqLXu/898xqtbJly0YAunXrXut53HEubMvXp6msLPe516Y3yc+Fdsi50A41O8o4fRXhd999xxNPPHHO+iSdTudwgFVRUcGhQ4cIDQ1l/PjxhIWF8dVXXzFq1Cjef/99TCYTQUFBtR6j1FyUl5fblwTOdkxhYSGAKmPUVWSkcwX/3mC1mgGIjo4kJqbBOY+Lj48BbAHW+Y7TMl84H+6Uk5PD0aNH0ev19O9/KRERZ57HG264jhdeeJZjx46yb9/OWpldR2VlZZGbm0tgYCD9+vU+a3ZUzXOhBP+Bgfjsa9Ob6vvPhZbIufAvTgdYb7zxBp06deKpp54iOjrapScPCgpi/fr1BAQE2AOcjh07cuDAAebOnUtISMgZgVx5eTlg2+RVWRqoqKj429VE5fZf6mqMUVdFRWVUVVlcGsPdCgpsQaReH0hBQck5jzObbWF9SUnpeY/TIoNBT2RkqE+cD3f69dffAWjTpi1ms/6c53HQoH/w2WdL+PjjT2nXzvkaqp9/thXRd+jQCZPJgslU/TzuOBdBQbYPTHl5BT732vQm+bnQDjkX2hEVFVqnzP3ZOB1g5ebmMmHCBDp06KDKBMLCziyubtu2Lb///jtJSUnk5uae8fwAiYmJmM1m+23NmjWrdUxqaiqAKmPUVVWVBbNZ2z8sJSXKVjkh551rYKDtTcxkKtP8/+lcfOF8uNPmzZsA6NKl+3m/D1dddR2ffbaEn376gfHjJ9b64OGIDRtsy5C2eq6zP4+a5yI42Da/kpLSen1+66q+/1xoiZwL77Na1RvL6TCta9euZGaq0+05IyODbt26sWHDhlq379ixg9atW5OWlsbGjRupqqqy37d69WpatmxJXFwcqamphIeHs3btWvv9RUVF7Nq1i549ewKoMoY/c3arHCkk9l179mQA0L79+T8cde/ek+TkRhiNRn777Wenn2fTJtvPc7duPZyfZB3Ia1MIoUVOZ7CeffZZ7rvvPoxGI507dz7rG3NaWppDY7Vt25Y2bdrw3HPP8eyzzxITE8OiRYvYsmULS5YsoWHDhsyZM4cJEyZwzz33sG3bNubPn89zzz0H2JYYhw8fztSpU4mNjaVx48a8+uqrJCUlMWjQIACGDRvm8hj+rC5b5VgsFtVSqMIzrFYre/bsBqBdu/NnZvV6PddcM4TZs9/m66+/5B//uMrh5zl27CiHD2dhMBjo2rX7hR+gAunRJoTQIqcDrEOHDnHy5ElmzpwJUGsTV6vVik6nY/fu3Q6Npdfreeedd5g6dSoPP/wwRUVFtG/fnvfff5927doBMGfOHKZMmcLQoUOJj49n/PjxDB061D7G2LFjMZvNTJw4EZPJRFpaGnPnzrXXdMXFxbk8hj9zdqscsBW6XyggE9qSm5tDYWEhAQEBtGp19rYoNV1zzXXMnv02q1f/zsmTeQ43C1292lbn1alTFyIjI12as6MkgyWE0CKnA6xXXnmFJk2aMHr0aBo2bOjyBGJjY3nxxRfPeX/nzp1ZuPDcPXkMBgPjxo1j3Lhxbh3DXzm6RKjUudgeIwGWr1GyVy1atKzV/fxcmjdvSefOXdi2bSvff/8tt99+l0PP8+effwBwySV96jxXZ0kTXCGEFjkdYGVnZ/P2229z6aWXumM+wsMcDbD0ej3BwcGUl5fLG5kPOnDAti/g37u3n88111zPtm1b+eabLx0KsCorK1m3bjUAl1zSt07zrAvJYAkhtMjpQpq2bdvam3MK3+foVjkgb2S+7PBh2+blzZu3dPgx//jHPwkICGTPnt3s3bvngsdv2rQBo9FITEwMF13Uvs5zdZZksIQQWuR0gPXUU08xc+ZMFi1axN69e8nOzj7jj/AdjtZg2Y4Jq/UY4TsOH7Zd+du8eQuHHxMVFU3//gMA+Prrzy94/I8/fgfAZZddgcFgcHqOdaUUuUvgL4TQEqeXCO+66y7MZjPPPPNMrQL3mhwtchfe5+gSIUgGy5dlZSkZrBZOPe7aa4eyYsUyvv76Cx588OFz9sSqrKzk55+XATB48D9dmquz5HUphNAipwMspb2B8H1Wq9UeYIWEOLJEKJkCX2Q0Gjl5Mg+AZs1aOPXYPn36kZzciOPHs/nhh2+5/vphZz1u3bo1nD59mpiYWHr27OXqlJ1S3aZBMqtCCO1wKMBavXo1nTt3pkGDBrXaG5yP0Whk+/bt9O7d26UJCveprKy0N2B1LoMltS6+5PDhQwDExTUkIiLCqccGBARw88238cYbr/LJJx8yZMgNZ81cL1liu0rXVrfl9Oc2l0gGSwihRQ7VYI0cOdJ+FZKjDhw4wMiRI+s0KeEZNT/xO1aDJQ0dfVFW1iHA+eVBxdChwwgNDWPv3gx++WX5GfcfO3bU3vH9pptures066w6syqvSyGEdjj0UdNqtbJkyRJWrlzp8MA5OTl1npTwDCVQCggIJDAw8ILHyxuZb3I1wIqKimb48DuZPftt3nxzGv36XVYrSzV79ttYLBbS0y8hJeXCTUzVpmSwysokgyWE0A6Hc/mLFi1yevBzFcELbXCmwB3kjcxXHTlyGIBmzZrXeYw77hjJokWfkJl5kPffn82oUfcDsGXLJr76ynaF4QMPjHV9snUQGipLhEII7XEowMrIyHD3PIQXONOiAaTI3VcdP25rndKoUeM6jxEREcFjjz3J008/waxZMwgNDSMlpTXPPPMEFouFa64ZQufOXVWasXMksyqE0CLPVqMKTXE2g1VdgyVXa/kSJcBKTm7k0jjXXDOEbdu2snjxp0yd+pL99pSUNjz++ESXxnaFFLkLIbRIAqx6rDrAcmxfQXkj8z1ms5ncXFs9ZFJSsktj6XQ6nnzyaZo1a87HH8/HaCzmssuu4NFHH3f66kQ1SQZLCKFFEmDVY84uEcqWJL4nLy+XqqoqAgMDadgw3uXx9Ho9t99+l8ObP3tCzcDfarVK7acQQhOc3ipH+I+6FrlLBst3KMuDSUnJ6PX++eOuZLAsFguVlZVeno0QQtj4529c4ZC612BJBstX1Ayw/FXN7XskuyqE0AqnA6xBgwbx9ttvc/z4cXfMR3iQ8zVYskToa9QqcNeywMBAe18uaSEihNAKpwOs3r178/7773P55ZczYsQIvvnmG8rLy90xN+FmzrdpkCVCX1MfMlgg2zgJIbTH6QDr+eef5/fff2fq1KkEBgby+OOP06dPH5555hm2bNnihikKd3G+BksyWL5GjR5YvkB6tAkhtKZOVxEGBQVx1VVXcdVVV3Hy5El+/PFHvvrqK2699VZatGjBzTffzI033kh4eLja8xUqUgIs5c3pQqQGy/ecOGFbypcMlhBCeJZLRe7l5eWsXr2aP/74g4yMDCIiImjTpg3vvPMOV1xxBatXr1ZrnsINqpcIpQ+Wv1J6YCUmJnl5Ju4lr00hhNbUKYO1Zs0avvzyS3766SdKS0vp1asXkydP5h//+AdBQUGYTCZGjhzJxIkTWbFihdpzFipRPu07u0Qondx9Q1lZKUajEYD4+AQvz8a9ZPlaCKE1TgdYAwYMICcnh8TERO644w6GDRtGkyZNah0TEhLCJZdcwocffqjaRIX66toHSy5q8A15eXmALUPZoEEDL8/GvSSDJYTQGqcDrC5dunDjjTfSp0+f83ZMvuGGG7jxxhtdmpxwL2fbNFR3cjdhsVj8tnGlv8jLywWgYcN4v+9uXp1dlQyWEEIbnH6HbNOmDW3btj3rL+yjR4/y/PPPA9CoUSOSkvy77sPX1bVNA0gWyxecPGnLYCUkuL5FjtZJBksIoTVOB1hvvfUWOTk5Z71v69atLF682OVJCc9QPu2HhTmWwQoOrtkxW97ItC4315bB8vf6K5AASwihPQ4tEd5yyy1s3boVAKvVys0333zOYzt16qTOzITbOVuDZTAYCAoKoqKi4q9i4hg3zk64quYSob+rbiEiF2AIIbTBoQBrypQpfP/991itVt566y2GDRt2xvKfXq8nMjKSwYMHu2WiQn3O1mCBrdbFFmBJpkDrlCXC+pTBkqVrIYRWOBRgpaSk8NBDDwGg0+m46aabSExMdOvEhPs5W4MFtjeyoqJCuRzeBygZrPoRYEmbBiGEtjgUYGVnZxMfH09gYCA33HADVVVVZGdnn/P4Ro38d2NZf2E2m6msrAScD7BAal18QXWA5f9LhPK6FEJojUMB1uWXX87ChQvp3LkzAwcOvOAl37t371ZlcsJ9al7O7swSoXKsXA6vffVriVAyWEIIbXEowHrxxRdp2rSp/d/+3lOnPlCWBw0GA4GBgQ4/TjIFvqG0tKTedHEHCA4OBsBkkhosIYQ2OBRgDR061P7vG264wW2TEZ5T8wpCZwJmyRT4hvz8fMB2vho08P9N16ub4MrrUgihDXVqxb1+/Xo2bdoE2JqL3nvvvVx77bW89dZbLk0mMzOTbt268dlnn9lv2717N8OHD6dr164MGDCAuXPn1nqMxWJhxowZ9O3bly5dujBy5EiysrJqHaPGGP7G2RYNitBQyWD5glOnbAFWXFycl2fiGZJZFUJojdMB1pdffskdd9zB8uXLAZg0aRLr16+nefPmvPPOO7z33nt1mkhlZSWPPfYYpaXVfWwKCgoYMWIELVq0YOnSpYwZM4bp06ezdOlS+zGzZs1iwYIFTJ48mYULF6LT6Rg1ahQVFRWqjeGPlAArJMTx+ivb8cobmWQKtOzUqVMAxMbWlwCrehsnIYTQAqcDrPfff5+hQ4cyfvx48vPz+fPPP3nooYeYOXMmjzzySK3AxRlvvvnmGRvSLlq0iKCgICZNmkRKSgrDhg3jrrvuYvbs2QBUVFQwb948xowZQ//+/UlNTWXatGnk5OSwbNky1cbwR3Vp0QDyRuYrlAxWTEz9aAYrgb8QQmucDrAOHjzIkCFDAFi5ciVWq5XLL78csHVxP378uNOTWL9+PQsXLuSVV16pdfuGDRtIS0sjIKC6VCw9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9+e9evXqzaGP1LeiJwPsGQpxhfUtwyWso2TNBoVQmiFQ0XuNUVGRlJSUgLAb7/9RqNGjWjRogUAhw8fdvoTc1FREePHj2fixIkkJyfXuu/EiRO0bdu21m0JCbYrorKzszlx4gTAGY9LSEiwB3pqjFFXBkOdStw8orzcFiCFhYUREOD4PJV9C8vLTU49zpuU86Dl86G206dtAVZcXJymzpO7zkV4uO11aTKVaer/q2X18edCq+RcaIeaTRKcDrDS09OZOXMm+/btY9myZYwcORKAH3/8kenTp9OnTx+nxps0aRJdu3bl2muvPeM+k8lEUFBQrduUy7HLy8vtdURnO6awsFC1MeoqMtK57JAn6XRVAERFRRAT0+ACR1eLiYkEwGo1O/U4LdDy+VCb0Wh77TZpkqzJ86T2uUhMjAVsP+9a/P9qWX36udA6ORf+xekAa8KECTz22GO89dZbXHLJJYwePRqAl156iUaNGvHoo486PNYXX3zBhg0b+Prrr896f0hIyBmF5soSQFhYmH25qqKiwv5v5Rhl6UuNMeqqqKiMqiqLS2O4S37+aQAMhiAKCkocfpzVagCgsLDYqcd5k8GgJzIyVNPnQ20nTuQAEBoaoanz5K5zUV5uBWwXb5w6ZZRefQ6ojz8XWiXnQjuiokLR69XJJDodYMXExJzR5gDgk08+cXqLnKVLl5Kfn8+AAQNq3f7ss88yd+5cGjVqRG5ubq37lK8TExMxm83225o1a1brmNTUVACSkpJcHqOuqqosmM3a/GEpKbEVuYeEhDg1x6CgYPvjtfp/Oxctnw+1KX2woqJiNPl/VvtcBAZWZ6BLSspqfVgS51effi60Ts6F91mt6o3ldIClKCwspKysDIul+sWg7E/oaKA1derUM4qlBw8ezNixY7nqqqv49ttvWbBgAVVVVRgMtszJ6tWradmyJXFxcURERBAeHs7atWvtwVFRURG7du1i+PDhAKSlpbk8hj9S2mFIkbt/qq9F7mCrD5QASwjhbU4HWIcOHeKJJ55g69at5zzG0b0IExMTz3p7XFwcjRs3ZtiwYcyZM4cJEyZwzz33sG3bNubPn89zzz0H2Oqmhg8fztSpU4mNjaVx48a8+uqrJCUlMWjQIABVxvBH1W0anOuDJR2ztc9isXD6dAEAsbGxXp6NZwQEBBAQEIjZXInJZCIqytszEkLUd04HWC+88AKHDh3ioYceIikpSbW1yrOJi4tjzpw5TJkyhaFDhxIfH8/48eNrbd0zduxYzGYzEydOxGQykZaWxty5c+1F62qM4Y/q2sldMljaV1hYaM8sR0fXjz5YYHttGo2VEvwLITTB6QBrw4YNTJkyhWuuucYd82HPnj21vu7cuTMLFy485/EGg4Fx48Yxbty4cx6jxhj+pu4BlmSwtE5pMhoVFeXURt6+LjQ0BKOxmLIyCf6FEN7ndPopPDycKMm/+7zqAKuuW+XIm5hWKQFWfam/UkjwL4TQEqcDrCFDhvDxxx9jVbPUXnicbJXjv6oL3OtH/ZWiZn87IYTwNqeXCENDQ9m4cSODBg2iU6dOZ1yto9PpePHFF1WboHAP12uwJEugVQUFyj6EksESQghvcTrA+vzzz4mIiMBisZz1SkJp8Ocb6r4XoWSwtK6+tWhQyPK1EEJLnA6wfv75Z3fMQ3iYksEKCXG2TYPtTcxsNlNZWVmviqh9hVKD5ey+oL5OCf6V17YQQnhTnXssWCwWMjIyWLlyJUajkdOnT6s4LeFurtZggWQKtKr+ZrCkBksIoR116uT+5Zdf8tprr5Gbm4tOp2PJkiW8+eabBAYG8tprr/l1/yh/UdcarMDAQPR6PRaLBZOpjIiICHdMT7igOoNVv4rcpQZLCKElTmewvvvuOx5//HHS09OZNm2a/WrCwYMHs3LlSmbNmqX6JIW6qqqq7J/ynW3ToNPppNZF4woLTwMQExPt1Xl4mrwuhRBa4nQG65133uGWW25h0qRJVFVV2W+/4YYbyM/PZ9GiRTz88MNqzlGorOYnfGczWGDLFJSWlkqmQKOU5fqoqPpWgyUBlhBCO5zOYGVmZp5zj74uXbqQk5Pj8qSEeynLgzWzUc6QNzLtslqtFBUVAtS7hsCyRCiE0BKnA6y4uDgOHDhw1vsOHDhAXFz9Kqz1RdVXEIbWqa2GvJFpl9FotGeWo6KivTsZDwsOVgJ/KXIXQnif0wHWVVddxYwZM/jhhx+oqKgAbJmQHTt2MGvWLK688krVJynUVdcCd4WSwZI937RHqb8KCQmpU3bSl0kTXCGEljhdg/Xwww+zd+9eHn74YfR6W3x2++23U1paSs+ePfnPf/6j+iSFuuraokGh9MKSJULtqa6/ivbqPLxBXpdCCC1xOsAKCgpizpw5/PHHH6xZs4bTp08TERFBr1696N+/v3Ry9wGuZ7BsVx5KpkB7lAxWfQywZOlaCKElTgdYX3zxBf379+fSSy/l0ksvrXVfXl4eX3zxBaNGjVJtgkJ91QGWcy0aFJIp0C4lgxUdHe3VeXiDXHwhhNASp2uwnnzySY4cOXLW+3bv3s2MGTNcnpRwL1eXCCVToF2FhQVA/cxgKUXu5eUSYAkhvM+hDNbo0aPZv38/YLsM/MEHHzxrt/b8/HyaNWum7gyF6tQqcpdMgfYUFtbPFg0gr0shhLY4HGAtXrwYgM8//5z27dsTG1t7Gw69Xk9kZCQ33HCD+rMUqlIvwJIMltZIDZZs9iyE0AaHAqzu3bvTvXt3+9cPPPAATZs2ddukhHu5WoNV/UYmmQKtqc81WFIbKITQEqeL3F966SV3zEN4kFKDpQRKzpKlGO2SDJa8LoUQ2uB0gHXq1CmmTJnCr7/+SllZmX2zZ4VOp2PXrl2qTVCoz/UlQily1yolwKqPGazg4GDAVuRutVqlZYwQwqucDrAmTZrEb7/9xtVXX01SUpK92ajwHUpgVPclQslgaVV9bjSqBP4Wi4XKysqzXogjhBCe4nSAtWrVKp566iluvvlmd8xHeIDrndwlg6VV9TmDVXNrIJOpTAIsIYRXOZ1+CgoKkgJ3HydtGvxTZWUlJSUlAERGRnt3Ml4QGBhIQIDtM6NcgCGE8DanA6xBgwbxzTffuGMuwkOkBss/FRXZemDpdDoiIyO9PBvvkBYiQgitcHqJsH379rzxxhscOXKELl261ErLg+2X+4MPPqjaBIX6XG/TIBksLVLqryIiIjEYDN6djJcEB4dgNBopLy/39lSEEPWc0wHW888/D8D69etZv379GfdLgKV9rm+VIwGWFtXnFg0KyWAJIbTC6QArIyPDHfMQHiRLhP6pPjcZVUgvLCGEVkiPhXpIrSVCKSTWFslgSQZLCKEdDmWw7rjjDp599llSUlK44447znusTqdj/vz5qkxOuIerGayabRqkoaN2KBs91+8Mlq3ZqMkkNVhCCO9yKINVs1u71Wo97x+LxeK2yQrXWa3WGo1GXavBAqSYWEOUDFZkZJR3J+JFsnwthNAKhzJYH3744Vn/LXyPyWSyB8xhYXVbIgwOrt3Q8e9XkgrvkBosuQBDCKEdXq/Bys/PZ9y4caSnp9OtWzfuvfde9u/fb79/9+7dDB8+nK5duzJgwADmzp1b6/EWi4UZM2bQt29funTpwsiRI8nKyqp1jBpj+AtleRDqvtmzwWCwd8mWNzLtkBosyWAJIbTD6wHW/fffz5EjR5g9ezZLliwhJCSEu+66i7KyMgoKChgxYgQtWrRg6dKljBkzhunTp7N06VL742fNmsWCBQuYPHkyCxcuRKfTMWrUKCoqKgBUGcOfKC0aQkJCXNpHUt7ItKewsACQDBZI4C+E8D6vBlgFBQU0adKEF154gU6dOpGSksIDDzxAXl4e+/btY9GiRQQFBTFp0iRSUlIYNmwYd911F7NnzwagoqKCefPmMWbMGPr3709qairTpk0jJyeHZcuWAagyhj9xtQeWQt7ItOf0aVuRe33OYCnL1/K6FEJ4m1cDrJiYGF5//XXatGkDwMmTJ5k7dy5JSUm0bt2aDRs2kJaWZt9fDCA9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9/e3gRVjTH8ibJEWNflQYW0atCe+rzRs0ICfyGEVjjdaNRdnn76aXu26e233yYsLIwTJ07Qtm3bWsclJCQAkJ2dzYkTJwBITk4+45jjx48DqDJGXRkMXl+BPUNFhe2NJywsjICAus9PyYBVVpa7NI4nKOdBi+dDLVar1R5gxcXFavacuPtcNGhgu3CjosKk2e+BVtSHnwtfIedCO9TsOuRQgPXFF184Nej111/v9ETuvPNObr75Zj799FMefPBBPvnkE0wmk72YWhEcbOtzU15ebs/GnO0YpSeQGmPUVWSka1kid9DrbW00IiLCiYlpUOdxwsNtjw0IsLo0jidp8XyopaSkhMrKSgCaN29EgwbaPifuOhcxMbZNri0Ws8+8Lr3Nn38ufI2cC//iUID1xBNPODygTqerU4DVunVrAF544QW2bNnCRx99REhIyBmF5krfpbCwMPtyQEVFxRm9mZQMixpj1FVRURlVVdrqC5aXZyuEDgwMpqCgpM7jBAYG2cdzZRxPMBj0REaGavJ8qCU7+xgAgYGBlJdbqajQ5jlx97mwWm2bXBcWFmv+delt9eHnwlfIudCOqKhQly4Aq8mhAGvFihWqPNnf5efns3r1av75z39iMNh+Mer1elJSUsjNzSUpKYnc3Nxaj1G+TkxMxGw2229r1qxZrWNSU1MBVBmjrqqqLJjN2vphKSmpvorQlbkpxcQlJaWa+z+eixbPh1ry808BtvqrqiorYD3/A7zMXedCCfxNJpPfnmu1+fPPha+Rc+F9VhV/dToUYDVu3NjhAa1OzC43N5dHH32UuLg4evfuDUBlZSW7du1i4MCBNGzYkAULFlBVVWUPwFavXk3Lli2Ji4sjIiKC8PBw1q5daw+OioqK2LVrF8OHDwcgLS3N5TH8SfVVhHVrMqqQNg3aojQZrc9XEIK8LoUQ2lGnIvdvv/2WdevWUVlZaQ+orFYrpaWlbNmyhZUrVzo0TmpqKn369OG5555j8uTJREZG8s4771BUVMRdd91FcHAwc+bMYcKECdxzzz1s27aN+fPn89xzzwG2uqnhw4czdepUYmNjady4Ma+++ipJSUkMGjQIgGHDhrk8hj9xdR9CRfV+hHK1lhZIk1EbubpVCKEVTgdYM2fOZObMmURERGA2mwkMDCQgIIBTp06h1+u56aabHB5Lp9Pxxhtv8Nprr/Hwww9TXFxMz549+fjjj2nUqBEAc+bMYcqUKQwdOpT4+HjGjx/P0KFD7WOMHTsWs9nMxIkTMZlMpKWlMXfuXHvRelxcnMtj+BMlwKrrNjkKuRxeW2SbHJvQUHldCiG0wekA6/PPP+e6667jlVdeYcaMGWRnZ/PKK6+wY8cO7r33XntPK0dFREQwadIkJk2adNb7O3fuzMKFC8/5eIPBwLhx4xg3btw5j1FjDH9RWipLhP6oqEiajIK8LoUQ2uF0qXxOTg5DhgxBp9PRoUMHNm/eDEDHjh257777WLx4seqTFOpRrwZLlmK0RGqwbJSLL5QrhYUQwlucDrDCwsLQ/dWJq0WLFhw9etSejr/ooos4evSoujMUqlICLNeXCCVToCVSg2VTvXQtr0shhHc5HWB16tSJzz//HIBmzZphMBj4888/AThw4IBf1i35E2WJUGqw/IvUYNnUfF06c0WzEEKozekarPvuu48RI0ZQXFzMO++8w3XXXccTTzzBxRdfzO+//84VV1zhjnkKlagfYEmmQAskg2WjZFarqqowmyvtfbGEEMLTnA6w0tLSWLJkCXv27AHgmWeeQa/Xs2nTJq688kqnur4Lz6sucpc2Df5ENnq2qbkbQ1mZSQIsIYTX1KkPVmpqqr3LeXBwMC+88IKqkxLuo2Sc1CpylwBLG6TI3SYwMBC9Xo/FYqG83AREentKQoh6qk4BVnFxMWvWrKG0tPSsdQ512YtQeIZ6S4S2DJZSNC+8p6qqiuLiIkAyWDqdjpCQEEpLSyX4F0J4ldMB1m+//cbDDz9sb1j5d3Xd7Fl4hlp9sJQA7VyvA+E5RUVF9n9HREjGJiQk9K8AS16bQgjvcTrAev3112nVqhVPPvkkiYmJqu06LTxDrTYNSoCmBGzCewoLCwAIDw8nMDDQy7PxPlm+FkJogdMB1sGDB5k1axY9e/Z0x3yEG1VWVlBZWQmoEWDJEqFWSP1VbRJgCSG0wOn0U6NGjTAaje6Yi3Czmst5rl5FGBbWALC9iVVVVbk0lnCNtGiorb4EWAsWfMTgwf0ZPLg/n3zyP+n7JYTGOB1gjR49mrfeeks6tvsgJcAKCAh0+fL1mhkwqcPyLmkyWlt92GXggw/m8vLLk8nNzSE3N4f/+78XefvtN709LSFEDU4vEX799dfk5OQwaNAgYmNja/WdAVuR+/Lly1WboFCPWlcQAgQFBWEwGKiqqqK0tITw8HCXxxR1Ixs91+bvGayDBw/w1ltvAPDAA2MJDAxk+vTXeO+9WVxySR+6du3u3QkKIYA6BFhJSUkkJSW5Yy7CzUpLSwB1AiydTkdoaBhGY7HUYXmZZLBqq24h4p8ZrNmz36ayspI+ffozatT96HQ6Dh3K5MsvP+O1117hf/9bYN8vVgjhPU4HWC+99JI75iE8QHnDcbX+ShEWZguw5EpC71JqsCIjo7w7EY2obiHif6/LnJwTLFv2AwAPPjjWHkiNGfMIP/74Hdu3b2XTpg306JHmzWkKIahDgJWdnX3O+/R6PWFhYURGSi8eLVKrB5ZCeSOTAMu7JINVm/IBwh9fl9999w1ms5nu3Xty0UUd7Lc3bBjPNdcMYcmShXzyyf8kwBJCA5wOsAYOHHjB9HNUVBR33HEHDzzwQJ0nJtSnVg8shTQb1Qa5irA25QOEP74uf/rpOwCuuuraM+67+eZ/s2TJQn777VeKiorkg64QXub0VYQvv/wygYGBXHrppbz00kvMnj2bl19+mcsuuwydTseDDz7I0KFDefvtt/nkk0/cMWdRR8objloBljQb1QbZ6Lk2f10izM4+xu7duzAYDAwcOOiM+9u0aUdKShvM5kp++UUuNBLC25zOYH377bdcffXVZ9RiDRkyhGeffZYdO3bwzjvvEBkZyaeffsq///1v1SYrXKMUuau/RFiiyniibqTRaG3+ukS4du1qADp27ExsbOxZj7nyyqt4663p/PTT9wwZcoMnpyeE+BunM1jr1q3jmmuuOet9gwcPZs2aNQD06NGDI0eOuDY7oSo12zTYxrE1G/W3TIGvqc5gxXh3IhpR/br0ryXCdetsv1svvrj3OY8ZPPifAKxZ82etPSqFEJ7ndIAVHR1NRkbGWe/LyMiw90MqLS1V7Wo1oQ4pcvc/ZWVllJeXA7JEqPDHzKrVamX9+rUApKVdfM7jmjdvQcuWraiqqmL9+jWemp4Q4iycDrCuvfZaZsyYwfz588nJyaGyspKcnBw+/PBDZs6cybXXXkthYSHz58+nS5cu7pizqCO12zQo/YYkwPKe06dtGz0HBATaMzf1nT8uER48eICTJ/MIDg6mS5du5z02Pf1SAFav/sMTUxNCnIPTNVgPP/ww+fn5vPzyy7z88sv22/V6PcOGDeORRx7hxx9/ZNeuXcyfP1/VyQrXuOsqQn96I/M1NQvcpbmkjZKh9aetcjZt2gBA167dCQo6/zZXvXtfyqeffigBlhBe5nSAFRAQwEsvvcT999/P2rVrKSgoIDExke7du9O0aVMA+vXrx6pVqy74i0B4lvo1WP55tZYvkR5YZ/LHDNauXTsAW4H7hfTsmUZAQCDHjh3l8OEsmjVr7u7pCSHOwukAS9GsWTOaNWt21vuioqSjtBYpgZDUYPkPZYlQriCspiyV+tPrcudOW4DVoUPHCx4bFtaALl26sHHjBjZsWCcBlhBe4lCAdfnll/PWW2+Rmpp6wUajstmzdqld5C59sLxPyWDFxMgVhAp/a4BrMpk4cGAfAO3bXzjAAujatQcbN25gy5ZN3HDDTe6cnhDiHBwKsHr16kWDBg3s/5ZaD9+kfg2Wcjm8/1yt5Wuki/uZlCXCsrJSLBYLer3T1/Joyt69GVRVVREbG0diYpJDj+nWrQcAmzdvcufUhBDn4VCAVbOpaM3CduFb1O7kLkuE3idLhGeq+fo2mcp8/upKpf6qffuODn+47dy5KzqdjiNHssjPP0lcXEN3TlEIcRZ1+mhnNBrJyckBoKKigjlz5jB58mTWr1+v6uSEuqqXCNVp0yABlvfJEuGZgoND7IGIPywT7t69C4D27Ttc4MhqkZGRtG7dBoAtWySLJYQ3OB1gbdu2jYEDB/Lhhx8CMHnyZKZOncpXX33FnXfeyYoVK1SfpFCHu64ilADLe2SJ8Ex6vd6verTt32+rv2rduq1Tj+vatTsAW7duVn1OQogLczrAmjZtGq1ateLmm2/GZDLx9ddf8+9//5t169Zx44038s4777hjnkIF1Y1G1VkyUYrcpU2D9yhLhLJNTm3+EvxbLBYOHjwAQEpKa6ce26FDJ6D6CkQhhGc5HWBt3bqV+++/n6ZNm7J69WpMJhNDhgwB4KqrrmLfvn2qT1K4rrKyArO5EnBPBstqtaoypnCO9ME6O3/p0Xb8eDZlZaUEBAQ63W5Baemwe/dOLBaLO6YnhDgPpwMsvV5vbyD622+/ERkZSefOtuZ3RqORkJAQdWcoVFHzk7zaNVgWi8W+H57wLClyPzt/aTZ64MB+wLbHYGBgoFOPbdkyhZCQEEpLS8nKOuSG2QkhzsfpAKtjx44sWbKEzZs38/333zNgwAB0Oh35+fnMnj2bjh0d69OiOH36NM888wz9+vWje/fu3HrrrWzYsMF+/+7duxk+fDhdu3ZlwIABzJ07t9bjLRYLM2bMoG/fvnTp0oWRI0eSlZVV6xg1xvB1yhtNUFAQAQF17i9bS81+WiUlRlXGFI6rrKywn1cpcq/NX5avlQDL2eVBsO260a7dRQDs2rVT1XkJIS7M6QBr/PjxrF69mltvvRWDwcD9998PwDXXXMOhQ4d4+OGHnRrvv//9L1u3buX1119nyZIldOjQgbvvvpsDBw5QUFDAiBEjaNGiBUuXLmXMmDFMnz6dpUuX2h8/a9YsFixYwOTJk1m4cCE6nY5Ro0ZRUVEBoMoY/kAJgBo0CFdtTL1eb++PVlIivbA8TVke1Ov1hIdHeHcyGuMvzUaVBqN1CbCg+spDpdWDEMJznE5ltG/fnp9++okDBw7Qpk0b+y+ySZMm0b17d+Lj4x0eKysriz/++INPP/2U7t1tV7xMmDCBlStX8s033xASEkJQUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD9iK8Pv27cuyZcu4+uqrWbRokctj+AMlAFICIrU0aBBOSUkJRmOxquOKC6teHozy+WaaavOXXQbqWuCuUDq/S4DluPLycubNe49vv/2K06dP06FDR0aNup+ePXt5e2rCx9Tpt3J4eDhdunSpVSz9j3/8w6ngCmzLGu+9916tZUWdTofVaqWwsJANGzaQlpZWa0krPT2dzMxM8vPzycjIoKSkhPT0dPv9kZGRtG/f3t6TS40x/IGSwVK76WJ4eHit8YXnVBe4y/Lg3/lLkfuRI4cBaNGiZZ0erwRYu3fvoqqqSrV5+auioiJGjhzOu+++xdGjRzAai1m7djX33HMH8+fPvfAAQtSgTjFOHUVGRtqzRorvv/+ew4cP06dPH6ZNm0bbtrV7vyQkJACQnZ3NiRMnAEhOTj7jmOPHjwNw4sQJl8eoK4NBO1kFk8m2VBIREU5AgHrzioiwLU2VlpaoOq6alPOgpfOhBqOxCLBdQajV7/3feepcKJlak6nMZ743f1dYWEhxse0cN2/evE7/j9atUwgNDaOsrJQjRw7Zm4+C//5c1JXFYuHJJx9l587tREdH88QTE2ndug2ffvoRS5cuZtq0V2nYMI4hQ25Q/bnlXGiHmjsBejXA+ruNGzfy1FNPcfnllzNw4EBeeukl+xWLiuDgYMCWxlXqK852TGFhIWDbKNXVMeoqMlKdq/XUYLXaWjRERUUSE6NeFis6Oso+vprjuoOWzocaystty74JCfGa/97/nbvPRUxMJAAWi/Zfl+dy5IhteTA+Pp5Gjeq+1U379hexceNGjh07RFpa1zPu97efi7r64IMP+OOPVYSEhLBw4UL7ykrv3j1JTk5k5syZvPDCJPr370PLlnXLKF6InAv/opkAa/ny5Tz22GN06dKF119/HYCQkJAzCs2VdgBhYWH2lhAVFRW12kOUl5fbL9NWY4y6Kioqo6pKG/1ncnNPARAcHEpBgXoF6cHBoX+Nn6/quGoyGPRERoZq6nyoITvbtl1VWFiEZr/3f+epc6HX21oaFBQU+cz35u927doLQKNGTVz6P6SktGXjxo1s2rSV/v0H2W/315+LuigsLOT//u9VAB555DEaN25Z63t+770PsX79BtauXcP48U/w3nvzVH1+ORfaERUVqlpNqyYCrI8++ogpU6YwaNAgpk6das8mJSUlkZubW+tY5evExETMZrP9tmbNmtU6JjU1VbUx6qqqyoLZrI0fFqPRViMVGhqm6pyUqxILC4s18389Fy2dDzUUFNiK3CMjo3zu/+Xuc6FslWM0Gn3ue6M4fNhWf9W4cROX/g/KFjsZGRlnHcfffi7q4pNPPqaw8DStWrVm2LBbzvr9mDjxeYYOvZo///yd1atXk5Z2serzkHPhfWr2zPb6gu8nn3zCCy+8wG233cYbb7xRa6kuLS2NjRs31irOXL16NS1btiQuLo7U1FTCw8NZu3at/f6ioiJ27dpFz549VRvDHygBllKUrpbqNg1S5O5pSoAlRe5nUgL/0lLfzF4BHD16BIAmTZq6NE6bNu0A2Ldvj8tz8kcVFRUsXPgxAHfffe85+wQ2bdqMG264CYBZs2bI7hXigrwaYGVmZvLiiy8yaNAgRo8eTX5+Pnl5eeTl5VFcXMywYcMwGo1MmDCB/fv389lnnzF//nxGjx4N2Oqmhg8fztSpU1mxYgUZGRk88sgjJCUlMWiQLRWuxhj+QHmjUf8qQluRuwRYnqds9Czb5JxJ+SBRXOy77UOOHTsK2DJYrmjTxpbBys3Nsbf2ENV++ul7Tp7MIz4+nsGDrzzvsXffPZqgoCA2b97I9u1bPTRD4au8ukT4448/UllZybJly1i2bFmt+4YOHcrLL7/MnDlzmDJlCkOHDiU+Pp7x48czdOhQ+3Fjx47FbDYzceJETCYTaWlpzJ07154Ji4uLc3kMf6BksNzRBwt8+43MV0mbhnNTXpe+3ABXCbBczWCFh4fTuHETjh07yr59e0hLS7/wg+qRL76wNZ3+17/+TWDg+X/nJyYmcuWVV/PVV5+zcOEndO7c1QMzFL7KqwHWfffdx3333XfeYzp37szChQvPeb/BYGDcuHGMGzfOrWP4OiWDpWYnd5A+WN4kGz2fm6+/Ls1mM8ePZwOuZ7AA2rZN5dixo+zdu1eTAVZ5eTmFhaeJjY1TbSsvR+TknGDjRlu/w6uvvs6hx/zrX//mq68+56efvufRR58gNjbWnVMUPszrNVjCM9yVwap+I/PdTIGvUpYIZaPnMymvS+V172tyck5gNpsJDAwkPj7B5fGUZUKt1WGVl5fz+uuvMGBAbwYP7s+gQf348MMPsFg8U+j944/fYbVa6datB40aNXboMR07dqJ9+45UVlby3Xdfu3mGwpdJgFVPuCuDpYwnW+V4VmVlJUVFtj5tMTHyCfrvfP11qSwPNmrUGIPB4PJ4bdvaCt337s1weSy1VFRU8J//3M///ve+veN+QcEpXnvtZZ57bqJHgqwff/wegH/+8xqnHnfdddcD8MMP36o9JeFHJMCqJ4xG9+xFqHRy99VMga9SipUNBgNRUVFeno32KAFWZWWlT27arlb9laJtW1vLmQMH9ttb03jbjBmvsWbNn4SGhjFt2lusX7+dJ598BoPBwJdffsb778926/Pn5eWyc+d2AAYOvMKpxw4adCUGg4EdO7Zx+HCWO6Yn/IAEWPWEuzNYvlrr4qtOnbI1jo2JiZWNns+i5gcJXwz+lRYNjRurE2A1adKUkJBQysvLNREQ7Ny5nY8//h8AL788lcsuu5zAwEBuvvnfPPXUswC8/fabbl3S/P33lQB06NCJhg2d20c3Lq4hvXrZatl+/PE71ecm/IP8Zq4nlADIXVcRGo1G6QvjQadO5QNIge05GAwG+4bPvrhMeOyYEmA5Vhd0IXq9XlN1WG++OQ2r1cpVV11L//4Da913ww03MWDA5ZjNZqZNe9Vtc1i58lcA+vUbUKfHDx78TwB++WWFSjMS/kYCrHrAbDZjMpkA9ftgRUTYAqyqqir7cwj3UwKsmJg4L89Eu3w5u3r0qLpLhFCzDsu7Adbu3TtZs+ZPAgICePDB/5xxv06n49FHHycgIJA///ydP//8XfU5VFZWsGbNn0DdA6y+ffsDsGvXDnJzc9SamvAjEmDVAzW7WaudwQoNDUP31/bjvvhG5qskg3VhvlwfWJ3BUi/AUjq6e7vQffHiBQBcccU/ztmComnTZvzrX7cC8MEHc1Sfw44d2ykrKyUmJpZ27S6q0xgNG8bTsWNnAFat+k3N6Qk/IQFWPaC0UAgMDFS9eapOp/P5K7Z8kVKDFRsrGaxz8dVmoyUlRvs2SGr0wFIoGaz9+/epNqaziouL+e67bwC46aZbznvsHXeMwGAwsG7dGjIydqs6jw0b1gHQo0eaSzWM/ftfBsDKlb+oMi/hXyTAqgeUzJLa+xAqqjMFvvVG5sskg3VhSrbW1wL/Y8eOAbYGssrPlhpat24DwPHj2RQVFak2rjOWLfsBk6mMVq1S6N79/Hu9JiUlM2jQPwD4+OP5qs5jwwZbc9GePXu5NE6/frYAa+3a1VIiIc4gAVY9oHyCV7v+SiEbPntedYAlGaxz8dVmo8oVhI0aqZe9AoiMjCIpKRmAAwe8k8VascK2JdpVV11rLy04n1tvvR2wBWZqncfKygq2bt0EuB5gtW3bjqSkZEwmk70jvBAKCbDqgeorCN2VwYoEsDe+FO5XvUQoGaxz8dWNyJX6KzUL3BXKlYTeKHQvLi5m7drVAFx++WCHHtO5c1datGiJyWRi2bIfVJnHjh07MJlMxMTEkJLS2qWxdDodvXtfCmD/vwmhkACrHlAyWGoXuCuURpfeWnaojySDdWG+ehWhksFq0kTdDBZUB1j79+9VfewLWbXqV8zmSlq1SqFly1YOPUan0zFkyA0AfPnlZ6rMo7r+qpdDWbQLUfphSYAl/k4CrHpASa27qwYrMlIJsCSD5QlWq5WCAilyvxDlA0Vxsa8FWLYWDWpeQaiovpLQ8xkspe/UZZc51zX96quvQ6fTsWXLJvsG2K5QAqyePdNcHguqA6w9e3bbL04QAiTAqheKi22ZJWUpT21KBquwUAIsTygrK7UX1MoS4bkpBeK+lsHKzla/B5aiZgbLk42BrVYr69evBeCSS/o49diEhES6d+8BwPLlP7o0D1v91WbA9forRVxcQ/v3dd26NaqMKfyDBFj1QHGx7SoqNa9IqikyMhqQAMtTlPqrkJBQQkPDvDwb7fLFJUKLxaL6PoQ1NW/ekoCAQEpKSsjOPqb6+Ody4MA+8vNPEhISQqdOXZx+/KBBVwK4XIe1c+cOTKYyYmJiaNXKtfqrmnr16g3AunWyTCiqSYBVD3gqg1VUdNot44vapEWDY2pu4+Qr8vLyqKiowGAwkJiYpPr4gYGBtGplq3/y5DKhktnp1q1HnXrxXX75YHQ6Hdu2beXEieN1noda/a/+7uKLbcuEksESNUmAVQ9U12C5J4MlS4SeJU1GHeOLbRqUKwiTkpIJCAhwy3NU12F5rtBdCTyUTI+z4uMT6NZNWSb8qc7zqK6/Umd5UNGjRxoGg4EjRw7bM5BCSIBVD1RnsNy1RChF7p4kGSzHVAdYvtNotPoKQvWXBxWe3jLHbDbbA5tevS6u8zhXXGFr7bBiRd0CrMrKSrZssdVf9eihToG7okGDcPu2OUqtmRASYNUD1TVYUuTuD/LzpUWDI6oDf99pH6JkP9TcIufvlILsffs8k8HKyNiN0WgkIiKS1NT2dR5n4MBBAGzZsomTJ/OcfvyuXbb6q+joaFJS2tR5HufSo4etM/3mzRtVH1v4Jgmw6gF3Z7CioqIBCbA8RTJYjlEC/+LiIqqqqrw8G8e4s8BdoQRYWVmHPLK9y44dWwHo0qUbBoOhzuMkJSXTsWNnrFYrv/66wunHu6v+StG9uy0rtmnTBtXHFr5JAqx6wN0ZLCVTYDKVUV5e7pbnENXy808CEBvb0Msz0TbldQm+k8VSlgjdmcGKj08gKiqKqqoq9u/f77bnUezYsR2ADh06ujzW5ZfbsljKljvOcFf9laJLl27o9XqOHDlMbm6OW55D+BYJsOoBpQYlIsI9jUbDw8Ptn0ylDsv98vJyAVt/IHFuAQEB9jqswkLfaACpFLm7o8moQqfT2euwdu3a5bbnUezatQOADh06uTzWwIG2JqXr16916ndNZWUFmzers//guURERNC2bSogy4TCRgIsP1dVVWW/ispdGSydTkdkpG1sWSZ0PyXAio+P9/JMtM+Xlq/LysrIy7PVFrljm5yalGXC3bt3u/V5SkqMZGYeBKBjR9cDrObNW9K6dRvMZrO9M7wjduzY/lf/q1i31F8pune31WFt3CjLhEICLL9Xs8miu9o0gFxJ6ClWq9Ve4Bsfn+Dl2Whf9QUYp707EQcojT/Dw8PtgaG7KBmsjAz3Xkm4a9dOrFYrycmNVLsoQyl2d2aZUGkTkZZ2sVvqrxRKofumTevd9hzCd0iA5eeU+quQkJA6NfhzlFxJ6BnFxcX2wuSGDSWDdSG+lMGqvoKwqSqbEJ+PEmC5O4O1c6eyPOh6/ZXi8stt7Rr+/HMVZWWlDj2mug9X3dtEOKJbN1uAtX//Pp8I6oV7SYDl59y9TY4iIsJ3MgW+TFkejIyMIiQkxMuz0T4l8D99+rR3J+IApf7K3cuDAK1bt0an05GXl2dv++EOO3cqBe6uLw8q2rZtR5MmTSkvL+ePP1Zd8HiTycS2bVsAWwbLnWJjY2nZ0tYpX6n5EvWXBFh+zt3b5ChqXhIv3Ke6/kqWBx2hZLB8Yen66FH398BShIaG0bRpMwD27XPfljnuCLB0Op19mdCRru5bt26msrKShIREmjVrodo8zkWpw5JlQiEBlp9TMljK1VTu4kuZAl8mBe7OUQIsX3hdeuIKwprc3XD01KlT9rqyiy7qoOrYSlf3Vat+paKi4rzHKlmuXr3S3b70CtX9sKTQXUiA5ec8lcGKibE1vVT2yRPuIRks51TXYJ326jwc4Yltcmpq29ZWh7Vnj3syWEr2qkWLlqqXKHTs2Jn4+ARKSkpYu3b1eY9dufIXAPr2HaDqHM6le3fbnokZGbsoLS3xyHMKbZIAy895qgZLuULo1KmTbn2e+k4CLOdER0cD2i9yt1qtHDtmy/Z4ogYLqgOsvXvdG2CpuTyo0Ov19p5YP/987qsJs7IOcehQJgEBAVxySR/V53E2ycmNSE5uRFVVFVu3bvHIcwptkgDLz1U3GXVvBisuztZV3J0Fs0KWCJ2ltA/RegaroOAUZWWl6HQ6kpMbe+Q5lQDrwIF9btlKqDrAUu8KwpqUqwl//XUFZrP5rMco2asePdLc/iGzJmUzadk2p36TAMvPVddgufeXS1ycLYOlbOMi3ENpRCkZLMdUZ7BOe3UeF6IsDyYkJLq1nUpNTZo0JTQ0lPLycg4fzlJ1bKvVWqNFg/oZLLAVk0dHR1NQUMAff6w86zHLlv0IQL9+l7llDucihe4CNBZgzZo1i9tvv73Wbbt372b48OF07dqVAQMGMHfu3Fr3WywWZsyYQd++fenSpQsjR44kKytL9TF8lfLGUnNfNndQMlinTuVjtVrd+lz1mbLHmQRYjvGVDFZ1/ZVnlgcBDAYDF110EWCrF1LTiRPHOXUqn4CAANq1u0jVsRUBAQFcd90NACxc+MkZ92dlHWLbti3o9XoGD77SLXM4F6UOa/v2bbI/az2mmQDrgw8+YMaMGbVuKygoYMSIEbRo0YKlS5cyZswYpk+fztKlS+3HzJo1iwULFjB58mQWLlyITqdj1KhR9itL1BjDlylXTymf5N1FCbDKy8spKZHCTncwm832ACs5uZGXZ+MblNd9aWkplZXa/Xmu2WTUk7p06QJU7xeoFmV5MCWljVv7tf3rX7ei0+n488/fycrKrHXfF1/Yfsf37n2pxz+QNG/ekoYN46moqGDHjm0efW6hHV4PsHJycrjnnnuYPn06LVu2rHXfokWLCAoKYtKkSaSkpDBs2DDuuusuZs+eDUBFRQXz5s1jzJgx9O/fn9TUVKZNm0ZOTg7Lli1TbQxfpnxyj46OcevzhISE0KBBAwDy8/Pc+lz1VW5uDlVVVQQEBEoXdweFh0fYL83XcqG7ksHyRA+smjp37gy4I8CyjafG/oPn06RJU/r06QfA7Nnv2G83Go0sXrwAgBtvvMWtczgbnU5Hz562Oqz169d6/PmFNng9wNq5cydRUVF89dVX9k9Tig0bNpCWlkZAQID9tvT0dDIzM8nPzycjI4OSkhLS09Pt90dGRtK+fXvWr1+v2hi+zFMZLIDYWCl0d6cTJ44DkJSU5Nb91PyJwWCwf7jQcguRo0cPA9ibf3pKdQZrl6qF7u68gvDv7rvvIQC+/fYrNm60/c5+++03MRqLadmyFf37e7b+StGzZy8ANmxY55XnF94XcOFD3GvgwIEMHDjwrPedOHGCtm3b1rotIcGW6s3OzubEiRMAJCcnn3HM8ePHVRujrgwG778JFhYWABAbG0NAgHvn07BhHEeOZHH69Cm3P5czlPOghfPhipwc2+uxUaPGmvr+OsMb56Jhw3gKCk5RUJCv2e/bkSO2AKtlyxYem6PBoKd169aEhoZSVlbK0aNZpKS0dnlci8Viz4h17tzZ7f+fLl26cP31w/jii6U8+ugYBg/+pz179fjjTxEU5J23uYsvtn1o37ZtC1VVlQQHB5/zWH/5HeUP1OxF6/UA63xMJtMZV9QoL9Ly8nLKysoAznqMshygxhh1FRkZ6tLjXWU2mykqsjUabdmyCTExDdz6fMnJSWzeDGVlxW5/rrrw9vlwVUGBbem1RYtmmvz+OsOT5yI5OZF9+/ZQVlakye9bWVkZubm29hsdO6Z6fI6dOnVi3bp1ZGbupWfPLhd+wAXs378fo9FISEgIaWlda60euMurr77MwYP72LZtG4sWfQrAfffdx7XX/tPtz30u0dEdSUhIIDc3l8zMPfTu3fuCj/H131GiNk0HWCEhIWcUmitXZISFhdmLJysqKmoVUpaXlxMaGqraGHVVVFRGVZXFpTFcUXNJxGIJoKDAvcXnERHRABw5ku3253KGwaAnMjLU6+fDVQcPHgIgLi5BU99fZ3jjXERH23YZOHz4mCa/b8pWNZGRkUCQx+aonIvU1PasW7eOdes2csUVV7k87p9/2pbEUlPbU1xcDnjmKrp58z7igw/msn//Pvr1G8C11w7x+vnu0SON77//lp9//o3U1M7nPM5ffkf5g6ioUNVKMDQdYCUlJdk/2SmUrxMTE+3N5XJzc2nWrFmtY1JTU1Ubo66qqiyYzd77YTl50lYLZWsyqnf7XJRu7nl5eV79f5+Lt8+Hq5RO34mJyT79/wDPngulNjAnJ1eT37fMzEMANGnSjKoqK+DZNidKndSOHdtV+f5s22a7aq59+44e/X4HBARxzz3327/2xvfy73r06MX333/LunVruffeBy94vK//jvIHanYZ0vSCb1paGhs3bqxVfLl69WpatmxJXFwcqamphIeHs3Zt9VUaRUVF7Nq1i549e6o2hq/y1BWECmk26l7Hj2cD0qLBWdW7DGjz6tYjR2w992p+wPMkpdP6nj27z9kR3RmeLHDXurQ0W6H7tm1bpB9WPaTpAGvYsGEYjUYmTJjA/v37+eyzz5g/fz6jR48GbHVTw4cPZ+rUqaxYsYKMjAweeeQRkpKSGDRokGpj+CpPXkEIEBdnax1w8qQEWGqzWq32qwglwHJOw4a2AEurr8vqJqPeCbCaNWtOeHg45eXlHDiw36WxKisr2bNnNwAdO7pnixxf0qxZC+Ljbf2wtm3b4u3pCA/TdIAVFxfHnDlzyMzMZOjQocycOZPx48czdOhQ+zFjx47lxhtvZOLEidx6660YDAbmzp1rL1pXYwxfdfq07QrCqKhojzxfYmIiUH21m1BPQcEpTCYTAElJyRc4WtSkBFhazawePuydFg0KvV5P+/a2YGj79i0ujXXgwD7Ky8sJD4+gadPmKszOt+l0Onr0kHYN9ZWmarBefvnlM27r3LkzCxcuPOdjDAYD48aNY9y4cec8Ro0xfJGnM1jKJrV5eXlUVFT4fICqJcrWTcnJjeT76iQls6rs46g11UuE3gtIunbtzrp1a9i8eZNLjTm3b7fVX3Xo0El6tf2lZ89e/PDDt2zYsBYY4+3pCA+SnwA/Vl2DFe2R54uOjrZfiZmTc8Ijz1lfHD58CLAtOQjnKJlVo7EYo9Ho5dnUVllZYV/69VYGC6BbN9veeZs3b3RpHGVbmE6dzn3FXH3Tq5fSD2srpaXau4pVuI8EWH6seonQM0XuOp3Ovnx14kS2R56zvsjKOgRA8+YtvDoPX9SgQbh902clmNGK7OxjWCwWQkPD7MX43tC5cxf0ej3Z2cdc+nCkZLAkwKrWtGkzmjRpSmVlpWybU89IgOXHlCXCmJhojz2nUoCdnS0BlpqUDJYEWHVTHfhrK8BSln6bNm1q3zPRGxo0CKddO1tbmi1bNtVpDKPRSGbmAQA6dXK9Yam/0Ol0XHJJXwD++ON3L89GeJIEWH5MWSL0VJE7QFKSLcDS2huZr1MyWN6s0/FlylZYWsusHjp0EIAWLVp5eSbQtatry4Q7d27HarXSqFFje088YXPppX0A+OOPlVjVbLQkNE0CLD9WUGDr5O6pPlhQ/Uam9GwSrrNYLPa96iSDVTdKBsvV/UXVdvCgLePTsqX3AyylDmvTproFWNu3bwUke3U2aWkXExgYyLFjR+3ZaOH/JMDyY/n5tk7uDRvGe+w5lSVCrb2R+bLc3BxMJhMBAQE0atTY29PxSVrNrCoBVqtWKV6eCXTvbguw9u3bU2ubLUcpBe4dO0r91d+FhTWge3db4+rff1/l5dkIT5EAy0+Vl5dTXGzb6FnpsO4JUuSuPmV5sEmTph7ZONcfKZnV7OxjXp5JNavVSmambYmwZUvvB1gNG8bTtm07rFYra9b84dRjrVYrW7duAWwF8+JMl1xiWyb8808JsOoLCbD81KlTtuxVYGDgX3sReoaSYTlx4rjUGqhk//59gDbqdHyV0iVdWWrVgvz8kxQXF6HX6zWz9Nu7txIEOFeMffDgAQoKThESEkL79h3cMTWfd+mltkL39evXSruGekICLD+lbAvSsGG8R69OSkhIJCAggPLycumFpZK9ezMAaNu2nZdn4ruUAObkyTzN9MJSrrhr3LgJwcHBXp6NjZJlWbPmT6c+IG3cuB6Azp27EhgojXDPJiWlDU2aNKWiokKWCesJCbD8lLItiKev5gkMDLQ3TFSWP4Rr9uyxBVipqRd5eSa+KyIiwt5nSitFxgcOaKfAXdGtWw9CQkI5eTKPvXv3OPw4JcDq0SPNXVPzeTqdjssvHwzAihU/eXk2whMkwPJTSoCl7MPmScpSlvIJXdRdZWUlBw7Ylgjbtk318mx8m5LFUmravE05r61atfbyTKoFBQXRs6dt7zxHlwmtVqsEWA664gpbgLVq1a+Ul5d7dS7C/STA8lNKgOWN7tDKJ/LMzEyPP7e/OXToIJWVlYSHh8sVhC7SWoC1Z89uAHuDT63o08dWK/TLL8scOv7gwQOcPJlHUFCQtGi4gA4dOpGQkEhpaanTFxII3yMBlp9SarC8G2BJBstVyjJNmzbtZPNcF7Vo0RKovmjAm6qqqti7dy8AqantvTyb2gYOHIROp2Pbtq0OtbVYteo3wNbrSSu1ZFql1+u5/PJBAPz00w9eno1wN/mN7adOnswDvBVg2S45P3RIMliuysjYBUiBuxqUJValps2bsrIOYTKVERISqrnu/AkJifaeWMuW/XjB41et+gWAvn0HuHNafuOf/7wGgBUrllFSoo0LLoR7SIDlp5RPnkpfKk9SMgUnT+ZRVFTk8ef3J1u2bAakO7YalEzRkSNZXn9jU5YH27Zth8Fg8OpczmbQoCsB+OGHb897XGHhaftrtG/f/m6flz/o1KkLzZu3wGQqcyiAFb5LAiw/lZubA0BSUpLHnzs8PJyEhEQADh7c7/Hn9xdlZaXs3r0TqN7GRNRdTEwMiYm2nwdnrpBzh4wMW4ClteVBxeDB/yQgIJCdO7fbs6hns2rVb1RVVZGS0obGjZt4cIa+S6fTcd11QwH4+uvPvTwb4U4SYPmhysoKe5F7QoLnAyyoXo5RAgThvO3bt2E2m0lMTJICd5UorS527tzh1XkoQYtWW2/ExsbZa4UWL15wzuO++eZLAAYN+odH5uUvrrlmCDqdjo0bN3D4cJa3pyPcRAIsP5Sbm4vVaiUoKIiYGM9t9FxTx46dANixY7tXnt8fbNq0AbBlrzzZLNafdenSDYDNmzd4bQ5ms9m+MbKW9+276aZbAPjuu28oKCg44/7jx7NZu3Y1YAsYhOMSE5PsTV0XLPjYy7MR7iIBlh9SOqgnJiZ57Y1ZeeNQNoAVzlMCLGWTWOE65Xu5adMGr23ltHdvBqWlpYSHR9C6dRuvzMERPXqkkZranrKyUubOfeeM+z/55H9YrVbS0i6mSZOmXpihb7vttjsA+OKLJRQXF3t5NsIdJMDyQ0qBu1Jv4g1KBisr6xBFRYVem4evKi4uZtOmjQD06nWxl2fjPzp06EhISAgFBQUcOOCd+kDlvHbt2l3TrTd0Oh1jxz4CwMKFn9TaxzEnJ4clSxYBcMcdI70yP1/Xu3cfWrVqTWlpKUuXLvL2dIQbaPenW9RZzQyWt0RHx9i3zPF2vYsv+vPPVZjNlbRo0VI2eVZRYGCQPYul9G/yNGV5UmmFoGW9e/fh4osvobKykscf/y8lJUbMZjMvvPAMZWWldO7chT59+nl7mj5Jp9Nx++13AfDhh/MxmUzenZBQnQRYfkj5pOntq3o6dLBlsbZu3ezVefiiX35ZAcCAAZd7eSb+57LLrgDgl1+We/y5rVYrmzdvAqBbN+0v/ep0OiZNmkxkZBS7du3g5puHctttN/H7778RFBTEhAnPSX2gC6666loSE5PIyTnBBx984O3pCJVJgOWHlADL2w0Mnd3TTNhUVFTw++8rARgwYKCXZ+N/+ve/DIBt27aQnX3Mo8+9Z89uTp3KJyQklA4dOnr0uesqObkRs2bNISYmlqNHj7Bnz26Cg4N5+eXXNbfNj68JDg7m/vvHAPDmm29K30A/IwGWH1ICLGWJzluUpYMdO7ZRWHjaq3PxJb/8shyjsZiEhERpMOoGCQmJXHxxbwA+/3yJR59bWZZMT+9NUFCQR5/bFR07duKrr37kmWde4Iknnuarr35k4MArvD0tv3DttdfTunUbTp8+zdtvz/T2dISKJMDyM+Xl5fYaLG8HWElJyaSktMFisbB6tWxs6iil4PX664dpssu3Pxg27GbA9r0uKyvz2PP+9pvvbisTERHBDTfcxC233ObV+k5/YzAYeOyxxwH46KP5bNmyycszEmqRAMvPHDt2FKvVSoMGDYiJifX2dLj00r4A9iUvcX5ZWZmsW7cGnU7H9dcP8/Z0/NZll11O48ZNOHUqnwULPvLIcx4+nMWOHdvQ6/X2ZUohwJbtv+mmm7BarTz77FMeDfqF+0iA5Weysg4B0KRJM00UnypvJL/8spyyslIvz0b75sx5F7Dt6ybd290nMDCQ0aMfBOC9997m2LGjbn/Ob7/9CoD09Eto2DDe7c8nfMukSZOIj08gK+sQTz/9BBaLxdtTEi6SAMvP7N+/F0AzDQy7d+9J06bNKCkpYfnyn7w9HU3Lysq0vwmPGvWAl2fj/665Zgg9evSkrKyURx8dS2lpidueq6Kiwr70K13PxdlER0fz2mtvEBAQyPLlPzJz5htea4Yr1CEBlp9RNrFt06adl2diY9vY9AbA1rFYnJ3VamXq1JexWCz06zeATp20u4WKv9Dr9Tz//MvExsaRkbGLsWPvd1tT3G+//YqTJ/OIj0+QffvEOXXv3pOJEycBMG/ee8yY8boEWT5MAiw/s2+fLcBq21YbARbAddddj8FgYOPGDWzbtsXb09GkH374llWrfiMwMJCHHx7n7enUG40bN2H69FmEhoaxYcM6/v3vG+3766mlpMTIrFnTAbj99rsIDPSdqweF511//TD++9/xALz//myefPJRjEajl2cl6kICLD9iMpnsO7NrKcBKTEyyL4vMmjXDy7PRnqysQ0yZ8hwA99xzH61apXh5RvVLp05d+OCDT0hObsTRo0cYPXoEd989nBUrfnK5u7bVauWll14gLy+PJk2acsstw1WatfBnd9wxkokTn8NgMPDDD99xyy1D+e23nyWb5WMkwPIju3btwGKxEBfXkLi4ht6eTi333vsAAQEBrFnzJ7/99rO3p6MZp06d4pFHHsRoLKZr1+6MHDnK21Oql9q1S2XRoi+55ZbbCAgIZOPGDTz66FgGDryERx8dw8cf/4+dO7dTXl7u8JiVlRW8/PILfPPNl+j1ep577kWf6n0lvOvGG29m3ryP7IH/f/7zACNHDmf58h8xm83enp5wgM4qITEAFouFmTNnsnjxYoqKiujRowfPPvsszZvXvRt6QUEJZrPnrgSZPfsd3nrrDQYNupJXX33DY8/rqNdf/z/+9795xMU1ZPHir4iN9UwbiYAAPTExDTx+Pi4kLy+XBx+8l717M0hISOTjjxcTH5/g7Wm5lVbPRU05OSdYsOBjfvjhW44fz651n16vp1mz5rRsmUKjRo1JTm5EUlIS4eERBAeHEBAQQEHBKXbv3sk333xpb/o7ceIkbrzxFm/8d87JF85FfXG+c2E0Gpk7910++ugDKisrAYiJiaV//8vo128AXbp009wHal8WG9sAg0Gd3JMEWH+ZOXMmn3zyCS+99BKJiYm8+uqrHDlyhG+++abOnzo9/YvrvvtGsmbNnzzxxERNLkWUl5dz663DOHhwP507d+Xdd+cRGhrm9ufV4hvJli2bGDfuP+Tl5dGwYTxz5syvF5s6a/FcnIvVamXHju2sW7eaTZs2sn37VqeL4GNiYnn66ecYOHCQm2ZZd750LvydI+ciJyeHxYs/ZenShRQUFNS6Lzm5Eamp7WnevAVNmjSladNmxMcnEBsbS2RkFHq9LFY5SgIslVVUVJCens64ceO49dZbASgqKqJv3768+OKLXH311XUa15O/uMrKSrnssksxmcpYvPhLzVxF+Hf79+9j5MjhFBUV0qVLN15//U23f/rS0htJTs4J3ntvFp99thir1UpKShumTZvp9X0jPUVL58JZVquVkyfz2L9/H4cOHeT48eMcP55NTs5xSktLKS8vp7KykpiYGJo0acYll/Thyiuv8siHiLrw5XPhb5w5F5WVlWzevJFfflnB2rV/kpl58Ly1WQaDgZiYWGJjY4mIiCQsLIywsAZ//QmjQYMGhIaGERoaQkBAIIGBNf8E1fq65v0BAQEYDAb0ej16vR6dTo/BoLd/bftjQK/X/fV37fu0Ss0AK0CVUXxcRkYGJSUlpKen22+LjIykffv2rF+/vk4BVlVVFYWFp6mqsgI6dDrlD/Z/K7fbXpz87ThdjeMu7JdfVmAyldG0aTNat27r9Hw9pXXrNrz55js8+OC9bN26mRtvvI7//OdRrr76OgIDA709PdVVVFRw+PAhtm7dwqpVv7Jq1W9UVVUBtn5ITz75NA0ahHt1jsIxOp2O+PgE4uMT6N37Um9PR9RTgYGB9OqVTq9etvcro9HI7t072bt3D0ePHubIkSMcO3aE/Px8iooKqaqq4uTJPE6ezPPyzGs7MwDTXTAocyx4O99jLzz2lCnP07ChOh/6JcACTpyw7d2XnJxc6/aEhASOHz9epzGPHj3KpZde4vLcwPYD1bhxE9q2bUefPv248sqrCAur/an4yy+XAnD11dcSGKjt/et69OjBggVLePjhh9i/fx+TJk3g7bdncM01Q+jffwDt23ckJCREtedTPo0YDHqsVitlZWUYjcUUFxdjNBpr/LuY4mLl6yKKi4spKTFSUVGB2VxFVVUVVVVmqqqqMJvNf319rn+bqaqyYDQWn9GRuWfPXowZ8x969EhT7f/oK2qeC+Fdci60w5VzER0dSe/evendu/cZ91VWVlBQUMCpU/l/BVxFlJaW/vWn5K8/pZSUlNgzsMofs7my1tfVfyrs/66qsmC1WqiqqsJqtWKxWBzuQO/MsZ701FOPS4ClJmXfp7/XWgUHB1NY6J7Gg86orKzk0KFMDh3K5KeffuC1117h9ttv55577iE+Pp7ly5ezdu0aAgMDufPO4cTENPD2lC8oJqYjy5b9xNy5c3n33XfJyclh7tz3mDv3PQwGA61ataJJkyYkJSURHx9PgwYNCAkJISQkhMDAQCwWiz2osVqtlJeX1/jFUYrRaKS4uJiiIlugVPPfnr4CJzIyktTUVPr168c///lPUlNTPfr8WhQZGertKYi/yLnQDvXPRQMSEmIAz9V3Wq1WrFYrVVVV9iBK+X3tzNfKbTXHcvTrujyf8tjo6GjVvhcSYIE9W1JRUVErc1JeXk5oaN1e8M2aNWPbtt1/nbTqF53yB5R/c47bq+8zmco4cuQwmzZt5OuvbVcmzZw5k9mzZ9OpU2d27twJwL//PZyIiDgKCty35YfabrnlDm644RaWL/+JX35ZwZo1f1JQUMC+ffvYt2+f255Xr9cTHh5BREQE4eHhf/1d+98REZGEh4cTHBxsrzcwGAw1/h1AQIDtb9vtNf9t+zs8PJy4uIa1lnp96fyozWDQExkZSlFRGVVV2vv0Wp/IudCO+nEuDIABnQ4MBtsfLYqIUC/IlQCL6qXB3NxcmjVrZr89Nze3ztkGW22VAYtFh6t7LkdFxZCY2IiePdO5++77WLnyV+bNe4/t27eyYcN6AC6+uDf33TfWJ4tV9foABg++isGDr8JqtZKbm8uBA3vJyckhNzeH/Px8ystNlJebMJnKMZvNGAy2okpl3TwgIOCv4s0wQkNtfyuBUlRUJMnJ8UAgoaENCA8PJyysgcc2w7bV4dX7a0lqqaqy+ORr1R/JudAOORfep+ZlfxJgAampqYSHh7N27Vp7gFVUVMSuXbsYPlxb7Q4MBgOXXXY5AwYMZM+e3ezdu4eEhER69UrX9JUZjtLpdCQmJpKYmKjamHK1lBBCCE+TAAtb7dXw4cOZOnUqsbGxNG7cmFdffZWkpCQGDdJe/xqwBSKpqe1JTW3v7akIIYQQ4m8kwPrL2LFjMZvNTJw4EZPJRFpaGnPnzpWtLYQQQgjhNGk06kayJKUNskSoHXIutEPOhXbIudAONRuN+n7RjhBCCCGExkiAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJnsRulFVlewppRUGg17Oh0bIudAOORfaIedCG/R6HTqdTpWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUtGsWbO4/fbba922e/duhg8fTteuXRkwYABz58710uzql7Odi59//plhw4bRrVs3Bg4cyCuvvILJZPLSDOuPs52LmiZOnMjAgQM9OKP662znIjc3l//+97/07NmTiy++mEcffZRTp055aYb1x9nOxfbt2xk+fDjdunWjf//+/N///R8VFRVemqF/O336NM888wz9+vWje/fu3HrrrWzYsMF+vxrv3RJgqeSDDz5gxowZtW4rKChgxIgRtGjRgqVLlzJmzBimT5/O0qVLvTTL+uFs52LDhg089NBD/OMf/+CLL75g0qRJfP/99zz33HNemmX9cLZzUdPy5ctZvHixB2dUf53tXFRUVDBy5EiOHDnC+++/z7vvvsuuXbt4/PHHvTTL+uFs5+LUqVPcc889tGrVii+++IIXXniBzz//nGnTpnlplv7tv//9L1u3buX1119nyZIldOjQgbvvvpsDBw6o9t4d4Ka51xs5OTlMmDCBjRs30rJly1r3LVq0iKCgICZNmkRAQAApKSlkZWUxe/Zshg0b5qUZ+6/znYsFCxaQnp7OvffeC0Dz5s155JFHeOqpp3juuecICgryxpT91vnOhSI3N5enn36aXr16cezYMQ/PsP4437n45ptvOHbsGMuWLaNhw4YA9p8Jo9FIeHi4N6bst853LjZt2sTp06cZP3484eHhNG/enOuuu47ff/9dAl6VZWVl8ccff/Dpp5/SvXt3ACZMmMDKlSv55ptvCAkJUeW9WzJYLtq5cydRUVF89dVXdOnSpdZ9GzZsIC0tjYCA6jg2PT2dzMxM8vPzPT1Vv3e+czFy5EjGjx9/xmPMZjNGo9FTU6w3zncuAKxWK0888QRDhgyhV69eXphh/XG+c7Fq1SrS09PtwRVA3759Wb58uQRXbnC+cxEdHQ3Ap59+SlVVFUePHuW3334768+PcE1MTAzvvfceHTt2tN+m0+mwWq0UFhaq9t4tGSwXDRw48Jz1IydOnKBt27a1bktISAAgOzubuLg4t8+vPjnfuWjfvn2trysqKnj//ffp0KEDsbGxnphevXK+cwG2JZK8vDzeeecd3n33XQ/OrP4537k4dOgQPXv25K233uKLL77AbDbTp08fxo0bR2RkpIdn6v/Ody569uzJvffey/Tp05k2bRpVVVX06tWLp59+2sOz9H+RkZH079+/1m3ff/89hw8fpk+fPkybNk2V927JYLmRyWQ6Y+kpODgYgPLycm9MSWDLWo0fP579+/fz7LPPens69U5GRgYzZ87k1VdflaVZLzMajXzxxRfs2bOH1157jeeff56NGzfywAMPYLVavT29eqWoqIhDhw5x2223sXjxYqZPn87hw4eZNGmSt6fm9zZu3MhTTz3F5ZdfzsCBA1V775YMlhuFhISccQWIcnLCwsK8MaV6z2g08vDDD7N27VpmzJgh6XcPKy8v57HHHuP+++8nNTXV29Op9wIDAwkLC+O1114jMDAQgKioKG666Sa2b99O586dvTzD+mPq1KkUFRXx5ptvAtChQweioqK46667uPPOO+XnxU2WL1/OY489RpcuXXj99dcB9d67JYPlRklJSeTm5ta6Tfk6MTHRG1Oq13Jzc7ntttvYvHkzs2fPltYAXrB161b27dvHzJkz6datG926dePdd98lOzubbt268dVXX3l7ivVKUlISLVu2tAdXAG3atAHg6NGj3ppWvbRx40Y6depU6zblA2BmZqY3puT3PvroI8aMGUO/fv2YPXs2ISEhgHrv3ZLBcqO0tDQWLFhAVVUVBoMBgNWrV9OyZUupv/KwwsJC7rzzToxGI5988gnt2rXz9pTqpc6dO/PTTz/Vuu3DDz/kp59+4sMPP5SfCw/r2bMn//vf/zCZTPY3l7179wK2K22F5yQlJbFnz55atynnokWLFl6YkX/75JNPeOGFF7j99tt56qmn0Our801qvXdLBsuNhg0bhtFoZMKECezfv5/PPvuM+fPnM3r0aG9Prd556aWXOHLkCK+++iqxsbHk5eXZ/1RVVXl7evVGSEgIzZs3r/UnKiqKgIAAmjdvLleuedgtt9yCwWDg0UcfZe/evWzcuJGJEydy8cUX06FDB29Pr14ZMWIEq1at4o033uDw4cOsXr2aJ554gv79+3PRRRd5e3p+JTMzkxdffJFBgwYxevRo8vPz7e8HxcXFqr13SwbLjeLi4pgzZw5Tpkxh6NChxMfHM378eIYOHertqdUrFouF7777jsrKSu68884z7l+xYgVNmjTxwsyE8K7Y2Fg+/vhjXnrpJf71r38RFBTEFVdcwZNPPuntqdU7ffr04d133+Wtt95i/vz5xMTEMGjQIP7zn/94e2p+58cff6SyspJly5axbNmyWvcNHTqUl19+WZX3bp1VLhURQgghhFCVLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgifIV1lhBC+QgIsIYRPWLFiBY8//rj967Vr19KuXTvWrl3rlfk88cQTtGvXjnbt2vHYY4+5NFa7du3sm/w64tZbb7U/tzOPE0J4jnRyF0L4hA8++KDW1x06dGDhwoW0bt3aOxMC4uPjmTlzJrGxsS6Ns3DhQpKSkhw+/oUXXsBoNHLzzTe79LxCCPeRAEsI4ZPCw8Pp2rWrV+cQFBSkyhycHcObQaUQwjGyRCiE0Lzbb7+ddevWsW7dOvuy4N+XCN98802uvPJKli9fzjXXXEOnTp0YMmQImzdvZsuWLdx000107tyZa665htWrV9caf+/evYwePZru3bvTvXt3HnzwQY4cOeL0PNu1a8enn37KE088QY8ePejVqxeTJ0/GZDLxyiuvkJ6ezsUXX8yECRMoLy+v9ThlqU/5f61evZqRI0fSpUsXLrnkEl555RXMZrML30UhhCdJgCWE0Lxnn32W9u3b0759exYuXEiHDh3OetyJEyd46aWXuO+++3jjjTcoLCxk7Nix/Pe//+Vf//oXr7/+OhaLhUceeQSTyQRAZmYmt9xyC/n5+bz88stMmTKFI0eOcOutt5Kfn+/0XKdOnUpQUBAzZ85kyJAhfPjhh1x//fUcP36cV199lVtuuYUlS5bw4Ycfnnecxx57jB49evDOO+9w7bXXMm/ePJYsWeL0fIQQ3iFLhEIIzWvdujXh4eHA+ZfTysrKePbZZ+nXrx8ABw4c4LXXXmPKlCnceOONAFRVVTF27FgyMzO56KKLmDlzJiEhIXzwwQf25+jduzdXXHEFc+bMqVVY74iUlBSef/55ANLS0liyZAmVlZVMnTqVgIAA+vbty88//8ymTZvOO85NN93Egw8+aJ/P8uXL+fXXX7nlllucmo8QwjskwBJC+JXu3bvb/92wYUOgdlAWHR0NQFFREQBr1qzh4osvJiQkxL4EFx4eTs+ePfnzzz+dfv5u3brZ/x0QEEBMTAwdO3YkIKD61210dDTFxcUOjwOQlJREaWmp0/MRQniHBFhCCL+iZKFqCgkJOefxp0+f5rvvvuO777474766XB14tucPDQ11epy/z1mv10sfMCF8iARYQoh6LSIigksuuYQRI0accV/NrJMQQjhDfnsIIXyCXq/HYrGoPm6vXr3Yv38/F110kT2gslqtPPbYYzRv3pyLLrpI9ecUQvg/uYpQCOETIiMjyczMZPXq1RQWFqo27gMPPMDhw4cZPXo0y5cvZ9WqVYwZM4Zvv/2W1NRU1Z5HCFG/SIAlhPAJt912G4GBgYwaNYqVK1eqNm5qaioff/wxOp2O8ePHM3bsWPLy8njrrbcYPHiwas8jhKhfdFapmhRCCKc98cQTrFu3jp9//tlrc2jXrh0PPfQQY8aM8dochBBnJzVYQghRRxUVFWzZsoXY2FiaNWvmsefdv38/RqPRY88nhHCeLBEKIUQd5eXlcfPNNzNjxgyPPu/TTz8tGz0LoXGyRCiEEEIIoTLJYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqOz/Ab1LKcmPLql6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a sample chromatogram and show the trace, cropped between 10 and 20 minutes\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "plt.plot(df['time_min'], df['intensity_mV'], 'k-')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal intensity [mV]')\n", + "plt.xlim([10, 20])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this signal, the location of peaks (meaning, the index where a local maxima is \n", + "detected) can be identified using `scipy.signal.find_peaks`, even with a very \n", + "low prominence filter. TO allow prominence filters to be comparable between \n", + "chromatograms, we normalize the chromatogram first between 0 and 1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHJCAYAAACG+j24AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsQUlEQVR4nOzdd3hTZRvA4V9G23QvWgqUvfdGkCUoDhQXbkUFFQcIooLiApWhTEVAceBGFAcgIJ+AynCwh6yyd6FAF93N+P6IJ23pStKkOWme+7q4aJMznpP3pHnyTo3FYrEghBBCCOGjtJ4OQAghhBDCkyQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQQgjh0yQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQwk4yR60QVZMkQ0KIMg0aNIhBgwZ5OgyX27hxI9dddx2tWrXikUce4b333qNp06a25y+/7kWLFvH22297ItRyHTlyhKFDh9KxY0euuOIKXnrpJdLT08vdb9euXTzwwAO0b9+e7t278/bbb5OXl1fq9sOHD+fFF190ZehCqILe0wEIIdRt3Lhxng7BLd5++23MZjMffvgh0dHRhIeH07Nnz1K3f//99+nSpUslRmif9PR0Hn74YWJjY5kyZQoXL15k6tSpnD17lvnz55e634kTJxg8eDDt27fnnXfe4fDhw8ycOZNLly4xYcKEItuaTCYmTZrEqlWruO2229x9SUJUOkmGhBBlatSokadDcIvU1FQ6d+7MlVdeaXssLi7OgxE555tvviE9PZ3FixcTFRUFQPXq1Rk6dChbtmyhU6dOJe738ccfExwczNy5c/H396d3794YDAbefPNNnnzySWrVqgXA/v37efPNN9m9ezcGg6HSrkuIyiTNZEKoRN++fZk5cyaTJ0+mS5cudOnShdGjR5OSkmLb5sUXX+Shhx5i3LhxdOrUidtuuw2j0Uhubi5z5szh+uuvp3Xr1lx77bV8+OGHmM1m276DBg3itdde4/3336dnz560bduWxx57jAsXLvDDDz/Qr18/2rdvz8MPP8ypU6eK7Fe4uahp06Z8/fXXvPzyy3Tp0oX27dszYsQILly4UOR6Vq9eze23307r1q3p3r07EyZMICsry/b8e++9R79+/fjjjz8YMGAArVq14rrrruOnn34qcpyLFy/y0ksvceWVV9K+fXvuv/9+tm7danteqd3p16+f7Rhffvllqa/zqVOnaNq0KadPn2bx4sU0bdqUjRs3Fmsmu7xsTp8+zU8//UTTpk1tr8+ZM2d49tln6dKlC23btuWhhx5i7969xc716aefcsMNN9ClSxd+/PHHUmMq7V9ZzZQbNmygY8eOtkQIoGfPngQHB7Nu3boy97vqqqvw9/e3PXb99ddjNpvZsGGD7bEXXngBs9nMt99+S3R0dKnHE8KbSc2QECqyYMEC6taty6RJk0hOTmb69OkcOXKERYsWodVav7ts2bIFjUbDe++9R2ZmJjqdjscee4wdO3YwbNgwmjdvzsaNG3nnnXc4efIkb775pu34y5cvp0WLFkycOJEzZ87w5ptv8sADD2AwGHjhhRdITU1l4sSJvPHGG3z44Yelxjlz5kz69evHjBkzOHnyJJMnT0av1zNjxgwAfv75Z55//nkGDBjAM888w+nTp5k5cyaHDh3i008/RaPRAHD+/HneeOMNW03EJ598wosvvkibNm1o2LAhWVlZ3HPPPeTn5/Pcc88RFxfH559/zqOPPsr3339Pw4YNGT9+PD/++COPP/447du3Z/PmzUyaNIn09HSGDRtWLPbY2Fi+/fZbhg8fTosWLXjqqado1KgRmzZtKvV6Z8+ezdChQ23bx8bGkpyczD333ENgYCCvvvoqgYGBfP7559x///222Aq/Xq+99hphYWG0atWq1JhKExISUupzhw8fpn///kUe02q1xMfHc+zYsRL3ycnJ4fTp09SvX7/I41FRUYSEhBTZ7+2336ZZs2alnl+IqkCSISFURKPR8OmnnxIaGgpYP5yGDRvGunXruOqqqwAwGo28/vrr1K1bF4C1a9fy119/MXXqVG6++WYAunfvjsFg4N133+Whhx6yNXXl5+cze/ZswsPDAVi1ahUbNmxg9erV1K5dG4B9+/axZMmSMuNs0qQJkydPtv2+a9cuVq5cCVhHXE2bNo2ePXsybdo02zb16tXj4YcfZu3atbZryc7OZuLEiXTr1s22TZ8+fVi7di0NGzbkp59+4uTJkyxevNj2gdypUyduvfVWNm/ejFar5bvvvuPZZ59l6NChAPTo0QONRsO8efO47777iIyMLBK7v78/7dq1w9/fn6ioKNq1a1duubRo0aLY9p9//jmpqal88803tialXr160b9/f959911mzZpl2//aa6/ljjvuKPX4SkzOSE9PJzg4uNjjwcHBZGRklLoPlJxkXb6fJELCF0gzmRAq0qdPH1siBNbmGT8/P7Zs2WJ7zGAwUKdOHdvvmzZtQqfTFasdUBKjjRs32h5r2LChLRECiImJISoqypYIAURERHDp0qUy47z8gzsuLo7s7GzAOrLp7Nmz9O3bF6PRaPvXuXNnQkJC+PPPP0s9ltJnR2lO27JlC/Hx8UU+kAMCAvjll1+45557+Oeff7BYLMXO1bdvX3Jzc4s0p7na33//TfPmzalevbrtvFqtll69evHXX38V2bZJkyblHq9w/Jf/M5lMZe6r1LQVZrFYSnxcea40Ze0nRFUlNUNCqEhsbGyR37VaLREREUWGSUdHRxf5sEpLSyMyMhK9vujbOSYmBqBIYlNSTUBgYKDDcV6+j1artX3ApqamAvD666/z+uuvF9s3KSmp1GMpTYGFj1VWPxXlXDfeeGOJz587d66Mq6iY1NRUjh8/TsuWLUt8XkkOAapVq1bmsU6dOsXVV19d6vNdunQptR9USEhIiTVAWVlZpXYIVxLuzMzMEvcrnJAL4QskGRJCRZQPd4XJZCIlJaVI59jLhYeHk5KSgtFoLJIQKUnH5c1E7hYWFgbAmDFjShyKXrhmqjyhoaFFOnMrtm/fTkhIiO1cn3/+eYlNRTVr1rT7XI4KDQ2lS5cujBkzpsTnC3dMLk9sbCzff/99qc+XdG2K+vXrc+LEiSKPmc1mTp06xbXXXlviPkFBQVSvXp3jx48XeTw5OZmMjIwqO4JQiNJIM5kQKrJ+/foik96tWbMGo9Fo61NTki5dumAymVixYkWRx5cuXQpAx44d3RNsKRo0aEB0dDSnTp2idevWtn9xcXFMnz69yGir8nTq1ImTJ0+SkJBgeywvL4+nn36a7777js6dOwOQkpJS5Fypqam88847xZLLilBqrRRdunTh6NGj1K9fv8i5ly5dyqJFi9DpdHYf29/fv8gxLv/XoEGDUvft3r07mzdvJjk52fbY+vXryczMpHv37mXu98cffxS531auXIlOp6Nr1652xy5EVSA1Q0KoyNmzZ3nyySd58MEHSUxMZMaMGfTo0YMrrrii1H169erFFVdcwbhx40hKSqJFixZs2rSJjz76iNtuu63Sv+XrdDpGjRrFa6+9hk6no0+fPqSnpzN37lzOnTtXarNSSW6//Xa+/PJLnnzySUaOHElUVBRff/01OTk5DBo0iDp16nDzzTfz6quvcvr0aVq1asXRo0eZOXMm8fHx1KtXz2XXFRYWxt69e9m0aRNt2rTh4YcfZsmSJTz88MMMGTKEyMhIVqxYwXfffcfYsWNddt7y3HfffXz11VcMHjyY4cOHk5qaytSpU+nVqxft27e3bbdjxw6ioqJs/c0effRRli9fzqOPPsrgwYM5duwYM2bM4O6776ZGjRqVFr8QaiDJkBAqcuONNxIWFsYzzzxDUFAQt912G6NGjSpzH2Xk1KxZs/jiiy9ITk4mPj6eUaNGMXjw4EqKvKg777yT4OBgPv74Y7799luCgoLo0KED06ZNK9JZuzwhISF89dVXTJkyhYkTJ2I0Gmnbti1ffvml7UN98uTJzJs3j4ULF3L27Fmio6Pp378/zzzzjEO1M+UZMmQIkyZN4pFHHuHTTz+lU6dOLFy4kOnTpzN+/Hhyc3OpV68eEydOLHPkmKtFRUXxxRdfMGnSJJ5//nmCg4O5/vrrizXf3X333dx222289dZbgLUz/fz585kyZQojRowgMjKShx9+mJEjR1Za7EKohcYiKw8KoQp9+/alS5cutg8rIYQQlUP6DAkhhBDCp0kyJIQQQgifJs1kQgghhPBpUjMkhBBCCJ8myZAQQgghfJokQ0IIIYTwaZIMCSGEEMKnyaSLWBeFNJulH7kaaLUaKQuVkLJQFykP9ZCyUAetVlNk0eqKkGQI6wy+6elZGI1mT4fi0/R6LZGRwVIWKiBloS5SHuohZaEeUVHB6HSuSYakmUwIIYQQPk2SISGEEEL4NEmGhBBCCOHTJBkSQgghhE+TDtRCCAGYzWZMJqOnwyiR2awhJ0dHXl4uJpOMYvIkKYvKodPp0Worr75GkiEhhE+zWCykpyeTnZ3h6VDKdOGCFrNZRi+pgZRF5QgMDCEsLMplw+fLIsmQEMKnKYlQSEgk/v4BlfKH1xk6nUZqIlRCysK9LBYLeXm5ZGSkABAeHu32c0oyJITwWWazyZYIhYSEeTqcMun1WpnXRiWkLNzP3z8AgIyMFEJDI93eZCYdqIUQPstkMgEFf3iFEOqhvC8roy+fJENCCJ+n1qYxIXxZZb4vVZUMzZ07l0GDBpW5TUpKCs899xydO3emc+fOvPrqq2RlZVVShEIIIYSoalSTDH322WfMmjWr3O1GjBjByZMnbdv/+eefvP7665UQoRBCCCGqIo8nQ+fOnePRRx/l3XffpX79+mVuu337djZt2sTkyZNp2bIl3bp144033mDJkiWcO3eukiIWQghRERMnjmf48KEAJCaeoUePTmzbtqVSzueobdu20KNHJxITz7g4KvdIS0tl2bLFng7D63h8NNmePXsIDw9n6dKlzJkzh9OnT5e67ZYtW4iJiaFhw4a2x7p06YJGo2Hr1q3079/f6Th0Oo/nhT5PKQMpC89ztCxyc3OZO3cWOp2exx57gsDAQHeG5zJms3f0FVK6Tmg0YKliI7pjY6uzZMlKwsLCPR2KXdReFnPmvMuZM6e56aZbPR2Ky+h0GvT64n+LXNmlyOPJUN++fenbt69d2547d44aNWoUeczf35+IiAgSExMrFEdYmHf88S4sKx+az7X+vO8pCPLzbDyu4o1l4W6eKmt7y+Ll8e/wVfR4ADJnj2PKJO9ous7J0XHhgrbUP7auYrbA7iTrz61iQevkH3FPf1Fw1XVoNBo0GutrrtdrqV491q0xFT6fowp/MSi8v6fLoizOXqvamM0atFot4eFBGAwGt57L48mQI7Kzs/H39y/2eEBAALm5uRU6dnp6NiaTd80bkZ0PEAxAakomuV6eDOl0WsLCAr2yLNytssvakbLIycnhm2++gadeBuD7H37g6SefIiQkxL1BukBeXu5/y3BYiswbY7FYyMnJdtl5zBbIybZ+OF26ZC4ziTAYAouNotForGViMplLrY3o0aMTY8a8zG+/rWLXrp2EhYUxcOBdDBo02LbNX39t4LPPPubo0cMEBQVzzTXXMXToUwQEBNiO8eCDQ/jf/1aQn5/P7NnzePbZp7nnnvvZvn0r//zzF4Eh4Qy453GMreozc8ZbnDhxnCZNmvLKK29Qq1Y8ALt27WD+/A/Zt28PeXl5xMfX5sEHh9Cv3/WA9fW1WKyveWLiGe6882ZmzfoAgBEjnijx+t57bx7t23fk/PkkZs+eycaNf6PT6WjZqg03PPAc1WvWwWg0o8HC559/wpIlP3LpUjrXXHMdubk5tvOVxGg08vnnn/DLL8tISUmmbt36DB36FF27Xmm7/9evX8eSJT9w8uQJ4uNr89RTI+jWrQcAw4cPpVateI4cOczJk8d55pnRXH/9jfzyyzIWLvyakydPEBUVxc0338YDDzyMVqu1XffUqe/w8cfzOHr0MPHxtRkz5hWOHj3MZ599zKVLl7jyyh6MHfuarYyWL1/K998v5Pjx42i1Gpo1a8HTTz9L06bNmDhxPL/8sgyArl07sGHDFkwmE99/v5DFi3/g3LmzVK8ex733DuLmm2+zXf/+/ft4770Z7N+/l6ioajz22BNMnDiemTPn0KFDpxKvr2/ffsyf/yG//baKpKRzBAUF07nzFTz77BjCwyOcvr7CTCYLZrOZtLQssrNNxZ4PDw902fxDXpUMGQwG8vLyij2em5tLUFBQhY5tMpm9bhIto6nwz2aM3lHjXy5vLAt381RZ21MWGzduJDc3x/bHJDc3h7/++ou+fa9xf4AVVNIswhaLhYcfvo+dO7d7ICJo164Dn376dZGESEmAymuWmTv3XUaNGsOzz77A//63gnnz5tCmTTvatm3PunV/8MorYxgyZCivvDKekydPMn36W5w9e4aJE6fajrF06Y9MmzYLo9FEnTr1APjgg9mMGPEcTz41krnzv+TrDybzV736jBz5HEFBQbz66ljef38WEyZM4fz5JEaNGsZtt93J88+PxWg0smDBF0ye/AYdO3YmKqr02YRbt27LkiUrbb/n5OQwevRIYmKq07p1W7Kzs3n66cdp1KgJ7733ITqdloULv2by6AcZN+s7iKrGV199xoIFXzJ69FiaNm3GkiU/smzZEtq161DqeWfNms5vv61i1KgXaNasOb/8soyxY59j/vyvbdssWrSQMWNeolq1GObNm82rr77I0qW/2j57Vqz4mVdffZNGjRoTHR3Nd98t4IMPZjNs2DN06dKVffv2MmPG26SlpfH006Nsx50xYypjxrxEbGx1JkwYx+jRI2nWrDlTprzDqVMnGD/+ZVq3bsPAgXezdu3vTJs2mTFjXqZ9+45cvHiRd96ZyltvvcGnny5g5Mjnyc3NJSnpHBMnTgFg9ux3WLlyOaNGjaF58xZs2vQPM2dOIS8vlzvuuIcLF84zcuQT9OjRm+efH8vZs4lMmzbZNgeX4vLrmzt3FuvX/8HLL4+nZs1aHDlymIkTx/H5558wYsRzTl1faS7/sqJwZTOlVyVDcXFxrF69ushjeXl5pKamUr16dQ9FJYRv+/PP9cUe27Jlk1ckQ6Xx1nmHbrhhANddZ+07+dhjT/Ljj4vYtWsHbdu258svP6VXr6t4+OFHAahTpx4Wi4UXX3yWY8eOUq+edQDLddf1p1mzFkWO27Xrldx8822YLdD3pntZ978fGDjwbjp06ARA377XsH79H4D1b/KQIUO5995Btm/tgwYNZsWKn/+rISk9GfLz8yM6uhpgTUpfeWUMABMmvI1er2flymWkpqYyfvxE9Hrrx9eYF15l45atrP/1R7o2eozvv/+WO++8x1YL9fTTz5bZOTsrK5Off17MyJHPc/XV/QB49NEnMJlMRaZtGTnyWdv1DhnyGGvX/s6xY0do0aIVAI0bN+Haawtqvr766nNuv/0uBg68C4DateuQnp7K7NnvMHjwY7bj3nPPfXTufMV/5XcTM2a8zXPPvUh8fG0aNmxE48ZNOXLkMADh4eG88MIrXH/9jQDExdVgwIBbmTZtMgAhISEEBASg1+uJjq5GZmYGP/20iKefHmWLrXbtOpw5c5ovvviUgQPvZsmSHwkJCWXs2NfQ6/XUr9+AUaPG8OKLzxZ5nQpfH0Dz5i3o3bsP7dt3tMXSpUs3Dh8+VGQ/R67Pk7wqGercuTPTpk3j+PHj1K1bF7B+KwXo0KH0rL+q0gAdYo22n0XVpeay3rTpb7BYaOB3HpPZxGGLhQMH9ns6LKdpNBo+/fRrlzeTnbxkLbnaoRaHm8nsVbduvSK/BwcHk5+fD8CRI4fo1++6Is8rtSWHDx+0JUPx8XWKHbd27bq2n8NDrM0ZNWrWsj3m7+9vq7WvVSueG2+8hR9++I5jx45w8uQJDhxIAChW21CW99+fxfbt25g371NCQ0MBSEhIICsrkxtu6FNk29zcPM6fPkpaWhoXL16gefOiyVzLlm04duxIiec5ceI4+fn5tGzZusjjjz8+DMCWSCm1ZAChoWH/nbege0bh1y01NYXk5Iu0adOuyDHbtu2A0Wjk+PFjREVF/XfcgtdW6RdTs5TXtl27Dhw7dpTPPvuYU6dOcuLEcQ4dOlDqorHHjx/DaDQWi6Ndu/Z8++3XpKQkk5Cwn6ZNm9uSS2uc7Ysd6/L74rrr+rNlyybmzZvDyZMnOHbsKCdOHCt2Lkeuz5NUnQyZTCaSk5MJDQ3FYDDQtm1bOnTowKhRoxg/fjxZWVmMGzeOW2+91Sdrhgx6+PAa1/3BFuql1rLOycnh6NEjYDIxu3caycnJ3GPM4eDBBCwWi9fWsGg0GgIDK9b0frlmrj1ciUrqU2n5ry3B+l/R8jCbrclJ4Q/CkvpuKM9rNRAfYj2erpSM7vjxYzzxxBCaNGlGly5X0KNHLyIiInnssYfsvo6ff17Md999w4wZs6ldu+BD2GIxU6dOXd56a0axfQIDA21JpuWy9pPC13c5nc76XHn3akl9Uwqfp/Drpjx++SGVpKVwPMr5yzsXwOrV/+PNN1+jX7/rad68JTfddAtHjhxmxoy3S9y+ILzLy70gDp1Oh8VSfreEy++LadPeYs2aX7nhhhu58soePPTQEL755iuSkopOc+PI9XmS+iIqJDExkR49erBixQrAerPOnj2b+Ph4HnroIZ555hl69erF+PHjPRuoED7q0KGDmEwmIiOjiImJpUGDhuh0OtLS0or9URSe1bBhQ3btKtoPSukXVbdu2XO8OeKnnxYRFRXFu+/O5f77H6Jbtx5cvHjR7v23bNnE9OlvMWrUGFuzlKJ+/YacPZtIcHAI8fG1iY+vTVxcDT744D127NhGREQEsbHV2bVrZ5H99u/fW+r5ateug16vZ//+PUUef+yxB1mw4Au74y4sMjKKyMgodu7cUeTxnTu34+fnZ+to7qgvv/yUAQNu5ZVXXmfgwLto164Dp0+fAgonYAWJT9269dDpdCWWe3R0NKGhYTRq1JiEhP0YjQXrf+3du7vMONLSUlm8+Huef/5FRox4jv79B9C4cVOOHTvq1HWpgapqht56660iv8fHx5OQkFDksejoaLtmqhZCuJ/yIdOsWXM0Gg3+/v7Uq9eAw4cPcuBAAtWrx3k4QqG4994HGTduLJ999jF9+/bj5MkTzJw5lSuv7GlrInOF2NjqJCWd4++//6R+/QYkJOzjnXemAZTbHHLs2FFeeeUFbr11IL179+XixQu25wIDg7juuv58/fXnvPzyaJ56aiShoaF88cUn/P33nwwZ8jgADzzwMLNnv0PdunVp06Y9//vfCvbt20Pr1m1LPKfBYGDgwLv56KP3iYiIpH79hixfvpSjR4/w8ss9SU62P5FTaDQa7r33AT7++ANq1qxFly5d2bt3D/Pnf8jNN99GSEgIly6lO3zc2Njq/PvvThIS9hMSEsKGDWv58cfvAOtrGxAQQGBgIBcuXODMmdPUrFmLm2++nY8/nkdoaDgtWrRk48a/+emn7xk6dBgajYbbb7+Tb79dwNtvT+D++x/iwoXztpqm0mrLgoNDCAkJYf36tTRt2pzc3Fy+//5bDhzYb+tD5W1UlQwJx2QbYcAS63Drn2/JJFBKs8pSa1knJFj7BjVs1pZrfrDG17ZxCw4fPsixY0fo2bO3J8NTDbMFDqZaK+IbR5Q9tN5d+va9BpPJyFdffcbnn39CREQk/fpdxyOPPG73McwWOJJmvY7SBvLcccc9HD9+jDfffI38/Hxq167N0KFPMX/+h+zdu5uuXa8s9fhr1vxKRsYlvv/+W77//tsizw0e/BiPPPI4s2d/yJw57/D8809jMplp3LgJz7w+h/zIxpgtZm6//U7MZhOffz6fixcvcsUV3bjppls4fvxYqed94onh6PV6pk17i0uX0mnYsDFTp75LvXr1nUqGAO6770H8/Pz57rsFzJo1ndjY6tx//0Pcd1/Z62+WZdSoMUyZMpHhw4fi7+9Ho0ZNeOWV1xk37iX27t1N+/YdueGGm1i37g8GDbqLb79dwsiRzxEREcEHH7xHSkoytWrVZtSoMbah9ZGRUUyfPotZs6YzePB9xMTEcuutdzB37rv4+ZU8h4der+fNN99i9ux3ePDBewgLC6NDh048/vgwvvjiU7Kz1dekXx6N5fLGVR+VkpLpdcO5s43Q8ztrx8L1d11SzQeks/R6LZGRwV5ZFu5W2WVtb1k8/vgQNm78i1den8pbmfcBcO+FiXw5fy733vsAL7zwinsDraD8/DwuXkwkOroGfn7F+9u4itkC+5OtSUSzKOeSIb1e6/H3hSuuw9U8EZMaysJVjh49wqVL6UU6Pv/7706efPIRfvhhmUdrd8t7f0ZFBbts8ktV9xkSQqjb6dMnAWuTtqJGjZr/PXfKIzEJIex34UISTz/9OL/8soyzZxPZvXsXs2bNoF27Dj7VzO3ldQlCCE8xGo22xStr1KgF/3XvU5KhM2dKX2dQCKEOnTt35ZlnRvPVV58xdeokgoND6NGjF08++bSnQ6tUkgwJIZxy7txZTCYT/v7+VKtWzfZ4zZpKzdBprx5eL4SvuO22O7jttjs8HYZHSTOZEMIpSjNYzZq1iswbUr26dTHl7OwsUlNTPRGaEEI4RJIhIYRTlGSoVq3aRR4PCAggJia2yDZCCKFm0kzmxTRAiyiT7WdRdamxrE+dsnaerlUrvlh8sbHVOX8+ifPnkzwXoMp4+2hPhRqvQ40xCe8it5AXM+jhi+uzyt9QeD01lnXhkWSXxxcTEwPAhQvnPRKb2mg1UD/c+4diq/E61BiT8D7STCaEcMrp09bRYvHxtYs9pzSTSc2QEMIbSDIkhHCK0kxWs2bxdZaqVbPWDJ0/LzVDQgj1k2YyL5ZjhDuXW5dAWHRjJgYpzSpLbWWdlZVJSkoyYO0zdHl8SjJ04YLUDIF1luTD/y1j0TBcHTM3O0ON16HGmIT3kZohL2YBEjO1JGZqS10nSFQNaitrZZRYeHg4oaGhxeKTPkPF5Zus/7zZ/PnzeH7IjXZfx8SJ4xk+fKh7g6LgtbVYLPzyyzJbor5ixc/06NHJ7ecX3k+SISGEw06dKnlYvUKayYQn7NyxjYkTx5OTkwPA1Vf3Y8mSlR6OSngDaVgRQjisYI6h4v2FoCAZSk6+iMlkQqfTVVpswndZLqs3DQgwEBBg8FA0wptIMiSEcFjBsPqSa4aioqLRaDSYzWZSU1OIjq5W4nZqlm0s/TmtBgJ09m2rAfwv27a0fi0acLo/WI8enXj++Rf53/9+ISFhP/Hx8Qwd+hQ9evS2bfPnn+v55JN5HDt2lJiYGK655joeeugR/P2tK4IfOXKYjz6ay86dO8jKyqR69TgGDrybu+66t8RzLlq0kLlz3+WNNybTs+dV5cZ47txZ5s2bw5Ytm8jKyqRNm/YMGzaShg0b2bZZtWolX3/9BSdOHCc6uhoDB97JPfc8UGp8tw+8m9ZX30/Cv1uY/soTANx558289NI4ACZNep0NG7YAkJ6exkcffcCff64jNTWVpk2b8cQTw2nbtj0An3wyj+3bt9KtW3e+//5b0tJSadWqDc8//yJ16tRzrECEV5FkSAjhsIKaoVolPq/X6wkLCyMtLY2UFO9Mhnp+F1rqc91rGnn3qmzb7/1+CCHHVHKG0yHWyAdXF2x7y9JgUnNL7qHQIspUofmk5syZxRNPDGfs2FdZvvxnXnppNHPmfETr1m3555+/ePXVFxkxYhSdO3fl9OlTzJw5hRMnjvPmm2+Rk5PDqFFP0bFjF+bO/Ri9Xs/y5UuZNWs67dt3oHHjpkXOtfin73n//feYOHEqV17Zo9zYsrIyefLJR6hZsxZvvTUdf/8APv30Q4YNe4zPPvuGuLg4fv99NW+++RpDhz5F7959OXAggUmTxhMcHEK/fteXGN97s6bzav1ONGzWljcnTOHVV8bw0Uef06BBQ9asWWU7v8lkYtSo4eTn5/HKK68TFRXNDz98xzPPPMX7739Cs2YtANiz518CAwOZMuUdsrOzmDBhHNOnv827777vdLkI9ZM+Q0IIh5XXZwggMjIKwNaZVbjfjTcOYODAu6hTpx5PPvk0zZu35PvvvwXgiy/mc9NNN3PrrXdQq1Y8Xbp0ZfTol/j999UkJp4hOzubO++8l+eee4F69eoTH1+bIUOsnZ8PHz5U5Dzrf/2ROXNmMnnyNLsSIYD//e8X0tJSefPNt2nRohWNGjXmtdcmYDAY+PHH7wD49tsF9OlzDQ888DC1a9fh6qv7MWrUaAwGQ5nxnTp+EL2fH2FhYQBEREQWax7btOkfEhL2MX78RDp06ES9evV59tkxNGjQiAULvrRtZzQaefXVN2jcuAlt2rTjjjvuYdeuHY4XhvAqUjPkxTRAg3B1LdEg3ENNZW2xWDhzxpoMKc1kJcUXEREJHCUlJaXyg3SB9XddKvW5y5u5Vg3MKHVbZVOlWW3JzZllNpNVRPv2HYv83rJlKzZv3gjAgQP72bdvD7/8ssz2vMVi7WNz7NhRunXrzu2338nq1b9y6NABTp06ycGDBwAwmwtmeE5NPs/X709Gr9dTo0ZNu2M7fPgQtWvXJTIy0vZYQEAAzZu3tCVbhw8fpG/ffkX2u+mmW20/lxafDjMBOsimdEeOHCIkJIQGDQqa5DQaDW3btmPjxr9tj0VFRREWFm77PSQkhPz8fLuvU3gnSYa8mEEP392oriUahHuoqawvXrxATk4OWq2WuDjrCvUlxafUDKWmemcy5Mh6V/Zs2zDC/UtG6HRFAzGbLWi1OtvP9933IDfccFOx/aKjq5GcfJHHHx9MeHgEPXr0omPHLjRv3oLbb7/Rtp0G0Gm1vD11Bh999AGTJ7/OnDkfo9Xa08hgQVNCtmc2m9Drdbb4NSVtBGXGFxtkoWGEmW1lnd1ioaR002w2o9cXvG5+fv52XIuoaiQZEkI4RJl5unr1OPz8/ErdTqkBkGayyrN//1569Ohl+33Pnl00bdoMgAYNGnL8+LEind63b9/Kd999w/PPv8iqVStJS0vjm29+tCUHSo2NUoME1s7xnTt3JTq6GkOGPMB33y2wdXAuS4MGjWxzACmJcm5uLvv37+P6660JV/369dm/f0+R/WbNmk5i4hnatm1fbnylJVIADRs2IiPjEkeOHCpSO7Rr1w7q1atfbvyiapM+Q0IIhyhrkpU2rF5hbSaTZKgyfffdN/z660pOnDjO7NnvcPDgAe666z4A7r//Qdau/Y1PPpnHiRPH2bp1M5MmvcGlS+lER1cjNjaOnJxsfvttFWfPnmXTpn8YN+4lAPLz84qdq0GDRtx//0N89NH7nDx5otzY+vW7ntDQMF599UX27t3NoUMHefPNV8nOzuaWW27/L8aHWb36VxYtWsjp06dYvfp/LF78I7169bErvsDAIAAOHjxAVlbRmsrOnbvSsGFjXn/9FbZt28KxY0eZPv1tDh8+xJ133ufkKy6qCqkZ8mI5Rnjwf9Y3/xfXZXl8iQbhPmoq65KG1ZcUn7c3k7mS2QJH/1syor4bl4y45ZbbWbjwK44dO0LDho2ZMWM2jRo1BqBPn2t4/XX48sv5fPXVZ4SGhtG9e0+efHLEf89fTULCIGbPfofMzAxq1KjJTTfdwoYN69i7dw+33noHFsBohsOpWuqHm3nooUf44481TJr0OnPmfFRmc1loaCizZ3/InDnv8MwzwwBo06Yt77//CTVrWkcl9ujRixdeeIWvv/6cuXPfpXr1GowY8Sw33HATFoulxPjWr1/HPzv20Pqqu6jfoBHdunVn3LixDB06jPDwgr4/er2ed96Zw+zZ7/Dyy2PIz8+jadPmvPvu+7Rq1do9BSK8hsZSuP7Th6WkZGI0ur9N35WyjQXDf9ffdcmhPg5qpNdriYwM9sqycLfKLuuyyuK118aydOlPDBs2kscee7LU+JYvX8rLL4/hiiu6MW/ep+4N2En5+XlcvJhIdHQNt/YVMVtgf7I1UWgW5VwypNdry3xf9OjRiZdeGkf//gOcDbNcrrgOV/NETOWVhXCN8t6fUVHB6HSuaeCSZjIhhEPKm31aUdBnSGqGhBDqJsmQEMIhSjJU2uzTCqXPkDSTCSHUzssbVoQQlSk/P49z584C5dcMKXO1pKenuz0ugW3JCSGE46RmSAhhtzNnzmCxWDAYAomKii5z29BQax+inJzsEkcjCSGEWkgyJISwmzKSrFat+DLndAEICSlY2+vSpdJnc1YDGUcihPpU5vtSmsm8mAaoEWy2/SyqLrWUtTLHUHx80SaykuLT6XSEhISSkXGJ9PS0cmuSPEGns858nJeXi79/gFvP5acrfxtvoMbrUGNMouLy8nKB4jOru4MkQ17MoIefb8n0dBiiEqilrJXZp2vWLJoMlRZfWFjYf8mQOvsNabU6AgNDyMiwdvL29w8ot8bLWfWCrf+bjGByYn+zWYPJ5PkarIpehztUdkxqKYuqymKxkJeXS0ZGCoGBIXYu91IxkgwJIexm70gyRWhoGHBa1c1kYWHWySGVhEittFptkQVThedIWVSOwMAQ2/vT3SQZEkLYrWD26bJHkinCwsIASE9Pc1tMFaXRaAgPjyY0NBKTyejpcEqk02kIDw8iLS1LaiQ8TMqicuh0+kqpEVJIMuTFcowwdLV1CYQPr5HlOKoytZT1qVMlT7hYWnwFyZA6m8kK02q1aLXumYW6ouWn12sxGAxkZ5s8OvOxWu7Dwio7JrWUhXAtFdzKwlkWYG+ytefg9h3b6Napg2cDEm5TuKw99V00PT2NS5esSc3lyVBp8VmbybDt56vUUH6uoMbrUGNMwvvI0Hovlp2dbfv5lVdekOHBwq2U/kJRUdG21cHL4001Q0II3yXJkBfbsWO77eeLFy9w6NABD0YjqrqCztP29RcCCA21zkLt6zVDQgh1k2TIi+3evavI7//+u6uULYWoOKW/0OXD6sviDR2ohRBCkiEvdvTooSK/Hz58qJQthai4gpFk9g2rh4IlOdQ8tF4IISQZ8mJHjx4t8vuRI5IMCfdRmsnKW6C1MFmsVQjhDWQ0mZeyWCycPXsWS9ZFgoKCuAScOXPa02EJN4oI8OwwXmX26dL6DJUUnzSTFfB0+bmKGq9DjTEJ7yLJkJfKyMgg59JFmN2G+YuWcGd+NmfPJmKxWNy2nIDwnEA9rB7oueU4TCYTiYlngJL7DJUWX8HQet9uJvN0+bmKGq9DjTEJ7yPNZF7q3LmzgLUZol69+mg0GnJzc0lOvujhyERVlJR0jvz8fPR6PXFxNezeT6kZysi4JMsXCCFUS5IhL5WUZE2GYmNj8fPzJzLSun7LhQsXPBmWqKJOnToBQI0atWwrvdtDSYYsFgsZGb5dOySEUC9JhrzUuXPnQG/g4tVzGbo6kIhqcQBSM1RFWZccCGTo6kByPLB8ljKsvnbtkkeSlRafn58/BoMB8O2mMk+Xn6uo8TrUGJPwPtJnyEslJZ0DjYZL4S3YlgRto6oBkJyc7OHIhDtYgG1JetvPle3kSWvNUHx8nRKfLyu+4OAQcnJyyMz03X4dni4/V1HjdagxJuF9pGbISyl9hhRRkZGA1AwJ9yhvJFlZgoODAcjMzHBpTEII4SqSDHmpCxfOF/k94r8+QykpkgwJ11P6DJVWM1SWgmTId2uGhBDqJsmQl0pNTS3ye2RkNCDNZMI9yuszVJbg4BBAaoaEEOolyZCXSk1NKfJ75H/NZCkpkgwJ10pPT7NNmujIUhwKpWYoI0OSISGEOkky5KXS0lKL/B71XzOZ1AwJV1M6T0dHVyMwMMjh/ZWaoawsaSYTQqiTjCbzQiaTybrWk95AgNaMRqMhMko6UFd1Bp1nxsoUdJ4uu1aotPikZsjKU+Xnamq8DjXGJLyLJENe6NKldCwWC+Rn88fAFPz8/DlxIgKQmqGqKlAPG+72TDKhJEO1a5feebqs+KRmyLPl50pqvA41xiS8jzSTeSGliSw4OBg/P38AwsOtq4NnZ2eRn5/vqdBEFaQkQ46sVl+YkgxlZPhuMiSEUDdJhrxQSoq183R4eITtMeUDB6Q5QriW0meorJqhsgQHW/sZyWgyIYRaeTwZMpvNzJo1i549e9K2bVuGDBnC8ePHS93+/PnzPPvss1xxxRVcccUVjBw5krNnz5a6fVWk1AyFRcUw8o9ARv4RiEmjt/XNuHQp3YPRCXfINWEr61xT5Z7bnj5DZcVXMLTed2uGPFl+rqTG61BjTML7eDwZmjt3LgsXLmTChAl8++23aDQaHnvsMfLy8krcftSoUSQmJvLpp5/y6aefcvbsWZ566qlKjtqzlDmGwiOi+fOMnj/P6DFbIDTUuiimJENVj9lCkbKuLHl5ebbZzsuqGSorPpmB2nPl52pqvA41xiS8j0eToby8PObPn8/TTz9N7969adasGTNnzuTcuXOsWrWq2Pbp6els3ryZxx57jBYtWtCiRQuGDh3Knj17bE1HvkCpGQoPCy/yeGhoKODbC2IK1zp9+hQWi4XAwCCioqKdOoZ0oBZCqJ1Hk6H9+/eTmZlJ165dbY+FhYXRokULNm/eXGz7gIAAgoKCWLx4MRkZGWRkZLBkyRLq1atn60DsC9LSrBPghYWHFXlcaoaEqxUs0BqPRqNx6hgytF4IoXYeHVqv9PWpUaNGkcdjY2NJTEwstn1AQAATJ07kjTfeoFOnTmg0GmJiYvjqq6/QaiuW1+l0Hm8xtFtWlvVDRUl+APQ6ra1mKDMzA73ee65HoZSBN5VFZdEXqv7X67To3fzOVcrgzBllGY46Zd5TZcUX/l/SnpmZ6ZX3pStUtPzU8t6o7PvQHp56b3i6LAQ4+f2sRB69lbOzswHw9/cv8nhAQICt9qMwi8VCQkIC7du359FHH8VkMjFz5kyGDRvGN998Q0hISLF97BUWFuj0vpUtN9f6usXERMF/o+gjIoOJjrZOvGgy5RIZGeyp8CrMm8qisgQUmi0hIjKYIL/KOW9i4mkAGjduWOY9VVZ8NWvGANZmsoiIIKdrmLyZq8rP0+8NT92HZfFUTJ4uC+FaHk2GDAYDYO07pPwMkJubS2Bg8Rtt+fLlLFiwgN9//92W+HzwwQf06dOHH374gYceesjpWNLTszGZzE7vX5mSk1MB0OsDbMlQakomBoN1CPO5cxdISfG+/hk6nZawsECvKovKkp0PYE1GUlMyyXXzH3ylLA4cOARAXFytMu+psuIzGq3foPPz8zl3LoWAgAB3ha1aFS0/tbw3Kvs+tIen3hueLgsB4eGBFW4VUng0GVKax5KSkqhTp2CkSlJSEs2aNSu2/datW6lfv36RGqDw8HDq16/PsWPHKhSLyWTGaPSOG1vpExQYGAzWSiKMJjPBwdZmsrS0NK+5lpJ4U1lUFqOp8M9mjJVUuXLs2FEA4uPrllkmZcXn71/wRSct7RJRUSr4BK1krio/T783PHUflsVTMXm6LARYXDh60KPJULNmzQgJCWHjxo22ZCg9PZ29e/fywAMPFNu+Ro0arFixgtzcXNu3y+zsbE6dOsWAAQMqNXZPunTJ2mcoOiyQLdcXjByT0WRVV6AettxXueWal5fH6dPWPkN169Yrc9uy4tPpdAQGBpGdnUVmZgZRUVGuDlX1PFF+7qDG61BjTML7OFy/tHjxYnJyclxycn9/fx544AGmTZvGmjVr2L9/P6NGjSIuLo5+/fphMpk4f/687Xy33norAM888wz79++3be/v78/tt9/ukpi8QUaG9Y0fEhJa5HEZTSZc6cSJE5jNZgIDg4iJia3QsUJCZK4hIYR6OZwMvfTSS3Tv3p1XX32Vbdu2VTiAESNGcMcdd/DKK69w7733otPp+OSTT/D39ycxMZEePXqwYsUKwDrKbMGCBVgsFh566CEGDx6Mn58f33zzDWFhYeWcqepQhigXT4asv6enSzIkKu7IkSOAtVaoop2eg4KUZMj7+rIJIao+h5vJ/vjjDxYvXsySJUtYtGgRdevWZeDAgdxyyy1Ur17d4QB0Oh2jR49m9OjRxZ6Lj48nISGhyGMNGzbkgw8+cPg8VYXFYrF9u/YPDOWF9db+GG9cmSOT21VhuSZ47a+Csg7Quf+chZOh8pQXX8GSHL5ZM+SJ8nMHNV6HGmMS3sfhmqHY2FiGDh3K8uXL+e6777jyyiv5/PPP6du3L48++igrVqyQVdPdKDs7C5PJ2mMwKCSENSf9WHPSD7MFgoKso8mysrI8GaJwA7OFImVdGRxJhsqLz9cnXvRE+bmDGq9DjTEJ71OhDtRt2rShTZs23H777UydOpUNGzawYcMGIiMjeeihh3j00UfRq2FWripE6Tyt1+sxGIpOP6B84EjNkHAFR5Kh8iiJujK3mBBCqInTmcqpU6dYunQpS5Ys4cSJE9SpU4dnn32WPn368McffzBnzhyOHDnClClTXBmvz1M6R4eEhBTrxxEYKDVDwnWOHrUOq69Tp16FjyX3phBCzRxOhhYtWsSSJUvYunUrBoOB66+/nokTJ9KpUyfbNo0bNyY5OZmFCxe6NFhR+kgyKKgZys3NxWg0Sq2ccFpWVqZtuZy6detW+HhKMpSTIzVDQgj1cfjT8tVXX6Vt27a8/vrr9O/fv9QlMJo2bcrdd99d4QBFUaWNJIOCETtg/QbuSyPshGsdP34cgKioKMLCKr4IsvRnE0KomcPJ0LJly2jUqFGpz589e5a4uDjbnEDCtZShyUotUGH+/v7o9X4YjflkZ0syJJynzDztiv5CgG15nexsSYaEEOrj8GiyAQMGsGvXrhKf27JlCzfccEOFgxKlUz5MlGaHyynfwGU+F1ERx48fA6Bu3fouOZ50oBZCqJldNUPz58+3VW9bLBYWLVrEunXrim23ffv2YivQC9dS+lwEBgZi0MH6u6x9iAz/za0RFBREenqaNEdUMSWVtTsdPWodSVavXj27ti8vPqVmyFfvy8ouP3dR43WoMSbhfexKhvLy8pg9ezYAGo2GRYsWFdtGq9USGhrKk08+6doIRRHKN+vAwEA0Guu6PIUp/YZkeH3VUlJZu9Phw9bV6hs2LL1JvLDy4lNqMn21Zqiyy89d1HgdaoxJeB+7bqEnnniCJ554ArAurvrtt9/Stm1btwYmSlY4GSqJdFQVFWUymWw1Q/YmQ+UpSIYkSRdCqI/D+fT+/fvdEYewk1LjExgYRJ4JJm2yTkP/Upcc/HUy8WJVVVJZu8uZM6fJzc0lICCAWrXisdgxq2958fl6n6HKLD93UuN1qDEm4X3sSobGjh3LU089Re3atRk7dmyZ22o0GiZNmuSS4ERxhWuGTBZYdtQPgBc65/z3uFIzJMlQVVJSWbvL0aOHAes6gDqdDqPRXOH4fL3PUGWWnzup8TrUGJPwPnYlQxs3buShhx6y/VyWiq5uLcpWXjNZQc2Qb37oiIo7fNiaDDVp0sRlxywYWu+bNUNCCHWzKxn67bffSvxZVL6CZEiG1gv3OHLE2nm6cePGLjtmQcd+SdKFEOrj8DxDJdm1axe//vor6enprjicKEPBPEOldaAOLrKdEI46ckRqhoQQvsXhZOj8+fM8+OCDzJkzB4AvvviCu+++mxEjRnDttddy8OBBlwcpCtg7mkxqhoQzLBaLLRlybc2Q9b40GvPJz89z2XGFEMIVHE6GpkyZwpEjR2jTpg1ms5kPP/yQK6+8ksWLF9OoUSOmT5/ujjjFf2RovXCns2cTyc7OQq/X2z3hoj0K369SOySEUBuHk6ENGzbwwgsv0LNnT3bs2MGFCxd48MEHadasGY8++ihbtmxxR5ziP+X3GZJmMuE8ZSRZ3br18PPzc9lx/fys6+aBJENCCPVxeJ6hrKws4uLiAFi7di3+/v507doVsC4UarFnUhLhtJycgrXJDDpYdbt1FfvCy3GANJNVNSWVtTsoI8kcnWzRnvgCAwO5dCnfJ2stK6v83E2N16HGmIT3cTgZqlevHlu2bKFt27asXLmSLl26EBAQAMDSpUtdWrUuirt8OY5IQ9HkU4bWV00llbU7KCPJGjRo6NB+9sQXFBTEpUvpPllrWVnl525qvA41xiS8j8PNZI8//jizZ8+mW7dunDx5ksGDBwNw5513snTpUh555BGXBymsLBZLuX2GZNJFUREHDiQA0Lix60aSKXx94kUhhHo5XDPUv39/qlevztatW+nSpQvt2rUDoFOnTowYMYKePXu6Okbxn/z8fEwmE1CwHMfMbdZauVEdci9bjkM+cKqSksra1UwmE4cPW0eDNm3azKF97YnPl4fXV0b5VQY1XocaYxLex6m1fjt27EjHjh2LPPbCCy+4JCBRusLNC4GBgeRbYNFBfwBGtM8FpM9QVWUqoaxd7cSJ4+Tk5GAwBFK7dh2H9rUnPl9en6wyyq8yqPE61BiT8D5OJUN//vknv//+O9nZ2ZjNRdctkrXJ3Ef5EPHz80Ov15NvLL5NYGDBaDKLxSLLowi7FW4i0+lc//XaYJAmXCGEOjmcDH388cdMmzaNgIAAoqKiin3Yyoev+5Q3rB4KmslMJhO5ubkYDIZKiU14vwMH9gPu6S8EBTVDOTm+VzMkhFA3h5Ohr7/+mgEDBjBx4kT8/f3dEZMoRXlLcQC2kX0Aubk5kgwJuynJUJMmjvUXspd0oBZCqJXDo8kuXrzIHXfcIYmQB5Q3kgyUJjSZ3E44Tmkmc7TztL18uc+QEELdHE6GWrRoIeuPeYg9yVDh56U5QtgrLS2Vc+fOAtCokXuayQqmfZCaISGEujjcTPbSSy/xzDPPEBQURNu2bUv8YK5Zs6ZLghNFFTSTld5nCMBgMHDpUjo5OTmVEZaoApQmspo1axEaGuqWcxQMrZdkSAihLg4nQ/feey9ms5mXXnqp1M7S+/btq3BgorjLa4YCdLD05gzbzwqDQfnQkWSoqvh1+U80WbeWyMhITnW5n8aNHFsuozx79uwBoHnzFk7tX9q9WFhBjaXv3Zf2vD7eQI3XocaYhPdxOBmaMGGCO+IQdrg8GdJqoGZI8WnoAwMN/20v38Crgu+/X8iECeNtv//75wo++uhzl/bt2bPnXwBatmzt1P6l3YuFKUm6LyZD9rw+3kCN16HGmIT3cTgZuu2229wRh7CDkgwpHyql8eUPnarm3LlzzJgxBYD77nuQ3bt3smvXTl56aTQLFnxfZPRgRSjJUKtWbVxyvJIoIxulL5sQQm0c7kANkJeXx4IFCxg+fDh33303hw8f5ptvvmHXrl2ujk8UcnmfoXwTvLs9gHe3B5BvKthOOlBXHd9++xVZWVm0btsR/2vG0+KJb4isVp3Dhw/y7bdfu+QcycnJnDlzGoDmzVs6dYzS7sXCCpIh30vS7Xl9vIEar0ONMQnv43AylJyczMCBA5k4cSLHjx9n165d5OTksHbtWgYNGsT27dvdEaegeDOZ0QJf7vPny33+GAvVEvvyh05Vkp+fx08//QDA/YMe4av9AXx/LJwnnhoFwPz5H7pkNue9e3cDUK9efac7T5d2LxZWUGPpe0m6Pa+PN1DjdagxJuF9HE6GpkyZQmZmJitWrOCnn37CYrHefe+++y6tW7dm1qxZLg9SWNk7tL6gA7XvfehUJZs3byQlJZlq1WLo3qOX7fH+/W+idu06pKamsnz5zxU+T0X7C9lLknQhhFo5nAz9/vvvjBw5krp16xYZTRYQEMCQIUNso1KE69k7tF6ayaqGdev+AKBXr6vQ6wu69+n1eu6++34AFi782vaFxFkFyVCrCh2nPJKkCyHUyuFkKDc3l4iIiBKf0+l05OfnVzQmUQoluSm/Zki+gVcFBclQn2LP3XLL7QQGBnH48EG2bNno9DksFgu7d1dOzZAyylHuSyGE2jicDLVu3ZoFCxaU+NzPP/9Mq1bu/XbpyxxtJpOaIe+VmHiGM2dOo9Pp6NLlimLPh4aG0r//TQAsXbrY6fOcOHGc5OSL+Pn50ayZc3MM2UtGOQoh1MrhZGjkyJH8+eef3HLLLbz77rtoNBqWLVvGE088wcqVKxk2bJg74hQ4kgwp8wxJMuStduzYBkDTps0JCgoucZsBA24FYPXqX52eU2r79q0AtG7d1mXD9EtTeGh9RZv2hBDClRxOhjp16sSnn35KYGAgH3/8MRaLhc8++4zz588zb948unbt6o44Bc70GZJv4N5KSYbatetQ6jZt27andu06ZGdn8dtvq506z9atmwFo376jU/s7QqkZslgs5OXluf18QghhL4cnXQTo3LkzCxcuJCcnh7S0NEJCQggOtn57NRqNRTp7CtcpaTmOb/tn2n5WSDOZ99u1awdQkAyVVNYajYYbb7yZDz6YzbJlS7jxxpsdPo9SM9ShQ6cKxVvavVhkm0I1Tzk52W6viVITe14fb6DG61BjTML7OFwzdPXVV7N/v3VRR4PBQPXq1W2J0K5du+jevbtrIxQ2JS3H0TDCTMMIM9pCy8QVNJNJzZA3ys/P59Chg0DBCK/Syvqmm24BYOPGvzl37pxD5zl37hynTp1Eq9XStm37CsVcWnyF+fn5odf7Ab5Xa2nP6+MN1HgdaoxJeB+7qnCWLVuG0WgE4PTp06xatcqWEBX2999/y2gyNypIhspbtV6pGZK1ybzRsWNHyM/PJyQkhJo1a5W5bXx8bdq378j27Vv55ZdlPPzwI3afZ+PGvwBo1qwFISEhFYrZXgaDgYyMfKm1FEKoil3J0O7du/nss88Aa9X8nDlzSt128ODBLglMFFfQZ8ia7OSbYP4efwCGtMzD778qYuV5qRnyTgcOJADQpEkz21xepZU1WGuHtm/fys8/L+ahh4YUmf+rLH/9tR6AK6/sUeGYy4qvsMBAAxkZl3zu3rT39VE7NV6HGmMS3seuZOjZZ59l0KBBWCwWrrnmGmbPnk3z5s2LbKPT6QgJCam0b5i+xmg02mrdCi/H8dFua7+LB1vk4ffftjKfi3dLSNgHQJMmTW2PlVbWAP36Xc/bb0/g8OGDJCTss2uIvMlk4p9/rDVDrkiGyoqvMF/tz2bv66N2arwONcYkvI9dyZC/vz+1almr69esWUNsbCx+fnLLVabCw+TtbybzrQ+cquLw4cMANGrU2K7tw8LCuOqqq/n111/4+ecldiVD+/btJTU1lZCQEFq3bluheB0hE4IKIdTI4WFftWrV4ujRo6xdu5asrCzMZnOR5zUajcw15AZKE5lOpys3EZUPHO924sRxAOrWrW/3PjfddAu//voLK1b8zDPPPF/uPbJ27W8AdOnSrVK/2Mi0D0IINXI4GVq8eDFjx44tddI0SYbco3B/ofL6hCg1RzLpovfJz8/jzJlTANStW8/u/bp1605UVDTJyRf566/19O7dt9RtLRYL//vfCgCuuebaCsXrKKm1FEKokcND699//32uvPJKfv/9d/bt28f+/fuL/Nu3b5874vR59s4+DTLTrzc7ffoUJpOJwMAgYmJi7d7Pz8/PtjzH999/W+a2CQn7OXHiOAEBAfTuXXzdM3eSWkshhBo5nAydOXOGRx99lBo1atg9akVUnJIMGQxl9xeybiMz/Xqr48ePAdZaIUffX3feeS8AGzasszW1lUSpFerRoxfBwZU74KFg5XqZ9kEIoR4OJ0P169cnMTHRHbGIMlw+rL4syrdvkOYIb1M4GXJU3br16NGjNxaLhYULvy5xm7y8PJYs+RGAG264ydkwnSY1Q0IINXK4z9Bzzz3Hm2++Sa1atWjXrp1PTanvSSU1k/lr4fPrMm0/K/R6PX5+fuTn55OdnU14eERlhioqoLRkqLSyvtx99w1iw4a1/PDDtzz00CNUr169yPOrVq0kOfkiMTGxZfYrcpS98RXUDPlWkm7v66N2arwONcYkvI/DydDEiRO5ePEiDz/8cInPazQa9u7dW9G4xGVKSoZ0WmgZbS5xe4MhkPx8menX25SWDJVV1oV169bdNiP1vHmzee21N23PGY1GPvxwLgB3332fS0eR2Rufr9YM2fv6qJ0ar0ONMQnv43AydPPNji8GKSrO3qU4FAaDgUuX0n3uQ8fbnTx5AoA6deo6tb9Go2HEiGcZPPh+fvrpe2688WY6duwMwJdffsbx48eIjIzk3nsfcFnMjvDVZEgIoW4OJ0PDhw93RxyiHCX1Gco3wTcJ1m/39zbNLzINfUFzhHzoeIv8/HySkqyLrV6+JllZZX259u07csstt7NkyY8899zTvPHGZJKSkpgz5x0ARo583uUdp+2Nr2CeId+qsXSk/NRMjdehxpiE97ErGdq8eTMtWrQgODiYzZs3l7t9586d7Q7AbDYze/ZsFi1aRHp6Oh07dmTcuHHUrVvyN+P8/HxmzZrF4sWLuXTpEq1ateLll18utjxIVVNSM5nRArN2WL9p39kkv8g09AXrk8moHW+RlHQOi8WCv78/UVHRRZ4rq6xL8sILL3Po0EH27PmXESOetD1+0023cMstt7s6dLvj89WaIUfLT63UeB1qjEl4H7uSoUGDBvHdd9/Rpk0bBg0ahEajKTZ/jfKYRqNxaK6huXPnsnDhQiZPnkz16tWZOnUqjz32GMuWLcPf37/Y9uPHj+e3335j8uTJ1K5dm5kzZ/LYY4/xyy+/EBoaavd5vY0j8wyB737oeLMzZ04DEBdX8WkrgoKC+eCD+cyaNYNff12Bn58/d911L4888rhHp8SQSReFEGpkVzL0xRdf0LBhQ9vPrpKXl8f8+fMZPXo0vXv3BmDmzJn07NmTVatWceONNxbZ/uTJk3z//ffMmzePq666CoBJkyZx6623snv3brp16+ay2NSmoJnMvj5Dvtoc4c3OnrVOWVGjRq1ytrRPaGgoL788jpdfHueS47mCJOlCCDWyKxnq0qVLiT9X1P79+8nMzKRr1662x8LCwmjRogWbN28ulgxt2LCBsLAwevXqVWT73377zWUxqZXUDFV9iYlnAKhZs6aHI3EfqRkSQqiRwx2oXens2bMA1KhRo8jjsbGxJU7seOzYMWrXrs2vv/7Khx9+yLlz52jRogUvvviirebKWTqduieoyM21JjXBwUHo9dZY9YVaKvU6LfpCpRkUFGTbT9le7ZQyUHtZuMvZswXJ0OVlVlZZu4OjZWFvfMHB1vsyJ8d77ktXqGj5qeW9Udn3oT3U/t4Q7uPKFn+P3spKbcflfYMCAgJIS0srtn1GRgYnTpxg7ty5jBkzhrCwMN5//33uu+8+VqxYQXR0dLF97BUWZl+Ni6fk5+cCUK1aJJGRwQAE5Bc8HxEZTFChnoPh4db+UxqNyba9t1B7WbjLhQtJADRqVL9YmZVV1u5kb1nYG19sbCQAeXm5XndfVoSrys/T7w1P3YdlUft7Q3gHjyZDSlNOXl5ekSUkcnNzS2wO8vPz49KlS8ycOdNWEzRz5kx69+7NTz/9xKOPPup0LOnp2ZhM6p24Kz09AwCzWUtKinW21ex8AOsHSmpKJrmF/ghotdaiTUlJt22vdjqdlrCwQNWXhbucOHESgPDw6GJlVlZZu4OjZWFvfPn/fXBlZWV5zX3pChUtP7W8Nyr7PrSH2t8bwn3CwwPRal1TQ+fRZEhpHktKSqJOnTq2x5OSkmjWrFmx7ePi4tDr9UWaxAwGA7Vr1+bUqVMVisVkMmM0qvfGzsqydqAOCDDY4tRa4IOrs/772YzRWLC9v7/Btp+ar6skai8Ld7BYLLY+Q7GxNYpdf1ll7U72loW98fn5WWuBs7NzfKqMXVV+nn5veOo+LIva3xvCfS4b1F4hHk2GmjVrRkhICBs3brQlQ+np6ezdu5cHHig+Q26nTp0wGo38+++/tG7dGrD2PTh58mSxztZVjdLh9PLlODpVN5W4fcE8Q9JR1RukpCSTm5uLRqMptp4YlF3WamBvfL7agVrt5WcvNV6HGmMS3seuZKhv3752z02i0WhYvXq1Xdv6+/vzwAMPMG3aNKKioqhVqxZTp04lLi6Ofv36YTKZSE5OJjQ0FIPBQKdOnbjyyit54YUXeOONN4iIiGDWrFnodDpuueUWu87prZSkxmCwfzkOkNFk3kKZeToqKtpWe1IVKfdlfn4+RqMRvRp64AohfJ7dQ+vdNVHbiBEjMBqNvPLKK+Tk5NC5c2c++eQT/P39OXXqFFdffTWTJ0/m9tuts+a+9957TJs2jeHDh5OTk0OHDh344osviIqKckt8alHSchxGM/x4yNpAfnujfAoPzilYjkNmoPYG58+fByAmJrbE58sqazWwNz7lvgRlpKNrlwVRK7WXn73UeB1qjEl4H7uSobfeesttAeh0OkaPHs3o0aOLPRcfH09CQkKRx0JCQhg/fjzjx493W0xqVNI8Q/lmmLLF+k17QIPLkyGlZii38oIUTjt/3jqSLCYmpsTnyyprNbA3voCAANvPOTk5Ll8jTa3UXn72UuN1qDEm4X2crqO+cOEC+fn5tmU5zGYz2dnZbNmyhXvvvddlAQowmUzk5lqTGvtXrffNvhneSkmGqlUruWaoqtBoNBgMgeTkZEsTrhBCNRxOhvbv38+zzz7L0aNHS3xeo9FIMuRihRMae2egDgyUPkPe5MIFpZms5JqhqiQw0EBOTrZ07hdCqIbDydCUKVNIT0/nhRde4Pfff8ff358+ffqwbt061q1b59K1y4SV8qFh/VZtKGdrq4KaIUmGvIFSMxQbW7VrhkC5N1Pk3hRCqIbDras7d+5k5MiRPPzww9x4441kZWVx33338cEHH3DNNdfw5ZdfuiNOn1a4v5C9HdkL+gzJt29vkJTkG81kUHBvSud+IYRaOJwM5eXlUb9+fQAaNGhQpIPz7bffzo4dO1wWnLAqSIbs6y8EUjPkbXypmUxJhpR+cEII4WkOJ0M1a9bk5EnrsgF169YlIyPDNvuzv79/iWuKiYopaVh9eaRmyHuYTCYuXrwAlD60viqRzv1CCLVxuM/Qtddey7Rp0wgMDOT666+nQYMGzJw5k6FDhzJ//nxq167tjjh9WknD6gH8tPBO7yzbz4UVnnTRYrG4bZ4oUXEpKcmYTCY0Gg1RUSUvNlxWWauBI/H54oSgai8/e6nxOtQYk/A+DidDw4cP5/jx4/zwww9cf/31jB07luHDh7NixQp0Oh0zZsxwR5w+rbRkSK+FHrVKW47D2qRmMpkwGvOr9KzG3k5pIouOrlbqjMxllbUaOBKfL9YMqb387KXG61BjTML7OJwMBQQEMGvWLPL/W366Z8+e/Pzzz+zZs4eWLVsWWXBVuEZBM5kjfYYKRp1lZ+dIMqRiSudpX+gvBAUTL8qEoEIItXB60kU/Pz/bz3Xq1JEkyI1KqxkymuGXY9YivKGescjMq35+fuj1eoxGIzk52YSFhVVavMIxSn+h6OjSk6GyyloNHIlPuY99qWZI7eVnLzVehxpjEt7H4WQoOzubDz74gN9//53s7GzMZnOR5x1ZqFXYp2CR1qLJUL4ZXv/H+tg1dS4V+yNgMBjIyMjwqb4Z3ig5+SIA0dEl9xeC8sva0xyJzxf7DKm9/OylxutQY0zC+zicDE2cOJEffviBLl260Lx5c7RaufPczZmh9WBNniQZUr/k5GSAUjtPVzW+2GdICKFuDidDv/76K6NGjWLo0KHuiEeUwJmh9SDD672FUjMUGRnp4Ugqhy/WDAkh1M3hah2j0UibNm3cEYsoRWl9hsojHzrewddqhgIC5L4UQqiLw8lQjx49WLdunTtiEaVQanYcT4akOcIbpKRYa4aioqI8HEnlkCRdCKE2DjeT9e/fn3HjxpGcnEzbtm1L/IC+9dZbXRGb+I8zQ+uh8BpQ8qGjZr5WMyTJkBBCbRxOhp555hkAFi9ezOLFi4s9r9FoJBlyMeebyaRmSO3MZjMpKdZkKDLSN5IhXxxaL4RQN4eToTVr1rgjDlGGspbjeKtHtu3nyxXUDMmHjlqlp6dhMllnz42KKr0DdXll7WmOxOeLNUNqLz97qfE61BiT8D4OJ0O1atVyRxyiDFlZJTeT6bVwTR1jqfv54oeOt1GayEJDw8qcJby8svY0R+JTOlDn5vrOfan28rOXGq9DjTEJ7+NwMjR27NhSn9NqtQQFBVGvXj369+/vM0OF3c3ZZjJpjlA/pYnMVzpPgyTpQgj1cTgZOnv2LNu2bSM3N5datWoRExPDxYsXOXXqFFqtlmrVqnHx4kXef/99vvnmG1nF3gVKm2fIaIY/TlmL8Kr44tPQy4eO+ilzDJXXebq8svY0R+Lzxb5sai8/e6nxOtQYk/A+Dt82ffr0ITQ0lIULF7JmzRoWLlzIqlWr+PHHH6levTpPPfUUf/75J/Hx8bKCvYuUVjOUb4YXNwTy4oZA8s3F9/PFDx1vUzCSrOyaofLK2tMciS8w0PdGOaq9/OylxutQY0zC+zicDH322Wc899xztGvXrsjjzZs3Z+TIkcybN4/w8HCGDBnCxo0bXRWnT3N+OQ6pGVI7e2uGqpKCJF3uSyGEOjicDKWkpJT6LTY8PJyLFwsmkFM6/grnmc1mmXSxClNqhiIjfafPUEBAAABGYz5Go3R8FUJ4nsPJUIsWLfj444/Jy8sr8nheXh7z58+nefPmAOzZs4caNWq4JkofVnjEjSzHUfUUzD7tezVD4FsjyoQQ6uVwB+rnn3+ewYMH07dvX6666iqio6O5ePEia9euJSMjg48//pgtW7YwY8YMnnzySXfE7FMKzxFU+EPEHsr2vtQ3w9v42uzTUFAzBNZEPTg4xIPRCCGEE8lQ+/bt+eGHH5g3bx7r168nOTmZuLg4evbsyRNPPEGdOnX4+++/GTFiBI888og7YvYpSjJkMBjQah2ryFM6qkozmXr52or1YJ2l3mAIJCcnW2othRCq4HAyBNCwYUOmTJlS6vPdunWjW7duTgclCpQ2rN4e0kymfr5YMwRgMARIMiSEUA27kqHFixfTu3dvIiMjS1yP7HKyNpnrFNQMFU+G/LQwrmtZy3FIB2o1y8/PJz09DSi/A3V5Ze1pjsZnvTdTfebeVHv52UuN16HGmIT3sSsZevHFF/nuu++IjIzkxRdfLHNbWajVtcoaVq/XwoAGshyHt1ISIY1GQ3h4eJnbllfWnuZofL52b6q9/OylxutQY0zC+9iVDK1Zs4aYmBjbz6LyVKyZTGqG1Cw1NRWwrkum0+k8G0wlk7mGhBBqYlcyVHhx1pIWajUajWRkZBAREeGywIRVWeuSGc3wT6L1Q7RrDZMsx+FllJqh8mqFoPyy9jRH4yu4N30jUVd7+dlLjdehxpiE93H4tjEajcyePZulS5cC8Pfff3PllVfSrVs3HnroIdLS0lwepC8rKxnKN8Mza4N4Zm1Qmctx5ObmYjbLPPVqo9QMhYdHlLtteWXtaY7Gp6xcn5OT6+bI1EHt5WcvNV6HGmMS3sfhZOi9997j/fff59KlSwBMmjSJyMhIxo4dy4kTJ5g+fbrLg/RlBc1kji3FYd3HYPtZJrdTn7S0VMC+ZKiqkWkfhBBq4nAytGzZMp599lnuv/9+jhw5wsGDB3nyySd58MEHGTVqFL/99ps74vRZZdUMlUf59m09jiRDaqPUDPli87I04Qoh1MThZCgpKYm2bdsCsG7dOrRaLb169QIgLi7OVmMkXKMiyZBWq/W5vhnexJdrhqRzvxBCTRxOhmJjYzl16hQAq1atonnz5raFW7dv305cXJxrI/Rxzq5Yr5Bv4OolNUNyXwoh1MHhZOjmm29m8uTJPPLII2zdupWBAwcCMHHiRN577z0GDBjg8iB9WUWG1oN8A1czX64ZUppwpS+bEEINHF6OY8SIERgMBjZv3sxzzz3HfffdB8C///7LkCFDeOqpp1wepC+rSDMZyDdwNStIhsofWl/VKPel9GUTQqiBw8mQRqPh8ccf5/HHHy/y+MKFC10WlChQVjLkp4UxnXJsP5dEaobUy5GaIXvK2pMcjc/X7ku1l5+91HgdaoxJeB+nFmoVlae85TjuapJf5v5SM6ReSjJkT58he8rakxyNr2BovW/cl2ovP3up8TrUGJPwPpJHq1zF+wxJc4QaWSwWhyZdrGp8rWZICKFuUjOkcsqHRUmr1pvMsP28dRr69jEmdLJyvdfIzs4iP9/6bdaemiF7ytqTHI0vICAAsM6O7gvUXn72UuN1qDEm4X0kGVK5sprJ8szwxBrr4+vvukRgicmQbzVHeAulVsjPz8+uaRPsKWtPcjQ+X0vS1V5+9lLjdagxJuF95LZRuYqOJlP285UPHW9RuL+QRqPxbDAeIEm6EEJN7KoZGjt2rEMHnTx5slPBiOJc1WdIPnTURVnQOCwswrOBeIhSMyR92YQQamBXMrRx48YivyclJWE0GqlZsyYxMTGkpqZy8uRJ/P39adasmVsC9UUWi8UF8wxJzZAaFdQM+d4cQyALtQoh1MWuZKjw4qs///wz06ZN47333qNNmza2xw8dOsSwYcO44YYbXB+lj8rLy8NsNgOyHEdVUzCSLNKzgXhIwQzUvtGBWgihbg73GZo5cybPPfdckUQIoFGjRowcOZKPP/7YZcH5OqWJDFwxtF6+gauJLy/FAcgCwkIIVXE4GUpJSSE0NLTE5/R6PVlZWSU+JxynJDB+fn7o9c4N/CtoJpOaITXx5UVaoeC+zMvLw2QyeTgaIYSvc/gTtl27dsyePZt27doRGVlQxZ+UlMR7773HFVdc4dIAfVl5K9brNTCiXY7t55JIM5k6OVozZE9Ze5Kj8Sn3JVgXaw0KCnZXaKqg9vKzlxqvQ40xCe/jcDL0wgsvMGjQIPr27Uv79u2JjIzk4sWLbN++nfDwcN5//313xOmTyhtJ5qeDB1uUtxyHdKBWI2U0mb01Q/aUtSc5Gp8y6SJATk5ulU+G1F5+9lLjdagxJuF9HG4ma9asGcuWLeOee+4hMzOT3bt3k5OTw5AhQ1i6dCnx8fHuiNMnVXQkmXVfqRlSI6VmKCzMN0eTabVaW0IkiboQwtOc6ohSvXp1XnjhBVfHIi6jJENBQSU3k5nMsD/Fms82izTLchxexNE+Q/aUtSc5E5/BYCA3N9cnEnW1l5+91HgdaoxJeB+nkqG8vDy+//57/vrrL86fP8+kSZPYtGkTLVu2LDbKTDivvJqhPDM89D9r84Isx+FdHO0zZE9Ze5Iz8RkMgaSlpflEoq728rOXGq9DjTEJ7+PwbZOcnMzAgQOZOHEix48fZ9euXeTk5LB27VoGDRrE9u3bHTqe2Wxm1qxZ9OzZk7Zt2zJkyBCOHz9u174///wzTZs25dSpU45ehlfIysoEwGBwbo4h674ymkxtTCYTly6lA747mgwkURdCqIfDydCUKVPIzMxkxYoV/PTTT1gsFgDeffddWrduzaxZsxw63ty5c1m4cCETJkzg22+/RaPR8Nhjj5GXl1fmfqdPn+b11193NHyvonxjrkifIZnPRX3S09Nt7xtf7TMEBRMvSjIkhPA0h5Oh33//nZEjR1K3bt0iC0wGBAQwZMgQ9uzZY/ex8vLymD9/Pk8//TS9e/emWbNmzJw5k3PnzrFq1apS9zObzYwePZqWLVs6Gr5XcUUHavn2rT5paSkAhISE4Ofn5+FoPEfuTSGEWjicDOXm5pZata/T6cjPt3+I4/79+8nMzKRr1662x8LCwmjRogWbN28udb8PPviA/Px8Hn/8cbvP5Y3Km2fIHkozmdFodKhshPsow+p9dfZphZLkS62lEMLTHO5A3bp1axYsWEDv3r2LPffzzz/TqlUru4919uxZAGrUqFHk8djYWBITE0vcZ9euXcyfP5/vv/+ec+fOORB52XQqHIKQm2v9kAgODkKvLx6f3lLoZ52WkiapDg0tSKSMxjwCAwOKb6QSShmosSxcSekvFB4eUWK5lsSesnYlR8vCmfiUZCgvL9fu18FbVbT81PLeqOz70B5qf28I99G4cJJNh2+bkSNH8vDDD3PLLbfQu3dvNBoNy5Yt47333mPDhg0OrU2m1Hz4+/sXeTwgIMD27bmwrKwsnn/+eZ5//nnq1avn0mQoLMz5pih3MZmsNTlRUeFERhaflC6gUEVPRGQwQSW0uFgsQeh0OkwmE/7+lHgctVFjWbhSfr51Ms2YmGi7y8OesnYHe8vCmfjCwkIA0GrNXnFfVoSrys/T7w1P3YdlUft7Q3gHh5OhTp068emnnzJ9+nQ+/vhjLBYLn332GS1atGDevHlFmrzKo/QZyMvLu2x6/twS+8lMmDCBevXqcc899zgadrnS07MxmcwuP25FpKam//eTnpSUzGLP55vg8TbWd35GWj65upKPYzAYyMzM5Ny5ZAICSl5XTg10Oi1hYYGqLAtXOnPGmsQHB4eWWK4lsbesXcXRsnAmPq3W+ucnJSXd7tfBW1W0/NTy3qjs+9Aean9vCPcJDw9Eq3VNDZ1TFYqdO3dm4cKF5OTkkJaWRkhICMHBjn+zU5rHkpKSqFOnju3xpKQkmjVrVmz7H374AX9/f9q3bw9gW+Dxpptu4uabb+aNN95w5nL+O5YZo1FdN3ZWlrXmLCDAUGJsGuCxVrnWXyxgNJZ8HIMhkMzMTDIyslR3jSVRY1m4UnKytQN1WFi43ddpb1m7mr1l4Ux8/v7WL0CZmd5xX1aEq8rP0+8NT92HZVH7e0O4j8VS/jb2cjgZGjt2LAMHDqRTp04YDIYiNTr79u1j+PDhrFmzxq5jNWvWjJCQEDZu3GhLhtLT09m7dy8PPPBAse1//fXXIr/v3LmT0aNH8+GHH9KwYUNHL0X1ylubzF7SUVVdHJ1wsaqS0WRCCLVwOBn66aef+Pnnn3n11Ve5++67izyXl5fHmTNn7D6Wv78/DzzwANOmTSMqKopatWoxdepU4uLi6NevHyaTieTkZEJDQzEYDNStW7fI/koH7Jo1axIdHe3opaheectxmC1wNM1aRVg/3IxWVq73Co4uxQH2l7WnOBOfL92Xai8/e6nxOtQYk/A+TjW29e7dm3HjxvH666/bmqqcNWLECO644w5eeeUV7r33XnQ6HZ988gn+/v4kJibSo0cPVqxYUaFzeKusLKVmqORkKNcEd68I5u4VweSWUQyyPpm6pKc7PrTe3rL2FGfi86UaS7WXn73UeB1qjEl4H6f6DD3++OPceOONvPTSSxw6dIj33nvP6WUFdDodo0ePZvTo0cWei4+PJyEhodR9r7jiijKf93YFzWTOzzMEBd/As7Or/jdwb6DUDPl6M5myan1ubq6HIxFC+Dqnu2H379+fr7/+mhMnTjBw4EASEhLQq2HSiSqkvGYye0nNkLpInyEruS+FEGpRoTFpLVu25Pvvv6datWrcc889/Pnnn66KS1CwUGvFkyHf6ZvhDZRkyJcXaQW5L4UQ6lHhAfoxMTF8+eWXXHvttcyYMcMVMQms66+5rmZIFmtVi5ycHNuHv9QMWWuGlPtcCCE8xeF2reHDh1O9evUij/n7+/P222/TrFkzfvvtN5cF58tyc3NsK5u7bmi9fAP3NKVWSK/XExIS4tlgPMxgsPYZkvtSCOFpTiVDpRk8eDCDBw+uUEDCqvC3ZeUbtLOkOUI9lM7TYWHhaFy5sI4XUu7r3Fy5L4UQnmVXMvTggw8ybtw4GjZsyIMPPljmthqNhs8//9wlwfmywsPqS5tuXK+BQc3zbD+XpqA5Isu1QQqHpaenAo73F7K3rD3Fmfh8KUlXe/nZS43XocaYhPexKxmyFJrz2lLO/NflPS/sU5AMlV4r5KeDke3LH5as9DmSvhmeV7hmyBH2lrWnOBOfL40mU3v52UuN16HGmIT3sSsZ+vLLL0v8WbiPUotT0c7TUDBPkZJgCc+RkWQFfKlmSAihbjIxkEopiUtZyZDZAmczrfXCccGWUqehV2qXJBnyPGcnXLS3rD3FmfiUZCg3Nxez2eyy1afVSO3lZy81XocaYxLex65kqFmzZnZ39tRoNOzdu7dCQQn7Zp/ONcHNS60jktbfdYnAUkqzoJlMkiFPc3bCRXvL2lOcia/wIs+5ubkVHjWpVrm5uUyeNo1l9d8CYFrdVVzVvauHo3KOGu9DNcYkvI9dt82wYcN8fuRLZVP697jiAyIoKBiQmiE1cGaR1qoqIKAgGcrJyamSyZDFYuH550ew/p9N6EdZk6Fnnx3G7JnvcuWVPTwcnRBCYVcy9PTTT7s7DnGZgmay4AofS6kZUma0Fp7jzCKtVZVOp8Pf35+8vLz/OlFHejokl1uy5EfWr19LQEgkyhqiZrOZl18ew9Kl/yM0NNSj8QkhrJyqUMzJySEhIYH8/Hzb6DFlxuQtW7bw/PPPuzRIX+SqpTigoKlNmsk8T2qGijIYAsnLy6uSIx2NRiMffDAbgEcffYJ5/z1et259jh/ay/z5HzJy5HOeC1AIYeNwMvTPP/8wcuRI0tPTS3w+ODhYkiEXcG0zmYwmUwulz5CjQ+urqqCgINLT06pkor5mza+cPZtIZGQUd955D/OWWB8fNmwkY0Y9znffLeCRRx73+ZnIhVADh4dvvPPOO0RERDBr1iyuueYarr32Wj744APuu+8+NBoNH330kTvi9DmFJ12sqMLJkMwD5VkytL6oqjzScenSxQDceec9BAQE2B7v0aMX9es3IDMzk59//slD0QkhCnM4GUpISODpp5+mX79+9O3blzNnztC7d29effVV7rjjDt5//313xOlzXDnPkHIMi8VCbq5MTuYpZrOZtDTpM1RYQRNu1WomS01NYePGvwDo3/+mIs9pNBruuuteAJYv/7nSYxNCFOdwM5nZbCYuLg6A+vXrc+jQIdtz1113HS+88ILrovNh9qxYr9PAnY3zbD+XpvDaZllZWUWGNIvKk5FxCbPZDEBEhGOdhe0ta09xNr6qOu3DunV/YDQaadKkKfXqNSDPVPT1ufbaG5g6dTK7d+/i9OlT1KoV7+GI7aPG+1CNMQnv43AyVKdOHRISEujUqRN169YlOzubw4cP07BhQ4xGI5mZMmLJFexpJvPXwQudy6/p0Wq1BAYGkZ2d9d+HTpSrwhQOUDpPBwYG4e/v79C+9pa1pzgbX1VtJtu48W8Aeva8Cij++kRHV6Nz5yvYuPFvfv31FwYPfswTYTpMjfehGmMS3sfhZrIBAwYwbdo0vvzySyIjI2nVqhUTJkzgt99+Y86cOTRq1MgdcfocV44mK3wcGV7vOdJfqDhl6oiqVDNksVjYtOkfAK64olup21177Q0ArFq1slLiEkKUzuGaoUcffZSUlBR27doFwLhx43jsscd46qmnCAkJkT5DLmJPzZDFAqm51nrhiAALZc2LGRQUxMWLVe8buDepyLB6R8raE5yNryqOdDx27Cjnzyfh7+9PmzbtgJJfn169rgJg3769JCcnExWl/hpbNd6HaoxJeB+HkyGtVlukX1Dr1q1ZvXo1R44coUGDBjJM1EWUlbzLGlqfY4J+P9o3DX1VbY7wJqmpKYBznacdKWtPcDY+pT9bVbovlVqhdu06FCxGW8LrExMTS5MmTTlwIIFNm/7m+utv9FjM9lLjfajGmIT3ccnKiCEhIbRp00YSIReyZ6FWR8jEi54nEy4WV9CBuuqMJtu2bQsAnTtfUe62Xbt2B+Dvv/90a0xCiLI5nEOfOXOGN954g23btnHp0qViz8tCra7h6mSoKjZHeJuCPkNVb9kJZyk1llUpSd+7dzcArVq1KXfbbt2688UX8/n77z+xWCyyBqQQHuJwMvTyyy+zY8cOBg4cKN9w3ahgaH3F1yazHkeSIU+rSDNZVVXV7sv09DROnjwBQIsWLcvdvn37jvj5+ZGUdI6TJ09Qp05dd4cohCiBw8nQjh07ePXVV7n99tvdEY9AWedN6UDtmpW8lWayqvKh442UZrLISKkZUlS10WR79+4BID6+tl1Jr8FgoEWLVuzcuZ0dO7ZJMiSEhzjcZygmJobwcFlXyZ2UztPgmuU4oOBDR4bWe47STCY1QwWqWsd+pYmsRYtWdu/Tvn1HALZv3+aWmIQQ5XM4GXr88ceZM2cOp0+fdkc8goImMo1G47LZoqvqTL/eRJrJiqtqHfudSYbatesAwI4dW90SkxCifA43k1111VV8/PHHXHPNNURFRRX7sNZoNKxevdplAfqigjmGAsvsUKnTwE31820/l6Wq9c3wRhVpJnOkrD3B2fiq2miyffusg0cu7y9U1uvTtm17AI4ePUJKSoqqm1HVeB+qMSbhfRxOhsaOHcvJkyfp3r07MTEx7ojJ5xWMJCu787S/DsZ3y7HrmNJnyLMsFkuFmskcKWtPcDa+qtRMlpWVyenTpwBo1KhJkefKen0iIyOpX78BR48e4d9/d9CrVx+3x+osNd6HaoxJeB+Hk6FNmzbx2muvcdddd7kjHgGFOk+7pr8QSDOZp2VnZ5GXZ11MUs3f/CtbQV82778vjxw5AkBkZJTDs0m3bNmao0ePsGfPblUnQ0JUVQ73GQoLC6NmzZruiEX8x945hiwWyDZa/1ksZR9Tmsk8S2ki8/f3t8267AhHytoTnI2vKjWTHT58EICGDYuvz1je69OypbWPkdLnSK3UeB+qMSbhfRxOhu677z4+/PBDMjIy3BGPALuH1eeYoOd3ofT8LpQcU9nHlGTIswp3nnZmYj1HytoTnI1PuceNxnzy8/PcFF3lOHz4EFByMlTe66N0uN67dw8WFX+iq/E+VGNMwvs4NQP13r176dGjR4lrkWk0Gj7//HOXBeiLXD37dOFjZWZKEusJMsdQyQon/FlZWYSH+3swmoopSIYaO7xvkybN0Ol0XLx4gaSkJKpXr+7q8IQQZXC4Zujo0aM0b96c1q1bExwcjMViKfLPbDa7I06foiQswcGuW+stJCT0v2PLPEOeIHMMlczPzx8/Pz/A+5vKjhwpvWaoPIGBgTRo0BBQf1OZEFWRwzVD48ePp2HDhu6IRfxHSViCg12zFIf1WNbEKiOj+Hpywv1kjqHSBQYGkZ+f5tVNuFlZmSQmngGcS4bA2lR28OAB9u7dTZ8+V7syvCorKekc78yZC01nADB+/CuMePIJatWK93Bkwts4XDP0yCOPsHjxYjeEIhRKzZCr1iUDbM2ZWVlZmEzSsF7ZpJmsdFVhpOPJkycBiIiIcHoh3oJ+Q1IzZI8DBxK4++5bWbFiqe2x//1vOXfeeTObN//jwciEN3I4GTIajfIH3c2UmqHL+2NVhNJMVvj4ovJIM1npqkLn/tOnrclQfHwdp49ROBlScydqNUhJSWHYsMdISUmhUaOmtsfbtGlHVlYWI0Y8xaFDBz0YofA2DidDI0eOZMKECfzwww/s2rWLM2fOFPsnKkZJVlxZM+TvX9A3QzpRVz6lmczZWoOqTJlqwJtrhk6dsiZDFWmeady4CVqtlpSUFC5cOO+q0KqkSZNe5/z5JOrXb8CcOR/ZHp816wM6depCdnYWL7zwrNePUBSVx6k+QyaTiZdffrnUIcL79u2rcGC+rKBmqOxkSKuBq2vn234uT0hICCkpKZIMeYDSTBYREeHU/o6WdWWrSHxVYa6hU6esM0+XlgzZ8/oYDAbq1q3H0aNHOHgwgZiYWLfEWhFquA+3bdvCqlUr0Wq1TJ48jYjwUFtMgYYApkx5h4EDb+Lw4YN88cWnPPLI454JVHgVh5OhCRMmuCMOUYiysnx5NUMBOni7p/3T0IeEhJKSksKlS5IMVbaKNpM5WtaVrSLxFUz74L3NtwXNZLVLfN7e16dx46YcPXqEhIQErryyp0tjdAU13Ifz5s0F4Lbb7qBZsxZA0ZgCoqJ4/vkXefnlMXz66cfceec9hIWFeyRW4T0cToZuu+02d8QhClEmtHRlnyEoGFEmNUOVr6BmSJrJLldwX3pvMqQ0k5WWDNmrceOm/PrrLxw8mOCKsKqcAwcS2LjxL7RaLUOGDC11uxtuuIlPP/2IQ4cO8uWXnzFs2MhKjFJ4I4f7DAEkJyczffp07rrrLq6//nruvfdepk+fzsWLF10dn0+yt2bIUUpyJclQ5atoM1lVptyX3jrtg9ls5syZ00DF+gwBNG1q7QwsyVDJFiz4AoC+ffuV+VprtVqefPJpABYu/Nqrm2BF5XA4GTp79iy33XYbn332GQEBAbRo0QK9Xs+nn37Krbfeyrlz59wRp09RaobKm2co2widFoTSaUEo2cbyj6t86Fy65J0fOt4qNzfX1jnY2ZohR8u6slUkPm+vsTx/Pon8/Hz0ej3Vq8eVuI29r0/jxtZk6OjRI7aFfdXEk/dhdnYW//vfLwDcf/+D5cbUp8811KoVz6VL6axcubxygxVex+FkaOrUqej1elasWMGXX37JjBkz+PLLL/nll18wGAzMnDnTHXH6FKVmyJUzUBc+nrd+6HgrpVZIr9e7vOmzKiiosfTOZjKliSwurgZ6vcM9D4qIi6tBaGgYRqORo0ePuCI8t6ns4f9//PEb2dlZxMfXpl27DuVur9VqufPOewH49tsFMl2BKJPDydCGDRsYMWIEtWsXbRuvXbs2w4YNY926dS4LzheZzWa3zEAN3v+h462UztNhYeFOLdJa1RU0k3lnkl4wrL5i/YXAurZjkyZNAPU1lZ07d44xY0bZfr/vvjv5668NlXb+X35ZBlj7A9n7Prr11tvx9/dn//69JCTsd2d4wss5nAyZTKZSJ12Miory2j9oalF4rhV31QxJM1nlSklJBiAyMsrDkaiTty8Vc/q0dVh9fLxrloBQmsoOHFDPh3di4hkefPBu1q//w/bYsWOHeeqpR1m8+Ae3nz89Pd2WeN1ww0127xcREUmvXlcBSFOZKJPDyVDTpk1ZsmRJic8tXrzY9q1GOCcjw1pro9PpCAgIcOmxQ0OVxVolYa1MycnWgQVRUZIMlcTbm28LkqGK1wyBdQV7sI6cUgOj0cjzz4/k3Lmz1KlTz/b4gAG3A/DGG6+ybdsWt8bw998bMBqN1K/fwLagrb2U5GnlyuWykLgolcMN3E899RSPPPIIqampDBgwgGrVqnHhwgV+/vln/vrrL2bNmuWOOH1G4f5Crm5S8fYPHW+VnGytGYqOjvZwJOoUGqrUDHln860rm8mgcM2QOpKhb775ij17/iU0NIx3353Lnf/1hBg79hWM2Wn88ssyXnnlBX78cTkGg8EtMaxb9wcAvXr1cXjfHj16ExISwtmziezcuZ327Tu6ODpRFThcM9S9e3fefvttEhISePHFF3n00Ud58cUXSUhIYNKkSfTr188dcfoMe0eSOaOgOUKSocqk1AxFRkoyVJKq0kxWq1YtlxyvUaNGaDQakpMvcvHiBZcc01kZGRl8/PH7AIwaNZq4uBq25zQaDa+8Mp7q1eM4c+a0bdi7q5lMJjZsWAtga/JyREBAAL179wXg99/XuDI0UYU4Nc/QLbfcwvr161m+fDkLFixg+fLlrF+/XiZkdAFH5hjSaqB7TSPdaxrtmhq/4Bu4JEOVqaCZzPlkyNGyrmwVic+bayyzs7Nt64iV1UzmyOsTGBhEnTp1Ac/XDv300yLS0tKoV68+N998W7HrCA4O4emnrZ2qP/lkHikpKS6P4d9/d5KWlkZoaBht27Yv9rw9r61So7Ru3e8uj09UDU6PA01PTyc4OJjAQOsii4mJibbnatasWfHIfJTygWBPzVCADt69yv7JxLz5Q8ebuaLPkKNlXdkqEl9BX7ZMzGYzWq1T39E8QqkVCgkJLXPJB0dfn8aNm3L8+DEOHNhPt27dKxynMywWC4sWLQTggQceRq/Xo6f4dfTvP4Cvvvqc/fv3smjRNwwd+pRL49i8eSMAV1zRrcSpC+x5ba+8sgd6vZ5jx45y/Pgx6tat59IYhfdz+K/OsWPHuOeee+jatSt9+vTh6quvLvZPOM9dw+qtx5SaIU9Q+gxVpGaoKis8ajIry7tWrj9zpqDztCv7+DVposxEfcBlx3TUpk3/cOLEcYKDg7nhhhtL3U6r1fLQQ0MA62zPubm5Lo1jy5ZNAHTq1MXpY4SGhtKxY2dAaodEyRyuGXrzzTc5duwYw4cPJy4uzqu+xXmDgpoh10/Op3wDl2SocslosrL5+/uj1/thNOaTkXHJqyamLFiTzDXD6hWNGilzDXkuGVqy5EfAWvNT3t+ja665jnfemca5c2dZuXI5t9xyu0tiyM/PY+fO7UDFkiGwNpVt3Pg3a9f+zqBBg10RnqhCHE6GtmzZwsSJE7npJvvnehD2c6RmKNsI/X6w/pFaNTCDwHJKUzlmTk42RqOxwrPlCvu4ombI0bKubBWJT6PREBISTGpqqtcl6qdOWWuGatYsOxly9PVRaoaOHDn033vVv+LBOiA/P89Wg3LjjTfbHi/tOvz8/Ljrrnt5772ZLF78g8uSod27d5OTk0NkZCQNGzYqcRt7X9vevfswdeoktm/fSmZmhlu+cArv5XC1TkhICOHhpbeNi4pxtGYox6Qhx2Rf9XxISKjtZ5l4sXJkZ2fZJtKsaM2QI2XtCRWJT7k3va0/2+nT9q9W78jrU7NmLYKCgsjPz+f48WMVCdEpmzZtJCMjg2rVYmjTpl2R50q7jptuuhWtVsv27Vs5ceK4S+JQmsg6duxSZjOkPa9tfHxtateug8lkYutW986LJLyPw8nQLbfcwtdffy3rvLiJO/sMFV4bKz09zeXHF8UptUIBAQF2jRD0Vd7auV+pGXJ1M5lWq6VRo8YAHDpU+U1la9b8ClgXO7W3K0T16tVtnb2XLv3JJXG4or9QYV26dAVg48a/XXI8UXU4XNkeGBjI1q1b6devH61bty42yZZGo2HSpEl2H89sNjN79mwWLVpEeno6HTt2ZNy4cdStW7fE7Q8ePMjUqVPZuXMnWq2Wzp078+KLL1aZEWxKM4G7+k2EhYWTkZEhyVAlKdxEJuuSlS4kxJooXrrkPcmQxWIpNMeQayZcLKxx46bs2rWTAwcSuPHGyuuWYLFYbMtu9O17jUP73nzzbfz553pWrlzOsGEjK3TPW/sLbQOgU6fOTh+nsC5duvHDD9+xaZMkQ6Ioh2uGfvrpJ0JDQzGbzezcuZONGzcW++eIuXPnsnDhQiZMmMC3336LRqPhscceIy8vr9i2KSkpDB48mODgYL766is++ugjUlJSePTRR10+gsFTLl1KByA0NMwtx1eaONPSJBmqDCkpyoSL0nm6LN7YTJacfJGcnGw0Go1bvow1bmztRF3ZNUNHjx7h/PnzBAQE0KFDJ4f27dXrKgwGA6dOnWT//r0VimPPnoL+Qg0alNxfyFFKzdDBgwc8PqGlUBeHa4Z+++03l508Ly+P+fPnM3r0aHr37g3AzJkz6dmzJ6tWreLGG4sO51y9ejXZ2dm89dZbtnW7pk6dSu/evdm2bRvdunVzWWyeovTlUUZ+uVpYWAQgyVBlkWH19vHGZjJlJFlcXA38/FzfwdlTy3IotSbt2nVweH3EwMAgevToxerVv7Jq1UqaN2/pdBwF/YU6u2zUcmRkJE2bNichYR+bNv3j0KKvomrz6JiU/fv3k5mZSdeuXW2PhYWF0aJFCzZv3lwsGerWrRtz5swp8Q1a0Q93nU4dUwQoSxJERISj15cdk75Qty29Tos9g8MiIsL/O09aucevbEoZqKUsXCE11ZoMVasWXaHX25myrghHy6Ki8SnJf1ZWpuruy9IkJp4GoFateLe8V5s1a/bfec6QlZVJZGRwpbw3lEkOu3btVuy67LmO6667gdWrf2X16l8ZNep5p5vKtm7dDECXLleU+fo6+tp27dqNhIR9bN78DwMG3Fz2xiWoin+nvJUrex54NBk6e/YsADVq1CjyeGxsbJEZrRXx8fHFOirOmzePgIAAOneuWJtyWFhghfZ3FeWbcc2asURGlt3hNtAIXf9bDikqKhiDHaUZG1sNgLy87HKP7ylqKQtXyMy0NnvWrBlXodfbmbJ2BXvLoqLxVasWCUB+fo5q78vLXbhg/fvVsGF9t7xXIyODqVGjBomJiZw5c5xatWLd/t4wmUy2Gpl+/foWuy57ruOWW27k1VfHcuLEcc6cOUarVq0cjiM/P58dO6z9ha6++qoyX19HX9t+/fry+efz2bTpHyIigpxO1qrS3ynh4WQoO9s6hbq/f9Eq5oCAALtqer744gsWLFjA2LFjK7wieHp6NiaTuULHcIWC6/YjJaX8Vbw/+G/C7+xLYM9k/waD9Y/K2bPn7Tp+ZdLptISFBaqmLFzhzJlzAAQFhVb49Xa0rCvCmbKoSHx6vbW298KFFNXdl6U5dOgIALGxNdzyXgXr5IuJiYls27aTzp07u/29sXv3v6SlpRESEkJ8fIMSr8ue6+jevSdr1qzixx+XUKtWfYfj2LFjO9nZ2URERBATU6vc19eR17ZJk1bo9XpOnTrF7t0Jdk2LUFhV/DvlrcLDA13WhOrRZEgZiZaXl1dkVFpubq5tzbOSWCwW3n33Xd5//30ef/xxHn744QrHYjKZMRo9e2MbjUbb0PrAwBC3xKN0zE5NTfX49ZZGDWXhKhcuWDtpRkREeeU1VVZZhIRY78u0tDSveZ1OnrT2GapRo5bbYm7UqAnr168lIcHab8jd5fHPP/8AylB2rdPn6tv3WtasWcWqVb/y5JMjHN5/40ZrHB07dsZsto46dhV/fwMtWrRk166dbN68mbi4Wk4dpyr9nfJWrpzhx6ONnkrzWFJSUpHHk5KSiIuLK3Gf/Px8Ro8ezQcffMCYMWN49tln3R5nZSnceVRZYd7VlMUkpQN15VBGk8lSHGVT7sv09FTPBuIAZVi9ozULjlBGlB04sN9t5yhs9+6dALRr17FCx+nZszd6vR9Hjhzi6NEjDu/v6vmFLtehg7VbxbZtMvmisPJoMtSsWTNCQkKKDMdPT09n7969dOpU8pDOMWPGsHLlSqZPn84jjzxSWaFWCmUkmcEQaNfolGwjXPNDMNf8EEy20b5zhIdHAN71oePNlJqhqKhqFTqOM2VdmSoaX0REBACpqd6RpOfl5XHunLXPUK1a5U+46OzroyRDBw8eqJSJbvfs2Q1Ay5Yl9/Ox9zrCwsK44grrwJjfflvlUAzW/kL2r0fmzGurTBkgyZBQeDQZ8vf354EHHmDatGmsWbOG/fv3M2rUKOLi4ujXrx8mk4nz58+Tk5MDwI8//siKFSsYNWoUXbp04fz587Z/yjbeTBlJ5kitUGqultRc+4tR5hmqPPn5+bZFWmNjq1f4eI6WdWWrSHwF92WqCyNyn8TE01gsFgyGQLunTXDm9alXrz56vR8ZGRmcPn3amVDtlpx8kcTEM2g0Glq0KH1IvL3X0bdvPwDWrHEsGdqz51+ys7OIiIigYcPGdu3j6Gvbrl0HNBoNx48f48KF8w7FJ6omj/9lHTFiBHfccQevvPIK9957Lzqdjk8++QR/f38SExPp0aMHK1asAGDZsmUATJkyhR49ehT5p2zjzdw94SIUbo6QZMjdlEnd9Hq9reZDlEypsUxLS/WKpX4KL8PhzpnF/fz8qV/f2gF5796KTWJYnt27/wWgfv0GLlnEtE+fq9FoNOzdu5vExDN276cM7e/U6QqXdY69XFhYmG0ep23btrrlHMK7eHzta51Ox+jRoxk9enSx5+Lj420dBwHmz59fmaFVOqWZrPCCqq5WuGbIbDa77Y+NgPPnrd84q1WLkde5HMp9mZ+fT3Z2lurXcVMmXHRnfyFF48ZNOXjwAPv376dz5+5uO8+ePdZkqEULx4fClyQqKpoOHTqydesWfvttNfff/6Bd+23aZO08rcwW7S4dO3biwIH9bNu2mWuvvd6t5xLqJ3+hVSQ9vfJqhsxms23kmnCP8+etAwNiYmI9HIn6BQYG4efnB3hHE6471yS7nFKDsW/fPreeR+kv1KpVa5cds2/fawH47bdf7do+NzeXnTut/YW6dLnCZXGUpKDfkNQMCUmGVEVZpNVdS3GAdQ4nZRoDaSpzL0mG7KfRaIo0land6dNKzZBrV6svidKJev9+940os1gstpqhli1dmQxZF3rdtm2rXWuB7dq1nby8PGJiYqhb1/H5iRyhJEMHDybI30IhyZCaVEafIZB+Q5WlIBmK8XAk3qEgGVL/fan0GbJnJFlFKTVDhw8fLnEBa1dITDxDSkoyer2eJk2auey4NWrUpEWLVlgsFn7/fU2522/aZO0v1LlzV7f2xQKIjq5G3br1sFgsttmuhe+SZEhFChZpta/zogZoEWWiRZQJR/5sKP0zUlNTHQtQOMSVNUPOlnVlcUV8yrp5ar8vLRaLrWbI3mayirw+sbGxhIWFYzKZOHLkkIN720fpPN24cZMyF2d15jquuUZpKit/VNmff64HHOsvVJHXVplvaOtWGWLv6zzegVoUcLRmyKCHL67Pcvg8kZHWCQCVFdWFe7gyGXK2rCuLK+ILC4sA1N9MlpaWamvSrlnTvtmLK/L6aDQamjRpypYtm0hISKBRI9fV3CjsbSJz5jquvrofs2bNYNOmf0hPTycsrOS/b0lJ59i719pvqUePXnYfvyKvbYcOHfnpp0Vs3y7JkK+TmiEVKagZcl+fIcA2L0pycvlt+MJ50mfIMcr0A2pvJlM6T8fExJS5bJArNWmizESdUM6WznFHfyFF3br1adiwMUajkfXr/yh1u/Xr1wLQqlUbqlWrnKZlpd/Q3r17yM5W75cN4X6SDKlIwaSL7u0zFB1tnQ354sWLbj2Pr5M+Q44pWComxcORlK2gv5D7R5IpmjSx9hs6ePCAy49tNpvZt28P4J5kCKy1Q1D2BIzr1v0OQO/efdwSQ0lq1qxFXFwNjEYju3btrLTzCvWRZEhFHJ1nKMcIA5YEM2BJMDkOTPEfHW2tGbJndIdwTl5enq3viytqhpwt68riivi8p2ZI6S9kf+fpir4+SqfmhATXjyg7duwomZmZGAwGGjRoWOa2zl7H1Vdb+w2tX/9Hic3z6enp/P33nwD06uVYMlSR11aj0dhqh7Zu3ezYzqJKkWRIRZS+Eso35PJYgMRMLYmZWhyZs1epGVKWihCup9QK+fv720ZJVYSzZV1ZXBFfQc1QqqvCcgtlwkVHkqGKvj6NGjVGq9Vy8eIFkpLOOXGE0ilNZM2atUCvL7sbqbPX0bRpM1q0aEV+fj6LF39f7PnVq/9HXl4eDRo0stWC2auir22HDtZFaWWdMt8myZCKKDUJ7l66QZrJ3O/MGes6UnFxNdw+RLiq8J6aIfevVn+5oKAgW78hpUnLVdzZX6iwu+++D4BFixZiNBZU4VgsFn76yZogDRhwS6W/X5TFYP/9dye5ubmVem6hHpIMqURubi45OdkAREREuvVcBc1kskChuyhrMdWoYd9oI1G1a4ZcoU2bNkDBTNGu4o6Zp0ty3XX9iYiIIDHxDMuWLbE9vm3bFv79dyf+/v7cfPNtbo2hJHXr1qdatRhyc3P591/pN+SrJBlSCaVWSK/XExJS8UUSyxIVpTSTJWM2m916Ll919mwiADVq1PBwJN6jYJSjeqd8yM/PsyW6tWvXqdRzt23bFnBtMpSfn0dCgnWZD3fXDBkMBoYMGQrA7NnvkJx8EaPRyPTpbwEwYMCttlrryqTRaOjUyTrf0JYtmyr9/EIdJBlSidRU6wiasLBwt1cTR0VZ5xkymUyqb5LwVgU1QzU9HIn3qFbN+kGYnp7mtpmWK+rMmTOYzWYMBkOlT5mg1Azt3bsbi8U1PccOHTpIXl4eYWHhlZLc3X33/dSv34ALF87z5JOP8txzT7N37x5CQ8N44onhbj9/aZSmMkmGfJckQyqhNA24u4kMwM/PzzYLtYwoc48zZyQZclRYWLhtsVa13peFV6uv7L4tzZs3R6/Xk5KSbKt5rKiClepbVsr1BAQEMHXqu4SHh5OQsI+1a39Hr/fj9dcnenQ+LiUZ2rVrh/Qb8lGSDKmEM52nNUCDcBMNwh2fhl5GlLlXYqK1A7WrkqGKlHVlcEV8Go3GNtnehQvqTIZOnjwOQO3adR3azxWvT2BgII0aNQawzdRcUUqTm71NZK64jkaNGvPtt4u55577uemmW/j448/p27efk0dzTUxKv6G8vDzpN+SjZDkOlVCayRwZhm3Qw3c3OjdranR0NY4cOazab+DezGw2276527tcQ3kqUtaVwVXxRUdXIzHxDBcuqLNz/4kTJwDH+wu56vVp1ao1+/fvY8+e3ba5eyrC0ZFkrrqOuLgavPjiqxU+DrgmJmu/oS6sXLmcLVs22WqKhO+QmiGVqMxmMigYUabWb+DeLDn5Inl5eWg0GmJjZSkORyj9htQ60lGpGapTp3I7TytatmwFuKZmKDs7i8OHD/13XPd2nvYGSgK0efNGD0ciPEGSIZWorDmGFNHR1uYIqRlyvcREa61QTEwsfn7+Ho7GuyjNt2pN0gv6DHkqGbImLXv37qlwJ+r9+/dhMpmIiYmhevXqrgjPq3XuLPMN+TJJhlTCmWayHCPctTyIu5YHOTwNvfLHz1UdMUUBZcJFV3aerkhZVwZXxVcwIaj6kiGTyWRLhhxtJnPV69O4cWMCAgJIT0/j+PGjzh8I2L3b8ckW1XgfuiqmOnXqERNj7Te0a9cOl8UnvIMkQyrhTM2QBTiSpuNIms7haeiVD2plCLhwnRMnlE62rqs9qEhZVwZXxad0oD5/Xn3NZOfOnSU/Px+93o+4OMfmj3LV6+Pn52+bHHH79m0VOBLs3r0LgJYt29i9jxrvQ1fFpNFo6NhRmsp8lSRDKlHZfYbi4qzJkNQMud6JE8cA6wgV4Zi4uDgAzp1T331Z0EQWj06n81gc7dpZ19Lavn1rhY6jJEOtW9ufDFV1Xbp0BWDjxr89HImobJIMqYQzzWQVocyMfP58Evn5+ZVyTl9x/PgxAOrWrefROLyRmpN0pcbPU/2FFO3bK8mQ8zVDycnJnD59Co1GI52nC+nWrTtg7TeUni4T0voSSYZUQmkmi4yMqJTzRUVF4+/vj9lsdvkq2L6uoGaonkfj8EZK81NKSgrZ2dkejqYodzR/OqNNm3ZoNBpOnjzu9BQEu3db59KpX78BoaGhrgzPq9WoUZMGDRphNpv55x+pHfIlkgypQH5+PhkZlwAID6+cZjKtVkv16tYPHjV+C/dWaWmptsTWU8OvvVloaCjBwcGA+prKjh07AlgTCE8KCwujcWPrCvY7djhXO/Tvv9YmslatpInsct279wDgzz/XeTgSUZkkGVIBpb+QRqMhLCys0s6rNJVJJ2rXUWoPYmOrExgY5OFovI9Go7E1lSlTFKjFkSOHAc8nQ1DQb2jbNuf6DSmzLLdu3dZlMVUV3bv3AuCvv9a7bA04oX6SDKnAxYvWJTGioqId6pipAWoEm6kRbHZqGvqCEWXq+tDxZu7qL1TRsnY3V8anNJWpqcYyJyeH06dPAdCgQUOH93d1+XXs2AmATZscb8oxm822YfWOdp5W433o6pjat++IwRDI+fPnOXAgwQVHFN5AluNQAWW2XWVWaHsZ9PDzLZlOn7fgQ0dqhlzFXclQRcva3VwZn1JjqczXpAbHjx/DYrEQFhZOVJRj71NwffldcUU3NBoNhw4d5Ny5cw5NmnjkyGEyMi5hMATSqFETh86rxvvQ1TEFBATQuXMX1q9fy19/radp02YuO7ZQL6kZUgGlZkiZcK6yyFxDrnfo0EEA6tXzfFOKt1JGaylLX6jB0aMFTWSVvVp9SSIiImnRwro0x99/b3Bo361bNwPQtm079Hr5PlyS7t17ArBu3R+eDURUGkmGVEBZeqCyk6H4+NpAQT8XUXEHDuwHoGnTph6OxHvVq2edn0mpZVMDpb+QM01k7nLlldaOvn///adD+ynJUMeOnV0eU1XRu3dfwNpBXa2LBgvXkmRIBQqayRxLhnKM8ODKIB5c6dw09EpH0NOnT8laPC5w6dIlW7+SJk1cW7Ve0bJ2N1fGpzQxKk1TalDRztPuKD8lGfrnnz8xmUx27WOxWCqUDKnxPnRHTDVq1KRly9ZYLBZ+/32Naw4qVE2SIRVQmsmUFbvtZQH2JuvYm+zcNPRRUdGEhoZhsVhU9S3cWx08aO1sGRdXw+WTZ1a0rN3NlfHFx8ej1WrJyspSzbfyw4etzZ8NGjRyan93lF+rVm0ICQkhLS2NvXv32LXP8eNHuXjxAv7+/k4Nq1fjfeiumK655loA1qz51YVHFWolyZAKKItSVnYzmUajsX3TPXr0SKWeuypKSNgHIB0uK8jPz59ateIBdTSVZWdnceyYdVFUNZWtn58fXbteCcDvv6+ya5+NG/8BrEPqAwIC3BZbVdC3bz8AtmzZZJv+RFRdkgypgKf6DAGFkqHDlX7uqkYZhuvqJjJfpPQbUjqke9LBgwewWCxER1cjJibW0+EU0a/f9QCsWvU/u5oU169fC0CPHr3cGldVULduPRo3boLRaOS331Z7OhzhZpIMqYDSFOCZZMjaIVSZXVc4b//+vQA0aSKdpytKSSgTEvZ7OBLYv99a49esWXMPR1Jcz569MRgMnDx5wlYzWZrs7CzbvEQ9e15VCdF5vxtuuAmAn39e7NlAhNtJMuRh2dlZtgUBlXl/KlP9+tZv4EeOSDJUEVlZmbaaIZnVt+KUxKO8D/jKUND8qb5kKCgo2FbL88svy8vcdtOmf8jLy6NmzVo0bOhc3ydfc+ONN6PRaNi2bQsnT57wdDjCjSQZ8rBz584CEBISQkhISKWfX6kZOn78qN0jUkRxO3fuwGQyUaNGTY8ktVVNs2YtADh06AD5+fkejaWgZqiFR+MoTf/+NwOwdOlP5OXllbqdMiqqZ8/eqpgryRtUrx5n65cltUNVmyRDHnb2rDUZio2Nc2r/iAAzEQFmp89fq1Y8QUFB5ObmcuTIIaeP4+u2b7euEdWhQye3naOiZe1uroyvVq14QkJCyMvL4/Bhz92X+fn5HDp0AKh4M5m7yq9Xr6uIja1OSkpyqSOfcnJyWLVqJVDQz8hZarwP3RnTzTffBliTIfnCWHVJMuRhyvpLcXGOJ0OBelg9MJPVAzMJdHIiWZ1OZ5vJVlmvSDhu27YtgHVdI3dwRVm7k6vj02q1tGnTDoDt27dU/IBO2r9/L7m5uYSHh9smKXWGO8tPr9dz++13ArBgwZcldqRes2YVmZmZ1KhRs0IJuxrvQ3fH1KfPNYSFhZOYeIa1a393/QmEKkgy5GFJSecAa3WspyjzjezevctjMXizvLw822vnzpohX6O8llu3ei4ZUmr82rfviFar3j+XAwfehcFg4N9/dxb7wLZYLHz11acA3HrrQFVfhxoZDAbuuOMuAL7++jPPBiPcRt4VHqbUDHkyGVJWrpaaIeds3ryRnJwcYmJinJ6hWBSnzJC8detmzGbPNMts22ZNhtq1c0+Nn6vExMRy332DAJg1a0aRvkNr1/7Ovn17MRgM3HXXfZ4K0avdffcD6PV6tm7dIn8nqyhJhjxM6UDtTDKUY4ShqwMZujqwQtPQKzVDhw4dIDs72/kD+ag//rB2TO3du6/bOqa6qqzdxR3xtWrVmuDgYFJSktmzZ7drDuoAs9nMjh1KX7CKJUOVUX4PP/wYERERHDlyiKlTJ2OxWLh48QJvvfUmAPfeO4jIyMgKnUON92FlxFS9enWuu64/APPnf+SekwiPkmTIw5ThmvHx8Q7vawG2JenZlqSv0DT0sbHViYmJwWQysWePfOtxhNls5o8/fgPgqquudtt5XFXW7uKO+Pz8/OnRozcAv/9e+ZPeHT16hNTUVAwGA82bV2wkWWWUX1hYGK+/PgmARYu+4cEH7+Heewdy9mwitWvXYejQJyt8DjXeh5UV08MPP4JGo+HXX1eyY8cON55JeIIkQx5kNBo5c+Y0ALVr1/VYHBqNho4duwDw118bPBaHN9qzZzfnzycRFBREly5dPR1OldOnjzXBXLVqZaU3lSnvhbZt2+Pn51+p53ZW7959ee21N9Hr9fz7706Sks4RF1eDOXM+IjAwyNPhebXGjZty443WaQwmTpyomkWEhWtIMuRBZ88mYjQa8ff3Jza2ukdjUSZu+/PP9R6Nw9ssXfojAL169cHf3zs+ML1J7959CAkJ4eTJE2zevLFSz71hg7J0Re9KPW9F3X77nSxZspIxY17i9dcn8dNPy6lTx3NftqqSp54agZ+fH3/99ZesZl/FSDLkQQVNZLU9PsLjyit7ANbZds+fT/JoLN4iKyuTFSt+BmDgwDs9HE3VFBgYZJtU8OuvP6+08166dMk2iq1Xr6sq7byuUqtWPPfd9yC33HK71Ai5UM2atXjwwYcBePPN8bbVA4T3k2TIg5RkqHbtOh6OBKKiom3zDUntkH1++WU5mZmZ1K5dl06drvB0OFXW/fcPQqvVsm7dH+zataNSzrl69f8wGvNp2LAxdevWq5RzCu/w5JNP07BhQ86fT2LKlEmeDke4iCRDHnT8+DEA4uM9nwyBtUkC4Jdflnk4EvXLz8/ns88+BuDOO++W5Q3cqG7d+tx00y0ATJz4eqUsz7Fs2RIAbrxxgNvPJbyLwWBgxowZaDQali1bwsKFX3s6JOECkgx5kDLNf6NGjZ0+hkFnwaBzTUe+AQNuRaPRsHHj35w+fcolx6yqli9fysmTJ4iMjOLOO++plHO6sqzdwZ3xjRz5HOHh4SQk7GPy5Dfc2nn1wIEEtm7djFarpX9/1yVDai8/e6nxOio7pk6dOjFq1PMATJ06ifXr11bauYV7SDLkIRaLhQMH9gPWUQrOCNTDhrsz2HB3hkumoa9ZsxZdunQDYMmSHyt+wCrq0qVLzJnzLgCDBz9aKX0yXF3Wrubu+KKjq/Hmm2+h1Wr58cdFTJ/+ltvWifr8808AuPrqa1226K7ay89earwOT8U0ePCj3HTTLZhMJp59dji//Vb50z8I15FkyEMuXrxASkoKWq2Whg0beTocm9tuGwhY5ynJzMzwcDTq9M47Uzl/Pok6derKjL6VqFevPowZ8zIAX331OU8++QgnThx36Tn27PmX5cuXAtZ5ZYQojUajYdy4N7nmmmvJz89n9OiRfPrpRx6bLV1UjCRDHnLgQAIAderUJTAw0MPRFLjmmuuoU6cuKSkpfPPNV54OR3X+979f+OGH7wB47bU3MRgMHo7It9xzz/1MnjyNgIAANm36h9tu68/LL49h+/atFf4QysrK5NVXXwSgf/8BtGzZ2hUhiyrMz8+ft96awa23DsRkMvHuu9N5/PHBti4QwntIMuQhysKeTZs2d/oYuSYY+UcgI/8IJNdFLQZ6vZ7HHx8OwGeffWxbO03Av//uYvx4a83Eww8/SqdOXSrt3O4oa1eqzPhuuOEmFi1aSvfuPTGZTCxfvpTBg+/n+uv7MH78yyxZ8iPHjx91qBnt4sULDBs2lCNHDhMTE8vzz7/o0pjVXn72UuN1eDomvV7PuHETbF+ONm/eyF133cqLLz7Hv//urPyAhFNU0urre5Q5TCqyyrnZAn+e0dt+dpXrr+/PN998ye7d1g//uXM/9vg8SJ62c+d2hg0bSnZ2Ft26dWf48Gcq9fzuKmtXqez46tSpy5w5H7F3724WLPiSP/5YQ1LSORYv/oHFi38AICAggAYNGlK3bn1q1qxJXFxNYmOrExQUREBAAABJSefYtm0LP/+8hIyMS4SEhDJz5hyioqJdGq/ay89earwONcSk0Wi4/fY76dKlKzNnTmHNmlWsXLmclSuXU69efXr37kuPHr1o2bIVQUHBnglSlEmSIQ/Iz89n587tAHTs6Hwy5C46nY4JE97i7rtv459//mLq1MmMGfOSTw4ft1gs/PDDd7z99gTy8/Np374j06fPQq+Xt44atGjRigkT3iYvL49Nm/5h69bNbNu2hf3795Kbm8u+fXvZt2+vXcdq2rQ5Eye+TaNGTdwctaiq4uNrM336e+zbt4cFC75k5crlHDt2lGPHPuHzzz9Bq9VSv35DmjZtRu3adahduw61atUmOjqaqKhogoODffLvrBrIX3QP2LFjGzk52URERNCggXo6TxdWr14DXnttAi+/PJpvvvkSozGfMWNe8po1mlxh797dzJgxhS1bNgFw9dX9ePPNt+SbnQr5+/vTo0cv27IyJpOJ06dPcejQAU6ePEFi4hnOnk0kKSmJnJwccnNzsFgsVKsWQ8OGjenTpy89evT2+RpQ4RrNm7fkzTffYsyYl/nrrw2sXfsb27Zt4ezZRA4fPsjhwwdL3M/f35+oqGiioqIICQklKCiIwMAggoODCQoKIijI+r+/fwB+fn5l/PMv8r9Op0On06HRaC77X4tWq0Gr1aHVatHptGg0hf/X+Uxy5vFkyGw2M3v2bBYtWkR6ejodO3Zk3Lhx1K1b8lo6KSkpTJgwgXXr1gFw/fXXM3bsWIKCnB/ebDKZSEtLw2SyoNFo/vuH7WfQFHrc+lzxxzR23zTKpIZXXXW1qv/43njjAC5dSufttyewaNFCdu7cwZgxL9GxY+cq+Qa5dOkSR48eZuvWzaxZs8rWrysgIIAnnnjatmq1UD+dTkedOnVlTS7hUaGhoVx33Q1cd90NAJw/n8SePbs5evQwJ06c4NSpE5w5c5rk5GSys7PIy8vj7NlE1fXVLJ44lZ9AKf9rtdpi+1z+7/J97dlHq9UyceIbVKtWzSXX6PFkaO7cuSxc+P/27jwoinNdA/gDjMOIAwiITqJHRE3YVAQB0YPoJZrVRD1uUOo1GpVEBTdEInrALUhAccFE4oYhbhETrkWwImglmoRgROVYMUqwUHHFAlkGGAaGuX8QRicQjsSBRvr5VXVNT3dP9zu8NP3yfb0cRlRUFHr06IGYmBjMnTsXqampTT74Mjg4GNXV1UhMTERZWRnCw8OxZs0aREdH/+0Ybt++jX/+c/izfA0dMzMz9OrVGwMGDMSoUa/Ax8dXr+BRKpVIT/8WAAx6Q7fW4u8/DS+++CJWrQpDbu5VzJnzv3BycsYbb4zF8OE+sLfvBxMTk1bZdl1dHSorK1FeXgalshxKpRLl5eW68frXcpSX149XVChRW1sLjUaje60falFb+3j8r+YrleV625dIOuG1197A/PnB6NmzV6t8RyISD1vb7hg1yg+jRvk1mldVVYni4mIUFxfj0aMiKJVKVFZWoqqqEhUVFXrjarUatbU1qKn56+HxfDVqa2tRV6dFXZ0GdXV1uuFpb15afzFCOzlj/gkrV67oGMWQWq3G3r17sXz5cowcWf9k6Li4OIwYMQLp6el466239Ja/ePEizp07h7S0NPTr1w8AsHbtWsyZMwdLly5Fjx7CPvkdACorK5GbexW5uVfx1VdH8Y9/2GHGjHcxbty/YGpqis8++wTl5WWws+uDIUM8hQ73qfj6/g9SUk7g00+34fjxr3XnYWze/DFkMhn69u2H7t0V6N69B6ysrCCTdYZMZgpTUxmMjY3/2PE0up1RpapGVVXlH0OVrrCpqFCiqqoSJSWlKC+vf9+adxpuiq2tLRwdnTF8uA9effUN2NgYZkcjImpO585m6NnTrE3/8dJqtY3+Pte/1zYx7c9D/XyNRgOttg4aTd2fXjXQah/Pf7zs032muW02vFpaWhrsZyFoMXT16lVUVFTA29tbN83CwgLOzs745ZdfGhVD58+fh62tra4QAgAvLy8YGRkhOzsbb7755t+Ko3fv3vjPf377IxH1vyBPDkDDOP5i+uN5paUluHEjHz//nInU1P9DQcFNfPTRGuzcuR329n11V5EtXx4GU9NOfyveBpIn6gSJiTFa85ze7t27ISJiLYKDF+Obb1Lx3XenkZNzEVVVVbhy5VdcufJrq21bIukEc3M55HJzmJtbPDFuDrncHHK5HObm5ujSRQ6pVAqJRKLrI388LoFEYqIb159XP9jYdIO5uXmrfY9n0Za5BgATE2O91/+mreN73jzrz6el+Wgt7THP7X3faP9MADzbsUgoFhaGu0efkbat//V+wsmTJxEUFIScnBy9m9ctWrQIKpUKCQkJesuvX78eOTk5OHr0qN70YcOGYc6cOXjvvfZ1x9jKykocPnwYn376Ke7evaubHhQUhLAww97HRAgajQb5+fm4fv067t27hwcPHqC4uBgqlUo3aLXaP/qE6/t9jYyMIJPJYGb2+KTALl26wMLCQjeYm9cXOg3jMpmM5+oQEVGrEbSur6qqAoBG5waZmpqitLS0yeWbOo/I1NQU1dXVzxRLWVkVNBrD30Z9woSpGDv2X8jO/gUPHtyHg4MTHB2d8OhRhcG3JQQbmxdgY2OY5zeZmBjDwqKzXi5UqjqoVJUGWT89vaZyQcJhPtoP5qL9sLTsbLCLkAQthhpag9RqtV7LUHV1dZOPqJDJZFCr1Y2mV1dXP9PVZACg0dShtrZ1frGNjEzg4fG4K7C1ttNRtGYuqGWYi/aF+Wg/mAvhGbJfS9BOzxdeqG9RKCws1JteWFgIhULRaHmFQtFoWbVajZKSknZx8jQRERE9fwQthhwdHSGXy5GVlaWbVlZWhitXrsDDo/GdmT09PXH//n3cvPn4SdUNn3V3d2/9gImIiKjDEbSbTCqVYvr06YiNjYW1tTV69uyJmJgYKBQKjBkzBhqNBsXFxbqTaF1dXeHu7o4lS5YgMjISlZWViIiIwPjx49kyRERERH+L4NcGBgcHY9KkSVi1ahUCAgJgYmKCPXv2QCqV4t69e/Dx8UFaWhqA+jtCx8fHo1evXpg5cyYWL14MX19fREZGCvsliIiI6Lkl6KX17cmjRxU8GU5gEokxrKy6MBftAHPRvjAf7Qdz0X5YW3cx2P2eBG8ZIiIiIhISiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI03XfyDRsObZ7UHJibGzEU7wVy0L8xH+8FctA/GxkYwMjIyyLpYDBEREZGosZuMiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjURFkMffLJJ5gxY4betN9++w3Tp0/H4MGDMWrUKOzZs0eg6MSlqVycPn0aEydOhJubG/z8/BAdHQ2VSiVQhOLSVD6etGrVKvj5+bVhROLVVC4KCwuxdOlSeHh4YOjQoVi2bBmKi4sFilA8msrF5cuXMX36dLi5uWHkyJH4+OOPoVarBYqwYyspKcG///1v+Pr6wt3dHQEBATh//rxuviGO36IrhhITE7Ft2za9aY8ePcKsWbPQp08fHDt2DEFBQdi6dSuOHTsmUJTi0FQuzp8/j4ULF+K1115DSkoKIiMjceLECaxZs0agKMWjqXw8KSMjA0ePHm3DiMSrqVyo1WrMnj0bBQUF2LdvHxISEnDlyhWsWLFCoCjFoalcFBcXY86cOejbty9SUlKwbt06fP3114iLixMoyo5t6dKlyMnJwebNm5GcnAwXFxe89957uH79usGO35JWir3defDgAcLDw5GdnQ17e3u9eV9++SWkUikiIyMhkUjQr18/3Lx5E7t27cLEiRMFirjjai4Xhw8fhre3N+bNmwcAsLOzw5IlS7By5UqsWbMGUqlUiJA7tOby0aCwsBCrV6+Gl5cX7ty508YRikdzuUhNTcWdO3eQnp6Obt26AYBuv1AqlZDL5UKE3GE1l4sLFy6gpKQEoaGhkMvlsLOzwzvvvIMffviBxamB3bx5Ez/++CMOHToEd3d3AEB4eDjOnDmD1NRUyGQygxy/RdMy9Ouvv8LS0hLHjx+Hq6ur3rzz58/D09MTEsnj2tDb2xv5+fkoKipq61A7vOZyMXv2bISGhjb6TG1tLZRKZVuFKCrN5QMAtFotwsLCMG7cOHh5eQkQoXg0l4uzZ8/C29tbVwgBwIgRI5CRkcFCqBU0l4uuXbsCAA4dOgSNRoPbt2/j+++/b3L/oWdjZWWFzz77DAMGDNBNMzIyglarRWlpqcGO36JpGfLz8/vLcx3u37+Pl19+WW9a9+7dAQB3796FjY1Nq8cnJs3lwtnZWe+9Wq3Gvn374OLiAmtr67YIT3SaywdQ303w8OFD7Ny5EwkJCW0Ymfg0l4sbN27Aw8MDO3bsQEpKCmpra+Hj44Ply5fDwsKijSPt+JrLhYeHB+bNm4etW7ciLi4OGo0GXl5eWL16dRtH2fFZWFhg5MiRetNOnDiBW7duwcfHB3FxcQY5foumZag5KpWqUfeLqakpAKC6ulqIkAj1rUGhoaHIy8tDRESE0OGI0tWrVxEfH4+YmBh2UQpMqVQiJSUF165dw6ZNm7B27VpkZ2dj/vz50Gq1QocnKmVlZbhx4wamTZuGo0ePYuvWrbh16xYiIyOFDq3Dy87OxsqVK/HKK6/Az8/PYMdv0bQMNUcmkzW6CqDhh2hmZiZESKKnVCqxePFiZGVlYdu2bWx+FkB1dTVCQkLwwQcfwNHRUehwRK9Tp04wMzPDpk2b0KlTJwCApaUlJk+ejMuXL2PQoEECRygesbGxKCsrw/bt2wEALi4usLS0xLvvvouZM2dyf2klGRkZCAkJgaurKzZv3gzAcMdvtgwBUCgUKCws1JvW8L5Hjx5ChCRqhYWFmDZtGi5evIhdu3bxUm6B5OTk4Pfff0d8fDzc3Nzg5uaGhIQE3L17F25ubjh+/LjQIYqKQqGAvb29rhACgJdeegkAcPv2baHCEqXs7GwMHDhQb1rDP2z5+flChNThffHFFwgKCoKvry927doFmUwGwHDHb7YMAfD09MThw4eh0WhgYmICAMjMzIS9vT3PF2pjpaWlmDlzJpRKJQ4ePAgHBwehQxKtQYMG4eTJk3rTkpKScPLkSSQlJXHfaGMeHh74/PPPoVKpdAeC3NxcAPVXXVLbUSgUuHbtmt60hlz06dNHgIg6toMHD2LdunWYMWMGVq5cCWPjx+04hjp+s2UIwMSJE6FUKhEeHo68vDx89dVX2L9/PwIDA4UOTXSioqJQUFCAmJgYWFtb4+HDh7pBo9EIHZ6oyGQy2NnZ6Q2WlpaQSCSws7PjFUxtzN/fHyYmJli2bBlyc3ORnZ2NVatWYejQoXBxcRE6PFGZNWsWzp49iy1btuDWrVvIzMxEWFgYRo4cCScnJ6HD61Dy8/Px0UcfYcyYMQgMDERRUZHumFBeXm6w4zdbhgDY2Nhg9+7d2LBhAyZMmABbW1uEhoZiwoQJQocmKnV1dUhLS0NNTQ1mzpzZaP6pU6fQq1cvASIjEp61tTUOHDiAqKgoTJkyBVKpFKNHj8aHH34odGii4+Pjg4SEBOzYsQP79++HlZUVxowZg0WLFgkdWofz7bffoqamBunp6UhPT9ebN2HCBGzcuNEgx28jLS9DICIiIhFjNxkRERGJGoshIiIiEjUWQ0RERCRqLIaIiIhI1FgMERERkaixGCIiIiJRYzFEREREosZiiIhaBW9hRkTPCxZDRGRwp06dwooVK3Tvs7Ky4ODggKysLEHiCQsLg4ODAxwcHBASEvJM63JwcNA9rfxpBAQE6Lbdks8RUdvh4ziIyOASExP13ru4uODIkSPo37+/MAEBsLW1RXx8PKytrZ9pPUeOHIFCoXjq5detWwelUompU6c+03aJqPWwGCKiVieXyzF48GBBY5BKpQaJoaXrELIAJKKnw24yIjKoGTNm4Ny5czh37pyua+zP3WTbt2/H66+/joyMDIwdOxYDBw7EuHHjcPHiRVy6dAmTJ0/GoEGDMHbsWGRmZuqtPzc3F4GBgXB3d4e7uzsWLFiAgoKCFsfp4OCAQ4cOISwsDEOGDIGXlxfWr18PlUqF6OhoeHt7Y+jQoQgPD0d1dbXe5xq6uxq+V2ZmJmbPng1XV1cMHz4c0dHRqK2tfYafIhG1JRZDRGRQERERcHZ2hrOzM44cOQIXF5cml7t//z6ioqLw/vvvY8uWLSgtLUVwcDCWLl2KKVOmYPPmzairq8OSJUugUqkAAPn5+fD390dRURE2btyIDRs2oKCgAAEBASgqKmpxrLGxsZBKpYiPj8e4ceOQlJSE8ePH4969e4iJiYG/vz+Sk5ORlJTU7HpCQkIwZMgQ7Ny5E2+//Tb27t2L5OTkFsdDRMJgNxkRGVT//v0hl8sBNN+lVFVVhYiICPj6+gIArl+/jk2bNmHDhg2YNGkSAECj0SA4OBj5+flwcnJCfHw8ZDIZEhMTddsYNmwYRo8ejd27d+udtP00+vXrh7Vr1wIAPD09kZycjJqaGsTGxkIikWDEiBE4ffo0Lly40Ox6Jk+ejAULFujiycjIwHfffQd/f/8WxUNEwmAxRESCcXd3141369YNgH4B1bVrVwBAWVkZAODnn3/G0KFDIZPJdN1QcrkcHh4e+Omnn1q8fTc3N924RCKBlZUVBgwYAInk8Z/Grl27ory8/KnXAwAKhQKVlZUtjoeIhMFiiIgE09C68ySZTPaXy5eUlCAtLQ1paWmN5v2dq8Sa2n7nzp1bvJ4/x2xsbMz7LBE9R1gMEdFzw9zcHMOHD8esWbMazXuyNYeIqCX414OIDM7Y2Bh1dXUGX6+Xlxfy8vLg5OSkK360Wi1CQkJgZ2cHJycng2+TiDo+Xk1GRAZnYWGB/Px8ZGZmorS01GDrnT9/Pm7duoXAwEBkZGTg7NmzCAoKwjfffANHR0eDbYeIxIXFEBEZ3LRp09CpUyfMnTsXZ86cMdh6HR0dceDAARgZGSE0NBTBwcF4+PAhduzYgVdffdVg2yEicTHS8iw/IurgwsLCcO7cOZw+fVqwGBwcHLBw4UIEBQUJFgMRNY3nDBGRKKjValy6dAnW1tbo3bt3m203Ly8PSqWyzbZHRC3HbjIiEoWHDx9i6tSp2LZtW5tud/Xq1XxIK1E7x24yIiIiEjW2DBEREZGosRgiIiIiUWMxRERERKLGYoiIiIhEjcUQERERiRqLISIiIhI1FkNEREQkaiyGiIiISNT+H75rcUtLrMlnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import scipy.signal\n", + "\n", + "# Create a normalized signal\n", + "signal_norm = (df['intensity_mV'] - df['intensity_mV'].min()) / (df['intensity_mV'].max() - df['intensity_mV'].min())\n", + "\n", + "# Find peaks with a low prominence filter of 0.01\n", + "peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=0.01)\n", + "\n", + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "plt.plot(df['time_min'], signal_norm, 'k-', label='normalized chromatogram')\n", + "plt.vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', \n", + " color='dodgerblue', label='peak location')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('normalized signal intensity')\n", + "plt.xlim([10, 20])\n", + "plt.title('prominence filter = 0.01')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These maxima have prominence values greater than or equal to 0.01, meaning that \n", + "maxima with prominences as low as 0.01 units above the local background are considered \n", + "to be bonafide peaks. Increasing the prominence filter begins to remove peaks \n", + "we would otherwise care about." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAMQCAYAAADctJqBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddhkSW7MQm9qaE2ptSVUrpsFuq1OgwqrVHlaJmq0pVtVV+tXXRltqb+iE2QfYQ2bnc/f643x3Zl8sld5e8n49HHuJ73/H+3ueb3DufqdBoNBqEEEIIIYSe0twBCCGEEEJYGkmQhBBCCCEykQRJCCGEECITSZCEEEIIITKRBEkIIYQQIhNJkIQQQgghMpEESQghhBAiE0mQhBBCCCEykQRJCCEKgczBK4R1kwRJCGEygwYNYtCgQeYOw+ROnDhBt27dqFevHiNGjGDFihXUrFlT/3rm+966dSsLFy40R6h5unXrFiNHjuSZZ56hefPmfPjhh8TFxeV53MWLF3n99ddp3LgxrVq1YuHChaSmpua4/9ixY5kyZYopQxeiSNmaOwAhRPExY8YMc4dQKBYuXIharWbt2rV4enri5uZGmzZtctx/zZo1BAYGFmGEhomLi2Po0KH4+Pjw6aefEhUVxaJFiwgNDWX9+vU5Hnfv3j2GDRtG48aNWbZsGTdv3mTp0qU8fvyYuXPnZtg3PT2d+fPn88cff9CnT5/CviUhCo0kSEIIk6lWrZq5QygUsbGxNGvWjJYtW+q3+fn5mTEi4/zwww/ExcWxY8cOPDw8APD19WXkyJGcPn2apk2bZnvcunXrcHJyYvXq1djb29OuXTscHByYM2cOo0ePply5cgBcvXqVOXPmcOnSJRwcHIrsvoQoDNLEJoQV6tixI0uXLmXBggUEBgYSGBjIBx98QExMjH6fKVOmMGTIEGbMmEHTpk3p06cPKpWKlJQUVq1aRffu3alfvz5du3Zl7dq1qNVq/bGDBg1i+vTprFmzhjZt2tCwYUPefPNNIiMj+c9//kOXLl1o3LgxQ4cO5f79+xmOe7qpqWbNmmzevJlp06YRGBhI48aNGTduHJGRkRnuZ//+/fTt25f69evTqlUr5s6dS2Jiov71FStW0KVLF/7++2969epFvXr16NatG9u3b89wnqioKD788ENatmxJ48aNee211zhz5oz+dV0tUJcuXfTn2LRpU47v8/3796lZsyYPHjxgx44d1KxZkxMnTmRpYstcNg8ePGD79u3UrFlT//48fPiQd999l8DAQBo2bMiQIUO4fPlylmtt2LCB5557jsDAQH7++eccY8rpK7cmzsOHD/PMM8/okyOANm3a4OTkxKFDh3I9rn379tjb2+u3de/eHbVazeHDh/XbJk+ejFqtZsuWLXh6euZ4PiGsgdQgCWGlvv/+eypVqsT8+fOJjo7ms88+49atW2zduhWlUvu3z+nTp1EoFKxYsYKEhARsbGx48803OX/+PGPGjKF27dqcOHGCZcuWERwczJw5c/Tn37t3L3Xq1GHevHk8fPiQOXPm8Prrr+Pg4MDkyZOJjY1l3rx5zJ49m7Vr1+YY59KlS+nSpQtLliwhODiYBQsWYGtry5IlSwDYvXs377//Pr169WLChAk8ePCApUuXcuPGDTZs2IBCoQAgIiKC2bNn62ssvv76a6ZMmUKDBg0ICAggMTGRgQMHkpaWxnvvvYefnx8bN27kjTfeYNu2bQQEBDBz5kx+/vlnRo0aRePGjTl16hTz588nLi6OMWPGZIndx8eHLVu2MHbsWOrUqcPbb79NtWrVOHnyZI73u3LlSkaOHKnf38fHh+joaAYOHIijoyMff/wxjo6ObNy4kddee00f29Pv1/Tp03F1daVevXo5xpQTZ2fnHF+7efMmPXr0yLBNqVRSvnx57ty5k+0xycnJPHjwgCpVqmTY7uHhgbOzc4bjFi5cSK1atXK8vhDWRBIkIayUQqFgw4YNuLi4ANoPrDFjxnDo0CHat28PgEqlYtasWVSqVAmAgwcPcvToURYtWsQLL7wAQKtWrXBwcODzzz9nyJAh+maytLQ0Vq5ciZubGwB//PEHhw8fZv/+/VSoUAGAK1eusHPnzlzjrFGjBgsWLND//+LFi/z666+AdqTX4sWLadOmDYsXL9bvU7lyZYYOHcrBgwf195KUlMS8efN49tln9ft06NCBgwcPEhAQwPbt2wkODmbHjh36D+mmTZvy4osvcurUKZRKJT/99BPvvvsuI0eOBKB169YoFAq+/PJLXn31Vdzd3TPEbm9vT6NGjbC3t8fDw4NGjRrlWS516tTJsv/GjRuJjY3lhx9+0DdHtW3blh49evD555+zfPly/fFdu3alX79+OZ5fF5Mx4uLicHJyyrLdycmJ+Pj4HI+B7BOvzMdJciSKE2liE8JKdejQQZ8cgbZpx87OjtOnT+u3OTg4ULFiRf3/T548iY2NTZZaBF2ydOLECf22gIAAfXIE4O3tjYeHhz45AihTpgyPHz/ONc7MH+Z+fn4kJSUB2hFVoaGhdOzYEZVKpf9q1qwZzs7OHDlyJMdz6foA6ZriTp8+Tfny5TN8SJcqVYpffvmFgQMHcvz4cTQaTZZrdezYkZSUlAxNcaZ27Ngxateuja+vr/66SqWStm3bcvTo0Qz71qhRI8/zPR1/5q/09PRcj9XVyD1No9Fku133Wk5yO04Iayc1SEJYKR8fnwz/VyqVlClTJsOQbU9PzwwfYI8ePcLd3R1b24w/+t7e3gAZkp3sagwcHR3zHWfmY5RKpf5DNzY2FoBZs2Yxa9asLMeGh4fneC5dM+LT58qt34vuWj179sz29bCwsFzuomBiY2O5e/cudevWzfZ1XcII4OXlleu57t+/T6dOnXJ8PTAwMMd+Vc7OztnWFCUmJubY6VyXhCckJGR73NNJuhDFiSRIQlgp3Qe+Tnp6OjExMRk64Gbm5uZGTEwMKpUqQ5KkS0QyNzEVNldXVwAmTZqU7bD4p2uw8uLi4pKhw7jOuXPncHZ21l9r48aN2TYzlS1b1uBr5ZeLiwuBgYFMmjQp29ef7vycFx8fH7Zt25bj69ndm06VKlW4d+9ehm1qtZr79+/TtWvXbI8pXbo0vr6+3L17N8P26Oho4uPji+3IRSGkiU0IK/XPP/9kmKjvwIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfmratWqOR7bqlUrTp06RXR0tH7bP//8Q0JCAq1atcr1uL///jvD8/brr79iY2NDixYtDI5dCGsiNUhCWKnQ0FBGjx7N4MGDCQkJYcmSJbRu3ZrmzZvneEzbtm1p3rw5M2bMIDw8nDp16nDy5Em++uor+vTpU+S1ATY2NkycOJHp06djY2NDhw4diIuLY/Xq1YSFheXYJJWdvn37smnTJkaPHs348ePx8PBg8+bNJCcnM2jQICpWrMgLL7zAxx9/zIMHD6hXrx63b99m6dKllC9fnsqVK5vsvlxdXbl8+TInT56kQYMGDB06lJ07dzJ06FCGDx+Ou7s7+/bt46effmLq1Kkmu25eXn31Vb777juGDRvG2LFjiY2NZdGiRbRt25bGjRvr9zt//jweHh76/mtvvPEGe/fu5Y033mDYsGHcuXOHJUuWMGDAAPz9/YssfiGKkiRIQlipnj174urqyoQJEyhdujR9+vRh4sSJuR6jG7G1fPlyvv32W6KjoylfvjwTJ05k2LBhRRR5Rv3798fJyYl169axZcsWSpcuTZMmTVi8eHGGDuF5cXZ25rvvvuPTTz9l3rx5qFQqGjZsyKZNm/Qf9AsWLODLL7/kxx9/JDQ0FE9PT3r06MGECRPyVYuTl+HDhzN//nxGjBjBhg0baNq0KT/++COfffYZM2fOJCUlhcqVKzNv3rxcR6yZmoeHB99++y3z58/n/fffx8nJie7du2dp+hswYAB9+vThk08+AbQd9tevX8+nn37KuHHjcHd3Z+jQoYwfP77IYheiqCk0sqKiEFanY8eOBAYG6j/AhBBCmJb0QRJCCCGEyEQSJCGEEEKITKSJTQghhBAiE6lBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiExkokgT0Wg0qNXS392clEqFlIGZSRmYl7z/5idlYF5KpSLDAt0FUSwTpNWrV3Ps2LEcV7QG7XpMc+fO5dChQwB0796dqVOnUrp0aaOuqVAoiItLRKVSG3W8KBhbWyXu7k5SBmYkZWBe8v6bn5SB+Xl4OGFjY5oEqdg1sX3zzTcsX748z/3GjRtHcHCwfv8jR44wa9asIohQCCGEEJau2NQghYWFMW3aNM6cOUOVKlVy3ffcuXOcPHmSffv2ERAQAMDs2bN54403ePfdd/H19S2KkIUQQghhoYpNDdJ///tf3Nzc2LVrFw0bNsx139OnT+Pt7a1PjgACAwNRKBScOXOmsEMVQgghhIUrNjVIHTt2pGPHjgbtGxYWhr+/f4Zt9vb2lClThpCQkMIITwiRyePHj7Gzs8PBwcHcoQghRBbFJkHKj6SkJOzt7bNsL1WqFCkpKUaf18am2FTIWR3dey9lYD6GloFGo2H16hV8+eVqSpUqxUcfzaR37z5FEWKxJj8D5idlYH4mGsAGlNAEycHBgdTU1CzbU1JSjB7FBuDq6liQsMxCrYEb0drvq3mA0oQPlzlYYxkUFnOVbV5l8P3337NmzSrwrE4SMGPGR7Rq1Zzq1asXTYAWzBRlZu6fAUv7nWKOeMxdBsI0SmSC5Ofnx/79+zNsS01NJTY2tkAdtOPikkhPt66hnUlp0OUHJwCOvZKAo52ZAzKSjY0SV1dHqyyDwlLUZWtIGTx+/Jj58+eDnQO2I/4CQLW0GrNmzWHFijWFG6AVKEiZWcrPgKX9TinKeCylDEoyNzdHlErT1OCVyASpWbNmLF68mLt371KpUiUATpw4AUCTJk2MPm96utrq5r5QpT/9vRqVldcgWWMZFBZzlW1uZfCf/2wjJiaGigG1efjU9oMH/+LBg5ASP4LUFGVm7p8BS/udYo54zF0GJZnGhHN0loiG0vT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF0v8L2ghCotGo+E//9kCwMsvv6rf3rBBY9RqNfv27TJXaEIIkUWJSJBCQkJo3bo1+/btA7SzXq9cuZLy5cszZMgQJkyYQNu2bZk5c6Z5AxWiGDt79jS3b9/C0bE03br10G/v1l37/V9/HTBXaEIIkUWxbGL75JNPMvy/fPnyBAUFZdjm6elp0IzbQgjT2LtXW0PUvXsPnJ2d9NuffbYVAJcuXSQu7hGurm5miU8IIZ5WImqQhBDmlZ6erq8herr2CMDPz5+qVQNQq9UcP37MHOEJIUQWkiAJIQrduXNniImJxtXVjWeeaZbl9ebNn/3/fqeLOjQhhMhWsWxiE4azVcCg2qn670XxYUlle+DA7wC0a9cBOzs7SM8YW4MGjfjhh++4cOG8GaM0P0sqM2NZ2j1YWjzCekiCVMLZ2cD4xsbPHi4sl6WUrVqt5sCBPwDo3LkrkDW2Bg0aAXDt2lWSk5NL7PIjllJmBWFp92Bp8QjrIU1sQohC9d//XiI8PIzSpUvTokWrbPcpW7Ycnp5eqFQqrly5XMQRCiFEVpIglXBqDTyMV/AwXoHahBNsCfOzlLLVNa+1adOeUqVKZRubQqGgVq06AFy/HpTjuYo7SymzgrC0e7C0eIT1MEuC1KVLF9asWUNISIg5Li+ekpIOL+xy5oVdzqSk572/sB6WULYajUbfvNaxY5dcY6tRoyYA169fK/I4LYUllFlBWdo9WFo8wnqYJUF69tln2bBhA506dWLYsGHs2bOHlBRpIxaiuLl+/RrBwXext7enTZu2ue5brVqN/x9TcmuQhBCWwywJ0uzZszl8+DCLFy/Gzs6OyZMn07p1a6ZPn8758+fNEZIQohDs3/8bAC1btqZ0aadc961RQ5sg3bhxHY0pF1QSQggjmG0Um729PT169KBHjx5ERkby22+/sWvXLl555RUqV67MgAED6NevH87OzuYKsUQIDw8HXMwdhiimdM1rnTp1zXPfypWrYGtrS3z8Y0JDQ/D3L1vY4QkhRI7M3kk7JSWFY8eOceTIEa5evYqLiwvVq1fniy++oHPnzhw7JjPrFpaEhHjeGjVM//+7d++YLxhR7Ny+fYubN69ja2tHu3Yd8tzfzs6eKlWqAtLMJoQwP7MlSMePH2fq1Km0bNmSSZMmkZCQwNy5czl8+DDLly/n77//pmrVqnz00UfmCrHY++WXvYSEPtT/f+PG9WaMRhQ3+/drR681b97C4PXVdP2Qbt68UWhxCSGEIczSxNa+fXvCwsLw9fVl8ODBvPTSS5QvXz7DPg4ODrRs2ZJNmzaZI8QSYd++3Rn+f+jQ36hUKmxtZf5QUXC64f2GNK/pVKpUGYB79+4VRkhCCGEws3wSNmzYkH79+tG6dWsUipznfu/bty/9+vUrwshKjujoaM6ePQ029vQoG8Nvv/9CwuNYrlz5L/XrNzR3eMIEbBTQv3qq/vuidP9+MFevXkapVNK+fSeDY6tQoRIA9+7dKYowLY45y8xULO0eLC0eYT3MkiBVr16dGjVqZJsc3b9/n/Xr1zN9+nTKlpVOmoXl4sXzAFStVJHZ7W1J2P07B9JTOX78qCRIxYS9DUxuZp7pM3S1R02bBuLh4ZHl9Zxiq1hRmyAFB5fMGiRzlpmpWNo9WFo8wnqYpQ/SqlWrCAsLy/a1CxcusHXr1iKOqOS5ePEcAA0bNgKgWbPmACV+sVBhGrr+R/lpXgOoWLEiAOHhYSQlJZk8LiGEMFSR1SANHDiQCxcuANrZdQcMGJDjvvXr1y+qsEosXSJUv34jYpIVlA3Q1hrJ6KHiQ6OB2BRtLW2ZUhpyac02qZCQh/z77wUUCgUdO3bOV2xubmVwdXUjLu4R9+/fo3r1mkUTtIUwV5mZkqXdg6XFI6xHkSVI8+bN45dffkGj0bBq1Speeukl/Pz8MuyjVCpxdXWla9f8/dUp8kej0RAUdAWAarUb0uVnZ6Al2DkSFhbKo0exuLmVMWuMouCS0/l/2cI/Lz/GsYh+2vft2wNAkyZN8fb2yXdsFStW4tKli9y7d7fEJUjmKjNTsrR7sLR4hPUoskclICCAsWPHAtqFKfv374+vr29RXV48JTw8nPj4eGxsbKhUqRJoW9vw9ytLSPBNrl0L0je5CZFfe/ZoR0f26NHLqOMrVKj4/wSpZPZDEkJYhiJLkB4+fIi3tzd2dnb07duX9PR0Hj58mOP+0kG78Ny6pZ1jpkKFitjb2+u3V6teg5Dgm9y4cU0SJGGUy5cvc/16EHZ2dnTp0s2oc+g6at+7d9eUoQkhRL4UWYLUqVMntmzZQoMGDejYsWOuw/sBrly5UkSRlTy6SfgCAqpl2F6pYmX+QT6YhPG2b98OQJs27Q2eHDKzcuW0c6I9fPjAZHEJIUR+FVmCNH/+fCpUqKD/Pq8ESRQeXQ1S1aoZE6Ry5bXlExwcXOQxCeunVqvZsWMHAD16PG/0eXRrsIWG5lzDLIQQhc3gBGnq1Kn5OvGCBQsy/L9Pnz767/v27ZuvcwnT0tUQVa5cJcN23WzmwcFSgyTy78yZ0zx8+BAXFxfatGlv9HmeJEghaDQa+WNKCGEWBidIJ06cyPD/8PBwVCoVZcuWxdvbm9jYWIKDg7G3t6dWrVp5nu/UqVPY2NjQpEkT7t+/z+zZswkJCaF79+6MGTMm/3ciDPbgwX3gSVOGTvn/1yA9ePBAlhwR+bZzp7Z5rXPnbpQqVcro8/j6+qJQKEhJSSEmJhoPD09ThSiEEAYz+BPwzz//1H+/e/duFi9ezIoVK2jQoIF++40bNxgzZgzPPfdcrufauXMnU6ZMYdiwYTRp0oSZM2dy5swZWrVqxRdffIGdnR0jR4404nZEXtLS0ggLCwW0CZKNAp6vkgaAv68v9vb2pKamEhYWmiWBEtbl6bIt7CUW4uPj+e23fQD06fNSnvvnFpudnT1eXt5ERIQTEvKwRCVIRVlmhcXS7sHS4hHWw6gqgqVLl/Lee+9lSI4AqlWrxvjx41mwYAFDhgzJ8fgNGzbQp08fJk2aRFRUFEePHuW9995jxIgRrF+/ni1btkiCVEhCQ0NQq9WUKlUKLy9vFAqY+Wzy/19VUq5ceW7fvsX9+8GSIFk5e5uny7Zw/frrHpKSkqhevTqNGzchPV1ToNj8/f2JiAgnNDSEunVLzsSxRVlmhcXS7sHS4hHWw6ilRmJiYnBxccn2NVtbWxITE3M9/tatW/Tu3RuAQ4cOodFo6NRJu6Bl/fr1CQkJMSYsYYD797UdsMuVK59t3w4/P39Am0gJYaiff9YuD/TKK6+YpM+Qn5+2H5L8LhBCmItRCVKjRo1YuXIlMTExGbaHh4ezYsUKmjfPfQ4dV1dXEhISADh48CBly5alcuXKANy7dw93d3djwhIG0PU/KltWWzuk0UCSSvul0TxJkHTNcMJ6ZS7bwnL16mUuX/4vdnZ29O/f3ySxPUnUS9ZItqIqs8JkafdgafEI62FUE9vkyZMZNGgQHTt2pHHjxri7uxMVFcW5c+dwc3NjzZo1uR7fokULVq5cyfXr1/njjz8YPnw4AL/99huff/45rVu3NiYsYQBdgqQbsZacDm1+0tYG/vPyY3x9tcu/SA2S9ctctoW1xMLWrT8C0KlTFzw8PIiJSShwbLqJYkNCSlaCVFRlVpgs7R4sLR5hPYyqQapVqxZ79uxh4MCBJCQkcOnSJZKTkxk+fDi7du3Sf/jmZNq0abi7u7Nq1SpatmzJqFGjAO3UAGXLluW9994zJixhgJxGsOlIDZLIj5iYGPbs2QnAK6+8ZrLzShObEMLcjM6lfX19mTx5slHHuru78/XXX2fZ/v3338sSI4XsSYJUIdvXn9QgSYIk8rZt2xZSUlKoU6cuTZo0Ndl5dQtZS6IuhDAXoxOk1NRUtm3bxtGjR4mIiGD+/PmcPHmSunXrZhndlpNHjx6RlJSEWq3Wb9OtzyaJUuHQLd+Q0/v7pAZJ/nIXuUtLS+WnnzYD8NprQ0w6oaO3tw8A0dFRMieXEMIsjPqtEx0dzZAhQ7h16xZVq1blxo0bJCcnc/DgQT755BO++eYbGjdunOPxd+7cYcqUKVy4cCHHfWQtNtNLTU0lJiYaAB8fv2z30f3lHh8fz+PHj3McrSjEb7/9QkREBN7e3nTt2t2k53Z398DGxob09HSioqLw9fU16fmFECIvRiVIn376KQkJCezbt49y5cpRr149AD7//HNGjBjB8uXL2bBhQ47Hz5kzhzt37jB27Fj8/PxQKo3qCiXyKSIiHAA7O7scRwo6OpbG1dWNuLhHhIWFSIJkpTQaDZcu/Qu0AiA6KopyvqabcDE9PZ2vv/4SgIEDX8fOzt5k5wZQKpV4eXkTFhZKRES4JEhCiCJnVIL0119/8eGHH1KpUiXS09P120uVKsXw4cOZMmVKrsefPn2aefPm8fzzxi9oKfIvPFybIHl7++TaHOLn50dc3CNCQ0OpVq1GUYUnTCQ6OoqpU9/nxNnz2E7ULkzc+8XnGPzKQEaPHmuSZObXX/dx+/Yt3NzcGDDAdJ2zn+bt7aNPkIQQoqgZlSClpKRQpkyZbF+zsbEhLS0t1+OdnZ1xc3Mz5tKiAMLDw4AnHbEBlAroVCFN/73u9WvXgmSovxV6/Pgxb7wxhFu3bmBf2gX3qBOkpKQQm5rC+vVrOX36JCtXfomrq/E/fyqVirVrVwEwaNAwnJ2d832O7J67zHT9kEpSgmTI+2LpLO0eLC0eYT2MSpDq16/P999/T7t27bK8tnv3bn2TW0569+7N5s2bad26tazUXYR0CZKPz5PmilI2sLBNxmn4dQlUSfpgKi7mzZvJrVs38Pb2Ye3ab6hSpSoajYYDjT5l1qyPuXjxPG++OZQ1a77Gw8PDqGv8/PNW7t69g5ubGwMHvm7UObJ77jIriQmSIe+LpbO0e7C0eIT1MCpBGj9+PEOHDqV37960a9cOhULBnj17WLFiBYcPH2bdunW5Hu/o6MiZM2fo0qUL9evXx8HBIcPrCoWC+fPnGxOayEVEhC5B8sl1Py8vbwAiIyMKPSZhOmfPnubXX/diY2PDkiUrqFKlKqD9eercuRuVK1dh1KjhBAVd4a23hrNu3cZ81yTFxsawatUyAEaPHmdU7ZGhSmKCJISwHEb1jm7atCkbNmzA0dGRdevWodFo+Oabb4iIiODLL7+kRYsWuR6/fft2XFxcUKvVXLhwgRMnTmT5EqaXXQ1SdiRBsj4ajYZlyxYB0Ldvf+rXb5hln2rVavD119/i6enFtWtXGTNmJAkJ8fm6zsqVy3j06BHVq9egX78BJok9J97e2udQEiQhhDkYPblIs2bN+PHHH0lOTubRo0c4Ozvj5ORk0LF//vmnsZcVBaDrpP10gpSkyjoN/5MPJkmQrMXp0ye4ePECDg6OjBo1Bsi+bCtXrsqXX65nxIhB/PvvBcaPf5uVK9dmqcXNzpEj/7Bt2xYAJk/+qEBzE2UXW2a6ms6SlCAZ8r5YOku7B0uLR1gPo2qQpk6dyunTpwFwcHDA19dXnxxduXKFTp06GXQetVrN1atXOXToEPHx8cTGxhoTjjCQ1CAVX1u3ahOXXr1e1JdfTqpVq8Hq1etwcnLi9OmTvPfeONLSUnM9JiTkIdOnTwXglVdep2nTQNMEngtpYhNCmJNRCdL27dsZOnQoW7ZsyfJaamqqfjbs3OzcuZP27dvz4osvMmrUKO7evcuUKVN45513SE3N/Ze1yD+NRpOPBOnJLMZPz3IuLFNUVCR//vkHgMHNXnXr1mfFii9xcHDgyJFDTJ36PiqVKtt9Y2JiGDfuLaKiIqlevQbjx79vsthzo0uQYmJi5HeCEKLIGT1DY7t27ZgxYwazZs3KMBeSIfbt28fkyZNp0aIFS5cuRaPRANC1a1cOHTrE6tWrjQ1L5CA2Nlb/IaP74MmJh4cHCoUClUpFbGxMUYQnCuDXX/ehUqmoX78hNWvWMvi4Jk2asmTJSuzs7Ni//3dGjhyqX6tP59q1IIYNe5Xr16/h5eXN8uVfGNQcZwpubmWws7MDpDZTCFH0jG6NHTVqFD179uTDDz/kxo0brFixIse5kTL74osvGDhwIDNnzsyQXPXt25eoqCh++uknJkyYYGxoIhu62iN3d3fs7XOfKNDOzo4yZdyJiYkmMjISDw/TzcAsTO/PP38HoHv3nvk+tmXL1nz22QqmTn2Ps2dP07v3c7Rv34GqVatx69ZN/vprP+np6fj5+bN69Tr8/YtujUSFQoG3tw8PHz4gIiKcsmXLFdm1hRCiQGt89OjRg82bN3Pv3j1eeuklgoKCDOq4efv2bbp06ZLtaw0bNiQsLKwgYYls6BIkb2/DlmzQddSOjJT+H5YsKiqSs2fPANCxY2ejztG2bXt++OFnmjdviUqVxv79v7N27Wr27/+N9PR0OnfuyqZNW6haNcCUoRtE159K+iEJIYpagfvz161bl23btjF27FgGDhzI6NGj8zzG09OTmzdv0qpVqyyv3bx5E09PqbEwNUP7H+l4eXlz7VqQjGSzcH///ScajYY6deoVqHanYsVKfPnlei5d+pdjxw4THh6Gl5c3bdu2p3btuiaMOH90I9l0z68QQhQVkwx49Pb2ZtOmTXz88ccsWbIkz9mxe/TowfLly/Hx8dHPxq1QKLh06RKrV6+WNdoKwZMEKWP/I6UCWpVV6b/XkZFs1uHIkX8A6NAh68jRnMo2N/Xq1adevfomiy8nhsam6y9XUp5DY8rM0ljaPVhaPMJ6GJUgjR07Nsvq2vb29ixcuJBatWrlOc/RhAkTuHbtGhMmTECp1LbyDRo0iMTERJo2bcr48eONCUvkIrs5kEA7Df/n7ZOy7C8JkuVLT0/n5MnjADz7bOssr+dUtpbA0Ng8Pb0AiIyMLOyQLIIll5mhLO0eLC0eYT2MTpByMmzYMIYNG5br8fb29qxbt44jR45w/PhxYmNjcXFxITAwUL90iTCt/DaxyWSRlu/y5f8SH/8YFxdXateuY+5wCoUk6kIIczE4QRo8eDAzZswgICCAwYMH57qvQqFg48aNOb6+Y8cO2rVrR6tWrbL0Q4qIiGDHjh28+eabhoYmDPBkHTbD+yCBfDBZshMnjgIQGNgcGxsbM0dTOEpaE5sQwnIYPIpNN1eR7vvcvvKaXHDq1KkEBwdn+9qVK1dYvny5oWEJA+VUg5SkgtZbnGm9xZmkp+YJ1CVIUVElo2nDGuma1wIDn8329ZzK1hIYGtuTUWwlI0Gy5DIzlKXdg6XFI6yHwTVImzZtyvZ7Q40aNYobN24A2gRrzJgx2c7HExUVRcWKFfN9fpGzlJQU/TIumTtpAySnZ23SfPqDSaPRSLOnhVGpVFy8eAGAZ55pluN+2ZWtpTAkNl1Tb0xMNGlpafqJI4szSy4zQ1naPVhaPMI6FNmyfaNGjWLr1q2AdqmSOnXq4OHhkWEfpVKJq6srffv2LaqwSgTdHDL29va4uZUx6BhdgpScnERCQgLOzs6FFZ4wwo0b10hOTsLZ2cUs8xMVlTJl3LG1tUWlUhEdHYWvr5+5QxJClBAGJ0i1atUyuBZBoVBw+fLlDNuaNGlCkyZN9P9/++23qVChgqGXFwXwdPOaoWXo6OiIs7Mz8fHxREaGS4JkYc6fPwdAgwYN9SNBiyOlUomHhyfh4WFERERIgiSEKDIGJ0hjxowxWTPLggULTHKep6nValauXMnWrVuJi4vjmWeeYcaMGVSqVCnb/bdv386UKVOybP/9999zPMZa5XcEm46Xlzfx8fFERERQuXLVwghNGOnixfMANGjQyKxxFAUvL2/Cw8Oko7YQokgZnCC98847JrtodHQ08+bN4++//yYpKSlDB3DIvgYqL6tXr+bHH39kwYIF+Pr6smjRIt5880327NmTbV+noKAgAgMDWbJkSYbtmZv9ioOcJonMi5eXN3fu3JYPJgt04YKuBqmReQMpAk+WvZHnUAhRdIzug5ScnExQUBBpaWn6BEetVpOUlMTp06d5//33czx25syZHDx4kJ49e+Ln51fgJoLU1FTWr1/PBx98oJ+Ze+nSpbRp04Y//viDnj2zLuJ57do1atWqpf/lW5wVpAYJ5IPJ0kRGRvDgwX0UCgX16zc0dziF7slkkfIcCiGKjlEJ0vHjxxk/fjxxcXHZvu7k5JRrgvTPP//w4YcfMmDAAGMun8XVq1dJSEigRYsW+m2urq7UqVOHU6dOZZsgBQUF0a1bN5Nc39LpZtHObqFaBdDER6X//mkyWaRl0o1eCwiohouLS4775Va25paf2EpSom7JZWYoS7sHS4tHWA+jEqRly5ZRpkwZ5s6dy65du1AqlfTt25dDhw7xww8/8NVXX+V6vL29vUk7aIeGhgLg7++fYbuPjw8hISFZ9o+OjiYyMpJTp06xadMmYmNjadiwIe+//z5VqlQxOg4bG8vsLKubJLJsWX9sbTPG6GwL67un/P9/GV/TLScTFRWZ5ThLo3vvLbUMTOnatSsA1KvXINdyya1sC0N+yiA/sVnTc1hQBSkzS/kZKOrnLi9FGY+llEFJZsoZaYxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCptumH9AQCXc3Z0MPq5yZW0SGxMTma/jzMlSy8CUbt7UPr/PPNPIIsvF1GVQpYruOYyyyPu1NCXhZ8DSSRkUD0YlSGq1Gj8/7XDbKlWq6CeABOjWrRuTJ0/O9fg6deqwbNkygoODadiwIQ4ODhleVygUjBkzxuB4dMenpqZmOFdKSgqOjlkf1BYtWnDy5Enc3Nz021atWkWHDh34+eefGTlypMHXflpcXBLp6bnPIl7U1Go1oaHaGqTSpd2IiUkw+NjSpbXvT0hISL6OMwcbGyWuro4WWQam9u+/lwCoUKGqRZVLYZWBo6O2GTEkJNSi7tfSlKSfAUslZWB+bm6OJpv6xKgEqWLFigQFBdG0aVMqVapEUlISN2/eJCAgAJVKRUJC7r/EZs+eDcCpU6c4depUltfzmyDpmtbCw8MzzMIdHh5OrVq1sj3m6eQIoHTp0pQvX56wsDCDr5tZeroalcqyfiiio6NQqdIAcHf3zBJfkgp67dT+Vb67dwKOTz0RHh6egLYPkqXdV04ssQxM6dGjWEJDtc3GAQE1cr3X3Mq2MBlSBvmJzd1dW6MbFRVJaqqqWM/7ZIoyM/fPgLmeO0uKx9xlUJJlGhRfIEY9Kr169WLx4sWo1WoGDRpEvXr1mDt3LoMGDeKLL76gWrVquR5/9epVo4LNSa1atXB2dubEiRP6BCkuLo7Lly/z+uuvZ9n/+++/5/PPP+fgwYP6Gqf4+Hju3LlDv379TBqbuelGsHl4eGJnl3W6A4DYlOw/cHQLhcbHx5OUlIijY+nCCVIY7No17c9OuXLlc+2grZNT2VoCQ2Pz9NQm6iqVitjY2GI5FcfTLLnMDGVp92Bp8QjrYNRT88YbbzBw4EAuXrwIwIwZM7hy5Qpvv/02t27dYtKkSSYNMi/29va8/vrrLF68mAMHDnD16lUmTpyIn58fXbp0IT09nYiICJKTkwHo0KEDGo2GSZMmcf36df7991/eeecdPDw86NOnT5HGXth0CZKuo2t+ODk565MiGclmGXR/XNSokX3NaHFkZ2ePu7s7AFFR8hwKIYqGUTVISqUyQz+j+vXrs3//fm7dukXVqlWzXZZi8ODBzJgxg4CAAAYPHpzr+RUKBRs3bsxXTOPGjUOlUvHRRx+RnJxMs2bN+Prrr7G3t+f+/ft06tSJBQsW0LdvX/z9/dm4cSOLFy/mlVdeQaPR0KpVK7799tss/aGsna7JML9zIOl4e3tz795dIiLCqVixeM0wbo10NUg1a5acBAm0cyHFxMQQERFB9eo1zR2OEKIEMFlrrLOzMw0aNMjx9adny848c3Zu+xrKxsaGDz74gA8++CDLa+XLlycoKCjDttq1a/P111/n+zrW5skkkcatYeXt7cO9e3dLxBw01iAoSJcg1TZzJEXLy8ubGzeuy3MohCgyRiVIDx8+ZPbs2Zw9e5bHjx9neT27pUI2bdqU7feicIWFaeeIKkgNEjyZbFKYT1paKrdu3QRKXg1SSZosUghhGYxKkKZNm8b58+d56aWXKFOmjIlDEqZUkD5I8KSjtnwwmd+tW7dQqdJwcXHF37+sucMpUrrnUPrCCSGKilEJ0vnz5/n444/p27evqeMRJpbXOmwKoI5Huv77zHR/uesmmxTmExSknUG7Ro2aKAyYLjavsjWn/MZWUmqQLLnMDGVp92Bp8QjrYVSC5O3tnWUeIWGZntQgZd8HycEWvu2emOPxT/5ylwTJ3PLb/yivsjWn/MZWUhIkSy4zQ1naPVhaPMJ6GDXMf9SoUaxatYoHDx6YOh5hQgkJ8cTHxwPademMoeuDVNw/mKzB0zVIJc2T5zDSzJEIIUoKo2qQ2rdvz7p16+jcuTMeHh7ZLhWyf/9+kwQojKfrWO3s7IyTU9apFwwhNUiWQaPRcO2adiRmrVolawQblJwaJCGE5TAqQZo6dSrBwcG0atVK/5ddXnbs2JGva7z44ov5D0xkkFf/I4BkFfTfq52Gf2vPBBwyPRFeXjKbtiUIDQ0hLu4Rtra2VK2a+0z1OnmVrTnlNzbdAtJJSYkkJMQbnfBbOksuM0NZ2j1YWjzCehj1qJw8eZLp06fz8ssvG3zMlClTDN5XoVBIgmQChgzx1wAhCUr995k5OTnh6FiapKREIiIiZLJIM9H1P6pSpSr29tkvGZNZXmVrTvmNrXRpJ0qXLk1iYiKRkRHFNkGy5DIzlKXdg6XFI6yHUQmSq6srZcvmb5jxgQMHjLmUKABDapDyolAo8PLyJjhYO1mkJEjm8WQG7ZLXvKbj5aWb1T2CSpWqmDscIUQxZ1SC9Oqrr7J27VoaNWqU7bIi2SlXrpzB5zdmJm2RlW6ZkZxGsBnKx0ebIEk/JPPRddAuaRNEPk237I30QxJCFAWjZ9K+fPkyrVu3znbtNUPWUtu7dy8nT54kLS1NnxBpNBoSExM5f/48hw4dMiY08ZSIiILXIMGTjtoym7b5lNQlRp6m6w8nk0UKIYqCUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk/6IBk3xF9Hl2CFh4cWOCaRf/Hx8dy/HwyUzCH+OiVhJJv2jxAXAFJTU3G0Nay/mRDC9IxKkGbOnElAQIDRF92+fTsvvPACCxcuZPny5Tx8+JCFCxdy6dIlRo4cSfXq1Y0+t3hCV+NT0CY2Pz9/AEJCQgock8i/69e1w/t9ff0oU8bdzNGYjy5BiooqfnMhRUZGsGDBbA4cOoztxBsAvPBCN0YOG8Yrr7yOUmnUlHVCiAIw6qduxIgR+R62/7SwsDB69+6NQqGgbt26nDt3DoB69erx1ltvsXXrVqPPLbTS0lL1HyS5NbEpgKpu6VR1S89xGn4/P22H/NBQSZDMwdj+R4aUrbkYE5tuSpHi1sQWHHyPV1/tx4EDf6AA7B7dRhlzg0exMSxaNJ8PPhhPWlqqucM0mKU9d5YWj7AeRtUgqVQq3N2N/0u2dOnS+rWkKleuzP3790lOTsbBwYHatWtz//59o88ttHS1R3Z2drnWOjjYwk89c5+G399fW4MkCZJ5BAVpa5Bq1MhfgmRI2ZqLMbEVxya2xMQExox5k/DwMKpUqcqnny6lenUvVCoV232m8Omn8zhw4A8mT36PxYs/t4qaJEt77iwtHmE9jPppGz9+PHPnzuU///kPFy9e5OHDh1m+clO/fn22b98OQMWKFbGxseHo0aMA3Lx50+B5XkTOQkK0ZeDnV7bAv1R1NUiRkRGkplrPX7LFhYxg03qSIBWfwQILF87j3r27+Pn5s27dt1Svru1jZmtrS//+A1m+/Avs7e35888/+OqrNWaOVoiSxeg+SOnp6UybNi3HVcWvXLmS4/FvvfUWw4YN4/Hjx3zxxRe88MILTJkyhebNm3P48GE6d+5sTFjiKboEqWxZw6dXyEmZMmVwcHAgOTmZsLBQKlSoWOBzCsOoVCpu3LgGlOwRbPBkNu1Hjx6Rmppq9X9InTlzip07f0apVDJ//iI8Pb2y7PPss62YNm0mM2Z8yBdfrKRFi5Y0bNjYDNEKUfIYlSDNnTu3QBdt1qwZ27Zt0zcdTJ8+HaVSydmzZ+nevXu+Zt0W2Xv4ULuQcF4TeiarYPBv2uVDvu2WmO00/AqFAj8/f+7cuU1o6ENJkIrQ3bt3SE1NpXTp0pQvXyFfxxpStuZiTGxubmWwt7cnNTWViIhwypUrX8hRFh6NRsPSpYsA6Nu3P02aNAWyf1969+7LqVMn2LNnJ7NmfcyPP/5s0cmhpT13lhaPsB5GPSp9+vQp8IVr1apFrVraJoNSpUoxZ86cAp9TPPEkQcq9BkkD3Hpko/8+J7oESUayFa2rVy8DUL16zXw3lRpatuZgTGy6RP3evbs8fPjAqhOkQ4f+4tKlizg6luatt8bqt+f0vnzwwVSOHj3MrVs3+PHH7xg8eHjRBpwPlvbcWVo8wnoYnUtHR0ezYcMGTpw4QVxcHO7u7jRt2pShQ4fi6emZ5/GPHz/m+PHjJCYmZjtvkqzFVjCmbGID8PeXkWzmoEuQ6tSpa+ZILIO/fznu3burf76t1bffbgBgwIBX9X2rcuPmVoZx495l5sxpfPXVF/Tu3Rc3tzKFHKUQJZtRCVJoaCgDBgwgOjqaRo0aUadOHSIiItiwYQM7duxg27Zt+PrmPLT84MGDTJgwgaSkpGxfl8VqC05Xg6RLbApK5kIyjytXtAlSSe9/pKNrMrbmBOny5UucOXMKW1tbXnnldYOP69XrRb777htu3LjO119/ybvvTi7EKIUQRiVIixYtwtbWln379lGhwpN+EcHBwQwfPpylS5fyySef5Hj8kiVLqFq1KlOnTsXX19cqhq5ak/T0dEJDtbNem7oG6eFDmYKhqGg0Gq5e1Q52qF1bapDgyXNozQnStm1bAOjSpXu+JnG1sbFhwoQPGDt2JFu2fM+QISOy7dgttNRqNefOneHE2QvgNBGA3bt30r5ViwIvvyRKBqMyk8OHDzNu3LgMyRFAhQoVGDNmTJ7rqN26dYsJEybQtGlTKlSoQLly5bJ8CeNFRkagUqVha2urX0etoCpUqARoJ7UTRePBg/vExz/Gzs6OqlWNn7m+OLH2BCkpKYnff/8FgJdeejnfx7dq1Yb69RuSkpLC5s3fmjq8YuPQob/p27cnI0YMYu3aVfrt8+fP5LnnOjJ16vtW+wyJomNUgpSenp7jRJEeHh7Ex8fnenzZsmXz3EcYT9e85uvrh42NjUnOWbGiduRaaGiIzIVURK5c+S+g7aBtZ2dn5mgsw5OaTOv8cPvrr/3Ex8dTtmw5/ci1/FAoFAwfPhKAn376nri4OFOHaNVUKhWLFi1g3Li3uHPnNk5OTnTp3F3/et269UlPT+eXX/bQt+/z/PrrXjNGKyydUQlSzZo12blzZ7av7dixgxo1auR6/KhRo1i1apXMmF1IdB8ehjSvKQB/JzX+Tupcp+H38PCkdOnSqNVqHjyQcisKuv5HtWoZ1//I0LI1B2NjezJY4CFqtbpQYitMu3ZpJ8jt1evFbLsWGPK+tGvXgYCA6sTHx/PTT98XXrBGMtdzl56ezkcfTWLz5o0ADBo0lN9/P8icOQv08Xy97lt++OE/NGrUhKSkRKZMeY+vv/6yCKMU1sSoPkhvv/02I0aMIDY2ll69euHl5UVkZCS7d+/m6NGjLF++PNfjd+/eTVhYGF26dMHDwwMHB4cMrysUCvbv329MaIL8ddB2sIXdvRPy3E+hUFChQiWCgq4QHHyXKlWqFjhOkTvdDNrG9j8ytGzNwdjYfHy0fRbT0tKIioo0WRNyUQgPD+PEiWOANkHKjiHvi1KpZPjwkUyb9gGbN3/L668PzfI71BxSUlLYv/93jhw5hPv9YOzt7Vl2pTrt23eiefNnc5xU2FQWL17Ar7/uw9bWlvnzF9O165Oao6ff09q16/L115tYuXIZGzZ8xYoVS1GrNbz55luFGp+wPkYlSK1atWLhwoUsWrSII0eO6Ld7eXkxf/58unTpkuvxfn5++PkVbIV5kbOQEMPmQMqvChUqEhR0hXv3pB9SYdNoNFy+rG1iq1WrjpmjsRx2dnb4+PgSGhpCSMhDq0qQ/vzzDzQaDQ0aNMz3pJ+Zdev2HCtXLiUk5CF79uykX78BJorSOP/8c5B582ZmmQbk9OmT/PjjZmrXrsNHH82ibt36hXL9fft288MP36FQKJg3b1GG5Cg7NjY2jB//Hs7OzqxYsZRVq5ZRtmw5evbsVSjxCetk9DxIvXv3pl27dly/fh1bW1vc3Nywt7dHqVTy8OHDXGdwXrBggbGXFQZ48MC0Q/x1dP2QgoPvmvS8Iqvw8HBiYqKxsbGhevXcm6xLmnLlyhEaGsL9+8E0aNDI3OEYbP/+3wHo3Llbgc9la2vL668PZdGi+WzatIG+fftjZI+JAtFoNHzzzdd8/vliQFvD17t3X2rWrEVKSgpnzpzil1/2cuXKZQYNGsC7707mtdcGm7Q26e7d28yZMwOAN954i27dnjP42BEjRpGQEM/69V8xa9Y0KlWqTL16hZPECetjVIJ0584dpkyZwoULF3LcJ7e12HLrYKlUKildujSurq7GhCaAe/fuAFCxYuU8901Wwcj92mn413bOfRp+GclWdP7734sAVK0aYHTzSX7KtqgVJLaKFatw5sxp7ty5XUjRmV50dBRnz54GoFOnrjnul5/3pU+fl/jii5XcvXuHgwf/yrPmvjBs3LhenxwNGPAqEyZ8gMLOUXsPNrD2wxcYO3YiCxfO5bff9rF48QLCw0OZOHGSSZIkjUbDnDkzSEpKpFmz5hlmJdfJ6z0dO3YiN25c59Chv5k69T22bNlO6dJOBY5NWD+jfmXOmTOHO3fuMHbsWPz8/PI9j1HHjh3z/OFwc3Nj8ODBvP3228aEWGKlpKToq7krVaqU5/4a4HK0YdPw69Zgu3dPapAK24UL5wEKtDBpfsq2qBUktsqVKwPadeqsxZ9/7ketVlOnTt1cl0jJz/tSurQT/fsPZP36tWzc+HWRJ0h//rmfZcu068mNG/eufnRdkirjPXh4ePDJJ59Rt249liz5lG+/3YCtrR3jxr1b4Bh27vyZ06dP4uDgwMyZ87IdtZvXe6pUKpk791Nefrk3wcH3WLz4E6ZPl6WvhJEJ0unTp5k3bx7PP/+8URf95JNPmD59OoGBgTz//PN4eXkRFRXFb7/9xt9//83bb79NQkICa9asoUyZMrz66qtGXackCg6+h0ajwdnZBXd3D5OeW9cx+8GD+yQlJeLoWNqk5xdPXLhwDihYglRcVa5cBcCqapD27/8NME3z2tNeeeV1vv12A+fPn+X8+XN06NDapOfPSUREOLNmTdPHoEuOcqJQKBg8eDilSjmwYMFs1q9fi5+fPy+//IrRMURHR7N06acAvPXWOwVam8/V1ZU5cz5h5Mih/PzzVtq160C7dh2NPp8oHoxqtHZ2dsbNzc3oi+7du5eePXuybt06XnzxRVq3bk3v3r1ZvXo1/fv359KlS0yePJm3336bH374wejrlES62p2KFSuZfNSIp6cX7u4eaDQabt68adJziydSU1O5fPkSgFX1sSkqugTp7t07VjHUPzY2hlOnTgC5N68Zw9vbR9+x+JtvvjbpuXOi0WiYOfMjHj16RO3adXj33UkGHztgwKu88452VutPP53HqVPHjY7js88+4dGjR9SoUYvXXhts9Hl0mjVrzqBBQwGYP382CQkyV19JZ1SC1Lt3bzZv3pztIrOGOHnyZI61T127duX4ce0PzTPPPENwcLBR1yipdM0OlSpVLpTz6zoM37hxrVDOL7QL1KampuLu7k7Fink3k5Y0ZcuWx9bWluTkJMLDw8wdTp7+/vtP0tPTqVGjZqH8XA4aNAyAAwf+4Pbtwq9V++uvAxw5cgh7e3vmzFmInZ19vo4fPnwkzz33PCqVivffH2/UvGrHjx9l795dKBQKPv54tskmUn377fGUL1+BsLBQ1qxZYZJzCutlVILk6OjImTNn6NKlCxMnTmTq1KkZvj788MNcjy9TpgxXr17N9rWrV6/i7OwMQGJiIo6OjsaEWGI9XYNUGKpXrwnA9euSIBWWp/sfFfbcMdbIzs5O35xiDc1sf/75B2D62iOdatWq07p1OzQaDWvXri2Ua+ikp6ezcuUyQJuYVatWPd/nUCgUzJgxlzp16vHo0SMmThyb48Ll2UlKSmLuXO2otQEDXqV+/Qb5jiEnDg4OTJ06HYDvv9/E1auXTXZuYX2MSpC2b9+Oi4sLarWaCxcucOLEiSxfuenVqxfLly9n48aNhIWFkZaWRlhYGJs2bWLlypX06tWLR48esXHjRho2bGjUjZVU+RnBZgypQSp80v8ob9bSDyk+Pp5jx7RzxRVWggQwZMhwAH766Seio6ML7Tq//LKHW7du4OLiypAhI4w+j4ODA0uWrMDd3YNr164ye/bHBrdIfPnlKu7fD8bX14+xYycaHUNOWrVqQ9euz6FWq5k7dybp6ekmv4awDkZ10v7zzz8LdNEJEyYQFRXFJ598wieffKLfrlQqeemll5g4cSK//fYbly9fZuPGjQW6VknzJEEyvAapTCnD+3FUq6ZNkKQGqXBoNBrOnTsDmCZByk/ZFrWCxFalSgAHD/7FzZs3TBiR6R0+fJC0tDQqV65CQEA1g44x5n1p2jSQOnXqcfnyJX78cTMjR47J9znykpaWqm92GjbsjVynYjHkHvz8/Fm0aBmjRg3jl1/2UKdOPX0foJxcvXqZTZs2APDhh9P1rQ15ye97+v77Uzhy5BCXLl3kP//5qUCdyYX1UmiM7UhkAvfu3ePEiRPExMTg6+tLkyZNqFBBO8Pso0ePcHR0xN4+f+3b5hQTk4BKZb4PpEePYmnXrgUAR46cxsnJsF8e+ZGUlETLlk3QaDTs3/8PXl7eJr+GMWxtlbi7O5m9DArq2rUgXn65N46OpTl06Hi++3eYU1GWwS+/7GHq1Pdp0KAh3367pVCvVRDvvz+e/ft/Y/jwkSYZ1p6b33/fx6RJ7+Lu7s4vv/xl8uVHtmz5ngULZuPl5c3u3b+brPvD999/y6efzsfGxoY1a74mMLBFtvslJibw2mv9uX37Fl27Psenny41yfVz8sMPm1i4cB7Ozi7s3PkLnp5eeR5TXH4PWTMPDydsbEwzaWrRT736lIoVK9K/f39GjhxJ79699ckRoJ+ZWxhOV6tTtmy5QkmOQNv/TPeX8MWLOU8UKoxz/Li2OeaZZ5pZVXJU1HTLr1y7ds1im0CSk5M5fPgQAJ06Ff4cRV27dqd8+fLExMSwe/cOk547KSmRr75aA8Cbb442ad/QV14ZxPPP9yY9PZ13332H//733yz7qFQqpk+fyu3bt/Dx8WXKlI9Ndv2cvPzyq9SpU5f4+McsWfJpoV9PWJ4iS5A6deqk75jdsWNHOnXqlONX586diyqsYkXXL6iwl6Zo1KgJAOfPny3U65REusVMmzd/1syRWLaKFSvh4OBIcnKSxU4YefToYZKTk/D3L0udOvUK/Xq2tra8+eabAGzatMGkieOPP24mMjKCcuXK07dvP5OdF7Sdtj/6aBZNmjQlPv4xo0YN488/nyxWnpyczEcfTWb//t+xtbVj4cIleHiYdo637NjY2DBt2kwUCgV79+7i5EnjpyQQ1qnIFh8IDAzEyclJ/72MzjG9a9eCgCcjzQyRrIJxf2v/GlzePsmgJR8aNmzMtm1b9J2JhWlo167SLkfx7LMtC3w+Y8q2qBQ0NhsbG2rWrMWFC+e4dOkiVasGFEKUBaMbvdaxYxeDf98V9H155ZVX+Oyzz7h37y4HD/5Jx44Fr7mKi4tjw4Z1AIwe/U6eNZvG3IODgwMrVnzBuHFvcebMad59dyzPPNOUSpWqcOzYEUJCHmJjY8Onny6hceNn8hV/Qd7TunXr07//K/z00/fMnz+Ln37aKS0bJUiR/cp8eoHapztmC9MxpgZJA5wNt9V/bwhd5+HLly+RmpoqvzBM5NixIyQnJ+Hn509AQP6HT2dmTNkWFVPE1qhREy5cOMf582d54YU+JovNFFJSUvj7b+1glvw0rxX0fXFycuLll19h3bovWbfuC9q375TvpaAy27jxa+LiHhEQUJ3nnst79QRj78HJyZkvvtjAihVL2Lz5W86cOa3/g8Hb24fZsxfw7LOt8h1/Qd/TsWMncODA79y5c5uNG9fz5ptvGXEWYY3M1gcpPj6esDDtJG+pqamsW7eOuXPncurUKXOFZNXUajU3blwHnow0KywVKlTE3d2DtLQ0/YzPouB0y1Hkp8ahJNPVJFhiU+/Bg38RH/8YPz9/fZN0URk0aChOTk5cvvxffvllb4HOFRUVyebN3wIwZsz4bNc6MyU7OzvefXcyu3f/zpQpHzFq1BgWLlzCnj1/GJUcmYKrqyvvvTcZgHXr1shi3SWIWRKkixcv0rFjRzZt2gTA3LlzWbx4Mbt27WLIkCEcOHDAHGFZtQcP7pOYmIidnV2hz76sUCh45plmgLafhSi4tLQ0Dh78C4DOnQtvvpzipFEjbU3mrVs3iY6OMnM0Ge3duxOAHj2eL3ANTn55enrq10ZbsWIJycnJRp9r3bovSE5Ool69BnTo0MlUIeapbNlyDBz4OqNHv0O3bj0oVapUkV07O8899zzNmz9LSkoKM2d+aLEDA4RpmSVBWrp0KVWrVmXAgAEkJyeze/duXn31VU6ePEm/fv344osvzBGWVdONKKtVq47Jpt3PTdu27QE4dOjvQr9WSXDs2GEeP47Dw8NTJog0UJky7tSsWRuAI0f+MXM0T0RHR+vj6dmzt1lieO21Ifj7lyU0NITvvvvGqHPcvXuHrVt/BOCddyaW6FpN3ZImjo6lOXPmtNHvqbAuZkmQLly4wOjRo6lQoQLHjh0jOTmZ3r21v0h69OjB9evXzRGWVbt4UdthuqgWN23dui0KhYKrVy/rm0qF8X7+eSsAPXv2KvRmjOJEl6j/889B8wbylN9+24tKpaJ27ToGTw5pag4ODvpFYb/6ag137+Z/xvHlyz9DpVLRqlVbGVUJlC9fgfffnwLAypXL9INiRPFllgRJqVTqO/YePHgQV1dXGjTQrqcTHx9v8gnOSoJ//9XWIDVoUDRLs3h4eFK/vvZahw79VSTXLK7CwsL0NXF9+75s3mCsjC5BOnLkUL7W8yosGo1GX+ti7o7jzz33PM8+24qUlBSmT89fs9CZM6c4cOAPlEolEyd+UIhRWpe+ffvTtm170tLSeO+9d4iLe2TukEQhMkuCVK9ePbZt28a5c+f45ZdfaN++PQqFgqioKL766ivq1Sv8OUOKk6SkJP1fM8bUIDnYaHCwyf/4Dt0Q4t27t+f7WPHEli2bUavVPPNMU6pUqWrScxtbtkXBFLHVrVufcuXKk5CQwF9/7c/7gEJ28uRxbt26SenSpenVy7gEyVRlplAomD59Dk5OTly4cI4vv1xl0HHJycnMnq2diLFv3/5GLUhrac+dKd/TWbMW4O9fluDge0yd+oH0RyrGzJIgTZo0iWPHjvHKK69gY2PD6NGjAXj++ee5c+cOEyZMMEdYVuvy5UuoVCq8vX3w8/PP17GOtnB4QDyHB8TjmM9JH3r16o2trS0XL17g+nWpbjZGTEwMP/74HQCvvz7MpOcuSNkWNlPFplQq6dXrRQC2bTP/kiO6vinPP/+iweuEPc3UZebvX1a/Ov3atav1IyVzs2LFUu7evYO3tzfjxr2X72ta2nNn6njc3d1ZunQlpUqV4siRQyxevMDghXaFdTFLglSnTh1+//13tmzZwv79+6lcuTIAM2fOZM+ePVKDlE+6GV4bN36mSDtSenp60b59R8AyPpys0fr1X5KYmEjt2nX076XInz59+mFra8fZs6c5d858Q/7//fci//xzEKVSyWuvDTJbHJk9/3xvXnttCADTpk3i6NGcO7Tv2bOTzZu1C4R/9NGsXBekLclq1arDzJnzAPjhh+9YsWKJJEnFkNnmQXJ2dqZhw4aULl1av61bt254e1vG4qfWRDdipmXL1kV+7f79tatcb9++jZCQh0V+fWv23//++9QcMxNK9CihgvD19dPXIi1ZshC1uugXCdVoNKxatQyAnj1foFKlKkUeQ24mTvyA9u07kpKSwrhxb/P9999meJ80Gg0//7yV6dOnAvDGG2/Rrp0k7Ll57rnnmTZtJgDr139ltmdPFB6zLlYrCi46Olq/uOOzz+Y/QUpJh/F/OzL+b0dSjGhKDwxsQdOmgaSmprJmzYr8n6CEevz4MR9/PAW1Wk337j1o3bqtya9R0LItTKaObfTosTg5OfHvvxfYsOGrgp8wn37//ReOHz+Kra0do0aNMfo8hVVmtra2LFq0jG7deqBSpfHpp/Pp3783X365iu++28hbbw1n9uyPUavVvPjiS4we/Y7F3YMlxtO//0Dee087sm3Tpm+YMGEMMTExpr2IMBtJkKzcgQO/o9FoqFWrDr6+vvk+Xq2BIw9tOfLQFrURNcQKhYJx494FYNeu7RY1H42lSklJYfLkidy6dRNvbx8mTfqoUK5T0LItTKaOzcfHV/9BtXLlMv1IsqIQFhbKJ5/MBeCNN0ZRvnwFo89VmGVmZ2fPJ598xpQpH+Hs7MLNm9dZs2YFixcv4MSJY9ja2vL22+OYMWNugaaasLTnrrDjGTRoKPPnL8LOzo4//zxAp06dZH64YkISJCv36697AHjuuZ5mi6FBg0YMGPAqANOnT+XBg/tmi8XSRUdHM3bsSI4ePYyDgwOff766SFYmLwn69OnHq68ORqPRMG/eTD7+eArh4YU7R1dcXBzvvPMWMTHR1KhRkxEjRhbq9QpKoVAwcODr7Nt3gKlTp9Oz5wt07tyN0aPfYefOXxk58m1p6jVCjx692LDhe6pUqUJYWBhvvz2SUaOGcf78WembZMWKTYKkVqtZvnw5bdq0oWHDhgwfPpy7d+/muH9MTAzvvfcezZo1o1mzZnz88cckJiYWYcQFd+PGNc6cOY1SqaRbtx5mjWXixElUr16DqKhIRo4cyt27d8waj6XRaDQcOPA7/fu/wKlTJ3BycmLFii+oU0cGJJiKQqHggw+mMmrUGBQKBbt376BHj05MmjSRPXt2EhYWZtIPq+vXgxgyZCDXrl3Fw8OTpUtX5bnSvaVwdXVlwIBXmTfvUxYv/pxRo8ZQrlx5c4dl1erVq8/WrTsZNWoUtrZ2nDhxjKFDX2XAgBfZtGkDt2/fkmTJyljAIEzTWL16NT/++CMLFizA19eXRYsW8eabb7Jnz55sV5sfN24cKSkpfPPNN8TFxTFt2jRmzZrFwoULzRC9cTZsWAdAp05d8z2839QcHBxYteorRowYRHDwPV57rR/vvTeF3r37FvlaVJYkOTmZv/7az+bN33Lp0kUAqlatxieffEaNGjXNHF3xo1AoGD36HVq2bM2yZYs5d+4Mv//+C7///gsAZcqUISCgGv7+5fD29sHHxwcPDy9cXFxwcXHB2Vn7r5OTE7a2dtjY2KBUKtFoNCQmJhAZGcGVK5f5668D/PHHr6jVanx8fFmx4ktJMAQODg5Mnz6dl14ayJo1q9i7dxfXrgXx2WcL+eyzhfj7l6Vu3frUrFmLatVqULZsOXx9fXFzKyM1dxZIoSkGKW1qaiotWrTggw8+4JVXtKOq4uLiaNOmDfPnz6dnz4zNT+fOnWPgwIHs27ePgIAAAA4fPswbb7zBwYMHjerLAxATk4BKVTSjGM6cOcWIEdqhxJs3b6Vu3fpGnSdJBW1+cgHgn5cfF3iekIiIcD74YIJ+hfUKFSrRr9/LtGvXgUqVqhTaLwFbWyXu7k5FWgbZefz4Mffu3eHSpX85deo4x48fIz7+MQAODo689tpgRo58u0gW3zR12eYlP2VQVLFdvnyJAwf+4OjRfwgKumrUKCNdgp/dsZ07d2XSpGn4+Bj3OyOzgrwvlvIzUNTPnSXFk7kM4uIesW/fbv7660/Onj1FWlpatsc5ODji6empT9CdnV1wdnbG2dkZe/tS2NvbU6pUKezs7ClVyl6/zd7eHqVS+f9E3uap77P+q1TaYGOjRKFQ/P9L9z3//72seOq1J9uf7KfQ//7OuF/2X0/ORzbbctuufS3rtifXz42HhxM2Nqb5o7xY1CBdvXqVhIQEWrRood/m6upKnTp1OHXqVJYE6fTp03h7e+uTI4DAwEAUCgVnzpyhR4/8N1eFhYUxcuRbANk8JJkfKGWWbZkfnFKlHPDz86ds2bJUrFiZSpWq4OPjg0Kh4OLF87z//nhA2+/C2OSoMHh7+/DVVxv58cfv+PLL1QQH32Xp0kUsXboIb28fqlevQZUqAfj5+VGmjDvu7h44OTljb2+n/wVgb2+PQqFAo9Hk+JWWlkZaWiqpqdqv9PQ07O2VREfHkZycQkpKyv/3SUOlUqFSqUhPV+m/V6me3p6u/1etTkelSic9PZ30dBXp6er//5vxtey+T0iIz3ZVeX//svTq9SIvv/wKXl4yjUVRqlOnHnXq1OOddyaSkpLC7du3uHXrBmFhYUREhBMeHkZMTBSPH8fz+HEc8fHxxMc/ztAU8nRi5ODgQLVqNWjUqDHPP9+bWrXqmOO2hJVwdXVj4MDXGTjwdZKSkrhw4RxBQVe4di2IW7duEBoaSkxMNMnJSdJ3Mx+yT8a02w8ePEjFihVNcp1ikSCFhoYC4O+fsZnJx8eHkJCQLPuHhYVl2dfe3p4yZcpku78hkpOTOX36pFHHGqp0aSfKlCnDw4cPAKhTpy5TpnyIra3x2bLtU/WHtjZKbE3wRNjalmLYsBEMGDCQvXt38+uv+zh79gwREeFERIRz9Ojhgl/Egnl6elG9enWaNWtBYGBzGjZsZJZmxsIo29zo/moz5K+3oo4NwNbWkXr16lKvXt1c91Or1SQnJ/0/AdYm0RqNBhcXVxwcHAq1KaQg70t+3v/CZI6yzU1RxpNbGbi4ONG6dWtat844HUtKSgphYaHExMTw+HEcjx8/5vHjx8THPyY+Pl7/R2BqagqpqamkpKQ8tS0VtTqd9HT1//9NR61Wo1Jp/3DL+Jr2X+0fmWT6o1OdYTtk/qM0p+2619QZthW23K5jyusXiwRJt0hl5r5GpUqV4tGjrIsJJiUlZdsvqVSpUqSkpBgVg5eXF2vWrNEXTm61H4Z8JSYm8uDBA+7du8etW7e4d+8eiYkJJCYmYGNjQ58+fZg9ezZubm5GxavjDtwdr/ufU4HOleXc7k6MHDmCkSNHkJSUxMWLF7l+/To3b94kIiKCqKgooqKiSEhIyPCDn5KSgkajybX61s5OW+Okq3rWVTc7ODjov9d92djYYGdnh62trf5f3ZednZ3+daVSqd9uY2Oj/9Jt073+9Pan/3V0dKRSpUq4uLiY9H00VmGWbW5cXR3z3MdcsRnOPGVoivfFkPe/MFla2ZojnvyVgRN+fsVvJKshn3OFsZ+xXWSyUywSJAcHB0DbF0n3PWgzc0fHrA+qg4MDqampWbanpKRkmNk7P5ycnGjfvgvp6YXT9p+WlkpwcDCxsbFUrVqVMmXcUau1/Z6sRY0a9ahRo3BGbdnYKHF1dSQuLqnQysAQKpV1lYkpWUoZlFTy/puflEFBKP7/lWmrIuO/eTFlbX2xSJB0zWXh4eEZ2h7Dw8OpVatWlv39/PzYvz/jyt+pqanExsYWKPtMT1cXWudIhcKWihWroLs9c3bCtGSFWQbCMFIG5iXvv/lJGZiPKVv4isX461q1auHs7MyJEyf02+Li4rh8+TJNmzbNsn+zZs0IDQ3NME+S7tgmTZoUfsBCCCGEsGjFogbJ3t6e119/ncWLF+Ph4UG5cuVYtGgRfn5+dOnShfT0dKKjo3FxccHBwYGGDRvSpEkTJk6cyMyZM0lMTGTGjBm8+OKLJm2/FEIIIYR1KhY1SKCd+LFfv3589NFHvPLKK9jY2PD1119jb29PSEgIrVu3Zt++fYB2KODKlSspX748Q4YMYcKECbRt25aZM2ea9yaEEEIIYRGKxUSRlkI65ZmXjY1SysDMpAzMS95/85MyMC+l0rAJJQ0hCZIQQgghRCbFpolNCCGEEMJUJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQoAhqNxtwhCCHyQRIkIUShGTRoEIMGDTJ3GCZ34sQJunXrRr169RgxYgQrVqygZs2a+tcz3/fWrVtZuHChOULN061btxg5ciTPPPMMzZs358MPPyQuLs7g4+Pj4+nYsSM///xzIUYpRNGzNXcAQojia8aMGeYOoVAsXLgQtVrN2rVr8fT0xM3NjTZt2uS4/5o1awgMDCzCCA0TFxfH0KFD8fHx4dNPPyUqKopFixYRGhrK+vXr8zw+NjaW0aNH8+DBgyKIVoiiJQmSEKLQVKtWzdwhFIrY2FiaNWtGy5Yt9dv8/PzMGJFxfvjhB+Li4tixYwceHh4A+Pr6MnLkSE6fPk3Tpk1zPHb//v3MmzePxMTEogpXiCIlTWxCFAMdO3Zk6dKlLFiwgMDAQAIDA/nggw+IiYnR7zNlyhSGDBnCjBkzaNq0KX369EGlUpGSksKqVavo3r079evXp2vXrqxduxa1Wq0/dtCgQUyfPp01a9bQpk0bGjZsyJtvvklkZCT/+c9/6NKlC40bN2bo0KHcv38/w3FPNzXVrFmTzZs3M23aNAIDA2ncuDHjxo0jMjIyw/3s37+fvn37Ur9+fVq1asXcuXMzfBCvWLGCLl268Pfff9OrVy/q1atHt27d2L59e4bzREVF8eGHH9KyZUsaN27Ma6+9xpkzZ/Sv62qBunTpoj/Hpk2bcnyf79+/T82aNXnw4AE7duygZs2anDhxIksTW+ayefDgAdu3b6dmzZr69+fhw4e8++67BAYG0rBhQ4YMGcLly5ezXGvDhg0899xzBAYGZtuMpdsvp6/cmjgPHz7MM888o0+OANq0aYOTkxOHDh3K8bi4uDjeeecdAgMDWbduXY77CWHNpAZJiGLi+++/p1KlSsyfP5/o6Gg+++wzbt26xdatW1EqtX8LnT59GoVCwYoVK0hISMDGxoY333yT8+fPM2bMGGrXrs2JEydYtmwZwcHBzJkzR3/+vXv3UqdOHebNm8fDhw+ZM2cOr7/+Og4ODkyePJnY2FjmzZvH7NmzWbt2bY5xLl26lC5durBkyRKCg4NZsGABtra2LFmyBIDdu3fz/vvv06tXLyZMmMCDBw9YunQpN27cYMOGDSgUCgAiIiKYPXs2o0ePply5cnz99ddMmTKFBg0aEBAQQGJiIgMHDiQtLY333nsPPz8/Nm7cyBtvvMG2bdsICAhg5syZ/Pzzz4waNYrGjRtz6tQp5s+fT1xcHGPGjMkSu4+PD1u2bGHs2LHUqVOHt99+m2rVqnHy5Mkc73flypWMHDlSv7+Pjw/R0dEMHDgQR0dHPv74YxwdHdm4cSOvvfaaPran36/p06fj6upKvXr1cowpJ87Ozjm+dvPmTXr06JFhm1KppHz58ty5cyfH4xwcHNi7dy9Vq1bNkBALUZxIgiREMaFQKNiwYQMuLi4AeHh4MGbMGA4dOkT79u0BUKlUzJo1i0qVKgFw8OBBjh49yqJFi3jhhRcAaNWqFQ4ODnz++ecMGTJE30yWlpbGypUrcXNzA+CPP/7g8OHD7N+/nwoVKgBw5coVdu7cmWucNWrUYMGCBfr/X7x4kV9//RXQjvRavHgxbdq0YfHixfp9KleuzNChQzl48KD+XpKSkpg3bx7PPvusfp8OHTpw8OBBAgIC2L59O8HBwezYsYNatWoB0LRpU1588UVOnTqFUqnkp59+4t1332XkyJEAtG7dGoVCwZdffsmrr76Ku7t7htjt7e1p1KgR9vb2eHh40KhRozzLpU6dOln237hxI7Gxsfzwww+UK1cOgLZt29KjRw8+//xzli9frj++a9eu9OvXL8fz62IyRlxcHE5OTlm2Ozk5ER8fn+s1q1atatQ1hbAW0sQmRDHRoUMHfXIE2qYdOzs7Tp8+rd/m4OBAxYoV9f8/efIkNjY2WWoRdMnSiRMn9NsCAgL0yRGAt7c3Hh4e+uQIoEyZMjx+/DjXODN/mPv5+ZGUlARoR1SFhobSsWNHVCqV/qtZs2Y4Oztz5MiRHM+l6wOka4o7ffo05cuX1ydHAKVKleKXX35h4MCBHD9+HI1Gk+VaHTt2JCUlJUNTnKkdO3aM2rVr4+vrq7+uUqmkbdu2HD16NMO+NWrUyPN8T8ef+Ss9PT3XY3U1ck/TaDTZbheiJJEaJCGKCR8fnwz/VyqVlClTJsOQbU9PzwwffI8ePcLd3R1b24y/Cry9vQEyJDvZNdU4OjrmO87MxyiVSv0cQbGxsQDMmjWLWbNmZTk2PDw8x3PpmhGfPpenp2eOceiu1bNnz2xfDwsLy+UuCiY2Npa7d+9St27dbF/XJYwAXl5euZ7r/v37dOrUKcfXAwMDc+xX5ezsnG1NUWJiolV2OhfClCRBEqKY0H3g66SnpxMTE5OhA25mbm5uxMTEoFKpMiRJukQkcxNTYXN1dQVg0qRJ2Q6Lf7oGKy8uLi7Z9o85d+4czs7O+mtt3Lgx22amsmXLGnyt/HJxcSEwMJBJkyZl+7q9vb3B5/Lx8WHbtm05vp7dvelUqVKFe/fuZdimVqu5f/8+Xbt2NTgGIYojaWITopj4559/SE1N1f//wIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfkrt75CrVq14tSpU0RHR+u3/fPPPyQkJNCqVav836gQxYjUIAlRTISGhjJ69GgGDx5MSEgIS5YsoXXr1jRv3jzHY9q2bUvz5s2ZMWMG4eHh1KlTh5MnT/LVV1/Rp0+fIp/HyMbGhokTJzJ9+nRsbGzo0KEDcXFxrF69mrCwsBybpLLTt29fNm3axOjRoxk/fjweHh5s3ryZ5ORkBg0aRMWKFXnhhRf4+OOPefDgAfXq1eP27dssXbqU8uXLU7lyZZPdl6urK5cvX+bkyZM0aNCAoUOHsnPnToYOHcrw4cNxd3dn3759/PTTT0ydOtVk183Lq6++ynfffcewYcMYO3YssbGxLFq0iLZt29K4cWP9fufPn8fDwyND/zUhijtJkIQoJnr27ImrqysTJkygdOnS9OnTh4kTJ+Z6jG7E1vLly/n222+Jjo6mfPnyTJw4kWHDhhVR5Bn1798fJycn1q1bx5YtWyhdujRNmjRh8eLFGTqE58XZ2ZnvvvuOTz/9lHnz5qFSqWjYsCGbNm3Sf9AvWLCAL7/8kh9//JHQ0FA8PT3p0aMHEyZMyFctTl6GDx/O/PnzGTFiBBs2bKBp06b8+OOPfPbZZ8ycOZOUlBQqV67MvHnzch2xZmoeHh58++23zJ8/n/fffx8nJye6d++epelvwIAB9OnTh08++aTIYhPC3BQaWUFRCKvXsWNHAgMD5QNMCCFMRPogCSGEEEJkIgmSEEIIIUQm0sQmhBBCCJGJ1CAJIYQQQmQiCZIQQgghRCaSIAkhhBBCZCIJkhBCCCFEJpIgCSGEEEJkIjNpm4hGo0GtlgGB5qRUKqQMzEzKwLzk/Tc/KQPzUioVKBQKk5yrWCZIq1ev5tixY2zatCnHfWJiYpg7dy6HDh0CoHv37kydOpXSpUsbdU2FQkFcXCIqldqo40XB2NoqcXd3kjIwIykD85L33/ykDMzPw8MJGxvTJEjFrontm2++Yfny5XnuN27cOIKDg/X7HzlyhFmzZhVBhEIIIYSwdMWmBiksLIxp06Zx5swZqlSpkuu+586d4+TJk+zbt4+AgAAAZs+ezRtvvMG7776Lr69vUYQshBBCCAtVbGqQ/vvf/+Lm5sauXbto2LBhrvuePn0ab29vfXIEEBgYiEKh4MyZM4UdqhBCCCEsXLGpQerYsSMdO3Y0aN+wsDD8/f0zbLO3t6dMmTKEhIQYHYONTbHJN62O7r2XMjCf/JTB7t07Wbp0EaVLOzF9+iwCA1sUdnjFnvwMmJ+UgfmZqH82UIwSpPxISkrC3t4+y/ZSpUqRkpJi9HldXR0LEpZZqDVwI1r7fTUPUJrw4TIHayyD4iavMvjjjz/48MPJaDyqwWMY+87b/HPoIH5+fkUUoeUyxc+juX8GLO13ijniMXcZCNMokQmSg4MDqampWbanpKQYPYoNIC4uifR06xq5kJQGXX5wAuDYKwk42pk5ICPZ2ChxdXW0yjIoLgwpg9TUVD766GM0tqWwHfEXAIlLqzFnzjzmzv2kKMO1SAX5ebSUnwFL+51SlPFYShmUZG5ujiiVpqnBK5EJkp+fH/v378+wLTU1ldjY2AJ10E5PV1vd0E5V+tPfq1FZeQ2SNZZBcZNbGezevYv794Px8q9A7FPb9+7dzcSJk3BzK1MUIVosU/w8mvtnwNJ+p5gjHnOXQUmmMeEUVCWyobRZs2aEhoZy9+5d/bYTJ04A0KRJE3OFJUSxt23bFgD6939Fv61atRqkpaXx66/7zBWWEEJkUSISpPT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF2WIvxCFJCjoKv/+ewFbW1ue79lbv/2553oC8Oeff5grNCGEyKJEJEghISG0bt2affu0f6EqFApWrlxJ+fLlGTJkCBMmTKBt27bMnDnTvIEKUYzt3r0dgA4dOuPh6anf3rJlWwDOnj1NUlKiWWITQojMimUfpE8+ydjZs3z58gQFBWXY5unpadCM20KIgtNoNBw4oK0heu655zO8VqlSJfz9yxIS8pBTp07Stm17M0QohBAZlYgaJCGEeV258l9CQh7i4ODIs8+2yvCaQqGgRYuWgLYWSQghLEGxrEEShrNVwKDaqfrvhSgMutqj1q3b4ujoSFp6xueuYcPGbN++jYsXz5sxSvMrDj+PlnYPlhaPsB6SIJVwdjYwvrHxk2MKkRdt89rvAHTq1AXI+tw1aNAIgMuXL5GWloadnZVOyFVAxeHn0dLuwdLiEdZDmtiEEIXq1q2b3LlzGzs7O9q0aZ/tPpUrV8HV1Y3k5GSuXw/Kdh8hhChKkiCVcGoNPIxX8DBegdqEE2wJoaOrPWrRoiXOzs5A1udOqVRSq1ZtAK5dK7kJUnH4ebS0e7C0eIT1MEuC1KVLF9asWVOghWGFaaSkwwu7nHlhlzMp6XnvL0R+6fofderUVb8tu+euevWaQMlOkIrDz6Ol3YOlxSOsh1kSpGeffZYNGzbQqVMnhg0bxp49ewq0SKwQwjLdvx9MUNAVbGxsaNeuY677Vq9eA4AbN64VRWhCCJErsyRIs2fP5vDhwyxevBg7OzsmT55M69atmT59OufPnzdHSEKIQrB/v7Z57ZlnmuHu7p7rvroE6fr1IDSmXFBJCCGMYLZRbPb29vTo0YMePXoQGRnJb7/9xq5du3jllVeoXLkyAwYMoF+/fvo+C6JwaGcudjF3GKKYejJ6rWsee0LVqtVQKpXExMQQFRWJl5d3YYcnhBA5Mnsn7ZSUFI4dO8aRI0e4evUqLi4uVK9enS+++ILOnTtz7Ngxc4dYbKWlpTJmzEj9/yMjI8wYjShuQkND+PffCygUCjp27Jzn/o6OjlSoUBGA69elmU0IYV5mS5COHz/O1KlTadmyJZMmTSIhIYG5c+dy+PBhli9fzt9//03VqlX56KOPzBVisbd//+9cufJf/f83bfrGfMGIYkfXObtRoyZ4e/sYdMyTfkjXCy0uIYQwhFma2Nq3b09YWBi+vr4MHjyYl156ifLly2fYx8HBgZYtW7Jp0yZzhFgi7N27O8P///jjN6a+/z4KhUw3KwouP81rOpUqVQHg3r27hRKTEEIYyiwJUsOGDenXrx+tW7fO9cO4b9++9OvXrwgjKzkeP37MsWOHARu6+ISzf//vxESFc+PGNf1wayGMFRkZwblzZ4Ans2c/zUYB/aun6r/XqVixElByE6Sc3hdrYmn3YGnxCOthlgSpevXq1KhRI9vk6P79+6xfv57p06dTtmxZM0RXMvz77wXS09MpX74sCzo7Erd9D0fSUzl+/KgkSKLA/vrrABqNhnr1GuDvn/Xn2N4GJjfLOrWHLkEKDi6ZCVJO74s1sbR7sLR4hPUwSx+kVatWERYWlu1rFy5cYOvWrUUcUcmjWxS0fv2GADRr1gKAc+fOmiskUYzs3/8bkL/mNXiSIIWGhpCammryuIQQwlBFVoM0cOBALly4AGgXrxwwYECO+9avX7+owiqxdAlSgwaNiElWUKFmIwBZB0sUWExMNKdPnwSgc+fsEySNBmJTtDXIZUpp0FUme3h4Urp0aRITE3nw4D5VqlQtkpgtRU7vizWxtHuwtHiE9SiyBGnevHn88ssvaDQaVq1axUsvvYSfn1+GfZRKJa6urnTtmr+/OkX+6Uav1ajbmC4/OwPtwc6R4OB7JCTE4+Qk808J4/z22y+kp6dTu3Yd/bD9zJLT+f9zB/+8/BjH//8mUigUVKhQiaCgK9y7d6fEJUg5vS/WxNLuwdLiEdajyB6VgIAAxo4dC2h/Cfbv3x9fX9+iurx4SnR0NDExMSgUCu0H0CXtdi8vLyJDgrlx4zoNGzY2b5DCau3Zox0d2aNHL6OOr1hRlyDdM2VYQgiRL0WWID18+BBvb2/s7Ozo27cv6enpPHz4MMf9pYN24bl16wYAZcuWw9HRUb+9WrWaRIYEc/16kCRIwij37t3j/PmzKBQKunXrYdQ5dLVOJXUkmxDCMhRZgtSpUye2bNlCgwYN6NixY55z7Vy5cqWIIit5bt26CUDVqgEZtleuXJnj/8gHkzDe9u3bAQgMfBYfH+NqiHUJ0sOHD0wWlxBC5FeRJUjz58+nQoUK+u9lMkLzuXlTO0txQED1DNvLltWWjzRtCGNoNBp+/vlnAHr0eN7o8/j5+QMQEpJzDbMQQhQ2gxOkqVOn5uvECxYsyPD/Pn366L/v27dvvs4lTOvu3TsAVK5cJcN2XQIbHCwJksi/K1cuc+PGDUqVKpXv4f1P0zWvh4Y+RKPRyB9TQgizMDhBOnHiRIb/h4eHo1KpKFu2LN7e3sTGxhIcHIy9vT21atXK83ynTp3CxsaGJk2acP/+fWbPnk1ISAjdu3dnzJgx+b8TYbAHD7RNF+XLV8iwXff/+/fvoVarUSrNvpaxsCK7d+8EoH37jjg7Gz8K0tdXW4OUmJjI48dxuLq6mSQ+IYTID4MTpD///FP//e7du1m8eDErVqygQYMG+u03btxgzJgxPPfcc7mea+fOnUyZMoVhw4bRpEkTZs6cyZkzZ2jVqhVffPEFdnZ2jBw5MtdzCOOkp6frmy7KlSuPjQKer5Km/b+/P7a2tqSkpBARESGjDIXBUlJS2LVrBwC9e/fJfWfI8NxlXv7BwcEBd3cPYmKiCQkJKVEJUm7vi7WwtHuwtHiE9TCqD9LSpUt57733MiRHANWqVWP8+PEsWLCAIUOG5Hj8hg0b6NOnD5MmTSIqKoqjR4/y3nvvMWLECNavX8+WLVskQSok4eFhqFRp2Nra4ePji40NzHw2+f+v2uLvX5bg4HsEB9+VBEkY7M8//+DRo1jKli1Lq1Zt0Ghy398+w3OXlb+///8TpIfUrJl3jXRxkdf7Yg0s7R4sLR5hPYxqQ4mJicHFxSXb12xtbUlMTMz1+Fu3btG7d28ADh06hEajoVOnToB2Fu2QkBBjwhIGuH8/GAB//7LY2NhkeV23blZYWGiRxiWs288/a5cHGjhwYLbPVX7pnsPQUOmoLYQwD6MSpEaNGrFy5UpiYmIybA8PD2fFihU0b9481+NdXV1JSEgA4ODBg5QtW5bKlSsD2hFU7u7uxoQlDPDgwX0AypcvD2in4U9Sab80GvD11c5uHhoqSaowzL17dzl16gQKhYKBAwcadEzm5y4zPz9tglTS/ljK632xBpZ2D5YWj7AeRjWxTZ48mUGDBtGxY0caN26Mu7s7UVFRnDt3Djc3N9asWZPr8S1atGDlypVcv36dP/74g+HDhwPw22+/8fnnn9O6dWtjwhIG0CVI5cppE6TkdGjzk7Y28J+XH+uHWIeGSg2SMIyu9qhVq9aUK1eOmJiEPI/J/NxlXv7hyXNYshKkvN4Xa2Bp92Bp8QjrYVQNUq1atdizZw8DBw4kISGBS5cukZyczPDhw9m1a5e+diIn06ZNw93dnVWrVtGyZUtGjRoFaKcGKFu2LO+9954xYQkDZE6QMtPVIIWFlawPJmGcxMQE/vOfnwAYMOBVk53X3183F5JMFimEMA+jc2lfX18mT55s1LHu7u58/fXXWbZ///33ssRIIXuSIFXI9nWpQRL5sXv3Th4/jqNChUq0a9fBZOfVNbHJcyiEMBejE6TU1FS2bdvG0aNHiYiIYP78+Zw8eZK6detmGd2Wk0ePHpGUlIRardZv063PJolS4dAt31C2bLlsX/fzkxokYRi1Ws3mzRsBeO21QSadN8vb2weAqKhImZNLCGEWRiVI0dHRDBkyhFu3blG1alVu3LhBcnIyBw8e5JNPPuGbb76hceOcFzu9c+cOU6ZM4cKFCznuI2uxmZ5KpSIqKhIgxyH8ukn6dMnr04vZCvG0w4cPcu/eXVxcXHnhhbznPsoPT09PFAoF6enpxMRE4+npZdLzCyFEXoxKkD799FMSEhLYt28f5cqVo169egB8/vnnjBgxguXLl7Nhw4Ycj58zZw537txh7Nix+Pn5yV+HRUT317itrS0eHp7Z7uPi4oKTkxMJCQmEhYVQuXLVIo5SmEp0dBRXr17BxcWFWrXqYGdnZ7JzazQa1q37AoC+fftTurSTyc4N2ulCPD29iIyMICIiXBIkIUSRMypB+uuvv/jwww+pVKkS6enp+u2lSpVi+PDhTJkyJdfjT58+zbx583j+eeMXtBT5Fx4eBoCXl3euc9X4+vpz69YNQkNDJUGyQsnJyXz22UL+858t+uZrb29vxoyZQO/efU2yttnRo4e5ePECDg4ODBo0tMDny463tzeRkRGEh4dTq1adQrmGEELkxKgEKSUlhTJlymT7mo2NDWlpabke7+zsjJtbyVk+wFLoEiQfHx/9NqUCOlVI038P2n5I2gRJ+iFZm7S0VMaPH82JE8cA7YLEMTHRREREMHPmNI4fP8qcOQuws7M3+hoajYYvvlgJQP/+A/Hy8s73ObJ77jLz9vbhypXLRESEGx2rtTHkfbF0lnYPlhaPsB5GJUj169fn+++/p127dlle2717t77JLSe9e/dm8+bNtG7dWlbqLkJPEqQn/Y9K2cDCNhmn4dcN9dftL6zH8uVLOHHiGKVLl2bx4uW0bNmatLRUNm36htWrl/Prr3uJj4/ns8+WU6pUKaOuceDA7/z7r7b2aOjQN4w6R3bPXWa6jtolKUEy5H2xdJZ2D5YWj7AeRiVI48ePZ+jQofTu3Zt27dqhUCjYs2cPK1as4PDhw6xbty7X4x0dHTlz5gxdunShfv36ODg4ZHhdoVAwf/58Y0ITuQgP137QeHvnvsaarkYgIiKi0GMSpnPjxjU2b/4WgHnzFtGypXbCVTs7e4YPH0mtWnV4992xHD58kHffHcvSpauwt89fTVJSUhKffbYQgMGDhxdq36CSmCAJISyHUb2jmzZtyoYNG3B0dGTdunVoNBq++eYbIiIi+PLLL2nRokWux2/fvh0XFxfUajUXLlzgxIkTWb6E6WVXg5QdXYKkG/EmrMPnn3+GWq2mc+eudOjQKcvrLVu2ZuXKtTg4OHLkyD9MnfoeKpUqX9fYsOErQkIe4ufnz7Bhb5oq9GxJgiSEMCej50Fq1qwZP/74I8nJyTx69AhnZ2ecnAwbyfLnn38ae1lRANklSEmqrNPwe3trE6TISPlgshZXrvyXf/45iK2tLe+8MzHH/Zo2DWTp0pWMG/cWBw78wcyZ05g9e4FBI0kvX77E+vVrAXj33ckFmgIiu+cus5KYIBnyvlg6S7sHS4tHWA+japCmTp3K6dOnAXBwcMDX11efHF25coVOnbL+9ZodtVrN1atXOXToEPHx8cTGxhoTjjBQdp20syNNbNZn69YfAejcuRuVKlXJdd9nn23Fp58uw8bGhj17drJgwWw0eaziGRcXx4cffoBKpaJz56506dLNZLHnRPecynMohDAHoxKk7du3M3ToULZs2ZLltdTUVP1s2LnZuXMn7du358UXX2TUqFHcvXuXKVOm8M4775CammpMWCIXGo2GsLD8NbFFRkbk+cEpzC8+Pp5fftkLaEeVGaJDh07MnbsQhULB1q0/snTpohzLOiUlhUmTJnDnzm18fHz56KNZRTK44unZtPPbFCiEEAVl9AyN7dq1Y8aMGcyaNSvDXEiG2LdvH5MnT6ZFixYsXbpU/4u5a9euHDp0iNWrVxsblsjB48ePSU5OAgxPkNLS0oiLe1TosYmC+eOPX0lKSqRq1QCaNGlq8HHPPfc806fPAeDbb9czffpUEhMTMuwTHR3FmDFvcvz4URwdS7N8+RrKlHE3afw5cXf3wMbGBo1GQ1RUVJFcUwghdIxujR01ahQ9e/bkww8/5MaNG6xYsSLHuZEy++KLLxg4cCAzZ87MkFz17duXqKgofvrpJyZMmGBsaCIbuuY1FxfXPPuO2Nvb4+bmxqNHj4iIiMDNrUwRRCiMdeDAHwA891yvfNfs9OnTj5SUFD79dB67d+/gyJF/ePHFvgQEVOfWrZts3fojcXGPcHJyYtmyVUU6YaNSqcTLy5uwsFAiIsJzXB5HCCEKQ4HW+OjRowebN2/m3r17vPTSSwQFBWFrm3fOdfv2bbp06ZLtaw0bNtQ3BQnTMXQEm46n55NmNmG5Hj9+zIkTRwHo1Cn7n6m8DBz4GmvXfkOFChWJjo5i/fqvmDZtEl9//SVxcY+oWbM269dvplmz3EenFoaS2FFbCGEZCtyfv27dumzbto2xY8cycOBARo8enecxnp6e3Lx5k1atWmV57ebNm3h6Zr9OmDCeoR20dby9vbl164YM9bdwhw8fJC0tjSpVqlK1aoDR52naNJCff97LH3/8ytGjh4mICMfLy5s2bdrRuXM3g/7wKQySIAkhzMUkv/W8vb3ZtGkTH3/8MUuWLMmzmr9Hjx4sX74cHx8f/WzcCoWCS5cusXr1almjrRDoPmAy1yApFdCqrEr/vY6MZLMOhw79DZDtvEf5ZWdnR48evejRo1eBz5WXnJ67zJ48hyUjQTL0fbFklnYPlhaPsB5GJUhjx47N0h/A3t6ehQsXUqtWrTznOZowYQLXrl1jwoQJ+vlXBg0aRGJiIk2bNmX8+PHGhCVykVMTWykb+Lx9Upb9n4xkKxkfTNZIo9Ho11xr2bKNmaPJn5yeu8yezMlVMhJ1Q98XS2Zp92Bp8QjrYXSClJNhw4YxbNiwXI+3t7dn3bp1HDlyhOPHjxMbG4uLiwuBgYH6pUuEaeW3D9LTQ/2FZbpx4xrR0VE4ODjSoEEjc4dTKKQmUwhhLgYnSIMHD2bGjBkEBAQwePDgXPdVKBRs3Lgxx9d37NhBu3btaNWqVZZ+SBEREezYsYM33yzcZQxKGmP6IIF8MFmy48e1tUfPPNM032uqWQtJ1IUQ5mLwKLanJ5HTaDS5fqnV6lzPNXXqVIKDg7N97cqVKyxfvtzQsISBdAvVZq5BSlJB6y3OtN7iTNJTc/HJB5PlO3lSmyA1b/6smSPJv5yeu8x0iXpUVMl4Dg19XyyZpd2DpcUjrIfBNUibNm3K9ntDjRo1ihs3bgDaBGvMmDHZ/tUbFRVFxYoV831+kbO0tDSio7UT7WXXxJacnrVJs6T1/bA2arWa8+fPAfDMM83MHI1xsnvuMvP09AK0vxfS09OxsbEp7LDMzpD3xdJZ2j1YWjzCOhTZ2N1Ro0axdetWQLtUSZ06dfDw8Miwj1KpxNXVlb59+xZVWCWCbskQW1s73N098j6AJ/MgJSQkkJSUiKNj6cIMUeTTnTu3efw4DgcHB2rUqGXucAqNh4cnCoUCtVpNTEy0vmZTCCEKm8EJUq1atQzuPK1QKLh8+XKGbU2aNKFJkyb6/7/99ttUqFDB0MuLAtD1P/L29jZo1XYAJycnHBwcSU5OIjIykgoVpFbPkly8eB6AunXrYWdnZ95gCpGtrS0eHp5ERUUSGRkhCZIQosgYnCCNGTPGZKPLFixYYJLzPE2tVrNy5Uq2bt1KXFwczzzzDDNmzKBSpUrZ7r99+3amTJmSZfvvv/+e4zHW6kmCZFgHbdAmud7e3gQH3yMyMkISJAtz4YK2ea1hw8ZmjqTweXl5ExUVSUREBLWKb2WZEMLCGJwgvfPOOya7aHR0NPPmzePvv/8mKSkpyyri2dVA5WX16tX8+OOPLFiwAF9fXxYtWsSbb77Jnj17su3rFBQURGBgIEuWLMmwPXOzX3GQUwftvHh5aRMkGclmeS5cOA9AgwYlI0EKCroi/eGEEEXK6D5IycnJBAUFkZaWpk9w1Go1SUlJnD59mvfffz/HY2fOnMnBgwfp2bMnfn5+Bjf75CQ1NZX169fzwQcf6GfmXrp0KW3atOGPP/6gZ8+eWY65du0atWrV0ndGLs50NUi+vn75Ok4mi7RMcXGPuHVLO+ChuM5/9DQZMCCEMAejEqTjx48zfvx44uLisn3dyckp1wTpn3/+4cMPP2TAgAHGXD6Lq1evkpCQQIsWTxbTdHV1pU6dOpw6dSrbBCkoKIhu3bqZ5PqWLrc5kBRAEx+V/vunyVB/y/TvvxcBqFChktXWeOb23GVWkiaLzM/7Yqks7R4sLR5hPYxKkJYtW0aZMmWYO3cuu3btQqlU0rdvXw4dOsQPP/zAV199levx9vb2Ju2gHRoaCoC/v3+G7T4+PoSEhGTZPzo6msjISE6dOsWmTZuIjY2lYcOGvP/++1SpUsXoOGxsClYTVlh061j5+/tja5sxRmdbWN895f//y/ian5+2SS4yMiLLcZZG995bahmY0tWr2ubnBg0aWFS55KcMcnvuMvP11Sb20dGRFnW/hSE/70tmlvIzUJB7KAxFGY+llEFJZsqFOIxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCpuuiSwgoBLu7k4GH1epUnkAYmOj83WcOVlqGZjSrVva57dJk0YWWS6mLgPdcxgTE2WR92tpSsLPgKWTMigejEqQ1Go1fn7a/ixVqlTRTwAJ0K1bNyZPnpzr8XXq1GHZsmUEBwfTsGFDHBwcMryuUCgYM2aMwfHojk9NTc1wrpSUFBwdsz6oLVq04OTJk7i5uem3rVq1ig4dOvDzzz8zcuRIg6/9tLi4JNLTc59FvKhpNBp9LZqjoxsxMQkGH+vkpH1/Hj4Myddx5mBjo8TV1dEiy8DU/v33EgAVKlS1qHIprDJwdHQFIDQ0zKLu19KUpJ8BSyVlYH5ubo4F7tesY1SCVLFiRYKCgmjatCmVKlUiKSmJmzdvEhAQgEqlIiEh919is2fPBuDUqVOcOnUqy+v5TZB0TWvh4eEZZuEODw+nVg7jgp9OjgBKly5N+fLlCQsLM/i6maWnq1GpLOuH4tGjWFJStNXLHh5eWeJLUkGvndq/ynf3TsDxqSfCw0PX9yPc4u4rJ5ZYBqaUkBBPcPA9AKpVq2GR92pIGeT23GXm4aGt0Y2ICCctLb1YL2adn/clJ+b+GTDFPVh7POYug5Is06D4AjHqUenVqxeLFy9GrVYzaNAg6tWrx9y5cxk0aBBffPEF1apVy/X4q1evGhVsTmrVqoWzszMnTpzQJ0hxcXFcvnyZ119/Pcv+33//PZ9//jkHDx7U1zjFx8dz584d+vXrZ9LYzE3XQdvNzS1LTZ1ObEr22bZu9NCjR49ISUmhVKlShROkMNj169fQaDR4e/vg4eFp7nAKJKfnLjNdJ+3U1FQeP47D1dUtjyOsm6HviyWztHuwtHiEdTDqqXnjjTcYOHAgFy9qR9PMmDGDK1eu8Pbbb3Pr1i0mTZpk0iDzYm9vz+uvv87ixYs5cOAAV69eZeLEifj5+dGlSxfS09OJiIggOTkZgA4dOqDRaJg0aRLXr1/n33//5Z133sHDw4M+ffoUaeyFTTcHUn6H+AO4uLjqkyIZyWYZgoK0f1zUrFnbzJEUnVKlSuHiom1mKwkj2YQQlsGoGiSlUpmhn1H9+vXZv38/t27domrVqjg7O2c5ZvDgwcyYMYOAgAAGDx6c6/kVCgUbN27MV0zjxo1DpVLx0UcfkZycTLNmzfj666+xt7fn/v37dOrUiQULFtC3b1/8/f3ZuHEjixcv5pVXXkGj0dCqVSu+/fbbHGtZrFVYmHaEn7d3/iaJBG05eHl58+DBfSIiwilXrrypwxP5dO2aNkGqUaOmmSMpWt7e3jx+HEdkZAQBAbnXUAshhCmYrDXW2dmZBg0a5Pj607NlZ545O7d9DWVjY8MHH3zABx98kOW18uXLExQUlGFb7dq1+frrr/N9HWvzZJLI/CdIoF2eRJcgCfMriTVIoG1mu3XrJpGRkeYORQhRQhiVID18+JDZs2dz9uxZHj9+nOX17JYK2bRpU7bfi8Kl63Se32VGdGSySMuRnp7OjRvaIf45DT4ormRWdyFEUTMqQZo2bRrnz5/npZdeokyZMiYOSZiSscuM6OgWuJUaJPO7d+8uycnJODg4Ur58yVo8WBJ1IURRMypBOn/+PB9//DF9+/Y1dTzCxMLDtX2QcqpBUgB1PNL132emG8kmnWPNLyjoCgA1atTAxsbGzNEUTF7PXWa6yVuL+3OY3/fFElnaPVhaPMJ6GJUgeXt7Z5lHSFimvPogOdjCt90TczxeapAsR3Hqf5TXc5dZSalByu/7Yoks7R4sLR5hPYwa5j9q1ChWrVrFgwcPTB2PMKHk5GT9UivSB8n6PRnBVrL6H8GTmkx5DoUQRcWoGqT27duzbt06OnfujIeHR7ZLhezfv98kAQrj6WqPHBwc9fPI5JfUIFmOJzVIJS9B8vLSPoeSIAkhiopRCdLUqVMJDg6mVatW+r/s8rJjx458XePFF1/Mf2AiA12C5OPjk+PyDMkq6L9XOw3/1p4JOGR6Inx8tB9MMpu2eUVFRRIZGYFCoaB69RrmDqfA8nruMtPVZMbHx5OUlJTtGovFQX7fF0tkafdgafEI62HUo3Ly5EmmT5/Oyy+/bPAxU6ZMMXhfhUIhCZIJ6Ib45zaCTQOEJCj132fm4uKKvb09qampREZGyGSRZqKrPapUqTKOjqXNHE3B5fXcZebs7IyDgwPJyclERUVSvnyFQo3PXPL7vlgiS7sHS4tHWA+jEiRXV1fKli2br2MOHDhgzKVEATypQTKu/xFok9WnJ4uUBMk8dAlSSex/BE9mdb9/P5iIiIhimyAJISyHUQnSq6++ytq1a2nUqFG2y4pkp1y5cgaf35iZtEVWuiH+xs6iraNbbkT6f5iPboh/Sex/pKNLkGSySCFEUTB6Ju3Lly/TunXrbNdeM2Qttb1793Ly5EnS0tL0CZFGoyExMZHz589z6NAhY0ITTzFFDRJIR21LoBvBVhyG+BtLRlQKIYqSUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk+WGTFuFm0dXYKlO58oWsnJydy5cxsoeYvUPq0kTBapUqnMHYIQ4v+MSpBmzpxJQECA0Rfdvn07L7zwAgsXLmT58uU8fPiQhQsXcunSJUaOHEn16tWNPrd4wlQ1SP7+/gCEhj4scEwi/27cuI5arcbd3UNfm1cSFecapOTkZNauXcWWn3fCyHMADB36KmNGjqRt2/bmDU6IEsqoiSJHjBiR72H7TwsLC6N3794oFArq1q3LuXPaXwj16tXjrbfeYuvWrUafW2ipVCr9B4luqH52FEBVt3SquqXnOA2/n582QQoJCTFxlMIQT/c/ymm6BmtjyHOXWXFNkGJjYxg27FXWr/+KhPg4iLqGJjKIoKuXGTfuLZYtW2xV/TKNKdvCZGnxCOthVA2SSqXC3d3d6IuWLl1a/4u+cuXK3L9///+LcDpQu3Zt7t+/b/S5hVZUVBRqtRobGxs8Pb1y3M/BFn7qmfs0/H5+2hGLoaGSIJlDcZxB25DnLjNd7VlxSpDS0tIYP/5trly5jLu7Ox9/PId27XyIi4vj69QBfPfdRr75Zh0qVRrvvz/V3OEaxJiyLUyWFo+wHkbVII0fP565c+fyn//8h4sXL/Lw4cMsX7mpX78+27dvB6BixYrY2Nhw9OhRAG7evIm9vb0xYYmnhIRol4Hx8fEt8MKmuia2iIhw0tLSChybyJ/itAZbQTypQYo0cySms3btai5cOIezswvr1m2iY8fO2NjY4O7uzvvvT2X69DkoFAq++24jO3f+bO5whShRjO6DlJ6ezrRp03Ks8r9y5UqOx7/11lsMGzaMx48f88UXX/DCCy8wZcoUmjdvzuHDh+ncubMxYYmnPHyoTZDKljV8eoWceHh4YmdnR1paGhER4SY5pzCMWq1+agRb8alBMoZu1v6YmGhUKhW2ttY9JfKNG9f4+usvAfj449kEBFTLsk/fvv2JjIxg9erlzJ8/i4YNG1G5ctWiDlWIEsmo3zBz584t0EWbNWvGtm3bCAoKAmD69OkolUrOnj1L9+7d8zXrtsheSIi2Fi+vZCZZBYN/087M/G23xGyn4Vcqlfj5+RMcfI/Q0BBJkIrQgwf3SUxMxN7ensqVq5g7HJMx5LnLrEwZd2xtbfX963R946zVsmWfoVar6dSpC926PQdk/7688cZbnD17muPHjzJ79nTWrfsWpdKoyv8iYUzZlqR4hPUw6lHp06dPgS9cq1YtatXS/kVcqlQp5syZU+Bziid0NUj+/rnPeK4Bbj2y0X+fE12CJB21i9bVq5cBqFatutXXmDzN0OfuaUqlEh8fXx4+fEBISIhVJ0jnzp3h8OGD2NraMm7ce/rt2b0vSqWSjz+eTb9+L3D27Gn27NnJCy8U/HdwYTGmbAuTpcUjrIfRv3Gjo6PZsGEDJ06cIC4uDnd3d5o2bcrQoUPx9PTM8/jHjx9z/PhxEhMTsx2hIWuxFYwpm9jgyUg2GepftK5c0SZItWvXNXMklsHfv+z/E6QHNG7cxNzhGO3bbzcA0KtXHypVqpzn/uXKlWfkyNF8/vlnrF69nK5dn8PBwaGQoxSiZDMqQQoNDWXAgAFER0fTqFEj6tSpQ0REBBs2bGDHjh1s27Yt1+UtDh48yIQJE0hKSsr2dVmstuB0TWz5WeIlN7qaKBnJVrR0NUi1atUxcySWQfcc6p5va3T37h3+/lu7NuWgQUMNPu6VVwaxZcv3hIaG8MMP3zFs2BuFFKEQAoxMkBYtWoStrS379u2jQoUni0YGBwczfPhwli5dyieffJLj8UuWLKFq1apMnToVX19fi25Pt0YajUb/AeLvb9oaJF3NlCh8Go1GX4MkCZKWrkbUmhOkbdt+RKPR0Lp1O6pWNXzCXQcHB8aMGc/HH09h/fq1vPzyQJycDFsLs6QKCwvj5LnzQD8Azp8/S9OG9bCzk5HSIm9GZSaHDx9m3LhxGZIjgAoVKjBmzJg811G7desWEyZMoGnTplSoUIFy5cpl+RLGi46OIiUlBaVSWeCFanUqVKgIQHDwPZOcT+QtPDycmJhobGxsqF69hrnDsQjWniClpaWxd+9uAPr3H5Dv43v06EXlylV4/DiObdu2mDq8YuPmzRu8884oundvz8cfPxn0M3r0CLp168CaNStISpK5kUTujEqQ0tPTc5wo0sPDg/j4+FyPL1u2bJ77COPpanl8fHxN9pdSxYqV9OeW9aKKxtWr/wWgSpWq0t/k/6y9ie3YscNER0fh4eFJy5Zt8n28jY0NQ4dqm9Y2bfqGlJQUU4do9X766QcGDHiRf/45iEajyVD7WqaMB9HRUXz55Sr69n2eCxfOmTFSYemMSpBq1qzJzp07s31tx44d1KiR+1+7o0aNYtWqVTJjdiExdAQbaKfh93dS4++kznUafm9vH0qVKoVKpZJ+SEWkODevGfrcZaZ7ph8+fGhVy2/o7NqlnSC3R4/nsbOzy/K6Ie9Lz5698PPzJzIyQn8+S2Js2ZrCypXLmD9/FiqVirZt27Nz5y98s2GzPp49u39j4cIllC1bjpCQh4wYMZhff91bxFEKa2FUH6S3336bESNGEBsbS69evfDy8iIyMpLdu3dz9OhRli9fnuvxu3fvJiwsjC5duuDh4ZHlr2OFQsH+/fuNCU2AfiZzQ0awOdjC7t4Jee6nVCopX74iN29e5969u5QvXyHPY0TBXL2qnWy1OI5gM/S5y0zXFy45OYnY2NgCLXlU1B49iuXvv/8C4IUX+ma7jyHvi52dPUOGDGfhwnl88806+vTpZxFTQGg0Gi5d+pejR/+hYfA97O3t+TmhOu3adaRcufKFfv1vv13PunVfAPDOOxMZPnykfiLjJ++pLd269aB167bMmPEh+/f/zocffoBaraZHj16FHqOwLkb9VLVq1YqFCxeyaNEijhw5ot/u5eXF/Pnz6dKlS67H+/n54efnZ8ylhQHyU4OUHxUqaBMk6YdUNJ6MYCvZS4w8zd7eHm9vbyIiIggJeWBVCdLff/+JSpVGtWrVqVGjZoHO9eKL/Vi7djUPHtznzz/307VrdxNFaZwbN64zd+4Mzp8/m+W1RYsW0LXrc7z77mST9YnM7NSp4yxbthiA8ePfz3OEn5OTM59+uozZsz9mx47/MH36VLy9vWnWrEWhxCesk9F/dvTu3Zt27dpx/fp1bG1tcXNzw97eHqVSycOHDylbNucP5wULFhh7WWGAwkqQKlbUddS+a9LziqxiYmL0TZklfQ22zPz9yxEREcH9+/epU6eeucMx2IEDvwPQuXO3Ap/L0dGRl19+lS+/XMXGjV/TpUvBz2ms/ft/48MPPyA1NRV7e3vat+9EzZq1SElJ4ezZ05w+fZLfftvHkSP/MG/eQtq162jS60dFRTJlyvuo1WpeeKGPwdMfKJVKpk+fQ0pKCr/8sof33x/P5s3bpHZc6BmVIN25c4cpU6Zw4cKFHPfJbS223BazVSqVlC5dGldXV2NCEzxJYHQJTW6SVTByv3Ya/rWdc5+Gv0IFbUfte/ckQSpsly9fArSd452di99Q7vw8d5lVrFiJixfPc/funcIJrhDEx8dz7Ji2tj23BCk/78uAAa/yzTfr+O9//+Xs2dM0b97cpDEb4rfffmHKlHfRaDS0atWG6dPn4Obp9+QeRiZy58YV5s6dwaVLF5kwYQwffjiD/v0HmiyGhQvnERUVSbVq1Zk6dXqW13N7T5VKJTNmzOXu3TtcvnyJyZPf5Ztvvs+2f5goeYxKkObMmcOdO3f+x959hzdVdwEc/ybp3i10sMooS1aZBVlCEUQQkCVDmQq8DBkOpkJBpiDIFBVFZCkgICAuQPZGhsjeBTqALrqbJu8fMYHuNk2bjvN5njxtb+44ufc2OflNRo0ahZeXV47HMfL3989wkls9Z2dn+vfvz4gRI4wJsdhKSkriwQNd43dv76zn7tICl8KyNwy/vqu/JEh5T9+7pk6duuYNJI/k5L5LTT8n3d27t00bVB46ePAvkpKSqFChYrqT0url5Ly4uZWgU6fX2bLlR77//tt8T5DOnz/Lxx9PQKvV0rVrTz76KACVSkWcOuVrqF79BVavXs+8eTPZsuVHZs0KwMLCgq5de+Q6hkOHDvDHH7+iUqmYOXMetra2adbJ6pza2NiwcOFSevbswr///sOqVSsZPvzdXMcmCj+jEqTTp08za9YsXnvtNaMOOnfuXKZOnYqfnx+vvfYaJUuW5MmTJ/z+++/s37+fESNGEBMTwxdffIGLiwt9+/Y16jjF0cOHD0hOTsbGxhYPDw+T7lv/wXT/fiBJSYky2Foe0idIdevWM3MkBY/+Prxzp/AkSM9Xr2X15TAn+vUbyE8/beLAgb+4efMGDRv6mmzfmYmOjmbSpA9ITEykdeuXDclRRiwtLZkyJQAbGxvWrVvDjBkf4+bmlqvqtri4WGbPng7Am2/2z1VvTy+vUkyZMo2JE99n1aqVNG/ektq18+dcioLLqG7+Dg4OODs7G33QX375hY4dO7Jq1Spef/11mjdvTpcuXVixYgU9e/bk4sWLTJgwgREjRrBx40ajj1Mc6asdvL3Lm/SNGMDT0wsHB0fUajW3bxeeD6fCJjk5mX/+0VVf+/pKgpTa8wlSYejqHxcXy5EjhwDTtD96XvnyFWnVqg3wbH63/PDZZ3N5+PABpUuX4ZNP5maaHOkpFAref38i3br1RKvVMmnSB9y4cd3oGL74YhlBQQ8pVaq0SUp82rfvSPv2HUlOTiYg4COSkpJyvU9RuBmVIHXp0oX169cb/eZ08uTJDEuf2rVrx/HjxwFo0KABgYGBRh2juNJXf+kHdjQlhUJhGNH5+vVrJt+/0Llx4zqxsbE4ODhQqVLG1THFVblyuuQ/OvopYWFPzB1Olg4fPkh8fDxly5ajWrXqJt//gAGDAdixYzuhoaEm339qZ8+eYdu2LSgUCmbMmJOjNnIKhYJJk6bSsKEfsbGxjB07gsjIiBzHcOXKZdavXwPApElTsbW1y/E+0jNx4ke4urpy8+Z11q1bY5J9isLLqATJ1taWM2fO0LZtW8aNG8ekSZNSPCZPnpzp9i4uLly5ciXd565cuWL4h4uNjU23TllkTJ8gZWeGcGNUrqxPkK7myf7Fs+q12rV9s/XNvLixtrY2jPFVGKrZ9NVrbdq0M3mpLkDduvWpU6cuSUlJrF6dt6VIWq2WJUsWAtC1aw8aNvTL8T4sLS2ZP38xZcqU5f79QCZOfJ/k5ORsb5+cnMyMGR+TnJxM27btadmyVY5jyIiLiyvjxo0H4Msvlxnac4riyagEadu2bTg6OqLRaDh//jwnTpxI88hMp06dWLJkCWvWrCEkJISkpCRCQkJYu3Yty5Yto1OnTkRGRrJmzRp8faUeOCeer2LLC1KClPcuXDgHFN0G2qag/wJQ0BOkhIQEDh7cD8DLL7fLs+PoS5G+//57YmNzPgBndh05coizZ89gbW3NsGGjjN6Pq6srixYtx8bGlmPHjrB8+efZ3nbDhrVcunQRBwdHxo/P/Mu4MTp1ep0GDRoRHx/P3LmfFIpqXJE3jGqkvW/fvlwddOzYsTx58oS5c+cyd+5cw3KlUkn37t0ZN24cv//+O5cuXWLNGinmzIl79+4A4O1dIdvbuFhrsr2uPkG6cUMSpLyg1Wr5++/TQNFvf5ST+y61ihV9OHr0MDdv3jBhRKZ34sRRYmNj8fT0ombN2tnaxpjz0qpVG7y9y3Pv3l22bfuJXr3eyvE+sqLRaFi6dBEAvXq9memgj9l5DVWrViMgYCYTJ77Pt99+TfXqNbMc8PLBg/ssX74YgPfeG4+7e/Y6ouTknCoUCj76aDo9e3bh0KED7Nv3J23a5F1yKwous4xPb2FhwZw5cxg+fDgnTpwgPDwcT09P6tevT7lyukG6WrZsyaFDh7Cykp5S2RUTE22YxLNixay7+APYWsCe7tn/xunjUwWAkJBgIiMjcHZ2yXGcImOBgfd4+PABlpaW1KtX39zh5Jmc3nep6Ueivno14/HWCoI9e3TVa/7+L2drOBRjz4tKpaJ//0HMnBnA999/R/fuvU0+/ciff/7G1auXsbe3Z9CgIRmul5PX0L59Ry5d+pfvv/+WadMmU6lSJUM1fmpqtZqPPppAfHwcDRo0yvYwAcac04oVKzFw4NusWrWSTz+dTZMmTbG3L3rjkYnMGVXFZire3t707NmToUOH0qVLF0NyBBhG5hbZp+8R4u7ugYtL3kzB4OTkZBgw8uLFf/LkGMXZ8eNHAV3pkakanhZF+i7dV69eKbBVIElJSRw4oCtt9/fPfPolU+jSpStubm48eHCfvXv/NOm+1Wq1oeSmf//BJp3iZfTo92jc+EXi4mJ5993/GWYCeJ5Wq+Xzz+dz9uwZ7O3tCQiYlSftuZ73zjv/o2zZcoSEBLNy5bI8PZYomPItQWrTpo2hYba/vz9t2rTJ8PHyyy/nV1hFir5dkL4aLK/4+tYFnjUmFqZz4oQuQWrcuKmZIynYKlXywdLSkujopwW2Ie2ZM6eIjIzE1dWN+vUb5vnxbG1tGThwIABr1nxj0sRxx45t3Lt3F1dXV956a4DJ9gu6GoW5cxdSvnwFgoIe8vbb/QzzEIKuam/FiiWGXmXTps0yDFqbl2xsbJg48WNA1+7p2jXpmFLc5FsVm5+fH/b29obf8zr7L4707YIyKqJOT7waRu/X9RRc0iouW1M+1K1bj127fpYEycTUajUnT+o6ODRpUrQTJGPuu+dZWlpSpUpVLl36l3//vVgg58/Sl+K0atUm270Rc3teBg4cyPLly7l06SJnzpwyqpdZagkJCXz55XIABg8elmVVkzGvwdXVla++WsOQIf25d+8u/fr14rXXXqd8+Qrs37/XMAnu++9PzPHEvLk5p82bt+Tll9uxZ88fzJw5je++25DjmSNE4ZVvCdLzE9Q+3zBbmI4xJUha4O9QC8Pv2aFvPHzhwnnUarXJ2zoUV3//fZqnT6NwcXGhRo2a5g4nTxlz36VWp05dLl36l3Pn/uaVV141WWymoFar2bdPlyDlpPdabs9LiRIl6NKlG5s2beSbb740SYK0adNGQkKC8fT04o03+mS5vrGvwdPTk3XrNjF16iT279/Htm2bDc9ZWVkxfvwUevTolcPoc39OP/xwMkePHubChXNs27aF7t3fMGIvojAyWyocHR1NSEgIAImJiaxatYqZM2dy6tQpc4VUqGm12nyrYvPxqYKDgwNxcbEyHpIJ6Rv0tm79sox/lA316jUAdAMXFjQnTx7jyZPHuLi44OeXv3OkDRz4NhYWlhw7doSjRw/nal8xMdF8++2XAAwbNhJra2tThJghJydnFi1aztdfr6FPn7do374jI0eOYefOP4xKjkzB09OL4cNHA7B48WeEhYWZJQ6R/8ySIF24cAF/f3/Wrl0LwMyZM1mwYAE7duxgwIAB7N271xxhFWqhoaFERUWiUqmoWNEnT4+lVCqpW1f34XT8+LE8PVZxodFo+OsvXYmDdCnOHv09eO3aFZ4+fWrmaFLatWsHAK+80iHf5yz09vamVy/d/JWLFn2ao0EYU1u3bg3h4eGUL1+Bzp27mirETCkUCho1asyECR8xd+5nDBkyHE9Pr3w5dkb69HmLqlWrExUVKWMjFSNmSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28aJu7i4fn8p5/i0PoEWLlwDdLOUi986ePcOjR49wcHDAz6+JucMpFDw9PfH2Lo9GozE0bi8IYmNj2LdvDwCvvdbFLDEMHTocJydnrl+/xs8/bzVqH48fP2LNmm8AGDFidLGuSrewsGDatE9QqVT88cev/PrrLnOHJPKBWRKk8+fPM3z4cMqVK8exY8eIj4+nSxfdG0mHDh24ft34CQyLq/PnzwH5N/qyPkE6f/4sERHh+XLMomzbti2AbjJTGd4i+/TTTBw6dMC8gTxn794/iY+Pw9u7PLVq1TFLDM7OLgwdOgKAxYsX8PjxoxzvY+XKZcTGxlKzZm3ats1Zw+iiqGbN2gwZMhyA2bNnEBwcZOaIRF4zS4KkVCoNHwIHDhzAycmJOnV0byTR0dHY2NiYI6xCLb+npyhdugxVq1ZDo9EYZioXxomMjOCPP34FoHt387SzKKxatGgFwMGD+wvM7OubN/8A6KasMGdv3V69+lK9eg0iIyOZNWt6jqqFbty4ztatukbS778/QXpu/eftt4dRs2ZtoqOfMn78WBITE80dkshDZrnra9WqxZYtWzh79iy//vorrVq1QqFQ8OTJE77++mtq1apljrAKraSkRC5dugg8G6MoJ2xUWmxUOa9Tb9WqDQC//LIjx9uKZ7Zv/4nExESqVq1OrVrZm46iKDD2vnte/foNcXMrQXh4GMeO5a5BsilcunSRCxfOYWFhme2RnlMzxXkB3VAIM2bMwcLCgr/+2mMopcyKfjJYjUaDv39bo8ZwMtVrMBVTntO5cz/D0dGJCxfOM2/eTBNEJwoqsyRI48eP59ixY/Tp0weVSsXw4bpiy9dee407d+4wduxYc4RVaF25coXExERcXFxyNAcb6IbhP9wrmsO9orHNYRODTp1eB+DYsSMFdrC+gi4uLpbvvtO18+jbt1+xGR8sN/fd8ywtLenYsROAocTDnDZs0HU8adeuPSVLuud4e1OdF72qVasxfPi7gK5aSD+eUGbWrfuOCxfOYW9vb9RksKZ+Dbll6njKlfNm7tzPUCgU/PTTJtav/z73OxUFklkSpBo1avDHH3/w448/smfPHipUqABAQEAAu3btkhKkHDp9+iSgq17Lzw/YcuW8ady4KVqtNtvfTkVKGzeuIzw8jLJly9GxY2dzh1Modev2BgqFgv3795l18tq7d2+ze/dOAPr27W+2OFIbNGgIL7/cDrU6iXHjRmU6NMepU8dZsmQhAOPGjcfLq1R+hVmoNGvWgtGj3wNg/vzZBSI5F6ZntoplBwcHfH19sbN7Nt/UK6+8grt7zr91FXdHj+raADVt2jzfj92jh27QtB9+WE9kZES+H78wCwy8x1dfrQB0Y8xYWlqaOaLCqWLFSvj766YnWrx4gdm6YK9cuRyNRkPLlq0KVFWpUqlkxow51KhRk/DwMN55pz+HDx9Ms97Jk8cZM2YEycnJdOzYWQZEzMLAge/Qv/8gAD75ZCpbtvxo5oiEqUnLu0IuJiaas2d1xeZNm7bI8fYJyTBmvy1j9tuSYMRwKf7+balSpSrR0U/59tuvc76DYiopKZFp0yYTHx9Po0aNi13pUW7vu9RGjhyLhYUlBw/uN0ubuFOnjhu6fo8YMdro/Zj6vOjZ2dmzcuVq6tTxJTIyklGjhjJ27Eh+++0XDh7cz6xZAfzvf4OJjY3Fz68JH388w+jS6Lx6DcbKq3gUCgXjxo3njTf6otVqmTlzGvPnzy0wnQVE7kmCVMgdOPAXanUS3t7l8fYun+PtNVo48tCCIw8t0BjxxVulUvHuu7qi5vXrv+fy5X9zvpNiRqPRMHv2DP7++zR2dnZMnfpJsesllNv7LrVKlXx4551hgO7bfH72rIyOjmbGjKkA9OzZm+rVaxi9L1Ofl+c5OTmxatVa+vR5678qyb1MnPg+o0f/j82bf0Cj0dCxY2eWLv0yVz2J8/I1FLR4FAoFkyZ9bGjntWbNt3Tq1IkbN2SomqKgeL0rF0H6b63t23c0WwwtWryEv39b1OokJk36gKioSLPFUtAlJiYSEDCFbdu2oFQqmTt3Yb7MTF4cDBkynFat/ElISGDMmBGsWrUyz7thJyUlMX78WAID7+Hp6cWYMR/k6fFyy8rKigkTPmLr1l94880B1K7tS9Wq1ejYsTNff72GWbM+zZeBZosShULBsGEjmT//c5ydXfjnn3/o0aMLs2YFGKbTEoVTkUmQNBoNS5YsoUWLFvj6+jJ48GDu3r2b4frh4eG8//77NGrUiEaNGvHxxx8TGxubjxHn3sOHDwxzLb366mtmi0OhUDB16gw8PDy5c+c2I0YMkfZI6bh69QpvvfUGO3ZsQ6VSERAwyzDQocg9lUrF/Pmf8+qrr6FWJ7Fs2ee8+qo/y5Z9zoUL53I15UZ6wsPDGTVqKEePHsbGxpZFi5bh4JD5TPcFRcWKlfjww0msXfsjmzb9zKxZn9KoUf7OGVfUtG3bnu3bd9G2bVvUajWbN/9Ax44v88EHozl48C/i4uLMHaLIoQLQCdM0VqxYwQ8//MCcOXPw9PRk/vz5DBkyhF27dqU7MvHo0aNJSEjgu+++IyoqiilTpjB9+nTmzZtnhuiNs27dGpKTk2ncuCkVK1YyaywuLq6sWPE1b7/dj4sXL9CnT3c++WQuDRo0Mmtc5qbVarl06SLr13/Pr7/uQqvV4urqyowZcw2jkQvTsbS0Yvbs+TRv3pLFiz8jNDSEVatWsmrVSuzs7PDxqULlylUoVao07u4eeHh4UqJECRwdnXB0dMTe3iHTiYKTkhK5fv0af/21l40b1xEd/RRbWzvmz/+cGjWk921x5+7uwXfffceff+5nyZJF/P33afbs+YM9e/7A0tKS+vUbUrNmbapVe4EqVapSqlRpbG1tzR22yIBCWwRm3UtMTKRJkyZ8+OGH9OnTB4CoqChatGjB7Nmz6dgxZfXT2bNn6d27N7t378bHRzex6+HDh3nnnXc4cOAAnp6eRsURHh6DWq3J3YvJpps3b9Cr1+uo1WpWrFhldA+2ODW02OQIwKE3nuZ6nJBr167y3nujuH8/ENB1h+3RozdNmjTN0zcCCwslrq72+XoNMhIdHc3Fixc4efI4hw7t5/r1a4bn2rZtz4QJU4waI6egy8k1MPV9l56kpCT27tV9OJ04cYynT6OytZ29vT12dvZYWlqiUllgYaFLmJ4+fUpERDhqtdqwbtWq1fnkk7lUq1bdJDHn5rwUlP+B/Li2BTWe1Nfg2rWrbNu2hf379xIU9DDdbZydnfH0LGVI1B0cHP776YiDgz2WllZYW1tjZWWFlZX+57OHUqlCpVKm+ql7KJVKw0/98wqF4r8G+LqfSqUSXXt8heG55x+FjZubPSqVaSrHikQJ0pUrV4iJiaFJk2eTfDo5OVGjRg1OnTqVJkE6ffo07u7uhuQIwM/PD4VCwZkzZ+jQoUOOY3jy5AnTp3+CVkuqm0uBUqlIc1PqHvzXODf1TQnW1jZ4enpRunQZvL3L4+HhaWjIGxwcxHvvjUKtVtOyZStefLGZMactT1StWo0NG7awZMlCfvppE0eOHOLIkUNYWVlRp05dqlSpSsWKPnh6euLi4oqrqxsODo6Gf3ZLS8ss/ym1Wi1qtZqkpEQSE3WP5OQkHj+24PHjCOLiEkhISCApKYmkpCTUajVqtZrkZLXhd91D/1wyyclqkpOTUz10z2k0z5ap1Wo0Gs1zzz37PSYmmnv37hIW9iRFvFZWVvj7t6V//0FSypCPLC0tad++I+3bd0StVnP37h1u3LjOrVs3CA0NITQ0lEePQggLCyM6+inx8fEAxMTEEBMTk+F+HR2dqFu3Hq+91oWXX34l0xInUbxVrVqNCROmMH78ZO7cuc3Jk8e5evUy165d5datG8TGxhIZGUlkZMFut5k2adJ9TukTrGefYWT4WZf+ckWGyVlWx027XPfcxo0bKF26tEled5FIkIKDgwEoVSrloGYeHh4EBaWdUDAkJCTNulZWVri4uKS7fnZER0fz0095N1iYra0t5ctXwMXFlfPnzxIXF0epUqUJCPgES0vj36Atnis/tFApMcWE3W5urgQEfMLgwe/w448b+e233YSEBHP69EnDoJaZsbKyQqFQoNVq/3uAVqt57u+CX+jp5VUKP7/GNG7chFat2uDs7GzukPKc/ltbdr695cV9l+nxLKyoVq0q1apVzXCdpKREnj6NJjr6KdHR0YbENzk5Ga1Wi6OjAy4ubnh6eubZN+vcnJecnP+8lN/XNiv5GU9m16BKlcpUqVLZ8LdWq+Xp06cEBwcRHBxEeHg4T58+JTr6KU+fRvH06VNiYmIMXwJ1X/qe/Z6YmEhSUiLJyZr/vsQ9+6n7wqf7W6PJfWliYXnfBUw6zEKRSJD0jd9StzWytrZONzOPi4tLt12StbU1CQkJRsXg4uLC+PHjU9xIz3+gazRpP+Azek6r1RIbG8uDBw8IDAzk3r17xMXFceXKZcPxGjRowLJly/D2zl0PKFfg7hj9X/a52leafbvWwNf3E2bNmsHNmzc5ffo0169f5+bNm4SGhhIWFsaTJ0/SNI7Pac8jlUplKIJ+/qelpSVWVlZYWFgYHpaWlml+qlQqLC0tUSqVWFhYoFKpDD+z87uFhQVKpRIbGxsqVqxIxYoVcXR0NOWpLFScnLKuSs3L+8549nh4uJo1AlOcl+yc/7xU0K6tOeLJ7jVwc3OgfPm8Ha1c/xmjLwXXL8vu51Nmj+f3n9U62dmPKdbz8PAw2bkrEgmSfsyOxMTEFON3JCQkpNvuxcbGJt0P4YSEhBQje+eEs7MzgwYNJTnZ9HX/SUlJ3L8fyJ07t4mMjMTHpzK1atVGoVAQHp5xVUBBUqJEKV55pROvvJL2OY1GQ1JSUopvSVqtNt0qSv0yffJjZWX1X8KixMnJlqiouDy5BjmhVlNorospFaRrUBzJ+Te/wncNFP89npV46QtHC2HzIwCTDlNRJBIkfXVZaGhoihKV0NBQqldP23jSy8uLPXv2pFiWmJhIRESE0Q20AZKTNXnSOFKhUFGuXAXKlavw3LG0QOEo8swOlcoSW1tLbG1z9g1PqyXFOc+rayCyT66Becn5Nz+5BuZjyprAIjEOUvXq1XFwcODEiROGZVFRUVy6dImGDRumWb9Ro0YEBwenGCdJv239+vXzPmAhhBBCFGhFogTJysqKt956iwULFuDm5kaZMmWYP38+Xl5etG3bluTkZMLCwnB0dMTGxgZfX1/q16/PuHHjCAgIIDY2lmnTpvH666/nqgRJCCGEEEVDkShBAt3Ajz169OCjjz6iT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HURXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQFI5GeUWXSqWUa2Bmcg3MS86/+ck1MC99px5TkARJCCGEECKVIlPFJoQQQghhKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBC5AOtVmvuEIQQOSAJkhAiz/Tr149+/fqZOwyTO3HiBK+88gq1atXi7bffZunSpVSrVs3wfOrXvXnzZubNm2eOULN069Ythg4dSoMGDWjcuDGTJ08mKioqy+02bdpEx44dqVOnDq+88gpr1qyRJFAUKRbmDkAIUXRNmzbN3CHkiXnz5qHRaPjqq68oUaIEzs7OtGjRIsP1v/jiC/z8/PIxwuyJiopi4MCBeHh48Omnn/LkyRPmz59PcHAw3377bYbbbdiwgenTpzNkyBCaNWvG+fPnmTdvHnFxcfzvf//Lx1cgRN6RBEkIkWcqV65s7hDyREREBI0aNaJp06aGZV5eXmaMyDgbN24kKiqK7du34+bmBoCnpydDhw7l9OnTNGzYMM02Wq2Wr7/+mldffZUPPvgAgBdffJE7d+6wbt06SZBEkSFVbEIUAf7+/ixatIg5c+bg5+eHn58fH374IeHh4YZ1Jk6cyIABA5g2bRoNGzaka9euqNVqEhISWL58Oe3bt6d27dq0a9eOr776Co1GY9i2X79+TJ06lS+++IIWLVrg6+vLkCFDePz4MT/99BNt27alXr16DBw4kPv376fY7vmqpmrVqrF+/XqmTJmCn58f9erVY/To0Tx+/DjF69mzZw/dunWjdu3aNGvWjJkzZxIbG2t4funSpbRt25b9+/fTqVMnatWqxSuvvMK2bdtS7OfJkydMnjyZpk2bUq9ePd58803OnDljeF5fCtS2bVvDPtauXZvheb5//z7VqlXjwYMHbN++nWrVqnHixIk0VWypr82DBw/Ytm0b1apVM5yfhw8f8t577+Hn54evry8DBgzg0qVLaY61evVqXn31Vfz8/Ni6dWuGMWX0yKyK8/DhwzRo0MCQHAG0aNECe3t7Dh48mOF2q1at4sMPP0yxzNLSksTExAy3EaKwkRIkIYqIDRs2UL58eWbPnk1YWBifffYZt27dYvPmzSiVuu9Cp0+fRqFQsHTpUmJiYlCpVAwZMoRz584xcuRIXnjhBU6cOMHnn39OYGAgn3zyiWH/v/zyCzVq1GDWrFk8fPiQTz75hLfeegsbGxsmTJhAREQEs2bNYsaMGXz11VcZxrlo0SLatm3LwoULCQwMZM6cOVhYWLBw4UIAdu7cyQcffECnTp0YO3YsDx48YNGiRdy4cYPVq1ejUCgAePToETNmzGD48OGUKVOGb775hokTJ1KnTh18fHyIjY2ld+/eJCUl8f777+Pl5cWaNWt455132LJlCz4+PgQEBLB161aGDRtGvXr1OHXqFLNnzyYqKoqRI0emid3Dw4Mff/yRUaNGUaNGDUaMGEHlypU5efJkhq932bJlDB061LC+h4cHYWFh9O7dG1tbWz7++GNsbW1Zs2YNb775piG258/X1KlTcXJyolatWhnGlBEHB4cMn7t58yYdOnRIsUypVFK2bFnu3LmT7jYKhcIQn1arJTIykj///JPt27fz9ttvZ3gsIQobSZCEKCIUCgWrV6/G0dERADc3N0aOHMnBgwdp1aoVAGq1munTp1O+fHkADhw4wNGjR5k/fz6dO3cGoFmzZtjY2LB48WIGDBhgqCZLSkpi2bJlODs7A/Dnn39y+PBh9uzZQ7ly5QC4fPkyP//8c6ZxVq1alTlz5hj+vnDhAr/99hug+8BdsGABLVq0YMGCBYZ1KlSowMCBAzlw4IDhtcTFxTFr1ixefPFFwzqtW7fmwIED+Pj4sG3bNgIDA9m+fTvVq1cHoGHDhrz++uucOnUKpVLJpk2beO+99xg6dCgAzZs3R6FQ8OWXX9K3b19cXV1TxG5lZUXdunWxsrLCzc2NunXrZnldatSokWb9NWvWEBERwcaNGylTpgwALVu2pEOHDixevJglS5YYtm/Xrh09evTIcP/6mIwRFRWFvb19muX29vZER0dnuf3ff/9N3759AahZs2aRbJAvii+pYhOiiGjdurUhOQJd1Y6lpSWnT582LLOxscHb29vw98mTJ1GpVGlKEfTJ0okTJwzLfHx8DMkRgLu7O25ubobkCMDFxYWnT59mGmfqD3MvLy/i4uIAXY+q4OBg/P39UavVhkejRo1wcHDgyJEjGe5L3wZIXxV3+vRpypYta0iOAKytrfn111/p3bs3x48fR6vVpjmWv78/CQkJKariTO3YsWO88MILeHp6Go6rVCpp2bIlR48eTbFu1apVs9zf8/GnfiQnJ2e6rb5E7nlarTbd5amVLVuWtWvXsmDBAqKjo+nevXua6lIhCispQRKiiPDw8Ejxt1KpxMXFJUWX7RIlSqT44IuMjMTV1RULi5RvBe7u7gApkp30qmpsbW1zHGfqbZRKpaF7eEREBADTp09n+vTpabYNDQ3NcF/6asTn91WiRIkM49Afq2PHjuk+HxISksmryJ2IiAju3r1LzZo1031enzAClCxZMtN93b9/nzZt2mT4vJ+fX4btqhwcHNItKYqNjc1Wo3NPT088PT0B8PX1pV27dmzevJnhw4dnua0QBZ0kSEIUEfoPfL3k5GTCw8NTNMBNzdnZmfDwcNRqdYokSZ+IpK5iymtOTk4AjB8/Pt1u8c+XYGXF0dExRYNxvbNnz+Lg4GA41po1a9KtZipdunS2j5VTjo6O+Pn5MX78+HSft7Kyyva+PDw82LJlS4bPp/fa9CpWrMi9e/dSLNNoNNy/f5927dqlu010dDT79u3D19fXUFUL4O3tjbOzM0FBQdmOXYiCTKrYhCgiDh06lKIX0d69e1Gr1YY2Ounx8/MjOTmZ3bt3p1i+Y8cOABo0aJA3wWagUqVKlChRgvv371O7dm3Dw8vLi88++yxFL6+sNGzYkMDAQK5evWpYlpiYyLvvvsumTZto1KgRAOHh4SmOFRERweeff54m4cwNfemWnp+fH7dv36ZixYopjr1jxw42b96MSqXK9r6trKxS7CP1o1KlShlu26xZM06dOkVYWJhh2aFDh4iJiaFZs2bpbqNSqZgyZQqrVq1KsfzChQtERESkqNIUojCTEiQhiojg4GCGDx9O//79CQoKYuHChTRv3pzGjRtnuE3Lli1p3Lgx06ZNIzQ0lBo1anDy5Em+/vprunbtmu/jGKlUKsaNG8fUqVNRqVS0bt2aqKgoVqxYQUhISIZVUunp1q0ba9euZfjw4YwZMwY3NzfWr19PfHw8/fr1w9vbm86dO/Pxxx/z4MEDatWqxe3bt1m0aBFly5alQoUKJntdTk5OXLp0iZMnT1KnTh0GDhzIzz//zMCBAxk8eDCurq7s3r2bTZs2MWnSJJMdNyt9+/Zl3bp1DBo0iFGjRhEREcH8+fNp2bIl9erVM6x37tw53Nzc8Pb2xtbWliFDhrBixQpcXFxo2rQpt2/fZtmyZVSvXp3u3bvnW/xC5CVJkIQoIjp27IiTkxNjx47Fzs6Orl27Mm7cuEy30ffYWrJkCd9//z1hYWGULVuWcePGMWjQoHyKPKWePXtib2/PqlWr+PHHH7Gzs6N+/fosWLAgRYPwrDg4OLBu3To+/fRTZs2ahVqtxtfXl7Vr1xoaqs+ZM4cvv/ySH374geDgYEqUKEGHDh0YO3ZsjkpxsjJ48GBmz57N22+/zerVq2nYsCE//PADn332GQEBASQkJFChQgVmzZqVaY81U3Nzc+P7779n9uzZfPDBB9jb29O+ffs0VX+9evWia9euzJ07F4BRo0ZRsmRJNm7cyJo1a3B2dubVV19l7NixWFtb51v8QuQlhVYmzxGi0PP398fPz8/wASaEECJ3pA2SEEIIIUQqkiAJIYQQQqQiVWxCCCGEEKlICZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqMpK2iWi1WjQa6RBoTkqlQq6Bmck1MC85/+Yn18C8lEoFCoXCJPsqkgnSihUrOHbsGGvXrs1wnfDwcGbOnMnBgwcBaN++PZMmTcLOzs6oYyoUCqKiYlGrNUZtL3LHwkKJq6u9XAMzkmtgXnL+zU+ugfm5udmjUpkmQSpyVWzfffcdS5YsyXK90aNHExgYaFj/yJEjTJ8+PR8iFEIIIURBV2RKkEJCQpgyZQpnzpyhYsWKma579uxZTp48ye7du/Hx8QFgxowZvPPOO7z33nt4enrmR8hCCCGEKKCKTAnSv//+i7OzMzt27MDX1zfTdU+fPo27u7shOQLw8/NDoVBw5syZvA5VCCGEEAVckSlB8vf3x9/fP1vrhoSEUKpUqRTLrKyscHFxISgoyOgYVKoik28WOvpzL9fAfHJyDU6dOsny5Uuwt7fnvfc+xMencl6HV+TJ/4D5yTUwPxO1zwaKUIKUE3FxcVhZWaVZbm1tTUJCgtH7dXKyzU1YwgTkGphfVtfg77//Zvjwd4iPjwfgypVL7N+/Hycnp/wIr8iT/wHzk2tQNBTLBMnGxobExMQ0yxMSEozuxQYQFRVHcnLh6rmg0cKtSF3KXclZi9KE2Xd+UqmUODnZFsprUFRk5xpoNBomTJhIfHwCtVv15NGjUIL/Pci8eQv44IMJ+RxxwZOb/0f5HzA/uQbm5+xsi1JpmhK8YpkgeXl5sWfPnhTLEhMTiYiIyFUD7eRkTaHr2hmnhh47HAE49MZTbAv5HVEYr0FRk9k12LfvTy5d+hd7F3cu+32uW3itMps3/8CwYaOwtS3e37xN8f8o/wPmJ9fAfLQmHIKqWFaUNmrUiODgYO7evWtYduLECQDq169vrrCEKPI2b/4BgG7dehqWlS5VhpiYGPbt25PRZkIIke+KRYKUnJzMo0ePDG0efH19qV+/PuPGjePChQscP36cadOm8frrr0sXfyHyyP37gRw7dgSALl26GZa3f/U1AP74Y7dZ4hJCiPQUiwQpKCiI5s2bs3u37g1YoVCwbNkyypYty4ABAxg7diwtW7YkICDAvIEKUYTt2LENgBdfbEaZMmUNy1u0eAmAU6dOkJSUtm2gEEKYQyFvcZK+uXPnpvi7bNmyXL16NcWyEiVKZGvEbSGEaezd+ycAHTt2TrG8atVquLq6ER4exrlzZ2nUqLE5whNCiBSKRQmSEMK87ty5xc2b17GwsKBly9YpnlMqlTRp0hTQlSIJIURBIAmSECLP6UuP/PyapDveUd26us4RFy6cy8+whBAiQ0Wyik1kn4UC+r2QaPhdiLywd+8fALRp0w5Ie9/5+tYF4OLFC2g0GpONY1LYyP+jEAWHJEjFnKUKxtQzfvRwIbLy8OEDLl36F6VSSevWbYC0913lylWxtbUjOjqaW7duULlyVXOFa1by/yhEwVE8v6YJIfKNvnqtXr0GuLmVSHcdCwsLqld/AYCrV6/kW2xCCJERsyRIbdu25YsvvsjVxLDCNDRaeBit4GG0Ao0JRyAVQm/fPl2C1KZNW8Oy9O47fanR9evX8j3GgkL+H4UoOMySIL344ousXr2aNm3aMGjQIHbt2pWrSWKF8RKSofMOBzrvcCAh2dzRiKLm8eNHnDv3NwD+/s8SpPTuu6pVqwHFO0GS/0chCg6zJEgzZszg8OHDLFiwAEtLSyZMmEDz5s2ZOnUq586dM0dIQog8sG/fHrRaLTVr1sbLq1Sm6z4rQbqa6XpCCJEfzNZI28rKig4dOtChQwceP37M77//zo4dO+jTpw8VKlSgV69e9OjRAwcHB3OFWCxoTTmznxCp6HuvvfzyK1muW7lyFQBCQ0OIiorEyck5T2MTQojMmL2RdkJCAseOHePIkSNcuXIFR0dHqlSpwsqVK3n55Zc5duyYuUMssjQaDZMmfWD4Ozo6xozRiKImIiKc06dPAvDyy+2yXN/R0ZHSpcsAxbuaTQhRMJgtQTp+/DiTJk2iadOmjB8/npiYGGbOnMnhw4dZsmQJ+/fvp1KlSnz00UfmCrHIO3LkEAcO7DP8vXHjWjNGI4qa/fv3kZycTNWq1SlXzjtb21SpIg21hRAFg1kSpFatWjFo0CCOHTtG//79+fPPP1mzZg2dOnXCysoKABsbG5o2bUp0dLQ5QiwWfvnl5xR//7p7p1S5CZP588/fAWjbNuvqNb0KFSoBcPfunbwISQghss0sbZB8fX3p0aMHzZs3R6HIeLjYbt260aNHj3yMrPiIi4tj//59wLPzHxT8kPv3A7P9bV+IjERFRXHihK56XD96dnZ4e5cHIDDwXp7EJYQQ2WWWEqQqVapQtWrVdJOj+/fvM2PGDABKly6Nl5dXfodXLFy+/C/x8fGUdHOlR5VEStzfDZpkTpw4au7QRBFw6NB+1OokKlXyoVIlnzTPqxTQs0oiPaskonrubcDbW5ec37t3J1/iLGgyOi9CiPxnlgRp+fLlhISEpPvc+fPn2bx5cz5HVPycP38OAN9aNZnYKIHuLv9AcqKhUa0QubFnT+a916xUMKFRAhMaJWClera8XDldCdLDhw9Qq9V5HmdBk9F5EULkv3yrYuvduzfnz58HdF3Le/XqleG6tWvXzq+wii39rOl16tQFoEaNWgBcuyZj0IjciY2N4ejRQ0DOqtcAPDw8sba2JiEhgaCgh1LdK4Qwm3xLkGbNmsWvv/6KVqtl+fLldO/ePU31mVKpxMnJiXbtcvamKnLu33//AaB27bqExyvwKK+bB+vOndskJCRgbW1tzvBEIbZ37x4SEhLw9i5vGB07Na0WIhJ0dUgu1lr0te1KpZKyZb25efM6gYF3i12ClNF5EULkv3xLkHx8fBg1ahQACoWCnj174unpmV+HF8+JiooiNFRXxVm2YjXabnUAHHAuWYrIx0HcunWDF16oad4gRaG1a9cOADp06JRhJ4z4ZP677+DQG0+xfe6dyNu7PDdvXufevbs0bdoiz+MtSDI7L0KI/JVv/34PHz7E3d0dS0tLunXrRnJyMg8fPsxw/dKlS+dXaMXO7ds3AV11hqPjs5HKfXyq8PfjIK5evSIJkjDKo0ePOHbsCKBLkIyhLzW6d096sgkhzCffEqQ2bdrw448/UqdOHfz9/TPt3g9w+fLlfIqs+Ll1S5cgpe5dVLFiRf4+cbDY9iASubdjxw40Gg21atUxdNnPKX2CdP++JEhCCPPJtwRp9uzZlCtXzvB7VgmSyDs3b14HoFKlyimWly0r39xF7mzbtg2Ajh2NKz0CKFVKV3ocHBxskpiEEMIY2U6QJk2alKMdz5kzJ8XfXbt2NfzerVu3HO1LmNadO3cAqFSpUorlZcvqElgZpE8Y4+7dO5w9exaVSsUrr3Qwej9eXqUACA4OMlVoQgiRY9lOkE6cOJHi79DQUNRqNaVLl8bd3Z2IiAgCAwOxsrKievXqWe7v1KlTqFQq6tevbxgcMigoiPbt2zNy5MicvxKRbQ8eBALPSoz09H/fv38PrVYrpXwiR3bu1E1d8+KLTXFzK2H0fkqV0iVIUVGRxMREY2/vkMUWQghhetkeKHLfvn2Gx7hx4yhRogSbNm1i3759/Pjjj/z+++/s2LEDT09PXn311Uz39fPPP9O/f3/27NkDQEBAAKdOnaJ8+fKsXLmSr776KnevSmRIo9Hw8OEDAMqUKZviudKlS6NQKIiJiSE8PMwc4YlCKjk5me3btwLQuXPXLNbOnL29A05OzgAEBUkpkhDCPIwaSXvRokW8//771KlTJ8XyypUrM2bMGFatWpXp9qtXr6Zr166MHz+eJ0+ecPToUUaNGsWyZcsYN24cP/30kzFhiWx4/PgRCQkJKJVKvLxKoVLAaxWTeK1iErbWVobqjXv37po5UlGYHD16mODgIFxcXGjTpm2W6z9/36U3pUZxrWbL6rwIIfKPUY20w8PDcXR0TH+HFhbExsZmuv2tW7cMbZoOHjyIVqulTZs2gG4U7c8//9yYsEQ2PHigKz3y9PTC0tISgIAX4w3PlypVmqCgh8Xug0nkztatuumBevTogbW1NWq1JtP1rVQp77vUSpUqxbVrVwgOzngokKIoq/MihMg/RpUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAHQ9aBydXU1JiyRDQ8f3geeNchOzdNTN7q59CAS2fXoUSgHD/4FwJtvvmmSfepLkDIbK00IIfKSUSVIEyZMoF+/fvj7+1OvXj1cXV158uQJZ8+exdnZmS+++CLT7Zs0acKyZcu4fv06f/75J4MHDwbg999/Z/HixTRv3tyYsEQ23L+va6Ctb3+k1epG7wWwUT37YAoJkRIkkT0//7yV5ORk6tatT9WqVQkPj8lym9T3Xer+AKVKlQGKXxVbVudFCJF/jCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2bKZbj9lyhRcXV1Zvnw5TZs2ZdiwYYBuaIDSpUvz/vvvGxOWyIYHD3QlSPoEKT4ZWmxypMUmR+KTpQRJ5ExSUhKbNm0EoGfPjCegTi31fZeavidbcUuQsjovQoj8Y/RAkZ6enkyYMMGobV1dXfnmm2/SLN+wYYNMMZLH9F38U/dg05MSJJETf/75G6GhIZQs6c6rr3Y02X71iXpQkFSxCSHMw+gEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodE8a9Cpb3MgiVLe0J/frBIkKUESWdFqtaxbtwaAN97og5WVlcn27eGhm8j68eNHMiaXEMIsjEqQwsLCGDBgALdu3aJSpUrcuHGD+Ph4Dhw4wNy5c/nuu++oV69ehtvfuXOHiRMncv78+QzXkbnYTE+j0fDoUSjw7Bt6al5euuVhYU9ITEw06YeeKFrOnfubS5cuYmVlRY8evU2675Il3QFdFV5kZAQuLtJxQwiRv4xKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIofCwp6gVqtRKpWUKFEy3XWcnV2wsbEhPj6ekJBgw8ShovBJTk4mODgIe3v7PEkwvv1WN6Brx45dcHNzM+m+rayscHV1JTw8nEePQiVBEkLkO6MSpL/++ovJkydTvnx5kpOftSS0trZm8ODBTJw4MdPtT58+zaxZs3jttdeMObwwUmhoCAAlSpQwjIGUmkKhwNPTi7t37xAcHCQJUiGk0WhYv/57vv32S8NQHHXr1ufdd8fRoEEjkxzjn38ucOjQAVQqFQMHvm2Sfabm7u5hSJCqVKmWJ8cQQoiMGFV0k5CQgIuLS7rPqVQqkpKSMt3ewcEBZ2dnYw4tciE0VFe95u7umel6zxpqSzukwkar1TJjxsd89tlcwsPDDYnwuXN/8847/fnii6VotdpcH2flymUAdOjQifLlK+R6f+lxd/cAnt23QgiRn4xKkGrXrs2GDRvSfW7nzp2GKreMdOnShfXr15vkjVpkn74ESd8AFkCpgDblkmhTLgnlf+1g9e2TJEEqfNat+47t239CpVIxadJUjh07yx9/HOD117uj1Wr58svlzJnzSYqOETl15swpjhw5iEqlYsiQ4UbtI737LjV9gvTo0SNjQy10snNehBD5w6gqtjFjxjBw4EC6dOnCSy+9hEKhYNeuXSxdupTDhw9nORebra0tZ86coW3bttSuXRsbG5sUzysUCmbPnm1MaCIT6SVI1iqY1yLl1Ab6BrKPHxefD6aiIDg4iGXLPgfgww8n06tXX0B3vQMCZlGrVh1mzQpg06YNaDTJTJkSkOPeYWq1mnnzZgLQtWsPvL3LGxVrevddas8SpOJTgpSd8yKEyB9GJUgNGzZk9erVfPbZZ6xatQqtVst3331HjRo1+PLLL2nSpEmm22/btg1HR0c0Gk26PdmkS2/eeJYgeWS6nru7LkEqTt/ci4IVK5aQkJBAgwYNDcnR83r06IWtrS0ffzyRLVt+xNbWlvfem5Cj/7efftrEtWtXcXJyZuTIsSaMPq3imCAJIQoOo8dBatSoET/88APx8fFERkbi4OCAvb19trbdt2+fsYcVuZBeCVJ6SpSQEqTC5t69u+zcuR2AsWPHZ5j0dOzYmaSkJAICprB27XfY2dkzfPi72TrGgwf3WbLkMwBGjHg3z+dMlARJCGFORrVBmjRpEqdPnwbAxsYGT09PQ3J0+fJl2rRpk639aDQarly5wsGDB4mOjiYiIsKYcEQ2pZcgxamh4QZHGm5wJE6tW6YvQZIEqfDYsuVHtFotzZq1pHbtzAdqff317kyYMAWAL79czpo1aUe1Ty0pKZEpU8YTExND3br16dmzT67iTe++S604JkjZOS9CiPxhVIK0bds2Bg4cyI8//pjmucTExGzNwP3zzz/TqlUrXn/9dYYNG8bdu3eZOHEi7777LomJicaEJbKQ3RKkZ22QHktD+kIgMTGRHTu2AvDGG9kbsLFPn368++44ABYtmm+YTy09Wq2WmTMDOHfub+zt7Zk5cx4qlSr3gWdBnyA9fvwoV43KhRDCGEaP0PjSSy8xbdo0pk+fnmIspOzYvXs3EyZMoEmTJixatMjwIdyuXTsOHjzIihUrjA1LZCA2Nobo6Ggg+wlSfHwcMTFZz8wuzOuvv/YSERGBp6cXzZq1zPZ2b789jMGDhwIwe/Z0vv56ZZpEJDExkWnTJvPzz1tRKpXMm7eIsmXLmTT+jJQoUQKFQkFycjLh4WH5ckwhhNAzug3SsGHD6NixI5MnT+bGjRssXbo0w7GRUlu5ciW9e/cmICAgRXLVrVs3njx5wqZNmxg7dqyxoYl06EuP7OzscHBwyHRdW1tbHBwciI6O5vHj0CzXF+a1d+8fgG5MIguLnP1Lv/vuOBISEli/fg3Ll3/O3r1/0Lv3m/j4VOHWrRusXv01d+7cRqVSMW3aTJo3z34CllsWFhaUKFGSx48f8ehRaIajvwshRF7I1RwfHTp0YP369dy7d4/u3btz9erVbL1B3759m7Zt26b7nK+vLyEhIbkJS6RDP9heVqVHevpSJOnJVrAlJCRw6NABANq0aZfj7RUKBR98MJGAgFnY29tz5colAgKm0K/fG0ybNpk7d25TokRJPv98BZ07dzV1+FnSt4eTwSKFEPkt15Og1axZky1btlCyZEl69+7NkSNHstymRIkS3Lx5M93nbt68SYkSJXIblkglu+2P9GQspMLh+PEjxMXF4unpRc2amQ/QmhGFQsHrr3dn1649DBs2kjp16uLlVYratX0ZMWI027btpkWLl0wcefYUx4baQoiCwegqtue5u7uzdu1aPv74YxYuXJjluCodOnRgyZIleHh48NJLujdehULBxYsXWbFihczRlgckQSqa9u//CwB//5dzPX6Yq6srw4e/m+1u//nhWUmmJEhCiPxlVII0atQoPD1TftBaWVkxb948qlevnuU4R2PHjuXatWuMHTsWpVJXiNWvXz9iY2Np2LAhY8aMMSYskYmMBolUKqBZabXhd72SJXXtPaSKreDSarUcP64rsc1J4+yCIKP7LrXilqhn97wIIfKe0QlSRgYNGsSgQYMy3d7KyopVq1Zx5MgRjh8/TkREBI6Ojvj5+RmmLhGmlVEbJGsVLG4Vl2b9kiV1idSTJ4/zPjhhlPv3AwkKeoiFhSX16zcwdzg5ktF9l9rzXf2Lg+yeFyFE3st2gtS/f3+mTZuGj48P/fv3z3RdhULBmjVrMnx++/btvPTSSzRr1oxmzZqleO7Ro0ds376dIUOGZDc0kQ05rWKTwSILvhMnjgK6jg12dtkbxb6wkc4CQghzyXYj7ecHDNRqtZk+shrUbdKkSQQGBqb73OXLl1myZEl2wxLZpE+Q3N2lF1tRcfz4MQAaN25q5kjyTnGrYhNCFBzZLkFau3Ztur9n17Bhw7hx4wagS7BGjhyJlZVVmvWePHmCt7d3jvcvMpacnGyoKktdghSnhrY/6cY5+rN7NLb/3RHywVSwabVazp37G4CGDf3MHE3OZXTfpaYvyXzy5DEajcbQZrGoyu55EULkvXz79xs2bBibN28GdFOV1KhRAzc3txTrKJVKnJyc6NatW36FVSw8efKY5ORklEplukMoxCenbfOl/2CKiookISEBa2vrPI9TZN/Dhw94/PgRFhYW1KhhXPd+c0vvvktNf7+q1WoiIiLSvGcURdk5L0KIvJftBKl69erZbjytUCi4dOlSimX169enfv36hr9HjBhBuXL5M2VBcadvoF2iRMlsj7Ts6OiElZUViYmJPH78iDJlyuZliCKHzp8/C0D16jWwsbExczR5x9LSChcXFyIiInjy5FGxSJCEEAVDthOkkSNHmqx32Zw5c0yyn+dpNBqWLVvG5s2biYqKokGDBkybNo3y5cunu/62bduYOHFimuV//PFHhtsUVjltoA26JLdkSXdDSYUkSAWLPkGqU6eueQPJByVLuhMREcGjR4+oUqWaucMRQhQT2U6Q3n3XdIPHhYWFMWvWLPbv309cXFyaGePTK4HKyooVK/jhhx+YM2cOnp6ezJ8/nyFDhrBr16502zpdvXoVPz8/Fi5cmGJ5UfyGakyCBBgSJOnqX/BcuHAOAF/feuYNJB+ULOnOjRvXpT2cECJfGd0GKT4+nqtXr5KUlGRIcDQaDXFxcZw+fZoPPvggw20DAgI4cOAAHTt2xMvLK9cNLxMTE/n222/58MMPDSNzL1q0iBYtWvDnn3/SsWPHNNtcu3aN6tWrG9raFGX6BCn14J5ZkZ5sBVNcXCzXrl0FwNe3rnmDyQfSYUAIYQ5GJUjHjx9nzJgxREVFpfu8vb19pgnSoUOHmDx5Mr169TLm8GlcuXKFmJgYmjRpYljm5OREjRo1OHXqVLoJ0tWrV3nllVdMcvyCztgSJH3yKNM8FCwXL/5DcnIyHh6eeHmVMnc4ee7ZfGySIAkh8o9RCdLnn3+Oi4sLM2fOZMeOHSiVSrp168bBgwfZuHEjX3/9dabbW1lZmbSBdnBwMAClSqX8sPDw8CAoKCjN+mFhYTx+/JhTp06xdu1aIiIi8PX15YMPPqBixYpGx6FSFcwuyI8e6RIkLy8vLCxSxmgJNPBM1v1uoeT5Ntz6hOrJk8dptito9Oe+oF4DU7pyRVf97Otbt0Bdl5xcg8zuu9T00+OEhRX8+zC3cnJeUitO/wMFlVwD8zPlRBxGJUhXr17lk08+oW3btkRHR7NhwwZeeuklXnrpJZKSkvjiiy/46quvMty+bdu27Nq1i6ZNTTPAXVycbmj+1G2NrK2tiYyMTLP+tWvXAFCpVMybN4/Y2FhWrFhB37592blzp2EespxycrI1aru8pq+a8PEpj6tr2hGXt/bW/5byuYoVdUlsZGRYutsVRAX1GpjS7dvXAahXz7dAXpfsXoOM7rvUKlTQdRAID39SIF+vqWX3vGSkOPwPFHRyDYoGoxIkjUaDl5cXABUrVjQMAAnwyiuvMGHChEy3r1GjBp9//jmBgYH4+vqm6aasUCgYOXJktuPRb5+YmJhiXwkJCdjapr1RmzRpwsmTJ3F2djYsW758Oa1bt2br1q0MHTo028d+XlRUHMnJmY8ibg5BQboSNjs7Z8LDY7K9nZ2dEwAPHjzM0XbmoFIpcXKyLbDXwJQuXPgHAG9vnwJ1XfLqGujvw6Cg4AL1egua4vQ/UFDJNTA/Z2dbkw0oa1SC5O3tzdWrV2nYsCHly5cnLi6Omzdv4uPjg1qtJiYm8zexGTNmAHDq1ClOnTqV5vmcJkj6qrXQ0NAUo3CHhoZSvXr1dLd5PjkCsLOzo2zZsoSEhGT7uKklJ2tQqwvWP0V0dDSxsbrrUaKEe47ic3PTtUEKDQ0tcK8rIwXxGphSQkICt2/fAqBKlWoF8rWa+hq4uupKdB8/flwgX29BU9T/BwoDuQbmk6pTfK4YlSB16tSJBQsWoNFo6NevH7Vq1WLmzJn069ePlStXUrly5Uy3v3LlilHBZqR69eo4ODhw4sQJQ4IUFRXFpUuXeOutt9Ksv2HDBhYvXsyBAwcMJU7R0dHcuXOHHj16mDQ2c9M30HZwcEh3QtM4NXT6Wbd8Z5eYFFMb6HsPhYeHkZSUhKWlZd4HLDJ18+Z1kpOTcXFxyXGj+4Iks/suNX2Vd1xcLDEx0djbO+RHiGaRk/MihMhbRpVDvfPOO/Tu3ZsLFy4AMG3aNC5fvsyIESO4desW48ePN2mQWbGysuKtt95iwYIF7N27lytXrjBu3Di8vLxo27YtycnJPHr0iPj4eABat26NVqtl/PjxXL9+nX/++Yd3330XNzc3unbtmq+x57VnPdi8MlwnIkFJRELaW8HFxQULC11SJGMhFQxXr+q+XFStmv2R7QuqjO671Ozs7LGzswOKR1f/7J4XIUTeMur7iVKpTNHOqHbt2uzZs4dbt25RqVIlHBzSfsPr378/06ZNw8fHh/79+2e6f4VCwZo1a3IU0+jRo1Gr1Xz00UfEx8fTqFEjvvnmG6ysrLh//z5t2rRhzpw5dOvWjVKlSrFmzRoWLFhAnz590Gq1NGvWjO+//77ITdsQEqJrf6TvCZQTSqWSkiVLEhwcxKNHj4pFl/KC7to1XYJUrVr6VcdFVcmS7ty7d5dHjx5RvrzxPU2FECK7TFaA6+DgQJ06dTJ8/vnRslOPnJ3ZutmlUqn48MMP+fDDD9M8V7ZsWa5evZpi2QsvvMA333yT4+MUNvp52Dw9My5Byoy7u8d/CZKMhVQQ6EuQqlV7wcyR5C93d12CVBxKkIQQBYNRCdLDhw+ZMWMGf//9N0+fPk3zfHpThaxduzbd30XeCg3VlyAZ115FP0iffDCZn0aj4erVy0BxLEGSwSKFEPnLqARpypQpnDt3ju7du+Pi4mLikIQpGTvNiN6z6UakBMncHj58QExMDJaWllSoUMnc4eQrmW5ECJHfjEqQzp07x8cff0y3bt1MHY8wMf2wBbktQZIEyfz07Y98fKoUux6F+gRJOgsIIfKLUQmSu7t7mnGERMGUVS82BVDDLdnwe2rP5mOTb+7mduVK0aley+q+S6243Ic5PS9CiLxjVII0bNgwli9fTvXq1SlTpoypYxImkpSUSFjYEyDjEiQbC/i+fWyG+5ASpIJDX4JUtWrhT5Cyuu9SKy5VbDk9L0KIvGNUgtSqVStWrVrFyy+/jJubW7pThezZs8ckAQrj6XuwWVpa4urqatQ+issHU2HwrAdb4U+Qcko/WOTjx5KoCyHyh1EJ0qRJkwgMDKRZs2aGou+sbN++PUfHeP3113MemEhBnyB5eHgaPaigvgQpLOyJjKZtRlFRkQQFPQSKRglSTukT9cjISBITE9NMTC2EEKZmVIJ08uRJpk6dyhtvvJHtbSZOnJjtdRUKhSRIJpCdLv7xauj5i25qg80dY7BJdUfoRtO2QK1WExb2xOjxlETu6EuPSpUqjZOTk5mjyb2s7rvUnJ1dsLS0JCkpicePH1G6dNGs2s/peRFC5B2j/v2cnJwoXbp0jrbZu3evMYcSuZCdLv5aIChGafg9Nd1o2u4EBwcRGhoqCZKZXLumG+i0qAwQmdV9l5pCoaBkSXeCgh4W6QQpp+dFCJF3jEqQ+vbty1dffUXdunXTnVYkPTlpzG3MSNoirWfTjORuUlN9giQNtc2nuA4Q+bznEyQhhMhrRo+kfenSJZo3b57u3GvZmUvtl19+4eTJkyQlJRkSIq1WS2xsLOfOnePgwYPGhCae86wNUu5KfWQ0bfMrrlOMPO9ZhwEZC0kIkfeMSpBu377NCy88e6NOXeKTVQnQsmXLWLZsGY6OjqjVaiwtLbGwsCAsLAylUknPnj2NCUukYqoSJH2CpN+fyF9JSYncunUDkBIkkERdCJE/jEqQAgIC8PHxMfqg27Zto3PnzsybN48lS5bw8OFD5s2bx8WLFxk6dChVqlQxet/imdxOM6JXqlQpQBIkc7l9+zZJSUk4ODgU2bY32VGUB4vUaDTs2LGNDZt/go47AZj68USGvT2YypWrmjk6IYonpTEbvf322znutv+8kJAQunTpgkKhoGbNmpw9exaAWrVq8b///Y/NmzcbvW+ho9FoDG2GcluC5OWlS5D03cxF/nq+/ZGxwzUUBc9KkIpWW7jExETef380AQFTuHbtsmH5n3t+p0+f7mzdKu+HQpiDUQmSWq02euBBADs7O8MbfYUKFbh//z7x8fEAvPDCC9y/f9/ofQud8PAw1Gq1ofdPRhRAJedkKjknZzi1gZeXrsdicHCQ6QMVWSpKI2jrZee+S+3ZYJFFpwRJq9UyefKH/PXXHqysrBgxYgzl7BIobR1Ds2YtSEpKYsaMj/nhh3XmDlWIYseoKrYxY8Ywc+ZMHj9+TJUqVQxvXM/LbBiA2rVrs23bNpo2bYq3tzcqlYqjR4/i7+/PzZs3ZRA4E3j4UFfa4+7ukengjjYWsKlj5lMbPKtiCyE5ORmVSmW6QEWWimID7ezcd6kVxTZImzf/wJ49v2Npacny5V/RqFEThpIIgLbbYpYsWcjq1V/z6aez8fauQNOmzc0csRDFh9FtkJKTk5kyZUqGRf6XL19OdznA//73PwYNGsTTp09ZuXIlnTt3ZuLEiTRu3JjDhw/z8ssvGxOWeI6+OqxUqZyNV5WekiXdUalUqNVJPHnyONdVdiL7tFqtdPH/jz5BevLkSZFI1IODg1i4cB4AY8Z8QKNGTVI8r1AoGD36PSIiIti2bTOTJr3PTz/tyrREWAhhOkYlSDNnzszVQRs1asSWLVu4elU3+N3UqVNRKpX8/ffftG/fPkejbov0PXz4AMAkjXotLCzw8PAkKOghwcFBkiDlo9DQECIjI1GpVFSqVNnc4ZiVm1sJlEolGo2GsLAnht6VhdXy5YuJj4+nfv2G9O3bL911FAoFkyZ9zOXL/3LlyiXmzp3JggWL8zlSIYonoxKkrl275vrA1atXp3p13Tdia2trPvnkk1zvUzwTFJS9BCleDf1/twPg+1diM5zawMurFEFBDwkKCqJOnbqmDFVk4sqVSwBUrFgJa2trM0djOtm9755nYWGBu7sHISHBBAcHFeoE6caNa+za9TMA48aNR6nUNQdN77xYWVkREDCLN9/swZ49v3Po0AFatHjJbLELUVwYPdNPWFgYq1ev5sSJE0RFReHq6krDhg0ZOHAgJUqUyHL7p0+fcvz4cWJjY9MdN0nmYssdfQlSVlVsWuBWpMrwe0b0PdmCg6UnW366fFmXIFWvXsPMkZhWdu+71EqVKk1ISDAPHz6kdm3fPIktP3z//Wq0Wi1t2rSldu06huUZnZfq1V/gzTf78/33q/n88wU0bdq80FcxClHQGZUgBQcH06tXL8LCwqhbty41atTg0aNHrF69mu3bt7Nly5ZMx945cOAAY8eOJS4uLt3nZbLa3NM30jbVuDn6htrSky1/6UuQXnihppkjKRhKlSrNuXN/F+ohJx49CmX37l0ADBjwdra3e+ed/7F9+1Zu3rzOzp3bef317nkVohACIxOk+fPnY2Fhwe7duylXrpxheWBgIIMHD2bRokXMnTs3w+0XLlxIpUqVmDRpEp6enobiZWEaWq3WUMWWkznwMqPv6q8vmRL548oVXQPtF14oWiVIxtKXiOrv78Jo69bNqNVJ+PrWy1F1tZOTM0OG/I/PPpvHF18spUOHTtLjNwtJSYncvHmDkJBgrK1tqFKlKiVKpO11LUR6jEqQDh8+zOTJk1MkRwDlypVj5MiRfPrpp5luf+vWLVasWEHDhg2NObzIQmRkBLGxui7U+sQmt8qW1V3rwMBAk+xPZC0sLMxQYleUxkDKDf3wIYW1BEk/YjbAG2/0yfH2b7zRl++/X01ISDC//LKDrl17mDrEIiEiIpyvv17Jzp3biYqKTPFczZq16du3P6++2lG+nItMGXV3JCcnZzhQpJubG9HR0ZluX7p06SzXEcbTf3iULOlusoa93t7lAbh//x4ajcYk+xSZ01eveXuXTzMhdHFVqpSuRLSwJkh//32aBw/uY29vj79/zoczsba2pn//QQCsXv01ycnJpg6x0Dty5BBdurRn/fo1REVF4uTkTI0atahYsRIKhYJ///2HKVM+ZNCgN3nwQAYlFhkzKkGqVq0aP//8c7rPbd++napVM587aNiwYSxfvlxGzM4jz7r4m6b0CHSNtC0sLEhMTDTM8Sbyln78I2l/9MyzKrbCmSDpS4/atXsVW1s7o/bRvfsbODs7c+/eXfbs+cOU4RV627f/xLvvDiMyMpIqVaqybNlX/PXXUTZs2MK2bbvZu/cwI0eOwc7OjvPnz9K3b3fOnv3b3GGLAsqoKrYRI0bw9ttvExERQadOnShZsiSPHz9m586dHD16lCVLlmS6/c6dOwkJCaFt27a4ublhY2OT4nmFQsGePXuMCU3wrIG2/tt2ZhRAKXuN4feMWFhYULp0Ge7du0tg4F1DrzaRd571YCs6I2jrZfe+S03fWSA6OpqoqCicnJxMH1weiYuL5c8/fwegc+f0h0rJznmxs7OnT59+rFy5jG+//Yp27doXmDn6wsKecOLEMe7fD8TKyorKlatSv35DbG1t8/zYf/zxG9Onf4RWq6VLl25MmRKQpo2Wm1sJhgwZzmuvdeHDD8dy8eIFRox4h+XLv6J+fWnyIVIyKkFq1qwZ8+bNY/78+Rw5csSwvGTJksyePZu2bdtmur2XlxdeXl7GHFpkQ04GibSxgJ1dYrK133LlynPv3l3u3buXZtRfYXpFtYs/5Oy+e56trR2urq6Eh4cTFPSwUCVIR44cIi4ultKly1C3bv1018nueenT5y3WrPmWq1cvc+LEMZo0aWrqcHMkLCyMxYsX8MsvO1Grk1I85+joRJ8+bzFo0JA8S5Ru3LjO1KmT0Gq19OjRiylTAjJNGkuVKs3XX69h7NiRnDhxlFGjhvL99z9SuXKVPIlPFE5Gj4PUpUsXXnrpJa5fv46FhQXOzs5YWVmhVCp5+PBhptU7c+bMMfawIhv0PXxMMc3I87y9vTlyBAID75l0vyKt6OhoAgPvAkUzQcqNUqXKEB4ezoMH9wvV9Ct79uhKj15++ZVcl/g4O7vw+uvd2bhxLWvWfGPWBOmffy4wZsxwwsKeALr7tVq16iQkxHPu3FmCg4P46qsV/PrrLubPX2zyEtHY2Bg+/HAM8fFxNGnSlEmTpmbr/Nra2rJ48QpGjhzCmTOnGDt2BOvWbcLFxfiJ2EXRYlSCdOfOHSZOnMj58+czXCezudj0VUDpUSqV2NnZFapvhgXNvXu6BEbf88xUypXzBjB8cIu8c/nyv4Cu7VdGHSKKK2/v8ly6dJG7d++YO5RsS0hI4ODB/QC0bfuKSfb51lsD+PHH9Rw7doRr165So0b+V8WePXuG4cPfIT4+jsqVq/DxxzPw9a1neF6j0bB37x8sWDCXwMB7DBzYlwULFtO8eUuTxbB06efcvn0LDw9PZs9ekKMBNG1sbFiwYAlvvtmD+/cDmTp1EosXf1FgqiyFeRmVIH3yySfcuXOHUaNG4eXlleOukv7+/lnegM7OzvTv358RI0YYE2KxlZyczP37ugSpfPkKWa4fr4ahe3SNRb96OfMpH8qV0/Vku3dPEqS8duHCOYAiO61LTu671PT39d27t/Mgsrxx7NgRYmNj8fT0ombN2hmul5PzUqZMWdq2bc/vv+/m+++/Ze7c+aYOO1N3795h7NgRxMfH8eKLzfjssyXY2dmnWEepVNK2bXsaN36R8ePHcfz4Ud57bxSff76Cpk2b5zqGixf/4Ycf1gEwffps3NzccrwPV1dXFi1azltv9eTgwf389NMmevTolevYROFnVIJ0+vRpZs2axWuvvWbUQefOncvUqVPx8/Pjtddeo2TJkjx58oTff/+d/fv3M2LECGJiYvjiiy9wcXGhb9++Rh2nOAoODiIxMRFLS8tsNaTWApfCsjflQ4UKFQHdG6NarcbCwugaWpGF8+fPAqT4Nl6U5OS+S01/H965U3gSJH31Wps27TL9QpnT89K//yB+/303v/32C2PHvo+rq48Jos1aUlIiEya8R2RkJLVr+7Jw4bJM2xc5OTmzdOmXTJjwHvv2/cl7741i1aq11KqVcbKYFbVazSefTEWr1dKhQydefLGZ0fuqVq067747joULP2XBgrn4+TUxDG0iii+juvk7ODjg7Oxs9EF/+eUXOnbsyKpVq3j99ddp3rw5Xbp0YcWKFfTs2ZOLFy8yYcIERowYwcaNG40+TnGkL90pV87b5HM1lSlTFhsbWxITE6UdUh7SarWGBKmoliDlxrNEvXAkSElJiezfvw+Al19uZ9J916xZmwYNGqFWq1m3bo1J952Zr79eyZUrl3B2duazz5Zkq/G1paUl8+Z9RrNmLYmPj2fcuJE8ehRqdAwbNnzP1auXcXZ25oMPJhq9H7233hpIo0aNiY+PY/r0KenOESqKF6MSpC5durB+/Xqjb6CTJ09mWPrUrl07jh8/DkCDBg1k5OYc0rfL8PauYPJ9K5VKfHwqA3D9+jWT71/o3L17m8jISKytralevfA0Qs4v+iq28PBwIiMjzBpLdpw8eYLo6KeULOmeJyWC+vncNm/+gaioKJPvP7UbN67zzTdfAjBlynQ8PDKedzM1S0sr5s1bSKVKlXn0KJRx40aRkJCQ4xgePLjPihVLARg3bjxubllPkJ4VpVJJQMAsbGxsOXPmNDt3bs/1PkXhZlSCZGtry5kzZ2jbti3jxo1j0qRJKR6TJ0/OdHsXFxeuXLmS7nNXrlwxjBocGxubL+NnFCX6EqS8Kh6uUkU3COiNG5Ig5ZXz588ButIBS0uZays1Ozt7w4dyYWiorR/MsXXrl01eqgvQvHlLKlXyISYmhg0bNph8/6ktX76Y5ORkWrd+mXbt2ud4ewcHBxYvXoGTkzMXL15g9uzpOfqyrdVqmT17BvHxcTRo0JAuXbrlOIaMlClTlmHDRgKwaNGnRESEm2zfovAxKkHatm0bjo6OaDQazp8/z4kTJ9I8MtOpUyeWLFnCmjVrCAkJISkpiZCQENauXcuyZcvo1KkTkZGRrFmzBl9fX6NeWHGV9wlSNUBKkPJSUW9/ZAqFpR2SWq1m/37doLemrl7TUyqV9O8/GICvv/6apKTEPDkOwD//nOevv/agVCp5991xRu+nXDlvPv10EUqlkp9/3srmzT9ke9vffvuFI0cOYmlpyUcfzTB5j7O33hpA5cpVCA8PZ/Hiz0y6b1G4GNXKdt++fbk66NixY3ny5Alz585l7ty5huVKpZLu3bszbtw4fv/9dy5dusSaNflXr14U6L9RZ6cHmzGkBCnvnTunm/pA2h9lrHz5ipw8eZxbt26aO5RMnT17hvDwcJydnWnQoFGeHadDh04sXbqI4OBgfv11Nx06dM6T4yxb9jkAr73WhUqVctcgvEmTpowe/T6ffz6fTz+dRZUqValXr0Gm20REhPPpp7MBGDJkOBUrVspVDOmxtLRkypTpDBrUl23bttC5c9cs4xJFk1mmMrawsGDOnDn8/vvvzJgxg3HjxjF37lx+++03ZsyYgZWVFS1btuTQoUPSBiMH4uPjefBA12ZL/w07O1ysNbhYZ28C2sqVdQnS/fuBxMbmfCRkkbmQkBBu3bqJUqmkQYOiPfVBTu671KpV05Vk6uerK6j27tVVr7Vq1SbbvT6NOS9WVla8+WY/AL777ps8aWB84sQxTpw4hoWFJf/73yiT7HPAgMG0a/cqarWaDz4YQ0hIxvM8arVaZs4MIDw8DB+fKgwa9I5JYkhPvXr16dq1JwCzZgWQlJSUxRaiKDJLgqTn7e1Nz549GTp0KF26dKFcuWcDG+pH5hbZd/v2TTQaDS4uLpQs6Z6tbWwtYE/3GPZ0j8E2G+/fbm5ueHp6odVquXTp31xGLFI7ceIoADVq1MLJyfieogVdTu+71KpV040ufuXK5QLb20ij0bBvn656rU2bzKdf0svNeenVqw92dnZcu3aV48eP5jTcTGm1WpYuXQRAz569sjWNUXYoFAqmT59F5cpVePLkMWPHDs+wofmGDWvZs+d3LCwsCAiYleft88aMeQ9XV1du3LjO+vXf5+mxRMGUbwlSmzZtDA2z/f39adOmTYaPl19+Ob/CKlL07YIqV66apyPB6tvG6KuChOmcOHEMgMaNXzRzJAVblSpVUalUhIeHERpqfFfxvHTx4gVCQ0Owt7enceO8nwrE2dmFPn36ALBmzTcm3fdff+3l4sUL2NjY8s47/zPpvm1t7Vi4cBmurq5cvnyJ4cPfTlOStHPndhYs0E1RNWbMB9SuXcekMaTHxcWVsWM/BGDlymWGOS5F8ZFvI/35+flhb29v+F2Gcjc9fbsgfTuhvOLrW48//vjV0JhYmIZWqzUkSOaefLSgs7GxoUKFSty8eZ3Ll//F0zP7Xc3zy969fwLQosVLWFtb58sxhwwZwurVqzl+/ChXr14xyVx1ycnJhrZHb77ZnxIlSuZ6n6l5e5dn5crVDB06gH///YfevV+nf/+3qVChIn/9tYcdO7YB8MYbfXnrrQEmP35GOnfuys8/b+Xvv0/z6aez+fzz5fl2bGF++ZYgPT9B7fMNs4XpXLt2FXjW0yw74tUwer9uKIUlreKyNeWDvgTpwoVzaDSaHE81I9J38eI/PH78CDs7uyLfg82Y+y61OnV8uXnzOufPn6VVK38TR5g7Wq3W0P6oTZvs917L7XkpV64c7dq157ffdrN69dfMnZv7Xli//rqLW7du4OTkbBhzKS9Uq1adtWs38cEHo7l27SqLFy9I8Xz//oMZO/aDfP1yrVAomDx5Gr17d2X//r3s37+vwN1rIu+Y7ZMtOjraUIyamJjIqlWrmDlzJqdOnTJXSIXejRvXgZyVIGmBv0Mt+DvUIttTPlSrVh0bGxsiIyMLxTg0hcW+ffoSh1ZFvv2dMfddanXr1gfg779PmywuUzl//iz37wdia2uXo4lZTXFe3n57KKDrDv/vv/8YuRedpKREvvhCNyDjoEHv5Pkk4t7e5Vm/fjMffzyDZs1aUKNGLV57rQtr1mzkvffGm+XLWOXKVejXbxAA8+bNJC4uNt9jEOZhlgTpwoUL+Pv7s3btWgBmzpzJggUL2LFjBwMGDGDv3r3mCKtQCw8P5/HjRwCG0a7ziqWlJbVq6doA6BsVi9zRarWGAQX9/bPXoLe4q19f18vv338vEh8fb+ZoUvrllx2ArnG2ra1dvh77hRdq0LGjrpv/woWf5qoR+9atW3jw4D4lS7rTu/dbpgoxU5aWVnTv/gbLl3/Nhg1bmDlzntlLVIcOHU6pUqUJCnrIsmWLzRqLyD9mSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28eIFQDf+UeoZtfNC8+YvAXDo0IE8P1ZxcPXqFQID72JlZUWLFtkvcSjOypYth4eHJ2p1EmfOFJyS56SkRH7//VcAQ6KS3959dxzW1tacOXPKMA9cTsXERPPVVysA3ZhDxXlWA1tbO6ZMCQBg/fo1nDx53LwBiXxhlgTp/PnzDB8+nHLlynHs2DHi4+Pp0qULAB06dOD69evmCKtQu3DhHJB/gwu2bNkKgJMnj8t4SCawffsWAFq2bJ0vCW5RoFAoDNVXhw7tN2coKRw6dJCoqEjc3T3w82tilhi8vErx1lsDAZg/fzYxMdE53sd3333DkyePKVeuPN269TBxhIVP8+Yt6dGjFwBTp07Kl3nvhHmZJUFSKpWGNhYHDhzAycmJOnV0VTbR0dHY2NiYI6xCTZ8g+frWzZfjVaxYiXLlvElKSuL48WP5csyiKi4ujl27dFUy3bu/YeZoCpeWLVsDcODAX2g0xg06aWo//fQjoBvdOi/mXsuut98eSunSZXj48AGLFy/M0bYhIcGsXbsagHHjPpA5Af/z3nvjKVfOm+DgIKZNm1xg7jmRN8ySINWqVYstW7Zw9uxZfv31V1q1aoVCoeDJkyd8/fXX1KpVyxxhFVrJycn88895AOrUyZ+6eoVCYfhw+vXXXflyzKLqt99+ITr6KWXKlJXxj3KoceMXsbe3JyjoIWfPnjF3ONy9e5sjRw6hUCgMpQ3mYmdnT0DALAA2bdrAkSOHsrWdVqtlzpxPiI+Pp169BrRuLePS6dnZ2TN79gIsLS356689fPPNV+YOSeQhsyRI48eP59ixY/Tp0weVSsXw4cMBeO2117hz5w5jx441R1iF1s2bN4iNjcXe3t6oBto2Ki02qpw35OzcuSugG0QuLCwsx9sLSEpK4ptvvgTgjTf6FKshE4y9755na2tLu3YdANi2bYspwsqVH37YAOiqY8qV8zZqH6Y4L3p+fk14442+AEyc+H62ep3+9tsv7N+/FwsLSyZPnipj1qVSu3YdJk+eBsCKFYsNo6WLoscs78Y1atTgjz/+4Mcff2TPnj1UqFABgICAAHbt2iUlSDn099+6Bqq1atXJcZG+rQUc7hXN4V7ROZ7aoFq16tSsWRu1OskwkJvImV27fub+/UDc3Erwxht9zB1OvsnNfZeavn3Mb7/tJjg4yATRGefRo1C2bt0EQJ8+/YzahynPi94HH0ykTp26PH0axbvvDiM0NOP5zm7cuMaMGVMBXRVdTsZUK066du1Bz5590Gq1TJgwjqNHD5s7JJEHzPZ11cHBAV9fX+zsnnWBfeWVV3B3z94cYuIZ/T9nkybN8v3Y+jYzGzZ8X+C6Whd0YWFhLFmiG8hv0KB38r07eFFRu7YvDRv6oVYnsXLlMrPF8e23X5GQkECdOnV58cX8/1/MiJWVFQsXLqVUqdLcu3eXt9/ux/XrV9Osd+vWTUaMGEJcXCx+fk0YMmS4GaItPCZMmMLLL7cjKSmJ994bJUlSEVR8yvOLqMTERE6ePAFA06bN8/34r73WhVKlShMaGsIPP6zP9+MXVrp2HjMIDw+nSpWq9O79prlDKtRGjRoLwPbtPxmma8lP165dZfPmHwAYOXJMgauWKlnSnVWrvqd06TIEBt7jrbfeYOHCT7l06SJ3795m7drV9O/fi9DQECpV8mHevEVYWOTbRAuFkoWFBXPmLKBFi5eIj4/n3XeHsWnTDwV28mSRc5IgFXLHjh0mPj4Od3cPqlbNeXF4QjKM2W/LmP22JCTn/PhWVlYMH/4uAKtWfcGDB/dzvpNiaNWqL/nzz99QqVRMm5b3M5MXNLm971KrW7e+oTRz4sT3DNPu5IekpCSmT/8ItVpN69Yv56qhvanPy/PKlCnLunWbadasJQkJCXz//bf07duDLl1e5bPP5hEdHY2vbz2++WYdrq6upj14EWVpacVnny2lY8fOJCcnM2PGVIYOHSptMosISZAKOX0PsldeedWob60aLRx5aMGRhxZojPzi07FjZ+rUqUt0dDSTJ39IYmKicTsqBrRaLV9/vZLlyz8HYOLEj6lVq7Z5gzIDU9x3qX344WRq1KhFeHg4b7/djz/++C3Pv81rtVpmz57Ov//+g4ODI5MmfZyr/eXFeXmem5sby5Z9ydKlX9K8+Us4OTljY2NDrVp1+Oij6Xz7rSRHOWVlZcXMmfMYPfo9LCws2L17N126vMratd+RkJBg7vBELii0RaQ8UKPRsGzZMjZv3kxUVBQNGjRg2rRplC9fPt31w8PDmTlzJgcPHgSgffv2TJo0KUWbqJwKD49Brc6/cTHCw8N59dXWxMfHs27dZqM+aOPU0GKTIwCH3nhqdMPQBw/u88YbXYiJicHfvy3z5n2Wr6UiFhZKXF3t8/0a5ERY2BNmzPjYMLLx0KEjGDFitJmjMp2cXANT3XepRUVFMXr0/zh37m9A13GhV6++NGvWEjc3N9Mc5D9JSYnMmfMJW7duRqlU8vnnKwwDqBorN+elMPwPFHXXrl1m6tRJXLlyBdBVbXbu3JXOnV+nQoVKZo6ueHBzs0elMk3ZT5FJkJYtW8aGDRuYM2cOnp6ezJ8/n8DAQHbt2pXuxJ/9+vUjISGBadOmERUVxZQpU2jUqBHz5s0zOob8fmP68svlfPHFUmrUqMn69VuMKkEy5QfVsWNHGD36fyQlJVGnTl3mzFlAmTJljd9hDhTkD4ewsDA2bdrAunXfER0djaWlJe+/P7HItTsqCAkS6Ce/Xsl3360ylGYqFAqqVKlK1arV8fGpQunSpXF398DDw5MSJUpgY2Ob7f+fp0+fsn//XlatWsndu3dQKpVMnjzNJOMeSYJUuFlYKHF0tOa779bxxRfLUvSqLFu2HC++2JxatWpTrVp1KlWqXOQnpTYHSZBSSUxMpEmTJnz44Yf06aPrKh0VFUWLFi2YPXs2HTt2TLH+2bNn6d27N7t378bHxweAw4cP884773DgwAE8PT2NiiM/35hCQ0Po2rUDMTExzJ37Ge3bd8x6o3SY+oPqyJFDTJjwHtHRT7Gy0k062bNnHypV8sndjrNQ0D4cHj58wMmTxzl0aD8HDuxHrU4CoHr1GsyYMceo9mIFXUFJkPTCwp6wZcuP7NnzB9euXcl0XQsLCxwcHHBwcMTR0RE7O3ssLS1RqSywsNANnfH06VMePQolMPCeYTtXVzemT5+d65IjPUmQCrfnr0FcXDwHD+5n69YtnDhxzPAeoKdUKilZ0h1PTy88Pb0oWbKk4f5zcNA/HLCyssLKygpra2ssLXU/9cusrKxQKlWoVEqUShVKpbLAdRDIb6ZMkIpEN4UrV64QExNDkybP5j1ycnKiRo0anDp1Kk2CdPr0adzd3Q3JEYCfnx8KhYIzZ87QoUOHHMcQGRnJt99+h1arRaFQ/HeTKgy/KxQ897syxfKU6+ke1tbWeHmVplSpUnh4eKYYQDA2NoYJE94jJiaG2rV9adfu1RzHm1eaNWvBxo0/8cknUzl58jgbN65j48Z1lCvnTaNGjalSpSoVK/rg5eWFi4srTk7OJhscUa1WExsbS1xcPAkJCSQlJaFWJ5GUpEatVpOcrPuZ8pFEcnIyanUyyclqNBrNf+smp3qoSU7W/Pcz5XMajW77mJho7t27y927dwgLe5Iitho1ajJgwNu0bdu+WA0GaU5ubiUYOnQEQ4eO4NGjUC5e/IcbN65z69YNQkODCQ19xKNHIcTHx6NWq4mIiCAiIiJb+y5fvgKvvdaF3r3fwtHRMW9fiCiULC2taNOmHW3atCMmJprTp09y8uQJrl69zLVrV4mKiiQ0NITQ0BDDTAimoFQqUyRNqX+m/tx5PqlK/TmkWyej5brndO9naT/r0n6ukc6yjJend+znj5tyfaVh+YIF8/HwMM1wQUUiQQoODgagVKlSKZZ7eHgQFJR24LiQkJA061pZWeHi4pLu+tkRERHBwoWfGrVtVmxsbPD2Lk+FCpVwcXHl4MG/CA4OwsHBkYCAWQXuA7dcOW++/HI1x44dYdOmDRw+fJDAwHspvnnrKZVK7OzsDd+GdN+QrFAoFGi1WrRa/vup+e+n7pGUlERSUhKJiYn/PRIK1LxIKpWKmjVr4+fXhHbtXi2SJUaFibu7B61bt6F16zYplmu1WuLiYnn6NJqnT6OIjn5KdHQ0MTHRhqRZrVaj1WpxdHTC1dUFH5+qJm/PJIo2e3sHXnrJn5de8gd0992TJ48JDg4mJCSI4OBgIiLC/7sHn78XY0hK0r3H6b70JZKQoHu/S05Ov5ujRqP574tefr7CgiMuLtZk+yoSCVJcXBxAmvpca2trIiMj010/vbpfa2tro3sd2Nvb06VLVzQajeGDHbQpPtT1tZlarfa59bT/rUeK9WJjYwkOfkhwcDDx8fFcu3Y1RddlL69SfPbZYqpVq2pUvHoWz1WwWqiUmHLok5YtW9KyZUuio3Xfns6ePcOtW7e4c+cWjx8/5unTp2g0GqKjn5ruoP/RT4isqyZRYWFhiYWFBRYWFlhaWvxXdaJ7qFS6ZbpvWSosLFSoVBYolcr/nleleligUikN1S/6dW1tbSlXzpvy5StQsWJF7OzsTf66CjJ9sXZ2irfz8r7LKUtLR5ycHIFSWa6b13JzXnJy/kXeyMk18PLyxMvLE/A16lhqtZqkpCQ0mmSSkzUpfqrVyamWJ6PRaP5LqtJ+3ui+gKZepv9sSrl+2s810nyBzewz8PnPwewvTy/m9OMzZS/MIpEg2djYALq2SPrfARISErC1tU13/fS6oickJBjdi61kyZKsWGH6UXzVajWBgYHcuHGDmzdvEh4eTvXq1Wnfvn26ry2nXIG7Y/R/5c0HuqurPeXKdaJr104plicmJhIWFkZMTIzhG1JiYmKKEbn1xb/6n/qHpaWloV4+vZ8yyJ35ODllfV/mx31XGJnivGTn/Iu8JdegaCgSnyL66rLQ0FC8vZ9NEBkaGkr16tXTrO/l5cWePSknGExMTCQiIsLoBtoAUVFxJCebvprHxcWDhg09aNiwqWFZfLyG+PgYkx8rv1lbO2Jtnfs2HCqVEicnW6Ki4v4rBZTxR/Lb89cgL/4PRObk/JufXAPzc3a2NVmzkyKRIFWvXh0HBwdOnDhhSJCioqK4dOkSb731Vpr1GzVqxIIFC7h7965hnKQTJ3TTddSvX9/oOJKTNdJ7xMzkGpifXAPzkvNvfnINzMeU/fKLRIJkZWXFW2+9xYIFC3Bzc6NMmTLMnz8fLy8v2rZtS3JyMmFhYTg6OmJjY4Ovry/169dn3LhxBAQEEBsby7Rp03j99ddzVYIkhBBCiKKhyLTmGz16ND169OCjjz6iDT2Z0QAAYLBJREFUT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HUPXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQSJ2zealUSrkGZibXwLzk/JufXAPzUir1YyblniRIQgghhBCpFJkqNiGEEEIIU5EESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQgh8oFWqzV3CEKIHLAwdwBCiKKrX79+AKxdu9bMkZjWiRMnmDp1Kg8ePKBx48bUrVuXZcuWcfXqVSDt6968eTM3b95k4sSJZos5I7du3WLu3LmcOXMGCwsL2rRpw8SJE3Fycsp0u2bNmvH48eM0yw8fPoy7u3tehStEvpEESQiRZ6ZNm2buEPLEvHnz0Gg0fPXVV5QoUQJnZ2datGiR4fpffPEFfn5++Rhh9kRFRTFw4EA8PDz49NNPefLkCfPnzyc4OJhvv/02w+0eP37M48ePmTRpEnXr1k3xnIuLS94GLUQ+kQRJCJFnKleubO4Q8kRERASNGjWiadOmhmVeXl5mjMg4GzduJCoqiu3bt+Pm5gaAp6cnQ4cO5fTp0zRs2DDd7S5dugRA27ZtKVOmTL7FK0R+kjZIQhQB/v7+LFq0iDlz5uDn54efnx8ffvgh4eHhhnUmTpzIgAEDmDZtGg0bNqRr166o1WoSEhJYvnw57du3p3bt2rRr146vvvoKjUZj2LZfv35MnTqVL774ghYtWuDr68uQIUN4/PgxP/30E23btqVevXoMHDiQ+/fvp9hOX90EUK1aNdavX8+UKVPw8/OjXr16jB49Ok1VzZ49e+jWrRu1a9emWbNmzJw5k9jYWMPzS5cupW3btuzfv59OnTpRq1YtXnnlFbZt25ZiP0+ePGHy5Mk0bdqUevXq8eabb3LmzBnD8/pSoLZt2xr2kVl14P3796lWrRoPHjxg+/btVKtWjRMnTrB06VKqVauW4bV58OAB27Zto1q1aobz8/DhQ9577z38/Pzw9fVlwIABhsTj+WOtXr2aV199FT8/P7Zu3ZphTBk9nj//qR0+fJgGDRoYkiOAFi1aYG9vz8GDBzPc7sqVKzg5OUlyJIo0KUESoojYsGED5cuXZ/bs2YSFhfHZZ59x69YtNm/ejFKp+y50+vRpFAoFS5cuJSYmBpVKxZAhQzh37hwjR47khRde4MSJE3z++ecEBgbyySefGPb/yy+/UKNGDWbNmsXDhw/55JNPeOutt7CxsWHChAlEREQwa9YsZsyYwVdffZVhnIsWLaJt27YsXLiQwMBA5syZg4WFBQsXLgRg586dfPDBB3Tq1ImxY8fy4MEDFi1axI0bN1i9ejUKhQKAR48eMWPGDIYPH06ZMmX45ptvmDhxInXq1MHHx4fY2Fh69+5NUlIS77//Pl5eXqxZs4Z33nmHLVu24OPjQ0BAAFu3bmXYsGHUq1ePU6dOMXv2bKKiohg5cmSa2D08PPjxxx8ZNWoUNWrUYMSIEVSuXJmTJ09m+HqXLVvG0KFDDet7eHgQFhZG7969sbW15eOPP8bW1pY1a9bw5ptvGmJ7/nxNnToVJycnatWqlWFMGXFwcMjwuZs3b9KhQ4cUy5RKJWXLluXOnTsZbnf58mWcnJwYNWoUx44dQ6PR0KpVKyZNmoSHh0eG2wlRmEiCJEQRoVAoWL16NY6OjgC4ubkxcuRIDh48SKtWrQBQq9VMnz6d8uXLA3DgwAGOHj3K/Pnz6dy5M6BrfGtjY8PixYsZMGCAoZosKSmJZcuW4ezsDMCff/7J4cOH2bNnD+XKlQN0H5w///xzpnFWrVqVOXPmGP6+cOECv/32G6Dr6bVgwQJatGjBggULDOtUqFCBgQMHcuDAAcNriYuLY9asWbz44ouGdVq3bs2BAwfw8fFh27ZtBAYGsn37dqpXrw5Aw4YNef311zl16hRKpZJNmzbx3nvvMXToUACaN2+OQqHgyy+/pG/fvri6uqaI3crKirp162JlZYWbm1ua9jfpqVGjRpr116xZQ0REBBs3bjSUwrRs2ZIOHTqwePFilixZYti+Xbt29OjRI8P962MyRlRUFPb29mmW29vbEx0dneF2ly9fJiQkhDfeeIOBAwdy8+ZNlixZQr9+/di2bRt2dnZGxSNEQSJVbEIUEa1btzYkR6Cr2rG0tOT06dOGZTY2Nnh7exv+PnnyJCqVKk0pgj5ZOnHihGGZj4+PITkCcHd3x83NzZAcga6B7tOnTzONM/WHuZeXF3FxcYCuR1VwcDD+/v6o1WrDo1GjRjg4OHDkyJEM96VvA6Svijt9+jRly5Y1JEcA1tbW/Prrr/Tu3Zvjx4+j1WrTHMvf35+EhIQUVXGmduzYMV544QU8PT0Nx1UqlbRs2ZKjR4+mWLdq1apZ7u/5+FM/kpOTM91WXyL3PK1Wm+5yvTlz5rBp0yaGDRtGw4YN6dWrF0uWLOHOnTts3749y3iFKAykBEmIIiJ11YZSqcTFxYWoqCjDshIlSqT44IuMjMTV1RULi5RvBfpu2s8nO+lV1dja2uY4ztTbKJVKwxhBERERAEyfPp3p06en2TY0NDTDfemrEZ/fV4kSJTKMQ3+sjh07pvt8SEhIJq8idyIiIrh79y41a9ZM93l9wghQsmTJTPd1//592rRpk+Hzfn5+GbarcnBwSLekKDY2NtNG5/Xq1UuzrEGDBjg6OnLlypVM4xWisJAESYgiQv+Br5ecnEx4eHiKBripOTs7Ex4ejlqtTpEk6ROR1FVMeU0/9s748ePT7Rb/fAlWVhwdHVM0GNc7e/YsDg4OhmOtWbMm3Wqm0qVLZ/tYOeXo6Iifnx/jx49P93krK6ts78vDw4MtW7Zk+Hx6r02vYsWK3Lt3L8UyjUbD/fv3adeuXbrbREVF8ccff1C3bt0UvRS1Wi1JSUn5fs8IkVekik2IIuLQoUMkJiYa/t67dy9qtdrQRic9fn5+JCcns3v37hTLd+zYAehKBfJTpUqVKFGiBPfv36d27dqGh5eXF5999lmKXl5ZadiwIYGBgYbBGwESExN599132bRpE40aNQIgPDw8xbEiIiL4/PPP0yScuaEv3dLz8/Pj9u3bVKxYMcWxd+zYwebNm1GpVNnet5WVVYp9pH5UqlQpw22bNWvGqVOnCAsLMyw7dOgQMTExNGvWLN1tLC0tmT59epqG+Hv37iU+Pp7GjRtnO3YhCjIpQRKiiAgODmb48OH079+foKAgFi5cSPPmzTP9wGrZsiWNGzdm2rRphIaGUqNGDU6ePMnXX39N165d830cI5VKxbhx45g6dSoqlYrWrVsTFRXFihUrCAkJybBKKj3dunVj7dq1DB8+nDFjxuDm5sb69euJj4+nX79+eHt707lzZz7++GMePHhArVq1uH37NosWLaJs2bJUqFDBZK/LycmJS5cucfLkSerUqcPAgQP5+eefGThwIIMHD8bV1ZXdu3ezadMmJk2aZLLjZqVv376sW7eOQYMGMWrUKCIiIpg/fz4tW7ZMUY127tw53Nzc8Pb2xtbWlnfeeYcVK1ZQokQJWrZsydWrV1m6dCmtWrVKMTaUEIWZJEhCFBEdO3bEycmJsWPHYmdnR9euXRk3blym2+h7bC1ZsoTvv/+esLAwypYty7hx4xg0aFA+RZ5Sz549sbe3Z9WqVfz444/Y2dlRv359FixYkKJBeFYcHBxYt24dn376KbNmzUKtVuPr68vatWsNDdXnzJnDl19+yQ8//EBwcDAlSpSgQ4cOjB07NkelOFkZPHgws2fP5u2332b16tU0bNiQH374gc8++4yAgAASEhKoUKECs2bNyrTHmqm5ubnx/fffM3v2bD744APs7e1p3759mqq/Xr160bVrV+bOnQvAu+++S8mSJdm4cSPr16/HxcWFXr16MXr06HyLXYi8ptDKDIpCFHr+/v74+fkZPsCEEELkjrRBEkIIIYRIRRIkIYQQQohUpIpNCCGEECIVKUESQgghhEhFEiQhhBBCiFQkQRJCCCGESEUSJCGEEEKIVGSgSBPRarVoNNLe3ZyUSoVcAzOTa2Becv7NT66BeSmVihQTcudGkUyQVqxYwbFjxzKcwRp08y/NnDmTgwcPAtC+fXsmTZqEnZ2dUcdUKBRERcWiVmuM2l7kjoWFEldXe7kGZiTXwLzk/JufXAPzc3OzR6UyTYJU5KrYvvvuO5YsWZLleqNHjyYwMNCw/pEjR5g+fXo+RCiEEEKIgq7IlCCFhIQwZcoUzpw5Q8WKFTNd9+zZs5w8eZLdu3fj4+MDwIwZM3jnnXd477338PT0zI+QhRBCCFFAFZkSpH///RdnZ2d27NiBr69vpuuePn0ad3d3Q3IE4Ofnh0Kh4MyZM3kdqhBCCCEKuCJTguTv74+/v3+21g0JCaFUqVIplllZWeHi4kJQUJDRMahURSbfLHT0516ugfnk5BrcuXOb1atXYW9vz9tvD6NEiRJ5HV6RJ/8D5ifXwPxM1D4bKEIJUk7ExcVhZWWVZrm1tTUJCQlG79fJyTY3YQkTkGtgflldg9u3bzNgQF+ePHkCwMmTx9m9ezfW1tb5EV6RJ/8D5ifXoGgolgmSjY0NiYmJaZYnJCQY3YsNICoqjuTkwtVzQaOFW5G6lLuSsxalCbPv/KRSKXFysi2U16CoyM410Gq1fPjhBJ48CaOsrz9Pnz7lypXTLFv2BYMHD8nniIsW+R8wP7kG5ufsbItSaZoSvGKZIHl5ebFnz54UyxITE4mIiMhVA+3kZE2h69oZp4YeOxwBOPTGU2wL+R1RGK9BUZPZNTh16gTHjh3BwtaJ4Ff+G4ZjUWVWr/6GPn36Y2lpmY+RFk3yP2B+cg3MR2vCIaiKZUVpo0aNCA4O5u7du4ZlJ06cAKB+/frmCkuIIm/Tpo0AvPZaF8MyV9cShIeHcfToIXOFJYQQaRSLBCk5OZlHjx4RHx8PgK+vL/Xr12fcuHFcuHCB48ePM23aNF5//XXp4i9EHnny5DF//aUrue3atadhefv2rwLw66+7zBKXEEKkp1gkSEFBQTRv3pzdu3cDulGvly1bRtmyZRkwYABjx46lZcuWBAQEmDdQIYqwXbt+Rq1WU7u2L1WrVjUsb9myNQDHjx8lOTnZXOEJIUQKhbzFSfrmzp2b4u+yZcty9erVFMtKlCiRrRG3hRCm8eefvwPQqdPrKZbXrFkbBwcHIiIiuHz5ErVq1TZDdEIIkVKxKEESQphXcHAQFy9eQKFQ0Lp1mxTPWVpa4uf3IgAnThw1R3hCCJGGJEhCiDynb3vk61sPd3ePNM/Xq6frHHHhwrn8DEsIITJUJKvYRPZZKKDfC4mG34XIC3v2/AFAmzbtgLT3XZ06dQFdgqTValGYcjhcIYQwgiRIxZylCsbUM370cCGyEhb2hLNndXMc+vu/DKS976pXr4GFhSXh4eEEBt7D27u8WWIVQgg9qWITQuSpv/7ai0ajoUaNmpQpUzbddaytralWrToAV65czs/whBAiXWZJkNq2bcsXX3yRq4lhhWlotPAwWsHDaAUaE45AKoTevn1/AuDv39awLL37rmrVagDcuHEt32MUQojUzJIgvfjii6xevZo2bdowaNAgdu3alatJYoXxEpKh8w4HOu9wIEGGoBEmFhUVxYkTx4Fn7Y8g/fuucmXd2EjXrl1Nsx8hhMhvZkmQZsyYweHDh1mwYAGWlpZMmDCB5s2bM3XqVM6dO2eOkIQQeeDgwb9Qq5OoVMmHihUrZbqufvBIKUESQhQEZmukbWVlRYcOHejQoQOPHz/m999/Z8eOHfTp04cKFSrQq1cvevTogYODg7lCFELkkr732ssvv5LlupUr66rY7t8PJDY2Bjs7+zyNTQghMmP2RtoJCQkcO3aMI0eOcOXKFRwdHalSpQorV67k5Zdf5tixY+YOsUhbvmyx4fekpCQzRiKKmtjYGI4dOwykrF7LiKurK+7u7gDcuHE9T2MTQoismC1BOn78OJMmTaJp06aMHz+emJgYZs6cyeHDh1myZAn79++nUqVKfPTRR+YKscg7e/Zv1q3/zvD3tm2bzReMKHIOHTpIQkIC5cp5GxpgZ0XfDun6dalmE0KYl1mq2Fq1akVISAienp7079+f7t27U7Zsyu6/NjY2NG3alLVr15ojxGJh585tKf7++edtDOjb10zRiKJmzx7d3Gsvv/xKtgd+rFSpMseOHeHu3Tt5GJkQQmTNLAmSr68vPXr0oHnz5pm+cXbr1o0ePXrkY2TFR1JSkmHyUL1bt24QGhqCh4enmaISRUV8fDyHDx8Esle9pleunDcA9+7dzZO4hBAiu8xSxValShWqVq2abnJ0//59ZsyYAUDp0qXx8vLK7/CKhatXr/D0aRRODvZ0r5yA850doEnmxAlp8yVy7+jRw8TFxVKqVGlq1qyV5nmVAnpWSaRnlURUz70N6EfQDgy8l1+hCiFEusySIC1fvpyQkJB0nzt//jybN0tbmLx24cJZAOrUrMkkv0S6OJyF5EROnTph5shEUbB3r37utbbpfhGyUsGERglMaJSAlerZcn2CdP/+PTQaTb7EKoQQ6cm3KrbevXtz/vx5ALRaLb169cpw3dq1a+dXWMWWftZ0X9+6ANSu7QvoSpaEyI3ExEQOHNgHQJs2WXfvf56XVyksLCxISEggNDQEL69SeRGiEEJkKd8SpFmzZvHrr7+i1WpZvnw53bt3T1N9plQqcXJyol277LdZEMa5ePEfAGrV8iU8XoFnhRqArh1SUlISlpaW5gxPFGKHDx8kOjoad3cPQwKemlYLEQm6kiUXay36QiYLCwvKlCnL3bt3uHfvriRIQgizybcEycfHh1GjRgGgUCjo2bMnnp7SGNgc4uJiuX8/EIDylWvQdqsDUBU755LERj7m7t07VK5cxbxBikLrl192AtC+fQeUyvRr8eOT+e++g0NvPMX2uXeicuXKGxIkP78meR6vEEKkJ98SpIcPH+Lu7o6lpSXdunUjOTmZhw8fZrh+6dKl8yu0Yuf27VsAuLq64erqYlju41OZf/5+zLVrVyRBEkaJiopi/35d9VrHjp2N2oe+HZL0ZBNCmFO+JUht2rThxx9/pE6dOvj7+2c5Lsrly5fzKbLi59atmwBUquSTYnnFij788/dx7ty5bY6wRBHw66+/kpCQQKVKPlSr9oJR+yhXrhyAoZRTCCHMId8SpNmzZxve+GbPnp3tgeOE6d26dQPQDcr3PBmDRuTW1q1bAXj11U5G/4+XLl0GgODgjEuYhRAir2U7QZo0aVKOdjxnzpwUf3ft2tXwe7du3XK0L2Fat27pqtgqVUo5u3q5sroEVsagEcYIDQ3hyJEjAHTo8JrR+/Hy0lWvBwUFmSQuIYQwRrYTpBMnUo6PExoailqtpnTp0ri7uxMREUFgYCBWVlZUr149y/2dOnUKlUpF/fr1DYNDBgUF0b59e0aOHJnzVyKy7cEDXdVFuXLlUywvXUZftSEJksi53bt3odVqqVevPmXKlM16gwyUKqXruRYeHkZ8fDw2NjamClEIIbIt2wNF7tu3z/AYN24cJUqUYNOmTezbt48ff/yR33//nR07duDp6cmrr76a6b5+/vln+vfvz549ewAICAjg1KlTlC9fnpUrV/LVV1/l7lWJDGm1Wh48uA+Q5kOsbFld1UZkZCSRkRH5HZooxLRaLVu3bgGgU6fXc7UvR0cn7OzsAAgJkVIkIYR5GDWS9qJFi3j//fepU6dOiuWVK1dmzJgxrFq1KtPtV69eTdeuXRk/fjxPnjzh6NGjjBo1imXLljFu3Dh++uknY8IS2RAeHk5sbCyga+uhUsBrFZN4rWISDnZ2uLu7AxAYKA1kRfadO3eWW7duYmtrm63qtefvO1WqpkoKhYJSpXTJemY9XYUQIi8ZlSCFh4fj6OiY7nMWFhaGD+CM3Lp1iy5dugBw8OBBtFotbdq0AXSjaEvbg7yjLz1yd/fA2toaKxUEvBhPwIvxWKkwfDAFBT0wZ5iikNm6dRMAnTt3xsHBIcv1U993qekHiAwOlvcCIYR5GJUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAGAe/fu4erqakxYIhsePtQlSGX/a5Cd2rMPpuB8i0kUblFRUfz5528A9O3b1yT71LdDCgqSEiQhhHkY1c1/woQJ9OvXD39/f+rVq4erqytPnjzh7NmzODs788UXX2S6fZMmTVi2bBnXr1/nzz//ZPDgwQD8/vvvLF68mObNmxsTlsgG/dgy+vZHWq1uVGMAGxWG6V+k7YfIrl9/3UV8fDyVK1ehQYMGRERkXoIMae+71CMCSAmSEMLcjCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2cx7sEyZMgVXV1eWL19O06ZNGTZsGKAbGqB06dK8//77xoQlsiF1A+34ZGixyZEWmxyJTwZPTylBEtmn0WjYuHEtAD169Mr22Eep77vUnlX1SgmSEMI8jB4o0tPTkwkTJhi1raurK998802a5Rs2bJApRvJYRj3Y9J6VIEmCJLJ29Ohh7ty5jYODA127mm58M30Vm5QgCSHMxegEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodFoDMv0vVYkUcobWSVIz0qQ5INJZG3duu8A6Nq1B/b2WTfOzi4PD91E1o8ehaLVamXkfSFEvjMqQQoLC2PAgAHcunWLSpUqcePGDeLj4zlw4ABz587lu+++o169ehluf+fOHSZOnMj58+czXEfmYjM9rVZLaGgI8KyNR2r6EqTHjx+RlJSEpaVlvsUnCpcbN65x/PhRlEolvXu/ZdJ9lyypG24iPj6ep0+f4uTkZNL9CyFEVoxKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIociIiJITEwEwMPDI9113NxKYGFhiVqdxKNHoYZ5sYRI7bvvdNXk/v5tczVydnpsbGxwcnImKiqSR49CJUESQuQ7oxKkv/76i8mTJ1O+fHmSk5+1sLS2tmbw4MFMnDgx0+1Pnz7NrFmzeO014+drEjmnLz1ydXXD0tIq3XWUSiWenp48eHCfkJBgSZAKqYMH/+Lrr1dy+fK/ODg40LJla4YOHZHh8A45dffubXbv3gnAwIHvmGSfqbm7exgSJB+fyllvIIQQJmRU0U1CQgIuLi7pPqdSqUhKSsp0ewcHB5ydnY05tMgFfYKkb9+REX01m7RDKpy++eZLRo8ezj//nEetVhMREcGOHdvo2bMLv/yywyTH+OqrL9BoNLRs2YpatWqbZJ+p6Ud1f/QoNE/2L4QQmTEqQapduzYbNmxI97mdO3caqtwy0qVLF9avX49WqzXm8MJIzxKkZ9VrSgW0KZdEm3JJKP9rB6tvqB0SEpLvMYrc+f333SxdugiAvn37s3PnH3zzzVoaNGhIXFwsU6aMZ926Nbk6xo0b1/j1110A/O9/o4zaR3r3XWr6dkiSIAkhzMGoKrYxY8Yw8P/t3Xd4U3UXwPFv0nQA3QMKyF5lQ1mVVWQ5QAGRJUtQhiwBmYKCDAFBNshUhiBLQUVU1sveUxFo2ZTVpgPa0pk27x8xKZ20aZp0nM/z9KFNcu895N72nvzG+X3wAR06dMDX1xeFQsHu3btZsmQJx44de+labIUKFeL8+fO0adOGmjVrplqtW6FQ8NVXXxkTmshAWi1ItlYwp1lMstd5eOgSqOBguTHlJc+ePWXmzC8BXbfXyJFjAChVqjSrVq1n0aJv2LDhO+bNm0VCgoa+fT/M8jG0Wi1ff/0ViYmJtGrVhmrVMv4wlJ60rruU9Im8JEhCCEswKkGqX78+33//Pd988w1r1qxBq9Wybt06qlWrxsqVK/Hx8clw+507d+Lg4EBiYmKaM9lkSm/OCArS3Whe1sWm/+QeHKzO8ZiE6axdu4rw8GdUrFiJYcNGJnvOysqKUaPGUrhwYVasWMqCBXOxsytEt25ZWxrkwIG9nDlzCltbW0aPNq4OWmbpE3W1Wq5DIYT5GV0HqUGDBmzZsoWYmBiePXuGvb09RYoUydS2Bw8eNPawIhsyOwYpaeyH3JjyCrU6iC1bfgBg5MixqFSpf7UVCgWDBw9Do9GwZs0KZs2aRqFChXjnnU6ZOsbTp2HMmTMDgL59PzT5zLWUkhIkaUESQpifUWOQJk6cyLlz5wDddNxixYoZkqNr167RqlWrTO0nMTGR69evc+TIESIjI3n69Kkx4YhMCgrSVcd+MUGK1kD9zQ7U3+xAtEb3mLQg5T27dv1MXFwctWrVoUmTZhm+dujQT+jRozcAU6dOMiw0mxGtVsuMGVNQq9WUK1ee/v0HZivetK67lCRBEkJYklEJ0s6dO/nggw/YunVrqufi4uIM1bAz8ssvv9CiRQs6duzIoEGDuHfvHhMmTGD48OGGWj3CtNIapJ0WfQuSJEh5Q0JCAj//vA2Arl17vLSLWqFQMHbsRDp1eo/ExEQmThzL0aOHM9xm1arl7N+/F5VKxcyZX6caN5gTXkyQZEKHEMLcjK7Q6Ovry5QpU/jyyy+T1ULKjD179jB+/Hh8fHxYsGCB4Y9f27ZtOXLkCMuXLzc2LJEOfVcovLyLzc1NlyA9f/6c6OiXr8wuLOvUqRM8fvwIJycnWrd+PVPbKJVKJk/+kjfeeAuNJp4xY0awd2/qliStVsvq1Sv49tslAEyc+IXRA7OzSt+SGR8fz7NnT81yTCGE0DM6QRo0aBDz5883tCZlpXtsxYoVdO/ena+//pq2bdsaHn/33XcZNmwYv//+u7FhiXTouylsbW1xdMy4BlWRIkWwsysEQHBwcI7HJrJH30X2+uvtstSyY2VlxfTpc2jRoiWxsbGMGzeSsWNHcvHiecLDn3Hx4gWGDh3AsmULARg0aCidO3fNif9CmmxsbHBxcQGkm00IYX7ZWuPjrbfeYtOmTdy/f5/OnTvj5+eX5uDQlO7cuUObNm3SfK527dpSfycHvDhAOzNdMNLNljdoNBoOHToAQJs2bV/y6tSsra2ZN28x/fsPQKFQsG/fn/Tr15PmzRvRr9/7nDhxDGtrayZMmMzHHw83dfgvJeOQhBCWku1F0KpXr86OHTtwd3ene/fuHD9+/KXbuLm5cevWrTSfu3XrFm5ubtkNS6SQ2fFHeklF+iRBys0uXjzH06dPcXZ2pm7d+kbtQ6VSMWLEp2zbtos332xvaLVxdHSiXbt32LHjN5MvRptZ+gRJX6JCCCHMxehp/i/y8PBg48aNfP7558yfP/+lLRRvvfUWixcvpmjRovj6+gK6VosrV66wfPlyWaMtB+gTJA+PjMcf6SXNZJMbU272v//pSmb4+rbMVOttRipVqsKsWfPQarXEx8djbW1t8Zpk0oIkhLAUo/6iDhs2jGLFkt9obWxsmDNnDl5eXi+tczRy5Ej8/f0ZOXIkSqWuEat3795ERUVRv359PvnkE2PCEhlIr0ikUgFNSmgM3+vJVP+84dSpEwA0a+Zrsn0qFApsbNJezNhU0rvuUpKWTCGEpRidIKWnX79+9OvXL8PtbWxsWLNmDcePH+fUqVM8ffoUBwcHGjZsaFi6RJhWekUiba1gUYvoVK+XYpG5X1BQILdv30ShUNCgQSNLh5Ml6V13Kbm7uwMQEiLXoRDCvDKdIPXp04cpU6ZQoUIF+vTpk+FrFQoF69envyDmrl278PX1pUmTJjRp0iTZc2q1ml27djFgwIDMhiYyIbNVtPWkBSn3O3PmFABVq1bHycnZssHkEGlBEkJYSqYHab9YqE2r1Wb4lZiYmOG+Jk6cSEBAQJrPXbt2jcWLF2c2LJFJWR+krf/kLtP8cyt995qPz6sWjiTnSKIuhLCUTLcgbdy4Mc3vM2vQoEHcvHkT0CVYQ4cOTXOcQ0hICKVLl87y/kX6EhMTDZ/AU7YgRWugzU/2AOzrHEmh/64Id3dZKDS3u3BBt9xP/fp5q3sN0r/uUtIP0g4OVqPVaqX7XQhhNiaZxZYZgwYNYvv27YBuqZJq1arh6uqa7DVKpRJHR0feffddc4VVIDx9GoZGEw8kjS16UUxC6puO/pN7WFioYUaTyD3U6iAePXqIQqGgVq06lg7HKGlddynpr8O4uDgiIsJfWuRUCCFMJdMJkpeXV6Y/vSkUCq5evZrsMW9vb7y9vQ0/DxkyhFKlSmX28CIb9N1rrq5uWFtnbnaSs7MzKpUKjUZDaGgIxYp55mSIIov+/vsSABUrVsLe3t6yweQgW1tbHBwciYgIR61WS4IkhDCbTCdIQ4cONVnz9qxZs0yynxclJiaydOlStm/fTnh4OPXq1WPKlCmUKVMmzdfv3LmTCRMmpHp879696W6TV+kTpJSlGTKiVCpxc3MnMPAJarVaEqRc5vLlSwDUrl3XsoGYgYeHBxER4QQHq6lQoaKlwxFCFBCZTpCGDzfdMgOhoaHMnDmTQ4cOER0dnWql7rRaoF5m+fLlbNmyhVmzZlGsWDHmzp3LgAED2L17d5pjnfz8/GjYsCHz589P9njKbr/8IKsz2PTc3T0IDHwiA2RzocuXLwLk2e61rHB39+D27VuyLqAQwqyMHoMUExODn58f8fHxhgQnMTGR6Ohozp07x5gxY9LddurUqRw+fJh27drh6elpKBZprLi4OL777jvGjh1rqMy9YMECmjVrxr59+2jXrl2qbfz9/fHy8kpzTE5+k16RyJdJWo9NqhjnJnFxcVy79i9QMFqQpKq7EMISjEqQTp06xSeffEJ4eHiazxcpUiTDBOno0aN89tlndOvWzZjDp3L9+nWeP3+Oj4+P4TFHR0eqVavG2bNn00yQ/Pz8eP31101y/NwuOy1IIDPZcpvr168SFxeHi4sLpUvnr+7gtOhLTkhLphDCnIxKkBYuXIizszMzZszg119/RalU8u6773LkyBF+/PFHVq9eneH2NjY2Jh2g/eTJEwCKFy+e7PGiRYvy+PHjVK8PDQ0lODiYs2fPsnHjRp4+fUrt2rUZM2YM5cqVM1lcuUVgoO790U+ZfpEC8C6qMXz/IqlBkzv9++8/ANSoUSvPTnvP6LpLSRJ1IYQlGJUg+fn5MX36dNq0aUNkZCSbN2/G19cXX19f4uPj+fbbb1m1alW627dp04bdu3fTuHFjowN/UXS0bsmClGONbG1tefbsWarX+/v7A2BlZcWcOXOIiopi+fLlvP/++/z222+GT6xZZWWVva7CnKJf6LN48eKoVMljtFfBd2/E/vdT8uc8PXUtTsHB6lTb5Tb69z63ngNT8vf3A6B69Rq56rxk5RxkdN2lpJ9cEBISnKv+v7lNQfodyK3kHFieKT8zGpUgJSYm4umpm9VUrlw5QwFIgNdff53x48dnuH21atVYuHAhAQEB1K5dGzs7u2TPKxQKhg4dmul49NvHxcUl21dsbCyFChVK9XofHx/OnDmDk1PSlOFly5bx2muv8fPPPzNw4MBMH/tFjo6pj5Ub6BOkSpXK4uJSJNPblSunK9gZFhaSpe0sKbeeA1O6eVOXINWrVydXnhdTn4Ny5XStzaGhwbny/5vbFITfgdxOzkH+YFSCVLp0afz8/Khfvz5lypQhOjqaW7duUaFCBTQaDc+fP89w+2nTpgFw9uxZzp49m+r5rCZI+q61oKCgZFW4g4KC8PLySnObF5MjgMKFC/PKK68QGBiY6eOmFB4eTUJCxsusmFt0dLShFc3OzpGwsIzPzYsKFXIE4PHjJ1nazhKsrJQ4OhbKlefAlOLj4/Hz0yVIJUuWy1XnJafOgZ2dAwCBgYG56v+b2xSU34HcTM6B5Tk5Fcr2xC89oxKkt99+m3nz5pGYmEjv3r2pUaMGM2bMoHfv3qxYsYKKFTOuVXL9+nWjgk2Pl5cX9vb2nD592pAghYeHc/XqVXr16pXq9Zs3b2bRokUcPnzY0OIUGRnJ3bt3ee+994yOIyEhEY0md/1SPHqkG4NlZ1eIQoWKpIovWgNv/6L7VP5bh+fJlnxwdU1ajy02Nh4rKyvzBJ0NufEcmNKtW7eIi4ujSJEieHqWyJX/18ycg4yuu5RcXHTXYWRkJBERz9NsFRZJ8vvvQF4g58ByUlQNyhaj0qyPPvqI7t278/fffwMwZcoUrl27xpAhQ7h9+zbjxo0zXYSZYGNjQ69evZg3bx4HDhzg+vXrjBo1Ck9PT9q0aUNCQgJqtZqYmBgAXnvtNbRaLePGjePGjRv8888/DB8+HFdXVzp16mTW2HPai0Ui0xvQ+zRWydPY1JeCi4srSqWSxMREQkNDcjROkTl+froPF5Ure5nsU5KlpHfdpWRvb2/4ICOLJwshzMWoFiSlUplsnFHNmjXZv38/t2/fpnz58mkufdCnTx+mTJlChQoV6NOnT4b7VygUrF+/PksxjRgxAo1Gw+TJk4mJiaFBgwasXbsWGxsbHjx4QKtWrZg1axbvvvsuxYsXZ/369cybN48ePXqg1Wpp0qQJGzZsSDUeKq8zdoo/6Aaxu7m5o1YHoVYHpTkLTphXUoJUxcKRmI9CocDd3YMHDwJQq9W88oosUSSEyHkmW6zW3t6eWrVqpfv8i9WyU1bOzui1mWVlZcXYsWMZO3ZsqudeeeUVw7gNvapVq7J27dosHyevSWpBMm6pEA8PD9TqIJnqn0voE6QqVapaOBLzcnNz58GDACkWKYQwG6MSpEePHjFt2jQuXLhAREREqufTWipk48aNaX4vcpa+BlLRosa1/uhajf41VOMWlqPVavH3vwZAlSppTz7Ir5KqukuiLoQwD6MSpEmTJnHp0iU6d+6Ms7OziUMSppS0zIhxLUhSLDL3CAoKIiwsDKVSSYUKlSwdjllJsUghhLkZlSBdunSJzz//nHfffdfU8QgTy84YJEiqvq2vpSQsx99f171Wtmz5fDdW7mUkURdCmJtRCZKHh0eqOkIid9J3semrEaekAKq5Jhi+T0luTLmHn1/+6V572XWXklyHQghzMypBGjRoEMuWLcPLy4uSJUuaOiZhIhqNxjAtOr0WJDsVbHgjKt196McuSQuS5b04xT+ve9l1l5K+JVMSJCGEuRiVILVo0YI1a9bQunVrXF1d01wqZP/+/SYJUBgvJCSYxMREVCoVrq5uRu1DuthyD30XW35oQcqqpBYkqYMkhDAPoxKkiRMnEhAQQJMmTQyzS15m165dWTpGx44dsx6YSEY//sjd3cPoKtj6G1NISAgJCQl5opp2fhQV9Zz79+8BBTNB0v+dCQsLRaPRoFKZrEKJEEKkyai/MmfOnOGLL76ga9eumd5mwoQJmX6tQqGQBMkEkqb4pz9AO0YDXX7XLfmwvd1z7FJcEa6ubsmqaUuxSMu4ccMfrVaLh4cHbm7ulg4n21523aXk7OyClZUVCQkJhISEpDumTgghTMWoBMnR0ZESJUpkaZsDBw4YcyiRDZmZwaYFHj9XGr5PSVdN2w21Wk1wsFoSJAvx99cVOs0P44/g5dddSkqlEldXt/+KlgZJgiSEyHFGJUjvv/8+q1atok6dOmkuK5KWrAzmNqaStkgtMDB7U/z1PDyKolarUauDqFq1uilCE1mUn2awGUuqugshzMnoStpXr16ladOmaa69lpm11H7//XfOnDlDfHy8ISHSarVERUVx6dIljhw5Ykxo4gUvLlSbHVKkz/IK6hIjL5LrUAhhTkYlSHfu3KFq1aQ/1ClbfF7WArR06VKWLl2Kg4MDGo0Ga2trVCoVoaGhKJVKunTpYkxYIoWgoJePQcoMfbeafkyTMK+EhARu3PAH8k8XmzGkFpIQwpyMSpCmTp1KhQoVjD7ozp07eeedd5gzZw6LFy/m0aNHzJkzhytXrjBw4EAqVSpYyyjkFP0yI8YuVKvn6akbbyYJkmUEBNwjJiYaOzs7SpcuY+lwLCa/J0gXLpxjy5ZN3LjhR5Ei9jRu3JTu3Xvh6upq6dCEKJCUxmz04YcfZnna/osCAwPp0KEDCoWC6tWrc/HiRQBq1KjB4MGD2b59u9H7FjparTZTs9gyo3jx4gA8efI423GJrNN3r1WqVKVAl1lIKhaZv2ohJSYmMn/+1/Tv34u9e//gzp3bXLnyN6tWLadz53acPHnc0iEKUSAZlSBpNBpcXFyMPmjhwoVRKHQLDJQtW5YHDx4QExMDQNWqVXnw4IHR+xY6z549JS4uDiDDmWcKoLxTAuWdEtJd8sHTU5cgPX78yMRRisxIqqBdxcKRmE5mrruU8msL0sKFc9mw4TsAOnXqwrffrmXGjDlUqlSZsLAwRowYzKFDBy0cpRAFj1FdbJ988gkzZswgODiYSpUq4e6eui5LRmUAatasyc6dO2ncuDGlS5fGysqKEydO0LJlS27duoWNjY0xYYkX6Ft7XF3dsLW1Tfd1dirY1i7jJR+KFy9h2KdWqzUkt8I88uMA7cxcdynlxwTp0KGDbNjwPQDTps3inXc6GZ5r2/ZNJk0ax759fzJhwmjWrfsRL6/8cw0IkdsZPQYpISGBSZMmpXuzvHbtWrrbDx48mH79+hEREcGKFSt45513mDBhAo0aNeLYsWO0bt3amLDECx49eghAiRLZXyuvaNGiKBQK4uLiCAsLNXrZEmEcf3+Z4g9J1bSDg4PzRaIeHv6ML7+cBECfPv2TJUcANjY2zJo1j6ioKI4fP8Knnw5n27ZdFCmSudIqQojsMSpBmjFjRrYO2qBBA3bs2IGfn6743RdffIFSqeTChQu88cYbWaq6LdL26JGuO0zf+pMd1tY2uLvratA8fvxIEiQzCg0NQa1Wo1AoqFSpsqXDsSg3N911p9HEExYWlucHL69Zs4KwsDAqVKjE8OEj03yNSqXiq6++pnv3d3n48AFLlixgwoTPzRuoEAWUUQlSp06dXv6il/Dy8sLLS/eJ2NbWlunTp2d7nyJJZluQYjTQ56/CAGx4PSrdJR+KFy+OWh3EkyePqV69pkljFem7fl3XelSqVGkKFy5i4WhMJ7PX3YusrW1wc3MnJCSYwMDHeTpBevz4ET/++AMAo0aNxdo6/WEFTk7OTJkyg8GD+7N162batetAzZq1zBWqEAWW0Ss+hoaG8v3333P69GnCw8NxcXGhfv36fPDBB4ZPehmJiIjg1KlTREVFpVk3SdZiyx79gOqXJUha4PYzK8P36fH0LMHff1/m8WOZyWZO169fBch3Fcwze92lVLx4CUJCgnn8+FGefk82bVpPfHw89es3pEmTZi99vY9PY9q378Du3b+wcOHXrFmzMc93MQqR2xmVID158oRu3boRGhpKnTp1qFatGmq1mu+//55du3axY8eODKs3Hz58mJEjRxIdHZ3m87JYbfbpW5BM0cUGSTPZnjyRmWzmpG9B8vKqZuFIcofixUtw5crfhi7kvCgiIoKdO3cA0K/fgEwnOsOGjWTfvj85f/4cR478D1/fljkZphAFnlEJ0ty5c1GpVOzZs4dSpUoZHg8ICKB///4sWLCA2bNnp7v9/PnzKV++PBMnTqRYsWIolUZVGxAZMOUgbUiqhSRT/c3r2jVdC5LMXtLRJ/x5+Tr89dedPH/+nPLlK9K4cdNMb+fpWZyePfvw3XerWbRoPs2atZC/nZnw/HkkQUFB2Nra4ulZXN4zkWlGJUjHjh3js88+S5YcAZQqVYqhQ4fy9ddfZ7j97du3Wb58OfXr1zfm8OIlIiIiiIgIBzIut5AVJUvqznVAQIBJ9ideLiIigoCAe4C0IOnpr+e8nCD98svPAHTr9n6Wu8k++GAA27Zt4fbtmxw6dICWLdvkRIh5Xnx8PDt37uDnn7cbuqkB7O0daNbMl/ff703NmrUtGKHIC4xKpRMSEtItFOnq6kpkZGSG25coUeKlrxHG0988nJ2dTTawt3Tp0gAEBNx/6Vp7wjT8/XX1j4oXL5Gtwqz5ib5F9PHjhxaOxDjXr1/D3/861tbWvPHGW1ne3tHRke7dewKwdu0q+V1Mw82b/nTr1omvvvrSkBzZ2ztgbW1NZGQEf/yxm969uzF58ni5D4kMGZUgValShV9++SXN53bt2kXlyhlPRx40aBDLli2Titk5RH/zMFX3mm5fr6BUKomOjiIkJH8t9ZBb6bvX8lOByOzK611sv/66E4AWLVrh5ORs1D7ef78PdnZ2/PvvP5w+fdKE0eV9J08ep0+f7ty+fRMXFxfGjv2MgwePc+zYWU6evMiGDVto3163zNXu3b/w/vuduXfvrqXDFrmUUV1sQ4YM4cMPP+Tp06e8/fbbuLu7ExwczG+//caJEydYvHhxhtv/9ttvBAYG0qZNG1xdXbGzs0v2vEKhYP/+/caEJsja+CMFULxIouH79NjY2ODpWZxHjx4SEHDfUNVY5JykGWz5r3sts9ddSsWL667pp0+fEh0dRaFChU0fXA6Jj4/njz9+A0hVFDIrXF1deffdrmzevIG1a1fi49PYVCFmm0ajwd//OgEBAdjY2FCpUmVKlnzFLDPuLl68wKhRQ4mJiaFBg0bMnbsQZ+eklleVSkWtWnWoVasOXbp0Z/z40dy/f4+PPurDmjXrKVOmXI7HKPIWoxKkJk2aMGfOHObOncvx40kLKbq7u/PVV1/Rpk3G/eKenp54emZvhXmRvqzMYLNTwW8dnmdqv6VKleHRo4fcv3+PunXrZStG8XL5OUHKynX3Int7exwcHImICOfRo0dUqFAxB6LLGWfPnvqvwKUbr77aJFv76tOnH9u2bebs2dP8++8/Fq9NFh8fx4YN3/Pjjz+kWgqmYsVKfPDBR7z11ts5NkA6MDCQ0aOHERMTQ5MmzVm4cGmGtaVq167Lpk3bGTiwH7du3WDAgA/44Ydt2V7YW+QvRtdB6tChA76+vty4cQOVSoWTkxM2NjYolUoePXqU4eDgWbNmGXtYkQmZrYGUVaVLl+b06RMEBNw36X5FatHR0dy+fQuQAdopFS9e4r8E6WGeSpD27dsLQKtWbVCpjP7TC+hmtL3xRjt27/6FDRu+Z86c+aYI0SgPHz5g5Mgh3LjhD4CDgyMVKlQkLi4Wf39/bt68weTJ49m16ydmzpybYQkYY8THxzNhwmjCwkKpXNmLefMWZZgc6bm5ubN69Xo++qg3t2/fYvTo4axduzHDtStFwWLUb+ndu3eZMGECly9fTvc1Ga3FllENE6VSSeHChXF0dDQmNEHSTLOSJV8x6X5LlUoaqC1y1o0bfiQmJuLq6oaHR1FLh5OrlC5dGn//69y7d5dmzXwtHU6maDQaDh3SDRto1aqtSfbZu3c/du/+hX37/mTEiNGUKVPaJPvNinv37vDhh30IDlbj4uLKqFFjefPNdoYEJTw8nG3bNrNmzUrOnTtDr15dWLJkpUnLVqxfv5aLF89jb2/PvHmLKFSoUKa3dXV1ZdGib+nZswtXrvzN11/P5PPPp5ksNpG3GZUgTZ8+nbt37zJs2DA8PT2z3GzasmXLl/ZJOzk50adPH4YMGWJMiAWWVqvl/n3d1PAyZcq+9PUxGhi4XzeOY1XrjJd8KFWqDIBh6rnIOZcvXwKgZs1a+bJiclauu5T0Y0Xu3buTE6HliAsXzhEWFoazszP16jUwyT6rVPHi1VebcPLkcX74YT2TJpl3jbbQ0FCGDh1IcLCaihUrsWzZaooVSz50wtHRkY8+Gkzbtm8ycuRQbt++yeDB/Vi9ej2VKlXJdgz3799j1arlAEyY8DmlS5fJ8j5KlSrNnDnzGTLkI376aRu+vq/RvPlr2Y5N5H1GJUjnzp1j5syZtG/f3qiDzp49my+++IKGDRvSvn173N3dCQkJ4a+//uLQoUMMGTKE58+f8+233+Ls7Mz7779v1HEKIrU6iOjoKKysrChR4uUtSFrgamjmlnzQ//G5e/cOiYmJUnAtB12+fBHQjZXIj7Jy3aVUtqwuQbp7N+8kSPv367rXWrRohbW1tcn226dPf06ePM6uXT8xbNhwXFzMs16fVqtl8uRxPHgQwCuvlGLVqnUZLmJdunQZ1q//kY8//pArV/5m0KD+bNy4NVut3FqtlpkzvyQuLg4fn8a0a/eO0ft69dUm9O79ARs2fM/UqZPZseO3PL3WnzANo+5w9vb2ODk5GX3Q33//nXbt2rFmzRo6duxI06ZN6dChA8uXL6dLly5cuXKF8ePHM2TIEH788Uejj1MQ6aeslijxikn/EIPuj5xKZU1UVFSenWadF2i12nyfIGVHXkuQEhMTOXhwHwCtW79u0n37+DSmcmUvoqOj2LrVfH8rt2/fwokTx7C1tWXhwuUZJkd6Dg4OLF++mipVqhIaGsInn3zM8+fG1yHas+c3Tp8+ga2tLZMmTc12S+vQoSOpWLESoaEhzJol3WzCyASpQ4cObNq0yegiZWfOnEm39alt27acOnUKgHr16knl5izSd68Z09T8MtbW1pQvXwHAMCBTmN6TJ49Rq4NQqVRUq1bD0uHkOvquY7U6KFs3WHO5fPkiwcFq7O0daNTIx6T7VigU9O3bH4BNmzYSGxtr0v2n5cmTx8yfr1stYcSIT6lYsVKmt3V0dGLx4hW4u3tw8+YNJk0aT2JiYpZjePo0jHnzdJN9Bgz42DA+MjtsbW2ZMeNrrKys2LfvT44dO5LtfYq8zagEqVChQpw/f542bdowatQoJk6cmOzrs88+y3B7Z2dnrl+/nuZz169fx97eHoCoqKgsDbgTSS1ImRl/ZIxKlXRFQCVByjn61qMqVarK9Z8GR0cnXFx03R95ochfUvday0zNrsqqtm3fpFgxT0JCgtm5c6fJ95/SypXLiImJpk4db3r06JXl7YsVK8aCBUuxsbHh0KEDrFy5LMv7mD//a8LCwqhQoZIhQTQFL6+qvP9+bwBmzZqW7oLqomAwKkHauXMnDg4OJCYmcvnyZU6fPp3qKyNvv/02ixcvZv369QQGBhIfH09gYCAbN25k6dKlvP322zx79oz169dTu7asl5MVOdmCBFCxoi5BunlTEqScIt1rL5dXutm0Wq2he81Us9dSsra2pmfPPgCsWLHCqBaZzLp797ahGvjIkWOMHodYs2ZtJk/+EtAlXIcOHcz0tqdPn+TXX3eiUCj4/PMvTZ50fvzxcIoV8+ThwwesWbPCpPsWeYtRg7QPHsz8xZyWkSNHEhISwuzZs5k9e7bhcaVSSefOnRk1ahR//fUXV69eZf369dk6VkGT0wlSUguSX47sX8ClSxcAqF27jmUDycXKli3HxYvnc32CdPXqFR4/fkShQoWzXRwyI+++25VVq5Zz48YNjh49TJMmOVP+YPnyJSQkJNC8eQvq1PHO1r7eeacTV69eYcuWTUyePI4ffthG2bLlM9wmJiaGGTOmANC1a49sx5CWwoWLMH78ZEaPHsb69d/x1ltv56l6W8J0LDINSaVSMWvWLP766y+mTZvGqFGjmD17Nn/++SfTpk3DxsaG5s2bc/ToUby8vCwRYp4UHx9vmIKflS42Z9tEnG0z96lTnyDdu3fXLOMdCpqnT8O4fl1XQ8zbu76Fo8lZWbnuUtJfh35+6ddbyw0OHNB1rzVt2jzVkkqmZG9vT5cu3QH4/vu1OXKM69evsnfvHwAMGzbKJPv89NMJeHvXJzIyklGjhr108dglSxYQEHCfokWLMXz4aJPEkJbXXmuFr+9raDTxfPXVl7IocAFl0XnapUuXpkuXLgwcOJAOHTpQqlQpw3P6ytwi8+7du0t8fDxFihTJdBXtQirY3/k5+zs/p1Am2hOLFi2Gi4sLCQkJhtXmhemcOXMarVZLxYqV8nWByKxedynpq4vrk8ncSKvVGsYftWqV8fJLptCzZx9UKhXnzp3hypV/TL7/JUsWAvDGG+2oXDn7NYxA1z04d+5CihYtxp07t5k48VPi4+PSfO3Bg/vYtEnXozB58peGsao5QaFQMH78ZOzsCnH+/Fl27057cXaRv5ktQWrVqpVhYHbLli1p1apVul+tW7c2V1j5ir7bq2LFyjlWXFChUFCrVh0ALl26mCPHKMhOnz4BQKNGuWcB0tyocmVdy3Jg4BPCwsIsHE3abt26wf3797C2tjZLxW9PT086dOgAwIYN35l03xcunOP48SOoVCqGDBlh0n27ubnzzTeLsbW15ejRw4wbN5ro6Khkrzl79jSffTYWgN69P6B58xYmjSEtJUqUZNAgXaHi+fPn8OzZ0xw/pshdzJYgNWzYkCJFihi+z+irQQPTVJotaPQzy/TdDzlFP3hYP5hYmM6pU7oEKTet0J4b2dvbGyq7X7v2r4WjSduBA7rB2a++2oQiRXKuteNFgwcPBmD//r94+PCBSfap1WpZsmQBAB07ds6R8Y01a9Zm/vylWFtb87//7adXr24cPLifW7dusnbtSoYOHUBMTAzNmvkyYsSnJj9+enr16kv58hUJCwtj8WLLrXcnLCN7KyZmwYsL1L44MFuYjn5mmX6mWWbEaGDEId1U8sUtojO15ENSgnQBrVabL5fCsIRbt27y8OEDrK2tqVcvf48/Mua6S6lGjZoEBNzj8uWLNG7c1MQRZp9+/FFOzV5LS7Vq1WjcuCknThxjw4bvmDjxi2zv89ixI1y8eB5bW1sGDMi5pZ+aNGnGypXfM27cKG7dusHo0cOSPd+iRSvmzJlv8gK4GbG2tmHSpCl8+GFvfvppG++800lmlxYgFhuDFBkZSWBgIABxcXGsWbOGGTNmcPbsWUuFlOcZ04KkBS4EqbgQpMr0kg/Vq9dEpVKhVqt59Ohh1gMVadJPB/fxaUzhwuZZMsJSjLnuUqpbtx6QNOsvN7l50x9/fz9UKmtatGhp1mN/+OEAAH76abthVquxEhMTWbp0IQDduvWkWLFi2Q0vQ97e9dm27Rf69v2QUqVKY2/vQK1atZk+fTYLFizF1tY2R4+flnr1GvDOO50AmDnzSzQajdljEJZhkQTp77//pmXLlmzcuBGAGTNmMG/ePH799Vf69u3LgQMHLBFWnhYREWFY/iOnu9js7OwMg2TPns245pXIvKQBveZrccjLvL11CdLly5eIj4+3cDTJ7d79KwDNmvni5ORs1mM3avQqjRs3RaOJZ/Hib7K1r337/sTP7xpFihShf/8BJoowY66urowaNZbfftvLsWNn2bBhK2+/3dGiLdUjR47F0dEJf//rbNy4zmJxCPOySIK0YMECypcvT7du3YiJieG3337j/fff58yZM7z33nusWCHFubJKPw6jePESODoav05eZum7NI4dO5zjxyoIAgLu4+d3DSsrK3x9zdvikFeVL18RJycnYmKi+eefy5YOxyAhIYE9e34DoH174xdQzY7Ro8ehVCrZv38vFy+eN2of8fFxLF26CNAtiuvs7GLKEPMUV1dXRo8eB8Dy5Yvw95c6cAWBRRKky5cv8/HHH1OqVClOnjxJTEyMYfbFW2+9xY0bNywRVp52+fIlAMMMs5zm6/saACdOHCMuLu1puSLzfvnlZwAaNvTBxaXg3oiyQqlU0qRJcwCOHs09ifr582cJCgrE0dGJZs1aWCSGihUr07FjZwBmz55hVAvb9u1bCAi4h5ubO7169TV1iHlOhw7v4uv7GvHx8UyaNFb+7hUAFkmQlEqlocbR4cOHcXR0pFatWoBubFJOFlTLr/755xKgmw1iDlWrVsfd3YOoqCjOn5dxY9kRHx/PL7/8BMC773axcDR5i376/OHD/7NwJEl+/nk7AG3bvmHRWm5Dh36Ck5MTfn7XWLduTZa2DQ9/Zlgj7eOPh5ttFl5uplAo+OKL6bi4uHDjhj/z58+xdEgih1kkQapRowY7duzg4sWL/PHHH7Ro0QKFQkFISAirV6+mRg1ZwTwrtFqtoYvBXMtTKJVKw6fjvXv/NMsx86sjR/6HWq3G1dXN7AN687omTZpjbW3N7ds3c0XRSLU6iP37/wLgvfe6WTQWNzd3xo+fDMDKlcuzVA5hyZIFPHv2jAoVKhlaooTuPZ06dSYAW7Zs4rffdlk2IJGjLJIgjRs3jpMnT9KjRw+srKz4+OOPAWjfvj13795l5MiRlggrz7p//x5hYWHY2Njg5VU1y9vbWWmxs8r6XCL9+Io///yd588zXiJApE2r1RoWxOzU6b0cWe09tzL2unuRo6Mjr72mKyyrb4WzpB07tqLRaKhTx9swkcGS3nyzPa+91hqNJp7Ro4cTGhry0m3Onj3N9u1bAJgwYTIqldmqweQJvr4tGThQV+5gxowp/PPP3xaOSOQUiyRI1apVY+/evWzdupX9+/dTtmxZAKZOncru3bulBSmL9IMwq1atnuUbbCEVHOsWybFukVle8sHbuz5ly5YjOjqKP//ck7WNBQCHDh3k2rWrFC5cmN69P7B0OGaTnesupY4d3wV047gsWe04IiKCH3/8AYAePXpZLI4XKRQKvvxyJqVLl+Hx40eMHj2cqKjn6b4+KCiQiRPHALoWsAYNGpkr1Dxl8OBhNG/egtjYWIYOHSCDtvMpi9VBsre3p3bt2hQuXNjw2Ouvv46Hh4elQsqzTpw4Buim95qTQqEwjJn54Yd1Uh8ki6Kjo/jmG13R1B49ehfoWULZ8eqrTalc2YuoqCjWr8+ZhVozY9Om9YSHP6NcufK0bv26xeJIydHRiYULl2Nvb8+lSxcYMmRAmi1JoaEhDBs2iOBgNRUrVjLM2hKpKZVKZs2aR61atQkPf8bgwf25eVMmF+U3Fl2sVmSfRqMxLE/RpEkzsx+/U6cuODk5cefObVnQMYuWLFnIgwcBFCvmSb9+5qkxkx8pFAo+/ng4ABs2rDOsSWhOT548Nqx/NnjwcKysrMweQ0bKl6/At9+uxd7egUuXLtC1a0d++mkbERERxMfHc/jwQXr37oa//3VcXFyZP39pvi9Wml1FitizdOlqvLyqERoawgcf9ODEieOWDkuYkCRIedzFi+cJD3+Go6MT1avXzPL2sQnwyaFCfHKoELEJWT++g4MDH344CIBlyxbJgo6ZtHv3L2zevAHI+ZXJc6PsXncptWjREl/f1/4bazOCoKDA7O80k7RaLTNnTiUqKopaterQpk3uaT16Uc2atVm//kcqVKhEcLCa6dO/oFmzBvj41OGTT4bw8OEDSpQoybp1m3JkvbX8yNHRkRUr1uLtXZ/IyEgGD/6QWbNmSQmAfEISpDzujz92A9CqVRujBlMmauH4IxXHH6lINHK8bLduPSlTpixqdRDTpn2OVpu9gbf53Z9//s7UqbrZRf37DzTLSu+5jSmuuxcpFAqmTv2K4sVLEBBwj379evLvv/9kf8eZsGbNSo4ePYy1tTVTpsxAqcy9f1YrVKjIpk3bGTNmoiEJSkhIwMnJiT59+rNt2y+UKVPOwlHmLc7OLqxY8R0dO3b+b2mWpXTt2okjR/4nfwvzOIU2n5xB/YW5fft2wsPDqVevHlOmTKFMmbQ/CYWFhTFjxgyOHDkCwBtvvMHEiROTjYnKqrCw52g0iUZvn1XR0VG0bduCiIhwVq1aR8OGPlnfhwaabXMA4GjXCKMHzF69eoU+fXqg0cTTq1dfPv10glmXBlCplLi4FDH7OciK2NhYli1byMaN69Bqtbz5Zntmzvw6V99QsyIr58BU111KDx8+YPDg/gQE3EepVPLmm+3p2rUHNWvWNvn7rNVqWb/+OxYunAvAZ59NoWvXHiY9RlYY8zvw9GkYsbFxeHh45Jvr0JL+9799zJgxlZAQ3Riv6tVr0qVLd9q2fUO6LM3E1bUIVlamuZbzTYK0dOlSNm/ezKxZsyhWrBhz584lICCA3bt3p1msrXfv3sTGxjJlyhTCw8OZNGkSDRo0YM4c44t/mfvmvGXLD8yePYNSpcqwa9ceo8Y9mPJGtWvXT0ydOgnQTS+ePHmq2QrM5eYESaPRsG/fnyxfvoSAAN3ioT169GbMmAm5bqxKduSGBAl0H37mzJmebGali4sL9eo1pHLlKlSsWInixUvg4VEUV1e3LCcG+rpjK1YsNUyQ+OCDjxg5cozp/hNGyM2/AwWFSqUE4liwYBGbNm0kJiYGAFtbW+rVa8CrrzalRo1aVK5cWYpv5hBJkFKIi4vDx8eHsWPH0qOH7hNceHg4zZo146uvvqJdu3bJXn/x4kW6d+/Onj17qFChAgDHjh3jo48+4vDhw0avWG3OP0wRERF06vQWwcFqJk78gm7d3jdqP6a+Ue3YsZVZs6aRkJCAh4cHH344iPbtO+b4GJvcdnOIj4/jypV/OHLkELt370KtVgPg6urGF19Mz5cFIXNLgqR39eoVNm3awKFDB3j+PO2p7SqVChcXFxwcHLG3d8DBQfdVuHARVCprrKysUKl0SWxERARqtRo/v2sEB6v/296aTz8dR/fuvSy6mKoultz1O1AQvXgOAgOD+OWXn9m58yfDB6MXlSz5CsWLl8DTszjFinni5uaW7Dq0t3fA3t4ea2sbbG1tsLGxwcbGVupSvYQpE6R88U5fv36d58+f4+OT1MXk6OhItWrVOHv2bKoE6dy5c3h4eBiSI4CGDRuiUCg4f/48b731VpZjiIqK4sCBfSQm6sZDKBT89wdT8d/PihceV6Z6LOXrbG1tKV68BC4urqn+8CYkJDB9+hcEB6spXbpMrqp0+9573ShfvgJTpnxGQMB9Zs+ewcKF86hXrwENG/pQqVJlypWrgIdHUbP8omu1WjQaTbKvhIQXf45Ho0kgISGBhATNf/8mfWk0GhITEw3PaTQJJCamfk6jSeD580ju37/H/fv3uH79GtHRUYY4XFxc6NGjNz179pFPjmZSrVoNZs78mvj4eP755zJ//32Zmzf9uX37FkFBgYSEBKPRaFCr1YYENrPs7ArRunVbBg4cIgOaRZrc3Nzp338g/foN4NatG5w8eZwzZ07h53edoKBAHj58wMOHD7K8X91SXbb/JUw2KJVKrKysUCqVKJVWWFkpsbJSYWWl+/nF562srFLdb3QtqEn3LP1X0mvSezzz9zP9PSzlY0n7e/mxUx83rccVjB79Ca6upimZki8SpCdPngBQvHjxZI8XLVqUx48fp3p9YGBgqtfa2Njg7Oyc5uszQ61W88knQ43aNiN2dnaUKlWaMmXKUbZsOZydXdi79w/+/vsSKpVuUKitra3Jj5sd3t71+emn3fz88za2bt3MnTu3OX78KMePH032OicnJ5ydXbC3dzD8sus/LSkUCrRaLVot//2b+N+/uq/4+Hji4+OIi4snNjaW+Pg4EhI0REfHEBcXS1yc7nlL1mZycXGhfv1GvP76m/j6vlagqmTnJtbW1nh718fbu36yxzUaDSEhwYSGhhAZGUFEhO4rMjKS588j/0umdcmwVqvF3t4BFxdnKlWqQuXKXhQqVMhC/yORlygUCipWrEzFipXp3bsfoOsGvn37Jk+ePCEw8DFPnjzh6dMwIiLCiYyMNPwbGRn539+2pKmeiYmJxMREExMTban/Uq42YEA/SZBeFB2tu1BSjjWytbXl2bNnab4+rXFJtra2xMbGGhWDra0tderUTXYTT/oi1Q1e17Gp+z4xMfG/2Q5JCUFUVBTBwWpiYmK4ccOfGzf8kx2vUKHCfPXVHBo1yl6lW9ULHawqKyWmatRRqezo1asPPXv2xt/fj1OnTnDx4gVu377F/fv30Gg0PHv2LM3zk9MUCgUqlQqVyhpra9V/3SjWKJVKVCrdz8m/VKhUViiVuu4W3acx/fdJr09KZstSsWIlKlasVKAGvuqbtTPTvJ1T111WqFQ2lCxZgpIlS5j/4DkgK++/yBmZPQceHm54eLhler8ajYa4uLj/PhTGERsbS1yc7ntdK3ZCin81JCQkGlq7X3wu5f0JSPX4i/ei1I8nfw60L2xPitdpX/J48nthWrGl/Xjq+PT7cHBwyNpJy0C+SJDs7OwA3Vgk/fegmzWU1qc8Ozu7NOtUxMbGGj2LzdPTk99/323UtumJi4vj4cOH3L59m1u3bnHr1i3CwsLw8vKiW7dulCxZMtvHcAHufaL/KWdmWfj41MPHp57h54SEBMLCwggNDSUkJITIyEjDL3tsbCyxsbFotdpkTcApm2Wtra2xsbHB1tY23X/1r9ElQ7ova2vrfDUwOjdydHx5y4o5rruCKjPvv8hZcg7yh3yRIOm7y4KCgihdurTh8aCgILy8vFK93tPTk/379yd7LC4ujqdPnxo9QBsgPDyahATTDo50di6Kt3dRvL1TT+EPC0t/TaXczsqqEB4eJfHwyH6Sp9ufEkfHQmmeA60W4uMhPj6B6GgTVCUUacroHIicJ++/5ck5sDwnp0Ima7nPFwmSl5cX9vb2nD592pAghYeHc/XqVXr1Sr1oZIMGDZg3bx737t0z1Ek6ffo0AN7e3kbHkZCQKLNHLEzOgeXJObAsef8tT86B5ZhyXn6+SJBsbGzo1asX8+bNw9XVlZIlSzJ37lw8PT1p06YNCQkJhIaG4uDggJ2dHbVr18bb25tRo0YxdapuiYApU6bQsWPHbLUgCSGEECJ/yDej+UaMGMF7773H5MmT6dGjB1ZWVqxduxYbGxseP35M06ZN2bNHVzhOoVCwdOlSXnnlFfr27cvIkSNp3rw5U6dOtex/QgghhBC5Qr4oFJlbSJ+zZVlZKeUcWJicA8uS99/y5BxYllKZVHcpuyRBEkIIIYRIId90sQkhhBBCmIokSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgiSEEEIIkYIkSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgpQNy5cvp3fv3skeu3btGr169aJOnTq0aNGCtWvXWii6/C+t9//gwYN07tyZunXr0rJlS+bMmUNMTIyFIsz/0joHL5o8eTItW7Y0Y0QFS1rvf1BQEKNHj6Z+/fo0atSITz/9lNDQUAtFmP+ldQ7++ecfevXqRd26dfH19eXrr78mLi7OQhHmP0+fPuWLL76gefPmeHt706NHD86dO2d43lT3YUmQjLRu3ToWL16c7LGwsDD69etH2bJl+emnnxg+fDiLFi3ip59+slCU+Vda7/+5c+cYNmwYr7/+Ort27WLq1Kn88ccffPnllxaKMn9L6xy8aP/+/Wzfvt2MERUsab3/cXFx9O/fn4CAAL7//ntWrlzJ1atXGT9+vIWizN/SOgehoaF89NFHlC9fnl27djF9+nR27tzJggULLBRl/jN69GguX77M/Pnz2bFjB9WrV+fDDz/k1q1bJr0Pq3Ig9nwtMDCQSZMmcf78ecqVK5fsuW3btmFjY8PUqVNRqVRUqFCBe/fusXr1ajp37myhiPOXjN7/LVu24OPjw8CBAwEoU6YMo0aN4rPPPuPLL7/ExsbGEiHnOxmdA72goCA+//xzGjZsyMOHD80cYf6W0fu/e/duHj58yL59+3B3dwcwXP+RkZHY29tbIuR8J6NzcOHCBZ4+fcq4ceOwt7enTJkyvPPOOxw7dkwSVRO4d+8ex48f58cff8Tb2xuASZMmceTIEXbv3o2dnZ3J7sPSgpRF//77L05OTvz666/Url072XPnzp2jQYMGqFRJeaePjw937twhJCTE3KHmSxm9//3792fcuHGpttFoNERGRporxHwvo3MAoNVqmTBhAh06dKBhw4YWiDB/y+j9P3r0KD4+PobkCKBZs2bs379fkiMTyugcODs7A/Djjz+SkJDAgwcPOHz4cJq/KyLrXFxcWLVqFTVq1DA8plAo0Gq1PHv2zKT3YWlByqKWLVumO6biyZMnVK5cOdljRYsWBeDRo0e4ubnleHz5XUbvf7Vq1ZL9HBcXx/fff0/16tVxdXU1R3gFQkbnAHTdDmq1mhUrVrBy5UozRlYwZPT+3717l/r167Ns2TJ27dqFRqOhadOmjB07FkdHRzNHmn9ldA7q16/PwIEDWbRoEQsWLCAhIYGGDRvy+eefmznK/MnR0RFfX99kj/3xxx/cv3+fpk2bsmDBApPdh6UFyYRiYmJSdePY2toCEBsba4mQCiyNRsO4ceO4efMmU6ZMsXQ4Bcb169dZunQpc+fOlS5NC4iMjGTXrl34+fnxzTffMG3aNM6fP8+QIUPQarWWDq9ACA8P5+7du/Ts2ZPt27ezaNEi7t+/z9SpUy0dWr50/vx5PvvsM1q1akXLli1Neh+WFiQTsrOzSzVTQX9CChcubImQCqTIyEhGjhzJ6dOnWbx4sTRtm0lsbCxjxozh448/xsvLy9LhFEjW1tYULlyYb775BmtrawCcnJzo0qUL//zzD7Vq1bJwhPnfvHnzCA8PZ8mSJQBUr14dJycnPvjgA/r27Su/Gya0f/9+xowZQ+3atZk/fz5g2vuwtCCZkKenJ0FBQcke0/9crFgxS4RU4AQFBdGzZ08uXrzI6tWrZYq5GV2+fJkbN26wdOlS6tatS926dVm5ciWPHj2ibt26/Prrr5YOMd/z9PSkXLlyhuQIoFKlSgA8ePDAUmEVKOfPn6dmzZrJHtN/SLtz544lQsqXfvjhB4YPH07z5s1ZvXo1dnZ2gGnvw9KCZEINGjRgy5YtJCQkYGVlBcDJkycpV66cjD8yg2fPntG3b18iIyPZvHkzVapUsXRIBUqtWrXYu3dvssc2btzI3r172bhxo/wOmEH9+vXZsGEDMTExhhuGv78/oJvVKXKep6cnfn5+yR7Tn4OyZctaIKL8Z/PmzUyfPp3evXvz2WefoVQmtfWY8j4sLUgm1LlzZyIjI5k0aRI3b97k559/Zv369QwaNMjSoRUIs2bNIiAggLlz5+Lq6oparTZ8JSQkWDq8fM/Ozo4yZcok+3JyckKlUlGmTBmZRWUG3bt3x8rKik8//RR/f3/Onz/P5MmTadSoEdWrV7d0eAVCv379OHr0KAsXLuT+/fucPHmSCRMm4OvrS9WqVS0dXp53584dvvrqK9q0acOgQYMICQkx/J2PiIgw6X1YWpBMyM3NjTVr1jBz5kw6deqEh4cH48aNo1OnTpYOLd9LTExkz549xMfH07dv31TPHzhwgFdeecUCkQlhPq6urmzatIlZs2bRtWtXbGxsaN26NRMnTrR0aAVG06ZNWblyJcuWLWP9+vW4uLjQpk0bPvnkE0uHli/89ddfxMfHs2/fPvbt25fsuU6dOjF79myT3YcVWpnaIIQQQgiRjHSxCSGEEEKkIAmSEEIIIUQKkiAJIYQQQqQgCZIQQgghRAqSIAkhhBBCpCAJkhBCCCFECpIgCSGEEEKkIAmSEMLipBybECK3kQRJCGFRBw4cYPz48YafT58+TZUqVTh9+rRF4pkwYQJVqlShSpUqjBkzJlv7qlKlimFV98zo0aOH4dhZ2U4IYXqy1IgQwqLWrVuX7Ofq1auzdetWKlasaJmAAA8PD5YuXYqrq2u29rN161Y8PT0z/frp06cTGRlJt27dsnVcIUT2SYIkhMhV7O3tqVOnjkVjsLGxMUkMWd2HJZNCIURy0sUmhLCY3r17c+bMGc6cOWPoVkvZxbZkyRLeeOMN9u/fT/v27alZsyYdOnTg4sWLXLp0iS5dulCrVi3at2/PyZMnk+3f39+fQYMG4e3tjbe3N0OHDiUgICDLcVapUoUff/yRCRMmUK9ePRo2bMiMGTOIiYlhzpw5+Pj40KhRIyZNmkRsbGyy7fRdZfr/18mTJ+nfvz+1a9emcePGzJkzB41Gk413UQiREyRBEkJYzJQpU6hWrRrVqlVj69atVK9ePc3XPXnyhFmzZjF48GAWLlzIs2fPGDFiBKNHj6Zr167Mnz+fxMRERo0aRUxMDAB37tyhe/fuhISEMHv2bGbOnElAQAA9evQgJCQky7HOmzcPGxsbli5dSocOHdi4cSMdO3bk8ePHzJ07l+7du7Njxw42btyY4X7GjBlDvXr1WLFiBW+//TbfffcdO3bsyHI8QoicJV1sQgiLqVixIvb29kDG3VHR0dFMmTKF5s2bA3Dr1i2++eYbZs6cyXvvvQdAQkICI0aM4M6dO1StWpWlS5diZ2fHunXrDMd49dVXad26NWvWrEk2MDwzKlSowLRp0wBo0KABO3bsID4+nnnz5qFSqWjWrBkHDx7kwoULGe6nS5cuDB061BDP/v37OXToEN27d89SPEKInCUJkhAiT/D29jZ87+7uDiRPqpydnQEIDw8H4NSpUzRq1Ag7OztDF5a9vT3169fnxIkTWT5+3bp1Dd+rVCpcXFyoUaMGKlXSn1FnZ2ciIiIyvR8AT09PoqKishyPECJnSYIkhMgT9K1AL7Kzs0v39U+fPmXPnj3s2bMn1XPGzE5L6/iFChXK8n5SxqxUKqUOlBC5kCRIQoh8ycHBgcaNG9OvX79Uz73Y6iOEEGmRvxJCCItSKpUkJiaafL8NGzbk5s2bVK1a1ZAQabVaxowZQ5kyZahatarJjymEyD9kFpsQwqIcHR25c+cOJ0+e5NmzZybb75AhQ7h//z6DBg1i//79HD16lOHDh/P777/j5eVlsuMIIfInSZCEEBbVs2dPrK2tGTBgAEeOHDHZfr28vNi0aRMKhYJx48YxYsQI1Go1y5Yto23btiY7jhAif1JoZXSgEEIYTJgwgTNnznDw4EGLxVClShWGDRvG8OHDLRaDEAWdjEESQogU4uLiuHTpEq6urpQuXdpsx7158yaRkZFmO54QIn3SxSaEECmo1Wq6devG4sWLzXrczz//XBaqFSKXkC42IYQQQogUpAVJCCGEECIFSZCEEEIIIVKQBEkIIYQQIgVJkIQQQgghUpAESQghhBAiBUmQhBBCCCFSkARJCCGEECIFSZCEEEIIIVKQBEkIIYQQIoX/AwmvwN3DqZbZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "fig, ax = plt.subplots(4, 1, figsize=(6, 8), sharex=True)\n", + "for a in ax:\n", + " a.plot(df['time_min'], signal_norm, 'k-')\n", + " a.set_ylabel('normalized\\nsignal intensity')\n", + "\n", + "# Plot for a few prominecne values\n", + "for i, p in enumerate([0.01, 0.1, 0.3, 0.5]): \n", + " peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=p) \n", + " ax[i].vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', color='dodgerblue')\n", + " ax[i].set_title(f'prominence filter = {p}')\n", + "\n", + "# Add necessary labels\n", + "ax[3].set_xlabel('time [min]')\n", + "ax[2].set_xlim([10, 20])\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The choice of a prominence filter is going to be dependent on the size of peaks \n", + "that you care to resolve in your chromatogram, their degree of overlap, and how \n", + "noisy your signal is. The prominence filter can be passed as a keyword argument \n", + "in the `fit_peaks` method of a `Chromatogram`. For example, passing a restrictive \n", + "prominence filter of `0.1` can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3788.10it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:02<00:00, 1.03s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADw1UlEQVR4nOzdd3gUVfcH8O/M9k2y6ZWEJAQYereDgDRRRNDXVyygYkURG1IEQSmKvDTBH6h0BUFRREWxoFhAVARBIMmQ3gvpZfvO/P6Y3RBIXzbJJjmf5+FJsjNz52QyJHP23nsuI4oiCCGEEEIIIaQjYFs7AEIIIYQQQghpKZQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOgxIgQgghhBBCSIdBCRAhhBBCCCGkw6AEiBBCCCGEENJhyFs7gHasBIAKQE4rx0EIIYSQxgsFYALg08pxEEKaCUMLoTYbgyiKakFw/fVlWQbN0S65HF3nlkHXueXQtW4ZdJ1bRnNdZ5ZlwDCMEYDG5Y0TQtwC9QA1nxxBEKOLiipd2qhczsLX1wNlZXpYrYJL2yaX0HVuGXSdWw5d65ZB17llNOd19vPzgEzG0OgNQtoxmgNECCGEEEII6TAoASKEEEIIIYR0GJQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOg6rAEUIIIYS4uZMnT3pBWqOI3rwmpCYBQM7gwYPLG7MzJUCEEEIIIW7q5MmTLIBXGIadxjCMAgDT2jER4oZEURQtJ0+e/ADAG4MHD663Pj4lQIQQQggh7usVmUw+Q6fzNSuVaj3DMLTKLiFXEEWRMZuN2rKy4hk2mxUAltW3PyVAhBBCCCFu6OTJkzqGYafpdL5mLy/fwtaOhxB3plJpDAD8S0oKp508efLt+obD0ThSQgghhBD3FMIwjEKpVOtbOxBC2gJ7L6kC0ny5OlECRAghhBDinlgADA17I6Rx7P9XGDSQ41ACRAghhBBCCOkwKAEihBBCCCGEdBiUABFCCCGEkA5j/fo1YZMm3dq3teNorPj4WPXhw997t3Yc7QklQISQNiEpKREPPvhfLFo0HxaLubXDIYQQQlrEvHkvdYuNPefR2nG0J5QAEULahNdfX4hz5/7Fl19+jr17d7d2OIQQQkgLoRoYrkbrABFC3F5GRjr+/fd01dcHD36JqVMfab2ACCGkFQmCAL1e3ypvYmu1WoFlm3bqoUOHDL777ntzfv75R3+LxcK+/fameK1WK2zYsDb833//0VVWVsq8vb2tI0eOLnzuudlZcXGxmieffLjXxo1b4vr1G6AHgOeffzrm3Ll/dd9++/M/crkcoiji9ttH93/ooelZ9977QMGV5ywouChfs2Zl+KlTJ7xtNhvTvXuPihdfnJsRE9PV5Njn/fc3Bh88eCC4vLxc3rVrt8p58xalOrbXFnN4eIT5vff+L/SXX37yLy4uVnTq1Mk4deoj2bfeensJAOzbt9d/z54PQx955LGsrVvfDy8tLVH07Nm7fOHC11N37Nga8vPPh/3lcrk4ceJdeU89NTMXAEwmE/POO2vDjh791beoqFCpVmuE/v0HlM6b92q6n5+/bdKkW/sWFBQoP/nko9CzZ097bd78AV9cXCR75511nU6c+MOnvLxcHh0dU/nEE09nXX/9jRWO7+3Agc/8du/eGXrx4kVV586dDSNHjincuvXdiKNH/z7pzM+EZVmnvj93RQkQIcTt/fXXHwCAqKhopKamgOfjUFJSDB8f31aOjBBCWpYgCLj//rt7xMfHtcqQqB49elV89NGnfFOToO+//ybwzTdXJ9hsVqZbt+6m+++/u5e3t4/lrbfWXfDy8rL98stPPps3b4ro1atP5bhxt5UEBASYjx8/puvXb4DeZrMhNvacl8lkYv/556THNddcV3n69ClteXmZ/JZbxpRceS6r1YrnnpvRHWDE1157I8nf39+6YcPa8Jdeerb7p59+dRYACgoKlOfO/ev15ptrEsxmE/PGG69Hv/HG61Fbt37I1xXz888/HZOcnKR99tkX0qOjY4zffvu13/Llr8WwLJs4duz4UgAoLCxQfvnl50HLlq1M1Osr2VdfndvtkUce6D1q1JiCjRu3xn3zzZf+u3bt6DR8+MiSnj17G1evXhH+55/HfebOXZAaEdHZxPO8ZtWqN6Lee+//wubPX5SxZcuHcdOnP9DrppuGFz3xxIwcm82GWbOe6m6xWJi5cxemBAYGWT7++KOgefNe7L5u3cb4AQMG6Q8f/s57zZq3oqdNm545YsSokj///F23Zcu7EVf7M3Hm+2vSTdKCKAEihLi9Eyf+BACMHTseP/zwLVJSknHu3FkMHXpzK0dGCCGtoe2tCzR8+C2FAwYM0gOAwWBgbrllTOG4ceOLIyIizQAQFfVo/r59e0MSEy9oxo27rWTIkOtKTp06oQOQe/r0KQ+ZTC52796j4sSJP72uuea6yt9++8WnWzeuIjAwyHrluY4d+1WXlpaq2b79o3PdunU3AcCCBa+l7tixJaSoqFAOADKZTFy69K0Ub29vGwCMHz/h4q5dOzrVFfOFC/Hqv//+y+e115Ynjh49rhQAZs58Pic5OVG7e/fOUEcCZLPZmBdfnJvmePjv27d/2YUL8Z4vv/xKJsMweOKJZ3I++WRPaELCBU3Pnr2NPXv2qhw5clTxDTcMrQCAiIhI8w8/fFuWmpqsAYCAgEAry7KiRqMRfH39bD/99IMuJSVZu3nzzvOOcyxc+Hr6hQvxHrt37wwZMGBQ8t69u0Ouv/7GosceeyoPALp27XYxMzND9dVXB4Kv5mfizPd3NfdMc6IEiBDi9s6c+QcAMGTItUhNTUFKSjKSkxMpASKEdDgsy+Kjjz7l29IQOAAID4+oGnqm0WjEqVMfyf/mm698d+3a6ZGdnaVKS0vRlpQUK2w2gQGAYcNGlC5e/EqgwWBg/vzzuFfv3n3KO3WKMJ45c0oHIPfEiT+9b755RFFt50pIuKDRarU2R/IDAMHBIda5cxdmOr729va2OpIfAPDy0tnMZvNl31j1mHk+XgMAQ4ZcV1F9n759B5R/8MHW8Oqvde166bwqlUoIDAw2MQwDAFCr1SIAmEwmFgAmT76n6LfffvFas+atTllZmarMzAxNdnaWukePnpedxyExMUGj0Wht1ZMLhmHQq1efilOn/tYBQGpqsnbo0JuLqx/Xv//AiisToKb+TJz5/twVJUCEELdWUVGBnJxsAADH9UCXLjEAgOTkpNYMixBCWg3LsvD09BRaO46mUKnUVfHq9Xr2yScf5oxGIzts2PDisWPHF/bvPyB95swnejj2ueGGm8oVCrnwxx/HvP7556Ru5MhRRZGRUaYvv9wfkpGRpkxNTda+9try5NrOJZPJRccDeV1Ylm2wF616zHUVIhAEGyOTyS7bqFAoLvuaZeuOZcmSVzsfO/ar34gRowqvv/6m0h49euXs3r0zpLDworK2/UWx9m9NEATI5XJROh8rimLDnYRN/Zk48/25K0qACCFuLSkpAQAQGBgEb28fdOnSFQCQnJzYmmERQghx0i+//KRLSUnW7t//9ZmgoGArABQXF8lKS0vljkRDqVSK/fsPLPv11599EhIueM6b92paeHiEmWEYcePGDWGhoWHG6gUNquvSJcZYWVkpS05OUnXpEmMCgMLCAvl9993VZ9mylQnOxNy9ew8DAPz995+ejiFwAHD27BnPTp0iDM60WVRUKPv++0OBc+cuSL7jjslVPTaZmelqtVpTLfm6lGB07drdoNfrZXFx59XVe4FiY897hod3NgJAZGSUITb2vCeAfMf28+fP1jtnrDE/k/bErbunCCEkMVH6W9WtW3cAuKwHqDHvcBFCCHEvwcEhZgD48svP/TMy0pR//nncc/bsWV1tNhtjNluqnvZvvHFoyZEjPwbodF7WmJiuJpVKJXJcz4qjR3/xv/76G0vqan/YsOFl0dEx+iVLFkafPHnCIz4+Vv3aawuivL19LP37D9Q7EzPH9TQOGDCodP36NZ0PH/7OOzExQfXOO+tCT5484fPf/96X50ybOp23TaPR2o4e/dUnOTlJFRt7TrN48SuRqakpWovl0nVQq9W2rKxMVX5+nnz48JGlERGRhiVLXu3y+++/eV24EK9eunRR58zMdM2UKffnAcD990/L+fPP3323bn0vODk5SfXppx/7f/31V0H1xdLYn0l7QQkQIcStJSVJPT0xMVLPT+fOkQCkoXGlpSWtFRYhhBAnDRo0RD99+hMZX375edC0aVP6vPXWsqg+ffqX33TTsCKev1TdbuTI0aWCYGP69Olf5nht4MDBZaIoYvjwW0rqap9lWaxcuTYxMDDYPG/eS92effapHjKZTFyzZkOCSqVy+p2zFSvWJF977fUla9asjHrssWm9//zzd59XXnkt6fbbJxY3fHRNcrkcCxe+npyenqZ59NEHe8+Z80I3k8nEPvjgw1lZWRmayspKFgDuvPPu/FOnTng/99zT3eVyOdav33QhKqqL/vXXF8Y89dSjPVNTUzQrVqy5MHjwtZUAMHLk6LJnnnku7eDBLwKnT3+g99dffxE4btz4i44hcrVp7M+kvWDoHdRmk2yzCdFFRZUubVQuZ+Hr64Hi4kpYrW1q+G+bQte5ZTTmOj///NP4+eef8Mori/Hf/94HABg1aigKCwuwd+/n6NGjZ0uG3GbRPd0y6Dq3jOa8zn5+HpDJ2BQAXVzasBNOnjzZg2Vl3wYFdapQKtVuW1GLuJfjx496BgQEWaoXgdi0aUPI998fCvj882/OtWZszc1sNqrz87M8BcF26+DBg+Pr2o96gAghbi0nJwcAEBoaVvVacHAIACA3N6dVYiKEEELc1R9//O49e/as7seO/eqVmZmu/P77Q95ffvl58MiRo2utmtcRUREEQohbc1SACw0NrXotJCQUsbHnKAEihBBCrvD0089lGwwGdsWKZdHl5WVyPz9/85133pX3+OMzcls7NndBCRAhxG1VVlagrEwqthMScqkHKCRESoYoASKEEEIup1KpxFdeWZwBIKO1Y3FXNASOEOK2HMPfvLx08PT0rHo9JISGwBFCCCHEOZQAEULc1qXhb2GXvR4cLPUA5eVRbz4hhBBCmoYSIEKI23L08FSf/wMAAQEBAIDCwoIWj4kQQgghbRslQIQQt5WTkwWgZg+Qv78/AKCoqLDFYyKEEEJI20YJECHEbTnmAIWEhEEwGlH+918AAD8/qQeooqICJpOpzuMJIYQQQq5ECRAhxG055gCFBQQi/c1lKDywH0qlDD4+OigUCgA0DI4QQgghTUMJECHEbTnmAIUnXoA5KxOwWCBknoMKZvj7O+YB0TA4QghxZ0OHDhm8b99e/8bu//PPP+omT76tz4gR1w96663l4c0ZW2OsX78mbNKkW/u6ss2mXJPMzHTll19+7uvK83d0rb4OEMdxIwAcqWNzCs/zXTiOGwDgbQBDABQCWM/z/KpqbbAAFgN4DIAvgKMAnuZ5PrHaPlfdBiGk5VgsFuTn56GTWg35+fMAgOAJw1GZwcNTrkC3gEDk5uagqIh6gAghxJ199tnBMzqdt62x+2/evCk8ODjE9PbbGy94eno1+ri2pCnX5PXXX40KCgoyT5w4ubi54+oo3KEH6HcAoVf8GwvACuANjuP8AfwA4AKk5GUxgKUcxz1SrY1XATwF4HEANwAQARziOE4JAK5ogxDSsi5ezIcgCJgcFgGIInR9e0HmycBcWIrYhW/hUbUWDKgHiBBC3F1wcIhVo9GIjd2/srJS1qtX78rOnaPMfn7+7TIBato1EZnmjabjafUeIJ7nzQCqFvPgOE4BYC2Az3ie38Jx3HwAJgAzeJ63AojjOK4bgLkAttsTlJcAzOF5/ht7G/cCyAZwF4C9AJ5wQRuEkBaUk5MNL7kcN/j6AQC8h/SAaLNC4e0BCAK0ACI0WkqACCEdks1gqPNNbIZlRValEpt738YaOnTI4Oeem516zz1TChcseDlKEATG19fPcuTIj/4mk5Ht129A2fz5i9KCg0OsQ4cOGQwAn3yyJ/STT/aEfvTRp2cjIiLNmzdvCj506GBQaWmJPCQk1HTPPfflTp78nyIA+P3337zmzHmh+7Rp0zM/++yT0ICAQNOyZW8lT5363z733Tc1++uvvwxSKhXCjh17YxmGwZo1b4X/9ddxH6vVykRHx+iffnpW5oABg/SOePfs+TBg3769IcXFRcr+/QeWBgUFm+v7/h5/fBrXu3e/8uLiIsWxY7/6KRQKYcKESfljx44vWrFiaVRycqJHSEiYcc6cV1IHDhysr35Nxoy5tWTatP/2jorqol+//t1EAPj115+9Fix4ufv8+YuSPv98X3BcXKxnXFys56RJt3odOPDt2UmTbu17yy1jC2fNejG7egxBQcGm5cv/l1rb9fjgg71xeXm5irVr/xdx+vQpnUzGit2796h87rnZGTExXTtcNaFWT4Bq8QyACABj7F8PA/CrPXFx+AnAfI7jggBEAfCyvwYA4Hm+hOO4UwBuhpS8uKINQkgLys3NwciAQCgYBprO4WC1DGADGJkMqhA/GDMvooenF0pLaUQAIaTjSXp2xsC6tmm6c6URc+ZXDeFPfnFWf9FiqTWxUUVFV0QuXMw7vk6Z+1JfQa+v9flQGdZJH7VkedzVxA0Ax48f8x06dHjR229v5LOzs5Rvvrm0yzvvrOu0dOmKtM8+O3jm8cen9brppuFFDz/8aG5AQKB17dqVnX755Yjfs8++kB4T0834999/ev7f/62LrKiokE2d+vBFR7t//nncZ+PGLXF6vZ6VyVgRAH7++Ue/tWvf4Q0GA+vt7W2bPv3BHnK5XFi2bGWiTqezffXVAf/nn3+6x4YN78X17dvf8OWXn/u+++47nR977KmMG24YWvbjj9/77tq1o5O/v3+9SdCBA5+G3HPPfTlbtnx4/uuvv/Dfs+fDsB9//N7/qadmZoSHR5jfemtZ5Jo1b0V++OEnl10/Hx8f28svL0h55ZXZ3b/4Yr/fsGHDS1euXB49atTYgttuu6PkhhtuKn/xxZndAgICzXPnLkxvynWufj2MRiP77LNPclFR0fq1a/+Pl8lYcffuD0KefvrRntu3f3Q+LKyTpSltt3VulQBxHKcGsADAOp7nc+wvhwM4e8Wujoy3s307AGTUsk9nF7bhFLnctaMMZTL2so+kedB1bhn1Xefc3Bx08/AEAPgM6glWtAGsNApAFegDY+ZFRGg0KCgvc/n/s/aI7umWQde5ZdB1bts0Go1t8eJlaQqFQuzevYfx+PFjhSdPnvAGpKFhLMuKGo1GCA4OsVZWVrJffXUgePbs+SmjR48rBYDo6C6mnJxs1Wef7Q2pngDde+/9uY7ejPT0VCUA3H77xIsc19MIAL/99otXQgLvceDAoTMBAYFWAHjxxblZsbHnPffu3RXct2//1P37Pwm+8cahxVOnPnIRALp27ZYbF3feIzU1WVvf9xQR0dnwzDPP5QDAI488kbdnz66wYcNGFI0dO74UAMaOHV+4efO7EbUdO2zY8PLx4+/If/fddyJ+/PF7Pw8PD5sj2fH19bPJ5XJRqVQKjpgbq/r1+Pjj3QHl5WXyFSvWpCgUChEAlix5M/Wuu27v++mnHwdW703qCNwqAQIwFYAGwPpqr2khDV+rzmj/qLZvRx37+LmwjSZjWQa+vh7OHl4vnU7TLO2Sy9F1bhm1XeeionzsTkrAvIdvxP3dQsAIl/57eoT4oRTSELgMQ2Wz/T9rj+iebhl0nVtGR77OMRs2/VPXNoZlLxum1mXN+jON3Tf6rdVXvmFc577OCg4OMTkewgHAw8PTZrVaa53ncuFCvNpisTCrV6+IWrPmrSjH6zabwFitFsZgMFQdFxUVXWMoV+fOkY7nPcTHx2oB4N57J11W0c1qtTIWi5kBgIyMdM2IEaOKqm/v1atPRUMJUFhYeNV5tFqtAACdOnWqikepVAlWq6XOuTwvvjgn89SpE96nTv3tvWnTttimzJmqS/XrceECrzUYDLJbbx0xoPo+FouFzchIU1/tudoad0uApkGa+1N9UL8BgOqK/Rw/qEr7dtj3MVyxT6UL22gyQRBRVqZveMcmkMlY6HQalJUZYLMJLm2bXELXuWXUd51TU6Wefq/QAJj0FYBY7W+Bl/TQE6HRoKCgEMXFTv837TDonm4ZdJ1bRnNeZ51O0yZ6lmQaTaO/8eba11nVk59Lan/eFwSBAYBXXlmc3KVLV+OV21XV5iSp1eoasavV6qrtgiAwGo3G9t57O2oM41MqlQIAMAxz2Z8bAJDL5Q0mI3K5rMY+DNP4+ygvL1dRUlKskMlk4vHjR3V9+/Yz1H/E5aezWm01kqvq10MQBISGhhlXrFhTo7qxh4dHuyw0UR+3SYA4jgsEcCOAN67YlAEg7IrXHF9nAVBUey3pin0c73i4og2nWK3N83vEZhOarW1yCV3nlnHldRZFEQX2RVADNHIIVzzgyHWeEAF4yRWwFRfSz6gJ6J5uGXSdWwZd5/ava9fuRplMJubkZCsdQ+AAYMeOLUFpaSnqxYuXN3peTExMN4PBYJCZzSamR49eVcnUokXzI7t27aafNm36xcjIKP25c2c8AeQ7tvN8XLMOMxAEAUuWLIyOjIzWjx17a+GmTRs633jjsLI+ffrakyDmsmxHJpOLFRWVsurH5+fnKcPCwmokiA5dusQYfvnliL9Op7M5htJZrVbMmfNCl5Ejbym+446OVWLbnd7iuBFSOvvLFa//CmAYx3Gyaq+NAsDzPJ8PKUEpAzDCsZHjOB8AgwD85sI2CCEtxJichIU+fngyMhqBHjUr0TNyGYQuodiXnYnS8rJWiJAQQkhL8Pb2to0Zc+vFDz/c3mn//k/8UlNTlJ9++rH/jh1bw319/Zo0J2bkyFGlkZFRhsWLX4k5evRXr+TkJNXKlcvDjxw5HBAdHWMEgPvum5b7119/+G7evCk4KSlRtXPn1qA//zzerIuQvv/+xpCUlBTtggWvpd577wMFPXv2Ll+2bFG0yWRiAECj0Qj5+XmqrKxMBQD07Nmr4ujRX/yOHz/mmZiYoFqy5NVIg0Evq+8cEyfeVeTp6WGbO/eFmJMn//JISODVr746N/r06ZPe3bpxDfQ2tT/ulAD1B5DM8/yVY8a2AdAB2MpxXC+O4x4G8DyANwGA53kTgHcAvMVx3ESO4/oB+BhSr89+F7ZBCGkhBcd+g4qVQcnKEKBV1LqPx5Du2JediaziIohXjlcghBDSbsyb92rGnXfelffBB9s7PfzwfX12794ZOmXKA9nPPtu0ifsymQzr1797oVu37pXLly/u8thjU3v9++9pr4ULX08aNmx4OQCMHj22dM6cV5K///5QwKOPTu199OivPhMnTs5rnu8MOHv2X83evbvCpk59OKtLlxgTAMyf/2paQcFF1dq1KzsBwMSJd13MyEhXT5/+QG+bzYaZM1/I6t6dq1iwYE63Z599sodOp7PeeOOwentwvL29bRs2vB/v7e1jnTdvdrcZMx7tmZ+fp3zjjVUJ1XvDOgrGXR4cOI7bCGAgz/M31LLtGkiFEQYCyAGwmuf5d6ptl0EaOvcIpCIKvwJ4huf5VFe20UTJNpsQXVTk2rkJcjkLX18PFBdXUrd/M6Lr3DJqu86iKOLCyy+AKSnBezmZeOP1Z2o91mAyY8QziwEAx4+fgkZT7/zUDo/u6ZZB17llNOd19vPzgEzGpgDo4tKGnXDy5MkeLCv7NiioU4VSqe5wD6mENJXZbFTn52d5CoLt1sGDB8fXtZ/bzAHief7peradAFAjMaq23QZpUdO5zdkGIaT5WXJzwJSUwCIIKFTV/StKJWMRrvWAzWZDaWkpJUCEEEIIaRR3GgJHCCGoOHMaAHC+vAx+vl517ld5IRNrevXFQxGRKC0trXM/QgghhJDqKAEihLiVyn+lwosnS4oR4udd535yL6nHJ0ClQllZSUuERgghhJB2gBIgQojbsFVUwJCYAAA4VVqCEH+fOveVeUhLefkplNQDRAghhJBGowSIEOJWAu+6G2csZlw0m+pPgLRSAuQpl6O8uKjO/QghhBBCqqMEiBDiNmSengieeAc2pUnrEYf41730AqtSQLCvhG0oKmyR+AghhBDS9lECRAhxK+bKMhSVSEPaQvx86tyPYRiYGAYAYCrqUAtYE0IIIeQquE0ZbEJIx2a+mA9zWipKVVKvjkalhM5DU+8xFjkLjUWArYzmABFCCCGkcSgBIoS4hYoTf6Fg/6ewhIcAAEL8fcDYe3jqUuyjxXdn4sF461oiREIIIYS0A5QAEULcgj4uFgBQoJBG5tY3/M2hItQX+w5lYmiX6OYMjRBC3A7DQMYwTItPZRBFURBF2Fr6vIS4EiVApNkIFjNKjvwETY+e0HSObO1wiBsTzGYYEi4AAJJNegCotwKcg4dGqgRXXl7ebLERQoi7YRjIBIYJ1RutLf4cp1XLrSzEHHdLgtavXxP200/f+x848O3Zph6bmJigeuKJh3vt2LH7fOfOUebmiI+4F0qASLPJ/XQfKn78AaWCDZHL30JQaFhrh0TclP7CBYhWKxS+PkgsKADQuB4gD6UCoSo1VHp9M0dICCHug2EYVm+0yv84lyPojVahpc6rVcvZ6/uEyr3UclYURbdKgJwVG3tOM2/eS13NZhMVButAKAEizabw96NQAdiWkoS+n+/D008/19ohETdVGXseAOARE4mcI1JPUGN6gHQlerzddwDiDIbmDI8QQtyS3mgVKg2WFkuA7NpNorBx4/qQTz/dG9qpU7ixqKhQ2drxkJZDCRBpFrbycqjsD6VnykphPPFXK0dE3FnleSkB0kQEIq+oBAAQ3IgeIJW9SpzKvh4QIYQQ9zN06JDBM2Y8m/7jjz/4paQkeQQHhxinT38ia+zY8VUlPA8f/s57x44tYVlZmRpfXz/zzTePLJox49kclUoqDRofH6t+9913OsXFxXoZjQbW3z/AfMcdk/MfeeSx/NrOuWPHlqAdO7aEz5+/KHncuNtKatvn5Mm/vF9++ZUUb29v25w5L3Rvlm+euKV2k8UT92LOzQUA5JtM0NtsSEjgIYr0kEpqslZUwJieBgBQBPkgr0j6exhazyKoDhpPKQHSMiwEoaXfBCWEENJY27dvDh85clTR++/vPD9kyHWlS5cu6nrixJ8eAHDkyGHd8uWvxYwfP6Fg27bd55977qX0o0d/8Vuw4OVoANDr9exLL83qrlZrhA0b3o3fvv2j80OH3ly8deu7EWfP/ltjvYRdu3YE7ty5NXzhwiVJdSU/ALB16y5+/PgJdW4n7Rf1AJFmYc6XEiCbKOCpyC5QsAwKCwsQEBDYypERdyP39ESPdetgOHcKBeVZsNpskLEsAny8GjxWq/OEAYCnXA6DQQ8PD8/mD5gQQkiTjRw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI1ffv2qxoHvWfProBt294PX7x4WeKIEaPKWue7Je6uyQkQx3H+ACYDGAUgGoA3gAIAaQAOAfia5/kSF8ZI2qBS+zv6pVYrbgkMQoXVioyMdEqASK2U/v6Qde2Es4fPAAACfXSQy2QNHqf2kKrAaWUyVJSXUwJECCFuatCgIZeV6+S4npWnT5/SAUBKSoo2KSnR48iRw/6O7Y5BI4mJCepbbhlTdv/90/IPHvzCLykpQZuVlalKS0vRAoDNJlQtGFdcXKzYtGl9pEwmE8PDO5ta4vsibVOjEyCO4wIALADwmP24OACpABIA+ALoC2AKABPHce8CeIvn+VrHZZL2rzw3FwoAWYKAHpDeoc/Iy2ntsIibYgULTBUlyC2Uhr8FN6IAAgDI1CrpeIZBZVEhEBLaXCESQgi5CnK5/LJx8KIogmVlovS5wEya9J/ciRMnF155XHBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM+yNNuD1NSoBIjjuP8AeAfASQBPAPiC5/kadWc5jtMBGA/gSQCxHMc9zfP8Jy6Ml7QRGRGdsf2zvfCN7IabRUDBAKXZ2a0dFnEz1rIyxL7zNjTRnaHu7IncwmIAQIifd6OOZ2QsjIIANcuisrDG301CCCFuIjb2nMeYMbdWFT2Ij4/1jImJ0QNAeHhnQ0ZGmrpLl5iqXpvjx496fvzxR8Hz5y9KO3jwC/+KinL5vn1fnlMoFKK9Pfvcn0t5lY+Pt2X48JFlQUFB5qeemt5r+/bNwY8++mReC32LpA1pbA/QcwBu43n+VH078TxfBuBjAB9zHHcdgDUAKAHqgDKKi8BXVOCGgGBU6svgIwrQ51OHILmc/gKP4r9PwpCVhZDJNyLHXgGuMQUQHI7ry1BQVoExVkszRUkIIe5Jq5a3aPfG1Zzvq68OBEdGRhv79OlX+dlnnwSmpaVq5s59NRUApkx5IHfFiqVd1q9fE3bbbXcU5ubmKFevXhEVEBBgDg4OsQYHh5hNJhN78OAXvtdcc21FUlKieuPG9REAYDaba8TUs2dv4+TJ9+Tu3r0zbMSIUSUxMV1pOBy5TKMSIJ7nhzW1YZ7n/wRwU5MjIu1CUZG0mKWnzg8Gswk+FgNMRUWtHBVxN3qeBwBoo8IgCjbkFEg9QKEBTUiAbEaczs7EDSJVgSOEdAyiKApatdx6fZ9QOVq4oq9WLbeKYtN/4Y4dO/7ip5/uDV63bpUmMjJS/+abqxJ69+5jAIDbb59YLIpi8p49H4bu3/9JiFbrYRsy5NqSF16Yk+nYHh8fl7t586aIDRvWsAEBgeZx424rOH78mE9c3HkPABevPN+MGc/mHDv2q+/y5a9FbdnyAU9D4Uh1VAWOuJwoiojKzMStQcHQajxhVmsAiwFCWWnDB5MORX9BSoDUoQEAgNzCEgCNWwTVwUMjzQOqrKxwaWyEEOKuRBE2FmKOVwv3AEnnFgVRhK2px0VHxxjmzFmQWdf2CRPuLJ4w4c7i2rYxDIPZs+dlzZ49L6v669WHt82a9WL2rFkvVo21V6lU4r59X55vTGw33jis/OjRv082Zl/SPjR2DtC2pjTK8/x058Ih7YFoMmKgwYiBnaPxhVYHq1YHlBfBVlnZ2qERN2LT62FMTwcAqIK9YRNMyLHPAQprwhA4P5UaoSo1jNTDSAjpQEQRNlEUm5yIEEIa3wN0C3DZUuthABQA0gHkAPAH0AWACcAZVwZI2h5rqVR232izQeHlgwz/MCz85mP4+PnhqVaOjbgPQ+IFQBShCgoAIxdRWqSHwWQG0PgqcABwk0yNqX0HIDk1tXkCJYQQQki70tg5QFGOzzmOux/AWwDu5nn+r2qv9wJwAFIRBNKB2cqkBKjEYoFaq4Payxc2UURxcTFEUQTDMA20QDoCw4ULAADPLhEQbVbk2Ie/+Xt7QaVQNLodUS4DrAIEg7E5wiSEEHKVaHgZcTfOjB1dDmBe9eQHAHiejwWwEMAcVwRG2i6rfS5Ghc0KtdYLGo20OKUgCKikYXDETjCZwCgU0IRLi+M6hr+FNqH3BwBYhfQ+jmiiBIgQQgghDXOmCEIAgLpms1sB0FLsHZyhWHqQrbRaofX0hoehHM/FdEOFxYKyslJ4etItQoDgB6Yi8r7JsKacgqG06NIaQE2Y/wMArFIOwAyYzc0QJSGEEELaG2d6gP4AsJjjOP/qL3IcFwrgdQBHXBEYabsqi6QFKQ2iCKVSDdZiwk2+/hjs7Ysy+/A4QliWAStaAUFKXBwlsJtSAAEAZGql1J6F1gEihBBCSMOc6QF6CcAvAFI5jjsOqfZ6MIAbARQBeN5l0ZE2yVBcBDkAi0y6vWxKabFmT7kc5eWUABFAFATIFArYysohWu0JkH0R1KaUwAYAhUpKgGRWqytDJIQQQkg71eQeIJ7n/wXQG8C7ALwADAGgAbAKQD+e51NdGSBpe0o6R2JB3Dkct0nVOW0qKQFSy2QoL6W1gAiQvXEDEl+Zh5J//ql6zZlFUAFAYV8HSCGKDexJCCGEEOLkQqg8z2cDeNnFsZB2okywIaGyAj3siY+gUFVt0xcVtFZYxE2IoghjYiJsFeUAbHD8GrpUBKGJCZDOA9/k5cCi1WCki2MlhBB3xTCQMQzTZhZCJcSdOJUAcRynAjAdwBgAoQAeATACwKkrq8ORjqe8vBwAoNHaix2wLIwA1LhUIIF0XJb8PNgqysHI5VD4qAGIKNcbUGkwAWj6EDilnw47MtIQ4O9P78oQQjoEhoFMw1pCRbPeqee4qzq3Ums1CIocSoJIW9bk/zgcxwUA+AlATwBxkIbDaQHcDmANx3GjeJ4/7tIoSZuiTUrEbUEhsKnUVa+ZGBZqUYCZhsB1eMakJACAJqKTNP9HrkC2ffibr5cHNPY5PY2lte+vNxjAMACNhCOEtHcMw7CiWS+v4P8UBJNBaKnzsioN68ldJ2cUPqwoim6VAK1fvybsp5++9z9w4NuzjT1m3749/p999klwfn6+ytfX1zJ27K0Fjz02I1cmkzVnqMQNOPPOwSoAOkgJUCoAR+3ZewB8B2AJpJ4h0kEFZWbi4c5R+Epx6UHWxMoBmxmWCiqC0NEZkhIAAOrwoKps5VIJbJ8mt6dWKuAtV8BDEGGz2sDSHy5CSAchmAyCzVjZYgmQXYsPu2sOBw585vd///d25FNPPZt+3XU3lJ8/f1a7fv3qSLPZwjz77As5rR0faV7OJEB3AHiO5/lEjuOqnjR4njdyHLcKwM6mNshx3DQA8wB0AZAE4DWe5/fZtw0A8DakYguFANbzPL+q2rEsgMUAHgPgC+AogKd5nk+sts9Vt0EaT26vxsWotVWvHQqOwbdf7cCtwRNaKyziJgz2HiBV8KW5Po4eoKbO/wEAjUKBzQMGS22XFMPDP8AFURJCCGnPvvzy88Dhw28pnDLlgQIAiI7uYkpLS1V/9903AZQAtX/OZPFqSOWua2MF0KTxKxzHPQhgG4D3APQBsBfAXo7jbrCvNfQDgAuQkpfFAJZyHPdItSZeBfAUgMcB3ABABHCI4zilvf2rboM0jdxe/Q0aj6rXZJ7esIkirQPUwdkMBpizMgEAygBd1eu5hSUAml4BDgA0GhXMgvQGqLG05KpjJIQQ4lpDhw4ZvHv3zsDp0x/kRo68YdCUKZN7ff/9Ie/q+xw+/J33gw/e03PkyBsG3XXX7X3WrVsVZjKZGMf2+PhY9fPPPx0zbtyIAcOHXzforrtu77N9+5agus65Y8eWoBEjrh/03Xff+NS2/amnZmZOnfpI7pWvV1ZWtPi8KtLynPkhnwDwNIBvatn2AIC/G9sQx3EMgKUA1vI8/7b95aUcxw2FVFRhBAATgBk8z1sBxHEc1w3AXADb7QnKSwDm8Dz/jb3NewFkA7gLUjL1hAvaII0kCgKUjkkYGq+q11VqqSJcZWVla4RF3IRoMsL7hhthK8wDIxOltxpQvQfIp8ltsiwLg80GJctCX1IC/4YPIYQQ0sK2b98c/tBDj2bOn78o9Ysv9gcsXbqoq6+vX/w111xXeeTIYd3y5a/FPPbYUxk33jisLD09VbVhw9rOmZnp6lWr1ifr9Xr2pZdmde/bt3/5hg3vxsvlCvHAgU8Dtm59N2LIkGvL+/btZ6h+rl27dgTu3Lk1fOHCJUmjR4+tdfLxtddef9kDSUlJiezQoYOB/fsPpHdqOwBnEqBXARzmOO40pCRIBHAfx3GvAxhn/9dYHIAoAB9Vf5Hn+XEAwHHcNwB+tScuDj8BmM9xXJD9WC/7a45jSziOOwXgZkjJyzAXtOE0udy1Q2VlMvayj+5GMJrheLuG9dSBZaWvulSW4Nnorsgzm11+TZqDu1/ntkoe4I/Ip5+GkJ+AysTTYOz3R/ZFqVO5U6B/1T3TFCZR6gGyVJS1ifurNdA93TLoOrcMus5tz8iRowumTn3kIgDMnj0v69y5M1779u0Juuaa61J27doROmrU2IIHHnjoIiANR5PL5Wlz577YPT09VanVeggTJ07Ov+++qfk6nU4AgJkzX8jev39fSEJCvKZ6ArRnz66AbdveD1+8eFniiBGjGpXMVFRUsLNnz+pqsZjZWbNeymiO75+4lyYnQDzP/8Zx3BgAbwKYA4AB8CKAUwBu53n+SBOa627/6MFx3HcABgJIAbCM5/mvAIQDuLKaR7b9Y2f7dgC48mbNtm+Hi9pwCssy8PX1aHhHJ+h0mmZp92qZi6WaGIIowsPbBxqNNIpQYzMh0j8Av+krm+2aNAd3vc5tmWCzotJUBrX93hBFEZn2BKhLRHDV601hcvQ6mg1t6v5qDXRPtwy6zi2DrnPbMWjQkPLqX3Ncz8rTp0/pACAlJUWblJToceTI4apOfMev9cTEBPUtt4wpu//+afkHD37hl5SUoM3KylSlpaVoAcBmE6reNSsuLlZs2rQ+UiaTieHhnU2NiSsvL1c+e/asbnl5uaoVK9ZciIqKNjd8FGnrnF0I9VcAN3Ecp4FUNKCM5/kKAOA4Tn5Fb0t9HJMAPgDwOqRhaXcD+MKeZGkhDV+rzmj/qLZvRx37+Nk/d0UbThEEEWVl+qtpogaZjIVOp0FZmQE2W0sXfmmYOU8aymQUbBBlKhgM0u8RpVxaDFVms6K42P2Hwbn7dW6LREGAKTMTXuGBMJaVwWIwg2EZVJpM0BtNYBgG/l6eMBqa/rfHbB9LV15Q3Cbur9ZA93TLoOvcMprzOut0GupZagZyufyyRQpEUQTLykTpc4GZNOk/uRMnTi688rjg4BBLfn6e/IknHu7p5aWzXn/9jSWDB19b1q9f/8p7753Ur/q+DMNiyZI3ErZtez9s+fLXordu/TCeZev+WSYk8OrZs5/rZrPZmHXrNvK9evUx1LkzaVecWQcoGcBknufP8DxvAGCotu1aAIeARg/Ddzzp/I/neUf1uNMcxw2C1KtkAKC64hjH4jKV1c6tqh6HfR/HU5Ar2nCa1do8fwBtNqHZ2r4qXt5YnpoEi8mEMQoNBEH6fSeqpDxTLojuGXcd3PY6t0Gm7GykLVoIuc4LEY/cDkEQwQLIyCsAAAT66KCQyavumaaw2t//M1dU0M+rAXRPtwy6zi2DrnPbERt7zmPMmFur5uPEx8d6xsTE6AEgPLyzISMjTd2lS0zVm9HHjx/1/Pjjj4Lnz1+UdvDgF/4VFeXyffu+PKdQKER7e/buv0t/M3x8vC3Dh48sCwoKMj/11PRe27dvDn700SfzaosnLS1V+fzzz3T39PS0rV694UJ4eISlWb5x4pYalQBxHHcfAIX9yygAkzmO61/LrqOq7dcYmfaPVw5ROw9gAqR1hsKu2Ob4OqvaucIglc+uvs8Z++cZLmiDNJZcjjMFFwEAt6kulcFm7BXhlACsVivkciqy0tEYk6Wq8qqgAAhmY9XrGXnSG37hgc53uKaJViTn5aC/6sr3OgghpP1iVZoW7aq6mvN99dWB4MjIaGOfPv0qP/vsk8C0tFTN3LmvpgLAlCkP5K5YsbTL+vVrwm677Y7C3Nwc5erVK6ICAgLMwcEh1uDgELPJZGIPHvzC95prrq1ISkpUb9y4PgIAzGZzjZh69uxtnDz5ntzdu3eGjRgxqiQmpmuN4XDLli2Oslot7KuvLk1QKBRiXl5u1YNJcHBIY0cykTaqsU+hQwC8YP9cBLConn1XN+H8/wAoB3A9pLV3HPoCSATwO4CnOI6T8TzvWHF4FACe5/l8juNKAZRBqhaXBAAcx/kAGATgHfv+v7qgDdJIBsOlIX+qausAsfaKcFqZDHq9HjqdrsaxpH0zJicDANRhlxZABS71AHUKcr5+W4JcxC8ZaVjkQfN/CCHtnyiKAqPUWj256+Ro4YVJGaXWKgpik7vdxo4df/HTT/cGr1u3ShMZGal/881VCb17S0PObr99YrEoisl79nwYun//JyFarYdtyJBrS154YU6mY3t8fFzu5s2bIjZsWMMGBASax427reD48WM+cXHnPQBcvPJ8M2Y8m3Ps2K++y5e/FrVlywd89aFwOTnZiri4814A8NRTj/S68tijR/8+2dTvj7QtjU2A5gNYD6ngQTKk8tD/XLGPDUApz/PlaCSe5w0cx60EsIjjuCwAfwGYAmAspCQlFlKhha32/a4F8DykNXvA87yJ47h3ALzFcdxFSD1G/4PU67PffpptLmiDNFJ5SgpuCwpBntkEueLSZHZGI/VUq2Uy6PWVlAB1QMbUFACAKvCypR+QmW+vABfgfA+QRiXda9UTcEIIaa9EETaDoMhhFD4tPllJFERBFGFreM/LRUfHGObMWZBZ1/YJE+4snjDhzuLatjEMg9mz52XNnj0vq/rr1Ye3zZr1YvasWS86ilxBpVKJ+/Z9eb629kJDwyyU5HRsjUqAeJ43A0gDAI7joiFVSOvD8/w/9tdCICUWh5oaAM/zyziO0wNYDqATgDgAd/E8/7O97XGQkq9TAHIAvFxtvhAg9UbJAWwBoIHU4zPOHjPsvTxX1QZpPH1SAh7uHIUz5WVgmEvljG0KaWiSlpXRWkAdkGA2w2RfAFUR4AVpzWRJZlUPkPMJkIdSCW+5AhZaCJUQ0kGIImyiKDY5ESGEOFcFzgbgNKQiATH21wYAOADgBMdxt/M8X9CUBnmeXwNgTR3bTgC4oZ5jbZCqx82tZ5+rboM0jrmyEiwAC8NeNhnM6BeCF9PSkFuQi+16SoA6GlNGOmCzQe7lCSiY6vmPS+YA9RLluHfAYGQnp1xtqIQQQghp55zpOv0fABmAex0v8Dz/LYD+kBYUXeGa0EhbZLH37liuXMySlcGqVMEqitBTAtThGFOkxEQT0QmwXiq0YzSZcbFEWqeuU6Dzc4BkCvt7ORYq4kMIIe7m6NG/T95zz5QaJa4JaS3OJECjAMzjef7v6i/yPH8W0lCy210RGGmbrPYEyMrKamxzFEWorKR5Gh2Npnt3BN11F3R9ul72elaBNNzbU6OGzsP5BQ1ZpZQAMZQAEUIIIaQBzgyBUwKoq/qHEVIvEOmgrEZpKSWbrOatdbenByzRMTCV1jrHkbRj6s6R8InuBGPCXzAVXVqSITPfPvwtyP+yOWNNJVdKAy5ZGw2HJ4QQQkj9nOkBOg7gBY7jLlvvx/718wD+dEFcpI0SjVKp/doSoIFyGYb5B8JUWlpjG2nfGAZgrCbYjJf3/mVdvPr5PwAgV0tV4FiBFkQkhBBCSP2c6QFaCGnNnhSO4w4ByAcQCOBWAAGQ1tMhHZRgkha4FOQ118O1MAxUEGGmKnAdijkvD9bcbLCh3rCZDJdtqyqBfRVrAAGAQiklQHJKgAghhBDSgCb3APE8fxLAdZB6giYAeBnAJAAnANzI8/xfrgyQtC3JoaFYfiEOmZqaC1Ja7UOcrLRWS4dScfIEMje8jayPP4Nou3xx7ayL9gToKnuAlBp7AiQ2sCMhhBBCOjxneoDA8/y/AO5xcSykHSgAcKasFP4azxrbLAwLiAJsBkPNA0m75agApwqumeRcmgN0lQmQhwY/F1wEo1FjCAOIlAgRQto5hoGMYZiWXwhVdG4hVELciVMJEABwHDcewBgAoQBeATAQwEme59NcFBtpgwz23h2lSl1jm42VAYIVgsnU0mGRVmRMtSdAAbrLXrfabMi2V4ELv4oS2ACg9vbExtQkBPj744mraokQQtwfw0Amym2hepvB6ec4Z2nkGitjleW4WxK0fv2asJ9++t7/wIFvzzb2mJ07twZ9+eXnQYWFhcrg4GDT3Xf/N/e//72fynV3AE3+j8NxnBbSoqejAZRBqvr2PwAzAAzkOG44z/PnXRkkaTtCLhZgpH8gPGQ15wBZZXLAaoLNSAlQR2EtKYG1uAhgGMh9PSDaLv3scwqKYbXZoFLIEeznfVXnUdurwBmNRjAMA5G6gAgh7RjDMKzeZpD/lXlaMFiMLTb5UaNQs9eGD5B7MF6sKIpulQA11e7dOwN37tzW6YUXZqf26zew8vffj+reeWddlJeXt238+NtLWjs+0ryceefgDQCDIa0H9BsAs/31qQC+A7AUwF0uiY60Of1LS3FDdAy+ZWv2yguOynBmSoA6iqren5AgiOLla/Sk5xUAADqHBIJlWQiC80mLSqGAkmWhtNogCgIA50tqE0JIW2GwGIVKs6Glq7+0+LC75lBRUSGbNu2RrDvumFwMAJGRUQUHDx4I+vvvP3WUALV/ztzE9wKYz/P8EQBVTyw8z+cCWAZgqItiI22Qwv7OO2Nf9LS6v0K74dHTf+OM0KbfNCJNYExNBgBoOoUAV1RoS8+VEqCosKCrPo9aqcC2AUPwbt8BMOTlNXwAIYSQFjN06JDBu3fvDJw+/UFu5MgbBk2ZMrnX998fuqzr//Dh77wffPCeniNH3jDorrtu77Nu3aowk8lU9W5WfHys+vnnn44ZN27EgOHDrxt0112399m+fUudf0B27NgSNGLE9YO+++4bn9q2P/nkM7kPP/xYPgBYLBbmwIHP/LKyMtXXXHNdmYu+beLGnEmAfACk1rGtGEDN2e+kQxAFAVUD32pJgEQPL5RbrdDbS2WT9s9RAEEZ5FtjW1reRQBAVGjgVZ9HrVLAaF8E1VxZcdXtEUIIca3t2zeHjxw5quj993eeHzLkutKlSxd1PXHiTw8AOHLksG758tdixo+fULBt2+7zzz33UvrRo7/4LVjwcjQA6PV69qWXZnVXqzXChg3vxm/f/tH5oUNvLt669d2Is2f/1Vx5rl27dgTu3Lk1fOHCJUnjxt1WUl9cf/zxu+ctt9w4aNWqN6OHDRtR2ND+pH1wJgE6B+CBOrbdYd9OOiCx2tA2Vl2zDLZCoQIAGKgKXIcR9MA0dH78UWg713yTLs3eAxTtgh4gpVwOk72HyVheftXtEUIIca2RI0cXTJ36yMVu3bqbZs+elxUT07Vy3749QQCwa9eO0FGjxhY88MBDF6Oju5iGD7+l7IUXXk7744/ffdPTU5V6fSU7ceLk/FdeWZzWvXsPY5cuMaaZM1/IBoCEhPjLEqA9e3YFbNv2fvjixcsSR48e2+DK6zExXY2bNm2LnTXrxdTjx4/6rV69olPzXAHiTpyZA7QMwOccx/kD+ArSMLjhHMc9AuApAPe5MD7Shgj24gaCKEJWSw9QqL4Uj3aOQqmNFqvsKNQhwVAGaFAR+ztsV3T8pee6rgeIYRiYRem+MlVQAkQIIe5m0KAhl/1y5rieladPn9IBQEpKijYpKdHjyJHDVSVBHbVsEhMT1LfcMqbs/vun5R88+IVfUlKCNisrU5WWlqIFAJtNqBomV1xcrNi0aX2kTCYTw8M7N2rCcWBgkDUwMMjap09fQ3FxsWLPnl1hs2a9lK1UKqmaTjvW5ASI5/kvOI57EMAKALfZX14NIB/AUzzPf+rC+EgbItiHthkFG2TKGj3S8DVW4rqgEPypr2zp0EgrYVkGotkAm+nyXr8KgxEFpdLfQlfMAQIAs/2vpYXuL0IIcTty+eVLVYuiCJaVidLnAjNp0n9yJ06cXKMEdXBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM/WUpQJAH766QddeHiEuXv3HlVvz8XEdDNYrRamqKhQHhISaqn1QNIuNHkIHMdxPXme/4jn+c4AekIqetAHQBjP81tdHSBpO0SzVBDQLAhQKGuuA8TY1waSCdQD1BGUHf8dRd8dgiE1qcbKpBn2CnB+Ok94aWsmy86w2muymCspASKEEHcTG3vusrHx8fGxnjExMXoACA/vbMjISFN36RJjcvzLy8tRrF+/Oryiopz96qsD/hUV5fJt23bFP/PMcznjx99eUlpaYn8T/9LfFx8fb8vw4SPL5s1bmJqcnKjdvn1zcF3xbNnybvj27VtCqr92/vy/Hp6entagoGBKfto5Z+YAfcdx3DQA4CW/8zwfy/M8PdV2cDI/f7yZEI9NqcmQK1U1d7AnRXJao6VDKP3tF+Tu2YOKC4k1tqXZh79FhgS47HxW+0eLXu+yNgkhhLjGV18dCD5w4DO/xMQE1VtvLQ9PS0vV3HfftDwAmDLlgdy//vrDd/36NWGJiQmqo0d/9Vq58o3oysoKeXBwiDU4OMRsMpnYgwe/8M3MTFf+8stPutdfX9gFAMxmc41n2Z49exsnT74nd/funWFJSYm1PJAAU6Y8mHP06C/+H364IzA5OUm1Z8+HAQcOfBZy//3TsuvqNSLthzNzgOQALro6ENL2WVgG/5SWAADGK2vOAXKUxlZA6vpmGFqrpb0SBQGmjHQAgCLAC9XfoQMuFUDoHHL1838cUq1m5BfoMVBds/eREELaI41C3aJP6ldzvrFjx1/89NO9wevWrdJERkbq33xzVULv3n0MAHD77ROLRVFM3rPnw9D9+z8J0Wo9bEOGXFvywgtzMh3b4+Pjcjdv3hSxYcMaNiAg0Dxu3G0Fx48f84mLO++BWp5LZ8x4NufYsV99ly9/LWrLlg/4K5OaiRMnF9ts1pS9e3eHbt36XkRAQID5ySdnpk+Z8kCBs98jaTucSYBeBbCB47jlkCq+1Vh0g+f59KsNjLQ9evs77wzDQK5Q1tjOqKQESMWyMBqN0GhcM/SJuB/LxXwIBgMYhQJyTxUE8+UVENKreoBclwCdtBnxb2oa3vb3b3hnQghpw0RRFDRyjfXa8AFytPDCpBqZxipaxSaP+omOjjHMmbMgs67tEybcWTxhwp3FtW1jGAazZ8/Lmj17Xlb11x999MmqZ9BZs17MnjXrxWzH1yqVSty378vz9cU0efI9RZMn31PU+O+CtBfOJEDvApAB2Ior39a9ROZ0RKTNqsjMxHD/QJRBRG3dx6y9B0hNCVC7Z0pLAwCoO4VCsNQsxJNmnwPkyiFwaqW0ChWVWSeEtHeiCBtjleV4MF4tPlZLtIqCKIJWNCdtmjMJ0GMuj4K0C6bkRDwTHYNzdUxCF+3zgtSsDAaDHr6+NRfHJO2DMd2eAIUE1CiAYBMEpOVIPUDRoa6pAAcAaqUSCoaBiRZCJYR0AKIImyiKlIgQ4gRnEqBOAL7geb7ebkXS8Vj0eigA2Bim1v54k28w5iQloKi8FNvpXfp2zZSWCgBQBnjX2JaVXwiz1QqVUoFOgX4uO+d1CjVmDr4OBWf+Be6e4rJ2CSGEXJ2jR/8+2doxEFKdM12ncwBEuDoQ0vZZjVJSY2VrL24gyuQoYViUWa0wmSgBaq9EUYQpUxrmrfD3qrE9KUsash0dGlTrUElnMTL7yNtahtwRQgghhDg40wN0AUBfAN+6OBbSxlmN0oOnwNQ9BcyxPhDN02i/GIZBzP9WQ0iNh60yo8YcoORsKQGK6VTn8gzOnVcuA6yAaLE2vDMhhBBCOixnEqCDAJZxHDcBtVeBE3meX3rVkZE2RzBJlb5sdb2rLwi4y9cXZoUMxgqap9GeydUqyMKDUXY+qca2ZHsPUBcXJ0CsXAbABlho/TpCCCGE1M2ZBOg1+8dh9n9XEgFQAtQB2Uz2HiBZHT1ADIORWg1YDy0yy8paMDLS0liWgVBZUqMAAgAkNVMPECuXA7ABNpoTTAghhJC6NTkB4nmelscltRLMZukjW3cCZAagBmCpo1IccS/OLFibv3c3WJsFuh5hNbZZrFak20tgdwlzbQIkU8gBmMBSAkQIIYSQelxVMsNxXA+O467nOC7GVQGRtisnMBBrkxKQrFLXuY8F0sO0RU8JkDtLSOBx99134Jpr+uH111+FpZHDykRRRPmff6DoyM+wVtTs5UvPK4DNJsBDo0KQb80KcVdDppLez2GFJq/PRwghhJAOxJkhcOA47j4AqwCEVHstF8B8nuc/cFFspI0pUihwvLgQw9Qede5jYRgAIqwGfcsFRpqkrKwMs2bNQE6OtKD255/vgygKeO215Q0eay0uhq28HGBZyL01EK3my7YnZuYCkHp/mtqz1BBGrcJfxUVQBQbgOpe2TAgh7odhIGMYpuUXQhVpIVTS9jU5AeI47g4AuwD8BOAVALkAwgA8CGA7x3GFPM9/7dIoSZvgqOymUKjq3MfKsIBog4WqwLmtvXt3IScnG+HhEXjssaewZMmrOHDgM4wfPwHXXXdDvceaqhZADYJoq1mN7UJ6DgCge+eaw+OuFqPTYlXSBVzn5417XN46IYS4D4aBTCVYQm16vVNvZF8NmVZrNbGKHHdLgtavXxP200/f+x848O3Zph4riiKefvqxblarhd28+QO+OeIj7sWZ/zgLAezjef7KlQa3cxy3F8B8AJQAdUBehYW4ztcP3nUVQQBgsydANqOxBSMjjWWxWLB3724AwNNPz8Jtt92B+PhY7N27G++++06DCZDRvgCqOjQIEGsORePTswAAPZohAVIpFAAAk4nuLUJI+8YwDGvT6+WFf/4pWPWGFhv3K9dqWP/rrpMzXj6sKIpulQBdje3bNwedPXtG17NnLypR20E4kwD1BbC4jm07AOxzOhrSpnEXL+KmmO44ItT9O9HKsoAA2Iy0WKU7OnnyBIqKCuHr64cxY24FAEyf/gQ+/fQT/PPPSZw9ewZ9+/av83iTPQFSBvrU2CaKIvg0aVgdF9nJ5bGrlfYEyGAEw9RagI4QQtoVq94gWCsrW3riY7sqhhUbe06zd++usK5du9Hk5A7EmQSoAIB/HdsCAJjr2FYnjuMiAaTWsulxnue3cBw3AMDbAIYAKASwnuf5VdWOZyElZY8B8AVwFMDTPM8nVtvnqtsg9WMck8+VdQ+B+9UnDH8c2Y/hERNaKCrSFEeOHAYAjBgxCgp7j0pQUDDGj78dX311ALt3f4AVK1bXebzRPgROGaCrsS2nsARlegPkMhm6hAW5PHYNw+CjQddCzrIQbQJQ13pUhBBCWtTQoUMGz5jxbPqPP/7gl5KS5BEcHGKcPv2JrLFjx5c69jl8+DvvHTu2hGVlZWp8ff3MN988smjGjGdzVCqVCADx8bHqd999p1NcXKyX0Whg/f0DzHfcMTn/kUcey6/tnDt2bAnasWNL+Pz5i5LHjbutpLZ9jEYjs2TJq9EPPPBQ9oUL8dr8/Ly6H2BIu+LME8JhAK9zHNe5+ov2JGYxgO+daLMfACOkuUSh1f7t5jjOH8APAC5ASl4WA1jKcdwj1Y5/FcBTAB4HcAOktYgOcRyntMd21W2QhskcPT/1zAEyajyRZzKh0tzkPJm0gN9/PwoAGDnylstev/feBwAAP//8Iyorax8hIBgNYGRygGEg99bU2B6fJg1/i+kUDIXc9cPWVRo15PakR7TQ/UUIIe5k+/bN4SNHjip6//2d54cMua506dJFXU+c+NMDAI4cOaxbvvy1mPHjJxRs27b7/HPPvZR+9OgvfgsWvBwNAHq9nn3ppVnd1WqNsGHDu/Hbt390fujQm4u3bn034uzZf2v8wdm1a0fgzp1bwxcuXJJUV/IDAKtXrwj39fWzTJs2vdYkirRfzjyFvALgbwA8x3HHIRVBCIGUNBQBmOdEm30B8DzP51y5geO45wGYAMzged4KII7juG4A5kKad6QE8BKAOTzPf2M/5l4A2QDuArAXwBMuaIM0QCZIY44YZd1lsOVKKZ+keRru5+LFfGRkpINhGAwcOOSybb1790FkZBTS0lLx00+Hcccdk2ocz6o16LZqDdiCVFSk/FNjO29PgHo0w/A3AFCpFFWfi2YzmHrKsRNCCGlZI0eOLpg69ZGLADB79rysc+fOeO3btyfommuuS9m1a0foqFFjCx544KGLABAd3cUkl8vT5s59sXt6eqpSq/UQJk6cnH/ffVPzdTqdAAAzZ76QvX//vpCEhHhN3779qior7dmzK2DbtvfDFy9eljhixKg6V10/cuSw7rfffvbbvv2jWFdXJSXuz5mFUHM5jhsEKWEYDqlHpQjAegBreJ7PcyKOfgBi69g2DMCv9sTF4ScA8zmOCwIQBcDL/pojxhKO404BuBlS8uKKNkgDZKIIMAxQTwIUadLjvk4RYCqpCpy7OX36FACgWzcOXl5el21jGAa33z4RGzeux9dff1lrAgQALMsAsAK1rMXDp9vn/zRDAQQAUKtUKBcEKFkWgsXcvgapE0JIGzdo0JDy6l9zXM/K06dP6QAgJSVFm5SU6HHkyOGqKRaOeZyJiQnqW24ZU3b//dPyDx78wi8pKUGblZWpSktL0QKAzSZUZS/FxcWKTZvWR8pkMjE8vHOdk40LCi7KV61aETVz5gvpoaFhjVvojrQrzo5DKQSwl+f5uQDAcVwogGsgJULO6Asgh+O43wB0B5AAYCnP898BCAdwZUnDbPvHzvbtAJBRyz6OYXquaMMpcrlrH8NkMvayj+7EcTPJ1Gr7g3BNYcZyjAjthD8tFpdfG1dy5+vcXM6ePQ0AGDx4cK0/mzvukBKgv/76A8XFBQgMrDmPR86KMOtLavz8RVFEbGomAKBnVKeq7Uy1j1d7pbVqJQoEG5QsC1jMbn1/tYaOeE+3BrrOLYOuc9sjl8svK00jiiJYViZKnwvMpEn/yZ04cXLhlccFB4dY8vPz5E888XBPLy+d9frrbywZPPjasn79+lfee++kftX3ZRgWS5a8kbBt2/thy5e/Fr1164fxbC3zQX/++Sfv0tISxdq1K6PWrl0ZBQBWq5URBIEZNeqmgcuX/y/h+utvpIpw7Zgz6wCFQ5rnowIQY3+5P4ADAE5wHHc7z/MFTWhPCSnpqQTwMoAKSGsKHeI4bgwALaTha9U5xk+p7dtRxz5+9s9d0UaTsSwDX9+6FwW9GjpdzTkWrUkUxaqbSenhCY2m9qlTFpU0P4gVbM12bVzJ3a5zc0pMvAAAuOaawbX+bHx9e2LQoEE4deoUfvvtJzz66KOXbT/9wmzIPbQIGTUQ6it+/qk5+Sit0EOpkKN/j6gac4CqD19zljcLmO09T3LR0ibur9bQke7p1kTXuWXQdW47YmPPeYwZc2tV0YP4+FjPmJgYPQCEh3c2ZGSkqbt0ial6Djt+/Kjnxx9/FDx//qK0gwe/8K+oKJfv2/flOYVCIdrbs//wL+VVPj7eluHDR5YFBQWZn3pqeq/t2zcHP/rokzVGJo0bd1vxoEFDLktw3nlnbXhhYYFi8eLlKaGhYTSRtJ1zpgfof5CKJ9zreIHn+W85jusP4GMAKyBVUmsUnufNHMf5ALDyPO+48U9yHNcTwGwABkjJVnWOMVaV9u2w72O4Yh9HSUNXtNFkgiCirEzv7OG1kslY6HQalJUZYLO1dOXLuomCgN0lRagsLUGvW9QwGGr/3cGw0oMuY7WhuNh9K06663VuLqIo4ty58wCAiIgudf5sxoy5FadOncL+/Qdw112XlgKzlpejMjkFAOA3vDdwRZGLE+ekYoq9osJhswiw2YsUMCwDlUoBk8kCUbi6utWiIMBkT4CK8gshd+P7qzV0tHu6tdB1bhnNeZ11Ok2b6VmSazUtGujVnO+rrw4ER0ZGG/v06Vf52WefBKalpWrmzn01FQCmTHkgd8WKpV3Wr18TdtttdxTm5uYoV69eERUQEGAODg6xBgeHmE0mE3vw4Be+11xzbUVSUqJ648b1EQBgNptrxNSzZ2/j5Mn35O7evTNsxIhRJTExXS97g9vLy0vw8vK67DWNRmNTKpXy6kkYab+cSYBGAXiC5/m/q7/I8/xZjuMWAdjQ1AZ5nq/tSeUsgFshDUu7ctKA4+ssAIpqryVdsc8Z++euaMMpVmvz/AG02YRma9tZx4qLUFRUiD4qDYQ6HmYZhdQzwAruF39t3PE6N4ecnGyUlZVCLpcjMrJLnd/zLbeMw8qVb+L06VPIzMxCSEgoAFQlP8rAAIiCtUYycyZRKo/dLybysnvD8VdLFMQ675nGY8BXViDbaMBIsfn+77V1HeWebm10nVtGR73OoigKMq3W6n/ddXK08Lo8Mq3WahVrWem6AWPHjr/46ad7g9etW6WJjIzUv/nmqoTevfsYAOD22ycWi6KYvGfPh6H7938SotV62IYMubbkhRfmZDq2x8fH5W7evCliw4Y1bEBAoHncuNsKjh8/5hMXd94DwMUrzzdjxrM5x4796rt8+WtRW7Z8wNc2FI50XM4kQEoAdd34RkjFBBqN47h+AH4HcCvP80erbRoC4DyA0wCe4jhOxvO8Y4XNUZCqxuVzHFcKoAzACNiTF3uP0iAA79j3/9UFbZAGGI3SqEKZvJ4y+grHELiO9wfLnSUk8ACAqKhoKJV1V34PDg7GwIGDcerU3/j++0OYNm06gEsLoKrDgiHWshDuv/YEqG/Xq5pS16Dd+dkoqzTgJh/fZj0PIYS0JlGEzcQqchgvnxZ/qreKoiCKqHvF8zpER8cY5sxZkFnX9gkT7iyeMOHO4tq2MQyD2bPnZc2ePS+r+uvVh7fNmvVi9qxZLzrmd0OlUon79n15vrHxLV/+v9TG7kvaPmcSoOMAXuA47hDP81WVMziOUwB4HsCfTWzvnP3fJo7jZkBaaPUJSGW1rwGQB2AOgK0cx60EcK39PE8BAM/zJo7j3gHwFsdxFyEtqPo/SL0+++3n2OaCNkg9rHo9+qrUqJTJIK8nAWLsCZBcvNp3+4krpdkTmOjomPp3BDB27Hh7AvRtVQLkWABVFVQz8Sgur0BKtrTEQt+Y5k2A1EolyioNVGadENLuiSJsoig2OREhhDiXAC0EcBRACsdxhwDkAwiENFwtAFIvSqPxPC9wHHcHpLlD+wD4ADgFYAzP82cBgOO4cZDKbJ8CkAPgZZ7nd1ZrZpH9e9kCQAOpx2ccz/Nm+znyr7YNUj9jbi5eiumGEosZyYp61o61l8h2/TKY5Gqk2xOYzp0jG9x3zJhxWLlyOc6d+xdZWZno1CkcpjTpeGWArsb+f8VK83+6RYTC18vThVHXpFJKd5ajN5IQQggh5ErOrAN0kuO46wC8CmACAH8AJQB+g1S6+rQTbV4E8Gg9209A6hGqa7sN0qKmc5uzDVI3Y6VU3t8sCFAo6+4BqgyNxpzz/6LSZsMdoghafMw9OHqAIiOjGtzX3z8AQ4Zci7/++kMaBnfv/bBclHp4FL6eEIXL5486EqBre3V1acy1eSAgFH07xcB68m+g38BmPx8hhJCGHT3698nWjoGQ6px6I57n+X8B3OPiWEgbZqqU6liYBREyWd23FePhjVSDVBnPZDJBra570VTScpqSAAHSMLi//voD3313CA9OmASPXr0hlJcCrHDZDEFRFFs0AZKxLBQsC4OBeoAIIYQQUjsqiUFcwmxPgKwN7KeoNsGe5mm4B4PBgLy8XABA585RjTpm1KixkMlkiI+PRba+ElFz5yHmhScgWi9fUDspKw/5xaVQyuUY0C3a1aHXINoXVrXRvUUIIYSQOlACRFzCopd6dSwN7Ke0mDE5tBPuDAmD0Uil9t1BRkY6AECn84aPj0+jjvH19cV110kjSr///hAYBrBVltTY78e/zwIAruvTDWrl1S922hBHAiSY6N4ihBBCSO0oASIuYbYPa7M2MKeHNRtxX6cI3BXaiXqA3ER6eioAafhbU+ZkjR07HgDw07ffgLGaYDNevuivKIr4yZ4AjRrc1zXBNkC0L14omCkBIoQQQkjtKAEiLmE1GAAAtgYeoEW51AugZFmYTIZmj4s0LCMjAwAQHh7RpONuuWUMvLVaLPbxw5nnnoelvPSy7YmZuUjNvQiFXIZh/Xu6LN76MPYESDRT8UZCCCGE1O6qqxFzHKcGYOJ5nhZ26cAqfX2xKzUZyqAQXFvPfoI9AZIxDEx66gFyB3l5OQCA0NCwJh2n0+lw36ixYHNyUVFeAVG8fAbY/p+lJcGG9u8JT20LFbuQyQAbIFoaGoxJCCFtG8NAxjBMi7+RLTq5ECoh7sSpBIjjOA7AEgBjAOgAXMtx3GMA4nie3+DC+EgbUaFS43BBPnqGhNebAInVKsSZ9RXNHxhpUG6ulACFhIQ2+dgx/QbAlvMt+JJiyBJT0COyEwCgoKQM3xw/BQC4Z2Sd1eddzqyQ4VxBMdQhQS12TkIIaWkMAxnLsKFmo7XFl9VTquVWAUIOJUGkLWvyfxyO4wZAWiQ0H8BuAE/bN5kBrOM4ruyKBUZJB2A0SsPZ6lsDCABEVgZBFMEyTFXpbNK6cnKcT4A8yitQBiBZX4mvd3+B9+Y8Cblcho37v4fRbEHvLhEYxDV/9TeHQg8lVl+Iw9RrBuO2FjsrIYS0LIZhWLPRKo87lyOYjFah4SNcQ6WWsz37hMoVahkriqJbJUDr168J++mn7/0PHPj2bGOPefzxh7rHxZ33qv5a9+49KrZt28W7PkLiTpx552AVgL8BjLV//QwA8Dz/PMdxWgDPAaAEqKMpKEBfLx0CFA1U+mIYWACoAFgN+vr3JS3i0hC4pidApow0AECO1YJzyXl45b2PEOrvi69/PwmGYTDrnttadLFblb3SnCMhJ4SQ9sxktApGg6XFEiC7djN/PCMjTTNjxrPpo0ePK3a8plQqaUpHB+BMAnQDgCk8z1s5jpNdsW0vgPuvPizS1vimpuBVrhf+aMTDrkUEVAxg1tNDamszGPQoKSkBAAQHNy0BEixmmLKzAQD/vXcCjm/cjl/+ia3a/sSdozGgW5SrQm0UlcKRANH8MkIIIXXLyclWVFRUyPv1G1gRHBzS0DKGpJ1xJgEyAtDWsc3fvp10MI5J544qb/XZZRaQmhyLh8ePb+6wSANyc6UFUD08PODl5dXA3pczZ2UBNhtkHh64fkhvvPvyE/joh6MwGE24/abBGHtt/+YIuV7+VgFb+g+GsaC44Z0JIYS0iKFDhwyeMePZ9B9//MEvJSXJIzg4xDh9+hNZY8eOryofevjwd947dmwJy8rK1Pj6+plvvnlk0YwZz+aoVCoRAOLjY9XvvvtOp7i4WC+j0cD6+weY77hjcv4jjzyWX9s5d+zYErRjx5bw+fMXJY8bd1vJldvj42M1DMOgW7fu9NzaATmTAH0P4HWO444ByLG/JnIc5wlgNoDDrgqOtCH2BEhoRAKUK1chWV8Jo43ecGltlwoghDV5qBqjVMF3xEiwghGixYR+XSPRr2tkc4TZaAq5HDqFAoLQ0iNCCCGE1Gf79s3hDz30aOb8+YtSv/hif8DSpYu6+vr6xV9zzXWVR44c1i1f/lrMY489lXHjjcPK0tNTVRs2rO2cmZmuXrVqfbJer2dfemlW9759+5dv2PBuvFyuEA8c+DRg69Z3I4YMuba8b99+lw0p2bVrR+DOnVvDFy5ckjR69NjS2uJJTEzQaLUetiVLXo08e/aMTq1W22666ebi6kkXab+cSYDmADgOgAdwGoAIYDUADtK40CmuCo60IVZ7MtOIBEiuUAIAjEZarLK1XUqAQpp8rCosDGGPTIeYfR6VaXGuDs0pcpW9zLpIf7sIIcSdjBw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI11ROgPXt2BWzb9n744sXLEkeMGFVWVzwpKckai8XC9Os3oGLq1Idz4+LOazdvfjciLy9X+eabq1Kb+XKQVtbkBIjn+QyO4/oDeBHALQCSAHgC+AjAGp7nc+o7nrRPjCMBsic39ektYxAVEgpZMQ1Tam05OdIcHmcqwAGADFaY9HX+fWlxCpV0/8kp/yGEELcyaNCQ8upfc1zPytOnT+kAICUlRZuUlOhx5Mhhf8d2x/tYiYkJ6ltuGVN2//3T8g8e/MIvKSlBm5WVqUpLS9ECgM0mVA1fKC4uVmzatD5SJpOJ4eGd632XdenSFakVFRUZ3t7eNgDo2bO3US5XiCtXLu+Sn5+XGRQUTMNU2jGn6sfzPF8IYIGLYyFtGGOTqmGKyoYToIGiBVHhkThbWmuvNGlBBQUXAQCBgU1bN0e02WBKT4OycxBsJvcZPq2w339yAAxz6Q8oIYSQ1iWXX/7WlCiKYFmZKH0uMJMm/Sd34sTJhVceFxwcYsnPz5M/8cTDPb28dNbrr7+xZPDga8v69etfee+9k/pV35dhWCxZ8kbCtm3vhy1f/lr01q0fxrNs7UXrZDIZHMmPQ/funAEAcnKylZQAtW/OLoTqDan3xwO1lEPkef6Dq4yLtDGsfc4Fo6h/HSAAsLEywAYIZhoC19oKCwsAAAEBgU06zpybg/TlSyDTahHx2B3NEZpTlGopAVIwDERBAFp+kXRCCCG1iI095zFmzK1V73zGx8d6xsTE6AEgPLyzISMjTd2lS0zVg8Hx40c9P/74o+D58xelHTz4hX9FRbl8374vzykUCtHenkba81Je5ePjbRk+fGRZUFCQ+amnpvfavn1z8KOPPplXWzzTpz/IRUR0Nr7++htpjtfOnv3XQy6Xi9HRMe7zzh5pFs4shDoewD7UXQlOBEAJUAdzghFRkJGG0N7Xw7eBfW2sVD1dNJubPzBSr4IC5xIgU7r090IVGgTR4j6JrFJ1qQdStFjBNKJHkhBC2iqVWt6i7/Jczfm++upAcGRktLFPn36Vn332SWBaWqpm7txXUwFgypQHclesWNpl/fo1Ybfddkdhbm6OcvXqFVEBAQHm4OAQa3BwiNlkMrEHD37he80111YkJSWqN25cHwEAZrO5Rkw9e/Y2Tp58T+7u3TvDRowYVRIT07XGH6qRI0cVbdnybsSePR9W3nDD0LKzZ097bNv2Xvidd96V55hnRNovZ3qA3gQQB2kOUCYAukkIzpjN+CcvB494+TS4ryiTbjtH6WzSehw9QP7+AU06zpgmJUDqkEC3Gmem0iiRWFkBgWXQTXCrRcoJIcRlRFEUlGq5tWefUDlaeGFSpVpuFcSml9ocO3b8xU8/3Ru8bt0qTWRkpP7NN1cl9O7dxwAAt98+sVgUxeQ9ez4M3b//kxCt1sM2ZMi1JS+8MCfTsT0+Pi538+ZNERs2rGEDAgLN48bdVnD8+DGfuLjzHgAuXnm+GTOezTl27Fff5ctfi9qy5QP+yqFwU6c+cpFlWXz++afB7723sbOPj49l4sS78p588plc564MaUucSYB6ALiT5/nfXB0MabuMRqkAi7wRRRBs9gQIlAC1KlEUq/UANS0BcvQAKQN0Lo/raqiVSrwSdw5qlQoTtVoIgvskZ4QQ4iqiCJsAIUehlrX4OF9BFARRRJPfYYqOjjHMmbMgs67tEybcWTxhwp21VkdiGAazZ8/Lmj17Xlb116sPb5s168XsWbNezHZ8rVKpxH37vjxfX0wPPPDQRUflOdKxOJMApQFwr6ce0upCrDZYPDyhkDVcBtuxWGpV5TjSKsrKSmG1SkloU3qAREGAKSMdAKD018GdOoFVSuneMppMqD4unBBC2htRhE0URerqJsQJzrxz8CaAxRzHRbk4FtKGPaHzwRs9+0DdiOFQVYul2uj3dmty9P7odN5QNmGujOXiRQgGAxi5HDLPhotetCSV4lICbjZTDyMhhBBCanKmB+gBAJ0AJHEcdxGA/ortIs/zMVcdGWkzRKsVMkYqw8+qNQ3unxUQjv1Hv0VATAz+29zBkTpdqgDn3PA3dadQCFb3KYAAAGqlAou5XuikVqOMj4df776tHRIhhHR4R4/+fbK1YyCkOmcSoEz7P0IAAEK1am6s0qPB/U2ePjhfXoYeRqoy2ZocawA1tQCCqnNnBN87BTKhEmj6PNhmJZfLoJPL4aNQwlxR3vABhBBCCOlwmpwA8Tz/SHMEQtouRwIkiCJkKnWD+yvsawUZKQFqVc5WgFMGh8Dr9vGwJJ+EITet4QNamMU+DNOsv7JzmhBCCCGkkQkQx3GdAeTwPG+xf14vnufTrzoy0maYKisAAGZBgKwRC6F6Wc0YGxgMmX09INI6nK0ABwCMzQybyeDqkFzCMbOMEiBCCCGE1KaxPUApAG4A8BeAVDRcXomebDsQk32okVkQwMobnkzvY6rEY5HRSDa65wN0R3GpB6jxi6DaKiqgjz0HNiLIbRMgq/3Xk9XgnvERQgghpHU1NgGaDiCp2udUX5ZUMVbYe4BEAWxjenWU0jA5ZyagEddxzAFqSg+QITEBOe+/i+KwUIRMvrG5QrsqNntBDisl2IQQQgipRaOeQXme31nt8x3NFg1pkyxKJXZnpgMKBQY2Yn9WJVWKU4Bp3sBIvZyZA3SpAlwwRJt7ruMk2G8rC80xI4QQQkgtGjsHaFoT2hR5nv/QyXhIG2RUKPFFbjb8AwIblQAx9gRIyTKwWCxQKBpePJW43qU5QI0fAme0J0DKAO9mickVykQBKfpK+Lb8AumEEEKaQWVlJbt//yf+U6c+chEAFix4OSo/P0+1efMHfHOdMzMzXXnq1EmPiRMnFzvbxr59e/3ffntVVF1lwFvi+xg6dMjg556bnXrPPVMKm+scLSU9PVV5//3/6bty5doLN9447KpKvTZ2FNKOJrQpAqAEqAMx2ocaqRpRAQ4AWLVW2p+VwWQyUQLUCqxWK0pKpN/pTRkCZ0qzJ0D+umaJyxWOC0aciEvCyoepYCUhhLQH27a9H/zjj98FOBKgOXMWZghC8y6m/vrrr0YFBQWZryYBIu6rsQlQdLNGQdo0U3Exumg94K3RNmp/ViXtp2RZmM1GAJ7NGB2pTWlpCURRBMMw8Pb2adQx1vIyWIuLAAAKXw8IFvecY6OyJ9QmEw2BI4SQ9kAUxcvGzHt7ezdv9iOdlcbpt2ONnQNU52IfHMepAZh4nqfCCB0Uk5SIFb36It5qRWOWxRTtD6hKloVBrwf8mjc+UlNxsfSGlre3N2SyxhVtNKVL1e2VQYEQRfec/wMAKqV0f9E6U4SQ9koUAb0VrTLOVyuHwDQxNSgtLZWtWfNW+F9/HfexWq1MdHSM/umnZ2UOGDBIDwB6vZ5dsWJJxN9/n/DR6/WyTp06GR988OHs8eMnlKxfvybsk08+CgWk4VwfffTp2ffe+78wx9Cx33//zWvevJe6v/nmqgtvv726c35+vioqKkq/cOGSlO+/P+R78OCBYJvNxgwbNqJwwYLXMhiGgSiK2LLl3eDvvz8UcPFivkqhUAg9evSqmD17fnpkZJT58cencXFxsZ5xcbGekybd6nXgwLdnzWYzs3796rCff/7J32DQy8LDOxumT388e/jwW8oc3+ehQ1/77Ny5JSwvL1cdE9OtcsCAQWV1XRMHm03A8uWvRfz884/+crlcHDPm1oJZs17KksulR/S//vrDY9u298OSkhI8LBYLGxwcYrr//mk5d955V5GjjS++2O/38ce7Q3JystU+Pr6WCRPuzH/00SfzrjzXxYv58meeeZzz8fG1rFu3MVGr1Qq//PKTbvPmTZ2ysjI1QUHBprvv/m/u+vVroj766NOznTtHmSdNurXvddfdWPLPPyd1paWlikWLliRdf/1N5Tt3bg365puvggoKCpQBAQHmu+++N/e++x4sAIDff//Na86cF7o72gBqDl9bsODlKEEQGF9fP8uRIz/6m0xGtl+/AWXz5y9KCw4OsQJAXNx59dq1/+ucmJjg4evra7n33vtzmnbn1c2pQlwcx3EAlgAYA0AH4FqO4x4DEMfz/AZng+E4rjuAUwBmOootcBw3AMDbAIYAKASwnuf5VdWOYQEsBvAYAF8ARwE8zfN8YrV9rroNUjeb/UHTxrKNKmtgU6qxNj0NFYZKvG62NG9wpFaO4W8+Pr6NPsaUlgoA0HQKhmh1359bH5kSd/YZAPF8LHBPa0dDCCGuJYrAg99qe/DFMo/WOH8PX1vFh7fq+cYmQaIo4vnnn+4ml8uFZctWJup0OttXXx3wf/75p3ts2PBeXN++/Q0bNqwJS01N0a5YsTrB29vH+tlnHweuWLG0S+/efc5Nn/5ErsFgYI8d+8Vv8+YPYgMCAmu8AycIAjZuXB8xd+6CVKVSLSxaNC/mmWce7zlw4ODSt9/exJ848afnxo3rI6+//say0aPHlW7fvjlo3749oS+//EpKjx49DRkZ6arVq9+KXLt2ZcS6dRuTVq5cl/jiizO7BQQEmufOXZgOAK++OjcqPT1dM3/+qykhIWHmn3/+0WfRovldX311adLo0WNLT5z40+ONN16Lueee+3Juu+2Owr///svrvffeaXDtzAsX4j39/f0tGza8F5+ZmaFas2ZllNFoZF95ZXFGdnaWYt68F7uPG3f7xTlzFqRbrRbmgw+2h6xd+7+oG264qSwoKNj69ddf+q5a9Wb0gw8+nDV69Lji2Nhz2rVrV0Z5eHjapkx5oMBxnsLCAvnMmU9w/v4B5jVr3knUaDTi2bP/ahYtmt91woQ78xcvXp4cH39e+8476yKvjPG77w4FLlnyZoJOp7P17Nnb8NZbyyN++eVH/xkzZqX37du/8vfff9O99947nc1mE/vQQ4/mN+7OAI4fP+Y7dOjworff3shnZ2cp33xzaZd33lnXaenSFWmlpaWyl156luvevUfFxo2b4/Ly8pRr175VIzZnNTkBsicTvwLIB7AbwNP2TWYA6ziOK6teNa4J7Srs7XlUe80fwA8ADgB4CsD1ADZyHFfI8/x2+26v2rc9AiALwEoAhziO683zvNkVbTT1e+lorFUJkKxxNxQrw3mzGWXlZTCbTc0aG6mdMwmQ7qah0EZ0AlORC8B9e1c0MhlC1ArkG2ghVEJI+8S0oeVIjh791Sshgfc4cODQGUfy8uKLc7NiY8977t27K7hv3/6pOTnZKo1Ga4uMjDZ5e3vbnntudtbAgYPLvb19bZ6enoJGoxFYlhUdPQO1eeSRx7MGD762EgBuvHFoycGDXwQtWrQ0TavVCt26ccZdu3Z2SkpK0IwePa40IqKzafbs+SljxtxaCgAREZHmP/88Xvzrrz/7AoCvr59NLpeLSqVSCAgItCYnJ6mOHfvN75133o9z9FrFxHTNS0pK1Hz88a6Q0aPHlu7btyeoe3euYtasF7MBoGvXbqbk5CTNN998GVTf9fH29rEsXfpWilqtFnv06GW8ePFi1nvvvdP5+edfzjKbzcyUKQ9mP/bYU3ksyzq+z5yff/7RPzk5SR0UFFzx6ad7g2+44aaiJ598Jtcel0mvr5Sp1ZqqQTllZaXymTOf7B4QEGhavXpDklqtFgFgz54Pg6Oju+hffvmVTADo1q27qaioSLF586aI6jEOHDio9OabR5RLbZWx3333deCjjz6ZMWnS3UX2c17Mzs5SffzxR6HTpk1vdAKk0WhsixcvS1MoFGL37j2Mx48fKzx58oQ3AHz99Re+ZrOZff31N1O9vb1tPXr0MhoM+oxlyxbHNLb9+jjTA7QKwN8Axtq/fgYAeJ5/nuM4LYDnADQ5AQLwOoArKzo8AcAEYAbP81YAcRzHdQMwF8B2juOUAF4CMIfn+W8AgOO4ewFkA7gLwF4XtUHqIZikJEZozBpAdnKFtGAqzdNoHc4kQHJvH3gO6AdjogmmQpf1QrscI5MBECFa3LeXihBCnMUwwIe36vm2MgQuPj5WCwD33jupb/XXrVYrY7GYGQB48MGHcxcunNP1zjvH9e/WrXvloEHXlI4fP6GoKXN9oqNjqh4oVCq14O3tY9FqtVVJgFKpEEwmMwsAY8bcWnry5AmP9etXh2VlZaoyMzM0mZkZal9f31r/cMTGntMCwEsvPctVf91mszFardYGAGlpqdqBAweXVt/et2+/ioYSoJiYrnpHQgIA/foNqLRarUxSUqKqb99+hrvv/m/hBx9sC0pLS1FnZWWpU1OTtQAgCDYGANLT0zQ333xLUfU27733Us8PAHz44Y5ONpuVufJcycmJ2iuH6Q0adE05sOmyGDt1Cq+6tomJF9Q2m40ZOHBIRfV9BgwYVPHVVweCL17Mb3RuERwcYlIoFFXxeHh42qxWKyPFlqQNDg41Vr8HBg++pqK2dpzhTAJ0A4ApPM9bOY678ol3L4D7m9ogx3E3A3gSwAAA6dU2DQPwqz1xcfgJwHyO44IARAHwsr8GAOB5voTjuFMAbrbH44o2SD0Es9RJJsgafztd46WDVbTBXFra8M7E5YqLSwAAvr6NT4AAgLGZYTO5d88KI5cDsICxtsAcWUIIaQUMA3goGjXtttUJgsBoNBrbe+/tiLtym1KpFABgyJBrKz///NC/v/32s+7EiT91339/KGDv3l1hy5atTBg2bHijyh0rFPLLesVYtu4s7f33Nwbv2fNhp5EjRxcMGDCo/L//vS//559/8vntt59rnZUsitKlXrduY7yHh+dl110mk4mX9ru8cIJcrmiwp45l2cv2cVS3U6mUYkICr54584keUVFd9IMHX1M6dOiIUj8/P8uzzz7Zs/r5G0pI+/btV3bbbRMLli9fHHPkyOGikSNHl9mPhSA0XOxBqVTV+B6ZK04qCNJlqZ7QiNW+M4vFWuM81fe9pPpLTb+ejeVMAmQEUFe5L380cWwMx3E+kMpmP8vzfIY0vahKOICzVxySbf/Y2b4dADJq2ccx7tIVbThNLnftGzQy+9omMjda40S0SAmQKJfV+wunuru9veHj54vi4iKXXyNXcMfr7EplZSUAAD8/30Zdf2NmJipOnYQtKgSizdjon3NDGHs7DMu47K1MmUIGwALGZnPLe6u1tPd72l3QdW4ZdJ3bjpiYbgaDwSAzm01Mjx69qp4RFy2aH9m1azf9tGnTL65fvzqsf/9BFWPHji8dO3Z8qc1my5gyZXLvI0cO+w4bNrycYRiXDvn75JOPwqZMeTDbMWwMAHbv/iBEvOwsl87ZrRtnAIC8vDzl6NH9q965Xbt2ZSeGYcXnn5+d3aVLjD4u7vxlZW3j4s41OE8rNTVZKwgCHEPcTp3620upVAqRkdGmVaveDNfpvC3vvbf9gmP/H3741huQ5lYBQKdOEUaej7vsPG++uSQiLy9XuW7dxiQAuPnmkcXjx99ecuTID0Vr166MGjz42nM6nU6IiorWX3ns2bOn6425a9fuRplMJp46dcKzT5++VeVgT58+5eXt7WPx8fG1KRRSYltWVlbVUZKWlqJq6FpU161bd/1PP/3gX1hYIPf3D7ACwL///uOyeW/OJEDfA3id47hjABzjYESO4zwBzAZwuIntbQJwnOf5j2rZpoU0fK06x38eNS4lYrXt48jiXdGGU1iWga9v88xR1Ok0zdKuM2Si/Z12hRIajbJRxzjeB2BFa7NdI1dwp+vsSpWVUo93WFhIo65/9m8JyN//GUz9eyFsdB9A3rifc2OpVK5bC0qlUQEwghVsbn1vtZb2ek+7G7rOLYOus/sbOXJU6fbtUYbFi1+JefbZF9PDwjqZP/10b+CRI4cDxoy59QIAZGVlqY4c+dFPJpOlRUZGmv7555RHQcFFVd++/XIAQKPRCJWVlbLExARVZGTUVc/N9vcPMJ86dULH83ElLCsTDx78wv+vv/7w0em8q0YLaTQaIT8/T5WVlano0aOXcdCgIaXr16+KFARbWvfuPQyHD3/nu3//vpBZs15MBYD7738od+bMx3u+9dby8Lvv/u/Fs2fPeBw6dLDBlcYLCwuVr746N2rq1Edyk5OT1B999EHYpEn/yVOpVGJQULC5qKhQ+dNPP+i6detuPHfurHbjxvWdAcBsloYP3n//1JxlyxbH7NixpXL48FtKz549o/3++0OBzzzzfI0KznPmLMh48MF7eq9a9UbEkiUr0h588OHcJ598pPeqVSs6TZp0d0Fi4gXNhx/u6ATU7OFx8Pb2to0ePa5g9+6dnXQ6b1u/fgMqjx37Vffdd98EPvjgw1kMw6BHj14GtVotbN++OXTmzOez8vJyFVu3vhdeV5u1mTBhUtGePbtCFyyYEz1z5guZ5eWlsv/7v7cjGj6ycZxJgOYAOA6AB3AaUl/VagAcABbAlMY2xHHcVEhD1PrWsYsBwJUZo2O1zUr7dtj3MVyxT6UL23CKIIgoK3PtcCGZjIVOp0FZmQE2m3v0fqcplPg9OxMewRHwMDTu95LS3qtZWVKG4uKruszNwh2vsyvl518EAKhUHo26/kXx0ptPygBfGBv5M24MhmWgUilgMlkgCq55g0909CrZBLe8t1pLe7+n3QVd55bRnNdZp9NQz5ILyWQyrF//7oW1a1eGL1++uIvJZGLDwjoZFy58PckxvG3BgtfSVq9eEbFixZLoiooKeUBAoPmhhx7NnDz5niIAGDv21uLvvvsm4LHHpvVevXo9f7UxLVjwWsqaNW91njHj0Z5qtVro1o2rePrpWWmbNm2ITE9PVXbuHGWeOPGui6tWvRE1ffoDvb/55qfTK1asSX777VWd1q9fHVlRUSkPCgoyPfPM82n33HNfIQD07dvPsGzZyoT33nsn/NChg0Hh4eGGe+65L+eDD7aF1xfLkCHXlshkMvGZZx7vqVKphFtvnZD/zDPPZQPAtGnT89PT09RvvbW8i81mZYKDQ40PP/xY1ocfbg87d+6sx8iRo8vGjLm1tKSkJO2TTz4K2bFjS7i/f4D58cdnpP/nP/cWXnmugIBA6+OPP525du3KqFtu+bF4xIhRZa++uiRxy5Z3ww8ePBAcGhpmvO22O/I//nh3mEKhrPOP8vz5i9I3bnzbum3b+53KykoVwcEhpiefnJnuKIPt5eUlzJ27MHnLlnfDp09/oHdoaJhxxoxZGQsXzune2J+Rh4eHsH79Jn7lyjc6P/fcUz08PDyt06ZNz1637n9RjW2jPowoNv2hw15Z7UUAt0Aa9lYC4BcAa3ieb/TsaI7jjgAYist7XzzsXycBSANQyPP81GrHjIZU1S0Y0vydPwF05Xk+qdo+RwGc4Xn+GY7jvrnaNhr7/Vwh2WYToouKXPsAJpez8PWVHlqtVvf44/r66wvx+eefYvKUJ9D/pkmNOsZr+xJEsEDqoEEY+/Ss5g3QCe54nV3p/vv/g9jYc1i/fhNuvnlkg/unLl4Ic1Ymwv47Hgo/1/X+sCwDtUYJo8EMwUUJ0OEffofn+XSYtFqMfX97wwd0EO39nnYXdJ1bRnNeZz8/D8hkbAqALi5t2AknT57swbKyb4OCOlUolWqqGkRc6p9/TmrlcrnYt2//qg6AAwc+81u3blXU4cO/nXKsRdSWmM1GdX5+lqcg2G4dPHhwfF37OfWd8TxfCGCB09Fd8iCAK/uvEwAsAvAxgPsAPMVxnIzneceM5lFSCHw+x3GlAMoAjICUMDnmFA0C8I59/19d0Aaph2PBSUdlt8awMgwAEQItVtkqmlIFTjCbYc6Rps0p/Twhwr0rwwveHnju3Blcd801VaUqCSGEEHK5+Pg47bZt74e//PL8lF69ehtSU1NVH364Peymm4YWtcXkpymcXQj1ZgBWnud/5zguEsBGABEA9vE8v7Sx7fA8n1VL2wCQz/N8Gsdx2yANudvKcdxKANcCeB7Smj3ged7Ecdw7AN7iOO4igFQA/4NU0GC/vUlXtEHqodLrEapSQ92EKnA2VgaIVthoHaBW0ZQEyJSZCQgCZF6egAKAm1eXVimk+URGSq4JIYSQOk2Z8kBBYWGBYtOmDZ2Li4sUOp3OOmzYiKKZM1+o8Xze3jizEOqDkNb5WQ3gdwDvQhrG9gOABRzHmXmef8sVwdl7aMYBWA/gFKSiCy9fsdDqIkjfxxZIvUm/AhjnWMDUFW2Q+t2i1+P+vgNwwtj4+U5WlgVsl9YQIi3HZDJBr5d+Vo1KgNJTAQCaTqFVFf/cmUop/Voz0hpThBBCSJ0YhsHMmc/nzJz5vPsu7tdMnOkBegnADp7n59jX0RkDYB7P86s4jnsJ0no+TidAPM8zV3x9AtLaQ3Xtb4O0qOnceva56jZI3WSCKC1KoGp8hcMzah2+OnMMQ7p3a8bISG1KSkoASBNTvby8GtzflCEtzaUKvqqiiC1GDQYre/WFVqmEVKPFNSW7CSGEENI+OJMA9QDwgv3z8ZCeLr6wf30CwDIXxEXaELkoJUCMUt3wznYFGh1OlBSjq0iThFta9eFvjSlJGXT/VASPuQXWXB42q8sWYW42KpUSUVqp/LVosYBpwtw0QgghhLR/ztR5LAHgeNv4NgBpPM8n2L+OAVDggrhIG+LIohll49djcBRMMBhomFJLa8r8HwBgZDJoQoPBaly3Vk9zUlXriRTNbj5hiRBC6icAEEVRpK5sQhrB/n9FhPR/p07OJEA/AniN47j5AO6CVK0NHMfdDWAppIVSSQdS1Y3YhB6gAEbATX7+0FWUN0tMpG6XEiCfRu3PsgxEixE2k6Hhnd2AWq2EzV7eX7S6/5wlQgipR64oihaz2ahteFdCiNls1IqiaIE0579OzgyBew7AR5AKB/wA4A3762sBpAOY70SbpA1T2odRsarG/37uYtTj7i7dEFfp2oViScOKi6UEyNe34R6g8r//gv7sGfj06gLI2kZvnUqpQJkgQCOTQTCZIWvtgAghxEmDBw8uO3ny5AdlZcUzAPgrlWo9wzCuWTSNkHZEFEXGbDZqy8qKlaIobB08eHC977A3OQGyrwE0rpZNQ3meT29qe6RtE61WyBwJkKbxCZBgL1XMWG0N7ElcrSlD4CrPnUXZsWOQKwV4ckHNHZpLqBQKmO0JkMWgR9sYuEcIIXV6w2azoqSkcBrDMFpQZRdCaiOKomgRRWErLnXO1MnpVY44jgsGoMSl/4gsx3G9AQzjef5dZ9slbYsoijiQmw0FwyCiCXOAYJ8DxAqUALW00tISAIBO593gvqa0VACAKqDhfd2FSimHWZCG/horKkDjRgghbdngwYMFAMtOnjz5tigiFM5NXyCkvRMA5DTU8+PgzDpA/QHsAcDVsYsIaW0g0gFYRREfZUodf4s1Ho0/UCFNVGcFqgLX0srKygAA3t71JzWC2QxTlrQWmsLfC0DbmE8jl8lQYDZBgAhvCxVBIIS0D/YHO5o4S4gLONMD9D8AvgBmA5gAwATgK0gV4cYDGOGq4Ij7MxovzQuRyZUQGjsyWSklQLJGH0BcpaysFEDDPUCmzAxAECDz8gSjYCC2kVyCYRisSE2EwWTGN0FtY9geIYQQQlqOM92o1wFYyPP8WgB7AXjyPL+J5/k7ABwAMMuF8RE3ZygvQ7BKBX+VBgzb+OnmjEKqGCcXKQFqaY4eIJ1OV+9+juFvmogwiBZTc4flUir7HDOTqW0UbiCEEEJIy3GmB0gF4IL983gA/apt2w4a/tahGDIysKHvQBRazMhvSm+OSpov5PQkNOK0Sz1A9SdAxtRUAIAq2L+5Q3I5lVK6s6r3UBJCCCGEAM71AKUD6GL/PAGAjuO4KPvXJgB+LoiLtBFmfSUAwCoCTenMMfsEYkNyIvbkZjVTZKQujh4gL68G5gAZ9ADDQBXo0wJRudZdgSF4s2cfWGPPt3YohBBCCHEzzrwB/xmAtziOq+R5/lOO4+IBLOc4bgWAlwAkuTRC4tbMej2UAJo8PcTTG78VFUAmpz6gliSKYqN7gMKefhYKUwkMSSdh05e1RHguE6hQIkbtAX1paWuHQgghhBA340wP0OsAfgMw3f71CwAmAzgNYBSA11wRGGkbLAZ7DxDTtGUJ5PYqcDarFRaq1NVijEZj1fVuqAocyzKQyRiI1rZR/a06m/1+tNIQOEIIIYRcwZmFUI0A7uE4TmH/+juO4/oAGAzgFM/z1APUgVj10gOmrYkJkJKVYbC3D5SsDEajEQoFLVfZEhzD32QyGbTa+suWsywD0ayHYG5bBRAAQGSl+9FmanuxE0IIIaR5Xc34Iy3HcTdAKomdD+AQz/MVrgmLtBUWowEAYGOb1pmoYFnM7dYDAGDWVwBeXi6PjdRUXn5p+BtTT9Kat/sDWDIz4H9jP7Catlepz5EAtcXkjRBCCCHNq8lD4DiOYzmOWwogA8DXAHYD+AFADsdx81wcH3FzNqOjB6hpt5JYrcfHWE55c0u5VACh/vk/hgsXoE9IkAohtEGiPSEXTG1v+B4hhBBCmpczc4AWAZgHYAuA4QB6QFr8dBeAZRzHzXRZdMTtlavVOJSXi/SmFjNgZbDay8aZKikBaimX1gCqe/6PYDLBnC1V51P4ebZIXC4nk361iTS/jBBCCCFXcGYI3HQAy3ief73aaxcA/MpxXBmkogjvuCI44v4KtVpsz0jF0JgeiGjisWZBgFwmqyqlTZpfaWkJgPorwJky0gFRhFynAxRwosRf6xNkLMpMFlhEobVDIYQQQoibcaYHKADA73Vs+xZAqPPhkLbGsdCkQqFs8rGO52rqAWo5l3qA6k6AjGmpAABNeChES9scQpbuocBjZ04iNiS4tUMhhBBCiJtxJgH6EcCUOraNAXDM+XBIW2OrKIe3XAG1EwmQ2T4EzqI3uDosUofyckcC5FPnPqbUVACAKsS/BSJqHiqlNMfMSGWwCSGEEHKFRg2B4zhuWrUvjwN4jeO4EACfAMiFVAnuVgB3A3jR1UES9xWTmYnNAwbjH2PTJ8tbIVXqsujb5kT7tqgxi6A6eoCUAfWvE+TOVArpV5vJRAkQIYQQQi7X2DlAO2p5bbz935XeBbDZ2YBIG2O1AgBEJ3qADpusKMtIxUTNHa6OitShoSFwoiBAGRICobLcXgChbQ6BCxAYLOZ6QZWb39qhEEIIIcTNNDYBim7WKEjb5UiA5E1fyDSekSOh8CJGN3ENIeK8hqrAMSyL8JmzoDAWoiLuDwhtsAACAGhYFpyXDoXmtpnAEUIIIaT5NDYByuZ5vsmPQhzHKZw5jrQdjE1KgOBED5BcKR1jMtFilS2lMUPgZDIWolkPwdJ2fy4y+xwgVqAqcIQQQgi5XGPfej/LcdydTWmY47j/ADjX9JBIWyKzSQ+YjFLV5GPD5HIM9PaBWFzk6rBIHRwJUF0LodoqKgCIsJUXt2BUrie3zwGS2QttEEIIIYQ4NLYHaBqAHRzHLYe04OmnPM8nXrkTx3G9ANwG4HEAMgBTXRUocU+sKABgACcSoJtYAX269UBSTq7rAyO1amgIXNrSxYDFgk7/HevcKmFuQqGSeoBklP8QQggh5AqNesThef4vjuMGAngG0kKnyzmOKwGQCqASgA+AcADeAC4CWAlgI8/zVIKpnZMJIsAyYBTqJh8rsHJAsLTZtWbaGlEUqxIgb++aCZC1tBTWwkKAYcCqZRCsbXf0qsI+vLIN53CEEEIIaSaNfj7ged4EYA3HcRsA3AJgJIAukJKeDAAHAXwP4Dee523NECtxQ+fMJrAVFfD0rHtOSV1sMhlgBURz233QbkuMRgOs9qSmtjlAxpRkAIAqJAgi2vZ/YYWaEiBCCCGE1K7Jzwf2ogbf2f+RDu7r0mJkZKTjeW9/aJt4rCCThilRD1DLcPT+yOVyaDQ1f1rGVCkB0oSHQmzDvT8AoFIrYRYEWCBCtFrByCkVIoQQQoiEngrIVTEaDQAAuaLpc4BEmXT7MfZS2qR5VS+AwDBMje3GlBQAgCrIt0Xjag4qrQb3nfoLvj4++FkhB9VCIIQQQogDLcBCrorcYoGSZSGXN70Mtqiwrx1ECVCLqG8RVFEUq4bAKYN8WjKsZqGyl8E2Go0AaiZ7hBBCCOm4qAeIOE20WvF21x4AgPNo+norgj1pYm1te75JW1Fa6lgDqGYBBEt+HgS9HoxcDrmXGoJZ39LhuZTKXgbbaDJBpO4fQgghhFTT6gkQx3FBAFYDuBWABsAvAF7meT7Wvn0AgLcBDAFQCGA9z/Orqh3PAlgM4DEAvgCOAni6epluV7RBarIYDFWfMyqPJh9f7OWPbX8fgVdkNMa7MjBSq/oWQWXkcviNuxWoLIFgbfvFG1VKBZ6N7gofhQKG3BxoQkJbOyRCCCGEuIlGDYHjOG5cM8bwJYAYAOMBXAPAAOAwx3FajuP8AfwA4AKk5GUxgKUcxz1S7fhXATwFae2hGwCIAA5xHKe0x37VbZDaGSvKAQCCKEKuamoJBKDSyxff5ueBN7X9B+62oLy87jWAFP4BCHvgAYROHA0ITe/NczcqhQK9vLzQV+cNQ3HbXtSVEEIIIa7V2B6gQxzHZQDYBmA7z/Pprji5PTlJAbCM5/nz9teWAjgNoDeA0QBMAGbwPG8FEMdxXDcAcwFstycoLwGYw/P8N/bj7wWQDeAuAHsBPOGCNkgtTBUVAACzIICVKwFr0x6cFUpp7SAjJUAtor45QADAiDZYKkpaMKLmo5DLYBakoW8WQ0UrR0MIIYQQd9LYIgh3ATgJYD6AZI7jvuM47j8cxymu5uQ8zxfyPH9fteQnGMBsAJkAYgEMA/CrPXFx+EnalQsCMACAl/01R5slAE4BuNn+kivaILUwlks9QGZRgDOzLDQMg56eXgi10hyglnBpCNzlPUCi1Qp9XCzEihLYTG177o8DwzCw2uf+mCrax/dECCGEENdoVA8Qz/MHABzgOM4PwP0ApgL4BEABx3EfAtjC83zc1QTCcdz7kIagmQBM5Hm+kuO4cABnr9g12/6xM4Bw++cZtezT2f65K9pwmlzu2kJ7Mhl72cfWZDVKD5Zme/bDsk2rtuVjNeL1Hr1RYLW4/DpdLXe6zq5SYR+y6OPjfdn1NmRmIXP1SuR4eiDysTua/HO8Goz9XAzLuLwkpdWelttMBre7v1pDe7yn3RFd55ZB15kQcjWaVASB5/kiAO8AeIfjuJ4AHoKUED3PcdyfALYC2MvzfKUTsawD8B6AGZCSraEAtJASouoc46XU9u2oYx8/++euaMMpLMvA17fpxQEaQ6fTNEu7TSGHFRYAFohQqRVNXmvF7OUF/H979x0fx1knfvwzs12rXi1Z7mWcuKb3SgmB0AOhHPzoB4E74Djq3RGOesDBEY56QAKht1BCICHFidNtx72Ne5HV6/Y2M78/ZteWZVlltU3S9/16ySvtzj7z1WgszXee5/k+gIv8HaepKoXjnCvRqP3fsrm58YzjHXumDQD/glY8Dgt8hZ/65vFMqTN5VJkuX9VMlez5VQwz6ZwuZXKcC0OOsxAiG1lXgUv3+HxC07RPAjcCrwe+AHwdOHuW9fjtZaq+vQe7EMEHsAsijFxh05t+DKdfJ71NdMQ2mSQsF21kxTQtAoHcDr9xOFQqK30EAlEMo7iT1QdiSTb29WB4fTRHEpN+v6HYF9ouRWFgYEqHOudK6TjnSm9vHwAOh+eM4923y+689TTVEYuOvA+QX4qq4PG4iMeTWGZuy1Ub6R6g0MBQyZ1fxTATz+lSJMe5MPJ5nCsrfdKzJMQMl4sy2A7Aj13CelK3jtNzcF4A/EbXdQNA13VT07Q9wFzsYWktI96W+fok4Br23KER22xPf56LNrKWmmRhgIkyDDNvbU9UyOvjW0cOsWSpxluyuHi1PHYe6lYVkkkDRSm9BStL4TjnSmYdIL+/4ozvKXrIPu1dDVWYOU5CxpO5xLBMK+f7NhSFlGmSiCdmzM8wF2bSOV3K5DgXhhxnIUQ2sr7FoWna1ZqmfQ/oBP4ALAQ+DExmwY0W4BfAdcPadQEXYhdB2ABco2maY9h7XgDouq53YycoAeD6Ye+vTr//ifRTuWhDjCIWs0cSejzecbYcncNrD0tyKiqJWHScrcVUZarAVVWd7qA1QiESnR0AuOsqihJXvvw+MsCbtmwkuGhhsUMRQgghRAmZVA+QpmnnA2/GnvczHzv5+QFwl67rB7LY/3bgQeA7mqa9GxgA/g17MdL/wZ6H8zHgR5qmfQW4FPgQ9po96Loe1zTtW8CXNU3rAY4CX8Xu9bk3vY+7ctCGGEUsEsGlKLg8I0cYTozqPb12UCwUxOOb/FpCYmIsyxp1HaDoYbv3x93YAKoJM+hGqsdtd+5mEnUhhBBCCJhgAqRp2kewE5+1gAHcD/wz8NfM0LVs6Lpupdfc+RLwa6Aau9flmsxaQ+lFWL+JXZa6A/iorus/GdbMp9Pfxw+xh+FtAG7SdT2R3kf3VNsQo/Pr+/j5RZexJ8uha6rLg2lZqIpirynU0JTjCEVGNBohlbLLAgxfByh2+CAAZQvmYqWSRYktXzwuOwGKyzpTQgghhBhmoj1AXwX2AZ8AfpIeOpYTuq4PAbenP0Z7fRN2UYRzvd/AXtT042NsM+U2xNnMuD1h3lSdWY2lVFSVX3d2EE8muH2yJeTEpGSGvzmdLrze01WTKi+/Cm9tDQ4lhH1vY+ZY5fZx1ZLl+A8eLHYoQgghhCghE02ArtZ1/em8RiKmHTNhd5AZDkfWk8n+PjREODTEO60ZNPaqBGUSoMrKyjOKTbjnzKGqpZbI/o0kBnuKFV5e1DmcXFBTS9fAYLFDEUIIIUQJmehCqGckP5qmtQAXYw9ZG237e6YcmSh5VjoBspzZFxN0uuz5Q/F4YcsvzzZDQ4PAmcPfwF6rykrFMWK5LddeChSHCiZYyZk1tE8IIYQQUzPpK9f0nJ0fc/baOhkWIAnQLJBJgExH9otYzivz05QoJzY4lKuwxChOF0A4nQBF9u3F6O2mckE9RnwGJkBOByQtSYCEEEIIcYZsbt1/HtiEXUmtL6fRiOklPal+Kj1Ab6+vZV5zE8GTJ3IVlRjF6SFw1aeeG3rqCYLPPE3yBVfhX1ZfpMjyR3E4gBTKDCvuIIQQQoipyebKtQX4Z13Xt+Q6GDG9KJkEyDWp9W/PkMKej5KIzLweiFISCNg9bGdUgEsXB/A0VhcjpLxTXZkEaGYVdxBCCCHE1GQzd/0ZQMt1IGL66VQUNg70EyvLfgHNZHpCviFrteTV8CIIAKlAgGSPXczRNcMWQM1Q0z2TiiEJkBBCCCFOy6YH6HbgPk3TqoDngLNu3eu6vmGqgYnS9xwmTxzaz1tf8Cpqs2wjpTjsx2g0d4GJs5xOgOxFUGOH0r0/zU1Aqlhh5ZXDZZ9biikJkBBCCCFOyyYBWg7MAe5Ifz18ARcl/bVjinGJaSCaTlpcHm/WbaRUFTAxpQcorzJD4Coq7B6gaDoBKps/8xZAzYjVlPOm+x7iqquv5qpiB5NjqqrgdKok40lM00rPdxJCCCHERGSTAP03cAT4EtCZ23DEdBLLJEDuKSRADieYCYy4JED5NHIO0KkeoKaaosWUbx63i5RlEU9XK5wJhp54nEQsiuPydYS6jmP+8i9UXXYlNS9+SbFDE0IIIaaNbBKgBcArdF1/KNfBiOnlA24vlRdeys5oOOs2zHQCZMo6QHk1fAicZRjEjh0FwNNQzUwdAud12+XZYzOkd9FMJGj7+U9xpVLc+V+f57y1K3hxIEX/wCBVN7wA1ZV9OXohhBBiNsmmCMJOoDXXgYjpxwU4VRXV48u6jTZvOb8+eYJ2d/aV5MT4Mj1AVVVVKA4HS7/2DRb903tR/NmXMC91PkvhnxYt4aVZ/ZorPRt+9H+4Uim643Ge6evlrkefJOxQMAIBItueL3Z4QgghxLSRzdXPh4BfaprmxK4IFxi5ga7rx6cYl5gGXOkKbqq3LOs2Ov01PNpxkteoSq7CEqMYuRCqq6IC79L5BPZ2FDOsvPI4HVxT10DKssbfuMRFoxF6NzxGi7+c3tYmXnP9P/C7//0Zf2s7wa3NrQQ3baT8ksuLHaYQQggxLWSTAD2CffP/+5xZAGE4mZE7w1mWdSoBckwhAXJ7PABEIlIFLl8syzo1BK6iwq4Cp6qQCs7sdYxdHntImFNRsEwTRZ2+PUF/+v1vWOWz/5/Nve0luCpVdj+3g+d2HuTW5lZCu3ZhxuOo6f9PQgghhDi3bBKg9+Y8CjHtmMkkjlM9QH7MLNspc7iY7yvDG8l+HpEYWyQSxkivhVNRUcHJO79O2fxWKlc0Fjmy/PJ4hyUDqSS4p29ysPtvf+VCXxlxr4ehGg8YSW58/U18e+MOehJxGoD4AR3fqjXFDlUIIYQoeZNOgHRd/8lEttM0TQF+BHxGhsTNPNH0nBIAh6886wSoNRHmDSvX0BaZGRPVS1Gm98flcqEO9BPeuYPIvr2UL3ltkSPLL7fXc+q8NBMJHNM0ATp69DC1gSHwleFapRE37LLlLYvnMXfpfHYODXFjQyPRA/slARJCCCEmIJ9jQlTg/wH1edyHKJJoek6JYVkoruzLYCvpAgpOM9sUSoxnaChTAruK2MEDAJQtWoCZnNmV97weN8n0eWVO41LYGzY8ht/hxARSy86sP3PhDZeyNTDIHiOBZ+H84gQohBBCTDP5HhQvM9tnqFg8webBfnYEA6BM4TRypxOgGTBRvVQFg6fXAIru1wHwzWsCa2YnnV63i0Q6AUrFIkWOJnvPPfcs3zl6iI3XXE5gWcsZr624ZDXPDfTzn9u2El40r0gRCiGEENPL9J0VLIoq7nTwlYP7+W5PF6aZffKipCd2z9xizMV3ugBCJdED+wHwzqktZkgF4XGdToDioek5xyyZTLJly2YAVl92EWErecbr1fU1tCyZh2VZPPLoQzgccs9JCCGEGI8kQCIr0ahdtc3r9WFOofdG8fgB8Mh1W95kEqDWikpS/f3gUHHVlRc5qvxzOR18ZM8O/mHLRsz6umKHk5Vdu3YSjUaorq6hcWEzCSN51jbnXbIagO3rHyfZ1VXoEIUQQohpRxIgkZUzEqAp9AA5fHYC5FZULBkGlxeZOUBLvfZcrbJ5rVjG9J0TM1GKopBSFRKmSSw2Pec7bdmyiQ8vXsYXtPMJ7N416jZL12q8rGkO74gadP3uNwWOUAghhJh+JAESWTEP7OdnF17Ke6urp9SOWmYnQA5FwUqdfXdbTF0gXbGvwuPFUV6Ob34LlpEqclSF4XHbawHF49MzAdqzZxdL/eU0GAaxUXp/AOYumU97+v9O8ODBQoYnhBBCTEuSAImsJCMR3KqKQ53amrcOXwV/6mznNydPkIjP/F6JYsgkQH3z53P+N++k9srVRY6ocG6ub+L2hUuIHz1c7FCycnTvXhrSi5uG6ipG3cbhdJBqbbC/GBzElDW1hBBCiDFJAiSykkoPgTPUqZ1CLq+Pn7cd53cdJ0+tbyJyKzMErqqqCtVMYKZmT6K5sryc6+sbSHV3FzuUSRscHMCbLjev1NYQcRjn3HbOyqV0x+21tBJtJwoSnxBCCDFdSQIkspKK2QmQOcUeIFV14HTaw5Qy84pEbgUCARyKQlVlFVYighENFTukgjHSlfhTsem30O7evXtYkK6S6JjXTMo8dwK08PwlHEn3/MSPHytIfEIIIcR0NekESNO0RzRNe7Omab6xttN13QAWATuzDU6ULjN9QWk4pl7AutFfTqvXRzQ9VEvkViAwyFta57Po7w/S+9hjs2b+D4CZri6YmoZzgPbu3c3C9By55Dhly5sXtXIsfQNhKL3YrRBCCCFGl00PUBL4MdChadr/aZp2xbk21HX9mK7rMq5pBjLTF5Smc+oJ0McWLOLrq9YSO3pkym2Jsw0NDbGyohJHOAzm7Bn+BmCpdgZkTMMeoP37dRaU2T1A8abqMbf1+DwEyuy5QoEj8v9ICCGEGMukEyBd118CzAe+CFwJPKVpmq5p2ic1TZub6wBFabIS9oW0mR6+NhWZDDkxTRerLHVWOMyCdE+CZ5wL6ZnGTCdA5jTsATp8+BDtsSjJykoitaMXQBguMbeeeztOsqdq5q/xJIQQQkxFVnOAdF3v0HX9K7qurwIuA/4MvAM4qmna3zRNe5WmabK05Qw2iMWuwBARb9mU28r0SSTDs2duSqEYhsHCdKEK15xGLOXc80hmpPT3biSmVwJkGAbHjh3hzsMHcX34fUSqxhxxDEDF8vn86uQJHmk7jqrKr18hhBDiXHJRBMGV/nCnv64HfgPs1jRt9tTbnWV2Op18dv9e2hpbptxWUrFPw+k4Ub3UBYMBVlVUAeBfsmD2rbWUToDMxPT6vjs62onH47jdburm1BNLjZ/AtS6dD8De3bvzHZ4QQggxrWWVAGmatljTtDs0TTsAPAG8DPg+sEDX9UuAhdgjm36Rq0BFaclUbHO5vVNuK5VJgCKRKbclzjQ0NMTKykoA/Jm1YmYR3avw7m3Pc2huc7FDmZTDhw/iUBQWLlxM1IxjWda475mzsIVqj4eFlsKJTc8VIEohhBBiepr0DHZN054CLgdiwO+Bd+m6/vjwbXRdb9c07V7gwzmJUpSc0wmQZ8ptpVQHYE3LieqlLnCyjRavD9OycDVWYSVnV5Kpul0MpZJEk9OrB+jw4cO8ae48XlxVQ+jBR2DV+Amc0+Xi1UuXcLOvku4HH2DuRZcWIFIhhBBi+smmhJcLuB34pa7rgTG2+yPwQDZBidL32mSSd6+9iMOh4JTbMlQHkMKMSwKUa6FgkIe7OmitqWXxLKsAB1DmsUfmRqPTK/E7fPggK7xePJZFbBLTeWK1FRCFVFdn/oITQgghprlsEqBvAfePlvxomjYHeGu6QML2iTSmaVotdkW5W4BKYAfwCV3Xn0y/vg64E7gY6AO+qev6fw97vwrcAbwLqAGeBG7Xdf3gsG2m3IY4k9eCSpcLh9s9/sbjaHP76DyuM3/ZshxEJoYbMFL85MQxLquv4hWzaP2fjEbFwTvmL6Sps6vYoUzKsWNHucFjFz5I1EyiqltrAxzopSwcwbIsFEWKIWRYpklw03NEDx7A09JK1TXXouSgjL8QQojpJ5s5QHcDi8/x2jrgs5Ns71fYQ+reAFwCbAH+rmnaCk3T6oCHgP3YycsdwOc0TXv7sPf/B/Be4N3AFYAF/E3TNDdALtoQZ3Ol5ySonqlXgTteVs1P245zwuWYclviTIGAfZ+iwjs7T+UqReUljXOYE5pePUDtbSdo8tjDSyPV41eAyyhbNh/DsnABxtBgfoKbhizDoOP736HzB99naP2jdP/8Hk585YunFnQWQggxu0zo9pemaX8Bzk9/qQB/1DRttLJETcChie5c07SlwIuAq3Rdfzr93AeBm4E3AVEgDrxP1/UUsFfTtGXAx4G70wnKR4CP6br+1/T7bwPagddgJ1fvyUEbYgRX5sZyDspge7z2BV4wJGWwcyk1NITadgKXolDhm/pcrenI5bbXqVKM6VP+OxqNoIaCOFUVnE4iZS7sezLja1w4l+74UzR7fYRPHKequia/wU4TffffR+j5zaQsiycH+rispg4OH6brnrtpfs/7ih2eEEKIAptoD9AXgcfTHwBbh32d+XgU+C7w+knsvxe7gtzzmSd0Xbewk6xa4BpgQzpxyXgU0DRNa8TucapIP5d5/yB2L9K16ady0YYYwZOu3Kb6/FNuy+f2UOd2YwWmPp9InBbatpV1+/bxiWUrqPBMfcHa6ciVngOkmmaRI5m4trYTzPHY1RXVxjqMCSY/AOXVFXSnhzp27NmVl/imG8uy2PH4egC+e+QQ3zl8kM/v241pWfTu2Y0h1SeFEGLWmVAPULp3JtNDA/A5XdcPT3Xn6UTjr8Of0zTtdcAS4EHgC8DOEW9rTz/OB1rTn58YZZv56c9bc9BG1pzOXCy1dJrDoZ7xWAymYeBJr6+ilpVjTXHRxaWpGP9vzYWcCARyfryyVQrHeaqie+31YPYGA8zxLyjJxTGVdEyKquRkUbKRPF6758thmSVzbo2nvd2u3Adg1VdP+ucW8trJ7uCRw2d8zzPhnM7GQw89yL888iAtXi/XveIf+NzyS/nbQ7/hi3s3oYfD/PjYQVavXpez/c3W41xocpyFEFMx6Rmguq6/ffytsqNp2lXAXcCfdF2/T9O0/8EevjZcZtC2F8iMvxptm9r052U5aCMrqqpQUzP1HpLRVFZOfF5AroUHB099XlZVg+mZ2vwSl98+Rg7DzNvxylYxj/NUWIaBvncPANsDQ6ysrsDrK915QJ489VD5q+z/3k6Lkju3zqW3t5P+RII2t4u5i1sm/XNrb67m28/tZs3yJbx8lO95up7T2QiFQnz5y18A4IW3vpmbbnwTALe/55N86/ufJ75xPZ/61CdYv/5RXK7cnoOz6TgXkxxnIUQ2JjoHyACu0HV9o6ZpJmMPSLd0Xc9mfaFXYi+c+izwxvTTUWDk5IXMypvh9Oukt4mO2CacwzayYpoWgUBuh1c4HCqVlT4CgSiGUZxhPf3t3ewJBvCoKqrqJh6dWnllw2H/OBymycDAlA55zpTCcZ6KyIEDGOEwUcviYDiEz+0mNsWfUz4oqoLH4yIeT2KZEx/qNVEO1S6s4YSSObfGc+DAIZ4b7GfVqhVUXb6aWKhvUu83l8zl8b8+RvTwwTO+5+l+TmfjF1/9Msn+fubNm8/NL3oDkdDp9aDe/Pp/YveeLRw/eoRf/M83ecW735uTfc7G41wM+TzOlZU+6VkSYoabaKLyWaBt2Oc5vVLRNO0D2GWq7wX+Qdf1TG/MCaBlxOaZr09ir0mUee7QiG0yZbhz0UbWUqn8/AE0DDNvbY8nbFh8Rt+D2+3mP1ExzSlOME8XUnBZVtG+p3Mp5nGeisCOHQAcSMSwgAqfDzMPCcZUZS4xLNPKS3xun51cuxUFwzCxSu8QnOX48eMANM9tIZqIT/q4NM6zF009sH//qOfudD2nJyuRSNC4dSvfXn0BbZdcQSRsnnEsvZ4yXvei13P54ecpe+JJQq+5DW9VVc72P1uOc7HJcRZCZGOic4D+c9jnn8llAJqmvQ/4X+CbwId1XR/+m2wD8F5N0xy6rmeusl9gh6F3a5o2BASA60knL5qmVQMXYq9XlKs2xDCR9KRhrzc3F9Wqz17nxCNrluRMZJc97W17uhRypX92DhMpq/Lzzp1bSVrwqJWpr1La2k6cwO9w0NTSTDw1+V67xnlzOL+ikrkOF73Hj1A/f1Eeoix963/3axa5PRiWxdKrXkrP4NkXyZdc+wqih56nWlXZ9LMfc837P1iESIUQQhRaVqvAaZq2GPDqur4nnSx8AZgH/FbX9Z9Oop3l2D0/fwC+BDSmiyyAPRztLuBjwI80TfsKcCnwIew1e9B1Pa5p2reAL2ua1gMcBb6K3etzb7qdXLQhholE7GE1ZWV+jFwkQGWVAHhUVRZvzAEjFCJ29AgAm3q7AaiYrQlQmY+uuN2hHI8n8HhKuxx4KpWC/j7uvuAS+M0fOHj7LZNuw+1x857FS2lxuTmxefOsTYDa1j/CImCouhrFdHH2NE9wOl201c2lOdhDaPMm+f0jhBCzxKQHuWqa9hJgL/CO9FPfw15rpxX4saZp75xEc7diD0F7NdAx4uNOXde7gZsADbss9R3AR3Vd/8mwNj4N/Aj4IfAUkAJu0nU9AZCLNsSZEgcO8H9rL+R9jXNy0gPkKLcTIKeikIxKSdqpUv1+Fn3mczS+/tV0RuxpbZX+qa/XNB153acntkenwbnV1dVJY3oyvlLux8pyzN5geqGuwcMTXpatIKxUisDTT+V9P729PbSk1xWru/wawqFz/ypvutJOMhcoKvqOKY96FkIIMQ1k0wP0aeDvwH9qmlaFnbx8Sdf1T2ua9nngg9jJxLh0Xf8i9hpDY22zCbhijNcN7EVNP57PNsRp8WCAepebgGGQi6VLnf5KHunpImqYvCsawV02Pap1lSpFUShbuIBg+CQADlWlbIqV+qYrh6ry+tZ5lCkqoa5Oqkt8YdD29jaa02sAmfXVWbcTrSiDYJJ4Z0eOIsuOZVlYySSWQ+X4scMozz1H4pFHMONxqm+4MW/7ffwvf2K1vxzLsvCvuozB3nPPU/TNWUCfBXWqypY//o4Va9flLS4hhBClIZsyJ2uBb+i6HsTuWXECv0u/9hCwLEexiRKVDNtD4FIOR07ac7rc/PBkG/e0HSOSTI7/BjEuh5Wkv8OuW1JR5pvVw3peUNfIS5uaifX2FDuUcXV0dNDstROgVF1l1u0Y9fZkfnVoKCdxZSu0eRP7P/YRPvW6V/Hq17yCe+75MQDdv/klyb7JVbebjI6nnrT3X1VFxBx/2GO4aSEAxr59GMYUi7oIIYQoedkkQFFO9xzdDHTpur4j/fUcYDAHcYkSlkwXQTDV3CRAAJ50JbjM/CKRnXh7Ox0//D5DTz9Jb3cXANUVs7tHLZkuWhkLBoscyfg6OztoTi+CmqipyLodx/wmAMqLeEPBsizaf/sr1FCQimgUr9vNn7o62BMMQDJJ+29/lZf9RqMRyvv7AahcvY5IePyRzJVrrgHgPI+XHdu25CUuIYQQpSObBOhJ4F81TXsj8HrShQI0TbsIe37Nk7kLT5QiI2bPKzFy1AMEUOkto9blJjxY3DvW011453aCzz5D35NP0t/XC0B1+eyc/5ORSYASoVwM2Myvjo6OU0Pg4jXlWbdTtmw+ALUOJ4GB/pzENlmBHdtR+vuJGCk6qqv47b9+ih//80f4e8D+Px7ZvIlkHnqoNm3ayI+OHebugT7qrriBRDw17nuU5kU8pbj43P69PPnUhpzHJIQQorRkkwB9GJgL/Bw4Anw+/fz92IuJfiI3oYlSZcRiAJjO3K2c/i8tLXxv7YUkD+7PWZuzUXj7NgD8C1sYDNq9adXls7sHKDOgKREu/QSor+MktW57vlakKvvKfc6GaqKmgaooHC/SxH79Vz8H4LlgkI+88lZ8Hg/NNbW849W3cigcxgFs/8ndOd/vM888STCVouKiiwh7qif2JlUlfP6VHImE2fDE4zmPSQghRGmZdAKk6/oRYCXQrOv6Kl3XO9MvvQo4X9f10io7JHLOSidAlit3E+sT6Tkq0+EufakyQiGiBw8A4J3XwGDIToCqKmZ3D5Ch2udWKhotciTj6+vu4m9dnUQWziPmnsK8LUXhd0aET+/bzdH+/M21OZfo4AAV3XYJ9tq1a6n0nU7mFjbNYaCuFoDk1s0kczxM75ln7Cpzl192FdEJDH/LWHXexaiqgwMH9nPyZNv4bxBCCDFtZdMDhK7rlq7rXSOee1bX9bMXWhAzTtA0ORIJE/Pm7sI6qdinYqbAgpi88K4dYJp4W+aguGAwZM/VmvU9QOkEKFni88ssy+JQezt3nzhK6raXZ10CO6O7pZZ9oSCHTxzLUYQTt/lXv8ChKLQn4ly77qKzXr/iymuImQapVIonH/hLzvbb0dHORfEEr5s7j7ULlhCNTDy58vv8vOa8Nbx7/iKefOzRnMUkhBCi9Ey6DLamaQ3AN4BbAD9nL61u6bqe1QKrYnp43qHy0J6dvPmKF+as5F9SdQAWRqT012opVZnhb+XaYqxUgqFQZgjc7O4BQlXBAiMaK3YkYxoaGiSWnl/nrSmDwOCU2mtstQshHDlS+E750JbNNAHRhgYcpnnW6xV+Pw/W1fK9hx7kQpeTG17+6pzsd8vzm3lJ4xyqXC4IRkjEJ3GPT1G4pdxPmc/DH596At781pzEJIQQovRkk6h8B3gZ8EugDTj7r5uY0TKV2tye7OcojJRyOMFKYkyDYUqlyEqlCO/aCYBvfiNgSQ9Q2p4yB//77DZee8G6Yocyps7ODhrcHlyVlZjq1BcYnltfxwvqG6k/Wdi1gLq7u/jN/n1cXl3DDTfecM7tbrz4Mn746MNs2bKZ/ft1li/XprzvI5s3sszlwlAU4tXNEJpE5T9FId4wn7LOw7jaT5JMJnG5cjfPUQghROnIJgF6CfAhXdf/L9fBiOkhHM4kQN6ctZlyuiGZxIyV9l36UpUaGsTV2Igx0I+zyouZiJ4qglA1y3uAFJ+bjniMYGLi80GKoaOjgw8uXsry8grCO/bC/Ooptddc7ufGhYvpSyRIJBI4nbn7/zqWRx75O1sHB7BaW7mtvumcc69qvT6uu/Qy1j/zNH/78x9Y/q9Tr58TP7AffGUkG5uIxiZ/b869eDV0HkbzlbF3727WrFk35ZiEEEKUnmzmACWAw7kOREwft6Fw56q11MVy11tjZu60JmQaWTZcdfUs/eznWfbJf8ZM2D+XIekBAsDnSVdVK/E5QJ2d7czJlMCunHrS6lowB4A6t5tjhw5Mub2JeiJdRe36Sy8bt/DErS2t/HDdxaSefXrKC5CGQiEa0zdQqlavJRadfHEFo2UJAIvL/GxJF1MQQggx82STAN0LvDHXgYjpoxqFZq8Pp2v8FdYnaqisikd6umk7a0qZmCgHKczo6XVVBjJzgGb5QqiNlsptLa3M6St8NbTJ6GtrozJ9IyBaNfXeGqvMS9iye0Had++ccnsTEY1GKD98iOX+ci5bvGTc7ec1NFHudKI5XWzevHFK+965YxvnV9iLx9asvjCrBMjyVxJyelAVhc4tz08pHiGEEKUrmyFwW4AvaJq2BHgWGDlr3dJ1/XNTjkyULE+6ZLValv1CjSP11jRx37HDXLtwAW/PWauzgxEKoThUFMsiFbYToFg8QTxhXwDO9iFwNZbCa1taORwu7QIbsQ57rk7c7SKmAlOfBsSQU8FvQN/Bg1NvbAI2PrGBd8ydj6ooNDhcGMbYSYi7to4IsNRfzv1/f4DLLrsi630fevZpLnW6SCoKybpmzP7sFoBNNbZC+yEcHe0kEgnc7tyV+xdCCFEaskmAvp1+vDb9MZIFSAI0Q1mWhVe1Ow7VsoqcVcDw+uxkKhgI5KjF2WNw/SP0338fDS++Ht8C+zhmCiA4HQ783tz11E1HLq99AaukUkWOZGxWfy843SSrKjCt3PzPivi9EIgT62jPSXvjOfbEYzQrCkGnk/oJbK96PCQqynEHQwxu2YxlWShKdr3AHfv2EjFSGE1ziISz/1m7F5wP7YeodzjZvXsXF1xwYdZtCSGEKE2TToB0Xc9q7SAxMyQiEZyZHiBf7hIgn8+PT3VgBidRtUkAENy8CSuVwuFRIb12zOCwEtjZXlDOFF6fPZxMneIck3xzh8NQ5casr85Zm6n6Kgh0owwO5qzNsRhHj4LHizWnCTMxsSFo1YuXENm+ncUo7Nmzi5UrV09+v4bBH3fv4JfhML+6+xdZDX/LSC5cyXef+RvrjxzkQ9u3SgIkhBAz0JSSGU3TqjRNW6FpmkfTNEeughKlKzI4cOpz1V+Zs3YbjAQ/ufASbi/PXZuzQaKzk8TJNnCoeFvrTj1/OgGa3fN/ADw+uwfMaeZgTFmeJJNJqgz7doLSPJG+k4lxzGsEoDyRmHKRgfEEAkPUJe3Eo2HBwgm/z9Nor1e0pqqKx9Y/ktW+Dx48QDgcxuf3s/D81cRiU+jtc3tpXHA+ANu3b8m+HSGEECUrqwRI07TrNU17DugHdgErgV9omva1XAYnSk9kwE6AooaB4sjdGhkOfxVwen6RmJjQls0AlC9fimmcrqCXqQBXVTG75/8A+Pz2elWuXEyqyZPu7i42DfbzcF8PLJuXs3aV1Uv5/EGdrx/UaW8/mbN2R7P1+U0sLrMT7qp0UjMRis+H4XRS4XRxMF1BbrK2bbULFqxZsw4zBfGpJEDAogUrANi+fSuWVbrnjRBCiOxMOgHSNO1G4O9AFPg4nCrbtRX4oKZp/5K78ESpiUTCHImEOZmIY+bwjrqzohoAr6qSlFLYExbcvAmA8uULwDx9hz+zBpD0AEFZOgFyK0ree0Gy1dnZwVP9ffzNSBJrbchZu1ZlGb3VfgaSSQ4fPpSzdkdz4OmncKsqCUXBdExidLUFFRdcwO86TrLryOGsErXks0/zzVXruKVlLuFwYspJy2Kvj08tP483VtZw4sTxKbUlhBCi9GTTA/QF4I+6rl8PfIN0AqTr+n8BXwHelavgROmJer18fM9Ovtnfh2HkMgGqAUBVFAK9pV2uuFQkerqJHz8Gqopv3pnDpjJFEGZ7CWwAf7oKnld1nFrEt9R0dtoV4BrnNJFI5XbB1sZ59npAR47kd/m26BE7wUpUVWHGJ3cTo/6SSzjU1EhPIn5qHaHJ8Pf2MsfrpbW5hXBw6jdQnE4X6yqruKCq+lTvkhBCiJkjmwRoHXBX+vORV8B/BxZOIR5R4jIXkD6fDzOHQ0NUt4e4ac+BCPV256zdmSz0vD38zb9sMZZ55kXf0LAiCLOdr7qcT+/fyyf27iQUKs0qg73Hj7HAV0ZLYwPxHCdAF1RX88a58wjs3ZPTdoezLIt79+v8295deNatnfT7k+EI1111NcCkE6Durk4WOe3huAuuvo74FAogZBi1c0ihUOlycST9/0wIIcTMkU0Z7CGg+RyvzU+/LmaoUMiu0laWwzWAMiKmiUdVCff35rztmajisitweV04zBCWeebQroH0ELgqvyRAisNBj2LSF4sRCpVmD5Dz6BG+unINXeEYgRyVwM4433KwoHkuj7XnrxR2e/tJBgJDhJxOWhcvIdkzuV7cVDjCtWvW8UR1Df27dhCNRvH5fBN6777H1zPH6SRqmVQsXk7bzs5svoUzOZyEyqupDg0QPbh/6u0JIYQoKdn0AP0JeyHUi4c9Z2ma1gp8CvhLTiITJcmxbx/fWLWWmyd4cTIZsXSHUrR/YOwNBQDu2hoarr8ab2vtWa9lEqCaytwnqtORP10Ku1R7gDJlqpPVFblvfI59friCobxN6Nf1vQAsWbwE4pPvwTLiccr37uWjSzVeUFPLpk3PTvi9A9vsSm39/nJSKWvKBRAylLnLAKiLRAnI+mRCCDGjZJMAfQLoBp4DMrNDfwno2EPiPpmb0EQpMgNDtHh9VExmkvME7TFMHunpJmSW5kT1UuNwqFjRAMnQ4Fmv9Q3ZPXV1lXm4oJ6Gbqyp47aWVsLdpTm80heNAWA0VOe8bcd8ew5Qg9NJe556gU4+v5l3zV/EC1vnkQpHsmrD3WwPLFhbWc2Gx9dP+H3ezi77/cuWEQknclacxTlvOQBaeQU7d27PSZtCCCFKw6QTIF3XB4DLgPcCG4CHgR3Ax4CLdF2X8UszmBGxL24MlzvnbT+muPn+scP0qbLW7lgsy6Ljh99naMN64l0nwDx7yFR/IARAXZX0AAFc5avgtS2tJHp7ih3KWSzLojr9M3S05K4CXEYmqZrj8bJ/f36GcxmHD/HixiZWqQ6sLCvtOSoqsFwuKl0ujm98dkK9VbFQiLnpzxdedz2hHBRAyEg1tGICc7xe9m56LmftCiGEKL5symBfC7h0Xf+Brutv1HX9xbquv17X9W8Dbk3T3pD7MEWpMGP2nWorDwmQ12dfrAeDMtxkLLEjhwk++wwdP/s5ycDZcy3iySShdI9CrfQAAZBS7Wr98UDpTVEMDA3R4Lb/PzkXzMl5+8ka+xyodLk4sGtXztsHKBuyj6u3oTHrNoxYnPLz7PV35qUM9u/Xx32PvmsHj/Z2sz8aYe7qdcRjUy+AcIrby4C3nB2BIQ7tyc9xE0IIURzZ3GpfD5x3jtcuAO7OPhxR8tJr9Fie3M8B8vrK8Koq0fR8CDG64LNPA1C5+nzMZPSs1zO9Py6ng4oyb0FjK1VGOgFKlGARhK4DOm5VJWmZpGpz32NnuZ2EHfav+u594ycVkzUwMMA8pz0ktnHBgqzbSUUiVK6wE6ALqqrZsOGxcd+zff8+7jp+lEcaG7DMqS+AOlLHla/m8/v38viunSW7hpQQQojJm9BEDk3TfgJklidXgO9qmjbabfrlQA5K8IhSpSbTd1i9uU+ArrWSfOTCSzl07FjO254prFSK4MaNAPiXz4NRhgll5v/UVpajKMpZr89GpkMF0yIVCRU7lLP0HzpALTBgWSTM3F7AZ0TLvfiHIgSP535Rz/3Pb6LO7cG0LLzVNZhZFEEAMJMpvAuXALDUX859TzzGu9/93jHfs23bVgDWrr2AZMLIeQI0d+5CfN4yIpEwhw4dZPlyLaftCyGEKI6J9gD9DjvxyVxNKaN8mMCzwNtzHKMoIc6UfYFh+XK/wKbpsXsrlEkuojibhPfsxggFcVSU424cvbfg1PwfGf52mtMBkPUE/Xxqj0T56Ylj7Pa6MHJcAjvj2LWruH3HFv60X895JbjOdBIyqKpYyaklIJZp4pgzB1VRMI8fp7+//5zbJgYHCO7ehQpcdtllxKJJDCO3x09VHSxZvIIKp5Od22RBVCGEmCkm1AOk6/p9wH0AmqatB27XM3VPxawylErhMUyssqqct2167KRKTeRwHP8ME3jqCQCq1p6PGR/9Yr5vyE6AaqUE9imKywnRFFZ6DlspOR4Y4r6uDl527SW05mkfZSsWMmAYGKEQnZ2dNDQ05aztxLEjAMQrK7BGKcgxGclwmAVvfzsf+LdPsmmwn6effoJbbnnlqNse/utf+Oi8BWyvqWHlylW0HcnP/K53VlUxd93FPLJ5M7z+TXnZhxBCiMLKpgrcDZL8zF539XbzgZ1biTXPz3nbqt/usXCk8jMMaLpLBQKE0nfbK1ac+/j3B9IlsKukByjD4XbZnyRKr3exo8MuTV3VUJO3fThdTppa7TLThw4dyGnbZnrOnrcx+wIIGalIlLLWuay+5jqAMecBBbbYPTLBmloUHMSi+blx4qywfy5WW+6HDwohhCiOSS/momlaGfBvwC2An7OTKEvX9SU5iE2UoFDIvrh2e8ty3rZaXm23PcW7yDOVGQ7hX3EeViSI4lOwznG91xeQHqCR4q11fPKJp2lcvIQ3FjuYEco7O5nn81FVk/te1Qw1nuT1zXNJKh4OHtjP5ZdfnZN2o9EI/7VrOxUOB/e84pX2SnBTkIpEMWNxrrvuBn7wg+/yzNNPkkwmcblcZ2yXHBigMp14lV9wEYZh5nz+T4Z74fnQ386clMHg4ADV1flLVIUQQhRGNqtZ3gm8A3gM2IY990fMApZlEQxmEqDczwFyVtor1nvT+5IJ/GdyN7ew+OMfJXFkK7GOI+fcTtYAOlt5fTWHwmHiA+eeU1IMZizGbS43t61cy5bK3N9UyLAcKpenFNT6Bv5wIHc9QAcO7MeyLNxVVVSX+UmFp1Zlz0qlSAUDLK+u4t/OW0UoFmPbti1ccsllZ2zX98RjqMCeYIALb3yBXQAhnp8EyDlvOWx5mGX+cnZs28q119+Yl/0IIYQonGwSoNcCn9J1/cu5DkaUtnB3J18/bxXBVArL5SXXRWFd1fUA+B0OIpEwfr9cwA+nKKAmwhihgTG3O10FTobAZVRX2An7wMDYx67QIidPABBIJvE21+VtP5bTQdTnxh9NED52NGft7ttnj4bWliwlFT27JHs2EgODOOsbWOsvJ+UrY/2jD5+RAFmWRe9j63EDuyyT12orCPRHSSbyU6barKonioLP4eDYxmdAEiAhhJj2skmAnMDGXAeSoWnavwMv1HX9+mHPrcPueboY6AO+qev6fw97XQXuAN4F1ABPYhdqOJjLNma7YHc3zV4f5akUXS4vRirHFZcqatg4OEAwmeTlfX2SAA0T2raV8qVLMKwhkqGxJ3sPL4MtbBWWwsubmokYBolEArc79wv5ZqN3/34AOhJxXH5PXvcVq6/Ef6IX+vpy1sPqfvZp/m3ZChL1DZCjoavJcISKVXOI1Tfg7e1BfX4zqVQKZ3qtocjunbgDAWKGQdWll+NwKISCeZzbpagMlVXhiwwSzWHvmRBCiOLJZiHUB4Gbcx0IgKZpHwI+O+K5OuAhYD928nIH8DlN04aX2/4P4L3Au4ErsEei/03TNHeu2hAQSZekjZgmRo5L6QLgcvOD/n6+f+wwg4H8VHSajoxQiI7vf4f9H/4gof17Rl37J8OyLLoH7GPXVFtdoAhLnzdp8JZ5C7i5cQ4DJTQMLnD0MAADqnJ6kYF8aW0AoEl10NnZkZMmqwcHWVtVTWtl7uYvpaJRrESMBbe9AYCr/OU8+eBfT70+tHs3AA/3dHPti27CNCyikTxXjmxZDED50JAsiCqEEDNANj1Avwa+p2laI/a6P2fV4tV1/Z7JNKhp2lzgh8A1wMilyt8DxIH36bqeAvZqmrYM+DhwdzpB+QjwMV3X/5pu7zagHXgN8KsctTHrRQb68QAxLAwjDwkQ4C+vYqi/p6QuUott6IkNWMkk3tYWcKRgjKkOg6EwyZR9gdZQLUPgMlSPPYne53AwMNBPU9OcIkdkS3R24gVCPjf5GwBnSzXak/dbfT4OHNBpbm6ZUnuJSIRGxb6H1jR/4VTDOyUVjmDGYtRcdDG6z0d1NEr0D7/HuumlKE4nGyyTv+3fi1lXz4fXrEsXQMhvAlSmXcjjmx7m+f5eLjp4AE1bkdf9CSGEyK9seoB+A9QCbwW+A/x4xMfdWbR5ITAArAGeG/HaNcCGdOKS8SigpZOwdUBF+jkAdF0fBLYA1+awjVkvPmj3LMSVbE6biSnzV+FTHQz29uZtH9OJZRgMrn8YgJpLVmOlEmNu3z0QAOzhby5nNvc3ZibVbR+LMoejpOYBKelYYpW5LyoyUqLB7qWZ5ytj3949U27v2KZncSoKQ6kkDXW5S98swyAVDOJwqLS8/V0kTJMlKOz84meJRML86EffZ3tgiJfd9kYcDpVkwsxbAYRTMdW38pi7nGcH+tmxY1te9yWEECL/srlCWpTrIEYstDry5VZg54jn2tOP89OvA5wYZZvMYim5aCMrTmdukwWHQz3jsZBSIfviOuFw4FTzM17nnX4vSy68hIOHDuT82E1GMY/zcIGtm0n19+OsKKdsYT1mfOwqWz3pJLWppgo1Tz+jXFLSMSqqktXdmIlyeOyRrD6Hg+6hgaKeWxmWZeFNFw4wG6rz/vNKNVRhAW5V5ei+vVM+Bt3bt9EA9CgqS5LJUz/LXEgODuJTYeGll/CTRQtZeegwnbrO1973Lnp6umltbeV1r7sNl8tBJJggmTDyfvwWL1zB7r1b2LVrO29847kXRC2V3x0znRxnIcRUTDoB0nX9WD4CGUMZ9vC14TLLuXvTr3OObWpz2MakqapCTU1+7uxWVvry0u5YlLh9sZZyOqnw5WdqVNzthkQUMxzM27GbjGIc5+Ha1j8CQP2VF+FWkzDOcR8I2QnSnIYavHn6GeWDx+Maf6MpMNMX+6qiEA8PlcS5ZRkGD7lUBg8foeaGVQX5eW295TK+/Jk7mTd//pSPgXHCXhg0WV2Jz5vbn58jlcSjmJTXlPOPX/4ib73tNnoOHOJAOITX6+XOO+9kzpxaLMuipyOE15ff8wfgvGUr2fO4n9jePRM6dsX+3TFbyHEWQmRjQgmQpml3AZ/Tdf1I+vOxWLquv3PqoZ0SBUaWR/KmH8Pp10lvEx2xTeZ2eS7amDTTtAgEzpoiNSUOh0plpY9AIIphFHYJpqFIlGQ8Tqyqhmh07KFY2Uq5vJCIkhgMMDAwtTVFpqKYxzkjevQogT17waFStnwusej459LJLnvuVH1lBbE8/YxySVEVPB4X8XgSy8zPvDKwe1tM7DG/vW0dRT23hnusvZ2jne38Y5U/7z8vRVWoWrUICzh+/DjHjnVQWVmZdXvegUH7saEh578PUoMBfIEQYUPBsuAb3/0hP//5T+np6eE1r3ktmnY+AwNhHKrK4ECEWDTPRRCAxU4XXzp/NZ2xGIcPn6CmZvR7Y6Xwu2M2yOdxrqz0Sc+SEDPcRHuAbsAuIQ1wI2Ov953rq5gTwMjZupmvTwKuYc8dGrHN9hy2kZVUjktFZxiGmbe2z2WX3889O7dy8yveyGV5ulg1vGUQHkCJRAr+/Y0aTxGOc0b0ZDuK203l6vMwjChM4Jh39Q8C0FBdiZnHhCJXMpcYlmnlPV5DAdWCUH9fSZxblmXR0WGPxC2vrcr7968C3gofTc1NdHV0sWfPHi6++NKs2jISCU6GQ7g8XhrmL8x57IlQBCMSxfJVYBgmbrePt7/9Padez/z8DCxi0WRBznXH3OUYlsUcr5cdTzzBVS99+ZjbF/N3x2wix1kIkY0JJUC6ri8a9vnCvEUzug3AezVNc+i6nqk/+gI7FL1b07QhIABcTzp50TStGruwwrdy2MasNzg4CEBZefZ3jcdjllVC30kcidLvvci3yssup3a1RnT/85ip4ITekymC0FiTu7LEM8XB1hrueXADS6tKozpe55MbWO0rY79hUllXXZB9OrsHed/8RXS6/ezbtzfrBKizp5v/3LsLl9PJX297AyRy2wNjGQbJQABPYxPnqjqtqgrJuJH3CnCnuL10KU5aMOjevBHGSYCEEEKUrunQx3sXUAn8SNO08zVNexvwIeBLALqux7GTlC9rmvYKTdPWYJfqPgHcm8M2Zr2hoUEAfGX5u4BUyu1Sve6UrLXhdKo41CTWqelq48usASQJ0NmcjdUcioTpS5/HxTb0t/v52FKNi+c243QVqGKfYXK+AZfW1LJv7+6sm9H1fQAsWbgQJZmfCmyJgYExF1dVVYVEPEU8lt8KcMOFaprsfR8fWS9HCCHEdFLyCZCu693ATYCGXZb6DuCjuq7/ZNhmnwZ+hL2W0FPYK6XcpOt6IldtCHhZMMwXVqyiPo9lsJ219mKNPsvCzNHK8tNNamiI6IH9OEmR6DmBlZrYHW7Lsug6lQDlr5duuqoutyeu9/cXf40pyzShrw+AaAF7pFINVZiqQrnTSc/BA1m3c2C3XVRz+bwFYy7MOxWpSAQlMbIuzWmqqhAOJvK1+1G5F68GoDmZJJksUM+TEEKInCu5hUJ0XX/bKM9tAq4Y4z0G9qKmHx9jmym3MdvNAbzl5Qz6yvO2D2fDXDYO9NMdj7NqoJ+6uvq87atUDfz9AQYe/BuR66+mcs3EF6vsGwoSTyRRFYU5BRpSNZ3UJA1e3tRMZyQ6/sZ5luzpQTUMEqaJ1VRduB07HcTrq/B1D+Lo7SUej+PxjKwPMzbLMLh6+3bOW7WOtvqGPAUKyXAUMx5H9XtGneNjmhbh8LkTpHyo0i4ivulvVLtcHH7uWbSrryno/oUQQuRGyfcAidJgJhN41XQp4cr8rVlvVtXzf3193NN2jK6uzrztp1SlggEGH1sPgK+lFnOMO+AjneyxezaaaqtkEdRR+PvDvGXeApY5HMTjhb1wHinR3gZAWzRCVVPWlfazkpxr31RY4PWyN4thcPGTbbiACqeT+c0TT9AnKxWJYEaj51zfx0hZxKOFG/4GoLrctKU7pk8+80RB9y2EECJ3JAESE5IcsifXp0wTZ0VNXvdVVW1foHV3d+V1P6Wo/6/3Y8Vj+Oa34qzzjv+GYU722gnQ3Ib8JajTmbfCXu6rwumip6e7qLHET54E4EQ0Sk1TYX9e8Tl2wrWozM+OHdsm/f6+9HsOhkMsymcPrWWRGBxAUc5OgFRVIZkwiBWqAMIwR5oWcce+3TzQ2T7+xkIIIUqSJEBiQkLp3pihVBJ3HosgAFRW1+FzOOjp7MjrfkpNsr+PoczCp9dejJWcXC9Fe08mASpsj8J04fDaC41WOJ1F712MpxcRPR6NUDunsMM84832+bG4zM+O7dsm/f7eHfbKAD1OBx5G753JleTgEKpxdi9PMQogZNSvupK9oSDPbtqEca4SdUIIIUqaJEBiQgKd9gVj0DABR1739V63yk8uuITU4UPjbzyD9P35T1ipFP5li3HUTH5l+7Z0AtQiCdCoVI+dAJU7nUXvXYweOwrAkUi44AlQorEa06EymExyYNfOSb3XsizUE3YFtFR1dR6iO1MyHIFRbgSoqkIwMPHqiLk0f95SvN4yAoEhDhzQixKDEEKIqZEESExIpNceMhQh9yvdjhR32ZOyE+kqWbNBoqOdwNNPAlB3zQVYyckXH8zMAWqVBGhU6hk9QMVNgIxXvoY7Dx+gQ7Xw+csKum/L6aD9X/+Bj+u7OdbVQeckelqT3d14kklSpklVa2seo7SlwqPPAzINi0i4OAU6HQ4H1yxbzdvnLaTtD78rSgxCCCGmRhIgMSGRaIzueIyQmv9TJumzh9iZgUDe91UqjFAYV109FavPQy3LbliRDIEb2/AhcMXuAToZi/BUfx9ljcX5WZkelaXLlwGwIz2kbSKi6fV/9odDLJmTvwIIGUY8TioUwuE48/dOKmUSixavDPXqlgXc3DQH/+EjRYtBCCFE9iQBEhPSVV/HB3Zu40HH5IdmTZZRUQ2AMxrJ+75KRdnyZaz4/B00vOCSCa/7M1wsnqB3KAhAS70kQKPJ9ACVO5x0FXkC+8mT9jCyQhdAyIinEqxYdT4ORWHr1ucn/L5IWRkPdXfx7EA/C2sKc54l+vpRh/U7Oxz2/J9iJkAVKy/HsCzqLItIhxRDEEKI6UYSIDEhg4ODAJT5C7BoY7W9tog3mcIq5CqHReRyqljhHoxEMKv3H+3sAezFPqvKCzukarpw+Dz0rV7Ef+zbzcl0FbZiGHz0Ybw7d9Lg9hR8/k+GGk3wiqEQP1p3EVs2Pjvh9x2IhPjB8SMc8LjxOgpTaj0RDMGwcvCqqhINJ0kli7dQcsuCFRyM2Ddojjz8YNHiEEIIkR1JgMSEDA0NAlDmr8z7vpz19tCaKoeD3t6evO+vmAYffZih9Q+jRgeIdRwFM7uLusPt9pCuxS2NOYxuZlEcKnXLF3AoEqbt5ImiJdcDjz7Mmr5+WrxeGuY2FSUG0+vCH0tQ5nBCV8eE/59t27YVgBXzF+QzvDMkw2HMWOyMeUCBoeIuZquqKp0++3fh0JYtRY1FCCHE5EkCJCZk7Z49fH7FSpo9k1ubJhtWep2hOrebE+lywTNRoquTnt/+mq6f/4y+DY+SDA5k3dbhk3YCtKhIF9TTRXOdfdEaCoVO9WoWkhmLkkwXYDgaidDQWqSfl6KQXNgMwIrySp57bvxeoOiB/fRs24ICrJ6/ML/xDZMKRzAj4VMJUCppEosUb/hbhmPZWgCqAwGMyOwZriuEEDOBJEBiXJZlUROPs7y8Am95Vd73l/RXsdcwebq/j+PpcsEzjWVZdN3zY6xkkvIVy3DVeabUnvQATUzqeCdvXLKUZo+XtrbCJ9fRw4fBsuiJxxlKJYvWAwQQnm+fK2sqq3juuafH3b7nj/fyFtXJixuaOK85/wUQTrEs4r19qIpyagHUaBHn/2QsXHstJ6NRnIpCxxOPFzscIYQQkyAJkBiXGY2SKX2gVOf/Att0e3iweg4/On6U4zO0ByjwxAai+j5Ut9sufDDJRU9HOtxulylf3CI9QGMJ7jrCq2vqWV5eUZTexdjBAwDsCwWpbqjF7Z1a4jsVgYX2XLvzyivYuvHZMYcEGtEo0QP7AThqmbRU5v9GyHCJoSGUZByHQyUWTRRlAdSRKiqq2Wsp9MTjHND3FjscIYQQkyAJkBhXatAemhVKpXBXFqbyU3WdPTznxIljBdlfISW6u+n+9S8BaHjxtZjm1IbPRGJxOnrtn5EkQGNz+O0hnLUuF0ePFr6EcfTA6QSocd6cgu9/uGRNBWZtFU5VpTEa40A6wRlNeOd2FNOkPRalecECFCW7Uu3ZSgbDWLEoiqIQGCzOAqij6V20mvfv3Mq9siCqEEJMK5IAiXElB+yL64FkAm9ZdUH2WV3XTLnDSc/xmZUAWakUnT/8HlY8hn/pYsoW18EUJ+MfSs//qa0sp7rCn4swZyxHmZ0AVbvcHEz3xhSKZRhEDx8CQA8FaWwtbgKEopBabhczuLCqmofHqGYWTM8Reqa/jwsWLSlIeMMlw2FSoRBmyiQcKs4CqKNZu/ZqAJ555ilCoewqOAohhCg8SYDEuMIn2wDoScQpK8AcIICL+05w1wUXszIWn1GlsGNHDhM7dgxHmY/Gmy7HTEz9bvbuI/aaMuctnDvltma6Uz1AbhcHD567xyMfkj3dWKkkMSxORItYAGGY4LK5BBvr2RYY5NFHHxp1GyMUIrxrJwBP9vdx0YLFhQzRZlmkAkESiRTRSOkkQC3NC5jbvBDLMHjm3t8UOxwhhBATJAmQGFewzb7AHjBMXO7CzFlw1Np3xxscTrq7uwqyz0LwLVvO0k//Oy2veymmkZvKUbsP2z+fVYvn56S9mWx4D9CJE8eJRgtXTtk9pxntu9/jC0cPYQHNi4qfsA7Mr6X+Y7ezNRTk4MEDHDp08KxtghufBcPgaCSMu76eOZX5L4U/GstIEQnGSmL+z3BXrruK76+5kHkbniDZ31/scIQQQkyAJEBiXNFUiu54jKECLXwIkEwvhtrs9aLPoAnGbreKt9KJo0IBctOzteuwPZl/5aJ5OWlvJnOmE6B6jxfLsjhQ4Lkbnb096L29OJwOmuY3F3Tfo7Esi6TT5JprrgPg3nt/e9Y24T27AXi0t5vLz19Z0PiGMxUHQz1BCjz9aFxrL76RE7EoKtCz/uFihyOEEGICJAES42qbN48P7NzGFlfhKlYlKusAaPZ42bd3T8H2mw9mLMrJb/4PyZPHUUM9RE/oWKnclPHtD4Ro7x1AURRJgCYgMwSu2mXXNdy5c0dB979j1zYAmuY343S5xt64QIZiQW59+S3c1tLK03+7n1jszGGZVW97B189epjHenu4ZsX5RYlRcToxVDfBvgCKWloZUFPjXHaYdkx96x/FynIxYyGEEIUjCZAYV2dnJwBVNQ0F22eiohoT8DocHE/fgZ6OrFSK9m9/i/CO7Zz81jeJHNtDKpK7ydI7D9m9PwvmNFBelv9Faqc7R5mXpldcy85VKwDYsWNbQfYbPXSQo3f8G7FHHgWgZUnpDFcMxcLM27Wb17a0cnNlFX/84+/PeP2BB+5nU283TS0tLKsr3O+A4dyVFSRMhUBnH0oJJhiV664jnErhicVO9ZgJIYQoXZIAiTFZlkVXVwcAldX1hdux6iDmsyuaBabpYqiWadJ594+I7N2N6vHQ/KobSQ715nQfG/fYlcwu0hbltN2ZSnGo+OY3svzSCwHYtm1LQYpshHftJHHyJGaXvV7T3MWl01sXTkRwv8QeAnd9fQPP/vTHhEJBBh97lFh/Pz/+8Y8AeM21N1Csvhd3VSWBwTiJUARSSYoWyDlcfOkLeTK9XMCR3/y6yNEIIYQYjyRAYkzxY0e5+dAhPrJkGeVVdQXddzK96Ko7FGJoaLCg+54qy7Lo+dXPCT73DDgczL3tFnDmvnrVs7vsSmaXrVye87ZnKiuVZM15y3G73XR1dXLkyOG87zOcHmr3dPtJAOYuLZ0eIAvobyqn6sYbAfjHOS3s/ciH6P7ZPez/t4/T19FOTXU1L1l3YXECVBTwVzLUG8SIJzBjcdQSGwbn9ZbR1bIU07JwHD9O5PjMXMBZCCFmCkmAxJgS7e34LPA7nJRVFDYBisxfweOhIMeiEXaly/BOB5Zp0v2LnzL46COgKLS85iWo5eaU1/sZ6URXL209/TgcKhefV/i1WaareNcAgfVPcOuFFwPw1FMb8rq/ZF8f8aNHsIBnu7vx+n00l1jJ8qFokLo3v47E0mU4FIUqw8CwLH52cD9Rw+Bj73s/jnhxyk+7KytIWk4CfQEAUqEQSgmWxr/4ulezccCuArf/gb8XORohhBBjkQRIjCne0Q7AyViUqurCjv8fWHEJO1oWcCAcYtOm5wq676kYemIDQ+sftZOf174Ud4MH8jBv4emddgWztUsW4PcWrkDFdBc90U33Xx/h6kZ7HZ5HH81v5a7Qls0ADFaWM5RKsmjlUlRHaf3qDcSChM0Y6/79Pzh23fX877EjvH/HVv7e08Xt772dG1ecn5dzeCLcNdUMBRIkonYClorGIJkouWFwc1sWsr28no/u3sH3t24pdjhCCCHGUFp/hUXJiaXXAGqLRqksYBGEjCUr1gGwceOzBd93tqqvvgr/8mW03PpS3E1eLNPIy34efG4bANdeUJzKXNOVs7IMgGavD0VR2Lr1edrS53k+BJ+3E6CNwUEAFq9alrd9ZStlGnSH+1BUeNFb3sanf/Fb/v3LX+PPf36QD7z9HcQHBosSl6KqKBXVDHQPnXrOiMcxotGSGwYHcMVL3sSxaIS//OU+jhw5VOxwhBBCnIMkQGJM0XQBgh7AV1Ze8P0vXHgey/3lnDy4n0BgaPw3FEmyvx/LMHA4VHwui3lvfSWuBg+WkZ9FG4939rD7SBsOVeXFl67Nyz5mKleVXVzD6u3lssuuAOB3v8vPxPVEZyexgwdAUfjLHns9q1JMgAD6wwPETLsEdkNDIzfe+CKWLFlEoq+fRCB3lQsnw1NTTdxwMNR95v/9ZDBUktXgFsxbxgVrr8Q0Te783H8S75o5izgLIcRMIgmQOKfU0BAEApiWRaC8GqUIKxAu3HA/nz9vFRdXVpfsMLjQ1i0c+8y/M/CXP+FKhYif2E305EHIU88PwP1P20NsLj1/KXVVFXnbz0zkqq0EIBUI8OZX3wrAb3/7SwbTVbxySXE4qL7uegLzW+gKh6mqr6FpQUvO95MLA9EAgUQQp/P0nwU1mSDa3p7z+WsT5a6ro68vTCpx5o2EVCSKFY+V3JpAALe95h+5rqGJt6dM9n/9K7IukBBClCBJgMQ5xY4eAez5P2V1xVm1PtxkV8taWVHJQw89UJQYzsWMx+n+1c9p//Y3MSMRIru2Ez34PNGOo3m9YIzGE9z7uJ0Mvvzqi/O2n5lKdTlxVtq9QBcvXMjy5RrhcJhvfOO/c74vV0MDze98G3cN9QCw8vK1RbmRMBGGadAe7ALVvmB3OlVSQ4NEe/qKEo+zzEfKU05/+9mJqZVKkQqGUCm9YggN9XNovewFpCwLT18fbfffV+yQhBBCjCAJkDgnxeWi0+tlZ2CImvri3LUOz1kI2AnQY4+tJxqNFCWOkcJ7dnPsjn9n8OGHAKi7/krmvOJKEjle52c09z25mUA4SmtDLddfuDLv+5uJXLV2r1myvZ1PfvIOAP74x9+zfv0jOd2Pqiqc7DvJpg3PALDm6iKVkp6g3tAAwVQYVVVwWAbRE22YieJUf/M2NhIIJgn1h0Z9PRkKQTJBKeaTL3r5W3koYg8nHPzjvYTb2oockRBCiOEkARLn5D9/JT+NR/nxiWPUNhYnAYo2tGK63NS43cxVVR59NLcXqJOVGhyk4/++y8mvf5Vkbw+umhrmveVVVKxsxojnPzkLRWLc9Zf1ALzpxdfgUOW/cDbcdVUAxI4f54ILLuSNb3wLAJ/85Ed47rlnpty+ZRh0/fynJNqO8fNf/IxkIknzorm0Llsw5bbzKRQP0xnqxuVWMQYHiXR0FiUOh9cDFTV0n+g/5zZGLE4qGEQtwQzI5XKz6g3/gh4O41EUtn3u0ySj0WKHJYQQIk2unsQ5WZbF/v37AGhoKs7K9ZbDSbjVnjR+WU0tv/jFPVjFXANEUQjv2A6KQu3VlzHvrS9F9Vt5K3Yw0g/ve5iBYIgFcxp4xTUy/C1b5SvmM/+dr2Xe2+3E5yMf+ThXXXUtsViM97//3fzgB98lMYWej8HH1zO0/hGOfPnL/PkXvwPgyluuL9nhb8N1DHVjpKJEjx8nFSnORbuvuZmhkMFg1+CY2yWGApCIl2QvUENjC+GrX00wlaLBMPn7h/+JcKg4xSSEEEKcSRIgMap42wm6D+1naGgIVXXQ2LywaLEMzj8PgGvrG9i3ZxebNxeuGEK8/SR99/0Jy7JwOlXK6yqZ+8bXsuCdt1K5Zi5GfPThOfmwed8hfvXw0wB8+A0vw+V0FmzfM42zogxXdRmqmURRwOl08vWv/y8333wLqVSKb3/7Tl71qpu55567GBiYXHGEVCBA3x//AMBjJBkaCtIwt4m1106PhNXjdBHqOEmkvb0o+3dVlGOW19B+pHvcmx1GLE5yaIgSrIUAwJI1V3JkxeWkLItlqRRffNfb2LdvT7HDEkKIWU+uoMSoen79K8J7d3NdXT37PBU4Xa6ixRKatxyzrJyaSIhFZX6+8Y2vcc89v8LhcORlf2YsysCWzbQ9+zSBdOniqvOW453XQKLnBM7yJGYygVXA4k4dfQN8+ge/xrIsXnnNJVyxSivczmeoVDSMGQvjKC8nlTLxeDx88Ytf5dprr+drX/sy7e0n+frXv8I3vvHfrFmzjiuvvJqVK1dz3nkrqa2tHbVNyzTpvOsHmJEwgx4333l8A4qi8Orb35i38zWXfC4vLY5yOnbswBOJ4lW9mGbhelwVVcU3bx4dPRECPYEJvSc+OISjrAzVX17QWCdqwVW30OZ0cPjZB7j/oM4Db34dr3nN63jb297F3LmtxQ5PCCFmJUmAxFni7e1E9u1BAfYEg7QsKe46M5bDSdclN9G8vIXOj/wjod07+fWvf86b3vTWnO3DCIUIbX2e0PZtRPbsxsoMf1IUKlefjzlwjFD4CGYynrN9TlRX/yAf+p+76RsKsnTuHD78hlsKHsNMlBoMcvyuezBNB80f+BAAiqJw8823cP31L+CBB+7nN7/5BXv37mHbti1s27bl1HsbGhqZP38+c+fOY+7cVsrLK/D5fDTu3UPjkSMkLIvPPb8JC7jlna9lwXmLi/NNToJTdbCocg7msU66jh2iwuOnqdyFojgKNuy0fMF8Qik3Jw8cmfB7rFSKeF8fPrcLxeXBKsEkqOaym9HOv4zrHriLxzc8zIN/+B1P338fSy+5lJtueinXXHM9FRVSzl4IIQpFKep8ihKiaZoK3AG8C6gBngRu13X9YJZNHjYMc1F/fzhXIQJ2adqaGj8DA2FSqfx0QbR/91uEnt/MPtPk01s28rLb3s8lV78sL/uajAXNlRzc9jBf+PxncDpdfP/7d3HRRZdk1VZqcAArlcJV3wBA9NBBTnzp86de9zQ1UHfJarwLmzDMeF7X9BnL3qNtfPTbP6VnIEBjTRU//OT7aKqtKkos+aCqCl6fm1g0UfC796lQlJM/+zsAC+74LJ5580fdrqOjnSef3MCWLZvZs2cXx9KLAw+nAG9unc8r5tjFQr595BCbk1Fe/u5bWX1VaVR+G+tYOxSVJTWtVPYEOb75OVLxGIqiUO+vpdZbjWXmfykg/9wWktVNHNxxkmD/5OfKeGqqcDc0YqqOYi1bBGSOs4tYNHnWcVZVhd7BQ/CHe5hrmvylq4M/dbQTs0yWLdNYt+5Cli5dxqJFi1m0aDG1tXWoUuhkVPn8W1hb68fhUI8ApX/nQgiRFUmA0jRNuwO4HXg7cBL4CvYvv5W6rmczG3paJkBDTz5B149/BKrKx3fv5Eg4yD99+ofUNRR/8UaXU+Wi85r49X9+FO+Rw/yxv49Pf/nrXHHFVaNub1kWqcFBUr09JLq7SLS1EW9rI952AiMYoOrqa5j3nvegmCmUZJTDX/8GvtYmyhY04vA78TitolyYA/QNBfnZg0/w64efwjBNFjY3cueH3s6cuuqCx5JPxUyAAHoefp7IwTb8q1bT8s8fRpnAxWYwGOTIkUO0tZ2gre0EHR3tRMJhrgwEOC9lsKnGz8k1C1h64Xl4fJ4CfBcTc65j7XV6WFTVjL8nwMmtm4mHT89rc6gq9f46qj2VWKaSn54gVaV8XivJ8jqO7OtioDP7BWk9tTW46+uwHK6iDYcbKwECIBGl6qnfw3H73lrMNHm0p4sn+no5HAmfsbKRy+WioaGRxsYmGhubqK2tpaKikoqKijMey8vL8Xp9eL1efD4fHo8Hr9c3LYZdZksSICHEVEgCBGia5gZ6gY/puv699HPVQDvwDl3Xf5VFswVNgJLJBKFQmHg8RiwWJR5PYFnmqQsWy7LSH/b2ZWVlNDc34/OVAWBEIgw8+Df6//oXsCw6l5/HP//ibqpqG/nQZ+4umepVDW6Dxnu+hhWPYVgWRyJhPHOaWaqtwOP24GpspO6WVwB2KeIDt78HjFF6b9JD2+a95bWkgv0Y0RCpSPBUNbd8XJgbpolhmKQM46zPU4ZJ72CAg22dPLfnAM/s3E8iZcfyokvX8LE3v4pKvy8ncZSSYidAycEgHb99HMswqLruBhpe/wZUz9hJi2UYJHu6iezdg7OujvI163A6VWLJIEc3P8mhBhcpszBVASdj5LF2qg4a/LXMcfihvZv2XdtJxs6u+uZQVWrKqqn2VOLAmdOfk6emGk9zM2HDw9F9HQR6JzbvZyzuygrc9XUoXh+maRW8N2jcBAjAsvB2HsC35RHM3q5TT8ecTp5Q4G8njnHyZNupKkVGlt+Ey+U6lRid/rATJI/Hi8fjwe124/V6cbs9eL0e3G77Nb+/jLIyP+Xl5fj95ace/f5yKisr8Hp9gELcgHBSIZqCcEohklSIpUBRQB3+AaiKdeZz6Q8FcCigKFb68cz3Kcrp1zPPu50qLQ1+BgclARJCTJ7MAbKtAyqARzNP6Lo+qGnaFuBaIJsEKC9+9fAWhv7yOxzJBJgGlpkiEeglONiLZVn0JeI80H36D+rrWlopdzgABSX9h0ZBQQH6kwn2VFdx440v4lUvfAkDD/wVLAvX5dfw3cc3ALDygmuKnvyoioKq2h9BxUnFG95DxeN/gaOHWeovh2CQ+OZNxIF4XR3mRWtpnduMqpi46+sglcJVV4OnoQZ3XSWumkqclV4sM0no0PZz7jeZStE3FCQQjhIIRwlF04+RGMFIlOCpx+gZX0fjiTMSG8MwMUxz0nfPVy6exztuuZGr16yY4hEU5+KqrqD22rX0PbaFocfXE3j2aSouuYw5b3vHqW26fnYPqcEBzHAYIxQi2dONlU5Oy9esoeyilXTGBjnWf4KuOgWrBJMfAFVR8Tm9+P1+yp0+qi0XjkCYoUM76D95HMsc/SLSME36QgPEkjGqfVV4nV6cOE/dUJnMea263TjLfLjK/Tgqq0moHk52h+k4dJhkLJmT7zMRCJKKx/FUV+EsrwC3G0tRTt8AGidcyzq9yelH5fTn1unXzng+/aFaKilDJWY4MEwr/fqI7SywGlbCi8+jvO8I1Ye34Dq2F28izi1vfjevveI64okEgxufwvurH5H0+IirKnHLImZZRE2TeCrJs7E4e4IBIuEg9ZbJFf5yUqkU1rBvMvPZ5v5+DqR79xrdHm5ID/8dLp7+eCIwhJ4u2V3rcvOChsazD5SigsPD7qTCHsuH4q2iylvOi30WONzYf22Gb6+gK+XsUKpAAb+V4qVm94htTn96UClnq1oDgMcyeIXZccamFgp7L76VX76vNIaYCiGmF0mAbJlSPCdGPN8OjD4xYIKcztyO3/6v//wY31/QQIVzWFU2jwuamgE4EA7z90AMxeVBURRuaJhDvWv0H/PxSITf79nB3r17+M7/fZ83XfQSYhe8nC1xP0d2/TcAvRd+kN9H7ZtgI9Og4XmRco7nz3rtXC8woia7wqm/3Ge2Z9lvu/IaqtZ0Ub7zPtjxF8yhDiyg+9B+nrn5flS3D091C57qOajeShx9UdQjoDgC9oWemcIyTSwzhZmIYMTDGLEwRjxIKhogFRnCTMZGPW45pagoqhPF4cRVVk1Zs0bFgnXUrnoR/rkr+YOicG/o3AnoeNeeY7081TvjU2n7jJdHjHia0vc09ltH36ARllz9PC/cejc1oS62Hxjkkw+Xn3r5Q09vxJc4s9x50uGmo2Yx+5QL2Hh/NRZVWIyxyOkUvicY+5hM7L3Dr+ozn2d6hS+D6nEaGS6TJ2X+Y2ZOz8zjqQThzPPWsixIgBUHa8AOwzQtTAvwguU5nUScSiys089lkohzPm+dfi+AFbY/zn7fKMnIKPEWzvkw72U45yZZMbiHtqPzGezwAT6ua/fwj4A7HsWNfZduuCfWfZjO5hsAWNq7iZft+K9z7qV/7ds5VH4eJKM0hY/w2v6HzrltpHEN+2NOSISosUK8ru7cf8eskyfY07kfC6jw+rh11TmK5ljwp452trcdB8Dn9nDrmgvO2ibjge5Othw/CoDb6eTWdWeWkTcsi7f85H2o79+Iosg8KSHE5MgQOEDTtH8Afgo4dF03hz1/D9Ci6/oLs2j2sGVZi3Lde/L1XzxC4k+/waWAhYqlOIg7K4l452C5K+jzNfLgvNMFC2459kd8qQgoyrA/8gqmohCwVB4KG5hbfwKd6Z4QxQGWPWRMWfNmHC/5Sk7jzwfLsqBjC6b+V6wTz0D3HjBzczcZAE+l/eGtQvFWgacKvFXgqbS/PvVc+muXHxwu+1g6XKA6QM08Os/4XP5wlw7FMpkfOorHSLC/+nSv200n7iepugi7ygk5y+n2NdHrbcCSn52YBAXr1NAu+7ew/Y8Cp3vnh72mKPY5WZEMUBvrw5eKUJaK4jMieFNRnGaSvY0X0F05DwWYEzzBpW2P4bAM+2aSAmrmN74C++dfQVfTClwq1IfaWas/gJoeWmY/no6vb9mlBBeuweOEmnA3zRv/hEsFlwNcCqiksFIJrFSC1PxW4s31BAMBwl3dlO/aTTKZPKtn0LIs+srL6amuxLIsXKkUSzt7Tr8+IpXvLyujs7oSAIdhsLyjO70dpx5rbn0Nt9yStwI9MgROiBlMEiBA07TXAr8DynRdjw57/jeAR9f1V2bR7GHDMBcFArldSd3hUKms9BEIRDGM00NWBmIQSCjEUgoxAxLGmUM1hhv+I7fvgFrs3ryBP9/zTY7odiK08uJree9/fBuPt+yMbc9o5xxtjrbtWPuf6Gvn2m7ktslknIGeDgZ7Ohjs6yQejZCMRYnHo1imiaKqqKqKoqioDgduTxken9/+KPPj81fhr6impqEeS/HYyaN1ds/WSGO9PG4aPJW28xjXVPL3ibStqgplZR4ikfgZ8yWKHVfW753CjpUxz/ipnwOqqlLm9xAJxzGHDXeb6j2aqcaVSQRGTQw4Myk4nTBYZ753+HbDOqZGfe+IbU8/Wufcbvz3nt7O6VCpqvQRDEYxDXPKx1eM7lx/C3OhstInc4CEmOFkCJwtM/StBTg07PkW4NyTRCYgX6WqDcM8o+0Kp/2RrUtfdhVve+mVtLefRFVVmpszVd9y2JNSMCosnAvMzbqFQpQbF5nj7GFgICXHOc/kWOeJdebnigoO1V4UN9cX5uJsI/8WCiHERMgYDtt2IABcn3kiXQXuQuCJ4oRUeIqiMHdu67DkRwghhBBCiJlFeoAAXdfjmqZ9C/iypmk9wFHgq9g9Q/cWMzYhhBBCCCFE7kgCdNqnsY/HDwEfsAG4KctFUIUQQgghhBAlSBKgNF3XDeDj6Q8hhBBCCCHEDCRzgIQQQgghhBCzhiRAQgghhBBCiFlDEiAhhBBCCCHErCEJkBBCCCGEEGLWkARICCGEEEIIMWtIAiSEEEIIIYSYNSQBEkIIIYQQQswakgAJIYQQQgghZg1JgIQQQgghhBCzhiRAQgghhBBCiFlDsSyr2DHMVFHLsrymmfvj63CoGIaZ83bFmeQ4F4Yc58KRY10YcpwLI1/HWVUVFEWJAb6cNy6EKAmSAOXPIOABOoochxBCCCEmrhmIA9VFjkMIkSeSAAkhhBBCCCFmDZkDJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGJEBCCCGEEEKIWUMSICGEEEIIIcSsIQmQEEIIIYQQYtaQBEgIIYQQQggxa0gCJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGs9gBiPFpmvbvwAt1Xb9+2HPrgDuBi4E+4Ju6rv93UQKcIc5xnF8OfBo4D+gFfgt8Wtf1aFGCnCFGO9YjXv8B8CJd1xcWMq6Z5hzndDPwdeBmwAAeAD6o63pvUYKcAc5xnC8GvgZcCAwCvwT+Q9f1eDFinK40TasFvgjcAlQCO4BP6Lr+ZPr1dcjfQiHEJEkPUInTNO1DwGdHPFcHPATsx/6lfwfwOU3T3l7wAGeIcxzna4A/AL8H1gHvBW4DvlPg8GaU0Y71iNdfBbyrUPHMVOc4pz3YvzsWAy8EXoZ9gX5PoeObKc5xnOuxE8u9wAXAu4G3AV8ocHgzwa+Ay4E3AJcAW4C/a5q2Qv4WCiGyJT1AJUrTtLnAD4FrAH3Ey+8B4sD7dF1PAXs1TVsGfBy4u6CBTnPjHOd/BB7Vdf2/0l8f1DTtU8Ddmqa9V+7kTs44xzqzTTPwf8DjwMKCBTeDjHOc34h9XJfout6V3v5DwHc0TavUdT1QwFCntXGO89VAHfBRXdeD2L87fgbcBPxrQQOdxjRNWwq8CLhK1/Wn0899ELv38k1AFPlbKITIgvQAla4LgQFgDfDciNeuATakf+FnPApomqY1Fii+mWKs4/w14KOjvMcJVOQ5rplorGONpmkK8BPgp8BjBY1sZhnrOL8EeCST/ADouv6grutLJPmZtLGOc1/68X2apjk0TVsIvBR4tnDhzQi92L2Uz2ee0HXdAhSgFvlbKITIkvQAlShd1+8D7gPQNG3ky63AzhHPtacf5wPdeQ1uBhnrOOu6vnX415qmuYGPAFtkvsTkjXNOA3wYaAZeDnyycJHNLOMc5+XABk3T/gP4f4ALeBD4mK7rgwUMc9ob53fHE5qm/RfwOez5Kw7spP6fChvl9JY+J/86/DlN014HLME+b7+A/C0UQmRBeoCmpzLsbv/hYulHb4FjmRU0TXNi90ycD9xe5HBmHE3T1mCP33+zDC3Mq0rsxGct9hCi92AP1/pTugdO5ICmadXYyea3gUuB1wFLge8WMaxpT9O0q4C7gD+lE1D5WyiEyIr0AE1PUcAz4rnML/twgWOZ8TRNqwB+A9wA3Krr+lnDt0T2NE3zAr8APq/r+o5ixzPDJYAQ8EZd15MAmqb9P2Aj9iTyTUWMbSb5MlCt6/pr019v0TRtAHhY07Rv6Lq+vYixTUuapr0S+/fEs9hz2UD+FgohsiQ9QNPTCaBlxHOZr08WOJYZLT0p/wngSuDm9F1HkVuXASuBz2iaFtI0LQR8Cpif/vrNxQ1vRmkD9Ezyk7Y7/bioCPHMVFdzdjKZmf+zvMCxTHuapn0AuBd7ONxLhy1DIH8LhRBZkQRoetoAXKNpmmPYcy/AvrCRMc85omlaDfaE2gbgal3X1xc5pJlqI7AMe1jWuvTH97DH8q8D/lykuGaiDcBaTdN8w55bnX48WIR4ZqoT2MURhssc5wMFjmVa0zTtfcD/At8CbhsxRFb+FgohsiJD4Kanu4CPAT/SNO0r2GPMP4S9To3Inf/BXi/lJUCPpmlzhr3Wo+u6UZywZpb03dwzLr41TesHUrquy0V5bn0P+ADwi3QhhKr0c+t1Xd9S1Mhmlq8DD2ia9jngx8AC7PXD/qrr+rYixjWtaJq2HHuR0z8AXwIahxWciCJ/C4UQWZIeoGkofWfrJkDDXhTuDuz1Jn5S1MBmEE3TVOxFT93YvUAdIz7mFS86IbKTrl54DXb1t+ewq5htBF5dzLhmGl3X/w7cgr2GzTbsC/W/Aq8vYljT0a3Y5+qrOft38J3yt1AIkS3FsqxixyCEEEIIIYQQBSE9QEIIIYQQQohZQxIgIYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEENOSpmlKsWMQQgghxPQjCZAQYtrRNO0VwE/Sn1+vaZqladr1xY1q6jRNO6pp2o+LHYcQQggxkzmLHYAQQmThX4Z9vgW4AthTpFhy6dVAoNhBCCGEEDOZJEBCiGlN1/UA8Gyx48gFXde3FjsGIYQQYqZTLMsqdgxCCDFhmqY9Blw37KkbgPXADbquP6Zp2meANwCfAD4PLAX2Ae8DLOBOYA1wCPigruuPDGt7FfBfwLXppx4BPqLr+uFJxngUuBuoAt4KeIA/A/8IvB/4J6ACeBh4j67rfcPe95iu62/TNG0hcAR4PXAbcBOQAn4PfEjX9dBkYhJCCCGETeYACSGmm9uBremPK4DKUbaZB3wd+AJ2AlEL/A74JfAD7ARJBX6laZoPQNO05cDTQCPwNuCdwGLgKU3TGrOI81+ABel9fRF4E7AZeDHwHuAzwCuBz47TzveBo8CrgK8A7wD+LYt4hBBCCIEMgRNCTDO6ru/RNC2Q/vzZcxQ/KANu13X9AQBN084HvgS8U9f1u9LPObGTIg3YBtwBRIEXpofVoWnaI8Bh4KPpj8kIArfpup4CHtY07f8BLcBluq4PAX/VNO1G4Kpx2rlf1/V/TX/+iKZpLwJuAT45yXiEEEIIgSRAQoiZ6+lhn3emH4fPFepLP1anH1+APZQukk6OwC5I8ATwoiz2vzGd/AyPIZBOfobHsHqcdp4Z8XUbsDCLeIQQQgiBJEBCiBkq04szQmSMt9Rhz7W5bZTXerIIYbL7P5eR7zGR4ctCCCFE1iQBEkII2yB2UYKvjfJaapTnhBBCCDENSQIkhJiODMCR4zYfB84HtmWGrmmapgA/Aw5izxMSQgghxDQnCZAQYjoaBK5IFxGoylGbn8Web/MXTdO+C8Swy1a/Crg1R/sQQgghRJHJOHIhxHT0LSAJ/A3w5aJBXdd3ANdgrxX0U+wKcc3Aq3RdvzcX+xBCCCFE8clCqEIIIYQQQohZQ4bACSHEBGiapjKBXvMRpa+FEEIIUWJkCJwQQkzMXdjD7sb80DRtYbECFEIIIcT4pAdICCEm5jPYc4/G057nOIQQQggxBTIHSAghhBBCCDFryBA4IYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEEEIIIYQQs8b/B5kpIXDICiQaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the signal trace as a Chromatogram object and crop between 10 and 20 min.\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "\n", + "# Pass a prominence filter, fit the peaks, and show the result\n", + "peaks = chrom.fit_peaks(prominence=0.1)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though the small peak at ≈ 13 minutes was not detected by the prominence filter, \n", + "`hplc-py` still attempted to fit its signal as if it was part of the peak with a \n", + "maximum at ≈ 14.2 min. This because the small peak was considered part \n", + "of the same window of the major peak, as we will explore next.\n", + "\n", + "## Clipping the signal into peak windows\n", + "Once peak maxima are identified, `hplc-py` slices the chromatograms into *windows*–regions \n", + "of the chromatogram where peaks are overlapping or *nearly* overlapping. This \n", + "is achieved by measuring the widths of each peak at the lowest [contour line](https://en.wikipedia.org/wiki/Contour_line).\n", + "Peaks which have overlapping contour lines are considered to be close enough that their signals may be influencing one another. \n", + "This is achieved under the hood in a method `_assign_peak_windows` of a `Chromatogram`\n", + "which is called as part of `fit_peaks`. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ+0lEQVR4nO3deXwU9f0/8Nccu9ndJAtJCAk34QyHnAlGOUWx1qOUH1q1xSpai1Whag1aQUUFj0pBUKkW8ahVQYVSz69FWg8UIQFEFAJyXwmBXJtrjzl+f6zZZGZ2kz1mdjfZ9/Px4KEzOzP7ybAk77w/73l/GFmWZRBCCCGEkKCxsR4AIYQQQkh7QwEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJCxMd6AB2VLMuQJGOavLMsY9i1STO6z9FB9zk66D5HD93r6DDiPrMsA4ZhgjqWAiiDSJKMysp63a/L8yzS0pLhcDRAECTdr0+86D5HB93n6KD7HD10r6PDqPucnp4MjgsugKIpPEIIIYSQEFEARQghhBASIgqgCCGEEEJCRAEUIYQQQkiIqIicEEJIwvI+MS1BkkRdridJDJxODm63C6JIT+IZJdz7zHE8WFaf3BEFUIQQQhKOLMtobKxDXV2NbsFTk3PnWEgSPYFntHDvs9WaArs9Peh2BYFQAEUIISThOByVaGysg8WSDIvFBpblIv6B2oTjGMo+RUGo91mWZbjdLtTVVQEAOnXKiOj9KYAihBCSUCRJRGNjPVJSOiMlpZPu1+d5lnpARUE499lsTgIA1NVVITU1LaLpPCoiJ4QQklBEUQQgIynJEuuhkBhoCqJEUYjoOhRAEUIISVD6TNmR9kWvqVoKoAghhBBCQkQBFCGEEEJIiCiAIoTEPVmS4P7hUzRu/htcu96HLLhjPSRC2r077/w9lixZFNE1rr76KqxZ86I+A4qAy+XEjTdeh48+ej9q70lP4RFC4p5r2zp49nzi3Ti0DdK5Y7BOuzO2gyKknXv88afBslyshxExh6MGDz54Pw4dOhjV96UAihAS16S6Cni+/49in3CkGGL5YXBd+8VoVKSjkiQZdU5PRNfgORaCGHobgxSLCSwbvcJ2u13/Fg7RtmXL51i27C9IS0uP+ntTAEUIiWvC4SJA1jbL8xzaRgEU0VVRSTne+M9+OBoiC6DCZbeZ8JtLByM/t2tY5z/77DIUF2/Ha6+tBQA4HA5ceeUluOqqX6Kw8AEAwNatW7BgwX348MNPUVj4R3Tr1h0LFizCRx+9j5df/jtuuWUOXn31JZSXn0H//gNx1133YvjwEQCAuro6PPPM09iy5XPwvAm//e1szRi+//47/P3vq7B//z7wPI8JEybjjjvugt1uxwMPFEIUBTz11HIAwI8/HsDs2b/GnDl34oYbbgIAbNjwDv75z1exYcOHWLPmRbzyymps2VIc8Gv+6qstuPrqa3HNNdfjoosuCOu+hYtqoAghcU04vc/vfvF0SZRHQjq6Vz8uiVnwBACOBg9e/Tj8z/X48ZNw6NBBVFScAwDs3FkEWZaxY0dzAPL1118hLy8fVqtVc/65c2exceN6PPjgY3jhhVfAMAwWL34Y8k+/wDz00P3Yt+8HPPXUcixf/hy++upLlJWV+s7fu/d7zJ07B3375uCFF17BY489hb17v8c999wJSZIwYcIk7Nq1E4Lg7b9UXLwdDMNg584i3zW2bt2CCRMmAQCuv/4G/Pvf/9fq13zffQvw61//FiaTKcy7Fj4KoAghcUuWRIil+/2+JlUcp2JyQloYMWIUUlPtKCraBsAboEyaNAUnTx7H2bPlALwBysSJU/yeLwgC7r33fgwffh4GD87Fb387GydPnkBFRQWOHz+K7du/wd13z8fIkaMxcOBgPPzwYpjNZt/5a9e+gf79B+Kee+5DTk4/jBmTh0WLHkdJyV5s27YVF1wwAU5nI374YY9ifHv27IbH44HL5cTOncW+8dlsNmRkdDHuhkWIAihCSNySqk4DHmeAV2VI1aUBXiMkdDf9PBd2W/QzGU3sNhNu+nlu2OfzPI+CggsVAdSVV05H165Z2LGjCIcPH0J5+RmMHz8x4DX69Mnx/X9ycgoAQBA8vgLtIUOG+l5PT89A9+49fNuHDx/EeeeNVFyvf/8BSElJxaFDPyItLQ3Dhg1HUdE2eDwefPfdLtxww2yIooi9e7/Hjh3FMJnMGD16bNj3IJqoBooQErekqpOtv159GlyXPlEaDeno8nO7YuygzHZdRD5+/EQ8++wylJaeRmnpaYwcOQZjxuRh585iVFScw7Bhw5GeHngR3ZYZpSZyixpESVLWI3IcrzjOX5NvWZbA897jLrxwEr788jOMHZsPm82G3NyhGDbsvJ/GV4ELLhjvOzbetY9REkISklTZRgBVeSpKIyGJgmUZ2G3aICIUsVxMuKBgPBYvfhjvvPMWhg4dBpvNhry8cViz5kWcOnUSEyZMDuu6gwZ5M2N79uzGhRdOAADU1tbi1KkTvmP69RuA3bu/VZz3448HUF9fj759vQ98TJgwCS+99Dd89tlmjBmTDwDIyxuHHTuKcPr0Kdx++x/DGl8s0BQeISRuiW0FUNWnozQSQtqHlJQUjBw5Ghs3rlcEKKWlp7Fnz+6A9U9t6dGjJy666BIsX/4XFBVtw+HDB/HYYw/B42nO1l177a9x8OABLFv2FI4ePYJdu3bg0UcXYtCgwcjLGwcAyMnph+zsbnj//Y0YOzYPADB2bD52796FysoKXHDBhb7rNTQ0+Ari4xEFUISQuCVVKQMkrvsQ5euOs9EcDiHtwvjxk+B2uzF2rDeA6tIlE3375qBXr97o3Tv8Ke+FCxfhggvG4+GHH8Dtt9+KnJx+GDy4+d/k8OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlmJYbP34i3G63L8AbMmQYrFYrxozJh82W7Dvurbdex/Tpl4U9XqMxsuynwQqJmChKqKys1/26PM8iLS0ZVVX1MUsRJwK6z9HR2n2WJRF1a24F5Ob95nHXwL39neaDzDak3rQqWsNtt+jzrOTxuFFRUYqMjG4wmSKbrvMnllN4iSTc+9za3396ejI4LrjcEmWgCCFxSW6oVgRPAMBlD1Ie5G6A7G6M3qAIIeQnFEARQuKSVFeh3MGZwXXprT2uvjJKIyKEkGYUQBFC4pJcqyweZVPSwfBJYCypyuPUgRYhhEQBBVCEkLgk1SkzS0yqtyMxk5Le6nGEEBINFEARQuKSXKfNQHn/m6E6jjJQhJDoowCKEBKXNBmolJ8yULbOiv1yoyNaQyKEEB8KoAghcUmbgfJmnhirXXkcBVCEkBigAIoQEndkWYZUq5yaYwIEUFJjTdTGRQghTSiAIoTEH1c9ILgUu5ozUJ0U++XG2qgNixBCmlAARQiJO5oeUGDApKQBAFjNFB5loAgJx513/h5LliyK6BpXX30V1qx5UZ8BhWHPnt24887f42c/m4xf/vLnePLJx+BwROd7QkwDqG3btmHw4MF+/1x88cUAgH379mHWrFkYNWoUpkyZgjVr1iiuIUkSVq5ciYkTJ2LkyJG4+eabcezYMcUxelyDEBI96gCKSe4MhvWupcXYlBkoCG7IHme0hkZIh/H440/jj3+8N9bDCNvx48dwzz13YuDAwVi9+jU88sgT2LfvByxceF9U3j+mAdTo0aOxZcsWxZ+XX34ZPM/jtttuQ1VVFWbPno2+ffti/fr1mDt3LlasWIH169f7rrFq1SqsXbsWixcvxrp168AwDG699Va43W4A0OUahJDoUrcmYFq0LlDXQAFUSE5IOOz2TkhJSYn1MML20UcfoEuXTMybdw969+6LkSNH4Z577sfOncU4deqk4e8f0wDKbDYjMzPT96dz58544okncOmll+Kaa67B22+/DbPZjEWLFqF///6YOXMmbrrpJqxevRoA4Ha78fLLL2Pu3LmYPHkycnNzsXz5cpw5cwabNm0CAF2uQQiJLnUGStH7iU8COOUCoHIDTeMRfciSBKnREZM/shTZAsTPPrsMN954nW/b4XBg0qRxePrpx337tm7dgqlTx6OxsVExhffRR+/j6quvwscff4Brr/0lLrroAvzud7/F999/5zu3rq4Oixc/jMsum4Irr5yGt99+UzOG77//DvPm3Yaf/WwyrrjiYjzxxKNwOLy/4DzwQCHuu+9u37E//ngAEybk4fXXX/Xt27DhHfy//3cFAGDNmhcxYUJewK/3Zz/7ORYseAQMw2heq601/pcq3vB3CMEbb7yB0tJSvPzyywCA4uJi5Ofng+ebh1lQUIAXX3wRFRUVOHXqFOrr61FQUOB73W63Y+jQoSgqKsIVV1yhyzUIIdGlXcalRQaKYcBYUxVZKtlZF7WxkY7Lc3g7XF/9M2YZTcZqR9L4WTD1GxfW+ePHT8K6dW+iouIcMjK6YOfOIsiyjB07in3HfP31V8jLy4fVatWcf+7cWWzcuB4PPvgYTCYTli59AosXP4y33toAhmHw0EP348yZMjz11HLYbDY899wzKCsr9Z2/d+/3mDt3Dq666pe4++75qKqqxPLlf8E999yJv//9VUyYMAnPPLMUgiCA53kUF28HwzDYubMIN9xwEwBvgDdhwiQAwPXX34Bf/nJmwK83J6cfBEEZdL7xxqvIyMjAgAGDApyln7gJoFwuF1544QXceOON6Nq1KwCgrKwMgwYpb0LTa6dPn0ZZWRkAoFu3bppjSktLdbtGuHhe/wQfx7GK/xJj0H2OjkD3WVYtEMx16qL498RaUiC2CKAYocGQf28dBX2elSRJm7EAAOcXrwDuxiiPppnc6IDzi1fCDqBGjBiF1FQ7ioq24bLLrkBx8XZMmjQFn3/+P5w9W47MzK7YunULbrzxFr/nC4KAe++9HwMHDgYA/Pa3s/HnP9+LiooKNDTUYfv2b/DMM6swcuRoAMDDDy/G1Vdf5Tt/7do30L//QNxzj7cGKSenHxYtehw33ngdtm3bigsumIAnn3wMP/ywByNHjvaNb9u2rfB4PJAkETt3FuPJJ5cBAGw2G2w2m9+xNiWdGAaQZe//P/vscmzd+hUWL35KkTQJhOOYiL5vxE0A9e9//xsulws33HCDb5/T6YTZrEzVJyUlAfAGXI2N3g+6v2Nqamp0u0Y4WJZBWlpy2Oe3xW7X/vZA9Ef3OTrU99mhCqA6ZfeErcW/J2eKHY0tklQW1oPOBv576yjo8+zldHI4d47V/ABlwECO4biaxhDuD3WeN+OCC8Zjx47tuPLKq1BcvB333FOIffv24ttvizF48BCUl5/BpEmTwfOsN5vLeN+PZb0RSf/+/X3vb7d76w1lWcDRo4cBAOedN9z3eteumejevQdY1nuNw4cP4vzzCxTjHzx4EFJTU3HkyCFMnDgRw4adhx07tmPEiBH47rtdWLVqNb7+egv27/8B9fX1MJvNyM/PC/oecBwLQfDgiScW46OPPkBh4Z9x8cWXtHqOJDFgWRadOtlgsVhCu8ktxE0AtXHjRlx66aVIS0vz7bNYLJpCbpfL2xvGZmv+wt1ut+ImuFwuX3pSj2uEQ5JkOBwNYZ8fCMexsNutcDgaIYqRzZeTwOg+R4e/+ywLboj11YrjGphkuKrqfdsCp/y32VBVCbnF60SJPs9KbrcLkiRBFGXFFFDSpJviYgpPPS0VigsvnIBnn12GEydOorT0NIYPH4UxY/JQVFSE8vKzGDZsODp1SoMgSJBlGbLsvQeS5A0dWZb3vX/TZ0UQJN//u90ikpKax8dxPCRJbnE9aMYvSRJYloUgSLjwwon48svPMHp0Hmw2GwYOzMWwYeehqKgIFRUVKCgYD4Br8x4wjPdz7XDU4s9/LsR33+3Cww8vxiWX/KzNc0VRhiRJqKlpQGOjqHjNbrcGnamNiwCqsrISu3btwpw5cxT7s7OzUV5ertjXtJ2VlQVBEHz7evfurTgmNzdXt2uEK5J/BG0RRcnQ6xMvus/R0fI+SzXnNK9L1nTILf8ezMq0vthYR39PQaDPs5co+s8zmfqNA983D7Irspo6nmfDus9MUgoYNrJp1oKC8Vi8+GG8885bGDp0GGw2G/LyxmHNmhdx6tRJTJgwOazrDhrk/Xm4Z89uXHjhBABAbW0tTp064TumX78B2L37W8V5P/54APX19ejbtx8AYMKESXjppb/hs882Y8yYfABAXt447NhRhNOnT+H22/8Y1HhkGfB4PCgsvAsHDx7AX//6LMaMCVxw7o86gA5VXEyI79y5EwzDYNw45bxvfn4+duzYAVFsjhC3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvL0+3axBCoke9iDDMVjBmZcaJSVI+ei27KPtE9MGwLFirPSZ/Ig2eACAlJQUjR47Gxo3rFQFKaelp7NmzGxMnTgnruj169MRFF12C5cv/gqKibTh8+CAee+wheDwe3zHXXvtrHDx4AMuWPYWjR49g164dePTRhRg0aDDy8rw/33Ny+iE7uxvef38jxo71/owdOzYfu3fvQmVlBS644ELf9RoaGlBRof2Fqsmrr67Bd999i8LCB9CnT19UVJzz/Wk5LqPERQBVUlKCXr16aabMZs6cibq6OixYsAAHDx7Ehg0b8Nprr/kyVWazGbNmzcLSpUuxefNmlJSU4O6770Z2djamTZum2zUIIdGjfQKvi+YYJklZ70QBFCHNxo+fBLfbjbFjvQFUly6Z6Ns3B7169Ubv3n3Cvu7ChYtwwQXj8fDDD+D2229FTk4/DB48xPf68OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlKOoeP34i3G63L8AbMmQYrFYrxozJh83W/G/7rbdex/TplwUcz3/+83+QZRmLFi3A9OmXKf7s2bM77K8zWIwsy7GumcOiRYuwb98+rFu3TvPad999hyVLlmDv3r3IzMzEzTffjFmzZvleF0URy5Ytw4YNG+B0OpGfn4+HHnoIPXv21PUaoRJFCZWV+n9T53kWaWnJqKqqp1S8geg+R4e/++wq/hfcO//tO4brPQq2y+5SnOcp+QLOL172bbOZOUie8XBUxtwe0edZyeNxo6KiFBkZ3WAymds+IUThTuGR0IR7n1v7+09PTw66BiouAqiOiAKo9o3uc3T4u8+Nn70E4cAW3zGmoRfDMuEGxXmeozvg/M+zvm0mNRMp1z8dnUG3Q/R5VqIAqmOIdQAVF1N4hBDSRL2MC5uaoTmGaqAIIbFGARQhJK5oFhJO8RdAqXo+uRsiXgaDEEJCQQEUISRuyLIEWfUUHhtMAAUAbv37rhFCSCAUQBFC4obc6AAkQbEvqAwUaBqPEBJdFEARQuKGuoUBWA6MrZPmOIY3A5xJeS4FUISQKKIAihASN9RNNJnkdDCM/29T2l5QkXWPJoSQUFAARQiJG3KdqolmqraJZhN6Eo8QEksUQBFC4ob2Cbz0gMcyScr18CiAIoREEwVQhJC4IdWqekD5WcbFR7U+nuxxGjEkQgjxiwIoYpit35fhkVeK8PyGPaiqdcV6OKQdkOtDyECpAii4G40YEiEd1p13/h5LliyK6BpXX30V1qx5UZ8BhaGoaBtuvfVGXHzxeMyYcTlWrVoJt9sdlffm2z6EkNB9d+gcVn+wFwBw7Ewtyqsb8fDsfLAME+ORkXgWSgaKMakyUBRAERKSxx9/GizLxXoYYfvxxwOYP/8uzJp1ExYtWoLTp09iyZJH4Ha7cddd9xr+/hRAEUN8WnxSsX2ivA4/nqjG4N5pMRoRiXeyu1HTDNNfE80m6gwUBVBED5Isod4TWVNWXgpvjbZkkw1sgKdOjWC3a1uEtCdlZaW4/PKrcMstcwAAPXr0xNSpl2D79m1ReX8KoIjuREnCgZPVmv37jlVRAEUCUheQA61P4cFkUW5TDRSJ0M7y7/D2/o2o9cSmJUaqKQW/GvxLjOk6Iqzzn312GYqLt+O119YCABwOB6688hJcddUvUVj4AABg69YtWLDgPnz44acoLPwjunXrjgULFuGjj97Hyy//HbfcMgevvvoSysvPoH//gbjrrnsxfLh3PHV1dXjmmaexZcvn4HkTfvvb2ZoxfP/9d/j731dh//594HkeEyZMxh133AW73Y4HHiiEKAp46qnlALwZpNmzf405c+7EDTfcBADYsOEd/POfr2LDhg+xZs2LeOWV1diypdjv1ztx4mRccMFEAIAsy9i79wd8/vn/MHnyRWHdv1BRDRTR3bkaJ9we7W9fJ8/SU1IkMPUiwozV7m2YGQBloIje3ix5N2bBEwDUeurwZsm7YZ8/fvwkHDp0EBUV3nYgO3cWQZZl7NjRHIB8/fVXyMvLh9Vq1Zx/7txZbNy4Hg8++BheeOEVMAyDxYsfhizLAICHHrof+/b9gKeeWo7ly5/DV199ibKyUt/5e/d+j7lz56Bv3xy88MIreOyxp7B37/e45547IUkSJkyYhF27dkIQvKsNFBdvB8Mw2LmzyHeNrVu3YMKESQCA66+/Af/+9/+1+XWLoohLLpmAOXNuQqdOnTB79u/DuHuhowCK6O5ctf9MQGkFBVAksGAWEVa8rnkKjwIokthGjBiF1FQ7ioq8U1jFxdsxadIUnDx5HGfPlgPwBigTJ07xe74gCLj33vsxfPh5GDw4F7/97WycPHkCFRUVOH78KLZv/wZ33z0fI0eOxsCBg/Hww4thNjf/krN27Rvo338g7rnnPuTk9MOYMXlYtOhxlJTsxbZtW3HBBRPgdDbihx/2KMa3Z89ueDweuFxO7NxZ7BufzWZDRkYrT+L+RJZlPP/8aixduhJOpxP33jsPUhQWF6cAiujubI3/H2Rnqxt9v8kQoqbOQLVW/wQA0BSR0xQeicyvc69Gqiml7QMNkmpKwa9zrw77fJ7nUVBwoSKAuvLK6ejaNQs7dhTh8OFDKC8/g/HjJwa8Rp8+Ob7/T0723gtB8ODQoYMAgCFDhvpeT0/PQPfuPXzbhw8fxHnnjVRcr3//AUhJScWhQz8iLS0Nw4YNR1HRNng8Hnz33S7ccMNsiKKIvXu/x44dxTCZzBg9emzIX3du7lAUFFyIBQsewQ8/7MF3330b0jXCQTVQRHeBMlCCKKPeKSDFavL7Okls6ifwQs1AqQvQCQnVmK4jMCpzeORF5HzsisjHj5+IZ59dhtLS0ygtPY2RI8dgzJg87NxZjIqKcxg2bDjS0wP/22qZUWrS8hdfSVL+EsxxvOI4fw9ay7IEnvced+GFk/Dll59h7Nh82Gw25OYOxbBh5/00vgpccMF437FtKSnZi9raekXA1a9ffwDwZdyMRBkoortzATJQAFBTR/2giH9SCMu4ADSFR4zBMixSzSkx+aPHE3gFBeNRU1ODd955C0OHDoPNZkNe3jjs2rUDX3+9BRMmTA7ruoMG5QIA9uzZ7dtXW1uLU6dO+Lb79RuA3bu/VZz3448HUF9fj759+wEAJkyYhP379+GzzzZjzJh8AEBe3jjs3Fn8U/1T8OP7+OMP8fjjj0AURd++vXu/BwDf+xmJAiiiu7MBMlAAUF0fnQZnpP3RFJG39gQetH2gIAqQRY/ewyKkXUlJScHIkaOxceN6RYBSWnoae/bsDlj/1JYePXrioosuwfLlf0FR0TYcPnwQjz32EDye5n9z1177axw8eADLlj2Fo0ePYNeuHXj00YUYNGgw8vLGAQBycvohO7sb3n9/I8aOzQMAjB2bj927d6GysgIXXHCh73oNDQ2+gnh/Zs68FtXV1Vi69EkcP34M33zzNZ588jFMmTIVAwcOCuvrDAUFUER3jvrAWSbKQBF/ZFGAXF+t2NfqMi4AYLZodtFyLoR4n8Zzu90YO9YbQHXpkom+fXPQq1dv9O7dJ+zrLly4CBdcMB4PP/wAbr/9VuTk9MPgwUN8rw8fPgJLl65ASck+3Hzzb/Dgg/dj+PCReOaZVYppufHjJ8LtdvsCvCFDhsFqtWLMmHzYbMm+495663VMn35ZwPH07t0bK1f+DSdOHMMtt8zCE088gsmTp+KhhxaH/TWGgpGpqtcQoiihslL/p854nkVaWjKqqurDmmOPhtuWfgZ3gLFdM6U/fl4Q/j/gaGkP97kjaLrP544ehuONQsVrKTc+DyYpOcCZgCy4UPfyHMW+5Ov+Atbe1ZCxtmf0eVbyeNyoqChFRkY3mEyBW2WEK9waKBKacO9za3//6enJ4LjgckuUgSK6cnnEgMETANTQFB7xQ6pVpelN1laDJwAAZwZUNSPUC4oQEi0UQBFd1Ta0HiBV0xQe8UMdQLVVQA4ADMMAmkJymsIjhEQHBVBEV7UNrRfxtvU6SUzqAKqtFga+49TLuVAGihASJRRAEV3VNbYeINU7KYAiWuFkoACAMdsU2zL1giKERAkFUERXbU3hNTiFKI2EtCfaACrIDBRN4RFCYoQCKKKrOtUUHccq29JSAEX80XYhDy4DBdUUHhWRk9DQQ+iJSK/mAxRAEV3VqqbwuqYpMwSNLgESdc4gLciSCKmuUrEv+Ck89XIuFECRtnEcB4CBy0UZy0TkdnsfZmq5DE04aC08oit1DVRWmg2lFc11KTK8QVSyhdbDI15CbQUgK1tfMMEGUKYkxbYs0FOepG0sy8FqTUZdXTUEwQOLxQaW5bxPdupAkhiIIv2iaLRQ77Msy3C7Xairq4LVmgKWjSyHRAEU0VWjSzlF16Wztlt0g5MCKNJMqD6r3MGbwSSlBHcyr/p8eSiAIsGx29NhMiWhrq4aTqe+TY9ZloUkUSNNo4V7n63WFNjtrS8VFQwKoIiuGlQBVFpKEjiWgdhiBW+qgyItCTXKAIpN7RJ0JkCTgaIichIkhmFgs6XAak2GJEmQJLHtk4LAcQw6dbKhpqaBslAGCvc+cxwfceapCQVQRFeNquDIauFhTeIVU3vUyoC0JNSUK7aDLiAHAJrCIxFiGAYcx/1UFxU5nmdhsVjQ2CjSci4Giof7HBdF5Bs3bsTll1+O8847D1dccQU+/vhj32v79u3DrFmzMGrUKEyZMgVr1qxRnCtJElauXImJEydi5MiRuPnmm3Hs2DHFMXpcgwRHnYGyJfFItijjdMpAkZb8ZaCCxfDKAIqm8Agh0RLzAOrf//43HnjgAVx77bX44IMPcPnll+Oee+7Brl27UFVVhdmzZ6Nv375Yv3495s6dixUrVmD9+vW+81etWoW1a9di8eLFWLduHRiGwa233gq329uPSI9rkOCpa6CsSTxsqnondZBFEptHFUAF24Uc0HYipwwUISRaYjqFJ8syVqxYgRtvvBE33ngjAOCOO+7Azp07sX37dmzfvh1msxmLFi0Cz/Po378/jh07htWrV2PmzJlwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oor8Pbbb0d8DRI8fxkomyoDRVN4pKVIMlDqKTxQDRQhJEpimoE6fPgwTp06hauuukqxf82aNZgzZw6Ki4uRn58Pnm/+AVxQUIAjR46goqICJSUlqK+vR0FBge91u92OoUOHoqioCAB0uQYJjiBKcHuUc9HWJG8NVEuNLn2KNUn7J8sShBpVF/JQMlC8uoicMlCEkOiIaQbq6NGjAICGhgbccsst2Lt3L3r27Ik//OEPmDp1KsrKyjBo0CDFOV27dgUAnD59GmVlZQCAbt26aY4pLS0FAF2uES6e1z8+5ThW8d940ujWTs2lJpthUwVQbkE05N7oKZ7vc4fSUAlIys+NKa0r2CA/H7JF1UhTcMX9ZysW6PMcPXSvoyMe7nNMA6i6ujoAwH333Yc777wT9957Lz755BPcfvvteOWVV+B0OmE2mxXnJCV5f+N0uVxobPR2HfZ3TE1NDQDoco1wsCyDtLTksM9vi91ubfugKHP6SSx1z7ajs11VpwJj742e4vE+dySNjiOKbcZkQXr37kG3MXA5O6OuxbYsuNrNZysW6PMcPXSvoyOW9zmmAZTJ5C0uvuWWWzBjxgwAwJAhQ7B371688sorsFgsmkJul8uborfZbLBYvD+Y3W637/+bjrFavTdVj2uEQ5JkOBz6rwzPcSzsdiscjkaIYnw9IltW7lBscyyDhjonoGp0VlPrRFWVvo3r9BbP97kj8Zw+odhmUzNRXR38vxuxUdX/RRRQea4GTIRLNHQ09HmOHrrX0WHUfbbbrUFntWL6XSY7OxsANFNsAwYMwGeffYYePXqgvFzZI6ZpOysrC4Ig+Pb17t1bcUxubq7vPSK9RriM7E0hilLc9RipVS0kbE3iIYoyzCZlf5UGlxB3Yw8kHu9zRyJUn1FsM/bMkO63xJo1+wRnI5gkykL5Q5/n6KF7HR2xvM8xnaQdOnQokpOTsXv3bsX+AwcOoHfv3sjPz8eOHTsgis1zQ1u3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIMER93fyZrkDZwsZmUA5XRTETnxEmtUAVRqZkjnM7w2gKJCckJINMQ0gLJYLPjd736H559/Hh988AGOHz+Ov/3tb/jqq68we/ZszJw5E3V1dViwYAEOHjyIDRs24LXXXsOcOXMAeOuWZs2ahaVLl2Lz5s0oKSnB3XffjezsbEybNg0AdLkGCY7LowqgzN4EpyaAoqfwyE8khzI7zNq7hnYBdRsDALJArQwIIcaLeaHA7bffDqvViuXLl+PMmTPo378/nn32WZx//vkAgJdeeglLlizBjBkzkJmZifnz5/vqpQBg3rx5EAQBCxcuhNPpRH5+PtasWeMrCs/IyIj4GiQ4LlVmqSlwspiVHzN1oEUSl+RQ9YAKMYBiWB5geeWTfJSBIoREQcwDKACYPXs2Zs+e7fe1ESNGYN26dQHP5TgOhYWFKCwsDHiMHtcgbXN6lAFUUqAMFE3hEQCyqx6yS/kwQcgZKMCbhWrRwJWm8Agh0UCNKohu1FNzSQEyUBRAEUA7fQeGBZMafBNN32mq5VxAU3iEkCigAIroxqXKQFlM/ovIPYIEUaKnUxKdOoBiUjK8U3Ih0nYjpzUsCSHGowCK6EadWWrOQHFtHksST6T1Tz60Hh4hJAYogCK60WSgAkzhAfQkHgFk9RN4IbYwaKLJQAlUA0UIMR4FUEQ36qfwkgJM4QGA08+6eSSxaKbwdMpAURE5ISQaKIAiulEHRU1TeCzLwGxiVcdSBirRaXtAhZmBUheR0xQeISQKKIAiuglURA40Z6MCHUsSiyx6INdXKfaFWwNFU3iEkFigAIroJlAROaANoNweegovkcm15wAoFwLWr4icAihCiPEogCK6UQdQLWuf1AsKUwYqsWnqn6ypYMzWsK6lbWNAU3iEEONRAEV0o13KpfnpuyRVDZSbAqiEJlWXKbZZe1b4F1MvKCx6wr8WIYQEiQIoogtZljVZpZbTdmaeMlCkmVRTqtjm0rqFfS1tDRQ10iSEGI8CKKILQZQhSsqalpZTeEmqVgZugWqgEpk6A8V1zg7/YqoMFBWRE0KigQIoogt/GaWWQZOZV37U1NN9JLFINaopvM6RZKBUU3gCTeERQoxHARTRhb/GmEmttDFwCxRAJSrZ3Qi5oVqxj4sggNLUQFEGihASBRRAEV34yygpaqA0T+HRFF6iUmefwLBgO4XZwgDaDBTVQBFCooECKKILp2oKz2xiwbKMb1vbB4oyUIlKqlYWkPOdu4LhTOFfUJOBogCKEGI8CqCILjQtDFQBk3opF3oKL3GpM1Cm9Aim7+DnKTyRAihCiPEogCK6aK0LOUCdyEkz9RN4powekV2QV2WvBDdkWfZ/LCGE6IQCKKILdQYqycQrtqkTOWmi7gFlTu8e0fXUGSgA1EyTEGI4CqCILtQ1UBZz61N4VAOVmGRZglR9RrHPlBFZAKWpgQKoDooQYjgKoIguNBmoNqbwKAOVmOT6KkBVoxTpFJ6mDxSomSYhxHgUQBFdqDNK6oBJPYVHNVCJSao6pdxhsoBLSYvsopy/DBRN4RFCjEUBFNGFS9C2MWgpSd2JnDJQCUmqVAZQXHoPMAwT4OggsRzAKD9flIEihBiNAiiiC3VGSb14sFmzFh4FUIlIrFIHUD0jvibDMNQLihASdRRAEV2op/C0GSjtFJ5Ej5onHPUUnh4BFEDdyAkh0UcBFNGFW1BmoDQ1UKoMFAB4BKqDSiSyLGmn8DL0CaA0GShqpkkIMRgFUEQXmgwU33oNFEB1UIlGrj2nCWwoA0UIaa/4tg8hpG3qDJT6qTv1NkC9oOKVLEvwfP8pPIe+AWTA1H8cTMOngWG1f4ehECtPKraZpBQwVntE1/RRN9OkAIoQYjAKoIgutDVQrfeBAgAXtTKIS64t/4Bn32fN22cPQyw/BMvUP4Bhw09aq+ufWD2ewPuJNgNFT+ERQoxFU3hEF9qn8JQfLZZlwHPUjTzeeQ4XKYKnJsLhInj2/F9E15ZUGSg2Taf6JwDg1OvhUR8oQoixKIAiulC3JfA3ZZdEy7nENVmW4d75XsDXXTs2QqqvCvv60rljim1Wp/onQLseHtVAEUKMRgEU0UVbReSAvwWFaQovnoil+yFVngh8gOCG5/tNYV1bdjdCqlGugcd16RPWtfzS9IGiKTxCiLFiHkCdOnUKgwcP1vx55513AAD79u3DrFmzMGrUKEyZMgVr1qxRnC9JElauXImJEydi5MiRuPnmm3HsmPI3XT2uQVqnDob8Z6DUvaAoAxVPhCNFim22Uzb4QRMV+9z7PoPscYZ8bbHyBIAWfb8YVucMFD2FRwiJrpgHUPv370dSUhK+/PJLbNmyxffnqquuQlVVFWbPno2+ffti/fr1mDt3LlasWIH169f7zl+1ahXWrl2LxYsXY926dWAYBrfeeivcbu83UD2uQdqmncLzk4Gi5VzilizLEI7uUuzjB16IpFGXA2hR6O1ugOfHrSFfXzN9l9bD7yLAYaM+UISQKIt5AHXgwAHk5OSga9euyMzM9P2xWCx4++23YTabsWjRIvTv3x8zZ87ETTfdhNWrVwMA3G43Xn75ZcydOxeTJ09Gbm4uli9fjjNnzmDTJu9Ugx7XIK2TZVlTRK7uPA4AJlVQRY0044dUXQq5vlKxj+87FmznbuD7jFLsFw6GHkCJ544qtlk9p+9AGShCSPTFPIDav38/BgwY4Pe14uJi5Ofng+ebuy0UFBTgyJEjqKioQElJCerr61FQUOB73W63Y+jQoSgqKtLtGqR1/gIh/xko9Xp4FEDFC7HsgGKbSU4Dm9YdAGAaPElzrOQ4G9L11RkoXeufAFoLjxASdTHvA3XgwAFkZmbi17/+NY4ePYo+ffrg9ttvx8SJE1FWVoZBgwYpju/atSsA4PTp0ygrKwMAdOvWTXNMaWkpAOhyjXDxfgqpI8X91AqA42Ie+/o0ugXNPpvFpPn61XVRoiQZco/0EI/32UiuMz8qtvlug2H66e+LyxkJZ1IyZFe973Xx8DaY834R1LVlwQ2p6rRinzkrBzzP6nafBbNFuUN0x+1nKxYS7fMcS3SvoyMe7nNMAyi3242jR4/CarVi/vz5sNlseO+993DrrbfilVdegdPphNms/M0yKcn7uLLL5UJjYyMA+D2mpqYGAHS5RjhYlkFaWnLY57fFbrcadu1QCX4SmV0zU5FsVfbmSbEp7zHLc4beIz3E0302Uu3ZQ4pte//z0KnF3404bDxqd/6nefvQVnS+5LqgGmE6T55Atdwy28ggY0AuWHPzvY30PjvsKWhssc1DjPvPViwkyuc5HtC9jo5Y3ueYBlBmsxlFRUXged4XwAwfPhyHDh3CmjVrYLFYNIXcLpf38WSbzQaLxftbp9vt9v1/0zFWq/em6nGNcEiSDIejIezzA+E4Fna7FQ5HI0QxPqbAzlbUa/Y11DvhdqqmUWTleB21LlRVac+NB/F4n40iuxshVJUp9rlTeyr/bvqMA1oEUJ6KUzh3sAR8l95tXt95YI9im03vgZp6Caiv1+0+u1QfNY+zMW4/W7GQSJ/nWKN7HR1G3We73Rp0VivmU3g2m02zb9CgQdiyZQuys7NRXl6ueK1pOysrC4Ig+Pb17t1bcUxubi4A6HKNcAkG1viIomTo9UPR6FRO4XEsA8jar9+k+lC63ELcfA2BxNN9NopQfly5g+Eg27spvm65Sz8wyemKQnPXgW+Azm23IvCUKqcHuawBmnsa6X2WGGW2U/a4O/zfWzgS4fMcL+heR0cs73NMJ2lLSkowevRoFBcXK/Z///33GDBgAPLz87Fjxw6IYvPj7lu3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIO0Tv0EnilA7YmJisjjklShajHQuZvmqTaGYcH3H6fY5zlcBFmW0RpZliGeUQdQAyMYrX+0Fh4hJNpiGkANGjQIAwcOxCOPPILi4mIcOnQITzzxBL799lvcdtttmDlzJurq6rBgwQIcPHgQGzZswGuvvYY5c+YA8E4Bzpo1C0uXLsXmzZtRUlKCu+++G9nZ2Zg2bRoA6HIN0jpXEMu4ePdTG4N4JFWo1qjL6OX3OFM/ZQAlO85ogi81ufYs5EaHYh+XrX8Ape0DRWvhEUKMFdMpPJZl8cILL2Dp0qW466674HA4MHToULzyyisYPHgwAOCll17CkiVLMGPGDGRmZmL+/PmYMWOG7xrz5s2DIAhYuHAhnE4n8vPzsWbNGl9NVUZGRsTXIK0LZhkXQJuZok7k8UGqUT5tyqb38Hscm5kDJjUTcm1zCwPh0HZwXfoGvLZ4ukSxzVjtYFIzwx9sANQHihASbTGvgUpPT8fjjz8e8PURI0Zg3bp1AV/nOA6FhYUoLCw09BokME0TzUAZKNUUHmWg4oN6jTq2U7bf4xiGgan/OLi//dC3z3N4O8zjrgn4NJ5w6gfFNtdtcFBP7oXMz1p4siwb816EEII4aKRJ2j9NBspPE03ATwaKAqiYkz1OyA3Vin2BAigA4NXTeLXnIJ097P/asgTx1F7FPq7HsPAG2gbNsjCyDEja/mSEEKIXCqBIxNSBkDrT1LxfXQNFU3ixps4+AQBr7xrweDajNxhVgOU5tN3/tStOQHbWKvbxPY0JoMAnaffRNB4hxEAUQJGIaTNQ/gMo9Vp4lIGKPXUAxaRktLrIL8MwMPXLV+wTDm+HLGv/LoXju5Xn2ruCNaD+CQAYzqTZR3VQhBAjUQBFIuYKcgpPUwPloQAq1qQaZQNNtlNWm+fw/c9XbMv1VRDPHNIcJxxWriXJ9zovjBEGyV/QR60MCCEGogCKRExdDB7sFJ6bpvBiLtgC8pa49J6+hYabCAe3Kq9bXQqp8oRiH5+jzFzpijMBUBaMywK1MiCEGIcCKBIx7VN4wRWR01N4sdeyJQEAsPa2M1AAwPdTZqE8B75SLDbsOfiN4nXG2glctnJRbz0xDPNTENWCSFN4hBDjUABFIhZ8I03qRB5vpLoKxTaT2iWo80yDJwBMi28fggvufZ8BAGRJgKfkc8XxfE4eGNbYbzfUC4oQEk0UQJGIqYvIAy/los1AtbUUCDGOLImQ66sU+9iU9KDOZVMywOcolzpy7/4IsqsenpIvNa0RTLmTIhprUDS9oGgKjxBinJg30iTtn3oKL2AGyk9g5RGkgMcTY8kN1YDq6TkmJSPo880jLoNwuEULA1c9Gv69BFLdOcVxXPYgcF36RDLU4PCqBYVpCo8QYqCgAqjnnnsu7De48847wz6XtA/qYvCkIBcT9p5LAVSsyHWVyh0cD8aSGvT5XNd+4HPyIBxpXgxcqj6tOc6cN0OzzwgMZ4Yin0lTeIQQAxkaQDEMQwFUAgg6A+WnuJwKyWNHU/+UkhHy0idJBddBOLUXcDf4fZ3PyQPffUjYYwyJJgNFU3iEEOMEPYX39ttvY8SIEUFf+Ntvv8X1118f1qBI+xLsUi7+pvColUHsSKoMFJscXP2T4pzULrBefBsa/7MSEJVLp7BpPWCZNDuiMYaC4dQ1UJSBIoQYJ6gi8jFjxiA5OTmkC6empmL06NFhDYq0L64g+0DxHAt1foOaacaOXK/NQIWD7zUCtl8sANdjqLeVQFIyTEMvhm36QjBJoX3fiAg9hUcIiaKgMlBjx44Fx4VWp9K/f3+8+eabYQ2KtC/BLuXCMAxMPKtoX0CtDGJHXQPFhhlAAQCXmQPbFfMjHVJENMu5UABFCDFQUBmoV155BT//+c9xww034L333oPLRUskkGbqACpQI03AXysDmsKLFW0NVOhTeHFF3caAaqAIIQYKKoD68ssv8ec//xn19fWYP38+JkyYgEcffRT79u0zenykHdAs5dLKU3XUTDN+qHs1hVMDFU+okSYhJJqCCqDS0tLw29/+Fhs2bMD777+Pa665Bp9++in+3//7f5gxYwbefPNN1NbWGj1WEockWdYEQf6KxZuoM1DqJ/hIdMiSCLlR+W+WsXWOzWD0oslAUQBFCDFOyJ3IBw4ciPnz5+Ozzz7Diy++iH79+uEvf/kLJk6ciMLCQhQVFbV9EdJh+GtD0GoGiqbw4oLsrAWUXZPAWO2xGYxO1DVQtJgwIcRIYXciZ1kWkyZNwqRJk1BfX4///ve/eP755/HBBx/Q1F4CUdc/AW1loGgKLx7IDTXKHQwTUhPNuKRZyoUyUIQQ40S8lMv333+P999/H5s2bUJpaSnOP//8tk8iHYa/KbjQMlAUQMWCOoBiLHbDF/s1nKoPFDXSJIQYKawA6sSJE3j//ffx/vvv4+jRo8jKysKMGTMwc+ZM9OzZU+8xkjjmrxFmoMWEAcCkekKPGmnGhtyoCqBsnWI0Ev0wPLUxIIRET9ABVFVVFT766CO8//772L17N3iex9SpU/HAAw9gwoQJIS8BQToGdQaKYxnwXOAASt1kkxppxoakzkB1gACKGmkSQqIpqADqtttuw5YtWyAIAgYOHIj7778fv/jFL5CWlmb0+EiccwXZRNP3uvopPJrCiwlNBsra/gMoTSNNegqPEGKgoAKo4uJizJw5EzNnzgxpPTzS8amn4AKtg9dE08aApvBiQl0DxXaIDFSSYpOewiOEGCmoAGrLli2wWCxGj4W0Q+opvKQA6+A10UzhUQYqJjpkBkpdA0UZKEKIgYIKoNTB0yeffIKdO3fC4XBojmUYBo8//rg+oyNxL+QMlLqInGqgYqJD1kCpn8KjGihCiIFCfgpv6dKleOmll5CSkgK7Xdt4j4rJE4s6AAq1BooaacaGpo1Bh8hAqftA0RQeIcQ4IQdQ//rXv/CrX/0Kjz76qBHjIe2MupFma000AX81UJSBijZZcAGeRsW+jlEDpZ3Ck2WZfqkjhBgi5M55LpcLl112mRFjIe2QZh28NjNQVAMVa3KDn6n3DhBAMaopPAAANdMkhBgk5ADq0ksvxX//+18jxkLaoZAzUNRIM+bUBeTgTIDJGpvB6Ek9hQdQM01CiGFCnsJ74IEHcM011+CGG27AyJEjNQXmDMPgjjvu0G2AJL5FXANFReRR56+AvCNMc2n6QMG7nEv7/8oIIfEo5ADq9ddfx5EjR3DkyBEUFRVpXqcAKrG4NE/hhTaFRzVQ0Sc3KqfwGKv2YZB2iTJQhJAoCnkK75///CeuuOIKbNmyBSUlJZo/+/btC3swR44cwejRo7Fhwwbfvn379mHWrFkYNWoUpkyZgjVr1ijOkSQJK1euxMSJEzFy5EjcfPPNOHbsmOIYPa5B/Iu0iJyewos+2Vmr2GYsqTEaic44E6DKN8nUC4oQYpCQA6iGhgb86le/QpcuXXQdiMfjwb333ouGhgbfvqqqKsyePRt9+/bF+vXrMXfuXKxYsQLr16/3HbNq1SqsXbsWixcvxrp168AwDG699Va43W7drkECi3QKjzJQ0Sc76xTbHSWAYhjmpyCqBWplQAgxSMgB1IUXXoht27bpPpBnn30WycnJin1vv/02zGYzFi1ahP79+2PmzJm46aabsHr1agCA2+3Gyy+/jLlz52Ly5MnIzc3F8uXLcebMGWzatEm3a5DA1BmopDYbadIUXqxpM1ApMRqJAVStDKiZJiHEKCHXQE2fPh0LFy7EsWPHMHr0aKSkaL/5/vKXvwzpmkVFRVi3bh02btyIKVOm+PYXFxcjPz8fPN88zIKCArz44ouoqKjAqVOnUF9fj4KCAt/rdrsdQ4cORVFREa644gpdrkECUwdApjaXcqEi8liTXeoMVMcJoBjeDNlV37yDpvAIIQYJOYCaN28eAODDDz/Ehx9+qHmdYZiQAiiHw4H58+dj4cKF6Natm+K1srIyDBo0SLGva9euAIDTp0+jrKwMADTnde3aFaWlpbpdI1x8G/VA4eA4VvHfWPOIygDImsS1+nVbLcqPnCTLAAPwcfL1NIm3+6wr1RQeb7Mb8lkNht73meHNkFtss7IQs68tnnToz3OcoXsdHfFwn0MOoDZv3qzrABYtWoRRo0bhqquu0rzmdDphNiufrElK8q647nK50Njo7abs75iamhrdrhEOlmWQlpbc9oFhstvjo2+PKMmK7bTOtla/bn8PlSenWGCzaB9Bjwfxcp/1VOuuV2yndumCZAM/q8HQ6z7XJyWhZc7JlsQgNcZfWzzpiJ/neEX3OjpieZ+DCqBWrFiB6667DllZWejRo0dQFz5z5gzWrl2LP/7xjwGP2bhxI4qLi/H+++/7fd1isWgKuV0uFwDAZrP5elC53W5FPyqXywWr1arbNcIhSTIcjoa2DwwRx7Gw261wOBohirGf/mpwCoptj1tAVVV9gKOBxnrtlEr52Vp0SknSfWyRiLf7rCdB1Ym8QTTB3crfmZH0vs+i6ltafU0thBh9bfGkI3+e4w3d6+gw6j7b7dags1pBBVAvvPACLrroImRlZQU9iLKyMrzwwgutBlDr169HRUWFou4JAB5++GGsWbMG3bt3R3l5ueK1pu2srCwIguDb17t3b8Uxubm5AIDs7OyIrxEuwcACaVGUDL1+sNRF5BzDtDou1k9Xw0angOQ4zUDFy33Wiyx6AI9TsU80JQMx/hp1u8+qp/BEt6tD/f1FqqN9nuMZ3evoiOV9DiqAkmUZixYt8lswHkhdXV2bxyxduhROp/Kb+aWXXop58+bh8ssvx4cffoi1a9dCFEVwnLc4eevWrcjJyUFGRgZSU1ORkpKCbdu2+YIfh8OBvXv3YtasWQCA/Pz8iK9BAgv1KTx1I02AnsSLJnULA6DjtDEAAPDKTKZMbQwIIQYJKk+Vn5+P5ORkyLIc9J/k5GTk5eW1et2srCz06dNH8QcAMjIy0KNHD8ycORN1dXVYsGABDh48iA0bNuC1117DnDlzAHjrlmbNmoWlS5di8+bNKCkpwd13343s7GxMmzYNAHS5Bgks1MWEWZYBp0pD0YLC0aMNoBgw5o5TI6RZzoWewiOEGCSoDNTrr79u9Dj8ysjIwEsvvYQlS5ZgxowZyMzMxPz58zFjxgzfMfPmzYMgCFi4cCGcTify8/OxZs0aX1G4Htcg/kmyrAl+1J3G/TGbWDS6mjNXtKBw9Gh6QCUlg2E70NNC6uVcqA8UIcQgIT+FZ7T9+/crtkeMGIF169YFPJ7jOBQWFqKwsDDgMXpcg2j5yxy1lYECvL2ilAEUZaCiRduFvOP0gAIARt1IU6QpPEKIMTrQr54k2tT1TwCQFEwGSr2ci5/rEGN02HXwmnCUgSKERAcFUCRs4Wag1MdQDVT0dPwMlDKAoqVcCCFGoQCKhM3lJ3MUTA2U+hj1gsTEOB0/A6VeTJgCKEKIMSiAImFTBz4cywS1JItmPTwqIo+ajp6BUheRUw0UIcQoQRWRb9y4MaSLhrqYMGmf1FNv5jZ6QPmOU2egaAovajp6Bko9hUcZKEKIUYIKoO6///6gLxjqYsKk/XKpMkcmP00y/VHXQFERefQkXgaKAihCiDGCCqD0XkCYdAzqwEedWQpEUwNFGaio0WagOlYApWmkSZ3ICSEGCSqACnYBYcC77AtJDOoaqKQgnsADtMu50FN40SO7VQtcJ3WsAIoyUISQaAmrkeaHH36I7du3w+Px+AImWZbR0NCAb7/9Fl988YWugyTxSd1BPJgn8ADAZKIMVCzIkqBZSJhJssVoNMZgNH2gKANFCDFGyAHUc889h+eeew6pqakQBAEmkwk8z6OyshIsy+Kaa64xYpwkDqkzUMH0gAKAJJ5qoGJBdjVo9jFJHWcdPACAuhO54IrRQAghHV3IbQz+9a9/4Re/+AW2b9+Om266CRdddBG+/vprvPvuu+jcuTMGDhxoxDhJHFJnoIJ9Co9qoGLEXwBl7mAZKM1TeJSBIoQYI+QA6syZM5g+fToYhsGwYcOwa9cuAMDw4cNx22234Z133tF9kCQ+edQZqKCfwlP1gaIMVFTI7nrlDs6kDTjaO/UUnuimukxCiCFCDqBsNhsYhgEA9O3bFydPnoTT6a2rGDJkCE6ePKnvCEncUrcxCD4DpZrCowxUVMhOZQDV4abv4CcDBQDUTJMQYoCQA6jzzjsP//rXvwAAvXv3Bsdx+PrrrwEAhw4dgtncwX6jJQFpaqDCzECppwKJMdQZqI4YQKmfwgNAARQhxBAhF5HfdtttmD17Nmpra/HCCy/gF7/4Be6//36cf/752LJlCy655BIjxknikHoJlnA7kaunAokxZFfHD6A0faDgXVC4I36thJDYCjmAys/Px7vvvov9+/cDAB566CGwLIudO3fisssuC6lrOWnfws5A0RReTGiewutgBeQAKANFCImasPpA5ebmIjc3FwCQlJSExx57TNdBkfbBpe5EHuZTeLSYcHQkQgYKATJQhBCit7ACqNraWnzzzTdoaGjw+4QLrYWXGNSZo+BroJTHuWgKLyrUGaiO1kQT8K7FCc6kzDpRAEUIMUDIAdTnn3+Ou+66C42NjX5fp8WEE4e6/UDYNVA0hRcdiVBEDnin8VoEUJSBIoQYIeQAatmyZejXrx/+/Oc/IysrCywb8oN8pINwhZmB0jbSFCHLsq89BjFGQkzhwVtIrsiL03p4hBADhBxAHT58GKtWrUJeXp4R4yHtiHoJlmAzUOpFh2UZECUZPEcBlJESJYACn6TYlKkbOSHEACGnj7p37466ujojxkLaGfXUW7gZKIDWw4uGRKiBAgBGtR4eZaAIIUYIOYCaM2cOnn/+eeo4TsLOQPlbdJhaGRhPk4Eyd9AMlGo5F6qBIoQYIeQpvPfffx9nzpzBtGnTkJ6eDovFonidYRh8+umnug2QxC9NDZSfwMgfvxkoCqAMJUsCILiUOzvoFJ4mA0VTeIQQA4QcQGVnZyM7O9uIsZB2RJZlP4sJh9cHCqAFhY2maaKJjjuFp2mmSVN4hBADhBxAPfHEE0aMg7QzoiRDUvUACzYDxTIMTDyrqKGiDJTBVNN3QMctImc0U3iUgSKE6C/kAOr06dMBX2NZFjabDXa7PaJBkfjnr+g72AxU07GKAIoyUIZS1z+BN/tdN65D0EzhufwfRwghEQg5gJo6dWqb/Xo6deqE3/72t7j99tvDHhiJb/4yRsFmoAB/y7lQBspICdPCAH4yULQWHiHEACEHUE8++SQeeughjBs3DldeeSW6dOmCiooKfPLJJ/jss89w++23o76+Hn/729/QuXNn/PrXvzZi3CTGIs5AmWhB4WhKmCfwAD8ZKKqBIoToL+QA6sMPP8QVV1yhqYWaPn06Hn74YXz//fd44YUXYLfb8dZbb1EA1UG5/axf5684PBB1sOWmBYUNlSg9oACA0TTSpACKEKK/kPtAbd++HVdeeaXf1y699FJ88803AICxY8fixIkTkY2OxC2XoO0BFcpSLCZV001/ARnRj5wo6+AB3sWEW6IpPEKIAUIOoDp37oySkhK/r5WUlCAlJQUA0NDQAKvVGtnoSNzStjAIvv7JezzVQEWTpo1BB85AqdsYUAaKEGKEkAOoq666CitXrsRrr72GM2fOwOPx4MyZM3j99dfx3HPP4aqrrkJNTQ1ee+01jBw5ss3rVVRUoLCwEAUFBRg9ejR+//vf4+DBg77X9+3bh1mzZmHUqFGYMmUK1qxZozhfkiSsXLkSEydOxMiRI3HzzTfj2LFjimP0uAZRUk+5BduFvPl4dQ0UTeEZSVtEnhKjkRiP0fSBogwUIUR/IQdQd911Fy6//HI8+eSTmDJlCkaMGIEpU6bgySefxFVXXYW7774bX3zxBfbu3Yu77rqrzev94Q9/wIkTJ7B69Wq8++67sFgsuOmmm9DY2IiqqirMnj0bffv2xfr16zF37lysWLEC69ev952/atUqrF27FosXL8a6devAMAxuvfVWuN3e3zr1uAbRUk+5RZyBoik8Y2kCqA6cgVJN4VEGihBihJCLyHmexxNPPIE//OEP2LZtG6qqqpCVlYUxY8agV69eAIBJkybhyy+/hNlsbvVaVVVV6NmzJ/7whz9g4MCBAIDbb78d06dPx48//oitW7fCbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkTbrcbL7/8MgoLCzF58mQAwPLlyzFx4kRs2rQJV1xxBd5+++2Ir0G0NBmoEArIAcCkylipa6qIvhLpKTxNBooCKEKIAULOQDXp3bs3rrnmGvz+97/H9OnTfcET4O0D1VbwBABpaWlYtmyZL3g6d+4c1qxZg+zsbAwYMADFxcXIz88HzzfHeQUFBThy5AgqKipQUlKC+vp6FBQU+F632+0YOnQoioqKAECXaxAtTQYqhB5QAGWgoi2RnsLTZKBoKRdCiAGCykBdfPHFeP7555Gbm9tmI81wFxN+8MEHfdmiv/3tb7DZbCgrK8OgQYMUx3Xt2hWAtyN6WVkZAKBbt26aY0pLSwFAl2uEiw8xKxMMjmMV/40VQVIGPElmLqSv12JWfvQESTbkfoUrXu6zXtRP4fG21Li430bcZzlJucA5BE9cfK2x1NE+z/GM7nV0xMN9DiqAGjduHJKTk33/H8rj6sG68cYbce211+Ktt97CHXfcgTfffBNOp1OTyUpK8vZ4cblcaGxsBAC/x9TU1ACALtcIB8sySEszbprEbo/tE44cr/zoJFvNIX29qSnKXj0w+H6FK9b3WS/VbmUGyt4lA5Y4ut963udGhx11LbYZyROXn61Y6Cif5/aA7nV0xPI+BxVAtWya+eSTTxoykAEDBgAAHnvsMXz77bf45z//CYvFoinkdrm861rZbDZYLN7fNN1ut+//m45paqGgxzXCIUkyHI6Gtg8MEcexsNutcDgaIYqxm/aqcTQqthnIqKrSLlgbiKQae129K6TzjRYv91kPsihA9ijXg6tzs2iMg/ttxH0WGpXXkTzx9dmKhY70eY53dK+jw6j7bLdbg85qhVxEDgB1dXWor69HVlYW3G43/vGPf6CsrAw/+9nPkJ+fH/R1KioqsHXrVvz85z8Hx3lraFiWRf/+/VFeXo7s7GyUl5crzmnazsrKgiAIvn29e/dWHJObmwsAulwjXIKBvY1EUTL0+m1xupVF3yaODWk8PKvMYrrcsf16Aon1fdaD1FCr2SfyNshx9HXpeZ9F9bc1wQOPRzQkc97edITPc3tB9zo6YnmfQ548/O677zB16lS8/vrrAIDFixdj6dKleO+993DjjTdi8+bNQV+rvLwcf/rTn7B9+3bfPo/Hg71796J///7Iz8/Hjh07IIrNP6y3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvLw8AdLkG0VKvXRdpHygPPYVnGPUTeEDHLiJn1GvhQQYkISZjIYR0XCEHUMuXL0e/fv1w7bXXwul04v3338evf/1rbN++HVdffTVeeOGFoK+Vm5uLCRMm4JFHHkFxcTEOHDiA++67Dw6HAzfddBNmzpyJuro6LFiwAAcPHsSGDRvw2muvYc6cOQC8dUuzZs3C0qVLsXnzZpSUlODuu+9GdnY2pk2bBgC6XINoqRcTDrUPlHrdPFpM2EDqAIpPAsOGlXxuHzg/TwBTKwNCiM5C/i66e/duLF++HL169cL//vc/OJ1OTJ8+HQBw+eWX47333gv6WgzD4JlnnsFf//pX3HXXXaitrUVeXh7eeOMNdO/eHQDw0ksvYcmSJZgxYwYyMzMxf/58zJgxw3eNefPmQRAELFy4EE6nE/n5+VizZo2vKDwjIyPiaxAtTQAVagZKHUB5KANllIRaBw9++kDB20yzo3/dhJDoCjmAYlnWF1h8/vnnsNvtGDFiBABvbVTLQuxgpKamYtGiRVi0aJHf10eMGIF169YFPJ/jOBQWFqKwsDDgMXpcgyhpp/BCzUCpl3KhDJRREqoHFABopvBAy7kQQnQXcgA1fPhw35IrH3/8MaZMmQKGYVBRUYHVq1dj+PDhRoyTxBl1xkg9JdeWJFXGihYTNo52HbwOnonhtAEULedCCNFbyDVQ8+fPx9atW3H99deD4zj84Q9/AABceeWVOHr0aFDr35H2T50xSgo5A0VTeNGiyUCZO3YGimFYbRBFARQhRGchZ6CGDh2K//znPzh06BAGDhwIm837zXjRokUYM2YMMjMzdR8kiT/aIvLInsKjKTzjaJ7CS0qJzUCiiTcrpu1kmsIjhOgsrEdxUlJSMHLkSMW+n/3sZ7oMiLQP6oBHXdPUFnUGyiNIkGWZevUYQFtE3rEzUADAcCbILXdQBooQojNarIeERZ2BUtc0tcVf0TnVQRlDdiZYDRTgzUC1QAsKE0L0RgEUCYvbE9lTeP6m/GgazyDuBHsKDwCj7gUl0BQeIURfFECRsLiFyJ7C8xtAUSG5IRLuKTxA08pAFlwBDiSEkPBQAEVCJkoSBFFRYRLyU3j+MlaUgTKGJoAyd/wAStNMkzJQhBCdUQBFQuZyawOdUAMonmPBaRYUpgyUERKukSagbWNANVCEEJ114AWxiFFcfqbaksyhBVCANwvV6Gpe5NXfdUlkZNGjCR6YBGhjwPBJim25A2SgpJozcH2zFsLJPWCSUmAaPg3mEZeBYUP/t0cIiRwFUCRk/mqVQn0Kr+mcxhalKVQDpT9NDygASIQMlHo5l3aegZJqylC/8THfwtByQzXc29+BVHkClovmUPsPQmKApvBIyNSZIobxTsmFSj3tRxko/fkLoBJhCk/9FF57XspFliU0/vdFX/DUknDwG3j2fRb9QRFCKIAioVMHOkkmLqzfgCmAMp66/gkmCxg2ARLP6gxUO57CE47ugnT2SMDX3Tv+BdnjjOKICCEABVAkDP4CqHCYzeoAip7C053mCbyOn30CAKgzUO14Cs/93cetvi43OuAp+TxKoyGENKEAioRM/RReuAGUJgNFT+HpLiF7QMFfG4P2GUBJjnJIZw4q9lmmzgHXW7mUlmff55BlZWsRQoixKIAiIdMsJBxuBkrVTJOKyPUnJ2AXcgB+Gmm2zwDKc2ibYpuxpILvlw/ziMsU+6Xq05DOHo7m0AhJeBRAkZBppvDM4X2M1K0PXAIFUHrTZqA6fgsDwM9SLmL7rIEST+xRbPP98sGwPLhuuWDsWYrXhKM7ozk0QhIeBVAkZHrVQKnPc/tp0Ekiow2gEiUD1f6fwpM9TohnDin28b1HAQAYhoGpX77iNeHormgNjRACCqBIGIwKoOgpPP1p2hgkag1UOywiF0sPAHKLfxMMB67bIN8m33e04nip+jSk6tJoDY+QhEcBFAmZbk/hUQBluEQtIlcv5dIeO5ELp/cqtrms/mBMFt82m5kDxtZZeY5qyo8QYhwKoEjI1FNt4RaRq7uXUwClv0QNoDrCU3hi6QHFNtd9iGKbYVjwvc5TnbPf8HERQrwogCIhMyoDRU/hGUCzkHBiBFDqGqj2VkQuSwKkyuOKfVz2IM1xXLdcxbZQWgJZplpCQqKBAigSMt2ewqMpPMPJrjrFdqIEUIxmCs8V4Mj4JFWeAkRBsY/r0kdzHNdtsHKHqx5S1Skjh0YI+QkFUCRkxhWR02/OepJlWbOUS6IEUJoMlOBpV40mxXNHFdtMaiYYi7YFBZvaBUxqF+W5p0uMHBoh5CcUQJGQ6dVIU9PGgDJQ+hLcgKTMYiRKAKXpAwVZcy/imXTumGLbX/bJ95oqCyWWU0NNQqKBAigSMv0yUFREbiT19B2QOAGUZjFhoF0VkqszUGxm34DHcl37K89tZeFhQoh+KIAiIVNPtem3mDAFUHpST98BDGC2xmQs0cbwSZp9cjspJJdlCVLlScU+rkvfgMdzmTnK82vKtP2/CCG6owCKhEy96G/YGShePYUnQWpHdSrxTpOBSrKBYRLkn3w7zkDJdRWasbJpPQIez6b3AlhesU9UTQESQvSXIN9NiZ60U3jhfYzUGSgA8FAhuW4StoAc0DTSBNpPM02pStVN3GzVNMxsieF4sBm9FPtEWliYEMNRAEVCpiki9xMIBcNf5oqm8fSTqC0MAG+TSXDKrEx7Wc5Fqj6t2GY7dwfDMK2eo57Gk8qpDooQo1EARUIiyTLcgj41UP4yVxRA6ShBu5D7cO1zQWGpShlAcWnd2zxHHUBRITkhxqMAioTEX6sBvTqRAxRA6Smhp/DQfpdzEf1koNrCqgvJ6yshOWt1HRchRIkCKBISf80uww2gWIaBiVd+BN1UA6WbRJ7CAwConsRrDxkoWZYhVStroNi0bm2ex3buppmyVD/JRwjRV8wDqOrqajz00EOYNGkSxowZg+uvvx7FxcW+1/ft24dZs2Zh1KhRmDJlCtasWaM4X5IkrFy5EhMnTsTIkSNx880349gx5RMoelyDePnLEIUbQPk71+VuP80O412iLiTchDGpWhl4nLEZSAhkZ61m6jWYDBTDcmA7K5/UowCKEGPFPIC65557sHv3bixbtgzvvvsuhg0bhltuuQWHDh1CVVUVZs+ejb59+2L9+vWYO3cuVqxYgfXr1/vOX7VqFdauXYvFixdj3bp1YBgGt956K9xu72+belyDNHO7tQGUKcyn8ADAoipAd/q5PglPwk/hmSyK7fawHp5ce1a5g+HApGQEdS6b3lOxLVWe0GtY7Z5YeQqNm55D7St/QO2aW9Hw/hMQTnwX62GRdo5v+xDjHDt2DF999RXeeustjBkzBgCwYMECfPHFF/jggw9gsVhgNpuxaNEi8DyP/v3749ixY1i9ejVmzpwJt9uNl19+GYWFhZg8eTIAYPny5Zg4cSI2bdqEK664Am+//XbE1yDN1Bkos4kF28YTQq2xmJUfQQqg9JPwU3jtMAMlOcoV20xqFzBscBleLr0nWuZvRcpAAQCEo7vQuHkV0KKRqli6H42l+2EedSXM+TPbfMqREH9imoFKS0vD3//+dwwfPty3j2EYyLKMmpoaFBcXIz8/Hzzf/EO2oKAAR44cQUVFBUpKSlBfX4+CggLf63a7HUOHDkVRUREA6HIN0kyvZVyaWJKU5zfSFJ5uNJ3IEyyAUncjlz3xn4FSB1CsPTPoc7UZqFOQ5cSuKRTPHdUETy25v/0Anu8+jvKoSEcR0wyU3W73ZX2afPzxxzh+/DgmTJiA5cuXY9CgQYrXu3btCgA4ffo0ysrKAADdunXTHFNa6i3ELCsri/ga4eJ5/eNTjmMV/402QVJ2Ck8ycRF9nbYk5UfQLUiG3LdQxfo+60JVS8PbUuLi3rZk5H1mk5TL1jCiK+6+fjVX3TnFNt+pa9BjZrv2QWPLHYILbEMFuE5ZHePzHCJZEtHwxSsBg6cmrqL1MPcaBr5rTqvHBSsR73UsxMN9jmkApbZjxw488MADuPjiizF16lQ88cQTMJuVjyInJXl/q3S5XGhs9H678HdMTU0NAMDpdEZ8jXCwLIO0NON+47fbY7OmGW+qUmzbrKaIvs7UFNU0C8saet9CFav7HClZElHlVmagOmdmwhxH97YlI+6zmJKCllWMZlaMq8+WP431ygAqObsXOgc5ZrmzDbXWVEiNze0LrK6zSE7r59tur5/ncNQU/59mSZvkoeORlNUXlf97E8BPvwxKIjzb1qLLDY/pOpWXSPc6lmJ5n+MmgPr0009x7733YuTIkVi2bBkAwGKxaAq5XS5vGt5ms8Fi8RaJut1u3/83HWO1WnW7RjgkSYbDoV7MNXIcx8Jut8LhaIQoRj89X1mt/Jp4lkFVVfgLl6onAKtrGiO6nl5ifZ8j5a8HUK2LARsH97YlI++zW1Q94VlXFxefrda4KsuU26bOIY2ZTesJqXGfb7vm+EG4uw5v95/nUMmSCMdXGxT72LQeME28BTLHw+KohXPHe77XnCf2oXznlzD3GxvxeyfavY4Vo+6z3W4NOqsVFwHUP//5TyxZsgTTpk3D0qVLfdmg7OxslJcrawKatrOysiAIgm9f7969Fcfk5ubqdo1wCYJx/3hEUTL0+oE0OpU1SmaejWgcZtUTfA1OISZfVyCxus+Rkuq1AZTI2yDF6ddixH2WVJ3IJbczrv8uZcENuV6Z4ZWTu4Q0ZiatB3C6OYASzp1QnN9eP8+h8hwuglRXodiXNH4WRJkFBAn8yCvBHPgacm1zxq9xx/tge4/WbQyJcq9jLZb3OeaTtG+++SYee+wx/OY3v8EzzzyjmErLz8/Hjh07IIrNhctbt25FTk4OMjIykJubi5SUFGzbts33usPhwN69e5GXl6fbNUgzp95F5Jqn8KiIXA+aAnLOpO3M3cFp2hjE+VN4krqFAUIrIgf8FJJXJGYrA88PmxXbbGY/cN2afyFmeDOS8mcqjpHOHoZ45mBUxkc6hpgGUEeOHMHjjz+OadOmYc6cOaioqMDZs2dx9uxZ1NbWYubMmairq8OCBQtw8OBBbNiwAa+99hrmzJkDwFu3NGvWLCxduhSbN29GSUkJ7r77bmRnZ2PatGkAoMs1SDOXqs2AJSmyJKaV+kAZIuFbGACaNgbx/hSerG5hYLVrgsC2cOoAylEOWUysX0qkugqIpfsV+8znXaqpb+L7jdP02HL/8Knh4yMdR0yn8D755BN4PB5s2rQJmzZtUrw2Y8YMPPnkk3jppZewZMkSzJgxA5mZmZg/fz5mzJjhO27evHkQBAELFy6E0+lEfn4+1qxZ48tkZWRkRHwN0kydIVI3wgyVOgCjAEofid6FHAAYk6qGUYjzDJRDmYFi7F1DvgarXnhYliA5zgCZvSIZWsSapicZqx2M2diiX+HwduUOsw18jra2iWE5mIZeDPf2t5vPPbITsrvR8DGSjiGmAdRtt92G2267rdVjRowYgXXr1gV8neM4FBYWorCw0NBrEC91gBNxAKXJQCXWb8tGoQBKu5RLvGeg1FN4bGpo03cAwJhtYGydITdUN1+36nTMAijZ3QhX0bvwlHwJiG6AYcD3GYOkC64Hm9rFkPf0HFIGUKacsWA4k99jTYMnwF30LtDUL0t0Qzi6E6ZB4w0ZG+lYYl4DRdoXbQAVWQxOS7kYgwIoAO2sBkquq1RshxtgsJ2VPe3UixNHi+xuQMOHf/HWI4k/PQktyxCO7kDDxkchVp7S/T2lhmpIZ48o9vH9zw94PGu1g+s5XLHPc3Cr7uMiHRMFUCQkuk/h0VIuhpCdyhqoROtCDvhbTDjOM1Cqp8aCXQNPTb34sFR9OuwxhUuWZTi/eEUTzPheb3Sg8ZPlmkA/UuLJH5Q7TBZw3Vt/mto08ALlNU7tg+zWvwUN6XgogCIhUQc4STSFF5fUARRjSY3RSGKH4VUF2JIQ1wXVsiqAYlPSw7oOm6bKQFVFPwMlHt8N4XDrS2HJtefg2vZ2q8eESji5R7HN9xgKhm09S873GQ20PEYWIZz8XtdxkY6JAigSEs1TeDoHUIIoQ6DmcxGTVY00EzGA0iwmDMTtgsKy4Nb+nemWgSqN6pp4sizDteNfyp1JybBe9WewXfspdnv2f6HboseyLGkyUOrpOX8YP1kq4dhuXcZEOjYKoEhItFN4kdZAac+nabzIqTNQrCUlRiOJHX8tAGQhPqfx1PVPAMAmh5uBUj2JJ7oh1Vb4P9gA4vHdkFRLqFguuB58t8GwXnIH0LIfmSzDXbRel/eVKo5rglC+53lBncv3HqXYFk98B1miX+RI6yiAIiFRBzfqPk6h8pfBcrrid5qlvaAMFABem4GK10Jydf0TkpLDfpSesXYCVC0cpKro1UG59/1POZ5O2eAHXAgAYFMyYB55ueJ14dguSDXKJWzCIaiyT4w9K+hGpHzvkYpt2VkL6ezhiMdEOjYKoEjQZFnW/Sk8fzVUlIGKnLYGKgEzUCwLqJZziddCcr3qnwCAYRhNHZQYpQBKaqiBeEJZh2Qe+XPv30XT9ojLALNNcYz7+8gbWIplPyq2+R5Dgz6XtWeCTeuh2Ceovg5C1CiAIkETRAmiJCv2RVoDxTKMJoiiACoysuAGVFNVjDUBM1Dw1wuqfWSgmOTw6p+aqOugxCi1MhAOftPcUwkAeDNM/cYpjmFMFphyJyv2eQ5s8X5uwyTLMiTVMixc9sCQrsH1Uk73iS3WFCTEHwqgSNAa/QQ2kQZQ/q5BT+JFRtPCAAk6hQdoekHFawZKUveACrOA3He+upA8Shko4egOxTbfd6zfqUjzsIsBtFhaxeOEcOzbsN9XrinTLF8UagDFqwrJxfJDcVszR+IDBVAkaOon8IDI2xgA1AtKb+r6JzAskKBLU2gyUHG6nItcr08PqCZcDKbwZGcdxDPKaTTTAP9NLNnULuBUU2yeH78K+73V03eMrTOYlNAakXLZg73/VppIoua6hLREARQJmjqwYQAkmSIPoNSF6A1URB4RbQF5ChgmQf+pq7uRu+MzgFJP4UVSAwVoM1Cysw5ifU1E12yLcPJ7QG4xxc+ZwHUfEvB4TQPLE9/7zZ4GQ1RP32UN0Cwe3BbGbAWb2Vd53dMlYY2HJIYE/a5KwqGeWksycyF/k/LHZlFmoBqcFEBFggrIm2laGcRhDZQsy36KyCPLQDGpmQCn/HflrtCn31IgwnFl7ySu+xAwfp6EbML3HQu0XKNOFjXXCJY68xXq9J1vTN2VWTHh9N6wrkMSAwVQJGh6LyTcxGZRLvRJGajIUAuDZozqaa94XKJDdtYCqg7pkU7hMSwLtlO2Yp/nnP5rzzWRZVlTdM33HtHqOYzZCl7V6FI4tiv093bWadb747LCC6DUDTWls0fjfhFqEjsUQJGg6d3CoIktSXmdRspARUSTgUpK4AyUqvYrLgModQ8ohgVj6xzxddXTeO5zxmWgZEc55IZqxT6+R9tdwPm+YxTbwok9IT+NJ5Yrp+/AmcF26R3SNXynZg1Q1kHJEsQA6/kRQgEUCZq6waV+GShlAFXv8uhy3URFGagWNAFUY4wGEpi2hUGaom9SuNjOykJyj4FTeGLpfsU2Y7WD6ZTV5nlc75FAyzIAwQUxxGkzsUxV/9Q1p8317wJhTBawGb2U1z9DheTEPwqgSNCcHmOm8JKpBkpXVAPVTDOF54r/DFSk9U++66gCKLeBU3hCmTKA4roNDqo+krXaNdNtwtGdIb23pv4pzOm7QOerC9QJaUIBFAlatKbwqAYqMpoMVII20QS0ARQ88ZiBUvaAirT+qYl6TTzRcc6wRqJi6QHFNpc9OOhz+b6jFdvC8e8gy3KAo5VkSYBYrpxi47IGBP3e/qjPF88cjOpizKT9oACKBE27kLBBReSUgYqINgOVyAGUagovkTJQnbKhaFYJQKzSvyO57KqHXHtWsS+Up+DUC/nKDdWQKo4Hda507jggKmumIg6g1GN31UOqjnytPtLxUABFgmbcU3jqKTyqgYqEvz5QiYpJiv+n8DQ1UBH2gPJdhzeDSVU2kzSioaaoDnZYHmx6D/8H+8F0ygZjV9ZLCce/De69VdNrbOduEX/e2ZQMMMnKvwOqgyL+UABFgqYpIk+iKbx4I8syZaBa0rQxiL8pPFnnZVwU11ItkCtW6l9ILp07pnzP9B4hFXEzDKNpeRBsPyh/DTT1oJnGK6M6KKJFARQJmnpqTR34hEudgXJ7JAgi1RyExd0ASKqeQomcgVLXQLkb46qeRRY9kBuVHcL1qoECAC7N+DXxRFUAxWX0Cfka6mk8qfwIpIa2O6drMlAGBVASZaCIHxRAkaA1qjJDVt0CKJNmH9VBhUdudGj2MdZOMRhJfNAuZCvH1YLCcn2VZp+xGSj9n8STKk4o3zOMHkxct8GqZXdkiCe+a/196yog1yuzd7ploFR1UFJNGST1GpMk4VEARYLW4FLWQOmWgfJznXqqgwqL5rd2sxUMb47NYOKANoCKrzoodf0TzFa/Yw6XuhZJcpyFLOgXQMqCG1K1MqvFhpGBYjgefI9hin1tTeOJZw4pd5htmtYN4WIzegGc8t+NpH4/kvAogCJBa1Q1uNQrA2XiWZh55UeR6qDCo85AJXL2CcBPjTSVT6LFUwBl1BN4vut17gbl1y9rlj2JhFR5ElBMiTLgVI0og8X3GaXYFk5+D1kM/H3A/wLC+vxIY1geXNecVt+PEAqgSNA0GSiLPgEUAFhV16LlXMKjrqdhbYkdQDEMq5oaiq9Ccu0TePoGUAyfpHkST9JxGk/9BB7TKUu7gHOQuF7nKXd4nBDLDvg/GP4CqP5hvW/A8XRVXk8spwwUUaIAigRFkmXNU3h6ZaAA7TRePQVQYZFVU3iM1R6jkcQPzZRYHPWCkmtVGahkfVoYKK6pqoOSqvQLoNT9mriM8NagAwDW1hlspjLrE2gaT/a4NE//RdqBXDMe9ZN45YchS2KAo0kiogCKBMXlFqHuDWxN0qcPFAAkq5tp0hReWDRPdCX6FB7iuxeUJgOVqm8GCtA+iadnLyj1E3jhLuLbhO89UrEdqB+UWHYAkFsEMwwHrmu/iN5bTVOQLri8U5aE/IQCKBIUf0/F2ZK0T8+Fi5pp6kPS1EBRBkqzHl4cT+HpXQMFGJeBkiUJUqXyCbxwWhi0pOlKXnPGbxdw8fQ+xTbbNSfsqcNAWKsdTGqm8n2pDoq0QAEUCYq6hQEDwKJrBkoZQNU2UAAVDs0UXoLXQAH4qZC8WbxkoGRZ1hSRMyldAhwdPvWTeHLtOV2exJMcZYCgXEaFjWAKD/BmsNRZU3/TeIIqgOJ7DI3ofQPxty4eIU0ogCJBUU+pWZI4sEGsth6sVJvykWEKoMKjfgqPpSk8bQYqTmqgZGctICo/56xOy7gormnQk3jSOVUBua1zxA8tMAzb5jSe7KyDdO6oYh/XfUhE7xuIJoCiQnLSAgVQJChGNdFskmpTTgfWNroDHEkCkWVZWwNFGShNJ3b1UjexIteeU+5gWDC2NN3fh+GTwNqVU1F6PImnqX+KMPvUhOujDKDE0gOKaVfh+G5AblGRyZk0T8zpRR1AyY5yzTQ5SVwUQJGgqDNQejXRbEIZKB246gHVU0JUA+UvgIqPjtKaAvLkNDCsMd+SOXVDTR3qoDRP4HWJrP6pCd9jGNByLT1ZhHBij29TOFKsPL7ncMOaxbLpPQE+SbGPGmqSJnEVQK1atQo33HCDYt++ffswa9YsjBo1ClOmTMGaNWsUr0uShJUrV2LixIkYOXIkbr75Zhw7dkz3ayS6aGeg6hooAxUqqaFas48CKO1iyvESQGmaaKbqX//ku7bOT+LJsqwJoPTKQDEmC7juuYp9ngNfet/X44Jw8nvFa3xOni7v63csLAdO1VpBLKc6KOIVNwHUq6++ipUrVyr2VVVVYfbs2ejbty/Wr1+PuXPnYsWKFVi/fr3vmFWrVmHt2rVYvHgx1q1bB4ZhcOutt8Ltdut2DRKNAIoyUJFSrwvGWO1gOP2elGyv4jWA0mag9K9/asKl91S+d4QZKLm+SnMf9cpAAYCp3zjFtnhiDyRHOYRD25R1Y35qpvRGheQkkJgHUGfOnMHvfvc7rFixAjk5ykj/7bffhtlsxqJFi9C/f3/MnDkTN910E1avXg0AcLvdePnllzF37lxMnjwZubm5WL58Oc6cOYNNmzbpdg2ibWOgZxdyQJuBcgsSXG5qWhcKSbUwLZOsfz1Ne6TOwsVLABXNDJR6Ck+uPRtROwepQpWhN1k1Hc8jwQ84H0hKVuxzf/sB3D8ovydzPYdppmj1pu5wLp49Qg01CYA4CKB++OEHdOrUCe+99x5GjlT+JlFcXIz8/HzwfPMP64KCAhw5cgQVFRUoKSlBfX09CgoKfK/b7XYMHToURUVFul2DRCEDZdXWMNTSNF5I5DplBsqIrtbtkeYHrLux1TXWokWqNXYZl5a49B4Aq2w7ol6GJRTiOXX9U2/d1qEDvIXvpkETFPs8JV9AqlD2nTIPnarbewbCqgvUBbem/xVJTPr+FAzD1KlTMXWq/38EZWVlGDRokGJf165dAQCnT59GWZm3wVq3bt00x5SWlup2jXDxvP7xKcexiv9Gi1OVDUqxmHT9+lKTTeBYBqLU/HRNg1sw5B4GI1b3ORKuxmrFNpeaHrP7F6xo3Gc2RfskIifUg02KbYZOrlcGUKZOXQz7++I4HuYuveAuP9q8s+oE+F7hPf7vrFQGUHxmH93Hbhv9c9Ts+5+m11QTNq07knJGG1Z475PaGY2dsiDVnPHtks8eBp/tv/N5e/ze0R7Fw32OeQDVGqfTCbNZmZlISvI+EeFyudDY6E1B+zumpqZGt2uEg2UZpKUlt31gmOx2a9sH6cgjKRdySU+z6f71dUpJQqXD6duWWc7QexiMaN/nSDhdys+rrUt2zO9fsIy8z3InC2rAAC0WI0oxCUiK4b2R3E5UqdopdO7RC2YDx+TM7qsIoDjH6bA/H7WqDIy990Ck6j32tGRwE69B5f/e8Pty18t+B1tGqt/X9ObpnYu6Pc0BFFd5pM17156+d7RnsbzPcR1AWSwWTSG3y+XtoGuz2WCxeFv3u91u3/83HWO1WnW7RjgkSYbDoX/DPo5jYbdb4XA0QhQl3a8fSFWLwAYAWFlGVVW9ru+RYuVR2aLFyukzDlRlG1vfEEis7nMkXNVnldtciu5/R3qL1n1mLMmK/k815eUwmTNbOcNYop8+THWSDYxBf18cxyIpKwd1+My3r/H0wbA+H5KzHkJNuWKf09YNggFjl3OnwXzyCNw/fq3Yby24Bq60AXBF6fMtpfUF8Llvu+FEScB71x6/d7RHRt1nu90adFYrrgOo7OxslJcr/6E2bWdlZUEQBN++3r17K47Jzc3V7RrhEgTj/vGIomTo9dXqVE/F2ZI43d8/xaosJK+pc0f1a/Qn2vc5EpKqBkq2dm43Yzf6PjOWVEUAJdTVgInhvRFqlMEuk5QCkTEBBo7Jkq16HL/yFDwuNxgutB8DQstpQABgecip2Yb9/Zmn/A5sj2EQju0COB6mgePB9zovup/tLsrpOslxFm5HVaud19vT9472LJb3Oa4nafPz87Fjxw6IYnP9zdatW5GTk4OMjAzk5uYiJSUF27Zt873ucDiwd+9e5OXl6XYNAtQ1KgModbCjB3UrAwcVkQdNdjcCqqeqWHoKzyfeWhloCshTjSsgb5LUta9qEGJY7QzUS7iwaT1CDsJCwTAsTIPGwzrtTlin3ga+13mGvVcg/hpqUj8oEtcB1MyZM1FXV4cFCxbg4MGD2LBhA1577TXMmTMHgLduadasWVi6dCk2b96MkpIS3H333cjOzsa0adN0u0aiEyVJ04k82ZAASrWcSz0FUMGSGqo0+6iNQTNtABXb5VzkWmUGijVgEWE11pIM1t5VsU/dDDMYoqqFAddFnwaa8YxhOXBdVVko6kie8OJ6Ci8jIwMvvfQSlixZghkzZiAzMxPz58/HjBkzfMfMmzcPgiBg4cKFcDqdyM/Px5o1a3xF4XpcI9HVO7WPfBuRgeqcovwNr6ou8hXjE4W6hQGSksGofmNOZHGXgXIoywoYVWBjFK5LH8V7i+eOwTR4YkjX0GSgMvRroBnPuKwBEE/v821TQ00SVwHUk08+qdk3YsQIrFu3LuA5HMehsLAQhYWFAY/R4xqJrL5R2xU82aJ/AJWWqgqgaimACpbkUGU0DGzK2B4xVlUAFeMFYdUBlDozZBSuSx94Djf3t5POhbZklSy4IVUrl4FhdexAHs/8NtQUBUOnL0l8i+spPBIf1PVPSSYOJgP61aRTABU2zZRQauyeMItHjKrYV921PZpkWY5ZAMVnKoMd8dwxyFLwTUWlypOA3LJgl9EsE9NRcV2VS7pA9EA6eyQ2gyFxgQIo0iZtAbkxv3F1VgVQTreo6YBO/IvVD+T2Qr3OnBzLAMpZC3hUbUGilYFSZVEgujXdvVsjnjuq2GY6ZYExJ0a/I8aS4i0mb0FoMaVHEg8FUKRN6gDKiAJyAEhL0dbsVFIWKijqKTyGMlAK6icS5YYayFJsHn2WVcEuGA5MSnSW3WEtKWA7ZSv2iSEUQ0tnjyq2ucy+Ooyq/eC6Kzu3ixRAJTQKoEib6huVWSAjCsgBwGziNNeupgCqTbGcEmovNE8kyiJkZ2zqoDQF5KldwKjWqTMSq67lCeFxfPGccsqK65IT4MiOie8+VLEtnvkRcoClZkjHRwEUaVM0ekA1UT+JV1nrDHAk8XHVAx5VDyg7ZaBaYix2gFEGKbGaxtMU/Ef570pdyxNsBkoW3JAqVQXkiZaB6jYIYJjmHaIAsZzaGSQqCqBIm6I1hQcA6XYqJA+VOqMBho3alFB7wbBs3BSSxzpbqK6DkmvPQmpoe91PqfIEILdcVJwBl9Hxe0C1xCQlg+3SV7FPPLU3NoMhMUcBFGmTuo1BigEtDJqoWxnQFF7bJNUTeExKBhiWHq1WU0/jaXpnRYm6BiraARSb5qerdtmBNs8TVU+csZ2zE6aAvCVeVQdFheSJiwIo0qZoTuGpC8mpiLxtUpVqWoXqn/xS98ZSB57REqsmmr73Y1lwWappvCCCAPGssmeUOhOTKNSF5FL5Yciu+F60mxiDAijSpjpn9AKodLtFsX22ujHAkaSJej0zNq1HjEYS39S9sTRPw0WB7KqH3KicLmM7ZUV9HFyPYYpt4dQPbZ4jnvlReY3MxCogb8J1GwS0bJ4pSxBOtn3/SMdDARRpU22DKoCyGRdAZaUrpwTOVjdCkmTD3q8j0ARQ6RRA+aNZB84R/QyUVF2q3MFwMQmg+B7Kp8nkmjOQ6ioCHA1IjQ7INWWKfVz2QEPGFu8YPkmThRKO747RaEgsUQBFWiVJMmoblI/pdko2bo3Armk2xbYgyqh00JN4gciiB1LNGcU+jjJQfjGqp92k2nLIcnSDc1Ed7HbKikm9GpvRG0hKVuxrrRhaLFNmn8Anea+RoPheIxXb4onvYtZXjMQOBVCkVbUNbqh/xhgZQNltJljMysfNz1TRNF4gUk2ZamkNgE3rHqPRxDdNbZjg1kynGU1TrxajvyuGZbXF0K1MQ6mLzLmsAVHtXRVv+N7KAEp21kI6ezhGoyGxQgEUaVVNvTL7xDBAqs24AIphGGSpslBnqhoMe7/2TqpUZjSY5HQwZluAoxMbk5ymrF2Bnyk1g6nfj+3cLarv35KmDurEdwHXxRNL9yvPTdDpuyasPVMT/ApHd8ZoNCRWKIAirXKoAqhUmxksywQ4Wh/qOqgzlZSBCkSqPKnYpuxTYAzDgu2svD/qANRo8VTwz/ceodzhboB4ukRznNRQA0m1Bh7XbbCBI2sf+D6jFduew9ujPiVMYosCKNIqdQbKbmD2qYm6DqqcMlABqbsgJ1pjw1CpF4NVB6BGkt2NkFWF2rHMQLEpGWAz+yn2CUeKNceJJ75T7jBZwGUldgYKAPh+4xTbcu05msZLMBRAkVapM1CdUowPoLLSlBmoskoKoPyRJUnb3FDVZZoosWnKAEqsil4AJVYcV+5guJgGUADA54xVbAuHiyGLyqduBVUAxfcYBoajRq1sRm8wqicoPYe2x2g0JBYogCKtUmegjCwgb9K9i/LpoPKqRjjd/mszEplUfRrwKJ9Q5LpSANUazk8GKlpPT0lnjyq22fTuYHjj/z21xpSTp9iWXXUQjuxo3hZcEE7sURyjLqBOVAzDwKTKQgmHtkGWxABnkI6GAijSKvVadNEIoHpmJoNtsWCnDOBEeZ3h79veqKfvmJQMsLbOsRlMO8F26aPc4XFq6pKMIqrriOKgkzfbKUtTz+TZ9z/f/wtHdyqDdIYBp66dSmB8/wLFttxQDc/Rb2MzGBJ1FECRVqkDKPVadUYw8Ry6dVHWQR0/QwGUmnTmoGKb69ovwJGkCWvrBEbVkVxU3UejqAux42UpFNOQixTbYul+CKf3QZZluH/YrHiN6zGMgvQWuPQemjoy197/BTiadDQUQJFWVdYqp4jUS60YpXfXVMX2sTO1UXnf9kKWZU3fHvX6ZsQ/9TRnMAvpRkr2OCFVqzp5Z/Y1/H2DweeMBWPtpNjn+mYdxOPfaoJ006AJ0Rxau2AeqgxAheN74Kk+E+Bo0pFQAEUCkiQZ1bXKGqh0u/EZKADok60MoI5TAKUgVZ2GXF+p2Mf1HB6j0bQvXLZqId1TP0CWja2D8ma5WjzizrBg03sZ+p7BYjgTzGOnK/ZJ546i8ZMVyuNSMsD3U9ZMEYDvPw4wt3zwRUbNtg9iNh4SPRRAkYCq61yQVH1N0lOjk4Hqk5Wi2D51th4uNxVnNhFPKgt7meR0TY8j4h/f8zzFttzogKR+Qk5n6v5KbGbfmBeQt2TKnQS2U3arx5jH/CImy87EO4ZP0mTmar/9FFJ9dWwGRKKGAigSUKWq/onnGKQauJBwS32yU8G1aNgpSjJ+PFUdlfduD9SLl/K9hoNhjG1w2lGwnbLA2JWPnwuHtf2P9CSc3qfY5rsPDXBkbDAsD8vUOZpO7U24HsNgGjwxyqNqP8wjLgNaLG0jC244v/0whiMi0UABFAlIvYhvWmpS1H5IW8w8crrZFfv2HauKynvHO6muUpPR4HrRk1Gh4Puqukj/+LVh03iyuxGSql8X1z3XkPeKBJeZA+vP7tIsMsz1GArrJbeDYejHRSBsSgZMg8Yr9rn2bNYs9E06FvoXQQIqVy3i26WTNcCRxsjtk6bY3neUAigA8Bz8Bop6GpMVPAVQITENvFCxLddXQji6y5D3Ek+XKBd8Zrm4XUuO7zkcKdf9BUmTZsM87lew/vxPsF5eCEYVVBEt86grgZZBpiTA+fU/aXmXDowCKBKQehFfdYdwow1RBVDHztSitsEd4OjEIMsShANfKvaZ+uXHVT1Ne8Bl9AaboewJ5d6x0ZAmiB7V8ihc1kAwfHQexggHk5QMc+5kJI26HHyv82hqOEisvStMw6cp9okn9kD48asYjYgYjQIoEtAZVQZKvUad0Qb0sMPMN39EZRnYsf9sVMcQb8TjuyFVlyr28QMviNFo2jfzyMsU21LlCXj2fKLre8iCG8KxnYp96uVTSMeRNPaXYFR9spxb/gExyotWk+igAIoEpJ7Cy0qPbgbKxHMYMaCLYt+2vYlbUyDLMlyqwlQ2rSe4bvFXT9Me8P3GadbGc21fD+Hk97q9h3B4O+BW/jvi+1IA1VExZitsE2cpdwpuNP7fMkiqhaRJ+0cBFPGr0SVoFhLOinIGCgDOH6J8WurAiWqcq2kMcHTHJhzermlsaB75c5piCRPDcrBMvFG5UxbR+Mkz8Oz/MuLaFVmW4P5OmdHieg4Hm5Ie0XVJfDP3H4fUMZcq9sl1FWj44C+QasoCnEXaIwqgiF8nzyqXTmEZBpmdo5uBAoAR/dNhTWrxeDCA/xSdiPo4Yk121cP1zTrFPia1C/gB58doRB0Dlz0Q5pGXK3eKApyfr0HjB09COL477KfzhANfQapUflZNqq7VpGPKmDYbXGaOYp/sOIP6fz0Kz+HtVFjeQVAARfxSrz3XvYsNJj76HxcTz+HC4d0U+77YfRqOBComl2UZzi9e0XQeTyq4jhob6sA87mrw/cZp9oul+9H4f8tR/+af4PzyVXiOFEOqqwzqh5947hicX7+h2Mem9QTfZ3SAM0hHwvJmpFz5J21zW3cDnJ+uQuNHSyFEYQkhYiz67kv8Uq8910u1Nl00/Sy/F/6385SvK7rbI+Hd/x3CzVcMidmYosldvAGC+kmuHsOolkYnDMPCMnUOXJZUePZu1rwu11fBs+8zePZ95j3eageb3gusPROsvSuYlAwwJgvAmyG7GiCe+RGevf8FBGWQn3T+1dRLKYGwVjusVxSi8eNlmkykeOoHNJ76AWx6L/D98sH3GQU2rScYlj4f7QkFUD+RJAnPPfcc3nnnHTgcDowdOxYPP/ww+vTp0/bJHdDxMmUApV5aJZq6dLaiYFgWvv6+uX5gy55SjBmUiVEDu7RyZvsmyxJcW9fC8/1/lC8kJcMy5XdU+6QjhuVgmXADuJ7D4Pr6DcitFPzKjQ6Ip36AGMKDVfzA8eB7j4p8oKRdYZPTYJu+EM7PX4JwuEjzulR5Au7KE3AXbwBMVnBd+4FN6w62U7a3Y74tDaytE5CUTP/e4xAFUD9ZtWoV1q5diyeeeAJZWVl4+umnceutt+KDDz6A2ZxYPXbqGj04Ua6cwlMv7httMyf3x84DZ+FssR7ei+//gD9dOwoDenRq5cz2Saw6DdeWf0AsVXYcB8PAetEcsMlp/k8kETH1HQO+53B4Dm6F54dPIVVEXm/HdRusLVYnCYMxJcFy8e0QcrbD9fWbkBtr/B/oafwpMP9B+xrLgbF2AmNNBWOygjFbAZMFjNnqzX6aLGB4E8DyAGcCw3IAZ/Kex5m8S/SwPBiO9/4/w3mbfrKMNyvKsADD/PTfn/6wbODXGIYCOlAABQBwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oorYjzCZk63gPKqBtTUOCEK3uJWGdqaDAYMWJYBw3gLwBX/zzAw8SxY1v8/gJJjVYormnkW/brHNkhJS03CzMn98cam5roBl1vE0rd24dqpAzB5VI+AX097IEsS5PoKiGcOQji0HcKxbwE/f69JE24E35u6jhuJ4c0w506GafAkSNWnIR7fDeHkDxDPHta0JGjjSjANvchbq0aNThMawzAw9T8ffJ9R8JR8AffujzU1ja2SRMj1laGdYzRfUKUMrpifgi//rzGtvPbTeWBwkpOw1eyBIzkVvK0zAAbsT+cz8P4M4zkeo3sMwai0kTG7BRRAASgpKUF9fT0KCgp8++x2O4YOHYqioqK4CaDe/ewQNhWdgEeMfM0ujmXQpbMV/bvbkTe4K0YMyAD7028Uu35UNqsc1KtzTArI1aaO6YFDp2vwzQ/NvaDcgoTX/3MAnxSdwJRRPTBqYBdkpVl1++1IliXIrnrIzroW/9X+PwSPt4u1LAKSBEii95seZO+2LHk7gSr+K3kLkgUX5EaHcrkPNYaDZcotmiVIiHEYhgGX1gNcWg+YR14OWZYhO8ohnjsGyXEGsqMckqMccqMDsuAGPC6AN4NNyQDXbTD4gReCS+ve9huRhMHwSTAPnwbT0Ishlh2AcHg7hBN7INe2wwbBsuz9fqfe3dopQVy2gWXwUu8M1LMs0FgPNAZu/bC9dCf+38BqXNxrchBX1h8FUADKyrx/Qd26KZ/26tq1K0pLS/2dEhRex6CjtKIeH31zTLfriZKMM5UNOFPZgK+/L0P3Lsn45cQcDO2bjuIS5T/mEQMydP1aIvG7q4aiwSngu0PKGpXyqka8/b+DePt/B2Gz8OjeJRnpdgvSUpNgNXMwmzgkS3XoLR5Ht04cWEiAJHiDHsED2VUPydXgDYxc9ZDdDahx1UNy1nm/UcQQm5IB2yVzYIrDBWgjxXGs4r9xL6Ob90870+7uczsW3L1mYeo9FOg9FAAg1VdDKPsRYsUJiNVlkKpLIdWe8/5ylmBqeRb1Ify8OeI4FrOfTxRAAWhs9Kbl1bVOSUlJqKkJMF/dBpZlkJam3wKcjaKxP8RPn6vHqn9pOzDzHIPLJ/RHp5T4WbvrkTkXYvXGPfjo66N+X29wCjh4sgZA899dN64Kf7J/CBMjwRWdYUaMMVvRKf8KdL5gOtik6DcxjSa7Pfo9xhIR3efoCelepyUDPXtodsuCB2JDDYS6aoh1VZAaayG5nZBcDZDcjT/90tcIyd0IWRQgix7vfwUBkDyQBUG5X/Tua8qAx6MMt4ieTg9OWkxBHV/Qe7SuP2tDQQEUAIvFAsBbC9X0/wDgcrlgtYb3DUeSZDgcDW0fGCQrx+Cai/rjw6+PocEl6HbdtowbkgXJI6CqKnrvGYzrpg7A8L5pePu/B3FU9cSgP3nmwzAx8fkNoyUmKRlc1gCY++XB1D8PTFIyahpkoKFj/ibKcSzsdiscjkaIOkxNE//oPkeP/vfaClitgFWZ+WQRWSNHWZYV5QRN5QWyJCn3SZKqFOGn8gNNaULTfj/X/Ok6iuNkP9f86fi5ght7xWo4UtMAs8U7fQ4ZsixDkr3jYVkWo3sOQS9Lb1RV6ff90W63Bp2ppQAKzVN35eXl6N27t29/eXk5cnPDnzYRBH2/Uf38/D64/II+SE6xorq6vtXre/9tyJBkQJJlyJL3/2VZhiTJqKl343CpA1/uPo2TZ/1/+JItPGZO7q/716GX3N5pePDGPOw7VoVte89g96EKzfIzTUpFHZ5a43gwSSneP5ZkxX9hSgIYztvHheW8T7m0KJb0/zSL9/8Zjgdj6wTG1tn7pM1P9VsSAClO773eRFGK289ZR0L3OXraz73+KRRj4P0T4WyYv+rTUCtSUwBoW9sq8TyLtLRkVFW1/rPQSBRAAcjNzUVKSgq2bdvmC6AcDgf27t2LWbNmtXF2dHEsC2sSD6eZh8CG/6Hp0tmK/j064eKxPbHrwDn868vDOH2uOZBKsZpwx4zhSEuNn6k7fxiGwdC+6RjaNx2yLKPS4cLx8lpU1DhRWeuCo94Nt0eE25OOLxs4DGSOoUuqGUkWs/cRX5bzPt6bZAOTlAyYk8Ek2cDbUmDv0gV1Hh4SbwVjSQE4Mz26SwghBAAFUAC8tU+zZs3C0qVLkZ6ejh49euDpp59GdnY2pk2bFuvhGYplGIwdnInRg7rg4MkanD5Xj2SrCcP6psNmaV8fD4ZhkNHJgoxOlgBHjAr6WjzPwpqWDGcMf7shhBASv9rXT0gDzZs3D4IgYOHChXA6ncjPz8eaNWsSpokmyzAY1KszBvXqHOuhEEIIIXGPAqifcByHwsJCFBYWxnoohBBCCIlz1BSEEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBAxsizLsR5ERyTLMiTJmFvLcSxEUTLk2qQZ3efooPscHXSfo4fudXQYcZ9ZlgHDMEEdSwEUIYQQQkiIaAqPEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBVDuwatUq3HDDDYp9+/btw6xZszBq1ChMmTIFa9asidHoOg5/9/m///0vZs6cidGjR2Pq1Kl46qmn4HQ6YzTCjsHffW5p4cKFmDp1ahRH1HH5u9fl5eW45557kJeXh/PPPx9/+tOfUFlZGaMRdgz+7vOePXswa9YsjB49GpMnT8Zf/vIXuN3uGI2w/aqursZDDz2ESZMmYcyYMbj++utRXFzsez2WPwspgIpzr776KlauXKnYV1VVhdmzZ6Nv375Yv3495s6dixUrVmD9+vUxGmX75+8+FxcX484778TPfvYzbNy4EYsWLcLHH3+MRx55JEajbP/83eeWPv30U7zzzjtRHFHH5e9eu91u3HzzzThx4gReeeUVvPjii9i7dy/uu+++GI2y/fN3nysrK/G73/0O/fr1w8aNG/HYY4/hX//6F5YvXx6jUbZf99xzD3bv3o1ly5bh3XffxbBhw3DLLbfg0KFDMf9ZyEflXUjIzpw5gwULFmDHjh3IyclRvPb222/DbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkzRiNun1q7z2vXrkVBQQF+//vfAwD69OmDu+++Gw888AAeeeQRmM3mWAy5XWrtPjcpLy/Hgw8+iHHjxuHUqVNRHmHH0dq9/uCDD3Dq1Cls2rQJXbp0AQDf57murg4pKSmxGHK71Np93rlzJ6qrqzF//nykpKSgT58++MUvfoEtW7ZQsBqCY8eO4auvvsJbb72FMWPGAAAWLFiAL774Ah988AEsFktMfxZSBipO/fDDD+jUqRPee+89jBw5UvFacXEx8vPzwfPN8W9BQQGOHDmCioqKaA+1XWvtPt98882YP3++5hxBEFBXVxetIXYIrd1nAJBlGffffz+mT5+OcePGxWCEHUdr9/rLL79EQUGBL3gCgIkTJ+LTTz+l4ClErd3nzp07AwDeeustiKKIkydP4vPPP/f72SeBpaWl4e9//zuGDx/u28cwDGRZRk1NTcx/FlIGKk5NnTo1YB1IWVkZBg0apNjXtWtXAMDp06eRkZFh+Pg6itbu89ChQxXbbrcbr7zyCoYNG4b09PRoDK/DaO0+A95pkLNnz+KFF17Aiy++GMWRdTyt3eujR48iLy8Pzz//PDZu3AhBEDBhwgQUFhbCbrdHeaTtW2v3OS8vD7///e+xYsUKLF++HKIoYty4cXjwwQejPMr2zW63Y/LkyYp9H3/8MY4fP44JEyZg+fLlMf1ZSBmodsjpdGqmj5KSkgAALpcrFkPq8ARBwPz583Hw4EE8/PDDsR5Oh1JSUoLnnnsOTz/9NE2LGqyurg4bN27E/v378de//hWPPvooduzYgdtvvx2yLMd6eB2Gw+HA0aNH8Zvf/AbvvPMOVqxYgePHj2PRokWxHlq7tmPHDjzwwAO4+OKLMXXq1Jj/LKQMVDtksVg0T3M0fVhsNlsshtSh1dXV4a677sK2bduwcuVKSsPryOVy4d5778Uf/vAH5Obmxno4HZ7JZILNZsNf//pXmEwmAECnTp1wzTXXYM+ePRgxYkSMR9gxLF26FA6HA88++ywAYNiwYejUqRNuuukm3HjjjfRZD8Onn36Ke++9FyNHjsSyZcsAxP5nIWWg2qHs7GyUl5cr9jVtZ2VlxWJIHVZ5eTl+85vfYNeuXVi9ejU9Xq+z3bt348cff8Rzzz2H0aNHY/To0XjxxRdx+vRpjB49Gu+9916sh9ihZGdnIycnxxc8AcDAgQMBACdPnozVsDqcHTt24LzzzlPsa/rF68iRI7EYUrv2z3/+E3PnzsWkSZOwevVqWCwWALH/WUgZqHYoPz8fa9euhSiK4DgOALB161bk5ORQ/ZOOampqcOONN6Kurg5vvvkmBg8eHOshdTgjRozAf/7zH8W+119/Hf/5z3/w+uuv0+dZZ3l5efjHP/4Bp9Pp+yF04MABAN6nTIk+srOzsX//fsW+pvvct2/fGIyo/XrzzTfx2GOP4YYbbsADDzwAlm3O+8T6ZyFloNqhmTNnoq6uDgsWLMDBgwexYcMGvPbaa5gzZ06sh9ahPPHEEzhx4gSefvpppKen4+zZs74/oijGengdgsViQZ8+fRR/OnXqBJ7n0adPH3oyTGfXXXcdOI7Dn/70Jxw4cAA7duzAwoULcf7552PYsGGxHl6HMXv2bHz55Zd45plncPz4cWzduhX3338/Jk+ejCFDhsR6eO3GkSNH8Pjjj2PatGmYM2cOKioqfN+Da2trY/6zkDJQ7VBGRgZeeuklLFmyBDNmzEBmZibmz5+PGTNmxHpoHYYkSfjoo4/g8Xhw4403al7fvHkzevbsGYORERK+9PR0vPHGG3jiiSfwq1/9CmazGZdccgn+/Oc/x3poHcqECRPw4osv4vnnn8drr72GtLQ0TJs2DX/84x9jPbR25ZNPPoHH48GmTZuwadMmxWszZszAk08+GdOfhYxMj14QQgghhISEpvAIIYQQQkJEARQhhBBCSIgogCKEEEIICREFUIQQQgghIaIAihBCCCEkRBRAEUIIIYSEiAIoQki7QV1XCCHxggIoQki7sHnzZtx3332+7W3btmHw4MHYtm1bTMZz//33Y/DgwRg8eDDuvffeiK41ePBg38Kzwbj++ut97x3KeYQQ/VAnckJIu/Dqq68qtocNG4Z169ZhwIABsRkQgMzMTDz33HNIT0+P6Drr1q1DdnZ20Mc/9thjqKurw7XXXhvR+xJCwkcBFCGkXUpJScGoUaNiOgaz2azLGEK9RiyDRkKIF03hEULi3g033IDt27dj+/btvmk79RTes88+i8suuwyffvoprrzySpx33nmYPn06du3ahW+//RbXXHMNRowYgSuvvBJbt25VXP/AgQOYM2cOxowZgzFjxuCOO+7AiRMnQh7n4MGD8dZbb+H+++/H2LFjMW7cOCxevBhOpxNPPfUUCgoKcP7552PBggVwuVyK85qm4pq+rq1bt+Lmm2/GyJEjceGFF+Kpp56CIAgR3EVCiJ4ogCKExL2HH34YQ4cOxdChQ7Fu3ToMGzbM73FlZWV44okncNttt+GZZ55BTU0N5s2bh3vuuQe/+tWvsGzZMkiShLvvvhtOpxOAd8X36667DhUVFXjyySexZMkSnDhxAtdffz0qKipCHuvSpUthNpvx3HPPYfr06Xj99dfxy1/+EqWlpXj66adx3XXX4d1338Xrr7/e6nXuvfdejB07Fi+88AKuuuoqvPzyy3j33XdDHg8hxBg0hUcIiXsDBgxASkoKgNanuxobG/Hwww9j0qRJAIBDhw7hr3/9K5YsWYKrr74aACCKIubNm4cjR45gyJAheO6552CxWPDqq6/63uOCCy7AJZdcgpdeeklRuB6M/v3749FHHwUA5Ofn491334XH48HSpUvB8zwmTpyI//73v9i5c2er17nmmmtwxx13+Mbz6aef4rPPPsN1110X0ngIIcagAIoQ0qGMGTPG9/9dunQBoAy6OnfuDABwOBwAgG+++Qbnn38+LBaLb4osJSUFeXl5+Prrr0N+/9GjR/v+n+d5pKWlYfjw4eD55m+3nTt3Rm1tbdDXAYDs7Gw0NDSEPB5CiDEogCKEdChNWaSWLBZLwOOrq6vx0Ucf4aOPPtK8Fs7Tdf7e32q1hnwd9ZhZlqU+WITEEQqgCCEJLTU1FRdeeCFmz56tea1l1ogQQlqi7w6EkHaBZVlIkqT7dceNG4eDBw9iyJAhvoBJlmXce++96NOnD4YMGaL7exJC2j96Co8Q0i7Y7XYcOXIEW7duRU1NjW7Xvf3223H8+HHMmTMHn376Kb788kvMnTsXH374IXJzc3V7H0JIx0IBFCGkXfjNb34Dk8mEW2+9FV988YVu183NzcUbb7wBhmEwf/58zJs3D2fPnsXzzz+PSy+9VLf3IYR0LIxMVYmEEBKy+++/H9u3b8d///vfmI1h8ODBuPPOOzF37tyYjYGQREU1UIQQEia3241vv/0W6enp6N27d9Te9+DBg6irq4va+xFCtGgKjxBCwnT27Flce+21WLlyZVTf98EHH6SFhAmJMZrCI4QQQggJEWWgCCGEEEJCRAEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJC9P8B1qhMsSg1ewIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Fit the peaks using a permissive prominence filter \n", + "window_df = chrom._assign_windows(prominence=0.01)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peaks within each colored region are considered to be interacting signals, and \n", + "are fit together as one unit. In the above example, the peak at ≈ 11 min (in window 1) \n", + "is considered to be isolated from the peaks at ≈ 13 min onward. \n", + "\n", + "The extent of each peak window can be controlled by a buffer parameter passed \n", + "to `fit_peaks` and `_assign_windows`. This, given in units of time points, extends each peak window \n", + "on to account for nearby baseline signal. The above windows can be expanded by \n", + "increasing this parameter, which has a default value of 0." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHJCAYAAABKYwdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSs0lEQVR4nO3dd3wUdfoH8M/MluymbEhCSCjSSyjSg6g08bjzLOfx42x3eIp3HjbswQIqFs6GIoKcHkU5TwUVzrOeoncWFOligYj0GgLpbdvM/P6IWTIzm2R3M7O7ST7v18uXzOzM7DfDkjx5vs88X0FRFAVEREREFDIx1gMgIiIiamkYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBGR4SZOnIi7777bkGu9//77OOecc3D66afj/vvvR0FBAaZOnYrTTz8dZ555Jmpqagx5n1AtXLgQ/fr1i+p7huPuu+9Gv379GvzvyJEjAIA9e/YEff28886L8VdA1DJYYz0AIqLGPPjgg+jevTsee+wxZGVlYcWKFdi2bRuefPJJZGVlwel0RnU8l1xyCcaOHRvV9wzHDTfcgMsvv1y1r6ysDLfccgtGjRqFjh07AgDy8/MBAP/4xz+QkJAQONbhcERvsEQtGAMoIoprpaWlOPvss3HGGWcEtjt06IDzzz8/JuPJzs5GdnZ2TN47FF27dkXXrl1V+2688UakpqZi3rx5EMXaiYedO3eic+fOgftKROHhFB4RmcLn8+GRRx5Bbm4ucnNzcdddd6G4uDjw+t13342JEyeqzjl8+DD69euHNWvWYMOGDYGpsueeew79+vXDxIkTsWbNGhw9ehT9+vXDwoULAdQGVffffz/OOussnH766bj00kuxfv161bX79euHRYsWYcqUKRgxYgQWL14cdNyHDh3C9ddfjzPOOANDhgzBZZddhs8++yzwev0pvLoxBvuv/td29OhR3H777Rg1ahSGDBmCq666Cjt27Gj0/l155ZWNTsUdPny4qb8CAMD//vc/fPzxx7jnnnvgcrkC+3fu3In+/fuHdA0i0mMGiohM8cEHH2Dw4MF47LHHUFxcjHnz5uHAgQNYuXJlSOcPHDgQq1atwmWXXYbf/e53uOSSSyAIAp577jns2LEDixYtQnZ2NjweD6666iqcPHkSt912Gzp06IDVq1fjz3/+M5YuXYozzzwzcM2//e1vuOWWW9CvX7+gWSRZljF9+nRkZmbiiSeegNVqxT/+8Q/ccMMNeP/999GtW7egY6xv3bp1WLhwIS699FIAQHFxMS6//HI4nU7cd999cDqdWLFiBf7whz/gzTffRK9evYJ+/Q888AAqKysbvD8dOnRo8h7KsownnngCo0aN0tU25efno1evXrjsssuwY8cOuFwuTJ48GbfccgtsNluT1yZq6xhAEZEpXC4Xli5diuTkZABAWloabrzxRqxbtw5jxoxp8vzk5GQMHToUQO20Wd2f09PTYbfbA9uvv/468vPz8frrr2PIkCEAgHHjxuHKK6/EvHnzsHr16sA1Bw8ejL/85S8NvmdRURH27NmD6667DuPHjw+cs2jRIng8nkbHCAD79u3DihUr8Otf/xrXXXcdAGDFihUoLS3Fa6+9hs6dOwfGd/7552PBggV49tlng46ld+/eTd6jpvz3v//F3r17cd9996n2nzx5EidPnoQgCLjzzjvRqVMnrF+/HkuWLMGxY8fw1FNPNfu9iVo7BlBEZIrx48cHgieg9sk8m82Gr776KqQAKlTr169HZmYmBg4cCL/fH9h/zjnn4IknnkBZWRlSU1MBAH379m30Wu3bt0fv3r1x33334auvvsK4ceMwZswY3HPPPU2Oo7y8HNdffz26dOmCRx99VDW+/v37IysrKzA+URQxbtw4vP322w1eT5IkKIrS4OtWa9Pfvl955RX0798fZ511lmp/cnIyXnzxRfTo0SNQVD5q1CjY7XY888wzuOGGGxrMjBFRLQZQRGSK9u3bq7ZFUUS7du1QXl5u6PuUlpbixIkTGDhwYNDXT5w4EQigtGPSEgQBy5cvx9/+9jesXbsW//rXv2Cz2fCLX/wCc+bMQbt27YKeJ0kSbrvtNpSXl2P58uWqJwNLS0tx4MCBBsdXU1MT9EnCq6++Ghs3bmxwrJ988gm6dOnS4OslJSXYsGED7rjjDt1rDodDF1QBwIQJE/DMM88EpveIqGEMoIjIFNpASZIklJSUICMjA0BtsCJJkuqY6urqsN8nJSUF3bt3x7x584K+3liQEUxWVhbmzJmDBx54APn5+fjPf/6DJUuWIDU1FQ8++GDQcx5//HFs2LABL730Ejp16qQb36hRozBz5syg59rt9qD7H3zwQVRVVTU4zqZqoL744gtIkhS0r9PevXuxYcMGXHTRRaosodvtBlA73UpEjWMARUSm+Oqrr+D3+wNTTR9++CH8fn/gsfmkpCSUlJTA4/EE+hBt3bo17PcZNWoUPv30U2RkZKiCl7///e/44YcfGgysgtm2bRtuvPFGPP/88xg8eDD69++P/v3747PPPkNBQUHQc1avXo0VK1bg4YcfxsiRI4OO75133kGPHj1UwcrcuXPh8Xjw0EMPBb1uz549Qx53MN9++y2ys7MDdVf1HT9+HHPmzIHNZsPvfve7wP73338fSUlJDWbLiOgUBlBEZIqTJ09ixowZuPLKK7F//348/fTTOPvsswNPxZ1zzjl4+eWXce+99+KSSy7BTz/9hOXLl8NisYT1Pv/3f/+Hf/7zn5g2bRquu+46dOzYEV999RWWLFmCqVOnhvVE2YABA+BwODBz5kzMmDED7du3x1dffYWdO3fij3/8o+74b775Bg888AAmTZqEQYMGYfv27aq6pQEDBuDqq6/Gv//9b1x99dW45pprkJaWhvfffx+vv/56SLVVkfrxxx8bLEQfNWoURo0ahcceeww1NTXo2bMnPv30U7z88suYOXNmYMqTiBrGAIqITHHppZfC7XbjxhtvhN1ux0UXXYS8vDwIggAAOPvss3HXXXfh5ZdfxkcffYSBAwdi0aJFui7aTUlMTMQrr7yCp556Ck8++SQqKirQuXNn3HHHHbjmmmvCulZCQgKWL1+Op556CnPnzkV5eTm6d++Ohx56CP/3f/+nO/6LL76Az+fD2rVrsXbtWt3rdXVKK1euxFNPPYU5c+bA4/Gge/fumDt3rir7Y7SioqIGl5yxWCxYvHgxFi5ciBdffBEnTpxA165d8dBDDwXaLxBR4wSlscc8iIiIiEiHnciJiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsRGmiZRFAWybE6LLVEUTLs2ncL7HB28z9HB+xw9vNfRYcZ9FkUh0Oy3KQygTCLLCoqLG14INFJWq4i0tCSUl1fD75cNvz7V4n2ODt7n6OB9jh7e6+gw6z6npyfBYgktgOIUHhEREVGYGEARERERhYkBFBEREVGYGEARERERhYlF5ERE1GbVPjEtQ5YlQ64nywLcbgu8Xg8kiU/imSXS+2yxWCGKxuSOGEAREVGboygKamoqUVlZZljwVOfkSRGyzCfwzBbpfXY6k+FypYfcrqAhDKCIiKjNKS8vRk1NJRyOJDgciRBFS7N/oNaxWARmn6Ig3PusKAq8Xg8qK0sAAKmpGc16fwZQRETUpsiyhJqaKiQnt0Nycqrh17daRfaAioJI7rPdngAAqKwsQUpKWrOm81hETkREbYokSQAUJCQ4Yj0UioG6IEqS/M26DgMoIiJqo4yZsqOWxaipWgZQRERERGFiAEVEREQUJgZQRBT3FFmG94ePUfPJ3+DZ9g4UvzfWQyJq8W666S+YO3dOs67xu99dhGXLXjBmQM3g8bhx1VWX4/3334nae/IpPCKKe54Nq+D77sPajT0bIJ88AOekm2I7KKIW7q9/fRKiaIn1MJqtvLwM9913N/bs2R3V92UARURxTa4sgu/7j1T7/Ps2QyrcC0uHnjEaFbVWsqyg0u1r1jWsFhF+Kfw2BskOG0QxeoXtLpfxLRyibd26z/D0008gLS096u/NAIqI4pp/7yZA0TfL8+3ZwACKDLUpvxCvfPQjyqubF0BFypVowx9+2Q+5OR0iOn/hwqexefNGrFixEgBQXl6OCy/8BS666LfIy7sXALB+/TrMmnUX3nvvY+Tl3YKOHTth1qw5eP/9d7B8+d/xpz9Nx0svLUVh4XH06tUHt956JwYNGgwAqKysxDPPPIl16z6D1WrDH/84TTeG77//Fn//+2L8+ONOWK1WjBkzHjfeeCtcLhfuvTcPkuTH44/PBwD89NMuTJv2e0yffhOuvPJqAMCaNW/gn/98CWvWvIdly17Aiy8uwbp1mxv8mr/8ch1+97vLcMklV+Ccc86M6L5FijVQRBTX/Ed3Bt0vHc2P8kiotXvpg/yYBU8AUF7tw0sfRP65PvvscdizZzeKik4CALZu3QRFUbBly6kA5KuvvsTIkblwOp2680+ePIG33lqN++57GM8//yIEQcAjjzwA5edfYO6//27s3PkDHn98PubPX4Qvv/wCBQXHAufv2PE9ZsyYju7de+D551/Eww8/jh07vsftt98EWZYxZsw4bNu2FX5/bf+lzZs3QhAEbN26KXCN9evXYcyYcQCAK664Ev/+938a/ZrvumsWfv/7P8Jms0V41yLHAIqI4pYiS5CO/Rj0NbnoIIvJieoZPHgoUlJc2LRpA4DaAGXcuAk4fPggTpwoBFAboIwdOyHo+X6/H3feeTcGDTod/frl4I9/nIbDhw+hqKgIBw/ux8aNX+O222ZiyJBh6NOnHx544BHY7fbA+StXvoJevfrg9tvvQo8ePTF8+EjMmfNX5OfvwIYN63HmmWPgdtfghx++U43vu++2w+fzweNxY+vWzYHxJSYmIiOjvXk3rJkYQBFR3JJLjgI+dwOvKpBLjzXwGlH4rv51DlyJ0c9k1HEl2nD1r3MiPt9qtWL06LNUAdSFF16MDh2ysGXLJuzduweFhcdx9tljG7xGt249An9OSkoGAPj9vkCBdv/+AwKvp6dnoFOnzoHtvXt34/TTh6iu16tXbyQnp2DPnp+QlpaGgQMHYdOmDfD5fPj222248sppkCQJO3Z8jy1bNsNms2PYsBER34NoYg0UEcUtueRw46+XHoWlfbcojYZau9ycDhjRN7NFF5GfffZYLFz4NI4dO4pjx45iyJDhGD58JLZu3YyiopMYOHAQ0tMbXkS3fkapjlKvBlGW1fWIFotVdVywJt+KIsNqrT3urLPG4YsvPsWIEblITExETs4ADBx4+s/jK8KZZ54dODbetYxRElGbJBc3EUAVH4nSSKitEEUBrkR9EBGOWC4mPHr02XjkkQfwxhuvYcCAgUhMTMTIkaOwbNkLOHLkMMaMGR/Rdfv2rc2Mfffddpx11hgAQEVFBY4cORQ4pmfP3ti+/RvVeT/9tAtVVVXo3r32gY8xY8Zh6dK/4dNPP8Hw4bkAgJEjR2HLlk04evQIbrjhlojGFwucwiOiuCU1FUCVHo3SSIhahuTkZAwZMgxvvbVaFaAcO3YU3323vcH6p6Z07twF55zzC8yf/wQ2bdqAvXt34+GH74fPdypbd9llv8fu3bvw9NOPY//+fdi2bQseemg2+vbth5EjRwEAevToiezsjnjnnbcwYsRIAMCIEbnYvn0biouLcOaZZwWuV11dHSiIj0cMoIgobskl6gDJ0qm/+vXyE9EcDlGLcPbZ4+D1ejFiRG0A1b59Jrp374HTTuuKrl0jn/KePXsOzjzzbDzwwL244YZr0aNHT/Trd+rf5KBBgzFv3gLk5+/ENdf8AffddzcGDRqCZ55ZrJqWO/vssfB6vYEAr3//gXA6nRg+PBeJiUmB41577WVcfPF5EY/XbIKiBGmwQs0mSTKKi6sMv67VKiItLQklJVUxSxG3BbzP0dHYfVZkCZXLrgWUU/vtoy6Bd+Mbpw6yJyLl6sXRGm6Lxc+zms/nRVHRMWRkdITN1rzpumBiOYXXlkR6nxv7+09PT4LFElpuiRkoIopLSnWpKngCAEt2X/VB3moo3proDYqI6GcMoIgoLsmVReodFjss7bvqj6sqjtKIiIhOYQBFRHFJqVAXj4rJ6RCsCRAcKerjtIEWEVEUMIAiorgkV6ozS0JKbUdiITm90eOIiKKBARQRxSWlUp+Bqv1/huY4ZqCIKPoYQBFRXNJloJJ/zkAltlPtV2rKozUkIqIABlBEFJf0GajazJPgdKmPYwBFRDHAAIqI4o6iKJAr1FNzQgMBlFxTFrVxERHVYQBFRPHHUwX4PapdpzJQqar9Sk1F1IZFRFSHARQRxR1dDygIEJLTAACibgqPGSgiir6YBlAbNmxAv379gv537rnnAgB27tyJqVOnYujQoZgwYQKWLVumuoYsy3j22WcxduxYDBkyBNdccw0OHDigOsaIaxBR9GgDKCGpHQSxdi0tIVGdgYLfC8XnjtbQiFqNm276C+bOndOsa/zudxdh2bIXjBlQBL77bjtuuukv+NWvxuO3v/01HnvsYZSXR+eXqpgGUMOGDcO6detU/y1fvhxWqxXXXXcdSkpKMG3aNHTv3h2rV6/GjBkzsGDBAqxevTpwjcWLF2PlypV45JFHsGrVKgiCgGuvvRZerxcADLkGEUWXtjWBUK91gbYGCmAhOVEk/vrXJ3HLLXfGehgRO3jwAG6//Sb06dMPS5aswIMPPoqdO3/A7Nl3ReX9rU0fYh673Y7MzMzAts/nw6OPPopf/vKXuOSSS/DCCy/Abrdjzpw5sFqt6NWrFw4cOIAlS5ZgypQp8Hq9WL58OfLy8jB+/HgAwPz58zF27FisXbsWF1xwAV5//fVmX4OIokubgVL1frImABY7IJ36BUepLgNcHaI1PGrFFFmG4qls1jVkqwg5gkVuhYRkCGL08houV2rTB8Wx999/F+3bZ+Lmm2+HIAjo2hW4/fa7ceONf8aRI4fRuXMXU98/pgGU1iuvvIJjx45h+fLlAIDNmzcjNzcXVuupYY4ePRovvPACioqKcOTIEVRVVWH06NGB110uFwYMGIBNmzbhggsuMOQaRBRd+mVc6mWgBAGCM0WVpVLczfuBRwQAvr0b4fnynzHLaApOFxLOngpbz1ERnb9w4dPYvHkjVqxYCQAoLy/HhRf+Ahdd9Fvk5d0LAFi/fh1mzboL7733MfLybkHHjp0wa9YcvP/+O1i+/O/405+m46WXlqKw8Dh69eqDW2+9E4MGDQYAVFZW4plnnsS6dZ/BarXhj3+cphvD999/i7//fTF+/HEnrFYrxowZjxtvvBUulwv33psHSfLj8cfnAwB++mkXpk37PaZPvwlXXnk1AGDNmjfwz3++hDVr3sOyZS/gxReXYN26zUG/3l/96tcYPXoMBEHQvVZRYf7fYdwEUB6PB88//zyuuuoqdOhQ+5tkQUEB+vZVr75e99rRo0dRUFAAAOjYsaPumGPHjhl2jUhZrcb/JmGxiKr/kzl4n6OjofusaBYItqS2V/17Eh3JkOoFUIK/2pR/b60FP89qsqz/gQsA7s9fBLw1UR7NKUpNOdyfvxhxAHX22eOwatWrKCo6iYyM9ti6dRMURcGWLacCkK+++hIjR+bC6XTqzj958gTeems17rvvYdhsNsyb9ygeeeQBvPbaGgiCgPvvvxvHjxfg8cfnIzExEYsWPYOCglM/J3fs+B4zZkzHRRf9FrfdNhMlJcWYP/8J3H77Tfj731/CmDHj8Mwz8+D3+2G1WrF580YIgoCtWzcFAqj169dhzJhxAIArrrgSv/3tlKBfqyAAPXr0hCTJUJRT+1955SVkZGSgd+++Qc+rz2IRmvV9I24CqH//+9/weDy48sorA/vcbjfsdrvquISEBAC1AVdNTe0HPdgxZWVlhl0jEqIoIC0tKeLzm+Jy6T/8ZDze5+jQ3udyTQCVmt0FifX+PbmTXaipl6RyiD60M/HfW2vBz3Mtt9uCkydF3Q9QAQKURs6LBgGR/1AfPnw4XC4Xtm7diF//+kJs2bIJ48efg08//S+Ki0+iQ4cOWL9+HaZN+zOsVrE2myvUvp8oCvD7/bjrrnvRt28/AMC0aX/CzJm3o6ysGFVVVdi48WssXPg3jBgxAgDw0EN/xeTJF0AUa6+xatUr6N27D2bOvCcwpocffhRTp16GzZs3YOzYcXjssYeRn/89hg4dji1bNmL8+HPw9ddfQVEkSJKErVu34Mknp8JqFeFyJcPlSm70a67/S8GCBU9j/fov8de/PgGHw97gObIsQBRFpKYmwuFwRHSvgTgKoN566y388pe/RFpaWmCfw+HQFXJ7PLW9YRITT33hXq9XdRM8Hk8gujbiGpGQZQXl5dURn98Qi0WEy+VEeXkNJCn8OXYKDe9zdAS7z4rfC6mqVHVctZAET0lVYNtvUf/brC4phlLvdVLj51nN6/VAlmVIkgJ/vVqlhHFXx8UUnj+C+qlaIs444yx8/fXXmDTpfGzatAG33HIHduz4ARs3bkDfvjkoLDyOM88cA79fhqIoUJTaeyDLtaFjly7dAu/vcCQCANxuL3bt2gUA6Nu3f+D11NQ0dOrUGbJce409e3YjN3e0avzdu/dCcnIKdu36EaNGnYmBAwfh66+/Rr9+A7F9+zYsXPgCvvzyC3z77beoqqqCzWbD4MHDmrwHglD7uZYkGT6fH088MRcffPAu7rjjLowde06j50uSAlmWUVZWjZoaSfWay+UMOVMbFwFUcXExtm3bhunTp6v2Z2dno7CwULWvbjsrKwt+vz+wr2vXrqpjcnJyDLtGpCL/R9A0SZJNvT7V4n2Ojvr3WS47qXtddqZDqf/3YE9Un19Tyb+nEPDzXEuSgueZbD1Hwdp9ZLOLyK1WMaL7bEQR+dlnj8XChU/j2LGjOHbsKIYMGY7hw0di69bNKCo6iYEDByE9PaPB87WzMUDtygB16gKtOhaLVXVckHIkKIocqEM+66xx+OKLTzFiRC4SExORkzMAAwee/vP4inDmmWerapYbUjekqqoq3HNPHr79dhseeOAR/OIXv2ry3DraADpccTEhvnXrVgiCgFGj1PO+ubm52LJlCyTpVIS4fv169OjRAxkZGcjJyUFycjI2bNgQeL28vBw7duzAyJEjDbsGEUWPdhFh2J0Q7OqMk5CgTusrHmafyBiCKEJ0umLynxFP4I0efTbKysrwxhuvYcCAgUhMTMTIkaOwbdsWfPXVOowZMz6i6/btW5tQ+O677YF9FRUVOHLkUGC7Z8/e2L79G9V5P/20C1VVVejevScAYMyYcfjxx5349NNPMHx4LgBg5MhR2Lp188/1T6GPz+fzIS/vVuTn/4CnnloYVvBkhLgIoPLz83HaaafppsymTJmCyspKzJo1C7t378aaNWuwYsWKQKbKbrdj6tSpmDdvHj755BPk5+fjtttuQ3Z2NiZNmmTYNYgoevRP4LXXHSMkqOudGEAR1UpOTsaQIcPw1lurVQHKsWNH8d132zF27ISIrtu5cxecc84vMH/+E9i0aQP27t2Nhx++Hz6fL3DMZZf9Hrt378LTTz+O/fv3Ydu2LXjoodno27cfRo6sTZD06NET2dkd8c47b2HEiNokxYgRudi+fRuKi4tw5plnBa5XXV2NoiJ9RrrOSy8tw7fffoO8vHvRrVt3FBWdDPxXf1xmiYspvJMnT6Jdu3a6/RkZGVi6dCnmzp2LyZMnIzMzEzNnzsTkyZMDx9x8883w+/2YPXs23G43cnNzsWzZskAa0ohrEFH06LqQJ+unGxhAETXs7LPHYcuWTRgxojaAat8+E92794CiKOjatVvE1509ew6ee24BHnjgXsiyjIsv/j+UlpYEXh80aDDmzVuAJUuexzXX/AGJiUkYO3YCrr/+JtW03Nlnj8Xrr78WCPD69x8Ip9OJQYOGIDHx1L/t1157udE2Bh999B8oioI5c2bpXnv22ecxfLi5s0iCUn9ykwwjSTKKi43/pm61ikhLS0JJSRVrGUzE+xwdwe5zzadL4d+1LnCMbcC5cIy5UnWeb/8WuD9aGNgWUjKRfMWT0Rl0C8TPs5rP50VR0TFkZHSEzWb8L8qR1kBReCK9z439/aenJ4VcRB4XU3hERHW0y7iIKcEyUKyBIqLYYgBFRHElkik8eKuhyPyNn4iihwEUEcUNRZGhaJ7CE0MJoADAa3zfNSKihjCAIqK4odSUA7JftS+kDBQ4jUdE0cUAiojihraFAUQLhET9ivGC1Q5YbOpzGUBR2PgMVVtk1LNzDKCIKG5om2gKSekQhODfpvStDJrXPZraDovFAkCAx+OO9VAoBrze2uXc6ndRj0Rc9IEiIgIApVLTRDNF30SzjpCQDKW69NS5zEBRiETRAqczCZWVpfD7fXA4EiGKFgjB1iGJgCwLDS4XQ8YJ9z4rigKv14PKyhI4nckQm9n5nQEUEcUN/RN46Q0eKySo18NjAEXhcLnSYbMloLKyFG63sZ8dURQh86lQ00V6n53OZLhcDX9vCRUDKCKKG3KFpgdUkGVcAjTr4yk+TsdQ6ARBQGJiMpzOJMiyDFmWmj4pBBaLgNTURJSVVTMLZaJI77PFYm125qkOAygyzfrvC/DRpkNon+rA7yf1RVpKQqyHRHFOqQojA6UJoOCtMWNI1MoJggCLxfJzXVTzWa0iHA4HamokdiM3UTzcZwZQZIpv95zEknd3AAAOHK9AYWkNHpiWC9GgGgNqncLJQAk2TQaKARQRRRGfwiNTfLz5sGr7UGElfjpUGpvBUIugeGt0zTCDNdGso81AMYAiomhiAEWGk2QZuw6X6vbvPFCiP5joZ9oCcqDxKTzYHOpt1kARURQxgCLDnSxzw+vTz0kfPsGnpKhh2kWEBaertmFmA5iBIqJYYgBFhjtZGjwTcKyIARQ1LJRFhFWv657CYwBFRNHDAIoMd6Is+A+yE6U1hrXQp9ZHm4FqrP4JAKArIucUHhFFDwMoMlxDGSi/pKDK7Q/6GpH2CbxwM1DaAnQiIjMxgCLDnWwgAwUAZZWeKI6EWhI5jGVcAE7hEVFsMYAiw51oIAMFAKVV3iiOhFoSXRF5Y0/gQd8HCpIfiuQzelhEREExgCLDlVc1nGViBoqCUSQ/lKpS1b5Gl3EBALtDt4vLuRBRtDCAIsNVVDecBSirZAaK9GqfwFM/YBDuFB4ALudCRFHDAIoM5fFJ8DayLlEZp/AoCLlCXf8EmxNCQlLjJ1nsgKD+FsZeUEQULQygyFAV1Y0HSKWcwqMgtAFUU9knoHYRWOgKyTmFR0TRwQCKDNXY9F0or1PbpA2gmmphEDhOu5wLM1BEFCUMoMhQlTWNB0hVbgZQpBdJBgoABHuialthLygiihIGUGSopqbwqtlIk4LQB1AhZqA4hUdEMcIAigxVqZmis4iCapsBFAWj70IeWgYKmik8FpETUbQwgCJDVWim8DqkqTMENR4/ZK6HR/UosgS5sli1L/QpPO1yLgygiCg6GECRobQ1UFlpmhoV1AZRRHX8FUWAom59IYQaQNkSVNuKn095ElF0MIAiQ2mDo/bt9N2iOY1H9flLT6h3WO0QEpJDO9mq+Xz5GEARUXQwgCJDVWsCqLTkBNZBUaP8ZeoASkxpX9vjKQS6DBSLyIkoShhAkaFqNMGR02GFM8Gq2sdWBlSfv6xQtR1yATkAcAqPiGIkLgKot956C+effz5OP/10XHDBBfjggw8Cr+3cuRNTp07F0KFDMWHCBCxbtkx1rizLePbZZzF27FgMGTIE11xzDQ4cOKA6xohrUGi0GajEBCuSHOoAihkoqi9YBipUglUdQHEKj4iiJeYB1L///W/ce++9uOyyy/Duu+/i/PPPx+23345t27ahpKQE06ZNQ/fu3bF69WrMmDEDCxYswOrVqwPnL168GCtXrsQjjzyCVatWQRAEXHvttfB6a/sRGXENCp22BsqZYEWiw6bapw2yqG3zaQKoULuQA/pO5MxAEVG0WJs+xDyKomDBggW46qqrcNVVVwEAbrzxRmzduhUbN27Exo0bYbfbMWfOHFitVvTq1QsHDhzAkiVLMGXKFHi9Xixfvhx5eXkYP348AGD+/PkYO3Ys1q5diwsuuACvv/56s69BoQuWgUp0cAqPGtacDJR2Cg+sgSKiKIlpBmrv3r04cuQILrroItX+ZcuWYfr06di8eTNyc3NhtZ76ATx69Gjs27cPRUVFyM/PR1VVFUaPHh143eVyYcCAAdi0aRMAGHINCo1fkuH1qR9Hdyboa6BqPFI0h0VxTFFk+Ms0XcjDyUBZtUXkzEARUXTENAO1f/9+AEB1dTX+9Kc/YceOHejSpQuuv/56TJw4EQUFBejbt6/qnA4dOgAAjh49ioKCAgBAx44ddcccO3YMAAy5RqSsVuPjU4tFVP0/ntR49VNzKUl2JGoCKK9fMuXeGCme73OrUl0MyOrPjS2tA8QQPx+KQ9NI0++J+89WLPDzHD2819ERD/c5pgFUZWUlAOCuu+7CTTfdhDvvvBMffvghbrjhBrz44otwu92w2+2qcxISan/j9Hg8qKmp7Toc7JiysjIAMOQakRBFAWlpSRGf3xSXy9n0QVHmDpJY6pTtQjuXpk4F5t4bI8XjfW5Nasr3qbYFmwPpnTqF3MbA426Hynrbit/TYj5bscDPc/TwXkdHLO9zTAMom622uPhPf/oTJk+eDADo378/duzYgRdffBEOh0NXyO3x1KboExMT4XDU/mD2er2BP9cd43TW3lQjrhEJWVZQXm78yvAWiwiXy4ny8hpIktz0CVFUUFiu2raIAqor3YCsHmdZhRslJVXRHFrY4vk+tya+o4dU22JKJkpLQ/93I9VolgWS/Cg+WQbBEtNvbXGHn+fo4b2ODrPus8vlDDmrFdPvMtnZ2QCgm2Lr3bs3Pv30U3Tu3BmFheoeMXXbWVlZ8Pv9gX1du3ZVHZOTkxN4j+ZeI1J+v3n/eCRJNvX6kajQLCTsTLBCkhTYbRbV/mqPP+7G3pB4vM+tib/0uGpbcGWGdb9l0a7b53fXQEhgFioYfp6jh/c6OmJ5n2M6STtgwAAkJSVh+/btqv27du1C165dkZubiy1btkCSTs0NrV+/Hj169EBGRgZycnKQnJyMDRs2BF4vLy/Hjh07MHLkSAAw5BoUGm1/J2dCbeDksKsDKLeXReRUSyrTBFApmWGdL1j1ARQLyYkoGmIaQDkcDvz5z3/Gc889h3fffRcHDx7E3/72N3z55ZeYNm0apkyZgsrKSsyaNQu7d+/GmjVrsGLFCkyfPh1Abd3S1KlTMW/ePHzyySfIz8/HbbfdhuzsbEyaNAkADLkGhcbj0wRQ9toEpy6A4lN49DO5XJ0dFl0dwruAto0BAMXPVgZEZL6YFwrccMMNcDqdmD9/Po4fP45evXph4cKFOOOMMwAAS5cuxdy5czF58mRkZmZi5syZgXopALj55pvh9/sxe/ZsuN1u5ObmYtmyZYGi8IyMjGZfg0Lj0WSW6gInh139MdMGWtR2yeWaHlBhBlCCaAVEq/pJPmagiCgKYh5AAcC0adMwbdq0oK8NHjwYq1atavBci8WCvLw85OXlNXiMEdegprl96gAqoaEMFKfwCIDiqYLiUT9MEHYGCqjNQtVr4MopPCKKBjaqIMNop+YSGshAMYAiQD99B0GEkBJ6E83AaZrlXMApPCKKAgZQZBiPJgPlsAUvIvf5ZUgyn05p67QBlJCcUTslFyZ9N3KuYUlE5mMARYbRZpZOZaAsTR5LbU9z658CuB4eEcUAAygyjC4D1cAUHsAn8QhQtE/ghdnCoI4uA+VnDRQRmY8BFBlG+xReQgNTeADgDrJuHrUtuik8gzJQLCInomhgAEWG0QZFdVN4oijAbhM1xzID1dbpe0BFmIHSFpFzCo+IooABFBmmoSJy4FQ2qqFjqW1RJB+UqhLVvkhroDiFR0SxwACKDNNQETmgD6C8Pj6F15YpFScBqBcCNq6InAEUEZmPARQZRhtA1a990i4ozAxU26arf3KmQLA7I7qWvo0Bp/CIyHwMoMgw+qVcTj19l6CpgfIygGrT5NIC1bboyor8YtoFhSVf5NciIgoRAygyhKIouqxS/Wk7u5UZKDpFLjum2rakdYz4WvoaKDbSJCLzMYAiQ/glBZKsrmmpP4WXoGll4PWzBqot02agLO2yI7+YJgPFInIiigYGUGSIYBml+kGT3ar+qGmn+6htkcs0U3jtmpOB0kzh+TmFR0TmYwBFhgjWGDOhkTYGXj8DqLZK8dZAqS5V7bM0I4DS1UAxA0VEUcAAigwRLKOkqoHSPYXHKby2Spt9giBCTI2whQH0GSjWQBFRNDCAIkO4NVN4dpsIURQC2/o+UMxAtVVyqbqA3NquAwSLLfIL6jJQDKCIyHwMoMgQuhYGmoBJu5QLn8Jru7QZKFt6M6bvEOQpPIkBFBGZjwEUGaKxLuQAO5HTKdon8GwZnZt3Qasme+X3QlGU4McSERmEARQZQpuBSrBZVdvsRE51tD2g7OmdmnU9bQYKAJtpEpHpGECRIbQ1UA5741N4rIFqmxRFhlx6XLXPltG8AEpXAwWwDoqITMcAigyhy0A1MYXHDFTbpFSVAJoapeZO4en6QIHNNInIfAygyBDajJI2YNJO4bEGqm2SS46od9gcsCSnNe+ilmAZKE7hEZG5GECRITx+fRuD+hK0nciZgWqT5GJ1AGVJ7wxBEBo4OkSiBRDUny9moIjIbAygyBDajJJ28WC7bi08BlBtkVSiDaC6NPuagiCwFxQRRR0DKDKEdgpPn4HST+HJfNS8zdFO4RkRQAHsRk5E0ccAigzh9aszULoaKE0GCgB8ftZBtSWKIuun8DKMCaB0GSg20yQikzGAIkPoMlDWxmugANZBtTVKxUldYMMMFBG1VNamDyFqmjYDpX3qTrsNsBdUvFIUGb7vP4Zvz9eAAth6jYJt0CQIov7vMBxS8WHVtpCQDMHpatY1A7TNNBlAEZHJGECRIfQ1UI33gQIAD1sZxCXPun/At/PTU9sn9kIq3APHxOshiJEnrbX1T6IRT+D9TJ+B4lN4RGQuTuGRIfRP4ak/WqIowGphN/J459u7SRU81fHv3QTfd/9p1rVlTQZKTDOo/gkALNr18NgHiojMxQCKDKFtSxBsyi6By7nENUVR4N36doOve7a8BbmqJOLryycPqLZFg+qfAP16eKyBIiKzMYAiQzRVRA4EW1CYU3jxRDr2I+TiQw0f4PfC9/3aiK6teGsgl6nXwLO07xbRtYLS9YHiFB4RmSvmAdSRI0fQr18/3X9vvPEGAGDnzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DggPo3XSOuQY3TBkPBM1DaXlDMQMUT/75Nqm0xNRvWvmNV+7w7P4Xic4d9ban4EIB6fb8E0eAMFJ/CI6LoinkA9eOPPyIhIQFffPEF1q1bF/jvoosuQklJCaZNm4bu3btj9erVmDFjBhYsWIDVq1cHzl+8eDFWrlyJRx55BKtWrYIgCLj22mvh9dZ+AzXiGtQ0/RRekAwUl3OJW4qiwL9/m2qftc9ZSBh6PoB6hd7eavh+Wh/29XXTd2mdgy4CHDH2gSKiKIt5ALVr1y706NEDHTp0QGZmZuA/h8OB119/HXa7HXPmzEGvXr0wZcoUXH311ViyZAkAwOv1Yvny5ZgxYwbGjx+PnJwczJ8/H8ePH8fatbVTDUZcgxqnKIquiFzbeRwAbJqgio0044dcegxKVbFqn7X7CIjtOsLabahqv393+AGUdHK/als0cvoOzEARUfTFPID68ccf0bt376Cvbd68Gbm5ubBaT3VbGD16NPbt24eioiLk5+ejqqoKo0ePDrzucrkwYMAAbNq0ybBrUOOCBULBM1Da9fAYQMULqWCXaltISoOY1gkAYOs3TnesXH4irOtrM1CG1j8BXAuPiKIu5n2gdu3ahczMTPz+97/H/v370a1bN9xwww0YO3YsCgoK0LdvX9XxHTp0AAAcPXoUBQUFAICOHTvqjjl27BgAGHKNSFmDFFI3l+XnVgAWS8xj34Aar1+3L9Fh03392rooSZZNuUdGiMf7bCbP8Z9U29aO/WD7+e/L0mMI3AlJUDxVgdelvRtgH/mbkK6t+L2QS46q9tmzesBqFQ27z367Q71D8sbtZysW2trnOZZ4r6MjHu5zTAMor9eL/fv3w+l0YubMmUhMTMTbb7+Na6+9Fi+++CLcbjfsdvVvlgkJtY8rezwe1NTUAEDQY8rKygDAkGtEQhQFpKUlRXx+U1wup2nXDpc/SCKzQ2YKkpzq3jzJiep7LFotpt4jI8TTfTZTxYk9qm1Xr9ORWu/vRhp4Niq2fnRqe896tPvF5SE1wnQfPoRSpX62UUBG7xyI9lP3trn3udyVjJp621ZIcf/ZioW28nmOB7zX0RHL+xzTAMput2PTpk2wWq2BAGbQoEHYs2cPli1bBofDoSvk9nhqH09OTEyEw1H7W6fX6w38ue4Yp7P2phpxjUjIsoLy8uqIz2+IxSLC5XKivLwGkhQfU2Aniqp0+6qr3PC6NdMoinq85RUelJToz40H8XifzaJ4a+AvKVDt86Z0Uf/ddBsF1AugfEVHcHJ3PqztuzZ5ffeu71TbYnpnlFXJQFWVYffZo/mo+dw1cfvZioW29HmONd7r6DDrPrtczpCzWjGfwktMTNTt69u3L9atW4fs7GwUFhaqXqvbzsrKgt/vD+zr2rWr6picnBwAMOQakfKbWOMjSbKp1w9HjVs9hWcRBUDRf/02zYfS4/XHzdfQkHi6z2bxFx5U7xAsUFwdVV+30r4nhKR0VaG5Z9fXQLumWxH4jqmnBy1ZvXX3tLn3WRbU2U7F5231f2+RaAuf53jBex0dsbzPMZ2kzc/Px7Bhw7B582bV/u+//x69e/dGbm4utmzZAkk69bj7+vXr0aNHD2RkZCAnJwfJycnYsGFD4PXy8nLs2LEDI0eOBABDrkGN0z6BZ2ug9sTGIvK4JBdpWgy066h7qk0QRFh7jVLt8+3dBEVR0BhFUSAd1wZQfZox2uC4Fh4RRVtMA6i+ffuiT58+ePDBB7F582bs2bMHjz76KL755htcd911mDJlCiorKzFr1izs3r0ba9aswYoVKzB9+nQAtVOAU6dOxbx58/DJJ58gPz8ft912G7KzszFp0iQAMOQa1DhPCMu41O5nG4N4JBdp1qjLOC3ocbae6gBKKT+uC760lIoTUGrKVfss2cYHUPo+UFwLj4jMFdMpPFEU8fzzz2PevHm49dZbUV5ejgEDBuDFF19Ev379AABLly7F3LlzMXnyZGRmZmLmzJmYPHly4Bo333wz/H4/Zs+eDbfbjdzcXCxbtixQU5WRkdHsa1DjQlnGBdBnptiJPD7IZeqnTcX0zkGPEzN7QEjJhFJxqoWBf89GWNp3b/Da0tF81bbgdEFIyYx8sA1gHygiiraY10Clp6fjr3/9a4OvDx48GKtWrWrwdYvFgry8POTl5Zl6DWqYrolmQxkozRQeM1DxQbtGnZiaHfQ4QRBg6zUK3m/eC+zz7d0I+6hLGnwaz3/kB9W2pWO/kJ7cC1uQtfAURTHnvYiIEAeNNKnl02WggjTRBIJkoBhAxZzic0OpLlXtayiAAgCrdhqv4iTkE3uDX1uRIR3Zodpn6TwwsoE2QbcsjKIAsr4/GRGRURhAUbNpAyFtpunUfm0NFKfwYk2bfQIA0dWhwePFjK4QNAGWb8/G4NcuOgTFXaHaZ+1iTgAFa4J+H6fxiMhEDKCo2fQZqOABlHYtPGagYk8bQAnJGY0u8isIAmw9c1X7/Hs3QlH0f5f+g9vV57o6QDSh/gkABItNt491UERkJgZQ1GyeEKfwdDVQPgZQsSaXqRtoiqlZTZ5j7XWGalupKoF0fI/uOP9e9VqS1tNOj2CEIQoW9LGVARGZiAEUNZu2GDzUKTwvp/BiLtQC8vos6V0CCw3X8e9er75u6THIxYdU+6w91JkrQ1lsANQF44qfrQyIyDwMoKjZ9E/hhVZEzqfwYq9+SwIAEF1NZ6AAwNpTnYXy7fpStdiwb/fXqtcFZyos2epFvY0kCMLPQVQ9EqfwiMg8DKCo2UJvpMlO5PFGrixSbQsp7UM6z9ZvDCDU+/bh98C781MAgCL74cv/THW8tcdICKK5327YC4qIookBFDWbtoi84aVc9BmoppYCIfMosgSlqkS1T0xOD+lcMTkD1h7qpY6829+H4qmCL/8LXWsEW864Zo01JLpeUJzCIyLzxLyRJrV82im8BjNQQQIrn19u8Hgyl1JdCmienhOSM0I+3z74PPj31mth4KlC9b/nQq48qTrOkt0XlvbdmjPU0Fg1CwpzCo+ITBRSALVo0aKI3+Cmm26K+FxqGbTF4AkhLiZcey4DqFhRKovVOyxWCI6UkM+3dOgJa4+R8O87tRi4XHpUd5x95GTdPjMIFjtU+UxO4RGRiUwNoARBYADVBoScgQpSXM5C8tjR1T8lZ4S99EnC6MvhP7ID8FYHfd3aYySsnfpHPMaw6DJQnMIjIvOEPIX3+uuvY/DgwSFf+JtvvsEVV1wR0aCoZQl1KZdgU3hsZRA7siYDJSaFVv+kOielPZznXoeaj54FJPXSKWJaZzjGTWvWGMMhWLQ1UMxAEZF5QioiHz58OJKSksK6cEpKCoYNGxbRoKhl8YTYB8pqEaHNb7CZZuwoVfoMVCSspw1G4m9mwdJ5QG0rgYQk2Aaci8SLZ0NICO/7RrPwKTwiiqKQMlAjRoyAxRJenUqvXr3w6quvRjQoallCXcpFEATYrKKqfQFbGcSOtgZKjDCAAgBLZg8kXjCzuUNqFt1yLgygiMhEIWWgXnzxRfz617/GlVdeibfffhseD5dIoFO0AVRDjTSBYK0MOIUXK/oaqPCn8OKKto0Ba6CIyEQhBVBffPEF7rnnHlRVVWHmzJkYM2YMHnroIezcudPs8VELoFvKpZGn6thMM35oezVFUgMVT9hIk4iiKaQAKi0tDX/84x+xZs0avPPOO7jkkkvw8ccf4//+7/8wefJkvPrqq6ioqDB7rBSHZEXRBUHBisXraDNQ2if4KDoUWYJSo/43KyS2i81gjKLLQDGAIiLzhN2JvE+fPpg5cyY+/fRTvPDCC+jZsyeeeOIJjB07Fnl5edi0aVPTF6FWI1gbgkYzUJzCiwuKuwJQd02C4HTFZjAG0dZAcTFhIjJTxJ3IRVHEuHHjMG7cOFRVVeG///0vnnvuObz77ruc2mtDtPVPQFMZKE7hxQOluky9QxDCaqIZl3RLuTADRUTmafZSLt9//z3eeecdrF27FseOHcMZZ5zR9EnUagSbggsvA8UAKha0AZTgcJm+2K/pNH2g2EiTiMwUUQB16NAhvPPOO3jnnXewf/9+ZGVlYfLkyZgyZQq6dOli9BgpjgVrhNnQYsIAYNM8ocdGmrGh1GgCqMTUGI3EOIKVbQyIKHpCDqBKSkrw/vvv45133sH27dthtVoxceJE3HvvvRgzZkzYS0BQ66DNQFlEAVZLwwGUtskmG2nGhqzNQLWCAIqNNIkomkIKoK677jqsW7cOfr8fffr0wd13343f/OY3SEtLM3t8FOc8ITbRDLyufQqPU3gxoctAOVt+AKVrpMmn8IjIRCEFUJs3b8aUKVMwZcqUsNbDo9ZPOwXX0Dp4dXRtDDiFFxPaGiixVWSgElSbfAqPiMwUUgC1bt06OBwOs8dCLZB2Ci+hgXXw6uim8JiBiolWmYHS1kAxA0VEJgopgNIGTx9++CG2bt2K8vJy3bGCIOCvf/2rMaOjuBd2BkpbRM4aqJholTVQ2qfwWANFRCYK+ym8efPmYenSpUhOTobLpW+8x2LytkUbAIVbA8VGmrGha2PQKjJQ2j5QnMIjIvOEHUD961//wqWXXoqHHnrIjPFQC6NtpNlYE00gWA0UM1DRpvg9gK9Gta911EDpp/AUReEvdURkirA753k8Hpx33nlmjIVaIN06eE1moFgDFWtKdZCp91YQQAmaKTwAAJtpEpFJwg6gfvnLX+K///2vGWOhFijsDBQbacactoAcFhtgc8ZmMEbSTuEBbKZJRKYJewrv3nvvxSWXXIIrr7wSQ4YM0RWYC4KAG2+80bABUnxrdg0Ui8ijLlgBeWuY5tL1gULtci4t/ysjongUdgD18ssvY9++fdi3bx82bdqke50BVNvi0T2FF94UHmugok+pUU/hCU79wyAtEjNQRBRFYQdQ//znP3HBBRfgnnvuQfv27c0YE7UgzS0i51N40ae4K1TbgiMlRiMxmMUGQACgBHYp7AVFRCYJuwaquroal156qSnB0759+zBs2DCsWbMmsG/nzp2YOnUqhg4digkTJmDZsmWqc2RZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg4Jr7hQeM1DRp7grVdutJYASBOHnIKoetjIgIpOEHUCdddZZ2LBhg+ED8fl8uPPOO1FdXR3YV1JSgmnTpqF79+5YvXo1ZsyYgQULFmD16tWBYxYvXoyVK1fikUcewapVqyAIAq699lp4vV7DrkEN02agEppspMkpvFjTZ6CSYzQSE2haGbCZJhGZJewpvIsvvhizZ8/GgQMHMGzYMCQn67/5/va3vw17IAsXLkRSUpJq3+uvvw673Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFhlyDGqYNgGxNLuXCIvJYUzzaDFTrCaAEqx2Kp+rUDk7hEZFJwg6gbr75ZgDAe++9h/fee0/3uiAIYQdQmzZtwqpVq/DWW29hwoQJgf2bN29Gbm4urNZTwxw9ejReeOEFFBUV4ciRI6iqqsLo0aMDr7tcLgwYMACbNm3CBRdcYMg1ImVtoh4oEhaLqPp/rPkkdQDkTLA0+nU7HeqPnKwogABY4+TrqRNv99lQmik8a6LLlM9qKIy+z4LVXq8CChAVf8y+tnjSqj/PcYb3Ojri4T6HHUB98sknhg6gvLwcM2fOxOzZs9GxY0fVawUFBejbt69qX4cOHQAAR48eRUFBAQDozuvQoQOOHTtm2DUiIYoC0tKSmj4wQi5XfPTtkWRFtZ3WLrHRrzvYQ+VJyQ4kOvSPoMeDeLnPRqrwVqm2U9q3R5KJn9VQGHWfqxISUD/nlJggICXGX1s8aY2f53jFex0dsbzPIQVQCxYswOWXX46srCx07tw5pAsfP34cK1euxC233NLocXPmzMHQoUNx0UUX6V5zu92w29WPJickJACo7YheU1O7HEWwY8rKygy7RiRkWUF5eXXTB4bJYhHhcjlRXl4DSYr99Fe126/a9nn9KCmpauBooKZKP6VSeKICqckJho+tOeLtPhvJr+lEXi3Z4G3k78xMRt9nSfMtraqsAv4YfW3xpDV/nuMN73V0mHWfXS5nyFmtkAKo559/Hueccw6ysrJCHkRBQQGef/75RgOot956C5s3b8Y777wT9HWHw6Er5PZ4PACAxMTEQBNPr9eraujp8XjgdDoNu0ak/CYWSEuSbOr1Q6UtIrcIQqPjEoN0Naxx+5EUpxmoeLnPRlEkH+Bzq/ZJtiQgxl+jYfdZ8xSe5PW0qr+/5mptn+d4xnsdHbG8zyEFUIqiYM6cOUELxhtSWVnZ5DGrV69GUVGRqu4JAB544AEsW7YMnTp1QmFhoeq1uu2srCz4/f7Avq5du6qOycnJAQBkZ2c3+xrUsHCfwtM20gT4JF40aVsYAK2njQEAwKrOZCpsY0BEJgkpgMrNzQVQG0iFKikpCSNHjmz0mHnz5sHtVv82/Mtf/hI333wzzj//fLz33ntYuXIlJEmCxVL7g3f9+vXo0aMHMjIykJKSguTkZGzYsCEQ/JSXl2PHjh2YOnVqYOzNvQY1LNzFhEVRgEUUVLVTXFA4evQBlADB3npqhHTLufApPCIySUgB1Msvv2zKmzc0JZiRkYHOnTtjypQpWLp0KWbNmoU///nP+Pbbb7FixQo8+OCDAGrrlqZOnYp58+YhPT0dnTt3xpNPPons7GxMmjQJAAy5BgUnK4ou+NF2Gg/GbhNR4zmVueKCwtGj6wGVkARBbEVPC2mXc2EfKCIySdhP4UVTRkYGli5dirlz52Ly5MnIzMzEzJkzMXny5MAxN998M/x+P2bPng23243c3FwsW7YsUBRuxDUouGCZo6YyUEBtryh1AMUMVLTou5C3nh5QACBoG2lKnMIjInPEXQD1448/qrYHDx6MVatWNXi8xWJBXl4e8vLyGjzGiGuQnrb+CQASQslAaZdzCXIdMkerXQevjoUZKCKKjlaUu6doizQDpT2GNVDR0/ozUOoAiku5EJFZGEBRxDxBMkeh1EBpj9EuSEzmaf0ZKO1iwgygiMgcDKAoYtrAxyIKIS3JolsPj0XkUdPaM1DaInLWQBGRWUKqgXrrrbfCumgkiwlTy6OderM30QMqcJw2A8UpvKhp7Rko7RQeM1BEZJaQAqi777475AtGspgwtUweTebIFqRJZjDaGigWkUdP28tAMYAiInOEFEAZvYAwtQ7awEebWWqIrgaKGaio0WegWlcApWukyU7kRGSSkAKoUBcQBsLrVk4tm7YGKiGEJ/AA/XIufAovehSvZoHrhNYVQDEDRUTRElEfqPfeew8bN26Ez+cLBEyKoqC6uhrffPMNPv/8c0MHSfFJ20E8lCfwAMBmYwYqFhTZr1tIWEhIjNFozCHo+kAxA0VE5gg7gFq0aBEWLVqElJQU+P1+2Gw2WK1WFBcXQxRFXHLJJWaMk+KQNgMVSg8oAEiwsgYqFhRPtW6fkNB61sEDAGg7kfs9MRoIEbV2Ybcx+Ne//oXf/OY32LhxI66++mqcc845+Oqrr/Dmm2+iXbt26NOnjxnjpDikzUCF+hQea6BiJFgAZW9lGSjdU3jMQBGROcIOoI4fP46LL74YgiBg4MCB2LZtGwBg0KBBuO666/DGG28YPkiKTz5tBirkp/A0faCYgYoKxVul3mGx6QOOlk47hSd5WZdJRKYIO4BKTEyEIAgAgO7du+Pw4cNwu2vrKvr374/Dhw8bO0KKW9o2BqFnoDRTeMxARYXiVgdQrW76DkEyUADAZppEZIKwA6jTTz8d//rXvwAAXbt2hcViwVdffQUA2LNnD+z2VvYbLTVIVwMVYQZKOxVI5tBmoFpjAKV9Cg8AAygiMkXYReTXXXcdpk2bhoqKCjz//PP4zW9+g7vvvhtnnHEG1q1bh1/84hdmjJPikHYJlkg7kWunAskciqf1B1C6PlCoXVC4NX6tRBRbYQdQubm5ePPNN/Hjjz8CAO6//36IooitW7fivPPOC6trObVsEWegOIUXE7qn8FpZATkAZqCIKGoi6gOVk5ODnJwcAEBCQgIefvhhQwdFLYNH24k8wqfwuJhwdLSFDBQayEARERktogCqoqICX3/9Naqrq4M+4cK18NoGbeYo9Boo9XEeTuFFhTYD1dqaaAK1a3HCYlNnnRhAEZEJwg6gPvvsM9x6662oqakJ+joXE247tO0HIq6B4hRedLSFInKgdhqvXgDFDBQRmSHsAOrpp59Gz549cc899yArKwuiGPaDfNRKeCLMQOkbaUpQFCXQHoPM0Sam8FBbSK7Ki3M9PCIyQdgB1N69e7F48WKMHDnSjPFQC6JdgiXUDJR20WFFASRZgdXCAMpMbSWAgjVBtamwGzkRmSDs9FGnTp1QWVlpxliohdFOvUWagQK4Hl40tIUaKAAQNOvhMQNFRGYIO4CaPn06nnvuOXYcp4gzUMEWHWYrA/PpMlD2VpqB0iznwhooIjJD2FN477zzDo4fP45JkyYhPT0dDodD9bogCPj4448NGyDFL10NVJDAKJigGSgGUKZSZD/g96h3ttIpPF0GilN4RGSCsAOo7OxsZGdnmzEWakEURQmymHBkfaAALihsNl0TTbTeKTxdM01O4RGRCcIOoB599FEzxkEtjCQrkDU9wELNQImCAJtVVNVQMQNlMs30HdB6i8gF3RQeM1BEZLywA6ijR482+JooikhMTITL5WrWoCj+BSv6DjUDVXesKoBiBspU2vonWO1B141rFXRTeJ7gxxERNUPYAdTEiROb7NeTmpqKP/7xj7jhhhsiHhjFt2AZo1AzUECw5VyYgTJTm2lhgCAZKK6FR0QmCDuAeuyxx3D//fdj1KhRuPDCC9G+fXsUFRXhww8/xKeffoobbrgBVVVV+Nvf/oZ27drh97//vRnjphhrdgbKxgWFo6nNPIEHBMlAsQaKiIwXdgD13nvv4YILLtDVQl188cV44IEH8P333+P555+Hy+XCa6+9xgCqlfIGWb8uWHF4Q7TBlpcLCpuqrfSAAgBB10iTARQRGS/sPlAbN27EhRdeGPS1X/7yl/j6668BACNGjMChQ4eaNzqKWx6/vgdUOEux2DRNN4MFZGQcpa2sgwfULiZcH6fwiMgEYQdQ7dq1Q35+ftDX8vPzkZycDACorq6G0+ls3ugobulbGIRe/1R7PGugoknXxqAVZ6C0bQyYgSIiM4Q9hXfRRRfh2WefhdVqxXnnnYf09HQUFxfjo48+wqJFi3D55ZejrKwMK1aswJAhQ8wYM8UB7ZRbqF3ITx2vrYHiFJ6Z9EXkyTEaifkEXR8oZqCIyHhhZ6BuvfVWnH/++XjssccwYcIEDB48GBMmTMBjjz2Giy66CLfddhs+//xz7NixA7feemuT1ysqKkJeXh5Gjx6NYcOG4S9/+Qt2794deH3nzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg9S0U27NzkBxCs9cugCqFWegNFN4zEARkRnCDqCsViseffRRfPjhh3jooYdw22234bHHHsN//vMfPPTQQ7Db7Rg3bhy++OIL5OTkNHm966+/HocOHcKSJUvw5ptvwuFw4Oqrr0ZNTQ1KSkowbdo0dO/eHatXr8aMGTOwYMECrF69OnD+4sWLsXLlSjzyyCNYtWoVBEHAtddeC6+39pumEdcgPV0GKowCcgCwaTJW2poqMlZbegpPl4FiAEVEJgh7Cq9O165d0bVr16CvpaamhnSNkpISdOnSBddffz369OkDALjhhhtw8cUX46effsL69etht9sxZ84cWK1W9OrVCwcOHMCSJUswZcoUeL1eLF++HHl5eRg/fjwAYP78+Rg7dizWrl2LCy64AK+//nqzr0F6ugxUGD2gAGagoq0tPYWny0BxKRciMkFIAdS5556L5557Djk5OU020gxnMeG0tDQ8/fTTge2TJ09i2bJlyM7ORu/evbFw4ULk5ubCaj01zNGjR+OFF15AUVERjhw5gqqqKowePTrwusvlwoABA7Bp0yZccMEF2Lx5c7OvESlrmFmZUFgsour/seKX1QFPgt0S1tfrsKs/en5ZMeV+RSpe7rNRtE/hWRNT4uJ+m3GflQT1Aufw++Lia42l1vZ5jme819ERD/c5pABq1KhRSEpKCvw5nMfVQ3XfffcFskV/+9vfkJiYiIKCAvTt21d1XIcOHQDULilTUFAAAOjYsaPumGPHjgGAIdeIhCgKSEszb5rE5YrtE44Wq/qjk+S0h/X1piSre/XA5PsVqVjfZ6OUetUZKFf7DDji6H4beZ9ryl2orLctyL64/GzFQmv5PLcEvNfREcv7HFIAVb9p5mOPPWbKQK666ipcdtlleO2113DjjTfi1Vdfhdvtht2urmdISKj9wevxeFBTUwMAQY8pKysDAEOuEQlZVlBeXt30gWGyWES4XE6Ul9dAkmI37VVWXqPaFqCgpES/YG1DZM3YK6s8YZ1vtni5z0ZQJD8Un3o9uEqviJo4uN9m3Gd/jfo6si++Plux0Jo+z/GO9zo6zLrPLpcz5KxWRDVQlZWVqKqqQlZWFrxeL/7xj3+goKAAv/rVr5CbmxvJJdG7d28AwMMPP4xvvvkG//znP+FwOHSF3B5P7Q+CxMREOBy1qXqv1xv4c90xdT2ojLhGpPwm9jaSJNnU6zfF7VUXfdssYljjsYrqLKbHG9uvpyGxvs9GkKsrdPskayKUOPq6jLzPkvbbmt8Hn08yJXPe0rSGz3NLwXsdHbG8z2FPHn777beYOHEiXn75ZQDAI488gnnz5uHtt9/GVVddhU8++STkaxUVFeHdd9+FJJ36YSyKInr16oXCwkJkZ2ejsLBQdU7ddlZWVmDaLdgx2dnZAGDINUhPu3Zdc/tA+fgUnmm0T+ABrbuIXNCuhQcFkP0xGQsRtV5hB1Dz589Hz549cdlll8HtduOdd97B73//e2zcuBG/+93v8Pzzz4d8rcLCQtxxxx3YuHFjYJ/P58OOHTvQq1cv5ObmYsuWLaoAa/369ejRowcyMjKQk5OD5ORkbNiwIfB6eXk5duzYgZEjRwKAIdcgPe1iwuH2gdKum8fFhE2kDaCsCRDEiB/AjX8Wu34fWxkQkcHCDqC2b9+O66+/HqeddhrWr18Pt9uNiy++GABw/vnn46effgr5Wjk5ORgzZgwefPBBbN68Gbt27cJdd92F8vJyXH311ZgyZQoqKysxa9Ys7N69G2vWrMGKFSswffp0ALV1S1OnTsW8efPwySefID8/H7fddhuys7MxadIkADDkGqSnC6DCzUBpAygfM1BmaVPr4CFIHyiwmSYRGS/sX0NFUQwUXH/22WdwuVwYPHgwgNraqPp1RE0RBAHPPPMMnnrqKdx6662oqKjAyJEj8corr6BTp04AgKVLl2Lu3LmYPHkyMjMzMXPmTEyePDlwjZtvvhl+vx+zZ8+G2+1Gbm4uli1bFhhjRkZGs69BevopvHAzUNqlXJiBMkub6gEFALopPHA5FyIyXNgB1KBBgwIdwz/44ANMmDABgiCgqKgIS5YswaBBg8K6XkpKCubMmYM5c+YEfX3w4MFYtWpVg+dbLBbk5eUhLy+vwWOMuAapaTNG2im5piRoMlZcTNg8+nXwWncGSttIE2AGioiMF/YU3syZM7F+/XpcccUVsFgsuP766wEAF154Ifbv3x/S+nfU8mkzRglhZ6A4hRctugyUvXVnoARB1AdRDKCIyGBhZ6AGDBiAjz76CHv27EGfPn2QmFj7zXjOnDkYPnw4MjMzDR8kxR99EXnznsLjFJ55dE/hJSTHZiDRZLWrpu0UTuERkcEiehQnOTkZQ4YMUe371a9+ZciAqGXQBjzamqamaDNQPr8MRVHYq8cE+iLy1p2BAgDBYoNSfwczUERkMC7WQxHRZqC0NU1NCVZ0zjoocyjuNlYDBdRmoOrhgsJEZDQGUBQRr695T+EFm/LjNJ5JvG3sKTwAgrYXlJ9TeERkLAZQFBGvv3lP4QUNoFhIboo29xQeoGtloPg9DRxIRBQZBlAUNkmW4ZdUFSZhP4UXLGPFDJQ5dAGUvfUHULpmmsxAEZHBGEBR2DxefaATbgBltYiw6BYUZgbKDG2ukSagb2PAGigiMlgrXhCLzOIJMtWWYA8vgAJqs1A1nlOLvAa7LjWPIvl0wYPQBtoYCNYE1bbSCjJQctlxeL5eCf/h7yAkJMM2aBLsg8+DIIb/b4+Imo8BFIUtWK1SuE/h1Z1TU680hTVQxtP1gAKAtpCB0i7n0sIzUHJZAareejiwMLRSXQrvxjcgFx+C45zpbP9BFAOcwqOwaTNFglA7JRcu7bQfM1DGCxZAtYUpPO1TeC15KRdFkVHz3xcCwVN9/t1fw7fz0+gPiogYQFH4tIFOgs0S0W/ADKDMp61/gs0BQWwDiWdtBqoFT+H592+DfGJfg697t/wLis8dxREREcAAiiIQLICKhN2uDaD4FJ7hdE/gtf7sEwBAm4FqwVN43m8/aPR1paYcvvzPojQaIqrDAIrCpn0KL9IASpeB4lN4hmuTPaAQrI1Bywyg5PJCyMd3q/Y5Jk6Hpat6KS3fzs+gKOrWIkRkLgZQFDbdQsKRZqA0zTRZRG48pQ12IQcQpJFmywygfHs2qLYFRwqsPXNhH3year9cehTyib3RHBpRm8cAisKmm8KzR/Yx0rY+8PgZQBlNn4Fq/S0MgCBLuUgtswZKOvSdatvaMxeCaIWlYw4EV5bqNf/+rdEcGlGbxwCKwmZUDZT2PG+QBp3UPPoAqq1koFr+U3iKzw3p+B7VPmvXoQAAQRBg65mres2/f1u0hkZEYABFETArgOJTeMbTtTFoqzVQLbCIXDq2C1Dq/ZsQLLB07BvYtHYfpjpeLj0KufRYtIZH1OYxgKKwGfYUHgMo07XVInLtUi4tsRO5/+gO1bYlqxcEmyOwLWb2gJDYTn2OZsqPiMzDAIrCpp1qi7SIXNu9nAGU8dpqANUansKTju1SbVs69VdtC4II62mna8750fRxEVEtBlAUNrMyUHwKzwS6hYTbRgClrYFqaUXkiuyHXHxQtc+S3Vd3nKVjjmrbfywfisJaQqJoYABFYTPsKTxO4ZlO8VSqtttKACXopvA8DRwZn+TiI4DkV+2ztO+mO87SsZ96h6cKcskRM4dGRD9jAEVhM6+InL85G0lRFN1SLm0lgNJloPy+FtVoUjq5X7UtpGRCcOhbUIgp7SGktFefezTfzKER0c8YQFHYjGqkqWtjwAyUsfxeQFZnMdpKAKXrAwVFdy/imXzygGo7WPYp8JomCyUVsqEmUTQwgKKwGZeBYhG5mbTTd0DbCaB0iwkDLaqQXJuBEjO7N3ispUMv9bmNLDxMRMZhAEVh0061GbeYMAMoI2mn7wABsDtjMpZoE6wJun1KCykkVxQZcvFh1T5L++4NHm/J7KE+v6xA3/+LiAzHAIrCpl30N+IMlFU7hSdDbkF1KvFOl4FKSIQgtJF/8i04A6VUFunGKqZ1bvB4Mf00QLSq9kmaKUAiMl4b+W5KRtJP4UX2MdJmoADAx0Jyw7TZAnJA10gTaDnNNOUSTTdxu1PXMLM+wWKFmHGaap/EhYWJTMcAisKmKyIPEgiFIljmitN4xmmrLQyA2iaTsKizMi1lORe59KhqW2zXCYIgNHqOdhpPLmQdFJHZGEBRWGRFgddvTA1UsMwVAygDtdEu5AGWlrmgsFyiDqAsaZ2aPEcbQLGQnMh8DKAoLMFaDRjViRxgAGWkNj2Fh5a7nIsUJAPVFFFbSF5VDNldYei4iEiNARSFJVizy0gDKFEQYLOqP4Je1kAZpi1P4QEANE/itYQMlKIokEvVNVBiWscmzxPbddRNWWqf5CMiY8U8gCotLcX999+PcePGYfjw4bjiiiuwefPmwOs7d+7E1KlTMXToUEyYMAHLli1TnS/LMp599lmMHTsWQ4YMwTXXXIMDB9RPoBhxDaoVLEMUaQAV7FyPt+U0O4x3bXUh4TqCTdPKwOeOzUDCoLgrdFOvoWSgBNECsZ36ST0GUETminkAdfvtt2P79u14+umn8eabb2LgwIH405/+hD179qCkpATTpk1D9+7dsXr1asyYMQMLFizA6tWrA+cvXrwYK1euxCOPPIJVq1ZBEARce+218Hprf9s04hp0iterD6BsET6FBwAOTQG6O8j1KTJtfgrP5lBtt4T18JSKE+odggVCckZI54rpXVTbcvEho4bV4knFR1CzdhEqXrweFcuuRfU7j8J/6NtYD4taOGvTh5jnwIED+PLLL/Haa69h+PDhAIBZs2bh888/x7vvvguHwwG73Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFeP3115t9DTpFm4Gy20SITTwh1BiHXf0RZABlnDY/hdcCM1ByeaFqW0hpD0EMLcNrSe+C+vlbiRkoAIB//zbUfLIYqNdIVTr2I2qO/Qj70Athz53S5FOORMHENAOVlpaGv//97xg0aFBgnyAIUBQFZWVl2Lx5M3Jzc2G1nvohO3r0aOzbtw9FRUXIz89HVVUVRo8eHXjd5XJhwIAB2LRpEwAYcg06xahlXOo4EtTn13AKzzC6TuRtLIDSdiNXfPGfgdIGUKIrM+Rz9RmoI1CUtl1TKJ3crwue6vN+8y58334Q5VFRaxHTDJTL5Qpkfep88MEHOHjwIMaMGYP58+ejb9++qtc7dOgAADh69CgKCgoAAB07dtQdc+xYbSFmQUFBs68RKavV+PjUYhFV/482v6zuFJ5gszTr60xMUH8EvX7ZlPsWrljfZ0NoammsiclxcW/rM/M+iwnqZWsEyRN3X7+Wp/Kkatua2iHkMYsduqGm/g6/B2J1ESypWa3j8xwmRZZQ/fmLDQZPdTybVsN+2kBYO/Ro9LhQtcV7HQvxcJ9jGkBpbdmyBffeey/OPfdcTJw4EY8++ijsdvWjyAkJtb9Vejwe1NTUfrsIdkxZWRkAwO12N/sakRBFAWlp5v3G73LFZk0zq61EtZ3otDXr60xJ1kyziKKp9y1csbrPzaXIEkq86gxUu8xM2OPo3tZnxn2WkpNRv4rRLkpx9dkKpqZKHUAlZZ+GdiGOWWmXiApnCuSaU+0LnJ4TSErrGdhuqZ/nSJRt/o9uSZukAWcjIas7iv/3KoCffxmUJfg2rET7Kx82dCqvLd3rWIrlfY6bAOrjjz/GnXfeiSFDhuDpp58GADgcDl0ht8dTm4ZPTEyEw1FbJOr1egN/rjvG6XQado1IyLKC8nLtYq7NZ7GIcLmcKC+vgSRFPz1fXKr+mqyigJKSyBcu1U4AlpbVNOt6Ron1fW6uYD2AKjwCxDi4t/WZeZ+9kuYJz8rKuPhsNcZTXKDetrULa8xiWhfINTsD22UHd8PbYVCL/zyHS5EllH+5RrVPTOsM29g/QbFY4SivgHvL24HX3Id2onDrF7D3HNHs925r9zpWzLrPLpcz5KxWXARQ//znPzF37lxMmjQJ8+bNC2SDsrOzUViorgmo287KyoLf7w/s69q1q+qYnJwcw64RKb/fvH88kiSbev2G1LjVNUp2q9iscdg1T/BVu/0x+boaEqv73FxylT6AkqyJkOP0azHjPsuaTuSy1x3Xf5eK3wulSp3hVZLahzVmIa0zcPRUAOU/eUh1fkv9PIfLt3cT5Moi1b6Es6dCUkTAL8M65EIIu76CUnEq41ez5R2IXYcZNoa2cq9jLZb3OeaTtK+++ioefvhh/OEPf8AzzzyjmkrLzc3Fli1bIEmnCpfXr1+PHj16ICMjAzk5OUhOTsaGDRsCr5eXl2PHjh0YOXKkYdegU9xGF5HrnsJjEbkRdAXkFpu+M3crp2tjEOdP4cnaFgYIr4gcCFJIXtQ2Wxn4fvhEtS1m9oSl46lfiAWrHQm5U1THyCf2Qjq+Oyrjo9YhpgHUvn378Ne//hWTJk3C9OnTUVRUhBMnTuDEiROoqKjAlClTUFlZiVmzZmH37t1Ys2YNVqxYgenTpwOorVuaOnUq5s2bh08++QT5+fm47bbbkJ2djUmTJgGAIdegUzyaNgOOhOYlMZ3sA2WKNt/CANC1MYj3p/AUbQsDp0sXBDbFog2gyguhSG3rlxK5sgjSsR9V++yn/1JX32TtOUrXY8v7w8emj49aj5hO4X344Yfw+XxYu3Yt1q5dq3pt8uTJeOyxx7B06VLMnTsXkydPRmZmJmbOnInJkycHjrv55pvh9/sxe/ZsuN1u5ObmYtmyZYFMVkZGRrOvQadoM0TaRpjh0gZgDKCM0da7kAOAYNPUMPrjPANVrs5ACa4OYV9D1C48rMiQy48Dmac1Z2jNVjc9KThdEOzmFv36925U77AnwtpDX9skiBbYBpwL78bXT527bysUb43pY6TWIaYB1HXXXYfrrruu0WMGDx6MVatWNfi6xWJBXl4e8vLyTL0G1dIGOM0OoHQZqLb127JZGEDpl3KJ9wyUdgpPTAlv+g4ABHsihMR2UKpLT1235GjMAijFWwPPpjfhy/8CkLyAIMDabTgSzrwCYkp7U97Tt0cdQNl6jIBgsQU91tZvDLyb3gTq+mVJXvj3b4Wt79mmjI1al5jXQFHLog+gmheDcykXczCAAtDCaqCUymLVdqQBhthO3dNOuzhxtCjealS/90RtPZL085PQigL//i2ofushSMVHDH9PuboU8ol9qn3WXmc0eLzodMHSZZBqn2/3esPHRa0TAygKi+FTeFzKxRSKW10D1da6kAPBFhOO8wyU5qmxUNfA09IuPiyXHo14TJFSFAXuz1/UBTOB12vKUfPhfF2g31zS4R/UO2wOWDo1/jS1rc+Z6msc2QnFa3wLGmp9GEBRWLQBTgKn8OKSNoASHCkxGknsCFZNAbbsj+uCakUTQInJ6RFdR0zTZKBKop+Bkg5uh39v40thKRUn4dnweqPHhMt/+DvVtrXzAAhi41lya7dhQP1jFAn+w98bOi5qnRhAUVh0T+EZHED5JQV+Np9rNkXTSLMtBlC6xYSBuF1QWPF79X9nhmWgjkV1TTxFUeDZ8i/1zoQkOC+6B2KHnqrdvh8/N2zRY0WRdRko7fRcMEKQLJX/wHZDxkStGwMoCot+Cq+5NVD68zmN13zaDJToSI7RSGInWAsAxR+f03ja+icAEJMizUBpnsSTvJArioIfbALp4HbImiVUHGdeAWvHfnD+4kagfj8yRYF302pD3lcuOqgLQq1dTg/pXGvXoapt6dC3UGT+IkeNYwBFYdEGN9o+TuEKlsFye+J3mqWlYAYKgFWfgYrXQnJt/RMSkiJ+lF5wpgKaFg5ySfTqoLw7/6ceT2o2rL3PAgCIyRmwDzlf9br/wDbIZeolbCLh12SfBFdWyI1IrV2HqLYVdwXkE3ubPSZq3RhAUcgURTH8KbxgNVTMQDWfvgaqDWagRBHQLOcSr4XkRtU/AYAgCLo6KClKAZRcXQbpkLoOyT7k17V/F3Xbg88D7ImqY7zfN7+BpVTwk2rb2nlAyOeKrkyIaZ1V+/yar4NIiwEUhcwvyZBkRbWvuTVQoiDogigGUM2j+L2AZqpKcLbBDBSC9YJqGRkoISmy+qc62jooKUqtDPy7vz7VUwkArHbYeo5SHSPYHLDljFft8+1aV/u5jZCiKJA1y7BYsvuEdQ3LaerpPqnemoJEwTCAopDVBAlsmhtABbsGn8RrHl0LA7TRKTxA1wsqXjNQsrYHVIQF5IHztYXkUcpA+fdvUW1bu48IOhVpH3gugHpLq/jc8B/4JuL3VcoKdMsXhRtAWTWF5FLhnritmaP4wACKQqZ9Ag9ofhsDgL2gjKatf4IgAm10aQpdBipOl3NRqozpAVXHEoMpPMVdCem4ehrN1jt4E0sxpT0smik2309fRvze2uk7IbEdhOTwGpFasvvV/lupI0u66xLVxwCKQqYNbAQACbbmB1DaQvRqFpE3i76APBmC0Eb/qWu7kXvjM4DSTuE1pwYK0GegFHclpKqyZl2zKf7D3wNKvSl+iw2WTv0bPF7XwPLQ90Gzp6GQtNN3Wb11iwc3RbA7IWZ2V1/3aH5E46G2oY1+V6VIaKfWEuyWsL9JBZPoUGegqt0MoJqDBeSn6FoZxGENlKIoQYrIm5eBElIyAYv635W3yJh+Sw3xH1T3TrJ06g8hyJOQdazdRwD116hTJN01QqXNfIU7fRcYUyd1Vsx/dEdE16G2gQEUhczohYTrJDrUC30yA9U8bGFwiqB52isel+hQ3BWApkN6c6fwBFGEmJqt2uc7afzac3UURdEVXVu7Dm70HMHuhFXT6NJ/YFv47+2u1K33Z8mKLIDSNtSUT+yP+0WoKXYYQFHIjG5hUCcxQX2dGmagmkWXgUpowxkoTe1XXAZQ2h5QggghsV2zr6udxvOeNC8DpZQXQqkuVe2zdm66C7i1+3DVtv/Qd2E/jScVqqfvYLFDbN81rGsETs3qra6DUmRIDaznR8QAikKmbXBpXAZKHUBVeXyGXLetYgaqHl0AVROjgTRM38IgTdU3KVJiO3Uhuc/EKTzp2I+qbcHpgpCa1eR5lq5DgPplAH4PpDCnzaQCTf1Thx5Nrn/XEMHmgJhxmvr6x1lITsExgKKQuX3mTOElsQbKUKyBOkU3heeJ/wxUc+ufAtfRBFBeE6fw/AXqAMrSsV9I9ZGi06WbbvPv3xrWe+vqnyKcvmvofG2BOlEdBlAUsmhN4bEGqnl0Gag22kQT0AdQ8MVjBkrdA6q59U91tGviSeUnTWskKh3bpdq2ZPcL+Vxr92Gqbf/Bb6EoSgNHqymyH1KheorNktU75PcORnu+dHx3VBdjppaDARSFTL+QsElF5MxANYs+A9WWAyjNFF5bykClZkPVrBKAVGJ8R3LFUwWl4oRqXzhPwWkX8lWqSyEXHQzpXPnkQUBS10w1O4DSjt1TBbm0+Wv1UevDAIpCZt5TeNopPNZANUewPlBtlZAQ/0/h6WqgmtkDKnAdqx1CirqZpBkNNSVtsCNaIaZ3Dn5wEEJqNgSXul7Kf/Cb0N5bM70mtuvY7M+7mJwBIUn9d8A6KAqGARSFTFdEnsApvHijKAozUPXp2hjE3xSeYvAyLqpraRbIlYqNLySXTx5Qv2d657CKuAVB0LU8CLUfVLAGmkbQTeMVsA6K9BhAUci0U2vawCdS2gyU1yfDL7HmICLeakDW9BRqyxkobQ2Utyau6lkUyQelRt0h3KgaKACwpJm/Jp6kCaAsGd3CvoZ2Gk8u3Ae5uunO6boMlEkBlMwMFAXBAIpCVqPJDDkNC6Bsun2sg4qMUlOu2yc4U2MwkvigX8hWiasFhZWqEt0+czNQxj+JJxcdUr9nBD2YLB37aZbdUSAd+rbx960sglKlzt4ZloHS1EHJZQWQtWtMUpvHAIpCVu1R10AZloEKcp0q1kFFRPdbu90JwWqPzWDigD6Aiq86KG39E+zOoGOOlLYWSS4/AcVvXACp+L2QS9VZLTGCDJRgscLaeaBqX1PTeNLxPeod9kRd64ZIiRmnARb1vxtZ+37U5jGAopDVaBpcGpWBsllF2K3qjyLroCKjzUC15ewTgJ8baaqfRIunAMqsJ/AC12vXEeqvX9Ete9IccvFhQDUlKsCiaUQZKmu3oapt/+HvoUgNfx8IvoCwMT/SBNEKS4cejb4fEQMoCpkuA+UwJoACAKfmWlzOJTLaehoxsW0HUIIgaqaG4quQXP8EnrEBlGBN0D2JJxs4jad9Ak9IzdIv4Bwiy2mnq3f43JAKdgU/GMECqF4RvW+D4+mgvp5UyAwUqTGAopDIiqJ7Cs+oDBSgn8arYgAVEUUzhSc4XTEaSfzQTYnFUS8opUKTgUoypoWB6pqaOii5xLgAStuvyZIR2Rp0ACAmtoOYqc76NDSNp/g8uqf/mtuBXDce7ZN4hXuhyFIDR1NbxACKQuLxStD2BnYmGNMHCgCStM00OYUXEd0TXW19Cg/x3QtKl4FKMTYDBeifxDOyF5T2CbxIF/GtY+06RLXdUD8oqWAXoNQLZgQLLB16Nuu9tXQF6X5P7ZQl0c8YQFFIgj0Vl5igf3ouUmymaQxZVwPFDJRuPbw4nsIzugYKMC8Dpcgy5GL1E3iRtDCoT9eVvOx40C7g0tGdqm2xQ4+Ipw4bIjpdEFIy1e/LOiiqhwEUhUTbwkAA4DA0A6UOoCqqGUBFQjeF18ZroAD8XEh+SrxkoBRF0RWRC8ntGzg6cton8ZSKk4Y8iSeXFwB+9TIqYjOm8IDaDJY2axpsGs+vCaCsnQc0630bEmxdPKI6DKAoJNopNUeCBWIIq62HKiVR/cgwA6jIaJ/CEzmFp89AxUkNlOKuACT151w0aBkX1TVNehJPPqkpIE9s1+yHFgRBbHIaT3FXQj65X7XP0ql/s963IboAioXkVA8DKAqJWU0066QkqqcDK2q8DRxJDVEURV8DxQyUrhO7dqmbWFEqTqp3CCKExDTD30ewJkB0qaeijHgST1f/1MzsUx1LN3UAJR3bpZp29R/cDij1KjItNt0Tc0bRBlBKeaFumpzaLgZQFBJtBsqoJpp1mIEygKcK0DwlxBqoYAFUfHSU1hWQJ6VBEM35lmzRNtQ0oA5K9wRe++bVP9Wxdh4I1F9LT5HgP/RdYNO/b7P6+C6DTGsWK6Z3AawJqn1sqEl14iqAWrx4Ma688krVvp07d2Lq1KkYOnQoJkyYgGXLlqlel2UZzz77LMaOHYshQ4bgmmuuwYEDBwy/RlsX7QxUZTUzUOGSq0t1+xhA6RdTjpcAStdEM8X4+qfAtQ1+Ek9RFF0AZVQGSrA5YOmUo9rn2/VF7fv6PPAf/l71mrXHSEPeN+hYRAssmtYKUiHroKhW3ARQL730Ep599lnVvpKSEkybNg3du3fH6tWrMWPGDCxYsACrV68OHLN48WKsXLkSjzzyCFatWgVBEHDttdfC6/Uadg2KRgDFDFRzadcFE5wuCBbjnpRsqeI1gNJnoIyvf6pjSe+ifu9mZqCUqhLdfTQqAwUAtp6jVNvSoe8glxfCv2eDum4sSM2U0VhITg2JeQB1/Phx/PnPf8aCBQvQo4c60n/99ddht9sxZ84c9OrVC1OmTMHVV1+NJUuWAAC8Xi+WL1+OGTNmYPz48cjJycH8+fNx/PhxrF271rBrkL6NgZFdyAF9Bsrrl+HxsmldOGTNwrRCkvH1NC2RNgsXLwFUNDNQ2ik8peJEs9o5yEWaDL3Nqet43hzW3mcACUmqfd5v3oX3B/X3ZEuXgbopWqNpO5xLJ/axoSYBiIMA6ocffkBqairefvttDBmi/k1i8+bNyM3NhdV66of16NGjsW/fPhQVFSE/Px9VVVUYPXp04HWXy4UBAwZg06ZNhl2DopCBcuprGCo4jRcWpVKdgTKjq3VLpPsB661pdI21aJErzF3GpT5LemdAVLcd0S7DEg7ppLb+qath69ABtYXvtr5jVPt8+Z9DLlL3nbIPmGjYezZE1Bao+726/lfUNhn7UzACEydOxMSJwf8RFBQUoG/fvqp9HTp0AAAcPXoUBQW1DdY6duyoO+bYsWOGXSNSVqvx8anFIqr+Hy1uTTYo2WEz9OtLSbLBIgqQ5FNP11R7/abcw1DE6j43h6emVLVtSUmP2f0LVTTus5isfxLR4q+CmBDbDJ1SpQ6gbKntTfv7slissLc/Dd7C/ad2lhyC9bTIHv93F6sDKGtmN8PHnjjs1yjb+T9dr6k6YlonJPQYZlrhfUBKO9SkZkEuOx7YpZzYC2t28M7nLfF7R0sUD/c55gFUY9xuN+x2dWYiIaH2iQiPx4OamtoUdLBjysrKDLtGJERRQFpaUtMHRsjlcjZ9kIF8snohl/S0RMO/vtTkBBSXuwPbimgx9R6GItr3uTncHvXnNbF9dszvX6jMvM9KqgNlEIB6ixEl2/xIiOG9kb1ulGjaKbTrfBrsJo7Jnd1dFUBZyo9G/Pmo0GRgXF37IMXosaclwTL2EhT/75WgL3c4789IzEgJ+prRfF1zUPndqQDKUryvyXvXkr53tGSxvM9xHUA5HA5dIbfHU9tBNzExEQ5Hbet+r9cb+HPdMU6n07BrREKWFZSXG9+wz2IR4XI5UV5eA0mSDb9+Q0rqBTYAICoKSkqqDH2PZKcVxfVarBw9Xo6SbHPrGxoSq/vcHJ7SE+ptS7Lhf0dGi9Z9FhxJqv5PZYWFsNkzGznDXFKQPkyVciIEk/6+LBYRCVk9UIlPA/tqju6O6PMhu6vgLytU7XMndoTfhLErOZNgP7wP3p++Uu13jr4EnrTe8ETp8y2ndQfwWWC7+lB+g/euJX7vaInMus8ulzPkrFZcB1DZ2dkoLFT/Q63bzsrKgt/vD+zr2rWr6picnBzDrhEpv9+8fzySJJt6fa1KzVNxiQkWw98/2akuJC+r9Eb1awwm2ve5OWRNDZTibNdixm72fRYcKaoAyl9ZBiGG98Zfpg52hYRkSIINMHFMjmzN4/jFR+DzeCFYwvsx4K8/DQgAohVKSrZpf3/2CX+G2Hkg/Ae2ARYrbH3OhvW006P72W6vnq6Ty0/AW17SaOf1lvS9oyWL5X2O60na3NxcbNmyBZJ0qv5m/fr16NGjBzIyMpCTk4Pk5GRs2LAh8Hp5eTl27NiBkSNHGnYNAipr1AGUNtgxgraVQTmLyEOmeGsAzVNVIp/CC4i3Vga6AvIU8wrI6yR06K4ZhBRROwPtEi5iWuewg7BwCIIIW9+z4Zx0E5wTr4P1tNNNe6+GBGuoyX5QFNcB1JQpU1BZWYlZs2Zh9+7dWLNmDVasWIHp06cDqK1bmjp1KubNm4dPPvkE+fn5uO2225CdnY1JkyYZdo22TpJlXSfyJFMCKM1yLlUMoEIlV5fo9rGNwSn6ACq2y7koFeoMlGjCIsJaoiMJoquDap+2GWYoJE0LA0t7YxpoxjNBtMDSQZOFYkfyNi+up/AyMjKwdOlSzJ07F5MnT0ZmZiZmzpyJyZMnB465+eab4ff7MXv2bLjdbuTm5mLZsmWBonAjrtHWVbn1j3ybkYFql6z+Da+ksvkrxrcV2hYGSEiCoPmNuS2LuwxUubqsQNAENmaxtO+mem/p5AHY+o0N6xq6DFSGcQ0045klqzekozsD22yoSXEVQD322GO6fYMHD8aqVasaPMdisSAvLw95eXkNHmPENdqyqhp9V/Akh/EBVFqKJoCqYAAVKrlck9EwsSljSyQ4NQFUjBeE1QZQ2syQWSztu8G391R/O/lkeEtWKX4v5FL1MjCigR3I41nQhpqS39TpS4pvcT2FR/FBW/+UYLPAZkK/mnQGUBHTTQmlxO4Js3gkaIp9tV3bo0lRlJgFUNZMdbAjnTwARQ69qahcfBhQ6hfsCrplYlorSwf1ki6QfJBP7IvNYCguMICiJukLyM35jaudJoByeyVdB3QKLlY/kFsK7TpzSiwDKHcF4NO0BYlWBkqTRYHk1XX3box0cr9qW0jNgmBvG/2OBEdybTF5Pf56U3rU9jCAoiZpAygzCsgBIC1ZX7NTzCxUSLRTeAIzUCraJxKV6jIocmwefVY0wS4EC4Tk6Cy7IzqSIaZmq/ZJYRRDyyf2q7Ytmd0NGFXLYemk7twuMYBq0xhAUZOqatRZIDMKyAHAbrPorl3KAKpJsZwSail0TyQqEhR3bOqgdAXkKe0haNapM5OoreUJ43F86aR6ysrSvkcDR7ZO1k4DVNvS8Z+gNLDUDLV+DKCoSdHoAVVH+yRecYW7gSMpwFMF+DQ9oFzMQNUnOFyAoA5SYjWNpyv4j/LflbaWJ9QMlOL3Qi7WFJC3tQxUx76AIJzaIfkhFbKdQVvFAIqaFK0pPABId7GQPFzajAYEMWpTQi2FIIpxU0ge62yhtg5KqTgBubrpdT/l4kOAUn9RcQGWjNbfA6o+ISEJYvvuqn3SkR2xGQzFHAMoapK2jUGyCS0M6mhbGXAKr2my5gk8ITkDgshHq7W003i63llRoq2BinYAJaYF6apdsKvJ8yTNE2diu+w2U0Ben1VTB8VC8raLARQ1KZpTeNpCchaRN00u0UyrsP4pKG1vLG3gGS2xaqIZeD9RhCVLM40XQhAgnVD3jNJmYtoKbSG5XLgXiie+F+0mczCAoiZVuqMXQKW7HKrtE6U1DRxJdbTrmYlpnWM0kvim7Y2lexouChRPFZQa9XSZmJoV9XFYOg9UbfuP/NDkOdLxn9TXyGxbBeR1LB37AvWbZyoy/Iebvn/U+jCAoiZVVGsCqETzAqisdPWUwInSGsiyYtr7tQa6ACqdAVQwunXgyqOfgZJLj6l3CJaYBFDWzuqnyZSy45Arixo4GpBryqGUFaj2WbL7mDK2eCdYE3RZKP/B7TEaDcUSAyhqlCwrqKhWP6abmmTeGoEd0hJV235JQXE5n8RriCL5IJcdV+2zMAMVlKB52k2uKISiRDc4l7TBbmpWTOrVxIyuQEKSal9jxdBSgTr7BGtC7TXaKOtpQ1Tb0qFvY9ZXjGKHARQ1qqLaC+3PGDMDKFeiDQ67+nHz4yWcxmuIXFagWVoDENM6xWg08U1XG+b36qbTzKarV4vR35Ugivpi6EamobRF5pas3lHtXRVvrF3VAZTiroB8Ym+MRkOxwgCKGlVWpc4+CQKQkmheACUIArI0WajjJdWmvV9LJxerMxpCUjoEe2IDR7dtQlKaunYFQabUTKZ9P7Fdx6i+f326OqhD3za4Lp507Ef1uW10+q6O6MrUBb/+/VtjNBqKFQZQ1KhyTQCVkmiHKAoNHG0MbR3U8WJmoBoiFx9WbTP71DBBECG2U98fbQBqtngq+Ld2Haze4a2GdDRfd5xcXQZZswaepWM/E0fWMli7DVNt+/ZujPqUMMUWAyhqlDYD5TIx+1RHWwdVyAxUg7RdkNtaY8NwaReD1QagZlK8NVA0hdqxzECJyRkQM3uq9vn3bdYdJx36Vr3D5oAlq21noADA2nOUalupOMlpvDaGARQ1SpuBSk02P4DKSlNnoAqKGUAFo8iyvrmhpss0qYlp6gBKKoleACUVHVTvECwxDaAAwNpjhGrbv3czFEn91K1fE0BZOw+EYGGjVjGjKwTNE5S+PRtjNBqKBQZQ1ChtBsrMAvI6ndqrnw4qLKmB2xu8NqMtk0uPAj71E4qWDgygGmMJkoGK1tNT8on9qm0xvRMEq/n/nhpj6zFSta14KuHft+XUtt8D/6HvVMdoC6jbKkEQYNNkofx7NkCRpQbOoNaGARQ1SrsWXTQCqC6ZSRDrLdipADhUWGn6+7Y02uk7ITkDYmK72AymhRDbd1Pv8Ll1dUlmkbR1RHHQyVtMzdLVM/l2/i/wZ//+reogXRBg0dZOtWHWXqNV20p1KXz7v4nNYCjqGEBRo7QBlHatOjPYrBZ0bK+ugzp4nAGUlnx8t2rb0qFnA0dSHTExFYKmI7mkuY9m0RZix8tSKLb+56i2pWM/wn90JxRFgfeHT1SvWToPZJBejyW9s66OzLPjfw0cTa0NAyhqVHGFeopIu9SKWbp2SFFtHzheEZX3bSkURdH17dGub0bBaac5Q1lIt7kUnxtyqaaTd2Z30983FNYeIyA4U1X7PF+vgnTwG12Qbus7JppDaxHsA9QBqP/gd/CVHm/gaGpNGEBRg2RZQWmFugYq3WV+BgoAumWrA6iDDKBU5JKjUKqKVfssXQbFaDQtiyVbs5DukR+gKObWQdVmueo94i6IENNPM/U9QyVYbLCPuFi1Tz65HzUfLlAfl5wBa091zRQB1l6jAHv9B18UlG14N2bjoehhAEUNKq30QNb0NUlPiU4GqltWsmr7yIkqeLwszqwjHVYX9gpJ6boeRxSctcvpqm2lphyy9gk5g2n7K4mZ3WNeQF6fLWccxNTsRo+xD/9NTJadiXeCNUGXmav45mPIVaWxGRBFDQMoalCxpv7JahGQYuJCwvV1y06BpV7DTklW8NOR0qi8d0ugXbzUetogCIK5DU5bCzE1C4JL/fi5f6++/5GR/Ed3qratnQY0cGRsCKIVjonTdZ3a61g6D4St39goj6rlsA8+D6i3tI3i98L9zXsxHBFFAwMoapB2Ed+0lISo/ZB22K3o0dGl2rfzQElU3jveyZXFuoyG5TQ+GRUOa3dNF+mfvjJtGk/x1kDW9OuydMox5b2aw5LZA85f3apbZNjSeQCcv7gBgsAfFw0RkzNg63u2ap/nu090C31T68J/EdSgQs0ivu1TnQ0caY6cbmmq7Z37GUABgG/311DV09icsDKACoutz1mqbaWqGP7920x5L+lovnrBZ9ESt2vJWbsMQvLlTyBh3DTYR10K56/vgPP8PAiaoIr07EMvBOoHmbIf7q/+yeVdWjEGUNQg7SK+2g7hZuuvCaAOHK9ARbW3gaPbBkWR4d/1hWqfrWduXNXTtASWjK4QM9Q9obxb3jKlCaJPszyKJasPBGt0HsaIhJCQBHvOeCQMPR/W007n1HCIRFcH2AZNUu2TDn0H/09fxmhEZDYGUNSg45oMlHaNOrP17uyC3XrqI6oowJYfT0R1DPFGOrgdcukx1T5rnzNjNJqWzT7kPNW2XHwIvu8+NPQ9FL8X/gNbVfu0y6dQ65Ew4rcQNH2y3Ov+ASnKi1ZTdDCAogZpp/Cy0qObgbJZLRjcu71q34YdbbemQFEUeDSFqWJaF1g6xl89TUtg7TlKtzaeZ+Nq+A9/b9h7+PduBLzqf0fW7gygWivB7kTi2KnqnX4vav7zNGTNQtLU8jGAoqBqPH7dQsJZUc5AAcAZ/dVPS+06VIqTZTUNHN26+fdu1DU2tA/5NadYIiSIFjjGXqXeqUio+fAZ+H78otm1K4oiw/utOqNl6TIIYnJ6s65L8c3eaxRShv9StU+pLEL1u09ALito4CxqiRhAUVCHT6iXThEFAZntopuBAoDBvdLhTKj3eDCAjzYdivo4Yk3xVMHz9SrVPiGlPay9z4jRiFoHS3Yf2Iecr94p+eH+bBlq3n0M/oPbI346z7/rS8jF6s+qTdO1mlqnjEnTYMnsodqnlB9H1b8egm/vRhaWtxIMoCgo7dpzndonwmaN/sfFZrXgrEEdVfs+334U5W2omFxRFLg/f1HXeTxh9OVsbGgA+6jfwdpzlG6/dOxH1PxnPqpevQPuL16Cb99myJXFIf3wk04egPurV1T7xLQusHYb1sAZ1JqIVjuSL7xD39zWWw33x4tR8/48+KOwhBCZi999KSjt2nOnadami6Zf5Z6G/209EuiK7vXJePN/e3DNBf1jNqZo8m5eA7/2Sa7OA1lLYxBBEOGYOB0eRwp8Oz7Rva5UlcC381P4dn5ae7zTBTH9NIiuTIiuDhCSMyDYHIDVDsVTDen4T/Dt+C/gVwf5CWf8jr2U2hDR6YLzgjzUfPC0LhMpHfkBNUd+gJh+Gqw9c2HtNhRiWhcIIj8fLQkDqJ/JsoxFixbhjTfeQHl5OUaMGIEHHngA3bp1a/rkVuhggTqA0i6tEk3t2zkxemAWvvr+VP3Auu+OYXjfTAzt076RM1s2RZHhWb8Svu8/Ur+QkATHhD+z9slAgmiBY8yVsHQZCM9Xr0BppOBXqSmHdOQHSGE8WGXtczasXYc2f6DUoohJaUi8eDbcny2Ff+8m3ety8SF4iw/Bu3kNYHPC0qEnxLROEFOzazvmJ6ZBTEwFEpL47z0OMYD62eLFi7Fy5Uo8+uijyMrKwpNPPolrr70W7777Luz2ttVjp7LGh0OF6ik87eK+0TZlfC9s3XUC7nrr4b3wzg+447Kh6N05tZEzWyap9Cg8n78ESZvmFwQ4z5kOMSkt+InULLbuw2HtMgi+3evh++FjyEXNr7ezdOynL1anNkOwJcBx7g3w99gIz1evQqkpC36gr+bnwPwH/WuiBYIzFYIzBYLNCcHuBGwOCHZnbfbT5oBgtQGiFbDYIIgWwGKrPc9iq12iR7RCsFhr/yxYapt+igIEiIAoAoJQu0849Weh3p9rj9G81sYxgALg9XqxfPly5OXlYfz48QCA+fPnY+zYsVi7di0uuOCCGI/wFLfXj8KSapSVuSH5a4tbFehrMgQIEEUBglBbAK76syDAZhUhisF/o8k/UKK6ot0qomen2AYpaSkJmDK+F15ZWxtQnGY5id8mbEbNv9/F8RET0SH3Vy06/a3IMpSKE5AK98C/dxP8B74Bgvy9Joy5Ctau7DpuJsFqhz1nPGz9xkEuPQrp4Hb4D/8A6cReXUuCJq4E24BzamvV2Oi0TRMEAbZeZ8DabSh8+Z/Du/0DXU1jo2QJSlVxeOdEg9BI4CWKAIR6gZc2MNMGZ0GCNs2fhXrHixYbLH2GQOkauwdpGEAByM/PR1VVFUaPHh3Y53K5MGDAAGzatCluAqg3P92DtZsOwSc1f80uiyigfTsnenVyYWS/DhjcOwPizynibT+pm1X2Pa1dTArItSYO74w9R8vw9Q/H8Yekr9DRWlr7wvZVqN7/GWz9x8PSdQjE1I6GprsVWYLirQY8VVA81VC81bX/91RB8VYBnupT+73VgN9b++SWLKn+0+5Tb/trO4U2RLDAMeFPuiVIyDyCIMCS1hmWtM6wDzkfiqJAKS+EdPIA5PLjUMoLIZcXQqkph+L3Aj4PYLVDTM6ApWM/WPucBUtap6bfiNoMwZoA+6BJsA04F1LBLvj3boT/0HdQKlpog2BF/vn3PHUH/6YeszDqGcSTP30F55nFsJ7+a4OuGB4GUAAKCmprazp2VD/t1aFDBxw7dizYKSGxGhh0HCuqwvtfHzDsepKs4HhxNY4XV+Or7wvQqX0Sfju2BwZ0T8fmfPU/5sG9Mwz9WprjzxcNQLXbj8Qij2q/XFZQ+5j/16sgOJIhpmbB4upQm/K2OyHYnD//RlT/JAmKzwPF74Hi8wA+DxRfTW1g5KlGua8Gck0lFJ96UeVoE1PaI/Hcv8AWhwvQNpfFIqr+H/cyOtb+18K0uPvcgoV2r0XYug4Aug4AAMhVpfAX/ASp6BCk0gLIpccgV5yE4qmKwohbNun4bjiGxeZzzQAKQE1NbVpeW+uUkJCAsrIG5qubIIoC0tKMW4CzRjK3b8jRk1VY/C99B2arRcD5Y3ohNTl+1u56cPpZ+N+re5B68O2gryvuSkjuSkjH90R5ZMYSEhKROuJXaHf2FIj26PfgiiaXq3V/ffGC9zl6wrrXaUlAl8663YrfB6m6DP7KUkiVJZBrKiB73ZA91ZC9NZA91VA8NZC9NVAkPxTJV/t/vx+QfVD8fvV+qXZfbeao+TMZ8SB1wGikGPizNhwMoAA4HA4AtbVQdX8GAI/HA6czsm84sqygvLy66QND5LQIuOScXnjvqwOo9vgNu25TRvXPguzzo6Qkeu8ZipEX/g6+IwNRs+4VSEUHYz0cwwiOZFizesPWYxjsvc6AkJCIsioZqGqdv4laLCJcLifKy2sgGTA1TcHxPkeP8ffaCTidgFOd+RTRvEaOiqLUlg3UBVM//1mp25YVADIgyz/vr3esXHt84Nh650ORocj1r6s5VtYcq2iOlUO7riAKaNdnCLxpvVBSYtz3R5fLGXKmlgEUTk3dFRYWomvXroH9hYWFyMmJfNrE7zf2G9Wvz+iG88/shqRkJ0pLqxq9fu2/DQWyAsiKAkWu/bOiKJBlBWVVXuw9Vo4vth/F4RPBP3xJDiumjO9l+NdhFCGrH5z/9yCkY/nw7foS0pEfoFSVmPumohVCQiKEhKTaR4vtibXb9tp9gj0RsCXUFjyKFkCse9ql9s+CKNY+KfPzPqHe60Jiau2TNj/Xb0kAEKf33miSJMft56w14X2OnpZzr38OxQTU/meAYJcxugmD1SrCmZYEd0njPwvNxAAKQE5ODpKTk7Fhw4ZAAFVeXo4dO3Zg6tSpTZwdXRZRhDPBCrfdCr8Y+YemfTsnenVOxbkjumDbrpP41xd7cfTkqUAq2WnDjZMHIS0lfqbughEEAdZO/WHt1L+2yLfiRG39QHkh5IqTgLcairemto5JW6QtCD83QEyAYEuo/b/dAcGeBIszCa6MDFT5REhWZyA44tNUREQEMIACUFv7NHXqVMybNw/p6eno3LkznnzySWRnZ2PSpEmxHp6pREHAiH6ZGNa3PXYfLsPRk1VIctowsHs6Eh0t6+MhCAIEVweIrg7NvpbVKiIxLQmekqo2kwUiIqLQtayfkCa6+eab4ff7MXv2bLjdbuTm5mLZsmVtpommKAjoe1o79D2tXayHQkREFPcYQP3MYrEgLy8PeXl5sR4KERERxTk2BSEiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKk6AoihLrQbRGiqJAls25tRaLCEmSTbk2ncL7HB28z9HB+xw9vNfRYcZ9FkUBgiCEdCwDKCIiIqIwcQqPiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoFqAxYsX48orr1Tt27lzJ6ZOnYqhQ4diwoQJWLZsWYxG13oEu8///e9/MWXKFAwbNgwTJ07E448/DrfbHaMRtg7B7nN9s2fPxsSJE6M4otYr2L0uLCzE7bffjpEjR+KMM87AHXfcgeLi4hiNsHUIdp+/++47TJ06FcOGDcP48ePxxBNPwOv1xmiELVdpaSnuv/9+jBs3DsOHD8cVV1yBzZs3B16P5c9CBlBx7qWXXsKzzz6r2ldSUoJp06ahe/fuWL16NWbMmIEFCxZg9erVMRplyxfsPm/evBk33XQTfvWrX+Gtt97CnDlz8MEHH+DBBx+M0ShbvmD3ub6PP/4Yb7zxRhRH1HoFu9derxfXXHMNDh06hBdffBEvvPACduzYgbvuuitGo2z5gt3n4uJi/PnPf0bPnj3x1ltv4eGHH8a//vUvzJ8/P0ajbLluv/12bN++HU8//TTefPNNDBw4EH/605+wZ8+emP8stEblXShsx48fx6xZs7Blyxb06NFD9drrr78Ou92OOXPmwGq1olevXjhw4ACWLFmCKVOmxGjELVNj93nlypUYPXo0/vKXvwAAunXrhttuuw333nsvHnzwQdjt9lgMuUVq7D7XKSwsxH333YdRo0bhyJEjUR5h69HYvX733Xdx5MgRrF27Fu3btweAwOe5srISycnJsRhyi9TYfd66dStKS0sxc+ZMJCcno1u3bvjNb36DdevWMVgNw4EDB/Dll1/itddew/DhwwEAs2bNwueff453330XDocjpj8LmYGKUz/88ANSU1Px9ttvY8iQIarXNm/ejNzcXFitp+Lf0aNHY9++fSgqKor2UFu0xu7zNddcg5kzZ+rO8fv9qKysjNYQW4XG7jMAKIqCu+++GxdffDFGjRoVgxG2Ho3d6y+++AKjR48OBE8AMHbsWHz88ccMnsLU2H1u164dAOC1116DJEk4fPgwPvvss6CffWpYWloa/v73v2PQoEGBfYIgQFEUlJWVxfxnITNQcWrixIkN1oEUFBSgb9++qn0dOnQAABw9ehQZGRmmj6+1aOw+DxgwQLXt9Xrx4osvYuDAgUhPT4/G8FqNxu4zUDsNcuLECTz//PN44YUXojiy1qexe71//36MHDkSzz33HN566y34/X6MGTMGeXl5cLlcUR5py9bYfR45ciT+8pe/YMGCBZg/fz4kScKoUaNw3333RXmULZvL5cL48eNV+z744AMcPHgQY8aMwfz582P6s5AZqBbI7Xbrpo8SEhIAAB6PJxZDavX8fj9mzpyJ3bt344EHHoj1cFqV/Px8LFq0CE8++SSnRU1WWVmJt956Cz/++COeeuopPPTQQ9iyZQtuuOEGKIoS6+G1GuXl5di/fz/+8Ic/4I033sCCBQtw8OBBzJkzJ9ZDa9G2bNmCe++9F+eeey4mTpwY85+FzEC1QA6HQ/c0R92HJTExMRZDatUqKytx6623YsOGDXj22WeZhjeQx+PBnXfeieuvvx45OTmxHk6rZ7PZkJiYiKeeego2mw0AkJqaiksuuQTfffcdBg8eHOMRtg7z5s1DeXk5Fi5cCAAYOHAgUlNTcfXVV+Oqq67iZz0CH3/8Me68804MGTIETz/9NIDY/yxkBqoFys7ORmFhoWpf3XZWVlYshtRqFRYW4g9/+AO2bduGJUuW8PF6g23fvh0//fQTFi1ahGHDhmHYsGF44YUXcPToUQwbNgxvv/12rIfYqmRnZ6NHjx6B4AkA+vTpAwA4fPhwrIbV6mzZsgWnn366al/dL1779u2LxZBatH/+85+YMWMGxo0bhyVLlsDhcACI/c9CZqBaoNzcXKxcuRKSJMFisQAA1q9fjx49erD+yUBlZWW46qqrUFlZiVdffRX9+vWL9ZBancGDB+Ojjz5S7Xv55Zfx0Ucf4eWXX+bn2WAjR47EP/7xD7jd7sAPoV27dgGofcqUjJGdnY0ff/xRta/uPnfv3j0GI2q5Xn31VTz88MO48sorce+990IUT+V9Yv2zkBmoFmjKlCmorKzErFmzsHv3bqxZswYrVqzA9OnTYz20VuXRRx/FoUOH8OSTTyI9PR0nTpwI/CdJUqyH1yo4HA5069ZN9V9qaiqsViu6devGJ8MMdvnll8NiseCOO+7Arl27sGXLFsyePRtnnHEGBg4cGOvhtRrTpk3DF198gWeeeQYHDx7E+vXrcffdd2P8+PHo379/rIfXYuzbtw9//etfMWnSJEyfPh1FRUWB78EVFRUx/1nIDFQLlJGRgaVLl2Lu3LmYPHkyMjMzMXPmTEyePDnWQ2s1ZFnG+++/D5/Ph6uuukr3+ieffIIuXbrEYGREkUtPT8crr7yCRx99FJdeeinsdjt+8Ytf4J577on10FqVMWPG4IUXXsBzzz2HFStWIC0tDZMmTcItt9wS66G1KB9++CF8Ph/Wrl2LtWvXql6bPHkyHnvssZj+LBQUPnpBREREFBZO4RERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUEbUYbFtHRPGCARQRtQiffPIJ7rrrrsD2hg0b0K9fP2zYsCEm47n77rvRr18/9OvXD3feeWezrtWvXz8sXLgw5OOvuOKKwHuHcx4RGYdLuRBRi/DSSy+ptgcOHIhVq1ahd+/esRkQgMzMTCxatAjp6enNus6qVauQnZ0d8vEPP/wwKisrcdlllzXrfYkocgygiKhFSk5OxtChQ2M6BrvdbsgYwr1GLINGIqrFKTwiintXXnklNm7ciI0bNwam7bRTeAsXLsR5552Hjz/+GBdeeCFOP/10XHzxxdi2bRu++eYbXHLJJRg8eDAuvPBCrF+/XnX9Xbt2Yfr06Rg+fDiGDx+OG2+8EYcOHQp7nP369cNrr72Gu+++GyNGjMCoUaPwyCOPwO124/HHH8fo0aNxxhlnYNasWfB4PKrz6qbi6r6u9evX45prrsGQIUNw1lln4fHHH4ff72/GXSQiIzGAIqK498ADD2DAgAEYMGAAVq1ahYEDBwY9rqCgAI8++iiuu+46PPPMMygrK8PNN9+M22+/HZdeeimefvppyLKM2267DW63GwCwb98+XH755SgqKsJjjz2GuXPn4tChQ7jiiitQVFQU9ljnzZsHu92ORYsW4eKLL8bLL7+M3/72tzh27BiefPJJXH755XjzzTfx8ssvN3qdO++8EyNGjMDzzz+Piy66CMuXL8ebb74Z9niIyBycwiOiuNe7d28kJycDaHy6q6amBg888ADGjRsHANizZw+eeuopzJ07F7/73e8AAJIk4eabb8a+ffvQv39/LFq0CA6HAy+99FLgPc4880z84he/wNKlS1WF66Ho1asXHnroIQBAbm4u3nzzTfh8PsybNw9WqxVjx47Ff//7X2zdurXR61xyySW48cYbA+P5+OOP8emnn+Lyyy8PazxEZA4GUETUqgwfPjzw5/bt2wNQB13t2rUDAJSXlwMAvv76a5xxxhlwOByBKbLk5GSMHDkSX331VdjvP2zYsMCfrVYr0tLSMGjQIFitp77dtmvXDhUVFSFfBwCys7NRXV0d9niIyBwMoIioVanLItXncDgaPL60tBTvv/8+3n//fd1rkTxdF+z9nU5n2NfRjlkURfbBIoojDKCIqE1LSUnBWWedhWnTpuleq581IiKqj98diKhFEEURsiwbft1Ro0Zh9+7d6N+/fyBgUhQFd955J7p164b+/fsb/p5E1PLxKTwiahFcLhf27duH9evXo6yszLDr3nDDDTh48CCmT5+Ojz/+GF988QVmzJiB9957Dzk5OYa9DxG1LgygiKhF+MMf/gCbzYZrr70Wn3/+uWHXzcnJwSuvvAJBEDBz5kzcfPPNOHHiBJ577jn88pe/NOx9iKh1ERRWJRIRhe3uu+/Gxo0b8d///jdmY+jXrx9uuukmzJgxI2ZjIGqrWANFRBQhr9eLb775Bunp6ejatWvU3nf37t2orKyM2vsRkR6n8IiIInTixAlcdtllePbZZ6P6vvfddx8XEiaKMU7hEREREYWJGSgiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgrT/wNkObGJlc9D5AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Increase the buffer and plot the change in the peak window.\n", + "buffer = 75\n", + "window_df = chrom._assign_windows(prominence=0.01, buffer=buffer)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.title(f'buffer size = {buffer}')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that increasing the buffer size expanded the extent of the orange window\n", + "by half a minute or so.\n", + "\n", + "Once the chromatogram is clipped into peak windows, each window is passed \n", + "to an inference stage where the peak mixture is inferred." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/methodology/problem.ipynb b/.doctrees/nbsphinx/methodology/problem.ipynb new file mode 100644 index 0000000..46e68c0 --- /dev/null +++ b/.doctrees/nbsphinx/methodology/problem.ipynb @@ -0,0 +1,320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Problem\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---\n", + "\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. This measurement is typically performed by measuring a change in index of refraction \n", + "or absorption at a specific wavelength. The resulting data, the detected signal as a function of time, is a chromatogram which may look something like this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of [skewnormal distributions](https://en.wikipedia.org/wiki/Skew_normal_distribution) to regions of the chromatogram that contain either singular or highly overlapping peaks, allowing one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3337.39it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:08<00:00, 4.10s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 18.533) R-Score = 0.9977\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0025\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0013\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 18.542 - 19.000) R-Score = 10^1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5944813.90350443149.0696795.177888e+062
014.450.349681-2.99602134710.5675084.165268e+063
015.530.3134761.61561315048.9650591.805876e+064
016.520.3392471.90911410805.7979781.296696e+065
017.290.3392531.56526612533.5412841.504024e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594481 3.903504 43149.069679 5.177888e+06 2\n", + "0 14.45 0.349681 -2.996021 34710.567508 4.165268e+06 3\n", + "0 15.53 0.313476 1.615613 15048.965059 1.805876e+06 4\n", + "0 16.52 0.339247 1.909114 10805.797978 1.296696e+06 5\n", + "0 17.29 0.339253 1.565266 12533.541284 1.504024e+06 6" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsH4N/M9k2y6dkQEtIgQwcBsbwgIAiiiKKvryhiwYoFRZEiCAqiiIgY/LDQBQTFgopiBQuKiGABkgxJSCe9Z/uU74/dQAhJSDab/tzXlYtk5syZM9klO8+cc57DyLIMQgghhBBCCOkK2LZuACGEEEIIIYS0FgqACCGEEEIIIV0GBUCEEEIIIYSQLoMCIEIIIYQQQkiXQQEQIYQQQgghpMugAIgQQgghhBDSZVAARAghhBBCCOkylG3dgE6sDIAGQG4bt4MQQgghjdcNgA2AXxu3gxDSQhhaCLXFWGRZ1kpS5/z9siwDuraOh66tY6Jr65jo2jomlmXAMIwVgK6t20IIaRnUA9RychmGia6oMEMQpLZui0cplSz8/b1A19ax0LV1THRtHRNdW8cVEOAFhYKh0RuEdGI0B4gQQgghhBDSZVAARAghhBBCCOkyKAAihBBCCCGEdBkUABFCCCGEEEK6DAqACCGEEEIIIV0GZYEjhBBCCGnnjh496gPnGkX08JqQC0kAcocOHVrZmMIUABFCCCGEtFNHjx5lATzLMOxdDMOoADBt3SZC2iFZlmXH0aNH3wPw0tChQxvM0d/mARDHcSoAzwOYDsAfwN8A5vE8/5tr/2AAbwAYBqAYQDzP86tqHM8CWALgftfxBwE8wvN8So0yza6DEEIIIaQNPKtQKGcaDP52tVprZhimc65AS0gzyLLM2O1WfUVF6UxRFADgxYbKt3kABGARgBkA7gZwGsA8APs4jusDwAbgOwB7ADwM4HIA6ziOK+Z5frPr+Odc++4FkANgpev4fjzP2zmOC2xuHS158YQQQgghdTl69KiBYdi7DAZ/u4+Pf3Fbt4eQ9kyj0VkABJaVFd919OjRNxoaDtceAqAbAbzP8/y3AMBx3NNw9sRcASAOziBoJs/zAoBEjuN6wRkkbeY4Tg3gaQBzeZ7/ynX8bQDOALgZwC4AD3qgDkIIIYSQ1hbKMIxKrdaa27ohhHQErl5SvSyjG4B6A6D2MJGuGMAkjuOiOI5T4FzA8jeAkQB+dgUu1fYD4DiOCwEwGICPaxsAgOf5MgDHAFzl2uSJOgghhBBCWhsLgKFhb4Q0juv/CoOLxDjtoQfoCQAfAEgDIMKZxeG/PM+nchwXDuB4rfJnXP/2ABDu+j6rjjI9XN97og63KRTtIcb0rOpromvrWOjaOia6to6Jrq3jYijFACGdXnsIgPoAKAVwE5zzbx4A8B7HcVcB0MPZG1ST1fWv1rUf9ZQJcH3viTrcZjDomltFu0XX1jHRtXVMdG0dE10bIYS0P20aAHEcFwlgB4CxPM//4tr8J8dxfQG8AMACQFPrMK3rX5NrP1xlLLXKmFzfe6IOt1VUWCCKDWbi63AUChYGg46urYOha+uY6No6Jrq2jsvXVweW7Zy9W8QpPn512P793wbu2fN17RFC7VJSUoI2OztbM27c+PK2bktn0dY9QMMBqAAcqbX9dwDXAcgAEFZrX/XPOa5jq7el1irzj+v7LA/U4TZRlCAIne8DAqBr66jo2jomuraOia6t45Fptg1pZ+bPf7rX1VdfU0wBkOe09SOO6nk3A2ttHwAgGcDPAEa6kiNUGwuA53m+AM4ApQLA6OqdHMf5ARgCoLpHyRN1EEIIIYQQ0gYoKve0tu4B+gPOIGMrx3GPAMgGcBeAcQBGwLku0FwAGzmOWwlnj9GTcK7ZA57nbRzHvQngFY7jCgGkA3gVzsDqE9c5NnmgDkIIIYSQdkGSJJjN5jZ5iK3X66WmDhEcMWLY0FtuuS33xx9/CHQ4HOwbb7yVpNfrpbVrXw//99+/DCaTSeHr6yuMGTOu+Ikn5uQkJiboHnronr7r1m1IHDhwsBkAnnzykdgTJ/41fP31j38plUrIsozrrx836O67Z+Tcdtu0otrnLCoqVK5evTL82LEjvqIoMnFxvaueempeVmxsz7Nzvt99d51x7949xsrKSmXPnr1M8+cvTq/eX1ebw8Mj7O+883/dfvppf2Bpaamqe/fu1unT7z1z7bXXlwHA7t27Anfu3Nbt3nvvz9m48d3w8vIyVZ8+/SoXLXohfcuWjaE//vh9oFKplCdPvjn/4YcfywMAm83GvPnm62EHD/7sX1JSrNZqddKgQYPL589/LjMgIFC86aZrBxQVFak//PD9bseP/+2zfv17fGlpieLNN9d0P3Lkd7/KykpldHSs6cEHH8m5/PIrq6qvbc+ejwN27NjarbCwUNOjRw/LmDHXFG/c+HbEwYN/HnXnNWFZ1q3ra6/aNADieV7iOO5GOFdr3QLAH86MbWN5nv8dADiOmwAgHs601LkAnuF5fmuNahbDeR0bAOjg7PGZUL2AKc/zBc2tgxBCCCGkPZAkCXfccUvvpKREr7Y4f+/efavef/8jvqlB0LfffhX88suvJYuiwPTqFWe7445b+vr6+jleeWXNKR8fH/Gnn/b7rV//VkTfvv1NEyZcVxYUFGQ/dOhXw8CBg82iKCIh4YSPzWZj//rrqNell15m+vvvY/rKygrl1VdfU1b7XIIg4IknZsYBjPz88y+lBgYGCmvXvh7+9NOPx3300RfHAaCoqEh94sS/Pi+/vDrZbrcxL730QvRLL70QtXHjNr6+Nj/55COxp0+n6h9/fHZmdHSs9euvvwxYvvz5WJZlU8aPn1gOAMXFRerPP/805MUXV6aYzSb2uefm9br33mn9xo69pmjduo2JX331eeD27Vu6jxo1pqxPn37W115bEX748CG/efMWpkdE9LDxPK9bteqlqHfe+b+wBQsWZ23YsC1xxoxpff/zn1ElDz44M1cURcya9XCcw+Fg5s1blBYcHOL44IP3Q+bPfypuzZp1SYMHDzF///03vqtXvxJ9110zskePHlt2+PBvhg0b3o5o7mvizvU16U3Sitq6Bwg8z5cCeNT1Vdf+I3Auilrf8SKci5rOa6BMs+sghBBCCGkfOt66QKNGXV08ePAQMwBYLBbm6quvKZ4wYWJpRESkHQCiou4r2L17V2hKyindhAnXlQ0bdlnZsWNHDADy/v77mJdCoZTj4npXHTly2OfSSy8z/fLLT369enFVwcEhQu1z/frrz4aMjHTd5s3vn+jVK84GAAsXPp++ZcuG0JKSYiUAKBQKedmyV9J8fX1FAJg4cVLh9u1butfX5lOnkrR//vmH3/PPL08ZN25COQA89tiTuadPp+h37NjarToAEkWReeqpeRnVN/8DBgyqOHUqyfuZZ57NZhgGDz74aO6HH+7slpx8StenTz9rnz59TWPGjC294ooRVQAQERFp/+67ryvS00/rACAoKFhgWVbW6XSSv3+AuH//d4a0tNP69eu3nqw+x6JFL2SeOpXktWPH1tDBg4ec3rVrR+jll19Zcv/9D+cDQM+evQqzs7M0X3yxx9ic18Sd62vOe6YltXkARAghhBBCGodlWbz//kd8RxoCBwDh4RFnh57pdDp5+vR7C7766gv/7du3ep05k6PJyEjTl5WVqkRRYgBg5MjR5UuWPBtssViYw4cP+fTr17+ye/cI6z//HDMAyDty5LDvVVeNLqnrXMnJp3R6vV6sDn4AwGgMFebNW5Rd/bOvr69QHfwAgI+PQbTb7eddWM0283ySDgCGDbusqmaZAQMGV7733sbwmtt69jx3Xo1GIwUHG22Ma4EprVYrA4DNZmMBYMqUW0t++eUnn9WrX+mek5Otyc7O0p05k6Pt3bvPeeeplpKSrNPp9GLN4IJhGPTt27/q2LE/DQCQnn5aP2LEVaU1jxs06JKq2gFQU18Td66vvaIAiBBCCCGkA2FZFt7e3h0qBZ9Goz3bXrPZzD700D2c1WplR44cVTp+/MTiQYMGZz722IO9q8tcccV/KlUqpfT777/6/PXXUcOYMWNLIiOjbJ9//kloVlaGOj39tP7555efrutcCoVSZi6yoi3LshftRavZ5voSEUiSyCgUivN2qlSq835m2frbsnTpcz1+/fXngNGjxxZffvl/ynv37pu7Y8fW0OLiQnVd5WW57kuTJAlKpVJ2no+V5UakM2zqa+LO9bVXFAARQgghhJBW89NP+w1paaf1n3zy5T8hIUYBAEpLSxTl5eXK6kBDrVbLgwZdUvHzzz/6JSef8p4//7mM8PAIO8Mw8rp1a8O6dQuz1kxoUFNMTKzVZDIpTp9O1cTExNoAoLi4SHn77Tf3f/HFlcnutDkurrcFAP7887B39RA4ADh+/B/v7t0jLPUfWb+SkmLFt9/uC543b+HpG26YcrbHJjs7U6vV6moEX+cCjJ494yxms1mRmHhSW7MXKCHhpHd4eA8rAERGRlkSEk56Ayio3n/y5PEG54w15jXpTNp19xQhhBBCCOlcjMZQOwB8/vmngVlZGerDhw95z5kzq6coiozd7jh7t3/llSPKDhz4Ichg8BFiY3vaNBqNzHF9qg4e/Cnw8suvLKuv/pEjR1VER8ealy5dFH306BGvpKQE7fPPL4zy9fVzDBp0idmdNnNcH+vgwUPK4+NX9/j++298U1KSNW++uabb0aNH/P73v9vz3anTYPAVdTq9ePDgz36nT6dqEhJO6JYseTYyPT1N73Cc+z1otVoxJydbU1CQrxw1akx5RESkZenS52J+++0Xn1OnkrTLli3ukZ2dqZs69Y58ALjjjrtyDx/+zX/jxneMp0+naj766IPAL7/8IqShtjT2NeksqAeIEEIIIYS0miFDhplnzHgwa8+ej407dmzt7u8fYB85cnRJUFCwnefPZbcbM2Zc+Zo1q5j+/QdVVG+75JKhFceP/2MYNerqsvrqZ1kWK1e+nrJ69cqI+fOf7gUA/fr1r1y9em2yRqNxuztjxYrVp9esebX76tUro8xmsyIiIsLy7LPPp06ceH29bWmIUqnEokUvnH777bXh9913Zz8vL2+hf/+BlXfeeU/ORx/t6mYymVgvLy/pxhtvKdi06Z3wJ554RLdz58cJ8fFvnVq9emX4Cy8sinU4BCY6Osa8YsXqU0OHDjcBwJgx4yoKCvIzdu3aEbpt2+bu0dEx5gkTJhbu27e33iCosa9JZ8E0ZowgcctpANGlpaZOt1K2UsnC398LdG0dC11bx0TX1jHRtXVcAQFeUCjYNAAxbd2Wo0eP9mZZxdchId2r1Gptu82oRdqXQ4cOegcFhThqJoF46621od9+uy/o00+/OtGWbWtpdrtVW1CQ4y1J4rVDhw5Nqq8c9QARQgghhBDSSfz++2++P/64P2Du3GfTIyOjbAkJJ3Wff/6pceLESYVt3bb2ggIgQgghhBBCOolHHnnijMViYVeseDG6srJCGRAQaL/xxpvzH3hgZl5bt629oACIEEIIIYSQTkKj0cjPPrskC0BWW7elvaIscIQQQgghhJAug3qACCFdUklJCd7b9A6CweCWmY9D69XpktwQQgghpA7UA0QI6XJkWcbCObMw4K+/cGlSEk7OeRKi2a2lIQghhBDSwVAARAjpco4d+xM9CwoQodMDAHwcDuR+9mkbt4oQQgghrYECIEJIl/P9t/swOigYAHDMYQcAlP/6C2Sp861pQgghhJDzUQBECOlSJElC3qHf4KNUQdTpUDH8MmzMSMPnajXAMG3dPEIIIYS0MAqACCFdSnLyKeSVFON4VSX8/zMSgy+9DN8U5uOXpJNgKAAihBCPGzFi2NDdu3cFNrb8jz/+YJgy5br+o0dfPuSVV5aHt2TbGiM+fnXYTTddO8CTdTbld5Kdnan+/PNP/T15/q6OssARQrqUf//9G4lVlfjW1xc333Y7vKqqAABnzuSgpKQEAQEBbdxCQgjpXD7+eO8/BoOv2Njy69e/FW40htreeGPdKW9vn0Yf15E05XfywgvPRYWEhNgnT55S2tLt6iqoB4gQ0qX8++/fAICBAweBYRj4+PigX0wsJgQbkf7+trZtHCGEdEJGY6ig0+nkxpY3mUyKvn37mXr0iLIHBAR2ygCoab8TmYYneBj1ABFCupScE8cRoFJj4MDBZ7f15/rglsIiSP/8DVkQwCjpTyMhpH0TLZZ6H2IzLCuzGo3c0mUba8SIYUOfeGJO+q23Ti1euPCZKEmSGH//AMeBAz8E2mxWduDAwRULFizOMBpDhREjhg0FgA8/3Nntww93dnv//Y+OR0RE2tevf8u4b9/ekPLyMmVoaDfbrbfenjdlyn9LAOC3337xmTt3dtxdd83I/vjjD7sFBQXbXnzxldPTp/+v/+23Tz/z5Zefh6jVKmnLll0JDMNg9epXwv/445CfIAhMdHSs+ZFHZmUPHjzk7FoIO3duC9q9e1doaWmJetCgS8pDQoz2hq7vgQfu4vr1G1hZWlqi+vXXnwNUKpU0adJNBePHTyxZsWJZ1OnTKV6hoWHWuXOfTb/kkqHmmr+Ta665tuyuu/7XLyoqxhwf/3YKAPz8848+Cxc+E7dgweLUTz/dbUxMTPBOTEzwvumma3327Pn6+E03XTvg6qvHF8+a9dSZmm0ICTHali9/Nb2u38d77+1KzM/PU73++qsRf/99zKBQsHJcXG/TE0/MyYqN7Wlr6mva0dGnPCGky6isrMTlMjB/0BB4FRWf3d69dx+Ycw9Ar1TCnp8HTfc2H3JOCCENSn185iX17dPFceURcxekVP98+qlZg2SHo87ARhMVXRW5aAlf/XPavKcHSGZznfeH6rDu5qilyxOb024AOHToV/8RI0aVvPHGOv7MmRz1yy8vi3nzzTXdly1bkfHxx3v/eeCBu/r+5z+jSu655768oKBg4fXXV3b/6acDAY8/PjszNraX9c8/D3v/3/+tiayqqlJMn35PYXW9hw8f8lu3bkOi2WxmFQpWBoAff/wh4PXX3+QtFgvr6+srzphxZ2+lUim9+OLKFIPBIH7xxZ7AJ598pPfate8kDhgwyPL555/6v/32mz3uv//hrCuuGFHxww/f+m/fvqV7YGBgg0HQnj0fhd566+25GzZsO/nll58F7ty5LeyHH74NfPjhx7LCwyPsr7zyYuTq1a9Ebtv24Xm/Pz8/P/GZZxamPfvsnLjPPvskYOTIUeUrVy6PHjt2fNF1191QdsUV/6l86qnHegUFBdvnzVuU2ZTfc83fh9VqZR9//CEuKira/Prr/8crFKy8Y8d7oY88cl+fzZvfPxkW1t3RlLo7OgqACCFdRnp6GmK8vAAAvjExZ7dHRkUj0/oVenv7wJadTQEQIYS0IJ1OJy5Z8mKGSqWS4+J6Ww8d+rX46NEjvoBzaBjLsrJOp5OMxlDBZDKxX3yxxzhnzoK0ceMmlANAdHSMLTf3jObjj3eF1gyAbrvtjrzq3ozMzHQ1AFx//eRCjutjBYBffvnJJzmZ99qzZ98/QUHBAgA89dS8nISEk967dm03DhgwKP2TTz40XnnliNLp0+8tBICePXvlJSae9EpPP61v6JoiInpYHn30iVwAuPfeB/N37tweNnLk6JLx4yeWA8D48ROL169/O6KuY0eOHFU5ceINBW+//WbEDz98G+Dl5SVWBzv+/gGiUqmU1Wq1VN3mxqr5+/jggx1BlZUVyhUrVqepVCoZAJYufTn95puvH/DRRx8E1+xN6gooACKEdBlZp1MQo9UBALSRUWe39+gRhX0WM3p7+8Ce26U+AwghHVTs2rf+qm8fw7LnDVOLWR3/T2PLRr/y2vHGlnWX0Rhqq74JBwAvL29REIQ657mcOpWkdTgczGuvrYhavfqVqOrtoigxguBgLBbL2eOioqIvGMrVo0ektfr7pKQEPQDcdttN52V0EwSBcTjsDABkZWXqRo8eW1Jzf9++/asuFgCFhYWfPY9er5cAoHv37mfbo1ZrJEFw1DuX56mn5mYfO3bE99ixP33femtTQlPmTNWn5u/j1Cleb7FYFNdeO3pwzTIOh4PNysrQNvdcHQ0FQISQLqM0KREsw8CsUEDp53d2e3h4OIrsztENVWdyENRG7SOEkMZS6HSNXrm5pcq6q2bwc07d9/uSJDEA8OyzS07HxPS01t6vqTEnSavVXtB2rVZ7dr8kSYxOpxPfeWfLBcP41Gq1BAAMw0Cu1RSlUnnRYESpVFxQhmEan2ssPz9PVVZWqlIoFPKhQwcNAwYMtDR8xPmnEwTxguCq5u9DkiR06xZmXbFidUrtcl5eXp0y0URDKAscIaTLcGRnAwBsNYIfAFCp1BBcQ+PMebmt3SxCCCH16NkzzqpQKOTc3DPqmJhYW/XXzz8f8N22bZORZRt/Kxsb28tisVgUdruNqVnXli0bQvfv/84PACIjo8wnTvzjXfM4nk/08uxVnU+SJCxduig6MjLa/MgjszLff/+97idOHNedK8GcF+0oFEq5qsqkqHl8QUG+uqFzxMTEWoqKitQGg0Gsvu4ePSJtb765pvsffxzy8fQ1tXcUABFCugxNeRkAQFXHHB91cDAAQCqlZRYIIaS98PX1Fa+55trCbds2d//kkw8D0tPT1B999EHgli0bw/39A5o0J2bMmLHlkZFRliVLno09ePBnn9OnUzUrVy4PP3Dg+6Do6FgrANx++115f/zxu//69W8ZU1NTNFu3bgw5fPhQiy5C+u6760LT0tL0Cxc+n37bbdOK+vTpV/nii4ujbTYbAwA6nU4qKMjX5ORkqwCgT5++VQcP/hRw6NCv3ikpyZqlS5+LtFjMiobOMXnyzSXe3l7ivHmzY48e/cMrOZnXPvfcvOi//z7q26sXd5Heps6HAiBCSJcgSRL8BOdnpX8cd8F+dXgEFiQcx8Ho6NZuGiGEkAbMn/9c1o033pz/3nubu99zz+39d+zY2m3q1GlnHn+8aRP3FQoF4uPfPtWrV5xp+fIlMfffP73vv//+7bNo0QupI0eOqgSAcePGl8+d++zpb7/dF3TffdP7HTz4s9/kyVPyW+bKgOPH/9Xt2rU9bPr0e3JiYmJtALBgwXMZRUWFmtdfX9kdACZPvrkwKytTO2PGtH6iKOKxx2bnxMVxVQsXzu31+OMP9TYYDMKVV45s8Omdr6+vuHbtu0m+vn7C/Plzes2ceV+fgoJ89UsvrUru3bvvBUMLOztGrj3QkXjKaQDRpaUmCEKLD6dtVUolC39/L9C1dSxd/drOnMnBi9P+h54+Ppi5fit0RuN5+zdvXo833ngN118/GcuXr2yNZjdKV3/dOiq6to4rIMALCgWbBiDmooVb2NGjR3uzrOLrkJDuVWq1tsvdpBLSVHa7VVtQkOMtSeK1Q4cOTaqvHPUAEUK6hPT0NPxWWoyDSsUFwQ8AhIZ2AwDk0RwgQgghpFOjAIgQ0iVkZKQBACIj6x7iFhraDcP9/HG5yQzzKb7OMoQQQgjp+CgAIoR0CWV8Evp4+6BnRI869xuNoRjuH4BR3j6wpF6QJZQQQgghnQStA0QI6RLCcnLwQu9+yJfqnvcYHByCcoczSYIpPx+Brdk4QgghhLSaNg+AOI4bDeBAPbvTeJ6P4ThuMIA3AAwDUAwgnuf5VTXqYAEsAXA/AH8ABwE8wvN8So0yza6DENJxGWx2QK2Gb2zPOverVCoIGucyCqbCgtZsGiGEEEJaUXsYAvcbgG61vsYDEAC8xHFcIIDvAJyCM3hZAmAZx3H31qjjOQAPA3gAwBVwLo+7j+M4NQB4og5CSMdlNlUhWOl83hM2YGC95Rgf51pwjjJaC4gQQgjprNq8B4jneTuAvOqfOY5TAXgdwMc8z2/gOG4BABuAmTzPCwASOY7rBWAegM2uAOVpAHN5nv/KVcdtAM4AuBnALgAPeqAOQkgHlXn8ONQsC4ckITAmtt5yKl9/wGSCXFXViq0jhBBCSGtq8wCoDo8CiABwjevnkQB+dgUu1fYDWMBxXAiAKAA+rm0AAJ7nyziOOwbgKjiDF0/U4RaFoj10snlW9TXRtXUsXfnaCk8lwgigjAFU6vr/7GmDAgCTCQqrFUpl+/g9deXXrSOja+u4GKatW0AIaWntKgDiOE4LYCGANTzPVy/GEQ7geK2i1Sv/9nDtB4CsOspUp3vyRB1uMRh0zTm8XaNr65i64rVZz2QDAOxeXvD396r3+MCIcCAjC2pRhK+PBqyy/fyJ7IqvW2dA10YIIe1P+/l0d5oOQAcgvsY2PZzD12qqXg1Z69qPesoEeLAOt1RUWCCKnWulbIWChcGgo2vrYLrytVlynM875IAAlJaa6q1H4xeIuSf/BTd0GPpUWMG0g0fBXfl168jo2jouX18dWLb9924xDBQMw7R6Q2VZlmQZYmuflxBPam8B0F1wzv0prrHNAkBTq5zW9a/JtR+uMpZaZarvdDxRh1tEUYIgdL4PCICuraPqitd2oKQYP+Xn46bxExq8dv+AIKRbzNAVF0EUZThzobQPXfF16wzo2joeuf38t68Xw0AhMUw3s1Vo9fs4vVYpsJBz21sQFB+/Omz//m8D9+z5uvaIn4tKSUnWPPjgPX23bNlxskePKHtLtI+0L+0mAOI4LhjAlQBeqrUrC0BYrW3VP+cAUNXYllqrzD8erIMQ0gHJsozDaakwm814ZOilDZYNCgoCABQXFzdYjhBC2hLDMKzZKih/P5Erma2tF4XqtUr28v7dlD5aJSvLcrsKgNyVkHBCN3/+0z3tdlv77/YjHtOeXuwr4Xzc+lOt7T8DGMlxnKLGtrEAeJ7nC+AMUCoAjK7eyXGcH4AhAH7xYB2EkA6osLAAZrMZLMsiIqLhKX2BgcG4wj8QE7U6mPikVmohIYS4x2wVJJPF0WpfrRlstYZ16+JDH3vswd6+vr7CxUuTzqTd9AABGATgNM/z5lrbNwGYC2Ajx3ErAQwH8CSca/aA53kbx3FvAniF47hCAOkAXoWz1+cTD9ZBCOmAMhOOY0xgMGwGA9Tqhpf1CggIwDA/f4wMDEJZYiK8uN6t1EpCCOm8RowYNnTmzMczf/jhu4C0tFQvozHUOmPGgznjx08sry7z/fff+G7ZsiEsJydb5+8fYL/qqjElM2c+nqvRaGQASEpK0L799pvdExMTfKxWCxsYGGS/4YYpBffee3+dK1dv2bIhZMuWDeELFiw+PWHCdWV1lTl69A/fZ555Ns3X11ecO3d2XItcPGmX2lMPUCiAC8aduHpoJgDgAByDcxHTZ3ie31qj2GIAGwFsAPArnIuoTnCtMeSROgghHVPJ8ROYGR2L24JCLlpWpVLBoXB2FJuKC1u6aYQQ0mVs3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94J0hNu3bwneunVj+KJFS1PrC34AYOPG7fzEiZPq3U86r3bTA8Tz/CMN7DsC4IoG9otwLmo6ryXrIIR0PJYcZwpsh49Po8pLGme+FGtJSYu1iRBCupoxY8YVTZ9+byEAzJkzP+fEiX98du/eGXLppZelbd++pdvYseOLpk27uxAAoqNjbEqlMmPevKfiMjPT1Xq9lzR58pSC22+fXmAwGCQAeOyx2Wc++WR3aHJykm7AgIFnE1jt3Lk9aNOmd8OXLHkxZfTosRVtc7WkvWtyAMRxXCCAKXDOoYkG4AugCEAGgH0AvuR5vsyDbSSEELfJrkBGZTQ2qjyj1wMyIFRWtmSzCCGkSxkyZNh5f1Q5ro/p77+PGQAgLS1Nn5qa4nXgwPeB1furs/GlpCRrr776moo77rirYO/ezwJSU5P1OTnZmoyMND0AiKJ0dr2C0tJS1VtvxUcqFAo5PLxH7aVNCDmr0QEQx3FBcC5Ser/ruEQ458okA/AHMADAVAA2juPeBvCKa+gZIYS0GS+rFVCrYYiKblR5Ru8FmEyQzM3KgE8IIaQGpVJ5XoJxWZbBsgrZ+b3E3HTTf/MmT55ywVQIozHUUVCQr3zwwXv6+PgYhMsvv7Js6NDhFQMHDjLddttNA2uWZRgWS5e+lLxp07thy5c/H71x47akjrCmE2l9jQqAOI77L4A3ARwF8CCAz+pIVgCO4wwAJgJ4CEACx3GP8Dz/oQfbSwghjWaz2RDo+vDr1rdfo45R+vgAJhNYq/XihQkhhDRKQsIJr2uuufZs0oOkpATv2NhYMwCEh/ewZGVlaGNiYs/22hw6dND7gw/eNy5YsDhj797PAquqKpW7d39+QqVSya76XHN/zsVVfn6+jlGjxlSEhITYH354Rt/Nm9cb77vvofxWukTSgTS2B+gJANfxPH+soUI8z1cA+ADABxzHXQZgNQAKgAghbSKTT4S3UglJlhEc17iMbho/PyAvDwqHo2UbRwghzaTXKlu1e6M55/viiz3GyMhoa//+A00ff/xhcEZGum7evOfSAWDq1Gl5K1Ysi4mPXx123XU3FOfl5apfe21FVFBQkN1oDBWMxlC7zWZj9+79zP/SS4dXpaamaNeti48AALvdfkGb+vTpZ50y5da8HTu2ho0ePbYsNrYnDYcj52lUAMTz/MimVszz/GEA/2lyiwghxEPyEk7CCKBClqFwJTe4GHW3bpjz8YcYfMV/MKhlm0cIIW6RZVnSa5XC5f27KdHKGX31WqUgy3KT1wMaP35i4Ucf7TKuWbNKFxkZaX755VXJ/fr1twDA9ddPLpVl+fTOndu6ffLJh6F6vZc4bNjwstmz52ZX709KSsxbv/6tiLVrV7NBQcH2CROuKzp06Fe/xMSTXgAuSNs5c+bjub/++rP/8uXPR23Y8B5PQ+FITe0mCxwhhHhaankZ3uUTcOXwyzG8kcf4BgYh02JGSEX5xQsTQkgbkGWILORcn1buAXKeW5ZkGWJTj4uOjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNnfk7N7TWHt82a9dSZWbOeOlP9s0ajkXfv/vxkY9p25ZUjKw8e/PNoY8qSzqGxc4A2NaVSnudnuNccQgjxnNTsLByvrMDIJixo6ufnDwAoK6vzc5gQQtoFWYYoy3KTAxFCSON7gK5GzVlmQBgAFYBMALkAAgHEALAB+MeTDSTth2SzgVGr27oZhDRaRkYaACAysnEZ4ABnAHRtiBGRjAKOwkKogoNbqnmEEEIIaQONnQMUVf09x3F3AHgFwC08z/9RY3tfAHvgTIJAOhmxshKn5s9BlSQh9rnF8Pfv29ZNIqRBsiwjtqwcfoFBiArt1ujj/P39MS7IiB56PeyFBRQAEUJIM9HwMtLeuDN2dDmA+TWDHwDgeT4BwCIAcz3RMNK+pOXn4b1kHr4OBz5b+nxbN4eQiyopLsYtQSF4LLonwvwDGn2cn58/zKIAADAVX7AkBSGEEEI6OHcCoCAA9c0OFgB4u98c0l7t27cXDsmZ9CW4rBzFdGNI2rmsk8ehZlkIsgzv7t0bfZxGo0H1CkBVJfQ+J4QQQjobdwKg3wEs4TgusOZGjuO6AXgBwAFPNIy0L3/++QdOVFYAAKL0ehz5/XAbt4iQhhWcSgIAVDAMGIWiSccKrvKW0hKPt4sQQgghbcudNNhPA/gJQDrHcYfgzL1uBHAlgBIAT3qsdaRdKD9yGKNNJvyu18Miy9CxLBL++AOXXTmqrZtGSL0qMzMBADa9/qJllSoWYADB7uzlFJUqAIC9srLlGkgIIYSQNtHkHiCe5/8F0A/A2wB8AAwDoAOwCsBAnufTPdlA0vYKj/6J//gFIM7ghwqtFwCgODm5jVtFSMOkIue6eGxQUIPlFAoW5UIZcs25UKmcfxJlV7ZDRxUFQIQQQkhn49ZCqDzPnwHwjIfbQtopS14uNAAsWh3sPgGAzQypmIYGkfZNbTIBag28wiMaLMcoZGSVnkGl1YTA7oFgoQS0GsBqg2g2t1JrCSGkaRgGCoZhOsxCqIS0J24FQBzHaQDMAHANgG4A7gUwGsCx2tnhSMcnlZUBAARvX4hBYcjLTkFBSQlEUQTAtGnbCKmLIAjwlZxLlwU3sAgqwwBWyYpiUxnMdgvMDjN8Fb7IDQjA0999jVuGDMEVrdVoQghpJIaBQsc6usl2s1v3cc06t1ovWCRVLgVBpCNr8n8cjuOCAOwH0AdAIpzD4fQArgewmuO4sTzPH/JoK0mbUlY/BfcNROWwa7Bg5zqIooDHCvIRHBzato0jpA45OVlYfioRUQZfrBt0Sb3lFAoWZQ4zKm0miJKIClsl/L39ofLzR5bFgmIL9QARQtofhmFY2W5WVvGHJclmkVrrvKxGx3pzlykZlR8ry3K7CoDi41eH7d//beCePV8fb+wxu3fvDPz44w+NBQUFGn9/f8f48dcW3X//zDxFExPnkI7HnScHqwAY4AyA0gHYXdtvBfANgKVw9gyRTkC0WKBypb9mAkOhUCjg6x+EkqI85OdTAETap9OnT6PQbkNQcBBU3vVn5mcYBiWWMoiS83O8xFKOHj4yDAYDAKCioqJV2ksIIe6QbBZJtJpaLQByafVhdy1hz56PA/7v/96IfPjhxzMvu+yKypMnj+vj41+LtNsdzOOPz85t6/aRluXOm/gGAIt4nk8BIFdv5HneCmdwNNRDbSPtgFDinOtTJQjQB4QBAAx+zkUlCwsL2qxdhDQkPf00ACAqKqbBchIEVFjPJTqwOCwQZAcCNFrc0q07ehUVtWg7CSGEtI3PP/80eNSoq4unTp1WFB0dY5s06cbSG2+8Jf+7775uOHMO6RTc6QHSwpnuui4CALX7zSHtjVBeBgAostvg4xcMRhTwpK8B2oFDkJ1LD0hI+2RNTMStYeHoGRTcYDm77IDZbjl3nMMGh+SAr1aL27pHwGqztXRTCSGk0xsxYtjQmTMfz/zhh+8C0tJSvYzGUOuMGQ/mjB8/sby6zPfff+O7ZcuGsJycbJ2/f4D9qqvGlMyc+XiuRqORASApKUH79ttvdk9MTPCxWi1sYGCQ/YYbphTce+/9dT6N3bJlQ8iWLRvCFyxYfHrChOvKau9/+OHHsgMCAoXa202mqlafV0Vanzs9QEcAPFLPvmkA/nS/OaS9YaOjccfRw1h+Kgm+ASGQFUoEMgwC1GpU5p5p6+YRUidDYQFuDQtHQ/0/LMvAJtphtlvPbrM6bLBLDngFOns51TIgS609uoQQQjqfzZvXh48ZM7bk3Xe3nhw27LLyZcsW9zxy5LAXABw48L1h+fLnYydOnFS0adOOk0888XTmwYM/BSxc+Ew0AJjNZvbpp2fFabU6ae3at5M2b37/5IgRV5Vu3Ph2xPHj/+pqn2v79i3BW7duDF+0aGlqXcEPAAwffrmpZ89eZ59ylZWVKfbt2xs8aNAlNPa5C3Anyn0OwPccx/0N4Cs4h8HdznHcCwAmuL5IJ1FUVARBlmFVKqHTO+dSWBQqaEQ7rDQ8iLRDsixDZ7EC3t7wi64/BGJZBla7FTbhXC+PXXTAJtphcPUcsQwDyWqFohGLqRJCCKnfmDHjiqZPv7cQAObMmZ9z4sQ/Prt37wy59NLL0rZv39Jt7NjxRdOm3V0IANHRMTalUpkxb95TcZmZ6Wq93kuaPHlKwe23Ty8wGAwSADz22Owzn3yyOzQ5OUk3YMDAs135O3duD9q06d3wJUteTBk9emyjgpmqqip2zpxZPR0OOztr1tNZLXH9pH1pcgDE8/wvHMddA+BlAHPhzIP8FIBjAK7nef6AZ5tI2lJJSTEAwODrf3abTaMFzHY4SmktINL+FBcXIUTl/NNm7N233nIsy6DSWnVuIqOLyW6Gb2AgSiUJapaFZDFTAEQIIc00ZMiw81aW5rg+pr//PmYAgLS0NH1qaorXgQPfB1bvl11/nFNSkrVXX31NxR133FWwd+9nAampyfqcnGxNRkaaHgBEUTq7HkdpaanqrbfiIxUKhRwe3qNRY5jz8/OUc+bM6pWfn6dZsWL1qaioaPvFjyIdnbsLof4M4D8cx+kA+AOo4Hm+CgA4jlPyPH/BmErSMdl/PIDHomNxQnPuBtCh8wHMFZCrqtqwZYTULS3lFILUGgCAvnt4veUkSKi0my7YbrKb0d3XiBxRgJpVw15ZCVUgzYklhJDmUCqV5z1vkmUZLKuQnd9LzE03/Tdv8uQpxbWPMxpDHQUF+coHH7ynj4+PQbj88ivLhg4dXjFw4CDTbbfdNLBmWYZhsXTpS8mbNr0btnz589EbN25LYtn6Z3skJ/PaOXOe6CWKIrNmzTq+b9/+lnoLk06lyXOAOI47zXHcIADged7C8/yZGsHPcAD5Hm4jaUPK7CxcFRgMo5fP2W2Sjx8AQGWlCeKk/TmTkACWYWADoHCls66LIAuwOi58D9sEG7x8vGASnKmxTcUXfB4TQghpooSEE141f05KSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eb6yvPRkZ6eonn3w0TqvVSm+/vSmRgp+upVE9QBzH3Q5A5foxCsCU6iColrE1ypFOgLE4/x5I+nNrqTC+zh5qjSjCbrdDrabEf6T9KE9zpsC2aLVgGKbecoIsnDf/p5pdcIBVsrDKzuQHphIKgAgh7ROr0bXqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/hj/+KLS6IEwcE+99yyZJVKJefn5529JzYaQ2kkUyfX2CFwwwDMdn0vA1jcQNnXmtUi0q4o7M6hsIz+3JN0xi8IZ6wWVAgOlJWVIiSk3gcshLQ6W34eAIAJCKi3DMsyzoQHwoVDve2iA6Is4oOKMhSnpeDlwMdbrK2EEOIOWZYlRq0XvLnLlGjlhUkZtV6QJbnJ6THHj59Y+NFHu4xr1qzSRUZGml9+eVVyv37OXpfrr59cKsvy6Z07t3X75JMPQ/V6L3HYsOFls2fPza7en5SUmLd+/VsRa9euZoOCgu0TJlxXdOjQr36JiSe9ABTWPt/MmY/n/vrrz/7Llz8ftWHDe3zNoXC5uWdUiYknfQDg4YfvvWCy6MGDfx5t6vWRjqWxAdACAPFwJjw4DeBmAH/VKiMCKOd5vhKkU5BFEerqFMCuYW8AUBUzAK9mZqCyogyTyssoACLtyqeZ6fi4tBSv3HlXvWUYhoGjngDIIQoQJAEmnQ5ZFgsqrDQqghDSvsgyRIukymVUfq0a/ACALMmSLENs6nHR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzM+puf2++x46O+1i1qynzsya9dTZ9Tk0Go28e/fnJ+uqr1u3MAcFOV1bowIgnuftADIAgOO4aABnAPTnef4v17ZQAMMB7GuhdpI2IJpMYABIsgyF7/mTwPXePqisKEN5eXndBxPSBsxmE87kORfojbpkSL3lWJaB2WGBJNfOAQc4RAcEWYDB4AsAqKykJSEIIe2PLEOUZbnJgQghxL1uUxHA3wA+qrFtMIA9AA5yHEfpkjoJsdLZmVclCNB6+523z8vbeXNYXl7Wyq0ipH5paWkAgICAQPj6+tVbjmGAStuFGeCAcz1AcXov3NKtO5CS0hJNJYQQQkgbcScN9qsAFABuq97A8/zXrqQIHwBYAeD+plTIcdxdAOYDiAGQCuB5nud3u/YNBvAGnPOQigHE8zy/qsaxLIAlrnP6AzgI4BGe51NqlGl2HV2RaHKmua4UBOhqzgFy2PGkjzeUAy9BQWmdvdWEtIn05FN4NCoWbGAAZEkCU0/6U1EWYRWsde6TIcMq2BGjUmFQ9wjk5dQ7YoMQQkgj0HAz0t640wM0FsB8nuf/rLmR5/njcCZHuL4plXEcdyeATQDeAdAfwC4AuziOu4LjuEAA3wE4BWfwsgTAMo7j7q1RxXMAHgbwAIAr4EzSsI/jOLWr/mbX0VVpYnvijmN/4Lmkk9C7enwAQFaqEMIAQWoNTCVFbdhCQs5XwCdhVFAwhitU9QY/ACBChF1w1LvfJtig0OkAAJK17kCJEEIIIR2TOz1AagD1Zf+wAvCpZ98FOI5jACwD8DrP82+4Ni/jOG4EgNGuLxuAma7FVRM5jusFYB6Aza4A5WkAc3me/8pV521wzlG6Gc5g6kEP1NElVVVVQpAkVEGCrsY6QGAY2BgWOlmCtbSszdpHSG1VWZkAAIe3d4PlRFmsMwFCNYvDBpWXa8kKOy0KTgghhHQm7vQAHQIwm+O489b7cf38JIDDTaiLg3NdofdrbuR5fgLP8y8DGAngZ1fgUm2/83RcCJxzj3xc26qPLQNwDMBVrk2eqKNLqqhwTv7WanVQKM6PlW2unx3lNASOtB9SoTMTqrKBzIQMw8AhOWAX6+8Bsot2KL2dARAr0HIQhBBCSGfiTg/QIjjnyKRxHLcPQAGAYADXAgiCs9emseJc/3pxHPcNgEsApAF4kef5LwCEAzhe65jqFIc9XPsBIKuOMj1c33uiDrcpFK2eodJjTL//hseiY5EgiGDZcwtKsiwDh0oNCHaIVSYolR33Gmurfr068utWn85+bTabDV5WK6DzQkCvXvW+L1mWQZVDhCA5zntf1yTKItSuAEgpim36Hu/sr1vNfzsTuraOq4H1kwkhnUSTAyCe549yHHcZnPNmJgEIBFAG4BcAy3ie/7sJ1VXPrH8PwAtwDku7BcBnHMddA0AP5/C1mqoH5Gtd+1FPmepVED1Rh9sMBl1zq2g7Z7JxVWAwTCYTdLrzp0MJGh1gqQKsFvj7e7VRA1tOh37dLqKzXltCQgK6abQAgB6XDGzwfVlSWgylRgElFHXuZ5UM9AF+AAClLLWL93hnfd0AuraOqjNfGyGkc3OnBwg8z/8L4FYPnL96cP2rPM9vdX3/N8dxQwA8BcACQFPrGK3rX5NrP1xlLLXKVOe49UQdbquosEAUm7xgcrtgLSuHHoCgVMFiOTcPgmUZKLWuuNFsRmlps39N7YZCwcJg0HXo160+nf3a+KQkhLkCIIchoN73pVKpQLmpElZL/XN7zLBCoXfe3KkkuU3f4539daNr63g687UBgK+vDmwDSVTaC4aBgmGY1l8IVXZvIVRC2hO3AiAA4DhuIoBrAHQD8Cycw9eO8jyf0YRqqvPL1h6idhLO3qV0AGG19lX/nANAVWNbaq0y/7i+z/JAHW4TRQmC0DE/IESzGQAgqTWQpPMXjBQNAchJS0KZxdxhr68hHfl1u5jOem2n/z2OS1kWIgDWP7Dea2RZBlU28wXv6ZrsggAfoxHPJZ2El38ANrWD31dnfd0AuraOqrNeWx3rI7c7DAOFrBS7mUWL2/dx7tIpdQIjKHLbWxAUH786bP/+bwP37Pm69j1lvbZu3Rjy+eefhhQXF6uNRqPtllv+l/e//91R3JLtJO1Dk//jcBynh3PR03EAKuBMIPAqgJkALuE4bhTP8ycbWd1fACoBXA7nvKJqAwCkAPgNwMMcxyl4nq/+jzYWAM/zfAHHceWuNoyGK3jhOM4PwBAAb7rK/+yBOromm3NUoKy5cJhDyeCReOn9t6BSqbCwtdtFSB2Op6ch/tgfWPj4U+ijqHtoG1C9BlDDmd0ESYDWNwB8VSUMHeBJMCGka2EYhjWLFuUf2X9LFoe11aJQnUrLDg8frPRifFhZlttVANRUO3ZsDd66dVP32bPnpA8ceInpt98OGt58c02Uj4+vOHHi9WVt3T7Sstx5cvASgKFwBhG/4NwwtukAvoEzrfXNjamI53kLx3ErASzmOC4HwB8ApgIY76o/AcBcABtd5YbDmWnuYdfxNo7j3gTwCsdxhXD2GL0KZ6/PJ67TbPJAHV0S60r/K1cPd6tBq3fOiXA4HLDZbNBoao8yJKR18TwPQZYRMXBQg+VEiHA0kAEOcAVAOudwOpOpCrIsg6GZ0YSQdsbisEomu6W1u+E6xVOhqqoqxV133Ztzww1TSgEgMjKqaO/ePSF//nnYQAFQ5+dOAHQbgAU8zx/gOO7sY1ae5/M4jnsRwP81pTKe51/kOM4MYDmA7gASAdzM8/yPAMBx3AQA8XCmpc4F8EyN+UKAc/FVJYANAHRw9vhM4Hne7qq/oLl1dFVn0/9qL5wArtHqwTAMZFlGVVUlBUCkTZnNJmRmOtcAio3t1WBZURYbTIENAIIoQuulxTXBRvgolTAVF8M7KMhj7SWEkK5kxIhhQ2fOfDzzhx++C0hLS/UyGkOtM2Y8mDN+/MTy6jLff/+N75YtG8JycrJ1/v4B9quuGlMyc+bjuRqNRgaApKQE7dtvv9k9MTHBx2q1sIGBQfYbbphScO+99xfUdc4tWzaEbNmyIXzBgsWnJ0y4rqz2/oceejSv+nuHw8F8+eXn/jk52drp0+89U7ss6XzcCYD84OwlqUspgIZXIKwDz/OrAayuZ98RAFc0cKwIZ/a4eQ2UaXYdXZFKcj5UYvSGC/bp8rPwar+BKLBaUFVVicBAujkkbSc1NQX39YiCQaeH3mIB/P3rLMcwgCALF+0BkiFDoVbh1rBw+KlUqMo7QwEQIYQ0w+bN68Pvvvu+7AULFqd/9tknQcuWLe7p7x+QdOmll5kOHPjesHz587H33/9w1pVXjqzIzEzXrF37eo/s7EztqlXxp81mM/v007PiBgwYVLl27dtJSqVK3rPno6CNG9+OGDZseOWAAQNrJrHC9u1bgrdu3Ri+aNHS1HHjxpfX1yYA+P3337yfeeYJTpZljBkzrqiuYIl0Pu50Y54AMK2efTe49pNOYJ2Sxf1//wnRx+/CnbKMHlodumt1qKysavW2EVJTcnIyrvAPxBU+BshC/cENwzAQJAH2BspUE2QBNtn5EMBSRgv+EkJIc4wZM65o+vR7C3v1irPNmTM/Jza2p2n37p0hALB9+5ZuY8eOL5o27e7C6OgY26hRV1fMnv1Mxu+//+afmZmuNptN7OTJUwqefXZJRlxcb2tMTKztscdmnwGA5OSk8yYq79y5PWjTpnfDlyx5MeViwQ8AxMb2tL711qaEWbOeSj906GDAa6+t6N4yvwHSnrjTA/QigE85jgsE8AUAGcAojuPuhXNeze0ebB9pQ6WVFagQBGh0F3bqSa50w14KJaqqKlu7aYScJyMpAb1VzoSOamNoveUYhoEgCnCIwkXrtIn2sxMcLeUX/QwlhBDSgCFDhp13s8BxfUx//33MAABpaWn61NQUrwMHvg+s3l+djS8lJVl79dXXVNxxx10Fe/d+FpCamqzPycnWZGSk6QFAFKWzEzRLS0tVb70VH6lQKOTw8B6113esU3BwiBAcHCL07z/AUlpaqtq5c3vYrFlPn1Gr1R0gHyBxlzsLoX7GcdydAFYAuM61+TUABQAe5nn+Iw+2j7Shykrn3yp1HUkQJLUzANIrFMitqmjVdhFSW3nqaQCAXacD28B8NJZlYHXYIePin2t2wQGHa4kNWyUF+YQQ0hxKpfK8P7yyLINlFbLze4m56ab/5k2ePOWCFNRGY6ijoCBf+eCD9/Tx8TEIl19+ZdnQocMrBg4cZLrttpsG1izLMCyWLn0pedOmd8OWL38+euPGbUn1rem0f/93hvDwCHtcXG9r9bbY2F4WQXAwJSXFytDQbhcfKkA6rCYPgeM4rg/P8+/zPN8DQB8AIwD0BxDG8/xGTzeQtA17Xi7+q9Xj1rBwaLR19QA5e5yVLIsqejpO2pijIB8AoDQaGyzHMIBZsDRY5mydkgOiggIgQgjxhISEE+dlVEpKSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eX++HwoYNb4dv3rzhvCEDJ0/+6+Xt7S2EhBgp+Onk3JkD9A3HcXcBzoV0eJ7/jef5BJ7nO99qaF2YvbAQlxt8camfPzT6CwMgWaVG9QtuowCItKHS0lL4OpxD2nyjYy5a3uKwXrQM4MwEJymdn6+Ciea5EUJIc3zxxR7jnj0fB6SkJGteeWV5eEZGuu722+/KB4CpU6fl/fHH7/7x8avDUlKSNQcP/uyzcuVL0SZTldJoDBWMxlC7zWZj9+79zD87O1P900/7DS+8sCgGAOx2+wX3sn369LNOmXJr3o4dW8NSU1PqHBYwdeqduQcP/hS4bduW4NOnUzU7d24L2rPn49A77rjrTH29RqTzcGcOkBJAoacbQtoXS6lz0rdJFKGrYw4QGAY2MNBBhq2CAiDSdng+ERE6Z4+kd1RUg2UFWWxUAgTAmS5bUikBmwOC2dzcZhJCiMfpVNpWvVNvzvnGj59Y+NFHu4xr1qzSRUZGml9+eVVyv379LQBw/fWTS2VZPr1z57Zun3zyYahe7yUOGza8bPbsudnV+5OSEvPWr38rYu3a1WxQULB9woTrig4d+tUvMfGkF+q4L5058/HcX3/92X/58uejNmx4j68d1EyePKVUFIW0Xbt2dNu48Z2IoKAg+0MPPZY5deq0InevkXQc7gRAzwFYy3HccjgzvuXXLsDzfGZzG0baltmV9coqSdCp655TUa5QoaSqHJYqU2s2jZDzJCUlIkDhXJJMEx7RYFkJF0+BXU2URKQE+GHngR9x3ZAhzW4nIYR4iizLkk6pE4aHD1ailRcm1Sl0gizITR71Ex0da5k7d2F2ffsnTbqxdNKkG+tMuckwDObMmZ8zZ878nJrb77vvobP3oLNmPXVm1qynzq7ho9Fo5N27Pz/ZUJumTLm1ZMqUW0safxWks3AnAHobgALARqDemcSKeraTDsJaVgYGgI1loKunzOfGGHx/eAtu6tWzNZtGyHl4PhH7kk5iwdNz0CcqCmID+Q1EWYJDungGOAAQJBGiny+SqipxhYOGgxNC2g9ZhsgIilwvxqfVx2rJgizJMsTWPi8hnuROAHS/x1tB2h1bZQW0ABxs/W8Rrc45n5HSYJO2xPOJAIA+gwaCUSgAoe4Hk41dBLWaKInQezkzIFZV0RwgQkj7IssQZVmmQIQQN7gTAHUH8BnP8w12K5KOTXAFNYJSVW8ZjZZuDknbslgsSE9PAwD079+/wbLORVDFRq0BBDh7gAIYFteGGBFUfEFmVkIIIY108OCfR9u6DYTU5E4ANBfAMQAUAHViosk56VtUqestM6AsD5f1HYATlsalFSbE01JSTmFaWDh6+/pDmZEJ9Opbb9nqRVDtTegBCnA4MKNHNLIpyCeEEEI6DXfGjp4CMMDTDSHtSyoXh/v//hMJ6vpmAAFesoQovRe0dpofQdpGUlIiensb0Eung3yReToMw8AuOiDLjVvcW5REKL2dvZwKkUaZEEIIIZ2FOz1AewG8yHHcJNSdBU7meX5Zs1tG2lSVxYIKQQCj09dfSOO6ORQaN6SIEE/jkxIw2ZUCWx/ZA7YGyrIsYHE0vrdSlCRofZwp4FVNT3hECCGEkHbKnQDoede/I11ftckAKADq4MxmZ2prtUZbbxlZ67zxVEp0c0jaRv4pHlqNDjLLQtetG2wVDS9y2thFUAFAhgyVjzPRh7pxnUaEEEII6QCaHADxPE/L43YBsZmZmNEjCmWK+pMgMFrXzSEAURShUFD2c9J6BEGAmJcLRMaADTE6M8A1QILU6Pk/1RSuHiANw7jdTkIIIYS0L+70AJ3FcVxvAH4ACnmeT/VIi0i7EFFegV4hofhCVX8AxOqdN4c6BQuz2QwfH5/Wah4hyMhIR3dXkg6f2JiLlhdksckBkMrb2cupYVnIkgSGpec/hBBCSEfnVgDEcdztAFYBCK2xLQ/AAp7n3/NQ20gbUlZPFNfUnwQBrjTYOlZJARBpdUlJiYjRO3sh9VHRFy0vQ4TQyBTY1Rifc+9/u8kEDb3HCSHtBMNAwTBM6y+EKtNCqKTja3IAxHHcDQC2A9gP4FkAeQDCANwJYDPHccU8z3/p0VaSViULwrk3hmuYW10kjR5lggNVonB2zhAhreXEiX/hJzhgVSigbUQAJMiNXwOomsJbg5eTk2AVRbwtCNC421hCCPEghoFCIzm6iWZzs0byuEOh1ws2VpXb3oKg+PjVYfv3fxu4Z8/Xx5t6rCzLeOSR+3sJgoNdv/49viXaR9oXd/7jLAKwm+f5qbW2b+Y4bheABQAoAOrAJPu5XFqs1rvechZjD7yUmYXSkgJsN1EARFrXyZP/4t/004h44GFc0rNng2UZhoEoiXA0cQgco1DguMkEQXDAarfBtzkNJoQQD2EYhhXNZmXx4cOSYLa0WiYipV7HBl52mZLx8WNlWW5XAVBzbN68PuT48X8Mffr0pUXfugh3AqABAJbUs28LgN1ut4a0C5LVGQAJkgSFtoEhcADUWmeWOIuFAiDSehwOO5KSEgEA/QcMAnORJAUsCwiiAIfUtB4gUZKg1+tRUVEOs9nsdnsJIaQlCGaLJJhMrZ2KtVNNhkxIOKHbtWt7WM+evehGpgtx501cBCCwnn1BAOzuN4e0B7LNmSrYKklQqi4SALnWAqKbQ9KakpNPQXY4YDD4IiKix0XLMwwDQRKaPAROkkVcHhCICcFGmPPz3G0uIYR0aSNGDBu6Y8fW4Bkz7uTGjLliyNSpU/p+++2+8zrVv//+G98777y1z5gxVwy5+ebr+69ZsyrMZrOdfbqVlJSgffLJR2InTBg9eNSoy4bcfPP1/Tdv3hBS3zm3bNkQMnr05UO++eYrv/rKWK1WZunS56KnTbv7TPfu4Y1fJ4F0eO4EQN8DeIHjuPPuOjiOi4SzZ+hbTzSMtB3J5uwBsooilOr61wGCKOIxPwNW9h0AS0VFK7WOEOD48X/xVGwc1sT1gemfvy9anmEYWIWmP5sRJQkT/fxxX2Q07Gdy3GgpIYQQANi8eX34mDFjS959d+vJYcMuK1+2bHHPI0cOewHAgQPfG5Yvfz524sRJRZs27Tj5xBNPZx48+FPAwoXPRAOA2Wxmn356VpxWq5PWrn07afPm90+OGHFV6caNb0ccP/7vBU9qt2/fErx168bwRYuWpk6YcF1ZfW167bUV4f7+AY677ppR0GIXTtold4bAPQvgTwA8x3GH4EyCEArgCgAlAOZ7rnmkLWgieuCRhH8hCwKm/7eBHiCWRSTLgtV7IbGivPUaSLq8E8f/wQ1eXvAGoGhEZjaGAayC7aLlahMlEaIr9bWd5rkRQojbxowZVzR9+r2FADBnzvycEyf+8dm9e2fIpZdelrZ9+5ZuY8eOL5o27e5CAIiOjrEplcqMefOeisvMTFfr9V7S5MlTCm6/fXqBwWCQAOCxx2af+eST3aHJyUm6AQMGWqrPs3Pn9qBNm94NX7LkxZTRo8fW+3T2wIHvDb/88mPA5s3vJ1xsGDXpfNxZCDWP47ghAJ4GMArAMDgDn3gAq3mez/dsE0lrEyQJRa4hbZqG5gAxDGwMoANgr6psncYRAiArMQF+/oGQGQaaRgyBAwCL0PTRDaIsQnAFQA7KdEgIIW4bMmTYeTcKHNfH9PffxwwAkJaWpk9NTfE6cOD7s1MsqlfjSElJ1l599TUVd9xxV8HevZ8FpKYm63NysjUZGWl6ABBF6Wz0UlpaqnrrrfhIhUIhh4f3qPepV1FRoXLVqhVRjz02O7Nbt7CmZcchnYK76ROLAezieX4eAHAc1w3ApXAGQqSDs1jOzedRN7QOEAA7w0InS3BU0c0haR2VlZVQlxQD/oFQhoaCVasveowoi3AITf+MEyUJkoIFRBkCzXMjhBC3KZVKuebPsiyDZRWy83uJuemm/+ZNnjyluPZxRmOoo6AgX/ngg/f08fExCJdffmXZ0KHDKwYOHGS67babBtYsyzAsli59KXnTpnfDli9/Pnrjxm1JbB0LWP/4437f8vIy1euvr4x6/fWVUQAgCAIjSRIzdux/Llm+/NXkyy+/kjLCdWLurAMUDuc8Hw2AWNfmQQD2ADjCcdz1PM8XeayFpNWVnzyBeyOikG6zQqFo+C3iYFhAliDQ0/EuTZZlnDhxHMXFRRgyZCgMhpZLGH38+D/gvJzp2b3juEYdI0FqcgY4ABBlCZJSCYgOCBbLxQ8ghBBSp4SEE17XXHPt2fHySUkJ3rGxsWYACA/vYcnKytDGxMSe7bU5dOig9wcfvG9csGBxxt69nwVWVVUqd+/+/IRKpZJd9bme0J6Lq/z8fB2jRo2pCAkJsT/88Iy+mzevN95330MXjEyaMOG60iFDhp0X4Lz55uvhxcVFqiVLlqd16xZGCb06OXd6gF6FM3nCbdUbeJ7/muO4QQA+ALACwP2eaR5pC9b0dEw0huL3RszrERRKQBIgmOnmsKtyOOxYuHAevv12HwDAx8eAl19ehREjrmqR8/3111Fw3s55P7qecY06RkTT1wACnHOAZLUKsDkg25o+h4gQQlqSUq9r1ZTUzTnfF1/sMUZGRlv79x9o+vjjD4MzMtJ18+Y9lw4AU6dOy1uxYllMfPzqsOuuu6E4Ly9X/dprK6KCgoLsRmOoYDSG2m02G7t372f+l146vCo1NUW7bl18BADY7fYL2tSnTz/rlCm35u3YsTVs9OixZbGxPc/7A+7j4yP5+Pict02n04lqtVpZMwgjnZc7AdBYAA/yPP9nzY08zx/nOG4xgLUeaRlpMw6zCUoAAnPxv3OCQgk4ANlKAVBXtXLly/ju233obfBFSEAgDmWk4cknH8G7727BkCHDPH6+f48dwRi9FwBA17NXo44RZRGC2PQ1+0RJAlQqAIBkpQyphJD2QZZlSaHXC4GXXaZEK6/Lo9DrBUGWm7z20PjxEws/+miXcc2aVbrIyEjzyy+vSu7Xr78FAK6/fnKpLMund+7c1u2TTz4M1eu9xGHDhpfNnj03u3p/UlJi3vr1b0WsXbuaDQoKtk+YcF3RoUO/+iUmnvQCUFj7fDNnPp77668/+y9f/nzUhg3v8XUNhSNdlzsBkBpAfW98K4CLp2Qi7ZrD5AqAFIqLlrWrNCirLIHdTg9MuqKEhBPY9+luvNC7H3q7emXuCzbijVOJmDdvNj755Cv4NCJLW2PZ7XYkJ5zEvsBg3DhiFJRBQRc9hmEYiJJ7PUCSLCI3JBCfHj6MIRHjMMGdRhNCiIfJMkQbq8plfPxa/a5ekGVJltHkJ0rR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzD9vPYKaw9tmzXrqzKxZT52p/lmj0ci7d39+srHtW7781fTGliUdnzv/cQ4BmM1xnKrmRtfPTwI47IF2kTYkuuY6iBeZ/wMAf0b2x4P/HMNfDhou2xVtePctzI7phd7ePmA0Wih8DNDJMub25NDD7sC6dfEePd/Jk8dRYrHgS7MJsfOeRWNSl7IsnIugujEHSJJlCAF+OFZehnyh6ccTQkhLkWWIkiQ7WvvLneCHkPbGnR6gRQAOAkjjOG4fgAIAwQCuBRAEYHRTK3Qtoppex64HeJ7fwHHcYABvwJlyuxhAPM/zq2ocz8K5COv9APxd7XuE5/mUGmWaXUdXIbqG+kjKi7891Fo9AMBEa6R0OQUF+RBPHMeAqBhApUKP+c9CFdoNBdu2oiQpAan/mvDP7p2YPv0ehIV198g5jx49AgAYMmRYo4IfwPnkUJBFCKJ7AYxa68wyVzM7IiGEEEI6rib3APE8fxTAZXD2BE0C8AyAmwAcAXAlz/N/uNGOgXAOnwsD0K3G1w6O4wIBfAfgFJzByxIAyziOu7fG8c8BeBjAA3AuyCoD2MdxnBoAPFFHVyLZqgOgi1+6WqMFQAFQV7R372fIt1qQK8sIuuFGaCJ6gFWpYLxnBrgXloMbcikEQcDmzes9ds5/jh7BIIMvhg2+pNHHMAwDm8MO+eJF6+QDGVcFBiG0ijKiEkKIOw4e/PPorbdOvSDFNSFtxa11gHie/xfArR5sxwBntXxu7R0cxz0JwAZgJs/zAoBEjuN6AZgHYLMrQHkawFye579yHXMbgDMAbgawC8CDHqij67A7h7NJStVFCgLh5UV4nuuLDIl6xLuaAwd+QFJVJQqvnQj/8dee3c6wLBQ6HR566BEcPvwbvv7sU9x//8MwGkObdT5BEGBOPoWFcX0gH/sL8rS7G9ULxDCA1Y1FUKsZzFY8Ft0TOQ4aAkcIIYR0Bu0lJcZAAAn17BsJ4GdX4FJtPwCO47gQAIPhTLywv3onz/NlAI4BuMqDdXQZ/4SHY9bxv5GlN1y0rE6W0NfHgBDKrtKlFBUV4sSJfwEAV40aA5VWDY1GCaXyXOKMwQMGYu7Q4YjvOwB7tm9p9jmPH/8Xca4eR5++fRs9BA4ALEIzknToNQAApeRuHxIhhBBC2hO3eoBawAAAuRzH/QIgDkAygGU8z38DIBzA8Vrlq7N89HDtB4CsOsr0cH3viTrcolB0vMCgQnAgz2bFAJ0XWPbCm8zqbSzLgHWlI1bLgELBNOmmtD2qfr064ut2MZ68tt8P/oSxgcEwhxoREREGhaUUjqIsqPyMUBmMcAgyZIUGA0OMUBcWQvfHYQiCHVqt1u1zHj78Kwa6Flg1DBgIpfLcdTR0bQwrQ5Acdb6XG4PVO9usgnzeOVsLvSc7Jrq2jquDf4wRQhqhzQMg1/CzOAAmOOcTVQG4E875N9cA0MM5fK2m6vEsWtd+1FMmwPW9J+pwi8Gga87hbUIUnUPg9N5e0Onqnwek0aig8vMHAOgUCmi1LPR6fb3lO5KO+Lo1lieuLe+P3/FgVAysajV0jA2WvFOQygsgmIqh16jhHeRMenDJnNk4PncBLvfxxe+ffIApjz7i9jmPH/4No10Bd/crL4Xa3+uCMnVdm8VhBaNkoG3gvdwQxs8bAKACA/86ztla6D3ZMdG1EUJI+9PmARDP83aO4/wACDzPVwcgRzmO6wNgDgALAE2tw6ofI5tc++EqY6lVpnpmvifqcEtFhQWi2OT1wtpUTHYupnaPAGQWFsuF6a1ZloFGo4LN5gAUzl+rjlUgJ6cAQUHBrd1cj1IoWBgMug75ul2MR68tLQ3w8gEbEwNzfiZMeTkAZMBSAjEjCVqFHnaoAWM4ikKNCMkvgHXfNyieOh3uLEZXVlYKXXYO2MgYKMIjYGLUMJWe+6/Z0LWJCgfMFgusdbyXG0OrcQZOGoZBaWnrJ/ug92THRNfWcfn66tz6O0UI6TiaHQBxHKcFYON53u0B8jzP13VXcRzO1NpZcGaHq6n65xwAqhrbUmuV+cf1vSfqcIsoShCEjvUB0ddixaBu3bFPoYTUwLwHSZIhujLFaRUsKiqq4OcX2FrNbFEd8XVrrOZeW35+PmJY51yfiP9cBlthDiTpXH2WojwoA/LA+PeAwyGhz4MzceaFxeihUOKfDz/AgP/e1uRzHjx4EMP9nJ2x/sMvq7f9dV2bAAF2wdHge7khCr3zKbeaZWGz2KBQXTw5SEug92THRNfW8cgdZLofw0DBMEyrR2qymwuhEtKeuBUAcRzHAVgK4BoABgDDOY67H0Aiz/Nrm1jXQAC/AbiW5/mDNXYNA3ASwN8AHuY4TsHzfPV/uLFwZo0r4DiuHEAFnOsPpbrq9AMwBMCbrvI/e6COLkGWpLPRILQXH+4jKc/1AJnNlAq7K/j38CFE6pxDHQN6RcOSVWt6nSTCXpgFra8RDqgQGBmNA76+GFhZBdu330C+6RYwjVhjqqaDP3yHO3ycSTm8hwxr9HEMw0CQRDjcXAMIABSGc8M6LRXl8A4McrsuQgjxBIaBgmXYbnar0OojedRapSBByqUgiHRkTf6P41pQ9Gc4F0DdAaB6UL8dwBqO4yp4nt/ahCpPuL7e4jhuJoAiONNWXwHgUgD5AOYC2Mhx3EoAwwE8CeeaPeB53sZx3JsAXuE4rhDOBVVfhbPX5xPXOTZ5oI4uQbafmwbFNCYAUqlhl2XYJAmSidZJ6QoK/vkLkQAqVSpAqIRcR3BhLy+GxlQGpbcRgiCh/733o3TVSmgUCuT++zfCmhDE2Gw27P/1ZxwVJax6Yg7UoY1Pp80wgCg3LwBS6jSIP50CqyTiZYcD3m7XRAghnsEwDGu3CsrEE7mSzdp63XAarZLt07+bUqVVsLIst6sAKD5+ddj+/d8G7tnzde2kV/V64IG74xITT/rU3BYX17tq06btvOdbSNoTd54crALwJ4Dxrp8fBQCe55/kOE4P4AkAjQ6AeJ6XOI67AcAKALsB+MGZfvoanuePAwDHcRMAxLu25wJ4plaQtdh1LRsA6OAM0CbwPG93naOguXV0FZLVGQBJsgxWe/GEBoLeB/OLSpCdkYw3Le6vtUI6DjEzAwAgGUMgVJXVWUYWHHAU50DlEwwBQO+Bg7FIweLn439h6u+/4ZEmBECHDv0Ks9kMH2Mo+t4+rUltZRgGgihAkNwPgCTI+MtmgclkgsXepf4cEELaOZtVkKwWR2uPQ+w0E6SysjJ0M2c+njlu3ITS6m1qtbqDDIIkzeFOAHQFgKk8zwscxylq7dsF4I6mVsjzfCGA+xrYf8R13vr2i3AuajqvJevoCiSbM4ixiiJUmsZldFNrnHMkrFZzi7WLtA+yLMPXZAL0XvDjYiGYK+st66gohsZeBYb1gSzLGDl1Gvb+9Sc++ugD3H//w1CrG5eV7fvvvgYAXH31NU1Os84wgF10QGrGoH5RlqDT62EymWA203ucEEI6g9zcM6qqqirlwIGXVBmNobTSdRfjThRvxbm00bUF4lx6adIBSTZnD5BVkqBSN27NFpVrcUq6Oez8cnPP4PXkJLySmozoywZDste/wKhgqoRYVXp27Zyrrx6HkBAjSkqKcXDbFtjz8y96PrPZhJCEk3gmNg7XDrqkye1lGAa25iyCCkCSJAz09cXIgCBYiwqaVRchhHRFI0YMG7pjx9bgGTPu5MaMuWLI1KlT+n777T7fmmW+//4b3zvvvLXPmDFXDLn55uv7r1mzKsxms5196pWUlKB98slHYidMGD141KjLhtx88/X9N2/eEFLfObds2RAyevTlQ7755iu/uvYnJSXoGIZBr15xdN/aBbkTAH0L4AWO48JrbJM5jvOGM2319x5pGWkTgiuIsUoiNI3sAbpFrcQSri/EwsKWbBppB06d4lHmcMAUEgy15mK9MTIcpXlQyA4AgEqlwq233o5bw8IRfug35G/dBFlqeOTGd599itF+AbjUPwCx4RFNbi/DMDA7mvfZJsoSbvDxw+MxPeHIyWlWXYQQ0lVt3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94IFqbZv3xK8devG8EWLlqZOmHBdWV3tSUlJ1un1XuLSpc9F3nDD+IG33jq5X+2gi3Re7gRAcwF4A+DhnCcjA3jN9XMPAAs81jrS6uQQI544/jdeTTkFtbZxi9z1YIB+PgZIlfUPhyKdQ1qaM0t8z9gYiJaLJ71wVJUBdvPZoWu33PI/HKqsgFUUYTnFo+zADw0eX/bNPmgVClR5e8OrX/8mt1eGBLvYvHk7oiRCcK0JYqdEH4QQ4pYxY8YVTZ9+b2GvXnG2OXPm58TG9jTt3r0zBAC2b9/SbezY8UXTpt1dGB0dYxs16uqK2bOfyfj999/8MzPT1WaziZ08eUrBs88uyYiL622NiYm1PfbY7DMAkJycdN7Nys6d24M2bXo3fMmSF1PGjRtfXl970tJO6xwOBzNw4OCqlStfP3X77XfmfvPNV8HPP78wsmV/E6Q9aPIcIJ7nsziOGwTgKQBXw5k22hvA+wBW8zyf69kmktZkdjiQa7OCZRVQKhu33omDZQFJOtt7RDov4eRJ/C8sHL2CgiBaLRctL5pNkMxlUPr7wuEQERAQgDE33YwdX+/DfZHRKPxwF7SRUdD17HXBsSd/OoBLXesNdbv1tibP/wGcGeCEZmSAAwBJliArWEACHCZ6jxNCiDuGDBl23lNSjutj+vvvYwYASEtL06empngdOPD92cUEq6dupqQka6+++pqKO+64q2Dv3s8CUlOT9Tk52ZqMjDQ9AIiidPbDobS0VPXWW/GRCoVCDg/v0eD452XLVqRXVVVl+fr6igDQp08/q1KpkleuXB5TUJCfHRJipHlBnZhb+eN5ni8GsNDDbSHtgMXiXMtHp9c3+obTwSoASWjUDTHp2IKLizAqLBzlChairTGvtwxHaT7U/udGzN599324/sOd6FtSjCsCAnFm3VpEPDMf6m7n1iqWrBZU7HgPgSyLTI0a4/4z0q32ipCalQIbcM4BkhQKQBIhWigAIoQQdyiVyvOy0ciyDJZVyM7vJeamm/6bN3nylOLaxxmNoY6Cgnzlgw/e08fHxyBcfvmVZUOHDq8YOHCQ6bbbbhpYsyzDsFi69KXkTZveDVu+/PnojRu3JbFs3YOdFAoFqoOfanFxnAUAcnPPqCkA6tzcXQjVF87eHy/UMYyO5/n3mtku0kbMPI//hYWjQNH4t4aoUAKCDZKV5hF2ZrIsw+AQAIUSQT3CALlxmVcFUwW0DgsYRgdZBoKCgnHnnfdg3eb1iPD2QXhFBTJXLEfYzMeg790HksMBfunzCJRklNjtiJk12+02S7IIRzNSYAPOOUCySgk4RIj0HieEELckJJzwuuaaa88OSUtKSvCOjY01A0B4eA9LVlaGNiYm9myvzaFDB70/+OB944IFizP27v0ssKqqUrl79+cnVCqV7KrPNfTtXFzl5+frGDVqTEVISIj94Ydn9N28eb3xvvseqjPjzowZd3IRET2sL7zwUkb1tuPH//VSKpVydHQs/bHv5NxZCHUinOv11DdDXgZAAVAHJWSk479h4fi9CcPZRIVzqJxsa162LdK+5eflIcSVurpbZDdAatx8GMFcAclaCYW3FwTXen333/8w9u3biyUJ/+LV4VciwGQC4wq67aKI0zlZMILBkfBwPD5wkFvtrV4EtblD4AA4AyDYzmZJJISQ9kCjVbbqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/jjPWbM2JING96O2Llzm+mKK0ZUHD/+t9emTe+E33jjzfkGg6G111YircydHqCXASTCOQcoGwC9STqR6nk8oqL2Ek/1E1Wu9VxokchOLfP4P/BjWThkGWofLRzljUwIIEkQyguhMHQ7u0mn02HRoufxyCMP4NFDv+D5/05Fz9hYWK1WLFz4DE6dSoTW2wfvrnnT7fYyDANBEps9BA4AZBUF+YSQ9kOWZUmtVQp9+ndTopUXJlVrlYJ0sRSedRg/fmLhRx/tMq5Zs0oXGRlpfvnlVcn9+vW3AMD1108ulWX59M6d27p98smHoXq9lzhs2PCy2bPnZlfvT0pKzFu//q2ItWtXs0FBwfYJE64rOnToV7/ExJNeAC5IQztz5uO5v/76s//y5c9HbdjwHl97KNz06fcWsiyLTz/9yPjOO+t6+Pn5OSZPvjn/oYcezXPvN0M6EncCoN4AbuR5/hdPN4a0PcFSHQA1/q0hKdVwSBJEh6OlmkXagaJTSfADUKlgITuaFggIVWVQiVYA5xJrXHnlSDz++GysXfs6ntu9E+/+/hvMZhOKi4ugVCrx1kuvwt/f3+32MgwDURKaPQQOAApC/PHdH3+i1xVXYmKzayOEkOaRZYgSpFyVVtGqwQ8ASLIkyTLEi5c8X3R0rGXu3IXZ9e2fNOnG0kmTbiytax/DMJgzZ37OnDnzz1uLoObwtlmznjoza9ZTZ6p/1mg08u7dn59sqE3Tpt1dOG3a3bSGRxfkTgCUAcDg6YaQ9kGyOm9sxUZmgAOAxKj+eO6bj9C//wDc00LtIm2vKisLAODw0kO0N214tGCuBGxmsGo/SNK58dr33fcQvLy88cYbryEryzkMOzAwCC+99CouvfSyZrWXYQCHJECUmvw5fQFLgC9+KSmCXqA5sYSQ9kGWIcqy3Pw/cIR0Qe4OgVvCcdwRnufTPdwe0sZkuzMAkpXqRh+j1jjnIZrMphZpE2knSksAAKpAf8hC03r7JJsFkqUCCl0ApFoBydSp03DddZNw7NhRKJVKDB9+OdTqxr//6sMwDKxN7Kmqj1rrbI+Z3uOEEEJIh+dOADQNQHcAqRzHFQKoPVte5nk+ttktI22ieo6DpGp8D5BaowUAmGmNlE7t/bwz2JifhxWTx7p1vFBeCFVARJ37DAZfjB59dXOadwGGAayCZwIgPYChvv4IprWuCCGkyQ4e/PNoW7eBkJrcCYCyXV+kE2JcQ3xktabRxwSZKzC3ZxyKJfnihUmHJIoiss+cgSA40K17MCA3fc0nwVwJtWAFoPV8A+vhqQDI32zFvF4cckQabUIIIYR0dE0OgHiev7clGkLah0N+fvj1z8MYcM3N6N7IY7SQ0dsvACkmGh7UWRUWFkAQHFAqlQg2eEModycAqgLsZii0eohiyyePFOGZDHAAwOidDwSUMgX5hBBCSEfXqACI47geAHJ5nne4vm8Qz/OZzW4ZaROFDjtSzSYM0Hs3+hhG61wSSssycDjsUKmaP3+DtC85CSfwaFQsKjVqQHQv258s2CGayqDwCkZrdKQ41wDyTGZCVu+c59b4gaGEEEIIaa8a2wOUBuAKAH8ASEfNZXfr1vhFZEi7Uj3JuzqxQWMo9D4AAC2rgNlshq8vBUCdTVlKCkYFBaMAMqRmJBYQKkqgCW6dYWQSJI+kwAYAhasHSMMwHqmPEEIIIW2nsQHQDACpNb6ncSCd1ACTCQZjN+iasA4QXMGSVqGAxWKBr69fyzSOtBlTrnNpBYdW26wASLRUgmmleUDOHiDPBFust/M9rqYAiBBCCOnwGnWXy/P81hrfb2mx1pA2JcsyRsoMroqIxPdNWAdIUjmfjusUCphoHlCnJBQXAwAYgzfQ9AXAz9VjMUG2maHQtew8IOciqKLHeoBYL+cwTxXLwm4xQ63Te6ReQghxF8NAwTBMqy+EKsuyWwuhEtKeNHYO0F1NqFPmeX6bm+0hbUi228G4nnCzWq9GHye51gxSMAysVZUt0jbSthRVVQDLQhvQvDWQZcEB0VwGhXfLzgNiGECQRDg8NAdI4X1uSKi5vJwCIEJIm2IYKBSM0M1hM7uTzbdZVBq9IEKZ296CoPj41WH7938buGfP18cbe0xKSrJmzZpXIxITT/poNFrpyitHlD711LxsvV7f8pl6SJtq7H+cLU2oUwZAAVAHJNnODW1idU0IgFxJDwRJgqW83OPtIm1P77ADGi18QwKaXVdrzANiWQaiKEDwUBY4VqPCxqwMWAQHFjgc8PNIrYQQ4h6GYViHzaxMPXlMstusrXazrtZo2dh+Q5QKjS8ry3K7CoCaqqSkWDFr1sO9Y2JiTf/3f+sT8/Pz1StXLo9ateplLF68jJJ5dXKNDYCiW7QVpF2QbFYAgFUUodI0PgACw2BuUSnS03msvXdGC7WOtBW73Q5/1pnXJDAspNn1iZaqFp8HxDAMrILdY5MVJUnCIYsJFRUVmC14JqgihJDmstusks1ibu3eilYfdtcStm/falQqFfKqVfGpWq1W7t27rzU398yZvXv3BMuyfHZEDOmcGjsHKKO+fRzHaQHYeJ6nxAgdnGR1BUCSCKWqaTenrCsRgtls9ni7SNvKy86Et9L5p8Iv2A+yo3mvsWCpgmw3Q6HVQRRb5s8GwwA2Dy2CCgCiLEGr06GiouJspkRCCCGNM2LEsKEzZz6e+cMP3wWkpaV6GY2h1hkzHswZP37i2WEj33//je+WLRvCcnKydf7+AfarrhpTMnPm47kajUYGgKSkBO3bb7/ZPTExwcdqtbCBgUH2G26YUnDvvfcX1HXOLVs2hGzZsiF8wYLFpydMuK6s9v6jR48YLr/8P6VarfbsB9HUqdOKpk6dVtQCvwLSzrgVxXNOH3AcVwKgCsAlHMet4zjucc82j7Qma0WF819Rglrb+DTYAKDWOAMmi4UCoM6moKQE0479gRXF+WBVzX/wJwsOSOYKsGzLPkS0NCNbXW2SLCHOYMAQXz9YXQkhCCGENN7mzevDx4wZW/Luu1tPDht2WfmyZYt7Hjly2AsADhz43rB8+fOxEydOKtq0acfJJ554OvPgwZ8CFi58JhoAzGYz+/TTs+K0Wp20du3bSZs3v39yxIirSjdufDvi+PF/L7hh2b59S/DWrRvDFy1amlpX8AMAeXlntIGBQY4VK5aFT548YcDNN1/f/9VXXwq3Wq3U9dMFNPkOhOO4wQCOABgKYAeA6jeKHcAajuPu9ljrSKuyuAIgmyRC5crs1ljXqBR4JjYOTF5eSzSNtKH8/HyIsgxVYABkh2eSCggVxWBbcP6sBAl20e6x+kRJws3evpjfqzeE7CyP1UsIIV3FmDHjiqZPv7ewV68425w583NiY3uadu/eGQIA27dv6TZ27PiiadPuLoyOjrGNGnV1xezZz2T8/vtv/pmZ6Wqz2cROnjyl4Nlnl2TExfW2xsTE2h57bPYZAEhOTjovANq5c3vQpk3vhi9Z8mLKuHHj652YbLFYFB9//EGo3W5nly1bkfrAAzOzf/rpQMALLyyKbNnfBGkP3MkesgrAnwDGu35+FAB4nn+S4zg9gCcAbK3nWNKO2YMCsSDxONRqLW5r4tP5KBaI8A9AoiuIIp1Hfn4uACA0OAiS4JmgQrCYoBZtAJoWaDeWKItweCgBAuDsARJd/yccNMyTEEKabMiQYeelieW4Pqa//z5mAIC0tDR9amqK14ED3wdW75ddA9NSUpK1V199TcUdd9xVsHfvZwGpqcn6nJxsTUZGmh4ARFE622NTWlqqeuut+EiFQiGHh/docBiAUqmUunXrbq1OeDBo0CVmURSZFSuWxRQWFmQHB4fQhM9OzJ0A6AoAU3meFziOU9TatwvAHc1vFmkLFlFCqskEf03Thr8BgINVAqIIkW4OOx1d8ik8GhULX4323CdSM4lWE2C3gFVrIUmenwckQYLgoTWAAGcAJChYQAIEeo8TQkiTKZXK8/7Yy7IMllXIzu8l5qab/ps3efKUC8YYG42hjoKCfOWDD97Tx8fHIFx++ZVlQ4cOrxg4cJDptttuGlizLMOwWLr0peRNm94NW778+eiNG7cl1Tfc2t8/wBEZGWmpua1XrzgLAGRlZaopAOrc3BmEbwVQ3yIYga79pAOqntyt1TU9ABIUzli6Zipt0jl4l5ZiVFAwjArPzdmR7FZI1iooPFjnefXLkkd7gABAVDif94g0z40QQposIeHEeellk5ISvGNjY80AEB7ew5KVlaGNiYm1VX/l5+eq4uNfC6+qqmS/+GJPYFVVpXLTpu1Jjz76RO7EideXlZeXuR7in4ur/Px8HaNGjamYP39R+unTKfrNm9cb62tPv379K5OTT3nJNR7snTqVpGNZFj16RHpuDDVpl9y5+/gWwAscx4XX2CZzHOcNYA6A7z3SMtLq7GmnMcnYDX29m77YpahUAQBkG8W/nY3KFdTqfL09Wq9QWQyW8XzvD8MAguy5NYCqSUpXAGSl9zghhDTVF1/sMe7Z83FASkqy5pVXlodnZKTrbr/9rnwAmDp1Wt4ff/zuHx+/OiwlJVlz8ODPPitXvhRtMlUpjcZQwWgMtdtsNnbv3s/8s7Mz1T/9tN/wwguLYgDAbrdfcC/bp08/65Qpt+bt2LE1LDU1pc6x1tOnz8jLz8/XLF26qEdKSrLmxx9/MKxf/1bEVVeNKQ4KCqben07OnSFwcwEcAsAD+BvO0Ps1ABycAdVUTzWOtC4mPR13RUTisND0yemSKwCCnR6adDZ6UQIUgCG4+Yug1iSaq1zzgFQerZdhGIiSCIcHh8ABgKxSAhY79XISQtoNtUbbqmvyNOd848dPLPzoo13GNWtW6SIjI80vv7wquV+//hYAuP76yaWyLJ/euXNbt08++TBUr/cShw0bXjZ79tzs6v1JSYl569e/FbF27Wo2KCjYPmHCdUWHDv3ql5h40gtAYe3zzZz5eO6vv/7sv3z581EbNrzH1x4K16tXnO211+L5//u/NyIeeOCufjqdXhw9+uriJ56Yk+PuNZKOo8kBEM/zWRzHDQLwFICrAaQC8AbwPoDVPM/neraJpLWIVudQ2OqhPk0hubLGMR7KEkbaB5vNBj/X+yHQ6OEAyGICHFawSrVH5wExDANB9GwSBACQVM4/lzIF+YSQNibLsqTS6IXYfkOUaOWFSVUavSDKcpMXX42OjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNn/nnByX33PZRf/f2sWU+dmTXrqTPVP2s0Gnn37s9PNtSmSy4Zat6w4T2+8VdBOgt3eoDA83wxgIUebgs4josDcAzAYzzPb3FtGwzgDQDDABQDiOd5flWNY1gASwDcD8AfwEEAj/A8n1KjTLPr6Aokq/PJ9tnenCaQ1a4ASKBe486kICsTWlcA5BvkB9nuufkvos0M2WYCq/b1cAAEOCQHpKZ/PjeoINCA34/9gx4hl3m0XkIIaSpZhihCmavQ+LZq8AMAoixLstyC6xgQ0grcXQj1Ko7jrnR9H8lx3Jccx/3Lcdxz7jaE4zgVnOsKedXYFgjgOwCn4AxelgBYxnHcvTUOfQ7AwwAegDNDnQxgH8dxak/V0VXI9uoAqOmXnRHWE9OOHsZH5ipPN4u0oaK00wAAsySB8fR8HVmGUFkClvXsmnMMw8AieH6YWlWAAd8U5iPLw0PrCCHEHbIMUZJkR2t/UfBDOoMm9wBxHHcnnOv8vAbgNwBvAxgBZ5CxkOM4O8/zr7jRlhcAVNba9iAAG4CZPM8LABI5jusFYB6Aza4A5WkAc3me/8rVvtsAnAFwM5xpuT1RR9fgGtpT3ZvTFEqdNxyyDDOlCO5Uys5kwwuAmQFkwfPDG0VzBVSSHUDTh13Wh2EYWB2eT1Sg1jr/X1gslouUJIQQUtPBg38ebes2EFKTOz1ATwPYwvP8XI7jQgBcA+AFnudvhnNY3H1NrZDjuKsAPATg7lq7RgL42RW4VNvvPIQLATAYgI9rGwCA5/kyOIfRXeXBOrqEs/N33AiA1BotAMBMKYI7lQwZuOPoYez394bs4Tk1gHMeECPYwHiwE0iGBFsL9ADpFSz6ePvA10TvcUIIIaQjc2cOUG8As13fTwTAAPjM9fMRAC82pTKO4/wAbAPwuCvBQs3d4QCO1zqkeoJbD9d+AMiqo0wPD9bhtpZa56QlsNU3uGptg8OSqvfVLOMv2PFoVCzsLAOlsuNcc23Vr1dHet0ay51rKy0tgiDL8Any9/hQNQCQ7RbAYYHKy6dZ84BqXpvICBBk0ePtDTTb8ELvfsiVpFZ9j9N7smOia+u4PPlAhhDSPrkTAJXB2WMCANcByOB5Ptn1cyyAoibW9xaAQzzPv1/HPj2cw9dqqh7bosW5BVnrKlOdssoTdbjNYGj6oqJt5aCXDscPH8aw/pdBp7v4PCCN5lyyBKVGiSFBwSi02eDnpwfTwT9BOtLr1lRNubbycmdCHmOAL7SNeE+4Q+Ewwdu3vrWVm8Zg0MFkN4NVMh5vr+TjbKNSluHv73WR0p5H78mOia6NEELaH3cCoB8APM9xXH8458isAgCO424BsAzAN42tiOO46XAOURtQTxELgNrjsbSuf02u/XCVsdQqY/JgHW6rqLBAFD2bjaqlnK4y4XhlBQZrvWCx1J/ql2UZaDQq2GyOc0/tlc4PQp1Cgby8Emi12nqPb88UChYGg65DvW6N5c61RWfn4dGoWBgFCdYG3hPNUlIIyd8EezOm1da8Nqtshcls8Xh7ZVfAr4KM0tJm/2loNHpPdkx0bR2Xr68OtdeMIYR0Lu4EQE/AuebPYjgTH7zk2v46gEwAC5pQ1wwARgC1h769zXHcMwAyAITVOqb65xycW0ExDM71iGqW+cf1fZYH6nCbKEoQhI7xAWEyOW/qVCpNo4YjSZJ8thyrdT4R17IsKiqqoHQjk1x70pFet6ZqyrVFCA6EBwWjSqnwaKrqmhxmE9QOCwSp6XPPapMkCQ5JgF1weLy9jCuo14Bpk/cGvSc7Jrq2jkdumT91hJB2xJ2FUIsBTKhj1wie5zObWN2dAGr3oSfDGVx9AOB2AA9zHKfgeb76+fBYZzP4Ao7jygFUABgNV/DimlM0BMCbrvI/e6COLuESUUJIUAg0iqavAwSN82VUsizMlRUICPDsopmkbXi7/jUE+bfYOUSrCbLdAlat9UDQwkCQPL8IKgCw3s73uJplIctyhx/mSQghhHRVbi2ECgAcxxkBqOFMggAALMdx/QCM5Hn+7cbUwfN8Tu1trp6gAp7nMziO2wRgLoCNHMetBDAcwJNwrtkDnudtHMe9CeAVjuMKAaQDeBXOXp9PXFV6oo5OTxYETNJ7AVEx+FXV9N6bmmsHWcrLPNgy0lYsJhMMCuefiICQlguAJLsVss0MVhsISWre8hIMA4iyAKEF1uphvZwBkIJhINhsUHXQYZ6EEEJIV9fkQa4cxw3iOC4Bzixp6QDSXF+pAP6FB3tNeJ4vgLO3iYMzLfUSAM/wPL+1RrHFADYC2ADgVwACgAk8z9s9VUdXIFnPrZui0Pk0ULIeLAu75BwKYa2o8FSzSBsqykgHyzAQZBnevt4XP6AZhMpieGLIPcMwcEgChGYGUnVR+pzrrDaXlXm8fkIIIXUzmUzstm2bg6t/XrjwmagHHriLa+iY5srOzlR//vmnzXr6t3v3rsARI4YNrW9/a1zHiBHDhu7evSuwJc/RWjIz09UjRgwb+ttvv7hxo3o+d3qAXgXgD2AOgElwZk/7As6McBPhHErmNp7nmVo/HwFwRQPlRTgXNZ3XQJlm19HZSTZnEjy7JEGpdS8jl012dgnaqmqvZ0s6otKsTGgBVIoiGElESw6LF82VUIk2NKNTGoCzB8jq8PwaQADAqJXYkZMJmyhitsMO3xY5CyGEkNo2bXrX+MMP3wRNn35vIQDMnbsoq7kjBi7mhReeiwoJCbFPnjyltEVPRNqEO89cLwOwiOf51wHsAuDN8/xbPM/fAGAPgFkebB9pJdVBi1UUoVS5N7Tn1Yoq3HnsD5i0zZ/MTtpeVa5zuSwzy0ASHS16LtFqBiNYm73+BsMwsLbAIqgAIMsyvq8sx9cF+bBKnW/iNyGEtFeyLJ/36eDr6yv6+we0bAQEmSZ6dmLuPG7VADjl+j4JwMAa+zYDaNT8H9K+VA/psUqS2wGQQ6WBXZJgtlguXpi0e6biYgQBcKiUQAvf8AtWM2S7Faze0Ky0ujJkWB3Wixd0gyRL0Op0MFWZYLGYW+QchBDSGLIMmAW3HmI3m14JqakPq8rLyxWrV78S/scfh/wEQWCio2PNjzwyK3vw4CFmADCbzeyKFUsj/vzziJ/ZbFZ0797deued95yZOHFSWXz86rAPP3y/G+AczvX++x8df+ed/wsrKMjXrF//Hv/bb7/4zJ//dNzLL6869cYbr/UoKCjQREVFmRctWpr27bf7/Pfu3WMURZEZOXJ08cKFz2cxDANZlrFhw9vGb7/dF1RYWKBRqVRS7959q+bMWZAZGRllf+CBu7jExATvxMQE75tuutZnz56vj9vtdiY+/rWwH3/cH2ixmBXh4T0sM2Y8cGbUqKvPjvvft+9Lv61bN4Tl5+dpY2N7mQYPHnLROQGiKGH58ucjfvzxh0ClUilfc821RbNmPZ2jVDpv0f/443evTZveDUtNTfZyOBys0Rhqu+OOu3JvvPHmkuo6Pvvsk4APPtgRmpt7Ruvn5++YNOnGgvvueyi/9rkKCwuUjz76AOfn5+9Ys2Zdil6vl376ab9h/fq3uufkZOtCQoy2W275X158/Oqo99//6HiPHlH2m266dsBll11Z9tdfRw3l5eWqxYuXpl5++X8qt27dGPLVV1+EFBUVqYOCguy33HJb3u2331kEAL/99ovP3Lmz46rrAJzD1+64478DVq58/dSVV46sXLjwmShJkhh//wDHgQM/BNpsVnbgwMEVCxYszjAaQwUASEw8qX399Vd7pKQke/n7+ztuu+2O3Ka98+rnTgCUCSAGwC9wZmwzcBwXxfN8OpzD4Sj9VwdkrSgHANhkCaxC4VYdarUzcDKbKQDqDE5pNZh/9DBun3QtRrX0ySQRoqkMCh8jxGY80xMlEY4WSIAAOAOgSG8fBFtssJSWXPwAQghpAbIM3Pm1vjdfqmj9FZkB9PYXq7Zda+YbGwTJsownn3ykl1KplF58cWWKwWAQv/hiT+CTTz7Se+3adxIHDBhkWbt2dVh6epp+xYrXkn19/YSPP/4geMWKZTH9+vU/MWPGg3kWi4X99defAtavfy8hKCj4gj/ykiRh3br4iHnzFqar1Vpp8eL5sY8++kCfSy4ZWv7GG2/xR44c9l63Lj7y8suvrBg3bkL55s3rQ3bv3tntmWeeTevdu48lKytT89prr0S+/vrKiDVr1qWuXLkm5amnHusVFBRsnzdvUSYAPPfcvKjMzEzdggXPpYWGhtl//PEHv8WLF/R87rllqePGjS8/cuSw10svPR97662351533Q3Ff/75h88777zZ42K/n1OnkrwDAwMda9e+k5SdnaVZvXpllNVqZZ99dknWmTM5qvnzn4qbMOH6wrlzF2YKgoN5773Noa+//mrUFVf8pyIkxCh8+eXn/qtWvRx955335IwbN6E0IeGE/vXXV0Z5eXmLU6dOK6o+T3FxkfKxxx7kAgOD7KtXv5mi0+nk48f/1S1evKDnpEk3FixZsvx0UtJJ/Ztvroms3cZvvtkXvHTpy8kGg0Hs06ef5ZVXlkf89NMPgTNnzsocMGCQ6bfffjG8886bPex2G3v33fcVNO6dARw69Kv/iBGjSt54Yx1/5kyO+uWXl8W8+eaa7suWrcgoLy9XPP3041xcXO+qdevWJ+bn56tff/2VC9rmLncCoI/hzJhm4nn+I47jkgAs5zhuBYCncf5aOqSDsFY6H1I0Z6DTZWolro6KhSr3guR+pAMqKiqEKMvw9W+d2S5CVRnUkoBziSWbTkTLpMAGAFGScIdfAHoEGlGelg5cMaJFzkMIIRfDoEWnZXrUwYM/+yQn81579uz7pzp4eeqpeTkJCSe9d+3abhwwYFB6bu4ZjU6nFyMjo22+vr7iE0/MybnkkqGVvr7+ore3t6TT6SSWZeXqnoG63HvvAzlDhw43AcCVV44o27v3s5DFi5dl6PV6qVcvzrp9+9buqanJunHjJpRHRPSwzZmzIO2aa64tB4CIiEj74cOHSn/++Ud/APD3DxCVSqWsVquloKBg4fTpVM2vv/4S8Oab7yZW91rFxvbMT01N0X3wwfbQcePGl+/evTMkLo6rmjXrqTMA0LNnL9vp06m6r776PKSh34+vr59j2bJX0rRardy7d19rYWFhzjvvvNnjySefybHb7czUqXeeuf/+h/OrF+e9994Hcn/88YfA06dTtSEhxqqPPtplvOKK/5Q89NCjea522cxmk0Kr1Z0dTlFRUa587LGH4oKCgm2vvbY2VavVygCwc+c2Y3R0jPmZZ57NBoBeveJsJSUlqvXr34qo2cZLLhlSftVVoyuddVWw33zzZfB99z2UddNNt5S4zll45kyO5oMP3u92110zGh0A6XQ6ccmSFzNUKpUcF9fbeujQr8VHjx7xBYAvv/zM3263sy+88HK6r6+v2Lt3X6vFYs568cUlsY2tvyHuBEAvAOgJ5yKmHwGYDeBTAFMBiK5/SQdjCQjAa6cS4e0fiPFu1hHDMugdFIzkUpov2BkUFRUCAIJ8m51spVFEqwmMaIdzlK17JFlqsQBIhgyBcX4AOcymFjkHIYRcDMMA26418x1lCFxSUoIeAG677aYBNbcLgsA4HHYGAO688568RYvm9rzxxgmDevWKMw0Zcmn5xImTSnx9fRs9JiA6Ovbs+GeNRiv5+vo59Hr92SBArVZJNpudBYBrrrm2/OjRI17x8a+F5eRka7Kzs3TZ2Vlaf3//Op8DJySc0APA008/fl7GNlEUGb1eLwJARka6/pJLhpbX3D9gwMCqiwVAsbE9zdUBCQAMHDjYJAgCk5qaohkwYKDlllv+V/zee5tCMjLStDk5Odr09NN6AJAkkQGAzMwM3VVXXX3esITbbjvX8wMA27Zt6S6KAlP7XKdPp+hrD9MbMuTSSuCt89rYvXv42d9tSsoprSiKzCWXDKuqWWbw4CFVX3yxx1hYWNDo2MJoDLWpVKqz7fHy8hYFQWCcbUvVG43drDXfA0OHXlpVVz3ucGchVCuAWzmOU7l+/objuP4AhgI4xvM89QB1QCZJxr8V5YgKavD/aYMEhQKQAMnaMpPQSesaWlGBwdGxCG2lBT9FqxlwNG9BVEEWWiwAAgBRwQIy4DDTHCBCSNthGMBLhQ6RjUWSJEan04nvvLMlsfY+tVotAcCwYcNNn366799ffvnRcOTIYcO33+4L2rVre9iLL65MHjlyVKNSy6pUyvM+OFi2/s+ud99dZ9y5c1v3MWPGFQ0ePKTyf/+7veDHH/f7/fLLj3VO45Bl5696zZp1SV5e3uf93hUKhXyu3PmJE5RK1UU/zFiWPa9MdXY7jUYtJyfz2scee7B3VFSMeejQS8tHjBhdHhAQ4Hj88Yf61Dz/xT6mBwwYWHHddZOLli9fEnvgwPclY8aMq3AdC0m6eLIHtVpzwTXWXgxccs0VrhnQyDWuzOEQLjhPzbLn1NzU9N9nYzUn56ye47gr4EyJXQBgH8/zHovMSOsyu55oa91MgQ0AolIFOCyQbRQAdQaxYGAMDIagVrXK+SS7FbLVBIXO/QVRBUmEILVcxjpRqQAcEkQrzXMjhJDGiI3tZbFYLAq73cb07t33bE/C4sULInv27GW+664ZhfHxr4UNGjSkavz4ieXjx08sF0Uxa+rUKf0OHPjef+TIUZUMw3h0yN+HH74fNnXqnWeqh40BwI4d74XK553l3Dl79eIsAJCfn68eN27Q2V6e119f2Z1hWPnJJ+eciYmJNScmnjxv0bzExBMXnaeVnn5aL0kSqoe4HTv2p49arZYiI6Ntq1a9HG4w+DreeWdzdfIxfPfd176Ac24VAHTvHmHl+cTzzvPyy0sj8vPz1GvWrEsFgKuuGlM6ceL1ZQcOfFfy+usro4YOHX7CYDBIUVHR5trHHj/+d4Nt7tkzzqpQKORjx4549+8/4OyH4d9/H/Px9fVz+Pn5iyqVM7CtqKg4O6k8IyOtScM7evWKM+/f/11gcXGRMjAwSACAf//9y2Pz3txZCJXlOG4ZgCwAXwLYAeA7ALkcx833VMNI65Kys3F1UDCitLqLF66vDqUaAMA4usz6sZ2WKIrwdg338gv0a7XzCpUlzUqFLUit0AMEQLK0TKY5QgjpbMaMGVseGRllWbLk2diDB3/2OX06VbNy5fLwAwe+D6oetpaTk6NZs+bVHgcP/uyTlZWh/vLLz/2Ligo1AwYMrAIAnU4nmUwmRUpKssbhcDR7WEJgYJD92LEjBp5P1CYnn9K8/vqrYX/88bufw+E4e1+s0+mkgoJ8TU5Otqp3777WIUOGlcfHr4r89tt9vunpaeoNG942fvLJ7tDu3bvbAOCOO+7Oy8hI173yyvLwlJRkzaeffhSwb9/e4Ppb4VRcXKx+7rl5UUlJCdqvvvrC7/333wu76ab/5ms0GjkkxGgvKSlW79//nSErK0O9b99ev/j41ZEAYLc7hw/eccf03N9+O+i/ZcuGkLS005rPP//U/9tv9wWPGDGqrPa55s5dmGW325lVq16KAJxDD9PSUr1WrVrRPSUlWfP111/6bdu2pTtwYQ9PNV9fX3HcuAlFO3Zs7b5nz8cBp0+narZt2xz8zTdfBU+Z8t98hmHQu3dfi1arlTZvXt/t9OlUzaFDv3pv3PhOeH111mXSpJtKDAZfYeHCudEnThzXHTp08P/bu+/wOKpz8ePfmZ3t6sVy7/aAjY3poQZIgUAKuSEhITedNEISctN/qTc9pPdKSbmhhITQCaGDAVNs3DDj3tS7tu9O+f0xKxCyZUmrbZLez/PokbQ7e+Zd7Wh33jnnvKfiV7/62bzRHzk2uYwf/SrwBeCPwCuBo3AXP/0r8C1d16/IV3CieIIH9vORhUtYpeXeKWh73eReyRR2zRhReL1dnYSzx0J1Q/GW/LQSEVQr9x5EtweocEtDOF73b2KnJAESQoix8Hg8/Pznv92+bNny2Le//bXFl132rhWbNj1X+eUv/++uweFtX/rS1/etXr0m8r3vfWPRu951yTF//vM1c97zng8cfPOb39oD8NrXnt9bU1Obueyyd6/ctOm53IeqZH3pS1/fk0ql1I9+9ANHf/KTHzlq797dwcsv/8S+SGRA279/rw/gjW/8r84DB/YH3v/+d660LIvvfe/Hu0899Yzen//8Rwve+95Lj7n33rsbPvaxK/e99a3v6AZYtWp14lvfumrH5s3PVV522btX/uMfNza99a3vGLVs84knntzn8Xicj33sg0f/8pc/WXD++a/v+NjHPtkC8O53v7/jtNPO7Pn+97+9+H3ve+fKv/71T7Pe+97LmhsaGtNbtmwOgzuf6YorPrXvzjtva3zf+y5d+ac/XT3ngx/86P6LL76ke/i+GhoazQ9+8PKDDzxwX8NDD91fdfTRK5Nf+co3dj799JM1l132rpV/+tPVsy+44A0dAF6vb8Rety9+8av7L7zwjR3XXPP7Oe9//ztX3nHHrTM+/OEr9l922UfaASorK+3Pf/7Lu5ubDwTf//53rvz5z380/8MfvuLAeBKgcDhs//znvzE0TXM++cmPHPXd735z0dvedmnb6I8cG8VxxterqOv6fuBqwzD+9zD3fR+42DCMvFRomOR2A4t6e2OYZvkP0334S59nVns76/xBKt/+2SNuq6oKwaCPRCL9srka8X//lRPbdrNDVbjw99cWOuSC0DSV2towk+V1G4/xPDfj6adQfvdrLMdhyScuwckUZ1ijFqqk4uhTSaphxvPWNPjcNrcYPHtgS8HiS/z2Nlb3RNlbU8Nrf/jTgu1nKDkmJyd5bpNXXV0Yj0fdg7vkR0k9++yzR6mq554ZM+ZEfb6AXHkRebVhw7MhTdOcVauOfXEo27/+9Y+6n/70hwvvu+/R9doELoqXSjqdDHR0NFfYtnX+CSec8MJI2+XSA9QAPD7CffcAs3JoU5SYk3aHrQ0OY8upjew6QJ6JLOQiykJ/tpR5zLGhgD0qw7kLoiZeHAs9XokCJ2pdNRVc37yfff7c/0+EEEKIcvDCC9tC//M/H9fvvffu6oMH9/see+yRyr/85drZp59+Rs9kTH7GI5dndz9uqev/HOa+1wBrJxSRKI1sAuT4ci9B3DljPh+87S/MW7KE8/MVlyiJWGcnNUBCVXEKOKfmEBNYENW2bZJmYS+QDtRXc0trCxeMs+dcCCGEKDdvf/s7u7q7u7y/+c0v5vf29nirqqrMM888u+eKKz415Rd0HFMCpOv6u4f8+gTwdV3XZwI3AW24leDOB94C/E++gxSFp5jZk9wJJECeUCX9ZoYqKRE86SV63SUFTM0zypb5Z0b78Dnj73UqdAEEAF/A/f9IJKQKnBBCiMlNURSuuOLK1iuuuHLUuUpTzVh7gK47zG2vy34N91vgD7kGJErjpQQokHMbPr/72LgkQJPeDq+Xrzy7jndfdCGnFXnf7oKoKca7IGrGNslYhS3AEfB4WBAMEYrJQqhCCCHEZDXWBGhRQaMQJefJzvNQ/LkXVwk5Du+btxDvFB83Oh309HRjOQ5VVZVF37eVjEN6/AuiWo6FaRe2B6ghkeIHK1fTZso8NyFEUdiAM3yBTSHE4WX/Vxw48kLBYz1TbTEMY9yXVnVd9+byOFF8/85kaN+3h+NPPJdcix77NS+va5pJ2rYZuqiXmHx6etzqmTWVeVtzbMzsdBInFUcNjG9BVNOyCj4ETgm6vVJemQMkhCiONsdxMul0MuT3B2XsrRCjSKeTIcdxMsARh/WNNQHarOv65w3DuHWsAei6fjHwbUAf62NE6bwQj7K9t4fjK3Jf88UTdnsLfKpKMh4jVFH83gORH8cPRFizaClNJTrRNyPdeGrGvt6ZoiikizAHSA25wzy9Bd2LEEK4TjjhhIFnn332zwMDvR8F6n2+QFxRFLkCI8QwjuMo6XQyNDDQ63Mc++oTTjghcqTtx5oAvRu4Ttf1b+MueHqzYRg7h2+k6/oK4ALgg4AHeNf4whelEsvOafD5gzm3oQYrXmqvt1cSoElsETC7voF0CYogAFjxKF4njfs2MjpFyRZBKPAQOCXk9gD5xrGYmxBCTNB3LMukr6/73YqihAB5AxLiUI7jOBnHsa8GvjPaxmNKgAzDeErX9eOAjwGfAr6t63ofsBeIATXAXKAa6ASuAn5tGIYs2jUJOLbNGo/G/No6vJ7c1zdRPBpp28anqiT6+2De/PwFKYrGcRxC2c/XitqqksRgJWMomSTKGBdEVRSFtJXBKvCaRZ6we4EgoKo4to0iwzyFEAV2wgkn2MC3nn322Z85DrPIbQ1HIaY6G2gdredn0JhnqxuGkQJ+rOv6L4BzgXNwV0muBg4AdwD3Ao8ahiEzhCcRO5nkPTNmwoyZrJ9AGWyAVDYBSg4M5Ck6UWzxWJSqbCGLmrrch0ROhJWM42QSqMFKLGv0leYVhYKvAQSgVLzUQ2qlUmjB3HtMhRBiPLIndmM6uRNCHNm4y3Vlixr8O/slpoBMdvibadtogYlNek8BlUAqIgnQZNXT3IyaHeIVqgzhWOmix+DYFlZsAE/F2BZEVRSFRCZV8Li0iiC246AqCsmBfiokARJCCCEmHelGFcT7+wBI2jbeCawDBJDODldKReQi1WTV13IQgJhtMUoVyYIyoz0oY1wQ1cYmaRY+AfJ4NW5pbebG5gMkMlLgUgghhJiMJAESJPr7AXf4muqZWH2rq2MJPrTxWSK1NXmITJRCpL0dgDjgFLiq2pFYyTiqNbakxrKtghdAAECB23q7+UdrM4VPt4QQQghRCJIAiRfn66QcB2scC08eTsIboC+TIZ6U+heTVbzbXQMo7Snt24M7DyiJqo5e8MjCwixCsmY5NoGg20saj8cLvj8hhBBC5J8kQIJkdr5OPmZ6eP3uyWEiIeu1TVZ7/T7e8ew6nqgt/iKoQ9mpBE4yNqYFdW3HxixCD5Bt28ysqGReMEiir7fg+xNCCCFE/o0pAdJ1/bxCByJKJxV15+uYeVjbZJXXy/vmLcB38OCE2xKl0dvbi+U4VFSXfh0nM9LDaPmPoihkirAGEICDw/vqGvnRymMxdx2yFJoQQgghJoGx9gDdrev6Pl3Xv6bruizuMsVEq6r58a7tPDqWclujWKTC65pmEcgOoxKTT0+P+9rVVlWMsmXhWYko6ihV6AYXQS1GDxCAmR2Sl4nJEDghhBBiMhprAvRfwLPAF4Hduq7/W9f1i3Vdn9iMeVEWIgo82dtDywTXAAKwNPeQcFIyRXyyOqqri48vWsrsiU0HywsrGUMxkxypc1JRFEzbJFOkgg1mtkvKTEgCJIQQQkxGY0qADMP4l2EY/wXMBq4EaoCbgGZd13+k6/rRBYtQFFwsuw6QLzDxNU1sbzYnzhR/7RiRH/NMkzPrG6j2jHuZsLx7qRDCyG9VqqqQMtM4FCdjs7LFIaykzHMTQgghJqNxFUEwDKPHMIxfGoZxCrASuAZ4K7BF1/XHdV3/gK7rpZ05LcZNaWvjFbV1zPJOvAfI1tw2FFkjZdIKOm4iEa4t/RwgxzKxYv14PCN3ASkKJIqwBtAgS/O436XQhxBCCDEp5VwFzjCMbYZhfAFYALwW2Ax8G2jJU2yiSOpamvmfJcs52pn4opd2diFVNVO69WNE7izLolJ1T/Cr66pKHI3LjPaOuiBqIlO8ZMT2uj1jtgzzFEIIISalfIxx8QBhIAj4xvtgXddnAD8Czs+28TDwWcMwns/evwb4GXAi0A383DCMHw55vAp8DbgMqAUeAy43DGPnkG0m3MZUNjhfx8nDHCCyZbA9eSioIIqvv7MDX3a4WVVdFRRpWNmRWMlYdkHUwx+flmORtorX42h73QTRScswTyGEEGIyyrkHSNf1M3Rd/y3QBtwCLAQ+BcwaZ1O3AUuA1wEnAQngPl3XQ7qu1wP/AbbjJi9fA76p6/r7hjz+K8BHgA8Cp+Kesd2t67ovG+eE25jqBoer5ScBcucRefLQmySKrzdbvjxpW/h8pZ8DBGAlYkdcENXCIlPEBKi3MsytbS00+6bF24MQQggx5YzrDEfX9RXAO4FLgfm4yc8fgGsMw9gx3p1nk5M9wLcMw9iave2bwHO4c4xeDaSAjxqGYQLbdF1fBnweuDaboHwa+JxhGHdlH38J7jC8/wJuAD6UhzamNNXMDlfzT7wIQqR2Jp/c/BxN8xdw1oRbE8U20NZCGIg5Dk6RqqqNxk4n3QVR/XXY9qE9i7ZjF60CHEBvQxU3HdzP69ccV7R9CiGEECJ/xpQA6br+adzE51jAAu4EPgHcZRhGzmOdDMPoBt4xZD9NwGeAg8DzwP8Cj2QTl0EPAF/MDp1bCFRmbxtss0/X9fXAWbjJy5l5aCNnHk/OnWxFMzhcTQmERrzKPtTgNofbVgtX0ppKosRjaFr5P/fhBl+vyfC6jddYnlu8p5ug45BUFFQFjlh/uoisaC/e+vkcrtM6qViYjvvvrahK7t3aY+QPuj2lqVSyKMf4dD8mJyt5bpNXmbztCSEKaKw9QD8AXgC+APzJMIyOfAei6/rvcYegpYA3GoYR03V9Lm5xhaEGiyzMB+Zmfz5wmG0GF2zNRxs5q6qaeK9KoWmODSh4KyoIBsc+rMfvP3QZqKpqd+J8Ih6ntnbyFgScDK9bro703Prqq/n4s+u44JWn8+pxHAuF5rETBL0OFZWHHlPt0QSKB7AOf0zmWygUoNHnJ5hKFPUYn67H5GQnz00IIcrPWBOgMwzDeLygkcBPgd8BHwX+pev6GUAINyEaKpn9Hsjezwjb1GV/zkcbORsYSGBZ5T0fxmPboHqwvAESidEndquqgt/vJZXKYNvDJsmbDpfMnkvY56OnawDF4ylQ1IXh8ahUVQUnxes2XmN5bgcOtGAD4aoKkmM4ForFo/TjiUbIJB2cIYecqirEM0liiQSaz0MqlcEZfkzmWV1/nF+tPo7OWIre3lhB9wVyTE5W8twmr+rq4BHXHhNCTH5jSoCGJz+6rs/GLShQM8L2fx5vIEOqvn0ItxDBFbgFEYbPzA9kv8ey95PdJjFsm8Ezk3y0kTPLsjHN8v6A+GdfL+mBfk581VsPTWiOwLadQ7bX/EHeMtvtVEv0R/BVlUcp5fGaDK9bro703Lq7uwGoragY17FQaHY8hp2MY4cqXnbCpWkqKTONaVloeHAOc0zmmxJw3040xynqMTJdj8nJTp7b5OOUz1ufEKJAxl3mKVsg4DpGqknrVlAbUwKUnYPzKuCmwblEhmHYuq4/D8zBHZY2e9jDBn9vBrxDbts1bJuN2Z/z0caUtq6ni76+Pk6qrJlwW1ogjGnbaKpKor9/0iZA09XClhY+sWgpTeU2CN62sGJ9eCqbGFphXVHcHqCiCrlvfd4yKBEuhBBCiPHLpY/3W8DTuD1Aiw7ztXgcbc0G/ga8cvAGXde9wPG4RRAeAc7UdX3oOKpXAUZ2HtJGYAA4e8jja7KPfzR7Uz7amNJiMbejy+cLjLLl6DTNS8J2rwgm+nsn3J4orqZkkjPqG6jRyqME9lBmtA912IKoigLxdPEWQQVQw+7/iY8ySxKFEEIIMSa5nOXMBj5hGMb6POx/I/Bv4Ne6rn8Q6AW+hLsY6U9w5+F8Drha1/WrgJOBK3HX7MEwjJSu678Evq/reiewF7dgwwHgn9l9XJOHNqasVCzK8eFK4raFlocESFEUkrZNJZAciEw8QFFUAcsGTSVYXVHqUA5hJWNgJnlpBCvY2KSt4s5VUkPZBEhVcSxr0s1zE0IIIaa7XHqAngD0fOzcMAwHuAS3BPWNwFO4hQfONAxjf7aH5rzs/tbjLmL6WcMw/jSkma8CVwN/BNYCJnCeYRjp7D4m3MZUFm1r5dNLl/PZJcvx+vJT0SeVHUCdigzkpT1RPOHs0LfK2vIbumglYpBJvKz8uuVYpIu4CCqAWvHS/4mVLPLwOyGEEEJMWC49QJcDt+u6Xg2sA+LDNzAM45GxNmYYRn+2zctHuP9p3KIIIz3ewl3U9PNH2GbCbUxV8b5+AFK2DYoKTHxC62DWmI5JD9Bkkk7ECWd7M6rrakobzGHYmRR2Ioon2PDigqiWY5EpcgKkhQMvznNLRQbQwpO33LsQQggxHeWSAC0HZuL2pAAvmwmsZH+XMSGTRKI/mwCRv+pZ6ezciHQ0mpf2RHH0HHSXwjIdm6rqIFjmKI8oPjPSg7d+AeDO/7Eci7RZ3Dg9Xi//7mzHdhzea5pI+iOEEEJMLrkkQD8E9gDfBdryG44otmRkgABur42VpwToX6kM7Tue59MXX5yX9kRx9DW3oAJRy0Z1nLKscWYlovisFOBFURQytln0HiBUuL6jjXQqxTtkrRAhhBBi0sklAVoAvNEwjP/kOxhRfKlohACQyWPZ44gWoDmZJF7kK/NiYiKd7VQ6DnEcHNsa/QEl4M4DSqJ4fCiKgmllE6AiFmSzHZtAMEA6lSIeP2QEsBBCCCHKXC6XLzcDc/MdiCiNTHaYmqnmb9Siz+9WyZKTw8mlIxTmHc+u4xZP+S5saKXiOKk4Ho+CokDaymA5xY+3NhSi3ucj0ddX9H0LIYQQYmJy6QG6Erhe13UNtyLcIaW+DMPYP8G4RJFkskmKlccEaLFPY+XsuQQOHMhbm6Lwenq6cYBwdWWpQxmZ42BGe/BUu2sZJzLFXQNo0Acamjhq9gLi27bCiSeVJAYhhBBC5CaXBOh+wAv8DkacJiBFECaJrlCI2/bupklfyfI8tblQVTlz9lyaOzry1KIoht7ebgBqK8t7Wr8VG8Brp7FVH7ESJUCZ7NyfTDxWkv2Xmp1K0XnzTcQ2PYevaSaNb3s7/rnzSh2WEEIIMSa5JEAfyXsUomS6Fbi/q4NzTzg1bwmQrfkgE0PJTPlllKaUWfv28cnFS6lUc3lbKB4rEUMxU9g+D2mzNMeY6XETIHMaDvN0HIeW3/yK+JZNAJjd3fTecyczL5OPBiGEEJPDuM90hi0gOiJd1xXcxUW/LkPiylcs5l7B9gdCeWvT9vohAUqmyNW5xITURqIcW9fAAa3ME6BkDCedwPIFir4I6iBT84AFdmL6LYTa/+jDbvKjaXQtW0qtP8Cct7wFRVMxzfKdPyaEEEIMKuSZjgq8B/glIAlQmfL19rCqqpoaT/4OBcfnA0CRKnCTis80QVUJVJX3EDjHMrFifTiV1cUvgZ1leVSwHOzk9EqAHNOk5/ZbAfjb/r3868nHAHjdlk1890c/QamowXHKsYC6EEII8ZJCL2JRxOK0IhfLurv5yvKjWZjO34mc4w8C4LHKs5SyOLxQ9sS1oqaqxJGMzopHMO1MyXqAbF/2gkEqVZL9l0rk6XWYvb30ptPc0drMzJpaFEXh7icf54ufvpKBh+6XBEgIIUTZk1X8pjnPYC9NNmnJC5/blpanhVVF4Tm2TTg7sb+qroyrwGU5ZgbTTJE2S5QAeb3uD9NsnlskmWRXIs49nW1cfPpZ/OXKz/Kd/34vAY/GRfEUrX/5M6l9e0odphBCCHFEkgBNc+pgL00e5wApAXcIlVeuBE8a8Z4ePNnFcGvqq0sczehsK03GTGE6pelljFQEua+znRa/vyT7L5VrHnuYL27dhOH38/5XvRZFUThp6XLede5r2BJxV0ToefCBEkcphBBCHJkkQNOcZruTltU89gClqmr5f9u28Nv+3ry1KQqr96C7ZlPENAn5fSWOZnQKColUtGSDbPtrK/j9vj087/OWJoAS6Onp5vbb/wXAB199Pqr60sfHxaeeztZsb1jvk0/gyPBXIYQQZUwSoGnOm+2kUYL5m/juDVWyMxZlX+SQNXJFmRpob8N2HGKODXb5n7wqmo9ovA9lxKXICssXcHt+EonSrENUCvdfdzVey2LFkqUcM2zNH4/Hw6mnnMpAJoPXsohs21qiKIUQQojRSQI0zQ1e61dC+Zv3MVhSOxqN5K1NUVg94TDveHYd1yai4JR/KWNH04gnoyh2aSoNen0aIY8HJTY9FkK1UilWbN3K1WtO5G0nnYyiHNr1dtbKVWzNLgxr3HFbsUMUQgghxqy8F/wQBefPnsiowYr8tRkMc8GMmYQ1DTMWRQvnr21RGD093ThAqKb8CyAA2JpGaiAGWCh5LOE+VtUOXHfcSaSS06MK3I4H7sOrKHSl05xw1MrDbuPxePDNnAWJBOzYgeM4h02UhBBCiFKTHqBpzLIsrt2/l78c2IdaUZu3dgOBMBfPnstbZ88l0taWt3ZF4fT09ABQVzU5EiBL00il4jhmCkUtwUl20B0C51cUHLv8e8wmav9jjwDQFfATVEb+2Fhz/IkkLYtqRaFty5ZihSeEEEKMy7gTIF3X79d1/Z26rh9x1rxhGBawCNica3CisJLJBPd1dXB7eyueUP56aTSvl2T2pDDe15O3dkXh1OzYzicXL2W5Vv6T+hWPhqVAOpPETidKMg9IrQi8+LM9DdYCUltbAAjPmXPE7Rrr6rhhoI8PPvcsD23ZUIzQhBBCiHHLpQcoA1wHtOq6/ntd108daUPDMPYZhlGahTrEqKJRd7y+qqqoWn4rf6WyJbAT/f15bVcURmVfH6fXNVDvLf8ESPX6MB2bdCaFnUmjlKBogxrwY2WPcTuZv0WEy1Ffdxczs+X2Fi4/atTtFy0/in4zwz333FXo0IQQQoicjDsBMgzjfGA+8B3gNGCtruuGrutf1HX9yJcHRVmJ9fZwTGUVR9XWk+8lewaXh0wOSCW4yUBLu6+YryJ/1QALRdF8ZLBJZ5I4mTTYGSjyXBNv0E8iW+rZnuKV4Db++x58qkrUtqmtHX2o7JkrjkFRFDZufI62ttYiRCiEEEKMT05zgAzDaDUM4yrDMI4BTgFuA94P7NV1/W5d1y/SdV1mv5a5xIH9fFVfwRXz5mPZ+c2A0tkrxikphT0pBLIn86Hq8k+AVK+PlJnGsi1sM4Njpoud/6D5vS8lQMmpnQC1Pfs0AJFwCDuVHmVraKiq4l3Lj+LLy49iw51SDU4IIUT5yUcRBG/2a3AMVQNwE7BV1/VVeWhfFMhgcpJBwc5zApTJLpKYjkTz2q7IP8dxGEx7KuuqShrLWKial3jmpaTDTiWKvh6qN+gjkR16l5ziwzzv2GHwm7278C1bNubHHF9bz+qqGvrWP1vAyIQQQojc5JQA6bq+WNf1r+m6vgN4FLgQ+B2wwDCMk4CFuHOF/pavQEX+pQbcE7d0AS6fm6pbmjgTnx7rpExmViKBL5uwVtZNgipwmo9YOv7ir3YmheIUdz0gX8DP03293N/ZQco7dVcT6OnpZvP+vTzU3cWS1ceO+XEVs2YBEOzpIZORaaBCCCHKSy5V4NYCO4DPAU8A5xqGscwwjO8YhtECkP3+T2DeyC2JUktF3IVKMx5P3tt+UgvypW1baK6tznvbIr9iHe0AJCyLuuryT4Asr0Yq81LlNSeTBqu4CZCiKNzR38Pv9u0mWTF117navHkjAIsXLsI/jk7iOYsWu48LBNn03PpChCaEEELkLJdLl17gcuB6wzCONMHjX8A9uQQlisPMVoEzC7CQZDRUyY5YlL60XP0td31trdiOw4BpEtA8OEVOJsbL0jTSmZcqr9mWOw+o2ELhELFo7MVqilPR7nVPcl5jE3OWLseMj32uk1ZVTcpxCHg8bHjwfk446ZQCRimEEEKMTy5nvr8E7jxc8qPr+kzg3dkCCRsnHJ0oKCvhDiOyvN68z6HwB9xloiLZXiZRvvpDId7z7DoWz5rN38o8+VE0L5YCqSEJEA7YqTg4dUWNJRQOE/T0EO3pLup+i8ncbvCBBYvoU1Ucc+zHhqIoJAIB/KkU0Re2FTBCIYQQYvxymQN0LbB4hPvWAN/IORpRVE62epXtze8aQACzPB4ubJpJbWdn3tsW+dXb24MDhGrKf/ibqvnIODbp9MvX3rEzKRyruL2Nb6qq5U/HnYT21Lqi7rdYLMvCny3wUJmd0zMe4aYmACr6+0lO8bWShBBCTC5j6gHSdf0OYEX2VwX4l67rh1v+vAnYlafYRIHt9misPbCPOa84m5l5bnu2Y3PavIXsHZAeoHLX09MDMCnm/6heH2Z2DaChnEwax8yA4gPyvKjVCEyvBxywpmihj927dzLP5wegce74p3PWzp5L1949pC2LzZs3cpIMgxNCCFEmxjoE7jvAB7M/LwQ2AMMv7VtAH24PkZgE9pgZ/tPeyjvrm/KeAJEdAqeW+ZAqAcEtm7ly8TJS2desnKleHwkzhe3YL7vdNk2cTArFl//ezJHYPi+kHJwpuhDq9q1bWBIIAOAJV2CNcz6ft6GBPzkW9+/dxUfXPyMJkBBCiLIxpgTIMIzHgccBdF0H+KZhGLsLGJcogmjU7Z3xB/O/+KUScNv0WvYoW4pSC3Z3c1pdPVuKmDzkShlWAvsljrsekK94vViW3wupNKQO1xk++bVv3sgyRSHhUXPqU1MUhWPmzuf+DevZsOGZvMcnwLFtrIF+FH8AT7D8L2AIIUS5GHcRBMMw3pfPAHRdr8PtYXo9UAVsAr5gGMZj2fvXAD8DTgS6gZ8bhvHDIY9Xga8BlwG1wGPA5YZh7ByyzYTbmIqqYjGWhMKECjAHiJBbGtjnFGc4ksidJzs/w1sRKnEko3O8XuKJwxcdsM0Uqm2Sn/WdxyDgh4E0arr4FeiKIbV/PwBmVTV2jtUcV81fCMDmjc+RyaTxFuK9ZpqKPreBzhuvJ9PZAR4PlSeezIxL/xtPOP8XtIQQYqoZ6xwgCzjVMIyndF23OfIge8cwjPEkVjcAM4C34w6r+xhwr67rx2d//w9uSe2PAK8Afq3rerdhGIND7b6Sve99QDNwFXC3rusrDcNI67peP9E2xvFcJpU3ejQaV6xiSyr/E5SVsLv+T6AAi6yK/PJlq3sFqsp/PRtL00ilD3+8OmYarAyKGsApRuIdDAAR1HFUR5ssHMfB198HVTUEm2bk3M4cj4dfrD6O3lSKrVu3sGbN8fkLchrrX/so7dddA4PHuWUReepJwquPpeqUV5Q2OCGEmATGmqh8Azg45Oe8nF3our4UeA1wenaYHbqufxJ4HXApkABSwEcNwzCBbbquLwM+D1yr67oP+DTwOcMw7so+/hKgBfgv3OTqQ3loY0ryZ78r4aq8t61V1AAQVFUc20JR87/Yqpg4x3EIOQ4oChW1+T8O8kpRsIetATSUY5k4ZgolEMSxCp8AOWF3fozXsgq+r2Lr6Ojgml07uC8U5hdvexskchvmp/oDNPn81GpeNjy3XhKgPEju3Uv7n68Dx+Gh3m6u3rOLJVXVnHHiyVw0bx5l/l8shBBlYaxzgP53yM9fz+P+u4ALgWeHtO/ouq4Adbjlth/JJi6DHgC+qOv6DNyCDJXZ2wYf36fr+nrgLNzk5cw8tDElBRR3qJAnXEW+Z+p4KmsAUBWFRH8/odrirtEixsZJJfFle+lq6sq7CpzqdUtgp0ZIgACsZAI1UF2cgCqDPNHTTaihkWOLs8ei2b79BWKWRbqxkUC4gmSuCVA4TEZR8KkqBzc+l98gp6kDf/sLWBbrenv49a4dADzf18vz9/2b/3viMX7wg59x2mlnlDhKIYQob7kshIqu64uBgGEYz+u6XgN8G5gH/N0wjL+MtR3DMPqAu4a1/VZgCfDvbLubhz2sJft9PjA3+/OBw2wzP/vz3Dy0kTOPp0jzEcYpnUjgU7MJUEUNqGMfqqZmt1WP8Bh/RRXf3r6NuGXxB8emSivPv8Nwg69Xub5uE3G45xbv7wMgaVnMrK8+4mtaah6fn4Rik84kGD6yUsne4JgpVMfEUXN6axsXpbaSn+zewZqqSt5RwOO7FMfkzp0GAEctXYqdSk7guFCwwmG80SiZ/fvQhv2dptv/20R1dXXx6Uce4FTVw0avxtV/vJbF82bwzLonuPqvN/DC9p385AufpubCN3LMpz+Lmq3il29T+XUDDnl/EUJMPeM+S9B1/XzgVuAXwGeA3wJvwU0yrtN13WcYxtW5BKPr+unANcCthmHcruv6T3CHrw01ePk3AAzO2j7cNoNdDqE8tJGzqqryrMzTMdD14s8VDY2knfEPUfP7vUe8/4V0hlQyjqrZ1NZOrom55fq65cPQ5zZg9GI5Dv1mhtV1lXic8q3a56mooA8bR7HQvIc/XlXHxIOFN1j4gg7haveYTibjRTm+i3lMRndt591zF7C8rg6f4uAN5l68oGb2LJLbd9BoWqTTUZqyC6QONV3+3ybCcRyuuOL/sb+tFe+SJfzjH//ASgxwcPcLLFkwi//9/Mf5yW+u5e1JB23HDjruuYOj3/eevOx7JFP5dRNCTG25XCb9KnAv8L+6rlcDbwa+axjGV3Vd/xbwSWDcCZCu628C/gY8Cbwje3OCl6aqDBq8pBXL3k92m8SwbQZXJ8xHGzkbGEhglWEp6NY97pSupGWRMiE5jkpWqqrg93tJpTLY9shzLfyBEKlknNbWTurq8r7SUEF4PCpVVcGyfd0m4nDPrdlWufTZdcxrbOAV8RSZIi0imgt/WCGSjGJmDp1zoygKHk3FTGdQEnEUNYhtF/b1UzwaCpDsH6Cnsx9FK0yvU0mOyf3NvH7mLOKRGPHoxNY58tbUkgSWhMM8+ugTvOpVr3nxvun2/zYRd/3j7zz00EMEAgF+8pNfoNgWB3bvIB556WPqI+9+B7f/6louCQRpufU2Gl57AVoo/xcDpvLrBlBdHURVp2bvlhDClcsn9rHAGw3DiOi6/rZsGzdn7/sPbkGBcdF1/QrcMtX/BP7bMIzB3pgDwOxhmw/+3gx4h9y2a9g2G/PYRs4sy8Y0y+8DYqCrBxVIOg4Z0z5iIjMS23aO+Ljja+oI+zUie/dh6isnEG3xlevrlg9Dn1t7ewcOEKqpLnjCMFGOx0skNcDhC7y5NzqOg5WMo4VqKPTT0fxefr5qDU3+ANHdewguXlLQ/RXrmHQch0AsBj4/wfqGnN4bhvJU1QAwPxji/g3reeUrX3XINtPl/y1XyWQS7R83852jj6H3tNNZsmQJ7fsNov39L9tO07yc+JYLab3tfmYFAjx5zR95xUeumNC+j2Sqvm6yeoMQU18ulzgSvJQ4vQ5oNwxjU/b3mUDfeBrTdf2juMPpfglcMiT5AXgEOFPX9aHjXV4FGIZhdOAmKAPA2UPaqwGOBx7NYxtTTgyHvxzYx0OJOFaBKmadU13Fe+YtxNy3tyDti4nr6uoEoKG2prSBjIHl9ZIcoQT2UHYmDZYJBR7H7w34SGQrwFmxCXcWl42urk5met3rQjWHGa42XmowSJ/fz4NdHezYumXC7U1HD/zlWub6/MwLhnjLu95LOhGht6PtsNvOmzuH1sZaAFJPPkEmk9saTkIIMZXl0gP0GPCZ7AKmbwOuBdB1/QTcxUQfG2tDuq4vx+35uQX4LjBD1/XBuxO484E+B1yt6/pVwMnAlbhr9mAYRkrX9V8C39d1vRPYC/wAt9fnn9l28tHGlBNxHG5vb+WounqWF+hyVzo7ET01MFCQ9sXEBbZs5lOLl5EswDCZfLM1jVR69OFY7npAaRSvt6DrAXlDfuLZBCjR30f5r6I0Nvv27mFewJ3b4auqIi8jnFYfy+/WPkyoswPLsvB4yrcsvmOa9D/6MLFNG1F8PqrPPIvwMatLFo9pmnQ9+ABLQ2Eis2dT2dhAV/MOErHoiI9Zet45pG66g1malwf/ch2vff8HixixEEKUv1x6gD4FzAH+D9gDfCt7+52482i+MI62LsYdgvZmoHXY18+yPTTnATqwHjfB+qxhGH8a0sZXcecc/RFYC5jAeYMLmOajjakoGo0AEAoX7rQto7lXkc3oyB/UorQCnZ2cWldPk2/4NLnyonh9ZHBIZcaQANk2diqBWuBSTl6fl7jtJkDJ3r6C7quYDhovENI0tzS+Lz9VxBbMaCLo9xOPx9izZ9foDyih1IH9dP79RmKbNxF99hmaf/pjOm++qTiL6x7GQ/fezbF+93U4+pJLsTJx+ro6jviYQFUFbdXue3vHffdiTcG1qoQQYiLG3QNkGMYeXddXAjMMw2gfctdFwIZhQ9hGa+s7wHdG2eZp4NQj3G/hLmr6+UK2MdWkujpZHApTHyhcFR/T64d0BiseL9g+xMR4Uu6/q6+yvKv0qV4/Sewx9QAB2OkEmmOS2zWesVEUhXQ2yUoO9I+y9eQxsGsnAHGvhp2n4VMeVWXlgkV0HtjP5s2bWLp0eV7aLYTg4sX0nnMuW/9zL0QinB4O03vPXSjhMA2vu7Do8Tx/6y2c7/EQ8/s5es2xJAY6iI3heGs89QRabv8PW7s6efTRhzn77HOLEK0QQkwOOZUtMgzDAdqH3fZkXiISRVGxdx/fW7GKbQ4Fq/tl+4OQjkJy9HkbojR8mQwoCsHq8h7ApXp9pG2LdGZs11fsTAosE0X1F/TKfTq7Pk4mMnWGeabaWgEwKytx8tRz4Jgmn66qwbOyhls2roc3X5yXdvPNsiyuuupb3Hjj9S/etmPGTN47fyFdN9+EOWcuM1cXb9nb1tYW6ru7oKaO6leciqpCf1c7tj3666LNmckjC2Zx9+bn6Ln+r5IACSHEELmsA9QI/BR4PRDm0KnGjmEYhV+FUEyInXB7ZSyvt2DXyJ1ACCKgpHNbRV4UXggHUKiqqyp1KEfk8fqJpsdeaMDOZHDMFEoggFOgIh8AZnYuS2YKDfO87eAB/trawlWfvDJvbSqahun14slkGNi+PW/t5ovjOHT85Tru3rOLG2+5GUVReNXZF7F65ckcOLCLZ7at5cSqap780fc59xe/oaqquihx3XnLzbwiW0VvzjmvwkwniI61t1FReOWpJ/Gvu/7NunWPs3v3LhYXuFKhEEJMFrkkKr8GLgSuBw4CU68G5jTgZIc+OXka439YQbdXwZMxC7cPkTM7mcSvuOlvVX1xTuhy5vUTTXeNvt0QdjKGGihsYtelqTzR083ScHkPIRyrTCZNS8tBLMti9uy5EM3f8FVvbS10dBDq7yeRSBAMls8imrGNz9H/yMMcZ1mENY1L//sznHzC2QAcrR9H5/JV3PT3n3Prvt089NUv8pOf/AqlwHPMAP5937083dPD+197PkcvmE98oIN4LDLmx9fX1nD6Ccdj7tzDnf/8Ox//zHim6AohxNSVSwJ0PnClYRi/z3cwonjU7MKnjr9wCVC0YQ7fvu9mKmfORgZflJ9Yp1sCO2VZzKmpLHE0R2Z5vSTHuSCnnU7hsU2gcBXH9oZ9/HPjJr7c+M6C7aOYDhw4gGVZhEIhagIBUnlMgMKNM0h0dLA4GMIwtrFmzfF5a3uieu67F4B7O9s569y3vJj8DGqcr7Py0v/h1h9cyUMPPcCtt/6Tiy56S0FjOnjwADt278Tj8fCDKz6JR4WBnk6ccS5w9b6KaiqWLOMvjz2CeeVn0Aq0YK8QQkwmuYx+SgO78x2IKC41ky1wFyzc3A9PTQMbB/oxersLtg+Ru96Wg5i2TZ+ZIez3jv6AUlEULM1DcowFEAbZmRSYaRS1cFfqQ5Xu/09//9QogrD/hW18dsly3r9kOVYyv0NXvbXu2jRLwmG2btmc17YnIt3RQfKFbdiOwwbb4Q3nHz6ZnTtrCZde4paT/uMvfsJAgcv7P/roQwCsWXM8VVXVmJkk8cj4jzP/4vkAHOXRWLfuifwFKIQQk1guCdA/gXfkOxBRXF4zO4k2XLgr/8GQ2/bAFKqQNZX0BYO8c/1T/LS7A8YwqbpUVK/fLYGdHl9vhGPb2Ol4QYcqhSpDKEC0p6dg+yimHmMbJ9XWsSYYxE7ldxUAT1U1NlDj9bF388a8tj0RXY88BMCmgX7OPP9SvF7fiNu+cskafrHmRD7QMIPf/e5XBY1r10MPcvGsOZx3wkl4PCqZZJx4LnPNFs4DYHVVNXfddkueoxRCiMkpl77w9cC3dV1fAjwJDD8rcQzD+OaEIxMF5c9WxlIrCjf3IxgIcXZ9I2HNQzIeIxCaGvMkpoquri4coKK2vOf/qF4/aexx9wAB2KkEWtjCPqRWS37M0rz87YRTSO/YUZD2iy1+8CAA6VAobyWwBykeD5lAAH8ySXJP+Qwi6HjkYULAC8B5x551xG3tYDUzvF6atCr+dsetdL3vMhoaGvMeUzweo6mzg1fOmYeqaqiqQnSgF8sc/2vi1FWTCQbwJ5L0bVhPKpXC7y/vdb+EEKLQcukB+hVQA5wFfA74+mG+RJn7d3cXt7Q2Q+2Mgu3DHwzzkYWLec+8hfS3tRVsPyI33d1uUYH6mvKuAKf6/CStFKY1/pM/O50CK1OwXiBPZRiPouCz7ZItlJlPaq/bk+WprilI+4EFC/m/g/t5Zt/egg8hG4vkwYOE4jEytk3TaeehqkeeL+aEq7EXrwTg3Jo6/vznawsS15OPr+X4bKW5WWefg2NniPb35taYoqAsyvYChUI8+eTafIUphBCT1rgTIMMw1FG+CjfjWOSFbdvcdnAf1zcfwFNXuARIUVUS2Qm7kVFWLhfFV7lpI59avIyjyqga1+GoXj8DqdzKTNtmBieTLNg8ILUmW+kQt6reZBfOPoeKhoaCtF+7XOdpK0NrKsm2bVsLso/xeGHDs+yJx9gSjbD6uHPG9JjE8pMBOLO+gbv++feCDPHdfv+9VGpeUh4PYf0ozHSSZHzsZeCHcxbMAeCE6lruu/eefIUphBCT1oSWgNF1vVrX9aN0Xffrui6JzyQRjUZfvFrt8xd2WFosmwDFusZXwlgUXrinh1Pr6mks8+Ewts9HLJV7NTI7GUMp0HK/vuoKUtnFQq3o2MsTl6P+/j5mZCuE1c+aXbD9HDV/AQBbt5a+EMLN6x7n889vZvOi5WiesVXEtBrnwYzZ+FSVk0Jhbr/91rzGZNs22q5dADhLlqJ5PaSSMZLx3P8HnKYGLK9GldfLvqfWkcnkd36XEEJMNjklQLqun63r+jqgB9gCrAT+puv6j/IZnCiM/q5OloTCzK2oQvEUtvpXIjv3ItEjleDKjS9bCj1Y5kPgLK+X1AQSICudQrEyhy7ZnAf+cJCI5a5zZU/yxVD3bn+Bep+bDAeqCzcvbPWMWZxaW8eeTaUthJBOp3nwwfsAOO2088b+QEUhteQ4AM5paOTmm2/I6/DHbc9vYVXA7ZWd/5rzUBSFaF8PjjOBJfdUFfucU/ny/j1s6mzn6afX5SlaIYSYnMadAOm6fi5wL5AAPs9LpxUbgE/quv4/+QtPFEJkz26+u2IVX166HMsq7Dq2yeyY+lRfX0H3I8bHcRxC2d65yjJeBFXRvJiqQnKcFeCGsjMpHDOFWoB5QIFwgKjpJkBWbHInQK0vvEDSsoji4BTwfeGEeJxPLVmOsm9fwfYxFk898B/MRIIZM5qYM2vZuB6bXHAMeDQWhsI4bW0880z+EoqNd99Jrc9HCqhetRrHSpGITny+lDN3FvqJbuL2wAP3Tbg9IYSYzHLpAfo28C/DMM4Gfko2ATIM43vAVcBl+QpOFEYiW7I3AZgFToBSHndITUZKYZcVO5nEn00I6mfUlTiakak+P2nHIjmBHiAcxx0GV4geoFCASDYBSvbmOEm9TGzv7eY9G57mwaYmrHThhkiFslXTGi2Trq7Ogu1nNLE7bueaNSfynjUnkU6Nswy8P4h9xoU83NTEvkScG2+8Pm9x7dv0HDHTJDFnDqrXi5lOTWj+z1DHHbMCgEcffXhKFO0QQohc5ZIArQGuyf48/B30XmDhBOIRRZDoc0/U0qpKoT8D05q7poYdzc8HuMiPRKdblCJmmtTXlu8QOI8vQMo2SWUmVmDATidRbDNPUb1EC/rYFovyRE83SS2XVQXKx969e3GAmbNmUsg3hkC9W2BhSbiCLSVaEDWdStEQjeJVVeasPDGnNmKLj+eUt74LB3jooQfo65t4AtzZ2cGNmzdy2cZnWfT+y/B4FFLJGKnk+EvAH85yj4fPLz+KNbbDjh3b89KmEEJMRrkkQP3ArBHum5+9X5Sxwd6YTBFO2HZW1vPt7dt43je5Tw6nmp59ewHoMzNUBUde+LHUVF+ASI4V4Iay00kw03mvBqcoCv+JDfCT3TtINOZ/PZhi2rt3DwBzawvbI6jV1gCwMBhia4nmAW194D9UahoJy2LmqtNzasO2Heqr53D00SswzQz//vfdE47rscceAeDolatoXLDIXf+nvzdvvTVqJMoJVTWcWlfPo48+lJc2hRBiMsolAboVdyHUoZfNHF3X5wL/D7gjL5GJgjGzk7VNrfAnvonqRjYO9HNwkk8Qn2r62tswbZuYooA9zuE/ReR4fXlJgBzbxk7FKUQ17IqqSgD6+yfvtR/LsrhE0/jU4mXM9o2tGlqu1GCIjKqiqSodJeoBaln7GADtwSDJCaz3Gmnp4CPLV/DJxUu5886JV4N7+qEHADjrrLMBsM00iVj+qgva893qfnpFJU8/+nDe2hVCiMkmlwToC0AHsA7Yn73tesDAHRL3xfyEJgrFypZTtXyFL39cUVUDQLdUgSsrrZWVvHP9U9yplm/yA2D5fCRS+Rk+aaXiKAVI9sKVFSjAQPfkPcab9+/j2MpqTq2rp66ioqD7UhQFO7sPq7m5JHNR1OaDAHgWLiWTzv2YiEeTzGpu5vS6BtpeeIF92Z7VXCSTSc7v6eXnx6zhzKNWoCgKZmZi6/8coiKMWV2JR1HwHjiQl2F7QggxGeWyEGovcArwEeAR4D5gE/A54ATDMGTBl3KXcMeT24HCL4BZEwjxyvpGlkQnMIld5F17exsOUFNXU+pQRqRoXjKqQmIiBRCGsNNJsPI/DO6EcCXXn3AK1ZO4slbzls2oikLStlE9hV/SrWJGEwCzFZUDBw4UfH9D9XR1MSdbvLRhzWkTassKVaMucivIndPQyJ133pZzWxv/czcz/X7qfD6Wn3QKHo9CJpXI2/yfQUp2UdTjq6p54om1eW1bCCEmi1zKYJ8FeA3D+INhGO8wDOO1hmG8zTCMXwE+Xdffnv8wRT7txOGW1mYi1fUF31etz8fHFi3hgnBhF1wV49PR0Q7AjDIvgDDhCnBDOJaFnYqj5LkcnBryuyW2E/k9US2mnuyE+AHNg13ACnCDQnPncuNAHzc0H+C5554r+P6Geu6eOwl4PMRtm8DMxRNuz8yOBj+nYQZ333lbzj1aHY+4Q9Law2E8waC7/s9AH46d30qdg8Pg1lTX8NgjD+W1bSGEmCxyGQL3IHD0CPcdB1ybeziiGDYm4lzffID4jMKt9j7IW+tODA+pHpKT+ARxqlm2Zw+fWryM+f7CzveYCNUXIGGlSU+wAtxQdjKG6uS3GpwTdntSPUVIHAol1dIMQCYcKugaQIM8lVVYM2bQk0kXPQFat20r1+3fy94ZTSQSEx8SGZuxBKWikjqfj5mxGM89t37cbdi2TV2nWxI8fEJ2eq2Tycv6P8M5DXWYPi9hTaNzw7NYVnkPgxVCiEIYU2kuXdf/BMzL/qoAv9F1/XDvzMuBtjzFJgpkYMB96QLBwo71B9Cq3ZK3qqLQ09LM7CVLC75PMbpZyRRH19XTGg6VOpQRqb4A/an8TQAHsNIpNDONogVx7DzNPakMQXsEzcx/me1iUft6AQWtuqZo+1w+070As3Fj8SrBOY7Dg0+vo6OjnVede8GE5v8MshUP2uqTyTx+P69ubOKOO27luONOGFcbu59YS6PmJW3brLrozSgKWJk0yUQBhg6rKsrCuRjPbSEWi7F162ZWr16T//0IIUQZG2sP0M24ic/g2BHlMF828CTwvjzHKPKsMhGnye/H7y/8ya/i0YhlrzD2tR4s+P7E6BzbZjD1rW6oKWUoR2T7/cSS+V0/yrHMvA+D81S5f02v42BnJlBSrIQqUm7vVWXjjKLt86jKKt48czb+vfuK1gvR3HyQjo52NM3LgvlH5a3d9LLjADi2qppnH7ifVCo1rscfvOcuAPZqGuGaOlRVdef/FCIBAqzTT+Q/dZVsjQy8WHpbCCGmkzH1ABmGcTtwO4Cu6w8ClxuGsa2QgYnCcByHTzU04Z0xiy1FKr4UdyAMRDo6irNDcUTpvj40RcF2HOpn1JY6nMNTFEyvl3gy/+XT7WQMLVyDndMI4ENpNRXYjoOqKNixKGpNmf5NRxCLRUlm0mS8XhpmjbTEW/41WBbvmDuf9f297Nmzm4ULlxR8n1see4Sz6xux587FMfPz+gPEPFU0Hncidz3yAP3RAR5++EEuuOCCMT3WMU1qWlpAUVBXHwuAqiokYhGsQvUqKgprjlnBI489ztq1j3L55Z8ozH6EEKJM5VIF7hxJfiavTDyOV3Vfdq2qsAseDkoo7v5i2THuorQ6d+0EoDeTob66PItTqF4/aZy8lcAeykonwUzlrRpcuKaSSPZE1YpMvvWu9u3by5df2Mon9ux4sWx9Mfjq3SIsy8OVbNm8qSj77H3maS5ftIS31dSRSOSvt86ybHxvejfmWWfRm8lwxx3/GvNju3t7+MH2bdzT0cZx/3Vx9lab2EBf3uI7nBVLF1Ph0ejfvZOenp6C7ksIIcrNmHqAhtJ1PQR8CXg97oX94UmUYxhG4S/liZz0Zte/SNs2WkUNeRgCP6qURwMskr3yIVsOunbvwgcMYONxCj/hPRcef5CUYxYkAXIsCzsZR60MYzHxbtBQVQXr+3up8AdY6B33W2rJ7d27B4AF8+ZhjXPo1kR4qqoxgQpNY9/6Z+ENby74Pn3tbeAPoC1aSiqZ396Vgf4kF17wRv7wh9+ydu2jdHd3U1s7+gWGhx95iK2RAZx58/nEbLdEtW2mCjP/Z4jK9k7+uOYEtkUjPPHEY1x44RsLuj8hhCgnuYwB+BnuYqhdwFrg4WFfMqC4jPW3tgAQsSxsCr/eB8D6ijq+vX0be/JcfljkJtLsVvxKauV7su7xB4mkY9gFWLgUwErGUOz89AAEq0L8Zu9ufmA8j1LfkJc2i+nFBGjWHJwiFnJQVJVkwK1CmNq9q+D76+7uZoHqvufVHXNS3tuPRpLMmjmPC1ev4UPzFnDXHWNbE+jBB+8H4NxzXw24w98y6VTB5v8MchpqURWFoyoqeUrKYQshpplczoDeAvw/wzC+n+9gROHFOjsIAwnALEK5W4BIbRMbB/qZO9BflP2JI4v29FBt29ih8i2B7fgD9CXaC9a+nU7imClUbxh7gtXg/OEgqqpi2zZ9fb00FrGQQD7Men4r31+ximQJSqIHGxvhwAGqIhEymTRer69g+9r6yIPM9HpJOw7BWUugJ7+9XWbGpr87yqUVVXh9Af55z11w5RVHfMzBP12LfvAAL/h8nHPOYAKkkk7GSKfyV/79sCorSIVD+GNxElu3YFkWniIsgiuEEOUglx4gDXgq34GI4oh3dQGQLOIHXUWlOym8u7u7aPsUI3vSo/DO9U/RNbd8T9RNn49EAQogDHJsGzsRJR+dko7iUF1bgwJ0t02+VQCqYjEWhcLUVxS+LP5wNdkhX8tCYbZvNwq6r/ZnngagNxgglS5MBZhIxKTuNa8F4CxUnl23bsRtM93dRB97lPMaZnDMwsUsXuyOHFdViPX3FiS+4dTF8wE4yuvj+ee3FGWfQghRDnJJgP4NvC7fgYjiSPf1ud81b9H2WecP8Mr6RuYM5H9RPzF+LS0tOMCMxvKsVqZ6/WQUClIBbig7FUexMi8V95+A1zXN4m8nnEL6jlsn3lgR2bZNQ/YPUDezeBXgBnnr63Ach1qvj23PbSjovpTs0E/PvEV5LYAwVDSSou7VFxL1qDT4/Tz9q9+MuG33rf9EdWy2DPSz5nWvf7E0u22mScTzP/ftsOa7azGtqa5h7aMPF2efQghRBnIZAncj8Ftd12fgrvtzyEBlwzD+PNHARGG0qQrrWpupWr6S2UXaZ6Pi8NpFS2hJF2+CtRhZS4t7Iji7vjwTIE8gSBSr4AmQlU6hZRKogWrsCQ4HVUMBPCgkB/K7cGuhtW83CHo8mLbNjKaZkCzu/6jq9bG2popfPXAfr58/j4tHf0hO4vEYs2wL0KhbfSIRqzA9QOmUSTxpE77gQrj9dvTefto2baJhxTEvj2fb8ww8vhaA61sO8uvXuwUIFAXMTOHn/wxyGutIax4qgANPPg5SDlsIMU3kkgDdlP3+7uzXcA6QcwKk6/qXgVcbhnH2kNvW4BZfOBHoBn5uGMYPh9yvAl8DLgNqgcdw1yramc82poI9pslNzQd446mvKloC5KltAqBK9WCaJloZT76f6jKJBB8OVdK5eBlN5VoC2x8iko5h2QWekO84WPEImr8Ce4LdQHZlCCIZiE2uMtgtm56jEui0LWZaFqWoCTh3/nwsx2Hr1s0F28emTRv5wvObOXXeAj62cCWRrsIlen09CVZcdDG33fovlqkeDvzy59R89yq06hoAMj3dtF79ewD+3dHGjGOPe3HemKqqJNOFWwD1EKqKPWcm7GumrqeXnp4e6uqKszyCEEKUUi5D4BaN8rU412B0Xb8S+Maw2+qB/wDbcZOXrwHf1HX9fUM2+wrwEeCDwKm4Sdjduq778tXGVNGbLUUdrqwu2j61+pmAW+62q62laPsVh2o1trM0HObY6hoaqoo/52NM/AF648UpmGGnEmClXxx+lLPs31IrYhnpfOjPrgkV9fmwM8WrADfUinnzANi1ayexAiWQGzY8S8Q00Y5eQcrK3wKohxONpEinLRre9W7aU0nC6TStTz4BQKa3lwPf/TZWXx/NyST/d3A/l176rhcfq6oK8Ug/tl28VNRzjM4/ov3c1tbCE0+sLdp+hRCilMZ9Kd4wjH35DkLX9TnAH4EzgeEzYT8EpICPGoZhAtt0XV8GfB64NpugfBr4nGEYd2XbuwRoAf4LuCFPbUwJnt4emvx+wsEinvwGQmRsG6+q0rl3DzPnzi/evsXLtG3fDkC/beFRbPKwDE7emX4/8d7iDCWzzQx2MoZaEcCaQMVtT10VNPfisywcy0KZJNW0rHa30p5dggIIg+oqKvjk8qNZ6PWx+emneMXZ5+Z9Hxs2PAvAsauPJ1mg+T+DkokM0YEUZ53/Oj51w/9Re7CZ/ofu5zvnvQ6tshLHzBDxevnWpvUsXH4Up512xksPdkzikeJWy3SaGrD0pfS/sI21ax/hwgvfUNT9CyFEKYzpUpiu69four5oyM9H+ro6hziOB3qB1cDwsjlnAo9kE5dBD7ih6DOANUBl9jYADMPoA9YDZ+WxjSnhzbbDL1YdR0MRrzCiKESyJ9q9Bw8Ub7/iEN273TVf4h4PFPMYGCPVHySFQyxRvLk0ViKKMsHhdoGmeizHQQGsyOQp9tERjdKSTOCvL92wJ0VVWVlZxZxgkP2PP5b39jOZDCd39/DW2XNZsTD/C6AeTm93HMd2+NiXv8SNrc3cdfcd/OMfN6FoGt2nnMoVTz1OdzrNpz712Zf1PlpmmmQiUfD4hjvmqKUAPPHEY0XtfRJCiFIZaw/QObjzZwDO5cjXjcd9TdkwjNuB2wF0XR9+91xg+ODwwXFU87P3Aww/s27J3p+vNnLi8RR2uMV4OI5DODvXQatpQFVzG/Yz+LjxPD6meqjDIdbehqaVz99kuMHXq5xet3zxeFSiBw5QBVjhQM6vfyF5g2EGHJNEanwlqgdPIt3v43sLctJJyCTxBCpxclwTqKqhlt5MmgafH2egD62hPqd2DqeQx+Sf9u+mo6ODP1xwQUmOh8F9pivCEItj7t6V9/eHbc+u56zaOqito6JmNq3dhU+A4rEU6ZTF8ccfz0c/+jF+9atf8M1vfpX777+XZ555irRl8V//dTGnn376i49RVYVULEkmlSj6a7F4RgMXzZ1PBWAYW1m16tgjbj+V3yeBvJTHF0KUtzElQIZhLBry88KCRXN4Idzha0MNrhAXyN7PCNsMXtbMRxs5qaoKTuTheZUeGMCnuh9YoZlz8AYnNr3J7x97Ke20PwDpBJm+Hmpry3Py/VDl9Lrlk5ldi8lfV01ggq9/IXgrKxnIRPBoCjD+YWSeXE+eU1F8FVUontzKwzfMqmdDXx8VPh/H1lVRUYBjPN/H5MDAAB0dHQAsaZpB0CndeMiGhQtg6zZmJJKEQhp+vz9vbR98ci0LgB5VpSIQJhAsfIEBx4Fkwk20vvCFz2FZGX7729/yeLaH64ILLuDHP/4hXu/Lj7fWvhY0DTStuP+bTjrFpTNnYzkOG554jLPOOm1Mj5uq75NCiKlvMpTjSgDDPw0HlyyPZe8nu01i2DaDiynko42cDAwksCZYYjdfugx3/kfUNLG9FSQS6ZzaUVUFv99LKpXBHuMV8511c7jhkdtZXFdDb2+R1rjIgcejUlUVLKvXLV88HhVfLAGqSkVjLckcX/9CMlUvvX29mJnxTchRFAWPpmKZNk4OJ/KWE0UJxbG1YE6P94WD/GG/O7zwYsVHJo/HeKGOyc0bngOgsb4eJZUhUYLjffC9pHH+Qrq3bmN+MMhj9z7I8Wecmbd99G99HoD0jCYG+hMFnwM0qLN9gKZZlSRTGa644n8455zXsmnTcyxevISTT34F0WgaeOl/UPMo9HZ1lub/0ucn5fcRTqXZ/8ij9H7oY0fcfCq/TwJUVwdR1anZuyWEcE2GBOgAHFKxefD3ZsA75LZdw7bZmMc2cmJZNqZZHh8QPfvdEX79lonteLAneMXXtp0xJ0DJpvlsHOhH6Wgvm7/HkZTT65YvjuOQTKUw/X4a5jSN+bUrFsWjkdY8ROL9jP/QdB/gOE4OjwUnk8FKRFAqAzn9XRxNoaa2hr7ePlpaWgiHK8cfxCjyfUz23X031x13Is84DtY4E858U3x+umybBlVl76OPsPoVp4/+oDGwbZuqgQgEglSvXE08li7acR/pTxKPpUEF07TR9RXo+goALMth+FBNx8qQiMVK9n/pLJgN2/cyo3+Azs5uamtHXydsKr5PAjm9hwghJpfJcInjEeBMXdeHjod5FWAYhtGBm6AMAGcP3qnreg1uYYVH89jGpBfNVnyKwoSTn/GqqmkAoLW1taj7FS/p7u7ic1s38q7nnmH2omKtAjV2nmCYpGMRS5SmiICViKJY6ZwmAJiWSeOMGShAx/79+Q+uAOzWVkIejVBleZRDT4TckcjWzh15a3PXtueZ73c7+5uOOzWbeBRHIp4hMpAc0zwZVVUw00mSidL1jvuXuiPd11TX8MTaR0oWhxBCFMNkSICuAaqAq3VdX6Hr+nuBK4HvAhiGkQJ+CXxf1/U36rq+GrgRt9fnn3lsY9JLdnUCkPAUv+OvPlzJ2fWNHGM7ZDLlN/RqOti7dy8As2fNwquU3yVOLRCmPx0lY5bm+LDSSZxUPKcJ6JZjc1J9PX874RRC99xVgOjyy3EcwlF3zR1fXf4KNkxE9dx5tKeSbG9rxTTzU6hg14P3oyoKvUDaW5WXNsejtzuOPYYhYqqqkkrGSCeTo25bKM6MelKKQoWmsfPhB0sWhxBCFEPZJ0DZHprzAB23LPXXgM8ahvGnIZt9Fbgady2htYAJnGcYRjpfbUwFXX4//2g5yF5v/iYYj1WNonD5oiVcMnuO9AKVyN697hyVhfPn4mSKMw9iPOxgiJ5Yb+kCcMCMD6Dauf1tvLXVeBQFNVa+c9wGWf19hBwHy3Gomzmr1OEAMHe5zpd27eD6fXvYsmVTXtps2WkQM03ijY0k48U/5mPRFMmEOWpSraoO0f4SHvtuEMQa3WFv6p7dUg5bCDGlld0cIMMw3nuY254GTj3CYyzcRU0/f4RtJtzGZLffsrix5SCvXHE8y4u8b7OiBoAar4/m/XuZP39BkSMQyjPP8J2jjyFWWUXZrYCqekh7vUTixV0Ecjg7GcdJJ1ADVWO6cj+Ud0YdtPfhS6dxbBuljCdRR3e5Ux2bEwnm1ZVuDaChNI+H45cs5aHNG1m37nHWrDl+Qu05jsMNz2/llx3t/Oa9vyVRpOIHQ6WSJpH+JA0zK7DtkedZ2WaaRCxaxMgOL3z0MjJtT2CmUjz//FaOOWZVqUMSQoiCKN9PaJF3XdkhcFU1xT/hsfxB0tl5R527dhZ9/wLUri6WhitoDAVG37jItGAFSSyi8b6SxuE4DlasH9UZ/xCs0NyZmLaNBzD7Snw1fxRtG58D4GAmTZ2/fEoZn7BoCR5FYc+TT0y4rebmg3R0tKNqXpYevYZ0qvDr/xxOb3cM+whzj1RVIZNOkoyXvudQWTCH36kZrjuwj7UyD0gIMYVJAjSNqO1tNPr8VFSOXt0n7xSFiOp2OA4cPFj8/Qv82ROs2lkzShzJobRQBX2pKOnM8KW4is9KxtxeoHHOBaqbM4POtBt/Jru+TrmK7XYvQsQDgRcXkS0Hx89fyNXHnsB7VY3+bNGWXK1/6kkAVq1aRap0U2uI9CdJJjIjFkNQVYV0Mk46mTjs/UWlaSzTlwHwyCMPlTYWIYQoIEmApgnHtrkonuRXq4+j3leaHoBE9kpzsqOtJPufzgYGBpihukUQ5y6bV+JoDuXO/+kpdRiA+79ixfpRGd8QuNqmOtpTbgIUay7vJH+/47C+vxfGUOq4mJoaGxmwbVRF4YU7b5tQW76HHuAXq9Zw/uKlbjnqEkmnLfp6Ri6uoaoK0f6enNafKoTjV61EVRW6dm7n4P59pQ5HCCEKQhKgacKKDKApCrbj4KkvzaTnTLgaALu3ryT7n852PbeekKZhOQ41jeV10qtoXlJejYFSFkAYxkrGcDLj6wXyBf30Zk9ie/fsKVRoeXFvTxff22FQPbv8yqF3+n0AJJ7bkHMbjm1TH4nS5A8wb6lOogQFEIbq7Y6PuLivbaaIRyNFjmhk1VWV/O/q4/jFquN49p9/L3U4QghREJIATRPpri4AejJp/JUlmvRc6w698sRiZXO1c7po2eyu5zugKjh2aeZCjEQLVRGzM0TKKAFyLAsr2jeuXqC0ZdITCrC2u4tuT/kMKzucHTu2A7CwTEpgD1WZLZAyIxbDzLGi3v6nn6La4yFhWSw98zWkkqVNgCIDSeLRDJr28o/ccpr/M5S/zr1IksnOFRNCiKlGEqBpoi87lKE7ncYfrC5JDOkVp/CdnQbXH9hLe7sMgyumSLZHwqyqwLHKqwS2J1RBV7wX6whVskrBSkRx0nHUMSxkCZCxMnTPbuJne3ZiKOX71trxwjYyfX0AzC9BQZTRrDx6Jc3JBJqisPPuO3JqY/8D/wFgn6rgEKDU11tsy6G7M4rCyxNjVVVJJaKkEmUw/2eIquPd6m/LUWjes7vE0QghRP6V76e0yKuBgwcA6HMcPB5PSWKwamfQGqqkK51m9+5dJYlhumrtaKc1mSDYVGZX/BWFTChEb7Sr1JEcwrFttxdojBXhMlaGeQvnA7Br145ChjYhndf/lT+sOYE3LVpC0F/8NcFG4/d6OZAtId7z+Nqc2vAMDkFcuoxYtPSFNQD6exMkk5mXDatUFIdIXzflVpa+YtE8uiyLgMfD5r9fX+pwhBAi7yQBmiaS2apUMc1b0jiaZrkniHvkqmLRmKbJDcbzfHLLRma/+hWlDudltGAFcSz6I+VRAGE4KxnDSUbH1AtkOw7zFi9AAXp278ROlceJ91CObaNmFyLWyqwAwlCVCxYCUNPfjxWPj+uxibY2Gmwb23FYePZrSj7/Z1A8lmagN/GyanC2mSIRLf36P4dQFDqzcwW927aVOBghhMg/SYCmiUy3e4U9FQiVNI6Tqut46+y5tO80ShrHdLJ79y5SqRThcJh5DTWlDudlPOEq+lJRkunxneQWi2PbmNE+VDsNYygX3bRgFt9fsYpPBiuIbS+/YzzdfBCPbRO3TBpnlV8BhEFrVq7ib80H+NzWTRwYZ9XIXdnqcdsTcRatOJZEvHQV4Ibr7oxhZtx5ZR6PQiYVL4sFUA9n5pknY9o28zwahpTEFkJMMZIATRO7w2FuaW1moKq0Y/5PSsd56+y5pPbtL2kc08mmjetRgNXHrASrfE4GAexwBR2R8l4zx0rFseMRxjIVqLqxhq6M2+PQue35Akc2fomd7vo/O6JRljbNLHE0I6sMBmmtrORgMsFdd90+rseua2/j3o522mfOJBZJl3z+z1ADfQli0RSa5sHjUYlHBsiky6+nECBcX8dOxf3j7b7j1hJHI4QQ+SUJ0DSxORHn+uYDpBtLe9U3U+3OQTG7OrDt8a2zInLT/dQ6rllzIpdU12GX0cmWJxgmrkLvQPnN/3kZB8xoL4qZRBmlLLbpWMRC7npXfWU4D6jv+S0AbI9FWdZUmnL4Y/XqY48D4Pbbb8UyxzYPy3Ecbnn8Uf64fw9LLnwDsUh5JfyW5dDVHgUcHNsk0lfex35m5XJ+smsHP356HZlMef0thRBiIiQBmiba2txx/5XVDSWNQ2mcC0CdonIwW5hBFFbm4AHCmkZ9VQWUUQlsraKGnnSUeLJ81kAZiZ1JY0V78YxSFjtlptFmuT0rmexcm3LhOA6JF9z5HD0+L+FAaRZEHqvT9KNZWFnF2wIhXvjet8b0mO3bDQ4ePIDf7+fkk04r6QKoI+ntjpNMmFiZZNkOfxu09KQ1PG9l6OztYe3aR0odjhBC5I0kQNNApqeHcHc3NV4v4arSJkCZmkYAZgeCvPCCTK4ttK6uThoybtIzY9mCEkczhKJghStp75885dDN2ABOMnLEgghpK0P9yqMBCMdjOFb5lPZOt7bgSSRI2zaBxhmlDmdUfq+XU5brnFpXj3fvXpLZUv4jsRIJWq75A4tCYc444yywNZKJ8iiAMFQ6ZRKLpEglYiRyXOeoWDweD2e+4kQAbrz+r2V1PAshxERIAjQNRJ7bwMfqG/nwgsVUVDeWNJZUjZuAzQsEeWHb1pLGMh2se/IJFofDAFTPLe1rP5QWqiKm2vT0l/f8n6Ec28aM9KJaSZQRCiKkzDSLTz2JuGniQyE+ykl7MWk1tdztUbix+QBLZpZvAYShzjnpFazt6Qag5e83HnHbvkceYk53Nx9ftITXvua19PaW19o6Q2VSGXo72ym38teH8+ozT+Pchhm8M55i553jm48lhBDlShKgaSCyz10TozWVorK6tKVvU9WN2ECV18verZtLGst0sPmJx6jx+rABraq0FQCH8lTV0h7vLdvqbyOxUgmsaB8e9fBD4dJmhtkL57I3lQTgwFNPFjO8I7K9Gjdseo7b21tZNW9+qcMZk6WzZrPN48F2HMxtzxPbsumw21mJBJ23uxP1/9PXyytf+RriZbL+z3AejwJOmu6O7petCVSuGurrOGb+XGb4/fTcfSeOzN0UQkwBkgBNA/HsXJsBTUNVS7MI6iBH85IMVwMQ2b0bc4yTm8X4OY5D1xY3yXTqasAuj/kQiuYlFQzS0Vdec2TGyoz24SQi7onsMA4OCStFc3U1/2g5yJbu8pnkvmXLZhKJBLWVlSyc0VTqcMbsrJNO5q52d6hk65+uw04mD9mm+9ZbUJNJWpIJqk8/AwWNWLQ8jvfhwpV+LDNOZ2sXmYw1Ym9iOak9/WTilkltJkP7YzIXSAgx+UkCNA047e0ARMNVJY7E1XrWW/j8ru0809WBYcg8oELZtm0rTdkx+zWLF+BY5ZFs+qrq6LeS9AxMnuFvQzm2TWagGyWTOOwV/EgqRv3Zr+TGloP8Z+NzxQ/wMBK7d9N+6y3MDgRYs2TppDjpHvSK5UexQYWuVAq7t4fWP/4OZ8iFk+hzG+i7714A/nRgH//97vfQ35vAMsuzp6Ki0sdATyeJeJJELDNqZcFysPSoZaxNuL21LTddL71AQohJTxKgKc6KRNCyV0zTdeWx7kdqxlxqlhyFA2zYsL7U4UxZDzxwHwcTcZo1D5ULyuO1R1Gwq2o40NeMbU/eCdV2OoU50I3qZA5JJhKZJKeecQYA69c/TTxe+onuA0+sZfHBg7yhaTar55VRMYwxUFWV9736PH66ewcZ2yba0vziZPyBdU/S+ttfAXBvRzt1J57E/HmLGOgrz/k/Hk3F77Po63bnNcWiKcy0VfZJkKIoVJ9+ElHTpCKZouX++0odkhBCTIgkQFNcKjv8rS2ZJNxQPhOfFy1fBcBTTz1R4kimJsdxuP/+e3m4uwvzTRcSWjKn1CEB4K2spV+x6extKXUoE2bGI1iRHjyKDUPOX5OZFHMXzGHx3HmsDoV56pZ/lC5I3B6r6IZnAXiqr4c1CxeXNJ5crF6wiLlHHcUPdm7nm89vpi9bPc3q78cxTdb1dvPX1oN86lOfJZUwiUbKc/5PZVUAMxOnv6cXgEzGIhZNo1DeCRDAscev5rGk+3dvu+lGrMMMRRRCiMlCEqApLnVgPwB74zGq68tk4UPH4TTNy2eWLOf5Z58hlSrPk5XJbMuWzezZs5tAIMDZp56ElSiP9UaUmgYORlpJpcvzCv14mZFe7Hgf2pB30qSZIu2YfGDNCXx+2VGkHnmoZPEBJPfuxerrI2FZdGoac+tLWwo/Vx9/7YW0B3xs2buH973vUu65507ufOF5fr9/Lz/etYPLPvwxFi9eRF9fgky6PHsXK6u89HW2Yg0pJx2LpkinTFS1vD+OFUWh8ezT6EilCGYy7PyP9AIJISav8n7HFRMWOvY4rm1t5v6uDuoay6MXAEWhqXkvJ9fWMU/TWL/+mVJHNOXcfvu/WBIOc+E5ryKs2NiZ0ieZ3spaBjRo7Zw6C+A6jkOmvwsn0f9iUYREJknKTLHiTRcBMC9j0r5vb8lijGR7Wdf393Ly8qMm1fyfoSoDAX7ysSuZ2dTEvn17+cIXPs0Pr/kd93W0ceHr38QHPvBhzIxNf095VhYMBDU0NU1358sLY1iWTXQgieM4lHtH0DGrVnBnJs6Xtm3hqn/dUupwhBAiZ5IATXExr8bdzQfYFBmgtqFM5oEAiQY3GdMrKnn44QdKHM3UMjDQz+23/4tPLlrG2zq76SuHeVaKglLXyIGBVhKp8uiNyhfHssj0dUFyAI9HwXEcBtJR9NNPp92x0VSVtVf/viSx2ZkMA088DsDDXV2cph9VkjjypUH1cMNPf8F73v1eli/XOe64E/j617/NN7/5PbxeD4lYmkh/eQ7NqqoJkoj2EO0fOOS+eDxDPJaeFL1AZ73lDexKxLnnnntYu1YqwgkhJqfyfrcVE7Zz5w4A6hpm4vX6ShzNS2JN7kTsYyqruPfee6Qcdh7ddNP11Ng2MwMBVI8Hb13p1//x1TTSq9oc7NhT6lAKwjYzZPo6IOmWx+5PDGBjEzjhJACqd++mOzvxvZhiG9Zjx2J0pVMcxGbV/IVFjyGvbButu5fPX/EJbr75Nq699v+46KK3oCgKiqLQ0xXHLMPqbx6PSjjk0Nl2+LlvjuMQ6U+SSVtlvzbQvDmzOf/cswD42de+QtsDMhROCDH5SAI0hSV27KD/wfuZHQjQNHtRqcN5mdhsdyL20nAF6f5+niqjBSMns0Qiwd/+9hdOrasHILxsMbZZ2iviiubFqqljT/e+KTP353DsTIZMbzsk+klaSdJOmjXvei8px2FeIMDNV32n6DGZ0Qhp4KGuTs5dfRweT2nXAcuHZHcPif378Q759FIUhXTSpK9Mh7/V1AXJpCL0dIy8LlQmYxHpT+I4QJkPU3zbG1/HcfPm8sVZc+n921+JZS+0CSHEZCEJ0BTWv/YRFuzYwasbmphRZgmQGa4iVTsDVVE4trqaf/7z76UOaUq49to/0NPTzTkz3OGOFUcvghKv2eFvnEObGaW1a19J4ygG28yQ7usg1tdCxk4SqKlGPe54AJYcOMD9/7mnqPFEli7jg889wx3trZy35vii7ruQInv2YnZ14PW6CZ2mqfT3Jsqy+puqKlRWeuhsPfCy4geHE4+miEVSqGWeAPl8Pv77sneyMTKAB9j1w+9j9vWWOiwhhBgzSYCmKMe2iWUXYVzf30vTnPJKgAAic5YCcHJNHQ8+eB9tba0ljmhya24+yHXX/ZEloTBNXi+K10twbn1JY/JW19Mf9LGj1cCaxOv+jIdjmgx07Gegv42gx2LlBz5I2uOhK5Pim1/7f0Xt7fzzn68hYZqsXqazoHFG0fZbaGY8QWTHTpREDI9HwcxYdLaX59yymroQZqafzta2Ubd1gIH+JIl4GtVT3h/PixbOJ3PGCRxIxAmYJpu/8TVsKY0thJgkyvsdVuQsuXsXViRCzDLZFo2UZQLUv+gYHFWltq4Oy7K4+urflTqkScs0Tb761S+QTqf57xXHAFB17Apss3RDzjyBEFb9DHZ072Ug2lOyOErBsW3aOveR6j1IwGey7Ktf5bEZTfTF43z84x/mX//6h1v1q0ASu3ay/Z47ueWWmwG45LQzCravUom3tpPYsxu/R6G/N1mWi59qmkpllULHwf2YmbHNc7Qsm/7eBKmEWfZJ0CmvOImN85qImBnCAwOs/9LnsWVZAyHEJFDe764iZwPr3KvM6/v68AXD1NQ1lTiiQ6Vqm9j3zs9S+4GPAvDPf/6dffum5iT5Qvvtb3/Js88+Q1U4zMqKSgBqVi+FAp5kH4mi+VBnzmNPvIPmjt0liaHU+qLdRFMxErs3Ulnt4de//Dlnn30u6VSKm370fa644kNs27Y17/u1Mxnarrsabv4759bV88rVa1i1oPwugEyY4xDdf5BETz9d7QPYdmmO9SOprQ+RjHbR0TK+3u1MxqKvN046Wf5J0GvecD6P1VURN02q+vt54tOfJNnfX+qwhBDiiMr7nVXkxE4miTyxFoCHujqYv+SY8iyvqijEVT9N84/mla88B8uyuOqq7xb0yvhUdPPNN/LHP/4WgP/3lW+gX/VD5lx6MUqoNK+5onnxzVnI/swAOw5snbavZ3+0m6iTwcEhuvM5aDX45fe+wS8ufCNf11dwXEsLl7/77bzrXZdwww1/pbn5YF722/n3G8i0ttKfybAlmeRDrzovL+2Wo8DMJtr2ddK7v/3FdZjKRWV1AK+W4ODuXdg5zMNLp9yiDumkiaeMkyBFUXjVxW9g3ewG4pbJ/rZW3v+R9/PCC9tKHZoQQoyofN9VRc76H30YO5mkV1HYEhlgwZJjSh3SEbV2xfjI297JCXX1rF37CDfc8NdShzRp3HTT9Xz7218H4P3v/xDnn38h/pCXimUzccx00eNRfQG8cxazz4yybf9GTCtT9BjKhWWZtEU6UCtrccwMiZbdJHeuZ+Wq5aAonFXfyM+OWcPq3l6u/vEPuPDCV/OGN5zHF7/4Gf7yl+tYt+4JWltbxnXyvOum6+l/4H4AfrdvDx9/y1tpqqkp0DMsrUBDPZlANQdeaCbe1okdGaBc8gSfX6O+XqOjeS8Dfbn3hqRSJj1dsZfmBJVxcYTTX/9adq1ZwbWdbTy/bSuXXvoWvvfNr9KSp8ReCCHySSt1AOVC13UV+BpwGVALPAZcbhjGzpIGlgM7lULRNP51YD8OsGBpeSdA6Re24rnvb/zPUSv50Lq1/OhHV7FgwUJOO+3MUodWtpLJJD/96Q+44Yb/A+Cdb7mEd61YhaapOP3NpLpHn3Cdb96qOuyGJnYluth+YAuZEiRg5aajt4VFC2bjC4axEjGsZIzQ0nrmNr2O7sc2wb6DvGnmbN44cxabBga4t6ONu+++g7vvvuPFNvx+PwsXLqS+vpH6+gYaGhqpqanB5/Ph9fpIpVJ0d3ZQu3kTpyhuBnBzewtveuvbOHnuglI99YLSwiG8s+ayd18fsd4YAIm2DgKNNp7qKmxHKdXoTzSvyqw5YQZ6DtCyb+KVDzMZi56uOFXVNqEKP6qq5tSjVAz6SWv48rKF3HTbPTz25FM0rV/Pxuc/xc3z5nLmO97FmjXHoZRxEieEmD6U6To8ZThd178GXA68D2gGrgIWAysNw8jlTG43sKi3N1b0hfk8HpX7b7ud//nSpwlUVPPpb/01r+t/qKpCMOgjkUjnZdy9YpksveMPePs6afZqfPbJtXh8Pr773R9x7rmvzkPEY6dpKrW1YUrxuo2F4zg8+eTj/OAH32H37l0AXPHBj/LaaIzkju00vOZcao5bSGbg0EU3VVUhEPSRzNPr9mK7Pj+++lkMBP3s6t3P/radOE5x/3aKAprXg5mxSnbiO5KVi45nqVpFqnnXy253HId0e5TIll3Edronysk1a3g6GGTLls207t1NVX8/uyIRujNHfgv6X30FR1dWAfC05uH4N72JxnT5V93L5b1ECwYJLV5CW6/F3k37XjbEUvGo+Otq8dbU4Hh92FZxDwafX2PWnDCJSCu7nn8eHAvTtPMyDFQBgmEflVUBfH4NBwenRPOexvJesu+F7SxYuwFfNuF5ITLAukya+tNO5xWnncHxx59EIBAoZthjVlcXxuNR9+CeAwghpiBJgABd131AF/A5wzB+m72tBmgB3m8Yxg05NFvUBMjOpLEGBvA1NGIr8IkrP82jD9zBiWdcyOsv+Vhe95XvBAjA39PO4nuuRcmkOaiqfHPD0/RmMrzjHe/i8ss/QWVlZV72M5pyTYDi8RgPPng/N998Ixs2PAtAY2Mj3/roJ5jx7LNk2ttQgwHmvefNwOEXg8x3AuQJhNGq60mFw7Sl+tndtp2BWGnWAinnBKgiVM2JC0+kqqeXdF/nYbcxoykS+7uoPWEN4eUrUPwV9D63lf0//xkAjqaRDoVIAEnLwsmkWef30+LYeL0+TtI0jukfoPL1r2fW4sX0bd9ZsgIY4zHe9xJ/bQ2+OfPo7LXYs3kftnX4/1EtHMJfV4saCuN4PG7bBf5zVNcGqavTiPQ2s/sFA8s00TQ1bwnQII9HJVzhI1Thx+tVAQXbsQv+/IYa83tJPEnqyfWE9x58cbx9zDRZ39/Hf3q7qDlqBcceexyrVh3LMcesoqam9pAmHAdSFgykFQbSCkkT/B7weRz8Hgh4wK+5P6t56lySBEiIqU8SIEDX9ZOBdYBuGMb2Ibc/BmwyDOPyHJo9bALU19fLvn17SSaTpNNp0ukU6XR6jEMaFGpra5kzZw7z5i1AATLtbcQ2b6bvgftwMhnmffFLbO1O8OH3vIlUMsF7PvE9Fi1bnUP4IytEAgQQbt3N/AdvQsmksRSFBzvauKW1hUwoyEUXXcyb3/wWFhS4mlUuCZDjOJimiWVZ2LaFZdnZ71b2NvvF+90vE9N0v1uWlb1v8Db39kwmQ3t7OwcPHuD557ewdesWTNOdTzMrXMH7zzqHEysqyexxK6xpNdXMueR1oCQZ6UxowgmQ6kELhPCEKrHDFSQ8Cl2pAQ52H6C7rw2nmGdgw5RzAgQwu3EhqxqX4evuJNN/aO/cUIrXhzdURWxPG92PPE2qo+uwi9nOvvwKKo4/EVVV0LAxO9tJHGwmsu/ApEh+YOzvJVo4THDmDMxgDW0tEZp3tIze+6GqeCtC+KqqUYMB8PpwHLCd/CVDqqpQUeWnpsaPQoyO5r207D+IY9soilKQBGiQpqkEgl5CYR9en+fFanGO7RS88MhY3kssRyHteEg7Hqx4htDO3fi3bsSfdstk/2TXdp7odcvj6xUVnF7XQJcnQLRiBvGqeURrl9Bbt4KeyqWkQ00oyugTvLyqg88DPtVBU8Gj4H5XHTQFPCpog7cp7jaqMuQLUFWHH5+v0RBWJAESYgqTOUCuudnvB4bd3gLMz7XRgbZ2/v7+y1Fwr845ZhrHdN/8rzuwj/0J90r9K2rruKBpFgpkv5QX57oqwDX797Ij5i7yd3JNLW+dPZcWr49ar/dlVSyUyiq2bdnL7+64jVQyQdOcxcxdshpzWK2LsVwkO+IwbUXBdMBWVBxl6Iffyz8Ix7SfIT/HZy9hz4WXMf+pO9Fa9vHqxiY2er2s27md6677I5F/382ZTTPxhsIEgkECwRA+vw+f34/m9TLnwx9Fq3KHAfU88ACR9c+OGNvsD1yGWlVNPB6n56GHiK9/BjubrDiOTTqdcZMTy2LzzCba02lisSiz+/pZnkoNSWYsbMt68YTj2v17OZB01yM5pbaO82fMHPHv8ZcD+9gVd+cvnFBdyxtnznrZ/RXA0YrCcarK1YEAibrZvP71b+TCmbOI3XYbmc5O8KjUnXw8tacchZ0eXAjy8H95JXt5VFGVlx8RioqiqtnvHhSPB8WjuV+aDzQflteL6dWIORb96RidffvoiXQSix9+grczplc/f48DFRwVC2VciZjjFCfOfR3NpB0fS+sXUhWqx470YSXj2GZ6SLKSbTMNpAegNkT1m16JonnxmJDqj4GtoqDiCVXgnz8Hx8qQiiQY6OwkdqAZMxID1f/i38DhcHNhsvdNIA840t/tSG0O/7upQNL2kkLFBlAUVM2D4vXi8fvQgkHUcAUJNUBzJEPH9i4ivVEggKO+vE13vwrO0J+jQGwA1Z/C4/ejBkMoXi94NBw1e/brgJ190GCa+dLfxm0PRUH1KHg8KqpHRfN68Po8aJpNn5XihX1d9HR1k0yawCwcQHEUFFvFcuwhMR4a60vfX3o+w28f/Hu/7PEZBScDRBQ0zYOqqXg0DUVTQfG42yoKNgq2o7j/Gw4v/m477n0OL/384veh23K4bVVMRSNpqaRtN8lJ2R7SjuYmPbYHk2HDrmtBOd1m6cB2Tux4ih1Hr0Bt3YLTup6j4i9wfv1gL38aUrugbRe03QvA17a/wDYnhFY1kzMrg7w+aGM5YGX/Jnb2NbOBv8S97LLcfa/xWlwQeHkhlqH/Dzcnveww3W1XahZvyG5rn/YrCE+dhYOFEIeSBMgVyn4fvoJbEqjLtVEfsNILLxbb8wUAd8xzuG4RWBp4fNRWaBxVMfJpQ3j2cSgZFRyLsNLPglD4xfvSts2OZIYnq47m0ZkXkbzteewH/g5A5ylf4fvNx+Yafuno53JU0/Oc0PU0z7zynai778d57i80cZDZmhfSafervx8H90VLAee8+jX0Khp4/LynqZ4Lq4Mj7uJ1559HW8w9eX/HnHm8edYcFHjxI3voP8btjz/Kvmyy+uZZs1k4Z757CVHzHtJucMhcq3qvj5XZeRmHE6pqQvFZoHqorQpzdGV4xG0bLriKpxa+nj8qCmsPbOFNtXvYUreatTPPojdQj7NpxIdOIKkQeTX88spE7R/6yxxgTZ53UCSRcW4/8r/1kQ2+URTEwsPfXIxRtA7ZpLkI+8pRwGMT8Nj4PQ7pykWsn7+Q+R6Ho449mirfxczt2caOPU8R7NqDP9KDNxUnYGYIZN+6MpYJsRbMSAsVTbOYVzG0uMfLPzuDbRtwIgMA1DXM4NiFI3fi3Lt/E06fO2y3pq6e4xYvA8BjZ2DEF1UIMRXIEDhA1/W3ADcDIcMwEkNuvwnwG4bxphya3d3f3bfouh9d416NUzXSaoiBwBy6M0G21KyiR6smZUFttJ0F0b04ipK9+qe8+DPArqqlRHzVANSmupkd2Uei7yBd+9fRt+Vf2Mm+Q3auHP8+1Fd9c0pV3Gnq20HDgUfx9+5E6T+IGmtHSfWjZOKoKDzZ200mezwvCYeZE3j5mdLQQ/2Zvl4StjtJfEG4knkVteDxgRYAbwC0IGh+0II8520k7q8FXwVzPQ7zlBRoQZTsdo4WzCZDHrbWrXJfK1VjZqKNhbGXV4Eamoy8UHM0A74aABoT7SyMHLoIrKMoJD0B9lcsZCB7DAgxVSmM/HmkKNke8sHv7gNeftuQ+17sRR/Smz7S/Ye777DtH+6+keJT3N58FOeQx77YxoiPe/l9Y33+HgXU7NCvwWFdQ2/zuJ1C7s/qkPsPs62a3Wboz+4QMfe2oFchoDkENdwvLwQ092vobX5P7tW77UyG1MAAPbEY7V1dtLW1ke7uRu3rx7HcPim3u87tslMch9SMBuxscQVtIIKvu2dIiy8/vlIzZmCF3eufnmgUf0cXAK+64nJClZUJXro4KoSYYiQB4mVzgJYahrFryO2PARsNw8ilisCYiyDYg0Mwhhj+shzuVXJwyyE/+MC93HvPnezcaVBVVc3rLngjb7/0vYet/Da8ncO9/IdsM+x3j0elpiZMX18MK/vcRnvMWPbDYYbVjKXddCpFX18PqVTSnVOVSpNKJXEcG0VRUVX3S1FVVEXF5/cRCIYJBsOEQmG8Pt+Ln9AeTaWmOkRfXxxz2ARrxxnfB/kRRxEe6b4cTxZGa1PzKFTXhOnvi2EOq46Va6woRzhhHSWenB43wu0eTaU2e0wOf91ybRNyj/NIxtumprn/b/19I7+XTOQ6R0FepzHGU65FR/JBntvkJUUQhJj6ZAicayMwAJwN7IIXq8AdD/yy0DsfvPqWC384wEVveCMXveGN+Q3qCDQNqvxg+cDM68KDOSbjQR+zamaOvt0Y9q1pDrUV4M84mObUujigaQq1IfCkmILPDSr9YPrANEsdTX5pHvBr4PUcMd8UQgghxBhJAgQYhpHSdf2XwPd1Xe8E9gI/wB21/89SxiaEEEIIIYTIH0mAXvJV3L/HH3Gn2T4CnJfjIqhCCCGEEEKIMiQJUJZhGBbw+eyXEEIIIYQQYgrK6wwOIYQQQgghhChnkgAJIYQQQgghpg1JgIQQQgghhBDThiRAQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg3FcZxSxzBVJYCAZdmljqMgPB4VeW6Tjzy3yUme2+Qkz21yUlUFRVGSQLDUsQghCkMSoMLpA/xAa4njEEIIIcTYzQJSQE2J4xBCFIgkQEIIIYQQQohpQ+YACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG5IACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLShlTqAqUTX9S8DrzYM4+wht60BfgacCHQDPzcM44clCXACDvfcsrcvBzYAKw3D2FuC0CZshNftDcBXgaOBLuDvwFcNw0iUJMgcjfDc3g78P2AZ0AL8HrjKMAynJEHmaKRjcsj9fwBeYxjGwmLGlQ8jvG7XAu8dtmmzYRhzixjahI3w3GYBPwZeB1jAPcAnDcPoKkmQORr+3HRdfwh45Qibv8cwjD8XKbS8GOG1OxH4EXA80AdcD3zFMIxUKWLM1QjP7VXAd4CVuO+VPzcM45eliVAIkU/SA5Qnuq5fCXxj2G31wH+A7bgJ0NeAb+q6/r6iBzgBh3tu2dtXAfcBoWLHlC8jvG5nArcA/wDWAB8BLgF+XeTwJmSE5/Y64C/Ab4EVwGeBLwNXFjm8CRnpmBxy/0XAZcWKJ5+O8NxW456MzRrydVzxIpu4EY5JP+775GLg1cCFuCfTky05uJJDX7f/4uWv1yzgTuAF3PeYSWOE164BN1ndhnssfhA3Sf92kcObkBGe2yuAe4H1wEnAp4Ev6br+paIHKITIO+kBmiBd1+cAfwTOBIxhd38ISAEfNQzDBLbpur4M+DxwbVEDzcGRnlv2Q+BLwPPAvOJHNzGjvG4fBh4wDON72d936rr+/4BrdV3/SLlf2Rzluc0CvmcYxmAyt0fX9Xfhnnj+pHhR5maU5za4zSzcXq2HgYVFC26CRvl/8+AmrN80DKOtBOFNyCiv2ztwX6clhmG0Z7e/Evi1rutVhmEMFDHUcTvSczMMo2fYtu8AzgOONwwjUrQgJ2CU1+4MoB74bPb57NR1/a+4z/EzRQ00B6M8t88BzxiG8dHs79t0Xf8M8Htd139Y7p8DQogjkx6giTse6MW9Ortu2H1nAo9kk59BDwC6ruszihTfRBzpuZ0P/DeT4ENuBEd6bj/C7RkZTgMqCxxXPoz43AzDuMYwjK+Ae1Kt6/r5wNm4VzongyO9bui6rgB/wu3leqiokU3ckZ7bMiCAe8FhMhrtveT+weQHwDCMfxuGsaTck5+sIx6Tg3RdDwM/AH5iGMbmIsWWD0d6ft3Z7x/Nvp8sBC4AnixeeBNypOemA48Ou20D7oiHkwofmhCikKQHaIIMw7gduB1A1/Xhd88Fhn/QtWS/zwc6ChrcBB3puRmGcWb29rOLHlgejPLcNgz9Xdd1H+7wh/WTYU7CKMck2dvnA7sBD/Bv4DfFim8ixvDcPoXby/UG4IvFi2ziRnluqwAHuDI7jNEG7gK+bBhGfzHjzMUoz2058Iiu618B3gN4cY/JzxmG0VfEMHMylv+3rI/gXkCZVMPDRnmvfFTX9e8B38QdnunBvfDw8eJGmZtRXrtWDh3dsDD7vamggQkhCk56gAorhDsEbqhk9nugyLGIHOi6ruH2JqwALi9xOPnUh3sV863AsbjPcVLTdX017jy7d07B4SnH4CY9e3GTu8/gXmm/Vdf1yf4+XoWb+BwLXIo7dPgM3OemlDKwfMkOYfwE8OvJkLCOla7rNbgJ7K+Ak3HfT5YySS6ojOJa4GJd19+l67pX1/WlwLdwL0T4SxuaEGKipAeosBIc+kY5mPjEihyLGCdd1yuBm4BzgIsNwxhxeMtkkx1atAHYkD05u0HX9c8ZhrGvxKHlRNf1APA34FuGYWwqdTwF8HXcoVN92d+36LreCjyBm8hO5mMzDUSBdxiGkQHQdf09wFO4xWOeLmFs+XI2bq//H0ocR759H6gxDOMt2d/X67reC9yn6/pPDcPYWMLYJsQwjP/TdX0ebjJ3LW410M8B1wFTJokVYrqa7FcOy90BYPaw2wZ/by5yLGIcshPpHwVOA16XHSox6em6fma2bO1QW7Lfhx+rk8kpuKVqv67relTX9Shuqe/52d/fWdrwJsYwDOcww8EGh9dOqjLYh3EQMAaTn6yt2e+LShBPIVwEPGUYxu5SB5JnZ3Bogjo4/2d5kWPJu2whnCrc5HUO8AygADtKGZcQYuIkASqsR4Azs1fYB70K98O+rOf/TGe6rtfiFqtoBM4wDOPBEoeUT5/m0GpvpwAmbrn2yeop3EIBx+KWLl+DW+q7JfvzbSWKKy90Xf+bruv/Hnbz4ETsyVoYYdAjwLG6rgeH3LYq+31nCeIphDNw31OmmgO4BQSGGnztJnWSoOv6x3Rd/41h6QYasgAABURJREFUGLZhGC2GYVi4Q/z2GIYxmd8rhRDIELhCuwa3y/xqXdevwh0jfSXuZFhRvn6CuybJ+UCnruszh9zXmf0gnKx+CDyk6/r/4s77OR64CviZYRjdR3xkGcsuUPuyk2Vd13sA0zCMqXAS/Tfgtmz5+Rt4ad7F3wzD2FbSyCbut8AVwN+yhRCqs7c9aBjG+pJGlgfZC2ArcSvATTU/Bu7Rdf2buEPDFuCul3aXYRjPlTCufNgK/EzX9Wdx16k6D7dX+V0ljUoIkRfSA1RA2V6e83DLaa7HnaD9WcMw/lTSwMSIshPKLwF8uFdsW4d9Tbo1j4YyDOMx3IUmLwA24Z6U/Qg3URdlyjCMO3CvPr8Fd+jb1cA/gQ+UMq58yFZWPBO3+ts63KpcTwFvLmVceVSP+9wm7QWGkRiGcS/weuA1wHO4F/3uAt5WwrDywjCMh3D/vz6Lu9Drx4D/NgzjplLGJYTID8VxnFLHIIQQQgghhBBFIT1AQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg1JgIQQk5Ku60qpYxBCCCHE5CMJkBBi0tF1/Y3An7I/n63ruqPr+tmljWridF3fq+v6daWOQwghhJjKtFIHIIQQOfifIT+vB04Fni9RLPn0ZmCg1EEIIYQQU5kkQEKISc0wjAHgyVLHkQ+GYWwodQxCCCHEVKc4jlPqGIQQYsx0XX8IeOWQm84BHgTOMQzjIV3Xvw68HfgC8C1gKfAC8FHAAX4GrAZ2AZ80DOP+IW0fA3wPOCt70/3Apw3D2D3OGPcC1wLVwLsBP3Ab8GHgY8DHgUrgPuBDhmF0D3ncQ4ZhvFfX9YXAHuBtwCXAeYAJ/AO40jCM6HhiEkIIIYRL5gAJISaby4EN2a9TgarDbDMP+DHwbdwEog64Gbge+ANugqQCN+i6HgTQdX058DgwA3gv8AFgMbBW1/UZOcT5P8CC7L6+A1wKPAO8FvgQ8HXgTcA3Rmnnd8Be4CLgKuD9wJdyiEcIIYQQyBA4IcQkYxjG87quD2R/fnKE4gch4HLDMO4B0HV9BfBd4AOGYVyTvU3DTYp04Dnga0ACeHV2WB26rt8P7AY+m/0ajwhwiWEYJnCfruvvAWYDpxiG0Q/cpev6ucDpo7Rzp2EYn8n+fL+u668BXg98cZzxCCGEEAJJgIQQU9fjQ35uy34fOleoO/u9Jvv9VbhD6eLZ5AjcggSPAq/JYf9PZZOfoTEMZJOfoTGsGqWdJ4b9fhBYmEM8QgghhEASICHEFDXYizNM/AgPqceda3PJYe7rzCGE8e5/JMMfYyPDl4UQQoicSQIkhBCuPtyiBD86zH3mYW4TQgghxCQkCZAQYjKyAE+e23wYWAE8Nzh0Tdd1BfgrsBN3npAQQgghJjlJgIQQk1EfcGq2iEB1ntr8Bu58mzt0Xf8NkMQtW30RcHGe9iGEEEKIEpNx5EKIyeiXQAa4Gwjmo0HDMDYBZ+KuFfQX3Apxs4CLDMP4Zz72IYQQQojSk4VQhRBCCCGEENOGDIETQogx0HVdZQy95sNKXwshhBCizMgQOCGEGJtrcIfdHfFL1/WFpQpQCCGEEKOTHiAhhBibr+POPRpNS4HjEEIIIcQEyBwgIYQQQgghxLQhQ+CEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG/8fMEGI/X4WTKUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "chrom.crop([10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "scores = chrom.assess_fit()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence) and clipping of the signal into peak windows.\n", + "3. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "4. The estimated mixture of all compounds is computed given the parameter estimates of each distribution and the agreement between the observed data and the inferred peak mixture is determined via a reconstruction score.\n", + "\n", + "The following notebooks will go through each step of the algorithm in detail." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/methodology/scoring.ipynb b/.doctrees/nbsphinx/methodology/scoring.ipynb new file mode 100644 index 0000000..8ffe867 --- /dev/null +++ b/.doctrees/nbsphinx/methodology/scoring.ipynb @@ -0,0 +1,399 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Scoring the Reconstruction\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After estimation and subtraction of the baseline, detection of peaks, splitting into windows, and fitting\n", + "the peaks to a phenomenological function, we are left with the irritating problem \n", + "of assessing how well we have done. Consider the following chromatogram:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3977.22it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:10<00:00, 5.20s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8PElEQVR4nOzdd3gUVdsH4N/M9k2y6ZWQQiBDBykWBAFBEEUEfX1FERTEggUbUgRBQRR8aQY/RekKgoKKiGJBsYCICKKUZEjvvWf7zsz3x24whNTNpj/3dXElu3PmzNnJkMwz55znMJIkgRBCCCGEEEI6A7a1G0AIIYQQQgghLYUCIEIIIYQQQkinQQEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCCOk0KAAihBBCCCGEdBoUABFCCCGEEEI6DXlrN6ADKwGgApDdyu0ghBBCSMMFAzAD8GrldhBCmglDC6E2G6MkSWpRdP35ZVkGzVEvuRKd55ZB57nl0LluGXSeW0ZznWeWZcAwjAmAxuWVE0LaBOoBaj7ZoihFFhXpXVqpXM7C29sNZWUG2GyiS+sm/6Lz3DLoPLccOtctg85zy2jO8+zj4waZjKHRG4R0YDQHiBBCCCGEENJpUABECCGEEEII6TQoACKEEEIIIYR0GhQAEUIIIYQQQjoNCoAIIYQQQgghnQZlgSOEEEIIaeNOnz7tAfsaRfTwmpCriQCyBw8eXN6QwhQAEUIIIYS0UadPn2YBvMQw7AyGYRQAmNZuEyFtkCRJkvX06dMfAHh98ODBdebHpwCIEEIIIaTtekkmk8/R6bwtSqXawDAMrbJLSDWSJDEWi0lbVlY8RxBsAPBaXeUpACKEEEIIaYNOnz6tYxh2hk7nbfHw8C5s7fYQ0papVBojAN+SksIZp0+ffquu4XA0jpQQQgghpG0KYhhGoVSqDa3dEELaA0cvqQL2+XK1ogCIEEIIIaRtYgEwNOyNkIZx/F9hUE+MQwEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCOo2YmHUhkyff2q+129FQcXEX1UeOfOfZ2u3oSCgAIoS0C4mJCXjggf9i6dJFsFotrd0cQgghpEUsXPhCj4sXz7u1djs6EgqACCHtwuuvLsGF8//g4MHPsXfv7tZuDiGEENJCKAeGq9E6QISQNi89PQ1cYSEe6T8IH2Wm4dChg5g+fWZrN4sQQlqFKIowGAyt8hBbq9WKLNu4Qw8fPmTw3Xffm/3TTz/4Wq1W9q233o3TarXixo3rQ//55y+dXq+XeXp62kaPHlv4zDPzMmNjL2oee+yh3u+8syW2f/+BBgB49tknos6f/0f3zTc//SWXyyFJEm6/feyABx+clXnvvdMKqh+zoCBfvm7dm6FnzpzyFASBiY7uWfH88wvSo6K6myvLvP/+O4GHDh0ILC8vl3fv3kO/cOHSlMrtNbU5NLSr5b33/i/4559/9C0uLlZ06dLFNH36zKxbb729BAD27dvru2fPh8EzZ87O3Lr1/dDS0hJFr159ypcseTVlx46tQT/9dMRXLpdLkybdlfv440/lAIDZbGbefnt9yLFjv3gXFRUq1WqNOGDAwNKFC19O8/HxFSZPvrVfQUGB8pNPPgo+d+6sx+bNH/DFxUWyt9/e0OXUqd+9ysvL5ZGRUfpHH30i8/rrh1VUfrYDBz712b17Z3B+fr4qLCzMOHr0LYVbt27qeuzYn6ed+ZmwLOvU52urKAAihLR5f5w8geG+fvBRKqFmZQgpKEDOrz8jaMTI1m4aIYS0KFEUcf/9d/eMi4ttlSFRPXv2rvjoo/18Y4Og77772v+NN9bGC4KN6dEj2nz//Xf39vT0sq5eveGSh4eH8PPPP3pt3vxu1969++rHj7+txM/Pz3LixHFd//4DDYIg4OLF8x5ms5n966/TbkOHXqc/e/aMtry8TH7zzbeUVD+WzWbDM8/MiQYY6ZVXXk/09fW1bdy4PvSFF56O3r//y3MAUFBQoDx//h+PN95YF2+xmJnXX3818vXXX43YuvVDvrY2P/vsE1FJSYnap59+Li0yMsr0zTdf+axc+UoUy7IJ48ZNKAWAwsIC5cGDnwe89tqbCQaDnn355QU9Zs6c1mfMmFsK3nlna+zXXx/03bVrR5eRI0eX9OrVx7R27arQkydPeC1YsDila9cwM8/zmjVrXo94773/C1m0aGn6li0fxs6aNa33jTeOLHr00TnZgiBg7tzHo61WK7NgwZJkf/8A68cffxSwcOHz0Rs2vBM3cOAgw5Ej33quW7c6csaMWRmjRo0pOXnyN92WLZu6NvVn4szna9RF0oIoACKEtHkJv/+GfkoVbCyLID8/THTzQP4P31MARAjppNrfukAjR95cOHDgIAMAGI1G5uabbykcP35Ccdeu4RYAiIh4OG/fvr1BCQmXNOPH31YyZMh1JWfOnNIByDl79oybTCaXoqN7Vpw6ddJj6NDr9L/++rNXjx5chb9/gK36sY4f/0WXmpqi2b79o/M9ekSbAWDx4ldSduzYElRUVCgHAJlMJq1YsTrZ09NTAIAJEybm79q1o0ttbb50KU79559/eL3yysqEsWPHlwLAU089m52UlKDdvXtncGUAJAgC8/zzC1Irb/779RtQdulSnPuLL76UwTAMHn30yexPPtkTHB9/SdOrVx9Tr1699aNHjym+4YbhFQDQtWu45fvvvylLSUnSAICfn7+NZVlJo9GI3t4+wo8/fq9LTk7Sbt6880LlMZYseTXt0qU4t927dwYNHDgoae/e3UHXXz+saPbsx3MBoHv3HvkZGemqL788ENiUn4kzn68p10xzogCIENLmWZKTAW8fSMHBkNy0QHkFkJ/f2s0ihJAWx7IsPvpoP9+ehsABQGho18tDzzQajTR9+sy8r7/+0nvXrp1uWVmZqtTUZG1JSbFCEEQGAEaMGFW6bNlL/kajkTl58oRHnz59y7t06Wr6++8zOgA5p06d9LzpplFFNR0rPv6SRqvVCpXBDwAEBgbZFixYklH52tPT01YZ/ACAh4dOsFgsV3ywqm3m+TgNAAwZcl1F1TL9+g0s/+CDraFV3+ve/d/jqlQq0d8/0MwwDABArVZLAGA2m1kAmDLlnqJff/3ZY9261V0yMzNUGRnpmqysTHXPnr2uOE6lhIR4jUajFaoGFwzDoHfvvhVnzvypA4CUlCTt8OE3FVfdb8CAayqqB0CN/Zk48/naKgqACCFtWkVFBYIE+98or9594ZmfC5w9C5XZDMFggEyrbeUWEkJIy2JZFu7u7mJrt6MxVCr15fYaDAb2scce4kwmEztixMjiceMmFA4YMDDtqace7VlZ5oYbbixXKOTi778f9/jrr9O60aPHFIWHR5gPHvwsKD09VZmSkqR95ZWVSTUdSyaTS5U35LVhWbbeXrSqba4tEYEoCoxMJrtio0KhuOI1y9beluXLXw47fvwXn1GjxhRef/2NpT179s7evXtnUGFhvrKm8pJU80cTRRFyuVyyH4+VJKn+TsLG/kyc+XxtFQVAhJA2LTExHt3d3AEAXr37ICzbG4V/nISvUgVLViY03Xu0cgsJIYQ0xs8//6hLTk7SfvbZV38HBATaAKC4uEhWWloqrww0lEqlNGDANWW//PKTV3z8JfeFC19ODQ3tamEYRnrnnY0hwcEhpqoJDarq1i3KpNfrZUlJiapu3aLMAFBYWCC/7767+r722pvxzrQ5OrqnEQD+/POke+UQOAA4d+5v9y5duhqdqbOoqFD23XeH/RcsWJx0xx1TLvfYZGSkqdVqTZXg698Ao3v3aKPBYJDFxl5QV+0FunjxgntoaJgJAMLDI4wXL15wB5BXuf3ChXN1zhlryM+kI2nT3VOEEJLIxyFYrQYAqMLC0K1bFNKN9r815qzM1mwaIYQQJwQGBlkA4ODBz33T01OVJ0+ecJ83b253QRAYi8V6+W5/2LDhJUeP/uCn03nYoqK6m1UqlcRxvSqOHfvZ9/rrh5XUVv+IESPLIiOjDMuXL4k8ffqUW1zcRfUrryyO8PT0sg4YcI3BmTZzXC/TwIGDSmNi1oUdOfKtZ0JCvOrttzcEnz59yuu//70v15k6dTpPQaPRCseO/eKVlJSounjxvGbZspfCU1KStVbrv+dBrVYLmZkZqry8XPnIkaNLu3YNNy5f/nK333771ePSpTj1ihVLwzIy0jRTp96fCwD33z8j++TJ37y3bn0vMCkpUbV//8e+X331ZUBdbWnoz6SjoACIENKmpSYm4Nu8HOS4u0Om80RYWDjyzfaHfhXZWa3cOkIIIY01aNAQw6xZj6YfPPh5wIwZU/uuXv1aRN++A8pvvHFEEc//m91u9OixpaIoMH37DiirfO+aawaXSZKEkSNvLqmtfpZl8eab6xP8/QMtCxe+0OPppx/vKZPJpHXrNsarVCqnuzNWrVqXdO2115esW/dmxOzZM/qcPPmb10svvZJ4++2Tiuvf+2pyuRxLlryalJaWqnn44Qf6zJ//XA+z2cw+8MBDmZmZ6Rq9Xs8CwJ133p135swpz2eeeSJaLpcjJubdSxER3Qyvvrok6vHHH+6VkpKsWbVq3aXBg6/VA8Do0WPLnnzymdRDh77wnzVrWp+vvvrCf/z4CfmVQ+Rq0tCfSUfBNGSMIHFKkiCIkUVFepdWKpez8PZ2Q3GxHjZbuxr+267QeW4ZDTnPzz77BH766Ue89NIy/Pe/9wEA/nfXHbjTxxdS337gnn2hJZvcbtE13TLoPLeM5jzPPj5ukMnYZADdXFqxE06fPt2TZWXfBAR0qVAq1W02oxZpW06cOObu5xdgrZoE4t13NwZ9991hv88///p8a7atuVksJnVeXqa7KAq3Dh48OK62ctQDRAhp07KzswEAwcEhl99L0ajxKn8RuT2iW6tZhBBCSJv0+++/ec6bNzf6+PFfPDIy0pTffXfY8+DBzwNHjx5bY9a8zoiSIBBC2jRrQT40rAzBwcGX31MFBuHChXPIKi+rY09CCCGk83niiWeyjEYju2rVa5Hl5WVyHx9fy5133pX7yCNzclq7bW0FBUCEkDZLr6/AE4EhCIvsDu/Sf4OdoCB7MJSTk91aTSOEEELaJJVKJb300rJ0AOmt3Za2iobAEULarKysLASqVAAAj9Cul98PCgzEzX7+CE5MhGB0KvsoIYQQQjopCoAIIW1WXlIiVDIZBEmCwtf38vuBQSG4v0sYrjEaYSsqbMUWEkIIIaS9oQCIENJmlaYkAwAqWBaM/N8Ru35+fiiz2QAAQnl5q7SNEEIIIe0TBUCEkDbLmG1f6NTkWAi1kq+vL8psVgAUABFCCCGkcSgAIoS0WWKRPWOn5Ol1xfs+Pn4odwRA5mLK6kkIIYSQhqMAiBDSZikqKuxfAwOveN/DwwMVgn3xw/K8vBZvFyGEEELaLwqACCFt1p/FxfguLxfu0VcueMowDKxKBQDAREkQCCGkTRs+fMjgffv2+tZf0u6nn37QTZlyW99Ro64ftHr1ytDmbFtDxMSsC5k8+dZ+rqyzMeckIyNNefDg596uPH5n1+rrAHEcNwrA0Vo2J/M8343juIEA3gIwBEAhgBie59dUqYMFsAzAbADeAI4BeILn+YQqZZpcByGk5VitVnydmgRRFHHvoCFXbRfVGgCApbSkhVtGCCGkMT799NDfOp2n0NDymze/GxoYGGR+6613Lrm7ezR4v/akMefk1VdfjggICLBMmjSluLnb1Vm0hR6g3wAEV/s3DoANwOscx/kC+B7AJdiDl2UAVnAcN7NKHS8DeBzAIwBuACABOMxxnBIAXFEHIaRl5efnQRRFKBQK+Pr6XbU918MDy+IuIC2yWyu0jhBCSEMFBgbZNBqN1NDyer1e1rt3H31YWITFx8e3QwZAjTsnEtO8rel8Wr0HiOd5C4CcytccxykArAfwKc/zWziOWwTADGAOz/M2ALEcx/UAsADAdkeA8gKA+TzPf+2o414AWQDuArAXwKMuqIMQ0oKyU5IRptFC5e8Plr36WY3K3x+xFeXIoYVQCSGdkGA01voQm2FZiVWppOYu21DDhw8Z/Mwz81LuuWdq4eLFL0aIosh4e/tYjx79wddsNrH9+w8sW7RoaWpgYJBt+PAhgwHgk0/2BH/yyZ7gjz7af65r13DL5s3vBh4+fCigtLREHhQUbL7nnvtypkz5TxEA/Pbbrx7z5z8XPWPGrIxPP/0k2M/P3/zaa6uTpk//b9/77pue9dVXBwOUSoW4Y8feiwzDYN261aF//HHCy2azMZGRUYYnnpibMXDgIENle/fs+dBv3769QcXFRcoBA64pDQgItNT1+R55ZAbXp0//8uLiIsXx47/4KBQKceLEyXnjxk0oWrVqRURSUoJbUFCIaf78l1KuuWawoeo5ueWWW0tmzPhvn4iIboaYmE0JAPDLLz95LF78YvSiRUsTP/98X2Bs7EX32NiL7pMn3+px4MA35yZPvrXfzTePK5w79/msqm0ICAg0r1z5v5SazscHH+yNzc3NUaxf/7+uZ8+e0clkrBQd3VP/zDPz0qOiupsb+zNt71o9AKrBkwC6ArjF8XoEgF8cgUulHwEs4jguAEAEAA/HewAAnudLOI47A+Am2IMXV9RBCGlB5RfPY02f/shGzX9rvb19AAClpTQigBDS+SQ+Peea2rZpornSrvMXXR7Cn/T83AGS1VpjYKOKiKwIX7KMr3ydvOCFfqLBUOP9oTKkiyFi+crYprQbAE6cOO49fPjIorfeeofPyspUvvHGim5vv72hy4oVq1I//fTQ3488MqP3jTeOLHrooYdz/Pz8bevXv9nl55+P+jz99HNpUVE9TH/+edL9//5vQ3hFRYVs+vSH8ivrPXnyhNc772yJNRgMrEzGSgDw008/+Kxf/zZvNBpZT09PYdasB3rK5XLxtdfeTNDpdMKXXx7wffbZJ3pu3PhebL9+A4wHD37uvWnT22GzZz+efsMNw8t++OE77127dnTx9fWtMwg6cGB/0D333Je9ZcuHF7766gvfPXs+DPnhh+98H3/8qfTQ0K6W1atfC1+3bnX4hx9+csX58/LyEl58cXHySy/Ni/7ii898RowYWfrmmysjx4wZV3DbbXeU3HDDjeXPP/9UDz8/f8uCBUvSGnOeq54Pk8nEPv30Y1xERKRh/fr/42UyVtq9+4OgJ554uNf27R9dCAnpYm1M3e1dmwqAOI5TA1gMYAPP89mOt0MBnKtWtDLiDXNsB4D0GsqEubAOp8jlrh1lKJOxV3wlzYPOc8uo6zwbcuwdw1aNpsb/Rz4e7hjvH4iwrCzIZAwYhkYI1IWu6ZZB57ll0Hlu3zQajbBs2WupCoVCio7uaTpx4njh6dOnPAH70DCWZSWNRiMGBgbZ9Ho9++WXBwLnzVuUPHbs+FIAiIzsZs7OzlJ9+uneoKoB0L333p9T2ZuRlpaiBIDbb5+Uz3G9TADw668/e8TH824HDhz+28/P3wYAzz+/IPPixQvue/fuCuzXb0DKZ599Ejhs2PDi6dNn5gNA9+49cmJjL7ilpCRp6/pMXbuGGZ988plsAJg589HcPXt2hYwYMapo3LgJpQAwbtyEws2bN3Wtad8RI0aWT5hwR96mTW93/eGH73zc3NyEymDH29tHkMvlklKpFCvb3FBVz8fHH+/2Ky8vk69atS5ZoVBIALB8+Rspd911e7/9+z/2r9qb1Bm0qQAIwHQAGgAxVd7Twj58rSqT46vasR21lPFxYR2NxrIMvL3dnN29TjqdplnqJVei89wyajrPkiO5gcLbq8b/R0GBfrguPBIoK4enmwIylaq5m9kh0DXdMug8t4zOfJ6jNr77V23bGJa9ouu827qYvxtaNnL12uoPjGst66zAwCBz5U04ALi5uQs2m63Gp1iXLsWprVYrs3btqoh161ZHVL4vCCJjs1kZo9F4eb+IiMirhnKFhYVX3u8hLu6iFgDuvXfyFRndbDYbY7VaGABIT0/TjBo15ooF5nr37ltRXwAUEhJ6+TharVYEgC5dulxuj1KpEm02a61P6p5/fn7GmTOnPM+c+dPz3Xe3XWzMnKnaVD0fly7xWqPRKLv11lEDq5axWq1senqq+qqdO7i2FgDNgH3uT9W8tkYA1e9sKn9Qesd2OMoYq5XRu7CORhNFCWVlhvoLNoJMxkKn06CszAjBsQ4KcT06zy2jrvMslpYCAFhvXxQXX/3fUK7xgCBJkDEMCjPzofCmDKF1oWu6ZdB5bhnNeZ51Ok276FmSaTQN/uDNVdZZVYOff9V8vy+KIgMAL720LKlbt+6m6ttVVeYkqdXqq9quVqsvbxdFkdFoNMJ77+24ahifUqkUAfsyC1K1psjl8nqDEblcdlUZhmn4dZSbm6MoKSlWyGQy6cSJY7p+/frXM8H1ysPZbMJVwVXV8yGKIoKDQ0yrVq27Kruxm5tbh0w0UZc2EwBxHOcPYBiA16ttSgcQUu29yteZABRV3kusVqbyiYcr6nCKzdY8v0cEQWy2usm/6Dy3jJrOs8psARQKaIOCa/wZuHvooLfZoFMoYCmrAOPh2VLNbdfomm4ZdJ5bBp3njq9792iTTCaTsrOzlJVD4ABgx44tAampyeply1Y2eF5MVFQPo9FolFksZqZnz96Xg6mlSxeFd+/ewzBjxqz88PAIw/nzf7sDuLzKNs/HNs9wHgdRFLF8+ZLI8PBIw7hxtxa+++7GsGHDRpT17dvPEQQxV0Q7MplcqqjQy6run5eXqwwJCbkqQKzUrVuU8eefj/rqdDqhciidzWbD/PnPdRs9+ubiO+7oXCm229IjjmGwh7M/V3v/FwAjOI6TVXlvDACe5/k82AOUMgCjKjdyHOcFYBCAX11YByGkhUiSBA/H0y2f8Igay+h0XtAL9uHQosHpjlpCCCFtmKenp3DLLbfmf/jh9i6fffaJT0pKsnL//o99d+zYGurt7dOoOTGjR48pDQ+PMC5b9lLUsWO/eCQlJarefHNl6NGjR/wiI6NMAHDffTNy/vjjd+/Nm98NTExMUO3cuTXg5MkTzTrE4P333wlKTk7WLl78Ssq9904r6NWrT/lrry2NNJvNDABoNBoxLy9XlZmZoQCAXr16Vxw79rPPiRPH3RMS4lXLl78cbjQaZHUdY9Kku4rc3d2EBQueizp9+g+3+Hhe/fLLCyLPnj3t2aMH1+nSqbalAGgAgCSe56uPGdsGQAdgK8dxvTmOewjAswDeAACe580A3gawmuO4SRzH9QfwMey9Pp+5sA5CSAspKSqEt9zeMRvYPbrGMp6entAL9l57m54CIEII6agWLnw5/c4778r94IPtXR566L6+u3fvDJ46dVrW0083buK+TCZDTMymSz16ROtXrlzWbfbs6b3/+eesx5IlryaOGDGyHADGjh1XOn/+S0nffXfY7+GHp/c5duwXr0mTpuQ2zycDzp37R7N3766Q6dMfyuzWLcoMAIsWvZxaUJCvWr/+zS4AMGnSXfnp6WnqWbOm9REEAU899VxmdDRXsXjx/B5PP/1YT51OZxs2bESdPTienp7Cxo3vx3l6etkWLpzXY86ch3vl5eUqX399TXzV3rDOgpGqD3RsJRzHvQPgGp7nb6hh21DYEyNcAyAbwFqe59+usl0G+9C5mbAnUfgFwJM8z6e4so5GShIEMbKoyLU3ZnI5C29vNxQX66nbvxnReW4ZtZ3n2H/OYu/859FFp8Mjez8DU8M6QEajAYdm3I8Bnl7wmf4g/EaObsmmtzt0TbcMOs8toznPs4+PG2QyNhlAq6+yfPr06Z4sK/smIKBLhVKp7nQ3qYQ0lsViUuflZbqLonDr4MGD42or12bmAPE8/0Qd204BuCowqrJdgH1R0wXNWQchpGVkFxTgi5ws9PH1xaM1BD8AoFZrYJTsNz76okL4tWQDCSGEENJutaUhcIQQAgDIzraPaggOrp675F8Mw+AHvR7L4i7AFBbRQi0jhBBCSHtHARAhpM0pS0tBmEaL0ICAOsuVazSIrShHmdioebCEEEII6cTazBA4QgipFJSejjV9+iPLbKmznE6nAwCUlpbWWY4QQgghpBL1ABFC2hy50Z6RUxMQWGe5cA8PjPcPhMTzLdEsQgghhHQA1ANECGlztDYBkMnh2TWsznLhSjWGh0eiJCmxznKEEEIIIZWoB4gQ0qaYTCZ4y+zruflHRdVZVuluX5xbstQ9VI4QQgghpBIFQISQNiUnPRXucnvntGfX8DrLqjzsc4BYq7XZ20UIIYSQjoECIEJIm5KXEA8AMIoi5FptnWVVHh4AAJkgNHu7CCGEENIx0BwgQkibUpKeBi8Aeln9z2eUjh4ghSQ1b6MIIaSNYRjIGIZp8QfZkiSJkgR66kTaNQqASLORBAGlv5+Apnt3qAKDWrs5pJ3IrKjA8Yw09Ow/EMPqKavx9AJgD4AkSQLDMM3ePkIIaW0MA5nIMMEGk63F7+O0armNhZTd1oKgmJh1IT/++J3vgQPfnGvsvgkJ8apHH32o944duy+EhUXQpNJOgAIg0mxyPv8U5d98jXJRRNfX3kBASJfWbhJpB5KKi/BlTha6/ue/9ZbVenkCAFiGgWSxgFGpmrt5hBDS6hiGYQ0mm/z389miwWQTW+q4WrWcvb5vsNxDLWclSWpTAZCzLl48r1m48IXuFouZpoV0IhQAkWaT/8vPUAP4JD0V4Qf244knnmntJpF2IDs7CwAQHFx/wOzm5Y3V8XFQe3rhbUfmOEII6SwMJpuoN1pbLABy6DCBwjvvxATt3783uEuXUFNRUaGytdtDWg4FQKRZCHo91AY9AOB4USHyTv3Ryi0i7YWqsABhGi2C/f3rLevm7oHTpSVwF2xg5PTrjBBC2qLhw4cMnjPn6bQffvjeJzk50S0wMMg0a9ajmePGTSitLHPkyLeeO3ZsCcnMzNB4e/tYbrppdNGcOU9nq1QqCQDi4i6qN216u0ts7EUPk8nI+vr6We64Y0rezJmz82o65o4dWwJ27NgSumjR0qTx428rqanM6dN/eL744kvJnp6ewvz5z0U3y4cnbVKHieJJ22LJyQYAFJjNqBBsiI/nIdFEdVIPURRxr7sOa/r0h38DMru5u7sDAPR6PUSxpR+CEkIIaajt2zeHjh49puj993deGDLkutIVK5Z2P3XqpBsAHD16RLdy5StREyZMLNi2bfeFZ555Ie3YsZ99Fi9+MRIADAYD+8ILc6PVao24ceOmuO3bP7owfPhNxVu3bup67tw/murH2rVrh//OnVtDlyxZnlhb8AMAW7fu4idMmFjrdtJx0SNT0iwsebkAAKMoYHJQCNQyGQoLC+DnV/9TfdJ55eflwldhH4XgF1nzIqgMw4BVSGAkFm5u7hjs6Q0/pRLlmRnw7BrWks0lhBDSQKNHjy2YPn1mPgDMm7cw8/z5vz327dsTMHTodcm7du0IHjNmXMG0aQ/mA0BkZDezXC5PXbDg+ei0tBSlVusmTpo0Je+++6bn6XQ6EQCeeuq5rM8+2xcUHx+n6devv7HyOHv27PLbtu390GXLXksYNWpMWet8WtLWNToA4jjOF8AUAGMARALwBFAAIBXAYQBf8Txf4sI2knaoNDUFAGAURNwfGoZymxXp6WkUAJE65SQnQsOyECUJaj+/GsvIFQwyDNnwUXtBrVbhP11CEaV1Q3liIgVAhBDSRg0aNKS86muO66U/e/aMDgCSk5O1iYkJbkePHvGt3F45aCQhIV598823lN1//4y8Q4e+8ElMjNdmZmaoUlOTtQAgCOLl9J/FxcWKd9+NCZfJZFJoaJi5JT4XaZ8aHABxHOcHYDGA2Y79YgGkAIgH4A2gH4CpAMwcx20CsJrn+RrHZZKOrzwnBwoAmaKIaAAecgXS8nJau1mkjStKSUEXAHqg1jk9VsmKzJIcKHzkCFBqUZmv1FhWWmN5QgghrU8ul18xDl6SJLCsTLJ/LzKTJ/8nZ9KkKYXV9wsMDLLm5eXKH330oV4eHjrb9dcPKxk8+Nqy/v0H6O+9d3L/qmUZhsXy5a/Hb9v2fsjKla9Ebt36YRzL0mwPcrUGXRUcx/0HwHkA0QAeBeDL8/wgnufv4nl+Os/zE3meHwDAB8AsANcAuMhxXP15bEmHlB7aFS/HXcBfChVsjl95ZVlZrdso0uaVZWYAAIwKRY3bWZaBUTCh1FSOIkMJWJaBzbH2j6WcRjoQQkhbdfHiebeqr+PiLrpHRUUZACA0NMyYnp6q7tYtylz5Lzc3WxETsza0oqKc/fLLA74VFeXybdt2xT355DPZEybcXlJaWuJ4SvZvXOXl5WkdOXJ02cKFS1KSkhK027dvDmzBj0jakYb2AD0D4Dae58/UVYjn+TIAHwP4mOO46wCsA/BJ05pI2qP04iLwFeW4wS8QekMZPCURese8IEJqY87PBwCIbm41bmdZBkaLEUaLCRVmPWywQZDZf41ZKiparJ2EENIWaNXyFu3eaMrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXWn4XDkCg0KgHieH9HYinmePwngxka3iHQIRUUFAAB3nQ+MFhM8rSZYCotauVWkrZNKSgAAMh+fGrezLItSUzkkSDBZzbCJNogK+68xqyPtOiGEdHSSJIlatdx2fd9gOVo4o69WLbdJktTotJvjxk3I379/b+CGDWs04eHhhjfeWBPfp09fIwDcfvukYkmSkvbs+TD4s88+CdJq3YQhQ64tee65+RmV2+PiYnM2b36368aN61g/P3/L+PG3FZw4cdwrNvaCG4D86sebM+fp7OPHf/FeufKViC1bPuBpKBypirLAkWYRnpmJ8f6BcNO4w6LSAlYTBJqjQerxR0kRLpaWYuKE22rcLkJAhdke6JhtFlglKySFArAJEAyGlmwqIYS0GkmCwELK9mjhHiD7sSVRklD/OgXVREZGGefPX5xR2/aJE+8snjjxzuKatjEMg3nzFmbOm7cws+r7Dz/82OWhJXPnPp81d+7zl8faq1Qqad++gxca0rZhw0aUHzv25+mGlCUdQ4MCII7jtjWmUp7nZznXHNIRiCYTBhmMGBQeiYNaD9i0HkBFERg9PaEntZMkCb+lpcJoNGDWkKE1lrFJVpis9pEMZsECq2AFlCrAZoBgNLVkcwkhpFVJEgRJkhodiBBCGt4DdDOqzjIDQgAoAKQByAbgC6AbADOAv13ZQNL+2Mrsk9HNggC5uxeydX7Y+OMXkNzd8Ugrt420XSUlJTAa7b04QUEhV21nGMAi2mCy2QMgq2CDRbQi39sLq//+C6P69sXwFm0xIYQQQtqjhs4Biqj8nuO4+wGsBnA3z/N/VHm/N4ADsCdBIJ1Y5VC3UpsVajdPyDy8kWkygbVYIEkSGIappwbSGWVnpOEaTy+IWjcolcqrtjMMA6tohdlmufye0WqC5OOD06XF6C3YWrK5hBBCGoiGl5G2xpmxoysBLKwa/AAAz/MXASwBMN8VDSPtl82RjavcZoNa6wGNxh0AIIoi9DQMjtQiLyEei3r0xPyQ0Bq3sywDi2CFxWa9/J7eYoSHh/36qqiga4sQQggh9XMmCYIfgNpms9sAuDvfHNIRGEvscxj1gg1ad09oLUbcGxoGk82GsrJSuLvTJUKuVpqehhAAepmsxl5ChmFgtJkgVRmNa7GZoZMrMMLHD/7FlGWQEEIIIfVzpgfodwDLOI7zrfomx3HBAF4FcNQVDSPtl77QvpCzUZSgVKohN1bg7qAQjPMPRFkZLVZJambIzQEA2LTaGrczDFBhuTLTm1W0wUsU8XS37hhMvYuEEEIIaQBneoBeAPAzgBSO407Anns9EMAwAEUAnnVZ60i7ZCwughyA1bFApaDSAADc5DKUl1MARGpmK7b3HDKenjVuFyHCZL0y05tVsEHpYQ+YZKJU026EEEIIIVdodA8Qz/P/AOgDYBMADwBDAGgArAHQn+f5FFc2kLQ/JWHhWBJ7Hr8J9uycgtIeAGllcpSX0lpApGYyx9wxlX9AjdsFSYBFsF7xnlWwQeEYUqkABUCEEEIIqZ9TC6HyPJ8F4EUXt4V0EGWigEv6CvR09PwISvXlbYaigtZqFmnj1BYLoFRB16XmJAiCJMBquzIAsokC3B09QApQdkFCSOfBMJAxDNNuFkIlpC1xKgDiOE4FYBaAWwAEA5gJYBSAM9Wzw5HOp7y8HACg0TqSHbAsTADUAIzFNS7yTDq5srIyeDmGTPpGRl61nWEqe4CuTHVtE2xQuLkBAOQMA8lmAyN36tcaIYS0GwwDmYa1BksWQ4v/wmOUWptRVGRTEETas0b/x+E4zg/AjwB6AYiFfTicFsDtANZxHDeG5/kTLm0laVc0SYmYEBAEUfVvz4+ZYaGWRJgpCQKpQVZWBj7OTEektzfmRXa7art9DSAbrMLVPUAqndfl16LFAhkFQISQDo5hGFayGOQV/ElRNBvFljouq9Kw7tx1ckbhxUqS1KYCoJiYdSE//vid74ED35xr6D779u3x/fTTTwLz8vJU3t7e1nHjbi2YPXtOjkwma86mkjbAmTuFNQB0sAdAKQAqVyW8B8C3AJbD3jNEOqnAjAzMDIvAIcW/i1laWDkgWGClJAikBllZWThZUoTykBDIPb2u2s4wDGw1BECCaIPcQwuLJEHGMBBMRshqySJHCCEdjWg2ioJJ32IBkEOLD7trDgcOfOrzf//3Vvjjjz+ddt11N5RfuHBOGxOzNtxisTJPP/1cdmu3jzQvZwKgOwA8w/N8Asdxl0NknudNHMetAbCzsRVyHDcDwEIA3QAkAniF5/l9jm0DAbwFe7KFQgAxPM+vqbIvC2AZgNkAvAEcA/AEz/MJVco0uQ7ScDKr4yZV/e+N6M9+YTj+w34MDvBrpVaRtiwzMxMAEBLSpcbtDANYBSsE6cq/8xIAhUqBNUkJsEkiNshkUNZYAyGEEPKvgwc/9x858ubCqVOnFQBAZGQ3c2pqivrbb7/2owCo43MmilfDnu66JjagcfcfHMc9AGAbgPcA9AWwF8BejuNucKw19D2AS7AHL8sArOA4bmaVKl4G8DiARwDcAPs90WGO45SO+ptcB2kchSP7GzRul98zefoh02RCsWN+ECFVlaQm4xpPL/TwrTlAti+Caq55m4LFieJCnCophlloUyMyCCGEABg+fMjg3bt3+s+a9QA3evQNg6ZOndL7u+8OX7HmwZEj33o+8MA9vUaPvmHQXXfd3nfDhjUhZrP5cnabuLiL6meffSJq/PhRA0eOvG7QXXfd3nf79i01pw0FsGPHloBRo64f9O23X3vVtP3xx5/KmD59Zk719/X6ChpH3Qk4EwCdAvBELdumAfizoRVxHMcAWAFgPc/zb/E8n8Dz/AoAR2BPqvAoADOAOTzPx/I8vx3AegALHPsrYV+XaBnP81/zPP83gHsBdAFwl+MwrqiDNJAkSVBIjnTEGvfL76vU9oxwelqsktRAlZGJRT16YmAtc8QYhoGx2hpAlayiDRqN/foyGAw1liGEENK6tm/fHDp69Jii99/feWHIkOtKV6xY2v3UqZNuAHD06BHdypWvRE2YMLFg27bdF5555oW0Y8d+9lm8+MVIADAYDOwLL8yNVqs14saNm+K2b//owvDhNxVv3bqp67lz/2iqH2vXrh3+O3duDV2yZHni+PG3ldTUnmuvvV7fvXuPy0/WSkpKZIcPH/IfMOAaGqvfCTgT5b4M4AjHcWcBfA17b8l9HMe9CmC8419DcQAiAHxU9U2e58cDAMdxXwP4hef5qqmffgSwiOO4AMe+Ho73Kvct4TjuDICbYO9NGuGCOpwml7t2qKxMxl7xta0RTabLUbXMXQeWtT+8CTUbcE9IKIxms8vPSXNo6+e5o7h8fsvKAKUKKn//Gq8PRibBIpgvX09VWUUrBvj4QmY0wpSfC3lEeHM3u12ia7pl0HluGXSe25/Ro8cWTJ8+Mx8A5s1bmHn+/N8e+/btCRg69LrkXbt2BI8ZM65g2rQH8wH7cDS5XJ66YMHz0WlpKUqt1k2cNGlK3n33Tc/T6XQiADz11HNZn322Lyg+Pk7Tr19/Y+Vx9uzZ5bdt2/uhy5a9ljBq1JgGBTMVFRXsvHlzu1utFnbu3BfSm+Pzk7al0QEQz/O/chx3C4A3AMwHwAB4HsAZALfzPH+0EdVFO766cRz3LYBrACQDeI3n+S8BhAKons0jy/E1zLEdAKpfrFmO7XBRHU5hWQbe3m71F3SCTnfVA482wVJsz4khShK0nt7QaOyjCDXmMtwQEopfDBXNdk6aQ1s9zx2JJElQGI2AUoWA7t1qvD5MVjMYOQO15upRqYwcmOIbgEilEmxeVru6vloDXdMtg85zy6Dz3H4MGjTkijHwHNdLf/bsGR0AJCcnaxMTE9yOHj3iW7m9cjBJQkK8+uabbym7//4ZeYcOfeGTmBivzczMUKWmJmsBQBDEy0/GiouLFe++GxMuk8mk0NCwmsdNV5ObmyOfN29uj9zcHNWqVesuRUREWurfi7R3zi6E+guAGzmO08CeNKCM5/kKAOA4Tl6tt6UuOsfXDwC8CvuwtLsBfOEIsrSwD1+rqnIcjNqxHbWU8XF874o6nCKKEsrKXDskRyZjodNpUFZmhCC0dOKX+lly7ev8mEQBkkwFo9H+e0Qpt6fElgkCiovb/jC4tn6eOwqZjIXVaoCnI+WoW1BojdeHILPCYDTCZLz675JRaYbg6BkqLShpF9dXa6BrumXQeW4ZzXmedToN9Sw1A7lcLlV9LUkSWFYm2b8XmcmT/5MzadKUwur7BQYGWfPycuWPPvpQLw8Pne3664eVDB58bVn//gP09947uX/VsgzDYvny1+O3bXs/ZOXKVyK3bv0wjmVr/1nGx/PqefOe6SEIArNhwzt87959jbUWJh2KM+sAJQGYwvP83zzPGwEYq2y7FsBhAL617V9N5d3M/3ier8wed5bjuEGw9yoZAaiq7VO5uIy+yrFVVdvhKFN5F+SKOpxmszXPH0BBEJut7ibx8MTrKYmwms0Yq9BAFO2/7ySV/SmdXGyj7a5Fmz3PHUhKSgr8lPaeHaVfQI3nW4AAi9V6+XqqyiYIEBx/4Cx6Pf286kHXdMug89wy6Dy3Hxcvnne75ZZbSytfx8VddI+KijIAQGhomDE9PVXdrVvU5YfRJ04cc//4448CFy1amnro0Be+FRXl8n37Dp5XKBSSoz5H99+/fxe8vDytI0eOLgsICLA8/vis3tu3bw58+OHHcmtqT2pqivLZZ5+Mdnd3F9au3XgpNLSrtaZypGNqUADEcdx9ABSOlxEApnAcN6CGomOqlGuIDMfX6kPULgCYCPs6QyHVtlW+zqxyrBDY02dXLfO34/t0F9RBGkoux9mCfADABNW/abAZR0Y4FRjYbDbIabFK4pCanAx/x5pRCt+rO10ZBhAkAVax5gxvgihAlMsAEbAZKQkCIaTzYFWaFu2qasrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXW/ajjca68ti7DZrOzLL6+IVygUUm5uzuUbk8DAoIaOZCLtVEPvQocAeM7xvQRgaR1l1zbi+H8BKAdwPexr71TqByABwG8AHuc4TsbzfOXdzxgAPM/zeRzHlQIogz1jXCIAcBznBWAQgLcd5X9xQR2kgYxVbkBVVdYBYjUeAACNTAaDwQCdTnfVvqRzyr4Uj0CGgQBA5nH1dWFfBFWATaj575EgCpBkMkAUYDPWnCmOEEI6EkmSREaptblz18nRwguTMkqtTRKlRne7jRs3IX///r2BGzas0YSHhxveeGNNfJ8+9iFnt98+qViSpKQ9ez4M/uyzT4K0WjdhyJBrS557bn5G5fa4uNiczZvf7bpx4zrWz8/fMn78bQUnThz3io294AYgv/rx5sx5Ovv48V+8V658JWLLlg/4qkPhsrOzFLGxFzwA4PHHZ/auvu+xY3+ebuznI+1LQwOgRQBiYE94kAR7eui/qpURAJTyPN/ghV54njdyHPcmgKUcx2UC+APAVADjYA9SLsKeaGGro9y1AJ6Ffc0e8Dxv5jjubQCrOY7Lh73H6H+w9/p85jjMNhfUQRqoPCUZEwKCkGsxQ674d8I6o7EHQxpWBoNBTwEQuSw5Jxs/J8XjtptvQa8axmozDANBtMEq1hYAiZAUCsAqQDRTAEQI6fgkCYJRVGQzCq8Wn6wkiZIoSWj0omuRkVHG+fMXZ9S2feLEO4snTryzuKZtDMNg3ryFmfPmLcys+n7V4W1z5z6fNXfu85VJrqBSqaR9+w5eqKm+4OAQKwU5nVuDAiCe5y0AUgGA47hI2DOk9eV5/i/He0GwBxaHG9sAnudf4zjOAGAl7GvvxAK4i+f5nxx1j4c9+DoDIBvAi1XmCwH23ig5gC0ANLD3+Ix3tBmOXp4m1UEazpCQgJlhEfi7vAwM82/KYkFun4alkcloLSByhcT0dPxRVIg7hgytcTvDAFZRgFDLEDibKAAK+68y0dygpD+EENLuSRIESZJo9WdCnODMRAwBwFnYkwREOd4bCOAAgFMcx93O83xBYyrkeX4dgHW1bDsF4IY69hVgzx63oI4yTa6DNIxFXwEWgJVhr5gMZvbyx6qsLOQU5WG1gQIg8q/U1FQAQGhozVnnGYaB2Vb7swhBFJDr44Uf/zqLgZGRzdJGQgghhHQczgRA/wMgA3Bv5Rs8z3/jSIrwMYBVAGa7pnmkvbHq9VABsFVbsFJSKJHFsMgxmWCgAIg4GI1GBBpNCPH0Qhdv7xrLMAxgstU+tE2URJh9vPBrUQGCmquhhBBCnEbDzUhb48zY0TEAFvI8/2fVN3mePwf7ULLbXdEw0j7ZDPYkCFZWdtW2yqQIej1l6iJ2mZkZuCckFIt69IQsK6vWcmZb7UPbBFGAWmPPbG+kLHCEEEIIqYczPUBKALVl/zAB8HC+OaS9sxntSykJsqsvrVFubqgI7gJzWUkLt4q0VenpaQhQ2ueHKf0DaiwjQoS1lgxwACBIIjxYFoM9veBdXtYs7SSEEEJIx+FMD9AJAM9xHHfFej+O188COOmCdpF2qjILl1hDAHSLQoZ7u3SFuaSkhVtF2qrMlGR4OxZBVfj51VhGkATYaskAV8nTaMKCHj0xxECLeBNCCCGkbs70AC2Bfc2eZI7jDgPIA+AP4FYAfrCvp0M6KclkD4AE+dXr4VoZBkpIsFAWOOJQlJwMALCyLFg3txrL1NcDBAAyjb0XSSbSivCEEEIIqVuje4B4nj8N4DrYe4ImAngRwGQApwAM43n+D1c2kLQvScHBeCM+Dpmaq29mrY602Daap0EcjDnZAADB3f2KtOlViZJoT3VdB8YRACkkybUNJIQQQkiH40wPEHie/wfAPS5uC+kACgD8VVoCb437VdtsDAtI4uV5QoQIRUWAuw4yX98atzOMYwhcPT1ArNaeBEFO8Q8hpJNgGMgYhmn5hVAl5xZCJaQtcSoAAgCO4yYAuAVAMICXAFwD4DTP86kuahtphyqzcClV6qu22VgZINposUoCALDZbFAajIC7Du5dutRYhmEYCA3oAWK19h4geS29SIQQ0pEwDGSSXAg2CEan7+OcpZFrbIxNlt3WgqCYmHUhP/74ne+BA9+ca+g+O3duDTh48POAwsJCZWBgoPnuu/+b89//3l/YnO0kbUOj/+NwHKeFfdHTsQDKYM/69j8AcwBcw3HcSJ7nL7iykaT9CCwowEhff7jJrp4DJMhkgA0QTRQAESArKxPf5WUj1WzEqtHLaizDMIAg1J8EgdXYEykoKQAihHQCDMOwBsEo/yPjrGi0mlps8qNGoWavDR0od2M8WEmS2lQA1Fi7d+/037lzW5fnnpuX0r//Nfrffjume/vtDREeHp7ChAm3l7R2+0jzcubJwesABsO+HtCvACqXaJ8O4FsAKwDc5ZLWkXZnYEkphkVG4Rv26l55wREUSRYKgAiQmpqCLJMJnpHecIuKgs1W099wxjEErp4eILW9x1HGMJBsNjDyFn8oSgghLc5oNYl6i7Gls7+0+LC75lBRUSGbMWNm5h13TCkGgPDwiIJDhw4E/PnnSR0FQB2fMxfxvQAW8Tx/FMDlEfc8z+cAeA3AcBe1jbRDcsckdEatuWrbuYBwLIk9D76e4Uykc0hJsWeA69atW61lGAawCFZIqHtyD+uuxZbUZPxfciKstrp7iwghhLSs4cOHDN69e6f/rFkPcKNH3zBo6tQpvb/77rBn1TJHjnzr+cAD9/QaPfqGQXfddXvfDRvWhJjN5svd+nFxF9XPPvtE1PjxowaOHHndoLvuur3v9u1bal5ADsCOHVsCRo26ftC3337tVdP2xx57Muehh2bnAYDVamUOHPjUJzMzQz106HW0oFwn4MxjUi8AKbVsKwZw9ex30ilIoghl5Qv11VngDDpfXNJXwNOxVhDp3LKSEjEhIAiDfWpOgADY5wCZBUut2yspNAp8l58LALDYbP9eh4QQQtqE7ds3hz744MMZixYtTfnii8/8VqxY2t3b2ydu6NDr9EePHtGtXPlK1OzZj6cPGzaiLC0tRbVx4/qwjIw09Zo1MUkGg4F94YW50f36DSjfuHFTnFyukA4c2O+3deumrkOGXFver1//K7Ir7dq1w3/nzq2hS5YsTxw7dlxpXe36/fff3F988RlOkiSMHj22YPz420qa9USQNsGZHqDzAKbVsu0Ox3bSCVUd2saqtVdtVyjsE9WNlAWOADCkp2JmWAR6pmXUWoZhGFhs9QdAjFx2OY22yUTXFyGEtDWjR48tmD59Zn6PHtHmefMWZkZFddfv27cnAAB27doRPGbMuIJp0x7Mj4zsZh458uay5557MfX333/zTktLURoMenbSpCl5L720LDU6uqepW7co81NPPZcFAPHxcVcMOdmzZ5fftm3vhy5b9lpCfcEPAERFdTe9++62i3PnPp9y4sQxn7VrV9WclYd0KM70AL0G4HOO43wBfAn7MLiRHMfNBPA4gPtc2D7SjlQmNxAlCbIaeoD8LEbcHhgEwUpDlAggFhQAfgFQBgbWUUqCSah/zpgkSejr7QO5IMBYUgL4+busnYQQQppu0KAh5VVfc1wv/dmzZ3QAkJycrE1MTHA7evTI5SEBlcu6JSTEq2+++Zay+++fkXfo0Bc+iYnx2szMDFVqarIWAARBvDxMrri4WPHuuzHhMplMCg0Na9CEY3//AJu/f4Ctb99+xuLiYsWePbtC5s59IUupVNLCCh1YowMgnue/4DjuAQCrANzmeHstgDwAj/M8v9+F7SPtSGV6a5MoQKa8eg5QYHkRhneNwO/6ipZuGmljKioq4G61AgC8IiNqLSdArHcNIAAQJBFPhkXAR66AKScb6N7DVU0lhBDiAnL5lSu1SZIElpVJ9u9FZvLk/+RMmjTlqhTUgYFB1ry8XPmjjz7Uy8NDZ7v++mElgwdfW9a//wD9vfdO7l+1LMOwWL789fht294PWbnylcitWz+MY2tIygQAP/74vS40tKslOrrn5XH5UVE9jDablSkqKpQHBQVbXfLBSZvU6CFwHMf14nn+I57nwwD0gj3pQV8AITzPb3V1A0n7IVnsQ5UsogiF8up1gKCyB0UyqaUT1pC2JjU1GcGOtaI8IyJqLSc2IAOcvZwIq+NPq0Wvd0UTCSGEuNDFi+evGBoSF3fRPSoqygAAoaFhxvT0VHW3blHmyn+5udmKmJi1oRUV5eyXXx7wragol2/btivuySefyZ4w4faS0tISx0P8f+MqLy9P68iRo8sWLlySkpSUoN2+fXOtQwy2bNkUun37lqCq71248I+bu7u7LSAgkIKfDs6ZOUDfchw3AwB4u994nr/I8zzd1XZyrLc3Vifw2JSSBLlSdXUBR1BUmSmOdF4pKSkIcqSuVocE11pOhFjvGkAAIIoiBMcgCIuBAiBCCGlrvvzyQOCBA5/6JCTEq1avXhmampqiue++GbkAMHXqtJw//vjdOyZmXUhCQrzq2LFfPN588/VIvb5CHhgYZAsMDLKYzWb20KEvvDMy0pQ///yj7tVXl3QDAIvFctW9bK9efUxTptyTs3v3zpDExIQabkiAqVMfyD527GffDz/c4Z+UlKjas+dDvwMHPg26//4ZWbX1GpGOw5k5QHIA+a5uCGn/bDIWp0uKAQC3Kq9OgsA4EiMoJHvXN0OLVnZaqSlJGOHoAdKEBKO2vIASJAgNSJsuSCJEx/VkpSQbhJBOQqNQt+idelOON27chPz9+/cGbtiwRhMeHm5444018X369DUCwO23TyqWJClpz54Pgz/77JMgrdZNGDLk2pLnnpufUbk9Li42Z/Pmd7tu3LiO9fPzt4wff1vBiRPHvWJjL7ihhvvSOXOezj5+/BfvlStfidiy5QO+elAzadKUYkGwJe/duzt469b3uvr5+Vkee+yptKlTpxU4+xlJ++FMAPQygI0cx62EPeNbbvUCPM+nNbVhpP0xGAwA7Jm75IqrExFXrg2klslgMpmg0Vw9T4h0DnnJSVDJZBAZBqqAAJjKr56ryjCAIAqwNnAInOAIgAQKgAghHZwkSaJGrrFdGzpQjhZemFQj09gkW+PHskdGRhnnz19ca9rPiRPvLJ448c7imrYxDIN58xZmzpu3MLPq+w8//Njle9C5c5/Pmjv3+azK1yqVStq37+CFuto0Zco9RVOm3FPU8E9BOgpnAqBNAGQAtgK1rk4oc7pFpN2qyMzATb5+KANQU/cx68gMp2JZCoA6OT4tFYszMzD/iafByuUAakrWw0CQBAgNGAIniCIEGQtIgM1E60wRQjo2SYLA2GTZboxHi4/VkmySKEmgFc1Ju+ZMADTb5a0gHYI5MQFPRXbHhVrmYEiOdYBUrAxGowHe3t4t2TzSRgiCgMSUJFgsFnQZfXOt5RgGECQBtgYMgRMlEZJMBthECoAIIZ2CJEGQJIkCEUKc4EwA1AXAFzzP19mtSDofq9EIBQAbGChq2G7x9MXa9FQUVpRjNQ1T6rQyMtJgsVigVqsRGtq11nIMw0AQxAYHQPEaJX69EIuhQ4a6srmEEEKa6NixP0+3dhsIqcqZrtP5AGq/ayGdls0R1AhszckNRKUavNWGBH0FzGYKgDqrhIR4TAgIwn+je0IoK6u1HMMANtEGsYFDzXN0bvgmLxclCmee6xBCCCGks3AmALoEoJ+rG0Lav8qhRwJT+xSwyvWBjNQD1GklJiZgSnAIJirVsBXVPveUYRiYhYYvxaBU2hNvmGgIHCGEEELq4Myj0kMAXuM4biJqzgIn8Ty/osktI+2OYHYEQLXlz5ckjNDpYBSDYKqoaMGWkbYk/RKPUY4sgaqQkFrLMQxgsdWUHKFmOhmLXu4ekJeWNLWJhBBCCOnAnAmAXnF8HeH4V50EgAKgTkg0229WRVntPUD/9XAHq/NARh1Dn0jHZkhLBXReENw9wDoWQ60ZA7NgaXC9UeVGTOrZB0l5tEwZIYQQQmrX6ACI53laHpfUSLTYb1ZFtpYAiGFgBaACYNXXnCmOtC2uXrDWarVAWVYK6Lyg6tKl7mNDhKURQ+AkpePXma3+tNmEEEII6byaFMxwHNeT47jrOY6LclWDSPuV7e+Pt5LikaSq/am+BfabaWstqbJJ2xAfz+Puu+/A0KH98eqrL8NqbXggUpfU1BSEKO3p0D26dauzrAgBQgMywF3mSH7ANGDhVEIIIYR0Xk6lS+I47j4AawAEVXkvB8Ainuc/cFHbSDtTpFDgeFEhRjgWPK2JjWEASLAZDS3XMNIoZWVlmDt3DrKz7Qtqf/75PkiSiFdeWdnkuuPjL6GrRgsAUIWE1llWlKQGpcC+TGWfV8QK1ANECOn4GAYyhmFafiFUiRZCJe1fowMgjuPuALALwI8AXgKQAyAEwAMAtnMcV8jz/FcubSVpFyozuykcC57WxMYwgCTBSlng2qy9e3eBLS7G6/2vQVdvH+zjY/HFgU8xYcJEXHfdDU2qOy72IkaoNQAAZT1D4ESIsDUimGFU9tWnGLFhabMJIaS9YhjIVKI1WDAYWjzvv0yrtZlZRXZbC4JiYtaF/Pjjd74HDnxzrrH7SpKEJ56Y3cNms7KbN3/AN0f7SNvizH+cJQD28Tw/tdr72zmO2wtgEQAKgDoh96IiXOvlDc86kiDYGBkgiRAoVXGbZLVa8fW+vVga3QveSiWg1+OB0DCYBAGbNr3d9ACIj8W+82ex7PGn0T249gxwgH1x08b0AFUGQDJRalIbCSGkrWMYhhUMBnnhyZOizWBssac+cq2G9b3uOjnj4cVKktSmAqCm2L59c8C5c3/revXqTSlqOwlnAqB+AJbVsm0HgH1Ot4a0a1xeHoZ353C0jptWgWUBEbCZG57emLSc06dPYYxGC2+lEoqQLvAcdiPK0tLw89nTMOfn4ty5v9Gv3wCn6pYkCbGxF2EQBISPuAmsQlFrWYYBBKlxc4BYxxA4mUQBECGkc7AZjKJNr2/pbu8OlQzr4sXzmr17d4V0796DJid3Is4EQAUAfGvZ5geg4XlrHTiOCweQUsOmR3ie38Jx3EAAbwEYAqAQQAzP82uq7M/CHpTNBuAN4BiAJ3ieT6hSpsl1kLqxjqFHjLL2IXB/6gLwwe/fo0+Xup/+k9Zx7Mi3uM0vAAAQeP8D0PbsBR8A49JT8OWXB7B79wdYtWqtU3VnZWWirKwUcrkCUVHd6yzLMAyERvYAWX10+CgjDayHDjc51UJCCCHNYfjwIYPnzHk67YcfvvdJTk50CwwMMs2a9WjmuHETSivLHDnyreeOHVtCMjMzNN7ePpabbhpdNGfO09kqlUoCgLi4i+pNm97uEht70cNkMrK+vn6WO+6Ykjdz5uy8mo65Y8eWgB07toQuWrQ0afz420pqKmMymZjly1+OnDbtwaxLl+K0eXm5td/AkA7FmSj+CIBXOY4Lq/qmI4hZBuA7J+rsD8AE+1yi4Cr/dnMc5wvgewCXYA9elgFYwXHczCr7vwzgcQCPALgB9rWIDnMcp3S0rcl1kPpVBkBSHXOACt28cLasBCU212QVI65l+udvyFkWVm9vaHv2uvz+vfdOAwPg/PFfodc7N0IgNvYCpnUJw5N9+kIqKqq3vCA2rgdI8tHhQE4Wfi2pv25CCCEta/v2zaGjR48pev/9nReGDLmudMWKpd1PnTrpBgBHjx7RrVz5StSECRMLtm3bfeGZZ15IO3bsZ5/Fi1+MBACDwcC+8MLcaLVaI27cuClu+/aPLgwfflPx1q2bup4794+m+rF27drhv3Pn1tAlS5Yn1hb8AMDatatCvb19rDNmzKoxiCIdlzM9QC8B+BMAz3HcCdiTIATBHjQUAVjoRJ39APA8z2dX38Bx3LMAzADm8DxvAxDLcVwPAAtgn3ekBPACgPk8z3/t2OdeAFkA7gKwF8CjLqiD1EPWgB4gudIeT5rNNAeorcnPz0N8Tjb+BoPhd9x5xbYefn54a+BgyEURPx75DnfceVej64+9eAGj/fyhUyggGurOAmjvARJgExueBEHuSINtpuGVhBDS5owePbZg+vSZ+QAwb97CzPPn//bYt29PwNCh1yXv2rUjeMyYcQXTpj2YDwCRkd3Mcrk8dcGC56PT0lKUWq2bOGnSlLz77puep9PpRAB46qnnsj77bF9QfHycpl+//pczK+3Zs8tv27b3Q5ctey1h1Kgxta66fvToEd2vv/7ks337Rxddud4daR+cWQg1h+O4QbAHDCNh71EpAhADYB3P87lOtKM/gIu1bBsB4BdH4FLpRwCLOI4LABABwMPxXmUbSziOOwPgJtiDF1fUQeohlyT75A3lVQ9jLgu0WTHK1x86A2WBa2vOnj2Dv8tKYQwKxtS77oISFkiMHGaBhcLXD94aLVRWK05/9SXgRACUGXcROoUCEsNAGVp3CmyGAWyiALER83nkcjkiNFq4sR1qeDohhHQIgwYNKa/6muN66c+ePaMDgOTkZG1iYoLb0aNHLk+xqPz1n5AQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8XL0UlxcrHj33ZhwmUwmhYaG1fo0rKAgX75mzaqIp556Li04OISGpHRCzqZPLASwl+f5BQDAcVwwgKGwB0LO6Acgm+O4XwFEA4gHsILn+W8BhAKontIwy/E1zLEdANJrKFM5TM8VdThFLnftzZhMxl7xtS2pvJhkajVYtuanKVH6ItwaGYWTFqvLz40rteXz3FzOnTsLABg8eDBUMMGccg4yrTs0wT1hkamgGzMG5m++QV+DAUWFeQgIDKq7wiokSYKUlgYEhQCBQVBq7Ivl1nae5XIWNqO11uuoJgpIeLNPf8cBBcjrSLLQGXXGa7o10HluGXSe2x+5XH7FEy1JksCyMsn+vchMnvyfnEmTphRW3y8wMMial5crf/TRh3p5eOhs118/rGTw4GvL+vcfoL/33sn9q5ZlGBbLl78ev23b+yErV74SuXXrh3FsDQ/FfvrpR8/S0hLF+vVvRqxf/2YEANhsNkYURWbMmBuvWbnyf/HXXz+MMsJ1YM6sAxQK+zwfFYAox9sDABwAcIrjuNt5ni9oRH1K2IMePYAXAVTAvqbQYY7jbgGghX34WlWV46fUju2opYyP43tX1NFoLMvA27v2RUGbQqervZelNUiSdPliUrq5Q6OpeeqUTWUfHseIQrOdG1dqa+e5OeXH8/BWKDBk8DVgy3OBinyIphLIfQLhFhCGgQ8+gJ8PH0YXtQZ/ffoxpi5+qcF1JyYmIsyRHj146OCrfvY1nWfJIEBdy3VUEwXz768zlUyErh1cX62hM13TrYnOc8ug89x+XLx43u2WW269nPQgLu6ie1RUlAEAQkPDjOnpqepu3aIu34edOHHM/eOPPwpctGhp6qFDX/hWVJTL9+07eF6hUEiO+hw//H/jKi8vT+vIkaPLAgICLI8/Pqv39u2bAx9++LGrRiaNH39b8aBBQ64IcN5+e31oYWGBYtmylcnBwSGNTuhF2hdneoD+B3vyhHsr3+B5/huO4wYA+BjAKtgzqTUIz/MWjuO8ANh4nq+88E9zHNcLwDwARtiDrarUjq96x3Y4yhirlalMaeiKOhpNFCWUldU916GxZDIWOp0GZWVGCELbWfBREkXsKS1GRUkJet2shtFY8+8OhnUsVmkTUFzcdjNOttXz3FwkScKAolLMHDAYsoJC6HMzYDGaAZghZSTCpvKCRZShJDwcQWlpEH4/1aif3y+//Iae7h4AAEVk1OV9azvPCoUM5QYjTLVcRzVh2H+DpdyMXAgsJfOpqrNd062FznPLaM7zrNNp2k3PklyradGGNuV4X355IDA8PNLUt29//aeffuKfmpqiWbDg5RQAmDp1Ws6qVSu6xcSsC7nttjsKc3KylWvXrorw8/OzBAYG2QIDgyxms5k9dOgL76FDr61ITExQv/NOTFcAsFgsV7WpV68+pilT7snZvXtnyKhRY0qiorpf8YDbw8ND9PDwuOI9jUYjKJVKedUgjHRczgRAYwA8yvP8n1Xf5Hn+HMdxSwFsbGyFPM/XdCd1DsCtsA9Lq54zufJ1JgBFlfcSq5X52/G9K+pwis3WPH8ABUFstrqd9WtRIYqKCtFHpYFYy2KUrNx+qlmx7bW/Jm3xPDeH7OwshCjsAUQIFwVLWcnln6GppAAKQykklTd6TJ2G4tUrEcGySP3jFLoMGtyg+s+f+gN3aewdrcrI7led0+rnmWEBs81S63VUE1HGwCKKULIsKkpK4RXS8X9uzugs13Rro/PcMjrreZYkSZRptTbf666To4XX5ZFptTabJDX6pI8bNyF///69gRs2rNGEh4cb3nhjTXyfPn2NAHD77ZOKJUlK2rPnw+DPPvskSKt1E4YMubbkuefmZ1Ruj4uLzdm8+d2uGzeuY/38/C3jx99WcOLEca/Y2AtuAPKrH2/OnKezjx//xXvlylcitmz5gK9pKBzpvJwJgJQAarvwTbAnE2gwjuP6A/gNwK08zx+rsmkIgAsAzgJ4nOM4Gc/zlTlxx8CeNS6P47hSAGUARsERvDh6lAYBeNtR/hcX1EHqYTLZRxXK5LU/eZcUjrkfYuf7g9WWJVw4hyC1/Wej9feEKeffvyWi2QihLB+yIB8ER3P4HUAfAJe+PNDgACjz4gUUadzg4e8PmUf9vyJENC4FNgCIkgirJEEJwFxBQ7cJIR2XJEEws4psxsOrxe/qbZIkShIa9wsaQGRklHH+/MUZtW2fOPHO4okT7yyuaRvDMJg3b2HmvHkLM6u+X3V429y5z2fNnft85fxuqFQqad++gxca2r6VK/+X0tCypP1zJgA6AeA5juMO8zx/OXMGx3EKAM8CONnI+s47/r3Lcdwc2BdafRT2tNpDAeQCmA9gK8dxbwK41nGcxwGA53kzx3FvA1jNcVw+7Auq/g/2Xp/PHMfY5oI6SB0EowF9VCoYZDLI6wiAKlNkyxqR3Ys0v4K4WAQC0LMMIF6dotxakg+1fyQAOZhhN2L5jq2AyYDRDai7qKgIv8bz+BXAkS++aVB7BElq1CKowL8BEACYDRQAEUI6NkmCIElSowMRQohzAdASAMcAJHMcdxhAHgB/2Ier+cHei9JgPM+LHMfdAfvcoX0AvACcAXALz/PnAIDjuPGwp9k+AyAbwIs8z++sUs1Sx2fZAkADe4/PeJ7nLY5j5DW1DlI3Y04OXoyKRqnVikRFHRPXlfZeBgUFQG2KOT0NAGB0d4NgvHpEqrWiFGpzBVilN0ZMvhvL/+8tiOf/QWZmBrp0qTul9cmTvwEAoqN7wi88okHtkSA2vgdIFFGZ595azzpDhBBCCOm8nFkH6DTHcdcBeBnARAC+AEoA/Ap76uqzTtSZD+DhOrafgr1HqLbtAuyLmi5ozjpI7UyOIUdmUYSijoVQTf6hWJ94CcVWK+6QJNDiY22DrNCewV4W4A/BfHXwIFpMEPUlkGl84evrhyFDrsUff/yOI4cPYfqMWWCVtQe9p347BgbA9dcPa3B7REmETWj4IqiV+/xuM0Ofm41b5M5m+CeEEOJqx479ebq120BIVU7dJfA8/w+Ae1zcFtKOmfX2AMgqiZDJar+sRE8/nCi232ybzWao1epay5KWozWZALUauq7BEC01J8CxluZD5RcOKxiMGzcBvikpGHjiBMq6dYfXzWNr3EeSJPjxPN4fMBgynWeD2sIwjgCokfPEJAB/shIuZmfiRjmtAUQIIYSQmlFKDOISFr2918Baz8g2RZWeArP56rkmpOUZjUZ8lZmOA9mZCIyqfd1fm6ECjNUEhgHGjBkHiWGgYRjkHf4KUi3BSvylOAxWa+CpUCCi34AGtoiBIAkQxMb1AAGASm3vfTSZjPWUJIQQQkhnRQEQcQmrwT5vxFbPiDaFIOAGH1/c4O0Dk4lS7bcF6elp+K24EF+Vl8EnuPZ1fwVjBSSLHizLwtvbG4Zu3VBhswHFxSg/VXPuk78+2w9vpRJGAN6DhzSoPQwDCJLQ6CQIAOCjUCBMo4W1tLT+woQQQgjplCgAIi5hMTp6gFB3BCQ3VeC5bj3wWHg36gFqI9LSUgAAEeFhkKy1B6WSYINQUQyWtf+Mbx5/G77MtWccLdj3CUTzlftKkgSPuFgAgCmqO5gGzsthGAaC2PgkCAAwRmCwpk9/aDPSG70vIYQQQjoHCoCIS9iM9iFHQj1JDUSZfW6GkmVhsVAA1BbkJsSjl7sHeoQEQ6jnZ2IrL4ZMsg9Nu/nmW3CkpBh5ZhNsJcXI3/fxFWXjv/8W3RVK2CQJ3LTpDW4PwwA2SYDQ+HX2IMpk9q9m6l0khBBCSM2aHABxHKfmOI5SeXVyem9vbE5Nxp9C3U/tRcfkdDnLwqSneRptgSolGa/27IORVrHWBAiVbEY9GMEeJOl0Otw68U5sTk0GAJT+9CNKfvnJXq60FPrP9gMA4lRKeIWFN7g9DMPAYnMu+7wotwdAkoWy1xNCOjaGgYxlGUVL/2MYyFr7sxPSVE5lgeM4jgOwHMAtAHQAruU4bjaAWJ7nN7qwfaSdqFCp8X1+LnoFdsG1dZSTqmTnstSw3gxpeYxjvgzrpYNks9ZZVjDpIVmMkKndIAgipk2bgcn79mJ/VgbuDgmFTOsGACjIzoLcYkGOxYKuM2vNcF8rq1B3O2ojyuzPdCSrc/sTQkh7wDCQsQwbbDHZWjznv1Itt4kQsyUJtAgrabca/R+H47iBsC8SmgdgN4AnHJssADZwHFdWbYFR0glUZt2qaw0gAJBYGURJAsswMDvWDiKtS200AnIF1H5e9ZaVbFaIxnKwWn8IAhAR0Q0TJkzEJ4cPodzfD8sHDAQAvPPRByhNTYIUEoq3hg1vVHsYhoFJcK4HR6rsAaIAiBDSgTEMw1pMNnns+WzRbLI1frywk1RqOdurb7BcoZaxkiS1qQAoJmZdyI8/fud74MA35xq6zyOPPBgdG3vBo+p70dE9K7Zt28W7voWkLXHmycEaAH8CGOd4/SQA8Dz/LMdxWgDPAKAAqJORCgrQx0MHP0XtC2ICABgGNgBKADZKVdwmeDhSWOv8a88AV5WtvAgKv4jLr5955gX8+utPOPz3WZjmP4eQkC44ePBzMAyDbWvecmKxWwlWJ4fASQr7rzQKgAghnYHZZBNNRmuLBUAOHWb+eHp6qmbOnKfTxo4dX1z5nlKprGdBD9IROHMR3wBgPc/zNtjXHqxqL4DoJreKtDs+KclYxvXGwAbc61ocV03l2kGk9RgMeng5Fq71DfJr0D6CUQ+2SoASFBSM1157E3K5HEePHsHu3fbnH088MRfXXDO40W1yNgU2AMARADFC49cQIoQQ0nlkZ2cpKioq5P37X1MRGBhkq/zn7e3Tpnq2SPNwpgfIBEBbyzZfx3bSyVQ+ca86x6c2X9kk5GQk4FbZrc3dLFKPnNRUqB2Z03Q+OgjG+tfPEUwGSDYTGJkSkmSPZkeNuhlbtnyAXbt2wGAwYNKkKbj11tudapMI0ekAqNTTDV+c+gfaqG5O7U8IIcT1hg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzfh8h+dI0e+9dyxY0tIZmaGxtvbx3LTTaOL5sx5OlulUkkAEBd3Ub1p09tdYmMvephMRtbX189yxx1T8mbOnJ1X0zF37NgSsGPHltBFi5YmjR9/W0n17XFxFzUMw6BHj2i6b+2EnAmAvgPwKsdxxwFkO96TOI5zBzAPwBFXNY60I5cDoPovqVhWiYtFhRjp7FN+4jIFSYnwAqAXRTBsw3r9BbPRngjB3RM227/7DBw4CAMHDmpym0RITq0BBABl/t7YnZmGGyMimtwOQgghrrN9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FmPpdu3b479y5NXTJkuWJY8eOq/HJXkJCvEardROWL385/Ny5v3VqtVq48cabiqsGXaTjciYAmg/gBAAewFnYh8GtBcDBPqRuqqsaR9oRm33IkSSvZw4QALljnpDJRGu1tLac8jLsS01CdLdu6Gtt4LwbSYSoLwGrC26WNkkQYROdG8KmUNp/pdEiu4QQ0raMHj22YPr0mfkAMG/ewszz5//22LdvT8DQodcl79q1I3jMmHEF06Y9mA8AkZHdzHK5PHXBguej09JSlFqtmzhp0pS8++6bnqfT6UQAeOqp57I++2xfUHx8nKZqALRnzy6/bdveD1227LWEUaPGlNXWnuTkJI3VamX69x9YMX36QzmxsRe0mzdv6pqbm6N84401Kc18Okgra3QAxPN8OsdxAwA8D+BmAIkA3AF8BGAdz/PZde1POihHAIT6kiAACJPLoPbyBsrqH25FmldGUSG+z8+D943XQ2xE4gGbvhRK0QbA9UuACZIAQXRuTq9SLoO/UgWNmdYBIoSQtmTQoCHlVV9zXC/92bNndACQnJysTUxMcDt69Ihv5XbHCGskJMSrb775lrL775+Rd+jQFz6JifHazMwMVWpqshYABEG8/IeouLhY8e67MeEymUwKDQ2r8ynrihWrUioqKtI9PT0FAOjVq49JLldIb765slteXm5GQEAgTSbtwJzKH8/zfCGAxS5uC2nH2MoFUBsQAN0kmhHRncM/RcX1liXNq6AgHwAQ4OMNNCLoEExGsKIFQN1pzxuLYRgIovM9QD6levxf/2uQTUkQCCGkTZHL5VcMK5MkCSwrk+zfi8zkyf/JmTRpSmH1/QIDg6x5ebnyRx99qJeHh852/fXDSgYPvrasf/8B+nvvndy/almGYbF8+evx27a9H7Jy5SuRW7d+GMeyNef7kslkqAx+KkVHc0YAyM7OUlIA1LE5uxCqJ+y9P26oIZMcz/MfNLFdpJ1hK2+e61kHCABElgUEQLTQELjWJs/LQ093DwS4qRu1n2A2QLKawSrUEEXXDZVmGEBsQhY4VmUPwGU0epsQQtqUixfPu91yy62Xh37ExV10j4qKMgBAaGiYMT09Vd2tW9TlG4MTJ465f/zxR4GLFi1NPXToC9+KinL5vn0HzysUCslRn8Ze8t9f+F5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbVn1qwHuK5dw0yvvvp6auV758794yaXy6XIyCgaR93BObMQ6gQA+1B7JjgJAAVAncwpRkJheiqC+lwP73rKCqxjrRYLDVNqbQP1evynZx+U6hu3JpNoMUGyGsGqvFwcADEQRMHpJAiM2h4A1Z+LkBBC2j+VWt6ia/I05XhffnkgMDw80tS3b3/9p59+4p+amqJZsODlFACYOnVazqpVK7rFxKwLue22OwpzcrKVa9euivDz87M40lNbzGYze+jQF95Dh15bkZiYoH7nnZiuAGCxWK5qU69efUxTptyTs3v3zpBRo8aUREV1v+qJ6+jRY4q2bNnUdc+eD/U33DC87Ny5s27btr0Xeuedd+VWzjMiHZczPUBvAIiFfQ5QBgC6SAj+tljwV242Znp41VtWdKw7A1qsstW5iSIgA7Q+no3bUZIgVJSC1XWBK38FMAwcQ+CczBCosQdActdPTSKEkDZDkiRRqZbbevUNlqOFFyZVquU2UWr8RM1x4ybk79+/N3DDhjWa8PBwwxtvrInv06evEQBuv31SsSRJSXv2fBj82WefBGm1bsKQIdeWPPfc/IzK7XFxsTmbN7/bdePGdayfn79l/PjbCk6cOO4VG3vBDUB+9ePNmfN09vHjv3ivXPlKxJYtH/DVh8JNnz4zn2VZfP75/sD33nsnzMvLyzpp0l25jz32ZI5zZ4a0J84EQD0B3Mnz/K+ubgxpv0wmew+CvAFzgCoDIIkCoFYlSRJ0jj8Inv5ejd5fMJRCJlrh2kQIDKyi89cF6+gBUjIdZqFyQgi5iiRBECFmK9SyFv9lJ0qiKElo9FOqyMgo4/z5izNq2z5x4p3FEyfeWePkYIZhMG/ewsx58xZmVn2/6vC2uXOfz5o79/msytcqlUrat+/ghbraNG3ag/mVmedI5+JMAJQKQOfqhpD2LcgmwKJ1g0JW/+Aj0bFYKmOj+YWtqbSwAG6OYNTHzxuQGjcnSzAbwYpWAPUHvQ3FMIBZcD4AYjT2uUwqloUoiqht8ishhLR3kgRBkiRaUI8QJzhzd/AGgGUcx0W4uC2kHXtU54U3eveDpgG94lJlACTQ7+3WVJBmn/dpFUUo1Y2fNSOajZCsJrCs63qAGIaBpRHpuKtj1f8m4bAYDK5oEiGEEEI6GGd6gKYB6AIgkeO4fADV7zIknuejmtwy0m5INhtkjP0mmFHXlhvjX7neQTh+6ieoQkPx3+ZuHKlVaVYmPADoJQmSE2mjBbPJHgC5NBGCBLPQhADITYVv83JgEUXMNhmhdnd3UbsIIYQ469ixP0+3dhsIqcqZACjD8Y8QAIBYJZsbq3Krt3yFpx9+KMhDTz/fesuS5lOemwMPACaWcSoAgiRCNJSD1QW7rE0iRNiasIYPo5BjR2Y6BEHAdCcXUyWEEEJIx9boAIjn+ZnN0RDSflUGQKIkQaaqfz0ZhcI+TMlkojT7rSlXFPFVajK4Xj1xnZNBh2AogUJyXaAhSE3IAAdAkkQoVSoYDQaYzbTOFCGEEEKu1qAAiOO4MADZPM9bHd/Xief5tCa3jLQbZn0FAMAiipAp6l8IVSOJ6KfzhLtEq1W2pqyKCnyfn4uQ0Tc6XYdgNkEpWuCqlXckiLCJzvcAiZIIX40WJpsNxopyl7SJEEIIIR1LQ3uAkgHcAOAPACmouuxuzWRNaBNpZ8yOG02LKIKV158RzM9QgpejeyHR1LjFN4lrFRYWAAB8PT2crkMwG8HYLGBYBVwRz4oQnV4EFbD/YlrcNRy+cgUsGRlArz5NbxQhhBBCOpSGBkCzACRW+Z4e3ZPLTBWOHiBJBMs2IPZVagAAcrqKWpUiPw+93D3gp6m/1642lzPBaTwgCE0fCic2cQgcAFQm0bZSFjhCCCGE1KBBARDP8zurfL+j2VpD2iWrUomPMtIAhQIDG1CedcwTUrhy/UzSaNebLbivZx+Um5zPuiYJNogmPVi3ADQ1qznDAIIkQGhiRYIjI6GNehgJIR0Yw0DGMC2/6rMkSU4thEpIW9LQOUAzGlGnxPP8h062h7RDJoUSB3Ky4Ovn36AAiFHZU2UrWRZWqxUKhWvmj5DG0ThSV3t4ezapHkFfCplf09vDMAwEsek9QDZHYG2lAIgQ0kExDGQyxhZsNRucyebbJAqV1iZAnt3WgqCYmHUhP/74ne+BA9+ca+g+CQnxqg0b/tc1NvaCh0qlFocNG178/PMLMrRaLaUR7eAa+h9nRyPqlABQANSJmBw3mqoGZIADAFZlHwKnZFiYzWYKgFqBzWaDO2t/cOjp69WkugSzHgrRgqZO/WMYQBSFJgdAguNz2YyUZZAQ0jExDMNazQZ54oUzosVsarGbdaVKzUb1GSSXqTxZSZLaVADUWEVFhbK5cx/v2a1blP7//m9zbG5urvLNN1dGrFnzBpYuXUHJvDq4hgZAkc3aCtKumYuLEanVwlNT/yKoAMA6FktVsSwsFhMAWqyypZUUFsBdbv/vr/P1BCTnU0aLZiMYwYqm5z5h7EPgmpAFDgBElgFEQDRTAEQI6dgsZpNoNhpaureixYfdNYddu3YGyuUyac2amES1Wi317NnblJ2dlXXo0AF/SZLAMDROvyNr6Byg1Nq2cRynBmDmeZ6mtHdSTGICVvfujzibDQ35LSw5MsWpZDIYDQbAp3nbR65WnJkJABAkCXKVDGITYgXBbIJkNYNVaiCKzv8aYBjAKghNzrAisCwgShBoHSBCCGkThg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzehtLLMkSPfeu7YsSUkMzND4+3tY7npptFFc+Y8na1SqSQAiIu7qN606e0usbEXPUwmI+vr62e5444peTNnzs6r6Zg7dmwJ2LFjS+iiRUuTxo+/raT69tOnT+muv/7GYrVaffnPztSp0wqmTp1W0AyngLQxTo0d5TiOA7AcwC0AdACu5ThuNoBYnuc3OtsYjuOiAZwB8FRlsgWO4wYCeAvAEACFAGJ4nl9TZR8WwDIAswF4AzgG4Ame5xOqlGlyHaR2gmNBU4Fl0ZDnJaJShY9ycqA3GzHH7PwEfOK88pxsuAOoEEWgiUPORIsZktUIVu3dxACIgUVo+vWQqZIjLTsDIX37NrkuQgghrrF9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FpM9du3b479y5NXTJkuWJY8eOK62pPTk5Wephw4aXrFq1IvS33455y+Vy6YYbbix5+unnM6sGRaRjanQ3piOYOAVgMIDdwOV7XguADRzHPehMQziOUzjqc6vyni+A7wFcgj14WQZgBcdxM6vs+jKAxwE8AvtaRRKAwxzHKV1VB6mb7XIA1LAhUJJMjh8ryvF9fi4sVgqAWoOhwP7AzMgyEG1NG3IGSBANZWDZpg0XYBjA7IIA6JJOg82pychVN2xOGiGEkOY3evTYgunTZ+b36BFtnjdvYWZUVHf9vn17AgBg164dwWPGjCuYNu3B/MjIbuaRI28ue+65F1N///0377S0FKXBoGcnTZqS99JLy1Kjo3uaunWLMj/11HNZABAfH6epepw9e3b5bdv2fuiyZa8l1Bb8AIDRaJR9+unHQRaLhV2xYlXiI4/Myfj556M+r766JLx5zwRpC5zpAVoD4E8A4xyvnwQAnuef5ThOC+AZADtr2bcurwKovnT7owDMAObwPG8DEMtxXA8ACwBsdwQoLwCYz/P81wDAcdy9ALIA3AVgr4vqIHUQHUONxAYGQAAgV9hjSzPN02gVhQyDL1KT0K1Hd1zXxB4gALAZyqGUmj4M3WxregCkUNmTaphpCBwhhLQZgwYNueIej+N66c+ePaMDgOTkZG1iYoLb0aNHfCu3Vy6unZAQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8fLTt+LiYsW778aEy2QyKTQ0rM4/AnK5XAwO7mKqTHgwYMA1BkEQmFWrVnTLz8/L8PcPaOrTQdKGORMA3QBgKs/zNo7jqt/x7gVwf2Mr5DjuJgCPARgIoGrmjREAfnEELpV+BLCI47gAABEAPBzvAQB4ni/hOO4MgJsc7XFFHaQOosV+0yrKGn45ddO6IdhDB7NjEVXSsvJMZnyfn4e7rx3kkvpEsxGMaAHgfEY/ERJsgrX+gvVQKRRwk8lg0+ubXBchhBDXkMuvXP5ckiSwrEyyfy8ykyf/J2fSpCmF1fcLDAyy5uXlyh999KFeHh462/XXDysZPPjasv79B+jvvXdy/6plGYbF8uWvx2/b9n7IypWvRG7d+mEcy9Y82Mnb28caHh5+xdC5Hj2ijQCQnp6mpACoY3MmADIBqC3dl69je4NxHOcFe9rsp3meT7dPL7osFED1fO5Zjq9hju0AkF5DmTAX1uE0udy1yVJkMvaKr22B5BjGJsllDR4G9ZiPDzz9/VBUmO/yc+QKbfE8u1JZWQkAwFvn3uShawAg2cxgRSsUCtXlp3YNUfU8C4wNAsQmt6d/mREPXDMUSXm5bfLaai0d/ZpuK+g8tww6z+3PxYvn3W655dbLQ9Li4i66R0VFGQAgNDTMmJ6equ7WLepyr82JE8fcP/74o8BFi5amHjr0hW9FRbl8376D5xUKheSozzH07d8/Ol5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbWnT5++5fHxl9yqZny7dClOw7IswsLCaXx+B+dMAPQdgFc5jjsOINvxnsRxnDuAeQCONLK+dwGc4Hn+oxq2aWEfvlZVZYClxr+BWE1lKnOLuaIOp7AsA29vt/oLOkGn09RfqIXIKpcCUCih0TRs2pTVcY8rE23Ndo5coS2dZ1dSFBeit4cOgVoV1A38mdWJFaBgbHDzcu5nqdNpYLAYIZMzTW6PQWXfXyaKbfraai0d9Zpua+g8tww6z+3Hl18eCAwPjzT17dtf/+mnn/inpqZoFix4OQUApk6dlrNq1YpuMTHrQm677Y7CnJxs5dq1qyL8/PwsgYFBtsDAIIvZbGYPHfrCe+jQaysSExPU77wT0xUALBbLVVFwr159TFOm3JOze/fOkFGjxpRERXW/ajjc9Omzch57bGbv5cuXhE2b9lBuRkaaavPmd7vedNPoQj8/f+r96eCcCYDmAzgBgAdwFvbQey0ADvakClMbWhHHcdNhH6LWr5YiRgCqau9VzmzWO7bDUcZYrUzl+BdX1OEUUZRQVmZoShVXkclY6HQalJUZIQhtY6HiNIUSJ7Iz4RbYFW7Ghj00UTpyZ+hLylFc3PaGKrXF8+xKUXkFuJXrjdxyE0wN/JnVzQJFeRnMSh/YbA0/X1XPs1kywWAyN7k9otw+MleyWtvktdVaOvo13VbQeW4ZzXmedTpNu+lZUqrULdrQphxv3LgJ+fv37w3csGGNJjw83PDGG2vi+/TpawSA22+fVCxJUtKePR8Gf/bZJ0FarZswZMi1Jc89Nz+jcntcXGzO5s3vdt24cR3r5+dvGT/+toITJ457xcZecAOQX/14c+Y8nX38+C/eK1e+ErFlywd89aFwPXpEm9eujeH/7//e6vrIIzP6aDRaYdSomwufeWZeprOfkbQfjQ6AHMPUBgB4HsDNABJhX8nyIwDreJ7Prmv/amYBCARQfejbJo7jXgSQCiCk2j6VrzPx74SDEEc7qpb52/F9ugvqcFpjbgYbQxDEZqu7sZJkMnyemY4pIyagawPTIAuOAMhiMLSZz1GTtnSeXUlmtQIyOVTu2ialrq7KWlECmbfk1PkSBBECRFht1ia3R1LYf60xgtAhf3ZN1VGv6baGznPL6KznWZIkUaHS2qL6DJKjhRcmVai0NkFqfNabyMgo4/z5izNq2z5x4p3FEyfeWVzTNoZhMG/ewsx58xZeEZxUHd42d+7zWXPnPl85xQEqlUrat+/ghbradM01gw1btnzAN/xTkI7CqXWAeJ4vBLDYBcd/AED1/ut4AEsBfAzgPgCPcxwn43m+MlXVGHsT+DyO40oBlAEYBUfw4phTNAjA247yv7igDlIHkyMNdmVmt4awMQwAWqyytShFEZABGg/XDRETjXooRCuc+VvMMIAgCrCJLriRcWSBY11RFyGEtEGSBEGAPFum8mzxripBkkRJQtPThxLSipxdCPUmADae53/jOC4cwDsAugLYx/P8iobWw/P8Vd2Mjp6gPJ7nUzmO2wb7kLutHMe9CeBaAM/CvmYPeJ43cxz3NoDVHMflA0gB8D/Ye30+c1TpijpIHZQGA4JVaqjlDb+cbKwMkGwQKQ12q6hc4s3N091ldQoWEyBacfWI04ZgIIgCBLHpw64ZpT0AkrmoZ4sQQtoiSYIgSRIFIoQ4wZmFUB8AcBTAZMdbm2BPF50AYDHHcQtc1Tie5/MAjId9ftEZ2BcxfZHn+arrDC0FsBXAFgDHAdgAjOd53uKqOkjdxhgMeKvfQAQZGz7fSWDsl55oplPc0sxmM9xk9nkyOi/XBUCixQRYzU5lcWMYQJAE2FywJhHj6AGSNSYdHSGEkGZz7Nifp++5Z+pVKa4JaS3O9AC9AGAHz/PzHevo3AJgIc/zaziOewH29XxWO9sgnueZaq9Pwb72UG3lBdgXNa018HJFHaR2MlGy38GqGv7k/5LaHX/wfyEyqlsztozUpLigABpHAOSu0wIuGskgWEyAzQxGaR/e2BgMw0CQRJcEQDYPN/xaWACLWo0RTa6NEEIIIR2NM2NHe8K+bg8ATADAAPjC8foU7EPhSCcidzxpZ5Tqekr+K03rhS9zs5HvgjVoSOOU5uYAAERJAiuvvpZxE4giBGOF0+v4WAUbJBf02lj9PLExOQEHigqaXBchhBBCOh5nAqASAB6O728DkMrzfLzjdRQAuuvoZCq7ERllw9djqEyYYDTSHKCWVqKvwObUJHxrrAAan8inToKhDAzT+CCGYQCL4JrhkDKFPagz0/wyQgghhNTAmQDoBwCvcBy3CMBdsGdrA8dxdwNYAftCqaQTuTyOshE9QB4yBlFaNygNtE5LSysx6PF9fh7OqxSQBNfOnxXNBrBOBDIMw8DsogBIoVRAxjCAxeqS+gghhBDSsTgzB+gZ2Nf8WQrgewCvO95fDyANwCLXNI20F0rGPuSJVWkbvE8vQznu790PF8srmqtZpBbFxfZlFrw9PdDYuTr1EcwmMKINzvxqMdtckxJdKQjYM/g6AIAoCGBlLhzmRwghhJB2z5mFUAthz6pW3XCe59Oa3iTSnkg2m/1pOwBW0/AASFLYM3UxNsrg2dJMuTno7aFDF03Dhyw2lGgxQbKawCo1jVrQVJREWIWmp8AGAEbzbzIOi14PtU7nknoJIYQQ0jE4tQ4QAHAcFwhACXsSBABgOY7rA2AEz/ObXNE40vZJkoQvcrKgZBh0acQcIMjtc4BYF2T9Io3jnp2NV7jeyDa6foiYaDFDsprBqplGBUACBAguuhbYKgGQsbyMAiBCCCGEXMGZdYAGcBx3EUAW7IuGJjv+JQL4B8DbrmwgadtskoTdGWnYnp4Kmcat4Tsq7DeprODaSfikfpJjvSZGpWyO2iEayhqdCU50UQpsAGDkLCyi/boyV9AQS0IIae/0ej374Yfb/StfL178YsQjj8zgmvOYGRlpyoMHP/duSh379u31HT58yODatrfE5xg+fMjgffv2+jbnMVpKWlqKcvjwIYN/++1Xj/pL182ZJAj/A+ANYB6AnwB8C+ApAF/DPqFgVFMbRdoPk+nfTFsyecNvqCWlPQCSuzgLGakf4/iZsermCIAAwVgGppE/V1cGQAD+DYAoyQYhhLR727a9H/jppx8HVb6eP39J+ptvbkhozmO++urLESdP/ubZnMcgrceZAOg6AEt4nl8PYC8Ad57n3+V5/g4ABwDMdWH7SBtnrChHgFIFH5UaDNvwyeaVawbJXDsHnzSAzGof+qbQNjxrX2PYEyE0bnidPQByzRwgALA6kjtY9BQAEUJIeydJ0hXDCjw9PQVvb59mHkMv0UKFHZgzc4BUAC45vo8D0L/Ktu0AaP5PJ2JMS8Pb/a9BodWCvEbM+ahMmS13cRYyUj+FzQYoZVC6uT4JAmBPhMAIFjCMHA1d11SQBAguTMltcxzXYjC4rE5CCGkrJAkw2Jx6iN1kWjlEppGhQWlpqWzdutWhf/xxwstmszGRkVGGJ56YmzFw4CADABgMBnbVquVd//zzlJfBYJB16dLF9MADD2VNmDCxJCZmXcgnn3wUDNiHc3300f5z7733fyF5ebmqzZs/4H/77VePhQtfiH7jjTWX3nprbVheXp4qIiLCsGTJ8uTvvjvsfejQgUBBEJgRI0YVLl78SjrDMJAkCVu2bAr87rvDfvn5eSqFQiH27Nm7Yt68RWnh4RGWRx6ZwcXGXnSPjb3oPnnyrR4HDnxzzmKxMDExa0N++ulHX6PRIAsNDTPOmvVI1siRN5dVfs7Dh7/y2rlzS0hubo46KqqHfuDAQWW1nZNKgiBi5cpXuv700w++crlcuuWWWwvmzn0hUy6336L/8cfvbtu2vR+SmBjvZrVa2cDAIPP998/IvvPOu4oq6/jii898Pv54d1B2dpbay8vbOnHinXkPP/xYbvVj5efnyZ988hHOy8vbumHDOwlarVb8+ecfdZs3v9slMzNDExAQaL777v/mxMSsi/joo/3nwsIiLJMn39rvuuuGlfz112ldaWmpYunS5YnXX39j+c6dWwO+/vrLgIKCAqWfn5/l7rvvzbnvvgcKAOC33371mD//uejKOgD78LX77/9PvzffXH9p2LAR5YsXvxghiiLj7e1jPXr0B1+z2cT27z+wbNGipamBgUE2AIiNvaBev/5/YQkJ8W7e3t7We++9P7txV17tnAmA0gB0A/ArgHgAOo7jInieTwFgBuDjqsaRts9itD9ht0lo8M0uANg8fbA/KwMGhqExky1M6fhBqd0bnrWvMQSzCZLVDEblBqmBF4UgCS4dAhdnMyO+vAwD6PkdIaSDkSTggW+0PfliWSMm3rpOT2+h4sNbDXxDgyBJkvDss0/0kMvl4muvvZmg0+mEL7884Pvss0/03Ljxvdh+/QYYN25cF5KSkqxdtWptvKenl+3TTz/2X7VqRbc+ffqenzXr0Ryj0cgeP/6zz+bNH1z08/O/ariAKIp4552YrgsWLE5RKtXi0qULo5588pFe11wzuPStt97lT5066f7OOzHh118/rGzs2PGl27dvDti3b0/wiy++lNyzZy9jenqaau3a1eHr17/ZdcOGdxLffHNDwvPPP9XDz8/fsmDBkjQAePnlBRFpaWmaRYteTg4KCrH89NMPXkuXLur+8ssrEseOHVd66tRJt9dffyXqnnvuy77ttjsK//zzD4/33ns7rL7zc+lSnLuvr69148b34jIy0lXr1r0ZYTKZ2JdeWpaelZWpWLjw+ejx42/Pnz9/cZrNZmU++GB70Pr1/4u44YYbywICAm1ffXXQe82aNyIfeOChzLFjxxdfvHheu379mxFubu7C1KnTCiqPU1hYIH/qqUc5X18/y7p1bydoNBrp3Ll/NEuXLuo+ceKdecuWrUyKi7ugffvtDeHV2/jtt4f9ly9/I16n0wm9evUxrl69suvPP//gO2fO3LR+/Qbof/vtV917770dZrGY2QcffDivYVcGcOLEce/hw0cWvfXWO3xWVqbyjTdWdHv77Q1dVqxYlVpaWip74YWnuejonhXvvLM5Njc3V7l+/eqr2uYsZwKgTwGs5jhOz/P8fo7j4gCs5DhuFYAXYE+GQDoJi94AJYDG5hMTdb74JCsDMrkcrzVHw0iNJEmCxpG4UevRPAGQZLNAshjBahqeCU4QXTsE7iurEUlJiXjHrVXuDwghpFkxrl7ErRkdO/aLR3w873bgwOG/K4OX559fkHnx4gX3vXt3BfbrNyAlOztLpdFohfDwSLOnp6fwzDPzMq+5ZnC5p6e34O7uLmo0GpFlWamyZ6AmM2c+kjl48LV6ABg2bHjJoUNfBCxduiJVq9WKPXpwpl27dnZJTIzXjB07vrRr1zDzvHmLkm+55dZSAOjaNdxy8uSJ4l9++ckbALy9fQS5XC4plUrRz8/flpSUqDp+/Feft99+P7ay1yoqqntuYmKC5uOPdwWNHTuudN++PQHR0VzF3LnPZwFA9+49zElJiZqvvz4YUNf58fT0sq5YsTpZrVZLPXv2NuXn52e+997bYc8++2KmxWJhpk59IGv27MdzWZat/JzZP/30g29SUqI6ICCwYv/+vYE33HBj0WOPPZnjaJfZYNDL1GrN5cm4ZWWl8qeeeizaz8/fvHbtxkS1Wi0BwJ49HwZGRnYzvPjiSxkA0KNHtLmoqEixefO7Xau28ZprBpXedNOocntdZey3337l//DDj6VPnnx3keOY+VlZmaqPP/4oeMaMWQ0OgDQajbBs2WupCoVCio7uaTpx4njh6dOnPAHgq6++8LZYLOyrr76R4unpKfTs2dtkNBrSX3ttWVRD66+LMwHQqwC6A5gFYD+A5wB8DmAqAMHxlXQSVqMeSgC2RvaHyx1Z4ASbDVarFQrHukCkeZlMJuzPyoCPQoGn/W9vtuMIhjIwXg2/JgTJdWmwAUChtCd4MJlcs7gqIYS0FQwDfHirgW8vQ+Di4i5qAeDeeyf3q/q+zWZjrFYLAwAPPPBQzpIl87vfeef4AT16ROsHDRpaOmHCxCJPT88G/2GIjIy6nJVJpVKLnp5eVq1WezkIUCoVotlsYQHglltuLT19+pRbTMzakMzMDFVGRromIyNd7e3tXePz3IsXz2sB4IUXnr4iY5sgCIxWqxUAIDU1RXvNNYNLq27v169/RX0BUFRUd0NlQAIA/fsP1NtsNiYxMUHVr19/4913/7fwgw+2BaSmJqszMzPVKSlJWgAQRYEBgLS0VM1NN91cVLXOe+/9t+cHAD78cEcXQbAx1Y+VlJSgrT5Mb9CgoeXAu1e0sUuX0MvnNiHhkloQBOaaa4ZckWZ14MBBFV9+eSAwPz+vwbFFYGCQWaFQXG6Pm5u7YLPZGHvbErWBgcGmqtfA4MFDXZba1ZmFUE0A7uE4TuF4/S3HcX0BDAZwhud56gHqRGwG+/8JoZEBkEImR4haDRXLwmQyUQDUQsrKyvBzYT5kMhkWeblDspjq38kJgrEcSsmGf5cJq5tFsLr0caZSpQQDwGSkOUCEkI6HYQA3BdpFGlVRFBmNRiO8996O2OrblEqlCABDhlyr//zzw//8+utPulOnTuq+++6w3969u0Jee+3N+BEjRpY35DgKhfyKPyN1Lcfw/vvvBO7Z82GX0aPHFgwcOKj8v/+9L++nn370+vXXn2qcxiE5Mptu2PBOnJub+xXnXSb7N51T9WQNcrmi3j9tLMteUUZ0PAxUqZRSfDyvfuqpR3tGRHQzDB48tHT48FGlPj4+1qeffqxX1ePXdwvWr1//sttum1SwcuWyqKNHjxSNHj22zLEvRLH+ZA9Kpeqqz8hUO6joyL5aNaCpOgrearVddZyqZf9V9a3Gn8+GcnohVABajuNugD0ldh6AwzzP06IbnYzVZAQACGzjHkQpGWBD34EAHPOIPJqc0p00QHm5/eGUzsMDaMZFaEWLCaxohX2t5PqZBYtLj/8fVoWXh1yPrPhL9RcmhBDSbKKiehiNRqPMYjEzPXv2vvzUbenSReHdu/cwzJgxKz8mZm3IgAGDKsaNm1A6btyEUkEQ0qdOndLn6NEj3iNGjCxnGMalQ/4++eSjkKlTH8iqHDYGALt3fxB05bTVf4/ZowdnBIDc3Fzl2LEDLvfyrF//ZheGYaVnn52X1a1blCE29oJ71RpiY8/XOw47JSVJK4oiKoe4nTnzp4dSqRTDwyPNa9a8EarTeVrfe2/75T9m33//jSeAy3Nsu3TpauL52CuO88Yby7vm5uYoN2x4JxEAbrppdPGECbeXHD36fdH69W9GDB587XmdTidGREQaqu977tzZOtvcvXu0SSaTSWfOnHLv27efsfL9s2fPeHh6elm9vLwFhcIe2JaVlV1OD5yamqyqqb7a9OgRbfjxx+99CwsL5L6+fjYA+Oefv1w2rt2ZhVBZjuNWAEgH8BWA3QC+B5DNcdxCVzWMtA+CqbIHqHGXklRlzSBTOcXNLaWsoAB9PHTo4eUFyYVZ16oTzCZAsKChHYMWm2sDIMnxh0Q00xA4QghpTaNHjykND48wLlv2UtSxY794JCUlqt58c2Xo0aNH/CqHrWVmZqo2bPhf2LFjv3ikp6cqv/rqoHdBQb6qX7/+FQCg0WhEvV4vS0iIV1mt1iant/H19bOcOXNKx/Ox6vj4S6r16/8X8scfv3tZrdbLNzMajUbMy8tVZWZmKHr27G0aNGhIaUzMmvDvvjvsmZKSrNyyZVPgZ5/tC+rSpYsZAO6//8Gc1NQUzerVK0MTEuJVn3++3+fw4UP+tbfCrrCwUPnyywsi4uIuqr/++kuvjz76IGTy5P/kqlQqKSAg0FJUVKj88cfvdenpqcrDhw95xcSsCwcAi8U+fPD++6dn//bbMe8dO7YEJCcnqQ4e/Nz7u+8O+w8fPrKk+rHmz1+cbrFYmDVrXu8K2IceJicnuq1Zs6pLQkK86ptvvvL68MMdXYCre3gqeXp6CmPHji/YvXtnlwMHPvVJSkpUffjhdv9vv/3af8qU/+QyDIOePXsb1Wq1uH375uCkpETViRPH3bdufS+0tjprMnHi5CKdztO2ePH8yPPnz2lOnDjm/n//91bX+vdsGGfGjy4FsBDAFgAjAfSEffHTXQBe4zjuKVc1jrR95WoVvs3LQbq8kZ2JLAvB8fTCrKcAqKUYMzKwjOuNR3wCgGZchFa02DPBsQ3oGRQlESYX9wCJcvtxBYtr6yWEENI4MpkMMTGbLvXoEa1fuXJZt9mzp/f+55+zHkuWvJpYObxt8eJXUvv3H1i+atXyyOnT7+37wQfbujz44MMZU6bcUwQA48bdWuzl5W2dPXtGn3/+OdvkDD6LF7+SbDab2TlzHu71zDOP90xJSdI88cTc1PLyMnlaWooSACZNuis/PT1NPWvWtD6CIGDVqnVJN9wwvDgmZm34Qw/d3/e77w77Pfnks6n33HNfIQD069ff+Nprb8afO3fWY/bsGX0+/fTjwHvuua/etM1DhlxbIpPJpCeffKTX22+vD7/11ol5Tz75TBYAzJgxK2/YsBFFq1ev7DZz5rQ+u3btDH7oodmZfn7+lvPnz7kB9vlMTz31XOpXXx30nznz/j47d27t8sgjc9L+8597C6sfy8/P3/bII09k/PjjEb+ffvpB16tXH9PLLy9POHXqd6/Zs6f32blza8htt92RBwAKhbLWXrdFi5am3X77pLxt297vMmvWtD6HDn0R8NhjT6XNnv14LgB4eHiICxYsScrMTNfMmjWtT0zM2rDHHnsqvTEBkJubmxgT8y4vl8ulZ555vOcbb6yI/O9/78+pf8+GYRqaprYSx3FpALbyPP9qDdtWA/gPz/MuydDQziUJghhZVOTahRjlchbe3m4oLtbDZmv94b8ffrgDa9euwvBRt2Ls3Y1bAzdy+yvQsCzEh2ej5w3Dm6mFzmlr59lVjmzehLCTvyP//9u77/g4zjrx45+Z2b7qluUat9gel8RxbEMIJBAIgVCOkqNzRzkOjnY/yh3tuCMcHY7j6D0J5egtlAukd1JtJ+7jXmRZtvpq+7TfHzOyZVl1Nbsryd/366WXpN2ZZx7Prlfzned5vl9cNr39ZWU9Vq2+CbdpCaY58khTKKRSUxfhgYOPc6S7LbBj5778K9ZlTQ7Pm8fzPvnZwNqdzmbqe3qqkfNcGeU8z01NSTRNPYRX8qOqNm/evEpVtb+0tCxIRyKx8izaFOetrVs3J0KhkHvxxZecnsp2882/afryl7+45I477t8SmujN7SmgWMzHTp06XuM49rUbN27cM9J2pYwANQN/HeG5vwDzSmhTTFN5fwpcODy+tR6DmadHgIINEsXIin3e1GVTK3/yIDvbN64pcLYTbA0gADfkTzs2ZQRICCGEGM6ePbsT73//P+u33fbn+tbWo5EHHriv9sc/vmn+M55xRfd0DH4mopR/3Z14qa5vH+a5a4AHJ9UjMa1Y6X5qQyGiJQVA/vdcbvQNRWCstJdMxwmX/4PNyWcJOyZj3WexXDvQGkBwJgByzWDbFUIIIWaK17zm9Z1dXZ3hb33ra4t6errDdXV11pVXXtX97ne/73i1+1Zu47oK0nX9DYN+fQj4uK7rc4FfAu14meCuBf4WeH/QnRRT1/LWVm5Yv4mt+YmnGx5Itm9mJVVxpThZf7QtUv4AyC7kURwTGD3xi+M4WAEnZHAHAjxLAiAhhBBiOIqi8O53v/fEu9/93jHXKs00470K+sEwj73A/xrq28D3Su2QmGb8C0y3hBGgx0wbs6Odp4a0sTcWwch5UxaV6ISyUZbEKeZwrSKKFmO0tYbeCFCwAVA2GWNL32Hs2pqxNxZCCCHEeWW8AdDSsvZCTF8DAVBo4oVMH3Y19h0/xtrIxIMnURrFTwsdipc/ALKLeTALqGEF2x4+AFIUBcsJfgrcqZYGfrbP4LmLF/P6QFsWQoiKcgB3aIFNIcTw/P8rLoxeKHi8AVCbYRjm2JudTdf1cCn7ielDsf0L1xJGgEJ+4FOQWi0V80QhzxMn23nOxlXlP5jjYOfTqDVzGGmGm6KA5djYAY8Ahfwpfvm8vLeEENNau+u6ZrGYT0SjcVkwK8QYisV8wnVdExh1Wt94A6Dtuq5/yDCM34+3A7quvwL4NKCPdx8x/Wi2F2ArkYmPKNSFwsyNxrD6U0F3S4xga18Ph9vbeMG8WRU5np3pIzRGGTi7DCNAobA3IlnIS9ZYIcT0tXHjxtTmzZt/lEr1vAOYFYnEsoqiTKx+iRDnAdd1lWIxn0ileiKu69ywcePG/tG2H28A9AbgB7qufxqv4OmvDcPYP3QjXdfXAC8E3gpowN9PrPtiulFdB1CghADoWtVm7cXrOdDaGnzHxLBSKS/YrI3HKnI8p5BDdYp4HwfnUhQF07ZwJliPbCwtqRw/uvQp9DhynSCEmPY+Y9sWvb1db1AUJQHIdDghzuW6rmu6rnMD8JmxNh5XAGQYxqO6rl8KvAt4H/BpXdd7gcNABmgAFgL1QAfwBeCbhmHI7dcZTnNcUBWU8MQvqG01BI6JW5RaLZXgui7zbIfaeIKa6MTXbJXCKeZQbJORAyAoWMFPU1MiIWKaRijg7HJCCFFpGzdudIBPbd68+SuuyzxKq+EoxEznACfGGvkZMO5cuIZhFIAv6br+NeA5wLPxqiTXA8eAPwG3AfcbhiFXHeeJncUCu9NpkjV1E97X0TSwwDVlmVgl5HJZ/n35SjRFIVmhY9qFPK5VQA3HcYYZjVEUhaId/OuvRr31ZTO7jJsQ4nziX9iN6+JOCDG6CV8f+EkNbvW/xHnuT309HDt2lPfWzyIxwX0dzXv7uUUJgCoh1dmJpngzJ+LJOGMkSAmEYxZwzQJqVBk2AALIl2EEiJg3wlWZcS4hhBBCTCcyjComJZ/3ktKEwhNfA+Ro/uWpJQFQJaROnQSg6DioWoWmkLsuTrYfVR3+eLbrYNrBFytV/TTfIUWmygshhBDibBIAiUnRiiZhRSEUmngabNfP1KVYwV8Ai3NlOjsByLkuBJx2ejR2tg9lhNEmx7Wx3DL0xR8BiijKqEVYhRBCCHH+kSnyomSubfPVFV49mZ3uxKdTuX7QpMhC9YrIdneRBAoVHhSxi3kitslwHzcODnbAKbABlJiXlENVFBzTRJNiu0IIIYTwVT0A0nW9Bfhv4FogDtwLfMAwjF3+8+uBrwCbgC7gq4ZhfHHQ/ipwPfCPQCPwAPDOwWm6g2hDnMvMnanJpsQmvqy+P1nPn0+egLnzguyWGEG+txcAc4TpaOXiFHIodhFFCTF0MMZxHawyjEZpiQi7+lMUHYdFhYIEQEIIIYQ4bVxT4HRdf34Z+/AH4ELgBcBTgBxwh67rCV3XZwG3A3vxgpfrgU/quv7mQfv/B/B2vNpDlwMu8Gdd1yN+3yfdhhhe3i9g6rguoehEUyBAb/1sbjp2hM0FyZZeCQMFZ+3Q8Cmpy8Uu5nHNAsow63Fs18YuQwCkxsJ83NjFZ/btoShT4IQQQggxyHhHgP6s6/ox4EbgJsMwjgZxcD84OQR8yjCMnf5jnwSeANYCzwUKwDsMw7CA3bqurwA+BNzkByj/AnzQMIxb/P1fDbQB1wE/B94WQBtiGIVMGvAX1YciYE1sGlw44k1TyksAVBEnVZWHWo9y4UV6RY/rmkXcYg41fnYmOEVRsBy7LCNAaiiE4q//KRTywMTTtAshhBBiZhpvEoTrgM3AR4CDuq7fquv6K3Rdn1SWWcMwugzDeO2g4GcO8K9AK7ALuBK4zw9cBtzlbaq3AOuBWv+xgTZ7gS3AM/2HgmhDDCPf75UjKLoOpdxjj2ghGsJhYlIItSKOWyY3t7fRP6u+4se2s6lzRoAUxRsBKkcApCgKUX8dUKFQhjTbQgghhJi2xjUCZBjGzcDNuq43Aa8D/h74JdCp6/qPge8bhrF7Mh3Rdf27eFPQCsBLDMPI6Lq+ENg+ZNM2//siYKH/87Fhtlnk/xxEGyULhYJNtKdp6lnfq8nKZwEo+tHPSKmOR9JcTPPdSzbSYZqBn6fJmkrnOSjptBew1tUkJvxaTZabTxNRHdxBr7OqKjimg+1aKKoSeErKT164kpZwhOLRw4SWLA649elnJr6npyI5z5Uh51kIMRkTSoJgGEY38HXg67qurwbeiBcQvVfX9UeAG4CfG4aRKaEvXwa+A7wDL9i6AkjgBUSDDcyXivnPM8I2Tf7PQbRRElVVaGyceHKA8airi5el3YkIuRYmYOISjYXPWeA+FrPWm5YUVsp3niZrKpznoMTT/SyOJ2hKxIjFK7u8TVNsYmGXZF3NWY93dXfiuC7RaPAlSzVNI65phLGm7PurGmbSe3oqk/NcGXKehRClKDkLnD/i82Fd1z8CPAd4FfBp4EvAhOfYDMr69ja8RATvxkuIMLTCZsz/nvGfx98mN2SbgSAsiDZK4jguqVR2Mk2cQ9NU6uripFI5bHviqaeD1JM3eayrEzsWY2524tPYLMW76A0r0NMzqVMduKl0noNyWX+GV61dR1d/nnyustMONfoJpTOYBfV0oBwKqWT8QrqFgonrBJusYOA/fU9Hz5R7f1XDTHxPT0VyniujnOe5ri4uI0tCzHBBpMHWgCReCusJ3Vb21+BcDfzSMAwbwDAMR9f1XcACvGlp84fsNvD7cSA86LEDQ7Z50v85iDZKZk0wMcB42bZTtrbHKx2L87VD+7lwuc7fl3Lx6idBiCgqpmkPmyWs2qbCeQ5KxHFA1YjWxM9KRlAJbj6HU8zjaLWnL1ZUVSFveQOvruMG3ifLfz8VM5kZ8xoGYSa9p6cyOc+VIedZCFGKkm9x6Lp+ha7r3wbagd8BS4D3ARMp6jIf+CnwrEHthoENeEkQ7gOu1HV9cN7eqwHDMIxTeAFKCrhq0P4N/v73+w8F0YYYRj7vzSSMRmNjbDk81a8dFFZVivncGFuLyYrhBQSJmspPB3NtCyefOWft0UAAVA6WfygzL1kGhRBCCHHGhEaAdF1fA7web93PIrzg53vAjYZh7Cvh+E8CtwLf1HX9rUAP8FG8YqT/g7cO54PADbqufwF4KvBevJo9GIZR0HX968DndV3vAA4D/4U36vNb/xg3BtCGGEY+m0VTFMLRoTMMx0eNnakdlE+nicYnXktIjI/ruiRV735Hsq4659nO9KE1n/ndwcGyrZF3mOzx/GDLlgBICCGEEIOMKwDSdf1f8AKfSwAb+D/g/wG3DExdK4VhGK5fc+ezwC+ABrxRlysHag35RVi/ipeW+gTwAcMwfjiomY/5/47v403Duw94vmEYRf8Ypybbhhhe0tjDzzZexq4Sp66pkTMjR4VMGma3BNU1MUS2r5eIHwDV1lcnIYBdyBByinizZgdSYJcvAHJUBVywJQ22EEIIIQYZ7wjQfwF7gA8DP/SnjgXCMIw+4J3+13DPP4aXFGGk/W28oqYfGmWbSbchzuX4F5aOGippLqWiqtzV1YVpm7zcKt+FsIC+UycBsF2XWDwKZai9MxankEe1TQYCIAcH0y5fP3pCGnt6+olOwbVlQgghhKie8QZAVxiG8dey9kRMO45fwNTWtJIXk/244xSZdB8vlGvUskp3dACQdWyUksrWTp5dzONaBdSwl4TBcZ2yjgA9WhPhrw/t5H0veGHZjiGEEEKI6We8hVDPCn50XZ8PbMKbsjbc9j+adM/ElOf6AZAbKj2ZYCjsrR8qyDSlskqZJn9qPUpDQwMXOdXJmOQU87hmATWq4LquPwXOnkQqltFFIl6CR3lvCSGEEGKwCV+5+mt2fsC5tXUGuIAEQOeBgQDI0UovYpmIxnBCIfKZYOslibOlHJub29u4ZNaES3QFx3VxsinUunk4joLl2F4ShDIFQCG/uGpeMgwKIYQQYpBSbt1/CngML5NaV6C9EdOLv25nMiNAH5gzm4UL59N/5BA85bKgeiaGSKVSANRXIQX2YHa2j7DroChgO14ShBDa2DuW4OKsxSvWbaDn6LGytC+EEEKI6amUK9f5wP8zDGNL0J0R04sykLggPKH6t2cx/do0xayMAJVT/tRJFscTNCeqm2rcLuSJOCaKEsFyLCzHLlsAFNFUmiIRUqYkcxRCCCHEGaVMPnkI0IPuiJh+2hWFx3q6ycVrSm7DUqRWSyU0HD7Mf61dx6bKJ387i1PIoVgFFEWhaJllPdbAyKRiVfkfLYQQQogppZQRoHcCf9R1vR54BDjn1r1hGPdNtmNi6nsEh/sP7OUNV7+MphLbsBTv7r+Vk3Ua5eT651eNlj5aF4SBTHBaXKFglzc5gRvxA6Ayptquho5f/Zz8kSPM+puXktBXVbs7QgghxLRTSgC0EpgLXO//PjinruL/Xp45LWJKyfkX1eFobIwtR2apKuBgy0L1slL9TGhafKTcJZXhWiZOIYtWp5Azy5ydzc8Cp1ah5lE51T/1Mnpuv422r/4PF3z0eqLz51e7S0IIIcS0UkoA9EXgEPBZoD3Y7ojp5HQAFCk9ALJVDVwHR6bAlZVmetPNQonSX6ug2Ole1NkOpl3mtTl+AKQ51al7VA6apkIyTnj+fMzWVjp/+VMWvPdfq90tIYQQYlopJQBaDLzEMIzbg+6MmF7+ORKjdsNT2ZHLlNyGFQqDaeJIrZayCts2qCrRZLzaXcHOZ9CcImaZR2Zcf7pfyK1O3aMguY6Dk83yo1//lK99/as0aSG+cvF6Mjt2UDh6hOiixdXuohBCCDFtlJIEYTuwMOiOiOknDIRVFTVa+kV1ZyTBvZ0ddGoya7Kcon4QEK+tbhps8Aqi2o7l1QAq53GSUY5kM3RY5T1OJWR372L/+/6Z3M03Y1oWJwt5HuruBKD/oQer3DshhBBieillBOi9wM90XQ/hZYRLDd3AMIyjk+yXmAZCXgI31FjpqZUP187irsMHuG7DpQH1Sgwn7mfbS9RWNw02eIkQNMfEKvMIUG5WHR/YtZ3Fi5fwsrIeqfx6H3kIxXUxHZe/e9ZzmN80i9vvup1nNDXT/dCDzHrla1DUMlWUFUIIIWaYUgKgO/Fu/n+HsxMgDCa382c413WJKN4FlzaJACgS9RblZ7OSBKFcHMfh5vY2EqrG6+pLT1keFNe2sOwitlvekZmwnwWuMM2nV7quS/eWzUSBw67DB571HDRN46HdO0lbFjXpDMUjh4guvbDaXRVCCCGmhVICoLcH3gsx7TimieaPKqixJKWusgiHo4QVBSsnhVDLJZfL8ru24wC8vb4GSn61gqGoGlYxX/YRIC08EABN7wQb5qmTRPN5LMfh4o2b0Pzpoq+76mp+87tfUXDh36NRqpvfTwghhJg+JhwAGYbxw/Fsp+u6AtwAfFymxM08uVTf6Z+1eE3Jl9TL8v38ZONlHMvICFC5pFLeLNVwOEwkpIJd3QBIDYUpWAUsp7yFUDVV4X/WXkI8pOHkc6ix6ieAKMWxv3prfPZl0lyxau3px1fMm8/+UAjjeCsb7rqN1/3dP1Sri0IIIcS0Us5J4yrwRqC5jMcQVZLr9y6qbddFCU8itbKfQjvkTP9MXVNV36lTLI4nWNTQCFOgJo6ihTAtE9sqbxpsLRZhXixGUziCnZu+o0Btmx8DIJ1IUB8/O4h73iUbALj9tlsr3i8hhBBiuir3qlmlzO2LKsnnC2zu7WF7uh+U0t9Gip9BLuTOnFotU01un8F/rV3HO+cvhClwnpVQmHwxC65V1k+IcCxCwQ+szWzpqdqrTTl5EoDkvHnnPHf5qtVcEIvT0t5Ox64dle6aEEIIMS1J2iBRkkI4xOf3G3zzVDvOJApNKjEvLXNoxHwaYrLyvT0AmFMkS5iqhcgXc2BbKGWMgMKRMHnbG/HK9/eX7TjlZJomt7cd56HuLhYvX3HO8y31Dbxh2XLesmgpe//vj1XooRBCCDH9lJIEQQhyOW/NTiwWx5nEqILiZ5CLyGBh2RT9NUBWaGoEQGghsmY/rlVEKePKfS0UOj0CVEhPzwBox47t/P74URrq6/n13Hlgnps5L9TYCIUi2QP7q9BDIYQQYvqZIldEYro5KwCaxAiQ6o8ARRUJgMrF8kc/3HC4yj3xOJpG0TJxiuVNT60oCkU/OC+mp+cUuC1bvPU/my5eN2zwAzB30RIAmgoFbLv6a7yEEEKIqU4CIFESZ/9efnzpU/inhoZJtaMm/ClwqoprlTcr2PnKyfopxqNTJwCyrKI3AuSW94K94E+tLGbSZT1OuZzc/iRzozHWLl4y4jZLLlxO0XGo1UIc9AMmIYQQQoxMAiBREjObJapphNTJ1bzVErU82tPNfV0d5Kdxpq4pLe+N1qmxSJU74nFCIUyriGNbZc9K1+VYHMtlMd3pmWVwY1cPX714PRdpI89WDofDdPjn8fCDD1Sqa0IIIcS0JWuARElMfwqcM8mF9eFYgs8e2AvAKx2L6VmpZWpTC1666VB8EunKg6JqOAqYVtEb8bOHn9YVlJ/299Le2saN8z9Y1uOUQ09PN3P8oqfzL1g86rZWIgFFk779eyvRNSGEEGJakxEgURLbD4DsSY4AqapGKORNzRpYVySCtcO2+X17G2pjXbW7ghoKY7uuFwA5Dq5d3lpAEX/aXz4//UYX925+jEQohO26JOpGf+3qZrcAEOnpG3U7IYQQQpQQAOm6fqeu66/XdX3Um/WGYdjAUmB7qZ0TU5fjX1Dao0zNGa9wNIamKOSmca2WqezhdB8/aT1KtKWp2l1BCYWwcDD9IqhOMV/W2kSRqJdmrlAob8KFcjj+5BMApDQVxxx9fdy85Sv4hLGLz+/ZQUfHqQr0TgghhJi+ShkBMoEfACd0Xf+uruuXj7ShYRhHDMOQle0zkONfUDqhyQdAn7lwBT/beBl5SeNbFn193qhAXaL6U+BULYyNi2l57x/XMnHLOA3uymiCL61dR8wPJqaTzNEjANg1Nbj26GuYEnX1pJNJMrbNLimIKoQQQoxqwgGQYRjXAouAzwBPBx7Udd3Qdf0juq4vCLqDYmpyi/4d/NDkM4sNLIOfrqmKpzLXcWgoFmmORKiZAkkQlFCYglXE9Ud9HMvELWMihJpQiIXxBMo0LISq9XgFbMNN4xu50+fNB2DnTgmAhBBCiNGUdPveMIwTwBeAL+i6/hTgVcA/AJ/Qdf0O4DvA7w3DKN/cFlFVfbjs6k+RbVlAcpJtFf0iqNM1VfFUZqbTfHzJhQDUxcpYdXScVC1E3jozHc21LbBNFCUGBP9xYWsqWOCWueZQ0GzbJlYsQiRKffPsce2zqXk2LQsXYW57ssy9E0IIIaa3IJIghP2vgdvLzcAvgZ26rl8cQPtiCtoWCvFxYxetLfMn3ZblF0G1p+FC9akudeokADnbpnYKTIFDC5GzzrzOrm152eDKVAfXCflJOsZYQzPVnDjRxi3tbfy6vY1ZFywa1z4XxhP8zdz5NPf0nB5hE0IIIcS5SgqAdF1fpuv69bqu7wPuB16EN+qz2DCMpwBL8NYK/TSojoqpZSBjWzgy+YtqU/HehuZAwU4RmH5/QXzGsdGmQM5HNxSiYJ6d+c0p5ssV/2CHp2cAdPDgfh7v7eHJWJRQIjGufZrnLwRgfijM8eOt5eyeEEIIMa1NeAqcrusPAk8D8sBvgH80DOPewdsYhtGm6/pvgfcF0ksx5ZwJgCY/rcpSNcDFyUsa7KBlujqJAAUXXLu8RUfHw9ZCpxMgDHCtIkqZCpU64RBgoVjlrTcUtIMHDwKwdNFi7Pz4pu/FGhvJA/NiMXbv2MbChReUsYdCCCHE9FXKPeEw8E5gnmEYbxga/AxyM/D8UjsmprbrTJPvXrKBOenJLy4fqCU03gs9MX55fyF9QYVyrLGZKDeknU6Bffox2wKnTAFKxJuZO90CoPZ9BpfU1bNmTgtOcXy1kpRolILroioK7ZIIYViu62L19uCY5a0/JYQQYmorJQnC14H/MwwjNfQJXdfnAm8wDOMLhmGMayWurutNeBnlXgzUAduADxuG8YD//HrgK8AmoAv4qmEYXxy0vwpcD/wj0Ag8ALzTMIz9g7aZdBvibHHXpSEcQYtMPrNYVzjKY6dOkVy6NICeicEKvb0AWNrkCtYGQVE1bIVhAiATHAtFDQe+dsWOR+gsFChOgQQQExE5fpyPrlxNtrNn3PsoikIuHCZqWfQfPlTG3k1PxfYTnPjOtygcO4oajzP7la+h/pnPqna3hBBCVEEpI0A3ActGeG498IkJtvdzvCl1rwGeAmwBbtN1fZWu67OA24G9eMHL9cAndV1/86D9/wN4O/BW4HK829x/1nU9AhBEG+JcIf86VY2OWg93XPYkm/ivA3s5GJ9eF6nTgdnv3aewQ1MgAAqFsVyXojlkCpxj41omihL8SqBUUy3v3L6VW8a5jmaq0PyR1Uh93cT2q631fujsCLpL05rVn+LYFz9P4dhRAJxcjpM/uonUIw9XuWdCCCGqYVwjQLqu/wlY4/+qADfruj7cfKU5wIHxHlzX9eXANcAzDMP4q//Ye4AXAK8DckABeIdhGBawW9f1FcCHgJv8AOVfgA8ahnGLv/+rgTbgOrzg6m0BtCGGiAxcq8YmmwQbojEviOpPSxrsoJ0Kh3msvY3mldUfXVNDYSycc0aAwE+EEKsP/JgRv/ZRLjd9Emzkcllq/MKnNU2zJrRv7axm6OkhXiiQy2WJx6dX4Fcu2V27sHp7OWVZfGrfbv5u5Wou00Kc+smPSaxeQ6huYoGmEEKI6W28I0CfAe71vwC2Dvp94Osu4Ft4NYHGqxMvg9zmgQf82kEK0ARcCdznBy4D7gJ0Xddb8Eacav3HBvbvxRtFeqb/UBBtiCEi/t16NTb5C6yIP4qUkQAocEeAn7Qepb+p+hd43giQgzVMAOQlQgg+SUM46gVA2WmUYbC19Rhzot5oaLy+YUL7Nly4nA/u38tXDu7nwIFx34ua8W746/18eNc2vmjs4mQmw/9sfZxD2QwFx6Z4oq3a3RNCCFFh4xoB8kdnBkZoAD5pGMbByR7cDzRuGfyYruuvBC4EbgU+DWwfstvAX6tFwEL/52PDbDNQPGNhAG2ULBQKNvew5ucy1qqY09ixbWJ+4gI1WYurTm7q0kozyxs2PJW23r7Az1eppsJ5DkI67U2Bq0smUCf5Ok2WFo5QsIuguKfTXg9Me3NtE8W1UdVwoMeMhzU+tWotDS5oOCihkmo/V1RbWystfgCkxWMwgddNjUWZ1TKbw73dHDiwl/XrLzn93Ex5T0/U7bffyg9/eAMA/+//vY/nXHUl3/rm1/nCvQ+Qdh1uePs7WB/g5875ep4rTc6zEGIyJnw1YBjGm8feqjS6rj8DuBH4vWEYf9R1/X/wpq8NNlBFMQYMDD8Mt02T/3MigDZKoqoKjY2TnyI2nLq6ya+9KVXGX1gPkKhvwIlObqlUNJEgpKqotlO281Wqap7nIIT7UzRHIjTWJojFq7ukLZyIU3SyhMLnrkdScdBwCAfcx0R9kpU13rqYuniIUM3Uen8Np+vkcS4Ke+chVpuc8NqoFfPns3mvwdGjB4f9/zTd39MTkerq4lv/9TkA3v3ud/O+976Lo/t28ra/u45sup/7H36M66//N+68807C4WCD7/PpPFeTnGchRCnGuwbIBi43DONRXdcdRs+n6xqGUUp9oZfiFU59GHit/3AOGLoyfqDyZsZ/Hn+b3JBtMgG2URLHcUmlgp16o2kqdXVxUqkctl2e2ilj6W47xe7+FFFVQ1EjFHKTSylrhbyXI+TY9PRM6pQHZiqc5yBc05fmVes20F6wyE/ydZos14a0mcMyz0x1UxQFLaRiFU3UQh60GI4TXCY4O6RhOQ4hVaX7VDfhaVAP9cSevVwEmKpKLm9OuEjspeEoCy9cyfHtO8/6/zRT3tMT8btPfY5PzFvIQw1N/MNb30HHiRO0Hz2KbVu88dUvZ9uuPRw6cICff/6LvOid/xxIIo7z8TxXQznPc11dXEaWhJjhxhuofAJoHfRzoLlqdV1/N16a6t8Cf2cYxsBozDFg/pDNB34/jleTaOCxA0O2GUjDHUQbJbOs8vwBtG2nbG2PJWO7XG/sIhKJ8J9oOM7k1m4oUW8QLuyW73yVqprnOQgx1wVFIVabDDSwKIWtaRQyec7OdO394roudjGHGq8PtJ+hSISCHwCZmRxK7dR/LQ+cOIFxaD/XXX0Ncxx3wh+2c9UQSxub+L+urmHfu9P9PT1exWIRdu5AjSdYtempaKpC54lWTNOLgmPRGC+/9ho27j7InMcep9fYS+3yFYEd/3w5z9Um51kIUYrxrgH6z0E/fzzIDui6/g7ga8BXgfcZhjH4k+w+4O26rmuGYQxcZV/tdcM4pet6H5ACrsIPXnRdbwA24NUrCqoNMcjAgvJYLB7Ixaqa8KbpRKq7RGXGcW2buOrdxaypq342MFsLYVojF7t1zYFECMHdeY3EouQdmyQh7Hx+7B2mgH2trRzr6uR1q1aVtH9dczNmVyfNKHR2dtDcPDvgHk4Pt//xZpb7GSY3vP7vKWT76e/tPmubq668nD3bDOZEY+z4za+4/EP/Vo2uCiGEqLCSVgTrur4MiBmGscsPFj4NXAD8yjCMH0+gnZV4Iz+/Az4LtPhJFsCbjnYj8EHgBl3XvwA8FXgvXs0eDMMo6Lr+deDzuq53AIeB/8Ib9fmt304QbYhBsllvWk0ikcQOIABSEl6GsqgiUw6CZPlZ9RzXpaautrqdUVQcTcU0R56G51gmODYoamBjzNF4lILj3VMppNNM9dUClmVx4sRxAObV10M6N8Ye54o1NmICC2NxDh48MKUCINd1y1LvaTjGX25hhaKQicepWbiAjmMGZvHsADykaViL5kN3P46xu6L9E0IIUT0TvuLUdf1aYDfwD/5D38artbMQ+IGu62+ZQHOvwJuC9nLgxJCvrxiGcQp4PqDjpaW+HviAYRg/HNTGx4AbgO8DDwIW8HzDMIoAQbQhzlbcv4/vrNvA21vmBjICFEp6AVBEVTGnUb2WqS7X3QVA1rapS1a3yKzqp8AujjYCZJlgB1sQNRyJkPfXB+T7+gJrt1xOnmxnbSLJhsYmGkKlLcofKIY6Nxbj8IH9QXZvUvKHDnL0kx+n2H6i7Mfq7OygoasTgIaNm3Cs/DmjPwOWP/NyLMdhtqph/PXBsvdNCCFE9ZUyAvQx4DbgP3Vdr8cLXj5rGMbHdF3/FPAevGBiTIZhfAavxtBo2zwGXD7K8zZeUdMPlbMNcUYh5WUW67dtgqjcoyXr2dmfImdbzMmkqZfijYHoP3XK+25ZxMMhb3SlSpSBIqjmKAGQ6+KYBZRIDRNf+TI8VVPpsy26igWixZGPPVW0tbXy+oWLWJJIUmw7gZKYeNY6JRqjiFerq2ufEXwnS+Jw9Pe/g6NHaP2vz7Po458gVFu+2lR33PZn1tc1ADD/ymdiFrJk0/3DblvT1MAxFZYCxi1/YNUzrihbv4QQQkwNpcw5ugT4smEY/XgjKyHg1/5ztwPBrSIVU5KZ8abA2dq56YxLEYpE+dSBfXxh/15yljX2DmJcMl0dAORwwanuImE1HMHCHXUECMAp5lEItq/f7DjBO7Ztpbhw4dgbV9mJtrbTNYDUaGmjdoqiUIh4abRzrUPLm1WO67qkHvor27Y8yote+Dze9pMf0JrLYvX1cuzG75f12Mbdd1ETCmGGQtSsXEGmv++c6W9nucDLi6MeOYJtV+9GgRBCiMooJQDKcWbk6AXAScMwtvm/zwV6A+iXmMJMPwmCrQYTAAFEY96oz8D6IjF5/arK70+0sdMqEnDixglTQmHyVgHXHb0frmWiBDxSFY17gcRA8o6prLP1GAnN/3gNl14TSauppWDbZDo7A+rZxGV3bKf9hu/S+z//w4m2VnKKxjcOH8JxXczt2zj5xJayHDeXy3Lfjif59uEDxJ97DSgu6RGmvw2Yc+nFACyLRNm2+bGy9EsIIcTUUUoA9ADwr7quvxZ4FX6iAF3XN+Ktr3kguO6JqcjOewuzgxoBAohGveXpmbQEQEHpUjV+cvwouyLBvU6lUkNhcsWxF/Q7VhEcK9B1QLGYV2dqOgRAmeNeAoRCKIQ7iVG7+kvW84atj/Gbg/vp7x9+6le59dxzFwCP93SzevVGvviZn/GWf/0aj2W812HzN782ZkBciscee5SuXI49kQjLXvEqbLNAfowbK6FZDTygwceMndz/kPwJE0KIma6UAOh9wALgJ8Ah4FP+4/+HV0z0w8F0TUxVA+mEnRIXaQ/nffPn8b8bnkrR2BNYm+e73t4eABrqaqrcE0ALkzXHDoBcy/JGgQJMxHV5TR2fXLUWbfPjwTVaJpY/bdGOTy5fXW1NDbPqGwA4fPjgZLs1YXY6TXqbV0Ztc7HIW9/4YWLROLOb59L8vNcBsMx2uP+WPwV+7If8AObpT78CTdMoFnJjBkAoCs5FOgcyGe67/77A+ySEEGJqmXAAZBjGIWAtMM8wjIsMw2j3n3oZsMYwjAMj7ixmBNcPgNxJTNEZKqRqXha4ERYqi4nLnWxndiRKU7L6SSXssEZxlAQIgznFXKABUEMkjF5Ti9Iz+jSoqUBJee9/tWbyQeuiOXMAOHiw8h/JPQ/9FdV1OZTNsPG5ryCZPJOGvXnFpbSHo6iKwtb//QFWwOv+Dj76MNe2zOHKNRehaQq5dB+2PfYxLlq1HFVV2b9/L8ePt465vRBCiOmrpMIrhmG4hmGcHPLYw4ZhTP00S2LS+h2Hw9kM+VhwF9ZFvwbQQIIFMXmL9+/nG+suZW2AhUVL5YTCYyZAGOCaBRQ3uEQIdshbU+NM8UKorusSK3jnKOaP3kzGKxqa+OKadXTs2T3ptiaq9e47ANiaz/O0Tdec83z4ipfztePH+MHundxzz52BHffEiTYWZnP8w6KlLG1rw3VsMqnece1bk0zyijVreOuipTx05+2B9UkIIcTUU0odoNm6rv9E1/U+XdctXdftIV+SxmuG26ypfHDXdo7NWxRYm6afUMGSJAiBUf2sV+FEdct/KqqGrTD+ESDLBMeCgEaBnIifVKAwtct69fX1csuJ43zj0H4ali+fdHstmsaiRILssSMB9G78nEKBiJ+CPbF2E+FhRopDi1bR/JRn4wI//em4a2ePacuWzazx02vXrb0Y2yqQz42/mOzzahu4pmUOrQ9LPSAhhJjJSqkD9E3gRcDPgFYIOGetmPIGMrVFosFdWNtaCFwTewIXK2J0IdO7FxGtqe4UOCUcwXSdcQdAXkFUCyUcCWSRvBMNQ7aAYk7tAKi9/QRHc1ky8RjxWbModPdMqj01WQO9vdDZFUwHx+nEls2EgM5igbWXv2DE7a542gv5w//9nC1bHmfvXoOVK/VJH3v7E1t4UdKbPphcvRqrWKAwgeLKztxmONZO6EQ7pmkSDge3zlEIIcTUUUoAdC3wXsMwvht0Z8T0kMkMBECxwNq0QmEwzSk/TWk6iToOqCqJuokX0wySGvJrAJnje21dx8Ex86iRJHYA6bvdSAQooFrmpNsqpxMnTgAwb85cnOLkg7Vk0yzo7aW2WKRYLBIKBff/dTT3HT7Ajdu28tRVa3h5XQsjxbB10QTv3/g06lM9/OmPN/P+f5l8HequHduIJmuxo1FiCxaQ6W0bvf7PEIlli+FYO8tjcXbv3sm6desn3SchhBBTTymLA4pA5dMKiSnjVSh8+aJLmJUPbrTGDvnTZKb4NKXpwnVd4n4mgZr62jG2Li81HKbgmFj2+AMQp5AjqMFlN+a9tzRrahe47Dh2hKubW7h01izsAAKg2lnNACyIxTh69PCk2xuv+++/l45igbkbnzFi8AOAFuJSVWFlTS37775z0gVI0+k0dX19AMRWrETTFDKpvok1Mq8FgCWJBFsekmlwQggxU5USAP0WeG3QHRHTRyMK82PxYef2lyobr2FXf4quSdQ+EWe4hTwhPwCqbaxuGmwlFCFXnNjInlcQNZjlhG48Qta2mNrjP5A7epR/WrKMZ1suTnHyvdXqvMB3fizOwf37J93eeORyWR5//FEALl7z1NE31kI4S9YAsBzl9H6l2r79SVbXeP/mxkvW49gm+Wx6Yo0k4mTCIVRF4eSWzZPqjxBCiKmrlClwW4BP67p+IfAwMHSCtWsYxicn3TMxZUX9xelKIriRhbZZ8/nObb/mmXPnSHQdgIy/7qPoODTXVncKnBIKkzF7J7SPYxW9dUBaeNLrgAqNtbxp6+NceeVVjHFJXlVmx0ANoGCmqqnxBBYuEVWl3dgNL35xIO2OZusf/8A/X7CEg8Csxvnkc6MHsebCVUT2P8mmhkbuvOM2Lrvs8pKPve2JLVyW8N7r8ZWrcKwixRKm1Nots+D4ScLtJygWi0Qiwd3oEUIIMTWUEgB9w//+TP9rKBeQAGiGcl2XmJ+yWk3UBpYBIxb3Rin6U6mAWjy/pXIZfn+ijbCm8o5oGMZRB6VcnHCI/AQvRF3b9tJhhxO49uQCoGgiCkA6PbXfW0qqD7QQSjKYETtFUUiHQqRS/XQcOxpIm2M59fijXNbYxNxEgkJ+7PecNX8ZjqIyNxZjz4P347ouSolFoLY+uZUbt23h+re+E33hAqxCH4USpunGly6C4yeZpYXYuXMHl166oaT+CCGEmLomHAAZhlH9oiKiaoq5HCHVD4DiwQVA8YR30ZeSACgQKcviJ8ePMrt5Fu9wqrv2xQ6Fx50AYTCnmENNNEz6+FE/DXh//wSnQ1VYNJ+HZA2x+rrA2jy5dBn/8bMfo9uVWVunnTwJ4TChRctHX/8zIBzFWbAMtXU/Sx2HXbt2sHbtxRM+rm3bbN/+JAXH4cLnPBdN08jlc1glZP5zlyzkuw88xB0H9/HeJ7dKACSEEDPQpIIZXdfrdV1fpet6VNd1LahOiakr29N9+mc1GdyFWrNd5LuXbOA9NdVdsD9T9PR4KZQb6+sZ35VomagatqpQnEAmrgGOWQxkHVAkHuV9y1bw1nji9DSzqcY0Ter816lm1qzA2l0021vUf/jwoUknGRhLX28PC/zRm6Y1m8a9n7nQS3+9qaGRe+65q6Rj79+/j0wmQzKZZPnyFagqZNITTIAwIBJm3oWLAXjyyS2ltSGEEGJKKykA0nX9Kl3XHwG6gR3AWuCnuq7/d5CdE1NP1r+wztk2ihZcjYxwvIaGcIQaRQYYg9DffoLZkSjNddXOABfBch0KpYwADawDKnFK1IBoIsryZA1LozHsdP+k2iqXU6dO0hLxpurVNDQF1u7cxiYioTCFQoG2tuOBtTucHffeTU0oRNF1ic6/cNz7mQtXUgxHOJrLcs/dd5R07Ce2PM7H9TW8a83FKKaJY1sUJlFU+cJFCwF48smtgdSiEkIIMbVM+GpT1/XnALcBOeBDnKnXvhV4j67r7w+ue2KqyWYzHM5mOGEWcZzgLgxCtY0AxDUNc4oXrJwOYjt38I11l3JNgMVqS6GGI5g4FMyJr8VwLQvXKqCokwuAYok4OX/0w8yUflFcTu2tx2jyF9trseDq9SimyefWXMz3L9nIwQPlzQTXuvlxAHqjUQqF8U+OdZP1FN/wr9xw7Aj79u8rKVBr3fI4a2rruETVUCIRHLtIsVB6TbGl8QQfXbmaNzXM4liF1k8JIYSonFJut38auNkwjKuAL+MHQIZhfA74AvCPQXVOTD25WIwP7trOl7s6sSe5OH0wrbbB+64o9Hd1j76xGJOT9ta7uNFoVfuhhiIUbBO7xCQMTiGHMsliqLFkjKy/DirX2zuptsql/dRJrt+zkz+7Fs4kR7wGU8Jh5obD1IXDtO3eFVi7w7H8wEVpmUexOLHpdpoa55J1lwJeHaGJco4cBsBdsAAtpGGbpWWAGxCKhLmkrp5L6ht4YsvjJbcjhBBiaiolAFoP3Oj/PPTK5DZgyST6I6a4jH8HPR6P4wQ4NUSNxLD8GkD9nacCa/d8peS8ERctEdxoQinUcIRMcWim/PFzzMKk1wGFwmEK/nsr29czqbbK5cTJdnan++luno1rBpexT1FVspq3PLPv4IHA2h3KdV0yvT2YjkNs0finvw0oFm2euvHprEjW8Nf77pnQvh0dp1joj0Y3X7oRVVUwzQJmCevOBriN9RQVb0T66OOPldyOEEKIqamUAKgPmDfCc4v858UMlfbXUCQSARfXVBSy/kVqpqsz2LbPQ6GCd/EXTlZ3ChyhSQZAAa0DKvrT6Ap9U/Pjqb39BABzmpoCT1rhxL33gNneHmi7g7W1Heeb+/fyD9u2UrvpqpLaeObxo3x69UUUjT3kcuOfMrntiS2s8pOnNFy8DlVVyGf6J7d2R1HI1HmfccVD5QschRBCVEcpAdDv8QqhDk7z4+q6vhD4N+BPgfRMTEnanj38z9pLeEE8+AvrgUueXM/UvEs/nUQsbxQhVlfdIqh2OEyhWPpUpKDWARX8/YtTNACKtB7n6uYWLijDlMV4o7e+LtqfLtuCfsPYDcCSC5fjUlrh0NACb+RofU0Njz328Lj3O/ToIyRDIUxFIXrBInAdcgEkuwhfMB+A5lxe0vMLIcQMU0oA9GHgFPAIMLA69GeAgTcl7iPBdE1MRU6qjwXxOLVaKTV0R3fccdnVnyIzicXLwpPwZ6fWNQaXqnziFOyQVlIGuMGcQnbS64DMkEbOtikWp2aCjeXZDP+0ZBnzCsH3r95PhT03HKatrS3w9gH27PECoJUrV1EolDaFL7/AS4e9sb6R+++9e9z7Wfv3AVCYMwdF03Bsc1IJEAZEFy0AYFVtLdu3PTHp9oQQQkwdEw6ADMPoAS4D3g7cB9wBbAM+CGw0DEPmL81gdtabzmSHS7vLO5rfuWE+buyiMxxceu3zkVMoEPHTidfPqq9aP5RwGAuXQnHiGeAGC2Id0P0ReOPWxzhx4cTXp5Sb67rU2N70z2RjcCmwB0TrGwBYGIuz1zACbx8guX0bn19zMU9P1lIsMQAqzlqIHYl6CRsee3Rco1XFYpGTJ9vpNYs0XroRRQHbCiYAcmc3YQEN4Qh7H3lo0u0JIYSYOiZ8G1/X9WcCWwzD+B7wvSHPNei6/hLDMH4eVAfF1OL4mZXcMgRAsbg3576/X6abTEYhn+d3J45TGwrxqsbq1QHSwlHyJabAHswxi2CbKKEQbomp1+PJBDA131v9/f00+0F/Y/PswNtXk0m6HYf9qT6Su3ax/tLLAj9Goq+PpYkkvbWNpS9hUjW0FWth5xZWuC579xro+qpRd9m9eye/a2vlvnyO21/yMlRVoZgvUCyUngDhNE2jNxGjrf0kB/wpfkIIIWaGUqbA3Q2sHuG5S4GbSu+OmPL8zEpuGerLxBLeepX+/qlZrHK66Mmk+dnxY9zU1kptLPhAdbzUcJSCY1E0J3cx6to2TjE/qUQIsYT3fk376cGnkvbDB6kJefeiYjUBJxfBywT31/o6vnhgL8ahQ4G339PTwzx/SmzdsrWTastZ4u3/lIYm7hvHNLgnn9wKwMXr1qOGw6iqilnIY1vmpPoxoOcZG/jU3t3ctWM7tj2x1N5CCCGmrnGNAOm6/kPgAv9XBfiWruvD3UpdCZQv1ZCoOtX0LyxiwQdAl7kWb7lkA6fKcJF2Punys+g1NzWCU72LtsmmwB7MKWQJJRsYf3nNs80JR/jwCp05u6fenfzOA/tpBtKOQ7NT6r9wdIv8kSWjDFPgjCe30uInb9BaFkO29PVaueYlxFSN2dEo+x+8D972jlG3P7BlMwpwySXrAVAUyKaDG+W7YMF84rEY2WyGAwf2s3KlHljbQgghqme8I0C/xgt8Bm7BKsN8OcDDwJsD7qOYQkJ+djE3Fnx2sUg4TEM4gjqJAoYCeo4fZ3YkytymxsBTKk9IOEq6mAmkKccsgG2e+QSaoHgswob6RmZNwRGg1FEvl0xG03CKwYxcDLWkZQ4Axw8cCDwTXNvWLQCkVJWiMrn1exYa6nNfxL/v3sFt256gu3vkosi2ZfGi3l6+tW4DT1nqre1yHZtCLpj3HICqqqy4cBm1oRDbt0pBVCGEmCnGNQJkGMYfgT8C6Lp+N/BOw5BJ0eejPssiZju4yeCziw0EVWqZLgLPF+6TT/CNdZeyW6li8ANY4TD59OTW/wxwzCKuZaJGIqUV4K3x1gBFHAfXdSddVyhIhQ6v8G8xFi1bwDpXVblx/SZ6zSLt7e3Mnj0nsLYzhw8CUKirRy0xAcJgsUufhXrBj3H37Oavf72fF7/4pcNut++eO2kIhcnaNvrTng7gZ4ALYP3PIG9qaGLh+k3c+/hj8OrXB9q2EEKI6iglC9yzJfg5f93YeYp3bd9Kft7iwNtWEt6CfS2g+fvnKyvl17qp4vofFAUnpJGfZAa401wXp5gpOXBRar0ASAXcKZZmfUshz8eNXfTMnVu2Y0RqaqgJhZgfiwe+oD/U3QVAeMEF2Nbkp/DlskWuvOIqAO67754Rtzt5370AHImECcdiKIqCbRUxA359w/XezR617Xig7QohhKieUrLAJYCPAi8GkpwbRLmGYUy9XLMiEGm/wGAklgi8bbWmAYBwmdZBnC/cjDcFSE3EqtYHNRzFxCUf0Bog8AIXpcailNwtoZoYpuMQVlXsTBa1DGvYSnXoZDu7+lP8fUtL2Y6hRGPkXJe4onBi+zbwA4zJyuWytPb0MK8B5ixbQxATDLMZk8tXX4y7aCmNhw9jmibhIanxHbNIvV/TSF3tJU5QVYWCWQx8BCixbBGc6ma+49Lb20NDQ2Og7QshhKi8UrLAfQWvGGon8CBw75Cv+wLrnZhSXNc9naEtUoY1QKE6rwZKzD+WKI2a90ZdojXBB6nj7kMkShFn0jWABrP9dUCljALFa5Ok/fVrdmZqrQM6ccK7kG+pL1/NJkVRSIc0ANIBJhnZt28vP2k9yqfa24ivfkogbdq2w7y5S7l6dgtPqatn2x23nbNN14MPkAA6CwX0F7wQ8AOgXAYn4MQf0cULAViaSLJ9s6wDEkKImWDCI0DA3wL/ZhjG54PujJjaMqdO8t+rLyJlWSjhGEHnFws3zAIgqWrkclkSieCDrPNBxDRBUYnVVe/8qeEoOauAZQc3ndG1LNxiHiURx7UnFiDH65JkbItGIjjZ4EalJquYz3F1JMrJ5tk0J5IwwX/XRCg1tdDXh9LREVibe/Z40+l0fVXJBVCHU4jUcSwRZ0kuT//tt8ILXnT6Odd1af+/PxEFHi0WeM9Kr1aQokAuwAxwpyUTpIA6RaH10Yfh6muCP4YQQoiKKiUACgGPBt2RAbqu/zvwXMMwrhr02Hq8kadNQBfwVcMwvjjoeRW4HvhHoBF4AC9Rw/4g2zjf9Z86xfxYnFrL4mQ4Fsh8/8HUmgaO5nKkLZPGzk4SiyQAKkXCdUGBmqbyjSiMRY1ESRWCH2mx8xlCifoJp8OO18RJWxY526aYyVC9sbGzte/dy3XzFlB0HGojMZxccCNmQyWbm6Gvj7p8PrBEEPt27UABVq5cRSHAACiXKRK98iqcW//M/FSK/h3bqb3oYgDyhw4S7emmYNuENz3l9L/DsU0K+fKcv3Rtgrr+LMWDB8rSvhBCiMoqZQrcrcALgu4IgK7r7wU+MeSxWcDtwF684OV64JO6rg9Ot/0fwNuBtwKXAy7wZ13XI0G1ISDrp6TNOg52GaaoudE4nzzRxseNXfQOLOQXE2IXi9So3lSn5jlNVeuHE4mQLQSXjvh0uyWmw44m43xiv8Ebtz5GYeHCwPtVqq4DewHocWwoc/KP2fMXALAwGjs97W6yFh06xE2XbmITWqAjQNlskQ3Pewn3pnoBOPbdb2H29ABgt8zh4wf38b2jh7jiedee3se1LcyA1/8MCC2cB0B9Oi0FUYUQYgYoZQToF8C3dV1vwav7c858EsMwfjSRBnVdXwB8H7gSGFqp721AAXiHYRgWsFvX9RXAh4Cb/ADlX4APGoZxi9/eq4E24Drg5wG1cd7L9nQRBfK42GWaqpOsqaevu4OenpHrf4iR9XZ18Zu2VhrCEd7Q3ABOcBelE2GHI+TKEgAVca3ChNNhK4pCbUM9PV3d9PR0M2dO+TKuTUT/0WMk8WsAmeV9raINDWzO59jT28Nlxm7m+wFRqSzLoqFYJJGsITJvIRknuM8Ex3Yp5BzcK67kxGOPMQ84/O8fYcl/fpI/3XEbu7q7WLJkKevWrQe89T9WoUCxTBn+6lct556/PsoT3d2s3r8PXV9VluMIIYSojFJGgH4JNAFvAL4J/GDI100ltLkB6AHWAY8Mee5K4D4/cBlwF6D7Qdh6oNZ/DADDMHqBLcAzA2zjvFfo80ZlCkopb5vxSSS9aVs9/t1eMTEdfT38oq2V3/T3Eq5SqRslHAk8A9xprouTz1DK7K06P53xVHpvFU+d9L7Hyp+xT1FVHoyG+UnrUYz9+ybd3qFDB1jkZ9OrWbxm0u0N1Z/Kc91r/47PHdzPoWwGxyxSjEa54YbvAPCa17z+9PQ3VVWwzAJmsTwjQEpjPfdHNf7a08W2bU+U5RhCCCEqp5QRoKVBd2JIodWhTy8Etg95bGD+xiL/eYBjw2yzKMA2ShIKBRssaJp61vdKsvq9BcZFTSOklufq+jXJOIsu2cCp/fsCP3cTUc3zPBmdnV5RzTkts1FcG6VMr9NoQrE4ecWhUMyOGagMXMB638c3guAW86iOhatO7ONrQ0MDr12hoz70IKErr5zQvuWi+lM9lWQStcyvlaoqrJg3n78Ae/funvT/r8NbHmexpmG6LuH6WahdwY6+5HMmS1fO49pXv4YP33QDq5tnE373P9HRcYqFCxfyyle++vS/IRTSKOS8wLhcRW6XL13E9l172LHjSV772teNuN10/eyYbuQ8CyEmY8IBkGEYR8rRkVEk8KavDTbwlzbmP88I2wwsggiijQlTVYXGxvIs5K+rq3wdE6XgLTC2QiFq4+VZGhUOh2kgwsl0qmznbiKqcZ4nI3OyjTnRKAtnzyJWptdoLKHaWjpdE1exCYW1ce2jTeRi3LVQXZNwYmKpDJqTCTaoMdKdHVPivQUQy3sfQ/GmRuIVeL1WLlhAjRYiu3//pM9Bap83Wzkdj5PUQsTi4TH2mBjXBcdy+ehHP8K2bU+wefNm6OwgFovxla98hblzz3w0O7ZNezFb1vf82hUXsi2RxNq9e1znbrp9dkxXcp6FEKUYVwCk6/qNwCcNwzjk/zwa1zCMt0y+a6flgOiQxwbmi2T85/G3yQ3ZZmARQhBtTJjjuKRSwU4D0jSVuro4qVQO265swdC+bA67UKBQ30guVyzLMZxwFMwchd4+enqCX0MyXtU8z5Oy+Qm+dvGl7FfD5Mv0Go0lWqvRnenDMsdeLK4oClpIxbacCdR+slEy/dihBM4E1p3YiTjkMjjpdFXfWwNc16XOcUFRSJbx/9QAVVVYVlfLjZduImtZHD50nPqGhpLbyx0+CoDbMod0Xz7QLHADOjvSJOua+Na3vs9PfvJjOjo6uO66v0XX15z1GqqYZNKZsr7nl8YTfHbNxaRMkwMHjtLUNGvY7abtZ8c0U87zXFcXl5ElIWa48Y4APRsvhTTAcxh9rkrQq+OPAfOHPDbw+3EgPOixA0O2eTLANkpiBZwqeoBtO2VreyQ7kkl+tH0rL3jJa7kswAXPg9mxBGR7IZup+L9v2P5U4TxPhpPypimGaiYWHATJioRJ96UZXzzjbeS67ji399iFLKpt4rjjG2ECcOsS0JUhVChOidfUcRw+aOykUVH592ueV5HXq3F2Cz2OQyIUYu/DD3Hpc59fUjuu65LMpCFZQ/LCleTz5oRev/Hq78tTLFhEInHe/Oa3nX588OunKGA7RQq5XFnPYXT+XIquQ104zPZ77uEZL3n5qNtPt8+O6UrOsxCiFOMKgAzDWDro5yVl683w7gPeruu6ZhjGwC3lq72uGKd0Xe8DUsBV+MGLrusNeIkVvh5gG+e93t5eABI1dWU7hpOohW7QCtUZvZjuQv6UqlhDbXU6oCjYoTC5fHlHWJxiwcsGF06O+6JXbagDOojaNq7joKjVvcPb09NNWzrNCUWhKZmECowWKKpKp+swH5WTTz4BJQZAbW3H2dLdRdGyuXL1pRwv08udzRQpFmzCUW3E11lVFYr5YtkywJ2maZxUFS5woWvL4zBGACSEEGLqmg5jvDcCdcANuq6v0XX9TcB7gc8CGIZRwAtSPq/r+kt0XV+Hl6r7GPDbANs47/X19QIQT5Tx4rqmEYCIVZ30zdNdzD9v1SqCqkZiFHDKkgJ7MNdxcPLpCWWDU2d5gbsGONkyZKiboNZWL+fKnNmz0So4VSrvZ24rHi19Oadh7OGPJ0/wOw3shnlBde0c+ZxJLlMcdTqSoqiYhRyWWd46SgDZWQ0AhFuPl/1YQgghymfKB0CGYZwCng/oeGmprwc+YBjGDwdt9jHgBrxaQg8CFvB8wzCKQbUh4IX9GT61ai3NZUyDHW6cDUDMcXEcmdYwEa7rUutHBI2zG6vSBy0ap+DaZQ+AAJx8DsUZ/0VvvL6GtB8gWlOg0G7vQ3/lNQsu4ClzyhdADCc2y1u7kuxLldzGnj27AFi1ak2gBVCH09uTG/V5VYVsuvR/y0QkVi4DYL5tY+bLPOIkhBCibEpJg11WhmG8aZjHHgMuH2UfG6+o6YdG2WbSbZzv5gGxmlpS8ZqyHSM0ay5Hc1nacjl6erqZNau5bMeaaTpaj5LQvDUxLfNn48XwlaVF46QK/bhu+YNXu5gnZBZQI+FxTYOL19XQa5poioKTG/2iuhK0/fu4bt4CHo8Emz1tLHMXLYL2duaoKvlMhlhy4tng2nfvpD4UZuUKnUK+vO+zTLowakIN17Eo5CqT1GL2imWk7nuUulCYgw/ch/7c51XkuEIIIYI15UeAxNTgmEVi/poJpa7kzOBjsmbN4xPHj/Olg/s4ebK9bMeZidr2+GmJbZvIONNPB82JxujL9VfmYK6Lk+tHUca3BqimoZYP7NrGG7c+hrrwgjJ3bmyRtHeeQvWVna7YPGcuKcsioqrsu/+ektq4tLuH763fyBrTKfsIUDZdpJCzRpwG59gmhQqNxqiaxlE/cUf7Iw9V5JhCCCGCJwGQGBfTny5jOQ6h2vIFQAD1Dd6oz6lTJ8t6nJmmvaeLX7e1skMDx6rGzE0FKxImm69QAATYhRyKbTKexUCRZJRQ1KsT09FxqtxdG5Vr29SaXuCQrPAop6qqbLZNvnXoADvbWie8f2dnBwtC3uSBltXrMMeR7nwyLMsh1ZcftlCsqipYZgUSIAzSPm821+/Zyf91d1TsmEIIIYIlAZAYl7Q/GpOyLCLlTIIA1EkAVJLD3V38sq2Vo/OaKUtO4jGo0RhF3IoGQE6xgFvMDXtxPJTtODTP9taYVXt00ew4haYo5G2b2bOGrydT1uPPmcfdXR1s2bN7wvvuffQRGsIRLNdFm7O4DL07V39ffthpjqqqYBXzmBUMgBZcvIrd6X4efuxRbLu8wZ8QQojykABIjEuq3btg7LdtvDxa5fP3UY3vXbIR8+CBsTcWpw1kFVswuzrrprRogrxrky1zCuyh7Gw/qjv2haiLy9Na5vCRFasw7727Aj0bWf/hQwC05XPMqa18xr41FywC4Mkntk5431NPbAGgJxIhX/7EawCk+wsU89Y5ga6qKmTT/RMoojt5Sy5YSDwWI5VKsX+/UbHjCiGECI4EQGJcsl3edI+sEnyl26FiWoj6cJh8p0wxmYh8aytzolEWzqpOCmwtFqcn31eRBAiD2YUcWAWUcYwCza5Ncml9A0pbWwV6NrKuvXsBOGVbJMOVTYIAsGL+ApYkkmxAoW3n9gntax876n2fM7fsCRAG5HMm2WHSYbuuQy5TmQxwAzRN4xkrlvMPi5Zw4hc/q+ixhRBCBEMCIDEu2WyWjkKBdBlTYA8o+lnmnEmk6T0fPc+2+drFl7KgWJ0aSk4sTipb+dfMtS3sXD/jiH9w/QKxoSrXAcq0ekFEtgrBD0A8EuEfli3nzYuWcOyeuya0b0PGG+GrX72WQqFCQ0BAT1f2nLsvjlWkWIV01GsXXcC1LXNpPHoMV9L1CyHEtCMBkBiXk83NvGv7Vv6ilf+Cza5pAECbAsUqp4tcLkeDn6Vv9vyWih9fUTXMcIhMrjpBq5PPoNhFGCMIUv36SLFisaLTpobaNn8+7962lbYSUlAHJRv3C6LuHf80rlOtx1gQ9hJJLNh0OYV85dbAZPoLFIv26XwXiqJgm0UK+cqnNG+5aBVpyyIOpI09FT++EEKIyZEASIxLb28vAIlkeRMgALj13hqWaJUvUqeTw/v30uBfmNY3V34KnBZPknNt0rnqFBi1i3ncYnbMZAjxRV7R0TDgZCq7Vmmw1uOtnCoWaGyqfAKEAbULFgLQlM7gFArj2mfP3j1849AB7s3nUGqbK/r/M5Mukhs0DU7TFMxiviojQBdcsIDtGS/Zx7G776j48YUQQkyOBEBiXPr6egFIJOvKfqxQs3eR2qCF6JR1QONybPs2AAquC6FxzAULmBZLkjZzFM3xXUgHzh1fMoTG+XPoNb0U4cUqvrcOHfISfCysQga4AfpKnVOFAmFFof2xR8a1zxM7tnN/dyfHl19Itr+yr7XruvR0ZlD8ISAvAUKq4mvOvGOrdNZ7U3ULO3fIjRohhJhmJAAS47Ju1y4+uWot86Kxsh/LqfWmKTVFwhzzF1yL0XXt3wdANhrBtSq3LuO0eILOTHfljzuInc+OmRK7oaWRzqIXAPUdO1aprp0lu3sXz0lnedas2VzQUN6aWqNpSNZwyH+vHL/v3nHt84SfAe7S9RvJVygBwmD9qQJmwZsG5zoOuXT11gnWrVqB6TgkC0XM9hNV64cQQoiJkwBIjMl1XZoKBfSaWmI15Z9eZSbrOOW4HMllOXrkcNmPNxPk244DoNTXQqXviKsqZiRCOlud6W8DXMfBzqZQR8lTqGgqKQXSlkVXlS5au598gk01tayprWVBQ2NV+jDAqm8AQDtyeMxRjFxvL0tPnmRZIsm6iy+lUKkc2INk0oXT2eAcu0AhX711ghetW8OOfi8Aa69yWnUhhBATIwGQGJOTyzGQ+kBpKP8Ceztew0/r5/C5fQZHZQRoXNQ+L/hItFR+RCEUS5LDpj/bW/FjD2XnMmDmRkyJbToWd8Qj/MMTj3Mkmahw7zypA95oXbeiEo9EqtKHAQuWL6foOIRNE7Ora9Rt991xG6+et4D3LNeZO2dhxVJgD+Y4Lt2dGVRVxSoWKOQqnwBhQG1NDftV6CwUONRWndFEIYQQpZEASIzJ8hMgpC2LSF1lLrAbZnnrgI4dO1KR401n2WyGO48f4zdtrbSsubDix9cStfQVMxSK1bsYHeDaFna2D00ZfjTDtE3mLvIW/x/2i5FWmnPCG3mya2uqcvzB1i5Zxmf37+UtTzzOkZ7RA6DezY8B0FVbQzZj4jjVWffS35fHsR0K+SzFQuUTIAymrFjCu7Zv5dcH95/OTieEEGLqkwBIjMnq8dZ29JhFYomGihzzdAAkU+DGtH//Pral+rizkGP28kUVP76bSNKZHv3iuZKsXHrEUSDLtlh84VLAO2+VZmcyRPysZfEqJkAYEA2HqZ8/n6LjcOedt4+4nWtZNJw6BUBs3TrS/dULPDLpAsW8Rba/t2p9GLDx0nW4wEMPP0w6na52d4QQQoyTBEBiTOnjrQB0FAskKrAGCODS3nZuXL+JtbmcZFgaw3Y/A9xFa1bjFCt7YaqEwhTCIVKZnooedzSuZWFnhh8FcoELFs7nQ8t1ruvuGXf656Dk/VGn9nyeObOaK3rskVyxei0Ad955G/YIF/Edjz9GTFHoLhZZ98KXUMhVp9gugOtCLpMln6l+wLFg3lwWzp+La9s8/PMfS1FUIYSYJiQAEmPqb/Xmt/fYDuFItCLHjCVrqQmFaFZDnDp1siLHnK72P7GVS+rq2bRyBU6xshf0oWQdGcekfwoFQABWNj1iXaA5Fy5kZU0NLaEQ/UcrO8Uy54867c30s2zW7IoeeySX66tZVVvHOyIxDnzlS8Nu03rrnwHY7VjMnbOAXK4KmQZ9kYhGsZAj058+nRK7mp62YT1fXLOOCx56hNzundXujhBCiHGQAEiMKWeadBQK9Gmhih3T9IuhzovFMIzdFTvudKQcOsBHV65mw8kunArX4dEStZzKdGI7o9ffqTTX9kaBVM69Ix+pidFmehfwrf66lkpJdZzCchwOZLMsaZlT0WOPpDYeZ8nCC5gfi8OhgxRaz17Qb/X2kPCTkbhrLyKfMykWqjcCFE9EKOaz9Hb3jZjsopKetulSnkz1AtBx+63V7YwQQohxkQBIjKl10SLetX0rW8KVGf0BKNZ56yPmx2Ls2SMB0Ei6u7to8OvaNC5dWNmDqxrFeJye/qmz/mcwO9uPW0ijamdfJJuORa62FoCuCr+3DixezBu3PsaxaJRIqHI3FMZy5YZNPOKv9Wv/6f+eNe00dfQo/ZbJnv4Ul7/s5aR6q5t4IJYIk071kE0XcGwHqhwDzW2ZzS6/+HB+xw6KnZ3V7ZAQQogxSQAkxtTe3g5AfWPlpuwU/WxzDeEI+3fJtJKRPPnkEyyJe+mca+ZWdlF9OFlH2rXo7Z+aF3yu42Cle1Edk8Epuoq2SWyJlyzC9d/blbJ7905M12XpggUVPe5YNi1fya3pFEXHobDXoO/+M4VR79q7m/+37Ql+bxZYu+ZispliFXsK8ZhLf18vhYJFsWCjqtX/M7b2aZvYnupDAfruvafa3RFCCDGG6v/lEFOa67qcPOml7a1rqNyibScSo+CPOPUeOlCx4043Dz/0AIsSXgAUbqqt6LG1mnpOZbswrepeEI/Gzmdwsim0QZ90RctkzoZLAGgoFnHsykzfcx2HXX4wv7xlbkWOOV6aqvLcyy7n121ewpNTP/4hbd/6OoVUih/84AZyjs1z/vZVmEWHXLZ663+isRBgku5L4bou2XQBt0rpuAd7+lM2cLefRvzUHbfjFKfu/wkhhBASAIkxFI4c5toDB3j/shXU1Fd2hGFgHVAo1U9fX29Fjz1dGI8+TEIL4aoqWrJyUxQVLUQ+Hqejb4onqHDB6u9BGZQQoWAVWX7F08nYFnFV5dAjD1WkK23f/iZ/m85wcW0dK+fOq8gxJ+KFl25iMw63nzoJrkt68+Pc/I2v0Np6jMbGRl75yteQz5rkq5gAIZGMYBWzZNMZAHI5E7NoD5vsopLisRixlcvoLBZQcjlO3nl3VfsjhBBidBIAiVEVT7SRcKE2HCZRW9kAKD9nEbvyOfotkx07tlf02NPB0aNHiPf1ARCdNwfHqtzajHBdEymnQG+qo2LHLJVjmVj93aiuBYpC0S4Sioc5EQqzN93P9gokQnAdh/SuHSyOxdEiEZZNwQAopGm8/7pXcUPrET5h7OLPvd388o83A/CBD/wbyWSC3t7qFrtNJEOkujtPr1FyHJdMurKJP0Zy9bOv5A/tbQAcf/TRKvdGCCHEaCQAEqMqtHl/0FtzWeobKpu299Sma7izZQHb+1M89tgjFT32dPDAA/eyqsab9lazZCFUsAaJUtdAW6p9ymV/G4mV68fJ9hFSXRzXJVvM0ffsq/j3PTv5/ZbHy378wtGjKPk8Wduidv4CtCmwbmU4F8+Zx3++5/3sLeS5af9eDmQzvO1t7+QFL3gxlumQ6a9esKFpCpGwTV/P2SnXc1mT4hQYBbpg/jx65s3mP/bs4HvHj06JFN1CCCGGNzX/CospI+8XQW3N5airYBKEAReuWg/Ao48+XPFjT3W33PIn/nSynSOrV1GzeknFjhtK1NKvKXT0tFXsmJPmgpnqxs17WeFShTTPf8ELURSFrVs30zok9XPQ0k9uBWBnKsW6RYvLeqzJeo6+mtv/cAtf+tLX+P3v/8I73/n/CIU0CnmLbLp6a1uStVFsK0+qt++sx227uoHZYC9+wfMw0mlu+fNfOHRoX7W7I4QQYgQSAIlR5Q4fBqADiCdqKn78xcvXUR8Kc8DYTSrVN/YO54kjRw6xY8c2um2Ly9/8BiJNlXtttIZm2rNdZHL9FTtmEFzbwkp1opo58nae5pZmLrvscupCIf78kx+V9dj9j3vT7B7p7eaSRUvKeqzJynd20aipPP/517J48RIAVFWhvy+HaVZvxK+mJkKqpwPbOrcGUTZTpJC3UbXq/klbumghmy65GMdx+OLHryez7Ymq9kcIIcTwJAASI7L6+iDVh+O6pGoaqjKlY+ldv+N76zdyUU2tTIMb5A9/uBmAyy9/Bs21cexcpiLH1WIJsrEobV3lHTEpF7uQx0p1UiyksRWbNz/tGXx73Qaat26ht7dn7AZKUGhrwzzRhuU4HAWWzplaGeCGcm2bzJGjqMUzoyqO7dLXU731P5qmEo069I5QY8dxXNL9eS8jXJVnnv3dK1/K4poa3mzDsW98DbNj6q+TE0KI840EQGJE+cOHAGjL50jMqs6i7YKfeGFNbR233/6XqvRhqsnlsvz61z/nmtlzeMPaiym0t+KYlZkCFGqaQ3u+Z8rW/hkPK5sm03MCy8qy8W9egqoorK2p5ab/+mxZjtfvT9/clupj0+q102JtSPZkB2ZnB6GQiqYp5HMm/anqTTOrq49hmWn6ukcOUnMZk2ymWPW6QC3Ns3ja1VdyIJNGtW2Ofe9buBVcnyeEEGJsEgCJESnhMCdjMbanUjQ2z69KHzJzvfUSq2vruOeeu8nlslXpx1Ry882/oa+vj79deAENmzeT3rO7IscNJWrJxCIcPXWwIscrp1T3CTLpTurnNuGuWAHAXMPg7rvuCPxY7pKlPNrXw91dHTxr9ZrA2y8H17JIHzqMVsihaSp9PTmKhXOnnlVKbX2YnlPt2KPUbHJx6e/LT4m02Nf9zfO5xcyRt22sgwfpuv3WqvZHCCHE2SQAEiNKrlnLjwo5bjp2mKaW6gRA2TleALQskSRsmdx1151V6cdU0d/fz/e+922WJhI0aSGUSJjInPryH1hRUWfP42j6JH3p7vIfr8xc16Gzpw2rp43Vb3w9DrCxoZE/fuHTPBJwXaA/bX2cL+4z6K6pYdWCCwJtu5yyJ0+Rbz+BYzn0dFXvxkOyJoJKns6Tp8bc1jRt+vvyuC5QxZG2cDjM373l7/jVKa+IdOevflGxGxVCCCHGJgGQGJHruuzduweA2XOqc+FmJevIz5qHqihsamjkpz/90ekaIOej73zn63R3d/E3S5cDULdGxzHLvzYjOmsuHYrFkfb9ZT9WpfRlesllUyhmF3P+5oUAvGneQr78gffyve99i2Jx8hnPUqkUP/zhDQBcd9nl02L622mOg9nTS39XP+lU5WpMDdXQFKO/9xTZdHpc22fTBdL9BdQqn+uW5lmsve5FPNTTjQrs/+8v0OdPKxZCCFFdEgCJYRWOH+fUgX309fWhqhot85ZUrS+pC3QArpg1m507t/P44+dnMoTHHnuYn/zkR0RVlac3NAJQs3oplDkgDNXUk62rY1/7XgrF6hbCDFJ/to9iWKPQc5L61XNIrLyQmKbxgWUruOnbX+dlL3sBP/rRjfT0lJYcoe+B+7nvox+CTIYl8+fznDUXB/wvKDNVhViCtn1tuJZZleQCiWSEcKhIe2vruPdxgVRvzlsPVOWscBet1tGe8wwOZ7MkXJdbPvZv7Nmzq6p9EkIIIQGQGEHHL35K7+c+wzNnNTN77iJC4XDV+tK39CJcFC6qraMlEuXLX/7vUdcCzERtbcf5yEc+gOu6vO85z0MtFIg0zyIyO1HW42qxBG7LfPb3HaOz90RZj1Vp/dle0k6RcLIOM9VNyzUbSC5fgrV+HYnGJtrajvOlL32Bq69+Bm960+v47ne/yYMP3k9399hTALMn2mj90U2szOW4oqmZf3nZK9A0rQL/quAkWmaTdSKc3NuK1dODplQ+w9qs2XH6utro751YCnzHcenryZKbAkHQ+ksvJnf107mjp5v/3v4Er3/9K/n0pz/O8ePjD+qEEEIEK1TtDoipp3iijezuXSjAnv5+5l14SVX7Y9Y10XXps2jWF5Hbs4OdO7fzi1/8hNe97g1V7VeltLef4F3veiudnR1cvEJnk2XhAE3P2IhTLN/UJC2WRJl3AfszJznctrdsx6kWx7E52d9Bc81s6O3EtYvMuvoS5jfP47Y3v5Zb7n2YB3/xK+b3p/jLnt1884ktp/edPbuFRYsWsWDBBSxYsJCamlri8Ti2bXPy0AHW7tzJgnCEvel+Vj/veayeU50siqVSIxG02XNoP9SDmS9iFbuJaRqhhkZs8IZZyqypOYni9HP80JGS9rcsh97uLLgQT0ZwXLfso6UjuXD1SmbNn8vTfn8LDzz8KL/99S/ovOdunNWref61L+LKK6+itra2Kn0TQojzkXI+r6cYTNd1Fbge+EegEXgAeKdhGKUuejho287S7u5g67OEQiqNjUl6ejJYVnlSq7Z96+ukNz+O4Tj8x5ZHedGr38VTrnhRWY41EYvn1bH/iTv49Kc+TigU5jvfuZGNG59SlmNV4jyPx86d23nf+97NqVMnmTNnLj/8/o9Qbr+V/OEDzH/Fs3GK5VmcHq5rwm6ew4FMO/uO7cRxyjPipigQCmtYpl2Va9OG2lk89YINhI4fwSmcmd6nRqJEmuZz5IZfkT92HIBToRCP9nZz5+GDtOXzw8YAl9TV85ZFS5kbi9FnWfQ/+1msnz0PxzQr9C8amaoqxOMRcrkijjPKyVYU6pZfSLcVZ+/jB7zaOoCiacRmzyLU0IiDUtbXK1kbpaVF4+j+HXS0tU+qLU1VqWuIkayNoiiM/m8PgKoqxOIR8iOc50PHT9J16908HZWDmTQ/aT3KjnQ/K1borF+/geXLV7B06TKWLl1GU9Osqqf1nqrK+Rnd1JRE09RDwLJAGxZCTBkSAPl0Xb8eeCfwZuA48AW8D7+1hmGUshp6WgZAfQ8+wMmbvg+Kwod37+Bgup9//tj3mTW7OlngBguHVDaunsPPPvEB/nj/fRQiYb74xa9y+eXPCPxY1Q6Auro6+eEPb+AnP/kRtm2zbNmFfOMb32P+/AVElCK53Y9g9gdfYFGNxIjMmksqHmVf92FaTx4oa9KJagdAAOsvfCpLnCj5E4fPetx1XYod/aR3HSVtHDxr9MCNROifO48tc+dw4kQbZibDS3t6qfe3sRIJFv/TP2F3dlGc4PStchlXAKQo1CxeRD7exN6tR8j154Y2QqypgXBjI244gmMH/6J5wU+Yzrb9HNkfTMp1BUgko9TUR4lEQ7iuezqwC9pYARBA+MBR+OtmFD8wPpjJcGfnSR7r7aF3ULAcDoeZPbuFlpY5tLTMoampidraOmpra8/6XlNTQywWJxaLEY/HiUajxGLxaTftciIkABJCTIZMgQN0XY8A/wJ80DCMW/zHXg20AdcBP69i98bFNIuk0xkKhTz5fI5CoYjrOqcvXl3X9b+87ROJBPPmzSMe99aQ2LkcPbf+me5b/gRA+/JVHHzsIeqbWmhqnhrTd0zL4cjDW3lRrsCzL9nAjw8f5H3vfhvXvfr1/OM//hNNTbOq3cVR2baNbdtYlollnfnZ+27R0dHBvn0GDz30IA8+eB/FYpGwovCWZz+Xv1m1hnktLURDNnb7IcxMV3AdUxRCiVq02ibyiTiHC30cPLqT1AxIdz0eh04eYNaiS0nUz8LsO3NeFUUh2lJHtOUiGp6mU2jrJXvwONkjbVAsMi8Z593v/mds28VxXA7863uxs1manvksZl/9bPr3HZgywc94qJEIyUUXkAvXcXDH8XODHwDHId/ZjZXLE21sREsmcLWQd6E/yXhCVRWampPU1jp0tu3n6IHgMqa5QCZToFAwSdREveQKYRUUBddxK55Z0rxwEcyfQ3zPAezte1iWTLIsuYy3Lob9qso3245x/HgrpmnSf+okJ9qOl3R6w+Hw6cDozJcXIEWjMaLRKJFIhFgsRiQSJRaLEol4zyWTCRKJJDU1NSSTNae/J5M11NXVEovFAYWCDRlTIWdBxlLImgp5y7u5oQ7+AlTFPfsx/0sBNAUUxfW/n72fopx5fuDxiAsNcv9WCFEiGQECdF1/KvAIoBuGsXfQ4w8A2wzDeGcJzZZlBOjX9zxB359+jWYWwbFxHYtCqpP+3k5wXDqLBW7tOHl6+1fMW0BNKOSvXVZQlDPrmHtMk90N9TznOdfwsudeS8/nPgW2TfiyK/i3++5n9/ZHePrVf8vzXvaWQP8NkxFK97Hsvl8S6vAW5FuOw9Fcjl7bIjm7hfizrmLV069gwYKF5A8dJLPtCUZauV33tKcTmTsXgPyRw6S3nlnjoaoKkbBGb18/+Xye3OIlpCIRUqk+zLY24kePUCwWKRQKFAoFikXvq1Ao8FhfL4ezGWzbplnVeFpdPc4IleA39/VwIOO9RxbE4rxwzlxCikJtKMQFdQ20hMMofsKH2c+/htlXbSDbuh/XLq0opaKFUEJh1HAULRJDicUxYzGy2HTkejnRfZzuvpO4lVjkwdQYAQJYOOdC1jQvI97bR7Gv08t6NiIVO2uhKGHqLlqLlqhHiSXIt7YTaZ6NlUqR2rufYk/voBsQAG5V/43DjQApmka4JkmkoR7qmujLOBzZfZxcahzZ/lSVcDJBuK4WLRaHcAhX1cD1b7jAmEFRKKQSjYdJJCMkk2AV+mg7cojO9pOj7zhJoZBKNBYmnggTiYRQNQVVVXDxpsi5fjznno7rlNO/D/wM4PifLe6gKYGK6rWdz5vY/n97b1/lzM+n21BQ8gXqj7cSO3gA5UQb2qVPIfHmd2PaNl3t7SS+8FFcRaEQClNQFAou5ByHnG1xoFjkrr4+spl+zEKeVzbNwrRMvHjUPX08gOP5HPd1dZ4+B6+av/B0qvCh1wEnCwXu6TozwvzSufOJDJ2Kp6igRekmxJ3FCEqsHqJ1vDjuEg+FOOdzV1HoI8Rt6pzTT13rnKLWHfRZNmiXNCH+rJ25+fZc+ySNnPl/6aKwe9Mr+Nk7NmDbMgIkhJgYGQHyLPS/HxvyeBuwaDINh0LBzt/+3H9+kO8snk1taFBWtmgY/EXW+zIZbu/Po4SjKIrCc1rm0Rwe/mU+ms3y213b2L17F9/87nd4/aZrya97MZuLNRza8d8AdG14D7/NeX8DhpbVUEb4ZWi4Mfh3ZbTtRnjurOPGQL36aWzY+2cu2XsbDel2liWT3nOFAtd/9Uvs/sx/okbivGjhMv6+aeSFxZ+65WF2umGcQobL7H7eFB95ncvXf3gDj/R4IyKXN87ifReuOHejcBTCUfZ1nKKvz7vzv7K+gevmjjx9sMe0OJg3UbQQLY1zuGb2nLM3sG36E7PYu+TpbEm+hOzORuDMuqfRry9Hvwh1h/485CJorGv1UZ8fY2d38Cs8JI/DWEHCaE+P2eeRNjgMyuEz+5/p3Zmfht318TMjH67b7J/HFmD5WZ+uY/er9PRqE/o3FwHN+zp9QZ8BN+215LpA/CKID7PvsMdWwITT16Wn/xmj/3tc/1hnRqa9321nLi4rcbUzQcZAwDDQn7MCEn8Dd9DvZwcag7YdeJ1QcP0+u6nB+1axblAUWA11F/ZSY6Zpu7kGgIaCw9ddUF2HeLEw8LKc1r3wKtqf/z4AVMfm2nteNeIhHq9ZzgMtLwIzB1ael574X8IMHzhsd2LcO7sOimncYpqXzoaaEbLp7U33c+fRJ0+/Xi9cdymziJ67oQtHshlu3fWr0w89/6JLmB+Ln7XNgPZ8nlt2/PL071evvvjMZz1guy5//8N3oL7rURRF1kkJISZGRoAAXdf/DvgxoBmG4Qx6/EfAfMMwnltCswdd110adOHDL/30Tszf/4IwCq6i4igahVAd2dhciNTSGW/h1gvOJCx48ZGbSVgZ74+7cuYPvauo9DkKt2cdnK0/hPYnvR0UDVwvEFDWvR7t2i8E2v9AuS6zCp0sTh2kvnM7de1buffEYTpP7ATHZE1tHZc1NI24+20dJzme9+50r0jWcEVT8/AbahHuzpgcVhIosXqWxpNclfAe976i3vdQBEWLcH/TJg7ULgNFY2Gxk+d2PuTdLVUU7ztnfn54zjMwGtYA0Jw7xZXt92KpIbKhBJ2x2ZyMz6U9Pq+qVe2FEJOn4J6e2qXgh4gDPw/9zpn/8ppr0Vjooa7YS9LMErNzxK0MMStPR8089szZ4E0hc2yu3fsLQq6N5o9NnT4m0NVwAbtWXE1YhbAGVz7+AzTXQVMHpqf5XyrkG+fRvvGFRENQE4YL7v4REbtAWIOwAioWrlXEtYrYyRj5i1bRn0qRSqWo2fokTi53zqiS67oUwiEOzWk5/dyF7aeIWN7fm6GjzkVNY/+c2ad/X3qyk5hpnhUYN77iOl784rIl6JERICFmMAmAAF3X/xb4NZAwDCM36PFfAlHDMF5aQrMHbdtZmhrPVJIJ0DSVuro4qVTurGH/njykigp5SyFvQ9EefMfzbINfcu/OqMvOx+/jDz/6KocMLxBau+mZvP0/vkE0ljhr27PaGaHN4bYd7fjjfW6k7YZua5oFejpO0Ntxgt6udgq5LGY+R6GQw3UcFFVFVVUURUXVNCLRBNF40vtKJIkn60nWNtA4uxlXiXqBozt2DDLa02OGL5Npu4z9mkzcNZ62VVUhkYiSzRbOWjBe7X6VvO8kDqyM+o6f/HtAVVUSySjZTOGsKZmTja0n26+BQGDYwICzg4IzAYN79r6Dt1MGtT1Wm2d9d0fcbux9z2wX0lTq6+L09+dwbEfuXZTJSH8Lg1BXF5cpcELMcDIFzjMw9W0+cGDQ4/OBJyfTcLkyiNm2c1bbtSHvq1RPfdEzeNMLn05b23FUVWXevIFpW9VP3ztxKixZACwouYVqZ4E7X3jnOUpPjyXnuczkXJfJkLmkigqaCq7jBH5hLs419G+hEEKMh0yc9TwJpICrBh7Qdb0B2ADcX50uVZ6iKCxYsHBQ8COEEEIIIcTMIiNAgGEYBV3Xvw58Xtf1DuAw8F94I0O/rWbfhBBCCCGEEMGRAOiMj+Gdj+/j5UC6D3h+iUVQhRBCCCGEEFOQBEA+wzBs4EP+lxBCCCGEEGIGkjVAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOG4rputfswU+Vc1405TvDnV9NUbNsJvF1xNjnPlSHnuXLkXFeGnOfKKNd5VlUFRVHyQDzwxoUQU4IEQOXTC0SBE1XuhxBCCCHGbx5QABqq3A8hRJlIACSEEEIIIYQ4b8gaICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeSNU7Q6Isem6/u/Acw3DuGrQY+uBrwCbgC7gq4ZhfLEqHZwhRjjPfwN8DFgNdAK/Aj5mGEauKp2cIYY710Oe/x5wjWEYSyrZr5lmhPf0POBLwAsAG/gL8B7DMDqr0skZYITzvAn4b2AD0Av8DPgPwzAK1ejjdKXrehPwGeDFQB2wDfiwYRgP+M+vR/4WCiEmSEaApjhd198LfGLIY7OA24G9eB/61wOf1HX9zRXv4Awxwnm+Evgd8BtgPfB24NXANyvcvRlluHM95PmXAf9Yqf7MVCO8p6N4nx3LgOcCL8K7QP9Rpfs3U4xwnpvxAsvdwKXAW4E3AZ+ucPdmgp8DTwNeAzwF2ALcpuv6KvlbKIQolYwATVG6ri8Avg9cCRhDnn4bUADeYRiGBezWdX0F8CHgpop2dJob4zz/E3CXYRif83/fr+v6vwE36br+drmTOzFjnOuBbeYB3wXuBZZUrHMzyBjn+bV45/VCwzBO+tu/F/imrut1hmGkKtjVaW2M83wFMAv4gGEY/XifHf8LPB/414p2dBrTdX05cA3wDMMw/uo/9h680cvXATnkb6EQogQyAjR1bQB6gHXAI0OeuxK4z//AH3AXoOu63lKh/s0Uo53n/wY+MMw+IaC2zP2aiUY71+i6rgA/BH4M3FPRns0so53na4E7B4IfAMMwbjUM40IJfiZstPPc5X9/h67rmq7rS4AXAg9XrnszQifeKOXmgQcMw3ABBWhC/hYKIUokI0BTlGEYfwT+CKDr+tCnFwLbhzzW5n9fBJwqa+dmkNHOs2EYWwf/rut6BPgXYIusl5i4Md7TAO8D5gF/A3ykcj2bWcY4zyuB+3Rd/w/gjUAYuBX4oGEYvRXs5rQ3xmfH/bqufw74JN76FQ0vqP/nyvZyevPfk7cMfkzX9VcCF+K9bz+N/C0UQpRARoCmpwTesP9gef97rMJ9OS/ouh7CG5lYA7yzyt2ZcXRdX4c3f//1MrWwrOrwAp9L8KYQvQ1vutbv/RE4EQBd1xvwgs1vAE8FXgksB75VxW5Ne7quPwO4Efi9H4DK30IhRElkBGh6ygHRIY8NfNhnKtyXGU/X9Vrgl8CzgVcYhnHO9C1ROl3XY8BPgU8ZhrGt2v2Z4YpAGnitYRgmgK7rbwQexVtE/lgV+zaTfB5oMAzjb/3ft+i63gPcoev6lw3DeLKKfZuWdF1/Kd7nxMN4a9lA/hYKIUokI0DT0zFg/pDHBn4/XuG+zGj+ovz7gacDL/DvOopgXQasBT6u63pa1/U08G/AIv/311e3ezNKK2AMBD++nf73pVXoz0x1BecGkwPrf1ZWuC/Tnq7r7wZ+izcd7oWDyhDI30IhREkkAJqe7gOu1HVdG/TY1XgXNjLnOSC6rjfiLaidDVxhGMbdVe7STPUosAJvWtZ6/+vbeHP51wN/qFK/ZqL7gEt0XY8Peuxi//v+KvRnpjqGlxxhsIHzvK/CfZnWdF1/B/A14OvAq4dMkZW/hUKIksgUuOnpRuCDwA26rn8Bb475e/Hq1Ijg/A9evZRrgQ5d1+cOeq7DMAy7Ot2aWfy7uWddfOu63g1YhmHIRXmwvg28G/ipnwih3n/sbsMwtlS1ZzPLl4C/6Lr+SeAHwGK8+mG3GIbxRBX7Na3our4Sr8jp74DPAi2DEk7kkL+FQogSyQjQNOTf2Xo+oOMVhbser97ED6vasRlE13UVr+hpBG8U6MSQrwuq1zshSuNnL7wSL/vbI3hZzB4FXl7Nfs00hmHcBrwYr4bNE3gX6rcAr6pit6ajV+C9V1/OuZ/BX5G/hUKIUimu61a7D0IIIYQQQghRETICJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhJiWdF1Xqt0HIYQQQkw/EgAJIaYdXddfAvzQ//kqXdddXdevqm6vJk/X9cO6rv+g2v0QQgghZrJQtTsghBAleP+gn7cAlwO7qtSXIL0cSFW7E0IIIcRMJgGQEGJaMwwjBTxc7X4EwTCMrdXugxBCCDHTKa7rVrsPQggxbrqu3wM8a9BDzwbuBp5tGMY9uq5/HHgN8GHgU8ByYA/wDsAFvgKsAw4A7zEM485BbV8EfA54pv/QncC/GIZxcIJ9PAzcBNQDbwCiwB+AfwLeBfwzUAvcAbzNMIyuQfvdYxjGm3RdXwIcAl4FvBp4PmABvwHeaxhGeiJ9EkIIIYRH1gAJIaabdwJb/a/LgbphtrkA+BLwabwAogn4NfAz4Ht4AZIK/FzX9TiArusrgb8CLcCbgLcAy4AHdV1vKaGf7wcW+8f6DPA64HHgecDbgI8DLwU+MUY73wEOAy8DvgD8A/DREvojhBBCCGQKnBBimjEMY5eu6yn/54dHSH6QAN5pGMZfAHRdXwN8FniLYRg3+o+F8IIiHXgCuB7IAc/1p9Wh6/qdwEHgA/7XRPQDrzYMwwLu0HX9jcB84DLDMPqAW3Rdfw7wjDHa+T/DMP7V//lOXdevAV4MfGSC/RFCCCEEEgAJIWauvw76ud3/PnitUJf/vcH/fjXeVLqsHxyBl5DgfuCaEo7/qB/8DO5Dyg9+Bvfh4jHaeWjI763AkhL6I4QQQggkABJCzFADozhDZEfZZRbeWptXD/NcRwldmOjxRzJ0HweZviyEEEKUTAIgIYTw9OIlJfjvYZ6zhnlMCCGEENOQBEBCiOnIBrSA27wXWAM8MTB1Tdd1BfhfYD/eOiEhhBBCTHMSAAkhpqNe4HI/iUB9QG1+Am+9zZ90Xf8WkMdLW/0y4BUBHUMIIYQQVSbzyIUQ09HXARP4MxAPokHDMLYBV+LVCvoxXoa4ecDLDMP4bRDHEEIIIUT1SSFUIYQQQgghxHlDpsAJIcQ46LquMo5R8yGpr4UQQggxxcgUOCGEGJ8b8abdjfql6/qSanVQCCGEEGOTESAhhBifj+OtPRpLW5n7IYQQQohJkDVAQgghhBBCiPOGTIETQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDf+P8g1wXYS4vGjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd \n", + "\n", + "# Load the sample chromatogram and fit the peaks using default parameters.\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'}, \n", + " time_window=[10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, this looks like a very good reconstruction of the chromatogram, but \n", + "it would be nice to have a quantitative measure. \n", + "\n", + "## The Reconstruction Score\n", + "Quantifying concentrations from HPLC data requires a measure of the **A**rea **U**nder\n", + "the **C**urve (AUC), or more correctly stated, the integrated signal over a \n", + "given time interval. A perfect reconstruction of the chromatogram, resulting from \n", + "summing over all constituent peaks in a mixture, would yield an identical AUC\n", + "over any given time interval as the integrated signal of the original chromatogram. \n", + "This can be defined mathematically as \n", + "$$\n", + "\\frac{\\sum\\limits_i^{N_\\text{peaks}} \\sum\\limits_{t=0}^{t_\\text{max}}S_i(t)}{\\sum\\limits_{t=0}^{t_\\text{max}}S(t)^\\text{(observed)}} = \\frac{\\text{AUC}^\\text{(inferred)}}{\\text{AUC}^\\text{(observed)}} = 1, \\tag{1}\n", + "$$\n", + "where $i$ represents the $i$-th component signal, $N_\\text{peaks}$ denotes the number of \n", + "peaks in a given peak window, and $t$ denotes the discrete time point.\n", + "In peak windows where the constituent signal is very small $S_{i}^\\text{(observed)} \\rightarrow 0$,\n", + "even small deviations between the inferred mixture and the observed signal can cause \n", + "this quantity to be much larger or much smaller than one, even if the total integrated \n", + "signal difference is small. \n", + "\n", + "To account for this fact, we can modify Eq. 1 as \n", + "\n", + "$$\n", + "R = \\frac{1 + \\text{AUC}^\\text{(inferred)}}{1 + \\text{AUC}^{(observed)}}, \\tag{2}\n", + "$$\n", + "which we term a *reconstruction score* or $R$-score for short. \n", + "\n", + "In practice, you'll never get an $R$-score of exactly 1, but you can get close. \n", + "For example, an $R$-score can be computed for the chromatogram reconstruction \n", + "shown above by calling the `_score_reconstruction` method of a `Chromatogram` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_typewindow_idreconstruction_score
0peak10.997252
1peak20.995222
0interpeak10.390152
1interpeak20.000200
2interpeak30.084916
\n", + "
" + ], + "text/plain": [ + " window_type window_id reconstruction_score\n", + "0 peak 1 0.997252\n", + "1 peak 2 0.995222\n", + "0 interpeak 1 0.390152\n", + "1 interpeak 2 0.000200\n", + "2 interpeak 3 0.084916" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Compute the R_score for the above chromatogram\n", + "scores = chrom._score_reconstruction()\n", + "scores[['window_type', 'window_id', 'reconstruction_score']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the two peak windows (rows 1 & 2), the $R$-score is very close to one, within 0.01.\n", + "Whether that is sufficient for your case or not is up to you, dear reader. My job is just \n", + "to give you that number. \n", + "\n", + "## Scoring the regions between peaks\n", + "But what about the interpeak regions? These windows correspond to the chromatogram \n", + "signal that lies outside of peak windows -- thus, an $R$-score is a measure of \n", + "how well you are reconstructing the subtracted baseline. As there will almost always \n", + "be 0 inferred signal in this region, your $R$-scores will typically be terrible and \n", + "close to 0. \n", + "\n", + "While this will *usually* mean you are just not reconstructing the signal noise, \n", + "a terrible $R$-score in an interpeak region may mean that there are peaks present, \n", + "but your choice of a prominence filter is not detecting them. In this case, \n", + "it is better to have a measure of what the noise-to-signal ratio is in these regions. \n", + "\n", + "Mathematically, we can compute this as the [Fano factor](https://en.wikipedia.org/wiki/Fano_factor) of the region,\n", + "which can be thought of as a measure of the \"predictability\" of the signal in this \n", + "sequence. This can be computed as \n", + "\n", + "$$\n", + "F = \\frac{\\langle S^2 \\rangle - \\langle S \\rangle^2}{\\langle S \\rangle}, \\tag{3}\n", + "$$\n", + "where $S$ is the signal within a peak window. If the Fano factor is small, then \n", + "the region is likely background noise whereas a large Fano factor would indicate \n", + "there may be a peak present and you need to adjust your peak detection criteria. \n", + "\n", + "But what determines if it's big or small? As all chromatograms have a peak (why \n", + "else would you be using `hplc-py`?), we can compare the Fano factor of the interpeak \n", + "regions to the average Fano factors of the regions where we know there is signal. \n", + "If this quantity, which term the *Fano ratio*, is close to zero, then it is likely \n", + "the interpeak region is just noise and you are not missing anything substantive. However,\n", + "if the Fano ratio is *not* close to zero, there may be a peak present. Again, \n", + "what determines \"close\" to zero is arbitrary. \n", + "\n", + "\n", + "## Generating a chromatogram report card\n", + "In `hplc-py`, you can automatically generate \"report\" cards by calling the \n", + "`assess_fit` method of a Chromatogram object. For the chromatogram above, the\n", + "report card looks pretty good!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Generate a report card with the default tolerances\n", + "scores = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This report card is telling you that the two peak windows seem to be really well \n", + "reconstructed, whereas the interpeak regions *may* be poorly reconstructed and \n", + "you should take a look. If you have a sense of what the relative tolerances \n", + "should be (meaning, you have made a subjective decision of how close or far from 1.0\n", + "you deem to be successful), you can pass different tolerances to `assess_fit`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Assess the fit, but with different tolerances.\n", + "scores = chrom.assess_fit(rtol=1E-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In either case, `assess_fit` will still print out the $R$-scores and Fano ratios \n", + "for you to make your own call on what is good or bad. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assessing the fit ≠ computing uncertainty \n", + "\n", + "If you take one thing away from this page, please let it be that an $R$-score \n", + "is **not** a measure of the uncertainty in your reconstruction. It is solely \n", + "to be used as discriminator for you to make a judgement call of whether \n", + "you are properly reconstructing the signal.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/methodology_baseline_11_2.png b/.doctrees/nbsphinx/methodology_baseline_11_2.png new file mode 100644 index 0000000..e1e8482 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_baseline_11_2.png differ diff --git a/.doctrees/nbsphinx/methodology_baseline_2_1.png b/.doctrees/nbsphinx/methodology_baseline_2_1.png new file mode 100644 index 0000000..6c8d111 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_baseline_2_1.png differ diff --git a/.doctrees/nbsphinx/methodology_baseline_5_1.png b/.doctrees/nbsphinx/methodology_baseline_5_1.png new file mode 100644 index 0000000..f7bfa17 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_baseline_5_1.png differ diff --git a/.doctrees/nbsphinx/methodology_baseline_7_1.png b/.doctrees/nbsphinx/methodology_baseline_7_1.png new file mode 100644 index 0000000..e7383c1 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_baseline_7_1.png differ diff --git a/.doctrees/nbsphinx/methodology_baseline_9_1.png b/.doctrees/nbsphinx/methodology_baseline_9_1.png new file mode 100644 index 0000000..9625c70 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_baseline_9_1.png differ diff --git a/.doctrees/nbsphinx/methodology_fitting_14_1.png b/.doctrees/nbsphinx/methodology_fitting_14_1.png new file mode 100644 index 0000000..820e1a9 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_fitting_14_1.png differ diff --git a/.doctrees/nbsphinx/methodology_fitting_3_1.png b/.doctrees/nbsphinx/methodology_fitting_3_1.png new file mode 100644 index 0000000..889447d Binary files /dev/null and b/.doctrees/nbsphinx/methodology_fitting_3_1.png differ diff --git a/.doctrees/nbsphinx/methodology_fitting_6_2.png b/.doctrees/nbsphinx/methodology_fitting_6_2.png new file mode 100644 index 0000000..c672263 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_fitting_6_2.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_10_1.png b/.doctrees/nbsphinx/methodology_peak_detection_10_1.png new file mode 100644 index 0000000..80a4109 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_10_1.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_12_1.png b/.doctrees/nbsphinx/methodology_peak_detection_12_1.png new file mode 100644 index 0000000..034edd9 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_12_1.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_2_1.png b/.doctrees/nbsphinx/methodology_peak_detection_2_1.png new file mode 100644 index 0000000..b17d060 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_2_1.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_4_1.png b/.doctrees/nbsphinx/methodology_peak_detection_4_1.png new file mode 100644 index 0000000..73dd00c Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_4_1.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_6_0.png b/.doctrees/nbsphinx/methodology_peak_detection_6_0.png new file mode 100644 index 0000000..b4a91ee Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_6_0.png differ diff --git a/.doctrees/nbsphinx/methodology_peak_detection_8_2.png b/.doctrees/nbsphinx/methodology_peak_detection_8_2.png new file mode 100644 index 0000000..0993914 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_peak_detection_8_2.png differ diff --git a/.doctrees/nbsphinx/methodology_problem_1_1.png b/.doctrees/nbsphinx/methodology_problem_1_1.png new file mode 100644 index 0000000..2ef6199 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_problem_1_1.png differ diff --git a/.doctrees/nbsphinx/methodology_problem_3_4.png b/.doctrees/nbsphinx/methodology_problem_3_4.png new file mode 100644 index 0000000..f1485f6 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_problem_3_4.png differ diff --git a/.doctrees/nbsphinx/methodology_scoring_2_2.png b/.doctrees/nbsphinx/methodology_scoring_2_2.png new file mode 100644 index 0000000..d1ef618 Binary files /dev/null and b/.doctrees/nbsphinx/methodology_scoring_2_2.png differ diff --git a/.doctrees/nbsphinx/quickstart.ipynb b/.doctrees/nbsphinx/quickstart.ipynb new file mode 100644 index 0000000..322d8ab --- /dev/null +++ b/.doctrees/nbsphinx/quickstart.ipynb @@ -0,0 +1,1125 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3574.88it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:09<00:00, 4.86s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5947213.90547143163.8800695.179666e+062
014.450.349615-2.99574234698.9663174.163876e+063
015.530.3139991.62113515061.4147981.807370e+064
016.520.3472751.99020210936.9918121.312439e+065
017.290.3480011.70371512525.2861051.503034e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594721 3.905471 43163.880069 5.179666e+06 2\n", + "0 14.45 0.349615 -2.995742 34698.966317 4.163876e+06 3\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4\n", + "0 16.52 0.347275 1.990202 10936.991812 1.312439e+06 5\n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks()\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD300lEQVR4nOzdd3gUVdsH4N/M9k2y6ZVACIEMvYOKKCBNFFH8Xl9RBAUbKGJDiiAgiKIvAgYFlS4gKqiI2BEsIDYQBZIM6b33ZPvMfH/sLoaQumySTfLc18WVZOfMmbOTYTPPnHOew0iSBEIIIYQQQgjpCNjWbgAhhBBCCCGEtBQKgAghhBBCCCEdBgVAhBBCCCGEkA6DAiBCCCGEEEJIh0EBECGEEEIIIaTDoACIEEIIIYQQ0mFQAEQIIYQQQgjpMCgAIoQQQgghhHQY8tZuQDtVCkAFIKeV20EIIYSQxgsFYALg08rtIIQ0I0aSpNZuQ3tkkCRJLYrNc25ZlkFz1U3+Ree5ZdB5bhl0nlsOneuW0RznmWUZMAxjBKBxacWEELdCPUDNI0cUpcji4iqXVyyXs/D19UB5uR5Wq+jy+okNneeWQee5ZdB5bjl0rltGc51nPz8PyGQMjd4gpJ2jOUCEEEIIIYSQDoMCIEIIIYQQQkiHQQEQIYQQQgghpMOgAIgQQgghhBDSYVASBEIIIYQQN3b69Gkv2FJ004NrQmonAsgZMmRIRWMKUwBECCGEEOKGTp8+zQJ4nmHYmQzDKAAwrd0mQtyUJEmS5fTp0+8BeHnIkCH1poekAIgQQgghxD09L5PJ5+p0vmalUq1nGIYWmCKkFpIkMWazUVteXjJXEKwA8FJ95SkAIoQQQghxM6dPn9YxDDtTp/M1e3n5FrV2ewhxdyqVxgDAv7S0aObp06ffqG84HI0lJYQQQghxPyEMwyiUSrW+tRtCSFth7ylVwDZnrk4UABFCCCGEuB8WAEPD3ghpPPv/FwYNxDgUABFCCCGEEEI6DAqACCGEEEIIIR0GBUCEEEIIIaTDiIlZH3bHHTf3a+12NFZ8fKz66NFvvVu7He0JBUCEkDYhOzsLGzb8D3/9daa1m0IIIYS0mMWLn+0RG3veo7Xb0Z5QAEQIcXuiKGL+/DnYvXs7Hn30AWRmZrR2kwghhJAWQnkwXI3WASKEuL0///wd1xlNuC68C77Oz8OhQx9j3rynWrtZhBDS4kRRhF6vb7UH2FqtVmTZph1+5MihQ/7v/+7O+eGH7/0tFgv7xhtb4rVarbhp04bwf/75S1dVVSXz9va2jhkzrujJJxdkxcXFah599IHemzdvi+vff6AeAJ566rGo8+f/0X399Q9/yeVySJKEW28dN+D++2dn3X339MKaxywsLJCvX/9a+Jkzf3gLgsBER/esfOaZRRlRUd1NjjLvvrs5+MiRQ8EVFRXy7t17VC1evDzVsb22NoeHdza/885boT/+eMy/pKRE0alTJ+OMGbOyb7751lIAOHDgA//9+/eEzpr1UNb27e+Gl5WVKnr16lOxbNmLqbt2bQ/54Yej/nK5XJoy5c68OXPm5QKAyWRi3nxzQ9iJEz/5FhcXKdVqjThgwMCyxYtfSPfz8xfuuOPmfoWFhcqPPno/9Ny5s15bt77Hl5QUy958c2OnP/741aeiokIeGRlV9cgjj2Vde+2ISsd7O3ToY799+3aHFhQUqLp06WIYM2Z80fbtb3c+ceLP0878TliWder9uSsKgAghbu+PX05gfGAw1DIZfispxsVTJ2G9737IfXxbu2mEENJiRFHEvff+X8/4+LhWGw7Vs2fvyvffP8g3NQj69tsvA1955fUEQbAyPXpEm+699/96e3v7WF59deNFLy8v4ccfj/ls3bqlc+/efasmTrylNCAgwHzq1Eld//4D9YIgIDb2vJfJZGL/+uu0x7Bh11SdPXtGW1FRLr/ppvGlNY9ltVrx5JNzowFGWrny5SR/f3/rpk0bwp999onogwc/PwcAhYWFyvPn//F65ZX1CWaziXn55RcjX375xa7bt+/h62rzU089FpWcnKR94omn0yMjo4xff/2F35o1K6NYlk2cMGFSGQAUFRUqDx/+NOill15L1Our2BdeWNRj1qzpfcaOHV+4efP2uC+/POy/d++uTqNGjSnt1auP8fXX14b/9tspn0WLlqZ27tzFxPO8Zt26l7u+885bYUuWLM/Ytm1P3OzZ03tff/2o4kcemZsjCALmz58TbbFYmEWLlqUEBgZZPvzw/aDFi5+J3rhxc/zAgYP1R49+471+/auRM2fOzhw9emzpb7/9otu27e3OV/s7ceb9NekiaUEUABFC3F7JX6ehVqhgUKlwU0AQbtJ4oOjETwiefHtrN40QQlpY21wXaNSom4oGDhysBwCDwcDcdNP4ookTJ5V07hxhBoCuXR/MP3Dgg5DExIuaiRNvKR069JrSM2f+0AHIPXv2jIdMJpeio3tW/vHHb17Dhl1T9fPPP/r06MFVBgYGWWse6+TJn3RpaamanTvfP9+jR7QJAJYuXZm6a9e2kOLiIjkAyGQyafXqV1O8vb0FAJg0aXLB3r27OtXV5osX49V//vm7z8qVaxLHjZtYBgDz5j2Vk5ycqN23b3eoIwASBIF55plFaY6b/379BpRfvBjv+dxzz2cyDINHHnk856OP9ocmJFzU9OrVx9irV++qMWPGllx33chKAOjcOcL83Xdfl6emJmsAICAg0MqyrKTRaERfXz/h2LHvdCkpydqtW3dfcBxj2bIX0y9ejPfYt293yMCBg5M/+GBfyLXXjih+6KE5eQDQvXuPgszMDNXnnx8KvprfiTPv72qumeZEARAhxK0ZDAZoiouB4FDo+g9AZU42AKDkIo/gBvYlhJD2hGVZvP/+Qb6tDYEDgPDwzpeGnmk0GmnGjFn5X375ue/evbs9srOzVGlpKdrS0hKFIIgMANxww+iyFSueDzQYDMxvv53y6tOnb0WnTp2Nf/99Rgcg948/fvO+8cbRxbUdKyHhokar1QqO4AcAgoNDrIsWLct0/Ozt7W11BD8A4OWlE8xm82VvrHqbeT5eAwBDh15TWb1Mv34DK957b3t49de6d//3uCqVSgwMDDYxDAMAUKvVEgCYTCYWAKZOvav4559/9Fq//tVOWVmZqszMDE12dpa6Z89elx3HITExQaPRaIXqwQXDMOjdu2/lmTN/6gAgNTVZO3LkjSXV9xswYFBlzQCoqb8TZ96fu6IAiBDi1pKTE9HDwxMA4N9vAIQ/fgUAmLOyW7NZhBDSKliWhaenp9ja7WgqlUp9qc16vZ599NEHOKPRyN5ww6iSCRMmFQ0YMDB93rxHejrKXHfd9RUKhVz89deTXn/9dVo3ZszY4oiIrqbDhz8JychIU6amJmtXrlyTXNuxZDK55LghrwvLsg32pFVvc12JCERRYGQy2WUbFQrFZT+zbN1tWbXqhS4nT/7kN3r02KJrr72+rGfP3jn79u0OKSoqUNZWXpJqf2uiKEIul0u247GSJDXcUdjU34kz789dUQBECHFriRd5dNfahruro7pD3TkCyMiAorwMkiiCceJJJCGEkNbz44/HdCkpydpPPvni76CgYCsAlJQUy8rKyuSOQEOpVEoDBgwq/+mnH3wSEi56Ll78Qlp4eGczwzDS5s2bwkJDw4zVExpU161blLGqqkqWnJyk6tYtygQARUWF8nvuubPvSy+9luBMm6OjexoA4M8/f/N0DIEDgHPn/vbs1KmzwZk6i4uLZN9++1XgokVLk2+7beqlHpvMzHS1Wq2pFnz9G2B07x5t0Ov1sri4C+rqvUCxsRc8w8O7GAEgIqKrITb2gieAfMf2CxfO1TtvrDG/k/aE7hwIIW4tL/Y8FCwLC8tCERSE4GgOJkGATJJgyc9vuAJCCCFuJTg4xAwAhw9/6p+Rkab87bdTngsWzO8uCAJjNlsu3e2PGDGy9Pjx7wN0Oi9rVFR3k0qlkjiuV+WJEz/6X3vtiNK66r/hhlHlkZFR+lWrlkWePv2HR3x8rHrlyqVdvb19LAMGDNI702aO62UcOHBwWUzM+i5Hj37jnZiYoHrzzY2hp0//4fPf/96T50ydOp23oNFohRMnfvJJTk5Sxcae16xY8XxEamqK1mL59zyo1WohKytTlZ+fJx81akxZ584RhlWrXuj2yy8/e128GK9evXp5l8zMdM20affmAcC9987M+e23X3y3b38nODk5SXXw4If+X3zxeVB9bWns76S9oACIEOLWCtLTUWg2weztDYZhENktCnlm20M/S9EVmU8JIYS4ucGDh+pnz34k4/DhT4NmzpzW99VXX+rat++Aiuuvv6GY5//NcDdmzLgyURSYvn0HlDteGzRoSLkkSRg16qbSuupnWRavvbYhMTAw2Lx48bM9nnhiTk+ZTCatX78pQaVSOd2dsXbt+uThw68tXb/+ta4PPTSzz2+//eLz/PMrk269dUpJw3tfSS6XY9myF5PT09M0Dz54X5+FC5/uYTKZ2PvueyArKytDU1VVxQLA7bf/X/6ZM394P/nkY9FyuRwxMVsudu3aTf/ii8ui5sx5sFdqaopm7dr1F4cMGV4FAGPGjCt//PEn044c+Sxw9uzpfb744rPAiRMnFTiGyNWmsb+T9oJpzBhB0mTJgiBGFhdXubxiuZyFr68HSkqqYLW2uSHAbQad55bRmPN8220TkJGRju3v7sKQ4dciLS0Vvy14CgO9fRB0/yz43DCqhVvd9tD13HLoXLeM5jrPfn4ekMnYFADdXFapk06fPt2TZWVfBwV1qlQq1W6bTYu4n1OnTngGBARZqieB2LJlU8i3334V8OmnX55vzbY1N7PZqM7Pz/IUReHmIUOGxNdVjuYAEULcliiKyM3NAQCEhtuWMAgODsEvxUVIqqrEw75+rdk8QgghxO38+usv3j/8cMxv4cLnUyMiuppiYy9oDh/+NHjSpMkFrd02d0EBECHEbRUVFcJisYBlWQQF2bJ3qtVq/C0KKMnOxJ0KBQJauY2EEEKIO3nssSezDQYDu3btS5EVFeVyPz9/8+2335n38MNzc1u7be6CAiBCiNvKycpETN+BKAfAmE2A3PaRFRoaipKSYuTl5YDjrsjQSQghhHRYKpVKev75FRkAMlq7Le6KkiAQQtxWQXISQtRqdFOpwKo1l14PCQpBsEqFsvg6h/cSQgghhNSKAiBCiNsqT08DAFTK5Zet9xPlH4BN/QYh6s8/WqtphBBCCGmjKAAihLgtU65tuLJZq73sdc9g23wguShCtFhavF2EEEIIabsoACKEuC2mrNT21e/ybG/egUGwirbUt0JFRUs3ixBCCCFtGAVAhBC3pdLbFuxWh4Re9rp/QCAqrFYAgFBJARAhhBBCGo8CIEKI2/Ky9/LoIrpe9rq/vz/Krbahb9QDRAghhJCmoACIEOKWKisrUWQ0othsRlCP6Mu2+fsHoMzeA2QtL2+N5hFCCGmkkSOHDjlw4AP/xpb/4YfvdVOn3tJ39OhrB7/66prw5mxbY8TErA+7446b+7myzqack8zMdOXhw5/6uvL4HV2rrgPEcdxoAMfr2JzC83w3juMGAngDwFAARQBieJ5fV60OFsAKAA8B8AVwAsBjPM8nVitz1XUQQlpWbm42Xk6Ih07njZ8iu122zc/PDxX25AdVhfnwbo0GEkIIaZSPPz7yt07nLTS2/NatW8KDg0NMb7yx+aKnp1ej92tLmnJOXnzxha5BQUHmKVOmljR3uzqK1u4B+gVAaI1/EwBYAbzMcZw/gO8AXIQteFkBYDXHcbOq1fECgDkAHgZwHQAJwFccxykBwBV1EEJaXnZ2NgAgNDTsim0KhRL/mIw4mJ0Jgzc9FCOEEHcWHBxi1Wg0UmPLV1VVyXr37lPVpUtXs5+ff7sMgJp2TiSmeVvT8bRqDxDP82YAuY6fOY5TANgA4GOe57dxHLcEgAnAXJ7nrQDiOI7rAWARgJ32AOVZAAt5nv/SXsfdALIB3AngAwCPuKAOQkgLy83NAQCEhobWuj1FqcDx1BSM16gR1ZINI4QQ0iQjRw4d8uSTC1Lvumta0dKlz3UVRZHx9fWzHD/+vb/JZGT79x9YvmTJ8rTg4BDryJFDhwDARx/tD/3oo/2h779/8FznzhHmrVu3BH/11ZGgsrJSeUhIqOmuu+7JnTr1P8UA8MsvP3stXPh09MyZszM//vij0ICAQNNLL72aPGPGf/vec8+M7C++OBykVCrEXbs+iGUYBuvXvxr++++nfKxWKxMZGaV/7LH5mQMHDtY72rt//56AAwc+CCkpKVYOGDCoLCgo2Fzf+3v44Zlcnz79K0pKihUnT/7kp1AoxMmT78ifMGFS8dq1q7smJyd6hISEGRcufD510KAh+urnZPz4m0tnzvxvn65du+ljYt5OBICffvrBa+nS56KXLFme9OmnB4Lj4mI94+JiPe+442avQ4e+PnfHHTf3u+mmCUXz5z+TXb0NQUHBpjVr/pda2/l4770P4vLychUbNvyv89mzZ3QyGStFR/esevLJBRlRUd1NzfF7d2et3QNU0+MAOgN42v7zDQB+sgcuDscAcBzHBQEYCMDL/hoAgOf5UgBnANzowjoIIS1M/c/feLPfIIxSqWvd7udnGzpdUkIjAgghHYtgMLB1/RNNJqYlyl6NU6dO+paXl8vfeGMzv3z56qS4uFivN9/c2AmwDQ3z8/Oz3Hbb1LyPPz7yd6dOnc0bNrzW6YsvDgc9/viT6du3742dOvU/eW+9tTFiz55dgdXr/e23Uz6bN2+LW7z4hVSZjJUA4IcfvvfbsOFNfuXKl5O8vb2Fp556rEd2dpbqpZdeS9y8eVt8z569qp566rGe5879rQGAw4c/9X377Te7TJ36n7ytW9+70KtXn6qvvjoS1NB7OnToYEhQULB527Y9FyZPvj1///49YYsWPd3j7rvvzX3rra1xSqVCXL/+1Yia+/n4+AjPPbc05a+/Tnt/9tknfsXFRbLXXlsTOXbshMJbbrmt9LXXNib26BFddd1115ds27Ynrinnufr5MBqN7BNPPMqJooANG97iN2x4i9fpvK2PPfZgr+zsLEVT6m0PWrUHqDqO49QAlgLYyPN8jv3lcADnahR1RLtd7NsBIKOWMl1cWAchpKWVliBIpYJZ61HrZl8vHUJVapiyM1u4YYQQ0rqSnpg7qK5tmmiurPPCJZfmMCc/M3+AZLHU+sBb1TWyMmLZCt7xc8qiZ/uJen2t94bKsE76rqvWNOkGvM42ajTCihUvpSkUCik6uqfx1KmTRadP/+EN2IaGsSwraTQaMTg4xFpVVcV+/vmh4AULlqSMGzexDAAiI7uZcnKyVR9//EHIjBkPFDjqvfvue3MdvRnp6alKALj11ikFHNfLCAA///yjV0IC73Ho0Fd/BwQEWgHgmWcWZcXGXvD84IO9wf36DUj95JOPgkeMGFkyY8asAgDo3r1HblzcBY/U1OTLV+SuoXPnLobHH38yBwBmzXokb//+vWE33DC6eMKESWUAMGHCpKKtW9/uXNu+N9wwqmLSpNvy3377zc7ff/+tn4eHh7Bo0bJ0APD19RPkcrmkVCpFR5sbq/r5+PDDfQEVFeXytWvXpygUCgkAVq16JfXOO2/td/Dgh4HVe5M6ArcJgADMAKABEFPtNS1sw9eqM9q/qu3bUUcZx8qJrqjDKXK56zvYZDL2sq+kedB5bhn1nWe53gCwLLShobX+X+qh0eDRfgNRdeYM5A/R76k+dD23HDrXLYPOc9sWHBxictyEA4CHh6dgtVpr7WG6eDFebbFYmNdfX9t1/fpXuzpeFwSRsVotjMFguLRf166RVwzl6tIlwnHPh/j4WC0A3H33HZdldLNarYzFYmYAICMjXTN69Nji6tt79+5b2VAAFBYWfuk4Wq1WBIBOnTpdao9SqRKtVkudvWjPPLMw88yZP7zPnPnTe8uWHbFNmTNVl+rn4+JFXmswGGQ33zx6YPUyFouFzchIq32oRTvmTgHQTNjm/hRVe80AQFWjnOOXVGXfDnsZQ40yVS6so8lYloGvb+1Prl1Bp9M0W93kX3SeW0Zt51krWAFWiZDoqFr/L3kG+AGFRZBZLc36f609oeu55dC5bhkd9TxHbdryV13bGJa97Ma52/qYvxtbNvLV12uOmKmz7NWoHvz8q/bqRVFkAOD551ckd+vW3Vhzu0qlurSjWq0Wa25Xq9WXtouiyGg0GuGdd3Zd0ZOlVCpFAGAYBlKNpsjl8gbfu1wuu6IMwzQ+QM/Ly1WUlpYoZDKZdOrUCV2/fv0N9e9x+eGsVuGK4Kr6+RBFEaGhYca1a9dfkeHYw8OjXSaaqI9bBEAcxwUCGAHg5RqbMgDUTAHl+DkLgKLaa0k1yjj+w7uijiYTRQnl5fqGCzaRTMZCp9OgvNwAQbji/zlxETrPLaOu82yxWODD2v5weIZ1RknJlc8iWI0t6JFZrLVuJ/+i67nl0LluGc11nnU6TZvoVZJpNI1+081VtqV07x5tlMlkUk5OttIxBA4Adu3aFpSWlqJesWJNemPriorqYTAYDDKz2cT07Nn7UjC1fPmSiO7de+hnzpxdEBHRVX/+/N+eAPId23k+rlmfsomiiFWrlkVGRETqJ0y4uWjLlk1dRoy4obxv3372IIi5LNqRyeRSZWWVrPr++fl5yrCwsCsCRIdu3aIMP/543F+n0wmOoXRWqxULFz7dbcyYm0puu61jpdh2iwAItuBHAvBjjdd/AjCH4zgZz/OO6HQsAJ7n+XyO48oAlAMYDXvwwnGcD4DBAN50YR1OsVqb73NEEMRmrZ/Y0HluGTXPc1ZyCrQy28eTT+fIWn8Hah/bCFWFJMFisoCRya4oQy5H13PLoXPdMug8t3/e3t7C+PE3F+zZs7OTh4eHMHjwsMo///zda9eu7eF33vmf3IZr+NeYMWPLdu7salix4vmoJ554Jj0srJP54MEPAo8fPxowfvzNFwHgnntm5r744tLuW7duCb7ppvGlJ0786P3bb6d8fXx8LM3zDoF3390ckpKSot227b3Ybt2iTD/8cMz3pZeWR+7e/UGcSqWSNBqNmJ+fp8rKylR06hRu6dWrd+WJEz/6nTp1siQwMMiyd++uEINBX+8fwSlT7iw+cGB/6KJFT0c99tj8TJ3OW9ix493Qs2dPez/yyNwONf8HcJ8scAMAJPM8X7PLZAcAHYDtHMf15jjuAQBPAXgFAHieN8EWpLzKcdwUjuP6A/gQtl6fT1xYByGkBeUnJQAAqkQRck3tQ1w8/P5dQFvUu763lRBCiHtYvPiFjNtvvzPvvfd2dnrggXv67tu3O3TatOnZTzzRtIn7MpkMMTFvX+zRI7pqzZoV3R56aEbvf/4567Vs2YtJN9wwqgIAxo2bULZw4fPJ3377VcCDD87oc+LETz5TpkzNa553Bpw794/mgw/2hs2Y8UBWt25RJgBYsuSFtMLCAtWGDa91AoApU+4syMhIV8+ePb2PIAiYN+/prOhornLp0oU9nnji0Z46nc46YsQN9fbgeHt7C5s2vRvv7e1jXbx4QY+5cx/slZ+fp3z55XUJ1XvDOgpGqjnQsRVwHLcZwCCe56+rZdsw2BIjDAKQA+B1nuffrLZdBtvQuVmwJVH4CcDjPM+nurKOJkoWBDGyuNj1w3Lkcha+vh4oKamip17NiM5zy6jrPH+3dzeMRw5D6emFidt21brvr7/+As07W6CRydB1zatQBge3UKvbHrqeWw6d65bRXOfZz88DMhmbAqCbyyp10unTp3uyrOzroKBOlUqlusPdoBLiDLPZqM7Pz/IUReHmIUOGxNdVzi2GwPE8/1g92/4AcEVgVG27ANuipouasw5CSMtJNejxVvwF3H77nZhYRxlvb2+UWK3QyGQQ9TQHiBBCCCGN4y5D4Agh5JKcHNuohpCQ0DrL6HTe+K4gD5/l50Km07VU0wghhBDSxrlFDxAhhFSXk50FAAgNrZnA8V86nTc+zbUFSk94eKLDLWNNCCGEEKdQAEQIcTuT9UZM7zcImnrS23p6ekImk0EQBJSXl0Gt7nDruBFCCCHECTQEjhDiViRJgjckBKlU8A8OqbMcwzAI8fFBqEqNMnuPESGEEEJIQ6gHiBDiVkqKi+Entw1oC+zevd6y/wkJw/UaDxhP/QIMHNwSzSOEEEJIG0c9QIQQt5KblAA5y0KUJGgDg+ovrFQCACyVlS3QMkIIIYS0BxQAEULcSnFqCgCgAhIYWb0LW4NR2eb9WCgNNiGEEEIaiQIgQohbKcvMBAAY5A3ndWPVGgCAaDA0a5sIIYQQ0n7QHCBCiFsxFeQDAAQPjwbLsmo1UFkJmM3N3SxCCHEbDAMZwzCt8hBbkiRRkiC0xrEJcRUKgEizspaWQO7j29rNIG1IQWUF+MoKeERFNVhW4aEFCkEBECGkw2AYyESGCdUbra1yD6dVy60spBx3C4JiYtaHHTv2rf+hQ1+fa+q+iYkJqkceeaD3rl37LnTp0pX+oHQAFACRZpP90Qeo/PZr5HXujBtWrG7t5pA24seiAsTGX8CGRx9rsKxca+slklmtzd0sQghxCwzDsHqjVf7r+RxRb7TWvVhaM9Cq5ey1fUPlXmo5K0mSWwVAzoqNPa9ZvPjZ7maziaaFdCAUAJFmIVmtqPz2awDA17/8DJ9z/6Bfv/6t3CrSFuTk5AAAQkPDGizL+Prhq7wc+EZEYnhzN4wQQtyI3mgVqwyWFg2A7NpNoLB5c0zIwYMfhHbqFG4sLi5StnZ7SMtpNxcxcS+mjHQAQIXVgi/ycnHq1M+t3CLSFhgMBpSWFAMAwsIaDoCUQUHYmZGGU4KluZtGCCHESSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3PntjrXSti1a1vQ6NHXDv7mmy996ipz+vTv3s8993zK3LlPZLrkjZI2gwIg0iz0aakAgOQqW3ri2NgLrdga0lbkZqZj3+Dh2Nx/MDwUDWeB8/DwBABUVdE6QIQQ4s527twaPmbM2OJ33919YejQa8pWr17e/Y8/fvMAgOPHj+rWrFkZNWnS5MIdO/ZdePLJZ9NPnPjRb+nS5yIBQK/Xs88+Oz9ardaImza9Hb9z5/sXRo68sWT79rc7nzv3j6bmsfbu3RW4e/f28GXLViVNnHhLaV1t2r59Lz9p0uQ6t5P2i4bAkWZRmppq+2qxoIeHJ8RMerhCGpaXmAg/loWXQnEpxXVNDAMoFDJYrSI8PbTwliug0hsgiSIYlp7pEEKIOxozZlzhjBmzCgBgwYLFWefP/+114MD+oGHDrknZu3dX6NixEwqnT7+/AAAiI7uZ5HJ52qJFz0Snp6cqtVoPccqUqfn33DMjX6fTiQAwb97T2Z98ciAkISFe069f/0trIezfvzdgx453w1eseClx9Oix5a3zbom7owCINAt9ViaUAHp4eWFUQCBOl5XAarVCLqdLjtStLCMdfgCqWAYMw9RaRq5gkanPRpg2GB5aD2wdOAQAIFRVQu6la8HWEkIIaazBg4dWVP+Z43pVnT17RgcAKSkp2qSkRI/jx4/6O7ZLku1rYmKC+qabxpffe+/M/CNHPvNLSkrQZmVlqtLSUrQAIAjipT8WJSUlii1bYiJkMpkUHt7F1BLvi7RNdDdKmoWlpARKAPlyJcIAeMsVKCkpRmBgncN1CYE+15YAwaxW11nGKBpRUFkEH5UOnjpvlAoC1DIZRKMRoACIEELcklwul6r/LEkSWFYm2b4XmTvu+E/ulClTi2ruFxwcYsnPz5M/8sgDvby8dNZrrx1ROmTI8PL+/QdU3X33HZdlV2IYFqtWvZywY8e7YWvWrIzcvn1PPEsjA0gt6KogzSLZ0wOf5WQj38sHAOCnUKKwsKB1G0XcnqXY9rdPqiOQkclYVFn1yC7Lg95igE7nBaNoy8Qq6PUt1k5CCCFNExt7/rLVrePjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDW7Bt0jaEAqASLP4w6jHvqx0VASGAwC8FQoU5ue1cquIu2MqbCMklP4BtW6XyRiUGStgFiwoN1XA21sHg2ALgPSlpS3VTEIIIU30+eeHgg8d+tgvMTFB9eqra8LT0lI199wzMw8Apk2bnvv777/6xsSsD0tMTFCdOPGT12uvvRxZVVUpDw4OsQYHh5hNJhN75MhnvpmZ6coffzyme/HFZd0AwGw2X3Ev26tXH+PUqXfl7tu3OywpKVHV0u+VuD8aAkeaRUGBrbdH4RcEMfUCZAyD0pzsVm4VcXdKkwlQa+BZxxpAEkSUGcoAAOXGCsh1chhF2zIYhrLSlmomIYS0Oq1a3uIPsa/mmBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAcMUQk7lzn8g5efIn3zVrVnbdtu09nobCkeooACIuJ5pM8KyogL9CCaWHN/QMC09IqMyjHiBSN6vViqSyMrBWKwZ371FrGbNkhcFim9dqtJohQIDZnizBUFbWYm0lhJDWIkmSqFXLrdf2DZWjFUbyaNVyqyRJTV6ANTIyyrBw4dI6U8JOnnx7yeTJt5fUto1hGCxYsDhrwYLFWdVff/DBRy/dWMyf/0z2/PnPXHrSqlKppAMHDjdqDY4RI26oOHHiz9ONKUvaBwqAiMuZMjPwuM4H+T374IJGB71MAU/BDCPNASL1yM/Pw3sZqZDLFfh96LArtjMMYBEtMFptAZDJaoYgCbDaAyBzRcUV+xBCSHsjSRBYSDlerdADZDu+JEoShNY4NiGuQgEQcTmLfS5GqcUMjYcOvG8IPj/9I7ReHvXvSDq07Gzbg73Q0DDUNlSBYRiYRQtMVjMAwCxYYBEtSIKE9LxcXFdP5jhCCGlPJAmCJEkUhBDiJAqAiMtV2ZMdlFks0HrocLFTd3zz9UcYVNqplVtG3FlOViYYAGFhtc//YVkGJrP53wDIaoFVtCJWqcSZjFT08vRswdYSQghpLBpeRtwNBUDE5fT2oW56BvCQK6DRegEAystpQWZSN3NcLPYNHo5cRe0JexiGgd78b6prq2iFWbTA0x74VFVVtkg7CSGEENK2UUoM4nJG+2R0i8wWX3vJ5OA8veBpMLRms4ibMxUWQM6yUGk0tRdggErz5Wv9GC0meHt4wFuugLGk1rmzhBBCCCGXoR4g4nLminIoAAj2J/nhxTlY3bMPfi2lG1RSN6nUFjjL/fxq3S7CCpM9AYKD0WrCAEHCjIFDkMPHN3sbCSGEENL2UQ8QcTlrZRUAQFLZJqWznjoAgJphYDKZ6tyPdGxyg613RxMcUut2QRJhtloue81gMUKmsQXaEl1bhBBCCGkECoCIy+V46/BpThZKNLa5GYzWFgB5yuWoqKB5QORKgiDAw76gqU+XiNrLSALMwuUBkFW0Qqa2DZljrNbmbSQhhBBC2gUKgIjLpahU2J+VgTJPbwCAqNECADxlckqEQGpVUFAAf4UCAODXNfKK7QzDwCJarwiALIIVMrXSVoYCIEIIIYQ0As0BIi5XWWlbkFKlsa37IyhtT+g95DKUl5e1WruI+8rOSIevwhbIqAODrtjOsoBVsMJSSw+QXGu7vmQiLYlBCOkYGAYyhmFoIVRCnEQBEHE5RUkxglUqqFW2nh9RaZsL5CGTo4ACIFKL3Ix0ZBUXoYu/P3p4eV2xnWEYWEULLMLlvTxWUYDcw3adyUSpRdpKCCGtiWEg07CWUMmsb5V7OEaptRpERY67BUExMevDjh371v/Qoa/PNXafAwf2+3/88UfB+fn5Kl9fX8uECTcXPvTQ3FyZTNacTSVugAIg4lKSJGFKaTnu6DcIX8htl5egsj2hZxkGVcXFrdk84qYyCwsQk5KI2/r2xVj2yoeaDMPAYL0yyYFVECBz9ABJYrO3kxBCWhvDMKxk1ssr+d9E0WRo0Q8+VqVhPblr5IzCh5Ukya0CoKY6dOhjv7feeiNizpwn0q+55rqKCxfOaWNiXo8wmy3ME088ndPa7SPNyy0CII7jZgJYDKAbgCQAK3meP2DfNhDAGwCGAigCEMPz/Lpq+7IAVgB4CIAvgBMAHuN5PrFamauugzSOZDJemljmSH4gyeQ4LrJIzUzGYH1V6zWOuK3s7CwAQFhYp1q3MwwDg8V4xetW0Qq1jw4/FhaA8fTEsGZtJSGEuA/RZBAFY1VrPPlpF/PHDx/+NHDUqJuKpk2bXggAkZHdTGlpqepvvvkygAKg9q/VL2KO4+4DsAPAOwD6AvgAwAccx13HcZw/gO8AXIQteFkBYDXHcbOqVfECgDkAHgZwHQAJwFccxynt9V91HaTxBL0tlbFVFCHX/juU6XeNDl/l56K0igIgcqW8zEwwqDsAAqRaAyBBFCAP8MNbqUn4pLiwWdtICCHEOSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3Pntisnjdrt2rUtaPToawd/882XPrVtnzNnXuaMGbNya75eVVXpFp0DpHm16i+Z4zgGwGoAG3ief8P+8mqO40YCGG3/ZwIwl+d5K4A4juN6AFgEYKc9QHkWwEKe57+013k3gGwAd8IWTD3igjpII4lVtgCoUrBCofa49LrKPh+oqqqyVdpF3NuwikrMHTwcloL8WrdbJeGK+T+AbQ6Q0r4OkMG+jhAhhBD3s3Pn1vD7738wc8mS5amfffZJwOrVy7v7+vrFDxt2TdXx40d1a9asjHrooTkZI0bcUJ6enqratGlDl8zMdPW6dTHJer2effbZ+dH9+g2o2LTp7Xi5XCEdOnQwYPv2tzsPHTq8ol+//obqx9q7d1fg7t3bw5ctW5U0btyEWicfDx9+7WVPZEtLS2VffXUkcMCAQZSutgNo7R4gDkBXAO9Xf5Hn+Yk8z78C4AYAP9kDF4djADiO44IADATgZX/NsW8pgDMAbrS/5Io6SCOJRttnkEEQoLDP/QGAALkcnKcnLJQGm9QgiiLUFgvkLAvvoNoXQRUhwCJaat2mUCqgZFnIzWZIIs0DIoQQdzRmzLjCGTNmFfToEW1asGBxVlRU96oDB/YHAcDevbtCx46dUDh9+v0FkZHdTKNG3VT+9NPPpf366y++6empSr2+ip0yZWr+88+vSIuO7mns1i3KNG/e09kAkJAQr6l+nP379wbs2PFu+IoVLyXWFfzUVFlZyS5YML+7xWJm589/NsP17564m9bu5ou2f/XgOO4bAIMApAB4ief5zwGEA6iZzSPb/rWLfTsA1LxYs+3b4aI6nCKXuz6+lMnYy766G9HkCIBEaDQeYFlb7/VNVUW4r2df/FRW1iznxdXc/Ty3FzIZi5ycHPjJbWsABUZ1q/X6sDAWiJJw6XqqTq6SY/egYZAxDMTyUqgCApq93W0NXc8th851y6Dz3PYMHjy0ovrPHNer6uzZMzoASElJ0SYlJXocP37U37Fdsif2TExMUN900/jye++dmX/kyGd+SUkJ2qysTFVaWooWAARBvPSHoaSkRLFlS0yETCaTwsO7XJk5pxZ5ebnyBQvm98jLy1WtXbv+Yteukearf7fE3bV2AKSzf30PwIuwDUv7PwCfcRw3HoAWtuFr1TkmAqjt21FHGT/7966oo8lYloGvr0fDBZ2k02kaLtQKys22AMgoCvDx84XcfmMrKZWAqQqwmJr1vLiau57n9uT8+TQEKG3T7YK6R0Bby/VRrLeAVTBQa66clqf2UKNMFKCVySGHpU1dXy2NrueWQ+e6ZdB5bjvkcvllaxVIkgSWlUm270Xmjjv+kztlytSimvsFB4dY8vPz5I888kAvLy+d9dprR5QOGTK8vH//AVV3331H/+plGYbFqlUvJ+zY8W7YmjUrI7dv3xPP1pJZ1CEhgVcvWPBkD0EQmI0bN/O9e/c11FmYtCutHQA5ouz/8Ty/2/79WY7jBgN4BoABgKrGPmr71yr7dtjLGGqUcYztdEUdTSaKEsrLXT8nQSZjodNpUF5ugCC433CfEkaOT3OyUCaKuNYiwWKx/Yo1MlsgJBiMKClx/0QI7n6e2wuZjEVGYhLC7SnTDXItTDWuD4ZhUCUaUVllgNF65YM5s0aASRShlQH5WXmQBYS2SNvbErqeWw6d65bRXOdZp9NQr1IziY097zF+/M2XhqTFx8d6RkVF6QEgPLyLISMjTd2tW9Slh9GnTp3w/PDD94OXLFmeduTIZ/6VlRXyAwcOn1coFJK9Pnv0+29c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p60tFTlU089Hu3p6Sm8/vqmi+HhnWsfZ03apSYHQBzHyWFLTjAWQCQAbwCFANIAfAXgF57nG7siYab9a80hahcATAaQCiCsxjbHz1kAFNVeS6pR5m/79xkuqMMpVmvz/fETBLFZ63dWhUaL/VkZ8PXzx/BqC1MKClsMypgtbtnuurjreW5P8hISEA7AxLIQZQqINc63TMbCIlhhtlog1rLYqUW0wmwfK1FZUkq/r3rQ9dxy6Fy3jI58nlmVpsUjtas55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgO99JLK7parRb2hRdWJygUCikvL/fSPXFwcMiVWXdIu9LoAMieLW0ubBnTwgGUwBb0VAHoDFvA8jyAbI7jXgXwLs/zDY2//AtABYBrYVt7x6EfgEQAvwCYw3GcjOd5x4JbYwHwPM/ncxxXBqActoAsyd5OHwCDAbxpL/+TC+ogjVRlT3OtVmsve11S2jrdZFb6TCGXK8+0PQexamofysIwtiDHKta+5p4gCnA8tjNVUpZBQkj7JkmSyCi1Vk/uGjlaIZkVo9RaJbHpK09PmDCp4ODBD4I3blyniYiI0L/yyrqEPn1sQ85uvXVKiSRJyfv37wn95JOPQrRaD2Ho0OGlTz+9MNOxPT4+Lnfr1i2dN21azwYEBJonTryl8NSpkz5xcRc8ABTUPN7cuU/knDz5k++aNSu7btv2Hl99KFxOTrYiLu6CFwDMmTOrd819T5z483RT3x9pWxoVAHEcNxzAbgACgC0APuJ5PqmWcv0A3AJgPoAnOY6bwfP8qbrq5XnewHHcawCWcxyXBeB3ANMATIAtSIkFsBDAdnu54QCegm3NHvA8b+I47k0Ar3IcVwBbj9H/YOv1+cR+mB0uqIM0krGwEMEqFXSaywMg2NNgs0KbXjiaNIO0/HycLK9Av959at3OMAzMtQx9cxBEEVbGNgfWTGnWCSHtnCRBMIiKHEbh0ypj9SRREiUJTf5jHhkZZVi4cGlmXdsnT769ZPLk20tq28YwDBYsWJy1YMHirOqvVx/eNn/+M9nz5z/jSHIFlUolHThw+EJt9YWGhlkoyOnYGtsDtAfAYp7nP62vEM/z52AbzvYqx3H/hS1oim5gn5c4jtMDWAOgE4A4AHfyPP8DAHAcNxFADGxpqXMAPFdtvhAALLe/j20ANLD1+Ezked5srz//ausgjaf86ww29RuEHyw1enrUtqf7ijqe4pOO65fUFHxZWoqP1r5e63aGAYzWujuTBVGAcCkAcv/5ZYQQcrUkCYIkSfQHlRAnNTYA6tfUYIDn+Y84jjvUyLLrAayvY9sfAK6rZ18Btuxxi+opc9V1kMYRTbYEe6JMcdnrxqAu+PC7A0g3GDBdksAwV6YzJh1PeXk5SktLAQDh4eF1ljNajXVuEyQB6SyDrKICcPLWzutCCCGEEHfXqLsFZ3tCqAel45FMtif1ouLyS8sS2hUf59h6rg0GPbRaSlVMgIyMdHjLFVB4e9d5TYgQYRHqnjsmiCLOapQ4dSYJqzw9m6uphBBCnETDzYi7aewcoOVNqZTn+VXONYe0efYASFJcvl6LQqECw7CQJBFVVVUUABEAQEZ6Gt7oOwAqmQzmvFwog0OuKCNIQgMBkACN1jbHzGCgJRwIIYQQUr/GjhdZWeNnCQADW1KEQgC+AJSwretTDIACoI7KYsvHJSouX3qJFQV09/aF1WyAXk/zNIhNbmoKutiHrcl9fGstI0KEVawnAJJEqNVqyBkGxoqKOssRQgghhACNHwJ3KdMIx3FjAewHMA/Ax47U0hzH3QxgO2xpskkHxTqe1CsvD4CU5cVY070Hyi2WS6myCSlNSwMAmBQKsKqa6xXbiJJYZwpswNYDNMxoxgNDrkF6UmKztJMQQggh7YczKRTfBPACz/MfVVtXBzzPfw1gGWzZ3EgHxVptl4Rj3R8HUW5LiqBiWQqAyCXGPFsGU9HLq9btDGMbAmetZwicKIlgFLbrSzLTtENCCCGE1M+ZAKgLgPQ6thUACHa+OaSt4xUKfJ2fC4v28hta0T4nSCWTwWTQt0bTiBuSSm1LPigDA2vdzjCMLQCqbwicKIBR2a4vxmKpsxwhhBBCCND4OUDV/Q3gCY7jjvI8f+lug+M4NWwLjv7mqsaRtucURJxIT8W0cd6XvS7K/02KYKykxSoJYLGYobH32HiFd661DMMAgiDAUs8CuqIkgVHbh89ZKQAihLR/DAMZwzCtsxCq5NxCqIS4E2cCoCUAvgGQxHHc1/i31+cWAB4ARrmueaStcQxvU9QYAifJ5BAlCSzD0GKVBACQnZ2FIPtcMe8uXWot4+gBEurpAQIAVm3vAaonUCKEkPaAYSCT5EKoXjC0ysJnGrnGylhlOe4WBMXErA87duxb/0OHvj7X2H12794edPjwp0FFRUXK4OBg0//9339z//vfe4uas53EPTT5Pw/P8z9yHDcCtkDoNgB+sGWCOwpgFc/zNAu5g5JEEWqjATq5HIoaSRDAMLCCsaUKrKIeIAKkpqbg7/JSyD08EFlHAAQwMAtWSA3Uxapsc4BYQXRpGwkhxN0wDMPqBYP898yzosFibNEPPY1CzQ4PHyj3YLxYSZLcKgBqqn37dgfu3r2j09NPL0jt339Q1S+/nNC9+ebGrl5e3sKkSbeWtnb7SPNy6ukBz/NnANzl4raQNk4oL8fTHjqIA4bgeI0eIACwMLZc6VZaq4XAFgB9kZcLdvgw/DeyG6zWK/+OMwxgspoarsyeQU4mUQBECOkYDBajWGU2tMaHXqsMvXO1yspK2cyZs7Juu21qCQBERHQtPHLkUNCff/6mowCo/XO6+5TjuEkAxgMIBfA8gEEATvM8n+aitpE2RjQZAQBGUYBCpb1i+59yDfLTE9Bp4ICWbhpxQ2lpqQCAqKioOsswDANjIwIgwUuDP0qKYfbwwI2uaiAhhBCXGDly6JC5c59I//777/xSUpI8goNDjLNnP5I1YcKkMkeZo0e/8d61a1tYVlamxtfXz3zjjWOK5859IkelUkkAEB8fq3777Tc7xcXFehmNBtbfP8B8221T82fNeii/tmPu2rUtaNeubeFLlixPnjjxltKa2x999PFcx/cWi4X54ovDvllZmeoZM2ZlN8MpIG6myVE8x3FajuO+BfAFgNkA/gvbQqhzAZzmOK6Pa5tI2grRZLtRNQoiFIor13Q5o/XFgexMlIv0lJ4AuWkp8FcqEdWtWz2lJJitDae2tgT54X9JF3G4oqzBsoQQQlrezp1bw8eMGVv87ru7Lwwdek3Z6tXLu//xx28eAHD8+FHdmjUroyZNmly4Y8e+C08++Wz6iRM/+i1d+lwkAOj1evbZZ+dHq9UacdOmt+N37nz/wsiRN5Zs3/5253Pn/tHUPNbevbsCd+/eHr5s2aqk2oKf6n799RfPm24aMXjdulcib7hhdFFD5Un74Ew35ssAhgAYCyAAAGN/fQaALACrXdM00tYI9qFtRlGATHHlEDjHvCADDYEjAAIKi7Gl/2CE/fpHnWUECLDUswiqg1xp68w2Go0uax8hhBDXGTNmXOGMGbMKevSINi1YsDgrKqp71YED+4MAYO/eXaFjx04onD79/oLIyG6mUaNuKn/66efSfv31F9/09FSlXl/FTpkyNf/551ekRUf3NHbrFmWaN+/pbABISIi/LADav39vwI4d74avWPFS4rhxExp8KhYV1d24ZcuO2Pnzn0k9deqE3+uvr+3UPGeAuBNnhsDdDWAJz/PHOY6TOV7keT6X47iXALzlstaRNsVUUQEAMAoClKorHsjAWyZHuFoDkZIgdHgVFRXwsi9u6tM1os5ygiQ2mAEOAORKWxIEs5GCa0IIcUeDBw+tqP4zx/WqOnv2jA4AUlJStElJiR7Hjx/1d2yX7NlvEhMT1DfdNL783ntn5h858plfUlKCNisrU5WWlqIFAEEQHQ/iUVJSotiyJSZCJpNJ4eFdGjGBFAgMDLIGBgZZ+/btZygpKVHs3783bP78Z7OVSmVD+XdIG+ZMAOQDILWObSUAPJ1tDGnbjBXlAACTKEKuUF6xfVR5Hmb0HYCT5eUt3TTiZlJTUxCqsvUSetcTAEkQYW1ED5DKbMH7g4eDZRhIkgSGYRrchxBCSMuRy+WXBRSSJIFlZZLte5G5447/5E6ZMvWKFNTBwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO2DnY4d+04XHt7ZHB3d89LQgaioHgar1cIUFxfJQ0JCaWG5dsyZIXDnAUyvY9tt9u2kAzLZFzi1AKjtA0eQ257SS2b6TOno0tJSEKq2BUDq0NA6y4mSCKvQcA8Qq1VDzrK2AMjacHlCCCEtKzb2vEf1n+PjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDa6rPdu2vR2+c+e2kOqvXbjwj4enp6c1KCiYblTaOWcCoJcAzOA47giAh2C78kZxHLcJwGMAXnNh+0gbYvbwwDf5uYg11T4PQ5Tbe4Us9LnS0aWmJCPE3gOk6RRWaxmGAQRJaFQPkEzzb9INEy20Swghbufzzw8FHzr0sV9iYoLq1VfXhKelpWruuWdmHgBMmzY99/fff/WNiVkflpiYoDpx4iev1157ObKqqlIeHBxiDQ4OMZtMJvbIkc98MzPTlT/+eEz34ovLugGA2Wy+4l62V68+xqlT78rdt293WFJS4pVZmQBMm3ZfzokTP/rv2bMrMDk5SbV//56AQ4c+Drn33pnZdfUakfbDmYVQP+M47j4AawHcYn/5dQD5AObwPH/Qhe0jbYje1w/b01MREtYZ/WvZLtmHxTEUAHV4hcnJULAsRIaBKiAAhvIrg2aGYZoQACkhShJYhoGhogwaH59maDUhhLgPjULd4nfpV3PMCRMmFRw8+EHwxo3rNBEREfpXXlmX0KdPXwMA3HrrlBJJkpL3798T+sknH4VotR7C0KHDS59+emGmY3t8fFzu1q1bOm/atJ4NCAg0T5x4S+GpUyd94uIueAAoqHm8uXOfyDl58iffNWtWdt227T2+ZlAzZcrUEkGwpnzwwb7Q7dvf6RwQEGB+9NF56dOmTS909j2StsPZhVDfB/A+x3EcAH8ApQDieZ6n/MYdmMFge/KuVl+ZAAGoFgAJbXrxaOICptwswEMHUacDI5PVWoZhAEEQYW1EEgRGLoNZFKGWyS4NxSSEkPZIkiRRI9dYh4cPlKMVFiXVyDRWydr0VacjI6MMCxcuzaxr++TJt5dMnnx7SW3bGIbBggWLsxYsWJxV/fUHH3w0z/H9/PnPZM+f/8ylNXxUKpV04MDhC/W1aerUu4qnTr2ruPHvgrQXTQ6AOI47BuAxnufjeZ7na2zrD2Avz/O1dQCQds5QWgovuRwa1ZUpsAFAsqfGllEA1KGJooj4rCwc8qrAf8eNr6ekvQeoEdeLKIowSxLUAIwUABFC2jFJgsBYZTkejFerjNOSrJIoSaA/5KRNa1QAxHHcSPz7lGE0bHN+gmopOhlA3cu6k3bN4+xZbB84FCfFOjJHKu0BEC2E2qFlZ2chpbwMmQY9Fk67p85yDANYBCskNJyJVJBEWOzlzFV6l7WVEELckSRBkCSJghBCnNTYHqCHAMyELeGBBGAzbAugVr8zceSdfd9lrSNtimg2277Kar+sDP6h+Dw3G9lWAfe2ZMOIW0lMTAAAREZGQS6v+yOIYRiYBXOj6hQlEYlmM1IrK9Gn6SMzCCGENKMTJ/483dptIKS6xgZATwLYCVuQcwzA4wBia5QRYJsLVO94S9J+SRbbzapURwBkDO6CPZnpYFmW1mrpwBITL6KXpxd6R0ZBkuru3WEYwNTYAEgU8YmpCilJyXhHq3VVUwkhhBDSDjUqAOJ5vgzAjwDAcdwYAKcBePI8n2t/zRdAZ57naQ2gjsye3U2yr/dTk8I+BE4URZjNZqhUtWamJO1cRsJFvNizD1BUBNFgQH1rJ5usjVrIG6IkQm1fV8hURxp2QgghhBDAuewhfwP4FMAP1V67BsBZjuMOcRxHj187KKmBAEgpk8FfqUSQUgWj0dCSTSNupCo9FQAgaD0gq6e3RoQISyMWQQVsc4BUaltAbTBQAEQIIYSQujkTAK0F0AfA89VeOwbgdgBDAaxyQbtIG+RIby0pag+AtOWF2NJ/MFZwvWEwUADUEVmtVsiKbVlOlZ061VtWlEQIjVgDCLD1Kk6VqbB38HCo+firbichhBBC2i9nAqApABbwPP+J4wWe5808z38OW1D0X1c1jrQtjNX+tF5R+9A2UW5bB0gtY6kHqIPKyEhHmNJ2HXhFdqu3rAixUYugAoAECXIZCyXLQqAhcIQQQgiphzMLoXoBqHWhKgB5AAKcbw5pyzIUCsTmZMHQhat1u2NonIqVUQDk5rKyMvHOO2/BYDBg5szZ6NfPNUt7JSZeRGeNbdibqlN4vWVtAVDjhsABgMjKbHuZG5c4gRBCCCEdkzMB0BkADwL4qpZtswD8c1UtIm3W73IW36ck4a4bJte63dEDpGRZVNFaLW6rrKwUjz46C5mZGQCAn3/+Ae+8sxMDBgy66roTExMwRKMBAKgaMQSusT1AACDKZYDJAtHUuMQJhBDSVjEMZAzDtM5CqBIthEraPmcCoJcAfMVx3J+wJUPIBxAI2xygIbAthko6IKPRNvRIXucQuH/nBhkqK1ukTaTp3nlnM6rycvEw1wteXjrs/PsMli1bjIMHD1915r60+DiMVSghAVCGhtVZjmEAQRIgCI3/GyspZAAA0UI9QISQ9othIFOJllBBr3fmHu6qybRaq4lV5LhbEBQTsz7s2LFv/Q8d+vpcU/eVJAmPPfZQD6vVwm7d+h7fHO0j7qXJ/3l4nv+O47jbYEt2sAr/Loh6FsDtPM9/7dIWkjZDMhqgYBgoFMrat1dbH8iir2qpZpEmKC8vw/HPD2F1z74Isgc7/fsOxAtx53Hw4IeYPn3mVdUfdzEeb5ktePiuaWDrCaYYhoEgNq0HSLIvqiqZLVfVRkIIcWcMw7CCXi8v+u030ao3tOjKz3KthvW/5ho54+XDSpLkVgHQ1di5c2vQuXN/63r16k1PZzsIp54e8Dz/FWy9QGoAfgDKeJ6nO9oO7nHIoBhyDX4U6/g8ZhiYJQlKhoGpsqJlG0ca5dixo/hPQCCCVCrIAwIh02hQZjQi/+/T2LdvN+6++17I5c49dCwuLkZaTjbSALw84/56yzIMIIhCk+YAwd4DdCkZByGEtGNWvUG0VlW1aABk1ypD75pLbOx5zQcf7A3r3r0H3cd2IE53n3Ic1wvAeAChAN7kOG4QgL95nm/SnS3HcREAUmvZ9DDP89s4jhsI4A3YUmwXAYjheX5dtf1ZACsAPATAF8AJAI/xPJ9YrcxV10HqJ0kSFAwDAGBU6jrL/SkyKCnMQTe6SXVLZ77/Fvf62fKYhM19HMrgYAQKIrS//ozs7CwcP34U48ff7FTd8fGxAICIiK7w8Kh78VPA1gMkSkKj02ADgMFDjfPlZTB6eDjVPkIIIc1j5MihQ+bOfSL9+++/80tJSfIIDg4xzp79SNaECZPKHGWOHv3Ge9eubWFZWZkaX18/8403jimeO/eJHJVKJQFAfHys+u233+wUFxfrZTQaWH//APNtt03NnzXrofzajrlr17agXbu2hS9Zsjx54sRbSmsrYzQamVWrXoicPv3+7IsX47X5+Xm0QnsH0eQonuM4GcdxWwGcB7ARwEIAwbAFEGc5jqs/tdOV+gMwAgiDLZhy/NvHcZw/gO8AXIQteFkBYDXHcbOq7f8CgDkAHgZwHWzD8b7iOE5pb+9V10Ea5lgEFQCgqntxy6OsErsz0kApENyP2WyGNjUVLMMAkZFQR3QFq9ZA6+GB//u/uwEAnx36pIFa6hYfH4sx/oEY1b0HpAYDYAZmwQqpCfUXhAZg1cU4/ClrVw8nCSGkXdi5c2v4mDFji999d/eFoUOvKVu9enn3P/74zQMAjh8/qluzZmXUpEmTC3fs2HfhySefTT9x4ke/pUufiwQAvV7PPvvs/Gi1WiNu2vR2/M6d718YOfLGku3b3+587tw/mprH2rt3V+Du3dvDly1blVRX8AMAr7++NtzX188yc+bsWoMo0n450wO0DMB02HpLvgCQa3/9WQCHAawBUP/4lsv1A8DzPJ9TcwPHcU8BMAGYy/O8FUAcx3E9ACwCsNMeoDwLYCHP81/a97kbQDaAOwF8AOARF9RBGiBVSz3MKK/4LLpEbs8EZ6K1WtzOhQvnoWNZiJKE0DHjLtt263Uj4PH9UZRnpKO4uAh+fv5Nrj/p/DnMjYwCyiogmkyQ1TOUjmEAs9C0ZAZKle3aohTrhBDifsaMGVc4Y8asAgBYsGBx1vnzf3sdOLA/aNiwa1L27t0VOnbshMLp0+8vAIDIyG4muVyetmjRM9Hp6alKrdZDnDJlav4998zI1+l0IgDMm/d09iefHAhJSIjX9OvX/9IH//79ewN27Hg3fMWKlxJHjx5bXld7jh8/qvv55x/8du58P5axj2AhHYczAdBsAMt5nt/JcZzM8SLP8/9wHLccwNom1tcfQGwd224A8JM9cHE4BmAJx3FBALrCti7RsWrtKOU47gyAG2ELXlxRB2mAY+0VqyhCXs8QOK1cAV+FAmZKg+12zp49jXfTUpDdrRvWDB8OpYKBIDGwWkUEaz1xvX8AzKKIY0c+w39mzm5y/YbUFMAvAIJOB1kDw9QYBjBZmxYAyZS2LIMUXBNCiPsZPHjoZVMkOK5X1dmzZ3QAkJKSok1KSvQ4fvzopadrkn0IQGJigvqmm8aX33vvzPwjRz7zS0pK0GZlZarS0lK0ACAI4qXopaSkRLFlS0yETCaTwsO71LkmQmFhgXzdurVd5817Oj00NIwy53RAzgRAwbBlfKtNJmxzaJqiH4AcjuN+BhANIAHAap7nvwEQDqBmOsNs+9cu9u0AkFFLmS72711Rh1PkctcPxZHZh/fI3GyYj1WwfX6YRREKpRosW/vTlP9aKxE2YAjOFBc1y/lxFXc9z83p7NkzAIDew66BRiXCknUeCt8QyDyDIevbB1U6HTzKy1F+7HvIZz/UpLrLysrgZ7A9oPPs0ePS776u8yyTsTCL5jqvo9oElldh24AhKBYZt762WkNHvJ5bC53rlkHnue2Ry+WXjWqWJAksK5Ns34vMHXf8J3fKlKlFNfcLDg6x5OfnyR955IFeXl4667XXjigdMmR4ef/+A6ruvvuOy1bpZhgWq1a9nLBjx7tha9asjNy+fU88y155jfzwwzHvsrJSxYYNr3XdsOG1rgBgtVoZURSZsWOvH7Rmzf8Srr12BGWEa8ecCYASAdwC4Ggt20bbtzeKffhZNIAqAM8BqARwH2zzb8YD0MI2fK06x+NdtX076ijjZ//eFXU0Gcsy8PVtvsnYOl3dw8xaQ2mB7XPNJIrw9PKERlP79ClRJgcEC1jR2qznx1Xc7Tw3J56PAwCMuG4omNIsiEVpEK16aL19Idd5o/t99yBn8zsYCAalBVmIjI5udN1nzvyKnl46AEDosCFX/O5rnmerYAUrY6Cu4zqqjaRWQqdQwCC0jWurNXSk67m10bluGXSe247Y2PMe48fffCnpQXx8rGdUVJQeAMLDuxgyMtLU3bpFXboXO3XqhOeHH74fvGTJ8rQjRz7zr6yskB84cPi8QqGQ7PXZf/n/xlU+Pt6WUaPGlAcFBZnnzJnde+fOrcEPPvhoXs22TJx4S8ngwUMvC3DefHNDeFFRoWLFijUpoaFhtKBcO+dMALQRwDv24OVz2K68HhzHjQGwAMAzja2I53kzx3E+AKw8zzsu+tP2DHMLABgA1MzI4RhfVWXfDnsZQ40yjnSGrqijyURRQnm564d5yWQsdDoNyssNEITWyH5Zu+JyA04WFUIvCggTWRgMtX92aOwLV1v0BpSUuG/GSXc9z82luLgY830DIPkEIFgUUZWbCYvBDBizAa9gMIFK+Ay9DnF4Bz5yOU68vRU+L6xsdP0nf/4F1zsyv4V3vfS7r/M8y0QYjCYY67iOaiMqbR9ncglufW21ho52PbcmOtcto7nOs06noV6lZvL554eCIyIijX379q/6+OOPAtPSUjWLFr2QCgDTpk3PXbt2dbeYmPVht9xyW1Fubo7y9dfXdg0ICDAHB4dYg4NDzCaTiT1y5DPfYcOGVyYlJao3b47pDABms/mKX1ivXn2MU6felbtv3+6w0aPHlkZFdb/sIbeXl5fo5eV12WsajUZQKpXy6kEYab+cWQh1G8dxgQCWApgL20Ko+wGYAbzG8/zbTayvtjuVcwBuhm1YWs3l4h0/ZwFQVHstqUaZv+3fu6IOp1itzffHTxDEZq2/qYwaLd5ISYRMJscLjAyiWHv+LoG1TRsTzRa3an9d3O08N5fYf/5BpNYDMoaBh1YJQ04JIEoAJJgKsqD2CYUgKqDv3Rs+sbHwTkiAxWwFU8vQgtpk//UX1DIZrAoFZEEhV5zTK84zI8AiWOu8jmqltPUWydG8//faso5yPbsDOtctoyOfZ7lW0+KR2tUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPr20oHOm4mhwAcRzny/P8KxzHvQVbymh/AKUAfuV5vriJdfUH8AuAm3meP1Ft01AAF2CbazSH4zgZz/OOBUHGwpY1Lp/juDIA5bANvUuy1+kDYDCAN+3lf3JBHaQBRqNtVKFSVX8KfVFmjzctNOfQnWSePQM/hoGRYQAYgWqL2ZoriqE2VECmCcCA6TORsmgB/OVypBz9Bt0mTGqwbqvVCllONhDaCfKIro0KmkSITVsEFQCrtXXsKiibDyGkHZMkSZRptVb/a66RoxUWJZVptVarJDU56oyMjDIsXLg0s67tkyffXjJ58u0ltW1jGAYLFizOWrBgcVb116sPb5s//5ns+fOfcczxhkqlkg4cOHyhse1bs+Z/qY0tS9o+Z4bA/c5x3DKe5z8E8M1VHv+8/d8WjuPmAiiELW31dQCGAciDbZ2h7RzHvQZgOICnYFuzBzzPmziOexPAqxzHFcC2oOr/YOv1cSxYssMFdZAGGPV6yBgGqnoywAGA6Eh9TAGQWzGkpdm+enpA0F++lrFkMcNalg+ZZyB8g0PwsUqJtNQURCYmNCoAio+Pw+GsDKRbLNi0cEmj2iNKIqxNWAQVAFi1rQdIyTKQJAmU1pQQ0h5JEgQTq8hhvHxapUvDKkmiJKFpH9CEuBln/vP4whaoXDWe50UAtwH4HcABAH8BuAbAeJ7nz/E8nw9gIgAOwBnYFjF9juf53dWqWQ5gO4BtAE4CsAKYyPO82X6Mq66DNMz891/YP+QaPBlW/zq4kr0HiBHos9OdyIptiXdkQQEQDFeOSrWUF4G12nr5Am+ZjM/zcvDF9981qu5ffz0JEYB3n77wiOYaLM8wgCCJEJoaANl7gOQMCwulwiaEtGOSBEEUJUtr/KPgh7QHzvQAvQHgfxzHPQvgPM/zV4y7bAr7/g/Ws/0P2HqE6touwLao6aLmrIPUz2owQglAZFnI6ilXqvPD9/FnUOLj3VJNI43gbTIBag28uoRDMF2ZvMNaVQ6Yq8AqfTFmzDi89NIKJCUlIDExAd2796i37l9//QUAcO21IxrVFoZhIIgCrE0MklkPNZKqKmEWRYRU6aFUU3YoQghxBydO/Hm6tdtASHXOBEAzAUTAngab4654oivxPO9MvaQNsxptN80CU38AlB/UBXvSktFD2XBPAGkZVVWVCJbZ/ssGdQsHJMMVZUSzEWJVKWQaf+h0Ooy47npYzp1D8aaNsKxYBYWf/xX7AIDBoEfv/HwM6NIVw7tFNao9DAOIotDkIXCMSoGlfCxEUcSIJu5LCCGEkI7DmUBlr8tbQdo8q9GWNVJoYIK7XGFLkmCiIUpuIz0lGQlVleik9UD3AB0sZVcGQABgKSuEKqArLAAmTLwVptw8+FRVofT7owi86+5a9/nz5AmM9w+ESiZDSB1B0pUYp4bASZCgVquh1+svJeUghBBCCKnJmQAoBcAxnufrzORBOh7RZA+AZPX1/wAKuRwaVgbGRNOr3EV6ViZeTeQxeNAg3MDUHXQIhgowVgMADUaPHoOn17+KvjpvFP9wDH63ToZMe+Xioylff4FrZTKUKxRQN6EHyCJYIaEJKbBhS5yguhQA1R7EEUIIIYQ4kwRhPWxpqgm5RDTbAiCJrT8A6lSYjd2Dh+EBv4CWaBZphLS0VABA187hEMx195xYDVWQTHrIZCw8PDzh2X8g0g16MCYTig4fuqK82WxGaK4tQ6ly0OBGZ2VjGAZmoekBsiiKWNSpC94dMBimjPQm708IIYSQjsGZACgfgI+L20HaOMlsu2G9lOa6Lkr7Wi1NfLpPmk+GPQDqEh52KZCtjWS1QNCXQSazBTI3T5qM3Rm29Nmlx76HMTX1svJ/H/wIEWo1jKKInnff0+j2MAxgciYAkiR4yeXwUShhrqxtfWVCCCGEEOeGwG0F8BbHcWNgW8Mnr2YBnuffu9qGkbalTKlEZmkJysO6or78bozanqoYtFaLu+ifl4epA4fCqDdCsta/PpO1vBjKACsABmPG3IT//W8NThUX4To/f+S8/Ra6LF0OmZcXhMpKsMe/BwCk+fmiv7dPk9pktjY9AJIgwbF0qtVAQ+AIIYQQUjtnAqDX7V9n1LFdAkABUAeT7K3DjkQe46IHoHM95VilLTWxkmVhNpuhUqlapoGkTlqTGZ4qFZS6K+fw1CQYq8AIJgBqKBRKTJt2H97ZHAPO2wd+hQXQ83HwGjocGd99Ay9JQr7JiJ6zn2tSeyRIsAjOLZRrtQfUFpoDRAhpxxgGMoZhWmUhVIkWQiXtgDMBUKTLW0HaPIPBNndEoaw/oGHsa7OoWBYmk5ECoFYmiiJ87UGDT0jDWdoEYxVgMYJVaiCKEv7zn7uxa9d2rI47h2f+ey+ihw4HALzz60kMKy/DGT9fvNS7T5PaJEgirKLY9DcDQGBt78VKWeAIIe0Uw0DGMmyo2WhtlSVHlGq5VYSY425BUEzM+rBjx771P3To63ON3efhh++Pjou74FX9tejonpU7duzlXd9C4k6a/J+H5/k0x/ccx2kB6AAU8Tzv3CNb0i4Y7UOOGgyAFLYhcEqWhdFohE5HC6K2pqL8PPgpFACAgLBAwFr/3BnRbIJorIRM4w9RFODt7YM5c+bhf/97GUs/eh8eI0YiNTUFX33zJb4C8P77B5vcJhECBNHacMHa9mVZQAQECoAIIe0UwzCs2WiVx53PEU1Gq3NPi5ykUsvZXn1D5Qq1jJUkya0CIGdkZKRp5s59In3cuIkljteUSiVNUu4AnHp6wHHcDQBeAzAMAGN/7XcAz/M8f9x1zSNtxU25ufi/wcPxq6n+oUeSQgnA1gNkrmfCPWkZuUmJUDEMLJIEhUYJa0XDyQOEimLI/Lpc+nnatOk4ceJHnDp1EnPmzL70+sMPz0Xv3n2b3CYJUpMXQb3UNpYBRAkirTNFCGnnTEaraDRYWjQAsmuVoXeulpOTraisrJT37z+oMjg4xLmnbqTNavJFzHHcCABHYcsEtxrAYwBeAuAH4BuO465zZQNJ28CKIpQsC1aurLecoFTj9/JynCoposUq3UBpuq1DtxJSgwkQHARDJdhqWdpkMhnWr9+EKVOmQi5XQKvVYu7cJzB37hNOtUmURKcDoEqFHCn6KtAMIEIIcR8jRw4dsm/f7sDZs+/jxoy5bvC0aVN7f/vtV5cNATl69Bvv++67q9eYMdcNvvPOW/tu3LguzGQyXcqUFB8fq37qqceiJk4cPXDUqGsG33nnrX137twWVNcxd+3aFjR69LWDv/nmS5/atsfHx2oYhkGPHtF0M9IBOdMD9BKAnwFM5Hn+0l0Kx3EvAvgGwIsAJrimeaStkDnmbDQwBE5UabCtsAClxQUYaaIeoNZWnp2FYABGuRyipXGZ1wSjHozVBIaVQ7IPFNBotFi16hUsW/YiWJaFvKF06HVgGECQBAhOBkB/+nniu59/xpwbRzm1PyGEkOaxc+fW8PvvfzBzyZLlqZ999knA6tXLu/v6+sUPG3ZN1fHjR3Vr1qyMeuihORkjRtxQnp6eqtq0aUOXzMx09bp1Mcl6vZ599tn50f36DajYtOnteLlcIR06dDBg+/a3Ow8dOryiX7/+lz332rt3V+Du3dvDly1blTRu3ISy2tqTmJig0Wo9hFWrXog4d+5vnVqtFq6//saSuXOfyFGpVDQMrp1z5i5lOIB7qgc/AMDzvMhx3CZQBrgOSSZJAMOAsa/zUx+5whYkmSgAanUFFRWoKCuBd2TXxvcAGfWQLAawGi8IwuWjL5TK+nsAG8IwjD0JgnMBkEJlm89E1xYhhLiXMWPGFc6YMasAABYsWJx1/vzfXgcO7A8aNuyalL17d4WOHTuhcPr0+wsAIDKym0kul6ctWvRMdHp6qlKr9RCnTJmaf889M/J1Op0IAPPmPZ39yScHQhIS4jXVA6D9+/cG7NjxbviKFS8ljh49tryu9qSkJGssFgvTv//AyhkzHsiNi7ug3br17c55ebnKV15Zl9rMp4O0MmcCoAoAijq2KWGfE0Q6FtvCpsylhU7ro1QobVngKFVxqztfWY6jCTyev2Us0MjFaSVRgKCvAOsRDKEZpsAKovM9QAql7SPNSNcWIYS4lcGDh1ZU/5njelWdPXtGBwApKSnapKREj+PHj15KR+oYYZCYmKC+6abx5ffeOzP/yJHP/JKSErRZWZmqtLQULQAIgnjpvrOkpESxZUtMhEwmk8LDu9T7JGz16rWplZWVGd7e3gIA9OrVxyiXK6TXXlvTLT8/LzMoKJjmBbVjzgRAJwE8z3HctzzPVzpe5DjOC8AS2IbHkQ5Gbo97GZWmwbKvBAVCExKEvKLC5m4WaUBenm0d40BvzybtJ1SWQBHk+rm3DMNc1RwgrsKEN/oOQEnuFeszE0IIaUVyufyyp2ySJIFlZZLte5G5447/5E6ZMrWo5n7BwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO3T3WUyGRzBj0N0NGcAgJycbCUFQO2bMwHQYgCnASRzHHcEQC6AEACTAagBzHJd80hbIEnSpQupMQGQBYAGgEVPT+lbW5k9CA3w0jZpP8FkgFIwo+7OYOcwDGAVrRAl54IrFcMgVK2B3ty4+UyEEEJaRmzseY/x42++NB8nPj7WMyoqSg8A4eFdDBkZaepu3aIu9dqcOnXC88MP3w9esmR52pEjn/lXVlbIDxw4fF6hUEj2+uw3HP/GVT4+3pZRo8aUBwUFmefMmd17586twQ8++GitT8Rmz76P69y5i/HFF1++tLzLuXP/eMjlcikyMooSI7RzzqwDlGjP9LYCwC2wZX8rBnAcwIs8z8e6tonE7QkCLuj1YAQrWHXDN9KORypWg75520XqJUkSng8MhjIoFD7WpvW4/JsIQQlJct1cUYZhYBKcX1JMUtg+0pjmGJtHCCFuRKWWt3g66qs55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgON2bM2OJt297uvH//nqrrrhtZfu7cWY8dO94Jv/32O/Mc84xI++VUqiae52M5jnuS5/lcAOA4zg9AOAU/HRMjl2NdahIMBj0WaBoeSmVhbMPlrJQGu1VVlJXBR64AyzDw8dfh39C0YYLJAMlsBKvVQRBcGQABFuEqem/sSRBYJ4fQEUKIu5MkSVSq5dZefUPlaIU1eZRquVWUxCYHCBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAUFDzeHPnPpFz8uRPvmvWrOy6bdt7fM2hcDNmzCpgWRaffnow+J13Nnfx8fGxTJlyZ96jjz6e69yZIW1JkwMgjuN8ABwA0BlAT/vLwwF8yXHcYQD38jxPj/Y7EEmSLk06l8vrT4MNAALDAJAgUADUqorSUsAyDKySCI2XFkJVnclyriQKEAwVYD1dnQiBgdHqfADEKB0BED28I4S0T5IEQYSYo1DLWmVBUlESRUlCkz/5IyOjDAsXLs2sa/vkybeXTJ58e0lt2xiGwYIFi7MWLFicVf316sPb5s9/Jnv+/GeyHT+rVCrpwIHDF+pr0/Tp9xc4Ms+RjsWZHqC1APoAmFfttWMAbgewBcAqAAuuvmmkrTCbzZeGQckUDadBtjIsIAkQTBQAtaaSrEx4AqgUJUBo+lxPoaoUikDXLpUgQYTlKobA4VIAREs4EELaL0mCIEkSdXUT4iRnAqApABbwPP+J4wWe580APuc4zhe2hVIpAOpAKlOS8d6gYSg0m1AiazgAElgZIAgQTTRRvTVV5uXBE4CRZSA2cg2g6gSjHkrRDCdH0tbqajLAAQCjsl1/cieTKBBCCCGk/XPmzsULQK1dlADyAAQ43xzSFhkrK6CWyaCSySCTyRosn6PQILcgB1KXzi3QOlIXQ6EtA5xFIYdkbXoPkGgy2BMhyOGqPAgiRAii85lHRY0KuUYjimk1MkIIcRsnTvx5urXbQEh1zowfPQPgwTq2zQLwj/PNIW2RuarK9rWRd8FnvQKwITkB2fKGgyXSfCxltucYklqFxi6CWp1gMkCymFDXGgvOEHF1PUDmUH/MP38Wm/NyXNYmQgghhLQvzvQAvQTgK47j/gTwKYB8AIGwzQEaAtt6QKQDMev1YND4HGJypW2YkslU7yLNpJnlG02oLCuBT6cgp/aXBCtEYyVYj0CXJUKQIEG4igBIprR9pJlofhkhhBBC6tDkR7c8z38H4DbYHhmvAvAOgNWwBVO38zz/tUtbSNyeWW/rAbKiceOOFApbpjizkRZCbU2nDVVYm8DD0i3c6TqEqjIwLhpuxjCAIApX1QMkVzgCIAquCSGEEFI7Z9cB+gq2XiA1bAuhlvE8X+XSlpE2w2owQAVHeuuGDSnPx/1DrsG58ormbRipV6F9DpC/zsPpOgRjFRSCGYArhjMyEKSrC4AUoohXe/eDkmEhiqJLh+cRQgghpH24qvRNPM8bAWQ3WJC0axaDrSfHyjTuZpOR2RbfZKyUwbM1lRXZAiA/74YXr62LYDKAES1wRQDEMIAgiVc3BE6tQKTWFtCZqqqg8fK66nYRQgghpH1xXf5a0mGZZCziKspRpPWAfyPKS3LbWi2Ma1fQJE0gCAJeDo8A2zkCPoLzKaNFswGSxQhWqYF4lWvvMAxjGwLnxJpEDjKN+tL3psoKCoAIIe0Sw0DGMI186uhikiQ5tRAqIe6EAiBy1Yr8/LGSj8WgoSNweyPKS/bFUlmR1mppLSWFBfCU2/77e/t5A5Jzc2ZEswmS2QBW7eeCAMg2B0i4ijV8GIUMVkmEnGFhrKQhloSQ9odhIJMx1lCLSd8q93AKldYqQJ7jbkFQTMz6sGPHvvU/dOjrc43dJzExQbVx4/86x8Vd8FKp1OKIESNLnnlmUaZWq6UblHaOAiBy1YxGW8YthVLdQEk7pS0JgowCoFZTlJEOBoAgSZCrZBCvImmaoC8D4+18IgUHhmFgFpq+IGt1oiTCLEqQywBjJU1LJIS0PwzDsBaTXp504YxoNhlb9A+pUqVmo/oMlstU3qwkSW4VADVVcXGRbP78OT27dYuqeuutrXF5eXnK115b03XdulewfPnq9NZuH2leFACRq+YIgJQqVeN2sGeBk7lq9UzSZGU52fABUCWJwFXMuQEAQV8JpYseBJoF81XtL0oSLPbrypGdkBBC2iOzySiaDPrWeJLYLrLL7N27O1gul0nr1sUkqdVqqWfP3sacnOzsI0cOBUqSBMZVKU6JW3IqAOI4LgDAcwDGAwgFMBHAVABneZ7/zHXNI21Bp4SLeHfAYMQ2du6GvadITvFPqzEUFMAHgIFlIVqdn3MD2OYBsYIZgPKq6mEYBibr1QVAAGCxL+rqWKCXEEJI6xo5cuiQuXOfSP/+++/8UlKSPIKDQ4yzZz+SNWHCpDJHmaNHv/HetWtbWFZWpsbX1898441jiufOfSJHpVJJABAfH6t+++03O8XFxXoZjQbW3z/AfNttU/NnzXoov7Zj7tq1LWjXrm3hS5YsT5448ZbSmttPn/5Dd+2115eo1epLdyPTpk0vnDZtemEznALiZpocAHEcFwngJAANgJ8BDLDXEw3gBY7jbud5/gtnGsNxXDSAMwDm8Ty/y/7aQABvABgKoAhADM/z66rtwwJYAeAhAL4ATgB4jOf5xGplrroOUjfWZIKPQgmFrHGZwEQPb5wtK0W+YMXEZm4bqZ2ppBgAYJHLrr4HyGSAZDWDkakgXVWvnnTVPUAAUCaKEE1GeFiubjgdIYQQ19m5c2v4/fc/mLlkyfLUzz77JGD16uXdfX394ocNu6bq+PGjujVrVkY99NCcjBEjbihPT09Vbdq0oUtmZrp63bqYZL1ezz777Pzofv0GVGza9Ha8XK6QDh06GLB9+9udhw4dXtGvX//LFhbcu3dX4O7d28OXLVuVNG7chLLa2pObm60eMWJk6dq1q8N/+eWEr1wul6677vrSJ554Jqt6UETaJ2e6MV8HkA8gEsCdgG31S57npwM4DOB5ZxrCcZwCwD4AHtVe8wfwHYCLsAUvKwCs5jhuVrVdXwAwB8DDAK6DbYHWrziOU7qqDtIAew+CJG/c6TIGdMLLCfHYlZ7ajI0i9bGU2f4eCErFVdclmoyA1QiWvbrhAgLEq1oDyGGrsQLzzp2F3sfnqusihBDiGmPGjCucMWNWQY8e0aYFCxZnRUV1rzpwYH8QAOzduyt07NgJhdOn318QGdnNNGrUTeVPP/1c2q+//uKbnp6q1Our2ClTpuY///yKtOjonsZu3aJM8+Y9nQ0ACQnxmurH2b9/b8COHe+Gr1jxUmJdwQ8AGAwG2ccffxhiNpvZ1avXJj388NzMH3887vfii8simvdMEHfgzBC4sQBm8zxfynFczUf+7wD4yMm2vAigZtqmRwCYAMzled4KII7juB4AFgHYaQ9QngWwkOf5LwGA47i7YVub6E4AH7ioDlIPxjGESt64m2mF0hYoWa1WWK1WyOU0Fa2lFVmtqCgtgUdw1FXXJYkCRGMVWA8GV5PZXJQEWF2QGl2lts0xM5muIrMDIYQQlxo8eOhl93gc16vq7NkzOgBISUnRJiUlehw/fvTSahqOAQWJiQnqm24aX37vvTPzjxz5zC8pKUGblZWpSktL0QKAIIiXnr6VlJQotmyJiZDJZFJ4eJd605vK5XIxNLST0ZHwYMCAQXpBEJi1a1d3KyjIzwwMDLq68eHErTl751nXRaEC0ORuQ47jbgTwKICBAKpn3rgBwE/2wMXhGIAlHMcFAegKwMv+GgDAHpidAXAjbMGLK+og9XCs5yMpG5cEQa74t6fIZDJCLnd+IU7inPNWC75N5LF43AiX1CdUlUEWcHV1SJCuahFUB4W9V8uRnIMQQkjrk8svn/krSRJYVibZvheZO+74T+6UKVOLau4XHBxiyc/Pkz/yyAO9vLx01muvHVE6ZMjw8v79B1Tdffcd/auXZRgWq1a9nLBjx7tha9asjNy+fU88y9Y+2MnX188SERFx2dC5Hj2iDQCQkZGupACofXMmAPoZtuDhKADHHYZkn0czF7b5QY3GcZwPgD0AnuB5PoPjuOqbwwHUzOeebf/axb4dADJqKdPFhXU4RS53faIUmYy97Ks7YO03rYxC2ahhUFqrGbsGDQULBlarpVnO09Vyx/PsSmVlJQAAXy/tVQ9dAwDJbIBcskKUN24emEP182yFBBHiVbdnrEyFe3r1hSot1S2vrdbQ3q9nd0LnumXQeW57YmPPe4wff/OlIWnx8bGeUVFRegAID+9iyMhIU3frFnWp1+bUqROeH374fvCSJcvTjhz5zL+yskJ+4MDh8wqFQrLXZx/69m9c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p4+ffpWJCRc9Kie8e3ixXgNy7Lo0iXi6iekErfmTAC0GLYgJxHAcdiuvAUAegPoDluPS1NsAXCK5/n3a9mmhW34WnWOoEtt3446yvi5sI4mY1kGvr4eDRd0kk6nabhQC5HZF8CUa7TQaBqeB8QyHtDKbJeeSiE163m6Wu50nl2pstz2NyjAVwd1I35nDZExVqgVIjw8dE7tr9NpUGIwQ6Zgrro9fiyLKA9P5JkMbn1ttYb2ej27IzrXLYPOc9vx+eeHgiMiIo19+/av+vjjjwLT0lI1ixa9kAoA06ZNz127dnW3mJj1YbfccltRbm6O8vXX13YNCAgwBweHWIODQ8wmk4k9cuQz32HDhlcmJSWqN2+O6QwAZrP5iii4V68+xqlT78rdt2932OjRY0ujorpfMRxuxozZuY8+Oqv3qlXLukyf/kBeZma6auvWLZ1vvHFMUUBAIPX+tHNNDoB4nj/PcdxQACsB3ARAgC0d9o8AZvI83+gVeDmOmwFbwNSvjiIG2IbVVedYbbPKvh32MoYaZRw5cF1RR5OJooTycr2zu9dJJmOh02lQXm6AILjHQqIFooAqgwEWhQoGQ8MPTRjrv09r8rPz4am7yrFTzcAdz7MrzVVqoBs0DMryKhgN3lddHytUQF5ZCYtF2aRMcI7zXFFhgN5qgt5ghNF8dQ/eBJYFIMBUqUdJCaXCBtr/9exO6Fy3jOY6zzqdps30KilV6hZv6NUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPrzkUrkePaNPrr8fwb731RueHH57ZR6PRCqNH31T05JMLspx9j6TtcGoOEM/zCQCmu+D4swEEA6g59O1tjuOeA5AGIKzGPo6fswAoqr2WVKPM3/bvM1xQh1Os1ub74ycIYrPW3xQf6SsRFxeLOZOmw0tsxM0v8+8wKUN5pdu8j9q403l2FUmSoGFYqGUyaLw8IDbmd9YA0WiEYDJCUkpOnS9RlGAVrDBbrVfdHlFmC4AEk6nd/e6uVnu8nt0VneuW0RHPsyRJokKltUb1GSxHKyxKqlBprYIkNfmkR0ZGGRYuXJpZ1/bJk28vmTz59pLatjEMgwULFmctWLD4suCk+vC2+fOfyZ4//xnHFAeoVCrpwIHDF+pr06BBQ/Tbtr3HN/5dkPbC2YVQGdgSFniglv98PM//1Miq7oNtPaHqEgAsB/AhgHsAzOE4TsbzvGN29FjbIfh8juPKAJQDGA178GKfUzQYwJv28j+5oA5SD8dkc7micUkQwDAwiyKULAuznp7Qt7Sqygp42Nds0vl4uahWCaK+HKx3zWcNjSdIgkvSYNvmIVkg0TpAhJB2SJIgCJDnyFTerdJVJUiSKEm4+g9rQlqRMwuhDgdwAP8mD3DMWJbs30sAGjUTmuf5K7oZ7T1B+TzPp3EctwPAQgDbOY57DcBwAE/BtmYPeJ43cRz3JoBXOY4rAJAK4H+w9fp8Yq/SFXWQejjSDcsVjV9TxiwBSoACoFZQmpcH1j7hU+uhhmitN1Noown6ciia/lAQgO3pniAKLskCJzkSMVAARAhppyQJgiRJFIQQ4iRneoA2ALAAeABAJoBm63u299BMBBAD4AyAHADP8Ty/u1qx5bC9j22w9Sb9BGAiz/NmV9VB6iZJEpYHhsLsF4TsJozDttiztlj0hgZKElcrzcuFEoBJFP99fOECgtkIpWiBs9n1zYJr5pxKCvvxrTSHlRBC3MGJE3+ebu02EFKdM3cqgwFM43n+M1c3BgB4nmdq/PwHgOvqKS/AtqjponrKXHUdpA6CAD+FAlAokKdUN1zeLlUQkVFVgQC6SW1xlQUF8ANghATRRUEHAIgmAxirCQwrRxPyIACw9QCZBdc8bxBVCpRbLDCLHWteACGEEEIax5nxo/loxl4f0rYIpn+HTzFqbT0lL/eRBXjpYjyqNI2cN0RcRl9cCAAwsyzggiFnDoLZCMlqcmodH4YBTC4KgNI7BeChv0/jJ1Xjh2QSQgghpONwJgB6C8BijuNogQ1yaQ6PKElglY1fj0FhT5hgNLpm/glpvDKDAadLS1CkdG6oWl0kqwWS2QiGafrHigQJJhfNRVIobYGPwWBsoCQhhBBCOiJn7oB6wLboaS7HcRcA1FzsRuJ5fuxVt4y0CcaKCgCAWRQhV6rQ2AzGCqVtsUuTiQKglpYpitieyGN6v2hMdHHd1qpSyHw7N3k/URJdkgEOAOT2AMiRnIMQQgghpDpnAqDuAM5W+7nmeBcXTqsm7s5YWQnANqGeYWRo7OSP2xkBTw8ciuy0tOZsHqlFaaltmQVvz8YPWWws0VgFuWhFUz8GBMk1GeAAwFdvwvLoXrQIJSGEEEJq1eQAiOf5Mc3RENI2matsAZAFEsQmzHxXsiw85XJI9JS+xZWWFAMAfJojADIZwYoW2JKcN2E/iLAKrgmAVAD66ryR76L6CCGEENK+uHYSAOlwzBYr0vRVqAQDpgmZvwSZDBAAyUxrtbS0EWXluH/QMFSWVrq8bsFsAKxmMDIVpCYExJIkwSq6KCOdyja/TI4mpqIjhBBCSIfQqNnKHMcJ9gVQwXGcaP+5rn+U17gDMfp447nYc3inpKhJ+4msLfaWLLTUUkuTW61Qy2RQq12fgU80OZcJTpAEl80BYjW2OUByGo1LCCHtQlVVFbtnz85Ax89Llz7X9eGHZ3LNeczMzHTl4cOf+l5NHQcOfOA/cuTQIXVtb4n3MXLk0CEHDnzg35zHaCnp6anKkSOHDvnll5+9rrauxvYArYJt0VPH9/RolQD4d6K5StX4NYAAQJQ5AiDqAWppSvv6OCqPxmftayxJFCAaq8B6BKEpI9BcGQAx9sCOkmATQkj7sGPHu8Hff/9NwIwZswoAYOHCZRmiC5dxqM2LL77QNSgoyDxlytSSZj0QaRWNCoB4nn+x2vcrm601pM1xpBpucgAkt92eMrQQaotT2x9faHXNk8le0JdBFtDEfUTRZUkQGJVt/pGCdSbLPyGEEHcjSdJlXfre3t4tMMlTomEE7VijAiCO425sSqU8z//kXHNIWyO7yGNDnwHIUDRt0rtkD4BAAVCLsljM8JDZAgMPneuTIACAYNRDLlrQlGXGBEmAVXDNtcBobNeinGEgWq1g5TTVkRDSfkgSoLc6tY6jS2jlEJkmhgZlZWWy9etfDf/991M+VquViYyM0j/22PzMgQMH6wFAr9eza9eu6vznn3/46PV6WadOnYz33fdA9qRJk0tjYtaHffTR+6GAbTjX++8fPPfOO2+F5efnqbZufY//5ZefvRYvfjb6lVfWXXzjjde75Ofnq7p27apftmxVyrfffuV75MihYEEQmBtuGF20dOnKDIZhIEkStm17O/jbb78KKCjIVykUCrFnz96VCxYsSY+I6Gp++OGZXFxcrGdcXKznHXfc7HXo0NfnzGYzExPzetgPPxzzNxj0svDwLobZsx/OHjXqpnLH+/zqqy98du/eFpaXl6uOiupRNXDg4PK6zomDIIhYs2Zl5x9++N5fLpdL48ffXDh//rNZcvvfrt9//9Vjx453w5KSEjwsFgsbHBxiuvfemTm3335nsaOOzz77xO/DD/eF5ORkq318fC2TJ9+e/+CDj+bVPFZBQb788ccf5nx8fC0bN25O1Gq14o8/HtNt3bqlU1ZWpiYoKNj0f//339yYmPVd33//4LkuXbqa77jj5n7XXDOi9K+/TuvKysoUy5evSrr22usrdu/eHvTll58HFRYWKgMCAsz/9393595zz32FAPDLLz97LVz4dLSjDsA2fO3ee//T77XXNlwcMeKGiqVLn+sqiiLj6+tnOX78e3+Tycj27z+wfMmS5WnBwSFWAIiLu6DesOF/XRITEzx8fX0td999b07Trry6NfbO4Af8O+ytrstesm+TAMiurlmkrRArK9BJo0FZE/czqj1wsbICJTpds7SL1K6srAye9uGHHl7N0wMkmo1gBDOAxvcKWkUBguSatNWMVg2zKMIsijBVVUHj7e2SegkhpLVJEnDf19qefIms1Raj7+krVO65Wc83NgiSJAlPPfVYD7lcLr700muJOp1O+PzzQ/5PPfVYz02b3onr12+AYdOm9WGpqSnatWtfT/D29rF+/PGHgWvXru7Wp0/f87NnP5JrMBjYkyd/9Nu69b3YgIDAK56WiaKIzZtjOi9atDRVqVSLy5cvjnr88Yd7DRo0pOyNN7bwf/zxm+fmzTER1147onzcuIllO3duDTpwYH/oc889n9KzZy9DRka66vXXX43YsOG1zhs3bk567bWNic88M69HQECgedGiZekA8MILi7qmp6drlix5ISUkJMz8ww/f+yxfvqT7Cy+sTho3bkLZH3/85vHyyyuj7rrrnpxbbrmt6M8/f/d65503uzR0fi5ejPf09/e3bNr0TnxmZoZq/frXuhqNRvb551dkZGdnKRYvfiZ64sRbCxYuXJputVqY997bGbJhw/+6Xnfd9eVBQcHWL7447Ltu3SuR9933QNa4cRNLYmPPazdseK2rh4enMG3a9ELHcYqKCuXz5j3C+fsHmNevfzNRo9FI5879o1m+fEn3yZNvz1+xYk1yfPwF7Ztvboyo2cZvvvkqcNWqVxJ0Op3Qq1cfw6uvrun844/f+8+dOz+9X78BVb/88rPunXfe7GI2m9j7738wv3FXBnDq1EnfkSNHFb/xxmY+OztL+corq7u9+ebGTqtXr00rKyuTPfvsE1x0dM/KzZu3xuXl5Sk3bHj1irY5q7EBEKW+JrUSTLYkBiIra9LjqOyAcGz8bDcGDhyMB5qlZaQ25UVFkNuHhslVCgCuH0UgmGyZ4FiFBmIjV8Y1C65LhiHTKHHfmd8BAD8xgOtnOhFCSOth2tg87BMnfvJKSOA9Dh366m9H8PLMM4uyYmMveH7wwd7gfv0GpObkZKs0Gq0QERFp8vb2Fp58ckHWoEFDKry9fQVPT09Ro9GILMtKjp6B2sya9XDWkCHDqwBgxIiRpUeOfBa0fPnqNK1WK/bowRn37t3dKSkpQTNu3MSyzp27mBYsWJIyfvzNZQDQuXOE+bffTpX89NMPvgDg6+snyOVySalUigEBgdbk5CTVyZM/+7355rtxjl6rqKjueUlJiZoPP9wbMm7chLIDB/YHRUdzlfPnP5MNAN279zAlJydpvvzycFB958fb28eyevWrKWq1WurZs7exoKAg65133uzy1FPPZZnNZmbatPuyH3poTh5r/9s9a9bDOT/88L1/cnKSOigouPLgwQ+Cr7vu+uJHH308194uk15fJVOrNZeeKpaXl8nnzXs0OiAg0PT665uS1GrbYPj9+/cER0Z20z/33POZANCjR7SpuLhYsXXrlstWNB80aHDZjTeOrrDVVc5+880XgQ8++GjGHXf8X7H9mAXZ2VmqDz98P3TmzNmNDoA0Go2wYsVLaQqFQoqO7mk8depk0enTf3gDwBdffOZrNpvZF198JdXb21vo2bO30WDQZ7z00oqoxtZfn8bOAfrRFQcj7Y9oNtm+NjEAUtiHzBlpHaAWVVFagtjSEvhoNIhgATTDWqGi2QRYTWCUjg7hhpkF1yXDYGQsWJaFKIowGo3Q6agHiBDSPjAMsOdmPd+WhsDFx8dqAeDuu+/oV/11q9XKWCxmBgDuu++B3GXLFna//faJA3r0iK4aPHhY2aRJk4ubMtcnMjLq0g2FSqUWvb19LFqt9tJfOaVSIZpMZhYAxo+/uez06T88YmJeD8vKylRlZmZoMjMz1L6+vrX+MYqNPa8FgGeffeKyjG2CIDBarVYAgLS0VO2gQUMuGxDTr1//yoYCoKio7npHQAIA/fsPrLJarUxSUqKqX7/+hv/7v/8WvffejqC0tBR1VlaWOjU1WQsAoigwAJCenqa58cabiqvXeffd//b8AMCePbs6CYKVqXms5OREbc1heoMHD6sAtlzWxk6dwi+d28TEi2pBEJhBg4ZetpbGwIGDKz///FBwQUF+o8edBweHmBQKxaX2eHh4ClarlbG1LUkbHBxqrH4NDBkyzGXrdzg1OJ7juAAAzwEYDyAUwEQAUwGc5Xn+M1c1jrg/yWzvAZI17VJSKG3Do0xGCoBaUrnZjFcTefTmonFTc2XQkUQIhkqwniGNzgRnsppcd3wGUKpUMBoMMJlcWC8hhLgBhgE8FM3x+Kp5iKLIaDQa4Z13dsXV3KZUKkUAGDp0eNWnn371z88//6D744/fdN9++1XABx/sDXvppdcSbrhhVEVjjqNQyC974lbfcgzvvrs5eP/+PZ3GjBlXOHDg4Ir//vee/B9+OObz888/+NVWXrIP0d64cXO8h4fnZedeJpNJ/5a7PHGCXK5o8Ckgy7KXlXFkt1OplFJCAq+eN++Rnl27dtMPGTKsbOTI0WV+fn6WJ554tFf14zcUkPbr17/8llumFK5ZsyLq+PGjxWPGjCu37wtRbDjZg1KpuuI9MjUOKtozzFYPaKovB2ixWK84TvWy/6r+UtPPZ2M1+QkCx3GRAP4B8AhsqbGDYAukogF8zHHcra5qHHF/jgBIauJE8wB9GTb3G4SHPGkOUEsqL7c96NF5ejbrcQR9GdhGrowriiJMVteuB/VI5wgsi+4FY3aWS+slhBDSNFFRPQwGg0FmNpuYbt2iTI5/u3ZtCzl27DsfAIiJeT3s999/9ZowYVLZ0qUrMw4e/Px8UFCw6fjxo74AwDBNWWq9YR999H7YtGn3ZS9fvjr9nntmFA4ZMrwqKytTffn63f8es0cPzgAAeXl5yurv4bPPPg749NODAQDQrVuUPi7uwmV/XOPizjc4Vys1NVnrCB4A4MyZP72USqUYERFp+uij/YE6nbflnXd2Xnzkkcfyxo4dX1ZYWKAAcGmx8U6dOht5Pu6y47zyyqrOTz312KWhYjfeOKZk0qRbS0eMGFm8YcNrXcvLy1kA6No1Ul9z33Pnztbb5u7do40ymUw6c+aPy97r2bNnvLy9fSw+Pr6CQmELbMvLyy/lBEhLS2nS4oM9ekTrc3KyVUVFhZduMP/55y+XzX1zpgv1dQD5ACIB3Al7UgSe56cDOAzgeVc1jrg/yZ7F7VJWt0aSyxUIUKmgYyhVcUsqL7MtZ6DzbJ4McA6i0QCmkcParJLVZWsAOURrPNBf5w1zWVPTcxBCCHGlMWPGlkVEdDWsWPF81IkTP3klJyepXnttTfjx40cDHMPWsrKyVBs3/q/LiRM/eWVkpCm/+OKwb2Fhgapfv/6VAKDRaMSqqipZYmKCymKxXHV6an//APOZM3/oeD5OnZBwUbVhw//Cfv/9Vx+LxXLppkSj0Yj5+XmqrKxMRc+evY2DBw8ti4lZF/Htt195p6amKLdtezv4k08OhHTq1MkEAPfee39uWlqq5tVX14QnJiaoPv30oN9XXx0JrLsVNkVFRcoXXljUNT4+Vv3ll5/7vP/+e2F33PGfPJVKJQUFBZuLi4uUx459p8vISFN+9dURn5iY9REAYDbbhg/ee++MnF9+OeG7a9e2oJSUZNXhw5/6fvvtV4EjR44qrXmshQuXZpjNZmbdupc7A7ahhykpSR7r1q3tlJiYoPr66y989uzZ1Qm4sofHwdvbWxg3bmLhvn27Ox069LFfcnKSas+enYHffPNl4NSp/8ljGAY9e/Y2qNVqcefOraHJyUmqU6dOem7f/k54XXXWZvLkO4p1Om/r0qULI8+fP6c5deqE51tvvdG54T0bx5m7z7EAVvM8X4orB/i/A6Dv1TaKtB0GSUS+yQiLskmBPRiVbWq6nLLstyiP5GS8N2gYxgrNe+IFsxGM2LgASBAEl60B5ODoaLfo9S6tlxBCSNPIZDLExLx9sUeP6Ko1a1Z0e+ihGb3/+ees17JlLyY5hrctXboyrX//gRVr166KnDHj7r7vvbej0/33P5g5depdxQAwYcLNJT4+vpaHHprZ559/zl71E7ylS1emmEwmdu7cB3s9+eScnqmpyZrHHpufVlFRLk9PT1UCwJQpdxZkZKSrZ8+e3kcQBKxduz75uutGlsTEvB7xwAP39v32268CHn/8qbS77rqnCAD69etveOml1xLOnTvr9dBDM/t8/PGHwXfddU+DaZuHDh1eKpPJpMcff7jXm29uiLj55sn5jz/+ZDYAzJw5O3/EiBuKX311TbdZs6b32bt3d+gDDzyUFRAQaD5//pwHYJvPNG/e02lffHE4cNase/vs3r2908MPz03/z3/uLqp5rICAQOvDDz+WeezY0YAffvhe16tXH+MLL6xK/OOPX30eemhGn927t4fdcstt+QCgUCjr7HVbsmR5+q23TsnfsePdTrNnT+9z5MhnQY8+Oi/9oYfm5AGAl5eXuGjRsuSsrAzN7NnT+8TEvN7l0UfnZTQlAPLw8BBjYrbwcrlcevLJOT1feWV15H//e29uoytoACNJTetV5DiuDMBMnuc/4zhOBsACYCjP82c4jpsC4D2e531c1cA2KlkQxMji4iqXVyyXs/D19UBJSRWs1tYfArx06UJ88cVh3DXjcfQZ3vjRj+bMBAz8fj8qrFYM2bW3GVvoHHc7z67y6eIF6FNYiEwPNa6fMbHZjsMq1fDqfR3MSt96M8HJ5SwUWuCnpN+RX1FcZ7mmUq3ejS4yBcrHjcPQafe5rN62qr1ez+6IznXLaK7z7OfnAZmMTQHQzWWVOun06dM9WVb2dVBQp0qlUk0TZonL/fXXaa1cLpf69RtgcLx26NDHfhs3rut69OjPZ+RtcB09s9mozs/P8hRF4eYhQ4bE11XOmR6gnwEs4Tiu+jg8ieM4FsBcACedqJO0USZ7FjeFomk9QDKV7QGOimVhsbguAxipn2Swfcax6qYtXNtUotkEyWKqdxKqgyAJLh8CZ7UvV2YxGBooSQghhHRM8fFx2meeeYL79tuvvDMz05UnTvzktWfPzrDrrx9Z3BaDn6Zw5t0thi3ISQRwHLZhcAsA9AbQHcANLmsdcXsGgy0AkiubdkPNqm0BkJJlYTTooVBQquKWwNoDVlbdtIC16SSI+nKw3mH1lmIY2yKorg6ABHvgZaUsg4QQQkitpk2bXlhUVKjYsmVTl5KSYoVOp7PecMPo4nnznm73GYSaHADxPH+e47ihAFYCuAm2lRTHA/gRtqFx51zaQuLWJhiNuLVXXxQZm/aknVX9O4TXVFUJL1qrpUXILBaAYaHQNncABAiGciikhoamMBBE188BElnbUoGCkdJgE0IIIbVhGAbz5j2VM2/eUw3OVWpvnOrf4nk+AcB0F7eFtEH+EhDk4YlyVtZw4WokuQKZRgOMgoD+ehqm1FLkVgFQsFB6aJr9WILJCKVoBlB3hkCGcQyBq3Nxb+eOzbIQrBIEi2vTaxNCCCGk7XN2IdRuANQ8z8dyHOcDYA2AzgAO8Dy/x4XtI25Obk+iwTQxCxxYFstSUqCvKsenjZgnQlxDZe+RUTdzGmwAEM1GMIIFDKNAXblWGIZpliFwR3VKrPzuJzx1w40urZcQQgghbZ8zC6HeDCAOwGz7S2/DtihqOIBdHMc96LrmEXfniKAdaa2bQmGfN2Rs4vA54rzkqkrEV1ZA6928C6ECth4gyWKqcy0BB4tgRVOzUTZEYZ/j5EjSQQghbZAIQJIkiZ4SEtJI9v8vEmz/f+rkTBa45QC+BfAi9//t3Xd8HGed+PHPzPZVL5Z7i8skcXCcOAkphAAhJIHAAUc9ONrRkuMox1EPyN3RDzh+4YCjhHr0o7dQE1JIt+Nuj4tsy7KtXrbv1N8fM7JlW7Kk1eyuZH3fr5deknZnn3k0O9qd7z7P8/1qWgPwAuDjuq5fCnwceFsJbYpZKuJf3CqxqY8ojGSOKxZlnUYlGIbB5w/s40N7dtKwqLXs+3MtA9fInzUTnKJA0Q7++Y9EvWl3EgAJIWaxLtd1TcMolH/IXohzhGEUkq7rmsBZ1zWVMgXuYuB5uq6nNU17id/Gj/37/gi8s4Q2xSw1EgCp8fiUH/uWtjZa58/D6jwCGzYG3TVxmlRqGPCmndVEI2CXP/24nUuhNJ4tAFIoWsGv01ll2PzLqrXEjwdWM00IISpq48aNqU2bNn07lRq8FWiJRuM5RVGCHS4X4hzhuq5iGIVkKjUYdV3naxs3bkyfbftSAqD8qMfdDHTrur7N/30BMFRCm2IWci2L8EgAFJ36B1SN4TBt4RD9mUzQXRNjSKVSANTX1aLgUol3UTufIcrZ1/cUrOBHgBoduKSpmYO54IsRCyFEBX3Mti2GhvpfpShKEpDpcEKMzXVd13Rd52vAxybauJQA6AHgXzRNawZeAnwDQNO0jcDt/v1iDjALBfqKRaKqippITvmCemT8wZJilRWRPtTOty+5nAHHxrWDTTowHsfIo9oGMHadKKcMRVAB3Ij30qZYlfk7hRCiHDZu3OgAH9m0adMdrstCSlu6IMRc4ADHJxr5GVFKAPQO4DfAd4FdwEf8238D5PAKpYo5wFTgtu1PAPDheC32RCVfTmMp3uu4FKusjFz/AC2hEDEFqMj4j5cIAdtAUaNjZoKz3OBrAMGoAKhCgZ4QQpSTf1E3qQs7IcTESimEelDTtHVAm67r3aPuej7whK7rsqJ9jij4gYuiKKhqGNuZWgRkKyrgYksShIooDA0CYEyQlS1IjuFlglMT9dhjRMgOTllGgPCTIKjlaFsIIYQQs1pJQ6m6rrunBT/ouv4wEPbTZIs5YCQAisXi49Z5ORtL9U4/R0aAKsLwkyBY4crNoHBtC6eYGzcTnOM62G4ZgpSY99lOaIpBuRBCCCHOfVMeAdI0bTnwZeA6xpvYD6HpdErMDrmOw3z0/IsYdB2cEiIgWw2BY8sIUIVYaW/2hBMuqf5xyezsEKGWM29XFG8KXDlGgBS/xpTqSMIkIYQQQpyqlCuhzwJXA18BrsFb9/MQ8CzgScALp9KYpmltwGeAm4AEcC/wLl3Xd/n3bwDuAC4D+oHP6br+6VGPV/GSL7weaMJLwnCbruv7R20z7TbEmczUMGtqa+kyDQZLuNDMhSIczQ5TDLgIphibk8t5P/jTwyq230KOiGNy+oCzoijYjo3lWMHvNO79jSE5t4QQQghxmlLmwlwHfEDX9bfhZYAr6rr+Hrzg4l7gb6bY3i+BVXgptS/HS7P9J03TkpqmteDVFtrrt3878GFN01476vEfBN4MvAG4Cm91912apkUBgmhDjM3IehfUJkpJS+ofqW3hHTu3cqCuNtiOibH52fbUeGVPa9sojFtzyHadsiRByM5v5hWbHuE/B3oDb1sIIYQQs1spAVAtsMX/eRewAUDXdRv4AvCMyTbkBycHgTfouv64ruu7gQ8DC4F1wBuBInCrruu7dV3/Bt4I1Hv8x0fxCq/eruv6b3Vd3wq8FFjMyZGoINoQYzDzXgBkl7ioPuJPUyoUJA12JfRbJnsyaaitbFFxxyiAVTxjHdDJEaDgA6BwLILpuifWqQkhhBBCjCglADqOV/AUYD/QrGnaQv/3AWD+ZBvSdb1f1/WX67q+E0DTtPnAvwCdeMHVtcB9uq6PniNzt7ep1oYXfNX5t420OQRsBp7q3xREG2IMth+4WCUGQOFIDEAuUivk3kKeD+3Zib18wcQbB8guegGQopweAIHhmGUpyRqKerN7i0U5t4QQQghxqlLWAP0GbwpZp67rD2qa1olXGPXfgNcBR0vpiKZpX8GbglYEnqfrelbTtCXA9tM2PeZ/XwYs8X8+MsY2y/yfg2ijJOEyZNsKhdRTvlfTSPICW1XHzfJ1NpqR48YL1zM8MFiWYzUdM+k4ByWdTgHQkIyX9HyVzsUpZIg0LGJ0DBQOqxh5AwBFVQKt7hdT4C0rV5EIRwiFlDOCr7nmXDyfZyo51pUhx1kIMR2lBEAfwltL8x/AM4H3A98C3u7f/48l9uX/4WWXuxX4uaZpTwGSeAHRaCMf6cb9+xlnm2b/5yDamDJVVWhqqin14ROqr0+Ure3JCvnrOpxQiGRi6utKasIhliWTtNtWWY/VdMyE4xyUkQCopbGWeAnP13SEzCw1NREUNX7K7U7Gm/4WiwWbmMGpSXBxyzwAGmoihGKxQNufrc6l83mmk2NdGXKchRClKKUQaj/w5JFpb7quf1fTtMN4yQMe1XX93lI6Mirr2xv9tt6ClxDh9CuXkSuorH8//jb507bJ+j8H0caUOY5LKpUr9eHjCoVU6usTpFL5MQtLVlI2XyRqWZjxBHn/k/ypsFTv9FMsm8HBkg91Wcyk4xyU/1iwBGf+IiL5IoUSnq/pcDIZlFQGwz35khOOqGT8dWTFookbYMpqc9QIV/fRXhJNTYG1PRudi+fzTCXHujLKdZzr6xMyqiTEHFByQRBd149rmnY+Xtro47quf2qqbfhrcK4HfuQnUUDXdUfTtF14SQiOAItOe9jI70eByKjbDpy2zVb/5yDaKIllle/Nz7adsrY/GYdbW3nnlsd52jNv4WklXLy64ZFaLdX/W8YzE45zEAq5HE0R71SvrU3iVLg+jlXI4ZpFrFET3VzVxbC9pXmu4wbaJyUWwXZdQopCZihFpK4hsLZns3PlfJ4N5FhXhhxnIUQpSvqYQ9O0f/BHfXbi1czZq2naIU3TXj7FphYB38NLrT3SdgS4FC8Jwn3AtZqmjS6sej2g67regxegpICnjXp8o//4+/2bgmhDjGEkeUEkWtr0IsWflhSWWi1lN9zTfeLnZG3lp4w4xQLuaZngHNfGLkcNICAUDmM43kVRMZspyz6EEEIIMTtNeQRI07S3AJ8Dfg78K9CDlxXu5cB3NE2zdF3/v0k2txX4PfBFTdPeAAz6bTbhpaouAO8GvqZp2n8CV+CtNXozgK7rRU3TPg98UtO0XuAQ8Cm8UZ+f+vv4egBtiDGMpK+OROMTbDmOiHchHpb4p+zSPT0A5GwbVVEoQ+K1s3LMIq6RR403nxjpcXAw7fIEQIqiYLoOCUIYEgAJIYQQYpRSpsC9Dfi8rutvPe32b2uadifwb8CkAiBd111N014KfBz4IdCIN+pyra7rHQCapt2IF3BtxkvB/S5d1781qpkP+X/HnUACb8TnRl3XDX8fPdNtQ4xt5fEuPrD2AgaN0lINKzEvcApX+mp8Dsr295EACq4LZai7Mxl2LoXauOTE747rlKUG0AjTP62K2Zm1vkwIIYQQ1VVKALQE+NU4930feMVUGtN1fRi4zf8a6/7H8JIijPd4G6+o6XvOss202xBnqs3nWV7fwCZKTDEcS9JvFBmyq3NBPpfkBwe8AKiK2aDtXJqQ6z3XigK2a2M5VokTcSdm+oG1kQs+GYkQQgghZq9SLj0ew1tDM5ZLgG2ld0fMJurI9KVoaSmVzeb53LrtCf7twN4AeyXGUhwaAsCsYnYjx8ij2n7dH0XBcmysMga/dwz18PebH6XQ2lq2fQghhBBi9pnUCJCmaU8d9ev3gc9qmlYH/AjowluzcxPwVuBNQXdSzEyqn3rUjZSWBCES8QKnYqGAtyhlbherLKe0aTKcTmE2VS8bml0sgG2gqFEURcF2vBGgMKGJH1zK/iIRio5D0Ti9xJcQQggh5rLJToH7C6cum1bwCpa++bTbAH7AJNcAidlN9bNsKSWOAIVHBU7FokFMilWWzZFohC/ru3jJc27glir1wTEKuGYRNVGPooDlWFiOXbYAKBLzzstCQQIgIYQQQpw02QDo6WXthZiVQo4DqgolZoGLhMN8+Px1RFWVwvAgsbYFAfdQjEilUgDUJatXNd21LZxCFrWmDQDDMsu6v6tiCW5YsQr1SEdZ9yOEEEKI2WVSAZCu6/eWuyNi9hnJ3qaUGACFIlFW19QSUhQK6TQNEgCVTTrtBUD1Ncmq9sPODhPyl+QU7fKOzJwXinJh6zy6BvrLuh8hhBBCzC6TWhGtadp9mqZtmErDmqZdpmnaAyX1SswKtuNiuy5KtPRRhZFilYV0OqhuiTFc09vL/6y/hMWF8o66TMQuZlEcLxFC3ixvAOT4CR/sokyBE0IIIcRJk50CdwfwO03THge+A/xS1/Uzcsv6iRFuxEuEcAnjpLYW54Z/O9pBb28P/3LLqyl19U7RdUmAFKsss5hl0RKNYcdKW68VFKdYQLVNTDWCaZe3zJYdUsFycIxzp5yXa9sM/ukPqPE49Vc/BTUSqXaXhBBCiFlnslPgfqJp2r14BUPvBMKapu0CDgJZvAKmS4GLANPf5pW6rneXo9NiZsjn8wBEYtMYAXK9aXTFjARA5RRzHAipxOuqPAWumMc1i7iRGGaZC7K6IRU4twIgJRTC6u1h6C/3kNuxnYW3/ROKItkThRBCiKmYdFEQXdf7dF1/K7AceBuwFy/oeTLQAuwG3gAs1XX9rRL8nPsKBS8ACkdKWwMEMHJpKiNA5RX3kzQmaqsbADlGEdfM4you1kgdqXLtK+xnlzOrO+0vSKGQyoKbb0IJhcg8sZn0gzLLWAghhJiqyU6BO0HX9X7gy/6XmKOK6RTvXrkaw3EIhyOn5EifCtO/MDey2eA6J07hOg41qvdZR119bbV7g5NL4TS2YjnlDoDCQPGcCoD+cNev+PqXv8jT4jVcl0gycNdvqLvqGhS1egVuhRBCiNlmygGQEAC5oWE2NDRiuy7t0TimU1o7WRSGTAPTPHemKc00+eFhVH+aVG1jtQMgsAs5bMfELPcIUMQbAVKs8u6nElIPP8iBX/+Sb993DztTwxxQVS67+FLo6qKg7yZxwbpqd1EIIYSYNeRjQ1GSvJ9Wueg4qKHSF2L/0Anxxq2b6WtqDqpr4jTD3V0AFB2bmkR1kyAAuLaJbXtFUMvp8LwG3rBlE/fXVT/om66B++6lpquLVTW13HzpZaxavJQH+7303unHHq1y74QQQojZRQIgUZJixktbbboOjlvqBDiIRL38cSPriUTwMuk0e9IpDhUK4JY4VBcgx7KwHQOzzFPglGSMYcskO8vTYDuGQX7fXgC6olHe/twX8KGX/h2PpYcBGHj4IVyn+s+rEEIIMVtIACRKUvSTFpguOE7pAVDUL6I6klFOBC8TDvEhfRdfTQ3ATLhQdmxMy8B2yzsCFI56I5PFYqGs+ym3rL6HkOvSbxR55tVPIaSqtNTVc+G6J9GRy7GzkIdZ/jcKIYQQlSRrgERJipksCcBSphcAXao4/I12IcrhjuA6J04xPOyNFDTMlKlgikLRyHnpm6cxejiResvhtUuX05Sf3SNAB++9hziwJ5fjptVrT9x+yxVX8srP/ieO63LlQB+LFy+rXieFEEKIWWRSAZCmaa+aSqO6rn+7tO6I2cLIZbwACKXkDHAADarCBXX1HJQ02GWTSnkBUF1NTZV74lHDEfKFDApM69yZSBx4xvyFDJcxyKqE1J7dxIFQ2zwi4ZMv2W0NjVy6ajWP79/H73/3W173D2+uXieFEEKIWWSyI0DfnEKbLiAB0DnOzBdwXBdrmul33bC/KP8cSlU80yR37OBL6y+lYxr1mgKlhsgXcyiujVvOWbgx79wqPUl79bmOQ30uB6rKwvNWn3H/Uy64iE3797Hznj/jvOofUCOlJyQRQggh5orJBkAry9oLMesMtLZy26ZHuOyyK7llGu04Ee8iVTFnf6rimcrNpGmORumNzIwZr244TNEYAseGctavSXjBQMSvNTUbdR8+REcuy8J4nLWrVp1x/9XaBaw42M6ieILurU+w8LIrqtBLIYQQYnaZ1BWRruuHJ9ugpmmz92pDTNpI0oJwPDGtdtyIlwVOKXNNmDnNf66UePVTYAM4oRCGWQBslFAZ+xT3zq2IouDaNkooVL59lcmmXTv4wJ6drFu7ljtCkTPWTDXX1bEHWATsu/ceCYCEEEKISSjpI2FN014GXAdE4cTHqypQA1wFLAmkd2LGyudzAMRi05tW5fppsEP2DMhOdo5S/DTQ4USsyj3xOOEwplHADeG9gpTLqJpHTrFIKJks487K47HHHgHgsgvXjZ8wor4BDIN8+4EK9kwIIYSYvaYcAGmadjtwOzDsP970v+YBDvDVIDsoZqa6zk7++bw1FKcZuChRbwQpNBPSM5+jQv76qkhyeqN1gVBVHAVMy8CxHUKJhrLtKhSP4rguqqLgGkWYhQHQzh3bAFi3bMW42zQvXgwHD1KfzeK6rpddTwghhBDjKmUC/quB7wDNwGeBX+m6Ph+4HOgHdgbXPTFTxVMprmxuoXW6C8zjCQq2jeGUtybMXBaxvWMbr6l+AKSGIliui2kZuJaBUsbCrOFYlIL/t9uF2VcnJ5fL8a6aOj69bj2r6+vH3W7lqtU4rktLOMLhndsq2EMhhBBidiolAFoM/K+u6y6wCbgaQNf1TcBHgdcH1z0xU7mm4X0PTS/rVLplEa964jHu6OsJoltiDDF/6lS8rvojIEo4jM1IAGRBGYuhRmIR3r1rO2/augmlsbFs+ymX/VufoDESZUk8QVPd+CNlsUSSfj/Q2/vA/ZXqnhBCCDFrlRIAZTlZvmMfsFLTtJGPlrcgGePmBHckbXVkeos4olFvDdFIUgURvOPFIp35HDX11S+EqoQiWDjeFDjLhDImv4hEI/QYRQZNk4Ix+9KsH9m8CYBhRcGZIEtiMeat7xrU9bL3SwghhJjtSgmAHsWbBgdwALCAZ/q/XwDM7rLrYlJG0laPJDEoVSQ2EgDlpt0ncSbXdfl3fSf/vHMb9a3lW28zWWo4jOlYOI6Na1u4ZQyAQuHwifUwxeLsmwI33L4fAKMmiWuffaRMmT+fHx49woOdHZXomhBCCDGrlZIF7mPAnzRNa9R1/bmapn0H+JamafcANwI/C7SHYkZSRy7IotMbAYqrId67WiMeCuGYBuo0R5TEqbLZLLb/XNUlYnh5SqpHCUcoWCc/I3HNwvjZzaa7L0XhWQsWsiAcIX/wIMxrK8t+yqavDyJRYi0tE266RLuAn/zypyiKQjaboaam+qN9QgghxEw15REgXdfvAy4Dfujf9Bbgx8D5wP8Bbw2sd2LGCp0IgKaXBjsUT3JpYxMX1tVTSGcC6JkYLZUaBiAajRILV78OjhqKkDdPjsY4ZhG3jBkAr2xs5jnzF1I8drRs+ygHx3GoN7x1do3zF0y4fVNtLfObmnBdl927JQ+NEEIIcTYl1QHSdX0bsM3/uQC8MchOiZkv5DgQCqHEppdZLJpIYjoOEVWlkBoi2dwcUA8FQGrXDr60/lI6LaOs080mywmFKBRGjQBZFq5jcbKcWLAMv1krly1L++Vy/Pgx5vmjoU3z50/qMZcsWkqvA/s3b+Kyy55czu4JIYQQs1qphVAbgGfgFT49YxRJ1/VvT7NfYob7wvAAnYcOctsNL2I6K0tUNURxJABKpwPrn/Dk+/tpjkZJKZRtqtlUOKEQlmWc/N32EyEoUZhuSvUxWCMB0CxLsnFg/z4OZtIsq29gXiyOPYkkDs+tq2feGo0Hdu6oQA+FEEKI2auUQqg34011Gy+nrgtIAHSOy+XzFB2HcLxm2m0VXZdaoJiRAChohcFBagAzVEq+k+A54TDG6DVAtoVrmShlWvtlqd7fbc2yOkAHD7Xz2fZ93PiM67l4knFhtLER+vpQeiSlvBBCCHE2pYwAfRzYDfwz0Em1V1WLqhjJ2haOTC8LHIDhj0wUM7IGKGhGKgWAMwPW/6CqOKqCOWoECNfFMYso0fIs2jdVbwjImWUBUHv7AQBWLl6CY04uhXfzgoXYfX20OA5DQ4M0NjaVs4tCCCHErFVKAHQ+8De6rkvFvTnsNa1tFBubmX74A4b/CbchAVDg7Kx3TJ1ISbNdA6WGIpiue2oAhJcJTnHL8zmK4498zbYAqOPgARRgxSTX/wDUNLeQApYkkuzbq3P5FVeWrX9CCCHEbFbKVdFhoD6oDmia1oyXWvsWv91twHt1XX/Av38DcAde5rl+4HO6rn961ONV4Hbg9UAT8ABwm67r+0dtM+02xEmWaXJ1o5esYG84ynSX1huKguE4FKUWUOCcnHdMlVj104sr4TA2YwRAtoXiWEDwo1ROOAwO2MXZVZ5sYybHOy+9glBvH9RNbiQnVFuL47rUhsNs3bVTAqDTWEOD9P30xxQOHyZ+3nm0vuBFhOsDeysTQggxi5SyMODjwO2apq0IqA8/AK4EXgZcDmwG/qBp2vmaprUAfwT24gUvtwMf1jTttaMe/0HgzcAbgKvw1iDdpWlaFCCINsSp8qmhEz+H4tOfunRn3uSVmx9laN68abclTqX4Ix9qvPqnshqOYOFgmqcGI65tgWOfKFoapN2JMG/fsYWDK5YH3na5DA8P0agoRFWV+tq6ST9OCYXI+WueBvfq5ererGSlUhz55MdJPfhXjKOdpO6/j87//Di2jDoLIcScVMoI0CuAxcABTdN6gdM/tnd1XV81mYY0TVsN3ABco+v6g/5tbwNuBv4OyANF4FZd1y1gt6Zpa4D3AN/wA5R3Au/Wdf23/uNfChwDXogXXL0xgDbEKPlhr7aM7boo0TiY05u+FPFTaWezsytV8WwwbNso+Ryh2oXV7gpKKIJhmzinTXdzbQvXNlEiscAT1Tk1cY4VCqQmuY5mJjhy5AhtMW9yaWwKARCAnUhALkfxWGc5ujZr9f/ip5i9PWRCIR6PRrjaAbqO0/OD77Lw9W+qdveEEEJUWCkjQJ3Az/Eyvd0F3Hva131TaKsPeA6waeQGXdddvKIgzcC1wH1+4DLibkDTNK0N2ADU+beNPH4IbxTpqf5NQbQhRsmnvGxtRcfBDaB+SyzuBUC5WVarZTa4yyzyzzu34S6q/uiaGj61COpJLq5RgDKMAEXjXiCRy82e6ZVHOztoi3r9VuJTKzQcWbaMO9r38fv2AzhlLDA72/y+kOf3PV38+7Yn+OL9f+H2Jx7DdV3Sjz6C2dtb7e4JIYSosCmPAOm6/tqJt5p0W0PAb0ffpmnai4FVwO+BjwLbT3vYMf/7MmCJ//ORMbZZ5v+8JIA2ShIOB596OOQv6g5VMa2xmfUCIMN1cQFVnd6F68ZwiGev1qg7fKgsx6wUM+E4ByGd9rLANdQkpv08TZcaiZC3hk+Jc0amvTlmkTAOBNzHllCYly5awtKu4zPm3JpI9+GDrAx7L81qLIprTz6QWbx6DY+mhjEti+7uYyxd6r2EnSvncyl+97vf8l9fuAOA5z3v+Tx/xTK++c1v8vmDB1CWLeWO1uZAz425fKwrSY6zEGI6SqkDdLagwAEyfmAzZZqmXQN8HfiFruu/0jTts3jT10Yb+Qg5zslaRGNt0+z/nAygjSlTVYWmpunXyBlPfX2ibG1PJOQYOIABxGJhItOctjQ/EmJjYxMd6XRZj1kpqnmcgzASALU01hJPVHcdUCgRx0r3EY6cmexAxSGkukSiQeQVPKk5EuYZi5aQGk7NuHNrPLnjRwEwwmHi0anPUl65cBF7j3Rw/HgH69dfcMp9s/18nqrBwUE+8YmPAHDbbbfxL+98B537d7NqYQPv+8hnyG55gu9+9xu84x3vCHzfc+1YV4scZyFEKUpZA3SICUq2a5o2ANyh6/pHJtuopml/A3wPeBh4uX9zHs7ItDwyJyTr34+/Tf60bUbmUwXRxpQ5jksqFfy0m1BIpb4+QSqVx57CJ8NBGurppwawgGzOmGjzCVmqdxpa+QKDgzNjGtxMOM7T5RSLfKh1AenGFmJAIT/952o6Qg4UCnks0z5xm6IohMIqVrGIahiYTgg3wIVAth9AqLY9Y86tiaQ7jwIqdjJBvoTn7Or581ldNNj+6CauuOIpwLlxPpfiJ+9+H29ubuXR5lbe/Oa30HOsk2Mdh2htauY1L30hX/j6d/jCF77AzTc8m/mLl0zc4CTM1WNdaeU6zvX1CRlVEmIOKCUAejXwFeAvwPeBLqANeBFeKusPA7XABzRN69d1/X8malDTtLfgpan+KfBKXddHRmOOAItO23zk96NAZNRtB07bZmuAbZTEssr35mfbTlnbP5uhphZu3fwoF15wEc9zpn+x6vrFVF3DrNrfNJ5qHufpyvf10xSJUBsKUZNM4ATwXE2LqmKYxmmJDrxfHMvEsUzcUDzQfo6k/w677qx5Hjt6e3gkHGHDmjUlHYvr1Ag1y1Zwl66f8TfP5vN5qlKpFI1HOllY38iKa56C4tr0HevEMr3loFduvIRH7nuYZyohDt/+IZq/+BUUNbgL37l0rKtJjrMQohSlvNq/HPiBrus367r+bV3X/6Dr+nd0XX8+8FVgo67r78ILhG6dqDFN024F/hv4PPDSUcEPeAkVrtU0bfScmesBXdf1HrwAJQU8bVR7jcClwP0BtiFGyRfyFBwHJza1BdrjcaNeO6o1ezJ1zQbpnm7vu2VRV+Xpb0oojK2AYY1fj8cx8oGnwlaSXnAdCTq9XJkYhsEDHYf5zIF9tDz5ySW14Sa9Wb1m1/Eguzbr/P6732JhLIbpulz2ildSyKZIDw2euF9RFG6+5VloNXXUWha9W56oYm+FEEJUUikB0NPwpqqN5ad4wQV4xUTPmg5b07S1eCM/P8OrL9SmadoC/6sBbz1QPfA1TdMu1DTtNcDb/W3xg6XPA5/UNO15mqatB36IN+rzU383QbQhRhnJ1hZPJCfYcnJcP5AK2fYEW4qpyPjZrXKOg3r2Watlp4QjWO6ZNYBGc00DxQ32HFBqvPUBIUXBtaZbsrf8jh7txHVdkokE9SV+wFDT7C1dTObzGEZ1pz1Wi+u6HL3vXgAKbW1EahIM9XVh26eeA2vXrGKv7X3wsuNnP654P4UQQlRHKQFQP3DxOPddjDeaAt40uIkm3b8IbwraC4Djp33d4Y/Q3AhoeGmpbwfepev6t0a18SHga8CdwF/xlqbcqOu6ARBEG+JU0Y4O3rz8PJ6knrmYvSRxb3F6WObLByrX3w9AQQGqnBJZjUSxcM8+AmSZ4AQbAKnJk8v/nMJYKbhnliNHOqgLh1m6ZAlOicFLbUsrAItjcTo6DgfZvWnJ6XsYuufuQNd4jWfvXp2V/jm/5LqnYxt5MqMKOI9QFIXwaq9IbvxIB7Z8CCOEEHNCKWuAvgv8h6ZpJvBjoAdvDdALgX8DvqRpWhPeKMvDZ2tI1/WPAR+bYJvHgKvOcr+NV9T0PeVsQ5wUHRjgGfPa2BlQe4ofAKmuBEBBKgwNEgWMKqe/Bq8GkOlYZ3wCP5prGeCYKOEIbkDrgMKJGIbjEFVVnGKBUG1tIO2Wy9HODr60/lJQVUy/4PBUherqAViaSHKwfT+rV68JsoslCYdVhu76DZkd2zH7epj34peVdX93/+YXPN0vIjvvyisp5jPkM+kxt115zZMxvvcLWsMRtt/9RzbccFNZ+yaEEKL6ShkB+gDwA+C/gA68dNEd/u/fBd4P3Axc4m8rzjFu0fsU3w1HJthycnLzFvHyTY/w750dgbQnPGbKu4C2wwGN1E2DEo6QM/Nn3cZ1HG8aXIDrgKKJGB/cs5P37ttNuKExsHbLZfDIESKqSghwldIW5Idqa3FwqQ2H6dy3N9gOToHrOFipFB0dB/nHW9/IN+/5MwCDv/8d2R3byrdf16XroQdRFQWjoYF4Wyupwf5xC8NGkwmO+3WA9v3hd2XrlxBCiJmjlEKoFvA6TdM+CjwdaAU6gb/qun4QQNO0u4DFpyU0EOcI1/Sm5riRYBbWx+K12K5LLjs70hTPFhnLIpfPUaivfv0bJRQhb479CfxojpFHTTYGtt9oPMZBf82aoyhUPxQ8u4KfuMCIRkuetqiEQuTVEDWOQ6r9wMQPKJP0ow/T9c2v8/Ou49x7yOtHwrF5zvyF7P3SF9nwuS8GmnVtxJEjHRzp6WabonLNs5+DYxnk0mcfTQstXwwHjxLuPIplWYTDpUyOEEIIMVuU/Cqv6/oBTk0bPfq+wbFuF+cI08/WFlDRymjcW6iez+dwXQelxE++xan21tby1Z3beNktz6p2V3DDYQq5idfgOJZJyLUpbXD6TNH4yXM0n89TO8OnwDmDAxCO4tZML2jtX7iQj/zpdySWnq1udXkN/PEPYFnki3nOW3kBL37+69m9/WHSfe3UFeDhb9zJVf/wxsD3++CDD7B5eAh1zVpe8qKXYBZT5HNn/3Bl3sXr2L59D4/097Fs6xNs3Hh54P0SQggxc0wqANI0rR14ga7rWzVNO8jZC6G6uq6fNfubmN1Uv44GsWAqcMeicf5p5WoSIZVM/wB1ra2BtDvXDfkpfxtrqz8CZIfDGGfJADfCtQywLVBjEMBi+XAkzNUtrSyOxUnt30vthkun3WY5hbNZaIgSqaubVjuty1dwIJslfuigP/Wrsh8qGF3HMQ4fwnZdNpsO73jbf1BTU8fq89ax94f/xcZCiuF77ib38leQTAZ7fj700AMAXH31UwiFVHL5LEbh7NMvleZG7mup5949O1l4318kABJCiHPcZN8V7+Vkdrd7J/i6L+A+ihlG9ReyK9Fg6gCFozGuaGrissZmsgN9gbQpYHDQD4Dqqh0AKTihyQVAjmXh2iZB5W1QFIXrWtt48aIlFA4dDKbRMjFNk1o/VXeiqWlabS1sbCISDlMoFDh+/FgQ3ZuSPj8F9dbhIW587qupqTkZ0K189muxXJfz4nF++j+fD3S/pmlwcMtmGsIRrrrqGhTFJT08MKnHXnyBBsD99/8l0D4JIYSYeSY1AqTr+mtH/fyasvVGzAphx4UQEFAdIEVRKDguMRXyQzJ7MijPGRripnXrAy8uOlVKOIyFg3mWFNgnuC6uUYBYHWcfaJ48w//zjfTEa5Cqqaenm3n+tNKaxukFQKrr8qIV56HmCxw82M7y5ZWdCtd7/70kgJ0u3LLhqafcF6proqttGQ9tfYj79d08/03/GNjUxK1bt/CcphaevuYCWg4dwlmnUchmJvXYdeevYV4sTlP/AEeOdLC0itMHhRBClFdJ8yI0TavTNG2x/3NU07R3aZr2OU3TnjrRY8Xs98X+Xt60dRPZBcFdIBT8Bd+FVGqCLcVkNbsuyxJJapPBBKqlGqkBVDQnV4fHMQuoARZENf3hJHOGJ9no6jrOltQQ2wt5QtOcAgfwgsZm/mbhIo7s3RNA7ybP7O0lkc9juy6Lr7kRdYx6YbU3v46H1TBd6WF+8Yvg6k1v2vQY6/w04Illy7HMIsV8blKPrQG+8KQNvGv1Wh68+4+B9UkIIcTMM+UASNO0K4DDwD/5N30O+CTwSuBuTdOeF1z3xEw0mM0waJqEk9O/SBsxMjZQTJVW+0ScyrVtEn4yibrG6k6BU8NRLJxJTYEDcEwTggyAQt5xsHKTuxCulq6u4/zs+DH+EIsQmmYSBCUcJueP/A3t3x9E9yat/e4/AbAvm+GiDdeNuY2iKDzr+hcA8IMffGfcFNVTdeCJTbTF4riKQq22FrOYpzjZArjJBJlwCFVROPb4o4H0RwghxMxUygjQR4E9wJc1TUvgBT5f1HW9Gfga8K8B9k/MQFn/k/RIQGuAAAz/Yq04w6cpzRZW5uS0n/qG4ALVUijhCAXLwJ1koVsvEYKJEtBCIMuvg+RMciSgWkbW6ixsa8MuGtNuz4x7/59mV2XXAP3l4AG+29lBR3Mrscj4gdzGi57CU+YvRMsX2LJl87T3a9s2dPi1xBYsJJRIkE0PT/q8A7DmNQOgdh712hNCCHFOKiUAejLwYb/mz/VAAvhf/74fABcF1DcxA1mmyavnL+RVS5YTU4OrlWH4oxUzfZrSbJHu6Qa8WkANdcFk6yuVGomSMyYffHgFUYuBrV0aKQTrTHYkoEr6jx6lIRxhfnMLbgAX39H6BgAiqRRuABn1Jut3jzzIL7qO0XTl9WfdLj7Uy1uXLucVS5Zx169/Me39Hjiwn1VRrzZZ4/r14NrkM1P7QCV53nIAVsVi6PruafdJCCHEzFRKAORwcsbSs4EhYGS+QD0wsz9mFdOSGx7i+nlt3LJgIeFocBfWlr9OQAKgYKS6uwDI2jaxUJXLf4YjZM2zpyE+nVPMowSUBMGJRrwfijO7LnPj8WN8dcNGLusJJhNiw7x5AMxTQwwMTC4T2nR1dh7h4MF2QqEQ56++5Kzb2vOXYUbj1ITDHP7rAxjG9Ea9tm59ggv99T+1F1yIYxkUJ0h/fYZFbQCcl6xh08MPTqs/QgghZq5SAqDHgddrmnYV8FLg17quu5qmtQHv9e8X56isfyFlOU5gabAB/hCp4+WbHuFgS3Ngbc5lmd5eAAoKuH7a8mqZbA2g0RzLQHGC6ffRmhjv372DPUuXBtJeuYT8aYuRgDKixRsbAVgST9DePmbN6sBt/tXPuaa5hWvWX4KqTFAoWVFxV1wIwLpolEceeWha+9636THmx+I4QHLNWiyzOGH9nzPU1pAPhwirKscef2xa/RFCCDFzlRIAvQtv6ttfAQv4iH/7DmAN8IFguiZmovzQkPfdcXAILr1yqKYO23VJyxqgQGTzOY7kcwxXNwM2MBIATW36mWOaYFuBTINz6xLsz2boNc1pt1UuruuSMLwgcbo1gEaEar21X83RKIf0ymSCc7c8wdvOW8NzFi/HsiZee2Mu8WrvbGxs5p5pZl7btHM7n2vfR/7SjURqkhjFAsZUR/0UBbPV+xBGOdqJZVX3wwMhhBDlMeUASNf1J4DVwFXAebqu7/PvuhW4SNf1TQH2T8ww+eEhAIq42HYwmZsA4glvsXQ6LWmwg9BVU8M7d27jL7GSMt0HRglHsBUmnQJ7hGtbuFYxkEQIsYQ3VXMmB9fpdJqWkDdVrz6gUVAlEuHuaJTXPfE47UePBNLm2di2TVPeG3GpW7t+Uo+xFq7EUUO0xWLsf+jBkrPB9fX1cuBIB38dHGDNq16LoijkMylKqSUVu2QdXzhymF8fPcL+/XtL6o8QQoiZraSrI13X07quP6LrenbUbT/Rdb0ruK6JmajoBygGCo4T3MLqFbj808pVLO/uCazNuWzILyjbWBfMdKpSqeEoputgGFNPQOAYwawDqovHuGX+Qlb39U67rXLp6jpOW8ybMharrQ+s3Zp588jYVkWmwO3b+gQL/EKuzedfNrkHhaM4S1YBsFpR2L59a0n7Hskit2bNWq+oqmuTz5UW8CoL20gvmEfKstiy5YmS2hBCCDGzVffjYTHrjKSpNpWglqh7mkMK17bMY15+Zmfqmi2G/KmKjbUzoQiqM+UpcACOaaA408+GloiFedXS5WzMFyqaDW0qujsOURv2sypGIoG1u6zVS4RQiQDowP33AtCvgKlOfn3gyDS4JfEE99zz55L2vXvTYzxvwUKedv46ABzbxJhG1r81560AYOvW6afnFkIIMfNIACSmZKS+jKkGe+oocW8KXLjKC/bPFecfOMCn163nPKXKU+AiUfJWEWcKtVhGuKYBjjntdUAhPwhUAXeamcbKZfDgQcBLoRlkjLYkkeTvlyzjqUroRP2ucknpOgDFlnkUC5Nfb2UsX8f2Jz+Nzx3cz333/aWkfWd37eKVS5bzlGwWRVGwTQOjWHoAtK61hRcuXIzr/01CCCHOLRIAiSnpbmnhzVs3c3csuAxwACS9BduRAKfVzWXJQoFliSQ18QkycZWZGo6SnUINoNEcy8S1jOkHQHUJHD+qcPJTzApWId2DA/y66zhH62pwA1x4nwypPHfBIq5rmcf+/fsDa3csUX/aZXL56qkFcdE4qy6+llAoRHv7fo4e7ZzSfguFAnX+2sTaCy5EVRUvA9w0AqDlqLxs8VLWqyrd3d0ltyOEEGJmkgBITEmmUGDANDAT41d4L4Va6xVtDDismrNifiHNeH2wz9NUuZHIlIqgns4p5lCU6QXF0WSCnH88nKmmRa6QAwP9fLvzMH0rVgTa7kgmuNZYjH07dgba9mgDA/0s8qfw1Z+3bsqPV4hx8cWXElIU7r//L1N67O7dOzm/xlvrNu+SjaiqQj6XwS0xoQJAeMkCALTaOrZukWlwQghxrpEASExJNutNgYvFg11bEqprBCChqjN2ncZs4bouI89OTUN1kyDY4TDFEhIgjAhiHVAsGSPvB0B2bmYGQF1dxwFoqwsuAQKAGo2eqEx9fGf5AqA9e3bxwT07+ebwIGrb8ik/3shk+YfmVr568UYeuveeKT12x2OPsjThnfHJtRoKrp8BrnRuSxMmUBeO0P7YI9NqSwghxMwjAZCYksajR/n7JctYFnC74Tqv9kk8FCKXHg649bnFLRaI+tPG6pqCvaCeEkXBCYennAJ7NMcsTnsdUDyZIOuvLTNSM/Pccvv7qA+HmVdXF3jbxWgUgFT7wcDbHrFnz276DANz+UqKdglvK+EozbZDbTiMtW8vudzk1ysNbfMyx+WSSUJ1dX4ChGkGuqpKptZLn57bJ+uAhBDiXCMBkJiS1tQwz12wiLaA21WTJy/Uh3tmbrri2SDf3w9AwbZpbqxeAKRGYn4K7NIvRl3LwjWnVw8oloiT8dfV5Ab6S26nXCzL4jUNTdy54TJaypAFMexPg6O/fH+77hdaXbNawyiWsIZJUVDXeLWDLq1r4JFHHp7Uw1zXJdHjrdGJrl4DgG2b01r/MyK02JsG15DOkJ+ha8eEEEKURgIgMSWq6WV3UmKJQNtVQiHetn8ff7fpEXIEV2B1Lhrs9BaRpyyLunhwKZWnSo1EMXGmNQIE4BSnVw9IDan8qK+H9+/eQXHR4mn1pRx6e7qZ59fPqW8KpgjqaPXzWgGoM8yyXci3Hj7E3y5czKqmtpLrgxWXnA/ApQ2N/PW+yU2D6+w8woqwd44vuuZaVFXBNosYxWJJfRgtvmIpAFpNLbt27Zh2e0IIIWYOCYDElKiWvx4j4DVAAGY0juW6pNOZwNueS4aHh+jI5ehzbJRpLASfLjUSpeiYmNb0Uk87ZhHFmV5mtN6wwv5s5sRUuJmku/0AUVXFcV3UWPBZ+2pbvACoJRotSz2gXC7LxlCEly5eyvxY6WvOio0LsWNxasJhuh9/bFJrAbdufYL37N7Ot80i9Rc9CVVVMIoFLDOAdOdtLTi41IfD7Nr02PTbE0IIMWNIACSmJOxfUKsBZ4EDiCe9i6fUDF2nMVv0xaL8y65t/J9VgEDL1U6NGomRKZaeAW6EYxbBnt46oGSNd76m/UK+M8ngwXYAUoBjBh+ghRubuGN4gHfv2s6BA8Gnwt67cweL4l7+xvji1aU3pKiENW8anKao6PruCR+ydesT2K5L88UbUGMxFEUhnw3oOY5EuHfJPF7zxGNs3l2+BBJCCCEqTwIgMSUx/1NZtSb4tSVPq6vnn1auwj7UHnjbc0m/v9ajpYrrfwCIRMkY0y++6do2rlmY1jqgFbU1PGf+Auzdu6bdn6Bl/Lo3+Ug40BpAI5RQiNbWeQC0twcfAHVs3oSqKOQAIzS9RPbOCi+F9uWNTdw/iWxwW7c+AcDFF1/i3eA6FHPBjSDPW7USB9i2bYtkpxRCiHOIBEBiSuL+p/CKX7cnSGuiEa5tmYcjSRCmpb+/D6h+AGRHIhSnkQDhlLYKOdRprA1bFU/w6qUriO/fF0h/gmT2ec+XnQh2Xd1oy/1pcPvL8Pen9u8FIFtbS9GYXsryXMtS0s0t/LzrGH994L6zbjvQdZzbonFetWQ5F697EgCubQSy/mfEimVLCIfD9Pf309l5JLB2hRBCVFe42h0Qs4dj2yRDIQCUmobAJ1eZ4TDYBlZW1gBNx9Ldu/nMuvUMhKqXAAFFwQ6HKQQUADmmAbYJSqSkWX12IgY5B7cQfJa16VLTXs2aUG35ajZpiQTvWrWW/q7uwNtWenogEiW0YDGWOb01Z5aj0vi6t3LXy25E6e2mv7+PFj94O92eX/+SRfEEkXlRWuYvQFEULCuYDHAjoqEQ/3zBOhY4sOPxR1m6NOgCAEIIIapBRoDEpOXyOd60dRPv3LmVUF3w2aqsiDd9xs5Of9rUXBbLZVmaSFKXmN50pOlQIzEM16FoTH8NEHjrgFzbRC1xHZAT92rhqAGODgTlidQwv+k+TnTevLLtoy1Zw+VNzSx3CTQTnGmaNBlewoHkirWBtBkL13HhhRfhui4PnGUUqOjX/+lvbUVRFFRVwTKLmEE+x6rKmkSSJYkEXZseD65dIYQQVSUBkJi0bDbLoGlyzDBRo8FfXDt+am1Xam5MS8RfSJ9oKN+IwkTUaAwTO7ARIFwXp5gtPRFC0jtfQ34a95nCdV3+1HGIbx05TMOy5WXbT0PbfACWJ5IcDHAd0MH2A8z3M9fVLj8/kDZzOYOnXXUNT2+ZR8fdfxpzGzuToc3/oKTpyqsBvAxwhTx2wJn+8o1eHSWn43Cg7QohhKgeCYDEpI1k0KqtraUs2ZUT/gV7YeZ9Sj+bJFzvyan1L9yqQY3GyVtGoBejTrGA4pbWnlLnZYGL2NNboxK0dDpN1r+Qb60pX8Aaqq3Fcl2S4TAdO7YH1u4efTdv2LKJr7k2Vk0wo8L5rMHVtQ3cunIV6wcGx5zSduS3vyaiKBzKZVn/zBsAUBTIZ1OB9GG0+PIlAMwzDPL5YEY0hRBCVJcEQGLSMocO8qoly7l+3nzsMkRAStJbtD/TPqWfTVzHoUbx/q0bmoNPVDFZaiRKqhjsWi7HLIJVWjrscJMXDIYBxwigRkxAjh9sZ3VNLUubW4iWcT+KqpLys+gN7d0TWLu6vgcHaF57PsY01/+MsCyH+dc/l5xtszAWY+fPf3bK/a7jkLrvLwDsSSZpaGgEwLEtimUIUJLneSNzq5I17NjyRODtCyGEqLwZlQRB07QPAM/Udf1po27bANwBXAb0A5/Tdf3To+5XgduB1wNNwAPAbbqu7w+yDQHm0aPcsmAhByyLYhkywobqvAv2iDOzPqWfTbK9PaiKguO6tDRXbwTIicTIZYLN5udalpcOO5LAtad2AkYb67Bdl5Ci4OSyqNFyhhuTN7hjGx+74CKO2xZ2sbyBmZVIQC6PdexYYG3u2eOlFV+9SqNYDG60L2eotDc2cFE6g3PPn3Fe+LeoEe85Sz30IPFCgYxl0fbMZ554jGubgWaAO6G+liwuNarK4Uce5PKrrgl+H0IIISpqxowAaZr2duA/TrutBfgjsBcveLkd+LCmaa8dtdkHgTcDbwCuwssRdZemadGg2hAew89WZajlOW2KS9by+i2P8/7dO3DKMsfu3NfrF9UctixqE7Gq9cOORigElADhlHYLWVR36udGor6Gj+3bw2d6jqOWcarZVGX9GkC5SAS3zNPzEi3eFLV4QMVgXdfliqFh/nHFKlbVNuJMMSg9m3zWYPELXsyAYVBnWXT93w9P3JdbsIA/9Hbzk+OdPO2ZNwLe+h/LMjADzAB3gqIw7K8hy+3dG3z7QgghKq7qAZCmaYs1TbsL+Aign3b3G4EicKuu67t1Xf8G8FngPf5jo8A7gdt1Xf+trutbgZcCi4EXBtiGAKyMN6XJDJcnvXKioYWUZWFYFul08HP554LBvl4O5bL0uQ5Uab2LEo5i4lIoBh8AOWYRHNNb8DEFifok21PDbOnuQgnPnIFvq9cbJbMrkLFv3uIlFG2bXC5HNoBU852dR7i0to7rWufRVNsSQA9PymVNLr7san5d8M6hzN1/5vhXv4Truvz8D3dx5+GDHFu0mAULFgKgKAq2aWAY5Vk/qCyaT2c+z6GjnVIQVQghzgFVD4CAS4FBYD3wyGn3XQvcp+v66LkVdwOapmltwAagzr8NAF3Xh4DNwFMDbEMAjn/RZEXKEwCFIxHiiSQAQ0MDZdnHue4Y8O5d2/lVBEoqmBOAUDSGgUO+TAGQaxannA47XuudV8VikUJh5mQZDGe80Ri1pvzTFVuXLeWf2/fyX+372BvASMaBLZtpiESwXRe7cUEAPTzJth2y6SLrX/RivtfZAUD+0EHS6TQ/+tH3AXjZy15xYntVVSjkMrhlGjmuv3Ij79Z38tPDBzlypKMs+xBCCFE5VQ+AdF3/la7rf6frevsYdy8BTi+/PTKBfZl/P+NsM1KxLog2BJwoImlFyje16u+XrOCtK1czGOA6hbmku7sLgPmtTVXrgxpLULANTKsMn8a74BQyKMrUgrtwLML6pmZumb+QXr9+zEyQ9Nf9JJoay74vRVVZtXAxAHv37p52e93btwGQjkQw3RLTk59FerjAC1/wYh5R4F937+BP2Qz//u//yuDgACtXnscznnHDiW0VxS1LBrgRkWiE85Z7bwfbtm0p236EEEJUxsyZCzK2JN70tdFGJnnH/fsZZ5uRnKxBtFGScDj4+DIUUk/5XkkjRSTdWAJVDf6CB+DJdbXUqyp93cfLcvwmq5rHeTp6e7sBmN/cWLbnaCKhWJxUMT2pWWojGd2875MLahyzSNgxcdWpjEQqPGP+Aq6urSe3awfha6q/kN11HBr8v7+htbWsz9dI26sXLODhPbvYq++a9v+X4Y+EWC2tmIYdeP8LeZNIOMqHP/xR3vSm1/PFv/wZgHA4zAc/+O8kRq9xcy3MYrGsx3D1ymUcaD/I3q2bCT//BeNuN1tfO2YbOc5CiOmY6QFQHjh9uGFksnzWvx9/m/xp22QDbGPKVFWhqamm1IdPqL4+Uba2xxOyvPTUam0tiUR58kPkFZV6wEwNlfX4TVY1jvN0rO/o4PJ163HDEeJleo4motYkyQ/3EY6EJv2Y0FQuxl0L1TWJJKd2fhhR7+XOzaRmxLmVOtJJWFGwHIdFCxeSCE/+eJXqsuZmLlm3nszBw9M+BvHUMCRqqFu1BlVViCeCnRrruuDYLjff/CzuvPNOPvWpTwHwvve9j2c84xmnbJtND6ModlnP+WtbWnjZhsvYt2//pI7dbHvtmK3kOAshSjHTA6AjwKLTbhv5/SgQGXXbgdO2GZnnEkQbU+Y4LqlU8GsgQiGV+voEqVQe265sprSf2Rb7dm7lpkuvpS5fnpS9rhoC1yZ9vIfBwZLjz2mr5nGejppCkYWJJAOJOIUyPUdnp6CgkMmmscyJkzAoikIorGJbzhQWl9somTR2uAbHmfxUOMNPfZ3rG6jquTXi8JEuvtFxiPpYjDe7CvkyPl+qqhCLRWhraiGcSDJgGvT0DBEpcT3fwMAAi1Tv7aNx7UX05MpTu6u3J0OyLsrll1/Dj350ctRu9POnqgrFXIZMKoNZxhpPzYsWEj9wlEWGTWdnNzXjZBOcra8ds025jnN9fUJGlYSYA2Z6AHQf8GZN00K6ro9cTV0P6Lqu92iaNgykgKfhBy+apjXiJVb4fIBtlMSyyvfmZ9tOWdsfy7HhYY7k84Trmqd04TkVxXAUzDzG8FDF/76xVOM4T0fScUGFhtamsj1HZ6NGYxiuS76QYXLxjLeR67qT3N5jF/OoloGjhCed68FKxiBn42YyM+I5PTo4yF09XaxYupQ3GJUp/tu2eAl9W7bQHImyb/MTrN14WUnt7NiyhYJjY7sutC7D6S1P9rX0cAGjaJ+18HI4rGIUChQLZUiBPUrNymWY9z1KSzTKjvvuY+MNN511+9n22jFbyXEWQpRipn/M8XWgHviapmkXapr2GuDtwMcBdF0v4gUpn9Q07Xmapq0Hfog36vPTANsQwPDwEACxZPkyVllRbzqDE0Ca3rmmmM9RF/KmUbW0TWv5WslCsThFbPLF8o6w2EYB15paNji3zpu2pJb5QnmyOju9vCsLW+dVbJ9qJEKvnx796ObHSm5HP7CPd+7cxv+2NGGW8XO0XNbAKFpnXdujqir5TDC1jc4qHOa4/2PPo6cnLBVCCDGbzOgASNf1HuBGQMNLS3078C5d1781arMPAV8D7gT+CljAjbquG0G1IcAxDJ4dT/CChYuIx5ITP6DU/fjBlZsNfvrgua67vR1VUbBcl4am6hT7VGMJ0kYW2ylzDSLX9bPBTeEx9V4AFC3jNKmpyO7ZxXnJGpY1B1tDZyKZiBewZPfvK7kNXfeyyK3WLqRYtCbYunSFvEk+Z5x1SpLr2BRyFQiAgExTPQBqx+GK7E8IIUR5zKgpcLquv2aM2x4DrjrLY2y8oqbvOcs2025jrsv393FjyzwMx2Fvsr5s+1HrmqD3MKEZ8in9bNKzfx/1QMqxURy7OlWAonGGC70V2ZVdyBOqNUCJTGoaXKi5AThO1HVxTAM1Up0kESPWHjrMJy58EjsSlV3EHWpshMEhov39JbexZ48XAK1ZrWEUyhcAAQwN5GlqHT/pgGMbGMXyTME7XXz1Cnh8BwtME8c0UctUE00IIUR5zegRIDFzDB/36vKkLJNwtHwjQOnVG3jDlk18at8eqbg+RUMdhwDIh8O4dnkvSsdjx2Lk8pWZvugVRS2gqpN7GYu1NvCJfXv4SiGHopY/49rZuLZNvT8Vra6lclPgAFoWeaXP5tsOljn1tUf5fI5bk7X8x/nrWF7bhGGUd7QvmymOm1BDURRsy8CoUHHbBResIW2ZJNQQhx9+sCL7FEIIETwJgMSkZHq8+jIZx6Wca+uTrQsZtkzyxeKJNUdicvoHBzmUy1KsiU+8cRkokSiGArlChdZvuS52Po3K5BZA17c2snl4iC1dx1FC1Q2AzN4eQopCwbZpbW2t6L4XL1/BoXyOhwb6ad+9c8qP37N1CyuTNZxfW0esofzBWy5jUMxbY06DU1UFyyhiFCszYhyORHjUMvhuZwfbDx+syD6FEEIETwIgMSm53j4A8lNadDF14UiE2rpGALq7u8u6r3PN4+kU7961nX5teVX2H4olKWKTLVRmPQaAUyyAVTxRUPVsahu9qZv9/X2YJYx8BGnwwH4AjhXytNWWb0rpWMKhED8o5PnS4Xa279s75cd3PuYlAEgpCsUzSqwFz7IcUsOFMRMhqKpCIZfBOUuWuKD1rVjML7qO8dftJVdJEEIIUWUSAIlJKQ4NAFAo8yfnim3xmqXLeevK1fR2HSvrvs41R496WcWWzKtSBrh4krSRw67g9DvHNHCKOZSzZAkbEa9Lsr6xiee0LaBn6xMV6N34+vfq3nfHITbJKXxBunDJUgC2b5/6ccjv94K3fHMzxUJlAsnUUB7HHmvo2SWXSVWkDyPWaWsAeOzRRyoaeAkhhAiOBEBiUqxh7yLDDJd34birhrg6keApLa0M+mmCxeR0dnYCsLilOgEQsTgDuaGK79bOZ1CdiS/EHRyuX7iYVy1dztATmyvQs/Hl/XM7F61OIoYLlixFBXq3b8ed4kV8ctD7MCR+3pqyZoAbLZsZOx22a1du/c+I85YvpTmZYJ2i0n7/Xyq6byGEEMGYUVngxMzl+HU2jGiZp7woCllVpcF1SB+TEaDJGh4e4lMrVpGxLdpiESZdHTQwClYsRm6wctPfRjjFvFcTKFJz1uKvlmNTjHsBR6G3p1LdG5Pb500pdWrGz25WTucvXsr/rL+UpmiU/r17aD3/wkk9LpNOscQfBV6w8XJ6ypwBbkQhb5LNFGlJ1uL4KdYVBWzLpFjhACgcDvOqNRpXR+L0/fEPrL7uGRXdvxBCiOmTESAxKVuam3nnzq0cbih/zZJc2Auyqn2ROpsc3b+PpmiUpYkk8SokQVBjcYo4ZHKVnY4E4DoOTi6Fqkwc9Nm1XsBhDw6Wu1tn9Wg8zreOHEJtbqrK/htqauj1pyp23PeXST9u30MPkgyFKToOtUvXnjXgDNpgf47RiSFVVcU0ChhVSJlvLpoPQE1XF65VnYyLQgghSicBkJiUvmyGI/k8Sn35L9iKcf8iVbLATdpxvy5LxnWBMhchHUM4UUPOMckXK5QB7jR2IQeWMWEyBLW1EYBQpjr9HLGpr5vfdHfRXOEiqKMNxbxAOb9r16Qf035gH48NDtAZi5LNV/bCP5suYhatE8+xlwAhW9E1ZyPmP+kCUqZJDMj667mEEELMHhIAiUkZSUkdT9aVfV9ObYP3Q7q6F6mzSX/7AQCKsQhuFTKcqfEaBvJDVavd5JgGTiEzZqaw0SILvLTNcdOsap2pQ4cOAbCoobFqfahf6iVCaEyncSZZSPSRg+186sBejm28nGKFA6Bc1iCXMQiHR962XHLpoYr2YcSKZUvYlvWme3bc/ceq9EEIIUTpJAASE3JMk8uHUzx/wSIS8fKvWVCaFwAQLRaxZHrJpBT8QrVKQx2VX/8DVjzOcHao4vsdzc6nUWwDzhID1axYCEAEcLLZynTsND2bHkNzXFoiUZY0VGcKHMAFazV6igUiikLPY49OuL3rujzxxCYA1l+8oWIZ4E7uHwb6sydOb9c2KOZzFe3DCFVVGWz0Pgwydu2Uos1CCDHLSAAkJmQPDXF5KMyLFi0hXlf+C7ZQixcANYTDHDt2tOz7Oxeow8MAJNsqP6VKjcYpqgqZ/HDF9z2aXczjGjnUs6SVblw0nyHTAKBYpTVmfX/6A29ftYably4jESt/HZ3xNNXWccAfLey8/y8Tbt+5V0dNDRMOR9BWr6NQoQQIo6VTxRPZ4CyzWPEECKM1rFuL4TgkDRPjyOGq9UMIIcTUSQAkJmQOeQvGBwyDRG35A6DskjV8oKeXf9d30dEhFxYTyefzNNjeup95SxdUfP+hRA051yRbhQQIp3DBzg6fNSV2fWsDXzh8kH/ZuY1UlVJQW352Q6u2tir7H81qbAQgfOjQhOmwD//21/z3ky7hves34DohbKvyNXBymSLZjEE0GsIsFiqeAnu0iy66kM3DgziuS8+W6taVEkIIMTUSAIkJZbu7ABg0DeLJhrLvz41Eic9biAsckU9WJ3ToUDud+TxHiwUaF7ZWfP+hRC39uUEct/pFIe1CzhsFCo390ubgMlBfR0c+R8fRzgr3DpxikZg/9S7aXKV6TaMsOm8VPz9+lM8fPTLhxEln/z4AIosWk0lVPvMa+NPg+rIoikouM1zVQqS1NTU8pLrctu0JHjGqF4gJIYSYOgmAxIRSR71paMOOQzRWmRTLzfMWAdDR0VGR/c1m+/fv48uH2/leVCXaXP4kFadSMBMJhjIDFd7v2FzX9UaB3LGnZ1m2xcpV5wFw4MC+SnYNgOLRoyjAkGnQNq+t4vs/3cXnreZnvd083tnBrl07x93OTA0zz0833Xb1NeTzlU+0MSI9XMAsFslnqjziCCxfdz4DpsHvf/fbCTMQCiGEmDkkABITKvR0A5BVQxXb51W4vHPVWnKHDlZsn7PVzp3bAbhg7WocY3LZvIISSiQpKC6pKidAGM0u5HCL2TEzwpmOxfnLl3LL/IVEHn+84n0rHvbO54O5XFUTIIyIRiJcsfZ8AO65Z/xsZod+/ztCikJ7Lsv6p15PoYoBUCFvUsjlKBarP+pyxaUXA7Bp82YGuo9XuTdCCCEmSwIgMSGzrxeAbLRyC7aXGnme3NSMIsVQJ7R721YUYP0FGo5Z2QAonKwnZeXJFdIV3e/ZuI6DnfFHgU6LgQzbZPmC+bxq6XLWDlU+bffwbq/mzr5MmhUzYAQI4NoL1rEikWTeww8z/MD9Y24z9PCDAByrryOkRChUOAX2aIlkhGw6Q6FKWfxGa2ttYf3KFbx31VqO3/5BHMOodpeEEEJMggRAYmJ+hrFCPFmxXTp+JrhYPk8uV/0LnZmqUChwcSbDty65nLWDlc/C5tbU0p3urfh+J2IVsrjFM+sCua5L6zoNy3GIKwrFvsr2PeevoxmKRqiNV2Y66USevEZjQ1MzlyaSHPvlz85IhlA8dpSG4WEc16XpqmvIpIpVTfucSEbJpIYp5AooE9R9qoQnXbKeRfEEYdMk8/jE6cSFEEJUnwRAYkIPrVjBu3ZuY7C+cou2nRavXsvCWBxdl0rr49mzZxdLY3HioRANjeWv0TSaGolRCIcYTvdVdL+T4rpYmSFU2zhjbUbL8oUc86cKHnn8sYp267FVq/jMgb2EW+dVdL9nk4jFcBcuJGdbhAYGSD/80Cn3H7/nzwA8PjTINTc9m0y6sqOMp4vHVYYH+snlzBmx7uaKjRv4U683Tbjn93dVuTdCCCEmQwIgMaGjfb0czueIN1Zuyo7hB1sL43H27Bl/cfZct33bVlYkvcAn2lz+DH2jhWsbSNvFGbX+ZzS7kMfJpzi9LFDRMUj5oy9d27ZUtE9b2w/wyOAAKxYsrOh+J/KsjVfw0+NespPuH30fO31ySuMfsxk+176PPU0NtM1bSD5fvWleqqoQiTpkhlMUcia25VQ9CGppauR4cz2m4+AcPUr+YHtV+yOEEGJiEgCJCXX7i3trGipXZNOo9/a1MBZnj79uQpxp56MP0RCJ4ALh+gpPqaptoCvTjTsD0l+Px0oPoZi5U6bCGbZJeLGXZdA4cqSi/dm92wvmV8+Q9T8jtMVL6Egm6czncTMZOj/7aTJbnqBQKPD9H3yXBwb6ufqFL8YoWuRz1UuAkKiJ4thFMqk0hmFRyJszYhrcVU+5iocH+wEY+PP4ySSEEELMDBIAibPK7tzBNdk8VzQ2UVNXwQCotgkXiIdCHN0rU+DGYhgGA3v2AKA2N+GOk/q5HNRonHwkRP/wzFv/M5pjmViZQVTsEwkRDMugbeMlADRlszh+EdlyO3znl3my41IXDrN6waKK7HMqXvuMZ/GZAzppy6LYcZhj//N5vnnnlxgY6GfhwkU8+9m3kE4Vq1IAdUSyJkI+M4TpJxvIZQ0c2zkj2UWlXfKkC3kwlwFg6MGHKPbPjLTwQgghxiYBkDir3J7dXJ2sYX19I/VNFVy3EApRrKknb9sMH+2kUKhO4cWZ7IknNrE4HAagfvkSXKtyn8xH6poYtHKkM4MV22eprGwaN58i5I8UFC2DC254OgXHJq4otD+xuex9sDMZCg8/xMuXLGPNosXUJhJl3+dUrVu6jHUbLuE9u7bxYGqIPkXh19/7NgBvf/u7CIfDpIer+3+YTKgMD5wMLooFi2LBGjPleSWFQiGWXbqePekUiuPQddfvqtofIYQQZycBkDirbMdhAI4W8tQ3Vm4ECODwza/jnUcOsS+dYluF12rMBn/9631otV7h09iCyiWoQFGw6xo4PnQMl+plA5s018VMDZyYCle0DMLJGD+JRnn1E49x//YtZe9Cbs9uFKAjn+O85SvLvr9Svf2W57Ng1Wr+39493PbwA3TmcrzkJX/HTTfdjFm0yWWrlwAhGgujKibpoaETt7muSzZj4DpUfRToWU9/Kj/p7earhw+ys66yCUmEEEJMjQRA4qyKx7yF0YPhMKFQuKL7tmvqOf+ijQA8+ujDFd33TOc4Dn/84+/ZmhqmsHA+8UWtFdt3pLaRjOrQN9RVsX1Ol2MaWKl+VNfEdCyKlsGGG2/EdF1+85tflj2tc3bHNgB2pIa5eOmysu5rOqK2w1c+eDvvf98H+Nu/fQmf/ORned/7PkgopJLPm+Sy1Vv/U1sXwyhmyKYzp9xeyJsU8ibq6dkuKqyutoalG9fzx95uPvv5/676qJQQQojxSQAkxuUUi+B/2pqrqWyGsRGrL9gASAB0us2bH+f48WPcn8tw8fveVdEECGpjC0fT3RSNfMX2GQQrl8HODBJSHNJGhptuejaRSIQD+/exY+uWsu3XtSzSmzYBsGl4iCfN4BEgALtvgFc+/wV86EMf5sYbb0ZRFBRFYag/V9X6PzW1IYb6us/og+u6ZNNFfy1QdYOOm5/5NGKxKLt27eYXP/s/rHSqqv0RQggxNgmAxLiKHR0orsuAYRBqXlDx/Su2xTXdx/ivdRezf/dOMpnMxA+aI37zm18C8Kxn3URUtbELuYrsN5ysIxMJcby/stnTgmKlB3Hzw2TNLHUNddz61Kdzx0UbeOxrXy7bPnP6Htx8jmHThJaWGVMAdTzFoWGK3V1EwieDCcu0yaSqO/0tHDIZGhh7zVkhb5LPmVUfdWmoq+MFz34Wa2tqqf3hjzl255erGjQKIYQYmwRAYlwFv57FgWyGxtbKZ61yQ2GSAz0sSSRYnUhy3333VLwPM9HAwAB33fVr1tc38PwbnoU13A8VSkUdam7jWK6PTG64IvsLmus4GEN95DP9uIrFtZc/mQXxOMsGBti8qTxFUdOPPwrAo0MDXHP+hWXZR6Bcl2xHJ+QyKIpCOKySz5lVLYBa3xCnmE+RGR57RMUFMqkilmFXPS32s6+/jmRzIy3hMIWdO8k8+tDEDxJCCFFREgCJcZkDXl2L/bkMLfOqk7Y3O99bL3FhXT2/+91vqtKHmeaHP/wudrHIe9acT/zr3yDXcagi+w3XNpKOhjnSc7Ai+ysX17ZI9x2lWBjighe9EFNRWJZI8ov//Bi5XDbw/eWKBobj8OBAP9fOhgAIKAwMUjx6jGjYm/422JfDtquT/lpRoLZWpb/7+FlHUwzDIpMuVjsXAuFwmL995Yv4sV9YtvOb38AamvnZEoUQYi6RAEiMq+1lf8c/HzrAH3t6aK5aALQCgCfVNfDgg39leHioKv2YKYaGBvn+97/D+vpGIopCpKkRJVaBSz5VRW2ZT0fq+Kwd/Rktkxkkk+ol4uZovekmAG6KxfnQu96B4deYCcovc2netHUTNUuWML+xKdC2y8Z1SR86jJsexjIchgcrM8VyLLX1cVwnx0BP34TbZtNFclkTNVTdt7Z1568hctl6DmQzhEyTvZ/+JK5VuTpdQgghzk4CIDGuoaFBOvt6ydgWLW2Lq9KH7OJVAKypraVOgZ///CdV6cdM8YUvfI5Uaphnr/AW0tetW4trlL82S6x5Ab2KQUf3/rLvqxJsx2IoO0ixt5PF123EbWqiJRpjY3c3t77ptRzzsx9O18DAAD/84ffJ2jbP3Xh5IG1WijGcwuzvJz2Uq+r0t8bGKEN9xylOohaY47qkhvIYxerXBnruzc/k7qhK1rIId3Wx447PyHogIYSYISQAEmNyTIN9+/YA0DxvEbF4sir9sJJ15OctAeCKxma+851vBv4J/Wzx2GMP8+Mf/4C6cJiLYt5C+tq1S8q+33BNA/n6evZ17cMwq3chHLSB7CBWOETuqM6qV74ANxRiY2MTTx1O8cIXPofPf/7/0dPTXXL76U2P8+1PfIR8PscFK1Zy5WotwN6XnxIKUTQdeg51Vy2YqK2LEVILdB89PunHmKZNajCPbbtVDYJUVeXvXvdKfmnlcVyX2O7d/OlTH8dxqjOVUAghxEkSAIkzuK5Lx0f+A374QxbE4ixYfF5V+zO83Fs38ayFi+jt7eUnP/lhVftTDb29Pfzrv74H13V5+1OfgeI4JJYtIZQMlXW/ajSO27aQ/cOd9A1N/iJ0NkhlBylGQigo2NYgS176bFBVzOYmCoUCd975JZ797Ou57bbX8/3v/y/t7QewbXtSbRu9vRz5yv/w7IEBLm5o5B9vfi5KlVM0T1VifhuZgkLXnsO4uWzFgwlFgebWOIO9R8lNMQNkPm8yPJjHsd2qJkWIRMI89/V/zz2qw650ig/94Lu8/vWvYseO7VXrkxBCCKhsZUsxKxTaD2Ac7aQGGLZMLlyyqqr9GVp9Ma37NxFqbSK0fQtf+MIdXH/9s2hrm1/VflVKKjXMW97yJnp6urnovFWsN01coOmqDThlHJFRo3FCi5ZzIN/PoWN62fZTLensIGm7yLzaBozBHsL1Kkv+/jm8+aJLWLN5N9/+3vdJ7dlD79YtfPLBBwBIJpOcf/6FrF69lqVLl7J48VIWLVpEIpEkkUiQz+dp37Ob8I9/xHzXZW8mzVNueBbnL1hY5b92akKxGKGWNrr2D2Bm87j0EV8QQo3GcZzKTONqaq0BO8Wxw6WlXM9mvP+NhqYEoZBatZGXaDTKU17zMv5031/hcDubNz/Oq//+JTz18iu58YUv4rrrnk4iUZ0RdiGEmKskAPJpmqYCtwOvB5qAB4DbdF0/NxY9TEH/r7waM49l0uRtm0XL1lS1P04swb6/uY1Lz29j3a7tbNu2lfe975186UtfJxKJVrVv5Xbs2FHe8pY30d6+n+bmFj76rvdjfu+7xJcuIdqWxC1TABRK1qHMX8zBwgD6kW04FUqzXUmO63A81c28uiUw2ANAKKGSPbid61bN54Y7PsnOD38Gt3+A47j86dgxHuztZvPmx9m8+fEx25wfi/G289awuqaWjGWRvfxyXqBdCJMcOZoRFIWaZUsZSNv0dXqJB6xsjmJ3D7G2NtR4HMcubxCUrInSUO/Ssf/ApNb+jCebKeI6LvVNCaLRUBUz2SnccN1T2Hjxen795/to1vdzg2Hwo8/8Jx/+tw9w8aUbueSSjaxfv4FVq1bT0tI660YMhRBiNlFkUaZH07TbgduA1wJHgf8EzgPW6bo+1UUn7bbtrBwYCD6lbjis0tRUw+BgFssK/s089chDdH31y6Co/NO2TfTZNu/55I+IRqtfvLGtKUlrPMM7/uGVHB0e4pnPfBYf/einiMVige+r3Md5IrZt86tf/ZxPf/oTZDJp2trm84UvfIW1azWU/uPkD2wFJR/8jlWVWPMCCg0NtKeO0X50N7ZTvot3RYFwJIRl2lTjpSgZr+PJ511BTU8PVmbolPsc02H4sb2kdx04JYNXsa6O3nCYHabJwz3H6e7upt62eV5zK1c0NhFRVYqhEPUvewnNoSjFwVPbrQZVVUgkouTzxoQjODXLlmLUtKI/cZh8+tRzLJxMEJvXilpTg+3gFeAJWDwRYcGiOANd7Rzauy+QNqPREPUNCeLJCIpCWUexVFUhnohSGOdYK66L+qs/E+obAKCrUOD3vV3c29dHxvbOs7q6epYvX8H8+fNpazv51dTURF1dPbW1ddTV1VFXV1+W17/ZoFyv0c3NNYRC6kG8938hxDlKAiBA07Qo0Ae8W9f1L/m3NQLHgNfpuv6DKTY56wIg13VJP/IQ3d/8Oq5l0b54Ge/9xY9YsWY9r3nrJwLbz3QowAXxHM43Psfdx47ynSOHWHn+hfz7v3+U1avXBrqvagRAlmVx6FA7999/Lz/96f9x5EgHAFdftJ73v/E2ll73NGJhF7v7AJlDOyHAKT1KOEK0vhmnvok+ihzoOUDPQDCZ0M663yoHQACrlqxjXc1CzM4DuPaZqYrtoknhcD+59qPkDh9lpKPNNzyLtpe/AsdxMbqOc+gD7wOgZt06Fr/4ReSOdZE73lXRv2U8kwmAFFWlZtkSjJoW2ncdZ7hn7HTnaiRCrLmRcH09biSK67iBPXcNTQmamkMM9XZwSN8b6LQ1RVFI1kSprYsRjYVAUbxjEfCJN1EABIDjEGvvhE3bcbPe+4QDtBtFftXZwUN+DbbJiEaj1NTUEo/HSSQSxONxYrE48XiceDwx6nvsxO+xWJxYLOp/jxGLxYhGYyd+jsfjJJM11NbWUlNTSzQanXEjUhIACSGmQwIgQNO0K4BHAE3X9b2jbn8A2Kbr+m1TbLJsAdCBji6ObN1GIZvHsQxsI0dv5wE6Dh+kWCjQVyjQmctiGAYhF9bG46B4wcPoN/qaZA2x1nmsePKV3HDDTdR3HqHrzq8AEHnSBt5295/pOLyPZz3/9Vx9/QsD/ztKNW/PI8x75PcAFB2HbcNDHMznWLBqNRddcSUXv/DFJGpqADC6u7BTacarjBhfsRIl7M0CNXp7sIdPXvCFQip1dXHS6QK27RBbvhwbhUwmw3DHIbLd3WSzWXK5HLlc9sRXNpuly3Up2ja2bRM3TRKmieN4v9u2jWXbOLaD49gcNYrkbRvTNGFggIWRCBFVpSEcYUldPU9etpy6TAYlFGL1B99PNOmSPbwH15peJjwlFEaNJQjHk5CopRiLMuwUODJ4lO7+I5jTbH/S/ZgBAVAkHGX9ystYQgyz+wiOMf60Qsd0sIYKGL3D1KxeTeMVV0AkjquE6f7Fr2i45BIitTWk9L3ku3tnTNrjswVASjhMrKmR6Lw2MnaUw3uOk+pLTdhmOJkg0lBPOFkD0SiuouC6fjA0hT87FFKpqYvS0BhDVXJ0H2nneEdn2Y5dSFWJJyIkaiJEY2FCIa/Y60jfp7vfSQVAI0yT+NFelN37sI97GQebb3ku6Ysv5tChQwy1H2Dxli0MOw4DxQLpYpFUscBQPk8qn2N/JkNnwRulS4ZCrKmpxXZdRocDI39Pr1Gkz8+gGVNVViZrTm5z2k8Dhkmv/38QURTOq20gEksQjiUJxRKo0RrUaA1Ea0jFGumNt2JHGnAiNSx2TOxwHNV/4VUV7/9cURQy4SR9sSYUBUI4nJfv9u7zt0PxMjMpCuRDcfqSLSgKqK7L8uwxVFXB3ww7GuPFL72B6xaZEgAJIaZMAiBA07QXAj8Bkrqu50fd/iP/tlum2GS7bTsrU6lgpygd60/zypufzucvHL+a/O97uvhaxyEAGsIRvrph47jb3tPXw/8cakdRVNZecTPvjTv0rL+Bv9a08ctPvBI1HOVVX3iURH0zcGoccXpMMfrDQWWc209XahsNh3ew/M/fINl75uLoV2/dTN2SNbQsOo8Xh2wuyg2Mu/+fXv1icmoYo5DligObuGhw/BGPt+t7OJYeAuCVS5bxvAXjF4b95x1bT1yUvHjREl68aPxU1e/btZ0DOS9Q/psFi3jFkmVjbpdecRFHn/4K8vOXn3L72P++Jw/Y6Xe7J777F3u4uHjrYbxP20+/FBrbRK8aU3tZUU7dr3v2T5rL0S9FUVDVMF5OuJH9n7rxGY9VQEHxtnJdXMfBtR1cyzrjIto9/YFT6PiEf9NE97sj/0PKyd0r3mWk43LyywGzcOpF+6SeRlX1Rgf8rxM/n/jkxdvpif9j/2IY1zvvbMfGsW1s26RQKGCZlr9vZdT5qpw4/q7fqDt6G3eM7Tlte/fMx57oL5zo/0gnXf82r30Fd9TjvLbG6tvp+zv5u3dYR7dzarvNuV4u6N3GkabVHGlaA4rC2p6tvP7hj4176H+25iX8af7V2IU0K4YP8N593xx32x+qi/mp0wxmjqV2hk/Hx0/x/vO+Ib539AiYWdqiMT6//pJxt72ru4tvHDkETP49ByCuqnz70ivG3favA33c0e4twVWAH1525Sn3782k+Vx8Ofd+/3OBru2qr09IACTEHCBJEDwjKXhO/+i3ADSX0qCqKjQ11Uy84RTU1MZpWnMlXeYgAA4KrqJAKIobTuCqYYbPv4bQdc/wbnMKHGz/urfNiTde7zGuY9GzeC2Kuxj38P3oj/yG16HAoQxuzw4A3Ce9nO8cmBfo3xCMi+Giz3Je+gDa0G4W92+nYUCnrtCPaZn0HNxJz8GdtC9ZRktj07it/OoL7ybrL06vW7SEluaWcbctFHInfk47CscNExQVlJD/3f9SVZzLb0WN1IMaJmsc5njhoH8hOOpCy/sB+4aPoyYWoqhhBoyj7Bl8HFsJk47W0Rtv41hyMdubL2Yg3gqH8b6EKJtgX7PE5B1Va9g+f4X3iz95YDi8mtST3k1zoZ86M0XSypGw8yStLDG7yKHYcgajSyEKQ0qSg7UrCbk26sgY0KgINrvkZkJLbvJuzh7l2PZPnBhNUXBPjMQoQPyiv+eiC55PPOTQmu5g+C8fR8EB10VxHfC/XNdhwYWX8szLrqWYTaFmhhko5nFdxw9KT+XW1LJs5Wpc1yXiQp9tndzmtI3NWIIFS1ac+L3XOnV6ai4c4U0vfAr19YlSDrcQYo6TESBA07S/BX7M2CNAMV3X/2aKTZZlBAi86SL19QlSqTy27WA7sH9IZVe/StaEoq1QsMAY9YHYmU/xqSMEA0f2sPWX/82hx35z4vampRdw87/+hEgsecq247c5/n3uOD9P2M5k2xz59NV1yQ8cY7BjO9m+TnIDx8gPd2MbBSwjj23kvTdw1QtaFFVFDUUIxZJE4rWEYknC8VqiyQaiyUbi9Y2o0TrCiToiyQYiyXoiiXrU0NifG0xltGsq90809X46M/On03YQ/VJVhUgkjGlap4w8TKtfE+xzOksZqtWvibt89tfxkKoQjUUwiibOaf9M5Tw3J6KOXHSfNjg1+jujbxu1raq44z92gjZHb8cYtymKO26bE+0jFFJIJmPkc0Vc1x11n3tGH8baxxn9OX3/Z2znnrhNVSCk+v3w+xpSvNsjqkskBGEVwv52s9np74VBkREgIeYGGQHyjMylWgQcGHX7ImBrqY2Wc/G8bTsn2l9V77CqfhqNbVgBz/0M+/e/mYcffpCWlhae/vRnEo+reINgs0kL8LRptzL+AlvL/xJB8I5zmMHBYlWy7c0V3nGOMDhoyHEuM+9YxxgctGbmsfbzPszErpVi9HuhEEJMlgRAnq1ACu/K+QCcyAJ3KfD5qvWqwlavXsPq1dWt+SOEEEIIIUQ5SQAE6Lpe1DTt88AnNU3rBQ4Bn8IbGfppNfsmhBBCCCGECI4EQCd9CO943AkkgPuAG0sogiqEEEIIIYSYoSQA8um6bgPv8b+EEEIIIYQQ56BZngdGCCGEEEIIISZPAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnKG4rlvtPpyL8q7rxh2nPMc2FFKxbacsbYuT5DhXhhznypDjXDlyrCujHMdZVRUURSkAiUAbFkLMKBIAlccQEAOOV7kfQgghhJi8hUARaKxyP4QQZSQBkBBCCCGEEGLOkDVAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWeEq90BMTFN0z4APFPX9aeNum0DcAdwGdAPfE7X9U9XpYPniHGO83OBDwEXAH3A/wEf0nU9X5VOngPGOs6n3f9V4AZd11dUsl/nonHO6YXAfwE3AzbwO+Btuq73VaWT54BxjvNlwGeAS4Eh4PvAB3VdL1ajj7OVpmnNwMeAW4B6YBvwXl3XH/Dv34C8FwohpkhGgGY4TdPeDvzHabe1AH8E9uK96N8OfFjTtNdWvIPniHGO87XAz4CfABuANwMvBb5Y4e6dM8Y6zqfd/3zg9ZXqz7lsnHM6hvfacR7wTOA5eBfo3650/84V4xznVrzAcjdwCfAG4DXARyvcvXPBD4ArgZcBlwObgT9omna+vBcKIUolI0AzlKZpi4E7gWsB/bS73wgUgVt1XbeA3ZqmrQHeA3yjoh2d5SY4zm8C7tZ1/RP+7/s1TXs/8A1N094sn+RO3gTHeWSbhcBXgHuBFRXr3DlmgmP9crxju0rX9W5/+7cDX9Q0rV7X9VQFuzqrTXCcnwK0AO/SdT2N99rxHeBG4F8q2tFZTNO01cANwDW6rj/o3/Y2vNHLvwPyyHuhEKIEMgI0c10KDALrgUdOu+9a4D7/BX/E3YCmaVpbhfp3rjjbcf4M8K4xHhMG6srcr3PN2Y4zmqYpwLeA/wX+UtGenXvOdqxvAv48EvwA6Lr+e13XV0nwM2VnO879/vdbNU0LaZq2Ang28HDlundO6MMbpdw0coOu6y6gAM3Ie6EQokQyAjRD6br+K+BXAJqmnX73EmD7abcd878vA3rK2rlzyNmOs67rT4z+XdO0KPBOYLOsl5iaCc5ngHcAC4HnAu+rXM/OPRMc67XAfZqmfRB4NRABfg+8W9f1oQp2c9ab4LXjfk3TPgF8GG/9SggvsP+nyvZydvPPyd+Ovk3TtBcDq/DO248i74VCiBLICNDslMQb9h+t4H+PV7gvc4KmaWG80YkLgduq3J1ziqZp6/Hm7r9CphWWXT1e4HMx3hSiN+JN1/qFPwonAqBpWiNesPkF4ArgxcBq4H+q2K1ZT9O0a4CvA7/wA1B5LxRClERGgGanPBA77baRF/tshftyztM0rQ74EfB04EW6rp8xhUuURtO0OPA94CO6rm+rdn/mAAPIAC/Xdd0E0DTt1cCjeIvIH6ti384lnwQadV3/W//3zZqmDQJ/0jTt/+m6vrWKfZuVNE37G7zXiofx1rKBvBcKIUokI0Cz0xFg0Wm3jfx+tMJ9Oaf5C/PvB64GbvY/dRTBeTKwDvg3TdMymqZlgPcDy/zfX1Hd7p1zOgF9JPjx7fS/r6xCf85VT+HMYHJk/c/aCvdl1tM07S3AT/Gmwz17VBkCeS8UQpREAqDZ6T7gWk3TQqNuux7vwkbmPAdE07QmvAW184Cn6Lp+T5W7dC56FFiDNyVrg//1Jbx5/BuAX1apX+eq+4CLNU1LjLrtSf73/VXoz7nqCF5yhNFGjvO+CvdlVtM07Vbgv4HPAy89bZqsvBcKIUoiU+Bmp68D7wa+pmnaf+LNMX87Xp0aEZzP4tVLuQno1TRtwaj7enVdt6vTrXOH/0nuKRfemqYNAJau63JBHrwvAW8BvucnQmjwb7tH1/XNVe3ZueW/gN9pmvZh4JvAcrz6Yb/VdX1LFfs1q2iathavyOnPgI8DbaMSTuSR90IhRIlkBGgW8j/ZuhHQ8IrC3Y5Xb+JbVe3YOUTTNBWv6GkUbxTo+GlfS6vXOyFK42cvvBYv+9sjeFnMHgVeUM1+nWt0Xf8DcAteDZsteBfqvwVeUsVuzUYvwjtXX8CZr8F3yHuhEKJUiuu61e6DEEIIIYQQQlSEjAAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEmNM0TVOq3QchhBBCVI4EQEKIOUvTtOcB3/J/fpqmaa6maU+rbq+EEEIIUU7handACCGq6J9H/bwZuArYVaW+CCGEEKICJAASQghA1/UU8HC1+yGEEEKI8lJc1612H4QQouI0TfsLcN2om54O3AM8Xdf1v2ia9m/Ay4D3Ah8BVgN7gFsBF7gDWA8cAN6m6/qfR7V9EfAJ4Kn+TX8G3qnrensZ/yQhhBBCTIKsARJCzFW3AU/4X1cB9WNssxT4L+CjwEuAZuDHwPeBr+IFSCrwA03TEgCapq0FHgTagNcA/wCcB/xV07S28v05QgghhJgMCYCEEHOSruu7gBSQ0nX9Yf/n0yWB23Rd/76u678EvggsAj6s6/qduq7/Avgg0Apo/mNuB/LAM3Vd/6mu6/+HN7qUAN5V1j9KCCGEEBOSNUBCCHF2D476ucv/PnqtUL//vdH/fj3eVLqcpmkjr7Ep4H7ghjL1UQghhBCTJAGQEEKchZ8c4XS5szykBXip/3W63kA6JYQQQoiSSQAkhBDBGgL+BHxmjPusynZFCCGEEKeTAEgIMZfZQCjgNu8FLgS26LpuAWiapgDfAfYDWwLenxBCCCGmQAIgIcRcNgRcpWnaM4CGgNr8D+Ah4Neapv0PUADeBDwfeFFA+xBCCCFEiSQLnBBiLvs8YAJ34WVpmzZd17cB1+LVCvpfvLTZC4Hn67r+0yD2IYQQQojSSSFUIYQQQgghxJwhI0BCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ0gAJIQQQgghhJgzJAASQgghhBBCzBkSAAkhhBBCCCHmDAmAhBBCCCGEEHOGBEBCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ/x/1SzVk6S/5a0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
0110.0000010.550009.112041e+033.555077e+038.564681e+03135.98568562.9822240.390152interpeak0.01needs review
1211.7666712.108335.779000e+031.155481e+004.298102e+03137.57142931.2426940.000200interpeak0.01needs review
2319.8250020.000001.177637e+011.000001e+002.048615e-010.4898350.4182260.084916interpeak0.01needs review
0110.5583311.758332.810059e+062.802338e+065.279468e+0819379.71082727242.2449660.997252peak0.01valid
1212.1166719.816671.403344e+071.396639e+073.854511e+0815171.28177425406.6286170.995222peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 10.00000 10.55000 9.112041e+03 3.555077e+03 \n", + "1 2 11.76667 12.10833 5.779000e+03 1.155481e+00 \n", + "2 3 19.82500 20.00000 1.177637e+01 1.000001e+00 \n", + "0 1 10.55833 11.75833 2.810059e+06 2.802338e+06 \n", + "1 2 12.11667 19.81667 1.403344e+07 1.396639e+07 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 8.564681e+03 135.985685 62.982224 0.390152 \n", + "1 4.298102e+03 137.571429 31.242694 0.000200 \n", + "2 2.048615e-01 0.489835 0.418226 0.084916 \n", + "0 5.279468e+08 19379.710827 27242.244966 0.997252 \n", + "1 3.854511e+08 15171.281774 25406.628617 0.995222 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 needs review \n", + "1 interpeak 0.01 needs review \n", + "2 interpeak 0.01 needs review \n", + "0 peak 0.01 valid \n", + "1 peak 0.01 valid " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_peaks` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3139991.62113515061.4147981.807370e+064compound A171.373144µM
017.290.3480011.70371512525.2861051.503034e+066compound B56.928478nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4 \n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.373144 µM \n", + "0 compound B 56.928478 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/M9t1k0yshIQQy9A4igjQFUUTBi2KBaxcsoIiCooIiKhZQ8IpKVxAVVOy9g9hAlJYhgfTey/Yp94/dxRBSNptNsgnf+zx5SGbOnD07GbLzzTnnO4wsyyCEEEIIIYSQcwHb3g0ghBBCCCGEkLZCARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknKFs7wZ0UhUANADy27kdhBBCCPFcDAAbgOB2bgchpBUxsiy3dxs6I4ssy1pJap1zy7IMWqtu8i86z22DznPboPPcduhct43WOM8sy4BhGCsAnU8rJoT4FeoBah35kiQnlpWZfF6xUskiJMSAqiozBEHyef3Eic5z26Dz3DboPLcdOtdto7XOc2ioAQoFQ6M3COnkaA4QIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBSRAIIYQQQvzYgQMHAuFM0U0PrgmpnwQgf+jQodWeFKYAiBBCCCHEDx04cIAF8DDDsHMYhlEBYNq7TYT4KVmWZceBAwfeAPDU0KFDG00PSQEQIYQQQoh/elihUM4zGkPsarXWzDAMLTBFSD1kWWbsdqu+qqp8nigKAPBkY+UpACKEEEII8TMHDhwwMgw7x2gMsQcGhpS2d3sI8Xcajc4CIKyionTOgQMHXmpsOByNJSWEEEII8T/RDMOo1Gqtub0bQkhH4eopVcE5Z65BFAARQgghhPgfFgBDw94I8Zzr/wuDJmIcCoAIIYQQQggh5wwKgAghhBBCCCHnDAqACCGEEELIOWPt2tWxV155Sf/2boenUlKOab/55qug9m5HZ0IBECGkQ8jLy8WaNc/hr78OtndTCCGEkDazZMn9PY8dO2Jo73Z0JhQAEUL8niRJmD9/LrZt24Q77rgROTnZ7d0kQgghpI1QHgxfo3WACCF+788/f8f5VhvOj4vHF0WF2LPnPdx9973t3SxCCGlzkiTBbDa32wNsvV4vsWzzXn706GFDr7rqmvwffvg2zOFwsC+9tD5Fr9dL69atifvnn7+MJpNJERQUJIwff1HpggWLco8fP6a7444b+7zyysbjAwYMMgPAvffemXTkyD/GL7744S+lUglZlnHZZRcN/O9/b8695prrS+q+ZklJsXL16mfjDh78I0gURSY5uVfNwoWLs5OSetjcZV5//ZWoTz7ZE1VdXa3s0aOnacmSxzLc++trc1xcV/trr/0v5scfvwsrLy9XdenSxTp79k15l1xyWQUA7Nr1dtjOnW/G3HTTrbmbNr0eV1lZoerdu2/1I488nrF166boH374JkypVMrTps0onDv37gIAsNlszMsvr4ndu/enkLKyUrVWq5MGDhxUuWTJo1mhoWHilVde0r+kpET97rtvxRw+fChww4Y3+PLyMsXLL7/Y5Y8/fg2urq5WJiYmmW6//c7ckSNH1bjf254974Xu2LEtpri4WBMfH28ZP/7i0k2bXu26d++fB7z5nbAs69X781cUABFC/N4fv+zFxRFR0CoU+K28DCf274Nww3+hDA5p76YRQkibkSQJ1113Va+UlOPtNhyqV68+NW+9tZtvbhD01VefRTz99AupoigwPXsm26677qo+QUHBjlWrXjwRGBgo/vjjd8EbNqzv2qdPP9PkyZdWhIeH2/fv32ccMGCQWRRFHDt2JNBms7F//XXAMHz4eaZDhw7qq6urlBMmXFxR97UEQcCCBfOSAUZevvypk2FhYcK6dWvi7r//nuTduz8+DAAlJSXqI0f+CXz66dWpdruNeeqpxxOfeurxbps2vck31OZ7770z6dSpk/p77rkvKzExyfrFF5+Grly5PIll2bRJk6ZUAkBpaYn6o48+iHzyyWfTzGYT++iji3vedNP1fSdOvLjklVc2Hf/ss4/Ctm/f2mXs2PEVvXv3tb7wwjNxv/22P3jx4qUZXbvG23ie1z3//FPdXnvtf7EPPfRY9saNbx6/+ebr+1xwwdiy22+fly+KIubPn5vscDiYxYsfSY+IiHS8885bkUuWLEx+8cVXUgYNGmL+5psvg1avXpU4Z87NOePGTaz47bdfjBs3vtq1pb8Tb95fsy6SNkQBECHE75X/dQBalQYWjQYTwiMxQWdA6d6fEDX1ivZuGiGEtLGOuS7Q2LETSgcNGmIGAIvFwkyYcHHp5MlTyrt2TbADQLdutxTt2vV2dFraCd3kyZdWDBt2XsXBg38YARQcOnTQoFAo5eTkXjV//PFb4PDh55l+/vnH4J49uZqIiEih7mvt2/eTMTMzQ7dly1tHevZMtgHA0qXLM7Zu3RhdVlaqBACFQiGvWLEqPSgoSASAKVOmFm/fvrVLQ20+cSJF++efvwcvX74y7aKLJlcCwN1335t/6lSafseObTHuAEgURWbhwsWZ7pv//v0HVp04kRLwwAMP5zAMg9tvvyv/3Xd3xqSmntD17t3X2rt3H9P48RPLzz9/dA0AdO2aYP/66y+qMjJO6QAgPDxCYFlW1ul0UkhIqPjdd18b09NP6Tds2HbU/RqPPPJ41okTKYYdO7ZFDxo05NTbb++IHjlyVNmtt84tBIAePXoW5+Rkaz7+eE9US34n3ry/llwzrYkCIEKIX7NYLNCVlQFRMTAOGIia/DwAQPkJHlFNHEsIIZ0Jy7J4663dfEcbAgcAcXFdTw890+l08uzZNxV99tnHIdu3bzPk5eVqMjPT9RUV5SpRlBgAGDNmXOWyZQ9HWCwW5rff9gf27duvukuXrta//z5oBFDwxx+/BV144biy+l4rNfWETq/Xi+7gBwCioqKFxYsfyXH/HBQUJLiDHwAIDDSKdrv9jDdWu808n6IDgGHDzqupXaZ//0HVb7yxKa72th49/n1djUYjRURE2RiGAQBotVoZAGw2GwsA06fPLPv55x8DV69e1SU3N0eTk5Oty8vL1fbq1fuM13FLS0vV6XR6sXZwwTAM+vTpV3Pw4J9GAMjIOKUfPfrC8trHDRw4uKZuANTc34k3789fUQBECPFrp06loachAAAQ1n8gxD9+BQDYc/Pas1mEENIuWJZFQECA1N7taC6NRnu6zWazmb3jjhs5q9XKjhkztnzSpCmlAwcOyrr77tt7ucucf/4F1SqVUvr1132Bf/11wDh+/MSyhIRuto8+ej86OztTnZFxSr98+cpT9b2WQqGU3TfkDWFZtsmetNptbigRgSSJjEKhOGOnSqU642eWbbgtTzzxaPy+fT+Fjhs3sXTkyAsqe/Xqk79jx7bo0tJidX3lZbn+tyZJEpRKpex8PVaW5aY7Cpv7O/Hm/fkrCoAIIX4t7QSPHnrncHdtUg9ouyYA2dlQVVVCliQwXjyJJIQQ0n5+/PE7Y3r6Kf3773/6d2RklAAA5eVlisrKSqU70FCr1fLAgYOrfvrph+DU1BMBS5Y8mhkX19XOMIz8yivrYmNiYq21ExrU1r17ktVkMilOnTqp6d49yQYApaUlymuvndHvySefTfWmzcnJvSwA8OefvwW4h8ABwOHDfwd06dLV4k2dZWWliq+++jxi8eKlpy6/fPrpHpucnCytVqurFXz9G2D06JFsMZvNiuPHj2pr9wIdO3Y0IC4u3goACQndLMeOHQ0AUOTef/To4UbnjXnyO+lM6M6BEOLXCo8dgYpl4WBZqCIjEZXMwSaKUMgyHEVFTVdACCHEr0RFRdsB4KOPPgjLzs5U//bb/oBFi+b3EEWRsdsdp+/2R40aXfH999+GG42BQlJSD5tGo5E5rnfN3r0/ho0cOaqiofrHjBlblZiYZH7iiUcSDxz4w5CScky7fPnSbkFBwY6BAwebvWkzx/W2Dho0pHLt2tXx33zzZVBaWqrm5ZdfjDlw4I/gq6++ttCbOo3GIFGn04t79/4UfOrUSc2xY0d0y5Y9nJCRka53OP49D1qtVszNzdEUFRUqx44dX9m1a4LliSce7f7LLz8HnjiRol2x4rH4nJws3axZ1xUCwHXXzcn/7bdfQjZtei3q1KmTmt273wn79NOPIxtri6e/k86CAiBCiF8rzspCid0Ge1AQGIZBYvckFNqdD/0cpWdlPiWEEOLnhgwZZr755tuzP/rog8g5c2b1W7XqyW79+g2svuCCMWU8/2+Gu/HjL6qUJJHp129glXvb4MFDq2RZxtixEyoaqp9lWTz77Jq0iIgo+5Il9/e85565vRQKhbx69bpUjUbjdXfGM8+sPjVixMiK1auf7XbrrXP6/vbbL8EPP7z85GWXTStv+uizKZVKPPLI46eysjJ1t9xyQ98HH7yvp81mY2+44cbc3NxsnclkYgHgiiuuKjp48I+gBQvuTFYqlVi7dv2Jbt26mx9//JGkuXNv6Z2Rka575pnVJ4YOHWECgPHjL6q6664FmZ988mHEzTdf3/fTTz+MmDx5SrF7iFx9PP2ddBaMJ2MESbOdEkUpsazM5POKlUoWISEGlJebIAgdbghwh0HnuW14cp4vv3wSsrOzsOn1rRg6YiQyMzPw26J7MSgoGJH/vQnBY8a2cas7Hrqe2w6d67bRWuc5NNQAhYJNB9DdZ5V66cCBA71YVvFFZGSXGrVa67fZtIj/2b9/b0B4eKSjdhKI9evXRX/11efhH3zw2ZH2bFtrs9ut2qKi3ABJEi8ZOnRoSkPlaA4QIcRvSZKEgoJ8AEBMnHMJg6ioaPxSVoqTphrcFhLans0jhBBC/M6vv/4S9MMP34U++ODDGQkJ3WzHjh3VffTRB1FTpkwtbu+2+QsKgAghfqu0tAQOhwMsyyIy0pm9U6vV4m9JRHleDmaoVAhv5zYSQggh/uTOOxfkWSwW9plnnkysrq5ShoaG2a+4YkbhbbfNK2jvtvkLCoAIIX4rPzcHa/sNQhUAxm4DlM4/WTExMSgvL0NhYT447qwMnYQQQsg5S6PRyA8/vCwbQHZ7t8VfURIEQojfKj51EtFaLbprNGC1utPboyOjEaXRoDKlweG9hBBCCCH1ogCIEOK3qrIyAQA1SuUZ6/0khYVjXf/BSPrzj/ZqGiGEEEI6KAqACCF+y1bgHK5s1+vP2B4Q5ZwPpJQkSA5Hm7eLEEIIIR0XBUCEEL/FVFY4/w09M9tbUEQkBMmZ+lasrm7rZhFCCCGkA6MAiBDitzRm54Ld2uiYM7aHhUegWhAAAGINBUCEEEII8RwFQIQQvxXo6uUxJnQ7Y3tYWBiqBOfQN+oBIoQQQkhzUABECPFLNTU1KLVaUWa3I7Jn8hn7wsLCUenqARKqqtqjeYQQQjw0evSwobt2vR3mafkffvjWOH36pf3GjRs5ZNWqlXGt2TZPrF27OvbKKy/p78s6m3NOcnKy1B999EGIL1//XNeu6wBxHDcOwPcN7E7neb47x3GDALwEYBiAUgBreZ5/vlYdLIBlAG4FEAJgL4A7eZ5Pq1WmxXUQQtpWQUEenkpNgdEYhJ8Su5+xLzQ0FNWu5AemkiIEtUcDCSGEeOS99z7522gMEj0tv2HD+rioqGjbSy+9ciIgINDj4zqS5pyTxx9/tFtkZKR92rTp5a3drnNFe/cA/QIgps7XJAACgKc4jgsD8DWAE3AGL8sArOA47qZadTwKYC6A2wCcD0AG8DnHcWoA8EUdhJC2l5eXBwCIiYk9a59KpcY/Nit25+XAEkQPxQghxJ9FRUULOp1O9rS8yWRS9OnT1xQf380eGhrWKQOg5p0TmWnd1px72rUHiOd5O4AC988cx6kArAHwHs/zGzmOewiADcA8nucFAMc5jusJYDGALa4A5X4AD/I8/5mrjmsA5AGYAeBtALf7oA5CSBsrKMgHAMTExNS7P12twvcZ6bhYp0VSWzaMEEJIs4wePWzoggWLMmbOnFW6dOkD3SRJYkJCQh3ff/9tmM1mZQcMGFT10EOPZUZFRQujRw8bCgDvvrsz5t13d8a89dbuw127Jtg3bFgf9fnnn0RWVlYoo6NjbDNnXlswffp/ygDgl19+DnzwwfuS58y5Oee9996NCQ+PsD355KpTs2df3e/aa2fnffrpR5FqtUrauvXtYwzDYPXqVXG//74/WBAEJjExyXznnfNzBg0aYna3d+fON8N37Xo7ury8TD1w4ODKyMgoe2Pv77bb5nB9+w6oLi8vU+3b91OoSqWSpk69smjSpCllzzyzotupU2mG6OhY64MPPpwxePBQc+1zcvHFl1TMmXN1327dupvXrn01DQB++umHwKVLH0h+6KHHTn7wwa6o48ePBRw/fizgyisvCdyz54vDV155Sf8JEyaVzp+/MK92GyIjo2wrVz6XUd/5eOONt48XFhao1qx5ruuhQweNCgUrJyf3Mi1YsCg7KamHrTV+7/6svXuA6roLQFcA97l+HgPgJ1fg4vYdAI7juEgAgwAEurYBAHierwBwEMCFPqyDENLGtP/8jZf7D8ZYjbbe/aGhzqHT5eU0IoAQcm4RLRa2oS/JZmPaomxL7N+/L6Sqqkr50kuv8I89tuLk8ePHAl9++cUugHNoWGhoqOPyy6cXvvfeJ3936dLVvmbNs10+/fSjyLvuWpC1adP2Y9On/6fwf/97MeHNN7dG1K73t9/2B7/yysbjS5Y8mqFQsDIA/PDDt6Fr1rzML1/+1MmgoCDx3nvv7JmXl6t58sln0155ZWNKr169Tffee2evw4f/1gHARx99EPLqqy/HT5/+n8ING9442rt3X9Pnn38S2dR72rNnd3RkZJR948Y3j06dekXRzp1vxi5efF/Pa665ruB//9twXK1WSatXr0qoe1xwcLD4wANL0//660DQhx++H1pWVqp49tmViRMnTiq59NLLK5599sW0nj2TTeeff0H5xo1vHm/Oea59PqxWK3vPPXdwkiRizZr/8WvW/I83GoOEO++8pXdeXq6qOfV2Bu3aA1Qbx3FaAEsBvMjzfL5rcxyAw3WKuqPdeNd+AMiup0y8D+sghLS1inJEajSw6w317g4JNCJGo4UtL6eNG0YIIe3r5D3zBje0T5fMVXZ98KHTc5hPLZw/UHY46n3gremWWJPwyDLe/XP64vv7S2ZzvfeG6tgu5m5PrGzWDXiDbdTpxGXLnsxUqVRycnIv6/79+0oPHPgjCHAODWNZVtbpdFJUVLRgMpnYjz/eE7Vo0UPpF100uRIAEhO72/Lz8zTvvfd29OzZNxa7673mmusK3L0ZWVkZagC47LJpxRzX2woAP//8Y2BqKm/Ys+fzv8PDIwQAWLhwce6xY0cD3n57e1T//gMz3n//3ahRo0aXz559UzEA9OjRs+D48aOGjIxTZ67IXUfXrvGWu+5akA8AN910e+HOndtjx4wZVzZp0pRKAJg0aUrphg2vdq3v2DFjxlZPmXJ50auvvtz122+/CjUYDOLixY9kAUBISKioVCpltVotudvsqdrn4513doRXV1cpn3lmdbpKpZIB4Iknns6YMeOy/rt3vxNRuzfpXOA3ARCA2QB0ANbW2qaHc/habVbXv1rXfjRQxr1yoi/q8IpS6fsONoWCPeNf0jroPLeNxs6z0mwBWBb6mJh6/y/11OlwR/9BMB08COWt9HtqDF3PbYfOddug89yxRUVF29w34QBgMASIgiDU28N04kSK1uFwMC+88Ey31atXdXNvF0WJEQQHY7FYTh/XrVviWUO54uMT3Pd8SEk5pgeAa6658oyMboIgMA6HnQGA7Ows3bhxE8tq7+/Tp19NUwFQbGzc6dfR6/USAHTp0uV0e9RqjSQIjgZ70RYufDDn4ME/gg4e/DNo/frNx5ozZ6ohtc/HiRO83mKxKC65ZNyg2mUcDgebnZ1Z/1CLTsyfAqA5cM79Ka21zQJAU6ec+5dkcu2Hq4ylThmTD+toNpZlEBJS/5NrXzAada1WN/kXnee2Ud951osCwKoRnZxU7/+lgPBQoKQUCsHRqv/XOhO6ntsOneu2ca6e56R16/9qaB/DsmfcOHdfvfZvT8smrnqh7oiZBsu2RO3g51/1Vy9JEgMADz+87FT37j2sdfdrNJrTB2q1Wqnufq1We3q/JEmMTqcTX3tt61k9WWq1WgIAhmEg12mKUqls8r0rlYqzyjCM5wF6YWGBqqKiXKVQKOT9+/ca+/cfYGn8iDNfThDEs4Kr2udDkiTExMRan3lm9VkZjg0GQ6dMNNEYvwiAOI6LADAKwFN1dmUDqJsCyv1zLgBVrW0n65Rx/4f3RR3NJkkyqqrMTRdsJoWChdGoQ1WVBaJ41v9z4iN0nttGQ+fZ4XAgmHV+cATEdkV5+dnPIlidM+hROIR695N/0fXcduhct43WOs9Go65D9CopdDqP33RrlW0rPXokWxUKhZyfn6d2D4EDgK1bN0ZmZqZrly1bmeVpXUlJPS0Wi0Vht9uYXr36nA6mHnvsoYQePXqa58y5uTghoZv5yJG/AwAUuffz/PFWfcomSRKeeOKRxISERPOkSZeUrl+/Ln7UqDFV/fr1dwVBzBnRjkKhlGtqTIraxxcVFapjY2PPChDdundPsvz44/dhRqNRdA+lEwQBDz54X/fx4yeUX375uZVi2y8CIDiDHxnAj3W2/wRgLsdxCp7n3dHpRAA8z/NFHMdVAqgCMA6u4IXjuGAAQwC87MM6vCIIrfd3RBSlVq2fONF5bht1z3PuqXToFc4/T8FdE+v9HWiDnSNUVbIMh80BRqE4qww5E13PbYfOddug89z5BQUFiRdffEnxm29u6WIwGMQhQ4bX/Pnn74Fbt26KmzHjPwVN1/Cv8eMnVm7Z0s2ybNnDSffcszArNraLfffutyO+//6b8IsvvuQEAFx77ZyCxx9f2mPDhvVREyZcXLF3749Bv/22PyQ4ONjROu8QeP31V6LT09P1Gze+cax79yTbDz98F/Lkk48lbtv29nGNRiPrdDqpqKhQk5ubo+rSJc7Ru3efmr17fwzdv39feUREpGP79q3RFou50Q/BadNmlO3atTNm8eL7ku68c36O0Rgkbt78esyhQweCbr993jk1/wfwnyxwAwGc4nm+bpfJZgBGAJs4juvDcdyNAO4F8DQA8DxvgzNIWcVx3DSO4wYAeAfOXp/3fVgHIaQNFZ1MBQCYJAlKXf1DXAyh/y6gLZl939tKCCHEPyxZ8mj2FVfMKHzjjS1dbrzx2n47dmyLmTXr+rx77mnexH2FQoG1a1890bNnsmnlymXdb711dp9//jkU+Mgjj58cM2ZsNQBcdNGkygcffPjUV199Hn7LLbP77t37U/C0adMLW+edAYcP/6N7++3tsbNn35jbvXuSDQAeeujRzJKSYs2aNc92AYBp02YUZ2dnaW+++fq+oiji7rvvy01O5mqWLn2w5z333NHLaDQKo0aNabQHJygoSFy37vWUoKBgYcmSRT3nzbuld1FRofqpp55Prd0bdq5g5LoDHdsBx3GvABjM8/z59ewbDmdihMEA8gG8wPP8y7X2K+AcOncTnEkUfgJwF8/zGb6so5lOiaKUWFbm+2E5SiWLkBADystN9NSrFdF5bhsNneevt2+D9ZOPoA4IxOSNW+s99tdff4HutfXQKRTotnIV1FFRbdTqjoeu57ZD57pttNZ5Dg01QKFg0wF091mlXjpw4EAvllV8ERnZpUat1p5zN6iEeMNut2qLinIDJEm8ZOjQoSkNlfOLIXA8z9/ZyL4/AJwVGNXaL8K5qOni1qyDENJ2Mixm/C/lKK64YgYmN1AmKCgI5YIAnUIByUxzgAghhBDiGX8ZAkcIIafl5ztHNURHxzRYxmgMwtfFhfiwqAAKo7GtmkYIIYSQDs4veoAIIaS2/LxcAEBMTN0Ejv8yGoPwQYEzULrHEIBzbhlrQgghhHiFAiBCiN+Zarbi+v6DoWskvW1AQAAUCgVEUURVVSW02nNuHTdCCCGEeIGGwBFC/IosywiCjEiNBmFR0Q2WYxgG0cHBiNFoUenqMSKEEEIIaQr1ABFC/Ep5WRlClc4BbRE9ejRa9j/RsbhAZ4B1/y/AoCFt0TxCCCGEdHDUA0QI8SsFJ1OhZFlIsgx9RGTjhdVqAICjpqYNWkYIIYSQzoACIEKIXynLSAcAVEMGo2h0YWswGue8HwelwSaEEEKIhygAIoT4lcqcHACARdl0XjdWqwMASBZLq7aJEEIIIZ0HzQEihPgVW3ERAEA0GJosy2q1QE0NYLe3drMIIcRvMAwUDMO0y0NsWZYlWYbYHq9NiK9QAERalVBRDmVwSHs3g3QgxTXV4GuqYUhKarKsyqAHSkABECHknMEwUEgME2O2Cu1yD6fXKgUWcr6/BUFr166O/e67r8L27PnicHOPTUtL1dx++419tm7dcTQ+vht9oJwDKAAirSbv3bdR89UXKOzaFWOWrWjv5pAO4sfSYhxLOYo1d9zZZFml3tlLpBCE1m4WIYT4BYZhWLNVUP56JF8yW4WGF0trBXqtkh3ZL0YZqFWysiz7VQDkrWPHjuiWLLm/h91uo2kh5xAKgEirkAUBNV99AQD44pefEXz4H/TvP6CdW0U6gvz8fABATExsk2WZkFB8XpiPkIREjGjthhFCiB8xWwXJZHG0aQDk0mkChVdeWRu9e/fbMV26xFnLykrV7d0e0nY6zUVM/IstOwsAUC048GlhAfbv/7mdW0Q6AovFgoryMgBAbGzTAZA6MhJbsjOxX3S0dtMIIYR4afToYUN37NgWcfPNN3Djx58/ZNas6X2++urzoNplvvnmy6AbbpjZe/z484fMmHFZvxdffD7WZrMx7v0pKce09957Z9LkyeMGjR173pAZMy7rt2XLxgbXSti6dWPkuHEjh3z55WfBDZU5cOD3oAceeDh93rx7cnzyRkmHQQEQaRXmzAwAwCmTMz3xsWNH27E1pKMoyMnCjiEj8MqAITComs4CZzAEAABMJloHiBBC/NmWLRvixo+fWPb669uODht2XuWKFY/1+OOP3wwA8P333xhXrlyeNGXK1JLNm3ccXbDg/qy9e38MXbr0gUQAMJvN7P33z0/WanXSunWvpmzZ8tbR0aMvLN+06dWuhw//o6v7Wtu3b43Ytm1T3COPPHFy8uRLKxpq06ZN2/kpU6Y2uJ90XjQEjrSKiowM578OB3oaAiDl0MMV0rTCtDSEsiwCVarTKa7rYhhApVJAECQEGPQIUqqgMVsgSxIYlp7pEEKIPxo//qKS2bNvKgaARYuW5B458nfgrl07I4cPPy99+/atMRMnTiq5/vr/FgNAYmJ3m1KpzFy8eGFyVlaGWq83SNOmTS+69trZRUajUQKAu+++L+/993dFp6am6Pr3H3B6LYSdO7eHb978etyyZU+mjRs3sap93i3xdxQAkVZhzs2BGkDPwECMDY/AgcpyCIIApZIuOdKwyuwshAIwsQwYhqm3jFLFIsech1h9FAx6AzYMGgoAEE01UAYa27C1hBBCPDVkyLDq2j9zXG/ToUMHjQCQnp6uP3kyzfD999+EuffLsvPftLRU7YQJF1ddd92cok8++TD05MlUfW5ujiYzM10PAKIonf6wKC8vV61fvzZBoVDIcXHxtrZ4X6RjortR0ioc5eVQAyhSqhELIEipQnl5GSIiGhyuSwjMBc4ECHattsEyVsmK4ppSBGuMCDAGoUIUoVUoIFmtAAVAhBDil5RKpVz7Z1mWwbIK2fm9xFx55X8Kpk2bXlr3uKioaEdRUaHy9ttv7B0YaBRGjhxVMXToiKoBAwaarrnmyjOyKzEMiyeeeCp18+bXY1euXJ64adObKSyNDCD1oKuCtIpTAQZ8mJ+HosBgAECoSo2SkuL2bRTxe44y52ef3EAgo1CwMAlm5FUWwuywwGgMhFVyZmIVzeY2aychhJDmOXbsyBmrW6ekHAtISkoyA0BcXLwlOztT2717ks39VViYr1q79oW4mppq9uOP94TV1FQrN2/ennLXXQvyp0y5rKKyssL1EP/fuCo4OMgxduz4qiVLHsk4dSpNv2XLhqg2fIukA6EAiLSKP6xm7MjNQnVEHAAgSKVCSVFhO7eK+Dum2jlCQh0WXu9+hYJBpbUadtGBKls1goKMsIjOAMhcUdFWzSSEENJMH3+8J2rPnvdC09JSNatWrYzLzMzQXXvtnEIAmDXr+oLff/81ZO3a1bFpaamavXt/Cnz22acSTaYaZVRUtBAVFW232WzsJ598GJKTk6X+8cfvjI8//kh3ALDb7Wfdy/bu3dc6ffrMgh07tsWePJmmaev3SvwfDYEjraK42NnbowqNhJRxFAqGQUV+Xju3ivg7tc0GaHUIaGANIBkSKi2VAIAqazWURiWsknMZDEtlRVs1kxBC2p1eq2zzh9gtec1Jk6YU7979dtSLLz6vS0hIMD/99POpffv2swDAZZdNK5dl+dTOnW/GvP/+u9F6vUEcNmxExX33PZjj3p+Scrxgw4b1XdetW82Gh0fYJ0++tGT//n3Bx48fNQA4a4jJvHn35O/b91PIypXLu23c+AZPQ+FIbRQAEZ+TbDYEVFcjTKWG2hAEM8MiADJqCqkHiDRMEAScrKwEKwgY0qNnvWXssgCLwzmv1SrYIUKE3ZUswVJZ2WZtJYSQ9iLLsqTXKoWR/WKUaIeRPHqtUpBludkLsCYmJlkefHBpgylhp069onzq1CvK69vHMAwWLVqSu2jRktza22+55Y7TNxbz5y/Mmz9/4eknrRqNRt616yOP1uAYNWpM9d69fx7wpCzpHCgAIj5ny8nGXcZgFPXqi6M6I8wKFQJEO6w0B4g0oqioEG9kZ0CpVOH3YcPP2s8wgENywCo4AyCbYIcoixBcAZC9uvqsYwghpLORZYgs5PzAdugBcr6+LMkyxPZ4bUJ8hQIg4nMO11yMCocdOoMRfEg0Pj7wI/SBhsYPJOe0vDzng72YmFjUN1SBYRjYJQdsgh0AYBcdcEgOnISMrMICnN9I5jhCCOlMZBmiLMsUhBDiJQqAiM+ZXMkOKh0O6A1GnOjSA19+8S4GV3Rp55YRf5afmwMGQGxs/fN/WJaBzW7/NwASHBAkAcfUahzMzkDvgIA2bC0hhBBP0fAy4m8oACI+Z3YNdTMzgEGpgk4fCACoqqIFmUnD7MePYceQEShQ1Z+wh2EYmO3/proWJAF2yYEAV+BjMtW0STsJIYQQ0rFRSgzic1bXZHSHwhlfByqU4AICEWCxtGeziJ+zlRRDybLQ6HT1F2CAGvuZa/1YHTYEGQwIUqpgLa937iwhhBBCyBmoB4j4nL26CioAoutJflxZPlb06otfK+gGlTRMrnAGzsrQ0Hr3SxBgcyVAcLMKNgwUZcweNBT5fEqrt5EQQgghHR/1ABGfE2pMAABZ45yUzgYYAQBahoHNZmvwOHJuU1qcvTu6qOh694uyBLvgOGObxWGFQucMtGW6tgghhBDiAQqAiM/lBxnxQX4uynXOuRmM3hkABSiVqK6meUDkbKIowuBa0DQ4PqH+MrIIu3hmACRIAhRa55A5RhBat5GEEEII6RQoACI+l67RYGduNioDggAAkk4PAAhQKCkRAqlXcXExwlQqAEBot8Sz9jMMA4cknBUAOUQBCq3aWYYCIEIIIYR4gOYAEZ+rqXEuSKnROdf9EdXOJ/QGpQJVVZXt1i7iv/KysxCicgYy2ojIs/azLCCIAhz19AAp9c7rSyHRkhiEkHMDw0DBMAwthEqIlygAIj6nKi9DlEYDrcbZ8yOpnXOBDAoliikAIvUoyM5Cblkp4sPC0DMw8Kz9DMNAkBxwiGf28giSCKXBeZ0pJLlN2koIIe2JYaDQsY4Y2W5ul3s4Rq0XLJIq39+CoLVrV8d+991XYXv2fHHY02N27doZ9t5770YVFRVpQkJCHJMmXVJy663zChQKRWs2lfgBCoCIT8myjGkVVbiy/2B8qnReXqLG+YSeZRiYysras3nET+WUFGNtehou79cPE9mzH2oyDAOLcHaSA0EUoXD3AMlSq7eTEELaG8MwrGw3K2v43yTJZmnTP3ysRscGcOcpGVUwK8uyXwVAzbVnz3uh//vfSwlz596Tdd5551cfPXpYv3btCwl2u4O555778tu7faR1+UUAxHHcHABLAHQHcBLAcp7nd7n2DQLwEoBhAEoBrOV5/vlax7IAlgG4FUAIgL0A7uR5Pq1WmRbXQTwj26ynJ5a5kx/ICiW+l1hk5JzCELOp/RpH/FZeXi4AIDa2S737GYaBxWE9a7sgCdAGG/FjSTGYgAAMb9VWEkKI/5BsFkm0mtrjyU+nmD/+0UcfRIwdO6F01qzrSwAgMbG7LTMzQ/vll5+FUwDU+bX7Rcxx3A0ANgN4DUA/AG8DeJvjuPM5jgsD8DWAE3AGL8sArOA47qZaVTwKYC6A2wCcD0AG8DnHcWpX/S2ug3hONDtTGQuSBKX+36FMv+uM+LyoABUmCoDI2QpzcsCg4QAIkOsNgERJhDI8FP/LOIn3y0patY2EEEK8M3r0sKE7dmyLuPnmG7jx488fMmvW9D5fffV5UO0y33zzZdANN8zsPX78+UNmzLis34svPh9rs9kY9/6UlGPae++9M2ny5HGDxo49b8iMGZf127Jl49mTRl22bt0YOW7cyCFffvlZcH375869O2f27JsK6m43mWr8onOAtK52/SVzHMcAWAFgDc/zL7k2r+A4bjSAca4vG4B5PM8LAI5zHNcTwGIAW1wByv0AHuR5/jNXndcAyAMwA85g6nYf1EE8JJmcAVCNKEClNZzernHNBzKZatqlXcS/Da+uwbwhI+AoLqp3vyCLZ83/AZxzgNSudYAsrnWECCGE+J8tWzbE/fe/t+Q89NBjGR9++H74ihWP9QgJCU0ZPvw80/fff2NcuXJ50q23zs0eNWpMVVZWhmbdujXxOTlZ2uefX3vKbDaz998/P7l//4HV69a9mqJUquQ9e3aHb9r0atdhw0ZU9+8/wFL7tbZv3xqxbdumuEceeeLkRRdNqnfy8YgRI894IltRUaH4/PNPIgYOHEzpas8B7d0DxAHoBuCt2ht5np/M8/zTAMYA+MkVuLh9B4DjOC4SwCAAga5t7mMrABwEcKFrky/qIB6SrM6/QRZRhMo19wcAwpVKcAEBcFAabFKHJEnQOhxQsiyCIutfBFWCCIfkqHefSq2CmmWhtNshSzQPiBBC/NH48ReVzJ59U3HPnsm2RYuW5CYl9TDt2rUzEgC2b98aM3HipJLrr/9vcWJid9vYsROq7rvvgcxff/0lJCsrQ202m9hp06YXPfzwsszk5F7W7t2TbHfffV8eAKSmpuhqv87OndvDN29+PW7ZsifTGgp+6qqpqWEXLZrfw+Gws/Pn35/t+3dP/E17d/Mlu/41cBz3JYDBANIBPMnz/McA4gDUzeaR5/o33rUfAOperHmu/fBRHV5RKn0fXyoU7Bn/+hvJ5g6AJOh0BrCss/d6gqkUN/Tqh58qK1vlvPiav5/nzkKhYJGfn49QpXMNoIik7vVeHw7GAUkWT19PtSk1SmwbPBwKhoFUVQFNeHirt7ujoeu57dC5bht0njueIUOGVdf+meN6mw4dOmgEgPT0dP3Jk2mG77//Jsy9X3Yl9kxLS9VOmHBx1XXXzSn65JMPQ0+eTNXn5uZoMjPT9QAgitLpD4by8nLV+vVrExQKhRwXF3925px6FBYWKBctmt+zsLBA88wzq09065Zob/m7Jf6uvQMgo+vfNwA8DuewtKsAfMhx3MUA9HAOX6vNPRFA69qPBsqEur73RR3NxrIMQkIMTRf0ktGoa7pQO6iyOwMgqyQiODQESteNraxWAzYT4LC16nnxNX89z53JkSOZCFc7p9tF9kiAvp7ro8zsAKtioNWdPS1Pa9CiUhKhVyihhKNDXV9tja7ntkPnum3Qee44lErlGWsVyLIMllXIzu8l5sor/1Mwbdr00rrHRUVFO4qKCpW3335j78BAozBy5KiKoUNHVA0YMNB0zTVXDqhdlmFYPPHEU6mbN78eu3Ll8sRNm95MYevJLOqWmsprFy1a0FMURebFF1/h+/TpZ2mwMOlU2jsAckfZz/E8v831/SGO44YAWAjAAkBT5xit61+Taz9cZSx1yrjHdvqijmaTJBlVVb6fk6BQsDAadaiqskAU/W+4TzmjxAf5uaiUJIx0yHA4nL9incIZCIkWK8rL/T8Rgr+f585CoWCRnXYSca6U6RalHrY61wfDMDBJVtSYLLAKZz+Ys+tE2CQJegVQlFsIRXhMm7S9I6Hrue3QuW4brXWejUYd9Sq1kmPHjhguvviS00PSUlKOBSQlJZkBIC4u3pKdnant3j3p9MPo/fv3BrzzzltRDz30WOYnn3wYVlNTrdy166MjKpVKdtXnin7/jauCg4McY8eOr4qMjLTPnXtzny1bNkTdcssdhfW1JzMzQ33vvXclBwQEiC+8sO5EXFzX+sdZk06p2QEQx3FKOJMTTASQCCAIQAmATACfA/iF53lPVyTMcf1bd4jaUQBTAWQAiK2zz/1zLgBVrW0n65T52/V9tg/q8IogtN6HnyhKrVq/t6p1euzMzUZIaBhG1FqYUlQ5Y1DG7vDLdjfEX89zZ1KYmoo4ADaWhaRQQapzvhUKFg5RgF1wQKpnsVOHJMDuGitRU15Bv69G0PXcduhct41z+TyzGl2bR2otec2PP94TlZCQaO3Xb4DpvffejcjMzNAtXvxoBgDMmnV9wTPPrOi+du3q2Esvvby0oCBf/cILz3QLDw+3R0VFC1FR0XabzcZ+8smHIcOHj6g5eTJN+8ora7sCgN1uP6tNvXv3tU6fPrNgx45tsePGTaxISupx1nC4J59c1k0QHOyjj65IValUcmFhwel74qio6LOz7pBOxeMAyJUtbR6cGdPiAJTDGfSYAHSFM2B5GEAex3GrALzO83xT4y//AlANYCSca++49QeQBuAXAHM5jlPwPO9ecGsiAJ7n+SKO4yoBVMEZkJ10tTMYwBAAL7vK/+SDOoiHTK4011qt/oztstrZ6aYQ6G8KOVNVjvM5iKCrfygLwziDHEGqf809URLhfmxnq6Esg4SQzk2WZYlR64UA7jwl2iGZFaPWC7LU/JWnJ02aUrx799tRL774vC4hIcH89NPPp/bt6xxydtll08plWT61c+ebMe+//260Xm8Qhw0bUXHffQ/muPenpBwv2LBhfdd161az4eER9smTLy3Zv39f8PHjRw0Aiuu+3rx59+Tv2/dTyMqVy7tt3PgGX3soXH5+nur48aOBADB37k196h67d++fB5r7/kjH4lEAxHHcCADbAIgA1gN4l+f5k/WU6w/gUgDzASzgOG42z/P7G6qX53kLx3HPAniM47hcAL8DmAVgEpxByjEADwLY5Co3AsC9cK7ZA57nbRzHvQxgFcdxxXD2GD0HZ6/P+66X2eyDOoiHrCUliNJoYNSdGQDBlQabFTv0wtGkFWQWFWFfVTX69+lb736GYWCvZ+ibmyhJEBjnHFg7pVknhHRysgzRIqnyGVVwu4zVkyVZkmU0+8M8MTHJ8uCDS3Ma2j916hXlU6deUV7fPoZhsGjRktxFi5bk1t5ee3jb/PkL8+bPX+hOcgWNRiPv2vXR0frqi4mJdVCQc27ztAfoTQBLeJ7/oLFCPM8fhnM42yqO466GM2hKbuKYJzmOMwNYCaALgOMAZvA8/wMAcBw3GcBaONNS5wN4oNZ8IQB4zPU+NgLQwdnjM5nnebur/qKW1kE8p/7rINb1H4wfHHV6erTOp/uqBp7ik3PXLxnp+KyiAu8+80K9+xkGsAoNdyaLkgjxdADk//PLCCGkpWQZoizL9IFKiJc8DYD6NzcY4Hn+XY7j9nhYdjWA1Q3s+wPA+Y0cK8KZPW5xI2VaXAfxjGRzJtiTFKoztlsj4/HO17uQZbHgelkGw5ydzpice6qqqlBRUQEAiIuLa7CcVbA2uE+URWSxDHJLi8Ep2zuvCyGEEEL8nUd3C972hFAPyrlHtjmf1EuqMy8tR0w3vJfv7Lm2WMzQ6ylVMQGys7MQpFRBFRTU4DUhQYJDbHjumChJOKRTY//Bk3giIKC1mkoIIcRLNNyM+BtP5wA91pxKeZ5/wrvmkA7PFQDJqjPXa1GpNGAYFrIswWQyUQBEAADZWZl4qd9AaBQK2AsLoI6KPquMKItNBEAidHrnHDOLhZZwIIQQQkjjPB0vsrzOzzIABs6kCCUAQgCo4VzXpwwABUDnKoczH5ekOnPpJVYS0SMoBILdArOZ5mkQp4KMdMS7hq0pg0PqLSNBgiA1EgDJErRaLZQMA2t1dYPlCCGEEEIAz4fAnc40wnHcRAA7AdwN4D13ammO4y4BsAnONNnkHMW6n9SrzwyA1FVlWNmjJ6ocjtOpsgmpyMwEANhUKrCauusVO0my1GAKbMDZAzTcaseNQ89D1sm0VmknIYQQQjoPb1IovgzgUZ7n3621rg54nv8CwCNwZnMj5yhWcF4S7nV/3CSlMymChmUpACKnWQudGUylwMB69zOMcwic0MgQOEmWwKic15dsp2mHhBBCCGmcNwFQPICsBvYVA4jyvjmko+NVKnxRVACH/swbWsk1J0ijUMBmMbdH04gfkiucSz6oIyLq3c8wjDMAamwInCSC0TivL8bhaLAcIYQQQgjg+Ryg2v4GcA/Hcd/wPH/6boPjOC2cC47+5qvGkY5nPyTszcrArIuCztguKf9NimCtocUqCeBw2KFz9dgExnWttwzDAKIowtHIArqSLIPRuobPCRQAEUI6P4aBgmGY9lkIVfZuIVRC/Ik3AdBDAL4EcJLjuC/wb6/PpQAMAMb6rnmko3EPb1PVGQInK5SQZBksw9BilQQAkJeXi0jXXLGg+Ph6y7h7gMRGeoAAgNW6eoAaCZQIIaQzYBgoZKUYYxYt7bLwmU6pExhBke9vQdDatatjv/vuq7A9e7447Okx27Ztivzoow8iS0tL1VFRUbarrrq64OqrryttzXYS/9Ds/zw8z//IcdwoOAOhywGEwpkJ7hsAT/A8T7OQz1GyJEFrtcCoVEJVJwkCGAYCGGeqQBP1ABEgIyMdf1dVQGkwILGBAAhgYBcFyE3UxWqcc4BYUfJpGwkhxN8wDMOaRYvy95xDksVhbdM/ejqVlh0RN0hpYAJZWZb9KgBqrh07tkVs27a5y333LcoYMGCw6Zdf9hpffvnFboGBQeKUKZdVtHf7SOvy6ukBz/MHAcz0cVtIBydWVeE+gxHSwKH4vk4PEAA4GGeudIHWaiFwBkCfFhaAHTEcVyd2hyCc/TnOMIBNsDVdmSuDnEKmAIgQcm6wOKySyW5pjz967TL0ztdqamoUc+bclHv55dPLASAhoVvJJ5/sifzzz9+MFAB1fl53n3IcNwXAxQBiADwMYDCAAzzPZ/qobaSDkWxWAIBVEqHS6M/a/6dSh6KsVHQZNLCtm0b8UGZmBgAgKSmpwTIMw8DqQQAkBurwR3kZ7AYDLvRVAwkhhPjE6NHDhs6bd0/Wt99+HZqeftIQFRVtvfnm23MnTZpS6S7zzTdfBm3dujE2NzdHFxISar/wwvFl8+bdk6/RaGQASEk5pn311Ze7HD9+LNBqtbBhYeH2yy+fXnTTTbcW1feaW7dujNy6dWPcQw89dmry5Esr6u6/4467CtzfOxwO5tNPPwrJzc3Rzp59U14rnALiZ5odxXMcp+c47isAnwK4GcDVcC6EOg/AAY7j+vq2iaSjkGzOG1WrKEGlOntNl4P6EOzKy0GVRE/pCVCQmY4wtRpJ3bs3UkqGXWg6tbUjMhTPnTyBj6ormyxLCCGk7W3ZsiFu/PiJZa+/vu3osGHnVa5Y8ViPP/74zQAA33//jXHlyuVJU6ZMLdm8ecfRBQvuz9q798fQpUsfSAQAs9nM3n///GStVietW/dqypYtbx0dPfrC8k2bXu16+PA/urqvtX371oht2zbFPfLIEyfrC35q+/XXXwImTBg15Pnnn04cM2ZcaVPlSefgTTfmUwCGApgIIBwA49o+G0AugBW+aRrpaETX0DarJEKhOnsInHtekIWGwBEA4SVlWD9gCGJ//aPBMiJEOBpZBNVNqXZ2ZlutVp+1jxBCiO+MH39RyezZNxX37JlsW7RoSW5SUg/Trl07IwFg+/atMRMnTiq5/vr/FicmdreNHTuh6r77Hsj89ddfQrKyMtRms4mdNm160cMPL8tMTu5l7d49yXb33fflAUBqasoZAdDOndvDN29+PW7ZsifTLrpoUpNPxZKSeljXr998bP78hRn79+8NfeGFZ7q0zhkg/sSbIXDXAHiI5/nvOY5TuDfyPF/AcdyTAP7ns9aRDsVWXQ0AsIoi1JqzHsggSKFEnFYHiZIgnPOqq6sR6FrcNLhbQoPlRFlqMgMcACjVziQIdisF14QQ4o+GDBlWXftnjuttOnTooBEA0tPT9SdPphm+//6bMPd+2ZX9Ji0tVTthwsVV1103p+iTTz4MPXkyVZ+bm6PJzEzXA4AoSu4H8SgvL1etX782QaFQyHFx8R5MIAUiIiKFiIhIoV+//pby8nLVzp3bY+fPvz9PrVY3lX+HdGDeBEDBADIa2FcOIMDbxpCOzVpdBQCwSRKUKvVZ+8dWFWJ2v4HYV1XV1k0jfiYjIx0xGmcvYVAjAZAMCYIHPUAauwNvDRkBlmEgyzIYhmnyGEIIIW1HqVSeEVDIsgyWVcjO7yXmyiv/UzBt2vSzUlBHRUU7iooKlbfffmPvwECjMHLkqIqhQ0dUDRgw0HTNNVcOqF2WYVg88cRTqZs3vx67cuXyxE2b3kxh2foHO3333dfGuLiu9uTkXqeHDiQl9bQIgoMpKytVRkfH0MJynZg3Q+COALi+gX2Xu/aTc5DNtcCpA0B9f3BEpfMpvWynvynnuszMdMRonQGQNiamwXKSLEEQm+4BYvVaKFnWGQAJTZcnhBDSto4dO2Ko/XNKyrGApKQkMwDExcVbsrMztd27J9ncX4WF+aq1a1+Iq6mpZj/+eE9YTU21cvPm7Sl33bUgf8qUyyoqKytcD/H/jauCg4McY8eOr1qy5JGMU6fS9Fu2bIhqqD0bN74at2XLxuja244e/ccQEBAgREZG0Y1KJ+dNAPQkgNkcx30C4FY4r7yxHMetA3AngGd92D7SgdgNBnxZVIBjtvrnYUhKV6+Qg/6unOsy0k8h2tUDpOsSW28ZhgFEWfSoB0ih+zfpho0W2iWEEL/z8cd7ovbseS80LS1Vs2rVyrjMzAzdtdfOKQSAWbOuL/j9919D1q5dHZuWlqrZu/enwGeffSrRZKpRRkVFC1FR0XabzcZ+8smHITk5Weoff/zO+Pjjj3QHALvdfta9bO/efa3Tp88s2LFjW+zJk2lnZ2UCMGvWDfl79/4Y9uabWyNOnTqp2bnzzfA9e96Lvu66OXkN9RqRzsObhVA/5DjuBgDPALjUtfkFAEUA5vI8v9uH7SMdiDkkFJuyMhAd2xUD6tkvu4bFMRQAnfNKTp2CimUhMQw04eGwVJ0dNDMM04wASA1JlsEyDCzVldAFB7dCqwkhxH/oVNo2v0tvyWtOmjSlePfut6NefPF5XUJCgvnpp59P7du3nwUALrtsWrksy6d27nwz5v33343W6w3isGEjKu6778Ec9/6UlOMFGzas77pu3Wo2PDzCPnnypSX79+8LPn78qAFAcd3Xmzfvnvx9+34KWblyebeNG9/g6wY106ZNLxdFIf3tt3fEbNr0Wtfw8HD7HXfcnTVr1vUl3r5H0nF4uxDqWwDe4jiOAxAGoAJACs/zlN/4HGaxOJ+8a7VnJ0AAagVAYodePJr4gK0gFzAYIRmNYBSKesswDCCKEgQPkiAwSgXskgStQnF6KCYhhHRGsixLOqVOGBE3SIl2WJRUp9AJstD8VacTE5MsDz64NKeh/VOnXlE+deoV5fXtYxgGixYtyV20aElu7e233HJHofv7+fMX5s2fv/D0Gj4ajUbeteujo421afr0mWXTp88s8/xdkM6i2QEQx3HfAbiT5/kUnuf5OvsGANjO83x9HQCkk7NUVCBQqYROc3YKbACQXamxFRQAndMkSUJKbi72BFbj6osubqSkqwfIg+tFkiTYZRlaAFYKgAghnZgsQ2QERb6BCWyXcVqyIEuyDPogJx2aRwEQx3Gj8e9ThnFwzvmJrKfoVAANL+tOOjXDoUPYNGgY9kkNZI5UuwIgWgj1nJaXl4v0qkrkWMx4cNa1DZZjGMAhCpDRdCZSUZbgcJWzm8w+ayshhPgjWYYoyzIFIYR4ydMeoFsBzIEz4YEM4BU4F0CtfWfizjv7ls9aRzoUyW53/quo/7KyhMXg44I85AkirmvLhhG/kpaWCgBITEyCUtnwnyCGYWAX7R7VKckS0ux2ZNTUoG/zR2YQQghpRXv3/nmgvdtASG2eBkALAGyBM8j5DsBdAI7VKSPCOReo0fGWpPOSHc6bVbmBAMgaFY83c7LAsiyt1XIOS0s7gd4BgeiTmARZbrh3h2EAm6cBkCThfZsJ6SdP4TW93ldNJYQQQkgn5FEAxPN8JYAfAYDjuPEADgAI4Hm+wLUtBEBXnudpDaBzmSu7m+xa76culWsInCRJsNvt0GjqzUxJOrns1BN4vFdfoLQUksWCxtZOtgkeLeQNSZagda0rZGsgDTshhBBCCOBd9pC/AXwA4Ida284DcIjjuD0cx9Hj13OU3EQApFYoEKZWI1KtgdVqacumET9iysoAAIh6AxSN9NZIkODwYBFUwDkHSKN1BtQWCwVAhBBCCGmYNwHQMwD6Ani41rbvAFwBYBiAJ3zQLtIBudNby6r6AyB9VQnWDxiCZVwfWCwUAJ2LBEGAosyZ5VTdpUujZSVZgujBGkCAs1dxukKD7UNGQMuntLidhBBCCOm8vAmApgFYxPP8++4NPM/beZ7/GM6g6GpfNY50LIzgelqvqn9om6R0rgOkVbDUA3SOys7OQqzaeR0EJnZvtKwEyaNFUAFAhgylgoWaZSHSEDhCCCGENMKbhVADAdS7UBWAQgDh3jeHdGTZKhWO5efCEs/Vu989NE7DKigA8nO5uTl47bX/wWKxYM6cm9G/v2+W9kpLO4GuOuewN02XuEbLOgMgz4bAAYDEKpxH2T1LnEAIIYSQc5M3PUAHAdzSwL6bAPzjfXNIR/a7ksXL6SdhCgiud7+7B0jNsrDQWi1+q7KyAnfccRM++ugDfP31F7jttjn4+++/fFJ3Wloq4nQ6AIDGgyFwnvYAAYCkVDj/tXmWOIEQQggh5yZvAqAnAVzJcdyfHMct5TjuNo7jHuY47jcA/wGw3KctJB2G1eoceqRscAjcv3ODLDU1bdIm0nyvvfYKTIUFuI3rjYXDzoNOFPHII0tg80FgkZlyHMEqNWQA6pjYBssxDCDKIkTR8wBIVrkCIAf1ABFCCPFfo0cPG7pr19thjZU5eTJNM3r0sKHXX/+fPm3VrnNJswMgnue/BnA5nIugPgHgNQAr4BxOdwXP81/4tIWkw5CtFqgYBiqVuv79tdYHcphNbdUs0gxVVZX4/uM9WNGrHy4ODMJIMFjTbxBQXITdu99pcf3HT6Tgf+kn4Rg2HGwjadAZhoEoNa8HSHYtqirbHS1uJyGEENKePvzwvfCYmFhrZmaG7sCB3w3t3Z7OxpseIPA8/znP88MBGADEATDyPD+U5/lPfdo60qHcBQV2DD0PgZJUfwGGgd218KWtproNW0Y89d133+A/4RGI1GigDI+Apms8HNExKLLbsGPHNgiC53Ny6iorK0Nmfh5+LC1G4uz/NlrW3QPUnDlAcPUAMS1oIyGEENLeRFHE999/G3bRRZNKu3SJs77//q6I9m5TZ+NNEgQAAMdxvQFcDCAGwMscxw0G8DfP8826s+U4LgFARj27buN5fiPHcYMAvARniu1SAGt5nn++1vEsgGUAbgUQAmAvgDt5nk+rVabFdZDGybIMFcMAABiNtsFyf0oMykvy0Z1uUv3SwW+/wnWhzjwmsfPugjoqChGiBP2vPyMvLxfff/8NLr74Eq/qTkk5BgBISOgGg6HhxU8BZw+QJIsep8EGAItBiyNVlbAa6EEZIYT4E5PJxL700vNdfvnl5xCLxaLo1q27+a67FmQPGTLMDAB//vm74fXXX+mSnn5Sr1Ao5OHDR1YsXLg4JyQkRASAK6+8pP/06TML//77r8BDhw4aDYYA8frr/5vXo0dPy5o1zybk5+dpEhISLY89tiI9MbG7LSsrQ33ddf/pv2jRQ+nvvPNWdEFBnjY+vpv57rvvzR4+/LzTQ1Dee+/dsN2734kqKMjTBgUFOSZPvqz4jjvuKmBZFu46nn12zYlRo8acvrcdPXrY0AULFmXMnDmrdO3a1bGHDx8KHD58ZMXHH++Jqq6uViYnczUPPPBwZs+eyTYAyM3NUT377Mr4o0cPG/V6g3DrrXNzmjpfP/74nbG8vEw1cuQFVXa7g3n//XdjysvLs93ng7Rcs3uAOI5TcBy3AcARAC8CeBBAFJwBxCGO4xpP7XS2AQCsAGLhDKbcXzs4jgsD8DWAE3AGL8sArOA47qZaxz8KYC6A2wCcD+fQvM85jlO72tviOkjT3IugAgA0DS9u+Q2rxrbsTFAKBP9jt9uhz8gAyzBAYiK0Cd3AanXQGwy46qprAAAf7nm/iVoalpJyDOPDIjC2R0/ITQbADOyiALkZ9RfHhOOJE8fxp8Krjm1CCCGtZMmShd3/+OO34PvvX5KxYcMbx7p0ibMuWbIwubS0RHnw4J/6RYvmc/HxCdaXX3495bHHVpw6cSIlYP78uclSrREl27Zt7jJ8+MjKzZt3HB02bHjF+vVr4194YVXCnXfOz169+mW+oqJctW7dmjOy67z22stdZ826vuC117Yci4uLsy5efF9yZmaGGgC2bNkQuW7dmoRLL51avHHjm0dvvPG23A8+2BX93HNPNes+NjX1hOGffw4FPv30C6nPPruGLy4uUj///FMJgHPtu4UL706uqqpSrV79Mv/YYytOvfPOjpim6vz004/CIyIi7QMHDjZfcsllZQ6Hg/ngg12NzhkizePNncIjAK6Hs7ckGgDj2n4/AAWAlc2srz8Anuf5fJ7nC2p9WQDcDsAGYB7P88d5nt8CYA2AxQDgClDuB7CM5/nPeJ7/G8A1ALoAmOGq3xd1kCbItVIPM2pdg+WUrkxwNlqrxe8cPXoERpaFJMuIGn/RGfsuO38UFiT2QM/sLJSVlXpV/8kjhzEvMQlTK6ubzNTGMIBdbF4yA7XGeW1RinVCCPEfaWmpmr/+OhC0YMH9mePHX1TVvXuSbenS5VkTJlxcUlZWpti5883orl0TLI888ngWx/W2jho1pnrZsidPpaef1P/ww7dGdz2DBg2pvPbaG0q6dUu0z5p1Q5EoiswVV8wouuCCC6sHDRpivuCCC8uyszPPuAH5z39mFVxxxYyy5ORe1uXLn8oMCAgUdu9+O0KWZeza9XbMlClTi2bPvqk4KamH7corryq7/vr/5n322ceRlZWVCk/fnyiKzIoVz6T369ffMmLESNO0aTOKeD4lAAD27v3RmJubo33ssRXpAwYMMg8bNsK0ZMlj6Y3VV15epjhw4I/g0aMvLAOAnj2TbQkJiebPP/+EhsH5kDcB0M0AHnMFEqfvhHie/wfAY3AOi2uOAQCONbBvDICfeJ6v/bj4OwAcx3GRAAbBuS7Rd7XaUQFnqu4LfVgHaYJ77RVBkqBsZAicXqlCiEoFO6XB9juHDh3A65np2G4MQPCIEdCoGCiVzj8RUfoAXBAWjonhkfjukw+9qt+S4fybLxqNUDQxTI1hAJvQvABIoXZmGaTgmhBC/AfPH9cDwODBw04PPdNoNPKSJY/m9OyZbMvMzND17t33jNSwffr0s+j1ejE19cTpISVdu3Y9/eRMp9NJABAX9+82tVotOxz2M+5rhw8/7/TQNZVKJXfvnmTOyEjXlZQUK6uqKpUDBw4643WHDh1RLYoik5Z2ouEbmTqMxiBHSEjo6aFpAQEBoiAIDACkpaXqDAaDmJjY/XQ7+/cfYFGrNQ1MlgY+/PD9MEEQmEmTLi1zbxs7dnxZfn6edu/enwI9bRdpnDdzgKIAHGpgXw6cc2iaoz+AfI7jfgaQDCAVwAqe57+EM8HC4Trl81z/xrv2A0B2PWXiXd/7og6vuG8efUnhGt6j8LNhPoLoHAJnlySo1FqwLFNvuauFGsQOHIqDZaWtcn58xV/Pc2s6dOggAKDP8POg00hw5B6BKiQaioAoKPr1hclohKGqClXffQvlzbc2q+7KykqEWpw9MwE9e57+3Td0nhUKFnbJ3uB1VJ+IKhM2DhyKMonx62urPZyL13N7oXPdNug8dxxKpVIGAIZh6h3VLMsymHr+1MuyfPpYAFAolGcd39RnRO3j3XWyLCvLroRMTJ0XliSRAZzBUu1j3BwOx1kvqFKd3a66r1mXQqFo8Jivv/4iHADuuuvW0+mv3XXs2bM7YvToCymLlA94EwClAbgUwDf17Bvn2u8R1/CzZAAmAA8AqAFwA5zzby4GoIdz+Fpt7se7Wtd+NFAm1PW9L+poNpZlEBLSepOxjcaGh5m1h4piV3Y3SUJAYAB0uvqnT0kKJSA6wEpCq54fX/G389yaeP44AGDU+cPAVORCKs2EJJihDwqB0hiEHjdci/xXXsMgMKgozkVicrLHdR88+Ct6BTpHMsQMH3rW777ueRZEAayCgbaB66g+slYNo0oFi9gxrq32cC5dz+2NznXboPPs/5KSeloA4O+//zKMGTO2GnDOjZkx47L+t946NychoZvl2LEjZ2TGOXLksM5isSi6d09q0ZjmI0f+0ffp088CAHa7nTl16qRh0qQpxRERkYLRaBQOHforYPLkSyvc5Q8c+DNAqVTKCQmJNrPZxAJAdXX16eFw6eknG16/oR4c19tsNpsVKSnHtL169bECziGBFou53iF2hw//o8vMzNBdddU1+Zdc8m8PEAC8/PKLXf/447fgwsICZVRUNGWSaiFvAqAXAbzmCl4+hjNhQE+O48YDWARgoacV8Txv5zguGIDA87w7ADngyjC3CIAFQN2Lzd0taXLth6uMpU4Zd1erL+poNkmSUVXl+2FeCgULo1GHqioLRLHBHtQ2V1Zlwb7SEpglEbESC4ul/uFLOsb5tM5htqC83H/XAvLX89xaysrKMD8kHHJwOKIkCaaCHDgsdsCaBwRGgYlQI3jY+TiO1xCsVGLvqxsQ/Ohyj+vf9/MvuMCd+S2u2+nffYPnWSHBYrXB2sB1VB9J7fxzppTh19dWezjXruf2ROe6bbTWeTYadR2iV4lhoGAYpl0aKsuyJMvwOBtZjx49bSNGjKxYu/aFeIZhsqKjY+zbtm2KFgQHO2rU6OrY2C72hQvv7vXkk8vir7762qLS0hLliy8+n5CQkGgePXpsi3o7tm3b3CU0NFyIj4+3bd68IcZms7IzZ84qYRgG06fPLNix440usbFdbBdcMKbqn38OGXbufCP2oosmFwcFBYlGo1GMiIi07dr1dlRiYnerxWJh161b3VWpVHmcn+eCC8ZUJyX1NK1YsSxx4cIHshQKpfzii8/F1+15cvvoo/fD1WqNdOONtxbWzfh2ww035j/wwALje++9G37nnfMLWnJeiBcBkCs1dQSApQDmwZkEYScAO4BneZ5/tZn11XenchjAJXAOS6u7XLz751wAqlrbTtYp87fre1/U4RVBaL0PP1GUWrX+5rLq9HgpPQ0KhRKPMgpIUv1/H0TW+dBDsjv8qv0N8bfz3FqO/fMPEvUGKBgGBr0alvxyQJIByLAV50IbHANRUsHcpw+Cjx1DUGoqHHYBDOvZ52/eX39Bq1BAUKmgiIw+65yedZ4ZEQ5RaPA6qpfa2VukROv+3+vIzpXr2R/QuW4b5+J5ZhgoNJIjRjSbvV7KpCUUer1gY1X5zQmCli9/Kn316lVdV65c1t1ut7M9eiSbnntu7Ynw8AghPDxCWLFiVermza/H3n77TX10Op04YsTIinvvXZRTeyiaN6ZMmVr86qvrupaVlap69Eg2rVnzCh8dHeMAgNtum1eoUqnkPXt2R23cuL5raGiY/aqrri649dZ5BYBzeNzSpcvT1659If6OO27qExYWbp8z5+a8bds2qRp/1X+xLIs1a15OXbXqyfjFixcmq9VqaebM6/KLiorO6kmy2+3Mzz//EDpmzNiy+tJdn3/+BTVJST1MX331WcTcuXcXsB5+/pL6Nfs/D8dxITzPP81x3P/gTBkdBqACwK88z5c1evDZdQ0A8AuAS3ie31tr1zAAR+GcazSX4zgFz/Pui2EinFnjijiOqwRQBefQu5OuOoMBDAHwsqv8Tz6ogzTBanWOKlRrGu8dlhSuvxu102aTdpdz6CBCGQZWhgFgBWqlHrVXl0FrqYZCF46B189B+uJFCFMqkf7Nl+g+aUqTdQuCAEV+HhDTBcqEbh4FTRKk5i2CCoDVOzt2VQ08WSOEkM6AYRhWNJuVpb/9JglmS5tGf0q9jg077zwlExjMyrLscQBkNBql5ctXZgLIrG//2LHjq8aOHV/V0PF79nxxxlzu+Phu9r17/zxQe9v8+Qvz5s9fmFd725AhQ2vuvvve/IbqvfHGW4tuvPHWoob2Dxs2wvTGG+8cr73tiitmnL7Xre81Z86cVTpz5qzTScJCQ8PEVavWnJH57aabzn5NtVotf/HFD40+eN+27e2UxvYTz3nz9OB3juMe4Xn+HQBftvD1j7i+1nMcNw9ACZxpq88HMBxAIZzrDG3iOO5ZACMA3Avnmj3ged7GcdzLAFZxHFcM54Kqz8HZ6+NesGSzD+ogTbCazVAwDDSNZIADAEnpuuQoAPIrlkznZ5IlwADRfOaIA9lhh1BZBEVABEKiovGeRo3MjHQkpqV6FAClpBzHR7nZyHI4sO7BhzxqjyRLEJqxCCoAsFpnD5CaZVyTaikQIoR0XoLZIgkmU3t0f1HXA+nwvLmIQ+AMVFqM53kJwOUAfgewC8BfAM4DcDHP84d5ni8CMBkAB2da6mUAHuB5flutah4DsAnARgD7AAgAJvM8b3e9RovrIE2z//0Xdg49DwtiG18/THb1ADEiLWbsTxSutX0UkeEQLWePSnVUlYIVnL18EZdOxceF+fj02689qvvXX/dBAhDUtx8MyVyT5RkGEGUJYnMDIFcPkJJh4aBU2IQQQghpgDc9QC8BeI7juPsBHOF5vrglDXAdf0sj+/+As0eoof0inIuaLm7NOkjjBIsVagASy6Kx1cMqjKH4NuUgyoOD2qppxANBNhug1SEwPg6i7ezkHYKpCrCbwKpDMH78RXjyyWU4eTIVaWmp6NGjZ6N1//rrLwCAkSNHedQWhmEgSiKEZgbJrEGLk6Ya2CUJ0SYz1FrKDkUIIeei+obIEVKbNwHQHAAJcKXB5riznujKPM+3y8Q80n4Eq/OmWWQaD4CKIuPxZuYp9FQ33RNA2obJVIMohfO/bGT3OEA+O+uoZLdCMlVAoQuD0WjEqPMvgOPwYZStexGOZU9AFRpWb90Wixl9ioowML4bRnRP8qg9DANIktjsIXCMRoWl/DFIkoRRzTyWEEIIIecObwKV7T5vBenwBKszi7nYxAR3pcqZJMFGQ5T8Rlb6KaSaatBFb0CPcCMclfUvu+CoLIEmvBscACZNvgy2gkIEm0yo+PYbRMy8pt5j/ty3FxeHRUCjUCC6gSDpbIxXQ+BkyNBqtTCbzaeTchBCCGl/o0cPG+r+vm7PzP79+wIefPBe7uef/zi9fe3a1bHvvvtWTH11jRs3sfTJJ1dlNFVHS9u6dOnyk1OmTK2ou//OO2/t+c8/h4wLFizK6NKli/3BB+9LBoDevfvUbNjwBt/S1ydtw5sAKB3AdzzP5/i6MaTjkmyuAEjRWP8PoFIqoWMVYGw0vcpfZOXmYFUajyGDB2MM03DQIVqqwQgWADqMGzce961ehX7GIJT98B1CL5sKhf7sxUfTv/gUIxUKVKlU0DajB8ghCpDRvOynkixBczoAatHaeYQQQnzsllvmZl966dQzsgX/8svPgcuXL02S5TP/3t988+0F11xz3RmZ0t57793w3bvfjpk164ZCT+poCYVCIX///TchdQOgsrJSxbFjRwLdPw8bdl7Ne+998vfzzz8dX1FR7nF6bNL+vEmCsBrONNWEnCbZnQGQzDYeAHUpycO2IcNxY2h4WzSLeCAzMwMA0K1rHER7wz0ngsUE2WaGQsHCYAhAwIBByLKYwdhsKP1oz1nl7XY7Ygqcn1PqwUM8zsrGMAzsYvMDZEmSsLhLPF4fOAS27KxmH08IIaT1BAQEiFFR0QLgXB7hqace7/rQQ4t6RkZG2eopK0VFRQvuL7PZrNi9+52YW265I6dfv/4WT+poiX79BlQdPPhnsMViOeOD68svPwvp0SP5dKYgtVotR0VFC2q1+txajKoT8CYAKgIQ7ON2kA5OtjtvWE+nuW6I2rVWSzOf7pPWk+0KgOLjYk8HsvWRBQdEcyUUCufnwSVTpmJbtjN9dsV338KakXFG+b93v4sErRZWSUKva671uD0MA9i8CYBkGYFKJYJVathr6ltfmRBCOg+lXscqDYa2/dLrfJICu6amRpGaesLw9NPPp15xxVUNrsPj9tJLz8d17drVcu21s08n3mpuHQBw221zuKVLH+jW1LaRIy+olCQZP/zw7RkZm3744dvQceMmNGvNS+KfvBkCtwHA/ziOGw/nGj6FdQvwPP9GSxtGOpZKtRo5FeWoiu2GxvK7MVpXqmLQWi3+YkBhIaYPGgar2QpZaHx9JqGqDOpwAQCD8eMn4LnnVmJ/WSnODw1D/qv/Q/zSx6AIDIRYUwP2+28BAJmhIRgQFNysNtmF5gdAMmS4l04VLDQEjhDSOcmyLCn0eiHsvPOUaIc1eRR6vSDIcot6PIKDg8UtW3akAMCuXW83OkH00KGD+j///D141arVJ9ha84ybU0dzabVaaejQYZW1h8EVFRUqeZ4PWLnyuVOvvvpyvC9fj7Q9bwKgF1z/zm5gvwyAAqBzzKkgIzan8bgoeSC6NlKOVTtTE6tZFna7HRqNpm0aSBqkt9kRoNFAbTx7Dk9dotUERrQB0EKlUmPWrBvw2itrwQUFI7SkGGb+OAKHjUD2118iUJZRZLOi180PNKs9MmQ4RO8WyhVcAbWD5gARQjopWYZoY1X5TGBwuyxIKsiyJMtos1SbO3duj0pK6mm64IILq5su7Tvjx19Utnr1qkSLxcLodDr5iy8+Dendu091eHiE0PTRxN95858nsYmv7j5rHekwLBbn3BGVuvGAhnGtzaJhWcoE5wckSUKIK2gIjm76AZpoNQEOK1jWecx//nMNFHoDVhw/jOw+fRA4bAQA4LVf9+FIVSW+MOjRs0/fZrVJlCUIkncPF0VXuwTKAkcI6cRkGaIkyY72+GrL4MdkMrG//74/ZOrUaS1ac9Ib48dfVAng9DC4H3/8LnTChItp+Fsn0eweIJ7nM93fcxynB2AEUMrzvHePbEmnYHUNOWoyAFI5h8CpWRZWqxVGIy2I2p5KiwoRqnImrgmPjQCExufOSHYbJGsNFLowSJKIoKBgzJ17N5577iksffctGEaNRkZGOj7/8jN8DuCtt3Y3u00SRIiSdw/YJJYFJECkAIgQQjq8H3/8zijLMi6+eEqFr+p0OBxMYz+76XQ6eejQ4RXff/9NyIABg0ynTp00TJo0Jc1X7SDty6vuU47jxnActx9AFYBcAFaO4/a75gWRc9CEggJsHzIC8bbGhx7JKjUAZw+QvZEJ96RtFJxMA8swcMgyVDq1R8eI1WVgmH+TWMyadT3OP/8CWK1WzJ17M555ZgUA4Lbb5qFPn37NbpMMudmLoJ5um6sHSKLeRUII6fD+/vuvwG7dEs3BwcE+63UqLCw8/aRWlmWUlJQ0+OE3fvxF5QcP/hn8yScfhg0cOLgyKCiIVtnuJJodAHEcNwrAN3BmglsB4E4ATwIIBfAlx3Hn+7KBpGNgJQlqlgWrbPwmWlRr8XtVFfaXl9JilX6gIsvZoVsDuckECG6ipQZsrSxtCoUCq1evw7Rp06FUqqDX6zFv3j2YN+8er9okyZLXAVCNSol0swk0A4gQQjq+9PRTuoSERJ/+ST95MtWwadNrURkZ6epnn30qrrH1e8aPv6iSYRh59+63o2n4W+fiTRKEJwH8DGAyz/On71I4jnscwJcAHgcwyTfNIx2Fwj1no4khcJJGh40lxagoK8ZoG/UAtbeqvFxEAbAqlZAcnmVeE61mMIINDKuEe905nU6PJ554Go888jhYloWyqXToDWAYQJRFiF4GQH+GBuDrn3/G3AvHenU8IYQQ/1FRUa7iuF4+Xdegd+8+NXv3/hSyY8e22J49k02DBw+tbKisRqORhw0bUfnbb78GT5w4qcFypOPx5i5lBIBrawc/AMDzvMRx3DpQBrhzkkKWAYYB41rnpzFKlTNIslEA1O6Kq6tRXVmOoMRunvcAWc2QHRawukCI4pnJCtRqz4bRNYRhGFcSBO8CIJXG+SCPri1CCOkYZs6cVTpz5qzS+va9++6HR1taR12RkVG2lSufy2ho/969fx6o/fPTT7+Q3lQZ0vF4MweoGkBD3YVqALSwyzno9MKmHgRAapXamQWOUhW3uyM1VXgmlUd17yTAw8VpZUmEaK4+nQnO10TJ+x4gldr5TMdK1xYhhPiVmpoaRWFhgXfDA/yU3W5nCgsLlHa7vV1SkhPvefML2wfgYY7jAmpv5DguEMBDcA6PI+cYpSvuZTS6Jss+HRmBN4eMgFBa0trNIk0oLHSuYxwRFNBEyTOJNeVgmRatg1cvhmFaNAeIq7bhpX4DwRWctT4zIYSQdrRp06tdr7pq6sD2bocv/fnnbwFXXTV14P79+0Lauy2kebyJxJcAOADgFMdxnwAoABANYCoALYCbfNc80hHIsnz6QvIkAHIA0AFwmOkpfXurdAWh4YH6Zh0n2ixQi3Y03BnsHYYBBEmA5OUi4xqGQYxWB7Pds/lMhBBCWp+/DBnbsOEN3pf1jRo1ptpf3htpHm/WAUpzZXpbBuBSOLO/lQH4HsDjPM8f820Tid8TRRw1m8GIAlht0zfS7hVeBIu5ddtFGiXLMh6OiII6MgbBQvN6XP5NhKCGLHs2dM4TDMPAJnq/pJiscv5JY0TKVEoIIYSQ+nk1FpPn+WMcxy3geb4AADiOCwUQR8HPuYlRKvF8xklYLGYs0jU9lMrBOIfLCZQGu11VV1YiWKkCyzAIDjPi39C0aaLNAtluBas3QhR9GQABDrEFvTeuJAisl0PoCCGEENL5ebMOUDDHcV8D+KHW5hEADnEct4fjuOaNpSEdnizLpyedK5WNp8EGANEVAIkUALWr0sx0sAwDQZaga+YQOEgiREtrJEJgYBW8D4AYtTsA8v38JEIIIYR0Dt4kQXgGQF8AD9fa9h2AKwAMA/CED9pFOhC73X56GJRC1XQaZIFxXnaijQKg9lSemwMAqJFkQPS898dNNFWA9TBznKdkSHC0YAgcTgdAvm0XIYQQQjoPb4bATQOwiOf5990beJ63A/iY47gQOBdKXeSj9pEOoCb9FN4YPBwldhvKFU0HQCKrAEQRko0mqrenmsJCBACwsgwkD9cAqk20mqGW7PByJG29WpIBDgAYjfP6U3qZRIEQQgghnZ83PUCBAMob2FcIINz75pCOyFpTDa1CAY1CAYVC0WT5fJUO+8tKUeXj3gPSPJYSZwY4h0oJWWh+D5BkszgTIfhwFJwECaLU/LacPl6nQYHVijIv3g8hhBBCzg3ePLo9COAWAJ/Xs+8mAP+0qEWkw7GbTM5/PcwGdigwHD+c+hJXDxvams0iTXBUOp9jyFoNPF0EtTbRZoHssIHVBUIUfdPjIqFlPUD2mDDMP3IIkZFRuNInLSKEEP/DMFAwDNMui2/KsizJMijTDOnQvAmAngTwOcdxfwL4AEARgAg45wANhXM9IHIOsZvNYOB5DjGl2jlMyWaztVqbSNOKrDbUVJYjuEukV8fLogDJWgPWEAFfZZ2WIUNsQQCkUDv/pNlofhkhpJNiGChYho2xWwXfjT9uBrVWKUiQ8v0tCFq7dnXsd999FbZnzxeHPT3mttv+m3z8+NHA2tuSk3vVbN683afrBRH/4806QF9zHHc5nMkOngDAwPn4+BCAK3ie/8KnLSR+z242QQNAgGdjoVQqZ6Y4u5UWQm1PBywm7EvlsWLqRK/rEE2VUPho0CvDAKIktqgHSKlyB0AUXBNCOieGYVi7VVAeP5Iv2axCm0541GiVbO9+MUqVVsHKsuxXAZA3srMzdfPm3ZN10UWTT0/tUKvVND7/HODtOkCfw9kLpIVzIdRKnudNPm0Z6TAEiwUa/JveuilDq4rw36Hn4XBVdes2jDSqxDUHKMxo8LoO0WqCSrQDaHruV9MYiHLLAiCVJGFVn/5QMywkSQLLtssIEUIIaXU2qyBZLY72yPjSKf6w5ufnqWpqapQDBgyuiYqKpomj55gWdZ/yPG8FkOejtpAOymFx9uQIHg5HZhTOxTcZocM/POrQKkudAVBoUNOL1zZEtFnASA74IgBiGECUpZYNgdOqkKh3BnQ2kwm6wMAmjiCEENLaRo8eNnTevHuyvv3269D09JOGqKho68033547adKUSneZb775Mmjr1o2xubk5upCQUPuFF44vmzfvnnyNRiMDQErKMe2rr77c5fjxY4FWq4UNCwu3X3759KKbbrq1qL7X3Lp1Y+TWrRvjHnrosVOTJ19aUXd/SsoxHcMw6NkzmcZMn4M6RRRP2pdNweJ4dRVKPVwUU1Y612phfDVxhDSbKIp4Ki4BWwcPQ3ALEhhIdgtkh9UnC6IyjKsHyIs1idwUOu3p72011MNICCH+YsuWDXHjx08se/31bUeHDTuvcsWKx3r88cdvBgD4/vtvjCtXLk+aMmVqyebNO44uWHB/1t69P4YuXfpAIgCYzWb2/vvnJ2u1OmnduldTtmx56+jo0ReWb9r0atfDh//R1X2t7du3RmzbtinukUeeOFlf8AMAaWmpOr3eID7xxKMJl18+acDMmdP6vvji87E2m83XK3wTP9QuE+hI51IaGobl/DEMHjYKV3hQXnYtlspKtFZLeykvKUaA0vnfPyg0CJC9mzMj2W2Q7Raw2lBILVx81D0HSGzBGj6MSgFBlqBkWFgpACKEEL8xfvxFJbNn31QMAIsWLck9cuTvwF27dkYOH35e+vbtW2MmTpxUcv31/y0GgMTE7jalUpm5ePHC5KysDLVeb5CmTZtedO21s4uMRqMEAHfffV/e++/vik5NTdH17z/g9KTinTu3h2/e/HrcsmVPpo0bN7Gqofakp5/SORwOZsCAQTWzZ99YcPz4Uf2GDa92LSwsUD/99PMZrXw6SDujAIi0mNXq7D1WqbVNlHRRO5MgKCgAajel2VlgAIiyDKVGAakFAwBEcyWYoLgWt4lhGNjF5i/IWpskS7BLMpQKwFpD0xIJIcRfDBky7IynUhzX23To0EEjAKSnp+tPnkwzfP/9N2Hu/e6VNdLSUrUTJlxcdd11c4o++eTD0JMnU/W5uTmazMx0PQCIonS6x6a8vFy1fv3aBIVCIcfFxTf6ZG/FimcyampqsoOCgkQA6N27r1WpVMnPPruye1FRYU5kZBTNC+rEKAAiLeYOgNQajWcHuLLAKTxcN4j4XmV+HoIBmGQJaMGcGwAQzTVQ+ygbql20t+h4SZbhcF1XdjMFQIQQ4i+USuUZH/qyLINlFbLze4m58sr/FEybNr207nFRUdGOoqJC5e2339g7MNAojBw5qmLo0BFVAwYMNF1zzZUDapdlGBZPPPFU6ubNr8euXLk8cdOmN1MaSoajUCjgDn7ckpM5CwDk5+epKQDq3LwKgDiOCwfwAICLAcQAmAxgOoBDPM9/6LvmkY6gS+oJvD5wCI55OnfD1VOkpPin3ViKixEMwMKykISW/Y2X7Bawoh2AukX1MAwDm9CyAAgAHK5FXd0L9BJCCGl/x44dMVx88SWnkx6kpBwLSEpKMgNAXFy8JTs7U9u9e9LpXpv9+/cGvPPOW1EPPfRY5ieffBhWU1Ot3LXroyMqlUp21eea+/PvzURwcJBj7NjxVZGRkfa5c2/us2XLhqhbbrmjsL723HzzDVzXrvHWxx9/KtO97fDhfwxKpVJOTEyixAidXLMDII7jEgHsA6AD8DOAga56kgE8ynHcFTzPf+pNYziOSwZwEMDdPM9vdW0bBOAlAMMAlAJYy/P887WOYQEsA3ArgBAAewHcyfN8Wq0yLa6DNIy12RCsUkOl8CwTmGQIwqHKChSJAia3cttI/WzlZQAAh1LR8h4gmwWyYAej0EBuUa+e3OIeIAColCRINisMjpYNpyOEEH+m0SrbPJFVS17z44/3RCUkJFr79Rtgeu+9dyMyMzN0ixc/mgEAs2ZdX/DMMyu6r127OvbSSy8vLSjIV7/wwjPdwsPD7VFR0UJUVLTdZrOxn3zyYcjw4SNqTp5M077yytquAGC3289qU+/efa3Tp88s2LFjW+y4cRMrkpJ6nDUcbvz4iWUbN77adefON03nnz+66vDhQ4bNm1+Lu+KKGYXueUak8/KmB+gFAEUAxgGoAWAHAJ7nr+c4TgfgYQDNDoA4jlMB2AHAUGtbGICvAewBMBfASACvcBxXyvP8FlexR137bgKQC+BZONco6svzvN0XdTT3vZxzXD0IstKzHgBreBesSU2BUqnE3a3ZLtIgR6XzIZyoVrW4LslmBQQrWJURouh9ACRCatEaQG4brNU4dSIN/5t7V4vrIoQQfyPLsqTWKoXe/WKUaIdsvmqtUpDk5k/inTRpSvHu3W9Hvfji87qEhATz008/n9q3bz8LAFx22bRyWZZP7dz5Zsz7778brdcbxGHDRlTcd9+DOe79KSnHCzZsWN913brVbHh4hH3y5EtL9u/fF3z8+FEDgOK6rzdv3j35+/b9FLJy5fJuGze+wdcdCjd79k3FLMvigw92R7322ivxwcHBjmnTZhTeccddBd6dGdKReBMATQRwM8/zFRzH1X3k/xqAd71sy+MA6qZtuh2ADcA8nucFAMc5jusJYDGALRzHqQHcD+BBnuc/AwCO466Bc22iGQDe9lEdpBGMewiV0rObaZXaGSgJggBBEKBU0lS0tlYqCKiuKIchKqnFdcmSCMlqAmtg0JLM5pIsQvBBanSN1jnHzGajEQyEkM5HliFKkPJVWkW7LGUiyZIky82f+JmYmGR58MGlOQ3tnzr1ivKpU68or28fwzBYtGhJ7qJFS3Jrb689vG3+/IV58+cvPL02pUajkXft+uhoY226/vr/Frszz5Fzi7f/eRqaNKBB7cGYHuI47kIAdwD4b51dYwD85Apc3L5zHsJFAhgEINC1DQDA83wFnMPoLvRhHaQR7vV8ZLVnSRCUqn97iugmtX0cERx4Jo2HqWuUT+oTTZVgWrhyggy5RYuguqlcvVru5ByEENLZyDJESZId7fHlTfBDiL/x5tH7zwAe4jjuGwDuOwzZNY9mHpzzgzzGcVwwgDcB3MPzfDbHcbV3xwE4XOcQd3Qf79oPANn1lIn3YR1eUbbC8FyF64GPon0e/NSLdd20Miq1Rwti6gU7tg4eBhYMBMHRKueppfzxPPtSZaXzIVtIoN4ni5jKdguUsgBJ6dk8MLfa51mADAlSi9szUaHBtb37QZOZ4ZfXVnvo7NezP6Fz3TboPBNCWsKbAGgJnEFOGoDv4ezxWQSgD4AecPa4NMd6APt5nn+rnn16OIev1eYOurSu/WigTKgP62g2lmUQEmJouqCXjMazFj5uNwrXAphKnR46XdPzgFjGAL3CeelpVHKrnqeW8qfz7Es1Vc45QOEhRmg9+J01RcEI0KokGAxGr443GnUot9ihUDEtbk8oyyLJEIBCm8Wvr6320FmvZ39E57pt0HnuGPbu/fNAe7eBkNqaHQDxPH+E47hhAJYDmABAhDMd9o8A5vA8X7e3pUEcx82GM2Dq30ARC5zD6mpzr7Zpcu2Hq4ylThl3Dlxf1NFskiSjqsrs7eENUihYGI06VFVZIIr+kaSkWBJhsljgUGlgsTSdM4IR/h0lWZRXhABjeGs2zyv+eJ59aZ5aB+Pg4VBXmWC1BLW4PlashrKmBg6HulmZ4NznubraArNgg9lihdXesrwjIssCEGGrMaO8nFJhA53/evYndK7bRmudZ6NRR71KhJwDvJp9zvN8KoDrffD6NwOIAlB36NurHMc9ACATQGydY9w/5wJQ1dp2sk6Zv13fZ/ugDq8IQut9+Imi1Kr1N8e75hocP34Mc6dcj0DJg5tf5t9hUpaqGr95H/Xxp/PsK7IsQ8ew0CoU0AUaIHnyO2uCZLVCtFkhq2WvzpckyRBEAXZBaHF7JIUzABJttk73u2upzng9+ys6122DzjMhxBveLoTKwJk8wIB6EinwPP+Th1XdAOd6QrWlAngMwDsArgUwl+M4Bc/z7kl3E50vwRdxHFcJoArOlNwnXW0LBjAEwMuu8j/5oA7SCPdkc6XKsyQIYBjYJQlqloXdTE/o25qpphoG15pNxuBAH9UqQzJXgQ2q+6zBc6Is+iQNtnMekgMyrQNECCGEkHp4sxDqCAC78G/yAPeMZdn1vQzAo5nQPM/n1t3m6gkq4nk+k+O4zQAeBLCJ47hnAYwAcC+ca/aA53kbx3EvA1jFcVwxgAwAz8HZ6/O+q0pf1EEa4c7kplR5vqaMXQbUAAVA7aCisBCsK2Wb3qCFJJy1PpxXRHMVVLJ3T2IZhoEoiT7JAie7EzFQAEQIIYSQenjTA7QGgAPAjQByALRa37Orh2YygLVwpqXOB/AAz/PbahV7DM73sRHO3qSfAEx2L2DqizpIw2RZxmMRMbCHRiKvGeOwHa5s6Q6zpYmSxNcqCgugBmCTpH8fX/iAaLdCLTngZccy7GJD2fWbR1a5Xl/wTX2EEEII6Vy8uVMZAmAWz/Mf+roxAMDzPFPn5z8AnN9IeRHORU0XN1KmxXWQBogiQlUqQKVCoVrbdHmXDFFCtqka4XST2uZqiosRCsAKGZKPgg4AkGwWMIINDKtEM/IgAHD2ANlF3zxvkDQqVDkcsDd/oXJCCCGEnAO8SXVShFbs9SEdi2j7d/gUo9U3UvJM7zqAJ0+kwKTzcN4Q8RlzWQkAwM6ygA+GnLmJditkwebVOj4MA9h8FABldQnHrX8fwE8az4dkEkIIIW1l9OhhQ3ftejusvn1ZWRnq0aOHDa39NWHCBYPnzLmm9zfffNXytK0EgHc9QP8DsITjuO94nqcJHOc49xweSZbBqj1fj0HlSphgtfpm/gnxXKXFgsKKchgifZt+XBYckO1WMDpnFrZmHQsZNh/NRVKpnYGPxWJtoiQhhBDin5YuXX5yyJBhNbIsM9XVVYrPP/8kdMWKR5OioqKP9+8/gOYPtJA3AVBPOBc9LeA47iiAuovdyDzPT2xxy0iHYK2uBgDYJQlKtQaeZjBWqZ2LXdpsFAC1tRxJwqY0Htf3T8ZkH9ctmCqgCOna7OMkWfJJBjgAULoCIHdyDkIIIaSjCQoKEqOiogUAiI6OcfTsyeX99NMPoZ999nFY//4Dctq7fR2dNwFQDwCHav1cd7yLD6dVE39nrakB4JxQzzAKeDr54wpGxH2DhiEvM7M1m0fqUVFRDgAICvB8yKKnJKsJSklAc/8MiLJvMsABQIjZhseSe9MilIQQ4idMJhP70kvPd/nll59DLBaLolu37ua77lqQPWTIMDMA/Pnn74bXX3+lS3r6Sb1CoZCHDx9ZsXDh4pyQkBARAK688pL+06fPLPz7778CDx06aDQYAsTrr/9vXo8ePS1r1jybkJ+fp0lISLQ89tiK9MTE7rasrAz1ddf9p/+iRQ+lv/POW9EFBXna+Phu5rvvvjd7+PDzTo9eeu+9d8N2734nqqAgTxsUFOSYPPmy4jvuuKuAZVm463j22TUnRo0aU+0+ZvToYUMXLFiUMXPmrNK1a1fHHj58KHD48JEVH3+8J6q6ulqZnMzVPPDAw5k9eybbACA3N0f17LMr448ePWzU6w3CrbfO9Tp40Wg09MHmI80OgHieH98aDSEdk93kDIAckCE1Y+a7mmURoFRCpqf0ba6ivAwAENwaAZDNClZywJnkvBnHQYIg+iYA0gDoZwxCkY/qI4QQ0jJLlizsnpOTrbv//iUZCQmJtq1bN0YvWbIweefO949kZmaoFy2az1100eSS++9fnFVaWqJ66aUX4ufPn5u8bdvO4yzrnK6+bdvmLrfdNi97/vz7s7dt2xi9fv3a+NjYOOvddy/INhgCxMcffyRp3bo1XVavXnfK/bqvvfZy17lz78nu3buPedu2TdGLF9+XvGXLW0cTErrZt2zZELlt2+a4W265PXvUqDFVhw//bXjllZfiq6oqlYsXP+JxkJKaesKg0WjFp59+IdVsNrFPP/1E4vPPP5Xw2mtbTwiCgIUL707W6w3i6tUv83a7nVmz5tmE5p4/QRDw4Yfvh+Xm5mqXLl2e3tzjydm8y1dLiIvdISDTbEINGDDNyPwlKhSACMh2WqulrY2qrMJ/Bw9HTUWNz+sW7RZAsINRaCA3IyCWZRmC5KOMdBrn/DIlmpmKjhBCiM+lpaVq/vrrQNCTT65KHTduYhUALF26PGvNmmfFsrIyxc6db0Z37ZpgeeSRx7Nch1iDg0NO3X77jX1++OFb44QJF1cBwKBBQyqvvfaGEgCYNeuGoq+//jLiiitmFF1wwYXVAHDBBReW/fbbL8G1X/s//5lVcMUVM8oAYPnypzKvumpq4O7db0csXLg4d9eut2OmTJlaNHv2TcUAkJTUw1ZZWaHcvPn1uLlz78n39P2JosisWPFMekhIqAgA06bNKNq2bWMcAOzd+6MxNzdH++ab7x5JTOxuA4AlSx5Lnzfv5j5N1bt06YM9WZaVAcBut7OyLGPy5EuLe/XqQ/N/fMCjAIjjOBHA+TzP/85xnAQ0emch8zxPgdU5whochAeOHUZ0TBfnyrIekljnJSI7aKmltqYUBGhVagha32fgk2yuTHAqI0TR8wBElEWfzQFidc45QEoajUsIIe2O54/rAWDw4GGnh55pNBp5yZJHcwAgMzNDN2jQ0Krax/Tp08+i1+vF1NQTencA1LVr19OThnU6nQQAcXH/blOr1bLDYT8ju/Hw4eedHrqmUqnk7t2TzBkZ6bqSkmJlVVWlcuDAQWc8CRw6dET1hg3rmbS0E9qIiAiPntAajUEOd/ADAAEBAaIgCAwApKWl6gwGg+gOfgCgf/8BFrW66aFs8+ffnzFw4GATAFgsFvbw4b8Nmza9FieKjzLLl6+k+QMt5Gmg8gSci566v6dHqwTAvxPNNRrP1wACAEnhDoCoB6itqV3r42gMnmft85QsiZCsJrCGSDRnBJovAyDGFdhREmxCCGl/SqVSBgCGqX+ciCzLYOp5XiXL8uljAUChUJ51fFPLLtQ+3l0ny7Kye4QCU+eFJUlkAGewVPsYN4fDcdYLqlRnt6vua9alUCiavI+OiopydO+edDpw6tu3n6W0tET19tvbY++/f0l2YGAgzQdqAY8CIJ7nH6/1/fJWaw3pcNyphpsdACmdt6cMLYTa5rSuP7t6o6FV6hfNlVA0M8O2KEk+S4LAaJzzj1SsN8ucEUII8aWkpJ4WAPj7778MY8aMrQacc1pmzLis/623zs1JSOhmOXbsSEDtY44cOayzWCyK7t2TWjTc68iRf/R9+vSzAIDdbmdOnTppmDRpSnFERKRgNBqFQ4f+Cpg8+dIKd/kDB/4MUCqVckJCos1sNrEAUF1drXDvT08/2ayhExzX22w2mxUpKce0vXr1sQLOIYEWi1nR1LGNkSSJhji0kKdD4C5sTqU8z//kXXNIR6M4wWNN34HIVjVv0rvsCoBAAVCbcjjsMCicgYHB6PskCAAgWs1QSg40Z51lURYhiL65Fhid81pUMgwkQQCrpBG5hJDOhWGgYBimXZ7yyLIsybLni7316NHTNmLEyIq1a1+IZxgmKzo6xr5t26ZoQXCwo0aNro6N7WJfuPDuXk8+uSz+6quvLSotLVG++OLzCQkJiebRo8dWN/0KDdu2bXOX0NBwIT4+3rZ584YYm83Kzpw5q4RhGEyfPrNgx443usTGdrFdcMGYqn/+OWTYufON2IsumlwcFBQkGo1GMSIi0rZr19tRiYndrRaLhV23bnVXpVLl8SioCy4YU52U1NO0YsWyxIULH8hSKJTyiy8+F1+356k+lZWVisLCAiXgnGd06NBBw0cffRA1dOjwiqCgIMry00Ke3hn8gH+HvTX0W5Nd+2QALYpsScch1VSji06HymYeZ9UacKKmGuVGY6u0i9SvsrISAa7hh4bA1ukBkuxWMKIdgOe9goIkQpR905vP6LWwSxLskgSbyQRdEC2cTQjpPBgGCgUjxDhs5nZ5uqPS6AURyvzmBEHLlz+Vvnr1qq4rVy7rbrfb2R49kk3PPbf2RHh4hBAeHiGsWLEqdfPm12Nvv/2mPjqdThwxYmTFvfcuyqk9FM0bU6ZMLX711XVdy8pKVT16JJvWrHmFj46OcQDAbbfNK1SpVPKePbujNm5c3zU0NMx+1VVXF9x667wCwDk8bunS5elr174Qf8cdN/UJCwu3z5lzc962bZs8HmHNsizWrHk5ddWqJ+MXL16YrFarpZkzr8svKipqsidp5crlSe7vFQqFHBIS6hgzZmzp/Pn353pzLsiZGE8yNXEcN7Y5lfI8/6PXLeocTomilFhWZmq6ZDMplSxCQgwoLzdBENp/+OcPq55CbOoJHGEVYGcv9fi4Y4f24d1NKzFo0BBs3fpWK7bQO/52nn3lFJ8C4blnAAAJc2cAnn9+eYzV6BDYZxTsqiBITayM6z7PR/NT8UfWPz55fVmQ8MjV9wIAfvrpNxiNFAB11uvZH9G5bhutdZ5DQw1QKNh0AN19VqmXDhw40ItlFV9ERnapUau1p9eMYFlGJdoqu5w8elCy26xtepGpNVo2qe8QVqEJypUk2W8n8Ta0hg/p/Ox2q7aoKDdAksRLhg4dmtJQOU/nAJ3rAQ1pgGR3zs+TWEUzBjwBKteQOSutA9SmqivKcayiHME6HRJYAK3w0SnZbYBgA6N2dwg3zS767nOUUbBgWRaSJMFqtVIARAjplOw2q2SzmNsjyqYJlqTD86r7lOO4cAAPALgYQAyAyQCmAzjE8/yHvmse8Xey3ZnG2p3VzVMqtXN4lM1KAVBbqrLbsSqNRx8uGRN8lHTgLLIE0VIDNiDa40xwNsHWdCFPMYBao4HVYoHN5sN6CSGEENIpNDsA4jguEcA+ADoAPwMY6KonGcCjHMddwfP8pz5tJfFb7gBIbuZE83BzJV7pPxjllFG9TVVVOZdaMAYENFGyZURzJVQerowrSRJsgm/Xg7q9awKMYGDNywW6xvu0bkIIIf4tPr6bfe/ePw+0dzuI//KmG/MFAEUAEgHMgCspAs/z1wP4CMDDPmsd8XuyK4vb6axuHlIqVQjXaGBsnyQ256yqynIAgDGgdTLAuUlWCxgPh7UJsuCzNYDcknUGDDAGwV7Z3PQchBBCCOnsvLn7nAhgBc/zFTh7gP9rAPq1tFGk47DIEopsVjjUzUqND0bjXIRTSZns25Th1Cm8MXg4Joqte+JFuxWM5FkAJIqiz9YAchNcb89hNvu0XkIIIYR0fN6mUGxowQ4NPJ31TDqF33Q6fHr4EGYOugB9m3Eco3UGQGrqAWpTYk0NtAoFVIrWzVQv2a2QHVawal2TmeBEWYIg+XY9KHcAJFgpACKEkPY2evSwoe7v3UPTrrxySv+SkmL1meXGlj3zzAvpAOBwOJi1a1+I/f77b8PMZrOie/ck84IFi7L69x/Q4OKoP//8Y+DGjeu75ORk64KDQxxXXDGjcM6cm4u9bbc7mxwAvPLKxuMDBgw660Nl5sxpffPz87TPPrvmRG5urvqll57vBgBjx44vXbnyuQxvX5u0Lm8CoJ8BPMRx3DcA3DPYZY7jWADz4JwfRM4RNlcWN5WqeT1ACo1zCJaGZeFwOKBSNW8IHfGObHF+brDa5i1c21yS3QbZYQOrZTwIgESfD4ETXMuVOSwtWkScEEKIj9xyy9zsSy+dWgYA1dXVbGlpiXr58qfS+vcfcHrNEK1Wd/oDY8WKR+P/+OP34PvvX5KRkJBge+WVtV2WLFnY86233jta30KgBw78bnj44UXJF100uXjp0uUZmZkZmhdffD6hpqZGceed8wta0naFQiF//fUXIXUDoCNHDusKCvJPL3o3deoVZRdeOK5yyZKFPVryeqT1efP4fQmA3gDSALwJZ4/PIgAHAIwG4PliMKTDs1icAZBS3bwbalbrDIDULAurhZ7StxXWFbCy2uYFrM0nQzJXgWUbH2rHMM5FUH0dAImu1xUoyyAhhPiFgIAAMSoqWgCAlJRjOlmWMWzYiJqoqGjB/eUObDIzM9TfffdN+P33L8m46KJJlT17ctZly1ZmqFQq+fDhv+udxLp9+7bo7t2TTMuWPZmVnNzLevHFl1TeeuvcnN2734mx2WwtGvfdr9+Aqn37fg6pu/2rrz4L5bjeNe6fdTqdHBUVLSiVShoN5eea3QPE8/wRjuOGAVgOYAKcKyleDOBHAHN4nj/s0xYSvzbJasVlvfuh1Nq8J+2s5t+/XzZTDQJprZY2oXA4AIaFSt/aARAgWqqgkptaooKBKPl+DpDEMoAMiFZKg00I6ZzUGm2bjyH31WueOJGiDw4OdgQHB9f7x3/v3h+D9Hq9OGHCRacz2QQHB4t79nze4D1mXl6udsiQ4WdkvunTp6/Zbrexhw4dNJx33vk1dY+57bY5XI8enKmmplrx66+/hMiyxIwYcX75ww8vywoICDj9ATZu3MTyl156vts//xzS1+4F2rv3p5AZM2YWpqQca93UqsTnvJoDxPN8KoDrfdwW0gGFyUCkIQBVbPPmlMhKFXKsFlhFEQPMNEyprSgFEVCxUBt0rf5aos0KtWQH0PDwRoZxD4Hz7RwgkWUhCjJEh2/TaxNCSHuTZVlSafRCUt8hSrTDoqQqjV4Q5SafbjXq1KmTOo1GKy1ceHcSz6cYjMYgYdKkS0r++99biliWRXZ2liYyMsr2+eefhOzc+WZ0WVmZOjGxu2nBgvtzkpN71du1Hxwc4igpKTpjOEpOTo4GAEpLSxq83/38848jp02bXrh+/abjx48f0b/wwrOJ27ZttN1117357jJdunSxJyX1MNUeBvfXXwf0ZrNJMWrUmKpXX325JaeDtANvF0LtDkDL8/wxjuOCAawE0BXALp7n3/Rh+4ifU8rOXl6mmVngwLJ4JD0dZlMVPmhimBTxHY3rM0vbymmwAWciBEZ0gGFUkBsYDMAwTKsMgfvGqMbyr3/CvWMu9Gm9hBDS3mQZoghlvkIT1C5ZhERZlmQZLfqjnZmZoTObzYoJEy4uu/XWuXkHDvwRsHXrxriqqkrlggWL8sxmk6KwsFCzffu2mLlz78oJDDQK27Ztipk/fy735pvvHo2IiDzrqdkll1xWsnr1qsT333839PLLp5dnZ2epN29+PZZhGNjt9gbPVWxsF+vChYtzAaBHj562b7/9OvTIkcNn9eiMGTOu/LPPPo64//4luQDw1VdfhI4ceUGFUqmg4W4dULP/83AcdwmA4wBudm16FcDtAOIAbOU47hbfNY/4O3cE7U5r3Rwq17whazOHzxHvnTLVIKWmGvqg1u+tF21WyA4bGKbxANchCpAbipC8pHLNcXIn6SCEkM5EliFKkuxoj6+WBj8AsH79phPvvvvh4alTryjv06efZfbsm4qvvvra/I8++iBKkiQolSrZYjErHn985amxYydUDRkyzPzMM6tPAcCePe+F1Vfn9On/Kbvhhv/m/u9/LyVMnHjBkLvvvr3XjBkziwAgICCwwTbHxXU94ybEYDCIgiCc9cF1ySWXlRUXF2n++eeQXpZl7Nv3U8ikSZeUtexMkPbiTQ/QYwC+AvA4x3FBAKYDeJrn+cc4jnsSwAIAm3zYRuLHVK6bW0bT/B4Fd+Y4m43mabQFu92Ol0+mAgC+i72h1V9PFuyQ7RawuoYzwTEMYBN9//tXqZ3D7igAIoQQ/6NSqWSVSnXGB0NSUrLFZrOxFRXlioiISLtCoZBrD3fT6XRyZGSUPT8/r8EhJ3fccXfBbbfdWVBYWKCKjIxypKWd0MqyjG7dEhv8MKjbDif5rAAoLq6ro0ePnqavv/4ixGazMZIkMiNHXlCdk5PVumlVSavwpvt0IIAXeZ6vBjAZziBqt2vf1wB6+qhtpANwB0CsVttEybPdHRmJl/sPgpCT7etmkXpUVTnnhjIMA4O6bdKOi+aqRnuAGIaBTfD9PJ0ku4hFScmIzW9R5lNCCCE+JkkSrrzykv6vvLI2uvb2Y8eOGIzGICE0NEwcMmRYjSiKzKFDB08/XbVYLExhYaGmS5e4ep+avfnmlojHH38knmVZxMTEOhQKBb766ouQiIhIe48ePX3ypO3CC8eX7d+/L+Trr78MHTXqwnKWpbUMOypvfnMW/NtzNAVAIc/z/7h+jgZQ4YN2kQ5AFgQo3QGQuvk9QMFKJSI1WjhqzkrMQlpBVVUVAMAYGACmjdYrFi01YJsYLWEVfN8DFCwBI0JCEWg2NV2YEEJIm2FZFqNGjSn/4INd0Z988mFIevopzc6db4bv2bM7avbsm3IB4Lzzzq/p129A1VNPPZ7466+/BPD8ce0jjzyY+P/27jw+jrp+/PhrZu/NfTS90vuYQqEUCsgpoNyiooKg8kNFEUG+iAcgyqEiCggiCCiCoKgcHogCIij3fbT0bqdt0jZN2uZONnvPzszvj9mU9EiTbPZImvfz8cgj6ezsZz6Z3WbnPZ/P5/12uVT7zDM/0w69AdF2t2k6nzGzZs2OP//8c+MeffTP1Vu2bPY+8sgfq//+98cmXnDB1xqz1fdTTjm9s7l5u+/FF/9bdcopMv1tNMtkCtxrwHc1TasEPgs8CKBp2iLg+vTjYgww4nHaEgm8qooaCA75ktpIf09Jscq86NlUz0MHH0aHZWKb2U060B8rGUM1k8CeZwhYOSiCCmB7nD9tSio/v6cQQojB+/a3r2osLi5J/e53907u7OzwjhtXk7jwwku2fO5z57X17vPzn99Rd/vtt9T+6Ec/mJVIJFVNmxe+/fa79aqq6hTAU0/9s/KOO26d/vDDf1sxder05FFHHdtz2WXf2fToo3+a+Nvf3j1l/PiJie9+9+qNZ5zxyc5s9XvSpMnG3LlauL293bto0eFyh20UyyQA+hbwNPBnYDXwk/T2p4EoTqFUMQYYClyy4n0AbvAXYw4xKWZKcQYgpVhlfkTbO6hyufApQL5GgBJxMJMoqnePmeBSdvZrAEGfAChPgZ4QQojBc7vdXHLJZdsvueSyfucpl5SUWNddd0MD0LCnx88++9z2s88+t73vtrPOOqf9rLPOad/T/nty330P6btuu/HGn2/q/Xnq1OnJ1157b3Hfx3/3uz/t9Jw97SNGviFPgdN1fSMwH5io6/oBuq73vnnPBPbTdb0ui/0TI1g8HbgoioKqDj2WNtMBkClJEPIi3uXcBEsOkJUtm6ykkwmuv3nSFlZORoBIr3FSc9G2EEKIIQuHw67m5u0ZlV8ZLXqn5e0pi5wYWTJavaXruq3revMu294C3Ok02WIM6A2AfD5/v3Ve9iaVvii2ZAQoL5LpJAgpd/4WbdpmCisRRe2n1pNlW5h2DoIUn/MZ67KGVatPCCFElvzud7+Z8pnPnHFQofuRS0899c/Kz3zmjIPWr19XVOi+iL0bciSuado04F7gOPqb2A+u4XRKjA7Rhs3cOO8AOm0LK4MIyFRdYJkyApQnqZ4eACx3fm/AmZEuXHuo2qAozhS4XIwAKekaU2o/6beFEELkz1iZIranaXliZMrkSuh24Cjgt8DROOt+3gROBg4EPj2UxjRNqwFuA04FAsDLwBW6rq9OP74QuAM4FGgH7tR1/dY+z1dxki98FajAScJwia7rG/rsM+w2xO6MUDdziovZbiTpzOBCM+ry0BTpJpHlIphiz6xo1PkhTymwdxw3HsVjGew64KwoCqZlkrJ2K+g9fH7nd3TJe0sIIYQQu8hkLsxxwDW6rn8TJwNcQtf1q3CCi5eBTw6xvX8Bs3BSah+Gk2b7f5qmBTVNq8KpLbQu3f71wA2apn25z/OvBb4OXAgcibO6+xlN07wA2WhD7Fky4lxQGxkmVX67uIpvrVpGXUlxdjsm9iydbU/15/dtbSbjYBp7fsy2cpIEITK+ki8sfptbOlqz3rYQQgghRrdMAqBiYGn659XAQgBd103gbuAjg20oHZxsBC7Udf09XdfXADcAE3ESLXwNSAAX67q+Rtf1B3FGoK5KP98LfAe4Xtf1f+u6vgw4B5jMByNR2WhD7IERcwIgM8NF9Z70NKV4XNJg50N7ymBtuAeKh16zaTisZBxSid3WAX0wApT9AMjt82DY9o51akIIIYQQvTIJgLbhFDwF2ABUapo2Mf3vDmD8YBvSdb1d1/XP6bq+CkDTtPHAd4FGnODqWOAVXdf7zpF5wdlVq8EJvkrS23rb7AKWAB9Ob8pGG2IPzHTgksowAHJ7fABykZonL8djXLd2Fea0CQPvnEVmwgmAFGXXAAiSloGdg5TcLq8zuzeRkPeWEEIIIXaWyRqgp3GmkDXquv6GpmmNOIVRfwhcADRl0hFN036LMwUtAXxC1/WIpmm1wIpddt2a/j4VqE3/vGUP+0xN/5yNNjLizkG2LZdL3el7IfUmLzBVtd8sX3ujJaOcsv8Cujs6c3KuhmMkneds6ekJAVAW9Gf0emXOxoqH8ZRNom8M5HarJGNJABRVySwlZT98Clw6YxYBtweXS9kt+Bpr9sX380gl5zo/5DwLIYYjkwDoOpy1ND8GTgS+D/wBuDz9+Dcy7MsvcbLLXQw8oWnaMUAQJyDqq/eWrj/9OP3sU5n+ORttDJmqKlRU5C4LYmlpIGdtD5Yrva7DcrkIBoa+rqTI7WJqMEi9mcrpuRqOkXCes6U3AKoqL8afwes1HC4jQlGRB0X177TdCjvT33y+7CZmsIoCHFQ1DoCyIg8uny+r7Y9W+9L7eaSTc50fcp6FEJkYcgCk63o78KHeaW+6rv9Z07TNOMkD3tF1/eVMOtIn69vX0m1dipMQYdcrl94rqEj6cdL7xHbZJ5L+ORttDJll2YRC0Uyf3i+XS6W0NEAoFMM0C1vjJBJL4E2lMPwBYuk7+UORShdPVVImnZ0Zn+qcGEnnOVt+PKEWa/wkPLEE8Qxer+GwwmGUUJik/cGfHLdHJZxeR5ZIGNhZTFlt9Bnham5qJVBRkbW2R6N98f08Usm5zo9cnefS0oCMKo1AkUhEffzxv1T9v//35VaAH/zgiuktLc2+++57SM/VMRsbG7xLliwu+sQnPtWZaRt//eujVXfccev0/tKA5+P3OOaYQxd985vf3bQvpOduaNjk/fznzzrwlltuX3fUUcf2DKetjAuC6Lq+TdO0eThpo7fpuv7zobaRXoPzUeAv6SQK6LpuaZq2GicJwRZg0i5P6/13E+Dps61ul32WpX/ORhsZSaVy9+FnmlZO2x+MzdXVfGfpexx/4hkcn8HFq+3urdVS+N+lPyPhPGdDPBqlwuO81YuLg1h5ro+TikexjQSpPhPdbNUmaTpL82zLzmqfFJ8H07ZxKQrhrhCekrKstT2a7Svv59FAznV+yHkeGx544Lfjn3/+2ereAOjKK6/ZYuUggU5fP/rRtdNramqSwwmAxMiV0W0OTdO+kh71WYVTM2edpmmbNE373BCbmgQ8jJNau7dtD3AIThKEV4BjNU3rW1j1o4Cu63oLToASAo7v8/zy9PNfTW/KRhtiD3qTF3i8mU0vUtLTktxSqyXnuluad/wcLM7/lBErEcfeJROcZZuYuagBBLjcbpKWc1GUiIRzcgwhhBD5Ydv2Tgs5y8rKzIqKytxGQNhje/HoPm7II0Capl0K3Ak8AfwAaMHJCvc54E+apqV0Xf/rIJtbBjwL3KNp2oVAZ7rNCpxU1XHgSuB3mqbdAhyOs9bo6wC6ric0TbsLuFnTtFZgE/BznFGfx9PHeCALbYg96E1f7fH6B9izHx7nQtwt8U/O9bS0ABA1TVRFIQeJ1/bKMhLYyRiqv3LHSI+FhWHmJgBSFAXDtgjgIikBkBBCFFR3d7frF7+4ufadd94sT6VSyowZs6KXXHJZ48KFh0QBotGoetNNP57y3nvvlkejUdfkyZPj5533pa2nnXZG1513/mLSX/7y8ERwpnM9/PDfVtx7792TeqeOvfHGqyXf+9535v7sZ7euu+OO26a2tLT4pk+fHr3mmh9vfO65ZyqeeuqJ8aZpKscee3z7D37wwy2KomDbNvff/5vxzz33THVra4vP4/FY8+btH/7ud69umDZtevLCC8/X1qxZXbxmzeriM888teSJJ/6zIplMKnfeedukl156oSoWi7pqa6fGLrjgwq3HHfeRUO/v+cwzT5f/4Q/3T2pu3u6fNWtOZOHCQ0L9nZNepmlx440/nPLSS89Xud1u+6STTm277LLvNLndziX6O++8VfTAA7+dVFe3vsgwDHX8+AmJz3/+/G2f/OSnO3rb+Oc/H6987LE/T9i2bau/vLzCOOOMT7Z85SsXNe96rNbWFvc3vnGhVl5eYfzyl/dsCAaD1ssvv1B6332/ntzU1BioqRmf+MxnPrv9zjt/Mf3hh/+2YurU6ckzzzz1wA996Kiu999fXNrd3e257rof1x1xxNE9f/jD72r+/e8na9ra2rzV1dXJz3zmnO2f+9x5bQBvvPFqyZVXfmtubxuw+/S1H/zgiumWZSkVFZXGiy8+X5VIxNUFCxaGrr76us3jx09IAaxZs8p/++0/n7phw/qiiooK45xzPr9tWG/EPjKZAvdN4C5d1y/bZftDmqbdD/wQGFQApOu6rWnaOcDPgMeAcpxRl2N1XW8A0DTtFJyAawlOCu4rdF3/Q59mrkv/HvcDAZwRn1N0XU+mj9Ey3DbEns3Ytp1r5u5HZzKzVMOKzwmc3Pm+Gh+DIu1tBIC4bUOOpw30x4yGUMtrd/zbsq2c1ADqZaTfVonIyFpfJoQQw2HbEE1lNXHmkATdWENJrGnbNpdffskct9tt/eQnt2woLS01n3zyiarLL79k3q9+de+aAw88KParX/1i0qZNG4M33XTb+rKy8tTf//7YuJtuumHm/PkHrLzggq9tj8Vi6uuvv1x5330Pra6uHrfbnTPLsrjnnjunXHXVDzZ5vX7ruuu+N+sb37hwv4MPXtR9xx2/1t999+3ie+65c9oRRxwVOvHEU7offPC+mr/+9ZGJV1zx/Y3z5u0X27KlwXfbbTdPu/32W6b88pf31N1yyy83fPvbl86prh6XvOqqaxoArr32qukNDQ2Bq6++duOECZOSL730fPl11109+9prb6g78cSTu9999+2in/70h7POPvtz204//ePt7733Tsm99941YDbhdevWFldVVRm/+tW9axsbt/h+8YtbpsfjcfX7379+y9atTZ7vfe/bc0855WOtV175g4ZUylAeeujBCbff/vPpRx55dKimZnzq6af/VXHrrT+bcd55X2o68cRTOlevXhm8/fZbphcVFZvnnvuFtt7jtLe3uS+99GtaVVV18he/uGtDIBCwV6xYHrjuuqtnn3HGJ1uuv/7G+rVrVwXvuuuX03bt47PPPjPuxz/+2frS0lJzv/3mx26++cYpL7/8fNXFF1/WcOCBB0XeeOPV0nvvvWtqMplQv/jFr7QM9r3x5puvVxxzzHEdd9xxj751a5P3Zz+7YeZdd/1y8g033LS5u7vb9Z3v/J82d+688D333LemubnZe/vtN+/Wt0xlEgDVAk/289gjwBeG0piu693AJemvPT3+Lk5ShP6eb+IUNb1qL/sMuw2xu+JYjGmlZSwmw1FiX5D2ZIIuszAX5GNJrLPDCYAKOKBvRntw2c5rrShg2iYpK5XhRNyBGenAOhnNfjISIYQoBNuG8/4TnKd3ugqWOnVehRn+46lRfbBB0GuvvVKyfr1e9MQTzyzrDV6+/e2rmlavXlX86KN/Gn/ggQdt2rZtqy8QCJrTps1IlJWVmd/85nebDj54UU9ZWYVZXFxsBQIBS1VVu3dkYE++/OULmxYtOjwCcNRRx3Q99dQ/a6677obNwWDQmjNHi//pT3+YXFe3PnDiiad0T5kyNfHd71698aSTTu0GmDJlWvLtt9/sfOWVlyoAKioqTbfbbXu9Xqu6elyqvr7O9/rrr1bedddv1/SOWs2aNbu5rm5D4LHH/jThxBNP7v7rXx+pmTtXC1922be3AsyePSdRX18X+Pe//1Wzt/NTVlZu3HDDzRv9fr89b97+8dbW1qZ7771r6uWXX9GUTCaVc889b+tXv/r1ZlVVe3/PbS+99HxVfX2dv6ZmfPhvf3t0/JFHHt1x0UXf2J7uVyIajbj8/sCOxXGhULf70ksvmltdPS5x222/qvP7/TbAI4/8cfyMGTOjV1zx/UaAOXPmJjo6Ojz33ffrKX37ePDBh3R/+MPH9zhthdRnn3163Fe+ctGWM8/8TEf6mK1btzb5Hnvs4Ynnn3/BoAOgQCBgXn/9TzZ7PB577tx58TfffL198eJ3ywCefvqfFclkUv3Rj362qayszJw3b/94LBbd8pOfXD9rsO3vTSYB0Ls4a2j+u4fHDgaWD6tHYtRQe6cveTNLqWxUjufi5e/j8/s5LYv9ErtLdHUBYBQwu5GVjKGaScCLoiikLJOUaeYsALqjq4XGLVu55+t7vLcihBCjUv4nMQ/P2rWrgwDnnHPmgX23p1IpxTCSCsB5531p+zXXXDn7k5885aA5c+ZGDjnksO7TTjujo6ysbNB3SGfMmLVjOorP57fKysqNYDC4Iwjwej1WIpFUAU466dTuxYvfLbrzztsmNTU1+hobtwQaG7f4KyoqjD21vXr1yiDAd77zf1rf7aZpKsFg0ATYvHlT8OCDF3X3ffzAAxeEBwqAZs2aHe0NSAAWLFgYSaVSSl3dBt+BBy6IfeYzn21/6KEHajZv3uhvamryb9pUHwSwLFMBaGjYHPjwhz/S0bfNc875YOQH4I9//P1k00wpux6rvn5DcNdpeoccclgP/HqnPk6eXLvj3G7YsM5vmqZy8MGH7jS/fOHCQ8JPPvnE+NbWlkHHFuPHT0h4PJ4d/SkqKjZTqZTi9K0uOH78xHjf98CiRYdlbU77oDqpadqH+/zzEeB2TdNKgL8A23HW7JwKXAZclK3OiZFNTacetT2ZJUHweJzAKRGP4/w9l/WGudJjGHT3hDAqCpcNzUzEwUyiqE4AZFrOCJAb18BPzuR4Hg8JyyKR3LXElxBCjE6KAn88NaqPpilwlmUpgUDAvPfe36/Z9TGv12sBHHro4ZF//OOZ5a+++lLpu+++Xfrcc89UP/ronyb95Ce3rD/22OMGle7Y49l5RfHeCn7/9rf3jH/kkT9OPuGEE9sWLjyk57Of/VzLSy+9UP7qqy/tsf6jbTvXO7/85T1ri4qKd0o76HK57A/22zlxgtvtGTBYVVV1p316s9v5fF57/Xrdf+mlX5s3ffrM6KJFh3Ufc8zx3ZWVlcb//d9F+/U9/kCvx4EHLgidfvon2m688fpZL774v44TTjgxlH4uljVwsgev17fb77hrgXErnXiob0DTN8eVYaR2O07ffT/Qd9PQz+dgDTZKe2mXHik4BUu/vss2gEcZ5BogMbqp6Te7kuEIkLtP4JRIJPFJscqc2eL1cK++ms9+7CTOKFAfrGQc20igBkpRFEhZKVKWmbMAyONz3pfxuARAQoh9h6JAkYdRk/t71qw5sVgs5komE8q8efvvGEm47rqrp82ePSd6/vkXtN55522TDjrokPDJJ5/WffLJp3Wbprnl3HM/Nf/FF/9Xceyxx/UoipLVUa+//OXhSeeee97W3mljAH/+80MTdk5K+8Ex58zRYgDNzc3eE088aMcoz+233zJZUVT78su/u3XmzFnRNWtWFfdtYc2alQNOVdy0qT5oWRa9U9yWLHmvxOv1WtOmzUjceuvPaktLy4x7731wXe/+//3vf8rAWVsFMHnylLiur9npOD/72Y+nNDdv9/7yl/fUAXz4wyd0nnbax7pefPG/Hbfffsv0RYsOX1laWmpNnz4juutzV6xYutc+z549N+5yuewlS94tPuCAA3fUz1y6dElJWVm5UV5eYXo8TmAbCoV2fMBv3rxxSBd5c+bMjb7wwn+r2tvb3FVV1SmA5cvfz9rUz8HeQTgB+EifrxMG2CbGAFc6ACLDLHAet5sb5s3n5v0PJN4tafZzKRRyRrhLgoWrmm6bKax4BFVVUBSFZGqPMw2y5khfgEumz0Ld0pDT4wghhOjfCSd8tHvatOmx66///qzXXnulpL6+znfLLTfWvvji/6p7p601NTX5fvnLn0997bVXSrZs2ex9+ul/VbS1tfoOPHBBGCAQCFiRSMS1YcN6n2EYw54uUlVVnVyy5N1SXV/jX79+ne/2238+6Z133io3DGPHdXEgELBaWpp9TU2Nnnnz9o8fcsih3Xfeeeu05557pmzTpo3e++//zfjHH//rhMmTJycAPv/5L27fvHlT4Oabb6zdsGG97x//+FvlM888NW6gvrS3t3uvvfaq6WvXrvb/+99Plj/88EOTzjzzrGafz2fX1IxPdnS0e1944b+lW7Zs9j7zzFPld975i2kAyaQzffDzn/9/295447WK3//+/pqNG+t9//rXPyqee+6Zccccc1zXrse68sofbEkmk8qtt/50CjhTDzdurCu69dabJm/YsN73n/88Xf7HP/5+Muw+wtOrrKzMPPHEU9r+/Oc/TH7iib9X1tfX+f74xwfHPfvsv8d96lNnNSuKwrx5+8f8fr/14IP3Tayvr/O9+ebrxb/73b21/bW5J2eccWZHaWlZ6gc/uHLGypUrAm+++Vrx3XffMWXgZw7OoEaAdF1/OVsHFPuO3uxtSoYBkMvjZXZRMS5FId7TQ1nNhGx2T/TR0+MEQKVFwYL2w4x046p2fk6YuR2Zmenysn/1OLZ3jPri10IIMWq5XC7uvPM3626//ZbaG2+8fmYikVAnTZocv+aaH9X1Tm/7wQ9+uPm2226actNNP54RDofd1dXjkl/84lcaP/WpszsATj751M5nn/139Ve/ev782267Ux9un37wgx9u/MUvbp568cVf2c/v91tz5mjhSy65bPOvf/2raQ0Nm7xTp05PfuITn2699dafTr/ggi/M//e/X1h6002/qL/jjlsn33nnbdPC4Yi7pqYm8Y1vXL757LM/1w5w4IELYj/5yS3r7733rtpnnnmqpra2Nnb22Z/b9tBDD9TurS+HHnp4l8vlsr/xjQv38/l81qmnntHyjW98cyvA+edf0NLQsNl/8803zjTNlDJ+/MT4l7701aY//vHBSStXrig64YQTQyeddGp3V1fX5r/85eEJv//9/bVVVdXJCy+8uOGss87Z7cOvunpc6sILL2m8/fZbpn/kI893Hn/8R0PXXvvjDfff/5vap556YvzEiZPip5/+8ZbHHvvzJI/H2++o29VXX9dwzz13pB544LeTQ6Fuz/jxExIXXXRpQ28a7JKSEuuqq66pv//+39RecMEX5k+cOCl+8cWXbbnmmivnDvY1Kioqsu6889f6Lbf8dOo3v/n1eUVFxanzz79g6y9/+fPpg21jbxR7EEUoNU17BbhM1/Wlg21Y07RDgV/qun5M5t0btepN05rR0ZH99Ltut0pFRRGdnZGCV79+/UvnUelysfyo0/DNPTyjNmY8cD0BlwvfpZcxbeEhWe5h5kbSec6GZy66gPJYjMj+Mzn2xEML1g9f9UR8sw/DVr2saFtDfcdm/AEv8VhyR32gbEnc8jAHpKBp9mxO+N41WW17tNnX3s8jmZzr/MjVea6sLMLlUjcCM7PWaIYWL148T1Vd/6mpmRz2ev2Z1ZsQYi/ef39x0O122wceeNCOqWxPPPH3yl/+8tbp//vfq0t6axGNJslk3N/S0lRsWeapixYtWtvffoP9ze4A/qNp2nvAn4B/6bq+W27ZdGKEU3ASIRxMP6mtxb7hh00NtLa28N0zvkimq3cStk0ApFhljvlSKaq8PkxfZuu1ssVKxFFNA0P1YJi5LbNlulRIWVjJfaecl22adP7vOVS/n9KjjkH1eArdJSGEEKPU2rVrgg888NvaK664euP++8+Pbdq0yffHPz446eijj+kYjcHPUAx2CtzfNU17Gadg6P2AW9O01cBGIIJTwHQKcABgpPc5T9f13arQin1HLObcMPD4Ml9XkkyPQCbCEgDlks+ywKXiLynwFLhEDNtIYHt8GDkuyGq7VGDfCoAUl4tUawtdL71IdOUKJl7yf/3O0xZCCCH25txzv9DW3t7m+fWvfzW1s7PDU1pamjr22OM7Lr30W02F7luuDTq803W9DbhM07QfAWfhJDyYCZQBbcAanJGiJ3Vdl0n3Y0A87gRAbk9ma4AAei9NZQQot/zpJI2B4sIGQFYygW3EsJUSUma/9eyycyy3C0iBkdtkC/nkcqlMOO1Uul99hfD7S+h54zVKjz620N0SQggxCimKwqWXXr7t0ksv31bovuTbkMe30sHNvekvMUYlekJcOWM2ScvC7fZkXJXNSF+YJyPZXy8lHLZlUZROr1lSWjzA3jnvDVY0hFVeTcrKdQDkBhL7VAD03DNP8sC993C8v4jjAkE6nnmakiOPRlELV+BWCCGEGG327Ql+ImeiXd0sLCvHtG3qvX6MDNegRlDoMpIYxr4zTWmkiXV3o6anSRWXFzoAAjMexbQMjFyPAHmc8gNKKrfHyYfQW29Q99S/eOiVF1kV6qZOVTn0oENg+3bi+hoC+80vdBeFEEKIUUNuG4qMxNJplROWherKfCH2Y5aLry1bQlvFHosviyzobnbqvCUsk6JAYZMgANimgWk6RVBzafO4Mi5cuphXSwof9A1XxysvU7R9O7OKijntkEOZNXkKb7Q7M4173n2nwL0TQuSIBdi2bctCPyEGKf3/xYa9FwuWAEhkJBHuAcCwLaxBpFLvj8fr5I/rXU8ksi/c08PanhCb4nGwC5+W10qlMK0kRo6nwClBH90pg0git/WGcs1KJomtd4qAb/d6ufzjn+K6cz7Puz1OMfKOt97Etgr/ugohsm67bdtGMhkv7OJNIUaRZDIetG3bAPa6rkmmwImMJCJhVMCwGVb9Fm+6iGpvRjmRfWG3i+v01UytnczJI+FC2TIxUklM2ySXtzXdXmdkMpEY3eUzIvpaXLZNezLBiUcdg0tVqSopZf/5B9LQ0Um3ZaIl4hCQayQh9iWLFi0KLV68+KFQqPNioMrr9UcVRcluwTQh9hG2bSvJZDwYCnV6bdv63aJFi3r2tr8EQCIjiXCEAJBShhcAHaJYfFLbH2VzQ/Y6J3bS3e2MFJSNlKlgikIiGXXSNw9j9HAgpSmLL0+ZRkVsdI8AbXz5RfzA2miUU2d/UET7jMOP4Lzbb8GybY7oaGPy5KmF66QQIld+apopurraz1cUJQg5vW8kxGhm27Zt2Lb1O+CnA+08qABI07Tzh9IDXdcfGsr+YvRJRsNOAISScQY4gDJVYb+SUjZKGuycCYWcAKikqKjAPXGobg+xeJjeSbq54gc+Mn4i3TkMsvIhtHYNfsBVMw5Pn8J0NWXlHDJrNu9tWM+z//k3F3zl64XrpBAiJxYtWmQBP1m8ePEdts1EZOmCEP2xgG0Djfz0GuwI0O+H0AEbkABoH2fE4li2TWqY6Xdtd3pR/j6UqnikCa5cyW8WHELDMOo1ZZXqIpaIotgmdi4/y33OeyvzJO2FZ1sWpdEoqCoTZ87e7fFj9juAxRvWs+rF57HO/wqqJ/OEJEKIkSt9UTeoCzshxMAGGwDNyGkvxKjTUV3NJYvf5tBDj+CMYbRjeZyLVMUY/amKRyo73EOl10urZ2TMeLXdbhLJLrBMyGX9moATDHhG8YyR5s2baIhGmOj3M3fWrN0eP0rbj+kb65nkD9C87H0mHnp4AXophBBCjC6DuiLSdX3zYBvUNG30Xm2IQetNWuD2B4bVju1xssApOa4JM6alXyvFX/gU2ACWy0XSiAMmiiuHffI77y2PomCbJorLlbtj5cji1Su5Zu0q5s+dyx0uz25rpipLSlgLTALWv/yiBEBCCCHEIGR0S1jTtHOB4wAvHyzIU4Ei4EigNiu9EyNWLBYFwOcb3rQqO50G22WOgOxk+yglnQbaHfAVuCcOy+3GSMaxXTh/QXKlT80jK5HAFRx9WdLeffdtAA7df37/CSNKyyCZJFZfl8eeCSGEEKPXkAMgTdOuB64HutPPN9Jf43AWIN2XzQ6KkamksZFvz5xDYpiBi+J1RpBcIyE98z7KlV5f5QkOb7QuK1QVSwEjlcQyLVyBspwdyuX3Ytk2qqJgJxMwCgOgVSuXAzB/6vR+96mcPBk2bqQ0EsG2bSe7nhBCCCH6lckE/C8CfwIqgduBJ3VdHw8cBrQDq7LXPTFS+UMhjqisonq4C8z9AeKmSdIys9MxsRuP6Zxbf1HhAyDV5SFl2xipJHYqiZLDwqxun5d4+nc346OvFlA0GuWKohJunb+A2aWl/e43Y9ZsLNumyu1h86rleeyhEEIIMTplEgBNBv6o67oNLAaOAtB1fTFwI/DV7HVPjFS2kXS+u4aXdaqnahLnv/8ud7S1ZKNbYg986alT/pLCj4AobjcmvQFQCuzcBb4en4crV6/gomWLUcrLc3acXNmw7H3KPV5q/QEqSvofKfMFgrSnA711r72ar+4JIYQQo1YmAVCED8p3rAdmaJrWe2t5KZIxbkywe9NWe4a3iMPrddYQ9SZVENm3LZGgMRalqLTwhVAVl4cUljMFLmVADpNfeLweWpIJOg2DeHL0pVnfsmQxAN2KgjVAlsSEz1nf1anrOe+XEEIIMdplEgC9gzMNDqAOSAEnpv+9HzC6y66LQelNW92bxCBTHl9vABQddp/E7mzb5kf6Kr69ajml1blbbzNYqtuNYaWwLBPbTGHnMAByud071sMkEqNvClx3/QYAkkVBbHPvI2XK+PE81rSFNxob8tE1IYQQYlTLJAvcT4H/aZpWruv6xzVN+xPwB03TXgROAf6R1R6KEUntvSDzDm8EyK+6+N5sDb/LhWUkUYc5oiR2FolEMNOvVUnAh5OnpHAUt4d46oN7JLYR7z+72XCPpSicPGEiE9weYhs3wrianBwnZ9rawOPFV1U14K612n78/V+PoygKkUiYoqLCj/YJIYQQI9WQR4B0XX8FOBR4LL3pUuBvwDzgr8BlWeudGLFcOwKg4aXBdvmDHFJewf4lpcR7wlnomegrFOoGwOv14nMXvg6O6vIQMz4YjbGMBHYOMwAeUV7Jx8ZPJLG1KWfHyAXLsihNOuvsysdPGHD/iuJixldUYNs2a9ZIHhohhBBibzKqA6Tr+nJgefrnOPC1bHZKjHwuywKXC8U3vMxi3kAQw7LwqCrxUBfBysos9VAAhFav5DcLDqExlczpdLPBslwu4vE+I0CpFLaV4oNyYtmVTDebikZy0n6ubNu2lXHp0dCK8eMH9ZyDJ02h1YINSxZz6KEfymX3hBBCiFEt00KoZcBHcAqf7jaKpOv6Q8Pslxjh7u7uoHHTRi456SyGs7JEVV0kegOgnp6s9U84Yu3tVHq9hBRyNtVsKCyXi1Qq+cG/zXQiBMULw02pvgep3gBolCXZqNuwno3hHqaWljHO58ccRBKHj5eUMm6OxmurVuahh0IIIcTolUkh1NNwprr1l1PXBiQA2sdFYzESloXbXzTsthK2TTGQCEsAlG3xzk6KAMOVSb6T7LPcbpJ91wCZKeyUgZKjtV8p1fm9U6OsDtDGTfXcXr+eUz7yUQ4aZFzoLS+HtjaUFkkpL4QQQuxNJiNAPwPWAN8GGin0qmpREL1Z29ye4WWBA0imRyYSYVkDlG3JUAgAawSs/0FVsVQFo88IELaNZSRQvLlZtG+ozhCQNcoCoPr6OgBmTK7FMgaXwrtywkTMtjaqLIuurk7Kyyty2UUhhBBi1MokAJoHfFLXdam4N4Z9qbqGRHklww9/IJm+w52UACjrzIhzTi1PRrNds0p1eTBse+cACCcTnGLn5j6KlR75Gm0BUMPGOhRg+iDX/wAUVVYRAmoDQdav0zns8CNy1j8hhBBiNMvkqmgzUJqtDmiaVomTWvuMdLvLge/puv5a+vGFwB04mefagTt1Xb+1z/NV4Hrgq0AF8Bpwia7rG/rsM+w2xAdShsFR5U6ygnVuL8NdWp9UFJKWRUJqAWWdFXXOqeIrfHpxxe3GZA8BkJlCsVJA9kepLLcbLDATo6s82aJwlO8ccjiu1jYoGdxIjqu4GMu2KXa7WbZ6lQRAu0h1ddL2+N+Ib96Mf+ZMqj91Fu7SrH2UCSGEGEUyWRjwM+B6TdOmZ6kPjwJHAOcChwFLgOc0TZunaVoV8F9gHU7wcj1wg6ZpX+7z/GuBrwMXAkfirEF6RtM0L0A22hA7i4W6dvzs8g9/6tL9MYPzlrxD17hxw25L7ExJj3yo/sK/lVW3hxQWhrFzMGKbKbDMHUVLs2lNwM3lK5eycfq0rLedK93dXZQrCl5VpbS4ZNDPU1wuouk1T53r9Fx1b1RKhUJsuflnhN54nWRTI6FXX6Hxlp9hyqizEEKMSZmMAH0BmAzUaZrWCux6297WdX3WYBrSNG02cBJwtK7rb6S3fRM4Dfg8EAMSwMW6rqeANZqmzQGuAh5MByjfAa7Udf3f6eefA2wFPo0TXH0tC22IPmLdTm0Z07ZRvH4whjd9yZNOpR2JjK5UxaNBt2mixKK4iicWuisoLg9J08DaZbqbbaawTQPF48t6ojqryM/WeJzQINfRjARbtmyhxudMLvUNIQACMAMBiEZJbG3MRddGrfZ/Po7R2kLY5eI9r4ejLGD7Nloe/TMTv3pRobsnhBAizzIZAWoEnsDJ9PYM8PIuX68Moa024GPA4t4Nuq7bOEVBKoFjgVfSgUuvFwBN07QaYCFQkt7W+/wunFGkD6c3ZaMN0Ucs5GRrS1gWdhbqt/j8TgAUHWW1WkaDZ4wE3161HHtS4UfXVPfORVA/YGMn45CDESCv3wkkotHRM72yqbGBGq/Tb8U/tELDnqlTuaN+Pc/W12HlsMDsaPNsPMazLdv50fL3uefVl7j+/XexbZued97GaG0tdPeEEELk2ZBHgHRd//LAew26rS7g3323aZp2NjALeBa4EVixy9O2pr9PBWrTP2/Zwz5T0z/XZqGNjLjd2U897Eov6nYVMK2xEXECoKRtYwOqOrwL10VuF6fP1ijZvCkn5ywTI+E8Z0NPj5MFrqwoMOzXabhUj4dYqnunOKd32ptlJHBjQZb7WOVyc86kWqZs3zZi3lsDad68kRlu50+z6vNim4MPZCbPnsM7oW6MVIrm5q1MmeL8CdtX3s+Z+M9//s0v7r4DgE984kzOnD6V3//+99y1sQ5l6hTuqK7M6ntjLJ/rfJLzLIQYjkzqAO0tKLCAcDqwGTJN044GHgD+qev6k5qm3Y4zfa2v3lvIfj6oRbSnfSrTPwez0MaQqapCRcXwa+T0p7Q0kLO2B+KyklhAEvD53HiGOW1pvMfFovIKGnp6cnrOMlHI85wNvQFQVXkx/kBh1wG5An5SPW24PbsnO1CxcKk2Hm828gp+oNLj5iOTagl1h0bce6s/0W1NACTdbvzeoc9SnjFxEuu2NLBtWwMLFuy302Oj/f08VJ2dndx0008AuOSSS/jud75F44Y1zJpYxtU/uY3I0vf5858f5Fvf+lbWjz3WznWhyHkWQmQikzVAmxigZLumaR3AHbqu/2SwjWqa9kngYeAt4HPpzTHYLdNy75yQSPpx0vvEdtmndz5VNtoYMsuyCYWyP+3G5VIpLQ0QCsUwh3BnOJu6WtopAlJAJJocaPcBpVTnbZiKxensHBnT4EbCeR4uK5HguuoJ9JRX4QPiseG/VsPhsiAej5EyzB3bFEXB5VZJJRKoySSG5cLO4kIgMx1AqKY5Yt5bA+lpbAJUzGCAWAav2VHjxzM7kWTFO4s5/PBjgH3j/ZyJv195NV+vrOadymq+/vVLadnayNaGTVRXVPKlcz7N3Q/8ibvvvpvTTjqd8ZNrB25wEMbquc63XJ3n0tKAjCoJMQZkEgB9Efgt8BLwCLAdqAHOwkllfQNQDFyjaVq7ruu/HqhBTdMuxUlT/Thwnq7rvaMxW4BJu+ze++8mwNNnW90u+yzLYhsZSaVy9+FnmlZO29+brooqLl7yDvvvdwCfsIZ/sWqni6naSaNgv1N/CnmehyvW1k6Fx0Oxy0VRMICVhddqWFSVpJHcJdGB8w8rZWClDGyXP6v97E3/7bbtUfM6NrS28Lbbw8I5czI6F8epHoqmTucZXd/tdx7N7+ehCoVClG9pZGJpOdOPPgbFNmnb2kjKcJaDHrHoYN5+5S1OVFxsvv46Ku/5LYqavQvfsXSuC0nOsxAiE5n8tf8c8Kiu66fpuv6QruvP6br+J13XzwTuAxbpun4FTiB08UCNaZp2MfAr4C7gnD7BDzgJFY7VNK3vnJmPArqu6y04AUoIOL5Pe+XAIcCrWWxD9BGLx4hbFpZvaAu0+2N7nXbU1OjJ1DUa9LQ0O99TKUoKPP1NcbkxFUim+q/HYyVjWU+FrQSd4NqT7fRyOZJMJnmtYTO31a2n6kMfyqgNO+jM6jW2b8tm10adZ//8Byb6fBi2zaFfOI94JERPV+eOxxVF4bQzTkYrKqE4laJ16fsF7K0QQoh8yiQAOh5nqtqePI4TXIBTTHSv6bA1TZuLM/LzD5z6QjWapk1If5XhrAcqBX6nadr+mqZ9Cbg8vS/pYOku4GZN0z6hadoC4DGcUZ/H04fJRhuij95sbf5AcIA9B8dOB1Iu0xxgTzEU4XR2q6hloe591mrOKW4PKXv3GkB92UYSxc7ue0ApctYHuBQFOzXckr2519TUiG3bBAMBSjO8wVBU6SxdDMZiJJOFnfZYKLZt0/TKywDEa2rwFAXoatuOae78Hpg7ZxbrTOfGy8p//C3v/RRCCFEYmQRA7cBB/Tx2EM5oCjjT4AaadH8WzhS0TwHbdvm6Iz1Ccwqg4aSlvh64Qtf1P/Rp4zrgd8D9wOs4S1NO0XU9CZCNNsTOvA0NfH3aTA5Ud1/MnhG/szjdLfPlsyra3g5AXAEKnBJZ9XhJYe99BChlgJXdAEgNfrD8z4rvKQX3yLJlSwMlbjdTamuxMgxeiquqAZjs89PQsDmb3RuWqL6WrhdfyOoar/6sW6czI/2erz3uBMxkjHCfAs69FEXBPdspkuvf0oApN2GEEGJMyGQN0J+BH2uaZgB/A1pw1gB9Gvgh8BtN0ypwRlne2ltDuq7/FPjpAPu8Cxy5l8dNnKKmV+WyDfEBb0cHHxlXw6ostaekAyDVlgAom+JdnXiBZIHTX4NTA8iwUrvdge/LTiXBMlDcHuwsrQNyB3wkLQuvqmIl4riKi7PSbq40NTbwmwWHgKpipAsOD5WrpBSAKYEgG+s3MHv2nGx2MSNut0rXM08TXrkCo62FcWefm9PjvfD0PzkhXUR23BFHkIiFiYV79rjvjKM/RPLhf1Lt9rDihf+y8KRTc9o3IYQQhZfJCNA1wKPAL4AGnHTRDel//xn4PnAacHB6X7GPsRPOXXzb7Rlgz8GJjpvE5xa/zY8aG7LSnnAYIecC2nRnaaRuGBS3h6gR2+s+tmU50+CyuA7IG/Bx7dpVfG/9Gtxl5VlrN1c6t2zBo6q4AFvJbEG+q7gYC5tit5vG9euy28EhsC2LVChEQ8NGvnHx1/j9i88D0Pnsf4isXJ6749o22998A1VRSJaV4a+pJtTZ3m9hWG8wwLZ0HaD1z/0nZ/0SQggxcmRSCDUFXKBp2o3ACUA10Ai8ruv6RgBN054BJu+S0EDsI2zDmZpje7KzsN7nL8a0baKR0ZGmeLQIp1JEY1HipYWvf6O4PMSMPd+B78tKxlCD5Vk7rtfvY2N6zZqlKBQ+FNy7eDpxQdLrzXjaouJyEVNdFFkWofq6gZ+QIz3vvMX23z/AE9u38fImpx8By+Rj4yey7jf3sPDOe7Kada3Xli0NbGlpZrmicvTpH8NKJYn27H00zTVtMmxswt3YRCqVwu3OZHKEEEKI0SLjv/K6rtexc9rovo917mm72EcY6WxtWSpa6fU7C9VjsSi2baFkeOdb7GxdcTH3rVrOuWecXOiuYLvdxKMDr8GxUgYu2ySzwendef0fvEdjsRjFI3wKnNXZAW4vdtHwgtb2iRP5yf/+Q2DK3upW51bHf5+DVIpYIsbMGftx9plfZc2Kt+hpq6ckDm89eD9HfuVrWT/uG2+8xpLuLtQ5c/nsWZ/FSISIRfd+c2XcQfNZsWItb7e3MXXZ+yxadFjW+yWEEGLkGFQApGlaPfApXdeXaZq2kb0XQrV1Xd9r9jcxuqnpOhr4slOB2+f1838zZhNwqYTbOyiprs5Ku2NdVzrlb3lx4UeATLeb5F4ywPWyU0kwU6D6IAuL5d0eN0dVVTPZ5ye0YR3FCw8Zdpu55I5EoMyLp6RkWO1UT5tOXSSCf9PG9NSv/N5USG7fRnLzJkzbZolh8a1v/piiohJmz5zPusd+waJ4iO4XXyD6uS8QDGb3/fnmm68BcNRRx+ByqURjEZLxvU+/VCrLeaWqlJfXrmLiKy9JACSEEPu4wX4qvswH2d1eHuDrlSz3UYwwanohu+LNTh0gt9fH4RUVHFpeSaSjLSttCujsTAdAJYUOgBQs1+ACICuVwjYNspW3QVEUjquu4exJtcQ3bcxOozliGAbF6VTdgYqKYbU1sbwCj9tNPB5n27at2ejekLSlU1Av6+7ilI9/kaKiDwK6Gad/mZRtM9Pv5/Ff35XV4xpGko1Ll1Dm9nDkkUejKDY93R2Deu5B+2kAvPrqS1ntkxBCiJFnUCNAuq5/uc/PX8pZb8So4LZscAFZqgOkKApxy8anQqxLZk9my8e6ujh1/oKsFxcdKsXtJoWFsZcU2DvYNnYyDr4S9j7QPHjJ9K+f7Bl4DVIhtbQ0My49rbSofHgBkGrbnDV9JmoszsaN9Uyblt+pcK2vvkwAWGXDGQs/vNNjrpIKttdM5c1lb/KqvoYzL/pG1qYmLlu2lI9VVHHCnP2o2rQJa75GPBIe1HPnz5vDOJ+fivYOtmxpYEoBpw8KIYTIrYzmRWiaVqJp2uT0z15N067QNO1OTdM+PNBzxeh3T3srFy1bTGRC9i4Q4ukF3/FQaIA9xWBV2jZTA0GKg9kJVDPVWwMoYQyuDo9lxFGzWBDVSA8nGSM8ycb27dtYGupiRTyGa5hT4AA+VV7JJydOYsu6tVno3eAZra0EYjFM22by0aeg7qFeWPFpF/CW6mZ7Tzf//Gf26k0vXvwu89NpwANTp5EyEiRi0UE9twi4+8CFXDF7Lm+88N+s9UkIIcTIM+QASNO0w4HNwP+lN90J3AycB7ygadonstc9MRJ1RsJ0Ggbu4PAv0nr1jg0kQpnVPhE7s02TQDqZREl5YafAqW4vKaxBTYEDsAwDshkAuZzzkIoO7kK4ULZv38Y/tm3lOZ8H1zCTIChuN9H0yF/Xhg3Z6N6g1b/wPwDWR8IcsPC4Pe6jKAonf/RTADz66J/6TVE9VHXvL6bG58dWFIq1uRiJGInBFsANBgi7XaiKwtb33slKf4QQQoxMmYwA3QisBe7VNC2AE/jco+t6JfA74AdZ7J8YgSLpO+meLK0BAkimL9YSI3ya0miRCn8w7ae0LHuBaiYUt4d4Kok9yEK3TiIEAyVLC4FS6TpI1iBHAgqld63OxJoazERy2O0Zfuf/p7E9v2uAXtpYx58bG2iorMbn6T+QW3TAMRwzfiJaLM7SpUuGfVzTNKEhXUtswkRcgQCRnu5Bv+8AUuMqAVAbm5z2hBBC7JMyCYA+BNyQrvnzUSAA/DH92KPAAVnqmxiBUobBF8dP5PzaafjU7NXKSKZHK0b6NKXRoqelGXBqAZWVZCdbX6ZUj5docvDBh1MQNZG1tUu9hWCtwY4EFEh7UxNlbg/jK6uws3Dx7S0tA8ATCmFnIaPeYP3n7Tf45/atVBzx0b3u5+9q5bIp0/hC7VSeeeqfwz5uXd0GZnmd2mTlCxaAbRILD+2GSnDmNABm+Xzo+pph90kIIcTIlEkAZPHBjKXTgS6gd75AKTCyb7OKYYl2d/HRcTWcMWEibm/2LqxT6XUCEgBlR6h5OwAR08TnKnD5T7eHiLH3NMS7shIxlCwlQbC8HueHxMiuy1y+bSv3LVzEoS3ZyYRYNm4cAONUFx0dg8uENlyNjVvYuLEel8vFvNkH73Vfc/xUDK+fIrebza+/RjI5vFGvZcveZ//0+p/i/fbHSiVJDJD+ejeTagCYGSxi8VtvDKs/QgghRq5MAqD3gK9qmnYkcA7wlK7rtqZpNcD30o+LfVQkfSGVsqyspcEGeM5TwucWv83GqsqstTmWhVtbAYgrYKfTlhfKYGsA9WWlkihWdvrdVOTj+2tWsnbKlKy0lyuu9LRFT5YyovnLywGo9Qeor99jzeqsW/LkExxdWcXRCw5GVQYolKyo2NP3B2C+18vbb785rGOvX/wu431+LCA4Zy4pIzFg/Z/dFBcRc7twqypb33t3WP0RQggxcmUSAF2BM/XtdSAF/CS9fSUwB7gmO10TI1Gsq8v5bllYZC+9squoBNO26ZE1QFkRiUXZEovSXdgM2EBvADS06WeWYYCZyso0OLskwIZImFbDGHZbuWLbNoGkEyQOtwZQL1exs/ar0utlk56fTHD20vf55sw5fGzyNFKpgdfeGLVO7Z1F5ZW8OMzMa4tXreDO+vXEDlmEpyhIMhEnOdRRP0XBqHZuwihNjaRShb15IIQQIjeGHADpuv4+MBs4Epip6/r69EMXAwfour44i/0TI0ysuwuABDammZ3MTQD+gLNYuqdH0mBnw/aiIr6zajkv+TLKdJ81ituDqTDoFNi9bDOFnUpkJRGCL+BM1RzJwXVPTw9VLmeqXmmWRkEVj4cXvF4ueP896pu2ZKXNvTFNk4qYM+JSMnfBoJ6TmjgDS3VR4/Ox4c03Ms4G19bWSt2WBl7v7GDO+V9GURRi4RCZ1JLyHTyfu7ds5qmmLWzYsC6j/gghhBjZMro60nW9R9f1t3Vdj/TZ9ndd17dnr2tiJEqkA5QkCpaVvYXV07H5vxmzmNbckrU2x7KudEHZ8pLsTKfKlOr2YtgWyeTQExBYyeysAyrx+zhj/ERmt7UOu61c2b59GzU+Z8qYr7g0a+0WjRtH2EzlZQrc+mXvMyFdyLVy3qGDe5Lbi1U7C4DZisKKFcsyOnZvFrk5c+Y6RVVtk1g0s4BXmVhDz4RxhFIpli59P6M2hBBCjGyFvT0sRp3eNNWGkq0l6o5Kl8KxVeMYFxvZmbpGi670VMXy4pFQBNUa8hQ4AMtIoljDz4YW8Lk5f8o0FsXiec2GNhTNDZsodqezKno8WWt3arWTCCEfAVDdqy8D0K6AoQ5+fWDvNLhaf4AXX3w+o2OvWfwun5gwkePnzQfAMg2Sw8j6N2fmdACWLRt+em4hhBAjjwRAYkh668sYanbfOorfmQLnLvCC/X3FvLo6bp2/gJlKgafAebzEUgmsIdRi6WUbSbCMYa8DcqWDQBWwh5lpLFc6N24EnBSa2YzRagNB/l/tVD6suHbU78qVkK4DkKgaRyI++PVWyWnzWfGh47lz4wZeeeWljI4dWb2a82qncUwkgqIomEaSZCLzAGh+dRWfnjgZO/07CSGE2LdIACSGpLmqiq8vW8ILvuxlgAMg6CzY9mRxWt1YFozHmRoIUuQfIBNXjqluL5Eh1ADqy0oZ2Knk8AOgkgBWOqqwYkPMCpYnzZ0dPLV9G00lRdhZXHgfdKl8fMIkjqsax4YNG7LW7p5409Mug9NmDy2I8/qZddCxuFwu6us30NTUOKTjxuNxStJrE4v32x9VVZwMcMMIgKahcu7kKSxQVZqbmzNuRwghxMgkAZAYknA8ToeRxAj0X+E9E2qxU7Qxy2HVmOVLF9L0l2b3dRoq2+MZUhHUXVmJKIoyvKDYGwwQTZ8Pa6hpkfOkrqOdhxo30zZ9elbb7c0EV+3zsX7lqqy23VdHRzuT0lP4SmfOH/LzFXwcdNAhuBSFV199aUjPXbNmFfOKnLVu4w5ehKoqxKJh7AwTKgC4aycAoBWXsGypTIMTQoh9jQRAYkgiEWcKnM+f3bUlrpJyAAKqOmLXaYwWtm3T++oUlRU2CYLpdpPIIAFCr2ysA/IFfcTSAZAZHZkB0Pbt2wCoKcleAgQA1evdUZl626rcBUBr167m2rWr+H13J2rNtCE/PxmO8JXKau47aBFvvvzikJ678t13mBJw3vHBuRoKdjoDXObsqgoMoMTtof7dt4fVlhBCiJFHAiAxJOVNTfy/2qlMzXK77hKn9onf5SLa053l1scWOxHHm542VlKR3QvqIVEULLd7yCmw+7KMxLDXAfmDASLptWXJ0Mh8b9ntbZS63YwrKcl62wmvF4BQ/cast91r7do1tCWTGNNmkDAz+Fhxe6k0LYrdblLr1xGNDn69UtdyJ3NcNBjEVVKSToAwzEBXVQkXO+nTo+tlHZAQQuxrJAASQ1Id6ubjEyZRk+V21eAHF+rdLSM3XfFoEGtvByBumlSWFy4AUj2+dArszC9G7VQK2xhePSBfwE84va4m2tGecTu5kkql+FJZBfcvPJSqHGRBdKenwdGeu99dTxdanTNbI5nIYA2ToqDOcWoHHVJSxttvvzWop9m2TaDFWaPjnT0HANM0hrX+p5drsjMNrqwnTGyErh0TQgiRGQmAxJCohpPdSfEFstqu4nLxzQ3r+fzit4mSvQKrY1Fno7OIPJRKUeLPXkrloVI9XgysYY0AAViJ4dUDUl0qf2lr4ftrVpKYNHlYfcmF1pZmxqXr55RWZKcIal+l46oBKEkaObuQr968ic9MnMysipqM64MlaucBcEhZOa+/MrhpcI2NW5judt7jk44+FlVVMI0EyUQioz705Z8+BQCtqJjVq1cOuz0hhBAjhwRAYkjUVHo9RpbXAAEYXj8p26anJ5z1tseS7u4uGqJR2iwTZRgLwYdL9XhJWAZGanippy0jgWINLzNaq1thQyS8YyrcSNJcX4dXVbFsG9WX/ax9xVVOAFTl9eakHlA0GmGRy8M5k6cw3pf5mrNE+URMn58it5vm994d1FrAZcve56o1K3jISFB6wIGoqkIyESdlZCHdeU0VFjalbjerF787/PaEEEKMGBIAiSFxpy+o1SxngQPwB52Lp9AIXacxWrT5vHx39XL+mopDVsvVDo3q8RFOZJ4BrpdlJMAc3jqgYJHzfu1JF/IdSTo31gMQAiwj+wGau7yCO7o7uHL1Curqsp8Ke92qlUzyO/kb/ZNnZ96QouLWnGlwmqKi62sGfMqyZe9j2jaVBy1E9flQFIVYJEuvscfDy7Xj+NL777JkTe4SSAghhMg/CYDEkPjSd2XVouyvLTm+pJT/mzELc1N91tseS9rTaz2qCrj+BwCPl3By+MU3bdPENuLDWgc0vbiIj42fgLlm9bD7k23hdN2bmMed1RpAvRSXi+rqcQDU12c/AGpYshhVUYgCSdfwEtlb050U2oeVV/DqILLBLVv2PgAHHXSws8G2SESzN4I8btYMLGD58qWSnVIIIfYhEgCJIfGn78Ir6bo92TTH6+HYqnFYkgRhWNrb24DCB0Cmx0NiGAkQdmorHkUdxtqwWf4AX5wyHf+G9VnpTzYZbc7rZQayu66ur2npaXAbcvD7hzasAyBSXEwiObyU5dGqKfRUVvHE9q28/tore923Y/s2LvH6Ob92GgfNPxAA20xmZf1Pr+lTa3G73bS3t9PYuCVr7QohhCgsd6E7IEYPyzQJulwAKEVlWZ9cZbjdYCZJRWQN0HBMWbOG2+YvoMNVuAQIKAqm2008SwGQZSTBNEDxZDSrzwz4IGphx7OfZW241B6nZo2rOHc1m7RAgCtmzaV9e3PW21ZaWsDjxTVhMiljeGvOUpZK+QWX8cy5p6C0NtPe3kZVOnjb1dqn/sUkfwDPOC9V4yegKAqpVHYywPXyulx8e7/5TLBg5XvvMGVKtgsACCGEKAQZARKDFo1FuWjZYr6zahmukuxnq0p5nOkzZmT406bGMl80wpRAkJLA8KYjDYfq8ZG0LRLJ4a8BAmcdkG0aqBmuA7L8Ti0cNYujA9nyfqibp5u34R03LmfHqAkWcVhFJdNsspoJzjAMKpJOwoHg9LlZadPnLmH//Q/Atm1e28soUCJd/6e9uhpFUVBVhZSRwMjma6yqzAkEqQ0E2L74vey1K4QQoqAkABKDFolE6DQMtiYNVG/2L66tdGptW2puDIsnvZA+UJa7EYWBqF4fBmbWRoCwbaxEJPNECEHn/epKp3EfKWzb5n8Nm/jDls2UTZ2Ws+OU1YwHYFogyMYsrgPaWF/H+HTmuuJp87LSZjSa5Pgjj+aEqnE0vPC/Pe5jhsPUpG+UVBxxFICTAS4ew8xypr9YuVNHyWrYnNV2hRBCFI4EQGLQejNoFRcXk5PsyoH0BXt85N2lH00CtvPiFKcv3ApB9fqJpZJZvRi1EnEUO7P2lBInC5zHHN4alWzr6ekhkr6Qry7KXcDqKi4mZdsE3W4aVq7IWrtr9TVcuHQxv7NNUkXZGRWORZIcVVzGxTNmsaCjc49T2rb8+yk8isKmaIQFJ54EgKJALBLKSh/68k+rBWBcMkkslp0RTSGEEIUlAZAYtPCmjZxfO42PjhuPmYMISAk6i/ZH2l360cS2LIoU5791WWX2E1UMlurxEkpkdy2XZSQglVk6bHeFEwy6ASuZhRoxWbJtYz2zi4qZUlmFN4fHUVSVUDqLXte6tVlrV9fXYgGVc+eRHOb6n16plMX4j36cqGky0edj1RP/2Olx27IIvfISAGuDQcrKygGwzBSJHAQowZnOyNysYBErl76f9faFEELk34hKgqBp2jXAibquH99n20LgDuBQoB24U9f1W/s8rgLXA18FKoDXgEt0Xd+QzTYEGE1NnDFhInWpFIkcZIR1lTgX7B5rZN2lH00irS2oioJl21RVFm4EyPL4iIazm83PTqWcdNieALY5tDegt7wE07ZxKQpWNILqzWW4MXidK5fz0/0OYJuZwkzkNjBLBQIQjZHaujVrba5d66QVnz1LI5HI3mhfNKlSX17GAT1hrBefx/r0Z1A9zmsWevMN/PE44VSKmhNP3PEc2zSymgFuh9JiItgUqSqb336Dw448OvvHEEIIkVcjZgRI07TLgR/vsq0K+C+wDid4uR64QdO0L/fZ7Vrg68CFwJE4OaKe0TTNm602hCOZzlaVVHPztknUzuWrS9/j+2tWYuVkjt2+rzVdVLM7laI44CtYP0yvh3iWEiDs1G48gmoP/b0RKC3ip+vXclvLNtQcTjUbqki6BlDU48HO8fS8QJUzRc2fpWKwtm1zeFc335g+i1nF5VhDDEr3JhZJMvlTZ9ORTFKSSrH9r4/teCw6YQLPtTbz922NHH/iKYCz/ieVSmJkMQPcDopCd3oNWXTduuy3L4QQIu8KHgBpmjZZ07RngJ8A+i4Pfw1IABfrur5G1/UHgduBq9LP9QLfAa7Xdf3fuq4vA84BJgOfzmIbAkiFnSlNhjs36ZUDZVWEUimSqRQ9Pdmfyz8WdLa1sikaoc22oEDrXRS3FwObeCL7AZBlJMAynAUfQxAoDbIi1M3S5u0o7pEz8J1qdUbJzDxk7Bs3uZaEaRKNRolkIdV8Y+MWDiku4bjqcVQUV2Whhx+IRgwOOvQonoo776HwC8+z7b7fYNs2Tzz3DPdv3sjWSZOZMGEiAIqiYBpJksncrB9UJo2nMRZjU1OjFEQVQoh9QMEDIOAQoBNYALy9y2PHAq/out53bsULgKZpWg2wEChJbwNA1/UuYAnw4Sy2IQArfdGU8uQmAHJ7PPgDQQC6ujpycox93VbgytUreNIDGRXMyQKX10cSi1iOAiDbSAw5Hba/2HlfJRIJ4vGRk2XQHXZGY9Si3E9XrJ46hW/Xr+MX9etZl4WRjLqlSyjzeDBtG7N8QhZ6+AHTtIj0JFhw1tk83NgAQGzTRnp6evjLXx4B4Nxzv7Bjf1VViEfD2DkaOS49YhFX6qt4fPNGtmxpyMkxhBBC5E/BAyBd15/Udf3zuq7X7+HhWmDX8tu9E9inph+nn316K9Zlow0BO4pIpjy5m1r1/2qnc9mM2XRmcZ3CWNLcvB2A8dUVBeuD6gsQN5MYqRzcjbfBiodRlKEFd26fhwUVlZwxfiKt6foxI0Ewve4nUFGe82MpqsqsiZMBWLduzbDba16xHIAejwfDzjA9+V70dMf59KfO5m0FfrBmJf+LhPnRj35AZ2cHM2bM5CMfOWnHvopi5yQDXC+P18PMac7HwfLlS3N2HCGEEPkxcuaC7FkQZ/paX72TvP3px+lnn96crNloIyNud/bjS5dL3el7PvUWkbR9AVQ1+xc8AB8qKaZUVWlr3paT8zdYhTzPw9Ha2gzA+MrynL1GA3H5/IQSPYOapdab0c35PrigxjISuC0DWx3KSKTCR8ZP4KjiUqKrV+I+uvAL2W3Loiz9+5dVV+f09epte/aECby1djXr9NXD/v+VTI+EpKqqMZJm1vsfjxl43F5uuOFGLrroq9zz0vMAuN1urr32RwT6rnGzUxiJRE7P4ewZU6mr38i6ZUtwn/mpfvcbrX87Rhs5z0KI4RjpAVAM2HW4oXeyfCT9OOl9YrvsE8liG0OmqgoVFUWZPn1ApaWBnLXdH1fKSU+tFhcTCOQmP0RMUSkFjFBXTs/fYBXiPA/HgoYGDpu/ANvtwZ+j12ggalGQWHcbbo9r0M9xDeVi3E6h2gae4NDeH0mv8+fODodGxHsrtKURt6KQsiwmTZxIwD3485WpQysrOXj+AsIbNw/7HPhD3RAoomTWHFRVwR/I7tRY2wbLtDnttJO5//77+fnPfw7A1VdfzUc+8pGd9o30dKMoZk7f88dWVXHuwkNZv37DoM7daPvbMVrJeRZCZGKkB0BbgEm7bOv9dxPg6bOtbpd9eue5ZKONIbMsm1Ao+2sgXC6V0tIAoVAM08xvprR/mCnWr1rGqYccS0ksNyl7bdUFtknPthY6OzOOP4etkOd5OIriCSYGgnQE/MRz9BrtnYKCQjjSQ8oYOAmDoii43CpmyhrC4nITJdyD6S7CsgY/FS6ZTn0dbeso6Hur1+Yt23mwYROlPh9ftxViOXy9VFXB5/NQU1GFOxCkw0jS0tKFJ8P1fB0dHUxSnY+P8rkH0BLNTe2u1pYwwRIvhx12NH/5ywejdn1fP1VVSETDhENhjBzWeKqcNBF/XROTkiaNjc0U9ZNNcLT+7RhtcnWeS0sDMqokxBgw0gOgV4Cva5rm0nW992rqo4Cu63qLpmndQAg4nnTwomlaOU5ihbuy2EZGUqncffiZppXT9vdka3c3W2Ix3CWVQ7rwHIqE2wtGjGR3V95/vz0pxHkejqBlgwpl1RU5e432RvX6SNo2sXiYwcUzzk62bQ9yf4eZiKGmkliKe9C5HlJBH0RN7HB4RLymTZ2dPNOynelTpnBhMj/Ff2sm19K2dCmVHi/rl7zP3EWHZtTOyqVLiVsmpm1D9VSs1txkX+vpjpNMmHstvOx2qyTjcRLxHKTA7qNoxlSMV96hyutl5SuvsOikU/e6/2j72zFayXkWQmRipN/meAAoBX6nadr+mqZ9Cbgc+BmArusJnCDlZk3TPqFp2gLgMZxRn8ez2IYAuru7APAFc5exKuV1pjNYWUjTO9YkYlFKXM40qqqaYS1fy5jL5yeBSSyR2xEWMxnHTg0tG5xd4kxbUnN8oTxYjY1O3pWJ1ePydkzV46E1nR69acm7Gbej163nO6uW88eqCowc3keLRpIkE6m9ru1RVZVYODu1jfbK7WZb+seWd3ZNWCqEEGI0GdEBkK7rLcApgIaTlvp64Apd1//QZ7frgN8B9wOvAyngFF3Xk9lqQ4CVTHK6P8CnJk7C7wsO/IRMj5MOruxI9qcP7uua6+tRFYWUbVNWUZhin6ovQE8ygmnluAaRbaezwQ3hOaVOAOTN4TSpoYisXc3MYBFTK7NbQ2cgYY8TsEQ2rM+4DV13ssjN1vYnkUgNsHfm4jGDWDS51ylJtmUSj+YhAALCFaUAqA2b83I8IYQQuTGipsDpuv6lPWx7FzhyL88xcYqaXrWXfYbdxlgXa2/jlKpxJC2LdcHSnB1HLamA1s24Rshd+tGkZcN6SoGQZaJYZmGqAHn9dMdb83IoMx7DVZwExTOoaXCuyjJgG17bxjKSqJ7CJInoNXfTZm7a/0BWBvK7iNtVXg6dXXjb2zNuY+1aJwCaM1sjGc9dAATQ1RGjorr/pAOWmSSZyM0UvF35Z0+H91YywTCwDAM1RzXRhBBC5NaIHgESI0f3NqcuTyhl4PbmbgSoZ/ZCLly6mJ+vXysV14eoq2ETADG3G9vM7UVpf0yfj2gsP9MXnaKocVR1cH/GfNVl3LR+Lb+NR1HU3Gdc2xvbNClNT0UrqcrfFDiAqklO6bPxpkXKGPrao1gsysXBYn48bz7TiitIJnM72hcJJ/pNqKEoCmYqSTJPxW0n7DeHnpRBQHWx+a038nJMIYQQ2ScBkBiUcItTXyZs2eRybX2weiLdKYNYIrFjzZEYnPbOTjZFIySK/APvnAOKx0tSgWg8T+u3bBsz1oPK4BZAl1aXs6S7i6Xbt6G4ChsAGa0tuBSFuGlSXV2d12NPnjadTbEob3a0U79m1ZCfv3bZUmYEi5hXXIKvLPfBWzScJBFL7XEanKoqpJIJkon8jBi7PR7eSSX5c2MDKzZvzMsxhRBCZJ8EQGJQoq1tAMSGtOhi6NweD8Ul5QA0Nzfn9Fj7mvd6Qly5egXt2rSCHN/lC5LAJBLPz3oMACsRh1RiR0HVvSkud6Zutre3YWQw8pFNnXUbANgaj1FTnLsppXvidrl4NB7jN5vrWbF+3ZCf3/iukwAgpCgkdiuxln2plEWoO77HRAiqqhCPhrH2kiUu29qmT+af27fy+oqMqyQIIYQoMAmAxKAkujoAiOf4zrlipvjSlGlcNmM2rdu35vRY+5qmJierWO24AmWA8wfpSUYx8zj9zjKSWIkoyl6yhPXylwRZUF7Bx2om0LLs/Tz0rn/t63Tnu2XhG+QUvmzav3YKACtWDP08xDY4wVusspJEPD+BZKgrhmXuaejZJhoO5aUPveZrcwB495238xp4CSGEyB4JgMSgpLqdiwzDnduF47bq4qhAgGOqqulMpwkWg9PY2AjA5KrCBED4/HREu/J+WDMWRrUGvhC3sPjoxMmcP2UaXe8vyUPP+hdLv7ej3sIkYtivdgoq0LpiBfYQL+KDnc7NEP/MOTnNANdXJLzndNi2mb/1P71mTptCZTDAfEWl/tWX8npsIYQQ2TGissCJkctK19lIenM85UVRiKgqZbZFz1YZARqs7u4ufj59FmEzRY3Pw6Crg2aNQsrnI9qZv+lvvaxEzKkJ5Cnaa/HXlGWS8DsBR7y1JV/d2yO7zZlSahX1n90sl+ZNnsKvFxxChddL+7q1VM/bf1DPC/eEqE2PAk9YdBgtOc4A1yseM4iEE1QFi7HSKdYVBcyUQSLPAZDb7eb8ORpHefy0/fc5Zh/3kbweXwghxPDJCJAYlKWVlXxn1TI2l+W+ZknU7QRZhb5IHU2aNqynwutlSiCIvwBJEFSfnwQW4Wh+pyMB2JaFFQ2hKgMHfWaxE3CYnZ257tZeveP384ctm1ArKwpy/LKiIlrTUxUbXnlp0M9b/+YbBF1uEpZF8ZS5ew04s62zPUrfxJCqqmIk4yQLkDLfmDQegKLt27FThcm4KIQQInMSAIlBaYuE2RKLoZTm/oIt4U9fpEoWuEHblq7LErZtIMdFSPfAHSgiahnEEnnKALcLMx6FVHLAZAhqdTkArnBh+tlrcVszTzdvpzLPRVD76vI5gXJs9epBP6e+bj3vdnbQ6PMSieX3wj/Sk8BIpHa8xk4ChEhe15z1Gn/gfoQMAx8QSa/nEkIIMXpIACQGpTcltT9YkvNjWcVlzg89hb1IHU3a6+sASPg82AXIcKb6i+iIdRWsdpNlJLHi4T1mCuvLM8FJ2+w3jILWmdq0aRMAk8rKC9aH0ilOIoTynh6sQRYSfXtjPT+vW8fWRYeRyHMAFI0kiYaTuN29H1s20Z6uvPah1/SptSyPONM9G174b0H6IIQQInMSAIkBWYbBYd0hzpwwiYA/92sWlMoJAHgTCVIyvWRQ4ulCtUpZCflf/wMpv5/uSFfej9uXGetBMZOwlxioaPpEADyAFYnkp2O7aFn8LpplU+XxUltWmClwAPvN1WhJxPEoCi3vvjPg/rZt8/77iwFYcNDCvGWA++D40NEe2fH2ts0kiVg0r33opaoqneXOzaDk6lVStFkIIUYZCYDEgMyuLg5zuTlrUi3+ktxfsLmqnACozO1m69amnB9vX6B2dwMQrMn/lCrV6yehKoRj3Xk/dl9mIoadjKLuJa10+aTxdBlJABIFWmPW9r/nuHzWHE6bMpWAL/d1dPpTUVxCXXq0sPHVlwbcv3Gdjhrqxu32oM2eTzxPCRD66gkldmSDSxmJvCdA6Kts/lySlkUwaZDcsrlg/RBCCDF0EgCJARldzoLxjmSSQHHuA6BI7RyuaWnlR/pqGhrkwmIgsViMMtNZ9zNuyoS8H98VKCJqG0QKkABhJzaYke69psQurS7j7s0b+e6q5YQKlII6lc5umCouLsjx+0qVlwPg3rRpwHTYm//9FL868GC+t2AhtuXCTOW/Bk40nCASTuL1ujAS8bynwO7rgAP2Z0l3J5Zt07K0sHWlhBBCDI0EQGJAkebtAHQaSfzBspwfz/Z48Y+biA1skTurA9q0qZ7GWIymRJzyidV5P74rUEx7tBPLLnxRSDMedUaBXHv+02Zh01FaQkMsSkNTY557B1YigS899c5bWaB6TX1MmjmLJ7Y1cVfTlgEnTlob1gPgmTSZcCj/mdcgPQ2uLYKiqETD3QUtRFpcVMSbqs0ly9/n7WThAjEhhBBDJwGQGFCoyZmG1m1ZeH35SbFcOW4SAA0NDXk53mi2YcN67t1cz8NeFW9l7pNU7EzBCAToCnfk+bh7Ztu2Mwpk73l6VspMMWPWTADq6tbns2sAJJqaUIAuI0nNuJq8H39XB82czT9am3mvsYHVq1f1u58R6mZcOt10zVFHE4vlP9FGr57uOEYiQSxc4BFHYNr8eXQYSZ79z78HzEAohBBi5JAASAwo3tIMQER15e2YR2LznVlziW7amLdjjlarVq0AYL+5s7GSg8vmlS2uQJC4YhMqcAKEvsx4FDsR2WNGOMNKMW/aFM4YPxHPe+/lvW+Jzc77eWM0WtAECL28Hg+Hz50HwIsv9p/NbNOz/8GlKNRHIyz48EeJFzAAiscM4tEoiUThR10OP+QgABYvWUJH87YC90YIIcRgSQAkBmS0tQIQ8eZvwfaUZIwPVVSiSDHUAa1ZvgwFWLCfhmXkNwByB0sJpWJE4z15Pe7e2JaFGU6PAu0SAyVNg2kTxnP+lGnM7cp/2u7uNU7NnfXhHqaPgBEggGP3m8/0QJBxb71F92uv7nGfrrfeAGBraQkuxUM8zymw+woEPUR6wsQLlMWvr5rqKhbMmM73Zs1l2/XXYiWThe6SEEKIQZAASAwsnWEs7g/m7ZBWOhOcLxYjGi38hc5IFY/HOSgc5g8HH8bczvxnYbOLimnuac37cQeSikewE7vXBbJtm+r5GinLwq8oJNry2/doeh1Nl9dDsT8/00kH8qE5GgsrKjkkEGTrv/6xWzKExNYmyrq7sWybiiOPJhxKFDTtcyDoJRzqJh6NowxQ9ykfDjx4AZP8AdyGQfi9gdOJCyGEKDwJgMSA3pw+nStWLaezNH+Ltq0qp17LRJ8fXZdK6/1Zu3Y1U3x+/C4XZeW5r9HUl+rxEXe76O5py+txB8W2SYW7UM3kbmszqqZNZGt6quCW997Na7fenTWL2+rW4a4el9fj7k3A58OeOJGomcLV0UHPW2/u9Pi2F58H4L2uTo4+9XTCPfkdZdyV36/S3dFONGqMiHU3hy9ayP9anWnCLc8+U+DeCCGEGAwJgMSAmtpa2RyL4i/P35SdZDrYmuj3s3Zt/4uzx7oVy5cxPegEPt7K3Gfo68tdXEaPmRhR63/6MuMxrFiIXcsCJawkofToy/blS/Pap2X1dbzd2cH0CRPzetyBnLzocB7f5iQ7af7LI5g9H0xp/G8kzJ3161lbUUbNuInEYoWb5qWqCh6vRbg7RDxqYKasggdBVRXlbKssxbAsrKYmYhvrC9ofIYQQA5MASAyoOb24t6gsf0U2k6XOsSb6/KxNr5sQu1v1zpuUeTzYgLs0z1OqisvYHm7GHgHpr/uT6ulCMaI7TYVLmgbuyU6WweSWLXntz5o1TjA/e4Ss/+mlTa6lIRikMRbDDodpvP1WwkvfJx6P88ijf+a1jnaO+vTZJBMpYtHCJUAIFHmxzAThUA/JZIp4zBgR0+COPOZI3upsB6Dj+f6TSQghhBgZJAASexVZtZKjIzEOL6+gqCSPAVBxBTbgd7loWidT4PYkmUzSsXYtAGplBXY/qZ9zQfX6iXlctHePvPU/fVkpg1S4ExVzR0KEZCpJzaKDAaiIRLDSRWRzbfP99/Ihy6bE7Wb2hEl5OeZQfPkjJ3NbnU5PKkWiYTNbf30Xv7//N3R0tDNx4iROP/0MekKJghRA7RUs8hALd2Gkkw1EI0ks09ot2UW+HXzg/rwRDQPQ9cabJNpHRlp4IYQQeyYBkNir6No1HBUsYkFpOaUVeVy34HKRKColZpp0NzUSjxem8OJI9v77i5nsdgNQOq0WO5W/O/Oekgo6U1F6wp15O2amUpEe7FgIV3qkIJFKst9JJxC3TPyKQv37S3LeBzMcJv7Wm3yudipzJk2mOBDI+TGHav6UqcxfeDBXrV7OG6Eu2hSFpx5+CIDLL78Ct9tNT3dh/x8GAyrdHR8EF4l4ikQ8tceU5/nkcrmYesgC1vaEUCyL7c/8p6D9EUIIsXcSAIm9ijRsBqApHqO0PH8jQACbT7uA72zZxPqeEMvzvFZjNHj99VfQip3Cp74J+UtQgaJglpSxrWsrNoXLBjZoto0R6tgxFS6RSuIO+vi718sX33+XV1cszXkXomvXoAANsSgzp83I+fEydfkZZzJh1mx+uW4tl7z1Go3RKJ/97Oc59dTTMBIm0UjhEiB4fW5UxaCnq2vHNtu2iYST2BYFHwU6+YQP8/fWZu7bvJFVJflNSCKEEGJoJAASe5XY6iyM7nS7cbnceT22WVTKvAMWAfDOO2/l9dgjnWVZ/Pe/z7Is1E184nj8k6rzdmxPcTlh1aKta3vejjlclpEkFWpHtQ0MK0UilWThKadg2DZPP/2vnKd1jqxcDsDKUDcHTZma02MNh9e0+O211/P9q6/hM5/5LDfffDtXX30tLpdKLGYQjRRu/U9xiY9kIkykJ7zT9njMIB4zUHfNdpFnJcVFTFm0gP+2NnP7Xb8q+KiUEEKI/kkAJPplJRKQvtsaLcpvhrFes/dbCEgAtKslS95j27atvBoNc9DVV+Q1AYJaXkVTTzOJZCxvx8yGVDSMGe7EpVj0JMOceurpeDwe6jasZ+WypTk7rp1K0bN4MQCLu7s4cASPAAGYbR2cd+anuO66GzjllNNQFAVFUehqjxa0/k9RsYuutubd+mDbNpGeRHotUGGDjtNOPB6fz8vq1Wv45z/+SqonVND+CCGE2DMJgES/Eg0NKLZNRzKJq3JC3o+vmCmObt7KL+YfxIY1qwiHwwM/aYx4+ul/AXDyyafiVU3MeDQvx3UHSwh7XGxrz2/2tGxJ9XRix7qJGBFKykq4+MMncMcBC3n3d/fm7JhRfS12LEq3YUBV1YgpgNqfRFc3iebteNwfBBMpwyQcKuz0N7fLoKtjz2vO4jGDWNQo+KhLWUkJnzr9ZOYWFVP82N/Yev+9BQ0ahRBC7JkEQKJf8XQ9i7pImPLq/Getsl1ugh0t1AYCzA4EeeWVF/Peh5Goo6ODZ555igWlZZx50smkutshT6moXZU1bI22EY525+V42WZbFsmuNmLhdmwlxbGHfYgJfj9TOzpYsjg3RVF73nsHgHe6Ojh63v45OUZW2TaRhkaIhlEUBbdbJRY1CloAtbTMTyIWIty95xEVGwiHEqSSZsHTYp/+0eMIVpZT5XYTX7WK8DtvDvwkIYQQeSUBkOiX0eHUtdgQDVM1rjBpeyPjnfUS+5eU8p//PF2QPow0jz32Z8xEgqvmzMP/wINEGzbl5bju4nJ6vG62tGzMy/FyxTZT9LQ1kYh3sd9Zn8ZQFKYGgvzzlp8SjUayfrxoIknSsnijo51jR0MABMQ7Okk0bcXrdqa/dbZFMc3CpL9WFCguVmlv3rbX0ZRkMkW4J1HoXAi43W4+c95Z/C1dWLbx9w+S6hr52RKFEGIskQBI9Kvm3M/z7U11/LelhcqCBUDTATiwpIw33nid7u6ugvRjpOjq6uSRR/7EgtJyPIqCp6IcxZeHSz5VRa0aT0No26gd/ekrHO4kHGrFY0epPvVUAE71+bnuim+RTNeYyZZ/RXu4aNliimprGV9ekdW2c8a26dm0Gbunm1TSorszP1Ms96S41I9tReloaRtw30hPgmjEQHUV9qNt/rw5eA5dQF0kjMswWHfrzdip/NXpEkIIsXcSAIl+dXV10tjWSthMUVUzuSB9iEyeBcCc4mJKFHjiib8XpB8jxd1330ko1M3p052F9CXz52Inc1+bxVc5gVYlSUPzhpwfKx9MK0VXpJNEayOTj1uEXVFBldfHouZmLr7oy2xNZz8cro6ODh577BEipsnHFx2WlTbzJdkdwmhvp6crWtDpb+XlXrratpEYRC0wy7YJdcVIJgpfG+jjp53IC16VSCqFe/t2Vt5xm6wHEkKIEUICILFHlpFk/fq1AFSOm4TPHyxIP1LBEmLjagE4vLySP/3p91m/Qz9avPvuW/ztb49S4nZzgM9ZSF88tzbnx3UXlRErLWX99vUkjcJdCGdbR6STlNtFtEln1nmfwna5WFRewYe7Q3z60x/jrrt+SUtLc8bt9yx+j4du+gmxWJT9ps/giNlaFnufe4rLRcKwaNnUXLBgorjEh0uN09y0bdDPMQyTUGcM07QLGgSpqsrnLziPf6ViWLaNb80a/vfzn2FZhZlKKIQQ4gMSAInd2LZNw09+DI89xgSfnwmTZxa0P93TnHUTJ0+cRGtrK3//+2MF7U8htLa28IMfXIVt21z+4Y+gWBaBqbW4gq6cHlf1+rFrJrKhu5G2rsFfhI4GoUgnCY8LBQUz1UntOaeDqmJUVhCPx7n//t9w+ukf5ZJLvsojj/yR+vo6TNMcVNvJ1la2/PbXnN7RwUFl5XzjtI+jFDhF81AFxtcQjitsX7sZOxrJezChKFBZ7aeztYnoEDNAxmIG3Z0xLNMuaFIEj8fNx7/6/3hRtVjdE+K6R//MV796PitXrihYn4QQQkB+K1uKUSFeX0eyqZEioDtlsH/trIL2p2v2QVRvWIyrugLXiqXcffcdfPSjJ1NTM76g/cqXUKibSy+9iJaWZg6YOYsFhoENVBy5ECuHIzKq149r0jTqYu1s2qrn7DiF0hPppMdMMK64jGRnC+5Sldr/9zG+fsDBzFmyhocefoTQ2rW0LlvKzW+8BkAwGGTevP2ZPXsuU6ZMYfLkKUyaNIlAIEggECAWi1G/dg3uv/2F8bbNunAPx5x0MvMmTCzwbzs0Lp8PV1UN2zd0YERi2LThn+BC9fqxrPxM46qoLgIzxNbNmaVcj4Sd/xtlFQFcLrVgIy9er5djvnQu/3vlddhcz5Il7/HF//dZPnzYEZzy6bM47rgTCAQKM8IuhBBjlQRAaZqmqcD1wFeBCuA14BJd1/eNRQ9D0P6kU2Pm3XAPMdNk0tQ5Be2P5Quw/pOXcMi8GuavXsHy5cu4+urv8JvfPIDH4y1o33Jt69YmLr30IurrN1BZWcWNV3wf4+E/459Si7cmiJ2jAMgVLEEZP5mN8Q70Lcux8pRmO58s22JbqJlxJbXQ2QKAK6AS2biC42aN56Q7bmbVDbdht3ewDZv/bd3KG63NLFnyHkuWvLfHNsf7fHxz5hxmFxUTTqWIHHYYn9L2h0GOHI0IikLR1Cl09Ji0NTqJB1KRKInmFnw1Nah+P5aZ2yAoWOSlrNSmYUPdoNb+9CcSTmBbNqUVAbxeVwEz2SmcdNwxLDpoAU89/wqV+gZOSib5y223cMMPr+GgQxZx8MGLWLBgIbNmzaaqqnrUjRgKIcRoosiiTIemadcDlwBfBpqAW4CZwHxd14e66KTeNK0ZHR3ZT6nrdqtUVBTR2Rkhlcr+h3no7TfZft+9oKj83/LFtJkmV938F7zewhdvrKkIUu0P862vnEdTdxcnnngyN974c3w+X9aPlevzPBDTNHnyySe49dabCId7qKkZz913/5a5czWU9m3E6paBEsv+gVUVX+UE4mVl1Ie2Ut+0BtPK3cW7ooDb4yJlmBTiT1HQX8KHZh5OUUsLqXDXTo9ZhkX3u+voWV23UwavREkJrW43Kw2Dt1q20dzcTKlp8onKag4vr8CjqiRcLkrP/SyVLi+Jzp3bLQRVVQgEvMRiyQFHcIqmTiFZVI3+/mZiPTu/x9zBAL5x1ahFRZgWTgGeLPMHPEyY5Kdjez2b1q3PSpter4vSsgD+oAdFIaejWKqq4A94ifdzrhXbRn3yeVxtHQBsj8d5tnU7L7e1ETad91lJSSnTpk1n/Pjx1NR88FVRUUFJSSnFxSWUlJRQUlKak79/o0Gu/kZXVhbhcqkbcT7/hRD7KAmAAE3TvEAbcKWu679JbysHtgIX6Lr+6BCbHHUBkG3b9Lz9Js2/fwA7laJ+8lS+98+/MH3OAr502U1ZO85wKMB+/ijWg3fywtYm/rRlEzPm7c+PfnQjs2fPzeqxChEApVIpNm2q59VXX+bxx//Kli0NABx1wAK+/7VLmHLc8fjcNmZzHeFNqyCLU3oUtwdvaSVWaQVtJKhrqaOlIzuZ0PZ63AIHQACzauczv2giRmMdtrl7qmIzYRDf3E60vono5iZ6O1p50snUfO4LWJZNcvs2Nl1zNQBF8+cz+eyziG7dTnTb9rz+Lv0ZTACkqCpFU2tJFlVRv3ob3S17Tneuejz4Kstxl5Zie7zYlp21166sIkBFpYuu1gY26euyOm1NURSCRV6KS3x4fS5QFOdcZPmNN1AABIBl4atvhMUrsCPO54QF1CcTPNnYwJvpGmyD4fV6KSoqxu/3EwgE8Pv9+Hx+/H4/fn+gz3ffjn/7fH58Pm/6uw+fz4fX69vxs9/vJxgsori4mKKiYrxe74gbkZIASAgxHBIAAZqmHQ68DWi6rq/rs/01YLmu65cMscmcBUB1DdvZsmw58UgMK5XETEZpbayjYfNGEvE4bfE4jdEIyWQSlw1z/X5QnOCh7wd9UbAIX/U4pn/oCE466VRKG7ew/f7fAuA5cCHffOF5Gjav5+Qzv8pRH/101n+PTI1b+zbj3n4WgIRlsby7i42xKBNmzeaAw4/goE+fTaCoCIBk83bMUA/9VUb0T5+B4nZmgSZbWzC7P7jgc7lUSkr89PTEMU0L37RpmCiEw2G6GzYRaW4mEokQjUaJRiM7viKRCNttm4RpYpomfsMgYBhYlvNv0zRJmSaWaWFZJk3JBDHTxDAM6OhgoseDR1Upc3uoLSnlQ1OnURIOo7hczL72+3iDNpHNa7FTw8uEp7jcqL4Abn8QAsUkfF66rThbOptobt+CMcz2B92PERAAedxeFsw4lFp8GM1bsJL9Tyu0DItUV5xkazdFs2dTfvjh4PFjK26a//kkZQcfjKe4iJC+jlhz64hJe7y3AEhxu/FVlOMdV0PY9LJ57TZCbaEB23QHA3jKSnEHi8DrxVYUbDsdDA3h13a5VIpKvJSV+1CVKM1b6tnW0Jizc+dSVfwBD4EiD16fG5fLKfba2/fhHndQAVAvw8Df1IqyZj3mNifjYOUZH6fnoIPYtGkTXfV1TF66lG7LoiMRpyeRIJSI0xWLEYpF2RAO0xh3RumCLhdziooxbZu+4UDv79OaTNCWzqDpU1VmBIs+2GeXnzqSBq3p/wceRWFmcRkeXwC3L4jLF0D1FqF6i8BbRMhXTqu/GtNThuUpYrJlYLr9qOk/vKri/D9XFIWwO0ibrwJFARcWM2PNzmPp/VCczEyKAjGXn7ZgFYoCqm0zLbIVVVVI74bp9XH2OSdx3CRDAiAhxJBJAARomvZp4O9AUNf1WJ/tf0lvO2OITdabpjUjFMruFKWt7T2cd9oJ3LV//9Xkn23Zzu8aNgFQ5vZw38JF/e77YlsLv95Uj6KozD38NL7nt2hZcBKvF9Xwr5vOQ3V7Of/udwiUVgI7xxG7xhR9bw4q/WzfVaZtlG1eybTnHyTYuvvi6C8uW0JJ7RyqJs3kbJfJAdGOfo//+FFnE1XdJOMRDq9bzAGd/Y94XK6vZWtPFwDn1U7lExP6Lwz77ZXLdlyUnD2plrMn9Z+q+urVK6iLOoHyJydM4gu1U/e4X8/0A2g64QvExk/bafue//t+cMJ2fdje8T19sYeNjbMexrnbvuul0J4N9FdjaH9WlJ2Pa+/9TnMu+qUoCqrqxskJ13v8nXfe7bkKKCjOXraNbVnYpoWdSu12EW3v+sQhdHzA32mgx+3e/0PKB4dXnMtIy+aDLwuM+M4X7YN6GVXVGR1If+34ecedF+egO/4fpy+GsZ33nWmZWKaJaRrE43FSRip9bKXP+1XZcf7tdKN2333sPezPLvvbuz93R39hR/97O2mntzntK9h9nue0tae+7Xq8D/7tnNa+7ezcbmW0lf1al7OlYjZbKuaAojC3ZRlffeun/Z76f8z5LP8bfxRmvIfp3XV8b/3v+933MXUyj1uVYESZYoa51d9/ivcn2rp4uGkLGBFqvD7uWnBwv/s+07ydB7dsAgb/mQPgV1UeOuTwfvd9vaONO+qdJbgK8NihR+z0+LpwD3f6p/HyI3dmdW1XaWlAAiAhxgBJguDoTcGz663fOFCZSYOqqlBRUTTwjkNQVOynYs4RbDc6AbBQsBUFXF5sdwBbddM972hcx33E2WbF2Vj/gLPPjg9e5zm2laJl8lwUezL25lfR336aC1BgUxi7ZSUA9oGf409147L6O2THQXDA7czsqUPrWsPk9hWUdeiUxNsxUgYtG1fRsnEV9bVTqSqv6LeVJ+++kkh6cXrJpFqqKqv63Tcej+74ucdS2JY0QFFBcaW/p79UFeuwi1E9paC6iSQ3sy2+MX0h2OdCy/kB86SfoQYmoqhuOpJNrO18D1Nx0+MtodVfw9bgZFZUHkSHvxo243wJkTPZ/ZslBq9JLWLF+OnOP9KTB7rdswkdeCWV8XZKjBDBVJSAGSOYiuAzE2zyTaPTOwW80KUE2Vg8A5dtovaOAfWJYCO1p+GqPdXZHGli64qbdoymKNg7RmIUwH/A/+OA/c7E77Ko7mmg+6WfoWCBbaPYFqS/bNtiwv6HcOKhx5KIhFDD3XQkYti2lQ5Kd2YXFTN1xmxs28ZjQ5uZ+mCfXXY2fAEm1E7f8e/W1M7TU6NuDxd9+hhKSwOZnG4hxBgnI0CApmmfAf7GnkeAfLquf3KITeZkBAic6SKlpQFCoRimaWFasKFLZXW7SsSAhKkQT0Gyzw2x3V/inUcIOrasZdm/fsWmd5/esb1iyn6c9oO/4/EFd9q3/zb7f8zu5+cB2xlsm713X22bWMdWOhtWEGlrJNqxlVh3M2YyTioZw0zGnA9w1QlaFFVFdXlw+YJ4/MW4fEHc/mK8wTK8wXL8peWo3hLcgRI8wTI8wVI8gVJU157vGwxltGsojw809X44M/OH03Y2+qWqCh6PG8NI7TTyMKx+DXDM4SxlKFS/Bu7y3v+Ou1QFr89DMmFg7fKfKZfvzYGovRfduwxO9f1O32199lUVu//nDtBm3/3YwzZFsfttc6BjuFwKwaCPWDSBbdt9HrN368OejrFbf3Y9/m772Tu2qQq41HQ/0n11Kc52j2rjcYFbBXd6v9Fs18/CbJERICHGBhkBcvTOpZoE1PXZPglYlmmjuVw8b5rWjvZnlVrMKh1GYwunw8dvY8OGr/PWW29QVVXFCSeciN+v4gyCjSZVwPHDbqX/Bbap9JfIBuc8u+nsTBQk295Y4ZxnD52dSTnPOeacax+dnamRea7TeR9GYtcy0fezUAghBksCIMcyIIRz5VwHO7LAHQLcVbBe5dns2XOYPbuwNX+EEEIIIYTIJQmAAF3XE5qm3QXcrGlaK7AJ+DnOyNDjheybEEIIIYQQInskAPrAdTjn434gALwCnJJBEVQhhBBCCCHECCUBUJqu6yZwVfpLCCGEEEIIsQ8a5XlghBBCCCGEEGLwJAASQgghhBBCjBkSAAkhhBBCCCHGDAmAhBBCCCGEEGOGBEBCCCGEEEKIMUMCICGEEEIIIcSYIQGQEEIIIYQQYsyQAEgIIYQQQggxZkgAJIQQQgghhBgzJAASQgghhBBCjBmKbduF7sO+KGbbtt+ycnNuXS4V07Ry0rb4gJzn/JDznB9ynvNHznV+5OI8q6qCoihxIJDVhoUQI4oEQLnRBfiAbQXuhxBCCCEGbyKQAMoL3A8hRA5JACSEEEIIIYQYM2QNkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZ7kJ3QAxM07RrgBN1XT++z7aFwB3AoUA7cKeu67cWpIP7iH7O88eB64D9gDbgr8B1uq7HCtLJfcCezvMuj98HnKTrRNUAnwAACAZJREFU+vR89mtf1M97eiLwC+A0wAT+A3xT1/W2gnRyH9DPeT4UuA04BOgCHgGu1XU9UYg+jlaaplUCPwXOAEqB5cD3dF1/Lf34QuSzUAgxRDICNMJpmnY58ONdtlUB/wXW4fzRvx64QdO0L+e9g/uIfs7zscA/gL8DC4GvA+cA9+S5e/uMPZ3nXR4/E/hqvvqzL+vnPe3D+dsxEzgR+BjOBfpD+e7fvqKf81yNE1iuAQ4GLgS+BNyY5+7tCx4FjgDOBQ4DlgDPaZo2Tz4LhRCZkhGgEUrTtMnA/cCxgL7Lw18DEsDFuq6ngDWaps0BrgIezGtHR7kBzvNFwAu6rt+U/vcGTdO+DzyoadrX5U7u4A1wnnv3mQj8FngZmJ63zu1jBjjXn8M5t7N0XW9O7385cI+maaW6rofy2NVRbYDzfAxQBVyh63oPzt+OPwGnAN/Na0dHMU3TZgMnAUfruv5Gets3cUYvPw/EkM9CIUQGZARo5DoE6AQWAG/v8tixwCvpP/i9XgA0TdNq8tS/fcXezvNtwBV7eI4bKMlxv/Y1ezvPaJqmAH8A/gi8lNee7Xv2dq5PBZ7vDX4AdF1/Vtf1WRL8DNneznN7+vvFmqa5NE2bDpwOvJW/7u0T2nBGKRf3btB13QYUoBL5LBRCZEhGgEYoXdefBJ4E0DRt14drgRW7bNua/j4VaMlp5/YhezvPuq6/3/ffmqZ5ge8AS2S9xNAM8H4G+BYwEfg4cHX+erbvGeBczwVe0TTtWuCLgAd4FrhS1/WuPHZz1Bvgb8ermqbdBNyAs37FhRPY/19+ezm6pd+T/+67TdO0s4FZOO/bG5HPQiFEBmQEaHQK4gz79xVPf/fnuS9jgqZpbpzRif2BSwrcnX2KpmkLcObuf0GmFeZcKU7gcxDOFKKv4UzX+md6FE5kgaZp5TjB5t3A4cDZwGzg1wXs1qinadrRwAPAP9MBqHwWCiEyIiNAo1MM8O2yrfePfSTPfdnnaZpWAvwFOAE4S9f13aZwicxomuYHHgZ+ouv68kL3ZwxIAmHgc7quGwCapn0ReAdnEfm7BezbvuRmoFzX9c+k/71E07RO4H+apv1S1/VlBezbqKRp2idx/la8hbOWDeSzUAiRIRkBGp22AJN22db776Y892Wfll6Y/ypwFHBa+q6jyJ4PAfOBH2qaFtY0LQx8H5ia/vcXCtu9fU4joPcGP2mr0t9nFKA/+6pj2D2Y7F3/MzfPfRn1NE27FHgcZzrc6X3KEMhnoRAiIxIAjU6vAMdqmubqs+2jOBc2Muc5SzRNq8BZUDsOOEbX9RcL3KV90TvAHJwpWQvTX7/Bmce/EPhXgfq1r3oFOEjTtECfbQemv28oQH/2VVtwkiP01Xue1+e5L6OapmkXA78C7gLO2WWarHwWCiEyIlPgRqcHgCuB32madgvOHPPLcerUiOy5HadeyqlAq6ZpE/o81qrrulmYbu070ndyd7rw1jStA0jpui4X5Nn3G+BS4OF0IoSy9LYXdV1fUtCe7Vt+AfxH07QbgN8D03Dqh/1b1/WlBezXqKJp2lycIqf/AH4G1PRJOBFDPguFEBmSEaBRKH1n6xRAwykKdz1OvYk/FLRj+xBN01ScoqdenFGgbbt8TSlc74TITDp74bE42d/exsli9g7wqUL2a1+j6/pzwBk4NWyW4lyo/xv4bAG7NRqdhfNe/RS7/w2+Qz4LhRCZUmzbLnQfhBBCCCGEECIvZARICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhxJimaZpS6D4IIYQQIn8kABJCjFmapn0C+EP65+M1TbM1TTu+sL0SQgghRC65C90BIYQooG/3+XkJcCSwukB9EUIIIUQeSAAkhBCArush4K1C90MIIYQQuaXYtl3oPgghRN5pmvYScFyfTScALwIn6Lr+kqZpPwTOBb4H/ASYDawFLgZs4A5gAVAHfFPX9ef7tH0AcBPw4fSm54Hv6Lpen8NfSQghhBCDIGuAhBBj1SXA++mvI4HSPewzBfgFcCPwWaAS+BvwCHAfToCkAo9qmhYA0DRtLvAGUAN8CfgKMBN4XdO0mtz9OkIIIYQYDAmAhBBjkq7rq4EQENJ1/a30z7sKApfouv6Iruv/Au4BJgE36Lp+v67r/wSuBaoBLf2c64EYcKKu64/ruv5XnNGlAHBFTn8pIYQQQgxI1gAJIcTevdHn5+3p733XCrWnv5env38UZypdVNO03r+xIeBV4KQc9VEIIYQQgyQBkBBC7EU6OcKuont5ShVwTvprV61Z6ZQQQgghMiYBkBBCZFcX8D/gtj08lspvV4QQQgixKwmAhBBjmQm4stzmy8D+wFJd11MAmqYpwJ+ADcDSLB9PCCGEEEMgAZAQYizrAo7UNO0jQFmW2vwx8CbwlKZpvwbiwEXAmcBZWTqGEEIIITIkWeCEEGPZXYABPIOTpW3YdF1fDhyLUyvojzhpsycCZ+q6/ng2jiGEEEKIzEkhVCGEEEIIIcSYISNAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWb8fyiEp46iIF+6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Heavily-Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1526.76it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 106.00it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 2.230 - 20.430) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 0.9952 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.6283 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW6UlEQVR4nOzddXRc5drG4d/MxN2TNnXbdcdKkeJ2kMOHy8EdyuHg7hQrUJxSrLh7cYdSSl13m6YWadwzyej3xyQl9WSazETua62sNFvv2bV55jWL1+tFREREREQk2KzBDiAiIiIiIgIqTkREREREpJ1QcSIiIiIiIu2CihMREREREWkXVJyIiIiIiEi7oOJERERERETaBRUnIiIiIiLSLqg4ERERERGRdiEk2AGCoBwIB/KDnENERESarxtQDyQEOYeItCFLF1wh3u71eiM8ntZ/3Varhba4rmxLzzow9JwDQ885MPScA6OtnrPVasFisdQBka1+cRFpN7piy0m+x+PtW1pa06oXDQmxkpgYTWVlLS6Xp1WvLVvSsw4MPefA0HMODD3nwGjL55yUFI3NZlGvB5FOTmNORERERESkXVBxIiIiIiIi7YKKExERERERaRdUnIiIiIiISLvQFQfEi4iIiLSKefPmxeKb5lgf+IpsywPkjxs3rqq5J6g4EREREWmhefPmWYGbLRbr2RaLJRSwBDuTSDvk9Xq9znnz5r0G3D9u3LhdTuOn4kRERESk5W622UIujYtLdISFRdRaLBYtoiOyFa/Xa3E46qIqK8sudbtdAPfu6hwVJyIiIiItMG/evDiLxXp2XFyiIzY2sSTYeUTas/DwSDuQXF5ecva8efOe2FUXL/WPFBEREWmZDIvFEhoWFlEb7CAiHUFD62IovvFZO6XiRERERKRlrIBFXblEmqfh74qFZtQeKk5ERERERKRdUHEiIiIiIiLtgooTEREREWkXpk2b2v34448YEewczbVy5fKI7777Jj7YOToTFSci7cjixQuZOvUh3nvvbRwOR7DjiIiIyE7ceOP/Bi5fvjQ62Dk6E00lLNJOfPHFZ9x22w14PL71ib766nOeffYlwsLCgpxMREREtk9zIrQ2FSci7UBOzkbuued2PB4P++yzL0uWLGLevL957rmnuOqqa4IdT0REmsHj8VBbWxuUXilRUVEeq7Xlt544cfy4E088Jf+nn75Pdjqd1ieeeHZlVFSU58knH+uxePGCuJqaGlt8fLxr0qRDSiZPvjZ3xYrlkRdffM7QZ555ccXIkaNrAa6++rL+S5cujvvqq58WhISE4PV6OfroQ0b95z/n5Z5yyhnFW9+zuLgoZOrUh3rMnz833u12WwYNGlx9zTU3bOzff0B94zEvvPBM+ueff5xeVVUVMmDAwJobb7x9XeP+7WXu0aOn4/nnn+72888/JJeVlYVmZmbWnXXWuXlHHHF0OcB7772d/NZbM7ude+4FuTNmvNCjoqI8dMiQYVW33nrXuldemZHx00/fJYeEhHiPPfbfBZdccsUmgPr6estTTz3W/bfffkksLS0Ji4iI9IwaNbrixhtv25CUlOw+/vgjRhQXF4e9++6b3ZYsWRg7ffprZllZqe2ppx7PnDv3z4SqqqqQvn3711x00WW5e+89obrxtX388QdJb7zxareioqLwXr162SdNOrRkxoznev7229/z/Pk9sVqtfr2+9krFiUg7MGPG89TV2Rk3bg+efno6P/74Hf/731XMnPkyp5xyBunp6cGOKCIiO+HxeDj99BMHr1y5IihdfAYPHlr95pvvm/4UKN9882XqAw88utrtdlkGDhxUf/rpJw6Nj09wPvjg46tiY2PdP//8Q8L06c/2HDp0eM3hhx9VnpKS4pg9+/e4kSNH17rdbpYvXxpbX19vXbBgXvQee+xVs3Dh/KiqqsqQgw46tHzre7lcLiZPvnQQWLx33nn/muTkZNeTTz7W43//u3LQ++9/tgSguLg4bOnSxbEPPDB1tcNRb7n//rv63n//XX1mzJhp7ijz1Vdf1j87e03UlVf+d0Pfvv3rvvrqi6T77ruzv9VqzTrssCMrAEpKisM+/fSjtHvvfSirtrbGetttNww899wzhh188KHFzzwzY8WXX36a/Prrr2QecMCk8iFDhtU9+uiUHnPmzE644YZb1vXs2aveNM3IRx65v8/zzz/d/aabbt/44oszV5x33hlD9933gNKLLro03+12c9VVlwxyOp2WG264dW1qaprznXfeTLvxxmsGPf74MytHjx5b+913X8dPnfpg37PPPi/nwAMPLp8z54+4F198rufu/p748/pa/AclQDTmRCTICgsL+OyzTwC46qprsFqtHHzwYYwdOx6n08kbb7wS3IAiItJMHXPdkwMOOKhk9OixtePG7Vljt9stBx10aMnNN9++fsSIkfY+ffo6/vOf8wsTEhKdWVmrIgHGj9+rfP78uXEACxfOj7bZQryDBg2unjt3TizAr7/+nDBwoFGdmprm2vpev//+S9z69esi77zzvuy9955QPXCgUXfLLXeu22effctKS0tCAGw2m/eeex5cO2zYcPuYMeNqjzzymKK1a9dE7SjzqlUrI/7++6+Eq666ZsOhhx5RMWDAwPorrrg6f4899ip/441XNy/653a7Lddcc8P64cNH2Pfcc++aESNGVYaHh3muu+7mnAEDBtZfdNHl+QCrV/te55AhQ2tuvPHWtRMm7FfVs2dvxyGHHFYxatTYynXrsiMBUlJSXVar1RsZGelJTExy//zzD3Fr12ZH3XHHvdn77rt/1aBBg+tuvfWuDT179rK/8carGQBvv/1Gxt57Tyi94IJLCgYMGFh/xhn/KTriiKMLd/f3xJ/X116p5UQkyGbN+hyXy8moUWMYNWrM5u3/+c95zJ//N5999glXXnkNoaGhQUwpIiI7Y7VaefPN982O1q0LoEePnpu7U0VGRnrPOuvcwi+//Czx9ddfjc7Lyw1fv35tVHl5Wajb7bEA7LffgRV33HFzqt1ut8yZMzt22LDhVZmZPesWLZofB2yaO3dO/P77H1i6vXutXr0qMioqyj1w4KDN90xPz3DdcMOtOY0/x8fHu+Lj492NP8fGxrkdDscWL65pZtNc2Vg0VTc9ZsSI0VWvvTajR9NtAwb8c9/w8HBPamp6vcViASAiIsILUF9fbwU44YSTSn/99efYqVMfzMzNzQnPydkYmZeXGzF48JAt7tMoK2t1ZGRklLtpq4TFYmHo0OHV8+f/HQewbl121MSJ+5c1PW/UqDHVn3328RZdJFr6e+LP62uvVJyIBNlXX30BwNFHH7vF9gkT9iMpKZnS0hL++ONXDjjgoGDEExGRZrJarcTExHiCnaOlwsMjNmeura21XnzxOUZdXZ11v/0OKDvssCNLRo0aveGKKy4a3HjMPvvsWxUaGuL588/fYxcsmBc3adLBpb1796n/9NMPMzZuXB+2bl121J133pe9vXvZbCHexjfLO2K1WnfZAtU0844GpXs8bovNZttiZ2ho6BY/W607znL33bf1+v33X5IOPPDgkr333rdi8OCh+W+88WpGSUnRdmeq8Xq3/9I8Hg8hISFe3/2sXq931w1sLf098ef1tVcqTkSCKCdnIytWLMdms3HIIYdvsS80NJQjjzyGN954lW+//VrFiYiItLnGrkkffvjForS0dBdAWVmpraKiIqSxCAgLC/OOGjWm8pdffkpYvXpVzI033ra+R4+eDovF4n3mmSe7d+vWva7p4Pam+vXrX1dTU2PLzl4T3q9f/3qAkpLikNNO+/fwe+99aLU/mQcNGmwH+PvvOTGHHHJ4ReP2JUsWxWRm9rT7c83S0hLbN9/MSr3hhluy//WvEza3dOTkbIiIiIhsUhj98+Z/wIBB9traWtuKFcsimraeLF++LKZHj151AL1797EvX74sBtjclWvZsiU7HafUnN+TzqRdN+uIdHazZ/8OwKhRY0hKStpm/4EH+gqS33//dfMUwyIiIm0lPT3DAfDppx8lb9y4PmzOnNkx11571QC3221xOJyb34lPmDCx/Mcfv0+Ji4t19e8/oD48PNxrGEOqf/vt5+S9955QvqPr77ffAZV9+/avvfvuW/vOmzc3euXK5RF33nlLn/j4BOeoUWNq/clsGEPqRo8eWzFt2tRe3333dXxW1urwp556vNu8eXMTTj75tAJ/rhkXF++OjIxy//bbLwnZ2WvCly9fGnnHHTf3XrdubZTT+c9ziIiIcOfm5oQXFhaEHHDApIqePXvb7777tn5//PFr7KpVKyPuuef2Xjk5GyJPPfX0AoDTTz87f86cPxJnzHg+PTt7Tfj777+T/MUXn6XtLEtzf086CxUnIkH055++4mSfffbd7v7Ro8cSExNLWVkpy5YtCWQ0ERHpgsaOHV973nkXbfz004/Szj771OEPPnhvn+HDR1Xtu+9+pab5z0xkkyYdUuHxuC3Dh4+qbNw2Zsy4Sq/XywEHHFS+o+tbrVYeeuixrNTUdMeNN/5v4JVXXjLYZrN5p059cnV4eLjfzQBTpkzN3nPPvcunTn2ozwUXnD1szpw/Em6++c41Rx99bNmuz95WSEgIt956V/aGDesjzz//zGHXX//fgfX19dYzzzwnNzd3Y2RNTY0V4LjjTiycP39u/OTJlw0KCQlh2rRnV/Xp06/2rrtu7X/JJecPWbdubeSUKVNXjRu3Zw3ApEmHVF5++eT1n3/+Sep5550x7IsvPkk9/PAjixq7fW1Pc39POgtLc/q9dTLZbrenb2lpTateNCTESmJiNGVlNbhc+oS7LXWWZ+12uznwwH2oqqpk5sx3GDFi1HaPu+66q/n226+46KLLuOyyqwKWr7M85/ZOzzkw9JwDoy2fc1JSNDabdS3Qr1Uv7Id58+YNtlptX6WlZVaHhUW02ylZpf2ZPfu3mJSUNGfTCQGeffbJjG++mZXy0UdfLg1mtrbkcNRFFBbmxng87iPGjRu3cmfHquVEJEhWrlxOVVUlsbFxDB06fIfHTZgwEYC5c+cEKpqIiIi0gT///CP+2muvGvT777/E5uRsCPvmm1nxn376UfqkSYdsd3azrkgD4kWCZMmSRQCMHDkam822w+PGjh0PwNKli6mvryc8PDwg+URERKR1XXbZ5Dy73W6dMuXevlVVlSFJScmO4477d8GFF17arldtDyQVJyJBsmTJYgBGjBi50+N69epNSkoqxcVFLF26mHHj9ghEPBEREWll4eHh3ptvvmMjsDHYWdordesSCZKlSxuLk+2PNWlksVgYM2YcAPPn/93muURERESCRcWJSBBUVlawfv06AIYPH7HL48eO9RUnCxfOb8tYIiIiIkGl4kQkCBpbTXr16k18fMIujx8xYjQAy5cvpQvOsCciIiJdhIoTkSBYtmwZAMOH73y8SaNBgwxCQkIpKysjLy+3LaOJiIiIBI2KE5EgWL3aBGDQoMHNOj4sLIyBAwcCvtYTERERkc5IxYlIEGRlrQZg4MBBzT6ncS2U5cuXtUkmERERkWBTcSISYA6Hg/Xr1wIwYIA/xYlaTkREpHVMnDh+3HvvvZ3c3ON/+un7uBNOOGr4gQfuPfbBB+/r0ZbZmmPatKndjz/+iF3PLNMCLXkmOTkbwj799KPE1rx/V6d1TkQCbO3abNxuN7GxcaSlpTX7vGHDfP/2LlvmGxRvsVjaKqKIiHQRH3zw+aK4uHh3c4+fPv3ZHunpGfVPPPHMqpiY2Gaf15G05JncdddtfdLS0hzHHntCWVvn6irUciISYE27dLWkwOjfvz8hISFUV1exaVN+W8UTEZEuJD09wxUZGdnsaSBrampsQ4cOq+nVq48jKSm5UxYnLXsmXn1S2MrUciISYFlZq4CWdekCCA0No0+fvmRlrWb16lV069a9LeKJiEgXMnHi+HGTJ1+77qSTTi255Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hmjhx/DiAd999q9u7777V7c0331/Ss2dvx/Tpz6bPmvV5WkVFeUhGRrf6k046bdMJJ/xfKcAff/wae/31/x109tnn5XzwwbvdUlJS6++998Hss846efhpp52V98UXn6aFhYV6Xnnl7eUWi4WpUx/s8ddfsxNcLpelb9/+tZdddlXO6NFjaxvzvvXWzJT33ns7o6ysNGzUqDEVaWnpjp29vgsvPNsYNmxkVVlZaejvv/+SFBoa6jnmmOMLDzvsyNIpU+7pk52dFZ2R0b3u+utvXjdmzLjaps/k0EOPKD/77JOH9enTr3batOeyAH755afYW265btBNN92+5qOP3ktfsWJ5zIoVy2OOP/6I2I8//mrJ8ccfMeKggw4rueqqa/KaZkhLS6+/776H123vebz22tsrCgo2hT722MM9Fy6cH2ezWb2DBg2umTz52o39+w+ob4vf9/ZMLSciAbZ6dWNxMrDF5zYWNI0FjoiItC9uu926oy9Pfb0lEMfujtmzf0+srKwMeeKJZ8zbb79nzYoVy2OfeurxTPB1d0pKSnL+618nFHzwweeLMjN7Oh577KHML774NO3yyydvmDHj9eUnnPB/BU8//XjvmTNfSW163TlzZic888yLK2688bZ1NpvVC/DTT98nPfbYU+add96/Jj4+3n311ZcNzMvLDb/33oeynnnmxZWDBw+pufrqywYvWbIoEuDTTz9KfO65p3qdcML/FUyf/tqyIUOG1cya9fku+0d//PH7GWlp6Y4XX5y57Jhjjit8662Z3W+44b8DTznl9E1PPz19RVhYqGfq1Ad7b31eQkKC+7rrblm7YMG8+E8++TCptLTE9tBD9/U9+ODDio866l/lDz30eNbAgYNq9tln37IXX5y5oiXPuenzqKurs1555cWGx+PmsceeNh977GkzLi7eddll5w/Jy8sNbcl1OwO1nIgE2Jo1LZ+pq9HAgYP46qsvWLXKbO1YIiLSCtZceemYHe2LHGRU9Lz+pqzGn7OvuWqU1+nc7gfF4X36Vve+9Y7N/9ivveF/Izy1tdt93xbWPbO2z933tejN8Q4zRka677jj3vWhoaHeQYMG182e/XvJvHlz48HX3clqtXojIyM96ekZrpqaGutnn32cfu21N6095JDDKwD69u1Xn5+fF/7BB29nnHXWOUWN1z3llNM3NbYCbNiwLgzg6KOPLTKMIXUAv/76c+zq1Wb0xx/PWpSSkuoCuOaaG3KXL18W8/bbr6ePGDFq3Ycfvps+YcLEsrPOOrcIYMCAgZtWrFgWvW5ddtTOXlPPnr3sl18+OR/g3HMvKnjrrde777ffgaWHHXZkBcBhhx1ZMn36cz23d+5++x1QdeSR/yp87rmnen7//TdJ0dHR7htuuHUDQGJikjskJMQbFhbmaczcXE2fxzvvvJFSVVUZMmXK1LWhoaFegLvvfmDdv/999Ij3338ntWkrTFeg4kQkgOx2O/n5vn9j+vbt1+LzGwsatZyIiEhbSE/PqG98gwwQHR3jdrlc222ZWbVqZYTT6bQ8+uiUPlOnPtincbvb7bG4XE6L3W7ffF6fPn236Z7Uq1fvusZfr1y5PArglFOO32LmLZfLZXE6HRaAjRs3RB544MGlTfcPHTq8elfFSffuPTbfJyoqygOQmZm5OU9YWLjH5XLusPXpmmuuz5k/f278/Pl/xz/77EvLWzJGZ0eaPo9Vq8wou91uO+KIA0c3PcbpdFo3blwfsbv36mhUnIgEUE7OBgDi4uJJSGj5zIMDBxoArFu3FqfTQWhoWKvmExGR3dP/yWcX7GifxWrd4k1tv6nTFjX32L4PPrqkucfujqaFyT+2f3mPx2MBuPnmO7L79RtQt/X+8PDwzSdGRER4tt4fERGxeb/H47FERka6n3/+lW1agMLCwjwAFosF71ZRQkJCdvnaQ0Js2xxjsTR/ZENBwabQ8vKyUJvN5p09+7e4ESNG2nd+xpa3c7nc2xQ+TZ+Hx+OhW7fudVOmTM3a+rjo6OhOOenAzmjMiUgAbdiwHoBevbbp2tosGRndiImJxeVysW7d2taMJiIircAWGenZ0Ze1yZv1tjw2UAYMGFRns9m8+fl5Yf369a9v/Prllx/jZ858Kd1qbf7bzP79B9rtdrvN4ai3NL3WK6+8mPHDD98mAPTu3ad26dJFMU3PM80V0a37qrbk8Xi4++5b+/bu3bf2ssuu2vDmm69lLl26JPKfIyxb/j7ZQrzV1TW2pucXFhbs9JPEfv3624uLi8Pi4uLcja+7V6/e9U899XjmX3/Njm3t19TeqTgRCaD169cB0Lt3H7/Ot1gsmwfSNw6sFxERCYb4+Hj3oYceUTRz5suZH374btK6dWvD3n//neRXXpnRIzExqUVjMCZNOriid+8+9jvuuLn/b7/9EpudvSb8oYfu6/Hjj9+l9O3bvw7gtNPO3vTXX38mTp/+bPqaNVnhr746I23OnNltugDiCy88k7F27dqoW265c90pp5xRPGTIsKp77729b33DJASRkZGewsKC8NzcnFCAIUOGVv/2289Js2f/HpOVtTr87rtv622319p2do9jj/13aUxMtPuGG/7bf968v6JXrzYjbrvthr4LF86LHzjQ2EUrTeej4kQkgHa35QSgf/8BgG8xRxERkWC68cbbNh533L8LXnvt5cxzzjlt+BtvvNrt1FPPyLvyypYN4rbZbEyb9tyqgQMH1dx33x39LrjgrKGLFy+MvfXWu9bst98BVQCHHHJYxfXX35z9zTezUs4//6xhv/32S8Kxx55Q0DavDJYsWRz59tuvdz/rrHNy+/XrXw9w0023rS8uLgp/7LGHMgGOPfbfRRs3bog477wzhrndbq644r+5gwYZ1bfccv3AK6+8eHBcXJxrwoT9drpAY3x8vPvJJ19YGR+f4LrxxmsHXnrp+UMKCwvC7r//kdWDBw/dprtcZ2fxbt15r/PLdrs9fUtLa1r1oiEhVhIToykrq8Hl2qZbpbSijvyszz33DBYsmMeUKY9yxBFH+3WNmTNf4dFHp3DIIYfzyCNPtHLCf3Tk59yR6DkHhp5zYLTlc05KisZms64FWj6bSCubN2/eYKvV9lVaWmZ1WFhEl3vzKNJSDkddRGFhbozH4z5i3LhxK3d2rFpORAKoNVpOGmf5WrdOLSciIiLSuag4EQmQ6upqSkqKAejVq4/f12ksTtavX4fb3eUm8RAREZFOTMWJSIBs2LAOgOTkFGJiYnZ+8E5kZHQjPDwcp9NJXl5uK6UTERERCT4VJyIB0hpdusA3aLBxti8NihcREZHORMWJSIDs7jTCTfXpo3EnIiIi0vmoOBEJkNzcHAAyM3vu9rX69OkLwNq1WohRREREOo+QYAdoyjCMQcB84ArTNF9p2DYaeAIYD5QA00zTfCRYGUX81Tg+JDMzc7evpRm7REREpDNqNy0nhmGEAm8A0U22JQPfAqvwFSd3APcYhnFuUEKK7IbG4qR7990vThpbTlSciIiISGfSnlpO7gKqttp2EVAPXGqapgtYYRjGQOAG4OUA5xPxm8vloqBgE9A6xUnjuJWysjLKyspITEzc7WuKiIiIBFu7aDkxDGN/4GLgP1vt2g/4paEwafSD7xQjLVD5RHZXQcEm3G43oaGhpKSkbveY+rxc6tata9b1oqKiycjoBsC6dRp3IiLSXlgs2KxWS2igvywWbMF+7SKtIegtJ4ZhJAAzgStN09xoGEbT3T2AJVudktfwvRdQ6O99Q0Jaty6z2axbfJe20xGfdUFBPuBrNQkLC8HjdJL34nQyTj6J0LR06hxuyn/6gYoffyDjjDNJOuTQXV6zd+/ebNqUT17eRvbYY3yrZ+6Iz7kj0nMODD3nwOjqz9liweaxWLrV1rkC/v4qKiLEZcWb7/XS7lbnnTZtavcffvgm+eOPv9r6Pd0uZWWtDr/oonOGvvLKG8t69erjaIt80r4EvTgBngVmm6b55nb2ReHr1tVUXcP3CH9vaLVaSEyM3vWBfoiLi2yT68q2OtKzLi8vAqBPn94kJkaT9cxzVM75E2dxEY7zrqakoo7oslpCvV42vT6TyMgwuh9z1E6vOWBAf+bM+ZOiovw2+/MMHes5d2R6zoGh5xwYXfU5WywWa22dK+TPpfme2jqXJ1D3jYoIse49vFtIbESI1ev1trvixF/Lly+NvPHG/w1wOOq7ZrXbRQW1ODEM4yx8XbdG7OAQOxC+1bbGoqTG3/t6PF4qK2v9PX27bDYrcXGRVFbacbsD9u9Rl9QRn/Xq1b6B62lpGeT8OZ+Cr78Fi4WqvQ4hK6vYd9CoQ0m3hJE4/2fWzngZd2IKMUOH7fCa6em+sSurVmVRVub3X4cd6ojPuSPScw4MPefAaMvnHBcX2WFaZGrrXJ4auzPQf9A6xsNppmeemZbx/vtvd8vM7FFXWloSFuw8EjjBbjk5D0gHtu7O9ZxhGNcB64HuW53T+HPu7tzY1UYfaLjdnja7tmypIz3rnBzfGicZ6d0oeOctAEL22BczPAOPx7v5uPzh+2OrqiBu9ULypr9A77vuxRa1/VaRHj1866WsX7++TZ9DR3rOHZmec2DoOQeGnnPHMXHi+HGXXnrlhu+//zZp7do10enpGXXnnXdR7mGHHVnReMx3330d/8orL3bPzc2JTExMcuy//6TSSy+9Mj88PNwLsHLl8ojnnnsqc8WK5bF1dXZrcnKK41//OqHw3HMv2G73+1deeTHtlVde7HHTTbdnH374UeXbO2bevL/ir7vu5rXx8fHu66//76A2efHSLgW7yj4TGAKMbvIFcDtwFPALsJ9hGE0HeR0MmKZp+j3eRCTQ8vJ8xUnfiAjqsrOxhIaSP3J/3E0KEwAsFnL3PBJXfDKusjJK3nt7h9fs2bMXABs3bmiz3CIi0vm9/PL0HpMmHVz6wguvLhs/fq+Ke+65fcDcuXOiAX788bu4++67s/+RRx5T/NJLbyybPPl/G3777eekW265ri9AbW2t9X//u2pQRESk58knn1v58stvLps4cf+yGTOe67lkyeJt+ve9/vorqa++OqPHrbfevWZHhQnAjBmvm0ceecwO90vnFdSWE9M0t2n9aGhBKTRNc71hGC8B1wMzDMN4CNgTuBq4JJA5RXZXXp5vHoeMXN9366jxFDu3/9fPGxLKxgn/os+sVyn/4w8Sj/03oduZKrix5aSysoKKinLi4xPaJryIiHRqkyYdUnzWWecWAVx77Y25S5cuin3vvbfS9thjr7Wvv/5Kt4MPPqz4jDP+UwTQt2+/+pCQkPU33HDNoA0b1oVFRUV7jj32hMLTTjurMC4uzgNwxRX/zfvww/cyVq9eGTlixEh7433eeuv1lJdeeqHHHXfcm3XggQdXBufVSnsX7G5dO2WaZqFhGIcD0/CtHJ8PXGea5qvBTSbSfE6nk4KCTUTbbIRkrwGgbPAeeHdyjj2tF4V7H0G//fYkKi0Fp3Pb8Y2RkVGkpqZRVFTIhg0bGDEioW1egIiIdGpjx47fYp05wxhSs3Dh/DiAtWvXRq1ZkxX944/fJTfu9zb8B5aVtTrioIMOrTz99LMLP//8k6Q1a1ZH5ebmhK9fvzYKwO32WBrPKSsrC3322Wm9bTabt0ePXltPdiSyWbsrTkzTtGz181xgnyDFEdlthYUFeDwewiMjST7mWKrXb6AwIgl2MVayxNgDqzOC1HoX4TYrXu+25UyvXr0oKipk48b1jBgxsq1egoiIdGIhISFb/Afj9XqxWm1e3689luOP/79Nxx57QsnW56WnZzgLCwtCLrronCGxsXGuvfeeUD5u3J6VI0eOqjnllOO3+E/JYrFy9933r37ppRe633ffnX1nzJi50moN9ugCaY/0p0KkjTWON4lNSyfjxH9Td/zZOJo5iUtxmZ284hrcpUV4Pdue07NnbwA2bFjfeoFFRKRLWb586RYzr6xcuTymf//+tQA9evSyb9y4PqJfv/71jV8FBfmh06Y92qO6usr62WcfJ1dXV4W89NLrKy+/fHL+kUceXV5RUd7w4fc/NU9CQrzzgAMmVd54463rsrOzol5+eXp6AF+idCAqTkTaWON4k27dulPv9FBSYd/FGf/wAmVvvkbW9ddRu2jBNvs1KF5ERHbXZ599nP7xxx8kZWWtDn/wwft6rF+/LvK0084uADj11DM2/fXXn4nTpk3tnpW1Ovy3336Jfeih+/vW1FSHpKdnuNLTMxz19fXWzz//JDEnZ0PYzz//EHfXXbf2A3A4HNu8zxwyZFjdCSectOmNN17tvmZN1tbLRYi0v25dIp1NYWEBPSMj2SM+kcriMsqrWtbVttYSRrTXS8nnnxI1eiwWyz89HxtbTjZuVMuJiEh7ERUREtAPf3f3focddmTR+++/nf74449E9u7du/aBBx5ZPWzYcDvA0UcfW+b1erPfemtmtw8/fDcjKiraPX78nuX//e/1OY37V65csWn69Gd7PvnkVGtKSqrj8MOPKp49+/eEFSuWRQNFW9/v0kuvzP/9918S77vvzj4vvviaqe5d0pRle/3YO7lst9vTt7S0dRetCwmxkpgYTVlZjeZ2b2Md7Vnfc8/tRM+ZwzEZ3bDuMYGlQw9p0fm2uloGfjgNq9NB5uRriG4ytmTlyhWceuoJJCYm8uOPs1s1d0d7zh2VnnNg6DkHRls+56SkaGw261qgX6te2A/z5s0bbLXavkpLy6wOC4uoa9xusWDzWCzdautcAf/wNyoixGX1evO9Xlq0QvzEiePHTZ587bqTTjp1mzElIq3F4aiLKCzMjfF43EeMGzdu5c6OVcuJSBsrKCjg2Lg4AGoy+rb4fHdEFGUDx5K8/E/Kv/9mi+KkZ0/fdMJlZWVUVlYS13AfEREJPK8XtxVvfmyAW0589/Z6WlqYiLRHakcTaWM1RQX0aVjlvSKtt1/XKB2yJ16LhZqlS3Hk/bM8UHR0DMnJKQDk5GjciYhIsHm9uD0erzPQXypMpLNQcSLSxhKqqwHwpKRS4Q316xrOmASqew0GoOL7b7fY1zgoXjN2iYhIS/3229/z1KVL2hMVJyJtyG63k2nx/TXz9uqP2+3/GK+SIXsCULlgAR6nc/P2xpXic3NzdiOpiIiISPBpzIlIGyos3MSA6BgAHBm9dutatWm92HTAvxl+9CTCIsM3DzbNzOwBQE6OihMRERHp2NRyItKGCvLz6dcw3qQmqfvuXcxiobTPcPKqXMA/0wk3FieNiz2KiIiIdFQqTkTaUEFhATcsX8LnFgtVEQmtcs3Ckhoq7Q5wOoB/unXl5GxsleuLiIiIBIuKE5E2tKmggPz6OgpS07A7W2fOf1f2anLvvoNNL00HIDPTV5xs2pSPy+VqlXuIiIiIBIOKE5E2VFi4CYCYuORWu6Y7NBxvfg6V8+fjqqggNTWVsLAw3G43BQWbWu0+IiIiIoGm4kSkDfXMyeFf6d1IioxttWvWJ2VgT80Et5vqOX9gtVrp3j0TUNcuERER6dhUnIi0Ea/Xy2iHk7N69iYuPLpVr102cCwA5T//hNfj2TwoXtMJi4hIINXU1Fhnznw5tfHnW265rs+FF55ttOU9c3I2hH366UeJu3ON9957O3nixPHjdrQ/EK9j4sTx49577+3W61oRRBs2rAubOHH8uD/++HW3P41VcSLSRlylpURYLLg8HrypPVr12hV9huEJC8dRUEBd1qrN407UciIiIoH00ksvpH/wwTsZjT9ff/2tGx966PGstrznXXfd1mfOnD/i2/IeEjwqTkTaSPXabADy6uoIi01p1Wt7Q8Oo6D0MgKo/ficz09etS9MJi4hIIHm9XkvTn+Pj492JiUnuNr6rZdfHSEelRRhF2kjZKhOAXEc9cRGt260LoLz/SBJXz6di7lx6HnssoIUYRUSCyeuFWldwPviNCsFj8eMte0VFhW3q1Ad7/PXX7ASXy2Xp27d/7WWXXZUzevTYWoDa2lrrlCl39/z777kJtbW1tszMzLozzzwn78gjjymfNm1q93fffbMb+Loovfnm+0uef/7p7oWFBeHTp79m/vHHr7E33vi/QQ888MiqJ554tFdhYWF4nz59am+99e6133wzK/Hzzz9Od7vdlv32O7Dkllvu3GixWPB6vbz44nPp33wzK6WoqDA8NDTUM3jw0Oprr71pQ+/efRwXXni2sWLF8pgVK5bHHH/8EbEff/zVEofDYZk27dHuP/30Q7LdXmvr0aOX/bzzLsw74ICDKhtf56xZXyS8+uqL3QsKNkX07z+wZvTosZU7eiaN3G4P9913Z8+ffvo+OSQkxHvooUcUX3XV/3JDQnxvn//668/ol156ofuaNaujnU6nNT09o/7008/OP+64f5c2XuOTTz5MeuedNzLy8/MiEhISncccc1zh+edfXLD1vYqKCkMuv/xCIyEh0fn4489kRUVFeX7++Ye46dOfzczNzYlMS0uvP/HEkzdNmza1z5tvvr+kV68+juOPP2LEXntNKF+wYF5cRUVF6O23371m7733rXr11RlpX375WVpxcXFYSkqK48QTT9l02mlnFgP88cevsddf/99BjdcAX5es00//vxEPPfTYqgkT9qu65Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hAlixYlnEY4893Csra3V0YmKi85RTTs9v+Z++7VNxItJGajesJwwosdqI9+d/jF2wp/Wkcsh4eu+/N964KEBjTkREgsXrhTO/ihpsltla/9OoZhic6K6eeUSt2ZL/brxeL1dffdnAkJAQz733PpQVFxfn/uyzj5OvvvqywU8++fyKESNG2Z98cmr3devWRk2Z8ujq+PgE1wcfvJM6Zco9/YYNG770vPMu2mS3262///5z0vTpry1PSUndZj57j8fDM89M63nDDbesCwuL8Nx++439L7/8wiFjxoyreOKJZ825c+fEPPPMtN577z2h8pBDDq94+eXpae+991a36667ee3gwUPsGzduCH/00Qd7P/bYQz0ff/yZNQ899HjWNddcMTAlJdVxww23bgC47bYb+mzYsCHypptuW5uR0d3x00/fJ9x++00DbrvtnjWHHHJYxdy5c6Lvv//O/ieddFr+UUf9q+Tvv/+Kff75p3rt6vmsWrUyJjk52fnkk8+vzMnZGD516kN96urqrDfffMfGvLzc0BtvvGbQ4YcfXXT99bdscLmcltdeeznjscce7rPPPvtWpqWlu7744tPERx55oO+ZZ56Te8ghh5ctX7406rHHHuoTHR3jPvXUM4ob71NSUhxyxRUXGcnJKY6pU5/KioyM9C5Zsjjy9ttvGnDMMccV3nHHfdkrVy6Leuqpx3tvnfHrr2el3n33A6vj4uLcQ4YMsz/44H09f/75++RLL71qw4gRo2r++OPXuOeff6qXw1Fv/c9/zi9s7p+N2bN/T5w48YDSJ554xszLyw174IF7+j311OOZ99wzZX1FRYXtf/+70hg0aHD1M89MX1FQUBD22GMPbpPNXypORNqIt9D3wUhFRFTb3MBiIWfPo4jPTKFXsu+vcllZKTU11URHx7TNPUVEZIcs4A12hpb47bdfYlevNqM//njWosbC4pprbshdvnxZzNtvv54+YsSodfn5eeGRkVHu3r371sfHx7snT742d8yYcVXx8YnumJgYT2RkpMdqtXobP1HfnnPPvTB33Lg9awAmTJhY/vnnn6Tdfvs966OiojwDBxp1r7/+auaaNasjDznk8IqePXvVX3vtTWsPPfSICoCePXs75syZXfbLLz8lAiQmJrlDQkK8YWFhnpSUVFd29prw33//Nempp15Y0dja07//gII1a7Ii33nn9YxDDjms4r333kobNMiovuqqa/IABgwYWJ+dvSbyyy8/TdvZ84mPT3Dec8+DayMiIryDBw+tKyoqyn3++ad6XX31dbkOh8Ny6qln5l1wwSUFVqu18XXm//TT98nZ2Wsi0tLSq99//+30ffbZt/Tiiy/f1JCrvra2xhYREbl54bPKyoqQK664eFBKSmr9o48+uSYiIsIL8NZbM9P79u1Xe911N+cADBw4qL60tDR0+vRnezbNOGbM2Ir99z+wynetSuvXX3+Rev75F288/vgTSxvuWZSXlxv+zjtvdjv77POaXZxERka677jj3vWhoaHeQYMG182e/XvJvHlz4wG++OKTRIfDYb3rrgfWxcfHuwcPHlpnt9duvPfeO/o39/o7o+JEpA143W5Cq6oAqI3ZrQlFdqmgtIa+3bsRHx9PRUUFubm5DBrUphOMiIjIViwWmHlErdmRunWtXLk8CuCUU44f0XS7y+WyOJ0OC8CZZ56z6dZbrx9w3HGHjxo4cFDN2LF7VBx55DGl8fHxzR5X0rdv/7rGX4eHR3ji4xOcUVFRm9+gh4WFeurrHVaAQw89omLevLnR06Y92j03Nyc8J2djZE7OxojExETn9q69fPnSKID//e/KLf7jc7vdlqioKDfA+vXrosaMGVfRdP+IESOrd1Wc9O8/oLaxWAAYOXJ0jcvlsqxZkxU+YsRI+4knnlzy2msvpa1fvzYiNzc3Yt267CgAj8dtAdiwYX3k/vsfVNr0mqec8k+LCcDMma9kut0uy9b3ys7Oitq669nYsXtUwbNbZMzM7LH52WZlrYpwu92WMWPGVzc9ZvTosdWfffZxelFRYbPf96enZ9SHhoZuzhMdHeN2uVwWX7Y1Uenp3eqa/hkYN26P6u1dxx8qTkTagMVm44v+/fj5k4/of+CxbXqv6px88pf9yjG9+vLGkoXk5uaoOBERCQKLBaJD8ez6yPbB4/FYIiMj3c8//8qKrfeFhYV5AMaP37Pmo49mLf7115/i5s6dE/fNN7NS3n779e733vvQ6v32O6CqOfcJDQ3ZokXJat1xFfXCC8+kv/XWzMxJkw4pHj16bNXJJ59W+NNPPyT8+utPSds73uv1Pe7HH39mZXR0zBbP3mazef85bstB9CEhobts5bJarVsc4/H43ouHh4d5V682I6644qLBffr0qx03bo+KiRMPrEhKSnJeeeXFQ5ref1cF44gRIyuPOurY4vvuu6P/jz9+Vzpp0iGVDefi8ex64H9YWPg2r9Gy1U09Ht9jaVpseJu8MqfTtc19mh77j6abWv48m0uzdYm0kU0lJWyw1xIRndCm94nIzcb+7ZfsH+XrPqbphEVEpDn69x9ot9vtNoej3tKvX//6xq9XXnkx44cfvk0AmDbt0e5//fVn7GGHHVlxyy13bnz//c+WpqWl1//443eJABaLpVW7sr377pvdTz31zLzbb79nw2mnnVU8btyeNbm5ORHeLe7yzz0HDjTsAAUFBWFNX8Mnn3yQ8tFH76cA9OvXv3bFimVb9HdesWLpLscGrVuXHdX4xh5g/vy/Y8PCwjy9e/etf/fdt1Lj4uKdzz//8qqLLrqs4OCDD60oLi4KBd9YHoDMzJ51prlii/s88MDdPa+++rLN3Z/2339S2ZFHHl0+YcLE0scee6hPZWWlFaBPn761W5+7ZMnCnWYeMGBQnc1m886fP3eL17pw4fzY+PgEZ0JCojs01Fd0VlZW2hr3r1+/NnxXz6KpgQMH1ebn54WXlBRvbuRYvHhBq421anFxYhhGiGEYhxiG8YBhGG8bhjHLMIyZhmHcaxjGvoZhaHo3EaCkxNdyGxO33Q97Wk1ln6F4bSEkuj30jYrSdMIiItIskyYdXNG7dx/7HXfc3P+3336Jzc5eE/7QQ/f1+PHH71Iau2Ll5uaGP/74w71+++2X2I0b14d98cWnicXFReEjRoysBoiMjPTU1NTYsrJWhzudzt1+D5icnOKYP39unGmuiFi9elX4Y4893P2vv/5McDqdm9+zRkZGegoLC8Jzc3NCBw8eWjd27PiKadMe6f3NN7Pi161bG/bii8+lf/jhexmZmZn1AKef/p9N69evi3zwwft6ZGWtDv/oo/eTZs36PHXHKXxKSkrCbrvthj4rVy6P+PLLzxLefPO17scf/38F4eHh3rS0dEdpaUnYDz98G7dx4/qwWbM+T5g2bWpvAIfD1yXu9NPPyv/jj98SX3nlxbS1a7PDP/30o8RvvpmVOnHiAeVb3+v662/Z6HA4LI88cn9P8HWnW7t2TfQjj0zJzMpaHf7VV18kzJz5SiZs2zLSKD4+3n3IIYcXv/HGq5kff/xBUnb2mvCZM19O/frrL1NPOOH/CiwWC4MHD7VHRER4Xn55erfs7DXhs2f/HjNjxvM9dnTN7TnmmONL4+LiXbfccn3fpUuXRM6e/VvM008/0XPXZzZPs4sTwzDCDMOYDGQD3wAXAYOAGGAMcDnwK7DRMIwrDcNoURUm0pmUffctB9TVMzgmlpi4th1z4gmLoKrnIAD2T05Vy4mIiDSLzWZj2rTnVg0cOKjmvvvu6HfBBWcNXbx4Yeytt961prHL1i233Ll+5MjRVVOm3N33rLNOGf7aay9l/uc/5+eccMJJpQCHHXZEWUJCovOCC84etnjxwt2eAeaWW+5cW19fb7300vOHTJ58yeB167IjL7vsqvVVVZUhGzasCwM49th/F23cuCHivPPOGOZ2u5kyZWr2PvtMLJs27dHe55xz+vBvvpmVcvnlV68/6aTTSgBGjBhpv/feh1YvWbIw9oILzh72wQfvpJ900mm7nPp2/Pg9y202m/fyyy8c8tRTj/U+4ohjCi+/fHIewNlnn1c4YcJ+pQ8+eF+/c889Y9jrr7/a7ZxzLshNSUl1LF26JBp842euuOK/67/44tPUc889fdirr87IvPDCSzf83/+dUrL1vVJSUl0XXnhZzg8/fJfy00/fxw0ZMqzuttvuzpo798+ECy44a9irr87oftRR/yoECA0N22Fr1U033b7h6KOPLXzppRcyzzvvjGGff/5J2sUXX7HhggsuKQCIjY313HDDrdm5uRsjzzvvjGHTpj3a6+KLr9jYkuIkOjraM23as2ZISIh38uRLBj/wwD19Tz759E3NvsAuWLzeXbfGGYaxJ/Aq4AbeAN41TXPNdo4bARwFXABYgLNM05zdWmFbSbbb7elbWlrTqhcNCbGSmBhNWVkNLleH6W7aIXWEZ53z6MPUrljGM2vXMOLyB0hO7d6m94vZYNLrx3codTh4uLqSDz78fLev2RGec2eg5xwYes6B0ZbPOSkpGpvNuhbo16oX9sO8efMGW622r9LSMqvDwiLqdn2GSMssWDAvKiQkxDtixCh747aPP/4g6fHHH+nz3Xe/zm9ca6WjcDjqIgoLc2M8HvcR48aNW7mzY5v7ymYCN5qm+dHODjJNcwmwBHjQMIyT8RU0g5p5D5FOo77A94FMfn0d+7RxywlATWZ/XKFhJAEx5WV4vd4dNvuKiIhI+7Zy5Yqol156ocd11920dujQYfZ169aFz5z5cvd9951Y2tEKk5Zq7qsbYZqmoyUXNk3zXcMwPm55JJGOzeN04C71zRxY6oHw8Mg2v6fXFkJlr8EkrVnMnjFxlJQUk5Kyy+60IiIi0g6deuoZxSUlxaHPPvtkr7Ky0tC4uDjXfvsdWHrFFf/NDXa2ttas4qSlhcnunifSkTkLiwCodbnwxMQF7L5V/UYQvmoBtR43OTkbVZyIiIh0UBaLhSuuuDr/iiuu3uXYmM6mWcWJYRi3t+Sipmne7V8ckY7PWegbE5ZXX0dMbELA7luT0ZcXah2sztnAsLwcRo8eG7B7i4iIiLSG5nbrunOrn734Bry7gWIgEQgDHEApoOJEuixHQQEAm+rqiE7ICNyNrVaiE32L3ebldfpWXxGRYPIA3q0X9hOR7Wv4u+KFXS9S2qyphE3TtDZ+AYcCJcCpQIRpmt1M04zAN0tXCXCN38lFOgF3RQUABfV1xLbxGidbS0z2FUM1a9bgcapXpYhIG9nk9XqdDkfdbk+dK9IVOBx1UV6v1wnsspuaP8P9nwJuM03z3aYbTdP8yjCMW4H7gLf9uK5Ip5B6ymk8t2wRsxbMZZ9xbT9TV1OJKRncYQxlWFEx9mVLiB49LqD3FxHpCsaNG1c5b9681yoryy4FksPCImpbe6V0kc7A6/VaHI66qMrKsjCv1zNj3LhxVbs6x5/ipBewYQf7ioB0P64p0qnkl5RQ63a3+QKMW0tMzmBNTTXDYuOo+muOihMRkbZzv9vtory85GyLxRKFr7u7iGzJ6/V6nV6vZwZwf3NO8Kc4WQRcaRjGd6ZpOhs3GoYRAVwPzPHjmiKdSnFxMQAxQejW9UFpMcdmdKdqwULS6uxYI9p+KmMRka5m3LhxHuDeefPmPeH10o1mdpUX6WI8QH5zWkwa+VOc3AR8DawxDOMr/mktOQqIBg7w45oinYKrqpKCF1/gUK+XVRDwlpPo2ARyXG7y6ux0B2qXLCZmj70CmkFEpCtpeNPV7DdeIrJzLa7yTdP8GZiAr4XkX8C1wJHAd8A40zQXtmZAkY7EWVREzbKlDGtorQh0cWKxWEhMzuDPMt8ikNXz/w7o/UVERER2hz8tJ5imOR84qZWziHR4robuXIX19VgsVqJj4gOeITGlG39mLebf3TKpWrSItPp6rOHhAc8hIiIi0lJ+FScAhmEciW9a4W7AzcAYYJ5pmutbKZtIh+Ms8RUnRfX1RMfGY7XaAp4hMTmDP5f8SbnVRoLDgX35UqLHaGC8iIiItH8t7tZlGEaUYRjfAF8A5wEn41uE8VJgnmEYw1o3okjH4SwuAqDIUR/wwfCNEpJ9E+Z96fBgPe9K4vcYH5QcIiIiIi3lz8wS9wPjgIOBFP6ZOu8sIBe4p3WiiXQ8zuJ/Wk4CPd6kUWKKbyHGP4sLKE7ogdMdlBgiIiIiLeZPcXIKcJNpmj/iW4YeANM0NwH3AhNbKZtIh9PYravQEcTiJLkbAGXFmyittFNtd2KzaYZLERERaf/8GXOSAKzbwb4yIMbfMCIdmdfrxVvvAHwD4gcHrVtXGgD1dbXYN65j09IfcSREkfx/pwQlj4iIiEhz+fNx6lLgjB3s+1fDfpEux2Kx0P+Rx3gxLpbiILachIVFbB7vYi/Kwfvnz5T99CMep3MXZ4qIiIgElz/Fyb3AWYZhfA5cgK9r1wGGYTwJXAY81Ir5RDoUqxU2lZTgJfBrnDTVOO5kncOJKzoOT10ddSuXBy2PiIiISHP4swjjJ8CZwEjgWXwD4h/Ft+7JJaZpvt+qCUU6EIvFQknDuJNgzdYFvumEAcpKCqjoNRiA6nlzg5ZHREREpDn8GiVrmuabpmn2AobgGwA/HOhumuaM1gwn0pFU/vUnGx59mFEeD9A+Wk7KSjZR1XuIL9/8+XhdrqBlEhEREdmVFg+INwzjB+Ay0zRXmqZpbrVvJPC6aZojWyugSEdRv2ED1UuWkGrzLbwY1OKkyYxdtak9cUXFEFJbjd1cQdSwEUHLJSIiIrIzzSpODMOYyD+tLAfiG2OStp1DjwH6t040kY7FVVYGQKnDQVh4JOHhkUHL0rTlBKuVyp6DSTL/pnreXBUnIiIi0m41t+XkAuBsfIPfvcAz+MaaeJsc07gY45utlk6kA3GVlQJQ4nAEtdUEILFhlfiKskLcbjeVvYeQkJeFLSF442BEREREdqW5xclk4GV8BcgPwOXA1lP/uIFyYFlrhRPpSDYXJ04HMUkZQc0SE5eELSQUt8tJZVkRtow+bDz9GnqN7oHVasHj8e76IiIiIiIB1qzixDTNCuBnAMMwJgHzgJiGVeExDCMR6GmaptY4kS7J6/Vu0a0rNcgtJ1arlcTkDIoLNlJWsonElAxq6lyUV9URHxWLx+MOaj4RERGR7fFntq5FwEfAT0227QUsNAzjY8MwolojmEhH4q6u2jwTVpnTEdRphBttnk64eNPmbZuKKqlauRKvVy0nIiIi0v74U5xMAYYBNzfZ9gNwHDAeuLsVcol0KO6qaqzR0ditVlxeL7FBbjmBpoPi830bPB4inrmfDQ/chyNnYxCTiYiIiGyfP8XJscC1pml+2LjBNE2HaZqf4StYTm6tcCIdRXj37gx++lmebfg52APiYTstJ1Yr9iTfFMO1ixYEK5aIiIjIDvlTnMQCZTvYVwCk+B9HpOOyWCwUlpYAEBPbDoqTptMJN6hsWC2+ct7fQckkIiIisjP+FCfzgfN3sO9cYLH/cUQ6LovFQklxEQAx8e1gzEnKtmNOqnsMxGuxUr9xI87iwmBFExEREdmuFq8QD9wLzDIM4298A+MLgVR8Y07G4VuIUaRLKf74A+rXraUfXhbQPrp1JTR067LXVmGvrSYyKgZ3RBS16b2I3rSO2oULiD/k8CCnFBEREflHi1tOTNP8FvgXvgUY7waeB+7BV+gcZ5rmV62aUKQDqFuzhpqlS4mx2rBYrETHxAc7EuHhkUTHJgBQXlKweXtVL8P3ff78YMQSERER2SF/unVhmuYs0zT3AKKBHkCcaZrjTNP8olXTiXQQzoYFGEudDqJj47FabUFO5JPQsFL8FuNOevrGndSuXoWrsjIouURERES2x6/iBMAwjCHARcCVQIJhGBMNw4httWQiHUjTBRjbQ5euRptn7GpSnLhi4inc+0gS/ncL4YnBb+ERERERadTiMSeGYdiA54DzAAu+7l3vAXcA/QzDOMA0zZxWTSnSjnnq7Hjr6wHfAow92sECjI22NygeoNjYg5SYZDJtVtxurRYvIiIi7YM/A+JvBc4ALgC+ABrf9fwP+BS4D/hPcy9mGEYa8ChwBBAJ/AxcZ5rm8ob9o4En8C3wWAJMM03zET9yi7QJV3mF77vVSp3H085aTnzrmjRtOWlUWmGn3uHxv/lUREREpJX5877kPOB20zRfxlcsAGCa5mLgduDQFl7vU6A/cCSwB2AHvjMMI8owjGTgW2AVvuLkDuAewzDO9SO3SJtwVfqKE7vV99epPaxx0uiflpP8bfbVmyvImf48tUsWBTqWiIiIyHb503KSDizcwb4coNnvzBqKj7XAvaZpLmvYdk/D9YcBhwD1wKWmabqAFYZhDARuAF72I7tIq/PW12ONjqbSbgcgth2scdKoccxJeWkhHo97i4H64etXUbdsNlVWL1EjRgUrooiIiMhm/rScZAFH7WDfgQ37m8U0zRLTNE9rUpikA9fiK3KWA/sBvzQUJo1+8B1qpPmRXaTVRY8YyZBnnuPF2lqgfaxx0iguIRmrLQSP20VleckW+6oaVouvWrgIr8u1vdNFREREAsqflpPHgecNwwgDPsM3IH6gYRiT8BUW1/gTxDCMF4AL8bWUHGuaZo1hGD2AJVsdmtfwvRe+BSD9EhLSuj3tbTbrFt+l7bTHZ22zWSgpKQZ8LSdWqyXIiXys1hASk9MpKcylorSApJT0zfvq03vijowBezXO7FVEDR2+xbnt8Tl3RnrOgaHnHBh6ziKyu1pcnJim+aJhGKnALcCl+GbsegtwAA+Zpvmcn1kex7eg46XAx4ZhTASi8BUrTdU1fI/w8z5YrRYSE6P9PX2n4uIi2+S6sq329KxdLg9lZb6WidS0dCIjw4Kc6B/Jad0pKcylqqJgm1y1fYcQu3wudUsWkbnvXts9vz09585Mzzkw9JwDQ89ZRPzlz1TCiaZpPmAYxtPAPkAyUA78aZpmqb9BmszOdVHDda/ANzg+fKtDG4uSGn/v5fF4qays9ff07bLZrMTFRVJZacft9rTqtWVL7e1Z57/6CvZNm+gTEoIJhITFYLc7gh1rs8ZxJ5tyN2yTq7z7QGKXz6V4zlwSTz4di+WfFp/29pw7Kz3nwNBzDoy2fM5xcZFqkRHpAvzp1vWXYRi3mqb5DvD17ty8YdzIwcC7pmm6AUzT9BiGsRzIBDYC3bc6rfHn3N25t8vVNv85ud2eNru2bKm9POuaVatw5OYQbrUSFh5JaFgEHo832LE2S0zx/ZUpLsjbJld1Rh88IaG4SkupXbuO8F69tzm/vTznzk7POTD0nANDz1lE/OXPRxCJQHEr3b878CZwQOMGwzBCgbH4BsT/AuzXsPBjo4MB0zRNv8ebiLQmV0U54FuAsT0Nhm+UnOorTkqLtq3nvbYQqrv3x5reDepatzVRREREpKX8aTl5AnjYMIz/AUtN0yzajfsvwtf68oxhGBcCZfjGsiQCj+EbX3I9MMMwjIeAPYGrgUt2454ircbrcuGprgag3OkksR2tcdIoKS0TgNLifDweD1brlp9J5O53AqG9U4kelIrLpdXiRUREJHj8KU7OBnoD3wEYhrH1fq9pms26rmmaXsMwTgEeAN4BEoBfgf1M09zQcP3DgWnAfCAf3+rxr/qRW6TVNS7A6LFYqHK56Bnf/oqThKR0rFYbLqeDqooS4hNTt9jvDQmlvKoOu8NNmA287adHmoiIiHQx/hQnr7dmANM0K4DLGr62t38uvgHyIu2Oq9xXnNTZfH+VYuLazwKMjWw2GwnJ6ZQW5VFSmLtNcQJQWV1PZUU1SVYHlna0iKSIiIh0Lf4UJ2uBH0zTzGntMCIdjbthvEk1vuaGmHbYrQsgOTWT0qI8Sovy6GeM3mZ/1NrlFM/8mPohg+k++X+BDygiIiKCfwPipwLjWzuISEfkdTqxRcdQ3rDCemw77NYFkNww7qSkKG+7++sTUrG4nFQvX47bbg9kNBEREZHN/ClOCvGNDRHp8mL33Ishzz7HjFLfEj/tteUkafOMXdsvThzxKTjik8Htpm7FskBGExEREdnMn25d04GnDcOYBCwFCrY+wDTN13Y3mEhH4cVLaalvdfiYdjpeIznNV5yUbGc64UaVPQaRUjGb6oULiB6rxlEREREJPH+Kk0cbvp+1g/1eQMWJdBkOh4vKijKAdrnOCUBSqq9bV1lxPh6PG6vVts0xVT0NUpbNpmrRQtJcLggJC3RMERER6eL8KU76tnoKkQ4q/4VnsZeV0TsigvV1dUTHxAc70nbFJ6ZgCwnB7XJRUVZMYnL6NsfYU3vgjoiCmhrqsrMIHTo0CElFRESkK2txcWKa5vrGXxuGEQXEASWmaTpbM5hIR1C7ysRdXo7NYiE6Nn67LRLtgdVqIzGlG8WbNlJalLvd4gSrlarMgSSsWUTtooXEqjgRERGRAPNnQDyGYexnGMZsoBLIBeoMw5jdMA5FpEvwejy4KysBKHM6222XrkbJDV27Sgq3PygeoHzAaOoPPJr4SQcFKpaIiIjIZi0uTgzDmIBvdfgE4B58iyfeCyQBXxuGoQUTpUtwV1eDxwNAhcvZbmfqarSrGbsAajN6UzR0H1yJqVgsgUomIiIi4uPPmJN7gV+Bw03TdDduNAzjLuBr4C7gsNaJJ9J+uat8rSaOkBDcXm+7namrUXJDcVJSuOMZuwCqah1UVjtIiI4ORCwRERGRzfzp1rUn8ETTwgTANE0P8GTDfpFOr7FLl72hiaGjtJzsbDphABwOin7+mfx33glAKhEREZF/+FOcVAGhO9gXBqgziHQJrobipKqha1d7H3OSktETgLLiTbicO56/wuaoI/TTNyn6/HMcZWWBiiciIiLiV3HyO3CzYRgxTTcahhEL3ISvy5dI5+d2Y4uJoczhACC2nXfrio1LIjwiCq/Xs9PWE1d0HPaU7uD1Uvb3vAAmFBERka7OnzEnNwLzgGzDMD4HNgEZwDFABHBu68UTab/iJuxLyoEHcPnBBwLtv1uXxWIhNaMXOetWUlywkfTufXZ4bFWPQUQW51EyZy7dxmuOCxEREQmMFrecmKaZBewD/AgcBVzb8P1HYG/TNBe3akKRdszr9VJWVgLQ7gfEwz9du4ryN+z0uKqeBgDlixbjqa9v81wiIiIi4Oc6J6ZpLgcmm6aZYZpmGDAUuK9hu0iXUVVTTX2dHWj/Y04AUtMbipOCjTs9rj4xDWdMAl6Hg9oV+mstIiIigeHPOicJhmF8C/zUZPOewELDMD5uWDVepNPLn/4cOQ8/TN+oaELDIggPjwx2pF1qbDkp3rTz4gSLhaqegwCoWjC/rWOJiIiIAP61nEwBhgE3N9n2A3AcMB64uxVyibR79qzVeNZmE2KxtPvB8I1S03sBUFyYg8fj3umx1b18XbscFRVtnktEREQE/CtOjgWuNU3zw8YNpmk6TNP8DF/BcnJrhRNpr7xe7+Z1Tsqd7X91+EYJyWnYQkJxu5yUlxTu9NjajN6UXHQLyZdOxmrVDOEiIiLS9vwpTmKBHS1+UACk+B9HpGPw1tfhbVgrpNLl7BDjTQCsVhspaT0AKCrY+aB4rDaqQ6Ior6rHZvNreJqIiIhIi/jzjmM+cP4O9p0LaLYu6fRcFb5WE5fFQr3H0yFm6mrU7HEnDQpKa3DW2tsykoiIiAjg3zon9wKzDMP4G/gIKARS8Y05GYdvvRORTs1d5StO7FZffd9RunVBkxm7Nu2i5QTA68H6xvOs2riGvvfeT2haehunExERka7Mn3VOvgX+BXjxDX5/HrgHX6FznGmaX7VqQpF2yNUw3qTK7RtUHhvfgYqTbr5B8buaThgAixW3wwkeN7VLFrVxMhEREenq/F3nZJZpmnsA0UAPIM40zXGmaX7RqulE2iuXC1tsLKUOB9CxWk5S0v/p1uX1end5/D9TCi9o01wiIiIi/nTr2sw0zTogr5WyiHQYsXvuRfLEfTl/370AiInrOGNOklMzsVpt1NfVUlleTHxi6k6Pr+5lkP7X19SuMnFXV2OLiQlQUhEREelqNAWPiJ9cbhcVFb6J62I6ULeukNBQUtJ9M3YV5K7d5fHO2ETqE9PA48G+bElbxxMREZEuTMWJiJ9KSkrwejxYLFaiY+KDHadF0jP7AlCQt+viBKCyh69rV/VCrRYvIiIibUfFiYgfNr08g8Jp0xgYHUNUTDxWqy3YkVokvbuvONnUjJYTgKqevtXiqxYvwdOwvouIiIhIa9utMSciXVXdmiwsm/IJs1o71ExdjVraclKX0p3q/iPI3GMUVnY9iF5ERETEH34VJ4ZhpADXAYcC3YDDgROAhaZpftJ68UTap8aphMudzg41U1ejxuKkpCAXp9NBaGjYzk+wWNgw8QTShmYQFh2Jw+EOQEoRERHpalrcrcswjL74VoG/CMgB0vAVOYOADwzDOLpVE4q0M16XC09tDQCVLicxcR2vOImNSyIyOg6v19O8xRgbFJTW4PKo5URERETahj9jTh7Ftyp8X+DfgAXANM0zgE+Bm1stnUg75KqqAsADVLtcHWoa4UYWi4X07n0AKMjNbvZ51fmFFHz1LY58zSAuIiIirc+f4uRg4B7TNMthm87nzwPDdzeUSHvmrvJ16bJbLHihQ7acQJNxJ7nrmn1O9C9fUPb2TKr/+rONUomIiEhX5u9sXa4dbA9n24JFpFNxV1YAUOX2jbuIje94LScAGS0cFA9Q2Thr1/x5bZJJREREujZ/ipNfgZsMw4huss1rGIYVuBT4vVWSibRTXqcLW2wsZQ4HQIccEA9bTifs9TbvM4XqzAF4LVbqc3NxFhW2ZTwRERHpgvwpTm4EhgBZwEx8LSXXAvOAicAtrZZOpB2KGTOWIU8/wwNrVvl+7qDdulK79cZqtWGvqaSirKhZ53jCI6nN6A1A7aIFbRlPREREuqAWFyemaS4FxgM/AJMAN74phbOACaZpLmzNgCLtUU1NDXX2WgBiOmi3rtDQMNK6+wqNvA2rmn1eVU/favFVC7RavIiIiLQuv9Y5MU1zNXBGK2cR6TCKiooBCA2LIDw8Mshp/Ne91yA25WSTt2E1Q0dPbNY5VT0NMv76mtpVq3BXVWGLjW3jlCIiItJV+LsIowUYDUSzndYX0zR/2b1YIu1XwcxXqMjKYkhMLJsiYoIdZ7dk9hrE/D++Inf96maf44xJoD45g/CyIhwb1xM5VBP0iYiISOtocXFiGMaewHtAj4ZNlobv3oZfewFbq6QTaYfqsrOx5eYQYbN12PEmjbr3GghA3sbVeL1eLBbLLs7wydn3eAaN6EvcoO44nVotXkRERFqHPy0njwFO4Bx8K8R7WjOQSHvnaljnpNzpJLYDLsDYVFr33thCQqm311BalEdyWmazzqtPTKOk3oLTrb/+IiIi0nr8KU7GAqeapvlJa4cRae+8Hg/uhhXiK51OUjvoYPhGNlsIGT36kbvOJG/D6mYXJwDlVXXU1LmICbPipXktLiIiIiI7489UwoWotUS6KE9tLTQsvljhchLbwbt1gW/cCUBuC2bsArBkm+Q/cA+FM19ti1giIiLSBflTnDwN3LjVIowiXYK7oUtXHeDyeonp4N264J9xJ7nrW1acgAXPxnVULpiP16PPK0RERGT3+dOtayAwFNhkGMYyoHar/V7TNA/e7WQi7ZCr0lecVDW0nnT0AfEAPfoOBiBvw2pcTichoaHNOq8mozeesAiorKR+bTYR/Qe0ZUwRERHpAvxpORkALAT+Buz4Zuhq+uXPNUU6BK/TiS0ujlJHPUCHHxAPkJyaSVRMPG6Xk7yNzZ9SGKuNqkxfQVKj1eJFRESkFbS45cQ0zUltEUSkI4gePoL+Ux/nxNFDgY67OnxTFouFXv2GsXLxH2zIXkavfkObfW5VT4P4tUupmj+f5H+f1IYpRUREpCtQK4dIC5WWlgBgtdqIio4LcprW0au/ryDZsGZ5i86rzhyA12rDsSkfx6a8togmIiIiXUizWk4Mw3AD+5im+ZdhGB58Cy3uiNc0Tb9WnhfpCIqKCgGIjkvAau0c9X3v/r5V3jdmL8fj8TT7dXnCwqnN6EN03hpqFy0kLKN7W8YUERGRTq65RcTd+BZcbPz1zooTkU6r8O03cS5dzMi4eIo7wXiTRhk9+hEaFo69torighzSuvVq9rnlfYcRGR9NZO/ebZhQREREuoJmFSemad7V5Nd3tlkakXaubt1awjZtItJq6xQzdTWy2ULo0Wcwa1ctYn3WkhYVJxUDRhOauA8DB3drw4QiIiLSFTS3W9f+LbmoaZq/+BdHpH1rXOekwuXsFGucNNVn4EjWrlpEtrmAPfY7ukXnVlTVU213kRQThtutNU9ERETEP83t1vUT/3TlsuzgGG/DPi9g271YIu2Tu2Gdkwqnk/ROVpz0HzyGH7+YydpVi/F43FitzR865nR5KFi9llBPJVGjx7VhShEREenMmvvuQ9MHS5fncTrx2O0AVLqcxMR3nm5d4FspPiIyhjp7NXkbVtOr35BmnxtWXgSvPktuaCj9H38Ka3h4GyYVERGRzqq5Y05+busgIu2du6rK993rpcbt7hQLMDZltdroO2gkKxb9wZqVC1pUnDjiU3DGJhJaVYZ9+VKix6j1RERERFrOr3lQDcNIMQzjQcMw5huGkW8YxkjDMO4wDOO41g4o0l40jjepcrsBOt2YE4B+g8cAkG22cMV3i4XKngYA1fPntXYsERER6SJaXJwYhtEXWAxchG964TR8LTCDgA8Mw2jZSFqRDsLrcGCLi6fUUQ/QqWbratTfGAvAxuwV1NlrWnRuZe/BAFQtXIDX5Wr1bCIiItL5+dNy8ihQCPQF/k3DAHnTNM8APgVubrV0Iu1I5MBBpN11NzcuXwJ0zuIkKbUbyWk98HjcrF42t0Xn2lN74oqKwWO3YzdXtFFCERER6cz8KU4OBu4xTbOcbRdjfB4YvruhRNqr4uIiACKj4wgJCQ1ymrYxZNQ+AKxYNLtlJ1osVPb0tZ7UqGuXiIiI+MGvMSfAjvpshKPV46UTayxOYjthq0mjwSMnALBq2VycTkeLzq3q5StOqpcvw+vVPwUiIiLSMv4UJ78CNxmGEd1km9cwDCtwKfB7qyQTaWeKP/qA0A8+YHxCIjHxnW8wfKPuvQYSm5CMo95O1vL5LTq3JqM3RUecQdpt92Cz+fvZh4iIiHRVzV9l7R834itAsoAf8bWUXAsMBQYA+7XkYoZhJAH3A8cAcfgG299omuZvDftHA08A44ESYJppmo/4kVtkt9StX09UcTExthAcsZ235cRqtTJ4xD7M/fVzlsz7lT6DxrbgZBvF6f2pcnhJsFnxeNxtF1REREQ6nRZ/tGma5lJ8hcIP+BZndAOH4itWJpimubCFl3wb2Bs4FdgDmA98YxjGYMMwkoFvgVUN97wDuMcwjHNbmltkdzVOJVzhchLbiVtOAIaN9X3GsPjvX3A46lp0rhfIL67B7UVdu0RERKRF/Gk5wTTN1cAZu3tzwzAG4Cts9jVN84+GbZOBI4HTATtQD1xqmqYLWGEYxkDgBuDl3b2/SEs0FieVTidpnXCNk6Z69RtGQnI65SUFrFw0m+HjDmzR+a6fviHrlSV0P/9CIvr2a5uQIiIi0un4uwhjP8Mwhjb8OsEwjKcNw/jUMIyzWnipYuBoYPPUPqZpevFNT5yEr4vYLw2FSaMffLc10vzJLuIPr9eLu7JJy0knHhAPvq5do/c8GIAFc75r8fmWTTm4NuVTu7BlY1ZERESka2txy4lhGEcAnwBP4htr8hxwIrAEeMUwjDDTNGc051oN0xF/udX1TwL6A18D9zVct6m8hu+98K234peQkNYdrNs4+FeDgNteMJ61227fvLBgpctFXEIyVqslYPcPhjH7HMJPs94ke+VCKsuLSEhq/ucBVb2HELduOZV/zyX1/07CYuncz2p36N+OwNBzDgw9ZxHZXf5067od+Aa4yzCMeOAE4AHTNG83DONeYDLQrOJka4Zh7Au8BHximuZnhmE8hq9bV1ONHeAj/LkHgNVqITExetcH+iEuLrJNrivbCuSzttf5Wk3sbjcOj4eU9HQiI8MCdv9giOzRmwFDxpC1YgHz//iSo0+6qNnnugcOw/vbJzgKCgivLCG6T+82TNo56N+OwNBzDgw9ZxHxlz/FySjgWNM0qwzDOLnhGu837PsW+J8/QQzDOA54E/gTOK1hsx3f2ilNNRYlNf7cB8Dj8VJZWevv6dtls1mJi4ukstKO2+1p1WvLloLxrOsKyrDFxVFWWABAaFgMdnvL1gDpaKxWCxMP+TdZKxbw509fMPHQUwkLb+5nAhZqMvsRs2EVeT/9RspxKW2atSPTvx2BoeccGG35nOPiItUiI9IF+FOc2JucdyRQYJrm4oafM4Dyll7QMIwr8E0X/CFwpmmaja0lG4HuWx3e+HNuS+/TlMvVNv85ud2eNru2bCmQzzoksycR/7uWq48+jNCwCELDIvF4Ov9MVENG7UVSSjdKi/OZP/tb9tz/mGafW9FzMDEbVlHx91wSjj62DVN2Dvq3IzD0nANDz1lE/OXPRxC/AdcahnEacDK+ggLDMMbhm+r3t5ZczDCMS/GNX3kKOKVJYQLwC7CfYRi2JtsOBkzTNP0ebyLij82rw3fyaYSbslpt7DPpeAB++/bdFq0YX9XTwGuxUr9xI86GFicRERGRnfGnOPkvkAm8AawF7m3Y/gW+Llc3NvdChmEMwtdi8hHwAJBmGEZGw1c8vvEnccAMwzCGGoZxDnB1w7EiAdVYnMR08pm6tjZ23yOIS0ihsryYeb9/uesTGnjCI6nqM4TwvSZ0+skDREREpHX4swjjWmAY0M00zeGmaW5q2HU8MMQ0zTUtuNz/AaH4BtXnb/X1REPryOGAgW9xxjuA60zTfLWluUV2R+mXn5Mw6yv2TUomtpOvcbK10NAw9j/CNwzsl6/fwV5b3exzc/Y/kZrDTiK8W7e2iiciIiKdiL+LMHqBgq22/WkYRrRhGJNM0/yqmde5H7h/F8fMBfbxJ6dIa6nfuIHY8nLiQkJxJyQHO07Ajdn7UP788WOKCzby/Wevcswplzf73JLKOuocbkLUeCIiIiK74M86J72B54EDgB3NpWrbwXaRDslVVQVApctJbHzXK05sthCOPuVyXp12I3///iUj95hEr35Dm3VueaWdkpWrSAizEN5/YBsnFRERkY7MnzEnjwETgBeABcDvwCPAYsCLr4uWSKeyeXV4p5O4LlicAPQdOJLRex0CXi8fvPoQ9tqqZp0Xay6g4tH7KXz3nTZOKCIiIh2dP8XJAcCtpmlOBl4G6k3TvAEYD/wMHNeK+UTaBXeVrzipdLmI7YLduhodceIlJKZ0o6K0kA9fewS3273Lc6p6DMSLBfuaLJwlxQFIKSIiIh2VP8VJDLCw4dfLgdEApmm6gaeBg1ojmEh74fV4cFf7BoH7Wk667oKCEZFRnHTeTdhCQlm9bC6fv/MkXu/O13txR8Zgz/CtEF87f14gYoqIiEgH5U9xko9vsUWALCDJMIzGqXhKgfTWCCbSXrirq6HhDXiVy9ml1jnZnu49B/B/59yAxWJlwexv+Pydp/B4dt6CUtHbNz6lcu6cQEQUERGRDsqf4uQL4B7DMCaYprkRyMG3KGMscB67uXK7SHvjsdshJoZyp4Pw6FhCw8KDHSnohoyawL9OuwosFub9Pou3p9+70ymGK3sPxmuxYM/OxtmwXoyIiIjI1vwpTm4HyoG7G36+GZjcsO0M4NHWCCbSXoSlp1N66mlctGh+lx0Mvz1j9zmMkxu6eK1aOofnHryC9WuWbfdYX9euPgDUzP87gClFRESkI/FnEcYS0zT3As5q+PkN4EB8K8MfZJrmc62aUKQdKCz0LesTo+JkC0NHT+S8qx8mMSWDitJCXn78Oj5543Fqqiq2Oba8oWtXzbLtFzAiIiIifi3CCGCaZr5hGIOBRCDfNM2HWy+WSPvSWJyo5WRbmb0HcfH1T/H1Ry+wYPY3LPjzG1Ys+oMDjzqdPfY7BpvN989MZZ+hRHbvRt/DJwQ5sYiIiLRX/nTrwjCM8w3DWA8sA34DVhmGsc4wjNNaNZ1IO1D23bcMWbiQSSmpXXoa4Z2JiIziuNOv5vxrHiWjRz/q7NV89cELPHP/pZhL5+D1evGER1KYkElVnYuQEL/+6REREZFOrsXvEAzDuAKYDswD/gMcCZwLrABeNwzjpFZNKBJkjrwcUuvqSQoNU8vJLvTsO4SLrnuCf516FdGxCZQU5vLW83cx8+lbKMhbi9vtZVNJzS6nHxYREZGuyZ9uXZOBp0zTvGqr7a8ZhvEicCfw3u4GE2kvXE1Wh09Vy8kuWa02xu17BMPG7s+v37zDnz99RLa5kOemXMm4CYdz4YABrMrNotf1NxCalrHrC4qIiEiX4U/fih7AZzvY9xbQz/84Iu2Pu6oKgApX116AsaUiIqM49LhzufyW5xk6eiJer4e/f5/Fxj9/wF1eRvU8zdolIiIiW/KnOJkLHLyDfWOAxf7HEWl/XJW+macqXS6NOfFDUko3Tj7/Zs6Z/CDdeg7g9+JCAFZ89AFlZWVBTiciIiLtSbO6dRmGsX+TH98CHmtYdPFdYBO+GbuOAK4CLm7tkCLB1Nitq9rjISo6LshpOq4+A0Zw4bWPs+inT3BtWEyKByafeTI3P/oEgwcPDXY8ERERaQea23LyE/Bjw9dTQBhwKfADsBz4Hd/ijAnA260dUiRYPA4H1NcD4I2OxWrVLFO7w2q1MuagEyhP7QHAEK+X8847k99++yXIyURERKQ9aO6A+EltmkKknfLYa3FHRuKsriYkNinYcTqNuiF7wa8fcnD3HryTl8PkyZdyzz1TOOqofwU7moiIiARRs4oT0zR/busgIu1RSHwCi/bdlylT7mXYmInBjtNpVPUchCc0jASng3MPP4qXv/6SW2+9AavVyhFHHB3seCIiIhIkzeqjYhjGL4ZhjG7JhQ3DGG8Yxm9+pRJpRxpXh4/RGietxhsaRtnAMYTtdxBXXH8jJ5zwf3g8Hm655Xp++OHbYMcTERGRIGlut64ngK8Mw/gbeB341DTN2q0Pahgkfzi+QfFjgMtaK6hIsDQWJ1qAsXUV7HE4Ed3i6J+exm233Y3H4+GTTz7kppuu5cUXX2PEiFHBjigiIiIB1txuXR8YhvEzvkHvLwIhhmEsB9YCNfgGwvcEhgPOhmPONE2zoC1CiwRK+S8/cdCmApyp6URrGuFWV1pZR3Wdi+gwG7fddjelpSX8+uvPXHXVpbz22tv07Nkr2BFFREQkgJo99ZBpmsUNq8L3xrdK/Cp8BcleQDKwArgQ6Gma5lUqTKQzcOTl0gMLyWFhWoCxDVRV1VE0fxGVv/5CSEgIDz44lcGDh1JWVsp//3s5drs92BFFREQkgJrbrWsz0zRLgOcbvkQ6NVeFbwHGcqeT/vGarau1RZbkUfflS+SHh9N//J5ERUUzbdqznHbaiWRlrea+++7knnumYLFYgh1VREREAkCLNojsRH1pCeArTuISU4OcpvOxp2TijE3EW19P7eKFAKSlpTNlyqNYrVY+//wTPvro/eCGFBERkYBRcSKyE46yMt/3sHBCQ8OCnKYTslgo7zMMgKo5f27evMcee3HFFVcDMGXKPWRnrwlGOhEREQkwFSciO+GtrvZ9j4kLcpLOq6LfCACqlizG3fC8Ac455wImTJiIw+Hg1ltvwOl0BiuiiIiIBIiKE5Ed8DidWB0OAKyaRrjNOBJSqU/OALebmvl/b95utVq54477iIuLZ/nypcyYoWFuIiIinZ2KE5Ed8NTWUBcaQp3bTViCZupqS+V9hgNQ8cfvW2xPT0/n5ptvB2D69GdZsWJZwLOJiIhI4DRrti7DMM5uyUVN03zNvzgi7UdIfAJvJSQwa9bnHHnihcGO06lV9BtB2vzvcVVV4amzY42I3LzviCOO5ocfvuObb2Zxzz13MHPmO9hstiCmFRERkbbS3KmEX2nBNb2AihPpFAoK8gGIiVO3rrbkiopl3fGXMm7/UYTFROJyebbYf8MNt/DHH7+xfPlS3n33TU477awgJRUREZG21NxuXX1b8NWv9WOKBEd+vq84iUtMC3KSzs8el0J+cQ3e7SxpkpycwuTJ/wPgqacep6BAa7yKiIh0Rs1qOTFNc31zL2gYhlZLk06h9IfvuTQ+kV9dbuITNeYkEIrL7VRX1RHmsGOLi99i34knnsxnn33E4sWLePjh+3nkkSeClFJERETaSotXiAcwDONU4AAgDGgsRqxANLAP0KNV0okEUWV2FoNjYllRXUVMXGKw43QNS+ax8aVZxI8eQ/r5F22xy2q1csstd3H66Sfy3XdfM2fObPbaa58gBRUREZG20OLZugzDuAN4EzgVOBk4HjgaOBs4AfisFfOJBI29uAjwLcBotWoAdiDUxySC3U7lvL9x19Zus98wBnPSSacC8OijU3C73YGOKCIiIm3In6mE/wO8DiQBjwGfmaaZDuwBlACa61M6BWd5OQCeyJjgBulC6lK640hIxetwUDN/7naPueSSK4iNjWPVKpNPPvkwwAlFRESkLflTnGQCM03T9ALzgAkApmnOA+4DLmi9eCLB462p8f0iNiGoOboUi4Wy/iMBqPz99+0ekpCQyEUXXQbA008/QU1N9XaPExERkY7Hn+KkBt90wQCrgb6GYTQuSrAQ34xdIh1eSH0dANYETSMcSBX9RuK1WKhdvQpHwabtHnPqqafTq1dvSkqKmTHjhQAnFBERkbbiT3HyF76uXQBrABdwSMPPQ4D6VsglElSe+npCPb4aPDQxNchpuhZXVCw1mf0BqP7zj+0eExoaxn//ez0Ar7/+Cvn5eQHLJyIiIm3Hn+LkfuAUwzA+M02zHt/4k1cNw/gAeBT4ujUDigSDx15LhcdDrctFRFJGsON0OeX9R/m+//E7Xo9nu8cceOBBjB+/Jw6HgxdeeCaQ8URERKSNtLg4MU3zF2A88E7DpiuA94HBwHvAVa2WTiRIQhISuWFdFucs/JvoeLWcBFpVT4PKcQeSMvlabCHbnynNYrFw5ZX/BeDTTz9i3brsQEYUERGRNuDXOiemaS4GFjf8ug64aOdniHQsdXV1lJaWAhATrzEngea1hZAzfH/Sw+JItlnxeLY/ZfCoUWM44IBJ/Pzzjzz77FM8+ODUACcVERGR1uTvIozxwEH4Fl3cpvXFNM3XdjOXSFAVFOQDEBERSYSmEg6avKJqeqTGbF7pdXsuv/xqfvnlJ77++kvOPfdCBg8eErB8IiIi0rpaXJwYhnEkvu5bUTs4xAuoOJEOreTbb7h78DCW4es+JMFRvXoVG759m/jBg0g47MjtHjNokMERRxzNrFmf8/TTj/Pkk88HOKWIiIi0Fn8GxD8ArAAOAPrjmzq46Ve/VksnEiR1uTkMjoklPSYu2FG6NGtpCfWLF1D2w/c7HBgPcOmlV2Kz2fj1159ZsGB+ABOKiIhIa/KnW9dg4DjTNH9t7TAi7YW7ogIAb0x8kJN0bZW9h9Bt7lc4i4uxr1hO1LDh2z2uV6/eHH/8iXzwwbs899yTPP/8ywFOKiIiIq3Bn5aT9YA+TpZOzdKwOrwlISXISbo2b0go5X0bVoz/9eedHnvBBZcQEhLKnDmz1XoiIiLSQfnbresOwzD6tHIWkXYjwuUEIDQ5PchJpGzQGAAqF8zH1dCitT3dunXn2GOPB2D6dK17IiIi0hH5063rDCATWGMYRhFQu9V+r2ma/Xc7mUiQeD0eohvmhwpL6xHkNFKfmI49rSeRhRup/vN3Eg4/aofHnn/+xXzyyYf88cdvLFmyiBEjRgUwqYiIiOwuf1pOcoCP8c3INQv4eauvX1ornEgwVBduwmax4PF6iUzvFew4ApQO8LWelP30004Hxmdm9uCYY44D0KrxIiIiHVCLW05M0zy3LYKItBeb1q+nqL4ei9VCSEQ0DueO3wxLYFT2GUpK9kISD9wfK168Ozn2/PMv5rPPPubXX39m+fKlDB26/UH0IiIi0v74s87Jzj5K9gDVpmmW+51IJMjy6uxMXrKAgYOGcKZLhUl74A0NY83h5xA/JJ2Q8DCczu2vGA++mbuOOupffP75J7zwwrM8/vjTAUwqIiIiu8Ofbl3rgLU7+FoPlBiGUWQYxq2tFVIkkPLycgFIy+iOd2cf0UvA5RVWU9+MgvGCCy7GYrHw00/fs3LligAkExERkdbgT3HyH8ABfAOcCxzZsO0zfKvD3w28AtxqGMalrRNTJHByc3MASE7JCHIS2VpJcQX5335PxQ/f7vS4Pn36cXjDwHnN3CUiItJx+DNb12nA29sZe/K6YRjPAuNM0zzWMIxy4FLg2d3MKBJQmdnZ3D14GDU2W7CjyFbCc9dS8/1b2COjiJ2wH9aIiB0ee+GFl/L111/y/fffsmZNFv37DwhgUhEREfGHPy0nBwJv7mDfh8DBDb/+DdCUwtLhxNTWMjgmlviI6GBHka1UZw7AGZeEx15L9V+zd3ps//4DmDTpEABefnl6IOKJiIjIbvKnOCkBdrR4wCigsuHXMUCNP6FEginC5QIgLKVbkJPINiwWSozxAJR9/x3eXQwKOu+8iwCYNevzzd31REREpP3ypzh5A7jbMIzJhmFkGoYR2vD9SuBO4A3DMBKBq4E/Wy+qSNurrKwgvqE7V3i6FmBsj8oHjMYTEkp9bi51q8ydHjt8+Aj22msCbreb1157KUAJRURExF/+FCe3Am8DU4ENQF3D96n4Cpeb8Q2SH9NwrEiHsXHdWhJCwwDwxCYHOY1sjycsgor+IwEo/+G7XR5//vm+1pOPP/6AkpLiNs0mIiIiu6fFxYlpmi7TNM8DBgEXA7fgm61rkGmaF5um6cC3cnymaZqLWzWtSBvLXb0KALfXS31oeJDTyI6UDN4TgKr583AUFOz02D322Ivhw0dSX1/PG2+8Foh4IiIi4id/ZusCwDTNNcCaHewr8zuRSBCVrF9HH8Bus7GTdf4kyBwJqVT3GEhiTBhWdr7uicVi4fzzL+a//72cd999k3PPvZDY2NgAJRUREZGWaFZxYhhGNnCCaZqLDMNYi289kx3xmqapWbqkQyrOz6ewvp6Q5GScWh2+Xdt44ElYeybTPzMNj2vnleQBB0yiX78BZGdn8e67b3L++RcHKKWIiIi0RHO7df3MP7Nw/byLr19aOaNIwMwtyOeKJQtYt98hwY4iu+C1hVBQUkN5dT02287/KbNarZx33oUAvPHGa9TV1QUiooiIiLRQs1pOmi64aJrmOW0VxjCMW4FDTNM8sMm20cATwHh80xhPM03zkbbKIF3bxo0bAEhKy6Q2yFlk1+z1LnKycnCtXUjCEUdhbZjMYHsOP/wonnlmGnl5uXz88QeceuoZAUwqIiIizeHPbF0YhhFrGEZmw6/DDMO4zjCMaYZh7O9vEMMwrgbu3mpbMvAtsApfcXIHcI9hGFuvTi+y26qqqigrKwUgPikjyGmkWbxevC9No/iTj6mes/OZy0NDQ/nPf84H4NVXZ+B0OgORUERERFqgxcWJYRh7AuuBKxs2TQMeBM4EfjAM49gWXi/TMIxZwL3A1osWXATUA5eaprnCNM2XgceAG1qaW2RXNm5cz5V9B/DA8FGEb8oLdhxpDouFkkHjACj75iu8np2PEzruuH+TlJRMfn4eX331RSASioiISAv403JyH7ASeN4wjEh8RckzpmkmATPwTS3cEmOBMmAkMGerffsBv5im6Wqy7QfAMAwjzY/sIju0ceMG+kdH0z8iEucuBlhL+1E+cCyesHDq8/KoXbpkp8dGRERw5pn/AeDll6fj2UUxIyIiIoHlz1TCewGnmKa51jCMY4BIYGbDvrfxFSvNZprmZ8BnAIZhbL27B7D1u43Gj7R7AYUtuVdTISF+9WjbocYBubsamCu7r62edc7GDewV5lvbxBkdj9ViadXrdzRWq2WL7+1WRATlg8aStHQ2ZbM+J27MaCw7+b077bQzePnl6WRnr+HXX3/k4IMPDWDYbenfjsDQcw4MPWcR2V3+FCcefF2tAI4CyoG/Gn6Og1YdRxzV5F6NGqfZifD3olarhcTEaL9D7UxcXGSbXFe21drPujRvA2HWhv9Q4xKJdO1sxuyuIzw8NNgRdql23P4krphL7erVWHPWkjByxA6PTUyM5pxzzuHJJ5/k5Zenc+KJx+20mAkU/dsRGHrOgaHnLCL+8qc4+Ru4wDAMO3AK8Llpmt6GblY3NuxvLXZg62W6G4uSGn8v6vF4qaxs3bmYbDYrcXGRVFbacbvVVaQttdWzLlm7HmyhuMLDqaxz4ejiqzBarRbCw0Opr3fi8bTzQs0aQfmgMSSumMv6t97F27PfTg//v/87nRdeeIGFCxfy1VffsffeEwIUdFv6tyMw9JwDoy2fc1xcpFpkRLoAf4qT64CvgFOBInwD2QGW4hvDcnjrRANgI9B9q22NP+fuzoVdbbTAntvtabNry5Za+1nXFxVBRneIT6De4cLbzt+PB4rH423/xQlQNHQC8dlLsHXvgaveAbYd//MWH5/Iv/99Em+99TrPP/8s48fvHcCk26d/OwJDzzkw9JxFxF8t/gjCNM0FwABgH6CfaZqrG3ZdCgw3TXNeK+b7BdjPMAxbk20H+2KYfo83EdlaRUU5YfW+HoShKWkqTDogV0w8WSdfg/eIfxMaseP1ThqdffZ5hISEMHfuHBYtWhCAhCIiIrIrfrWPmqZZZZrmHNM0a5ps+8A0zU2tFw2Al/CNY5lhGMZQwzDOAa4GHmjl+0gXl52djQcocbkgURPBdVQuawjr8yuob8Z4oW7duvOvfx0PwIsvPtfGyURERKQ52nXnzYbWkcMBA5iPbxHG60zTfDWowaTTWbt2Dd8WFfB6TCT2A44OdhzZDYWltWxauIzyZqxjcu65F2K1Wvn1159ZuXJ5ANKJiIjIzvgz5qTNmKZ5zna2zcXXhUykzaxduwaAvn3649AaJx2atbKMqpefpBovEUOHE9Gr9w6P7dWrN4cffhSzZn3Oiy8+xyOPTAtgUhEREdlau245EQmU7OxsAHr36dvlZ+nq6JwxCVT1HQZA6Scf7fL488+/GIDvvvuGrKzVuzhaRERE2pKKExFg3do1PDViNMMWLMBVXR3sOLKbCkcdgNdipXrRQuxrsnZ67IABAzcvxPjSSy8EIp6IiIjsgIoT6fLsdjt1xcWkhUcQUlRIXfvq7Sh+cMQnUzFgFAClH3+wy+MvuOASAL766gs2bFjfptlERERkx1ScSJe3fv06kkJ9q6Bb4xNwqFdXp1A4cn+8Nhs1K1ZQu2Lng92HDBnGxIkH4PF4ePnl6QFKKCIiIltTcSJd3tq1a0gLDwfAmpiES6tHdwqumHjKBo0DoOSj9/HuYvGaCy7wjT357LNPyM/Pa/N8IiIisi0VJ9LlrV2bvbk48SQkBzmNtKaiERNxJaYSPfEALLs4dvToseyxx164XE5efXVGQPKJiIjIllScSJeXnb2G9LAIAJyxiUFOI63JHRnD6mMvoXrIeELDdj2W6MILLwXgww/fo7i4qK3jiYiIyFZUnEiXl5W1anPLiTNGxUln48XCuvwKqutcWHbRfLLHHnsxcuRoHA6HWk9ERESCQMWJdGl2u50NG9ZT7nRiTUjEEZsQ7EjSBkrL7Wz45nvW330H7traHR5nsVi46KLLAHj33bcoKioMVEQRERFBxYl0cWvWZOHxeHi9oow+Dz9GTWrPYEeStuD14vjha+rWr6d81hc7PXTfffdj5MhR1NfXa90TERGRAFNxIl3a6tUmAIMGGThdHq0O31lZreSPPRiA0m+/xlm04/EkFouFyy6bDMD777/Dpk35AYkoIiIiKk6ki1u1asvipF6LnHRa1ZkDqc3sh9flouTD93Z67F577cO4ceNxOp28+OJzAUooIiIiKk6kS1u92mRSciqHZ6+l7IN3tMZJZ2axkD/2ELxYqJz7F3ZzxU4O/af15OOPPyA3NydQKUVERLo0FSfSZXm9XlavNsmIiCC0rg6nvS7YkaSN1SdlUD7YtzBjwesz8bpcOzx23Lg92HvvCbhcLl544ZlARRQREenSVJxIl1VYWEBFRQXpEb41ThyaRrhLKBg9CU9kDI78PGqXL93psZdf7ms9+fzzT1i/fl0A0omIiHRtKk6kyzLNlQD0iI0DwBGTEMQ0Eiie8Ehy9jkazr2S+HHjdnrsiBGj2G+/A3C73Tz//NMBSigiItJ1qTiRLmvFimUApIWGAVAXHR/MOBJA1T0N1oWlUlxRR0jIzv8ZvOyyqwCYNevzzQWtiIiItA0VJ9JlLV++lGibjQivF4Da6ITgBpKAqq1zsSannNpNBdStWb3D44YMGcbhhx+F1+vl8ccfDmBCERGRrkfFiXRJXq+XZcuW0j0iEgBrQiJ13pAgp5JAK1uyjHW33ULec8/sdOX4K6/8LyEhocye/Tt//PFbABOKiIh0LSpOpEsqLCykuLgIq9VKxMBBhPTtrwUYu6CapG64omJxlZVR8sG7OzyuR4+enHrq6QA8/vgjuN36syIiItIWVJxIl7S8YZYmT0YGA267DctJ5wQ3kASFNySUnL2PAaD855+oWb5sh8decMElxMTEsmrVSr744tNARRQREelSVJxIl7Rs2RIAhg4djheorHUGN5AETW1Gb8qH7AFA4Wsv46nb/no3CQmJXHDBJQA8/fQT1O3gOBEREfGfihPpkhpbToYPGYbL5aWuXsVJV5Y/5mDcsQk4i4sp3kn3rtNOO5Nu3bpTULCJN954NYAJRUREugYVJ9Ll+AbDL8ECjPzpR9ZcezWO0rJgx5Ig8oaGkbNPQ/euH3+gdsXy7R4XHh7OFVdcDcCMGc9TWFgQqIgiIiJdgooT6XLWrVtLRUUF3WJisLhcuCoqqLWFBzuWBFlNt36UDp9A6KTDiRs2ZIfHHXnkMYwcOYra2loef/yRACYUERHp/FScSJezYME8APYxfG9AbSmp1Lm8wYwk7cSmsQezbuj+lNs9O1yc0Wq1cuONt2GxWPjyy8+YN29ugFOKiIh0XipOpMtpLE5GZfb0bUjNwO1WcSKAxUJFdT3mhlLq653Ys7a/OOPQocM58cSTAXjwwXtxuVyBTCkiItJpqTiRLmfhwvkA9I6OBsCVnB7MONIO5W0oZM1dd7Lx4SnY12Rt95grrriauLh4Vq0yef/9dwKcUEREpHNScSJdSnFxERs3bsBisRBXVw9AXUJqkFNJe+MOjaA6PBbcbvKffwZXVeU2xyQkJG4eHP/0009QXFwU4JQiIiKdj4oT6VIaW00GDRyEq2ATAPZ4FSeyFYuFnL3/hSsxBVdpKQXTn8Pr8Wxz2IknnszQocOoqqpkypR7gxBURESkc1FxIl3KvHl/AzBmxGji9t6H8AGDqI6MD3IqaY88YeGs3+//8IaGUrN8OaWffLjNMTabjdtvvxebzcZ3333NDz98F4SkIiIinYeKE+lS5syZDcC4vfeh+7nnkzD5OuwODYaX7atPTCNvn38BUPLF51T+9ec2xwwePIT//Od8AB544C4qK7ftAiYiIiLNo+JEuoyCggKys7OwWCzsuefeWK0WqmuduD0qTmTHKvoOp2z4PgAUv/8uHqdjm2MuuugyevXqTVFREU88obVPRERE/KXiRLqMP//8HfBNAxvlcuFxOiivrg9yKukI8sccTOWIfYi57BrCoyK32R8REcHtt98DwAcfvMuff/4R6IgiIiKdgooT6TIa3zDuvfcEcqY+zIqLLqRu9aogp5IOwWolZ+yhrKywUlbtIDTUhte7ZYvb+PF7ctJJpwFw++03UVFRHoSgIiIiHZuKE+kSPB7P5vEme48Zh7OgADweaqKTgpxMOpLSyjqWZRdTNHceedMew+PYsovXNddcR+/efSgsLODee+/cpoARERGRnVNxIl3CqlUrKS0tISIikkFxvtm5bCmpVFvCgpxMOppN+WUUzJhOzZLF5D/3NN4mq8NHRkZx//0PExISwrfffsUXX3waxKQiIiIdj4oT6RJ+/PF7wNely52zEQBLZi8cTncwY0kH5A0NY/0B/4c3JJSaxYsoeGXGFmugDBs2gosvvgKABx64m5yGP28iIiKyaypOpEtoLE4mTTqYuvXrAKhPzQxiIunIatN7s/HA/8NrtVL552wKX391iwLlvPMuZPTosdTU1HDttZOpq6sLYloREZGOQ8WJdHq5uTmsWrUSq9XK/vtPom7tWgDsSd2CnEw6surMgeTtdwJYLFT88jMFr7y0uUCx2Ww8+OBUEhMTWblyOVOm3BPktCIiIh2DihPp9H766QcAxowZR6zFgqu0BCwWKuPTgpxMOrqKPsPI2//fYLVS+cdvVP3x6+Z96ekZTJkyFavVyscff8BHH70fxKQiIiIdg4oT6fS++WYWAJMmHYIlJIS0U08n6sCDqXbbgpxMOoPyPsPIPeBEGLMXsRP3x2q1bN631177cNllVwG+8SeLFy8MUkoREZGOQcWJdGo5ORtZtGgBVquVww8/EltMDGlHHYn70ONxuT27voBIM1T0GsLK0Udg5lTi9gJuF+7qagDOO+8iDjzwIBwOB1dffTm5uTnBDSsiItKOqTiRTu3LLz8DfJ9gp6b6unG5PV5KKzVAWVqXx+PFXFfCsrXF5M6YzsYp9+EsKsJqtXL//Q9jGEMoLS3hyisvobKyMthxRURE2iUVJ9Jpeb3ezetMHH30sbhraqj4/Veq8wqoqnXs4myRlvN6Yb2ZQ9VKE8emfDY8cA+1q0yioqKZNu1ZUlPTyM7O4rrrrsbh0J9BERGRrak4kU5r/vy/Wb9+HRERkUyadDC1K1dQ8PIM8qZNpapGbwylbTijYsk6/Fxcqd1xV1aS8+hDlH3/LWlp6Tz55HNERkYxZ84f3HTT/3A1WcBRREREVJxIJ/bOO28CcNRRxxAdHUPN0sW+Hf0MnC6NN5G244qKZfWhZ2MfOBLcboreeoOCl6YzqG9/pk59ktDQUL7//lvuuONmPB79WRQREWmk4kQ6paKiQn744VsATjnlDLxeLzVLfMVJVY8BwYwmXYQ3NIy1+xxHyd6H+6Yanv0H+c89xT777MvDDz+BzWbjiy8+5Z577lCBIiIi0kDFiXRK7777Fi6XizFjxmEYg3HkbMRdXo4lLIyyxB7BjiddhcVCgbEXGw47E29sPDGHHU1oqJUDDzyI++57CIvFwnvvvcPkyZNxOp3BTisiIhJ0Kk6k06mqquKtt14H4IwzzgagevEiAEIGDqayXp9SS2BVp/dh5XGXs8ydwKayOmyhViampvPwTbcTEhLChx9+yNVXX0FdnWaRExGRrk3FiXQ6b7/9OtXVVfTvP5CDDjoUgKq5fwFg7zsErzeY6aSr8tpCKCyr5e/lmzAXZZM/4wV6//gD08+7iOjISH7++UcuueQ8SktLgh1VREQkaFScSKdSUVHOzJmvAHDBBRdjtVpxlpbi3JQPNhsl3QcFN6B0efZ6F+aGUhzd++B1OomeP5+XDziYPdPSWbhwPmeccRKmuTLYMUVERIJCxYl0Ks899zSVlRUMGDCQww47EoDQpCQGPfEksRdcQblTf+Ql+JzRCaze/xQKJ50I0TFQXMy1vfpy14jR2MrKOOec0/n661nBjikiIhJweqcmnUZW1mrefdc3ffB1192MzWbbvM8aHU1xSm/cHvXpknbCYqG41zBWHXcZ9eMmgtXKkPAIpgwfhcVRzw03/Je77roNu7022ElFREQCRsWJdAou1/+3d+/xUZV3Hsc/Z67J5B4IhgTwQuFBBKQo4r2oqHVRqbZW67avl9rWVnvRXW11Vy22rtvWuuta3fLq1sur2626tbUXu9hqtSoRL1wqRi6PIFeTAAkJCQlJJjPn7B9nEmIkCmSSmYTv+/Wa1zl55smZ3zx5MnN+53nOOQkWLvxnkskkc+eew5w5pwDgdrQTCDi0dSRo2K2dPMk+bjSX7XMuYPOlX6Nr0jQKzjqXz139JRzH4be/fZKvXvkZqlOXwRYRERnpQpkOQCQdHn30Z6xeXU1BQSH/9E/f6SmvefDH0NlJcv5lNLdGMxihyIfrKChl/amXEg7CaXMKmTpjNk/e8z1uLC3jjTtv4/VpM7j85lspKCjIdKgiIiKDRiMnMuwtXVrFokUPAHDLLbdxxBFHANC+fj3t69bSvnUL29szGaHIgetKwta6Fjoj4/nyxVcScBxOLhnFmTU1rPjaV6h68D9ItLVlOkwREZFBoeREhrV3393ArbfehOu6LFhwKfPnXwyA53k0/O43AIRPPIWdbk4mwxQ5aPGuJNuOPZMtl1zH9nHH0Om6VEQijHnzTew3r+etu79LUuejiIjICKPkRIatTZs2cu21V9HS0syMGcdz22134jgOAK3L3qDdroNQiPrpp+PqRHgZptoKy2g85/Os/+w/sKy0nNrODsKOQ+PaNVx17VX85S9/IplM0rFlM25XPNPhioiIDIjOOZFhadmyZVxzzRdpbNzF5MlTeOCBnxKJRABItLSw83/9q3aFPnEedYlIJkMVSYtAXhF5F11LbWszVc89zsaNS6lubODmm2/kyHHj+UHlBILBIPnTppM3fQa5U44lPLqsJ2EXEREZDpScyLCSTCZ5/PH/5r777iUej2PMsSxa9DBFRcUAeMkkdf+1iGRzM6HysWyZdBJeu5vZoEXSKJZfxLRLvspR864g/+WnWb7kjyQa6tldOppRkSitK1fQunIFAKFRo4iZYyk89TRiU47NcOQiIiIfbVgkJ8aYALAQ+BJQAlQB11trN2Q0MBlS1dVvce+932fVqr8BMG/eedx11w/IzY311PFcl0A4jBON0jz/72lWYiIjVH5BMWfP/wKnz7uM6uUvcvdrzxLe+Q4nFpcwvaCQj+UXwK5dtCytoiM/j4nHTcV1Id7QQPNLfyV65FFEK8cRHjMGJ6AZviIikh0cz8v+ufjGmIXA9cDVQA1wD3AMcJy19mAnWW9MJt2jGxvTe7WbUChASUkeTU1tJBLaIU6XZDLJ0qVV/OpXj7FkyUsAxGJ53HHH7cyffwlun6YOBBwSXV2883o11i1iGHTvrBUIOOTmRmhvj+ucnUGUznau376VN19/nrWrXqFt13am5BdwXEEhrzbtoiU3j1knzObcykqOqq7u+R0nFCZcXk60opJIRQUFJ55EpLx8oG8r6+gzemgMZjuXluYRDAY24X//i8gIlfUjJ8aYCHAT8G1r7eJU2eVALXAp8EQGw5NBsHPnDqqrV1FV9TJVVS9RX18PQCAQ4MILF/CNb9zA1KmT/C+/9nZaXllC29o1TPjmDXS5sGF7G+u9YoZD4i2STmXlEzh3wdXMu/gqGnZsY91br1K1ejk18TqSe/fy3LOL2ZKXz1mjyzg6L59xuTEiiS7i720j/t42ABKlJVRUjsXzoGX5Mhp+9xTh0WWEiksIFhURKizyl0VFRCoqCebmZvhdi4jISJL1yQkwEygAXugusNbuNsasBM5Eycmw4Xke7e172bNnDy0tzezZs4f6+nrq6mqpra2hpmYb1q6joaH+fb9XVFTERRd9issuu4LxYytxGxvY+cKL7Fy+kj0rV+K2+zcx2fH6craVHMXWumaNmMhhzXEcysonUFY+gTPOu5yueCfvbbFsWV/N1k1r+MV7G9m7ZRMOUBaJMj43l3G5Mcbl5PLkjV+nJeBQOmo0F48p5+xgiHht7f5f57OXUzDjePLy8uh6q5qWPy0mEIsRjMUIxPII5sUIxGIEIlHyZ59EpGwMAF2NjcS31xGIRglEIjiRKE4kghMK4gRDBKJRnGBwCFtMRESyRdZP6zLGXAr8BohZa9t7lf8qVXbhQW5yYzLpHt3Skt678i1dvYWXfrKI8s5WYF+bOj2rHv8XLqUT/8o5M5OtTHQ7enaiHd7/d1gcLKQtdaXn4912JrsdqXr7ttftGSefllTd47wOpnudfaLbV/dPxGj0/LpT6eTjvH9WXO94n/WibE/VNU4XJzuJ/W4T4Nm4w9Z4F26yi0lOkjOjQfBc8Dw8zwXPxU0mwPN4ekcttrXV325+ARcfMXbf6zv+uwzl5BHNL2Xt1PNwZy8gGI4ydtMbzPnzfR9oq9aCMVRP+SQrKk+l09Xc+XRxHAgGAySTrpK9QZSJdvY8j67WBvZut+zd/g4djdvobNxGR9N7xJu3+/+7QHE4zITcGGWRKMXhMCXhCMXhcM/jng3vsDV1r5WLjhjLF8Yf2e9r3re7nXeSDk4gwOnREFfG+v9ffcTLZ00gB8cJMNPr4NPeHpJAEud9SxeHxYECbNAfvZnodvJJtwUP8FKfFG6v9VfChVgnBw+ocOOck2zBf6d9P1VgRaiA9antlnldnN21e1/79az5n8hvhfKxIf/ctxK3i7O7mj7Y5qnl2mAea0N5ABS4Ceb1qts3hg3BXN4O5QOQ6yU5P97Yb5ttCuayKlU34rlcEN/Vb91tgRxWhgsACHoeF8Yb+q1bG4iyLFzY8/OCzvp+6+4MRHg1XEz52LHcf8s1RMPpPf5ZWJiraV0ih4HhMHLSfbZz3z3uDqD0UDYYCDiUlOQNKKi+7n/kCeZuWcWc0WX91vnpihfZk/B38M+acBSzx/Q/r/vRN6toiPuJw+njJjC7vKLfur+sfp2aDj/ZOqliHCdUjOu37q/XrGDbXv98m4+Xj2XWuD47E72uOvq7dauoad0DwLSyI5h55NH9bveZbevY2bzbrzuqjBOOnthv3aqmJohFIVpIaWkZs0v62UlJtPJyvJyXNvlfuDN2xTgZj7ZQjJrYeNaWTKW69HjWFh+H5wSgpd+XFJG+nNEwdgqMfX9xMBmHlhpoa6ClbSdv763Ha62HvfWwdxd07sFra4XOZgjkQciFRAdVjQ1s3NtGLBgkPxgiLxQiLxgkFgyREwywua6WXZ3+QZb60lFsLa8kEgiQEwwQCQSIOAFCqRPzt69fztaW3QAcM6qMnJ7Pkw9mby3rX2dzk7/TPraklCMnTu73LT9nX2PjLn/nuriomGmTpvRbd/n61bxbvwOAaEEhM83Ufuuu3rKaDdvrAJgYy+OEqdP7rbtp6zo21L4HQGVOLrOnHd9v3e3vWTa8txWA0ZEIJ82Y1W/dptr1bNi6GYCCUIg5M0/st25Hw0Y2bH4XgEggwJxZJ/Vb99XGzWzYuL7n5zknntxv3ZXNTWxYb9kAvHD+mVx53gn91hUR6c9wGDn5NPBr9j9yErXWLjjITQ7KyMnarTt55mc/p7C1Gf8LNLWX7/hH7QDeLK4kEQgCDhPaGhkT95OE7tsQeL0yg7eLK4kHQ+A4VLY1cUTHnp7t7eP/sK64ko5QBByH8r1NlLc3vy82D6fnNdYXV9IejuLgULZ3N+V7ex2167kfgr/cXFxBWyQXx3EoaW9mbOu+I3FO95HG1K/UjBpPe14JwVCYks42ypt3+NMzgkGcgL8MRXIJRXLYM3EW8RI/MYvu3kHR1rf7tOa+N7mnYhLto8cDEOjqJBDvIBErJBwJE+9K6LySQeQ4DpFwSO08yEZCOycTXSTiHSS7Okl0dZKMp5aJuL8e78B1k3iph+u6Peue6+ImU+vJJLgJXM/FTY26hpMJYsk4jusS9FyCnkfAcwm6Lg4eDdE82kP+vYzy4h2M6dyD43ng+Z+oDh6O54+d7IwV0xSK4nlQ0NXBUW27/E+bVLt3j594QE1OEQ3RPPA88hOdTGrbhYfXkx/1/iiuySlgR9QfichLxJnSWt+nzr6/a21OIbU5/khEbrKLaXt27KvnvX9Mpi6ngK25xQBEkwlmttT1+zfYEc1nc6wEgJCb5ITm/U/FA6iP5LExzz+2F/BcZu+u6bduYySX9Xmje36e07St37q7wznYgjLGV1Zw+zUXEUjzPXY0ciJyeBgOIyfdn4QVwLu9yiuAVYe60XRfReTYCWM49cE7dSWYA9adHBbCnFMPsC5AhFAoTklJmKamTrX1IPKvuhNSOw+ykdPO4dQjP9OB7Jeu1jU01M4iMlDDYYL+KvwJO3O7C4wxxcAsYElmQhIRERERkXTL+pETa22nMeZB4IfGmHpgM/Aj/BGVpzIZm4iIiIiIpE/WJycp38GP9SEgF3gZOP8QbsAoIiIiIiJZalgkJ9baJHBL6iEiIiIiIiPQcDjnREREREREDgNKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCo7neZmOYai1e56X47rpf9/BYIBk0k37duWD1NZDQ+08NNTOQ0PtPDQGq50DAQfHcTqA3LRvXESyxuGYnOwGokBdhuMQERGRAzcW6ASKMxyHiAyiwzE5ERERERGRLKRzTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQqhTAcwEhhjAsBC4EtACVAFXG+t3ZDRwEYYY8yRwOb9PPVla+1DQxzOiGSMuR2YZ62d26tsJnA/cCKwC/ixtfbejAQ4QvTTzo8CV/WpWmOtHTeEoQ17xphS4F+BC4FC4C3gVmttVer5mag/D9gBtLP6s4gcEo2cpMcdwFeBLwOnAB7wjDEmktGoRp4ZQAdQAYzt9fhlJoMaKYwxNwLf61M2CngOeAd/Z24hcJcx5uohD3CE2F87p8zA39nr3bc/PnSRjRhPACcDVwCzgZXAs8aYKerPadVvO6eeV38WkUOikZMBSiUgNwHfttYuTpVdDtQCl+J/gEt6TAestbYu04GMJMaYSuAh4AzA9nn6WqATuM5amwDWGmMmAbcAjw5poMPch7WzMSYITAXustZuz0B4I4Ix5mPAucBp1tqlqbIbgAuAK4F21J8H7KPa2RjzXdSfReQQaeRk4GYCBcAL3QXW2t34R5HOzExII9YMYE2mgxiBZgFN+O37ep/nzgBeTu3IdXsBMMaYMUMU30jxYe08CchB/XugGoD5wIruAmutBzhAKerP6fJR7az+LCKHTCMnA9c9f3Zbn/JaYMIQxzLSTQfqjDFLgMnAevwjc3/ObFjDm7X2aeBpAGNM36fHAdV9ympTywnAzkENbgT5iHaejj8d9EZjzAWACywGbrfWNg9lnMNZ6sDQ4t5lxpjLgInAn4G7UX8esANoZ/VnETlkGjkZuFhq2dmnvAP/yJGkQWr63GT8Ey9vB/4OWIZ/bs85mYxthIux/74N6t/pNA1/B24zcBFwM34f/33qghtyCIwxpwGPAL9PJYfqz4NgP+2s/iwih0wjJwPXnlpGe62D/0XXNvThjEzW2rgxphhIWGu7dy5WGGOOxf/iez5jwY1s7fh9u7funTj17/S5E7gvdUQa4G1jTB3wKv7Jxn2ngclHMMYsAB4DXgM+lypWf06zftr5TtSfReQQKTkZuO7pXBXAu73KK4BVQx/OyGWt3d/OQzXwyaGO5TCyDb8v99b9c80QxzJipebr7+5T3D39aBzamTsoxpiv418u+Cng870OaKg/p1F/7az+LCIDoeHVgVsFtABzuwtSR/hnAUsyE9LIY4yZYYxpNcac3uepE4HVmYjpMPEycEbqalLdzsG/aprm56eJMeYxY0zfc6dmp5Y6qfggGGOuAx4AHgQu75WYgPpz2nxYO6s/i8hAaORkgKy1ncaYB4EfGmPq8efY/gj/CN1TmYxthHk79ViU+lJswL/M7Sns+9KT9HsE+DbwsDHmHuAk4Eb8+/pI+jwG/MEYcxv+5ccnA/8JPGatXZvRyIYRY8xk/CP5vwW+D4zpdfGBdtSf0+IA2ln9WUQOmUZO0uM7wMP49zB4BUgA51tr4xmNagSx1rr4J1a+ATwJ/A2YA5xrre179R1Jk9TR5PMBg3957IXAt6y1P89oYCOMtfaPwGXAp/GnvzyMf3Dji5mMaxj6DBAGLgHq+jzuV39Om49qZ/VnETlkjud5mY5BREREREREIyciIiIiIpIdlJyIiIiIiEhWUHIiIiIiIiJZQcmJiIiIiIhkBSUnIiIiIiKSFZSciIiIiIhIVlByIiJZyRjjZDoGERERGVpKTkQk6xhjLgZ+nlqfa4zxjDFzMxuViIiIDLZQpgMQEdmPf+y1vhI4BViToVhERERkiCg5EZGsZq1tAV7LdBwiIiIy+BzP8zIdg4hID2PMi8AnehWdBfwVOMta+6Ix5k7gCuBW4F+AjwHrgOsAD7gfmAG8C9xgrX2+17anAT8AzkwVPQ/cZK3dOIhvSURERA6QzjkRkWxzPfC31OMUoHA/dcYD/w7cDXwWKAV+DTwO/Aw/eQkATxhjcgGMMZOBpcAY4Crgi8AxwCvGmDGD93ZERETkQCk5EZGsYq1dA7QALdba11LrfcWA6621j1tr/wD8BKgA7rLWPmSt/T1wBzAaMKnfWQi0A/OstU9Za5/EH5XJBb41qG9KREREDojOORGR4Wppr/XtqWXvc1N2pZbFqeU5+NPD9hpjuj/7WoAlwLmDFKOIiIgcBCUnIjIspU6U72vvh/zKKODy1KOv+rQEJSIiIgOi5EREDhe7gb8A/7af5xJDG4qIiIjsj5ITEclGSSCY5m2+BEwF3rTWJqDnLvT/A2wA3kzz64mIiMhBUnIiItloN3CKMeZsoChN2/we8CrwR2PMIqAD+ArwKeAzaXoNERERGQBdrUtEstGDQBfwDP7VtAbMWvsWcAb+vVB+gX/p4bHAp6y1T6XjNURERGRgdBNGERERERHJCho5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkK/w/SRWYKRZEJ1kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.22it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.230 - 20.430) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 1.0441 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.0077 & Fano Ratio = 10^-5\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1w0lEQVR4nOzdd3QU5dcH8O9s3/Tee0iGDgI2BAFFigWxIlh+ihVFsCCgICKCCC8CAiK9SFVQEVAsiAooogaRkmRI770nW6e8f2wWAyQk2WySTbifc3LY7LS7D0l27zzlMpIkgRBCCCGEEELam6y9AyCEEEIIIYQQgJITQgghhBBCiIOg5IQQQgghhBDiECg5IYQQQgghhDgESk4IIYQQQgghDoGSE0IIIYQQQohDoOSEEEIIIYQQ4hAoOSGEEEIIIYQ4BEpOCCGEEEIIIQ5B0d4BsCwbDiC9nk3Pchy3gWXZvgA+AjAAQAmAFRzHLWm7CAkhhBBCCCFtod2TEwC9ARgARAGQ6jxfwbKsN4AfAewD8AKAmwCsZlm2hOO4zW0dKCGEEEIIIaT1OEJy0gsAx3Fc3uUbWJZ9BYARwCSO43gACSzLxgCYAcDW5KQcgBrAFdcjhBBCiMMKhOUzgUc7x0EIaUWOkJz0BhDfwLbBAI7WJiZWRwC8ybKsH8dxhTZcTy1JkkYUpUgbjr0qmYyBKEqN70hajNq6bVA7tw1q57ZB7dw2WqudZTIGDMPY/byEEMfiCMlJLwB5LMseAxALIAnAexzHfQ8gBMDZy/bPrf03DIAtyUmeKEqRlZV6W+Otl1wug5ubFjU1BgiCaNdzk0tRW7cNaue2Qe3cNqid20ZrtrObmxZyOUOjHgjp5No1OWFZVgVLQlID4A0A1QAeA3CIZdk7ADjB0oVbl6H2X42t15XJGHh6Ott6+FW5uWlb5bzkStTWbYPauW1QO7cNaue2Qe1MCLFVuyYnHMeZWJb1AMBzHGdNQuJYlu0GYBoAPSzzQ+qyJiU1tl5XFCVUVupsPbxe1rtFlZV6uivXyqit2wa1c9ugdm4b1M5tozXb2dJzQhUQCOns2n1YF8dx9SUZZwGMApAFIOiybdbvc1pyXZ5vnTcnQRBb7dzkUtTWbYPauW1QO7cNaue2Qe1MCLFVu96CYFm2N8uy1SzLDrps0wAA5wEcBTCYZVl5nW23w7K6ly3zTQghhBBCCCEOqr17Ts7Vfn3CsuwkAMUAngNwM4DrARQAmA5gI8uyiwHcAOAVWGqeEEIIIYS0WFxcnCssSxXTuDFC7EsEkNe/f/+qph7Q3nNORJZl7wHwAYA9sKxdfgrAHRzHnQUAlmVHAlhR+3wegDc4jtvaPhETQgghpLOIi4uTAXiLYWRPMAyjBEBrFRNiX5IkSea4uLhPAbzfv3//Rsd7tnfPCTiOKwLw9FW2/wVLTwohhBBCiD29JZcrJrm5eZpUKo2OYRgqhEOIHUmSxJhMBqfKyrJJgsADwPzGjmn35IQQQgghpK3FxcW5MYzsCTc3T5Orq2dJe8dDSGelVmv1ALzLy0ueiIuL+6ixIV40tpIQQggh16IAhmGUKpXGvrUFCCFXqO2ZVMIyt+uqKDkhhBBCyLVIBoChoVyEtL7a3zMGTcg9KDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBiNytWLA0aO3ZUr/aOo6kSE+M1hw//4N7ecRALSk4IIYQQQsg1a+bM12Pi4885t3ccxIKSE0KIw9PzwICdrhiw0xV6vr2jIYQQ0rnQmgiOhOqcEEIIIYTUEkUROp2u3W7eOjk5iTJZ8y4/aNCA/g88MC7vl19+8jabzbKPPvok0cnJSVy5clnImTP/uNXU1Mjd3d35YcOGl0ydOi0nISFe+/zzT3ZfvXpDQu/efXUA8MorL0afO3fG7bvvfvlHoVBAkiTcddfwPv/738ScceMeLb78msXFRYqlSxeHnDr1l7sgCExsbNfq116bkRUd3cVo3WfdutX+Bw/u86+qqlJ06RJTM3PmnHTr9vpiDgkJNa1d+3Hgr78e8S4rK1MGBwcbHn/8qdxRo+4qB4A9e3Z779q1LfCpp57J2bhxXUhFRbmyW7ceVbNnv5u+ZcvGgF9+OeytUCikMWPuL3jhhcn5AGA0GplVq5YFHT9+1LO0tESl0WjFPn36Vsyc+Xaml5e3MHbsqF7FxcWqzz/fGXj27GnX9es/5crKSuWrVi0P/uuvPzyqqqoUkZHRNc8992LOTTcNrLa+tn37vvDasWNrYFFRkTosLEw/bNgdJRs3rgk9fvzvOFv+T2QymU2vrzOi5IQQQgghBJbEZMKEB7omJia02xCfrl27V+/cuZdrboLyww/f+i5c+GGSIPBMTEysccKEB7q7u3uYFy1afsHV1VX49dcjHuvXfxLavXvPmpEj7yz38fExnTjxm1vv3n11giAgPv6cq9FolP3zT5zz9dffWHP69CmnqqpKxW233VF++bV4nsfUqZNiAUaaO/f9FG9vb37lymUhr7/+cuzevQfOAkBxcbHq3LkzrgsXLk0ymYzM+++/G/n+++9GbNy4jWso5ldeeTE6NTXF6eWXX82MjIw2fPfdN14LFsyNlslkySNGjK4AgJKSYtX+/V/5zZ+/OFmnq5G9/faMmKeeerTH7bffUbx69caEb7/d7719+5bgIUOGlXfr1sPw4YcfhJw8ecJjxoxZ6aGhYUaO47RLlrwfsXbtx0Fvvjkna8OGbQkTJz7a/ZZbhpQ+99ykPEEQMGXKC7Fms5mZMWN2mq+vn/mzz3b6zZz5Wuzy5asT+/btpzt8+Hv3pUsXRT7xxMTsoUNvLz958ne3DRvWhLb0/8SW19esH5IOgpITQgghhJCLOmbdkyFDbivp27efDgD0ej1z2213lIwcObosNDTcBAAREU8X7tmzOyA5+YJ25Mg7ywcMuLH81Km/3ADknz59ylkuV0ixsV2r//rrpOv1199Yc+zYrx4xMWy1r6/fFYNpf/vtqFtGRrp28+ad52JiYo0AMGvW3PQtWzYElJaWKABALpdL7723KM3d3V0AgNGj7y7avn1LcEMxX7iQqPn77z895s5dkDx8+MgKAJg8+ZW81NRkpx07tgZakxNBEJjXXpuRYf1g3qtXn8oLFxJd3njjrWyGYfDccy/lff75rsCkpAvabt16GLp1614zbNjtZTffPKgaAEJDw00//vhdZXp6qhYAfHx8eZlMJmm1WtHT00s4cuRHt7S0VKf167eet15j9ux3My9cSHTesWNrQN++/VJ3794RcNNNA0ufeeaFAgDo0iWmKDs7S33gwD7/lvyf2PL6WvIz46goOSGEODwGQL/a90emfUMhhHRiMpkMO3fu5TrasC4ACAkJvTicSqvVSo8//lTht98e8Ny+fatzbm6OOiMjzam8vEwpCCIDAIMHD6145523fPV6PXPy5AnXHj16VgUHhxr+/feUG4D8v/466X7rrUNL67tWUtIFrZOTk2BNTADA3z+AnzFjdrb1e3d3d96amACAq6ubYDKZLnlhdWPmuEQtAAwYcGN13X169epb9emnG0PqPtely3/XVavVoq+vv5FhLO8OGo1GAgCj0SgDgPvue6j02LFfXZcuXRSck5Otzs7O0ubm5mi6du12yXWskpOTtFqtk1D3gz/DMOjevWf1qVN/uwFAenqq06BBt5bVPa5Pn+uqL09Omvt/Ysvr64woOSGEODyNAlg3XN/eYRBCrgEymQwuLi5ie8fRXGq15mLMOp1O9vzzT7IGg0E2ePCQshEjRpf06dM3c/Lk57pa97n55luqlEqF+Mcfv7n+80+c27Bht5eGh0cY9+//MiArK0OVnp7qNHfugtT6riWXKyTrh+WGyGSyRnug6sbc0KR0URQYuVx+yUalUnnJ9zJZw7HMm/d22G+/HfUaOvT2kptuuqWia9fueTt2bA0oKSlS1be/JNX/0kRRhEKhkCzXk0mS1HgHW3P/T2x5fZ0RJSeEEEIIIZ3Ir78ecUtLS3X68stv/vXz8+cBoKysVF5RUaGwJgEqlUrq0+e6yqNHf/FISrrgMnPm2xkhIaEmhmGk1atXBgUGBhnqTm6vKyoq2lBTUyNPTU1RR0VFGwGgpKRYMX78/T3nz1+cZEvMsbFd9QDw998nXazDugDg7Nl/XYKDQ226O1VaWiL/4YdDvjNmzEq95577LvZ0ZGdnajQabZ3E6L8P/126xOp1Op08IeG8pm7vSXz8eZeQkDADAISHR+jj48+7ACi0bj9//uxV5yk15f+EWHTaLiFCCCGEkGuRv3+ACQD27//KOysrQ3Xy5AmXadOmdBEEgTGZzBc/iQ8cOKj8559/8nFzc+Wjo7sY1Wq1xLLdqo8f/9X7ppsGljd0/sGDh1RGRkbr5s2bHRkX95dzYmK8Zu7cWRHu7h7mPn2u09kSM8t2M/Tt269ixYqlYYcPf++enJykXrVqeWBc3F8eDz88vsCWc7q5uQtarZNw/PhRj9TUFHV8/DntO++8FZ6enuZkNv/XDhqNRsjJyVYXFhYohgwZVhEaGq6fN+/tqN9/P+Z64UKi5r335oRlZ2dqH3lkQgEATJjwRN7Jk797bty41j81NUW9d+9n3t98c8DvarE09f+EUM8JIaQD0PPAPV9bbkoduLcGWvrLRQghDerXb4Bu4sTnsvbt+8J/x46twZ6eXqbBg4eW+vj4mjjuv5XIhg0bXrF8+RKmZ88+ldbnrruuf+XZs/+6DRlyW3lD55fJZFi8eFny0qWLQ2fOfD0GAHr06Fm1dOnKJLVabXM3wAcfLE1dvvz/gpcuXRyh0+nkoaGh+rfempsyevRdDcZyNQqFArNnv5u6Zs3KkKeffqyHs7ML37Nn76rHHnsyZ+/e3YE1NTUyZ2dn8d57HyjctGltyNSpL2p37foifsWKTy4sXbo45N13Z0ebzTwTGRml++CDpRf697+hBgCGDRteWVhYkLF7946Abds2B0dGRulGjhxddOjQwQYTlKb+nxCAacqYuU4mVRDEyNLSGrueVKGQwdPTGWVlNeD5DjdUtUOhtm4bjtTOeh4Y/LkrAODYw1WdKjlxpHbuzKid20ZrtrOXlzPkclkagCh7nC8uLq6rTCb/zs8vuFql0nTKVY9I6zhx4riLj4+fue6CAJ98sjLghx8O+Xz11bfn2jM2R2UyGTSFhTkuoiiM6t+/f+LV9u1Eb/GEEEIIIYS0rj/++N39l1+OeE2f/lZ6eHiEMT7+vHb//q/8R4++u6i9Y+sMKDkhhBBCCCGkiV58cWquXq+XffDB/MiqqkqFl5e36d577y949tlJnbZqe1ui5IQQQgghhJAmUqvV0ltvvZMFIKu9Y+mMaLUuQgghhBBCiEOg5IQQQgghhBDiEGhYFyEO5Nz3h5Dz809Q+fnj5udfhMaZVhcELOWxunsJFx8TQgghpHOinhNCHMSvq5ZD8fluRBYXQ336FKZPfg4GA61uCQAaBfDpKB0+HaWDhm6pEEIIIZ0WJSeEOICUkyfgc+oUZAyDVAZYlp2Jo//EYeXKZe0dGiGEEEJIm6HkhBAHkLx5I5QyGdIYBnes2Yip8xYCAHbv3o6MjPT2DY4QQgghpI1QckJIO0v/Jw6RPA9RkhD97POQy+UYNOhWDBl0K4Z6eiPuow/bO8R2Z+CBe752xj1fO8PAt3c0hBDiWAYNGtB/z57d3k3d/5dffnK77747ew4delO/RYsWhLRmbE2xYsXSoLFjR/Wy5zmb0ybZ2Zmq/fu/8rTn9YntaPQ2Ie0s8fPdiAKQIZdh5A03XXz+qTvvgZPBBGN5OSqLi+Dm49t+QbYzCUBejeziY0IIIf/54ouD/7q5uQtN3X/9+k9C/P0DjB99tPqCi4trk4/rSJrTJu+++3aEn5+facyY+8paOy7SOOo5IaQdiaKIPxITkGvQw/nmgZds6z3qLhTwPNQyOeK2f9pOERJCCHF0/v4BvFarbfK9m5qaGnn37j1qwsIiTF5e3p0yOWlem0i0EKQDoZ4TQtpRYmI89qUl4wcnJ/y8Yesl22QyGXRRUUBmJvjz59opQkIIIY5u0KAB/adOnZb+0EOPlMya9UaEKIqMp6eX+eeff/I2Gg2y3r37Vr755pwMf/8AftCgAf0B4PPPdwV+/vmuwJ07954NDQ03rV//if+hQwf9KirKFQEBgcaHHhqff999D5YCwO+/H3OdPv3V2CeemJj9xRefB/r4+Brnz1+U+vjjD/ccP/7x3G++2e+nUinFLVt2xzMMg6VLF4X8+ecJD57nmcjIaN2LL07J7tu3n84a765d23z27NkdUFZWqurT57oKPz9/09Ve37PPPsH26NG7qqysVPnbb0e9lEqlePfdYwtHjBhd+sEH70WkpiY7BwQEGaZPfyv9uuv66+q2yR13jCp/4omHe0REROlWrFiTDABHj/7iOmvWG7Fvvjkn5auv9vgnJMS7JCTEu4wdO8p1377vzo4dO6rXbbeNKJky5bXcujH4+fkbFyz4v/T62uPTT3cnFBTkK5ct+7/Q06dPucnlMik2tmvN1KnTsqKjuxhb4/+9s6KeE0La0dGjvwAAbrrpFqg1miu2x9x5NwAgWBBQWVTUlqERQsg1S9DrZQ19iUYj0xb7tsSJE795VlZWKj76aDU3Z857KQkJ8a6rVi0PBizDnby8vMz33HNfwRdfHPw3ODjUtGzZ4uBvvtnv99JLUzM3btwef999DxZ8/PHy8G3btlwynvjkyRMeq1dvSJg58+10uVwmAcAvv/zktWzZKm7u3PdT3N3dhVdeeTEmNzdHPX/+4uTVqzckdu3areaVV17sevbsv1oA2L//K881a1aF3XffgwXr1396vlu3HjWHDh30a+w17du3N8DPz9+0YcO283fffW/hrl3bgmbMeDVm3LgJ+R9/vD5BpVKKS5cuCr/8OA8PD+GNN2al/fNPnPvXX3/pVVpaIl+8eEHk7bePKL7zznvKFy9enhwTE1tz8823lG3YsC2hOe1ctz0MBoPs5ZefZ0VRwLJlH3PLln3Mubm58y+++HS33NwcZXPOe62jnhNC2lHW8WNQy2S49dah9W6P7H89fuN5+CkUOLP/Kwx6+rm2DZAQQq5BKS9Puq6hbdpYtiJ0+pvJ1u9TX5vSRzKb673Zq46IrA6f/Q5n/T5txuu9RJ2u3s9eqqBgXcS8Bc36cNxgjFqt8M478zOUSqUUG9vVcOLEbyVxcX+5A5bhTjKZTNJqtaK/fwBfU1MjO3Bgn/+0aW+mDR8+sgIAIiOjjHl5ueovvtgd8PjjT168MzZu3IR8ay9AZma6CgDuumtMEct2MwDAsWO/uiYlcc779h3618fHlweA116bkRMff95l9+7t/r169Un/8svP/QcOHFT2+ONPFQFAly4x+QkJ553T01OdrvaaQkPD9C+9NDUPAJ566rmCXbu2Bw0ePLR0xIjRFQAwYsTokvXr14TWd+zgwUOqRo++p3DNmlWhP/30g5ezs7MwY8bsTADw9PQSFAqFpFKpRGvMTVW3PT77bIdPVVWl4oMPlqYplUoJAObNW5h+//139dq79zPfur0w5OooOSGknZTmZOF/Gi3G9x0Av/4D6t2HYRhU+fvDr6QEVf+cauMICSGEdET+/gFG6wdkAHB2dhF4nq+3Z+bChUSN2WxmPvzwg4ilSxdFWJ8XBJHheTOj1+svHhcREXnF8KSwsPCL1YITE+OdAGDcuLGXrLzF8zxjNpsYAMjKytQOHXp7ad3t3bv3rG4sOQkKCrl4HScnJxEAgoODL8ajUqlFnjc32Pv02mvTs0+d+sv91Km/3T/5ZFN8c+boNKRue1y4wDnp9Xr5qFFD+9bdx2w2y7KyMq4cGkEaRMkJIe3kwpGf4AWgTBTRM/SKnuiLfK+/Efy3B1FRWgJJksAw1968PQZAVO2iK9feqyeEtLXolZ/809A2Ria75ENt1NIV/zZ138hFH55t6r4tUTcx+U/9pxdFkQGAt956JzUqqovh8u1qtfrigRqNRrx8u0ajubhdFEVGq9UKa9duuaIHSKVSiYDlppt0WSgKhaLR165QyK/Yh2GaPjuhoCBfWV5eppTL5dKJE8fdevXqrb/6EZdejueFK95+6raHKIoIDAwyfPDB0uTL93N2du6Uiw60FppzQkg7KTt7BgBQ5eF+1f26jxqNZ86exgfxZ5GTk90WoTkcjQL4/C4dPr9LBw3dUiGEtDK5Vis29CWr82G9NfdtK126xBrkcrmUl5erioqKNlq/jh792X3btk3+MlnTPypGR8fo9Xq93GQyMnXPtWXLhoAjR370AIDw8AjduXP/utQ9juMSnO37qi4liiLmzZsdGR4eqXvxxSmZO3d+Gnzu3Fntf3swl/4/yRVSdXWNvO7xhYUFqqtdIyoqWl9cXKxyc3MTrK87LCzcuGrV8uA//zzhau/X1JlRckJIO1EXFwMAnGO7XnU/JxdXxPboCQD4++8/Wz0uQggh1w53d3fhjjtGFW3btjn4yy8/90pPT1Pt3fuZ95YtG0M8Pb2aNQdj2LDbK8LDI/TvvPNW9PHjR11TU1PUixcvCPn558M+kZHRBgAYP/6J/D///MNz/fpP/FNSktVbt270O3nyRKsWQFy3bnVAWlqa06xZc9PHjXu0uFu3HlXz58+JNNYuQqDVasXCwgJ1Tk62EgC6deteffz4r14nTvzmkpycpJ437+1wvV4nv9o1xoy5v9TFxVmYMePV6Li4P52TkjjN22/PiDx9Os49JoZtpJeG1EXJCSHtQFdZiYDa4VlRDUyGr+v6628EAPz95x+tGRYhhJBr0MyZb2fde+/9BZ9+ujn4ySfH99yxY2vgI488mvvyy82bxC2Xy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpgwePKQKAIYPH1ExffpbqT/8cMjn6acf73H8+FGPMWPuK2idVwacPXtGu3v39qDHH38yJyoq2ggAb775dkZxcZF62bLFwQAwZsz9RVlZmZqJEx/tIQgCJk9+NSc2lq2eNWt6zMsvP9/Vzc2NHzhw8FULNLq7uwsrV65LdHf34GfOnBYzadLT3QoLC1Tvv78kqWvX7lcMlyMNY6TLB/51fqmCIEaWltbY9aQKhQyens4oK6sBz18xJJPYUWdo67PffQP13j2o4Hn03/QpGus2P/ntAZRv/xTOKjUGbdneJjE6UjsbeOCJ7y1zJT8d2bmGdjlSO3dm1M5tozXb2cvLGXK5LA1AlD3OFxcX11Umk3/n5xdcrVJp6MMjIa3IZDJoCgtzXERRGNW/f//Eq+1LPSeEtIOCs5Y5kaUqVaOJCQCw/QYg0skZfgoFSnOyWjs8hyMBSK2QI7VC3sCUTkIIIYR0BpScENIO/q0ow4aMNFSEN7xKV10eAYEo5C1Df5OPHW3N0AghhBBC2g0lJ4S0g7+Sk/BDUQF8bh7Y5GOqXCyLm5SeP9daYRFCCCGEtCtKTghpYyaTCcnJSQCArl27N/k4ZXgEAECWn98aYRFCCCGEtDtKTghpYymn/sZgDw909/VDYGBQk48L7NcfAODD8xBFmtBLCCGEkM6HkhNC2lj+yT8wKSIaT4VHNavae5ebBoKXRLjI5ci/wLVihIQQQggh7YOSE0LamKF2tS2zh0ezjlM7O4PjefxWUozUpGsrOWEABDqLCHQW0fR0jhBCCCEdTSeqFkBIxyAvKwcAaIJDmn3s3yEh+Oab/XgpPw+D7ByXI9MogAP32rc2ESGEEEIcD/WcENLG3M1mAIA3yzb7WJbtCgDguAS7xkQIIYQQ4gio54SQNlRVUgRPheXXLrTvdc0+Pja2KxgARUnJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKHMf/6BEkAFzyM2qPnDurqERWDrdddDI5ejqqQIrt6+9g/SARl44LnDTgCAdcN10NBfLkJIK2EYyEWGCdQZ+Hb5S+OkUfAySHmOlqCsWLE06MiRH7z37fvubHOPTU5OUj/33JPdt2zZcT4sLMLUGvGRzoPe4glpQ8WJCQgEUK6Q23S8T1AQUiQJGgBpf55E79F32zU+RyUBiC+VX3xMCCGthWEYmc7AK/44lyfqDHybrtvupFHIbuoZqHDVKGSSJDlUcmKr+Phz2pkzX+9iMhlpKgFpEkpOCGlD5wx6bLyQgFuH3mbzOcpVSniKEorOnweukeSEEELams7AizV6c3sUleo0H+JXr14RsHfv7sDg4BBDaWmJqr3jIR1Dp/kFIKQj4DLTcaayAq49etl8DtHTCwBgysuxV1iEEEI6sEGDBvTfsWOr78SJj7HDht3c75FH7uv+ww+H3Ovuc/jw9+6PPfZQt2HDbu53//139Vy+fEmQ0Wi8uDp7YmK85pVXXoweOXJo3yFDbux3//139dy8eYNfQ9fcsmWD39ChN/X7/vtvPRraJy7uT/c33ngrbdKkl7Pt8kLJNYGSE0LaUFpaGgAgMjLK5nNoQ0MBAMqKSrvERAghpOPbvHl9yLBht5euW7f1/IABN1a8996cLn/9ddIZAH7++bDbggVzo0ePvrt406Yd56dOfT3z+PFfvWbNeiMSAHQ6nez116fEajRaceXKNYmbN+88P2jQrWUbN64JPXv2jPbya23fvsV369aNIbNnz0sZOfLO8oZi2rhxOzd69N0NbiekPjSsi5A2YjIYMFCSkOvlg7CQUJvP48N2B06fhrvA2zE6QgghHdmwYcOLH3/8qSIAmDZtZs65c/+67tmzy+/6629M2759S+Dtt48ofvTR/xUBQGRklFGhUGTMmPFabGZmusrJyVkcM+a+wvHjHy90c3MTAWDy5Fdzv/xyT0BSUqK2V6/eeut1du3a7rNp07qQd96Znzx06O10l4zYHSUnhLSRPC4RDwQEwSSK8PXzt/k84f36Ie+znXCXK1CWmwPPoGA7RkkIIaQj6tdvQFXd71m2W83p06fcACAtLc0pJSXZ+eefD3tbt0u1q4skJydpbrvtjsoJE54oPHjwa6+UlCSnnJxsdUZGmhMACIJ4cehXWVmZ8pNPVoTL5XIpJCTM2Bavi1x7KDkhpI0UcglwB1AqiZArbP/Vc/X2wZc1VcirrMTI9LRrJjnxULfHvFRCCOkYFArFJYsZSpIEmUwuWR6LzNixD+aPGXNfyeXH+fsHmAsLCxTPPfdkN1dXN/6mmwaW9+9/Q2Xv3n1qxo0b27vuvgwjw7x57ydt2rQuaMGCuZEbN25LlMlohgCxL/qJIqSNVGakAwB0KnWLz3XS0xO7c7KQmpfb4nN1BFoFcPiBGhx+oAZauqVCCCFXiI8/51z3+8TEeJfo6GgdAISEhOmzsjI0UVHRRutXQUGecsWKD0Oqq6tkBw7s866urlJs2rQ98aWXpuaNHn1XeUVFee1f2/9yHg8Pd/OQIcMqZ86cnZ6amuy0efN624cBENIASk4IaSOmwkIAgOTh3siejYuKigYApKamtPhchBBCOr4DB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyS2/40ZIHQ51D5Jl2VgApwBM5jhuS+1zfQF8BGAAgBIAKziOW9JeMRJiK3lFBQBA5R/Q4nNFRUbDU6lEdUpSi89FCCHkSk4aRZvfwG3JNUeMGF20d+9u/+XLl2jDw8N1CxcuSerRo6ceAO66a0yZJEmpu3ZtC/zyy88DnJychQEDbih/9dXp2dbtiYkJ+evXfxK6cuVSmY+Pr2nkyDuLT5z4zSMh4bwzgKLLrzdp0st5v/121HPBgrkRGzZ8ytHwLmIvDpOcsCyrBLADgHOd57wB/AhgH4AXANwEYDXLsiUcx21ujzgJsZWT2QTIFXAPj2zxubo4OWNtn/4oM5jsEJnjM/DAlF8sq1muGKqHxmH+chFCOhtJkkQnjYK/qWegAu0wwsRJo+AlSWr2JLvIyGj99OmzGqwncvfd95bdffe9ZfVtYxgG06bNzJk2beYlBbSefvr5AuvjKVNey50y5bWLY4nVarW0Z8/+802JbeDAwVXHj/8d15R9CXGkt/h3AVRd9txzAIwAJnEcxwNIYFk2BsAMAJSckA6DN5vhxVje4/y7dm3x+cL69UPhF3vgqVCgsrgIbj6+LT6nI5MAnCpUXHxMCCGtRZIgyCDlubZDz4nl+pIoSRDa49qEOAKH6INjWfZWAM8D+N9lmwYDOFqbmFgdsRzCNli1lBBHU1CQj9fOn8GilCQExrY8OfHwD0Q5b/m1yPyHbkYRQog9SRIEUZTM7fFFiQm51rV7zwnLsh4AtgF4meO4LJZl624OAXD2skOsXYphAAptva7CzjdE5HLZJf+S1tMR2zovPwf5RgO0QYHQaO0zd7BSIYcHgLKUZChG278tHKmd6y6QqZDL0IKVmB2OI7VzZ0bt3DaondsHDZkinYkjvMV/AuAEx3E769nmBMuwrroMtf9qbL2gTMbA09O58R1t4OambZXzkit1pLYuLs4HAERGRtrtZ090dwcqKmEqyGu1n2fAMdpZbf7vsYenM5yU7RdLa3GEdr4WUDu3DWpnQoit2jU5YVn2cViGbvVqYBc9gMtvM1uTkhpbryuKEiordbYeXi+5XAY3Ny0qK/UQBCoW15o6YltX/nUKDwQGw9/dG2VlV/7oymQMBAkw8yK0KnmTXpfM2weoqIS5oKjec7aUI7Wz3gxY18ooL6uBsRMlJ47Uzp0ZtXPbaM12dnPTUo8MIdeA9u45mQjAH8Dlw7nWsCz7BoAMAEGXHWP9PgctwPOt8+YkCGKrnZtcqiO1tVtePsYFhyJdqbwiZoYBzAKD+PRSlFcZ0T3KG75u6kZfm3NoOJCaCo1e36rt4AjtzAt1H4vgmfaLpbU4QjtfC6id2wa1MyHEVu19C+IxAN0A9K3zBQBzANwJ4CiAwSzLyuscczsAjuM4m+ebENLWVAbLaETnwMtzbUChkCOrsBopWeUoKtOBSy+FwSyCaeQDuH+v3vg6LxcH8nIgSZ1/DSuNXIJG3vlfJyGEEHIta9eeE47jruj9qO1BKeQ4LoNl2U0ApgPYyLLsYgA3AHgFlponhHQYrqIIyGTwCI+45HmGYaAzCsjIq4RYm2AUlNagoEyHCH9XmM0NL9oS2qMHduVlQxRFFBcXwde38y5gp1UAx8dVt3cYhBBCCGll7d1zclW1vSMjAbCwVI5/B8AbHMdtbdfACGkGQ3U13GuXlwq4bBlhhYJBUYUepZX6i89JEpBdUAVTI0MilEoVgoNDAAAZGen2DZoQQgghpB2095yTK3Acx1z2/V8Abm6ncAhpsbwLiQAAgyDAM+jSYV28COQWVePyUVklFXpU6szwclFddVIpGxoOl7Iy5J0/Bwy4we6xE0LItYhhIGcYhoow1rFixdKgI0d+8N6377vLSzw0aM+eXd5ffPG5f2FhodrT09M8YsSo4meemZQvl8sbP5hcsxwuOSGksylJTYEbgHJJgkz233udTMagWm9GWaXhimNMZhEFpTXwcVNDuMpb1G1OzujStQdS4s+3QuSOwygA049ZliZdPFgPNb2vEUJaCcNArpWZAyWTrl0+IzEqJ14vKvMcMUFpjn37vvD6+OOPwl944eXMG2+8uer8+bNOK1Z8GG4ymZmXX341r73jI46LkhNCWllVdjbcAOhVl65/K5fLUF5tRI3eXO9xJRUGmHgRV5sXr/IPAMrLwZSX2y1eRyRKwG+5iouPCSGktTAMI5NMOkU1d1IUjfo2XXJMptbKXNgbFYzSQyZJUodOTvbv/8p3yJDbSh555NFiAIiMjDJmZKRrvv/+Wx9KTsjVUHJCSCtLkDFYfPY0Ro+6CyPrPC9KQEFpw/V2KquNqDHycNMoIDbwidwjIhLgEuFsvLxWKSGEkJYQjXpRMNS0x3rIzR5ONmjQgP6TJr2c+dNPP3qlpaU4+/sHGCZOfC5nxIjRFdZ9Dh/+3n3Llg1BOTnZWk9PL9Ottw4rnTTp5Ty1Wi0BQGJivGbNmlXBCQnxrgaDXubt7WO65577Cp966pl6V0fdsmWD35YtG0LefHNO6siRd5Zfvv2FFyZne3l585c/X1NTTZ89yVU59IR4QjqDnIJ85BkNcI2IuPgcwwAGs4DKGlODx+mNPCqrjVctOhbQvQcAwEsmA2+uvweGEEJI57d58/qQYcNuL123buv5AQNurHjvvTld/vrrpDMA/PzzYbcFC+ZGjx59d/GmTTvOT536eubx4796zZr1RiQA6HQ62euvT4nVaLTiypVrEjdv3nl+0KBbyzZuXBN69uwZ7eXX2r59i+/WrRtDZs+el1JfYgIAN9xwU02XLjEX75yVl5fLDx066Nunz3WVrdQEpJOg5ISQVpaba1kxOygo+OJzMpkMOgOPqqskJwBQWKbH1UYxBbJdYRZFKGUy5CYm2CNcQgghHdCwYcOLH3/8qaKYmFjjtGkzc6Kju9Ts2bPLDwC2b98SePvtI4offfR/RZGRUcYhQ26rfPXVNzL++ON3z8zMdJVOVyMbM+a+wrfeeicjNrarISoq2jh58qu5AJCUlHhJcrJr13afTZvWhbzzzvzk4cNHVNQXy+Wqq6tl06ZN6WI2m2RTpryeZf9XTzoT6lojpJXdqNMjKjAYgR6eF5+TyxmUVRnAX2UlLgCo1plgNAtoaP63XKFAqSTCHzLkJ5xHWK/edoycEEJIR9Gv34Cqut+zbLea06dPuQFAWlqaU0pKsvPPPx/2tm63rhKZnJykue22OyonTHii8ODBr71SUpKccnKy1RkZaU4AIAjixamPZWVlyk8+WREul8ulkJCwJo0nLijIV0ybNiWmoCBf/cEHSy9ERERe/a4cueZRckJIKzLp9Rjq4gqZqxs8/PwvPi+IEkrrWaXrctV6M/RGAW7ahued6NQagOdRmZ5mt7gJIYR0LAqF4pI3CUmSIJPJJctjkRk79sH8MWPuK7n8OH//AHNhYYHiueee7Obq6sbfdNPA8v79b6js3btPzbhxYy+548UwMsyb937Spk3rghYsmBu5ceO2xLqrUF4uKYnTTJs2NUYQBGb58tVc9+499Q3uTEgtGtZFSCsqSE6CjGFgEkV4h4VffN5oFhtcpasug5FHtd581XknRYGBWJeeigsmuhlFCCHXqvj4c851v09MjHeJjo7WAUBISJg+KytDExUVbbR+FRTkKVes+DCkurpKduDAPu/q6irFpk3bE196aWre6NF3lVdUlNfewP4v5/HwcDcPGTKscubM2empqclOmzev90cDMjLSVa+88lKsRqMR16zZlECJCWkqSk4IaUVFKUkAgHJRhLXolEzGwGAWmpScAEBppR7MVdYTVnfvgcPFhUgszG9xvI5KqwD+nlCFvydUQUv9vYQQcoUDB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyer64pk//50InjfL3n77vVSlUikVFOQrrF+t2xKko2v2DwjLsgoAQwHcDiASgDuAYgAZAA4B+J3jOKpEQAiAyqwsuADQKf/7VZPJZNDpzTAYr1hhsV7VOjNMfMO/UiEhoQCA7GyaY0gIIfYiU2vb/AZuS645YsToor17d/svX75EGx4erlu4cElSjx6W3oq77hpTJklS6q5d2wK//PLzACcnZ2HAgBvKX311erZ1e2JiQv769Z+Erly5VObj42saOfLO4hMnfvNISDjvDKDo8utNmvRy3m+/HfVcsGBuxIYNn3J1h3fl5eUqExLOuwLACy881f3yY48f/zvO1tdJOr8mJycsy6oATALwOoAQAGWwJCQ1AEIB3A3gLQC5LMsuArCO4zgqvkCuacZiy99zwcnp4nOMDCitavqvRo3eDBMvQC1nLk5grCs0JBRdXVwRXFMDgechV9BNKUIIsZUkSSKjcuJd2BsVaIcRJozKiZdEqdn1VSIjo/XTp8/Kbmj73XffW3b33feW1XtNhsG0aTNzpk2bmVP3+aeffr7A+njKlNdyp0x5Ldf6vVqtlvbs2X++vvMFBgaZKQEhtmrSpxiWZW8AsBWAAOATAJ9zHJdSz369ANwJYAqAqSzLPs5x3Ak7xktIhyJWlAMAGHePi8/xgoTqRpYQrktnMMNgEqB1VkIQrsxO/P0DMCe2GxQyGQqSLiCo2xU3qTo8owDM+V0DAJg30AB1Q8uXEUJIC0kSBL2ozGOUHu0y9F0SJVGS0KGrwxPSEk29xboNwEyO47662k4cx50FcBbAIpZlH4YloYltWYiEdFxynWX+n9r74uqNMPMidMamF0w085bJ896uagjCle9XSpUKZaIIX5kM+VxCp0xORAn4KUsJAJgrNb7KGSGEtIQkQZAkiRIEQtpBU5OTXhzHNWspII7jPmdZdl/zQyKk8/i0vAQlGRl4e/yjACyT4Y0GHjpD0+abWJVXGRDm79Lg9mqlEr6ShMqM9JaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5FVkI88owF+4ZZlhGUyBnojD2MTJ8Nb1eh58PUM6bISXF0BAIb8zrtiFyGEEEI6v6bOOZnTnJNyHDfPtnAI6Tz0ej0qKioAAH5+AQAsyUlFtQnNXc5OZzTDLIgN/sIqfX2BykqgvNzmeAkhhBBC2ltTh3XNvex7CQADywT5YgCeAFQATABKAVByQq55BckX8Hx4JIoFEa61PRuCBFTpmr+Ind7Iw2QSoNLUXyneJTQMSEmBxkDzMQghhBDScTV1WJfM+gXgDgAlAB4BoOE4LpDjOA0sq3SVAHit1aIlpAMpTUnG7b7+GOrjC6a2iiLPi9A3c74JYKkUbzALkMnqr8bo08Wy7oQHAFFs9gqUhBBCCCEOwZZl8lYBeJvjuM85jru4kgXHcd8BmA1ggb2CI6Qjq8q1LAdvqK07wjCAWRBhMDU/OZEkoEpnupjkXC6kR0+sz0jD0pQLKC+rdxl7QgghhBCHZ0u1tjAAmQ1sKwLgb3s4hHQexqJCAIBZqwVQu1KXnofeaNvqlJXVJstgynpoXV3xLwMUVlYgJzcbXnWWLu4MNHLg2MNVFx8TQgghpHOypefkXwAvsyyrrPsky7IaANMBnLRHYIR0dELtZHjGzc3yL8NAbxJgMtuWnOiNPHi+4SFboaGhAICsrIbuHXRcDANoFZavBjqPCCGEENIJ2JKcvAngNgApLMuuY1l2AcuyGwCkAugD4HV7BkhIRyWrqQEAqGp7MWQyBlXNqAx/OYOJh7meyfBW3QKCcKu3D6rjz9t8DUIIIdeempoa2bZtm32t38+a9UbEs88+wbbmNbOzM1X793/l2ZJz7Nmz23vQoAH9G9reFq9j0KAB/ffs2d0phitkZqarBg0a0P/334+5tmcczU5OOI77FcBAWHpI7gEwDcBoAIcB9Oc47rQ9AySko1KbLImIS0AgAEuV8ypdC5ITIw+TWWxwUnwvlRqTI7vAtRMWYjQJwNwTGsw9oYGJajYTQohdbdq0zv+LLz4LsH4/ffrsrMWLlye35jXfffftiJMnf3dvzWuQjsmWOSfgOO4UgIfsHAshnYpLbTUT95AwAABv42R4K0PtkDBGowDqqZTiHBwMZGVBpdPZfA1HJUjAwTTLSNIZ19NyyYQQYk+SJF1y18vd3b0NbgNJNEiX1Mum5AQAWJYdDcuywoEA3gJwHYA4juMy7BQbIR2WyWTCS/+egpdShR3dugMAzILU7MrwdYmihBoDD193DYR63ja8IqOBP/6AGy0lTAgh15SKigr50qWLQv7884QHz/NMZGS07sUXp2T37dtPBwA6nU72wQfzQv/++y8PnU4nDw4ONjz22JO5o0ffXb5ixdKgzz/fGQhYhijt3Ln37Nq1HwcVFhao16//lPv992OuM2e+Hrtw4ZILH330YVhhYaE6IiJCN3v2vLQffjjkefDgPn9BEJjBg4eWzJo1N4thGEiShA0b1vj/8MMhn6KiQrVSqRS7du1ePW3am5nh4RGmZ599gk1IiHdJSIh3GTt2lOu+fd+dNZlMzIoVHwb98ssRb71eJw8JCdNPnPhs7pAht1VaX+ehQ994bN26IaigIF8THR1T07dvv8qG2sRKEEQsWDA39JdffvJWKBTSHXeMKp4y5fUcRe1Kmn/++Yfzpk3rglJSkpzNZrPM3z/AOGHCE3n33nt/qfUcX3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr7g8msVFRUqXnrpWdbDw9O8fPnqZCcnJ/HXX4+4rV//SXBOTrbWz8/f+MADD+evWLE0YufOvWfDwiJMY8eO6nXjjQPL//knzq2iokI5Z868lJtuuqVq69aNft9+e8CvuLhY5ePjY3rggXH548c/VgwAv/9+zHX69FdjrecALEOyJkx4sNfixcsuDBw4uGrWrDciRFFkPD29zD///JO30WiQ9e7dt/LNN+dk+PsH8ACQkHBes2zZ/4UlJyc5e3p6mseNm5DXoh9EO2n2sC6WZZ1Ylv0BwDcAJgJ4GJYijJMAxLEs28O+IRLS8RQVFcIoiiiRRHj6+EAmY2AyCzC0cExSZY2xwQnhQT16AgDc5QrUlJfWvxMhhJCrkiSgxgxZe31JDU8tbCBeCa+88mJMbm6Oev78xcmrV29I7Nq1W80rr7zY9ezZf7UAsHLl0qD09DSnDz74MGnr1l3n+ve/vuKDD96LysxMV02c+Fz+PffcV+Dl5WX+4ouD/wYHh14x/lgURaxevSJ0xoxZ6StXrk2oqKhQvPTSs90yMzO0H330Cfe//z2d/d133/j99NMP7gCwefN6vz17dgU+99yL2du2fXbu3XffT8nNzdEsW7Y4FAAWL16eHBMTW3PzzbeUbdiwLQEA3n57RkRc3N/ub775dtq6dVvjb711aNmcOW92OXzYcs6//jrp/P77c6MHDhxcvn79p+eHDx9Z8sUXnwU21j4XLiS6lJeXKVeuXJv4+usz0w8f/sFn8eIFoQCQm5ujnDnztdjIyGj92rVbEtat2xIfE8PWLFv2fxGFhQUKAPjmm/2eS5YsjBwy5LbSDRu2nZ848bnsHTu2Bu3evcOn7nVKSooVkyc/x3p7+5g++uiTJCcnJ/Hs2TPaOXPe7NKnz3VV69ZtPf/YY//L3bhxbejlMX7//SHfyZNfzVy0aOmFAQNurF60aEHoZ5/tCHrssSdzN27cdv7ee+8vWLt2VdjWrRv9mvOzceLEb56VlZWKjz5azc2Z815KQkK866pVy4MBS0L7+usvs05OTsLq1esTpkx5PXPnzk+DmnP+1mJLz8n7APoDuB3AMViqwgPA4wC+B/AegPvtEh0hHVRBQT4AwN8/AAzDgGEYmPiWDesCAL2Bh9DApHiPgECkCjxc5ArknD+P2FsGt+hahBByrZEk4LHvnLpyZXLn9oqhq6dQvW2UjmvqyoTHjx91TUrinPftO/Svj48vDwCvvTYjJz7+vMvu3dv9e/Xqk56Xl6vWap2E8PBIo7u7uzB16rSc667rX+Xu7im4uLiIWq1WlMlkkvWOen2eeurZnP79b6gBgIEDB5UfPPi135w572U4OTmJMTGsYfv2rcEpKUna4cNHVoSGhhmnTXsz7Y47RlUAQGhouOnkyRNlR4/+4gkAnp5egkKhkFQqlejj48unpqaof/vtmNeqVesSrL090dFdClJSkrWffbY9YPjwERV79uzyi41lq6dMeS0XALp0iTGmpqZov/12/1U/sLu7e5jfe29Rmkajkbp27W4oKirKWbt2Vdgrr7yRYzKZmEceeSz3mWdeKJDJZNbXmffLLz95p6amaPz8/Kv37t3tf/PNt5Q+//xL+bVxGXW6GrlGo704TKGyskIxefLzsT4+vsYPP1yZotFoJADYtWubf2RklO6NN97KBoCYmFhjaWmpcv36Ty5JUK67rl/FrbcOrbKcq1L2/fff+D799PNZY8c+UFp7zaLc3Bz1Z5/tDHziiYmFTfvJALRarfDOO/MzlEqlFBvb1XDixG8lcXF/uQPAN9987WkymWTvvrsw3d3dXejatbtBr9dlzZ//TnRTz99abElOxgF4k+O4n1mWvVhxgOO4fJZl5wP42G7REdJBVZw7g+fDI2HwsSx+IpMx0OnNaO4dscsZTDx4QWqo3AkqGAYuAIqTkyg5IYQQGzD1TepzYImJ8U4AMG7c2F51n+d5njGbTQwAPPbYk/mzZ0/vcu+9I/vExMTW9Ot3fcXo0XeXNmduSWRk9MUJf2q1RnR39zA7OTld/ICuUilFo9EkA4A77hhVERf3l/OKFR8G5eRkq7Ozs7TZ2VkaT09Pc33njo8/5wQAr7/+8iUrawmCwDg5OQkAkJGR7nTddf0r6m7v1at3dWPJSXR0F501WQCA3r371vA8z6SkJKt79eqtf+CBh0s+/XSTX0ZGmiYnJ0eTnp7qBACiKDAAkJmZob311tsuGY4wbtyjxXW/37ZtS7Ag8Mzl10pNTXa6fOhZv37XVwGfXBJjcHDIxbZNTr6gEQSBue66AdV19+nbt1/1gQP7/IuKCpv82d3fP8CoVCovxuPs7CLwPM9YYktx8vcPNNT9Gejf//rq+s7T1mxJTjwApDewrQyAi63BENJZmDMzcbuvP1LUagCW2hyVLVipy8poEmAWRKjlTL2JjlGjBUwmVGdntfhahBByrWEYYNsoHafjbSq1YBdOCojNqeckiiKj1WqFtWu3JFy+TaVSiQAwYMANNV99dejMsWO/uP3110m3H3445LN79/ag+fMXJw0ePKSqKddRKhWXvOs0tHIkAKxbt9p/165twcOGDS/u27df1cMPjy/85ZcjHseO/eJV3/6SZMlxli9fnejs7HLJxEm5XC79t9+lk+gVCmWjiaRMJrtkH1G0fBZXq1VSUhKnmTz5ua4REVG6/v2vrxg0aGiFl5eX+eWXn+9W9/qN/X/06tW78s47xxQvWPBO9M8/Hy4dNmx4Ze2xEMXGJ/6rVOorXiNz2UXF2vmkdZONup8DzGb+iuvU3fc/dZ9qfnu2BVuSk3MAHgXwQz3b7qndTsg1TSgrszyoLcAoiBL0hpYN6QIAo4mHiRehUSgg1ZOdFIWHY9c3+9ErNAQjWnw1Qgi59jAM4KxEh1lZJDo6Rq/X6+Umk5Hp2rX7xTvwc+a8Gd6lS4zuiScmFq1Y8WFQnz79qkeMGF0xYsToCkEQsh555L4eP/982HPw4CFVDMPY9UPp55/vDHrkkcdyrUOhAGDHjk8DLn3b+u+aMTGsHgAKCgpUw4f3udg7smzZ4mCGkUmvvDItNyoqWpeQcP6SG+AJCecaHX6Xnp7qJIoirMO2Tp3621WlUonh4ZHGJUsWhri5uZvXrt18wbr/jz9+5w7g4ntscHCogeMSLrnOwoXzQgsK8lXLl69OAYBbbx1WNnr0XeU///xj6bJliyP697/hnJubmxgREam7/NizZ09fNeYuXWINcrlcOnXqL5eePXvprc+fPn3K1d3dw+zh4SkolZaks7Ky8uIIpoyMNHVjbVFXTEys7siRH71LSooV3t4+PACcOfNPuw1nrMuWOwPzATzOsuxBAM/AkoINYVl2JYAXASy2Y3yEdEjWAoxKL8tNIl6QYGzhfBMAMJotywk3dMfKrWs3/FtZgeS83BZfy5Fo5MCP91fjx/uroZE3vj8hhFwrhg27vSI8PEL/zjtvRR8/ftQ1NTVFvXjxgpCffz7sYx2KlZOTo16+/P/Cjh8/6pqVlaH65pv9nsXFRepevXpXA4BWqxVramrkyclJarPZ3OIlfr29fUynTv3lxnEJmqSkC+ply/4v6M8///Awm80XP3dqtVqxsLBAnZOTrezatbuhX78BFStWLAn/4YdD7unpaaoNG9b4f/nlnoDg4GAjAEyY8L/8jIx07aJFC0KSk5PUX3211+vQoYO+DUdhUVJSonr77RkRiYnxmm+/PeCxc+enQWPHPligVqslPz9/U2lpierIkR/dsrIyVIcOHfRYsWJpOACYTJYhcRMmPJ73++/HPbds2eCXlpaq3r//K88ffjjkO2jQkPLLrzV9+qwsk8nELFnyfihgGU6XlpbivGTJB8HJyUnq7777xmPbti3BwJU9I1bu7u7C8OEji3fs2Bq8b98XXqmpKept2zb7fv/9t7733fdgAcMw6Nq1u16j0YibN68PTE1NUZ848ZvLxo1rQxo6Z33uvntsqZubOz9r1vTIc+fOak+cOO7y8ccfXTFZvz3YUoTxawCPAegNy6A5BsCHsNQ9eYHjuL12jZCQDkhlMgIAnPwtNa14QYLR3PJl4yUJ0BnMDf5RCw211FTJysps8bUcCcMAnhoJnhqpwdXKCCHkWiSXy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpliHbM2aNTejd+++VR98MC/y8cfH9fz0003B//vf09n33fdQKQCMGDGqzMPD0/zMM0/0OHPmtFNLY5o1a26a0WiUTZr0dLepU1/omp6eqn3xxSkZVVWViszMdBUAjBlzf1FWVqZm4sRHewiCgA8+WJp6882Dylas+DD8yScn9Pzhh0M+L730SsZDD40vAYBevXrr589fnHT27GnXZ555oscXX3zm/9BD4xtd+nbAgBvK5XK59NJLz3ZbtWpZ+KhRdxe+9NLUXAB44omJhQMHDi5dtGhB1FNPPdpj+/atgU8++UyOj4+v6dy5s86AZf7M5MmvZnzzzX7fp56a0GPr1o3Bzz47KfPBB8eVXH4tHx9f/tlnX8w+cuSwzy+//OTWrVsPw9tvz0v+668/PJ555vEeW7duDLrzznsKAUCpVDXYW/Xmm3My77prTOGmTeuCJ058tMfBg1/7Pf/85MxnnnmhAABcXV3FGTNmp+bkZGknTny0x4oVH4Y9//zkrOYkJ87OzuKKFZ9wCoVCmjr1ha4LF74X+fDDE/IbP7L1MfUNDWkqlmVZAN4AygEkchzXEbpBUwVBjCwtrbHrSRUKGTw9nVFWVgOe7wjN0HF1hLb+88nH4KFQwDzhMfQafgeqDDyOn86BvgV1TqzYCC/0ifaGqZ5liQvycjH/0YcRoNHgjS8PQKXR2nydjtDOnQG1c9ugdm4brdnOXl7OkMtlaQCi7HG+uLi4rjKZ/Ds/v+BqlUpD1V2J3f3zT5yTQqGQevXqc3F41r59X3gtX74k4vDhY6estVauBSaTQVNYmOMiisKo/v37J15t32a3CsuyRwC8yHFcIsdx3GXbegPYznFc7+ael5DOgjeZ4Ca3jD3yDgsHwzAw8yKMLaxxYnW15YR9/fzxfEQUVDIZchMTENG3n12u2d5MArDslGU47av9jFDR0C5CCCEOLjExwWnTpnUhb7zxZlr37j306enp6m3bNgfdcsug0mspMWmuJrUMy7KD8N8QsKGwzDGpb+m2uwG0+/rIhLSnkqxMyBgGoiTBJzzCsoywgYfY0nWEaxnNAnix/uWEZXI5yiQR/pCh8ALXaZITQQL2JKkAAFOuM7ZzNIQQQkjjHnnk0eKSkmLlJ5+sDCsrK1W6ubnxgwcPLZ08+dWc9o7NkTU1bXsGwBOwTH6XAKyGZa5J3U9b1s9KO+0WHSEdUInRgKdO/YlIf3/sVirBMEC1vuXLCFsZTTx4XoKygRljOrUa4AVUZqTb7ZqEEEIIaR6GYTB58it5kye/0ujcGPKfpiYnUwFshiUBOQLgJQDxl+0jwDL35Ly9giOkIyouLoJRFMF4eAIAxNpJ7PZiNAsw8wLUGgXEeoZ3iW7uQGkpTIVNLiJLCCGEEOIQmpSccBxXAeBXAGBZdhiAOAAuHMfl1z7nCSCU4ziqcUKueUVFRQAAn9rq8JZlhO0z3wQATCYBJl6sXbHryuRE7R8AlJZCXllx5cGEEEIIIQ7Mljon/wL4CsAvdZ67EcBplmX3sSzb4iXoCOnIZIkJeCE8Cn2dXQEAgijaZRlhK0GUYDBdpdZJeAQAwMlov6FkhBBCCCFtwZbk5AMAPQC8Vee5IwDuBTAAwDw7xEVIh6UpKsJtvn4IVijAMAxMvFjvsr8tUaM3N1jvw79rVwCAp0wG3my/4WSEEEIIIa3NluRkDIBpHMd9aX2C4zgTx3EHYElYHrZXcIR0RDK9ZTlzpZcXZDJYlhG2Y88JANToTWho8a+AGBaLU5LwxvkzKCyieSeEEEII6ThsWWTZFUBZA9sKAPjYHg4hHZ/KZALkcjj5+lt6TswCzHYuRmZdTrg+SrUaRW6uyCsrQU5OFoKCgu167faglgP7x1RffEwIIYSQzsmWnpNTAJ5uYNtTAM7YHg4hHZ9TbZeGW1AQGIZBjR1X6rIymoUGCzECQEhIGAAgMzPT7tduDzIGCHKREOQioYGpNoQQQgjpBGxJTuYDGMuy7N8sy85iWfZZlmXfYln2JIAHAcy1a4SEdCACz1+sDu8VGgaGscwPsTeTydIb09C8k95+fnggMBjmc2ftfm1CCCGkNRw+/L07xyVoWnKOZ599gp01640IO4VkkxUrlgaNHTuqV1P3nzXrjYhnn32Cbc2Y6pIkCXv3fuZdVFSoAIA9e3Z7Dxo0oH9bXb8xzU5OOI77EcA9sKxhOg/AWgDvwTJE7F6O476za4SEdCCl2VmQ11aH9w4Lt6ysZbTvfBMAlqFignU54StFq7UYFxwKj/zOUffJLAAf/aPGR/+oYefpO4QQQhxAVlaGau7cWV1KSoqV7R1LZ/fHH7+5LF/+fxF6vU4GAHfffW/pF18c/Le947KyZc4JOI47BOAQy7IaAF4AKjiOq7FrZIR0QCWZmZABqBIEqDQaCKIEUyt8mjaaBfBXqXXiGhYGJCdBazDa/drtgZeAbQkqAMBzvYygdy5CCOlcpIZWeSF2J0nSJXc2tVqtpNVq+faK53I2JScAwLJsNwB3AAgEsIpl2esA/MtxXJW9giOkoymWMXj91J/oHcPietQWYGyF5ESSAJ2Rh6+7BkI9p/djWZiP/AQPAKIoQiazZQQnIYRcm2rMDY8skTOQNIr/7gpdbV8ZA0lr477NceTIj26bN68PzsnJ1qjVGrFfv/4V06a9leXp6Sn8/vsx1+nTX43duXPv2bCwCBMAZGamqyZMeLDX4sXLLgwcOLgKADZv3uD39ddf+FdUlCtjY7tW9+rVp+rw4e989u377iwApKWlqpcsWRiamBjvqtVqhbFjHyz49tsDvuPHP5730EOPlADAnj27vD//fFdAcXGR2sfH13jnnWOK/ve/iYXW96Avvvjc+/PPdwYUFBSoXVxc+IEDB5e9/vqM7IKCPOWECQ/2AoDp01+NffjhCXlTpryWe+FCouajjz4MSUyMd9VotELPnr2rXnttepa/fwAPAEajkVm6dFHI0aO/ePE8z4wadWeReJX5mAAwaNCA/pMmvZz5008/eqWlpTj7+wcYJk58LmfEiNEXKxcfPvy9+5YtG4JycrK1np5epltvHVY6adLLeWq1WgKAxMR4zZo1q4ITEuJdDQa9zNvbx3TPPfcVPvXUM/Uukbllywa/LVs2hLz55pzUkSPvLG/s/zM7O0u5atXykDNnTrsZDAZZ167dqidPfiW7e/eeeus+X3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr6gsfisPw8AMGHCg72mTp2WDgAffbQk4vjxv+MAoKysVL5q1fLgv/76w6OqqkoRGRld89xzL+bcdNPAasAybO3s2dOu119/U/mBA/v8q6qqFLGxbPUbb7yVERMT2+K7os1OTliWlQNYA2AiAOtt2z0A3gEQxbLsEI7jslsaGCEdUVFRIYyiCJWPLxiGgZkXWqXnBAB0BnODw7qCuvZAmiRBK5ejJDMDvhGRrRIDIYR0RkP2uF7X0LZ+fnzFuuH6ZOv3I7506WMUmHqTju5eQvWno3Sc9fu797n0qjIz9X72inYXdJ/dpUtobqwlJcWKefPmdHn66eezhg4dVpGXl6dcuHBe1LJli0Lmzfsgoynn2LZts++2bZuCX3hhcma/ftdX//DDIc9du7YFe3t7mwBAp9PJXn31xdjAwGDDRx+tSaypqZYvW7Y4rKioUG09x65d23y2bNkQ8uKLUzP79LmuOj7+nNPHH38UVlxcqHrjjbeyz58/p125cmn4G2+8ldanT9+a5OQkzcKF86Lc3d35F16YnLdy5dqEl19+vtusWXNTBg8eWpmXl6ucMuUFdtCgIWVTp76eoNfrZRs2rAl64YWJ3bZv33Pe2dlZXLhwXtjff590nzbtzfTg4GDj5s3rAzkuwSUgIOCqH5A3b14f8r//PZ395ptz0r/++kuf996b08XT0yvx+utvrPn558NuCxbMjX7mmReyBg4cXJmZma5euXJZWHZ2pmbJkhWpOp1O9vrrU2J79epTtXLlmkSFQint27fXZ+PGNaEDBtxQ1atXb33da23fvsV369aNIbNnz0sZPnxERUMxWVVVVclefPGZrv7+/qb58xclqdUaaePGNUGvvPIiu2nT9viQkDDTN9/s91yyZGHkY489mTN8+Miy+PhzTsuWLY5wdnYRxoy5r/Rq8Q0YcGP1rFlzUxYsmBu9cuXahK5du+sPHvzay3p9QRAwZcoLsWazmZkxY3aar6+f+bPPdvrNnPla7PLlqxP79u2nA4CkpAvOarVGWLjwwySdrka2cOG8yCVL3g9fu3bLhab8zF2NLT0nswE8CuAZAN8AyK99/nUA+wEsAPC/lgZGSEdUXFwEAPD19b1Y46S1kpMavbnBbnC1szPKBAHeCgVy489TckIIIZ1Ubm6ukufNTGBgoCk0NNwUGhpuWrhwSRLPC01e2/CLLz4LuOuuMYUPPzyhBAC6dInJT06+4JyamuwEAN9887VnZWWVYvPm/0v19PQSAGDOnPfSnnvuye7Wc+zatS3ooYfG59177/2lABAREWmqqamWr169Ivzll1/LycrKUAMMQkJCjSEhYaaQkDCTh4fnBRcXV0Eul8Pb25sHAHd3d8HFxUXcsGFNgIeHp3n27HcvLju5aNGy1LvvHt7n228PeI4adVfZL7/85D1p0suZt99+RwUAvPvuwvQHHrjbtbHXO2zY8OLHH3+qCACmTZuZc+7cv6579uzyu/76G9O2b98SePvtI4offfR/RQAQGRllVCgUGTNmvBabmZmucnJyFseMua9w/PjHC93c3EQAmDz51dwvv9wTkJSUqK2bnOzatd1n06Z1Ie+8Mz956NDbK5vyf/H11194V1dXKTZt2p7g4+PLA8D77y9JffDBe3rt3r3Dd9q0N3P27t3tf/PNt5Q+//xL+QAQHd3FqNPVyDUarajT1cgai8/d3V0AAG9vb16r1V7yQeLXX4+4paWlOq1fv/V8t249DAAwe/a7mRcuJDrv2LE1oG/ffqkAIAgC8957H6RZfx7GjLm/cOvWDSFNeY2NsSU5mQhgDsdxm2t7UQAAHMedYVl2DiwV5Am5JrkmJ+OF8Ci4qTWtVuPEynSVWicAUK1QwBtAeVpqq1yfEEI6q18fqvqnoW1y5tKhVz/cX93gRGLZZfseHFvd4BKKl+/bVL169dbfcsvg0rlzZ3VZsWKpqU+f6yoHDhxUcccdo8qbcnxpaYm8uLhY1atXn+pLz9unypqccFyiU2BgkMH6QRQAunfvqddqnQQAKC4uUpSWlip37NgavGvXtiDrPpIkwWw2M5mZ6eqhQ2+v+PLLPdUvvfRsN3//AGPfvv0qb711aHmfPtfp6osrOfmCU25ujvb222+5pBfLbDbLMjLSNCkpSRqe55mePftcnPOs0WikiIjIes9XV79+Ay6ZgsCy3WpOnz7lBgBpaWlOKSnJzj//fNj7v9dhjSlJc9ttd1ROmPBE4cGDX3ulpCQ55eRkqzMy0pwAQBDEiwlhWVmZ8pNPVoTL5XIpJCSsyUOdUlNTtAEBgUZrYmJ9XV26xNSkpaU6AUBmZob21ltvK6173LhxjxZbHzclvoYkJydptVonwZqYAADDMOjevWf1qVN/u1mfc3NzN9f9eXBxcRF4nrfLYv+2JCf+AE43sC0bgKfN0RDSwXlUlKOfrx+ylCowDAO9sfXml5lqa500NIDZ7OICVFdDn5fbajEQQkhn5KxEk+8qtda+zbFo0bK0pKQLuceP/+oeF/eX26JF86O++mpv9bp1/w2xqdvRbjb/9yFSLrd8FBTFhj+4yuVySFLD20XR8rKeeeaFrJtvHnRFD0FISKhJpVJJ69ZtuXD27L/a338/5h4X97fb7NkzYoYMua1k/vxF6ZcfI0kS06NHr8o33njrioJd7u7uQlZWpqp2v0u2KRSKRpO8y/eRJAkymVyyPBaZsWMfzB8z5r6Sy4/z9w8wFxYWKJ577slurq5u/E03DSzv3/+Gyt69+9SMGze2d919GUaGefPeT9q0aV3QggVzIzdu3JbYlPmfkiTVO2RbFEVGLrfEKJfLpYZKCTQ1vqtcv94R46IoXtJuSmXj7WwrW2bJJgO4s4FtQ2u3E3JNUpksNU20vr5gGKC6FWqcWJnMInih4VonFV274pVzp3GMb70YCCGEtK+4uD+dFy6cFxoTE2t86qlnC1etWpc8deq09Pj4c65FRYUKpVIlAkBlZeXF0S4ZGWkX54q4u7sLPj4+pnPnzjrXPW9CwvmL33fpEqvLz89Xl5WVXjxHUtIFtV6vkwOAr68f7+bmxufkZKujoqKN1q/z5884ffLJymBJknDkyI9uq1YtD+zVq4/++ecn569bt+XC+PGP5/z++zFPAFd8IA8Pj9Dn5GRpg4NDTNbzeXp68suWLQ5NTIzXxsSwBqVSKf3zz98u1mN4nkd6uqWX4Gri489d8loTE+NdoqOjdQAQEhKmz8rK0NR9HQUFecoVKz4Mqa6ukh04sM867CrxpZem5o0efVd5RUV57c3+/z6ve3i4m4cMGVY5c+bs9NTUZKfNm9f7NxYXAERFddHn5eWqrTVIAMBgMDCpqclOYWERegAIDg41cFzCJa9h4cJ5oa+88mJ0U+JjGKbBxKJLl1i9TqeTJyScv6TeTHz8eZeQkDBDQ8fZky3JyXIAU1mWXQVgOCyvNIZl2dcBTAPwsf3CI6Rjca69e+QaGAhBBAyt3HNi5huudeIXE4tcgwEZ2VmtFkNbUcuBz+6swWd31kAtb3x/Qgi5Vri4uArfffeN75IlC4NTU1PU8fHntEeO/Ojl7x9g9Pb24bt27a7XaDTi5s3rA1NTU9QnTvzmsnHj2pC67x0PPTQ+/9tvD/jt3fuZd2pqinrTpnV+J0785mVZ9wgYM+a+UldXV3727BmR586d1cbF/ek8b97bUYAlqWAYBvff/3D+t98e8Nu6daNfWlqq+vvvv/VYteqjcKVSKarVakkuV+Czz3YEbdq0zi8jI111+vQpp5MnT3jExLA1AODs7CIAQFLSBW1FRYV83LhHC3U6nXzmzNeizp49oz1//pz2rbfeiEpOTnKOje2qd3Z2Fu+8857CHTu2Bh06dNAjKYnTzJs3O7ysrFTVWJsdOLDPf9++L7ySk5PUixYtCMnISNeOH/9EAQA88sij+X/++YfnihVLg5KTk9THjx91Xbz4/ciammqFv38A7+8fYDIajbKDB7/2zM7OVP366xG3d9+dHQUAJpPpis/V3br1MNx330P5O3ZsDUpJSVZfvv1y99wzttTJyVl4661p0adO/e1U+7ojDQaD/KGHHikCgAkTHs/7/ffjnlu2bPBLS0tV79//lecPPxzyHTRoSHlT4nNychYBID7+vFN1dfUlMQ8ZMqwiNDRcP2/e21G//37M9cKFRM17780Jy87O1D7yyISCxuK3h2YP6+I4bgPLsr4AZgGYBMtP7i4AJgCLOY5bY98QCekYRFGEa22XrVdtAcbWmgwP1M45ERqudRIaGg4AyMpq0mItDk3GANEerTN3hxBCOjKW7WZ4++15KVu3bgo6dOign0wmk3r06FW1ZMmKJJlMBldXV3HGjNmpGzasCZk48dEegYFBhkmTpmTNnj091nqORx/9X1FlZaV869aNwatWLVd0796jaujQ24sTEs67AoBarZb+7/+WJ3344QdhL7/8XDdnZxd+3LgJeWvXfhymVColAHjmmRcK1GqNuH//l36bNq0LcXd352+//Y7iqVOn5QDAkCHDKqdMeT19797dAdu3bwlWqVTiddcNqHj99RnZAODl5S0MGza8ePPmDSHZ2VnqWbPmZi1b9nHi6tUrQl55ZVJXmUwuxcayNUuXruR8ff14AHjttRnZKpVKXLVqeZjBoJcPHDi4tH//68sba7MRI0YX7d2723/58iXa8PBw3cKFS5J69LAs03vXXWPKJElK3bVrW+CXX34e4OTkLAwYcEP5q69Oz7ZuT0xMyF+//pPQlSuXynx8fE0jR95ZfOLEbx61vU1Fl19v0qSX83777ajnggVzIzZs+JS72vAuDw8PYcWKNdyKFR+GTJ/+Clv7f1y1YsWaxPBwy1LQd9wxqqK8vDzj8893BmzZsiHE29vH9OyzkzIffHBciSRJaCy+bt166Pv27VfxwQfvRT32WFaOu7vHxTupCoUCK1Z8cmHp0sUh7747O9ps5pnIyCjdBx8svdC//w1tUtOQaW7RG5ZlPTmOK2NZ1g3AzYBlzi2APziOK73qwY4hVRDEyNJS+7avQiGDp6czyspqwLfSBGhi4ahtXZKdhZK5bwMAIlauhlzrjN/P5KKkQt/Ikba7uXcQgr2dwfNXJkE1NdX4vwfGIFCjwbi1G+HhH9iscztqO3c21M5tg9q5bbRmO3t5OUMul6UBiLLH+eLi4rrKZPLv/PyCq1UqTZsMV3FUP/982C0mhtWHhIReHAf8zjtvhefn56rXrt1yITMzXZWWlqoZMuS2i/NJ8vJylQ89NKb3kiUrOGv9i45g0KAB/adOnZZurc1C2obJZNAUFua4iKIwqn///olX29eWCfF/siw7m+O4zwB8b1uIhHQ+JRnpAIAqgYfayQmGVlxG2EpnMKOhGzDOzi64MyAIHgoFcs+da3Zy4kjMArDpvKWnfmIPE5Q0tIsQQuzmu+++9d6wYY32tdemZ/j5+Zv//POk67Fjv3hNmjQlEwCMRqPs7bdnxjzxxMTsO+4YVVZZWSFfu/bjYH//AGP//te3yd10cu2wJTnxBFDc6F6EXGMqcnPgDqAG+K8AYz09Gvak0199TkulXAYPAKWpKcDtd7RqLK2Jl4D15yxDdZ/oboKyneMhhJDOZObM2ZlLliwMffvtN7vodDq5v7+/8dlnJ2VZexdiYljDjBmzU3fu/DRw585Pg5RKldS7d5/Kjz5afcE6rIsQe7ElOfkIwP/VToA/x3HcFWPrCLkW5apUeDHuJG698WYMYxiYhdbvOTGaeQhXqXVicnIG9HrU5GS3ahyEEEI6Lk9PL2HBgv9Lv9o+d901puyuu8aUtVFIreb48b/j2jsGcnW2JCdPAAgHcBgAWJa9fLvEcVyTz8uyrB+ADwGMAqAF8CuANziOi6/d3heWhGgAgBIAKziOW2JD3IS0quLiIpglCU6+fpDJGBiMPJo5pavZLMsJS2ho8Xm5tzeQnQ2xhIbWEkIIIcTx2ZKcbLdzDPsBiABGwzIi5j0Ah1mW7QJLsvIjgH0AXgBwE4DVLMuWcBy32c5xENIiRUWFAABfXz8wDKAztN4ywlYmswBBkhr8RdYGBQPZ2VDpGi2YSwghhBDS7mxJTtIAHOE4rsXjRFiW9a4933yO487XPvceLBXoe8BSR8UIYBLHcTyABJZlYwDMAEDJCXEoodnZmBQRhUCVChKAGkPrFz808QJ4XoRSKb+iSi4AeEfHAH+ehLvYusPLCCGkAxIBSJIkNVj5nBBiH7W/ZxIsv3dXZUsRxqWwDLFqMY7jSjiOG18nMfGHpZBjNoB4AIMBHK1NTKyOWHZl/ewRAyH2EqjTY5iPH7xV6lavcWJlMoswX6VKfHDPHgAAF5kcNeUdYaVvQghpM/mSJJlNJkOjFcUJIS1jMhmcJEkyA8hrbF9bek4KAXjYcNxVsSy7DsCzsPSUjOE4roZl2RAAZy/bNbf237DaWGyiUNiSlzVMLpdd8i9pPY7a1lpRBGQyuAcHQ5IAXhAhk7XuDTlBECEIEpRKOQThypsRPsHBeD49BaklxfistASxPj5NPrcjtbOiTqeQQi6Dwpa/XA7Kkdq5M6N2bhsdqZ379+9fGRcX92llZdkkAN4qlUbHMAytPEWIHUmSxJhMBqfKyjKVJIkb+/fvX9XYMba8xa8H8DHLssMAnANwRSl7juM+teG8ywGshaXq/D6WZQcBcIIlWanLWihJY8M1AAAyGQNPT2dbD78qNzdtq5yXXMmR2rpudfjwHizkSjlkchm0WlWrX5uXrt4W2pBgmIuLUFKSD0/Pfs0+vyO0s5sI7B9neezv44wO8Lmn2Ryhna8F1M5towO18/uCwKO8vOQJhmGcgAbXFyGE2EaSJMksSeJGAO835QBbkpMPa/99vKEgADQ7OamzOtdzsFSenwxAD0B92a7WpMTmoj+iKKGy0r4ThOVyGdzctKis1Nd7B5vYjyO2dVluLlS1yYnWNxA1NSZUVRuh17f+vJOKKgOqqw0wNzCMLDg4DKdPn8b584m4+eYhTT6vo7VzWO1fgsqK9o3D3hytnTsraue20Zrt7OamtXuPTP/+/UUA8+Pi4j6SJATCtuHuhJCGiQDymtJjYmVLchJpwzH1qp03cjuAzzmOEwCA4ziRZdl4AMEAsgAEXXaY9fucllyb51vnzUkQxFY7N7mUI7V1fkoqAKBGEKB2ckZZjRkGIw/xKjVI7KVGZwLPN9wWvby8ERIeBc2/Z2xqL0dq586M2rltUDu3jY7WzrUfnJr84YkQ0nqanZxwHJdhfcyyrBMANwAlHMfZcos4CMBOWIaGHak9pxJAP1iWGC4A8ALLsnJr8gJLMsNxHGfzfBNC7K0iNxtuAKolCQzDgOdFmNvojdnEi+CvkgSFuLmjn68fsio6bpeDWQB2cZa68ONZM5Tydg6IEEIIIa3CpmmlLMsOBrAYwPWoHZ/JsuyfAN7iOO7nZpzqXwDfw1K75FkAZQBmAfAEsAyW+SXTAWxkWXYxgBsAvAJLzRNCHEZNYSHcABgUCjAMA72x9WucWJnMAkSx4UKMPrFdgZN/wEPqOHcxL8dLwIrTlhGdD8WaoWzneAghhBDSOpo9tpJl2YGwVIf3gKVg4osA5gPwAvA9y7I3N/VcHMdJAMbB0mvyGYA/a88zmOO4zNrekZEAWACnALwDS/X4rc2Nm5DWlKpR49G4k/jDzxcMw6CmDQowWpnNwlV7TkL79AEAuMoVKMlucXkiQgghhJBWY0vPyXwAxwCMrDPUCizLvgtLL8i7AEY09WQcx1XAkuC82MD2v2CZIE+IwyoqKoJZkuDq5w9JkqA3tv5EeCtT7XwTlar+QozOHp4o5Xl4KRTIPvMvvENC2iw2QgghhJDmsGVVihsAfFQ3MQEsE9kBrKzdTsg1pbi4CADg4+PbZgUYrUxmAWZBhOwqv81VtYVBypIvtFFUhBBCCCHNZ0vPSRXQ4JBvFWiNcHIN6lVcjOiIKASpVOBFqc0mwwOAuXbyPcMwsKzkfSXezQ2orIQ+t0WL3BFCCCGEtCpbek5+A/AWy7IudZ9kWdYVwJuwDPki5JoSLUoY5uMHL2fnNu85AQCDia9NTuqnDAgAAJjKy9soIkIIIYSQ5rOl52QmgDgAqSzLHgSQDyAAwN2wFEh8yn7hEeL46laH9wwJa9NlhK10hqsnJ0433ozHd29HcEQk7m3DuAghhBBCmsOWOifJtStyvQPgTlhW1yoF8DOAd62V3gm5VlQVF0Ndm5z4RUXCLIht3nOiN5jrnQxvFRETC6MoIjMzEzzPQ6GwaRXxdqOSAWtu1118TAghhJDOyaa3+doEZCrHcQEcx6kAdAewgBITci0qyUgDAOgEAa6enhfngLSlxgoxBgQEQq1Wg+fNyO2A807kMmCAv4AB/gLklJwQQgghnVazb5+yLOsBYA+AUABda5++AcC3LMvuBzCB4zid3SIkxMGV52TDBUBVbXV4g6ntapxYNVaIUSaT4bEYFsEmM3JP/IawsPA2jY8QQgghpClsuQf5AYAeAN6q89wRAPcCGABgnh3iIqTDqM7PBwAYFHIwDANdGxZgtDI30nMCAF1c3dHTzR1VKcltFJX98CLw+QUlPr+gRBt3ShFCCCGkDdmSnIwBMI3juC+tT3AcZ+I47gAsCcvD9gqOkI5AX1oCAODVGksBRkPbFWC0MpkF8IJ41Unx8PICAPCFBW0Ulf2YRWDx3xos/lsDMyUnhBBCSKdlS3LiCqCsgW0FAHxsD4eQjuecWoVH404iOSIcvCjB1A639s28AJ4XcbXcxCkkFACgqqpuo6gIIYQQQprHluTkFICnG9j2FIAztodDSMdTVFQIsyTBIyAQYjvUOAEAs1msrRLfcHbiE2uZIuYutH18hBBCCCFNYct6ovMBHGJZ9m8AXwEoBOALy5yT/rDUOyHkmlFUVAQA8PHxhdDG1eGtJAAGk3DVYV3h112H3F3b4aZQoCQnG97BIW0XICGEEEJIEzS754TjuB8B3APL56F5ANYCeA+WROdejuO+s2uEhDi4YQYjXoyIhp9a0y41Tqx0BvNVh3W5eHmjlLdM1s889XcbRUUIIYQQ0nQ2VWLjOO4QLL0nGliKMFZwHFdj18gI6SB6q9XQaJ2g8vQEL4gw8+2VnDS+SliFSgXGYEBZenrrB0QIIYQQ0kwtKmfGcZyB47hcSkzItaq6tAQamRwA4B8VCZ6XYG6n5aTMZqHR5YS5rl3x/JlTOFVV2UZREUIIIYQ0nU09J4QQi6J0S3V4vSDAzccXZYXVuHp60HpMvAhBaLgQIwBExsQCAFJSktomKDtRyoDlQ3QXHxNCCCGkc6LkhJAWKM/OgjOs1eEBfTsUYLQy8wIESbrqL3WXLjEALMmJVFvRviNQyIBBwbTKGCGEENLZUXJCSAtU5+fDGYBBbhnapTO2Y3JiFsHzEpRKBlID3TfhYRF4M6YrwrRaFGekwTciqm2DJIQQQgi5ChogQUgLGIqLAQBmtRq8IMFkbr/kxMQ3XiXeydkZIc4u8FapkfXPqTaMrmV4ETiQqsCBVAXaYaVmQgghhLQRm3pOWJb1AfAGgDsABAIYCeA+AKc5jvvafuER4tiMlRUAAMnZGaLUfpPhAcBkrpucNDzzpUqthq8goDTpQtsF10JmEXj3Dy0AYHhYFRR0W4UQQgjplJr9Fs+ybCQsVeCfA5ANwA+WJCcWwBcsy95l1wgJcWC/yxg8GncSxWxXCKIEUzstIwwAktR4IUYAEL29AQDm3Ny2CIsQQgghpMlsuf/4ISxV4SMB3A9YFgfiOO5RAPsBvGW36AhxcMXFRTBLEnyCgsAL7dtzAgB6oxmyRn6rncMjAABqWk6YEEIIIQ7GluTkdgDvcRxXjivHjqwF0LOlQRHSURQVFQIAfH19LdXh27HnBGhaIcaAHr0AAF6iBFGkCRyEEEIIcRy2jtxu6BOQGlcb7E5IJzNOpcFLEdHwdXEBz4swt/NsbaNZgNBIIcaIfv3BSyKc5HLkX+DaKDJCCCGEkMbZkpwcA/Amy7LOdZ6TWJaVAZgE4De7REaIg6upqEA/VzcM8fGFr38gjGYBYiOJQWszmwUIjeRHaicn5AgC4qsqkcYltE1ghBBCCCFNYEtyMhNANwDJALbB0lMyDUAcgEEAZtktOkIcWHFtdXijKMDN1wf6dqxxYmXmRQhNGKr1a0gI5nLxOJef1wZREUIIIYQ0TbOTE47jzgEYAOAIgGEABFiWFE4GMJDjuNP2DJAQR1WenQkAqBIlyOUy6Azmdo7IspywIFqq1V8Ny3YDAHBcYhtE1XJKGfDBID0+GKSHkpYRJoQQQjotm+qccByXBOBRO8dCSIdSlZcHLQC9XAZBAoym9p0MD1h6Tsy8CI1CAamhMvEAuna1JCepHWRYl0IGDA9r/54pQgghhLQuW4swMgD6AnBGPb0vHMcdbVlYhDg+a3V4k0oNQWj/yfCAtUq81GghxtioaCzv2QcBag3K8/LgERjYdkESQgghhDSg2ckJy7I3ANgDIKT2KesAEqn2sQRAbpfoCHFg5vIyywNnZ4gS2n0ZYQAQBEshyMaGdbl7+0ClUELGMEg9+Tv6jX2gbQK0ES8Cv2Rb/lwNDeGpQjwhhBDSSdnSc7IMgBnAk7BUiG//28WEtAO+pgYAIHd3By+I7V6A0cpg5ButEg8AlRoNfHgeJfHxgIMnJ2YRmHlcCwA49nAVJSeEEEJIJ2VLctIPwCMcx31t72AI6UgOmox4N+4k5t1zD/jaHgtHoDM0LTmBvz+QkwMhN6f1gyKEEEIIaQJb7j8WgnpLCEFRUSF4SYJPYJClAKMD9ZyIV5kMb+URywIAnGuqWzskQgghhJAmsSU5+RjAzMuKMBJyzSkuLgIA+Pn5wcyL4BurfthGTHzjVeIBIPyGmwAAvjI5dJWVrR0WIYQQQkijbBnWFQOgO4B8lmXPA9Bdtl3iOO72FkdGiAPTV1VhSkAgyrx84OvphTKT4yxzazaLEESp0TsP/tFdkC3wcJcrkHT8GPrceVebxEcIIYQQ0hBbkpMuAE7X+f7ywe1NGOxOSMdWnJGG3m4eMIki3L29kZNR3t4hXWSu7TmRNfKbKJPJkKHRoDg3Fz4ZqejTNuERQgghhDSo2ckJx3HDWiMQQjqSsqxMaABUiSIYhoHe2P7V4a1MtUPMVEr5VQsxAkDl9TdgzYqluCM1BQ+2UXyEEEIIIQ2xqQgjIde6qrw8aADoZDLwouQwk+EBwGQWwPMiGJUcjc2L79WrNwDg3LkzbRCZ7ZQy4J2b9BcfE0IIIaRzalJywrKsAOBmjuP+ZFlWxNVKT1vmnFDSQzo1fe1keLNaBVF0nGWEAVhWDhNEyGQMxEYmxnfv3hMKRgZNRTkKszPhFxLWRlE2j0IG3BPlOPN6CCGEENI6mppEzIOl4KL1ceNLARHSifFllurwkpMzBFGCmXecnhMJgMEkNKnWibOzCxb1uQ6hCiVSjvwEvyeeav0ACSGEEEIa0KTkhOO4d+s8nttq0RDSQUjVVQAs1eHNggiz2XF6TgBAb+DRlDqMAGB09wBqalCRcL5VY2oJXgT+yJMDAG4KFKhCPCGEENJJNXVY163NOSnHcUdtC4eQjkE0GAAAam+f2urwjtNzAgA6Y9OHQGmiooCzZ6EsKmrFiFrGLAKv/OoEADj2cBUlJ4QQQkgn1dRhXb/gv6FcDd2PlWq3SQDkLQuLEMe2uawE6SnJ+Hji0+AFEWYHmnMCACYzD15o2ujLsJtugXj2LPxECSa9DiqtUytHRwghhBBSv6YmJ7R8MCF1FBcXgZck+AUGwmDkG10Vq62ZzSLEJgYVNeB6/LNmFVzlCiT8/DMVYySEEEJIu2nqnJNfWzsQQjoKk8mE8vJyAIC/vx/yKx1vFSkTL0AQm9aFKZPLUaTRwNXMI/+vPyg5IYQQQki7sWnJX5ZlfQC8AeAOAIEARgK4D8BpjuO+tl94hDiewtRkzI7thhKzGe7uHkgtLGnvkK5gNlsKMSoUTJN6dRSRUcCFC5BlZ7V+cIQQQgghDWj2tFKWZSMBnAHwHCzLC/vBkuTEAviCZVm67Uo6tbKMdPR2c0dvdw+IkqXooaMx8QLMgtik5YQBIGzIMHyWk4WtKckwmx2n2j0hhBBCri22rHnzIYBCAJEA7kftBHmO4x4FsB/AW3aLjhAHVJWXBwDQ11aHd6QCjFZmXrRUiW9ictLl+htxWFeNc6XFSEyMb+XoCCGEEELqZ0tycjuA9ziOK8eVxRjXAujZ0qAIcWS62iV3TSoVRNEyhMrRiKIEo1locq0TmUyGfv2uBwCcPHmiFSOzjVIGTB9gwPQBBihpGWFCCCGk07L1bb6hGcBqUPV40smZy0oBAJKTk0MuI2ylN/KQyZqYnQAYeMNNuN7DE8Lvv7ViVLZRyICHY814ONZMNU4IIYSQTsyWt/ljAN5kWda5znMSy7IyAJMAON4nG0LsqbY6vMzdHbwgOlwBRiu9oXlzR27q2RtvdGFxKyNDRWFhK0VFCCGEENIwW5KTmQC6AUgGsA2WnpJpAOIADAIwy27REeKA5HpLdXiNt7el58QBJ8QDgMFkWU64qUJ79UYBz0POMDj3jWMtuieIwN8FcvxdIG/WayKEEEJIx9Ls5ITjuHMABgA4AktxRgGWJYWTAQzkOO60PQMkxNFIZhMAwMXfH0aTCEF0zJGMZl6EKDbvk3yVr6/l39P/tEZINjOJwAs/OeGFn5xgouSEEEII6bRsqnPCcVwSgEftHAshHcIHGWmoLC/DZ9NnQG903GV3TWYBgtS8OxC+N94EfHcI3pWVEAXH7BEihBBCSOdl09RSlmWjWJbtXvvYg2XZj1mW3c+y7OP2DY8Qx2I2m1BWVgpBkhAQFAidwfGqw1uZeQG8IDZ5xS4A6DXqLugFAe5yBc4f+an1giOEEEIIqYctRRhHAUgAMLH2qTWwFGQMAbCFZdmn7RceIY6lpMRSDV6hUMDV3RNGs+MmJyZz82qdAIDGxQV5Wg0AIOP771orNEIIIYSQetnSczIHwA8A3mVZ1h3AfQAWchzXD8BCAFPtGB8hDqXo/DnMie2GZ6JjIYGByQFrnFiZeRFmQWpWcgIArgNuAADUZGdBkhxzPg0hhBBCOidbkpM+AJZzHFcFYCQs81b21m77EUCMnWIjxOFUZmagp5s7YpydITpodXgraw2WZuYm6PvAw5h+IQHvnfsXZ86caZ3gCCGEEELqYUtyosd/E+lHAyjgOM76CSYAQHlzTsayrBfLsmtYls1mWbaSZdnjLMsOqrO9L8uyv7IsW8OybCbLstNsiJkQu9AXFgAAzGp17TLCjttzAlgKMTa358TZ3R0xN94MADhw4EBrhEUIIYQQUi9bkpPjAKaxLDsewMMAvgQAlmX7A3indntz7AZwE4BHAFwP4BSAH1iW7cqyrDcsvTEXYFm++B0A77Es+5QNcRPSYuayMgCA5OICXpActjq8lc7Q/OQEAEaOHA0A+G7fPpiNRnuH1WwKBpjS14ApfQ1QNP/lEEIIIaSDsGUp4VcBfANgB4B4APNrn/8GgA6WIo1NwrJsF1hqpNzCcdzvtc9NhaVHZgIsvTRGAJM4juMBJLAsGwNgBoDNNsROSMtUWarDKzw8wfOiQ885ASw9J6IN80aGDBmG57uwGOzmjr8+340bxrfvQnxKOfBEd8ddtpkQQggh9mFLEcY0AD0ABHIc15PjuPzaTWMBdOM4LqUZpysGcBcs1eWt55cAMAC8AAwGcLQ2MbE6AoBlWdavubET0lJKo6U6vNbPD6bapXodmZkXbCoSqVSqEBkdDZVMhvJff7F/YIQQQggh9bC1CKMEoOCy5/5gWdaZZdlhHMc1aQ1SjuPKAXxb9zmWZR8CEA3gewALAJy97LDc2n/DABQ2P3oLhcKmEi8Nkstll/xLWk97trWWFwCFAu7BwTCYBMhkjj3GiBdESJJtP+/dHhkP48cfI8zMoyD5AoK7dm2FCJtGEIGEUstr6OYlojP9mtHfjrZB7dw2qJ0JIS3V7OSEZdlwAGsBDAGgamA3uS3BsCx7C4BNAL7mOO4Ay7LLYBnWVZeh9l+NLdcAAJmMgaens62HX5Wbm7ZVzkuu1NZtLUkSJFEAoEBot1iUixK02oZ+BRyDTC6HXCmHp1vzf10GjLgNu1d/jFAwOLN5PXquW9MKETaNzgw8tt3yOOFFwEnZbqG0Gvrb0TaondsGtTMhxFa29JwsAzAQwDoAt8Ayz+QEgBEAegG435ZAWJa9F8BOAH8AGF/7tB6A+rJdrZ+yamy5DgCIooTKSp2th9dLLpfBzU2Lyko9BAcf6tPRtVdbV1RUYPKZfyBnGPwVFoXMzGro9aY2u74tGElEjc4EmSg2u2aJXC6D3113Age/hV9uPtITU+Hu799KkV6d3gwAlhsK5WU1MHai5IT+drQNaue20Zrt7OampR4ZQq4BtiQnQwDM5jhuBcuyLwEYy3HcDJZl34KlOOO9APY354Qsy04G8BEsK389xnGctbckC0DQZbtbv8+xIfaLeL513pwEQWy1c5NLtXVb5+XlAQBc3NwgV2lgNJVDtGE+R1symgSYzAJElQyCYMPE+IlPYt/X+xEgV+C3VSsw4p33WiHKxtVdFI0XRPCOPZrOJvS3o21QO7cNamdCiK1suQXhAuB07eN4AH0BgOM4AcDHAG5rzslYlp0EYCWAVQDG1UlMAOAogMEsy9YdJna75XKczfNNCLFFYW2NEz8/fwii5PA1ToDaKvG8aNNywgAgl8uBG28CADilpKC8rNSe4RFCCCGEXMKW5CQPlmKLAJAMwItl2cDa70sBNHncB8uysbD0mHwFYCEAP5ZlA2q/3GGZf+IGYCPLst1Zln0SwCu1+xLSpvT//os5sd0wyssHguDY1eHrsqUQY123Pj8J3xt0mHH+X2zavN6OkRFCCCGEXMqW5OQbWAohDuQ4LgtANixFGV0BTETzhls9CEAJ4D5Ykp66Xx/V9o6MBMDCUpzxHQBvcBy31Ya4CWkRPj8PPd3cEaTRgBdEmMwdIzmxtRCjlUKpxHUvTEaNIGDnzu1ISUm2Y3SEEEIIIf+xZc7JHFiqtc8DMBzAWwC2wtKjAQAvNfVEHMe9D+D9Rvb5C8DNNsRJiF2JFRUAAJmbO8yCZbhUR6A3mps9Gf5yt9wyGLfeOhRHj/6CXfPexsz1W6FQOfZKZYQQQgjpeGwpwljCcdyNAB6v/X4HgKGwVIa/jeO49ltvlJBWJNNZVnhT+3hfnMvREZjMAvgWTtxnGAazZs3FqzFd8bBSjZ/en2en6JpGwQDP9jTi2Z5GKDrhZHhCCCGEWNhUhBEAOI7LY1m2KwBPAHkcx/2f/cIixPFozGZALodLYBD0RnN7h9NkZrMIQZRsGsNZl79/AMKHDAVOn0Z4Vhb++nwXrn94fKPH2YNSDjzf27GXbSaEEEJIy9n0eYVl2adZls0AcB7AcQAXWJZNZ1m2bT6pENIOXGDpffAMDUONnm/naJrOxAsQ7LTk8dDJryDZ2RkyhoHy0LeI//mwXc5LCCGEEALYkJzU1iRZDyAOwP8AjAbwFIAEANtZln3IrhES4gCMNTVwlVs6Gn2iomAwdqDkxCyAb8Fywpe7bcEiZEoSnORyGD/disRfj9jlvFcjSkBKuQwp5TI4eGkZQgghhLSALcO6pgJYxXHclMue/5Rl2Q0A5gLY09LACHEkhZkZKDeboJUr4BYQBFNixymzY+ZFmAURMpkcgh0WGNO4uODGxR/izzdeRahcDsOWzTiRmYmbH3+y5SdvgFEAxn1rqRB/7OEqaG0ekEoIIYQQR2bLsK4QAAca2LYLQJTt4RDimIoNBjz37ym8VZALgIGpAxRgtGppIcb6uHr7oP/CJUhnAAXDYNW61Vi0aD70er3drkEIIYSQa48tyclfsFRpr891AM7YHg4hjqmwMB8A4OPnD16QYO4gBRit9EazXZMTAPDw98fQlWvwe1gYzldVYteu7Xj44Xtx7Mu9EMWOk7wRQgghxHE0aXAEy7K31vl2F4BltUUXPweQD8uKXaMATAHwvL2DJKS9FRYWALCsWGXuQAUYrWr0LSvE2BCVRoNn5s5H9xEj8c47syAUFcLnmwP4+duDCJrwGLrdNtzu1ySEEEJI59XUkdu/AKg7DZUBMAnAC5c9BwC7QXNOSCfjmhCPObHdYNZowPNihxrWBQB6Iw+xhYUYr2bgwMH4+utD+PbDxRDS0hDKMMDO7fhh7+fo9twkhPa9rtWuTQghhJDOo6nJybBWjYIQB6cpr0CUmzsytVqYeAG80LGSEzMvQBBad5krJydnPPj2u8hOOI8zH69ElF6PCJMJNSuX4wcPD/Sb/Ap8IiNbNQZCCCGEdGxNSk44jvu1tQMhxJEpjQaAkcHJzx+6DrSMsJXJLECQWl6IsSlCuvVAyKo1SDz2K5I/3YwuYBBRUYHUubOxf9AgjH/sSWi12jaIhBBCCCEdTZM+q7Ase5Rl2b7NOTHLsgNYlj1uU1SEOBin2p4S9+Bg1Og7TnV4K5NZbPPenq6Dh+DO9VtQcfc9SOd5fFOQhxUff4R77x2FAwf2QWrGMDMFAzzezYTHu5mgsP/UGUIIIYQ4iKYO6/oIwHcsy/4NYDuA/RzH6S7fqXaS/EhYJsVfB+BFewVKSHvhzWa4y+UAAJ+oLsgzdcCeE95SiFGjUUBs4yqG1499AMI9Y2H+9gD+XL0CeXm52L34fSi/OYgbZr8Dr5DQRs+hlANTrzO2QbSEEEIIaU9NHdb1BcuyvwKYA2ADAAXLsvEA0gDUAPAAEAqgJwBz7T6PcRxX0BpBE9KWijPSoWAYCJIE7/AIZKSUt3dIzWYyCzALUu2KXa2fnMjlDORyGRhJACPygEzCA2PvwV1334UtWzYj4qcjCOJ5JM1+E9rxj6L3yNGtHhMhhBBCHF+T6yxzHFcMYArLsu8CeBCWSfJRANwBFANIgKWH5QDHcSWtECsh7aI4NQUqABWCAEap6nDLCAOAIEgwmQW0wmrCl1Ao5FDADBgqIFSVwlxVBpE3AaIIRi6HTKXFcw/dicToMORt3g5fhQLmz3bhaGoKbp00ucHzihKQX2MJPsBZgoyGdhFCCCGdUpOTE6vaxGNt7RchnV5pfj7UJhOqlQrwtR/yOyKdwQyGcWqVc8tkDFQyAVJ1IYyFGTCVF0M0GerfOS8d4b6uCJz5Io4u3YBIAAFxf+O7eXMwas68eg8xCsCY/S4AgGMPV0Hb7L9chBBCCOkI2mLxHkI6tHSIeP7MKRzx9QXfAQswWtUYzK3Sc6JUyqAWqmDOOo9q7m8YCrMbTkwAABL4mkrIqgow7OVHkO7pCgCIyszE97NmUHV5Qggh5BpGyQkhjcjPzwcA+AcGwcyLMPEd88OzwSRAsPNkeLVKBllVPnTJ/0CXkwzR3LxJ65KhBkPGD0dGgBcAoOxCIj75+CO7xkgIIYSQjoMGRxDSiPz8PABAUFAQDCahzVe7sheTWYA9VxPWKAGxJAO6jAQIhhrbTySKuHXsYPz43R/4vy9OQkji4OXjg/HjH7dfsIQQQgjpECg5IaQRQ0pLMSi2G4LUKugMHa/GiZUlOZEgt8O5NEpALE5DTUYCRJN9lvi9Y9RNyFUAq3d/jcWL34e/Wovb7n/QLucmhBBCSMdAyQkhjQhmGLi5uUPm4wudoePVOLEym0WYeREKJYNm1D+8glrJWBKT9IRmD+NqzBO334iS0jK4JGbC58DXSPD2Rrchw+x6DUIIIYQ4riYlJyzLPtGck3Ic96lt4RDiWHSVlXCTW35NfGNikVzecZMTS60TEU4qRbOqs9elVskglWZaekzsnJgAAMMwmHL/HTixfj80jBxlmzeiJCoaToFhdr8WIYQQQhxPU3tOtjTjnBIASk5Ip1CQnAQA0AsCXHz9YSrsuHVFrVXiZTLGpnkzSqUcqMyDLiOhkdW4WkahUKD3I8NxYfv38FOq8Pe7czBo5To8FGMCAMipxgkhhBDSaTU1OYls1SgIcVBlGWlwAVApSRAlpsOu1AUAkgTojTwYRtPsYxUKGeSGMugyEyDoq1shuku5e7rB+44BMB45jUiZDMcWzcOMufNb/bqEEEIIaV9NSk44jsto6glZlqX7mqTTqMzOhgsAvVIJnu+4NU6sLLVOmvcryjCAQjDAkHMB5srSVorsSlFdI3EiNQdBmSUIz8rC2e++Ra9Rd7bZ9QkhhBDS9myaEM+y7CMAhgBQAbB+0pEBcAZwM4AQu0RHSDszFhUCAARnJ5g7cAFGK53B3Oz5JkqZBFNeGgxF2a0UVcNuGn0Ljqz7CtGQI/eLg/DsdwuCfd1bpZgkIYQQQtpfs5MTlmXfAfAOgIra4821X74ARADr7RkgIe2pqroaZSYTZJ4hlgnlHXhYF2CZFM83Y76JJEkQy/Ogz0lBi5b4shHDMLh+3B04uf0w5o7YBhwGjj1cBS2tM0gIIYR0SrZUiP8fgO0AvAAsA3CA4zh/ANcDKAFw3n7hEdK+ftLX4Pkzp2Du179DLyNsZa110hQyGQOhqhSGnKRWWZmrqdw8XOF6x4CL3//558l2i4UQQgghrcuW5CQYwDaO4yQAcQAGAgDHcXEAFgB4xn7hEdK+LlaHDw5Gjd7UztG0nMksgBfEJg2LUoCHMS8F5sqS1g+sEX1i/luT45P/W4Ca8rJ2jIYQQgghrcWW5KQGluWCASAJQCTLstra70+DVvYinYQkScjPzwcA+AcEwmDq2PNNAMBYW4ixsUnxSqUMYlkeTMVtP8+kMVO9fHF0Ia3cRQghhHRGtiQnf8IytAsAUgDwAIbXft8NQPuN/yDEjsrzc7EoOhZzYrvBy9sXxg4+GR7AxXkzV0tOZDIGClMVDHnJkARzG0bXNM5yBSKKi3H+15/bOxRCCCGE2Jktycn7AMaxLHuA4zgjLPNPtrIs+wWADwF8b88ACWkvBReSEKDRIMzJGUq1BqZO0HMiihIMJgEyWcPJiUouwVSY0abLBjdHJiNAzjDI27oJAt/x5wERQggh5D/NTk44jjsKYACAz2qfmgxgL4CuAPYAmGK36AhpR6XpqQCAShkDcyeocWJVozc3OOdEqZRDqiqCoaDJpY3aHDt6IAyCgDCZHMc+WdXe4RBCCCHEjmxakJPjuDMAztQ+NgB4zp5BEeIIanJy4APApNHAzIudYlgXANToTfWuCmwptqiHPi8Foslw1d6VtiaHiNFuyQCAAD9v/ObjgqgyPdxOxaGioADu/v7tHCEhhBBC7MHWIozuAG6DpejiFb0vHMd92sK4CGl3fEmx5YG7B8y82OFrnFgZG6h1olTIIRTnwFha0A5RXZ1KJmJ2wO8Xv7/lvqH4Z+3XCFCq8PuHizB68dL2C44QQgghdmNLEcbRsAzfcmpgFwkAJSekw5NVVQEANP7+qDE43sRwW1lrndS9qyCTMZAbK1Cdlw5Ijp+EqVQqKPtGQzyXiWQuAcnJSejSJaa9wyKEEEJIC9kyIX4hgAQAQwBEw7J0cN2vKLtFR0g7cjJb6pq4hYWhRtfxa5xY1VfrRCWXYCrOBF9d3m5xXY0kAXpRAb2ouDgkrd/gftgu1mBjRhpWrFjSvgESQgghxC5sGdbVFcC9HMcds3cwhDgKSZJQrNdDrVbDLyoapZ1gpS4ro8mynLBGoYAkSVAoZICuGIaCzPYOrUEGSYHhyRMAAIe77ISWsazS9b8HR+K7Mwk4evRX/PnnH7jh/9u77/g47jr/46+ZLepdbrLcHU/i2E7sFJzmJIQQSCCUHJ3fES7hKMcduR/1BxxwwB1HJ5CjJnC5QAgc5I5yCSUJIaQX99geV8lVttXL1im/P3ZlK4qUWNJqZ7V6Px8PPXZ3djTz0Xi8O5/5fr+f7/lrgwxTREREJmg8LSetQHWuAxEpJF1dXfzzjmf5203raVqxqijKCA9KDpvrJIxD8ug+vGQ84MjGbv6sRl532UuYW1rKjm9/U6WFRUREprjxduv6tGVZC3Mci0jBOHQoMzP6jBkzMUORoqnUBZkuUrGkg2ka2dLBx0i2Hwk6rHF751Xr+NzpK1gbjvLYbd8POhwRERGZgPF063obMBfYY1nWcSA27H3ftu0lE45MJECHDx8CYO7c5qKa42RQZq4Tg5ATI97Wgu9M3QH/DfU1bKwvZ2lvitBjj5L8P9dTUj5avQ4REREpZONJTg5mf0SK11NP8M0VZ3O4ti4zx0kRdeuCTHJihgzcjqMkuwqvdPBYXXDtpez+j3tpCId56Ftf58qPfiLokERERGQcxpyc2Lb9zskIRKSQeO3tzC4tJV5VRSKVqW5VTHzfx0j2kTzaCt7U/9vKK8vpa26gpq2H2u3b6e3ooLqhIeiwREREZIzGM8/J/Bd42wP6bdvuHndEIgUgNNAPQOms2QwkiqeM8KDqiijpriOketqDDiVnzr/6IrZ8/1c0hCM8+q2v84rPfD7okERERGSMxtOtq4XMRIujsiyrE7jZtm1dHciUVJF2IBymdsEC+uPFVQGqrCRMbThB/Ehr0KGcMhOPyytbTjwfSSQaIbVkDrS2M6u1la4jh6mb05THKEVERGSixlOt6x1ACvgD8E7gldllvyGTtHwW+A/gk5ZlvTc3YYrkj+s41JqZ/xoNS04jmSyu5GTujAroOUK8u+M5EzEWshLT4/NND/H5pocoMUfvhnbelWvZm0pw9+GD/PS/fprHCEVERCQXxtNy8hbgrhHGnvzYsqzvAOfYtn2tZVndwHuB70wwRpG8OrZ3LxHTxPV9ZixdRuvOjqBDypmKsggzSlN02S00RH0MXqQZdIoJhUOYF6/gN9/eSNlPf8yb33499fUaeyIiIjJVjKfl5DLgzlHeuxu4Ivv8YUAlhWXKObpzOwBdrguhSFFV6mpqLMfsbWOgs4O04zJlmk7GYN3q5ZyxaB7xeJzbb7816HBERERkDMaTnHQAZ43y3llAb/Z5JTAwnqBEgnTsaBs7+/voiEQyZYSLZI6TyvIIM0qSdB9qASCV8pgqqUncC3PRzr/mop1/Tdx74QZfwzB4z7VXcF5tHcuefIoju3blKUoRERGZqPF06/oJ8FnLstLAL4BjwEzg9cBngO9allUH3AQ8npswRfJnx8AAP9zxLG9601u5yHFJFUnLSVNDOUZPC7HuLgAc18Pzi6lT10nnn3kazsJFzAtH2fDdbzHnq98MOiQRERE5BeNpOfkkcBfwNWA/kMg+fo1M4vJxMoPkV2fXFZlSDhzYD8CCBQsZiKeLYkxGVXmUxpIk3YdOVujKJCcBBjWJTNOkes0yAOZ3dXNg+7aAIxIREZFTMebkxLZtx7btvwGWAe8GPkGmWtcy27bfbdt2CrgXmGvb9uacRiuSBwf2Zy7gFyyYT3+sOOY4aWosg+7DxHq6TyxzPQ/P85kyfbvGaOUFqzjkpomaJpu+/+2gwxEREZFTMJ5uXQDYtr0H2DPKe13jjkgkQJ7n8ZHyCvpWnMXcmjo6i6CMcFVFlIZIgu5D+5+z3HF9XM8nbJr4RdE+9FyGYVBzrgUb9rKwp5f9255l/vIzgw5LREREXsApJSeWZe0FXmfb9ibLsvbxwtVHfdu2VaVLpqT21n1UhsKUmyFmLz6Nw/t6X/yXCtzchjLo2Ue8t/s5y13Xw/U8DMOkSIeesPz8FTz2zE7mmmE2ff/bzP/GvwcdkoiIiLyAU205+TMnq3D9meKaGkHkhCPbtlFGpozw4tIykqmp3QhYVRGlfoRWE8j8J06nPSgtttlOTjIMg7rzTodndrOot4+WrVtYuGJl0GGJiIjIKE4pORk64aJt29dPWjQiAevcu5u5QF8kTMrxSKamdreuplFaTQZNlTLJJh4XVBw88XwsTj93Of/75LPcs7eFprvu4HOf/9JkhCgiIiI5MK4xJ5ZlVQHVtm0fsiwrCnwAmAf8wrbth3IZoEg+JY4cAcCtqiKVdqfMxftIqsozY016Dj+/1WSQ43r4U6BPV4np8ZW5D4zrdw3DYMk1F/LM5zew4Z7fcsON72HhwsU5jlBERERyYczVuizLOh9oBf4+u+ibwBeBtwMPWJZ1be7CE8kvIzsHSGTmrEwZ4cK/bh/VnIYy6Gl7ToWu4RyneMsJD3XGwmbWrT4Tz/O4VZW7RERECtZ45jn5F2AH8D3LssrIJCXftm27HriNTGnhcbEs65OWZT04bNnZlmX92bKsAcuy9luW9aHxbl/kxZTGEwBULVgwpcsID85r0nO49QXXc1wPt4jLCQ9146su5zWzm3jVwcPs3rA+6HBERERkBONJTl4CfM627X3AFUAZcEf2vbuAFeMJxLKsm4DPDlvWAPwR2AmcC3wa+JxlWe983gZEJsj3fXb29rB7oJ+Z1unEElN3vMmchjKMniMv2GoC4Lo+nudjFHh2EvfCXLHrLVyx6y3EvfFVQF82v4nLm+dSH42y9dbv5ThCERERyYXxfMt7QDL7/GqgG3gy+7oaiI1lY5ZlzQVuBS4B7GFv/212X++1bdsBtluWdRrwUeBH44hdZFSdnR18e89ODMPg0RVncXhnZ9AhjUtleSQzG/ze0ceaDHI8D9f1MCKFX0444Ucm9PuGYTBz7Qp4fDunxePsfOYplp1zXo6iExERkVwYT8vJ08CNlmVdALwJ+K1t275lWTOBj2XfH4s1QBewCnhi2HuXAA9lE5NBDwBWdn8iOdPa2gLAnDlzMEORKVupq6mhHHrbiHWfWhnkVNrFMAq75SRXlpy9jMO4REyTbT/8QdDhiIiIyDDjaTn5MPA74M3AceDz2eVbySQ7V41lY7Zt/wb4DYBlWcPfbga2DFt2OPs4Hzg2ln0NFQ6PJy8bXShkPudRJs9kHesDe3ZiAosXLyXteqQcF9OcWhftFWURZpSm6Nm3/5QTjqTjYRg87281sq8N0xjXXYxcMod0OzNNY0L/LrMvWgmPbGNZPMGu9U9yxvlrcxHiuOmzIz90nPNDx1lEJmrMyYlt2xssy1oKLAe22rY9kH3rvcAjtm235TC+ck52IRuUyD6WjnejpmlQV1cx7qBeSHV12aRsV54v18e6fP0z3LHmfFrq6/GBUDhM2fiGNwRmwexKQgMtpPt7iYRDp/x7ZihEtGTki4mSkol1p8oF3z35t5SWRiidwIXPmWtX8MCjW5ljmmy77VYuvOqKXIQ4YfrsyA8d5/zQcRaR8RrXpZdt230M64Jl2/YvcxLRc8WBkmHLBpOSAcbJ83x6e8c0NOZFhUIm1dVl9PbGcd2xTRInYzNZx9pv7yRimlTNnEl7d5x4fGpV66ooi1Btxuja30LaOfX5WZJJg2TKwUk/d7lhGpSUREgm0/gB1xtODBkEn0ikMcyJdbmbc/FK+MuzLIknePiPD3LmucGNPdFnR37oOOfHZB7n6uoytciITAOFfl/4ANA0bNng60MT2bDjTM6Xk+t6k7Ztea5cH+vqdBrCYeqWLqO3P4k3xSYAmV1fhtGzn/6ujjH9XtrxcFwPI2QydFT84CWA7/mBH4uh+/c8H4+JxbPgzKX896ObuWPrVpb88Ad88+xzJhrihOmzIz90nPNDx1lExqvQb0E8BFxiWdbQ/ilXALZt2+MebyIyXH9XB/XhTK4+96w1JJJTazB8RVmExpLUi85rMhLH9TLlhAt4eI2Jz+qyNlaXtWFOMDEZdM6162hLJXnooQfZsmVzTrYpIiIiE1PoyckPyZQnvs2yrOWWZV0P3AR8IcigpPjs37gBgF7XoXp2E4nUqXeLKgRNDeWYvW0MdI29/LHn+6TSXkFX7CoxXW6Z9wdumfcHSszc/NvMn9XIKy/KtJjc/t1v5mSbIiIiMjEFnZxkW0euAixgPZlJGD9s2/btgQYmRad9xw4Aus0QybQ7pVpOKsoiNJaOr9VkUDLtFPg0jJPjna9Yx98tWsL18RSbHnow6HBERESmvYIac2Lb9vUjLHsKuCD/0ch0MnAgM2Fhuroqk5xMoTlOMq0m+8fVajIo7Xh4hT4L4yRontXIshmNRD2DzXf8B2etuyzokERERKa1gm45EcmXvX29PNrZgTF/Pv2xdMHPlj4oF60mkCkQUcjj/+NemGv2vJFr9ryRuJfbeyrN684GYLnrseHBB3K6bRERERkbJSciwH0H9/ONvbuou+hiegamTgnhpsbxjzUZynG9TNnPAh530u2W0u2Oe3qjUTWfvpC2EIRNkz0//s+cb19EREROnZITmfbS6RQHst26FixYRDyRfpHfKAyVZRFmlCTpOTSxVhPIdOtyC7xi12SaN9h64nk8ff8fgg1GRERkGlNyItPevu3bqTdDVFVW0TBj9pQZDN/UWA69bQx0T6zVBLIVu5zCrtg1mZqsBbSFM60n++78Mf5U6dcnIiJSZJScyLR35OGHuGXVaj5hnUHK8YhPgeSkqjxKY45aTQYlU9OzYteg+ZeuBmCR4/LEww8FHI2IiMj0pOREpr1YawsAfm0tidTUqNQ1t7EMuo8Q6+7K2TZTaQ93GrcYzDltPk+Xh/iHrRv57m3fU+uJiIhIAJScyLQX6uwAoHzBAvpiqYKv1FVdEaUhkqD7UEtOtzs4U/x0dum163BDJhs3ruexxx4OOhwREZFpR8mJTHt16UxLyYwVK+npTwYczYub21iG132IeG9PTrfrnBgUX3idu0x8Ti9p5/SSdkwmL4FqrK3mussz0yr9z3f/Xa0nIiIieVZQkzCK5Nvxln3UhMN4vs/8Neez9XBhJye1VSXUh+N0HszdWJNBacfDdf3Mp0KBXZOXmC63LbgnL/t62xUXcsb+TqxoKY/9z91c+Lrr8rJfERERUcuJTHOtzzwFQIfrEq2uIZ4s7DLCzQ2leJ0HSPT35XzbPj7JtFuQLSf51FhfQ0V9NQDdv/5vtZ6IiIjkkZITmdY67R0A9JWVkki5xBKFOxi+oaaMWnOAzoP7J20fU6EYQD6c8YoLcDyPpaEwj//szqDDERERmTaUnMi0tq27m7uPHCKxYAGxRJq04wUd0ogMA5oboqSPt5KKDUzaftLpwhwUn/BCXLf39Vy39/UkvNCk769+TiMHKyIAxH9/L67rTvo+RURERMmJTHOPtuzhrkMHqL/wIrr6Cne8yYy6cqr8XroOHZjU/Tiui+v5FNqEJz4GbU4lbU4lfp6CW3X1RSRcl+ZQmCfu+FFe9ikiIjLdKTmRaSsej7Nnz24ATj9jBf2xVMARjSxkGjTXhUm2tZBOJiZ1X2nHw3Gn70zxQ9XNqONgTSkA3oMPkkrEA45IRESk+Ck5kWlr59NPsqKikgUzZ1HXMKNgx5vMbqigIt1F1+GDk74v1/NJOUpOBp1/7aX0OQ7xVJJf3XlH0OGIiIgUPZUSlmnr+CMP84llZ7AvZJJMe8QShVepKxoxmVsDAy17cZ38xJdIOtRURPOyr0JXVV3BoWVz+PTPf0P1wf28/Lo3UlNTG3RYIiIiRUstJzJtpQerXs2ZQyyRJpkqvEHPc2dUEo0fp/vokbztM5V2C3JQfFBe9rK1LJnXRE9vDz/4wXeDDkdERKSoKTmRaauqP1P1qvHMFXQW4GD4irIIs8sdeg/sxffyV0UsnZ0pXjJCpskH3vBKIoZB7IH7aNnwTNAhiYiIFC0lJzIt9R4/zsxwplfjwgsvoW+g8JKTeTPKMXoP09dxPK/7TTtuwQ2KN/BZGO1mYbQbI4Dp689fvpSPr17Nm5uasb/3nbzvX0REZLpQciLT0u5HHgKgw3GontNMLF5Y403qq0tpiMToat2T9327nk8q7VJAuQmlpstPFv6anyz8NaVmMN3vzrjiPFzfZ5HjsP5/fhlIDCIiIsVOyYlMS+2bNwHQU1ZKPOUwUECD4U3DYH5jCc6xVhL9fYHEEE86AbRPFLZF1kL2RjMZW9+v/ptUsvBa20RERKY6JScyPR3MlOWNLFxEfyxNKl04M8PPbiynyuum82BLYDGk0hp3MpJzXnspA67DnFCYB7/+5aDDERERKTpKTmTa8TyP7+/eyXdb9tB86WV09hTO5Hol0RDNNQYDB3fjpIKbFDLluDhu4SQnCS/E21qu5W0t15LwQoHFUddQS1dzAwAzbZsju3YFFouIiEgxUnIi087evbvZ3dnOYwMDLD5vLX0FNDP8/FmVRAfa8lo6eCTptIvjFE5rko9BS6qWllQtPsEOhll7zSUcclKUh0KsV+uJiIhITik5kWlnw4b1AJx11tk4nkF/gQyGr6sqYWY0Tlfr7ryWDh6JT2bcCX7htJ4UilA4xIxLz2Z9Txc3P/0Ejz/+aNAhiYiIFA0lJzLtxB/5C1fNmMXaFSuJJZyCmBk+ZBosmFGKc7yVWE930OEAkEg5BdW1q5CctvI09i1o5FgqyRe+8FkSiUTQIYmIiBQFJScy7Szr7uGGBYs4e9582nviBdE4MHdGJVVOBx379wUdygmptEu6gLp2FZq/vfZlzKirobW1hf/81teCDkdERKQoKDmRaeXAls3Uh8M4vsfSy15KT3/w5WAryiLMrXLpPbALN104418yyYlbUJMxFpLK8lI+8pZX8675i7h4+w6efeC+oEMSERGZ8pScyLSy64+/B+AwEK6sDXwwvGHAolnlGF0H6D12NNBYhvP8zLgT5Saju2T1cpbOaiRsmrTf8R8kY7GgQxIREZnSlJzItJLaZQPgzpvHQDzNQCzY8SZNjRXU0UN7y+5A4xhNIulQCNOdGPjMDvczO9yPUUDTQxqGwarXX06fk5375AufCzokERGRKU3JiUwbTjrNrESmG9e8iy+hvTuOF+CAk4qyCPNqoO/ATtKJwplrZaiU4+G4HgFX76XUdPnl4rv55eK7KTXdYIMZpn5GHQPLmgCYf/gw2/6k7l0iIiLjpeREpo0dDz5ARShEzHU57dKX0t0XXIUl0zBYPLscs2s/PW2HA4vjxQwOijfVt+sFnX/lWvbgEjIM2m//EQPdXUGHJCIiMiUpOZFpY+9TT+J4Hm0lJTiE6R0IbrxJ86xKar0u2vcV9gzjvg8DCQcNPHlhhmGw+q9eSq/jMDsc4cHPfDLokERERKYkJScybfzS3sbfbHya1MUX0RtLMRDQ5Is1lSU0Vzr0tOwgnSz8+TESyTRewANPkl6IG1qv5obWq0l6oUBjGU1dYy3+mqX0Omn+Z+N67rvv90GHJCIiMuUoOZFpoaOjnc2bN5LwPC585TUc7QymqlIkbLJkVgnusb30tR8LJIaxSqZc0q4XaElhD4MdyUZ2JBvxgh4A8wJWXXgWj86u4qnuLj772U9x+PChoEMSERGZUpScyLTw0J/ux/d9li9fQW39THr68j+/iQEsaaqiPN5WsNW5RpJyPJIpF8Ms3KSgkNzw2pexfPF8ent7+PxHbiIxMBB0SCIiIlOGkhOZFsr/8Hv+9YwVvO68l9AfTwcy+WLTjEoaQ720796G5xZWxakX0x9P4wdY2WwqCYdD/Ou738zaWbO4MVzC/R//iI6diIjIKVJyIkWvr6OduY7D0opKzrn4Yo51xTLlcfOorqqE+TUufS3bSQ7053XfuZBIOjiuH3hJ4aliTkMd179iHeWhEKcNDPCnb3wl6JBERESmBCUnUvTW/+ynRE2TY47D/HPX0tGd3zlFykrCLJkVxWvbRe+xtrzuO1eSKZdk2lVJ4TFYfckaWurKAJi9ZQub7vltwBGJiIgUPiUnUvRSG54BYGDBAmJJl648jjcJh0xOm1tBSc8Bjrfuzdt+c83Hpz+WUknhMbr0jVeyB4ewaZL++V20bNwQdEgiIiIFTcmJFLWje3YzL1sGd8Ub38TRzhipdH7GexgGLJ1bRU3yKEd3b8P38tuVLNfiSYe0E9xs8bWhBLWhwi+9PJRpmqx9+ytpc9JUh8Mc+sZXaT+wP+iwRERECpaSEylqm392J6ZhcMDzmH3mKo535a+E8KKmamYYXRzfuQU3FdyEj7mSSLokUy6mmf+PjTLT4X+X/Jz/XfJzykwn7/ufiPLKchZfdxmdTpoZ4TC/+9THiceDKWUtIiJS6JScSNHyXJfynTsBMFeupDeWprMnP3fe58+qoinaT+euzSRjxVFK1senL5ZChafGbsacRmqvPJcHuzr4xsZn+Md/fD/JZP4rxomIiBQ6JSdStJ566glu27ebZ3p7WHvDjRw63p+XKl1NMyqYX5mgd88WYj3dk76/fIol0qQcN9AJGaeqRdZC1rzxCiIlUR5//FE+/KF/IJVQC4qIiMhQSk6kaP3s5z9lfU83LavXYFbU0p6HLl1zGipYVJ2mf98W+jqOT/r+8i2ZdoklnLxPyJj0Qrz/wMt5/4GXk/RCed13Lq1csoCv/cM7KC2JsqSlhT/d9PckY0pQREREBik5kaK0f38rDz54PwBvfevbON4dn/RZ4ZsaK1hcm2agZSs9R6dmyeBT0TeQwnXz27fLw2BDfDYb4rPxpvhkK2uWLeKr17+BK2bMYpHj8se/ew99nZ1BhyUiIlIQlJxIUdr4tS/zhtlNvOyidcxbuISDR/uYzMvp5pmVLKpJM7BvCz1thydxT8GLJdLEUw5mSB8f43XueSvoX7WIlOex2Id7r7+BjoMHgg5LREQkcLq6kKJzaPs2lvb1cV1TM3/z2tfT2ZvgePfkdJ0xDFg4p5qFlXH692yi5+iRSdlPIfF8n57+JJ5Gxk/I6ovPxll7OgOuw1zDZMv/+ygtG9cHHZaIiEiglJxI0dn87W8RNgxa8Vl+1dW0HumdlG5IoZDBac01zCvppXvnBnqPH835PgrVQDxNIuli5nnsSbE5Y80ZlF95Dp1OmpmhMB03f42nfvGzoMMSEREJjJITKSrb/nQfS+JxAJrf+nY6ehO0deS+lG9ZSZgz51czyz/G8e3PMNA1vcYMOK5HT39yUrvKTReLT1/E0rdfyWE3TYUZ4pZvfZ0f/egHeFN80k4REZHxUHIiRcN1HI78+D8B2FNSwhkvezn7DvdkZjXPofqaUs6cV0blQCttz64n2d+X0+1PFX2xFLGkE8ikjMVm1tyZnHvjtfy5zGBTTzc33/xV3ve+Gzl6pLjHL4mIiAynqwopGn/6yheZZ5gkXJc1//hB2jpjHGnvz9n2Q6bBwjnVnN7oYx7ZRtv2zTip6TuRnuN6dPUmcfM09qTUSFNqpPOyryCUlJXwjndcy8ff+QbKSkto3bCevR/7MI/86Af4Gt8jIiLTRDjoAERyYc+unZRtexaiUdpXruT0xafx1LajORtrUlURZdGsMqqdDnp27qC/sz0n253q+mMp+mMRaipL8CZxgssy0+H+0346adsvFIZh8JqL1nDWknmsv+s+GiIReOQRfvf4Y6z8wP+lefmKoEMUERGZVGo5kSmvv7+fD374A3xq+1aeNuCKD32UliO9HM/BpIvhkMnCOdWsmBOiomsXR7c8qcRkCM/36exNkEy7eZ+YsZgtnD2Da95zHXurSnB9nyWuR9dXvsTvPvNJBrq7gg5PRERk0ig5kSktmUzy0Y/+Iy0t+wjX1/Oqr36DY90J9hzsntB2DQNmNVRw1qJK5oWOM7Dzadp2bsNJpXITeBGJJx26ehP4Pkzx+RELSklplMvf9gqMK85mv5umxDRZfPAgz9709/zx618hnda5KCIixUfJiUxZqXicB276O7xt2ygtLeUb3/gW4dIqtrd0kEy549qmYUBjbRmrFtVwWnUM4+AmDm9+kr6O4zmOvrh09yXpGUhhGpPzkZL0TD506KV86NBLSXrT62Nr0bKFXPie13Fk8Sw6nTS14TAP/u63XHPNldx++2309U3PggwiIlKcNOZEpqTOw0e4/33vZ4kP7124mMRfv4Ol1go27W6nsycx5u2FTIOG2jLm1Eao8vtJH9vFscMHSSfHvq3pyPN92rtihEMGVeXRnI8/8TB5bKD5xHOYXmV2Q6EQa1++ltSlKR7//eOs37eTYx2dfP3rX2bjXT/h5ctXsvj1f4V10SVBhyoiIjIhSk5kytl87z103/ljFoTCJFyX5CtewZrLXsa2fR0cPDq2u8jlpWEaa8uYWQllTh/Jowc41naIdEJJyVilXY9jnTEMw6CyLDKpA+Snq2hJlHXXrmPtKy/kvo02P773z7yyspaFPT3wo9v4863fJ71sGdZrr2PeGcuDDldERGTMpkRyYlmWCXwauBGoAx4G3mfb9u5AA5O8at/fwlM3f51F3d00hsJ0Og4N73oX1tp1bN3bQcvhnlPaTmlJmLqqEhoqw1SHk5ixY8RaDnLk+DFcp3hL1eZDMu1ytGMAv74804LieWimxtyLRsJcfd6ZXLXmdDY9uY2WzXtodn3mhEKwZw/xr36JP7susfnzmf3a61ixYgWRSDTosEVERF7UlEhOgH8C3gO8EzgEfAm417KsM23b1qjQIrdnz27u/uXPuWDrFpZES8Aw2FdRxiWf/iyp0lrW28c4+gKzwIdMg8ryKNUVUerKTSpCKUKpHlLHj9Dd2U6899SSGjk1ybTLkfYB0rUeNZUlhEzwPGUokyEUCrHmgpVwwUq6OnvY8shmQgeO0WSEmBMK8cTWzfy/X/2S0tJSzlq1mtc1zaXu9OUseslaZi5aHHT4IiIiz1PwyYllWVHgg8BHbNu+J7vsTcBh4PXAXQGGJ5NgoKuTXQ//hbYnHuPHe3aydfu2zBvN8zl35izqXvMarn7jW9hzoItd29oYiJ9s7TDItIyUlYapKItQVWJQFfWIuAmIHyXZdpye7i4SfT2a2G4SOa7H0Y4Y8YRDXXUpZSVhwMdXkjJp6uprWPfqzJiTrs4+tj+9jeMHfOo7auns7qZ10wYWez4cPEj3fX9gv+vQHY6QqqkhOns2VaefQfPqc5g5c6ZaWUREJDAFn5wAZwNVwAODC2zb7rYsaz2wDiUnU0oqHqOvv5/+2AC9vX30tuwlsWM7qfZ2jN5eKhNxGs0Q5YbBYoCDBwmFQlx66eVc/LrrOHvtOjp6k6zfcYzO7gFKo2FqKksojYQoj/qUh33CpAm5Sbz4cdLtXcT7++js68VJTt/Z3IPg49MzkCSWSFNVUUJNZZSSSAjTNPB9JSqTqa6+igtf/hIuBN7n+7R29PLslt3s3XOI6mSaejNEdShMte9Ddzd0d/Pz+//IL44cAuD0mbN499x5pCMRvNIyqCjHrKgiXF1FSVU1pfPmUdE8n/LycqLhCKXhEKVV1ZSUlmIYqictIiLjNxWSk+bs44Fhyw8D88e70XA4t+VIH322lT9/+zvMTvYz2MneOHHtlXnyv5F6ktmJIM52+1niJU70xzeGdcz/rVlFzAhl1vViWN7JC+vh695DBT1GCB+fVX6SlX7yZAzD4rzHL6ODEOCzghRrSGXXObnNwd+5x43Sll13ueGw1kgP255/ct10iP1pF89Ns9JwuKYsTBifMBAyIIxB1IRSM8S/7drB+p5uAC5vmMF7Fy05uclQ5pTsSDsciFSw+FV/z9JzX0ukqoHfp13ufdwFrwzTKMX3qjB8D9918N00nuPguS6u4+M5Jr5fDVQj42MYYDgmvu8xoUamNJAAs9MgFDKJhE3CIRPTyMyIPngt6w/7/zKU4588824+fi5ho4gSGyNzXFzXY2IH+kWc+XI4M/PUj/cRat1M+dHd1PS2UZXo42hpNWb4OJ6TIhyPMzcUBs+HWCzzc/zk5KM/ObifX7UdBmBReTlfXL4KANf3Sfs+ju+T9sEB/tgf509xBzMUYkY4wjuqoviGgY+RfeTE681GCU8bZRhAJT7XMnDyk2zwPMm+3mWWsMEsB6AMn1e7Q7pnnkiQMo8toVLWR6oxQyam4/Lq1MgTqfrAQbOEpyOZzw3D97l2lHUB2swoT0RqTrx+dbIdc5RBVsfNKI8OWffqZAeRUarOdRkRHorWnnh9VaqDUn/kdXuNMH+K1p14fUWqk0p/5FLqA0aI+6L1J15fluqixndGXDdpmPwu2nDi9cXpbhq8kcfkpTG4p6Qx+8pg9uzZ3PyxGyiJTIVLDBEpNFPhk6M8+zj8tncCqGccTNOgrq5iQkENd/MP7+Ky1k28pHHGqOt875kH6XMyXwSXz1/IeTNnj7ruDzc+THt2wr9LmudzzuymUde9Y+sTHErEAXhJUzOrm5pHXfeu7c9wIJYZn7F69hzOal4w6rq/2L2JQ/2Z6lcrZsxi5YJFo6776/3bOJpNONyGGcwbmnAMUxEKQ0k1lFSzv7yBJ9MRjoWr6Sht5EjNUvbNXUdf3dKTv3A0+yNTn8Pz/yeP0W96luUklGlv9rkw7CPI8H1C8S4OdO/h3zq3UDPQRk2ig2qnj1o3RoWfosx3OBatgwoH0nHKwie/RkKGQWhYy4nR30lPNpGpLivntPpVQ971n/O488guDhzK3IeaVVLCmpWrn79q1rHDe2k50ApAbSTCuWedM+qf2tO2l92tewEoC4U4b/V5o66b7tjH7n2ZWism8JJz14667tPdnezevfPE63PXnE/EHPnG1+beHv5z5/YTr88++1wqwyN/Be/s7+OHO+458fqDq1bTEC0Zcd3W2AA/2HbvidfvX3EWTaVlI67blkjw3a2/O/H6xjNWsrhi5O/CrlSKWx77/YnXf20t5/SqkW/2xFyHbz7+hxOvdwMPvOJS3vry0f9NRERGYxR6v3vLsq4DfgGU27YdH7L850CJbduvGeMm97qut6i3N/7ia47B9v3HuPcHt1PT35P5Dj3x/Xzyi3pjXTOOGQLDYP5AJzOS/c9bh+ydxG21zaRCYTCgaaCLWclMkvDc9pDM3US7tolkOIqBwaxYNzPj3ZxoXxl2B3FP7RwSkRIMw6Ah1sOsWNeJdY0h6/oGHKieTSya+ZKrS/Qxc6BzyF9snIgX4EjNLOKVdYTCUSrdFHWJfoiU4EeimJFS/GgpoYoazNqZmDWNmOHIiS0NvWHuw4vePTYMg3A4hOO4GjcyiQI5zoYx7SaZN4zMwHbXdSe14STnBv+hfB8/MYAX68OP92WeJ/rxEjH8VIJ4tJyBaBm+5xJKxJjZsR9cFzwXPAc8F991MXyP9pJKjpVW4+MTdVJYXYcwBlsM/ExL7eC5eKy0kkMV9eBD2EuzsvNgZjWyn2jZY+nj0x4tp7W8DsMwMF2X1T2HRv2zOiPl7KlsOLHP87sOZv/c5//jdEXK2Fl18obUeV0HMEf5R+yJlLKjauaJ1+d0HSQ8SmtIX7iEbdWzTrxe3X2IqDdya0gsFGFLzZwTr1f1HKHMHbmFIxEKs6nm5I2uFb1tVDgj15RJmSE21M498Xp571GqnJHvLLiGydN1mZtiBjB3zmw+9a7X5rwlsLq6jFDI3AeomoNIEZsKLSeD3bmagD1DljcBm8a7UcfJ7RwMZ8yfyYW3fIauroGcb7v4pLM/4xMOm9TVVdDVldCxnkQ6zvlRHMfZBGqyP4Xp5HHWZ/Rk+Jvso46ziExUbgdeTI5NQC9w2eACy7JqgTXAX4IJSUREREREcq3gW05s205alnUL8EXLso4DLcCXybSo3B1kbCIiIiIikjsFn5xkfYpMrLcCZcBDwFWagFFEREREpHhMieTEtm0X+Gj2R0REREREitBUGHMiIiIiIiLTgJITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERAqC4ft+0DHkW9z3/VLPy/3fHQqZuK6X8+3K8+lY54eOc37oOOeHjnN+TNZxNk0DwzASQFnONy4iBWM6JifdQAlwJOA4RERE5NTNAZJAbcBxiMgkmo7JiYiIiIiIFCCNORERERERkYKg5ERERERERAqCkhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCCEgw6gGFiWZQKfBm4E6oCHgffZtr070MCKjGVZC4CWEd56l23bt+Y5nKJkWdYngZfZtn3ZkGVnAzcD5wIdwDdt2/5KIAEWiVGO84+A64etesi27eY8hjblWZZVD/wr8CqgGtgMfMy27Yez75+NzucJO4XjrPNZRMZFLSe58U/Ae4B3ARcAPnCvZVnRQKMqPquABNAEzBny85MggyoWlmXdBHx22LIG4I/ATjIXc58GPmdZ1jvzHmCRGOk4Z60ic7E39Nxenb/IisZdwFrgzcB5wHrgD5Zlna7zOadGPc7Z93U+i8i4qOVkgrIJyAeBj9i2fU922ZuAw8DryXyAS26sBGzbto8EHUgxsSxrLnArcAlgD3v7b4Ek8F7bth1gu2VZpwEfBX6U10CnuBc6zpZlhYDlwOds224LILyiYFnWUuBK4CLbth/NLvsA8ErgrUAcnc8T9mLH2bKsf0bns4iMk1pOJu5soAp4YHCBbdvdZO4irQsmpKK1CtgWdBBFaA3QReb4PjHsvUuAh7IXcoMeACzLsmbmKb5i8ULH+TSgFJ3fE9UOXAM8M7jAtm0fMIB6dD7nyosdZ53PIjJuajmZuMH+sweGLT8MzM9zLMVuJXDEsqy/AMuAXWTuzP0+2LCmNtu2fwP8BsCyrOFvNwNbhi07nH2cDxyb1OCKyIsc55VkuoPeZFnWKwEPuAf4pG3bPfmMcyrL3hi6Z+gyy7LeACwBfg/8CzqfJ+wUjrPOZxEZN7WcTFx59jE5bHmCzJ0jyYFs97llZAZefhK4GniKzNieK4KMrciVM/K5DTq/c2kFmQu4FuDVwIfInOO/yhbckHGwLOsi4IfAr7LJoc7nSTDCcdb5LCLjppaTiYtnH0uGPIfMF91A/sMpTrZtpyzLqgUc27YHLy6esSzrDDJffPcHFlxxi5M5t4cavIjT+Z07nwG+nr0jDbDVsqwjwGNkBhsP7wYmL8KyrNcAdwKPA2/JLtb5nGOjHOfPoPNZRMZJycnEDXbnagL2DFneBGzKfzjFy7btkS4etgCvyHcs08gBMufyUIOvD+U5lqKV7a/fPWzxYPejZnQxNyaWZb2fTLngu4G3D7mhofM5h0Y7zjqfRWQi1Lw6cZuAXuCywQXZO/xrgL8EE1LxsSxrlWVZ/ZZlXTzsrXOBZ4OIaZp4CLgkW01q0BVkqqapf36OWJZ1p2VZw8dOnZd91KDiMbAs673At4BbgDcNSUxA53POvNBx1vksIhOhlpMJsm07aVnWLcAXLcs6TqaP7ZfJ3KG7O8jYiszW7M93sl+K7WTK3F7AyS89yb0fAh8BbrMs60vA+cBNZOb1kdy5E/i1ZVmfIFN+fBnw78Cdtm1vDzSyKcSyrGVk7uT/N/AFYOaQ4gNxdD7nxCkcZ53PIjJuajnJjU8Bt5GZw+ARwAGusm07FWhURcS2bY/MwMongf8CNgAvAa60bXt49R3Jkezd5KsAi0x57E8DH7Zt+/ZAAysytm3/FngDcB2Z7i+3kbm5cUOQcU1BfwVEgNcBR4b93KzzOWde7DjrfBaRcTN83w86BhEREREREbWciIiIiIhIYVByIiIiIiIiBUHJiYiIiIiIFAQlJyIiIiIiUhCUnIiIiIiISEFQciIiIiIiIgVByYmIFCTLsoygYxAREZH8UnIiIgXHsqxrgduzzy+zLMu3LOuyYKMSERGRyRYOOgARkRH83yHP1wMXANsCikVERETyRMmJiBQ027Z7gceDjkNEREQmn+H7ftAxiIicYFnWg8ClQxZdDvwJuNy27Qcty/oM8GbgY8DngaXADuC9gA/cDKwC9gAfsG37/iHbXgH8G7Auu+h+4IO2be+dxD9JRERETpHGnIhIoXkfsCH7cwFQPcI684CvAf8CvBGoB34B/BT4AZnkxQTusiyrDMCyrGXAo8BM4HrgBmAx8IhlWTMn788RERGRU6XkREQKim3b24BeoNe27cezz4crB95n2/ZPbdv+NfBtoAn4nG3bt9q2/Svgn4BGwMr+zqeBOPAy27bvtm37v8i0ypQBH57UP0pEREROicaciMhU9eiQ523Zx6FjUzqyj7XZxyvIdA+LWZY1+NnXC/wFuHKSYhQREZExUHIiIlNSdqD8cLEX+JUG4E3Zn+GO5yQoERERmRAlJyIyXXQD9wFfHeE9J7+hiIiIyEiUnIhIIXKBUI63+WdgObDRtm0HTsxC/2NgN7Axx/sTERGRMVJyIiKFqBu4wLKslwI1OdrmZ4HHgN9alvUdIAG8G3gt8Fc52oeIiIhMgKp1iUghugVIA/eSqaY1YbZtbwYuITMXyh1kSg/PAV5r2/bdudiHiIiITIwmYRQRERERkYKglhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERArC/wd9d3h/ja1S9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 478.57it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 8.65it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Interpeak Window 2 (t: 16.470 - 79.990) R-Score = 10^-2 & Fano Ratio = 0.0382\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture and has an appreciable Fano \n", + "factor compared to peak region(s). This suggests you have missed a peak in this \n", + "region. Consider adding manual peak positioning by passing `known_peaks` \n", + "to `fit_peaks()`.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI00lEQVR4nOzddZhU1/3H8ff4zvriroEDIQQS4iHubbSWJm3SeBtP07i7/RojaaRxT6PEmjSNu5QYBDi4Lc4arI3c+/tjZmGBXdgdZm3283qefWbn3jPnfs/MMsx3jnlc10VERERERKSteds6ABEREREREVByIiIiIiIi7YSSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C/62DqANlAEhYEkbxyEiIiJN1xuoBQrbOA4RaUGeTrhDfLXrulmOk/52e70eWqLe9iTT26j2dXyZ3sZMbx9kfhvVvtTr9Xg8NUA47ZWLSLvRGXtOljiOO7ikpDKtlfr9XoqKcqioqCIWc9Jad3uR6W1U+zq+TG9jprcPMr+Nal/qunTJwefzaNSDSIbTnBMREREREWkXlJyIiIiIiEi7oORERERERETaBSUnIiIiIiLSLnTGCfEiIiIiaTFp0qQ8Essc6wtfkY05wJJx48atbuoDlJyIiIiINNOkSZO8wGUej/d4j8cTADxtHZNIO+S6rhudNGnSk8BN48aN2+wyfkpORERERJrvMp/Pf3p+flEkGMyq8ng8mbt5jUiKXNf1RCI12RUVpafH4zGAGzb3GCUnIiIiIs0wadKkfI/He3x+flEkL69oVVvHI9KehULhaqBrWdmq4ydNmnT35oZ4tavkxBgzHPgOOMta+3jy2FjgbmAHYBUwwVr797aKUURERDq9Xh6PJxAMZlW1dSAiHUGydzHbdekNbDI5aTeTt4wxAeAZIKfesa7Af4EZJJKTq4HrjTEntkmQIiIiIonPTx4N5RJpmuS/FQ9NyD3aU8/JtWycSZ0G1AKnW2tjwDRjzDDgYuCxVo5PRERERERaULvoOTHG7An8GfjTBqf2AD5JJiZ1Pkg8xPRorfhERERERKTltXlyYowpBJ4CzrbWLtzgdD9gw2OLk7cDWjg0EREREWlFEybc0efIIw8e3dZxNNX06VOz3nvv3YK2jiOTtIdhXfcDX1prn23gXDaJYV311SRvs7bkon5/evMyn8+73m2mqamp4amnnmaPPXbDmG3aOpwWkemvYaa3DzK/jZnePsj8Nqp9Ipnlkkv+NmzffQ9Ytf/+B5a3dSyZok2TE2PMcSSGbjWWIVcDoQ2O1SUllale1+v1UFSUs/mCKcjPD7dIvW3tnnse5fbbb+Ohh/L57rvvyM9vmeevPcjU17BOprcPMr+Nmd4+yPw2qn0imUJrIqRbW/ecnAT0BBYaY+off8AYcyEwH+izwWPq7henelHHcamoSO/qfz6fl/z8MBUV1cTjm938ssN5//0P6ZcVZrA/yNfvfsCYPfdu65DSLtNfw0xvH2R+GzO9fZD5bVT7UpefH273PTKO41BVVdUmQWZnZzteb/MvPX78DuN+/eujl3z00ftdo9Go9+6775+enZ3t3HPPnf1++un7/MrKSl9BQUFsn332X3XuuRcUT5s2NfznP5+w9X33PTxt223HVgGcd94ZQ6dM+Sn/nXc++t7v9+O6Lr/85f5j/vSnk4qPPvoPKze85sqVK/x33HFbv++++7YgHo97hg8fseb88y9eOHToVmtHy/zzn/f1fPPNiT1Xr17t32qrYZWXXHLVvLrzDcXcr1//yIMP/qP3xx9/0LW0tDTQt2/fmuOOO3HxwQf/sgzgxRef7/rcc0/1PvHEU4ofeeSf/crLywIjR45afcUV1857/PFHen300Xtd/X6/e/jhv1r2l7+ctRSgtrbWc++9d/b57LNPikpKVgWzssLOmDFjyy+55MoFXbp0jR955MGjV65cGXzhhWd7T578Q95DDz1pS0tLfPfee1ffb7/9qnD16tX+wYOHVp522hnFu+yy25q6tk2c+HKXZ555oveKFStCAwYMqN5nnwNWPfLIA/0/++x/k1J5Tbxeb0rta6/aOjn5I7Dh1yszgauAfwHHAH8xxvistfHk+f0Aa61dviUXjsVa5j+FeNxpsbrb0i8qqxi1zRgAFn/7LbHd9mzjiFpOpr6GdTK9fZD5bcz09kHmt1HtyzyO43Dssb8eMX36tDYZWjBixNZrnn32JZtKgvLuu//ufvPNt8+Mx2OeYcOG1x577K+3LigojN56610z8vLy4h9//EHhQw/d33/rrbepPOigX5R169Yt8uWXn+dvu+3Yqng8ztSpU/Jqa2u9338/KWfHHXeu/OGH77JXr67w77vvAWUbXisWi3HuuacPB497zTU3ze7atWvsnnvu7Pe3v509/KWX3pgMsHLlyuCUKT/l3XzzHTMjkVrPTTddO/imm64d9MgjT9nGYj7vvDOGzpkzO/vss/+6YPDgoTXvvPNWlxtvvGao1+uddeCBh5QDrFq1Mvj666/2uOGG22ZVVVV6r7zy4mEnnviHUfvtd8DK++57ZNq///1616effrzvXnvtUzZy5Kia22+/pd/XX39ZePHFl8/r339ArbU2/Pe/3zTowQf/0efSS69a+PDDT0076aQ/bL377nuVnHba6Uvi8TjnnPOX4dFo1HPxxVfM7d69R/Rf/3q2xyWXnD/8rrvumz527PZV7733n4I77rh18PHHn7Ro7733K/v66y/yH374gf5b+pqk0r5m/6G0kjZNTqy1G/V+JHtQlltr5xtjHgUuAh4xxtwG7AScB/ylNePs7CrLShmVve69tmbJ4k2UFhER6aw65r4ne+2176qxY7evAqiurvbsu+8Bqw466JDS/v0HRgAGDTp5+YsvPt9r1qwZ4YMO+kXZDjvsXPbdd9/mA0t/+OG7HJ/P7w4fPmLNt99+nbfjjjtXfvrpx4XDhpk13bv3iG14rc8//yR//vx54ccee3bKsGHDawEuv/yaeY8//nCvkpJVfgCfz+def/2tcwsKCuIAhxxy6Iqnn368b2Mxz5gxPet///um8Jprbpy1//4HlQOcddZ5S+bMmZX9zDNP9K5LTuLxuOf88y+eX/fBfPToMRUzZkzPvfDCyxZ5PB5OO+3MJS+88FzvmTNnhEeOHFUzcuTWlfvss1/prruOXwPQv//AyH//+07FvHlzwgDdunWPeb1eNxwOO0VFXeIffPDf/Llz52Q/9NATP9dd44orrl0wY8b0nGeeeaLX2LHbz3n++Wd67bLLbiWnnPKXZQBbbTVsxaJFC0NvvDGx55a8Jqm0b0v+ZlpSW/ecbJK1drkx5iBgAomd45cAF1prn2jbyDqXpdauf2D1moYLioiIdFJer5dnn33JdrRhXQD9+vVfO5wqHA67xx134vJ///uNoqeffiJn8eLi0Pz5c7PLykoD8bjjAdhjj73Lr776su7V1dWer7/+Mm/UqG1W9+3bv+bHH7/LB5Z+++3XBXvuuXdJQ9eaOXNGODs7O16XmAD07NkrdvHFVyyqu19QUBCrS0wA8vLy45FIZL3G1Y/Z2ulhgB122Hm9DyijR49d/eSTj/Srf2yrrdZdNxQKOd2796z1eDwAZGVluQC1tbVegKOO+m3Jp59+nHfHHbf2LS5eFFq0aGF48eLirBEjRjb4QWjWrJnhcDg7Xv+Dv8fjYeutt1nz3Xf/yweYN29O9vjxe5bWf9yYMdut2TA5ae5rkkr72qt2l5xYaz0b3P8W2LWNwhGgZP5c6q+R569tt8m2iIhIm/F6veTm5na48WyhUNbamKuqqrx//vMJpqamxrvHHnuVHnjgIavGjBm74KyzThtRV2bXXXdfHQj4na+++jzv++8n5e+zz34lAwcOqn399Vd6LVw4Pzhv3pzsa665cU5D1/L5/G7dh+XGeL3ezfZA1Y+5sUnpjhP3+Hy+9U4GAoH17nu9jcdy3XVXDvj880+67L33fqt22WX38hEjtl7yzDNP9Fq1akWwofKu23DTHMfB7/e7iet5XdfdfAdbc1+TVNrXXrW75ETan6oVKygAIo5D0OslHItv9jEiIiLS8Xz88Qf5c+fOyX7llbd+7NGjZwygtLTEV15e7q9LAoLBoDtmzHYVn3zyUeHMmTNyL7nkyvn9+vWPeDwe97777unTu3efmvqT2+sbMmRoTWVlpW/OnNmhIUOG1gKsWrXSf8wxv9rmhhtum5lKzMOHj6gG+N//vs6tG9YFMHnyj7l9+/avTqXOkpJVvnfffbv7xRdfPueww45a29OxaNGCrKyscL3EaN2H/622Gl5dVVXlmzbt56z6vSdTp/6c26/fgBqAgQMHVU+d+nMusHbu9M8/T97kPKWmvCaZpF1360j7EClP/Dtf7iT+LeZu5hsPERER6Zh69uwVAXj99Ve7Llw4P/j111/mXnDBOVvF43FPJBJd+wFgt93Gl3344fvd8vPzYkOHblUbCoVcY0au+eyzj7vusstuZY3Vv8cee1UMHjy06rrrrhg8adK3OdOnT8265prLBxUUFEbHjNkupaVUjRlZM3bs9uUTJtwx4L33/lMwa9bM0L333tV70qRvC3/3u2OWpVJnfn5BPBzOjn/22SeFc+bMDk2dOiV89dWXDZw3b252NLruecjKyooXFy8KLV++zL/XXvuU9+8/sPq6664c8sUXn+bNmDE96/rrrxqwaNGC8O9/f+wygGOPPX7J119/UfTIIw/2nDNnduill/7V9a233uixqVia+ppkCvWcyGbFKxNDK9eEsiAeI+zzEa2tIRDaon0wRUREpJ3Zfvsdqk466bSFEye+3POZZ57oW1TUJbLHHnuXdOvWPWLtupXI9tln//K77vq7Z5ttxlTUHdtuu3EVkyf/mL/XXvuWNVa/1+vlttvunHXHHbf1v+SSvw0DGDVqm9V33HHPzFAolHI3wC233DHnrrv+r+8dd9w2qKqqyte/f//qyy67ZvYhh/yy0Vg2xe/3c8UV18554IF7+p188h9H5eTkxrbZZtvVf/zjCcUvvfR878rKSm9OTo5zxBG/Xv7oow/2O/fcM8LPPffy1AkT7p9xxx239bv22iuGRqMxz+DBQ6puueWOGePG7VQJsM8++1csX75s/vPPP9Prqace6zt48JCqgw46ZMXbb7/ZaILS1NckU3iaMu4tw8yJx53BJSUp7+HYIL/fS1FRDqWllRm3fOLrfzuXrUpLmVbUnc9+/IbKWIxbX36Doq7d2jq0tMrk1xAyv32Q+W3M9PZB5rdR7Utdly45+HzeucCQtFacgkmTJo3wen3v9OjRd00wmKWJmNJkX375WW63bj2i9RcEuP/+e3q9++7b3V599d9T2jK2lhSJ1GQtX16c6zjxg8eNGzd9U2U1rEs26zOfl2O/+4Y5/YfyZVUV35SVsrpydVuHJSIiItKhfPXVFwUXXHDO8M8//yRv0aIFwXfffbvg9ddf7bnPPvs3uLpZZ6RhXbJZ5eVlAGTl5pOTk09NVSXl5RWbfpCIiIiIrOeMM85dXF1d7b3llhsGr15d4e/SpWvkiCN+tezUU09v17u2tyYlJ7JZZWVlAIRz8jAFRbixCGuKF8LoMW0bmIiIiEgHEgqF3Msuu3ohsLCtY2mvlJzIZv3KHyA6dDghPByal8tWhfksmzevrcMSERERkQyj5EQ2a0QwRDiczbRgmIjPDzhEKjSsS0RERETSSxPiZZOceJywzweAPzuPmC8AQLwmpT2NREREREQapeRENqkqORkewJuTT9yf6GxzqrVyooiIiIikl5IT2aTK0sTKdo7r4glm4wRCALi1tZt6mIiIiIhIsyk5kU2qKisHoMZxcPDgBhPJCZFIG0YlIiIiIplIyYlsUs3qRHJS67rEHQc3mAWAJxZty7BEREQkDcaP32Hciy8+37Wp5T/66P38o476xTZ7773L9rfeemO/loytKSZMuKPPkUcePDqddTbnOVm0aEHw9ddfLUrn9Ts7rdYlm1Szeg0hxyECuC6Ud+nB/V++R9GQoRzc1sGJiIjIFnn55Td/zM8viDe1/EMP3d+vZ89etXfffd+M3Ny8Jj+uI2nOc3LttVcO6tGjR+Tww48qbem4Ogv1nMgmrS7I59jvvuEf1VUARAu78+GqFdiqyjaOTERERLZUz569YuFw2G1q+crKSt/WW4+qHDBgUKRLl64ZmZw07zlxPS0bTeejnhPZpKqqRFISDGcDEEreVlauabOYREREJD3Gj99h3LnnXjDvt7/9/arLL79wkOM4nqKiLtEPP3y/a21tjXfbbcdWXHrpVfN79uwVGz9+h3EAL7zwXO8XXniu97PPvjS5f/+BkYceur/n22+/2aO8vMzfq1fv2t/+9pilRx31mxKAL774NO+ii/46/PjjT1r08ssv9O7WrXvtDTfcOue44363zTHHHLf4rbde7xEMBpzHH39+qsfj4Y47bu33zTdfFsZiMc/gwUOrzjjjnEVjx25fVRfvc8891e3FF5/vVVpaEhwzZrvyHj16bnIS7KmnHm9Gjdp2dWlpSeDzzz/pEggEnEMPPXL5gQceUnLLLdcPmjNnVk6vXn1qLrrosnnbbTeuqv5zcsABB5cdf/zvRg0aNKRqwoQHZgF88slHeZdffuHwSy+9avarr77Yc9q0qbnTpk3NPfLIg/MmTnxn8pFHHjx6330PXHXOOecvrh9Djx49a2+88f/mNfR8PPnk89OWLVsauPPO/+v/ww/f5ft8Xnf48BGV5557wcKhQ7fqdCsQqedENqmyMtFDkpVMSsJ+P2PyCxjsNPlLFhERkU4jXl3tbezHqa31tEbZLfHll58XVVRU+O+++z571VXXz542bWrevffe1RcSw526dOkSPeywo5a9/PKbP/bt2z9y55239X3rrdd7nHnmuQseeeTpqUcd9Ztl//jHXQOfeurx7vXr/frrLwvvu+/haZdccuU8n8/rAnz00ftd7rzzXnvNNTfNLigoiJ933hnDFi8uDt1ww22z7rvv4ekjRoysPO+8M0ZMnvxjGOD1118teuCBewccddRvlj300JM/jxw5qvLtt9/ssbk2TZz4Uq8ePXpGHn74qZ8PPfSI5c8991Sfiy/+67Cjjz526T/+8dC0YDDg3HHHrQM3fFxhYWH8wgsvn/v995MKXnvtlS4lJat8t9124+D99jtw5S9+cVjZbbfdNWvYsOGVu+66e+nDDz81rTnPc/3no6amxnv22X82jhPnzjv/Ye+88x82P78gdsYZJ49cvLg40Jx6M4F6TmSTsubP48Khw1njTWzEmOu6XD58JFXxjOzJFRER2SKzzz59u8bOhYeb8v4XXTqr7v6c888Z40ajDX5RHBo0eM3AK662dffnXvy30U5VVYOf24J9+lYNuu7GZn04bjTGcDh+9dU3zA8EAu7w4SNqvvzy81WTJn1bAInhTl6v1w2Hw07Pnr1ilZWV3jfemNjzggsunbv//geVAwwePKR2yZLFoZdffr7XccedsKKu3qOPPnZpXS/AggXzggC//OXhK4wZWQPw6acf582caXMmTnz7x27duscAzj//4uKpU3/Off75p3uOHj1m3iuvvNBzt93Glx533IkrALbaatjSadN+zpk3b072ptrUv/+A6jPPPHcJwIknnrbsueee7rPHHnuXHHjgIeUABx54yKqHHnqgf0OP3WOPvVYfcshhyx944N7+77//bpecnJz4xRdfsQCgqKhL3O/3u8Fg0KmLuanqPx//+tcz3VavrvDfcssdcwOBgAtw3XU3z/vVr345+qWX/tW9fi9MZ6DkRDbJX1rKjkVd+NmT+FLGn5sPQJbXi+s6eDzqfBMREckUPXv2qq37gAyQk5Mbj8ViDfbMzJgxPSsajXpuv/2WQXfcceuguuPxuOOJxaKe6urqtY8bNGjwRsOTBgwYuHZH5+nTp2YDHH30keutvBWLxTzRaMQDsHDhgvDee+9XUv/81ltvs2ZzyUmfPv3WXic7O9sB6Nu379p4gsGQE4tFG+19Ov/8ixZ99923Bd9997+C++9/dGpz5ug0pv7zMWOGza6urvYdfPDeY+uXiUaj3oUL52dt6bU6GiUnsklOcrNFxx/ABwRyCwDwejxUlZeTU6jV80REROoMvef+7xs75/F61/tQO+SOCT82tezgW2+f3NSyW6J+YrJOw9U7juMBuOyyq+cMGbJVzYbnQ6HQ2gdmZWU5G57Pyspae95xHE84HI4/+ODjG/UABYNBB8Dj8eBuEIrf799s2/1+30ZlmvPl6rJlSwNlZaUBn8/nfvnlZ/mjR29bvelHrH+5WCy+UeJT//lwHIfevfvU3HLLHbM2LJeTk9Pphqroa2/ZtORmi24gCIA/Ow8n+c5QVVbS6MNEREQ6I1847DT24633Yb0ly7aWrbYaXuPz+dwlSxYHhwwZWlv388knHxY89dSjPb3epn/MHDp0WHV1dbUvEqn11K/r8ccf7vXBB/8tBBg4cFDVlCk/5tZ/nLXTctLbqvU5jsN1110xeODAwVVnnHHOgmeffbLvlCmTw+tKeNZ/nXx+d82aSl/9xy9fviy4qWsMGTK0euXKlcH8/Px4XbsHDBhYe++9d/X95psv89LdpvZOyYlsWjSx2aIbSm6+6PUScRLJfs1qrdglIiLSWRUUFMQPOODgFU899VjfV155ocu8eXODL730r66PP/5Iv6KiLs2ag7HPPvuVDxw4qPrqqy8b+tlnn+TNmTM7dNttN/b78MP3ug0ePLQG4Jhjjl/6zTdfFT300P09Z8+eFXriiUd6fP31ly06hOOf/7yv19y5c7Mvv/yaeUcf/YeVI0eOWn3DDVcNrk0uQhAOh53ly5eFiosXBQBGjtx6zWeffdzlyy8/z501a2bouuuuHFhdXeXb1DUOP/xXJbm5OfGLL/7r0EmTvsmZOdNmXXnlxYN/+GFSwbBhZjO9NJlHyYlskrduJ/jQuiGPkWTPSa2WExYREenULrnkyoVHHPGrZU8++VjfE044Zptnnnmi9+9//4fFZ5/dvEncPp+PCRMemDFs2PDKG2+8esgppxy39U8//ZB3xRXXzt5jj71WA+y//4HlF1102Zx3332728knHzfqs88+KTz88KOWtUzLYPLkn8LPP/90n+OOO6F4yJChtQCXXnrl/JUrV4TuvPO2vgCHH/6rFQsXLsg66aQ/jIrH45x11l+Lhw83ay6//KJhZ5/95xH5+fmx3XbbY5MbNBYUFMTvueef0wsKCmOXXHLBsNNPP3nk8uXLgjfd9PeZI0ZsvdFwuUzncTccvJf55sTjzuCSkvRuIuj3eykqyqG0tJJYbKNhlR3Wf085gYHAT8NGExz/K8LhIDl3X0S3QIDYMcey9X4HtnWIaZOpr2GdTG8fZH4bM719kPltVPtS16VLDj6fdy4wJK0Vp2DSpEkjvF7fOz169F0TDGZ1ug+PIs0VidRkLV9enOs48YPHjRs3fVNlNSFeNsnrOOD1QmBdz8lbq9dQXVHCcaFQG0YmIiIiIplGw7pkkx5cU8Gxk76mrGe/tce+jzl8sHIF1d607fkkIiIiIqLkRDattraGmOviD61bmCIQSPSY1NSoJ1tERERE0kfDumST6hIQv3/dKnh9QyEK8guIlWgpYRERERFJHyUnsknHFBQRy84hK75uRcADswJsPXwkxQsXtmFkIiIiIpJplJzIJu2Qm0fQ62VqvY2U4l4fEMep1bAuEREREUmfNk9OjDE9gNuBg4Ew8DFwobV2avL8Y8AJGzys2FrbD2lRTjxOMJmUeEPZa4/HvT5w4ji1kbYKTUREREQyUHuYEP86MBQ4BNgRqAbeM8bUfRreFrgJ6F3vZ7s2iLPTqalctxeMJ2tdcuL4EjmtE6lt9ZhEREREJHO1ac+JMaYrMBe4wVr7c/LY9cAPwChjzHfA1sD11tqlbRZoJ1W7ZvXa3z3BbOq263R8foiCE4m2TWAiIiIikpHaNDmx1q4Cjqm7b4zpCVwALAKmAsOArOTv0spqVieSk6jj4PH5wUmkJ44/kCgQVXIiIiJSn8eDz+PxtPrIFNd1Hdcl3trXFUm3Np9zUscY80/gVKAWONxaW2mMGQ24wHnGmEMAB/g3cIW1tnxLruf3p/d9w+fzrnebCWI1VQBEXRc84K3bdDGQSE48sWjan8e2lImvYX2Z3j7I/DZmevsg89uo9mU2jwef4/H0rqqJtfrnq+wsf8yLu6Q9JigTJtzR54MP3u06ceI7k5v72FmzZoZOO+2ErR9//JmfBwwYpMmunUC7SU6Au4AHgdOBicaY8cA2JBKSecBhJHpS/g6MNsbsa611UrmQ1+uhqCgnHTFvJD8/vPlCHcQCN9EzEnFdQqEAbnJcV2lBd5746St6bL01x7XQ89iWMuk1bEimtw8yv42Z3j7I/DaqfZnJ4/F4q2pi/q+mLHGqamIpfUZJRXaW37vLNr39eVl+r+u67S45SdXUqVPCl1zyt60ikdrOme12Uu0mOam3OtdpwK7AWcDJwJ3W2rJksSnGmCXAlyQmz3+dyrUcx6WiomqLY67P5/OSnx+moqKaeLzV3o9aVKk/ixO/+4b+vfvyp6oIXq+HUChAWU4Bby1byu5bDaO0tHLzFXUQmfga1pfp7YPMb2Omtw8yv41qX+ry88MdpkemqibmVFZHW/sF7hhPThPdd9+EXi+99Hzvvn371ZSUrApu/hGSKdp6QnwPYD/gBWttHMBa6xhjpgJ9rbUuULbBw+q6BPuRYnICEGuhLzTicafF6m5tlVXVRByHeDCI47hrj9ftFl9dXZ0xba0vk17DhmR6+yDz25jp7YPMb6PaJ+3F+PE7jDv99LMXvP/+f7vMnTs7p2fPXjUnnXRa8YEHHrJ2+Px77/2n4PHHH+5TXLwoXFTUJbLnnvuUnH762UtCoZALMH361KwHHri377RpU/Nqaqq9Xbt2ixx22FHLTzzxlOUNXfPxxx/u8fjjD/e79NKr5hx00C/KGiozadI3BRdeeNncgoKC+EUX/XV4izRe2qW2zrL7AM8Ce9UdMMYEgO2BqcaYZ40x/9ngMTsmbzVJvoXV1CQ2WQwEQ+sdD/u8DMvJpYuWEhYREenwHnvsoX777LNfyT//+cTPO+ywc/n111+11bfffp0D8OGH7+XfeOM1Qw855NCVjz76zM/nnvu3BZ999nGXyy+/cDBAVVWV929/O2d4VlbYueeeB6Y/9tizP48fv2fpI4880H/y5J82Gt/39NOPd3/iiUf6XXHFdbMbS0wAHnnkaXvIIYc2el4yV1sP6/oR+A9wnzHmVKAUuBwoAu4kscfJ68aYy4HngeHAP4BnrbXT2ibkzsNdtIgzBg2lNpy93vGutTXcOHIblsVibRSZiIiIpMs+++y/8rjjTlwBcMEFlxRPmfJj3osvPtdjxx13nvv004/33m+/A1f+4Q9/WgEwePCQWr/fP//ii88fvmDBvGB2do5z+OFHLT/mmOOW5+fnOwBnnfXXxa+88mKvmTOnh0eP3ra67jrPPfd0t0cf/We/q6++Ydbee+9X0TatlfaurZcSdo0xRwM3A/8CCoFPgT2stQuABcaY35JIWC4nMcTrWeCKNgm4syldxd7dujObxBJqdTyhxBchbZ3ZioiIyJbbfvsdVte/b8zIyh9++C4fYO7cudmzZ8/K+fDD97rWna9bIGfWrJlZ++57QMWxxx6//M03X+sye/bM7OLiRaH58+dmA8TjjqfuMaWlpYH7758w0Ofzuf36DdDQC2lUm3++TC4JfEbyp6HzLwMvt2pQAkC8JvHeEfeuP/rPm5VITgKtHpGIiIikm9/vd+vfd10Xr9fnJn53PEce+Zulhx9+1KoNH9ezZ6/o8uXL/KeddsLIvLz82C677FY2btxOFdtuO6by6KOP3LZ+WY/Hy3XX3TTz0Uf/2efGG68Z/MgjT033ett6doG0R/qrkEbFaxPJieP1rXfcG8oCIODxbPQYERER6VimTp2y3r4A06dPzR06dGgVQL9+A6oXLpyfNWTI0Nq6n2XLlgQmTLi935o1q71vvDGx65o1q/2PPvr09DPPPHfJIYf8sqy8vCz55fe6nKewsCC61177VFxyyRXz5syZlf3YYw/1bMUmSgei5EQa5SQnvDu+9ZMTTygxByXg9aD8REREpGN7442JPSdOfLnLrFkzQ7feemO/+fPnhY855vhlAL///R+WfvPNV0UTJtzRZ9asmaHPPvsk77bbbhpcWbnG37Nnr1jPnr0itbW13jfffK1o0aIFwY8//iD/2muvGAIQiUQ2+pw5cuSomqOO+u3SZ555os/s2bNCG54XafNhXdJ+uZHERqyO179eFuutm3Pi8RKtjeAPavlxERGROtlZ/lb98ndLr3fggYeseOml53veddffwwMHDqy6+ea/zxw1aptqgF/+8vBS13XnPPfcU71feeWFXtnZOfEddtip7K9/vWhR3fnp06ctfeih+/vfc88d3m7dukcOOugXK7/88vPCadN+zgFWbHi9008/e8nnn39SdOON1wx6+OEnrYZ3SX1KTqRRbjSxQ7zrX//PxJuVtfb32qpKJSciIiKA67pOdpY/tss2vf208uiU7Cx/zHXdlDaXGTx4aPVFF12+qLHzhx56ROmhhx5R2tA5j8fDBRdcUnzBBZcU1z9+8sl/Xlb3+znnnL/4nHPOX1x3PxQKuS+++PrPTYltt932WP3ZZ/+b1JSykhmUnEjjYnXJyfpT333BMM8XLyTqOPwtWUZERKSzc13iXtwlea3cc5K4tuu4LvHWvq5Iuik5kUZ9lZ3NLZ9+zC9/dxL1t2b1+gO8tnwZ8XiMsx230ceLiIh0Nq5L3HVdJQkiKVJyIo2qikQoj0Uha6MNXvEHgsTjMaJRLVUuIiLSUWnIlLQ3Sk6kUTU1iU1dA8GNF9MYkJ2D4/NQs3pNa4clIiIiIhlKyYk0anRNLcMGDCK/tmajc+f3H0DXQIDo0iUwYus2iE5EREREMo2SE2nU0LhD/x69+CkW2+hc3ZFosndFRERERGRLaWFpaZSvbmfXwMZLBa9NTqqUnIiIiIhIeig5kUZ53U0lJ4mt4WMNDPkSEREREUmFkhNplD+Zm3gCG0+Ij3kSyUm8Vqt1iYiIiEh6KDmRRvmStw0lJ/G1PSdKTkREREQkPZScSKP8ifwDTwNLCcc9iT+deI2GdYmIiHRWlZWV3qeeeqx73f3LL79w0KmnHm9a8pqLFi0Ivv76q0VbUseLLz7fdfz4HcY1dr412jF+/A7jXnzx+a4teY3WsmDBvOD48TuM++KLT/O2tC4lJ9Iof7J3BP/Gc06meny8uHgRq7M33qBRREREOodHH/1nz5df/levuvsXXXTFwttuu2tWS17z2muvHPT1118UtOQ1pO1oKWFp1AXTf8brxDn1t2du9Icy3R/mx8WLGNDA7vEiIiLSObiu66l/v6CgIN4KV/Vsvox0VEpOpEGO47CiugoAf3DjBMQfCABQq9W6REREAHBdqIq1zaiUbD+OJ4WP7OXl5b477ri13zfffFkYi8U8gwcPrTrjjHMWjR27fRVAVVWV95Zbruv/v/99W1hVVeXr27dvzR//eMLiQw45tGzChDv6vPDCs70hMUTp2Wdfmvzgg//os3z5stBDDz1pv/ji07xLLvnb8Jtv/vuMu+++fcDy5ctDgwYNqrriiuvmvvvu20VvvjmxZzwe9+yxx96rLr/8moUejwfXdXn44Qd6vvvu291WrFgeCgQCzogRW6+54IJLFwwcOChy6qnHm2nTpuZOmzY198gjD86bOPGdyZFIxDNhwu19Pvrog67V1VW+fv0GVJ900qmL99pr34q6dr799luFTzzxcJ9ly5ZmDR06rHLs2O0rGntO6sTjDjfeeE3/jz56v6vf73cPOODgleec87divz/x8fmbb77KefTRf/aZPXtmTjQa9fbs2av22GOPX3LEEb8qqavjtdde6fKvfz3Ta8mSxVmFhUXRQw89YvnJJ/952YbXWrFiuf/MM081hYVF0bvuum9Wdna28/HHH+Q/9ND9fYuLF4V79OhZ++tf/27phAl3DHr22ZcmDxgwKHLkkQeP3nnn3cq+/35Sfnl5eeCqq66bvcsuu69+4olHevz732/0WLlyZbBbt26RX//66KXHHPPHlQBffPFp3kUX/XV4XR2QGJJ17LG/GX3bbXfO2G23PVZffvmFgxzH8RQVdYl++OH7XWtra7zbbju24tJLr5rfs2evGMC0aT9n3Xnn/w2YNWtmTlFRUfToo49d0vy/voYpOZEGRSKRtb97fX6cDc7n+f30zQrDmjWtG5iIiEg75Lrwx3eyR9hSX05bXH9EUXzNUwdX2eYkKK7rct55Zwzz+/3ODTfcNis/Pz/+xhsTu5533hkj7rnnwWmjR4+pvueeO/rMmzc3+5Zbbp9ZUFAYe/nlf3W/5Zbrh4watc2Uk046bWl1dbX3888/7vLQQ09O7dat+0a7NjuOw333Teh/8cWXzwsGs5yrrrpk6Jlnnjpyu+3Gld999/3222+/zr3vvgkDd9llt4r99z+o/LHHHurx4ovP9b7wwsvmjhgxsnrhwgWh22+/deCdd97W/6677pt92213zTr//LOGdevWPXLxxVcsALjyyosHLViwIHzppVfO7dWrT+Sjj94vvOqqS7e68srrZ++//4Hl3377dc5NN10z9Le/PWbJL35x2Kr//e+bvAcfvHfA5p6fGTOm53bt2jV6zz0PTl+0aGHojjtuG1RTU+O97LKrFy5eXBy45JLzhx900C9XXHTR5QtisajnyScf63Xnnf83aNddd6/o0aNn7K23Xi/6+99vHvzHP55QvP/+B5VOnTol+847bxuUk5Mb//3v/7Cy7jqrVq30n3XWaaZr126RO+64d1Y4HHYnT/4pfNVVl2516KFHLL/66hvnTJ/+c/a99941cMMY//Oft7tfd93NM/Pz8+MjR46qvvXWG/t//PH7XU8//ZwFo0ePqfzii0/zH3zw3gGRSK33T386eXlT/za+/PLzovHj9yq5++777OLFxcGbb75+yL333tX3+utvmV9eXu7729/ONsOHj1hz330PTVu2bFnwzjtv3Si2VCk5kQbVrK7gT/0HEnUcfD4/zgbZyU6xGs7YZgxzlqQtURYREenQPNTtXtwxfPbZJ3kzZ9qciRPf/rEusTj//IuLp079Off555/uOXr0mHlLliwOhcPZ8YEDB9cWFBTEzz33guLtthu3uqCgKJ6bm+uEw2HH6/W6dd+oN+TEE08tHjdup0qA3XYbX/bmm6/1uOqq6+dnZ2c7w4aZmqeffqLv7Nkzw/vvf1B5//4Dai+44NK5BxxwcDlA//4DI19//WXpJ598VARQVNQl7vf73WAw6HTr1j02Z87s0Oeff9rl3nv/Oa2ut2fo0K2WzZ49K/yvfz3da//9Dyx/8cXnegwfbtacc875iwG22mpY7Zw5s8P//vfrPTb1/BQUFEavv/7WuVlZWe6IEVvXrFixovjBB+8dcN55FxZHIhHP73//x8WnnPKXZV6vt66dSz766P2uc+bMzurRo+eal156vueuu+5e8uc/n7k0GVdtVVWlLysrvPZTVUVFuf+ss/48vFu37rW3337P7KysLBfgueee6jl48JCqCy+8bBHAsGHDa0tKSgIPPXR///oxbrfd9uV77rn36kRdFd7//Oet7ief/OeFRx7565LkNVcsXlwc+te/nu19/PEnNTk5CYfD8auvvmF+IBBwhw8fUfPll5+vmjTp2wKAt956rSgSiXivvfbmeQUFBfERI7auqa6uWnjDDVcPbWr9m6LkRBoUWV3BL3v2xnFdZns27qF2fImFht1oo+9FIiIinYbHA08dXGU70rCu6dOnZgMcffSRo+sfj8Vinmg04gH44x9PWHrFFRdtdcQRB40ZNmx45fbb71h+yCGHljRnbsngwUPXjgEPhbKcgoLCaHZ29toP6MFgwKmtjXgBDjjg4PJJk77NmTDh9j7FxYtCixYtDC9atDCrqKgo2lDdU6dOyQb429/OXm9lrXg87snOzo4DzJ8/L3u77caV1z8/evS2azaXnAwdulVVXbIAsO22YytjsZhn9uxZodGjt63+9a9/t+rJJx/tMX/+3Kzi4uKsefPmZAM4TtwDsGDB/PCee+5bUr/Oo49e12MC8NRTj/eNx2OeDa81Z86s7A2Hnm2//Y6r4f71Yuzbt9/a53bWrBlZ8Xjcs912O6w3rGXs2O3XvPHGxJ4rVixv8uf+nj171QYCgbXx5OTkxmOxmCcR2+zsnj1719T/Gxg3bse0DaVRciINqq1KzDeJug54vLDBwC7Xl5hzQkzJiYiICCQSlJzARiOh2y3HcTzhcDj+4IOPT9vwXDAYdAB22GGnyldfffunTz/9KP/bb7/Of/fdt7s9//zTfW644baZe+yx1+qmXCcQ8K/Xo+T1Np5F/fOf9/V87rmn+u6zz/4rx47dfvXvfnfM8o8++qDw008/6tJQeddNPN133XXf9Jyc3PWee5/P564rt/4ker8/sNleLq/Xu14Zx0l8Fg+Fgu7MmTbrrLNOGzFo0JCqceN2LB8/fu/yLl26RM8++88j619/cwnj6NHbVvziF4evvPHGq4d++OF7Jfvss39F8rE4zuYn/geDoY3a6Nngok5y+Ev9ZMOt17JoNLbRdeqXXaf+oeY/n02lpYSlQdHqagBiLjjOxn9vbnIyGPFWWJRDRERE0m7o0GHV1dXVvkik1jNkyNDaup/HH3+41wcf/LcQYMKE2/t8881XeQceeEj55Zdfs/Cll96Y0qNHz9oPP3yvCMDj8aR1KNsLLzzb5/e//+Piq666fsExxxy3cty4nSqLixdluetdZd01hw0z1QDLli0L1m/Da6+93O3VV1/qBjBkyNCqadN+zq1fw7RpUzY7N2jevDnZTr1x7d9997+8YDDoDBw4uPaFF57rnp9fEH3wwcdmnHbaGcv22++A8pUrVwQgMZcHoG/f/jXWTlvvOjfffF3/8847Y+3wpz333Kf0kEN+WbbbbuNL7rzztkEVFRVegEGDBldt+NjJk3/YZMxbbTW8xufzud999+16bf3hh+/yCgoKo4WFRfFAIJF0VlRU1O21zfz5czfe0G4Thg0bXrVkyeLQqlUr13Zy/PTT92mba9Xs5MQY4zfG7G+MudkY87wx5m1jzFPGmBuMMbsbY7S8WwaIVid6CaOui+M28L6T7DnxKDkRERHpkPbZZ7/ygQMHVV999WVDP/vsk7w5c2aHbrvtxn4ffvhet7qhWMXFxaG77vq/AZ999knewoXzg2+99XrRypUrQqNHb7sGIBwOO5WVlb5Zs2aGotHoFn8G7Nq1W+S7777Nt3Za1syZM0J33vl/fb755qvCaDS69jNrOBx2li9fFiouXhQYMWLrmu2336F8woS/D3z33bcL5s2bG3z44Qd6vvLKi7369u1bC3DssX9aOn/+vPCtt97Yb9asmaFXX32py9tvv9m98SgSVq1aFbzyyosHTZ8+Nevf/36j8Nlnn+xz5JG/WRYKhdwePXpGSkpWBT/44L/5CxfOD7799puFEybcMRAgEkkMiTv22OOWfPHFZ0WPP/5wj7lz54Ref/3Vonfffbv7+PF7lW14rYsuunxhJBLx/P3vN/WHxHC6uXNn5/z977f0nTVrZuidd94qfOqpx/vCxj0jdQoKCuL773/QymeeeaLvxIkvd5kzZ3boqace6/6f//y7+1FH/WaZx+NhxIitq7OyspzHHnuo95w5s0Nffvl57iOPPNivsTobcuihR5bk5xfELr/8osFTpkwOf/nlZ7n/+Mfd/Tf/yKZpcnJijAkaY84F5gDvAqcBw4FcYDvgTOBTYKEx5mxjTLOyMGlfojXJnhPW7/qr4yY3ZvQ4Sk5EREQ6Ip/Px4QJD8wYNmx45Y03Xj3klFOO2/qnn37Iu+KKa2fXDdm6/PJr5m+77djVt9xy3eDjjjt6myeffLTvn/508qKjjvptCcCBBx5cWlhYFD3llONH/fTTD9lbGtPll18zt7a21nv66SePPPfcv4yYN29O+Iwzzpm/enWFf8GCeUGAww//1YqFCxdknXTSH0bF43FuueWOObvuOr50woTbB55wwrHbvPvu293OPPO8+b/97TGrAEaP3rb6hhtumzl58g95p5xy/KiXX/5Xz9/+9pjNruizww47lfl8PvfMM08dee+9dw48+OBDl5955rmLAY4//qTlu+22R8mtt9445MQT/zDq6aef6H3CCacUd+vWPTJlyuQcSMyfOeusv85/663Xu5944rGjnnjikb6nnnr6gt/85uhVG16rW7fusVNPPWPRBx+81+2jj97PHzlyVM2VV14369tvvyo85ZTjRj3xxCN9fvGLw5YDBALBRnurLr30qgW//OXhyx999J99TzrpD6PefPO1Hn/+81kLTjnlL8sA8vLynIsvvmJOcfHC8Ekn/WHUhAm3D/jzn89a2JzkJCcnx5kw4X7r9/vdc8/9y4ibb75+8O9+d+zSJlewGR63oU+eGzDG7AQ8AcSBZ4AXrLWzGyg3GvgFcArgAY6z1n6ZrmDTZE487gwuKalMa6V+v5eiohxKSyuJxTrMcNNG/fDGRLJfm8iyWIxVJ18HJMaIhsNBqqsjlP73BXZdNI35uBzw8BNtHG16ZNpruKFMbx9kfhszvX2Q+W1U+1LXpUsOPp93LjAkrRWnYNKkSSO8Xt87PXr0XRMMZmnDL0m777+flO33+93Ro8dU1x2bOPHlLnfd9fdB77336Xd1e610FJFITdby5cW5jhM/eNy4cdM3VbapLXsKuMRa++qmCllrJwOTgVuNMb8jkdAMb+I1pB2pG9bVWL9IVU4BbyxdjLdbdw5ovbBEREREMt706dOyH330n/0uvPDSuVtvPap63rx5oaeeeqzP7ruPL+loiUlzNbV1o621kc0XW8da+4IxZmLzQ5L2oKpLF66a/AODhg7noAbOVxZ05elFCzA5bbLXlIiIiEjG+v3v/7By1aqVgfvvv2dAaWlJID8/P7bHHnuXnHXWX4vbOraW1qTkpLmJyZY+TtpereOwpLaGro1k5/7knJPaSG1rhiUiIiKS8TweD2eddd6Ss846r9Ptdt2k5MQYc1VzKrXWXpdaONJeRJJJRyAQbPB8wOejayBIrvY5EREREZE0aeqwrms2uO+SmPAeB1YCRUAQiAAlQJOTE2NMD+B24GAgDHwMXGitnZo8Pxa4G9gBWAVMsNb+van1S2p8y5ZxdJ9+BHy+Bs8XRKq5f8z2lCk5ERGRzscB3A039hORhiX/rbhsuKt3A5q0lLC11lv3AxxAIkn4PZBlre1trc0isUrXKuD8Zsb7OjAUOATYEagG3jPGZBtjugL/BWaQSE6uBq43xpzYzGtIMwVXreTXffphGllazhNMrBQdaMbScyIiIhliqeu60UikZouXzhXpDCKRmmzXdaPAZoeppTLd/17gSmvtC/UPWmvfMcZcAdwIPN+UipLJx1zgBmvtz8lj1wM/AKOA/YFa4HRrbQyYZowZBlwMPJZC7NJETjQKgOtpOH/1BsMA+D0ePJ6G90IRERHJROPGjauYNGnSkxUVpacDXYPBrKp075Qukglc1/VEIjXZFRWlQdd1Hhk3btzqzT0mleRkALCgkXMrgJ5Nrchauwo4pu6+MaYncAGwCJgKXAt8kkxM6nwAXGqM6WGtXd7M2KWJ6pITx9dwcuIJJZKTkNeL4zh4GkliREREMtRN8XiMsrJVx3s8nmwSw91FZH2u67pR13UeAW5qygNSSU5+BM42xrxnrY3WHTTGZAEXAV+nUCfGmH8Cp5LoKTncWltpjOlHYt+U+hYnbwcAKScnfn96P0z7kh/ifY18mO9wknNJXK8fnzfxfuutd+vPCq8t6kRqCOXktn6MaZZxr+EGMr19kPltzPT2Qea3Ue3LHOPGjXOAGyZNmnS369KbJg6VF+lkHGBJU3pM6qSSnFwK/AeYbYx5h3W9Jb8AcoC9UqgT4C7gQeB0YKIxZjyQTSJZqa9uJ9asFK+D1+uhqKhl9ufIzw9vvlAH4HOT2y/6/YTD66/YFQoF8BUVrL0f8MRb7PlsC5nyGjYm09sHmd/GTG8fZH4b1b7MkfzQ1eQPXiKyac1OTqy1HxtjdiORpBwGdCGxYtd7wHXW2lmpBFJvda7TgF2Bs0hMjg9tULQuKalM5ToAjuNSUVGV6sMb5PN5yc8PU1FRTTy+2YUI2r1YbWKLGsfro7o68bvX6yEUClBbGyUeW9d7vXJZCd7sggbr6Ugy7TXcUKa3DzK/jZnePsj8Nqp9qcvPD3eKHhmRzi6VnhOstd8Bv93SiyeXEd4PeMFaG0/W7RhjpgJ9gYVAnw0eVnd/i3bIjMVa5j+FeNxpsbpbkxtNDOtyfD4cZ/05fo7j4uLh3ZUriMVjHB2LZUSb62TKa9iYTG8fZH4bM719kPltVPtERBqWUnICYIw5hMSywr2By4DtgEnW2vnNqKYP8CywjMREd4wxAWB7EksMLwP+Yozx1SUvJJIZq8nwLev77DD//PYrxh9+DEMbKfP0sqXUVFfya3/De6GIiIiIiDRHs5MTY0w2MJHEMr8VQB7wfyTmimxnjNmrblngJviRxPyV+4wxpwKlwOUkNnW8k8T8kouAR4wxtwE7AecBf2lu3NI8ZfE4c6sq2SXc+FwSnz8AQCQSbbSMiIiIiEhTpTJ48yZgHIkejG6sWzrvOBJDra5vakXWWhc4mkSvyb+Ab0jMYdnDWrsg2TtyEGCA70hswnihtfaJFOKWZohEEusQ+P3BRsvkB0MUBQJEq9M7f0dEREREOqdUhnUdDVxqrf3QGLN2PI+1dqkx5gbgH82pzFpbDpyR/Gno/LckJshLKxpSXUNBrz7kRzdcLG2dy/v1o0dgMLWLFsE2Y1oxOhERERHJRKkkJ4XAvEbOlQIdf8MLYetYnAH9BvBjpPHkpG4SUKy2ptEyIiIiIiJNlcqwrinAHxo5d1jyvHRwPje5Qleg8WFdseSIvliNkhMRERER2XKp9JzcALxqjOkKvAG4wF7GmBNJTFQ/Jo3xSRvx1iUnyUnvDanrOYlHIi0fkIiIiIhkvGb3nFhrXwP+CGwL3E9iQvztJPY9+Yu19qW0RihtwkciOfEENtwDc524J9FzouRERERERNIh1U0YnwWeNcYYoCtQBky31mrHpQzhS3acbCo5qRvWFa9tfF6KiIiIiEhTpbLPyQfAGdba6dZau8G5bYGnrbXbpitAaRtr/zA2kZw43kTHmxNVz4mIiIiIbLkmJSfGmPGsGwK2N4k5Jj0aKHooNLqhuHQg/uSQLW+o8eRkHj6WrlxCv2Djk+ZFRERERJqqqT0npwDHk5j87gL3kZhr4tYrU7cZ47Npi07azG3zZkM0yq+OLKSxKfHf+bP4cd4c/par1aNFREREZMs1NTk5F3iMRALyAXAmMHWDMnESc09+Tldw0nZseRmO4+DLym60jC+5klc0Gm2tsEREREQkgzUpOUnu4v4xgDFmH2ASkGutXZo8VgT0t9Zqj5MMEIvFcJzE2gbeTSwlHPT5CXt9RKurWys0EREREclgqWzC+CPwKvBRvWM7Az8YYyYaYxr/ql06hNrKNRzaszcHde+Jz+NrtNxe8Rqe2H5HBi5c2IrRiYiIiEimSiU5uQUYBVxW79gHwBHADsB1aYhL2lBNxWqO7z+QkwcOxhtovOfE8SX+fNxYvNEyIiIiIiJNlUpycjhwgbX2lboD1tqItfYNEgnL79IVnLSNSFUVAFHHweNtvOfE9SZHBcZjrRGWiIiIiGS4VJKTPKC0kXPLgG6phyPtQaQmkZzEXBfXbbyc60smLuo5EREREZE0SCU5+Q44uZFzJwI/pR6OtAd1E9yjrovjNJ6duL5Ez4knruRERERERLZcs3eIB24A3jbG/I/ExPjlQHcSc07GkdiIUTqwaE01PhJrQ2+q5wRfcj6Ko+RERERERLZcs3tOrLX/BQ4jsQHjdcCDwPUkEp0jrLXvpDVCaXV1PScxwNlEduImlxn2JJcdFhERERHZEqn0nGCtfZtE70kW0AUot9ZWpjUyaTOx2log0XOyKdVZOXxRsopY164tH5SIiIiIZLxU5pwAYIwZCZwGnA0UGmPGG2Py0haZtJnqvHyut1N5vbZmk+VKCrpz15yZfBqtbaXIRERERCSTNbvnxBjjAx4ATgI8JIZ3vQhcDQwxxuxlrV2U1iilVdV6PExeXUHc1/gywgD+5LCuSCTSGmGJiIiISIZLpefkCuAPwClALxIJCsDfAB9wY3pCk7YSiSR6QvyB4CbL+QPBRHYaibZCVCIiIiKS6VJJTk4CrrLWPgasqjtorf0JuAo4IE2xSRtxV67kgO492Mrf+O7wAN0qy/nXDrtwVm5+K0UmIiIiIpkslQnxPYEfGjm3CChKORppF0LLl3HqwCHMBDbVJ+JJ9qxsevCXiIiIiEjTpNJzMgv4RSPn9k6elw7MSQ7Tcryb/vOoS05SWvJNRERERGQDqXyuvAt40BgTBN4gMSF+mDFmH+AC4Pz0hSdtwYkmk5PNTIj3BEIA+D2eTZYTEREREWmKZicn1tqHjTHdgcuB00lMiH8OiAC3WWsfSG+I0trcaGL1LXczPSfeUBaQSE48ns3sJi8iIiIishmpLCVcZK292RjzD2BXoCtQBnxlrS1Jc3zSBtxYLHHr9bOpPhFPMNFzEvB4cF0XNllaRERERGTTUhnW9Y0x5gpr7b+A/6Q7IGl7dcmJ4/VtcrK7N5joOfF6PERrIwRCoVaITkREREQyVSrJSRGwMt2BSDsST/acbG7OSSjMd2WlRF2XfrXVSk5EREREZIukslrX3cD/GWP2Sc49kQwzIxzm/2ZZFhV02WQ5XyjMLbMst8+eQVQTTkRERERkC6XSc3I8MBB4D8AYs+F511rb5HqNMV2Am4BDgXzgJ+ASa+1nyfOPASds8LBia22/FGKXJlgBfFtWyuCcvE2W83p9eL0+HCdORLvEi4iIiMgWSiU5eTrNMTwP9AB+T+Jz8ZnAu8aY7a2104FtSSQv99R7TDzNMUg9kUhitS5/YNM7xNeVidTGiURqWzosEREREclwqSQnc4EPrLWLtvTixpitgAOA3a21XySPnQscAhxrjLkW2Bq43lq7dEuvJ03To6qa8V26kht3Nlt2wohRFPr9RJYshr79WyE6EREREclUqcw5uQPYIU3XXwn8EphUd8BaW7cmbRdgGJAFTE3T9aQJtq2t5Zwhw+hevWazZb0eT2K1ruqaVohMRERERDJZKj0ny4HCdFzcWlsG/Lv+MWPMb4GhJJYpHk1iB/rzjDGHAE6y/BXW2vItubbfn0pe1jifz7vebUfmS05u9/gDeL3r9i6p+73+sViybDxam/bntLVl0mvYkExvH2R+GzO9fZD5bVT7REQ2LZXk5CHgH8aYfYApwLINC1hrn0wlGGPM7sCjwGvW2jeSw7ocYB5wGImelL8Do40x+1prNz/uqAFer4eiopxUHrpZ+fnhFqm3NXldBzxe/FlZhMPBjc6HQuvmosSSt37iLfactrZMeA03JdPbB5nfxkxvH2R+G9U+EZGGpZKc3J68Pa6R8y7Q7OTEGHME8CzwFXBM8vA1wJ3JHhaAKcaYJcCXwI7A1829DoDjuFRUVKXy0Eb5fF7y88NUVFQTb8JcjfbM67rggbjHR3V1ZN1xr4dQKEBtbRTHSfSY1P0BrSlfQ2lpZRtEmz6Z9Bo2JNPbB5nfxkxvH2R+G9W+1OXnh9UjI9IJpJKcDE53EMaYs0jsn/IK8EdrbS2snX9StkHxycnbfqSYnADEYi3zn0I87rRY3a3FW7dniT+0Ngmpz3HctcdjJIZ4RWtqOny762TCa7gpmd4+yPw2Znr7IPPbqPaJiDSs2cmJtXZ+3e/GmGwSe5OsstamtNGFMeZ0EssETwD+Wn+oljHmWaCrtfageg/ZMXmrSfItxFeXjzRhKeG6NZ3jtVpKWERERES2TCo9Jxhj9gBuI5EoeJLHvgEus9Z+2Ix6hpPoMXkVuBnoUW9Tx2oSw7xeN8ZcTmI/lOHAP4BnrbXTUoldNs+XvPX4Q5stW+xCRXkZPXy+zZYVEREREdmUZg/eNMbsRmJ3+ELgeuAM4AYSS//+xxizazOq+w0QAI4Clmzwc7e19k3gt8CvSQzneoTE0K+Tmxu3NN2zK5YxYc5MYgVFmy37H8fLTTOnU1FQ0AqRiYiIiEgmS6Xn5AbgU+Aga+3andqTK2v9B7gWOLApFVlrbyKx+/umyrwMvJxCnJKiSeWlrFmzhr3CuZst6/Mnhn7V7SovIiIiIpKqVJa92IlEr0a8/sHkXJF7kuelA6tLNLy+zeeu/mRyEo0qORERERGRLZNKz8lqEkOxGhIkOQdFOibHcRiXk0cs28HH5ueRHOyJ87ftdmD57DmtEJ2IiIiIZLJUek4+By4zxqw35scYkwdcSmLIl3RQkepq/jp0GBduZfA3Ic0MeL1k+/y46jkRERERkS2USs/JJcAkYI4x5k1gKdALOBTIAk5MX3jS2iJV6zan9IayNlve8fogDm40ttmyIiIiIiKb0uyeE2vtLGBX4EPgF8AFydsPgV2stT+lNUJpVZHqdclJU5YSdrzJoV9xJSciIiIismVS2ufEWjvVGHOutXYpgDGmC9DPWquNETu4aHV14tZxwOtl3TaLDXOTyYkbU3IiIiIiIlsmlX1OCo0x/wU+qnd4J+AHY8zE5K7x0kHVJod1xVwX13U3UxrcuhW9lJyIiIiIyBZKZUL8LcAo4LJ6xz4AjgB2AK5LQ1zSRqI1iZ6TGC6Os/nya5OT+KZ7WERERERENieV5ORw4AJr7St1B6y1EWvtGyQSlt+lKzhpfbHamsStS5N6TqqDWUxfs5oyj1aQFhEREZEtk0pykgeUNnJuGdAt9XCkrUWywvxj7mzeWF2O04TkZGFhD66a/jNf+VL5UxIRERERWSeVT5TfASc3cu5EQKt1dWARn4+PV61gcjxOE3KTtTvE1+0qLyIiIiKSqlRW67oBeNsY8z/gVWA50J3EnJNxJPY7kQ6qLskIBIJNKu+rS05qa1ssJhERERHpHJqdnFhr/2uMOYzExPfrAA/gAj8AR1hr30lrhNKqYmVlbFdQSJcmbMAI0Kd6NQ9suz0lTehlERERERHZlFT3OXmbRO9JFtAFKLfWVqY1MmkTviWLuXTYCOY5DlWbL47P66VLMEiNVusSERERkS2UUnJSx1pbAyxOUyzSDsSTw7ocb9OmI3mSw798qOtERERERLaMlliS9Th1yUkTlwb2+JPJiXITEREREdlCSk5kPU4kMbG9qT0nBEIA+FoqIBERERHpNJScyHqcaDRx621auuFNJid+7cEoIiIiIltIyYmsx4nFAHCbmJx4gsnkBGUnIiIiIrJlUpoQb4zpBlwIHAD0Bg4CjgJ+sNa+lr7wpLW5a3tOvE1LN0Jh5lVVUuu4jPXQpI0bRUREREQa0uyeE2PMYBK7wJ8GLAJ6kEhyhgMvG2N+mdYIpVUtyc7mkflzWZCT16Tybm4hF02dzJXTp+A4TgtHJyIiIiKZLJVhXbeT2BV+MPArEpswYq39A/A6cFnaopNWt8Lv5z8rlrEyJ79J5et2iAeIRKItFZaIiIiIdAKpJCf7Addba8tgo80tHgS22dKgpO1Eo4mlhP31ko5N8QfWlat7rIiIiIhIKlLdhDHWyPEQGycs0oGEKyvZOi+f3CZOHvF5fdy1zRiCHi+1pSXk5jZtOJiIiIiIyIZS6Tn5FLjUGJNT75hrjPECpwOfpyUyaRNbl5dzjdmaAVWrm1Te4/XSPRiiWyhEpKqqhaMTERERkUyWSs/JJSQSkFnAhyR6Si4Atga2AvZIW3TS6jzxxKR2TxOHdQHEXJcAEKmubqGoRERERKQzaHbPibV2CrAD8AGwDxAnsaTwLGA3a+0P6QxQWpenbsWtZiYnANEa9ZyIiIiISOpSmnNirZ0J/CHNsUg7kEpyUrdGV6ymNv0BiYiIiEinkeomjB5gLJBDA70v1tpPtiwsaSte1wWPJ7Wek9qalgpLRERERDqBZicnxpidgBeBfslDdRuJu8nfXcCXluik1XldBzy+Zs05idfd1ig5EREREZHUpdJzcieJkTwnkNghfou2BTfGdAFuAg4F8knsPn+Jtfaz5PmxwN0k5rmsAiZYa/++JdeUxvnqlhAOhJr8mJVxh3isirwmLj8sIiIiItKQVJKT7YHfW2tfS1MMzwM9gN8DK4AzgXeNMdsn7/8XmAj8BdgFuM8Ys8pa+1iari/1fFxVSay8nBF7FRFu4mMeq6xh0dxp3HXqaS0am4iIiIhktlSSk+VsYW9JHWPMViRW+trdWvtF8ti5wCHAsUA1UAucbq2NAdOMMcOAiwElJy3gy9UVLF66mGG5BU1+TN1u8tFodDMlRUREREQal8omjP8ALtlgE8ZUrQR+CUyqO2CtrZu70oXEnimfJBOTOh8AxhjTIw3Xlw1EoxEAvM2Yc1KXnEQikRaJSUREREQ6h1R6ToaR2HBxqTHmZ2DDzS1ca+1+TanIWlsG/Lv+MWPMb4GhwH+AG4HJGzxscfJ2AIlenJT4/ankZY3z+bzr3XZUfTxe8rJzCHq8eL2e9c7V3d/w+KFZAQaM2hbmz0/789qaMuU1bEymtw8yv42Z3j7I/DaqfSIim5ZKcrIV8EO9+54Nzm94v8mMMbsDjwKvWWvfMMbcSWJYV311S0JlpXodr9dDUVE6On42lp/f1Jka7dMF/QYS8nqZ63XwhoMNlgmF1u9VKfR56RfOZlm0psWe19bU0V/Dzcn09kHmtzHT2weZ30a1T0SkYc1OTqy1+7REIMaYI4Bnga+AY5KHq4ENl42qS0oqU72W47hUVKR3N3Ofz0t+fpiKimri8bRMyWkTAU8it4y6Ppzq9Ydpeb0eQqEAtbVRHGfdylzxZD4aqaqhtDTll6XNZcpr2JhMbx9kfhszvX2Q+W1U+1KXnx9Wj4xIJ5DSJozpZow5i8Rywa8Af7TW1vWWLAT6bFC87n7xllwzFmuZ/xTicafF6m5p0dpavMnkhEBovQSkPsdx109OvD5w4sSj0Q7b9vo68mvYFJnePsj8NmZ6+yDz26j2iYg0rEnJiTEmDuxqrf3GGOOQ2GixMa61tslJjzHmdOAeYALwV2tt/XezT4C/GGN81tq6vf72A6y1NuX5JtKwSPW6Xg9PoOmj5lyvFxxwtVqXiIiIiGyBpiYR15HYcLHu97TstmeMGU6ix+RV4GaghzGm7nQ1ifknFwGPGGNuA3YCziOx54mkWaSqeu3v3mBWkxeMdrw+ANxYbDMlRUREREQa16TkxFp7bb3fr0nj9X8DBICjkj/1PWGtPcEYcxCJXpXvgCXAhdbaJ9IYgyRFqhPzcBzXBX8AIvHNPCLB9SWTk6iSExERERFJXVOHde3ZnEqttZ80sdxNwE2bKfMtsGtzri+piVQnek6irtOsvrFaX5AVtbXUpqdDTUREREQ6qaYO6/qIdR9XG1squG7zRBfwbVlY0hZiPh/PFy8kGAwx2m16ojG1sCd3f/Qmhw8+iiNbLjwRERERyXBNTU5aZPlgaV8iXh+vLCmmS5eubNOMThC/P7EfSm1tzWZKioiIiIg0rqlzTj5u6UCk7UUiiX1NAsFQYt5JE/kDiU0Za2sjmykpIiIiItK4lPY5McZ0Ay4EDgB6AweRmND+g7X2tfSFJ60pWrmGgeFsCrPCuI3scdKQ/jVruHHENlRVpXdjSxERERHpXJq91aoxZjDwE3AaieWFe5BIcoYDLxtjfpnWCKXVOIsW8X+jtuWkwqJmTW0PeWBYbi6FGbjbsYiIiIi0nmYnJ8DtwHJgMPArkhPkrbV/AF4HLktbdNKq4pHaxK2nsTUPGubxhwDwuUpORERERCR1qSQn+wHXW2vL2HjB2QeBbbY0KGkbseSE9uYmJyTnnHibMU9FRERERGRDqSQnAI3tthciTbvHS+uLJye0O83tOQnU9ZykPSQRERER6URSSU4+BS41xuTUO+YaY7zA6cDnaYlMWp0TqUtOmvlnEcwCUlxdQUREREQkKZXPk5eQSEBmAR+S6Cm5ANga2ArYI23RSatyotHErbeZPSfBxD4nSk5EREREZEs0u+fEWjsF2AH4gMTmjHESSwrPAnaz1v6QzgCl9cRT7DnxBMOsjkWpjDc22k9EREREZPNS+rLbWjsT+EOaY5E2Vp4dZuKSYnK2GkHfZjwuVtidk3+YRDAY5JsWi05EREREMl2qmzAOAbKstVONMYXAjUB/4EVr7VNpjE9a0aqsLJ4tXsj+o3doVnLi8ydW60rsMO+SXF1aRERERKRZUtmE8WBgGnBS8tADJDZk7Ac8bow5OX3hSWuKJId1+ZNLAzeV3x/cqA4RERERkeZKZbWuq4B3gWuNMQXAUcDN1trtgZuBc9MYn7QiT1UlPUMhwl5fsx7n9/m4avhIrhsxiuryihaKTkREREQyXSrJyRjgLmvtauAgEkPDXkqe+y8wLE2xSSsbumw594zejm0qVzfrcT5/gG3yCxiRm0e0ak0LRSciIiIimS6V5KSadXNVDgGWWWt/St7vBZSlIS5pC7HEUsKuv3nDujxeLxHHAaC2qjLtYYmIiIhI55DKhPjPgAuMMV2A3wGPARhjxgFXJ89LRxSPJ26bmZwARF2XIBCpqkpvTCIiIiLSaaTSc/JXoC/wDDAXuCF5/C0gi8QmjdIBeeOJ3g+aOSEeEskJQKy2Np0hiYiIiEgn0uyeE2vtXGPMKKCHtXZZvVNHAt9ba/XptIPybEHPSSyZnESrq9MZkoiIiIh0Iqn0nGCtdTdITLDWfgX4k0sNSwfkdet6ToKbLtiAur3hI0pORERERCRFze45McYMBB4E9gIa+xTbvLVopV3wOi54PRAINfuxNS5UxWLEo9rnRERERERSk0rPyZ3AbsA/ge+Bz4G/Az+R2B78qLRFJ63qp0gtby9bSjS3oNmPnVBRyQk//I/Krl1bIDIRERER6QxSSU72Aq6w1p5LYqWuWmvtxcAOwMfAEWmMT1rRx5WreWzhPGoLuzX7sf7kULBaTYgXERERkRSlkpzkAj8kf58KjAWw1saBfwD7piMwaX11iYU/hQnxdY+JRDSsS0RERERSk0pysoTEZosAs4AuxpjeyfslQM90BCatLycep8AfwOdv/vY3+4YCXDZsBMGFC1ogMhERERHpDFJJTt4CrjfG7GatXQgsIrEpYx5wElCczgCl9Vzepz8PjR1Hdm1Nsx/by+dlbEEh3orVLRCZiIiIiHQGqSQnVwFlwHXJ+5cB5yaP/QG4PR2BSevzezwAeANZzX6s4038KTka1iUiIiIiKUplE8ZVwM51Q7mstc8YY+YDuwLfWGs/TnOM0gocxyGYTDA8oVSSEx/EY7ixaLpDExEREZFOovmTC5KstUuMMSOAImCJtfb/0heWtLZIVdXa3z3BVJMTcKNKTkREREQkNSklJ8aYk0kM7+pX79hC4FJr7XOpBmOMuQLY31q7d71jjwEnbFC02FrbD0mbmso1a3/3ZmVDvHmPd7yJfTfdWGwzJUVEREREGtbsOSfGmLOAh4BJwJ+AQ4ATgWnA08aY36YSiDHmPNbNY6lvW+AmoHe9n+1SuYY0LlJZCYDjuni8zV9K2PElkhOiSk5EREREJDWp9JycC9xrrT1ng+NPGmMeBq4BXmxqZcaYvsDDwB6A3eCcD9gauN5auzSFWKWJaqsSyUnUdXCTE+Obw/UFcFwXJ67kRERERERSk8pqXf2ANxo59xwwpJn1bQ+Ukugh+XqDc8OALBKbPUoLirrw7vJlfF5RjuO4zX78lMJe/H7S13yWk90C0YmIiIhIZ5BKz8m3wH7Afxs4tx3wU3Mqs9a+QTLZMcZseHo04ALnGWMOARzg38AV1try5oW9Pr8/lbyscT6fd73bjiaeFeThBXPp1r0H53vA692496TuWEPngqEQAJFIbdqf29bS0V/Dzcn09kHmtzHT2weZ30a1T0Rk05qUnBhj9qx39zngzuSmiy8AS0ms2HUwcA7w5zTGtw2JhGQecBiJnpS/A6ONMftaa51UKvV6PRQV5aQtyPry88MtUm9LCwYTCUcoFCKUFSSwid6TUGjjOSnh7ES7o7FYiz23raWjvoZNlentg8xvY6a3DzK/jWqfiEjDmtpz8hGJHow6HuB04C8bHAN4nmbMOdmMa4A7rbVlyftTjDFLgC+BHdl4GFiTOI5LRUXV5gs2g8/nJT8/TEVFNfF4SjlTm1q1vIRcn5/sQJCqyloaSk28Xg+hUIDa2uhGQ7+K1qzmb0OH4a6pprS0snWCTrOO/hpuTqa3DzK/jZnePsj8Nqp9qcvPD6tHRqQTaGpysk+LRtEIa61LYuf5+iYnb/uRYnICEIu1zH8K8bjTYnW3pNjsOTy63Q4siseo2MycE8dxN0pOsh2HnYu6stDtmO2vr6O+hk2V6e2DzG9jprcPMr+Nap+ISMOalJy01a7vxphnga7W2oPqHd4xeatJ8mkUq60BIO5J8VupQBAAXwqT6UVEREREoImrdRljPjHGjG1OxcaYHYwxn6UU1TrPAgcYYy43xgxNTop/FHjWWjttC+uWeuI1tQA4KSwjDOAJJibE+1wlJyIiIiKSmqYO67obeMcY8z/gaeB1a+1GkzaSk+QPIjEpfjvgjC0Jzlr7ZnJTx8uTP2UkEpYrtqRe2Vi8NpGcxL2p9pwkk5N0BSQiIiIinU5Th3W9bIz5GLiKxIaJfmPMVGAuUAkUAv1JrK4VTZb5o7V2WXOCsdae0NC1gZebU480XzxS13OSWnLiSSYnqaxNLSIiIiICzfgsaa1dCZxjjLkW+A2JSfJDgAJgJTCNRA/LG9baVS0Qq7QgJxJJ3PpS6/vwJod1+VMbFSYiIiIi0vwvupOJx4PJH8kQTjQKgOtNLTnxBLMACKQ4Z0VERERERKNwBICKQIBPV62AwcPpmsLj4/ld+cOkr3E8Hibhsm7bGxERERGRptFuRgLAonCYe+bOZm5BUUqP9weDRF2XuOMQi8XSHJ2IiIiIdAZKTgSA2uQ+Jz5/MKXH++s9LpKcvyIiIiIi0hwa1iUAxKpr8Hs8+P2BlB7v8/k5c9BQAl4vtRXlZGfnpDlCEREREcl0Sk4EgHGrVvK7cTvzU0VpSo/3+nzs1qVrMjlZDb3SHKCIiIiIZLwmJSfGmOObU6m19snUwpG24onHAXBT7DkBiLouAaCmck2aohIRERGRzqSpPSePN6NOF1By0sF44w4AnkBqc04gkZwARKur0hKTiIiIiHQuTU1OBrdoFNLmPE4iOdmynpPEbaRKyYmIiIiINF+TkhNr7fymVmiM0QYXHZDXdcDjxRMIpVxH3QLC6jkRERERkVSkNCHeGPN7YC8gyLrd9rxADrAr0C8t0Umr8bkueMAT2IKek7pb9ZyIiIiISAqanZwYY64GrgbKk4+PJn+6Aw7wUDoDlNbhS84XIZCVch1RTyJPjVZXpyMkEREREelkUtmE8U/A00AX4E7gDWttT2BHYBXwc/rCk9Yyvbqab0tLcHLzU67jqVqH47/7hrLu3dMYmYiIiIh0FqkkJ32Bp6y1LjAJ2A3AWjsJuBE4JX3hSWt5fsUy/m/2DGKFqScW8UCIGsehJrnbvIiIiIhIc6SSnFSSWC4YYCYw2BgTTt7/Aa3s1SHV1CSGYvmDqU+IDwSDybpq0xKTiIiIiHQuqSQn35AY2gUwm8QiTfsn748E9Mm0g3Fdl0hNorfD7099n5MxPg9/GTiE7MXF6QpNRERERDqRVFbrugl4zxhTaK09zBjzNPCEMeZD4CDg1bRGKC0uWl3NM9vtSMxxmOO6a5cEbq5+Hti+ew/mlpWnNT4RERER6Rya3XNirf0E2AH4V/LQWcBLwAjgReCctEUnraJ6zWoA/F4v3lB2yvU4vkSu60YjaYlLRERERDqXlPY5sdb+BPyU/L0GOC2dQUnrqlldAUDcdfEGQhB1UqrHXZucRDdTUkRERERkY6luwlgA7Eti08WNel+stU9uYVzSimrWrAEg4ji4a/fUbD7Xn9zAMZrqwDARERER6cxS2YTxEBLDtxob/+MCSk46kEhlJQBR18Wp24wxBU7dZPq4khMRERERab5Uek5uBqYB5wOLSOwKLx1YbWUlQSAKOE7qyYkbSCQn3lg8PYGJiIiISKeSSnIyAjjCWvtpuoORthGpSiQnMdiinhOSPSdeR/mqiIiIiDRfKvuczAfy0x2ItJ0IHiaVlTLPibMlucnyrn3484+T+FdEO8SLiIiISPOlkpzcDFxtjBmU5likjazJyebWWZb/bGE9nqxsSqNRKpK7zYuIiIiINEcqw7r+APQFZhtjVgBVG5x3rbVDtzgyaTU1yd3hg6GsLaonEAwl66vd4phEREREpPNJJTlZlPyRDLE2OQmEtqieXCfGn/oPJJi1ZUmOiIiIiHROzU5OrLUntkQg0nYKZs7k6e13Yqa7ZatsZXk87NGzN6u1lLCIiIiIpCCVfU4GbOK0A6yx1palHJG0OidSS9Drxev1swXz4fGEElvfBD2pTGUSERERkc4ulWFd82DTn2GNMSXA3dbaG5pTsTHmCmB/a+3e9Y6NBe4GdgBWAROstX9vXsiyKW4kAoDj823B/vDgzUokJyGvF8eJ4/X60hCdiIiIiHQWqXzF/ScgArwLnAgckjz2Bomk5TrgceAKY8zpTa3UGHNe8rH1j3UF/gvMIJGcXA1cb4zR0LI0cqOJ5MT1p5KrruML56z9vWbNmi2qS0REREQ6n1Q+jR4DPN/A3JOnjTH3A+OstYcbY8qA04H7N1WZMaYv8DCwB2A3OH0aUAucbq2NAdOMMcOAi4HHUohdGhKNAuD4Ayllq3V8yZ4TgNo1a8jOL9jCwERERESkM0nls+jewLONnHsF2C/5+2dAU5YU3h4oBbYFvt7g3B7AJ8nEpM4HgDHG9GhqwLIZ0eTTm9zhPVVef4BYcnf42kr1nIiIiIhI86TSc7IKGENiuNWGxgAVyd9zgcrNVWatfYPEkDCMMRue7gdM3uDY4uTtAGB5kyJugN+f3knbPp93vduOxOskV+kKBPF6G591UnduU2VqXRc/EKuuTPtz3NI68mvYFJnePsj8NmZ6+yDz26j2iYhsWirJyTPAdcaYKPASiQShB/Ar4BrgAWNMEXAe8NUWxpdNYlhXfTXJ25Q30/B6PRQV5Wy+YAry88MtUm9LKvFA1eoK4rl5hMOb7z0JhQKNnrtx0UJKy0p4plthiz3HLa0jvobNkentg8xvY6a3DzK/jWqfiEjDUklOriCRjNyR/KnjAI8ClwG/AbYD9t3C+KqBDXcGrEtKNtsr0xjHcamo2HBj+y3j83nJzw9TUVFNPO6kte6W9mE0yjd2Kqcd/FvC1ZFGy3m9HkKhALW1URyn4QXbVrkeSqMRSsrWUFqa8kvUJjrya9gUmd4+yPw2Znr7IPPbqPalLj8/rB4ZkU4glU0YY8BJxpgbgX2AbiR2jP/cWjsXwBjzNtDXWrthr0dzLQT6bHCs7n7xllQci7XMfwrxuNNidbeUmppqALz+YKNJR32O4zZaLhBI9LxUVVV1uOehTkd8DZsj09sHmd/GTG8fZH4b1T4RkYalvHastXY2MLuRc6UpR7S+T4C/GGN81tq67cv3S1zCpjzfRNZXU5MYKRcIbNhJ1Xx75uWT7RtIdPHizRcWEREREamnScmJMWYOcJS19kdjzFw2vQmja61tyipdTfEocBHwiDHmNmAnEnNZ/pKm+gU4I5xL7phxzKtavcV1jcvOYmh+DitWrExDZCIiIiLSmTS15+Rj1q3C9TGb2SE+Xay1y40xBwETgO+AJcCF1tonWuP6nUW2x0O+348vsGVLCQPEPInxwLHq9M7pEREREZHM16TkpP6Gi9baE1oqmIbqttZ+C+zaUtcUCHmSSwSH87Y464x5fYCj5EREREREmi2lOSfGmDwg31pbbIwJAucC/YGXrLWfpDNAaVmO4xDyJno7vOFc4pspvzlxrw9ch3h1zeYLi4iIiIjU0+w1+YwxOwHzgbOThyYAtwJ/BD4wxhyevvCkpdWsWYO3ruckO2+L64v5E/muU6vkRERERESaJ5UFw28EpgMPGmPCJJKS+6y1XYBHgMvTGJ+0sOry8rW/e8Nbvmmi409s0OjWNr5fioiIiIhIQ1JJTnYGrk/uabIfEAaeSp57HtgmTbFJK6gqT6z6XBOPg8e3xfU5/uSk+qiSExERERFpnlSSEweo21zxF0AZ8E3yfj6gmdAdSE1NDVNXVzC3tqZJGzBuzuzCXvx1yg98GQykIToRERER6UxSSU7+B5xijNkVOBp401rrGmN6AJckz0sHUR0Mco2dygNlJWlJTpzsPIpraiiprk5DdCIiIiLSmaSyWteFwDvA74EVwA3J41NIJDsHpSc0aQ1VVYmOrnA4Oy3JSTAUXq9eEREREZGmanbPibX2e2ArEnuPDLHWzkyeOh3Yxlo7KY3xSQurSyKywtlp2Vmz0I3z2z79GBONpaE2EREREelMUtrnxFq7Gvh6g2MvpyUiaVW+mTP455jtWZiG3eEB8lyXA/r0Y3lMyYmIiIiINE8qc04kg8Qr11AYCJLlTc+fQt1yxJoOLyIiIiLNpeSkk4snJ67HfSl1om2kLjkJJTd2FBERERFpKiUnnZxTk9jJ3fGnKznJBSDk9eI4TlrqFBEREZHOQclJJ+fUJrasWbt54hbyZucB4PN4iFRVpqVOEREREekclJx0dsmd3J1AemaJ+LNz1/5eWVaWljpFREREpHNQctLJeeqW/A2E0lKf1x+gJh4HoKaiPC11ioiIiEjnkJ6JBtJhlTkO86oqiYVz0vbHcOvCBZSvqeCuNM1jEREREZHOQT0nndxHToyLpk5mRa/+aatzsethUU01NZFI2uoUERERkcyn5KSTq9shPhjMSludgVCirupqTYgXERERkabTuJtOrro6kZzUJRTpsFNuHlm9+xIpLoYd01atiIiIiGQ4JSed3J/Dufi3GcOq2pq01blLdhbD8/uzfNmytNUpIiIiIplPyUkn183nIzsYpDyUg5umOqNeX+JW+5yIiIiISDNozkkn5jgOWd7En4AvNz9t9cZ9iZw3VlmVtjpFREREJPMpOenEqspK8Xo8AHhzC9NWb8yf2NAxXq3kRERERESaTslJJ7Zm1UoA4q6LN5STtnrj/sSGjm51ddrqFBEREZHMp+SkE6ssKQGg2onj4ElbvU7dssS12udERERERJpOyUknVlVWCkCNC3HHSVu9blYYAG80mrY6RURERCTzKTnpxKqrq5lXVclK18WJp2utLljepQ9XTJvCv6PpW55YRERERDKfkpNOrCw7h4umTuZFSNsywgCe/CJmVK6hePWaNNYqIiIiIplOyUkntmbNagCyc9I3GR4gK5y7Xv0iIiIiIk2hTRg7sbrkISsrvclJtt/PL3r0IicYSmu9IiIiIpLZOkRyYowZCMxr4NSp1tqHWzmcjNF19mzu2mYMi9I4GR4gOxDkhAGDcFyXeCyGz98h/sxEREREpI11lE+N2wI1wBDWnx5R3jbhZAZvZSV9ssKU+HxprdeXV5So3+OhsrSU/O7d01q/iIiIiGSmjpKcjAastXZJWweSUWprAXDr9iVJE39WNlHHIeD1UlmyUsmJiIiIiDRJR5kQvy0wta2DyDR1+5C4ofQmJ3g8VCeHiq1ZtSq9dYuIiIhIxupIPSdLjDGfAsOBmcD11tr/pFqh35/evMzn86532xH4YjEAPOEcvN7N7xBfV6YpZWtcl3ygtqIs7c91S+mIr2FzZHr7IPPbmOntg8xvo9onIrJp7T45McYESSQklcCFwBrgj8DbxpgDrLXvN7dOr9dDUVF6V6iqk58fbpF6W0LQiYPXhz+/iHA42OTHhUKBzZapIZHAuDVVLfZct5SO9BqmItPbB5nfxkxvH2R+G9U+EZGGtfvkxFobMcYUAjFrbW3y8CRjzEjgAqDZyYnjuFRUVKUxysS3RPn5YSoqqonH07v6VUsJOS54wc3Op7o6stnyXq+HUChAbW0Ux9n0to0+TyI5Wb1iJaWllWmJt6V1xNewOTK9fZD5bcz09kHmt1HtS11+flg9MiKdQLtPTgCstQ19up0MHJxqnbFYy/ynEI87LVZ3uq2M1BKPx/HmF2022ajPcdzNlv/YE+KJaT/wu7327DDPR52O9BqmItPbB5nfxkxvH2R+G9U+EZGGtfuvIIwx2xpj1hhjxm9wagfg57aIKRNEIhEunzqZMyZ/j7d737TXX5FbwIzKNayq6hi9JiIiIiLS9jpCz8mU5M/9xpjTgZXAacCuwI5tGVhHVlZWCoDP5yMQDBOrjae1/nBOfvI6ZWmtV0REREQyV7vvObHWOsBhwDfAi8D3wM7AAdbayW0ZW0dWUZHYvzI3L5+WGPbcOxjgkB69KFi6NP2Vi4iIiEhG6gg9J1hrVwAnt3UcmWT19Gnctc0YlgGxFshO+gK/HjCI+as1rEtEREREmqZDJCeSftUrV9AnK0zMcVjTjMnwTeUmh3UF4+kdLiYiIiIimavdD+uSllFblhjWFfH5WqR+b34RACE3/YmPiIiIiGQmJSedVHR1BQCxQNM3X2wOX35XAHK8+hMTERERkabRJ8dOKr5mTeI2GGqR+v2FPQAIeb1UJSffi4iIiIhsipKTzqq6CoB4VnaLVB/IzSfmJCbaVyxd0iLXEBEREZHMouSkk/JV1yR+yStokfo9Xi9r6pKTZVpOWEREREQ2T6t1dVLlkVpWui6e5NyQlvBEWQXLVyzmAk+LXUJEREREMoh6Tjqpfy5eyBk/fU9kkGmxayzNymVm5RpWaJd4EREREWkCJSedUDwep6SkBIDs3MIWu05eQRcAVq5c0WLXEBEREZHMoWFdnVB5eRnxeByPx0MonE9NtGX2IhmYnUufHr3wzpnTIvWLiIiISGZRctIJrZw2jQnbjGVZPIaDF2iZXdyHBvzsMmAQc1ao50RERERENk/Dujqh8uJF9MrKokcoi2isZRITADevEIBAbaTFriEiIiIimUPJSSdUtXwZADU+H27LjOgCwFOU2IgxO7mksIiIiIjIpig56YRqVixP3GaFW/Q6/i69AMj3enGUoIiIiIjIZig56YScslIAYjn5LXqdUPd+AAS8XsqWLG7Ra4mIiIhIx6fkpBPyV1Ylfins1qLX8WVlUR6LAbBspm3Ra4mIiIhIx6fkpBPKTiYM3m69WvxapcnbkrlaTlhERERENk3JSSfjOA7Lq6tYFakl0Kt/i1/vQ38Ol06dzGzNORERERGRzVBy0smsWrWSa+1UzpzyI/4eg1r8elXd+zK7qpKFSzXnREREREQ2TclJJ7Nw4QIAevToRdz1tPj1irr2BmBB8roiIiIiIo3RDvGdzJzZswDoN2Aw0VjLD7XqXtiFQ3r0ondpWYtfS0REREQ6NiUnnUz2N1/zj9HbMaugqFWu17VLTw4YMAjHdaksLyOnoLBVrisiIiIiHY+GdXUygbIyuodC5OR3aZXrZXXrTUUshtfjYf7/vm2Va4qIiIhIx6Sek04mPxoFvx9/74Gtc0GPh2V4yQeW//wTW+93QOtcV6QDcxyHRYsWMm3aVObMmcXy5ctZuXI5tbW1+HweXNdDYWERXbt2Y+DAQQwbNpytthpOXl5eW4cuIiKyRZScdCLL58ymyO/HcV2yho2hppWuW56dD5E11CzQpHiRxixbtpTPP/+UL774lK+//orVqyua9Xiv18vIkaPYaadd2H33Pdhuu3H4fL4WilZERKRlKDnpRGZ/9gldgWXxOPFgLrTChHiASPc+UDyDQElJq1xPpKOorq7ivffeZeLEl5k0af1hj8FgkGHDDMOHG3r16k337j3Izc0hLy9MaelqVq1axYoVK5gzZzazZs1g6dIl/PzzZH7+eTKPPfYQXbt2Y7/9DuSggw5h++13wONp+dX5REREtpSSk06kfNpUugLlObk4rZSYAASHj4PiGfTGw5rSEnKLWme+i0h75LouP/74Pa+99irvvvtvKisrAfB4PIwePYbdd9+D3XYbz4gRWxMIBNZ7rN/vpagoh9LSSmIb/Btetmwp33zzFV9//SUff/whq1at5IUXnuWFF56lf/+BHHnkrzj88KPo3r1Hq7VVRESkuZScdCKhZcvA6yXaeyCtOdgju/9WrIrFKPT5mP7JR+xwxK9a8eoi7cOKFct5883XeO21V5g3b+7a4/37D+Dww3/FYYcdQa9evVOuv2fPXhx22JEcdtiRRKMRvv76K959923ee+8/LFw4n3vuuZP77pvA+PF7cuSRv2H8+D03Sn5ERETampKTTqKkpIRvly0lVlBAzrg9W22+CQAeD68E8vhs0iccPXobdmjNa4u0oWg0wieffMTEiS/zxRefEY/HAcjKCnPAAQdx5JG/bpEhV4FAkPHj92T8+D255JIrePfdd3j11Zf48cfv+fjjD/n44w/p2rUbhx56BEce+WsGDx6S1uuLiIikSslJJ/Hxxx/wbPECvg4P5+SivhBtvWFdAEXb7kb1tx/y9ttvcc45f8Pr1SrWkplc1+Xnn6fwxhuv8s47b1FeXr723Nix23Pkkb/mgAMOIicnt1Xiyc7O4cgjf82RR/6aOXNmM3HiS7zxxmusWrWSJ554hCeeeIQxY7bjqKN+06pxiYiINKRDJCfGGC9wNXAKUAR8BpxhrZ3VpoF1IK+++hIAu+xxAJFWTkwAho3akaxwDsuXLWXSZ5+w4557t3oMIi3FdV1mzZrBhx++zzvvvMWcObPXnuvevQeHHnoERxxxFIMGtW0PxZAhQzn//Is5++zz+fTTj5k48SU+++wTfvzxe3788XtuvfVG9t57X/bb7wB2330PwuHsNo1XREQ6nw6RnABXAn8BTgSKgduAt40xo6y1kTaNrAOY9PqrFBUvIuAPsPX2+xBtgxgCgSD7b78He5YWU/7kYzjj91TviXRoVVWV/PDDd3z11Rd8+OH7LFy4bqnsUCjEPvvsz+GHH8nOO+/W7pb0DQQC7Lvv/uy77/4sX76MN998jYkTX2bBgvm8/fabvP32m4RCIXbbbQ923308O+20K/37D9CKXyIi0uLafXJijAkCfwMustb+O3nsaGAx8Cvg+TYMr90rX76Mmlde5szBW7F7fgFxTw64bpvEsvX4X9L3v08RwMNHd9/Ovn+9sE3iEGmueDzOggXzmT59KtOnT+P77//H1Kk/E4vF1pYJBoPsuuvu7LPP/uy334EdZkPEHj16ctJJp3Hiiafy008/8P77/+X999+luHgRH374Hh9++B4AvXr1ZocddmLkyFGMHLk1xozQEDAREUm7dp+cAGOBPOCDugPW2jJjzHfAnig5aZDjOPz07zepePkFevn9lMRiFB1+IpVtlJgAZPcbyveFvdipYjl9pkzhP1dfzs5nnEVhz9RXKBLZUo7jsHp1BWVlpZSWllJWVsayZUspLl5IcfEiiouLmTdvLjU11Rs9tk+fvuy4487sscde7LbbeLKzc9qgBenh8XgYM2Y7xozZjr/+9UJmzLB89NH7fPPNV/z00w8sXbqEN998jTfffG3tY3r37kP//gPo168//fsPoGfPXnTp0jX504XCwiL8/o7w34yIiLQXHrcNP6w2hTHmV8DLQLa1trre8ReSxw5tZpVz4nFncEXFxh80tsQXP8/n4/vup3ftanABXBIDIBK3rguv+wqIJIdFbB+vZCunFg/rnn8PrO3VmEgOlckatqeWUW7tujJr6wZceMUJUuZ6cV2Xcd4Yu1JDD+LkJz8UlMdivLbjyazov/sWtdHjAZ/PSzzupNz54sZj7PbWBexGFQAx12FpzOUtN4uZwXx8wTC93Si7O2tg7bPjwfUk2u4CP/pzmecLA9A1XsvuscZ30p7iy2F2smxRPMKeG5Vd15DpvjAzA7nE43Hy3Rj71iu74b+Tmd4sfvZlg+uS48Y5IN54DHM8QX70JmLIch0OcRovO98T5DtPoqzfdTlsbdmNn/BF+PnGm5gT4HFdjnJXN1aUJR4fX3qy8Xo9OI7LEU4FjQ2qW4GXTwmvvX8olQQbqtSFErx8WK/sIVSRzcZzmlygwvXyX7LWHjuIanI3qjdxvxIP77jryu5LDUWehsvW4OFNJ7T20D6+KF3d+PolXQfXiRONx3mubA3xSDXxaA375oTp7fc22Jvo4vLIgnlr7x/Yqy/Du/UhlFtEKL8r4cKeBLLW9Rz8tPsJuL7Ev7kB0z+iaHnjU+Km7PpH4oFE+/rN/IyuS6Y3WnbqTr8nmrxO3zlf03PJzzhxF7eB12T6Dr+hNrsQgF7zJtFzwfeN1jtjuyOozusOQI+FP9J77reNlrUj9mPeymJWzPyWrot+ZOSaFcRqqxos+87ypSxKJnLDc3LZq3tPvL4AHp8fb/LH4/WDx8OXjp/FniBen4/+XtjZE8Hj8eLxesBd/0/5O18OC32J56yXE2GX+JrkmXpDzZK//ujLWfse0d2Nsnu0fP1y9Uzx5zDbl/h3VORE2TNa1ujzMN2XjfUnEtB8J8Y+0dJGy870hZnqT7xuOW6c/SPrNqH1eDzrvafM8YWZnCwbcuMcHGl8w9oF3iy+DyR65fyuwy8jqxotW+wN8b9AfuKarsvhkZWNll3qDfJ1oGDt/cNqVzT6HrHSG+DzQOHa+4fUrlzvPWJm76FcfdXZhALpTUzz88P4fN65gJaXE8lgHeErrboZmbUbHK8BUtrNz+v1UFSU3m847370efae/yM7deveaJkHvvuY1clhIPsNGMy4Hj0bLfvQT1+yMpKYTrNXvwGM6dWn4YIeeHTqJIqTHwZ279OPrfr0A/zUxON8QQEvjruM8iIDaxquorVN2vsJJn1/N0es+JgBQR/9AhCZM40FJYn/OLsUFLHjMNPo43+a/SOzViwHIJSXzy5m60bLzpg7hdnLlgAwLCeXXUZu02jZ+QumMXNJMQD9w2F2GTWm0bLLimcwt3ghAD2CIXbddrtGy5Ytm828hfMAKPAH2HXsuEbL1qycx7x5cwDI8nrZdfudGi37eclK5s9JfAD2ALvusEujZSeVlvL8LLv2/k7b70SwkTk/UyrKeWbGtLX3x40dR56/gf0wPDBjzWqenP7z2kNjR29Ht1CowXoXVFfx2NSf1t7fZtQY+obDDZZdVlvDw5M/WXt/65HbMKSRIURl0QgP/vjp2vtbma3ZOi+/gZIequMeHihelwiM6T6CsQWFDdbruPDYsJOgYACeosGMLn6ZnVd+A7EKKKmAkrnrlb+2+8lEfYnn6fTp0xi39OMG6wW4pesfWZPcY+Sk6TPYcfF7jZa9s/A3rMpKlP3DzFnstPDdRsvel3cYi3MSZX8zZy67zmu83keyD2RufqLsYfMWsPucxss+HdqT6UX7wMh9ODD33+w78xESHdob+9bNZtGqpVBVQt+sMAc0+p7o8s2sn1lclvggPqCoK7sNHZbISOIbl540+0fmrEq8RxQVFLLLsBGNxjt59o/MTr5HZOXls/Mm3iPs3MnMqvcesfMm3iPmzf+ZWfXeI3bexHvEkoXTmFXvPWLnTbxHlBTPYFa994idN/EeUbVyFrPqvUfsvJn3iFn13iN23tR7RFkpz9R7jxi3mfeIJ+q9R4zd4D3ivfef5YPDD+HYAxtvh4hIYzpCz8mvgZdouOckZK09oplVtkjPybQFy3n7oSfIX5NYNtT1eNZ+T+fiAY+HH4v6EfMmv1mtKqFbbWJnaDyJ83W9BHg8TC/qR9Tnx+Px0KuylK41FXjw4CbLrv0W0ONhTlFfIv4gHo+HrlVldI1HcPoMwz9qd7zh9I1793g8BAN+ItHYRj0JqYrOm4I7axLL4i4lLsQiNRTUVrLV6hV4kt8Ne9zEt8QeF/DAvOwiloUSH1TzozVsvWZFYxGzILuQJVmJD6q5sVpGrV7WaNnF4QKW5HbBcRzC0QjbVCxpuKQnUXZRdhEAoXiUMWXFjbZxeVY+83O7AhBwYowtXdRIBLAilMe85LfZXsdhXMn8xsKlJJTLnPxkguu67LBybsNlgfJQDrMKe+P1enEch3HL56zXa1ff6kAYW9R37f3tVs7F5zTwadHjoTKQxfQu/dce2nbFPIJObOOyQLU/xNRuA9feH7VyHlnxhpdniPgCTOm+7svREavmkx3d8PuJxD+FqNfH5J7D1pUtXUh2TRX1v3f3eLx4fX4IhLDDdsEfDOEPZjFw8XTyayvxh8J4vRtPWl+022/W/t51+peESxp/nRftchQk6yia+S05Kxp57YDFOx6GE0gkcYWzvyN32ZxGyy4Z9wviocR3NIXzfiJ/6Swcx6WhLrKlYw8klp34e89f8DP5i6ZtVKbOsm33JZqb+H4nb9F0ChZMabTs8lF7ESlI/F3mLplF4dwfGi27cuR4aop64Thx/PMm02X2JOKxKE4suvbWicdwXYc5RX0pDWbjxOMUVpUyqHRxshfLXfseU3c7J7cbK4OJL5UKI1UMX5NIPtZ/GhJ35m7wHjFydWPvEbAgXMiSrMT7ZOI9YnmjZRdl5VMcTvQuZMcjjK5o7P0EFmflsTBcCEAoHmNs3fuJp17PSTL2ZaFc5iXfTwJOnO3LFzda74pgDnNyEq+bz3XYYRPvPauC2czKSbz34LrsXNbwew9AWSALm7sukdypbBGeRt7nK/whpuX1WHt/XFkxftdZ277yoaM4/6xjG+mrSp16TkQ6h46QnOwEfA1sZa2dXe/4Z8CP1tozm1nlnHjcGVxSUpnOMPH7vRQV5VBaWkks1vpL9baGTG+j2tfxZXobM719kPltVPtS16VLjpITkU6gI6zl+iNQAexdd8AYUwhsD3za8ENERERERKSjafdzTqy1tcaYe4FbjTErgHnA/wELgVfaMjYREREREUmfdp+cJF1FItaHgTDwCXCQNmAUEREREckcHSI5sdbGgYuTPyIiIiIikoE6wpwTERERERHpBJSciIiIiIhIu6DkRERERERE2gUlJyIiIiIi0i4oORERERERkXZByYmIiIiIiLQLSk5ERERERKRdUHIiIiIiIiLtgpITERERERFpFzyu67Z1DK2t2nXdLMdJf7t9Pi/xuJP2etuTTG+j2tfxZXobM719kPltVPtS4/V68Hg8NUA47ZWLSLvRGZOTMiAELGnjOERERKTpegO1QGEbxyEiLagzJiciIiIiItIOac6JiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaRf8bR1AJjDGeIGrgVOAIuAz4Axr7aw2DSwNjDFXAPtba/eud2wscDewA7AKmGCt/XubBJgCY0wX4CbgUCAf+Am4xFr7WfL8WDpw+wCMMT2A24GDgTDwMXChtXZq8vxYOngb6xhjhgPfAWdZax9PHhtLB26fMWYgMK+BU6daax/u6O2rY4w5HrgEGALMBq6x1r6YPDeWDtpGY8zewIeNnJ5rrR3SkdsHYIwJANcAx5H4f+8H4GJr7RfJ82PpwO0TkbajnpP0uBL4C3AqsCvgAm8bY4JtGtUWMsacB1y3wbGuwH+BGST+07kauN4Yc2KrB5i654FdgN8DO5L4YPuuMWZEhrQP4HVgKHAIiTZWA+8ZY7IzqI11H5CeAXLqHcuE9m0L1AB9gN71fp7JkPZhjPkj8CjwILANiX+Xzxtjds2ANn7B+q9bb+BAIAbclAHtA7gCOInEl3LbAdNJ/L/XJ0PaJyJtRD0nWyiZgPwNuMha++/ksaOBxcCvSPyH26EYY/oCDwN7AHaD06cBtcDp1toYMM0YMwy4GHisVQNNgTFmK+AAYPd63/CdS+JD/LEkPsR32PbB2g/nc4EbrLU/J49dT+KbzVHA/nTwNtZzLbB6g2Md+m80aTRgrbVLNjyR/NKgQ7fPGOMBrgfutNbenTx8vTFmPLB38qfDttFaGwGW1t1PJtF3Ai8ne74upQO3L+kI4Flr7bsAxpi/kUhUdgWG0/HbJyJtRD0nW24skAd8UHfAWltG4tv4PdsmpC22PVBK4tvbrzc4twfwSfI/nDofACY5lKi9Wwn8EphUd8Ba6wIeoAsdv31Ya1dZa4+pl5j0BC4AFgFTyYA2Ahhj9gT+DPxpg1OZ0L5tSbxWDcmE9hlgEPBs/YPW2oOstTeTGW2s70ygP/DX5P1MaN8q4FBjzCBjjI91Xwr8QGa0T0TaiJKTLdcvebtwg+OLgQGtHEtaWGvfsNYea62d08DpfjTcVugA7bXWlllr/22tra07Zoz5LYkhUP+hg7dvQ8aYf/L/7d1/yJ1lHcfxt1akE0wsVy2CitgXpY0Y/Vq5/LFsIJgz1CVolJK1YQiGUVgrzEUkhZa0oKL5Iy2M0VSSImm11KdfulqKX1KDLEpDkAfnlq1Of1zXmafTk2w9P8593b5fcLhvrvOc89wfnpvz3N9zXfd1lW9wzwIuyMzd9CBjRBwFXA98ODPHszSfj9JzsjgidkTEoxHxs4hYU5/rQ76ldXtERPwgIh6LiJ9HxGm1vQ8ZAYiIw4DLgKtGesL6kO9iyjC1P1CKks8CZ2fmQ/Qjn6QJsTiZvUV1+/ex9r3AYQt8LAthETNnhQbzRsTbKOPet2XmrfQsH3AVZcz3DcD3ImIF/ci4Gbg7M2+c4bmm89WhokspkzV8AjgV+CVlPP9qGs9XHVm311F6T94J/BDY1qOMQ+dRJqX40khbH/IdS+lhX0u5h++bwHURsZx+5JM0Id5zMnt76vaFI/tQPoB3L/zhzLs9lKyjhv9smsobEadTLoymgHNqc2/yAYzMznUhZSz4RTSeMSLOowwbWfY/fqTpfJn5dO0Z2jfSw/friDiWMjyv6XzV03V7ZWZeW/d31uL5EvqRcei9lHtNHh9pazpfnU3uW8DqzNxRm38VEcdR7gNrOp+kybLnZPaGXddLxtqXUMb4980jzJwV4M8LfCz/t4i4CNgKfB84NTOHhWXz+SJicUScU8eBA5CZ/6Lcw/AK2s94PvBS4JGIeDIinqztX42I+2g/H5m5e3ToYbWLZ4bLNJ2PZz4bd4213we8mn5kJCKOAd7Kf0+M0nq+NwEvoPTojZqi9Pq1nk/SBFmczN5vgGnK7DLA/vHwK4AdM7+kaT8FVo1e+AKrKTMLPTahYzooEbEe+DJwDbBu7CKw+XyUi4AbgROGDXW2oBWUAqX1jOdShpS8fuQBsJEyBKrpfBGxvBZdx4899QbKxXvT+ap7KbOsvWWsfRnwIP3ICKUwGVDWGRrVer7hl3LLx9qXAb+n/XySJuiQwWAw6WNoXkRsoswadD5l4bQrKTPRLKtTSjYrIrYArxouwlhnWnmAso7G5ynfoG0GPjQyPKOzoizY9zvgNmDD2NPDoQjN5oP907TeTjkHP0AZF34ZsIZyIb+XxjOOi4gB8P7M3NKDc/RQyjoZRwDrKTPMXUg5X98IPErD+YaiLPD6Ucpn5y8o6w5dTrmIvZ9+ZNwInJuZS8fa+3CObgeOoZyXf6IMX/s4cDzwMA3nkzRZ9pzMjY3ANyhrg9xJmcFkTeuFyUzqt15rKFOB3kNZXOvShv7hnEkZjnAG8Jexx9U9yDecGnkdZerO71Au/I4GVmXmH/uQ8dm0nq8OwTuN8ne7mdLL8GbglMzc1Xq+ocy8grLC+CZKMXIW8O7M3N6XjMDLKFPu/ofW89Vz9HTKZ8wWytTsJ1PuQZlqPZ+kybLnRJIkSVIn2HMiSZIkqRMsTiRJkiR1gsWJJEmSpE6wOJEkSZLUCRYnkiRJkjrB4kSSJElSJ1icSOqkupikJEl6DrE4kdQ5EfEu4Nq6f2JEDCLixMkelSRJmm/Pn/QBSNIMLhnZvwdYSVlFXJIk9ZjFiaROy8xpYGrSxyFJkubfIYPBYNLHIEn7RcR24ISRppOAHwMnZeb2iPg08B7gY8AVwGuBB4D1wAC4GlgOPARcnJl3jLz364DPAW+vTXcAH8nMh+cxkiRJOkDecyKpazYA99bHSuDIGX7mlcAXgU3A2cDRwHeBm4CvUYqXQ4FvR8ThABGxFLgLWAy8D7gAeA1wZ0Qsnr84kiTpQFmcSOqUzLwfmAamM3Oq7o9bBGzIzJsy8xbgK8AS4DOZ+fXM3AZ8EngJEPU1nwL2AO/IzK2ZeTOlV+Zw4NJ5DSVJkg6I95xIatVdI/t/rdvRe1Mer9uj6nY1ZXjYUxEx/OybBnYAp8zTMUqSpINgcSKpSfVG+XFPPctLXgysq49xf5uTg5IkSbNicSLpueIJ4EfAF2Z4bt/CHookSZqJxYmkLvon8Lw5fs+fAMcBOzNzH+xfhf4G4EFg5xz/PkmSdJAsTiR10RPAyog4GXjRHL3n5cDdwG0RsRnYC3wQWAucOUe/Q5IkzYKzdUnqomuAfwC3U2bTmrXM/C2wirIWyvWUqYdfDqzNzK1z8TskSdLsuAijJEmSpE6w50SSJElSJ1icSJIkSeoEixNJkiRJnWBxIkmSJKkTLE4kSZIkdYLFiSRJkqROsDiRJEmS1AkWJ5IkSZI6weJEkiRJUidYnEiSJEnqBIsTSZIkSZ1gcSJJkiSpE/4Nit+4PwOLXecAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.25it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 47.000 - 52.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 16.470 - 46.990) R-Score = 1.0034 & Fano Ratio = 0.0404\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 53.000 - 79.990) R-Score = 1.0034 & Fano Ratio = 0.0398\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACckElEQVR4nOzdd3hT5dsH8O852eketIW2QFmHDQJuEBAXDkR/LtxbUQQHCgouBFFeBAQcbBAQFVDcGxeKC0QZ7aGlAyilpXtk55z3jyRQRmkb0pam3891cTXJOXnO/TSlzZ1n3IKqqiAiIiIiImpqYlMHQEREREREBDA5ISIiIiKi0wSTEyIiIiIiOi0wOSEiIiIiotMCkxMiIiIiIjotMDkhIiIiIqLTApMTIiIiIiI6LTA5ISIiIiKi04K2qQNoAqUADADymjgOIiIiqrvWAOwAIps4DiJqQEILrBBvVVXVqCiB77coCmiIdk8nwd5H9q/5C/Y+Bnv/gODvI/vnf7uCINgAmALeOBGdNlriyEmeoqgpxcVVAW1UqxURFRWC8nILXC4loG2fLoK9j+xf8xfsfQz2/gHB30f2z3/R0SHQaATOeiAKclxzQkREREREpwUmJ0REREREdFpgckJERERERKcFJidERERERHRaaIkL4omIiIgO27JlSxg8WxXzQ1uiwFIA5PXv37+irk9gckJEREQt0pYtW0QAzwiCeLsgCDoAQlPHRBRkVFVVnVu2bHkHwMv9+/evdRs/JidERETUUj2j0WhHh4dHOfR6o0UQhOAtQEPUBFRVFRwOm7m8vGS02+0CgKm1PYfJCREREbU4W7ZsCRcE8fbw8ChHWFhUUVPHQxSsDAaTFUBMaWnR7Vu2bHm9tilenFtJRERELVGCIAg6vd5oaepAiIKdd2RSB8/arpNickJEREQtkQhA4FQuoobn/X8moA65B5MTIiIiIiI6LTA5ISIiIiKi0wKTEyIiIiIKmLlzZ7UZOfKyXk0dR12lpe0yfvfdNxFNHQd5MDkhIiIiohZr4sQnOu/atSOkqeMgDyYnRETNgNUF9H0nBO1eB6zOpo6GiCiYcE+E0wnrnBARERF5KYoCi8XSZB/ems1mRRTrd/mBAwf0/9//bsz78cfvY5xOp/j662+lmc1mZd682Un//fdPeFVVlSYiIsI1dOhFRePGjc9NTd1leuCBO7u/+ebi1N69+1oA4NFHH+q4Y8d/4V999eM/Wq0Wqqriiisu6nPHHXfn3njjLYXHXrOw8JB21qwZSVu3/hXhdruFLl26Vj7++IR9HTt2svvOWbjwzfjPPtsQX1FRoe3UqXPVxInPZfuOnyjmpKRkx4IFb7T+6aeNMSUlJbrExETbbbfddeCyy64oBYC1a9+LWbNmZeu77ro3d8mShUllZaW6bt16VEye/GL28uVLEn788bsYrVarjhhxbf6DD445CAB2u12YP392m02bfo4qLi7SG40mpU+fvmUTJz67Nzo6xj1y5GW9CgsL9R988G7r7du3hS1a9I5cUlKsmT9/TuJff/0eWVFRoU1J6Vh1//0P5Z5zznmVvr5t2LA+evXqFa0PHTpkaNu2rXXo0IuLlix5O3nTpr+3+POaiKLoV/+CEZMTIiIiIngSk5tv/l/XtLTUJpvi07Vr98p3310n1zdB+eabL1pNn/5autvtEjp37mK/+eb/dY+IiHS++uqc3WFhYe6fftoYuWjRW8ndu/esuvTSy0tjY2Mdmzf/Gt67d1+L2+3Grl07wux2u/jPP1tCzjzz7Kpt27aaKyrKtRdeeHHpsddyuVwYN250F0BQX3jh5T0xMTGuefNmJz3xxCNd1q37dDsAFBYW6nfs+C9s+vRZ6Q6HXXj55RdTXn75xfZLlqyUa4r50Ucf6piZucf8yCOP7U1J6Wj76qvPo6dNe6GjKIoZl1wyvAwAiooK9Z988lHc1KkzMiyWKvHZZyd0vuuuW3oMG3Zx4ZtvLkn94otPYlatWp44ePDQ0m7dethee+2VpD/+2Bw5YcKk7OTktnZZlk0zZ77cfsGCN9o8/fRz+xYvXpl69923dD///MHF998/Os/tdmPs2Ae7OJ1OYcKEyVmtWsU533//3biJEx/vMmfOm2l9+/azfPfd1xGzZr2acvvtd+8fMmRY6R9//Ba+ePHbyaf6mvjTv3r9kDQTTE6IiIiIDmuedU8GD76wqG/ffhYAsFqtwoUXXlx06aXDS5KT2zkAoH37ewrWrn0vISNjt+nSSy8vHTDg7NKtW/8KB3Bw27atIRqNVu3SpWvlX3/9EXbmmWdX/fLLT5GdO0uVrVrFuY691q+//hyek5NtWrbs3R2dO3exA8CkSS9kL1++OKG4uEgLABqNRn3ppVezIiIi3AAwfPiVh1atWp5YU8y7d6cZ//77z8gXXpiWcdFFl5YBwJgxj+ZlZmaYV69e0dqXnLjdbuHxxyfk+N6Y9+rVp3z37rTQJ598Zr8gCLj//ofzPvhgTev09N2mbt162Lp16141dOiwknPPHVgJAMnJ7RzffvtVeXZ2pgkAYmNbuURRVE0mkxIVFe3euPHb8KysTPOiRSt2+q4xefKLe3fvTgtZvXpFQt++/TLfe291wjnnnFd8770P5gNAp06dD+3fv8/w6acb4k/lNfGnf6fyM3O6YnJCRNQMCAD6x7uh02ogCE0dDVFwEkUR7767Tm5u07oAICkp+fB0KpPJpN52210FX3zxadSqVStCDhzINeTkZJlLS0t0brciAMCgQUPKnn/+mVZWq1X444/NYT169KxITEy2/fvv1nAAB//664+ICy4YUnyia6Wn7zaZzWa3LzEBgPj4BNeECZP3++5HRES4fIkJAISFhbsdDsdRHasesyynmQBgwICzK6uf06tX34p33lmSVP2xTp2OXNdgMCitWsXbBe8vRqPRqAKA3W4XAeCaa64v/uWXn8JmzXo1MTd3v2H//n2mAwdyjV27djvqOj4ZGekmk8nsrv7GXxAEdO/es3Lr1r/DASA7O9M8cOAFJdWf16fPGZXHJif1fU386V8wYnJCRNQMGLXAkkttiIoKQUkJ4Drus0wiCgRRFBEaGqo0dRz1ZTAYD8dssVjEBx64U7LZbOKgQYNLLrlkeFGfPn33jhlzf1ffOeeee36FTqdVfv/917B//tkSPnTosOJ27drbP/nkw4R9+3L02dmZ5hdemJZ5omtpNFpVqOVTElEUax2Bqh5zTYvSFcUtaDSaow7qdLqj7otizbFMmfJs219//Tl6yJBhReecc35Z167d81avXpFQVHRIf6LzVfXEXVMUBVqtVvVcT1RVtfYBtvq+Jv70LxgxOSEiIiIKIj/9tDE8KyvT/OGHn/8bFxfvAoCSkmJNWVmZ1pcE6PV6tU+fM8p//vnHyPT03aETJz6bk5SU7BAEQX3zzXltWrduY6u+uL26Dh062qqqqjSZmXsMHTp0tANAUVGhdtSoa3tOnToj3Z+Yu3TpagWAv//+I9Q3rQsAtm//NzQxMdnqT5vFxUWab775stWECZMyr7rqmsMjHfv37zUajaZqidGRN/+dOnWxWiwWTWrqTmP10ZNdu3aGJiW1tQFAu3btrbt27QwFUOA7vnPn9pOuU6rLa0IeQTskRERERNQSxccnOADgk08+itm3L0f/xx+bQ8ePH9vJ7XYLDofz8Dvx884bWPrDD9/HhoeHuTp27GQ3GAyqJHWr3LTpp5hzzjmvtKb2Bw0aXJ6S0tEyZcrklC1b/gpJS9tlfOGFSe0jIiKdffqcYfEnZknqZuvbt1/Z3Lmz2n733dcRGRnphvnz57TesuWvyBtuGJXvT5vh4RFuk8ns3rTp58jMzD2GXbt2mJ5//pl22dlZZqfzyPfBaDS6c3P3GwoK8rWDBw8tS05uZ50y5dkOv/32S9ju3WnGl156ru3+/XtNN910cz4A3Hzz7Xl//PFb1JIlC+IzM/cY1q17P+bzzz+NO1ksdX1NiCMnRETNgtUFjFhvhiACn48EdPxTRkQ16NdvgOXuu+/ft2HD+vjVq1ckRkVFOwYNGlIcG9vKIctHdiIbOvSisjlzZgo9e/Yp9z12xhn9y7dv/zd88OALS2tqXxRFzJgxO2PWrBnJEyc+0RkAevToWTFr1rx0g8Hg9zDAK6/Mypwz5/8SZ82a0d5isWiSk5Otzzzzwp7hw6+oMZaT0Wq1mDz5xcy3356XdM89t/YICQl19ezZu+LWW+/MXbfuvdZVVVViSEiIcvXV/ytYunRB0rhxD5nWrFm/a+7ct3bPmjUj6cUXJ3d0Ol1CSkoHyyuvzNrdv/9ZVQAwdOhF5QUF+Tnvvbc6YeXKZYkpKR0sl146/NCXX35WY4JS19eEAKEuc+aCTKbbraQUF1cFtFGtVvTOBa+Cy9XspqrWSbD3kf1r/oK5j1YXMOiDMADA5lFV0AnB1T+fYH4NAfbvVERHh0CjEbMAdAhEe1u2bOkqipqv4uISK/V6Y1DuekQNY/PmTaGxsXHO6hsCvPXWvIRvvvky9qOPvtjRlLGdrhwOm7GgIDdUUdyX9e/fP+1k555WIyeSJHUBsBXAGFmWl3sf6wvgdQADABQBmCvL8symipGIiIiIWq7ff/8t4scfN0Y/9dQz2e3atbfv2rXT9MknH8UPH37loaaOLRicNsmJJEk6AKsBhFR7LAbAtwA2AHgQwDkA3pQkqUiW5WVNEScRERERtVwPPTTugNVqFV95ZWpKRUW5Njo6xnH11dfm33ff6KCt2t6YTpvkBMCLACqOeex+AHYAo2VZdgFIlSSpM4AJAJicEBEREVGjMhgM6jPPPL8PwL6mjiUYnRa7dUmSdAGABwDcccyhQQB+9iYmPhs9T5FOuisCERERERE1L02enEiSFAlgJYBHZFk+NgNNwvFZ6QHv17YNHBoRERERETWi02Fa11sANsuy/O4JjpnhmdZVnW9HDeOpXFSrDWxeptGIR30NNpUlJfhl9mtod/456HX5iKYOp0EE+2sY7P0DgruPOgA9YhVoRBFarQhtkG4lHMyvIcD+ERHVpkmTE0mSboNn6lavGk6xAjAc85gvKfF7L2BRFBAV1TBbSoeHmxqk3ab23bQX0G7vXlizsqAZfhnCoyKaOqQGE6yvoU+w9w8I3j5+cYvvVnD2r7pgfQ192D8iohNr6pGTuwHEA9gnSVL1x9+WJOlJADkA2hzzHN/9XH8vqigqysv9KmBaI41GRHi4CeXlVrjdwbd3vXt3BiCIMGk0+HPDp+g74pqmDinggv01DPb+AcHfx2DvHxD8fWT//BcebuKIDFEL0NTJya04/iPAdADPAXgfwCgAD0qSpJFl2e09PgyALMtywalcuKGKX7ndSlAW1opUFMD7R6FQloOyjz7B+hr6BHv/gODvY7D3Dwj+PrJ/REQn1qQfQciynCvLckb1f95DBbIs5wBYCiAcwBJJkrpLknQngEcBTG+aiFum0oMHEabx5LGTU3fgH5eziSMianlsLmD4ehPOX+qpFk9E5DNw4ID+a9e+F1PX83/88fvwa665vOeQIef0e/XVaUkNGVtdzJ07q83IkZfVNMXfL/X5nuzfv1f/yScfRQXy+uS/ph45OSlZlgskSboUwFx4KsfnAXhSluUVTRtZy3Jg1w5oAZQ4HNhdVYn2h05p0IqI/KACyKsSj9wJ0gXxRFR/69d/9m94eIS79jM9Fi16Kyk+PsH++utv7g4NDavz85qT+nxPXnzx2fZxcXGOESOuKWnouKh2p11yIsuycMz9vwCc20ThEIAijQbP/bsFRlEDACgoONTEEREREZFPfHxCvcZTq6qqNGeffW5p27btHQ0VU1Or3/dE5cc9p5HTLjmh009xaQlKnE7Eh5sxMioa0VZrU4dEREREXgMHDug/btz47Ouvv6lo0qQn2yuKIkRFRTt/+OH7GLvdJvbu3bf86aefy4mPT3ANHDigPwB88MGa1h98sKb1u++u256c3M6xaNFb8V9++VlcWVmpNiGhtf3660cdvOaa64oB4Lfffgl76qnHutx++93716//oHVsbCv71KmvZt522w09R4267cDnn38Sp9frlOXL39slCAJmzXo16c8/N0e6XC4hJaWj5aGHxu7v27ff4Z2I1qxZGbt27XsJJSXF+j59ziiLi4s/aZJ03323Sz169K4oKSnW/frrz9E6nU658sqRBZdcMrz4lVdeap+ZmRGSkNDG9tRTz2SfcUZ/S/XvycUXX1Z6++039GjfvoNl7ty3MwDg559/DJs06ckuTz/93J6PPlobn5q6KzQ1dVfoyJGXhW3Y8NX2kSMv63XhhZcUjR37+IHqMcTFxdunTfu/7BN9P955573U/PyDutmz/y9527at4RqNqHbp0rVq3Ljx+zp27HRsWQw6CW57QbUqLi4GAHRs1wE3J7XFhSFhUBQudCQiouDktlrFmv4pdrvQGOeeis2bf40qLy/Xvv76m/Jzz720JzV1V9j8+XMSAc90p+joaOdVV12Tv379Z/8mJiY7Zs+ekfj555/EPfzwuL1Llqzadc011+W/8cacditXLm9Vvd0//tgc+eabi1MnTnw2W6MRVQD48cfvo2fPni+/8MLLeyIiItyPPvpQ5wMHcg1Tp87IePPNxWldu3arevTRh7pu3/6vCQA++eSjqLffnt/2mmuuy1+06J2d3br1qPryy8/iauvThg3rEuLi4h2LF6/ceeWVVxesWbOyzYQJj3W+8cabD77xxqJUvV6nzJr1artjnxcZGel+8slJWf/8syXi448/jC4uLtLMmDEtZdiwSwovv/yq0hkz5mR07tyl6txzzy9ZvHhlan2+z9W/HzabTXzkkQckRXFj9uw35Nmz35DDwyNcDz10T7cDB3J19Wm3pePICdXKlJ2J25PaQRvXBigrgl4UUVlchPDYVrU/mYiIqJnZ88joM2o6ZuoilSU/9bRvAx9kPj62j+p0nvDDXkP7lMp2k5+XffezJjzRS7FYTvjeS98m0dJ+yrR6vTmuMUaTyf3881NzdDqd2qVLV9vmzb8WbdnyVwTgme4kiqJqMpmU+PgEV1VVlfjppxvix49/Ouuiiy4tA4CUlA72vLwDhvXr30u47bY7D8/lvvHGmw/6RgH27s3WA8AVV4w4JEndbADwyy8/haWnyyEbNnz5b2xsKxcAPP74hNxdu3aGvvfeqvhevfpkf/jhB/HnnTew5Lbb7joEAJ06dT6YmrozJDs703yyPiUnt7U+/PC4PAC4667789esWdVm0KAhxZdcMrwMAC65ZHjRokVvJ5/ouYMGDa4YPvyqgrffnp/8/fffRIeEhLgnTJi8FwCioqLdWq1W1ev1ii/muqr+/Xj//dWxFRXl2ldemZWl0+lUAJgyZXr2tdde0WvduvdbVR+FoZNjckK1iigqRr+E1thuMMKpKNCJIioO5TM5ISIiOg3FxyfYfW+QASAkJNTtcrlOODKze3ea0el0Cq+99kr7WbNebe973O1WBJfLKVit1sPPa98+5bjpSW3btrP5bqel7TIDwI03jjxq5y2XyyU4nQ4BAPbt22saMmRYcfXj3bv3rKwtOWnTJunwdcxmswIAiYmJh+PR6w2Ky+WscfTp8cef2r91618RW7f+HfHWW0t3mUwmtaZz66r692P3btlstVo1l102pG/1c5xOp7hvX47xuCdTjZicUK20ds//PTU0HFWKgkhRRFVhURNHRdSyCAA6RCieInRcuknUoDrOe+ufmo4JonjUm9oOs+b+W9dzU159bXtdzz0V1ROTI07cvKIoAgA888zzmR06dLIde9xgMBx+otFoPG5Ot9FoPHxcURTBZDK5FyxYftwIkF6vVwBAEASox4Si1Wpr7btWqznuHEGo++qE/PyDutLSEp1Go1E3b94U3qtX71oW0B59OZfLfdxv3urfD0VR0Lp1G9srr8zKOPa8kJCQoNwRraFwzQnVSufyjHKKIRGwen+jWIoLmzIkohbHqAU+vNqK724DTPxYiahBaUwmpaZ/YrU36w15bmPp1KmLTaPRqHl5B/QdOnS0+/79/PMPEStXLo0Xxbq/VezYsbPVarVqHA67UL2t5csXJ2zc+G0kALRr196yY8e/odWfJ8upIYHt1dEURcGUKZNT2rVLsTz00Ni97777TuKOHdurFQEXjn6dNFq1srJKU/35BQX5+pNdo0OHjtbCwkJ9eHi429fvtm3b2efPn5P455+bwwLdp2DG5IRqpfMmJII5FDbvpxTWEm4FTkRE1NxFRES4L774skMrVy5L/PDDD6Kzs7P069a9H7N8+ZKkqKjoeq3BGDp0WFm7du2tzz//TMdNm34Oy8zcY5gxY1rSDz98F5uS0tEGAKNG3X7wzz9/j1q06K34PXsyDCtWLIn744/NDVoAceHCNxOysrLMkya9kH3jjbcUduvWo2Lq1OdS7N5NCEwmk1JQkG/Izd2vA4Bu3bpXbtr0U/Tmzb+GZmSkG6ZMebad1WrRnOwaI0ZcWxwaGuKeMOGxjlu2/BmSni4bn312Qsq2bVsiOneWuM1pPTA5oVoZvAOZgjkMDm+tE3t5eRNGRERERIEyceKz+66++tr8d95ZlnjnnaN6rl69ovVNN91y4JFH6reIW6PRYO7ct3d37tylatq05zvce+9t3f/7b1vY5Mkv7hk0aHAFAFx00SVlTz31TOY333wZe889t/XYtOnnyBEjrslvmJ4B27f/Z3rvvVVtbrvtztwOHTraAeDpp5/NKSw8ZJg9e0YiAIwYce2hffv2Gu+++5YebrcbY8Y8ltuli1Q5adJTnR955IGu4eHhrvPOG3TST2UjIiLc8+YtTIuIiHRNnDi+8+jR93QrKMjXv/zyzPSuXbsfN12Oaiaox078C36ZbreSUlxcFdBGtVoRUVEhKCmpgssVXNvs7rj7duhFEWlX3oFfvl6HtG2/YdT9D+Lmux5o6tACKphfQyD4+wcEdx9tLuD2r0Og0Yh457Iq6BBc/fMJ5tcQYP9ORXR0CDQaMQtAh0C0t2XLlq6iqPkqLi6xUq838s0jUQNyOGzGgoLcUEVxX9a/f/+0k53Lmct0Ug5LFfTe+aZiSCSsIRHYZ7WiuCqwyR0RnZwKILNMPHKHi+KJiCgIcVoXnVSl1YYH/92Kx3f8C01oBEwhnjVdZWWc1kVEREREgcXkhE6qylKFYqcDRQIAUYPWgoprWycirphbCRMRERFRYHFaF51UZWUFACAkJAxut4oEtwsDEpORVWlp4siIiIiIKNgwOaGTsuzbh9uT2sEeEgJFVQGjZ1tw0V2v3QWJiIiIiGrF5IROynEwD1cmtMY+txtVAGAwAwC07uDbZYaIiIiImhaTEzopR4VnWpdT46lvIpo9RVy1LW8LaqImJQBoHaJAI4rcqYuIiIIWkxM6KVdVpefr4eQkFACgb7KIiFomoxb48n9Wbw0JwMWZlUREFIS4WxedlMviWfju1uoAABqzZythg8CPbomIiIgosDhyQiel2u0APMmJFoA2JBwAYBRFqKoCQWB+S0REwUUQoBGa6A+cqqqKqsLdFNcmOh0wOaGTUh0Oz1eNd+QkIhrPpu2Eze3GGqsNZrO5KcMjajFsLuD+r43QaoCFF/GXN1FDEQRoFEFobbG5muS/mdmodYlQ8063BGXu3FltNm78JmbDhq+21/e5GRnphvvvv7P78uWrd7Zt297REPFR8ODfNzo5lxMAoOo8q0z0phDsrqqEqqqw2SxMTogaiQpgV5Fn7ZeqgoviiRqIIAiixebS/r4jT7HYXI26NaXZqBXP6dlaG2bUiqqqnlbJib927dphmjjxiU4Oh51TLahOmJzQSf1h0OONPzZj2HV90RGAIAjQG0yw2yyoqqpCdHRsU4dIREQUcBabS6myOpti3/ygeRP/5ptzE9ate691YmKSrbi4iHvpUJ0wOaGTKrHbsd9mheJdCA8AF7aKh9FlhyU/H0hu14TRERER0cCBA/qPHv3I3u+//zY6K2tPSHx8gu3uu+/PveSS4WW+c7777uuI5csXt8nN3W+Kiop2XHDB0OLRox/JMxgMKgCkpe0yvv32/MTU1F1hNptVjImJdVx11TUFd911b8GJrrl8+eK45csXJz399HOZl156eemJztmy5c+IJ598JisiIsL91FOPdWmQzlPQCZrsnBqGzWYDAOh0hsOPXR4djVGJbWE9mNdUYREREVE1y5YtSho6dFjxwoUrdg4YcHbZSy891+mvv/4IAYAffvgufNq0FzoOH35l4dKlq3eOG/fE3k2bfoqeNOnJFACwWCziE0+M7WI0mpR5895OW7bs3Z0DB15QsmTJ28nbt/9nOvZaq1Ytb7VixZKkyZOn7KkpMQGAJUtWycOHX1njcaIT4cgJnVR3ux3JrRMR7j5SVMHhnezuslQ1VVhERERUzdChFxXedttdhwBg/PiJuTt2/Bu2du2auDPPPDtr1arlrYcNu6TwllvuOAQAKSkd7FqtNmfChMe77N2brTebQ5QRI64pGDXqtoLw8HAFAMaMeezAhx+uTUhPTzP16tXb6rvOmjWrYpcuXZj0/PNTM4YMGVbeNL2lYMbkhE7qDEFEQmIy/qtW8c3p+2q1nvhJRERE1Kj69RtQUf2+JHWr2rZtazgAZGVlmffsyQj54YfvYnzHVdXzNSMj3XjhhReX33zz7QWfffZx9J496ebc3P2GnJwsMwC43crh7TdKSkp0b701t51Go1GTktraG6Nf1PIwOaGT0np/eQmGI6O6Lu/W7y4mJ0SNKsqgQhC5TRcRHU+r9f3F9lBVFaKoUT23FWHkyOsOjhhxTdGxz4uPT3AWFORr77//zm5hYeGuc845r7R//7PKe/fuU3XjjSN7Vz9XEERMmfJy+tKlC9tMm/ZCypIlK9NEkSsEKLD4E0UnpfPdMBzZMtjt/UXk9q5HIaKGZ9ICP9xowT/3AyZd7ecTUcuya9eOkOr309J2hXbs2NECAElJba379uUYO3ToaPf9y8/P082d+1pSZWWF+OmnG2IqKyu0S5euSnv44XF5w4dfUVpWVur9APtIzhMZGeEcPHho+cSJk7MzMzPMy5Ytim/ELlILweSETkoveD6l1RiPjJwcTk7sTE6IiIhOB59+uiF+w4b10RkZ6YZXX52WlJOTbRo16vZ8ALjpplsO/vnn71Fz585qk5GRbti06eewGTNeTqmqqtTGxye44uMTHHa7Xfzss4+j9u/fq//pp43hL744uQMAOByO494rduvWw3bNNdcfXL16RZs9ezIMxx4nOhWc1kU1UhQFBm8iIhiPfCDjFrWA4oDbziKvREQUnMxGbaN/gHsq17zkkuGH1q17L37OnJmmdu3aWaZPn5neo0dPKwBcccWIElVVM9esWdn6ww8/SDCbQ9wDBpxV+thjT+33HU9LSz24aNFbyfPmzRJjY1s5Lr308sLNm3+NTE3dGQLg0LHXGz36kbxff/05atq0F9ovXvyOzOldFChMTqhGTqsVonfkRDSFHh7Y/ccYhvVbf8YlvXo0XXBELYzNBYz73gidFpgzmL+8iRqKqqqK2ah1ndOztRZNMMPEbNS6VFWtd/HHlJSO1qeemrS/puNXXnl1yZVXXl1yomOCIGD8+Im548dPzK3++D33PJDvuz127OMHxo59/IDvvsFgUNeu/WRnXWI777xBFZs2/b2lLucS8e8b1chafrh2E0RTCNze2xXGEKRVVuAst/vETySigFMBbMnXeG6rALgunqhBqCrcItS8sCYYOfFcX1VUFfwDSy0WkxOqkU1V8cTOf2HW6nGHVg+4PWMnOr1neqmVu3UREVEQUlW4VVVlgkDUBJicUI1sDjv2Wa0IDdVCqTbAHKequCwuHtElpU0WGxEREXlwyhQFEyYnVCObd6tgo9EEt6JA8K4/SXTbcW3bFGRWsUI8EREREQUOkxOqkS3/IP7XOhHu0FCoKuDNTaDqPNO6RK45ISIiIqIAYnJCNXLm5+PGxGQccLlQWu1xVW8EAIjuem8mQkRERERUIyYnVCOn1QIAcIlHbwskeBfEa+q/0yERnQKjVoXAbbqIiCiIMTmhGrksnt24XMIxuyl6R060inrsU4iogZi0wO83WxAVFYKSEsDlauqIiIiIAo/lPKlGLu9WwW5Rc9TjgsEEgJktEREREQUW319Sjdze3boUzdHJicabnOgaPSIiIqKGJwjQCMKx0wYaB4swUkvH5IRqpDgdnq/HJCeuiBhMT0+DqtNiheCtVk1EDcruBh79yQCdDnjlfEBT+1OIyA+CAI1JdLZWHZYmeY8k6M0uq6LLO90SlLlzZ7XZuPGbmA0bvtpe1+esXbsmZv36D+ILCgoMUVFRzksuuazw3ntHH9Ro+BuMasbkhGqkOrzJiag5agmuxhyGf8pKIYoiVFUFuECXqMEpKrAp1/MrWzkX0PC/HVGDEARBVB0WbaX8h6LYrY2684toMImh0tlaQRcpNvcK9Rs2rI9+443X2z344CN7zz773IqdO7eb5859rZ3D4RQeeeSxvKaOj05fTE6oRpnh4Vj64/c4Y8hwdKv2uM67W5eiKHA6XdDpOMGLiIiCi2K3Km5bVVNsSxkU64E/+eSjVoMHX1h00023FAJASkoHe05OtvHrr7+IZXJCJ8PkhGpUrirYXVWJribzUY/rdHoMiWkFvSjCVlEGXXRsE0VIREREAwcO6D969CN7v//+2+isrD0h8fEJtrvvvj/3kkuGl/nO+e67ryOWL1/cJjd3vykqKtpxwQVDi0ePfiTPYDCoAJCWtsv49tvzE1NTd4XZbFYxJibWcdVV1xTcdde9BSe65vLli+OWL1+c9PTTz2Veeunlpccef/DBMfujo2OO21ewqqqS7z3ppIIiO6eGYbfbARwZKfHRaHV4oH0H3NsuBVVFxU0RGhEREVWzbNmipKFDhxUvXLhi54ABZ5e99NJznf76648QAPjhh+/Cp017oePw4VcWLl26eue4cU/s3bTpp+hJk55MAQCLxSI+8cTYLkajSZk37+20Zcve3Tlw4AUlS5a8nbx9+3+mY6+1atXyVitWLEmaPHnKnhMlJgBw1lnnVHXq1Nnuu19aWqr58svPWvXpc0Z5A30LKEgwe6UatSovx+VxCYg+QUEFh6LApNHA4S3USERERE1n6NCLCm+77a5DADB+/MTcHTv+DVu7dk3cmWeenbVq1fLWw4ZdUnjLLXccAjxTrLRabc6ECY932bs3W282hygjRlxTMGrUbQXh4eEKAIwZ89iBDz9cm5Cenmbq1au31XedNWtWxS5dujDp+eenZgwZMqxOiUZlZaU4fvzYTk6nQxw79ol9DdF/Ch5MTqhGHS0WXNS2Pf6124475vJu0eW0MDkhIiJqav36Daiofl+SulVt27Y1HACysrLMe/ZkhPzww3cxvuO+nTYzMtKNF154cfnNN99e8NlnH0fv2ZNuzs3db8jJyTIDgNutHN5+o6SkRPfWW3PbaTQaNSmprR11kJ9/UDt+/NjO+fkHDa+8Mmt3+/YpjlPvLQUzJidUM7d3HeAJFrw7fMmJzXrcMSIiImpcWq32qI39VVWFKGpUz21FGDnyuoMjRlxTdOzz4uMTnAUF+dr777+zW1hYuOucc84r7d//rPLevftU3XjjyN7VzxUEEVOmvJy+dOnCNtOmvZCyZMnKNFGseYVAerpsHD9+XGe32y3MmfOm3L17T75poFpxzQnVSKN4kxOt/rhjvoleTk7rImoUJi2w7fYq5IwDTNwgj4iOsWvXjpDq99PSdoV27NjRAgBJSW2t+/blGDt06Gj3/cvPz9PNnftaUmVlhfjppxtiKisrtEuXrkp7+OFxecOHX1FaVlbq/QD7SM4TGRnhHDx4aPnEiZOzMzMzzMuWLYqvKZ6cnGz9o48+3MVoNCpvv700lYkJ1VW9R04kSdICGAJgGIAUABEACgHkAPgSwG+yLLMsXxAQFAUQRUB3suTk+ClfREREzZ1oMDX6B7incs1PP90Q365diq1nz95V69d/0ConJ9s0YcKz2QBw0023HHzllZc6zJ07q83ll19VdPBgnv61115pHxsb64iPT3DFxyc47Ha7+NlnH0edeeZZlXv2ZBjffHNuMgA4HI7jYurWrYftmmuuP7h69Yo2Q4YMK+3YsdNxU7ymTn2+vcvlFJ999qV0nU6n5ucfPPyeMz4+4fjFrERedU5OJEnSAxgN4AkASQBK4ElIqgAkA7gSwDMADkiS9CqAhbIs12k+Ip2etL4JqTrDccdc3sKLrhOsRyEiImquVFVVBL3ZFSqdrUUTzDAR9GaXqqj1rq9yySXDD61b9178nDkzTe3atbNMnz4zvUcPz2jFFVeMKFFVNXPNmpWtP/zwgwSzOcQ9YMBZpY899tR+3/G0tNSDixa9lTxv3iwxNraV49JLLy/cvPnXyNTUnSEADh17vdGjH8n79defo6ZNe6H94sXvyNWnd+XlHdClpu4MA4AHH7yr+7HP3bTp7y317R+1HHVKTiRJOgvACgBuAG8B+ECW5T0nOK8XgMsBjAUwTpKk22RZ3hzAeKkRabxDuYL++OTkS7sTZdkZuHXkyEaOiqhlsruBib8aoNcBz58NaJo6IKIgpapwWxVdnqCLbJKp76qiKqqKeleHT0npaH3qqUn7azp+5ZVXl1x55dUlJzomCALGj5+YO378xNzqj99zzwP5vttjxz5+YOzYxw/47hsMBnXt2k92nqi91q3bOJmAkL/qOnKyEsBEWZY/OtlJsixvB7AdwKuSJN0AT0LT5dRCpKbiW1on6I3HHcsRtNhTVor/nWQhHBEFjqIC3+V4fmU/eyagEWp5AhH5TVXhVlW13gkCEZ26ur6z7FVbYnIsWZY/ANCz/iHR6WLxoYOYtjsVzoiY445ptZ4Vub5CjUREREREp6pOIyeyLPu1J7W/z6PTg1xejoqKcgw3hhx3rJ1Oi/iYWIjFhU0QGREREflwChUFk7quOXmuPo3KsjzFv3DodGL3LnbXnGC3rrM0QO+UTsg5mH/cMSIiIiIif9R1zckLx9xXAQjwLJAvBBAFQA/AAaAYAJOTZk5xuzE0IgpOVYFOOH5yu1vUAG4XVIezCaIjIiIiomBU12ldh9emSJI0DMAaAGMArJdl2e19/DIAS+DZapiaOVtVFe5plwIAkEXtcduGKKIGcAOKkzP3iIiIiCgw/NlqaT6AZ2VZ/sCXmACALMtfAZgMYFqggqOm46iqPHxbMJiOO65qvHmti3WUiIiIiCgw6l0hHkBbAHtrOHYIQLz/4dDpwm6pAgC4VRWCRgu41KOOK97kRHUyOSFqDEYNsHlUFSKjQmCrANzc5JSIiIKQPyMn/wJ4RJIkXfUHJUkyAngKwB+BCIyalr3KAgBwKgpU9fg1J0dGTrjmhKgxCAJg0gFmnec2ERFRMPInOXkawIUA9kiStFCSpGmSJC0GkAmgD7jmJCg4LN7kRFWhqOpxx1VvnROBH98SERE1a1VVVeLKlcta+e5PmvRk+/vuu11qyGvu379X/8knH0WdShtr174XM3DggP41HW+MfgwcOKD/2rXvHV8QrhnauzdbP3DggP6//fZLWFPGUe/kRJblnwCcB88IyVUAxgMYDuA7AP1lWd4WyACpaTisnmldLgCqcnxykh8ajdcz0/GPRtPIkRG1TA438Oyvejzxjec2EVGgLF26MH79+vcTfPefemryvhkz5mQ05DVffPHZ9n/88VtEQ16Dmid/1pxAluWtAK4PcCx0GnFabdDCm5yc4LglJBy/FhfhHE7rImoUbhX4dI9nxPKJvoDIqV1EFCDqMfO3IyIiGuEjkBPMGSeCn8kJAEiSNBzAxQBaA3gGwBkAtsiynBOg2KgJ2UNCMCc9DbHxrXH+CY5rvYUZ7XZ74wZGRERERykrK9PMmvVq0p9/bo50uVxCSkpHy0MPjd3ft28/CwBYLBbxlVemJP/991+RFotFk5iYaLv11jsPDB9+ZencubPafPDBu60BzxSld99dt33BgjfaFBTkGxYtekf+7bdfwiZOfKLL9Okzd7/++mttCwoKDO3bt7dMnjwl65tvvoz67LMN8W63Wxg0aEjRpEkv7BMEAaqqYvHit+O/+ebL2EOHCgw6nU7p2rV75fjxT+9t16694777bpdSU3eFpqbuCh058rKwDRu+2u5wOIS5c19r8+OPG2OsVosmKamt9e677zswePCF5b5+fvnl55ErVixuk59/0NixY+eqvn37ldf0PfFxuxVMm/ZC8o8/fh+j1WrViy++rHDs2CdytVrPW+A///w9ZOnShW327EkPcTqdYnx8gv3mm2/Pu/rqa4t9bXz88YfR77+/OiEv74AxMjLKeeWVVxfcc88Dx1WhPnSoQPvww/dJkZFRzjlz3swwm83KTz9tDF+06K3E3Nz9pri4ePv//nfDwblzZ7V/991129u2be8YOfKyXmeffV7pP/9sCS8rK9M999yUPeecc37FihVL4r744tO4wsJCfWxsrON//7vx4KhRtxYCwG+//RL21FOPdfG1AXimZN1883W9ZsyYvfu88wZVTJr0ZHtFUYSoqGjnDz98H2O328TevfuWP/30cznx8QkuAEhN3WmcPfv/2mZkpIdERUU5b7zx5rxT+kEMkHpP65IkySxJ0jcAPgdwN4Ab4CnCOBrAFkmSegQ2RGoKNgH4p6wUOeKJf0TMUHFmZBSSuVsXEREFEVUFqpwQm+rfCZZ51hKvikcffajzgQO5hqlTZ2S8+ebitK5du1U9+uhDXbdv/9cEAPPmzWqTnZ1lfuWV19JXrFizo3//M8teeeWlDnv3Zuvvvvv+g1dddU1+dHS0c/36z/5NTEw+roCZoih48825yRMmTMqeN29BallZmfbhh+/rtndvjun119+S77jjnv1fffV53PfffxMBAMuWLYpbu3ZN6/vvf2j/ypXv73jxxZf3HDiQa5w9e0YyAMyYMSejc+cuVeeee37J4sUrUwHg2WcntN+y5e+Ip59+NmvhwhW7LrhgSMlzzz3d6bvvPG3+9dcfIS+//ELH884bVLpo0Ts7L7ro0qL1699vXdv3Z/futNDS0hLdvHkL0p54YmL2d999EztjxrRkADhwIFc3ceLjXVJSOloXLFieunDh8l2dO0tVs2f/X/uCgnwtAHz++SdRM2dOTxk8+MLixYtX7rz77vv3r169os17762OrX6doqJC7Zgx90sxMbGO119/K91sNivbt/9neu65pzv16XNGxcKFK3beeusdB5YsWZB8bIxff/1lqzFjHtv76quzdg8YcHblq69OS37//dVtbr31zgNLlqzcefXV1+YvWDC/7YoVS+Lq87OxefOvUeXl5drXX39Tfu65l/akpu4Kmz9/TiLgSWifeOIRyWw2u998c1Hq2LFP7H333Xfa1Kf9huLPyMnLAPoDGAbgF3iqwgPAbQC+BvASgGsDEh01Gd+IiM47QnKsaIcNT3aSkOdmckJERMFBVYFbvzJ3lUs0IU0VQ9cod+XKyyxyXXfl27Tp57D0dDlkw4Yv/42NbeUCgMcfn5C7a9fO0PfeWxXfq1ef7Ly8AwaTyexu1y7FHhER4R43bnzuGWf0r4iIiHKHhoYqJpNJEUVR9X2ifiJ33XVfbv/+Z1UBwHnnDSz97LOP45577qUcs9msdO4s2VatWpG4Z0+66aKLLi1LTm5rHz/+6ayLL76sDACSk9s5/vhjc8nPP/8YBQBRUdFurVar6vV6JTa2lSszc4/h119/iZ4/f2Gqb7SnY8dO+Xv2ZJjef39VwkUXXVK2du2auC5dpMqxYx8/AACdOnW2Z2buMX3xxScnfcMeERHpfOmlV7OMRqPatWt326FDh3IXLJjf9tFHn8x1OBzCTTfdeuDeex/MF70fxt511315P/74fUxm5h5jXFx85bp178Wfe+75xQ888PBBb1x2i6VKYzSaFN81ysvLtGPGPNAlNraV/bXX5u0xGo0qAKxZszI+JaWD5cknn9kPAJ07d7EXFxfrFi1666gE5Ywz+pVdcMGQCk9b5eLXX3/e6p57Htg3cuT/ir3XPHTgQK7h/fffbX377XcX1O0nAzCZTO7nn5+ao9Pp1C5duto2b/61aMuWvyIA4PPPP45yOBziiy9Oz46IiHB37drdZrVa9k2d+nzHurbfUPxJTm4E8LQsyz9IknR4NbQsywclSZoK4I2ARUdNRi0qwuCYVojUG054XNB5HtfW8xMeIiKi05lw4qWWp620tF1mALjxxpG9qj/ucrkEp9MhAMCtt955cPLkpzpdffWlfTp37lLVr9+ZZcOHX1lcn7UlKSkdbb7bBoNRiYiIdJrN5sNv0PV6nWK3O0QAuPjiy8q2bPkrZO7c19rk5u437N+/z7R//z5jVFTUCReq7tq1wwwATzzxyFE7a7ndbsFsNrsBICcn23zGGf3Lqh/v1at3ZW3JSceOnSy+ZAEAevfuW+VyuYQ9ezIMvXr1tv7vfzcUvfPO0ricnCxjbm6uMTs70wwAiuIWAGDv3hzTBRdcWFy9zRtvvKWw+v2VK5cnut0u4dhrZWZmmI+detav35kVwFtHxZiYmHT4e5uRsdvodruFM84YUFn9nL59+1V++umG+EOHCur83j0+PsGu0+kOxxMSEup2uVyCJ7Y95vj41rbqPwP9+59ZeaJ2Gps/yUkkgOwajpUACK1PY5IkxQF4DcBlAEwAfgLwpCzLu7zH+wJ4HcAAAEUA5sqyPNOPuKketAfz8HBKR2QIAo4b3wUgGIwAAO7VRUREwUIQgJWXWWSLy69SCwFh1kKpTy0jRVEEk8nkXrBgeeqxx/R6vQIAAwacVfXRR1/+98svP4b/9dcf4d9882Xse++tajN16oz0QYMGV9TlOjrd0R9HiifZlWPhwjfj16xZmTh06EWFffv2q7jhhlEFP/64MfKXX36MPtH5qurJcebMeTMtJCRUqX5Mo9GoR847ehG9VqurNZEURfGocxTF817cYNCr6emyccyY+7u2b9/B0r//mWUDBw4pi46Odj7yyAPdql+/ttejV6/e5ZdfPqJw2rTnO/7ww3fFQ4deVO59LhSl9oX/er3huD4Kx1xUUTzflurJRvUpgE6n67jrVD/3iOoP1f/72Rj8SU52ALgFwDcnOHaV93h9fAJAgWc74ip4poV9J0lSJ3iSlW8BbADwIIBzALwpSVKRLMvL/Iid6khxeFISt3ji9EPwjqjouNcGEREFEUEAQnRQaj/z9NCxY2er1WrVOBx2oWvX7oc/gX/uuafbderU2XL77Xcfmjv3tTZ9+vSrvOSS4WWXXDK8zO1277vppmt6/PDDd1GDBg2uEAQhoG9KP/jg3TY33XTrAd9UKABYvfqdhKPX0xy5ZufOkhUA8vPz9Rdd1Ofw6Mjs2TMSBUFUH310/IEOHTpaUlN3HvUBeGrqjlqn32VnZ5oVRYFv2tbWrX+H6fV6pV27FPvMmdOTwsMjnAsWLNvtO//bb7+KADxreQAgMTHZJsupR11n+vQpyfn5B/Vz5ry5BwAuuGBoyfDhV5T+8MO3xbNnz2jfv/9ZO8LDw5X27VMsxz53+/ZtJ425U6cuNo1Go27d+ldoz569rL7Ht23bGhYREemMjIxy63SepLO8vPzwm7ScnKwTT3WpQefOXSwbN34bU1RUqI2JiXUBwH///dNk0xmr8+eTgakAbpMk6TMA98KTgg2WJGkegIcAzKhrQ5IkxQDIAnCfLMt/y7KcCk9y0hpADwD3A7ADGC3Lcqo3IZkNYIIfcVM9KHZPcqLUkJyIOhMAQAuB1aqJGoFRA2y8oQpb7wOMfu+zSETBZujQYWXt2rW3Pv/8Mx03bfo5LDNzj2HGjGlJP/zwXaxvKlZubq5hzpz/a7tp089h+/bl6D///JOowsJDhl69elcCgMlkUqqqqjQZGekGp9N5yn/VY2JiHVu3/hUuy6nG9PTdhtmz/6/Nn3/+Hul0Og+/7zSZTEpBQb4hN3e/rmvX7rZ+/QaUzZ07s90333wZkZ2dpV+8+O34Dz9cm5CYmGgHgJtvvuNgTk626dVXpyVlZKQbPvpoXfSXX37WquYoPIqKivTPPjuhfVraLuMXX3wa+e6777QZOfK6fIPBoMbFxTuKi4v0Gzd+G75vX47+yy8/i5w7d1Y7AHA4PFPibr75trzfftsUtXz54risrEzDJ598FPXNN1+2GjhwcOmx13rqqUn7HA6HMHPmy8mAZzpdVtaekJkzX0nMyEg3fPXV55ErVy5PBI4fGfGJiIhwX3TRpYWrV69I3LBhfXRm5h7DypXLWn399RetrrnmunxBENC1a3er0WhUli1b1Dozc49h8+ZfQ5csWZBUU5sncuWVI4vDwyNckyY9lbJjx3bT5s2bQt944/XjFus3BX+KMH4M4FYAveGZNCfAMy3regAPyrK8rh5tFcmyPEqW5Z0AIElSPDxFHfcD2AVgEICfZVmuvkBro+dUqV47FlD9qE5vclJDkUXB6JnWpWOxBaJGIQhAtBGIMYMfCBDRYRqNBnPnvr27c+cuVdOmPd/h3ntv6/7ff9vCJk9+cY9vytakSS/k9O7dt+KVV6ak3HbbjT3feWdp4h133LP/mmuuLwaASy65rCQyMsp577239/jvv23mU41p0qQXsux2uzh69D3dxo17sGt2dqbpoYfG5lRUlGv37s3WA8CIEdce2rdvr/Huu2/p4Xa78corszLPPXdgydy5r7W7886be37zzZexDz/8aM71148qAoBevXpbp06dkb59+7awe++9vcf69e/HX3/9qFq3vh0w4KxSjUajPvzwfd3mz5/d7rLLrix4+OFxBwDg9tvvLjjvvEHFr746rcNdd93SY9WqFa3vvPPe3NjYVo4dO7aHAJ71M2PGPJbz+eeftLrrrpt7rFixJPG++0bvve66G4uOvVZsbCvXffc9tH/jxu9if/zx+/Bu3XrYnn12SsZff/0eee+9t/VYsWJJm8svv6oAAHQ6fY2jVU8//dzeK64YUbB06cLEu+++pcdnn30c98ADY/bee++D+QAQFhamTJgwOTM3d5/p7rtv6TF37mttH3hgzL76JCchISHK3LlvyVqtVh037sGu06e/lHLDDTcfrP2ZDU9Q67tnXTWSJEkAYgCUAkiTZdnvYVBJkhYCuA+ekZIRsix/I0nSfwC+lGV5QrXzugPYCeBMWZb/9uNSmW63klJebq39zHrQaESEh5tQXm6F291sRoNr9NlT49GhoAA7QsKgveFxAJ75pQaDDna7E9bCfPT52LOgq8vCRdDWsHC+OQm21/BYwd4/IPj7GOz9A4K/j+yf/8LDTdBoxCwAHQLR3pYtW7qKouaruLjESr3eaKv9GUT1888/W8xarVbt1avP4TedGzasj54zZ2b77777Zauv1kpL4HDYjAUFuaGK4r6sf//+aSc7t97fFUmSNgJ4SJblNFmW5WOO9QawSpbl3vVtF8AcAAvgqZeyQZKkgQDM8CQr1fl+gRj9uAYAz5vsqKiGmVYXHm5qkHYbm8a7YEzQ6mAyHb2dsMGggxAdhQXZmXAoChYZNQiLOC2mKQZEsLyGNQn2/gHB2Ue7C3jpF8/tZweZYAjyv2nB+BpWx/4RBb+0tFTz0qULk5588ums7t17WLOzsw0rVy5rc/75A4tbUmJSX3X6zngTBd8UsCHwrDE50bSqKwH4tT9ytd257gdwLoAxAKwAjv1I3peUVPlzHQBQFBXl5RZ/n35CwfZpmMu75sSt0cBq9dyuPnLiUjT4vtCz1fahonK4lOb/nyzYXsNjBXv/gODuo9UJrPzP8yHAmN5WGMTg6p9PML+GAPt3KrwjJwFtk6gh3XTTLYVFRYW6t96a17akpFgXHh7uGjRoSPGYMY/lNnVsp7O6vqO8F8Dt8Cx+VwG8Cc9ak+pzwnwT3d6t68W9Cc4wAB/IsuwGAFmWFUmSdgFIBLAPwLHVKn33T+mFdbka5o+C2600WNuNKdWgxyfbdqN7SlckK0dP/VMUFYAAjVYHt8sJq9WGsLDm32efYHkNaxLs/QOCs4+uatUIFLcClxJc/TtWML6G1bF/RMFPEASMGfNo3pgxj9a6NoaOqGtyMg7AMngSkI0AHoZnwXp1bnjWnuysx/XbwJPM5HvbhSRJOgD94NliOB/Ag5IkaXzJCzzJjCzLcp0rZFL95asqNpcUo31oRI3n9IqIhMblhK28DIhLaMToiIiIiCgY1Sk5kWW5DJ7iiJAkaSiALQBCZVk+6H0sCkCyLMv1rXHyL4Cv4aldch88RRwnAYiCZ8tgG4CnACyRJGkGgLMAPApPzRNqQHa7Z6mPVquv8ZyHk9shQquFveAQ0Emq8TwiIiIiorrwZ/LmvwA+AvBjtcfOBrBNkqQNkiTVeQs6WZZVADfCM2ryPoA/AUQDGCTL8l7v6MilACQAWwE8D0/1+BV+xE31EGe14uyoaISqNQ/Lu7w7vTltgd35jIiIiIhaJn9WMb8CT4HEMdUe2wjganjqnkyBp1ZJnXhHZR7y/jvR8b/gWSBPjehslxvXdeyCf6017zvgKz7jtAZ2cwEiIiIiapn8GTkZAWC8LMsf+h6QZdkhy/KnAJ4BcEOggqOmI3pHTERdzdO6fMmJy8bt4YmIiIjo1PkzchIGz9qQE8kHEOt/OHS60PiKc56kuKLLu0Gb08ppXUQNzaABPr/WgogIMwwuQHHX/hwiIqLmxp+Rk60A7qnh2F0A/vM/HDpdaLy5iaCrudalS/AkJ4rD0RghEbVoogAkhqpIDvfcJiIiCkb+JCdTAYyUJOlvSZImSZJ0nyRJz0iS9AeA6wC8ENAIqUkcHlLT1Txy4vaOnLi8O3sRERER+eu7776OkOXUmj8VrYP77rtdmjTpyfYBCskvc+fOajNy5GW96nr+pElPtr/vvtsbbdtTVVWxbt37MYcOFWgBYO3a92IGDhzQv7GuX5t6JyeyLH8L4Cp4CjBOAbAAwEvwvJ+9WpblrwIaITUJrfeTWeEk07r+UkUszslCRWhII0VF1HI53cCsv3WY9ovnNhFRMNm3L0f/wguTOhUVFeqaOpZg9/vvv4bOmfN/7a1WiwgAV155dfH69Z/929Rx+fiz5gSyLH8J4EtJkozwbP1bJstyzds6UbOj9Y6KCCcZOcnQ6LHzUD766/l7hKihuVTgnV2eDSrukgAdp3YRURBRfWtdqcGpqnrUXxCTyaSaTCZXTec3Nr+SEwCQJKkbgIsBtAYwX5KkMwD8K8tyRaCCo6azeH8OtIqKQaHhNQ6v+Qo02jmti4iIgkiVs+aZJRoBqlELtS7nigJUk5/n1sfGjd+GL1u2KDE3d7/RYDAq/fr1Lxs//pl9UVFR7t9++yXsqace6/Luu+u2t23b3gEAe/dm62+++bpeM2bM3n3eeYMqAGDZssVxH3+8Pr6srFTXpUvXyl69+lR8991XsRs2fLUdALKyMg0zZ05PTkvbFWYymdwjR16X/8UXn7YaNeq2vOuvv6kIANauXRPzwQdrEgoLDxliY1vZL798xKE77ri7QBQ93V6//oOYDz54NyE/P98QGhrqOu+8QSVPPDFhf35+nu7mm6/rBQBPPfVYlxtuuDlv7NjHD+zenWZ8/fXXktLSdoUZjSZ3z569Kx5//Kl98fEJLgCw2+3CrFmvJv3884/RLpdLuOyyyw8pysm/hQMHDug/evQje7///tvorKw9IfHxCba7774/95JLhpf5zvnuu68jli9f3CY3d78pKiraccEFQ4tHj34kz2AwqACQlrbL+Pbb8xNTU3eF2WxWMSYm1nHVVdcU3HXXvQUnuuby5Yvjli9fnPT0089lXnrp5aW1vZ779+/TzZ8/J+m//7aF22w2sWvXbpVjxjy6v3v3nod3IPr44w+j339/dUJe3gFjZGSU88orry64554H8muLz/fzAAA333xdr3HjxmcDwOuvz2y/adPfWwCgpKRYM3/+nMS//vo9sqKiQpuS0rHq/vsfyj3nnPMqAc+0te3bt4WdeeY5pZ9+uiG+oqJC26WLVPnkk8/kdO7c5ZTfFNY7OZEkSQPgbQB3AxDgmd61Fp4CiR0kSRosy/L+Uw2Mmo6qqvjlkOf/1wXGmmtqxmhF9AgLh1BW3lihERERNbjBa8POqOlYvzhX2cKLrBm++5d8GNrH7hZOmHR0j3ZXvnOZRfbdv3JDaK8Kp3DC914dI9yW96+wpNY31qKiQu2UKc91uueeB/YNGTK0LC8vTzd9+pQOs2e/mjRlyis5dWlj5cplrVauXJr44INj9vbrd2blN998GbVmzcrEmJgYBwBYLBbxscce6tK6daLt9dffTquqqtTMnj2j7aFDBYenV6xZszJ2+fLFSQ89NG5vnz5nVO7atcP8xhuvty0sLNA/+eQz+3fu3GGaN29WuyeffCarT5++VRkZ6cbp06d0iIiIcD344Ji8efMWpD7yyAPdJk16Yc+gQUPK8/IO6MaOfVAaOHBwybhxT6RarVZx8eK32zz44N3dVq1auzMkJESZPn1K27///iNi/PinsxMTE+3Lli1qLcupoQkJCSd9g7xs2aKkO+64Z//TTz+X/fHHH8a+9NJznaKiotPOPPPsqh9++C582rQXOt5774P7zjtvUPnevdmGefNmt92/f69x5sy5mRaLRXziibFdevXqUzFv3ttpWq1O3bBhXeySJW8nDxhwVkWvXr2P2sJ01arlrVasWJI0efKUPRdddElZTTH5VFRUiA89dG/X+Ph4x9Spr6YbDEZ1yZK32zz66EPS0qWrdiUltXV8/vknUTNnTk+59dY7cy+66NKSXbt2mGfPntE+JCTUPWLENcUni2/AgLMrJ016Yc+0aS90nDdvQWrXrt2tn332cbTv+m63G2PHPtjF6XQKEyZMzmrVKs75/vvvxk2c+HiXOXPeTOvbt58FANLTd4cYDEb39OmvpVssVeL06VNSZs58ud2CBct31+Vn7mT8GTmZDOAWAPcC+BzAQe/jTwD4BMA0AHecamDUdBzVdt/SavWoaXr7maoL/aXuyMw7WMMZRERE1JAOHDigc7mcQuvWrR3Jye0cycntHNOnz0x3udx1nvy5fv37CVdcMaLghhtuLgKATp06H8zI2B2SmZlhBoDPP/84qry8Qrts2f9lRkVFuwHguedeyrr//ju7+9pYs2Zlm+uvH5V39dXXFgNA+/YpjqqqSs2bb85t98gjj+fu25djAAQkJSXbk5LaOpKS2joiI6N2h4aGuTUaDWJiYlwAEBER4Q4NDVUWL347ITIyyjl58ot7fdd49dXZmVdeeVGfL774NOqyy64o+fHH72NGj35k77BhF5cBwIsvTs/+3/+uDKutv0OHXlR42213HQKA8eMn5u7Y8W/Y2rVr4s488+ysVauWtx427JLCW2654xAApKR0sGu12pwJEx7vsndvtt5sDlFGjLimYNSo2wrCw8MVABgz5rEDH364NiE9Pc1UPTlZs2ZV7NKlC5Oef35qxpAhw+r0Se7HH6+Pqays0C5duio1NraVCwBefnlm5nXXXdXrvfdWtxo//uncdeveiz/33POLH3jg4YMA0LFjJ7vFUqUxGk2KxVIl1hZfRESEGwBiYmJcJpPpqKGmn37aGJ6VlWletGjFzm7detgAYPLkF/fu3p0Wsnr1ioS+fftlAoDb7RZeeumVLN/Pw4gR1xasWLE4qS59rI0/ycndAJ6TZXmZdxQFACDL8n+SJD0HTwV5asZsVZU4MzIKTkWFKGrhVk58nip6X36Xs/GCIyIiamA/XV/xT03HNMLRU6++ubayxoXE4jHnfjaycntdz62rXr16W88/f1DxCy9M6jR37ixHnz5nlJ933sCyiy++rLQuzy8uLtIUFhbqe/XqU3l0u30qfMmJLKeZW7duY/O9EQWA7t17Wk0msxsACgsPaYuLi3WrV69IXLNmZRvfOaqqwul0Cnv3ZhuGDBlW9uGHaysffvi+bvHxCfa+ffuVX3DBkNI+fc6wnCiujIzd5gMHck3Dhp1/1CiW0+kUc3KyjHv2pBtdLpfQs2efw2uejUaj2r59ygnbq65fvwFHLUGQpG5V27ZtDQeArKws8549GSE//PBdzJF++GJKN1544cXlN998e8Fnn30cvWdPujk3d78hJyfLDABut3I4ISwpKdG99dbcdhqNRk1KalvnqU6ZmXtMCQmt7b7ExNevTp06V2VlZZoBYO/eHNMFF1xYXP15N954S6Hvdl3iq0lGRrrJZDK7fYkJAAiCgO7de1Zu3fp3uO+x8PAIZ/Wfh9DQULfL5QrIakh/kpN4ANtqOLYfQJTf0dBpwVFehic7SVBUFVmiBqhh/qai8SQnquu0WUNFRER0ykJ0qOFjucY7tz5efXV2Vnr67gObNv0UsWXLX+Gvvjq1w0cfratcuPDIFJvq682dziNvIjUaz1tBRan5jatGo4Gq1nxcUTzduvfeB/ede+7A40YIkpKSHXq9Xl24cPnu7dv/Nf322y8RW7b8HT558oTOgwdfWDR16qvZxz5HVVWhR49e5U8++czeY49FRES49+3bq/eed9QxrVZba5J37DmqqkIUPRXeVFURRo687uCIEdcUHfu8+PgEZ0FBvvb+++/sFhYW7jrnnPNK+/c/q7x37z5VN944snf1cwVBxJQpL6cvXbqwzbRpL6QsWbIyzbf25mRUVYUgHP+tVhRF0Gg8MWo0GvUEpwAA6hrfSa5/ostDUZSjvm86Xe3fZ3/5U+ckA8DlNRwb4j1OzZjd4vnQwamqUE88jRYAoGq8u3QxOSEiImoSW7b8GTJ9+pTkzp272O+6676C+fMXZowbNz57164dYYcOFWh1Or0CAOXl5Ydnu+TkZB1eKxIREeGOjY117Nix/ai6AKmpOw/f79Spi+XgwYOGkpLiw22kp+82WK0WDQC0ahXnCg8Pd+Xm7jd06NDR7vu3c+d/5rfempeoqio2bvw2fP78Oa179epjfeCBMQcXLly+e9So23J/++2XKADHvSFv1669NTd3nykxMcnhay8qKso1e/aM5LS0XabOnSWbTqdT//nn71Dfc1wuF7Kzs2peLOu1a9eOo/qalrYrtGPHjhYASEpqa923L8dYvR/5+Xm6uXNfS6qsrBA//XSDb9pV2sMPj8sbPvyK0rKyUu+H/Ufer0dGRjgHDx5aPnHi5OzMzAzzsmWL4muLCwA6dOhkzcs7YPDVIAEAm80mZGZmmNu2bW8FgMTEZJsspx7Vh+nTpyQ/+uhDHesSnyAINSYWnTp1sVosFk1q6s6j6s3s2rUzNCmpra2m5wWSP8nJHADjJEmaD+AieHraWZKkJwCMB/BG4MKjpuC0eqZLulT1pFv7qd5PW+Bm0QWihmbQAOtGWPDtrYDB730WiSjYhIaGub/66vNWM2dOT8zM3GPYtWuHaePGb6Pj4xPsMTGxrq5du1uNRqOybNmi1pmZewybN/8aumTJgqTqycD11486+MUXn8atW/d+TGbmHsPSpQvjNm/+NRresgIjRlxTHBYW5po8eULKjh3bTVu2/BkyZcqzHQBPUiEIAq699oaDX3zxadyKFUvisrIyDV9//UXk/Pmvt9PpdIrBYFA1Gi3ef391m6VLF8bl5GTrt23bav7jj82RnTtLVQAQEhLqBoD09N2msrIyzY033lJgsVg0Eyc+3mH79v9MO3fuMD3zzJMdMjLSQ7p06WoNCQlRLr/8qoLVq1e0+fLLzyLT02XjlCmT25WUFOtr+559+umG+A0b1kdnZKQbXn11WlJOTrZp1Kjb8wHgpptuOfjnn79HzZ07q01GRrph06afw2bMeDmlqqpSGx+f4IqPT3DY7Xbxs88+jtq/f6/+p582hr/44uQOAOBwOI57X92tWw/bNddcf3D16hVt9uzJqLk+g9dVV40sNptD3M88M77j1q1/m739TrHZbJrrr7/pEADcfPNteb/9tilq+fLFcVlZmYZPPvko6ptvvmw1cODg0rrEZzaHKACwa9dOc2Vl5VExDx48tCw5uZ11ypRnO/z22y9hu3enGV966bm2+/fvNd100835tcUfCPX+EyfL8mJJkloBmARgNDw/uWsAOADMkGX57cCGSI2tenJysi35VK1n5ESoaVEKEQWMKACdIlVERQElJWiYuSFE1OxIUjfbs89O2bNixdI2X375WZwoimqPHr0qZs6cmy6KIsLCwpQJEyZnLl78dtLdd9/So3XrNrbRo8fumzz5qS6+Nm655Y5D5eXlmhUrliTOnz9H2717j4ohQ4YVpqbuDAMAg8Gg/t//zUl/7bVX2j7yyP3dQkJCXTfeeHPeggVvtNXpdCoA3Hvvg/kGg1H55JMP45YuXZgUERHhGjbs4sJx48bnAsDgwUPLx459InvduvcSVq1anqjX65UzzhhQ9sQTE/YDQHR0jHvo0IsKly1bnLR//z7DpEkv7Js9+420N9+cm/Too6O7iqJG7dJFqpo1a57cqlWcCwAef3zCfr1er8yfP6etzWbVnHfeoOL+/c8sre17dsklww+tW/de/Jw5M03t2rWzTJ8+M71HD882vVdcMaJEVdXMNWtWtv7www8SzOYQ94ABZ5U+9thT+33H09JSDy5a9FbyvHmzxNjYVo5LL728cPPmXyO9o02Hjr3e6NGP5P36689R06a90H7x4nfkk03vioyMdM+d+7Y8d+5rSU899ajkfY0r5s59O61dO89W0BdffFlZaWlpzgcfvJuwfPnipJiYWMd9943ee911Nxapqora4uvWrYe1b99+Za+88lKHW2/dlxsREXl4CoxWq8XcuW/tnjVrRtKLL07u6HS6hJSUDpZXXpm1u3//sxqlpqFQ36I3kiRFybJcIklSOIBzAcQAKAXwuyzLxSd98ukh0+1WUoqLA/v91WpFREWFoKSkCi5X837bsPO7b6B7710UuVw4dO9LULw/I6IowGTSw2p1QFFUlH29Guce3IMsUcClC5c1cdSnLphewxMJ9v4Bwd/HYO8fEPx9ZP/8Fx0dAo1GzALQIRDtbdmypasoar6Ki0us1OuNjTJd5XT1ww/fhXfuLFmTkpIP73Dz/PPPtDt48IBhwYLlu/fuzdZnZWUaBw++8PB6kry8A7rrrx/Re+bMubKv/kVzMHDggP7jxo3P9tVmocbhcNiMBQW5oYrivqx///5pJzvXn8kBf0qSNFmW5fcBfO1fiHQ6c9qs0AFwA4cTkxMpC43Cyn05CGvbDpc2WnRELZPTDSzaoYPJBNzSyTfZgojo1H311Rcxixe/bXr88ady4uLinX/++UfYL7/8GD169Ni9AGC328Vnn53Y+fbb795/8cWXlZSXl2kWLHgjMT4+wd6//5mN8mk6tRz+JCdRAAprPYuaLZfNs+NdbStJqkIj8Wl+HnonJDR8UEQtnEsFFvznmUp9YwdAx+yEiAJk4sTJe2fOnJ787LNPd7JYLJr4+Hj7ffeN3ucbXejcWbJNmDA5891332n97rvvtNHp9Grv3n3KX3/9zd2+aV1EgeJPcvI6gP/zLoDfIcvycXPrqHmzhZjxXnYmIhNao+dJztPqPG+UHPY6b99NREREp5moqGj3tGn/l32yc664YkTJFVeMKGmkkBrMpk1/b2nqGOjk/ElObgfQDsB3ACBJ0rHHVVmWuZdMM2bVavFdYQF6tkk6aXJiEEV0NIcglrt1EREREVEA+JNErAp4FHRacTg86+G0Ot1Jz4u0WzC9ey8cYp0TIiIiIgoAf5KTLAAbZVneH+hg6PSglJWiV1g4ErQnT04EvWe7bg6TERFRM6QAUFVV5Qouogbm/X+mog474ftThHEWgAF+PI+aCfOBXDwrdcfAWraZFnWe4qFa/lonIqLm56Cqqk6Hw1ZrRXEiOjUOh82sqqoTQF5t5/rzoXcBgEg/nkfNhOJweL6epEgQAAgGT3Ki46amRETUzPTv3798y5Yt75SXl4wGEKPXGy2CIHDnKaIAUlVVcDhs5vLyEr2qKkv69+9fUdtz/ElOFgF4Q5KkoQB2ADiulL0sy+/40S6dJlSnZ82JqtGc9DzRl5yIIlRVhSAwSSFqKHoRWHW5FeFhJug1gBp89fuImsLLbrcLpaVFtwuCYAZLCBEFmqqqqlNVlSUAXq7LE/xJTl7zfr2tpiAAMDlpxhRvcqKImpP+lhb1nuREIwhwOWzQGUyNEB1Ry6QRgZ6xCqKigJISIAiLixM1uv79+ysApm7ZsuV1VUVr+DfdnYhqpgDIq8uIiY8/yUmKH8+hZkT17r6lampLTo4kI7YqC5MTIiJqlrxvnOr85omIGk69kxNZlnN8tyVJMgMIB1Aky7IzkIFRE/IlJ+LJfzxEgwlrD+yHU1HwiJMvP1FDcrqBVWk6mMzAte0494SIiIKTX7vASpI0CMAMAGfC+zdSkqQ/ATwjy/IPgQuPmoQvOdHWsuZEo8GHBflwu5wYDa4hJGpILhWYs1UPABiRDOiYnRARURCq99xKSZLOg6c6fCSAlwA8BGAqgGgAX0uSdG4gA6TGl2XQY8W+bBwKi6z1XK23Fordbm/gqIiIiIgo2PkzcjIVwC8ALpVl2e17UJKkFwF8DeBFAJcEJjxqCnsF4Kv8gxgVFoXWtZybaA6BIgD2qspGiY2IiIiIgpc/u1KcBeD16okJAMiyrACY5z1OzZjD4Vk/oqmlQjwAPJncFjN69IYzr9aaOkREREREJ+VPclIBoKZ3rXpwnWazF2a1onNIKEx1qFvi8n51Wm0NGxQRERERBT1/kpNfATwjSVJo9QclSQoD8DQ8U76oGRvkdGFat56Iryqv9VxfcuKyWxs2KCIiIiIKev6sOZkIYAuATEmSPgNwEEACgCsBGAHcFbjwqCmIigKIIlRN7dO6XN6BMjcXxBMRERHRKfKnzkmGd0eu5wFcDs8uXcUAfgDwoizLuwIbIjU2UfVsCyzoDLWe6/ZO/XLZOK2LqCHpRWDRJVaEhZmg1wAqK8QTEVEQ8qvOiSzLuyRJGifL8kEAkCQpGkASE5PgoIEvOdHXeq7bO3Li4sgJUYPSiMCZCQqiooCSEsDF5ISIiIKQP3VOIiVJ+hbAj9UePgvANkmSNnirxlMzpvHWU6xTciJ4foQUh6MhQyIiIiKiFsCfBfGvAOgB4Jlqj20EcDWAAQCmBCAuakKH68LXYVpXqqDBh3m5qDAZGzQmopbOpQDvpWmx4l/AyVETIiIKUv4kJyMAjJdl+UPfA7IsO2RZ/hSehOWGQAVHTUPn3UFY1NeenOzSGvFe7j6UGpmcEDUkpwK88qcBz/0IuNy1nk5ERNQs+bPmJAxASQ3H8gHE+h8OnQ4+LSyAxuVGN3P4kVGUGmi9U7/sXHNCRERERKfIn5GTrQDuqeHYXQD+8z8cOh18mpeHdXm5EELCaj03VKNBgsEIVFU1QmREREREFMz8GTmZCuBLSZL+BvARgAIAreBZc9Ifnnon1EwpigKXywkA0Gj13n27anaO24aHe/XFngN5DR8cEREREQW1eo+cyLL8LYCrAKjwLH5fAOAleBKdq2VZ/iqgEVKjsttsSDGHINlogqipbVIXoIje/Nab0BARERER+cvfOidfwjN6YoSnCGOZLMuc1xME7OVleLV7LwBAhqiBu5ZdgVSNLznhCl0iIiIiOjV+JSc+sizbABwIUCx0GnBYLAAARVUhiFpAOfnErsPJidvV0KERERERUZA7peSEgo/dm5w4VQUQRAAnHxFRtToAgODmyAlRQ9KJwNwLbQgNNUKnAcBaJ0REFISYnNBRXDYrAMCpekZPauVNTmqd/0VEp0QrAhckuREVBZSUeIoyEhERBRt/thKmIOaweJITl6rWKzkRFb5TIiIiIqJTw+SEjuK02wAALgBqHfKNSnM4vsjPQxrXnBA1KJcCfJyhxdpdnmrxREREwcivaV2SJMUCeBLAxQBaA7gUwDUAtsmy/HHgwqPG5rJZoYdnpYlah5GTyohYvLsvB91CQzG2waMjarmcCvD8bwYAwOZRgE5o4oCIiIgaQL1HTiRJSoGnCvz9APYDiIMnyekCYL0kSVcENEJqVDadHusP7MdfTketBRgBQOud1mV32Bs2MCIiIiIKev5M63oNnqrwKQCuBSAAgCzLtwD4BMAzAYuOGp3dZMT7B/bjzzquIdFptIjU6WBysggjEREREZ0af5KTYQBekmW5FDjuw/UFAHqealDUdOx2BwBApzfU6fxIuwUL+/TH2OhWDRkWEREREbUA/i6Ir2n1swHHJyzUjLirKtHGaESETlen8wVvEqPl/HciIiIiOkX+JCe/AHhakqSQao+pkiSJAEYD+DUgkVGTMObkYE7PvrhcqFu2IeqNAAAtmJ0QERER0anxZ7euifAkIBkAfoBnpGQ8gO4AOgEYFLDoqNEpTs+0LkWsW94qGDzJia6OyQwRERERUU3qPXIiy/IOAAMAbAQwFJ5dZy+GJ1k5T5blbYEMkBqX4vAlJ5o6nS/qTQAArSjC6X0uEQWeTgRmXGDDm5cDurr99yQiImp2/KpzIstyOoBbAhwLnQYUl2c5kVrH5ERjNB6+bbdUQafXN0hcRC2dVgQuae9GVBRQUuIpykhERBRs/C3CKADoCyAEJxh9kWX551MLi5qK6t0SWBHFOq0i8Y2cAIDDUgVERjVQZEREREQU7OqdnEiSdBaAtQCSvA/53sOq3tsqAE46aKZ8yYmqqdsSd1Grww9Fh+Bwu3GDq6ZN3IjoVLkUYGO2BqGFwFnRTR0NERFRw/Bn5GQ2ACeAO+GpEM/JBcGkntO6AGBpXh7sNgtGCv7uTE1EtXEqwFM/e6ZRbh4F6LgHBRERBSF/kpN+AG6SZfnjQAdDTS9Pr0Nafh5CW7dDXcsqanU62G2Aw2Fv0NiIiIiIKLj581F3AThaErSytFqs2JeDQ5ExdX5OiM6AMK0WDqulASMjIiIiomDnT3LyBoCJxxRhpCDh8G4HrNHWrUI8ADyXnIwlfQfAuW9fQ4VFRERERC2AP9O6OsNTcPGgJEk7ARz7cbkqy/KwU46MmoTGZkO0Tg+9pu55q28ZvMtua5igiIiIiKhF8Cc56QRgW7X7xy7L5DLNZmyIxYo7+/TDv+WldX6O2/uSu2xcc0JERERE/qt3ciLL8tCGCIROD6KqABAg1GNal8ubjrpsHDkhIiIiIv/5VYSRgpeoqIAoANq6V3p3eZcuuTmti6jB6ETgxfPsCAkxQKsBtyUhIqKgVKfkRJIkN4BzZVn+U5IkBZ5CizVRZVmuc9IjSVI0gJcBXAkgHMB/ACbKsrzJe7wvgNcBDABQBGCuLMsz69o+1Y9G9by0gt5Q5+e4Bc/QidvOaV1EDUUrAld3ciEqyoCSEk9RRiIiomBT1yRiCjwFF323T5ac1Nd7AOIA3ATgEICHAXwjSVI/7/1vAWwA8CCAcwC8KUlSkSzLywIYA3mJvpe2HiMniigCUOH27vRFREREROSPOiUnsiy/WO32C4G6uCRJnQBcDOB8WZZ/8z42DsBwADcDsAKwAxgty7ILQKokSZ0BTADA5KQBaL25iaCre3KyV9DiUOEBxOt7NVBURORSgN/2axBaCvQOb+poiIiIGkZdp3VdUJ9GZVn+uY6nFgK4AsCWas9VJUkSAEQD6ADgZ29i4rMRwNOSJMXJslxQn7iodod/IPR1T0626UOwNXsPHgm5qkFiIiLAqQBjNxoBAJtHATrui0hEREGortO6fsSRqVw1/UlUvcdUAJq6NCrLcimAL6o/JknS9QA6AvgawDQA24952gHv17bwVKv3i1brT/3Jmmm8dUE09agPcjr6raIMepcLCSHhEMWjX2rf/WMf1+k8O3s5nY6Af18bU7C8hjUJ9v4Bwd1HbbXJtKJGRDP+r3ZSwfwaAuwfEVFt6pqcNMr2wZIknQ9gKYCPZVn+VJKk2fBM66rOtyWU0d/riKKAqKiGKXAfHm5qkHYbywcHD6CqqgpTY+NgMJ149MRgOHqbYaPRCJ0gQFRcDfZ9bUzN/TWsTbD3DwjOPhqcR26Hh5tgrvtu381SML6G1bF/REQnVtc1Jz81dCCSJF0N4F0AvwMY5X3YCuDYbaN8SUmVv9dSFBXl5ccWtj81Go2I8HATysutcLub7zY6du+OW063CsV69AJ3URRgMOhgtzuhKEc+xj3bUo6H+5+NzKy9KCnx+2VpcsHyGtYk2PsHBHcfrU4A8CT/5eVW2MXg6p9PML+GAPt3KsLDTRyRIWoB/KpzIklSLIAn4VnM3hrApQCuAbBNluWP/WhvDDzbBX8I4FZZln2jJfsAtDnmdN/9XD9CP8zVQPtwut1Kg7Xd0FwuF0IgwKnRQBS0RyUg1SmKetQxReP5MVKdrmbb9+qa82tYF8HePyA4++hyH7mtuBW4lODq37GC8TWsjv0jIjqxen8EIUlSCjy1SO6HZ3vhOHiSnC4A1kuSdEU92xsNYB6A+QBurJaYAMDPAAZJklR9DcswADIXwweevbISi/r2x/IzzjxqfnttVG9yArfr5CcSEREREZ2EPyMnr8GzEH0IgEoADgCQZfkWSZJMAJ4B8HldGpIkqQs8IyYfAZgOIE6SJN9hKzzrT54CsESSpBkAzgLwKDw1TyjAHJYjU7IEgwlwn+TkalSNZ/K74K7jE4iIiIiITsCfyZvDALzk3Wnr2M/XFwDoWY+2rgOgg2dKWN4x/173jo5cCkACsBXA8wCelGV5hR9xUy0cVs86HLeqQtTUI2/VMjkhamg6EZh4lh1ThgDaOu2HSERE1Pz4teYEQE3zdwyoR/V4WZZfBvByLef8BeDcuodG/nJYrAAAp6KghuUmJ+ZLToJ8DjxRU9KKwE1dXYiKMqCkxFOUkYiIKNj4M3LyCzxFEKvvGatKkiQCGA3g14BERo3OafMkJy6oUNW6Zyeqt5q8WK+MhoiIiIjoaP6MnEyEJwHJAPADPCMl4wF0B9AJwKCARUeNymGxQgTgUgGlHsmJwxSKP0qKYQsNbbjgiFo4twL8c1BEWBXQmSUkiIgoSNV75ESW5R0ABgDYCE9xRjc8WwpnADhPluVtgQyQGs+RkRPUuI3wiVRExuG1PbvxdVVlA0VGRA4FuO8bE25aDzi4vIuIiIKUX2tOZFlOB3BLgGOhJubUaPBbYQEEcwji6jFDS6vzrDlxOOy1nElEREREVDN/izB2AGCUZXmXJEmRAKYBSAawVpbllQGMjxqRzWzCW9mZ6NS5K26tx/O0Ws+aE6edyQkRERER+c+fIoyXAUgFcLf3obfhKciYBGC5JEn3BC48akwOhxPAkZGQuoqwVeG9/mfjpdZJDREWEREREbUQ/uzW9RyAbwC8KElSBDw1SqbLstwPnkKK4wIYHzUiu9UCgyhC7919q64EvRGiIEArCA0UGRERERG1BP4kJ30AzJFluQKeAolaAOu8x74F0DlAsVEjM2ZlYWW/s3BzPUdORIMBAKBjckJEREREp8Cf5MSKI2tVhgPIl2X5P+/9BAClAYiLmoDbu2ZEqWeSIRo8+5rqRBFOpzPgcRERERFRy+DPgvhNAMZLkhQN4AYAywBAkqT+AJ73HqdmSHE6AABuUVOv54n6I0UXnFYLdLqIgMZFRIBWAB7t54DJrIdWhKfCFBERUZDxZ+TkMQCJAFYDyAIw1fv45wCM8BRppGZIsXuSE0VTv+REMBxJTmxVVQGNiYg8dBrgzp5OPNjfc5uIiCgY1XvkRJblLEmSegCIk2U5v9qhkQD+kWWZ+8k2U6p35ESt58iJRquDoqoQBQEOi6UhQiMiIiKiFsCfkRPIsqwek5hAluXfAWi9Ww1TM6R614vUd+QEgoB/K8rxd2kxnN4Eh4gCy60AOwpF/HvQc5uIiCgY1XvkRJKkdgAWABgMoKY9ZznpoBlSXS7PV039lyLNPXAAVZVlOEdvCHRYRATAoQC3fuGZQrl5FKDj5nhERBSE/FkQPxvAeQAWAjgfgAXAZgCXAOgF4NqARUeNqkgUUVBcBCUuCVH1fK6vcKPDwVl9REREROQff6Z1DQYwWZblcfDs1GWXZXkCgAEAfgJwdQDjo0Yk63WYnZmOvJi4ej9Xq2VyQkRERESnxp/kJBTANu/tXQD6AoAsy24AbwC4MBCBUeNzODzrRTTa+hVhBIAJrVtjdb+z4MrKCnRYRERERNRC+JOc5MFTbBEAMgBES5LU2nu/GEB8IAKjxue0WQEAOl1NS4lqphFE6EQRLrst0GERERERUQvhT3LyOYCXJEk6T5blfQD2w1OUMQzA3QByAxkgNZ7hFis+GHAOksuK6/1ct++rjckJEREREfnHn+TkOQClAKZ47z8DYJz3sVsAvBaIwKjxiYqn5LTgx8iJW/BsHeSycythIiIiIvKPP0UYiwCc7ZvKJcvyakmScgCcC+BPWZZ/CnCM1EhEVQEEDeBHcuISPHmum9O6iBqEVgAe6O2AyaSHVgSgNnVEREREgefPVsIAAFmW8yRJ6gogCkCeLMv/F7iwqCloVe/Iid5Y7+cq3pETxcGRE6KGoNMAo/s6ERWlR0kJ4C1LREREFFT8Sk4kSboHnuldSdUe2wfgaVmW1wQoNmpkGt8nsXo/pnWJGgBuJidERERE5Ld6rzmRJGkMgEUAtgC4A8BwAHcBSAWwSpKk6wMaITUaje+rrv4jJ0WiFjvKy2DR+LOMiYhqo6hARqmA3UWe20RERMHIn5GTcQDmy7I89pjH35EkaTGAFwCsPdXAqPHpvFOz4Me0rj8NYfhr90948EKWuSFqCHY3cN0nZgDA5lGATmjigIiIiBqAP8lJEoBPazi2Bp4du6gZ2l5RDqMgwGgOrfdaW613Eb3dzgrxREREROQff+bg/AVgWA3HzgDwn//hUFNRVRWvZ6Zjenoa1NDIej9fq/NUlXc4mJwQERERkX/qNHIiSdIF1e6uATDbW3TxAwAH4dmx6zIAYwE8EOggqeG5XE4oigIA0Gj1h4sq1lU/exXu7NsfeXkHAx8cEREREbUIdZ3W9SOO3lVfADAawIPHPAYA74FrTpode7XiiRqdHu56blOqE0WEaXUocHJ/UyIiIiLyT12Tk6ENGgU1OVvRIazpfzbsbjcOChoASr2er2o907rqndUQEREREXnVKTlh1ffgZ6usgkYQoBFFqEL9twHyJSeCUr+khoiIiIjIp04L4iVJ+lmSpL71aViSpAGSJG3yKypqdE5rleerqkBV/Sii4EtO3PVdrUJEdaEVgNu7O3B/P0DLckJERBSk6jqt63UAX0mS9DeAVQA+kWXZcuxJ3kXyl8KzKP4MAA8FKlBqWPYqK0QALhXwZ/BD1Xq2EhY5ckLUIHQa4PEBTkRF6VFSArg4g5KIiIJQXad1rZck6ScAzwFYDEArSdIuAFkAqgBEAkgG0BOA03vOrbIs5zdE0BR4TpsFBgBOqH6NnAjeOicaf0ZdiIiIiIhQjyKMsiwXAhgrSdKLAK6DZ5F8BwARAAoBpMIzwvKpLMtFDRArNSCn1QoDADcEKEr9EwyXwYyMqkqUeeudEFFgKSqQWymgUgOY+RkAEREFqXpXiPcmHgu8/yhIuKw2z1cB9a4ODwAV0QmYm7oD7dq1x6jAhkZEAOxu4IoPzQCAzaMAXf33rSAiIjrtcVklAQDsAvBfeSny/Hy+r0K83eGo5UwiIiIiohNjckIAgIrwcEzdnYZvBY1fz9d6F8Q77PZAhkVERERELUi9p3VRcLJ7kwq9Xu/X80MdVrzR6wxwAyEiIiIi8heTEwJwJDnR6vxLTjQ6PVoZDLBzK2EiIiIi8hOTEwIARGXuwbK+A7DH7d/Yh6A3AQB0ggC32w2Nxr/pYURERETUctUpOZEk6fb6NCrL8jv+hUNNxuFAiFYLrejfMiSNwQgAEAUBDqsVptDQQEZHRERERC1AXUdOltejTRUAk5NmRvXusqWKGvizQ6loNB++7bBWMTkhCjCNANwgOWEw6KAR4d+e30RERKe5uiYnKQ0aBTU51eX0fNVq/UpOBO2RtSr2KgvQKkCBEREAQK8BnjnbgagoHUpKABd3nyAioiBUp+REluWcujYoSRJLgzVHLjcAQBX9W4YkiCIcigK9KMJhrQpkZERERETUQvj1TlSSpJsADAagBw5/0C4CCAFwLoCkgERHjefwyInO7yb22W0QFBWSwxmoqIjIS1WBYhugWACBU7qIiChI1Ts5kSTpeQDPAyjzPt/p/dcKgAJgUSADpMYh+EZOTiE5mb4/F+VlRXjfaAxUWETkZXMDF34QAgDYPArQcYyaiIiCkD9bM90BYBWAaACzAXwqy3I8gDMBFAHYGbjwqLEUQ8Xuygo4TebaT66BxlsjxeFglXgiIiIiqj9/kpNEACtlWVYBbAFwHgDIsrwFwDQA9wYuPGosm6BictpOHGrV2u82tN5RF4d35y8iIiIiovrwJzmpwpFNLNMBpEiSZPLe3wbu7NUs2Ww2AIBO7/+UrPtjYzC3Z1+4c7IDFBURERERtST+JCd/wjO1CwD2AHABuMh7vxsAzulphmw2KwBAp/M/OYnUaJBgNMJtsQQqLCIiIiJqQfzZretlAN9JkhQpy/JVkiStArBCkqQfAFwK4KOARkiN4i69ESG9z0CupcLvNlyCZ4Wu2878lIiIiIjqr94jJ7Is/wxgAID3vQ+NAbAOQFcAawGMDVh01GjCICBWbzi8qN0fiuD5cWJyQkRERET+8KvOiSzL/wH4z3vbBuD+QAZFjc+3LaloMJ38xJNwe0dOFC6IJwo4jQBc1dEJg14HjYgjK/+IiIiCiL9FGCMAXAhP0cXjRl9kWX7nFOOiRqb3jnoIBrPf73ncoghAgZtbCRMFnF4DvHS+A1FROpSUAC5XU0dEREQUeP4UYRwOz/StmgpiqACYnDQjiqLAIHqSE9FohtvfdgQNoCpQWSGeiIiIiPzgz8jJdACpAB4HsB+eqvDUjNmrqg7fFk3+JydVGi0OVJbDzvkmRAGnqoDVCRicnttERETByJ/kpCuAq2VZ/iXQwVDTsFWUH74t6kP8Tjc3myIx6/cfcPdZZwUoMiLysbmBQR+EAAA2jzqyToyIiCiY+JOc5AAID3Qg1HRsVisyqiqhFUUIOj1g928yu87gqZHiq5lCRERERFQf/hRhnA7geUmS2gc4FmoiDq0Gz6TuwJScLCiK//NFdDoDAMDCIoxERERE5Ad/Rk5uAZAIYI8kSYcAHPtOVJVlueMpR0aNxmq1AQAMRuMpJSedXTZc2r0XqgqLAhUaEREREbUg/iQn+73/KEj4pmEZDEYop7DS1iSKaG8OQTZ36yIiIiIiP9Q7OZFl+a6GCISajisrE/N7nYFDgnBKIyeqd1qXqPi73xcRERERtWT+1Dlpe5LDCoBKWZZL/Y6IGp2rshJxBgPsbjcqTqEdQe9ZEK9RuLs0EREREdWfP9O6soGTF7KQJKkYwOuyLE/1JyhqXE6rZ1qXS/Rnf4RqvLt1aViEgSjgRAG4qJ0Lep0WoohafgsTERE1T/4kJ3cAWAjgRwBrABwEEAfgOgBXAngJQCiAyZIkFcmy/FZgQqWG4rZ5FsS7TzE5EY1mAICOb5qIAs6gAWYOtiMqSouSEsDl347fREREpzV/kpNRAN47wdqTVZIkvQWgvyzLIyRJKgUwGgCTk9Oc27sgXhE1p9SOYDABYHE4IiIiIvKPPx+VDwHwbg3HPgQwzHt7EwBuKdwMuO0OAICiOcXkxBSKEocDZU7u1kVERERE9efPyEkRgD4Avj3BsT4Ayr23QwFU1adhSZImA7hIluUh1R7rC+B1AAO8154ry/LMekdNNVIcds9XjT8/Dkeoka3wwH9bIQgCtqoqBIFDKESBYnUBg94NAQBsHsURSiIiCk7+vBtdDWCKJElOAOsAFMCz5uRaAC8AeFuSpCgAjwL4va6NSpL0KIApAH6u9lgMPEnQBgAPAjgHwJvetSzL/IidTsCqqthvtcIWHgXjKbSj03u2ElZVFQ6HHQbDqbRGRERERC2NP8nJZHiSkVnefz4KgKUAnoFncfwZAC6srTFJkhIBLAYwCIB8zOH7AdgBjJZl2QUgVZKkzgAmAGByEiBpIWa8v/NfjOzeD31PoR1fcgIAVquVyQkRERER1Ys/RRhdAO6WJGkagKEAYuGpGP+rLMtZACBJ0pcAEmVZttehyX4ASgD0BvAcgPbVjg0C8LP3mj4bATwtSVKcLMsF9Y2fjmfz7tZVPbnwhyhq8JzUHWZRA0tBPiIjowIRHhERERG1EH4vMpBleQ+APTUcK6lHO58C+BQAJEk69nASgO3HPHbA+7UtPFPK/KLVnmJNj2NoNOJRX5sTu92TnOgNRohizRPZfcdOdk5bsxmhGi2cleUB/x43tOb8GtZFsPcPCO4+aqtt0S1qRDSz/151FsyvIcD+ERHVpk7JiSRJmQCukWX5X0mSsnDy8l+qLMuB2qXLDM+0rups3q9+zxkSRQFRUSF+B3Uy4eGmBmm3IZ1XXoGLevRGoa0SJpO+1vMNBl2NxxzenwzR7Wiw73FDa46vYX0Ee/+A4OyjodomeOHhJphr/m8YFILxNayO/SMiOrG6jpz8hCO7cP2ExqtNbAVw7FwjX1JSr53AqlMUFeXlFr+DOhGNRkR4uAnl5Va43UpA225oZqcTbU1mlKkCrFZHjeeJogCDQQe73QlFOfGPgMFbHb70UBFKSvx+iZpEc34N6yLY+wcEdx+tTgDwJPzl5VbYxeDqn08wv4YA+3cqwsNNHJEhagHqlJxUL7goy/KdDRbN8fYBaHPMY777uafSsMvVMH8U3G6lwdpuKKJbAUQRilZfY9JRnaKoNZ7nhGfKl72yqtl9H3ya42tYH8HePyA4+6gowMBEF3Q6LaAGX/+OFYyvYXXsHxHRifm15kSSpDAA4bIs50qSpAcwDkAygHWyLP988mfXy88AHpQkSSPLstv72DAAMhfDB45WVQCIEE3mU27LN/PEaQnsyBRRS2fQAPOH2REVpUVJCeBy1f4cIiKi5qbe46OSJJ0FIAfAI96H5gJ4FcCtADZKkjQicOFhKYBwAEskSeouSdKd8NRPmR7Aa7R4Ou8giGA89TUiLsHzI+W0Wk+5LSIiIiJqWfyZvDkNQBqABZIkmeBJSt6UZTkawBIAkwIVnHd05FIAEoCtAJ4H8KQsyysCdQ0C9N7Nt0TTqScnNlFEmdMJp9NZ+8lERERERNX4M63rbAA3yrKcJUnSlQBMAFZ6j70HT7LilxOtZ5Fl+S8A5/rbJtXO4B3tEE1hONUZwp9ozPhv60aMv/iiUw+MiA6zuoCLPzBDALDxekBX847eREREzZY/yYmCI9v7Xg6gFMCf3vvhALjYoBlxOhwodNhhFDUQzaGnnJzovVXhbTZO6yIKNJuLGQkREQU3f5KTvwHcK0mSFcCNAD6TZVmVJCkOwETvcWombHY7Ht3xLwBgeljUKS+y1ek8Oz9brbZaziQiIiIiOpo/ycmTAL4CcBOAQwCmeh/fAc8alksDExo1Bot3Vy2NRgtB1AJwn/wJteipOnGp1B1K7int9ExERERELVC9F8TLsvwPgE7wrAPpIMtyuvfQaAA9ZVneEsD4qIFZrZ5CiSazGXUocVKrcEFA97BwmLhbFxERERHVk191TmRZrgDwxzGPrQ9IRNSoLDk5mNG9F0qAOhVgrI3qndYlcLcuIiIiIqonv5ITCh720lK0N4fA6HKhRDn1ar6q3rMgXmSFOCIiIiKqJyYnLZyjshIhAJyCADUA07pUgwkAoHGf2toVIjqaAKB/vBs6rQYCN+0iIqIgxeSkhXNUVQIAXKI/9TiPJ3gLOWoDMApDREcYtcCSS22IigpBSQlOeWc9IiKi01Fg3pFSs+Xy7tblDlBy4qsyrwvAKAwRERERtSxMTlo4l3dXLbcmMINogikMDkWBU+G0LiIiIiKqH07rauEUu6dYoqINzI+CO7Y1bt36J7RaHatxEgWQ1QWMWG+GIAKfjwR0XHdCRERBiCMnLZzd5UKxwwGHVh+Q9gxGMwDA5XLC6XQEpE0i8iixCyhmCSEiIgpiTE5auJ0hZjz431bsjEsMSHt6g/Hw7crKqoC0SUREREQtA6d1tXAW74L46knFqRBFDR7vJCFMo0HVwQOIiooKSLtEREREFPyYnLRwVqsnOTEEKDkBgG6hYYjQamEpLgpYm0REREQU/JictHBnl1fgAqk7ymyWgLVp91ZztJWVBaxNIiIiIgp+XHPSwsW63OgaFg6TRhewNu3wbCNkrygPWJtEREREFPw4ctLC6VQFgAjRFBqwNh2CJzlxVFYGrE2ilk4A0D3GDa1GA4HbCBMRUZBictLCGbyV3IWQ8IC16RQ8A3LOKu7WRRQoRi3w7hU2REWFoKQEcLmaOiIiIqLA47SuFs4oen4ExEAmJxoNAMBlCdw6FiIiIiIKfkxOWjCHzQqDNznRhEUErF2XqIVDUeC02wPWJhEREREFPyYnLVhlUeHh29qQwNUj+Sk0Frdu/RNp4WEBa5OopbO5gOHrTTh/KWDllC4iIgpSXHPSglWWlKLE4YBGFAGNFnC7A9KuwWQGAFgsXHNCFCgqgLwq8cgdLoonIqIgxOSkBbNoNXjgv62IiW2FxxU1YO3qDZ7kpIK7dRERERFRPTA5acEqKioAACEhoXC7A5ecJKtuPNmxC4TikoC1SURERETBj2tOWrBK78hGSEgoFDVwyUmYVoszo6KR4HQGrE0iIiIiCn4cOWnB1PTdeFHqjiJzSEDb9dVM0QdwqhgRERERBT+OnLRgSmkJuoWFI04T2BxVDPVsS2zkgl0iIiIiqgeOnLRgbm+RRLdWF9B2NWGebYnNoghFUSCKzIGJTpUAoEOEAo1G5E5dREQUtJictGCKLznR6QM6hKYLjwEAaAURlrIShEbFBLB1opbJqAU+vNqKqKgQlJQALtY6ISKiIMSPtFsybwV3RW8IaLMacyhcqgIAqCgoCGjbRERERBS8mJy0YKLDk5zAFOAF8aIIi1uBU1FQUVwc0LaJiIiIKHgxOWnBNL6tfkNCA9725LyDuGXrn6g06APeNlFLZHMB135swkUrASundBERUZDimpMWzOlywSFqIIZEBrxtrcmT8JSXlwW8baKWSAWQWSYeucNF8UREFIQ4ctKCzcrdh1u3/glbUoeAt200e5KTiorygLdNRERERMGJIyctlKqqKCsrBQAYzeEBb/98sxHXdOwCTUZGwNsmIiIiouDEkZMWymazwuFwAAAMprCAt99ao8WZUdHQFHFBPBERERHVDUdOWqjivXsxReqOUpcLGp0BToc7oO279QbAaoNitQS0XSIiIiIKXkxOWqiKgwfQNSwcpS4XDilqwNt3G8yAtQyC1RbwtomIiIgoOHFaVwtVeagQAGAF4HIrAW9fDfGsY9F4p44R0akRALQOUZAUBu7URUREQYsjJy2UrbQY4QDsogg18AMnQFgUAMDgZkEGokAwaoEv/2dFVFQISkoAF/9rERFREOLISQtlL/XUH3FqGyY/1UTGAgDMDZH4EBEREVFQYnLSQrm89UdcekODtK+LivN8FQS4fJXoiYiIiIhOgtO6Wiil3JucGEOgaYD2tdEJuP2fv2Bzu7GxohzR0TENcBWilsPmAu7/2gitBlh4EX95ExFRcOLISQvlsNngUBSooYEvwAgAGq0WGm+V+OLioga5BlFLogLYVaTBfwVomHViREREpwEmJy3U+qoK3Lr1TxSnSA12jZDQSABASQkLMRIRERFR7TgzoIUqKvJsJWwKb7jpVpdFxyAhxABr6i7gzHMa7DpEREREFByYnLRAqqqisPAQACDEu+VvQ2hvNKKnSY99B/Ma7BpEREREFDyYnLRA5YcO4dmUTih1OmEyhsHeQPPXHToD4LLC6d22mIiIiIjoZLjmpAUq3puNLqFh6BkeAegaZithAHCawwAAajmTEyIiIiKqHZOTFqhk/34AQKWqwulSGuw6inc9i85ma7BrELUkUQYV0aamjoKIiKjhMDlpgSr27wMAVGk0UJSG25NUiPYUYjS73A12DaKWwqQFfrjRgn/uB0y6po6GiIioYTA5aYFsBfkAALuxYT+C1cUlAwAiRZFV4omIiIioVkxOWiCltAQA4AyNaNDr6OOSoagqHKqCIu9oDRERERFRTbhbVwuks1g9NyJjG/Q6Gp0O47KykF9cgFVVlYhv0KsRBTebCxj3vRE6LTBnMH95ExFRcOLISQtktdvgUBRoWrVu8GvpIzyL4g8ePNDg1yIKZiqALfka/J4LqA23VIyIiKhJMTlpYRRFwYupO3Hb1j+hpnRv8OtFxSYAAPZzWhcRERER1YIzA1qYvLwDcLmc0Ol0MIZEwe5s2I9g+0RGY3gnCcZt2xr0OkRERETU/HHkpIXJzNwDAEhKbofG2OE3JiwK/SOjEFFe3vAXIyIiIqJmjclJC2P59Re80q0Xhickwt2ANU58tG1SAABRqmdKGRERERFRTZictDBK3gF0CAlBbGh4o1zP2E6CoqoI0WhQtDe7Ua5JRERERM0Tk5MWxlBRCQBQW7VplOtpjWYUulwAgL1btzTKNYmCiaIoKNybg/TNv0EvuGAQXEj75Sfs27kdVd6aRURERMGCC+JbEIfVgjjvbUPHnnA10nULtAbEQUHRzu3Atdc30lWJmh+3y4W0n37Ajr05+C9jN1JTd6GjpQr3JbWDEcByLDx8rhVALoC1xUXIiY1B9+49cUav3ujdvSeiWjfOhw9ERESBxuSkBcn47VfoRRGVbhd0iZ3hcjTOGpCqqDig9CDU3NxGuR5Rc1JVVop/1r6Him3b0KqqEuEaLX7LysBPRYUAgNDwCCiqikq3Gy6oUABoIcAsitCLIjKLDmFLZjr+/PN37IiMwviOXfCPqsKVkoKOl12ODgPOgiAITdtJIiKiOmJy0oLkbf0byQAKNFrYGykxAQC1rQRbUS6KKiugqirfKFGL53a5sO2zT5D//bdoU1mJOI3GM6qp0cLqdqNHp07oMfxCdGvXBsmxkYgNNUOvFSBAgdGog83qgFsFysssGFN6NrIPlWL7nhxE5ORDFAQkCQKQkwP3grfwy5vzYOvYGb1vuhkJnTo3ddeJiIhOislJC+LckwEAsMTGN+piI1O3s3DPytlwOh04a08GOvENErVQe/Zk4PPPP8bmr77Ei22SEAYAGg2KXC6UxUYirnsHdO3TGV3VYyddumFzipicNwSiRsTUhB+ggxsR4SZEhJvQvW0CLu/fFQCQf7AY6X+nwr0vH0mqgASNFsjOQun0qZijFTFoxDW48MKLYDKZG7v7REREtWJy0kI4nQ7szj+I8LBwaHuehcbc1FdnNKF9595I3/U3fv31JyYn1KIU7s3BtjWrsG/XTrz+79bDj28LD0d4q1i0HtAD/Xp3BNxOz4HjEhMPBSJ+q0ry3E4QAZy4UFF8QjTirzwfAFBWVontm/4DsvOg2h34atd//9/encfHedX3Hv88M6N9l2VZki15ie0TJ97ixHbsxMapSXwJUFMKpOQFhaRsyeW+aEkh9BZCLgHaQlualttAoQEKCaFAbhZILilZ7XhJ4njDjk9iy44t27IsWbL2ZWae+8d5ZE+EJjexZM2S7/v1mtfI5znz6Pys55l5fuecOQ//d+tmCgoK+eTKK1lw5WoWvWs9kZyc8QtYRERkDJScvEVs3ryJuw8e4P9UTuILcy6lbwKndQHMuXgpr+x9gR2P/5aPfORjE/q7RSZaX1cX2352Lz3PbaU+FqXBCzE1ksOP8/NZfNkSrr3iUlaY6UTiQUIynJiMs7KyYq5850oAmk608amd0/n1xudpaW7hklPtFPz6V7zw4AO019Uy5z1/zOxll5+XdoiIiLxRGZGcGGNCwJeBjwEVwEbgZmvt/pQ2LIM88MAvAVi1Zt2EJyYA8xas4PLdz3Bhbj52wzOYVasnvA0i51NfXy/bHnqAzg3PUNfTQ3U47DZ4IY7FosRmTuVnN6yntCAMfhzi5ychSWbalEnccM1KPnr1Cva80sSxZ3dS2ztIZSRCZctJ4v/2HZ68638TnTOHOe98NzMWXTKh7RMREYEMSU6ALwGfAm7ArZ75DeBRY8zF1trBlLYsA7y8aSM92909RhZffnVK2lBSUUWsqAyIc/CnP1FyIhkvHo9z8IXn2WH3smHb82ze/CxXlpTxyRmzIBzmVDTK6epK5ly5hJUNk/GjwVuVP/GdA4k8z2P+3HqYW09//wC7t+yh175KfdxjajgMjY3cfetn2ZWfz+rVV3HFssuZP38BReUVKW23iIi8NaR9cmKMyQVuAT5vrX0kKLsOOAa8F7gvhc1Le72dnRz73ne55YK5vJCTS25xLdFYai6OupetI/7cI8waHGTTj+5m5UduTEk7RM7FqaYjNG7ZzKl9LxE/1sSk3j7KIhFeOHyIp1qaATg6OYfG0kJqFhkWL5qNFyQkZxKTNJOfn8fSNUtgzRJOtXawZ9Nu/KaT7Ojs5HDzcQ4dOsjhXz/MJ2bMpNmHgcmTKZk9h9qFi2lYfAk5eXmpDkFERLJM2icnwGKgBHhiuMBa22GMeRFYjZKTUcXjcfY9+TjH7/kx9eEw3bEoVe/7OL0pSkwASi5ayo6dz7BksIfSp5/iv442seKmT1NcUZmyNon4vk9vRzvtx47S2dxMd2srHUODHOzppqnpCF1Hm7g+DuWRCKVA6fALIxEG43HmNdRzwTuuYtWiC5lZVYo/2O+2p2lCkkxlVTmr/nAVAEv638Xz+4+wccdLNBxrI+KFmOYBbW3Q1kZs6xZsPE6b7/NUWSlF06ZRWzuV+sIiyvPyKKmeTOmUWsqm1BDJzU1tYCIiklEyITmZFjwfGVF+DGg4151GIuO7mO6mPa/y9L/eRe1AF/gAPu5uHu7Z9+GhcBmDXgjwWRLrYXZ8AADPvcDV993PD1BET7CHJQxwsT9wts6ZfQM+3B/PpcMP4fs+S0JRVtJPFTHKIxHqQyF6YzEeWvABjg8uhTFcL3kehMMhYrH4cDPfvLV/i/erv+CScJTpjY0cvuXP+cqpHjpLqokUFHO5N8h0P0o8NPrf55HcSQx5btuiaBczYv1Jf9Vvcivp99y8//nRbi6I9SWt+3hOBd2hHEJhDzPQzdxYT9K6T+VUcDrkTp050R4ujvYmqenzTKSMtpBbCemCaC+L4r2v2Z5oQ6iYEyF3ITcz3s9lr9OGZ0OFHPVc3Yb4ICviyetuCRVyiBw8D+qJckWs+8y2xGMO4DmvgFc8194aP8pav/dMO0fenWYbeezFtaGKGNfSS7IDYwe57CIX3/epIMZ6b/jv9vv1d/sRtvmubilx3hcaSFp3bzzCFt+1t8CPc31kwJ1viecIEAL2Dvk83jtAdLCP/Oggt0+pINfzyPc8IsHxFgHKgW0nW/juq40A5IZC3LxkGXHfpyUaozmcT3tpNafrFzI0ZwVEcgGfX/QDTaOGPy6i/tmIvtVyGZHzveZeNRRcAy3xOL840Uhh41YmnTxI1UAXdSEoCIepBX678Wm6om6FsRvqZ/COKTUMAW3Boy8WY8D3GfLhG6e66QrnEcnNZ1VBDgvCcXw84p6Hj4fvDT9C/DpcRlcoB88LMT/ei/n/nL/D5+SFsV7mRUeeD2f/757OKePU8DkZ62NBrOc1x0riUbYpp4yToVzAY0asj0XRbpLZGimlOexGkqbF+rk02pW07va8Mg57eeD71MYGWBbtTF43UszhcAEA1fFBVgydTlp3d6SIxrBbIroyPsSqoY6kdfeGi3gl4uqWxaOsGWpPWteGC9kXKQKgOB5l7evUPRAppHXabO689UbycjLhEkNE0k0mvHMML8Y/MKK8HzinLvdQyKOiomhMjRrpzrvvY82rO1lWNTlpne+8ePZDfG3DTC6tnpK07vd2baZ10GUSb5vWwKKautErenD33m0c7Xcf3FfUTWN23TTA9eo+Fy/kPxf9Ja1TLoHkn6sTatvae7jqub/h3R0vUBb2ePnQHuLsAWD9zNksnVRFsuuu7zz/BD0xt4TqVdNnsnxy8v/DH2x7mlND7v9w5bTpLK+pTVr33u0bOD7gLpgvqZvG8rppSev+cuezHOpzScb8mjqWTUueIz+8ZysHut1FytzqGpY2zEha97GXXuBgp7vwmFk1mctmXJC07pMvb+dQh7tAmFo5iUtnJV+eedMru3n1lLvbeFV5BUtmm6R1nz/4EodbWwAoKynlEnNR0ro7j7zMkRNuOlN+UTGL5s3//Qwm8NLRRo4cPwpAuKCQhRcvTLrfA82v0nTU9UVE8/JYsCD5F7OPnGzi6JFXASjPyWH+okuT1m3uaqH1kEs48kMhKqe+9lwdjMfpjMXp9D26imrwFizHK28gWtbA/8yPcHzKUgaKRhxvKTqnHu6Y4OW4C+bBxe88++94lMktO6lt2U7P6mvxuo7C6SP00sLxwSglIY/iiOsYKAiHKQhe1nH8AKejbiGA0vrpXDRllHPSd4+7d27ixIB7218+tZ6ltVOTNu9nuzZxODgnF9VOZdnU+qR1H/zdZg70uD/chVNqWF4/I2ndx/ZsZX+XSxxmVFWzfMaspHWf3vc8+4NzsrayiuWzZietu+Xlbew/1QZARXkFy1/nnNy+fzv7W08CUFRaxvK585LW3du4i/3BFENTXMLyCy9OWvfAod+xv/kYADMKCln+Oudk0+G97D/mMu/avHyWL1ictG7rUcsDGx/giXWruf6a5OejiEgynn/OXeATwxjzx8AvgEJrbV9C+X8Cedba9W9yl42xWHxmZ2fyXrhz8dLhFh793o8o6z6N6+D03FADgOfGRnZV1BMNu3ywoecUVQPdwTYv6O31gos7j32V0xiK5OLhUdNzikn9ncH+zu5z+Hc0VkxlMCcPD49Jve1URgfw6+aQe9FKQiXl4xajB4TDYWKx2Ch92G+eH4/Td3gvzW0n6O1oZai/h/qO41T0d+LFRr+Hw7byOmIhd9Ezo+cU1QPJRwx2lNcyGPSmNvS2U9Of/EpyV1kNA+EcPM9jam87dX3JezJ3l9bQG3EjBrV9ndT3j+zJPHuFvq+kmu7coNezv4uG3vazxwWv7aV9pbiaztwCPM+jqr+bhp62YHfembpesO+DJZPpyC0EDyoGepje3RpU9Ubs1+Nw8STa84rxPCgb6md6Z0vS9h4tnsSp/BIAigf7mNn12rp+QtubiypoKygHoGCon1mnm38/OQnqtxSW01pYDnjkRQeZ1XHsNe1NbEtrYSkni1y/Q24syqz2o6PuE6C9oJSW4kkARGIxLmhvwvPODuD4Ca/pLq6kvaqenNx8Irn5TOrtwMsvxissIVw1lVBJ5dn2pOnbohu9DM7BNG0jAB7EBvuJtR3D72jB7+/G7+ultbCMoegQQwN9lJ86RnlvB148BvG4WyjAj+PFY3i+z97SGvo9Dz8eZ2pvB7X9yUci9pROoS8YwarrO83U1zl/Xyqtpivszt+a/i4aejuS1t1XMpnOSD4A1QPdzOw9lbTuy0VVtOe6vrSqgR4u6G1LWvdAcRWtuYXgQ8VgL3N7WpPWbSys5GReMQBlQ31c2H0yad1XCypoDs7fkugAF3WdSFr3SEE5x/LdJMXC6CALupqT1j2aX0pTcK7nx4ZY1Hk8ad3m/BJisy/ito+tTzqSeq5KSwsIh0MHgeRZoohkvEwYORmezlUHHEgorwN2nutOo9HxnRIxr6Gald++nfb2nnHf99gkm3L05kUiISoqimhv7x+/GM0s3sznzEfH57eO6mx86fY3HB/ZHh+MNcbx7bA4H87LOXhe1QSPNy7bj1PFJyLy+sb3ixfnx06gE1gzXGCMKQeWABtS0yQRERERERlvaT9yYq0dMMZ8G/g7Y8xJ4BDwTdyIyv2pbJuIiIiIiIyftE9OArfh2vp9oAB4BlinGzCKiIiIiGSPjEhOrLUx4NbgISIiIiIiWSgTvnMiIiIiIiJvAUpOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLnu/7qW7DROvzfT8/Hh//uMPhELFYfNz3m06yPUbFl/myPcZsjw+yP0bFd25CIQ/P8/qBgnHfuYikjbdictIB5AHHU9wOEREReeNqgQGgPMXtEJHz6K2YnIiIiIiISBrSd05ERERERCQtKDkREREREZG0oORERERERETSgpITERERERFJC0pOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLkVQ3IBsYY0LAl4GPARXARuBma+3+lDZsHBhjvgi83Vq7JqFsMXAncBnQBvyztfbvU9LAc2CMqQS+DrwLKAV2AV+w1m4Mti8mg+MDMMZUA/8A/DegAHga+Jy1dm+wfTEZHuMwY8xc4EXg09baHwZli8ng+Iwx04FDo2z6uLX2+5ke3zBjzJ8CXwBmAQeA2621Pw+2LSZDYzTGrAGeTLL5oLV2VibHB2CMyQFuBz6M+9zbAdxqrd0UbF9MBscnIqmjkZPx8SXgU8DHgRWADzxqjMlNaavGyBjz58BXRpRNAv4LeBn3ofNl4A5jzA0T3sBzdx9wOfAnwFLche1jxpgLsyQ+gIeAC4B34GLsA35rjCnMohiHL5DuAYoSyrIhvoVAP1AH1CY87smS+DDGfAi4G/guMB93Xt5njFmRBTFu4rV/t1rgGiAKfD0L4gP4InAjrlPuEmAf7nOvLkviE5EU0cjJGAUJyC3A5621jwRl1wHHgPfiPnAzijFmKvB9YBVgR2z+BDAA3GStjQIvGWPmALcCP5jQhp4DY8xs4GrgioQevs/gLuKvx13EZ2x8cObi/CDwVWvtnqDsDlzP5sXA28nwGBP8L6BrRFlGH6OBBYC11h4fuSHoNMjo+IwxHnAH8C1r7Z1B8R3GmCuBNcEjY2O01g4CzcP/DpLobwG/DEa+/ooMji+wHrjXWvsYgDHmFlyisgKYS+bHJyIpopGTsVsMlABPDBdYaztwvfGrU9OkMVsCtON6b7eO2LYKeCb4wBn2BGCCqUTprhV4J7BtuMBa6wMeUEnmx4e1ts1a+8GExGQK8JdAE7CXLIgRwBizGvgk8JERm7IhvoW4v9VosiE+A8wA7k0stNaus9b+DdkRY6L/DtQDfxH8OxviawPeZYyZYYwJc7ZTYAfZEZ+IpIiSk7GbFjwfGVF+DGiY4LaMC2vtw9ba6621jaNsnsbosUIGxGut7bDWPmKtHRguM8a8HzcF6jdkeHwjGWP+DdeD+37gz6y1PWRBjMaYcuDHwP+w1o6MJePjw42cVBtjNhhjThhjNhpj1gXbsiG+ucFzkTHmN8aYFmPMVmPMu4PybIgRAGNMPvDXwD8ljIRlQ3yfwU1TO4hLSr4OfMBae4DsiE9EUkTJydgVBs8DI8r7gfwJbstEKGT0WCED4zXGXIGb9/6gtfZhsiw+4J9wc75/AjxgjFlCdsR4F7DZWnvvKNsyOr5gquhc3GINXwSuBZ7HzedfS4bHFygNnv8DN3pyDfAY8GAWxTjsw7hFKf45oSwb4puHG2F/D+47fD8A/sMYs5DsiE9EUkTfORm7vuA5L+FncG/APRPfnPOuDxdrouEPm4yK1xizHndhtAX4YFCcNfEBJKzO9QncXPBPk+ExGmM+jJs2siBJlYyOz1o7GIwMRRNG+LYZY+bhpudldHyBweD5m9baHwU/7wiS58+SHTEO+1Pcd03aEsoyOr5gNbl7gLXW2g1B8QvGmItw3wPL6PhEJLU0cjJ2w0PXdSPK63Bz/LPNEUaPFeDoBLflnBljPg3cDzwCXGutHU4sMz4+Y0y1MeaDwTxwAKy1cdx3GKaS+THeCEwBjhhjuo0x3UH5d4wxe8j8+LDW9iROPQzs5ux0mYyOj7PvjbtHlO8BZpIdMWKMmQys5PcXRsn0+JYBObgRvURbcKN+mR6fiKSQkpOx2wl04laXAc7Mh18CbBj9JRntGWBV4oUvsBa3slBLitr0phhjbgL+Bfg2cN2Ii8CMjw93EXAv8LbhgmC1oCW4BCXTY/wQbkrJ4oQHwG24KVAZHZ8xZmGQdF05YtNluIv3jI4vsB23ytrlI8oXAPvJjhjBJSY+7j5DiTI9vuFOuYUjyhcAr5D58YlICnm+76e6DRnPGPM13KpBN+JunPZN3Eo0C4IlJTOWMeaHwIzhmzAGK63sw91H4xu4HrS7gE8lTM9IW8bdsO93wK+Am0dsHp6KkLHxwZllWh/FHYMfx80L/2tgHe5Cvp8Mj3EkY4wP3GCt/WEWHKMh3H0yioCbcCvMfQJ3vC4FTpDB8Q0z7gavn8e9dz6Hu+/QV3AXsXvJjhhvAz5krZ07ojwbjtGngMm447IJN33tr4ArgUYyOD4RSS2NnIyP24B/x90b5FncCibrMj0xGU3Q67UOtxToi7iba30ugz5w3oebjvBHwPERjzuzIL7hpZGvwy3d+TPchV8lsMpaezgbYnw9mR5fMAXv3bi/289xowzLgauttbszPb5h1tqv4u4w/jVcMvJ+4L3W2qeyJUagBrfk7mtkenzBMboe9x7zQ9zS7H+A+w7KlkyPT0RSSyMnIiIiIiKSFjRyIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhaUnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJScikpaCm0mKiIjIW4iSExFJO8aYPwR+FPy8xhjjG2PWpLZVIiIicr5FUt0AEZFRfDbh5xeBFbi7iIuIiEgWU3IiImnNWtsJbEl1O0REROT883zfT3UbRETOMMY8Bbwtoegq4EngKmvtU8aY24E/Ab4AfBWYDewDbgJ84E5gIXAA+Iy19vGEfc8H/hZYHRQ9DtxirW08jyGJiIjIG6TvnIhIurkZ2B48VgClo9SpB/4R+BrwAaAS+AXwU+B7uOQlBNxnjCkAMMbMBTYB1cBHgT8DZgHPGmOqz184IiIi8kYpORGRtGKt3Qt0Ap3W2i3BzyMVAjdba39qrX0I+FegDrjDWvt9a+2DwJeAKsAEr/ky0Ae83Vp7v7X257hRmQLgc+c1KBEREXlD9J0TEclUmxJ+bg6eE7+b0hY8lwfPa3HTw3qNMcPvfZ3ABuDq89RGEREReROUnIhIRgq+KD9S7+u8ZBJwXfAY6eS4NEpERETGRMmJiLxVdAC/Bf5hlG3RiW2KiIiIjEbJiYikoxgQHud9Pg1cBOyw1kbhzF3ofwLsB3aM8+8TERGRN0nJiYikow5ghTHmD4CycdrnV4DNwK+MMXcB/cAngfcA7xun3yEiIiJjoNW6RCQdfRsYAh7FraY1ZtbaXcAq3L1QfoxbergWeI+19v7x+B0iIiIyNroJo4iIiIiIpAWNnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJSciIiIiIpIWlJyIiIiIiEhaUHIiIiIiIiJpQcmJiIiIiIikBSUnIiIiIiKSFpSciIiIiIhIWlByIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhb+Hxxlzwq+L5mVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50: {'width': 3}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/quickstart_15_1.png b/.doctrees/nbsphinx/quickstart_15_1.png new file mode 100644 index 0000000..d72b9e2 Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_15_1.png differ diff --git a/.doctrees/nbsphinx/quickstart_22_1.png b/.doctrees/nbsphinx/quickstart_22_1.png new file mode 100644 index 0000000..48af20c Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_22_1.png differ diff --git a/.doctrees/nbsphinx/quickstart_24_2.png b/.doctrees/nbsphinx/quickstart_24_2.png new file mode 100644 index 0000000..1dadcaa Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_24_2.png differ diff --git a/.doctrees/nbsphinx/quickstart_26_2.png b/.doctrees/nbsphinx/quickstart_26_2.png new file mode 100644 index 0000000..26b2d7d Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_26_2.png differ diff --git a/.doctrees/nbsphinx/quickstart_29_2.png b/.doctrees/nbsphinx/quickstart_29_2.png new file mode 100644 index 0000000..b533c93 Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_29_2.png differ diff --git a/.doctrees/nbsphinx/quickstart_31_2.png b/.doctrees/nbsphinx/quickstart_31_2.png new file mode 100644 index 0000000..8207e1b Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_31_2.png differ diff --git a/.doctrees/nbsphinx/quickstart_7_1.png b/.doctrees/nbsphinx/quickstart_7_1.png new file mode 100644 index 0000000..57113e1 Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_7_1.png differ diff --git a/.doctrees/nbsphinx/quickstart_9_1.png b/.doctrees/nbsphinx/quickstart_9_1.png new file mode 100644 index 0000000..f794922 Binary files /dev/null and b/.doctrees/nbsphinx/quickstart_9_1.png differ diff --git a/.doctrees/nbsphinx/tutorials/calibration_curve.ipynb b/.doctrees/nbsphinx/tutorials/calibration_curve.ipynb new file mode 100644 index 0000000..b3175f4 --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/calibration_curve.ipynb @@ -0,0 +1,629 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Absolute Quantitation \n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A common goal in chromatography is to quantify with physically meaningful units\n", + "the concentration of an analyte in a solution. While Chromatography will not\n", + "give that to you directly off the instrument, you can prepare a \"standard\n", + "curve\"--a set of solutions where you *know* the concentration of the analyte of\n", + "interest. With a properly configured machine, one can make a direct linear\n", + "relation between the integrated area of a peak and the concentration of the analyte. \n", + "In this tutorial, we will use `hplc-py` to quantify a standard curve of a lactose \n", + "solution and then use the `.map_peaks` method of the `Chromatogram` object to \n", + "test our calibration curve. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating a Calibration Curve\n", + "Here, we will use `hplc-py` to quantify aqueous solutions of lactose in different \n", + "concentrations. These files have been preprocessed to have the known lactose \n", + "concentration in the file name. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data/calibration/lactose_mM_6.csv\n" + ] + } + ], + "source": [ + "import glob \n", + "\n", + "# Get the list of files\n", + "files = glob.glob('data/calibration/lactose*.csv')\n", + "print(files[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can load this file into memory as a chromatogram using the `load_chromatogram`\n", + "function from the `io` module and instantiate a `Chromatogram` object." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABai0lEQVR4nO3dd5zdVZ3/8de90xMyyaR3EkI4FIFIEVmNgOBiF8v+rGtbVGR1ZS3gKs3eYcG+AoqFRdcKChaWRYqKGIpKOZCEkN4nmZSZSWbm/v743puZDCmTycz93vJ6Ph553Dvfcu7nntyU9z3ne76ZXC6HJEmSJFWDbNoFSJIkSVKxGIAkSZIkVQ0DkCRJkqSqYQCSJEmSVDUMQJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVWjNu0CKtQmoAFYlXIdkiRp4KYAncCYlOuQNIwyuVwu7RoqUXsul2vs6Rmevs1mMwxX2+plPxeH/Vwc9nPx2NfFMRz9nM1myGQyHUDTkDYsqaQ4AjQ8VvX05GZv3LhtyBuurc3S0jKStrbtdHX1DHn7StjPxWE/F4f9XDz2dXEMVz+PHTuSmpqMszekCuc1QJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVXDRRAkSZKq1IIFC0aRLP/tl+IqZz3AqhNPPHHLQA42AEmSJFWZBQsWZIGPZDLZN2cymTogk3ZN0kHI5XK5nQsWLPgu8OkTTzxxn8tDGoAkSZKqz0dqamrf3dzcsqO+vnF7JpPx5lUqW7lcLrNjR8eItrbWd3d3dwF8cl/HG4AkSZKqyIIFC5ozmeybm5tbdowa1bIh7XqkodDQ0NQOjNu0acObFyxYcNW+psM531OSJKm6TM5kMnX19Y3b0y5EGkr50cw6kuva9soAJEmSVF2yQMZpb6o0+c90hv1kHAOQJEmSpKphAJIkSZJUNQxAkiRJ0hC4+uorpp5zzguPTbuOgXrssUcab7vtt6PTrqPYDECSnuaBBxbw5S9fye2330Yu5xRxSZIq0Yc//IG5jzzy95Fp11FsLoMtaTc33fQzLr30P3b9/Na3nssFF3wwxYokSdLwqM4vOQ1AknZZs2Y1n/70xwCYM2cuixY9wXe+cw3z55/GiSeenHJ1kqTh1NPTw/bt21ObHTRixIiebPbAXv65zz3pxFe/+rWr7rjjf8ft3Lkze9VVX39sxIgRPV/+8pXT//rXB5q3bdtWM3r06K4zzjhrw/ve98EVjz76SNO73vXWo7/2tWsePe64edsBLrjg/Dl///tfm3/96zseqK2tJZfL8ZKXnHX8W97y9hWvfe0b1/d/zfXr19VeccXnp99//32ju7u7M0ccceTW97//omVz5hzeWTjmv/7ra5N++cufT9qyZUvt4YfP3fbhD1+6pLB/TzVPnz5jxze/+dUpv//97eNaW1vrpk2b1vHP//y2lS984Us2AfzP/9w47r//+3tT3va2c1dce+1/Td+8eVPdUUcds+Xiiz+25DvfuXbyHXfcNq62tjb38pe/as15571nNUBnZ2fmK1+5curdd9/ZsnHjhvrGxqae44+ft/nDH75k6dix47rPOeeFx65fv77+Rz+6Ycrf/vbgqG9967uxtXVjzVe+8p/T7rvvT2O2bNlSO3v2nG3vfOf5K5797H/YWnhvP//5T8b+4AfXT1m3bl3DzJkz28844wUbrr32GzPuvvsvCwbze5LNZgf1/g6GAUjSLtdc8w06OjqYN+8Errvu+3zqU5fzk5/8iC9/+Uq+850b0i5PkjRMenp6eMMbXn3kY489mtp0qCOPPHrrDTf8OB5oCPrtb2+Z8JnPfOmJ7u6uzNy5R3S+4Q2vPnr06DE7P/e5/3x81KhR3b///e1jvvWtr884+uhnbDv77BdvGj9+/I4//vGe5uOOm7e9u7ubRx75+6jOzs7sAw8sGHnyyadse/DB+0ds2dJW+/znv2BT/9fq6urife979xGQyV1++acXjRs3ruvLX75y+gc+8N4jfvzjm/8GsH79+vq///2voz7zmSue2LGjM/PpT39s9qc//bFZ1177vbi3mi+44Pw5ixcvGvHe9/770tmz53T8+te/GvupT10+J5vNLvzHf3zRZoANG9bX33TTzyZ+8pOfX7h9+7bsJZdcNPdtb3vjMWee+YL1X/vatY/ecstN477//e9MO+20MzYdddQxHV/60men33vvH8dcdNFHl8yYMbMzxtj0xS9+etY3v/nVqf/xH5cuu+aa7z369re/8ejnPOe0je9857tXdXd382//dt4RO3fuzFx00cVPTpgwcecPf3jDxA9/+P1H/Od/fu2xefNO2H7bbb8ZfcUVn5v95je/ffnpp5+56d57/9B8zTXfmHGwvyeDeX8H9CHpxwAkCYDt27fxq1/dBMC//uu/kc1mOe+89/CLX/yMBx+8nxgfI4QjU65SkjR8yvO+QKed9vwN8+adsB2gvb098/znv2DD2We/qHXGjEN3AMya9S9r/+d/bpy8cOHjTWef/eJNJ510yqb777+vGVj94IP3j6ypqc0dccSRW++7795RJ598yra77vr9mLlzw9YJEyZ29X+te+65s/mpp5Y0ffvbN/x97twjOgE++tHLl3znO9dM3rhxQy1ATU1N7hOf+NyTo0eP7gZ40Yteuu773//OtL3V/PjjjzX+5S9/HnP55Z9aeNZZZ28GeM97Lli1ePHCET/4wfVTCgGou7s78/73X/RU4T//xx57fNvjjz92yIc+9JHlmUyGd77zX1f96Ef/PeWJJx5vOuqoYzqOOurobWeccWbrqac+dyvAjBmH7vjd737dtmTJ4iaA8eMndGWz2VxTU1NPS8vY7ttv/13zk08uHvGtb13/cOE1Lr74Y0sff/yxkT/4wfWT5807YfGNN/5g8rOf/Q8bzz33vDUAhx8+d93y5csabr7555MO5vdkMO/vYD4zBiBJANx222/Zvn07M2ceykknnQLAhAkTOf3053Pbbb/h5z//MRdddHHKVUqShkM2m+WGG34cy20KHMD06TN2TT1ramrK/fM/v23tLbfc3PL9718/cuXKFQ1PPfXkiE2bWuu6u3syAPPnn775sss+MqG9vT1z771/HHXMMc/YMm3ajI6HHrq/GVh93333jn7e807fuKfXeuKJx5tGjBjRXQg/AJMmTe666KKLlxd+Hj16dFch/ACMGtXcvWPHjt3eWN+aY3ysCeCkk07Z2veYY4+dt+W73712et9thx/e+7oNDQ09EyZM6sxkMgA0NjbmADo7O7MAr3zlP228667fj7riis9NW7FiecPy5cuaVq5c0XjkkUft9joFCxc+0dTUNKK7b7jIZDIcffQztt5//1+aAZYsWTziuc99Xmvf844//plb+wegA/09Gcz7OxgGIEkA/N///S8AL37xyyj8ZQPw8pefw223/Ybbb7+NCy/86G77JEmVI5vNcsghh/SkXceBamho3FXz9u3bs+9611tDR0dHdv7801r/8R9ftOH44+ctfc973rlrCsOppz5nS11dbc+f/nTPqAceWNB8xhlnbjz00FmdN93008nLlj1Vv2TJ4hGXX/6pxXt6rZqa2tz+/h3MZrP7HUnrW/PeFiLo6enO1NTU7Lazrq5ut5+z2b3X8vGPXzLznnvuHHv66WduePazn7P5yCOPXvWDH1w/ecOGdfV7Oj6X2/Nb6+npoba2Npe8XjY3kNVhD/T3ZDDv72AYgCTR2dnJH/94DwCnnXbGbvue9axTaWxsYs2a1Tz22CMcddQxaZQoSdJ+/f73tzc/+eTiET/96a8emjhxUhdAa+vGms2bN9cWgkZ9fX3u+OOf2XbnnXeMeeKJxw/58IcveWr69Bk7MplM7mtf+/LUKVOmdvRd0KCvww6b07Ft27aaxYsXNRx22JxOgA0b1te+/vWvesYnP/n5JwZT8xFHHNkO8Je/3HtIYQocwN/+9tAh06bNaB9Mmxs3bqj57W9vnXDRRR9d/LKXvXLXiM3y5UsbGxub+oSv3oBx+OFHtG/fvr3m0Ucfbuw7CvTIIw8fMn36zA6AQw+d1f7IIw8fAqwt7H/44b/t87qxgfyeFFtJBaAQwsXAWTHG0/tsmwJcAbwI6AZ+Dbwvxrg+vz8LXAacC7QAdwPnxxgX9mljHnAVcBKwAbg6xvjFPvv324ZUyR588H46OtqZMGEiRx559G77Ghsb+Yd/eC633/477r77TgOQJKlkTZo0eQfATTf9bNzZZ7+odeXKlfX/9V9fndbd3Z3ZsWPnrv/t/8M/PHfT1VdfOau5eVRXIeyEcNTWu+/+/bhXvvI1e11lbP7809pmz56z/eMfv3j2e9/7/mUjR47s/upXr5o+evSYnccf/8ztf/rTHw74pqIhHNUxb94Jm6+++oqZwNJZsw7r+PWvfzV2wYL7xnz4w5fscSRqf5qbR3c3NY3ovvvuO8ccc8xx2zs62rM//OENE5cseXLEnDlztxWOa2xs7F6xYnnD2rVrak877YzNM2Yc2v7xj19y2Hvf++/Lxo+fsPOHP7xh4vLlS5ve//4PLQV4wxvevOqyyz4y99prvznpjDPO2nT//X855Fe/unnivmoZ6O9JMZXMjVBDCBcAH++3rQH4HXAYcBbwEuAE4Lt9DrsEOA94B3AqSZS8NYRQn29jXL6Nx0kC0GXAJ0IIbxtoG1KlW7DgPgBOPvmUPU5xO+WUUwG47757i1qXJEkH4oQTTtr+9re/c9lNN/1s4pvf/LpnfO5zn5z1jGccv+U5z5m/McbeFe7OOOOszT093ZlnPOP4tsK2Zz7zxLZcLsdppz1/097az2azfP7zVy6cMGHSjg9/+ANz3/ve846sqanJXXHFl59oaGgY9HDGZz97xeJnPevZm6644vOzzj33zcfce+8fxnzkI5cveslLXt66/7Ofrra2losv/tjipUufavqXf3nTMRde+O9zOzs7s29601tXrFixrGnbtm1ZgFe84tVr77//vtHve9/5R9TW1nL11V9/fNasw7Z/7GMXzznvvH85asmSJ5s++9krHj/xxGdtAzjjjLPa/vVf3/fUL3/5iwlvf/sbj/nVr34x4eyzX7SuMEVuTwb6e1JMmbTv8h5CmAZcA8wHlgFrCiNAIYS3Al8B5sQY1+S3nQ18DXgm0AGsBy6MMX4jv38MsBJ4e4zxxhDCfwD/CsyKMXblj/k08KoY45H5kLPPNgbxthZ3d/fM3rhx2/6PPEC1tVlaWkbS2rqNrq6ym6ZbNqqtn//lX97EggV/4ZJLPs6rX/3/nrb/yScX88pXvpj6+nruuus+GhoahuR1q62f02I/F499XRzD1c9jx46kpib7JMkXrxVrwYIFR2azNb+eOHHa1vr6xoNaTUvV5Y9/vPuQ8eMn7uy7CMTXv/7lyb/97a3jf/azW/6eZm0AO3Z0NK5du+KQnp7uF5544omP7e24UhgBOgFoBY4D+n+9/ELgfwvhByDG+JsY45wYYxswDxgF3N5n/ybgfuB5+U3zgTsL4SfvdiCEECYOsA2pYnV1dfH3v/8NgBNOOGmPx8yaNZtx48azY8cOHnnk4WKWJ0mSSsSf/vSH0R/84L8dcc89d45avnxp/W9/e+vom2762aQzzjhrj6vmlarUrwGKMd4M3AwQQui/+wjgzhDCJcBbgDrgNySjNZuAwtKAy/qdtxKYmX8+HfjbHvaTP2YgbQxKbe3Q58uamuxujxoe1dTPixc/SWdnJyNHjmTOnMPY2xKkxx57HHfccTuPPfZ3Tj55z0HpQFVTP6fJfi4e+7o47GcpHeef/76V7e3t2c9+9pOzt2xpqx07dtyOV7ziVWve8Y537/W6qVKUegDaj2aS4PO/wBtIFii4EvhFCOF0YET+uP4rdXQAY/PPR+xlP0DjANs4YNlshpaW4ZvW2NzcNGxtq1c19PPSpYsAOPbYYxk3btRejzvppBO4447beeKJx4b8s10N/VwK7Ofisa+Lw36WiquhoSH3kY9ctoynDxyUlVIPQDuArcDrY4w7AUIIbwH+TLKgQWFpwIY+zyEJNoULcNrz++m3n/wxA2njgPX05Ghr2z7Y0/eqpiZLc3MTbW3tdHc7v3y4VFM//+UvDwAwd+6RtLbu/SM/Z04yQnv//Q/s87gDUU39nCb7uXjs6+IYrn5ubm5yVEmqAqUegJYD2UL4yStcgDAbWJJ/PhVY1OeYqcBD+efL8j/Tbz/ACpJpdftrY1CG8wLY7u4eL7Atgmro58I1PUccceQ+3+uRRz4DgCVLnmTjxk00NzcPWQ3V0M+lwH4uHvu6OOznQesBSHkdLGnI9flM7/MvhlL/muNO4PgQQt8x7mPzjwtJAkobcHphZ34FtxOAu/q0MT+EUNOnjTOBGGNcO8A2pIrU09NDjI8CcNRRR+/z2JaWFqZOnQbAo4+6EIIklbENkOvq6eku9S/CpQPS09NVC7kukhWe96rUA9A3SG5+ekMI4RkhhOeQLJn9fzHG+2OMnSTLZH8uhPDyEMJxwA9JRn1+mm/jOpJria4NIRydX1r7AuAzAANsQ6pIy5YtZdu2bTQ0NDBr1v5XfT366GQU6JFHUl/pUpI0eK25XG51e/u2vV/4KZWh9vbto3K53Gpg076OK+nkH2NcH0KYT7Lwwb0kCxX8DHh/n8MuJXkf1wBNJCM+Z8cYd+TbWJu/d9DVJEtbrwI+FGO8fqBtSJXqsceS0Z+5cwO1tfv/6+CYY47lttt+41LYklTGTjzxxJ4FCxZ8sb19y5fb2urGNTQ0bdvDPbClspHLQWdn+8j29i09uVzuCyeeeOI+p8CVVACKMb51D9ueAF66j3O6gYvyv/Z2zH3AqQfThlSJFi58HIAjjnjaEvR7NHfuEQAsWrRw2GqSJBXFTd3d3cds3rzh9ZlM5pC0i5EOVi6X25rL9fw3+dvr7EtJBSBJxbVkyZMAzJ49sJuez5lzOABLly5h584d1NXVD1ttkqThk/+G/FMLFiz4ci7HZEr/sghpX3qA1SeeeGLbQA42AElV7KmnkgB06KGzB3T85MlTGDFiBNu3b2fp0qW7ApEkqTzl/8M4oP80SpXCtC9VqZ6eHpYufQqAQw+dNaBzMpkMhx2WhJ7Fi50GJ0mSyo8BSKpSq1evoqOjg9raOqZNmz7g8wqjPl4HJEmSypEBSKpShet/ZsyYMaAV4AoOO2wOAIsXL9rPkZIkSaXHACRVqQO9/qdgzpy5gCNAkiSpPBmApCr11FNLAJg168ACUGEE6KmnlrBz586hLkuSJGlYGYCkKlWYAnegAWjKlKmMGDGCrq6dLF++bDhKkyRJGjYGIKlKFUaABroCXEEmk2HmzOScpUuXDGlNkiRJw80AJFWhHTt2sHr1KgBmzjz0gM+fMWMmAEuXLh3SuiRJkoabAUiqQqtXryKXy9HY2MjYseMO+PxCAFq2zAAkSZLKiwFIqkIrViwHYOrUaWQymQM+vzBqtGzZU0NalyRJ0nAzAElVaOXKFQBMnTrwG6D21RuAHAGSJEnlxQAkVaHeADRtUOcXpsCtXLmCnTt3DFldkiRJw80AJFWhgw1A48dPoLGxiZ6enl1tSZIklQMDkFSF+l4DNBjJUtiuBCdJksqPAUiqQqtWJaM206YNLgBB35XgXAhBkiSVDwOQVGU6OztZt24dMPhFEABmzEgWQli61AAkSZLKhwFIqjKF0Z+mphGMGTNm0O30jgAtG4qyJEmSisIAJFWZwqIF06YN7h5ABYXrh1atWjkkdUmSJBWDAUiqMge7AlxB4fyVK1eQy+UOui5JkqRiMABJVWb16tUATJ489aDamTIlOb+jo53W1taDrkuSJKkYDEBSlVmzphCAJh9UO/X19UyYMBHAewFJkqSyYQCSqszatWsAmDTp4AIQ7D4NTpIkqRwYgKQqUxgBmjhx0kG3ZQCSJEnlxgAkVZFcLseaNY4ASZKk6mUAkqrIli1baG/fDjgCJEmSqpMBSKoia9cm09/GjBlDY2PjQbdnAJIkSeXGACRVkcL0t4kTD376G3gvIEmSVH4MQFIVKSyAMGnSwU9/A+8FJEmSyk9t2gX0FUK4GDgrxnj6XvZ/C3hBjHFWn21Z4DLgXKAFuBs4P8a4sM8x84CrgJOADcDVMcYvHkgbUiXoDUBDMwKU3AtoAuvWrWPVqhWMHTt2SNqVJEkaLiUzAhRCuAD4+D72n0MSUPq7BDgPeAdwKpADbg0h1OfPGwf8DnicJABdBnwihPC2gbYhVYqhvAdQwaRJU4DecCVJklTKUg9AIYRpIYRbgU8CcS/HTAH+C/h9v+31wAeAy2KMt8QYHwJeC0wDXpU/7J1AJ/DuGOOjMcZvA1cCFx1AG1JFGMp7ABVMnjx5t7YlSZJKWeoBCDgBaAWOA+7tvzOEkAGuB74H3NFv9zxgFHB7YUOMcRNwP/C8/Kb5wJ0xxq4+592eNB0mDrANqSIM5T2ACgoLKqxebQCSJEmlL/VrgGKMNwM3A4QQ9nTIvwNTgJcB/9Fv3/T847J+21cCM/sc87c97Cd/zEDakCqCI0CSJKnapR6A9iWEcBzJNTvzY4ydewhII/KPnf22dwBj+xyzp/0AjQNsY1Bqa4d+gK2mJrvbo4ZHJfZzR0cHW7duAWDKlMlD9vmcMiW5Bmjt2tUH3GYl9nMpsp+Lx74uDvtZ0sEo2QAUQmgEbgA+GWP8614Oa88/NvR5Dkmw2dbnmIZ+5xXuALltgG0csGw2Q0vLyMGevl/NzU3D1rZ6VVI/L126AYDGxkZmzJhEJpMZknbnzp0NJAssDPYzX0n9XMrs5+Kxr4vDfpY0GCUbgIBTgGOAy0MIl+W31QO1IYStwLuAJ/LbpwKL+pw7FXgo/3xZ/mf67QdYAdQNoI0D1tOTo61t+2BP36uamizNzU20tbXT3d0z5O0rUYn9vGjRUgDGjx/Ppk1D99kcObIFSK4B2rBhC9nswL+RrcR+LkX2c/HY18UxXP3c3NzkqJJUBUo5AP0ZmNtv27+RrMx2OrAG2AG05X9eBBBCGEOysMJX8ufcCZwXQqiJMXbnt50JxBjj2hDC5gG0MShdXcP3j193d8+wtq9EJfVzYQGEsWPHD+l7amkZRzabpaurizVr1jJhwsQDbqOS+rmU2c/FY18Xh/0saTBKNgDFGNuB3W5EGkLYCHT1u8npV4DPhRDWAUuAL5CM+vw0f8h1wIXAtSGEzwPPAi4gue8P+WuL9teGVPbWr18PwPjxE4a03draWsaPn8DatWtYs2bNoAKQJElSsVTCOO+lwLXANcA9QBdwdoxxB0CMcS1wNhBIlra+DPhQjPH6gbYhVYING4YnAEHfleBWDXnbkiRJQ6mkRoBijG/dz/7Lgcv7besmuanpRfs47z7g1H3s328bUrlbt24dkFwDNNSSewE95FLYkiSp5FXCCJCkAdiwIQlA48YNfQAqjAB5M1RJklTqDEBSlShcAzRhwtBPgZs0yZuhSpKk8mAAkqrE+vXDNwI0aVJyM1QDkCRJKnUGIKkK9PT0sHFjciPU4V0EwQAkSZJKmwFIqgKbN2+mq6sLgLFjxw55+4UpcOvWraW7u3s/R0uSJKXHACRVgfXr1wLQ0tJCXV39kLc/fvwEampq6Orq2rXctiRJUikyAElVoLAAwnBc/wNQU1Oza2rdmjVrhuU1JEmShoIBSKoChVGZceOG/vqfgt6V4LwZqiRJKl0GIKkKDOdNUAsmT05WgvNeQJIkqZQZgKQqULgJ6nCsAFcwYcJEoHe5bUmSpFJkAJKqQOEaoOEcASoEoHXr1g7ba0iSJB0sA5BUBYbzJqgFBiBJklQODEBSFSgsgjBhwvBNgZs4MWnbACRJkkqZAUiqAoVFEIZzFThHgCRJUjkwAEkVrqOjg61btwDFuQZo69atbN++bdheR5Ik6WAYgKQKV5j+Vl9fz6hRzcP2OiNHHsKIESOA3hEnSZKkUmMAkipc701Qx5PJZIb1tZwGJ0mSSp0BSKpwGzduBKClZeywv5YBSJIklToDkFThWluTADR27Lhhfy0DkCRJKnUGIKnCbdy4AYCxYx0BkiRJMgBJFc4pcJIkSb0MQFKF650CN/wBaOJEA5AkSSptBiCpwvVOgSveNUBr17oMtiRJKk0GIKnCpTUFLpfLDfvrSZIkHSgDkFThijkFbvz4CQB0dLSzdevWYX89SZKkA2UAkipYLpejtbUVKM4IUFNTE6NGNQNeByRJkkqTAUiqYFu2bKGraydQnAAErgQnSZJKmwFIqmCtrckCCCNHjqSxsbEor2kAkiRJpcwAJFWwYi6AUDBhQnIdkAFIkiSVIgOQVMGKuQBCQeFeQGvXGoAkSVLpMQBJFayY9wAqcAqcJEkqZbVpF9BXCOFi4KwY4+l9tr0MuBQ4ClgP/A9waYyxPb8/C1wGnAu0AHcD58cYF/ZpYx5wFXASsAG4Osb4xT7799uGVI6KuQJcgQFIkiSVspIZAQohXAB8vN+2+cDPgJ8A84DzgNcCX+tz2CX57e8ATgVywK0hhPp8G+OA3wGPkwSgy4BPhBDeNtA2pHJVGAEyAEmSJCVSHwEKIUwDrgHmA7Hf7ncBt8cYP5v/eWEI4SPAt0MI55EElQ8AF8YYb8m391pgJfAq4EbgnUAn8O4YYxfwaAhhLnBRvp36AbQhlaXCIghpTYHL5XJkMpmivbYkSdL+lMII0AlAK3AccG+/fV8CPrSHc2qBUSSjQqOA2ws7YoybgPuB5+U3zQfuzIefgtuBEEKYOMA2pLJUWAShmCNA48cnq8Dt3LmTzZs3Fe11JUmSBiL1EaAY483AzQAhhP77Huj7c5/RmvtjjOtDCIWAsqxfsyuBmfnn04G/7WE/+WOmD6CNQamtHfp8WVOT3e1Rw6NS+rkQgCZMGD8sn8c9qa1tZMyYMWzatImNG9czfvzeR58qpZ9Lnf1cPPZ1cdjPkg5G6gFooEIItcD3gKPpHZkZkX/s7Hd4BzC2zzF72g/QOMA2Dlg2m6GlZeRgT9+v5uamYWtbvcq9nwsB6NBDpw7r57G/KVOmsGnTJtrb2wb0uuXez+XCfi4e+7o47GdJg1EWASiEMAr4EXAG8JoYY2GqXHv+saHPc0iCzbY+xzT0a7Ix/7htgG0csJ6eHG1t2wd7+l7V1GRpbm6ira2d7u6eIW9fiUro556enl3XANXVjaC1ddAf5wM2dux4ABYteorjj9/761ZCP5cD+7l47OviGK5+bm5uclRJqgIlH4BCCFOAW4HZwItijP/XZ3dh2tpUYFGf7VOBh/ocM7Vfs4WfVwB1A2hjULq6hu8fv+7unmFtX4ly7ufW1lZ6epLaR40aXdT3UbgOaM2atQN63XLu53JiPxePfV0c9rOkwSjprzlCCC0kixNMAJ7bL/xAElDagNP7nDOGZGGFu/Kb7gTmhxBq+px3JhBjjGsH2IZUdgrT30aNaqaurrgruhcC0Pr1LoUtSZJKS6mPAF0JHAa8EFgXQpjcZ9+6GGNnCOErwOdCCOuAJcAXSEZ9fpo/7jrgQuDaEMLngWcBF5Dc94cBtiGVncI9gMaOLd4KcAUTJhQC0Lqiv7YkSdK+lGwACiFkSW56Wk+fJar7mE0SVi4leR/XAE0kIz5nxxh3AMQY14YQzgauJlnaehXwoRjj9X3a2mcbUjlK4x5ABd4MVZIklaqSCkAxxrf2ed5DEkb2d043yU1NL9rHMfcBpx5MG1K5SeMeQAWFKXDr1jkCJEmSSktJXwMkafB6A1BL0V+79xqgdeRyuaK/viRJ0t4YgKQKtWlTKwBjxqQXgHbu3Elb2+aiv74kSdLeGICkCpVmAGpoaGD06NGA1wFJkqTSYgCSKlRr6yYgnSlwAOPHFxZC8DogSZJUOgxAUoVKcwQIdr8OSJIkqVQYgKQKlXYA8l5AkiSpFBmApApVCEBpTYEr3Ato7VqvAZIkSaXDACRVoPb2djo7OwEYM2ZMKjU4BU6SJJUiA5BUgQqjP3V1dYwYMTKVGgxAkiSpFBmApArU9/qfTCaTSg1eAyRJkkqRAUiqQK2t6V7/A73XAK1bt5ZcLpdaHZIkSX0ZgKQKlPYKcNA7Ba6jo4OtW7emVockSVJfBiCpApVCAGpqauKQQw4BnAYnSZJKhwFIqkCbNm0C0g1A0HchBJfCliRJpcEAJFWgwjVAaS2BXdB7LyBHgCRJUmkwAEkVKO2boBY4AiRJkkqNAUiqQIUANHr0mFTrcClsSZJUagxAUgUqhUUQoHcEaN06A5AkSSoNBiCpApXKFLi+9wKSJEkqBQYgqcLkcjlaWzcBpTMC5BQ4SZJUKgxAUoXZtm0bXV07gfQDkNcASZKkUmMAkipMYfpbY2MjTU1NqdZSmAK3bds2tm/flmotkiRJYACSKk6p3AQVYOTIQ2hqGgG4EIIkSSoNBiCpwpTKCnAFXgckSZJKiQFIqjC9AWhMuoXkeR2QJEkqJQYgqcK0tpbWCFDvUtgGIEmSlD4DkFRhSuUeQAW9N0P1XkCSJCl9BiCpwngNkCRJ0t4ZgKQKU2oByGuAJElSKTEASRWm9AKQ1wBJkqTSUZt2AX2FEC4Gzooxnt5n2zzgKuAkYANwdYzxi332Z4HLgHOBFuBu4PwY48KhbEMqF62tmwCvAZIkSdqTkhkBCiFcAHy837ZxwO+Ax0nCy2XAJ0IIb+tz2CXAecA7gFOBHHBrCKF+qNqQyklhBGj06DHpFpJXmAK3ZUsbHR0dKVcjSZKqXeojQCGEacA1wHwg9tv9TqATeHeMsQt4NIQwF7gI+HY+oHwAuDDGeEu+vdcCK4FXATcOURtSWejp6WHz5k1A6UyBGzWqmfr6enbs2MGGDeuZNm162iVJkqQqVgojQCcArcBxwL399s0H7swHl4LbgRBCmAjMA0bltwEQY9wE3A88bwjbkMrC1q1b6O7uBkrnRqiZTKbPdUBOg5MkSelKfQQoxngzcDNACKH/7unA3/ptW5l/nJnfD7BsD8fMHMI2BqW2dujzZU1NdrdHDY9y7ectWzYDMGLESEaObEq5ml4TJkxkxYrlbNy4frc/F+Xaz+XGfi4e+7o47GdJByP1ALQfI0imr/VVuIigMb+fvRwzdgjbOGDZbIaWlpGDPX2/mptL5z+3lazc+nnRonYAxo0bO6yfvwM1depkHnwQtm3bvMe6yq2fy5X9XDz2dXHYz5IGo9QDUDvQ0G9bY/5xW34/+WPa+x2zbQjbOGA9PTna2rYP9vS9qqnJ0tzcRFtbO93dPUPevhLl2s/Llq0GoLl5NK2tg/74DrkxY5LvEp56avludZVrP5cb+7l47OviGK5+bm5uclRJqgKlHoCWAVP7bSv8vAKo67NtUb9jHhrCNgalq2v4/vHr7u4Z1vaVKLd+3rBhA5AsgFBKdY8bl6wEt3bt2j3WVW79XK7s5+Kxr4vDfpY0GKX+NcedwPwQQk2fbWcCMca4liSgtAGnF3aGEMaQLKxw1xC2IZWFUrsJakHhXkDr13szVEmSlK5SHwG6DrgQuDaE8HngWcAFJPfsIcbYGUL4CvC5EMI6YAnwBZJRn58OYRtSWdi0aRNQegGocC8gV4GTJElpK+kAFGNcG0I4G7iaZFnqVcCHYozX9znsUpL3cQ3QRDLic3aMccdQtSGVi9IdAUqWwXYESJIkpa2kAlCM8a172HYfcOo+zukmuanpRfs45qDbkMpBa2sSgFpaxqRbSD+F+wC1trayc+cO6urqU65IkiRVq1K/BkjSASjVEaAxY8ZQW5usN1JYqEGSJCkNBiCpgpRqAMpkMowfPx7wOiBJkpQuA5BUQUo1AEHvSnDr1nkdkCRJSo8BSKoQ3d3dbN68GYCWltILQIXrgFwIQZIkpWlAiyCEEN58II3GGL87uHIkDVZbWxu5XA6A5ubRKVfzdN4LSJIklYKBrgL3nQNoMwcYgKQiK0x/O+SQUdTV1aVczdN5LyBJklQKBhqAZg9rFZIOWu/1P2PSLWQvvAZIkiSVggEFoBjjUwNtMISQGXw5kgar9x5AY1OuZM+8BkiSJJWCQd0INYTwOuA0oB4oBJ4sMJLkhqPTh6Q6SQO2efMmoHRHgApT4AxAkiQpTQccgEIIlwGXAZvz5+/M/5oA9ADfGsoCJQ1MKS+BDb1T4DZsWE9XVxe1tYP6/kWSJOmgDGYZ7LcA3wfGAlcCN8cYJwEnAxuAh4euPEkD1TsFrjQDUEvLWLLZLLlcjo0bN6RdjiRJqlKDCUDTgO/FGHPAAuAfAGKMC4BPAecOXXmSBqrUR4BqamoYN2484DQ4SZKUnsEEoG0kS10DPAHMDiE05X9+EFeMk1JR6gEIvA5IkiSlbzAB6M8k0+AAFgFdwFn5n48COoegLkkHqNSXwYbe64DWrvVeQJIkKR2DCUCfBl4bQrg5xthJcj3Q9SGEnwBfAn4zlAVKGpjW1k1AqY8AuRS2JElK1wEHoBjjncBJwA/zm94D/Bg4Evgf4N+GrDpJA1YOU+AKI0AGIEmSlJZBrUMbY/wr8Nf88w7gnUNZlKQD09XVxZYtbUBpByCvAZIkSWkb7I1QRwPPJ7nx6dNGkWKM3z3IuiQdgLa2zQBkMhmam5tTrmbvxo9PpsB5DZAkSUrLYG6E+iKSqW4j9nJIDjAASUVUuAdQc3NzSd9g1BEgSZKUtsH8T+kzwKPA+4HlQM+QViTpgJXD9T/QOwK0ceMGenp6GNw6LJIkSYM3mAB0JPCKGONdQ12MpMEpBKDRo8ekW8h+jBs3jkwmQ1dXF5s2tTJx4oS0S5IkSVVmMF+/PgWU7kUGUhUqTIFraSntEaDa2lpaWsYCXgckSZLSMZgA9BngshDCrCGuRdIglcsUOPBeQJIkKV2DmQL3RmAasCiEsA7Y3m9/LsY456ArkzRgmzdvAsojAI0fP4EYHzUASZKkVAwmAC3P/5JUIgpT4MohABVWglu3zgAkSZKK74ADUIzxbcNRiKTB27RpE1D61wBBMgIEsG6d1wBJkqTiG8x9gGbuY3cPsDXGuGnQFUk6YF4DJEmSNDCDmQK3hORmp3sVQtgIXBVj/ORgipJ0YHoD0Jh0CxmA3puhOgIkSZKKbzCrwL0F2AH8Fngb8KL8tptJgtHHge8AF4cQ3j00ZUral3IKQL1T4BwBkiRJxTeYEaDXAzfu4Vqg74cQvg6cGGN8eQhhE/Bu4OsHWaOkfdi5cwdbt24FymMKXCEArV+/jlxun4PJkiRJQ24wI0CnAzfsZd9PgTPzz+8GXA5bGmaFBRCy2SyjRpX+PYoLAWjnzp27lu+WJEkqlsGMAG0Ajgd+t4d9xwNt+eeHANsGWdduQgh1wOXAPwMtwIPARTHGP+T3zwOuAk7K13d1jPGLfc7PApcB5+bPvxs4P8a4sM8x+2xDKlWFEDF69GhqamrSLWYA6uvrGTNmDJs2bWLdunXMnj097ZIkSVIVGUwA+gHw8RDCTuDHwFpgIvAqkpDyjRBCC3AB8KehKZOLgbeTXGu0GLgIuDWEcBTQSRLGfg6cBzwb+FoIYUOM8dv58y/J73sbsAL4fP78Y2KMO0II4wbQhlSSyukeQAXjx0/YFYAkSZKKaTAB6GKSwHNF/ldBD3Ad8BHgNcAzgecfbIF5rwBuiDH+FiCE8AGS0ZxTgSNIQtC7Y4xdwKMhhLkkIenbIYR64APAhTHGW/LnvxZYSRLabgTeua82hug9SMOinJbALhg/fgILFz7BunVr0i5FkiRVmQO+BijG2BVjfDtJ8HgX8FGSkZkjYozvijHuAG4FpsUY/zpEdW4AXhpCmBVCqKE3sDwIzAfuzAeXgtuBEEKYCMwDRuW3Fd7DJuB+4Hn5TftrQypZhWuAyikAFe4F5AiQJEkqtsGMAAEQY1wELNrLvtZBV7Rn7wN+CDwJdJOMNr0mxrgohDAd+Fu/41fmH2cChQsMlu3hmMJNXffXxqBuWFJbO5g1Jvatpia726OGRzn1c1vbJgDGjm0Zls/ccJg4MQlAGzasB8qjn8tZOX2ey519XRz2s6SDMaAAFEJYDLwyxvhQCOFJ9n0j1FyMcahXfzsKaAXOIbmG5x3Ad0MIzwNGkIwG9dWRf2zM72cvx4zNP99fGwcsm83Q0jJyMKcOSHNz07C1rV7l0M/bt28BYPLkicP6mRtKhx6afC+xcWMSgMqhnyuB/Vw89nVx2M+SBmOgI0C/p3d1t9+z7wA0pEIIh5IsvHBmjPGu/Oa/hBCOBj4GtAMN/U4rhJZt+f3kj2nvd0xhlbr9tXHAenpytLVtH8yp+1RTk6W5uYm2tna6u3uGvH0lyqmfV69OppE1Nh5Ca+uQLLw47EaNSqbrrViRDLSWQz+Xs3L6PJc7+7o4hqufm5ubHFWSqsCAAlDfm57GGN8aQhgFNMcYV4QQGkimqE0HfhJj/P0Q1/gsoA64r9/2PwEvBp4CpvbbV/h5Rf7cwrZF/Y55KP982X7aGJSuruH7x6+7u2dY21eiHPq5tXUjAM3No0u+1oLx4ycBsHr1aqA8+rkS2M/FY18Xh/0saTAO+GuOEMKzSELHe/ObrgI+A7wJ+N8QwsuHrjyg99qd4/ptPxZ4ArgTmJ9fHKHgTCDGGNeShJw2khu4Ft7DGOAEoDCitL82pJJVWAShpaV8FkGYNCkJQOvWraW7uzvlaiRJUjUZzCIInwIeA74ZQmgiCT5fjzG+J4TwTZJV4W4awhr/TBJUrg8hnA8sB94MnAU8l+S+QBcC14YQPk8yYnQByf18iDF2hhC+AnwuhLAOWAJ8gSRY/TT/Gtftqw2plJXjMtjjxo2ntraWrq4u1q5dS2Njc9olSZKkKjGYia6nAJ+IMT5JMkrSBHwvv+9G4BlDVBsAMcYekvsA3Q58B1hAcn+hM2OMf8qP0JwNBJKlrS8DPhRjvL5PM5cC1wLXAPcAXcDZ+SW7GWAbUkkqxwBUU1OzaynsVatWpVyNJEmqJoMZAeqhd8W0FwObSEZpAJqBIb/yP7+s9r/mf+1p/30kN0Xd2/ndJDc1vWgfx+yzDakUdXZ2sn178keunAIQwMSJk1i1aiUrV65k9uyQdjmSJKlKDGYE6C/AuSGEU4HXAr+MMebyNwz9cH6/pCIoXP9TU1PDqFGj0i3mAE2ePAVwBEiSJBXXYEaAPgT8GngdsA74ZH7730kC1dlDU5qk/SlMfxs9egyZTCblag5MYSGElStX7udISZKkoXPAI0AxxgeAw0mmix0WY3wiv+vdwDNijAuGsD5J+1CO1/8UTJrkCJAkSSq+wYwAEWPcAtzbb9tPhqQiSQNWCEAtLWPSLWQQCiNABiBJklRM3u5YKmOFa4DKcwRoMuAUOEmSVFwGIKmMlfcUuCQArVmzxpuhSpKkojEASWWsnANQ4Wao3d3drF+/Lu1yJElSlTAASWWstbV8A1Dfm6GuWbMm5WokSVK1MABJZax3BGhMuoUMUu80uNUpVyJJkqqFAUgqY+W8CAL0rgS3erUrwUmSpOIwAEllrJyvAQKYPDm5F9Dq1Y4ASZKk4jAASWWs3KfATZ6cTIFzBEiSJBWLAUgqU+3t2+no6ABg7NixKVczOIURIBdBkCRJxWIAksrUxo0bAaivr2fEiJEpVzM4LoIgSZKKzQAklalCAGppGUsmk0m5msEpTIFbu9aboUqSpOIwAEllqrU1CUDlOv0Nkpuh1tTU0N3dzYYN69MuR5IkVQEDkFSmCgGopaV8A1BNTc2upbCdBidJkorBACSVqcIUuLFjx6VcycGZOnUqYACSJEnFYQCSylTvCFB53gOoYMoUV4KTJEnFYwCSytTGjRuAShoB8l5AkiRp+BmApDLV2prcBLWcrwGC3hGg1audAidJkoafAUgqU5UyBW7atGkArF69MuVKJElSNTAASWWqdxns8p4CN336dABWrTIASZKk4WcAkspQLperiGWwoTcArVu3js7OzpSrkSRJlc4AJJWh9vbtdHR0AOV9I1RIpvA1NY0AnAYnSZKGnwFIKkOFBRAaGhp2hYdylclkdl0HtHKlAUiSJA0vA5BUhvreBDWTyaRczcGbMiVZCnvlyhUpVyJJkiqdAUgqQ62tyT2Ayn0FuILCCJALIUiSpOFmAJLKUGEEqKWlvFeAK5g6NVkIwREgSZI03AxAUhmqlHsAFUyd6hQ4SZJUHLVpFzBQIYQ3Ax8GDgMWAZfHGP8nv28ecBVwErABuDrG+MU+52aBy4BzgRbgbuD8GOPCPsfssw2plPTeA6i8V4ArcAqcJEkqlrIYAQohvAm4Dvgm8AzgRuDGEMKpIYRxwO+Ax0nCy2XAJ0IIb+vTxCXAecA7gFOBHHBrCKE+3/5A2pBKRqVNgZsyJQlAa9euYefOHSlXI0mSKlnJjwCFEDLAJ4ArY4xX5Td/IoTwXOD0/K9O4N0xxi7g0RDCXOAi4Nv5kPMB4MIY4y35Nl8LrAReRRKm3rmvNoryRqUDUGlT4MaNG0dDQwOdnZ2sXr2aGTNmpl2SJEmqUOUwAhSAWcANfTfGGM+OMX4GmA/cmQ8uBbcDIYQwEZgHjMpvK5y7CbgfeF5+0/7akEpK7xS4yhgBymQyu5bCdhqcJEkaTiU/AgQckX8cGUL4DfBM4EngkzHGm4HpwN/6nVP4H9TM/H6AZXs4pvA18/7aWDuYwmtrhz5f1tRkd3vU8Cj1fi5MgZswYdywfM6KpW8/T5s2nSVLnmT16pVl/Z5KUal/niuJfV0c9rOkg1EOAag5//hd4GMk09JeDfwihPACYATJ9LW+OvKPjfn97OWYwhXk+2vjgGWzGVpaRg7m1AFpbm4atrbVqxT7OZfLsWlTKwCzZ88Y1s9ZsTQ3NzFr1kzuuQdaW9dVxHsqRaX4ea5U9nVx2M+SBqMcAlDhiugvxBivzz9/MIRwAvB+oB1o6HdOIbRsy+8nf0x7v2O25Z/vr40D1tOTo61t+2BO3aeamizNzU20tbXT3d0z5O0rUcr9vG3bVjo6knyezTbS2jqoj2hJ6NvP48dPAmDRoifL+j2VolL+PFca+7o4hqufm5ubHFWSqkA5BKDl+cf+U9QeBl4KLAGm9ttX+HkFUNdn26J+xzyUf75sP20MSlfX8P3j193dM6ztK1GK/bxu3QYAGhsbqa9vLLn6BqO7u4fJk5M/citWLK+I91SKSvHzXKns6+KwnyUNRjl8zfEAsAV4dr/txwILgTuB+SGEmj77zgRijHEtSchpI1ktDoAQwhjgBOCu/Kb9tSGVjN4V4CrjHkAFhUUQVq50EQRJkjR8Sn4EKMbYHkL4PHBpCGEF8GfgdcA/koSUR4ALgWvzxz0LuIDkvj/EGDtDCF8BPhdCWEcyYvQFklGfn+Zf5rp9tSGVkg0bkhGgcePGp1zJ0Jo6NbkX0Jo1q9m5cwd1dfUpVyRJkipRyQcggBjjJ0MI24FPAdOAR4FXxRjvAAghnA1cTbK09SrgQ32uFwK4lOS9XgM0kYz4nB1j3JFvf+0A2pBKwvr164Dk3jmVZMKEiTQ2NtLR0cHKlSs59NBZaZckSZIqUFkEIIAY4xXAFXvZdx9w6j7O7SZZPe6ifRyzzzakUrFhw3qg8kaAMpkM06fPYOHCJ1i+fJkBSJIkDYtyuAZIUh/r1ycBaPz4CSlXMvSmT09uzbVs2VMpVyJJkiqVAUgqMxs3VuYIEMDMmYUA1P++xZIkSUPDACSVmcIIUKVdAwSOAEmSpOFnAJLKTO81QJU3BW7GjCQALV/uCJAkSRoeBiCpzBSWwR4/vvKmwPUNQD093txQkiQNPQOQVEa2b99Ge/t2oDKnwE2ePIXa2lp27NjB2rVr0i5HkiRVIAOQVEYK1/80NY1gxIiRKVcz9Gpra5kyJbkh6rJlS1OuRpIkVSIDkFRGCtf/VOL0t4IZM2YABiBJkjQ8DEBSGanUm6D21XsdkAFIkiQNPQOQVEYqeQnsgsJS2EuXGoAkSdLQMwBJZaSSl8AuKNwM1aWwJUnScDAASWWkMAJUydcAFUaAli9fSi6XS7kaSZJUaQxAUhnZuDEJQGPHVvIUuBlkMhm2bt1Ka2tr2uVIkqQKYwCSykjvCFDlToFraGhg4sRJACxduiTdYiRJUsUxAEllpBpWgQOYNeswAJYseTLlSiRJUqUxAEllIpfL9QlAlTsFDmD27NmAAUiSJA09A5BUJrZsaWPnzp1ANY0ALU65EkmSVGkMQFKZKFz/M2pUMw0NDSlXM7xmz04C0JNPGoAkSdLQMgBJZWLDhnVAZS+BXVAYAVq+fBk7d+5IuRpJklRJDEBSmdiwYQNQ2UtgF0ycOJGRI0fS3d3N0qVL0y5HkiRVEAOQVCaqYQnsgkwm43VAkiRpWBiApDKxfn0yBa7SF0Ao8DogSZI0HAxAUplYu3YNwK6bhFa6WbNcCluSJA09A5BUJnoD0MSUKykOR4AkSdJwMABJZWLdurUATJhQHQGo7zVAuVwu5WokSVKlMABJZSCXy7F2bRKAqmUK3MyZM6mpqWHbtm27wp8kSdLBMgBJZWDr1q20t28HqicA1dXVM336DMDrgCRJ0tAxAElloHD9z6hRzTQ1NaVcTfEUrgNavHhRypVIkqRKYQCSykC1Xf9TcNhhcwBYtOiJlCuRJEmVwgAklYFqWwGu4PDDjwDgiSceT7kSSZJUKWrTLuBAhBCOAO4H3hNj/E5+2zzgKuAkYANwdYzxi33OyQKXAecCLcDdwPkxxoV9jtlnG1Laqu0eQAVz5yYBaOHCx8nlcmQymZQrkiRJ5a5sRoBCCHXAD4CRfbaNA34HPE4SXi4DPhFCeFufUy8BzgPeAZwK5IBbQwj1B9CGlKpqnQI3a9Zsamtr2bp1K6tWrUy7HEmSVAHKJgABHwO29Nv2TqATeHeM8dEY47eBK4GLAPIh5wPAZTHGW2KMDwGvBaYBrxpIG1IpqLYlsAvq6uqZNWs2kIwCSZIkHayyCEAhhOcB7wLe0m/XfODOGGNXn223J6eEicA8YFR+GwAxxk0k0+ieN8A2pNRV6xQ4gLlzA+B1QJIkaWiU/DVAIYQxwPeA98YYl4UQ+u6eDvyt3ymFeTIz8/sBlu3hmJkDbGPQd2CsrR36fFlTk93tUcOj1Pp53bokAE2ZMnlYPldpGUg/hxC49dZfsmjRExX13oup1D7Plcy+Lg77WdLBKPkABHwd+GOM8YY97BtBMn2tr478Y2N+P3s5ZuwA2xiUbDZDS8vI/R84SM3N1XMvmDSVQj93dXWxfv16AObOnTWsn6u07Kufn/nM4wBYvHhhRb73YiqFz3O1sK+Lw36WNBglHYBCCP9MMkXt2L0c0g409NtWCC3b8vvJH9Pe75htA2xjUHp6crS1bR/s6XtVU5OlubmJtrZ2urt7hrx9JUqpn1etWkVPTw+1tXXU1Y2ktXXQH8uSM5B+njp1FgALFy5k9eqNNDT0/+Oq/Smlz3Ols6+LY7j6ubm5yVElqQqUdAAC3g5MAvpPfftGCOFDwFPA1H7nFH5eAdT12bao3zEP5Z8v208bg9bVNXz/+HV39wxr+0qUQj8vX558DCdNmkRPD/T0VN7v+776efz4ibS0tNDa2sojjzzKscceV+TqKkcpfJ6rhX1dHPazpMEo9a853gQcRbKYQeEXwKXAi4E7gfkhhJo+55wJxBjjWpKQ0wacXtiZv6boBOCu/Kb9tSGlavXq5JK0yZOnpFxJOjKZDEcddQwAjz76cMrVSJKkclfSI0AxxqeNwORHgtbGGJ8KIVwHXAhcG0L4PPAs4AKS+/4QY+wMIXwF+FwIYR2wBPgCyajPT/NN7rMNKW2rV68CYMqU/gOV1ePoo5/BH/5wN4888ve0S5EkSWWu1EeA9ik/QnM2EEiWtr4M+FCM8fo+h10KXAtcA9wDdAFnxxh3HEAbUmpWrUoCULWOAAEcfXQyAvTII44ASZKkg1PSI0B7EmPM9Pv5PuDUfRzfTXJT073e2HR/bUhpqvYpcJCMAAEsWvQEHR0dNDYOeoFGSZJU5cp6BEiqBk6Bg0mTJtPSMpbu7m6eeCKmXY4kSSpjBiCpxDkFLlkIoTAK9PDDXgckSZIGzwAklbCtW7eyZUsbAJMnT065mnQVrgNyJThJknQwDEBSCStMf2tuHs3IkYekXE26CkthuxKcJEk6GAYgqYQVAlA1T38rOOaYZArc4sWLaG9vT7kaSZJUrgxAUgkrrAA3ZYoBaOLESYwbN57u7m5ifDTtciRJUpkyAEklbOXK5F7AjgAlCyEce+xxADz00AMpVyNJksqVAUgqYcuXLwdg+vQZKVdSGo4//gQAHnzQACRJkgbHACSVsOXLlwEwbZoBCGDevCQAPfTQA+RyuZSrkSRJ5cgAJJWwQgByBChx9NHHUFdXx8aNG1i2bGna5UiSpDJkAJJKVFvbZtraNgMwffr0lKspDQ0NDbtuiPrgg/enXI0kSSpHBiCpRK1YkVz/M3bsOEaMGJlyNaWjMA3OACRJkgbDACSVKKe/7dkzn3kiAPff/5eUK5EkSeXIACSVKAPQnp1wwklks1mWLHmSNWvWpF2OJEkqMwYgqUQZgPasubmZo446BoD77vtTytVIkqRyYwCSSpT3ANq7Zz3r2QD8+c8GIEmSdGAMQFKJWr48WebZAPR0J598CpAEIO8HJEmSDoQBSCpBO3fuZPXqVYA3Qd2TZz7zBGpr61i9ehVLlz6VdjmSJKmMGICkErR8+TK6u7tpahrBxIkT0y6n5DQ1jeD44+cB8Ic/3JVuMZIkqawYgKQS9OSTiwGYPXs2mUwm5WpK03OfexoAd999Z8qVSJKkcmIAkkrQkiVJAJo167CUKyld8+cnAei+++6lvb095WokSVK5MABJJah3BMgAtDdz5hzOlClT2bFjh8thS5KkATMASSVoyZInAZg1a3bKlZSuTCazaxrcXXf9PuVqJElSuTAASSUml8s5AjRAhWlwd9xxOz09PSlXI0mSyoEBSCoxGzasZ+vWLWSzWWbMODTtckras5/9DxxyyCGsW7eWv/71wbTLkSRJZcAAJJWYwujPtGnTaWhoSLma0lZfX89ppz0fgN/97jcpVyNJksqBAUgqMU895fU/B+Kss84G4LbbfuM0OEmStF8GIKnELFz4BACzZ89JuZLycOqpz2HEiBGsWbPaaXCSJGm/DEBSiYnxMQBCODLlSspDY2Mjz3/+CwD45S9/kXI1kiSp1BmApBLS09PD448bgA7Uy152DgC//vUtdHZ2pluMJEkqaQYgqYSsXLmCbdu2UVdXx6GHeg3QQJ188ilMnjyFrVu3cMcd/5t2OZIkqYTVpl3A/oQQxgKfBl4KNAN/BT4cY7w7v38ecBVwErABuDrG+MU+52eBy4BzgRbgbuD8GOPCPsfssw2pWGJ8FIDDD59LXV1dytWUj2w2y0tf+gquueYb/PznP+Hss1+cdkmSJKlElcMI0I3As4HXAScD9wO/DSEcGUIYB/wOeJwkvFwGfCKE8LY+518CnAe8AzgVyAG3hhDqAQbYhlQUhet/jjjC6W8H6pxzXk0mk+GPf7xn10p6kiRJ/ZV0AAohHA68gGTE5u4YYwTeB6wA3gC8E+gE3h1jfDTG+G3gSuCi/Pn1wAeAy2KMt8QYHwJeC0wDXpV/mX22IRWT1/8M3vTpM5g//zQAfvSjG1OuRpIklaqSDkDAeuAlwILChhhjDsgAY4H5wJ0xxq4+59wOhBDCRGAeMCq/rXD+JpJRpOflN+2vDaloHAE6OK973RsB+MUvfsL27dtSrkaSJJWikr4GKB9Wbum7LYTwT8Ac4DfAp4C/9TttZf5xJjA9/3zZHo6ZmX8+fT9trB1E6QDU1g59vqypye72qOGRRj9v3LiRVauSj97RRx89LJ+fUjPU/fzc585n1qzZLFnyJD//+Y9585udyQr+vVFM9nVx2M+SDkZJB6D+QgjPAa4DfhFjvDmEcCXJ9LW+OvKPjcCI/PM9HTM2/3zEftoYlGw2Q0vLyMGevl/NzU3D1rZ6FbOf77vvHgDmzp3LoYdOKdrrloKh7Of3vOdf+eAHP8j111/Hu951Lo2Ng/5jXHH8e6N47OvisJ8lDUbZBKAQwiuAG4A/Aa/Pb24HGvodWvjfzrb8fvLHtPc7pjA/Zn9tDEpPT462tu2DPX2vamqyNDc30dbWTnd3z5C3r0Qa/Xz33X8A4Nhjj6e1tTqmbw1HP5955guZPPlLrF69iuuuu57Xv/5NQ9JuOfPvjeKxr4tjuPq5ubnJUSWpCpRFAAohvIdkmeqfAm+KMRZGbJYBU/sdXvh5BVDXZ9uifsc8NMA2Bq2ra/j+8evu7hnW9pUoZj8/8MADABx33DOr7vd2KPs5k6nlrW89l89+9hN885tf5yUveQUjRgzfaGw58e+N4rGvi8N+ljQYJf81Rwjh3cCXga8Ar+0TfgDuBOaHEGr6bDsTiDHGtSQhpw04vU97Y4ATgLsG2IY07Hbu3MnDDyeXoh1//DNTrqb8vfrV/8SMGYeyfv06rrvuW2mXI0mSSkhJB6AQwhEkIz8/Az4DTAwhTM7/Gk1yPVAzcG0I4egQwluBC/LHkg9LXwE+F0J4eQjhOOCHJKM+P82/zD7bkIohxsfo7Oxk9OjRHHrorLTLKXt1dfX8+79/CIDvfvc6Vq48qMFcSZJUQUo6AAGvIZnG9kpgVb9fV+VHaM4GAsnS1pcBH4oxXt+njUuBa4FrgHuALuDsGOMOgAG2IQ2rBx+8H4Bjj51HNlvqfyzLwxlnnMnJJ5/Cjh07uOqqL6VdjiRJKhElfQ1QjPHTwKf3c8x9wKn72N9NclPTvd7YdH9tSMPt3nuTBRBOPPGklCupHJlMhg9+8D94/etfxW9+cwtnn/1inv/8s9IuS5IkpcyvmqWU7dixg/vu+zMAp5763JSrqSwhHMlb3vIvAHziE5ewYcP6lCuSJElpMwBJKXvwwfvp6Ghn/PgJhHBk2uVUnHe/+70cccSRtLa2cvnlHyWXy6VdkiRJSpEBSErZPfckCxI++9n/QCaTSbmaylNfX8+nP/156urquOuu33PNNd9MuyRJkpQiA5CUsj/+8W4AnvOc+SlXUrkOP/wILrroowB89av/ya9//auUK5IkSWkxAEkpWrZsKY8/Hslmszz72c9Ju5yK9prXvI43vektAFx66X9w3333plyRJElKgwFIStGtt/4SgGc969m0tLSkXE3l+/d/v5DTTz+THTt28N73vos//OGu/Z8kSZIqigFISkkul+OWW24G4MUvflnK1VSHmpoaPvvZL/Hc555GR0cH73vf+dx222/SLkuSJBWRAUhKyWOPPcKSJU/S0NDA85//grTLqRqNjY1ceeWXOfPMF7Bz504++MH38eUvX0l3d3fapUmSpCIwAEkp+elPfwzA8553BoccckjK1VSXurp6Pve5K3nDG94MwLXXfpPzzns7y5cvS7kySZI03AxAUgo2btzITTf9FID/9/9el3I11am2tpYLL/wIn/nMF2lsbOK+++7lNa95Gd/5zrXs2LEj7fIkSdIwMQBJKbjxxu/T2dnJ0Uc/g5NOOiXtcqrai170Un70o59z8smn0NHRwX/+5xc455wXcdNNP6Orqyvt8iRJ0hAzAElFtnnzJn74wx8A8Na3nuvNT0vAzJmH8l//9R0uv/xTTJgwgZUrV3Dppf/BS15yFt/61jfYuHFD2iVKkqQhYgCSiuzLX76SzZs3M2fOXM4808UPSkUmk+Gcc17NTTf9lve974O0tIxlzZrVfPWr/8nZZ5/OBReczy233My2bVvTLlWSJB2E2rQLkKrJX//6ID/5yY8A+MhHLqWmpiblitRfU1MTb3vbubzxjW/mt7+9lRtv/AF///tfueOO27njjttpaGhg3rwTOOmkU3jWs07h6KOfQV1dXdplS5KkATIASUWyfv06PvShC8jlcrz0pa/gxBNPTrsk7UN9fT0vfekreOlLX8ETT0R++9tf85vf3MLSpU9x771/5N57/8hXv5osqz1nzlyOOCJwxBGBuXOTx+bm0Wm/BUmStAcGIKkINm/exAUX/Ctr1qxm1qzZXHjhR9MuSQdg7twk2Jx//r+xePEi7rvvXv7yl3v5y1/+zKZNm3j44b/x8MN/2+2cyZOnMHv2YUyZMpUpU6YyefIUJk+ewoQJExg3bgKHHHKI139JkpQCA5A0zBYtWsgHPvBelix5kubm0Vx11ddobm5OuywNQiaTYc6cw5kz53Be97o30tPTw7JlT/H445HHH4888UQkxsdYtWolq1evYvXqVXttq6GhgXHjxjNmzBhGjBjJyJEjd3s85JBDnra9/zEjR46kvr7eICVJ0gEwAEnDZNWqlfz3f3+PG274Pl1dO5k8eQpf+co3OfTQ2WmXpiGSzWY59NDZHHrobF7wghfu2r5lyxaeeCKydOlTu4LQqlWrWL16JRs2bGDr1i10dnaycuUKVq5ccVA11NbW7haKGhrqqa2tpa6ujtraeurq6qivr2PkyCZ6ejK79hV+1dbu/tj3V01NDTU1tdTUZMlma6ipyVJTU0s2m83vS37V1tb2eSw8r6G2ti5/7NPb6P05+WWIkyQViwFIOgi5XI4tW9rYuHEDGzduZOnSp1i8eBEPPLCAhx/+Gz09PQA873mnc/HFH2PixEkpV6xiGDVqFCeccBInnHDSHvd3dHSwYcN61q9fx+bNm9m+fRvbtm172uO2bVv7/Lx9t30dHe0AdHV10da2mba2zcV8i0Mum00CUW1tEogKz7PZGrLZTP4xu+tXJpPJB6csNTVZMpnefcn5u/+c7M/kz82SybDreXJcBsjsel7Ynslk9thW72tmyGQy+TYz1NZmaWpqoLOzCyjs620jeY3dz8lk2HUcJEGwEAh7H9n1c29Y3Nuxu5/T97i9HbvryL221ffx6TXtuc09v8ZQqK+v5YUvPAsXs5U0GAagMtLT08N1113HmjUr6OjYQXd3D7lcjp6e3se+z3O5wvMcuVxPfn+OXC4HJI/Jc/LPC6/Ud1vv897HwnOetq//8cnr7P243V/r6cf1trH7tsJ76u7u3vW++77/wusWXqv/e+67b0/bC3UV2kteNrdbe7317d3JJ5/CP//z25g//zS/4dYujY2NTJs2nWnTpg+6je7ubrZv394nLCXhaOfOnf1+7SCX66auLsvmzVvp7NzBzp076erq2uOxXV1ddHXt3HVMd3d3/s9ZN93dPX1+7qG7u4vu7h66unbu2t7d3UVXV3f+3C66urryx3bv889M4c9vV9fOQfeJqss//dM/cdlln0q7DEllyABURpYtW8oVV3w+7TK0ByNHjqSlZSzTps3gsMMO48gjj+aUU05l8uQpaZemClVTU8OoUaMYNWrUfo+trc3S0jKS1tZtdHX1FKG6PcvlcnsIVEmISn7u7hOYunYFriQcde/2xUehreTnvl+CJMcV2is8L3xp0feLkr5fFiXH9QC5Pl8W9eS/aOptv++XLkkbvV8s5XI9ZDJQV1dDe/uOPjXldmu393kPfb/cKYwYP/0LInbbvqcviXbf3nv83o/Z+zkHcvz+j9v/F0WDUVdXyznnnDMsbUuqfAagMjJz5qF85jNfYOPGtXR0dAF9p3D0TqnYfZpHZtd0jsI0jN7zMk+bTrGnKQ17ms6w76kPT9/W//jC1JC9HbfnNnY/bvcpMTV93ndmV/t9p5fsvu3p2/u+Tm1tljFjRtLW1k53d2636Sl9p6tkMhkOOWQUDQ0NB/4bKlWZ5M9WLbW1lftPT6mEzUrXt58l6UBV7r9CFSiTyfCyl73Cf1yLwP/ESJIkVSavHpQkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoaBiBJkiRJVcMAJEmSJKlqGIAkSZIkVQ3vA5QXQsgClwHnAi3A3cD5McaFqRYmSZIkacg4AtTrEuA84B3AqUAOuDWEUJ9qVZIkSZKGjAEIyIecDwCXxRhviTE+BLwWmAa8KtXiJEmSJA0ZA1BiHjAKuL2wIca4CbgfeF46JUmSJEkaal4DlJief1zWb/tKYOZgG62tHfp8WVOT3e1Rw8N+Lg77uTjs5+Kxr4vDfpZ0MAxAiRH5x85+2zuAsYNpMJvN0NIy8qCK2pfm5qZha1u97OfisJ+Lw34uHvu6OOxnSYNhAEq05x8b+jwHaAS2DaK9KQDd3T0HWdbTZTKQzWbp6ekhlxvy5pVnPxeH/Vwc9nPx2NfFMVz9nM1myGQyU4auRUmlyACUKEx9mwos6rN9KvDQINrrzGQy1NRkVh10ZXuRzTrsXwz2c3HYz8VhPxePfV0cw9DPU3j6bBBJFcYAlHgIaANOJx+AQghjgBOArwyivTFDVJckSZKkIZTJOUYPQAjhU8C7gLcDS4AvALOAY2OMO9KrTJIkSdJQcQSo16Uk/XEN0ATcCZxt+JEkSZIqhyNAkiRJkqqGV2lKkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoatWkXoP0LIVwMnBVjPL3PtpcBlwJHAeuB/wEujTG2p1JkBdhLP78O+AgwF1gJ/Bfw+RhjLpUiK8Ce+rnf/m8BL4gxzipmXZVoL5/pbwNv7Xfoihjj9CKWVlH20s9TgCuAFwHdwK+B98UY16dSZAXo388hhDuA0/Zy+FtijN8tUmmSyowjQCUuhHAB8PF+2+YDPwN+AswDzgNeC3ytyOVVjL3084uA7wHfAI4GPgRcDFxQ5PIqxp76ud/+c4Bzi1VPJdtHXx8HfBqY0ufXM4tXWWXZy98dDcDvgMOAs4CXACcA/od8kPbyeX4Vu3+OpwC/Ah4j+TdSkvbIEaASFUKYBlwDzAdiv93vAm6PMX42//PCEMJHgG+HEM6LMXYWsdSytp9+ngJ8NsZYCJZPhhD+meQ/NFcWr8ryt59+LhwzhWSE7ffArKIVV2H21dchhBqSMP+JGOPqFMqrGPv5TL+e5DM8J8a4Jn/8BcDXQgjNMca2IpZa1vbVzzHGjf2OfT1wNnBCjHFL0YqUVHYcASpdJwCtJN/W3ttv35dIRiP6qwVGDXNdlWav/RxjvC7GeAkk/3EMIbwQOB34bbGLrAD7+jwTQsgA15OMuN1R1Moqz776ei7QCDxS7KIq0L76+YXA/xbCD0CM8TcxxjmGnwO2z787CkIII4EvAFfGGP9WpNoklSlHgEpUjPFm4GaAEEL/fQ/0/TmEUA98ALjf+eUHZl/9XBBCmAksBmqA3wBfL1Z9lWIA/fzvJCNuLwP+o3iVVZ799PWxQA64ID/Fswe4Bbg4xri5mHWWu/308xHAnSGES4C3AHUkf3dcGGPcVMQyy95A/o7OO4/kC8BPFaEsSWXOEaAyF0KoJfnW/Gjg/JTLqVSbgJOBfwKOJ+lvDZEQwnHAZcAbnb457J5BEnqWkITNDwIvBn4RQvDfg6HTTBJ8jgfeALwTeC5JP2fSLKwS5ad2/hvwNYO8pIFwBKiMhRBGAT8CzgBeE2Pc6/QADV5+ysoDwAP5f2hvDCFcGGN8KuXSyl4IoRG4AfhkjPGvaddTBS4nmSK0Kf/z30MIq4A/koR8/w4ZGjuArcDrY4w7AUIIbwH+DJwE3JdibZXodGAm8K2U65BUJgxAZSp/wfitwGzgRTHG/0u5pIqTX22vPcb4lz6b/55/nAoYgA7eKcAxwOUhhMvy2+qB2hDCVuBdMcYfpFZdhckv376p3+bC9RLTMQANleVAthB+8h7OP87GADTUzgH+HGNcnHYhksqDUx7KUAihBbgdmAA81/AzbD7A01d7OwXoAh4vfjkV6c8kF+YfT7Kk+zySZcdX5p/flFJdFSmEcEMI4Tf9Np+cf3RhhKFzJ3B8CKGpz7Zj848LU6in0j2X5N9ESRoQR4DK05Uk95d4IbAuhDC5z751McbudMqqOF8E7gghfIzkup8TgM8DV8UYN6RaWYXI37h3t/8QhhA2Al0xRv+jOPRuAG4KIXwUuJHkYv2vAjfEGB9NtbLK8g3gPcAN+YUQRue3/V+M8f5UK6sw+WnJx5CsACdJA+IIUJnJX6j8WpJpQrcDq/r9mpFedZUlxng3yQ0MXwz8leQf2C8BF6ZZlzRYMcZfkizm8WqSqW/XAj8F/iXNuipNfjXO+SSrv91LsorZn4FXpllXhRpH0s9+KSVpwDK5XC7tGiRJkiSpKBwBkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRVtRBCJu0aJElS8RiAJFWtEMLLgevzz08PIeRCCKenW5UkSRpOtWkXIEkpen+f5/cDpwKPpFSLJEkqAgOQJAExxjbgT2nXIUmShlcml8ulXYMkFV0I4Q7gtD6bzgD+DzgjxnhHCOFy4HXAh4FPAocDjwHvBnLAVcBxwCLgfTHG/+3T9jOAzwLPy2/6X+ADMcbFw/iWJEnSAHgNkKRqdT7wQP7XqUDzHo6ZAVwBfAr4f8BY4MfAfwPfIglIWeDGEEITQAjhCOAPwETgrcC/AIcB94QQJg7f25EkSQNhAJJUlWKMjwBtQFuM8U/55/2NAM6PMf53jPEm4GvAVOATMcZrYoy/AC4BxgMhf85lQDtwVozxpzHG/yEZXWoCPjSsb0qSJO2X1wBJ0r79oc/z1fnHvtcKbcg/jsk/nkkylW57CKHwd2wbcBfwgmGqUZIkDZABSJL2Ib84Qn/b93HKOOC1+V/9rRuSoiRJ0qAZgCRpaG0CbgO+tId9XcUtRZIk9WcAklTNuoGaIW7z98DRwIMxxi6AEEIG+D6wEHhwiF9PkiQdAAOQpGq2CTg1hPB8YPQQtflx4I/AL0MIXwc6gHcB5wCvGaLXkCRJg+QqcJKq2VeAncCtJKu0HbQY41+B+ST3CvoeybLZU4BzYow/HYrXkCRJg+eNUCVJkiRVDUeAJEmSJFUNA5AkSZKkqmEAkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqrG/wegqbbjWm7bmwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.io import load_chromatogram\n", + "from hplc.quant import Chromatogram \n", + "\n", + "# Load and display the first file. \n", + "df = load_chromatogram(files[0], cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a reminder, we can quickly quantify this single peak by calling the `.fit_peaks`\n", + "method. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
013.560.2812411.6547278004.452381960534.2857111
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 13.56 0.281241 1.654727 8004.452381 960534.285711 1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW9klEQVR4nOzdd3zbxf3H8ZeGZctDHnHs7J1cQggJhLZAmWUXymr7o0ChQIGyoaUQdphllBnCKntT9mhZpYywScMmyWUnju3Eew9Z4/eHZDDGiW1Ftjzez8fDD8nfu+99P7o4tj66+945wuEwIiIiIiIig4Ez0QGIiIiIiIj0FiVAIiIiIiIyaCgBEhERERGRQUMJkIiIiIiIDBpKgEREREREZNBQAiQiIiIiIoOGEiARERERERk0lACJiIiIiMig4U50AANUFZAMFCc4DhEREem64UAzkJXgOESkBznC4XCiYxiIGsPhcEoo1DN963Q66Km25Xvq596hfu4d6ufeo77uHT3Rz06nA4fD0QR449qwiPQpGgHqGcWhUHh8RUV93Bt2u51kZ6dRU9NAIBCKe/sSoX7uHern3qF+7j3q697RU/2ck5OGy+XQ7A2RAU73AImIiIiIyKChBEhERERERAYNJUAiIiIiIjJoKAESEREREZFBQ4sgiIiIiPRhixYtyiCyRLc+uBbpWAgonj17dm1XKisBEhEREemDFi1a5AQudDicxzgcjiTAkeiYRPqocDgcblm0aNHDwN9mz5692eUhlQCJiIiI9E0XulzuU3y+bL/Hk9LgcDi0wZRIB8LhsMPvb0qtqak8JRgMAFy1ufpKgERERET6mEWLFvkcDucxPl+2PyMjuzzR8Yj0dcnJ3kZgSFVV+TGLFi26dXPT4TSXVERERKTvGeZwOJI8npSGRAci0l9ER0qTiNwzt0l9agTIGHMxsJe1dvc2x4YDNwH7A0HgNeAsa21ZtNwJzAVOALKB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyIiIiK9yAk4NO1NpOui/18cdDLI02dGgIwxZwNXtDuWDPwHmADsBRwAbAc83KbaJcDJwInAjkAYeNUY44m2MSTaxjIiCdBc4EpjzHFdbUNERERERAaGhI8AGWNGAvcCuwC2XfERwDhgorV2Y7T+2cAdxhgf0AScA5xnrX0lWn44UAQcBjwJnAQ0A6dYawPAEmPMZGAO8EA0yemsDRERERERGQD6wgjQdkAlsA3wSbuy/YD/tiY/ANba1621E621NcAsIAN4q015FfAZsGv00C7Agmjy0+otwBhj8rrYhoiIiIgMAPPm3TTikEP2m5HoOLpq6dLFKW+++UZmouMYSBI+AmStfRl4GcAY0754CrDAGHMJ8AcgCXidyGhNFTAqWq+g3XlFwJjo81HA1x2UE63TlTZi4nbHP790uZw/eJSeMZj7ORwKUfnWWzQXF5G5406kTprUY9cazP3cm9TPvUd93TvUzzKYnH/+OZN/8Yu9y/faa5/qRMcyUCQ8AeqEj0ji81/gSCILFNwMvGiM2R1IjdZrbndeE5ATfZ66iXKAlC620W1Op4Ps7LRYT++Uz+ftsbble4Oxn+2Nt1C24D0Aqt55m2kXX0D2dtv26DUHYz8ngvq596ive4f6WQYHrYMRb309AfIDdcAR1toWAGPMH4BPiSxo0Bitl9zmOUQSm/ro88ZoOe3KidbpShvdFgqFqamJ/8qVLpcTn89LTU0jweBmN7mVLTBY+7n2iy8iyY/TCUOGgr+Z+rpGqIz5v8JmDdZ+7m3q596jvu4dPdXPPp+3z48qhUIhGhoaEhZkampqyOns3uV33nn72b/+9eHF77zz3yEtLS3OW2+9c2lqamrotttuHvXVV5/76uvrXZmZmYE99tir/Kyz/lq4ZMli75/+dOxWd9xx75JttpnVAHD22adO/Oabr3yvvfbO5263m3A4zAEH7DXzD384vvDww48qa3/NsrJS9003XT/qs88WZgaDQceUKVPr/vKXOQUTJ0767gPvf/zjjvx//euF/NraWvekSZPrzz//0jWt5R3FPGrUaP/dd98+/N133xpSWVmZNHLkyKajjz6uaL/9DqgCePrpJ4c88cQjw4877oTC++77x6jq6qqkadOm11588eVrHnzwvmHvvPPmELfbHT7ooMM2nnzy6RsAmpubHfPn3zzi/fcXZFdUlHtSUryhmTNnVZ9//iXrcnKGBA85ZL8ZZWVlnqeeenz4119/kXHPPQ/bysoK1/z5t4xcuPDjrNraWvf48RPrTzrp1MIddtiprvW1vfDCszmPPfbQ8NLS0uQxY8Y07rHH3uX33XfX6Pff/9+iWP5NnE5nTK+vr+rrCdB6wNma/ER9G30cD6yJPh8BrGxTZwTwZfR5QfR72pUDFBKZVtdZGzEJBHruj18wGOrR9iVisPVz6b9ejjxOmMyDqwoZM2Ycp4+eRGo4TDDYc59ADbZ+ThT1c+9RX/eOwdbPoVCII4/89dSlS5f03BSTTkydulXd448/Y7ubBL3xxitDr7nmxuXBYMAxefKU5iOP/PVWmZlZLdddd8uyjIyM4LvvvpV1zz13jt5qq63r9933l1W5ubn+jz76wLfNNrMagsEgixd/k9Hc3Oz8/PNFaT/5yc/qv/jis9Ta2hr3L36xd1X7awUCAc4665Qp4AhfdtnfVg4ZMiRw2203jzrnnDOmPPPMy18DlJWVeb755quMa665abnf3+z4298uH/+3v10+7r77HrGbivnss0+duGrVytQzzvjzuvHjJza99tq/c66++rKJTqdzxT777F8NUF5e5nnppefzrrrq+hUNDfXOSy6ZM/m4446avueee5fdccd9S1555aUhjz764Mjddtujatq06U033njtqE8++ShrzpyL1owePabZWuu94Ya/jbv77ttHXHDBpQX33vvIkuOPP2qrn/98t4qTTjqlOBgMcuaZJ09paWlxzJlz8eqhQ/Na/vnPx/POP/8vU2655Y6ls2Zt1/Dmm69n3nTTdeOPOeb49bvvvmfVJ5986Lv33rtGb+m/SSyvr1s/JL2orydAC4CzjDFea23r6EzrTWsriCRDNcDuRJMXY0wWkYUV5rdp42RjjMtaG4we2xOw1toSY0x1F9oQGfCaCwtpWrGcsMPBRc8+TlVLCws/hTXrLA/ce0+iwxMREQD6575Au+32i/JZs7ZrAGhsbHT84hd7l++77/6Vo0eP9QOMG/fHkqeffnLYihXLvPvu+8uq7bf/WdVnny30ARu++OKzNJfLHZ4yZWrdwoWfZPzkJz+rf++9d7MmTzZ1Q4fmBdpf64MPFvjWrl3jfeCBx7+ZPHlKM8BFF1225sEH7x1WUVHuBnC5XOErr7xudWZmZhBg//0PLH300QdHbirmZcuWpvzvf59mXXbZ1Sv22mvfaoDTTz+7eNWqFamPPfbQ8NYEKBgMOv7ylzlrW9/8z5gxs2bZsqXp55574XqHw8FJJ51W/NRTTwxfvnyZd9q06U3Tpm1Vv8cee1buuOPOdQCjR4/1/+c/r9WsWbPKC5CbOzTgdDrDXq83lJ2dE3zrrf/4Vq9elXrPPQ9923qNiy++fN2yZUvTHnvsoWGzZm236sknHxu2ww47VZxwwskbASZNmly6fn1B8ssvv5C/Jf8msby+LfmZ6Ul9PQG6CzgdeDy6EEJm9Njb1trPAIwx84HrjDGlREaE/k5k1Oe5aBv3A+cB9xljrgd+CpxNZN8frLXNXWhDZMDzbyjGkZrKZxuKqWppYfyUWRSsXsw3//uA12+bxx6/OwL3kKGJDlNEZNByOp08/vgztr9NgQMYNWr0d1PPvF5v+Oijjyt55ZWXsx999KG0oqLC5LVrV6dWVVUmBYMhB8Auu+xePXfuhUMbGxsdn3zyUcb06VvXjhw5uunLLz/zARsWLvwkc9ddd6/o6FrLly/zpqamBluTH4D8/GGBOXMuXt/6fWZmZqA1+QHIyPAF/X7/D15Y25itXeoF2H77n9W1rTNjxqzahx++b1TbY5MmfX/d5OTk0NCh+c0OhwOAlJSUMEBzc7MT4NBDf1vx3nvvZtx003UjCwvXJ69fX+AtKipMmTp12g+u02rFiuVerzc12Da5cDgcbLXV1nWfffY/H8CaNatSd95518q2582cuW1d+wSou/8msby+vqpPJ0DW2jJjzC5EFj74hMhCBc8Df2lT7VIir+NewEtkxGdfa60/2kaJMWZfYB6Rpa2LgXOttQ91tQ2RwSBj9vbc+d/XePnDBYwaP41jTr+aj95+nplfLWDs559RPXYsQw48ONFhiogMak6nk/T09H437y85OeW7mBsaGpx/+tOxpqmpybnLLrtV7rPP/uUzZ85ad/rpJ01trbPjjj+vTUpyhz7++IOMzz9f5Ntjjz0rxo4d1/zSS88NKyhY61mzZlXqZZddvaqja7lc7nDrG/JNcTqdnY6ktY15UwsRhEJBh8vl+kFhUlLSD753OjcdyxVXXDLmgw8W5Oy++57lO+zw8+qpU7cqfuyxh4aVl5d6OqofDnf80kKhEG63Oxy5njMcDnc+UNjdf5NYXl9f1acSIGvtsR0cWw4cuJlzgkQ2NZ2zmToLgR23pA2Rga6pqYmXXnqRukCAg/c/CofDwU92OZDPFv6HnwDF77+nBEhERLbYu+++5Vu9elXqc8/9+8u8vPwAQGVlhau6utrdmmh4PJ7wzJnb1ixY8E7W8uXL0s8//5K1o0aN9jscjvAdd9w2YvjwEU1tFzRoa8KEiU319fWuVatWJk+YMLEZoLy8zH3EEYdtfdVV1y+PJeYpU6Y2Avzvf5+kt06BA/j66y/TR44c3bjpMzetoqLc9cYbrw6dM+eiVb/61aHfjdisX78uJSXF2yb5+j7BmDRpSmNDQ4NryZJvU9qOAi1e/G36qFFjmgDGjh3XuHjxt+lASWv5t99+vdn7xrrybzKQ9OnhKRHpHaGWFt5b8BZ1dbVk5eQxwcwCICnJQ3By5Lm7rIxgQ/xXNhQRkcElP3+YH+Cll54fUlCw1vPJJx+l//WvZ04KBoMOv7/lu3f7O+20c9Xbb/831+fLCEycOKk5OTk5bMy0uvfff3fIDjvsVLWp9nfZZbea8eMnNlxxxcXjFy1amLZ06eKUyy67aFxmZlbLzJnbxvSHzJhpTbNmbVc9b95NY9588/XMFSuWJ8+ff8vwRYsWZv3f/x2xMZY2fb7MoNebGnz//QVZq1atTF68+Bvv3LkXjl2zZnVqS8v3/ZCSkhIsLFyfXFKy0b3bbntUjx49tvGKKy6Z8OGH72UsW7Y05corLx2zfv067+9+d+RGgCOPPKb4k08+zL7vvrvzV61amfzMM/8c8u9/v5y3uVi6+m8yUCgBEhHKnv4nuc88w25DhjJ9u91oO7974g77UNTUiBOoWdx+T2EREZHu2W677RuOP/6kgpdeej7vmGN+t/V11101buutZ9b+/Oe7VFj7/Qp3e+yxV3UoFHRsvfXMmtZj2247uyYcDrPbbr+o2lT7TqeT66+/ecXQofn+888/Z/IZZ5w81eVyhW+66bblycnJMQ9nXHvtTat++tMdqm666fpxJ5xwzPRPPvkw68ILL1t5wAEHVXZ+9o+53W4uvvjyVevWrfX+8Y+/n37eeX+e3Nzc7Pz9748tLCws8NbX1zsBDj741yWffbYw86yzTp3idruZN+/OZePGTWi4/PKLJ5588h+nrVmz2nvttTctmz37p/UAe+yxV81pp5219l//enHo8ccfNf3f/35x6L777l/aOkWuI139NxkoHF2ZIyjdtioYDI2vqIj/3ilut5Ps7DQqK+sH1dKfvW2w9fOayy/FX7COm1cuY9qxFzJmwlbflYXDYcpvP49dMzKo22oa2/0lfjNFB1s/J4r6ufeor3tHT/VzTk4aLpdzNTAhbo3GaNGiRVOdTtdreXkj6zyelD67mpb0PR999H56bm5eS9tFIO6887Zhb7zxau7zz7/yTSJj62l+f1NKSUlheigU3G/27NlLN1VPI0Aig1w4EKC5MLIwzvqQg1HjzA/KHQ4HjbmRlUHrV3V4v6mIiIj0ER9//GHmX/965pQPPliQsX79Os8bb7ya+dJLz+fvscdeHa6aNxj1qUUQRKT3+YuLcIRC1AUC+CYYnE7Xj+okTZwBiz8gs6GRcCiEI4YlUEVERKTnnXrqWUWNjY3Oa6+9anxtbY07J2eI/+CDD9t44omnbEh0bH2FEiCRQa65oACAtY0NjN56dod1srb6Gbe/8jDL62q5b2Mxw4eP7LCeiIiIJFZycnL4wgvnFhDZ01I6oI9xRQa5poK1AKxtqGfsxK07rJOSls7y1GyKmpr4+usvezM8ERERkbhSAiQyyNWsWAFAQXMzeSPGbrLeyLFTAPj2W60EJyIiIv2XpsCJDHIVyclsqKulzpeDy7XpXwkTRo4jL38Ymd8M6AVkREREZIDTCJDIIPexJ4lLl34LI8Zvtt6o/DH8YfQ4fhp20NLc4ebbIiIiIn2eEiCRQW7p0sUA5I/c/LYXaeOn0hwK4XE6WfPlZ70RmoiIiEjcKQESGcQCdXWsaE2ARk3cbF2ny01pKLJxcsHnSoBERESkf1ICJDKIFTz+CPPGT+bQESPJGz6u0/q13nQAqlau6OHIRERkoNh55+1nP/30k0O6Wv+dd/7rO/TQX269++47bHfddVeP6snYumLevJtGHHLIfjPi2WZ3+mT9+nWel156Pjue1x/stAiCyCBWu24tKQ4HjvQskpI8ndZvyRkGG1cTLi3thehERGQgePbZf33p82UGu1r/nnvuHJWfP6z51lvvWJaentHl8/qT7vTJ5ZdfMi4vL89/0EGHVvZ0XIOFEiCRwawy8rs0NCSvS9Udw8fBxtVktrQQDodxOBw9GJyIiAwE+fnDAt2pX19f7/rZz3asGjNmnL+nYkq07vVJWH9s40xT4EQGqVBLC8nR1dwcQ0d26ZykMZG9gPKTPBQXFfZYbCIiMnC0ne510UXnjrvggnPGX3/91aP23/8XM3/xi522PfvsUydu3LjB3Vq3rKzU89RTTwzfeeftZ69bt8YTDof5xz/uyD/00F/O+MUvdtr2yCN/vdXzzz+T09r+hx++l7HzztvP/sc/7sjfd9/dZx111G+nrV69Knnnnbefffvttw7/5S/3nHnIIfvNqKqqclVXV7vmzr1w7P777zFz7713mXXSScdO+eKLz1LbxvvEE4/kHnbYAVvvsceO25199qkT6+pqXZt7fSeeeIy55ZYbRsyde+HYvfbaedv9999j5u233zp8+fJlyX/849Fmjz123O6II3691eefL/ruOq19UlVV5TrooH22OfPMkye1li1Y8E7GLrv8ZPYrr7ycdeKJx5glSxanv/vu20Nap+Edcsh+M+bNu2lE+xguuujccZvqj2AwSFFRYdK55549Ye+9d5213367zzzzzJMnrVy5Ijnmf9h+TAmQyCDVUlqKA2gMBknJG9Olc0KZQ7m2pJQTvlzE6jWrejZAERHpULCx0bmpr1Bzs6M36m6Jjz76ILumpsZ966132EsvvXLlkiWLM+bPv2UkRKaG5eTktPzqV4dufPbZf305cuRo/803Xz/y3/9+Ke+0085ad999jy4+9NDfbLz99lvGPvLIg0PbtvvJJx9l3XHHvUvOP/+SNS6XMwzwzjv/zbn55vn2ssv+tjIzMzN49tmnTi4qKky+6qrrV9xxx71Lp06dVn/22adO/frrL70AL730fPZdd80fc+ihv9l4zz0Pfztt2vT6V1/9V6fTJF544ZlheXn5/nvvfeTbAw88uOSJJx4ZMWfOnycffviRG26//Z4lHk9S6KabrvvRbuNZWVnBc8+9aPXnny/KfPHF53IqKspd119/9fg999yn7Je//FXV9dffsmLy5Cn1O+7488p7731kSXf6uW1/NDU1Oc84408mFApy882325tvvt36fJmBU0/947SiosKk7rQ7EGgKnMgg5S/ZCEBxUxOZuV0bAcLppHnIcJrXrWTVqpX8/Oe79mCEIiLSkZVnnLLtpsq8U0z16PMu+G6lmlV/OXNmuKWlww+8k8eNrxt78Vzb+v3qOefMCDU0dPje0DNiZMO4K67u1hvwTcbo9Qbnzr1qbVJSUnjKlKlNH330QfmiRQszITI1zOl0hr1ebyg/f1igvr7e+fLLL+T/9a8XrN5rr32rAcaPn9BcXFyU/OyzTw47+uhjv7sp9fDDj9wwceKkZoB169Z4AA444KBSY6Y1Abz33rsZy5fbtBdeePXL3NyhAYC//GVO4eLF36Y/+eSj+TNmzFzz3HNP5e+0086VRx99XCnApEmTNyxZ8m3amjWrUtmM0aPHNJ522lnFAMcdd9LGJ554dMQuu+xesc8++1cD7LPP/uX33HPX6I7O3WWX3Wr33/9XJXfdNX/0f//7Rk5aWlpwzpyL1wFkZ+cE3W532OPxhFpj7qq2/fHPfz6WW1tb47722ptWJyUlhQGuuOKaNYcddsCMZ57559Azz/xLUXfa7u+UAIkMUjVrVgOwsbmJIUNHdFL7e0OHjQXeZ+XK5T0UmYiIDGT5+cOaW9+EA6SlpQcDgUCHI0zLli1NaWlpcdx447XjbrrpunGtx4PBkCMQaHE0NjZ+d964ceN/tEv3mDFjm1qfL126OBXg8MMP+cGKboFAwNHS4ncAFBSs8+6++54Vbcu32mrrus4SoBEjRn13ndTU1BDAyJEjv4vH40kOBQItmxxF+8tfzlv/2WcLMz/77H+Zd955/2Kv1xveVN2uatsfy5bZ1MbGRtd+++0+q22dlpYWZ0HB2pQtvVZ/owRIZJAqI8zHZSUUOVxs6+n6FGDjy2LSmPGwZk3PBSciIps08bY7P99UmcPp/MEb5wk3zfuyq3XHX3fj112tuyXaJj/f67j5UCjkALjwwrmrJkyY1NS+PDk5+bsTU1JSQu3LU1JSvisPhUIOr9cbvPvuB380kuXxeEIADoeDcLtQ3G53p6/d7Xb9qI7D0fU7TTZu3JBUVVWZ5HK5wh999L5vxoxtGjd/xg8vFwgEf5Rcte2PUCjE8OEjmq699qYf7WORlpY2IFfa2xzdAyQySK0MhbhzzSpW+rq3tcCI1DT2yctndLOfcPu/EiIi0uNcXm9oU1/ONglBT9btLZMmTWlyuVzh4uIiz4QJE5tbvxYseDvzkUfuz3c6u/5WduLEyY2NjY0uv7/Z0batBx+8d9hbb/0nC2Ds2HEN33zzZXrb86xdkhbfV/VDoVCIK664ePzYseMbTj31zHWPP/7wyG+++dr7fQ3HD/+dXO5wXV29q+35JSUbN7uXxYQJExvLyso8Pp8v2Pq6x4wZ2zx//i0jP/30o4x4v6a+TgmQyCC1JrqIQe6wDqckb1LSyAlAdCW44kE1ZVhERHpZZmZmcO+99yt95JEHRj733FM5a9as9jzzzD+HPPjgfaOys3O6dU/MHnvsWT127LjGuXMvnPj++wsyVq1amXz99VePevvtN3PHj5/YBHDEEcds+PTTj7PvuefO/JUrVyQ/9NB9eZ988lGPbkL6j3/cMWz16tWpF1102ZrDDz+qbNq06bVXXXXp+ObowhNerzdUUrIxubBwfRLAtGlb1b3//rs5H330QfqKFcuTr7jikrGNjQ2bXanuoIMOq0hPTwvOmfPniYsWfZq2fLlNueSSOeO/+GJR5uTJppPRpoFHCZDIIBQOhahctZIkh4PcvC4ugBAVyIosupPj8bBmue2ktoiIyJY5//xLCg4++LCNDz/8wMhjjz1i68cee2j47353VNEZZ3Tvxn2Xy8W8eXctmzx5Sv3VV8+dcMIJR2/11VdfZFx88eUrd9llt1qAvfbap/q88y5c9cYbr+b+8Y9HT3///QVZBx106MaeeWXw9ddfeZ988tERRx99bOGECRObAS644JK1ZWWlyTfffP1IgIMOOqy0oGBdyvHHHzU9GAxy+ul/LpwyxdRddNF5k884409TfT5fYKeddtnsJqmZmZnB2277x9LMzKzA+ef/dfIpp/xxWknJRs/f/nbD8qlTt/rR1MKBzqEpLD1iVTAYGl9RUR/3ht1uJ9nZaVRW1hMI/Giqq8TJQO/nlspKVp/7ZwKhEG/vdhgjJ2zTrfPHP3gFXgcs2WEHDj7h5JjjGOj93Feon3uP+rp39FQ/5+Sk4XI5VwMT4tZojBYtWjTV6XS9lpc3ss7jSRl0b1BFYuH3N6WUlBSmh0LB/WbPnr10U/U0AiQyCPnLIquGVra0kJEzrNvnV7sjWwbUrlsb17hEREREepoSIJFBqCK6BHZZi5+0jCHdPr/BG7lfsqW0JK5xiYiIiPQ0JUAig1D1unUA1DmcuFybvW+yQ4HMXACC1TVxjUtERESkpykBEhmE6jcUA9CUHNveZ1UzduYPny/krmVLCAS6tQiPiIiISEIpARIZhIKVkU2uW9J8MZ2fOnQEAaeLQCCgpbBFRESkX1ECJDIIOevrAAhn5sR2vtPJkLwRABQUaCEEERER6T/ciQ6gLWPMxcBe1trdN1F+D7C3tXZcm2NOYC5wApANvA+caq1d0abOLOBWYHugHJhnrb2hO22IDCRftbQQLiuF6TvE3MYRecPwpqawYZmFnXaJY3QiIiIiPafPjAAZY84GrthM+SFEEpT2LgFOBk4EdgTCwKvGGE/0vCHAf4BlRBKgucCVxpjjutqGyEDzQtF67lyzCvfwsTG3MSXJzazMLGrWrolfYCIiIiI9LOEjQMaYkcC9wC5Ah9vKG2OGA/8A3gXGtTnuAc4BzrPWvhI9djhQBBwGPAmcBDQDp1hrA8ASY8xkYA7wQBfbEBkwAoEAGzduACAjMy/mdpqSU6GxhsZoWyIiIiL9QV8YAdoOqAS2AT5pX2iMcQAPAY8A77QrngVkAG+1HrDWVgGfAbtGD+0CLIgmP63eijRt8rrYhsiAsWH1Koa6k0j1eEhOy4y5nZaM7MiT6uo4RSYiIl3hcOByOh1JifhyOOj+3gkifUzCR4CstS8DLwMYYzqq8mdgOPAr4IJ2ZaOijwXtjhcBY9rU+bqDcqJ1utJGTNzu+OeXLpfzB4/SMwZyP1d88iHzZszi26ammPYA+k52HpSsJbmpGZfLgcPh6HYTA7mf+xL1c+9RX/eOwdzPDgeukMMxvKEpkJD3cKkp7oCTcHE4TDAR19+UefNuGvHWW28MeeGF19q/5+vUihXLk0866ditHnzwsW/HjBnn74n4pG9JeAK0OcaYbYjcs7OLtba5gwQpNfrY3O54E5DTpk5H5QApXWyj25xOB9nZabGe3imfz9tjbcv3BmI/N5eXkgL4k1PI8cZ+m1vKyDFgF5LjdhMKNZGbmxtzWwOxn/si9XPvUV/3jsHYzw6Hw9nQFHB//E1xqKEpEOrNa6emuJ07bD3cnZHidobD4T6VAMVq8eJvvOeff84kv7958GXTg1ifTYCMMSnA48BV1tqvNlGtMfqY3OY5RBKb+jZ1ktud17r7Y30X2+i2UChMTU1DrKdvksvlxOfzUlPTSDDYq7/3BpWB3M8NG0vJBFq8qTQ2xv5BV9gbmT431JPM4sXLmDGj+29EBnI/9yXq596jvu4dPdXPPp+334wqNTQFQvWNLYn4IesfHdQFd9wxb9gzzzw5fOTIUU0VFeVa+GoQ6bMJEPAzYDpwmTFmbvSYB3AbY+qAPwHLo8dHACvbnDsC+DL6vCD6Pe3KAQqBpC60EZNAD34wEwyGerR9iRiI/RyqrYk8pvkIhcIxt+NPjSRAHqeTdWvXMm3ajJjbGoj93Bepn3uP+rp3qJ/7h5133n72Kaecse6///1PzurVK9Py84c1HX/8SYX77LP/dzeRvvnm65kPPnjviMLC9d7s7Bz/rrvuUXHKKWcUJycnhwGWLl2cctdd80cuWbI4o6mp0TlkSK7/V786tOS4404o6eiaDz54b96DD9476oILLl21776/rOqozqJFn2aee+6FqzMzM4PnnffnKT3y4qVP6stZ/KfAZGAmkYUKZgF3Ebk3ZxbwEpEEpQbYvfUkY0wWkYUV3oseWgDsYoxpe7PDnoC11pZ0sQ2RASOpKTrbM3PIFrUT8KZzgzOVE79cRPGG4jhEJiIiA9UDD9wzao899qz4xz8e+nb77X9WfeWVl05auPCTNIC3337Td/XVl03cf/8Dy+6//7FvzzrrnHXvv/9uzkUXnTseoKGhwXnOOWdOSUnxhm677a6lDzzw+Lc777xr5X333TX666+/+tH0g0cffXDoQw/dN+rii69YuankB+C++x61++9/4CbLZeDqsyNA1tpG4AcbkRpjKoBAu01O5wPXGWNKgTXA34mM+jwXrXI/cB5wnzHmeuCnwNlE9v0hem9RZ22IDBjeYBCcTtzZsS+BDYDDQUpOpI2ioqJOKouIyGC2xx57lR199HGlAH/96/mF33zzZcbTTz+R95Of/Gz1o48+OHzPPfcpO+qoP5QCjB8/odntdq+dM+cvU9atW+NJTU0LHXTQoSVHHHF0ic/nCwGcfvqfi5577ulhy5cv9c6Ysc13tzA88cSjufff/49Rc+detWL33fesScyrlb6uzyZA3XApkddxL+AlMuKzr7XWD2CtLTHG7AvMI7K0dTFwrrX2oa62ITJQhAMB0qKrtblyh29xe1k5+QAUFRVucVsiIjJwbbfd9rVtvzdmWv0XX3zmA1i9enXqypUr0t5++83vpiaEozO0V6xYnvKLX+xdc+SRx5T8618v5qxcuTy1sHB98tq1q1MBgsHQd0uQVlZWJt1557yxLpcrPGrUmPaLW4l8p08lQNbaYzspvwy4rN2xIJFNTeds5ryFwI6bKe+0DZGBoKG+nueKC8lO8jA8d1TnJ3RietDP9MlTWV1WFofoRERkoHK73T+46TQcDuN0usKR5yHHIYf8ZsNBBx1a3v68/PxhLSUlG90nnXTstIwMX2CHHXaqmj37pzXbbDOz/vDDD9mmbV2Hw8kVV/xt+f33/2PE1VdfNv6++x5Z6nT25bs9JFH0UyEyiJRVVfBU0XoeLt2AMyml8xM6keNysm1mFkP8LYTDsS+oICIiA9vixd/8YG+QpUsXp0+cOLEBYNSoMY0FBWtTJkyY2Nz6tXFjcdK8eTeOqqurdb788gtD6upq3fff/+jS0047q3j//Q+oqq6uin6I//3fnqyszJbddtuj5vzzL16zatWK1AceuCe/F1+i9CNKgEQGkY0bNwIwdOgwtmABuO84hkSm0eW43ZSXaxRIREQ69vLLL+S/8MKzOStWLE++7rqrR61du8Z7xBHHbAT43e+O2vDppx9nz5t304gVK5Ynv//+gozrr//b+Pr6Ond+/rBAfv4wf3Nzs/Nf/3oxe/36dZ53333Ld/nlF08A8Pv9P3ovO23a9KZDD/3thscee2jEypUr2m+FItK3psCJSM8qW7OaYckp5OUOjUt7oehKckM9yRQWric3Tu2KiMjmpaa4e/1D7C255j777F/6zDNP5t9yyw3esWPHNlxzzQ3Lp0/fuhHggAMOqgyHw6ueeOKR4c8999Sw1NS04Pbb/7Tqz38+b31r+dKlSzbcc8+do2+77SZnbu5Q/777/rLso48+yFqy5Ns0oLT99U455YziDz5YkH311ZeNu/feh62mwklbDk1b6RGrgsHQ+IqKmPdR3SS320l2dhqVlfXa+6AHDdR+fvPSCxlTVMTXnhRcR5y3xe2566qZ8uytBEIhCv7vd+y73y+7d/4A7ee+Rv3ce9TXvaOn+jknJw2Xy7kamBC3RmO0aNGiqU6n67W8vJF1Hk9KU+txhwNXyOEY3tAUSMiH2Kkp7oAzHC4Ohwl29Zydd95+9lln/XXNb3/7ux/d4yMST35/U0pJSWF6KBTcb/bs2Us3VU8jQCKDSLAmsiJoMC0dVyd1uyKQmkEIcDudVK5fF4cWRURkc8Jhgk7CxRkJGAGKXD8c6k7yI9IXKQESGURcDQ2RJ76c+DTodFLrdJEZCtKgpbBFRHpFOEwwHA4rCRGJkRIgkUHE09ICLhfOrNy4tdmYlIKrvpraCs1sEBGRH3v//f8tSnQMIm3pjjCRQSQtulyoKyd+K4N+aH7G8V/8j/9pFTgRERHpB5QAiQwS/qYm0pyRO388Q4bFrd2MIXkAbNiwIW5tioiIiPQUJUAig0R5QQFOh4NQOIzTF7/lqjOzIm2VlZXS0uKPW7siIiIiPUH3AIkMEpU1VbxQtJ6stAzG4ATis3Rsjr+RC6dMo7alhZKSEkaOHBWXdkVERER6gkaARAaJsvo6nipazztOB4Fg/PbNcBJmli+TrTIyKCnZGLd2RURERHqCEiCRQaK0NLJRdlZO/FaAAwik+gDITvKwsVhLYYuIiEjfpgRIZJCoLS5ieHIKOb7MuLYb8KYTBJwOBxUFBXFtW0RERCTelACJDBJDVq3i1hmz2DEQ573zHA7qo6vL1RcXxbdtEREZ9Orr652PPPLAd6v3XHTRueNOPPEY05PXXL9+neell57P3pI2nn76ySE777z97E2V98br2Hnn7Wc//fSTQ3ryGr1l3bo1np133n72hx++l7GlbSkBEhkkHI0NAITTtvj3xo80JqUA0FyuzVBFRCS+7r//H/nPPvvP7/ZvOO+8iwuuv/6WFT15zcsvv2TcJ598GN8pE9JnaBU4kUHC3dwMThdkZMW9bX9qBjTXE66ujnvbIiIyuIXDYUfb7zMzM+M8laHDqzo6ryP9lRIgkUEiJRgEpwtXZi7x/ssRysimrnQ99XW1cW5ZRETaCoehIZC4GTypbkKObqYG1dXVrptuum7Up59+lBUIBBzjx09sOPXUM9fPmrVdA0BDQ4Pz2muvGP2//y3MamhocI0cObLp978/tmj//Q+smjfvphFPPfX4cIhM53r88We+vvvu20eUlGxMvueeh+2HH76Xcf7550y55poblt16641jSkpKkseNG9dw8cVXrH7jjVez//WvF/KDwaBjl112L7/oossKHA4H4XCYe++9K/+NN17NLS0tSU5KSgpNnbpV3V//esG6sWPH+U888RizZMni9CVLFqcfcsh+GS+88NrXfr/fMW/ejSPeeeetIY2NDa5Ro8Y0Hn/8iUW77faLmtbX+eqr/8566KF7R2zcuCFl4sTJ9bNmbVezqT5pFQyGuPrqy0a/885/h7jd7vDee+9XduaZ5xS63ZG36J9++nHa/ff/Y8TKlcvTWlpanPn5w5qPPPKY4oMPPqyitY0XX3wu55//fGxYcXFRSlZWdsuBBx5c8sc//ulHy7KWlpa4TzvtRJOVld1yyy13rEhNTQ29++5bvnvuuXNkYeF6b15efvOvf/1/G+bNu2nc448/8/WYMeP8hxyy34yf/Wynqs8/X+Srrq5OuvTSK1busMPPax966L68V155Oa+srMyTm5vr//WvD99wxBG/LwP48MP3Ms47789TWtuAyPS1I4/8zYzrr7952U477VJ70UXnjguFQo7s7JyWt9/+75Dm5ibnNtvMqrnggkvX5ucPCwAsWfJtys03/33MihXL07Kzs1sOP/zI4u795G2aEiCRQSAcDpNK5C+WK3to3BOgku335tznHgDgL34/Ho8nzlcQEZFwGH7/WupUW+lKS1QMU7ODdY/s12C7mgSFw2HOPvvUyW63O3TVVdev8Pl8wZdffmHI2WefOvW22+5eMmPGzMbbbrtpxJo1q1OvvfbG5ZmZWYFnn/3n0GuvvXLC9Olbf3P88SdtaGxsdH7wwbs599zz8OLc3KGB9tcIhULccce80XPmXLTG40kJXXrp+RNPO+3EadtuO7v61lvvtAsXfpJ+xx3zxu6ww041e+21b/UDD9yT9/TTTww/99wLV0+dOq2xoGBd8o03Xjf25puvH33LLXesvP76W1b85S+nT87NHeqfM+fidQCXXDJn3Lp167wXXHDJ6mHDRvjfeee/WZdeesGkSy65cuVee+1TvXDhJ2l/+9tlE3/72yOKf/nLX5X/73+fZtx99/wxnfXPsmVL04cMGdJy2213L12/viD5ppuuH9fU1OS88MK5BUVFhUnnn/+XKfvue0DpeeddtC4QaHE8/PADw26++e/jdtzx5zV5efmBf//7pewbbrhm/O9/f2zhXnvtW7l48TepN998/bi0tPTg7353VFnrdcrLy9ynn36SGTIk13/TTfNXeL3e8Ndff+W99NILJh144MElc+devWrp0m9T58+/ZWz7GF9//dWhV1xxzXKfzxecNm1643XXXT363Xf/O+SUU85cN2PGzPoPP3zPd/fd88f4/c3OP/zhjyVd+8mAjz76IHvnnXeruPXWO2xRUaHnmmuunDB//i0jr7zy2rXV1dWuc845w0yZMrXujjvuWbJx40bPzTdf96PYYqUESGQQqKmuxhf9NCkpZxj+OLefmp5JUpKHlhY/GzduYPToTn/ni4hIDBwQTnQM3fH++wsyli+3aS+88OqXrcnLX/4yp3Dx4m/Tn3zy0fwZM2auKS4uSvZ6U4Njx45vzszMDJ511l8Lt912dm1mZnYwPT095PV6Q06nM9w6MtCR4447sXD27J/WA+y0085V//rXi3mXXnrl2tTU1NDkyabp0UcfGrly5XLvXnvtWz169Jjmv/71gtV7771fNcDo0WP9n3zyUeWCBe9kA2Rn5wTdbnfY4/GEcnOHBlatWpn8wQfv5cyf/48lraNWEydO2rhy5QrvP//56LC99tqn+umnn8ibMsXUnXnmX4oAJk2a3Lxq1UrvK6+8lLe5/snMzGq58srrVqekpISnTt2qqbS0tPDuu+ePOfvscwv9fr/jd7/7fdEJJ5y80el0tr7O4nfe+e+QVatWpuTl5dc988yT+Tvu+POKP/3ptA3RuJobGupdKSne7zb8q6mpdp9++p+m5OYObb7xxttWpqSkhAGeeOKR/PHjJzSce+6F6wEmT57SXFFRkXTPPXeObhvjtttuV73rrrvXRtqqcb7++r+H/vGPfyo45JBfV0SvWVpUVJj8z38+PvyYY47vcgLk9XqDc+detTYpKSk8ZcrUpo8++qB80aKFmQD//veL2X6/33n55desyczMDE6dulVTY2NDwVVXzZ3Y1fY3RwmQyCBQVrAOp8NBKBwmmJYJLfH9++lwOMgakkfphvVKgEREeojDAY/s12D70xS4pUsXpwIcfvghM9oeDwQCjpYWvwPg978/dsPFF5836eCD9505efKU+u22+0n1/vsfWNGde33Gj5/Y1Po8OTkllJmZ1ZKamvpdEuDxJIWam/1OgL333q960aKFafPm3TiisHB98vr1Bd716wtSsrOzWzpqe/Hib1IBzjnnjB+s2BYMBh2pqalBgLVr16Ruu+3sH9wIO2PGNnWdJUATJ05qaE1IALbZZlZ9IBBwrFy5InnGjG0af/3r/yt/+OH789auXZ1SWFiYsmbNqlSAUCjoAFi3bq13111/UdG2zcMP/37kB+CRRx4cGQwGHO2vtWrVitT20/S22+4ntXDnD2IcOXLUd327YsWylGAw6Nh22+3r2taZNWu7updffiG/tLSky7lFfv6w5qSkpO/iSUtLDwYCAUcktpWp+fnDm9r+DMye/ZO6jtqJhRIgkUGgsqqC14vWk5eVzfCQg3h/gOj0N3PWsBF4crLZuCFuU3RFRKQdhwPSkgh1XrNvCIVCDq/XG7z77geXtC/zeDwhgO23/2n988+/+tV7773jW7jwE98bb7ya++STj4646qrrl++yy25durk0Kcn9gz9sTuems7R//OOO/CeeeGTkHnvsVTZr1na1//d/R5S8885bWe+9905OR/XD4Uh333LLHUvT0tJ/0Pculyv8fb0fLpzgdid1+sfW6XT+oE4oFHm/n5zsCS9fblNOP/2kqePGTWiYPfsn1TvvvHt1Tk5Oyxln/Gla2+t3lpDOmLFNzS9/eVDZ1VfPnfj2229W7LHHXjXRcwmFOl/sweNJ/tFrdLS7aCgU6Za2CU24zStraQn86Dpt636v7aHu92dXaRlskUGgpLaWp4vW835yCoFg/P9uhtxJTHI7GZeaRuV6bYYqIiIREydObmxsbHT5/c2OCRMmNrd+PfjgvcPeeus/WQDz5t044tNPP87YZ5/9qy+66LKCZ555+Zu8vPzmt99+MxvA4XDE9VO7p556fMTvfvf7oksvvXLdEUccXTZ79k/rCwvXp4R/cJXvrzl5smkE2Lhxo6fta3jxxWdzn3/+mVyACRMmNixZ8m162xaWLPmm03u11qxZldqaPAB89tn/MjweT2js2PHNTz31xFCfL7Pl7rsfWHbSSadu3HPPvavLykqTIHJvFcDIkaObrF3yg+tcc80Vo88++9Tvportuuselfvvf0DVTjvtXHHzzdePq6mpcQKMGze+of25X3/9xWZjnjRpSpPL5Qp/9tnCH7zWL774LCMzM6slKys7mJQUSWxrampcreVr165O7qwv2po8eUpDcXFRcnl52XeDNV999Xnc7n3rdgJkjHEbY/YyxlxjjHnSGPOqMeYRY8xVxpifG2O0bKBIH1NeHhkNz8ruob3QnM7vNkNt2LihZ64hIiL9zh577Fk9duy4xrlzL5z4/vsLMlatWpl8/fVXj3r77TdzW6etFRYWJt9yy9/HvP/+goyCgrWef//7peyystLkGTO2qQPwer2h+vp614oVy5NbWlq2+H3mkCG5/s8+W+izdknK8uXLkm+++e8jPv3046yWlpbv3hd7vd5QScnG5MLC9UlTp27VtN1221fPm3fD2DfeeDVzzZrVnnvvvSv/ueeeHjZy5MhmgCOP/MOGtWvXeK+77upRK1YsT37++WdyXn31X0M3HUVEeXm555JL5oxbunRxyiuvvJz1+OMPjzjkkN9sTE5ODufl5fsrKso9b731H19BwVrPq6/+K2vevJvGAvj9kemDRx55dPGHH76f/eCD9+atXr0q+aWXns9+441Xh+68825V7a913nkXFfj9fscNN/xtNESmHq5evTLthhuuHblixfLk1177d9Yjjzw4En48wtMqMzMzuNde+5Y99thDI1944dmcVatWJj/yyANDX3/9laGHHvqbjQ6Hg6lTt2pMSUkJPfDAPcNXrVqZ/NFHH6Tfd9/dozbVZkcOPPCQCp8vM3DRReeN/+abr70fffR++u233zq68zO7pssJkDHGY4w5C1gFvAGcBEwB0oFtgdOA94ACY8wZxphuZXoi0nNqi4oYnpxCTg/sAdSqdTNUf3lZJzVFRGSwcLlczJt317LJk6fUX3313AknnHD0Vl999UXGxRdfvrJ1ettFF122dpttZtVee+0V448++vCtH374/pF/+MMf1x966G8rAPbZZ7/KrKzslhNOOGb6V199kbqlMV100WWrm5ubnaec8sdpZ5118tQ1a1Z5Tz31zLW1tTXudevWeAAOOuiw0oKCdSnHH3/U9GAwyLXX3rRqxx13rpw378axxx575NZvvPFq7mmnnb32t789ohxgxoxtGq+66vrlX3/9RcYJJxwz/dln/5n/298e0emc8O23/2mVy+UKn3baidPmz7957H77HVhy2mlnFQEcc8zxJTvttEvFddddPeG4446a/uijDw0/9tgTCnNzh/q/+ebrNIjcz3T66X9e++9/vzT0uOOOnP7QQ/eNPPHEU9b95jeH/2hn8tzcoYETTzx1/VtvvZn7zjv/9U2bNr3pkkuuWLFw4cdZJ5xw9PSHHrpvxC9/+asSgKQkzyZH3S644NJ1BxxwUMn99/9j5PHHHzX9X/96Me9Pfzp93QknnLwRICMjIzRnzsWrCgsLvMcff9T0efNuHPOnP51e0J0EKC0tLTRv3p3W7XaHzzrr5KnXXHPl+P/7vyPj9gmrIxzufFTRGPNT4CEgCDwGPGWtXdlBvRnAL4ETAAdwtLX2o3gF24+sCgZD4ysq6uPesNvtJDs7jcrKegKBfjMFuN8ZaP387JmnMqOhgRVD8vAfeHKPXCPjxbsZXbWR1wN+znjw8S6dM9D6ua9SP/ce9XXv6Kl+zslJw+VyrgYmxK3RGC1atGiq0+l6LS9vZJ3Hk9LU+Rki3fP554tS3W53eMaMmY2tx1544dmcW265Ydybb773WeteRP2J39+UUlJSmB4KBfebPXv20k3V6+orewQ431r7/OYqWWu/Br4GrjPG/B+RpGlKV4MWkZ7haGwAIJzm67FrBNMyoWoj7sbGziuLiIhIQi1duiT1/vv/Merccy9YvdVW0xvXrFmT/MgjD4z4+c93ruiPyU93dPXVzbDWdmvrEGvtU8aYF7ofkojEW1KzHzwenBnZPXeRzFwoXEZKS4BQKETrngUiIiLS9/zud0eVlZeXJd15521jKisrknw+X2CXXXavOP30PxcmOrae1qUEqLvJz5aeJyLxlRJdYcbZU4sgAM7sodQFAvhDQaqqKsnJ6blriYiIyJZxOBycfvrZxaeffvag27+iSwmQMebS7jRqrb0itnBEJN78fj8Z0dGYpOx8emqCWt3Ebbjiob9TU1XBbiUblQCJiIhIn9TVKXCXtfs+TGSRgyBQBmQDHsAPVAAxJUDGmIuBvay1u7c59ivgUmBa9FpPA5daaxuj5U5gLpGFF7KB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyL9VVlpCb7oXF5nVm7PXcjhwJc5hJqqCkpKSpg6daueu5aIyMAXAsLtN9cUkU2L/n8Jw+Y3C+7SJH1rrbP1C9ibSBLxOyDFWjvcWptCZPW3cuAvsQRsjDmbdomTMWYX4HngWWAWcDJwOHBHm2qXRI+fCOxI5EW/aozxRNsYAvwHWEYkAZoLXGmMOa6rbYj0Z5XFRbijI0D+5LjtIdahjMzIqE9ZWWmPXkdEZBDYEA6HW/z+pi1e9llksPD7m1LD4XALsNlpfbEs8TAfuMRa+1Tbg9ba16IjOFcDT3a1MWPMSOBeYBfAtiv+E/CWtfba6PcrjDEXAg8YY04mkqicA5xnrX0l2t7hQBFwWDSOk4Bm4BRrbQBYYoyZDMyJtuPpQhsi/VZldRULitYzLHcow3ARGbjtGUemJOHdahuKCtb12DVERAaD2bNn1yxatOjhmprKU4AhHk9Kg8Ph6HzvEpFBKBwOO/z+ptSamkpPOBy6b/bs2bWbqx9LAjQG2NS7m1Igv5vtbQdUAtsQmeo2rk3ZjXQ8hOUGMois058BvNVaYK2tMsZ8BuxKJHnZBVgQTX5avQVcYIzJi16vszZE+q3yujqeKlrPT0aN4Vc9vC/JUAfkpKayqmRjj15HRGSQ+FswGKCqqvwYh8ORSuT2AxH5sXA4HG4Jh0P3AX/rrHIsCdCXwBnGmDettS2tB40xKcB5wCfdacxa+zLwcrSN9mWft/2+zWjNZ9baMmPMrtGignbNFhFJ1ABGEdmbqH050TqjutBGTNzu+C8D7HI5f/AoPWMg9XN1dSUAmVnZ4ABnN3Zi7q7mZC80tBCorOzSz/9A6ue+TP3ce9TXvWOw9PPs2bNDwFWLFi26NRxmOF28dUFkEAoBxZ2N/LSKJQG6AHgdWGmMeY3vR31+CaQBu8XQZqeMMW4iG7JuRWRkBqB1Xmxzu+pNQE6bOh2VA6R0sY1uczodZGf33P0WPp+3x9qW7w2Efm6prmB4cgq5viy83p69rS2U7oOGGhz1dd36+R8I/dwfqJ97j/q6dwyWfo6+qevSGzsR6Vy3EyBr7bvGmJ2IJEK/IpIklAFvAlf0xMppxpgM4ClgD+A31trWUabWFX2T2zyHSGJT36ZOcrsmU6KP9V1so9tCoTA1NQ2xnr5JLpcTn89LTU0jwWDPTmcazAZSP6evWsutM2axrrqKhsae3ZrLm5oJrMfZ2EhlZef/fQZSP/dl6ufeo77uHT3Vzz6fd8CPKolIbCNAWGs/A34b51g6ZIwZDrwKjAf2t9a+3aa4ddraCGBlm+MjiEzVa60zol2zrd8XAkldaCMmgR683yIYDPVo+xIxEPo51BBJxEPeNEKhnr1/NpwZWWY7NRiisbGZpKSkTs6IGAj93B+on3uP+rp3qJ9FJBYxJUAAxpj9iSyJPRy4ENgWWGStXRun2DDGZBNZnMAH7GytbX8vz5dADbA70eTFGJNFZGGF+dE6C4CTjTEua23r8ld7AtZaW2KMqe5CGyL9lrOpCZI8kJbR89fKGgpAdlIS5eVlDBs2vMevKSIiItId3U6AjDGpwAvAXkQShwzg78ApwLbGmN2std/GKb6biaz0th9QaowZ1qas1FrbbIyZD1xnjCkF1kRjKQCei9a7n8jiDPcZY64HfgqcTWTfH7rYhki/5QkEIMmDMz2rx68VTPNRFwzSEAxSWlqiBEhERET6nFgmuv4NmE1kFCWX75dkPJrIlLIr4xGYMcZJZNNTD5FRoOJ2X6OjVS8F7iOyl9AHQADY11rrB7DWlgD7Agb4jMhGqOdaax9qc7nNtiHSX4XDYZLDkWlvLl/Ma3p0WePQUVxeXcvfli+ltLSkx68nIiIi0l2xTIE7HLjAWvu2McbVetBau8EYcxVwe6zBWGuPbfM8BHS6vEt0Wtuc6Nem6iwEdtySNkT6o/r6etKdkf+mrqzcXrlmRvQ6ZWWlvXI9ERERke6IZQQoi8g0sY5UAumxBiMi8VVRUY7PHfmcw5Ge2SvXTM+IjDRpBEhERET6olgSoG+AozZR9qtouYj0ARXlZfy7ZAPv1dfRnNxz+1K1tW/Yzw3Tt8G5bl2vXE9ERESkO2KZAncV8LwxZgjwMhAGdjPGHEdkYYEj4hifiGyByqoqni5az7TsbI52eiAY7PykLZTlcDDSm8qyqsoev5aIiIhId3V7BMha+yLwe2Ab4E4iiyDcSGRfoJOttc/ENUIRiVlFRTkAWVk5BHppU8ZAanS57bqY9xEWERER6TGxboT6OPC4McYAQ4AqYGl04QIR6SOqS0oYkZLCUF9mj2+C2iqckQ2l60hqbu6V64mIiIh0Ryz7AL0FnGqtXWqtte3KtgEetdZuE68ARSR2nsL13LL1LErr6uitNdkc2ZHNUNOBpqYmUlJSeunKIiIiIp3rUgJkjNmZ76fL7U7knp+8DqoeCEyMT2gisqUCtTUABJN7MQnJjCyDnZ3kobS0hNGjx/TetUVEREQ60dURoBOAY4gseBAG7iBy70/bOTWtG6I+HrfoRGSLhBsaAAilpPbaNYPRe4ByPElKgERERKTP6WoCdBbwAJEk5y3gNGBxuzpBIvcCfRuv4ERkyziamiA5BdIyeu2aLak+6kNhqlpaCJds7LXrioiIiHRFlxIga2018C6AMWYPYBGQbq3dED2WDYy21moPIJE+JKmlBZJTem0TVICgN42bnSl8tfgTzi0v67XrioiIiHRFLBuhfgk8D7zT5tjPgC+MMS8YY3pvro2IbFIoFCI5FFmY0eXL6dVrp0evV6IRIBEREeljYkmArgWmAxe2OfYWcDCwPXBFHOISkS1UU1NNuisyyOvK7N0EKC2aAJWV9dbacyIiIiJdE0sCdBDwV2vtc60HrLV+a+3LRJKi/4tXcCISu4qKChaUl/LfygoCWR0t2thzdmiu5cbp25BfogRIRERE+pZYEqAMoHITZRuB3NjDEZF4qago55WSDbza4qc5I7tXr53hcjHam4qnvr5XrysiIiLSmVgSoM+AP26i7Djgq9jDEZF4qaioACArO4dAMNxJ7fgKZUSmwHla/L16XREREZHOdHUZ7LauAl41xvyPyGIIJcBQIvcAzSayGaqIJFhVWSkjU1LIz8wiEAj16rWd2ZEpdz6Hg8bGBrxerY0iIiIifUO3R4Cstf8BfkVkE9QrgLuBK4kkUwdba1+La4QiEpOWDcXcvPUsjmpqIhjs3QSI6CII2UkeSkt1H5CIiIj0HbGMAGGtfZXIKFAKkANUW2s12V+kD/FXRW7V8ycl0bsT4CCQ5gMiCVBZWSljxozt5QhEREREOhbLPUAAGGOmAScBZwBZxpidjTG9t928iGxWS00tAEFPSq9fO5Aa+VWQ7nZTVlzU69cXERER2ZRujwAZY1zAXcDxgIPIVLingbnABGPMbtba9XGNUkS6LdwQGZQNpnh7/dqhpGSqwlDVWE/Vxg29fn0RERGRTYllBOhi4CjgBGAYkSQI4BzABVwdn9BEZEs4mpoACHvTE3BxBw/4hnHe4q8prq3p/euLiIiIbEIsCdDxwKXW2geA8taD1tqvgEuBveMUm4hsAbc/ugR1WmJmpqb5InsPlZaWJOT6IiIiIh2JJQHKB77YRNl6oHd3XBSRHwmHw3iCAQCcGZkJiSEjcwiAVoETERGRPiWWVeBWAL8E3uygbPdouYgkUFNTIwsryilvamb7EeMTEsP0xhp2nr4Ny+rqEnJ9ERERkY7EkgDdAtxtjPEALxNZBGGyMWYP4K/AX+IXnojEorKyknfLy/iwppptR0+GmqZejyHVk8xobypFNdW9fm0RERGRTel2AmStvdcYMxS4CDiFyCIITwB+4Hpr7V3xDVFEuqsqugdQVlY2wVBv7wIU4czOAyDD4aCpqYmUlN5fjltERESkvW7fA2SMybbWXgOMIDIV7vfAgcAIa+2lcY5PRGJQVVnByJQURmTnEAgEExKDIzMXgJzoZqgiIiIifUEsU+A+NcZcbK39J/B6vAMSkS1XXVLKzVvPAmCV388W7Hkcs0CaD4DspCRKSzYyatToXo9BREREpL1Y3hVlA2XxDkRE4qc+OuLSArQ4XAmJIRDdfyjZ5aK8uCghMYiIiIi0F0sCdCvwd2PMHtF7gUSkj2mqrACg2eUiGEzMPUBhdxKN0UvXFBUmJAYRERGR9mKZAncMMJboMtjGmPblYWttLO1ijLkY2Mtau3ubY7OIJF3bE9l4dZ619oY25U5gLnACkdGp94FTrbUr4tmGSH/ir64CIJDkSWgcZa4kgnVVVFeUd15ZREREpBfEkqg8GvcoAGPM2cAVwII2x4YA/wFeAE4GdgDuMMaUW2sfiFa7JFp2HFAIXA+8aoyZbq31x6ONnni9Ij0pUFMbeUxO7Mprrw6bxJsvPcCvJk5IaBwiIiIirWJJgFYDb1lr18cjAGPMSOBeYBfAtis+CWgGTrHWBoAlxpjJwBzggeheROcA51lrX4m2dzhQBBwGPBmnNkT6lXBjPeAklOJNaBzpvhwArQInIiIifUYs9wDdRGQqWbxsB1QC2wCftCvbBVgQTVxavQUYY0weMAvIiB4DwFpbBXwG7BrHNkT6FUdTMwDh1PSExpGRGUmASkuVAImIiEjfEMsIUAmQFa8ArLUvAy9Dh/cTjQK+bnesdTmpMdFygIIO6oyJYxsxcbvjv/Swy+X8waP0jP7ez4urKml0VLH1zvvgdDoSFscEfz03TZ/JupbmDv8/9Pd+7i/Uz71Hfd071M8isiViSYDuAW43xuwBfANsbF/BWvvwlgYWlUpk+lpbTdHHlGg5m6iTE8c2us3pdJCdnRbr6Z3y+RI7tWmw6I/9HA6Hea+4kHeCQW7ZejZeZ+IWQnBmZTHK66UhGMDrdZGS0vE9Sf2xn/sj9XPvUV/3DvWziMQilgToxujj0ZsoDwPxSoAageR2x1rfQdVHy4nWaWxXpz6ObXRbKBSmpqYh1tM3yeVy4vN5qalpJBgMxb19iejP/VxTU0MwGATAleSlpi5x63gkp2YDkJPkYfnyNT/aDLU/93N/on7uPerr3tFT/ezzeTWqJDIIxJIAjY97FJtWAIxod6z1+0Igqc2xle3qfBnHNmISCPTcH79gMNSj7UtEf+znsrJy8pOTweMBXIRCgU7P6Skt3gwAspKS2FC8gWHDRnZYrz/2c3+kfu496uveoX4WkVh0+2MOa+3a1i+glMjUsaJ2x+NlAbCLMabtVvZ7RsKwJUQSlBpg99ZCY0wWkYUV3otjGyL9RlVVJVdP3ZrbzHQo/dEM1V4V8KYRCodxO51UFLa/zU5ERESk98U0zmuM2cUY8xGRxKEQaDLGfBS9Lyie7gd8wH3GmK2MMccCZwPXAFhrm4H5wHXGmIOMMdsA/yQy6vNcHNsQ6TeqKspJd0cGd/2eBM+Pd7qoJ7IIQ21RUSeVRURERHpetxMgY8xOwJtEVoK7EjgVuIrIggGvG2N2jFdw0RGafQFDZFnqucC51tqH2lS7FLiPyF5CHwABYN/WDUzj0YZIf1JTUoLTEUk6/Entb3/rfQ2uSDLWWFqS4EhEREREYrsH6CoiU8P2tdYGWw8aYy4HXgcuB/aJJRhr7bEdHFsIbDKpisYwJ/q1qTpb3IZIf1FfXgZAk8NBIOQgsi5J4lQnp9JQXkx1TXVC4xARERGB2KbA/RS4tW3yA2CtDQG3RctFJEGaKysBaHG7CYYSm/wA/G/s1sxZ/DVf1dUmOhQRERGRmBKgWr5fOa09D5C4XRdFBH91FQCBpMTt/9NWui+ynVZJiabAiYiISOLFkgB9AFxojElve9AYkwFcgFZOE0moYF1d5DG5401He1tGZiQBKi0tTXAkIiIiIrHdA3Q+sAhYZYz5F7ABGAYcSGTz0OPiF56IdNe6+jpeLS/HTJuZ6FAAGBZo5qbpM6kJtOD3+/F4+sbIlIiIiAxOsewDtILIggJvA78E/hp9fBvYwVr7VVwjFJFu+aayggcK1lIzZZtEhwKAJ83HKK+XESkplJVpFEhEREQSK6Z9gKy1i4GzrLXDrLUeYCvg6uhxEUmgqqrIIgip6RkJjiQikOYDICvJQ+mG4gRHIyIiIoNdLPsAZRlj/gO80+bwT4EvjDEvGGNS4xWciHRPIBAgqbGJTHcSXm/fSICCyakEwpHV6CrXr09wNCIiIjLYxTICdC0wHbiwzbG3gIOB7YEr4hCXiMSgpqaGP0+YzD2zZpOxoY8kGw4HddHFIWuLCxMcjIiIiAx2sSRABwF/tdY+13rAWuu31r5MJCn6v3gFJyLdU1VVSYY7srZJqI+MAAHUuyIxNekeIBEREUmwWBKgDKByE2UbgdzYwxGRLVFVVYkvmgC1eLwJjuZ7TUmRJblbKjf1q0NERESkd8SSAH0G/HETZccBWgVOJEGqystIjSZA/qS+sQ8QQEN6Jqsb6qmM7lEkIiIikiix7AN0FfCqMeZ/wPNACTCUyD1As4nsByQiCVBbUgJACPC7PdASTmxAUasnzuLR15/FmKmcluhgREREZFCLZR+g/wC/AsJEFjy4G7iSSDJ1sLX2tbhGKCJdVl9eBkCz00kglOBg2kj35QBQUrIxwZGIiIjIYBfLCBDW2leJjAKlADlAtbW2Pq6RiUi3NUfvsWlxuwkG+8boD0BGZiQBqqyspKXFT1KSJ8ERiYiIyGAVUwLUylrbBBTFKRYR2UJljQ28srGYydv+JNGh/ICPMDdvPZNkp5OysjKGDx+R6JBERERkkIplEQQR6aPW1NbyYMFaNkyeluhQfiDs8TIyxUuuJ5myYn1mIiIiIomjBEhkAKmqikyB86b6EhzJD4WSPDSHI1PyKgvWJTgaERERGcyUAIkMIMGaajLdSaSkpCc6lB9yOKjDAUDdhuIEByMiIiKDmRIgkQHklymp3DNrNsMKViU6lB+pd0VuOWwqK01wJCIiIjKYxbQIgjEmFzgX2BsYDuwLHAp8Ya19MX7hiUhX+f1+vNHnruiy031Jk8cLTbW0RFeqExEREUmEbo8AGWPGA18BJwHrgTwiidQU4FljzAFxjVBEuqSqqpIMdxIAzoysxAbTgYA3Oi2vti6xgYiIiMigFssUuBuBEmA8cBhEJvZba48CXgIujFt0ItJlVVVV+NyRQd1ASlqCo/mxZt8QVtXXU9KgBEhEREQSJ5YEaE/gSmttFdB+p8W7ga23NCgR6b7ICFAkAWrxeDup3fsqJ83i/CVf83zh+kSHIiIiIoNYrIsgBDZxPJkfJ0Ui0guqSktJdrkA8PfBBCg9M3JfUkVFOS0tLQmORkRERAarWBKg94ALjDFt59iEjTFO4BTgg7hEJiLdUldaAkQ+nWhxxLS+SY9KTfPhjCZoFRXlCY5GREREBqtY3iWdTyTJWQG8TWTE56/AVsAkYJe4RSciXVZdV8u/NxYzccJkHKG+NxDrBG6ePpMsl4vSggLy84clOiQREREZhLo9AmSt/QbYHngL2AMIElkOewWwk7X2i3gGKCJdU1Jfx0MFa7FjxhEM9r0ECKcTn9uN1+WiunBdoqMRERGRQSqmeTLW2uXAUXGORUS2QGV0f500X2aCI9m0OpykAXXFxYkORURERAapWDdCdQCzgDQ6GEWy1i7YsrBEpLsaKyrIdCeR1rrfTh9U706CUAuNZaWJDkVEREQGqW4nQMaYnwJPA6OihxzRx3D0eRhwxSU6Eemy6Y2NnDZrNiWrV1I29meJDqdDzZ4UaGohWFWV6FBERERkkIplBOhmoAU4FlgPhOIZUEeMMUnAZcDRQDbwBTDHWvthtHwWcCuRe5PKgXnW2hvanO8E5gInRM9/HzjVWruiTZ3NtiHS17la/JCcgiMtI9GhbFJLagY01UJdbaJDERERkUEqlgRoO+B31toX4x3MZlwMHA/8AVgFzAFeNcZMA5qB/wAvACcDOwB3GGPKrbUPRM+/JFp2HFAIXB89f7q11m+MGdKFNkT6rHA4THIwCIAjIyuxwWxGKCMbKopIampOdCgiIiIySMWSAJXQC6M+7RwMPG6tfQPAGHMOkdGcHYEpRJKgU6y1AWCJMWYykSTpAWOMBzgHOM9a+0r0/MOBIuAw4EngpM210XsvUyQ2TU2NpDoit+O5oxuO9kWh7GGsWvwphQFthCoiIiKJEctGqLcD57fbCLWnlQMHGmPGGWNcfJ+wfEFk36EF0cSl1VuAMcbkEVmsISN6DABrbRXwGbBr9FBnbYj0aZWVlfjcSZFv0rMSGsvmBMZvxflLvuYfKyyBQKDzE0RERETiLJYRoMlENj3dYIz5FmhoVx621u65xZH90FnAP4HVRPYdCgG/sdauNMaMAr5uV78o+jiG7xdrKOigzpjo887aKIklaLc7lvxy81wu5w8epWf0t36ura3GlxT57xxKScXpdHRyRmKk+7JwOp2EQiGqqytISxsB9J9+7q/6289zf6a+7h3qZxHZErEkQJOIjLy0av9OqyfeeU0DKoFDiNzDcyLwsDFmVyCVyGhQW03Rx5RoOZuo0zpXqLM2us3pdJCd3XODZD6ft8falu/1l34OtDSQER0BcmRk4nV5EhzRpvkyc6iqLKOpqfa7/u0v/dzfqZ97j/q6d6ifRSQW3U6ArLV79EQgm2KMGQs8BuxprX0vevh/xpitgMuBRiC53WmtSUt9tJxoncZ2deqjzztro9tCoTA1Ne0Hx7acy+XE5/NSU9NIMNjbt2INHv2tnwvWFrKkZAPj8ofjw01joz/RIW3Sn0ePYfy48RR+vJAJE0y/6uf+qr/9PPdn6uve0VP97PN5NaokMgjEtBFqL/spkAQsbHf8Y+CXwFpgRLuy1u8Lo+e2HlvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpLP5dXVfNQwVp+Yaaxd9BBKNR3Y05xe0hxQmlR8XdvXPpLP/d36ufeo77uHepnEYlFlxIgY0wQ2NFa+6kxJkRks9NNCVtr45lYtd67sw3waZvjM4DlRBKhk40xLmttMFq2J2CttSXGmGqgBtidaAJkjMkispz3/Gj9BZtrI46vRaRHVFVVApCZmUWgj3/q3OD2QMhPS3l5okMRERGRQairicoVRDY9bX2+uQQo3j4F3gMeMsacGo3jGGAvYGci+wKdB9xnjLmeyIjR2UT288Fa22yMmQ9cZ4wpBdYAfyeSWD0Xvcb9m2tDpK+rqygnOykJX7qPYKg3/3t2X3NKGjT4CVVXJzoUERERGYS6lABZay9v8/yyHoum42uHjDEHA1cBDwLZRFZs29Na+zGAMWZfYB6Rpa2LgXOttQ+1aeZSIq/1XsBLZMRnX2utP3qNki60IdJn5ZSUcvfM2ZQVrY9tycJeFEjzQUMlzoaYbq8TERER2SJdnQK3a+e1vmetXRBbOJtsrxI4LfrVUflCIpuibur8IJFNTedsps5m2xDp0xrrASchb29uzxWbkC8HSteS7NdmqCIiItL7ujoF7h2+n/a2qWWuw9GyMODasrBEpDucTc2Q4oXU9ESH0ilHzjBYCRm9OpNWREREJKKrCVCvLn0tIt3jCQQAcKT5EhxJ55KGjmBVfR3lLS1s36JRIBEREeldXb0H6N2eDkREYhMOh0mOLnvtzMxOcDSdSx4yjAuWLiYcDnFAdRVD87ISHZKIiIgMIjEtV22MyQXOBfYGhgP7AocCX1hrX4xfeCLSmbq6OtJdkVmnLt+QBEfTOafTRbovi9rqCsrKSpk8eVyiQxIREZFBpNvbHRtjxgNfAScRWZI6j0giNQV41hhzQFwjFJHNqqqqxOeO7veblpnYYLoo3ZcDQMmGDQmORERERAabbidAwI1ACTAeOIzoogjW2qOAl4AL4xadiHSqqqqSDyrKWNhQT3NqRqLD6ZLfDhnCw9v+hNAnHyc6FBERERlkYkmA9gSutNZW8eMNUe8Gtt7SoESk6yorK3misICXwyH83v6RALmSvaS4XLRUViY6FBERERlkYkmAAAKbOJ7Mj5MiEelBVVWRJCIzM5tAMJTgaLrG37pfUW1tYgMRERGRQSeWBOg94AJjTNsdF8PGGCdwCvBBXCITkS6pLi8jOymJLJ+PQKB/JEDBjMhqdUmNTQmORERERAabWFaBO59IkrMCeJvIiM9fga2AScAucYtORDrlKirk7pmzqaqro7ifjACRNRSKV+ANbmowWURERKRndHsEyFr7DbA98BaRDVKDRJbDXgHsZK39Ip4BisjmtVTXABDwJBPuJxNQ3bkjAEjDQUiboYqIiEgvimkfIGvtcuCoOMciIjEI1dcBEEzxJjiSrvMOHUlLKESS00ndxo2Q1vc3cBUREZGBIdaNUCcAKdbaxcaYLOBqYDTwtLX2kTjGJyKdaWwEpwu8aZ3X7SNS0zP5sraGcCjEsI0l5ExQAiQiIiK9I5aNUPcDlgDHRw/dRWRT1FHAg8aYP8YvPBHpjNvvByCc5ktwJF3ncDi4t6qGv69cRmmLP9HhiIiIyCASyypwlwJvAJcbYzKBQ4FrrLXbAdcAZ8UxPhHphCcQWUjAkZGZ4Ei6x5eVC0BRUVGCIxEREZHBJJYEaCZwi7W2FtiXyDS6Z6Jl/wEmxyk2EelEMBgkJbrygcuXk+BouiczeygARevWJTgSERERGUxiSYAa+f7eof2Bjdbar6LfDwOq4hCXiHRBTU0Ni6orWVBeiiN/dKLD6ZbZqV4e3vYnDP/f54kORURERAaRWBKg94G/GmOOAP4PeA7AGDMbmBstF5FeUFVVyUsbinmwrITA0BGJDqdb3OlZpLhcuBsaEh2KiIiIDCKxJEB/BkYCjwGrgauix/8NpBDZKFVEekFVVSUAWZnZBAL9ZBPUKEdOPgCpgWCCIxEREZHBpNvLYFtrVxtjpgN51tqNbYoOAT631jbHKzgR2bzK8nKyk5LIycoiEOxfCZB76CgAUh0OQk2N4E5OcEQiIiIyGMQyAoS1Ntwu+cFa+zHgji6TLSK9oLFwPXfPnM1fU1L7XQKUNnQEddEV7Bo2bEhwNCIiIjJYdHsEyBgzFrgb2A3wbKKaa0uCEpGuaawoB6DZ5ep3U+C8qemUtfhJd7spW7mCUaPGJjokERERGQS6nQABNwM7Af8Afg40AB8B+wAzgMPiFp2IbJa/ugqAlqQkgqFwYoPpJofDQVU05Kp16xiV2HBERERkkIhlCtxuwMXW2rOAB4Bma+0cYHvgXeDgOMYnIpsRqKmNPHpSEhxJbAqdSSysrKAy0JLoUERERGSQiCUBSge+iD5fDMwCsNYGgduBX8QjMBHpXLihHoCQNzXBkcTmq/Qc/r5yGaucMd2OKCIiItJtsbzrKCay4SnACiDHGDM8+n0FkB+PwESkc86myKKL4dT0BEcSG19WLgBFRUUJjkREREQGi1gSoH8DVxpjdrLWFgDriWyMmgEcDxTGM0AR2bSkFn/kSZovsYHEKDM7kgBVFCsBEhERkd4RyyIIlxK53+cKYC/gQuAh4Oxo+WlxiUxEOvV1VSW19fVMyO+fSwgMSc/k4W1/gqe+kXAggMMdy68kERERka6LZSPUcuBnrdPerLWPGWPWAjsCn1pr341zjCLSAb/fz78LCwC4ceJ06IdbEKfmDscBOB0OglUVuHPzEh2SiIiIDHAxf9xqrS02xkwFsoFia+3f4xeWiHSmsrICAJfbTVJyKjT3vwzIl5NHqd/PKK+XhuIN+JQAiYiISA+LKQEyxvyRyFS4UW2OFQAXWGufiFNs7a95DHA+MAFYCVxmrX06WjYLuJXI1LxyYJ619oY25zqBucAJRBK294FTrbUr2tTZbBsifU1FeRk5SR48mZkE+9ceqN9J8aZREWhhFF4q1q7CN2ObRIckIiIiA1y3F0EwxpwO3AMsAv4A7A8cBywBHjXG/DauEUau+XvgfuBuYGvgSeBJY8yOxpghwH+AZUSSl7lEFmk4rk0TlwAnAycSmaoXBl41xnii7XelDZE+pWrjBu6auR3zxk0k0A9HfyCyGWqN0wVA7fr1CY5GREREBoNYRoDOAuZba89sd/xhY8y9wGXA01saWCtjjAO4ErjZWntr9PCVxpidgd2jX83AKdbaALDEGDMZmAM8EE1yzgHOs9a+Em3zcKAIOIxIMnXS5tqI12sRiaeaDRsYQuQHN4ALCCY4otg0RDdxbS4tSXAkIiIiMhjEsgz2KODlTZQ9QWSKWjwZYBzweNuD1tp9rbXXALsAC6KJS6u3AGOMySOyUWtG9FjruVXAZ8Cu0UOdtSHS5zSWlUYenU5a+uscOMCfmgFAqLIqsYGIiIjIoBDLCNBCYE8iU8ba2xb4aosi+rEp0cc0Y8zr0WusBq6y1r5MJCH7ut05rZuKjOH7+5QKOqgzJvq8szZi+mja7Y7/7vYul/MHj9Iz+kM/+6sqAWhJ8gDgdDoSGU5MnE4HzVlDWLhsPSlZWezUA/9npH/8PA8U6uveoX4WkS3RpQTIGLNrm2+fAG6Obnz6FLCByMIC+wFnAn+Kc4ytOzw+DFxOZFrar4EXjTF7A6n8eAHgpuhjSrScTdTJiT7vrI1uczodZGenxXJql/h83h5rW77Xp/u5vg6AoNeL1+tJcDCxC+aP5u+vPs1uo0Zycg/+n5E+/vM8wKive4f6WURi0dURoHeILBzQygGcQmRhgbbHIHJPTdzuAQKiW93zd2vtQ9HnXxhjtgP+AjQCye3OaU1a6qPlROs0tqtTH33eWRvdFgqFqalpiOXUzXK5nPh8XmpqGgn242lPfV1/6OeW6hoAgimpNDb6O6ndNzmdDrJyIrNM169fT1VVPeFwJydJt/WHn+eBQn3dO3qqn30+r0aVRAaBriZAe/RoFJvXujRU+ylq3wIHAmuAEe3KWr8vBJLaHFvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpyPzsbG8GdRCgtg1Co/2YN2UOGAVBbspGWhkZIav9ZhMRLX/55HmjU171D/SwisehSAmStfbenA9mMz4FaYAci+/e0mgGsAD4ETjbGuKy1rctg7QlYa22JMaYaqCGyWtxKAGNMFrAdMD9af8Hm2uipFyayJZbW1VIXCDJ6xz0THcoWyR6Sx0WTpzIzM4vSjz5k6K6J/LxFREREBrqu3gO0ADjTWvtFVxs2xmwP3GKt3TnG2ACw1jYaY64HLjXGFAKfAr8D9iGSpCwGzgPui9b7KXA20el51tpmY8x84DpjTCmREaO/Exn1eS56mfs314ZIX/RG4XoaGxu4etL0RIeyRZI8ydRHZ9BWrV3D0ATHIyIiIgNbV6fA3Qq8Zoz5H/Ao8JK19kc3uEQXRtiXyEII2wKnxiNIa+1VxpgG4GpgJJFNVw+z1r4Tve6+wDwiS1sXA+e2uV8I4FIir/VewEtkxGdfa60/2n5JF9oQ6TMaGxtpbIz8F0xJzaSlqZMT+ri66Ep29cVFndQUERER2TJdnQL3rDHmXSKJxL2A2xizmMhy1PVAFjAa2Bpoidb5vbV2Y7wCtdbeBNy0ibKFwI6bOTdIZPW4OZups9k2RPqSysoKhiR5aHSA25MCTe0XMexfGr3pQJCW0rJEhyIiIiIDXJf3AbLWlgFnGmMuB35DZGGECUAmUEZkVOZW4GVrbXkPxCoiURUbN3LnzO0AKGxsJLY9jfuOlowcqCvFVVeX6FBERERkgOv2RqjR5Obu6JeIJEB1cRFDgZZwGL8jCQh2dkrfNmQY1JXibWkhHAzicLkSHZGIiIgMUP37Y2ORQaquZAMAjQ4HgX68BHYrT94o/KEQLiBYVZnocERERGQAUwIk0g81lVdEHt1uWgbAHhjZucN4t6yU/1SU43R3e2BaREREpMv0TkOkH2qJjpK0eAbGpqGZOXnctm41AMclJZGa4HhERERk4NIIkEg/FKqtBSCY4k1wJPHh8aSQlpEFQHHx+sQGIyIiIgOaEiCR/qghsgdQ0Jue4EDiJzM7j3SXmw1LlyY6FBERERnAujQFzhhzTHcatdY+HFs4ItIVKxvrqaqtI3/mDokOJW5+OiSXI/NyqH/zTTjg4ESHIyIiIgNUV+8BerAbbYYBJUAiPWhBWSnFxUVcOHEankQHEyfBzFyoKyGpvj7RoYiIiMgA1tUEaHyPRiEiXRYOh6moiOw17E3N7O87AH3HMWQ41JXgCYUINdTjTE1LdEgiIiIyAHUpAbLWru1qg8YYR+zhiEhnGhsbSA+FCTkcpKRlUN+U6IjiI33oCCqXLyTb4yFQVopnjBIgERERib+YlsE2xvwO2A3wAK0JjxNIA3YERsUlOhH5kfLSUu6cuR0ARf4AkJTYgOIkKyePjf7maAJUhmfMuESHJCIiIgNQtxMgY8xcYC5QHT2/Jfo1FAgB98QzQBH5oYr1BXiBYDhMc1IyNPf/jVABsnLyKWluYmp6BjUFBaRut32iQxIREZEBKJZlsP8APArkADcDL1tr84GfAOXAt/ELT0TaqykuBKABCAyUG4AAT3IKldEB5Zp1axIbjIiIiAxYsSRAI4FHrLVhYBGwE4C1dhFwNXBC/MITkfbqN24EoMHloiUwMEZ/WhUnpfLqxmJK0nT/j4iIiPSMWBKgeiJLXQMsB8YbY1q3o/8CrRgn0qOayiMrwPmTBsoC2N8rz8rjgYK1LAkNrMRORERE+o5YEqBPiUyDA1gJBIC9ot9PA5rjEJeIbEKouhqAFm9qgiOJv5yhwwFYu7bLC0+KiIiIdEssCdDfgMONMS9ba5uJ3A/0kDHmWeBG4PV4BigiP+SIbhQaSk1PcCTxlzN0BKkuFy0F6wg3NiQ6HBERERmAup0AWWsXANsD/4weOh14BpgKPA2cGbfoRORHljc28HZZCU25IxIdStzl5A7n4inT+KM7iQa7NNHhiIiIyAAU0z5A1tqvgK+iz5uAk+IZlIhs2tslGyguLuL88VNJSXQwcZYzdDjFTY1MSkunYX0BabO2S3RIIiIiMsDEuhFqJvALIhuf/mgUyVr78BbGJSIdCIfDlJeXAZCakcVAWyrAm5rB2mBkjZWq1asYmuB4REREZOCJZSPU/YlMddvUHdhhQAmQSA+oqa4mEwdVDgepqZnUNYc7P6mfqU2O/GppKipKcCQiIiIyEMUyAnQNsAT4C7AeBtyH0CJ9VnnBOm7fZltC4TAFOPh+RfqBw+/LBlpwVFUlOhQREREZgGJJgKYCB1tr34t3MCKyeZUF68gA6kIhAiFHosPpEaEhI6BiLZ6WFkKNDTgH4HLfIiIikjixLIO9FvDFOxAR6Vzdxg0ANDid+APBBEfTMzLyRlLp9wPQUlKS4GhERERkoIklAboGmGuMGRfnWESkE02lpZFHdxLhgTf7DYisBPfyxmKeq6rEk5OV6HBERERkgIllCtxRwEhgpTGmFGi/W2HYWjtxiyMTkR8JVFUC4E/xJjiSnpOTO4L7NxbjKNnAnPSBt9mriIiIJFYsCdD66JeI9LJwXS0AQW9agiPpOWkZWXiSvfibGyksXM+oUeMSHZKIiIgMIN1OgKy1x/VEICLSOVdjEwCh9EwG5hII4HA4yBs6HHf5Bgre/4BRvxuX6JBERERkAIllH6AxmykOAXXW2qqYIxKRTfq2oZ519XXk/GR3khIdTA+alDeCU4flEXj7LcKHH4nDMVDTPREREeltsUyBW0Mnm48YYyqAW621V8US1GbanQJ8BpxurX0wemwWcCuwPVAOzLPW3tDmHCcwFzgByAbeB0611q5oU2ezbYj0Fa9tLKasrJQLRg3s2+wceaMJla7CHQwSqq7GlZWV6JBERERkgIhlFbg/AH7gDeA4YP/osZeJJEZXAA8CFxtjTolPmGCMSQIeA9LaHBsC/AdYRiR5mQtcaYxpO03vEuBk4ERgx2iMrxpjPN1oQyThgsEgFRXlAKSkZSY4mp41ZNgYNjRHpvu1bCxOcDQiIiIykMQyAnQE8GQH9wI9aoy5E5htrT3IGFMFnALcuYUxtrocqG137CSgGTjFWhsAlhhjJgNzgAeiSc45wHnW2lcAjDGHA0XAYcCTnbURp9hFtlhlWSm57iSqAi0ke300+UOJDqnH5OaPprCxkREpXvxFhaSYaYkOSURERAaIWEaAdgce30TZc8Ce0efvA3GZp2OM2RX4E5GRprZ2ARZEE5dWb0VOMXnALCAjegyA6P1JnwG7drENkT6h3C5l/jbbcvs22xEcuLkPAEPyRlLQ1AhAzepVCY5GREREBpJYRoDKgZlEpo21NxOoiT5PB+pjjOs7xpgs4BHgDGttgTGmbfEo4Ot2pxRFH8dEywEKOqjTuphDZ23EvBW92x1Lfrl5LpfzB4/SM/piP9dtLCYDqANCoTBOZ/9fGKD1NbR/LckpKVS6PADUrlnTI/+XBpO++PM8UKmve4f6WUS2RCwJ0GPAFcaYFuAZIglCHpEpZZcBdxljsoGzgY/jEOOdwEfW2o5GnVKJTF9rqyn6mBItZxN1crrYRkycTgfZ2T23V4vPN3A3wuxL+lI/B6oi9/80ud2keD0Jjia+kpN/vKZdc3YuAOHSUrKyUrUSXBz0pZ/ngU593TvUzyISi1gSoIuJJDw3Rb9ahYD7gQuB3wDbAr/YkuCMMUcTmaI2YxNVGoHkdsdak5b6aDnROo3t6rSOTnXWRkxCoTA1NQ2xnr5JLpcTn89LTU0jwYE+DyqB+mI/1xZtIBto8iTjavQnOpy4cDodJCcn0dzcQij0w8UlgzkjeHTJx0z46Y5sU1kHDn3SG6u++PM8UKmve0dP9bPP59WoksggEMtGqAHgeGPM1cAeQC6wHvjAWrsawBjzKjDSWtt+ZKW7jgfygfZT3+4yxpwLrAVGtDun9ftC+G6rlBHAynZ1vow+L+ikjZgFAj33xy8YDPVo+xLRl/o5VFUFQEtqBo7QZlei73dCofCPEqCs/NG89Pbz/LRkI3/EQbCP/Dv0Z33p53mgU1/3DvWziMQilhEgAKy1K/lhUtG2rDLmiH7o90D78e3lwKXAP4msSHeyMcZlrQ1Gy/eMhGBLjDHVRO5J2r011ug9RdsB86P1F2yujTi9DpEt5mqIDGKGfFmJDaSX5A4bDcCa1aui098GVtInIiIiidGlBMgYswo41Fr7pTFmNZt/JxK21sZl9Tdr7Y9GYKIjQSXW2rXGmPuB84D7jDHXAz8lcu/RydHzm40x84HrjDGlRDZx/TuRUZ/nok1utg2RviKlpQWcThyZQxMdSq/IzR9FVlIS4/3NVCxciG/b2YkOSURERAaAro4Avcv3q7u9Sx/5KDY6yrMvMI/I0tbFwLnW2ofaVLuUyOu8l8ho0gJgX2utvxttiCTch9VV+IIBsvNGJjqUXpGWnsn2Q4dx0oiRbHj5RSVAIiIiEhddSoDabnpqrT22x6LpAmuto933C4EdN1M/SGRT0zmbqbPZNkQSLRAI8MTqFYRCIS4dOqrzEwaI+rQsAAIbNyY2EBERERkwYroHyBiTAfistYXGGA9wFjAaeMZauyCeAYoIlJeXEwqFcLlcJKf5aAl0fs5AEModAS3VuJubCdbV4krPSHRIIiIi0s91e61HY8xPiay+dkb00DzgOiILFrxljDkofuGJCEDJ2jXkJyczNCeXQLDz+gNF9oixlDRHtuUKbCjqpLaIiIhI52JZ7P5qYClwtzHGSyTxucNamwPcB1wUx/hEBGj4/H/cNmNbTh05mnCfuAOvd+QNH8e6xsh+Ws3rt2hVehEREREgtgToZ8CV0T1/9iSysMAj0bInga3jFJuIRDWXlgGRTVAHk/wR41nbEEmA6lZ1uOq+iIiISLfEkgCFgNYNTn8JVAGfRr/3AQ1bHpaItBWsimyt1exNS3AkvSstI5MN0V9TNStXJDgaERERGQhiSYD+B5xgjNkROBz4l7U2bIzJA86PlotIHLka6gEIZWQlNpAEqMzM5aaVy7BmaqJDERERkQEglgToXCJT3z4AAsBV0ePfAJOBi+MTmoi0Sva3RJ5kDklsIAmQPmI8H1dW8PX6ApxOR+cniIiIiGxGtxMga+3nwCQi++ZMsNYujxadAmxtrV0Ux/hEBr1wKERGdOUDR86wBEfT+/KGjwNg+fJlSoBERERki8W0D5C1thb4pN2xZ+MSkYj8QKCqCrfDQTAcxpk7ItHh9Lr8keMYleLFVJRT/dGHpP1kh0SHJCIiIv1YLFPgRKQX1TU28HTRel4r2UBaZl6iw+l1Q/PHYDJ8/GZoPhv/+2aiwxEREZF+TgmQSB9XUlfH00XrebG2BocrKdHh9Dp3UhI1aZkANBcUEB5MGyGJiIhI3CkBEunjiouLABgydPDd/9PKMWwcwXAYV3MzoeqqRIcjIiIi/ZgSIJE+rmrlcvKTk8nNGZroUBImb+wUipoaAfCvX5/gaERERKQ/UwIk0sflffUVt83Ylu3SMhIdSsKMGDOZNQ2RPZab1q1NcDQiIiLSnykBEunjPI2RkY9wVm6CI0mcvOHjWBsdAapcujjB0YiIiEh/pgRIpA8LB4OkBYMAOIYMT3A0ieNOSqLcGxkBa1yrESARERGJnRIgkT4sUFWJy+EgEArhHoR7ALXVMmwccxZ/zRtjxuLQfqgiIiISIyVAIn1Y44ZiAEr9zaRmDt4pcAD5Y6ewuqGeb5YsxunUry4RERGJjd5FiPRhFatXA1DW0kKy15fgaBJrxJjJACxd8o1GgERERCRmSoBE+rCatWsij07XoB/1yBs+lpFp6fw+dyjLbpuX6HBERESkn3InOgAR2bSStFQ+LVpP89DhZCc6mARzudwMGzaaPbMz8X/5BeFQCMcgTwpFRESk+/TuQaQPW9HUxFNF6ykbxJugtuUZPYXGYBBnIEBLcXGiwxEREZF+SAmQSB+2fn0BADm5g3cJ7LZGT5zOyvo6AJrXrEpwNCIiItIfKQES6aNCTY24C9cz1JNMZs6wRIfTJ4yesBUroglQjV2a4GhERESkP1ICJNJHNa1bx5GuJOaaaWRk5SU6nD4hw5fDBlcSANVLFic4GhEREemPlACJ9FH169cDUNzUREa2RoBaNeaPA8BdWUmwri6xwYiIiEi/owRIpI+qXLUCgLJQiNS0jARH03cMmTid9Y0NlIfDhKqrEh2OiIiI9DNaBlukj2osLMQL1HtSEh1KnzJ24tZc8NTthFxuPh6Wn+hwREREpJ/RCJBIHxWqKAegOSMrsYH0Mbn5o/BkZNPS4ufzLz5LdDgiIiLSzygBEumDwqEQyQ0NAARztABCWw6Hg/FTZgLw4fvvEw4EEhyRiIiI9Cf9YgqcMSYH+BtwIOADvgLOt9a+Hy2fBdwKbA+UA/OstTe0Od8JzAVOALKB94FTrbUr2tTZbBsivamlrAx3OIw/FMI1dFSiw+lzJphZ7Fiyml2++orGJd+SOmNmokMSERGRfqK/jAA9CewA/A74CfAZ8IYxZqoxZgjwH2AZkeRlLnClMea4NudfApwMnAjsCISBV40xHoAutiHSa1xpaTxZW80ThetIz9Z9Lu1FRoAceBwOqr/9OtHhiIiISD/S50eAjDGTgL2Bn1trP4weOwvYHzgSaASagVOstQFgiTFmMjAHeCCa5JwDnGetfSV6/uFAEXAYkeTqpM210WsvViQq5PHw0soVBAItnD1ES2C3l5k9lKWOyOc35Z9/zvDf/T7BEYmIiEh/0R9GgMqAA4BFrQestWHAAeQAuwALoolLq7cAY4zJA2YBGdFjredXERlF2jV6qLM2RHpVUdF6AoEWkpNT8GUNTXQ4fZJ/1BQA3OXlBKP3S4mIiIh0ps+PAEWTlVfaHjPG/BaYCLwOXA20nwNTFH0cA7TeQFHQQZ0x0eejOmmjJIbQcbvjn1+6XM4fPErPSHQ/b3znLaZn+GjMHYbb7UpIDL3B6XT84LE7RmyzI0ULnmFEihf/8iVkzP5JvMMbMBL98zyYqK97h/pZRLZEn0+A2jPG/By4H3jRWvuyMeZmItPX2mqKPqYAqdHnHdXJiT5P7aSNbnM6HWRnp8Vyapf4fN4ea1u+l4h+DgeD+D74gLlmK+7zpOH1eno9ht6WnJzU7XOmzdyeL//9ICNSvGz46APG7LV7/AMbYPR7o/eor3uH+llEYtGvEiBjzMHA48DHwBHRw41AcruqrUlLfbScaJ3GdnXqu9hGt4VCYWpq4j8tx+Vy4vN5qalpJBgMxb19iUhkP/tLNuIMhfCHQjiHjqKx0d+r1+9NTqeD5OQkmptbCIXC3T5/Y2YuAHVffUNFRR0OR/dHkgYD/d7oPerr3tFT/ezzeTWqJDII9JsEyBhzOpFlqp8Dfm+tbR2xKQBGtKve+n0hkNTm2Mp2db7sYhsxCQR67o9fMBjq0fYlIhH93LBuPQBFTY1k5I6MKTHob0KhcEyv021m88UXb1GalsYMfwu4+s2vtITQ743eo77uHepnEYlFv/iYwxhzCnAbMB84vE3yA7AA2MUY0/ZGiT0Ba60tIZLk1AC7t2kvC9gOeK+LbYj0mub1kdvVChobGJKnPYA2Z9LMHblmheWeLxZRVlmR6HBERESkH+jzCZAxZgqRkZ/ngWuAPGPMsOhXJpH7gXzAfcaYrYwxxwJnR+sSTZbmA9cZYw4yxmwD/JPIqM9z0ctstg2R3lSzfBkAqxsbyRnafmBS2vJlDmH0+K0AePPN1xMcjYiIiPQHfT4BAn5DZBrboUBxu69boyM0+wKGyNLWc4FzrbUPtWnjUuA+4F7gAyAA7Gut9QN0sQ2RXtG8bi0AFZ4UkpIG/gIIW2qrbX9OhttNweuvazlsERER6VSfnzBvrf0b8LdO6iwEdtxMeZDIpqZzYm1DpDcE6+pw1tYC0JSt/X+6YtrMndl76ceMdrnZ8NH7jNxzn0SHJCIiIn1YfxgBEhk0nCkp/Hf4MOavXoFv+LhEh9MvZGbnsjz6q6zgzf8kOBoRERHp65QAifQhDrebj9auZkF5GbnDxyc6nH6jcdK2AKSXlBBsauqktoiIiAxmSoBE+pBgMMiyZRaAYaMmJDia/mPYjvtR0tyMx+Fg+RuvJjocERER6cOUAIn0IasfeZAd0zPI9KaRkzs80eH0G960DFZ4UgEofOu/CY5GRERE+jIlQCJ9RKC2htD773HKuIkMHzkWp9PV+UnyncD0HQDIq6mhrqI8wdGIiIhIX6UESKSPaFqxAohsgOrT/T/dlrPd7mxsacHtcPDB008mOhwRERHpo5QAifQRjSuWA7C0rpa8EUqAusvpcvHxqGmc/OVn3POf1wiHw4kOSURERPogJUAifUTjimUA2Lpa8kdqAYRYjN7tYJpcLlasWM4nn3yU6HBERESkD1ICJNIHhPx+mlavAWB5Q4NWgItRijeNbXeMbIT6yL13JzgaERER6YuUAIn0AU1rVkMoSKXfT9LwsSQleRIdUr+12477cqnZiqP9LXy28JNEhyMiIiJ9jBIgkT7AX1wMRO7/GTl2aoKj6d+8+WMY78skx+PhrX/cqXuBRERE5AeUAIn0AVm77c7faqt4vHAdoydMS3Q4/ZvLRcWkbQGYVFPDu+++neCAREREpC9RAiTSB9TW1vLlMsvG5mZGj98q0eH0e40zdyUEbJXh4+l5N9HS4k90SCIiItJHKAESSbBwOMzixV8RDofJzh1GRmZOokPq9wJpPqrGTwdgB4eDJ554NMERiYiISF+hBEgkwUoef4TwE0+wdYaP0eM1/S1eKrbZFYCfZOXw0oP3smFDcYIjEhERkb5ACZBIAoVDIeq/+JycujpcDgcTp26X6JAGDH/WUGpHG5wOB7ukZXDJJecTCoUSHZaIiIgkmBIgkQRqWrmSQGUlDcEAi2trmDhtdqJDGlBKtt2DjT/7BU+VlrBw4Sc89thDiQ5JREREEkwJkEgC1Ub3qVlYWcnQURNJz8hKbEADTHN2HtXTd+WPp50DwLx5N7F48TcJjkpEREQSSQmQSIKEQyFqFy0E4MPKciZupdGfnhAIhpg2ey/22G0P8l1uzjzzFIqLixIdlsigFg5//xWKfgVDka9AB18twciXP/rVEkz0KxCR/syd6ACke9bVOPisCurqXAQCDsJAGAeEoXW7xzDRPyyt34c3fbz9OR0+b9N+27LNicfWk51dpyvXaPs6Ntd+uN2j0+nA64XGRjfBYPjH9X5wruPH1+jguu3PzSz4lm2qq6kLBvmqppqZo/fiveq879rroLnNHOtaDO3rd63tH8Yd07mbeE0OwO12EQgEf/Dz2JVzN32sTXzRg0PWFnMkaQSnzeCsL//H//3xFHY+52mSvL5Nt9eu/8IdlHV0/c39XLX9ZnPt/uA1d+FnqbM4cDhISgJ/S8r3G8N2sd32l+js9YXDHfx7xeE1dKcvY42/K7F/d/pmf39AKOTt8Gd6S/ui435wdFh3c3Fv7vpb+v9hc78n4+lPs+GU6XFvVkQGASVA/UiNHw57yUsgBJCS6HAGieQea/m0b98F4OOKMoKpQ/kya18cNa4eu95g5gmncXDQSZ7LyVHjDPevWsKrNx6L6zeP4kjJTHR4vUg/X71HEyx6mkaBRCRWSoD6kfQkOGB8gDV1SQQCkd/8jtav6IdrDke44+O0ln9fRtvnbcp+9Py7uuEfnt+ZTip1pY3O6ji60EhHVdr3S9vnDgc4HA48HjctLQFCofCPyjs6p+Nrhzd5Dq6fsuI/H/NGyUbyZ/2aMRlV39Xf5GvoqJ0OrtfhuZs81mbspIPKmz8/lni/P8fpcLQZAQq3P6XNuR28ri7HGjl30ezfsv8Ht7NfTiZf1o1gUdFn5Lz4G35z4YOk+YZssv1N/Yxs6tpd/fnYbP0OKn73s9RJjB2VuVwOUtNSaKhvIhQM97v4uxRP+991HZS1b2ez5/3gdXX8O6CjuN1uJ74ML7W1jQSDoc3W31zfdaXPO+obHB3086bO6+L1NxV3V/5tutTXHcS9+dcIHreTkXlpVFYiItJtjnBHY+6ypVYFg6HxFRX1cW/Y7XaSnZ1GZWU9gYCW9O0pvdHPjY0N7Lbbjvj9zZx03jxGjJ7UI9fpyyJTDT00Nvq/SzR70oiFr5G1+FNIS2PO4q9ZXVrC6NFjuOGGeRgztcevnyj6vdF71Ne9o6f6OScnDZfLuRqYELdGRaTP0Ri9SIK8/sYr+P3N5OaPZvioiYkOZ1Ao3nZPWobkQ309f995N0aPGElBwTqOOeZwXnjhWfSBkIiIyMCnBEikl1W++QblLz7H4w8+AMC2O+6Doytz+WSLhd1JrNn1t4STUwgVFHDXMcfx85/vSnNzM5dddhGnn34ShYXrEx2miIiI9CAlQCK9KFhXR/mLz1P+8ksMra4iOSWV2Tvtn+iwBpUWXw7rdvk1oXGTGHbwYcyffzdnnPFnkpKS+OCD9/j1r3/F/Pm3UFNTk+hQRUREpAcoARLpRWXPPU2osZENoRAfVpSz/c4HkOJNTXRYg079yIks2/1IVlUGcLpdnHDCyTz1z+eZPXt7mpoauffeuzjwwL2ZP/8WNmwoTnS4IiIiEkdKgER6Sf3XX1G94F0A7ly2BLcnmR12PzjBUQ1eoTAsXVPOivVVlL/2Cp6XXuTuW+/kppvmM2HCJGpqqrn33rs44IC9OOecM3j33bfw+/2JDltE/r+9O49vo7zzOP4ZHZblK4ljx7FzEMjxcEMuILuEhKsBeiy0tJSy20JLC0v7orBsobvblpae0KW0r6W0u2XL9uBoaaFQyhVCaEs5Eki44QkhOAe5bMeOb1nSzP4xY8UxVi4cKZa+71eU0Yx+mvn5sTzSb56ZRyIi75GGwRbJgWRLM5tvuxWAx9q28XpnB6d96CIqR1XnObPilk572FcamfqHe3GSfay77lrmffZSFtx9H0uXPsZvfnMHy5c/y5Ili1myZDEVFRUsXHgqJ554EnPmHEdNTW2+fwQRERHZSxoGe//QMNgj3HC2c7qri/XXf4e+je/Q5Dhc+fyzjBo3kUuu+S8ikegwZTwy5XoY7GxKt21iypP3EmptBsdh1IKTqfmHcwhXVrJ69Zvcc8/dLF78ME1NW3d63iGHTGX27LkYcxjGHMq0adOJH4CnNGq/kTtq69zQMNgi8l6oAAoYY0LAtcDFwBjgSeAya+3qfVidCqARbjjbuW/LZtZ/91t09vRw5YrltAMXXXEDEybPGJ5kR7ADpQACCCUTHLRyMfHXV/jzZWWMOX0RY05/H6HSOK7r8uKLK1my5FGWL1/GqlVvvGvYbMdxmDRpMjNmHMqMGYZDDplKfX0D9fUNjBlTnbfR/rTfyB21dW6oABKR90KnwO3wVeBS4CLgHeAG4CFjzBHWWp34L3vF8zzwPJxQiEhtDfdFoyx95m9sS/Zx7oXXqPg5ALnRGG8f9wGqDj6ahuceha0baV38CGMXnQFAKBRi5szZzJw5G4Dt29t4/vnlvPDCSt5807JqlaWlpZl169aybt1aHnvskZ3WH4vFqKsbT23tOGpraxk7tpaamhrGjKmmvLyc8vJyysrKqaiooKxsx3w0Wty9hCIiIsNNBRBgjCkBrgKuttY+GCw7D9gIfBi4K4/pyQjipVJ0vfwS2x76E5UnzOPlSIjrb/gu72xYjxMK8cHzL+fI2QvynabsQnvtZNoXfZrajW9QXQLtbphR4RBhB9Zc9w0i1WMpO+ww4tNncPKCUzjllNMzz21paWbVKsuqVW+wapVl3bq1bN68kaamJhKJRKY42huxWOxdhdGuCqZYLEY0WkI0Gs3cSktjjB1bRW9vGscJZ5aXlOwcF4lE9Z1UIiJS8FQA+Y4FKoHH+xdYa9uMMSuAk1ABJFkkt20juXULiXc20P7qK/Susji9vQCstW9w+YvPA1A5aixn/+OVTD10Vj7TlT0VCtE08XCagLUvbaRmdJy67q30rnkL1rxF53PLAHCiUUoaJlDS0EDFzNmMnTWbefNqOGHu8aS2txEuL8eJlZJMJtm6dQubNr1Dc3Mzzc3NtLQ009zcRFtbG93dXXR2dtLd3UVXVxddXZ2ZEecSiQSJRILW1m05+dEHF0ThcHjQLUI4HAqm/rJoNJKJjUT8+5FIZMB8hFAoNOC5YUKhMJGIP+2PG7iNSCSc2UYoFAqe338/TDjsTwc/NnDav51wOITjhDJT/zlOsCyM4ziZ9TiOEyzzY4baXiQSUaEoIjKCqQDyTQym6wct3whM3teVRiLDP8r43b+8jfIVz+O63o7rD7zMf2wtjbG2zL8IO5x2mdm2PYjZca2CA3h4NJWU8FZZ3F/muhy/fdAXP3o77jRHo7wRL/XnXJf5HZ1ZYqElEubl0liwWY+TuroJB/ednVdLazjEilg0k+KC3gTRIFcnk7Y/v92BpyLhTOzCZIr4UNewedABLA352/Q8j1OBSpxMm2Xy8KDL83jITfmt4nmcGo5Q7YSC7Xt4gONB1IE+z+PORE9mPZ+Pl1MX3vFn5ABtyT7+3NzMA1s2ES+rYM6J7+ekRR8jVnrgXRyfb6GQs9P0QNSXTLOxqZON6RjV51xM1da1lG5YA5vW4/X1kVjbSGJtI/Hx4yktPQHP8+ht3sLbX77GX0E4TDgexykpoTYaZVw0ypgFC6m+6NOAX0Rv+uUv/A/UIQcc/0O4i0c67cLUqSSnT6erq4vulmaiTz1FKpUimUqSSqVIJVMkk0lS6RTrXJdXPJdkMgnJJKfg4LouruvieS7pdDozv6qzg8e2bMbzPMKOw2cmT8naBm93d7F408bM/GcnHwxOcsjYDT09PLR1c2b+wkkHEXWG3hduSvTywJYd37N0wYTJxMPhIWOb+xL8YfOOHM5rmEhllkFEtqeS3L1xQ2b+I/UTGBMtGTK2K53iznd27Po/NL6ecSWlQ8Ym3DS/2rAO8K/3en9dPQ2lcXDAwcFxHBwHHCeEC/ymZWum4FpQNYqGkpJM3MDn4MD93V04QQE2pyTGhHAkEwP+evu3u9hNkQ6ee3QoxAQntFNs8A8ch7+FQySDgm96ymWC5wXbJci3PweHleVl9AXtP7m3j4b+Yd+dAZMgkVerKukJhwGHhp5eJvT27hwXxDqAHVVFV9D+43q6mdDVDcG+dbA3qyrpCE77rE0kmNzVvfM6g3vdJVHmXHYJM2YcMeTvSkRkV1QA+fo/mSYGLe8F9mmc4lDIYcyY8veU1GCtra3c8sMf8OOjZ2aNWb3mLe5Z1whAVSTCR4+dkzV2/bq13N+4BoBYKMQFs47LGtu0cSMPrnkzM3/RnBOyxrZvbeXR1TYz/8mZc4ll+VDzyrbtPL7q9cz8BcfMpirLNQ+ruzp58vVXMvOfOGomtbHYkLHre7pZ9upLO2KPOJqJ8bLMm3eGA1sTvbz48guZRR8/7EimlVcMud6OVJLXX38tM984dTpuvIxNiV5sRwcbwmH6xtUxYc48Lj1mDjPnzCNWGh9yXTIS1QP+35/jeZR0tuJu2oDb3ET3pOlsau0hGgmRbuuESARSKUinSXcOOmCQ6CVeHsNxHHpbXTpfWJl9i5MamDJ3JjiQ2NrEil//Omvs/DPex9RLPwdAsr2D5Z+8KGvsuWefw/9deTnpdJrezk5e+OSns8aGDzuUL5x7Dq7rkkqlcK+/ESdLbE99HSf93Ql+cZZKcejDjxFOp4eMbS0vo+bMRaTTadLpNIveaqQ0PfQF7VtDDi3Tp5JOp/0DFUmX0VmyaEqneC4WzeQ7v6aOhiwFUEuyj3tbmvA8D9d1OX7MWKbv4u+/vwDyPI9ZVaM4smrUkLF9rstPB+wHp42uZnZF1ZCxAD985aVMQXDWIdM4rroma+yPXlxBr+u307wphzCzZtzOAf0r8jxuXrGM7Sm/WJ02aQpH1Y3Put6bn32arX3+2+AnJkzi5PoJWWP/e9nTrO/pAfwCc+GESVljf77sGd7s8v8GPlBXz4JJB2WNveP55bza4R+MO712HKccNPRYBKs6O7jpppu4/fbbs65LRCQbjQIHGGM+AvwOKLPW9gxY/lsgZq3d22+rXJNOuwe3t/fsPnIvLX34TySfeRrX8/w3ucwRN/9OV2UFbdV+zRZ2XcZveCfzoX/g0TuAnopy2mv9N9mQ5zFu3XoGHmcb+Lze8jI66uoy87WNjXiZre683mRZnI76+sx8deNanKD3Z3BsqixOZ0NDZtGoxrU4aXfgIcTgMQe3tJTuyZMyp55UNDbipNI7HRklOCrqlkTpPfjgTGzp242EksmdTlvpP/LpRaP0TZuaWRZtbCTc10c4HMJNBz1AjgORCF4sRvqggzJHT6ORCBWVo6isrKS6upqyMvXy7I1QyKGsLEZ3dyLvo8DtF8k+Ul1duN3deMkkbjKJ25ekpLaG0vH+B9FUZydty5aD5/o9i64/gIbnueB6xA+eQuVhh/mxXV00P7o46+biU6YwauaxALiJBFsefBDwX6uRcIhU2s30XsYnTWL0HP8AiZdKsfn++7Out7RhAmNOOD4zv+n392SNjdXVUX3i32fmN993P14qNUSkR8nYGsYu3HFN3JYHHsBNDD4O5YuOHk3Nqadm5rc+9DDp7qFH2oxUVFK76H2Z+abFi0m1tw8ZG47HGXfWWZn55seXkmzdhj+Oif978IsjDycapuq00zM9aZ3PPEOypSX4fQWDn+ARCjmkPI/o/JNwXT82+dLLeC0tmV5p/1ftFzGe55GaOxcv6IUOvbkaZ9u2zO9q4NTzPHqOPgrCYVzXJbp2HZFdxLbPmIEXDeO6HqUbNxFrbR2Qgxf0DvrPaZ48iXQ0iud5lDe3UNHWNqCXxssUVh4eTRMaSAZFZUVrK5Wtbf1R74rfUldLXyyG50FlRwdj2rb3vyHtVMJ6QPO4cSTipYBHeUcHo7e17rTdfqnSUk743MXU1U30e0qHSVVVXKPAiRQBFUCAMeY44FlgmrX2rQHLnwRetNZ+fi9XqWGwRzi1c26onXND7Zw7auvc0DDYIvJeDP9FKiPTi0A7sLB/gTFmNDAL+Gt+UhIRERERkeGma4AAa23CGHMzcL0xpgloBL6PPyhC9nM9RERERERkRFEBtMPX8NvjViAO/AVYpC9BFREREREpHCqAAtbaNHBNcBMRERERkQKka4BERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGg4nuflO4dC1ON5Xqnr7p+2DYdDpNPuflm37KB2zg21c26onXNHbZ0b+6OdQyEHx3F6gfiwrlhEDigqgPaPNiAGbMpzHiIiIrLn6oEEMDrPeYjIfqQCSEREREREioauARIRERERkaKhAkhERERERIqGCiARERERESkaKoBERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGhE8p2A7J4x5ivAadbahQOWfRD4GnAY0AzcDXzNWtuTlyQLQJZ2/jjw78B0YCPwP8AN1lovL0kWgKHaedDjPwNOt9ZOyWVehSjLa/o24MJBoe9YayfmMLWCkqWd64EfAGcCaeBh4IvW2ua8JFkABrezMeYJYEGW8E9Za3+Zo9REZIRRD9ABzhhzBXDdoGXzgXuB3wPHApcC5wG35Di9gpGlnc8EfgX8FDgc+BLwFeCKHKdXMIZq50GPnw1cnKt8Ctku2vpo4DtA/YDbzNxlVliy7DtiwGLgEOA04P3ALEAfyPdRltfzh9n5dVwP/Al4A/89UkRkSOoBOkAZYyYAtwLzATvo4UuAx6213wvmVxtj/h24zRhzqbU2kcNUR7TdtHM98D1rbX9h+bYx5p/wP9DclLssR77dtHN/TD1+D9ufgSk5S67A7KqtjTFh/GL+m9bazXlIr2Ds5jV9Pv5reKq1dksQfwVwizGmylrbnsNUR7RdtbO1dtug2POBRcAsa21HzpIUkRFHPUAHrllAK/7R2mcHPXYjfm/EYBGgcj/nVWiytrO19ufW2q+C/8HRGHMGsBB4NNdJFoBdvZ4xxjjAL/B73J7IaWaFZ1dtPR0oBV7LdVIFaFftfAawpL/4AbDWPmKtnariZ6/tct/RzxhTDnwfuMla+3KOchOREUo9QAcoa+0fgT8CGGMGP7Zy4LwxpgS4Clih88v3zq7auZ8xZjKwBggDjwA/yVV+hWIP2vlK/B63DwL/lrvMCs9u2voowAOuCE7xdIEHga9Ya7fnMs+RbjftPAP4izHmq8CngCj+vuNqa21bDtMc8fZkHx24FP8A4LdzkJaIjHDqARrhjDER/KPmhwOX5TmdQtUGzAU+ChyD394yTIwxRwPXAhfo9M397kj8oqcRv9j8V+As4D5jjN4Phk8VfuFzDPAJ4HPAifjt7OQzsUIUnNp5OXCLCnkR2RPqARrBjDGVwG+Bk4FzrbVZTw+QfRecsrISWBm80d5ljLnaWrs2z6mNeMaYUuAO4FvW2pfynU8R+Dr+KUJtwfwrxphNwNP4Rb72IcOjD+gEzrfWJgGMMZ8ClgFzgOV5zK0QLQQmAz/Lcx4iMkKoABqhggvGHwIOBs601i7Nc0oFJxhtr8da+9yAxa8E0wZABdB7dzxwBPB1Y8y1wbISIGKM6QQusdbenrfsCkwwfHvboMX910tMRAXQcNkAhPqLn8CrwfRgVAANt7OBZdbaNflORERGBp3yMAIZY8YAjwO1wIkqfvabq3j3aG/HAylgVe7TKUjL8C/MPwZ/SPdj8Ycd3xjcvz9PeRUkY8wdxphHBi2eG0w1MMLw+QtwjDEmPmDZUcF0dR7yKXQn4r8niojsEfUAjUw34X+/xBlAkzFm/IDHmqy16fykVXD+E3jCGPMN/Ot+ZgE3AD+y1rbkNbMCEXxx704fCI0x24CUtVYfFIffHcD9xpj/AO7Cv1j/x8Ad1trX85pZYfkp8AXgjmAghFHBsqXW2hV5zazABKclH4E/ApyIyB5RD9AIE1yofB7+aUKPA5sG3SblL7vCYq19Ev8LDM8CXsJ/g70RuDqfeYnsK2vtA/iDeXwE/9S3/wXuAT6Tz7wKTTAa53z80d+exR/FbBlwTj7zKlBj8dtZB6VEZI85nuflOwcREREREZGcUA+QiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjRUAIlIUTPGOPnOQURERHJHBZCIFC1jzIeAXwT3FxpjPGPMwvxmJSIiIvtTJN8JiIjk0b8MuL8CmAe8lqdcREREJAdUAImIANbaduCZfOchIiIi+5fjeV6+cxARyTljzBPAggGLTgaWAidba58wxnwd+DjwZeBbwDTgDeCfAQ/4EXA08BbwRWvtkgHrPhL4HnBSsGgJcJW1ds1+/JFERERkD+gaIBEpVpcBK4PbPKBqiJhJwA+AbwMfA6qB3wF3Aj/DL5BCwF3GmDiAMWYG8BQwDrgQ+AxwCPA3Y8y4/ffjiIiIyJ5QASQiRcla+xrQDrRba58J7g9WBlxmrb3TWns/cAvQAHzTWnurtfY+4KtADWCC51wL9ACnWWvvsdbejd+7FAe+tF9/KBEREdktXQMkIrJrTw24vzmYDrxWqCWYjg6mp+KfStdtjOnfx7YDfwVO3085ioiIyB5SASQisgvB4AiDde/iKWOB84LbYE3DkpSIiIjsMxVAIiLDqw14DLhxiMdSuU1FREREBlMBJCLFLA2Eh3mdfwYOB16w1qYAjDEO8GtgNfDCMG9PRERE9oIKIBEpZm3APGPMKcCoYVrndcDTwAPGmJ8AvcAlwNnAucO0DREREdlHGgVORIrZzUASeAh/lLb3zFr7EjAf/7uCfoU/bHY9cLa19p7h2IaIiIjsO30RqoiIiIiIFA31AImIiIiISNFQASQiIiIiIkVDBZCIiIiIiBQNFUAiIiIiIlI0VACJiIiIiEjRUAEkIiIiIiJFQwWQiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjT+H4Xi/Ik+Sr6LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Quantify the peak\n", + "peaks = chrom.fit_peaks(verbose=False)\n", + "chrom.show()\n", + "peaks.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While it's useful to know the various parameters returned by the fitting, we are\n", + "fundamen We are interested in the integrated area of the peak (integrated over\n", + "the entire duration of the chromatogram). Using a for loop and getting the concentration \n", + "of lactose from each file name, we can generate a new Pandas DataFrame which \n", + "will hold the calibration information." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idconc_mM
013.560.2812411.6547278004.452381960534.28571116.0
013.560.2789641.628399747.23161589667.79380910.5
013.560.2789281.6305031540.484760184858.17114311.0
013.560.2803721.6444003896.669057467600.28684413.0
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... area peak_id conc_mM\n", + "0 13.56 0.281241 1.654727 ... 960534.285711 1 6.0\n", + "0 13.56 0.278964 1.628399 ... 89667.793809 1 0.5\n", + "0 13.56 0.278928 1.630503 ... 184858.171143 1 1.0\n", + "0 13.56 0.280372 1.644400 ... 467600.286844 1 3.0\n", + "\n", + "[4 rows x 7 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "# Set up a blank dataframe for the calibration curve. \n", + "cal_curve = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and perform the quantitation \n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Get the concentration of lactose from the file name \n", + " conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add the concentration to the peak table and add it \n", + " # to the instantiated calibration dataframe\n", + " peaks['conc_mM'] = conc\n", + " cal_curve = pd.concat([cal_curve, peaks])\n", + "\n", + "cal_curve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now plot the peak area as a function of time, which we expect to appear linear. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'integrated peak area [a.u.]')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG1CAYAAADz8VB4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUb0lEQVR4nO3deVxU9f4/8NcZBhhWRUTwiiuKiCCoYKSS5NqVrC/hkvfivouaS7jfxHK71wXF3FJQU8slyMq0e9Esy2sKlFuAu+QCYoiMsg3MnN8f/pg7IyQzeJiBfD0fDx4y53zOhzdvKF+e8zlnBFEURRARERERAEBm7gKIiIiIahOGIyIiIiIdDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIB8MRERERkQ65uQuoq0RRhEbzYj5cXCYTXtjvXUrsozTYR2mwj9JgH6VRU32UyQQIglDlOIajatJoRDx4UGDuMkxOLpfByckOSmUhyso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKg6HPGyGhEREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBW/mJiIioVhBFEY8KVVCJAkqKVFBYWhj0XCKpMRwRERGRWRUWl+LkhWwcTb2N+w+LtNtd6tugd2d3dPN1g63C0mT1MBwRERGR2Vy8nosNn19ESakaT58j+v1hET49dgWJJ64jMswHPq2cTVIT1xwRERGRWVy8nou1B85BVaoGADz9hiHlr1Wlaqw9cA4Xr+eapC6zh6PS0lLExMQgJCQEHTt2xN/+9jf8/PPP2v3p6emIiIiAv78/QkJCEBcXp3e8RqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBERkWkVFpdiw+cXIYoVQ9HTRACiCGz4/CIKi0trvDazh6NNmzYhISEBS5YswcGDB9GqVSuMGzcO9+7dQ15eHkaNGoUWLVogISEBU6dOxbp165CQkKA9fuPGjdi7dy+WLFmCffv2QRAEjBs3DiqVCgAMmoOIiIhM6+SFbJSUqqsMRuVEACWlapy8mF2TZQGoBWuOjh07htdffx3du3cHAMydOxcHDhzA2bNncfPmTVhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0xJFEUdTbxt9nADgaMpt9O7sXqN3sZn9zFH9+vVx/Phx3L59G2q1Gvv27YOVlRXatWuHlJQUBAYGQi7/X4YLCgrCjRs3kJubi4yMDBQUFCAoKEi739HREd7e3khOTgaAKucgIiIi03pcVKp3V5qhRAD3HxahoLhM+qJ0mP3M0YIFCzBjxgz06tULFhYWkMlkWLduHZo1a4bs7Gx4enrqjW/UqBEA4O7du8jOfnJqrXHjxhXGZGVlAUCVczg7V3/lu1xu9mxpchYWMr0/qXrYR2mwj9JgH6XBPhquTGPoxbTKlao1Nfp3sNnD0bVr1+Do6IgNGzbA1dUVBw4cwJw5c7B7924UFxfDyspKb7y1tTUAoKSkBEVFT1JnZWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32sWoyy+eLH26NHOFoZ1X1wGoyazi6c+cOoqKisGPHDgQEBAAAfH19cfXqVaxfvx4KhUK7sLpceaCxtbWFQqEAAKhUKu3n5WNsbJ78clY1R3VpNCKUysJqH19XWVjI4OhoA6WyCGq1xtzl1FnsozTYR2mwj9JgHw0niiIaOdngfl6RwQuygSdrjlycbFBWokKeyvi71hwdbQw6s2fWcHT+/HmUlpbC19dXb7ufnx9OnDiBv/zlL8jJydHbV/7a1dUVZWVl2m3NmjXTG+Pl5QUAcHNze+Ycz6Os7MX95VerNS/09y8V9lEa7KM02EdpsI+G6dXJHZ8eu2LUMSKAXp3doVaLqPoBANVn1guj5WuFLl26pLf98uXLaN68OQIDA5Gamgq1Wq3dd+rUKbRs2RLOzs7w8vKCvb09Tp8+rd2vVCqRlpamPRNV1RxERERket183WBtaVHhqdh/RBAAa0sLdPNxq9G6ADOHow4dOiAgIABz5szBTz/9hJs3b2Lt2rU4deoUxo8fj/DwcDx+/BgLFizA1atXkZiYiJ07d2LChAkAnqw1ioiIwKpVq3Ds2DFkZGRgxowZcHNzQ58+fQCgyjmIiIjI9GwVlogM84EgoMqAJPz/j8i3fEzyHmuCKIo1d17KAPn5+Vi7di2+++475Ofnw9PTEzNnzkSXLl0APLn0tnTpUqSlpcHFxQWjR49GRESE9ni1Wo01a9YgMTERxcXFCAwMxHvvvQd3d3ftmKrmqA61WoMHDwqea466SC6XwcnJDnl5BTxt/BzYR2mwj9JgH6XBPlbP0++tphtKyl9bW1og8i0f+LR8vis+DRrYGbTmyOzhqK5iOOJ//M+DfZQG+ygN9lEa7GP1FRaX4uTFbBxNua33/COX+jboHeCObj6NYat4/mXShoYjs9/KT0RERC82W4Ul+gQ0Re/O7iguVcPaxholRSVQWFrU6JOw/wifVEVERES1giAIcLC1gmsDWzjYWpklGAEMR0RERER6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh1mDUenT59G27ZtK/3o1asXACA9PR0RERHw9/dHSEgI4uLi9ObQaDSIjY1FcHAw/Pz8MHr0aGRmZuqNqWoOIiIionJmDUcdO3bEjz/+qPcRHx8PuVyOiRMnIi8vD6NGjUKLFi2QkJCAqVOnYt26dUhISNDOsXHjRuzduxdLlizBvn37IAgCxo0bB5VKBQAGzUFERERUTm7OL25lZQUXFxft69LSUixfvhx9+/bFoEGDsGXLFlhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0lWr1hzt2bMHWVlZmDdvHgAgJSUFgYGBkMv/l+GCgoJw48YN5ObmIiMjAwUFBQgKCtLud3R0hLe3N5KTkw2ag4iIiEiXWc8c6SopKcHmzZsxYsQINGrUCACQnZ0NT09PvXHl++7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcsl9eqbGkSFhYyvT+pethHabCP0mAfpcE+SqM29LHWhKMvvvgCJSUlGDZsmHZbcXExrKys9MZZW1sDeBKmioqKAKDSMfn5+QbNUV0ymQAnJ7tqH1/XOTramLuEPwX2URrsozTYR2mwj9IwZx9rTTg6ePAg+vbtCycnJ+02hUKhXVhdrjzQ2NraQqFQAABUKpX28/IxNjY2Bs1RXRqNCKWysNrH11UWFjI4OtpAqSyCWq0xdzl1FvsoDfZRGuyjNNhHadRkHx0dbQw6I1UrwtGDBw/wyy+/YMKECXrb3dzckJOTo7et/LWrqyvKysq025o1a6Y3xsvLy6A5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+1ooLoz///DMEQUCXLl30tgcGBiI1NRVqtVq77dSpU2jZsiWcnZ3h5eUFe3t7nD59WrtfqVQiLS0NAQEBBs1BREREpKtWhKOMjAw0bdpUeymsXHh4OB4/fowFCxbg6tWrSExMxM6dO7VnmKysrBAREYFVq1bh2LFjyMjIwIwZM+Dm5oY+ffoYNAcRERGRrlpxWe33339H/fr1K2x3dnbGtm3bsHTpUoSFhcHFxQWzZ89GWFiYdsy0adNQVlaGhQsXori4GIGBgYiLi9MuwjZkDiIiIqJygiiKormLqIvUag0ePCgwdxkmJ5fL4ORkh7y8Al5Tfw7sozTYR2mwj9JgH6VRk31s0MDOoAXZteKyGhEREVFtwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEiH3JBBw4cPr9bkgiBg586d1TqWiIiIyBwMOnN05swZPH78GKIoGvzx+PFjnDlzpqbrJyIiIpKUQWeOACA6OhodOnQweOKzZ8/i7bffrlZRREREROZi0JmjiRMnwtXV1aiJGzdujIkTJ1arKCIiIiJzMejM0fTp042e2NXVtVrHEREREZmTpHer3bp1C/PmzZNySiIiIiKTkjQcPXjwAJ9//rmUUxIRERGZlKThyM/PDxkZGVJOSURERGRSfAgkERERkQ6Db+Uvl5ycXOWYwMDAahVDREREZG5Gh6Nhw4ZBEIRnjklPT692QURERETmZHQ4+vjjjytsKywsRGpqKr744gvExsZKUhgRERGRORgdjrp06VLp9pCQENja2mLTpk3YsmXLcxdGREREZA6SLsju3LkzTp8+LeWURERERCYlaTg6evQo7O3tpZySiIiIyKSMvqw2fPjwCts0Gg2ysrJw9+5djBs3zugiDh48iI8++gi3bt1Cs2bNMGXKFPz1r38F8GRx99KlS3Hx4kXUr18fw4YNw5gxY/S+9ocffogDBw5AqVSic+fOWLRoEZo3b64dU9UcREREROWMPnMkimKFD5lMhrZt2+L99983+v3UvvjiC8yfPx9DhgzBoUOH0L9/f8ycORO//PIL8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO3xGzduxN69e7FkyRLs27cPgiBg3LhxUKlUAGDQHERERETljD5ztGvXLsm+uCiKWLduHUaMGIERI0YAACIjI/Hzzz/jzJkzOHPmDKysrBAdHQ25XA4PDw9kZmZi69atCA8Ph0qlQnx8PKKiotCjRw8AQExMDIKDg5GUlITQ0FDs37//mXMQERER6TLrE7KvX7+OO3fuYMCAAXrb4+LiMGHCBKSkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vbWPqyyqjmIiIiIdBl95uhZbt26hY0bN2L58uUGjb958yaAJ89JGjNmDNLS0uDu7o5JkyahZ8+eyM7Ohqenp94xjRo1AgDcvXsX2dnZAIDGjRtXGJOVlQUAVc7h7Oxs3DepQy5/8d59xcJCpvcnVQ/7KA32URrsozTYR2nUhj5KGo4ePHiAzz//3OBw9PjxYwDAnDlzMGXKFLz77rv497//jcmTJ2P79u0oLi6GlZWV3jHW1tYAgJKSEhQVFQFApWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32URrm7KOk4cjPzw8ZGRkGj7e0tAQAjBkzBmFhYQCAdu3aIS0tDdu3b4dCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbmydNrWqO6tJoRCiVhdU+vq6ysJDB0dEGSmUR1GqNucups9hHabCP0mAfpcE+SqMm++joaGPQGSlJw5Gx3NzcAKDCZa/WrVvju+++Q5MmTZCTk6O3r/y1q6srysrKtNuaNWumN8bLy0v7NZ41x/MoK3txf/nVas0L/f1LhX2UBvsoDfZRGuyjNMzZx2qFo+zsbPz88896Z2Q0Gg2KioqQkpKCmJgYg+bx9vaGnZ0dzp07h4CAAO32y5cvo1mzZujUqRP27t0LtVoNCwsLAMCpU6fQsmVLODs7w8HBAfb29jh9+rQ2HCmVSqSlpSEiIgIAEBgY+Mw5iIiIiHQZHY6OHDmCqKgolJWVQRAEAE9uyS//vFWrVgbPpVAoMHbsWGzYsAGurq7o0KEDvv76a5w8eRI7duxA69atsW3bNixYsABjx47F+fPnsXPnTixevBjAk7VGERERWLVqFRo0aIAmTZpg5cqVcHNzQ58+fQAA4eHhz5yDiIiISJfR4WjLli3w9vZGdHQ09uzZg7KyMowfPx7ff/89YmJiMH/+fKPmmzx5MmxsbBATE4N79+7Bw8MD69evx0svvQQA2LZtG5YuXYqwsDC4uLhg9uzZ2vVJADBt2jSUlZVh4cKFKC4uRmBgIOLi4rSLsJ2dnaucg4iIiKicIIqiaMwBfn5+WLVqFfr06YNDhw5h27ZtOHjwIABg5cqVOH/+vKQPiqyt1GoNHjwoMHcZJieXy+DkZIe8vAJeU38O7KM02EdpsI/SYB+lUZN9bNDAzqAF2UY/REAmk6F+/foAgBYtWuD69evQaJ4UHxwcjKtXrxo7JREREVGtYXQ4atWqFVJTUwE8CUelpaVIT08H8GQx9NO3zRMRERHVJUavOXr77bexaNEiFBYWYubMmXjppZcwf/58DBw4ELt370b79u1rok4iIiIikzD6zNGgQYOwYMEClJaWAgA++OADlJSUYOnSpSgrK8OCBQskL5KIiIjIVAw6c6TRaCCT/S9H/f3vf9d+3rRpUxw5cgR5eXlo0KDBM48jIiIiqu0MSi7t27fH+fPn/3C/IAgVgtG5c+d4iY2IiIjqHIPOHImiiLS0NKPeqPXKlSvVLoqIiIjIXAxekG3sE6V1n5pNREREVFcYFI4+/vjjmq6DiIiIqFYwKBx16dKlpusgIiIiqhV4KxkRERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdEgejq5duyb1lEREREQmY/Qbz+bn52P16tVITk5GaWkpRFEE8OS5RoWFhcjPz0d6errkhRIRERGZgtFnjpYtW4aEhAS0aNECFhYWcHBwgK+vL0pLS6FUKvH+++/XRJ1EREREJmF0OPrhhx8wZcoUbNq0CW+//Tbc3Nywdu1afPPNN2jbti2uXr1aE3USERERmYTR4UipVKJz584AgDZt2uDixYsAADs7O4wePRrfffedpAUSERERmZLR4cjJyQmPHj0CADRv3hy5ubnIy8sDALi6uuLevXvSVkhERERkQkaHo5dffhmbN2/G7du34e7ujvr16yMxMREAcPz4cTg5OUleJBEREZGpGB2O3nnnHeTm5mLu3LkQBAHjx4/HypUr0aVLF+zYsQPh4eE1UScRERGRSRh9K3+TJk1w+PBh3Lx5EwAwatQoNGzYED///DM6dOiAsLAwqWskIiIiMhmjwxEAKBQKeHl5AQBKSkrw+uuvY8CAAZIWRkRERGQO1XpC9vXr1zF9+nR06dIFHTt2RFpaGqKjo7Fr1y6p6yMiIiIyKaPDUXp6OgYOHIhff/0VAwYM0D4h29LSEsuWLcPnn38ueZFEREREpmL0ZbV//vOf8PHxQXx8PABgz549AIAFCxaguLgYH3/8MdcdERERUZ1l9Jmjs2fPYuTIkZDL5RAEQW9f//79tQu1iYiIiOoio8ORtbU1iouLK9338OFDWFlZPXdRREREROZidDjq1q0bYmNjkZ2drd0mCAIKCgoQHx+Prl27SlogERERkSkZveYoKioKQ4YMwWuvvQYvLy8IgoAVK1bgxo0bEEURa9asqYk6iYiIiEzC6DNHjRs3xhdffIERI0ZAFEU0a9YMhYWFeP3115GYmIimTZvWRJ1EREREJmH0maPNmzejV69emDFjRk3UQ0RERGRWRp852rZtG7KysmqiFiIiIiKzMzoctWjRAleuXJGsgDt37qBt27YVPg4cOADgyUMnIyIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETljL6sFhISgpiYGBw/fhxt2rSBs7Oz3n5BEBAZGWnwfJcuXYK1tTWOHj2q99wkBwcH5OXlYdSoUejduzcWL16Ms2fPYvHixahfvz7Cw8MBABs3bsTevXuxfPlyuLq6YuXKlRg3bhwOHToEKysrg+YgIiIiKmd0OPrwww8BACkpKUhJSamw39hwdPnyZbRs2RKNGjWqsG/nzp2wsrJCdHQ05HI5PDw8kJmZia1btyI8PBwqlQrx8fGIiopCjx49AAAxMTEIDg5GUlISQkNDsX///mfOQURERKTL6HCUkZEhaQGXLl1C69atK92XkpKCwMBAyOX/KzMoKAhbtmxBbm4u7ty5g4KCAgQFBWn3Ozo6wtvbG8nJyQgNDa1yjqfPfBEREdGLzehwVJVHjx7BwcHB4PGXL1+Gi4sL/va3v+HmzZto3rw5Jk+ejODgYGRnZ8PT01NvfPkZprt372ofRNm4ceMKY8oXjVc1x/OEI7nc6CVbdZ6FhUzvT6oe9lEa7KM02EdpsI/SqA19NDocqVQq7NixA2fOnEFpaSlEUQQAiKKIwsJCXL16FefOnTN4rps3b8LGxgazZ8+Gra0tvvzyS4wbNw7bt29HcXFxhbcjsba2BgCUlJSgqKgIACodk5+fDwBVzlFdMpkAJye7ah9f1zk62pi7hD8F9lEa7KM02EdpsI/SMGcfjQ5H//rXv7B79254enriwYMHsLa2RoMGDXD58mWUlpZiypQpBs9lZWWF5ORkyOVybYDx8fHBtWvXEBcXB4VCAZVKpXdMeaCxtbWFQqEA8CRklX9ePsbG5klTq5qjujQaEUplYbWPr6ssLGRwdLSBUlkEtVpj7nLqLPZRGuyjNNhHabCP0qjJPjo62hh0RsrocPSf//wHI0eOxNy5c7FlyxakpaVh3bp1uHfvHiIiIqDRGPeNVBZQPD098eOPP8LNzQ05OTl6+8pfu7q6oqysTLutWbNmemO8vLwAoMo5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+Gn1B78GDB9o7w9q2bYsLFy4AeBI0xo8fj8OHDxs8V0ZGBjp27FjhrreLFy+idevWCAwMRGpqKtRqtXbfqVOn0LJlSzg7O8PLywv29vY4ffq0dr9SqURaWhoCAgIAoMo5iIiIiHQZHY4cHBy0l6latGiBrKwsPH78WO+1oTw9PdGmTRssXrwYKSkpuHbtGpYvX46zZ89i4sSJCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyWW5iIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1QICArBr1y4EBgbC3d0dNjY2SEpKQlhYGH755RfY29sbPJdMJsPmzZuxatUqTJ8+HUqlEt7e3ti+fTvatm0L4MnblSxduhRhYWFwcXHB7NmzERYWpp1j2rRpKCsrw8KFC1FcXIzAwEDExcVp1zA5OztXOQcRERFROUEsv93MQJcuXcLf//53tGvXDrt27cKqVauwc+dOtGnTBpcuXcLQoUOxcOHCmqq31lCrNXjwoMDcZZicXC6Dk5Md8vIKeE39ObCP0mAfpcE+SoN9lEZN9rFBA7uaWZDdtm1bHDlyBJcvXwYAzJo1C/b29vj555/Rs2dPjB8/3vhqiYiIiGqJaj0E0sXFBS4uLgCevF3IxIkTJS2KiIiIyFz4GE8iIiIiHQxHRERERDoYjoiIiIh0MBwRERER6TA6HKWnp//hPqVSiXnz5j1XQURERETmZHQ4GjlyZKUB6ciRI+jfvz+++uorSQojIiIiMgejw1H79u0xcuRI/PrrrwCAe/fuYfLkyZgxYwbc3d3x2WefSV4kERERkakY/ZyjzZs3Y8aMGRg1ahSGDRuGnTt3wsLCAosXL8aQIUNqokYiIiIikzH6zJGVlRViY2PxyiuvYMOGDWjfvj2OHDnCYERERER/CgadOUpOTq6wbdCgQbh58yYuXryI06dPo2HDhtp9gYGB0lVIREREZEIGhaNhw4ZBEATta1EUIQgCyt+zdsaMGdrXgiA88442IiIiotrMoHD08ccf13QdRERERLWCQeGoS5cuNV0HERERUa1g9N1qAHD27FmcOXMGpaWl2ktroiiisLAQqamp2L9/v6RFEhEREZmK0eFoz549WLJkiTYU6ZLJZOjevbskhRERERGZg9G38u/evRvdu3fH6dOnMWbMGAwePBhnz57FunXrYG1tjTfeeKMm6iQiIiIyCaPD0e3btxEREYF69erB19cXqampUCgU6NevHyZMmMDF20RERFSnGR2OLC0toVAoAAAtWrRAZmYmSktLAQCdOnXCzZs3JS2QiIiIyJSMDkft2rXD8ePHAQDNmzeHRqPB2bNnAQDZ2dmSFkdERERkakYvyB41ahSmTJmC/Px8LF++HL169cLs2bPRr18/fPXVV+jcuXNN1ElERERkEkafOerduzc2b96M1q1bAwDef/99tGzZEnv37kWrVq3w3nvvSV4kERERkalU6zlHISEhCAkJAQA4OTkhPj5eypqIiIiIzKZa4QgAvv/+e/z3v/9FTk4OZs6cifT0dLRv3x5NmjSRsj4iIiIikzI6HBUVFSEyMhL//e9/YW9vj4KCAowdOxaffvop0tLSsHv3brRp06YmaiUiIiKqcUavOVqzZg1+/fVX7NixAz/99JP2Sdn/+te/4OrqinXr1kleJBEREZGpGB2Ojhw5gpkzZyIoKAiCIGi3u7i4YNKkSUhNTZW0QCIiIiJTMjocKZXKP1xXVK9ePRQWFj53UURERETmYnQ4atOmDb766qtK93377bdcb0RERER1mtELsidNmoQpU6bg4cOHePXVVyEIApKTk5GYmIi9e/di9erVNVEnERERkUkIYvmKaiN89dVXWL16td7bhTg7O2P69OkYNGiQpAXWVmq1Bg8eFJi7DJOTy2VwcrJDXl4Byso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKj6olm1nnM0YMAADBgwANevX8fDhw/h6OiIVq1aQSYz+iodERERUa1S7YdAXrt2DSkpKcjPz4ezszNsbGz4AEgiIiKq84wORyUlJYiKikJSUhJ0r8jJZDIMGTIE7733nt4t/kRERER1idHXwVauXInvv/8ec+fOxXfffYfz58/j+PHjiIqKQmJiIj766KNqF3Pjxg107NgRiYmJ2m3p6emIiIiAv78/QkJCEBcXp3eMRqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBEREZWr1kMgZ8yYgREjRsDNzQ1WVlZo3LgxRo0ahalTp2Lfvn3VKqS0tBTvvvuu3nOS8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO2YjRs3Yu/evViyZAn27dsHQRAwbtw4qFQqg+cgIiIiKmf0ZbXCwkK0atWq0n1eXl7Iy8urViHr16+HnZ2d3rb9+/fDysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0NrXIOIqqbRFHEo0IVVKKAkiIVFJYWvKRPRJIwOhz169cPu3fvRvfu3SvcnfbFF1/g1VdfNbqI5ORk7Nu3DwcPHkRISIh2e0pKCgIDAyGX/6/MoKAgbNmyBbm5ubhz5w4KCgoQFBSk3e/o6Ahvb28kJycjNDS0yjmcnZ2NrpeIzKewuBQnL2TjaOpt3H9YpN3uUt8GvTu7o5uvG2wVlmaskIjqOqPDka+vL9atW4fQ0FCEhoaiUaNGePjwIb799lucP38eI0aMwIcffggAEAQBkZGRz5xPqVRi9uzZWLhwIRo3bqy3Lzs7G56ennrbGjVqBAC4e/eu9jlLTx/XqFEjZGVlGTTH84QjufzFe3RB+fMhDHlOBP0x9rF6zl/LxfrPzqOkVI2nzxH9/rAInx67gsQT1zF1YAd08OA/fAzF30dpsI/SqA19NDocffDBBwCehJryEKRr+/bt2s8NCUfR0dHw9/fHgAEDKuwrLi6GlZWV3jZra2sAT+6aKyp68q/Gysbk5+cbNEd1yWQCnJzsqh74J+XoaGPuEv4U2EfD/ZyRgzV7z0LEk7tkn356bflrVZkaa/aexaKxQejk1cikNdZ1/H2UBvsoDXP20ehwlJGRIdkXP3jwIFJSUv7wvdoUCoV2YXW58kBja2sLhUIBAFCpVNrPy8fY2NgYNEd1aTQilMoX7012LSxkcHS0gVJZBLWaT4CtLvbROAXFpVi24wxEUawQip725AkjIpbtOIO173SHHS+xVYm/j9JgH6VRk310dLSpuSdkSyUhIQG5ubl664wAYNGiRYiLi8Nf/vIX5OTk6O0rf+3q6oqysjLttmbNmumN8fLyAgC4ubk9c47n8SI/Hl6t1rzQ379U2EfDnPjlLkpK1QaPFwGUlKpx4uxd9AloWnOF/cnw91Ea7KM0zNlHs4ajVatWobi4WG9b3759MW3aNPTv3x9ff/019u7dC7VaDQsLCwDAqVOn0LJlSzg7O8PBwQH29vY4ffq0NhwplUqkpaUhIiICABAYGPjMOYiodhNFEUdTbxt9nADgaMpt9O7szrvYiMgoZl015urqiubNm+t9AE/exLZJkyYIDw/H48ePsWDBAly9ehWJiYnYuXMnJkyYAODJWqOIiAisWrUKx44dQ0ZGBmbMmAE3Nzf06dMHAKqcg4hqt8dFpXp3pRlKBHD/YREKisukL4qI/tTMeuaoKs7Ozti2bRuWLl2KsLAwuLi4YPbs2QgLC9OOmTZtGsrKyrBw4UIUFxcjMDAQcXFx2kXYhsxBRLVXicrwy2mVKS4pg70N1x0RkeEEUfcN0shgarUGDx4UmLsMk5PLZXByskNeXgGvqT8H9tFwjwpVeCf2x2ofH/tOMMNRFfj7KA32URo12ccGDewMWpDNhzEQUa1mb2MJl/o2FZ5rVBUBTx4Maaeo1SfIiagWMuj/Gl5eXkYtaExPT692QUREugRBQO/O7vj02BWjjhMB9A7gYmwiMp5B4SgyMlL7P5iSkhJs374dLVq0QL9+/eDi4qJ9Qvbly5cxadKkGi2YiF483XzdkHjiOlSl6iqfcwQAggBYyS3Qzcetxmsjoj8fg8LR1KlTtZ/Pnz8fISEhWL9+vd6/yCZOnIioqCj8+uuv0ldJRC80W4UlIsN8sPbAOUCs+HRsXcL//4h8y4fvsUZE1WL0mqMjR45gyJAhlZ6qfvPNN/HDDz9IUhgRkS6fVs6YPsgPVpZPnlf29P+Byl9bWVpg+mA/+LTkc8yIqHqMXqloZ2eHmzdvIjg4uMK+tLQ01KtXT5LCiIie5tPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJ6DkY/X+Q0NBQrFmzBnK5HD179kSDBg2Qm5uLb775Bhs2bMC4ceNqok4iIgBPLrH1CWiK3p3dUVyqhrWNNUqKSqCwtODiayKShNHhaNasWcjKysLixYvx/vvva7eLoojBgwcjMjJS0gKJiCojCAIcbK3g5GSLvDyRz5UhIskYHY6srKwQGxuLK1euICUlBUqlEk5OTggKCtJ781ciIiKiuqjaF+bbtGmjfcf7pk2bat/UlYiIiKguq9YTsk+fPo1BgwahS5cuGDBgAK5cuYJZs2ZhxYoVUtdHREREZFJGh6NTp05hzJgxUCgUePfdd1H+1mze3t74+OOPsX37dsmLJCIiIjIVo8PR2rVr0atXL+zatQsjRozQhqPx48dj7NixOHDggORFEhEREZmK0eEoPT0d4eHhAFDhttlu3brhzp070lRGREREZAZGhyMHBwfcv3+/0n1ZWVlwcHB47qKIiIiIzMXocNSrVy/ExMTgwoUL2m2CICA7OxubN29GSEiIlPURERERmVS1HgJ57tw5DB48GA0bNgQAzJw5E9nZ2WjcuDFmzpwpeZFEREREpmJ0OKpXrx4OHDiAgwcP4qeffsLDhw/h4OCAYcOG4a233oKNjU1N1ElERERkEkaHo+TkZHh7e2Pw4MEYPHiw3j6lUolvv/0WoaGhkhVIREREZEpGrzkaPnw4rl27Vum+tLQ0zJs377mLIiIiIjIXg84czZkzB1lZWQCevMFsdHQ07O3tK4y7efOmdh0SERERUV1k0Jmjfv36QRRF7QMfAWhfl3/IZDL4+/tj+fLlNVYsERERUU0z6MxRz5490bNnTwDAsGHDEB0dDQ8PjxotjIiIiMgcjF5ztGvXrmcGoz9aj0RERERUFxh9t1p+fj5Wr16N5ORklJaWai+1iaKIwsJC5OfnIz09XfJCiYiIiEzB6DNHy5YtQ0JCAlq0aAELCws4ODjA19cXpaWlUCqVeP/992uiTiIiIiKTMDoc/fDDD5gyZQo2bdqEt99+G25ubli7di2++eYbtG3bFlevXq2JOomIiIhMwuhwpFQq0blzZwBAmzZtcPHiRQCAnZ0dRo8eje+++07SAomIiIhMyehw5OTkhEePHgEAmjdvjtzcXOTl5QEAXF1dce/ePWkrJCIiIjIho8PRyy+/jM2bN+P27dtwd3dH/fr1kZiYCAA4fvw4nJycJC+SiIiIyFSMDkfvvPMOcnNzMXfuXAiCgPHjx2PlypXo0qULduzYgfDw8Jqok4iIiMgkjL6Vv0mTJjh8+DBu3rwJABg1ahQaNmyIn3/+GR06dEBYWJjUNRIRERGZjNHhaOLEiRg+fDi6du2q3TZgwAAMGDBA0sKIiIiIzMHoy2rJycmwsLCoiVqIiIiIzM7ocNStWzccOHAAJSUlkhSQm5uLqKgoBAUFoWPHjhg/frzes5LS09MREREBf39/hISEIC4uTu94jUaD2NhYBAcHw8/PD6NHj0ZmZqbemKrmICIiIipn9GU1a2trHDlyBElJSXB3d4ezs7PefkEQsHPnToPnmzRpEmQyGbZu3QpbW1usW7cOI0eORFJSEoqLizFq1Cj07t0bixcvxtmzZ7F48WLUr19fu/B748aN2Lt3L5YvXw5XV1esXLkS48aNw6FDh2BlZYW8vLwq5yAiIiIqZ3Q4ys7ORseOHbWvy99b7Y9eP0teXh7c3d0xadIktGnTBgAwefJkvPnmm7hy5QpOnToFKysrREdHQy6Xw8PDA5mZmdi6dSvCw8OhUqkQHx+PqKgo9OjRAwAQExOD4OBgJCUlITQ0FPv373/mHERERES6jA5Hu3btkuyLOzk5Yc2aNdrXv//+O+Li4uDm5obWrVtj/fr1CAwMhFz+vzKDgoKwZcsW5Obm4s6dOygoKEBQUJB2v6OjI7y9vZGcnIzQ0FCkpKQ8c46nz3wRERHRi83ocFRT/vGPf2jP8mzatAm2trbIzs6Gp6en3rhGjRoBAO7evYvs7GwAQOPGjSuMycrKAoAq53iecCSXG71kq86zsJDp/UnVwz5Kg32UBvsoDfZRGrWhj0aHIy8vLwiCUOk+QRBga2uLZs2aYcSIEXjzzTcNnnfEiBEYMmQIPv30U0RGRuKTTz5BcXExrKys9MZZW1sDAEpKSlBUVAQAlY7Jz88HgCrnqC6ZTICTk121j6/rHB1tzF3CnwL7KA32URrsozTYR2mYs49Gh6O5c+dizZo1aNasGV577TW4uLjg999/x9GjR3Hp0iW8+eabuH//PubNmwdLS0v079/foHlbt24NAPjggw9w9uxZ7N69GwqFAiqVSm9ceaCxtbWFQqEAAKhUKu3n5WNsbJ40tao5qkujEaFUFlb7+LrKwkIGR0cbKJVFUKs15i6nzmIfpcE+SoN9lAb7KI2a7KOjo41BZ6SMDkfnz59H165dsWnTJr0zSJGRkXjnnXfw6NEjxMbG4p///Ce2b9/+zHCUm5uLU6dO4a9//av22UkymQweHh7IycmBm5sbcnJy9I4pf+3q6oqysjLttmbNmumN8fLyAoAq53geZWUv7i+/Wq15ob9/qbCP0mAfpcE+SoN9lIY5+2j0Bb3jx49j6NChlV5aGzhwII4ePQoAeOWVV/SeV1SZnJwczJo1C2fOnNFuKy0tRVpaGjw8PBAYGIjU1FSo1Wrt/lOnTqFly5ZwdnaGl5cX7O3tcfr0ae1+pVKJtLQ0BAQEAECVcxARERHpMjoc2djYaBdCP+3u3buwtLQE8OThjOWf/xEvLy90794dixcvRkpKCi5fvow5c+ZAqVRi5MiRCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyVqjiIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1Xr37o01a9bA2dkZvXv31m7/9ttvERMTg169ekGlUuGzzz5Du3btnjmXIAhYu3YtVq9ejenTp+PRo0cICAjAnj178Je//AUAsG3bNixduhRhYWFwcXHB7Nmz9d7cdtq0aSgrK8PChQtRXFyMwMBAxMXFaRdhOzs7VzkHERERUTlBNOapjQAKCgowefJknD59GpaWlqhfvz7y8vKgVqvRtWtXxMTE4Mcff8TcuXOxbds2dOnSpaZqNyu1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLCrmQXZdnZ22LlzJ06dOoWffvoJeXl5cHNzQ5cuXbTrfPz9/fGf//wHbm5uxldOREREZEbVfgjkyy+/DB8fH+Tk5KBp06bau80AaC+JEREREdU11Xr85OnTpzFo0CB06dIFAwYMwJUrVzBr1iysWLFC6vqIiIiITMrocHTq1CmMGTMGCoUC7777rvaNZr29vfHxxx9j+/btkhdJREREZCpGh6O1a9eiV69e2LVrF0aMGKENR+PHj8fYsWNx4MAByYskIiIiMhWjw1F6ejrCw8MBoMKDILt164Y7d+5IUxkRERGRGRgdjhwcHHD//v1K92VlZcHBweG5iyIiIiIyF6PDUa9evRATE4MLFy5otwmCgOzsbGzevBkhISFS1kdERERkUkbfyj9r1iycO3cOgwcPRsOGDQEAM2fORHZ2Nho3boyZM2dKXiQRERGRqRgdjurVq4cDBw7g4MGD+Omnn/Dw4UM4ODhg2LBheOutt2BjY1MTdRIRERGZhNHhKDk5Gd7e3hg8eDAGDx6st0+pVOLbb79FaGioZAUSERERmZLRa46GDx+Oa9euVbovLS0N8+bNe+6iiIiIiMzFoDNHc+bMQVZWFgBAFEVER0fD3t6+wribN29q1yERERER1UUGnTnq168fRFHUPvARgPZ1+YdMJoO/vz+WL19eY8USERER1TSDzhz17NkTPXv2BAAMGzYM0dHR8PDwqNHCiIiIiMzB6AXZu3btqok6iIiIiGoFo8NRUVERNm/ejOPHj6OoqAgajUZvvyAIOHr0qGQFEhEREZmS0eFo6dKlSEhIQJcuXdCuXTvIZEbf8EZERERUaxkdjv7zn/9gxowZGD9+fE3UQ0RERGRWRp/2KSsrQ4cOHWqiFiIiIiKzMzocde/eHSdOnKiJWoiIiIjMzujLav3798eiRYvw4MED+Pn5Vfpeav/3f/8nRW1EREREJieIuk92NICXl9ezJxQEpKenP1dRdYFarcGDBwXmLsPk5HIZnJzskJdXgLIyTdUHUKXYR2mwj9JgH6XBPkqjJvvYoIEdLCyqvmhm9JmjY8eOVasgIiIiorrA6HDUpEmTmqiDiIiIqFYwKBzNmzcPkydPRtOmTTFv3rxnjhUEAcuWLZOkOCIiIiJTMygcnT59GiNGjNB+/iyCIDx/VURERERmYlA4+vbbbyv9nIiIiOjPhu/9QURERKSD4YiIiIhIB8MRERERkQ6GIyIiIiIdDEdEREREOhiOiIiIiHSYPRw9fPgQ7733Hl555RV06tQJQ4cORUpKinZ/eno6IiIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETlzB6OZs6ciXPnzmHNmjX47LPP0L59e4wZMwbXrl1DXl4eRo0ahRYtWiAhIQFTp07FunXrkJCQoD1+48aN2Lt3L5YsWYJ9+/ZBEASMGzcOKpUKAAyag4iIiKic0e+tJqXMzEycPHkSn376KTp16gQAWLBgAU6cOIFDhw5BoVDAysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0Nxf79+585BxEREZEus545cnJywkcffQQfHx/tNkEQIIoi8vPzkZKSgsDAQMjl/8twQUFBuHHjBnJzc5GRkYGCggIEBQVp9zs6OsLb2xvJyckAUOUcRERERLrMeubI0dFRe8an3JEjR/Dbb7+he/fuiImJgaenp97+Ro0aAQDu3r2L7OxsAEDjxo0rjMnKygIAZGdnP3MOZ2fnatcvl5v9qqTJWVjI9P6k6mEfpcE+SoN9lAb7KI3a0EezhqOnpaamYv78+ejVqxd69uyJ5cuXw8rKSm+MtbU1AKCkpARFRUUAUOmY/Px8AEBxcfEz56gumUyAk5NdtY+v6xwdbcxdwp8C+ygN9lEa7KM02EdpmLOPtSYcHT16FO+++y78/PywZs0aAIBCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbGxuD5qgujUaEUllY7ePrKgsLGRwdbaBUFkGt1pi7nDqLfZQG+ygN9lEa7KM0arKPjo42Bp2RqhXhaPfu3Vi6dCn69OmDVatWac/0uLm5IScnR29s+WtXV1eUlZVptzVr1kxvjJeXl0FzPI+yshf3l1+t1rzQ379U2EdpsI/SYB+lwT5Kw5x9NPuF0U8++QQffPAB/v73v2Pt2rV6l8ACAwORmpoKtVqt3Xbq1Cm0bNkSzs7O8PLygr29PU6fPq3dr1QqkZaWhoCAAIPmICIiItJl1nB048YNLFu2DH369MGECROQm5uL+/fv4/79+3j06BHCw8Px+PFjLFiwAFevXkViYiJ27tyJCRMmAHiy1igiIgKrVq3CsWPHkJGRgRkzZsDNzQ19+vQBgCrnICIiItJl1stq//73v1FaWoqkpCQkJSXp7QsLC8OKFSuwbds2LF26FGFhYXBxccHs2bMRFhamHTdt2jSUlZVh4cKFKC4uRmBgIOLi4rRnoJydnaucg4iIiKicIIqiaO4i6iK1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLAzaEG22dccEREREdUmDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIR614bzWqG0RRxKNCFVSigJIiFRSWFhAEwdxlERERSYrhiKpUWFyKkxeycTT1Nu4/LNJud6lvg96d3dHN1w22CkszVkhERCQdhiN6povXc7Hh84soKVXj6XNEvz8swqfHriDxxHVEhvnApxXfyJeIiOo+rjmiP3Txei7WHjgHVakaAPD0+8yUv1aVqrH2wDlcvJ5r0vqIiIhqAsMRVaqwuBQbPr8IUawYip4mAhBFYMPnF1FYXGqK8oiIiGoMwxFV6uSFbJSUqqsMRuVEACWlapy8mF2TZREREdU4hiOqQBRFHE29bfRxAoCjKbchioZGKiIiotqH4YgqeFxUqndXmqFEAPcfFqGguEz6ooiIiEyE4YgqKFGpn+v44hKGIyIiqrsYjqgCayuL5zpeYc0nRBARUd3FcEQV2NtYwqW+TYXnGlVFwJMHQ9opGI6IiKjuYjiiCgRBQO/O7gbfqVZOBNA7wJ1vKUJERHUawxFVqpuvG6wtLQw+eyQIgLWlBbr5uNVoXURERDWN4YgqZauwRGSYDwQBVQYk4f9/RL7lw/dYIyKiOo/hiP6QTytnTB/kByvLJwu0nw5J5a+tLC0wfbAffFryvdWIiKju48pZeiafVs5YHdkVJy9m42jKbb3nHzWsb4PeAe7o5tMYtlyETUREfxL8G42qZKuwRJ+Apujd2R3FpWpY21ijpKgECksLLr4mIqI/HV5WI4MJggAHWyu4NrCFg60VgxEREf0pMRwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItJRq8LRxo0bMWzYML1t6enpiIiIgL+/P0JCQhAXF6e3X6PRIDY2FsHBwfDz88Po0aORmZlp1BxERERE5WpNONqxYwdiY2P1tuXl5WHUqFFo0aIFEhISMHXqVKxbtw4JCQnaMRs3bsTevXuxZMkS7Nu3D4IgYNy4cVCpVAbPQURERFRObu4C7t27hwULFiA1NRUtW7bU27d//35YWVkhOjoacrkcHh4eyMzMxNatWxEeHg6VSoX4+HhERUWhR48eAICYmBgEBwcjKSkJoaGhVc5BREREpMvsZ45+/fVX1KtXD19++SX8/Pz09qWkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vZGcnKyQXMQERER6TL7maOePXuiZ8+ele7Lzs6Gp6en3rZGjRoBAO7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcul5s9W5qchYVM70+qHvZRGuyjNNhHabCP0qgNfTR7OHqW4uJiWFlZ6W2ztrYGAJSUlKCoqAgAKh2Tn59v0BzVJZMJcHKyq/bxdZ2jo425S/hTYB+lwT5Kg32UBvsoDXP2sVaHI4VCoV1YXa480Nja2kKhUAAAVCqV9vPyMTY2NgbNUV0ajQilsrDax9dVFhYyODraQKksglqtMXc5dRb7KA32URrsozTYR2nUZB8dHW0MOiNVq8ORm5sbcnJy9LaVv3Z1dUVZWZl2W7NmzfTGeHl5GTTH8ygre3F/+dVqzQv9/UuFfZQG+ygN9lEa7KM0zNnHWn1hNDAwEKmpqVCr1dptp06dQsuWLeHs7AwvLy/Y29vj9OnT2v1KpRJpaWkICAgwaI7aQhRFPCpU4feHRXhUqIIoiuYuiYiI6IVUq88chYeHY9u2bViwYAHGjh2L8+fPY+fOnVi8eDGAJ2uNIiIisGrVKjRo0ABNmjTBypUr4ebmhj59+hg0h7kVFpfi5IVsHE29jfsPi7TbXerboHdnd3TzdYOtwtKMFRIREb1YanU4cnZ2xrZt27B06VKEhYXBxcUFs2fPRlhYmHbMtGnTUFZWhoULF6K4uBiBgYGIi4vTLsI2ZA5zuXg9Fxs+v4iSUjWEp/b9/rAInx67gsQT1xEZ5gOfVrXnLBcREdGfmSDy+k21qNUaPHhQUO3jL17PxdoD5yCKwLN+AAIAQQCmD/KrFQFJLpfByckOeXkFvKb+HNhHabCP0mAfpcE+SqMm+9iggZ1BC7Jr9ZqjP6vC4lJs+PxilcEIeLJfFIENn19EYXGpKcojIiJ6oTEcmcHJC9koKVVXGYzKiQBKStU4eTG7JssiIiIiMByZnCiKOJp62+jjBABHU27zLjYiIqIaxnBkYo+LSvXuSjOUCOD+wyIUFJdJXxQRERFpMRyZWIlKXfWgZyguYTgiIiKqSQxHJmZtZfFcxyusa/XTF4iIiOo8hiMTs7exhEt9mwrPNaqKgCcPhrRTMBwRERHVJIYjExMEAb07uxt8p1o5EUDvAHcIgrGxioiIiIzBcGQG3XzdYG1pYfDZI0EArC0t0M3HrUbrIiIiIoYjs7BVWCIyzAeCgCoDkvD/PyLf8uF7rBEREZkAw5GZ+LRyxvRBfrCyfLJA++mQVP7aytIC0wf7wael+d86hIiI6EXA1b1m5NPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJiIhMhn/rmpmtwhJ9Apqid2d3FBSXobikDAprOewUci6+JiIiMgOGo1pCEATY21jC3obrioiIiMyJa46IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDkEURWPfA5UAiKIIjebFbJ2FhQxqtcbcZdR57KM02EdpsI/SYB+lUVN9lMkEg54hyHBEREREpIOX1YiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEVXLxo0bMWzYMHOXUSc9fPgQ7733Hl555RV06tQJQ4cORUpKirnLqnNyc3MRFRWFoKAgdOzYEePHj8fVq1fNXVaddePGDXTs2BGJiYnmLqVOunPnDtq2bVvh48CBA+Yurc45ePAg+vfvD19fX4SGhuLIkSMmr0Fu8q9Idd6OHTsQGxuLwMBAc5dSJ82cORO5ublYs2YNGjRogE8++QRjxoxBYmIiPDw8zF1enTFp0iTIZDJs3boVtra2WLduHUaOHImkpCTY2NiYu7w6pbS0FO+++y4KCwvNXUqddenSJVhbW+Po0aMQBEG73cHBwYxV1T1ffPEF5s+fjzlz5iAkJASHDh3CzJkz4ebmho4dO5qsDp45IoPdu3cPY8eOxbp169CyZUtzl1MnZWZm4uTJk1i0aBECAgLQqlUrLFiwAK6urjh06JC5y6sz8vLy4O7ujg8++AC+vr7w8PDA5MmTcf/+fVy5csXc5dU569evh52dnbnLqNMuX76Mli1bolGjRnBxcdF+KBQKc5dWZ4iiiHXr1mHEiBEYMWIEmjdvjsjISHTt2hVnzpwxaS08c0QG+/XXX1GvXj18+eWX2LBhA+7cuWPukuocJycnfPTRR/Dx8dFuEwQBoigiPz/fjJXVLU5OTlizZo329e+//464uDi4ubmhdevWZqys7klOTsa+fftw8OBBhISEmLucOuvSpUv83XtO169fx507dzBgwAC97XFxcSavheGIDNazZ0/07NnT3GXUaY6OjujRo4fetiNHjuC3335D9+7dzVRV3faPf/wD+/fvh5WVFTZt2gRbW1tzl1RnKJVKzJ49GwsXLkTjxo3NXU6ddvnyZbi4uOBvf/sbbt68iebNm2Py5MkIDg42d2l1xs2bNwEAhYWFGDNmDNLS0uDu7o5JkyaZ/O8eXlYjMqPU1FTMnz8fvXr1YvCsphEjRiAhIQFvvPEGIiMj8euvv5q7pDojOjoa/v7+Ff6lTsZRqVS4efMmHj9+jOnTp+Ojjz6Cr68vxo0bh1OnTpm7vDrj8ePHAIA5c+bg9ddfR3x8PLp164bJkyebvI88c0RkJkePHsW7774LPz8/vUtEZJzySxkffPABzp49i927d2P58uVmrqr2O3jwIFJSUvDVV1+Zu5Q6z8rKCsnJyZDL5bCysgIA+Pj44Nq1a4iLi8PLL79s5grrBktLSwDAmDFjEBYWBgBo164d0tLSsH37dpP2kWeOiMxg9+7dmDp1Kl555RVs3bqVizaNlJubi0OHDkGtVmu3yWQyeHh4ICcnx4yV1R0JCQnIzc1FSEgIOnbsqL0TaNGiRQgNDTVzdXWPra2tNhiV8/T0xL1798xUUd3j5uYG4EnfdLVu3Rq3b982aS08c0RkYp988gk++OADDBs2DPPnz4dMxn+jGCsnJwezZs2Cs7Oz9l+TpaWlSEtL4+VJA61atQrFxcV62/r27Ytp06ahf//+ZqqqbsrIyMDQoUOxdetWBAQEaLdfvHiRi7SN4O3tDTs7O5w7d06vj5cvX0azZs1MWgvDEZEJ3bhxA8uWLUOfPn0wYcIE5ObmavcpFAo+E8VAXl5e6N69OxYvXowlS5bA0dERmzdvhlKpxMiRI81dXp3g6upa6XZnZ2c0adLExNXUbZ6enmjTpg0WL16MRYsWwcnJCfv378fZs2fx2Wefmbu8OkOhUGDs2LHYsGEDXF1d0aFDB3z99dc4efIkduzYYdJaGI6ITOjf//43SktLkZSUhKSkJL19YWFhWLFihZkqq1sEQcDatWuxevVqTJ8+HY8ePUJAQAD27NmDv/zlL+Yuj14wMpkMmzdvxqpVqzB9+nQolUp4e3tj+/btaNu2rbnLq1MmT54MGxsbxMTE4N69e/Dw8MD69evx0ksvmbQOQRRF0aRfkYiIiKgW42IHIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiOhPjk/rMA0p+8yfGZF5MRwR1RI9e/bE3LlzJZ3z6tWrGDp0qKRzUkWbNm1CXFycJHNV9jNr27Yt1q9fL8n8z3L79m20bdtW+5GZmVntuRITE7Xz3Lhxo9IxJ06c0I4BgAMHDmhf821gyJwYjoj+xI4cOYJffvnF3GX86a1duxZFRUWSzFXZz2zfvn0YNGiQJPMbYtKkSdi3bx8aN2783HPJZDIcOXKk0n2HDx/We92rVy/s27cPPXr0eO6vS/Q8GI6IiGo5f39/7TuWm0KzZs3g7+9f4V3mq6NTp06VhiOVSoWjR4+iXbt22m0NGjSAv78/GjRo8Nxfl+h5MBwR1VK3b9/G7Nmz0b17d7Rv3x4vv/wyZs+ejby8PO0YURSxZ88ehIaGokOHDujTpw+2bt0KURSxfv16fPjhhwD0L8uUlJRgw4YNeO211+Dr64u+ffvio48+gkaj0c5769YtTJo0CS+99BL8/PwwZMgQfP/993r1Xb58GRMmTECnTp3QqVMnREZG4tatW1V+XydPnsTf//53dOzYEd27d8d7772H/Px87f6bN29i2rRp6NatG/z9/TFs2DCkpqbq9aVt27Y4cuQIpk2bho4dOyIwMBALFixAQUGBQb0pl5KSgoiICPj5+aFLly6YM2cOHjx4oN2fmJgIb29vnDt3DkOGDIGvry9CQkKwdetW7ZjyS0Iffvih9vP169ejT58++PDDD/HSSy+hd+/eyMvLQ3FxMVavXo2+ffvCx8cHnTp1wqhRo5Cenq49rrKf2dOX1XJycjBv3jz06NEDHTp0wMCBA3Hs2DG9Prdt2xZ79uzBggUL0KVLF3Ts2BHTpk3D77//XuXPSNf69evx2muv4ejRo3j99dfh6+uLN998E7/88gvOnj2LQYMGoUOHDnj99ddx6tSpCsf3798fly9fxrVr1/S2nzhxAoIg4JVXXjGqHiJTYDgiqoWKioowfPhwXLt2DYsWLUJcXBwiIiJw6NAhrFmzRjtuzZo1WLp0KXr06IFNmzZh0KBBiImJwcaNGzFo0CAMHDgQwP8uy4iiiIkTJ2Lbtm0YOHAgNm/ejNdeew1r167FokWLAAAajQYTJkxAYWEh/vWvf2Hjxo2oX78+Jk+erF2DcuPGDbz99tvIzc3FihUrsHTpUty6dQtDhw5Fbm7uH35f33//PcaOHYv69esjJiYGUVFR+PbbbzFt2jQAT9bbvPXWW7h16xYWLlyIVatWQRAEjBgxAmfOnNGba9GiRWjSpAk2btyIsWPHIiEhAZs3bzaoNwCQnJyMkSNHQqFQYO3atZg/fz7OnDmD4cOHo7i4WDuPRqPB9OnT0b9/f3z00Ufo3LkzVq1ahR9++EHbWwAYOHCg9nMAuHv3LpKSkrBmzRpMnz4dTk5OmD17Nj777DOMHz8e8fHxmDt3Li5fvowZM2ZAFMVKf2ZP+/333zFw4ECcOXMGM2bMwPr169GkSRNERkbiyy+/1BsbExMDjUaDNWvWYPbs2fjuu++wbNmyP/z5/JHs7GwsX74cEydOxNq1a5Gfn49p06Zh5syZGDx4MNasWQONRoMZM2bo9Q4AunXrhnr16lU4e3T48GH06dMHlpaWRtdDVONEIqoVXn31VXHOnDmiKIpiWlqaOHToUDEzM1NvzIQJE8S+ffuKoiiK+fn5Yvv27cVly5bpjVm+fLk4atQoURRFMTY2VvT09NTu++6770RPT0/xiy++0Dtmw4YNoqenp3jlyhUxJyenwhilUikuW7ZMvHTpkiiKojhz5kzx5ZdfFh89eqQdk5eXJ3bu3FlcsWLFH36Pb731lvh///d/etu++eYbsW/fvmJ2drb4zjvviF26dBGVSqV2f2lpqdivXz9x4MCBoiiK4q1bt0RPT0/x3Xff1Ztn2LBh4uuvv25wb4YMGSK+/vrrYllZmXb/9evXxXbt2om7d+8WRVEUExISRE9PT3H//v3aMSUlJaKvr6/4/vvva7d5enqKsbGx2tflfT958qTecaNHjxa//vprvZri4+NFT09P8d69e3rH6tKd/1//+pfYvn178bffftMbM2LECLFbt26iWq3WHjN06FC9MXPnzhX9/f3FP1Le24SEhArfy/fff6/dtmXLFtHT01M8cOCAdts333wjenp6imlpaXq9u3Xrljhv3jztz0YURbGwsFD09/cXT548Wen3O2fOHPHVV1/9wzqJahrPHBHVQu3atcMnn3wCd3d33Lp1Cz/88APi4+Nx/fp1lJaWAgDOnj2L0tJS9OnTR+/YuXPnIj4+vtJ5z5w5AwsLC/Tv319v+xtvvAEAOH36NBo2bIjWrVvjH//4B+bOnYvDhw9DFEXMmzcPnp6eAICffvoJL730EhQKBcrKylBWVgZ7e3sEBATgv//9b6Vfu7i4GL/++it69+6tt71fv37497//DVdXV5w5cwavvvoqHBwctPvlcjlCQ0Nx4cIFvctm/v7+evO4ubmhsLDQoN4UFRXh3Llz6NGjB0RR1H4PTZs2hYeHB06ePKl3XMeOHbWfW1lZoUGDBtqv9Szl/So/Li4uDv3790dOTg6Sk5Oxb98+HD9+HAC0P9eqnDlzBh07dkTTpk31tr/xxhu4f/8+rl+/rt1WWY+qu3C8U6dO2s8bNmxYYf769esDAJRKZYVjn760dvz4cdja2uKll16qVi1ENU1u7gKIqHLbt2/Hli1bkJeXh4YNG6J9+/awsbHBo0ePAAAPHz4EAKMWr+bn58PJyQlyuf5/+i4uLgCAR48eQRAExMfHY9OmTUhKSsLnn38OS0tL9O7dG9HR0ahfvz4ePnyIw4cPV7jb6Fn15OfnQxRFODs7P7O+8r94dTVs2BCiKOLx48fabTY2NnpjZDKZdj1RVb1RKpXQaDTYunWr3vqhctbW1nqvFQrFH36tZ3n6e/nhhx+wbNkyXL9+HXZ2dmjbti3s7OwAGP5so/z8fLi7u//h19INJ8/qkbHs7e0rbHu6L38kKCgITk5OOHLkCKZMmYLDhw/jtddeg4WFRbVqIappDEdEtdBXX32FFStWYNasWRg4cKD2L/l33nkHFy5cAAA4OjoCAB48eIBWrVppj83KykJmZiY6d+5cYd569eohLy8PZWVlegEpJycHAODk5AQAcHV1RXR0NBYtWoSMjAx888032Lp1K+rVq4fFixfDwcEBXbt2xahRoyp8jaeDVzl7e3sIgqC34Bl4ctfSqVOn0KFDB9SrV6/SBcP379/X1lde67NU1RsfHx8IgoCRI0ciNDS0wvFPhwop/Pbbb4iMjESvXr2wZcsWNGvWDACwZ88e7folQxjSo9pGLpejb9+++OabbzBy5EicOHECO3bsMHdZRH+Il9WIaqHU1FQ4ODhg/Pjx2mBUUFCA1NRU7V1lHTp0gKWlZYW7lHbu3Il33nkHgiBAJtP/T7xLly5Qq9UVzviUL+Tt3LkzfvnlF3Tt2hXnz5+HIAho164dZsyYAU9PT2RnZ2vnuXr1Ktq1awdfX1/4+vrCx8cHO3bsQFJSUqXfk52dHdq1a1eh3h9//BHjx49HdnY2AgMDcfz4ce3ZMQBQq9X4+uuv4evra/Ct5VX1RqFQwNvbG9evX9fW7+vrizZt2uDDDz/E6dOnDfo65Z7uc2UuXryIkpISTJgwQRuMAGiDUfkZnarmCgwMxC+//FLhzsAvv/wSLi4uaN68uVG1m0r//v1x5coVbNu2DQ0bNtS7VElU2/DMEVEt1KFDB3z66adYsWIFXn31VeTk5CAuLg6///476tWrB+DJJaPhw4dj586dsLKyQlBQEC5cuIDdu3dj5syZkMvl2jMohw4dgp+fH1555RW89NJLWLRoEXJycuDt7Y0zZ85g69atCAsLQ+vWrVFSUgKFQoHZs2dj6tSpaNiwIf773/8iPT0dw4cPBwBMnjwZb7/9NiZMmIChQ4fC2toa+/btw9GjRxEbG/uH39e0adMwadIkTJ8+HW+99RYePHiA1atX49VXX0W7du0wZcoUnDhxAsOHD8f48eNhZWWF3bt349atW9i2bZvB/TOkNzNnzsT48eMxa9YsvPHGG1Cr1YiPj8e5c+cwadIko35ejo6O+OWXX5CcnIyAgIBKx7Rv3x5yuRwrV67E6NGjoVKpkJiYiO+++w4AtGuYnv6ZPb22aNSoUfjyyy8xatQoTJkyBU5OTjh48CB++uknLFu2zKCgZg5dunSBi4sLtm3bhpEjR0IQBHOXRPSHaud/RUQvuLCwMERGRuLIkSMYN24cYmNjERAQgPfffx8PHz7E1atXAQBRUVGYNWsWDh8+jPHjx+Pzzz/H/PnzMXr0aABA37594evri7lz5yIuLg6CIGDLli14++238fHHH2P8+PH45ptvMGPGDCxduhTAk/U28fHxaNOmDZYuXYoxY8bg2LFjeP/99/HWW28BALy8vLBnzx4IgoDZs2dj2rRpuH//PjZs2IC+ffv+4ff16quvYsuWLbh9+zYiIyOxZs0a/PWvf8Xq1asBAG3atMEnn3yChg0bYv78+YiKioIoivj444/RtWtXo3pYVW+6d++OuLg4ZGdnY9q0aZg9ezYsLCywffv2CguZqzJx4kRcuHAB48aNQ1ZWVqVjmjdvjtWrV+PevXuYNGkS3nvvPQDArl27IAgCUlJSAFT8mT3NxcUFn376KXx8fLB06VK88847yMrKwsaNGxEeHm5U3aYkk8nQr18/lJaWVnopk6g2EcTqrs4jIqI/ldu3b6NXr15Yvny5Ngibw9y5c3HmzBl8++23ZquBXmw8c0RERHp+++03nD17FiqVyqRf98GDBzh79myFRftEpsZwREREejZt2oQhQ4b84SXCmnLs2LFK36qGyNR4WY2IiIhIB88cEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREen4f227+pq/cmwKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot the calibration curve. \n", + "plt.plot(cal_curve['conc_mM'], cal_curve['amplitude'], 'o', markersize=10)\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can perform a simple regression on these data to get a calibration curve. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHECAYAAADf+usKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8AElEQVR4nO3dd1gUZ9fH8e/SQUBAUYzYYxd7L7FHHzUxMZaY2HtXVIoVRQXFghU1Khq7MbbEqE9sacYeSwwae6eoIEhfduf9w9d9QrCwuLCwns91kcDszPA7u8ge5r5nRqUoioIQQgghhIkyM3YAIYQQQojsJM2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs3OK4SEhNCzZ0+9t9u9ezft2rXDw8OD9u3bs3///mxIJ4QQQojMkmbnJdatW8fixYv13m7Pnj1MnDiRbt26sXfvXtq1a8fYsWM5d+5cNqQUQgghRGZYGDtAbhIZGcmkSZM4e/YspUqV0mtbRVFYtGgRvXv3pnfv3gAMHz6cP/74g1OnTlGjRo3siCyEEEKIN5AjO//w119/kT9/fr777juqVauW4fGjR4/SqVMnqlatSuvWrVm4cCGpqakA3Lx5kwcPHvDRRx+l22bNmjUMHjw4R/ILIYQQIiM5svMPLVq0oEWLFi997JdffmH06NFMmDCBRo0acffuXWbMmMGtW7dYtGgRt2/fBiAxMZH+/fsTFhaGu7s7Q4cOfeU+hRBCCJH95MhOJq1YsYLOnTvTvXt3ihcvTuPGjZk+fToHDhzg/v37xMfHA+Dj40OHDh0IDQ2lUaNGDBs2jOPHjxs5vRBCCPHukiM7mRQWFsbFixfZtWuXbpmiKADcuHEDS0tLAPr378+nn34KQMWKFQkLC2Pt2rU0aNAg50MLIYQQQpqdzNJqtQwYMEDXyPyTq6srV65cAaBcuXLpHnv//ff56aefciKiEEIIIV5ChrEyqWzZsty8eZMSJUroPiIjIwkKCiIhIYFKlSqRL18+Lly4kG67q1evUrx4cSOlFkIIIYQc2cmkgQMHMmbMGJYsWUKHDh2IiIhg8uTJvPfee7i6ugIwYMAAli1bRuHChalatSo//PADx44dY926dcYNL4QQQrzDpNnJpLZt2xIcHMzKlStZuXIl+fPnp3nz5nh5eenWGTZsGLa2tgQHBxMZGUmZMmVYsmQJ9erVM2JyIYQQ4t2mUl7MshVCCCGEMEEyZ0cIIYQQJk2aHSGEEEKYNGl2hBBCCGHSZIIyzy8OqNVmz9QlMzNVtu07N5D68j5Tr1Hqy/tMvUZTrw+yp0YzMxUqlSpT60qzA2i1CtHRCQbfr4WFGc7O+YiLSyQtTWvw/Rub1Jf3mXqNUl/eZ+o1mnp9kH01urjkw9w8c82ODGMJIYQQwqRJsyOEEEIIkybNjhBCCCFMmjQ7QgghhDBpMkFZD1qtFo0mTY/1VSQnm5OamoJGY3oz7aU+/ZibW2BmJn9fCCFETpNmJxMURSEuLpqkpHi9t3382Ayt1jRn2IPUpy9bW3scHV0yfbqkEEKItyfNTia8aHTs7Z2xsrLW643K3Fxlkkc9XpD6MkdRFFJTU4iPjwEgf/4Cb71PIYQQmSPNzhtotRpdo2Nv76j39hYWZiZ77QSQ+vRhZWUNQHx8DA4OzjKkJYQQOUR+276BRqMB/vdGJcTbePFzpM/cLyGEEG9HjuxkkqHmWCiKQnySmpRUDdZW5tjbWsr8jXeIvNZCCJHzpNnJIYnJao79GcGhs/d59DRJt9zVyZZWtdxp5OGGnY2lERMKIYQQpkmanRxw6eYTlu26RIpaw7//rn/8NIkth6+x85ebDP+0ClVKy8RVIYQQwpBkzk42u3jjCQu3XyBV/Xzuz7/P63nxdapaw8LtF7h080mO5hOGpSgK+/fvJSYm2thRhBBC/D9pdrJRYrKaJd9eRFEyNjn/pgCKAst2XSIxWZ0T8UQ2OH/+D2bNmkZycrKxowghhNFduRJGQIA/t27dMmoOaXay0bE/I0hRa97Y6LygAClqDccuRWRnLJGNFMV0rzkkhBCZpSgKW7duomfPbmzevJH9+/cbNY80O9lEURQOnb2v93Yq4NCZ+9nyptm4cW0OHjzAqFFDaNGiEd26fcJvv/3Cb7/9QvfunWjVqjHjxo3i6dOnum1u377F+PGjaN26CR07tmH69Mk8efJY9/izZ8+YNy+QTp3a07RpPT7+uA3z5gWSkvK/IxubN2+ga9eONG/egC5dPmbdutW6+tasWUnnzh+ly7lv3/c0blxb93Xnzh+xePF8evToQrt2LfnjjzMoisKmTV/TpUtHWrZsRJ8+X/Djj//7x/THH2do2rQef/xxhh49utCiRUMGD+7L3bt3+PrrNXz00Yf85z8tCA4OSvdcHzv2K/369dA9PytXhpCampruOfzuu12MGTOMFi0a8ckn/2HDhrW67zlq1BAAunT5mH37vn+bl0sIIfKkuLg4vLxGM3v2DNRqNc2bt6Rnz55GzSTNTjaJT1KnO+sqsxTg0dMkEpKz5zosixbNo1OnLmzYsI1SpUozffpkvv56DVOnziAoaCFhYZfYuHEdAI8fP2L48AG8915RVq1az5w5C0lIiGfIkP4kJT2vzd9/KmFhl5gxYw5bt+5i5EhP9u37nj17dgHw22+/sH59KF5eE9iyZRdDhozg66/XpGtMMmP37h2MHj2eBQuWUKVKVb76KoSdO7czZsx41q/fRpcunzNv3mx27tyu20aj0bBkyQJ8faeycuVaYmKiGTKkH3fu3Gbp0q8YPHg4O3Z8w++//wbAiRO/M2WKLx9//AkbNmxj3DhfDh8+yIwZU9NlCQlZxH/+04F16zbTvv3HrFy5jAsXzuHhUY1Zs4IAWLXqa1q2bJ2l10gIIfKqS5f+pHv3Thw69CMWFpaMHz+BxYtDcHBwMGouORsrm6Skat5q++SUNOxtDX8qetu2HWjWrCUAHTt24rfffmHQoGFUrFgZgLp163Hz5g0Adu36lgIFCjJ2rI9ue3//2bRv35KjRw/Rrt1H1K1bjypVqlO2bDkAihR5j507v+HGjWsAPHx4H2trK4oUKYqbmxtubm4ULFiIwoXd9Mpdv34j6tSpB0BSUhLbtm1mypTpNGrUBICiRd2JiAhn8+b1dOrURbfdgAFDqVLFA4BmzVrwzTdb8PaehI2NDSVKlCQ09Ctu3rxBo0ZNWL8+lA4dPuaTTzrr9unjM5HhwwcTHv6QIkXeA+A///mINm3aATBw4FB27tzOxYvnqVatBg4Oz6+y7eTkjLW1jV41CiFEXvX8aPt6Fi6cR1qamvfeK0pQ0EKqVPHIFdcXk2Ynm1hbmb/V9jbW2fPSFC9eQvf5izfj994rqltmZWVNaurzM8KuXr3CnTu3ad26Sbp9pKamcvv288lmn33WlZ9++okff9zP/fv3uHnzOg8fPsDdvTgAH37Yjh9++I7PP/+UMmXKUqdOPZo2bY6bm37Njrt7Md3nt2/fJDU1hZkz/QgImK5brtFoSE1NTTeE9u96XVwKYGPzvybEysqK1NQUXb2XL//F/v17dY+/GOK6ffuWrtkpUaJkumz58uVDrZZJ5UKId1Ns7FP8/Cbx00+HAWjZsjV+frNwdNT/FkvZRZqdbGJva4mrky2PnyZleoIyPJ+zU9DJlnw22fPSWFhk3O+r7tGk1SrUrFmbceN8Mzxmb++AoiiMH+/J9evXaN26Lc2bt2Tw4OEEBc3Srefk5MTatZu5dOkip0+f5OTJ42zdupH+/QfTt+9AIOOk3rS0jEN41tb/u12HVvt8fX//2RkaDwBLS6tX1vu6+1FptQpffNGL//yng27ZixuBFihQULfMysoqw7YyMVkI8S66ePE8Pj5jCQ9/iKWlJePG+dKt2xe54mjOP8mcnWyiUqloVctdr0YHns/ZaVXbPVf8oJQuXYY7d25TqFBh3N2L4e5eDEdHRxYvns/Nm9e5evVvfv/9N2bMmMPQoSP58MP/4O5ejAcP7une/P/7333s2vUtVatWp3//wXz11To++ugTDh/+EQBLS0sSEhLSNQv37997ba4SJUpibm5ORES4Lpe7ezGOHz/Gli0bsnyDzRf1/nOfjx49YtmyRSQmJmRqH7nhdRNCiOym1Wr5+us19OvXg/DwhxQrVpz167fy+edf5srfg9LsZKNGHm5YW5pnuGryq6hUYG1pTqMq+g3xZJdPP+1MfHw806ZN4tq1v7l+/RrTpk0iLOwvSpUqTYECBTA3t+DIkYM8fPiAK1fCmDLFlydPnqBWPz+DKSUlhWXLFnHgwA+Ehz/kwoVznDt3lipVqgLg4VGN+PhnbNy4jvDwh/z444E3nsVkb2/PJ598xqpVyzlw4AcePLjP/v17Wb58MS4uWb8C9Zdf9uLnn4+wZs1K7t69w9mzp5k5cxrPnsWlO7LzOra2dgBcu3aVxMTELGcRQojcKiYmhtGjhxIcPJe0tDTatGnHli07dXM/cyMZxspGdjaWjOxclQVbz8EbLiyo+v+P4Z2q5Jp7ZL33XlGWLl3JihVLGTZsAObm5lSuXJXFi5fj7OwCwNSp01m1agW7dm3HxaUADRs2plu3L/j1159RFIWPP/6UZ8/iWLduNVFRkTg4ONCsWUuGDh0FQI0atRg0aBg7dnzD2rWrqV69BiNGjGHmTL/XZhs5cizOzi6sWbOSx48f4epaiL59B9KjR58s19u8eSumT4cNG0LZuHEdDg6ONG78AUOGjMz0PsqUeZ8GDRrh5zeBQYOG0717jyznEUKI3ObcubP4+IwlKioSKysrvL0n8dlnXXPl0Zx/Uiky2QCNRkt09MuHKdTqVJ48CadAgSLp5oJkloWFGeevPkp3b6x/PuEvvra2NGd4pypUKZW37o1lYWFGWprW2DGyjaHre9ufJ0OzsDDD2TkfMTEJJvk6Sn15n6nXmFfq02q1hIZ+xfLlS9BoNJQsWYqgoIWUK1f+jdtmV40uLvkwN8/cAJUc2ckBVUoXYP7whhy7FMGhM+nvel7QyZZWtd1pVKUIdtk0KVkIIYTIqujoJ0yc6MWJE78D0L79x0ya5IedXT4jJ8s8eXfNIXY2lrSuXYxWtdxJSE4jOSUNG2sL8tlY5PrDf0IIId5Np0+fZOLE8Tx69AgbGxt8fafQsWOnPPe+Jc1ODlOpVNjbWmbLBQOFEEIIQ9BoNKxevYKVK5eh1WopXfp9goIW8P775YwdLUuk2RFCCCGEzuPHj5g40YtTp04Az6+27+s7WXe2aV6Uq049DwkJeePNwq5du8agQYOoV68eDRo0YNSoUTx8+DCHEgohhBCm68SJ3+na9RNOnTqBra0dM2fOYfr0gDzd6EAuanbWrVvH4sWLX7tOTEwMffv2JV++fGzcuJFVq1YRExPDgAEDSElJyaGkQgghhGlJS0tj6dKFDB3an+joJ5QtW47Nm7+lQ4eOxo5mEEYfxoqMjGTSpEmcPXuWUqVKvXbdQ4cOkZSUxOzZs3W3D5g7dy5Nmzbljz/+oEGDBjkRWQghhDAZkZGRTJw4jrNnzwDQuXM3xo+fkO4+gnmd0Zudv/76i/z58/Pdd9+xbNkyHjx48Mp1GzRowLJly9LdJ+mF2NjYt8phYfGq+0Nlfcb5i8nqKhWY4tWMpL6sMzdXvfJnLie9uEZFZq9VkddIfXmfqddo7Pp+/fVnJk70JiYmhnz58uHnN4N27Tq8eUM9GLtGyAXNTosWLWjRokWm1nV3d8fd3T3dspUrV2JtbU2dOnWynMHMTIWz88uvF5CcbM7jx2Zv9eZkqv9IX5D6Mk+rVWFmZkb+/Ha56q8mR0dbY0fIVlJf3mfqNeZ0fWq1mqCgIEJCQgCoUqUKy5cvp3Tp0tn2PY35Ghq92Xkb69evZ/PmzUyYMIECBbJ+5WGtViEu7uX3MUpNTUGr1aLRKHpf+VGlev5GqdFoTfbIh9SnH41GQavVEhubSFKSxjA7fQvm5mY4OtoSF5eERpN7r96aVVJf3mfqNRqjvvDwh3h5jeX8+T8A6N79S8aP98Xa2pqYmMzd9Fgf2VWjo6OtaV9BWVEUFi1axPLlyxk8eDB9+vR5632+qpHRaLL+LvfiDTK3NAJ//32FmTOncv/+PRo3bkpMTDRLl34FwMWL51EUqFateqb3l9vqM7TsrC8rzXN20mi0uSqPoUl9eZ+p15hT9f300xGmTp1AXFws9vYOTJs2k1at2gCvfh80FGO+hnmu2VGr1UyYMIG9e/fi7e1N//79jR0pz1i3bjUqlYr167dhaWmJnd3/TiUcNmwAEyf66dXsCCGEyBvU6lQWLZrPxo1fA1C5sgdz5izA3b2YkZPljDzX7Hh7e3Pw4EHmz59P+/btjR0nT4mPf0a5chUoVqy4saMIIYTIIQ8e3MfHZyyXLl0E4MsvezNmzLhccTPinJKrmx2NRkN0dDQODg7Y2Niwc+dO9u3bh7e3N3Xr1uXRo0e6dV+sk1MURSE5OemN672Y82FINja2et+XpHPnj4iICAfgwIEfcHMrgptbEZYu/YrGjWsDEBAwnXPnzjJp0jSD5hVCCGEchw//iJ/fJOLjn+Hg4Ii/fyDNm7c0dqwcl6ubnfDwcFq2bElgYCCdOnVi7969AAQFBREUFJRu3Rfr5ARFUejT5wsuXDiXI9/v36pXr8natZv0anhWrVrPhAnjKFSoMKNHj2PJkmAeP37eLO7Zc4COHdsyatQ42rX7KLtiCyGEyCGpqaksWDCHrVs3AVC1ajVmz17Ae+8VNXIy48hVzc7s2bPTfe3u7s7ff/+t+zo0NDSnI71SXrvjq7OzMxYWFlhbW1OgQEEsLf93I9ICBQoCYG9vj729vbEiCiGEMIC7d+/g4+PJ5cthAPTpM4Dhw0en+73/rslVzU5eoVKpWLt2U54axhJCCGH6/vvf/fj7TyYhIQEnJydmzJhDkyZNjR3L6KTZySKVSpWpG6NZWJiZ9OmSQgghjC85OZl58wL59tttANSoUYvZs+dTuLCbkZPlDtLsCCGEEHnY7ds38fb25OrVv1GpVPTvP5ghQ0ZgYSFv8S/IMyEAsLW14/btW8TGPiV/fidjxxFCCJEJP/zwPTNn+pGUlIizswsBAXNp0KCRsWPlOtLsCAA+//xLNm9ez927t5k9e4Gx4wghhHiNpKQkgoJmsWvXtwDUqVOPgIC5uLoWMnKy3EmlKKZ6sf/M02i0REe//H4ganUqT56EU6BAkSxdgMnU5+xIffp5258nQ7OwMMPZOR8xMQkm+TpKfXmfqdeYlfpu3LiOt7cnN25cQ6VSMWjQMAYNGoa5uXk2p82a7HoNXVzymfa9sYQQQoh30Z49OwkMnEFychIFC7oSGDiXOnXqGztWrifNjhBCCJHLJSYmEBDgz969ewCoX78hs2YF6a6TJl5Pmh0hhBAiF7t27W+8vT25desmZmZmDB06iv79B2FmlrkhHCHNjhBCCJErKYrCzp3bCQqaRUpKCq6uhZg9ez61atUxdrQ8R5qdTJJ53MIQ5OdICJEZCQnxzJjhx4EDPwDQqFETZsyYg4uLi5GT5U3S7LzBi9ntqakpWFlZGzmNyOtSU1MAMDeXf3pCiJe7ciUMLy9P7t27g7m5OSNGjKF37/4ybPUW5DfuG5iZmWNra098fAwAVlbWet2XSqtVodGY7l/zUl/mKIpCamoK8fEx2Nrayy8tIUQGiqLwzTdbmDcvELVajZtbEWbPnk/16jWNHS3Pk2YnExwdnx82fNHw6MPMzAyt1vSuDfGC1KcfW1t73c+TEEK88OzZM6ZMmcihQ/8FoGnT5kyfHoCTk7ORk5kGaXYyQaVSkT9/ARwcnNFo0jK9nbm5ivz57YiNTTTJox9Sn777s5AjOkKIDC5cuMCgQYO4f/8+FhYWjB49jh49+ug1iiBeT5odPZiZmWFmlvmr3lpYmGFjY0NSksZkr/wp9QkhRNYoisKGDV+zYEEQarWaIkXeIygoGA+PasaOZnKk2RFCCCFyWFxcLH5+kzh69BAALVu2xs9vFo6OjkZOZpqk2RFCCCFy0J9/XsDb25Pw8IdYWlri5+dHx45dTHI6QG4hzY4QQgiRA7RaLRs3rmPx4gWkpaVRrFhx5s1bSOPG9YiJSQCk2cku0uwIIYQQ2ezp0ximTPHl119/BuDDD//DlCn+ODvnN3Kyd4M0O0IIIUQ2OnfuLL6+44iMjMDKygovr4l07txNzrbKQdLsCCGEENlAq9Wydu0qQkIWo9FoKFGiJEFBCylfvoKxo71zpNkRQgghDCw6+gmTJnlz/PgxANq1+4hJk/zIl8/eyMneTdLsCCGEEAZ0+vRJJk4cz6NHj7CxscHXdwodO3aSYSsjkmZHCCGEMACNRsPq1StYuXIZWq2W0qXLEBQUzPvvlzN2tHeeNDtCCCHEW3r8+BETJ3px6tQJADp27ISv72Rsbe2MnEyANDtCCCHEWzlx4ncmTfLmyZPH2NraMXHiVD766BNjxxL/IM2OEEIIkQVpaWmsXLmM1atXoCgKZcuWIyhoIaVKlTZ2NPEv0uwIIYQQeoqMjGTixHGcPXsGgE6duuDtPQkbGxsjJxMvI82OEEIIoYdjx35l8mRvYmJisLOzY8oUf/7znw7GjiVeQ5odIYQQIhPUajUhIYtZu3YVAOXLVyQoKJgSJUoaN5h4I2l2hBBCiDeIiAjHx2csFy6cA6Br1y8YN84Ha2trIycTmSHNjhBCCPEaP/98hKlTJxAbG4u9vT1+fjNp3bqtsWMJPUizI4QQQryEWp3K4sUL2LBhHQCVKlUhKCgYd/dixg0m9CbNjhBCCPEvDx7cx8dnLJcuXQTgiy96MWbMeKysrIycTGSFNDtCCCHEPxw5chA/v0k8exaHg4Mj06cH0KJFK2PHEm9Bmh0hhBACSE1NJTg4iC1bNgLg4VGN2bPnU7Sou5GTibclzY4QQoh33r17d/Hx8SQs7C8AevXqx8iRnlhaWho5mTAEaXaEEEK803788QD+/pOJj48nf/78zJgxhw8+aGbsWMKApNkRQgjxTkpJSWHevNls374FgOrVazJ79nzc3IoYOZkwNGl2hBBCvHPu3LmFl5cnV69eAaBfv0EMGzYKCwt5WzRFZsYO8E8hISH07NnztevExMQwbtw46tSpQ506dZgyZQqJiYk5lFAIIURet3//Xrp3/4yrV6/g7OxCSMgqRo0aK42OCcs1zc66detYvHjxG9cbNWoU9+7d061/7Ngxpk+fngMJhRBC5GVJSUlMnz6FCRPGk5iYSO3addm2bRcNGzYxdjSRzYzexkZGRjJp0iTOnj1LqVKlXrvuuXPnOHXqFPv27aNMmTIA+Pv7M2DAAMaOHUvhwoVzIrIQQog85ubNG3h7j+H69WuoVCoGDRrGoEHDMDc3N3Y0kQOMfmTnr7/+In/+/Hz33XdUq1btteueOXMGV1dXXaMDULduXVQqFWfPns3uqEIIIfKg777bxRdfdOb69WsULOjKypVrGTp0pDQ67xCjH9lp0aIFLVq0yNS6kZGRFCmSfpa8lZUVTk5OhIeHv1UOCwvD933m5mbp/m9qpL68z9RrlPryvrepMTExkZkzp/Hdd7sBqF+/IbNnz6NgwYKGjPhW5DXMGUZvdvSRlJT00vuSWFtbk5KSkuX9mpmpcHbO9zbRXsvR0Tbb9p0bSH15n6nXKPXlffrWePnyZYYMGcL169cxMzNj3LhxjByZe4/myGuYvTLV7PTq1StLO1epVHz99ddZ2vZlbGxsSE1NzbA8JSUFOzu7LO9Xq1WIizP8GV3m5mY4OtoSF5eERqM1+P6NTerL+0y9Rqkv79O3RkVR2LFjO4GBM0hJSaFQoUIEBQVTu3Yd4uKScyCxfuQ1zDpHR9tMHy3KVLNz6tQpKlWqRL58mT/6kZCQwOXLlzO9fma4ublx6NChdMtSU1N5+vTpW09OTkvLvh8yjUabrfs3Nqkv7zP1GqW+vC8zNSYkxDNz5jT2798LQKNGTZgxYw4uLi65/vmR1zB7ZXoYa9q0aVStWjXTOz5//jyff/55lkK9Sp06dZg3bx537tyhRIkSAJw8eRKAmjVrGvR7CSGEMC5FUXiWmEqqoiIlKRUbS3NUKtVL171y5TLe3mO4e/cO5ubmjBgxht69+2NmZrpzYUTmZarZGTJkiN5HTooUKcKQIUOyFOoFjUZDdHQ0Dg4O2NjYUK1aNWrWrImnpyfTpk0jMTERPz8/PvnkEzntXAghTERisppjf0Zw6Ox9Hj1N0i13dbKlVS13Gnm4YWfz/AadiqKwfftW5s0LJDU1lcKF3Zg9ewE1asgfwOJ/MtXsjBkzRu8dFy5cOEvb/VN4eDgtW7YkMDCQTp06oVKpWLp0KdOnT6d3795YW1vTtm1bJkyY8FbfRwghRO5w6eYTlu26RIpaw7+P4Tx+msSWw9fY+ctNhn9ahRKuVsyYMZUff9wPwAcfNMPfPxAnJ+ecDy5yNZWiKIqhdnbv3j1CQkIIDAw01C5zhEajJTo6weD7tbAww9k5HzExCSY5Fiv15X2mXqPUl7dcuvmEhdsvoCjwujcmFZAYfYcnFzYQFfkQCwsLRo8eR48efV45zJVbmdpr+DLZVaOLS75MT1A26GBmdHQ0u3btMuQuhRBCvAMSk9Us23XpjY2OoihEXj3KlUPziIp8iJvbe6xdu4mePfvmuUZH5ByDXmenWrVqXLlyxZC7FEII8Q449mcEKWrNa9dJS03kzskNxD64AED+otUY6u2Hh0elnIgo8rA8dVFBIYQQpkdRFA6dvf/adRKe3OLWsTWkJkajMrOgaPVPKVS2Gb9fjuXjDxQ5qiNeS+9m5/Tp029cp06dOlkKI4QQ4t0Tn6ROd9bVPymKQtTfh3lwYTcoWqzyFaR0owHYuRQH4NHTJBKS07C3tczBxCKv0bvZ6dmz5xs7aENfTFAIIYTpSkl9+fBVWko8t0+uJ+7hJQCcitWkRJ0vMbdKf9uB5BRpdsTr6d3srF+/PsOyxMREzp49y549e1i8eLFBggkhhHg3WFtlvF9V/KMb3Pp9Deqkp6jMLHCv2ZmCZZq89I9tG2uZkSFeT++fkLp16750ebNmzbCzs2P58uWsXLnyrYMJIYR4N9jbWuLqZMvjp0loFS2Rlw/y8M/vQdFi7VCIUg37Y+dcLMN2KqCgky35bKTZEa9n0FPPa9Wqpbt9gxBCCJEZKpWKVrXcSU1+xo1fQnh4cQ8oWpyL16bCh74vbXTg+SnqrWq7y+Rk8UYGbYcPHTqEvb29IXcphBDiHWCnvseV/wY+H7Yyt6RYza4UKN3wlY2MSgVWFuY0quKWw0lFXqR3s9OrV68My7RaLeHh4Tx8+JCBAwcaJJgQQgjTp9FoWLNmJStWLEWr1WLjWJjSDQdi4/TeK7dR/f/H8E5VdPfIEuJ19G52XnZ3CTMzM8qXL8+QIUP47LPPDBJMCCGEaXv8+BGTJnlz8uRxAD766BM6dh/Bmv03dPfG+uc7zouvrSzNGd6pClVKFTBCapEX6d3sbNiwITtyCCGEeIecPHmciRO9ePLkMTY2tkycOJWPP/4UgEqlC3PsUgSHzqS/63lBJ1ta1XanUZUi2MmkZKEH+WkRQgiRY9LS0vjqqxBWrVqOoii8/35ZgoIWUrp0Gd06djaWtK5djFa13ElWa7C2tSYlKQUbS3OZjCyyxKBnY927d48JEyYYcpdCCCFMRFRUJIMH9+Grr0JQFIVPP+3Chg3fpGt0/kmlUuFgZ0VhFzsc7Kyk0RFZJnc9F0IIke2OHfuVbt0+4ezZM9jZ2REQMBc/vxnY2tq+eWMh3pLc9VwIIUS2SUtLIyRkEaGhqwAoV64Cc+cGU6JEKSMnE+8SmbMjhBAiW0REhOPrO47z5/8AoGvXLxg3zgdra2sjJxPvmiw1OxEREfzxxx+kpqbqlmm1WpKSkjhz5gzBwcEGCyiEECLv+eWXn5gyxYfY2Fjs7e2ZOnUmH37Y1tixxDtK72Zn//79eHl5kZaWppsspiiK7vPSpUsbNqEQQog8Q61Ws2TJAtavXwtApUqVmTMnmGLFihs5mXiX6T1BeeXKlVSqVImdO3fSqVMnPv74Y3744Qe8vLywsLBg4sSJ2ZFTCCFELvfgwX369euha3S++KIX69ZtkUZHGJ3eR3Zu3brFvHnzqFSpEg0aNGD16tWUKVOGMmXK8OTJE1asWEGjRo2yI6sQQohc6siRQ/j5TeTZszgcHByZPj2AFi1aGTuWEEAWjuyYmZnh5OQEQMmSJbl58yZarRaAJk2acP36dYMGFEIIkXulpqYyZ84sxo4dwbNncXh4VGPr1p3S6IhcRe9mp3Tp0pw9exZ43uyo1WouX74MQFxcXLpJy0IIIUzXvXt36dOnO1u2PL+NUK9efQkN3UDRou5GTiZEenoPY33++ef4+fmRmJjI2LFjqVevHhMnTqRz585s3LiRypUrZ0dOIYQQuciPPx7A338y8fHx5M+fnxkzZvPBB82NHUuIl9K72enSpQupqancv38fgBkzZjBw4EBmzZpF0aJFmTRpksFDCiGEyB1SUlKYN28227dvAaB69ZrMnj0fN7ciRk4mxKtlqtnRarWYmf1vxOvLL7/UfV6sWDH2799PTEwMLi4ur91OCCFE3nXnzi28vDy5evX5lfL79RvE0KEjsbS0NHIyIV4vU51I5cqVuXjx4isfV6lUGRqdCxcuyJCWEEKYiH37vqd798+4evUKzs4uhISsYtSosdLoiDwhU0d2FEUhLCyMlJSUTO/42rVrWQ4lhBAid0hKSiIoKIBdu7YDUKtWHQID51GoUGEjJxMi8zI9Z2f69Ol67fifV1UWQgiR99y8eQNv7zFcv34NlUrFwIFDGTRoGBYWcltFkbdk6id2/fr12Z1DCCFELvLdd7sICPAnOTmJAgUKEhAwl3r1Ghg7lhBZkqlmp27dutmdQwghRC6QlJRIQIA/33+/G4B69Rowa1YQBQu6GjeYEG9BjkUKIYQA4Pr1q3h5jeHWrZuYmZkxZMgI+vcfjLm5ubGjCfFWpNkRQoh3nKIo7Nr1LXPmzCQlJQVX10IEBs6jdm05qi9MgzQ7QgjxDktIiGfmzGns378XgIYNGzNzZlCGy4kIkZdJsyOEEO+oK1cu4+PjyZ07tzE3N2f48NH06TNALgYrTI7Bf6Jv3Lhh6F0KIYQwIEVR2L59K716dePOndsULuzG6tUb6NdvkDQ6wiTpfWQnNjaW+fPnc/r0adRqNYqiAM//8SQmJhIbG6u7C7oQQojc5dmzZ8yYMZUff9wPwAcfNMPfPxAnJ2cjJxMi++jdwgcEBLBjxw5KliyJubk5Dg4OeHh4oFariYuLw9/fPztyCiGEeEthYZfo3r0TP/64HwsLC8aN82HRouXS6AiTp3ez8+uvvzJixAiWL1/O559/jpubGwsXLuTAgQOUL1+e69evZ0dOIYQQWaQoClu2bKB37+7cv3+PIkXeY+3aTfTs2VeudC/eCXo3O3FxcdSqVQuAsmXLcunSJQDy5ctHv379+OmnnwwaUAghRNbFxcUybtwo5syZhVqtpnnzVmzbtgsPj2rGjiZEjtF7zo6zszPPnj0DoESJEjx58oSYmBicnZ0pXLgwkZGRBg8phBBCf3/+eQEfn7E8fPgACwtLxo71onv3nnI0R7xz9D6y06BBA1asWMH9+/dxd3fHycmJnTt3AnD06FGcnWXsVwghjElRFDZsWEvfvl/y8OED3N2L8fXXm/nii17S6Ih3kt7NzujRo3ny5Am+vr6oVCoGDRrE3LlzqVu3LuvWreOzzz7Ta39arZbFixfTpEkTqlWrRr9+/bhz584r13/06BFjx46lXr161KtXj9GjRxMREaFvGUIIYZKePo1h9OihzJ8/h7S0NFq3bsuWLTupXNnD2NGEMBq9h7GKFi3Kvn37uH37NgB9+/alYMGC/PHHH1StWpVPP/1Ur/2FhISwdetWAgMDKVy4MHPnzmXgwIHs3bsXKyurDOt7enqi0WhYu3YtANOnT2fYsGG6o0tCCPGuOn/+D3x9xxEREY6VlRXjx0+gS5fP5WiOeOdl6QrKNjY2VKhQAYCUlBQ6dOjARx99pPd+UlNTCQ0NxcvLi6ZNmwIQHBxMkyZNOHjwIO3bt0+3flxcHKdPn2b58uVUqlQJgEGDBjFs2DDdvCEhhHjXaLVa1q5dxdKlC9FoNBQvXoKgoIVUqFDR2NGEyBWydKnMmzdvMmbMGOrWrUuNGjUICwtj2rRpbNiwQa/9XLlyhYSEBOrXr69b5ujoSKVKlTh9+nSG9a2trbGzs2P37t3Ex8cTHx/Pnj17KFmyJPnz589KKUIIkac9efKE4cMHsWjRfDQaDW3btmfLlh3S6AjxD3of2bl8+TJffvklBQoU4KOPPmLz5s0AWFpaEhAQgL29faaHsl7MtSlSpEi65YUKFSI8PDzD+tbW1syaNQt/f39q166NSqXC1dWVjRs3vvUlzi0sDH+JdHNzs3T/NzVSX95n6jWaen1//HEGb++xREREYG1tzcSJU+nUqbNJDVuZ+mto6vVB7qhR72Znzpw5VKlShdDQUAA2bdoEwKRJk0hOTmb9+vWZbnaSkpIAMszNsba2JjY2NsP6iqLw999/U6NGDQYMGIBGoyE4OJjhw4ezZcsW7O3t9S0HADMzFc7O+bK0bWY4Otpm275zA6kv7zP1Gk2tPo1Gw5IlS5g/fz5arZb333+flStX6qYXmCJTew3/zdTrA+PWqHezc/78eRYsWICFhQUajSbdY+3atWPv3r2Z3peNjQ3wfO7Oi8/h+TwgW9uMT8oPP/zA5s2bOXr0qK6xWbFiBc2bN2fHjh307t1b33IA0GoV4uISs7Tt65ibm+HoaEtcXBIajdbg+zc2qS/vM/UaTbG+x48f4+s7jhMnjgPQpUsXfH2nYG1tQ0xMgpHTGZ4pvob/ZOr1QfbV6Ohom+mjRXo3O9bW1iQnJ7/0sadPn770DKpXeTF8FRUVRfHixXXLo6KiXvoXytmzZylVqlS6Izj58+enVKlSurPDsiotLft+yDQabbbu39ikvrzP1Gs0lfpOnjzOxIlePHnyGBsbW6ZM8aNPn57ExCSYRH2vYyqv4auYen1g3Br1HkBr1KgRixcvTndtG5VKRUJCAqGhoTRs2DDT+6pQoQL29vacPHlStywuLo6wsDBq166dYf0iRYpw584dUlJSdMuSkpK4f/8+JUqU0LcUIYTIEzQaDSEhixkypB9Pnjzm/ffLsnnzt3Ts2MnY0YTIE/Rudry8vEhMTKRt27Z8+eWXqFQqZs+eTdu2bQkPD2fs2LGZ3peVlRU9evRg3rx5HD58mCtXruDp6YmbmxutW7dGo9Hw6NEj3ZGkTz75BIAxY8Zw5coV3fpWVlZ06iT/6IUQpicqKpJBg/rw1VchKIrCp592YcOGbyhduoyxowmRZ+jd7BQpUoQ9e/bQu3dvFEWhePHiJCYm0qFDB3bu3EmxYsX02t+oUaPo3LkzkydPpnv37pibm7NmzRqsrKwIDw+ncePG7Nu3D3h+ltbmzZtRFIXevXvTt29fLC0t2bJlC46OjvqWIoQQudrvv/9Kt26fcvbsaezs7AgImIuf34yXzmkUQryaSlEURZ8NVqxYQcuWLSlbtmx2ZcpxGo2W6GjDT+yzsDDD2TmfyY6nS315n6nXmFfrS0tLIyRkMaGhXwFQrlwF5s4NpkSJUunWy6v16cPUazT1+iD7anRxyZfpCcp6H9lZvXr1S6+BI4QQ4u1FRkYwcGBvXaPTpUt3NmzYlqHREUJknt7NTsmSJbl27Vp2ZBFCiHfar7/+TLdun3Du3Fns7e2ZMyeYSZP8sLa2NnY0IfI0vU89b9asGcHBwRw9epSyZctSoECBdI+rVCqGDx9usIBCCGHq1Go1S5cu5Ouv1wBQqVJl5swJplix4m/YUgiRGXo3O0uXLgXgzJkznDlzJsPj0uwIIUTmPXz4AF/fsVy8eAGA7t174unppdc1y4QQr6d3s3PlypXsyCGEEO+cI0cO4ec3kWfP4rC3d8DfP4AWLVobO5YQJkfvZudNnj17hoODg6F3K4QQJiM1NZWFC+exefN6AKpUqcqcOQsoWtTdyMmEME16NzupqamsW7eOU6dOoVareXHmuqIoJCYmcv36dS5cuGDwoEIIYQru37+Ht/cYwsL+AqBXr76MHOmJpaUMWwmRXfRudoKCgti4cSPlypUjOjoaa2trXFxcuHr1Kmq1mhEjRmRHTiGEyPMOHjzA9OmTiY+PJ3/+/Pj7B9K0aQtjxxLC5Ol96vmPP/5Inz59+O677+jZsydVqlRh+/bt/PjjjxQtWhSt1jQviiSEEFmVkpJCQIA/Xl5jiI+Pp1q1GmzduksaHSFyiN7NTnR0NE2bNgWgfPny/PnnnwAULlyYQYMG6W7tIIQQAu7cuU3v3t355pvNAPTrN5DVq9dTpMh7Rk4mxLtD72EsBwcHUlNTgecXGAwPDyc+Ph57e3vd10IIIeDAgR/w959CYmIizs7OzJwZRKNGTYwdS4h3jt5HdmrXrs2GDRtITEzE3d0dW1tbDh48CMC5c+ewt7c3eEghhMhLkpOT8fefgq/vOBITE6lVqzZbt+6WRkcII9G72RkxYgTnz59n8ODBWFhY8MUXXzB16lQ6derEokWLaNOmTXbkFEKIPOHWrZv07NmVnTu3o1KpGDhwKCtXrqNw4cLGjibEO0vvYazy5cuzf/9+rl69CsC4ceOwt7fnjz/+oEWLFgwaNMjgIYUQIi/4/vvdzJo1neTkJAoUKMisWUHUr9/Q2LGEeOdl6aKCrq6uuLq6As9vDzFkyBCDhhJCiLwkKSmR2bNnsmfPTgDq1q1PQMBcChZ0NXIyIQRkwxWUhRDiXXL9+jW8vT25efM6ZmZmDBkygv79B2Nubm7saEKI/yfNjhBCZIGiKOzevYM5c2aSnJyMq6srAQHzqFOnnrGjCSH+RZodIYTQU0JCPAEB/vzww3cANGjQiFmzgnBxKWDkZEKIl5FmRwgh9PD331fw9h7DnTu3MTc3Z9iwUfTtOxAzM71PbhVC5BC9/3Vevnz5lY/FxcUxYcKEtwokhBC5kaIobN++lZ49u3Lnzm0KFSrM6tXr6d9/sDQ6QuRyev8L7dOnz0sbnv3799OuXTu+//57gwQTQojcIj4+Hl/fccyaNY3U1FSaNGnKtm27qVGjlrGjCSEyQe9mp3LlyvTp04e//voLgMjISIYNG4anpyfu7u58++23Bg8phBDGEhZ2ie7dO/Hf/+7DwsICT08vFi1ajrOzs7GjCSEySe85OytWrMDT05O+ffvSs2dPvv76a8zNzZk+fTrdunXLjoxCCJHjFEVh69aNLFgQhFqtpkiR95gzZwFVq1Y3djQhhJ70PrJjZWXF4sWL+eCDD1i2bBmVK1dm//790ugIIUxGXFwc48ePYs6cWajVapo1a8m2bbuk0REij8rUkZ3Tp09nWNalSxdu377NpUuXOHnyJAULFtQ9VqdOHcMlFEKIHPTnnxfx8fHk4cMHWFhY4unpxRdf9ESlUhk7mhAiizLV7PTsmf4fuqIoqFQqFEUBwNPTU/e1SqV67RlbQgiRGymKwsaNX7No0XzS0tQULerOnDnBVKniYexoQoi3lKlmZ/369dmdQwghjCY29ilTp07g55+PAtCq1YdMnToTR0dHIycTQhhCppqdunXrZncOIYQwigsXzuHjM5aIiHAsLS0ZN86Xbt2+kGErIUxIlq6gfP78eU6dOoVardYNZSmKQmJiImfPnuWbb74xaEghhDA0rVbL11+HsnRpMBqNhmLFSjB3bjAVKlQydjQhhIHp3exs2rSJmTNn6pqcfzIzM6Nx48YGCSaEENklOjqaKVN8OXbsFwDatm3H5Mn+2NvbGzmZECI76H3q+caNG2ncuDEnT56kf//+dO3alfPnz7No0SKsra35+OOPsyOnEEIYxB9/nKFbt084duwXrK2tmTLFn8DA+dLoCGHC9G527t+/T48ePcifPz8eHh6cPXsWGxsb2rRpw+DBg2UysxAiV9JqtaxatYIBA3rx6FEUJUuWYsOGb/jss64yP0cIE6d3s2NpaYmNjQ0AJUuW5M6dO6jVagBq1qzJ7du3DRpQCCHe1uPHjxk2bADLli1Eq9XSoUNHNm/+lnLlyhs7mhAiB+jd7FSsWJGjR5+fnlmiRAm0Wi3nz58HICIiwqDhhBDibf3222907tyREyd+x8bGlunTA5g5cw52dvmMHU0IkUP0nqDct29fRowYQWxsLIGBgbRs2RJvb2/atGnD999/T61achdgIYTxaTQaVqxYwsqVISiKQpkyZQkKCqZMmfeNHU0IkcP0PrLTqlUrVqxYwfvvP/+F4e/vT6lSpdi6dSulS5dm6tSpBg8phBD6iIqKZPDgvqxYsQxFUejUqTMbN34jjY4Q76gsXWenWbNmNGvWDABnZ2dCQ0MNmUkIIbLs999/Y9Ikb2JiorG1tSMoaA7Nm7chLU1r7GhCCCPJUrMD8PPPP/P7778TFRXF2LFjuXz5MpUrV6Zo0aKGzCeEEJmSlpbG8uVLCA39CkVRKFeuAgsWLKJGjSrExCQYO54Qwoj0bnaSkpIYPnw4v//+O/b29iQkJDBgwAC2bNlCWFgYGzdupGzZstmRVQghXioyMgJf33GcO3cWgC5dPmf8+Anky2dr5GRCiNxA7zk7CxYs4K+//mLdunWcOHFCdyXloKAgChcuzKJFiwweUgghXuWXX36iW7dPOHfuLPny5WPOnGAmTZqGtbW1saMJIXIJvZud/fv3M3bsWOrXr5/uQlyurq4MHTqUs2fPGjSgEEK8jFqtZsGCIEaNGsLTp0+pWLESW7fuok2b/xg7mhAil9G72YmLi3vlvJz8+fOTmJio1/60Wi2LFy+mSZMmVKtWjX79+nHnzp1Xrq9Wq5k/fz5NmjShevXq9OjRg8uXL+v1PYUQedvDhw/o378H69c/Pzmie/cefP31VooVK27kZEKI3EjvZqds2bJ8//33L33syJEjes/XCQkJYevWrcycOZNt27ahUqkYOHAgqampL11/2rRpfPvtt8yYMYMdO3bg5OTEwIEDefbsmb6lCCHyoKNHD/P55524ePECDg6OLFiwBB+fyVhZWRk7mhAil9K72Rk6dCh79uxh8ODBbN++HZVKxenTp5kxYwZbtmxhwIABmd5XamoqoaGhjBw5kqZNm1KhQgWCg4OJjIzk4MGDGda/d+8e3377LYGBgTRr1owyZcoQEBCAlZUVly5d0rcUIUQeolanEhQUgKfncOLiYqlSpSpbt+6kRYvWxo4mhMjl9D4bq1WrVsydO5f58+fz888/AzB79mwKFCjAtGnTaNu2bab3deXKFRISEqhfv75umaOjI5UqVeL06dO0b98+3fq//fYbjo6OfPDBB+nWP3LkiL5lCCHykPv37+Ht7UlY2PM/anr27MOoUWOxtJSjOUKIN8vSdXY++ugjPvroI27evMnTp09xdHSkdOnSmJnpd6Doxb20ihQpkm55oUKFCA8Pz7D+7du3KVasGD/++CNfffUVkZGRVKpUCV9fX8qUKZOVUnQsLPQ+yPVG5uZm6f5vaqS+vC8v1Hjw4H+ZMmUC8fHx5M/vxKxZs2nWrEWmts0L9b0NU68PTL9GU68PckeNWb6o4I0bNzhz5gyxsbEUKFAAW1tbvS8omJSUBJBhrN3a2prY2NgM68fHx3P37l1CQkLw9vbG0dGR5cuX88UXX7Bv3z4KFCiQpVrMzFQ4O2ffTQEdHU37Wh9SX96XG2tMTk5mxowZrFu3DoDatWsTEhKSpQuX5sb6DMnU6wPTr9HU6wPj1qh3s5OSkoKXlxcHDx7UXWMHwMzMjG7dujF16tR0p6S/jo2NDfB87s6Lz198D1vbjE+KpaUlz549Izg4WHckJzg4mKZNm7Jr1y695gv9k1arEBen31lkmWFuboajoy1xcUloNKZ3qXqpL+/LrTXeuXOb8ePHcPlyGAD9+w9kxIgxWFpa6nU15Nxan6GYen1g+jWaen2QfTU6Otpm+miR3s3O3Llz+fnnn/H19aVNmza4uLjw5MkTDhw4wMKFC3Fzc2Pw4MGZ2teL4auoqCiKF//fKaNRUVFUqFAhw/pubm5YWFikG7KysbGhWLFi3L9/X99S0snO++ZoNFqTvi+P1Jf35aYaDxz4gRkzppKQkICzszMzZsyhcePn8/SymjE31ZcdTL0+MP0aTb0+MG6NWbqooKenJ71798bNzQ0rKyuKFClC3759GTlyJNu2bcv0vipUqIC9vT0nT57ULYuLiyMsLIzatWtnWL927dqkpaXx559/6pYlJydz7949SpQooW8pQohc5Pmw1VR8fceRkJBAzZq12bp1t67REUKIrNL7yE5iYiKlS5d+6WMVKlQgJiYm0/uysrKiR48ezJs3DxcXF4oWLcrcuXNxc3OjdevWaDQaoqOjcXBwwMbGhtq1a9OwYUN8fHzw9/fHycmJxYsXY25uTseOHfUtRQiRS9y6dRNv7zFcu3YVlUrFgAFDGDx4OBYWWZ5WKIQQOnof2WnTpg0bN25Eq814KGrPnj00b95cr/2NGjWKzp07M3nyZLp37465uTlr1qzBysqK8PBwGjduzL59+3TrL1myhLp16zJixAg6d+5MfHw869evx8XFRd9ShBC5wN69e/jii85cu3YVF5cChISsZvjw0dLoCCEMRqX8c5ZxJmzatIlFixZRoEAB2rdvT6FChXj69ClHjhzh4sWL9O7dm3z5np/ZpFKpGD58eLYENySNRkt0dOYnPWaWhYUZzs75iIlJMMmxWKkv7zNmjUlJicyZM4vdu3cAUKdOPQIC5uLqWshg38PUX0NTrw9Mv0ZTrw+yr0YXl3yZnqCsd7PzsonDr9y5SpUn7lslzU7WSH15n7FqvH79Gt7enty8eR0zMzMGDx7OgAFDMDc3N+j3MfXX0NTrA9Ov0dTrg9zR7Oh9nPjKlSt6BxJCCABFUdizZyezZ88gOTmZggVdCQycR5069YwdTQhhwmRQXAiRIxITEwgI8Gfv3j0ANGjQiFmzgnBxydrFQIUQIrOk2RFCZLurV//G23sMt2/fwtzcnKFDR9Kv3yC9bzEjhBBZIc2OECLbKIrCjh3fEBQ0i9TUVAoVKsycOQuoUaOWsaMJId4h0uwIIbJFfHw8M2dO5cCB55eOaNKkKf7+s3F2djZyMiHEu0aaHSGEwV25EoaXlyf37t3BwsKCkSM96dmzrwxbCSGMQpodIYTBKIrCtm2bmT9/Nmq1miJF3mPOnAVUrVrd2NGEEO+wTDU7FSpUyPSdzIE8cW0dIYRhxcXF4e8/mUOHfgSgWbMWTJ8eQP78TsYNJoR452Wq2Rk+fLiu2UlJSWHt2rWULFmSNm3a4OrqqruC8tWrVxk6dGi2BhZC5D6XLv2Jj48nDx7cx8LCEk9PL774oqdefyQJIUR2yVSzM3LkSN3nEydOpFmzZixZsiTdL7IhQ4bg5eXFX3/9ZfiUQohcSVEUNm78mkWL5pOWpqZoUXfmzAmmShUPY0cTQggdvWcL7t+/n27dur30L7aOHTvy66+/GiSYECJ3i419iqfncObPn01amppWrdqwdesuaXSEELmO3s1Ovnz5uH379ksfCwsLI3/+/G+bSQiRy124cI7PP+/ETz8dwdLSkgkTpjJ37kIcHByMHU0IITLQ+2ys9u3bs2DBAiwsLGjRogUuLi48efKEAwcOsGzZMgYOHJgdOYUQuYBWq+Xrr0NZujQYjUZDsWIlmDs3mAoVKhk7mhBCvJLezc64ceMIDw9n+vTp+Pv765YrikLXrl0ZPny4QQMKIXKHmJgYJk/24dixXwBo27Y9U6ZMJ18+eyMnE0KI19O72bGysmLx4sVcu3aNM2fOEBcXh7OzM/Xr16d48eLZkVEIYWR//HEGX99xREVFYm1tjbf3JDp16iJnWwkh8oQsX1SwbNmyuLm5ERUVRbFixTA3NzdkLiFELqDValmz5iuWL1+MVqulZMlSzJ27kLJlyxs7mhBCZFqWmp2TJ08yb948Ll26hEqlYvv27axatQo3Nzd8fX0NnVEIYQRPnjxm0iRvTpz4HYAOHToyceJU7OzyGTmZEELoR++zsY4fP07//v2xsbFh/PjxKIoCQKVKlVi/fj1r1641eEghRM46ffoE3bp9yokTv2NjY8P06QHMnDlHGh0hRJ6kd7OzcOFCWrZsyYYNG+jdu7eu2Rk0aBADBgxg+/btBg8phMgZGo2GFSuWMnhwPx4/fkTp0u+zadO3dOzYydjRhBAiy/Rudi5fvsxnn30GkGFyYqNGjXjw4IFhkgkhctSjR1EMGdKPFSuWotVq+eSTz9i0aTtlyrxv7GhCCPFW9J6z4+DgwKNHj176WHh4uFxUTIg8QlEUniWmkqqo+PWnn5juN4Ho6CfY2toxefI02rf/2NgRhRDCIPRudlq2bElwcDDlypWjUqXnFxJTqVRERESwYsUKmjVrZuiMQggDSkxWc+zPCA6dvU9UdDzhl34gIuy/gEIR99LMnxdMpQpytpUQwnRk6aKCFy5coGvXrhQsWBCAsWPHEhERQZEiRRg7dqzBQwohDOPSzScs23WJFLUGdeJTbh0PJf7RdQAKlmlM4RqdWfJDBMOtClKldAEjpxVCCMPQu9nJnz8/27dvZ/fu3Zw4cYKnT5/i4OBAz5496dSpE7a2ttmRUwjxli7dfMLC7RdQFIh9+Be3T6xDk5qAmYUNxet+gUvx2gCkqjUs3H6BMV2qScMjhDAJejc7p0+fplKlSnTt2pWuXbumeywuLo4jR47Qvn17gwUUQry9xGQ1y3ZdQqvR8ODid0ReOQiArXMxSjXsj41DId26yv//Z9muS8wf3hA7G0vjhBZCCAPR+2ysXr16cePGjZc+FhYWxoQJE946lBDCsI79GcGzp4/4+/ACXaPjWrYp5VuNT9fovKAAKWoNxy5F5HBSIYQwvEwd2fHx8SE8PBx4fgbHtGnTsLfPePO/27dv6+bxCCFyB0VR2Lzjey4fWY0mNRFzS1uK1+2Bc7Ear91OBRw6c59WtdzlHlhCiDwtU0d22rRpg6IougsIArqvX3yYmZlRvXp1AgMDsy2sEEI/anUqgbMDOHdgMZrUROxcSlChzYQ3Njrw/OjOo6dJJCSnZX9QIYTIRpk6stOiRQtatGgBQM+ePZk2bRplypTJ1mBCiLfz4MF9fHzGcunSRQAKlW/Be1U/wcxcv6l6ySlp2NvKvB0hRN6l9wTlDRs2vPbxGzduSCMkhJEdPvwjfn6TiI9/hoODI67Vv8CpaNUs7cvGOkv3CxZCiFxD799isbGxzJ8/n9OnT6NWq3VDW4qikJiYSGxsLJcvXzZ4UCHEm6WmprJgwRy2bt0EQNWq1QkMnMfi7+/x+GkSyhu2/ycVUNDJlnw20uwIIfI2vc/GCggIYMeOHZQsWRJzc3McHBzw8PBArVYTFxeHv79/duQUQrzB3bt36N37c12j06fPANas2UDRou60quWuV6MDz+fstKotk5OFEHmf3s3Or7/+yogRI1i+fDmff/45bm5uLFy4kAMHDlC+fHmuX7+eHTmFEK/x3//up3v3Tly+HIaTkxNLlqxkzJjxWFo+n2vTyMMNa0tzMtu2qFRgbWlOoypu2RdaCCFyiN7NTlxcHLVq1QKgbNmyXLp0CYB8+fLRr18/fvrpJ4MGFEK8WnJyMrNmTcPHx5OEhARq1qzNtm27adKkabr17GwsGf5pFVQq3tjwqP7/Y3inKnJBQSGESdC72XF2dubZs2cAlChRgidPnhATEwNA4cKFiYyMNGxCIcRL3b59k169urF9+1ZUKhUDBgzhq6/WUbjwy4/GVCldgDFdqmFlaQ5kbHpefG1lac6YrtWoUkpuFSGEMA16NzsNGjRgxYoV3L9/H3d3d5ycnNi5cycAR48exdnZ2eAhhRDp/fDD93Tv3pmrV//GxaUAISGrGTFiDBYWr59MXKV0AeYPb0j3VmUp6JT+PnYFnWzp3qos84c3kkZHCGFS9D7NYvTo0fTs2RNfX182btzIoEGDmDNnDitXruTZs2cMHz48O3IKIYCkpCSCgmaxa9e3ANSpU4+AgLm4uma85cOr2NlY0rp2MVrVcidZrcHa1pqUpBRsLM1lMrIQwiTp3ewULVqUffv2cfv2bQD69u1LwYIF+eOPP6hatSqffvqpoTMKIYAbN67j7e3JjRvXUKlUDB48nIEDh2Jubp6l/alUKhzsrHB2tiMmRiEtTWvgxEIIkTvo3ewMGTKEXr160bBhQ92yjz76iI8++sigwYQQ/7Nnz04CA/1JTk6mYEFXAgPnUqdOfWPHEkKIPEHvOTunT5/O8l+SQgj9JCYmMHmyD35+E0lOTqZ+/YZ8881uaXSEEEIPejc7jRo1Yvv27aSkpGRHHiHE/7t27W++/LILe/fuwczMjBEjxhASshoXF5k8LIQQ+tB7GMva2pr9+/dz8OBB3N3dKVAg/S9elUrF119/nen9abVali5dyvbt23XX8PHz86NEiRJv3Pb7779n/PjxHD58GHd3d31LESJXUhSFnTu3ExQ0i5SUFAoVKszs2fOpWbO2saMJIUSepPeRnYiICGrUqEHVqlVxcXFBUZR0H1qtfpMcQ0JC2Lp1KzNnzmTbtm2oVCoGDhxIamrqa7d78OAB06dP1ze+ELlafHw8EyaMY8aMqaSkpNCo0Qds27ZbGh0hhHgLBr/ruT5SU1MJDQ3Fy8uLpk2fX/E1ODiYJk2acPDgQdq3b//S7bRaLV5eXlSuXJkTJ04YLI8QxnTlShje3p7cvXsHc3NzRo4cS69efTEz0/tvEiGEEP9g1N+iV65cISEhgfr1/zfZ0tHRkUqVKnH69OlXbrdixQrUajWDBw/OiZhCZCtFUdi2bTM9e3bj7t07uLkVYc2aDfTp018aHSGEMAC9j+xUqFDhlRceU6lU2NnZUbx4cXr37k3Hjh1fu6+IiAgAihQpkm55oUKFCA8Pf+k2Fy9eJDQ0lG+//dagt6awsDD8m4q5uVm6/5saqe/tPXv2DD+/Sfz44wEAmjdvycyZgeTP75Rt3/Of5DXM20y9PjD9Gk29PsgdNerd7Pj6+rJgwQKKFy9O27ZtcXV15fHjxxw6dIi///6bjh078ujRIyZMmIClpSXt2rV75b6SkpIAsLKySrfc2tqa2NjYDOsnJiYyfvx4xo8fT8mSJQ3W7JiZqXB2zmeQfb2Mo6Ptm1fKw6S+rDl//jxDhw7l7t27WFpaMnHiRAYOHGiUqxjLa5i3mXp9YPo1mnp9YNwa9W52Ll68SMOGDVm+fHm6X8rDhw9n9OjRPHv2jMWLFzNnzhzWrl372mbHxsYGeD5358XnACkpKdjaZnxSZs6cScmSJfn888/1jf1aWq1CXFyiQfcJz7tYR0db4uKS0GhM7+q0Ul/WKIrCxo3rmT8/iLQ0NUWLujNvXjAeHtV4+tTwP4evI69h3mbq9YHp12jq9UH21ejoaJvpo0V6NztHjx5l4cKFL/3rs3PnzowePRqADz74gK1bt752Xy+Gr6KioihevLhueVRUFBUqVMiw/o4dO7CysqJGjRoAaDQaADp06MDHH3+Mv7+/vuXoZOel8jUarUlfil/qy7zY2Kf4+U3ip58OA9CyZWv8/Gbh6Oho1OdQXsO8zdTrA9Ov0dTrA+PWqHezY2trq5tr828PHz7E0tISeH7G1IvPX6VChQrY29tz8uRJXbMTFxdHWFgYPXr0yLD+jz/+mO7rCxcu4OXlxVdffUWZMmX0LUWIHHXx4nl8fMYSHv7838m4cT506/al3HxTCCGymd7NTqtWrViwYAEFChSgVatWuuVHjhwhODiYli1bkpqayrfffkvFihVfuy8rKyt69OjBvHnzcHFxoWjRosydOxc3Nzdat26NRqMhOjoaBwcHbGxsMlxo8EXT9d5772W4uKEQuYVWq2XDhrUsWRJMWloaxYoVJygomIoVKxs7mhBCvBP0bnZ8fHy4c+cOI0aMwNLSEicnJ2JiYtBoNDRs2BBfX18OHTrE4cOHWb169Rv3N2rUKNLS0pg8eTLJycnUqVOHNWvWYGVlxf3792nZsiWBgYF06tQpSwUKYUwxMTFMnerLr7/+DECbNu2YMsUfe3t7IycTQoh3h0pRFCUrGx4/fpwTJ04QExODm5sbdevWpXbt51d5ffjwIWZmZri5uRk0bHbRaLRERycYfL8WFmY4O+cjJibBJMdipb7XO3fuLL6+44iMjMDKygpv70l89lnXXDVsJa9h3mbq9YHp12jq9UH21ejiki/7Jii/0KBBA6pUqUJUVBTFihVLdyf09957L6u7FSLP02q1rF27ipCQxWg0GkqWLEVQ0ELKlStv7GhCCPFOylKzc/LkSebNm8elS5dQqVRs376dVatW4ebmhq+vr6EzCpFnREc/YdIkb44fPwZA+/YfM2mSH3Z22XcdJyGEEK+n9+UMjx8/Tv/+/bGxsWH8+PG8GAWrVKkS69evZ+3atQYPKURecPr0Sbp1+4Tjx49hY2PDtGmzmDlzjjQ6QghhZHo3OwsXLqRly5Zs2LCB3r1765qdQYMGMWDAALZv327wkELkZhqNhpUrlzF4cF8ePXpE6dLvs3Hjdj755LNcNT9HCCHeVXo3O5cvX+azzz4DyPCLvFGjRjx48MAwyYTIAx4/fsTQof1ZvnwJWq2WTz75jE2btvP++2WNHU0IIcT/03vOjoODA48ePXrpY+Hh4Tg4OLx1KCHyghMnfmfiRC+io59ga2vHpEl+dOjw+pvfCiGEyHl6NzstW7YkODiYcuXKUalSJeD5EZ6IiAhWrFhBs2bNDJ1RiFwlLS2NFSuWsmbNShRFoWzZcgQFLaRUqdLGjiaEEOIl9G52xo0bx4ULF+jatSsFCxYEYOzYsURERFCkSBHGjh1r8JBC5BaRkZFMnDiOs2fPANC5czfGj5+Q7ka2Qgghche9m538+fOzfft2du/ezYkTJ3j69CkODg707NmTTp06vfRu5UKYgt9++4UpU3yIiYnBzs6OqVNn0LZte2PHEkII8QZ6NzunT5+mUqVKdO3ala5du6Z7LC4ujiNHjtC+vbwBCNOhVqtZtCiYdeue3/6kQoVKzJmzgBIlSho3mBBCiEzR+2ysXr16cePGjZc+FhYWxoQJE946lBC5xYMHD+jTp4eu0enW7Qu+/nqLNDpCCJGHZOrIjo+PD+Hh4QAoisK0adNeeiPD27dv6+bxCJHXHT16mClTJvD06VPs7e3x85tJ69ZtjR1LCCGEnjJ1ZKdNmzYoisI/7xn64usXH2ZmZlSvXp3AwMBsCytETlCrU5k3L5CRI4fy9OlTKleuwtatu6TREUKIPCpTR3ZatGhBixYtAOjZsyfTpk2jTJky2RpMCGN48OA+Pj5juXTpIgADBgxg+PAxqFRZvmeuEEIII9P7N/iGDRuyI4cQRnf48I/4+U0iPv4ZDg6OzJo1m88+60hMTAJpaVpjxxNCCJFFejc7SUlJrFixgqNHj5KUlIRWm/5NQKVScejQIYMFFCK7paamsmDBHLZu3QRA1arVmD17AcWLFzNyMiGEEIagd7Mza9YsduzYQd26dalYsSJmZnqf0CVErnH37h18fDy5fDkMgN69+zNixBgsLS2NnEwIIYSh6N3s/Pjjj3h6ejJo0KDsyCNEjvnvf/fj7z+ZhIQEnJyc8PefzQcfNDN2LCGEEAamd7OTlpZG1apVsyOLEDkiOTmZ+fNns337VgBq1KjF7NnzKVzYzcjJhBBCZAe9x6AaN27ML7/8kh1ZhMh2t2/fpFevbmzfvhWVSkX//oNZtepraXSEEMKE6X1kp127dvj5+REdHU21atVeei+sTz75xBDZhDCoH374npkz/UhKSsTZ2YVZs4Jo2LCxsWMJIYTIZno3O2PGjAFg9+7d7N69O8PjKpVKmh2RqyQlJREUNItdu74FoE6degQEzMXVtZCRkwkhhMgJejc7hw8fzo4cQmSLGzeu4+3tyY0b11CpVAwaNIxBg4Zhbm5u7GhCCCFyiN7NTtGiRbMjhxAGt2fPTgIDZ5CcnETBgq4EBMylbt36xo4lhBAih2Wq2ZkwYQLDhg2jWLFib7yruUqlIiAgwCDhhMiKxMQEAgL82bt3DwD16jUkICCIAgXkJrVCCPEuylSzc/LkSXr37q37/HVUKtXbpxIii65d+xtvb09u3bqJmZkZQ4eOon//QXLxSyGEeIdlqtk5cuTISz8XIrdQFIWdO7cTFDSLlJQUXF0LMXv2fGrVqmPsaEIIIYxMbuUs8rz4+HhmzpzKgQP7AGjUqAkzZszBxcXFyMmEEELkBtLsiDztypUwvLw8uXfvDubm5owY4Unv3v1k2EoIIYSONDsiT1IUhW++2cK8eYGo1Wrc3Iowe/Z8qlevaexoQgghchlpdkSe8+zZM6ZPn8yhQ/8FoGnT5kyfHoCTk7ORkwkhhMiNpNkRecpff/2Jt7cnDx7cx8LCktGjx9GjR285C1AIIcQrSbMj8gRFUdi8eQPBwXNJS1Pz3ntFmTMnGA+PqsaOJoQQIpeTZkfkerGxT/Hzm8RPPz2/VUmLFq2ZNm0Wjo6ORk4mhBAiL5BmR+RqFy+ex8dnLOHhD7G0tGTcOB+6dftShq2EEEJkmjQ7IlfSarWsX7+WpUuDSUtLo1ix4syZs4BKlaoYO5oQQog8RpodkevExMQwdaovv/76MwAffvgfpk6dgb29vZGTCSGEyIuk2RG5yrlzZ/HxGUtUVCRWVlZ4e0/ks8+6ybCVEEKILJNmR+QKWq2WtWtXERKyGI1GQ4kSJQkKWkj58hWMHU0IIUQeJ82OMLro6CdMmuTN8ePHAGjf/mMmTfLDzi6fkZMJIYQwBdLsCKM6ffokEyeO59GjR9jY2ODrO4WOHTvJsJUQQgiDkWZHGIVGo2H16hWsXLkMrVZL6dLvExQUzPvvlzV2NCGEECbG6LeG1mq1LF68mCZNmlCtWjX69evHnTt3Xrn+tWvXGDRoEPXq1aNBgwaMGjWKhw8f5mBi8bYeP37E0KH9Wb58CVqtlo4dO7Fp0zfS6AghhMgWRm92QkJC2Lp1KzNnzmTbtm2oVCoGDhxIampqhnVjYmLo27cv+fLlY+PGjaxatYqYmBgGDBhASkqKEdK/uxRF4VliKpHRiTxLTEVRlExtd+LE73Tr9imnTp3A1taOmTPnMH16ALa2dtmcWAghxLvKqMNYqamphIaG4uXlRdOmTQEIDg6mSZMmHDx4kPbt26db/9ChQyQlJTF79mysra0BmDt3Lk2bNuWPP/6gQYMGOV7DuyYxWc2xPyM4dPY+j54m6Za7OtnSqpY7jTzcsLOxzLBdWloaK1cuY/XqFSiKQtmy5QgKWkipUqVzMr4QQoh3kFGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/O0Ow0aNCAZcuW6Rqdf4qNjc32vO+6SzefsGzXJVLUGv49ffjx0yS2HL7Gzl9uMvzTKlQpXUD3WGRkJBMnjuPs2TMAfPZZV7y8JmJjY5OD6YUQQryrjNrsREREAFCkSJF0ywsVKkR4eHiG9d3d3XF3d0+3bOXKlVhbW1OnTp23ymJhYfgRPXNzs3T/z8su3njCwu0XeDFa9e9Bqxdfp6o1LNx+gbGf16BqmQL89tsvTJjgRUxMDHZ2+Zg2bQbt2nXIyehZZkqv36uYeo1SX95n6jWaen2QO2o0arOTlPR8GMTKyirdcmtr60wdqVm/fj2bN29mwoQJFChQ4I3rv4qZmQpn5+y7poujo2227TsnxCepWbrjIgoZm5x/e/H44u3n8LC7yKqvVgBQuXJlVqxYQenSeW/YKq+/fplh6jVKfXmfqddo6vWBcWs0arPzYhgjNTU13ZBGSkoKtravflIURWHRokUsX76cwYMH06dPn7fKodUqxMUlvtU+Xsbc3AxHR1vi4pLQaLQG339O+e+puySnajK9fkp8NFeOh3Li8U0Aunf/kvHjfbG2tiYmJiG7Yhqcqbx+r2PqNUp9eZ+p12jq9UH21ejoaJvpo0VGbXZeDF9FRUVRvHhx3fKoqCgqVHj5bQLUajUTJkxg7969eHt7079/f4NkSUvLvh8yjUabrfvPToqi8OOpe5le/+mDi9w5uQFNagIWVrYEzAzkww/bAtn7HGenvPz6ZZap1yj15X2mXqOp1wfGrdGozU6FChWwt7fn5MmTumYnLi6OsLAwevTo8dJtvL29OXjwIPPnz88wgVkYXnySOt1ZV6+i1aTx8OIeov4+DICdS3FKNRxAwyYtszuiEEII8VpGbXasrKzo0aMH8+bNw8XFhaJFizJ37lzc3Nxo3bo1Go2G6OhoHBwcsLGxYefOnezbtw9vb2/q1q3Lo0ePdPt6sY4wrJRMDF+lxD/m1u+hJEbfBqBQuRa8V60jZuaWJKekYW+b8VR0IYQQIqcY/XYRo0aNIi0tjcmTJ5OcnEydOnVYs2YNVlZW3L9/n5YtWxIYGEinTp3Yu3cvAEFBQQQFBaXbz4t1hGFZW5m/9vGn988/H7ZSJ2FuaUuJer1wcq+me9zG2ug/YkIIId5xRn8nMjc3x8vLCy8vrwyPubu78/fff+u+Dg0NzcloArC3tcTVyZbHT5PSnYml1ah5cH4Xj679BEC+AqUo2bAf1vmenxWnAgo62ZLPxug/YkIIId5x8k4kXkulUtGqljtbDl/TLUt59ohbv68hMeYuAIUqtKJo1Y6ozP53FEgBWtV2l7uXCyGEMDppdsQbNfJwY+cvN0lVa4i+e5Y7pzahTUvG3CofJev3Iv97HunWV6nAysKcRlXcjJRYCCGE+B/TvWSjMBg7G0sGti/L3TNbuPX7GrRpyeQrWIaKbSdmbHT+/2N4pyovvUeWEEIIkdPkyI54ozt3bjF7qiePrl8BoHDFNhT16AD/GLZS8XzoysrSnOGdqlClVNavaC2EEEIYkjQ74rX27fuemTP9SExMxNnZhSl+AWjsy3DoTPq7nhd0sqVVbXcaVSmCnUxKFkIIkYvIu5J4qaSkJIKCZrFr17cA1KpVh8DAeRQqVBiAVrXcSVZrsLa1JiUpBRtLc5mMLIQQIleSZkdkcPPmDby9x3D9+jVUKhUDBw5l8ODhmJv/Y9hKpcLBzgpnZztiYhSTv8y5EEKIvEuaHZHOd9/tIiDAn+TkJAoUKEhAwFzq1Wtg7FhCCCFElkmzIwBISkokIMCf77/fDUC9eg0JCAiiQIGCxg0mhBBCvCVpdgTXrv2Nt7cnt27dxMzMjKFDR9Kv36B0w1ZCCCFEXiXNzjtMURR27fqWOXNmkpKSgqtrIQID51G7dl1jRxNCCCEMRpqdd1RCQjwzZ05j//7nN1dt1KgJM2bMwcXFxcjJhBBCCMOSZucddOXKZby9x3D37h3Mzc0ZMWIMvXv3x8xMLqgthBDC9Eiz8w5RFIXt27cyb14gqampFC7sxuzZC6hRo6axowkhhBDZRpodE6EoCvFJalJSNVhbmWNva5nuIn/Pnj3D338KBw8eAOCDD5rh7x+Ik5OzsSILIYQQOUKanTwuMVnNsT8jOHQ2/e0bXJ1saVXLnUYebty++Tc+PmO5d+8uFhYWjBo1lp49+8oVj4UQQrwTpNnJwy7dfMKyXZdIUWv4d9vy+GkSmw9dZdlXq7l/bidpaWqKFHmPoKBgPDyqGSWvEEIIYQzS7ORRl24+YeH2CyjK86+Vfz2uTk3kzqkNxN6/AEDteh+wYO5cHB3z52xQIYQQwsik2cmDEpPVLNt1CUXJ2OQAJDy5xa1ja0hNjEZlZoF79U5YlG2BhZVdjmcVQgghjE2anTzo2J8RpKg1GZYrikLU34d5cGE3KFqs7V0p1bA/di7FSU3TcuxSBK1rF8v5wEIIIYQRSbOTxyiKwqGz9zMsT0uJ5/bJ9cQ9vASAU7GalKj7JeaWtgCogENn7tOqlrtMTBZCCPFOkWYnj4lPUqc76wog/tENbh0PRZ0Y83zYqmZnCpZpkq6pUYBHT5NISE7D3tYyh1MLIYQQxiPNTh6Tkvq/4StF0RJ5+SAP//z++bCVQ6Hnw1bOrx6qSk6RZkcIIcS7RZqdPMba6vmdyNXJz7hz4mviIsIAcC5Rh+K1u2NuafPa7W2s5SUXQgjxbpF3vjzG3tYS88Q7/PnjCtTJsajMLSlWsysFSjd87VwcFVDQyZZ8NvKSCyGEeLfIO18eotFoWL16BWe+X4aiaLFxdKNUwwHYOr33xm0VoFVtmZwshBDi3SPNTh7x+PEjJk3y5uTJ4wC4lmlA0RpdMbOwfuO2KhVYWZjTqIpbdscUQgghch0zYwcQb3by5HG6dfuUkyePY2Njy8yZcwieOw8LS+sMt4n4N9X/fwzvVAU7G5mYLIQQ4t0jzU4uptFoCAlZzJAh/Xjy5DHvv1+WLVt20KFDR6qULsCYLtWwsnw+YfnfTc+Lr60szRnTtRpVShXI0exCCCFEbiHDWLlUVFQkEyaM5+zZ0wB8+mkXvL0nYmtrq1unSukCzB/ekGOXIjh0Jv1dzws62dKqtjuNqhTBTiYlCyGEeIfJu2Au9PvvvzJpkg8xMdHY2dkxefJ02rX76KXr2tlY0rp2MVrVcichOY3klDRsrC3IZ2Mhk5GFEEIIpNnJVdLS0ggJWUxo6FcAlCtXgblzgylRotQbt1WpVNjbWsoFA4UQQoh/kWYnl4iICMfXdxznz/8BQJcu3Rk/3hdr6zefbSWEEEKIV5NmJxf45ZefmDLFh9jYWOzt7Zk6dSYfftjW2LGEEEIIkyDNjhGp1WqWLFnA+vVrAahUqTJz5gRTrFhxIycTQgghTIc0O0by4MF9fH3H8eefFwDo3r0nnp5eWFlZGTmZEEIIYVqk2TGCI0cO4ec3kWfP4nBwcGT69ABatGhl7FhCCCGESZJmJwelpqaycOE8Nm9eD4CHRzVmz55P0aLuRk4mhBBCmC5pdnLIvXt38fEZS1jYJQB69erLyJGeWFrKsJUQQgiRnaTZyQH//e9+/PwmER8fT/78+ZkxYzYffNDc2LGEEEKId4I0O9koJSWFCRNmsn7982Gr6tVrMnv2fNzcihg5mRBCCPHuMPqNQLVaLYsXL6ZJkyZUq1aNfv36cefOnVeuHxMTw7hx46hTpw516tRhypQpJCYm5mDizImLi+XLL7vqGp1+/QaxatXX0ugIIYQQOczozU5ISAhbt25l5syZbNu2DZVKxcCBA0lNTX3p+qNGjeLevXusW7eOxYsXc+zYMaZPn57Dqd/szJlTXLlyGRcXF1auXMOoUWOxtJRbOQghhBA5zajNTmpqKqGhoYwcOZKmTZtSoUIFgoODiYyM5ODBgxnWP3fuHKdOnSIwMJDKlSvToEED/P392bNnD5GRkUao4NU++KA5S5eu4MiRIzRq1MTYcYQQQoh3llGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/OsP6ZM2dwdXWlTJkyumV169ZFpVJx9uzZHMmcWRYWFjRr1gJXV1djRxFCCCHeaUadoBwREQFAkSLp57EUKlSI8PDwDOtHRkZmWNfKygonJ6eXrq8PCwvD933m5mbp/m9qpL68z9RrlPryPlOv0dTrg9xRo1GbnaSkJIAMt0iwtrYmNjb2peu/7HYK1tbWpKSkZDmHmZkKZ+d8Wd7+TRwdbbNt37mB1Jf3mXqNUl/eZ+o1mnp9YNwajdrs2NjYAM/n7rz4HJ6fsm1rm/FJsbGxeenE5ZSUFOzs7LKcQ6tViIsz/Bld5uZmODraEheXhEajNfj+jU3qy/tMvUapL+8z9RpNvT7IvhodHW0zfbTIqM3OiyGpqKgoihf/352+o6KiqFChQob13dzcOHToULplqampPH36lMKFC79VlrS07Psh02i02bp/Y5P68j5Tr1Hqy/tMvUZTrw+MW6NRBwkrVKiAvb09J0+e1C2Li4sjLCyM2rVrZ1i/Tp06REREpLsOz4tta9asmf2BhRBCCJHnGPXIjpWVFT169GDevHm4uLhQtGhR5s6di5ubG61bt0aj0RAdHY2DgwM2NjZUq1aNmjVr4unpybRp00hMTMTPz49PPvnkrY/sCCGEEMI0GX3696hRo+jcuTOTJ0+me/fumJubs2bNGqysrAgPD6dx48bs27cPAJVKxdKlS3F3d6d3796MGTOGDz74gGnTphm3CCGEEELkWipFURRjhzA2jUZLdHSCwfdrYWGGs3M+YmISTHIsVurL+0y9Rqkv7zP1Gk29Psi+Gl1c8mV6grLRj+wIIYQQQmQnaXaEEEIIYdKk2RFCCCGESZNmRwghhBAmTZodIYQQQpg0ORsLUBQFrTZ7ngZzczOTvQQ4SH2mwNRrlPryPlOv0dTrg+yp0cxMhUqlytS60uwIIYQQwqTJMJYQQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O9lAq9WyePFimjRpQrVq1ejXrx937twxdqxsERISQs+ePY0dw+CePn3K1KlT+eCDD6hZsybdu3fnzJkzxo5lME+ePMHLy4v69etTo0YNBg0axPXr140dK1vcunWLGjVqsHPnTmNHMagHDx5Qvnz5DB/bt283djSD2b17N+3atcPDw4P27duzf/9+Y0cymJMnT7709StfvjwtW7Y0djyDUKvVBAcH06xZM2rUqMEXX3zBH3/8YZQs0uxkg5CQELZu3crMmTPZtm0bKpWKgQMHkpqaauxoBrVu3ToWL15s7BjZYuzYsVy4cIEFCxbw7bffUrlyZfr378+NGzeMHc0ghg4dyr1791i1ahXffvstNjY29OnTh6SkJGNHMyi1Ws348eNJTEw0dhSD+/vvv7G2tubXX3/lt99+03189NFHxo5mEHv27GHixIl069aNvXv30q5dO8aOHcu5c+eMHc0gatSoke51++233wgNDcXCwoIhQ4YYO55BLF++nB07djBz5kx2795N6dKlGThwIJGRkTmeRZodA0tNTSU0NJSRI0fStGlTKlSoQHBwMJGRkRw8eNDY8QwiMjKSAQMGsGjRIkqVKmXsOAZ3584djh07hp+fH7Vr16Z06dJMmjSJwoULs3fvXmPHe2sxMTG4u7szY8YMPDw8KFOmDMOGDePRo0dcu3bN2PEMasmSJeTLl8/YMbLF1atXKVWqFIUKFcLV1VX3YWNjY+xob01RFBYtWkTv3r3p3bs3JUqUYPjw4TRs2JBTp04ZO55BWFlZpXvdnJycCAwM5MMPP6RLly7GjmcQhw8fpkOHDjRu3JgSJUrg6+tLfHw858+fz/Es0uwY2JUrV0hISKB+/fq6ZY6OjlSqVInTp08bMZnh/PXXX+TPn5/vvvuOatWqGTuOwTk7O/PVV19RpUoV3TKVSoWiKMTGxhoxmWE4OzuzYMECypYtC8Djx49Zs2YNbm5uvP/++0ZOZzinT59m27ZtzJkzx9hRssXff/9tUq/XP928eZMHDx5kOEq1Zs0aBg8ebKRU2WvTpk2Eh4czYcIEY0cxGCcnJ44ePcr9+/fRaDRs27YNKysrKlasmONZLHL8O5q4iIgIAIoUKZJueaFChQgPDzdGJINr0aIFLVq0MHaMbOPo6EjTpk3TLdu/fz93796lcePGRkqVPaZMmcI333yDlZUVy5cvx87OztiRDCIuLg5vb28mT56c4d+iqbh69Squrq588cUX3L59mxIlSjBs2DCaNGli7Ghv7fbt2wAkJibSv39/wsLCcHd3Z+jQoSb5uyclJYUVK1bQu3dvChUqZOw4BjNp0iQ8PT1p2bIl5ubmmJmZsWjRIooXL57jWeTIjoG9mPNgZWWVbrm1tTUpKSnGiCTe0tmzZ5k4cSItW7Y0uV+0vXv3ZseOHXz88ccMHz6cv/76y9iRDGLatGlUr17dZOav/Ftqaiq3b98mPj6eMWPG8NVXX+Hh4cHAgQM5fvy4seO9tfj4eAB8fHzo0KEDoaGhNGrUiGHDhplEff+2Z88eUlJSTO5kjxs3buDo6MiyZcvYtm0bnTp1wsfHhytXruR4FjmyY2AvxstTU1PTjZ2npKRga2trrFgiiw4dOsT48eOpVq0aCxYsMHYcg3sxDDJjxgzOnz/Pxo0bCQwMNHKqt7N7927OnDnD999/b+wo2cbKyorTp09jYWGh+8OqSpUq3LhxgzVr1tCgQQMjJ3w7lpaWAPTv359PP/0UgIoVKxIWFsbatWvzfH3/tnv3bj788EOcnZ2NHcVgHjx4gJeXF+vWraN27doAeHh4cP36dZYsWcKyZctyNI8c2TGwF4fMo6Ki0i2PiorCzc3NGJFEFm3cuJGRI0fywQcfsGrVKpOY+AnPTzvfu3cvGo1Gt8zMzIwyZcpk+LnNi3bs2MGTJ090p7vWqFEDAD8/P9q3b2/kdIZjZ2eX4QhyuXLljHKmi6G9+F1Zrly5dMvff/997t+/b4xI2SY6Oppz587Rrl07Y0cxqIsXL6JWq/Hw8Ei3vFq1arphypwkzY6BVahQAXt7e06ePKlbFhcXR1hYmK67Fbnf5s2bmTFjBl9++SULFy7M8KaSl0VFRTFu3Lh0Z7Wo1WrCwsIoU6aMEZMZxrx589i3bx+7d+/WfQCMGjWKr776yrjhDOTKlSvUqFEjw7WfLl26ZBKTlitVqkS+fPm4cOFCuuVXr141ynyP7PTHH3+gUqmoW7eusaMY1Is//P/+++90y69evUqJEiVyPI8MYxmYlZUVPXr0YN68ebi4uFC0aFHmzp2Lm5sbrVu3NnY8kQm3bt0iICCA1q1bM3jwYJ48eaJ7zMbGBgcHByOme3sVKlSgcePGTJ8+nZkzZ+Lo6MiKFSuIi4ujT58+xo731goXLvzS5QUKFKBo0aI5nCZ7lCtXjrJlyzJ9+nT8/Pxwdnbmm2++4fz583z77bfGjvfWbGxsGDBgAMuWLaNw4cJUrVqVH374gWPHjrFu3TpjxzOoK1euUKxYMZOb5lC1alVq166Nj48Pfn5+uLm5sXv3bo4fP87mzZtzPI80O9lg1KhRpKWlMXnyZJKTk6lTpw5r1qwxqaMDpuy///0varWagwcPZrg20qeffsrs2bONlMwwVCoVCxcuZP78+YwZM4Znz55Ru3ZtNm3axHvvvWfseCITzMzMWLFiBfPmzWPMmDHExcVRqVIl1q5dS/ny5Y0dzyCGDRuGra2t7jplZcqUYcmSJdSrV8/Y0Qzq8ePHODk5GTuGwZmZmRESEsLChQuZMGECsbGxlCtXjnXr1lG9evUcz6NSFEXJ8e8qhBBCCJFDZM6OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI0QeI5fGyhmGfJ7lNRPCuKTZESKbtGjRAl9fX4Pu8/r163Tv3t2g+xQZLV++nDVr1hhkXy97zcqXL8+SJUsMsv/XuX//PuXLl9d93LlzJ8v72rlzp24/t27deuk6v/zyi24dgO3bt+u+btGiRZa/txBvS5odIfKQ/fv3c+7cOWPHMHkLFy4kKSnJIPt62Wu2bds2unTpYpD9Z8bQoUPZtm2b7uaMb8PMzIz9+/e/9LF9+/al+7ply5Zs27aNpk2bvvX3FeJtSLMjhBA5rHr16ri5ueXY9ytevDjVq1c3yP35atas+dJmJzU1lUOHDlGxYkXdMhcXF6pXr46Li8tbf18h3oY0O0LkkPv37+Pt7U3jxo2pXLkyDRo0wNvbm5iYGN06iqKwadMm2rdvT9WqVWndujWrVq1CURSWLFnC0qVLgfTDICkpKSxbtoy2bdvi4eHBhx9+yFdffYVWq9Xt9969ewwdOpR69epRrVo1unXrxs8//5wu39WrVxk8eDA1a9akZs2aDB8+nHv37r2xrmPHjvHll19So0YNGjduzNSpU4mNjdU9fvv2bUaNGkWjRo2oXr06PXv25OzZs+mel/Lly7N//35GjRpFjRo1qFOnDpMmTSIhISFTz80LZ86coUePHlSrVo26devi4+NDdHS07vGdO3dSqVIlLly4QLdu3fDw8KBZs2asWrVKt86LIZilS5fqPl+yZAmtW7dm6dKl1KtXj1atWhETE0NycjLz58/nww8/pEqVKtSsWZO+ffty+fJl3XYve83+PYwVFRXFhAkTaNq0KVWrVqVz584cPnw43fNcvnx5Nm3axKRJk6hbty41atRg1KhRPH78+I2v0T8tWbKEtm3bcujQITp06ICHhwcdO3bk3LlznD9/ni5dulC1alU6dOjA8ePHM2zfrl07rl69yo0bN9It/+WXX1CpVHzwwQd65REiJ0izI0QOSEpKolevXty4cQM/Pz/WrFlDjx492Lt3LwsWLNCtt2DBAmbNmkXTpk1Zvnw5Xbp0ITg4mJCQELp06ULnzp2B/w2DKIrCkCFDWL16NZ07d2bFihW0bduWhQsX4ufnB4BWq2Xw4MEkJiYSFBRESEgITk5ODBs2TDeH49atW3z++ec8efKE2bNnM2vWLO7du0f37t158uTJK+v6+eefGTBgAE5OTgQHB+Pl5cWRI0cYNWoU8Hy+SqdOnbh37x6TJ09m3rx5qFQqevfuzalTp9Lty8/Pj6JFixISEsKAAQPYsWMHK1asyNRzA3D69Gn69OmDjY0NCxcuZOLEiZw6dYpevXqRnJys249Wq2XMmDG0a9eOr776ilq1ajFv3jx+/fVX3XML0LlzZ93nAA8fPuTgwYMsWLCAMWPG4OzsjLe3N99++y2DBg0iNDQUX19frl69iqenJ4qivPQ1+7fHjx/TuXNnTp06haenJ0uWLKFo0aIMHz6c7777Lt26wcHBaLVaFixYgLe3Nz/99BMBAQGvfH1eJSIigsDAQIYMGcLChQuJjY1l1KhRjB07lq5du7JgwQK0Wi2enp7pnjuARo0akT9//gxHd/bt20fr1q2xtLTUO48Q2U4RQmSL5s2bKz4+PoqiKEpYWJjSvXt35c6dO+nWGTx4sPLhhx8qiqIosbGxSuXKlZWAgIB06wQGBip9+/ZVFEVRFi9erJQrV0732E8//aSUK1dO2bNnT7ptli1bppQrV065du2aEhUVlWGduLg4JSAgQPn7778VRVGUsWPHKg0aNFCePXumWycmJkapVauWMnv27FfW2KlTJ+WTTz5Jt+zAgQPKhx9+qERERCijR49W6tatq8TFxekeV6vVSps2bZTOnTsriqIo9+7dU8qVK6eMHz8+3X569uypdOjQIdPPTbdu3ZQOHTooaWlpusdv3rypVKxYUdm4caOiKIqyY8cOpVy5cso333yjWyclJUXx8PBQ/P39dcvKlSunLF68WPf1i+f92LFj6bbr16+f8sMPP6TLFBoaqpQrV06JjIxMt+0//XP/QUFBSuXKlZW7d++mW6d3795Ko0aNFI1Go9ume/fu6dbx9fVVqlevrrzKi+d2x44dGWr5+eefdctWrlyplCtXTtm+fbtu2YEDB5Ry5copYWFh6Z67e/fuKRMmTNC9NoqiKImJiUr16tWVY8eOvbReHx8fpXnz5q/MKUR2kyM7QuSAihUrsnnzZtzd3bl37x6//voroaGh3Lx5E7VaDcD58+dRq9W0bt063ba+vr6Ehoa+dL+nTp3C3Nycdu3apVv+8ccfA3Dy5EkKFizI+++/z5QpU/D19WXfvn0oisKECRMoV64cACdOnKBevXrY2NiQlpZGWloa9vb21K5dm99///2l3zs5OZm//vqLVq1apVvepk0b/vvf/1K4cGFOnTpF8+bNcXBw0D1uYWFB+/bt+fPPP9MNU1WvXj3dftzc3EhMTMzUc5OUlMSFCxdo2rQpiqLoaihWrBhlypTh2LFj6barUaOG7nMrKytcXFx03+t1XjxfL7Zbs2YN7dq1IyoqitOnT7Nt2zaOHj0KoHtd3+TUqVPUqFGDYsWKpVv+8ccf8+jRI27evKlb9rLnKKsTqWvWrKn7vGDBghn27+TkBEBcXFyGbf89lHX06FHs7OyoV69elrIIkd0sjB1AiHfF2rVrWblyJTExMRQsWJDKlStja2vLs2fPAHj69CmAXpM5Y2NjcXZ2xsIi/T9lV1dXAJ49e4ZKpSI0NJTly5dz8OBBdu3ahaWlJa1atWLatGk4OTnx9OlT9u3bl+FsmtfliY2NRVEUChQo8Np8L95I/6lgwYIoikJ8fLxuma2tbbp1zMzMdPNx3vTcxMXFodVqWbVqVbr5Ny9YW1un+9rGxuaV3+t1/l3Lr7/+SkBAADdv3iRfvnyUL1+efPnyAZm/tk5sbCzu7u6v/F7/bDZe9xzpy97ePsOyfz8vr1K/fn2cnZ3Zv38/I0aMYN++fbRt2xZzc/MsZREiu0mzI0QO+P7775k9ezbjxo2jc+fOujft0aNH8+effwLg6OgIQHR0NKVLl9ZtGx4ezp07d6hVq1aG/ebPn5+YmBjS0tLSNTxRUVEAODs7A1C4cGGmTZuGn58fV65c4cCBA6xatYr8+fMzffp0HBwcaNiwIX379s3wPf7dSL1gb2+PSqVKNwEYnp+Vc/z4capWrUr+/PlfOoH20aNHunwvsr7Om56bKlWqoFKp6NOnD+3bt8+w/b+bBEO4e/cuw4cPp2XLlqxcuZLixYsDsGnTJt38n8zIzHOU21hYWPDhhx9y4MAB+vTpwy+//MK6deuMHUuIV5JhLCFywNmzZ3FwcGDQoEG6RichIYGzZ8/qzpqqWrUqlpaWGc7C+frrrxk9ejQqlQozs/T/ZOvWrYtGo8lwRObFxNZatWpx7tw5GjZsyMWLF1GpVFSsWBFPT0/KlStHRESEbj/Xr1+nYsWKeHh44OHhQZUqVVi3bh0HDx58aU358uWjYsWKGfL+9ttvDBo0iIiICOrUqcPRo0d1R68ANBoNP/zwAx4eHpk+FfpNz42NjQ2VKlXi5s2buvweHh6ULVuWpUuXcvLkyUx9nxf+/Ty/zKVLl0hJSWHw4MG6RgfQNTovjri8aV916tTh3LlzGc58++6773B1daVEiRJ6Zc8p7dq149q1a6xevZqCBQumGxoUIreRIztC5ICqVauyZcsWZs+eTfPmzYmKimLNmjU8fvyY/PnzA8+HaHr16sXXX3+NlZUV9evX588//2Tjxo2MHTsWCwsL3RGOvXv3Uq1aNT744APq1auHn58fUVFRVKpUiVOnTrFq1So+/fRT3n//fVJSUrCxscHb25uRI0dSsGBBfv/9dy5fvkyvXr0AGDZsGJ9//jmDBw+me/fuWFtbs23bNg4dOsTixYtfWdeoUaMYOnQoY8aMoVOnTkRHRzN//nyaN29OxYoVGTFiBL/88gu9evVi0KBBWFlZsXHjRu7du8fq1asz/fxl5rkZO3YsgwYNYty4cXz88cdoNBpCQ0O5cOECQ4cO1ev1cnR05Ny5c5w+fZratWu/dJ3KlStjYWHB3Llz6devH6mpqezcuZOffvoJQDcH6N+v2b/n5vTt25fvvvuOvn37MmLECJydndm9ezcnTpwgICAgU42XMdStWxdXV1dWr15Nnz59UKlUxo4kxCvlzn9FQpiYTz/9lOHDh7N//34GDhzI4sWLqV27Nv7+/jx9+pTr168D4OXlxbhx49i3bx+DBg1i165dTJw4kX79+gHw4Ycf4uHhga+vL2vWrEGlUrFy5Uo+//xz1q9fz6BBgzhw4ACenp7MmjULeD5fJTQ0lLJlyzJr1iz69+/P4cOH8ff3p1OnTgBUqFCBTZs2oVKp8Pb2ZtSoUTx69Ihly5bx4YcfvrKu5s2bs3LlSu7fv8/w4cNZsGAB//nPf5g/fz4AZcuWZfPmzRQsWJCJEyfi5eWFoiisX7+ehg0b6vUcvum5ady4MWvWrCEiIoJRo0bh7e2Nubk5a9euzTCx902GDBnCn3/+ycCBAwkPD3/pOiVKlGD+/PlERkYydOhQpk6dCsCGDRtQqVScOXMGyPia/ZurqytbtmyhSpUqzJo1i9GjRxMeHk5ISAifffaZXrlzkpmZGW3atEGtVr906FCI3ESlZHV2mxBCiFzt/v37tGzZksDAQF1jawy+vr6cOnWKI0eOGC2DeLfJkR0hhDBxd+/e5fz586Smpubo942Ojub8+fMZJrELkdOk2RFCCBO3fPlyunXr9sohuexy+PDhl96aRIicJsNYQgghhDBpcmRHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJk2ZHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJ+z90dTHceAKPZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from scipy.stats import linregress\n", + "\n", + "# Compute the best fit calibration curve\n", + "fit_params = linregress(cal_curve['conc_mM'], cal_curve['area'])\n", + "slope = fit_params[0]\n", + "intercept = fit_params[1]\n", + "\n", + "# Plot the fit over the data\n", + "conc_range = np.linspace(0, 8, 100)\n", + "cal = intercept + slope * conc_range\n", + "plt.plot(cal_curve['conc_mM'], cal_curve['area'], 'o', markersize=10, label='measurement')\n", + "plt.plot(conc_range, cal, '-', color='k', label='fit')\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the Calibration\n", + "We also have a set of lactose solutions with known concentrations that we did not use when fitting the \n", + "calibration curve. We can use the `.map_peaks` method when quantifying these test \n", + "data to see if we get the same concentrations out that we know the peaks represent. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunittrue_conc_mM
013.560.2814491.66446010715.6473021.285878e+061lactose8.118521mM8.0
013.560.2805901.6492935316.6756686.380011e+051lactose3.981028mM4.0
013.560.2799681.6392232600.4008963.120481e+051lactose1.899415mM2.0
013.560.2795441.6362992154.1437642.584973e+051lactose1.557426mM1.5
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... concentration unit true_conc_mM\n", + "0 13.56 0.281449 1.664460 ... 8.118521 mM 8.0\n", + "0 13.56 0.280590 1.649293 ... 3.981028 mM 4.0\n", + "0 13.56 0.279968 1.639223 ... 1.899415 mM 2.0\n", + "0 13.56 0.279544 1.636299 ... 1.557426 mM 1.5\n", + "\n", + "[4 rows x 10 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the test data \n", + "files = glob.glob('data/test/lactose*.csv')\n", + "\n", + "# Instantiate a dataframe to store the results\n", + "test_data = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and quantify the peaks\n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Now, use the map_peaks method to quantify the signal based off our \n", + " # calibration curve\n", + " mapping = {'lactose': {'retention_time': 13.56,\n", + " 'slope': slope,\n", + " 'intercept': intercept,\n", + " 'unit': 'mM'}}\n", + " measured_conc = chrom.map_peaks(params=mapping)\n", + "\n", + " # Parse the known concentration from the file name\n", + " known_conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add it to the dataframe and concatenate\n", + " measured_conc['true_conc_mM'] = known_conc\n", + " test_data = pd.concat([test_data, measured_conc])\n", + "test_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like it's in good agreement! We can confirm this by plotting the measured \n", + "value versus the true value. If in agreement, everything should fall on the identity line. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6t0lEQVR4nO3dd1xT1//H8VcSpiAyHKi4rRNxrzrrnq2z7j2r1i1QFy5wb9yz7j1q1Q53a93bqnXg3gKCyApJfn/wNb8iWgkmBMLn+Xj023Lvzck7J/mSD+eee65Cp9PpEEIIIYSwAEpzBxBCCCGEMBYpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwrcwcwB51Oh1Zr/AWXlUqFSdoViUlfpwzp55Qh/ZwypJ9Thqn6WalUoFAoPnlcuixstFodISFvjdqmlZUSFxcHwsMjiYvTGrVtkZD0dcqQfk4Z0s8pQ/o5ZZiyn11dHVCpPl3YyKkoIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWI11OHk6K+CuntGi1miQdr9UqiI5WERsbg0Yjs+5NyVL6WqWyQqmUvy2EEMKYpLB5j06nIyoqgoiIsCQXNe+8eqVEq5XZ9inBUvra3t4RJyfXJF3CKIQQ4tOksHlPeHgIUVER2Nk5YGeXAaVSleQvHZVKkaZHENKStN7XOp2O2NgYIiJCAciUyc3MiYQQwjJIYfMvWq2GqKi3ODo64+iYyeDHW1kpZX2EFGIJfW1jYwtAREQoGTO6yGkpIYQwAvlN+i8ajQbQYWtrZ+4oIp14V9xoNHFmTiKEEJYhVRU2CxcupFOnTgm2Xb9+nY4dO1KqVClq1qzJihUrUiCJ8eY76HQ63kTG8up1FG8iY9Hp0u7pE2F8MrdGCCGMK9Wcilq9ejXz5s2jfPny+m2hoaF069aNOnXqMH78eC5evMj48eNxdnamZcuWZkz7aZHRao5fecaBc494+TpKvz2Lsz11ynpQpYQ7GeyszZhQCCGEsDxmL2yeP3/OqFGjOHfuHPny5Uuwb8uWLdjY2DBu3DisrKwoUKAA9+/fZ9myZam6sLkaFMyCnVeJUWsSjf28eh3FxoO32HEsiP7NPfHML5NGhRBCCGMx+6mov//+m0yZMvHTTz9RsmTJBPvOnj1L+fLlsbL6//qrUqVK3L17l+Dg4JSOmiRXg4KZs/USser4S8XfP/H07udYtYY5Wy9xNSh1vg7xaTqdjv37fyY0NMTcUYQQQvyP2UdsatWqRa1atT6479mzZxQqVCjBtqxZswLw5MkT3NySP9phZZW4ptNqkz/fQaGAt9FqFuy8ik6XuKB5n+5//7Ng51Vm9v9STksZ4N20FIUCzDll6eLF8/j7j2Pr1p8+uy2VSvHBz6Q5qVTKBP8WpiH9nDKkn1NGauhnsxc2/yU6OhobG5sE22xt468iiYmJSXa7SqUCFxeHDzyfilevlMn+kvnz3CNi1Elf1E9H/MjNyWvPqVcht8HPl96Z+xeUUqnQ50huUaLVKlAqlWTKlAE7u9R5NZ6Tk725I6QL0s8pQ/o5ZZizn1N1YWNnZ0dsbGyCbe8KmgwZMiS7Xa1WR3h4ZKLtsbExaLVaNBpdMtZI0fH7mYfJyvPr6Yd8VTqnUa+QqVq1HH5+k9izZxdXr14hS5YsfP/9UAAWLJjDy5cvKFmyDGPGTMDZ2RmAe/fuEhg4m0uXLpAhQwbKlCnPgAGDcXPLDMCbN29YsiSQv/76k+DgV2TK5Ez16jX5/vsh+kvkN2xYy65d23j58gWZM2ehceOv6dKlBwqFghUrlrB//89s27ZHn3Pfvj0EBIznzz/PAtCqVVOqV6/J6dMnCQkJYdKkqZQuXZYNG9awa9cOQkJekStXHjp27Ezdug3Q6eD8+bMMGdKf2bMXMGvWVJ48ecwXXxRm1KhxHD58gG3bNhMXF0e9eg0YPHiEvp+PH/+DFSuWcO/eXbJkyUKdOvXp0qWHvpiuWrUc3t6jOHTody5fvoSTkxMtW35Lp07dOH/+LAMH9gWgRYsmjBzpR/36jViyZAEHDvxKaGgI2bPn4Ntv29GsWauPvk8aTfytO8LCIomKMmyla1NTqZQ4OdkTHh6FRpO21wxKzaSfU4b0s+kEBd1h+vQpTJ48DTc3N5P1s5OTfZL+oE3VhY27uzsvXrxIsO3dz9myZfustj9UuHzOSrZvItW8CI369IHv0QEvX0fxNjoOR3vjno6aO3cGw4f/gI/PaObPn8X48aPJmzcfY8dOJCoqilGjvFm3bjUDBgzm1auX9O/fk9q16zFgwBCio6NZuXIJffv2YM2aTdjb2+Pv78eLF8+ZOHEqrq6uXL16mcmTJ5A7d16+/bYdf/55jDVrVjJx4mRy5crL339fZtIkP7Jnz0H9+o2SnHvXru1MnTqbjBkzkj9/QZYuXchvv+1n6FAf8ubNx8WL55k2bTLh4W9o0aI1EL8G0fz5s/D1HYutrQ2jRnnTt293KlX6ksDApVy4cI4ZMyZToUJlqlSpxsmTfzFmjC8DBw6hfPlKPH78iNmzp/HgwX0mTpyiz7Jw4VyGDPFm6FAffv11H0uWLMDLqxQlSpTE338ao0Z5s2zZj+TPX4CdO7dy+PBBxo8PIEuWrBw/fowZM6aQL19BSpYs9Z+vOXnFdMrQaLSpNpslkX5OGdLPxrVnzy78/ccTHR3F1KmTmTx5GmDefk7VhU358uXZtGkTGo0GlUoFwIkTJ8iXL99nza8xhZjYz/trOzrG+IVNgwZNqFmzNgDffNOCP/88Ru/e/ShatDgAFSpUJCjoDgA7d27DzS0zQ4f66B8/YcIUGjeuzeHDB2jUqCnly1fEy6s0X3wRP+8pe/Yc7NixhTt3bgHw5MkjbG1tyJ49J+7u7ri7u5M5c1ayZXM3KHelSlUoX74iAFFRUWzevIExY8ZTpUo1AHLm9ODFi6ds2LBGX9gA9Oz5HZ6eJQCoWbMWW7ZsxNt7FHZ2duTJk5eVK5cSFHSHKlWqsWbNSpo0+Vo/mpIzpwcjRoxk4MC+PH36hOzZcwDQsGFTfVHWq9d37NixlcuXL1KyZGkyZnQCwNnZBVtbOx4/foy9vR05cuTEzS0zLVu2IXfuvOTOLacZhRCWJSoqksmTJ/LTTzsBqFixMoMGDTNzqnipurBp2bIly5cvZ9SoUfTs2ZPLly/z448/Mn78eHNHS8TWRvVZj7ezNf5bkTt3Hv1/vztVlCNHTv02GxtbYmPjr8q6efMG9+/fo27dagnaiI2N5d69uwA0b96aP/88xm+/7efRo4cEBd3myZPHeHjEf3HXq9eIvXt/om3b5hQo8AXly1ekRo2vcHc3rLDx8Mil/+9794KIjY1h0iQ/AgL+/33XaDTExsYSExP90dfr6uqWYN6KjY0NsbEx+td7/frf7N//s37/u8UT7927qy9s8uTJmyCbg4MDarX6g7lbtGjNsWOHad68EYULF6VChUrUqlUXFxdXg16/EEKkZrdv38LbewhBQbdRKpX07TuAHj366AcgzC1VFzZubm4sX74cf39/mjdvTpYsWfD29qZ58+bmjpaIo701WV3seRka9ckrov5NAWR2tsfBzvhvxb8vk3/nY/cj0mp1lClTjmHDfBPtc3TMiE6nw8dnCHfu3KZu3QZ89VVt+vTpz7Rp/vrjnJ2dWbVqA1evXubMmVOcOnWCTZvW0aNHH7p16wWQaOXluLjEtxJ4N0H8XS6IHz36d5Hx7iaY1tb/P7n8/df7X/de0mp1tG/fmYYNmyTa925OEZBo8vqHXsM7uXLlZvPmXVy4cJYzZ07xxx9HWLNmJSNH+n3weYQQIq05efIvBg/uR3R0NFmyZGXy5BmUK1fB3LESSFWFzZQpUxJt8/LyYvPmzWZIYxiFQkHd8rlY/9tNgx6nA+qU8zD70vr58xfg4MHfyJo1m/7LPDw8jEmT/GjbtiMODo6cOHGcJUtWU7y4JxBflDx+/FA/CvTrr/uIiIigZctv8fIqRY8efZg6dRIHD/5Gt269sLa25u3bt+h0Ov3rffTovydc58mTF5VKxbNnT/WnogC2b99MUNAdRowYmezXe//+vQSjQxcunGPLlo0MH+6Lvf2nZ/S//55t3boJFxcX6tSpT/nylejXbxCDB/fj4MHfpLARQliEYsU8cXV1I1++/Pr5lqmNXNBvRFW9smNrrUrynaYUCrC1VlHF07BTNabQvHkrIiIiGDduFLdu/cPt27cYN24U1679Tb58+XFzc0OlUnHo0O88efKYGzeuMWaML8HBwajV8VeuxcTEsGDBXH75ZS9Pnz7h0qULXLhwDk9PLwBKlChJRMQb1q1bzdOnT/jtt1/Yt2/Pf8XC0dGRZs1asmzZIn75ZS+PHz9i//6fWbBgLq6uyZ9n1aFDZ44ePcSKFUt48OA+586dISBgAm/ehCcYsfkv9vbxV+bdunWTyMhIQkKCmT17Gn/+eZRnz55y8uRf3Lr1j/71CyFEWvT48SP9SLWTkxOrVq1n/vwlqbKogVQ2YpPWOdhZ07+5J3O2XoJPLNKn+N8//Vt4porF+XLkyElg4BIWLw6kX7+eqFQqihf3Yt68Rfo5IqNGjWflyiXs3LkVV1c3vvyyKm3atOePP46i0+n4+uvmvHkTzurVy3nx4jkZM2akZs3afPfdQABKly5L79792L59C6tWLadUqdIMGDCYSZP8/jPb998PxcXFlRUrlvDq1UuyZMlKjx69ad++S7Jf71df1WH8eFi7diXr1q0mY0YnqlSpps+aFAUKFKRy5Sr4+f1A79796dGjDxqNhlmzphEaGoKrqxvNm7emU6duyc4phBDmotPp2LZtM9OnB+DtPZJWrdoCGHxBSEpT6NLh7aY1Gi0hIW8TbVerYwkOfoqbW/YEczeSyspKSVycNtG9ov7dwe9+trVW0b+FJ575UtfVXWnFu75O6z73M2dKVlZKXFwcCA19axF9nVpJP6cM6WfDREREMGHCGH77bT8AderUZ/r0OZ+cNmHKfnZ1dUj769ikVZ753ZjZ/0uOX33GgbMJ7+6d2dmeOuU8qOKZnQwmmDAshBBCfI5r167i4zOUhw8fYGVlxcCBQ+nUqZvZ54ImlXyzmkgGO2vqlstFnbIevI2OIzomDjtbKxzsrNLMh0MIIUT6odPp2LRpHbNmTUOtVpM9ew6mTp2Fl1cpc0cziBQ2JqZQKHC0tzb64ntCCCGEMd2+fZPp0yej1Wr/Nw/RHyenTOaOZTApbIQQQgjBF18U/t+9/2xp165Tmj27IIWNEEIIkQ7pdDo2bFhLlSpVyZs3P4B+MdW0TAobIYQQIp0JC3vN2LE/cPToYXbvLsy6dVs/uNJ6WiSFjRBCCJGOXLx4Hl/fYTx79hQbGxtat26HtbXlzAOVwkYIIYRIB7RaLT/+uILAwDloNBpy587DtGlzKFKkqLmjGZUUNkIIIYSFe/PmDb6+wzh+/BgADRs2YfTocTg4OJo5mfHJvaJEsu3bt4eqVcsZrb1WrZqyYsUSo7UnhBAinp2dHRERb7C1tcXPbxIBAdMtsqgBGbERn6F27bpUrFjZ3DGEEEJ8gEajQavVYm1tjbW1NVOmzCQi4g1ffFHY3NFMSkZsRLLZ2tol+U7YQgghUk5w8Cv69evFvHkz9duyZ89h8UUNSGFj0SIiIpg61Z8mTepQv34NBg7sy40b1/T79+zZRdu2zalduwrDhw9kw4a1tGrVVL+/atVy7Nu3J0Gb/z5d9O9TUf7+4+jVK+Hdtl+8eE716hU4e/Y0AHv3/kS3bu2pVasKdepUZcCA3vzzz42P5r9y5RL9+/eiVq0qtGjRmJkzp/L2bUSCLOvWrWbUqBHUrVuNxo1rM2/eTOLi4vTH3LhxncGD+1G3bjWaNq3HtGn+REXF37tLp9Oxfv2PtG79DbVrV6Fr1/b6G74JIURadfr0Sdq0ac6pU3+xbdsWXrx4bu5IKUoKGwNERUV+9J+YmJgkHxsdHZ3sY5NKp9MxYsRAHj16wNSpc1i69EeKFy/Bd9/14ObNG/z22y/MmDGZVq3asGrVBjw9vVi+fHGy+6ZhwyZcv/43jx491G/77bf9ZM6chTJlynH06GFmzJjMt9+2Z8OGbcydu5iYmBimTJnwwfZu377FoEH9KF++Ij/+uBE/P3/++ec6Q4YM4N83pF+5cimlSpVl5cr1dO/em61bN3HgwK8APH36hO+/742LiytLlqwiIGA658+fY/r0AACWLl3Ijh1bGTx4OGvWbKZ167bMmDGFHTu2JrsfhBDCXDQaDQsXzqNPn268evWSAgW+YN26LWTNms3c0VKUzLExQOXKZT66r2rVGixevEz/81dfVSE6OuqDx5YtW54VK9bqf27UqDahoaEfPLZYMU82bNhmcNZz585w5cpl9uz5HRcXFwD69OnPlSuX2Lp1E/fuBVG7dj1atWoLQNeuPfnnn+vcunXT4OcCKF26LDly5OS33/bTvXtvIL6wadCgMUqlkkyZMuHjM5oGDRoD4O6enaZNmzFjxuQPtrdx4xrKlStP1649AciVKzfjxvnz7bffcOHCOSpUqABAxYqVad26rf6Yn3/ezeXLF2nQoDE//bSTjBmdGDVqHFZW8R91X9/RXLx4nqioKDZv3sCYMeOpUqUaADlzevDs2VM2bFhDixatk9UPQghhDi9ePGfkyBH6EfLmzVvj7T0Se3t7MydLeVLYWKibN+NP8Xz77dcJtsfGxhITE8Pdu0HUq9cowb7Spcsmu7BRKBQ0aNCY3377he7de3Pr1j8EBd1h0qRpAJQqVYZ79+6yevVyHj16yIMH97l9+yZarfaD7f3zzz88evSAunWrJdp3//49fWGTJ0++BPscHBz1p6Lu3LlF4cJF9UXNuxylSpXh+vW/iY2NYdIkPwICxuv3azSa//VRNLa2dsnqCyGESElxcXH06NGZhw/vkyFDBkaPHk+jRk0//UALJYWNAU6cOP/RfUqlKsHPhw8f/+ixCkXCM4D79h1M8rFJpdVqcXBwYMWKdYn2WVtb06FDqwSndOK3J15O+/1j/j1/5X2NGjVl1aplXL/+NwcP/k6JEl7kzp0HgAMHfmXixLHUrduAokWL06TJNwQF3WHWrKkfbEun01KvXkM6d+6eaJ+zs0uC1/KxzCqV1Udv4qbVxh8zYcIU8uTJm2j/h/pCCCFSIysrKwYMGMSKFUuZPn12oj/40hspbAxgb5/B7McmVf78BXn79i2xsbHkz19Av33q1EkULPgFhQoV4fLli3z7bTv9vuvX/07QhpWVVYLJum/fRhAaGvLR53R3z07p0mU5fPgAhw79TpcuPfT71q5dRdOmzRg+/Af9tj/+OArEFyLvFyD58hXg7t07eHjk0m978OAegYFz6du3P87OTp/sg7x58/H777+g0WhQqeILz6NHDzNnznTWrt2CSqXi2bOn+lNRgP403YgRIz/ZvhBCmMvz58948eI5JUqUBKB+/UbUrl0vwQh1eiWThy1UxYqV+eKLQowd+wPnzp3h0aOHLFgwl717fyJPnnx06tSVY8cOs379jzx8+IAdO7by66/7ErRRokRJdu/ewT//3CAo6DaTJvl98v80jRo1ZdeuHbx+/Zratevpt2fNmo0rVy7xzz83ePz4EZs3r2fHji1A/Omx97Vt25GbN/9h+vQA7t4N4u+/rzJu3GgePLiPh0fuJPVBy5bfEhYWxowZk7l37y6XLl1g0aL5lC9fEUdHR5o1a8myZYv45Ze9PH78iP37f2bRonm4urolqX0hhDCHP/44Sps2zRg8uD+vXr3Ub5eiJp70goVSqVTMnr2QhQvn4uf3A1FRUeTJkw9//2mUKxc/P2XChMksW7aI5csXU7JkaZo0+YZTp07o2xg+/AdmzpzCd991x9nZhbZtOxAZ+eEJ0e/UrFmbWbOmUa1aDRwd/39VyyFDvJk2zZ8BA3pjY2NNwYKFGD16PH5+I7l27SqlS5dN0I6nZwlmzQpk+fJF9OjRCXt7O8qUKU///oOTfAfazJmzMHt2IIsWzad7945kzOhI7dr16NOnPwDffz8UFxdXVqxYwqtXL8mSJSvduvWiY8euSWpfCCFSklqtJjBwDj/+uAKAYsWKJ7oiV4BC9/4kinRAo9ESEvI20Xa1Opbg4Ke4uWVP1hwLKyslcXEfngybFqxYsYT9+39m27Y9nz7YzNJ6X7/zuZ85U7KyUuLi4kBo6FuL6OvUSvo5ZaT1fn7y5DG+vkO5fPkSAO3adWLIkBFJ/kMvpZiyn11dHVCpPn2iSUZshBBCiFTs8OGD+PmNJDw8jIwZnRg/3p9ateqaO1aqlaTCpnbt2slqXKFQcODAgWQ9VgghhBDxV5WGh4fh6enF1KmzyJnTw9yRUrUkFTaPHz+mRo0auLq6JrnhkJAQjh07luxgIuX16NGHHj36mDuGEEKIfxk1yo/8+QvQuXO3VHfKOjVK8qmo/v374+XlleSGL168yNGjR5MVSgghhEivDhz4lcOHDzJp0lQUCgUZMjjIH50GSFJhM3HiRHLlyvXpA/8ld+7cTJw4MVmhhBBCiPQmJiaGWbOmsnnzBgC+/LIqjRt//YlHifclqbBp3drw++a4urom63GpQ7q7UEyYSTq8KFEI8QH379/Dx2coN25cA6B7917Uq9fQzKnSpiQVNkWLFk1ygwqFgmvXriU7kDnFr06rICYmGmtrW3PHEelAbGz8GhQqlVygKER69csve5k4cSxv377FxcWFSZOmJVgRXRgmSb9N3/1VWaxYMapVq/bB+/NYAqVShb29AxERr4mLU2NnlwGlUvXR+w29T6tVoNHIX+ApIa33tU6nIzY2hoiIUOztHVEqZRFwIdKjRYvms2TJAgDKli1HQMBMsmXLZuZUaVuSCptly5axb98+Dhw4wKZNm6hbty6NGzemUqVKSf7STyucnFyxtrYlIuI10dGJF/H7L0ql8qN3qxbGZSl9bW/viJNT0q82FEJYlqpVq7Nq1TK6du1J79795LYIRmDQysOxsbEcO3aM/fv3c+jQIRwcHGjQoAFNmzalZMmSpsxpVB9befjfdDodWq0WrVaTpDZVKgWZMmUgLCwyTY8kpAWW0tcqlVWqHqlJ6yu1phXSzykjNfXzgwf3yZ07j/7n58+fW8woTZpbedjGxoY6depQp04doqOjOXToEPv376dz585kzpyZxo0b06hRI4oUKZLs4KmFQqFApVLp7wr9KVZWSuzs7IiK0pj9/zSWTvpaCJEWRUVFMnnyRH79dR9r126hUKHCABZT1KQWyf5z0c7OjkaNGjF//nz++usvvv76a1auXEnz5s2NmU8IIYRI827fvkWHDt/y0087UavVXL58wdyRLNZnncwLCgpi//79/PLLL9y6dYvMmTPToEEDY2UTQggh0jSdTseuXduZOnUS0dHRZMmShYCAGZQvX9Hc0SyWwYXN3bt3ExQzzs7O1KtXj9GjR1OhQgWLm0wshBBCJEdk5FsmTRrHvn17AKhcuQr+/tNwdXUzczLLlqTC5v79++zfv5/9+/dz8+ZNnJycqFOnDj4+PlSqVCnJ81CEEEKI9GLXru3s27cHlUpF//6D6Nq1Z6q+YMBSJKmwqV+/PiqVijJlyjBmzBiqVq2qvyTt+fPniY7PkSOHcVMKIYQQaUybNh24du1vWrb8ltKly5o7TrqR5FNRGo2GM2fOcPbs2U8ee/369c8KJYQQQqQ1ERERrFixhD59+mNnZ4dKpWLSpKnmjpXuJKmwmTx5sqlzCCGEEGnW9et/4+09hIcPHxAREcGoUX7mjpRuJamwkUu4hRBCiMR0Oh2bN69n5sypqNVqsmfPQdOm35g7VrqWrMu9Y2NjCQoK4s2bNx/cX758+c8KJYQQQqR24eHhjB8/ioMHfwegZs3ajB/vT6ZMzuYNls4ZXNicOHGCYcOGERoaCvz/DTIVCgU6nQ6FQiFzbIQQQli0f/65wdChA3j8+BFWVtYMGTKC9u07yZInqYDBhU1AQAAuLi6MGzcOZ2dnE0QSQgghUjcnJyfevHmDh0cupk6dRfHiJcwdSfyPwYXNgwcPmD17NrVq1TJFHiGEECJViomJwdbWFoDs2XOwYMFS8ubNT8aMGc2cTPybwSsFFS5cWH8aSgghhEgPLl48T7NmDTl27LB+W4kSJaWoSYUMHrEZOXIkw4cPR6lU4uXlhb29faJjZIE+IYQQlkCr1fLjjysJDJyNRqNh+fLFVKtWU+bSpGLJvipq5MiRH90vk4eFEEKkFjqdjjeRscTqFMRExWJnrUpSYRISEsKYMb4cP34MgAYNGjNmzHgpalI5gwubcePGoVKpGDJkCFmyZDFFJiGEEOKzRUarOX7lGQfOPeLl6yj99izO9tQp60GVEu5ksLP+4GPPnz+Lj89QXr58ga2tLd7eo2jRorUUNWmAwYVNUFAQc+fO5auvvjJFHiGEEOKzXQ0KZsHOq8SoNbxfirx6HcXGg7fYcSyI/s098cyf8G7bQUF36NmzM1qtlrx58zFt2hwKFSqccuHFZzF48nCePHmIior69IFCCCGEGVwNCmbO1kvEqjUA6N7b/+7nWLWGOVsvcTUoOMH+/PkL0Lx5K5o0+YYNG7ZJUZPGGDxiM2jQIKZOnUqmTJkoVaoUDg4OpsglhBBCGCwyWs2CnVfR6RIXNO/T/e9/Fuy8SvtKVhQrUhg3t8wA/PDDWKyskjUNVZiZwe/azJkzefXqFT179vzgfoVCwbVr1z47mBBCCGGo41eeEfO/kZqk0Gq13D3/MwPX7adChcosWrQcpVIpRU0aZvA717hxY1PkEEIIIT6LTqfjwLlHST4+Nuo1906sIuLFLQCyZ89OXFwcNjY2poooUkCSCpuHDx/i7u6OtbU1AwYMSFLDsbGxPH/+nFy5cn1WQAC1Wk1gYCC7d+8mLCyMokWLMnz4cMqUKfPZbQshhLAMEVHqBFc//Zfwp9e4d3I1cTERKK1syV2uHcN9hmFj8+GrpETakaTJw/Xq1TN4bZrr169Tr169ZIV636JFi9i+fTuTJk1i165d5M+fn169evH8+XOjtC+EECLti4n99CkonVbD40u7uX00kLiYCOydPShSzxfXvBWIjolLgZTC1JI0YqPT6Th69ChBQUFJbvj+/fvJDvW+gwcP0qRJE6pWrQqAr68vW7du5eLFi9SvX99ozyOEECLtsrVRffIYrUbN60cXAMhcsBoepVqitIo/9WRnK/NqLEGS38UFCxYY3LixFjJydnbm8OHDdOzYkezZs7N582ZsbGwoWrSoUdoXQgiR9jnaW5PF2Z5Xr6M+ekWUytqOfF/2JPrNM1xzlwNAAWR2tsfBTgobS5Ckd/HgwYOmzvGfRo0axZAhQ6hduzYqlQqlUsncuXPJnTt3stu0sjJ4CZ//pFIpE/xbmI70dcqQfk4Z0s/GVa9CLtb/dlP/s06r4fHl3djYO5O1cC0AMrh4kMHFI8Hj6lfIhbX1p0d8xH9LDZ/nJBU2OXPmNHWO/3Tnzh2cnJxYsGAB2bJlY+vWrfj4+LBu3TqKFClicHtKpQIXF9Osv+PklPimoMI0pK9ThvRzypB+No4m1Quy/cgdYtQaoiOCuffXSt4G30WhVOHsUQobB9cExysUYGutonH1gjjay8RhYzHn51mh0+k+tYaRWT1+/Jj69euzevVqypUrp9/evn17XFxcknWKTKPREh5u3NWTVSolTk72hIdHodFojdq2SEj6OmVIP6cM6Wfju3wnmDEzVnPv1Fo0sZGorO3JXaEjLrlKJzhOQXxhM6xtaUoUcPtwY8Igpvw8OznZJ2kkKNWfULx8+TJqtZoSJUok2F6yZEmOHTuW7Hbj4kzzC0Sj0ZqsbZGQ9HXKkH5OGdLPxqFWx/Lz5kXc+WMNABlc85D/yx7YOGbWH6MgftVhG2sV/Vt4UjSPi/S9kZnz85zqC5vs2bMD8M8//+Dl5aXffvPmTfLkyWOuWEIIIVIZjUZDz55duHQp/qqntu06U7JGW45cfJ5gfZvMzvbUKedBFc/sZJAJwxYn1b+jXl5elCtXDh8fH/z8/HB3d2fXrl2cOHGCDRs2mDueEEKIVEKlUlGrVh3u3g1i4sTJ1KgRP1m4QcV8RKs12NrbEhMVg521ymhX7YrUJ9XPsQEICwtjzpw5HDlyhLCwMAoVKsTQoUOpUKFCstrTaLSEhLw1akYrKyUuLg6Ehr6VIU0Tk75OGdLPKUP6+fPExMQQHPyKHDniL3LRarWEhASTOXOWBMdJP6cMU/azq6tDkubYGFzYhISE4O/vz5EjR4iKiuL9h6eFm2BKYZO2SV+nDOnnlCH9nHwPHtzH23sIMTHRrF+/lQwZPn61q/RzykgNhY3Bp6LGjRvH0aNHady4Me7u7iiVsvaCEEKIlPXLL3uZOHEsb9++xcXFhfv371G0aHFzxxKpgMGFzR9//MHIkSNp06aNKfIIIYQQHxUdHc306QFs374FgDJlyjF58kyyZctm5mQitTC4sLGxsTHKHbuFEEIIQ9y9G4S392Bu3bqJQqGgZ8++9OnTHyurVH8djEhBBp9Hqlu3Lj///LMpsgghhBAfNWfOdG7duomrqxsLFy6nf/9BUtSIRAz+RBQrVow5c+bw8OFDSpYsiZ2dXYL9CoWC/v37Gy2gEEIIATB69Hhsbe0YMeIHsmTJau44IpUy+KqoT92bSaFQcP369c8KZWpyVVTaJn2dMqSfU4b088fdvn2LY8cO0717789uS/o5ZaTJq6Ju3LiRrEBCCCFEUuh0Onbv3sGUKROJjo4md+481KlT39yxRBrxWScn79y5w5s3b3B1dSV37tzGyiSEECKdiox8i7//ePbu/QmASpW+pEyZcp94lBD/L1mFzc8//8zUqVN59eqVflvmzJkZNmwYzZo1M1Y2IYQQ6cjNm/8wYsQg7t+/h1KppF+/gXTv3lvWSxMGMbiwOXToECNGjKBSpUoMHTqUzJkz8+LFC3766Sd++OEHnJ2dqVmzpgmiCiGEsFQ//bSTSZP8iI2NJWvWbEyZMlNGakSyGFzYLFq0iAYNGjB79uwE21u2bMmQIUNYsmSJFDZCCCEMkjGjE7GxsVStWoOJE6fg4uJi7kgijTJ4fO/mzZs0b978g/uaN28uk4uFEEIkSXR0tP6/v/qqNkuXrmbevEVS1IjPYnBh4+LiwuvXrz+4LzQ0FBsbm8/NJIQQwoLpdDo2bVpH06b1eP78mX57hQqVZD6N+GwGf4IqV67M/PnzefLkSYLtjx8/ZsGCBVSpUsVo4YQQQliW8PBwhg8fyJQpk3j58oX+nk9CGIvBc2yGDh1Ky5YtadCgAaVKlSJLliy8fPmSixcvkilTJoYNG2aKnEIIIdK4K1cu4+MzhCdPHmNlZc3gwcPp0KGzuWMJC2PwiE2WLFnYuXMnnTp1Ijo6mqtXrxIdHU2nTp3YuXMnOXPmNEVOIYQQaZROp2Pt2tV069aBJ08ekzOnB6tXb6Bjxy4oFApzxxMWJlnr2Li5uTFixAhjZxFCCGGBtmzZyMyZUwCoU6ceY8dOwsnJycyphKVKUmETGBhI69atyZYtG4GBgf95rNwEUwghxL99/XVzdu/ewddfN6dNm/YySiNMKsmFTfXq1aWwEUII8UlarZbffttPvXoNUSqV2Nvbs3btZlQqlbmjiXQgSYXNv9emkXVqhBBCfExoaCijR/tw/PgxHj9+RI8efQCkqBEpxuDJw4GBgTx//vyD+x49esSECRM+O5QQQoi05/z5s7Rp04zjx49ha2uLi4uruSOJdMjgwmbBggUfLWwuXbrE1q1bPzuUEEKItEOr1bJs2WJ69uzMixfPyZs3H2vXbqFFi9bmjibSoSSdimrbti2XLl0C4i/ba9OmzUePLVGihHGSCSGESPWCg18xapQ3J0/+BUCTJt8wcuRYMmRwMHMykV4lqbDx9/dn//796HQ6FixYQMuWLXF3d09wjFKpxMnJiXr16pkkqBBCiNTn5csXnDt3Bjs7O3x9x/DNNy3kqidhVkkqbAoUKMCAAQOA+Kue3l36LYQQIn0rUqQYkyZNpUCBLyhY8AtzxxHC8AX63hU4r169Qq1Wo9PpgPhzrFFRUZw9e5Z27doZN6UQQohU4eXLF4wbN4p+/QZSvHj81IP69RuZOZUQ/8/gwubGjRsMHTqUu3fvfnC/QqGQwkYIISzQiRPHGTXKm5CQYF6+fMGmTTvlbtwi1TG4sJk2bRrh4eH4+Phw+PBhbGxs+Oqrrzh27BjHjh1jzZo1psgphBDCTOLi4li8OJAVK5ag0+n44otCTJ06W4oakSoZ/Km8dOkSgwYNomvXrjRu3JjIyEjat2/P4sWLqVOnDmvXrjVFTiGEEGbw/PkzevfuyvLli9HpdLRq1Ya1a7eQL19+c0cT4oMMHrGJjY0lX758AOTPn59//vlHv69Fixb4+fkZL50QQgizefjwAZ06fcvr169xcHBgzJgJNGjQ2NyxhPhPBo/Y5MiRg4cPHwKQJ08eIiIiePToEQA2NjaEhYUZN6EQQgizyJnTA0/PkhQpUowNG7ZLUSPSBINHbOrVq8eMGTOwt7enQYMG5M+fn9mzZ9O7d29WrlxJrly5TJFTCCFECnj27CmZMmXC3j4DSqWSgIDp2NraYmtra+5oQiSJwSM2AwYMoGzZsmzfvh2AH374gQMHDtCsWTNOnjzJ999/b/SQQgghTO/IkUN8+20zJk+eqN/m5OQkRY1IUwwesYmOjmbevHmo1WoAqlWrxs8//8zVq1cpXrw4uXPnNnpIIYQQpqNWxzJ37kzWrfsRgDt3bhMZ+VZuiyDSJINHbFq3bs2+ffuwtrbWb8uVKxcNGzaUokYIIdKYx48f0bVrB31R07FjF1avXi9FjUizDB6xCQsLw8XFxRRZhBBCpKCDB3/Dz28UERFvcHLKxIQJk6lZs5a5YwnxWQwesencuTPTpk3j5MmThISEmCKTEEIIE3v7NgJ///FERLzBy6sUmzbtkKJGWASDR2x2797NkydP6Nat2wf3KxQKrl279tnBhBBCmI6DgyOTJk3l9OmT9O8/KMH0AiHSMoMLm6ZNm8ot6YUQIg369df4+ZG1atUF4Msvq/Lll1XNnEoI4zK4sPnU5dzPnj1LdhghhBDGFx0dzYwZk9m2bTOOjo4ULVqc7NlzmDuWECZh8BybokWLcvny5Q/uO3v2LA0bNvzsUEIIIYzj3r0gOnduw7Ztm1EoFLRt25EsWbKaO5YQJpOkEZuVK1cSGRkJgE6nY+vWrRw7dizRcRcuXMDGxsa4CYUQQiTL3r0/MWnSOKKiInFxcSUgYDqVK1cxdywhTCpJhU1sbCyBgYFA/OTgrVu3JjpGqVSSMWNGvvvuO+MmFEIIYRCtVsvEiWPZuXMbAOXLVyQgYLqM1Ih0IUmFTd++fenbty8ARYoUYcuWLXh5eZk0mBBCiORRKpXY2dmjUCjo06c/vXp9h0qlMncsIVKEwZOHb9y4YYocQgghPoNOpyM6Ohp7e3sAhgwZQf36DSlVqoyZkwmRsgwubACOHz/O4cOHiYqKQqvVJtinUCgICAgwSjghhBCfFhn5loCACTx58pilS1djZWWFjY2NFDUiXTK4sFm+fDkzZszA1tYWV1fXRGvayBo3QgiRcm7e/Adv78Hcu3cXpVLJhQvnKF++orljCWE2Bhc269evp2nTpvj7+8sVUEIIYSY6nY7t27cwfXoAMTExZMmSlSlTZlK2bHlzRxPCrAwubIKDg2nVqpUUNUIIYSYRERFMmjSWX37ZB0CVKtWZOHEKrq6uZk4mhPkZvEBfsWLFuHXrlimyCCGESILRo3345Zd9qFQqBg0azvz5i6WoEeJ/DB6xGTlyJIMHDyZDhgyULFlSPwP/33LkkKW6hRDCVL7/fgj379/Fz2+STBAW4j0KnU6nM+QBxYsXR6vVotPpPjpR+Pr160YJZyoajZaQkLdGbdPKSomLiwOhoW+Ji9N++gEi2aSvU4b0c8pISj+Hh4dz9uxpatWqo9+m1WpRKg0edE+35POcMkzZz66uDqhUn/7MGzxiM2nSpGQFEkIIYbirV6/g4zOEZ8+esnz5GkqXLgsgRY0QH2FwYdO8eXNT5BBCCPEvOp2O9evXMGfODOLi1OTIkVMu2hAiCZK1QF9sbCzbtm3jr7/+4uXLlwQEBHD69GmKFy8ut1oQQojPFBb2Gj+/kRw5cgiA2rXr4ufnj5OTk5mTCZH6GTyWGRISQsuWLfH39+f+/ftcvnyZ6Ohojh49SqdOnbhw4YIpcrJr1y4aNWpEiRIlaNy4Mfv37zfJ8wghhDldunSBtm1bcOTIIaytrfH1HcOMGfOkqBEiiQwubKZNm8bbt2/Zt28fO3fu5N3c47lz51KiRAnmzZtn9JC7d+9m5MiRtGnThp9//plGjRoxdOhQkxVRQghhLtev/83Tp0/IlSs3a9Zsom3bDrKiuxAGMPhU1OHDhxk5ciR58uRBo9Hot9va2tK9e3d8fX2NGlCn0zF37ly6dOlCly5dAOjfvz/nz5/n9OnTlC5d2qjPJ4QQ5tSmTQc0Gi3ffNMCR0dHc8cRIs0xeMQmJiYGZ2fnD+5TqVSo1erPzZRAUFAQjx8/pmnTpgm2r1ixgj59+hj1uYQQIqWdP3+WVq1a8ebNGyD+fnsdOnSWokaIZDJ4xKZEiRJs2LCBGjVqJNq3Z88ePD09jRLsnXv37gEQGRlJjx49uHbtGh4eHnz33XfUqlUr2e1aWRn3Usl319Yn5Rp78Xmkr1OG9LNpabVali9fwoIF89BoNCxeHMiIET+YO5bFks9zykgN/WzwAn1nz56la9euFChQgBo1arBs2TK6du3K3bt3+fPPP1m+fDmVKlUyWsDdu3fj7e2Nh4cHAwYMoEiRIvz6668sXryYVatWUblyZYPb/K/FBYUQwtRevXrFwIEDOXr0KAAtWrRgypQpODg4mDmZEGmfwYUNwJkzZ5g5cyaXL19Gq9WiUCgoVqwYQ4cOpUqVKkYNuG/fPoYMGYKfnx/t27fXb+/duzcAS5cuNbhNjUZLeHiU0TJCfHXq5GRPeHgUGo2samlK0tcpQ/rZNE6fPoWPzzBevnyBnZ0do0f70bVrJ968iZZ+NiH5PKcMU/azk5O9aVYeBihfvjybNm0iOjqasLAwHB0dsbe3N8lKmO7u7gAUKlQowfaCBQty5MiRZLdrqiW1NRqtLNedQqSvU4b0s/H88steRo4cgVarJX/+AkybNociRQqjUCikn1OI9HPKMGc/J6sSWbRoET169MDOzo5s2bJx9epVqlSpwurVq40cL/5u4g4ODly6dCnB9ps3b5I7d26jP58QQphKhQqVcXPLzDfftGD9+q0ULPiFuSMJYXEMHrFZvnw5gYGBdO7cWb8tT548fPPNN8ycORN7e3vatGljtIB2dnb07NmTBQsWkC1bNry8vNi7dy/Hjx83SSElhBDGdPv2LX0B4+rqyubNO3F1dTNzKiEsl8GFzZYtWxgyZAg9e/bUb3N3d8fX1xdXV1fWrFlj1MIGoF+/ftjb2zN79myeP39OgQIFmD9/PhUrVjTq8wghhLHExcWxZMkCli9fzMSJU2jS5BsAKWqEMDGDC5vnz59TvHjxD+4rUaIECxYs+OxQH9KtWze6detmkraFEMKYnj9/zsiRwzh37iwAN25c0xc2QgjTMniOTa5cufjrr78+uO/UqVP6yb5CCJEe/fnnMdq2bca5c2fJkCEDU6bMZPhwWZ9GiJRi8IhNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRAiVVOr1SxYMJfVq5cDUKRIMaZOnUWePHnNG0yIdMbgwqZDhw48e/aMVatWJZi8q1Kp6NKlC127djViPCGESBuuXr2sL2ratGnP0KE+2NramjmVEOlPshboA3jz5g0XLlwgLCwMJycnvLy8cHFxMXY+k9BotISEvDVqm1ZWSlxcHAgNfStrJJiY9HXKkH423LJli8mbNy916zZI8mOkn1OG9HPKMGU/u7o6mG6BPoCMGTNSvXr15D5cCCHSNLU6lkWLAmnZ8lty5vQAoFevvmZOJYQwuLCJiopi8eLFHD58mKioKLTahBWZQqHgwIEDRgsohBCpzePHj/DxGcrVq5c5ffoka9ZsMsnK60IIwxlc2Pj7+7N9+3YqVKhA0aJF5f/MQoh05eDB3/DzG0VExBsyZnSiR48+8ntQiFTE4MLmt99+Y8iQIfqbUAohRHoQGxvLrFlT2bRpPQBeXiWZMmUWOXLkNHMyIcS/GVzYxMXF4eXlZYosQgiRKr18+YJBg77j2rW/AejSpQcDBgzG2trazMmEEO8zePy0atWqHDt2zBRZhBAiVcqUyRmdToezszPz5i1myJARUtQIkUoZPGLTqFEj/Pz8CAkJoWTJktjb2yc6plmzZsbIJoQQZhMTE4NKpcLKygobGxtmzJiHlZUV2bLJ6upCpGYGr2NTpEiR/25QoeD69eufFcrUZB2btE36OmWk536+dy8Ib+8h1KxZm379Bpr0udJzP6ck6eeUkSbXsTl48GCyAgkhRFqwd+8eJk3yIyoqkpCQEDp16kbGjBnNHUsIkUQGFzY5c/7/FQBRUVFERETg7Ows55uFEGlaVFQU06b5s3PnNgDKlatAQMB0KWqESGOStfLw2bNnmT59OleuXOHdmSwvLy+GDBlCpUqVjBpQCCFM7c6d23h7D+HOnVsoFAp69fqOPn36o1KpzB1NCGEggwub8+fP07VrV3LlykW/fv3InDkzL168YO/evfTs2ZO1a9dSunRpU2QVQgiji4qKpGfPToSGhpI5cxYCAqZToYL8gSZEWmXw5OHOnTujVCpZsWJFgr9mtFotPXr0QKFQsHLlSqMHNSaZPJy2SV+njPTUz7t2bWf//r0EBEzDzS1zij53eupnc5J+ThmpYfKwwevYXLlyhc6dOycaolUqlXTs2JHLly8b2qQQQqSoW7f+4cqV//9d9c03LVi0aHmKFzVCCOMzuLBxcHAgLi7ug/vUajUGDgAJIUSK0el07NixlY4dv2X48IG8fh0KxC9TIfd7EsIyGPz/5DJlyrB48WLevk14KiciIoKlS5dSrlw5o4UTQghjefs2gh9+GM6ECWOIiYmhYMEvkL/DhLA8Bk8eHjZsGC1atKBOnTrUrFmTLFmy8PLlS44cOUJMTAwBAQGmyCmEEMl248Z1vL0H8+DBfVQqFQMGDKZLlx4ySiOEBTK4sMmTJw+bN28mMDCQY8eOERYWRqZMmahYsSIDBgygYMGCpsgphBAG0+l0bN26iRkzJhMbG4u7e3amTJlJqVJlzB1NCGEiyVrHpmDBgowaNYosWbIA8Pr1a549eyZFjRAi1Tl16i9iY2OpUeMrxo8PwNnZxdyRhBAmZPA4bHh4ON26daNTp076bZcvX6ZZs2b069ePqKgoowYUQghDvbuIQaFQ4Ofnz+jR45gzZ6EUNUKkAwYXNjNmzODWrVsMHTpUv61SpUosXLiQq1evMm/ePKMGFEKIpNLpdKxfv4YxY3z1xY2TkxOtWrVFoVCYOZ0QIiUYXNgcOnQIHx8f6tWrp99mY2NDrVq1GDp0KPv37zdqQCGESIrw8DCGDv2e6dMD+Pnn3Rw//oe5IwkhzMDgOTZv377Fycnpg/vc3NwIDQ397FBCCGGIy5cv4uMzlKdPn2Btbc3Qod5UqVLN3LGEEGZg8IhN8eLF2b59+wf37dixg8KFC392KCGESAqtVsuPP66ge/eOPH36BA+PXPz440bateskp56ESKcMHrH57rvv6NWrFy1atKBu3bq4ubkREhLCwYMH+fvvv1m8eLEpcgohRCITJ/qxc+dWAOrVa8iYMRPImDGjmVMJIczJ4MKmSpUqLFq0iHnz5jFv3jx0Oh0KhYKiRYuycOFCqlevboqcQgiRSOPGTdm//2eGDfOhVas2MkojhEjeOjY1atSgRo0axMTE8Pr1azJmzEiGDBmMnU0IIRLQarUEBd2mYMFCAJQrV4H9+w/h4iKXcQsh4n3WeuK2trZky5ZNihohhMmFhAQzYEBvOnVqy717QfrtUtQIIf5NbpQihEj1zp49TZs2zfjrrz/R6bQEBd0xdyQhRCqVrFNRQgiREjQaDcuXL2bJkgVotVry5y/AtGmz9aeihBDifVLYCCFSpVevXjJy5AhOnz4JwNdfN+eHH8Zgby+nvoUQHyeFjRAiVdq+fQunT5/Ezs6eUaP8aNq0mbkjCSHSgGQVNiEhIaxYsYK//vqLly9fsnz5cg4cOECRIkWoU6eOsTMKIdKh7t178+zZUzp16kb+/AXMHUcIkUYYPHn44cOHfP3112zZsoVs2bIRHByMRqPh7t27DBw4kCNHjpggphDC0j1//pypUyehVscCYG1tjZ/fJClqhBAGMXjEZurUqbi5ubF27VoyZMiAp6cnADNnziQmJobFixdTs2ZNY+cUQliw48f/YPRob0JDQ7Gzs2fQoGHmjiSESKMMHrE5ceIE/fr1w8nJKdEqn23atOHWrVtGCyeEsGxqtZp582bSv38vQkNDKVy4KM2atTB3LCFEGpasOTYqleqD22NjY2VJcyFEkjx79hQfn6FcunQBgG+/bc+wYT7Y2tqaOZkQIi0zeMSmXLlyLF26lMjISP02hUKBVqtl48aNlClTxqgBhRCW58yZU7Rp04xLly7g6OjItGlzGDlyrBQ1QojPZvCIzbBhw2jXrh316tWjYsWKKBQKVqxYwZ07d7h//z4bNmwwRU4hhAXJls2duLg4ihXzZNq02Xh45DJ3JCGEhTB4xKZQoUJs376dihUrcurUKVQqFX/99Re5c+dm06ZNFC1a1BQ5hRBp3Nu3Efr/zp07D0uXrmb16g1S1AghjCpZc2zy5s3LzJkzjZ1FCGGhDh06wIQJo5k6dTYVK1YGoHjxEmZOJYSwRMkqbB4+fEhMTAwFCxYkPDyc2bNn8/TpUxo0aECzZs2MHFEIkVbFxsYye/Z0Nm5cC8DGjev0hY0QQpiCwaeijh07RsOGDdm+fTsAfn5+bNmyhefPn/PDDz+wdetWo4cUQqQ9Dx8+oGvXdvqipnPn7kyfPse8oYQQFs/gwmbhwoVUrVqV/v378+bNG37//Xd69+7Nzp076d27N2vWrDFFTiFEGvLbb7/Qrl0Lrl37m0yZMjFv3mKGDvXG2tra3NGEEBbO4MLmxo0bdOnSBUdHR/744w80Gg3169cHoEqVKty/f9/oIYUQacfFi+fx9h5MREQEpUqVYfPmXVSvXtPcsYQQ6YTBc2xsbW2Ji4sD4I8//sDNzY0iRYoA8OrVK5ycnIybUAiRppQsWZomTb4ha9Zs9Os3ECurZE3lE0KIZDH4N07ZsmVZuXIlYWFh7N+/nxYt4pc/v3r1KoGBgbJAnxDp0G+//ULFipXIlMkZhULBhAmTUSoNHhAWQojPZvBvnh9++IHnz58zfPhwPDw8+O677wDo06cPsbGxDB8+3OghhRCpU1RUFOPHj8HbezB+fiPR6XQAUtQIIczG4BGbXLlysXfvXoKDg8mcObN++4IFCyhWrBg2NjZGDSiESJ2Cgu7g7T2Y27dvoVAoKFSoCFqt9qP3khNCiJSQrJPfCoWCsLAwfv/9d968eYOLiwtlypSRokYIC6HT6XgTGUusTkFMVCx21qoEN7j96aedBARMIDo6Cje3zPj7T6NSpS/NmFgIIeIZXNjodDr8/PzYunWrftgZ4oud5s2b4+/vL3f4FiKNioxWc/zKMw6ce8TL11H67Vmc7alT1oMyBZ2YM2sye/bsAqBixcr4+08jc+YsZkoshBAJGVzYLF++nO3btzNw4EC+/vprsmTJwosXL9i9ezeLFi3iiy++oFu3bqbIyt27d2nRogVjxozRT1oWQhjH1aBgFuy8Soxaw/t/mrx6HcXGg7fY8ns0d0+eRKlU8t1339O9e2859SSESFUMLmy2bdtGz5499ZOGATw8POjfvz9qtZqtW7eapLBRq9UMHz6cyMhIo7ctRHp3NSiYOVsv8W4QVvevfTqdDh3xo7JapR2ZS3emT7XctG5axxxRhRDiPxl86cLTp0+pVKnSB/dVrFiRR48efXaoD5k/fz4ODg4maVuI9CwyWs2CnVfR6RIWNAAadTT3Tq4mOOg4EL/fwTUvh25aExmtTvGsQgjxKQYXNjlz5uTGjRsf3Hft2jVcXV0/O9T7zpw5w+bNm5k6darR2xYivTt+5Rkxak2ioiYy9CE3fptC6P0zPLqwnbiYt0B8cROj1nD86rMUzyqEEJ9i8KmoJk2aMH/+fLJmzUrDhg1RKpVotVr27dvHggULaNu2rVEDhoeH4+3tzejRo8mePbvR2rWyMu46GyqVMsG/helIXxuPTqfj4PlHiba9uv0Hjy5sQ6eNw9remXxf9sDK9v9HTBXAwXOPaFAxt1ws8Jnk85wypJ9TRmroZ4MLm169enH27FmGDRuGj48Pzs7OvH79Go1GQ4UKFRg0aJBRA44bN45SpUrRtGlTo7WpVCpwcTHNaS0nJ3uTtCsSk77+fGERMbwI/f+rnzSxUdw/s57XD88D4JTDk7wVO2Nl65jgcTrgRWgUVrY2ODnIMg/GIJ/nlCH9nDLM2c8GFzY2NjasWrWKo0ePcubMGcLCwsiUKRPly5enRo0aRg23a9cuzp49y549e4zarlarIzzcuJOQVSolTk72hIdHodFojdq2SEj62nj+fUm3VqPmxu9TiXnzAhRKcpZsTtbCtf5zRObZi3A0zvJF8Tnk85wypJ9Thin72cnJPkkjQQYXNoGBgbRu3ZoaNWokKmQePXrEypUrGTt2rKHNftD27dsJDg6mZs2aCbb7+fmxYsUK9u7dm+y24+JM88HWaLQma1skJH39+ayU/1+0KFXWuOapQHDQX+Sr0gMHt3yffLy1SinvgZHI5zllSD+nDHP2s8GFzYIFC6hevTrZsmVLtO/SpUts3brVaIXNjBkziI6OTrCtXr16DBw4kEaNGhnlOYRIz7TqSByVb3mrdUAHuBdrQJZCNbGyyfCfj1MAmZ3tcbCTO3cLIVKXJP1Watu2LZcuXQLiJxa2adPmo8eWKFHCOMngg8UTgJubGzlz5jTa8wiRHl25cglv7yGgsiNb5UEoVdYolMpPFjUQP8emTjkPmTgshEh1klTY+Pv7s3//fnQ6HQsWLKBly5a4u7snOEapVOLk5ES9evVMElQIYRw6nY61a1cxb94s4uLiyJHTA4X6DQqVa6JLvj9EoQAbKxVVPN0/fbAQQqSwJBU2BQoUYMCAAUD86qOtW7dOMJoSFxeHUqlEqTT95V3//POPyZ9DCEv1+nUoY8f+wLFjRwCoV68hY8ZM4P7LWOZsvQQfWKTv3xT/+6d/C08y2FmnQGIhhDCMwZXIgAED2LFjBz169NBvO3fuHFWqVGH16tXGzCaEMKILF87Tpk1zjh07go2NDaNGjWPq1FlkzJgRz/xuDG5dEhvr+Ps+vX+C6d3PNtYqBn9bEs98bimaXQghkipZN8EMDAykc+fO+m158uThm2++YebMmdjb2//nHBwhRMrT6XTMnz+L58+fkTt3HqZNm0ORIkUTHOOZ342Z/b/k+NVnHDib8O7emZ3tqVPOgyqe2ckgE4aFEKmYQqfTJeW0ul69evX49ttv6dmzZ6J9S5cuZffu3Z91GXZK0Gi0hIS8NWqbVlZKXFwcCA19K5cSmpj0dfI8efKYFSuWMHSoNw4Ojv95rE6nI1qtwdbelpioGOysVTJR2ETk85wypJ9Thin72dXVIUnr2Bh8Kur58+cUL178g/tKlChhsptgCiEMc/bsaVauXKr/OUeOnIwZM+GTRQ3Ez6XLmMGGbK4ZyJjBRooaIUSaYfCYcq5cufjrr7+oXLlyon2nTp1KdLWUECJlaTQaVqxYwuLFgWi1WooWLU7lylXMHUsIIVKEwYVNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRBJ8OrVS0aN8ubUqRMANG3ajFKlSps5lRBCpByDC5sOHTrw7NkzVq1aleAqKJVKRZcuXejatasR4wkhkurUqROMHDmC4OBX2NnZM3LkWL7+urm5YwkhRIpK1uUNw4YNo3fv3ly4cIGwsDCcnJzw8vLCxcXF2PmEEEmwatUy5s2bhU6no2DBL5g2bQ758xcwdywhhEhxyb5uM2PGjFSvXj3R9jt37lCggPxCFSIlubtnR6fT0bx5a7y9R2JvL3fcFkKkTwYXNmFhYcycOZMzZ86gVqt5d7W4TqcjMjKSsLAwrl+/bvSgQoiEIiIicHSMv8KpYcMmeHjkokSJkmZOJYQQ5mXw5d4BAQFs376dvHnzolKpyJgxIyVKlECtVhMeHs6ECRNMkVMI8T9xcXHMmzeL5s0bERz8Sr9dihohhEhGYfPHH38wYMAAFi1aRNu2bXF3d2fOnDn88ssvFC5cmNu3b5sipxACePbsKT17dmblyqW8fPmCgwd/N3ckIYRIVQwubMLDwylbtiwAX3zxBVevXgXAwcGB7t27c+TIEaMGFELEO3bsCG3aNOPixfM4Ojoybdocvv22nbljCSFEqmLwHBsXFxfevHkDxN8jKjg4mNDQUFxcXMiWLRvPnz83ekgh0jO1Ws38+bNYs2YVAMWKFWfq1NnkypXbzMmEECL1MXjEpnLlyixevJhHjx7h4eGBs7MzO3bsAODw4cNyybcQRrZixRJ9UdO+fWdWr94oRY0QQnyEwYXNoEGDCA4OxtfXF4VCQe/evZk+fToVKlRg9erVtGzZ0hQ5hUi3OnXqSokSJZk1KxBv75HY2NiYO5IQQqRaBp+KypkzJ/v27ePevXsAdOvWjcyZM3P+/Hm8vLxo3lxWOhXic8TGxvLzz7tp3rwVCoUCBwdH1qzZJDeiFEKIJEjWAn12dnYUKVJE/3PTpk1p2rSp0UIJkV49evQQb+/BXLv2N5GRkXTs2AVAihohhEiiJBU2P/zwQ5IbVCgUBAQEJDuQEOnV77//wvjxo4mIiCBTpkzkzi3zaIQQwlBJKmxOnTqV5AblL0shDBMTE8PMmVPZsmUDAKVKlWHKlJm4u2c3czIhhEh7klTYHDp0yNQ5hEiX7t+/h7f3EP75J/42JN2796Zfv4FYWSX7Nm5CCJGuyW9PIcwoLOw1d+7cwsXFFX//qXz5ZTVzRxJCiDRNChshUphOp9OfsvXyKoW//3RKly5D1qzZzJxMCCHSPoPXsRFCJF9Q0B06dWrDrVv/6LfVr99QihohhDASKWyESCF79uyifftWXL16malT/c0dRwghLJKcihLCxKKiIpk8eSI//bQTgIoVK+PvP83MqYQQwjIlqbB58uSJQY3myJEjWWGEsDS3b9/E23sIQUF3UCqV9O07gB49+qBSqcwdTQghLFKSCptatWoZtD7N9evXkx1ICEtx/frfdOvWgejoaLJkycrkyTMoV66CuWMJIYRFS1JhExAQoC9swsLCmDFjBpUrV6Zhw4ZkyZKF169fc+jQIY4cOYKvr69JAwuRVhQqVIQSJUpibW3NpEnTcHV1NXckIYSweAqdTqcz5AH9+/fH1dWViRMnJtrn7+/PrVu3WL16tbHymYRGoyUk5K1R27SyUuLi4kBo6Fvi4rRGbVsklJr7+vbtW+TKlRtbW1sA3rx5g4ODA0pl2punn5r72ZJIP6cM6eeUYcp+dnV1QKX69O9Sg3/bHj9+nAYNGnxwX82aNblw4YKhTQqR5ul0OrZt20T79i2ZOXOqfnvGjBnTZFEjhBBplcG/cV1cXLh48eIH9508eZJs2WQ9DpG+RERE4OMzlEmTxhEbG8uzZ09Qq9XmjiWEEOmSwZd7t27dmoULFxIVFUWtWrVwdXXl1atX/PLLL2zcuJGRI0eaIqcQqdL163/j7T2Ehw8fYGVlxcCBQ+nUqZvcDFYIIczE4MLmu+++482bN6xevZoVK1YA8cPwdnZ2DBo0iA4dOhg9pBCpjU6nY/Pm9cycORW1Wk327DmYOnUWXl6lzB1NCCHSNYMLG4VCgY+PD/369ePixYuEhYXh4uJC6dKlyZAhgykyCpHqhIQEs2DBPNRqNV99VYfx4/1xcspk7lhCCJHuJXvlYQcHB7JkyYJOp6NkyZLExsZKYSPSDTe3zEyYMJmnTx/Trl0nOfUkhBCpRLIKm927dzNz5kxevnyJQqFg69atzJ8/H2tra2bOnImNjY2xcwphVjqdjnXrVpM3b36qVasBwFdf1TZzKiGEEO8z+Kqoffv24ePjQ6VKlZg1axZabfx16vXq1ePYsWMsXLjQ6CGFMKewsNcMHtyPmTOnMmaMDyEhIeaOJIQQ4iMMHrFZvHgxbdu2Zdy4cWg0Gv32Fi1aEBwczJYtWxg8eLAxMwphNhcvnsfXdxjPnj3FxsaGfv0G4eLiYu5YQgghPsLgEZu7d+9St27dD+4rWbIkz58//+xQQpibVqtl1apl9OjRiWfPnpI7dx7WrNnMt9+2k/k0QgiRihlc2Li5uXHnzp0P7rtz5w5ubm6fHUoIc1KrY/n++77MnTsTjUZDw4ZN2LhxO0WKFDV3NCGEEJ9g8KmoRo0aMW/ePLJmzUqNGvGTKBUKBVevXmXhwoU0adLE6CGFSEnW1jZkzZoNW1tbfHxG07x5KxmlEUKINMLgm2DGxsbSr18//vzzT5RKJVqtFgcHByIjIylXrhzLli3Dzs7OVHmNQm6CmbaZoq+1Wi2RkZE4OjoCEB0dzaNHDylY8AujtJ8WyWc6ZUg/pwzp55SRGm6CafCIjY2NDcuXL+f48eOcPHmS169fkzFjRipUqECNGjXkL1uR5gQHv2LUKG8UCgULFixDqVRiZ2eXrosaIYRIqwwubPr27Uvnzp2pUqUKVapUMUUmIVLM6dMnGTlyBK9evcTOzp7bt29RqFBhc8cSQgiRTAZPHj5z5gwqlcoUWYRIMRqNhoUL59GnTzdevXpJwYJfsH79VilqhBAijTO4sKlSpQpbt24lJibGFHmEMLkXL57Tp083li5diE6no3nz1qxdu4UCBQqaO5oQQojPZPCpKFtbW/bv38/vv/+Oh4dHosu7FQoFP/74o9ECCmFMOp0Ob+8hXLx4ngwZMjB69HgaNWpq7lhCCCGMxOARm2fPnlG6dGm8vLxwdXVFp9Ml+OfdLRaESI0UCgW+vqMpUaIkGzdul6JGCCEsjMEjNmvXrjVFDiFM5vnzZ1y5cok6deoDUKRIMdas2SRX8AkhhAUyeMRGiLTkjz+O0qZNM3x9h/P331f026WoEUIIy2TwiE2tWrU++aVw8ODBZAcSwhjUajWBgXP48ccVABQrVhwnp0xmTiWEEMLUDC5sKlSokKiwefv2LVeuXCEmJoYuXboYLZwQyfHkyWN8fYdy+fIlANq168SQISOwsbExczIhhBCmZnBhM2XKlA9uV6vVDBgwgKioqM8OJURyHTlyiLFjfyA8PIyMGZ0YP96fWrU+fDd6IYQQlsdoc2ysra3p1KkT27ZtM1aTQhjs7t0gwsPD8PT0YtOmHVLUCCFEOmPwiM1/CQ0N5e1b495cEuD169fMmjWLI0eOEBERQeHChRk2bBjlypUz+nOJtEen0+lPj3bp0h0nJye+/roZ1tZy6kkIIdIbgwubXbt2Jdqm0Wh4+vQp69atM0mxMXToUIKDg5k1axaurq5s2LCBHj16sGPHDgoUKGD05xOpl06n401kLLE6BTFRsfx59CBr165iyZKV2NtnQKlU0rLlt+aOKYQQwkwMLmx8fX0/uq906dKMGTPmswK97/79+xw/fpyNGzdSpkwZAEaNGsWxY8f4+eefGTRokFGfT6ROkdFqjl95xoFzj3j5OgqtRs3jizt4eesoAKt/XM13ffuZOaUQQghzM7iw+dCl3AqFAkdHR5ycnIwS6t9cXFxYunQpnp6eCZ5Pp9MRFhZm9OcTqc/VoGAW7LxKjFqDAoh+84K7f60gKvQhANmK1uPimyJcDQrGM7/bfzcmhBDCohlc2OTMmTPRtri4OCIiIowS6H1OTk7UqFEjwbb9+/fz4MEDqlatmux2rayMuzahSqVM8G9hHJfvBDNn6yV0uvifg++f5cGZDWjjorGydSRPpS5kyl6cOA3M2XqJoW1L41VAihtjkM90ypB+ThnSzykjNfSzQqd795WRNHFxcSxevJjcuXPz9ddfc+LECQYNGsSbN2+oUKEC8+bNI1Mm0y2Edu7cOXr27EnlypVZuHBhstr492RTkXpFRKnpNuFXYtQadDp4cfMwj85vBcAxS0HyVu6OTQZn/fEKBdhaq1g1tj6O9tZmSi2EEMKcDB6xmT9/PsuXL2fkyJEABAQE4OLiwoABA1i1ahUzZ85kwoQJRg8KcODAAYYPH07JkiWZNWtWstvRanWEh0caMVl8derkZE94eBQajdwI1Bh+Pf2A6FiN/mfnXKV5du1XMuevQnbPRiiUqgTH63QQE6th77Hb1KuQO6XjWhz5TKcM6eeUIf2cMkzZz05O9kkaCTK4sPn5558ZOnQoHTp0ICgoiFu3bjFlyhSaNWuGs7Mz06ZNM0lhs27dOvz9/albty4zZsz47FVk4+JM88HWaLQmazs90el0/Hb6IW+D7+HglhcAG3tnijfyQ2Vj/5+P/fX0Q74qnVNG5YxEPtMpQ/o5ZUg/pwxz9rPBJ8FevHhByZIlATh27BhKpZLq1asD4O7uzps3b4ybENiwYQMTJ06kQ4cOzJkzR5bGTwdehoRx9tel/PP7NEIfntdv/1RRowNevo7ibXSciRMKIYRIjQwubLJmzcqjR48A+P333ylatCiurq4AXLhwAXd3d6MGvHv3LgEBAdStW5c+ffoQHBzMy5cvefnypUmKKGF+t2/foleP9gTfPQEKBbFvgw1uIzpGChshhEiPDD4V9fXXXzN58mT27NnDuXPnGDt2LAD+/v5s3LiRvn37GjXgr7/+ilqt5vfff+f3339PsK958+YfvXeVSHt0Oh27d+9gypSJREdHY22XibyVu5ExWyGD27KzNeqi2kIIIdIIg3/7Dxw4EDs7O86cOcOwYcNo3749AFeuXKF79+589913Rg3Yt29foxdLIvWJjHyLv/949u79CYDKlatgW+hb3sRYY8hlewogs7M9DnZS2AghRHpk8G9/hUJBnz596NOnT4LtmzZtMlookbbpdDoiotTExGqwtVHhaG/9yYm858+fY+/en1CpVPTvP4iuXXty8NxjNh68ZdhzA3XKecjEYSGESKeS9Wfts2fPOH/+PLGxsfptWq2WqKgozp49y+zZs40WUKQd79/24J0szvbUKetBlRLuZLD78PoyVatWp3//QZQrV4HSpcsCUKWEOzuOBRGr1iRp1EahABsrFVU8jTvPSwghRNphcGGzf/9+RowYQVxcnP6v4n8veJc/f37jJhRpwvu3Pfi3V6+j2HjwFjuOBdG/uSee+d2IiIhg1qyp9OkzgGzZsgHQq1fC05gZ7Kzp39yTOVsvgY7/LG4U//unfwvPjxZPQgghLJ/BV0UtWbKEYsWKsWPHDlq0aMHXX3/N3r17GTFiBFZWVvqF+0T6cTUo/rYHser4xfTeL0De/Ryr1jBn6yX2/H6cdu1asGPHVsaM8eG/Fr/2zO/G4NYlsbGOX4zv/aLp3c821ioGf1sSz3xyOwUhhEjPDB6xuXv3LjNmzKBYsWJUrlyZ5cuXU6BAAQoUKEBwcDCLFy+mSpUqpsgqUqHIaDULdl5F94kRFQCtTserm0cZu3kHOm0c2bPnYMCAwZ+cD+OZ342Z/b/k+NVnHDib8DRXZmd76pTzoIpndjLIhGEhhEj3DP4mUCqVODs7A5A3b16CgoLQarUolUqqVavGjh07jJ1RpGLHrzwjRq355HFxsZE8OL2O148uAlC81JcsmjcbJ6ek3Vcsg501dcvlok5ZD6LVGmztbYmJisHOWiUThYUQQugZfCoqf/78nDt3DogvbNRqNdevXwcgPDw8wYRiYdl0Oh0Hzj365HHR4c+58etkXj+6iEKpwqN0K3JW7EnGjE4GP6dCoSBjBhuyuWYgYwYbKWqEEEIkYPCITdu2bfHz8yMyMpKhQ4dSsWJFRo4cSatWrVi3bh3Fixc3RU6RCkVEqROcFvoYmwwuKK1ssHFwI9+XPXBwy8ursGjeRsfJXbiFEEIYlcGFTevWrYmNjdXfVmHChAn07t0bf39/cubMyahRo4weUqROMbEfPwUVFxuJytoOhUKJ0sqGAtW+Q2WTASubDPpjomOksBFCCGFcyZpt2aFDB/1/586dm/379xMaGqq/Z5RIH2xtVB/cHvHqDnf/WkmWgtVxL1Y//ljHzImOk9seCCGEMLZkf7PcuXOH48eP8+LFCzp16sTDhw+xsbHB0dHRmPlEKuZob00WZ3tevY5CB+h0Wp7fOMCTyz+BTkvIvVNkLVwLpSrhqIzc9kAIIYSpGPzNotFo8PPzY/v27fqF+Ro2bMiCBQt48OAB69evN/odvkXqpFAoqFPWg40Hb6GOfsP9U2sIf/o3AC65y5G7fPtERQ3IbQ+EEEKYjsFXRS1atIg9e/YwadIkjh8/rl9czccnfqE1uZ1C+lKlhDsxIUHc+DWA8Kd/o1BZk7t8e/JW7obK2i7R8QoF2FrLbQ+EEEKYhsGFzfbt2xk4cCAtW7bUr2cDUKRIEQYOHMjx48eNmU+kcjFREdw+Gog6Kgw7p2wUqetN5gJVPzgaI7c9EEIIYWoGn4p69eoVRYsW/eC+bNmyER4e/tmhRNrh4uLCkCHD+fPkWWLdGxKHNQoSrkL87mcbaxX9W3jKbQ+EEEKYjMGFTZ48eTh69Chffvllon2nT58mT548RgkmUq/Tp0+SMWNGihaNX7OoTZsOtG3bMf7u3nLbAyGEEGZk8LdMly5dGDt2LGq1mq+++gqFQsH9+/c5deoUK1euxNfX1xQ5RSqg0WhYsmQBy5YtImdODzZu3EHGjBn1p53+fduDt9FxRMfEYWdrhYOdlUwUFkIIkSKStUBfSEgIixcvZuPGjeh0OoYOHYq1tTU9e/akXbt2psgpzOzlyxf88MNwzp49DUD58hWxsvrwx0ehUOBoby2L7wkhhEhxyTov0KdPHzp06MD58+cJCwvDycmJkiVLJphMLCzHiRPHGTXKm5CQYOztMzB69HgaN25q7lhCCCFEIsme8ODo6Ej16tWNmUWkMhqNhkWL5rNixRJ0Oh2FChVh+vTZ5MmTz9zRhBBCiA8yuLAJCwtj3rx5nD9//oNXQCkUCg4cOGCUcMK8FAoF16//jU6no3Xrtgwb5oudXeK1aYQQQojUwuDCZsyYMRw8eJBq1apRpEgRU2QSZvZuRWmlUsnEiVM5f/4MderUN3csIYQQ4pMMLmz++usvvL296dKliynyCDNSq9UEBs4hLOw148b5A+Dq6ipFjRBCiDTD4MLGwcGBfPlkjoWlefr0CT4+Q7l8+SIArVq1xdOzhHlDCSGEEAYy+JYKHTp0YNWqVbx9+9YUeYQZHDlyiDZtmnP58kUcHTMyc+Y8KWqEEEKkSQaP2HTs2JGdO3dSo0YN8ufPn2gyqUKh4McffzRaQGE6anUsc+bMZP36+PerePESTJs2m5w5PcycTAghhEgegwubsWPHcvfuXfLly4etra3+7t7vvP+zSL2GDv2eP/44CkCnTl0ZOHAo1tY2Zk4lhBBCJJ/Bhc2hQ4cYOnQovXv3NkUekYLatu3IlSuXGD8+gBo1apk7jhBCCPHZDC5sbGxsKFFC5l+kRTExMQQF3dbfvLJKlWrs3XsABwdHMycTQgghjMPgycPNmjVj48aNaLVaU+QRJnL//j26dGlHr15defz4kX67FDVCCCEsicEjNo6Ojvz111/UqlULLy8vHBwcEuxXKBQEBAQYLaD4fL/8speJE8fy9u1bXFxceP78mUwQFkIIYZEMLmx27NiBk5MTAFevXk20X6FQfH4qYRTR0dFMnx7A9u1bAChTphyTJ88kW7ZsZk4mhBBCmEayJg+L1O/u3SC8vQdz69ZNFAoFPXv2pU+f/lhZJfu+p0IIIUSqJ99yFmrHji3cunUTV1c3/P2nUblyFXNHEkIIIUxOChsL9f33Q1Gr1fTo0YcsWbKaO44QQgiRIgy+KkqkTrdv32LChDHExcUB8Zfl+/qOkaJGCCFEuiIjNmmcTqdj9+4dTJkykejoaHLm9KBHjz7mjiWEEEKYhRQ2aVhk5FsmTRrHvn17AKhcuQrNm7cycyohhBDCfKSwSaP++ecG3t6DuX//Hkqlkn79BtK9e2+USjm7KIQQIv2SwiYN+u23Xxg92pvY2FiyZs3GlCkzKVOmnLljCSGEEGYnf96nQfnzF0CpVFK1ag02b94lRY0QQgjxPzJik0a8fh2Ks7MLAAULfsHatZspUOALOfUkhBBC/It8K6ZyOp2OTZvW0bBhbS5ePK/f/sUXhaWoEUIIId4jIzapWHh4OOPHj+Lgwd8B2Lt3D6VKlTFzKiGEECL1ksImlbpy5TI+PkN48uQxVlbWDBkygvbtO5k7lhBCCJGqSWGTyuh0Otat+5G5c2cSF6cmZ04Ppk6djadnCXNHE0IIIVI9maSRyhw5coiZM6cQF6emTp16bNy4Q4oaIYQQIolkxCaVqVmzFg0aNKJUqbK0adMehUJh7khCCCFEmiGFjZlptVq2bdtMo0ZNcXR0RKFQMHnyTClohBBCiGSQwsaMQkNDGT3ah+PHj3Hu3BmmTIkvaKSoEUIIIZJHChszOX/+LL6+w3jx4jm2traUL1/R3JGEEEKINE8KmxSm1WpZsWIpixbNQ6vVkjdvPqZNm0OhQoXNHU0IIYRI86SwSUEhISGMHDmckyf/AqBJk28YOXIsGTI4mDmZEEIIYRmksElROu7cuYWdnR2+vmP45psWMp9GCCGEMCIpbExMq9Xq7+nk6urGjBnzcHBwpGDBL8ycTAghhLA8aWKBPq1Wy7x586hWrRolS5ake/fu3L9/39yxPunlyxf06dONvXt/0m8rWbK0FDVCCCGEiaSJwmbhwoVs2rSJSZMmsXnzZhQKBb169SI2Ntbc0T7qxInjtGnTnDNnTjF79nSio6PNHUkIIYSweKm+sImNjWXlypV8//331KhRgyJFijB79myeP3/O77//bu54icTFxREYOId+/XoSEhJMoUKFWbbsR+zs7MwdTQghhLB4qb6wuXHjBm/fvqVSpUr6bU5OThQrVowzZ86YMVliT548oUePzixfvhidTkerVm1Ys2Yz+fLlN3c0IYQQIl1I9ZOHnz17BkD27NkTbM+aNStPnz5NdrtWVsat6SIi3tC4cQOCg4NxcHDAz28ijRo1MepziHgqlTLBv4VpSD+nDOnnlCH9nDJSQz+n+sImKioKABsbmwTbbW1tCQsLS1abSqUCFxfjrh3j4uJAmzZtOHbsGIsXLyZfvnxGbV8k5uRkb+4I6YL0c8qQfk4Z0s8pw5z9nOoLm3dzU2JjYxPMU4mJicHePnkdp9XqCA+PNEq+d1QqJd7e3vTu3R8rK2tCQ98atX3x/1QqJU5O9oSHR6HRaM0dx2JJP6cM6eeUIf2cMkzZz05O9kkaCUr1hc27U1AvXrwgd+7c+u0vXrygSJEiyW43Ls74H2xra2usrKxN0rZITKPRSl+nAOnnlCH9nDKkn1OGOfs51Z9sLFKkCI6Ojpw6dUq/LTw8nGvXrlGuXDkzJhNCCCFEapPqR2xsbGzo2LEjM2bMwNXVlZw5czJ9+nTc3d2pW7euueMJIYQQIhVJ9YUNwMCBA4mLi2P06NFER0dTvnx5VqxYkWhCsRBCCCHStzRR2KhUKkaMGMGIESPMHUUIIYQQqViqn2MjhBBCCJFUUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYCp1OpzN3iJSm0+nQao3/slUqpdFv0y4+TPo6ZUg/pwzp55Qh/ZwyTNXPSqUChULxyePSZWEjhBBCCMskp6KEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksDECrVbLvHnzqFatGiVLlqR79+7cv3/f3LEszuvXrxk7dizVq1enTJkytGvXjrNnz5o7lkW7e/cupUuXZseOHeaOYpF27dpFo0aNKFGiBI0bN2b//v3mjmRx1Go1s2fPpmbNmpQuXZr27dtz/vx5c8eyKAsXLqRTp04Jtl2/fp2OHTtSqlQpatasyYoVK1IsjxQ2RrBw4UI2bdrEpEmT2Lx5MwqFgl69ehEbG2vuaBZl6NChXLp0iVmzZrFt2zaKFy9Ojx49uHPnjrmjWSS1Ws3w4cOJjIw0dxSLtHv3bkaOHEmbNm34+eefadSoEUOHDuXChQvmjmZRFi1axPbt25k0aRK7du0if/789OrVi+fPn5s7mkVYvXo18+bNS7AtNDSUbt26kTdvXrZv387333/P3Llz2b59e4pkksLmM8XGxrJy5Uq+//57atSoQZEiRZg9ezbPnz/n999/N3c8i3H//n2OHz+On58f5cqVI3/+/IwaNYps2bLx888/mzueRZo/fz4ODg7mjmGRdDodc+fOpUuXLnTp0oU8efLQv39/vvzyS06fPm3ueBbl4MGDNGnShKpVq5InTx58fX2JiIjg4sWL5o6Wpj1//pyePXsyd+5c8uXLl2Dfli1bsLGxYdy4cRQoUICWLVvStWtXli1bliLZpLD5TDdu3ODt27dUqlRJv83JyYlixYpx5swZMyazLC4uLixduhRPT0/9NoVCgU6nIywszIzJLNOZM2fYvHkzU6dONXcUixQUFMTjx49p2rRpgu0rVqygT58+ZkplmZydnTl8+DCPHj1Co9GwefNmbGxsKFq0qLmjpWl///03mTJl4qeffqJkyZIJ9p09e5by5ctjZWWl31apUiXu3r1LcHCwybNZffoQ8V+ePXsGQPbs2RNsz5o1K0+fPjVHJIvk5OREjRo1Emzbv38/Dx48oGrVqmZKZZnCw8Px9vZm9OjRiT7Xwjju3bsHQGRkJD169ODatWt4eHjw3XffUatWLfOGszCjRo1iyJAh1K5dG5VKhVKpZO7cueTOndvc0dK0WrVqffSz+uzZMwoVKpRgW9asWQF48uQJbm5uJs0mIzafKSoqCgAbG5sE221tbYmJiTFHpHTh3LlzjBw5ktq1a8sXgZGNGzeOUqVKJRpNEMYTEREBgI+PD02aNGHlypVUqVKFfv36ceLECTOnsyx37tzBycmJBQsWsHnzZlq0aIGPjw83btwwdzSLFR0d/cHvRCBFvhdlxOYz2dnZAfFzbd79N8S/efb29uaKZdEOHDjA8OHDKVmyJLNmzTJ3HIuya9cuzp49y549e8wdxaJZW1sD0KNHD5o3bw5A0aJFuXbtGqtWraJy5crmjGcxHj9+zIgRI1i9ejXlypUDoESJEty+fZv58+ezYMECMye0THZ2dokunnlX0GTIkMHkzy8jNp/p3VD9ixcvEmx/8eIF7u7u5ohk0datW8f3339P9erVWbZsWYJiUny+7du3ExwcrL80tnTp0gD4+fnRuHFjM6ezHO9+N7w/XF+wYEEePXpkjkgW6fLly6jVakqUKJFge8mSJfWnA4Xxubu7f/A7ESBbtmwmf34ZsflMRYoUwdHRkVOnTunP2YaHh3Pt2jU6duxo5nSWZcOGDUycOJFOnToxcuRIlEqpy41txowZREdHJ9hWr149Bg4cSKNGjcyUyvIUK1YMBwcHLl26pB9JALh586bM/TCid394/vPPP3h5eem337x5kzx58pgrlsUrX748mzZtQqPRoFKpADhx4gT58uUz+fwakMLms9nY2NCxY0dmzJiBq6srOXPmZPr06bi7u1O3bl1zx7MYd+/eJSAggLp169KnT58EM+vt7OzImDGjGdNZjo/9NeXm5kbOnDlTOI3lsrOzo2fPnixYsIBs2bLh5eXF3r17OX78OKtXrzZ3PIvh5eVFuXLl8PHxwc/PD3d3d3bt2sWJEyfYsGGDueNZrJYtW7J8+XJGjRpFz549uXz5Mj/++CPjx49PkeeXwsYIBg4cSFxcHKNHjyY6Opry5cuzYsWKRJOnRPL9+uuvqNVqfv/990TrAzVv3pwpU6aYKZkQydOvXz/s7e31614VKFCA+fPnU7FiRXNHsxhKpZKFCxcyZ84cfvjhB8LCwihUqBCrV6+mVKlS5o5nsdzc3Fi+fDn+/v40b96cLFmy4O3trZ9PZmoKnU6nS5FnEkIIIYQwMZmkIIQQQgiLIYWNEEIIISyGFDZCCCGEsBhS2AghhBDCYkhhI4QQQgiLIYWNEEIIISyGFDZC/I8lr3xgya8ttTB2H8t7JkTySGEjBHDw4EF8fHzMmmHHjh0ULlzY6PcKWrRoEStWrDBqmyKh27dv065dO6O19/57Nn/+fAoXLmy09v+Lr68vhQsXpnDhwgwfPvyz2qpVqxaFCxdm2LBhHz3m22+/pXDhwsyfPx+A6tWr659/x44dn/X8In2SwkYIYPXq1Tx9+tTcMUxizpw5REVFmTuGRdu/fz8XLlwwWnvvv2etW7dm8+bNRmv/U7JkycLmzZsZOHDgZ7elVCo5dOiQ/u7O//bo0SMuXbqUYNvixYsJDAz87OcV6ZcUNkIIkcq5u7un6C0AbGxsKFWqlFFuyFmmTBkiIyM5evRoon379u2jaNGiCbYVK1Ys0TYhDCGFjUj3OnXqxOnTpzl9+jSFCxfm1KlTnDp1isKFC7Np0ya++uorvvzyS/788098fX2pVatWgsc/evQo0bD569evGTt2LF9++SUlSpTg22+/5cSJEwZn27p1Ky1atKBUqVJ4eXnxzTffsG/fvgTHPHjwgIEDB1KhQgXKly9Pr169uHXrFoD+9EVgYGCCUxlXrlyhR48eVKxYkTJlytC3b1/9Y95Zu3YtDRo0oESJElSrVo1x48YRERGh36/Valm6dCl169bF09OT+vXrs3bt2k++prdv3zJ58mSqV69OqVKlaNGiBYcOHdLv12g0rF+/nqZNm+Ll5UXNmjWZMWNGgr/4fX196dq1K9u3b6d+/fp4enry9ddfJ/ry/K++AYiJiWHatGnUqFEDT09PmjZtmqh/a9Wqxbx585g6dSpffvklXl5e9OjRg7t37wLxp4nejTD8+5RK4cKFCQwMpGXLlpQtW5aFCxcCcObMGXr06EH58uXx9PSkVq1azJ8/H61W+9H37EOnovbt20eLFi0oXbo0VapUYezYsYSFhen3z58/n7p163LkyBGaNm2qf4927tz5yffofYULF2bjxo34+vpStmxZKlSowKRJk4iOjmbq1KlUqlSJihUrMmrUqEQjM7ly5cLT05P9+/cnanffvn00btzY4DxC/BcpbES65+fnR7FixShWrBibN2+mePHi+n2zZ8/Gx8cHHx+fJP/FHBMTQ5cuXTh48CBDhgwhMDAQd3d3evbsaVBxs379esaOHUvt2rVZsmQJ06dPx9ramhEjRvDkyRMAXrx4QevWrQkKCsLPz48ZM2YQFhZG165dCQkJ0Z++aNWqlf6/T548Sbt27dBqtfj7+zNp0iSePn1K27ZtuXPnDgB79+5l6tSpdOjQgRUrVtC/f392797NpEmT9PnGjRvHvHnz+Prrr1m8eDENGjQgICCABQsWfPQ1abVaevbsyc6dO+nduzeLFi2iUKFCDBgwgFOnTgEwduxYAgICqFWrFosWLaJDhw6sW7eOfv36JZhQe/XqVVasWMHAgQNZsGABVlZWDBw4UP/l/qm+0el09O/fn02bNtGtWzcWLVpE6dKlGTJkCLt27UqQe82aNQQFBTF58mQmTZrE1atX8fX1BeJPE7Vq1QqAzZs307p1a/3jFi1aRP369Zk1axa1a9fmxo0bdO3aFWdnZ2bPns2iRYsoU6YMgYGB7N27V9/G++/Z+xYuXMiQIUMoWbIk8+bNo3///vz666906tSJ6Oho/XEvX75kwoQJdO7cmaVLl+Lh4YGvr6/+fTbEjBkzsLGxITAwkG+++Ya1a9fSrFkznj59yvTp02nbti3btm37YHHbqFEjjhw5kiBbUFAQN27coFGjRgZnEeK/yN29RbpXsGBBHB0dARIVL23btqVBgwYGtbd7925u3LjBli1bKFmyJBA/IbJTp07MmDGD7du3J6mdhw8f0r17d/r376/f5uHhQYsWLTh//jw5cuRg1apVREdHs2rVKrJkyQJA0aJFadOmDRcvXtSPLv37VMbMmTPJlSsXy5cvR6VSAVC1alXq1q3L/PnzmTNnDqdOnSJnzpx06NABpVJJhQoVyJAhA6GhoQDcvXuXLVu2MHToUHr37q1vQ6FQsGTJEtq3b4+Li0ui13Ts2DHOnz/PwoULqV27NgCVKlXi/v37nDx5Ejc3N7Zt28bgwYP57rvvAKhSpQpZs2bF29ubY8eOUaNGDQDevHnDjh079KdLMmTIQMeOHTl58iT169f/ZN/Y2tryxx9/MHv2bP2Xa7Vq1YiKimLGjBk0adIEK6v4X5FOTk4sXLhQ318PHjxg/vz5hIaG4u7ujru7O5D48+Pl5aXvH4Bdu3bx5ZdfMn36dJRKpf71HTlyhDNnztC0aVN9Gx87/RQWFsaiRYto3bo1fn5++u2FChWiQ4cO7Nixg/bt2wMQFRWFv78/lStXBiBv3rx89dVXHD16lAIFCiRq+78UKFCACRMmAFC+fHm2bduGWq1mxowZWFlZUa1aNQ4dOsT58+cTPbZhw4ZMnz6do0ePUr9+fSB+tKZ06dLkzJnToBxCfIqM2AjxH5JzJcqJEyfIkiULxYsXJy4ujri4ODQaDV999RVXr15NcLrgv/j6+jJixAjevHnDlStX2LNnD+vXrwdArVYDcO7cOUqVKqX/4gbImjUrhw8fTnTKDCAyMpIrV67QqFEj/Zc0xH9xf/XVV/pRk0qVKnHv3j1atGjBwoULuXbtGk2bNqVLly5A/KiPTqejVq1a+tcYFxdHrVq1iImJ4dy5cx98TWfPnsXa2pqvvvpKv02hULBx40YGDRrE6dOnAWjatGmCxzVu3BiVSqXPB+Dq6ppgDsi74uLdpNtP9c2JEydQKBTUqFEj0Wt4+fJlglNWJUqUSNBf7z/XxxQqVCjBz82aNWPZsmWo1Wpu3brFgQMHmD9/PhqNRv+efsrFixeJjY1N1EflypUjZ86cCfoIEhZb73JHRkYm6bn+rXTp0vr/trKywsXFBU9PT33xB+Ds7MybN28SPTZHjhyUKlUqwemoffv20aRJE4NzCPEpMmIjxH9wc3Mz+DGvX7/m5cuXCU5p/dvLly/JlCnTJ9t58OABY8eO5eTJk1hZWZE/f359ofXulMzr16/x8PBIcrY3b96g0+nInDlzon2ZM2fWfyk1atQIrVbLhg0bCAwMZO7cueTMmZNhw4bRuHFjXr9+DfDR+RHPnz//4PbXr1/j7OysH61437ui79/FCPz/F+m/vzTt7e0THKNQKAD0c1U+1TevX79Gp9NRpkyZD+5/8eKFfhLr+8/1Lv+75/qY9/s5OjqaiRMnsnv3buLi4vDw8KB06dJYWVkled2ad330qffwnX9nf5c7OWvkvBvV/Fjbn9KwYUP91V7379/n3r17Bo+GCpEUUtgIYQCFQoFGo0mw7f2/fjNmzEjevHmZMWPGB9tISiGi1Wrp3bs31tbWbNmyhWLFimFlZcXt27f56aefEjxXSEhIosefOHECDw8PcuXKlSibQqHg1atXiR7z8uVLnJ2d9T83adKEJk2a8ObNG/7880+WLVvGiBEjKFeuHE5OTgD8+OOPODg4JGorR44cH3xdGTNm5PXr12i12gTFzfXr14mLi9MXfC9fvkzQT2q1mtDQ0A+e3vqYT/VNxowZyZAhA2vWrPng4/PkyZPk50oqf39/fv31V+bMmcOXX35JhgwZAPSnipLiXR+9evUq0emkly9fJnrPU4sGDRowZcoUjh49yvXr16lUqVKy/nAQ4lPkVJQQ8NERhPc5ODgQGhqa4MqP9+cUVKhQgadPn+Lm5kaJEiX0/5w4cSLBvJb/Ehoayt27d2nVqhVeXl764f5jx44B/z9SUK5cOS5evEhwcLD+sSEhIfTq1YuDBw8mem0ZMmTA09OTffv2JSjQ3rx5w5EjRyhbtiwAgwcPZsCAAUB8gdCwYUP69euHRqPhxYsXlC9fXp/z36/x9evXzJkzRz+i875y5cqhVqsTXL2k0+kYNWoUixYtokKFCgDs2bMnweP27t2LRqPR50uKT/VNhQoViIyMRKfTJXgNt27dYsGCBcTFxSX5uZL6+Tl37hwVK1akTp06+qLm6tWrhISEJBj9+a/2SpYsiY2NTaI+Onv2LE+ePPnoCJS5ZcuWjbJly/Lbb7+xf/9+uRpKmIyM2AhB/ByTCxcucOLECYoVK/bR47766ivWrl3LyJEjad26Nbdu3WLlypUJipUWLVqwbt06unXrRt++fcmePTt//fUXy5Yto2PHjlhbW38yj5ubGzlz5mT9+vW4u7vj5OTEn3/+yY8//gj8/9yOrl27smvXLnr06EHfvn2xtbVlyZIlZM2alWbNmiV4bWfOnKFcuXIMGzaMHj160LNnTzp27IharWbp0qXExsbqi5lKlSrh5+fH1KlTqV69OuHh4QQGBpI3b16KFCmCtbU1X3/9NWPGjOHx48d4enpy9+5dZs+ejYeHB3nz5v3g66pZsyalS5fmhx9+YNCgQeTJk4c9e/Zw8+ZNxowZQ8GCBWnevDmBgYFER0dTsWJFrl+/TmBgIBUrVqRatWpJeTuT1DdOTk6UL1+efv360a9fPwoUKMDly5eZP38+VatWxdXVNcnP9W4E6+eff6ZkyZIfHTXx8vJi//79bNy4kQIFCnDjxg0WLVqEQqFIMF/n/ffs35ydnenduzeBgYFYW1tTu3ZtHj16xNy5cylYsCAtWrRIcu6U1rBhQyZPnoxCoaBu3brmjiMslBQ2QgAdOnTg6tWr9OrVi8mTJ5M1a9YPHlelShV8fHxYu3Ytv/32G8WLFycwMJC2bdvqj8mQIQPr169n5syZTJ8+nTdv3ujnp3Tv3j3JmRYuXIi/vz++vr7Y2NhQsGBBFi1aREBAAGfPnqVTp05kz56dDRs2MH36dH744QdsbGyoUKEC06dP159W6tu3LwsXLqRXr17s27ePypUrs2rVKubNm8fQoUOxsbGhXLlyTJ06lS+++AKIvxpMrVazadMmNmzYgJ2dHZUrV2bEiBH6wmzy5MksWbKETZs28ezZM9zc3GjUqBGDBw/+6KiUSqVi2bJlzJw5k/nz5xMZGUmRIkVYvny5fnKqv78/efLkYfv27axYsYKsWbPSqVMn+vfvn+SRESBJfbN06VLmzp3LkiVLCA4OJlu2bHTt2jXBlWhJUa9ePXbv3o2vry+tWrVi3LhxHzzO19cXtVrNnDlziI2NxcPDg++++47bt29z6NAhNBoNKpUq0Xv2vu+//57MmTOzbt06tm7dirOzMw0aNGDw4MEGzXtJaQ0aNMDf35+aNWvqi0EhjE2hkzutCSGE+B9fX19Onz6dYNHElPbo0SNq167N5MmTU/UIlEidZI6NEEKIBGJjY7l48SIPHjxI8ee+du0a169fT/HnFZZDTkUJIYRI4OXLl7Rp04amTZt+9Oo+U+nbt+9HlwsQIinkVJQQQgghLIacihJCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExfg/dvjTanouEpsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the measured versus known value of the test set\n", + "plt.plot(test_data['true_conc_mM'], test_data['concentration'], 'o', \n", + " markersize=10, label='measurements')\n", + "plt.plot([0, 10], [0, 10], 'k--', label='equivalence')\n", + "plt.xlabel('true lactose concentration [mM]')\n", + "plt.ylabel('measured lactose concentration [mM]')\n", + "plt.legend()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/tutorials/quickstart.ipynb b/.doctrees/nbsphinx/tutorials/quickstart.ipynb new file mode 100644 index 0000000..99fdf28 --- /dev/null +++ b/.doctrees/nbsphinx/tutorials/quickstart.ipynb @@ -0,0 +1,1261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', \n", + " cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3464.65it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 6.73it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587620.69180023380.4619342.805655e+061
013.170.5947503.90567743165.7895205.179895e+062
014.450.349607-2.99570434697.4716864.163697e+063
015.530.3140091.62120815061.8358181.807420e+064
016.520.3473761.99120510939.0679601.312688e+065
017.290.3481231.70557112525.9916561.503119e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158762 0.691800 23380.461934 2.805655e+06 1\n", + "0 13.17 0.594750 3.905677 43165.789520 5.179895e+06 2\n", + "0 14.45 0.349607 -2.995704 34697.471686 4.163697e+06 3\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4\n", + "0 16.52 0.347376 1.991205 10939.067960 1.312688e+06 5\n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks(buffer=0)\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHLUlEQVR4nOzdd3wb9f3H8ZeWbXlvO3H2uiQkISRAGWHvUUYXBQotFChQCrRl77LhV1agUPZeBcouGwKETULIvizbSbz3XpLu94fsYEKc2Irtk+T38/Hww7budPf+Wralj+47HJZlISIiIiIiYjen3QFERERERERAxYmIiIiIiIQJFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWHDbHcAGtUAsUGJzDhEREem9YUAbkGpzDhEZQI4huEJ8i2VZcYFA/7fb6XQwEMcNJ9HexmhvH0R/G9W+yBftbYz29sHAtNHpdOBwOFoBb78eWETCylC8clISCFhjq6ub+vWgbreTtLQE6uub8fkC/XrscBHtbYz29kH0t1Hti3zR3sZobx8MXBvT0xNwuRzq9SAS5TTmREREREREwoKKExERERERCQsqTkREREREJCyoOBERERERkbAwFAfEi4iIiPSLBQsWJBGc5lhv+Ir8VAAomT17dkNv76DiRERERKSPFixY4AQuczicJzscDg/gsDuTSBiyLMvqWLBgwRPAjbNnz97mFH4qTkRERET67jKXy31WcnJae0xMXLPD4YjuxWtEQmBZlqO9vTW+vr7mLL/fB3D9tu6j4kRERESkDxYsWJDscDhPTk5Oa09KSquyO49IOIuN9bYAGbW1VScvWLDgrm118VL/SBEREZG+yXU4HJ6YmLhmu4OIRILOq4seguOztkrFiYiIiEjfOAGHunKJ9E7n34qDXtQeKk5ERERERCQsqDgREREREZGwoOJERERERMLC3Lm3Dz/mmEOn252jt1auXB73/vvvptidI5qoOBGRqLJi3sf875KLeOuqy9i4Yb3dcUREJIpdcsnfJy5fvjTB7hzRRMWJiESNz+69h8rb72JMaSlt5kp+9euj+OyzT+2OJSIiUUtzIvQ3rXMiIlFh1Yfvk/LVVzgdDlZbAT53eWhtbeXCC8/nuef+y6hRo+2OKCJRLhAI0NzcbMsbv/Hx8QGns++nnjNn59m//OVxJfPmfZDR0dHhvOuu+1bGx8cH7r77jhGLF3+X3NTU5EpJSfHtt9+BVeedd0HRihXLvX/60x+m3nvvQytmzJjZDHD++WePX7p0cfLbb8/7zu12Y1kWRxxx4I6///2pRccdd2Ll5uesrKxw3377rSMWLvwmxe/3OyZNmtz4t79dvGH8+AltXfs88MC9OW+88UpOQ0ODe8KEiU2XXHJVQdf2LWUeMWJk+/33/2vYxx9/mFFTU+PJy8trPemkU4oPPfSIWoAXXngu49lnnxx2yimnFT388AMj6upqPVOm7NBwxRX/KHjssYdz5817P8PtdltHHfWLsjPPPKcUoK2tzXHPPXcMnz//k7Tq6qqYuDhvYMcdZ9ZdcsmV69PTM/zHHHPo9MrKypj//OeZYUuWLEp68MEnzJqaatc999yZ9803X6Y2NDS4x44d33TGGWcX7bbbHo1dbXvllZfSn3768WEVFRWxo0aNatlvv4OqHn743yPnz/92QSiPidPpDKl94UrFiYhEvIDPR9XTT5LhcLDM4SD2j9fwszYfa++7grXmYh78vxu57u777Y4pIlEsEAhwwgm/nLxy5QpbuvhMnjy18ZlnXjRDKVDeffd/WTfddNtqv9/nmDhxUtsJJ/xyakpKasctt9y5Kikpyf/xxx+mPvjgfSOnTp3WdMghh9dmZma2f/HFZ8kzZsxs9vv9LF++NKmtrc353XcLEnbZ5WdNixYtjG9oqHfvv/9BtZufy+fzcd55Z00Ch3XNNTeuzcjI8N199x0j/v73v0x68cXXlwBUVlbGLF26OOmmm25f3d7e5rjxxn+MvfHGf4x5+OEnzZ4yn3/+2ePXrVsb/5e//HX92LHjW99++830G264ZrzT6Vxz8MGH1QFUVVXGvPbay9nXX3/rmubmJueVV1488ZRTTtzhgAMOqrz33odX/O9/r2U89dRjefvss1/tlCk7tN52280jvvrqi9SLL768YOTIUW2maXr/+c8bx9x//7+GX3rpVRseeujJFaeeeuLUPffcp/qMM84q8fv9nHvumZM6OjocF198RX5WVnbH888/k33JJX+bdOed966cOXNW8/vvv5Ny++23jD355FM37rvvAbVfffV58kMP/Xvk9j4mobSvz78og0TFiYhEvAWPP0KGw0GDz0fCKX+jNeDA5XJz2K/OxvXsbeze3Mp377/LTgcebHdUEYlqkbnuyT777F81c+asZoCWlhbH/vsfVHXIIYfVjBw5uh1gzJg/lr/wwnO5a9as8h5yyOG1O+/8s9qFC79JBkoXLVqY4HK5rUmTJjd+881XSbvs8rOmTz/9OHXiRKMxKyvbt/m5Pvvsk+TCwgLvo48+s3TixEltAJdffk3BY489lFtdXeUGcLlc1nXX3ZKfkpLiBzjssCMrnnrqsbyeMq9atTLu22+/Tr3mmhvWHHjgIXUA55xzfsm6dWvin3768WFdxYnf73f87W8XF3a9MJ8+fcf6VatWJl544WUbHQ4HZ5zx55L//OfZYatXr/JOmbJD65QpU5v22++Amt13n9MIMHLk6Pb33nu7vqBgnRcgMzPL53Q6La/XG0hLS/d/+OF7yfn56+IffPDxZV3nuOKKf6xftWplwtNPP547c+asdc8993TubrvtUX3aaWeWAUyYMLFi48YNsa+//krO9jwmobRve35nBpKKExGJaJZl0fHF5wCszswhIykHWtoByMwdhSczB2fAR+F/X1BxIiIDxul08swzL5qR1q0LYMSIkZu6U3m9Xuukk04p/9//Xk976qnHE4qLi2ILC/Pja2trPH5/wAGw11771l199WVZLS0tjq+++iJphx2mNeTljWz9/vuFyUDpN998lbL33vtWb+lcq1ev8sbHx/u7ChOAnJxc38UXX7Gx6/uUlBRfV2ECkJSU7G9vb/9R47pnNs2VXoCdd/5ZY/d9pk+f2fDEEw+P6H7bhAk/nDc2NjaQlZXT5nA4AIiLi7MA2tranADHHvvr6k8//Tjp9ttvySsq2hi7ceMGb3FxUdzkyVN+dJ4ua9as9nq98f7uL/wdDgdTp05rXLjw22SAgoJ18XPm7F3T/X477rhT4+bFSV8fk1DaF65UnIhIRFtfsI4PijYwJz0T7y9/+ZPtTbMOgG/fYXxrKyUF+QwbM9aGlCIyFDidThITEwN25+ir2Ni4TZmbm5udf/rTH4zW1lbnXnvtU3PwwYdV7bjjzPXnnHPG5K59dt99zwaPxx348svPkr77bkHyfvsdUD169Ji21177b+6GDYUxBQXr4q+55oZ1WzqXy+W2ul4s98TpdG7zClT3zD0NSg8E/A6Xy/WjjR6P50ffO509Z7n22itHffbZJ+n77ntA1W677Vk3efLUkqeffjy3qqoiZkv7W9aWmxYIBHC73VbwfE7LsrZ9ga2vj0ko7QtXKk5EJKK9+vorvFRSRMGI0RyTPOwn22Om7kr5V2+R7XLx3QvPMezCS21IKSISGT7++MPk/Px18f/975vfZ2fn+ABqaqpddXV17q4iICYmxtpxx53qP/lkXurq1asSL7nkysIRI0a2OxwO69577x4+bNjw1u6D27sbN258a1NTk2vdurWx48aNbwOoqqp0H3/8L6Zdf/2tq0PJPGnS5BaAb7/9KrGrWxfAkiXfJ+bljWwJ5ZjV1VWud999K+viiy9f9/OfH7vpSsfGjevj4uK83QqjH178T5gwqaW5udm1YsWyuO5XT5YvX5Y4YsSoVoDRo8e0LF++LBEo79q+bNmSrY5T6s1jEk3C+rKOiMjWWJbFe++9C8DsPQ/e8r9oh4PizGBXZWv5ssELJyISgXJyctsBXnvt5YwNGwpjvvrqi8QLLjh3gt/vd7S3d2x6Jb7HHnNqP/rog8zk5CTf+PET2mJjYy3DmNI4f/7HGbvttkdtT8ffa6996seOHd987bVXjF2w4JuElSuXx11zzeVjUlJSO3bccafmUDIbxpTWmTNn1c2de/uo999/J2XNmtWx99xz57AFC75J/c1vji8L5ZjJySl+rzfeP3/+J6nr1q2NXb58qffqqy8bXVCQH9/R8cPPIS4uzl9UtDG2vLzMvc8++9WNHDm65dprrxz3+eefJq1atTLuuuuuGrVx43rvb397QhnACSecXPLVV5+nPfzw/Tnr1q2NffHF5zPefPP17K1l6e1jEi1UnIhIxFr9xWdk19eTEBvLyPE79bifc+cDARjrcLJhldnjfiIiQ92sWTs3n3rqGRtee+3l7JNP/u20W265fsy0aTs27LnnXtWm+cNMZPvtd2BdIOB3TJu2Y33XbTvtNLvesiz22Wf/2p6O73Q6ufXWO9ZkZeW0X3LJ3yf+5S9nTna5XNbtt9+9OjY2NuTLADfffPu6XXfdrfb2228dc9ppJ+/w1Vefp1522TVrjzjiqJpt3/un3G43V1zxj3Xr1xd6//jH3+1w0UV/ndjW1ub83e/+UFRUtMHb1NTkBDj66F+WL1z4Tcp55509ye12M3fufavGjBnX/I9/XDH+zDP/OKWgIN978823r5o9e9cmgP32O7D+z38+r/CNN17NOvXUE3d4881Xsw455LCKrm5fW9LbxyRaOHrT7y3KrPP7A2Orq5v69aBut5O0tARqaprw+SKuu2mvRHsbo719EH1t/OCyixhZXs73Tieek67A6XTg9cbQ0tJOIPDj/21pj1zDMJeTNZMnc/gFl9iUePtE2+O3JdHexmhvHwxcG9PTE3C5nPnAuH47aIgWLFgw2el0vZ2dndcYExMXtrMeSfj54ov5iZmZ2R3dJwS47767c999963Ml1/+31I7sw2k9vbWuPLyosRAwH/o7NmzV25tX405EZGIZFkWyaWl4HTSPn4HPNvYf2X2aF7+dh4uj5PDByWhiIjIj3355ecp8+Z9mH7RRZcVjB49pm358mXe1157Oeeww46ssDtbuFBxIiIRqWbdWlKcTjoCAeJn7rPN/R2zD2DeOy8Qs6COlpYWvF7vIKQUERH5wdlnn1fc0tLivPnm68c2NNS709Mz2o8++hdlp59+Vliv2j6YVJyISERa/f67pAGFPh/OhHS21UM1K3ckKWlZ1NVUsGjRAnbffc6g5BQREekSGxtrXXbZ1RuADXZnCVcaEC8iEalpxXIA6tIytlmYQHAhrJ2NGRyenUt+5wxfIiIiEl505UREIo5lWaTU14PTiTVuh17fb9f0LHbyjWFlQf4AphMREZFQ6cqJiEScihUrSHI6afP7SZi2e6/v55qwIwDDAwFaWkJal0tEREQGkIoTEYk4KytK+evSRTzZ2ACxSb2+n3vsDrQHAiS7Paz8fP4AJhQREZFQqDgRkYizeMliilpbaRs9vlfjTTZxuyl2BP/tlXz95cCEExERkZCpOBGRiLNkyWIARoyZ3Of71qZkA9BRqHEnIiIi4UbFiYhEFF9zE3tWV3NYdi7DRkzo8/2t0cGCJqWpBatPl11ERKLPnDk7z37hhecyerv/vHkfJB977OHT9t13t1m33HLDiIHM1htz594+/JhjDp3en8fsy89k48b1Ma+99nJaf55/qNNsXSISUQq+/ILdUlIZ742nKnMUgT7WF7ETdoQln5Dt8VBUkM+IseMGJqiISAR46aU3vk9OTvH3dv8HH7xvRE5Obttdd927KjExqdf3iyR9+Zn84x9XjsnOzm4/6qhjawY611ChKyciElFKFy4AoNzlImA5+n6A5DTuqKrllEXfYq5b08/pREQiS05Ors/r9fb6bZ6mpibX1Kk7NI0aNaY9PT0jKouTvv1MQnkikq1RcSIiEaV9fSEAzelZIR+jbdgY2gIBVqxY1l+xREQiUvcuTJdffuGYSy/9+9hbb71hxGGH7b/j/vvvsdP55589vqys1N21b2VlRcx//vPssDlzdp69fn1BjGVZPPDAvTnHHnv49P3332OnE0745dSXX34xvev4n3/+adKcOTvPfuCBe3MOOWTfmSee+Osp+fnrYufM2Xn2v/5117DDDz9gx2OOOXR6bW2tq66uznX11ZeNPuyw/XY86KC9Zp5xxh8mLVq0ML573meffTLzF784Ytp+++0+6/zzzx7f2Njg2lr7Tj/9ZOPOO/85/OqrLxt94IFzdjrssP12/Ne/7hq2evWq2D/+8SRjv/12n3X88b+c+t13Czadp+tnUltb6zrqqINnnHvumZv6EH/yybykvfbaZfb//vd66umnn2ysWLE88eOPP8ro6lp2zDGHTp879/bhm2e4/PILx/T08/D7/RQXF3kuvPD8cQcdtPfMQw/dd8dzzz1zwtq1a2JDfmAjmIoTEYko8U2NADjyxoZ8jOEjg88zy5cv7ZdMIiJd/C0tzp4+Am1tjsHYd3t88cVnafX19e677rrXvOqq69auWLE86Z577syDYHen9PT0jp///Niyl1564/u8vJHtd9xxa96bb76W/ec/n7f+4YefWn7ssb8q+9e/7hz95JOP/egdpK+++iL13nsfWnHJJVcWuFxOC2DevA/S77jjHvOaa25cm5KS4j///LMnFhcXxV5//a1r7r33oZWTJ09pOv/8sycvWfK9F+C1115O+/e/7xl17LG/KnvwwSeWTZmyQ9Nbb72Rva02vfLKi7nZ2TntDz305LIjjzy6/Nlnnxx+8cV/nXjccSeU/utfD66IifEEbr/9ltGb3y81NdV/4YWX53/33YKUV1/9b3p1dZXr1ltvGHvAAQdXHn74z2tvvfXONRMnTmraffc9ax566MkVffk5d/95tLa2Ov/ylz8ZgYCfO+74l3nHHf8yk5NTfGef/ccpxcVFnr4cNxpozImIRAxfUxPpnVMBe8ZMDfk4Y3LyOGXkGDKqarAsC4dDV+VFpH+s/ctZO/W0zTvJqBt50aWb+pOu+9u5O1odHVt8ozh2zNjG0VdcbXZ9n3/x36cHmpu3+LotZnhe85hrb+jTi+MeM3q9/quvvr7Q4/FYkyZNbv3ii8+qFiz4JgWC3Z2cTqfl9XoDOTm5vqamJufrr7+Sc8EFl+YfeOAhdQBjx45rKykpjn3ppedyTzrpDxVdxz3uuBNKx4+f0Aawfn1BDMARRxxVYRhTWgE+/fTjpNWrzYRXXnnr+8zMLB/A3/52cdHy5csSn3vuqZzp03cs+O9//5Ozxx5zak466ZQKgAkTJpauWLEsoaBgXTxbMXLkqJY///m8EoBTTjmj7Nlnnxq+1177Vh988GF1AAcffFjVgw/+e+SW7rvXXvs0HHbYz8v//e97Rn7wwbvpCQkJ/osvvmI9QFpaut/tdlsxMTGBrsy91f3n8fzzT2c2NNS7b7759nyPx2MBXHvtTQW/+MUR01988fmsc8/9W3Ffjh3pVJyISMTY8F1wvEl1Rzux2WP6PBi+S0buaPbOySVgWRQXrCNv7Ph+TCkiErlycnLbul4gAyQkJPp9Pt8W38FZtWplXEdHh+O2224ec/vtt4zput3vDzh8vg5HS0vLpvuNGTO2bfP7jxo1urXr65Url8cDHHfcMT+aecvn8zk6OtodABs2rPfuu+8B1d23T506rXFbxcnw4SM2nSc+Pj4AkJeXtylPTExswOfr6PFdqr/97aKNCxd+k7Jw4bcp9933yPK+jNHpSfefx6pVZnxLS4vr0EP3ndl9n46ODueGDYVx23uuSKPiREQiRsmK5aRbFuUOR2iD4Ts5klKp8/tJcbko+PYbFSci0m/G333fdz1tczidP3pRO+72ud/3dt+xt9y2pLf7bo/uhckPtnz4QCDgALjssqvXjRs3oXXz7bGxsZvuGBcXF9h8e1xc3KbtgUDA4fV6/fff/9hPrgDFxMQEABwOx08W3nW73dtsu9vt+sk+DkfvRzaUlZV6amtrPC6Xy/rii/nJ06fPaNn6PX58Op/P/5MnrO4/j0AgwLBhw1tvvvn2n8zSkpCQEJWTDmyNxpyISMT4rr2Nk7/7hq8ycrb7WJWuGABqVpnb2FNEpPdcXm+gpw9ntxfrA7nvYJkwYVKry+WySkqKY8aNG9/W9fHJJx+lPPnkIzlOZ+9fZo4fP7GlpaXF1d7e5uh+rMceeyj3ww/fSwUYPXpM89Kl3yd2v59prkjo31b9WCAQ4Nprrxg7evTY5rPPPnf9M888kbd06RLvD3s4fvw4udxWY2OTq/v9y8vLYrZ2jnHjxrdUVlbGJCcn+7vaPWrU6LZ77rkz7+uvv0jq7zaFOxUnIhIxVq1aSXsgQNLIidt9rKbEVAA6SoZUV14RkX6TkpLiP+igQyuefPLRvP/+9z/pBQX5MS+++HzGY489PCItLb1PYzD22++AutGjx7RcffVl4+fP/yRp3bq1sbfeesOIjz56P3Ps2PGtAMcff3Lp119/mfbgg/flrF27Jvbxxx/O/uqrLwZ0AcQHHrg3Nz8/P/7yy68pOO64EyunTNmh4frrrxrb1jkJgdfrDZSXl8UWFW30AEyZMrVx/vyP07/44rPENWtWx1577ZWjW1qatzqj2FFH/aI6MTHBf/HFfx2/YMHXCatXm3FXXnnx2EWLFqRMnGhs4ypN9FFxIiIRY1XnVY7s4WO2+1i+rDwAvA0N230sEZGh6pJLrtxw9NG/KHviiUfz/vCH46c9/fTjw3772xOL//KXvg3idrlczJ3771UTJ05quuGGq8eddtpJUxcvXpR0xRX/WLvXXvs0ABx44MF1F1102bp3330r849/PGmH+fM/ST3qqGPLBqZlsGTJYu9zzz01/KST/lA0btz4NoBLL72ysLKyIvaOO27NAzjqqF9UbNiwPu7UU0/cwe/3c845fy2aNMlovPzyiyb+5S9/mpycnOzbY4+9trpAY0pKiv/uux9YmZKS6rvkkgsmnnXWH6eUl5fF3HjjP1dPnjz1J93lop3D2rzzXvRb5/cHxlZXN/XrQd1uJ2lpCdTUNOHz/aRbZVSI9jZGe/sgsttYtWY1n19xCasaGxh/4Z3g/OkYQafTgdcbQ0tLO4FtjJb3Faxgxscv0ODzMe3+h4mNDf/p5CP58eutaG9jtLcPBq6N6ekJuFzOfGBcvx00RAsWLJjsdLrezs7Oa4yJiRtyLx5F+qq9vTWuvLwoMRDwHzp79uyVW9tXV05EJCJsXLgAIzGJ6WkZOFzbP3mJe8QE/JZFe8BPodkvM3CKiIjIdlJxIiIRoW5dcBKThtjYn8zWEhK3h2tqmzhr8Xes2bihHw4oIiIi20vFiYhEhI6yYLfitqT+G/uYPDy4IPCaNav67ZgiIiISOhUnIhIRYjsHrgeyhvfbMbsG1q9ereJEREQkHGgRRhEJe1YgQGogAE4nruFj++2445NSuWLSZKje6kQqIiIiMkh05UREwl79hvXEOJ20BwLEjZzUb8dNzcxlRnIq4z0xNDc399txRUREJDQqTkQk7G1ctYrKtjbKOjpwxiZu+w695ModTcCySHC72bBieb8dV0REREKj4kREwt661mbOXvIdjzuc/TNTVyfL5aa6cz2UspXL+u/AIiIiEhIVJyIS9vLz1wKQNXxUvx+71h0DQH1+fr8fW0RERPpGA+JFJOytW7cOgKzc/i9OmhKSobEaX1lpvx9bRIYehwOXw+EY9Dd/LcsKWBb+wT6vSH9TcSIiYc2yLH5VW8fek6bQmJrZ78f3pedCYzUxDY39fmwRGVocDlwBh2NYc6tv0F9fxce5fU6sknAsUObOvX34hx++m/HKK28v6et916xZHXvGGX+Y+thjTy8bNWpM+0Dkk/Ci4kREwlprVSXZbjeZSckszx3T78d3DR9L/drvqWpuIhAI4HSqt6uIhMbhcDibW33uL5eWBJpbfYHBOm98nNu527Rh7qQ4t9OyrLArTkK1fPlS7yWX/H1Ce3ub/jEPISpORCSslSwPDlSv6ujAk5SJP9CPI+IB1/gZnHHfNQT8fg4qLyU3t/8WeRSRoam51RdoaukYtOKkU1S9gL/33rm5L7743LC8vBGt1dVVMXbnkcETVr/IhmFMMgyj0TCMP3S7baZhGB8bhtFkGMZ6wzAusDGiiAyyqjWrAah1OPq9MAFwuT1kdK46X1hY0O/HFxEJZ3Pm7Dz76acfzzr11N8Z++23+6zf/vbYqe+++1ZK933ef/+dlN/97tdT9ttv91m/+MUR0+6885/D29raHF3bV65cHnf++WePP+SQfWfus8/PZv3iF0dMe/TRh7J7Oudjjz2Uve++u816553/pfa0z4IFX6dceOFl+Wed9ZeN/dJQiRhhU5wYhuEBngYSut2WAbwHrAJ2Bq4GrjMM4xRbQorIoGsqCj4vNcd6B+wc6Vl5ABQUrBuwc4iIhKtHH31wxH77HVD9wAOPL9t555/VXXfdVRO++earBICPPno/+YYbrhl/2GFHVj7yyNPLzjvv7+vnz/84/fLLLxwL0Nzc7Pz738+dFBfnDdx9979XPvroM8vmzNm75uGH/z1yyZLFP/nH/dRTj2U9/vjDI6644tq1hxxyeG1PmR5++CnzsMOO7HG7RK+wKU6AfwANm912BtAGnGWa5grTNB8F7gAuHuxwImIPf2UlAG1JKdvYM3QHpaQyd9pMYhYuHLBziIiEq/32O7DypJNOqZg4cVLbBRdcUjR+/ISmF154NhvgqaceG3bAAQdXnnji7yvGjh3Xts8++9f/9a8XFn755edp69cXxDQ3NzmPOurY8ssuu7pw0qTJrePGjW8755y/FgOsXr3yR8XJs88+lfnIIw+MuPrq69cceODBdXa0VcJfWIw5MQxjb+BPwExgfbdNewGfmKbp63bbh8ClhmFkm6ZZPngpRcQOMc1NwS8ycgbsHEkJSeS21lJdUzNg5xARCVezZu38ozeHDWNK06JFC5MB8vPz49euXZPw0UfvZ3Rt71oMd82a1XH7739Q/QknnFz+xhuvpq9duzq+qGhjbGFhfjyA3x/Y1PWrpqbGc999c0e7XC5rxIhRbYPRLolMthcnhmGkAk8CfzFNc4NhGN03jwA2n3auuPPzKCDk4sTt7t+LRi6X80efo1G0tzHa2weR2caq1lY8Dieu3NE4nY6t7tu1fVv7bc6ROQyqNuBtbe33/w39KRIfv76K9jZGe/tgaLQx2rjd7h8N6LMsC6fTZQW/DjiOOeZXpUcddWzV5vfLycntKC8vc59xxh+mJCUl+3bbbY/a2bN3rZ8xY8em4447Zkb3fR0OJ9dee+PqRx55YPgNN1wz9uGHn1yp2RFlS2wvToD7gC9M03xmC9viCXbr6q6183NcqCd0Oh2kpSVse8cQJCcPXL/4cBHtbYz29kHktLGjo4Prli/B7/dz/emXEevt3YQtsbGePp3HNWYCmF+T7nCSmBiDx9O3+w+2SHn8tke0tzHa2wdDo43RYvnypQkHHXTopm5WK1cuTxw/fnwzwIgRo1o2bCiMGzdu/KbXY198MT/x+eefybn00qsK33jj1YzGxgb3Cy+8ttTj8Vidx+t88H+oeVJTUzr22We/+uzs7PYzzzx16qOPPpjzxz/+qWyQmigRxNbixDCMkwh23Zrewy4tQOxmt3UVJU2hnjcQsKivbw717lvkcjlJTvZSX9+C3z/YswcOjmhvY7S3DyKvjYWFBfj9fmJj47Cc8bS0bH39LafTQWysh7a2DgJ9mNnLkTECgBSPh2ULlzB6krGNe9gj0h6/UER7G6O9fTBwbUxO9upqzAB5/fVXckaPHts6bdqMppde+k9WYWGB9+KLrywA+O1vTyy9+ebrxs2de/vwww//eVVpaUnMbbfdPCYzM7M9JyfXl5OT297W1uZ8441X03bZZdfGtWvXxN1779yRAO3t7T95wKZM2aH12GN/Xfr0048P33ffA2rHj5+gLl7yI3ZfOTkVyAE27871b8MwLgQKgc0XHej6vmh7TuwboLWR/P7AgB07XER7G6O9fRA5bcxflw/AsLyRBF/j9K7gCASsPhUneOJo8PtJcrkoWraUvHET+x52EEXK47c9or2N0d4+GBpt7El83OD2D93e8x188GEVL774XM6dd/7TO3r06Oabbvrn6h12mNYCcMQRR9VYlrXu2WefHPbf//4nNz4+wb/zzrvW/vWvF23s2r5y5YrSBx+8b+Tdd9/uzMzMaj/kkMMrv/jis9QVK5YlABWbn++ss/5S8tlnn6TdcMM1Yx566AlT3bukO7uLk98Bm1/3XQ1cBTwPHA+caRiGyzTNrhVPDwBMDYYXiX6+jz/iX9N3Ykn8wHTD7K7G4SIJqMnPH/BziUh0siwrEB/n9u02bZibQZ4RNT7O7bMsK6RqcOzY8S0XXXR5j+uJHHnk0TVHHnn0FmcMcTgcXHDBJUUXXHDJj9407t5l69xz/1Z87rl/6xozTGxsrPXCC68t6022PfbYq2H+/G8X9GZfiQ62Fiemaf7k6kfnFZRy0zQLDcN4BLgIeNgwjFuBXYHzgTMHM6eI2CNQWUlWbCyJCckDfq7quARaq0upq/nJmE8RkV6xLPxOrJKkQb5yEjy3FbAs/NveUyS82X3lZKtM0yw3DOMQYC6wECgBLjRN83F7k4nIYPA0BYeWWQM4jXCXxSOn8MbnH7BPbjYnDvjZRCRaWRZ+y7JUJIiEKOyKE9M0HZt9/w2wu01xRMQmlmWR4veD04krZ9SAny8tcxgA6wsLB/xcIiLhQl2mJNxoBJKIhKW26mrinE4ClkVM3rgBP196VnCujaKNG/D79aaniIiIHcLuyomICEDpyuUAVHd0EJOURV8m3wpFamIyd02bSWZMDOVFGxg2aszAnlBERER+QldORCQsVa1dDUAtDHhhAuCI9ZLsicHjdFK8vFeTyIiIiEg/U3EiImGpsr6BlY0NVMduvg7rwKkhOOStNn/doJ1TREREfqDiRETC0gpfB1etXMb32XmDds7GmDgAmoq2a41XERERCZGKExEJS0VFwfXA0jJyB+2cbQkpAPi11omIiIgtVJyISFgqKQ5evUhNH/g1TroEUjMB8DS3DNo5RURE5AcqTkQk7Fg+H5fGebln+k6kdV7NGAyOzOB0wkk+TSUsItIbTU1NzieffDSr6/vLL79wzOmnn2wM5Dk3blwf89prL6dtzzFeeOG5jDlzdp7d0/bBaMecOTvPfuGF5zIG8hyDZf36gpg5c3ae/fnnnyZt77FUnIhI2GkoLsLjcJLq8eDNHLwxJ57h41jT1IjZUE9DQ8OgnVdEJFI98sgDOS+99Pym/rcXXXTFhltvvXPNQJ7zH/+4csxXX30+eO9cyaDSOiciEnZKzZUAVHV04PB4sQZhKmEAR0YuN2zcQFNDHfuVFpOUNKBvmomIRDzLshzdv09JSRmES88/PqdEFxUnIhJ2agsLSAXqnc5BK0y6pKbn0NRQR1HRRiZOVHEiIr1nWdDss6dXSrybgCOEl+x1dXWu22+/ZcTXX3+R6vP5HGPHjm8+++xzN86cOasZoLm52XnzzdeO/Pbbb1Kbm5tdeXl5rb/73R+KDzvsyNq5c28f/p//PDMMgl2UnnnmxSX33/+v4eXlZbEPPviE+fnnnyZdcsnfJ9100z9X3XXXbaPKy8tjx4wZ03zFFdfmv/vuW2lvvPFKjt/vd+y1175Vl19+zQaHw4FlWTz00L9z3n33rcyKivJYj8cTmDx5auMFF1y6fvToMe2nn36ysWLF8sQVK5YnHnPMoUmvvPL2kvb2dsfcubcNnzfvw4yWlmbXiBGjWk499fTiffbZv76rnW+99Wbq448/NLysrDRu/PiJTTNnzqrv6WfSxe8PcMMN14ycN++DDLfbbR100KGV55779yK3O/jy+euvv0x45JEHhq9duzqho6PDmZOT23bCCSeXHH30L6q7jvHqq/9Nf/75p3NLSorjUlPTOo488ujyP/7xT2Wbn6uiotz95z+fbqSmpnXceee9a+Lj4wMff/xh8oMP3pdXVLTRm52d0/bLX/6mdO7c28c888yLS0aNGtN+zDGHTv/Zz/ao/e67Bcl1dXWeq666du1uu+3Z8PjjD2f/73+vZ1dWVsZkZma2//KXx5Uef/zvKgE+//zTpIsu+uukrmNAsEvWCSf8avqtt96xao899mq4/PILxwQCAUdaWnrHRx99kNHW1uqcMWNm/aWXXlWYk5PrA1ixYlncHXf836g1a1YnpKWldRx33Aklff/t2zIVJyISdppLikkFWmK9xAzyuVPTcyguXEXJhvWDfGYRiWSWBb97O36yWeNKsOP8k9P8jU8e2mz2pUCxLIvzzz97otvtDlx//a1rkpOT/a+//krG+eefPfnuu+9fMX36ji1333378IKC/Pibb75tdUpKqu+ll57Puvnm68btsMO0paeeekZpS0uL87PPPk5/8MEnlmdmZvk2P0cgEODee+eOvPjiywtiYuICV111yfg///n0KTvtNLvurrvuM7/55qvEe++dO3q33faoP/DAQ+oeffTB7BdeeHbYhRdelj958pSWDRvWx9522y2j77jj1pF33nnv2ltvvXPN3/52zsTMzKz2iy++Yj3AlVdePGb9+vXeSy+9Mj83d3j7vHkfpF511aUTrrzyurUHHnhw3TfffJVw443XjP/1r48vOfzwn1d9++3XSffff8+obf18Vq1amZiRkdFx9933r9y4cUPs7bffOqa1tdV52WVXbyguLvJccsnfJh1yyBEVF110+Xqfr8PxxBOP5t5xx/+N2X33Peuzs3N8b775Wto//3nT2N/97g9FBx54SM3y5Uvj77jj1jEJCYn+3/72xMqu81RVVbrPOecMIyMjs/322+9Z4/V6rSVLFnuvuurSCUceeXT51VffsG7lymXx99xz5+jNM77zzltZ11570+rk5GT/lCk7tNxyyw0jP/74g4yzzjp3/fTpOzZ9/vmnyffff8+o9vY25+9//8fy3v5ufPHFZ2lz5uxTfddd95rFxUUxN9103bh77rkz77rrbi6sq6tz/f3vfzEmTZrceO+9D64oKyuLueOOW36SLVQqTkQk7Pirg286tScmDXpxckR8HJfP2pXVy5YO8plFJNI5YJCv9W6f+fM/SVq92kx45ZW3vu8qLP72t4uLli9flvjcc0/lTJ++Y0FJSXGs1xvvHz16bFtKSor/vPMuKNppp9kNKSlp/sTExIDX6w04nU6r6x31LTnllNOLZs/etQlgjz3m1L7xxqvZV111XWF8fHxg4kSj9amnHs9bu3a198ADD6kbOXJU2wUXXJp/0EGH1gGMHDm6/auvvqj55JN5aQBpael+t9ttxcTEBDIzs3zr1q2N/eyzT9PvueeBFV1Xe8aPn1C2du0a7/PPP5V74IEH173wwrPZkyYZjeee+7digAkTJratW7fW+7//vZa9tZ9PSkpqx3XX3ZIfFxdnTZ48tbWioqLo/vvvGXX++RcWtbe3O377298Vn3bamWVOp7OrnSXz5n2QsW7d2rjs7JzGF198Lmf33fes/tOf/lzamautubnJFRfnDXSdo76+zn3OOX+alJmZ1XbbbXevjYuLswCeffbJnLFjxzVfeOFlGwEmTpzUVl1d7XnwwftGds+4006z6vbee9+G4LHqne+882bWH//4pw3HHPPL6s5zVhQXF8U+//wzw04++dReFyder9d/9dXXF3o8HmvSpMmtX3zxWdWCBd+kALz55qtp7e3tzn/846aClJQU/+TJU1tbWpo3XH/91eN7e/ytUXEiImHH09QEgNU5te9gcscn4m5rwKqrHfRzi0jkcjjgyUObzUjq1rVy5fJ4gOOOO2Z699t9Pp+jo6PdAfC73/2h9IorLppw9NGH7Dhx4qSmWbN2qTvssCOr+zK2ZOzY8a1dX8fGxgVSUlI74uPjN71Aj4nxBNra2p0ABx10aN2CBd8kzJ172/Cioo2xGzdu8G7cuCEuLS2tY0vHXr58aTzA3//+lx/1w/X7/Y74+Hg/QGFhQfxOO82u6759+vQZjdsqTsaPn9DcVSwAzJgxs8nn8znWrl0TO336jJZf/vI3VU888Uh2YWF+XFFRUVxBwbp4gEDA7wBYv77Qu/fe+1d3P+Zxx/1wxQTgyScfy/P7fY7Nz7Vu3Zr4zbuezZq1SwPc96OMeXkjNv1s16xZFef3+x077bRzY/d9Zs6c1fj666/kVFSU9/p1f05ObpvH49mUJyEh0e/z+RzBbGvjc3KGtXb/HZg9e5fGLR0nFCpORCTs5Le0UNvRDlmDN1NXFys1G2pKiGlu3fbOIiLdOByQ4CGw7T3DQyAQcHi9Xv/99z+2YvNtMTExAYCdd9616eWX31r86afzkr/55qvkd999K/O5554afv31t67ea699ejWtocfj/tEVJaez5yrqgQfuzXn22Sfz9tvvwMqZM2c1/OY3x5fPm/dh6qefzkvf0v6WFfxx33nnvSsTEhJ/9LN3uVzWD/v9eBC92+3Z5lUup9P5o30CgeBr8djYGGv1ajPunHPOmDxmzLjm2bN3qZszZ9+69PT0jr/85U9Tup9/WwXj9Okz6g8//KjKG264evxHH71fvd9+B9Z33pdAYNsD/2NiYn/SRsdmJw0Egj+W7sVG9/GcHR2+n5yn+74/6H5T33+evaWphEUkrFiWxYP5q7lq5TJcIyYO+vmdnQVRshXAGuzR+CIig2j8+IktLS0trvb2Nse4cePbuj4ee+yh3A8/fC8VYO7c24Z//fWXSQcffFjd5Zdfs+HFF19fmp2d0/bRR++nATgcjn79R/mf/zwz/Le//V3xVVddt/7440+qnD1716aioo1xP/53/MM5J040WgDKyspiurfh1Vdfynz55RczAcaNG9+8YsWyxO5HWLFi6TbHBhUUrIvvemEPsHDht0kxMTGB0aPHtv3nP89mJSendNx//6Orzjjj7LIDDjiorrKywgNseu7IyxvZaporfnSem266duT555+9qfvT3nvvV3PYYUfU7rHHnOo77rh1TH19vRNgzJixzZvfd8mSRVvNPGHCpFaXy2UtXPjNj9q6aNHCpJSU1I7U1DS/xxMsOuvr611d2wsL82O39bPobuLESc0lJcWxVVWVmy5yLF78Xb+NtepzcWIYhtswjAMNw7jJMIznDMN4yzCMJw3DuN4wjD0Nw9D0biISsvr6Ohobg1eHE1IGv1uXZ9gYANLdHmprqre+s4hIBNtvvwPqRo8e03L11ZeNnz//k6R169bG3nrrDSM++uj9zK6uWEVFRbF33vl/o+bP/yRpw4bCmDfffC2tsrIidvr0GY0AXq830NTU5FqzZnVsR0fHdr8GzMjIbF+48Jtk01wRt3r1qtg77vi/4V9//WVqR0fHptesXq83UF5eFltUtNEzefLU1lmzdq6bO/efo999962UgoL8mIce+nfOf//7Qm5eXl4bwAkn/L60sLDAe8stN4xYs2Z17Msvv5j+1ltvZPWcIqiqqirmyisvHrNy5fK4//3v9dRnnnli+DHH/KosNjbWys7Oaa+uror58MP3kjdsKIx56603UufOvX00QHt7sEvcCSecVPL55/PTHnvsoez8/HWxr732ctq7776VNWfOPrWbn+uiiy7f0N7e7vjnP28cCcHudPn5axP++c+b89asWR379ttvpj755GN58NMrI11SUlL8Bx54SOXTTz+e98orL6WvW7c29sknH816553/ZR177K/KHA4HkydPbYmLiws8+uiDw9atWxv7xRefJT788P0jejrmlhx55DHVyckpvssvv2js0qVLvF98MT/xX/+6a+S279k7vS5ODMOIMQzjPGAd8C5wBjAJSAR2Av4MfApsMAzjL4Zh9KkKExEBKF5fiBNIS88Ah2fwAySn47Ms3E4npatXDv75RUQGicvlYu7cf6+aOHFS0w03XD3utNNOmrp48aKkK674x9quLluXX35N4YwZMxtuvvnasSeddNy0J554JO/3v//jxmOP/XU1wMEHH1qTmprWcdppJ++wePGi+O3NdPnl1+S3tbU5zzrrj1POO+/MyQUF67xnn31uYUNDvXv9+oIYgKOO+kXFhg3r40499cQd/H4/N998+7rdd59TM3fubaP/8IcTpr377luZf/7z+YW//vXxVQDTp89ouf76W1cvWbIo6bTTTt7hpZeez/n1r4/f5tS3O++8a63L5bL+/OfTp9xzzx2jDz30yPI///m8YoCTTz61fI899qq+5ZYbxp1yyok7PPXU48P+8IfTijIzs9qXLl2SAMHxM+ec89fCN998LeuUU07Y4fHHH847/fSz1v/qV8dVbX6uzMws3+mnn73xww/fz5w374PkKVN2aL3yymvXfPPNl6mnnXbSDo8//vDwww//eTmAxxPT49WqSy+9av0RRxxV/sgjD+SdeuqJO7zxxqvZf/rTOetPO+3MMoCkpKTAxRdfsa6oaIP31FNP3GHu3NtG/elP52zoS3GSkJAQmDv3PtPtdlvnnXfm5Jtuum7sb35zQmmvD7ANjt50WzAMY1fgccAPPA38xzTNtVvYbzpwOHAa4ABOMk3zi/4K20/W+f2BsdXVTf16ULfbSVpaAjU1Tfh8EdPdtE+ivY3R3j6IjDZ+ed/dpHz7Ld/5fMSfdl2f7ut0OvB6Y2hpaScQCL2nQfYj15DpclK2/wHsdcJJIR+nv0XC47e9or2N0d4+GLg2pqcn4HI584Fx/XbQEC1YsGCy0+l6Ozs7rzEmJk4D1KTffffdgni3221Nn75jS9dtr7zyUvqdd/5zzPvvf7qwa62VSNHe3hpXXl6UGAj4D509e/ZW3/nrbcueBC4xTfPlre1kmuYSYAlwi2EYvyFY0Ezq5TlERGgtLSXd4cDltWWpAADWuTysqi4nqeYnb26JiIgMuJUrV8Q/8sgDIy688NL8qVN3aCkoKIh98slHh++555zqSCtM+qq3rZtummZ7Xw5smuZ/DMN4pe+RRGQoC9TWAtCRlIJdfUO/zhjJJ99+xm933cWmBCIiMpT99rcnVlZVVXruu+/uUTU11Z7k5GTfXnvtW33OOX8tsjvbQOtVcdLXwmR77yciQ5enuTn4Rdo2xyoOmNSMHAA2btxoWwYRERm6HA4H55xzfsk555y/zbEx0aZXxYlhGFf15aCmaV4bWhwRGeri/X5wOnFm5NqWITU9BwdQXaTiREREZDD1tlvXNZt9bxEc8O4HKoE0IAZoB6oBFSci0meBjnaSnMFJBF1ZI2zLMcLt5qlZu1Lv82FZVo/TNorIkBUArM0X9hORLev8W7Fg24uU9moqYdM0nV0fwEFAFfBbIM40zWGmacYRnKWrCvhbyMlFZEir2xC8UtHq9xOXMdy2HLE5I/A4naR5PFSW99vsiCISPUoty+pob2/d7qlzRYaC9vbWeMuyOoBtdlMLZbj/PcCVpmn+p/uNpmm+bRjGFcANwHMhHFdEhrjKqgrmV1Xi8XhIdsUE32OxgZWQQkcggMfppHTNarJyhtkTRETC0uzZs+sXLFjwRH19zVlARkxMXHN/r5QuEg0sy3K0t7fG19fXxFhW4OHZs2c3bOs+oRQno4D1PWyrAHJCOKaICKWtrczNX8O4CQYn2/k073BQa0EWUFOQD3vubWMYEQlTN/r9Pmprq052OBzxBLu7i8iPWZZldVhW4GHgxt7cIZTi5HvgL4ZhvG+aZkfXjYZhxAEXAV+FcEwREcrKgld70zOybU4CDS43WQRoLC62O4qIhKHZs2cHgOsXLFhwl2UxjF52lRcZYgJASW+umHQJpTi5FHgHWGsYxtv8cLXkcCAB2CeEY4qIULFxI04gJd2+aYS7tMR4ob2J9spKu6OISBjrfNHV6xdeIrJ1fa7yTdP8GNiD4BWSnwMXAIcB7wOzTdNc1J8BRWTomLxqFU/P/hnTXfavftuRkBL8or7W1hwiIiJDSUivAEzTXAj8up+ziMgQF9vehsvhwJWSYXcUWjOG8cXaJZTFe+2OIiIiMmSE/PakYRiHEZxWeBhwGbATsMA0zcJ+yiYiQ4hlWSQGLHA6cGXYPztW67hp3Pvcv0hOTuEiu8OIiIgMEX3u1mUYRrxhGO8CbwKnAr8huAjjWcACwzB26N+IIjIU+JqaiAuDBRi7pKQFx73U19fR1NRocxoREZGhIZSZJW4EZgMHAJn8MHXeSUARcF3/RBORoaSqYB0A9b4OYlPsHxAfGxdPfHwSaR4PpcVFdscREREZEkIpTo4DLjVN8yO6LZFmmmYpcD0wp5+yicgQUpWfD0BdIAAOl81pgm43JnP/jrOpXLHc7igiIiJDQijFSSpQ0MO2GiAx1DAiMnQ1FG0AoNEZHoUJQFNnkVS/oad1Z0VERKQ/hVKcLAVO7GHbzzu3i4j0SUVbO/OrKimNjbc7yibNnlgAWsrLbU4iIiIyNIQyW9f1wMuGYWQArxPs2rWPYRinAGcCx/djPhEZIsyONp7KX8Oh03Ymx+4wnVq9idDYRqCm2u4oIiIiQ0IoizC+CvwOmAHcR3BA/G0E1z050zTNF/s1oYgMCaWlpQAkp9k/GL6LPykNAFdTk81JREREhoZQF2F8BnjGMAwDyABqgZWmaQb6MZuIDCFNZaU4gaSUTLuj/CAtB0rW4O3osDuJiIjIkNDn4sQwjA+Bs03TXGmaprnZthnAU6ZpzuivgCIS/axAgL/ExHHu7J/xXRiNOXFn58FySHE48fl8uN0hr1srIiIivdCrZ1rDMObwQxewfQmOMcnewq5HAuP7J5qIDBWt1ZW4HQ4CloU7M8/uOJu4c0bxZU015W2tjCgvZdhw+xeHFBERiWa9fRvwNOBkgoPfLeBegmNNrG77dC3G+Ey/pRORIaFi7VoAajo6iIlPsTlNN3HxPFbXQHVlCQeWl6k4ERERGWC9LU7OAx4lWIB8CPwZ2HxVMj/BsSfL+iuciAwNNYUFeIE6LHA4trn/YEpOy6K6soSyslK7o4iIiES9XhUnpmnWAR8DGIaxH7AASOxcFR7DMNKAkaZpao0TEemzxuJivECz2xPS4ksDKSU1izSPh4r1hXZHERERiXqhvA74HngZmNfttp8BiwzDeMUwjPAZzSoiEaG9qhKAtlivzUl+6qhYJ/fvOJukVavsjiIiIhL1QilObgZ2AC7rdtuHwNHAzsC1/ZBLRIYQq64OAF9iss1JfsqXGBwD46ivtzmJiIhI9AulODkKuMA0zf923WCaZrtpmq8TLFh+01/hRGRoWNPRzvyqStrTc+2O8hNW57orntY2m5OIiIhEv1CKkySgpodtZUAYraAmIpHgvcpy5uavoS1vnN1RfsKZORyAJCuAZVnb2FtERES2RyjFyULgjz1sOwVYHHocERmKSkuDM2ElhtPq8J1ickYDkO72UN/Z/UxEREQGRijLHV8PvGUYxrcEB8aXA1kEx5zMJrgQo4hIrzTWVBPT2ooTSEjKsDvOT6Vk4Lcs3E4nZevWkDJrZ7sTiYiIRK0+XzkxTfM94OcEF2C8FrgfuI5goXO0aZpv92tCEYlqpd8t5L4dZ3H79J1weeLsjvNTTid1gQAA1QXrbA4jIiIS3UK5coJpmm8RvHoSB6QDdaZpNvVrMhEZEuo2rCcJaAqzxRe7W4yL+tJiJtarW5eIiMhACnm9M8MwpgBnAH8BUg3DmGMYRlK/JRORIaGpc7xJc0yszUl6tjAll6c2rqdAY05EREQGVJ+vnBiG4QL+DZwKOAh273oBuBoYZxjGPqZpbuzXlCIStXw11QB0xMXjsTlLT1LSsgAoLS2xOYmIiEh0C+XKyRXAicBpQC7BAgXg74ALuKF/oonIUOBoCC5u6EtKtTfIVqSkZZLq8dBWouJERERkIIVSnJwKXGWa5qNAVdeNpmkuBq4CDuqnbCIyBMS2tQe/SA2/aYS7jA/4eGDH2RwR0DonIiIiAymU4iQHWNTDto1AWshpRGTISeicCcuZEX6rw3dxZ48AIMXppKOjw+Y0IiIi0SuU4mQNcHgP2/bt3C4isk0Bn48PqiqYX1WJO3uk3XF65MrKAyDZ7aGiWEPqREREBkooUwnfCdxvGEYM8DrBAfETDcPYD7gA+Fv/xRORaFZbX88Thfk4HA6uTMm2O07P4uJpCQTwOp2Ur13D8NFj7U4kIiISlfpcnJim+ZBhGFnA5cBZBAfEPwu0A7eapvnvvhzPMIxs4DbgUMALfAxcaJrm8s7tM4G7gJ0JjnGZa5rmP/uaW0TCT2lpMQBp6Zk4nSEtuzRoaq3gP6ja9YV2RxEREYlafe7WZRhGmmmaNwHDCXbv+h1wJDDcNM2rQsjwGjAeOAzYBWgB3jcMI94wjAzgPWAVweLkauA6wzBOCeE8IhJmyvPzyfDEkJUZxldNOjW5ghMdN2vGLhERkQETyluVXxuGcYVpms8D72zPyTuLj3zgetM0l3Xedh3BAfc7AAcCbcBZpmn6gBWGYUwELgYe3Z5zi0gYWPgt9+04i0VOl91JtqklLh5aG+iortr2ziIiIhKSUAbEpwGV/XFy0zSrTNM8vlthkkNw3MpGYDmwF/BJZ2HS5cPgrkb4v9UqIlvlr60FoD0+yd4gvVCVlsPrpcWsam6yO4qIiEjUCuXKyV3A/xmG8XdgqWmaFf0RxDCMB4DTCV4pOco0zSbDMEYASzbbtbjz8yigPNTzud2h1GU9c7mcP/ocjaK9jdHePgi/Nrqagi/0reQ0nE7HNvbetq5j9MexNtc4ejJPvv4Uk+K9/f7/o7fC7fEbCNHexmhvHwyNNorIwAmlODkZGA28D2AYxubbLdM0Q54FjOAg+1cMw5gDxBMsVrpr7fwcF8I5gOALl7S0hFDvvlXJyd4BOW44ifY2Rnv7IHza6O3oAIcDd1YuXm9Mvx03NtbTb8fqkjMsOJ1wSUnxgP3/6K1wefwGUrS3MdrbB0OjjSLS/0IpIp7q9xRAt9m5zgB2B84hODg+drNdu4qSkPtWBAIW9fXNod59i1wuJ8nJXurrW/D7A/167HAR7W2M9vZBeLXRCgRI7PomNZeWlvbtPqbT6SA21kNbWweBfl7NPTYuhVSPh8yARWFBMckpKf16/N4Ip8dvoER7G6O9fTBwbUxO9upqjMgQEEpxkg98aJrmdq9E1jlu5ADgP6Zp+gFM0wwYhrEcyAM2EJwVrLuu74u259w+38A8Kfj9gQE7driI9jZGe/sgPNrYWlWFx+EgYFm4svL6tZgIBKx+L07cbg//njELp8NB0erVxM+c1a/H74twePwGWrS3MdrbB0OjjSLS/0J5C+J2gtP69ofhwDPAPl03GIbhAWYRHBD/CbCXYRjdp/I5ADBN0wx5vImI2K9i3RoAajs68MSn2humN5wu6gPBF1rVBfk2hxEREYlOoVw5KQdS++n83xOcjvhewzBOB2oILu6YBtxBcHzJRcDDhmHcCuwKnA+c2U/nFxGbVDU18V5JMbGJiYxyREZXjTqHi1Sgvmi7LxyLiIjIFoRSnDwI/MswjP2ApUDZ5juYpvlEbw5kmqZlGMZxwE3A8wSLnk+BvUzTXA9gGMYhwFxgIVBCcPX4x0PILSJhpKSlmaeL1rPD9FmMsjtMLzV7YsHfRmv5T/7tiYiISD8IpTi5rfPzST1st4BeFScApmnWAWd3fmxp+zcEB8iLSBQpLQ2utJ6aETlLFrV7E6GxDX9Njd1RREREolIoxcnYfk8hIkNO4/pCMmJiSEvNtDtKr/mT0qCxCldz/872JyIiIkF9Lk5M0yzs+towjHggGagyTbOjP4OJSHTbsaiIQ2bM4iuXa9s7h4v0HChZg7dd/+5EREQGQkijUA3D2MswjC+AeoJT+rYahvFF5zgUEZFtivf5AXCk59icpPccw8byWmkxb5UW4ff77Y4jIiISdfpcnBiGsQfB1eFTgesIjhW5HkgH3jEMQ+NDRGSrLJ+PRIcDAFdWns1pes8zbDTPlBTxQXkZlZWVdscRERGJOqGMObme4Ixah3QtnAhgGMY/CE4L/A/g4P6JJyLRqLG0BKfDQXsgQGzmCLvj9JrT6SIlNZOaqjLKykrIyYmcqz4iIiKRIJRuXbsCd3UvTCC4sjtwd+d2EZEela8NLsBY4+vAFeO1OU3fDE/PZkJCIhWFWohRRESkv4VSnDQAnh62xQCO0OOIyFBQu349AA04sCybw/TRiSlJ3DhlGu0rVtgdRUREJOqEUpx8BlxmGEZi9xsNw0gCLiXY5UtEpEfNZcE1TlpiYmxO0netnVd62qs05kRERKS/hTLm5BJgAbDOMIw3gFIgFzgSiANO6b94IhKNNgYCfFFShHfCFEbaHaaPOhJToLoJ6uvtjiIiIhJ1+nzlxDTNNQRXbP8IOBy4oPPzR8Bupmku7teEIhJ1zOYmninaQFXuKLuj9FkgObhoZExrq81JREREok9I65yYprkcOM80zVzTNGOAqcANnbeLiGxVSUmwW1dyBK0O38WZkQtAgtY5ERER6XehrHOSahjGe8C8bjfvCiwyDOOVzlXjRUR6FFtVSYYnJiKLE09O8GpPuttDc3OTzWlERESiSyhXTm4GdgAu63bbh8DRwM7Atf2QS0SilL+lmXNS07lvx1kkeZPtjtNnrvRsApZFjNNJ6bp1dscRERGJKqEUJ0cBF5im+d+uG0zTbDdN83WCBctv+iuciESfmsJCAJp8PuI6u0hFEsvl5p3GJh5Zn09FtWbsEhER6U+hzNaVBNT0sK0MiLx+GiIyaCrz1+EEavx+QvsXZL/P3F5WlZexW3WV3VFERESiSihXThYCf+xh2ymAZusSkR7Vb9wAQJPLSYStv7hJcloWAKWlJTYnERERiS6hvG15PfCWYRjfAi8D5UAWwTEnswmudyIiskUt5WWkAi0xcUTeEoxBWSnpTEhIpGV9od1RREREokoo65y8B/wcsAgOfr8fuI5goXO0aZpv92tCEYkq/ppgr9CO+ESbk4RuRwLcOGUaE8o15kRERKQ/hdTh2zTNtwhePYkD0oE60zQ1p6aIbJOzqRGAQFKazUm2Q1oWlK3D29FudxIREZGosl2jUU3TbAWK+ymLiAwBX7e2QnkZmTvuaXeUkLmy8mAlJOMgEAjgdIa0nq2IiIhsRs+oIjKoPiot5pmiDbiGjbE7Ssi6FmJM9Xiorii3OY2IiEj0UHEiIoPG7/dTXl4GQEJKBM86Hp9EWyAAQNma1TaHERERiR4qTkRk0JSvL2CC10tmnJfY+MhbHX4Th4M6KzgRck1hgb1ZREREokhkroAmIhGpcuFCrps8jYL2NpoDDrvjbJcGp5tsLBqLi+yOIiIiEjVCKk4Mw8gELgQOAoYBhwDHAotM03y1/+KJSDRpLCkiFmhyuYns0gRWxqfyifkdY8aNtTuKiIhI1Ohzty7DMMYSXAX+DGAjkE2wyJkEvGQYxhH9mlBEokZrRQUAbbFem5Nsv/KcMbxVXsqamiq7o4iIiESNUMac3EZwVfixwC8g+AaoaZonAq8Bl/VbOhGJKlZdHQC+hAgeb9IpJT0LgNLSUpuTiIiIRI9QipMDgOtM06wluEp8d/cD07Y3lIhEJ3dzMwBWarrNSbZfWnI6ExISSauptTuKiIhI1Ah1QLyvh9tj+WnBIiICQLzPB04nzvQcu6Nst8zYOG6cMo1Wv5/W1lbi4uLsjiQiIhLxQrly8ilwqWEYCd1uswzDcAJnAZ/1SzIRiSqWz0eiIzgM3p01wuY028+VkQtAnMtFWUG+zWlERESiQyhXTi4hWICsAT4ieKXkAmAqMAHYq9/SiUjUaGlu5tH1BaTHxGBkR35xgieGer+fZJeLynVrGT15it2JREREIl6fr5yYprkU2Bn4ENgP8BOcUngNsIdpmov6M6CIRIfy6kreqSjj1ZpqnJ7In60LoL5zQuS6jettTiIiIhIdQhpzYprmauDEfs4iIlGspKQEgKzsHAIBm8P0k0Z3DFg+WsrK7I4iIiISFUJdhNEBzAQS2MLVF9M0P9m+WCISbWrWrMZITCQzM/IHw3dp8yZAcx2+mmq7o4iIiESFPhcnhmHsCrwAdHUa71ro2er82gJc/ZJORKJG3LKlXDd5Ggu88XZH6Te+xDRorsPZ2Gh3FBERkagQypWTO4AO4A8EV4iPkg4aIjKQHA0NAPiTUu0N0o+acsfwyLcf0Z6ays/tDiMiIhIFQilOZgG/NU3z1f4OIyLRK6atDQBHWqbNSfqPc8RE3i4vI66hHsuycDgc276TiIiI9CiUdU7K0dUSEemjxM5R8M7M4TYn6T/JqcFCq7Wlhbq6WnvDiIiIRIFQipN/AZdstgijiEiPfE1NeJ3BfzcxUbAAYxe3x8O0rFx2S0unVAsxioiIbLdQunVNJLjgYqlhGMuA5s22W6ZpHrDdyUQkalQXFgDQ4OsgNjUbn2Vvnv501oiRZLlcVK1aCTNn2R1HREQkooVSnEwAFnX7fvNO1up0LSI/UpW/FhdQ6w8QwE1wUr/o0OB0kQU0FBXZHUVERCTi9bk4MU1zv4EIIiLRqzzg583CfNJzhzPZip7CBKDZ4wVfC20VFXZHERERiXihjDkREemTooYG3q0oY31qht1R+l17fBIAVn2dzUlEREQiX6+unBiG4Qd2N03za8MwAmy9T4ZlmmZIK8+LSHQqLS0BICUty+Yk/S+QnAH15bibNx9+JyIiIn3V2yLiWoILLnZ9HV39MkRkQDnWr8dITCQ9Jd3uKP3OkZEDG1cQ7/fbHUVERCTi9ao4MU3zH92+vmbA0ohIVNqjoYEjJk/jW0+M3VH6nSd7JABpThft7e3ExERfG0VERAZLb7t17d2Xg5qm+UlocUQk2liBAEmdk/i5o2iNky7urDweL1pPeUsLV5eVMmLkKLsjiYiIRKzeduuaxw9duXqaKtjq3GYBru2LJSLRorWqErfDgd+y8GRHX3GCJ4av/FBZW0N5RbmKExERke3Q2+JE0weLSEgq1q4FoKajA483GZ8/+oasJadlU1leTGlpsd1RREREIlpvx5x8PNBBRCQ6VRfkEw/UQ1QWJgBjUtLJSUunYc0au6OIiIhEtJCm/DUMIxO4EDgIGAYcAhwLLDJN89X+iycika6ppJh4oNnjidqFlXaPcbPj+EmsLCywO4qIiEhE6/NrBcMwxgKLgTMITi+cTbDImQS8ZBjGEf2aUEQiWltlJQDtcfE2Jxk4vsRUAByNjfYGERERiXChvJF5G1AOjAV+QecAedM0TwReAy7rt3QiEvFWOOGhwnwqMnLsjjJgrNRMAGLb2mxOIiIiEtlCKU4OAK4zTbOWny7GeD8wbXtDiUj0WF5dzbsVZXTkRu8sVq7M4QAkWdE5pkZERGSwhNoF3NfD7bFo9XgR6aa0tASApNQsm5MMHE9n4ZXm9lBfW2tvGBERkQgWSnHyKXCpYRgJ3W6zDMNwAmcBn/VLMhGJeIGODkY3N2EkJpKUnGF3nAHjTM7AZ1k4HQ7K1q6yO46IiEjECmW2rksIFiBrgI8IXim5AJgKTAD26rd0IhLR6tav58y8UbT6/RQkpxOwO9BAcTio9QfIdLuoLiiA2bvanUhERCQi9fnKiWmaS4GdgQ8JLs7oJzil8BpgD9M0F/VnQBGJXBVrVwNQ5fOBM9bmNAPrfcvFrWtMitta7Y4iIiISsUJa58Q0zdXAif2cRUSiTO36AlKBBqeTQJQPFt+Yms2333/JzOoqu6OIiIhErFAXYRwHxJmmudwwjFTgBmAk8IJpmk/2Yz4RiWAtpaWkAq2xXmLsDjPAUtKCA/5LSoptTiIiIhK5+lycGIZxKPAqcDfBsSb/Bn4JLAEeMwwjxjTNh/twvHTgRuBIIJngAo+XmKY5v3P7TOAugl3JqoC5pmn+s6+5RWTw+aurAehITIr64iQ7MYXd0tJJKim1O4qIiEjECmW2rquAd4F/GIaRAhwL3GSa5izgJuC8Ph7vOWA34LfALsBC4F3DMCYbhpEBvAesIlicXA1cZxjGKSHkFpFB5m4KrpjetUhhNBvhdvG38ZPYze+3O4qIiEjECqVb147AUaZpNhiG8ZvOY7zYue094O+9PZBhGBMIDqbf0zTNzztvOw84DDgBaAHagLNM0/QBKwzDmAhcDDwaQnYRGUTeDh84nTgycu2OMuDc2SMASHE48fv9uFwumxOJiIhEnlCunLTwQ1FzGFBmmubizu9zgdo+HKsSOAJY0HWDaZoW4ADSCU5L/ElnYdLlQ8AwDCM7hOwiMogeLy3i4cJ83MPG2B1lwHmyRwKQ4HZTWbTB5jQiIiKRKZQrJ/OBCzrHivyGzisYhmHMJtjtan5vD2SaZi3wv+63GYbxa2A88A7BgfZLNrtb12jTUUB53+MHud2h1GU9c7mcP/ocjaK9jdHePhjcNjY1NTK/uAiAOVl5WE7HgJ/T2XkO5yCc6ye8Xhr9fhJdLirWriFv3Lh+P4V+RyNftLcPhkYbRWTghFKc/BV4E3gaWA5c33n7m0AzwUUaQ2IYxp7AI8Crpmm+bhjGHQS7dXXXtYhAXKjncTodpKUlbHvHECQnewfkuOEk2tsY7e2DwWljWVnw6kFySgoJScn4A4M3lXBsrGfQztVdPQ4SgcaSDQP2Pwb0OxoNor19MDTaKCL9r8/FiWma+YZh7ABkm6ZZ1m3TMcB3pmluXkz0imEYRwPPAF8Cx3fe3AJsvnJbV1HSFMp5AAIBi/r65lDvvkUul5PkZC/19S34/dG5Dna0tzHa2weD28bVn33NnukZWNm5NDaF9G+hz5xOB7GxHtraOggMYjHUpc0dA5aP6oL11NSE/C+qR/odjXzR3j4YuDYmJ3t1NUZkCAh1EUYLKNvsti8Nw0gwDGM/0zTf7svxDMM4h+B0wf8FftetwNkADN9s967vi/qe/Ac+38A8Kfj9gQE7driI9jZGe/tgcNrYtmQx542byCKna9ALhUDAsqU46YhLgJY62ioqBvTnq9/RyBft7YOh0UYR6X+hrHMyGrgf2Ad6XLqg19PUGIZxFsE1U+YCfzVNs/t/sk+AMw3DcJmm2TU/5wGAaZpmyONNRGTgbVrjJCE56tc46VKUO5a333uelImTONbuMCIiIhEolCsndwB7AA8AexIcZ/IFcDAwHfhFbw9kGMYkgldMXia4Rkq2YRhdm1sIjj+5CHjYMIxbgV2B84EzQ8gtIoPI1di1xkmGzUkG0YgJfFNbw/CijXYnERERiUihdN7cB7jCNM3zCM7U1Waa5sUEF0n8GDi6D8f6FeAhuJBjyWYfd3VeHTkEMAguzng1cKFpmo+HkFtEBlF8RwcAziGwxkmXtM62lpaW0NHZfhEREem9UK6cJAKLOr9eDlwDYJqm3zCMfwG39fZApmneCNy4jX2+AXYPIaeI2MTy+UhyBKfzdeeMsDnN4ElMSmXPzGzSXS7KijYwYkz/TycsIiISzUK5clJCcLFFgDVAumEYwzq/rwZy+iOYiESuhuIinA4H7YEAsVmj7I4zaBwOB2eMGsNJI0dTapp2xxEREYk4oRQnbwLXGYaxh2maG4CNBBdlTAJOZTtn0RKRyFe2ahUA1b4OXDHxNqcZRA4HtQSvGNUWrLM5jIiISOQJpTi5CqgFru38/jLgvM7bTqQP3bpEJDqVWQFuXr2Sd9s78EXpWg49aXAHl2ZqLimxOYmIiEjkCWURxirgZ11duUzTfNowjEKC40K+Nk3z437OKCIRpqi6ioV1tXh2mGl3lEHXGp8EjVX4q6vsjiIiIhJxQlqEEcA0zRLDMCYDaUCJaZr/13+xRCSSFRcHe3emZQy9IWj+lAxorMLdOZWyiIiI9F4o3bowDOOPnVdLlgHzgVWGYRQYhnF8v6YTkYgUn5/PnukZZCen2R1l8GUOByChw2dzEBERkcjT5+LEMIxzgAeBBcDvgcOAU4AVwFOGYfy6XxOKSMTZqbGR88ZNJCfOa3eUQefJHQ1AuttFc3OTzWlEREQiSyjdus4D7jFN89zNbn/CMIyHCK578sL2BhORyGT5/T+scZI9dKYR7uLKyuOu9YVsbKjjtuIiJkyYZHckERGRiBFKt64RwOs9bHsW0KpjIkNYY0kJLoeDjkCA2JyhV5xYLjfrYuMpbGmmpKTY7jgiIiIRJZTi5BvggB627QQsDj2OiES60pUrAKjs6MDlGUJrnHSTmh6cCKC4eKPNSURERCJLr7p1GYaxd7dvnwXu6Fx08T9AKcEZuw4FzgX+1N8hRSRy1BSsJRWodzrxByy749jCSE1nQs4w2rVKvIiISJ/0dszJPKD7qwwHcBZw5ma3ATyHxpyIDFktxSWkAs1xXmLtDmOTqR43M0eOZkVJqd1RREREIkpvi5P9BjSFiESNrsUHfYkpQ7Y48admQ20pMS3NdkcRERGJKL0qTrTqu4j01gcd7ZSuXsnso04gwe4wNnFl50HBYpICFpZl4XA4tn0nERER6d2AeMMwPjEMY2ZfDmwYxs6GYcwPKZWIRKwVJUUsqKslJm/oTtznGTYWgAyPh7qaapvTiIiIRI7eduu6C3jbMIxvgaeA10zT/El/hc5B8ocQHBS/E3B2fwUVkfAXCATYuHEDACmp2TansY8jJYOOQACP00mxuYLU3efYHUlERCQi9LZb10uGYXwMXAU8BLgNw1gO5ANNQCowEpgGdHTu8zvTNMsGIrSIhKeyVSaHp2dS1NaKNzkDn9/uRDZxOKixIBuoXLMaVJyIiIj0Sq9XiDdNsxI41zCMfwC/IjhIfhyQAlQCKwheYXndNM2qAcgqImGufPEiThgxivz2NloDQ3ucRYPbQ7blp37DBrujiIiIRIxeFyddOguP+zs/REQ2qd+wHi/Q6InBNTSXONlkYfoI7v/kdXYensORdocRERGJEH0uTkREetJRUQFAe3wiXpuz2M0aPpaClmZS1+vKiYiISG/1arYuEZHecNTVAeBPzbA5if3Ss4YDsH59oc1JREREIoeunIhIv4lvbwOHE0fGMLuj2C4zNZMjcnLJiomloaGBpKQkuyOJiIiEPV05EZF+Yfl8JBMcBO8eNtrmNPaLjU/kpBGjOTxnGEWrTLvjiIiIRAQVJyLSL+qLNuJyOGgPBIjLGWN3HNtZLje1geCsAOWrVticRkREJDL0qluXYRgn9+Wgpmk+EVocEYlUZc3N/H3p9wxPTeVIjxd/YIhP1wXUutykE6Be405ERER6pbdjTh7rwzEtQMWJyBCzsaSIDa0txKWMVWHSqcWbCC31dJRpPVoREZHe6G1xMnZAU4hIxNu4MThlblZOns1Jwkd7cia01OPsnMVMREREtq5XxYlpmr3uk2AYxtBeFlpkiIpZtoyjc4cTn5Jud5TwkZUHZetIaO+wO4mIiEhECGkqYcMwfgvsA8QAXcWIE0gAdgdG9Es6EYkYI6uqmDViFF8nJtsdJWzE5I2FpZ+S6XbR3NxEfHyC3ZFERETCWp+LE8MwrgauBuo679/R+ZEFBIAH+zOgiIQ/KxAgxQqAw4krR9MId3Fkj+Sa/LXk11bzRNFGJk407I4kIiIS1kKZSvj3wFNAOnAH8LppmjnALkAVsKz/4olIJGguLyPG4cQXCBCbN8HuOOHD6aI+KZ0Wv5+NG9fbnUZERCTshVKc5AFPmqZpAQuAPQBM01wA3ACc1n/xRCQSFC9dAkBFRwee+BSb04SXtMxhAGzYoOJERERkW0IpTpoIThcMsBoYaxiGt/P7RWhmL5Ehp3rtGgDqXE5NI7yZ6SlpnDJyDI7luqgsIiKyLaEUJ18T7NoFsBbwAQd2fj8FaOuHXCISQZqLNgLQ4tWA782NiovjsJxcUiqr7I4iIiIS9kIpTm4EjjMM43XTNNsIjj953DCMl4DbgHf6M6CIhD+ruhqAjuQ0m5OEoczgui8J7e02BxEREQl/fS5OTNP8BNgZeL7zpnOAF4HJwAvAuf2WTkQiwn9aGrlg2WKaRk+yO0rYickbD0CWy01jY4PNaURERMJbSOucmKa5GFjc+XUrcEZ/hhKRyLJ2fSEVLc3EDxtjd5Sw48weQcCyiHO52LBiOVN2+ZndkURERMJWqIswpgD7E1x08SdXX0zTfGI7c4lIhGhubqKiogKA5PRhaDj8ZlwuqgMWmS4HpSuWqTgRERHZilAWYTyMYPet+B52sQAVJyJDxPqvvuT00WPZEAjg9Hjx+1WebK7WE0tmoIOGgny7o4iIiIS1UK6c3ASsAP4GbCS4KryIDFE1y5ZyUFYOK/w+FSY9aElIgYZK2srL7Y4iIiIS1kIpTiYDR5um+Wl/hxGRyNNSUhL87E0kzuYs4WrjuBnc8dit5I4bx6/tDiMiIhLGQplKuBBI7u8gIhKZHDXBaYR9qRk2JwlfySMm0Oj3UViQj9/vtzuOiIhI2AqlOLkJuNowjDH9nEVEIlB8WysAzqw8m5OEr5T0LDyeGDo6OiguLrI7joiISNgKpVvXiUAesNYwjAqgebPtlmma47c7mYiEPX9bGyk4AHCN0J99T5xOFyeOm8SwgI+NixYycuQouyOJiIiEpVCKk42dHyIyxFWuWonT4aDB10F8zhjUYalnOyQmMdphsXa1aXcUERGRsNXn4sQ0zVMGIoiIRJ7iFctJACr8AQJOD1rkpGeN3kRobaCtqNjuKCIiImErlHVOttYfIQA0mqZZG3IiEYkYqyyLOxZ+zZ677MFeKky2qi0lC1obcNbW2B1FREQkbIXSrauAbbw/ahhGNXCXaZrXhxJKRCJDfv5aWgMB4oaNtjtK2HPkjoKydSR1dNgdRUREJGyFMlvX74F24F3gFOCwztteJ1i0XAs8BlxhGMZZ/RNTRMJRfv46ALJyR9qcJPzFjJwIQLbbQ011lc1pREREwlMoV06OB57bwtiTpwzDuA+YbZrmUYZh1AJnAfdtZ0YRCUOW38/hjU1MGzWGtPRcu+OEPUd6Lu2BADFOJxuXLiZt7/3sjiQiIhJ2Qrlysi/wTA/b/gsc0Pn1fEBzi4pEqdqCAqZ449knI4vkHHXr2iaHg0oLGn0+itestjuNiIhIWAqlOKkCduxh245AfefXiUBTKKFEJPwVLV4EQLnPh8MdZ2+YCPFSSi6nLvqWJerWJSIiskWhdOt6GrjWMIwO4EWgHMgGfgFcA/zbMIw04Hzgy/6JKSLhpmbtanKA+pgYnAFN1dUbacPHAbBGV05ERES2KJTi5AqCxcjtnR9dAsAjwGXAr4CdgP23N6CIhKeOkhIAWhNTiLc5S6TIGT4GgNWrV9kbREREJEyFsgijDzjVMIwbgP2ATIIrxn9mmmY+gGEYbwF5pmm29WdYEQkfnoZgD85A5jCbk0SOnIwcLpwwiWGxXqoqKsjIyrI7koiISFgJ5coJAKZprgXW9rBNq4yJRDHLskjx+cHpxNV5NUC2zZ2QzKTkVOKcTgq/+5aMgw+zO5KIiEhY6VVxYhjGOuBY0zS/Nwwjn60vwmiZpqlZukSiWEt1NS1+H27cxI007I4TORwOKnAyEihfsRxUnIiIiPxIb6+cfMwPs3B9zDZWiBeR6La+oow/fb+Q3NQ0zo5PRePhe6/emwhtjbSuX293FBERkbDTq+Kk+4KLpmn+YcDSiEhEWLXKBCBrzHgVJn3Unp4DJY24aqrtjiIiIhJ2QhpzYhhGEpBsmmaRYRgxwHnASOBF0zQ/CTWMYRhXAAeaprlvt9tmAncBOxNcY2WuaZr/DPUcIrL9Vq8OFifDR4y1OUnkcQwfDyVrSfX5sCwLh8NhdyQREZGw0edFGA3D2BUoBP7SedNc4Bbgd8CHhmEcFUoQwzDOB67d7LYM4D1gFcHi5GrgOsMwTvnJAURk0ExfuZJLJ05mXHqO3VEiTszYKQBkeWIoLiywN4yIiEiYCWWF+BuAlcD9hmF4CRYl95qmmQ48DFzel4MZhpHXOfXw9YC52eYzgDbgLNM0V5im+ShwB3BxCLlFpB9YPh8jAxY7paSSmjvK7jiRJyGFSp+Pdc1NFKxYancaERGRsBJKcfIz4LrONU0OALzAk53bngOm9fF4s4AaYAbw1Wbb9gI+6VxbpcuHgGEYRnZfg4vI9qswV+JyOGjy+UgYOcnuOBHpXlc8l61YyuqyUrujiIiIhJVQipMAwasZAIcDtcDXnd8nA819OZhpmq+bpnmCaZrrtrB5BLBhs9uKOz/rLVsRGxQtWghAWcCP3xFjc5rIlDM8OFana2IBERERCQplQPy3wGmGYbQAxwFvmKZpdV7JuKRze3+J54dCqEtr5+e47Tmw2x1KXdYzl8v5o8/RKNrbGO3tg/5pY/3aNSQADd4EYh0Owmk8t9Pp+NHncDVsZHApKHPF8j79L9LvaOSL9vbB0GijiAycUIqTC4G3gd8CFQTHigAsJXgl5pD+iQZACxC72W1dRUlTqAd1Oh2kpSWEHGprkpO9A3LccBLtbYz29sF2trGiHABfZjap3vC8chIb67E7wlZNyhvB/02dTponBo/HIjExsU/31+9o5Iv29sHQaKOI9L8+FyemaX5nGMYEYCqw1DTNriLhLOAz0zT7sxP1BmD4Zrd1fV8U6kEDAYv6+j71Ptsml8tJcrKX+voW/P5Avx47XER7G6O9fdA/bYxvaganE3JH09LS3s8Jt4/T6SA21kNbWweBcF6AJTmb4V4vHoeTr9/7iJ323b9Xd9PvaOSL9vbBwLUxOdmrqzEiQ0BI65yYptnAZoPXTdN8qV8S/dgnwJmGYbhM0/R33nZA8HRm+fYc2OcbmCcFvz8wYMcOF9HexmhvH4Texo6WFkpbmnHFxuEZMzVsC4BAwArbbEFOyiwHIxxQvHAh0+fs26d763c08kV7+2BotFFE+l+4vwXxCMFB9g8bhjHVMIw/AOcDN9kZSmSo2lBSzJUrlnL2ymXEpufZHSei1XmTAGjO39JcICIiIkNTWBcnnVdHDgEMYCHBRRgvNE3zcVuDiQxRK1YsA2DcBIMo7ZEyaNqyRgAQU1NjcxIREZHwEVK3roFimuYftnDbN8Dug59GRDa3Yllw0cCRYybanCTyuUZPgY0rybagra2N2NjN5/4QEREZesL6yomIhJc9TZM7p+2IkZlrd5SI5xlt4LcsUjwe8hd/Z3ccERGRsKDiRER6paOxkQyHg+FxXhJHTbY7TuTzxLDSF+DTqgrWrV5ldxoREZGwoOJERHpl/bdfA1DZ3k587lib00SH9zJHcXf+Wr4vLLA7ioiISFhQcSIivVK6KNj1qMLlxOffxs7SK8NGTgBg6dIlNicREREJDypORKRX2tYXANCckm5vkCgyYsxkHEBjYT4tLS12xxEREbFdWM3WJSLhy1tXDw4HgWFj7I4SNVJTM3lo5s4kud2s/uYrZuy9r92RREREbKUrJyKyTb7mZtI6v44ZP83WLNHE4XJR63QBUNQ5pkdERGQoU3EiItu0Yd0aPqosZ2ljA95hE+yOE1VqE4NlX5tWihcREVFxIiLbtnjtGu4vzOdFtwefVobvVx3DxwEQX1dncxIRERH7qTgRkW1avHgRAGMnTLU3SBSKmTQLgDy3h8qyUpvTiIiI2EvFiYhslWVZVC5dgsvhYMTYKXbHiTrOzGE0+P14nE5Wffqx3XFERERspeJERLaqfkMhf05K4aEdZzMsb7zdcaKPw0GpOxaAyiWLbQ4jIiJiLxUnIrJVaz/9BIByvx+XN20be0soSrNH80LxRr4q2mB3FBEREVupOBGRrapdvgyAusQk/AHL5jTRKTBzb14o3sh7ixfR3t5udxwRERHbqDgRka3ylJcD0JE7yuYk0SszZwSJyam0t7ezbJm6domIyNCl4kREeuRrbiYjEJw72DNxR5vTRC+Hw4Exfgd2Tk1j9cfz7I4jIiJiG7fdAUQkfK2b/zFuh4OK9nbix0zF57c7UfQ6JD2TmS6DFZ3d6ERERIYiXTkRkR6VfP0VAKUxMfj8DpvTRLnx0wHIbm3TuBMRERmyVJyISI/mV5bz7Mb11IwcZ3eUqOeZNAufZZERE4P59Zd2xxEREbGFihMR2aJAIMD733/Hy6XFxM7Y0+44Uc8RG0exFbw6tfHz+TanERERsYeKExHZonXr1lBTU0NcnJeMnLF2xxkSalIyAWhbu8bmJCIiIvZQcSIiW7T6rTfZPS2DWdN2pF0D4QeFNSE4I1puayttbW02pxERERl8Kk5EZIsSli7lr+MnsmfOCLujDBkxU3ahPRAg3RPDko8/sjuOiIjIoFNxIiI/0d5QT5bPB4B76i42pxlCPDG84vJyzuLv+HylphQWEZGhR8WJiPyE+e47uBwOStrbSBw73e44Q0pg6q6Ut7fx2Wef2h1FRERk0Kk4EZGfqOicyrYsIYkOjTcZVOONWQCY5koqKytsTiMiIjK4VJyIyI9YlkViRfBFsW/sZJvTDD0JSSkcOXEqF46fxPevv2p3HBERkUGl4kREfqRi5UpSnU7aAwESdtrH7jhD0uzs4eySlk79gm/sjiIiIjKoVJyIyI+Y894HoNDvxxGfbnOaoal94k4A5DY00NraanMaERGRwaPiRER+5M3CAs78fiErR40nELDsjjMkxUzfg9ZAgAxPDIve/p/dcURERAaNihMR2aS9vZ1PP51HdUc7ObPUpcsujphYCt1xAJR+Os/WLCIiIoNJxYmIbPLVl5/T1NRERmYWqTnj7I4zpDWNnQpAakUFfr+mTBMRkaFBxYmIbNL+wvNcOnEyh87eHZ9fXbrsFLvTvvgsi+ExsSz9ZJ7dcURERAaFihMRAaC9sZHcpiZ2SklltLGT3XGGPEdCMoUON0vr6/jik4/sjiMiIjIoVJyICADLX38Fj9NJWXs7CcaudscRYPnOB3PtqhU8P+8DOjo67I4jIiIy4FSciAgANZ/NB6AoOZWOgMPmNAIwZvIsEpPTqKmp4csvP7M7joiIyIBTcSIiNFWUk9vSAoBjl33tDSObuFwups3amxS3h4Wvvmx3HBERkQHntjuAiNhv8fPPkOFwUNjeRuLEXejQYPiwseekGZzXUEpTZSWN9XWkpSXYHUlERGTA6MqJiOD7/nsAKoePUmESZhKn7kJTIECy28P8xx6xO46IiMiAUnEiMsRVVJTzWmE+yxrq8e5xmN1xZDMOl5t1abkAtH/9NZal4lFERKKXihORIe7ll1/kvfJSXnB7cGaMtjuObIFrzlEELIsJbg/fvPOu3XFEREQGjIoTkSGso6ODF154DoA5BxxNIKB35cORKyuPdU4PAEueetrmNCIiIgNHxYnIEPb1E4+ys8PJ8IwsxkzW2ibhrH7aHgCMrK2jpCDf5jQiIiIDQ8WJyBBlBQI4P/+MU0aN4aRd9qDdr38H4Sxup30o8wdw4+CtRx+2O46IiMiA0KsRkSFq8YvPk+Fw0Ojzkbj/L+2OI9vicLBixl6cveQ77nvrDWpra+xOJCIi0u9UnIgMQZZl0fDeOwCsSknD7820OZH0Rs4uB5CSN5aW5maee05jT0REJPqoOBEZgpa++grZFrT6/SQc8lu740gvORwO9j38eAC+fek/VJUU25xIRESkf6k4ERliAj4f1a/8F4AVCYkEkofZnEj6YvrsvThvh5lcNHocn95+q91xRERE+pWKE5EhZt6/7iMLBw0+Hwk//z1a0y+yOJ1O4mfuDcD4qiryFy+yN5CIiEg/UnEiMoS0t7fzr1de5quaalZnD8MXn213JAmBd/dDWR+wiHW6WHL3nVo1XkREooaKE5Eh5KGH7ufLVSaP1FSR9PNT7Y4joXI4qNrrWPyWxWQLPnzgXrsTiYiI9AsVJyJDxNplS3nwwX8DcOKp59NBrM2JZHvETpjB0uTgLGtJX3xOaaEWZhQRkcin4kRkCGipqaHytls4LW8kc3afw/AJu9gdSfqB64g/Uu7zk+r28M211+Dz+eyOJCIisl1UnIhEOcuy+OKaK0hzupiWksoxJ5yDz68xCtHAGRvHxr2OpaK9nWfM5dx771y7I4mIiGwXFSciUe7TW25kRFMTvkCA8r0Ow0rIsjuS9KO4STP5ZPZBrGhs4JFHHuD111+xO5KIiEjIVJyIRLFvHn+E3DWrAfh+2Ag8O+xlcyIZCFNm7cPeB/8agMduuYEvX3ze5kQiIiKhcdsdQEQGxrdPPEbiJx+Dw8H3cV5SjjwDX0DduaLVvkf8nsS6Sn7T3oDjzTf4vL2DPU74nd2xRERE+kRXTkSi0Huv/peYjz7A5XCw1OEk4YS/0+4L2B1LBpDT6WTnX59DqdON1+Ui9f13eX/u7XbHEhER6RMVJyJRxOfzcccd/8eFV1/GbWtX8b0nhvhTr6Ddrz/1ocAZ66X5hIsxnW7cTiejFi/m9XPPprm+zu5oIiIivaJXLCJRwvzgff7xhxN4/PGHARh/6DEk/P5SWjW77JDijInFd8LFLErOAMBobmbhuWfz9QsahyIiIuEvIsacGIbhBK4GTgPSgPnA2aZprrE1mEgYKFqymOUP3MfolhaOcnn4NjWNX5/xd7LGzKa9Q2NMhiKHy0XMsX/m22/eY8LiT8l2e3jh0Qd5fN77nHnmOUyfvqPdEUVERLYoIooT4ErgTOAUoAi4FXjLMIwdTNNstzWZiA38HR0sfu1lKt9/j5Ht7Yx2OAhYFhu9Xs678h5aY9Lway2TIS9+l4MonLwLa95+jNfKSmkr3shnn33Kr3aazZ6zdmGX351EYlqG3TFFREQ2CfvixDCMGODvwEWmaf6v87bjgGLgF8BzNsYTGRSWZVFWVsqSJd9T8MF7zC4rJ9HlIgHA4WC1ZeHb/yg8Y2fT6tfAd/mBJykVz6/P5+z9j+OreS/x5afvMKu1jbzvF1H43UKKXE4c4yYwbOddmLjHHGITEuyOLCIiQ1jYFyfATCAJ+LDrBtM0aw3DWAjsjYoTiQKBQIDGqipqi4uoLyuhsbyMpo0b6agox13fwLyKMt4oWAdAXpyXfabtSIPPx/qUVDx7HoZj5A5YvgA+FSbSg5SMYRz8y3OYc9DxNM57kYqKIrLcbsZYwNo1sHYNa599mpUBP1/n5jBy5GhGjBjJMJ+f5MwMUoblkTFiBDHxKl5ERGTgREJxMqLz84bNbi8GRoV6ULe7f+cC+HxZIR/fex+5bY1AsDuNY9NXQf/zpNPuCJ53pq+Rsf6WHo/3tjuVZocLgOn+JiYFtrBv58HfcafQ0LnvVH8zO2xp304fuJKoIrjv5EArM7rt69hs3w+diVQ4gr8iEwNtzLaacTgcWNZPuwt97Iin2OEBYFygjd2sH467+d7zHV7Wd/7qjbY6mEPPGT4jjnUEj5uHj/2t7vv++MhfEYuJB8uyyMXPoY7Wblt/vO+3gRiWdmbIxM/PnW3BXTofNKvb/b6z3CyyghlSCfALZ1uPeRcHXHwd8AAWSVgc5/5hX6cFHiuAmwAey+KrpmZer6rG19FKRqCDu6ZOAyAGSO/86DLG4cDhdJGcNxnPmFk8PnIKtZMOxueMCe5QQa84HOByOfH7A2zhYYx4al9vjIC9dsQKBEguXsCIVe8zqraQ0bST5HbTUlfL24sWbNr7yZ12wely0QA0AO2BAG2WRbtlsbLNx5PNflwxXpwuN6fHWbgdDgIOB5bDQYCur52UOTzMcydvOu5RvjpiCRbTVve/JAfUOT2870qm6y/s0I4a4uleeAdvtxzQgIsPYtI6fz4O9m+vIcna8iwQzQ4X78X88Je1d3staVbHFvdtx8lbsT90eduzo5bMwJb3DeDg9djMTd/v1lFHTqCnHscOXo/PJuC3AIudO+rJC7T1sC+8EZOJ3xFs704dDYwKtPa471sxGZueY2Zs4znm3Zh0WjqfN3bwNTHB39zjvh960mhwBv9fGr4mJm9l3489qbhzR/L4TX/B5dKcOyLSd5FQnMR3ft78v3crP3791mtOp4O0tP599++uR55j38Lv+VlmVo/7PPDtRzT4gk+a+44aw67ZuT3u+9h3n1DZHnxy22PEKHbJHd7jvs8s/Jyi1uCT0M7DR7Dz8BE97vvS0q8oaG4CYEbuMHYeMbrHfV9b9i0FjQ0AGFk5zBo99qeVRqd3Vi2isK4WgLEZWew0dnyPx523Zgnra6oByEtLZ6fxk3rc97P85WyoqgQgMyWVmRMn97jvN4Wr2FBRBkBKUjIzjKk97vt98Vo2lpUAEJuQwPQp03+oNDarOFYWFVBUUhTcFOdl+rSeBxOvLd9A8cb1AGTFxDJtxk5b2Cv4hL28vZnmmmCGWlfwRUKL309DwKI+4KDC6aUkJp2y+DwKR83AecwBNHm8NAEbAXp+fSDSO6mHwq6HAmAFAmRVfE9M1QqcI+uxagtw1xZQ4m8lOeAj2e3E7XAS43TSWRIT19hAdaG56XDGTrsQ2/m7/CMWLKsvJ998b9NN03ecTbLHs8VYa+obWbdi6abvp07fiezY2C3uu6GlmQeWvb3p+7N2mMFIb/wW9y1va+O+JT/se+qUaUxISNzivvUdHdz95Tubvj/RmMoOSclb3LfN7+eOL9/d9P2vJhjMSk3b4r4At334w74/HzeRn6X3PO7nnq8/oC0QLMwOHjN+q88xD377EfWdzzH7jBrDz7byHPPEwk+oaA8+rf5sxCh+tpXnmOcXzWdj53PMTsNH8LOtPMe8suRz1jY18drh+3LCwbN73E9EpCeOLb0LHk4Mw/gl8CIQb5pmS7fb/wPEmqZ5dB8Puc7vD4ytr+/5HaVQrFhfzlsPPk5yYx0/ft8dHJ2vdhemDMfnDD5xj2muIau9adN+m78D/33KcNpdwSfuEc015LY19LAnLEsdRqsr+HJhWEstw1rqt5jRAaxMyaXZHXySz2mpZ3hLz+sfrEnOodETBw4Hma0NjGiuweFgi+/YrkvKpiEm+IIgvbWREU1Vm8X9Iff6pCzqYoPFYUpbE6MaK3vMsDExk9q44IuHpI4WRtWXb9amH45bkpBOtTcZHA4SOloYXVfWbccf/9zK4tOojk8FIK6jjbF1JTgc4HA6sQLWD4+gw0FlfCqVnfvG+NoZW1v8k5yOzuNXe5OpSAjWzJ6Aj7E1Rd32cmLFxEFMHFZsPK1JGbSmD8cdE0dMrJf4hGRc8SkAWD1VgdvJ4XAQ43HT3uHb4hWwSKf2DaCAhb+2BH9dJY6WBqzmRtoCfqpjvHS0tWD5/YwpX4vD78MR8IPfH/xsBcDvo9HlYXVSTufBLGbUbMRtBX70D6XramiLJ5ZliTl0/S+dXltEbMDfedfuV6YtWl0eFifnbvq3O6O+FK+/h6shThffpfzwInxaQxkJvi1f4fA5nSxIydv0/dSGcpJ8W77CEXA4+Cb1hxfsRmMFqR09XOFwwDcZowkEAmDBxKZK0tt7fj76JjWPQOfVkHFN1T963tjcgs2eY3LaGnvcd1HyMNpcwfcnR7XUMqy1ocd9Fyfn0NL5HJPXUseI1i0/xwAsTcomZeQo/vm342ltacffj11Nk5O9uFzOfGBcvx1URMJOJBQnuwJfARNM01zb7fb5wPemaf65j4dc5/cHxlZX9/wPPhRut5O0tARqaprwRelK3NHexmhvH0R/G9W+yBftbYz29sHAtTE9PUHFicgQEAkdQr8H6oF9u24wDCMVmAV8ak8kERERERHpb2E/5sQ0zTbDMO4BbjEMowIoAP6P4AD5/9qZTURERERE+k/YFyedriKY9SHAC3wCHKIFGEVEREREokdEFCemafqBizs/REREREQkCkXCmBMRERERERkCVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhYclmXZnWGwtViWFRcI9H+7XS4nfn+g348bTqK9jdHePoj+Nqp9kS/a2xjt7YOBaaPT6cDhcLQC3n49sIiElaFYnNQCsUCJzTlERESk94YBbUCqzTlEZAANxeJERERERETCkMaciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhZUnIiIiIiISFhQcSIiIiIiImFBxYmIiIiIiIQFFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFtx2B4gUhmE4gauB04A0YD5wtmmaa3rYPwOYCxzeedMLwF9N02wahLghMQwjHbgROBJIBhYDl5imOb+H/X8PPLaFTRN7+rnYyTCM0UDBFjadbprmQ1vYP6IeQ8Mw9gU+6mFzvmma47Zwn4h5DA3DuAI40DTNfbvdNhO4C9gZqALmmqb5z20c59fAP4BxwCrgItM03x6g2L3WQ/t+DlwFTAEqCf4OXmWaZstWjpMPjNns5qdN0/xdf2fuqx7a+Cjwh812LTJNc8RWjhMRj6FhGPOAfXrY/femaT7Rw3HC5jHc1vNCNP0Nikh40JWT3rsSOBM4HdgdsIC3DMOI6WH/F4HxwAHAL4GDgXsHIef2eA7YDfgtsAuwEHjXMIzJPew/A5gHDNvsI3/Ak4ZmBtAKDOfHeZ/uYf9Ieww/56ePxcGAj+CLiy2JiMfQMIzzgWs3uy0DeI/gi5udCb55cJ1hGKds5Tj7EXy87wVmAu8ArxiGMWVAgvdSD+3bC3gZeIlg1jOB49jK76BhGEnAaIIvJLs/nn8egNh9sqU2dppB8Peze96dtnKciHkMgV/w07+tN4GVBB/bLR0n3B7DHp8XoulvUETCh66c9EJnAfJ3gu/u/K/ztuOAYoJPPs9ttv/uwL7AFNM0V3bedgbwtmEYl5qmWTyI8XvFMIwJwEHAnqZpft5523nAYcAJBN+93dx04HvTNEsHLej2mQ6YpmmWbGvHSHwMTdNsBzY9FoZheIA7gJe2dGWoU1g/hoZh5AEPAXsB5mabzwDagLNM0/QBKwzDmAhcDDzawyEvAf5rmuY9nd9faBjGnsB5BF/8D6pttO9PwIemad7c+f0awzAuAx41DONM0zTbtnDI6YAD+Mw0zdoBit0nW2ujYRguYCpwXR9+ByPmMTRNs3qzfY8HDgFmmabZ0MMhw+Yx7MXzQgsR/jcoIuFHV056ZyaQBHzYdUPnk8ZCYO8t7L8XUNL1orbTPIJXW+YMVMjtVAkcASzousE0TYvgk2R6D/eZASwf+Gj9pi95I/Ex3NyfgZHAX7eyT7g/hrOAGoI5v9ps217AJ50virp8CBiGYWRvfqDOrpl70u3vuNt9tvR3PBi21r7bgAu3cB83wf9HWzKD4O9tbX8F7Adba+NEII5e/g5G4GO4iWEYCcD/AXeYprlkK8cLp8dwW88L0fA3KCJhRldOeqer7/OGzW4vBkb1sP+P9jVNs90wjKoe9rdd5xPh/7rf1tkveDzBy+5sti0LyAH2NgzjXIJPVF8BF5umuWrAA4dmOlBiGManwCRgNcF3bH/SPiLwMezOMIw44HLgzp6uFEXCY2ia5uvA6wCGYWy+eQSw+Yu8ritao4DyzbalAgn0/u94wG2tfaZpftf9+25XcBeaplnZwyGnA02GYbwE7EHwZ/AowXEAgf5N3zvbeAynEyz4zzcM4zAgQPD/0BWmadZt4XCpRNBjuJkzCRaVN2zjkGHzGPbieeEGIvxvUETCj66c9E585+fNu1G0EnzXb0v7b6nLRU/7h53Oy+yPAK92PvlublrnZz9wMsH+yInAfMMwcgYnZe91vrCbRHBA5xUEB7l/Q3Dc0AFbuEukP4YnAV6CA/p7ElGP4RZs6TFq7fzc098lPdwnrB9TwzDcwJMEu0CdvZVdpwEpBLuaHgw8AFwPXDPAEUM1jWBBUgD8HLiA4N/mq53vsm8uIh/Dzu5r5wL39lB0dRe2j+EWnheGzN+giAweXTnpna6ZcWK7fQ3Bf6ZbmrmppXPfzfW0f1gxDONo4BngS+D4Le1jmuZHhmGkm6ZZ0+1+xwDrCc68c8vAJ+29zqseqYCvW1/9BZ2DMC8APtjsLhH9GBIsNl4yTbOqpx0i7THcgi09Rl0vcHr6u6SH+4TtY9o5QPo/wH7Ar0zT7LHrEHAgENdtPMOSzvv/f3v3H2pnXQdw/D0rYREzXRs6Wn+E+AEVA3HFRMu5xJKKJdr8s/QPmQQLQymsHFZoRsZoZWAKWcyBcSMZCtLwV5vmH82c/fhEjaDC4lqsi85E7fTH93vWs3PPvTvz3nPOc67vFxzOOc/5nnO+z/3e5zzP5/vzSxGxbVytJ/PYRunmdKg+fy4ingeepAy+7t3XiSxDyvi19wB3DZC2lWU4x3nhTXEMShotW04G022CXtOzfQ3w1znSH5W21tyvnCN9a0TEZ4EpSlP+ZfNNWdq8qK3PXwIO8v9ucK2SmS/1GUR8gP75neQyXEXpDrLrWGknrQx7zCqjxvO/9Un/L8oF0KDH8dhFxGnAE5Ty/OgcrZhHZOarfQZaH6B0pTl5OLl84zKz02dsRbebUL//wYkrw2oT8HRmHjxWwjaW4TznhSV/DEoaPYOTwfwamKHUfgFQa+HPpVw49HoceHed6aRrQ73fN5wsLlxEbAG+A+wANs8xG9CRtBHxQkQsb2xbQek69ZuhZ/Y4RcQ5EfFiRPQOZj+P/vmdyDKszqf0439svkSTVoZ9PA5cWLvMdG2kzMjW29e9O5D3FzSO4+pi+h/HYxURJ1MGCq8CLsjMudaw6aY/ISL+HBE39by0DvjHfK1o4xIROyOid8zXuno/a5D8pJVhwwXMHgQ+SxvL8BjnhSV9DEoaD7t1DSAzX4mIHcA3ImKa0j/6m5Rao6n6w7wK+HetUfolsBfYVX/Y3wF8H7g3M/vVJo1dRJxBWUjrp8CtwOrG4M6XgRc5eh93UwZD3hsR2yjjG24FpoEfjjTzg3mu3u6sZfICZSra9cC6pVCGDe8DDmbm4ebGPvs4aWXY6x7gRuDuiLgdeD/wORrTkUbEScCJmTldN90BPBgR+ym1wFdTZuO7enTZHti3KYvUfQSYjohTG69NZ+brzf3LzP9GxP3AjRHxB8psghspf6Oto878gHYCD9SL8V2UwPi7wM7M/B1MfBl2j7uzKOeMfq+3tgwHOC8s9WNQ0hjYcjK4rwB3U+az30tZ2O7SurbEWuB5ygJp3dqhyykL2T1C6S/+ELBl9Nke2BXA24BPUvaledvO7H38C6W2awXl77EHOARsmK8r2LjUftofB56mrLK9H/gAcEmd1nMplGHXqZSVmntNdBn2qjWzlwJBuYi7GbghM5uB1XbKxAfd9zwMfIZSjvspF34f65kyeuzqYPDNwImUGvfeY3JtTXrU/gFfBG4HbqO0PFwPbM3MQcY6jFxm7gaupCxyeoDyGzsFXNNINpFl2LCS8ts6V6tHm8tw3vPCUj4GJY3Psk6nM+48SJIkSZItJ5IkSZLaweBEkiRJUisYnEiSJElqBYMTSZIkSa1gcCJJkiSpFQxOJEmSJLWCwYmkVoqIZePOgyRJGi2DE0mtExGfoK5SHxEXRUQnIi4ab64kSdKwvXXcGZCkPq5vPP4VsJ6yWrYkSVrCDE4ktVpmzgBPjTsfkiRp+JZ1Op1x50GSjoiIR4EPNTZtAB4BNmTmoxGxDbgK+ALwNeB04PfAFqADbAfOAf4EbM3MPY3PPhu4Dfhg3bQH+HxmHhziLkmSpAE55kRS21wH7K+39cCKPmnWAncAXwc+BZwC/AS4D7iLErycAOyKiOUAEXEGsA9YDXwauAZ4L7A3IlYPb3ckSdKgDE4ktUpm/haYAWYy86n6uNfbgesy877MfAD4HrAG+Gpm/iAzfwZ8GXgXEPU9NwMvAx/OzKnMvJ/SKrMcuGGoOyVJkgbimBNJk2pf4/Hf631zbMo/6/076/1GSvewwxHR/e2bAZ4ALhlSHiVJ0nEwOJE0kepA+V6H53nLSmBzvfWaXpRMSZKkBTE4kfRmcQj4OfCtPq+9NtqsSJKkfgxOJLXR68BbFvkzHwPOBJ7JzNfgyCr0Pwb+CDyzyN8nSZKOk8GJpDY6BKyPiIuBkxbpM28BngR2R8SdwH+Aa4FNwBWL9B2SJGkBnK1LUhvtAF4FHqLMprVgmfkscCFlLZQfUaYePg3YlJlTi/EdkiRpYVyEUZIkSVIr2HIiSZIkqRUMTiRJkiS1gsGJJEmSpFYwOJEkSZLUCgYnkiRJklrB4ESSJElSKxicSJIkSWoFgxNJkiRJrWBwIkmSJKkVDE4kSZIktYLBiSRJkqRWMDiRJEmS1Ar/A3gNjU+ZY86KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.470 - 19.990) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
010.002.901.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
1217.4719.991.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
012.9117.4612001.012001.463355204.398068.241758e+0024.8002981.000039peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 0.00 2.90 1.0 1.000000 \n", + "1 2 17.47 19.99 1.0 1.000000 \n", + "0 1 2.91 17.46 12001.0 12001.463355 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 0.00000 1.000000e-09 0.000000 1.000000 \n", + "1 0.00000 1.000000e-09 0.000000 1.000000 \n", + "0 204.39806 8.241758e+00 24.800298 1.000039 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 valid \n", + "1 interpeak 0.01 valid \n", + "0 peak 0.01 valid " + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_compounds` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3140091.62120815061.8358181.807420e+064compound A171.377934µM
017.290.3481231.70557112525.9916561.503119e+066compound B56.931685nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4 \n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.377934 µM \n", + "0 compound B 56.931685 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/MbN9k0yuBkAQydJAmIkhTEEUUvVyxwLULFlBEQVFBERULKNjpCqKCiopdsaHYQJSWIYEkpPe6fcr9Y3cxhNTNJtmE732ePCQzZ86enQzZ+eac8x1GURQQQgghhBBCyNmAbe8GEEIIIYQQQkhboQCIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctZQtXcDOqlyAFoAee3cDkIIIYQ0XQwAO4Dgdm4HIaQVMYqitHcbOiOroig6WW6dc8uyDFqrbvIvOs9tg85z26Dz3HboXLeN1jjPLMuAYRgbAL1PKyaE+BXqAWodebKsJJSWmn1esUrFIiTEiMpKC0RR9nn9xIXOc9ug89w26Dy3HTrXbaO1znNoqBEcx9DoDUI6OZoDRAghhBBCCDlrUABECCGEEEIIOWtQAEQIIYQQQgg5a1AARAghhBBCCDlrUBIEQgghhBA/tm/fvkC4UnTTg2tC6iYDyBsyZEhVUwpTAEQIIYQQ4of27dvHAniIYdhZDMOoATDt3SZC/JSiKIpz3759bwJ4csiQIQ2mh6QAiBBCCCHEPz3Ecao5JlOIQ6PRWRiGoQWmCKmDoiiMw2EzVFaWzZEkEQCeaKg8BUCEEEIIIX5m3759JoZhZ5lMIY7AwJCS9m4PIf5Oq9VbAYSVl5fM2rdv34sNDYejsaSEEEIIIf4nmmEYtUajs7R3QwjpKNw9pWq45szViwIgQgghhBD/wwJgaNgbIU3n/v/CoJEYhwIgQgghhBBCyFmDAiBCCCGEEELIWYMCIEIIIYQQctZYvXpl7BVXXNy/vdvRVCkpR3TffPNVUHu3ozOhAIgQ0iHk5uZg1apn8ddf+9u7KYQQQkibWbTovp5Hjhwytnc7OhMKgAghfk+WZcydOxubN6/H7bffgOzsrPZuEiGEENJGKA+Gr9E6QIQQv/fnn7/jPJsdI+Pi8XlhPnbufB933XVPezeLEELanCzLsFgs7fYA22AwyCzbvJcfNWrokKuuujrv+++/DXM6neyLL76aYjAY5DVrVsX9889fJrPZzAUFBYnjxl1YMm/egpyjR4/ob7/9hj6vvLLu6IABgywAcM89dyQdOvSP6Ysvvv9LpVJBURRceumFA//3v5tyrr76uuLar1lcXKRaufKZuP37/wiSJIlJTu5VPX/+wqykpB52T5k33nglateunVFVVVWqHj16mhctejTDs7+uNsfFdXW8/vrLMT/8sDusrKxM3aVLF9vMmTfmXnzxpeUAsH37O2Hbtr0Vc+ONt+SsX/9GXEVFubp3775VDz/8WMamTeujv//+mzCVSqVMnXplwezZd+UDgN1uZ156aVXsnj0/hpSWlmh0Or08cOCgikWLHjkZGhomXXHFxf2Li4s17733dszBgwcC1659UygrK+VeeumFLn/88WtwVVWVKiEhyXzbbXfkjBgxstrz3nbufD9069bNMUVFRdpu3bpZx427qGT9+te67tnz5z5vficsy3r1/vwVBUCEEL/3xy97cFFEFHQch1/LSnBs788Qr/8fVMEh7d00QghpM7Is49prr+qVknK03YZD9erVp/rtt3cIzQ2Cvvrqs4innno+VZJEpmfPZPu1117VJygo2LlixQvHAgMDpR9+2B28du2rXfv06WeeNOmS8vDwcMfevT+bBgwYZJEkCUeOHAq02+3sX3/tMw4bdq75wIH9hqqqStX48ReV134tURQxb96cZIBRli598nhYWJi4Zs2quPvuuzt5x45PDgJAcXGx5tChfwKfemplqsNhZ5588rGEJ598rPv69W8J9bX5nnvuSDpx4rjh7rvvPZmQkGT74otPQ5cvX5rEsmzaxImTKwCgpKRY8/HHH0Y+8cQzaRaLmX3kkYU9b7zxur4TJlxU/Mor649+9tnHYVu2bOoyZsy48t69+9qef/7puN9+2xu8cOHijK5du9kFQdA/99yT3V9//eXYBx98NGvdureO3nTTdX3OP39M6W23zcmTJAlz585OdjqdzMKFD6dHREQ633337chFi+Ynv/DCKymDBg22fPPNl0ErV65ImDXrpuyxYyeU//bbL6Z1617r2tLfiTfvr1kXSRuiAIgQ4vfK/toHnVoLq1aL8eGRGK83omTPj4iacnl7N40QQtpYx1wXaMyY8SWDBg22AIDVamXGj7+oZNKkyWVdu8Y7AKB795sLt29/Jzot7Zh+0qRLyocOPbd8//4/TADyDxzYb+Q4lZKc3Kv6jz9+Cxw27FzzTz/9ENyzJ18dEREp1n6tn3/+0ZSZmaHfuPHtQz17JtsBYPHipRmbNq2LLi0tUQEAx3HKsmUr0oOCgiQAmDx5StGWLZu61NfmY8dSdH/++Xvw0qXL0y68cFIFANx11z15J06kGbZu3RzjCYAkSWLmz1+Y6bn5799/YOWxYykB99//UDbDMLjttjvz3ntvW0xq6jF97959bb179zGPGzeh7LzzRlUDQNeu8Y6vv/6iMiPjhB4AwsMjRJZlFb1eL4eEhEq7d39tSk8/YVi7dvNhz2s8/PBjJ48dSzFu3bo5etCgwSfeeWdr9IgRI0tvuWV2AQD06NGzKDs7S/vJJzujWvI78eb9teSaaU0UABFC/JrVaoW+tBSIioFpwEBU5+UCAMqOCYhq5FhCCOlMWJbF22/vEDraEDgAiIvremromV6vV2bOvLHws88+CdmyZbMxNzdHm5mZbigvL1NLkswAwOjRYyuWLHkowmq1Mr/9tjewb99+VV26dLX9/fd+E4D8P/74LeiCC8aW1vVaqanH9AaDQfIEPwAQFRUtLlz4cLbn56CgINET/ABAYKBJcjgcp72xmm0WhBQ9AAwdem51zTL9+w+qevPN9XE1t/Xo8e/rarVaOSIiys4wDABAp9MpAGC321kAmDZteulPP/0QuHLlii45Odna7OwsfW5ujq5Xr96nvY5HWlqqXq83SDWDC4Zh0KdPv+r9+/80AUBGxgnDqFEXlNU8buDAc6prB0DN/Z148/78FQVAhBC/duJEGnoaAwAAYf0HQvrjVwCAIye3PZtFCCHtgmVZBAQEyO3djubSanWn2myxWNjbb7+Bt9ls7OjRY8omTpxcMnDgoJN33XVbL0+Z8847v0qtVsm//vpz4F9/7TONGzehND6+u/3jjz+IzsrK1GRknDAsXbr8RF2vxXEqxXNDXh+WZRvtSavZ5voSEciyxHAcd9pOtVp92s8sW39bHn/8kW4///xj6NixE0pGjDi/olevPnlbt26OLikp0tRVXlHqfmuyLEOlUimu12MVRWm8o7C5vxNv3p+/ogCIEOLX0o4J6GFwDXfXJfWArms8kJUFdWUFFFkG48WTSEIIIe3nhx92m9LTTxg++ODTvyMjo0QAKCsr5SoqKlSeQEOj0SgDB55T+eOP3wenph4LWLTokcy4uK4OhmGUV15ZExsTE2urmdCgpsTEJJvZbOZOnDiuTUxMsgNASUmx6pprruz3xBPPpHrT5uTkXlYA+PPP3wI8Q+AA4ODBvwO6dOlq9abO0tIS7quvPo9YuHDxicsum3aqxyY7+6ROp9PXCL7+DTB69Ei2WiwW7ujRw7qavUBHjhwOiIvrZgOA+Pju1iNHDgcAKPTsP3z4YIPzxpryO+lM6M6BEOLXCo4cgppl4WBZqCMjEZXMwy5J4BQFzsLCxisghBDiV6Kioh0A8PHHH4ZlZWVqfvttb8CCBXN7SJLEOBzOU3f7I0eOKv/uu2/DTaZAMSmph12r1So837t6z54fwkaMGFleX/2jR4+pTEhIsjz++MMJ+/b9YUxJOaJbunRx96CgYOfAgedYvGkzz/e2DRo0uGL16pXdvvnmy6C0tFTtSy+9ELNv3x/B//3vNQXe1GkyBUl6vUHas+fH4BMnjmuPHDmkX7LkofiMjHSD0/nvedDpdFJOTra2sLBANWbMuIquXeOtjz/+SOIvv/wUeOxYim7Zske7ZWef1M+YcW0BAFx77ay83377JWT9+tejTpw4rt2x492wTz/9JLKhtjT1d9JZUABECPFrRSdPothuhzMoCAzDICExCQUO10M/Z8kZmU8JIYT4ucGDh1puuum2rI8//jBy1qwZ/VaseKJ7v34Dq84/f3SpIPyb4W7cuAsrZFli+vUbWOnZds45QyoVRcGYMePL66ufZVk888yqtIiIKMeiRff1vPvu2b04jlNWrlyTqtVqve7OePrplSeGDx9RvnLlM91vuWVW399++yX4oYeWHr/00qlljR99JpVKhYcffuzEyZOZ+ptvvr7vAw/c29Nut7PXX39DTk5Olt5sNrMAcPnlVxXu3/9H0Lx5dySrVCqsXv3qse7dEy2PPfZw0uzZN/fOyEjXP/30ymNDhgw3A8C4cRdW3nnnvMxduz6KuOmm6/p++ulHEZMmTS7yDJGrS1N/J50F05QxgqTZTkiSnFBaavZ5xSoVi5AQI8rKzBDFDjcEuMOg89w2mnKeL7tsIrKyTmL9G5swZPgIZGZm4NcF9+CcoGBE/u9GBI8e08at7njoem47dK7bRmud59BQIziOTQeQ6LNKvbRv375eLMt9ERnZpVqj0fltNi3if/bu3RMQHh7prJkE4tVX10R/9dXn4R9++Nmh9mxba3M4bLrCwpwAWZYuHjJkSEp95WgOECHEb8myjPz8PABATJxrCYOoqGjsLS1BusWMW0JoHSBCCCGkpl9//SXo++93hz7wwEMZ8fHd7UeOHNZ//PGHUZMnTylq77b5CwqACCF+q6SkGE6nEyzLIjLSlb1Tp9Phb1nC9zlZmKbWILyd20gIIYT4kzvumJdrtVrZp59+IqGqqlIVGhrmuPzyKwtuvXVOfnu3zV9QAEQI8Vt5OdlY038QKgEwdjugcv3JiomJQVlZKfLzc8HzZ2ToJIQQQs5aWq1WeeihJVkAstq7Lf6KkiAQQvxW0YnjiNLqkKDRgtXrT22PjoxGpEaLSkFox9YRQgghpCOiAIgQ4rcqMzMBANUq1Wnr/SSFheOlAecg6c8/2qtphBBCCOmgKAAihPgte4FruLLDYDhte0CUaz6QSpYhO51t3i5CCCGEdFwUABFC/BZTXu76NyT0tO1BEZEQZVfqW6mqqq2bRQghhJAOjAIgQojf0lpdC3brYmJO2x4WHoEqUQQASNUUABFCCCGk6SgAIoT4rUB3L48pvvtp28PCwlApuoa+UQ8QIYQQQpqDAiBCiF+qrq5Gsc2GUocDkT2TT9sXFhaOCncPkFhZ2R7NI4QQ0kSjRg0dsn37O2FNLf/999+apk27pN/YsSMGr1ixPK4129YUq1evjL3iiov7+7LO5pyT7OyTmo8//pBW/vahdl0HiOf5sQC+q2d3uiAIiTzPDwLwIoChAEoArBYE4bkadbAAlgC4BUAIgD0A7hAEIa1GmRbXQQhpW/n5uXgqNQUmUxB+TEg8bV9oaCiq3MkPzMWFCGqPBhJCCGmS99/f9bfJFCQ1tfzata/GRUVF21988ZVjAQGBTT6uI2nOOXnssUe6R0ZGOqZOnVbW2u06W7R3D9AvAGJqfU0EIAJ4kuf5MABfAzgGV/CyBMAynudvrFHHIwBmA7gVwHkAFACf8zyvAQBf1EEIaXu5ubkAgJiY2DP2qdUaHLTb8H5uNqxBwW3cMkIIIc0RFRUt6vV6panlzWYz16dPX3O3bt0doaFhnTIAat45UZjWbc3Zp117gARBcADI9/zM87wawCoA7wuCsI7n+QcB2AHMEQRBBHCU5/meABYC2OgOUO4D8IAgCJ+567gaQC6AKwG8A+A2H9RBCGlj+fl5AICYWgkQPE5o1NidkY4L9XoktWXDCCGENMuoUUOHzJu3IGP69Bklixff312WZSYkJNT53XffhtntNnbAgEGVDz74aGZUVLQ4atTQIQDw3nvbYt57b1vM22/vONi1a7xj7dpXoz7/fFdkRUW5Kjo6xj59+jX506b9pxQAfvnlp8AHHrg3edasm7Lff/+9mPDwCPsTT6w4MXPmf/tdc83M3E8//ThSo1HLmza9c4RhGKxcuSLu99/3BouiyCQkJFnuuGNu9qBBgy2e9m7b9lb49u3vRJeVlWoGDjynIjIyytHQ+7v11ll8374DqsrKStU///xjqFqtlqdMuaJw4sTJpU8/vaz7iRNpxujoWNsDDzyUcc45Qyw1z8lFF11cPmvWf/t2755oWb36tTQA+PHH7wMXL74/+cEHHz3+4Yfbo44ePRJw9OiRgCuuuDhw584vDl5xxcX9x4+fWDJ37vzcmm2IjIyyL1/+bEZd5+PNN985WlCQr1616tmuBw7sN3EcqyQn9zLPm7cgKymph701fu/+rL17gGq7E0BXAPe6fx4N4Ed34OKxGwDP83wkgEEAAt3bAACCIJQD2A/gAh/WQQhpY7p//sbL/c/BGK2uzv2hoa6h02VlNCKAEHJ2kaxWtr4v2W5n2qJsS+zd+3NIZWWl6sUXXxEefXTZ8aNHjwS+9NILXQDX0LDQ0FDnZZdNK3j//V1/d+nS1bFq1TNdPv3048g775x3cv36LUemTftPwcsvvxD/1lubImrW+9tve4NfeWXd0UWLHsngOFYBgO+//zZ01aqXhKVLnzweFBQk3XPPHT1zc3O0TzzxTNorr6xL6dWrt/mee+7odfDg33oA+PjjD0Nee+2lbtOm/adg7do3D/fu3df8+ee7Iht7Tzt37oiOjIxyrFv31uEpUy4v3LbtrdiFC+/tefXV1+a//PLaoxqNWl65ckV87eOCg4Ol++9fnP7XX/uCPvrog9DS0hLumWeWJ0yYMLH4kksuK3/mmRfSevZMNp933vll69a9dbQ557nm+bDZbOzdd9/Oy7KEVateFlatelkwmYLEO+64uXdubo66OfV2Bu3aA1QTz/M6AIsBvCAIQp57cxyAg7WKeqLdbu79AJBVR5luPqyDENLWyssQodXCbjDWuTsk0IQYrQ723Ow2bhghhLSv43fPOae+ffpkvqLrAw+emsN8Yv7cgYrTWecDb233hOr4h5cInp/TF97XX7ZY6rw31MR2sXR/fHmzbsDrbaNeLy1Z8kSmWq1WkpN72fbu/blk374/ggDX0DCWZRW9Xi9HRUWLZrOZ/eSTnVELFjyYfuGFkyoAICEh0Z6Xl6t9//13omfOvKHIU+/VV1+b7+nNOHkyQwMAl146tYjne9sA4KeffghMTRWMO3d+/nd4eIQIAPPnL8w5cuRwwDvvbInq339gxgcfvBc1cuSospkzbywCgB49euYfPXrYmJFx4vQVuWvp2rWb9c475+UBwI033lawbduW2NGjx5ZOnDi5AgAmTpxcsnbta13rOnb06DFVkydfVvjaay91/fbbr0KNRqO0cOHDJwEgJCRUUqlUikajkT1tbqqa5+Pdd7eGV1VVqp5+emW6Wq1WAODxx5/KuPLKS/vv2PFuRM3epLOB3wRAAGYC0ANYXWObAa7hazXZ3P/q3PtRTxnPyom+qMMrKpXvO9g4jj3tX9I66Dy3jYbOs8piBVgWhpiYOv8v9dTrcXv/QTDv3w/VLfR7aghdz22HznXboPPcsUVFRds9N+EAYDQGSKIo1tnDdOxYis7pdDLPP/9095UrV3T3bJckmRFFJ2O1Wk8d1717whlDubp1i/fc8yEl5YgBAK6++orTMrqJosg4nQ4GALKyTurHjp1QWnN/nz79qhsLgGJj4069jsFgkAGgS5cup9qj0WhlUXTW24s2f/4D2fv3/xG0f/+fQa++uuFIc+ZM1afm+Th2TDBYrVbu4ovHDqpZxul0sllZmXUPtejE/CkAmgXX3J+SGtusALS1ynl+SWb3frjLWGuVMfuwjmZjWQYhIXU/ufYFk0nfanWTf9F5bht1nWeDJAKsBtHJSXX+XwoIDwWKS8CJzlb9v9aZ0PXcduhct42z9TwnrXn1r/r2MSx72o1z4srVfze1bMKK52uPmKm3bEvUDH7+VXf1siwzAPDQQ0tOJCb2sNXer9VqTx2o0+nk2vt1Ot2p/bIsM3q9Xnr99U1n9GRpNBoZABiGgVKrKSqVqtH3rlJxZ5RhmKYH6AUF+ery8jI1x3HK3r17TP37D7A2fMTpLyeK0hnBVc3zIcsyYmJibU8/vfKMDMdGo7FTJppoiF8EQDzPRwAYCeDJWruyANROAeX5OQeAusa247XKeP7D+6KOZpNlBZWVlsYLNhPHsTCZ9KistEKSzvh/TnyEznPbqO88O51OBLOuD46A2K4oKzvzWQSrdwU9nFOscz/5F13PbYfOddtorfNsMuk7RK8Sp9c3+U23Vtm20qNHso3jOCUvL1fjGQIHAJs2rYvMzEzXLVmy/GRT60pK6mm1Wq2cw2FnevXqcyqYevTRB+N79OhpmTXrpqL4+O6WQ4f+DgBQ6NkvCEdb9SmbLMt4/PGHE+LjEywTJ15c8uqra7qNHDm6sl+//u4giDkt2uE4lVJdbeZqHl9YWKCJjY09I0D0SExMsv7ww3dhJpNJ8gylE0URDzxwb+K4cePLLrvs7Eqx7RcBEFzBjwLgh1rbfwQwm+d5ThAET3Q6AYAgCEIhz/MVACoBjIU7eOF5PhjAYAAv+bAOr4hi6/0dkSS5VesnLnSe20bt85xzIh0GzvXnKbhrQp2/A12wa4SqWlHgtDvBcNwZZcjp6HpuO3Su2wad584vKChIuuiii4veemtjF6PRKA0ePKz6zz9/D9y0aX3clVf+J7/xGv41btyEio0bu1uXLHko6e6755+Mje3i2LHjnYjvvvsm/KKLLj4GANdcMyv/sccW91i79tWo8eMvKt+z54eg337bGxIcHOxsnXcIvPHGK9Hp6emGdevePJKYmGT//vvdIU888WjC5s3vHNVqtYper5cLCwu0OTnZ6i5d4py9e/ep3rPnh9C9e38ui4iIdG7ZsinaarU0+CE4deqVpdu3b4tZuPDepDvumJttMgVJGza8EXPgwL6g226bc1bN/wH8JwvcQAAnBEGo3WWyAYAJwHqe5/vwPH8DgHsAPAUAgiDY4QpSVvA8P5Xn+QEA3oWr1+cDH9ZBCGlDhcdTAQBmWYZKX/cQF2Povwtoy9ZGRgoQQgjpsBYteiTr8suvLHjzzY1dbrjhmn5bt26OmTHjuty7727exH2O47B69WvHevZMNi9fviTxlltm9vnnnwOBDz/82PHRo8dUAcCFF06seOCBh0589dXn4TffPLPvnj0/Bk+dOq2gdd4ZcPDgP/p33tkSO3PmDTmJiUl2AHjwwUcyi4uLtKtWPdMFAKZOvbIoK+uk7qabrusrSRLuuuvenORkvnrx4gd63n337b1MJpM4cuToBntwgoKCpDVr3kgJCgoWFy1a0HPOnJt7FxYWaJ588rnUmr1hZwtGqT3QsR3wPP8KgHMEQTivjn3D4EqMcA6APADPC4LwUo39HFxD526EK4nCjwDuFAQhw5d1NNMJSZITSkt9PyxHpWIREmJEWZmZnnq1IjrPbaO+8/z1ls2w7voY2oBATFq3qc5jf/31F+hffxV6jkP35SugiYpqo1Z3PHQ9tx06122jtc5zaKgRHMemA0j0WaVe2rdvXy+W5b6IjOxSrdHozrobVEK84XDYdIWFOQGyLF08ZMiQlPrK+cUQOEEQ7mhg3x8AzgiMauyX4FrUdGFr1kEIaTsZVgteTjmMyy+/EpPqKRMUFIQyUYSe4yBbaA4QIYQQQprGX4bAEULIKXl5rlEN0dEx9ZYxmYLwdXEBPirMB2cytVXTCCGEENLB+UUPECGE1JSXmwMAiImpncDxXyZTED50B0p3GwNw1i1jTQghhBCvUABECPE7Uyw2XN//HOgaSG8bEBAAjuMgSRIqKyug051167gRQgghxAs0BI4Q4lcURUEQFERotQiLiq63HMMwiA4ORoxWh4q8nDZsISGEEEI6MuoBIoT4lbLSUoSqXAPaInr0aLDsf6Jjcb7eCNsvvwADB7dF8wghhBDSwVEPECHEr+QfT4WKZSErCgwRkQ0X1mgAAM7q6jZoGSGEEEI6AwqACCF+pTQjHQBQBQUM1+DC1mC0rnk/TkqDTQghhJAmogCIEOJXKrKzAQBWVeN53VidHgAgW62t2iZCCCGEdB40B4gQ4lfsRYUAAMlobLQsq9MB1dWAw9HazSKEEL/BMOAYhmmXh9iKosiKAqk9XpsQX6EAiLQqsbwMquCQ9m4G6UCKqquQUl2FgKSkRsuqjQagGBQAEULOGgwDTmaYGItNbJd7OINOJbJQ8vwtCFq9emXs7t1fhe3c+cXB5h6blpaqve22G/ps2rT1cLdu3ekD5SxAARBpNbnvvYPqr75AQdeuGL1kWXs3h3QQP5QU4UjKYay6/Y5Gy6oMrl4iThRbu1mEEOIXGIZhLTZR9euhPNliE+tfLK0VGHQqdkS/GFWgTsUqiuJXAZC3jhw5pF+06L4eDoedpoWcRSgAIq1CEUVUf/UFAODLX/Yg+OA/6N9/QDu3inQEeXl5AICYmNhGyzIhofi8IB8h8d0xvLUbRgghfsRiE2Wz1dmmAZBbpwkUXnlldfSOHe/EdOkSZystLdG0d3tI2+k0FzHxL/askwCAKtGJXQV52Lv3p3ZuEekIrFYrystKAQCxsY0HQJrISGzMysBeydnaTSOEEOKlUaOGDtm6dXPETTddz48bd97gGTOm9fnqq8+Dapb55psvg66/fnrvcePOG3zllZf2e+GF52Ltdjvj2Z+SckR3zz13JE2aNHbQmDHnDr7yykv7bdy4rt61EjZtWhc5duyIwV9++VlwfWX27fs96P77H0qfM+fubJ+8UdJhUABEWoUlMwMAcMLsSk985MjhdmwN6Sjys09i6+DheGXAYBjVjWeBMxoDAABmM60DRAgh/mzjxrVx48ZNKH3jjc2Hhw49t2LZskd7/PHHb0YA+O67b0zLly9Nmjx5SvGGDVsPz5t338k9e34IXbz4/gQAsFgs7H33zU3W6fTymjWvpWzc+PbhUaMuKFu//rWuBw/+o6/9Wlu2bIrYvHl93MMPP3580qRLyutr0/r1W4TJk6fUu590XjQEjrSK8owMAECZ04mexgDI2fRwhTSuIC0NoSyLQLX6VIrr2hgGUKs5iKKMAKMBQSo1tBYrFFkGw9IzHUII8Ufjxl1YPHPmjUUAsGDBopxDh/4O3L59W+SwYeemb9myKWbChInF1133vyIASEhItKtUqsyFC+cnnzyZoTEYjPLUqdMKr7lmZqHJZJIB4K677s394IPt0ampKfr+/QecWgth27Yt4Rs2vBG3ZMkTaWPHTqhsn3dL/B0FQKRVWHKyoQHQMyAQY8MjsK+iDKIoQqWiS47UryLrJEIBmFkGDMPUWUalZpFtyUWMIQpGgxFrBw0BAEjmaqgCTW3YWkIIIU01ePDQqpo/83xv84ED+00AkJ6ebjh+PM343XffhHn2K4rr37S0VN348RdVXnvtrMJduz4KPX481ZCTk63NzEw3AIAkyac+LMrKytSvvro6nuM4JS6um70t3hfpmOhulLQKZ3kZNACK1Bp0ARCkUqOsrBQREfUO1yUE5nxXAgSHTldvGZtsQ1F1CYK1JgSYTCiXJOg4DrLNBlAARAghfkmlUik1f1YUBSzLKa7vZeaKK/6TP3XqtJLax0VFRTsLCwtUt912Q+/AQJM4YsTI8iFDhlcOGDDQfPXVV5yWXYlhWDz++JOpGza8Ebt8+dKE9evfSmFpZACpA10VpFWcMBqxMy8HhYHBAIBQtQbFxUXt2yji98RS12efUk8gw3EszKIFuRUFsDitMJlMsMmuTKySxdJm7SSEENI8R44cOm1165SUIwFJSUkWAIiL62bNysrUJSYm2T1fBQV56tWrn4+rrq5iP/lkZ1h1dZVqw4YtKXfeOS9v8uRLyysqyt0P8f+Nq4KDg5xjxoyrXLTo4YwTJ9IMGzeujWrDt0g6EAqASKv4w2bB2zlZqIqIAwAEqdUoLixo51YRf8dUuUZIaMLC69zPcQwqbVVwSE5U2qsQFGSCVXIFQJaKijZrJyGEkOb55JOdUTt3vh+alpaqXbFieVxmZob+mmtmFQDAjBnX5f/++68hq1evjE1LS9Xu2fNj4DPPPJlgNleroqKixaioaIfdbmd37fooJDv7pOaHH3abHnvs4UQAcDgcZ9zL9u7d1zZt2vT8rVs3xx4/nqZt6/dK/B8NgSOtoqjI1dujComAnKGAYxiUu4c3EVIfjd0O6PQIqGcNIBkyym2uOa2VtiqoTCrYZNcyGNbysjZrJyGEtDeDTtXmD7Fb8poTJ04u2rHjnagXXnhOHx8fb3nqqedS+/btZwWASy+dWqYoyolt296K+eCD96INBqM0dOjw8nvvfSDbsz8l5Wj+2rWvdl2zZiUbHh7hmDTpkuK9e38OPnr0sBHAGUNM5sy5O+/nn38MWb58afd1694UaCgcqYkCIOJzst2OwKoqhGk00AYEw8KwCICC6vz89m4a8WOiKCKtohyMKGJIj551lnEqIqwOGwDALjogQYLDnSzBSj1AhJCzgKIoskGnEkf0i1GhHUbyGHQqUVGUZi/AmpCQZH3ggcX1poSdMuXysilTLq/zSRbDMFiwYFHOggWLcmpuv/nm208NLZk7d37u3Lnzcz0/a7VaZfv2j5u0BsfIkaOr9uz5c19TypLOgQIg4nP27CzcYQpGId8Hh/UmWDg1AiQHbDQHiDSgsLAAb2VlQqVS4/ehw87YzzCAU3bCJroS+9hEByRFgugOgBxVVWccQwghnY2iQGKh5AW2Qw+Q6/UVWVEgtcdrE+IrFAARn3OWlwMAyp1O6I0mHAuJxq79P0AfaGz4QHJWy811PdiLiYlFXUMVGIaBQ3bCLjoAAA7JCafsxHEoyCrMx4gGMscRQkhnoiiQFEWhIIQQL1EARHzO7E52UOF0wmA04ViXHvjii/dwTpcu7dwy4s/ycrLBAIiNrXv+D8sysDsccHgCINEJURZxRKPB/pMZ6BUQ0IatJYQQ0lQ0vIz4GwqAiM9Z3EPdLAxgVKmhNwQCACoraUFmUj/H0SN4e8i5yFPXnbCHYRhYHNZTCU9FWYRDdiLAHfiYzdVt1FJCCCGEdGSUEoP4nM09Gd3JueLrQE4FPiAAAVZrezaL+Dl7cRE4hoFWr6+7AAOYHebTNtmcdpiMRphUKtjKKAscIYQQQhpHPUDE5xxVlVADkNxP8uNK87CsVz/8SmmKSQOUclfgrAoNrXO/DPFUAgQPm2jHIEnBrEFDkSektHobCSGEENLxUQ8Q8Tmx2vWUXtG6JqWzASYAgI5hYLfb6z2OnN1UVgsAQB8VXed+SZHhEJ2nbbM6beD0rkBboWuLEEIIIU1AARDxubwgEz7My0GZ3jU3gzG4AqAAlQpVVTQPiJxJkiQY3QuaBneLr7uMIsEhnR4AibIITucaMseIYus2khBCCCGdAgVAxOfStVpsy8lCRUAQAEDWGQAAAZyKEiGQOhUVFSFMrQYAhHZPOGM/wzBwyuIZAZBTEsHpNK4yFAARQgghpAloDhDxuepq14KUWr1r3R9J63pCb1RxqKysaLd2Ef+Vm3USIWpXIKOLiDxjP8sCoiTCWUcPkMrgur5YmZbEIIScHRgGHMMwtBAqIV6iAIj4nLqsFFFaLXRaV8+PrHHNBTJyKhRRAETqkJedhZzSEsSHhaFnYOAZ+xmGgSg74ZRO7+URZQkqo+s6U8nKGccRQkhnwzDg9KwzRnFY2uUejtEYRKuszvO3IGj16pWxu3d/FbZz5xcHm3rM9u3bwt5//72owsJCbUhIiHPixIuLb7llTj7Hca3ZVOIHKAAiPqUoCqaWV+KK/ufgU5Xr8vL0ALEMAzOlKiZ1yCkqxOr0NFzWrx8msGc+1GQYBlbxzCQHoiSBc/cAcYrc6u0khJD2xjAMqzgsqmrhN1m2W9v0Dx+r1bMB/LkqRh3MKoriVwFQc+3c+X7oyy+/GD979t0nzz33vKrDhw8aVq9+Pt7hcDJ3331vXnu3j7QuvwiAeJ6fBWARgEQAxwEsFQRhu3vfIAAvAhgKoATAakEQnqtxLAtgCYBbAIQA2APgDkEQ0mqUaXEdpGlkm+3UxDJP8gOFU+E7mUVG9gkMpsUqSR1yc3MAALGxXerczzAMrE7bGdtFWYQu2IQfiovABARgWKu2khBC/Idst8qSzdweT346xfzxjz/+MGLMmPElM2ZcVwwACQmJ9szMDN2XX34WTgFQ59fuFzHP89cD2ADgdQD9ALwD4B2e58/jeT4MwNcAjsEVvCwBsIzn+RtrVPEIgNkAbgVwHgAFwOc8z2vc9be4DtJ0ssWVytgpy1AZ/h3K9LvehM8L81FuNtd3KDmLFWRng0H9ARCgwFZHACTJElThoXg54zg+KC1u1TYSQgjxzqhRQ4ds3bo54qabrufHjTtv8IwZ0/p89dXnQTXLfPPNl0HXXz+997hx5w2+8spL+73wwnOxdrud8exPSTmiu+eeO5ImTRo7aMyYcwdfeeWl/TZuXHfmpFG3TZvWRY4dO2Lwl19+FlzX/tmz78qeOfPG/NrbzeZqv+gcIK2rXX/JPM8zAJYBWCUIwovuzct4nh8FYKz7yw5gjiAIIoCjPM/3BLAQwEZ3gHIfgAcEQfjMXefVAHIBXAlXMHWbD+ogTeQJgMySCLXOeGq71j0fyEw9QKQOw6qqcceQc+EoKqxzv6hIcEhnZnkTZQka9zpAVvc6QoQQQvzPxo1r4/73v5uzH3zw0YyPPvogfNmyR3uEhISmDBt2rvm7774xLV++NOmWW2ZnjRw5uvLkyQztmjWrumVnn9Q999zqExaLhb3vvrnJ/fsPrFqz5rUUlUqt7Ny5I3z9+te6Dh06vKp//wHWmq+1ZcumiM2b18c9/PDjxy+8cGKdk4+HDx9x2hPZ8vJy7vPPd0UMHHgOpas9C7R3DxAPoDuAt2tuFARhkiAITwEYDeBHd+DisRsAz/N8JIBBAALd2zzHlgPYD+AC9yZf1EGaSLa5/gZZJQlq99wfAAhXqZBsDICT0mCTWmRZhs7pBMcwCIqsexFUGRJEue4012qNGmqGAedwQJFpHhAhhPijceMuLJ4588ainj2T7QsWLMpJSuph3r59WyQAbNmyKWbChInF1133v6KEhET7mDHjK++99/7MX3/9JeTkyQyNxWJmp06dVvjQQ0syk5N72RITk+x33XVvLgCkpqboa77Otm1bwjdseCNuyZIn0uoLfmqrrq5mFyyY28PpdLBz596X5ft3T/xNe3fzJbv/NfI8/yWAcwCkA3hCEIRPAMQBqJ3NI9f9bzf3fgCofbHmuvfDR3V4RaXyfXzJcexp//ob2e4JgGTo9UawrKv3eoK5BNf37ocfKypa5bz4mr+f586C41jk5eUhVOVaAygiKbHO68PJOCEp4qnrqSaVVoU3Bw8HxzCQK8uhDQ9v9XZ3NHQ9tx06122DznPHM3jw0KqaP/N8b/OBA/tNAJCenm44fjzN+N1334R59ivuxJ5paam68eMvqrz22lmFu3Z9FHr8eKohJydbm5mZbgAASZJPfTCUlZWpX311dTzHcUpcXLczM+fUoaAgX7VgwdyeBQX52qefXnmse/cER8vfLfF37R0Amdz/vgngMbiGpV0F4COe5y8CYIBr+FpNnokAOvd+1FMm1P29L+poNpZlEBJibLygl0wmfeOF2kGlwxUA2WQJwaEhULlvbGWNBrCbAae9Vc+Lr/nree5MDh3KRLjGNd0uskc8DHVcH6UWJ1g1A53+zGl5OqMOFbIEA6eCCo4OdX21Nbqe2w6d67ZB57njUKlUp61VoCgKWJZTXN/LzBVX/Cd/6tRpJbWPi4qKdhYWFqhuu+2G3oGBJnHEiJHlQ4YMrxwwYKD56quvGFCzLMOwePzxJ1M3bHgjdvnypQnr17+VwtaRWdQjNVXQLVgwr6ckScwLL7wi9OnTz1pvYdKptHcA5ImynxUEYbP7+wM8zw8GMB+AFYC21jE6979m9364y1hrlfGM7fRFHc0mywoqK30/J4HjWJhMelRWWiFJ/jfcp4xR4cO8HFTIMkY4FTidrl+xnnMFQpLVhrIy/0+E4O/nubPgOBZZaccR506ZblUZYK91fTAMA7NsQ7XZCpt45oM5h16CXZZh4IDC7AJw4bFt0vaOhK7ntkPnum201nk2mfTUq9RKjhw5ZLzoootPDUlLSTkSkJSUZAGAuLhu1qysTF1iYtKph9F79+4JePfdt6MefPDRzF27Pgqrrq5Sbd/+8SG1Wq2463NHv//GVcHBQc4xY8ZVRkZGOmbPvqnPxo1ro26++faCutqTmZmhueeeO5MDAgKk559fcywurquzrnKkc2p2AMTzvAqu5AQTACQACAJQDCATwOcAfhEEoakrEma7/609RO0wgCkAMgDUvpvx/JwDQF1j2/FaZf52f5/lgzq8Ioqt9+EnSXKr1u+tKr0B23KyEBIahuE1FqaUVa4YlHE4/bLd9fHX89yZFKSmIg6AnWUhc2rItc43x7FwSiIcohNyHYudOmURDvdYieryCvp9NYCu57ZD57ptnM3nmdXq2zxSa8lrfvLJzqj4+ARbv34DzO+//15EZmaGfuHCRzIAYMaM6/KffnpZ4urVK2MvueSykvz8PM3zzz/dPTw83BEVFS1GRUU77HY7u2vXRyHDhg2vPn48TffKK6u7AoDD4TijTb1797VNmzY9f+vWzbFjx04oT0rqccZwuCeeWNJdFJ3sI48sS1Wr1UpBQf6pe+KoqOi6J52STqPJAZA7W9ocuDKmxQEogyvoMQPoClfA8hCAXJ7nVwB4QxCExsZf/gWgCsAIuNbe8egPIA3ALwBm8zzPCYLgWXBrAgBBEIRCnucrAFTCFZAdd7czGMBgAC+5y//ogzpIE5ndaa51OsNp22Wtq9ONFelvCjldZbbrOYior3soC8O4ghxRrnvNPUmW4HlsZ6+mLIOEkM5NURSZ0RjEAP5cFdohmRWjMYiK3PyVpydOnFy0Y8c7US+88Jw+Pj7e8tRTz6X27esacnbppVPLFEU5sW3bWzEffPBetMFglIYOHV5+770PZHv2p6QczV+79tWua9asZMPDIxyTJl1SvHfvz8FHjx42Aiiq/Xpz5tyd9/PPP4YsX760+7p1bwo1h8Ll5eWqjx49HAgAs2ff2Kf2sXv2/Lmvue+PdCxNCoB4nh8OYDMACcCrAN4TBOF4HeX6A7gEwFwA83ienykIwt766hUEwcrz/DMAHuV5PgfA7wBmAJgIV5ByBMADANa7yw0HcA9ca/ZAEAQ7z/MvAVjB83wRXD1Gz8LV6/OB+2U2+KAO0kS24mJEabUw6U8PgOBOg81JHXrhaNIKMgoL8HNFNfr36VvnfoZh4Khj6JuHJMsQGdccWAelWSeEdHKKAskqq/MYdXC7jNVTZEVWFDT7wzwhIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3F5zeNvcufNz586d70lyBa1Wq2zf/vHhuuqLiYl1UpBzdmtqD9BbABYJgvBhQ4UEQTgI13C2FTzP/xeuoCm5kWOe4HneAmA5gC4AjgK4UhCE7wGA5/lJAFbDlZY6D8D9NeYLAcCj7vexDoAerh6fSYIgONz1F7a0DtJ0mr/2Y03/c/C9s1ZPj871dF9FARCpZW9GBj4vL8d7K56vcz/DADax/s5kSZYgnQqA/H9+GSGEtJSiQFIUhT5QCfFSUwOg/s0NBgRBeI/n+Z1NLLsSwMp69v0B4LwGjpXgyh63sIEyLa6DNI1sdyXYkzn1adttkd3w7tfbcdJqxfWKAoY5M50xOftUVlaivLwcABAXF1dvuQYDIEXCSZZBbkkRklXtndeFEEIIIf6uSXcL3vaEUA/K2Uexu25UZfXpl5Yzpjvez3P1XFutFhgMlKqYAFlZJxGsVkNlCqr3mpAhwynVn5xHkmUc0Guwd/9xPB4Q0FpNJYQQ4iUabkb8TVPnAD3anEoFQXjcu+aQDs8dACnq09drUau1YBgWiiLDbDZTAEQAAFknM/FC34HQchwcBfnQREWfUUZSJDil+pNnSLIEvcE1x8xqpSUcCCGEENKwpo4XWVrrZwUAA1dShGIAIQA0cK3rUwqAAqCzldP1pF5Wn770EitLSAoKhmi3wWKheRrEJT8jHd3cw9ZUwSF1lpEhQ5QbCIAUGTqdDiqGgZWywBFCCCGkEU0dAncq0wjP8xMAbANwF4D3PamleZ6/GMB6uNJkk7MU63lSrzk9ANJUluLJHsmodDpPpcompDwzEwBgV6vBamuvV+wiK3K9KbABVw/QMJsDNww5FyfTUlulnYQQQgjpPLxJofgSgEcEQXivxro6EAThCwAPw5XNjZylWNF1SSga3WnbZZUrKYKWZSkAIqfYClwZTOXAwDr3M4xrCJzYwBA4WZHBqN1JNxw07ZAQQgghDfMmAOoG4GQ9+4oARHnfHNLRCWo1vijMh9Nw+g2t7J4TpOU42K2W9mga8UNKuWvJB01ERJ37GYZxBUANDYGTJTBa95wzZ/3JEgghhBBCgKbPAarpbwB38zz/jSAIp+42eJ7XwbXg6G++ahzpePZCxp6TGZhxYdBp22XVv0kRbDRPgwBwOh3Qu3tsAuO61lmGYQBJkuBsYP0oWVHA6NzD50QKgAghnR/DgGMYpn0WQlW8WwiVEH/iTQD0IIAvARznef4L/NvrcwkAI4Axvmse6Wg8w9vUtYbAKZwKsqKAZRharJIAAHJzcxDpnisW1C2+zjKeHiCpgR4gAGB1rgCboYV2CSGdHMOAU1RSjEWytsvCZ3qVXmRELs/fgqDVq1fG7t79VdjOnV8cbOoxmzevj/z44w8jS0pKNFFRUfarrvpv/n//e21Ja7aT+Idm/+cRBOEHnudHwhUIXQYgFK5McN8AeFwQhDTfNpF0FIosQ2ezwqRSQV0rCQIYBiIYV6pAM/UAESAjIx0HKsqhMhqREN+tnlIMHJIIpZG6WK1rDhAryT5tIyGE+BuGYViLZFX9nn1AtjptbfpHT6/WscPjBqmMTCCrKIpfBUDNtXXr5ojNmzd0uffeBRkDBpxj/uWXPaaXXnqhe2BgkDR58qXl7d0+0rq8enogCMJ+ANN93BbSwUmVlbjXaII8cAi+q9UDBABOxpUrXaS1WghcAdBnhfngzh2G/3ZPgCie+TnOMIBdtDdemTuDHKdQAEQIOTtYnTbZ7LC2xx+9dhl652vV1dXcrFk35lx22bQyAIiP7168a9fOyD///M1EAVDn53X3Kc/zkwFcBCAGwEMAzgGwTxCETB+1jXQwst0GALDJEtRawxn796n0KDiZii6DBrZ104gfyszMAAAkJSXVW4ZhGNiaEABJgXr8UVYKh9GIC3zVQEIIIT4xatTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltffffvud+Z7vnU4n8+mnH4fk5GTrZs68MbcVTgHxM82O4nmeN/A8/xWATwHcBOC/cC2EOgfAPp7n+/q2iaSjkO2uG1WbJEOtPnNNl32GEGzPzUalTE/pCZCfmY5wjQZJiYkNlFLgEBtPbe2MDMWzx4/h46qKRssSQghpexs3ro0bN25C6RtvbD48dOi5FcuWPdrjjz9+MwLAd999Y1q+fGnS5MlTijds2Hp43rz7Tu7Z80Po4sX3JwCAxWJh77tvbrJOp5fXrHktZePGtw+PGnVB2fr1r3U9ePAffe3X2rJlU8TmzevjHn748eN1BT81/frrLwHjx48c/NxzTyWMHj22pLHypHPwphvzSQBDAEwAEA6AcW+fCSAHwDLfNI10NJJ7aJtNlsCpzxwC55kXZKUhcARAeHEpXhkwGLG//lFvGUmR4GxgEVQPlcbVmW2z2XzWPkIIIb4zbtyFxTNn3ljUs2eyfcGCRTlJST3M27dviwSALVs2xUyYMLH4uuv+V5SQkGgfM2Z85b333p/566+/hJw8maGxWMzs1KnTCh96aElmcnIvW2Jikv2uu+7NBYDU1JTTAqBt27aEb9jwRtySJU+kXXjhxEafiiUl9bC9+uqGI3Pnzs/Yu3dP6PPPP92ldc4A8SfeDIG7GsCDgiB8x/M859koCEI+z/NPAHjZZ60jHYq9qgoAYJMkaLRnPJBBEKdCF50eMiVBOOtVVVUh0L24aXD3ujPAAYAEudEMcACg0riSINhtFFwTQog/Gjx4aFXNn3m+t/nAgf0mAEhPTzccP55m/O67b8I8+xV39pu0tFTd+PEXVV577azCXbs+Cj1+PNWQk5OtzcxMNwCAJMmeB/EoKytTv/rq6niO45S4uG5NmEAKREREihERkWK/fv2tZWVl6m3btsTOnXtfrkajaSz/DunAvAmAggFk1LOvDECAt40hHZut0vWgxSbLUKk1Z+wfU1mAmf0G4ufKyrZuGvEzGRnpiNW6egmDGgiAFMgQm9ADpHU48fbg4WAZBoqigGGYRo8hhBDSdlQq1WkBhaIoYFlOcX0vM1dc8Z/8qVOnnZGCOioq2llYWKC67bYbegcGmsQRI0aWDxkyvHLAgIHmq6++YkDNsgzD4vHHn0zdsOGN2OXLlyasX/9WCsvWPdhp9+6vTXFxXR3Jyb1ODR1ISuppFUUnU1paooqOjqGF5Toxb4bAHQJwXT37LnPvJ2chu3t9HxFAXX9wJJXrKb3ioL8pZ7vMzHRE61wBkC4mpt5ysiJDlBrvAWINOqhY1hUAiY2XJ4QQ0raOHDlkrPlzSsqRgKSkJAsAxMV1s2ZlZeoSE5Psnq+Cgjz16tXPx1VXV7GffLIzrLq6SrVhw5aUO++clzd58qXlFRXl7of4/8ZVwcFBzjFjxlUuWvRwxokTaYaNG9dG1deedetei9u4cV10zW2HD/9jDAgIECMjo+hGpZPzJgB6AsBMnud3AbgFritvDM/zawDcAeAZH7aPdCAOoxFfFubjiL3ueRiyOwCCk/6unO0y0k8g2t0DpO8SW2cZhnHNAWpKDxCn/zfphr2ahlgSQoi/+eSTnVE7d74fmpaWql2xYnlcZmaG/pprZhUAwIwZ1+X//vuvIatXr4xNS0vV7tnzY+AzzzyZYDZXq6KiosWoqGiH3W5nd+36KCQ7+6Tmhx92mx577OFEAHA4HGfcy/bu3dc2bdr0/K1bN8ceP552ZlYmADNmXJ+3Z88PYW+9tSnixInj2m3b3grfufP96GuvnZVbX68R6Ty8WQj1I57nrwfwNIBL3JufB1AIYLYgCDt82D7SgVhCQrH+ZAaiY7tiQB37FZVrWBxDAdBZr/jECahZFjLDQBseDmvlmUEzwzDNCIA0kBUFLMPAWl0JfUhIazSbEEL8hl6ta/O79Ja85sSJk4t27Hgn6oUXntPHx8dbnnrqudS+fftZAeDSS6eWKYpyYtu2t2I++OC9aIPBKA0dOrz83nsfyPbsT0k5mr927atd16xZyYaHRzgmTbqkeO/en4OPHj1sBFBU+/XmzLk77+effwxZvnxp93Xr3hRqBzVTp04rkyQx/Z13tsasX/961/DwcMftt991csaM64q9fY+k4/B2IdS3AbzN8zwPIAxAOYAUQRAov/FZzGp1DYHT6c5MgAAAijsLHCN16MWjiQ/Y83MAowmyyQSG4+otJ8kyxCYkQWBUHByyDB3HwVZFPUCEkM5LURRZr9KLw+MGqdAOi5LqOb2oiM1fdTohIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3H7zzbcXeL6fO3d+7ty580+t4aPVapXt2z8+3FCbpk2bXjpt2vTSpr8L0lk0OwDieX43gDsEQUgRBEGotW8AgC2CINTVAUA6OWt5OQJVKhi0Z6bABgDFnRqbowDorCbLMlJysvFhYBCuvuiiess1pwdIlmU4FAU6AHbKMkgI6cQUBRIjcnlGJrBdxmkpoiIrCuiDnHRoTQqAeJ4fhX+fMoyFa85PZB1FpwCof1l30qkZDxzA+kFD8bNcT+ZIdw8QRwuhntVyc3OQXlmJbKsVC6++pt5yDAM4JRGK0ngmUkmR4XRPhHW4k3EQQkhnpSiQFEWhIIQQLzW1B+gWALPgSnigAHgFrgVQa96ZePLOvu2z1pEORXY4XP9ydV9W1tAY7MrPQ44k4tq2bBjxK2lpqQCAhIQkqFT1/wliGAYOydGkOmVFRprDgYzqavRt/sgMQgghrWjPnj/3tXcbCKmpqQHQPAAb4QpydgO4E8CRWmUkuOYCNTjeknReitN1s6rUEwDZouPxZnYmWJaltVrOYmlpx9An0ITeCYkN9u4wDGBvagAky/jAbkb68RN43WBs/ABCCCGEnLWaFAAJglAB4AcA4Hl+HIB9AAIEQch3bwsB0FUQBFoD6Gzmzu6meNJd16J2D4GTZRkOhwNabZ2ZKUknl5V6DEv5PkBJKWSrFQ2tnWwXm7SQN2RFhs69rpC9njTshBBCCCGAd9lD/gbwIYDva2w7F8ABnud38jxv8EXDSMejNBYAqVQIU2sQodHCZrO2ZdOIHzGfzAAASAYjOEP9fy5kyHA2YRFUwDUHSKtzBdRWKwVAhBBCCKmfNwHQ0wD6AnioxrbdAC4HMBTA4z5oF+mAPOmtFXXdAZCxvBivDhyMpXwfWK0UAJ2NRFEEW+rKcqrp0qXBsrIiQ2pCBjjA1as4jdNiy+Dh0AkpLW4nIYQQQjovbwKgqQAWCILwgWeDIAgOQRA+gSso+q+vGkc6FkZ0P61X1z20TVa7FkLVsiz1AJ2lsrJOoovGdR0EJiQ2WFaG3KQU2ACgQIGKY6FhWUg0BI4QQgghDfBmIdRAAHUuVAWgAEC4980hHVmWWo0jeTmwduPr3O8ZGqfjOAqA/FxOTjZef/1lWK1WzJp1E/r3983SXmlpx9BV7xr2pu0S12BZVwDUtCFwACCznOsoR9MSJxBCCCHk7ORND9B+ADfXs+9GAP943xzSkf2uYvFS+nGYA4Lr3C+rXE/+NSwLq9nShi0jzVFRUY7bb78RH3/8Ib7++gvceussHDiw3yd1p6WlIk6vBwBomzAErqk9QAAgqzjXv/amJU4ghBBCyNnJmwDoCQBX8Dz/J8/zi3mev5Xn+Yd4nv8NwH8ALPVpC0mHYbO5hh6p6hsCVyM5grW6uk3aRJrv9ddfgbkgH7fyvTF/6LnQSxIeeeRB2H0QWGSmHEWwWgMFgCYmtt5yDANIigRJasY6f2p3AOSkHiBCCCH+a9SooUO2b38nrKEyx4+naUeNGjrkuuv+06et2nU2aXYAJAjC1wAug2sR1McBvA5gGVzD6S4XBOELn7aQdBiKzQo1w0Dtnutzxv4a6wM5Lea2ahZphsrKCnz3yU4s69UPFwUGYQQYrOo3CCgqxI4d77a4/qPHUvByehqcQ4eBbSANOsMwkOTm9gC5ri/F4WxxOwkhhJD29NFH74fHxMTaMjMz9Pv2/U4L3PmYNz1AEAThc0EQhgEwAogDYBIEYYggCJ/6tHWkQ7kTHLYOOReBslx3AYaB073wpb26qg1bRppq9+5v8J/wCERqtVCFR0DbtRuc0dEodNixdetmiGLT5+TUVlpaisy8XPxQUoyEmf9rsKynB6g5AZCnB4hpQRsJIYSQ9iZJEr777tuwCy+cWNKlS5ztgw+2R7R3mzobb5IgAAB4nu8N4CIAMQBe4nn+HAB/C4LQrDtbnufjAWTUsetWQRDW8Tw/CMCLcKXYLgGwWhCE52oczwJYAuAWACEA9gC4QxCEtBplWlwHaZiiKFAzDACA0erqLfenzKC0OA+JdJPql/Z/+xWuDXXlMYmdcyc0UVGIkGQYft2D3NwcfPfdN7jooou9qjsl5QgAID6+O4zG+hc/BVw9QLIiQWpGEgSrUYfDVZWwGulBGSGE+BOz2cy++OJzXX755acQq9XKde+eaLnzznlZgwcPtQDAn3/+bnzjjVe6pKcfN3AcpwwbNqJ8/vyF2SEhIRIAXHHFxf2nTZte8PfffwUeOLDfZDQGSNdd97/cHj16WleteiY+Ly9XGx+fYH300WXpCQmJ9pMnMzTXXvuf/gsWPJj+7rtvR+fn5+q6detuueuue7KGDTv31BCU999/L2zHjnej8vNzdUFBQc5Jky4tuv32O/NZloWnjmeeWXVs5MjRp+5tR40aOmTevAUZ06fPKFm9emXswYMHAocNG1H+ySc7o6qqqlTJyXz1/fc/lNmzZ7IdAHJystXPPLO82+HDB00Gg1G85ZbZ2Y2drx9+2G0qKytVjxhxfqXD4WQ++OC9mLKysizP+SAt1+weIJ7nOZ7n1wI4BOAFAA8AiIIrgDjA83zDqZ3ONACADUAsXMGU52srz/NhAL4GcAyu4GUJgGU8z99Y4/hHAMwGcCuA8+Aamvc5z/Mad3tbXAdpnGcRVACAtv7FLb9mNdiclQlKgeB/HA4HDBkZYBkGSEiALr47WJ0eBqMRV111NQDgo50fNFJL/VJSjmBceATG9OgJpdEAmIFDEqE0o/6imHA8JhzBn5xXHduEEEJayaJF8xP/+OO34PvuW5Sxdu2bR7p0ibMtWjQ/uaSkWLV//5+GBQvm8t26xdteeumNlEcfXXbi2LGUgLlzZyfLNUaUbN68ocuwYSMqNmzYenjo0GHlr766utvzz6+Iv+OOuVkrV74klJeXqdesWXVadp3XX3+p64wZ1+W//vrGI3FxcbaFC+9NzszM0ADAxo1rI9esWRV/ySVTitate+vwDTfcmvPhh9ujn332yWbdx6amHjP+88+BwKeeej71mWdWCUVFhZrnnnsyHnCtfTd//l3JlZWV6pUrXxIefXTZiXff3RrTWJ2ffvpxeEREpGPgwHMsF198aanT6WQ+/HB7g3OGSPN4c6fwMIDr4OotiQbAuLffB4ADsLyZ9fUHIAiCkCcIQn6NLyuA2wDYAcwRBOGoIAgbAawCsBAA3AHKfQCWCILwmSAIfwO4GkAXAFe66/dFHaQRSo3Uw4xGX285lTsTnJ3WavE7hw8fgollISsKosZdeNq+S88biXkJPdAj6yRKS0u8qv/4oYOY0z0JUyqqGs3UxjCAQ2peMgON1nVtUYp1QgjxH2lpqdq//toXNG/efZnjxl1YmZiYZF+8eOnJ8eMvKi4tLeW2bXsrumvXeOvDDz92kud720aOHF21ZMkTJ9LTjxu+//5bk6eeQYMGV1xzzfXF3bsnOGbMuL5QkiTm8suvLDz//AuqBg0abDn//AtKs7IyT7sB+c9/ZuRffvmVpcnJvWxLlz6ZGRAQKO7Y8U6EoijYvv2dmMmTpxTOnHljUVJSD/sVV1xVet11/8v97LNPIisqKrimvj9Jkphly55O79evv3X48BHmqVOvLBSElAAA2LPnB1NOTrbu0UeXpQ8YMMgydOhw86JFj6Y3VF9ZWSm3b98fwaNGXVAKAD17Jtvj4xMsn3++i4bB+ZA3AdBNAB51BxKn7oQEQfgHwKNwDYtrjgEAjtSzbzSAHwVBqPm4eDcAnuf5SACD4FqXaHeNdpTDlar7Ah/WQRrhWXtFlGWoGhgCZ1CpEaJWw0FpsP3OgQP78EZmOraYAhA8fDi0agYqletPRJQhAOeHhePC8Ejs3vWRV/VbM1x/8yWTCVwjw9QYBrCLzQuAOI0ryyAF14QQ4j8E4agBAM45Z+ipoWdarVZZtOiR7J49k+2ZmRn63r37npYatk+fflaDwSClph47NaSka9eup56c6fV6GQDi4v7dptFoFKfTcdp97bBh554auqZWq5XExCRLRka6vri4SFVZWaEaOHDQaa87ZMjwKkmSmLS0Y/XfyNRiMgU5Q0JCTw1NCwgIkERRZAAgLS1VbzQapYSExFPt7N9/gFWj0dYzWRr46KMPwkRRZCZOvKTUs23MmHGleXm5uj17fgxsartIw7yZAxQF4EA9+7LhmkPTHP0B5PE8/xOAZACpAJYJgvAlXAkWDtYqn+v+t5t7PwBk1VGmm/t7X9ThFc/Noy9x7uE9nJ8N8xEl1xA4hyxDrdGBZZk6y/1XrEbswCHYX1rSKufHV/z1PLcmz1o/fYadC71WhjPnENQh0eACosD16wuzyQRjZSUqd38L1U23NKvuiooKhFpdPTMBPXue+t3Xd545joVTdtZ7HdUlvNKMtQOHoExm/Praag9n4/XcXuhctw06zx2HSqVSAIBhmDpHNSuKAqaOP/WKopw6FgA4TnXG8Y19RtQ83lMny7KK4k7IxNR6YVmWGMAVLNU8xsPpdJ7xgmr1me2q/Zq1cRxX7zFff/1FOADceectp9Jfe+rYuXNHxKhRF1AWKR/wJgBKA3AJgG/q2DfWvb9J3MPPkgGYAdwPoBrA9XDNv7kIgAGu4Ws1eR7v6tz7UU+ZUPf3vqij2ViWQUhI603GNpnqH2bWHsqL3NndZBkBgQHQ6xtIhS05wcpiq54fX/G389yaBOEoAGDkeUPBlOdALsmELFpgCAqByhSEHtdfg7xXXscgMCgvykFCcnKT696//1f0CnSNZIgZNuSM333t8yxKIhgO0NVzHdVF0WkQpFbDJnWMa6s9nE3Xc3ujc9026Dz7v6SknlYA+Pvvv4yjR4+pAlxzY6688tL+t9wyOzs+vrv1yJFDp2XGOXTooN5qtXKJiUktGtN86NA/hj59+lkBwOFwMCdOHDdOnDi5KCIiUjSZTOKBA38FTJp0Sbmn/L59fwaoVColPj7BbrGYWQCoqqo6NRwuPf14/es31IHne1ssFguXknJE16tXHxvgGhJotVrqHGJ38OA/+szMDP1VV12dd/HF//YAAcBLL73Q9Y8/fgsuKMhXRUVFUyapFvImAHoBwOvu4OUTuBIG9OR5fhyABQDmN7UiQRAcPM8HAxAFQfAEIPvcGeYWALACqH2xebolze79cJex1irj6Wr1RR3NJssKKit9P8yL41iYTHpUVlohSfX2oLa50kor9pQUwypLiJVZWK11D1/SM66ndU6LFWVl/rsWkL+e59ZSWlqKuSHhQEg4omQZ1flZEK0OwJYLBEaBidAgeOh5OIrXEaxSYc9raxH8yNIm1//zT7/gfE/mt7jup3739Z5nlQyrzQ5bPddRXWSN68+ZSoFfX1vt4Wy7ntsTneu20Vrn2WTSd4heJYYBxzBMuzRUURRZUdDkbGQ9evS0Dx8+onz16ue7MQxzMjo6xrF58/poUXSyI0eOqoqN7eKYP/+uXk88saTbf/97TWFJSbHqhReei4+PT7CMGjWmRb0dmzdv6BIaGi5269bNvmHD2hi73cZOnz6jmGEYTJs2PX/r1je7xMZ2sZ9//ujKf/45YNy27c3YCy+cVBQUFCSZTCYpIiLSvn37O1EJCYk2q9XKrlmzsqtKpW5yfp7zzx9dlZTU07xs2ZKE+fPvP8lxKuWFF57tVrvnyePjjz8I12i08g033FJQO+Pb9dffkHf//fNM77//Xvgdd8zNb8l5IV4EQO7U1BEAFgOYA1cShG0AHACeEQThtWbWV9edykEAF8M1LK32cvGen3MAqGtsO16rzN/u731Rh1dEsfU+/CRJbtX6m8umN2B1eho4ToVHGA6yXPffB4l1PfSQHU6/an99/O08t5Yj//yDBIMRHMPAaNDAmlcOyAoABfaiHOiCYyDJalj69EHwkSMISk2F0yGCYZv2+Zv711/QcRxEtRpcZPQZ5/SM88xIcEpivddRnTSu3iIVWvf/Xkd2tlzP/oDOdds4G88zw4DTys4YyWLxeimTluAMBtHOqvOaEwQtXfpk+sqVK7ouX74k0eFwsD16JJuffXb1sfDwCDE8PEJctmxF6oYNb8TedtuNffR6vTR8+Ijye+5ZkF1zKJo3Jk+eUvTaa2u6lpaWqHv0SDavWvWKEB0d4wSAW2+dU6BWq5WdO3dErVv3atfQ0DDHVVf9N/+WW+bkA67hcYsXL01fvfr5brfffmOfsLBwx6xZN+Vu3rxe3fCr/otlWaxa9VLqihVPdFu4cH6yRqORp0+/Nq+wsPCMniSHw8H89NP3oaNHjymtK931eeedX52U1MP81VefRcyefVc+28TPX1K3Zv/n4Xk+RBCEp3iefxmulNFhAMoB/CoIQmmDB59Z1wAAvwC4WBCEPTV2DQVwGK65RrN5nucEQfBcDBPgyhpXyPN8BYBKuIbeHXfXGQxgMICX3OV/9EEdpBE2m2tUoUbbcO+wzLn/btRMm03aXfaB/QhlGNgYBoANqJF61FFVCp21Cpw+HAOvm4X0hQsQplIh/esvkThpcqN1i6IINi8XiOkCVXz3JgVNMmSIzVgDCABYg6tjV13PkzVCCOkMGIZhJYtFVfLbb7JosbZp9Kcy6Nmwc89VMYHBrKIoTQ6ATCaTvHTp8kwAmXXtHzNmXOWYMeMq6zt+584vTpvL3a1bd8eePX/uq7lt7tz5uXPnzs+tuW3w4CHVd911T1599d5wwy2FN9xwS2F9+4cOHW5+8813j9bcdvnlV566163rNadPn1EyffqMU0nCQkPDpBUrVp2W+e3GG898TY1Go3zxxfcNPnjfvPmdlIb2k6bz5unB7zzPPywIwrsAvmzh6x9yf73K8/wcAMVwpa0+D8AwAAVwrTO0nuf5ZwAMB3APXGv2QBAEO8/zLwFYwfN8EVwLqj4LV6+PZ8GSDT6ogzTCZrGAYxhoG8gABwCyyn3JUQDkV6yZrs8ka4ARkuX0EQeK0wGxohBcQARCoqLxvlaDzIx0JBxPRSIaD4BSUo7ik5wsnHQ68NLCh5rUHlmRIcnNW++N1bl6gDQs455US4EQIaTzEi1WWTSb26P7i7oeSIfnzUUcAleg0mKCIMgALgPwO4DtAP4CcC6AiwRBOCgIQiGASQB4uNJSLwFwvyAIm2tU8yiA9QDWAfgZgAhgkiAIDvdrtLgO0jjH339h25BzMS+24fXDFE8PkESLGfsTzr22DxcZDsl65qhUZ2UJWNHVyxdxyRR8UpCHT7/9ukl1//rrz5ABBPftD2PPxhMnMAwgKTLE5gZA7h4gFcPCSamwCSGEEFIPb3qAXgTwLM/z9wE4JAhCUUsa4D7+5gb2/wFXj1B9+yW4FjVd2Jp1kIaJVhs0AGSWRUOrh5WbQrE7ZT9Kg4PaqmmkCYLsdkCnhyk+DpL9zOQdorkScJjBakIwbtyFeOKJJTh+PBVpaano0aNng3X/+usvAIARI0Y2qS0Mw0CSJYjNDJJZow4nzNWwyzKizRZodJQdihBCzkZ1DZEjpCZvAqBZAOLhToPN83zt/YogCO0yMY+0H9HmummWmIYDoMLIbngr8wR6as64bkg7MZurEcm5/stGJsYByplZR2WHDbK5HJw+DCaTCSPPOx+OgwdRuuYFOJc8DnVoWJ11W60W9CksxMBu3TE8MalJ7WEYQJalZvcAMVo1HhKOQJZljGzmsYQQQgg5e3gTqGzxeStIhyfaXFnMpUYmuKvUriQJdhqi5DdOpp9AmrkaXQxG9AgzwVlR97ILzopiaMO7wwlg4qRLYc8vQLDZjPJvv0HE9KvrPObPn/fgorAIaDkO0fUESWdiIHkxB0iBAp1OB4vFciopByGEkPY3atTQIZ7va/fM7N37c8ADD9zD//TTH6e2r169Mva9996OqauusWMnlDzxxIqMxupoaVsXL156fPLkKeW1999xxy09//nngGnevAUZXbp0cTzwwL3JANC7d5/qtWvfFFr6+qRteBMApQPYLQhCtq8bQzou2e4OgLiG+n8AtUoFHcuCsdP0Kn9xMicbK9IEDD7nHIxm6g86JGsVGNEKQI+xY8fh3pUr0M8UhNLvdyP0kingjGcuPpr+xacYwXGoVKuha0YPkFMSoaB52U9lRYb2VADUorXzCCGE+NjNN8/OuuSSKadlC/7ll58Cly5dnKQop/+9v+mm2/Kvvvra0zKlvf/+e+E7drwTM2PG9QVNqaMlOI5Tvvvum5DaAVBpaQl35MihQM/PQ4eeW/3++7v+fu65p7qVl5c1OT02aX/eJEFYCVeaakJOkR2uAEhhGw6AuhTn4s3Bw3FDaHhbNIs0QWZmBgCge9c4SI76e05EqxmK3QKOY2E0BiBgwCCctFrA2O0o+WTnGeUdDgdi8l2fU5pzBjc5KxvDMHBIzQ+QZVnGwi7d8PqAwbBnnWz28YQQQlpPQECAFBUVLQKu5RGefPKxrg8+uKBnZGSUvY6yclRUtOj5slgs3I4d78bcfPPt2f369bc2pY6W6NdvQOX+/X8GW63W0z64vvzys5AePZJPZQrSaDRKVFS0qNFozq7FqDoBbwKgQgDBPm4H6eAUh+uG9VSa6/po3Gu1NPPpPmk92e4AqFtc7KlAti6K6IRkrgDHuT4PLp48BZuzXOmzy3d/C1vGacsc4O8d7yFep4NNltHr6mua3B6GAezeBECKgkCVCiEaDRzVda2vTAghnYfKoGdVRmPbfhn0PkmBXV1dzaWmHjM+9dRzqZdfflW96/B4vPjic3Fdu3a1XnPNzFOJt5pbBwDceussfvHi+7s3tm3EiPMrZFnB999/e1rGpu+//zZ07NjxzVrzkvgnb4bArQXwMs/z4+Baw6egdgFBEN5sacNIx1Kh0SC7vAyVsd3RUH43xr1OkAq0Vou/6F9QgGmDhsJmtkERG16fSawqhSZCBMBg3LjxePbZ5dhbWoLzQsOQ+9rLiF+8BFxgIKTqarDffQsAyAwNwYCg4Ga1ySE2PwBSoMCzdKpopSFwhJDOSVEUmTMYxLBzz1WhHdbk4QwGUVSUFvV4BAcHSxs3bk0BgO3b32lwguiBA/sNf/75e/CKFSuPsTXmGTenjubS6XTykCFDK2oOgyssLFAJghCwfPmzJ1577aVuvnw90va8CYCed/87s579CgAKgM4yJ4JM2JAm4MLkgejaQDlW60pNrGFZOBwOaLXatmkgqZfR7oBRq4U66Mw5PLVJNjMYyQ5AB7Vagxkzrsfrr6wGHxSM0OJiWFKOInDYcGR9/SUCFQWFdht63XR/s9qjQIFTFhsvWFf73AG1k+YAEUI6KUWBZGfVeUxgcLssSCoqiqwoaLNUm9u2bYlKSuppPv/8C6oaL+0748ZdWLpy5YoEq9XK6PV65YsvPg3p3btPVXh4hHcfUMSvePOfJ6GRr0SftY50GFara+6IWtNwQMO412bRsixlgvMDsiwj2B00BEc3/gBNspkBpw0s6zrmP/+5GpzBiGVHDyK7Tx8EDhsOAHj9159xsLICXxgN6Nmnb7PaJClys9cA8hDd7RIpCxwhpBNTFEiyrDjb46stgx+z2cz+/vvekClTprZozUlvjBt3YQWAU8Pgfvhhd+j48RfR8LdOotk9QIIgZHq+53neAMAEoEQQhIbHzpBOzeYectRoAKR2DYHTsCxsNhtMJloQtT2VFBYgVO1KXBMeGwGIDc+dkR12yLZqcPowyLKEoKBgzJ59F5599kk89N7beGHkKGRkpOPzLz/D5wDefntHs9skQ4LkZQ+QzLKADEgUABFCSIf3ww+7TYqi4KKLJpf7qk6n08k09LOHXq9XhgwZVv7dd9+EDBgwyHzixHHjxImT03zVDtK+vOo+5Xl+NM/zewFUAsgBYON5fq97XhA5C43Pz8eWwcPRzd7w0CNFrQHg6gFyNDDhnrSN/ONpYBkGTkWGWq9p0jFSVSkY5t8kFjNmXIfzzjsfNpsNs2ffhKefXgYAuPXWOejTp1+z26RAafYiqKfa5u4Bkql3kRBCOry///4rsHv3BEtwcLDPep0KCgpOPalVFAXFxcX1fviNG3dh2f79fwbv2vVR2MCB51QEBQXRKtudRLMDIJ7nRwL4Bq5McMsA3AHgCQChAL7kef48XzaQdAysLEPDsmBVDd9ESxodfq+sxN6yElqs0g+Un3R16FYDjSZA8JCs1WBrZGnjOA4rV67B1KnToFKpYTAYMGfO3Zgz526v2iQrstcBULVahQyLGTZKMkgIIR1eevoJfXx8gk8ndR4/nmpcv/71qIyMdM0zzzwZ19D6PePGXVjBMIyyY8c70TT8rXPxJgnCEwB+AjBJEIRTdyk8zz8G4EsAjwGY6JvmkY6Ck90JYRoZAidr9VhXXITy0iKMslMPUHurzM1BFACbSgXZ2bTMa5LNAka0g2FV8Kw7p9cb8PjjT+Hhhx8Dy7JQNZYOvR4MA0iKBMnLAOjP0AB8/dNPmH3BGK+OJ4QQ4j/Ky8vUPN/Lp+sa9O7dp3rPnh9Dtm7dHNuzZ7L5nHOGVNRXVqvVKkOHDq/47bdfgydMmFhvOdLxeHOXMhzANTWDHwAQBEHmeX4NKAPcWYlTFIBhwLjX+WmISu0KkuwUALW7oqoqVFWUISihe9N7gGwWKE4rWH0gJOn0TKgaTdOG0dWHYRhXEgQvAyC11vUgj3oXCSGkY5g+fUbJ9OkzSura9957Hx1uaR21RUZG2Zcvfzajvv179vy5r+bPTz31fHpjZUjH480coCoA9XUXagDQwi5noVMLmzYhANKoNa4scJSquN0dqq7E06kCqnonAU1cnFaRJUiWqlOZ4HxNkr3vAVJrXM90KMMgIYT4l+rqaq6gIN+74QF+yuFwMAUF+SqHw9EuKcmJ97z5hf0M4CGe5wNqbuR5PhDAg3ANjyNnGZU77mXc6/w05KnICLw1eDjEkuLWbhZpREGBax3jiKCARkqeTqouA8u0aB28OjEM06I5QHyVHS/2Gwg+/4z1mQkhhLSj9etf63rVVVMGtnc7fOnPP38LuOqqKQP37v05pL3bQprHm0h8EYB9AE7wPL8LQD6AaABTAOgA3Oi75pGOQFGUUxdSUwIgT4Jjp4V6gNpbebFraYXwQEOzjpPsVmgkB+rvDPYOwwCiLEL2cpFxLcMgRqeHxdG0+UyEEEJan78MGVu79k3Bl/WNHDm6yl/eG2keb9YBSnNnelsC4BK4sr+VAvgOwGOCIBzxbROJ35MkHLZYwEgiWF3jN9KemSai1dK67SINUhQFiyOjoY2KRbDYvB6XfxMhaKAovku5xjAMHJL3S4opatefNMbLhVQJIYQQ0vl5NRZTEIQjPM/PEwQhHwB4ng8FEEfBz9mJUanwXMZxWK0WLNA3PpRKZFzD5USaqN6uqioqEKxSg2UYBIeZ8G/fXOMkuxWKwwbWYIIk+TIAAhxSC3pv3EkQWC+H0BFCCCGk8/NmHaBgnue/BvB9jc3DARzgeX4nz/PNG0tDOjxFUWBzJzRQqRpOgw38GwBJFAC1q5LMdLAMA1GRoW/mEDjIEiRrayRCYGATvQ+AGI0nAPL9/CRCCCGEdA7eJEF4GkBfAA/V2LYbwOUAhgJ43AftIh2Iw+E4NQyKUzeeBllkXJedRJm62lVZTjYAoFpWAKnpvT8ekrkcLOPbFUcVyHC2YAgcTgVAtBIqIYQQQurmzRC4qQAWCILwgWeDIAgOAJ/wPB8C10KpC3zUPtIBVKefwJvnDEOxw44yrvEASGI5QJIg22mienuqLihAAAAby0Bu4hpANUk2izsRgu+ymrYkAxwAMFrX9afyMokCIYQQQjo/b3qAAgGU1bOvAEC4980hHZGtugo6joOG5cBxXKPl89Q6/FpagqomrjtDWoe12JWG3KlWQRGb3wMk262uRAg+HAUnQ4YkN78tp47Xa5Fvs6HUi/dDCCGEkLODN49u9wO4GcDndey7EcA/LWoR6XAcZjMAwNnEgOZAYAS+P/EV/jt0SGs2izTCWeF6jqHotGjqIqg1SXYrFKcdrD4QkuSbHhcZLesBcsSEYe6hA4iMjMIVPmkRIYT4H4YBxzBMuyy+qSiKrCigTDOkQ/MmAHoCwOc8z/8J4EMAhQAi4JoDNASu9YDIWcRhsYBB03OIqTSuYUp2u73V2kQaV2izo7q8DMFdIr06XpFEyLZqsMYI+CrrtAIFUgsCIE7j+pNmp/llhJBOimHAsQwb47CJvht/3AwanUqUIef5WxC0evXK2N27vwrbufOLg0095tZb/5d89OjhwJrbkpN7VW/YsMWn6wUR/+PNOkBf8zx/GVzJDh4HwMD1+PgAgMsFQfjCpy0kfs9hMUMLQETTxkKp1a5McQ4bLYTanvZZzfg5TcCyyyZ4XYdkrgDno0GvDANIstSiHiCV2hMAUXBNCOmcGIZhHTZRdfRQnmy3iW064VGrU7G9+8Wo1DqOVRTFrwIgb2RlZernzLn75IUXTjo1tUOj0dD4/LOAt+sAfQ5XL5AOroVQKwRBMPu0ZaTDEK1WaAFITZwMMqSyEP8bci4OVla1bsNIg4rdc4DCTEav65BsZqglB4DG5341joHUwiQIalnG0737Q8OykGUZLNsuI0QIIaTV2W2ibLM62yPjS6f4w5qXl6uurq5WDRhwTnVUVDRNHD3LtKj7VBAEG4BcH7WFdFBOq6snR2zicGSGU4FlGDBih3941KFVlJYAAEKDGl+8tj6S3QpGdsIXARDDAJIitWwInE6NRKMroLObzdAHBjZyBCGEkNY2atTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltfenpBzRMwyDnj2Tacz0WahTRPGkfdk5FkerKlHSxEUxFZVrDhDjq4kjpNkkScKTXbph8znDENyCBAaywwrFafPJgqgMw0BSJIherEnkwel1p763V1MPIyGE+IuNG9fGjRs3ofSNNzYfHjr03Iplyx7t8ccfvxkB4LvvvjEtX740afLkKcUbNmw9PG/efSf37PkhdPHi+xMAwGKxsPfdNzdZp9PLa9a8lrJx49uHR426oGz9+te6Hjz4j772a23Zsili8+b1cQ8//PjxuoIfAEhLS9UbDEbp8ccfib/ssokDpk+f2veFF56Ltdvtvl7hm/ihdplARzqXktAwLBWO4JyhI3F5E8or7sVSWZnWamkvZcVFCFC5/vsHhQYBindzZmSHHYrDClYXCrmFi4965gBJLVjDh1FzEBUZKoaFjQIgQgjxG+PGXVg8c+aNRQCwYMGinEOH/g7cvn1b5LBh56Zv2bIpZsKEicXXXfe/IgBISEi0q1SqzIUL5yefPJmhMRiM8tSp0wqvuWZmoclkkgHgrrvuzf3gg+3Rqakp+v79B5yaVLxt25bwDRveiFuy5Im0sWMnVNbXnvT0E3qn08kMGDCoeubMG/KPHj1sWLv2ta4FBfmap556LqOVTwdpZxQAkRaz2Vy9x2qNrpGSbhpXEgSOAqB2U5J1EgwASVGg0nKQWzAAQLJUgAmKa3GbGIaBQ2r+gqw1yYoMh6xAxQG2apqWSAgh/mLw4KGnPZXi+d7mAwf2mwAgPT3dcPx4mvG7774J8+xX3M/U0tJSdePHX1R57bWzCnft+ij0+PFUQ05OtjYzM90AAJIkn+qxKSsrU7/66up4juOUuLhuDT7ZW7bs6Yzq6uqsoKAgCQB69+5rU6nUyjPPLE8sLCzIjoyMonlBnRgFQKTFPAGQRqtt2gHuLHCcQolW2ktFXi6CAZgVGWjBnBsAkCzV0PgoG6pDcrToeFlR4HRfVw4LBUCEEOIvVCrVaR/6iqKAZTnF9b3MXHHFf/KnTp1WUvu4qKhoZ2Fhgeq2227oHRhoEkeMGFk+ZMjwygEDBpqvvvqKATXLMgyLxx9/MnXDhjdily9fmrB+/Vsp9SXD4TgOnuDHIzmZtwJAXl6uhgKgzs2rAIjn+XAA9wO4CEAMgEkApgE4IAjCR75rHukIuqQewxsDB+NwU+duuHuKVBT/tBtrURGCAVhZFrLYsr/xst0KVnIA0LSoHoZhYBdbFgAB/y7I67BYWlwXIYQQ3zhy5JDxoosuPpX0ICXlSEBSUpIFAOLiulmzsjJ1iYlJp3pt9u7dE/Duu29HPfjgo5m7dn0UVl1dpdq+/eNDarVacdfnnvvz781EcHCQc8yYcZWRkZGO2bNv6rNx49qom2++vaCu9tx00/V8167dbI899mSmZ9vBg/8YVSqVkpCQRIkROrlmB0A8zycA+BmAHsBPAAa660kG8AjP85cLgvCpN43heT4ZwH4AdwmCsMm9bRCAFwEMBVACYLUgCM/VOIYFsATALQBCAOwBcIcgCGk1yrS4DlI/1m5HsFoDDde0TGCyMQgHKspRJImY1MptI3Wzl5UCAJwqruU9QA4rFNEBhtNCaVGvntLiHiAAqJBlyHY7jI6W10UIIf5Kq1O1eSKrlrzmJ5/sjIqPT7D16zfA/P7770VkZmboFy58JAMAZsy4Lv/pp5clrl69MvaSSy4ryc/P0zz//NPdw8PDHVFR0WJUVLTDbrezu3Z9FDJs2PDq48fTdK+8srorADgcjjPa1Lt3X9u0adPzt27dHDt27ITypKQeZwyHGzduQum6da913bbtLfN5542qPHjwgHHDhtfjLr/8ygLPPCPSeXnTA/Q8gEIAYwFUA3AAgCAI1/E8rwfwEIBmB0A8z6sBbAVgrLEtDMDXAHYCmA1gBIBXeJ4vEQRho7vYI+59NwLIAfAMXGsU9RUEweGLOpr7Xs467h4ET3a3xtjCu2BVagpUKhXubM12kXo5K1wP4SSNusV1yXYbINrAqk2QJO8DIAktWwPIY62tCieOpeHl2Xe0uC5CCPE3iqLIGp1K7N0vRoV2yOar0alEWWn+JN6JEycX7djxTtQLLzynj4+Ptzz11HOpffv2swLApZdOLVMU5cS2bW/FfPDBe9EGg1EaOnR4+b33PpDt2Z+ScjR/7dpXu65Zs5IND49wTJp0SfHevT8HHz162AigqPbrzZlzd97PP/8Ysnz50u7r1r0p1B4KN3PmjUUsy+LDD3dEvf76K92Cg4OdU6deWXD77Xfme3dmSEfiTQA0AcBNgiCU8zxf+5H/6wDe87ItjwGonbbpNgB2AHMEQRABHOV5vieAhQA28jyvAXAfgAcEQfgMAHievxqutYmuBPCOj+ogDWA8Q6hUTbuZVmtcgZIoihBFESoVTUVrayWiiKryMhijklpclyJLkG1msEYGLclsLisSRB+kRtfqXHPM7HYawUAI6XwUBZIMOU+t49plKRNZkWVFaf7Ez4SEJOsDDyzOrm//lCmXl02ZcnlZXfsYhsGCBYtyFixYlFNze83hbXPnzs+dO3f+qbUptVqtsn37x4cbatN11/2vyJN5jpxdvP3PU9+kAS1qDsZsIp7nLwBwO4D/1do1GsCP7sDFY7frED4SwCAAge5tAABBEMrhGkZ3gQ/rIA3wrOejqJuWBEGl/reniG5S28ch0Ymn0wSYu0b5pD7RXA6mhSsnKFBatAiqh9rdq+VJzkEIIZ2NokCSZcXZHl/eBD+E+BtvHr3/BOBBnue/AeC5w1Dc82jmwDU/qMl4ng8G8BaAuwVByOJ5vubuOAAHax3iie67ufcDQFYdZbr5sA6vqFpheC7nfuDDtc+Dnzqx7ptWRqNp0oKYBtGBTYOGgmUYiKKzVc5TS/njefaligrXQ7aQQINPFjGFwwaVIkJWNW0emEfN8yxCgQy5xe2ZwGkxo3c/6DIz/PLaag+d/Xr2J3Su2wadZ0JIS3gTAC2CK8hJA/AdXD0+CwD0AdADrh6X5ngVwF5BEN6uY58BruFrNXmCLp17P+opE+rDOpqNZRmEhBgbL+glk+mMhY/bDedeAJPTG6DXNz4PiGWMMLiHvWnVSquep5byp/PsS9WVrjlA4SEm6JrwO2sMx4jQqWUYjSavjjeZ9CizOsCpmRa3J5Rl0cMYgAK71a+vrfbQWa9nf0Tnum3Qee4Y9uz5c197t4GQmpodAAmCcIjn+aEAlgIYD0CCKx32DwBmCYJQu7elXjzPz4QrYOpfTxErXMPqavKstml274e7jLVWGc8iIL6oo9lkWUFlpe/T8HIcC5NJj8pKKyTJP5KUFMkSzFYrRLUWVmvjOSMY8d9RkoW5hQgwhbdm87zij+fZl+Zo9DCdMwyaSgtsTfidNYaVqqCqrobTqWlWJjjPea6qssIi2mGx2mBrYfY2iWUBSLBXW1BWRmsBAZ3/evYndK7bRmudZ5NJT71KhJwFvJp9LghCKoDrfPD6NwGIAlB76NtrPM/fDyATQGytYzw/5wBQ19h2vFaZv93fZ/mgDq+IYut9+EmS3Kr1N8d7lmocPXoEsydfh0C5CTe/zL/DpKyV1X7zPuriT+fZVxRFgZ5hoeM46AMNkJvyO2uEbLNBstugaBSvzpcsKxAlEQ5RbHF7ZM4VAEl2e6f73bVUZ7ye/RWd67ZB55kQ4g1vF0Jl4EoeYEQdiRQEQfixiVVdD9d6QjWlAngUwLsArgEwm+d5ThAEz6S7Ca6XEAp5nq8AUAlXSu7j7rYFAxgM4CV3+R99UAdpgGeyuaqJSRDAMHDIMjQsC4eFntC3NXN1FYzuNZtMwYE+qlWBbKkEG1T7WUPTSYrskyQIrnlITihOZ4vrIoQQQkjn481CqMMBbMe/yQM8M5YV9/cKgCbNhBYEIaf2NndPUKEgCJk8z28A8ACA9TzPPwNgOIB74FqzB4Ig2HmefwnACp7niwBkAHgWrl6fD9xV+qIO0gBPJjdO3fQ1ZRwKoAEoAGoH5QUFYN0p2wxGHWTxjPXhvCJZKqFWvHsSyzAMJFn0yTpAiicRAwVAhBBCCKmDNz1AqwA4AdwAIBtAq/U9u3toJgFYDVda6jwA9wuCsLlGsUfheh/r4OpN+hHAJM8Cpr6og9RPURQ8GhEDR2gkcpsxDtvpzpbutFgbKUl8rbwgHxoAdln+9/GFD0gOGzSyA/+OKm0eh1Rfdv3mUdTuP2uib+ojhBBCSOfiTQA0GMAMQRA+8nVjAEAQBKbWz38AOK+B8hJci5oubKBMi+sg9ZAkhKrVgFqNAo2u8fJumZKMLHM1wukpfZurLipCKAAbFMg+CjoAQLZbwYgOMKwazciDAMDVA+SQfPO8QdaqUSU64Wj+QuWEEEIIOQt4k+qkEK3Y60M6Fsn+7/ApRmdooOTp3nUCTxw7CrOh6UET8Q1LaTEAwMGygA+GnHlIDhsU0e7VOj4MA9h9FACd7BKOmw/sw49a73qiCCGEkNY0atTQIdu3vxNW176TJzM0o0YNHVLza/z488+ZNevq3t9881VQW7e1s/KmB+hlAIt4nt8tCAJN4DjLeebwyIoCVtP09RjU7oQJNptv5p+QpquwWlFQXgZjpG/TjyuiE4rdCkbvysLWrGOhwC76JgBSa1yBj9Vqa6QkIYQQ4p8WL156fPDgodWKojBVVZXc55/vCl227JGkqKjoo/37D6D5Ay3kTQDUE65FT/N5nj8MoPZiN4ogCBNa3DLSIdiqqgAADlmGSqNFUzMYqzWuxS7tdgqA2lq2LGN9moDr+idjko/rFi0V4LxYPlhWZIiyb4bjqdwBkCc5ByGEENLRBAUFSVFR0SIAREfHOHv25HN//PH70M8++ySsf/8B2e3dvo7OmwCoB4ADNX6uPd7Fh9Oqib+zVVcDcE2oZxgOTZ38cTkj4d5BQ5GbmdmazSN1KC8vAwAEBTR9yGJTyTYzVLKI5v4ZkBTJJymwASDEYsejyb1pEUpCCPETZrOZffHF57r88stPIVarlevePdFy553zsgYPHmoBgD///N34xhuvdElPP27gOE4ZNmxE+fz5C7NDQkIkALjiiov7T5s2veDvv/8KPHBgv8loDJCuu+5/uT169LSuWvVMfF5erjY+PsH66KPL0hMSEu0nT2Zorr32P/0XLHgw/d13347Oz8/VdevW3XLXXfdkDRt27qnRS++//17Yjh3vRuXn5+qCgoKckyZdWnT77XfmsywLTx3PPLPq2MiRo6s8x4waNXTIvHkLMqZPn1GyevXK2IMHDwQOGzai/JNPdkZVVVWpkpP56vvvfyizZ89kOwDk5GSrn3lmebfDhw+aDAajeMsts70OXrRaLX2w+UizAyBBEMa1RkNIx+QwuwIgJ5RmLWCpYVkEqFRQ6Cl9mysvKwUABLdGAGS3gZWdcCU5b8ZxkCFKvgmAtAD6mYJQ6KP6CCGEtMyiRfMTs7Oz9PfdtygjPj7BvmnTuuhFi+Ynb9v2waHMzAzNggVz+QsvnFR8330LT5aUFKtffPH5bnPnzk7evHnbUZZ1TVffvHlDl1tvnZM1d+59WZs3r4t+9dXV3WJj42x33TUvy2gMkB577OGkNWtWdVm5cs0Jz+u+/vpLXWfPvjurd+8+ls2b10cvXHhv8saNbx+Oj+/u2LhxbeTmzRvibr75tqyRI0dXHjz4t/GVV17sVllZoVq48OEmBympqceMWq1Oeuqp51MtFjP71FOPJzz33JPxr7++6Zgoipg//65kg8EorVz5kuBwOJhVq56Jb+75E0URH330QVhOTo5u8eKl6c09npzJq4VQCfFwOEVkWsyoBtOsZ/4SxwESoDgoC1xbG1lRif+dMwzV5dU+r1tyWKGIDjCcFkozUsEpiuKzIXDQuoIvFZqZio4QQojPpaWlav/6a1/QE0+sSB07dkIlACxevPTkqlXPSKWlpdy2bW9Fd+0ab3344cdOug+xBQeHnLjtthv6fP/9t6bx4y+qBIBBgwZXXHPN9cUAMGPG9YVff/1lxOWXX1l4/vkXVAHA+edfUPrbb78E13zt//xnRv7ll19ZCgBLlz6ZedVVUwJ37HgnYv78hTnbt78TM3nylMKZM28sAoCkpB72iopy1YYNb8TNnn13XlPfnyRJzLJlT6eHhIRKADB16pWFmzeviwOAPXt+MOXkZOveeuu9QwkJiXYAWLTo0fQ5c27q01i9ixc/0JNlWQUAHA4HqygKJk26pKhXrz40/8cHmhQA8TwvAThPEITfeZ6XgQbvLBRBECiwOkvYgoNw/5GDiI7p4lpZtolk1nWJKE5aaqmtqUQROrUGok7r87pluw0Q7WDVJkhS0wMQSZF8sggqALB6TwBEo3EJIaS9CcJRAwCcc87QU0PPtFqtsmjRI9kAkJmZoR80aEhlzWP69OlnNRgMUmrqMYMnAOrateupScN6vV4GgLi4f7dpNBrF6XSclt142LBzTw1dU6vVSmJikiUjI11fXFykqqysUA0cOOi0J4FDhgyvWrv2VSYt7ZguIiKiSU9oTaYgpyf4AYCAgABJFEUGANLSUvVGo1HyBD8A0L//AKtG0/hQtrlz78sYOPAcMwBYrVb24MG/jevXvx4nSY8wS5cup/kDLdTUQOVxuBY99XxPj1YJgH8nmmu1zUtnLXOeAIh6gNqaxr0+jtbY9Kx9TaXIEmSbGawxEs0ZgebLAIhxB3aUBJsQQtqfSqVSAIBhmDrvHRVFAVPH8ypFUU4dCwAcpzrj+MaWXah5vKdOlmUVzwgFptYLy7LEAK5gqeYxHk6n84wXVKvPbFft16yN47hG76OjoqKciYlJpwKnvn37WUtKitXvvLMl9r77FmUFBgbSfKAWaFIAJAjCYzW+X9pqrSEdjifVcLMDIJXr9pQRfbcQJ2kanfvPrsFkbJX6JXMFuGZm2JZk2WdJEBj3EDg1680yZ4QQQnwpKamnFQD+/vsv4+jRY6oA15yWK6+8tP8tt8zOjo/vbj1y5FBAzWMOHTqot1qtXGJiUouGex069I+hT59+VgBwOBzMiRPHjRMnTi6KiIgUTSaTeODAXwGTJl1S7im/b9+fASqVSomPT7BbLGYWAKqqqjjP/vT0480aOsHzvS0Wi4VLSTmi69Wrjw1wDQm0Wi1cY8c2RJZlGuLQQk0dAndBcyoVBOFH75pDOhrumIBVfQciS928Se+KOwACBUBtyul0wMi5AgOjyfdJEABAslugkp1ozjrLkiJBlHxzLTCeIXAMA1kUwapoRC4hpHNhGHAMw7TLUx5FUWRFafpibz169LQPHz6ifPXq57sxDHMyOjrGsXnz+mhRdLIjR46qio3t4pg//65eTzyxpNt//3tNYUlJseqFF56Lj49PsIwaNaaq8Veo3+bNG7qEhoaL3bp1s2/YsDbGbrex06fPKGYYBtOmTc/fuvXNLrGxXeznnz+68p9/Dhi3bXsz9sILJxUFBQVJJpNJioiItG/f/k5UQkKizWq1smvWrOyqUqmbPArq/PNHVyUl9TQvW7YkYf78+09ynEp54YVnu9XueapLRUUFV1CQrwJc84wOHNhv/PjjD6OGDBlWHhQURFl+Wqipdwbf499hb/X91hT3PgVAiyJb0nHI1VXootejopnH2XVGpFZXo8wU2CrtInWrqKhAgHv4oTGwdXqAZIcNjOQA0PReQVGWICm+6c1nDDo4ZRkOWYbdbIY+iBbOJoR0HgwDjmPEGKfd0i5Pd9RagyhBldecIGjp0ifTV65c0XX58iWJDoeD7dEj2fzss6uPhYdHiOHhEeKyZStSN2x4I/a2227so9frpeHDR5Tfc8+C7JpD0bwxefKUotdeW9O1tLRE3aNHsnnVqleE6OgYJwDceuucArVarezcuSNq3bpXu4aGhjmuuuq/+bfcMicfcA2PW7x4afrq1c93u/32G/uEhYU7Zs26KXfz5vVNHmHNsixWrXopdcWKJ7otXDg/WaPRyNOnX5tXWFjYaE/S8uVLkzzfcxynhISEOkePHlMyd+59Od6cC3I6pimZmnieH9OcSgVB+MHrFnUOJyRJTigtNTdesplUKhYhIUaUlZkhiu0//PP7FU8iNvUYDrEc2JmLm3zckQM/4731yzFo0GBs2vR2K7bQO/52nn3lhJAC8dmnAQDxs68Emv751WSsVo/APiPhUAc1mhrdc54P56Xij5P/+OT1FVHGw/+9BwDw44+/wWSiAKizXs/+iM5122it8xwaagTHsekAEn1WqZf27dvXi2W5LyIju1RrNLpTa0awLKOW7BVdjh/eLzvstja9yDRaHZvUdzDLaYNyZFnx20m89a3hQzo/h8OmKyzMCZBl6eIhQ4ak1FeuqXOAzvaAhtRDdrjm58ks14wBT4DaPWTORusAtamq8jIcKS9DsF6PeBZAK3x0yg47INrBaDwdwo1zSL77HGU4FizLQpZl2Gw2CoAIIZ2Sw26T7VZLe0TZNMGSdHhedZ/yPB8O4H4AFwGIATAJwDQABwRB+Mh3zSP+TnG40lh7sro1lVrjGh5lt1EA1JYqHQ6sSBPQh0/GeB8lHTiDIkOyVoENiG5yJji7aG+8UFMxgEarhc1qhd3uw3oJIYQQ0ik0OwDieT4BwM8A9AB+AjDQXU8ygEd4nr9cEIRPfdpK4rc8AZDSzInm4ZYKvNz/HJRRRvU2VVnpWmrBFBDQSMmWkcyVUEc27XcryzLsom/Xg7qtazxMAGy5OUDXbj6tmxBCiH/r1q27Y8+eP/e1dzuI//KmG/N5AIUAEgBcCXdSBEEQrgPwMYCHfNY64vcUdxa3U1ndmkilUiFCq4WpfZLYnLUqK8oAAKaA1skA5yHbrWCaOKxN9OEaQB7JeiMGmILhqGhueg5CCCGEdHbe3H1OALBMEIRynDnA/3UA/VraKNJxWBUZhXYbnJpmpcYHo3XdgKspk32bMp44gTfPGYYJUuueeMlhAyM3LQCSJNFnawB5iO6357RYfFovIYQQQjo+b1Mo1rdghxZNnfVMOoXf9Hp8evAApg86H32bcRyr1QMANNQD1Kak6mroOA5qrnUz1csOGxSnDaxG32gmOEmRIcq+XQ/KU5toowCIEELa26hRQ4d4vvcMTbviisn9i4uLNKeXG1P69NPPpwOA0+lkVq9+Pva7774Ns1gsXGJikmXevAUn+/cfUO/iqD/99EPgunWvdsnOztIHB4c4L7/8yoJZs24q8rbdnmxyAPDKK+uODhgw6IwPlenTp/bNy8vVPfPMqmM5OTmaF198rjsAjBkzrmT58mczvH1t0rq8CYB+AvAgz/PfAPDMYFd4nmcBzIFrfhA5S9jdWdzU6ub1ALE6TwDEwOl0Qq1u3hA64h3F6vrcYHXNW7i2uWSHHYrTDlbHNCEA8v0QONG9yJzT2qJFxAkhhPjIzTfPzrrkkimlAFBVVcWWlBRrli59Mq1//wGn1gzR6fSnPjCWLXuk2x9//B58332LMuLj4+2vvLK6y6JF83u+/fb7h+taCHTfvt+NDz20IPnCCycVLV68NCMzM0P7wgvPxVdXV3N33DE3vyVt5zhO+frrL0JqB0CHDh3U5+fnnVr0bsqUy0svuGBsxaJF83u05PVI6/Pm8fsiAL0BpAF4C64enwUA9gEYBaDpi8GQDs9qdQVAKk3zbqhZnWsRTi3HwWajm9S2wroDVlbXvIC1+RTIlkqwbMND7RjGtQiqrwMgyf26ImUZJIQQvxAQECBFRUWLAJCSckSvKAqGDh1eHRUVLXq+PIFNZmaGZvfub8Lvu29RxoUXTqzo2ZO3LVmyPEOtVisHD/5d5yTWLVs2RycmJpmXLHniZHJyL9tFF11cccsts7N37Hg3xm63t2jcd79+Ayp//vmnkNrbv/rqs1Ce713t+Vmv1ytRUdGiSqWi0VB+rtk9QIIgHOJ5fiiApQDGw7WS4kUAfgAwSxCEgz5tIfFrE202TOndD0XNDGI8Q+AAwG6uRmCgyddNI3XgnE6AYaE2tHYABEjWSqiVxpaoYCDJks/nAEksAyiAZKM02ISQzkmj1bX5GHJfveaxYymG4OBgZ3BwcJ1//Pfs+SHIYDBI48dfeCqTTXBwsLRz5+f13mPm5uboBg8edlrmmz59+locDjt74MB+47nnnldd+5hbb53F9+jBm6urq7hff/0lRFFkZvjw88oeemjJyYCAgFMfYGPHTih78cXnuv/zzwFDzV6gPXt+DLnyyukFKSlHWje1KvE5r+YACYKQCuA6H7eFdEBhChBpDEAF27w5JYpKgxybDVZJxAAzzdNoK2pRAtQsNEZ944VbSLLboJGdaOjPDMN4hsD5dg6QxLKQRQWS07fptQkhpL0piiKrtQYxqe9gFdphUVK11iBKSqNPtxp04sRxvVark+fPvytJEFKMJlOQOHHixcX/+9/NhSzLIivrpDYyMsr++ee7QrZteyu6tLRUk5CQaJ43777s5ORedXbtBweHOIuLC08bjpKdna0FgJKS4no/iD7//JPIqVOnFbz66vqjR48eMjz//DMJmzevs9955z15njJdunRxJCX1MNccBvfXX/sMFouZGzlydOVrr73UktNB2oG3C6EmAtAJgnCE5/lgAMsBdAWwXRCEt3zYPuLnVIqrl5dpZhY4sCwWp5+AxVyJDxsZJkV8R+P+zNK1chpswJUIgZEcYBgVlHoGAzAM0ypD4HabNHjs6x9xz+gLfFovIYS0N0WBJEGVx2mD2iWLkKQosqKgRX+0MzMz9BaLhRs//qLSW26Znbtv3x8Bmzati6usrFDNm7cg12IxcwUFBdotWzbHzJ59Z3ZgoEncvHl9zNy5s/m33nrvcERE5BlPzS6++NLilStXJHzwwXuhl102rSwr66Rmw4Y3YhmGgcPhqPdcxcZ2sc2fvzAHAHr06Gn/9tuvQw8dOnhGj87o0WPLPvvsk4j77luUAwBfffVF6IgR55erVBwNd+uAmv2fh+f5iwEcBXCTe9NrAG4DEAdgE8/zN/uuecTfeSJoRtv8HgW1e94QzQFqO8fN1UipqoQhqPV76yW7DYrTDoZpOMB1SiKU+iIkL6ncc5w8SToIIaQzURRIsqw42+OrpcEPALz66vpj77330cEpUy4v69Onn3XmzBuL/vvfa/I+/vjDKFmWoVKpFavVwj322PITY8aMrxw8eKjl6adXngCAnTvfD6urzmnT/lN6/fX/y3n55RfjJ0w4f/Bdd93W68orpxcCQEBAYL1tjovretpNiNFolERRPOOD6+KLLy0tKirU/vPPAYOiKPj55x9DJk68uLRlZ4K0F296gB4F8BWAx3ieDwIwDcBTgiA8yvP8EwDmAVjvwzYSP6Z239x61vVp1rFqz00qzdNoCw6HAy8fTwUA7I6d2eqvp4gOKA4rWH39meAYBrBLvv/9qzWurIIUABFCiP9Rq9WKWq0+7YMhKSnZarfb2fLyMi4iItLBcZxSc7ibXq9XIiOjHHl5ufUOObn99rvyb731jvyCgnx1ZGSUMy3tmE5RFHTvnlDvh0HtdrgoZwRAcXFdnT169DR//fUXIXa7nZFliRkx4vyq7OyTrZtWlbQKb7pPBwJ4QRCEKgCT4Aqidrj3fQ2gp4/aRjoATwDE6nSNlDzTXZGReKn/IIjZWb5uFqlDZaVrbijDMDBq2ibtuGSpbLAHiGEY2EXfz9NJckhYkJSM2LwWZT4lhBDiY7Is44orLu7/yiuro2tuP3LkkNFkChJDQ8OkwYOHVkuSxBw4sP/U01Wr1coUFBRou3SJq/Op2VtvbYx47LGHu7Esi5iYWCfHcfjqqy9CIiIiHT169PTJk7YLLhhXunfvzyFff/1l6MiRF5SxLK1l2FF585uz4t+eo8kACgRB+Mf9czSAch+0i3QAiihC5QmANM3vAQpWqRCp1cFZfUZiFtIKKipcAZApMABMG61XLFmrwSoNJziwib7vAQqWgeEhoQi0mBsvTAghpM2wLIuRI0eXffjh9uhduz4KSU8/od227a3wnTt3RM2ceWMOAJx77nnV/foNqHzyyccSfv31lwBBOKp7+OEHEjiOVa644qoSwBMQ5askyTW6LSmph+3b/7d333FyVeXjxz/3Tp/tJZveyw0thIQiTXoVFQti4WdBEUFUvipYARVRQbpYaDZUwIKiCAJK75CQQspN2SSbzSbbd2enzy2/P+5ssinbZu/M7CbP+/VadjNz55wzd4bd+8w553n+99S4hx76Y+3WrVv8Dz74QO3f/vbwxIsv/nyjW2M/66xzO5ubdwSeffbpmrPOkuVvY1kuS+BeAr6uaVo18BHgNwCapi0GrsveLw4AmWSStlQKv6qihsLDvqTOZL8bUqyyIKKbN/HAEUfRbpnYprtJB/pjpROoVgbY9wqBfBRBBbB9zq82xSjM8xRCCDF0X/3qNxpLS8uM+++/e3JnZ4d/3Li61CWXXL71Yx+7qK33mJ/+9I6Nt91205Tvf/87s1OptKpp86O33fZzvaam1gB47LFHq++44+YZf/rTX1dOmzYjfdxxJ/Z8+ctf2/zQQ3+YeM89P586fvzE1Ne//q1N5533/k63xj1p0uTMvHlatL293b948dHyCdsYlksA9H/Av4E/AquBH2Zv/zcQxymUKg4AGQUuX/k2ANcHSjCHGQEZijMBKcUqCyPe0UGNx0NAAQo1A5RKgplGUQP7THRg2u7XAII+AVCBAj0hhBBD5/V6ufzyL++4/PIv97tOuayszLr22usbgIZ93X/BBR9tv+CCj7b3ve3DH76w/cMfvrB9X8fvy733/l7f87Ybbvjp5t6fp02bkX7ppbeW9L3//vv/sNtj9nWMGP2GvQRO1/VNwCHARF3XD9V1vffNez5wkK7rG10cnxjFktnARVEUVM/w95SY2QDIlCQIBZHscj4ESw+Slc1NVtrJBKf2k+rcwsrLDBDZPU5qPtoWQggxbNFo1NPcvCOn8itjRe+yvH1lkROjS067t3Rdt3Vdb97jttcAbzZNtjgA9AZAgUCw3zovAzGymwctmQEqiHQ2CYLhLdymTds0sFLx/gMg28K08xCkBJy/sR5rRLX6hBBCuOT++3819UMfOu/wYo8jnx577NHqD33ovMPXr19XUuyxiIENOxLXNG06cDdwEv0t7AfPSAYlxoZ4wxZumH8onbaFlUMEZKoesEyZASoQo6cHAMtb2A/gzFgXnn1UbVAUMPK0B0jJ1phS+0m/LYQQonAOlCVi+1qWJ0anXK6EbgOOA+4BjsfZ9/MqcCZwGPDB4TSmaVodcAtwNhACngeu0nV9dfb+hcAdwJFAO3Cnrus393m8ipN84XNAFU4Shst1Xd/Q55gRtyH2lol0M7e0lO2ZNF05XGjGPT62xbpJuVwEU+ybFY87PxQoBXYvMxnHZ2XYc8JZURRMy8KwBs4Sl5Og8xy9BdrrJIQQQoixI5e1MCcB39V1/Ss4GeBSuq5/Aye4eB54/zDb+ycwGyel9lE4abb/q2laWNO0GpzaQuuy7V8HXK9p2mf6PP4a4AvAJcCxOLu7n9A0zQ/gRhti39Ix54LayDGp8uulNfzfquVsLCt1d2Bi37LZ9tRgYd/WVjoJZmaf9+UrCUKsrppPLHmdG9tbXW9bCCGEEGNbLgFQKbAs+/NqYCGArusm8HPg1KE2lA1ONgGX6Lr+lq7ra4DrgYk4iRY+D6SAy3RdX6Pr+m9wZqC+kX28H/gacJ2u64/rur4cuBCYzK6ZKDfaEPuQSTgBkJnjpnpfdplSMilpsAuh3ciwticCpcOv2TQSVjoJxt6JEJwZoPwsgfMGfWRse+c+NSGEEEKIXrkEQNtxCp4CbACqNU2bmP13BzB+qA3put6u6/rHdF1fBaBp2njg60AjTnB1IvCCrut918g84xyq1eEEX2XZ23rb7AKWAu/O3uRGG2IfzGzgYuQYAHl9AQC5SC2Q55MJrtVXY06fMPjBLjJTTgCkKHsGQJC2Mth5WKbm8Ture1MpeW8JIYQQYne57AH6N84SskZd11/RNK0RpzDq94CLgW25DETTtHtwlqClgPfpuh7TNG0KsHKPQ5uy36cBU7I/b93HMdOyP7vRRk68eci25fGou30vpt7kBaaq9pvlayBaOs6ZBx9GpLMzL+dqJEbTeXZLJJsFriIczOn1yp2NlYziq5hE3xjI61XJJJylcYqq5JaSsh8BBb44YzYhnw+PR9kr+DrQ7I/v59FKznVhyHkWQoxELgHQtTh7aX4AnA58G/gdcGX2/i/mOJbbcbLLXQb8Q9O0E4AwTkDUV+9HusHs/fRzTHX2ZzfaGDZVVaiqyl8WxPLyUN7aHipPdl+H5fEQDg1/X0mJ18P0cAn1hpHXczUSo+E8uyUadbLA1VSWEszh9RoJTyZGSYkPRQ3udrsZdSZmAwF3EzNYJSEOrx0HQEWJD08g4Gr7Y9X+9H4e7eRcF4acZyFELoYdAOm63g4c07vsTdf1P2qatgUnecAbuq4/n8tA+mR9+3y2rStwEiLseeXSewUVy95P9pjEHsfEsj+70cawWZZNJBLP9eH98nhUystDRCIJTLO4NU5iiRR+wyATDJFIpIf9eEN13n6KYdLZmfOpzovRdJ7d8oMJU7DHT8aXSJHM4fUaCSsaRYlESdu7fuV4fSrR7D6yVCqD7WLK6kyfGa7mba2Eqqpca3ss2h/fz6OVnOvCyNd5Li8PyazSKBSLxdRHHvlzzf/7f59pBfjOd66a0dLSHLj33t/r+eqzsbHBv3TpkpL3ve8Dnbm28Ze/PFRzxx03z+gvDXghnscJJxy5+Ctf+frm/SE9d0PDZv/HP/7hw2666bZ1xx13Ys9I2sq5IIiu69s1TZuPkzZ6u67rPx1uG9k9OKcBf84mUUDXdUvTtNU4SQi2ApP2eFjvv7cBvj63bdzjmOXZn91oIyeGkb8/fqZp5bX9odhSW8vXlr3Fyaefx8k5XLza3t5aLcV/Lv0ZDefZDcl4nCqf81YvLQ1jFbg+jpGMY2dSGH0WutmqTcZ0ZoBsy3Z1TErAh2nbeBSFaFcEX1mFa22PZfvL+3kskHNdGHKeDwy//vU94//3vydrewOgq6/+7lYrDwl0+vr+96+ZUVdXlx5JACRGr5w+5tA07bPZWZ9VODVz1mmatlnTtI8Ns6lJwJ9wUmv3tu0DFuEkQXgBOFHTtL6FVU8DdF3XW3AClAhwcp/HV2Yf/2L2JjfaEPvQm7zA589teZGSXZbklTpAedfd0rzz53Bp4ZeMWKkk9h6Z4CzbzE8NIMDj9ZK2nIuiVCyalz6EEEIUhm3bu23krKioMKuqqvMbAWEf2JtH93PDngHSNO0K4E7gH8B3gBacrHAfA/6gaZqh6/pfhtjccuBJ4Beapl0CdGbbrMJJVZ0Ergbu1zTtJuBonL1GXwDQdT2ladpdwI2aprUCm4Gf4sz6PJLt49cutCH2oTd9tc8fHOTIfvicC3GvxD9519PSAkDcNFEVhULXB7UyKex0AjVYvXOmx8IiY+bn75eiKGRsixAe0hIACSFEUXV3d3tuvfXGKW+88WqlYRjKzJmz45df/uXGhQsXxQHi8bj6k5/8YOpbb71ZGY/HPZMnT05edNGnm84557yuO++8ddKf//ynieAs5/rTn/668u67fz6pd+nYK6+8WPbNb35t3o9/fPO6O+64ZVpLS0tgxowZ8e9+9webnnrqiarHHvvHeNM0lRNPPLn9O9/53lZFUbBtm/vu+9X4p556ora1tSXg8/ms+fMPjn79699qmD59RvqSSz6prVmzunTNmtWl559/dtk//vGflel0WrnzzlsmPffcMzWJRNwzZcq0xMUXX9J00kmnRnqf5xNP/Lvyd7+7b1Jz847g7NlzYwsXLor0d056mabFDTd8b+pzz/2vxuv12meccXbbl7/8tW1er3OJ/sYbr5X8+tf3TNq4cX1JJpNRx4+fkPr4xz+5/f3v/2BHbxuPPvpI9cMP/3HC9u1NwcrKqsx5572/5bOfvbR5z75aW1u8X/ziJVplZVXm9tt/sSEcDlvPP/9M+b33/nLytm2Nobq68akPfegjO+6889YZf/rTX1dOmzYjff75Zx92zDHHdb399pLy7u5u37XX/mDju951fM/vfnd/3eOP/6uura3NX1tbm/7Qhy7c8bGPXdQG8MorL5ZdffX/zettA/Zevvad71w1w7IspaqqOvPss/+rSaWS6oIFCyPf+ta1W8aPn2AArFmzKnjbbT+dtmHD+pKqqqrMhRd+fPuI3oh95LIE7ivAXbquf3mP23+vadp9wPeAIQVAuq7bmqZdCPwYeBioxJl1OVHX9QYATdPOwgm4luKk4L5K1/Xf9Wnm2uzzuA8I4cz4nKXrejrbR8tI2xD7NnP7Dr477yA607mlGlYCTuDkLfTV+AEo1t5GCEjaNuR52UB/zHgEtXIq4MzMWLaVtxkggEz2bZWKja79ZUIIMRK2DXHD1cSZwxL2Yg0nsaZt21x55eVzvV6v9cMf3rShvLzc/Ne//lFz5ZWXz//Zz+5ec9hhhyd+9rNbJ23evCn8k5/csr6iotL4298eHveTn1w/65BDDn3n4os/vyORSKgvv/x89b33/n51be24vf5wWJbFL35x59RvfOM7m/3+oHXttd+c/cUvXnLQEUcs7r7jjl/qb775eukvfnHn9He967jI6aef1f2b39xb95e/PDjxqqu+vWn+/IMSW7c2BG655cbpt91209Tbb//Fxptuun3DV796xdza2nHpb3zjuw0A11zzjRkNDQ2hb33rmk0TJkxKP/fc/yqvvfZbc6655vqNp59+Zvebb75e8qMffW/2BRd8bPu55763/a233ii7++67Bs0mvG7d2tKamprMz35299rGxq2BW2+9aUYymVS//e3rtjY1bfN985tfnXfWWe9pvfrq7zQYRkb5/e9/M+G2234649hjj4/U1Y03/v3vf1bdfPOPZ1500ae3nX76WZ2rV78Tvu22m2aUlJSaH/3oJ9p6+2lvb/NeccXntZqa2vStt961IRQK2StXrghde+235px33vtbrrvuhvq1a1eF77rr9ul7jvHJJ58Y94Mf/Hh9eXm5edBBhyRuvPGGqc8//7+ayy77csNhhx0ee+WVF8vvvvuuael0Sv3Upz7bMtT3xquvvlx1wgknddxxxy/0pqZt/h//+PpZd911++Trr//Jlu7ubs/XvvYlbd68+dFf/OLeNc3Nzf7bbrtxr7HlKpcAaArwr37uexD4xHAa03W9G7g8+7Wv+9/ESYrQ3+NNnKKm3xjgmBG3IfZWmkgwvbyCJeQ4SxwI05FO052nWQCxS6Kz3QmAijihb8Z78NjO3y1FAbN3CVye/oxnsoF1Ou5+MhIhhCgG24aL/hOer3d6ipY6dX6VGX3g7Lg+1CDopZdeKFu/Xi/5xz+eWN4bvHz1q9/Ytnr1qtKHHvrD+MMOO3zz9u1NgVAobE6fPjNVUVFhfuUrX992xBGLeyoqqszS0lIrFApZqqravTMD+/KZz1yybfHio2MAxx13Qtdjjz1ad+21128Jh8PW3Lla8g9/+N3kjRvXh04//azuqVOnpb7+9W9tOuOMs7sBpk6dnn799Vc7X3jhuSqAqqpq0+v12n6/36qtHWfU128MvPzyi9V33XXPmt5Zq9mz5zRv3Lgh9PDDf5hw+ulndv/lLw/WzZunRb/85a82AcyZMzdVX78x9Pjj/6wb6PxUVFRmrr/+xk3BYNCeP//gZGtr67a7775r2pVXXrUtnU4rH/3oRU2f+9wXmlVV7X2e25977n819fUbg3V146N//etD44899viOSy/94o7suFLxeMwTDIZ2bo6LRLq9V1xx6bza2nGpW2752cZgMGgDPPjgA+NnzpwVv+qqbzcCzJ07L9XR0eG7995fTu07xiOOWNT97nef3OO0FVGffPLf4z772Uu3nn/+hzqyfbY2NW0LPPzwnyZ+8pMXDzkACoVC5nXX/XCLz+ez582bn3z11Zfblyx5swLg3/9+tCqdTqvf//6PN1dUVJjz5x+cTCTiW3/4w+tmD7X9geQSAL2Js4fm6X3cdwSwYkQjEmOGmt3Ajj+3lMqZ6vF8YcVSAsEgZ7s4LrG3VJdTAyhTxOxGVjqBaqYBP4qiYFgmhmnmLQC6o6uFxq1N/OIL+/xsRQghxqTCL2IembVrV4cBLrzw/MP63m4YhpLJpBWAiy769I7vfvfqOe9//1mHz507L7Zo0VHd55xzXkdFRcWQPyGdOXP2zuUogUDQqqiozITD4Z1BgN/vs1KptApwxhlndy9Z8mbJnXfeMmnbtsZAY+PWUGPj1mBVVVVmX22vXv1OGOBrX/uS1vd20zSVcDhsAmzZsjl8xBGLu/vef9hhC6KDBUCzZ8+J9wYkAAsWLIwZhqFs3LghcNhhCxIf+tBH2n//+1/XbdmyKbht27bg5s31YQDLMhWAhoYtoXe/+9SOvm1eeOGumR+ABx747WTTNJQ9+6qv3xDec5neokVH9cAvdxvj5MlTdp7bDRvWBU3TVI444sjd1pcvXLgo+q9//WN8a2vLkGOL8eMnpHw+387xlJSUmoZhKM7YNobHj5+Y7PseWLz4KNfWtA9pkJqmvbvPPx8EbtM0rQz4M7ADZ8/O2cCXgUvdGpwY3dRs6lHbl1sSBJ/PCZxSySTO73PZb5gvPZkM3T0RMlXFy4ZmppJgplFUJwAyLWcGyItn8Afn0p/PR8qySKX3LPElhBBjk6LAA2fH9bG0BM6yLCUUCpl33/3bNXve5/f7LYAjjzw69ve/P7HixRefK3/zzdfLn3rqidqHHvrDpB/+8Kb1J5540pDSHft8u+8oHqjg9z33/GL8gw8+MPmUU05vW7hwUc9HPvKxlueee6byxRef22f9R9t2rnduv/0Xa0tKSndLO+jxeOxdx+2eOMHr9Q0arKqqutsxvdntAgG/vX69Hrziis/PnzFjVnzx4qO6Tzjh5O7q6urMl7506UF9+x/s9TjssAWRc899X9sNN1w3+9ln/9txyimnR7KPxbIGT/bg9wf2eo57Fhi3somH+gY0fXNcZTLGXv30PXaXvjcN/3wO1VCjtOf2GJGCU7D0C3vcBvAQQ9wDJMY2NftmV3KcAfL2CZxSqTQBKVaZN1v9Pu7WV/OR95zBeUUag5VOYmdSqKFyFAUMy8CwzLwFQL6A875MJiUAEkLsPxQFSnyMmdzfs2fPTSQSCU86nVLmzz9450zCtdd+a/qcOXPjn/zkxa133nnLpMMPXxQ988xzus8885xu0zS3fvSjHzjk2Wf/W3XiiSf1KIri6qzXn//8p0kf/ehFTb3LxgD++MffT9g9Ke2uPufO1RIAzc3N/tNPP3znLM9tt900WVFU+8orv940a9bs+Jo1q0r7trBmzTuDLlXcvLk+bFkWvUvcli59q8zv91vTp89M3Xzzj6eUl1dk7r77N+t6j3/66f9UgLO3CmDy5KlJXV+zWz8//vEPpjY37/DffvsvNgK8+92ndJ5zznu6nn326Y7bbrtpxuLFR79TXl5uzZgxM77nY1euXDbgmOfMmZf0eDz20qVvlh566GE762cuW7a0rKKiMlNZWWX6fE5gG4lEdv6B37Jl07Au8ubOnRd/5pmna9rb27w1NbUGwIoVb7u29HOonyCcApza5+uUQW4TBwBPNgAixyxwPq+XH8w/hBsPPoxkt6TZz6dIxJnhLgsXr2q6bRpYyRiqqqAoCmljnysNXHNsIMRlM2ahbm3Iaz9CCCH6d8opp3VPnz4jcd1135790ksvlNXXbwzcdNMNU5599r+1vcvWtm3bFrj99p9Oe+mlF8q2bt3i//e//1nV1tYaOOywBVGAUChkxWIxz4YN6wOZTGbEy0VqamrTS5e+Wa7ra4Lr168L3HbbTye98cZrlZlMZud1cSgUslpamgPbtjX65s8/OLlo0ZHdd9558/SnnnqiYvPmTf777vvV+Ece+cuEyZMnpwA+/vFP7diyZXPoxhtvmLJhw/rA3//+1+onnnhs3GBjaW9v919zzTdmrF27Ovj44/+q/NOffj/p/PM/3BwIBOy6uvHpjo52/zPPPF2+desW/xNPPFZ55523TgdIp53lgx//+P/b/sorL1X99rf31W3aVB/45z//XvXUU0+MO+GEk7r27Ovqq7+zNZ1OKzff/KOp4Cw93LRpY8nNN/9k8oYN6wP/+c+/Kx944LeTYe8Znl4VFRXm6aef1fbHP/5u8j/+8bfq+vqNgQce+M24J598fNwHPvDhZkVRmD//4EQwGLR+85t7J9bXbwy8+urLpffff/eU/trcl/POO7+jvLzC+M53rp75zjsrQ6+++lLpz39+x9TBHzk0Q5oB0nX9ebc6FPuP3uxtSo4BkMfrY25JKR5FIdnTQ0XdBDeHJ/ro6XECoPKScFHHYca68dQ6P6fM/M7MzPL4Obi2jh0dY774tRBCjFkej4c77/zVuttuu2nKDTdcNyuVSqmTJk1Ofve739/Yu7ztO9/53pZbbvnJ1J/85Aczo9Got7Z2XPpTn/ps4wc+cEEHwJlnnt355JOP137uc5885JZb7tRHOqbvfOd7m2699cZpl1322YOCwaA1d64WvfzyL2/55S9/Nr2hYbN/2rQZ6fe974OtN9/8oxkXX/yJQx5//JllP/nJrfV33HHz5DvvvGV6NBrz1tXVpb74xSu3XHDBx9oBDjtsQeKHP7xp/d133zXliSceq5syZUriggs+tv33v//1lIHGcuSRR3d5PB77i1+85KBAIGCdffZ5LV/84leaAD75yYtbGhq2BG+88YZZpmko48dPTH7605/b9sADv5n0zjsrS0455fTIGWec3d3V1bXlz3/+04Tf/va+KTU1telLLrms4cMfvnCvP361teOMSy65vPG2226aceqp/+s8+eTTItdc84MN9933qymPPfaP8RMnTkqee+57Wx5++I+TfD5/v7Nu3/rWtQ2/+MUdxq9/fc/kSKTbN378hNSll17R0JsGu6yszPrGN75bf999v5py8cWfOGTixEnJyy778tbvfvfqeUN9jUpKSqw77/ylftNNP5r2la98YX5JSanxyU9e3HT77T+dMdQ2BqLYQyhCqWnaC8CXdV1fNtSGNU07Erhd1/UTch/emFVvmtbMjg730+96vSpVVSV0dsaKXv365U9fRLXHw4rjzyEw9+ic2pj56+sIeTwEvvRlph++yOUR5m40nWc3PHHpxVQlkkQPnsmJpx9ZtHEEaicSnHMUlupnZdsa6ju2EAz5SSbSO+sDuSV105841IBtc+Zwyje/62rbY83+9n4ezeRcF0a+znN1dQkej7oJmOVaozlasmTJfFX1/KeubnLU7w/mVm9CiAG8/faSsNfrtQ877PCdS9n+8Y+/Vd9++80z/vvfF5f21iIaS9LpZLClZVupZZlnL168eG1/xw31md0B/EfTtLeAPwD/1HV9r9yy2cQIZ+EkQjiCflJbi/3D97Y10NrawtfP+xS57t5J2zYhIB2VYpX5FMgYVPv9GIHc9mu5xUolUcwMluojY+a3zJbpUcGwsNL7Tzkv2zTp/O9TqMEg5cedgOrzFXtIQgghxqi1a9eEf/3re6ZcddW3Nh188CGJzZs3Bx544DeTjj/+hI6xGPwMx1CXwP1N07TncQqG3gd4NU1bDWwCYjgFTKcChwKZ7DEX6bq+VxVasf9IJJwPDHyB3PeVpLIzkCkJgPIqYFuASrCsyEvgUgnsTArbFyCT54KstkcF9q8ASPF4MNpa6Xr2GeLvrGTi5V/qd522EEIIMZCPfvQTbe3tbb5f/vJn0zo7O3zl5eXGiSee3HHFFf+3rdhjy7chh3e6rrcBX9Y07fvAh3ESHswCKoA2YA3OTNG/dF2XRfcHgGTSCYC8vtz2AAH0XpqmYxIA5VMwm6QxVFrcAMhKp7AzCWylDMPst56dO315PYABmfwmWygkj0dlwtln0f3iC0TfXkrPKy9RfvyJxR6WEEKIMUhRFK644srtV1xx5fZij6XQhj2/lQ1u7s5+iQNUqifC1TPnkLYsvF5fzlXZMtkL83TM/f1SwmFbFiXZ9Jpl5aWDHJ330WDFI1iVtRhWvgMgL5DarwKgp574F/f/6hecEirhpFCYjif+Tdmxx6OoxStwK4QQQow1+/cCP5E38a5uFlZUYto29f4gmRz3oMZR6MqkyWT2n2VKo02iuxs1u0yqtLLYARCYyRimlSGT7xkgn1N+QDHy208hRF57hY3/epQHXnye1ZEu6lWVIw9fBDt2kNTXEDrokGIPUQghhBgz5GNDkZNENq1yyrJQPblvxH7I8vD55Utpq9pn8WXhgu5mp85byjIpCRU3CQI49YBMM4OR5z1AW8ZV8PnlS3iptPhB30h1vPA8Jc3NzCwJc86iI5k9eSqvtDsrjXvefKPIoxNC5IkF2LZty0Y/IYYo+/+LDQMXC5YASOQkFe0BIGNbWENIpd4fn9/JH9e7n0i4L9rTw9qeCJuTSbCLn5bXMgxnBijPAZASDtCVyRBN57feUL5Z6TSJ9U4R8GZ/gCvf+wGuu/ATvNnjFCPveO1VbKv4r6sQwnU7bNvOpNPJ4m7eFGIMSaeTYdu2M8CA+5pkCZzISSoWRQUyNiOq3+LPFlHtzSgn3Bf1erhWX820KZM5czRcKFsmGSONZed3aZrX78xMplJju3xGTF+Lx7ZpT6c4/bgT8Kgq1WVlHHzIYTR0dhKxTLRUEkJyjSTE/mTx4sWRJUuW/D4S6bwMqPH7g3FFUdwtmCbEfsK2bSWdToYjkU6/bVv3L168uGeg4yUAEjlJRWOEAEMZWQC0SLF4v3YwypYG9wYndtPd7cwUVJSNkqVgikIqHQdFgRHMHg6m3LD4zNTpVCbG9gzQpuefJQisjcc5e86uItrnHf0uLrrtJizb5piONiZPnla8QQoh8uVHpmnQ1dX+SUVRwoAshxNi32zbtjO2bd0P/Giwg4cUAGma9snhjEDX9d8P53gx9qTjUScAQsk5AxxAhapwUFk5myQNdt5EIk4AVD5K9sKoXh+JZJTeRbr5EgROHT+R7jwGWYUQWbuGIOCpG4evT2G6uopKFs+ey5sb1vHkfx7n4s9+oXiDFELkxeLFiy3gh0uWLLnDtpmIbF0Qoj8WsH2wmZ9eQ50B+u0wBmADEgDt5zKJJJZtY4ww/a7tzW7K349SFY824Xfe4VcLFtHgDRR7KA7VQyIVR7FN7Hz+LQ84763ck7QXn21ZlMfjoKpMnDVnr/tPOOgQ3tqwjnee/R/WJz+L6ss9IYkQYvTKXtQN6cJOCDG4oQZAM/M6CjHmdNTWcvmS1znyyHdx3gjasXzORaqSGfupikcrO9pDtd9Pq290rHi1vV5SmW6wTMhn/ZqQEwz4xvCKkebNm9gSjzEpGESbvXcAdKx2ENM31TMpGKJ5+dtMPPLoIoxSCCGEGFuGdEWk6/qWoTaoadrYvdoQQ9abtMAbDI2oHdvnzEooea4Jc0DLvlZqsPgpsAEsj4d0LAGYKJ48jinovLd8ioJtmigeT/76ypMla1ZxzdpVHDJvHnd4vHvtmaouK2MtMAlY//yzEgAJIYQQQ5DTR8Kapn0UOAnws2tDngqUAMcCU1wZnRi1Eok4AIFAcETt2Nk02Ko5CrKT7aeUlJMEwBMaHUvgLI+HTDqJ7cH5DZIvfWoeWakUnvDYy5L25puvA3DkwYf0nzCivALSaRL1Gws4MiGEEGLsGnYApGnadcB1QHf28Zns1zicDUj3ujlAMTqVNTby1VlzSY0wcFH8zgySdzSkZ95PebL7q3zhkc3WuUJVsVTFSYNtWnhCFXnryhP0Y9k2qqJgp1MwBgOgVe+sAOCQaTP6PaZ68mTYtInyWAzbtlEUmYQXQgghBpLLAvxPAX8AqoHbgH/puj4eOApoB1a5NzwxWgUjEd5VXUPtSDeYB4IkTZOMBEB54zOdgqPBkuIHQKrHh2HbZIw0tpFGyWNhVm/ATzL73M3k2KsFFI/HuaqknFsPWcCc8vJ+j5s5ey6WbVPj9bFl1YoCjlAIIYQYm3IJgCYDD+i6bgNLgOMAdF1fAtwAfM694YnRys6kne+ekWWd6qmdzCfffpPb25rdGJbYh0B26VSwrPgzIIrXi0lvAGSAbeatL1/AxzfWrOTS5UtQKivz1k++bFj+NpU+H5OCIarK+p8pC4RCtGcDvXUvvVio4QkhhBBjVi4BUIxd5TvWAzM1Tev9aHkZkjHugGD3pq32jWwTh9/v7CHqTaog3NeUSrI1EaekvPh1gBSPDwPLWQJnZCCPyS98fh/NqRSdmQzJ9NhLs7516RIAuhUFa5AsiamAs7+rU9fzPi4hhBBirMslAHoDZxkcwEbAAE7P/vsgYGyXXRdD0pu2ujeJQa58gd4AKD7iMYm92bbND/TVfG3VCspr87ffZqhUr5eMZWBZJrZpYOcxAPJ4vTv3w6RSY28JXHf9BgDSJWFsc+CZMmX8eP68bSuvNDYUYmhCCCHEmJZLFrgfAf/VNK1S1/X3apr2B+B3mqY9C5wF/N3VEYpRSc1ekNn+kc0ABVUP35yjEfB4sDJp1BHOKIndxWIxzOxrVRYK4OQpKR7F6yNp7PqMxMok+89uNtK+FIUzJ0xkgtdHYtMmGFeXl37ypq0NfH4CNTWDHjpFO4i//vMRFEUhFotSUlL82T4hhBBitBr2DJCu6y8ARwIPZ2+6AvgrMB/4C/Bl10YnRi1P9qJa8Y8sDbYnGGZRZRWHlJWT7Im6MTTRRyTSDYDf7yfgLX4dHMXjI5HZNRtjZ1LYeUyA8a7Kat4zfiKppm156yMfTNOkLO3ss6scP2HQ46tKSxlfVYVt26xZI3lohBBCiIHkVAdI1/UVwIrsz0ng824OSox+HssCjwclMLLMYv5QmIxl4VNVkpEuwtXVLo1QAERWv8OvFiyi0UjndbnZUNkeD8nkrhkg28hgWwa7yom5K51t1ojH8tJ+vmzf3kRddja0avz4IT3miElTabVsNix9iyOPPCafwxNCCCHGtFwLoVYAp+IUPt1rFknX9d+PcFxilPt5dweNmzdx+RkXMJKdJarqIdUbAPX0uDY+4Ui0t1Pt9xNRyNtSs+GwPB4MI73r36bhJEJQ/DDSlOr7YPQGQGMsyUb9xg3UR3uYVl7OuEAQcwhJHN5bVs64ufN5eZXMAAkhhBADyaUQ6jk4S936y6lrAxIA7efiiQQpy8IbHHlq5ZRtUwqkohIAuS3Z2UkJYHhyyXfiPsvrJd1nD5BtGthGBiVPe78M1XnexhirA7Rpcz2316/nrFNPY+EQ40J/ZaWzb6ilJa9jE0IIIca6XGaAfgysAb4KNFLsXdWiKHqztnl9I8sCB5DOzkykorIHyG3pSAQAcxTs/0FRsVSFTJ8ZIGwbK5NE8edn035GdaaArDEWANXXbwRg5uQpWJmhpfCunjAJs62NGsuiq6uTysqqfA5RCCGEGLNyCYDmA+/XdV0q7h3APl1bR6qyGr8Lq5bS2TbSEgC5zow559Ty5bTa1VWq10fGtncPgHASISh2fj5HsbIzX2MtANq6aSMKMGOI+38ASmqqiQBTQmHWr9M56uh35W18QgghxFiWy1XRFqDcrQFomlaNk1r7vGy7K4Bv6rr+Uvb+hcAdOJnn2oE7dV2/uc/jVeA64HNAFfAScLmu6xv6HDPiNsQuRibDcZVOsoJ1Pj8j3VqfURTSlkVKagG5zoo751QJFD+9uOL1YrKPAMg0UCwDcH+WyvJ6wQIzNbbKky2KxvnqoqPxtLZB2dBmcjwlpVi2TanXy/LVqyQA2kOms5P2R/5KcssmgrNmU/uBD+OtKH5tLCGEEIWXy8aAHwPXaZo2w6UxPAS8C/gocBSwFHhK07T5mqbVAE8D63CCl+uA6zVN+0yfx18DfAG4BDgWZw/SE5qm+QHcaEPsLhHp2vmzJzjypUv3JjJctPQNusaNG3FbYndKduZDDRb/rax6fRhYZDK7ByO2aYBl7Cxa6qY1IS9XvrOMTTOmu952vnR3d1GpKPhVlfLSsiE/TvF4iGf3PHWuW5uv4Y1JRnc3jTf9iMirL5NuaiLy0ots/emPMWXWWQghDki5zAB9ApgMbNQ0rRXY82N7W9f12UNpSNO0OcAZwPG6rr+Sve0rwDnAx4EEkAIu03XdANZomjYX+Abwm2yA8jXgal3XH88+/kKgCfggTnD1eRfaEH0kup3aMqZtO3WAMiNbvuTLptKOxcZWquKxoNs0URJxPKUTiz0UFI+PtJnB2mO5m5MIwUDxu5+ozioJ0pRMEhniPprRYOvWrdQFnL11gbKhB0AARigE8fiYq3uUb+2PPkKmtZUej4c3fT5OANixg5YH/8DES75Q7OEJIYQosFxmgBqBf+BkensCeH6PrxeG0VYb8B5gSe8Nuq7bOEVBqoETgReygUuvZwBN07Q6YCFQlr2t9/FdOLNI787e5EYboo9ExMnWlrQsbBfqtwSCTgAUH2O1WsaCJzIpvrpqBfak4s+uqd7di6DuYmNnkpCHGSB/0Akk4vGxs7yycesW6vzOuJXA8AoN+6dN48769TxZvxErjwVmx5r/JOI83drM9Sve5lcvPce1S9/Esm163nqTTFtrsYcnhBCiwIY9A6Tr+mcGP2rIbXUBj/e9TdO0C4DZwJPADcDKPR7WlP0+DZiS/XnrPo6Zlv15igtt5MTrdT/1sCe7qdtTxLTGmZgTAGVsGxtQ1ZFduC72ejh3jkbZli15OWe5GA3n2Q09PU4WuIqS0Ihfp5FSfT6SZvducU7vsjcrk8KLBS6Pscbj5cJJU5i6Y/uoeW8NpqVhM7O8zq9mNeDHNoceyEyeM5fXI91kDIPm5iamTnV+he0v7+dcPP74Y9z2y58BcP75H+D86dP4zW9/y531G1CnTeVnNdWuvjcO5HNdSHKehRAjkUsdoIGCAguIZgObYdM07Xjg18Cjuq7/S9O023CWr/XV+xFykF21iPZ1THX257ALbQybqipUVZXk+vBBlZeH8tb2YDxWGgtIYxMIePGNcNnSeJ+HxZVVNPRE8nrOclHM8+yG3gCoprKUYKi4+4A8oSCZnja8vr2THahYeFQbn3/kadX7qvZ5OXXSFCLdo++91Z/4dmf5WtrrJegf/irlmRMnsW5rA9u3N7BgwUG73TfW38/D1dHRwY033gDAFVdcwVf/7ys0bljDrAnlfPuHtxJdvow//vE3/N///Z/rfR9o57pY5DwLIXKRyx6gzQxSsl3TtA7gDl3XfzjURjVNez/wJ+A14GPZmxPAnldEvWtCYtn7yR6T2OOY3vVUbrQxbJZlE4m4v+zG41EpLw8RiSQwh/HJsJu6WtopATIoxOLpQY8fjKk6b0MjkaSzc3QsgxsN53mkrFSKa2sn0FNZQwBIJkb+Wo2Ex4JkMoGRMXfepigKHq+KkUqhptNkLA+2ixuBzGwAoZrmqHlvDaancRugYobDJHJ4zY4bP57ZqTQr31jC0UefAOwf7+dc/O3qb3Np9Tjeqq3j85+/nJambTQ1bKa2qppPf/SD3HX/A9x1112cfdrZTJg6ogn/nQ7Uc11o+TrP5eUhmVUS4gCQSwD0KeAe4DngQWAHUAd8GCeV9fVAKfBdTdPadV3/5WANapp2BU6a6keAi3Rd752N2QpM2uPw3n9vA3x9btu4xzHLXWwjJ4aRvz9+pmnltf2BdFXVcNnSNzj4oEN5nzXyi1UrW0zVTmeK9pz6U8zzPFKJtnaqfD5KPR5KwiEsF16rEVFV0pn0HokOnH9YRgbLyGB7gq6Oszf9t9e2x8zruLmlhVe9PhbNnZvTuThJ9VEybQaP6/pez3ksv5+Hq7u7m6rGRiZWVDL7hBNRbJO2pq0YGWc76DGLFvLGC69ypuJl6/euo+aX96Ko7l34HkjnupjkPAshcpHLb/uPAQ/pun6Oruu/13X9KV3X/6Dr+vnAvcBiXdevwgmELhusMU3TLgN+BtwFXNgn+AEnocKJmqb1XTNzGqDrut6CE6BEgJP7tFcJLAJedLEN0UcimSBpWVjD3KDdHzu77Ek1xk6mrrGgp6XZ+W4YlBV5+Zvi8WIqkDb6r8djpROup8JWS5z3qM/t9HJ5kkqleGXrFm6rX0/NMcfk1IYddlb1Gju2uzm0MefJP/6OiYEAGdtm8cc/QTIWoaerc+f9iqJw9nvOZFa4lBLTpOXtpUUcrRBCiELKJQA6GWep2r48ghNcgFNMdMB02JqmzcOZ+fk7Tn2hOk3TJmS/KnD2A5UD92uadrCmaZ8GrsweSzZYugu4UdO092matgB4GGfW55FsN260IfrozdYWDIUHOXJo7GwabI9pDnKkGI5oq5PdKm5ZqAOvWs07xevDsPeuAdSXnUmj2C6/B8JOAORRFGxjpCV786+paRu2bRMOhSjP8QOGkmpn62I4kSCdLu6yx2KxbZumF58HIFlXh68kRFf7Dkxz9/fA3LmzWW86H7ys+sffCj5OIYQQxZFLANQOHN7PfYfjzKaAswxusEX3H8ZZgvYBYPseX3dkZ2jOAjSctNTXAVfpuv67Pm1cC9wP3Ae8DBjAWbqupwHcaEPszt/QwBemz+Iwde/N7DkJOpvTvbJe3lXx9nYAkgpQ5JTIqtePgT3wDJCRBsvdAEgN79r+ZyX3lYJ7dNm6tYFyr5dpU6Zg5Ri8lNbUAjA5EKShYYubwxuR+No1dD37P1f3ePVH19cyM7t8cMpJp2CmE0S7u/Y6TlEUvHNmABDc2oApH8IIIcQBIZc9QH8EfqBpWgb4K9CCswfog8D3gF9pmlaFM8vy2kAN6br+I+BHgxzzJnDsAPebOEVNv5HPNsQu/o4OTh1XxyqX2lOyAZBnjCxTGiuSXZ34gXSR01+DkwI7Yxl7fQLfl21kwMqgeH3YLu0D8oYCpC0Lv6pipZJ4SktdaTdftjU28MsFi1BUlUxXF+RQZ8tTVg7A1FCYTfUbmDNnrruDzIHXq9L1n8eJvrOSTGsr4z7y0bz298y//8mppU4R2XHvehepRJREtGefx848/mhSf3qUWq+PFf97iiPOPCevYxNCCFF8ucwAfRd4CLgVaMBJF92Q/fcfgW8D5wBHZI8V+xk75XyKb3t9gxw5NPFxk/jYktf5XuPo+bR6f5CJdANgel2aqRsBxesjnkkMeIxtWc4yOBf3AflDAa5Zu4pvrl+Dt6LStXbzpXPrVnyqigrYOc6wekpLsbAp9XppXL/O3QEOg21ZGJEIDQ2buPwLn+e3z/4XgM6n/kN0xYjyywzcr22z49WXURWFdEUFwbpaIp3t/RaG9YdDbM/WAdrw9JN5G5cQQojRI5dCqAZwsaZpNwCnALVAI/CyruubADRNewKYvEdCA7GfsDPO0hzb587G+kCwFNO2icfGRprisSJqGMQTcZLlxa9/o3h8JDL7/gS+LyudQA1XutavPxhgU3bPmqUoFD8UHFgym7gg7ffnvGxR8XhIqB5KLItI/cbBH5AnPW+8xo7f/pq/72jihc31AIQsi/eMn8j6e37Bwjt+geJx/xVpaNjCttYWVnq8HH/OuVhGmnhP94CP8UyfApsa8W3bhmEYeL25LI4QQggxVuT8W17X9Y3snja6732d+7pd7Ccy2WxtLhWt9AedJAiJRBzbtlAUqcHghnWlpdy7agUfPe/MYg8F2+slGR98D45lZPDYJrlNTu/NH9z1Hk0kEpSO8iVwVmcHeP3YJSMLWtsnTuSG/z5JaOpUl0Y2fB1PPwWGQTKVZNbMg7jg/EtY+85rRFo2Ug689tv7OPazl7re76uvvsSS7i7UeRoXXHAhmVSERHzgD1fqFh7C2ytW83p7K1OXv83ixUe5Pi4hhBCjx5ACIE3T6oEP6Lq+XNO0TQxcCNXWdX3A7G9ibFOzdTQIuFOBO+AP8qWZswl5PETbOyirrXWl3QNdVzblb2Vp8WeATK+X9AAZ4HrZRhpMA9QAuLAnzOvzclxNLZMDQSIb1lG6cNGI28wnTzQGlX58ZWUjaqd2+gw2xKIEN2/KLv0q7IcK6R3bSW/ZjGnbvJ2xuPLKH1ASLmPOrINZ//CtLE5G6H72WeIfu4hw2N3356uvvgzAsccej8ejEk/ESCcHXn6pVFXw6rgKntNXM/WF5yQAEkKI/dxQ/yo+z67sbs8P8vWCy2MUo4ya3ciuuFQHyOsPcExVDUdWVhPraHelTQGdndkAqKzYAZCC5fEOmAGul2UY2GYGt/I2KIrCSbV1XDBpCsnNm9xpNE8ymQxl2f+3QlVVI2prYmUVPq+XZDLJ9u1NbgxvWNpecFJQL+/u4sz3foqS8K6Abua5n8GwbWYFgzzyy7tc7TeTSVO/bCkVXh/HHXcCimIT7e4Y0mMXHKQB8OKLz7k6JiGEEKPPkGaAdF3/TJ+fP5230YgxwWvZ4AGC7tQBUhSFRDZTV6JraBcrYnDv6eri7EMWuF5cdLgUrxeDgWsA7WTb2OkkBMoYeKJ56NLZp5/uGXwPUjG1tDQzLrustKRyZAGQatt8aPosPMkkmzbVM336NDeGOGStLz5PCFhlw3kL373bfZ6yKrbXTeO15a/yor6G8y/9omtLE5cte5vzqmo4Ze5B1GzahHXwvEGXv/U6ZN4cJoZC1HZ0sHVrA1OnFvacCSGEKJyc1kVomlamadrk7M9+TdOu0jTtTk3T3j3YY8XY9/P2Vi5dvoTYBPcuEJLZDd/JSGSQI8VQVVs200JhSsPuBKq56q0BlMoMrQ6PlUmiulgQNZOdTsqM8iQbO3Zs5+3uLlYkE3hGuAQO4INV1bx/4iS26mtcGN3QZVpbCSUSmLbN5OPPQt1HNruycy7mNY+XHT3dPPqoe/Wmlyx5k4OzacBD06ZjZFKkhhgAlagqdxxyOF+dPY9XnnnatTEJIYQYfYYdAGmadjSwBfhS9qY7gRuBi4BnNE17n3vDE6NRVyxKZyaDNzzyi7RevXMDqR4JgNxgmyYh1fnfu6yyuEvgVJ9/6DNAgJXJgJsBkMc5D0Y87lqb+bBjx3b+saOJpwM+PCNMgqB4vcSzM39dGze4Mbwh2/g/J3hYH4ty6MKT9nmMoiicddoHAHjooT/0m6J6uOqXLWV8IIitKJTMm0smlSQ11AK4oSBRnwdVUWh68w1XxiOEEGJ0ymUG6AZgLXC3pmkhnMDnF7quVwP3A99xcXxiFIplP0n3+d3ZAwSQzl6spWQGyBVGLLrz5/IK9wLVXCheH0kjjWUP7SLXSYSQQXFpI5CRrYNkJUZ3ANS7V2diXR1mKj3i9jJB5//PTDa1dqE8t7mePzY20FBdS8DXfyC36JATePeEScxPpnj77SUj7tc0TeyGbC2xCRPwhsPEo93YQ3zfARjjagBQt23DNN0LwoUQQowuuQRAxwDXZ2v+nAaEgAey9z0EHOrS2MQoZGQyfHr8RD41dToB1b1aGels6uvRvkxprOhpbgGcWkAVZe5k68uV6vMTTw89+HAKoqZc27vUWwjWGupMQJG0b9tGpc/H+OoabBcuvv3lFQD4IhFsFzLqDdWTr7/CozuaqH7X6QMeF+xu44op0/j45Kk88dijI+53w4b1zMnuoapasBBsk3h0eB+ohGc5y3pnBwLoBV46KIQQonByCYAsdq1YOhfoAnrXC5QDo/tjVjEi8a4uTh1Xx3vGT8TjUhpsACO7T0ACIHdEmncAEDNNAnkoNjksXh+xzMBpiPdkpRIoLiVBsPw+AOzU6K7LXLG9iXsOX8yRLW3utDduHADjVA8dHYVJLtLYuJVNm+rxer3Mn3vEgMeadVPJ+IOUeL00vPwSqRG+PsuXv81Bpc7+n5KDDsIy06QSw3vfMWk8ALPCJSx57ZURjUcIIcTolUsA9BbwOU3TjgUuBB7Tdd3WNK0O+Gb2frGfimUvpDKWhep3LwB6ylfGx5e8zqaaatfaPJBF25wZoKQCdja1crEMtQZQX5aRRrHcGfe2kgDfWfMOehGLgg6FN+osW/S5lBEtWFkJwJRgiPr6fdasdt3Sf/2D46trOH7BESj4Bz5YUbFnHAzAIYEgr7/+6oj6XrfkTSYEg1hAeO48jHRq0Po/eyktIe714FVVtsk+ICGE2G/lEgBdhbP07WXAAH6Yvf0dYC7wXXeGJkajRLdTWyZpWVgurqrxlJRh2DY9ozxV8VgRTcRpSMTpLm4GbKA3ABre8jMrk3H2AbmwDM4uC7E+FqU1kxlxW/li2zahtBMkhrKBy0h5Sp29X9V+P5v1ta60ORh72dt8ZdZczp00DcMYfO9NZopTe2dxZRXPPfvfEfW9dNVKfla/geSixfhKwqTTSdI5zCoZ45wPYdSmbRhGcT88EEIIkR/DDoB0XX8bmAMcC8zSdX199q7LgEN1XR/5blYxaiW6ugFIYWOa7mRuAgiGnM3SPZIFzhXN4RK+vmoFzwVyynTvGsXrw1QYcgrsXrZpYBtpVxIhBELOTOVoDq57enqo8Th76spra1xpU/H5eMbv57PL3mJjY4MrbQ7ENE2qskvOyuYtGNJjjIkzsVQPdYEAG159JedscK2tLdQ3buXlrg7mfPIzqKpKIhohl1pSgSMO5c6GzfyzcSsbNqzLaTxCCCFGt5yujnRd79F1/XVd12N9bvubrus73BuaGI1S2U3FaRQsF6eAZmBzxczZTMtu3hcj09XlzNRVlrmznCpXqtdPxrZIp4efgMBKu7MPqCwY4D3jJzCnrXXEbeXLjh3bqQs4WdsC2X0sbigZN44ew2DTpnrX2uzP+uVvMyGbhKB6/pFDe5DXjzV1DgBzFIWVK5fn1Pfy5W87bcyZR2lpKbZlkIzlFvAqE8YRnziOqGmwbNnbObUhhBBidCvux8NizEllP0VPK25tUXdUexTeXTOOulGeqWus6OrqAqCytMhFULM1gIa7BA7ASqdQrJFnQwsFvHxq6gwWJ5IFzYY2HM0Nmyn1ZrMq+nyutTut1kmEUIg9QBteeB6AdgUy6tBT5KcnO8vgJgdDPPvs/3Lqe/Vbb/De8RM5eb6zp8gyM0Ov/7MP82bPBGD58qU5tyGEEGL0kgBIDIuR3aidUd196yhBZwmcV9bcu2L+xo3cfMgCZilFXgLn85MwUkOuAdSXbWTAGvk+IE82CFQBOz3y+jr50LlpE+Ck0HQzRpsaLuH/TZnGuxXPzvpd+dKzTgcgVTOOVHLo+60y0w9m5TGn8LNNG3jhhedy6ju2Zg3/b+p0TojFUBQFM5Mmnco9ADqkupoLJk1B1fWc2xBCCDF6SQAkhqW5poYvLF/KswH3iqACEHY2bPvczKxwAAsnk0wLhSkNBoo6DtXrJzaMGkB9WUbG2Qc00gCoLISVjSqs4aZFLpDmzg7+taOJxrJSbBc/BAipCu+dMImTasaxYcMG19rdF3922WV4+tzhBXH+ILMXHI/H46G+fgPbtjUOq99kMkl5dxcApQcdjKoqGJnUiAKgaaqHCyZN4VDVQ3Nzc87tCCGEGJ0kABLDEk0m6cikyYT6r/CeC7XUKdroclh1wApkC2kGytx9nYbL9vmGVQR1T1YqjqKMLCj2h0PEs+fDGm5a5ALZ2NHOA40NtM+Y7mq7vZngagMB1r+zytW2+2pvb2NSdglf+ayDh/14RQly+OGL8CgKL7743LAeu2bNKrQSZ6/buCMWo6oKyXgUO8eECgDeyRMB0ErLWL5MlsEJIcT+RgIgMSyxmLMELhB0d2+Jp6wSgJCqjtp9GmOFbdv0vjollcVNgmB6vaRySIDQy8qkR7wPKBAOkMgGQGZ8dAZAO3ZsB6CuzL0ECACq37+zMvX2VfkLgHR9DdesXcVvuztR64YfxKWjMT5XVcu9hy/m1eefHdZj33nzDaaFnHd8eJ6Ggk08OrJsknZNJRmg1Otl4xuvjagtIYQQo48EQGJYKrdt4/9NmcY0l9v1llUBEPR4iPd0u9z6gcVOpfBnl42VVZYVbyCKguX1DjsFdl9WJjXifUDBcIhYthhsOjI631t2exsVXh/jytx/vVJ+pyBppH6T6233Wrt2DW3pNMaMWaTMHP6seP1UWTalXi/G+nXE40Pfr9S5YhkA8XAYT1kZlpkZ0fI3AFSVaHbvWFJSYQshxH5HAiAxLLWRbt47YRJ1Lrerhnd98t3dMnrTFY8FiY52AJKmSXVVRdHGofp6U2DnPutiGwZ2JjWiekCBUJBodl9NPHtuRhPDMPh0RRX3LlxMTcL9LIje7DI42vP33PVsodU5s+eRTuWwh0lRULO1gxaXVfD660ObdbFtm1B2j45/zlwAdwIgwDN5PACVPVESo3TvmBBCiNxIACSGRc1kszsFQ662q3g8fGXDej6+5HXiuFdg9UDU2bgVgIhhUBZ0L6XycKm+ABmsEc0AQXYf0AiSrqselT+3tfCdNe+QmjR5RGPJh9aWZsZl6+eUV1W73n75uFoAytKZvF3I127ZzIcmTmZ2VV3O9cFSk5x02IsqKnlpiMvgtm5tYKbPmeGadPyJuxIguJBOPzhjKgDzSkpZtWrliNsTQggxekgAJIZFNZy9FErA/foyGX8Qw7bp6Ym63vaBpLuri4Z4nDbLRMkh/bRbVJ+flJUhY4ws9bSzD2hkmdFavQrrY9GdS+FGk+b6jfhVFdO2UQPuZ+0rrXECoBq/Py/1gOLxGIs9Pi6cPJUJ/tyTbqSqJmIGQ4S9XlqXvDGkvYArVizjm2tW8gcjTfmhh6GqCulUEiPjQrrzuhosbMIeD6uXvDny9oQQQowaEgCJYfFmMyupLmeBAwiGnQ37kVG6T2OsaAv4+frqFfzFSLpbVGaYVF+AaCr3DHC9rEwKzMyIlsGFS5z3a0+2kO9o0rmpHoAewMq4H6B5K6u4s7uDq1evZONG91Nh6++8w6Sgk78xMGVu7g0pKl7NWQY3T/Gwdu3qQR+yfPnbGLZN5YKFqIEAqqqSjLn0Gvt8PDuljouXvcXSNflLICGEEKLwJAASwxLIXlCrJe5mqwI4qaycK2bOxtxc73rbB5L27F6Pmkr3X6Nh8fmJpUdefNM2TexMckSJEGaUlvCe8RMwh3BRXWjRbN2bhM/rag2gXorHQ23tOADq690PgLa+vQRVUYgDac/IEtlb050U2kdXVfHSEIqiLsumqF648AgAbMsgGXdvBnn87BnYODNNkp1SCCH2HxIAiWEJZi9ClTwEQPP8Pt5dMw5LkiCMSHt7GwA1lcVLgABg+nwkR5AAYbe2knHUEewNmx0M8ampMwiuX+/KeNyUaXNeLzPk7r66vqZll8Ft2OD+849ks6TFS0tJpUeWsjxeM5We6hr+vr2Jl158fsBjO3Zs5zJ/kIumTGPBIYcBvQkQUiMaQ18zpk3B6/XS0dFBY3ZvnRBCiLHPW+wBiLHDMgzCHg8ASlnVCLal71vG6wUzjRGTPUAjMXXNGm45ZAEdniL+760omF6vawFQ7zI4FB+5vPHMUADiFrYLm+PdpvY4NWs8pfmr2aSFQlw1ex7tO5pdb1tpaQGfH3XCZIzMyPacGZZK1We/zBMXnoXS2kx7exs12eBtT2se+ydTQmGC/gA1deNRFDANdzLA9fJ7PFx18KFMtOCdt95g6lS3CwAIIYQoBpkBEkMWTya4dPkSvrZqOZ4y97NVGT5n+YwZG/myqQNZIB5jaihMWXBky5FGQvUFSNsWqfTI9wCBkwjBNjOoOS6Ds4JOpjDVxdkBtyyNdPPYju34x7mdXH6XunAJR1VVM93G1UxwmUyGqrSTcKBkxjxX2vR5Sjnk4EOxbZuXXnqh3+NSK5YD0F5bi6IoqKqKmUmRcfM1VlVmBUNMCAbZIYkQhBBivyEBkBiyWCxGZyZDUzqD6nM/W5UVcJYA2VJzY0R82Y30oYr8zSgMRvUHyGC6NgOEbWMlY7nvAwo7waCnN437KGHbNv9r2MzvG7dQMS1/swsVdU5Nm+mhMJtc3Ae0qX4j47OZ60qmzXelzUQ8w0nHHs+pteNoeObpfR5jxmKMz35QUnnscQCoqkIqmcB0OdNfIltM2GpocLVdIYQQxSMBkBiy3gxapaWlWPnIrhzKXrAnR9+n9GNJKJv6urSqrGhjUH0BEkba1YtRK51EsXNrTylzssD5zJHtUXFbT08PseyFfG1J/gJWT2kphm0T9nppeMe9mjZr9TVcsmwJ99smRqk7s8KJWJrjSiv4wozZHN7Rtc8lbQ3//hc+RWFzPM6C084AQFEgEYu4Moa+gtOdekDj0mkSCXdmNIUQQhSXBEBiyKKbN/HJKdM5bdx4zDxEQErYSaww2j6lH0tsy6JEcf63rqguXhIE1R8gknJ3L5eVSYGRyWkWyJsNBr2AlXahRoxLtm+qZ25JKdOqa/HnsR9FVenJphHvWrfWtXbXrl2DBVTPm096hPt/ehmGxfhT30fcNJkQCPDO3/+22/22ZdGTzRCnh0NUVFQCYJkGqTwEKOHZzszc7HAJ7yx72/X2hRBCFN6oSoKgadp3gdN1XT+5z20LgTuAI4F24E5d12/uc78KXAd8DqgCXgIu13V9g5ttCMhs28Z5Eyay0TBI5SEjrKfMuWD3WaPrU/qxJNbagqooWLZNTXXxZoAsX4B41N1sfrZhOOmwfSFsc3hvQH9lGaZt41EUrHgM1Z/PcGPoOlYu54aDDmW7aWCm8huYGaEQxBMYTU2utanrawCYO3s+qZR7s33xtEJ9ZSWH9vRgP/cs1ocuQPU5r1nPa68STCaJGgbjzzhj52Nsy90McDuVlRLDpkRV2fL6Kxx17PHu9yGEEKKgRs0MkKZpVwI/2OO2GuBpYB1O8HIdcL2maZ/pc9g1wBeAS4BjcXJEPaFpmt+tNoQjnc1WlVbz87ZJTZnHJcuW8J0172DlZY3d/q81W1Sz2zAoDbm/T2uoTL+PpEsJEHZrNxlDtYf/3giVl/Dj9Wu5tWU7ah6Xmg1XvGmb893nw87z8rxgtbNELehSMVjbtjm6q5svzpjNrNIKrGEGpQOJx9NM/sCH6UinKTMMtv/54Z33xerG89/WZh7Zvo2TTj8LcPb/GJk0GRczwO2kKHRn95DF161zv30hhBAFV/QASNO0yZqmPQH8END3uPvzQAq4TNf1Nbqu/wa4DfhG9rF+4GvAdbquP67r+nLgQmAy8EEX2xCAEXWWNGW8vry0H6qoodvIkDIMenrcX8t/IOhsa2VzPEabbUGR9rsoXj8ZbJIp9wMgK50EK+Ns+BiGUHmYFZFu3m7egeIdPRPfRqszS2aG8p+xb9yUyaRMk3g8TsyFVPONjVtZVFrGSbXjqCqtcWGEuyRiaQ4/8jgeSzrvodiz/2P7Pb/Ctm3+/tTj3LNlE02TJzN+/AQAFEXBzKRJp/Ozf1CZPIHN8RgbtzVKQVQhhNgPFD0AAhYBncAC4PU97jsReEHX9b5rK54BNE3T6oCFQFn2NgB0Xe8ClgLvdrENAVjZiybDl58AyOvzEQyFAejq6shLH/u7JuDq1Sv5lw9yKpjjAo8/QBqLRD4CICONnUkNOx12sNR5X6VSKZLJ0ZNl0Bt1ZmPUkvwvV6ydNo2v1q/j1vr1rHNhJmPDsqVU+HxYto1ZNcGFEe5imjbRSIoFH76APzU62dcSDZvp6Ynwl788CMCFF35i5/GqqpBMRLHzNHNcfswivr1uDY9u2cTWrZINTgghxrqiB0C6rv9L1/WP67pev4+7pwB7lt/uXcA+LXs//RzTm1PWjTYE7CwiaeQhBXav/zdlBl+aOYdOF/cpHEiam3cAML62qmhjUAMhkmaajJGHT+NtsJJRFGV4wZ034GNBVTXvGT+B1hUr3B9XjsLZfT+hqsq896WoKrMnTgZg3bo1I26vZaVzHnt8PjJWjunJBxCNJPnQBz/C6wp8Z807PBWJ8L3vfZfOzk5mzZrNqaeevvNYRbFJRPM3a+zz+5g9YzoAK1Ysy1s/QgghCmP0rAXZtzDO8rW+ehd5B7P3088xvTlZ3WgjJ16v+/Glx6Pu9r2QeotI2oEQqur+BQ/AMWWllKsqbc3b83L+hqqY53kkWlubARhfXZm312gwnkCQSCo6pFVqvRndnO9DC2qsTAqvlcFWhzMTqXDq+AkcV1pOfPVKvMcfN4zH5odtWVRkn39FbW1eX6/etudOmMBra1ezTl894v+/UtmZkExNLZm06fr4k4kMHo+P66+/gUsv/RzrX3Am6b1eH9dc831Cffe42SaZdCqv53DOzGls3FjP+mVL8J7/gX6PG6u/O8YaOc9CiJEY7QFQAthzuqF3sXwsez/ZYxJ7HBNzsY1hU1WFqqqSXB8+qPLyUN7a7o/HcNJTq2VlhEL5yQ+RUFTKgUykK6/nb6iKcZ5HYkFDA0cdsgDb6yOYp9doMEpJmER3G16fZ8iP8QznYtzKoNoZfOHhvT9SfufXnR2NjIr3VmRrI15FwbAsJk2cSMg79POVq0XV1Rx+yAJim7aM+ByEIt0QKqFs9lxUVSEYcndprGWBZdqcc86Z3Hfffdx8880oisI3v/lNTjnllN2Ojfd0o2Dm9T1/YlUVHzviKNZt2DikczfWfneMVXKehRC5GO0B0FZg0h639f57G+Drc9vGPY5Z7mIbw2ZZNpGI+3sgPB6V8vIQkUgC0yxsprS/mwbr31nO2YveTVkiPyl7bdUDtklkRwudnTnHnyNWzPM8EiXJFBNDYTpCQZJ5eo0GpqCgEI31YGQGT8KgKAoer4ppWMPaXK5EezC9JVjW0B+Tzqa+jrd1FPW91WtLYzO/bthEuT/AZbZCIo+vl6oqBAI+xlfX4A2F6cikaWnpwpfjfr6Ojg4mqc6fj8p5h9ISz0/trraWKCVlfo466ngefnhX+um+r5+qKqTjMaKRKJk81niqmjIZf30TkwyDxsZmSvrJJjhWf3eMNfk6z+XlIZlVEuIAMNoDoBeAL2ia5tF1vfdq6jRA13W9RdO0biACnEw2eNE0rRInscJdLraRE8PI3x8/07Ty2v6+NHV3szWZwFtWNawLz+FIef2QSZDu6i7489uXYpznkQhbNqhQUZu/12ggqj9A2rZJJKMMLZ5xDrJte4jHO8xUAtVIYyneIed6MMMBiJvY0eioeE23dXTwn5ZmZkydyufThSn+WzdpCm1vL6Pa52f90reZt/jInNp5Z9kykpaJadtQOxWrNT+BR093knTKwBzgvez1qqSSCVLJPKTA7qNkxlQyz79Otd/POy+8wOIzzh7w+LH2u2OskvMshMjFaP+Y49dAOXC/pmkHa5r2aeBK4McAuq6ncIKUGzVNe5+maQuAh3FmfR5xsQ0BdHd3ARAI5y9jleF3ljPYMXdqlRxIUok4ZR5nGVVN3Yi2r+XMEwiSwiSRyu8Mi5lOYhvDywZnlznLltQ8XygPVWOjk3dlYu24gvWp+ny0ZtOjb1vyRs7t6BvX87VVK3igpooM+ckKCRCPpUmnBt5fpKoqiUL8vvB6acpG2y1vvJb//oQQQuTNqA6AdF1vAc4CNJy01NcBV+m6/rs+h10L3A/cB7wMGMBZuq6n3WpDgJVOc24wxAcmTiIYCA/+gFz7yQZXdsz95YP7u+b6elRFwbBtKqqKU+xTDYToSccwrTzXILLtbDa4YTym3AmA/HlcJjUc8bWrmR0uYVq1uzV0BhP1ORP/sY0bcm5D150scnO0g0mljEGOzl0ykSERSw+4JMm2DJIu1DUailh1BQBqg6TCFkKIsWxULYHTdf3T+7jtTeDYAR5j4hQ1/cYAx4y4jQNdor2Ns2rGkbYs1oXL89aPWlYFrVtGzaf0Y0nLhvWUAxHLRLHM4lQB8gfpTrYWpCszmcBTmgbFN6RlcJ7qCmA7ftvGyqRRfcVJEtFr7uYt/Pjgw3gnVNhN3J7KSujswt/ennMba9c6AdDcORrpZP4CIIDOzgRV4/pPOmCbGdKpwvy+CM6eAW+9w8SMgZXJoOapJpoQQoj8GtUzQGL06N7u1OWJGBm8/vzNAPXMWcgly5Zwy/q1UnF9mLoaNgOQ8HqxzfxelPbHDASIJwrzabyVSWJnkqjq0H6NBWoruHH9Wu5JxlHU/GdcG4htmpRll6KV1RRuCRxAzSSn9Nl408LIDH/vUSIR57JwKT+YfwjTS6tIp/M72xePpjD66UNRFAwjXbAAaMJBc+nOZAiqKltee7kgfQohhHCfBEBiSKItTn2ZqGWTz7314dqJdBsZ4qnUzj1HYmjaOzvZHI+RKgkOfnAeKD4/aQXiycIEQNhgxntQGdoG6PLaSpZ0d7Fsx3YUT3EDoHRLM15FIWma1NbWFrTvydNnsDkR57XOdurXrBr249cuX8bMcAnzS8sIVOQ/eItH06SSxj6XwamqgpFOkS7QjLHX5+MNM83vt25hRcOWgvQphBDCfRIAiSGJt7YBkBjWpovh8/p8lJZVAtDc3JzXvvY3b/VEuHr1Stq16UXp3xMIk8IsXAAEWOkEGKmdBVUHUlrpLN1sb28jk8PMh5u66p2M+03JJHWl+VtSui9ej4eHkgl+ubmelevXDfvxjW86yRMiikJqrxJr7jMMi+7uJB7P3q+xqiokE1GsfO8566Nz5hQea97OKyuWFaxPIYQQ7pIASAxJqqsDgGSePzlXTINPT53Ol2fOoXVHU1772t9s2+ZkFZsyrkgZ4IJhetJxDLNwwYWVyWCl4igDZAnrFSwLs6CyivfUTaBl+dsFGF3/2tfpznfLJDDEJXxuOnjKVABWrhz+eUhsWO98r67OawKEvnq6EpjG3lPPCjbxnkhBxtDr4HlzAHjjjdewLEm/LIQQY5EEQGJIjG7nIiPjze+mX1v1cFwoxAk1tXRm0wSLoWlsbARgck1xAiACQTrjXQXv1kxEUa3Bgy4Li9MmTuaTU6fT9fbSAoysf4nsezvuL04ihoOmTEUBWleuxB7mRXy40/kwJDhrLqlkYYLdWDRNOmXslQ7bMtOkk4mCjKHXrOlTqQ2HOVz1Uv/CswXtWwghhDtGVRY4MXpZUafORtqf5/0likJMVamwLXqaZAZoqLq7u/jpjNlETYO6gI8hVwd1jYIRCBDrLHz9JiuVcGoC+UoGLP5qWCapoBNwJFtbCjW8fbLbnCWlVkn/2c3yaf7kqfxywSKq/X7a9bXUHnTwkB4X7YkwJTsLPGHxUbTkOQNcr2QiQyyaoiZcunO5m6KAaWRIFTgA8nq9XDR3Hsf5grT99ynmnHxaQfsXQggxcjIDJIZkWU01X3tnOVsq8l+zJO519hUU+yJ1LNm2YT1Vfj9TQ2GCRUiCoAaCpLCIJQq7HAnAtiyseARVGTzoM0udgMPs7Mz3sAb0RijIbxs2o1ZXFaX/ipIS2rKZAhtefG7Ij1v/6iuEPV5SlkXptHkDBpxu62yP0zcxpKqqGOlkwTLA9ZWeNB6Akh3N2EZxMi4KIYTInQRAYkjaolG2JhMo5fm/YEsFsxepkgVuyLZn67JEbRso3IbwXt5QCXErU9AECH2ZyfiQkiGotZUAeKLFGWevJa3NPN6yg+oCF0HtqyvgBMqJ1UPPBFe/cT1vdnbQGPATixf2wj/WkyKdMna+xk4ChBhmEQKQCYcdRHcmQwCIZYvCCiGEGDskABJD0puSOhguy3tfVqlTbZ2e4l6kjiXt2axiqYAPuwgZztRgCR2JrqLVbrIyaaxkbK89InvyTnTSNgczmaLWmdq8eTMAkyoqizaG8qlOIoTKnihWKjWkx7y+qZ6fblxH0+KjSCUKG3jEY2kS0TRer/NnS8EmHukq6Bh6zZg2hRUxZ7lnwzP/LcoYhBBC5E4CIDEoK5Pm6O4IH5gwiVAw/3sWlOoJAPhTKQxZXjIkyWyhWqWijMLv/wEjGKQ71lXwfvsyEz0oZhoGiIFKp08EwAdYsVhhBraHlrfeZL5tU+P3M6WiOEvgAA6ap9GSSuJTFFqyqa0HYts2b7+9BIAFhy8sWAKEXf1DR3uM3nVwlpkmWeD9P71UVaWz0vkwKLN6tRRtFkKIMUYCIDEoo6uLIz1ePjRpCqGy/GcY89Q4AVCF10tT07a897c/ULu7AQjXFX5JleoPkFIVoonugvfdl5lKYKfjqAOkla6aPIGuTBqAVJH2mLX97ym+Mmsu50ydRiiQ/zo6/akqLWNjdraw8cXnBj2+cZ2OGunG6/WhzTmEZIESIPTV050inTKdAqiZNKlEvOBj6FV5yDxSpkkokyHdsLlo4xBCCDF8EgCJQRnZDeMd6TTB0sq89xebMpdrWlr5vr6aBqm2PqhEIkGF6ez7GTd1QsH794RKidsZYvHCJ0DYjQ1mrHvAlNhlNeX8fMsmrlq1gkiRUlAb2eyGRklpUfrvy6isBMC7efOg6bC3PP4YPzvsCL65YCG25cE0Cl8DJx5LEYum8Ps9TgKEIs0AARx66MEs6e7Csm1aV64o2jiEEEIMnwRAYlCxlmYAOjNpguGKvPdn+/wExk3EBrZulQBoMJs319OYiNOYSlI5sbbg/XtCpbTHO7Hs4heFNJNxZxbIs+9fbRY2HeVlbEnEadjWWODRgZVKEcguvfNXF6leUx+TZs3m0e1N/Hzb1kEXTprZAqi+SZOJ9hQ+8xpkl8G1xlEUhXi0u6iFSEtLSnjNY3Pp8qW8lizOckohhBC5kQBIDCqyzVmG1m1Z+AOFSbFcPW4SAA0NDQXpbyzbsGE9d2/ZxIN+FX91/pNU7E4hEwrRFe0ocL/7Ztu2Mwtk73t5lmEazJw9C4ANG9YVcmgApLZtQwG6MmnqxtUVvP89HT5rDo+07uDNxgZWD5ANLhPppi7pBD11xx1PIl74RBu9It0JMqk08Z4izzgCMw6dT7eR4cn/PD5oBkIhhBCjhwRAYlDJ7AxQTPUUrM9jsfna7LnEN28qWJ9j1apVKwE4aN4crPTQsnm5xRMKk1RsIkVOgNCXmYxjp/adES5jGcyfPpXzxk/Et2RJwceW2uK8nzfF40ytLF4ChF5+n4+j580H4Nlnn+73uM1P/QePorApHmfBu08jmSheAJRKGiRicdKp4i1/63XMooUAvLVkCe3bCz+jKIQQIjcSAIlBZdpaAYj7C7dhe2o6wTFVNShSDHVQa1YsRwEWHKRhZQobAHnD5USMBPFkT0H7HYhtWZjR7CzQHjFQ2swwfcIEPjl1OlpX4dN2d69xasasj/Ywvbb4M0AAJx50CDNCYca99hpdL72wz2O6Xn0FgKbyUjyKj1QREiD0CoV9xKNREkXK4tfXuJpqFsycwTVz57Pje9cNOZ24EEKI4pIASAwum2EsEQwXrEsrmwkukEgQjxf/Qme0SiaTHB6N8rsjjmJeZ+GzsNklpTT3tBa838EYyRh2KrrXLJBt29QeqmFYFkFFIdVW2LHHs8vuuvw+SoOFWU46mGPmaiysqmZRKMz2R/++VzKEVNM2Krq7sWybqmOPJxpJYVnFS/scCvuJRrpJxhMog9R9KoTDjljAuEAAr2EQfWvwdOJCCCGKTwIgMahXZszgqlUr6Cwv3KZtq8ap1zIxEETX9YL1O9asXbuaacEgQY+Hisr812jqS/UFSHo9dPe0FbTfIbFtjGgXqpnea29GzbQJbMt+Ur91CPVv3PTmnDn8dIOOt3ZcQfsdSCgQwJ44kbhp4OnspOe1V3e7f/uz/wPgra5Ojjv7XKLR4s5yBIMq3R3txOOZUbHv5ujFC/lvdqa65T9PSE0gIYQYAyQAEoNqamtlSyJOsLJwS3bS2WBrQiDI2rX9b84+0K1csZzpISfw8VfnP0NfX97SCnrM1Kja/9OXmUxgJSLsWRYoZaXpCTmzLztWLi/omJZv3MCbXZ3MmDCxoP0O5szFR/PIdifZSfOfH8Ts2bWk8elYlDvq17O2qpK6uokk4uliDRNVVfD5LWKRHpLxDKZhFT0IqqmqZEd1BWnLwtreRHJTfVHHI4QQYnASAIlBNTdvB6CkonBFNtPlTl+TgkHWrlldsH7HmlVvvEqFz4cNeMsLvKSqtIId0WbsUZD+uj9GTxdKJr7bUri0mcEzebLz89atBR3PmjVOMD9nFGSA60ubPIWGcJjGRAI7GqXxtpuJLnubZDLJgw/9kZc72jnugxeQThpFzQAXKvFjmSmikQjptEEykdlnsotCO/aEd/FqRzsA7f/rP5mEEEKI0UECIDGg2Kp3OD6W4OjKKkrKChgAlVZhA0GPh23rZAncvqRSKTrWrgVAra7C7if1cz6o/iBJn4f27tG3/6cvy8hg9HSiYu5MiJA20oxfvBCA6ngMK1tENt+23PMrjrFtyrxe5kyYVJA+h+Mzp57JLRt1ooZBqmELTb+8i9/e+0s6OtqZNGky5577HnoiqaIUQO0VDvtIRrtJp5xZqHg0jWlaeyW7KLQjDjuYVxNRALpffY1UW3txBySEEGJAEgCJAcXXruG4cAkLyispryrgvgWPh1RJOQnTpGtbI8lkcQovjmZvv72EyV4vAOXTp2Abhftk3ldWRYcRpyfaWbA+c2XEe7ATETzZmYKUkeag008maZkEUKh/O//psM1olOQbr/GxydOYO2kypaFQ3vscrkOmTuOQhUdw9eoVvBLpok1ReOzBBwD4yle+jtfrpae7uP8fhsMq3Z27gotU0iCVNFD3XOdYYB6PhxlHLmR1TwTFstjxnyeLOh4hhBADkwBIDCjWsAWAbckE5ZWFmwEC2HLOxXxt62Y29ERYsWJZQfseC1555UW0UqfwaWBC4RJUoCiYZRVs72rCZgxs+LZtMpGOnUvhUkYab0mQv/n9fHrZW7xYgH1A8bVrUICGRJxZ02fmvb9cXXne+UyYPYfb163l8tdeojEe5yMf+Thnn30OmZRJPFa8BAj+gBdVyRDpk+3QxiYWTWOZdtFngc48+QQeadnBrzZvZFV5aXEHI4QQYkASAIkBpZqcjdEdXi8ej7egfZsl5cw/dDEAb7zxWkH7Hu0sy+Lpp59keaSb5MTxBCcVLjj1lVYSVS3aunYUrM+RsjJpjEg7qp0hYxmkjDQLzzqLtGXx73//M++Zu2LvrADgnUg3h0+dlte+RsJvWtzz3ev49re+y4c+9BFuvPE2vvWta/B4VBKJDPFY8fb/lJYFSKeixHp2rzmVTGRIJTNFnwUqLSlh2lELeaatldt/dueo2JskhBBi3yQAEv2yUino7AIgXlLYDGO95hy0EJAAaE9Ll77F9u1NvBiPcvi3rsJbXrglVWplDdt6mkmlEwXr0w1GPIoZ7cSjWPSko5x99rn4/X42bljPO8uX5a1f2zDoWeIss1vS3cVho3gGCMBs7+Ci8z/Atddez1lnnYOiKCiKQld7vKgpnktKPXS3t+w1Btu2ifaksEwLipwR7pzTTiIQ8LNq9RoefeTPGN2Fr80lhBBicBIAiX6lGhpQsOlIp/HWFD5tr2IaHN/SxK2HLGDDmlVEo9GCj2G0+ve//wnAmWeejV81MZPxgvTrDZcR9XnY3l7Y7GluMXo6sRPdxDIxyirKuPTEk7n90MN58/6789ZnXF+LnYjTnclATc2oKYDan1RnF6nmHfi8u4IJI2MSjRR3+ZvXk6GrvWOf96cSGRKx4meEqygr44PnnolWWkb5X/5G032/krpAQggxCkkAJPrVW89iYyxKZRECINvjJdzewpRQmDmhMC+88GzBxzAadXR08MQTj3F4eQXnn3EmRnc7FCgVtae6jqZ4G9H42Pxk27Ys0l1tJKLt2IrBu486honBENM6Oli65M289NnzllNs9Y2uDo6ff3Be+nBbrKER4lEURcHrVUnEM0R7ihcAlVcESSV66OmO7PN+G4j2JDHSJkqRg6BzTjuJYGU5lR4vyTVr6Hn15aKORwghxN4kABL9ymTrWmyIR6kZV5y0vbHxzn6Jg8vK+c9//l2UMYw2Dz/8R8xUiqvnzif4698Qb9hckH69pZX0+L1sbdlUkP7yxTYNetq2kUp2cdCHP0hGUZgWCvPoTT8iHo+53l88nSFlmbzc0c6JYyQASnZ0ktrWhN+roCoKnW1xJ910ESgKlJSqtDdvH3A2JZ02iUaKny3S6/XykU99hL9mC8tue+B3ZDpHf7ZEIYQ4kEgAJPpV99GP89XNG3m6pYXquslFGUN8/HQADi0r55VXXqa7u6so4xgturo6efDBP7CgvBKfouCrqkQJFOATb1VFrRlPQ2T7mJ396Ssa7SQaacVnxak9+2wAzg4Eufaq/yOdTrva1z9jEb6wfCmlU6YwvrLK1bbzxrbp2bwFu6ebTNqiu7MwSyz3pbQ8CFaCjpbBa07FomlnKZynuH/aDpo3h8DRh7MhFsWTybD+5p9gZYqXQEIIIcTuJAAS/erq6qSxrZWoaRRtBig6aTYA80rLKFPgH//4W1HGMVr8/Od3Eol0c+4MZyN92SHzsNP5/9Q7UD2BViVNQ/PGvPdVCKZl0BXrJNXWyOSTF2NXVVHjD7C4uZnLLv0MTdnshyPV0dHOww8/SMw0ee/io1xps1DS3REy7e30dMWLuvytsjJAV9t2UkOoBWbZNpGuBOmUUfT9QOeddRrPBj1EDQNvczOrbr9Z9gMJIcQoIQGQ2Ccrk2b9+rUAVI+bRCAYLso4jJJyEuOmAHB0ZTV/+MNvXf+Efqx4883X+OtfH6LM6+XQgLORvnTelLz36y2pIFFezvod60lnir/EyC0dsU4Mr4d4o87siz6A7fGwuLKKk7ojfPCD7+FnP7uN5ubmnNvvWfImv/vxD0kk4hw0YybvmqO5OPr8UzweUhmLls3NRQsmSssCeNQkLU1NQ35MJmMS6UxgGnZRgyBVVfn4pz/Bv4wklm0T0HWevulHWFZxlhIKIYTYRQIgsRfbtmn44Q/g4YeZEAgyYcqsoo6ne7qzb+LMiZNobW3lb397uKjjKYbW1ha+/e2rsW2bK999KoplEZo2BU/Yk9d+VX8Qu24SG7obaevante+Ci0S6yTl86CgYBqdTLnwXPB4SFdXkUwmuf/+uzn33FO57LLP8uCDD1BfvxHTNIfUdrq1la33/Ir3dHZyeEUlXzznvShFTtE8XKHxdcSSCjvWbsGOxwoeTCgKVNcG6WzdRqxneBkgE4kM3V0JTNMualIEn8/Ley/5fzyr2qyIdHPNw3/k4osvYmUBiu8KIYToX2ErW4oxIVm/kfS2RkqAbiPDwZNnF3U8XXMOp3b9Ejy1VXhWLuPnP7+D0047k7q68UUdV6F0d3dxxRWX0trawqGzZrMgk8EGqo5diJXJ39Ik1R/EM2k6GxNtbG7S89ZPsfTEOukxU4wrrSDd2YK3XGXKRefyhUOPYO7SNTzw4EN0r1lD24rl3JjN5BUOh5k//2DmzJnH1KlTmTx5KpMmTSIUChMKhUgk4tSvXYP3r39hvG2zLtrDCWecyfwJhc+iOBKeQABPTR3bN3SQiSWwaSM4wYPqD2JZhVnGVVVTAmaEpi0NOT0+FnX+36ioCuHxqk6doCLw+3yc8OkLeealV1G3bmbZsqV85pMf5cQjj+GMD3yIk046hZKS0qKMTQghDlQSAGVpmqYC1wGfA6qAl4DLdV3fUNSBFUH7v5waM29Ge0iYJpOmzS3qeKxAiPXnX86i+XUcsmYlK1Ys51vf+hq/+tWv8fn8RR1bvjU1beOKKz5Pff1GqqtruOGqb5P50x8JTp2Cvy6MnacAyBMuQxk/mU3JDvStK7AKlGa7kCzbYnukmXFlU6CzBQBPSCW2aSUnzR7PGbf/hFU/vBW7rZ0d2Dzd1MQrrc0sXfoWS5e+tc82xwcCfGXWXOaUlBI1DGJHHcUHtINhiDNHo4KiUDJtKh09Jm2NbQAYsTip5hYCdXWowSCWmd8gKFzip6ICtm6oH9Len/7Eoiksy6aiMoQ/4CliJjuF0048jkULDuWxZ15k3NoNnJox+PPtN/PDH1zDYYcv4ogjFnH44Ucwe/Ycxo2rG3MzhkIIMZYosinToWnadcDlwGeAbcBNwCzgEF3Xh7vppN40rZkdHe6n1PV6VaqqSujsjGEY7v8xj7z+KjvuvRsUlS+tWEKbafKNG/+M31/84o111WFqA1Gu/OxFNHV3cfrpZ3LDDT8lEAi43le+z/NgTNPkn//8O7fcciPRaA91deP5+c/vYd48DaV9O4mNy0FJuN+xqhKonkCyooL6SBP129ZgWvm7eFcU8Po8GBmTYvwqCgfLOGbW0ZS0tGBEu3a7z8pYdL+1np5VG7ANY+ftqbIyWr1eVhkZXm3eQUtLM6WGwfurazm6sgqfqpLyeKj46IVUeXykOndvtxhUVSEU8pNIpAedwSmZOoV02Tj0pVtI9Oz+HvOGQwTG1aKWlGBaOAV4XBYM+ZgwKURn80Y26etdadPv91BWESIU9qEo5HUWS1UVgiE/yX7OtWLbqP96Bk+bU2agOZXkyZZmnssmnAEoLS1l2rTp1NWNZ9y48dTV1TFuXB3V1TWUlZVTVlZGWVk55eVlBIOhAzJYytfv6OrqEjwedRPO338hxH5KAiBA0zQ/0AZcrev6r7K3VQJNwMW6rj80zCbHXABk2zY9r79K829/jW0Y1E+exjcf/TMz5i7g01/+iWv9jIQCHBSMY/3mTp5p2sYftm5m5vyD+f73b2DOnHmu9lWMAMgwDDZt2shLL73AI4/8ha1bnaU/xx96ON/6/GVMPelkAl4bs3kj0c2rwMXN1IrXh7+8Gqu8ijZSbGzZSEuHO5nQBuy3yAEQwOwph3BIyUQyjRuxTWOv+81UhuSWduL124hv2UbvQKvPOIO6j12EZdmkm3ew+TvfBKDkkEOYfMGHiTftIL59R0GfS3+GEgApquoEP6U11K/eTnfLvtOdqz4fgepKvOXl2D4/tmW79tpVVIWoqvbS3bqFTfo6VxMGKIpCuMRPaVkAX8CDoijOuXD5jTdYAASAZeHf1IiyZCV21Pk7YQGb0mn+2djAqx1tQ+7P4/EQDpcQDAYIBILZL3/2eyD7te+f/f4Afr8fv9+Pz+fL3ubH5/PvvH3XMT58Pv/OY/x+p41iBV8SAAkhRkICIEDTtKOB1wFN1/V1fW5/CVih6/rlw2wybwFQ/dZmGlesxEwlUWyLeHc7m9a9w47tTSQTSTqNNNtTKWeztmEwx+/HtGws08S2TBQUQqEQoWCQwLg6Ji86kve8572UNmxhx333AOA7bCFfeeZ/NGxZz5kf+BzHnfpB159HrsatfZ1xrz8JQMqyWNHdxaZEnAmz53Do0e/i8A9eQKikBIB08w7MSI8TOe1DcMZMFK+zCjTd2oLZveuCz+NRKSsL0tOTxDQtAtOnY6LQ09NDZOsWojuaicdjO79isRjxeJxYLEYzNinTwDBMgpkMoUwGy7KwLBPTNDBMC8u0ME2TpkyKhGmSyWSgo4OJPh8+VaXC62NKWTnHTJtOWTSK4vEw55pv4w/bxLasxTZGlglP8XhRAyG8wTCESkgFAnRbSbZ2bqO5fSuZEbY/5HGMggDI5/WzYOaRTCFApnkrVrr/ZYVWxsLoSpJu7aZkzhwqjz4afEFs1Ufzo/+iYuFCfKUlRPR1JJpbR03a44ECIMXrJVBViX9cHVHTz5a124m0RQZt0xsO4asoxxsuAb8fW1Gw7WwwNIyn7fEolJQFqKjwo6oJWho30bRla97OnXMufIRK/PgDXjwexXkjZsc+0n6HFAD1yhgEtzWjrNmImQ2Wa97/fqILDmfLls10baxn4ttLiVgWnek03ckEkVSK7mScSCKBHomwLenM0oU9HuaWlGLaNn3Dgd7n05JO0Z7NoBlQVWaGS3Yds8dP7ek0bdljfYrCjD7H7v5cPSR8ASK+IP5QGcFQGTOCYVR/GCUQRvGFwRfC9oaxfWEiwRpawhPJWCqGaTEjsQNFAQWF3lwVavbliHtDtAerUFUF1baZFmvK3qegAKY/wAUXnsFJkzISAAkhhk0CIEDTtA8CfwPCuq4n+tz+5+xt5w2zyXrTtGZGIu4uUWpq7+Gic07hroP7ryb/ZMsO7m/YDECF18e9Cxf3e+yzbS38cnM9iqIy/5hzuDpo0X74GbwcHsfff/z/8Hj9fPaXbxCuqAZ2xRG9H/gpfW5Dod9j9nX7SJRufocpT/+GUOvWve771PKllE+ZS83kWXxYNTk03tFvO48c92Hiqo90MsbRG5dwaGf/Mx5X6mto6nECpE9Mmcb7J/RfF+mr7yynMXtR8uGJk/nI5Kn9HvutNSvZGHMC5fdPmMQnpkzb53GR6YfSeMoniNVN3+f9e1zS9ttf73G2beNcp2a/2xaWZWX/NTDbHtqLOJTfLDbOaAc61s1fUf01paDgUb2oKCg7z1//He+8R1HInkBsy3K+DAN7wAvf3c/fUM/ToMcMcJDz/52y+7gVBdsGq/fLgkzSuWgf1ilXVWcWIPu182eU3X5BKH1+GfRexFq2hZ39YMAyDZLJBEbGyJ5SZa/nbvd5DjbKbs/ZZtfxdp9zbGf/s+djndOgOFfc9I67d4C7n6+9++rTn713fzZKts9dX71P3rbZZ7uV8Tbmtb7D1uo5bK+eg43KnB3LuOiV/mfg/659nP+OPw4rFWVm53quXnd/v8c+5JvNP9SJ2EaSGUYHNyr1/R77SCTDQx0xMFNMVC3umNl/Eo9/N2/nd1u3AFDl83H34f3/zflvazP3bNkEOAHbb4/ovzbWi+1t/GyTswXXoyg8uPiY3e5fF+3hzuB0nn/wTlf3dpWXhyQAEuIAIEkQHL1Fbvb86DcJVOfSoKoqVFXt+1OzXJWUBqmaeww7Mp2911zYipr9hC2ErXjoPuhEPO8+EVQftp1m06bfYfde7KDuvNi1bZOWKRqKNRG74WXWvPZvLkaBTVHslncAsA77OL9eP87V5+COw+HQ25jVsxGtaw2T21dS0aFTlmwnY2Ro3rSK5k2rqJ8yjZrKqn5beezn39y55r5s0hRqqmv6PTaV3BXMRm2V7ekMKCoonuz37JeqYh19Gaq3AlQvsfQWtifrd11YAX2vBM0zfoInOBFULx3pRtZ2voWpeOnxl9EarKMpPJmV1YfTEayFBpwvIfLG3d9ZYjgqeL02m3Gzy/m2Q51H82HfoCbZRlkmQshMEDbihIw4ATNFvX8qnd6J4IUuy8Om0pl4bBO1dw6oT9AWnXo66uQzAbBiW2laedPO+5Q9oufE3DMpnfk+/B6oSjbT9voPdn2opWRDQ9tGsS0qTzid46cdiZrqoSTaQtfqx8G2wLawbWvXhwO2hVpRzeTpHhQFgqpCW5/kIDb2buM1giEmTp2JbduoQKux+/LUuNfHpR88gfLyUM5nXAhx4JIZIEDTtA8Bf2XfM0ABXdffP8wm8zIDBM7SrPLyEJFIAtO0iGfgrWYP7QmFuAHxjEI8A6bd59PL7A+7PnXc/fbOxrWs+OfPaHjr3zv7qZx6EGd+6294/LsXQO372D3b2dcxe/aby9ttKLNGCs6sRqKzic4tK4m3NZLobCLR1YyZTmKmE5jpBGCjqE7QoqgqqseHNxDGGyzFGwjjC5XiC1cQKKkkWFaJJ1CGN1SOP1yOL1yBL1SG6vEOMMeSn+dW6Lbc6Gso/SmKQiDgJZ0eeNbEzW0Gbp2nIR3j0nlyDP4/T3/9qYqCP+AjncoMeYmXm89vKO30nS3ebZa57337+HmfM9OKvVs7e7Y14H0DPIZ++lcUe+fxqqoSDjtL4GzL2vmYPWfO93yOOx+vgLMqz0bNTlCpilO0T1Wd78rOY0DtPQ52O363YwCPYqMoDKnNsWDPv4VukRkgIQ4MMgPk6F1LNQnY2Of2ScDyXBvN5+Z507QwDAu/AsdNGGE/i2bA+25hw4Yv8Nprr1BTU8Mpp5xOMKjiTIKNJTXAySNupf8Ntkb2S7jBOc9eOjtTRcm2d6BwzrOPzs60nOc8c861n85Od/em5E2fT6jGULL2nXr/FgohxHBIAORYDkRwrpw3ws4scIuAu4o2qgKbM2cuc+YUt+aPEEIIIYQQ+SQBEKDrekrTtLuAGzVNawU2Az/FmRl6pJhjE0IIIYQQQrhHAqBdrsU5H/cBIeAF4KwciqAKIYQQQgghRikJgLJ0XTeBb2S/hBBCCCGEEPshtdgDEEIIIYQQQohCkQBICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAUGzbLvYY9kcJ27aDlpWfc+vxqJimlZe2xS5yngtDznNhyHkuHDnXhZGP86yqCoqiJIGQqw0LIUYVCYDyowsIANuLPA4hhBBCDN1EIAVUFnkcQog8kgBICCGEEEIIccCQPUBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGt9gDEIPTNO27wOm6rp/c57aFwB3AkUA7cKeu6zcXZYD7iX7O83uBa4GDgDbgL8C1uq4nijLI/cC+zvMe998LnKHr+oxCjmt/1M97eiJwK3AOYAL/Ab6i63pbUQa5H+jnNApjxgAAB+1JREFUPB8J3AIsArqAB4FrdF1PFWOMY5WmadXAj4DzgHJgBfBNXddfyt6/EPlbKIQYJpkBGuU0TbsS+MEet9UATwPrcH7pXwdcr2naZwo+wP1EP+f5RODvwN+AhcAXgAuBXxR4ePuNfZ3nPe4/H/hcocazP+vnPR3A+d0xCzgdeA/OBfrvCz2+/UU/57kWJ7BcAxwBXAJ8GrihwMPbHzwEvAv4KHAUsBR4StO0+fK3UAiRK5kBGqU0TZsM3AecCOh73P15IAVcpuu6AazRNG0u8A3gNwUd6Bg3yHm+FHhG1/WfZP+9QdO0bwO/0TTtC/JJ7tANcp57j5kI3AM8D8wo2OD2M4Oc64/hnNvZuq43Z4+/EviFpmnluq5HCjjUMW2Q83wCUANcpet6D87vjj8AZwFfL+hAxzBN0+YAZwDH67r+Sva2r+DMXn4cSCB/C4UQOZAZoNFrEdAJLABe3+O+E4EXsr/wez0DaJqm1RVofPuLgc7zLcBV+3iMFyjL87j2NwOdZzRNU4DfAQ8AzxV0ZPufgc712cD/eoMfAF3Xn9R1fbYEP8M20Hluz36/TNM0j6ZpM4BzgdcKN7z9QhvOLOWS3ht0XbcBBahG/hYKIXIkM0CjlK7r/wL+BaBp2p53TwFW7nFbU/b7NKAlr4Pbjwx0nnVdf7vvvzVN8wNfA5bKfonhGeT9DPB/wETgvcC3Cjey/c8g53oe8IKmadcAnwJ8wJPA1bqudxVwmGPeIL87XtQ07SfA9Tj7Vzw4gf2XCjvKsS37nny8722apl0AzMZ5396A/C0UQuRAZoDGpjDOtH9fyez3YIHHckDQNM2LMztxMHB5kYezX9E0bQHO2v1PyLLCvCvHCXwOx1lC9Hmc5VqPZmfhhAs0TavECTZ/DhwNXADMAX5ZxGGNeZqmHQ/8Gng0G4DK30IhRE5kBmhsSgCBPW7r/WUfK/BY9nuappUBfwZOAT6s6/peS7hEbjRNCwJ/An6o6/qKYo/nAJAGosDHdF3PAGia9ingDZxN5G8WcWz7kxuBSl3XP5T991JN0zqB/2qadruu68uLOLYxSdO09+P8rngNZy8byN9CIUSOZAZobNoKTNrjtt5/byvwWPZr2Y35LwLHAedkP3UU7jkGOAT4nqZpUU3TosC3gWnZf3+iuMPb7zQCem/wk7Uq+31mEcazvzqBvYPJ3v0/8wo8ljFP07QrgEdwlsOd26cMgfwtFELkRAKgsekF4ERN0zx9bjsN58JG1jy7RNO0KpwNteOAE3Rdf7bIQ9ofvQHMxVmStTD79SucdfwLgX8WaVz7qxeAwzVNC/W57bDs9w1FGM/+aitOcoS+es/z+gKPZUzTNO0y4GfAXcCFeyyTlb+FQoicyBK4senXwNXA/Zqm3YSzxvxKnDo1wj234dRLORto1TRtQp/7WnVdN4szrP1H9pPc3S68NU3rAAxd1+WC3H2/Aq4A/pRNhFCRve1ZXdeXFnVk+5dbgf9omnY98FtgOk79sMd1XV9WxHGNKZqmzcMpcvp34MdAXZ+EEwnkb6EQIkcyAzQGZT/ZOgvQcIrCXYdTb+J3RR3YfkTTNBWn6KkfZxZo+x5fU4s3OiFyk81eeCJO9rfXcbKYvQF8oJjj2t/ouv4UcB5ODZtlOBfqjwMfKeKwxqIP47xXP8Dev4PvkL+FQohcKbZtF3sMQgghhBBCCFEQMgMkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhDigaZqmFHsMQgghhCgcCYCEEAcsTdPeB/wu+/PJmqbZmqadXNxRCSGEECKfvMUegBBCFNFX+/y8FDgWWF2ksQghhBCiACQAEkIIQNf1CPBascchhBBCiPxSbNsu9hiEEKLgNE17Djipz02nAM8Cp+i6/pymad8DPgp8E/ghMAdYC1wG2MAdwAJgI/AVXdf/16ftQ4GfAO/O3vQ/4Gu6rtfn8SkJIYQQYghkD5AQ4kB1OfB29utYoHwfx0wFbgVuAD4CVAN/BR4E7sUJkFTgIU3TQgCaps0DXgHqgE8DnwVmAS9rmlaXv6cjhBBCiKGQAEgIcUDSdX01EAEiuq6/lv15T2Hgcl3XH9R1/Z/AL4BJwPW6rt+n6/qjwDVALaBlH3MdkABO13X9EV3X/4IzuxQCrsrrkxJCCCHEoGQPkBBCDOyVPj/vyH7vu1eoPfu9Mvv9NJyldHFN03p/x0aAF4Ez8jRGIYQQQgyRBEBCCDGAbHKEPcUHeEgNcGH2a0+trgxKCCGEEDmTAEgIIdzVBfwXuGUf9xmFHYoQQggh9iQBkBDiQGYCHpfbfB44GFim67oBoGmaAvwB2AAsc7k/IYQQQgyDBEBCiANZF3CspmmnAhUutfkD4FXgMU3TfgkkgUuB84EPu9SHEEIIIXIkWeCEEAeyu4AM8AROlrYR03V9BXAiTq2gB3DSZk8Eztd1/RE3+hBCCCFE7qQQqhBCCCGEEOKAITNAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDxv8HECmnYWz7MCkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1499.35it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 99.62it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 1.810 - 21.090) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 0.9963 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.2596 & Fano Ratio = 0\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW80lEQVR4nOzddXgU59rH8e/uxt0TCC4ZXAo1KpSWttTb07fufqr09NTdS3uq1F2ou1B3pZTiOhCSAAkh7tlk9f1jE4qTLMlu5Pe5rlwhM8/M3Ptge+8jt8Xr9SIiIiIiIhJs1mAHICIiIiIiAkpORERERESkg1ByIiIiIiIiHYKSExERERER6RCUnIiIiIiISIeg5ERERERERDoEJSciIiIiItIhKDkREREREZEOISTYAQRBJRAOFAY5DhEREWm5HkAjkBDkOESkHVm6YYV4u9frjfB42v51W60W2uO+sjX1dWConwND/RwY6ufAaK9+tlotWCyWBiCyzW8uIh1Gdxw5KfR4vP3Ly+va9KYhIVYSE6Oprq7H5fK06b1lc+rrwFA/B4b6OTDUz4HRnv2clBSNzWbRrAeRLk5rTkREREREpENQciIiIiIiIh2CkhMREREREekQlJyIiIiIiEiH0B0XxIuIiIi0iblz58bi2+ZYH/iKbM0DFI4bN66mpRcoORERERFppblz51qBGy0W65kWiyUUsAQ7JpEOyOv1ep1z5859Dbh33LhxO93GT8mJiIiISOvdaLOFXBwXl+gIC4uot1gsKqIjsgWv12txOBqiqqsrLna7XQB37+waJSciIiIirTB37tw4i8V6ZlxcoiM2NrEs2PGIdGTh4ZF2ILmysuzMuXPnPrazKV6aHykiIiLSOhkWiyU0LCyiPtiBiHQGTaOLofjWZ+2QkhMRERGR1rECFk3lEmmZpr8rFlqQeyg5ERERERGRDkHJiYiIiIiIdAhKTkRERESkQ5g+/eGexx47ZWSw42ipFSuWRXz33TfxwY6jK1FyItKBLFq0gIcffoD33nsbh8MR7HBERERkB66//r+Dly1bEh3sOLoSbSUs0kF8/vln3HLLdXg8vvpEX301k6effomwsLAgRyYiIiLbpj0R2pqSE5EOID9/HXfddSsej4e9996HxYsXMnfu3zzzzBNcccVVwQ5PRERawOPxUF9fH5RZKVFRUR6rtfWP3nff8eOOP/6kwp9++j7Z6XRaH3vs6RVRUVGexx9/pNeiRfPj6urqbPHx8a5JkyaXTZ16dcHy5csiL7ro7GFPPfXC8lGjxtQDXHnlJQOXLFkU99VXP80PCQnB6/VyxBGTR5911rkFJ510WumWzywtLQl5+OEHes2bNyfe7XZbsrKG1F511XXrBg4c1Njc5rnnnkqfOfPj9JqampBBgwbXXX/9rXnN57cVc69evR3PPvtkj59//iG5oqIiNDMzs+GMM85ZP2XKEZUA7733dvJbb83occ455xe8+OJzvaqqKkOHDh1ec/PNd+S98sqLGT/99F1ySEiI9+ij/1X0739ftgGgsbHR8sQTj/T87bdfEsvLy8IiIiI9o0ePqbr++lvWJiUlu489dsrI0tLSsHfffbPH4sULYp9//jWzoqLc9sQTj2bOmfNnQk1NTUj//gPrLrzwkoK99ppQ2/zaPv74g6Q33ni1R0lJSXifPn3skyYdXPbii8/0/u23v+f683titVr9en0dlZITkQ7gxRefpaHBzrhxu/Pkk8/z44/f8d//XsGMGS9z0kmnkZ6eHuwQRURkBzweD6eeevyQFSuWB2WKz5Ahw2rffPN9058E5Ztvvki9776HVrndLsvgwVmNp556/LD4+ATn/fc/ujI2Ntb9888/JDz//NO9hw0bUXfooYdXpqSkOGbN+j1u1Kgx9W63m2XLlsQ2NjZa58+fG7377nvWLVgwL6qmpjrkwAMPrtzyWS6Xi6lTL84Ci/f22+9dnZyc7Hr88Ud6/fe/l2e9//5niwFKS0vDlixZFHvffQ+vcjgaLffee0f/e++9o9+LL84wtxfzlVdeMjAnZ3XU5Zf/Z23//gMbvvrq86R77rl9oNVqzT7kkMOqAMrKSsM+/fSjtLvvfiC7vr7Oesst1w0+55zThh900MGlTz314vIvvvg0+fXXX8mcOHFS5dChwxseemhar9mzZyVcd91Neb1792k0TTPywQfv7ffss0/2vOGGW9e98MKM5eeee9qwffaZWH7hhRcXut1urrji31lOp9Ny3XU356ampjnfeefNtOuvvyrr0UefWjFmzG713333dfzDD9/f/8wzz80/4ICDKmfP/iPuhRee6b2rvyf+vL5W/0EJEK05EQmy4uIiPvvsEwCuuOIqrFYrBx10CLvtNh6n08kbb7wS3ABFRKSFOmfdk4kTDywbM2a3+nHj9qiz2+2WAw88uOzGG29dM3LkKHu/fv0dZ511XnFCQqIzO3tlJMD48XtWzps3Jw5gwYJ50TZbiDcra0jtnDmzYwF+/fXnhMGDjdrU1DTXls/6/fdf4tasyYu8/fZ7cvbaa0Lt4MFGw0033Z639977VJSXl4UA2Gw271133Z87fPgI+9ix4+oPO+zIktzc1VHbi3nlyhURf//9V8IVV1y19uCDp1QNGjS48bLLrizcffc9K99449WNRf/cbrflqquuWzNixEj7HnvsVTdy5Ojq8PAwzzXX3Jg/aNDgxgsvvLQQYNUq3+scOnRY3fXX35w7YcJ+Nb1793VMnnxI1ejRu1Xn5eVEAqSkpLqsVqs3MjLSk5iY5P755x/icnNzom677e6cffbZvyYra0jDzTffsbZ37z72N954NQPg7bffyNhrrwnl55//76JBgwY3nnbaWSVTphxRvKu/J/68vo5KIyciQfbllzNxuZyMHj2W0aPHbjx+1lnnMm/e33z22SdcfvlVhIaGBjFKERHZEavVyptvvm92tmldAL169d44nSoyMtJ7xhnnFH/xxWeJr7/+avT69QXha9bkRlVWVoS63R4LwH77HVB12203ptrtdsvs2bNihw8fUZOZ2bth4cJ5ccCGOXNmx++//wHl23rWqlUrI6OiotyDB2dtfGZ6eobruutuzm/+OT4+3hUfH+9u/jk2Ns7tcDg2e3GbxmyaK5qTptpN24wcOabmtdde7LXpsUGD/nlueHi4JzU1vdFisQAQERHhBWhsbLQCHHfcCeW//vpz7MMP359ZUJAfnp+/LnL9+oKIIUOGbvacZtnZqyIjI6Pcm45KWCwWhg0bUTtv3t9xAHl5OVH77rt/xabXjR49tvazzz7ebIpEa39P/Hl9HZWSE5Eg++qrzwE44oijNzs+YcJ+JCUlU15exh9//MrEiQcGIzwREWkhq9VKTEyMJ9hxtFZ4eMTGmOvr660XXXS20dDQYN1vv4kVhxxyWNno0WPWXnbZhUOa2+y99z41oaEhnj///D12/vy5cZMmHVTet2+/xk8//TBj3bo1YXl5OVG3335PzraeZbOFeJvfLG+P1Wrd6QjUpjFvb1G6x+O22Gy2zU6GhoZu9rPVuv1Y7rzzlj6///5L0gEHHFS21177VA0ZMqzwjTdezSgrK9nmTjVe77ZfmsfjISQkxOt7ntXr9e58gK21vyf+vL6OSsmJSBDl569j+fJl2Gw2Jk8+dLNzoaGhHHbYkbzxxqt8++3XSk5ERKTdNU9N+vDDzxempaW7ACoqym1VVVUhzUlAWFiYd/TosdW//PJTwqpVK2Ouv/6WNb169XZYLBbvU0893rNHj54Nmy5u39SAAQMb6urqbDk5q8MHDBjYCFBWVhpyyin/GnH33Q+s8ifmrKwhdoC//54dM3nyoVXNxxcvXhiTmdnb7s89y8vLbN9882XqddfdlHPUUcdtHOnIz18bERERuUli9M+b/0GDsuz19fW25cuXRmw6erJs2dKYXr36NAD07dvPvmzZ0hhg41SupUsX73CdUkt+T7qSDj2sI9LVzZr1OwCjR48lKSlpq/MHHOBLSH7//deNWwyLiIi0l/T0DAfAp59+lLxu3Zqw2bNnxVx99RWD3G63xeFwbnwnPmHCvpU//vh9SlxcrGvgwEGN4eHhXsMYWvvbbz8n77XXhMrt3X+//SZW9+8/sP7OO2/uP3funOgVK5ZF3H77Tf3i4xOco0ePrfcnZsMY2jBmzG5V06c/3Oe7776Oz85eFf7EE4/2mDt3TsKJJ55S5M894+Li3ZGRUe7ffvslISdndfiyZUsib7vtxr55eblRTuc//RAREeEuKMgPLy4uCpk4cVJV79597XfeecuAP/74NXblyhURd911a5/8/LWRJ598ahHAqaeeWTh79h+JL774bHpOzurw999/J/nzzz9L21EsLf096SqUnIgE0Z9/+pKTvffeZ5vnx4zZjZiYWCoqylm6dHEgQxMRkW5ot93G15977oXrPv30o7Qzzzx5xP33391vxIjRNfvss1+5af6zE9mkSZOrPB63ZcSI0dXNx8aOHVft9XqZOPHAyu3d32q18sADj2SnpqY7rr/+v4Mvv/zfQ2w2m/fhhx9fFR4e7vcwwLRpD+fsscdelQ8//EC/888/c/js2X8k3Hjj7auPOOLoip1fvbWQkBBuvvmOnLVr10Sed97pw6+99j+DGxsbraeffnZBQcG6yLq6OivAMcccXzxv3pz4qVMvyQoJCWH69KdX9us3oP6OO24e+O9/nzc0Ly83ctq0h1eOG7dHHcCkSZOrL7106pqZMz9JPffc04Z//vknqYceelhJ87SvbWnp70lXYWnJvLcuJsft9vQvL69r05uGhFhJTIymoqIOl0ufcLenrtLXbrebAw7Ym5qaambMeIeRI0dvs90111zJt99+xYUXXsIll1wRsPi6Sj93dOrnwFA/B0Z79nNSUjQ2mzUXGNCmN/bD3Llzh1ittq/S0jJrw8IiOuyWrNLxzJr1W0xKSppz0w0Bnn768Yxvvvky5aOPvlgSzNjak8PREFFcXBDj8binjBs3bsWO2mrkRCRIVqxYRk1NNbGxcQwbNmK77SZM2BeAOXNmByo0ERERaQd//vlH/NVXX5H1+++/xObnrw375psv4z/99KP0SZMmb3N3s+5IC+JFgmTx4oUAjBo1BpvNtt12u+02HoAlSxbR2NhIeHh4QOITERGRtnXJJVPX2+1267Rpd/evqakOSUpKdhxzzL+KLrjg4g5dtT2QlJyIBMnixYsAGDly1A7b9enTl5SUVEpLS1iyZBHjxu0eiPBERESkjYWHh3tvvPG2dcC6YMfSUWlal0iQLFnSnJxse61JM4vFwtix4wCYN29uu8clIiIiEixKTkSCoLq6ijVr8gAYMWLkTtvvtpsvOVmwQMmJiIiIdF1KTkSCoHnUpE+fvsTHJ+y0/ciRYwBYtmwJ3XCHPREREekmlJyIBMHSpUsBGDFix+tNmmVlGYSEhFJRUUFh4fr2DE1EREQkaJSciATBqlUmAFlZQ1rUPiwsjMGDBwOoGKOIiIh0WUpORIIgO3sVAIMHZ7X4muZaKMuWLW2XmERERESCTcmJSIA5HA7WrMkFYNAgf5KTLltAVkREAmzffcePe++9t5Nb2v6nn76PO+64w0cccMBeu91//z292jO2lpg+/eGexx47Zec7y7RCa/okP39t2KeffpTYls/v7lTnRCTAcnNzcLvdxMbGkZaW1uLrhg/3/du7dKlvUbzFYmmvEEVEpJv44IOZC+Pi4t0tbf/880/3Sk/PaHzssadWxsTEtvi6zqQ1fXLHHbf0S0tLcxx99HEV7R1Xd6GRE5EA23RKV2sSjIEDBxISEkJtbQ0bNhS2V3giItKNpKdnuCIjI1u8DWRdXZ1t2LDhdX369HMkJSV3yeSkdX3i1SeFbUwjJyIBlp29EmjdlC6A0NAw+vXrT3b2KlatWkmPHj3bIzwREelG9t13/LipU6/OO+GEk8tuuumafh6Px5KYmOT88cfvkxsbG6yjRo2pvuGGW9ekp2e49t13/DiAd999q8e7777V480331/cu3dfx/PPP53+5Zcz06qqKkMyMno0nnDCKRuOO+7/ygH++OPX2Guv/U/WmWeem//BB+/2SElJbbz77vtzzjjjxBGnnHLG+s8//zQtLCzU88orby+zWCw8/PD9vf76a1aCy+Wy9O8/sP6SS67IHzNmt/rmeN96a0bKe++9nVFRUR42evTYqrS0dMeOXt8FF5xpDB8+qqaiojz0999/SQoNDfUceeSxxYccclj5tGl39cvJyY7OyOjZcO21N+aNHTuuftM+OfjgKZVnnnni8H79BtRPn/5MNsAvv/wUe9NN12TdcMOtqz/66L305cuXxSxfvizm2GOnxH788VeLjz12ysgDDzyk7Iorrlq/aQxpaemN99zzv7xt9cdrr729vKhoQ+gjj/yv94IF8+JsNqs3K2tI3dSpV68bOHBQY3v8vndkGjkRCbBVq5qTk8GtvrY5oWlOcEREpGNx2+3W7X15GhstgWi7K2bN+j2xuro65LHHnjJvvfWu1cuXL4t94olHM8E33SkpKcl51FHHFX3wwcyFmZm9HY888kDm559/mnbppVPXvvji68uOO+7/ip588tG+M2a8krrpfWfPnpXw1FMvLL/++lvybDarF+Cnn75PeuSRJ8zbb793dXx8vPvKKy8ZvH59Qfjddz+Q/dRTL6wYMmRo3ZVXXjJk8eKFkQCffvpR4jPPPNHnuOP+r+j5519bOnTo8Lovv5y50/nRH3/8fkZaWrrjhRdmLD3yyGOK33prRs/rrvvP4JNOOnXDk08+vzwsLNTz8MP3993yuoSEBPc119yUO3/+3PhPPvkwqby8zPbAA/f0P+igQ0oPP/yoygceeDR78OCsur333qfihRdmLG9NP2/aHw0NDdbLL7/I8HjcPPLIk+YjjzxpxsXFuy655Lyh69cXhLbmvl2BRk5EAmz16tbv1NVs8OAsvvrqc1auNNs6LBERaQOrL7947PbORWYZVb2vvSG7+eecq64Y7XU6t/lBcXi//rV9b75t4z/2udf9d6Snvn6b79vCembW97vznla9Od5ujJGR7ttuu3tNaGioNytrSMOsWb+XzZ07Jx58052sVqs3MjLSk56e4aqrq7N+9tnH6VdffUPu5MmHVgH07z+gsbBwffgHH7ydccYZZ5c03/ekk07d0DwKsHZtXhjAEUccXWIYQxsAfv3159hVq8zojz/+cmFKSqoL4KqrritYtmxpzNtvv54+cuTovA8/fDd9woR9K84445wSgEGDBm9YvnxpdF5eTtSOXlPv3n3sl146tRDgnHMuLHrrrdd77rffAeWHHHJYFcAhhxxW9vzzz/Te1rX77Tex5rDDjip+5pknen///TdJ0dHR7uuuu3ktQGJikjskJMQbFhbmaY65pTbtj3feeSOlpqY6ZNq0h3NDQ0O9AHfeeV/ev/51xMj3338nddNRmO5AyYlIANnt9o1FFPv3H9Dq65sTGo2ciIhIe0hPz2hsfoMMEB0d43a5XNscmVm5ckWE0+m0PPTQtH4PP3x/v+bjbrfH4nI5LXa7feN1/fr132p6Up8+fRuaf71ixbIogJNOOnaznbdcLpfF6XRYANatWxt5wAEHlW96ftiwEbU7S0569uy18TlRUVEegMzMzI3xhIWFe1wu53ZHn6666tr8efPmxM+b93f800+/tKw1a3S2Z9P+WLnSjLLb7bYpUw4Ys2kbp9NpXbduTcSuPquzUXIiEkD5+WsBiIuLJyGh9TsPDh5sAJCXl4vT6SA0NKxN4xMRkV0z8PGn52/vnMVq3exN7YCHpy9sadv+9z+03Qq8W7bdFZsmJv/Y9u09Ho8F4MYbb8sZMGBQw5bnw8PDN14YERHh2fJ8RETExvMej8cSGRnpfvbZV7YaAQoLC/MAWCwWvFuEEhISstPXHhJi26qNxdLylQ1FRRtCKysrQm02m3fWrN/iRo4cZd/xFZs/zuVyb5X4bNofHo+HHj16Nkyb9nD2lu2io6O75KYDO6I1JyIBtHbtGgD69NlqamuLZGT0ICYmFpfLRV5ebluGJiIibcAWGenZ3pd1kzfr7dk2UAYNymqw2WzewsL1YQMGDGxs/vrllx/jZ8x4Kd1qbfnbzIEDB9vtdrvN4Wi0bHqvV155IeOHH75NAOjbt1/9kiULYza9zjSXR7ftq9qcx+Phzjtv7t+3b//6Sy65Yu2bb76WuWTJ4sh/Wlg2/32yhXhra+tsm15fXFy0w08SBwwYaC8tLQ2Li4tzN7/uPn36Nj7xxKOZf/01K7atX1NHp+REJIDWrMkDoG/ffn5db7FYNi6kb15YLyIiEgzx8fHugw+eUjJjxsuZH374blJeXm7Y+++/k/zKKy/2SkxMatUajEmTDqrq27ef/bbbbhz422+/xObkrA5/4IF7ev3443cp/fsPbAA45ZQzN/z115+Jzz//dPrq1dnhr776Ytrs2bPatQDic889lZGbmxt1002355100mmlQ4cOr7n77lv7NzZtQhAZGekpLi4KLyjIDwUYOnRY7W+//Zw0a9bvMdnZq8LvvPOWvnZ7vW1Hzzj66H+Vx8REu6+77j8D5879K3rVKjPilluu679gwdz4wYONnYzSdD1KTkQCaFdHTgAGDhwE+Io5ioiIBNP119+y7phj/lX02msvZ5599ikj3njj1R4nn3za+ssvb90ibpvNxvTpz6wcPDir7p57bhtw/vlnDFu0aEHszTffsXq//SbWAEyefEjVtdfemPPNN1+mnHfeGcN/++2XhKOPPq6ofV4ZLF68KPLtt1/vecYZZxcMGDCwEeCGG25ZU1paEv7IIw9kAhx99L9K1q1bG3HuuacNd7vdXHbZfwqysozam266dvDll180JC4uzjVhwn47LNAYHx/vfvzx51bExye4rr/+6sEXX3ze0OLiorB7731w1ZAhw7aaLtfVWbxbTt7r+nLcbk//8vK6Nr1pSIiVxMRoKirqcLm2mlYpbagz9/U555zG/PlzmTbtIaZMOcKve8yY8QoPPTSNyZMP5cEHH2vjCP/Rmfu5M1E/B4b6OTDas5+TkqKx2ay5QOt3E2ljc+fOHWK12r5KS8usDQuL6HZvHkVay+FoiCguLojxeNxTxo0bt2JHbTVyIhJAbTFy0rzLV16eRk5ERESka1FyIhIgtbW1lJWVAtCnTz+/79OcnKxZk4fb3e028RAREZEuTMmJSICsXZsHQHJyCjExMTtuvAMZGT0IDw/H6XSyfn1BG0UnIiIiEnxKTkQCpC2mdIFv0WDzbl9aFC8iIiJdiZITkQDZ1W2EN9Wvn9adiIiISNej5EQkQAoK8gHIzOy9y/fq168/ALm5KsQoIiIiXUdIsAPYlGEYWcA84DLTNF9pOjYGeAwYD5QB003TfDBYMYr4q3l9SGZm5i7fSzt2iYiISFfUYUZODMMIBd4Aojc5lgx8C6zEl5zcBtxlGMY5QQlSZBc0Jyc9e+56ctI8cqLkRERERLqSjjRycgdQs8WxC4FG4GLTNF3AcsMwBgPXAS8HOD4Rv7lcLoqKNgBtk5w0r1upqKigoqKCxMTEXb6niIiISLB1iJETwzD2By4Cztri1H7AL02JSbMffJcYaYGKT2RXFRVtwO12ExoaSkpK6jbbNK5fT0NeXovuFxUVTUZGDwDy8rTuRESko7BYsFmtltBAf1ks2IL92kXaQtBHTgzDSABmAJebprnOMIxNT/cCFm9xyfqm732AYn+fGxLStnmZzWbd7Lu0n87Y10VFhYBv1CQsLASP08n6F54n44QTCE1Pp8HhpvKnH6j68XsyTjudpMkH7/Seffv2ZcOGQtavX8fuu49v85g7Yz93RurnwFA/B0Z372eLBZvHYulR3+AK+PurqIgQlxVvoddLh6vOO336wz1/+OGb5I8//mrL93Q7lZ29KvzCC88e9sorbyzt06efoz3ik44l6MkJ8DQwyzTNN7dxLgrftK5NNTR9j/D3gVarhcTE6J039ENcXGS73Fe21pn6urKyBIB+/fqSmBhN9lPPUj37T5wlxTjO+w9lVQ1EV9YT6vWy4fUZREaG0fPIw3d4z0GDBjJ79p+UlBS2259n6Fz93JmpnwND/RwY3bWfLRaLtb7BFfLnkkJPfYPLE6jnRkWEWPca0SMkNiLE6vV6O1xy4q9ly5ZEXn/9fwc5HI3dM9vtpoKanBiGcQa+qVsjt9PEDoRvcaw5Kanz97kej5fq6np/L98mm81KXFwk1dV23O6A/XvULXXGvl61yrdwPS0tg/w/51H09TdgsVCz18FkZ5f6Go2aTDqhJM77mdwXX8admELMsOHbvWd6um/tysqV2VRU+P3XYbs6Yz93RurnwFA/B0Z79nNcXGSnGZGpb3B56uzOQP9B6xyd00JPPTU94/333+6Rmdmroby8LCzY8UjgBHvk5FwgHdhyOtczhmFcA6wBem5xTfPPBbvyYFc7faDhdnva7d6yuc7U1/n5vhonGek9KHrnLQBC9tgHMzwDj8e7sV3hiP2x1VQRt2oB659/jr533I0tatujIr16+eqlrFmzpl37oTP1c2emfg4M9XNgqJ87j333HT/u4osvX/v9998m5eaujk5Pz2g499wLCw455LCq5jbfffd1/CuvvNCzoCA/MjExybH//pPKL7748sLw8HAvwIoVyyKeeeaJzOXLl8U2NNityckpjqOOOq74nHPO3+b0+1deeSHtlVde6HXDDbfmHHro4ZXbajN37l/x11xzY258fLz72mv/k9UuL146pGBn2acDQ4Exm3wB3AocDvwC7GcYxqaLvA4CTNM0/V5vIhJo69f7kpP+ERE05ORgCQ2lcOT+uDdJTACwWCjY4zBc8cm4Kiooe+/t7d6zd+8+AKxbt7bd4hYRka7v5Zef7zVp0kHlzz336tLx4/esuuuuWwfNmTM7GuDHH7+Lu+ee2wcedtiRpS+99MbSqVP/u/a3335Ouumma/oD1NfXW//73yuyIiIiPY8//syKl19+c+m+++5f8eKLz/RevHjRVvP7Xn/9ldRXX32x180337l6e4kJwIsvvm4edtiR2z0vXVdQR05M09xq9KNpBKXYNM01hmG8BFwLvGgYxgPAHsCVwL8DGafIrlq/3rePQ0aB77t19HhKt7Ne0hsSyroJR9Hvy1ep/OMPEo86jtCkpK3aNY+cVFdXUVVVSXx8QvsELyIiXdqkSZNLzzjjnBKAq6++vmDJkoWx7733Vtruu++Z+/rrr/Q46KBDSk877awSgP79BzSGhISsue66q7LWrs0Li4qK9hx99HHFp5xyRnFcXJwH4LLL/rP+ww/fy1i1akXkyJGj7M3Peeut11Neeum5Xrfddnf2AQccVB2cVysdXbCnde2QaZrFhmEcCkzHVzm+ELjGNM1XgxuZSMs5nU6KijYQbbMRkrMagIohu+P1bv8ae1ofivc6lAH77UlUeipO59brGyMjo0hNTaOkpJi1a9cycmRCO70CERHpynbbbfxmdeYMY2jdggXz4gByc3OjVq/Ojv7xx++Sm883//+Vnb0q4sADD64+9dQzi2fO/CRp9epVUQUF+eFr1uRGAbjdHkvzNRUVFaFPPz29r81m8/bq1WfLzY5ENupwyYlpmpYtfp4D7B2kcER2WXFxER6Ph7DISJKPOpraNesojkiCnayVLDP2wOqMILXRRbjNincb2UyfPn0oKSlm3bo1jBw5qr1egoiIdGEhISGb/Qfj9XqxWm1e3689lmOP/b8NRx99XNmW16WnZziLi4tCLrzw7KGxsXGuvfaaUDlu3B7Vo0aNrjvppGM3+0/JYrFy5533rnrpped63nPP7f1ffHHGCqs12KsLpCPSnwqRdta83iQuLZ2Mf/2LhmPOwNHCTVxKK+ysL63DXVaC17P1Nb179wVg7do1bRewiIh0K8uWLdls55UVK5bFDBw4sB6gV68+9nXr1kQMGDCwsfmrqKgwdPr0h3rV1tZYP/vs4+Ta2pqQl156fcWll04tPOywIyqrqiqbPvz+J+dJSIh3Tpw4qfr662/Oy8nJjnr55efTA/gSpRNRciLSzprXm/To0ZNGh4eyKvtOrviHF6h48zWyr7uG+oXztzqvRfEiIrKrPvvs4/SPP/4gKTt7Vfj999/Ta82avMhTTjmzCODkk0/b8NdffyZOn/5wz+zsVeG//fZL7AMP3Nu/rq42JD09w5WenuFobGy0zpz5SWJ+/tqwn3/+Ie6OO24eAOBwOLZ6nzl06PCG4447YcMbb7zac/Xq7C3LRYh0vGldIl1NcXERvSMj2T0+keqyCqpqWjfVtt4SRrTXS9nMT4kasxsWyz8zH5tHTtat08iJiEhHERUREtAPf3f1eYcccljJ+++/nf7oow9G9u3bt/6++x5cNXz4CDvAEUccXeH1enPeemtGjw8/fDcjKiraPX78HpX/+c+1+c3nV6xYvuH555/u/fjjD1tTUlIdhx56eOmsWb8nLF++NBoo2fJ5F198eeHvv/+SeM89t/d74YXXTE3vkk1ZtjWPvYvLcbs9/cvL27ZoXUiIlcTEaCoq6rS3ezvrbH191123Ej17Nkdm9MC6+wSWDJvcquttDfUM/nA6VqeDzKlXEb3J2pIVK5Zz8snHkZiYyI8/zmrTuDtbP3dW6ufAUD8HRnv2c1JSNDabNRcY0KY39sPcuXOHWK22r9LSMmvDwiIamo9bLNg8FkuP+obtbMfYjqIiQlxWr7fQ66VVFeL33Xf8uKlTr8474YSTt1pTItJWHI6GiOLighiPxz1l3LhxK3bUViMnIu2sqKiIo+PiAKjL6N/q690RUVQM3o3kZX9S+f03myUnvXv7thOuqKigurqauKbniIhI4Hm9uK14C2MDPHLie7bX09rERKQj0jiaSDurLSmiX1OV96rUPn7do3zoHngtFuqWLMGx/p/yQNHRMSQnpwCQn691JyIiweb14vZ4vM5Afykxka5CyYlIO0usrQXAk5JKFWF+3cMZk0BNnyEAVH3/7WbnmhfFa8cuERFprd9++3uupnRJR6LkRKQd2e12Mi2+v2bePgNxu/1f41U2dE8AqufPw+N0bjzeXCm+oCB/FyIVERERCT6tORFpR8XFGxgUHQOAM8O/KV3N7Gm9KZr4L4YffgBhkeEbF5tmZvYCID9fyYmIiIh0bho5EWlHRYWFDGhab1Kb1HPXbmaxUNZvBOtr3cA/2wk3JyfNxR5FREREOislJyLtqKi4iGuXLWamxUJNREKb3LO4rI5quwOcDuCfaV35+eva5P4iIiIiwaLkRKQdbSgqYkNjA0WpadidbbPnvytnFQV33c6Gl14AIDPTl5xs2FCIy+Vqk2eIiIiIBIOSE5F2VFy8AYCYuOQ2u6c7NBzv+nVUz5uLq6qK1NRUwsLCcLvdFBVtaLPniIiIiASakhORdtQ7P5+j0nuQFBnTZvdsTMrAnpoJbje1s//AarXSs2cmoKldIiIi0rkpORFpJ16vlzEOJ2f07kt8eHSb3rti8G4AVP78E16PZ+OieG0nLCIigVRXV2edMePl1Oafb7rpmn4XXHCm0Z7PzM9fG/bppx8l7so93nvv7eR99x0/bnvnA/E69t13/Lj33nu77aZWBNHatXlh++47ftwff/wau6v3UnIi0k5c5eVEWCy4PB48qb3b9N5V/YbjCQvHUVREQ/bKjetONHIiIiKB9NJLz6V/8ME7Gc0/X3vtzeseeODR7PZ85h133NJv9uw/4tvzGRI8Sk5E2kltbg4A6xsaCItNadN7e0PDqOo7HICaWX/Qq5e2ExYRkcDzer2WTX+Oj493JyYmudv5qZadt5HOSkUYRdpJxSoTgAJHI3ERbTutC6By4CgSV82j6q+/6HX00YAKMYqIBJPXC/Wu4HzwGxWCx+LHW/aqqirbww/f3+uvv2YluFwuS//+A+svueSK/DFjdqsHqK+vt06bdmfvv/+ek1BfX2/LzMxsOP30s9cfdtiRldOnP9zz3Xff7AG+KUpvvvn+4meffbJncXFR+PPPv2b+8cevsddf/9+s++57cOVjjz3Up7i4OLxfv371N998Z+4333yZOHPmx+lut9uy334HlN100+3rLBYLXq+XF154Jv2bb75MKSkpDg8NDfUMGTKs9uqrb1jbt28/xwUXnGksX74sZvnyZTHHHjsl9uOPv1rscDgs06c/1POnn35Ittvrbb169bGfe+4F6ydOPLC6+XV++eXnCa+++kLPoqINEQMHDq4bM2a36u31STO328M999ze+6efvk8OCQnxHnzwlNIrrvhvQUiI7+3zX3/9Gf3SS8/1XL16VbTT6bSmp2c0nnrqmYXHHPOv8uZ7fPLJh0nvvPNGRmHh+oiEhETnkUceU3zeeRcVbfmskpLikEsvvcBISEh0PvroU9lRUVGen3/+Ie7555/OLCjIj0xLS288/vgTN0yf/nC/N998f3GfPv0cxx47ZeSee06onD9/blxVVVXorbfeuXqvvfapefXVF9O++OKztNLS0rCUlBTH8ceftOGUU04vBfjjj19jr732P1nN9wDflKxTT/2/kQ888MjKCRP2q7nppmv6eTweS2JikvPHH79PbmxssI4aNab6hhtuXZOenuECWL58acQjj/yvT3b2qujExETnSSedWtj6P33bpuREpJ3Ur1lDGFBmtRHvz/8YO2FP60310PH03W8vvHGRgNaciIgEi9cLp38VNcSssLX9p1EtMCTRXTtjSr3Zmv9uvF4vV155yeCQkBDP3Xc/kB0XF+f+7LOPk6+88pIhjz/+7PKRI0fbH3/84Z55eblR06Y9tCo+PsH1wQfvpE6bdteA4cNHLDn33As32O126++//5z0/POvLUtJSd1qP3uPx8NTT03vfd11N+WFhUV4br31+oGXXnrB0LFjx1U99tjT5pw5s2Oeemp63732mlA9efKhVS+//Hzae++91eOaa27MHTJkqH3durXhDz10f99HHnmg96OPPrX6gQcezb7qqssGp6SkOq677ua1ALfccl2/tWvXRt5wwy25GRk9HT/99H3CrbfeMOiWW+5aPXnyIVVz5syOvvfe2weecMIphYcfflTZ33//Ffvss0/02Vn/rFy5IiY5Odn5+OPPrsjPXxf+8MMP9GtoaLDeeONt69avLwi9/vqrsg499IiSa6+9aa3L5bS89trLGY888r9+e++9T3VaWrrr888/TXzwwfv6n3762QWTJx9asWzZkqhHHnmgX3R0jPvkk08rbX5OWVlpyGWXXWgkJ6c4Hn74iezIyEjv4sWLIm+99YZBRx55TPFtt92Ts2LF0qgnnni075Yxfv31l6l33nnfqri4OPfQocPt999/T++ff/4++eKLr1g7cuTouj/++DXu2Wef6ONwNFrPOuu84pb+2Zg16/fEffedWP7YY0+Z69cXhN13310Dnnji0cy77pq2pqqqyvbf/15uZGUNqX3qqeeXFxUVhT3yyP1bxeYvJSci7cRT7Ps3oCoiqn0eYLGQv8fhxPdKoU+y769yRUU5dXW1REe33e5gIiLSMhbwBjuG1vjtt19iV60yoz/++MuFzYnFVVddV7Bs2dKYt99+PX3kyNF5hYXrwyMjo9x9+/ZvjI+Pd0+denXB2LHjauLjE90xMTGeyMhIj9Vq9TZ/or4t55xzQcG4cXvUAUyYsG/lzJmfpN16611roqKiPIMHGw2vv/5q5urVqyInTz60qnfvPo1XX31D7sEHT6kC6N27r2P27FkVv/zyUyJAYmKSOyQkxBsWFuZJSUl15eSsDv/991+TnnjiueXNoz0DBw4qWr06O/Kdd17PmDz5kKr33nsrLSvLqL3iiqvWAwwaNLgxJ2d15BdffJq2o/6Jj09w3nXX/bkRERHeIUOGNZSUlBQ8++wTfa688poCh8NhOfnk09eff/6/i6xWa/PrLPzpp++Tc3JWR6Slpde+//7b6XvvvU/5RRdduqEprsb6+jpbRETkxsJn1dVVIZdddlFWSkpq40MPPb46IiLCC/DWWzPS+/cfUH/NNTfmAwwenNVYXl4e+vzzT2+2iHXs2N2q9t//gBrfvaqtX3/9eep551207thjjy9vembJ+vUF4e+882aPM888t8XJSWRkpPu22+5eExoa6s3KGtIwa9bvZXPnzokH+PzzTxIdDof1jjvuy4uPj3cPGTKswW6vX3f33bcNbOn9d0TJiUg78Ho8hNX4RozrY3ZpQ5GdKiqvo3/PHsTHx1NVVUVBQQFZWe26wYiIiGzBYoEZU+rNzjSta8WKZVEAJ5107MhNj7tcLovT6bAAnH762RtuvvnaQcccc+jowYOz6nbbbfeqww47sjw+Pr7F60r69x/Y0Pzr8PAIT3x8gjMqKmrjG/SwsFBPY6PDCnDwwVOq5s6dEz19+kM9Cwryw/Pz10Xm56+LSExMdG7r3suWLYkC+O9/L9/sPz63222JiopyA6xZkxc1duy4qk3Pjxw5qnZnycnAgYPqm5MFgFGjxtS5XC7L6tXZ4SNHjrIff/yJZa+99lLamjW5EQUFBRF5eTlRAB6P2wKwdu2ayP33P7B803uedNI/IyYAM2a8kul2uyxbPisnJztqy6lnu+22ew08vVmMmZm9NvZtdvbKCLfbbRk7dnztpm3GjNmt9rPPPk4vKSlu8fv+9PSMxtDQ0I3xREfHuF0ul8UX2+qo9PQeDZv+GRg3bvfabd3HH0pORNqBxWrl84ED+PmTjxh4wNHt+qza/EIKl/3GkX3688biBRQU5Cs5EREJAosFokPx7Lxlx+DxeCyRkZHuZ599ZfmW58LCwjwA48fvUffRR18u+vXXn+LmzJkd9803X6a8/fbrPe+++4FV++03saYlzwkNDdlsRMlq3X4W9dxzT6W/9daMzEmTJpeOGbNbzYknnlL8008/JPz6609J22rv9fq6+9FHn1oRHR2zWd/bbDbvP+02X0QfEhK601Euq9W6WRuPx/dePDw8zLtqlRlx2WUXDunXb0D9uHG7V+277wFVSUlJzssvv2jops/fWcI4cuSo6sMPP7r0nntuG/jjj9+VT5o0ubrpWjyenS/8DwsL3+o1WrZ4qMfj65ZNkw3vJq/M6XRt9ZxN2/5j00Ot78+W0m5dIu1kQ1kZa+31REQntOtzIgpysH/zOftH+aaPaTthERFpiYEDB9vtdrvN4Wi0DBgwsLH565VXXsj44YdvEwCmT3+o519//Rl7yCGHVd100+3r3n//syVpaemNP/74XSKAxWJp06ls7777Zs+TTz59/a233rX2lFPOKB03bo+6goL8CO9mT/nnmYMHG3aAoqKisE1fwyeffJDy0UfvpwAMGDCwfvnypZvNd16+fMlO1wbl5eVENb+xB5g37+/YsLAwT9++/Rvfffet1Li4eOezz7688sILLyk66KCDq0pLS0LBt5YHIDOzd4NpLt/sOffdd2fvK6+8ZOP0p/33n1Rx2GFHVE6YsG/5I4880K+6utoK0K9f//otr128eMEOYx40KKvBZrN5582bs9lrXbBgXmx8fIIzISHRHRrqSzqrq6ttzefXrMkN31lfbGrw4Kz6wsL14WVlpRsHORYtmt9ma61anZwYhhFiGMZkwzDuMwzjbcMwvjQMY4ZhGHcbhrGPYRja3k0EKCvzjdzGxG3zw542U91vGF5bCIluD/2jorWdsIiItMikSQdV9e3bz37bbTcO/O23X2JzclaHP/DAPb1+/PG7lOapWAUFBeGPPvq/Pr/99kvsunVrwj7//NPE0tKS8JEjR9UCREZGeurq6mzZ2avCnU7nLr8HTE5OccybNyfONJdHrFq1MvyRR/7X86+//kxwOp0b37NGRkZ6iouLwgsK8kOHDBnWsNtu46umT3+w7zfffBmfl5cb9sILz6R/+OF7GZmZmY0Ap5561oY1a/Ii77//nl7Z2avCP/ro/aQvv5yZuv0ofMrKysJuueW6fitWLIv44ovPEt5887Wexx77f0Xh4eHetLR0R3l5WdgPP3wbt27dmrAvv5yZMH36w30BHA7flLhTTz2j8I8/fkt85ZUX0nJzc8I//fSjxG+++TJ1330nVm75rGuvvWmdw+GwPPjgvb3BN50uN3d19IMPTsvMzl4V/tVXnyfMmPFKJmw9MtIsPj7ePXnyoaVvvPFq5scff5CUk7M6fMaMl1O//vqL1OOO+78ii8XCkCHD7BEREZ6XX36+R07O6vBZs36PefHFZ3tt757bcuSRx5bHxcW7brrp2v5LliyOnDXrt5gnn3yszQq6tTg5MQwjzDCMqUAO8A1wIZAFxABjgUuBX4F1hmFcbhhGq7Iwka6k4rtvmdjQyNCYWGLi2nfNiScsgurevmlc+yenaORERERaxGazMX36MysHD86qu+ee2wacf/4ZwxYtWhB78813rG6esnXTTbevGTVqTM20aXf2P+OMk0a89tpLmWeddV7+ccedUA5wyCFTKhISEp3nn3/m8EWLFuzyDjA33XR7bmNjo/Xii88bOnXqv4fk5eVEXnLJFWtqaqpD1q7NCwM4+uh/laxbtzbi3HNPG+52u5k27eGcvffet2L69If6nn32qSO++ebLlEsvvXLNCSecUgYwcuQo+913P7Bq8eIFseeff+bwDz54J/2EE07Z6da348fvUWmz2byXXnrB0CeeeKTvlClHFl966dT1AGeeeW7xhAn7ld9//z0DzjnntOGvv/5qj7PPPr8gJSXVsWTJ4mjwrZ+57LL/rPn8809Tzznn1OGvvvpi5gUXXLz2//7vpLItn5WSkuq64IJL8n/44buUn376Pm7o0OENt9xyZ/acOX8mnH/+GcNfffXFnocfflQxQGho2HZHq2644da1RxxxdPFLLz2Xee65pw2fOfOTtIsuumzt+ef/uwggNjbWc911N+cUFKyLPPfc04ZPn/5Qn4suumxda5KT6Ohoz/TpT5shISHeqVP/PeS+++7qf+KJp25o8Q12wuL17nw0zjCMPYBXATfwBvCuaZqrt9FuJHA4cD5gAc4wTXNWWwXbRnLcbk//8vK6Nr1pSIiVxMRoKirqcLk6zXTTTqkz9HX+w/+jftlSnspdzchL7yM5tWe7Pi9mrUmfH9+h3OHgf7XVfPDhzF2+Z2fo565A/RwY6ufAaM9+TkqKxmaz5gID2vTGfpg7d+4Qq9X2VVpaZm1YWETDzq8QaZ358+dGhYSEeEeOHG1vPvbxxx8kPfrog/2+++7Xec21VjoLh6Mhori4IMbjcU8ZN27cih21bekrmwFcb5rmRztqZJrmYmAxcL9hGCfiS2iyWvgMkS6jcYPvA5nCxgb2bueRE4C6zIG4QsNIAmIqK/B6vdsd9hUREZGObcWK5VEvvfRcr2uuuSF32LDh9ry8vPAZM17uuc8++5Z3tsSktVr66kaapulozY1N03zXMIyPWx+SSOfmcTpwl/t2Diz3QHh4ZLs/02sLobrPEJJWL2L3mDjKykpJSdnpdFoRERHpgE4++bTSsrLS0KeffrxPRUV5aFxcnGu//Q4ov+yy/xQEO7b21qLkpLWJya5eJ9KZOUtKAKh3ufDExAXsuTUDRhK+cj52j5v8/HVKTkRERDopi8XCZZddWXjZZVfudG1MV9Oi5MQwjFtbc1PTNO/0LxyRzs9Z5FsTtr6xgZjYhIA9ty6jP8/VO1iVv5bh6/MZM2a3gD1bREREpC20dFrX7Vv87MW34N0NlAKJQBjgAMoBJSfSbTmKigDY0NBAdEJG4B5stRKTmA7A+vVdftRXRCSYPIB3y8J+IrJtTX9XvLDzIqUt2krYNE1r8xdwMFAGnAxEmKbZwzTNCHy7dJUBV/kduUgX4K6qAqCosYHYdq5xsqWEZF9yUrd6NR6HZlWKiLSTDV6v1+lwNOzy1rki3YHD0RDl9XqdwE6nqfmz3P8J4BbTNN/d9KBpml8ZhnEzcA/wth/3FekSUk86hWeWLuTL+XPYe1z779S1qcSUDG7NGsqIklLsSxcTPXZcQJ8vItIdjBs3rnru3LmvVVdXXAwkh4VF1Ld1pXSRrsDr9Vocjoao6uqKMK/X8+K4ceNqdnaNP8lJH2Dtds6VAOl+3FOkSyksK6Pe7W73AoxbSkzOYHV9HSPi4qmZM1vJiYhI+7nX7XZRWVl2psViicI33V1ENuf1er1Or9fzInBvSy7wJzlZCFxuGMZ3pmk6mw8ahhEBXAvM9uOeIl1KaWkpADEBntaVmJzBB+WlHJPRk5r580lrsGONaP+tjEVEuptx48Z5gLvnzp37mNdLD1o4VV6km/EAhS0ZMWnmT3JyA/A1sNowjK/4Z7TkcCAamOjHPUW6BFdNNRteeJaDvV5WQsBHTqJjE8h3uVnfYKcnUL9oITF77BXQGEREupOmN10tfuMlIjvW6izfNM2fgQn4RkiOAq4GDgO+A8aZprmgLQMU6UycJSXUL13K8KbRikAnJxaLhcTkDGaVlwFQM+/vgD5fREREZFf4M3KCaZrzgBPaOBaRTs/VNJ2ruLERi8VKdEx8wGNITOnB7OxFHN+zF7ULF+JpaMAaERHwOERERERay6/kBMAwjMPwbSvcA7gRGAvMNU1zTRvFJtLpOMt8yUlJYyPRsfFYrbaAx5CYnMGfi/+kymoj3unEvmwJ0buND3gcIiIiIq3V6mldhmFEGYbxDfA5cC5wIr4ijBcDcw3DGN62IYp0Hs7SEgBKHI0BXwzfLDHFV/jxC4cH6zmXEb+7EhMRERHpHPzZWeJeYBxwEJDCP1vnnQEUAHe1TWginY+z9J+Rk0CvN2nWXIhxVmkRpYm9cXq0u6WIiIh0Dv4kJycBN5im+SO+MvQAmKa5Abgb2LeNYhPpdJqndRU7gpecJCb3AKCidAPl1XZq7U5sNu1wKSIiIh2fP2tOEoC87ZyrAGL8DUakM/N6vXgdDsA3cmIEaVpXQnIaAI0N9djz17Bh6U844iNJ/r+TghKPiIiISEv583HqEuC07Zw7qum8SLdjsVgY+L9HeCEutmnNSXBGTsLCIjaud7EXr8M76ycqfvoRj9MRlHhEREREWsqf5ORu4AzDMGYC5+Ob2jXRMIzHgUuAB9owPpFOxWqFDWVleAl8jZNNNS+Kz3M4cUXH4WlooGHFsqDFIyIiItIS/hRh/AQ4HRgFPI1vQfxD+Oqe/Ns0zffbNEKRTsRisVDatGNXsHbrAt92wgAVZUVU9RkCQO1cFWQUERGRjs2vVbKmab5pmmYfYCi+BfAjgJ6mab7YlsGJdCbVf/3J2of+xxivb5+IjjByUlG2gZq+Q33xzZuH1+UKWkwiIiIiO9PqBfGGYfwAXGKa5grTNM0tzo0CXjdNc1RbBSjSWTSuXUvt4sWk2nyFF4OanGyyY1d9am9cUTGE1NdiN5cTNXxk0OISERER2ZEWJSeGYezLP6MsB+BbY5K2jaZHAgPbJjSRzsVVUQFAucNBWHgk4eGRQYtl05ETrFaqew8hyfyb2rlzlJyIiIhIh9XSkZPzgTPxLX73Ak/hW2vi3aRNc6W3N9ssOpFOxFVRDkCZwxHUURP4JzmpqijG7XZR3XcoCeuzsSUEbx2MiIiIyM60NDmZCryMLwH5AbgU2HLrHzdQCSxtq+BEOpPmkZMyp4OYpIygxhITm0hIaBgup4OqihJsGf1Yd+pV9BnTC6vVgsfj3flNRERERAKsRcmJaZpVwM8AhmFMAuYCMU1V4TEMIxHobZqmapxIt+T1ejeOnJQ7HKQGeeTEarWSkJROadE6KsuKSErpQV2Di4qaBuKjYvF43EGNT0RERGRb/NmtayHwEfDTJsf2BBYYhvGxYRhRbRGYSGfiqa3duBNWudMR1G2Em23cTrh0w8ZjRSXV1KxYgderkRMRERHpePxJTqYBw4EbNzn2A3AMMB64sw3iEulU3LU12KKjsVutuL1eYoM8cgKbLoov9B3weIh4+j7W3ncPjvx1QYxMREREZNv8SU6OBq42TfPD5gOmaTpM0/wMX8JyYlsFJ9JZhPXoifHk0zzd9HOwF8TDNkZOrFbsib5j9QvnByssERERke3yJzmJBSq2c64ISPE/HJHOy2KxUFxeBvgWpAfbZtsJN6nu66sWX61q8SIiItIB+ZOczAPO2865c4BF/ocj0nlZLBbKSksAiInvAGtOUrZec1LTKwuvxUrjunU4S4uDFZqIiIjINrW6QjxwN/ClYRh/41sYXwyk4ltzMg5fIUaRbqX04w9ozM1lAF7m0zGmdSU0Teuy19dgr68lMioGT3gk9Rl9iS7MpX7BfOInHxrkKEVERET+0eqRE9M0vwWOwleA8U7gWeAufInOMaZpftWmEYp0Ag2rV1O3dAkxVhsWi5XomPhgh0R4eCTRsQkAVJYVbTxe3dsAoGbevGCEJSIiIrJd/kzrwjTNL03T3B2IBnoBcaZpjjNN8/M2jU6kk3A21zhxOoiOjcdqtQU5Ip+Ni+Kbd+wCavr4kpP6VStxVVcHJS4RERGRbfErOQEwDGMocCFwOZBgGMa+hmHEtllkIp2Iq6IS8BVg7AhTupr9syj+n5ETV3Q8RXtNIeGqGwhPDP4Ij4iIiEizVq85MQzDBjwDnAtY8E3veg+4DRhgGMZE0zTz2zRKkQ7M09CAt7EBgAqng14doABjs4TkdGDzRfEAZcYelMckkWmz4narWryIiIh0DP4siL8ZOA04H/gcaH7X81/gU+Ae4KyW3swwjDTgIWAKEAn8DFxjmuaypvNjgMfwFXgsA6abpvmgH3GLtAtXVaXvu9VKg8fTsUZOknsAm28n3Ky8uoFGp8f/4VMRERGRNubP+5JzgVtN03wZX7IAgGmai4BbgYNbeb9PgYHAYcDugB34zjCMKMMwkoFvgZX4kpPbgLsMwzjHj7hF2oWrqgoAu9X316kj1Dhp9s92woVbnWs0V1Dw3LPUL9Hu3yIiItIx+DNykg4s2M65fKDF78yako9c4G7TNJc2Hbur6f7DgclAI3CxaZouYLlhGIOB64CX/YhdpM15GxuxRcdQba8HILYD1Dhp1rwgvrK8GI/HvdlC/fA1Jvals6ixeokaMSpYIYqIiIhs5M/ISTZw+HbOHdB0vkVM0ywzTfOUTRKTdOBqfEnOMmA/4JemxKTZD76mRpofsYu0ueiRoxjy1NO8UO9LTjrStK64hGSsthA8bhfVlWWbnavp46sWX7NgIV6Xa1uXi4iIiASUPyMnjwLPGoYRBnyGb0H8YMMwJuFLLK7yJxDDMJ4DLsA3UnK0aZp1hmH0AhZv0XR90/c++ApA+iUkpG1n2tts1s2+S/vpiH1ts1koKysFIC4+CavVEuSIfKzWEBKT0ykrLqCyfANJKekbzzWm98YdGQP2WhyrVxI9fMRm13bEfu6K1M+BoX4ODPWziOyqVicnpmm+YBhGKnATcDG+HbveAhzAA6ZpPuNnLI/iK+h4MfCxYRj7AlH4kpVNNTR9j/DzOVitFhITo/29fIfi4iLb5b6ytY7U1y6Xh4oK38hESlo6kZFhQY7oH8lpPSkrLqC2qniruOr7DyV22Rwalyyk1757bvP6jtTPXZn6OTDUz4GhfhYRf/mzlXCiaZr3GYbxJLA3kAxUAn+aplnubyCb7M51YdN9L8O3OD58i6bNSUmdv8/yeLxUV9f7e/k22WxW4uIiqa6243Z72vTesrmO1teFr7yMfcMG+oWEYAIhYTHY7Y5gh7VR87qTDQVrt4qrsudgYpfNoXT2HBJPPBWL5Z8Rn47Wz12V+jkw1M+B0Z79HBcXqREZkW7An2ldfxmGcbNpmu8AX+/Kw5vWjRwEvGuaphvANE2PYRjLgExgHdBzi8uafy7YlWe7XO3zn5Pb7Wm3e8vmOkpf161ahaMgn3CrlbDwSELDIvB4vMEOa6PEFN9fmdKi9VvFVZvRD09IGK7ycupz8wjv03er6ztKP3d16ufAUD8HhvpZRPzlz0cQiUBpGz2/J/AmMLH5gGEYocBu+BbE/wLs11T4sdlBgGmapt/rTUTaUnOdkwpnx6oO3yw51ZeclJdsnc97bSHU9hyANT0D7H4PRoqIiIi0CX9GTh4D/mcYxn+BJaZpluzC8xfiG315yjCMC4AKfGtZEoFH8K0vuRZ40TCMB4A9gCuBf+/CM0XajNflwlNbC0Cl00liB6px0iwpLROA8tJCPB4PVuvmn0kU7HccoX1Tic5KxeVStXgREREJHn+SkzOBvsB3AIZhbHnea5pmi+5rmqbXMIyTgPuAd4AE4FdgP9M01zbd/1BgOjAPKMRXPf5VP+IWaXOual8BRo/FQq3LRe/4jpecJCSlY7XacDkd1FSVEZ+Yutl5b0golTUN2B1uwmzg7Tgz0kRERKSb8Sc5eb0tAzBNswq4pOlrW+fn4FsgL9LhuCp9yUmjzYYXiInrOAUYm9lsNhJTMigrLqCsuGCr5ASguraRqqpakq0OLB2oiKSIiIh0L/4kJ7nAD6Zp5rd1MCKdjbtpvUlt088xHXBaF0BSqm874fKS9Qwwxmx1Pip3OWWv30ejYZB55X8DH6CIiIgI/i2IfxgY39aBiHRGXqcTW0wMFU0V1mM74LQugORU37qTspL12zzfmJCCxemgbvky3HZ7IEMTERER2cif5KQY39oQkW4vdo89GfrUM7xY7ivx05FHTgDKt5OcOOJTcMQng9tNw7IlgQxNREREZCN/pnU9DzxpGMYkYAlQtGUD0zRf29XARDoLL17Ky327a8d00PUayWm+5KRsG9sJN6vulUVK1SxqF84netzugQpNREREZCN/kpOHmr6fsZ3zXkDJiXQbDoeL6qa1Jx2xzglAUtO0rorSQjweN1arbas2Nb0NUpbOombBAtJcLggJC3SYIiIi0s35k5z0b/MoRDqpwueexl5RTt+ICNY0NBAdEx/skLYpPjEFW0gIbpeLqopSEpPTt2pjT+2FOyIK6utpyMkmdNiwIEQqIiIi3VmrkxPTNNc0/9owjCggDigzTdPZloGJdAb2VStxVVRgs1iIjo3f5ohER2C12khM6UHphnWUFRdsMznBaqUmczAJqxdSt2A+sUpOREREJMD8WRCPYRj7GYYxC6gGCoAGwzBmNa1DEekWvB4PrupqACqczg47patZ845d5TtYd1I5aDSNBxxOwoEHBSosERERkY1anZwYhjEBX3X4BOAufMUT7waSgK8Nw1DBROkW3LW14HYDUOVydtidupo179i1ve2EAeoz+lEybAKuxFQslkBFJiIiIuLjz5qTu4FfgUNN03Q3HzQM4w7ga+AO4JC2CU+k43LX+EZNHCEhuL3eDrtTV7Pk5u2Ei7efnADU1DuornWQEB0diLBERERENvJnWtcewGObJiYApml6gMebzot0ee6mKV32piGGzjNysv1pXQA4HBT//DOF77wTgKhERERE/uFPclIDhG7nXBigySDSLTSvN6lxewCI7eAjJykZvQGoKN2Ay7n9/StszkbCPn2TkpkzcVRUBCo8EREREb+Sk9+BGw3DiNn0oGEYscAN+KZ8iXR9bje2mBgqnA6g49Y4aRYbl0R4ZDRer4eykvzttnNFxWJP6QleLxV/zw1ghCIiItLd+bPm5HpgLpBjGMZMYAOQARwJRADntF14Ih1X3IR9SDlgIpcedADQ8ad1WSwWUtN7k5+3gpIN60jvuf2SRTW9sogsXU/Z7Dn0GK89LkRERCQwWj1yYppmNrA38CNwOHB10/cfgb1M01zUphGKdGBer5eKijKADr8gHv6Z2lW6Yd0O29X0NgCoXLAQT2Nju8clIiIiAn7WOTFNcxkw1TTNDNM0w4BhwD1Nx0W6jZq6Whob7EDHn9YFkJruS05KinacnDQmpuGMScDrdFK/XH+tRUREJDD8qXOSYBjGt8BPmxzeA1hgGMbHTVXjRbq8wuefIf9//6N/VDShYRGEh0cGO6SdaunICRYLNb2zAKiZP6+9wxIREREB/Bs5mQYMB27c5NgPwDHAeODONohLpMOzZ6/Ck5tDiMXS4Xfqapaa3geA0uJ8PB73DtvW9vFN7XJUVbV7XCIiIiLgX3JyNHC1aZofNh8wTdNhmuZn+BKWE9sqOJGOyuv1bqxzUuns+NXhmyUkp2ELCcXtclJZVrzDtvUZfSm78CaSL56K1aodwkVERKT9+ZOcxALbK35QBKT4H45I5+BtbMDbVCuk2uXsFOtNAKxWGylpvQAoKVq7k8Y2akOiqKxpxGbza3maiIiISKv4845jHnDeds6dA2i3LunyXFW+UROXxUKjx9Mpdupq1rzupGTDTpKTJkXldTjr7e0ZkoiIiAjgX52Tu4EvDcP4G/gIKAZS8a05GYev3olIl+au8SUndqsvv+8s07oAUjOa1p3sbFE8gNeD9Y1nWZm/mv533UtoWno7RyciIiLdmT91Tr4FjgK8+Ba/PwvchS/ROcY0za/aNEKRDsjVtN6kxu1bVB4b35mSk5ZtJwyAxYrL6QS3m/pFC9o3MBEREen2/K1z8qVpmrsD0UAvIM40zXGmaX7eptGJdFQuF7bYWModDqBzjZykpP+znbDX691p+9qmgow1C+a3a1wiIiIi/kzr2sg0zQZgfRvFItJpxO6xJ8n77sN5++wJQExc51lzkpyaidVqo7GhnurKUuITU3fYvrZ3Fumzv6J+5UrctbXYYmICFKmIiIh0N9qCR8RPLreLqirfxnUxnWhaV0hoKCnpvh27igpyd9reGZtIY2IaeDzYly5u7/BERESkG1NyIuKnsrIyvB4PFouV6Jj4YIfTKumZ/QHY0ILkBKC6l69afO0CVYsXERGR9qPkRMQPG15+keLp0xkcHUNUTDxWqy3YIbVKc3JStL5lyUlNU7X4mkWL8TTVdxERERFpa7u05kSku2pYnY1lQyFhVmun2qmrWXrP1iUnDck9qR04kszxo7Cy80X0IiIiIv7wKzkxDCMFuAY4GOgBHAocBywwTfOTtgtPpGNq3kq40unsVDt1NWseOSkrKsDpdBAaGrbjCywW1u57HKlDMwiLjsThcAcgShEREeluWj2tyzCM/viqwF8I5ANp+JKcLOADwzCOaNMIRToYr8uFp74OgGqXs1NVh28WG5dEZHQcXq+HksI1Lb6uuKIOl0cjJyIiItI+/Flz8hC+qvD9gX8BFgDTNE8DPgVubLPoRDogV00NAB6g1uXqlCMnFouF9J79gJZP7QKoKSyh6JtvcRRqB3ERERFpe/4kJwcBd5mmWQlbTT5/Fhixq0GJdGTuGt+ULrvFgheIiet8yQlARuYAAIoK8lp8TcwvM6l4cwa1s2e1U1QiIiLSnfm7W5drO8fD2TphEelS3NVVANS4fesuYjvhtC6A9Mx+QOtGTqqbq8XP05bCIiIi0vb8SU5+BW4wDCN6k2NewzCswMXA720SmUgH5XW6sMXFUeFwAHTKaV3wz45dGwpy8Xpb9plCba/BeK1WGtcX4Cwuas/wREREpBvyJzm5HhgKZAMz8I2UXA3MBfYFbmqz6EQ6oJixuzH0iSe5L9v0/dxJp3Wl9uiL1WrDXldNVUVJi67xhEVQn94XgPqFC9oxOhEREemOWp2cmKa5BBgP/ABMAtz4thTOBiaYprmgLQMU6Yjq6upoaLADdMrdugBCQ8NIa1oUv37tyhZft3Fql6rFi4iISBvzq86JaZqrgNPaOBaRTqOkpBSA0LAIwsMjgxyN/3r2GcyG/NUUrFnFsDH7tuia2t5Z8NdX1K9cibumBltsbDtHKSIiIt2Fv0UYLcAYIJptjL6YpvnLroUl0nEVzXiFquxshsbEsiEiJtjh7JLMPlnM++Mr1q9d1eJrnDEJNCZnEF5RgmNtHpHDR7ZjhCIiItKdtDo5MQxjD+A9oFfTIUvTd2/Tr72ArU2iE+mAGnJysBXkE2Gzddr1Js169hkMwPp1q/B4PFitLZvpmb/PMWSNHEBcVk+cTlWLFxERkbbhz8jJI4ATOBtfhXhPWwYk0tG5muqcVDqdxMZ1zvUmzdJ69sUWEkqjvY6K0kKS0zJbdF1jYjpljRacbv31FxERkbbjT3KyG3CyaZqftHUwIh2d1+PB3VQhvtrpJLWTLoZvZrOFkNFrAAV5JgVrV7Y4OQGorGmgrsFFTJgV78YBVBERERH/+bOVcDEaLZFuylNfD03FF6tcTmI7+bQu8K07AVq17gTAkmNSOO1uime82h5hiYiISDfkT3LyJHD9FkUYRboFd9OUrgbA5fUS08mndQH0bEpOCta0fDthHwuetblUz5uL16PPK0RERGTX+TOtazAwDNhgGMZSoH6L817TNA/a5chEOiBXtS85qWkaPYnt5NO6AHr199UtWb92FS6nk5DQ0BZdV5fRF09YBNTU0JCzmshBg9szTBEREekG/Bk5GQQsAP4G7Ph26Nr0y597inQKXqcTW1wcZY2NAMTEdv5pXcmpmUTFxON2OVm/rhVTu6w2anoNAqB+0fx2ik5ERES6k1aPnJimOak9AhHpDKJHjGTgw49y/JhhQOetDr8pi8VCnwHDWbHoD9bmLKXPgGEtvramt0F8zhJq5s0j+V8ntmOUIiIi0h1olEOklcrLywCwWm1ERccFOZq20WegLyFZu3pZq66r7TkIr9WGY8MGHBvWt0doIiIi0o20aOTEMAw3sLdpmn8ZhuHBV2hxe7ymafpVeV6kMygpKQYgOi6hxUULO7q+A0cAsDZnaauKMXrCwqnv0Y/ogtXUL5hP2JSe7RmmiIiIdHEtTSLuxFdwsfnXO0pORLqs4rffwLFkMaPi4intAjt1NcvoNYDQsHAa6mspLVpHWo++Lb62st9wImOjiejbr/0CFBERkW6hRcmJaZp3bPLr29stGpEOriEvj/ANG4i02rrENsLNbLYQevUbQu7KhazJXtKq5KRq0BhCd9+bwUN7tGOEIiIi0h20dFrX/q25qWmav/gXjkjH1lznpMrlJKYLFGDcVL/Bo8hduZAccz6773dEq66tqmmk1u4iKSYMt1s1T0RERMQ/LZ3W9RP/TOWybKeNt+mcF7DtWlgiHZO7qc5JldNJehcaOQEYOGQsP34+g9yVi/B43FitLV865nR5KFqVR5inmsgxu7VjlCIiItKVtfTdh7YPlm7P43TisdsBqHY5iYnvWiMnPfsMJiIyhgZ7LevXrqLPgKEtvjasqhRefYr8kFAGPvo41oiIdoxUREREuqqWrjn5ub0DEeno3DU1vu9eL3VuN7FdbOTEarXRP2sUyxf+weoV81uVnDjiknHGJhJaU4F9+RKix45vx0hFRESkq/JrH1TDMFIMw7jfMIx5hmEUGoYxyjCM2wzDOKatAxTpKJrXm9S43QBdakF8swFDxgKwesW81l1osVDd2wCgdl4rrxURERFp0urkxDCM/sAi4EJ82wun4RuByQI+MAyjdStpRToJr8OBLS6eckcjQJdbEA8wcIhvvUh+7goa7HWtura6r2+kpWbBfDxOZ5vHJiIiIl2fPyMnDwHFQH/gXzQtkDdN8zTgU+DGNotOpAOJHJxF2h13cv2yxUDXTE6SUnqQkt4bj8fNyqVzWnWtPbUXrqhYPHY7DebydopQREREujJ/kpODgLtM06xk62KMzwIjdjUokY6qtLQEgMjoOEJCQoMcTfsYMmovAFYsnNW6Czed2jVfU7tERESk9fxacwK4tnM8HFWPly6sOTmJ7YKjJs2GjJoAwMqlc3A6Ha26tqbvEADqli7B69U/BSIiItI6/iQnvwI3GIYRvckxr2EYVuBi4Pc2iUykgyn98H1CP/iA3RMSiYnveovhm/XsM5jYhGQcjXayl7VuBKQuvS8lU04j7da7sdn8/exDREREuquWV1n7x/X4EpBs4Ed8IyVXA8OAQcB+rbmZYRhJwL3AkUAcvsX215um+VvT+THAY8B4oAyYbprmg37ELbJLGtauJaq0lGhbCI4uuFNXM6vVypCRezPn15ksnvsr/bJaUVTRaqMkfSDVDi8JNisej7v9AhUREZEup9UfbZqmuQRfovADvuKMbuBgfMnKBNM0F7Tylm8DewEnA7sD84BvDMMYYhhGMvAtsLLpmbcBdxmGcU5r4xbZVc1bCVe5nF1yMfymhu/m+4xh0d+/4HA0tPr6DaV1eLxoapeIiIi0ij8jJ5imuQo4bVcfbhjGIHyJzT6maf7RdGwqcBhwKmAHGoGLTdN0AcsNwxgMXAe8vKvPF2mN5uSk2ukkrQuPnAD0GTCcxOQMKso2sGLhLEaMO6BV17t++obsV5fQ49zzieg/oH2CFBERkS7H3yKMAwzDGNb06wTDMJ40DONTwzDOaOWtSoEjgLnNB0zT9OLbnjgJ3xSxX5oSk2Y/+B5rpPkTu4g/vF4v7up/Rk668oJ48E3tGr3HgQDMn/1d62+woQBn4Xrq5s/deVsRERGRJq0eOTEMYwrwCfA4vrUmzwDHA4uBVwzDCDNN88WW3KtpO+Ivtrj/CcBA4Gvgnqb7bmp90/c++Oqt+CUkpG0X6zYv/tUi4PYXjL522+14Xb4cudrlIi4hGavVErDnB8PYvSfz05dvkrNiAdWVJSQktfzzgNp+Q4nPW0rN3L9JO+FELJau3Ve7Qv92BIb6OTDUzyKyq/yZ1nUr8A1wh2EY8cBxwH2mad5qGMbdwFSgRcnJlgzD2Ad4CfjENM3PDMN4BN+0rk01T4CP8OcZAFarhcTE6J039ENcXGS73Fe2Fsi+tjf4Rk3sbjcOj4eU9HQiI8MC9vxgiOzVl0FDx5K9fD7z/viCI064sMXXugcPw/trCI6iIsKry4ju17cdI+0a9G9HYKifA0P9LCL+8ic5GQ0cbZpmjWEYJzbd4/2mc98C//UnEMMwjgHeBP4ETmk6bMdXO2VTzUlJnT/PAfB4vFRX1/t7+TbZbFbi4iKprrbjdnva9N6yuWD0dUNRBba4OCqKiwAIDYvBbm9dDZDOxmq1sN/B/yJ7+Xz+/Olz9j34ZMLCW/qZgIW6zIHErDVZ/9OvpByT0q6xdmb6tyMw1M+B0Z79HBcXqREZkW7An+TEvsl1hwFFpmkuavo5A6hs7Q0Nw7gM33bBHwKnm6bZPFqyDui5RfPmnwta+5xNuVzt85+T2+1pt3vL5gLZ1yGZvYn479VcecQhhIZFEBoWicfT9XeiGjJqL5JSelBeWsi8Wd+wx/5Htfjaqt5DiFlrUjXnbxKOOKYdo+wa9G9HYKifA0P9LCL+8ucjiN+Aqw3DOAU4EV9CgWEY4/Bt9ftba25mGMbF+NavPAGctEliAvALsJ9hGLZNjh0EmKZp+r3eRMQfG6vDd+ECjFuyWq3sPelYAH779r1WVYyv6Z2F12qlMX8dzuIN7RShiIiIdCX+JCf/ATKBN4Bc4O6m45/jm3J1fUtvZBhGFr4Rk4+A+4A0wzAymr7i8a0/iQNeNAxjmGEYZwNXNrUVCajm5KSr1zjZ0m77TCEuIYXqylLm/v7Fzi9o4gmPpKbvUML3mIDVqqkYIiIisnP+FGHMBYYDPUzTHGGaZvNHoscCQ03TXN2K2/0fEIpvUX3hFl+PNY2OHAoY+Ioz3gZcY5rmq62NW2RXlH8xk4Qvv2KfpGRiu3iNky2FhoYxccqpAPzy9TvY62tafG3+/sdTd+gJhPfo0V7hiYiISBfibxFGL1C0xbE/DcOINgxjkmmaX7XwPvcC9+6kzRxgb3/iFGkrjevWEltZSVxIKO6E5GCHE3Bj9prMrB8/orRoHd9/9ipHnnRZi68tq26gweEmRLsJi4iIyE74U+ekL/AsMBHY3l6qtu0cF+mUXDW+0YJql5O4+O6385TNFsIRJ13Kq9Ov5+/fv2TU7pPoM2B4i66trLZTbq4iPhTCBw5u50hFRESkM/NnIvgjwATgOWA+8DvwILAI8OKboiXSpWysDu90dqsF8ZvqP3gUY/acDF4vH7zyAPV1LZveFWvOp/LBeyh+9+12jlBEREQ6O3+Sk4nAzaZpTgVeBhpN07wOGA/8DGjPUOly3DW+5KTa5SK2G07rajbl+H+TlNqTqooSPprxIG63e6fX1PQajBcL9tWrcTZtKiAiIiKyLf4kJzHAgqZfLwPGAJim6QaeBA5si8BEOgqvx4O7thbwjZx0x2ldzSIiozjhnBuwhYSyaukcZr7zOF7vjuu9uCNjsGf4KsTXzZ8biDBFRESkk/InOSnEV2wRIBtIMgyjeSueciC9LQIT6SjctbXQ9Aa8xtV9p3U169F7IP939nVYLFbmz/qGme88sdMRlKq+wwCo+euvQIQoIiIinZQ/ycnnwF2GYUwwTXMdkI+vKGMscC67WLldpKPx2O0QE0Ol00F4dCyhYeHBDinoho6ewNGnXgEWC3N//5J3XrgLe33tdttX9x2C12LBnpuDs0RTu0RERGTb/ElObgUqgTubfr4RmNp07DTgobYITKSjCEtPp/zkU7hw4Tzi4rvvepMtjd3rEE4890ZCQsNYueQvnrn/MtasXrrNtu7IGOoz+gFQN//vAEYpIiIinYk/RRjLTNPcEzij6ec3gAPwVYY/0DTNZ9o0QpEOoLjYV9YnVsnJZoaN2Ydzpj5AYkoPqsqLefnRa/jkjUepq6naqm1VP9/UrrqlSwIdpoiIiHQSfhVhBDBNs9AwjCFAIlBomub/2i4skY5Fycn2ZfbN4qJrH+frj55j/qxvmP/nNyxf+AcTDzuV3fc7gpCQUACq+w4jMiOD/odOCHLEIiIi0lH5M60LwzDOMwxjDbAU+A1YaRhGnmEYp7RpdCIdQMV33zJ0wQImpaR2622EdyQiMopjTr2S8656iIxeA2mw1/L1h8/x1L0XYy6ejdfrxRMeSXFiL2oa3YSE+PVPj4iIiHRxrX6HYBjGZcDzwFzgLOAw4BxgOfC6YRgntGmEIkHmWJ9PakMjSaFhWnOyE737D+XCax7lqFOuIDo2gfKS9bz13B289sRNbCjIxe32sqG0jh1vPiwiIiLdlT/TuqYCT5imecUWx18zDOMF4HbgvV0NTKSjcG1SHT5VIyc7ZbXaGDdhCsPH7s9v377DrB8/InflAp69/3J22/sQLszKYmX+Kvpccx2h6Rk7v6GIiIh0G/7MregFfLadc28BA/wPR6TjcdfUAFDl6t4FGFsrIjKKyUefw2U3Pcewsfvi9XqY+8dXrJv1Pe7KCmrnzgl2iCIiItLB+JOczAEO2s65scAi/8MR6Xhc1b6dp6pdLq058UNiSgYnnnsj50x9gB69B/F7aTEAyz/+kIqKiiBHJyIiIh1Ji6Z1GYax/yY/vgU80lR08V1gA74du6YAVwAXtXWQIsHUPK2r1uMhKjouyNF0Xn0HjeCCqx9l0c+f4MpbSApWrjjtBG56eDpDhgwLdngiIiLSAbR05OQn4MemryeAMOBi4AdgGfA7vuKMCcDbbR2kSLB4HA5obATAGx2H1apdpnaF1WplzKTjqEzrDcAw4JxzTufXX38ObmAiIiLSIbR0Qfykdo1CpIPy2OtxRUbiqq0lJDYx2OF0GQ1D94RfP+Sgnr14Z30+U6dezF133c8RRxwV7NBEREQkiFqUnJimqY81pVsKiU9g0T77MG3a3Qwfu2+ww+kyanpn4QkNI8Hp4NwpR/DSV59zyy3XYbVaOOywI4MdnoiIiARJi+aoGIbxi2EYY1pzY8MwxhuG8ZtfUYl0IM3V4WNU46TNeEPDqBg8lrD9DuTSa67juONOwOPxcNNN1/L9998EOzwREREJkpZO63oM+MowjL+B14FPTdOs37JR0yL5Q/Etih8LXNJWgYoES3NyogKMbato90OJ6BHHwPQ0brnlDrxeDx9//AE33ngNzz2XyujRY4MdooiIiARYS6d1fWAYxs/4Fr2/AIQYhrEMyAXq8C2E7w2MAJxNbU43TbOoPYIWCZTKX37iwA1FOFPTidY2wm2uvKqB2gYX0WE2brnlTsrLy/jll5+48spLeO21d+jdu0+wQxQREZEAavHWQ6ZpljZVhe+Lr0r8SnwJyZ5AMrAcuADobZrmFUpMpCtwrC+gFxaSw8JUgLEd1NQ2UDJvIdW//4LNZmPatIcYOnQYFRUVXHnlpdjtWw3QioiISBfW0mldG5mmWQY82/Ql0qW5qnwFGCudTgZq5KTNRZatp+GLlygMD2fgbnsQFRXNY489zamn/h+rV6/innvu4K67pmGxWIIdqoiIiASAijaI7EBjeRngS07iEjRy0tbsKZk44xLxNjZSv2gBAGlp6Uyb9hBWq5WZMz/hww/fC26QIiIiEjBKTkR2wFFR4fseFk5oaFiQo+mCLBYq+40AoHr2rI2Hx4/fg8sv/w8A999/N6tXZwclPBEREQksJSciO+CtrfV9j4kLciRdV1V/X3JSu3gx7qb+BjjrrPPYZ5/9cDgc3HLLdTidzmCFKCIiIgGi5ERkOzxOJ1aHAwCrthFuN46EVBqSe4DbTd28vzcet1qt3Hbb3cTFxbNs2VJefFHL3ERERLo6JSci2+Gpr6MhNIQGt5swrTdpV5VNoydVf/y+2fG0tHRuuuk2AJ5//mmWLVsS8NhEREQkcFq0W5dhGGe25qamab7mXzgiHUdIfAJvJSTw5ZczOez4C4IdTpdW3X8E6XO/x1VdjafBjjUicuO5Qw89nB9++I6vv/6Cu+++jRkz3sVmswUxWhEREWkvLd1K+JVW3NMLKDmRLqGoqBCAmDhN62pPrqhY8o65iHETxxAWE4nL5dns/LXX3sgff/zGsmVLeeedNzj11FZ9XiIiIiKdREundfVvxdeAtg9TJDgKC33JSVxiWpAj6frs8akUltbh3UZJk+TkFKZOvQqAJ598jKIi1XgVERHpilo0cmKa5pqW3tAwDFVLky6h/IfvuDg+kd9cbuITteYkEEor66mtaSDM0YAtbvMd0v71rxP59NOPWLRoIf/73z08+OD0IEUpIiIi7aXVFeIBDMM4GZgIhAHNyYgViAb2Bnq1SXQiQVS9ejVDYmJZXltDTFxisMPpFryL57PupS+IHzOG9PMu2uyc1Wrl5pvv5JRT/sV3333D7Nmz2HPPvYMUqYiIiLSHVu/WZRjGbcCbwMnAicCxwBHAmcBxwGdtGJ9I0NjLSgBfAUarVQuwA8ERmwB2O9V//427vn6r81lZBieeeAoADz00DbfbHeAIRUREpD35s5XwWcDrQBLwCPCZaZrpwO5AGbC07cITCR5nZSUAnsiY4AbSjTQk98SRmIrX6aRu3pxttrnookuJi4tn5UqTjz/+IMARioiISHvyJznJBGaYpukF5gITAEzTnAvcA5zfduGJBI+3rs73i9iEoMbRrVgsVAwYDUDVb79ts0lCQiIXXngJ4FscX7tJVXkRERHp3PxJTurwbRcMsArobxhGc1GCBfh27BLp9EIaGwCwJmgb4UCqGjASr8WCPXsVjqIN22xz0kmn0KdPX8rLy3jpJVWOFxER6Sr8SU7+wje1C2A14AImN/08FGhsg7hEgsrT2Eiox5eDh2gb4YByRcVSlzkIgNo//9hmm9DQMK666joAXn/9VQoL1wcsPhEREWk//iQn9wInGYbxmWmajfjWn7xqGMYHwEPA120ZoEgweOz1VHo81LlcRCalBzucbqdioG9qV+Xvv+P1eLbZZuLESey++544HA6ee+6pQIYnIiIi7aTVyYlpmr8A44F3mg5dBrwPDAHeA65os+hEgiQkIZHr87I5Z8HfRMenBjucbqe2dxbV4yaSMvVqbCHb3inNYrFw+eX/AeDTTz8iLy8nkCGKiIhIO/CrzolpmouARU2/bgAubMugRIKtoaGB8vJyAGLiteYk0Ly2EPJHTCQtPI5kmxWPZ9tbBo8aNYYDDjiQn376gaeffoL77384wJGKiIhIW/K3CGM8cCC+ootbjb6YpvnaLsYlElRFRYUAREREEqGthIOmsKSW3qkxGyu9bssll0zl559/5Ouvv+Cccy5gyJChAYtPRERE2larkxPDMA7DN30rajtNvICSE+nUyr79hjuHDGcpvulDEhy1q1ax9rt3iDcGk3DIYdtsk5VlMGXKEXz55UyeeOJRnnhCu3eJiIh0Vv4siL8PWA5MBAbi2zp4068BbRadSJA0FOQzJCaW9Ji4YIfSrVnLS2lcOI+KH77f7sJ4gIsvvhybzcZvv/3M/PlzAxihiIiItCV/pnUNAY4xTfPXtg5GpKNwV1UB4I2JD3Ik3Vt136H0mPMVztJS7MuXETV8xDbb9enTl2OPPZ4PPniXp59+nOeeeyWwgYqIiEib8GfkZA2gj5OlS7M0VYe3JKQEOZLuzRsSSuWAUQBU//rzDtuef/6/CQkJ5a+//tToiYiISCfl77Su2wzD6NfGsYh0GBEuJwChyapxEmwVg3cDoHr+PFxVldtt16NHT4455jgA1T0RERHppPyZ1nUakAmsNgyjBKjf4rzXNM2BuxyZSJB4PR6im/aHCkvrFeRopDExDXtabyKL11E763cSphyx3bbnnnshn3zyIbNm/c6iRQsYNWpM4AIVERGRXebPyEk+8DG+Hbm+BH7e4uuXtgpOJBhqizdgs1jweL1EpvcNdjgClA8eC0DFzz/vcGF8ZmYvjjzyGACee+7pgMQmIiIibafVIyemaZ7THoGIdBQb1qyhuLERq9VCSEQUDuf23wxLYFT3G05q9nwSD9gfK168O2h73nkX8dlnH/Pbbz+zdOlihg8fGbA4RUREZNf4U+ekzw5Oe4Ba0zQr/Y5IJMjWN9iZung+g7OGcrpLiUlH4A0JJXvKOcQNTSckPAync9sV4wF69+7DYYcdycyZn/D880/z6KNafyIiItJZ+DOtKw/I3c7XGqDMMIwSwzBubqsgRQJp/foCANIyeuLd0Uf0EnDri2tpbEHCeP75F2G1Wvnppx9YsWJZACITERGRtuBPcnIW4AC+Ac4BDms69hm+6vB3Aq8ANxuGcXHbhCkSOAUF+QAkp2inro6mrLSawm+/p+qHb3fYrl+/ARx66OGA1p6IiIh0Jv7s1nUK8PY21p68bhjG08A40zSPNgyjErgY0DsD6VQyc3K4a8hw6mz+/PWQ9hS2Ppe6797EHhlJ7IT9sEZEbLft+ef/m6+++pwffviW1auzGThwUAAjFREREX/4M3JyAPDmds59CBzU9OvfAG0pLJ1OTH09RkwscRHRwQ5FtlDXcyDO+GQ8dju1f83aYduBAwdx4IGTAXj55ecDEZ6IiIjsIn+SkzJg9HbOjQaqm34dA9T5E5RIMEW4XACEpfQIciSyFYuFsqzxAFR8/x3enSwKOvfcCwH48suZG6friYiISMflT3LyBnCnYRhTDcPINAwjtOn75cDtwBuGYSQCVwJ/tl2oIu2vurqKeJsNgPB0FWDsiCoHjcYTGkZjQQENK80dth0+fCR77jkBt9vNa6+9FKAIRURExF/+JCc3A28DDwNrgYam7w/jS1xuxLdIfmxTW5FOY11eLgmhYQB4YpODHI1siycsgqoBvtolld/veGE8wPnn+0ZPPv74A8rKSts1NhEREdk1rU5OTNN0maZ5LpAFXATchG+3rizTNC8yTdOBr3J8pmmai9o0WpF2VrBqJQBur5fG0PAgRyPbUzZkDwBq5s/DUbRhh23Hj9+TkSNH09jYyBtvvBqI8ERERMRPfm9HZJrmamD1ds5V+B2RSBCVrcmjH2C32dhBnT8JMkdCKrW9B5MYFYrVu+O6JxaLhXPPvZD//OdS3n33Lc4550JiY2MDFKmIiIi0RouSE8MwcoDjTNNcaBhGLr56JtvjNU1Tu3RJp1S6oZDixgZCklNxqjp8h7Zu4glYeiUxMDMNj3vHv1cTJ05iwIBB5ORk8+67b3LeeRcFKEoRERFpjZZO6/qZf3bh+nknX7+0cYwiATNnQyGXLV5A3v6Tgx2K7ITXFkJxeT2VdQ5sth3/U2a1WjnvPN/ak9dffxW73R6IEEVERKSVWjRysmnBRdM0z26vYAzDuBmYbJrmAZscGwM8BozHt43xdNM0H2yvGKR7W7duLQBJqT2pD3IssnP2Rhf5qwtw5SwgYcphWJs2M9iWQw89nCeffIz16wv45JMPOPnk0wMYqYiIiLSEP7t1YRhGrGEYmU2/DjMM4xrDMKYbhrG/v4EYhnElcOcWx5KBb4GV+JKT24C7DMPYsjq9yC6rqamhoqIcgPikjCBHIy3i9eJ9aTqln3xE7ewdF2UMCQnhrLPOA+DVV1/C6XQGIkIRERFphVYnJ4Zh7AGsAS5vOjQduB84HfjBMIyjW3m/TMMwvgTuBrYsWnAh0AhcbJrmctM0XwYeAa5rbdwiO7Nu3Rqu6D+IaSPGEL5hfbDDkZawWCgbvBsA5V9/jdez47UnxxzzL5KTUygsXM9XX30eiAhFRESkFfwZObkHWAE8axhGJL6k5CnTNJOAF/FtLdwauwEVwChg9hbn9gN+MU3TtcmxHwDDMIw0P2IX2a5169YyIDqaAREROF3aqquzqBy8G56wcByF66lfvOPdyyMiIjj99LMAePnl5/HsJJkRERGRwPJnK+E9gZNM08w1DONIIBKY0XTubXzJSouZpvkZ8BmAYRhbnu4FLN7iWPNH2n2A4tY8a1MhIX7NaNuu5gW5O1uYK7uuvfo6f90a9gzz1TZxRsdjtVja9P6djdVq2ex7hxURQWXWOJKW/EHFlzOJ220slh383p1yymm89NJz5OSs5pdffmDy5EMCGOzW9G9HYKifA0P9LCK7yp/kxINvqhXA4UAl8FfTz3HQpuuIozZ5VrOGpu8R/t7UarWQmBjtd1A7EhcX2S73la21dV+Xr19HmLXpP9S4RCJdO9oxu/sIDw8Ndgg7VTd+fxKX/0V9djbW/FwSRo3cbtvExGjOPvtsHn/8cV555QX+7/+O3WEyEyj6tyMw1M+BoX4WEX/5k5z8DZxvGIYdOAmYaZqmt2ma1fVN59uKHdiyTHdzUlLn7009Hi/V1W27F5PNZiUuLpLqajvundRckF3TXn1dlrsGbKG4wsOpbnDh6OZVGK1WC+HhoTQ2OvF4OniiZgmnMmssicvnkPfWu/TtPWCHzf/v/07l+eefZ8GCBXz11XfstdeEAAW6Nf3bERjq58Boz36Oi4vUiIxIN+BPcnIN8BVwMlCCbyE7wBJ8a1gObZvQAFgH9NziWPPPBbtyY1c7Fdhzuz3tdm/ZXFv3dUNxMfTIhLgEGh0uvB38/XigeDzejp+cACXDJxCfs5iQnpm4Gh1g2/4/b/HxiRx33P/x1luv8+yzTzN+/F4BjHTb9G9HYKifA0P9LCL+avVHEKZpzgcGAXsDA0zTXNV06mJghGmac9swvl+A/QzDsG1y7CBfGKbf601EtlRZWUG4wwFAaGqaEpNOyBUdT/YJ/8E75XhCI7Zf76TZWWedR0hIKHPmzGbBgnkBiFBERER2xq/xUdM0a0zTnG2aZt0mxz4wTXND24UGwEv41rG8aBjGMMMwzgauBO5r4+dIN5ebm4sHKHO5IFEbwXVWLlsoawqraGzBeqGMjB4cddQxALzwwrPtHZqIiIi0QIeevNk0OnIoYADz8BVhvMY0zVeDGph0Obm5q/m2pIjXYyKxTzwi2OHILigur6dw4VIqW1DH5JxzLsBqtfLbbz+zfPnSAEQnIiIiO+LPmpN2Y5rm2ds4NgffFDKRdpObuxqA/v0G4lCNk07NWl1B7cuPU4eXiGEjiOjTd7tt+/Tpy5QpR/DFF5/xwgvP8NBDjwcwUhEREdlShx45EQmUnJwcAPr1H9Dtd+nq7JwxCdT0Hw5A+Scf7rT9eeddBMD3339LdvaqnbQWERGR9qTkRATIy13NEyPHMmzePFy1tcEOR3ZR8eiJeC1WahcuxL6ThGPgwEEbCzG+9NJzgQhPREREtkPJiXR7drudhtJS0sLDCSkppqFjzXYUPzjik6kaNBqAso8/xLuT7dfOP//fAHz11eesXbum3eMTERGRbVNyIt3emjW5JIf6qqBb4xNwaFZXl1A8an+8Nhv1K5ZjX7Fsh22HDBnGvvtOxOPx8PLLzwcoQhEREdmSkhPp9nJzc0gNDwfAmpSMS9WjuwRXTDwVWeMAKPvog52OnlxwgW/05LPPPqawcH27xyciIiJbU3Ii3V5ubg5pTcmJJz4pyNFIWyoZuS+uxFSi99kfy07ajh49lj322AuXy8Urr7wQkPhERERkc0pOpNvLyVlNelgEAM7YxCBHI23JHRnDqqP/Te2w3QkN2/laoua1Jx999D4lJcXtHZ6IiIhsQcmJdHvZ2Ss3jpw4Y5ScdDVeLOQVVlHb4MKyk+GT3Xffk1GjxuBwOHjttZcCE6CIiIhspOREujW73c7atWuocDqxJibiiE0IdkjSDsor7az99gfW3Hk77vq67bazWCxceOElALz77lsaPREREQkwJSfSra1enY3H4+GNqgr6PfAIdam9gx2StAevF8f3X9GwJo+KLz/fYdN99tmPUaPG0NjYqLonIiIiAabkRLq1VatMALKyDJwuj6rDd1VWK4W7TQag4ttvcJaUbLepxWLh0kunAvD++++wYUNhQEIUERERJSfSza1cuXly0qgiJ11WbeYg6jMH4HW5KPvwvR223WOPvRg3bnecTicvvPBMgCIUERERJSfSra1aZTIpJZUpOblUfPCOapx0ZRYLhbsdjNdioXrOX9TvoDDjpqMnH3/8AQUF+YGKUkREpFtTciLdltfrZeVKk4zwCEIaGnDaG4IdkrSzxqR0Ko3xABS/8Tpel2u7bXfbbTx77TUBl8vFs88+GagQRUREujUlJ9JtFRcXUV1dRXqEr8aJQ9sIdwtFYyfhjozBUbie+qWLd9i2efRk5sxPWLMmNxDhiYiIdGtKTqTbMs0VAPSKjQPAEZMQxGgkUDxhERTsfQScfRnx48fvsO3IkaPZf/8D8Hg8PPOMRk9ERETam5IT6baWL18KQFpoGAAN0fHBDEcCqLa3QV54GqVVDYSE7PifwUsuuQKAr776nBUrlgciPBERkW5LyYl0W8uWLSHaZiPC6wWgPkrTurqT+gYXq/Mrqd9QTMPqVdttN2TIMKZMORyv18ujj/4vgBGKiIh0P0pOpFvyer0sXbqEnhGRAFgTEmnAFuSoJNAqliwj79YbWf/MU7jr67fb7vLLryIkJJQ///yDP/74LYARioiIdC9KTqRbKi4uprS0BKvVSsTgLEL6D1QBxm6oLjEDV2QsrooKyt5/Z7vtMjN7cfLJpwLw6KP/w+3WnxUREZH2oOREuqWlTbs0eTIyGHTLLVhOODu4AUlQeENCyd/7SAAqf/mZuqVLttv2ggsuJjY2jpUrTWbO/CRQIYqIiHQrSk6kW1q2zPcmdPjwkXiB6npncAOSoKlP70vF0D0AKJ7xCp4G+zbbxccncP75FwHw5JOP0dCgujgiIiJtTcmJdEsbk5Mhw3C5vDQ0KjnpzjaMPRB3bALO0lJK3393u+1OPvl0evToSXFxEW+88WoAIxQREekelJxIt+NbDL8YCzDqpx9ZffWVOMorgh2WBJE3NOyf6V0//Uj98mXbbBceHs5ll/0HgBdffJaioqKAxSgiItIdKDmRbicvL5eqqip6xMRgcblwVVVRbwsPdlgSZHU9BlA+cgKhkw4lbvjQ7bY77LAjGDVqDPX19dpaWEREpI0pOZFuZ/78uQDsbfjegNpSUmlweYMZknQQG8YeRN6w/ai0e7ZbnNFqtXLDDbdgsVj48suZzJ07J8BRioiIdF1KTqTbaU5ORmf29h1IzcDtVnIigMVCVa0Dc205jY1O7NnbLs44dOhwjj/+RADuv/9uXC5XIKMUERHpspScSLezYME8APpGRwPgSkoPZjjSAa1fW8LqO+9g3f+mYV+dvc02l112JfHx8axcafL++28HOEIREZGuScmJdCulpSWsW7cWi8VCXEMjAA2JaUGOSjoad2g4tWEx4HZT+MyTuGqqt2qTkJDIpZdeCcATTzxGSUlxgKMUERHpepScSLfSPGqSNTgLV9EGAOzxKcEMSToii4X8vY/ClZiCq6KCouefwevxbNXs+ONPZNiwEdTW1nD//XcHIVAREZGuRcmJdCtz5/4NwNiRY4jba2/CB2VRGxkf5KikI/KEhpO3/wl4Q8OoW7aM8k8+3KqNzWbjttvuxmaz8d133/DDD98GIVIREZGuQ8mJdCuzZ88CYNxee9PznPNImHoNdocWw8u2ORJSKZhwFABln8+k+q8/t2pjGEM466zzALjvvjuprt56CpiIiIi0jJIT6TaKijaQk5ONxWJhjz32wmq1UFvvxO1RciLbV91vOBUj9gag9L138DgcW7W56KJL6du3HyUlJap9IiIisguUnEi38eeffwAwbNgIopxOPE4HFTWNQY5KOoPCsQdRPWIvYi65ivDoyK3Oh4eHc+utdwHw4YfvMWvW74EOUUREpEtQciLdRnNystdeE8h/+EGWX3A+jdkrgxyVdApWK/njDmFFtY2KWgehoTa83s1H3MaN250TTzwVgFtvvYGqqsogBCoiItK5KTmRbsHj8Wxcb7LX2HE4i4vA66U2OinIkUlnUl7dwNKcUkr+nsf66Y9sNcXrP/+5hn79+lNSUsxdd922VQIjIiIiO6bkRLqFlStXUF5eRkREJFlxcQDYUlKps4QFOTLpbDYUVlD0wnPULV5E4TNP4t2kOnxkZCT33PMAISEhfPfd18yc+UkQIxUREel8lJxIt/Djj98DsPfe++DOzwfAktkHh9MdzLCkE/KGhpE38QS8IaHULVpI0csvbFYDZfjwkfz735cBMG3aXaxbtzZYoYqIiHQ6Sk6kW2hOTiZNOoiGvFwAGlMzgxmSdGL29D6sO+D/8FqtVM/+k+IZr2yWoJxzzgWMHTuOuro6rr56Kg0NDUGMVkREpPNQciJdXkFBPitXrsBqtbLffgfQkJcHQH1yj+AGJp1abeZg1u//L7BYqPr1F4peeXFjgmKz2Zg27SESE5MwzeVMm3ZXkKMVERHpHJScSJfXPGoyduw4Yi3gKi8Di4WauLQgRyadXVXfYb4ExWql+o/fqfn9143n0tMzmDbtIaxWKx9//AEffvheECMVERHpHJScSJf3zTdfAjBp0mQsIaGknXwqUQdMptZtC3Jk0hVU9htOwcT/gzF7ELvf/litlo3n9txzby69dCrgW3+ycOH8YIUpIiLSKSg5kS5t3bq1LFq0AKvVyqGHHoYtJoa0ww/DdfAxuNyend9ApAWq+gxhxdjDMPOrcXvB4nHjrq0FfOtPDjjgIBwOB1deeSkFBflBjlZERKTjUnIiXdoXX3wG+D7BTk31TeNye7yUV2uBsrQtj8eLmVfG0txSCl58gXXT7sFZUoLVauXeex9gyJBhVFSUc/nlF1FdXR3scEVERDokJSfSZXm9Xj7//FMAjjjiaNx1dVT9/iu16zdQW+/YydUiref1whozn+rly3FsKGTtfXdRv9IkKiqaxx57mrS0dHJyVnPNNVNxOPRnUEREZEtKTqTLmjt3DmvXriEiIpIDD5xM/YrlFL38IuunP0JNnd4YSvtwRsWSfeg5uFJ74q6uJv+hB6j47lvS0tKYPv0ZIiOjmD17Ftdf/19cmxRwFBERESUn0oW9886bABxxxFFERUVTt2QRAN6BQ3C6tN5E2o8rKpZVB59J/eBR4HZT8vYbFL30PFn9B/DII08QGhrKDz98y6233oDHoz+LIiIizZScSJdUXFzEjz9+B8BJJ52G1+ulbrEvOanNHBTM0KSb8IaGkbf3MZTtNcW31fCsPyh8+gn22msCDz74GCEhIXzxxWfcccctSlBERESaKDmRLum9997G5XIxduw4srIMHPnrcFdWYgkLoyJJleElQCwWiow9WHvI6Xhj44k55HBCQ61MnHgg99zzABaLhQ8+eI8rrrgCp9MZ7GhFRESCTsmJdDk1NTW89dbrAJx22pkA1C5cAEDI4CFUN+hTagms2vR+rDjmUpZ6EtlQ0YAt1Mo+qen878bbCAkJ4aOPPmLq1EtpaNAuciIi0r0pOZEu5+23X6e2toaBAwdz4IEHA1Dz9xwA7P2G4vUGMzrprry2EIor6vl72QbMhTkUvvAsfX/4nufPvZDoyEh++eUnLrroHMrLy4IdqoiISNAoOZEupaqqkhkzXgHg/PMvwmq14iwvx7mhEGw2yjKzghugdHv2RhfmmgocPfvhdTqJnjePlycexB7pGSxcOJ/TTjsB01wR7DBFRESCQsmJdCnPPPME1dVVDBo0mEMOOQyA0KQksh57nNgLLqPSqT/yEnzOmHhW7X8SxZOOh+gYKC3l6t79uGPkGGwVFZx11il8/fUXwQ5TREQk4PROTbqM7OxVvPvuWwBcc82N2Gy2jeesMdGUJvfF7dGcLukgLBZK+wz///buPD6q8t7j+OfMlmWSkACBEIJLFR5AQFxxqRYXqq1rXXu1r/tS2+rV9ta2XkttvWrtauu91urVLlZfvtpau2hra/W2Vq/K4gqKIPCwyZ5AQkhCwiSznHP/OJMQIqNAJpnJ8H2/XvOamWeeOfM7T56cOb/zPOcMKy64ga5jToFAgElFxdw15UgCiTizZ3+VO+74JrHYzlxHKiIiMmiUnEhBSCaT3HbbLaRSKWbOPIMZM04EwO2MEQg4dMSSNLVoJ0/yj1tUQsOMs1l70RdIjJ9CdOYsrrzmWhzH4c9/foLrrriExenLYIuIiBS6UK4DEMmGhx/+OUuXLqG8vIJbbrmtp3zT/T+Bri5S51xKa3tRDiMU+WCd5cNZedJFhINwYnUFk6Ydy+/u+hZfGV7N63fcymtHTOHym2+hvLw816GKiIgMGI2cyJA3f/4cfvrT+wGYPfubjB49GoDYyhXEli8jtn4dDTEnlyGK7LVECtY3tNEZruPa868g4DicUDWcUzdvZsEXrmPOfT8m0d6e6zBFREQGhJITGdJWr17F7Nk34bouF154Meeccz4AnufR9OcnAQgfdyJbXY2ayNAST6TYMOlU1n3qehrGHUaX61IbiTB60dusuPELvPOdb5HcqamKIiJSWJScyJC1Zs1qrr32KnbsaGPatCP5xjdux3H8EZL2N14nZpdDKETjlI/i6kR4GaI6KqppPv1KVl72Fd4YMYbNXZ2EHYeW5cu46tqreO65Z0kmk3SuX4ebiOc6XBERkX7ROScyJL3xxhtcc801NDc3M2HCRO6772dEIhEAkm1tbP3dYwCEPvZx6pORXIYqkhWB6DCi536eze1tzH3ut6xdM48lzU3cfPNXOGhsHXfVHUwwGKRsylSiU6dRMnES4ZHVPQm7iIjIUKDkRIaUVCrFY489yj333E0ikWDixMk88MBDDBtWCYCXSlH/8wdJtbYSqhnDuvHH48Xc3AYtkkWlZRVM+dR1HHLm5URffpo35j5NoqmJ7SOqGRkpon3hAtoXLgAgNGIEpWYSFSedTOnESTmOXERE5MMNieTEGBMAbgc+B1QBc4EbrLWrchqYDKrFixdx990/YNGitwCYNess7rzz+5SUlPbU8dwUgVAIp6iI1nOupFWJiRSosvJKTjvnM5w86xIWv/ki33v1OcJbLMdWDmdKeQXjy8ph2zba5s8lFi3h8CMm47oQ37aN1hdfoOjgQygaW0d41CicgGb4iohIfnA8L//n4htjbgduAK4GNgE/BD4CHGGt3ddJ1mtSKffQ5uaOrMYYCgWoqoqyfXsHyaR2iLMlmUwyb97L/P73jzNv3ssARKNRbrvtNj75yQtJpXbvv4GAQzKRYMVrS7BuBUOge+etQMChpCRCLBbXOTsDKJvt3NiwgUWv/5Nli+bT3lTPxLJyjiiv4JXt22griXLU0ccyq66OQxcv7nmPEwoTrqmhqHYskdpayo89nkhNTX9XK+9oGz04BrKdhw+PEgwG3sP//heRApX3IyfGmAhwE/A1a+0z6bLLgc3ARcDjOQxPsszzPBobt/L2228xf/4c5s59maamRgCCwSDnnnsBX/zijUyefDjbt3fgdnXSNm8OO5ctY9yXvkTChVUNHaz0hjEUEm+RbKquGceZ51/NmedfTWPDBpa/8wpzl77Bpng9qZ07+edzz7IuWsbpI0dxaDRKXUkpkWSC+MYNxDduACBZVUnt2DF4HrQteJOmPz1BeGQ1ocoqgsOGEaoY5t8PG0akdizBkpIcr7WIiBSSvE9OgOlAOfBCd4G1tsUYsxA4FSUnQ4bneXR2xmhr28GOHW20tbXS0FBPQ0M99fX1bNq0geXLl9HcvG2391VVVXHeeRdy8cWXM25MLW5zE1tfeJGtby5kx8KFuLEYAFtee5MNlYewvqFVIyZywKuuGUd1zThO+fhlJOJdbFq3grWrFrNhzVJ+vWkNHevW4AAjI0WMKymhrqSEuuJSnvjqv9OCw/ARIzl/1GjOCIWJb968x89wLr2MsmlHEo1GSS5ZQuszfyMYjRIsLSVQGiUYLSVQWkogUkTZsccTGTUKgERzM/GGegJFRQQiEZxIEU4kghMK4gRDBIqKcILBQWwtERHJF3k/rcsYcxHwBFBqrY31Kv99uuzcfVzkmlTKPbStLfbhNffB/HfX8dIDD1LT1Q7salPHo+f506Eq4o4/t3t6qp3D3M6enWiH3f8OfwuUs9Pxv5yPdGNMcDvT9XYtr9uzRGlzgnh4TPG6mOp1pV95/9/2f70SmgkCHpOJcxTx3ap2x+EB/3AjbEnXNU6SE5yk/5rnsdsFgDyPf8QDrE8kcFMJxjspTi0KgueC5+F5LngubioJnsdft2zGpn9EzpSVc/7oMbvay/GjCBWXUVw+nKWTZuEefyHBUIQx773OjL/f8762ai8fxeKJZ7Ng7El0uZo7ny2OA8FggFTKVbI3gHLVzvEdTexssOzcsoKu5g10Nm+gq3kDXa0N/v8uMCwU5uDSUqojRVSGw1SGw1SFIz2Pf7RqBeti/m+tnDt6DP867uCMn/fjlhjLU+AEAny0KMSVpZmTj0e8Mt4NFOM4AY70urjEayMFpHB2u3dxeCZYgQ0UA3CY28XZbhse4KW3FG6vx/PCFVinGA+odeOckWrDX9NeW5X0tm1BsJyVIf98tmo3zumJlp74PHa/Ato7oTJsKApAlZvg9MT2961T9/KXB0tZGioDoNxNcmai+X11uq0KlrIkXbfES3FWvJlM3gsWsyhUDkDEc/lEfFvGuhsCRSwMVwAQ8DzOizdlrFsfiPB6eFjP8wu6GjPW3RoI80qkipqaGu6dfQ1F4ewe/6yoKNG0LpEDwFAYOek+27mrT3knMHx/FhgIOFRVRfsVVF/3Pvw4M9ctYsbI6ox1frbgRXYk/R380w46hONGZZ7X/cjbc2mK+4nDR+sO4ria2ox1f7PkNTZ1+snWjNo6jqmty1j3j8sWsGGnf77NUTVjOLouvTOxh6uNPrViEZvadwAwpXo00w8+NONyn924lK2tLX7dEdUcc+hhGevObW6GkjAUDWP4yBqOq8xQMbGDl+I1vLTG/1tN21bKCXh0hKJsKq1jWdVk3hk+neWVk/GcALRl/EgR6csZAWMMjNm9OJiKQ9tm2NnIjo5GlnQ04nU0Qkcj7NwG8R14He3Q1QaBMgh7kIgxr7mJNTs7iAaDlAVDREMhosEgpcEQxcEAaxs209zpH2TZWjWC9WPGEgkEKA4GiAQCRJwAofSJ+Q2r3mR9entyyIhqinu2J+/P3tpWvMba7f6O+Oiq4Rx82ISMq/y8fZU12/yd68phlUwZPzFj3TfXvMvqxi0ARMrKmT7xiIx1l65byqoGf3TpI6VRjpk8NWPdteuXsWrzRgDGFhdz3JTpGetu2WhZtXE9ACMiEY6fdnTGuq2bV7Jq/XsAlAVDzDjq2Ix1O5saWbV2NQBhx2HGMTMy1n1t+zZWrV7Z8/y4Y2YQyHB56rdbW/jVyuWsAl4461Su+PgxGZcrIpLJUBg5uRj4I3seOSmy1l6wj4sckJGTZeu38uwvHqWivRX/CzS98Xb8o2wO8FblWJIBPx88qKOZUXE/SejezncfjXOAxZVjiYfCANR1bGdU547dEgin50ifw/LKWjrD/i+gj4m1MHpnC71r7nqfw8rKWjrD/lHG6lgrNR3NuwLoHpdJP19XWUtHxJ9PXhVrZUz7tvSadK8XPc83jhhHZ7SKYChMZVc7Na1b/OkZgSBOMEggGCIUKSEUKWbHYUcTr/ITs6KWLQxbv6RPa+5a0R2144mNHAdAINFFINFFsqSccCRMPJHUeSUDyHEcIuGQ2nmAFUI7p5IJUokukokuUvH0fe/n8U5cN4WXvrmu2/PYc930LYWbSuG4SVzPJeV5eK5L2E1Smuwi4HkEPZeA6xLwXIKei+N5bCuKEgsV4eERTXQxqrMNx/PHShwAz8PxIIDH1tJhNIf87V9ZPMYhHc3+ltTr3pruav+NxRU0FfmjFmWJTsZ3+AmQ11N3l03F5Wwp8kctSpNxJrU39qmza7n1xRVsKvZHLYpTCabu2LKrXq+/vwPUF5ezvqQSgIib5KjW+ox/g61FUd4r9Y/XhdwUx7TueSoeQFOklNXREf7neB7Ht2zMWLc5UsLK6Mie5zO2b8hYtzVczPLyasaNreXWa87LmMTsL42ciBwYhsLISfeWsBZY3au8Fli0vwvN9lVEJh00ipPuv+MDr1ByVVY/cajrTg4rYMZJe1kXIEwoFKeqKsz27V266s4A8q+6E1I7D7DCaedQ+pbdUels0dW6BofaWUT6ayhM0F+EP2FnZneBMaYSOBqYk5uQREREREQk2/J+5MRa22WMuR+4yxjTCKwFfoQ/ovJkLmMTEREREZHsyfvkJO02/FgfAkqAl4Gz9uMHGEVEREREJE8NieTEWpsCZqdvIiIiIiJSgIbCOSciIiIiInIAUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5wPM/LdQyDLeZ5XrHrZn+9g8EAqZSb9eXK+6mtB4faeXConQeH2nlwDFQ7BwIOjuN0AiVZX7iI5I0DMTlpAYqA+hzHISIiIntvDNAFVOY4DhEZQAdiciIiIiIiInlI55yIiIiIiEheUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5QciIiIiIiInlByYmIiIiIiOQFJSciIiIiIpIXQrkOoBAYYwLA7cDngCpgLnCDtXZVTgMrMMaYg4G1e3jp89bahwY5nIJkjLkVONNaO7NX2XTgXuBYYBvwE2vt3TkJsEBkaOdHgKv6VN1kra0bxNCGPGPMcOB7wLlABfAO8HVr7dz069NRf+63vWhn9WcR2S8aOcmO/wT+Dfg8cCLgAc8aYyI5jarwTAM6gVpgTK/bb3IZVKEwxnwZuLNP2QjgOWAF/s7c7cC3jTFXD3qABWJP7Zw2DX9nr3ffPmrwIisYjwMnAJ8GjgMWAv8wxkxUf86qjO2cfl39WUT2i0ZO+imdgNwEfM1a+0y67HJgM3AR/gZcsmMqYK219bkOpJAYY8YCDwGnALbPy9cCXcD11toksMwYMx6YDTwyqIEOcR/UzsaYIDAZ+La1tiEH4RUEY8zhwCzgZGvt/HTZjcAngCuAGOrP/fZh7WyM+RbqzyKynzRy0n/TgXLghe4Ca20L/lGkU3MTUsGaBizNdRAF6GhgO377vtbntVOAl9M7ct1eAIwxZtQgxVcoPqidxwPFqH/3VxNwDrCgu8Ba6wEOMBz152z5sHZWfxaR/aaRk/7rnj+7oU/5ZuCgQY6l0E0F6o0xc4AJwEr8I3N/z21YQ5u19q/AXwGMMX1frgMW9ynbnL4/CNg6oMEVkA9p56n400G/bIz5BOACzwC3WmtbBzPOoSx9YOiZ3mXGmEuBw4C/A99F/bnf9qKd1Z9FZL9p5KT/StP3XX3KO/GPHEkWpKfPTcA/8fJW4JPAG/jn9pyRy9gKXCl77tug/p1NU/B34NYC5wH/gd/Hn0pfcEP2gzHmZOBh4Kl0cqj+PAD20M7qzyKy3zRy0n+x9H1Rr8fgf9F1DH44hclaGzfGVAJJa233zsUCY8wk/C++53MWXGGL4fft3rp34tS/s+cO4J70EWmAJcaYeuAV/JON+04Dkw9hjLkAeAx4FfiXdLH6c5ZlaOc7UH8Wkf2k5KT/uqdz1QKre5XXAosGP5zCZa3d087DYuDswY7lALIBvy/31v180yDHUrDS8/Vb+hR3Tz+qQztz+8QY80X8ywU/CXym1wEN9ecsytTO6s8i0h8aXu2/RUAbMLO7IH2E/2hgTm5CKjzGmGnGmHZjzEf7vHQs8G4uYjpAvAyckr6aVLcz8K+apvn5WWKMecwY0/fcqePS9zqpeB8YY64H7gPuBy7vlZiA+nPWfFA7qz+LSH9o5KSfrLVdxpj7gbuMMY34c2x/hH+E7slcxlZglqRvD6a/FJvwL3N7Iru+9CT7Hga+BvzSGPND4Hjgy/i/6yPZ8xjwF2PMN/EvPz4B+B/gMWvtspxGNoQYYybgH8n/E/B9YFSviw/EUH/Oir1oZ/VnEdlvGjnJjtuAX+L/hsE8IAmcZa2N5zSqAmKtdfFPrHwd+APwFjADmGWt7Xv1HcmS9NHkswCDf3ns24GbrbWP5jSwAmOtfRq4FLgYf/rLL/EPbnw2l3ENQZcAYeBTQH2f273qz1nzYe2s/iwi+83xPC/XMYiIiIiIiGjkRERERERE8oOSExERERERyQtKTkREREREJC8oORERERERkbyg5ERERERERPKCkhMREREREckLSk5EJC8ZY5xcxyAiIiKDS8mJiOQdY8z5wKPpxzONMZ4xZmZuoxIREZGBFsp1ACIie/DVXo8XAicCS3MUi4iIiAwSJSciktestW3Aq7mOQ0RERAae43lermMQEelhjHkR+FivotOA/wNOs9a+aIy5A/g08HXgO8DhwHLgesAD7gWmAauBG621z/da9hTgB8Cp6aLngZustWsGcJVERERkL+mcExHJNzcAb6VvJwIVe6gzDvhv4LvAZcBw4I/Ab4Ff4CcvAeBxY0wJgDFmAjAfGAVcBXwW+AgwzxgzauBWR0RERPaWkhMRySvW2qVAG9BmrX01/bivUuAGa+1vrbV/AR4AaoFvW2sfstY+BfwnMBIw6ffcDsSAM621T1pr/4A/KlMC3DygKyUiIiJ7ReeciMhQNb/X44b0fe9zU7al7yvT92fgTw/baYzp3va1AXOAWQMUo4iIiOwDJSciMiSlT5Tva+cHvGUEcHn61ldjVoISERGRflFyIiIHihbgn8B/7eG15OCGIiIiInui5ERE8lEKCGZ5mS8Bk4G3rbVJ6PkV+l8Dq4C3s/x5IiIiso+UnIhIPmoBTjTGnA4My9Iy7wReAZ42xjwIdALXARcCl2TpM0RERKQfdLUuEclH9wMJ4Fn8q2n1m7X2HeAU/N9C+RX+pYfHABdaa5/MxmeIiIhI/+hHGEVEREREJC9o5ERERERERPKCkhMREREREckLSk5ERERERCQvKDkREREREZG8oORERERERETygpITERERERHJC0pOREREREQkLyg5ERERERGRvKDkRERERERE8oKSExERERERyQtKTkREREREJC8oORERERERkbzw/4B5neh6ONIZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 1.810 - 21.090) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 1.0145 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.0019 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1kElEQVR4nOzdd3gU5RYH4N9s3/TeeyBDBwEbFwQEKRZEr4pi76IIFgQEpAlSLgIGVHoREBQLgooFUQFFRBApSYb03nuydcr9Y7MYIHWzSTbhvM+Th81OO/uRZPfMVw4jSRIIIYQQQgghpL3J2jsAQgghhBBCCAEoOSGEEEIIIYQ4CEpOCCGEEEIIIQ6BkhNCCCGEEEKIQ6DkhBBCCCGEEOIQKDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBCiEOg5IQQQgghhBDiEBTtHQDLsuEA0urY9CzHcZtYlu0H4D0AAwEUA4jlOG5F20VICCGEEEIIaQvtnpwA6APAACAKgFTr+XKWZb0B/AhgH4AXANwE4AOWZYs5jtva1oESQgghhBBCWo8jJCe9AXAcx+VeuYFl2VcAGAFM4jiOBxDPsmxXADMA2JqclAFQA7jqeoQQQghxWIGwfCbwaOc4CCGtyBGSkz4A4urZNgTAkZrExOowgDdZlvXjOK7AhuupJUnSiKIUacOxDZLJGIii1PiOpMWordsGtXPboHZuG9TObaO12lkmY8AwjN3PSwhxLI6QnPQGkMuy7FEAMQASAbzNcdz3AEIAnLti/5yaf8MA2JKc5IqiFFlRobc13jrJ5TK4uWlRXW2AIIh2PTe5HLV126B2bhvUzm2D2rlttGY7u7lpIZczNOqBkE6uXZMTlmVVsCQk1QDeAFAF4BEAB1mWvQ2AEyxduLUZav7V2HpdmYyBp6ezrYc3yM1N2yrnJVejtm4b1M5tg9q5bVA7tw1qZ0KIrdo1OeE4zsSyrAcAnuM4axJyimXZ7gCmAdDDMj+kNmtSUm3rdUVRQkWFztbD62S9W1RRoae7cq2M2rptUDu3DWrntkHt3DZas50tPSdUAYGQzq7dh3VxHFdXknEOwBgAmQCCrthm/T67Jdfl+dZ5cxIEsdXOTS5Hbd02qJ3bBrVz26B2bhvUzoQQW7XrLQiWZfuwLFvFsuzgKzYNBHABwBEAQ1iWldfaNgKW1b1smW9CCCGEEEIIcVDt3XNyvubrQ5ZlJwEoAvAcgJsBXA8gH8B0AJtZll0O4AYAr8BS84QQQgghpMVOnTrlCstSxTRujBD7EgHkDhgwoLKpB7T3nBORZdm7ACwFsBeWtctPA7iN47hzAMCy7GgAsTXP5wJ4g+O47e0TMSGEEEI6i1OnTskAzGIY2WMMwygB0FrFhNiXJEmS+dSpUx8BeGfAgAGNjvds754TcBxXCODpBrafhKUnhRBCCCHEnmbJ5YpJbm6eJpVKo2MYhgrhEGJHkiQxJpPBqaKidJIg8ACwqLFj2j05IYQQQghpa6dOnXJjGNljbm6eJldXz+L2joeQzkqt1uoBeJeVFT926tSp9xob4kVjKwkhhBByLQpgGEapUmnsW1uAEHKVmp5JJSxzuxpEyQkhhBBCrkUyAAwN5SKk9dX8njFoQu5ByQkhhBBCCCHEIVByQgghhBBCCHEIlJwQQgghhBC7iY1dGTR+/Jje7R1HUyUkxGkOHfrBvb3jIBaUnBBCCCGEkGvWzJmvd42LO+/c3nEQC0pOCCEOT88DAz92xcCPXaHn2zsaQgghnQutieBIqM4JIYQQQkgNURSh0+na7eatk5OTKJM17/KDBw8c8N//Tsj95ZefvM1ms+y99z5McHJyEtesWRVy9uzfbtXV1XJ3d3d++PCRxVOnTsuOj4/TPv/8Ez0++GBTfJ8+/XQA8MorL0afP3/W7bvvfvlboVBAkiTcccfIvo8//lT2hAkPF115zaKiQsXKlctDTp8+6S4IAhMT063qtddmZEZHdzFa99mw4QP/r7/e519ZWano0qVr9cyZc9Os2+uKOSQk1LR+/fuBv/562Lu0tFQZHBxsePTRJ3PGjLmjDAD27t3jvXv3jsAnn3wme/PmDSHl5WXK7t17Vs6ZsyBt27bNAb/8cshboVBI48bdm//CC5PzAMBoNDJr164KOnbsiGdJSbFKo9GKffv2K585860MLy9vYfz4Mb2LiopUn376ceC5c2dcN278iCstLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqrK+tn37PvfatWt7YGFhoTosLEw/fPhtxZs3rws9duyvU7b8n8hkMpteX2dEyQkhhBBCCCyJycSJ/+2WkBDfbkN8unXrUfXxx59xzU1QfvjhW98lS95NFASe6do1xjhx4n97uLt7mJctW33R1dVV+PXXwx4bN34Y2qNHr+rRo28v8/HxMR0//ptbnz79dIIgIC7uvKvRaJT9/fcp5+uvv7H6zJnTTpWVFYpbb72t7Mpr8TyPqVMnxQCMNH/+O8ne3t78mjWrQl5//eWYzz47cA4AioqKVOfPn3VdsmRloslkZN55Z0HkO+8siNi8eQdXX8yvvPJidEpKstPLL7+aERkZbfjuu2+8Fi+eHy2TyZJGjRpbDgDFxUWq/fu/9Fu0aHmSTlcte+utGV2ffPLhniNG3Fb0wQeb47/9dr/3zp3bgocOHV7WvXtPw7vvLg05ceK4x4wZs9NCQ8OMHMdpV6x4J2L9+veD3nxzbuamTTvin3rq4R7/+c/Qkueem5QrCAKmTHkhxmw2MzNmzEn19fUzf/LJx34zZ74Ws3r1Bwn9+vXXHTr0vfvKlcsiH3vsqaxhw0aUnTjxu9umTetCW/p/Ysvra9YPSQdByQkhhBBCyCUds+7J0KG3Fvfr118HAHq9nrn11tuKR48eWxoaGm4CgIiIpwv27t0TkJR0UTt69O1lAwfeWHb69Ek3AHlnzpx2lssVUkxMt6qTJ0+4Xn/9jdVHj/7q0bUrW+Xr63fVYNrffjvilp6ept269ePzXbvGGAFg9uz5adu2bQooKSlWAIBcLpfefntZqru7uwAAY8feWbhz57bg+mK+eDFB89dff3rMn784aeTI0eUAMHnyK7kpKUlOu3ZtD7QmJ4IgMK+9NiPd+sG8d+++FRcvJri88casLIZh8NxzL+V++unuwMTEi9ru3XsaunfvUT18+IjSm28eXAUAoaHhph9//K4iLS1FCwA+Pr68TCaTtFqt6OnpJRw+/KNbamqK08aN2y9YrzFnzoKMixcTnHft2h7Qr1//lD17dgXcdNOgkmeeeSEfALp06VqYlZWpPnBgn39L/k9seX0t+ZlxVJScEEIcHgOgf837I9O+oRBCOjGZTIaPP/6M62jDugAgJCT00nAqrVYrPfrokwXffnvAc+fO7c45Odnq9PRUp7KyUqUgiAwADBkyrHzevFm+er2eOXHiuGvPnr0qg4NDDf/8c9oNQN7Jkyfcb7llWEld10pMvKh1cnISrIkJAPj7B/AzZszJsn7v7u7OWxMTAHB1dRNMJtNlL6x2zByXoAWAgQNvrKq9T+/e/So/+mhzSO3nunT597pqtVr09fU3Mozl3UGj0UgAYDQaZQBwzz33lxw9+qvrypXLgrOzs9RZWZnanJxsTbdu3S+7jlVSUqJWq3USan/wZxgGPXr0qjp9+i83AEhLS3EaPPiW0trH9e17XdWVyUlz/09seX2dESUnhBCHp1EAG0bq2zsMQsg1QCaTwcXFRWzvOJpLrdZcilmn08mef/4J1mAwyIYMGVo6atTY4r59+2VMnvxcN+s+N9/8n0qlUiH+8cdvrn//fcpt+PARJeHhEcb9+78IyMxMV6WlpTjNn784pa5ryeUKyfphuT4ymazRHqjaMdc3KV0UBUYul1+2UalUXva9TFZ/LAsXvhX2229HvIYNG1F8003/Ke/WrUfurl3bA4qLC1V17S9Jdb80URShUCgky/VkkiQ13sHW3P8TW15fZ0TJCSGEEEJIJ/Lrr4fdUlNTnL744pt//Pz8eQAoLS2Rl5eXK6xJgEqlkvr2va7iyJFfPBITL7rMnPlWekhIqIlhGOmDD9YEBQYGGWpPbq8tKiraUF1dLU9JSVZHRUUbAaC4uEjx0EP39lq0aHmiLTHHxHTTA8Bff51wsQ7rAoBz5/5xCQ4OtenuVElJsfyHHw76zpgxO+Wuu+651NORlZWh0Wi0tRKjfz/8d+kSo9fpdPL4+Aua2r0ncXEXXEJCwgwAEB4eoY+Lu+ACoMC6/cKFcw3OU2rK/wmx6LRdQoQQQggh1yJ//wATAOzf/6V3Zma66sSJ4y7Tpk3pIggCYzKZL30SHzRocNnPP//k4+bmykdHdzGq1WqJZbtXHTv2q/dNNw0qq+/8Q4YMrYiMjNYtXDgn8tSpk84JCXGa+fNnR7i7e5j79r1OZ0vMLNvd0K9f//LY2JVhhw59756UlKheu3Z14KlTJz0eeOChfFvO6ebmLmi1TsKxY0c8UlKS1XFx57Xz5s0KT0tLdTKb/20HjUYjZGdnqQsK8hVDhw4vDw0N1y9c+FbU778fdb14MUHz9ttzw7KyMrQPPjgxHwAmTnws98SJ3z03b17vn5KSrP7ss0+8v/nmgF9DsTT1/4RQzwkhpAPQ88BdX1luSh24uxpa+stFCCH16t9/oO6pp57L3Lfvc/9du7YHe3p6mYYMGVbi4+Nr4rh/VyIbPnxk+erVK5hevfpWWJ+77roBFefO/eM2dOitZfWdXyaTYfnyVUkrVy4PnTnz9a4A0LNnr8qVK9ckqtVqm7sBli5dmbJ69f+CV65cHqHT6eShoaH6WbPmJ48de0e9sTREoVBgzpwFKevWrQl5+ulHejo7u/C9evWpfOSRJ7I/+2xPYHV1tczZ2Vm8++7/FmzZsj5k6tQXtbt3fx4XG/vhxZUrl4csWDAn2mzmmcjIKN3SpSsvDhhwQzUADB8+sqKgID99z55dATt2bA2OjIzSjR49tvDgwa/rTVCa+n9CAKYpY+Y6mRRBECNLSqrtelKFQgZPT2eUllaD5zvcUNUOhdq6bThSO+t5YMinrgCAow9UdqrkxJHauTOjdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaTrnqEWkdx48fc/Hx8TPXXhDgww/XBPzww0GfL7/89nx7xuaoTCaDpqAg20UUhTEDBgxIaGjfTvQWTwghhBBCSOv644/f3X/55bDX9Omz0sLDI4xxcRe0+/d/6T927J2F7R1bZ0DJCSGEEEIIIU304otTc/R6vWzp0kWRlZUVCi8vb9Pdd9+b/+yzkzpt1fa2RMkJIYQQQgghTaRWq6VZs+ZlAshs71g6I1qtixBCCCGEEOIQKDkhhBBCCCGEOAQa1kWIAzn//UFk//wTVH5+uPn5l6BxptUFAUt5rB5ewqXHhBBCCOmcqOeEEAfx65rVUHy6B5FFRVCf+RtvvPQsDAZa3RIANArgozE6fDRGBw3dUiGEEEI6LUpOCHEAySeOw+fv05AxDFIYBquyMnD0zGnExq5s79AIIYQQQtoMJSeEOICkrZuhlMmQKmNw27pNmLpwCQBgz56dSE9Pa9/gCCGEEELaCCUnhLSztL9PIZLnIUoSop95HnK5HIMH34Khg2/BcC8fnFr9bnuH2O4MPHDXV8646ytnGPj2joYQQhzL4MEDB+zdu8e7qfv/8stPbvfcc3uvYcNu6r9s2eKQ1oytKWJjVwaNHz+mtz3P2Zw2ycrKUO3f/6WnPa9PbEejtwlpZwmf7kEUgHS5DKNvuOnS80+OvQtOBhOM5WWoKCqEm49v+wXZziQAudWyS48JIYT86/PPv/7Hzc1daOr+Gzd+GOLvH2B8770PLrq4uDb5uI6kOW2yYMFbEX5+fqZx4+4pbe24SOOo54SQdiSKIv5IiEe2Xg+Xm/9z2bY+Y+9APs9DLZPjrx3b2ylCQgghjs7fP4DXarVNvndTXV0t79GjZ3VYWITJy8u7UyYnzWsTiRaCdCDUc0JIO0pIiMO+1CT84OSEnx+6PAGRyWTQRUUBGRkQ4i60U4SEEEIc3eDBAwdMnTot7f77HyyePfuNCFEUGU9PL/PPP//kbTQaZH369Kt488256f7+AfzgwQMHAMCnn+4O/PTT3YEff/zZudDQcNPGjR/6Hzz4tV95eZkiICDQeP/9D+Xdc899JQDw++9HXadPfzXmsceeyvr8808DfXx8jYsWLUt59NEHej300KM533yz30+lUorbtu2JYxgGK1cuC/nzz+MePM8zkZHRuhdfnJLVr19/nTXe3bt3+OzduyegtLRE1bfvdeV+fv6mhl7fs88+xvbs2aeytLRE+dtvR7yUSqV4553jC0aNGluydOnbESkpSc4BAUGG6dNnpV133QBd7Ta57bYxZY899kDPiIgoXWzsuiQAOHLkF9fZs9+IefPNuclffrnXPz4+ziU+Ps5l/Pgxrvv2fXdu/PgxvW+9dVTxlCmv5dSOwc/P37h48f/S6mqPjz7aE5+fn6dctep/oWfOnHaTy2VSTEy36qlTp2VGR3cxtsb/e2dFPSeEtKMjR34BANx883+g1miu2t719jsBAMGCgIqiwrYMjRBCrlmCXi+r70s0Gpm22Lcljh//zbOiokLx3nsfcHPnvp0cHx/nunbt6mDAMtzJy8vLfNdd9+R//vnX/wQHh5pWrVoe/M03+/1eemlqxubNO+Puuee+/PffXx2+Y8e2y8YTnzhx3OODDzbFz5z5VppcLpMA4JdffvJatWotN3/+O8nu7u7CK6+82DUnJ1u9aNHypA8+2JTQrVv36ldeebHbuXP/aAFg//4vPdetWxt2zz335W/c+NGF7t17Vh88+LVfY69p377PAvz8/E2bNu24cOeddxfs3r0jaMaMV7tOmDAx7/33N8arVEpx5cpl4Vce5+HhIbzxxuzUv/8+5f7VV194lZQUy5cvXxw5YsSoottvv6ts+fLVSV27xlTffPN/Sjdt2hHfnHau3R4Gg0H28svPs6IoYNWq97lVq97n3Nzc+RdffLp7Tk62sjnnvdZRzwkh7Sjz2FGoZTIMGTKszu1RA2/AMT4WfgoFzn71JQY//VzbBkgIIdeg5JcnXVffNm0MWx46/c0k6/cpr03pK5nNdd7sVUdEVoXPmcdZv0+d8XpvUaer87OXKihYF7FwcbM+HNcbo1YrzJu3KF2pVEoxMd0Mx4//Vnzq1El3wDLcSSaTSVqtVvT3D+Crq6tlBw7s85827c3UkSNHlwNAZGSUMTc3R/3553sCHn30iUt3xiZMmJhn7QXIyEhTAcAdd4wrZNnuBgA4evRX18REznnfvoP/+Pj48gDw2mszsuPiLrjs2bPTv3fvvmlffPGp/6BBg0sfffTJQgDo0qVrXnz8Bee0tBSnhl5TaGiY/qWXpuYCwJNPPpe/e/fOoCFDhpWMGjW2HABGjRpbvHHjutC6jh0yZGjl2LF3Faxbtzb0p59+8HJ2dhZmzJiTAQCenl6CQqGQVCqVaI25qWq3xyef7PKprKxQLF26MlWpVEoAsHDhkrR7772j92effeJbuxeGNIySE0LaSUl2Jh7XaPFQv4HwG3h9vftV+vvDr7gYlX+fbsPoCCGEdFT+/gFG6wdkAHB2dhF4nq+zZ+bixQSN2Wxm3n13acTKlcsirM8LgsjwvJnR6/WXjouIiLxqeFJYWPilasEJCXFOADBhwvjLVt7ieZ4xm00MAGRmZmiHDRtRUnt7jx69qhpLToKCQi5dx8nJSQSA4ODgS/GoVGqR58319j699tr0rNOnT7qfPv2X+4cfbolrzhyd+tRuj4sXOSe9Xi8fM2ZYv9r7mM1mWWZm+tVDI0i9KDkhpJ1cPPwTvACUiiJ6hYTVu5/v9TeC//ZrlJcUQ5IkMMy1N2+PARBVs+jKtffqCSFtLXrNh3/Xt42RyS77UBu1Mvafpu4buezdc03dtyVqJyb/qvv0oigyADBr1ryUqKguhiu3q9XqSwdqNBrxyu0ajebSdlEUGa1WK6xfv+2qHiCVSiUCAMMwkK4IRaFQNPraFQr5VfswTNNnJ+Tn5ynLykqVcrlcOn78mFvv3n30DR9x+eV4Xrjq7ad2e4iiiMDAIMPSpSuTrtzP2dm5Uy460Fpozgkh7aT03FkAQKWHe4P79RgzFs+e/wdL484hOzurLUJzOBoF8OkdOnx6hw4auqVCCGllcq1WrO9LVuvDemvu21a6dIkxyOVyKTc3RxUVFW20fh058rP7jh1b/GWypn9UjI7uqtfr9XKTycjUPte2bZsCDh/+0QMAwsMjdOfP/+NS+ziOi3e276u6nCiKWLhwTmR4eKTuxRenZHz88UfB58+f0/67B3P5/5NcIVVVVctrH19QkK9q6BpRUdH6oqIilZubm2B93WFh4ca1a1cH//nncVd7v6bOjJITQtqJpqgIAOAc063B/ZxcXNG1R08AwF9//dnqcRFCCLl2uLu7C7fdNqZwx46twV988alXWlqq6rPPPvHetm1ziKenV7PmYAwfPqI8PDxCP2/erOhjx464pqQkq5cvXxzy88+HfCIjow0A8NBDj+X9+ecfnhs3fuifnJyk3r59s9+JE8dbtQDihg0fBKSmpjrNnj0/bcKEh4u6d+9ZuWjR3EhjzSIEWq1WLCjIV2dnZykBoHv3HlXHjv3qdfz4by5JSYnqhQvfCtfrdfKGrjFu3L0lLi7OwowZr0afOvWnc2Iip3nrrRmRZ86ccu/alW2kl4bURskJIe1AV1EB/5rhWVG3DGt0/+uvvxEA8Neff7RmWIQQQq5BM2e+lXn33ffmf/TR1uAnnnio165d2wMffPDhnJdfbt4kbrlcjtjYdRe7do2pXrx4XtQzzzza4+zZM65z5ixIHjJkaCUAjBw5qnz69FkpP/xw0Ofppx/teezYEY9x4+7Jb51XBpw7d1a7Z8/OoEcffSI7KiraCABvvvlWelFRoXrVquXBADBu3L2FmZkZmqeeerinIAiYPPnV7JgYtmr27OldX375+W5ubm78oEFDGizQ6O7uLqxZsyHB3d2DnzlzWtdJk57uXlCQr3rnnRWJ3br1uGq4HKkfI1058K/zSxEEMbKkpNquJ1UoZPD0dEZpaTV4/qohmcSOOkNbn/vuG6g/24tynseALR+hsW7zE98eQNnOj+CsUmPwtp1tEqMjtbOBBx773jJX8qPRnWtolyO1c2dG7dw2WrOdvbycIZfLUgFE2eN8p06d6iaTyb/z8wuuUqk09OGRkFZkMhk0BQXZLqIojBkwYEBCQ/tSzwkh7SD/nGVOZIlK1WhiAgBs/4GIdHKGn0KBkuzM1g7P4UgAUsrlSCmX1zOlkxBCCCGdASUnhLSDf8rLsDE9FeXhV9WLqpNHQCAKeMvQ36SjR1ozNEIIIYSQdkPJCSHt4GTSRfxYmA+fmwc1+ZhKF8viJiUXzrdWWIQQQggh7YqSE0LamMlkQlJSIgCgW7ceTT5OGR4BAJDl5bVGWIQQQggh7Y6SE0LaWPLpvzDEwwM9fP0QGBjU5OMC+w8AAPjwZogiTeglhBBCSOdDyQkhbSzvxB+YFBGNJ8OjmlXtvctNg8BLIlzkCuRd5FoxQkIIIYSQ9kHJCSFtzFCz2pbZw6NZx6mdnXGR5/FbcRFSEq+t5IQBEOgsItBZRNPTOUIIIYR0NJ2oWgAhHYO8tAwAoAkOafaxJ0NC8M03+/FSXi4G2zkuR6ZRAAfutm9tIkIIIYQ4Huo5IaSNuZvNAABvlm32sSzbDQDAcfF2jYkQQgghxBFQzwkhbaiyuBCeCsuvXWi//s0+PiamGxgAhYmJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKGMv/+GEkAZzyMmKLjZx3cJi8C2666HVi5HZXEhXL197R+kAzLwwHOHnAAAG0bqoKG/XISQVsIwkIsME6gz8O3yl8ZJo+BlkHIdLUGJjV0ZdPjwD9779n13rrnHJiUlqp977oke27btuhAWFmFqjfhI50Fv8YS0oaKEeAQCKFfIbTreJygIyZIELYCUEyfQ9/Y77Rqfo5IAxJXILz0mhJDWwjCMTGfgFX+czxV1Br5N12130ihkN/UKVLhqFDJJkhwqObFVXNx57cyZr3cxmYw0lYA0CSUnhLSh8wY9Nl2Mxy3DbrX5HGUqJTxFCUVxF4BrJDkhhJC2pjPwYrXe3B5FpTrNh/gPPogN+OyzPYHBwSGGkpJiVXvHQzqGTvMLQEhHwGWk4VxFOdx69rb5HKKnFwDAlJttr7AIIYR0YIMHDxywa9d236eeeoQdPvzm/g8+eE+PH3446F57n0OHvnd/5JH7uw8ffnP/e++9o9fq1SuCjEbjpdXZExLiNK+88mL06NHD+g0demP/e++9o9fWrZv86rvmtm2b/IYNu6n/999/61HfPqdO/en+xhuzUidNejnLLi+UXBMoOSGkDaWmpgIAIiOjbD6HNjQUAKAsr7BLTIQQQjq+rVs3hgwfPqJkw4btFwYOvLH87bfndjl58oQzAPz88yG3xYvnR48de2fRli27Lkyd+nrGsWO/es2e/UYkAOh0Otnrr0+J0Wi04po16xK2bv34wuDBt5Ru3rwu9Ny5s9orr7Vz5zbf7ds3h8yZszB59Ojby+qLafPmndzYsXfWu52QutCwLkLaiMlgwCBJQo6XD8JCQm0+jw/bAzhzBu4Cb8foCCGEdGTDh48sevTRJwsBYNq0mdnnz//junfvbr/rr78xdefObYEjRowqevjhxwsBIDIyyqhQKNJnzHgtJiMjTeXk5CyOG3dPwUMPPVrg5uYmAsDkya/mfPHF3oDExARt79599Nbr7N6902fLlg0h8+YtSho2bATdJSN2R8kJIW0kl0vAfwOCYBJF+Pr523ye8P79kfvJx3CXK1Cakw1PG1b9IoQQ0rn07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bpZrVRZKSEjW33npbxcSJjxV8/fVXXsnJiU7Z2Vnq9PRUJwAQBPHS0K/S0lLlhx/GhsvlcikkJMzYFq+LXHsoOSGkjRRw8XAHUCKJkCts/9Vz9fbBF9WVyK2owOi01GsmOfFQt8e8VEII6RgUCsVlixlKkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBjfp/a+DCPDwoXvJG7ZsiFo8eL5kZs370iQyWiGALEv+okipI1UpKcBAHQqdYvPdcLTE3uyM5GSm9Pic3UEWgVw6L/VOPTfamjplgohhFwlLu68c+3vExLiXKKjo3UAEBISps/MTNdERUUbrV/5+bnK2Nh3Q6qqKmUHDuzzrqqqVGzZsjPhpZem5o4de0dZeXlZzV/bf3MeDw9389ChwytmzpyTlpKS5LR160bbhwEQUg9KTghpI6aCAgCA5OHeyJ6Ni4qKBgCkpCS3+FyEEEI6vgMH9vnv2/e5V1JSonrZssUh6elp2oceeiwfAB588OG8P//8wzM2dmVQUlKi+tixI67Ll78TWV1dpfD3D+D9/QNMRqNR9vXXX3lmZWWofv31sNuCBXOiAMBkMl31WbF7956Ge+65P2/Xru1ByclJLb/jRkgtDnUPkmXZGACnAUzmOG5bzXP9ALwHYCCAYgCxHMetaK8YCbGVvLwcAKDyD2jxuaIio+GpVKIqObHF5yKEEHI1J42izW/gtuSao0aNLfzssz3+q1ev0IaHh+uWLFmR2LNnLz0A3HHHuFJJklJ2794R+MUXnwY4OTkLAwfeUPbqq9OzrNsTEuLzNm78MHTNmpUyHx9f0+jRtxcdP/6bR3z8BWcAhVdeb9Kkl3N/++2I5+LF8yM2bfqIo+FdxF4cJjlhWVYJYBcA51rPeQP4EcA+AC8AuAnAByzLFnMct7U94iTEVk5mEyBXwD08ssXn6uLkjPV9B6DUYLJDZI7PwANTfrGsZhk7TA+Nw/zlIoR0NpIkiU4aBX9Tr0AF2mGEiZNGwUuS1OxJdpGR0frp02fXW0/kzjvvLr3zzrtL69rGMAymTZuZPW3azMsKaD399PP51sdTpryWM2XKa5fGEqvVamnv3v0XmhLboEFDKo8d++tUU/YlxJHe4hcAqLziuecAGAFM4jiOBxDPsmxXADMAUHJCOgzebIYXY3mP8+/WrcXnC+vfHwWf74WnQoGKokK4+fi2+JyOTAJwukBx6TEhhLQWSYIgg5Tr2g49J5brS6IkQWiPaxPiCByiD45l2VsAPA/g8Ss2DQFwpCYxsTpsOYStt2opIY4mvyAfr174B0uTExEY0/LkxMM/EGW85dci42+6GUUIIfYkSRBEUTK3xxclJuRa1+49JyzLegDYAeBljuMyWZatvTkEwLkrDrF2KYYBKLD1ugo73xCRy2WX/UtaT0ds69zcLOQbjXAKCoJGa5+5gxUKOTwAlCYnQTHW/m3hSO1ce4FMhVyGFqzE7HAcqZ07M2rntkHt3D5oyBTpTBzhLf5DAMc5jvu4jm1OsAzrqs1Q86/G1gvKZAw8PZ0b39EGbm7aVjkvuVpHauuiojwAQGRkpN1+9kR3d6C8Aqb83Fb7eQYco53V5n8fe3g6w0nZfrG0Fkdo52sBtXPboHYmhNiqXZMTlmUfhWXoVu96dtEDuPI2szUpqbb1uqIooaJCZ+vhdZLLZXBz06KiQg9BoGJxrakjtnXFydO4LzAYfu7eKC29+kdXJmMgSIBZEKFVySHwjb8umbcPUF4Bc35hnedsKUdqZ70ZsK6VUVZaDWMnSk4cqZ07M2rnttGa7ezmpqUeGUKuAe3dc/IUAH8AVw7nWsey7BsA0gEEXXGM9ftstADfhA9/thAEsdXOTS7XkdraLTcPDwSHIk2pvCpmhgHMIoO41BKUVxrRI8obPm7qRl+bc2g4kJICjV7fqu3gCO3MC7Ufi+CZ9oultThCO18LqJ3bBrUzIcRW7X0L4hEA3QH0q/UFAHMB3A7gCIAhLMvKax0zAgDHcZzN800IaWsqg2U0onPglbk2oFDIkZlfheTMMhSU6pCQVgIDL4Jp5AO4f+8++Co3BwdysyFJnX8NK41cgkbe+V8nIYQQci1r154TjuOu6v2o6UEp4DgunWXZLQCmA9jMsuxyADcAeAWWmieEdBiuogjIZPAIj7jseYZhoDMKSM+tgFiTYOSXVCO/RIcIf1eYzfUv2hLasyd252ZBFEUUFRXC17fzLmCnVQDHJlS1dxiEEEIIaWXt3XPSoJrekdEAWFgqx88D8AbHcdvbNTBCmsFQVQX3muWlAq5YRlihkKGoXI+SCv2l5yQJyMqvhKmRIRFKpQrBwSEAgPT0NPsGTQghhBDSDtp7zslVOI5jrvj+JICb2ykcQlos92ICAMAgCPAMunxYFy9KyC6swpWjsorLDajUmeHpompwUmlMaDhcSkuRe+E8MPAGu8dOCCHXIoaBnGEYKsJYS2zsyqDDh3/w3rfvuytLPNRr797d3p9//ql/QUGB2tPT0zxq1JiiZ56ZlCeXyxs/mFyzHC45IaSzKU5JhhuAMkmCTPbve51MxqDKwKO0wnDVMSazgLySani7qSE08BY1wskZXbr1RHLchVaI3HEYBWD6UcvSpMuH6KGm9zVCSCthGMi1MnOgZNK1y2ckRuXE60VlriMmKM2xb9/nXu+//174Cy+8nHHjjTdXXrhwzik29t1wk8nMvPzyq7ntHR9xXJScENLKKrOy4AZAr7p8/Vu5XIayympU6811HldSboCJF9HQvHi1vz9QVgamrMxu8ToiUQJ+y1FcekwIIa2FYRiZZNIpqrgTomjUt+mSYzK1VubC3qhglB4ySZI6dHKyf/+XvkOH3lr84IMPFwFAZGSUMT09TfP999/6UHJCGkLJCSGtLF7GYPm5Mxg75g6MrvW8KAH5JfXX2ymvMqLayMNNo4BYzydy94gogOPgbLyyVikhhJCWEI16UTBUt8d6yM0eTjZ48MABkya9nPHTTz96paYmO/v7Bxieeuq57FGjxpZb9zl06Hv3bds2BWVnZ2k9Pb1Mt9wyvGTSpJdz1Wq1BAAJCXGadevWBsfHx7kaDHqZt7eP6a677il48sln6lwdddu2TX7btm0KefPNuSmjR99eduX2F16YnOXl5c1f+Xx1dRV99iQNcugJ8YR0Btn5ecg1GuAaEXHZ8wazgIpqU73H6Y08KqqMDRYdC+jREwDgJZOBN9fdA0MIIaTz27p1Y8jw4SNKNmzYfmHgwBvL3357bpeTJ084A8DPPx9yW7x4fvTYsXcWbdmy68LUqa9nHDv2q9fs2W9EAoBOp5O9/vqUGI1GK65Zsy5h69aPLwwefEvp5s3rQs+dO6u98lo7d27z3b59c8icOQuT60pMAOCGG26q7tKl66U7Z2VlZfKDB7/27dv3uopWagLSSVByQkgry8mxrJgdFBR86Tm5XAadgUdlA8kJABSU6tHQKKZAthvMogilTIachHh7hEsIIaQDGj58ZNGjjz5Z2LVrjHHatJnZ0dFdqvfu3e0HADt3bgscMWJU0cMPP14YGRllHDr01opXX30j/Y8/fvfMyEhT6XTVsnHj7imYNWteekxMN0NUVLRx8uRXcwAgMTHhsuRk9+6dPlu2bAiZN29R0siRo8rriuVKVVVVsmnTpnQxm02yKVNez7T/qyedCXWtEdLKbtTpERUYjEAPz0vPyeUMSisN4BtYiQsAqnQmGM0C6pv/LVcoUCKJ8IcMefEXENa7jx0jJ4QQ0lH07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bratEJiUlam699baKiRMfK/j666+8kpMTnbKzs9Tp6alOACAI4qWpj6WlpcoPP4wNl8vlUkhIWJPGE+fn5ymmTZvSNT8/T7106cqLERGRDd+VI9c8Sk4IaUUmvR7DXFwhc3WDh5//pecFUUJJHat0XalKb4beJDQ470Sn1gA8j4q0VLvFTQghpGNRKBSXvUlIkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBh/2R0vhpFh4cJ3Erds2RC0ePH8yM2bdyTUXoXySomJnGbatKldBUFgVq/+gOvRo5e+3p0JqUHDughpRflJiZAxDEyiCO+w8EvPG81ivat01WYw8qjSmRucd1IYGIgNaSm4aKKbUYQQcq2KizvvXPv7hIQ4l+joaB0AhISE6TMz0zVRUdFG61d+fq4yNvbdkKqqStmBA/u8q6oqFVu27Ex46aWpuWPH3lFWXl5WcwP735zHw8PdPHTo8IqZM+ekpaQkOW3dutEf9UhPT1O98spLMRqNRly3bks8JSakqSg5IaQVFSYnAgDKRBHWolMyGQODWWhScgIAJRV6MA2sJ6zu0ROHigqQUJDX4ngdlVYB/DWxEn9NrISW+nsJIeQqBw7s89+373OvpKRE9bJli0PS09O0Dz30WD4APPjgw3l//vmHZ2zsyqCkpET1sWNHXJcvfyeyurpK4e8fwPv7B5iMRqPs66+/8szKylD9+uthtwUL5kQBgMlkuuqzYvfuPQ333HN/3q5d24OSk5PUdcWzaNG8CJ43y9566+0UpVIp5efnKaxfrdsSpKNr9g8Iy7IKAMMAjAAQCcAdQBGAdAAHAfzOcRxVIiAEQEVmJlwA6JT//qrJZDLo9GYYjFetsFinKp0ZJr7+X6mQkFAAQFYWzTEkhBB7kam1bX4DtyXXHDVqbOFnn+3xX716hTY8PFy3ZMmKxJ49Lb0Vd9wxrlSSpJTdu3cEfvHFpwFOTs7CwIE3lL366vQs6/aEhPi8jRs/DF2zZqXMx8fXNHr07UXHj//mER9/wRlA4ZXXmzTp5dzffjviuXjx/IhNmz7iag/vys3NUcbHX3AFgBdeeLLHlcceO/bXKVtfJ+n8mpycsCyrAjAJwOsAQgCUwpKQVAMIBXAngFkAcliWXQZgA8dxVHyBXNOMRZa/54KT06XnGBlQUtn0X41qvRkmXoBazlyawFhbaEgoWBdXhFRXQ+B5yBV0U4oQQmwlSZLIqJx4F/ZGBdphhAmjcuIlUWp2fZXIyGj99Omzs+rbfuedd5feeefdpXVek2EwbdrM7GnTZmbXfv7pp5/Ptz6eMuW1nClTXsuxfq9Wq6W9e/dfqOt8gYFBZkpAiK2a9CmGZdkbAGwHIAD4EMCnHMcl17FfbwC3A5gCYCrLso9yHHfcjvES0qGI5WUAAMbd49JzvCChqpElhGvTGcwwmARonZUQhKuzE3//AMyL6Q6FTIb8xIsI6n7VTaoOzygAc3/XAAAWDjJAXd/yZYQQ0kKSBEEvKnMZpUe7DH2XREmUJHTo6vCEtERTb7HuADCT47gvG9qJ47hzAM4BWMay7AOwJDQxLQuRkI5LrrPM/1N7+1x6zsyL0BmbXjDRzFsmz3u7qiEIV79fKVUqlIoifGUy5HHxnTI5ESXgp0wlAGC+1PgqZ4QQ0hKSBEGSJEoQCGkHTU1OenMc16ylgDiO+5Rl2X3ND4mQzmN7WTFK0tMxd+LDACyT4Y0GHnpD0+abWJVVGhDm71Lv9iqlEr6ShIr0tJaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5GVn4dcowG+YREAalbqMgpNngxvVa3nwdcxpMtKcHUFABjyOu+KXYQQQgjp/Jo652Ruc07KcdxC28IhpPPQ6/UoLy8HYJkXAliSk7IqI5q7nJ3OaIZZEOv9hVX6+gIVFUBZmc3xEkIIIYS0t6YO65p/xfcSAAaWCfJFADwBqACYAJQAoOSEXPPyky7i+fAoFIsCXFwsQ7IECajUNX8RO72Rh8kkQFVPpXiX0DAgORkaA83HIIQQQkjH1dRhXTLrF4DbABQDeBCAhuO4QI7jNLCs0lUM4LVWi5aQDqQkOQkjfP0w1NsXTE0VRZ4Xmz3fBLBUijeYBchkdVdj9OnSFQDgAUAUm70CJSGEEEKIQ7Blmby1AN7iOO5TjuMurWTBcdx3AOYAWGyv4AjpyCpzLMvBG2rqjjAMYBZEGEzNT04kCajUmS4lOVcK6dkbG9NTsTL5IspK61zGnhBCCCHE4dlSrS0MQEY92woB+NseDiGdh7GwAABg1moB1Fqpy2jb6pQVVSbLYMo6aF1d8Q8DFFSUIzsnC17e3jZdw1Fp5MDRByovPSaEEEJI52RLz8k/AF5mWVZZ+0mWZTUApgM4YY/ACOnohJrJ8Iybm+VfxrJSl8lsW3KiNza8YldoaCgAIDOzvnsHHRfDAFqF5aueziNCCCGEdAK2JCdvArgVQDLLshtYll3MsuwmACkA+gJ43Z4BEtJRyaqrAQCqml4MmYxBRTMqw1/JYOJhFuqfT9I9IAhDvHxQGXfB5msQQgi59lRXV8t27Njqa/1+9uw3Ip599jG2Na+ZlZWh2r//S8+WnGPv3j3egwcPHFDf9rZ4HYMHDxywd++eTjFcISMjTTV48MABv/9+1LU942h2csJx3K8ABsHSQ3IXgGkAxgI4BGAAx3Fn7BkgIR2V2mRJRFwCAgFYqpxX6lqQnBh5mMxivZPie6vUeDmqC9zS0my+hqMyCcD84xrMP66BiWo2E0KIXW3ZssH/888/CbB+P336nMzly1cnteY1Fyx4K+LEid/dW/MapGOyZc4JOI47DeB+O8dCSKfiUlPNxD0kDADA2zgZ3spgsgwJYzQKoI5KKc7BwUBmJlR6nc3XcFSCBHydahlJOuN6Wi6ZEELsSZKky+56ubu7t8FtIIkG6ZI62ZScAADLsmNhWVY4EMAsANcBOMVxXLqdYiOkwzKZTHjpn9PwUqqwq3sPAIBZkGBsZmX42kRRQrWBh6+7BkIdbxtekdHAH3/ArYGhX4QQQjqf8vJy+cqVy0L+/PO4B8/zTGRktO7FF6dk9evXXwcAOp1OtnTpwtC//jrpodPp5MHBwYZHHnkiZ+zYO8tiY1cGffrpx4GAZYjSxx9/dm79+veDCgry1Rs3fsT9/vtR15kzX49ZsmTFxffeezesoKBAHRERoZszZ2HqDz8c9Pz6633+giAwQ4YMK549e34mwzCQJAmbNq3z/+GHgz6FhQVqpVIpduvWo2ratDczwsMjTM8++xgbHx/nEh8f5zJ+/BjXffu+O2cymZjY2HeDfvnlsLder5OHhITpn3rq2ZyhQ2+tsL7Ogwe/8di+fVNQfn6eJjq6a3W/fv0r6msTK0EQsXjx/NBffvnJW6FQSLfdNqZoypTXsxU1K2n++ecfzlu2bAhKTk50NpvNMn//AOPEiY/l3n33vSXWc3z11Rden3yyKyA3N0fj4eFpvvPOuwuefvr5/CuvVVhYoHjppWdZDw9P8+rVHyQ5OTmJv/562G3jxg+Ds7OztH5+/sb//veBvNjYlREff/zZubCwCNP48WN633jjoLK//z7lVl5erpw7d2HyTTf9p3L79s1+3357wK+oqEjl4+Nj+u9/J+Q99NAjRQDw++9HXadPfzXGeg7AMiRr4sT7ei9fvurioEFDKmfPfiNCFEXG09PL/PPPP3kbjQZZnz79Kt58c266v38ADwDx8Rc0q1b9LywpKdHZ09PTPGHCxNwW/SDaSbOHdbEs68Sy7A8AvgHwFIAHYCnCOAnAKZZle9o3REI6nsLCAhhFEcWSCE8fH8hkDMxmAYYWjkmqqDbWOyE8qGcvAIC7QoHqspK6dyKEENIgSQKqzZC115dU/7on9cQr4ZVXXuyak5OtXrRoedIHH2xK6Nate/Urr7zY7dy5f7QAsGbNyqC0tFSnpUvfTdy+fff5AQOuL1+69O2ojIw01VNPPZd311335Ht5eZk///zrf4KDQ68afyyKIj74IDZ0xozZaWvWrI8vLy9XvPTSs90zMtK17733Iff4409nfffdN34//fSDOwBs3brRb+/e3YHPPfdi1o4dn5xfsOCd5JycbM2qVctDAWD58tVJXbvGVN98839KN23aEQ8Ab701I+LUqb/c33zzrdQNG7bH3XLLsNK5c9/scuiQ5ZwnT55wfued+dGDBg0p27jxowsjR44u/vzzTwIba5+LFxNcyspKlWvWrE94/fWZaYcO/eCzfPniUADIyclWzpz5WkxkZLR+/fpt8Rs2bIvr2pWtXrXqfxEFBfkKAPjmm/2eK1YsiRw69NaSTZt2XHjqqeeydu3aHrRnzy6f2tcpLi5STJ78HOvt7WN6770PE52cnMRz585q5859s0vfvtdVbtiw/cIjjzyes3nz+tArY/z++4O+kye/mrFs2cqLAwfeWLVs2eLQTz7ZFfTII0/kbN6848Ldd9+bv3792rDt2zf7Nedn4/jx3zwrKioU7733ATd37tvJ8fFxrmvXrg4GLAnt66+/zDo5OQkffLAxfsqU1zM+/vijoOacv7XY0nPyDoABAEYAOApLVXgAeBTA9wDeBnCvXaIjpIPKz88DAPj7B4BhGDAMAyMvwtjC5ERv4CHUUSEeADwCApEi8HCRK5B9/gJiBg9p0bUIIeRaI0nAI985deNK5c7tFUM3T6Fqxxgd19SVCY8dO+KamMg579t38B8fH18eAF57bUZ2XNwFlz17dvr37t03LTc3R63VOgnh4ZFGd3d3YerUadnXXTeg0t3dU3BxcRG1Wq0ok8kk6x31ujz55LPZAwbcUA0AgwYNLvv666/85s59O93JyUns2pU17Ny5PTg5OVE7cuTo8tDQMOO0aW+m3nbbmHIACA0NN504cbz0yJFfPAHA09NLUCgUkkqlEn18fPmUlGT1b78d9Vq7dkO8tbcnOrpLfnJykvaTT3YGjBw5qnzv3t1+MTFs1ZQpr+UAQJcuXY0pKcnab7/d3+AHdnd3D/Pbby9L1Wg0UrduPQyFhYXZ69evDXvllTeyTSYT8+CDj+Q888wL+TKZzPo6c3/55SfvlJRkjZ+ff9Vnn+3xv/nm/5Q8//xLeTVxGXW6arlGo700TKGiolwxefLzMT4+vsZ3312TrNFoJADYvXuHf2RklO6NN2ZlAUDXrjHGkpIS5caNH16WoFx3Xf/yW24ZVmk5V4Xs+++/8X366eczx4//b0nNNQtzcrLVn3zyceBjjz1V0LSfDECr1Qrz5i1KVyqVUkxMN8Px478Vnzp10h0AvvnmK0+TySRbsGBJmru7u9CtWw+DXq/LXLRoXnRTz99abElOJgB4k+O4n1mWvVRxgOO4PJZlFwF4327REdJBlZ87i+fDo2DwsdxYkckY6PRmiM29JXYFg8mynHB971nlDAMXAEXJiZScEEKIDZi6JvU5sISEOCcAmDBhfO/az/M8z5jNJgYAHnnkibw5c6Z3ufvu0X27do2p7t//+vKxY+8sac7cksjI6EsT/tRqjeju7mF2cnK69AFdpVKKRqNJBgC33Tam/NSpk86xse8GZWdnqbOyMrVZWZkaT09Pc13njos77wQAr7/+8mUrawmCwDg5OQkAkJ6e5nTddQPKa2/v3btPVWPJSXR0F501WQCAPn36VfM8zyQnJ6l79+6j/+9/Hyj+6KMtfunpqZrs7GxNWlqKEwCIosAAQEZGuvaWW269bDjChAkPF9X+fseObcGCwDNXXislJcnpyqFn/ftfXwl8eFmMwcEhl9o2KemiRhAE5rrrBlbV3qdfv/5VBw7s8y8sLGjyZ3d//wCjUqm8FI+zs4vA8zxjiS3Zyd8/0FD7Z2DAgOur6jpPW7MlOfEAkFbPtlIALrYGQ0hnYc7MwAhfPySr1QAstTkqWrBSl5XRJMAsiFDLGdSV5xg1WsBkQlVWZouvRQgh1xqGAXaM0XE63qZSC3bhpIDYnHpOoigyWq1WWL9+W/yV21QqlQgAAwfeUP3llwfPHj36i9vJkyfcfvjhoM+ePTuDFi1anjhkyNDKplxHqVRc9q5T38qRALBhwwf+u3fvCB4+fGRRv379Kx944KGCX3457HH06C9ede0vSZYcZ/XqDxKcnV0umzgpl8ulf/e7fBK9QqFsNJGUyWSX7SOKls/iarVKSkzkNJMnP9ctIiJKN2DA9eWDBw8r9/LyMr/88vPda1+/sf+P3r37VNx++7iixYvnRf/886GS4cNHVtQcC1FsfOK/SqW+6jUyV1xUFC3NUjvZqP05wGzmr7pO7X3/Vfup5rdnW7AlOTkP4GEAP9Sx7a6a7YRc04TSUsuDmgKMgihBb7B9MryV0cTDxIvQKBSQ6shOCsPDsfub/egdGoJRLb4aIYRcexgGcFaiw6wsEh3dVa/X6+Umk5Hp1q3HpTvwc+e+Gd6lS1fdY489VRgb+25Q3779q0aNGls+atTYckEQMh988J6eP/98yHPIkKGVDMPY9UPpp59+HPTgg4/kWIdCAcCuXR8FXP629e81u3Zl9QCQn5+vGjmy76XekVWrlgczjEx65ZVpOVFR0br4+AuX3QCPjz/f6PC7tLQUJ1EUYR22dfr0X64qlUoMD480rlixJMTNzd28fv3Wi9b9f/zxO3cAl95jg4NDDRwXf9l1lixZGJqfn6davfqDZAC45ZbhpWPH3lH2888/lqxatTxiwIAbzru5uYkREZG6K489d+5MgzF36RJjkMvl0unTJ1169eqttz5/5sxpV3d3D7OHh6egVFqSzoqKiksjmNLTU9WNtUVtXbvG6A4f/tG7uLhI4e3twwPA2bN/t9twxtpsuTOwCMCjLMt+DeAZWFKwoSzLrgHwIoDldoyPkA7JWoBR6WW5ScQLEowtWEbYymi2LCdc3x0rt27d8U9FORJzclp8LUeikQM/3luFH++tgkbe+P6EEHKtGD58RHl4eIR+3rxZ0ceOHXFNSUlWL1++OOTnnw/5WIdiZWdnq1ev/l/YsWNHXDMz01XffLPfs6ioUN27d58qANBqtWJ1dbU8KSlRbTabW7zEr7e3j+n06ZNuHBevSUy8qF616n9Bf/75h4fZbL70uVOr1YoFBfnq7OwsZbduPQz9+w8sj41dEf7DDwfd09JSVZs2rfP/4ou9AcHBwUYAmDjx8bz09DTtsmWLQ5KSEtVffvmZ18GDX/vWH4VFcXGx6q23ZkQkJMRpvv32gMfHH38UNH78fflqtVry8/M3lZQUqw4f/tEtMzNddfDg1x6xsSvDAcBksgyJmzjx0dzffz/muW3bJr/U1BT1/v1fev7ww0HfwYOHll15renTZ2eaTCZmxYp3QgHLcLrU1GTnFSuWBiclJaq/++4bjx07tgUDV/eMWLm7uwsjR44u2rVre/C+fZ97paQkq3fs2Or7/fff+t5zz335DMOgW7ceeo1GI27dujEwJSVZffz4by6bN68Pqe+cdbnzzvElbm7u/OzZ0yPPnz+nPX78mMv777931WT99mBLEcavADwCoA8sg+YYAO/CUvfkBY7jPrNrhIR0QCqTEQDg5G+pacULEozmli8bL0mAzsDX+0ctNNRSUyUrK6PF13IkDAN4aiR4aqR6VysjhJBrkVwuR2zsuotdu8ZUL148L+qZZx7tcfbsGdc5cxYkW4dszZ49P71Pn36VS5cujHz00Qm9PvpoS/Djjz+ddc8995cAwKhRY0o9PDzNzzzzWM+zZ884tTSm2bPnpxqNRtmkSU93nzr1hW5paSnaF1+ckl5ZWaHIyEhTAcC4cfcWZmZmaJ566uGegiBg6dKVKTffPLg0Nvbd8CeemNjrhx8O+rz00ivp99//UDEA9O7dR79o0fLEc+fOuD7zzGM9P//8E//773+o0aVvBw68oUwul0svvfRs97VrV4WPGXNnwUsvTc0BgMcee6pg0KAhJcuWLY568smHe+7cuT3wiSeeyfbx8TWdP3/OGbDMn5k8+dX0b77Z7/vkkxN7bt++OfjZZydl3HffhOIrr+Xj48s/++yLWYcPH/L55Zef3Lp372l4662FSSdP/uHxzDOP9ty+fXPQ7bffVQAASqWq3t6qN9+cm3HHHeMKtmzZEPzUUw/3/Prrr/yef35yxjPPvJAPAK6uruKMGXNSsrMztU899XDP2Nh3w55/fnJmc5ITZ2dnMTb2Q06hUEhTp77QbcmStyMfeGBiXuNHtj6mrqEhTcWyLAvAG0AZgASO4zpCN2iKIIiRJSXVdj2pQiGDp6czSkurwfMdoRk6ro7Q1n8+8Qg8FAqYJz6C3iNvQ6WBx7Ez2dC3oM6JFRvhhb7R3jDVsfJXfm4OFj38AAI0GrzxxX6oNLa/x3SEdu4MqJ3bBrVz22jNdvbycoZcLksFEGWP8506daqbTCb/zs8vuEql0lB1V2J3f/99ykmhUEi9e/e9NDxr377PvVavXhFx6NDR09ZaK9cCk8mgKSjIdhFFYcyAAQMSGtq32a3CsuxhAC9yHJfAcRx3xbY+AHZyHNenueclpLMwG41wk1vGHvmER4BhGJjtsIywVUPLCfv6+eP5iCioZDLkxMcj4roBdrlmezMJwKrTluG0r/Y3QkVDuwghhDi4hIR4py1bNoS88cabqT169NSnpaWpd+zYGvSf/wwuuZYSk+ZqUsuwLDsY/w4BGwbLHJO6lm67E0C7r49MSHsqzsyAjGEgShK8w8Itywgb+BYvI2xlNAvgxbqXE5bJ5SiVRPhDhoLEi50mOREkYG+iCgAw5TpjO0dDCCGENO7BBx8uKi4uUn744Zqw0tISpZubGz9kyLCSyZNfzW7v2BxZU9O2ZwA8BsvkdwnAB7DMNan9acv6Welju0VHSAdUYjLiydN/ItLfH3uUSjAMgyp9y5cRtjLV1DpR1jO0VKdWA7yAivQ0u12TEEIIIc3DMAwmT34ld/LkVxqdG0P+1dTkZCqArbAkIIcBvAQg7op9BFjmnlywV3CEdERFRYUwiiIYD08AgChJ0NlhGWErg1mA2SxArVFArGN4l+jmDpSUwFTQ5CKyhBBCCCEOoUnJCcdx5QB+BQCWZYcDOAXAheO4vJrnPAGEchxHNU7INa+gJinw9bWMfLTXMsJWpppCjJZVOa5OTtT+AUBJCeQV5VcfTAghhBDiwGypc/IPgC8B/FLruRsBnGFZdh/Lsi1ego6QjkzOJeCF8Cj0dbLUihJE0S7LCFsJogS9Uah3OWG38AgAgJPRfkPJCCGEEELagi3JyVIAPQHMqvXcYQB3AxgIYKEd4iKkw1IXFuJWXz8E18w3MfFincv+tkS13gxZPb+9/mw3AICnTAbebLbrdQkhhBBCWpMtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOmI5HodAEDl6QmZDJZlhO3YcwIA1XoT6lv8K5DthuXJiXjjwlkUFNK8E0IIIYR0HLYssuwKoLSebfkAfGwPh5COT2UyA3I5nPz8LT0nZgFmOxcjsy4nXBeFSoVCN1fklhYjOzsTQUHBdr12e1DLgf3jqi49JoQQQkjnZEvPyWkAT9ez7UkAZ20Ph5COz6mmS8MtMAgMw9h1pS4ro1motxAjAISEhAEAMjIy7H7t9iBjgCAXCUEuEmT1LKFMCCGEkI7PluRkEYDxLMv+xbLsbJZln2VZdhbLsicA3Adgvl0jJKQD4c3mS9XhvcLCwTCwa40TK5PJ0htTz5x49PHzw72BwTCfP2f3axNCCCGt4dCh7905Ll7TknM8++xj7OzZb0TYKSSbxMauDBo/fkzvpu4/e/YbEc8++xjbmjHVJkkSPvvsE+/CwgIFAOzdu8d78OCBDlO1udnJCcdxPwK4C5Y1TBcCWA/gbViGiN3Ncdx3do2QkA6kJCsT8lrV4QVRgsFo3/kmACxDxS4tJ3y1aI0WDwaHwiOvc9R9MgvAe3+r8d7fath5+g4hhBAHkJmZrpo/f3aX4uIiZXvH0tn98cdvLqtX/y9Cr9fJAODOO+8u+fzzr/9p77isbJlzAo7jDgI4yLKsBoAXgHKO46rtGhkhHVBxZjrkACpFAUq1GoIowdQKn6aNZgE8X3+tE9fQMCAxEVqD0e7Xbg+8BOyIVwEAnuttBL1zEUJI5yLVt8oLsTtJki67s6nVaiWtVmv/Meg2sik5AQCWZbsDuA1AIIC1LMteB+AfjuMq7RUcIR1NIRhMO/0n+rHdcT1qCjC2QnIiSYDeyEPmroFQx+n9WBbmwz/BA4AoipDVt+4wIYSQq1Sb6x9ZImcgaRT/3hVqaF8ZA0lr477Ncfjwj25bt24Mzs7O0qjVGrF//wHl06bNyvT09BR+//2o6/Tpr8Z8/PFn58LCIkwAkJGRppo48b7ey5evujho0JBKANi6dZPfV1997l9eXqaMielW1bt338pDh77z2bfvu3MAkJqaol6xYkloQkKcq1arFcaPvy//228P+D700KO599//YDEA7N272/vTT3cHFBUVqn18fI233z6u8PHHnyqwvgd9/vmn3p9++nFAfn6+2sXFhR80aEjp66/PyMrPz1VOnHhfbwCYPv3VmAcemJg7ZcprORcvJmjee+/dkISEOFeNRiv06tWn8rXXpmf6+wfwAGA0GpmVK5eFHDnyixfP88yYMbcXig3MxwSAwYMHDpg06eWMn3760Ss1NdnZ3z/A8NRTz2WPGjX2UuXiQ4e+d9+2bVNQdnaW1tPTy3TLLcNLJk16OVetVksAkJAQp1m3bm1wfHycq8Ggl3l7+5juuuuegieffKbOJTK3bdvkt23bppA335ybMnr07WWN/X9mZWUq165dHXL27Bk3g8Eg69ate9Xkya9k9ejRS2/d56uvvvD65JNdAbm5ORoPD0/znXfeXfD008/nNxaf9ecBACZOvK/31KnT0gDgvfdWRBw79tcpACgtLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqgIsw9bOnTvjev31N5UdOLDPv7KyUhETw1a98cas9K5dY1p8V7TZyQnLsnIA6wA8BcB623YvgHkAoliWHcpxXFZLAyOkIyoqKoRJFKH28QHDMDDzQqv0nABAtcFc77CuoG49kSpJ0MrlKM5Ih29EZKvEQAghndHQva7X1betvx9fvmGkPsn6/agvXPoaBabOpKOHl1D10RgdZ/3+zn0uvSvNTJ2fvaLdBd0nd+jimxtrcXGRYuHCuV2efvr5zGHDhpfn5uYqlyxZGLVq1bKQhQuXpjflHDt2bPXdsWNL8AsvTM7o3//6qh9+OOi5e/eOYG9vbxMA6HQ62auvvhgTGBhseO+9dQnV1VXyVauWhxUWFqit59i9e4fPtm2bQl58cWpG377XVcXFnXd6//33woqKClRvvDEr68KF89o1a1aGv/HGrNS+fftVJyUlapYsWRjl7u7Ov/DC5Nw1a9bHv/zy891nz56fPGTIsIrc3BzllCkvsIMHDy2dOvX1eL1eL9u0aV3QCy881X3nzr0XnJ2dxSVLFob99dcJ92nT3kwLDg42bt26MZDj4l0CAgIa/IC8devGkMcffzrrzTfnpn311Rc+b789t4unp1fC9dffWP3zz4fcFi+eH/3MMy9kDho0pCIjI029Zs2qsKysDM2KFbEpOp1O9vrrU2J69+5buWbNugSFQint2/eZz+bN60IHDryhsnfvPvra19q5c5vv9u2bQ+bMWZg8cuSo8vpisqqsrJS9+OIz3fz9/U2LFi1LVKs10ubN64JeeeVFdsuWnXEhIWGmb77Z77lixZLIRx55InvkyNGlcXHnnVatWh7h7OwijBt3T0lD8Q0ceGPV7Nnzkxcvnh+9Zs36+G7deui//vorL+v1BUHAlCkvxJjNZmbGjDmpvr5+5k8++dhv5szXYlav/iChX7/+OgBITLzorFZrhCVL3k3U6aplS5YsjFyx4p3w9eu3XWzKz1xDbOk5mQPgYQDPAPgGQF7N868D2A9gMYDHWxoYIR1RYU1dER8fv0s1TlorOdHpzfV2g6udnVEqCPBWKJATd4GSE0II6aRycnKUPG9mAgMDTaGh4abQ0HDTkiUrEnleaPLahp9//knAHXeMK3jggYnFANClS9e8pKSLzikpSU4A8M03X3lWVFQqtm79X4qnp5cAAHPnvp363HNP9LCeY/fuHUH33/9Q7t1331sCABERkabq6ir5Bx/Ehr/88mvZmZnpaoBBSEioMSQkzBQSEmby8PC86OLiKsjlcnh7e/MA4O7uLri4uIibNq0L8PDwNM+Zs+DSspPLlq1KufPOkX2//faA55gxd5T+8stP3pMmvZwxYsRt5QCwYMGStP/+907Xxl7v8OEjix599MlCAJg2bWb2+fP/uO7du9vv+utvTN25c1vgiBGjih5++PFCAIiMjDIqFIr0GTNei8nISFM5OTmL48bdU/DQQ48WuLm5iQAwefKrOV98sTcgMTFBWzs52b17p8+WLRtC5s1blDRs2IiKpvxffPXV595VVZWKLVt2xvv4+PIA8M47K1Luu++u3nv27PKdNu3N7M8+2+N/883/KXn++ZfyACA6uotRp6uWazRaUaerljUWn7u7uwAA3t7evFarveyDxK+/HnZLTU1x2rhx+4Xu3XsaAGDOnAUZFy8mOO/atT2gX7/+KQAgCALz9ttLU60/D+PG3VuwffumkKa8xsbYkpw8BWAux3Fba3pRAAAcx51lWXYuLBXkCbkmuackY1JEFNzVakvPiVm0e40Tq4ZqnQBAlUIBbwBlqSmtcn1CCOmsfr2/8u/6tsmZy4de/XBvVb0TiWVX7Pv1+Kp6l1C8ct+m6t27j/4//xlSMn/+7C6xsStNffteVzFo0ODy224bU9aU40tKiuVFRUWq3r37Vl1+3r6V1uSE4xKcAgODDNYPogDQo0cvvVbrJABAUVGhoqSkRLlr1/bg3bt3BFn3kSQJZrOZychIUw8bNqL8iy/2Vr300rPd/f0DjP369a+45ZZhZX37XqerK66kpItOOTnZ2hEj/nNZL5bZbJalp6dqkpMTNTzPM7169b0051mj0UgREZF1nq+2/v0HXjYFgWW7V585c9oNAFJTU52Sk5Ocf/75kPe/r8MaU6Lm1ltvq5g48bGCr7/+yis5OdEpOztLnZ6e6gQAgiBeSghLS0uVH34YGy6Xy6WQkLAmD3VKSUnWBgQEGq2JifV1denStTo1NcUJADIy0rW33HJrSe3jJkx4uMj6uCnx1ScpKVGr1ToJ1sQEABiGQY8evapOn/7Lzfqcm5u7ufbPg4uLi8DzvF0W+7clOfEHcKaebVkAPG2OhpAOzqOsHP19/JClVFlqnBjNrXYtk1mEIEr1DmA2u7gAVVXQ5+a0WgyEENIZOSvR5LtKrbVvcyxbtio1MfFizrFjv7qfOnXSbdmyRVFffvlZ1YYN/w6xqd3Rbjb/+yFSLrd8FBTF+j+4yuVySFL920XR8rKeeeaFzJtvHnxVD0FISKhJpVJJGzZsu3ju3D/a338/6n7q1F9uc+bM6Dp06K3FixYtS7vyGEmSmJ49e1e88casqwp2ubu7C5mZGaqa/S7bplAoGk3yrtxHkiTIZHLJ8lhkxo+/L2/cuHuKrzzO3z/AXFCQr3juuSe6u7q68TfdNKhswIAbKvr06Vs9YcL4PrX3ZRgZFi58J3HLlg1BixfPj9y8eUdCU+Z/SpJU55BtURQZudwSo1wul+orJdDU+Bq4fp0jxkVRvKzdlMrG29lWtsySTQJwez3bhtVsJ+SapDJbappofX1rapy0ZnIigBfqr3VS3q0bXjl/BkfM9q+zQgghxDGcOvWn85IlC0O7do0xPvnkswVr125Imjp1Wlpc3HnXwsIChVKpEgGgoqLi0miX9PTUS3NF3N3dBR8fH9P58+eca583Pv7Cpe+7dInR5eXlqUtLSy6dIzHxolqv18kBwNfXj3dzc+Ozs7PUUVHRRuvXhQtnnT78cE2wJEk4fPhHt7VrVwf27t1X//zzk/M2bNh28aGHHs3+/fejngCu+kAeHh6hz87O1AYHh5is5/P09ORXrVoempAQp+3alTUolUrp77//crEew/M80tIsvQQNiYs7f9lrTUiIc4mOjtYBQEhImD4zM11T+3Xk5+cqY2PfDamqqpQdOLDPOuwq4aWXpuaOHXtHWXl5Wc3N/n8/r3t4uJuHDh1eMXPmnLSUlCSnrVs3+jcWFwBERXXR5+bmqK01SADAYDAwKSlJTmFhEXoACA4ONXBc/GWvYcmShaGvvPJidFPiYxim3sSiS5cYvU6nk8fHX7is3kxc3AWXkJAwQ33H2ZMtyclqAFNZll0LYCQsr7Qry7KvA5gG4H37hUdIx+IkWqvDB0OQAIOx9VbmM5mthRjrzk78usYgx2BARnbHX59CLQc+ub0an9xeDbW88f0JIeRa4eLiKnz33Te+K1YsCU5JSVbHxZ3XHj78o5e/f4DR29uH79ath16j0Yhbt24MTElJVh8//pvL5s3rQ2q/d9x//0N53357wO+zzz7xTklJVm/ZssHv+PHfvCzrHgHjxt1T4urqys+ZMyPy/Plz2lOn/nReuPCtKMCSVDAMg3vvfSDv228P+G3fvtkvNTVF/f3333qsXfteuFKpFNVqtSSXK/DJJ7uCtmzZ4JeenqY6c+a004kTxz26dmWrAcDZ2UUAgMTEi9ry8nL5hAkPF+h0OvnMma9FnTt3VnvhwnntrFlvRCUlJTrHxHTTOzs7i7ffflfBrl3bgw4e/NojMZHTLFw4J7y0tETVWJsdOLDPf9++z72SkhLVy5YtDklPT9M+9NBj+QDw4IMP5/355x+esbErg5KSEtXHjh1xXb78ncjq6iqFv38A7+8fYDIajbKvv/7KMysrQ/Xrr4fdFiyYEwUAJpPpqs/V3bv3NNxzz/15u3ZtD0pOTlJfuf1Kd901vsTJyVmYNWta9OnTfznVvO5Ig8Egv//+BwsBYOLER3N///2Y57Ztm/xSU1PU+/d/6fnDDwd9Bw8eWtaU+JycnEUAiIu74FRVVXVZzEOHDi8PDQ3XL1z4VtTvvx91vXgxQfP223PDsrIytA8+ODG/sfjtodnDujiO28SyrC+A2QAmwfKTuxuACcByjuPW2TdEQjoGgefhJrf8jnuFhUEQWqfGidW/PSd11zoJDQ0HAGRmNmmxFocmY4Boj9aZu0MIIR0Zy3Y3vPXWwuTt27cEHTz4tZ9MJpN69uxduWJFbKJMJoOrq6s4Y8aclE2b1oU89dTDPQMDgwyTJk3JnDNneoz1HA8//HhhRUWFfPv2zcFr165W9OjRs3LYsBFF8fEXXAFArVZL//vf6sR3310a9vLLz3V3dnbhJ0yYmLt+/fthSqVSAoBnnnkhX63WiPv3f+G3ZcuGEHd3d37EiNuKpk6dlg0AQ4cOr5gy5fW0zz7bE7Bz57ZglUolXnfdwPLXX5+RBQBeXt7C8OEji7Zu3RSSlZWpnj17fuaqVe8nfPBBbMgrr0zqJpPJpZgYtnrlyjWcr68fDwCvvTYjS6VSiWvXrg4zGPTyQYOGlAwYcH1ZY202atTYws8+2+O/evUKbXh4uG7JkhWJPXtalum9445xpZIkpezevSPwiy8+DXBychYGDryh7NVXp2dZtyckxOdt3Phh6Jo1K2U+Pr6m0aNvLzp+/DePmt6mwiuvN2nSy7m//XbEc/Hi+RGbNn3ENTS8y8PDQ4iNXcfFxr4bMn36K2zN/3FlbOy6hPBwy1LQt902prysrCz9008/Dti2bVOIt7eP6dlnJ2Xcd9+EYkmS0Fh83bv31Pfr17986dK3ox55JDPb3d3j0p1UhUKB2NgPL65cuTxkwYI50WYzz0RGRumWLl15ccCAG9qkpiHT3KI3LMt6chxXyrKsG4CbAcucWwB/cBxX0uDBjiFFEMTIkhL7tq9CIYOnpzNKS6vBt9IEaGLhqG1dmJ6G0rfnAwAi1nwIudYJv5/NQXG5vuEDW+DmPkEI9nYGz1+dBOl01Vh+710I1GgwYf1mePgHNuvcjtrOnQ21c9ugdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaNhmu4qh+/vmQW9eurD4kJPTSWOR582aF5+XlqNev33YxIyNNlZqaohk69NZL80lyc3OU998/rs+KFbGctf5FRzB48MABU6dOS7PWZiFtw2QyaAoKsl1EURgzYMCAhIb2tWVC/J8sy87hOO4TAN/bFiIhnU9xRjpkACoFHmonLQy8CFMdSYM96Qw86rsB4+TkjNsDguChUCDn/PlmJyeOxCwAWy5Yeuqf6mmCkoZ2EUKI3Xz33bfemzat07722vR0Pz9/859/nnA9evQXr0mTpmQAgNFolL311syujz32VNZtt40pragol69f/36wv3+AccCA69vkbjq5dtiSnHgCKGp0L0KuMeU5OfAEUA2m1QswWukamXBfIZfBA0BxchIw4rZWjaU18RKw8bxlqO5jPUxQtnM8hBDSmcycOSdjxYoloW+99WYXnU4n9/f3Nz777KRMa+9C166sYcaMOSkff/xR4McffxSkVKqkPn36Vrz33gcXrcO6CLEXW5KT9wD8r2YC/HmO464aW0fItShHpcTkUycw7ObBGM4wMAutV4DRymjmITRQ68Tk5Azo9dDlZLdqHIQQQjouT08vYfHi/6U1tM8dd4wrveOOcaVtFFKrOXbsr1PtHQNpmC3JyWMAwgEcAgCWZa/cLnEc1+TzsizrB+BdAGMAaAH8CuANjuPiarb3gyUhGgigGEAsx3ErbIibkFZVWFgAsyTBxd8fMhkDg5FHM6d0NZu11kl95N7eQFYWxGIaWksIIYQQx2dLcrLTzjHsByACGAugGsDbAA6xLNsFlmTlRwD7ALwA4CYAH7AsW8xx3FY7x0FIixQWWjoRfXwsNU50htZbRtjKVFMlvr5fZKfgECArCyodDQkmhBBCiOOzJTlJBXCY47gWF09gWda75nyLOI67UPPc27BUoO8JSx0VI4BJHMfxAOJZlu0KYAYASk6IQwnLzsakiCgEK1WQAFQbWq8Ao5WJF8DzIpRK+VVVcgHAK6oLcOIPuIu0OhEhhFxBBCBJklRv5XNCiH3U/J5JsPzeNciWIowrYRli1WIcxxVzHPdQrcTEH5ZCjlkA4gAMAXCkJjGxOmzZlfWzRwyE2EuQQY/hPn7wVqkhiK1b48TKZBZhbqBKfHCvngAAF5kc1WUdYaVvQghpM3mSJJlNJkOjFcUJIS1jMhmcJEkyA8htbF9bek4KAHjYcFyDWJbdAOBZWHpKxnEcV82ybAiAc1fsmlPzb1hNLDZRKGzJy+onrym+Z/2XtB5HbWsnUQJkgHtIMCQJ4AURMlnr3pATBBGCIEGplEMQrr4Z4RMcjOfTkpFSXIRPSooR4+PT5HM7UjsranUKKeQyKGz5y+WgHKmdOzNq57bRkdp5wIABFadOnfqooqJ0EgBvlUqjYxiGVp4ixI4kSWJMJoNTRUWpSpLEzQMGDKhs7Bhb3uI3AnifZdnhAM4DuKqUPcdxH9lw3tUA1sNSdX4fy7KDATjBkqzUZi2UpLHhGgAAmYyBp6ezrYc3yM1N2yrnJVdzpLYWBAFuNQVHwnvGQK6UQyaXQatVtfq1eanhttCGBMNcVIji4jx4evZv9vkdoZ3dRGD/BMtjfx9ndIDPPc3mCO18LaB2bhsdqJ3fEQQeZWXFjzEM4wSAhngRYl+SJElmSRI3A3inKQfYkpy8W/Pvo/UFAaDZyUmt1bmeg6Xy/GQAegDqK3a1JiU2z/AVRQkVFTpbD6+TXC6Dm5sWFRX6Ou9gE/txxLYuysyEsiY50XgHoLrahMoqI/SN1CGxh/JKA6qqDDDXM4wsODgMZ86cwYULCbj55qFNPq+jtXNYzV+CivL2jcPeHK2dOytq57bRmu3s5qa1e4/MgAEDRACLTp069Z4kIRC2DXcnhNRPBJDblB4TK1uSk0gbjqlTzbyREQA+5ThOAACO40SWZeMABAPIBBB0xWHW71tUuIHnW+fNSRDEVjs3uZwjtXV+SgoYAFWCAJXWCdXVZhiMPMQGlvm1l2qdGXwDbdHbyxsh4VHQ/HPWpvZypHbuzKid2wa1c9voaO1c88GpyR+eCCGtp9nJCcdx6dbHLMs6AXADUMxxnC23iIMAfAzL0LDDNedUAugPyxLD+QBeYFlWbk1eYElmOI7jbJ5vQoi9ledkwwOW7jyGYcDzIsxt9MZs4gXwQv1JUIi7B/r7+iGzvON2OZgFYDdnqQv/EGuGUt7OARFCCCGkVdg0rZRl2SEAlgO4HjXjM1mW/RPALI7jfm7Gqf4B8D0stUueBVAKYDYATwCrYJlfMh3AZpZllwO4AcArsNQ8IcRhVBXkwwOAQaEAwzDQG1u/xomVySxAFKV6B0r7xnQD/jgOD6nj3MW8Ei8BsWcsIzrvjzFD2c7xEEIIIaR1NHtsJcuyg2CpDu8BS8HEFwEsAuAF4HuWZW9u6rk4jpMATICl1+QTAH/WnGcIx3EZNb0jowGwAE4DmAdL9fjtzY2bkNaUrFLj4VMncNLfDwzDoLoNCjBamWsKMdYnpE8fAICrXIHirBaXJyKEEEIIaTW29JwsAnAUwOhaQ63AsuwCWHpBFgAY1dSTcRxXDkuC82I920/CMkGeEIdVWFgAsyTBLSAQkiRBb2z9ifBWJl4EL4hQ1VOI0dnDEyU8Dy+FAlln/4F3SEibxUYIIYQQ0hy2rEpxA4D3aicmgGUiO4A1NdsJuaYUFRUCAHx8fNusAKOVyWypEi9r4Le5sqYwSGnSxTaKihBCCCGk+WzpOakE6h3yrQKtEU6uQX1LS8BGRCFIpQIvSm02GR4AzDWT7xmGgWUl7zr2cXMDKiqgz2nRIneEEEIIIa3Klp6T3wDMYlnWpfaTLMu6AngTliFfhFxTukjAcB8/eDo5tXnPCQDoTXxNclI3VUAAAMBUVtZGERFCCCGENJ8tPSczAZwCkMKy7NcA8gAEALgTlgKJT9ovPEIcnyiKcJNZ1rb1Doto02WErXSGhpMT5xtvwqN7diIoPAJ3t2FchBBCCCHNYUudk6SaFbnmAbgdltW1SgD8DGCBtdI7IdeK0rw8qGsmfPhFRUAniG3fc2Iw1zkZ3iq8KwujKCIzMxM8z0OhsGkV8XajkgHrRuguPSaEEEJI52TT23xNAjKV47gAjuNUAHoAWEyJCbkWFaenAgB0ggCNi+ulOSBtycSLDS4nHBAQCI1GA543I6cDzjuRy4CB/gIG+guQU3JCCCGEdFrNvn3KsqwHgL0AQgF0q3n6BgDfsiy7H8BEjuN0douQEAdXnp0FdwBVsFSHN5jarsaJVWOFGGUyGR7pEoMgkxk5x39DWFh4m8ZHCCGEENIUttyDXAqgJ4BZtZ47DOBuAAMBLLRDXIR0GFX5+QAAg0IOhmGga8MCjFbmRnpOACDa1R293NxRmZzURlHZDy8Cn15U4tOLSrRxpxQhhBBC2pAtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOkI9CXFAABerbEUYDS0XQFGK5NZAC+IDU6Kh5cXAIAvyG+jqOzHLALL/9Jg+V8amCk5IYQQQjotW5ITVwCl9WzLB+BjeziEdDxnlQo8fOoEUqKiwIsSTO1wa9/MWwoxNpSbOIWEAgBUlVVtFBUhhBBCSPPYkpycBvB0PdueBHDW9nAI6XiKigphliR4BgZCbIcaJwBgNoswCyJksvqzE58YyxQxd7Ht4yOEEEIIaQpb1hNdBOAgy7J/AfgSQAEAX1jmnAyApd4JIdeMwsJCAICPjy+ENq4ObyUBMJiEBod1hV93HXJ274SbXIHirCx4h4S0XYCEEEIIIU3Q7J4TjuN+BHAXLJ+HFgJYD+BtWBKduzmO+86uERLi4EaaebwYEQ0/tRrmdqhxYqUzmBsc1uXi5Y0S3jJZP+P0X20UFSGEEEJI09lUiY3juIOw9J5oYCnCWM5xXLVdIyOkA5AkCX3VGmicnOHk6QleEGHm2ys5aXyVsHKVCozBgNL0tNYPiBBCCCGkmVpUzozjOAPHcTmUmJBrVXlhATRyOQDALzIKPC/B3E7LSZnNAnih4eWEuW7d8PzZ0zhdWdFGURFCCCGENJ1NPSeEEIuitDQAgEEU4OzpiaKCKjScHrQeMy9CaKAQIwBExbAAgOTki20TlJ0oZcDqobpLjwkhhBDSOVFyQkgLlGdnwRVApSSBYQB9OxRgtDLxAkRJgryBfaKjuwAAkpOTIElSw3VRHIhCBgwOplXGCCGEkM6OkhNCWqAqPw+uAAxyy6+Szth+yYllOWEJCgUDqZ7um/CwCMzsyiJM64Si9FT4RkS1bZCEEEIIIQ2gARKEtIChuAgAYFarwQsSTOb27TmxFGKsvzfEydkZoc6u8FGpkfn36TaMrmV4ETiQosCBFAXaYaVmQgghhLQRm3pOWJb1AfAGgNsABAIYDeAeAGc4jvvKfuER4thMFTUTy52dIUrtNxkeAExmAbxgTU7qn/lSqVbDVxBQkthx5p2YRWDBH1oAwMiwSijotgohhBDSKTX7LZ5l2UhYqsA/ByALgB8sSU4MgM9Zlr3DrhES4sCOQcLDp06guHsPCKIEUzstIwwAktR4IUYAEL29AQDmnJy2CIsQQgghpMlsuf/4LixV4SMB3AtYFgfiOO5hAPsBzLJbdIQ4uKKiApglCd6BgeCF9u05AQC90QxZI7/VLuERAAA1LSdMCCGEEAdjS3IyAsDbHMeV4eqxI+sB9GppUIR0FIWFhQAAPz8/S3X4duw5AZpWiNG/Z28AgJcoQRRpAgchhBBCHIetI7fr+wSkRkOD3QnpZCZqnPBSRDR8nJ3B8yLM7Txb22QWIIgN/wpG9B8AXhLhJJcj7yLXRpERQgghhDTOluTkKIA3WZZ1rvWcxLKsDMAkAL/ZJTJCHFxVWSn6u7ljqI8vfP0DYDQLEBtJDFqbJTlpeB+1kxOyBQFxlRVI5eLbJjBCCCGEkCawJTmZCaA7gCQAO2DpKZkG4BSAwQBm2y06QhxYUWoqAMAoinD18YG+HWucWFmqxDfee/NrSAjmc3E4n5fbBlERQgghhDRNs5MTjuPOAxgI4DCA4QAEWJYUTgIwiOO4M/YMkBBHVZqVAQCoEEXIZAx0BnM7RwSYecuwrsYKv7NsdwBAQkLH6DlRyoClg/VYOlgPJS0jTAghhHRaNtU54TguEcDDdo6FkA6lKi8PzgAMcjkECTCa2ncyPACYzCJ4XoRGoYBUX5l4AN26WZKT1IsJbRVaiyhkwMiw9u+ZIoQQQkjrsrUIIwOgHwBn1NH7wnHckZaFRYjjMxRZVuoyq9UQhPafDA9YqsSbBanRQowxUV2wuldfBKg1KMvNgUdgUNsFSQghhBBSj2YnJyzL3gBgL4CQmqesA0ikmscSALldoiPEgfFlZQAAydkZooR2X0YYAATBUgiysWFd7t7eUCmUkDEMUk4cR//x/22bAG3Ei8AvWZY/V8NCeKoQTwghhHRStvScrAJgBvAELBXi2/92MSHtgNfpAAByd3fwgtjuBRitDEa+0SrxAFCh0cCH51EcFwc4eHJiFoGZx7QAgKMPVFJyQgghhHRStiQn/QE8yHHcV/YOhpCO5GuTAQtOncDCu+4CX9Nj4Qh0hqYlJ4y/P5CdDSEnuw2iIoQQQghpnC33HwtAvSWEoLCwALwkwScwyFKA0YF6TsQGJsNbucewAADn6qrWDokQQgghpElsSU7eBzDziiKMhFxzCgstE+L9/f1h5kXwjVU/bCMmvvEq8QAQfsNNAABfmRy6iorWDosQQgghpFG2DOvqCqAHgDyWZS8A0F2xXeI4bkSLIyPEgekrKzE1MAil3r7w8fBEqclxlrm1FGKUGr3z4B/dBdkCDze5AonHjqLv7Xe0SXyEEEIIIfWxJTnpAuBMre+vHNze+GB3Qjq4ovRU9HHzgEkU4e7tjez0svYO6RKz2dJzImvkN1EmkyFNo0VRTjZ80pLRt23CI4QQQgipV7OTE47jhrdGIIR0JKWZGdDAUh2eYRjoje1fHd7KVDPETKWUN1iIEQAqrr8e62KP4rbUFNzXRvERQgghhNTHpiKMhFzrKvNyoQGgl8nAi5JDFGC0MpkF8LwIRiVHY/Pie/fuAwA4f/5sG0RmO6UMmHeT/tJjQgghhHROTUpOWJYVANzMcdyfLMuKaKj0tGXOCSU9pFMz1EyGN6lUEEUJJrNjLCMMwLJymCBCJmMgNjIxvkePXlAwMmjKy1CQmQ6/0PA2irJ5FDLgrijHmddDCCGEkNbR1CRiISwFF62PG18KiJBOzFxaCsBSHV5wsJ4TCYDBJDSp1omzswuW9b0OoQolkg7/BL/Hn2r9AAkhhBBC6tGk5ITjuAW1Hs9vtWgI6SCkKkttELm7O8yCCLMD9ZwAgN7Aowm5CQDA6O4BVFejIiGuVWNqCV4E/siVAwBuChSoQjwhhBDSSTV1WNctzTkpx3FHbAuHkI5BNBgAAGovr5rq8I7TcwIAOmPTh0BpoqKBc2ehrBmq5ojMIvDKr04AgKMPVFJyQgghhHRSTR3W9Qv+HcpV3/1YqWabBEDesrAIcWzby0uQnHgRa594Erwgwsw7Vs+JycyDF5o2+jLspkEQz52FnyjBpNdBpXVq5egIIYQQQurW1OSElg8mpJbCwkIIkgS/wEAYjHyjq2K1NbNZhNjEoKIGXo+/162Fq1yB+J9/pmKMhBBCCGk3TZ1z8mtrB0JIR2E2m1FaWgIA8PPzQ2G1460iZeIFCGLTujBlcjkKNRq4mnnknfyDkhNCCCGEtBublvxlWdYHwBsAbgMQCGA0gHsAnOE47iv7hUeI4ylMTcacmO4oNpvg6emJ9OKS9g7pKmazpRCjQsE0qVdHERkFXLwIWVZm6wdHCCGEEFKPZk8rZVk2EsBZAM/BsrywHyxJTgyAz1mWpduupFMrSUtDHzd39HH3hATGoWqcWJl4AWZBbNJywgAQNnQ4PsnOxEfJSTCbHafaPSGEEEKuLbasefMugAIAkQDuRc0EeY7jHgawH8Asu0VHiAOqzM0FAOhkDHhRgsnBJsMDgJkXLVXim5icdLn+RhzSVeFcSRESHHhJYUIIIYR0brYkJyMAvM1xXBmuLsa4HkCvlgZFiCPTFxUAAExKFUTRMoTK0YiiBKNZaHKtE5lMhv79rwcAnDhxvBUjs41SBkwfaMD0gQYoaRlhQgghpNOy9W2+vhnAalD1eNLJmUssc0xEJyeHXEbYSm/kIZM1MTsBMOiGm3C9hyeE339rxahso5ABD8SY8UCMmWqcEEIIIZ2YLW/zRwG8ybKsc63nJJZlZQAmAXC8TzaE2NGl6vBubuAF0eEKMFrpDc2bO3JTrz54owuLWxgZyvLzWikqQgghhJD62ZKczATQHUASgB2w9JRMA3AKwGAAs+0WHSEOSK7XAQDUPj6WnhMHnBAPAAaTZTnhpgrt3QcFPA85w+DCtwdaLzAbCCLwV74cf+XLm/WaCCGEENKxNDs54TjuPICBAA7DUpxRgGVJ4SQAgziOO2PPAAlxNILJBABw8feH0SRCEB1zJKOZFyGKzfskX+HrCwCoPPN3a4RkM5MIvPCTE174yQkmSk4IIYSQTsumOiccxyUCeNjOsRDSISxLT0FFWRk+mT4DeqPjLrtrMgsQpObdgfC98Sbgu4PwLq+AKDhmjxAhhBBCOi+bppayLBvFsmyPmsceLMu+z7LsfpZlH7VveIQ4FpPJhNLSUgiShMDgIOgMjlcd3srMC+AFsckrdgFA7zF3QC8IcFcocOHwodYLjhBCCCGkDrYUYRwDIB7AUzVPrYOlIGMIgG0syz5tv/AIcSyFhZZlhJVKJVzdPWE0O25yYuJF8ILU5FonAKBxcUGuVgMASP/++9YKjRBCCCGkTrb0nMwF8AOABSzLugO4B8ASjuP6A1gCYKod4yPEoRTFXcDcmO54JjoGogSYHLDGiZXZLMLcjEKMVq4DbwAAVGdlQpIccz4NIYQQQjonW5KTvgBWcxxXCWA0LPNWPqvZ9iOArnaKjRCHU5GRjl5u7ujq7AzRQavDW1lrsDQzN0G//z6A6RcT8Pb5f3D27NnWCY4QQgghpA62JCd6/DuRfiyAfI7jrJ9gAgCUNedkLMt6sSy7jmXZLJZlK1iWPcay7OBa2/uxLPsry7LVLMtmsCw7zYaYCbELQ82wLpNKXbOMsOP2nACWQozN7TlxdndH1xtvAgAcOOBYSwoTQgghpHOzJTk5BmAay7IPAXgAwBcAwLLsAADzarY3xx4ANwF4EMD1AE4D+IFl2W4sy3rD0htzEZbli+cBeJtl2SdtiJuQFuNLSy0PXFzAC5LDVoe30hman5wAwJgxtwMAvtu3D2aj0d5hNZuCAab0M2BKPwMUzX85hBBCCOkgbFlK+FUA3wDYBSAOwKKa578BoIOlSGOTsCzbBZYaKf/hOO73muemwtIjMxGWXhojgEkcx/EA4lmW7QpgBoCtNsROSMtUVQIAFJ6e4HnRoeecAJaeE9GGeSO33DIML3RlMdjVHSc/3YMbHmrfhfiUcuCxHo67bDMhhBBC7MOWIoypAHoCCOQ4rhfHcXk1m8YD6M5xXHIzTlcE4A5Yqstbzy8BYAB4ARgC4EhNYmJ1GADLsqxfc2MnpKWUBksvgtbXF6aapXodmZkXbCoSqVSqEB7VBSqZDGW//mL/wAghhBBC6mBrEUYJQP4Vz/3Bsqwzy7LDOY77ronnKQPwbe3nWJa9H0A0gO8BLAZw7orDcmr+DQNQ0PzoLRQKm0q81Esul132L2k97dnWWkEAFAq4hwTDYBIgkzn2GCNeECFJtv2893zoIRjWrkWYmUd+0kUEd+vWChE2jSAC8SWW19DdS0Rn+jWjvx1tg9q5bVA7E0JaqtnJCcuy4QDWAxgKQFXPbnJbgmFZ9j8AtgD4iuO4AyzLroJlWFdthpp/NbZcAwBkMgaens62Ht4gNzdtq5yXXK2t21qSJEiiAFGSI7Q7i1JRglZb36+AY5DJ5ZAr5fB0a/6vy4DbhmP3+2sRBgZnt25Erw3rWiHCptGZgUd2Wh7Hvwg4KdstlFZDfzvaBrVz26B2JoTYypaek1UABgHYAOA/sMwzOQ5gFIDeAO61JRCWZe8G8DGAPwA8VPO0HoD6il2tn7KqbbkOAIiihIoKna2H10kul8HNTYuKCj0EBx/q09G1V1uXl5dj8tm/IWcYnAyNRHpGFfR6U5td3xaMJKJaZ4JMFJtds0Qul8H/ztuBA9/CLycPaQkpcPf3b6VIG6Y3A4DlhkJZaTWMnSg5ob8dbYPauW20Zju7uWmpR4aQa4AtyclQAHM4jotlWfYlAOM5jpvBsuwsWIoz3g1gf3NOyLLsZADvwbLy1yMcx1l7SzIBBF2xu/X7bBtiv4TnW+fNSRDEVjs3uVxbt3Vubi4AwNnVDXKVBkZTGUQb5nO0JaNJgMksQFTJIAjNj3Xok0/gyy/3I1ChwLG1sRg97+1WiLJxtRdF4wURvGOPprMJ/e1oG9TObYPamRBiK1tuQbgAOFPzOA5APwDgOE4A8D6AW5tzMpZlJwFYA2AtgAm1EhMAOAJgCMuytYeJjbBcjrN5vgkhtigosEyz8vPzgyBKDl/jBADMvG1V4q3kcjmYmyw1T5yTk1FaUmzP8AghhBBCLmNLcpILS7FFAEgC4MWybGDN9yUAmjzug2XZGFh6TL4EsASAH8uyATVf7rDMP3EDsJll2R4syz4B4JWafQlpU/p//sHcmO4Y4+0LQXDs6vC12VKIsbZbnp+E7w06zLjwD7Zs3WjHyAghhBBCLmdLcvINLIUQB3EclwkgC5aijK4AnkLzhlvdB0AJ4B5Ykp7aX+/V9I6MBsDCUpxxHoA3OI7bbkPchLSIkJeLXm7uCNJowAsiTOaOkZzYWojRSqFUov+kl1EtCNi9exeSkhLtGB0hhBBCyL9smXMyF5Zq7QsBjAQwC8B2WHo0AOClpp6I47h3ALzTyD4nAdxsQ5yE2JVQUQ4AkLm6wSxYhkt1BHqjudmT4a80aNBgDB06HL/++jP2vD0XMzduh0Ll2CuVEUIIIaTjaXZywnFcMYAbrUO5OI7bxbJsOiwJxJ8cx/1q5xgJcQhynWWFN5WPz6W5HB2B2SyCb+HEfYZhMGvWfFyXk4tBSjV+emchRs9fZKcIG6dggGd7GS89JoQQQkjnZFMRRgDgOC6XZdluADwB5HIc9z/7hUWI41GbzIBcDpeAAOiN5vYOp8lMZkuV+JYuwOnv74+IocOBM38jPDMTJz/ZjesnPNT4gXaglAPP93HsZZsJIYQQ0nI2fV5hWfbpmt6SCwCOAbjIsmway7Jt80mFkHbgUvOvZ1gYqvV8u8bSHCbekpzYw7DJU5Hk4gwZw0D53beIO3zILuclhBBCCAFsSE5qapJsBHAKwOMAxgJ4EkA8gJ0sy95v1wgJcQAmnQ6ucsuK1t7hkTAYO1ByYhbAt2A54SuNeOd/yJAkOMnlMO7YjvhffrLLeRsiSkBymQzJZTI4eGkZQgghhLSALT0nUwGs5TjuXo7jdnIc9wPHcR9xHDcWwFYA8+0aISEOoCgrE2VmEwyCAI/gkA6zjDBQU+tEECGzU2FltZMTblz+LjJFAc5yOfiPtuH3j7ba5+T1MArAhG+dMeFbZxg7TtMTQgghpJls+bgSAuBAPdt2A4iyPRxCHFORQY/n/jmNmblZYBgZTB2gAKNVSwsx1sXV2wcDl72LNAaQg8H7Gz/E0qVvQ6/X2+0ahBBCCLn22JKcnISlSntdrgNw1vZwCHFM1urw3r5+4AUJ5g7UcwK0vBBjXdx9/TB87Xr8Hh6OC5UV2LNnF+6/fxyOfv4pRLHjJG+EEEIIcRxNWq2LZdlban27G8CqmqKLnwLIg2XFrjEApgB43t5BEtLe8vLyAAABAQEwd6ACjFbVerPdkxMAUKrVeGbe2+hx22jMnz8bQmEhfL79Bj8f/AaBDz6MHiNH2f2ahBBCCOm8mrqU8C8Aak9DZQBMAvDCFc8BwB4Ae1scGSEOxCXuPObGdIdR6wyeFzvUsC7A0nMitrAQY0MGDRqMffu+xbcr/wc+JQWhjAzY8zF++GIvuj07CWHX9W+1axNCCCGk82hqcjK8VaMgxMGpS8sQ7eaODGcnmHgBvNCxkhOzHZcTro+TkzPumzMfWfFxOPtBLKJ0ekSYzNCtfQ8/uLuj/8uvwicyslVjIIQQQkjH1qTkhKq+k2udymgAZHI4+wdA14GWEbayVyHGpgjp3gMha9Yh4dgRJG3fgi5gEFFRgZQFc/DVoP9g4qNPQqvVtkEkhBBCCOlomvRZhWXZIyzL9mvOiVmWHciy7DGboiLEwWhrJnh7hISgWt9xqsNbmcxim/f2dBt8C27fuA0Vd92NNIHHt3m5WPNBLMaNG439+7+E1IxhZgoGeLS7CY92N0Fh/6kzhBBCCHEQTR3W9R6A71iW/QvATgD7OY7TXblTzST50bBMir8OwIv2CpSQ9mI2meBRU4DRp0sXZJs6YM8JbynEqNEoILZxFcOBd98D4c5xMH/7Nf78MBY5OdnY878lUH37Na6fPQ/eoWGNnkMpB6ZeZ2yDaAkhhBDSnpo6rOtzlmV/BTAXwCYACpZl4wCkAqgG4AEgFEAvAOaafR7hOC6/NYImpC0VpKZAwcggSBK8QyOQmljS3iE1m8kswCxINSt2tX5yIpczkMtlYCQBjMgDMgn/HX8H7rzzDmzdthXhPx1CMC8g6a1ZyH5wIvqMub3VYyKEEEKI42tqzwk4jisCMIVl2QUA7oNlknwUAHcARQDiYelhOcBxXHErxEpIuyhKSYYWQLkgQJIrOtwywgAgCBJMZgGtsJrwZRQKORQwA/pyCFXFMFeWQeRNgCiCkcshU2nx3H1jkBAVipxtO+GnUMD86R4cSUnCLS9Oqfe8ogTkVVuCD3CWIKOhXYQQQkin1OTkxKom8Vhf80VIp1dWkA+9yYRqpRJ8zYf8jkhnNINhnFrl3HI5AyUjQqrKhbEgHaayIogmQ90756Yh3M8VgW++hCMrNyKSBwJOn8bBBXMxdt7COg8xCsC4/S4AgKMPVELb7L9chBBCCOkI2mLxHkI6tFRJwgtnT+MnPx/wHbAAo5WlEKP9z6tUyqHiK2HOPI9K7iQMBVn1JyYAAAl8dQVkFXkY/tIEpHm6AgCiMzPw/ewZVF2eEEIIuYZRckJII/LzcwEAAYFBMPMiTHzH/PBsMNm/1olaxUBWkYPqpNPQZSdBMpuadbxk1GHoQyORHuAFACi7yOGDtavtGiMhhBBCOg4aHEFII/Ly8gAAgYFBMJiENl/tyl4stU7sdz6NEhCL06FLT4BgqLb9RKKIW8YPwaHv/8Dyz05ASEyAl48PJk58zH7BEkIIIaRDoOSEkEYMKy3FkJjuCFKpoDN0vBonVtZCjHI7nEujBMSiVFSnx0M02WeJ35Gjb0KOHHh/z1f43/+WwF+jxYh777fLuQkhhBDSMVByQkgjghkGbm7uYHx8oDN0vBonVmazCLMgQqFg0Iz6h1dRKxlLYpIWD9Fs39ojj464EcUlZXBOSIfvgf2I8/JGj2G32vUahBBCCHFcTUpOWJZt1vgKjuM+si0cQhyLoaoKbnLLr4lPl65Iqei4yYnJLMDMi3BSKppVnb02tVIGqTTD0mNi58QEABiGwcv3jsTxjfuhYeQo3bYFRVHRcA4Kt/u1CCGEEOJ4mtpzsq0Z55QAUHJCOoX8pEQAgF4Q4OYfCFNRx60rauIF8IIImYyxad6MUikHKnOhS49rZDWullEoFOjz4Ehc3Pk9/JQqnFo4F4PXbMT9XS2T7eVU44QQQgjptJqanES2ahSEOKji1BS4AKiQRIgS02FX6gIASQL0Bh6Mu6bZxyoUMsgNpdBlxEPQt2DyexO5e7rB+7aBMB4+g0iZDEeWLsCMBYtb/bqEEEIIaV9NSk44jktv6glZlqX7mqTTqMrJhgsAnUIJnu+4NU6sqg1mMM0sdsIwDBSCDoZsDuaKklaK7GpR3SLxR0o2AjOKEZGVhXMHv0bvsXe22fUJIYQQ0vZsmhDPsuyDAIYCUAGwftKRAXAGcDOAELtER0g7MxQWAAB4Jy3MHbgAo5XOYG72fBOlTIQpNw2GwuxWiqp+N479Dw5v3IdoUYbcL76FR/8hCPFzb5VikoQQQghpf81OTliWnQdgHoDymuPNNV++AEQAG+0ZICHtqbKqEiUmE2RBgZcmlHdkJrMAvhnzTSRJgliWA312Mlq0xJeNGIbB9Q/chj92/ogFo3YAPwFHH6iEltYZJIQQQjolWyrEPw5gJwAvAKsAHOA4zh/A9QCKAVywX3iEtK+fDQa8cPY0jNf179DLCFtZa500hUzGQKgshiE7sVVW5moqNw8XuI+6/tL3J0780W6xEEIIIaR12ZKcBAPYwXGcBOAUgEEAwHHcKQCLATxjv/AIaV85OZahTCGhIajWm9o5mpYzmS0rdjVlWJQCPIy5KW06z6Q+fbpEXHr84f/eQXVZ+8dECCGEEPuzJTmphmW5YABIBBDJsqy25vszoJW9SCchSdKl5CQgMBgGU8eebwIARrMIMy82OileqZRBLM2FsSizjSJrule8fXHknUXtHQYhhBBCWoEtycmfsAztAoBkADyAkTXfdwfQfuM/CLGj4qwsLO/CYm5Md/j4+sPYwSfDA/8WYmwoOZHJGChMlTDkJgGC4w1lc5YrEFFcjAs/H27vUAghhBBiZ7YkJ+8AmMCy7AGO44ywzD/ZzrLs5wDeBfC9PQMkpL3kJ3II0GgQ5uwChUoNUyfoORFFCQaTAJms/uREJZdgKkhziOFcdclgRMgZBnk7tkLgHS95IoQQQojtmp2ccBx3BMBAAJ/UPDUZwGcAugHYC2CK3aIjpB2VpqUBACplDMydoMaJVbXeXO+cE6VSDqmyAIb8jLYNqhm63X4zDIKAUJkcRz9Y097hEEIIIcSObFqQk+O4swDO1jw2AHjOnkER4giqcy3zTUwaLcy82CmGdQFAtd6EutbrYhhAIeihz02BaDI02LvS1uQQMdYtCQDg7+eN331dEFmih9vfp1GWlwePgIB2jpAQQggh9mBrEUZ3ALfCUnTxqt4XjuM+amFchLQ7obgYAMB4uMPMix2+xomV0SyAF65OT5QKOYSibBhL8tshqoapZCLmBPx+6ftB44fh7/VfIUCpwvF3l2Hs/1a1Y3SEEEIIsRdbijCOhWX4llM9u0gAKDkhHZ6sqhIAoPbzR7XB3M7R2I+11kntuwoyGQOZsRzVuWmA5PhJmEqlgvK6aIjnMpB0MQGJiRfRtWtMe4dFCCGEkBayZUL8EgDxAIYCiIZl6eDaX1F2i46QduRksiQkbmFhqNZ1/BonVnXVOlHJJZgLM8BXlbVbXA2RJEAvKqAXFZcK1fcf3B+7JB02p6ciNvbd9g2QEEIIIXZhy7CubgDu5jjuqL2DIcRRSJKEIoMeGrUaAdFdUNQJVuqystY60SgUkCQJCoUM0BXBUOC4k+ANkgIjkyYCAA51+RhaxrJK1+P/HYWD/8Th6NFf8eefx3HDDTe3Z5iEEEIIaSFbek7SAbjZOxBCHElpaQkWJlzA82f/RkCPXp1iGWErk+nyWicKmGHMT4Vo1LdzZM0X6u+De4fdiCCNBvH/b+/O4+So6/yPv6q6e2Z67plMjskkkzsFIQkJN0I4RFFxBRUXz58LHrui68ruev3UXV3R37q6IijKeoAnynqwnqggLCBykwNCQiUkmRxzJJmj5+qzjt8f3ROGIQPJTE9XT8/7+XjMo7ura6o+Xan01Ke+3+/n+/WvqbSwiIjINDfRbl2ftixrcZ5jESka7e3ZSl2zZ8/BDEVKplIXgOf7xFMOpmnkSgcfJtXdGXRYE3bVq8/j2hNWc3akjAe/882gwxEREZFJmEi3rrcDLcAuy7IOA/Ex7/u2bS+bdGQiAeroyCYn8+e3lNQcJyOyc50YhJw4ia42fGf6DvhvbKhj86wqavpThB9+iNQ7r6K8crx6HSIiIlLMJpKcHMj9iJSuxx7hq6vX0V7fkJ3jpIS6dUE2OTFDBm7PQVJ9xVc6+Hidfen57PzuHcwKh7n/a1/hlR/7ZNAhiYiIyAQcd3Ji2/ZVUxGISDHxenqYV1FBvLqGZDpb3aqU+L6PkRokdXAveNP/s0WrogwunEVdZz/127fT391NXVNT0GGJiIjIcZrIPCetL/K2BwzZth2bcEQiRSA8NARAdN5chpOlU0Z4RF11GZm+TtL93UGHkjdnXnIuT37zl8wKR3joxq/w6s98PuiQRERE5DhNpFtXG9mJFsdlWVYvcINt25+bSFAiQat0MhAKU7uwlaFEaVWAilaEqQslSXQWb+ngsUw8LqxuO/L8aMKRMJkV82HPYebt3UdfZzsNzS0FjFJEREQmayLVuv4GSAN3AlcBr8kt+w3ZpOWzwPeAT1mWdXV+whQpHCeTod7I/teYvcIilSqt5KSlqRL6O0nGup83EWMxKzc9Pjf/fj43/37KzfG7oZ120ZnsTif5RccBfvKz2woYoYiIiOTDRFpO3grcdpSxJz+yLOsm4FTbti+1LCsGXA3cNMkYRQrq4K5niZgmru8ze/lK9u7oCTqkvKmKRphdkaHvmTaayn0MXqIZdJoJhUOENqzmN1/fTPQnP+It77iSxsZZQYclIiIix2giLScXAD8e573bgYtyzx8AVFJYpp2D9nYAYp4LoUhJVepqaarEHOhiuK+HtOMybZpOjsOGdatYtWQhiUSC733v20GHIyIiIsdhIslJD3DyOO+dDAzknlcDwxMJSiRIhw4eZMfQID2RsmwZ4RKZ46S6MkJTeYpYexsA6bTHdElNEl6Yc3a8k3N2vJOE9+INvoZh8HeXXcTp9Q1Yjz1O586dBYpSREREJmsi3bpuBT5rWVYG+DlwCJgDvBH4DPBflmU1ANcAD+cnTJHCsRNxvvvM07ztbf+Hlzku6RJpOWlpqsTobyMe6wPAcT08v5Q6dT3njFUrcBYvYWG4jE3/9TWav/zVoEMSERGRYzCRlpNPAbcB1wH7gGTu8TqyicsnyA6SX59bV2Ra2b9/LwCtra0MJzIlMSajprKMWZEksfa9R5Zlk5MAg5pCpmlSd6oFQGtfjP3btwUckYiIiByL405ObNt2bNt+F7AS+Dvgk2Srda20bfvvbNtOA78HWmzbfjKv0YoUwP592RK7ixYtYiheGnOctDRFob+TeH/syDLX8/A8n2nTt+s4rT5rDQfcDGWmyZZvfSPocEREROQYTKRbFwC2be8Cdo3zXt+EIxIJkOd5fKyqmsHVJzO/to6eEigjXFNVRmMkSaz9+fOaOK6P6/mETRO/JNqHns8wDOpPPwE27mJx/wD7nt5K60mrgw5LREREXsQxJSeWZe0G3mDb9hbLsvbw4tVHfdu2VaVLpqWefW1Uh8JUmiHmLllB+56Bl/6lItcyKwqx3SQGYs9b7roerudhGCYlOvSEVaefxIOPP8MCM8KWb91E6w1fDzokEREReRHH2nJyH89V4bqP0poaQeSIjqefJgr0uS5LK6Kk0tO7EfBIq0nH/he85wOZjAcVpTbbyXMMw2DW6avgiZ0sHRykbeuTLF69NuiwREREZBzHlJyMnnDRtu0rpywakYDF9uwmCgyGw6Qdj1R6enfrGq/VZMR0KZNs4nF21YEjz4+HddqJ/PbRrfx+dxvzb/sR137ui1MRooiIiOTBhMacWJZVA9Tatt1uWVYZ8CFgIfBz27bvz2eAIoWU7OwAwKmpJp1xp83F+9G8WKvJCMf18KdBn65y0+M/W+6Z0O8ahsHy157DE5/bxKY7fsu73v0+lixZmucIRUREJB+Ou1qXZVlnAHuBD+YWfRX4D+AdwD2WZV2av/BECiw3B0hkzpxsGeHiv24f1/xZ2Qpd47WaADhO6ZYTHu3ExS2ct/4kPM/jO9/SuBMREZFiNZF5Tj4PPAN807KsKNmk5Bu2bTcCN5MtLTwhlmV9yrKse8csW2dZ1n2WZQ1blrXPsqwPT3T7Ii+lIpEEoHph67QuI1xTWcasshT9HftedD3H9XBLuJzwaO/9qwu5bN58Xtfeyc6NTwQdjoiIiBzFRJKTM4FrbdveA1wERIEf5t67DZhQrU7Lsq4BPjtm2SzgLmAHcBrwaeBay7KuesEGRCbJ933s/hjPDg8xZ9Uq4snpO96keVYUYs+f1+RoXNfH83yMIs9OEl6Yi3a+lYt2vpWEN7EK6CsXtXDhghYay8rYdvO38hyhiIiI5MNE/sp7QCr3/BIgBjyae10LxI9nY5ZltQDfATYA9pi3/za3r6tt23aA7ZZlrQA+Bnx3ArGLjKunp5tv7NqBaZo8uGY9XXZP0CFNSHVlhKbyFP279r7kuo7n4boeRqT4ywkn/ciktzHnrNXw8HZWJBLseOIxVp56eh4iExERkXyZSMvJ48B7LMs6G3gz8Fvbtn3LsuYAH8+9fzxOAfqAtcAjY97bANyfS0xG3ANYuf2J5M2ePbsBWLBgIYYZnraVuubPqnzBbPAvJp1xMYzibjnJl2XrVtKBS9g01XoiIiJShCbScvIR4A/AW4DDwOdyy7eSTXZedTwbs237N8BvACzLGvv2AuCpMcs6co+twKHj2ddo4fBE8rLxhULm8x5l6kzVsT6w+1lMYOnSpWRcj7TjYprT66K9Ohphdnma/t37jznhSDkehsELPquRe22YxoTuYuSTOarbmWkak/p3aT5nDfxlGyuTKXY+8Qgnnnl2PkKcMH13FIaOc2HoOIvIZB13cmLb9ibLspYDq4Cttm0P5966GviLbdtdeYyvkue6kI1I5h4rJrpR0zRoaKiacFAvprY2OiXblRfK97Gu3vQEPzrlDNrq6vGBUDhMdGLDGwKzqLma0PAeMsMDRMKhY/49MxSirPzoFxPl5ZPvTjVZvvvcZ6moiFAxiQufVWet5p6HttKMybZbbuZlr35FPkKcNH13FIaOc2HoOIvIRE3o0su27UHGdMGybfsXeYno+RJA+ZhlI0nJMBPkeT4DA8c1NOYlhUImtbVRBgYSuO7xTRInx2fKjnVPH2HTpHr2XLpjCRKJ6VWtqyoaodaI07d/Lxnn2OdnSaUMUmkHJ/P85YZpUF4eIZXK4Adcbzg5ahB8MpnBMCfX5a75nLXw560sSyR54K57Oem04Mae6LujMHScC2Mqj3NtbVQtMiIzQLHfF94PzB+zbOR1+2Q27DhT88fJdb0p27Y8X76PdW0mA+EwjStXMjCUwptmE4DMa4xC/z6G+o5vIH/G8XBcDyNkMnpU/MglgO/5gR+L0fv3PB+PycWz6KRl/M+DW/jh1q0su+XbfHXdqZMNcdL03VEYOs6FoeMsIhNV7Lcg7gc2WJY1un/KRYBt2/aEx5uIjDUc66MhnM3Vm1efTDI1vQbDV42MNWl/6QpdYzmuly0nXMTDa0x81ke7WB/twpxkYjLi1EvPoyud4v777+Wpp7bkZZsiIiIyOcWenNxCtjzxzZZlrbIs60rgGuDfgwxKSs/+zZsBGHAc6ppbSKaPvVtUMZjfVIkx0MVwrPe4f9fzfdKOV9QVu8pNlxsX3smNC++k3MzPv03r3CYuOec0AL5309fysk0RERGZnKJOTnKtI68CLGAj2UkYP2Lb9vcDDUxKTre9HYBYyCSVcadVy8mRVpOO4281GZFKO0U+DePUuPLVG/jAkuVclUyz5f57gw5HRERkxiuqMSe2bV95lGWPAcHW+pSSN7x/HwDpmppscjKN5jjJtprsY7jv+FtNRmQcD6/YZ2GcAgvmNrFydhNlHjz5w+9x8nkXBB2SiIjIjFbULScihbJ7cIAHe3tgYStD8UzRz5Y+YjJjTUZzHI9iHv+f8MK8dtcVvHbXFSS8/N5TWXj+yQCscj02/u/ded22iIiIHB8lJyLAnfvauH73TmZt2ED/8PQpITyZsSajOa6H6/oU86j4mFtBzJ3w9EbjarEW0xmCsGmy69Yf5H37IiIicuyUnMiMl0ql2Lcv2/KwdOlyEsnMS/xGccjOBp8i1t426W1lHA/X84o5N5lSi85fB8BJns/jd98ZbDAiIiIzmJITmfH2bH+aWaEw9XV11DfOnjaD4ec3VcJAF/FY36S35fk+mSKv2DWVmlcuoitsEDZN2n78I/zp0q9PRESkxCg5kRmv6y8PcOPa9fzfFSeQdjwS0yA5qakso6k8Rf+BtrxtMzlDK3aNWHTBegAWOy6PPHB/wNGIiIjMTEpOZMZL7GsDwK+vJ5meHpW6WpqiEOsg3h/L2zbTGQ93BrcYzFu+kMcrQ/zD1s3c9J3/UuuJiIhIAJScyIwX6s0OJo+2tjIYTxd9pa7aqjJmRZLEJlmha6yRmeJnsgsuOx8vFGLLlk08+OADQYcjIiIy4yg5kRmv0cm2lMw+aTX9Q6mAo3lpLU1RvL52EgP9ed2u43i4nl+U405MfE4o7+aE8m5Mpi6BmlVXw+Uvz06r9Ktvfl2tJyIiIgVWVJMwihRa7/591IbCeL7PglNOZ1tncVfqaqgppzEcpzfPrSaQq9jl+tlvhSK7Ji83XW5edEdB9vX2i16GtbebE8oqeOiXv+Blb3hTQfYrIiIiajmRGa7t8ccA6HYdKuoaSKSKOzlpmVWB23OA5NBg3rft45PKuEXZclJIsxpqqW6sA6D/179U64mIiEgBKTmRGa3P3g7AYHkFybRLPFm8g+Fn1UepN4fpm4JWkxHToRhAIZz46rNxPI9loTAP3XZr0OGIiIjMGEpOZEZ7qreX2zvbSS1ZTDzpkHG8oEM6KsOABY1lZA7tJR2PT9l+Mk5xDopPeiEu3/1GLt/9RpJeaMr319jcxP6qSHbfd/4B13WnfJ8iIiKi5ERmuD/v2slt7fuZfd559A0mgw5nXHMaKqnxB+jt2Del+3EcF9fzKbYJT3wMupxqupxq/AIFd/JrzyXhuiwIhXn4B7cUZJ8iIiIznZITmbESiTh79uwCwDrhJIbi6YAjOrqQabCgIUyyaw9OamqriWUcD8eduTPFj9bQVE97XQUA/n33kU4mAo5IRESk9Ck5kRnLfvRR1lbXsnjuXOobmop2vElzUxWVmT5iHe1Tvi/X80k7Sk5GnHnZ+Qy6Dsl0ml/d+oOgwxERESl5Sk5kxup++C98YuUJXL14WW4wfPFV6iqLhJhfC0Mdu3GdwsSXTDnF1qsrMNU1VbSvbOaj257kxu/fQn9/LOiQRERESpqSE5mxnP37s0/mNRNPZkili2/Qc8vsKsoSh+k/2FmwfaYzuXEnAsArLjqLZa3z6R/o59vfvinocEREREqakhOZsaqHhwBoXLWK3sHimxm+KhphXmWGgf278b3CVRHL5GaKl6yQafIPb3oNEcMgfs/d7Nn4eNAhiYiIlCwlJzIjDfV0MycUBmDRy85lcLj4kpPWOZWY/R0M9hwu6H4zjlt0g+INfBaXxVhcFsMIYPr6M1Yt5xPr1/OW+QvY8S21noiIiEwVJScyI+24/z4AehyHhpZFxBPFNd6ksa6CxnCc3n27C75v1/NJZ1yKKDehwnS5dfGvuXXxr6kwg+l+d+JFp+P6Pkscl43/8/NAYhARESl1Sk5kRjq0ZRMAA5WVJNIOw0U0GN40DVpnleMcaiM5NBhIDImUE0D7RHFbYi1md3k2Yxv89S9JT3FZZxERkZlIyYnMSEauLG9kyRKG4hnSmeKZGX7erEpqvBi9B/YGFkM6o3EnR3PqZRcw7Do0h8L873VfDDocERGRkqPkRGYcz/P41s4d/FfbLhacfwG9/cUzuV55WYgFdQZDB57FSQc3KWTacXHc4klOkl6It7ddytvbLiXphQKLo2FWHX0LmwCYt2MHnTt3BBaLiIhIKVJyIjPO7t272NXXw4NDQyw59QwGi2hm+Na51ZQNddHf1RFoHJmMi+MUT2uSj0Fbup62dD1+wLOwnPXaczngpImGQmz6yn8GGouIiEipUXIiM87mzRsBWLNmLY5nMFQkg+EbaiuYU5agd++z+H6wrRY+2XEnBBxHMQqFQsy5YD1P9Pdx/eOP8OCDDwQdkoiISMlQciIzTuIvD/Cq2XM5e/Ua4kmnKGaGD5kGi2aX4x5uIzEQCzocAJJpp6i6dhWTFauXs3fRbA6lU3zhC9eSTCaDDklERKQkKDmRGcX3fVb09fHuRUtY17qI7v5EUTQOtMyupjrTQ/e+tqBDOSKdcckUUdeuYvPeyy5idkMd+/bt5ftf/XLQ4YiIiJQEJScyo+zdsonGcBjH97FefjH9Q8GXg62ORmipcRnctxM3UzzjX7LJiVtUkzEWk+poBR9/+6W8t3UJG2ybrXffFXRIIiIi056SE5lRdt3zJwA6DQhV1wY+GN4wYPG8Soy+/QwcPhhoLGN5fnbciXKT8Z27bhXL584mbJj0/Oj7pIaHgw5JRERkWlNyIjNKJlf61V2wkOFEhuF4sONN5jdVU+/H6G7bGWgc40mmHIphuhMDn3nhIeaFhzCKbHrIky+/gEEnO/fJvf9+bdDhiIiITGtKTmTGcB2HuclsN66Wc8+lO5bAC3DASVU0wsI6j6F9O8gU6YDqtOPhuB4BV++lwnT5xdLb+cXS26kw3WCDGaOhqYGhlfMBaO3sZJu6d4mIiEyYkhOZMXb++V6qQiHirsuK8y4kNhhcQmAaBkvnVWL27af/YGdgcbyUkUHxpvp2vagzX3kWu3AIGQbdP/weQ7G+oEMSERGZlpScyIyx46EHcTyPzrIIrhFhYDi48SYL5lZT7/XSvac4u3ON8H0YTjpo4MmLMwyD9W+6iAHHYV44wv2f+VTQIYmIiExLSk5kxvjptq28a/PjeBdcyEA8zXBAky/W15SzoDpDf5tNJlWc3blGS6YyeAEPPEl5Id699xLevfcSUl4o0FjG09BUD6cuZ8DJ8D+bN3LXXX8IOiQREZFpR8mJzAiHDx9i69YnSXoe57zmtRzsjQcSRyRssnROOd6h3Qx2HwokhuOVSrtkXC/QksIeBs+kmngm1YQX9ACYF7Hm7JN5qLmWx2J9XHvtv9LR0R50SCIiItOKkhOZEf587z0ArF69luq6RvoHCz+/iQEsm19DZaKLw227Cr7/iUo7Hqm0i2EWb1JQTN512UWctGwRAwMDXPuRD5EYGgo6JBERkWlDyYnMCNV33cn/O3E1l516OkOJTCCTL7bMqaYpNED3s9vw3OKqOPVShhIZ/AArm00n4XCIz//tmzlr7lzeEynnnk9+VMdORETkGCk5kZI30N3NfMdheVU1p55zLof64tnyuAXUUFtBa63LYNs2UsPT7056KuXguH7gJYWni+ZZDVz1mvOpCoVZMRznf7/ypaBDEhERmRaUnEjJ2/jft1Jmmhx2HVpPP4ueWKKg+4+Wh1k2J4LbtZOBQ8U1C/yxSmZcUhlXJYWPw7pz19PWUAnAvK1b2fK73wQckYiISPFTciIlL7N5EwDDixYTT7n0FXC8SThksqKlivL+fRzeu7tg+8033/cZiqdVUvg4nX/FK9iFQ9g0yfzsv2nbvDHokERERIqakhMpaYf37GJhrgzuSX99BQd746QzhRnvYRiwvKWG2lQXB3dux/cK25Us3xIph4wT3Gzx9aEk9aHiL708mmmanP2O19DpZKgNh2m//jq69+0LOiwREZGipeREStrmn9yKaRjs91zmnbSWw32FKyG8dH4ts41eDu/YipsJbsLHfEmmXFJpF9Ms/NdG1HT43bKf8rtlPyVqOgXf/2REqytZ9qYL6HUyzA6H+cOnP0EiEUwpaxERkWKn5ERKlue6VO7YAUBo7ckMxDP09hfmznvrvBqaywbp3fkU6fhwQfY51Xx8BuNpVHjq+M2e10TDxadzX18P129+gmuu+QDJ5PRqBRIRESkEJSdSsh5//FFu3vMsTwz0c9a73kP74aGCVOlqmV1Fa1WS/l1PEe+PTfn+CimezJB23EAnZJyuFq9cxPorXkFZRTmPPPIQH/nwP5BOqgVFRERkNCUnUrJ++rOfsLE/Rtv69RhVdXQXoEtXc1MVi2szDO5+iqGe7infX6GlMi7xpFPwCRlTXoi/338xf7//YlJeqKD7zqc1y1r58gffSUV5Gcv27uXeaz5IKq4ERUREZISSEylJe/fu4e677wLgrW99O4djiSmfFX5+UxVL6zIM73mKgUNdU7qvIA0Op3Hdwvbt8jDYlJjHpsQ8vGk+2copK5fw5auu4BWz57LYcbnrA+9joKc36LBERESKgpITKUlbvvJlrmhu4eIN59O6ZDkHDg4ylZfTC+ZUs6QuzfCep+g/2DmFewpePJkhkXYwQ/r6mKjTTjuJ4ZOXkPY8lvrwh6veTc+B/UGHJSIiEjhdXUjJ6XhmO8sHB7l8/gKuvPQN9A4kORybmq4zhgGLm2tZXJ1g8NktJZ+YAHi+T/9QCk8j4ydl3TnrcM46kSHXocUw2fp/P6Z5UEREZMZTciIlZ/ONNxA2DPbis+pVl7C3c2BKuiGFQgYrFtSxoLyfmL2Jwe5Ded9HsRpOZEimXMwCjz0pNSeecgLVF5+WLTMcCtN7w3U8+rPbgg5LREQkMEpOpKRsv/duludKtLa+4530DCTp6sl/Kd9oeZiTWmuZ6x+ie/tGhmMza8yA43r0D6WmtKvcTLHEWszyd7ySDjdDpRniGzdezy23fAtvmk/aKSIiMhFKTqRkOJkMHT/4PgC7ysuxXv4K9nT0Z2c1z6PGugpWL4xSPbyXrqefIDU0mNftTxeD8TTxlBPIpIylZm7LHE57z6XcV2myuT/GV796HVdf/W4OdnYEHZqIiEhB6apCSsa9X/4iC02ThOtyyj/+M129cTq7h/K2/ZBpsLi5lhObfIyObXRtfxInPf1nfp8ox/WIDaRwCzT2pMLIUGFkCrKvIJRHy/mbd76OT151BdGKcvZu3sSej3+EB27+Fr7G94iIyAwRDjoAkXx4dodNdNtWKCund+1aTly6gse2HczbWJPaqjKWzI1Sm+kmtsNmqLf05jCZiMF4mup4hLrqcrwpnOAyajrcveInU7b9YmEYBpees56Tly/kidvuojESgYce5A+PPMzqf/hHFq5eE3SIIiIiU0otJzLtDQ0N8eGPXsO/bH+axwy48J8+QlvnAIfzMOliOGSyuLmW1c0hKvt20rn1MSUmo3i+T+9AklTGLfjEjKVs0dwm/up9l7O7tgLH91jmefRf9yX++OlPMhTrCzo8ERGRKaPkRKa1VCrFRz96DW1te4g0NnLpdddzuD/FrgOxSW3XMGDurCrWLaliYegwgzseo2vHNtwZ3I1rPImUQ99AEt+HaT4/YlEpKy/jwre9itArTmWvm6HMNFnS3s72az7Indd9iUxG56KIiJQeJScybaUTce655gP427dTURHl+uu/Rqi8hu1tPaTS7oS2aRjQ1BBl7ZI6VtTG4cCTdDz5KEM9ai15MbHBFP3DaUxjar5SUp7Jh9tfzofbX07Km1lfW4tXtHLu1W+kc9k8epwMdeEw9/3xd7z2ta/ke9+7mcHBmVmQQURESpPGnMi01NvRwd3v/yDLfLh68VJSV17Fcms1W57tprc/edzbC5kGTfVRmusjVPtDZA7t5GDHfpxUagqiLz2e79PdFyccMqipLMv7+BMPk4eGFxx5DjOrzK5pmpz1yjPJnHcKD935MJv27OBQTy/XX/8lttx2KxeftIYlr7+cEzacF3SoIiIik6LkRKadJ39/B7Ef/4hFoTBJzyX9mktYf97L2banhwMHj+8uclU0wqy6CuZUQ9QZJNW1j0MHO8gkjz/Bmekyrseh3jiGYVAdjUzpAPmZKlIe4bzXbeCsV5/NnzY9w4/+cD+vrq5nSX8/fP8W7rvl26RXrOSE17+RhatOCjpcERGR4zYtkhPLskzg08B7gAbgAeD9tm0/G2hgUlDd+/by6A3XsTQWoykUptdxmPXe92KddR5bd/fQ1tF/TNupKA/TUFPOrOowteEUZvwgw23tdB4+hOuUbqnaQkhlXA72DOM3VlJdGcH3fDRTY/6VRcJccsZqXn3aKjY/8jRtT+5igevTHArB7l0krvsS97kuwwsX0vyGy1m9eg2RSFnQYYuIiLykaZGcAP8CvA+4CmgHvgj83rKsk2zb1qjQErd79y5++t+3cu727SwvKwfDYE9llPP+7VpS5XVstA9x8EVmgQ+ZBtWVZdRWldFQaVIVShNK95M+3Emst5vEwLElNXJsUhmXzu5hmuqj1FWXEzLB85ShTAXTNDnl7DVw9hr6evt56i9PEtp/iPlGiOZQiEee3sonfn07FRUVnLx2Ha9vbqHhhFUsOfMs5i5dFnT4IiIiL1D0yYllWWXAPwMftW37jtyyNwMdwBuB2wIMT6bAYE83Ox+4n0OPPcr37G08s3MHAKEFrZw2ey6z3vgGLnnTm9m1v4+du7oYTjzX2mGQbRmprIhQGQ1TU25QU+YRcZOQ6CLZdZj+WIzkYL8mtptCjutxsCdOIunQWFdBRVkY8LMtKTIlGhrrOO91GwDo6x1k++PbOLzfp7Gnnt5YjLYtm1jmAe3t9N99F/tdh75whExdLWXzmqk54URa1p3CnDlzKStTK4uIiASj6JMTYB1QA9wzssC27ZhlWRuB81ByMq2kEwkGhwYZGBoiFosxvH8vKdsmdfgQxkA/NakUTWaIasOgGgh3dWGaJueffyEXXPEWVp/2MnoGUmx85hC9sWEqysLUVZdTEQlRWeZTGfYJkyHkJvHiA2QO95EYGqR3aECD2wvMx6d/OEU8maGmqpy66jLKIyFM08D3lahMpYbGGl528Zm8DHi/77Ovd5Cnn9rJrl3t1CUzNJohakNhan0fYv0Q6+dn9/yJn3UcAMCaM4erW1pJhyN40ShUVmJUVxOuqaW8toaKBQupXthKNFpJeSRCeShERU0tFdEohqF60iIiMnHTITlZkHvcP2Z5B9A60Y2Gw/ktR/rg03u57xs3MS81xEgne+PItVf2ye8ijaRyE0Gsc4dY5iWP9Mc3xnTM/61ZQ9wIZdf14ljecxfWY9e9gyr6jRA+Pmv9FGv85Kh1n+8OP0oPIcBnNWlOIZ1bx3/B79zhltGVW3eV4XCWkRmzPT/72offZUz2ZRw8J80aw+WvqiKEgRDZkyxsQJlpUGGG+MLOZ9jYHwPgwlmzuXrJqO4loewp2eM47AtXsux1H2LFGW8kXFnH7zIuv3nYBS+KaVTgezUYvofvOvhuBs9xcF0Hz/HwHBPfrwVqkYkxDDAcE9/3mFQjUwZIgtlrEAqZRMIm4ZCJaWRnRB+5lvXH/H8ZzfGfO/NuOHwaYaOEEhsje1xc12NyB/olrHolrMo+9RNDhPY9SeXBZ6nr76Q2NUhXeQ1muAzPSRNOJJkfCmfjicezP93PldP+8YF9/LKrA4DF0Uq+eNJaAFzfJ+N7OD5kfB8Hgz8NJbgnkcEwQ8yJRLiyphzPMPAx8A1yj9nXTxnlPGZEMYBqfC5leOTb9MgX08jrnUYZm0JVAETxeZ07pnvmkSTJoM0s54lILaGQiem6vC713Gd5/hE3OBAq47Fw9nvD8H0uy/SMe0i7jDIejjz3HXNpunvc+vyHjQh/idQdeX1JuoeycQZk9Rph7o/U5z6GwcXpXqL+0cujDxph7ilrOPL6onQv1eOsGzdC3FXWeOT1+ek+6n3nqOumDJM/lM068vrcTIxZ3tHH5DkY/K68KffKYF5zMzd87F2UR6bDJYaIFJvp8M1RmXsce9s7CTQyAaZp0NBQNamgxrrhltu4YO8WzmyaPe4633ziXgad7B+CC1sXc/qceeOue8vmB+jOTfi3YUErp86bP+66P9z6CO3JBABnzl/A+vkLxl33tu1PsD+eHZ+xfl4zJy9YNO66P392C+1D2epXq2fPZc2iJeOu++vd2ziUSzi8WbNZWD9+f/aqUBjK6yBaz77KRh5NhzlUVkdPdC6dNUvZ07KBwYblz/1Cx7ibkunG4YX/k4/Tb/pX5iWUGW/uqTD3+YsM3yeU7ONA326+0PsUdfEu6pLd1GYGqXfjVPlpor7DobJGqHIgkyAaCR35/ZBhEDJCz9/mcB/9ne0A1EUrWd64dkwgPiMpws7Onexvz96Hmltezilr1j9/tVEOd+2mbf/e7HbDEU5bd+q4H3Wgaze79u4GIGqGOP2U08ddN3O4m127s7VWDODM084ad90nYn3setY+8vrUU86gzDx6evLUQD8/2LH9yOt1606lJhw56ro7hgb57jO/P/L6n9aup6ms/Kjr7ovH+da259b9wEkn0xKNHnXdrmSSm7b+4cjr95y4mqVV1UddN5ZJc+NDfzzy+v9Yqzix5ug3exKuyw0P33nk9bPAPa86j7ddPP6/iYjIeIxi73dvWdblwM+BStu2E6OW/xQot237suPc5G7X9ZYMDCRees3jsH3fIX7/7e9TN9Sf/Rt65Ebvc3d8NzcswDFDYBi0DvcyOzX0gnUwsu0i2+oXkA6FwYD5w33MTWWTBP95bRfZu4l2/XxS4TIMDObGY8xJ9OfW5Xl3DwF21TeTjJRjGAaz4v3Mjfcx0hZjjFrXN2B/7TziZdk/cg3JQeYM9z5/36O231k/j2R1A6FwGdWuQ31qECNSDpFyKItilFVglFdCXRPhhrmYo/4oj75h7sNL3j02DINwOITjuBo3MoUCOc6GMeMmmTcMCIVCuK47pQ0neTfyD+X7+MlhvPggfmIw+zw5hJeM46eTJMoqGS6L4nsuoWScOT37wHXBc8FzwHPxXRfD9+gur+ZQRS0+PmVOGquvHcP3juzHgCPn4uGKag5UNYIPYS/Dmt5slzSf3Dda7lj6+PSUVdJW2YBhGJiey/pY+7gfqzdSya7qWUf2eUbfgRe0Vo+IRaLYNc/dkDq9bz/mOP+IA5EKttfMOfL61L4DhP2jl9seCpfzdO1zmeP6WAdl3tFbOOKhCE/VNR95vba/k6h79BaOZCjMlrrnbnStHuiiyjl6TZmMGWJjfcuR16sGDlLjHP3OgmuYPN6QvSlmAC3zm/nX91yW95bA2toooZC5B1ia1w2LSFGZDi0nI9255gO7Ri2fD2yZ6EYdJ79zMJzYOoeX3fgZ+vqG877t0pPJ/UxMOGzS0FBFX19Sx3oK6TgXRmkcZxOoy/0Up+eOs76jp8K7co86ziIyWfkdeDE1tgADwAUjCyzLqgdOAf4cTEgiIiIiIpJvRd9yYtt2yrKsG4H/sCzrMNAGfIlsi8rtQcYmIiIiIiL5U/TJSc6/ko31O0AUuB94lSZgFBEREREpHdMiObFt2wU+lvsREREREZESNB3GnIiIiIiIyAyg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRomD4vh90DIWW8H2/wvPy/7lDIRPX9fK+XXkhHevC0HEuDB3nwtBxLoypOs6maWAYRhKI5n3jIlI0ZmJyEgPKgc6A4xAREZFj1wykgPqA4xCRKTQTkxMRERERESlCGnMiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRCAcdQCmwLMsEPg28B2gAHgDeb9v2s4EGVmIsy1oEtB3lrffatv2dAodTkizL+hTwCtu2Lxi1bB1wA3Aa0AN81bbt/wwkwBIxznH+LnDlmFXbbdteUMDQpj3LshqB/wf8FVALPAl83LbtB3Lvr0Pn86Qdw3HW+SwiE6KWk/z4F+B9wHuBswEf+L1lWWWBRlV61gJJYD7QPOrn1iCDKhWWZV0DfHbMslnAXcAOshdznwautSzrqoIHWCKOdpxz1pK92Bt9bq8vXGQl4zbgLOAtwOnARuBOy7JO0PmcV+Me59z7Op9FZELUcjJJuQTkn4GP2rZ9R27Zm4EO4I1kv8AlP9YAtm3bnUEHUkosy2oBvgNsAOwxb/8tkAKutm3bAbZblrUC+Bjw3YIGOs292HG2LCsErAKutW27K4DwSoJlWcuBVwLn2Lb9YG7Zh4DXAG8DEuh8nrSXOs6WZf0bOp9FZILUcjJ564Aa4J6RBbZtx8jeRTovmJBK1lpgW9BBlKBTgD6yx/eRMe9tAO7PXciNuAewLMuaU6D4SsWLHecVQAU6vyerG3gt8MTIAtu2fcAAGtH5nC8vdZx1PovIhKnlZPJG+s/uH7O8A2gtcCylbg3QaVnWn4GVwE6yd+b+GGxY05tt278BfgNgWdbYtxcAT41Z1pF7bAUOTWlwJeQljvMast1Br7Es6zWAB9wBfMq27f5Cxjmd5W4M3TF6mWVZfw0sA/4IfB6dz5N2DMdZ57OITJhaTiavMveYGrM8SfbOkeRBrvvcSrIDLz8FXAI8RnZsz0VBxlbiKjn6uQ06v/NpNdkLuDbgdcCHyZ7jv8oV3JAJsCzrHOAW4Fe55FDn8xQ4ynHW+SwiE6aWk8lL5B7LRz2H7B+64cKHU5ps205bllUPOLZtj1xcPGFZ1olk//DdHVhwpS1B9twebeQiTud3/nwG+ErujjTAVsuyOoGHyA42HtsNTF6CZVmXAT8GHgbemlus8znPxjnOn0Hns4hMkJKTyRvpzjUf2DVq+XxgS+HDKV22bR/t4uEp4NWFjmUG2U/2XB5t5HV7gWMpWbn++rExi0e6Hy1AF3PHxbKsvydbLvh24B2jbmjofM6j8Y6zzmcRmQw1r07eFmAAuGBkQe4O/ynAn4MJqfRYlrXWsqwhy7LOHfPWacDTQcQ0Q9wPbMhVkxpxEdmqaeqfnyeWZf3YsqyxY6dOzz1qUPFxsCzrauBrwI3Am0clJqDzOW9e7DjrfBaRyVDLySTZtp2yLOtG4D8syzpMto/tl8jeobs9yNhKzNbcz025P4rdZMvcns1zf/Qk/24BPgrcbFnWF4EzgGvIzusj+fNj4NeWZX2SbPnxlcDXgR/btr090MimEcuyVpK9k/8/wL8Dc0YVH0ig8zkvjuE463wWkQlTy0l+/CtwM9k5DP4COMCrbNtOBxpVCbFt2yM7sPJR4GfAJuBM4JW2bY+tviN5krub/CrAIlse+9PAR2zb/n6ggZUY27Z/C/w1cDnZ7i83k7258e4g45qG3gREgDcAnWN+btD5nDcvdZx1PovIhBm+7wcdg4iIiIiIiFpORERERESkOCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5EREipJlWUbQMYiIiEhhKTkRkaJjWdalwPdzzy+wLMu3LOuCYKMSERGRqRYOOgARkaP4p1HPNwJnA9sCikVEREQKRMmJiBQ127YHgIeDjkNERESmnuH7ftAxiIgcYVnWvcD5oxZdCPwvcKFt2/dalvUZ4C3Ax4HPAcuBZ4CrAR+4AVgL7AI+ZNv23aO2vRr4AnBebtHdwD/btr17Cj+SiIiIHCONORGRYvN+YFPu52yg9ijrLASuAz4PXAE0Aj8HfgJ8m2zyYgK3WZYVBbAsayXwIDAHuBJ4N7AU+ItlWXOm7uOIiIjIsVJyIiJFxbbtbcAAMGDb9sO552NVAu+3bfsntm3/GvgGMB+41rbt79i2/SvgX4AmwMr9zqeBBPAK27Zvt237Z2RbZaLAR6b0Q4mIiMgx0ZgTEZmuHhz1vCv3OHpsSk/usT73eBHZ7mFxy7JGvvsGgD8Dr5yiGEVEROQ4KDkRkWkpN1B+rPiL/Mos4M25n7EO5yUoERERmRQlJyIyU8SAPwFfPsp7TmFDERERkaNRciIixcgFQnne5n3AKmCzbdsOHJmF/kfAs8DmPO9PREREjpOSExEpRjHgbMuyXg7U5WmbnwUeAn5rWdZNQBL4O+D1wJvytA8RERGZBFXrEpFidCOQAX5PtprWpNm2/SSwgexcKD8kW3q4GXi9bdu352MfIiIiMjmahFFERERERIqCWk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkK/x/0hYSRb6pqRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 0%| | 0/249 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 17.89it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.080) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 45.000 - 54.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.090 - 44.990) R-Score = 1.0016 & Fano Ratio = 0.0154\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 55.000 - 79.990) R-Score = 1.0002 & Fano Ratio = 0.0153\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACce0lEQVR4nOzdd3gU5doG8Htm+6YXkkBCCW3oIGBDEBFFsWA5ehR7RVEECwoKNhRRPgQEDkoHAVERxd6xodhApCVDOiSEBNKT7Tvz/bG7EEpIsmwSsrl/15Uruzsz7zzvbso88zZBVVUQERERERE1NbGpAyAiIiIiIgKYnBARERER0RmCyQkREREREZ0RmJwQEREREdEZgckJERERERGdEZicEBERERHRGYHJCRERERERnRGYnBARERER0RlB29QBNIFSAAYA+U0cBxEREdVdawB2AJFNHAcRNSChBa4Qb1VV1agoga+3KApoiHLPJMFeR9av+Qv2OgZ7/YDgryPr53+5giDYAJgCXjgRnTFaYstJvqKoycXFVQEtVKsVERUVgvJyC1wuJaBlnymCvY6sX/MX7HUM9voBwV9H1s9/0dEh0GgE9nogCnIcc0JERERERGcEJidERERERHRGYHJCRERERERnBCYnRERERER0RmiJA+KJiIiIjti6dWsYPFMV86YtUWApAPIHDBhQUdcDmJwQERFRi7R161YRwDOCIN4hCIIOgNDUMREFGVVVVefWrVvfBvDKgAEDap3Gj8kJERERtVTPaDTaseHhUQ693mgRBCF4F6AhagKqqgoOh81cXl4y1u12AcDLtR3D5ISIiIhanK1bt4YLgnhHeHiUIywsqqip4yEKVgaDyQogprS06I6tW7e+UVsXL/atJCIiopYoQRAEnV5vtDR1IETBztsyqYNnbNcpMTkhIiKilkgEILArF1HD8/6eCahD7sHkhIiIiIiIzghMToiIiIiI6IzA5ISIiIiIAmbevNltrr328t5NHUddpabuMX733TcRTR0HeTA5ISIiIqIWa/LkJ7rs2bMrpKnjIA8mJ0REzYDVBfR7OwTt3wCszqaOhogomHBOhDMJ1zkhIiIi8lIUBRaLpclu3prNZkUU63f6wYMHDvjPf27K//HH72OcTqf4xhtvpprNZmX+/DlJO3b8E15VVaWJiIhwDRt2SdGECRPzUlL2mB544K4eCxcuTenTp58FAB599KFOu3btCP/qqx//0Wq1UFUVV155Sd8777wn76abbj18/DkPHz6knT17ZtK2bX9FuN1uoWvXbpWPPz5pf6dOne2+fRYvXhj/2Wcb4ysqKrSdO3epmjz5uWzf9pPFnJTU1rFo0f9a//TTppiSkhJdYmKi7fbb7z5w+eVXlgLA+vXvxqxbt7r13Xffl7ds2eKksrJSXffuPSumTn0xe+XKZQk//vhdjFarVUeNur7gwQfHHQQAu90uLFgwp83mzT9HFRcX6Y1Gk9K3b7+yyZOf3RcdHeO+9trLex8+fFj//vvvtN65c3vYkiVvyyUlxZoFC+Ym/vXX75EVFRXa5OROVWPGPJR33nmDKn1127hxQ/TatataHzp0yNCuXTvrsGGXFi1b9lbbzZv/3urPZyKKol/1C0ZMToiIiIjgSUxuueU/3VJTU5qsi0+3bj0q33nnA7m+Cco333zRasaM19PcbpfQpUtX+y23/KdHRESk87XX5u4NCwtz//TTpsglS95s26NHr6rLLruiNDY21rFly6/hffr0s7jdbuzZsyvMbreL//yzNeTss8+t2r59m7miolx78cWXlh5/LpfLhQkTxnYFBPWFF17JiImJcc2fPyfpiSce6frBB5/uBIDDhw/rd+3aETZjxuw0h8MuvPLKi8mvvPJih2XLVss1xfzoow91yszMMD/yyGP7kpM72b766vPo6dNf6CSKYvqIESPLAKCo6LD+k08+inv55ZnpFkuV+Oyzk7rcffetPYcPv/TwwoXLUr744pOYNWtWJg4dOqy0e/eettdffzXpjz+2RE6aNCW7bdt2dlmWTbNmvdJh0aL/tXn66ef2L126OuWee27tccEFQ4vHjBmb73a7MX78g12dTqcwadLUrFat4pzvvfdO3OTJj3edO3dhar9+/S3fffd1xOzZryXfccc9uRddNLz0jz9+C1+69K22p/uZ+FO/ev2QNBNMToiIiIiOaJ7rngwdenFRv379LQBgtVqFiy++tOiyy0aWtG3b3gEAHTrcW7h+/bsJ6el7TZdddkXpwIHnlm7b9lc4gIPbt28L0Wi0ateu3Sr/+uuPsLPPPrfql19+iuzSRaps1SrOdfy5fv315/CcnGzTihXv7OrSpasdAKZMeSF75cqlCcXFRVoA0Gg06ksvvZYVERHhBoCRI686tGbNysSaYt67N9X4999/Rr7wwvT0Sy65rAwAxo17ND8zM928du2q1r7kxO12C48/PinHd2Heu3ff8r17U0OffPKZXEEQMGbMw/nvv7+udVraXlP37j1t3bv3qBo2bHjJ+ecPrgSAtm3bO7799qvy7OxMEwDExrZyiaKomkwmJSoq2r1p07fhWVmZ5iVLVu32nWPq1Bf37d2bGrJ27aqEfv36Z7777tqE884bVHzffQ8WAEDnzl0O5ebuN3z66cb40/lM/Knf6fzMnKmYnBARNQMCgAHxbui0GghCU0dDFJxEUcQ773wgN7duXQCQlNT2SHcqk8mk3n773YVffPFp1Jo1q0IOHMgz5ORkmUtLS3RutyIAwJAhF5U9//wzraxWq/DHH1vCevbsVZGY2Nb277/bwgEc/OuvPyIuvPCi4pOdKy1tr8lsNrt9iQkAxMcnuCZNmprrex4REeHyJSYAEBYW7nY4HMdUrHrMspxqAoCBA8+trL5P7979Kt5+e1lS9dc6dz56XoPBoLRqFW8XvH8YjUajCgB2u10EgOuuu7H4l19+Cps9+7XEvLxcQ27uftOBA3nGbt26H3Men/T0NJPJZHZXv/AXBAE9evSq3Lbt73AAyM7ONA8efGFJ9eP69j2r8vjkpL6fiT/1C0ZMToiImgGjFlh2mQ1RUSEoKQFcJ9zLJKJAEEURoaGhSlPHUV8Gg/FIzBaLRXzggbskm80mDhkytGTEiJFFffv22zdu3Jhuvn3OP/+CCp1Oq/z++69h//yzNXzYsOHF7dt3sH/yyYcJ+/fn6LOzM80vvDA982Tn0mi0qlDLXRJRFGttgaoec02D0hXFLWg0mmM26nS6Y56LYs2xTJv2bLtff/05+qKLhhedd94FZd269chfu3ZVQlHRIf3J9lfVk1dNURRotVrVcz5RVdXaG9jq+5n4U79gxOSEiIiIKIj89NOm8KysTPOHH37+b1xcvAsASkqKNWVlZVpfEqDX69W+fc8q//nnHyPT0vaGTp78bE5SUluHIAjqwoXz27Ru3cZWfXB7dR07drJVVVVpMjMzDB07drIDQFHRYe3o0df3evnlmWn+xNy1azcrAPz99x+hvm5dALBz57+hiYltrf6UWVxcpPnmmy9bTZo0JfPqq6870tKRm7vPaDSaqiVGRy/+O3fuarVYLJqUlN3G6q0ne/bsDk1KamcDgPbtO1j37NkdCqDQt3337p2nHKdUl8+EPIK2SYiIiIioJYqPT3AAwCeffBSzf3+O/o8/toROnDi+s9vtFhwO55Er8UGDBpf+8MP3seHhYa5OnTrbDQaDKkndKzdv/inmvPMGldZU/pAhQ8uTkztZpk2bmrx1618hqal7jC+8MKVDRESks2/fsyz+xCxJ3W39+vUvmzdvdrvvvvs6Ij09zbBgwdzWW7f+Ffnf/44u8KfM8PAIt8lkdm/e/HNkZmaGYc+eXabnn3+mfXZ2ltnpPPo+GI1Gd15erqGwsEA7dOiwsrZt21unTXu242+//RK2d2+q8aWXnmuXm7vPdPPNtxQAwC233JH/xx+/RS1btig+MzPD8MEH78V8/vmncaeKpa6fCbHlhIioWbC6gFEbzBBE4PNrAR3/lRFRDfr3H2i5554x+zdu3BC/du2qxKioaMeQIRcVx8a2csjy0ZnIhg27pGzu3FlCr159y32vnXXWgPKdO/8NHzr04tKayhdFETNnzkmfPXtm28mTn+gCAD179qqYPXt+msFg8LsZ4NVXZ2fOnft/ibNnz+xgsVg0bdu2tT7zzAsZI0deWWMsp6LVajF16ouZb701P+nee2/rGRIS6urVq0/FbbfdlffBB++2rqqqEkNCQpRrrvlP4fLli5ImTHjItG7dhj3z5r25d/bsmUkvvji1k9PpEpKTO1pefXX23gEDzqkCgGHDLikvLCzIeffdtQmrV69ITE7uaLnsspGHvvzysxoTlLp+JgQIdekzF2Qy3W4lubi4KqCFarWity94FVyuZtdVtU6CvY6sX/MXzHW0uoAh74cBALaMroJOCK76+QTzZwiwfqcjOjoEGo2YBaBjIMrbunVrN1HUfBUXl1ip1xuDctYjahhbtmwOjY2Nc1afEODNN+cnfPPNl7EfffTFrqaM7UzlcNiMhYV5oYrivnzAgAGpp9r3jGo5kSSpK4BtAMbJsrzS+1o/AG8AGAigCMA8WZZnNVWMRERERNRy/f77bxE//rgp+qmnnslu376Dfc+e3aZPPvkofuTIqw41dWzB4IxJTiRJ0gFYCyCk2msxAL4FsBHAgwDOA7BQkqQiWZZXNEWcRERERNRyPfTQhANWq1V89dWXkysqyrXR0TGOa665vuD++8cG7artjemMSU4AvAig4rjXxgCwAxgry7ILQIokSV0ATALA5ISIiIiIGpXBYFCfeeb5/QD2N3UsweiMmK1LkqQLATwA4M7jNg0B8LM3MfHZ5DlEOuWsCERERERE1Lw0eXIiSVIkgNUAHpFl+fgMNAknZqUHvN/bNXBoRERERETUiM6Ebl1vAtgiy/I7J9lmhqdbV3W+GTWMp3NSrTaweZlGIx7zPdhUlZfjm9f/Dx0uOA+9R17d1OE0iGD/DIO9fkBw11EHoGesAo0oQqsVoQ3SqYSD+TMEWD8ioto0aXIiSdLt8HTd6l3DLlYAhuNe8yUlfs8FLIoCoqIaZkrp8HBTg5Tb1L6b/iI65OTAmpkJzWUjEB4V2dQhNZhg/Qx9gr1+QPDW8YtbfY+Cs37VBetn6MP6ERGdXFO3nNwDIB7AfkmSqr/+liRJTwLIAdDmuGN8z/P8PamiqCgv92sB0xppNCLCw00oL7fC7Q6+uevde9MAQYRJo8GfGz9Dv2uua+qQAi7YP8Ngrx8Q/HUM9voBwV9H1s9/4eEmtsgQtQBNnZzchhNvAaYBeA7AewBGA3hQkiSNLMtu7/bhAGRZlgtP58QNtfiV260E5cJaUYoKaDyPD8upQVlHn2D9DH2CvX5A8Ncx2OsHBH8dWT8iopNr0lsQsiznybKcXv3Lu6lQluUcAMsBhANYJklSD0mS7gLwKIAZTRNxy1RaUIBQjSczeTZ1N/5xu2o5gogCzeYCRm4w4YLlntXiiYh8Bg8eOGD9+ndj6rr/jz9+H37ddVf0uuii8/q/9tr0pIaMrS7mzZvd5tprL6+pi79f6vOe5Obu03/yyUdRgTw/+a+pW05OSZblQkmSLgMwD56V4/MBPCnL8qqmjaxlOZCyC1oAZU4n5MoKtDt0Wo1WROQHFUB+lXj0SZAOiCei+tuw4bN/w8Mj3LXv6bFkyZtJ8fEJ9jfeWLg3NDSszsc1J/V5T1588dkOcXFxjlGjritp6LiodmdcciLLsnDc878AnN9E4RCAIkHE8/9ug9Hb1/dQ4aEmjoiIiIh84uMT6tWeWlVVpTn33PNL27Xr4GiomJpa/d4Tlbd7ziBnXHJCZ57i0hIUOx2IM0XgmshoxFitTR0SEREReQ0ePHDAhAkTs2+88eaiKVOe7KAoihAVFe384YfvY+x2m9inT7/yp59+Lic+PsE1ePDAAQDw/vvrWr///rrW77zzwc62bds7lix5M/7LLz+LKysr1SYktLbfeOPog9ddd0MxAPz22y9hTz31WNc77rgnd8OG91vHxrayv/zya5m33/7fXqNH337g888/idPrdcrKle/uEQQBs2e/lvTnn1siXS6XkJzcyfLQQ+Nz+/Xrf2QmonXrVseuX/9uQklJsb5v37PK4uLiT5kk3X//HVLPnn0qSkqKdb/++nO0TqdTrrrq2sIRI0YWv/rqSx0yM9NDEhLa2J566pnss84aYKn+nlx66eWld9zx354dOnS0zJv3VjoA/Pzzj2FTpjzZ9emnn8v46KP18Skpe0JTUvaEXnvt5WEbN36189prL+998cUjisaPf/xA9Rji4uLt06f/X/bJ3o+33343paDgoG7OnP9ru337tnCNRlS7du1WNWHCxP2dOnU+flkMOgVOe0G1Ki4uBgB0at8Rtya1w/CQMCgKBzoSEVFwclutYk1fit0uNMa+p2PLll+jysvLtW+8sVB+7rmXMlJS9oQtWDA3EfB0d4qOjnZeffV1BRs2fPZvYmJbx5w5MxM///yTuIcfnrBv2bI1e6677oaC//1vbvvVq1e2ql7uH39siVy4cGnK5MnPZms0ogoAP/74ffScOQvkF154JSMiIsL96KMPdTlwIM/w8ssz0xcuXJrarVv3qkcffajbzp3/mgDgk08+inrrrQXtrrvuhoIlS97e3b17z6ovv/wsrrY6bdz4QUJcXLxj6dLVu6+66prCdetWt5k06bEuN910y8H//W9Jil6vU2bPfq398cdFRka6n3xyStY//2yN+PjjD6OLi4s0M2dOTx4+fMThK664unTmzLnpXbp0rTr//AtKli5dnVKf97n6+2Gz2cRHHnlAUhQ35sz5nzxnzv/k8PAI10MP3dv9wIE8XX3KbenYckK1MmVn4vakdtDFtQHKiqATRVQWFSG8VavaDyYiImpmMh4Ze1ZN20xdpbK2Tz3tm8AHmY+P76s6nSe92WvokFzZfurzsu951qQneisWy0mvvfRtEi0dpk2v18VxjTGaTO7nn385R6fTqV27drNt2fJr0datf0UAnu5OoiiqJpNJiY9PcFVVVYmffroxfuLEp7MuueSyMgBITu5oz88/YNiw4d2E22+/60hf7ptuuuWgrxVg375sPQBceeWoQ5LU3QYAv/zyU1hamhyyceOX/8bGtnIBwOOPT8rbs2d36Lvvronv3btv9ocfvh8/aNDgkttvv/sQAHTu3OVgSsrukOzsTPOp6tS2bTvrww9PyAeAu+8eU7Bu3Zo2Q4ZcVDxixMgyABgxYmTRkiVvtT3ZsUOGDK0YOfLqwrfeWtD2+++/iQ4JCXFPmjR1HwBERUW7tVqtqtfrFV/MdVX9/XjvvbWxFRXl2ldfnZ2l0+lUAJg2bUb29ddf2fuDD95rVb0Vhk6NyQnVKryoGP0T2mCnwQCHokAviqg4VMDkhIiI6AwUH59g910gA0BISKjb5XKdtGVm795Uo9PpFF5//dUOs2e/1sH3ututCC6XU7BarUeO69Ah+YTuSe3atbf5Hqem7jEDwE03XXvMzFsul0twOh0CAOzfv8900UXDi6tv79GjV2VtyUmbNklHzmM2mxUASExMPBKPXm9QXC5nja1Pjz/+VO62bX9FbNv2d8Sbby7fYzKZ1Jr2ravq78fevbLZarVqLr/8on7V93E6neL+/TnGEw6mGjE5oVpp7N7fvZBwWLzJSVXR4aYNiqiFEQB0jFA8i9Bx6CZRg+o0/81/atomiOIxF7UdZ8/7t677Jr/2+s667ns6qicmR528eEVRBAB45pnnMzt27Gw7frvBYDhyoNFoPKFPt9FoPLJdURTBZDK5Fy1aeUILkF6vVwBAEASox4Wi1WprrbtWqzlhH0Go++iEgoKDutLSEp1Go1G3bNkc3rt3n1oG0B57OpfLfcJf3urvh6IoaN26je3VV2enH79fSEhIUM6I1lA45oRqpXd5WjmF0AhYvX9RLMVFTRkSUYtj1AIfXmPFd7cDJt5WImpQGpNJqelLrHax3pD7NpbOnbvaNBqNmp9/QN+xYye77+vnn3+IWL16ebwo1v1SsVOnLlar1apxOOxC9bJWrlyasGnTt5EA0L59B8uuXf+GVj9OllNCAlurYymKgmnTpia3b59seeih8fveeeftxF27dlZbBFw49nPSaNXKyipN9eMLCwv0pzpHx46drIcPH9aHh4e7ffVu1669fcGCuYl//rklLNB1CmZMTqhWem9CIpjDYPPepbCWcCpwIiKi5i4iIsJ96aWXH1q9ekXihx++H52dnaX/4IP3YlauXJYUFRVdrzEYw4YNL2vfvoP1+eef6bR5889hmZkZhpkzpyf98MN3scnJnWwAMHr0HQf//PP3qCVL3ozPyEg3rFq1LO6PP7Y06AKIixcvTMjKyjJPmfJC9k033Xq4e/eeFS+//Fyy3TsJgclkUgoLCwx5ebk6AOjevUfl5s0/RW/Z8mtoenqaYdq0Z9tbrRbNqc4xatT1xaGhIe5Jkx7rtHXrnyFpabLx2WcnJW/fvjWiSxeJ05zWA5MTqpXB15BpDoNd9Pxu2svKmi4gIiIiCpjJk5/df8011xe8/faKxLvuGt1r7dpVrW+++dYDjzxSv0HcGo0G8+a9tbdLl65V06c/3/G++27vsWPH9rCpU1/MGDJkaAUAXHLJiLKnnnom85tvvoy9997be27e/HPkqFHXFTRMzYCdO3eY3n13TZvbb78rr2PHTnYAePrpZ3MOHz5kmDNnZiIAjBp1/aH9+/cZ77nn1p5utxvjxj2W17WrVDllylNdHnnkgW7h4eGuQYOGnPKubEREhHv+/MWpERGRrsmTJ3YZO/be7oWFBfpXXpmV1q1bjxO6y1HNBPX4jn/BL9PtVpKLi6sCWqhWKyIqKgQlJVVwuYJrmt1d99wBvSgi9ao78cvX6yFv/x03j3kAt9z9QFOHFlDB/BkCwV8/ILjraHMBd3wdAo1GxNuXV0GH4KqfTzB/hgDrdzqio0Og0YhZADoGorytW7d2E0XNV3FxiZV6vZEXj0QNyOGwGQsL80IVxX35gAEDUk+1L3su0yk5rBbovf1NNaGRsIZEYp/VguKqwCZ3RHRqKoDMMvHoEw6KJyKiIMTkhE6p0mLF2B3bYBY1eCgkAqYQz5iuMnbrIiIiIqIA45gTOqUqSxWKHA4cFgCIGrQWVFzXug3iiotrPZaIiIiIqD7YckKnVFlZAQAICQmDW1ERr7hxVWI7ZFVamjgyIiIiIgo2TE7olCy5+3F7Ujs4Q0KhKCpg8EwLrnHXa3ZBIiIiIqJaMTmhU3IcPIirE9og1+1GJQDhSHISfLPMEBEREVHTYnJCp2Sv8HTrcmk865uIZs+irrqWNwU1UZMSALQOUaARRc7URUREQYvJCZ2Sy+KZMtgp+pKTEACAvskiImqZjFrgy/9YvWtIAC72rCQioiDE2brolFze9UzcWk8eqwkJBwAYBAEC794SERERUQCx5YROSbV5Fs116/TQAND6khNRhOJ2Q/C2qBAREQULQYBGEIQmuYGrqqqiqnA3xbmJzgRMTujUHA4AgKLRQQNAEx6N51J3w+p2412bDSZvNy8ialg2FzDmayO0GmDxJfzjTdRQBAEaRRBaW2yuJvk1Mxu1LhFq/pmWoMybN7vNpk3fxGzc+NXO+h6bnp5mGDPmrh4rV67d3a5dB0dDxEfBg//f6NRcTgCAqvOMMtGbzJCrKqGqKqw2K5MTokaiAthT5GmpVFVwUDxRAxEEQbTYXNrfd+UrFpurUaemNBu14nm9WmvDjFpRVdUzKjnx1549u0yTJz/R2eGwcygB1QmTEzqlPwx6LPxjCy7+Tz90AiAIAvQGE+w2CyyWKkRHxzZ1iERERAFnsbmUKquzKebND5qL+IUL5yV88MG7rRMTk2zFxUWcS4fqhMkJnVKJ3Y79NivUkLAjrw1rFQ+T046qgwVAUvsmjI6IiIgGDx44YOzYR/Z9//230VlZGSHx8Qm2e+4ZkzdixMgy3z7fffd1xMqVS9vk5eWaoqKiHRdeOKx47NhH8g0GgwoAqal7jG+9tSAxJWVPmM1mFWNiYh1XX31d4d1331d4snOuXLk0buXKpUlPP/1c5mWXXVF6sn22bv0z4sknn8mKiIhwP/XUY10bpPIUdIImO6eGYfMOiNfqDEdeGxkdjdFJ7WA7mN9UYREREVE1K1YsSRo2bHjx4sWrdg8ceG7ZSy891/mvv/4IAYAffvgufPr0FzqNHHnV4eXL1+6eMOGJfZs3/xQ9ZcqTyQBgsVjEJ54Y39VoNCnz57+VumLFO7sHD76wZNmyt9ru3LnDdPy51qxZ2WrVqmVJU6dOy6gpMQGAZcvWyCNHXlXjdqKTYcsJnVIPux1JrRMR7j66qILT9927BgoRERE1rWHDLjl8++13HwKAiRMn5+3a9W/Y+vXr4s4++9ysNWtWth4+fMThW2+98xAAJCd3tGu12pxJkx7vum9ftt5sDlFGjbqucPTo2wvDw8MVABg37rEDH364PiEtLdXUu3cfq+8869atiV2+fHHS88+/nH7RRcPLm6a2FMyYnNApnSWISEhsix3VVnxzeUfiOq3Wmg4jIiKiRtS//8CK6s8lqXvV9u3bwgEgKyvLnJGRHvLDD9/F+Larqud7enqa8eKLLy2/5ZY7Cj/77OPojIw0c15eriEnJ8sMAG63cmT6jZKSEt2bb85rr9Fo1KSkdvbGqBe1PExO6JS03j9eguFoq67LO/W7i8kJUaOKMqgQRE7TRUQn0mp9/7E9VFWFKGpUz2NFuPbaGw6OGnVd0fHHxccnOAsLC7RjxtzVPSws3HXeeYNKBww4p7xPn75VN910bZ/q+wqCiGnTXklbvnxxm+nTX0hetmx1qihyhAAFFn+i6JR82esxyYn3D5HbxuSEqLGYtMAPN1nwzxjApGvqaIjoTLNnz65j5vZPTd0T2qlTJwsAJCW1s+7fn2Ps2LGT3fdVUJCvmzfv9aTKygrx0083xlRWVmiXL1+T+vDDE/JHjryytKys1HsJcDTniYyMcA4dOqx88uSp2ZmZ6eYVK5bEN2IVqYVgckKnpBc8d2lFo/nIa25fcmJniy4REdGZ4NNPN8Zv3LghOj09zfDaa9OTcnKyTaNH31EAADfffOvBP//8PWrevNlt0tPTDJs3/xw2c+YryVVVldr4+ARXfHyCw263i5999nFUbu4+/U8/bQp/8cWpHQHA4XCccK3YvXtP23XX3Xhw7dpVbTIy0g3Hbyc6HezWRTVSVRV6bxcSwXj0hoxb1AKKA4qNyQkREQUns1Hb6DdwT+ecI0aMPPTBB+/Gz507y9S+fXvLjBmz0nr27GUFgCuvHFWiqmrmunWrW3/44fsJZnOIe+DAc0ofe+ypXN/21NSUg0uWvNl2/vzZYmxsK8dll11xeMuWXyNTUnaHADh0/PnGjn0k/9dff46aPv2FDkuXvi2zexcFCpMTqpHDZoXWO75ENIUcadjdbgzDR9t+xiW9ejZdcEQtjM0FTPjeCJ0WmDuUf7yJGoqqqorZqHWd16u1Fk3Qw8Rs1LpUVa334o/JyZ2sTz01Jbem7VdddU3JVVddU3KybYIgYOLEyXkTJ07Oq/76vfc+UOB7PH784wfGj3/8gO+5wWBQ16//ZHddYhs0aEjF5s1/b63LvkT8/0Y1spYfWbsJojEMbu/jCmMIUiorMFBxn/xAIgo4FcDWAo3nsQqA4+KJGoSqwi1CzQ9rgpYTz/lVRVXBf7DUYjE5oRrZ3Aqe3L0DJp0Od+j0gNtzI0en93QvtXG2LiIiCkKqCreqqkwQiJoAkxOqkc1hR47VglBNGBTl6GwdcaqKy1rFI7qktOmCIyIiIgAAu0xRMGFyQjWy2WwAAKPR5ElOvN1I2rgduL59MrKquEI8EREREQUOkxOqka2gANe1bgOEhkFRVYjeaYVVnR4AILjY4k1EREREgcPkhGrkLCzA6MR2yHe7cMz0HnojAECj1HsyESIiIiKiGjE5oRo5rRYAgEs4bsIS74B4Tf1nOiSi02DUqhA4TRcREQUxJidUI5fFMxuXWzj2YkgweFtOVPWEY4ioYZi0wO+3WBAVFYKSEsDlauqIiIiIAo/LeVKNXN6pgt2i5pjXBb0JAKBjbkJEREREAcSWE6qRyztbl1tzbHIiGjzJiZa9S4iIKAgJAjSCcHyf5sbBRRippWNyQjVSHXYAJ7acuCNiMCMtFapOh1WCd7VqImpQdjfw6E8G6HTAqxcAmtoPISI/CAI0JtHZWnVYmuQaSdCbXVZFl3+mJSjz5s1us2nTNzEbN361s67HrF+/LmbDhvfjCwsLDVFRUc4RIy4/fN99Yw9qNPwLRjVjckI1Uh0OAICi0RwzBFdjDsM/ZaUQRRGqqgIcoEvU4BQV2Jzn+ZOtnA9o+GtH1CAEQRBVh0VbKf+hKHZro878IhpMYqh0rlbQRYrNfYX6jRs3RP/vf2+0f/DBR/ade+75Fbt37zTPm/d6e4fDKTzyyGP5TR0fnbmYnFCNMsPDseKnTeg39HJ0r/a6zjtbl6IocDpd0Ol0TRMgERFRA1HsVsVtq2qKaSmDYjzwJ5981Gro0IuLbr751sMAkJzc0Z6Tk238+usvYpmc0KkwOaEalasK5MoKSCbzMa/rdHoMjWkFvSjCWlEGXXRsE0VIREREgwcPHDB27CP7vv/+2+isrIyQ+PgE2z33jMkbMWJkmW+f7777OmLlyqVt8vJyTVFR0Y4LLxxWPHbsI/kGg0EFgNTUPca33lqQmJKyJ8xms4oxMbGOq6++rvDuu+8rPNk5V65cGrdy5dKkp59+LvOyy64oPX77gw+Oy42OjjlhXsGqqkpee9IpBUV2Tg3DbveMOfG1lPhotDo80D4Z97dPhqWoqClCIyIiompWrFiSNGzY8OLFi1ftHjjw3LKXXnqu819//RECAD/88F349OkvdBo58qrDy5ev3T1hwhP7Nm/+KXrKlCeTAcBisYhPPDG+q9FoUubPfyt1xYp3dg8efGHJsmVvtd25c4fp+HOtWbOy1apVy5KmTp2WcbLEBADOOee8qs6du9h9z0tLSzVffvlZq759zypvoLeAggSzV6pRq/JyjIxLQPRJFlRwqiq0OLpQIxERETWdYcMuOXz77XcfAoCJEyfn7dr1b9j69evizj773Kw1a1a2Hj58xOFbb73zEODpYqXVanMmTXq867592XqzOUQZNeq6wtGjby8MDw9XAGDcuMcOfPjh+oS0tFRT7959rL7zrFu3Jnb58sVJzz//cvpFFw2vU6JRWVkpTpw4vrPT6RDHj39if0PUn4IHkxOqUSeLBZe064B/7bYTtjlUFSYADov1xAOJiIioUfXvP7Ci+nNJ6l61ffu2cADIysoyZ2Skh/zww3cxvu2+mTbT09OMF198afktt9xR+NlnH0dnZKSZ8/JyDTk5WWYAcLuVI9NvlJSU6N58c157jUajJiW1s6MOCgoOaidOHN+loOCg4dVXZ+/t0CHZcfq1pWDG5IRq5vaOAzzJgHeX968aW06IiIianlarPWZif1VVIYoa1fNYEa699oaDo0Zdd0Jf7Pj4BGdhYYF2zJi7uoeFhbvOO29Q6YAB55T36dO36qabru1TfV9BEDFt2itpy5cvbjN9+gvJy5atThXFmkcIpKXJxokTJ3Rxu93C3LkL5R49evGOJtWKY06oRqLiTU60JyYnTt93JidEjcKkBbbfUYWcCYCJE+QR0XH27NkVUv15auqe0E6dOlkAICmpnXX//hxjx46d7L6vgoJ83bx5rydVVlaIn366MaayskK7fPma1IcfnpA/cuSVpWVlpd4b2EdznsjICOfQocPKJ0+emp2ZmW5esWJJfE3x5ORk6x999OGuRqNReeut5SlMTKiu6t1yIkmSFsBFAIYDSAYQAeAwgBwAXwL4TZZlLssXBERFAUQR0BlO2OYbheK0ndjli4iIqLkTDaZGv4F7Ouf89NON8e3bJ9t69epTtWHD+61ycrJNkyY9mw0AN99868FXX32p47x5s9tcccXVRQcP5utff/3VDrGxsY74+ARXfHyCw263i5999nHU2WefU5mRkW5cuHBeWwBwOBwnxNS9e0/bddfdeHDt2lVtLrpoeGmnTp1P6OL18svPd3C5nOKzz76UptPp1IKCg0euOePjE04czErkVefkRJIkPYCxAJ4AkASgBJ6EpApAWwBXAXgGwAFJkl4DsFiW5Tr1R6Qzk8bbdUs4aXLi6YLqYnJCRERBRFVVRdCbXaHSuVo0QQ8TQW92qYpa7/VVRowYeeiDD96Nnzt3lql9+/aWGTNmpfXs6WmtuPLKUSWqqmauW7e69Ycfvp9gNoe4Bw48p/Sxx57K9W1PTU05uGTJm23nz58txsa2clx22RWHt2z5NTIlZXcIgEPHn2/s2Efyf/3156jp01/osHTp23L17l35+Qd0KSm7wwDgwQfv7nH8sZs3/721vvWjlqNOyYkkSecAWAXADeBNAO/Lspxxkv16A7gCwHgAEyRJul2W5S0BjJcakcbblCvoT0xOvrI7UZadgduuvbaRoyJqmexuYPKvBuh1wPPnApqmDogoSKkq3FZFly/oIpuk67uqqIqqot6rwycnd7I+9dSU3Jq2X3XVNSVXXXVNycm2CYKAiRMn502cODmv+uv33vtAge/x+PGPHxg//vEDvucGg0Fdv/6T3Scrr3XrNk4mIOSvuracrAYwWZblj061kyzLOwHsBPCaJEn/hSeh6Xp6IVJT8Q2tO1lykiNokVFWgv+cYiAcEQWOogLf5Xj+ZD97NqARajmAiPymqnCrqlrvBIGITl9dryx715aYHE+W5fcB9Kp/SHSmWHHoIKbvTYEjIuaEbVrvIHnfQo1ERERERKerTi0nsiz7NSe1v8fRmSGlvBwVFeUYaQw9YVt7nRZx0bEQiw43QWRERETkwy5UFEzqOubkufoUKsvyNP/CoTOJ3bv4olanP2Hb2Rqgb8fO2Hew4IRtRERERET+qOuYkxeOe64CEOAZIH8YQBQAPQAHgGIATE6aOUVRcFFEFJyKAq1wYud2RdQAbhcUJxvHiIiIiCgw6tqt68jYFEmShgNYB2AcgA2yLLu9r18OYBk8Uw1TM2evqsJ97ZMBAHs1Ghw/Iblb1ABuQHU6TzyYiIiIiMgP/ky1tADAs7Isv+9LTABAluWvAEwFMD1QwVHTsVdVHnks6E0nbFc1nryWyQkRERERBUq9V4gH0A7Avhq2HQIQ7384dKawV1UBABRVBUQtjp9xXfElJy4u8krUGIwaYMvoKkRGhcBWAbg5ySkREQUhf1pO/gXwiCRJuuovSpJkBPAUgD8CERg1LbvFAgBwqgrUk/yY+FpOBCYnRI1CEACTDjDrPI+JiIiCkT/JydMALgaQIUnSYkmSpkuStBRAJoC+4JiToOCweFpOHKoKVVVP3MG7zglv3xIRETVvVVVV4urVK1r5nk+Z8mSH+++/Q2rIc+bm7tN/8slHUadTxvr178YMHjxwQE3bG6MegwcPHLB+/bsnLgjXDO3bl60fPHjggN9++yWsKeOod3Iiy/JPAAbB00JyNYCJAEYC+A7AAFmWtwcyQGoaDm/LiUsFFOXE5KQgNBpvZKZhu0bT2KERtUgON/Dsr3o88Y3nMRFRoCxfvjh+w4b3EnzPn3pq6v6ZM+emN+Q5X3zx2Q5//PFbREOeg5onf8acQJblbQBuDHAsdAZxWm3QAnDBM2/08Swh4fi1uAjnuTggnqgxuFXg0wxPi+UT/QCRXbuIKEBUVT3mL0pEREQj3AJR+VeMTsqv5AQAJEkaCeBSAK0BPAPgLABbZVnOCVBs1ITsIWa8kZaKmPjWuOAk230LMzrs9sYNjIiIiI5RVlammT37taQ//9wS6XK5hOTkTpaHHhqf269ffwsAWCwW8dVXp7X9+++/Ii0WiyYxMdF22213HRg58qrSefNmt3n//XdaA54uSu+888HORYv+16awsMCwZMnb8m+//RI2efITXWfMmLX3jTdeb1dYWGjo0KGDZerUaVnffPNl1GefbYx3u93CkCEXFU2Z8sJ+QRCgqiqWLn0r/ptvvow9dKjQoNPplG7delROnPj0vvbtOzjuv/8OKSVlT2hKyp7Qa6+9PGzjxq92OhwOYd6819v8+OOmGKvVoklKame95577DwwdenG5r55ffvl55KpVS9sUFBw0durUpapfv/7lNb0nPm63gunTX2j744/fx2i1WvXSSy8/PH78E3larecS+M8/fw9Zvnxxm4yMtBCn0ynGxyfYb7nljvxrrrm+2FfGxx9/GP3ee2sT8vMPGCMjo5xXXXVN4b33PnDCKtSHDhVqH374fikyMso5d+7CdLPZrPz006bwJUveTMzLyzXFxcXb//Of/x6cN292h3fe+WBnu3YdHNdee3nvc88dVPrPP1vDy8rKdM89Ny3jvPMuqFi1alncF198Gnf48GF9bGys4z//ueng6NG3HQaA3377Jeyppx7r6isD8HTJuuWWG3rPnDln76BBQyqmTHmyg6IoQlRUtPOHH76PsdttYp8+/cqffvq5nPj4BBcApKTsNs6Z83/t0tPTQqKiopw33XRL/mn9IAZIvbt1SZJkliTpGwCfA7gHwH/hWYRxLICtkiT1DGyI1BRsArCtrBQ54sl/RMwAzo6MQqKTA+KJiCh4qCpQ5YTYVF8nG+Z56nhVPProQ10OHMgzvPzyzPSFC5emduvWverRRx/qtnPnvyYAmD9/dpvs7Czzq6++nrZq1bpdAwacXfbqqy913LcvW3/PPWMOXn31dQXR0dHODRs++zcxse0JqysrioKFC+e1nTRpSvb8+YtSysrKtA8/fH/3fftyTG+88aZ855335n711edx33//TQQArFixJG79+nWtx4x5KHf16vd2vfjiKxkHDuQZ58yZ2RYAZs6cm96lS9eq88+/oGTp0tUpAPDss5M6bN36d8TTTz+btXjxqj0XXnhRyXPPPd35u+88Zf711x8hr7zyQqdBg4aULlny9u5LLrmsaMOG91rX9v7s3ZsaWlpaops/f1HqE09Mzv7uu29iZ86c3hYADhzI002e/HjX5ORO1kWLVqYsXrxyT5cuUtWcOf/XobCwQAsAn3/+SdSsWTOShw69uHjp0tW777lnTO7atavavPvu2tjq5ykqOqwdN26MFBMT63jjjTfTzGazsnPnDtNzzz3duW/fsyoWL161+7bb7jywbNmitsfH+PXXX7YaN+6xfa+9NnvvwIHnVr722vS27723ts1tt911YNmy1buvueb6gkWLFrRbtWpZXH1+NrZs+TWqvLxc+8YbC+XnnnspIyVlT9iCBXMTAU9C+8QTj0hms9m9cOGSlPHjn9j3zjtvt6lP+Q3Fn5aTVwAMADAcwC/wrAoPALcD+BrASwCuD0h01GTs3hYRnV5/0u3RDiue7CzhoJvJCRERBQdVBW77ytxNLtGENFUM3aLclasvt8h1nZVv8+afw9LS5JCNG7/8Nza2lQsAHn98Ut6ePbtD3313TXzv3n2z8/MPGEwms7t9+2R7RESEe8KEiXlnnTWgIiIiyh0aGqqYTCZFFEXVd0f9ZO6++/68AQPOqQKAQYMGl3722cdxzz33Uo7ZbFa6dJFsa9asSszISDNdcsllZW3btrNPnPh01qWXXl4GAG3btnf88ceWkp9//jEKAKKiot1arVbV6/VKbGwrV2ZmhuHXX3+JXrBgcYqvtadTp84FGRnppvfeW5NwySUjytavXxfXtatUOX784wcAoHPnLvbMzAzTF198csoL9oiISOdLL72WZTQa1W7detgOHTqUt2jRgnaPPvpknsPhEG6++bYD9933YIHovRl799335//44/cxmZkZxri4+MoPPng3/vzzLyh+4IGHD3rjslssVRqj0aT4zlFeXqYdN+6BrrGxreyvvz4/w2g0qgCwbt3q+OTkjpYnn3wmFwC6dOlqLy4u1i1Z8uYxCcpZZ/Uvu/DCiyo8ZZWLX3/9eat7731g/7XX/qfYe85DBw7kGd57753Wd9xxT2HdfjIAk8nkfv75l3N0Op3atWs325YtvxZt3fpXBAB8/vnHUQ6HQ3zxxRnZERER7m7detisVsv+l19+vlNdy28o/iQnNwF4WpblHyRJOjIaWpblg5IkvQzgfwGLjpqMWlyMoTGxiNAbTr6D93VNPe/wEBERncmEkw+1PGOlpu4xA8BNN13bu/rrLpdLcDodAgDcdttdB6dOfarzNddc1rdLl65V/fufXTZy5FXF9RlbkpzcyeZ7bDAYlYiISKfZbD5yga7X6xS73SECwKWXXl62detfIfPmvd4mLy/XkJu735Sbu98YFRV10oGqe/bsMgPAE088cszMWm63WzCbzW4AyMnJNp911oCy6tt79+5TWVty0qlTZ4svWQCAPn36VblcLiEjI93Qu3cf63/+89+it99eHpeTk2XMy8szZmdnmgFAUdwCAOzbl2O68MKLi6uXedNNtx6u/nz16pWJbrdLOP5cmZnp5uO7nvXvf3YF8OYxMSYmJh15b9PT9xrdbrdw1lkDK6vv069f/8pPP90Yf+hQYZ2v3ePjE+w6ne5IPCEhoW6XyyV4Ysswx8e3tlX/GRgw4OzKk5XT2PxJTiIBZNewrQRAaH0KkyQpDsDrAC4HYALwE4AnZVne493eD8AbAAYCKAIwT5blWX7ETfWgzc/Hw8mdkS4IOKF9F4CoN3r2a9ywiIiIGowgAKsvt8gWl19LLQSEWQulPmsZKYoimEwm96JFK1OO36bX6xUAGDjwnKqPPvpyxy+//Bj+119/hH/zzZex7767ps3LL89MGzJkaEVdzqPTaY9J2sRTzMqxePHC+HXrVicOG3bJ4X79+lf897+jC3/8cVPkL7/8GH2y/VXVk+PMnbswNSQkVKm+TaM5ehv0+IH7Wq2u1kRSFMVj9lEUz7W4waBX09Jk47hxY7p16NDRMmDA2WWDB19UFh0d7XzkkQe6Vz9/bZ9H7959yq+4YtTh6dOf7/TDD98VDxt2Sbn3WChK7QP/9XrDCXUUjjuponjelurJRvUugE6n64TzVN/3qOov1f/9bAz+XFvuAnArgG9Osu1q7/b6+ASAAs90xFXwdAv7TpKkzvAkK98C2AjgQQDnAVgoSVKRLMsr/Iid6khxeLp1KeLJpwoWfMkJ59ogIqIgIghAiA5K7XueGTp16mK1Wq0ah8MudOvW48gd+Oeee7p9585dLHfccc+hefNeb9O3b//KESNGlo0YMbLM7Xbvv/nm63r+8MN3UUOGDK0QBCGgF6Xvv/9Om5tvvu2ArysUAKxd+3bCseNpjp6zSxfJCgAFBQX6Sy7pe6R1ZM6cmYmCIKqPPjrxQMeOnSwpKbuPuQGekrKr1u532dmZZkVR4Ou2tW3b32F6vV5p3z7ZPmvWjKTw8AjnokUr9vr2//bbryIAHFnjLTGxrU2WU445z4wZ09oWFBzUz527MAMALrxwWMnIkVeW/vDDt8Vz5szsMGDAObvCw8OVDh2SLccfu3Pn9lPG3LlzV5tGo1G3bfsrtFev3lbf69u3bwuLiIh0RkZGuXU6T9JZXl5+5CItJyerhq4uJ9elS1fLpk3fxhQVHdbGxMS6AGDHjn+arDtjdf7cGXgZwO2SJH0G4D54UrChkiTNB/AQgJl1LUiSpBgAWQDul2X5b1mWU+BJTloD6AlgDAA7gLGyLKd4E5I5ACb5ETfVg2L3tJfUlpzoIHC1aqJGYNQAm/5bhW33A0Y2WRKR17Bhw8vat+9gff75Zzpt3vxzWGZmhmHmzOlJP/zwXayvK1ZeXp5h7tz/a7d5889h+/fn6D///JOow4cPGXr37lMJACaTSamqqtKkp6cZnE7naf9Xj4mJdWzb9le4LKcY09L2GubM+b82f/75e6TT6Txy3WkymZTCwgJDXl6urlu3Hrb+/QeWzZs3q/0333wZkZ2dpV+69K34Dz9cn5CYmGgHgFtuufNgTk626bXXpielp6cZPvrog+gvv/ysVc1ReBQVFemffXZSh9TUPcYvvvg08p133m5z7bU3FBgMBjUuLt5RXFyk37Tp2/D9+3P0X375WeS8ebPbA4DD4ekSd8stt+f/9tvmqJUrl8ZlZWUaPvnko6hvvvmy1eDBQ0uPP9dTT03Z73A4hFmzXmkLeLrTZWVlhMya9Wpienqa4auvPo9cvXplInBiy4hPRESE+5JLLju8du2qxI0bN0RnZmYYVq9e0errr79odd11NxQIgoBu3XpYjUajsmLFktaZmRmGLVt+DV22bFFSTWWezFVXXVscHh7hmjLlqeRdu3aatmzZHPq//71xwmD9puDPIowfA7gNQB94Os0J8HTLuhHAg7Isf1CPsopkWR4ty/JuAJAkKR6eRR1zAewBMATAz7IsVx+gtcmzq1SvGQuofhTv+iVqDYssigYTAEBXw2xeRBRYggBEG4EYM3hDgIiO0Gg0mDfvrb1dunStmj79+Y733Xd7jx07todNnfpihq/L1pQpL+T06dOv4tVXpyXffvtNvd5+e3ninXfem3vddTcWA8CIEZeXREZGOe+7746eO3ZsN59uTFOmvJBlt9vFsWPv7T5hwoPdsrMzTQ89ND6noqJcu29fth4ARo26/tD+/fuM99xza0+3241XX52def75g0vmzXu9/V133dLrm2++jH344UdzbrxxdBEA9O7dx/ryyzPTdu7cHnbffXf03LDhvfgbbxxd69S3AweeU6rRaNSHH76/+4IFc9pffvlVhQ8/POEAANxxxz2FgwYNKX7ttekd77771p5r1qxqfddd9+XFxrZy7Nq1MwTwjJ8ZN+6xnM8//6TV3Xff0nPVqmWJ998/dt8NN9xUdPy5YmNbue6//6HcTZu+i/3xx+/Du3fvaXv22Wnpf/31e+R9993ec9WqZW2uuOLqQgDQ6fQ1tlY9/fRz+668clTh8uWLE++559aen332cdwDD4zbd999DxYAQFhYmDJp0tTMvLz9pnvuubXnvHmvt3vggXH765OchISEKPPmvSlrtVp1woQHu82Y8VLyf/97y8Haj2x4glrfOeuqkSRJAhADoBRAqizLfjeDSpK0GMD98LSUjJJl+RtJknYA+FKW5UnV9usBYDeAs2VZ/tuPU2W63Upyebm19j3rQaMRER5uQnm5FW53s2kNrtFnkyaiY0EhdpvDoLnpcQCe/qUGgw52uxPWokL03bgQANB10WJoDcamDDcggu0zPF6w1w8I/joGe/2A4K8j6+e/8HATNBoxC0DHQJS3devWbqKo+SouLrFSrzfaaj+CqH7++WerWavVqr179z1y0blx44bouXNndfjuu1+2+dZaaQkcDpuxsDAvVFHclw8YMCD1VPvW+12RJGkTgIdkWU6VZVk+blsfAGtkWe5T33IBzAWwCJ71UjZKkjQYnuU0jl/lz/cHxO+rYVEUEBXVMN3qwsNNDVJuYxO9A8ag08FkOnY6YYNBByEqEouyM+FUFSw2aREWcUZ0UwyIYPkMaxLs9QOCs452F/DSL57Hzw4xwRDk/9OC8TOsjvUjCn6pqSnm5csXJz355NNZPXr0tGZnZxtWr17R5oILBhe3pMSkvur0zngTBV//nYvgGWNysm5VVwHwa37karNzjQFwPoBxAKwAjh/g40tKqvw5DwAoiorycou/h59UsN0Nc1cbc2K1eh5XbzlxKRp8f9gz1fahonK4lOb/SxZsn+Hxgr1+QHDX0eoEVu/w3AQY18cKgxhc9fMJ5s8QYP1Oh7flJKBlEjWkm2++9XBR0WHdm2/Ob1dSUqwLDw93DRlyUfG4cY/lNXVsZ7K6XlHeB+AOeAa/qwAWwjPWpHqfMF9Ht3fqenJvgjMcwPuyLLsBQJZlRZKkPQASAewHcPxqlb7np/XBulwN80/B7VYarOzGlKrX49OMNHQf3g1tlWO7/imKCkCARquD2+WE1WpDWFjzr7NPsHyGNQn2+gHBWUdXtdUIFLcClxJc9TteMH6G1bF+RMFPEASMG/do/rhxj9Y6NoaOqmtyMgHACngSkE0AHoZnwHp1bnjGnuyux/nbwJPMFHjLhSRJOgD94ZliuADAg5IkaXzJCzzJjCzLcp1XyKT6O6iq+K2kCO3DImrcp1d4JDRuJ2zlZUBcQiNGR0RERETBqE7JiSzLZfAsjghJkoYB2AogVJblg97XogC0lWW5vmuc/Avga3jWLrkfnkUcpwCIgmfKYBuApwAskyRpJoBzADwKz5on1IDsds9QH61OX+M+D7drj0itFvaCQqCzVON+RERERER14U/nzX8BfATgx2qvnQtguyRJGyVJqvMUdLIsqwBugqfV5D0AfwKIBjBEluV93taRywBIALYBeB6e1eNX+RE31UMrqxXnRkYj9BRdR1zemd6ctsDOfEZERERELZM/o5hfhWeBxHHVXtsE4Bp41j2ZBs9aJXXibZV5yPt1su1/wTNAnhrROS4XbuzcFTstlTXu4/R9tzI5ISIiIqLT50/LySgAE2VZ/tD3gizLDlmWPwXwDID/Bio4ajoa3/o3+uMnSzvKtzKmiy0nRERERBQA/rSchMEzNuRkCgDE+h8OnSl8yYlwijEnbu8EbWw5IWp4Bg3w+fUWRESYYXABirv2Y4iIiJobf1pOtgG4t4ZtdwPY4X84dKbQ+GYP1tW81qXLm5woDkcjRETUsokCkBiqom245zEREVEw8ic5eRnAtZIk/S1J0hRJku6XJOkZSZL+AHADgBcCGiE1CY33+ylbTgTPFZLLO7MXERERkb++++7rCFlOqfmuaB3cf/8d0pQpT3YIUEh+mTdvdptrr728d133nzLlyQ73339Ho017qqoqPvjgvZhDhwq1ALB+/bsxgwcPHNBY569NvZMTWZa/BXA1PAswTgOwCMBL8HQRu0aW5a8CGiE1CV9/P8FQ89+Iv1URy3KyUBEa2jhBEbVgTjcw+28dpv/ieUxEFEz278/Rv/DClM5FRYd1TR1LsPv9919D5879vw5Wq0UEgKuuuqZ4w4bP/m3quHz8GXMCWZa/BPClJElGeKb+LZNluSqgkVGT0nlbRQSdAWoN+6Rr9Nh9qAD9Dfw7QtTQXCrw9h5PS+bdEqBj1y4iCiKqWtPVBgWaqqrH/AcxmUyqyWRy1bR/Y/MrOQEASZK6A7gUQGsACyRJOgvAv7IsVwQqOGo6y3NzoFVVDAkNR03XQFqt50LJzm5dREQURKqcNfcs0QhQjdqj9+1Ota8oQDX5uW99bNr0bfiKFUsS8/JyjQaDUenff0DZxInP7I+KinL/9tsvYU899VjXd975YGe7dh0cALBvX7b+lltu6D1z5py9gwYNqQCAFSuWxn388Yb4srJSXdeu3Sp79+5b8d13X8Vu3PjVTgDIyso0zJo1o21q6p4wk8nkvvbaGwq++OLTVqNH355/4403FwHA+vXrYt5/f13C4cOHDLGxrexXXDHq0J133lMoip5qb9jwfsz777+TUFBQYAgNDXUNGjSk5IknJuUWFOTrbrnlht4A8NRTj3X9739vyR8//vEDe/emGt944/Wk1NQ9YUajyd2rV5+Kxx9/an98fIILAOx2uzB79mtJP//8Y7TL5RIuv/yKQ4py6rdw8OCBA8aOfWTf999/G52VlRESH59gu+eeMXkjRows8+3z3XdfR6xcubRNXl6uKSoq2nHhhcOKx459JN9gMKgAkJq6x/jWWwsSU1L2hNlsVjEmJtZx9dXXFd59932FJzvnypVL41auXJr09NPPZV522RWltX2eubn7dQsWzE3asWN7uM1mE7t16145btyjuT169DoyA9HHH38Y/d57axPy8w8YIyOjnFdddU3hvfc+UFBbfL6fBwC45ZYbek+YMDEbAN54Y1aHzZv/3goAJSXFmgUL5ib+9dfvkRUVFdrk5E5VY8Y8lHfeeYMqAU+3tZ07t4edffZ5pZ9+ujG+oqJC27WrVPnkk8/kdOnS9bQvCuudnEiSpAHwFoB7AAjwdO9aD88CiR0lSRoqy3Lu6QZGTUdVVfx8yPP7daGx5i5bMVoRPcLCIZSVN1ZoREREDW7o+rCzatrWP85VtvgSa7rv+YgPQ/va3cJJk44e0e7Kty+3yL7nV20M7V3hFE567dUpwm1570pLSn1jLSo6rJ027bnO9977wP6LLhpWlp+fr5sxY1rHOXNeS5o27dWcupSxevWKVqtXL0988MFx+/r3P7vym2++jFq3bnViTEyMAwAsFov42GMPdW3dOtH2xhtvpVZVVWrmzJnZ7tChwiPrDaxbtzp25cqlSQ89NGFf375nVe7Zs8v8v/+90e7w4UL9k08+k7t79y7T/Pmz2z/55DNZffv2q0pPTzPOmDGtY0REhOvBB8flz5+/KOWRRx7oPmXKCxlDhlxUnp9/QDd+/IPS4MFDSyZMeCLFarWKS5e+1ebBB+/pvmbN+t0hISHKjBnT2v399x8REyc+nZ2YmGhfsWJJa1lOCU1ISDjlBfKKFUuS7rzz3tynn34u++OPP4x96aXnOkdFRaeeffa5VT/88F349OkvdLrvvgf3Dxo0pHzfvmzD/Plz2uXm7jPOmjUv02KxiE88Mb5r7959K+bPfytVq9WpGzd+ELts2VttBw48p6J37z7HTGG6Zs3KVqtWLUuaOnVaxiWXjCirKSafiooK8aGH7usWHx/vePnl19IMBqO6bNlbbR599CFp+fI1e5KS2jk+//yTqFmzZiTfdttdeZdcclnJnj27zHPmzOwQEhLqHjXquuJTxTdw4LmVU6a8kDF9+gud5s9flNKtWw/rZ599HO07v9vtxvjxD3Z1Op3CpElTs1q1inO+9947cZMnP9517tyFqf369bcAQFra3hCDweieMeP1NIulSpwxY1ryrFmvtF+0aOXeuvzMnYo/LSdTAdwK4D4AnwM46H39CQCfAJgO4M7TDYyajqPa7FsarQ41dW8/W3VhgNQDmfkHa9iDiIiIGtKBAwd0LpdTaN26taNt2/aOtm3bO2bMmJXmcrnr3Plzw4b3Eq68clThf/97SxEAdO7c5WB6+t6QzMx0MwB8/vnHUeXlFdoVK/4vMyoq2g0Azz33UtaYMXf18JWxbt3qNjfeODr/mmuuLwaADh2SHVVVlZqFC+e1f+SRx/P2788xAAKSktrak5LaOZKS2jkiI6P2hoaGuTUaDWJiYlwAEBER4Q4NDVWWLn0rITIyyjl16ov7fOd47bU5mVdddUnfL774NOryy68s+fHH72PGjn1k3/Dhl5YBwIsvzsj+z3+uCqutvsOGXXL49tvvPgQAEydOztu169+w9evXxZ199rlZa9asbD18+IjDt9565yEASE7uaNdqtTmTJj3edd++bL3ZHKKMGnVd4ejRtxeGh4crADBu3GMHPvxwfUJaWqqpenKybt2a2OXLFyc9//zL6RddNLxOd3I//nhDTGVlhXb58jUpsbGtXADwyiuzMm+44ere7767ttXEiU/nffDBu/Hnn39B8QMPPHwQADp16my3WKo0RqNJsViqxNrii4iIcANATEyMy2QyHdPU9NNPm8KzsjLNS5as2t29e08bAEyd+uK+vXtTQ9auXZXQr1//TABwu93CSy+9muX7eRg16vrCVauWJtWljrXxJzm5B8Bzsiyv8LaiAABkWd4hSdJz8KwgT82YraoKAyKi4FIViBot3DVkJ4ro/fhdzpPvQERE1Az9dGPFPzVt0wjHdr365vrKGgcSi8ft+9m1lTvrum9d9e7dx3rBBUOKX3hhSud582Y7+vY9q3zQoMFll156eWldji8uLtIcPnxY37t338pjy+1b4UtOZDnV3Lp1G5vvQhQAevToZTWZzG4AOHz4kLa4uFi3du2qxHXrVrfx7aOqKpxOp7BvX7bhoouGl3344frKhx++v3t8fIK9X7/+5RdeeFFp375nWU4WV3r6XvOBA3mm4cMvOKYVy+l0ijk5WcaMjDSjy+USevXqe2TMs9FoVDt0SD5pedX17z/wmCEIktS9avv2beEAkJWVZc7ISA/54YfvYo7WwxdTmvHiiy8tv+WWOwo/++zj6IyMNHNeXq4hJyfLDABut3IkISwpKdG9+ea89hqNRk1Kalfnrk6ZmRmmhITWdl9i4qtX585dqrKyMs0AsG9fjunCCy8urn7cTTfdetj3uC7x1SQ9Pc1kMpndvsQEAARBQI8evSq3bfs73PdaeHiEs/rPQ2hoqNvlcgVkNKQ/yUk8gO01bMsFEOV3NHRGcJSXYVIXz4x2GYIGqOHvparx/vi4zpgxVERERKctRAelqfetj9dem5OVlrb3wObNP0Vs3fpX+Guvvdzxo48+qFy8+GgXm+rjzZ3OoxeRGu//ckWp+cJVo9FAVWveriieat1334P7zz9/8AktBElJbR16vV5dvHjl3p07/zX99tsvEVu3/h0+deqkLkOHXlz08suvZR9/jKqqQs+evcuffPKZfcdvi4iIcO/fv0/v3e+YbVqtttYk7/h9VFWFKHpWeFNVRbj22hsOjhp1XdHxx8XHJzgLCwu0Y8bc1T0sLNx13nmDSgcMOKe8T5++VTfddG2f6vsKgohp015JW758cZvp019IXrZsdapv7M2pqKoKQTjxrVYURdBoPDFqNBr1JLsAAOoa3ynOf7LTQ1GUY943na7299lf/qxzkg7gihq2XeTdTs2Y3eK56eBQFODk3WgBAIr3D5rK5ISIiKhJbN36Z8iMGdPadunS1X733fcXLliwOH3ChInZe/bsCjt0qFCr0+kVACgvLz/S2yUnJ+vIWJGIiAh3bGysY9eunSHVy01J2X3keefOXS0HDx40lJQUHykjLW2vwWq1aACgVas4V3h4uCsvL9fQsWMnu+9r9+4d5jffnJ+oqio2bfo2fMGCua179+5rfeCBcQcXL165d/To2/N+++2XKAAnXJC3b9/Bmpe335SYmOTwlRcVFeWaM2dm29TUPaYuXSSbTqdT//nn7yODY10uF7KzPa0Ep7Jnz65j6pqauie0U6dOFgBISmpn3b8/x1i9HgUF+bp5815PqqysED/9dKOv21Xqww9PyB858srSsrJS793ao9frkZERzqFDh5VPnjw1OzMz3bxixZL42uICgI4dO1vz8w8YfGuQAIDNZhMyM9PN7dp1sAJAYmJbmyynHFOHGTOmtX300Yc61SU+QRBqTCw6d+5qtVgsmpSU3cesJbFnz+7QpKR2tpqOCyR/kpO5ACZIkrQAwCXw1LSLJElPAJgI4H+BC4+agtPm6S7pUlUop5raT+OZQlioqd8XEQWMQQN8MMqCb28DDH7Ps0hEwSY0NMz91Veft5o1a0ZiZmaGYc+eXaZNm76Njo9PsMfExLq6dethNRqNyooVS1pnZmYYtmz5NXTZskVJ1ZOBG28cffCLLz6N++CD92IyMzMMy5cvjtuy5ddoeOfrHDXquuKwsDDX1KmTknft2mnauvXPkGnTnu0IeJIKQRBw/fX/PfjFF5/GrVq1LC4rK9Pw9ddfRC5Y8EZ7nU6nGAwGVaPR4r331rZZvnxxXE5Otn779m3mP/7YEtmli1QFACEhoW4ASEvbayorK9PcdNOthRaLRTN58uMdd+7cYdq9e5fpmWee7JienhbStWs3a0hIiHLFFVcXrl27qs2XX34WmZYmG6dNm9q+pKS45tWjvT79dGP8xo0botPT0wyvvTY9KScn2zR69B0FAHDzzbce/PPP36PmzZvdJj09zbB5889hM2e+klxVVamNj09wxccnOOx2u/jZZx9H5ebu0//006bwF1+c2hEAHA7HCdfV3bv3tF133Y0H165d1SYjI91w/PbjXX31tcVmc4j7mWcmdtq27W+zt97JNptNc+ONNx8CgFtuuT3/t982R61cuTQuKyvT8MknH0V9882XrQYPHlpal/jM5hAFAPbs2W2urKw8JuahQ4eVtW3b3jpt2rMdf/vtl7C9e1ONL730XLvc3H2mm2++paC2+AOh3v/iZFleKklSKwBTAIyF5yd3HQAHgJmyLL8V2BCpsTmtnuTEWUtyomo9Pz6Cu0FaqYmoGlEAOkeqiIoCSkrQMH1DiKjZkaTutmefnZaxatXyNl9++VmcKIpqz569K2bNmpcmiiLCwsKUSZOmZi5d+lbSPffc2rN16za2sWPH75869amuvjJuvfXOQ+Xl5ZpVq5YlLlgwV9ujR8+Kiy4afjglZXcYABgMBvX//m9u2uuvv9rukUfGdA8JCXXddNMt+YsW/a+dTqdTAeC++x4sMBiMyieffBi3fPnipIiICNfw4ZcenjBhYh4ADB06rHz8+CeyP/jg3YQ1a1Ym6vV65ayzBpY98cSkXACIjo5xDxt2yeEVK5Ym5ebuN0yZ8sL+OXP+l7pw4bykRx8d200UNWrXrlLV7Nnz5Vat4lwA8Pjjk3L1er2yYMHcdjabVTNo0JDiAQPOLq3tPRsxYuShDz54N37u3Fmm9u3bW2bMmJXWs6dnmt4rrxxVoqpq5rp1q1t/+OH7CWZziHvgwHNKH3vsqVzf9tTUlINLlrzZdv782WJsbCvHZZddcXjLll8jva1Nh44/39ixj+T/+uvPUdOnv9Bh6dK35VN174qMjHTPm/eWPG/e60lPPfWo5P2MK+bNeyu1fXvPVNCXXnp5WWlpac7777+TsHLl0qSYmFjH/feP3XfDDTcVqaqK2uLr3r2ntV+//mWvvvpSx9tu258XERF5pAuMVqvFvHlv7p09e2bSiy9O7eR0uoTk5I6WV1+dvXfAgHMaZU1Dob6L3kiSFCXLcokkSeEAzgcQA6AUwO+yLBef8uAzQ6bbrSQXFwf2/dVqRURFhaCkpAouV/O+bNj93bfQvbsWxS4XCu976UiCIooCTCY9rFYHFEVF6dfvYNDBdGSLAkYsXtHEUZ++YPoMTybY6wcEfx2DvX5A8NeR9fNfdHQINBoxC0DHQJS3devWbqKo+SouLrFSrzc2SneVM9UPP3wX3qWLZE1Kantkhpvnn3+m/cGDBwyLFq3cu29ftj4rK9M4dOjFR8aT5Ocf0N1446g+s2bNk33rXzQHgwcPHDBhwsRs39os1DgcDpuxsDAvVFHclw8YMCD1VPv60zngT0mSpsqy/B6Ar/0Lkc5kTpsVOgAu4JQtJ2WhkViTm4OwpPYY0WjREbVMTjewZJcOJhNwa2fUuDgqEVF9ffXVFzFLl75levzxp3Li4uKdf/75R9gvv/wYPXbs+H0AYLfbxWefndzljjvuyb300stLysvLNIsW/S8xPj7BPmDA2Y1yN51aDn+SkygAh2vdi5otl91zA6m2kSSW0Eh8cjAffeITGj4oohbOpQKLdni6Ut/UEdAxOyGiAJk8eeq+WbNmtH322ac7WywWTXx8vP3++8fu97UudOki2SZNmpr5zjtvt37nnbfb6HR6tU+fvuVvvLFwr69bF1Gg+JOcvAHg/7wD4HfJsnxC3zpq3mxmM97LyUJEfAJ6nWI/rc5zoeSw13n6biIiIjrDREVFu6dP/7/sU+1z5ZWjSq68clRJI4XUYDZv/ntrU8dAp+ZPcnIHgPYAvgMASZKO367Kssy5ZJoxq1aLbw8VoFfrxFMmJwZRREdzCGI5WxcRERERBYA/ScSagEdBZxSHwzMeTqvTnXK/SLsVr/bojSKuc0JEREREAeBPcpIFYJMsy7mBDobODEpZKXqFhSNBe+rkRNB7puvWnHIvIiKiM5ICQFVVlSO4iBqY9/dMRR1mwvdnEcbZAAb6cRw1E+YDeXhO6oEhtUwzLeg9i4fqBP5dJyKiZuegqqpOh8NW64riRHR6HA6bWVVVJ4D82vb1p+WkEECkH8dRM6E4Pd26lFMsEgQAojc50TI5ISKiZmbAgAHlW7dufbu8vGQsgBi93mgRBIEzTxEFkKqqgsNhM5eXl+hVVVk2YMCAitqO8Sc5WQLgf5IkDQOwC8AJS9nLsvy2H+XSGeJocnLqDluiwdOtSycIUFUFguBPQxwR1YVeBNZcYUV4mAl6DaAG3/p9RE3hFbfbhdLSojsEQTCDSwgRBZqqqqpTVZVlAF6pywH+JCeve7/fXlMQAJicNGOqw+H5rqklOdGbPN8FAS67DTojW8aJGopGBHrFKoiKAkpKgCBcXJyo0Q0YMEAB8PLWrVvfUFW0hn/d3YmoZgqA/Lq0mPj4k5wk+3EMNSOqd/YtVdSc8haSaDAdeWyrsjA5ISKiZsl74VTniyciajj1Tk5kWc7xPZYkyQwgHECRLMvOQAZGTedIcqKpJTnRG7HhQC4cioJHOJ0wUYNyuoE1qTqYzMD17dn3hIiIgpNfiyVKkjQEwEwAZ8P7P1KSpD8BPCPL8g+BC4+ahNubnGhP/eMhajT4oLAAbpcTD4JjCIkakksF5m7TAwBGtQV0zE6IiCgI1btvpSRJg+BZHT4SwEsAHgLwMoBoAF9LknR+IAOkxpet12P1/hwcCo2sdV+tdy0Uu93ewFERERERUbDzp+XkZQC/ALhMlmW370VJkl4E8DWAFwGMCEx41BT2CcBXBfkYHRGFhFr2bWMOgSIA9kp21SUiIiKi0+PPrBTnAHijemICALIsKwDme7dTM+ZweIYPaTWnXiEeAJ5s2w7/17MPnPm1rqlDRERERHRK/iQnFQBqumrVg+M0m71QqxWdQkJgrMPiir5h8E6brWGDIiIiIqKg509y8iuAZyRJCq3+oiRJYQCehqfLFzVjQ5wuzOjeG/GV5bXu60tOXExOiIiIiOg0+TPmZDKArQAyJUn6DMBBAAkArgJgBHB34MKjpiAqCiCKgK72Hw+Xt6HMbWdyQkRERESnx591TtK9M3I9D+AKeGbpKgbwA4AXZVneE9gQqbGJqmdaYEFrqHVft7frl4uzdRE1KL0ILBlhRViYCXoNoHKFeCIiCkJ+rXMiy/IeSZImyLJ8EAAkSYoGkMTEJDhofGuW6PS17uv2tZywWxdRg9KIwNkJCqKigJISwMXkhIiIgpA/65xESpL0LYAfq718DoDtkiRt9K4aT82YxpubCHVJTgTPj5Db4WjIkIiIiIioBfBnQPyrAHoCeKbaa5sAXANgIIBpAYiLmtCR5jRd7d26UgUNPsrPQ6XJ1KAxEbV0LgV4N1WLVf8CTraaEBFRkPInORkFYKIsyx/6XpBl2SHL8qfwJCz/DVRw1DS03hmERX3tyckerRHr8vajxGRs4KiIWjanArz6pwHP/Qi43LXuTkRE1Cz5M+YkDEBJDdsKAMT6Hw6dCT47XAitW0H3kPBas1ett+uXw8EB8URERER0evxpOdkG4N4att0NYIf/4dCZ4NP8fKw/kAuYw2vdN0SjQbzBALWyqhEiIyIiIqJg5k/LycsAvpQk6W8AHwEoBNAKnjEnA+BZ74SaKUVR4HI5AQAard43b1eNznPbMa73Wcg8cKDhgyMiIiKioFbvlhNZlr8FcDUAFZ7B74sAvARPonONLMtfBTRCalR2mw3J5hAkGU0QNZpa91dE7z4u16l3JCIiIiKqhb/rnHwJT+uJEZ5FGMtkWWa/niBgryjDaz16AwAyBA3ctTSdqFrvjxCTEyIiIiI6TX4lJz6yLNsAsD9PEHFYLAAARVUBra7WOUtVjc7zwM3pg4iIiIjo9JxWckLBx+5NTlyqCnhXfz8VVetJTgQmJ0QNSicC8y62ITTUCJ0GANc6ISKiIMTkhI7hslkBAE5V9bSe1MbbrUtw80qJqCFpReDCJDeiooCSEs+ijERERMHGn6mEKYg5LDYAnpaTuuQmqtazzomg8EqJiIiIiE4PkxM6htPbcuIC6tRyYjGF48uCfKS6OSCeqCG5FODjdC3W76l1KBgREVGz5Ve3LkmSYgE8CeBSAK0BXAbgOgDbZVn+OHDhUWNz2WzQA3ADUJXak5PKiBi8sz8H3UND8UiDR0fUcjkV4PnfDACALaMBXe1DwoiIiJqderecSJKUDM8q8GMA5AKIgyfJ6QpggyRJVwY0QmpUNp0OH+bn4W+no9YFGAFA6x0Qb3fYGzYwIiIiIgp6/nTreh2eVeGTAVwP75ROsizfCuATAM8ELDpqdHaTEe/m7cfvdRxDotNqEaHVweR0NnBkRERERBTs/ElOhgN4SZblUuCEm+uLAPQ63aCo6djtDgCATm+o0/6RdguW9BuACdGtGjIsIiIiImoB/B0QX9PoZwNOTFioGXFXVaK1wYhwna5O+ws6IwBAK7ADPBERERGdHn+Sk18APC1JUki111RJkkQAYwH8GpDIqEkY9+Xgjd79cFUdkw3B4Glh0TE5ISIiIqLT5M9sXZPhSUDSAfwAT0vJRAA9AHQGMCRg0VGjczs8Y0fcQt3yVtFgAuBJTlRVhcAkhYiIiIj8VO+WE1mWdwEYCGATgGHwzDp7KTzJyiBZlrcHMkBqXKrTM+ZE1WjqtL+o9yQnoiDAxRm7iBqMTgRmXmjDwisAXd1+PYmIiJodv9Y5kWU5DcCtAY6FzgCKd9YtVaxry4nxyGN7VRV01Z4TUeBoRWBEBzeiooCSEs+ijERERMHG30UYBQD9AITgJK0vsiz/fHphUVNRvcmJItbt1qzG260LABwWCxAd0yBxEREREVHwq3dyIknSOQDWA0jyvuQbZKB6H6sA2OmgmfIlJ6pGg7qMHhE1Wmw6fAguRcENbnfDBkfUgrkUYFO2BqGHgXOimzoaIiKihuFPy8kcAE4Ad8GzQjw7FwQR1ZtgKKK2zhnmioP5sNssuKaOXcGIqP6cCvDUz55uk1tGAzrOPUFEREHIn+SkP4CbZVn+ONDBUNM7qNNCLshHaOv2qOuyilqdDnYb4OCAeCIiIiI6Df7c6i4EW0uCVpZWi1X7c3Aosu5jR8w6A8K0WjislgaMjIiIiIiCnT/Jyf8ATD5uEUYKEg6HZyphrbZuK8QDwHNt22JZv4Fw7tvXUGERERERUQvgT7euLvAsuHhQkqTdAI6/Xa7Ksjz8tCOjJqGx2RCl00GnqXve6vJ9t9kaJigiIiIiahH8SU46A9he7fnxwzI5TLMZu8hixV19B2BHWWmdj3F5P3KXnWNOiIiIiMh/9U5OZFke1hCB0JlBUBUAAqCre7cu3wTCbDkhIiIiotPh1yKMFLxERQVEAYJWX+djXIKnC5ibs3URNRidCLw4yI6QEAO0GnBaEiIiCkp1Sk4kSXIDOF+W5T8lSVLgWWixJqosy3VOeiRJigbwCoCrAIQD2AFgsizLm73b+wF4A8BAAEUA5smyPKuu5VP9aFTvR6ure3LiFjzdutzs1kXUYLQicE1nF6KiDCgp8SzKSEREFGzqmkRMg2fBRd/jUyUn9fUugDgANwM4BOBhAN9IktTf+/xbABsBPAjgPAALJUkqkmV5RQBjIC9fciLUIzlRBBGACoUtJ0RERER0GuqUnMiy/GK1xy8E6uSSJHUGcCmAC2RZ/s372gQAIwHcAsAKwA5grCzLLgApkiR1ATAJAJOTBnBkVXidoc7H7Be1OHz4ABL0vRskJiLytJT8lqtBaCnQJ7ypoyEiImoYde3WdWF9CpVl+ec67noYwJUAtlY7VpUkSQAQDaAjgJ+9iYnPJgBPS5IUJ8tyYX3iotr5kpP6tJxs14dgW3YGHgm5umGCIiI4FWD8JiMAYMtoQMd5EYmIKAjVtVvXjzjalaumf4mqd5uKajfgT0WW5VIAX1R/TZKkGwF0AvA1gOkAdh532AHv93bwrFbvF63Wn/Una6bxrguiqcf6IGei3yvKoHe5kRAaDlE89qP2PT/+dZ13Zi+n0xHw97UxBctnWJNgrx8Q3HXUVutMK2pENONftVMK5s8QYP2IiGpT1+SkUaYPliTpAgDLAXwsy/KnkiTNgadbV3W++WqN/p5HFAVERTXMAvfh4aYGKbexvH/wAKqqqvBybBwMppO3nhgMx04zbDQaoRMEiIqrwd7XxtTcP8PaBHv9gOCso8F59HF4uAnmus/23SwF42dYHetHRHRydR1z8lNDByJJ0jUA3gHwO4DR3petAI4f/OBLSqr8PZeiqCgvP35h+9Oj0YgIDzehvNwKt7v5TqNj98645XKrUKyOY7aJogCDQQe73QlFOXob9xxLBR4ecC6yMnNQUuL3x9LkguUzrEmw1w8I7jpanQDgSf7Ly62wi8FVP59g/gwB1u90hIeb2CJD1AL4tc6JJEmxAJ6EZzB7awCXAbgOwHZZlj/2o7xx8EwX/CGA22RZ9rWW7AfQ5rjdfc/z/Aj9CFcDzcPpdisNVnZDc7lcMANwajQQBe0xCUh1iqIes03ReHrxqS5Xs617dc35M6yLYK8fEJx1dLmPPlbcClxKcNXveMH4GVbH+hERnVy9b0FIkpQMz1okY+CZXjgOniSnK4ANkiRdWc/yxgKYD2ABgJuqJSYA8DOAIZIkVR/DMhyAzMHwgWevqsLSfgOx6qyzj653Ugeqxtu/pPrVExERERFRPfnTcvI6PAPRLwJQCcABALIs3ypJkgnAMwA+r0tBkiR1hafF5CMAMwDESZLk22yFZ/zJUwCWSZI0E8A5AB6FZ80TCjCHpfLIY9FgAuqYa6haz4+R4GZyQkRERET+86fz5nAAL3ln2jr+9voiAL3qUdYNAHTwdAnLP+7rDW/ryGUAJADbADwP4ElZllf5ETfVwmGxAgAUVYWgqcdoW61nX0FhckLUUHQiMPkcO6ZdBGjrNB8iERFR8+PXmBMArhpeN6Aeq8fLsvwKgFdq2ecvAOfXPTTyl8PqmSTAqaqoR68uQOuZ1UsI8j7wRE1JKwI3d3MhKsqAkhLPooxERETBxp+Wk1/gWQSx+pyxqiRJIoCxAH4NSGTU6JxWzyzNLlWFUp8xJ96WE7GGAfRERERERHXhT8vJZHgSkHQAP8DTUjIRQA8AnQEMCVh01KgcVgtEeFpO6pOcOExh+LOkGPbQ0IYLjqiFcyvAPwdFhFUBXbiEBBERBal6t5zIsrwLwEAAm+BZnNENz5TC6QAGybK8PZABUuNx2jxjTtxAvbp1VUa2wqyMvfiyqrL2nYnILw4FuP8bE27eADg4vIuIiIKUX2NOZFlOA3BrgGOhJuYUNdhy+BAEsxlx9eiipdV5unXZHfZa9iQiIiIiqpm/izB2BGCUZXmPJEmRAKYDaAtgvSzLqwMYHzUim9mEhdkZ6NylG26rx3Fa74B4p53JCRERERH5z59FGC8HkALgHu9Lb8GzIGMSgJWSJN0buPCoMTkcTgBHW0LqKtxuwboB5+KVNkkNERYRERERtRD+zNb1HIBvALwoSVIEPGuUzJBluT88CylOCGB81IjsVgv0ogi9Tl+v4wS9ERpBgFYQGigyIiIiImoJ/ElO+gKYK8tyBTwLJGoBfODd9i2ALgGKjRqZMSsLa/qfg1vq2XIi6o0AAJ3gz48TEREREZGHP1eTVhwdqzISQIEsyzu8zxMAlAYgLmoCbocDAKDUswVENHrmNdUIAsedEBEREZHf/BkQvxnAREmSogH8F8AKAJAkaQCA573bqRlSvLNtKaKmXseJ+qOLLjisFugMhoDGRUSAVgAe7e+AyayHVoRnhSkiIqIg40/LyWMAEgGsBZAF4GXv658DMMKzSCM1Q4rd23JS7+TEeOSxvaoqoDERkYdOA9zVy4kHB3geExERBaN6t5zIspwlSVJPAHGyLBdU23QtgH9kWWa/nmZKcXlm61I19bvy0eh0cCkKtKIIh8XSEKERERERUQvg1whmWZbV4xITyLL8OwCtd6phaoZU35iTeiYnALCjsgJbS0vg9CY4RBRYbgXYdVjEvwc9j4mIiIJRvVtOJElqD2ARgKEAappzlp0OmiHV5fJ812hR30mB5x84gKrKMpxrMNa+MxHVm0MBbvvCM75ry2hAx5m7iYgoCPnTcjIHwCAAiwH8A+BXALMA7IBniOZ1AYuOGlWxKOL34iKUG831Pta3cKPDwV59REREROQff5KToQCmyrI8AZ6ZuuyyLE8CMBDATwCuCWB81IhkvQ6zM9NwICa+3sdqtExOiIiIiOj0+JOchALY7n28B0A/AJBl2Q3gfwAuDkRg1Pgc3jEnWm39FmEEgKdat8aa/ufAlZkZ6LCIiIiIqIXwJznJh2exRQBIBxAtSVJr7/NiAPW/7U5nBIfNCgDQ6msaSlQzrSBCL4pw22yBDouIiIiIWgh/kpPPAbwkSdIgWZb3A8iFZ1HGMAD3AMgLZIDUeEZarHh3wLloV1pc72Ndvu92JidERERE5B9/kpPnAJQCmOZ9/gyACd7XbgXweiACo8anUVSIggBBV/+WE7fgmTrIbeeYEyIiIiLyjz+LMBYBONfXlUuW5bWSJOUAOB/An7Is/xTgGKmRiKoCCBrAr+TEk+cyOSFqGFoBeKCPAyaTHloRnrkRiYiIgky9kxMfWZbzJUnqBiAKQL4sy/8XuLCoKYiq52pH0Bnqfayv5UTxDqonosDSaYCx/ZyIitKjpARwuWo/hoiIqLnxKzmRJOleeLp3JVV7bT+Ap2VZXheg2KiRaX13YvV+JCeiBoAbbiYnREREROSneo85kSRpHIAlALYCuBPASAB3A0gBsEaSpBsDGiE1Gl+mKvqxynuRqMWu8jJYNZrABkVEAABFBdJLBewt8jwmIiIKRv60nEwAsECW5fHHvf62JElLAbwAYP3pBkaNT+fpmQVBZ6x3d/a/DWH4a+9PePBiLnND1BDsbuCGT8wAgC2jj/6+EhERBRN/kpMkAJ/WsG0dPDN2UTO0q6ICRkGAwRxS72O13kH0dg6IJyIiIiI/+TOV8F8Ahtew7SwAO/wPh5qKqqqYm5mGV9JSoYZF1ft4rc6zqrzDweSEiIiIiPxTp5YTSZIurPZ0HYA53kUX3wdwEJ4Zuy4HMB7AA4EOkhqey+WEoigAAI1GD3c9jz/LYcGdfQegIP9g4IMjIiIiohahrt26fsSxs+oLAMYCePC41wDgXXDMSbNjtx+dZUuj08Ndz2lKtaKIcJ0Oh53OAEdGRERERC1FXZOTYQ0aBTU5W/FhvNP/HDhUBQdFDQClfgVoPN264K5vmwsRERERkUedkhOu+h78bJVV0IoiPD276j8NkKr1/CgJ7nomNUREREREXnUaEC9J0s+SJPWrT8GSJA2UJGmzX1FRo3NaqzzfVdW/NRS0ntm6RIUtJ0QNQSsAd/RwYEx/QOvPVCZERETNQF27db0B4CtJkv4GsAbAJ7IsW47fyTtI/jJ4BsWfBeChQAVKDcteZYUIwKWqUPzITtQjyQlXhyNqCDoN8PhAJ6Ki9CgpAVz1HBdGRETUHNS1W9cGSZJ+AvAcgKUAtJIk7QGQBaAKQCSAtgB6AXB697lNluWChgiaAs9ptcAAz4enqvVPMATvVMKiym5dREREROSfOi/CKMvyYQDjJUl6EcAN8AyS7wggAsBhACnwtLB8KstyUQPESg3IafMkJ24Aih/JicsQgvSqSlR4kxQiCixFBfIqBVRqADMbKImIKEjVe4V4b+KxyPtFQcJltXm+CwL8yE1QGR2PZ1J2oX37DrgpwLEREWB3A1d+aAYAbBkN6Oo/bwUREdEZj8MqCQBgF4Ad5WXIh3+3ZH0rxNsdjlr2JCIiIiI6OSYnBACoCAvHy3tT8I2g8et4rXdAvMNuD2RYRERERNSC1LtbFwUnuzep0OsNfh0f4rRjQe+zoLKrCRERERH5ickJATianGj1/g1o1+j0iDMY4FI4WxcRERER+YfJCQEAojIzsLzfQGT6uXiCqDcBALSiCLfLBY2WP1pEREREVD91uoKUJOmO+hQqy/Lb/oVDTcbhQKhWC50g+jUkXjQYjzy2Wywwh4cHLjYiIiIiahHqent7ZT3KVAEwOWlmFO8sW4pGA3+GjYhG85HHTmsVwOSEKKA0AvBfyQmDQQeNCPg5sR4REdEZra7JSXKDRkFNz9udS9Vo/UtOtDq4VRUaQYC9yhLY2IgIeg3wzLkOREXpUFJy5FeWiIgoqNQpOZFlOaeuBUqSxPmamiG1WnLiD0EQ4FQUaDQaOKxVgQyNiIiIiFoIv65EJUm6GcBQAHrgyI12EUAIgPMBJAUkOmo0gssJAFC1/s3WBQC5djs0UNHV4QxUWETkpapAsQ1QLIDALl1ERBSk6p2cSJL0PIDnAZR5j3d6v1oBUAAsCWSA1Ejcbs/300hOXs3LQ3lZEd4zm2vfmYjqxeYGLn4/BACwZTSgYxs1EREFIX9WiL8TwBoA0QDmAPhUluV4AGcDKAKwO3DhUWMpUVXsrayAw+h/YqHReVeJd3CVeCIiIiKqP3+Sk0QAq2VZVgFsBTAIAGRZ3gpgOoD7AhceNZbNUDE1dTcOxbX2uwytt9XF4Z35i4iIiIioPvxJTqpwdBLLNADJkiSZvM+3gzN7NUs2mw0AoNMba9mzZvfFxmBer35QsrMCFRYRERERtSD+JCd/wtO1CwAyALgAXOJ93h0A+/Q0QzabFQCg0/mfnERqNEgwGuGu4mxdRERERFR//szW9QqA7yRJipRl+WpJktYAWCVJ0g8ALgPwUUAjpEZxp86I0N5nIb+qwu8y3IJnhK6b3bqIiIiIyA/1bjmRZflnAAMBvOd9aRyADwB0A7AewPiARUeNJlwQ0MpgODKo3R9uwfPj5LbbAhUWEREREbUgfq1zIsvyDgA7vI9tAMYEMihqfL4JhAWj6ZT7nYqv5URhywlRwGkE4OpOThj0OmhEHB35R0REFET8XYQxAsDF8Cy6eELriyzLb59mXNTIdN7EQjSYoPhZhlsUASjs1kXUAPQa4KULHIiK0qGkBHC5mjoiIiKiwPNnEcaR8HTfqmlBDBUAk5NmRFEUGERPjikYQ/wvR9AAqgLFyRXiiYiIiKj+/Gk5mQEgBcDjAHIBv2+00xnCYbFA9LacaIxmuP0sx6LRIr+yHHaV/U2IAk1VAasTMDg9j4mIiIKRP8lJNwDXyLL8S6CDoaZhrSg78lgwmP1ON383RWLO7z/gnnPOCVBkRORjcwND3ve0bG4ZDeiEJg6IiIioAfiTnOQACA90INR0bFYrMqoqoRNFCDoDYPevM7vO4FkjxbdmChERERFRffizCOMMAM9LktQhwLFQE3FoNHg6ZRdeyMmCqvjfX0SnMwAALBZLoEIjIiIiohbEn5aTWwEkAsiQJOkQgOOvRFVZljuddmTUaKxWz7okBqMRyml0Zu/isuGyHr1RdbgoUKERERERUQviT3KS6/2iIOHrhmU0GKGcRsuJURTRwRyCbAdn6yIiIiKi+qt3ciLL8t0NEQg1HVd2Fhb07odDgnhayQn0nm5douLvfF9ERERE1JL5s85Ju1NsVgBUyrJc6ndE1OiclZWIMxhhd7tRcRrlCHrPgHiNwtmliYiIiKj+/OnWlQ3PQos1kiSpGMAbsiy/7E9Q1LhcVk+3Lrfoz/wI1ehNAAAtF2EgCjhRAC5p74Jep4Uoopa/wkRERM2TP8nJnQAWA/gRwDoABwHEAbgBwFUAXgIQCmCqJElFsiy/GZhQqaG4bIFJTkSjJznR8aKJKOAMGmDWUDuiorQoKQFc/s34TUREdEbzJzkZDeDdk4w9WSNJ0psABsiyPEqSpFIAYwEwOTnDuW2e2brcoua0yhG8yYmWi8MRERERkR/8uVV+EYB3atj2IYDh3sebAXBK4WZAsdk93zWnm5yEotTpQLmTt3SJiIiIqP78aTkpAtAXwLcn2dYXQLn3cSiAqvoULEnSVACXyLJ8UbXX+gF4A8BA77nnybI8q95RU40Uhy858efH4Sg1shXG/LsNgiDgH6gA2IRCFChWFzDknRAAwJbRgI6/XkREFIT8uRpdC2CaJElOAB8AKIRnzMn1AF4A8JYkSVEAHgXwe10LlSTpUQDTAPxc7bUYeJKgjQAeBHAegIXesSwr/IidTsKqqsizWmEPj4LhNMrReacSVlUVdrsdBoMxMAESERERUYvgT3IyFZ5kZLb3y0cBsBzAM/AMjj8LwMW1FSZJUiKApQCGAJCP2zwGgB3AWFmWXQBSJEnqAmASACYnAZIaYsZ7u//FtT36o99plONLTgDAarUyOSEiIiKievFnEUYXgHskSZoOYBiAWHhWjP9VluUsAJAk6UsAibIs2+tQZH8AJQD6AHgOQIdq24YA+Nl7Tp9NAJ6WJClOluXC+sZPJ7J5B8RXTy78IYoaTJV6IFQUYSk4iMjIqECER0REREQthN+DDGRZzgCQUcO2knqU8ymATwFAkqTjNycB2Hncawe839vB06XML1rtaa7pcRyNRjzme3Nit3uSE73BCFGsuSO7b9up9kk2mRGm1cJZWR7w97ihNefPsC6CvX5AcNdRW22KblEjopn9etVZMH+GAOtHRFSbOiUnkiRlArhOluV/JUnKwqmX/1JlWQ7ULF1meLp1VWfzfve7z5AoCoiKCvE7qFMJDzc1SLkN6fzyCgzv0RvFtkqYTPpa9zcYdDVuc3gXYBTdjgZ7jxtac/wM6yPY6wcEZx0NzqOPw8NNMNf8axgUgvEzrI71IyI6ubq2nPyEo7Nw/YTGW5vYCpwwRtuXlNRrJrDqFEVFebnF76BORqMRER5uQnm5FW63EtCyG5rZ6UR7cwjKVQFWq6PG/URRgMGgg93uhKKc/EfAl9qUHipCSYnfH1GTaM6fYV0Ee/2A4K6j1QkAnoS/vNwKuxhc9fMJ5s8QYP1OR3i4iS0yRC1AnZKT6gsuyrJ8V4NFc6L9ANoc95rved7pFOxyNcw/BbdbabCyG4roVgBRhKrT15h0VKcoao37+W7u2iurmt374NMcP8P6CPb6AcFZR0UBBie6oNNpATX46ne8YPwMq2P9iIhOzq8xJ5IkhQEIl2U5T5IkPYAJANoC+ECW5Z9PfXS9/AzgQUmSNLIsu72vDQcgczB84OhUBYAI0Wg+7bKc3rVNnFbraZdFREcZNMCC4XZERWlRUgK4uNYpEREFoXq3j0qSdA6AHACPeF+aB+A1ALcB2CRJ0qjAhYflAMIBLJMkqYckSXfBs37KjACeo8XTeRtBBOPpjxFxCZ4fKaclsN3miIiIiCj4+dN5czqAVACLJEkywZOULJRlORrAMgBTAhWct3XkMgASgG0AngfwpCzLqwJ1Djq60rRgOv3kxCaKKHc64XQ6a9+ZiIiIiKgaf7p1nQvgJlmWsyRJugqACcBq77Z34UlW/HKy8SyyLP8F4Hx/y6TaGbytHRpTGNy17FubTzVm7Ni2CRMvveT0AyOiI6wu4NL3zRAAbLrx6E0FIiKiYOJPcqLg6PS+VwAoBfCn93k4APbnaUacDgeKHHYYRQ0Ec+hpl6f3rgrvW9iRiALH5mJGQkREwc2f5ORvAPdJkmQFcBOAz2RZViVJigMw2budmgmb3Y5Hd/0LAJgRFnXag2x1Os/Mz1YOiCciIiKievInOXkSwFcAbgZwCMDL3td3wTOG5bLAhEaNweIduK7RaCGIWuA0O3b1VF0YIfUA8k5rpmciIiIiaoHqPSBeluV/AHSGZxxIR1mW07ybxgLoJcvy1gDGRw3MavUslGgym6EGYGnNCEFAz7BwmDhbFxERERHVk1/rnMiyXAHgj+Ne2xCQiKhRWfblYGaP3igF4K7DAoy1UXSeNeIFLsJARERERPXkz1TCFETspaXoYA5Ba72hTqvD10rvGRAvOJmcEBEREVH9+NVyQsHDUVmJEABOQYASgH5dqsEEANAopzspMRFVJwAYEO+GTquBwEm7iIgoSDE5aeEcVZ4xJy4xMI1ovoUcdYoSkPKIyMOoBZZdZkNUVAhKSnDaM+sRERGdiditq4VzWTzJiTtAyYnoS04C0EOMiIiIiFoWJictnMviWY/ErQlMI5pgCoNLUeBity4iIiIiqid262rhFLtnJfdAJSfumATcsu1PaLU6rsZJFEBWFzBqgxmCCHx+LaDjuBMiIgpCbDlp4ewuF0qdDri8UwCfLoO3W5fL5YTT6QhImUTkUWIXUGxt6iiIiIgaDpOTFm53iBlj/t2GXfGJASlPbzAeeVxZWRWQMomIiIioZWC3rhbO4l3JXac31rJn3YiiBo92lhAuiqg6eABRUVEBKZeIiIiIgh+TkxbOavUkJwbv+iSB0CM0DJFaLazFRQErk4iIiIiCH5OTFu6c8goMlnqg0pukBILdu5ijtaw0YGUSERERUfDjmJMWLtblRo+wcJi0moCVafd9r6gIWJlEREREFPzYctLC6RQFEEUIptCAlenw5ryOysqAlUnU0gkAesS4odVoIHAaYSIiClJMTlo4g/e7GBIesDKd3tXmnUxOiALGqAXeudKGqKgQlJQALldTR0RERBR47NbVwhm9t2A1gUxONJ4uYm5L4MaxEBEREVHwY3LSgjlsNhi9iYQmNCJg5bpEHVyKAqfdXvvOREREREReTE5asMriw0cei6GBW4/kl9AY3LLtT6REBK41hqils7mAkRtMuGA5YGWXLiIiClIcc9KCVZaUotTpgFYQAa0ecAfmikdvMgMAqixcIZ4oUFQA+VXi0SccFE9EREGIyUkLZtGIGPPvNsTEtsLjbiVg5eoNnuSksoID4omIiIio7pictGAV3nVIQkJC4VbUgJXbVnXjyU5dgZKSgJVJRERERMGPY05asErvVL8hIaFQApichGm1ODsqGq2dzoCVSURERETBjy0nLZianoYXpB4oNocEtmDvtMT6ACY8RERERBT82HLSgiklxegRFo44TWBzVN+0xEYO2CUiIiKiemDLSQvmWyTRrdUFtFxNWDQAwCyKUBQFosgcmOh0CQA6RijQaETO1EVEREGLyUkLplitnu86fUCvdbQRMZ7vgghLaTFCo2MDWDpRy2TUAh9eY0VUVAhKSgAX1zohIqIgxFvaLZnNBgBQ9IaAFqs1hcCpeKYmrjh0KKBlExEREVHwYnLSggkOOwBANZoDW64owqIocCoKKoqKAlo2EREREQUvJictmMY31W9IWMDLfu7gQdy67U9UGgPbKkPUUtlcwPUfm3DJasDKLl1ERBSkOOakBXO6XHCKGoje2bUCSWMMBQCUl5cFvGyilkgFkFkmHn3CQfFERBSE2HLSgs3J249bt/0JW9tOAS/baPYkJxUV5QEvm4iIiIiCE1tOWihVVVFWVgoAMJoD33IyyGzEdZ26QpuWHvCyiYiIiCg4seWkhbLZrHA4HAAAgyk04OW31mhxdlQ0xGIOiCciIiKiumHLSQtVvH8/XpR6oMzlgkZngNPuDmj5br0BsNqgetdSISIiIiKqDZOTFqri4AF0DwtHmcuFQ4oa8PIVQwhgLQOstoCXTURERETBiclJC1V56DDCAVgBuFyBT07UkDCgFNB4u44R0ekRALQOUaARRc7URUREQYvJSQtlKylGOAC7KEJRA5+cICwKAGBwc0EGokAwaoEv/2NFVFQISkoAF3+1iIgoCHFAfAtl987U5dA2TH6qiYwFAIQ0SOlEREREFIyYnLRQrnLP+iMuXcOs4K6NigcA6CDA5VuJnoiIiIjoFNitq4VyV1R4vpvMDZKh6qLjcec/f8HqdmNTRTmio2Ma4CxELYfNBYz52gitBlh8Cf94ExFRcGLLSQvlsFrhVBSooeENUr5Gq4XoXSW+mGudEJ02FcCeIg12FAINMUyMiIjoTMDkpIX6sKoCt277E0XJ3RrsHCGhkQCAkpLiBjsHEREREQUP9gxooYqKDgMATOEN193qsugYtA4xwLZnN3D2eQ12HiIiIiIKDkxOWiBVVXH48CEAQKh3yt+G0MFoRG+THrkHDzbYOYiIiIgoeDA5aYHKDx/C1OTOKHU6YTSGwd5A/dcdOgPgssLpnbaYiIiIiOhUmJy0QMX7siGFhsHiduOgzgA43A1yHpc5DCi3QvFOW0xEREREdCocEN8CleTmAgCqVBVOl9Jg51G841l0VluDnYOoJYkyqIg2NXUUREREDYfJSQtUnrsfAFCl0cCtNNycpEJ0HAAgxN0wLTNELYlJC/xwkwX/jAFMuqaOhoiIqGEwOWmBbIWFnu/Ghr0Fq4tvBwCI0Gi4SjwRERER1YrJSQuklJQAAFwNtACjj75VEtyqCqeioMjbWkNEREREVBMOiG+BdBYLAECNim3Q82h0OjyWnY2DRQVYa6lEfIOejSi42VzAhO+N0GmBuUP5x5uIiIITW05aILvdBpeiQBPbpsHPpQuPBgDk5x9o8HMRBTMVwNYCDX7PA9SGGypGRETUpJictDCKouCFlN24ddufUDt0b/DzRcUmAABy2a2LiIiIiGrBngEtTH7+AbhcTuh0OpjCYmBzNNxUwgDQNzIGIztLMGzf3qDnISIiIqLmjy0nLUxmZgYAIKltBzhdDd83JCYsEgMioxDFhRiJiIiIqBZMTloYy6+/YEb3XrgioU2DrnHio0nsCACIUj1dyoiIiIiIasLkpIVR8g+gU0goYht4GmEfU7uuUFQVZo0GRTmZjXJOIiIiImqemJy0MPqKCgCA2qrhZ+oCAK3RjEMuFwBg37Z/GuWcRMHE5XTiYNpepP78E/RwwSC4sOv7b5G9fRvKvAuqEhERBQsOiG9BHDYL4iEAAPSdesHVSOc9pDUgHgqKd+8E/nNjI52VqPlxOZ1I+f5b/JuTjR0ZaUhJ2YMuNhsebJ+MEAArseLIvg4ABQDmHz6ErJhodOvWAwP69EWf7r0Q265dU1WBiIjotDA5aUHSfvsNelFEldsNXWIXuBp4pi6fyqh4oDQfal5eo5yPqDmpLCnCtnfXwbJzB+KtVoRoNNialYEfig4BACLDwqGoKsrdbrigQgGghQCTIMCk0SCrpBhbszOwdetfSP0sCkldJOx0u+Fo3x4dL7scnc4dBFFkIzkRETUPTE5akPytf6MdgEKNBjZnIw5Oby/BVpSL4qpKqKoKQRAa79xEZyCX04ntGz/EoZ9+QJLFggRf8qDRoMrtQi+pC/p0vQTd2rVBu9hIRIUYoBUAAQqMJj1sVgcUVUBVlR2PlgxC1qES7M7ch5CsfABAokYD5OZCXbYUvy16C1XJyeh102gkduvRhLUmIiKqHZOTFsSVkQYAsMTEQ2jEFaZN3c7GfW/PhsPpwMCMdHTu3KXxTk50BklLk/HZZ5/gt6+/wEuJ7RAuCIAo4pDLiYq4GLTu1RlSr2T0UI7rdKm6YXOLmJo/DKJGxMsJP0AHN0LMOnQ1t0LXxFa4rF9XAEDR4TLIf+2BIycfiYqAOK0W2L8fFf/3GiaJAi64+hpccskImM0hTfAOEBERnRqTkxbC6XRgb8FBRIZFQNPrHDTmpL46owntu/RB2p6/8euvPzE5oRalICMdO957B3mpKZi74+ikENsiIhEVH4fEc3piQI9kCL6E5PjExEuBiN+qkjyPE0QA7pPuFxMbgUEjzwcAVFRYsPPXHXBn5gE2B77eswNf//U7ZsyYhgfOG4xeFwxGv2uuh1anC1yFiYiITgOTkxZiy5bfsDwrAx9Fx2By1wGwNtJ4E58uPc9G2p6/sf3773Dnnfc16rn/v727j5OrqvM8/rlV1c/PnU6nu9N5jjkQ8tAkhJBAYjRoxhEH1lUZXRVl1BHGXddBxXmNoivqzOrOOsz4Gh1xUFSUVYdBZGEHFQiEEAIJIZCHE5POYyedpDvd9PNDVd3949xOKk0XA0mnq27xfb9e9arqc0/dOr/qulX3d8+554pMtN7ODrb8/B4Gtm5hejLJDM9jWl4+NYWFLF62lHdeuZTl86YTSw67J6RJSM5XWVkxK//oCgCOnujg5u2zeGjDsxw72sqlnZ0U/b+H2frgb2ifMoU5117HvJWrLkg7REREXqtQJCfGmAjwZeBjQBWwAbjZWrs3ow0Lkfvv/1cAVr9l3YQnJgAXL1rB5dvXMz+/kD1PrmfeqjdPeBtELqTe3h6e+/W/0ffUBqb29VEXjboFnseRZAJmN3LvjddSVhgB34eRxGSCNNRWccPVV/DhtcvZta+Flg0vUNc7QGUsRmV7O9z1L6y/8/sMzp7NnHdcw+yll+n8MBERmXChSE6ALwGfBD4KtADfBB42xlxirR3KaMtCYM/TT9H7/BYAmq54e0baUFZZQ7K0EkjS/PN7lJxI6CXicZo3b2Lbnt08/uwzbN68iasqKrlp5hyIRmmLx+mur8GsWspVDVX48SAZ8SfwhK8xeJ7H/LmNzJ/byNDgMNuf2UHPrgNMS/jUR6Nw8CA//uKtPJ+fx+rVa1i57AoWLlhI2aSajLZbRETeGLI+OTHG5AO3AJ+31j4UlF0PHAXeDdybweZlvf7ublq+/z1umTOPLXn55JfWMRyf+J4TgN7L15Hc/BCzh4bYePddrLzhxoy0Q+RcnNi/j4PPbqbD7sZvaWHy4ACl0RjbDh/gqeOtABwvKaa5soSGpvksXTAT4u7YyenEJMvkF+Rx2eomWN1Ex6mX2bHxJRJHjrOtp5tDPd389Kd3c+Thh6ieOZvWZJL+mhpKZs+hbvFiZl66lPyi4kyHICIiOSbrkxOgCSgDHh0psNZ2GmO2AqtRcjKmZDLJ7sd+z7F7fsK0aJTeRIJJ77mBvgwlJgBl85fx/AtPsHSol/L1j/PbliOsuOkvKK2alLE2iSSTSXpOtdN59Chdx1vpbTvJqaEhmnu6aWk5QlfLET7iRSmPxagAKkaeGI0xmExgpk1n7jvXsnrxRUyrLMEfHnTL4+Hq1K2qruCqa64E4LLBYbbsO8KG7btpOHySiOfREI1CRwdseQ62PMfe5J20+Ul+V1ZKydRpNDRMZVppKZWxPEpra6mYUkdFXR35hUUZjkxERMIkDMlJY3B/eFT5UeCcL4Mci43vRck27jjI+n/6LvWD3eAD+MG12N2978MD0QqGvAjgsyTRy9yk24nx3BNc/WDIx/2U0BusYQmDXOIPnqlzet2AD/cl8+n0I/i+z5JInJUMUEOCyliMaZEIfYkEDyx8D0eHlrnLSp8jz4NoNEIikTz3kSlr/xYe/AxLo3FmNDdz6LOf4fb2Xl4uqyVWVMoV3hAz/Di+F8EfY7j7w/mTgvcQFsd7mJnoT/tSj+RX0++5cf8L4j3MeZW6j+ZV0R3JIxL1mDfYg0n0pq27Pq+Szoib3WhuvJdLEn2nl509RbPPk7EK2oK6s+N9NCX7zlqeakOklNZIPgAzEwMsS6Zvw0avmCNB3WnJIVYEdcc6Q+AZr4j9Xj6eB40kuCrRfXaFlH/mc14RezzX3il+nKv99G14ngJ24NpQQ4J30Hc6JG9UbNvI5wXfrbeSJNd5/a+If8RLfozn/Hx836eUJO+LDI409BV1d/kxnk7m4fs+Rfj8l9jg6W0kVcT32Tmc4Lc9gySGByiID3B7/WTyPI9CzyMWXGckP7htazvBnQeaAcjzPP7b0uUkfZ/j8QSteUV0lE2ha0YT8Tctx/digM+9vUD6t+u8xVM2iG+fuIzYhZ5zrwby3wptwK9OHqBo7yYmnWimZqCLhohPcTRKHREe27iB7rg7of+GaTN455R6kkBHcOtPJBj0fYZ9+GZ7N93RfKL5hawqymNR1Mf3PJJ4+J6Hj0fSi4Dn8WCknJ5oHngRFiT7uSg5evs98378LlbBy14Mz/MwiT7mJ/rS1n0ir4L2YJuck+hnYeLsbSf1k7Mxr4KTkQIAZib6WRzvSft2bY6Vcyzq6jYmBlga705b9/mCCg55BeD71CcGuTzelbbutlgpB6MuwatNDrFi+OW0dV+KlbAv6nqzqpPDrBruTFt3Z7SEP8Rc3YpknDXDHWnr7okWsyvmpp4u9eOsHUpfd1+smLbGudxx640U5IVhF0NEsk0YvjlGxg0MjiofAKrPZYWRiEdV1fjO8X/HXfey5uALXF4zOW2d721df/pHfO30WSytnZK27p3bn6ZtyGUSb26czuK6hrErenDXzi20DLgf7isbGpnb0AjEGEom2Zws5heLP0vblEsh/e/qhNqy9h7esvlvuKbzOaqiHnsO7iTh7wDgXTPnsOxV3sPvP/fY6fdwzfRZLH+V9/DuretPv4crGqezPN17CNy77UlaBgYAWNzQyPKGxrR1/237Rpr73A7NJXUNLG9MnyP/3x3PsK/H7aTMnTyFZTNmpa37211b2N/VCcCMSZO5bNactHXX79vGgY5TANRXTeKyOemnZ97U/CIH29sAqK6oZMmbLkpbd8uB3Rw6eRyAsrJyLjXpL9r30uE/cPi4u+hfQUkpTRcvGDs7AmxLM0eOtQDgFRaxaMHitOvd33qIIy2HAJicX8DCRZemrdtyooWWQwcAqIjlsaBpadq6xzvaOXVgHwD5kQhV0+rPWj6QSNCd9On2PbpK6vEWr8SrnE6iYjpfKMintW4ZQ0WjvnLS7ydeUL/pnODpuPMMXLwOLnZ/+skkNW0v0XBiC71r/gSvuwVePsyQf4yjQ3HKIh4l0QiR4Cr2I30nna3NvBwMcSufNoP5U+oZM0n14YfbNtE66LbJK6ZOY1n91LTN+8X2jRzsdwnJovoGLp+afpt84KWn2dfrvgxNbR3Lp89MW/eRnZvZ2+X+yTNqalk+c3bauk/sfpa9nW6nva56Estnv8o2uWcLe0+1A1BVWcXyuSZt3W17t7G37QQAxeUVLJ93cdq6u5q3s/eEG2JoSktZftGCtHWbD7zE3tajAMwoKmb5JYvS1m05vIu9Le74YH1BIcsXNqWt29ZiuX/D/Ty6bjUfeHv67VFEJB3Pz/DJmf8RY8x/Bn4FFFtr+1PKfwEUWGuvfZ2rbE4kkrO6utIfRT8Xuw6d4OE776ai5+XgiL/nuhoAPHcceXvVNOJRlw9O7z1FzWBPsMxzvSt4wc6dx+7qRoZj+Xh41PWeYtJAV7C+M+sceY3mqqkM5RXg4TGpr4Pq+CB+w5vIn7+SSFnluMXoAdFolEQikeaY9+vjJ5P0H9xB66kT9HW2MTzQS2PnMaoHut01H8Z4ka2VDcQjrjdkZu8pagfTH6p+oaKewZH3u6+TuoH0RzJfrKhjIJqH53k09HUytf9Vjk6WT6E35o6Q1vd3MX3g7Lop/VrY8il05xUCUDvQzfS+UUccU2ZD+kNpLV0FLhefNNDDjL5To175TN39pTV0FroEu3Kwl1k9bWctT314qKSGjqIyAMrj/czsPPGKJMILClpKqmkvKgfPo2Son9ldx89qo5+y6tbiatqKK8CDouFBZr987Kx1nTnQ73GyuJKTxZV4nkdBfIjZnUfTxnaquIITJS4JyEvGmX3qyJjvl4dHR1E5J0rdsMCon2BO+2E8z8P3/bNjjETpKZtEZ810YvmFxPIKqO7rxCssxiuuIFYzlUhp5Zn6Wfq16Hovg20wS9sIgAfJ4WGSp46R7DyBP9ALAz20FVcyNDxEfGiAyvYWKvo6IJnASyYhmQA/iZdM4pFkZ9kUBrwovp9kal8n9QOjehdS3oAd5XX0x1wvXv1/sP3uKq+lJ9h+pwx0M703fS/A7tLJdI1sv4M9zHrFNnnGnpIaOvKD7Xeol7m97Wnr7iutoS2/GHyoGupjXm9b2rrNxdWcLCgFoGK4n4t6Tqate7CoitZCt62XxQeZ3308bd3DhRUcLXKDFIvjQyzsbk1bt6WwnCNFlQAUJoZZ3HUsbd3WwjISc+dz28euHffJH8rLi4hGI/uB9FmiiIReGHpORoZzNQD7UsobgBfOdaXxcT734uLptaz8zlfo6Ogd93Wfn9HDG85dLBahqqqEjo6B8YvRzAHS9xCM9pHxedUxnYkv2/6H4yPX44PzjXH8tpUL5YJsgxdUTXB77XL9c6r4RERe3fieeHFhvAB0AWtGCowxlcAS4MnMNElERERERMZb1vecWGsHjTHfAf6nMeYkcAD4Fq5H5b5Mtk1ERERERMZP1icngdtwbf0BUAQ8AazTBRhFRERERHJHKJITa20CuDW4iYiIiIhIDgrDOSciIiIiIvIGoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkazg+b6f6TZMtH7f9wuTyfGPOxqNkEgkx3292STXY1R84ZfrMeZ6fJD7MSq+cxOJeHieNwAUjfvKRSRrvBGTk06gADiW4XaIiIjIa1cPDAKVGW6HiFxAb8TkREREREREspDOORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCvEMt2AXGCMiQBfBj4GVAEbgJuttXsz2rBxYIz5InC1tXZNSlkTcAdwGdAO/IO19n9lpIHnwBhTDXwDuAYoB7YDX7DWbgiWNxHi+ACMMbXA3wF/BBQB64HPWWt3BsubCHmMI4wx84CtwKestT8KypoIcXzGmBnAgTEWfdxa+4OwxzfCGPNh4AvAbGAf8BVr7S+DZU2ENEZjzBrgsTSL91trZ4c5PgBjTB7wFeBDuN+9bcCt1tqNwfImQhyfiGSOek7Gx5eATwIfB1YAPvCwMSY/o606T8aY/w58dVTZJOC3wB7cj86XgduNMR+d8Aaeu3uBK4A/BZbhdmwfMcZclCPxATwAzAHegYuxH/idMaY4h2Ic2UG6ByhJKcuF+BYBA0ADUJ9yuydH4sMY80HgLuCfgQW47fJeY8yKHIhxI2f/3+qBtwNx4Bs5EB/AF4EbcQflLgV24373GnIkPhHJEPWcnKcgAbkF+Ly19qGg7HrgKPBu3A9uqBhjpgI/AFYBdtTiTwCDwE3W2jiwyxjzJuBW4IcT2tBzYIyZC7wNuDLlCN+ncTvxH8DtxIc2Pji9c74f+Jq1dkdQdjvuyOYlwNWEPMYU/wPoHlUW6s9oYCFgrbXHRi8IDhqEOj5jjAfcDnzbWntHUHy7MeYqYE1wC22M1tohoHXk7yCJ/jbwr0HP118R4vgC1wI/s9Y+AmCMuQWXqKwA5hH++EQkQ9Rzcv6agDLg0ZECa20n7mj86sw06bwtATpwR2+fGbVsFfBE8IMz4lHABEOJsl0b8E5gy0iBtdYHPKCa8MeHtbbdWvv+lMRkCvBZ4AiwkxyIEcAYsxr4c+CGUYtyIb5FuP/VWHIhPgPMBH6WWmitXWet/RtyI8ZUfwFMAz4T/J0L8bUD1xhjZhpjopw5KLCN3IhPRDJEycn5awzuD48qPwpMn+C2jAtr7W+stR+w1jaPsbiRsWOFEMRrre201j5krR0cKTPGvBc3BOrfCXl8oxljvo87gvte4M+stb3kQIzGmErgJ8B/tdaOjiX08eF6TmqNMU8aY44bYzYYY9YFy3IhvnnBfYkx5t+NMSeMMc8YY94VlOdCjAAYYwqBvwb+PqUnLBfi+zRumNp+XFLyDeB91tp95EZ8IpIhSk7OX3FwPziqfAAonOC2TIRixo4VQhivMeZK3Lj3X1trf0OOxQf8PW7M90+B+40xS8iNGL8LPG2t/dkYy0IdXzBUdB5usoYvAn8MPIsbz7+WkMcXKA/uf4zrPXk78Ajw6xyKccSHcJNS/ENKWS7EdzGuh/063Dl8PwR+bIxZRG7EJyIZonNOzl9/cF+Q8hjcF3DvxDfnguvHxZpq5McmVPEaY67F7RhtAt4fFOdMfAAps3N9AjcW/FOEPEZjzIdww0YWpqkS6vistUNBz1A8pYdvizHmYtzwvFDHFxgK7r9lrb07eLwtSJ7/ktyIccSHceeatKeUhTq+YDa5e4C11tong+LnjDHzceeBhTo+Ecks9Zycv5Gu64ZR5Q24Mf655jBjxwrQMsFtOWfGmE8B9wEPAX9srR1JLEMfnzGm1hjz/mAcOADW2iTuHIaphD/GG4EpwGFjTI8xpico/54xZgfhjw9rbW/q0MPAi5wZLhPq+Djz3fjiqPIdwCxyI0aMMZOBlbxyYpSwx3c5kIfr0Uu1CdfrF/b4RCSDlJycvxeALtzsMsDp8fBLgCfHfkqoPQGsSt3xBdbiZhY6kaE2vS7GmJuAfwS+A1w/aicw9PHhdgJ+Brx5pCCYLWgJLkEJe4wfxA0paUq5AdyGGwIV6viMMYuCpOuqUYsuw+28hzq+wPO4WdauGFW+ENhLbsQILjHxcdcZShX2+EYOyi0aVb4Q+APhj09EMsjzfT/TbQg9Y8zXcbMG3Yi7cNq3cDPRLAymlAwtY8yPgJkjF2EMZlrZjbuOxjdxR9C+C3wyZXhG1jLugn0vAQ8CN49aPDIUIbTxwelpWh/GfQY/jhsX/tfAOtyO/AAhj3E0Y4wPfNRa+6Mc+IxGcNfJKAFuws0w9wnc53UZcJwQxzfCuAu8fh733bkZd92hr+J2YneSGzHeBnzQWjtvVHkufEYfBybjPpdHcMPX/gq4CmgmxPGJSGap52R83Ab8C+7aIE/hZjBZF/bEZCzBUa91uKlAt+IurvW5EP3gvAc3HOE/AcdG3e7IgfhGpka+Hjd15//B7fhVA6ustYdyIcZXE/b4giF478L9336J62VYDrzNWvti2OMbYa39Gu4K41/HJSPvBd5trX08V2IE6nBT7p4l7PEFn9Frcd8xP8JNzf5W3Dkom8Ien4hklnpOREREREQkK6jnREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5EJCsFF5MUERGRNxAlJyKSdYwxfwLcHTxeY4zxjTFrMtsqERERudBimW6AiMgY/jLl8VZgBe4q4iIiIpLDlJyISFaz1nYBmzLdDhEREbnwPN/3M90GEZHTjDGPA29OKXoL8BjwFmvt48aYrwB/CnwB+BowF9gN3AT4wB3AImAf8Glr7e9T1r0A+FtgdVD0e+AWa23zBQxJREREXiOdcyIi2eZm4PngtgIoH6PONOB/A18H3gdUA78Cfg7ciUteIsC9xpgiAGPMPGAjUAt8BPgzYDbwlDGm9sKFIyIiIq+VkhMRySrW2p1AF9Blrd0UPB6tGLjZWvtza+0DwD8BDcDt1tofWGt/DXwJqAFM8JwvA/3A1dba+6y1v8T1yhQBn7ugQYmIiMhronNORCSsNqY8bg3uU89NaQ/uK4P7tbjhYX3GmJHvvi7gSeBtF6iNIiIi8jooORGRUApOlB+t71WeMgm4PriNdnJcGiUiIiLnRcmJiLxRdAK/A/5ujGXxiW2KiIiIjEXJiYhkowQQHed1rgfmA9ustXE4fRX6nwJ7gW3j/HoiIiLyOik5EZFs1AmsMMa8FagYp3V+FXgaeNAY811gAPhz4DrgPeP0GiIiInIeNFuXiGSj7wDDwMO42bTOm7V2O7AKdy2Un+CmHq4HrrPW3jceryEiIiLnRxdhFBERERGRrKCeExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREssL/B8s22P/aS/xIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50 : {'width': 5}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constraining Peaks With Known Parameters\n", + "If you have a chromatogram with two *completely* overlapping peaks, it can be \n", + "very, very difficult to deconvolve the mixture. However, if you happen to know\n", + "the parameters of one of the constituents (say, from characterization of \n", + "an isolated aqueous mixture of that compound), you can apply more stringent \n", + "bounds to that particular peak. Say for example we have a mixture of two compounds \n", + "with retention times of `10` and `10.6` and you know that the first peak has \n", + "an amplitude of `100` units. If you were to only supply the locations of the \n", + "known peaks, you would underestimate the contribution from the first peak." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1365.51it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inferred amplitude for peak 1 is 94.971. Known value is 100.000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9bElEQVR4nOzdd3gUVfcH8O/M9vTeexs6CNh4QUBQwYLltWJ5FSsWREVBQUEUUX4ICIrSQUBUQBF7Q0UUFUEUSDKk996zfcrvj01iEhKyWTZtcz7Pw8Nmp527gd09c+89l5FlGYQQQgghhBDS09ieDoAQQgghhBBCAEpOCCGEEEIIIb0EJSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFeg5IQQQgghhBDSK1ByQgghhBBCCOkVKDkhhBBCCCGE9ArKng6gB1QD0AAo6uE4CCGEEGK/UABmAD49HAchpAsx/XCFeKMsy1pJcn67WZZBV5y3N3H1Nrp6+wDXbyO1r+9z9Ta6evuArmkjyzJgGMYEQOfUExNCepX+2HNSJElybGWl3qknVSpZ+Pq6o7bWAEGQnHru3sLV2+jq7QNcv43Uvr7P1dvo6u0Duq6Nfn7uUCgYGvVAiIujOSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFfo8TknHMdFA8huY9P9PM9v5DhuBIA3AIwGUAFgNc/zy7svQkIIIYQQQkh36PHkBMAwACYAcQCal/ao4TjOH8C3APYBeAjARQDWchxXwfP8lu4OlBBCCCGu5+jRo56wlSqmESWEOJcEoGjUqFF19h7QG5KToQB4nufPqMDBcdxs2Gqaz+R5XgCQwnFcIoC5ACg5IYQQQojDjh49ygJ4jmHYuxiGUQFgejomQlyMLMuy9ejRo+8CeGXUqFEdlvDrDcnJMADJ7WwbB+BgQ2LS6ACAZzmOC+J5vrTLoyOEEEKIq3pOoVDO9PLytajVWgPDMK69AA0h3UyWZcZiMbnV1lbNFEUBAF7u6JjekJwMBVDEcdzPAJIApAF4ief5rwFEADjRav/Chr+jADicnCiVzu25VSjYFn+7Ildvo6u3D3D9NlL7+j5Xb6Ortw/oO208evSoF8Owd3l5+Vo8PX0rejoeQlyVRqMzAvCvrq646+jRo290NMSrR5MTjuPUsCUkegBPA6gHcAeALzmOuwyAG2zDupozNfytdfS6LMvA19fd0cPPysvL9ReudfU2unr7ANdvI7Wv73P1Nrp6+4A+0cYQhmFUarXW0NOBEOLqGnom3WQZoQB6b3LC87yF4zgfAALP841JyFGO4wYCmAPACEDT6rDGpMThJd4lSUZtrXPfixQKFl5eOtTWGiGKrrnqr6u30dXbB7h+G6l9fZ+rt9HV2wd0XRu9vHTO7o1hATA0lIuQrtfw/4yBHUUnenxYF8/zbSUZJwBMAZAHIKzVtsafC87luoLQNR8Koih12bl7C1dvo6u3D3D9NlL7+j5Xb6Ortw/oH20khDhfjw4I5ThuGMdx9RzHjW21aTSAUwAOAhjHcZyi2bZJsFX3osnwhBBCCCGEuJCe7jk52fDnbY7jZgIoB/AAgIsBnA+gBMAzADZxHLcMwAUAZsO25gkhhBBCCOllVq9eEXbgwDf++/Z91bqoUa+Umpqszc/P10yefHlNT8dCerjnhOd5CcA1AP4AsBvAXwAuBHAZz/MnGnpHrgDAATgGYCGAp3me39ZDIRNCCCGEEBcyb95TicnJJ7umUhLptJ7uOQHP82UA7j3L9iOw9aQQQki7jAIw7j3bZ8vh2wCVHUupGQVg3IeeAICfb66DrsffEQkhhHQ/qonQm9BHMSGEEEJIA0mSYDAYemxkiZubm8Synbv82LGjR/33v7cU/fjj9/5Wq5V94423U93c3KQ1a1ZG/PPPX156vV7h7e0tTJw4ueLxx+cUpKQk6x588O5Ba9duTBk2bIQBAGbPfjj+5Ml/vL766se/lEolZFnGVVdNHv6//80ouOWW28tbX7O8vEy5YsWyiGPHjniLosgkJQ2of/LJuXnx8QlNS0CsX782+LPP9gXX1dUpExIS9fPmvZDduL2tmCMiIi3r1r0V+tNPB/yrqqpU4eHhpjvvvKdwypSrqgFg9+73/Xft2h56zz33FWzatD6ipqZaNXDg4LoFC17M3rp1U8iPP37nr1Qq5WnTbih56KFHiwHAbDYzb765MuzQoYO+lZUVaq1WJw0fPqJm3rznc/38/MXrrpsytLy8XP3hh++Fnjhx3HPDhnf5qqpKxZtvrgo/cuQ3n7q6OmVsbLz+gQceLrjoojH1jW3bt2+v386d20LLyso0UVFRxokTL6vYtOmdyEOH/jzqyO+EZVmH2ueKKDkhhBBCCIEtMZk+/b8DUlNTemyIz4ABg+rfe28P39kE5ZtvvghcuvT1NFEUmMTEJPP06f8d5O3tY33ttVWnPT09xZ9+OuCzYcPbkYMGDdFfccWV1QEBAZbDh3/xGjZshEEURSQnn/Q0m83sX38ddT///Av1x48fc6urq1Veeull1a2vJQgCHn98ZhLAyIsWvZLh7+8vrFmzMuKppx5L2rPn0xMAUF5erj558h/PpUtXpFksZuaVV16MfeWVF2M2bdrOtxfz7NkPx2dmZrg99tgTubGx8aavvvrcb8mSRfEsy6ZffvnUGgCoqChX79//cdDLLy9LNxj07PPPz028557bB0+adFn52rWbUr74Yr//jh1bw8ePn1g9cOBg0+uvvxrx+++HfebOnZ8dGRll5nlet3z5KzHr1r0V9uyzL+Rt3Lg9ZcaM2wf95z/jKx94YGaRKIqYNeuhJKvVysyduyArMDDI+sEH7wXNm/dk0qpVa1NHjBhp+O67r71XrHgt9q67ZuRPmDCp+vfff/XauPGdyHP9nTjSvk79I+kjKDkhhBBCCGnSN9c9GT/+0ooRI0YaAMBoNDKXXnpZxRVXTK2KjIy2AEBMzL2lu3e/H5Keflp3xRVXVo8efWH1sWNHvAAUHz9+zF2hUMpJSQPqjxz53fP88y/U//zzTz6JiVx9YGCQ0Ppav/xy0CsnJ1u3Zct7JxMTk8wAMH/+ouytWzeGVFZWKAFAoVDIL730Wpa3t7cIAFOnXl22Y8fW8PZiPn06Vfvnn3/4LFq0JH3y5CtqAODRR2cXZWamu+3cuS20MTkRRZF58sm5OY1fzIcOHV57+nSqx9NPP5fPMAweeOCRog8/3BWalnZaN3DgYNPAgYP0EydOqrr44rH1ABAZGW359tuvarOzM3UAEBAQKLAsK+t0OsnX1088cOBbr6ysTLcNG7adarzGggUv5p4+neq+c+e2kBEjRma+//7OkIsuGlN5330PlQBAQkJiWX5+nubTT/cFn8vvxJH2ncu/md6KkhNCiEtgAIwKFqFSKsDYMd+k8ZiRDZ+7dh5CCHFhLMvivff28H1tWBcARERENg2n0ul08p133lP6xRef+u7Ysc29sLBAk5OT5VZdXaUSRYkBgHHjJtQsXPhcoNFoZH7//bDn4MFD6sLDI01//33MC0DxkSO/e19yyYTKtq6VlnZa5+bmJjYmJgAQHBwizJ27IL/xZ29vb6ExMQEAT08v0WKxtGhY85h5PlUHAKNHX1jffJ+hQ0fUvfvupojmzyUk/HtdjUYjBQYGm5mGN36tVisDgNlsZgHg+utvqvz55588V6x4LbygIF+Tn5+nKyws0A4YMLDFdRqlp6fpdDo3sfkXf4ZhMGjQkPpjx/70AoDs7Ey3sWMvqWp+3PDh59W3Tk46+ztxpH2uiJITQohL0CqBTVeY4OvrjqoqQDjjXl/bx6yfbOz64AghfQbLsvDw8Ohzq0dqNNqmmA0GA/vgg3dzJpOJHTdufNXll0+tGD58RO6jjz4woHGfiy/+T51KpZR+++0Xz7/+Ouo1ceKkyujoGPP+/R+F5OXlqLOzM90WLVqS2da1FAqlzHRwF4hl2Q57oJrH3N6kdEkSGYVC0WKjSqVq8TPLth/L4sXPR/3yy0G/CRMmVVx00X9qBgwYVLRz57aQiooydVv7y3LbTZMkCUqlUrZdj5VlueMOts7+Thxpnyui5IQQQgghxIX89NMBr6ysTLePPvr876CgYAEAqqoqFTU1NcrGJECtVsvDh59Xe/Dgjz5paac95s17PiciItLCMIy8du2asNDQMFPzye3NxcXFm/R6vSIzM0MTFxdvBoCKinLlbbfdMOTll5elORJzUtIAIwD8+efvHo3DugDgxIm/PcLDIx26i1RZWaH45psvA+fOnZ95zTXXN/V05OfnarVaXbPE6N8v/wkJSUaDwaBISTmlbd57kpx8yiMiIsoEANHRMcbk5FMeAJoWBD916sRZ5ynZ8zshNi7bJUQIIYQQ0h8FB4dYAGD//o/98/Jy1L//fthjzpxZCaIoMhaLtemb+JgxY6t/+OH7AC8vTyE+PsGs0WhkjhtYf+jQT/4XXTSmur3zjxs3vjY2Nt6wePGC2KNHj7inpiZrFy2aH+Pt7WMdPvw8gyMxc9xA04gRI2tWr14R9d13X3unp6dp3nxzVejRo0d8br75thJHzunl5S3qdG7ioUMHfTIzMzTJySd1Cxc+F52dneVmtf77Omi1WrGgIF9TWlqiHD9+Yk1kZLRx8eLn43799WfP06dTtS+99EJUfn6u7tZbp5cAwPTpdxX9/vuvvps2rQvOzMzQ7Nnzgf/nn38adLZY7P2dEOo5IYS4CKMATNvrBoYFPr/O/nVOrvnEdrPr02v1tM4JIcQljBw52jBjxgN5+/btDd65c1u4r6+fZdy4CZUBAYEWnv+3EtnEiZNrVq1azgwZMry28bnzzhtVe+LE317jx19a3d75WZbFsmUr01esWBY5b95TiQAwePCQuhUr1qRpNBqHuwFefXVF5qpV/xe+YsWyGIPBoIiMjDQ+99yijKlTr2o3lrNRKpVYsODFzHfeWRNx7713DHZ39xCGDBlWd8cddxfs2fN+qF6vZ93d3aVrr/1v6ebN6yIef/xh3a5de5NXr3779IoVyyJefHFBvNUqMLGxcYZXX11xetSoC/QAMHHi5NrS0pKc99/fGbJ9+5bw2Ng4wxVXTC378svP2k1Q7P2dEICxZ8yci8kURSm2slLv1JMqlWzDWHc9BKHPDVW1i6u30dXbB7h2G5svqHj4Nj1UTMft62uLMLry76+Rq7fR1dsHdF0b/fzcoVCwWQDinHG+o0ePDmBZxVdBQeH1arXWJaseka5x+PAhj4CAIGvzggBvv70m5Jtvvgz4+OMvTvZkbL2VxWLSlpYWeEiSOGXUqFGpZ9u3l38UE0IIIYQQ0nv89tuv3j/+eMDvmWeey46OjjEnJ5/S7d//cfDUqVeX9XRsroCSE0IIIYQQQuz08MOPFxqNRvbVV1+OraurVfr5+VuuvfaGkvvvn+myq7Z3J0pOCCGEEEIIsZNGo5Gfe25hHoC8no7FFVG1LkIIIYQQQkivQMkJIYQQQgghpFegYV2EEJfAABjkL0IWrPht5XKoJSu4626AT0Li2Y/xE5seE0IIIaRnUXJCCHEJWiXwdP1WsJ9/BhVr6xQuXPoyCqdciUE33dLuMe9OcWi9MEIIIYR0ARrWRQhxCfn5eTj6/ntQsSwyLGakmoxQMgyYr75AwZE/ejo8QgghhNiBkhNCSJ8nyzIWLnwWq9JSsUcWMHnjFkxatwknBCsUDIPcDe9AFoSeDpMQQgghHaDkhBDS5/388084+vdJKB/6Hb9esxdQu8Hd3QNDn5yDWsGKytpa/PXLwTOOMwnANZ+445pP3GGi3IUQ0keNHTt61O7d7/vbu/+PP37vdf31Vw6ZMOGika+9tiSiK2Ozx+rVK8Kuu27KUGeeszOvSX5+rnr//o99nXl94jiac0II6fP+3LIRXko1DF4RKDYAkM0AAyQNOw/Lo6Ox45OPMHb3Bxg5/tIWx8kAivRs02NCCOmL9u797G8vL2/R3v03bHg7Ijg4xPzGG2tPe3h42n1cX9KZ1+TFF5+PCQoKskybdn1VV8dFOkY9J4SQPu30rz/jaoUSK4YMa3P7zfc+CJZlcejQT8jNzenm6AghpOsFB4cIOp3O7nsser1eMWjQYH1UVIzFz8/fJZOTzr0mMhVs7EUoOSGE9Gnpe3cDAAo1mja3R0VF46KLxsBNocAvu3Z0Z2iEENItmg9hmj//6Zhnn30qdtmyJRFTp146/NJLx5w3e/bD8SUlxcrGfcvLy9QffrgrdOzY0aNyc7PVsixj/fq1wddff+XQSy8dc9706f8d9PHHe/waz//rrz97jh07etT69WuDr7hiwojbb79pYFZWpmbs2NGj3nrrjdArr5w0/Lrrpgytrq5W1NTUKBYufC566tSJwy+7bNyIBx64O+n48WNuzePdtWt7wA03XDVk4sSLR86e/XB8fX2d4mztu//+u7hVq5aHLVz4XPTkyWPPmzp14vC33nojNC3ttObee+/kJk68eORtt/130F9/HW26TuNrUl1drZg27fJhs2Y9lNC47eDBHz3HjTt/1BdffOpz//13cSkpyR4//fSDf+PQsuuumzJ09eoVYa1jmD//6Zj2Xg9RFFFYWKB6+unZcZdddsmIKVMmDJ8166GEjIz0tj+cSLsoOSGE9FlWiwXBlZUAAL9LJrS73w0TJmH98FEYwvMQDFQ6mBBydqLRyLb3RzKbme7Y91wcPvyLb21trfKNN9byL7zwUkZKSrLnm2+uCgdsw538/Pys11xzfcnevZ/9HR4eaVm5cln455/vD3rkkcdzN23akXz99TeWvPXWqujt27cGNj/v778f9lm7dmPKvHnPZysUrAwAP/74vd/KlW/yixa9kuHt7S3Onv1wYmFhgebll5elr127MXXAgIH62bMfHnDixN86ANi//2Pfd955M+r6628s2bDh3VMDBw7Wf/nlZ0EdtWnfvj0hQUHBlo0bt5+6+uprS3ft2h42d+4TibfcMr34rbc2pKjVKmnFiteiWx/n4+MjPv30/Ky//jrq/cknH/lVVlYoli1bEjtp0uXlV155TfWyZavSExOT9Bdf/J+qjRu3p3TmdW7+ephMJvaxxx7kJEnEypVv8StXvsV7eXkLDz9878DCwgJVZ87b39GcE0JIn/XPF5/BU6FEvShi2NXXAJ+0vd+Yq6/Fsc/2I0itQcoXn2LojW2ve0IIIQCQ8djM89rbpkviaiKfeTa98efMJ2cNl63WNm/2amJi66MXLOQbf86a+9RQyWBo87uXOizcELN4Sae+HLcbo04nLlz4co5KpZKTkgaYDh/+peLo0SPegG24E8uysk6nk4KDQwS9Xs9++um+4Dlzns2aPPmKGgCIjY0zFxUVavbufT/kzjvvLms87y23TC+Oj08wA0BubrYaAK66aloZxw00AcDPP//kmZbGu+/b9+XfAQGBAgA8+eTcguTkUx7vv78jeOjQ4dkfffRh8JgxY6vuvPOeMgBISEgsTkk55Z6dnemGs4iMjDI+8sjjRQBwzz0PlOzatSNs3LgJlZdfPrUGAC6/fGrFhg3vRLZ17Lhx4+umTr2m9J133oz8/vtv/Nzd3cW5cxfkAoCvr5+oVCpltVotNcZsr+avxwcf7Ayoq6tVvvrqiiyVSiUDwOLFS7NvuOGqoXv2fBA4a9aThZ05d39GyQkhpM8qPvgjPAGUenpioEbb7n5ubm4o9fJGkMmE8t9/Ayg5IYS4sODgEHPjF2QAcHf3EAVBaLNn5vTpVK3VamVef/3VmBUrXotpfF4UJUYQrIzRaGw6LiYm1tz6+KioaFPj49TUZDcAuOWW61pU3hIEgbFaLQwA5OXl6iZMmFTZfPugQUPqO0pOwsIimq7j5uYmAUB4eHhTPGq1RhIEa7u9T08++Uz+sWNHvI8d+9P77bc3J3dmjk57mr8ep0/zbkajUTFlyoQRzfexWq1sXl5O+x9Q5AyUnBBC+iRJkuBXWQEoVfC78GIwAOK8JSgULNDGx5Pv+RcAPx+ET0UFZEkCw7INx9jmgtJsSEJIo/g1b//V3jaGZVt8qY1bsfpve/eNfe31E/buey6aJyb/avv0kiQxAPDccwsz4+ISTK23azSapgO1Wq3UertWq23aLkkSo9PpxHXrtp7RA6RWqyUAYBgGcqtQlEplh21XKhVn7MMw9s9OKCkpVlVXV6kUCoV8+PAhr6FDhxnPfkTLywmCeMbHRPPXQ5IkhIaGmV59dUV66/3c3d1dsuhAV6E5J4SQPinjr2PwVShhlSQMnXYdtErgo2uN+O5OQNfGbZfzrrkW9YIAd5ZF3m+/AgC0SuDDqwz48CoDtHSrhhDSQKHTSe39YZt9We/KfbtLQkKSSaFQyEVFheq4uHhz45+DB3/w3r59czDL2v9VMT4+0Wg0GhUWi5lpfq6tWzeGHDjwrQ8AREfHGE6e/Nuj+XE8n+Lu3Fa1JEkSFi9eEBsdHWt4+OFZue+99274yZMndP/uwbT8PSmUcn29XtH8+NLSEvXZrhEXF28sLy9Xe3l5iY3tjoqKNr/55qrwP/447OnsNrkySk4IIX3SET4ZM47/iY9UCug8O37f9/HzR57C9paX/dOPXRwdIYT0Dd7e3uJll00p2759S/hHH33ol52dpd6z5wP/rVs3Rfj6+nVqDsbEiZNqoqNjjAsXPhd/6NBBz8zMDM2yZUsifvjhu4DY2HgTANx2213Ff/zxm++GDW8HZ2Ska7Zt2xT0+++Hu3QBxPXr14ZkZWW5zZ+/KPuWW24vHzhwcN3LL78Qa24oQqDT6aTS0hJNQUG+CgAGDhxUf+jQT36HD//ikZ6eplm8+Ploo9Fw1opi06bdUOnh4S7OnftE/NGjf7inpfHa55+fG3v8+FHvxESug14a0hwlJ4SQPun33w/DIIqIuOg/dh/DRMcAAOTc7K4JihBC+qB5857Pu/baG0refXdL+N133zZk585tobfeenvhY491bhK3QqHA6tXvnE5MTNIvWbIw7r777hz0zz/HPRcseDFj3LjxdQAwefLlNc8881zmN998GXDvvXcOPnTooM+0adeXdE3LgBMn/tG9//6OsDvvvLsgLi7eDADPPvt8Tnl5mWblymXhADBt2g1leXm52hkzbh8siiIeffSJgqQkrn7+/GcSH3vswQFeXl7CmDHjzrpAo7e3t7hmzfpUb28fYd68OYkzZ947sLS0RP3KK8vTBgwYdMZwOdI+Rm498M/1ZYqiFFtZqXfqSZVKFr6+7qiq0kMQzhiS6RJcvY2u3j7AddooCALGj78Qer0eu3btxcCBg2ESgLu+dodCweLdKXqocGb7/vzhe7y3ZBEKlUrs+vIAzCKDu762zcF894reP7TLVX5/Z+PqbXT19gFd10Y/P3coFGwWgDhnnO/o0aMDWFbxVVBQeL1araUvj4R0IYvFpC0tLfCQJHHKqFGjUs+2by//KCaEkDOl/HQAcyNjcNJkAMcNBGCbuphZ09AZLKPNGe5Dx4zFodoaWCwW5ORkITgiDpk1iqZDCCGEENKzaFgXIaTPKfzjdwzw8MT5wWHozGRNjUaDYcNGAAD+/POPLoqOEEIIIY6i5IQQ0ucIuTm2B+HhnT52zPDzMDUoBNaDPzk5KkIIIYScKxrWRQjpU2RZho/BCKhUCGzoBemMoXEJGBsVA1O9HrLkmmP+CSGEkL6Kek4IIX1KUUY6AlUqSLKMxEvGd/p4buwlMIkitCyLcp7vgggJIYQQ4ihKTgghfUr6z7bhWOWyBHc//04f7+XtjULJtlhv7h+HnRobIYQQQs4NJSeEkD6lNjUZAKD39mnxPAMg1F1ChCfarNTVnMHHtt5XfVoaQt0lhLpLHR1CCCGEkG5Ac04IIX1KSWkJQiTALT6hxfNaJfDlf40N6ysAwlnWNXZPSAT+Pg7P8iJ8eq1z1zwihBBCiOOo54QQ0mcIgoD1ySdx399HETH1SofPE3XhRQAAf1mGYDQ6KzxCCCGEnCPqOSGE9Bm5uTkwm83Q6dwQFeP4ItEJ543CX1YrvJRKFJ78B1HnX+jEKAkhfR3DQMEwTI/cwJVlWZJliD1xbUJ6A0pOCCF9Bt8w3yQxMQkKhaLFNpMAPPC1FkoFsH7y2d/cVCoVtlvN+D0lBWFZI+FV4Yb1kw3Q0jsiIf0ew0AhMUyowST0yDuCm1YpsJCLeluCsnr1irADB77x37fvqxOdPTY9PU3zwAN3D9q6deepqKgYS1fER1wHfRQTQvoM6eeDWDv0POSHhJ6xTQaQXGFLWGQZHU6K90/iYEnLQL7gB1TajieEEIZhWINJUP52skgymIRuXQzJTatkLxoSqvTUKllZlntVcuKo5OSTunnznkqwWMw0lYDYhZITQkifwZSXIUCjgSUo6JzPxXEDgM+/cEJUhBBXZDAJkt5o7YmVWl3mS/zatatD9ux5PzQ8PMJUWVmh7ul4SN/gMv8BCCGuTZZl+FisAICAwUPP+XxcbDzuiog+5/MQQkhPGzt29KidO7cFzphxBzdx4sUjb731+kHffPOld/N9vvvua+877rhp4MSJF4+84YarhqxatTzMbDY39TGnpiZrZ89+OP6KKyaMGD/+wpE33HDVkC1bNrZ7J2jr1o1BEyZcNPLrr7/waW+fo0f/8H766eeyZs58LN8pDSX9AiUnhJA+oTQvFwEqFQAg9oJzn8CeMHAwLvELOOfzEEJIb7Bly4aIiRMnVa5fv+3U6NEX1rz00gsJR4787g4AP/zwndeSJYvip069unzz5p2nHn/8qdxDh37ymz//6VgAMBgM7FNPzUrSanXSmjXvpG7Z8t6psWMvqdq06Z3IEyf+0bW+1o4dWwO3bdsUsWDB4owrrriyur2YNm3awU+denW72wlpCw3rIoT0CTlHfocPgCpRRJL/uScVXt7eKJFcYkg3IYRg4sTJ5XfeeU8ZAMyZM6/g5Mm/PXfv3hV0/vkXZu3YsTV00qTLy2+//X9lABAbG2dWKpU5c+c+mZSbm612c3OXpk27vvS22+4s9fLykgDg0UefKPzoo90haWmpuqFDhzXVXN+1a0fA5s3rIxYufDl9woRJtT3TWuLKKDkhhPQJFakp8AFQq9M67Zz1bu5OOxchhPSkkSNH1zX/meMG6o8fP+YFAFlZWW4ZGenuP/zwnX/jdrmhCkh6epr20ksvq50+/a7Szz77xC8jI82toCBfk5OT5QYAoig1Df2qqqpSvf326miFQiFHRESZu6NdpP+h5IQQ0icIhQUAADYouN19fDUyGLaDMl3NKEND4WmpgcQw6LC8FyGE9GJKpbJF0UFZlsGyCtn2WGKuu+7G4mnTrq9ofVxwcIi1tLRE+cADdw/09PQSLrpoTPWoURfUDhs2XH/LLdcNa74vw7BYvPiVtM2b14ctWbIodtOm7aksSzMEiHNRckII6ROyqqshCwKCk7g2t+uUwA+3GODr646qKkAQOj5ncHwU1n0/A1WSBN3/3nVyxIQQ0n2Sk0+6X3bZlJrGn1NTkz3i4+MNABAREWXMy8vRxsXFN/V2HD58yOODD94LfvbZF3I+++wT//r6OuXu3ftPqlQqueF8DXNN/s15fHy8rePHT6wNCgqyPPTQjEFbtmwIvvfeB0u6qYmkn6B0lxDS6wmCgO2nU/ACn4yI8ROddt6woSMAAN4MA9Fkctp5CSGku3366b7gffv2+qWnp2lee21JRE5Otu622+4qAYBbb729+I8/fvNdvXpFWHp6mubQoYOey5a9EqvX1yuDg0OE4OAQi9lsZj/77BPf/Pxc9U8/HfB68cUFcQBgsVjO+K44cOBg0/XX31S8c+e2sIyMdE13t5W4Nuo5IYT0egUF+bBardBqtQgNDXPaeSO5AThutUKQJRSnn0b4kGEdH0QI6RfctMpuv4F7Lte8/PKpZXv2vB+8atVyXXR0tGHp0uVpgwcPMQLAVVdNq5JlOXPXru2hH330YYibm7s4evQF1U888Ux+4/bU1JTiDRvejlyzZgUbEBBoueKKK8sPH/7FJyXllDuAstbXmznzsaJffjnou2TJopiNG9/laXgXcRZKTgghvV7W6VSoGAYxMXFo7wPQJACPf6+FSgmsGm/fm5vIqPDEyMUwGg34v8oahDs3bEJIHyTLsuSmVQoXDQlVogdGmLhplYIsy51e/DE2Nt74zDPz211P5Oqrr626+uprq9raxjAM5syZVzBnzryC5s83H7I1a9aThbNmPVnY+LNGo5F3795/yp7YxowZV3fo0J9H7dmXEEpOCCG9nvGP37F95AVI051Rbr+JDOBoicL2WIZd89tlAKbAEWAAZGW/BVwy1hnhEkL6MFmGyEIu8uyBnhPb9WVJlkF1zkm/RckJIaTXE4qLwTIMdH5+XXaNrKysLjs3IaRvkWWIsixTgkBID6DkhBDS62nq6wCFEh7R0V12jTF5eV12bkII6Uo0ZIq4Epq9RAjp1SRJgm/DamFBAwd32XXCGBaimdYUI4QQQnoSJSeEkF6tKDMD3koVACBi2Iguuw7LMChJPtll5yeEEEJIx3pVcsJxXBLHcfUcx93d7LkRHMf9xHGcnuO4XI7j5vRgiISQbpb/z3EAQJUoQu3h0aXXKjrxT5eenxBCCCFn12uSE47jVAB2AnBv9pw/gG8BnAYwGsBCAC9xHHdPjwRJCOl2VelpAIB6TcfrfGmVMnSdnEmnVchQibYFGGtzsjsbHiGEEEKcqDdNiH8RQF2r5x4AYAYwk+d5AUAKx3GJAOYC2NLN8RFCekB2VRVyy8sQOuK8s+6nUwK/TTfA19cdVVWAIHR8bp0SOHRLPfY//yy0khlSebmToiaEEEKII3pFzwnHcZcAeBDA/1ptGgfgYENi0uiA7RAuqLviI4T0nN+LC7E2OwPKCy/qsmu4R0QCANR6fZddgxBCCCEd6/GeE47jfABsB/AYz/N5HMc13xwB4ESrQxpXJ40CUOrodZVOXltJoWBb/O2KXL2Nrt4+oG+2MTc3BwAQGxvb4f9bR9sXPHAAqn89hEpRdPp7gzP1xd9fZ7l6G129fYBrtJFhoGAYhhZhJKQH9HhyAuBtAId5nn+vjW1usA3ras7U8LfW0QuyLANfX/eOd3SAl1f7K1i7Cldvo6u3D+g7baytroa6vh4KhsHw4YPg5dX+/1uTADz0ue3xO1fpoLXj3a3xGKs8FT+efAIQzbhdy0J3lpXoe4O+8vs7F67eRldvH9B328gwUOhYa6hsMfTIdyRG7SYYJVVRb0tQVq9eEXbgwDf++/Z91fqmcbt2797lv3fvh8GlpaUaX19f6+WXTym/776ZxQqFoitDJX1cjyYnHMfdCdvQraHt7GIE0HoWbGNS4vD4C0mSUVtrcPTwNikULLy8dKitNUIUJaeeu7dw9Ta6evuAvtfG5EO/4Y2hI2CURAgCi6qq9v/bG63AD9m25KW6xggN23H7/j1GDU9vX9RVFuOff1KQlMR1eGxP6Gu/P0e4ehtdvX1A17XRy0vXLb0xDMOwssWgrOd/lySzsVt/SaxGx3pwFyoZlQ/b11eo37dvr99bb70R/dBDj+VeeOHFdadOnXBbvfr1aIvFyjz22BNFPR0f6b16uudkBoBgAK2Hc73DcdzTAHIAhLU6pvHngnO5sCB0zfuNKEpddu7ewtXb6OrtA/pOG4tTUxECoJZhIIoyALndfYVmH+OSKEGQOm5f82OioqJwqrIYmRkZiItLdDzobtBXfn/nwtXb6OrtA/p+GyWzURJN+p5oQN8dD9fM/v0fB44ff2nFrbfeXg4AsbFx5pycbO3XX38RQMkJOZueTk7uANC63zcNwAsAPgBwG4CHOI5T8Dzf+DViEgCe53mH55sQQvqG+rxcAICpG4ZZXeofgJlDR8D880Hgsildfj1CCHGWsWNHj5o587Hc77//1i8rK8M9ODjENGPGAwWXXz61pnGf77772nvr1o1hBQX5Ol9fP8sll0ysnDnzsSKNRiMDQGpqsvadd94MT0lJ9jSZjKy/f4DlmmuuL73nnvva/L61devGoK1bN0Y8++wLmVdccWV16+0PPfRovp+f/xl1E/X6+p7+7kl6uR79B8Lz/Bm9Hw09KKU8z+dwHLcZwDMANnEctwzABQBmA3ioO+MkhPQMoawMAMD4+nf5tXx9/RFUU4n8ioouvxYhhDjbli0bIv73v3vzn332hexPPvko4KWXXkjw9fVLPf/8C/U//PCd15Ili+Lvu++hvDFjxtXm5mZr1qxZGZWfn6tdvnx1psFgYJ96albS0KHD69aseSdVqVTJ+/btCdi06Z3I0aMvqBs6dJix+bV27NgauG3bpogFCxZnTJ58eU1b8VxwwUUtxuFWV1crvvzys8Dhw8+r7crXgfR9vbrrsKF35AoAHIBjsC3C+DTP89t6NDBCSLdQ1dcDAHThrUd3Op9HVJTtWiZTB3sSQkjvM3Hi5PI777ynLDExyTxnzryC+PgE/e7du4IAYMeOraGTJl1efvvt/yuLjY0zjx9/ae0TTzyd89tvv/rm5marDQY9O23a9aXPPbcwJylpgCkuLt786KNPFAJAWlpqi67rXbt2BGzevD5i4cKX09tLTFqrr69n58yZlWC1WthZs57Kc37riSvpdV1rPM8zrX4+AuDiHgqHENKDvEQBYNXwi0vo8msFJXHAwe/hA0AWRTBUTYYQ0oeMHDm6xULWHDdQf/z4MS8AyMrKcsvISHf/4Yfvmrqh5YYpfOnpadpLL72sdvr0u0o/++wTv4yMNLeCgnxNTk6WGwCIotT0vayqqkr19turoxUKhRwREdW6mmqbSkqKlXPmzEosKSnWvPrqitMxMbGWc28tcWW9LjkhhBAAqK2qgr9SBQAIHzKky68XMWAQiiUJapZFVU42/OLiu/yahBDiLEqlskXFEFmWwbIK2fZYYq677sbiadOuP2PcanBwiLW0tET5wAN3D/T09BIuumhM9ahRF9QOGzZcf8st1w1rvi/DsFi8+JW0zZvXhy1Zsih206btqSzb/iCctDReO2fO44miKDKrVq3lBw0aYmx3Z0Ia9OphXYSQ/isvOxO7C/Pxa10tPEPDO9xfpwSO36VHzuOATmXfNXRK4M/pdfhzeh0CfDxQJlgBAEWnTp5L6IQQ0u2Sk0+2WAgqNTXZIz4+3gAAERFRxry8HG1cXLy58U9JSZFq9erXI+rr69hPP93nX19fp9y8eUfqI488XjR16lXVNTXVDTew/815fHy8rePHT6ydN29BdmZmutuWLRuC24snJydbPXv2I0larVZ6553NKZSYEHt1uueE4zglgAmwVc2KBeANoBy2sr9fAviV5/n2630SQogdcouLsLeoAOeFhOBuhun4ACeoV6sBANWZGd1yPUJI78VqdN1+A/dcrvnpp/uCo6NjTUOGDNPv3fthYE5Otm7u3OezAeDWW28vfvXVl+JWr14RduWV11QUFxepX3/91ZiAgABLcHCIEBwcYjGbzexnn33ie/75F9RnZKRr165dHQkAFovljJgGDhxsuv76m4p37twWNmHCpOr4+IQzhni9/PLCGEGwss8//1KaSqWSS0qKm75zBgeHnFHFi5BGdicnHMepAcwE8BSACABVsCUkegCRAK4G8ByAQo7jXgOwnud5u8YjEkJIa7m5OQCAqKjobrumydsHfEE+hFq75ngSQlyQLMsSo3YTPLgLleiBESaM2k2QJbnT66tcfvnUsj173g9etWq5Ljo62rB06fK0wYNtvRVXXTWtSpblzF27tod+9NGHIW5u7uLo0RdUP/HEM/mN21NTU4o3bHg7cs2aFWxAQKDliiuuLD98+BeflJRT7gDKWl9v5szHin755aDvkiWLYjZufJdvPryrqKhQlZJyyhMAHnronkGtjz106M+jnW0f6T/sSk44jrsAwDYAIoC3AXzI8/wZtxY5jhsK4EoAswA8znHcnTzPH3ZivISQfqImMwPBGg0iIyLt2t8sAvN+0UCtAhZeCNgznd0sAi/8qgUALB5jQt3gwVjy/de4Kj4e159D7ISQvkuWIRolVRGj8umRoe+yJEuyjE6vDh8bG2985pn5+e1tv/rqa6uuvvraqra2MQyDOXPmFcyZM6/FEg/33vtgSePjWbOeLJw168nCxp81Go28e/f+U22dLzQ0zEoJCHGUvT0n2wHM43n+47PtxPP8CQAnALzGcdzNsCU0SecWIiGkPxpaVobrhp6HctG+G4iSDHyXY3tLe/58QGHHSDBJBr7Ps01QWSSbEBFhKyec17D4IyGkf5JliLIsdzpBIIScO3vvCgztKDFpjef5DwF0fYkdQohL8hJt3wv84hM73JdhGCial/5VsGAcmKcSEREBACgqyIcs09Q5QgghpLvZ1XPC87xDNakdPY4Q0r/VVlc3lREOG3zGcOUWGAaAgkFaXg0ANwBAekENBkd4QhY7l2CEh0dixeDhCNVqUVdYAK/wCEfCJ4SQbkVDqIgrsXfOyQudOSnP84sdC4cQQoDC1GSwDAOLJMEz5OyrwyuUCmQX14HPrgAQCgA4nV0BLw2DmGBPWK32j8zw9vaGSqGAgmFQnJpCyQkhhBDSzeydc7Ko1c8yAAa2CfLlAHwBqAFYAFQCoOSEEOKwisx0BAKoAcCcZYEvhYJBrcGKtNwqCM16SayChPTcKvh5aeGuVkCS7O9BqVOwCAZQmZkBTLrM8UYQQgghpNPsmnPC8zzb+AfAZQAqANwKQMvzfCjP81rYqnRVAHiyy6IlhPQLdXl5AACTRnPW/RiWRV5JHWrqz6xaXlVnRl5JHRSKzhXcsbrZ1jEzFhV2sCchhBBCnM2RMnlvAnie5/kPeZ5vGi/B8/xXABYAWOKs4Agh/ZOlzFZSX/LyancflmVQZ7CioLSu3X0KSutRZ7SCZe2fHM/4+QEAxIoKu48hhBBCiHN0eoV4AFEA2quzWQYg2PFwCCEEOKmvx4nCfIwefX67+yiULIqL6lCrt9XdUDES5kWegE6nhmCSIctATb0ZJVVGJIR5QZLOnHuiVQA/31zX9BgA3MLCgKIiqA0G5zeMEEIIIWflSM/J3wAe4zhO1fxJjuO0AJ4B8LszAiOE9F9HiguxuzAfPueNbHcfs1VCUXl9088MA6hZGWpWRvMqwkVl9TALba+VwjCATmn703iMb2wcAMBTpCUOCCGEkO7mSHLyLIBLAWRwHLee47glHMdtBJAJYDiAp5wZICGkf5EkCQUFtkWOw9uplqVUsqjRW1BZY+rwfBU1RtTqLXbPPQkdMAhp9fU4XlMNwXLmXBZCCHE1er2e3b59S2Djz/PnPx1z//13cV15zfz8XPX+/R/7nss5du9+33/s2NGj2tveHe0YO3b0qN273/fvymt0l9zcbPXYsaNH/frrz549GUenkxOe538CMAa2HpJrAMwBMBXAdwBG8Tx/3JkBEkL6l7KiQnBaHUJ1bggODmlzH4ZhUFyhh9Bs9XhBZvBJeQR2F4ZCkP/tOrEKEoorDWDamHdiEYFFh7VYdFgLS0NHSXBkFBam83gj4zRKy8ud2zhCCOmFNm9eH7x37wdNb7jPPLMgb9myVeldec0XX3w+5vfff/XuymuQvsmROSfgef4YgJucHAshhKAo+RSeTxoIvSRCpVK1uY/RKqKi2tjiOUlm8LfeNpn9cu+Wd14qqg0wW72hQEuiDHyWZbvG3PNtvTAKhQLh4eHIyclGfn4ewsLCndIuQgjprWRZbnH3xtvbuxvGtcr2Vyoh/YpDyQkAcBw3FbaywqEAngNwHoCjPM/nOCk2Qkg/VJWdCTcAdWzrVMJGoWBRXWdus3xwe6rrzKg3CvDzUEMU255/0lxERCTycrJRmJ0FXHCR3dchhJCeUFNTo1ix4rWIP/447CMIAhMbG294+OFZ+SNGjDQAgMFgYF99dXHkn38e8TEYDIrw8HDTHXfcXTh16tXVq1evCPvww/dCAdsQpffe23Ni3bq3wkpLSzQbNrzL//rrz57z5j2VtHTp8tNvvPF6VGlpqSYmJsawYMHirG+++dL3s8/2BYuiyIwbN6Fi/vxFeQzDQJZlbNz4TvA333wZUFZWqlGpVNKAAYPq58x5Njc6OsZy//13cSkpyR4pKcke1103xXPfvq9OWCwWZvXq18N+/PGAv9FoUERERBlnzLi/cPz4S2sb2/nll5/7bNu2MaykpFgbH5+oHzFiZG17r0kjUZSwZMmiyB9//N5fqVTKl102pXzWrKcKlErbV+A//vjNffPm9WEZGWnuVquVDQ4OMU+fflfRtdfeUNl4jk8++cjvgw92hhQVFWp9fHytV199bem99z5Y0vpaZWWlykceuZ/z8fG1rlq1Nt3NzU366acDXhs2vB1eUJCvCwoKNv/3vzcXr169Iua99/aciIqKsVx33ZShF144pvqvv4561dTUqF54YXHGRRf9p27btk1BX3zxaVB5ebk6ICDA8t//3lJ82213lAPAr7/+7PnMM08kNZ4DsA3Jmj79xqHLlq08PWbMuLr585+OkSSJ8fX1s/7ww/f+ZrOJHTZsRO2zz76QExwcIgBASsop7cqV/xeVnp7m7uvra73llulF5/QP0Uk6PayL4zg3juO+AfA5gBkAboZtEcaZAI5yHDfYuSESQvoTQ0EBAMCi07W5nVUwKKs2wtrOJPe2WAUJ5dUGKBT23aib4OGJHSMvgOefR+y+BiHENcgyoLeC7ak/sv1rxjbEK2P27IcTCwsLNC+/vCx97dqNqQMGDNTPnv3wgBMn/tYBwJo1K8Kys7PcXn319bRt23adHDXq/JpXX30pLjc3Wz1jxgPF11xzfYmfn591797P/g4Pj7S0voYkSVi7dnXk3Lnzs9esWZdSU1OjfOSR+wfm5ubo3njjbf5//7s3/6uvPg/6/vtvvAFgy5YNQbt37wp94IGH87dv/+Dkiy++klFYWKBduXJZJAAsW7YqPTExSX/xxf+p2rhxewoAPP/83JijR//0fvbZ57PWr9+WfMklE6peeOHZhO++s53zyJHf3V95ZVH8mDHjqjdsePfU5MlXVOzd+0FoR6/P6dOpHtXVVao1a9alPvXUvOzvvvsmYNmyJZEAUFhYoJo378mk2Nh447p1W1PWr9+anJjI6Veu/L+Y0tISJQB8/vl+3+XLl8aOH39p5caN20/NmPFA/s6d28Lef39nQPPrVFSUKx999AHO3z/A8sYbb6e5ublJJ078o3vhhWcThg8/r279+m2n7rjjf4WbNq2LbB3j119/Gfjoo0/kvvbaitOjR19Y/9prSyI/+GBn2B133F24adP2U9dee0PJunVvRm3btimoM/82Dh/+xbe2tlb5xhtr+RdeeCkjJSXZ8803V4UDtoT2qace49zc3MS1azekzJr1VO57770b1pnzdxVHek5eATAKwCQAP8O2KjwA3AngawAvAbjBKdERQvodsdJ2s4rx8Wlzu1WQUFljbHPb2VTUmGAR7PvU9wgIgrKiEmxthzflCCEuRJaBO75yG8BXKdx7KoYBvmL99ikGnrFz0NOhQwc909J49337vvw7ICBQAIAnn5xbkJx8yuP993cEDx06PLuoqFCj07mJ0dGxZm9vb/Hxx+cUnHfeqDpvb1/Rw8ND0ul0EsuycuMd9bbcc8/9BaNGXaAHgDFjxlZ/9tknQS+88FKOm5ublJjImXbs2BaekZGmmzz5iprIyCjznDnPZl122ZQaAIiMjLb8/vvhqoMHf/QFAF9fP1GpVMpqtVoKCAgUMjMzNL/88rPfm2+uT2ns7YmPTyjJyEjXffDBjpDJky+v2b17V1BSElc/a9aThQCQkJBozszM0H3xxf6zfmH39vaxvvTSa1larVYeMGCQqaysrGDdujejZs9+usBisTC33npH4X33PVTCsmxjO4t+/PF7/8zMDG1QUHD9nj3vB1988X8qH3zwkeKGuMwGg16h1eqa7pDV1tYoH330waSAgEDz66+vydBqtTIA7Nq1PTg2Ns7w9NPP5QNAYmKSubKyUrVhw9stEpTzzhtZc8klE+ps56plv/7688B7730w77rr/lvZcM2ywsICzQcfvBd6110zSu37lwHodDpx4cKXc1QqlZyUNMB0+PAvFUePHvEGgM8//8TXYrGwL764NNvb21scMGCQyWg05L388sJ4e8/fVRxJTm4B8CzP8z9wHNc07oLn+WKO414G8JbToiOE9DtKfT3AsNCGnHlDjGUZ1JvFprVNOqO23gyjWYC7RgFJOnuS4hUVBfCpcLN0/jqEkL6NATrZd9GzUlOT3QDglluuG9r8eUEQGKvVwgDAHXfcXbxgwTMJ1157xfDExCT9yJHn10ydenVlZ+aWxMbGN5VH1Gi0kre3j9XNza3pC7parZLMZgsLAJddNqXm6NEj7qtXvx5WUJCvyc/P0+Xn52l9fX2tbZ07OfmkGwA89dRjLSpriaLIuLm5iQCQk5Ptdt55o2qabx86dFh9R8lJfHyCoTFZAIBhw0boBUFgMjLSNUOHDjP+9783V7z77uagnJwsbUFBgTY7O9MNACRJZAAgNzdHd8kll1Y2P+ctt9zeolrK9u1bw0VRYFpfKzMz3a310LORI8+vA95uEWN4eETTa5uefloriiJz3nmj65vvM2LEyPpPP90XXFZWavd39+DgELNKpWqKx93dQxQEgbHFluEWHBxqav5vYNSo8+vbOk93cyQ58QGQ3c62KgAejgZDCCHuggCo1PCOjjljm0LBolZvhN7Y5ufbWemNVtQZrPDUqdpckLG5oCQO8rffwIthIIsiGEXb818IIa6FYYDtUwy8QXBoqQWncFNCsrfXBAAkSWJ0Op24bt3WlNbb1Gq1BACjR1+g//jjL//5+ecfvY4c+d3rm2++DHj//R1hL7+8LG3cuPF19lxHpVK2SNrYNiogNlq/fm3wrl3bwydOnFw+YsTIuptvvq30xx8P+Pz8849+be0vy7YcZ9Wqtanu7h4txuwqFAr53/1aTqJXKlUdJpIsy7bYp/H9X6NRy2lpvPbRRx8YEBMTZxg16vyasWMn1Pj5+Vkfe+zBgc2v39HvY+jQYbVXXjmtfMmShfE//PBd5cSJk2sbjoUkdTzxX63WnNFGptVFJcn2sjRPNpoPAbRahTOu03zffzV/qvOvZ3dwJDk5CeB2AN+0se2ahu2EENJpZrMZvg0T4YMTk87YLgMor3Js5XYZQFm1AeEBbh3uG5qQiFxJgpJlUZ2fD9/oaIeuSQjpexgGcFfB/kltPSw+PtFoNBoVFouZGTBgUNMd+BdeeDY6ISHRcNddM8pWr349bPjwkfWXXz615vLLp9aIoph3663XD/7hh+98x40bX8cwjFO/lH744Xtht956R2HjUCgA2Lnz3ZCW82n+vWZiImcEgJKSEvXkycObekdWrlwWzjCsPHv2nMK4uHhDSsqpFjfAU1JOdjj8Ljs7002SJDQO2zp27E9PtVotRUfHmpcvXxrh5eVtXbduy+nG/b/99itvwDaXBwDCwyNNPJ/S4jpLly6OLCkpVq9atTYDAC65ZGLV1KlXVf/ww7eVK1cuixk16oKTXl5eUkxMrKH1sSdOHD9rzAkJSSaFQiEfO3bEY8iQoU1jmI8fP+bp7e1j9fHxFVUqW9JZW1vbdOcsJydL09Fr0VxiYpLhwIFv/SsqypX+/gECAPzzz189NpyxOUfuDLwM4E6O4z4DcB9sn/njOY5bA+BhAMucGB8hpB8pKszH5txs7CstgV/DSu3NWQSp3SFdKkbCUxGnMD8hDap2Pmdr6s0tVovXKoBvb6jHtzfUQ9usc8TD0wsVgm3odVna6danIYSQXmPixEk10dExxoULn4s/dOigZ2ZmhmbZsiURP/zwXUDjUKyCggLNqlX/F3Xo0EHPvLwc9eef7/ctLy/TDB06rB4AdDqdpNfrFenpaRqr1XrOJX79/QMsx44d8eL5FG1a2mnNypX/F/bHH7/5WK3Wpu+dOp1OKi0t0RQU5KsGDBhkGjlydM3q1cujv/nmS+/s7Cz1xo3vBH/00e6Q8PBwMwBMn/6/4pycbN1rry2JSE9P03z88R6/L7/8LLD9KGwqKirUzz8/NyY1NVn7xRef+rz33rth1113Y4lGo5GDgoItlZUV6gMHvvXKy8tRf/nlZz6rV6+IBgCLxTYkbvr0O4t+/fWQ79atG4OysjI1+/d/7PvNN18Gjh07vrr1tZ55Zn6exWJhli9/JRKwDafLyspwX7781fD09DTNV1997rN9+9Zw4MyekUbe3t7i5MlXlO/cuS183769fpmZGZrt27cEfv31F4HXX39jCcMwGDBgkFGr1UpbtmwIzczM0Bw+/IvHpk3rIto7Z1uuvvq6Si8vb2H+/GdiT548oTt8+JDHW2+9ccZk/Z7gyCKMnwC4A8Aw2AbNMQBeh23dk4d4nt/j1AgJIf1GQWEhfqwowxGNCgq1usU2lmVgNAuoM7SdnDAM4K4Q4aEU0d77c73BApNZaBqOwDCAr1aGr1Y+45j6hhXlq3Kyz6lNhBDSlRQKBVavfud0YmKSfsmShXH33XfnoH/+Oe65YMGLGY1DtubPX5QzbNiIuldfXRx75523DHn33c3h//vfvfnXX39TJQBcfvmUKh8fX+t99901+J9/jnfcvdyB+fMXZZnNZnbmzHsHPv74QwOyszN1Dz88K6eurlaZm5utBoBp024oy8vL1c6YcftgURTx6qsrMi++eGzV6tWvR9999/Qh33zzZcAjj8zOuemm2yoAYOjQYcaXX16WduLEcc/77rtr8N69HwTfdNNtHZa+HT36gmqFQiE/8sj9A998c2X0lClXlz7yyOOFAHDXXTNKx4wZV/naa0vi7rnn9sE7dmwLvfvu+woCAgItJ0+ecAds82ceffSJnM8/3x94zz3TB2/btin8/vtn5t544y0Vra8VEBAo3H//w/kHDnwX8OOP33sNHDjY9Pzzi9OPHPnN57777hy8bdumsCuvvKYUAFQqdbu9Vc8++0LuVVdNK928eX34jBm3D/7ss0+CHnzw0dz77nuoBAA8PT2luXMXZBYU5OlmzLh98OrVr0c9+OCjeZ1JTtzd3aXVq9/mlUql/PjjDw1YuvSl2Jtvnl7c8ZFdj5E7W7OuGY7jOAD+AKoBpPI83xe6QTNFUYqtrNQ79aRKJQtfX3dUVekhdKLEaV/i6m109fYBvb+NH364C6+88iImTLgUq1atbbFNpVIgr0yP304Utns8yzLQ6dQwGi3tTnofMywMYf7uEISzzzvZ/uiDEAoLEHDpZFzz6OxOt6Ur9PbfnzO4ehtdvX1A17XRz88dCgWbBeDMblUHHD16dADLKr4KCgqvV6u1po6PIKRz/vrrqJtSqZSHDh3eNDxr3769fqtWLY/57rufjzWutdIfWCwmbWlpgYckiVNGjRqVerZ9HVnn5ADHcQMAgLf5lef5ZJ7nJY7jhnEc94+jgRNC+rfatNMY6umFuOC2S9dXnKWEsCAz+KIiDJ8UB0M4y/zD8hojGoYewyICrx3R4LUjGlha5SplcfF4IzMdqcbOly0mhBBCUlNT3J588jHum2++9M7Pz1UfOnTQc/v2LWH/+c/Yyv6UmHSWXa8Mx3Fj8W8iMwG2OSZtlW67GkCP10cmhPRNQQX5eJ4bhALpzLutFlFC3VlKCEsygz/rbWtiTfDMb/fOS53eAkvD3VxRBnan2YaPzTqv5YrzYWHhAIDCwoLONoMQQgjBrbfeXl5RUa56++01UVVVlSovLy9h3LgJlY8++gR9sJyFvWnbfQDugm3yuwxgLWxzTZqPm2i8Vfme06IjhPQraqMRUCihC2m5SC3DMDBaRNQbz33dkXqjFSarBJ2SxdmWMwgLCwcDoK6o/WFkhBBCSHsYhsGjj84uevTR2R3OjSH/sjc5eRzAFtgSkAMAHgGQ3GofEba5J6ecFRwhpH/xkCRAAfhEtSzdq1AwMNQLMBjbXbzYbnqjFUaTFR7eWsDafnIS6u2NnSMvAENrnRBCCCHdxq7khOf5GgA/AQDHcRMBHAXgwfN8ccNzvgAieZ6nNU4IIQ4x6PXwVdjekoITE1tsYxgG1bVmSOdQwKORJMmoqbcg2Fd31v3C4hOQDUDJMKjKy4VfTOw5X5sQQgghZ+fIOid/A/gYwI/NnrsQwHGO4/ZxHHfOJegIIf1PcUY6VCwLSZbhHdGy1LooAzX1ziumU1VngthONa9G7h6eqKS1TgghhJBu5Uhy8iqAwQCea/bcAQDXAhgNYLET4iKE9DPlmekAgFpZAtuqiolFEKF3wpCuRnqjtWlS/Nk0rnVSnZPjtGsTQgghpH2OJCfTAMzhef6jxid4nrfwPP8pbAnLzc4KjhDSf9Tk5QEADK0SE5ZlYLaIMJisTruWwWSF2SI2LcbYHovONvTLUEyT4gkhhJDu4EiRZU8AVe1sKwEQ4Hg4hJD+KttixhfZGRhxwcUtnmdZBgaTAKP57D0nKkbCrPAUaDVqqAQZZ5ueYjQJMJpFBOpU2D+tHgCgaWO+O+PtA5SVQays7GxzCCGEEOIAR3pOjgG4t51t9wCgRRgJIZ2WVVGOH8rLICUmtXieZRlU1XU834RhAB+lFb5qK5izd4hAhm3eiYJlEOYhI8xDRludKJrgYACAQl9vbzMIIYQQcg4cSU5eBnAdx3F/chw3n+O4+zmOe47juN8B3AhgkVMjJIT0C0UN64mEhbVc40QQ5bMuvuioWr2lw0nxnrHx+KWyHCf0eqdfnxBCSEvfffe1N8+naM/lHPfffxc3f/7TMU4KySGrV68Iu+66KUPt3X/+/Kdj7r//Lq4rY2pOlmXs2fOBf1lZqRIAdu9+33/s2NGjuuv6Hel0csLz/LcAroHt5uNiAOsAvATbELFreZ7/yqkREkL6hcCqKgzx9EJoQGCL5y2CBIOp48nwoszg26pQfFEaCFHuoOsEtnknBouEN/7S4I2/NLCKZ+4TNHgI3shMx4fZmXa3gxBCSOfl5eWoFy2an1BRUa7q6Vhc3W+//eKxatX/xRiNBhYArr762sq9ez/7u6fjauTInBPwPP8lgC85jtMC8ANQw/M83VokhDjEYrFguq8/3AKC4KX9d/0RlmVgNgl2TYYXZQaHa22JzX/cCzt8czOYrNBbJGxPUQMAHhhqRutPxPDwcABAfX0damtr4eXlZXebCCGE2E92wjpWxD6y3PIOnk6nk3U6nfNKYp4jh5ITAOA4biCAywCEAniT47jzAPzN83yds4IjhPQPpbk5cGtYgT0gLr7peZZlYDKLMHUwGd4RRrMAk+Xs59Xp3ODn6wfU16MwKxNew0c4PQ5CSO+jt7Y/skTBQNYqIduzL8tA1jm4b2ccOPCt15YtG8ILCvK1Go1WGjlyVM2cOc/l+fr6ir/++rPnM888kfTee3tOREXFWAAgNzdbPX36jUOXLVt5esyYcXUAsGXLxqBPPtkbXFNTrUpKGlA/dOjwuu+++ypg376vTgBAVlamZvnypZGpqcmeOp1OvO66G0u++OLTwNtuu7PoppturQCA3bt3+X/44a6Q8vIyTUBAoPnKK6eV/e9/M0pZ1tbsvXs/9P/ww/dCSkpKNB4eHsKYMeOqnnpqbn5JSZFq+vQbhwLAM888kXTzzdOLZs16svD06VTtG2+8HpGamuyp1erEIUOG1T355DN5wcEhAgCYzWZmxYrXIg4e/NFPEARmypQry6QOhuuOHTt61MyZj+V+//23fllZGe7BwSGmGTMeKLj88qk1jft8993X3lu3bgwrKMjX+fr6WS65ZGLlzJmPFWk0GhkAUlOTte+882Z4Skqyp8lkZP39AyzXXHN96T333Ffa1jW3bt0YtHXrxohnn30h84orrqzu6PeZn5+nevPNVRH//HPcy2QysQMGDKx/9NHZ+YMGDTE27vPJJx/5ffDBzpCiokKtj4+v9eqrry29994HSzqKr/HfAwBMn37j0Mcfn5MNAG+8sTzm0KE/jwJAVVWl4s03V4UfOfKbT11dnTI2Nl7/wAMPF1x00Zh6wDZs7cSJ457nn39R9aef7guuq6tTJiVx9U8//VxOYmKSuaP2daTTyQnHcQoA7wCYAYCBbXjXbgALAcRxHDee5/n8cw2MENJ/lGWkwR1AnSRCqWvZc1Jdb3bs07oDsmybd9KRp2LikKhQovLI7wAlJ4T0C+N3e57X3raRQULN+snG9MafL//IY7hZZNpMOgb5ifXvTjHwjT9fvc9jaJ2VafO7V7y3aPjgKkNKZ2OtqChXLl78QsK99z6YN2HCxJqioiLV0qWL41aufC1i8eJX7Vqkafv2LYHbt28Of+ihR3NHjjy//ptvvvTdtWt7uL+/vwUADAYD+8QTDyeFhoab3njjnVS9vl6xcuWyqLKyUk3jOXbt2h6wdevGiIcffjx3+PDz6pOTT7q99dYbUeXlpeqnn34u/9Spk7o1a1ZEP/30c1nDh4/Qp6enaZcuXRzn7e0tPPTQo0Vr1qxLeeyxBwfOn78oY9y4CbVFRYWqWbMe4saOHV/1+ONPpRiNRnbjxnfCHnpoxsAdO3afcnd3l5YuXRz155+/e8+Z82x2eHi4ecuWDaE8n+IREhJy1i/IW7ZsiPjf/+7Nf/bZF7I/+eSjgJdeeiHB19cv9fzzL9T/8MN3XkuWLIq/776H8saMGVebm5utWbNmZVR+fq52+fLVmQaDgX3qqVlJQ4cOr1uz5p1UpVIl79u3J2DTpnciR4++oG7o0GHG5tfasWNr4LZtmyIWLFicMXny5TXtxdSorq6Offjh+wYEBwdbXn75tTSNRitv2vRO2OzZD3ObN+9IjoiIsnz++X7f5cuXxt5xx90FkydfUZWcfNJt5cplMe7uHuK0addXni2+0aMvrJ8/f1HGkiWL4tesWZcyYMAg42effeLXeH1RFDFr1kNJVquVmTt3QVZgYJD1gw/eC5o378mkVavWpo4YMdIAAGlpp901Gq24dOnraQaDnl26dHHs8uWvRK9bt/WcVy12pOdkAYDbAdwH4HMAxQ3PPwVgP4AlAP53roERQvqP6twcuAPQsy3r+YqSjFr9Od+EaVdtfcfJiaBzAywWGIuKuiwOQghxVGFhoUoQrExoaKglMjLaEhkZbVm6dHmaIIgdT75rsHfvByFXXTWt9Oabp1cAQEJCYnF6+mn3zMx0NwD4/PNPfGtr65Rbtvxfpq+vnwgAL7zwUtYDD9w9qPEcu3ZtD7vpptuKrr32hkoAiImJtej19Yq1a1dHP/bYkwV5eTkagEFERKQ5IiLKEhERZfHx8T3t4eEpKhQK+Pv7CwDg7e0tenh4SBs3vhPi4+NrXbDgxdzGa7z22srMq6+ePPyLLz71nTLlqqoff/zef+bMx3InTbqsBgBefHFp9n//e7VnR+2dOHFy+Z133lMGAHPmzCs4efJvz927dwWdf/6FWTt2bA2dNOny8ttv/18ZAMTGxpmVSmXO3LlPJuXmZqvd3NyladOuL73ttjtLvby8JAB49NEnCj/6aHdIWlqqrnlysmvXjoDNm9dHLFz4cvqECZNq7fldfPLJXv/6+jrl5s07UgICAgUAeOWV5Zk33njN0Pff3xk4Z86zBXv2vB988cX/qXzwwUeKASA+PsFsMOgVWq1OMhj0bEfxeXt7iwDg7+8v6HS6Fvf/fvrpgFdWVqbbhg3bTg0cONgEAAsWvJh7+nSq+86d20JGjBiZCQCiKDIvvfRqVuO/h2nTbijdtm1jhD1t7IgjyckMAC/wPL+loRcFAMDz/D8cx70A2wryhBBiN2Ox7R6HRduySItVlGG0YzK8w9e1Yy4L4+MDlJZCrKK1TgjpL366qe6v9rYpmJadud/cUN/uRGK21b6fXVd/wt597TV06DDjf/4zrnLRovkJq1evsAwffl7tmDFjay67bEq1PcdXVlYoysvL1UOHDm9RM33o0OF1jckJz6e6hYaGmRq/iALAoEFDjDqdmwgA5eVlysrKStXOndvCd+3a3lRyUZZlWK1WJjc3WzNhwqSajz7aXf/II/cPDA4OMY8YMbL2kksmVA8ffp6hrbjS00+7FRYW6CZN+k+LXiyr1crm5GRpMzLStIIgMEOGDG+a86zVauWYmNg2z9fcyJGjW0xB4LiB+uPHj3kBQFZWlltGRrr7Dz985/9vOxpjStNeeulltdOn31X62Wef+GVkpLkVFORrcnKy3ABAFKWmhLCqqkr19turoxUKhRwREWX3XbbMzAxdSEiouTExaWxXQkKiPisr0w0AcnNzdJdccmmLD6Vbbrm9vPGxPfG1Jz09TafTuYmNiQkAMAyDQYOG1B879mfTxEsvL29r838PHh4eoiAIdifEZ+NIchIM4Hg72/IB+DocDSGkX7I2LnLo7d30HMMwsFjFDhdfPBcdzTkBAG1QMFBaCkU9rXVCSH/hroLU0/t2xmuvrcxKSztdeOjQT95Hjx7xeu21l+M+/nhP/fr1/w6xaT7f3Gr990ukQmH7KihJ7X9xVSgUkOX2t0uSrVn33fdQ3sUXjz2jhyAiItKiVqvl9eu3nj5x4m/dr7/+7H306J9eCxbMTRw//tKKl19+Lbv1MbIsM4MHD619+unncltv8/b2FvPyctUN+7XYplQqO0zyWu8jyzJYViHbHkvMddfdWDxt2vUVrY8LDg6xlpaWKB944O6Bnp5ewkUXjakeNeqC2mHDhutvueW6Yc33ZRgWixe/krZ58/qwJUsWxW7atD21ce7N2ciyDKaNxbokSWIUCluMCoVCbm89L3vjO8v127o8JElq8bqpVB2/zo5yZJ2TdABXtrNtQsN2Qgixm6LedhNL3ayMMMsyMFtFGMwd9244yp4SxV6RUQAAd6HXFDIhhJAmR4/+4b506eLIxMQk8z333F/65pvr0x9/fE52cvJJz7KyUqVKpZYAoLa2tmm0S05OVtNcEW9vbzEgIMBy8uQJ9+bnTUk51fRzQkKSobi4WFNVVdl0jrS00xqj0aAAgMDAIMHLy0soKMjXxMXFmxv/nDr1j9vbb68Jl2UZBw586/Xmm6tChw4dbnzwwUeL16/fevq22+4s+PXXn30BnPGFPDo6xlhQkKcLD4+wNJ7P19dXWLlyWWRqarIuMZEzqVQq+a+//vRoPEYQBGRn23oJziY5+WSLtqamJnvEx8cbACAiIsqYl5ejbd6OkpIi1erVr0fU19exn366r3HYVeojjzxeNHXqVdU1NdUNN/v//b7u4+NtHT9+Yu28eQuyMzPT3bZs2RDcUVwAEBeXYCwqKtQ0rkECACaTicnMTHeLiooxAkB4eKSJ51NatGHp0sWRs2c/HG9PfAzDtJtYJCQkGQ0GgyIl5VSLoQzJyac8IiKiOl4R2QkcSU5WAXic47g3AUyGraWJHMc9BWAOgLecFx4hpD/4qrICb2dnwH3w4KbnWJZBvVGAKNp3c0bFSHgolMfs2Eyo2n/fbYGRRLw5tgJ7pxmhUbS9T0BCAgDAi2EgU4JCCOllPDw8xa+++jxw+fKl4ZmZGZrk5JO6Awe+9QsODjH7+wcIAwYMMmq1WmnLlg2hmZkZmsOHf/HYtGldRPNk4Kabbiv+4otPg/bs+cA/MzNDs3nz+qDDh3/xs9U9AqZNu77S09NTWLBgbuzJkyd0R4/+4b548fNxgC2pYBgGN9xwc/EXX3watG3bpqCsrEzN119/4fPmm29Eq1QqSaPRyAqFEh98sDNs8+b1QTk52erjx4+5/f77YZ/ERE4PAO7uHiIApKWd1tXU1ChuueX2UoPBoJg378m4Eyf+0Z06dVL33HNPx6Wnp7knJQ0wuru7S1deeU3pzp3bwr788jOftDReu3jxguiqqkp1R6/Zp5/uC963b69fenqa5rXXlkTk5GTrbrvtrhIAuPXW24v/+OM339WrV4Slp6dpDh066Lls2Suxen29Mjg4RAgODrGYzWb2s88+8c3Pz1X/9NMBrxdfXBAHABaL5Yzv1QMHDjZdf/1NxTt3bgvLyEjXtN7e2jXXXFfp5uYuPvfcnPhjx/50a2h3rMlkUtx0061lADB9+p1Fv/56yHfr1o1BWVmZmv37P/b95psvA8eOHV9tT3xubu4SACQnn3Krr69vEfP48RNrIiOjjYsXPx/3668/e54+nap96aUXovLzc3W33jq9pKP4naHTw7p4nt/IcVwggPkAZsL2L3cXAAuAZTzPv+PcEAkhrkyWZRzJz4XZbMZTg4Y0Pc8wQHWd/TdpGAYIUpuh08gwGlsOYTjbMd6MAQl+OljbmRsflpCITEmCmmVRlZcDv9j4tnckhJAewHEDTc8/vzhj27bNYV9++VkQy7Ly4MFD65YvX53Gsiw8PT2luXMXZG7c+E7EjBm3Dw4NDTPNnDkrb8GCZ5Iaz3H77f8rq62tVWzbtin8zTdXKQcNGlw3YcKk8pSUU54AoNFo5P/7v1Vpr7/+atRjjz0w0N3dQ7jllulF69a9FaVSqWQAuO++h0o0Gq20f/9HQZs3r4/w9vYWJk26rPzxx+cUAMD48RNrZ816KnvPnvdDduzYGq5Wq6Xzzhtd89RTc/MBwM/PX5w4cXL5li0bI/Lz8zTz5y/KW7nyrdS1a1dHzJ49cwDLKuSkJE6/YsUaPjAwSACAJ5+cm69Wq6U331wVZTIZFWPGjKscNer86o5es8svn1q2Z8/7watWLddFR0cbli5dnjZ4sK1M71VXTauSZTlz167toR999GGIm5u7OHr0BdVPPPFMfuP21NSU4g0b3o5cs2YFGxAQaLniiivLDx/+xaeht6ms9fVmznys6JdfDvouWbIoZuPGd/mzDe/y8fERV69+h1+9+vWIZ56ZzTX8jutWr34nNTraVgr6ssum1FRXV+d8+OF7IVu3bozw9w+w3H//zNwbb7ylQpZldBTfwIGDjSNGjKx59dWX4u64I6/A29un6c6bUqnE6tVvn16xYlnEiy8uiLdaBSY2Ns7w6qsrTo8adUG3rGnIdHbRG47jfHmer+I4zgvAxQD8AVQD+I3n+b4wYzRTFKXYykrnvr5KJQtfX3dUVekhCF0ypLTHuXobXb19QO9sY0VFOSZNGguGYfDHH39DpbLd9GIULP5ILkZBqf1zPViWgU6nhtFoQUe17htFBHvigoHBkMT2X4+3b7wW9UYjrnnxZQwYfYHd8Thbb/z9OZurt9HV2wd0XRv9/NyhULBZAOKccb6jR48OYFnFV0FB4fVqtbZbhqv0Vj/88J1XYiJnjIiIbBpHu3Dhc9HFxYWadeu2ns7NzVZnZWVqx4+/tGk+SVFRoeqmm6YNW758Nd+4/kVfMHbs6FGPPz4nu3FtFtI9LBaTtrS0wEOSxCmjRo1KPdu+jkyI/4PjuAU8z38A4GvHQiSEEJvC9HRM9A+EyU3XlJgAgFWUOjUZXpQZHKwOhqpegYvci2BP4RtRZvBxrjf+NClx72ALVO0M7fpZrUJyOo9RtbUYYHdEhBDSN3z11Rf+Gze+o3vyyWdygoKCrX/88bvnzz//6Ddz5qxcADCbzezzz89LvOuuGfmXXTalqra2RrFu3VvhwcEh5lGjzu+Wu+mk/3AkOfEFUN7hXoQQYocqPgUzY+NRKv97h5VlGVhMQueTkxrbfMPz3YrsenMTZQZfl/oDpcA9Q6xAOwlNWFg4kpNPoqio0O54CCGkr5g3b0Hu8uVLI59//tkEg8GgCA4ONt9//8y8xt6FxETONHfugsz33ns39L333g1TqdTysGHDa994Y+3pxmFdhDiLI8nJGwD+r2EC/Eme588YW0cIIfbSFxYAAMzqf+cJsiwDk1WEqQvLCLfGgEG7yUloKPxUatRkZ3VbPIQQ0l18ff3EJUv+L/ts+1x11bSqq66aVtVNIXWZQ4f+PNrTMZCzcyQ5uQtANIDvAIDjuNbbZZ7nHTkvIaQfslbYOmJlr38X9WUYBnUGq12T2p2FYdtfO2oIq8DVw0eiIPeMcvuEEEIIcSJHkogdTo+CENJvMbW2NU6UfgEtnq+tt3tBXefE0X7HCTzCI4BTp6Czdt2aK4QQQghxLDnJAnCA5/l8ZwdDCOl/NGYToFTBPTSs6TmrKHfpyvBtEUQZynaqOwbEJwD42rbWiSSBsWOVX0JIrycBkGVZbr/blBDiFA3/z2TY/t+dlSOfsCsAjHbgOEIIOYNnw9gt3+iYpueETlbqcgZBav/9MjSRgyBJUDIMahvmyBBC+rxiWZatFoupwxXFCSHnxmIxucmybAVQ1NG+jvSclALwceA4Qghpoa6mBj5KFQAghLOtB8ayDMwmoVsnwwOA2SrBS61oc30UTy8vVAkCAtVqlKadhndEZLfGRghxvlGjRtUePXr03draqpkA/NVqrYFhGKo8RYgTybLMWCwmt9raKrUsS5tGjRpV19ExjiQnGwC8xXHcRAAnAZyxlD3P8+/aezKO44IAvA5gCgAdgJ8APM3zfHLD9hGwVQgbDaACwGqe55c7EDchpJcpKi7EK6dTEOXji5eDQgA0JCdWESZL55ITJSPh3pA0aDQqKGW53fkjrY+ZEXTaNhle8gfDKNHegXUsi0AAVTlUsYsQF/KKKAqorq64i2EYNwA0xIsQ55JlWbbKsrQJwCv2HOBIcvJ6w993thcEALuTEwD7YRt/NhWAHsBLAL7jOC4BtmTlWwD7ADwE4CIAazmOq+B5fkvnQyeE9CbFJcU4UVcLISKiaR4HwzCod6BSF8sA4RojdDoRRiNgzwLxLAOEaYwAAKPJC6yPFqLY9r4WrRYQBBiKOuyRJoT0EaNGjZIAvHz06NE3ZBmhcGy4OyGkfRKAInt6TBo5kpzEOnBMmziO84dtgv3LPM+fanjuJQDHAQwGMBmAGcBMnucFACkcxyUCmAuAkhNC+rjCQtuihiEh/06GBwPU6i3dHkut3gwwnu1vDwzEJ8eOIig6uhujIoR0h4YvTnZ/eSKEdJ1OJyc8z+c0PuY4zg2AF4AKnuc7XWOT5/kKALc1O18wgDkA8gEkA3gRwMGGxKTRAQDPchwXxPN8aWevSQjpPczpaZjoH4gkP/+m5wRRhtHc+ZK9oszgt5pAqAwKjNSVgLFjXJcoM/ijzlbCOMRggiie5RhuAHZ++jEuqx3U6dgIIYQQYh+HFkvkOG4cgGUAzkfD+EyO4/4A8BzP8z84eM71AO6HradkGs/zeo7jIgCcaLVrYcPfUbBNzneIsr2aoQ5SKNgWf7siV2+jq7cP6H1t9CsqxMzYeBQyTNP/Saskw2IVwZ5lUcS2CBKD76pDAQDnRZdCwXR8vCAx+L7G1mszxZIOUZahaue9ISIiHABQVFTg9PcPe/W2319XcPU2unr7gP7RRkJI1+l0csJx3BjYVofPhG1+SDGAMAC3Avia47jxPM8fdiCWVQDWAZgJYB/HcWMBuMGWrDRnavhb68A1ANgm3Pr6ujt6+Fl5eem65Ly9iau30dXbB/SeNqpNJoBh4RMd2fR/sqTSAJlhodOpO3UuhfRvMqLRqKBmO+45aX6MzDAAy8LXt+2qogMGJMBPpYZbVRV8vHU9utZJb/n9dSVXb6Ortw/oH20khDifIz0nLwP4GcAVPM83TR3lOO5FAF/DNhTr8s6etFl1rgcAXAzgUQBGAJpWuzYmJfpOR95AkmTU1hocPbxNCgULLy8damuNEMUO15fpk1y9ja7ePqD3tVEnCIBKDV1wGKqq9GBZBvV6M2pqjRDtmdHejKVZomE2WyF2vM5Ti2Nq64yo15uhYdFmOWEPN2+sHXYeWIZBHp8Fz5CQTsXnDL3t99cVXL2Nrt4+oOva6OWlo94YQvoBR5KTCwDc1jwxAQCe5yWO49agE5W6GsoITwLwYeP5Gs6TDCAcQB5svTLNNf58TiuhCULXfCiIotRl5+4tXL2Nrt4+oHe00WQywZdVAAD8YxMgCBJUKgXqDVZYHYhNapZoSJIMyY45J82PsVhl6I0C/Dw0bb427p4+qBKs8FepUZiaiviAoE7H6Cy94ffX1Vy9ja7ePqB/tJEQ4nyO3IKoA6BqZ5sanasRHgbgPQDjG5/gOE4FYCRsE+IPAhjHcZyi2TGTAPA0GZ6Qvq04Mx0ahQKSLMMvJgYAwDBAjb71SM7uU6s3o72pKgzDoK5hY1UWrXVCCCGEdAVHkpNfADzHcZxH8yc5jvME8CxsQ77s9TdsQ8HWchw3juO4IbD1vPgCWAlgM2zVwDZxHDeI47i7AcwGsNSBuAkhvUhZRjoAoE6WwKps9zsEUYbR1PlKXc6iN1rPOpzMpLGNMtUXnVPHLSGEEELa4ciwrnkAjgLI5DjuM9gmxIcAuBq2+SD32HsinudljuNugS3Z+ACAD2zJzTie53MBgOO4KwCsBnAMQBFsq8dvcyBuQkgvUpuXC28ABsW/b0OCJMNkbmcVxG5gMgsQRLnd7l/Z0wuoroa1orxb4yKEEEL6C0fWOUnnOO5iAAsBXAnAD0AlgB8AvNg4sb0T56sB8HDDn7a2H4FtgjwhxIVkCgK28skYe8lEjIdtSJdVkGCyCB0e2xYlI+Gu4Axo1CooGRl2TDmBkpFwR2B602OTRYRVlKBRMG2uUK8ODASqq8HU0lpthBBCSFdwqOxFQwLyOM/zITzPqwEMArCks4kJIaT/yiktwYm6Wijj4gDY5nRYBBEmi2M9JywDxGj1iHM3wN4lUhqPidHqwTKAySLAYpXAtDPxxCPMttaJ1txz82IIIYQQV9bp5ITjOB+O474F8GOzpy8AcJzjuH0Nq8YTQshZFRcXAQBCQ20F+FiWgckiwmLtuWFdFosI81kWgPRNTMInxYX4uqqimyMjhBBC+gdHek5eBTAYwHPNnjsA4FoAowEsdkJchBAXF1tTgwn+gQj18QNgS07q9BaHzyfKwJE6fxyu8oFo5xIpogz8WeePP+v8ITaMBKs3WNrtOQlLGoCd+bnYn5UBi8XxWAkhhBDSNkcmxE8DMIfn+Y8an+B53gLgU47jfGFbpHGOk+IjhLggURQxxd0Dnt6+8HC3rQwvy7bEwOFzyiy+rLQNuxoUWQalHZNORJnFV9URAIBh7lVQMBJqDdZ2C6L7+vpCq9XCZDKhqKgQ0dExDsdLCCGEkDM50nPiCaCqnW0lAAIcD4cQ0h+UFRbCU2krHxwYnwAAEETJ4fkmzmQyWyG00/XCMAwSwyOQ5O6BkrTT3RwZIYQQ4vocSU6OAbi3nW33APjH8XAIIf1BSRoPADBKElQetiWTBEl2uFKXM5ktIgSx/VWtb/YPxMsDh8B4/K9ujIoQQgjpHxwZ1vUygC85jvsTwMcASgEEwjbnZBRs650QQki7qnKyoQOaVlxnWQZGswhzr+g5EWARJLipFJDbqCcse3oCNbW01gkhhBDSBTrdc8Lz/LcAroFt7uhiAOsAvARbonMtz/NfOTVCQojLMTRU6jJrbSuuN5URNvd8z4nJIsJqldqt2KX0t41cZWpqujMsQgghpF9wpOcEPM9/CVvviRa2RRhreJ7XOzUyQojLspY39Dp4egGw9ZwYTAJEyc4yW11IECUYLQL8GE2b291Dw4DMTGhorRNCCCHE6RxKThrxPG8CUOikWAgh/QRTZ1thXenv3/Rc3TlU6nK2eoMVbGDb23xjYoBfDsGjrSXkCSGEEHJOzik5IYQQR+yvqsDukmI8cuPNAAAJgN5oPadzKhkJtwZmQaNRQsk0LFpixzG3BGQ2PW5UZ7CgvU6ckKQBqAbgxrIw1dRA6+19TnETQggh5F+OVOsihBCHybKMlMJ8nKitQciAAQAAUZTOeTI8ywBJbnUY4KFHO9NF2jwmUVeHRF1di2PMFqHdcsIBoWGoFWyJVGk6lRMmhBBCnIl6Tggh3aqurhZ6vW2KWnBwKADAKvaOMsKNTA3lhJVtJDksy+IHowHllZW4qb4eUd0fHiGEEOKyKDkhhHSroowM3BgajnqlEjqdDizLwGISzrnnRJSBf+p9oTYrwanL2lvk/YxjThp8AQBD3KqgaDjIbLGVE1ZrFJDaGN+V7uOL3/kUjKmuwuhzipoQQgghzTmUnHAcFwDgaQCXAQgFcAWA6wEc53n+E+eFRwhxNRVpPG4Oj0SVZJvjYSsjLJ1zz4kos9hfEQkAmBdZDqUdk05EmcWnlba+j4G6Giga5p2YLSIsVhGMVom2Jq+EhYUDAIqKqB4IIYQQ4kydnnPCcVwsbKvAPwAgH0AQbElOEoC9HMdd5dQICSEupa4gHwBgUKkANJQRNlrRm4pfiZIMg1lod62TyKAgJLl7wJqV1c2REUIIIa7NkQnxr8O2KnwsgBsA2+gJnudvB7AfwHNOi44Q4nLMpaUAAMndHQDAMEBtLyoj3KhObwHTztiwOJUaLw8cguG0SjwhhBDiVI4kJ5MAvMTzfDXOHO+wDsCQcw2KEOK65IaV1Vlf21wPUZJhNPWeyfCNDCYrJKntbT5R0QAAj/Z2IIQQQohDHC0l3N43CQ3sWl2AENJfqUxGAIAuJAQAIPSySl2NzBYRVrHt5CM4iQMAeLAKWBsqjxFCCCHk3DmSnPwM4FmO49ybPSdzHMcCmAngF6dERghxSW6CrSqXd0QUGAawOmGNk65gsggQ2lmJMSgyCnrBllCVpqd1Z1iEEEKIS3MkOZkHYCCAdADbYespmQPgKICxAOY7LTpCiEsxmUzwUygAAAHxCU2Vusy9tOfEYhXbnBSvUChQJdt6VSoyM7o7NEIIIcRldbqUMM/zJzmOGw1gEYBLAYiwlRT+CcBdPM+fcGqEhBCXUVJSjLnJJxDm4YkNsXG2NU6sIszWc+85UTISbgzIgVqthJKR7RpgqmQk3OCf3fS4ObNFhFWQwDAM2jqZsaHaWG1+7rmGTgghhJAGDq1zwvN8GoDbnRwLIcTFFRcXochsgi48HKxKBYZhoHdSGWGWAQa510CnU8NoBNoZkXXmMW41bW6TZBl6k4BAby3ENnInwd0d0Btgaqg+RgghhJBz5+gijAyAEQDc0cbQMJ7nD55bWIQQV9S4aGFISCgAWxnh+l5YRrhRnaH9csKGiEhs+uYrhAcHY3L3hkUIIYS4rE4nJxzHXQBgN4CIhqcaP7rlhscyAIVToiOEuBQTn4obQ8MR6OsHwFapy2B2znwTSQZS9d5QW5WIU1bYf4zRGwAwQFeD1tNLDCYrxHa6YNySOHy9cxsuqig7p7gJIYQQ8i9Hek5WArACuBu2FeKp0D8hxC7awkLcHB6JfMbW4SpIstMqdQkyiz3ltvVH5kVWQmnHpBNBZvFRRQwA4JnwE1C3Me9EkGS01XkSFhYOACgsLDinuAkhhBDyL0eSk5EAbuV5/hNnB0MIcW2KhjVBNIFBYBhAEHtnpa5GZosAQZChaqOuYWhoGBLdPRBmMkE0m6HQaLo/QEIIIcTFOJKclIJ6SwghDtBaLYBKDY/wiIYywiJMvXCNk0ZmiwiLIEKjVUJqNbwrKCgYC5IGQqdQoCwjHSGDBvdQlIQQQojrcGSdk7cAzGu1CCMhhJyVJEnwbhgg5RcT01RG2OKEMsJdxZacNJYTbkmtVqNKssVenpHe3aERQgghLsmRnpNEAIMAFHMcdwqAodV2mef5SeccGSHEpZQXF8GnYW2QoIQkp5YR7iqSLMNgEsC2U07YoLS9hdbk0VonhBBCiDM4kpwkADje7OfWtxTbKbxJCOnPStJPQwPALElQe3uDYWylenu7Or0ZDOPR5jbBzR0wGmEqLenmqAghhBDX5MgK8RO7IhBCiGurzM5GKIA6hgHDMBAkGUYnlRHuSgaz0G45YdbXFzAaIVVVdXNUhBBCiGtyaBFGQgjprGxBwKsnjmPSJRMwBrY1TpxVRhgAFIyEaf55UKuUUDAy7KgkDAUj4Rq/3KbHbTlbOWFtcDBQWAiVofXoVkIIIYQ4wq7khOM4EcDFPM//wXGchLN/7Ms8z1PSQwhpobCkCEVmE9SRUc3KCDszOQFGeFRBp1PDaLQtsGjPMcPdz97rcbZywt6R0cBff8FN6P09QIQQQkhfYG8SsRi2BRcbH/fiKayEkN6ouLgIABAWFtasjHDv/1J/tnLCgdwAvJ2ThWpZxvmy3GZVL0IIIYTYz67khOf5F5s9XtRl0RBCXFZ8RQUCQ8MR7u7ZJWWEJRlIN3hCIyoRydo30V6SgQyTpy0+bR3YNnKLluWEWyYnYbFx+LrMNhm+qqoKfn5+59QGQgghpL+zd1jXJZ05Kc/zBx0LhxDiqs5jFQgOjwSr1XZJGWFBZvF+WSwAYF5kNZR2dPAKMosPyuMAAM+En4C6jXknZysnrFarERgYiLKyMhQVFVByQgghhJwje4d1/Yh/bxm2N25BbtgmA1CcW1iEEFdSW1MDP6VtjZPgpCQwDFDfB8oIN6ozWNDeiK0hoREwCxLKkk8Bg4d2b2CEEEKIi7E3OaHywYQQhxVnpkPFspBkGR7BoRDEvlFGuJHRZG23nPBELy8MiE9EXkpyN0dFCCGEuB5755z81NWBEEJcV0VmBvwB1MoyGKUSoiTD5MRKXV3NbBEhiG2XE2Z9fIDiElrrhBBCCHECh0r+chwXAOBpAJcBCAVwBYDrARznef4T54VHCHEFtfn58AdgVCnBMIDFyWWEu5rJIkAQ2y4nrAkMBopLoNTXd39ghBBCiItp46P27DiOiwXwD4AHYCsvHARbkpMEYC/HcVc5NUJCSJ9nLrVVtLK6uTeUEZZg7gNlhBs1lhNm2yjn5RUZBQDQ0VonhBBCyDnrdHIC4HUApQBiAdyAhgnyPM/fDmA/gOecFh0hxCXI1dUAAIWvb1MZYbMTywh3NbNFhLWpnHBLAfHxAABvhoVECQohhBByThxJTiYBeInn+WqcuRjjOgBDzjUoQohr+aimCo+fOA5m5CgwDAODSXBqGWEAUDASpvoVYFpwMRSMfSdXMBKm+ORjik8+FG2UEW7UVE64jZ6T0IQkCJIEBcOgpiDP4fgJIYQQ4uCcEwDt3R7UgFaPJ4S0kldYgEqzCSEJiWAYoE7v/DLCCgY437MCOp0aRqNtgUV7jhntWWHX+dsrJ+zm7o5KUUAQq0bJ6dPwjY7tZOSEEEIIaeRIz8nPAJ7lOM692XMyx3EsgJkAfnFKZIQQl2A0GlFZaUsAwsIiIEoyjGZrD0fVeQaTFVI7nSs/SBJeS0tFEQ3rIoQQQs6JIz0n82BLQNIB/ABbT8kcAIMAJAAY57ToCCF9XkF6GmbGxKFKluHp6QlB7JoywpIM5JrcoZFUCGbs65mRZCDXbLvPEqXRo41RW03MFhFWUWqznHBNcDCOnjiOiRXlDkROCCGEkEad7jnhef4kgNEADsC2OKMIW0nhdABjeJ4/7swACSF9W1naaUwMCMIk/0AwDANrF5URFmQW75bEY0NeFAT5LFlGq2N2lCVgR1kCBPnsb4dmiwChnbFiYWHhAICiosLOBU0IIYSQFhyac8LzfBqA250cCyHEBdXm5cIfgEGlBMsysFr6VqWuRiarCKtVhEarhNQqSYkKCMQYX3+45WT3THCEEEKIi3B0EcY4AFqe55M5jvMBsARAJIDdPM9vd2J8hJA+zlRSDAAQ3D1sZYT72BonjWxrnTSWE26ZnIRrtZgdn4gKg6FngiOEEEJchCOLME4BkAJgRsNT78C2IGMEgK0cx93rvPAIIX1d4xonrK8fGIaB3mh1ehnh7iBJMgzmtssJB8QnAAC8wEBub9Y8IYQQQjrkSLWuFwB8A+BFjuO8AVwPYCnP8yMBLAXwuBPjI4T0cSqjrTfBLTTUVkbY4Pwywt2lTt92OeHQxCSIsgwVy6KW5p0QQgghDnMkORkOYBXP83UAroBtaNiehm3fAkh0UmyEEBfgKdrml/hGx9jKCJv63pCuRu2VE/bw8kaVYCuPXJLGd3NUhBBCiOtwJDkx4t+5KlMBlPA8/0/DzyEAqp0QFyHEBej19fBV2N4uAhOSGsoI993kxGwRIbQzbKuetb2dVtOkeEIIIcRhjkyIPwRgDsdxfgBuBrAFADiOGwVgYcN2QghBUVEhZhz/EzF+AfgwKqrLyggDgIKRMdmnCCqVAooz56y3e8wk78Kmxx0xWwRYRRmqNoZ2mbVawCpAX1TUycgJIYQQ0siR5OQJAJ8D2AkgGcDLDc9/DsAA2yKNhBCCwsICWGUZyqBAKFRKGExCl5URVjAyxniXQadTw2iU0c6SJGccc7FXmd3XOFs5YXh5AxUVECoqOhk5IYQQQhp1OjnheT6L47jBAIJ4ni9ptuk6AH/xPG/uzPkaemBeAXA1AC8A/wCYx/P8oYbtIwC8AdvCjxUAVvM8v7yzcRNCul9BQT4A2yKFLMvAYhX7ZBnhRmcrJ2yJT8Brv/2KqJGjcFnPhEcIIYT0eY7MOQHP83KrxAQ8z/8GQNlQargz3gdwEYBbAZwP4BiAbziOG8BxnD9sk+xPw5acLATwEsdx9zgSNyGkm6Wk4KHoOJzn6WUrI2wSuqyMsCQDBWYd8oxau3pNGo8pNOtQaNbZdYwkyTCY2i4n7JuQiKM1VThdWtLGkYQQQgixR6d7TjiOiwawDsB4AOp2dlPYea4EAJcB+A/P8782PPc4bBPtp8M2+d4MYCbP8wKAFI7jEgHMRcNcF0JI76UrL8OowCAUqtRdXkZYkFlsKrYVC5wXeQJKOyadCDKLzaVJAIBnwk9AzXS8Rkmdoe1ywmFh4QBsQ9kIIYQQ4hhHek5WAhgDYD2AvwD8AmA5bMOxZNjWPbFXOYCrABxtfILneRkAA8APwDgABxsSk0YHAHAcxwU5EDshpBupDEYAgHtoaJ8vI9yovXLCYWFhuMjXD+M0Guhp3gkhhBDiEEeSk/EAFvA8/zhsvRdmnufnwjbs6icA19p7Ip7nq3me/6L5PBWO424CEA/ga9hWnc9rdVjjCmdRDsROCOlGHpJt8rtPdEyfLyPcyGwRYRXPzE48Pb1wd1Qs7oiIRnFKcg9ERgghhPR9jlTr8gBwvOFxMoBFAMDzvMhx3FsAXnc0GI7j/gNgM4BPeJ7/lOO4lbAN62rO1PC31tHrAIBS6dB0m3YpFGyLv12Rq7fR1dsHdG8ba2tq4K9UAQDCBg6EKMuwClKb8zWcoXmLWJYBi46v0/IY2BWbRRAhyYCmjfeQOoaBH4Dq3CwoleM7DrqT6N9o3+fq7QP6RxsJIV3HkeSkCLbFFgEgHYAfx3GhPM8XAagEEOxIIBzHXQvgPQC/Abit4WkjAE2rXRuTEr0j1wFsX0B8fd0dPfysvLx0XXLe3sTV2+jq7QO6p40F/EmoWRaSLCNqcBJKqs1gWBY6XXtT1c6NQvo3sdBoVFCzHc85aX6MTqe26xiGZYF23kOsOttaJ+ayki57jwHo36grcPX2Af2jjYQQ53MkOfkctopZ+TzP/8pxXD5sizIuAjADQKdng3Ic9yhs5YI/AnBHs2FeeQDCWu3e+LPDs04lSUZtrcHRw9ukULDw8tKhttYIsY0hH67A1dvo6u0DureNmcdPwB9ArSyj3mBFnd6Mmjpjl1XrsjRLNMxmK0R03L7mxxiNFoh2JCdmE4N6vQW1KvaM11D09AQqq2AoLEZVlcP3T9pF/0b7PldvH9B1bfTy0lFvDCH9gCPJyQuwzS9ZDGAygOcAbAMwu2H7I505GcdxMwGsAbAawBM8zzd/JzsI4CGO4xQ8zzeu3DYJAM/zfKkDsTcRhK75UBBFqcvO3Vu4ehtdvX1A97SxKjcP/gAMKhUkSUa9wQJR7KLMBIDULNGQJBmSHdW6Wh4D+46BjHqjFQFemjNeQ5WfP1BZBdTWdunrS/9G+z5Xbx/QP9pICHE+RxZhrABwIcdxoQ0/7+Q4LgfAxQD+4Hn+J3vPxXFcEmw9Jh8DWAogiOO4xs1G2OafPANgE8dxywBcAFsS9FBn4yaEdK9TghWLjv2B/916By5ngPouLCMM2FZ7v8S7BCqlAooz10hs95hxXsVNj+1VpzeDYTzOeN49LBxIT4fW3Km1aAkhhBDSwJGeEwAAz/NFHMcNAOALoIjn+f9z4DQ3AlDBVn64dQnibTzP381x3BWw9aocg22+y9M8z29zNG5CSPcoKMiHRZIQEB0DQZJhMHdtpS4FI2OCTwl0OjWMRtmuRRUVjIzx3p1fNNFgFiC2cQG/2Djg4E/wAiDLcsNK8oQQQgixl0PJCcdx98I2vCui2XN5AJ7leX6Xvefhef4VAK90sM8R2HplCCF9SEGBrQp4WFg4BFGG2Sx2cETfYTYLEET5jHpg4YMG4+l0HsVmEz4wGuDm1nWT4gkhhBBX1OmZZQ2T1zfAtnDi/2Bbzf0eACkAdjSsU0II6cdkWcY1YPFgdBwifX0giFKXr3Eiy0CpRYMSs9ruSfeyDJRZNSizajo1Ud/UzlonPv4BSBVF5BmNKCjIt/+EhBBCCAHgWM/J4wDe5Hl+Vqvn3+U4biNs657sPtfACCF9V0VpCS7w8gbLMAgJi4DFKsFs6dqeE6vM4p0i25y1eZEnoLRj0olVZrGueAAA4JnwE1Az9k3eNVtFWAUJWq0SUqvhXZGRUUhOPom8vDwkJnLtnIEQQgghbXGkJl8EgE/b2bYLQJzj4RBCXEFB8imwDAOzJME9MABmqwiL1YWGdVkEmK1im4s2jggNw7UhYdD//VcPREYIIYT0bY4kJ0dgK+fblvMA/ON4OIQQV1CRmQEAqGUZsCyLeqPFnuJZfYYsA3qjtc0J74Pc3HF7RBS02dndHxghhBDSx9k1rIvjuEua/bgLwEqO4zwBfAigGLaKXVMAzALwoLODJIT0LfqG+RZmnQ4MA9TprT0ckfPVGSw4Y0Y8AF1oGFBUBLXe+YswEkIIIa7O3jknP6LlqgEMgJloud5I48f0+6A5J4T0a0J5ue2Bjy8EUYapi8sI9wSjqe1ywv4JCcCxo/AUXWcYGyGEENJd7E1OJnZpFIQQl6KsrwNYBbQhobB2Q6WunmCyiBBE+YyxsaEDB6MGgIdCAXNtDTRe3j0RHiGEENIn2ZWcdGbVd0IIgdkM6NzgGxsLqyB3eaWunmC2CLaKXUqmRRnioIhI5AlWeClVKExORuxFtEwTIYQQYi+7JsRzHHeQ47gRnTkxx3GjOY475FBUhJA+y2g04PlT/+COY38gYswYWASxW3pOFIyMi73KMM6vAgo7F2ZXMDIu8izFRZ6lUDCdm7JvsoiwCOIZk+IZhkFVw+Py9LROnZMQQgjp7+wd1vUGgK84jvsTwA4A+3meN7TeqWGS/BWwTYo/D8DDzgqUENI35OfbVobXenjCNyAQhZVGWAX71g85FwpGxmW+RdDp1DAaZbQxHaTNYyb7FDl0PYtVhNkignVXn7HWiUmrBQQR9fm5Dp2bEEII6a/sHda1l+O4nwC8AGAjACXHcckAsgDoAfgAiAQwBIC1YZ87eJ4v6YqgCSG9V16eLTmJiIgEyzKo01t6OKKuU2+0gvV3O+P5ouhobNy/D+MTE2nCHiGEENIJdq8Qz/N8OYBZHMe9COBG2CbJxwHwBlAOIAW2HpZPeZ6v6IJYCSF9gP74MTyfNBCGgEBIMlBv7J7kRJaBakEFk0UFjWzfNWUZqBFVAABvhRVtLFtyVnV6S4v5Jo184hORYzQgpzC/cyckhBBC+jm7k5NGDYnHuoY/hBDSglBYiKFe3sjX6rq1jLBVZrG6YCAAYF7kCSjtWPbRKrN4s2gQAOCZ8BNQM50bfmY0C7C2MX4sMjIKAJCXR8O6CCGEkM7odHJCCCFnw9TWAABUgUEQRMklK3U1MltECKJ0xhtpRFg4rgkORZgMCGYzlBpNj8RHCCGE9DV2VesihBB76UxmAIBXVCQsgmuucdLI1FBOuHXFrpCwcPw3LAKT/ANRwqf2UHSEEEJI30PJCSHEaQRBgE/D9/SgpAGwWEWYXLjnxGQRYLFKYNmWyYlKpUKVZBsiVnqakhNCCCHEXpScEEKcpjgvF74qNQAgdOBAGEzCGWV2XYkoyjCahTOSEwAwqG2vQ21uTneHRQghhPRZlJwQQpymKDUFAGCQJKi9PFGrN/dwRF2vVm9us8qX5O0FALCUUEV1QgghxF52TYjnOO6uzpyU5/l3HQuHENKXleflQrZaYFZrIIgyDCbXnW/SSG+0Qmyjd0gVFAxU14CpqemBqAghhJC+yd5qXVs7cU4ZACUnhPRDKfV1ePfvY7j9ltvxH6n7yggDAMvIGO1RDqVSAZYB7KgkDJaRMcqjvOmxI0xmAYIko3XniXdUNHD6NNwsrt97RAghhDiLvclJbJdGQQhxCbkN8yui4uJg7eZKXUpGxpX+hdDp1DAaZdgz1UXJyJjqW3BO1zVZRFgFCRoF02JBxqABgyB+9y18GBaS1QpWpTqn6xBCCCH9gV3JCc/zds/o5Diuk2ssE0JcRW5uNgAgJiYWFsG1K3U1aqzYpVUqITfLTiIHDcL01FPIN+jxSWUlgoODezBKQgghpG9waBFGjuNuBTAegBpoGs3AAnAHcDGACKdERwjpM0RRxH0aN+gTByDa1xcmiwiLtfuSE1kG9KICoqAAa+cILVkGDJICAODGim1ObO+IxSLCbBXBuqtaVCZTqzUw+/rBVF+H3NwsSk4IIYQQO3Q6OeE4biGAhQBqGo63NvwJBCAB2ODMAAkhfUNhdhYS3N0BAKHR0ciosnTr9a0yi9cLBgMA5kWegNKOSSdWmcXKwiEAgGfCT0DNSJ2+rgyg3mBBqJ/ujG0xMTHIy8tBdnY2zj//ok6fmxBCCOlvHCkl/D8AOwD4AVgJ4FOe54MBnA+gAsAp54VHCOkrCk+eAADUSxIUHp6oM3RvctKTavWWNlOhEUHBuDcqBuyxo90eEyGEENIXOZKchAPYzvO8DOAogDEAwPP8UQBLANznvPAIIX1FVVYGAKBOpYIgdm+lrp5mNAuwimemJ9HePrgiKAR+5eU9EBUhhBDS9ziSnOjxb5HONACxHMc1jmc4DqrsRUi/ZCq0Vb0SvbwgiFK/mAzfyGQRIIpnDgnzS0gEAHgK/SdRI4QQQs6FI8nJH7AN7QKADAACgMkNPw8EQEX9CemHmKpqAIA6OBhmq9ivek5MZgFmqwSWbTmjPmLocACAl0IBU011D0RGCCGE9C2OJCevALiF47hPeZ43wzb/ZBvHcXsBvA7ga2cGSAjpG3RmEwDAOzYWFqvYrWuc9LTGymRMq3JfgRGRqLZaAQD5//zTE6ERQgghfUqnkxOe5w8CGA3gg4anHgWwB8AAALsBzHJadISQPsFisaDSaECt1YrQQUNQb7S2WJDQ1UmSDL3RekbPCcMwqG54rvx0ak+ERgghhPQpDq1zwvP8PwD+aXhsAvCAM4MihPQteXm5eDWNh4eHB34bOgR/p1d2ewwsI2O4eyUUCgVYBrCjkjBYRsYwt8qmx+eiRm8GGM8znje7ewAmE/R5ued0fkIIIaQ/cHQRRm8Al8K26OIZvS88z797jnERQvqQnJxsAEBUVAxEmYHBbO32GJSMjGsD8qHTqWE0ypDsyDWUjIxp/nlOub7BJEBso2KXIjAQyMuDubL7EzZCCCGkr3FkEcapsA3fcmtnFxkAJSeE9CONyUl0dAysogSTuf9U6mpkMguwihIUrZ5XjRyFe/Z/hIQhw3Blj0RGCCGE9B2O9JwsBZAC4EkA+bCtCk8I6ce8TvyN1UNGoFar+//27ju+rru+//jr3CVdLWvLQ97ja8cjOyFAaEIgYZRRCL9QoED4FUraXwulTdgz4dcSKCWUH7RAoZQ2pGG1EEYLZJKQ4dhx4tg+XpJl7Xkl3b3O749zbWtdW5Yl3Sv5/Xw8ZEnnfs85n6+P7vic7yKVyhIrQMuJ40Aya+HNWtMe7+I47irxAH4ry4Tx7GclnkiTTGcp83txxgSwcuMmIpkMx461zPzgIiIi54mZJCebgdfZtv3IbAcjIguTf3iYpaWl+Gtq3WmEC7DGScrxcGf7dgA+tPI5fNMYdJJyPNzZ4e5z24rnCFgzv9cSS6ZJpjJUlPjGde9avXoNAKFQiFBoiOrqmhmfQ0REZLGbyVTCx4Cq2Q5ERBauitx0uTXr1xOJpchOZ8DHIpPJOETi6UkzdgWDZbxtg+EjGzdz/PHHChSdiIjIwjCT5ORvgE8aY9bMciwisgANDw3S5PMDsOqSiwmFz991WIfDiSm7hl1QXcNFS6oZ3L9//oMSERFZQGbSreutwArgiDGmD4hOeNyxbXv9OUcmIgtC655nCHo8JLNZypavJHagr9AhFUw0liI9RatRpqYGhoZIdLYXICoREZGFYybJSXvuS0SE3v37WA2EPB7SDsQS58/K8BPFEmlS6ckzdgVXroShIfyh4YLEJSIislCcdXJi2/bNcxGIiCxMkbZjACQrK0mlssST529ykm/GrnqzBZ59lupMGsdxsM5lWjAREZFFbCbrnKw6zcNZIGzbdmjGEYnIgtI5NIg/HKZi82YSqcx533Iy1Yxday69lO5776Hc42W0u4uqZcsLGKWIiEjxmkm3rlY4/RydxphB4C7btu+YSVAisnD89FgLXV2d/OtHPspoNFmwmbo8lsOWshBerwePxRlepcbsEwyd/PlcZbIO4Via+qpSMmNmU66ub2RvOk2j30/b7l1sU3IiIiIypZkkJ+8Avg48CHwP6AYagRuB3wduByqAjxljBmzb/trshCoixSYajdDV1QnAhg3rOdqbLFgsPsvhTQ1tBIMBYjGH6eRIPsvhjfXHZjWO4XAcllZM2j7i9xNMpwgda2HbrJ5RRERk8ZhJcvKHwD1TjD35N2PM14BLbdt+rTEmBNwCKDkRWaRaDh/Ca1ksqamlrLKaaFt3oUMquGgsTTozOTN6fv06PvIfd/P2HRdyXQHiEhERWQhmkpxcA7wuz2M/Av4z9/NvgY/M4PgiskD07HyS7158Oa2WRTqdJX4ejzc5IZpIkUpn8U0Y875mwyYAjhw5XICoREREFoaZLMI4AFyY57ELgZHczxVAZCZBicjCMNrags/jIVheXvDB8Mmsh88c28GHD2wmmZ3ebFjJrIc7jl/IHccvJJmdycvhZCdm7Jq4Uvz69RsAOHpUyYmIiEg+M2k5+XfgM8aYFPADoBd3zMkbgE8B/2iMqQHeDzw+O2GKSDHK9roLLnqbGoknM2o5wZ2xK5FMUxX0jZscYO2atdy6fhMrg2WM9nRT2bS0gFGKiIgUp5ncKvwYcA/wRaANiOe+fxE3cfkI8Erg4lxZEVmkglG3cXTJuvWMRBLTmSBr0XMcGIkmJ7Wc1NTWsbaikqWlpbTt3lWg6ERERIrbTBZhTAPvMsZ8FrgWqMddMf5R27ZbAIwxvwBW2LadmM1gRaR4JJNJ6i33/saybdvpDBdupq5iMxxOTpmohfw+6oEBez+84lXzHZaIiEjRm0m3LgBs2z4CHMnz2NCMIxKRBaH1+b1U+f1kHYdas4Ujh0OFDqloROPuoPiJMtU1EAoRb28vQFQiIiLFb1rJiTHmKPAHtm3vMca0cPrlzRzbttfPSnQiUrQ6ntnFCmAIyHgDxOKpQodUNGJxd1B8idfCGfNqGVy1CkIh/CHdvxEREZnKdFtOHuLULFwPMa21l0VkMWvt6uToQD9N69YXfKauYhNLpEgkMwTL/WTGrHmydPuF8Oyz1GayONkslmd2ZggTERFZLKaVnIxdcNG27XfOWTQismDs7Gjn0ZbDfOKP/ohIbOpuTPPJYzlsCI7g9XjwWEzrForHcthQOnLy59mSTGWJJtLUVpaQyWRObl93+RW0fPc7BD0e+g4fonGTmbVzioiILAYzGnNijKkEqmzb7jDGBID3ASuBH9i2/fBsBigixenQIRuATWYzoXDh577wWQ5vaWwlGAwQizlkp5Fr+CyHNze0zEk8Q6MJVjaUj9tWVlFJeyZNKpqgwT6g5ERERGSCs+5TYIy5AjgG/Hlu05eBzwFvA+43xrx29sITkWI0NDiAd3gYC1i7biORqMabTBSOJkllJmdIv25o4GMHnmdff18BohIRESluM+nw/FngAPBPxpggblLyVdu2a4F/Bj46i/GJSBE6+vRT3LX9Iv754ssJlASJajD8JLF4mlRmcle3TWYLAAcPHpjvkERERIreTJKTK4Hbc2uaXAcEge/mHrsH2DZLsYlIkep9fi8AEb+fZNodX1FoyayHv2nbxifsTSSz1pl3yO3zufZtfK59G8ns7A5OjyZSJJOZSYsxGrMZgCMH7Vk9n4iIyGIwkzEnWeBEB/NXASHgydzvVUB0psEYYz4GvMy27WvGbLsIuAu4DBgAvmzb9hdmeg4ROXextmMAZGpriCbSxIsgOQFIOWefYKQc7xxEAvF4mlgyQ1WZn+yYATCb1q3n77buYFlpKbFQiGB19ZycX0REZCGaya3CncAfG2OuAm4C7rNt2zHGNAIfyj1+1owx7wc+M2FbHfAr4CBucvJJ4HZjzM2TDiAi88Y35K7TUbZ6DcOjhR8MX4wcIDSamNRy0rSimQqfH5/lofWpJwoTnIiISJGaScvJrcAvgTcDfcAdue17cZOdG87mYMaYFcA3gauBif0c3oPbSnOLbdtpYL8xZiPwQeDbM4hdRM5RJpOhJpMBr4+GbdsZiig5yWckkiAzYdowy7IY9Puowe0et+XlZ/WSKSIisqiddcuJbdu7gQ3AVcA627YP5R66Bdhm2/bTZ3nIS3AXmd4BTLyNeDXwcC4xOeF+wORaakRknh0/fIimQAkAS3dcRDReHF26ilE0nppyxq5MbR0A8eNt8x2SiIhIUZvROie2bY8yIZGwbfuHMzzWT4GfAhgzac7/ZuC5Cds6c99XAb0zOSeAzze7g1+9Xs+474vRYq/jYq8fzE4d23Y+wVIg5GRZWV5FPDk6qetSIYytkcdj4eHMMQW8p8qUB31k0ymc2VuLkXgyQzKdpbLUhzPmwJXr18PgICXDobN6LdLf6MK32OsH50cdRWTuzCg5mUdlnBp8f0I89710pgf1eCxqasrPXHAGqqqCc3LcYrLY67jY6wfnVsfW/h4e6Wxn24UXckEW8HgIBgOzF9wMecfM0FVS4ifgmTrLsIDqyhLqK/34SUOru/2iVX58vjKG4h76QnHiycyU+58Nx4JM1qG6umzcdvOSFzHy1FPUZx0qy/34Amf3/6e/0YVvsdcPzo86isjsK/bkJAaUTNh2IimJzPSg2azDyMiMJxWbktfroaoqyMhIjMwUaxssBou9jou9fjA7dXx03z6e6Gxnxy230DMYIRpNznKUM5PKWqwuDeOxPCQTKTJMrl9ZqZ+1TWVUW6OketsJDYbY7AuAA4N7HmVJVTn1DcuoqW+iK1xCe1943ExbM9E7FKW+qoRU6lSy02S20ZVJU+71sefXD7HuqhdO61j6G134Fnv9YO7qWFUVVGuMyHmg2JOT48DyCdtO/N5xLgdOp+fmTSGTyc7ZsYvFYq/jYq8fzLyOjuOwb98+ADZt3srwaOKcP7zPFi8O72g6SjAYIBbLToqroaaMdXUevKGj9LYeJhlzb1Dc6vs+ANkIDEVCDHV1UNXQRPOqjVSsrONQR5jEObSihEbiJFMZMmP+vy2Pj4PA6EAfqw8fZtXlLzirY+pvdOFb7PWD86OOIjL7iv0WxMPA1caYsQsRXAfYtm3PeLyJiMzM8ZYjbPJ4aAiWsXrNOiILZGX4FQ0VbKrNkD7+LF37nz2ZmOQz0tdDz96nWBJtY+vKcspKZ34fJ5JnUHzr5i18peUIuzUoXkRE5KRibzn5FnAb8M/GmDuBK4D3A+8tZFAi56ujv3uMD27czIiTJeN4icaKPzlZ0VDB2qoEo0efZaS3Z9r7pRMJuvc/S9PGNFua17KvPUpsBjOTRWMp4skMFSXeca05W7duA2Dfvr1nfUwREZHFqqhbTnKtIzcABtiFuwjjrbZtf6eggYmcp4YO7AcgXF5ONJ4mViQrwwMksx6+cPwC7ji0gWRucHxjbRlrqlJ5E5OE4+N98Xfzvvi7STiT79VkMxm6D+6jJNTK5hXlBPxnv5p8LJEmFk9PmtFs69btWMBoy1FS8fjUO4uIiJxniqrlxLbtd06x7SncNVVEpMCc7i4A/M3NDI4U3wfqaPbUS9qSigDraiHetu+0LSZhyvI+BuBkM/Qc2seyLX42Na9k37Hhsxpn4zgwOBpnWd34mYtWr17DP+y4hMZAgJYnfsem37t22scUERFZrIq65UREiofjOFTn7vDXbd3BSBGvDB/we9nQVAq9RxjsOH7Ox8um0/Qe2kd1pp/VSyvPev/hcIL0hHEnHo+H0YAfgK7du845RhERkcVAyYmITEtHawvLcivDr7jsiqIeb7JmaQXBSCd9rYdn7ZipeIzQkX0sD8aprzm79RuisRTJKWYtyjY0AhBvbZmVGEVERBY6JSciMi1HHn0Er2Uxks2SraolXMTJSZ01TN+R/WQz576Q4liR0CCJzoOsrfNREpj++JNILEUsmcbrHT/upHKTAaB8ZHhW4xQREVmolJyIyLQM7n0OgNGqKsLRFKkiXr8g0n6YZHTG67Se1mB7GyWjHaxbVjHtfRKpDOFoCo9n/EvuuhddDUC95SEyMDCrcYqIiCxESk5EZFp+1X6cfzh6GM8llzBQhIPhrTGNEsM9XXN2Hiebpb/lIHWeME21px9MP9bA8OT/sxUbN9GXSuGxLA4+eP9shikiIrIgKTkRkTNKJBI8eWAfjwz2s+666wlHk4UOaZKldWVsqoiyzteHxfRm07JwWGP1sMbqmfY+AIlImFjnIVbVeimZ5vTCo9HkpHEnlmUxVO4mOP3PPjPt84uIiCxWRTWVsIgUp337niedTlFXV09twzIOdHUWOqRxSgJe1tfC50Z/Sbivi1Q6gzONXCNgZfh4yT0zOudQZzvLa5tYtXQ5h46fecxIJJoknspQ5vfijA1u8xa+/8ufkwn4efmMIhEREVk81HIiImfU8siDvLppKddu2040kS66mbpWN1UQCHcR6u6Yt3M62SxDxw7RGIhRU1lyxvKReIpofPKg+LXXvZzvd7bzq+f2kM0W7zgeERGR+aDkRETOyDmwn3esXMPV1TUMDMfPogPU3KupKqUhEGPw2OHxLRLzIDocIt13jFUNpXgs67RlHQcGhmOTVorftGkzpaVBRkdHOHr0yFyGKyIiUvSUnIjIaTmOQ+XoKAA1F2xnJFw8iy96LItV9SWk+44RGo5wa/yd/GX4j0g40+uxmnB83Ba/mdviN097n4kGj7dSlQ2xtO7Mg+OHwwlSExZj9Pv9XLFtB5dX13Dwgd/MKAYREZHFQmNOROS0OtuO0ewPALDiqhezp794BsM31ZVRlR2m+3grAANO1VkfY4Cz32esdDJBpOMIzasvpn/YSzKVf22VcDRFPJmh1GeNGxPzimXL2YBFy57d5xSLiIjIQqeWExE5rYMP/gafx8OIk4XaxqJZfNHv89Bc7SHaeYR0srCtOaHuTgLRXpobyk9bLhxNEk2k8XrHv/TWX3gRADWR6Lx3TRMRESkmSk5E5LQG9+wBIFxdw+BIgmy2OD48r2iooCTWx1ARzBzmZLMMHz9CU1mK8qA/b7lM1mFwOI41YXzK5pe+nFQ2S7XXS+fzz811uCIiIkVLyYmInFawvw+Aiq1bCY0Wx+KLZaU+lpWnGWk/ipPN341qPoUH+/EMd7Kq8fRjT4ZG46QnJHhVtbV05qYZOPybX89ZjCIiIsVOyYmI5NXd2cFSj7vI4KqrX8popDjGmzQ3luMZ7WK0v7fQoYwz2HaUWl+MmqrSvGVGI0niyQwTJ/dKLl8BQOKgPZchioiIFDUlJyKS19O7d/Ene57m24konmUrCUcLP95kSUWAen+c0PGWQocySTw8Sqa/jZV1JZOSjxPC0STReGrSuJOlV1wJQF00SjZTHK1BIiIi803JiYjktXPnk6Qch6WXX8FAKE62CAZrN9cHcYbaiQ6HJj223BpghWfwrI633BpguTUwS9HBYPsxqhiloXrq7l2ZrEP/cBxrwnonW6+7nngmQ6XXS+vOp2YtHhERkYVEUwmLSF47dz4JwCWXXlEU403qlgSp8UToz00dPFaJleaO0n/H7/OSSmeYTh5VYqW5veTfZjXGVDxGoqeFFcu2MzBskZliAoGhkTip9PjtpeXl/Mzn5YE9u3nX0cOsu/IFsxqXiIjIQqCWExGZUuexVv68sop3rlyD2biVkQKPN7EsaK4LkOo7RiIaKWgsZzLU2UFFOkRT3dRTC49EEsSS6UmrxTdc+QJ6kwme2vnEfIQpIiJSdJSciMiU9v78PtaUlfPCxiYy/jIiBV7fpLGmjEpnhMGOtoLGMR2ZVJJIVwsrllj4fZNfZiPRFKORFB7P+MeuuMJtLXnyySdIp9PzEquIiEgxUXIiIlMafc5d3yS2tIn+UKygsXg9Fs01PuJdLaQTUy+4mHB8fCz+Vj4U+UMSzvR6rCYcHx9PvI2PJ9427X2ma7i7k9LEAMvqJ7eeOEDvUBQmDJrfunU7L1+xklualrL3lz+b1XhEREQWAiUnIjJJKpWiYTQMQN3lLyAULuwK7EvryilLDRHq6jhtuU6njo5s7Vkdu9Opo9OpO5fwppTNZBjtOMqyiiwlAe+kx0PhOInU+Fm5vF4v16xdz2XVtfQ88vCsxyQiIlLslJyIyCTP/fZhlpaUkHEclr34pYwUMDnx+zwsX2IR6TxKJl34qYzPxkhvD/5IL80Nk1tPRsIJIvH0pCmFKy+6CICK3uJaw0VERGQ+KDkRkUmOPXg/AP2BAKGUh1Q6W7BYljdUUBLrI9TTXbAYZspxHIbbW2gMpigP+sc9lkxl6Q/FJw2K3/6a15POZmnwemnPda0TERE5Xyg5EZFJvMda3e8bNxZ0vEmwxMey8jSjHS042YW5MGF4sB9rpIvmhsnrnvSHoqQy46cUrmlaSnsuXzn4i5/PR4giIiJFQ8mJiIzT0dHO4f5+hlJJmq97BcMF7NLV3FCON9zDSP/C7uIUOt5CvT9GdWXJuO3D4QTRxOQphZ216wDIHjo4bzGKiIgUAyUnIjLO/ff/mn9tP8Y3/X6sFeuJxgszpW1leYCG0gSh40eZ1oqKRSw2Mkx28DjN9cFxE3RFYilCo/FJ4042vfo1ADRnswy1H5/HSEVERApLyYmIjHP//b8C4NqXvZyewWjB4ljZEMQZ6iAaGpr2PnXWCPXWyFmdp44R6ji7fWZi8Pgxqq1R6muC47Z3D0TITEi+1l58KcfTafaNjvD4A7+Z89hERESKhZITETmpr7uL2KGDWMALX3QtodF4QeKoWxKk1hNh6HjLtPcpsdJ8vvRf+PuK71JiTa+1p8RKc2fpt7mz9NvT3memkrEoye5Wmmv9eMd04xoacWftmti1q+Wqq/jMwf3c9/ijcxqXiIhIMVFyIiInPf3jH/CZzVv50iVX4C+vIRyd/6l7PZbFyvoAqd5jJCLheT//XBrsbKMiNcTSulNTC49Gk4RGE5O6dr3shlcC8MQTv2N4ODSfYYqIiBSMkhMROSm662n3h+XL6OqPFCSGpXVlVGZCDHYcK8j551ImlSLceZQVS6DEf2phxq7+8KSuXWvWrGPjxk2UAY/+14/nOVIREZHCUHIiIgB0H29jfdqdrnfZ9a9maGT+u3QF/F5WVHuIdBwhnUye1b5Jx8tn4jfxiciNJJ3JK7Ln2+f2xJu5PfHmae9zroZ7ughEe2lurDi5bXA4Tjg2uWvXWy+5gq9feCmlDz04L7GJiIgUmpITEQHgqe/9G0GvlxAOAXMJkdj8d+la2VhOSbSHUHfnWe/rYNHqNNGSbcLBOvMOY/Zpdaa/z7lysllCbYdpCiaoKg8AEI6l6B+OTeradcUb3wRAs2VxbPeueYlPRESkkJSciAiO4+Ds3QtAYsMmugfnv0tXVXmApmCSUNsRnGzhVqSfD5GhQZzB46xqLMPK5UTd/RGS6fH1Xr7J0JprTTnwg/+Y7zBFRETmnZITEWH/00+y0e8HYM1rb2RweH5XhbcsWNUYxBk8TmRoYF7PXSgDx45SzTBNte7g+IFQjNFYalLrSfkLrgKgprODdGr+W7NERETmk5ITEeGZ79+L17Lo9XkJVzaRTM1vy0VTXTnVjDBw7Oi8nreQUvEYsc4jrKzxEPB7SaQydPaFsSaMO7n8prcSzqSp9vp4+vtqPRERkcVNyYnIeW50dJR/ePgBPrp/L4HrX0XvwPx26SoJeFlV7SHWcZhUfH5bbAptqLOdkmgPq5vcwfE9g1GiiTSWdSpBKa2ooLu+AYDBX/+qIHGKiIjMFyUnIue5++77T2KxKJmmJpa95BWERhPzev7VTRUEwl0MdXXM63mLgZPNMtR6kMaSGDVVpYRG4/SHYvh841+at/7RO8k6Do2pNAefeaYwwYqIiMwDJSci5zHHcfjhf9wNwP9681vp6AvjnGGf2VRfE6QxEGWg9eCsDIKvIEaldXatLxVEqSB6zueeqehwiHRvC2saAng9Htp7w5MGxq/ecSH/HSzllmd38e3/UNcuERFZvJSciJzHnvjZT/lYdR3vWbeBq15yPf1D89etKuD3sqbOT6LrMPHRkXM+XomV5svBb/DVim9RYqWnvc9dpd/grtJvTHufudDf1kJFoo9VTRX0DUUZHE1Maj154TveRTST4d5772VoaLBAkYqIiMwtJSci5ynHcej80fcp8/m4YPUaBkYhnZm/gfBrllZQGu1m4HjbvJ2zWGXTaYZabZYFE1SWBWjrHiEzoQnrssuuYMuWC4jH49z7T18rTKAiIiJzTMmJyHlq1wO/5gLLfQlYcdPb6ZnHgfBNdeU0+sMMHNmPk83M23mLWWRokHTPEdY2BBgYjhEKj289sSyLP3vXu7lj81au2Lef/rZjBYxWRERkbig5ETkPOY5Dy93/jsey6A4GiTauJ5GanyShrNTHmhqLWPsh4uHRWTtu0vHyucQb+Gz09SQd77T3uTPxRu5MvHHa+8yl/rYWgrFumuvLONY1ysR2rJfc8ErKy8oo8Xh46v99uSAxioiIzCUlJyLnocfv+wnbHLffUMONb6WzLzwv5/V6LDYsL8cbamOw8/isHtvBws42cyCzAgfrzDuc2Mdpxnaap73PXMpmMvQf3ke9dwQnm2VwZHzricfjof51rwFgZV8f7c/vLVSoIiIic0LJich5Jp1O03XP9/BYFl2VlcSWGxLJ+Wk1Wbu8iiWpPvqOHABnPucFWzgSkTDhYwdYWp6iZyg2aezJNe+6mWM4BDwenv/KlwoSo4iIyFxRciJynrnnm99klcdD2nFY/o730tk3P2NNlteXszQQZuDw86STyXk550I13NNFtucIlb4U/cNx/P7xrSfr/vg9ZByHtak0O394bwEjFRERmV1KTkTOIz093dzxpS/xgb3P0nbBVvr8dfMyQ1ftklLWVGcJt+4jNjI85+dbDPpaD+MPHSOTShBPZsetGm9efDWt1dUAJH76E8KaWlhERBYJJSci5wnHcbjjjk8zOjpK85YtrLvpPfQNzv3ig5VlATY0+Eh3HmS4p2vOz7dYONksPYf24R1qIxpP4p247skHP8JQOs1oIsE37vpigaIUERGZXUpORM4T//31rzKy62l8Ph/vv/UTtHaNzPlq8OVBP2Z5KZ7+I/S1HZ3jsy0+mWSS3oPPkRloI5FKjxscv6SxCc8fvpWPHtjLd/7zBzz00P0FjFRERGR2KDkROQ8c3PU0tY89xgc3buZTb3k7aX8D0fjcroheVupj8/Ig/qEWeo/Y8zIAPkCKAKk532c+JaNRevbtJt5zjHR2/P/h5Te8kje/5e0AfPSjH6TlkF2IEEVERGaNr9ABiMjc6u1op+1LX2BVoIR+y8K86V3sb5u99UWmUhH0Y1YEKRlqofvgPpzs3I9rKbHS/GPwa/h9XlLpzLRyoRIrzddKvzrnsZ2reHiUzueeJuDzUla6Ydxj73//X/H8889hentp/+zt1Hzu81Q3LStQpCIiIudGLScii1hkdITfffSDrAqUEMlmWfInH6B9cG5nyqquLGHLilICg0dyiYlWgJ8N0ZFh2p55ipG2w5QETg2O9/sDfP4zf8NLG5fS5PPx9IdvY6S/v4CRioiIzJySE5FFanhwkF+978/Y4vOTymbxvOVmOqgmPXHhjFm0tK6cLU1ePN0H6FFiMusiI8O07n6S8PFDlJWAx+MmKQ2rVlP7nvcSzmRY6fHy5G0fINTTXeBoRUREzp6SE5FFqLuri4c+8Odc4PGSymaJvOK19FVvIJ6Ym3EmPq+HDc1L2LAkQaJ1D70th3DmeZHFlOPlS4nX8IXoq0k53unvk3wtX0q+dtr7FFosHOHwzscZbXmeoOfUCvIbX/hiyt5xM9FMhlUeD89+8K9p2/tcgaMVERE5O0pORBaZnTuf5C1vvZHdPV0ks1lir72R4XVXEo7NzaDv6soStq+pZCm9DO7fyVBXx5yc50yyWDybXcuezBqyWGfeIbfPc9m1PJddO+19ikEsmuDgrqcZPPA0gcQQJQEPlgWbr3kpZe/6Y0LpNEt9Pvr+7nM88i/fKnS4IiIi06bkRGSRiIZH+YfPfpp3v/sdDA4OsK+yktjb38vA8ouIzEFiUhLwsqG5iq2NEOg7QPdzO4mNhGb9PDK1ZDLNkedtOvf8Dqf/KEFvCp/Py6arf49VH/04ndkslV4f3/r21/nwh/+a3t6eQocsIiJyRgtiti5jjAf4JPDHQA3wW+BPbds+XNDARIpAMhHngX/6GsGnn2JrOo0PuOE1f8AfvO0v6ByIk5nlrlwlfi9NdWUsq8jij3QxdOAw0dDQrJ5DpieVyXL8WBeR4WGWrVlD+Yr1+MrqaN6yhdqv/CM//uKd7Nn1JLt/cR8PPPAb/uIPbuT6t76d+uaVhQ5dRERkSgsiOQE+DrwXuBnoAO4EfmGM2Wrb9txOPSRSpDoOHWT3v32HJa0trPUHwB8g7PHy2ds+TXDr1Rzvjc3q+arKA9RXl9IYzOCL9RE+2kpfb8+8jy2R8bKOQ/9QhGjsIPV9PdStaKakcTVVVdW87dO3s/X1b+DOO/8vx/c/z7YDB+j6xEd4orKKZS+7nh2veBU+v7/QVRARETmp6JMTY0wA+CvgNtu2f57bdhPQCbwBuKeA4YnMm0gkzPPP7+XQg/fTsH8fqzxeNlkW+APEsll6V6+j4vffRiLuJTp87omJZUFFMMCSyhLqyz2UWzEYPc5oewfhwf55WbtEpi8aT9HeMUBoaITamg6WNDVR2tDMFds3cs/d93D/3XcT+uUvWOrxsjESgf/6MTt/eC8DS6qp2LKFDdddz/ING7GshTP2RkREFp+iT06Ai4BK4P4TG2zbDhljdgEvQcmJLBKJWIzBjnaGuzoZ7elmtKuLeFcnztAQu0KD/OjAPhzHYU2wjDu37gCgG4f4BRdR9pLXEk96iEQdYGYtGQG/h2CJn/Kgn4pSL0tKsgScBFasl3hnNwMD/SSikVmsscy2rOMwEkkSjvZTNjBMVUUbVXV1BGvqePnrrsN502t5+mf/Q/v//Iqlo2FqfX5qIxHYuZO/vfce9qRTbNiwkYtXrmKTP0BpQyNVy5dT07yKysZGKuvqCZSWFrqaIiKyiC2E5KQ59/34hO2dwKqZHvTE9Juz5bHnj/HQV7/G0kSYEx8OLcZ/TPy5v5ak5Z73onSYtZn8d7d/6asmarlTm27PRNiUPVV27H1Nx4H/9i1hNFf2gkyUrdn8x/2Nt5JBy73sJhNjR57jAtzvraAv9yeyMZvgUieKZVlTduN5yCqj03K7h6xzkrzAiZFvie5HrCBtubKrnRQvdqJ5Y3iMUo7ixwFWkOY6xtRtwvGfoAQb97hLyXAD+f8fdmb97M2VrSfDazzxMRGMOa4Dux0fux23bDVZ3nCy7OR4n836eMrx4zgOlWS5yZccU9bB42TxZ7P4cXgqEuNnQ0OkkwnqnDRf2rwZcGepWJL7OqEtGsVxHMpql5NacyH3Na6m94JXMVqz1l23pHPqelrWiS8Lj2Xh8Vh4ox5wnFO/exx8HvAksljxLAymcFIJ0qk0mSRk0mXAutxX8co4p67G91JX45lGkjZ+n5fgtYq7i5plgZX24DjZfE+vU5LACHi6LbweD35fCn9JDG/wOrw3vhIrmyaw8yfUtO5mRbiX/ZEII4kYu3btpLmzgxuaV0Nr68lDDeS+4pkMX+jspgU/Hl+AK8pLubYsQAYPWcsibXnIWh4cLLDg15TR7fFjYbGeFJc7cffK5FpoTpRzsHjcX0W3txSPx2JFKsYl6dG81dvpraTdWwLA8myCK05Tdre3gmNeN6lqzCZ5YXokb9lnveUc9QYBqMumuDo9nLfsPm8ZB71lACzJprk2Hcpb1vaWccBXDlhUWRmujQ+S70bCEW+Qvb4KAIJOhuuTg3mP2+otZY+vEgC/k+VVyYG8ZY97Stnld8t6HIfXJPMv1tnlKeFJf9XJ31+X6MtT0qLX4+d3/uqTW9bXLOHLX7gVr1dz7ojI2VsIyUlZ7ntiwvY4UDuTA3o8FjU15ecU1ER3feserjm2hyvrG/KW+frOBxhNu4OTr1m1hisal+Yt+y+7H6Y/6X6wfWHzKi5fujxv2bt3PUZH3P0gftnyZi5b3py37A/3PkFL7u739qXLuKx5dd6yP9m7k9aw+4ZvGpq4ZPXavDfl//vgMxwbDgGwtq6Bi9euz3vcBw4/R9uQ+2a7oqaWi9dvylv20ZZ9tA24b6D1S6q5cOPmUw9OyAyeOnaQ433ujERVlVXsMBfkPe6ezsO093QBUFJezvYt26cuaMH+jhY6ctPjWqVBtm+7MO9xj/Qep6O9DYCGQAnbdlw8uVDuDdtORogMuMcd8rrJZdZxCGeyjGRhGB89viq6g00c3PY6vK9+BcmKRnqAu08cK//npvPaw5k81/M0Hsme/T4Lwol1MBPAxIav5e+F3EuL89I43sEjOH02fX2P89tkJ7XZGLVWmhqvhxKP+3db6vUSHh1kNPc6Utq0jA1VJ15HnNwJTy2++RP7GdpG3WRgU0Mjl65ed6roBA8c2Mnh3OtIU209V67bkLdav7N3cWTI/SBeV13DlRtM3rK7Dj/DkX73w3VF1RKu3LQlb9l9R5/jSK+7gKW/opIrN2/NW/Zw6/Mc6XbvDKwtK+PKC3bkLdvetp/Dne0ALC8t5cptF+Ut29d+kMPtxwCo8we48sJL8pYd6TzM4bYWAMq9Xq68+PK8ZRMDRznccgQAv2Vx5aVX5i37xNAxDh85ePL3yy+9Ek+eLn/PDIf47qEDJ3/3lFfwk0dewVuuvzTv8UVE8rGKfTCrMeaNwA+AMtu2Y2O23wuU2Lb9urM85NFMJrt2ZGR2Bwvvb+vlF9/4DkvCw+Pfc8e8lu+uXkHa434IXR0ZojERHlNu/Iv+s0uWk/S5d+ubo0M0xfPfFdy3ZDlxXwCAZdEQy2LDk453Ihh7yVKiPvduY2NsmBWx0LgSDpzsc364qomwvxSwqI+P0hwZHNew4IypXEtVA6MlbsJXEw+zMpz/7l1bVSPDubJLEhFWjvbljbejoo5QqXunrzIVZdVI74Qip/brLq9lMFgFWJQlY6wZ6clbtreshoHyagBKUwnWDHe5tbGsSR+a+suq6S+vASCQTrI2NLGZ4tRxh4JL6Ktwc2Z/NsXawQlrfvgDOIEgBILEq+qJ1a3AFyjFHyil0ufDU7sMvLO4GOD4RiAswOfzkk5nFuVAdsuyVL8ZH9z9xxr3+6kfnWScTKiP7HA/I5aHeDJOJp0iONJPVagb0kmsdMr9nklB1u1i2FLZSNhfAo5DXWyE5vAA4Lgtn46DNebnQxX1hAJBLMuiLh5mXST/68jh8joGT7zmJKNsDOdvBWgpr6WvxG2JWJKMYcL5WgHgWFkNPSdfc+JsGe3NW/Z4sJquoNu6UJZOsm2ke8pyjgOdwSrag0uwgGA2zfZQV962ve7SCtrKcq85mTQXDXfljaG3pJzWcvc1x5vNcOmk16dTBkrKOFJeB4DlOFwxNLFDwimDgTIOVdSf/P2KwePutZpCyFeKXdl48vcNdVV8+oM3E48lyWRmb2xaVVUQr9fTQrE344rIOVkILScnXj2XA0fGbF8O7JnpQdPp2R3Mu2VVIy/8yqcYGorkPfY7Z/WM88/n81BTU37aOi5kxVG/iQ2Es+tUHeOL/BqqfnOjLvc1d4rjeTh3Fnv9wK1jwO8lEs4u2jqKyNxZCB1C9wAjwDUnNhhjqoFLgEcKE5KIiIiIiMy2om85sW07YYz5CvA5Y0wf0Ap8HrdF5UeFjE1ERERERGZP0ScnOZ/AjfWbQBB4GLhBCzCKiIiIiCweCyI5sW07A3ww9yUiIiIiIovQQhhzIiIiIiIi5wElJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBctxnELHMN9ijuOUZrOzX2+v10Mmk5314xaTxV7HxV4/WPx1VP0WvsVex8VeP5ibOno8FpZlxYHgrB5YRIrK+ZichIASoKvAcYiIiMj0LQMSQHWB4xCROXQ+JiciIiIiIlKENOZERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGi4Ct0AAuFMcYDfBL4Y6AG+C3wp7ZtH85Tvg74MvCq3KbvA39p23ZkHsKdEWNMLfB/gd8HqoBngQ/Ztv3bPOXfAfzLFA9tzPf/UkjGmNVA6xQPvdu27W9OUX5BXUNjzDXAA3kebrFte90U+yyYa2iM+RjwMtu2rxmz7SLgLuAyYAD4sm3bXzjDcd4EfBpYBxwEbrNt+5dzFPa05anfa4BPAFuAfty/wU/Yth07zXFagDUTNv+7bdtvm+2Yz1aeOn4beOeEoh22bTef5jgL4hoaYx4Efi9P8XfYtv2veY5TNNfwTO8Li+k5KCLFQS0n0/dx4L3Au4GrAAf4hTEmkKf8D4D1wHXAG4Hrga/OQ5zn4h7gBcCbgcuBXcD/GGM25ym/A3gQWDbhq2XOI52ZHUAcWM74eP89T/mFdg0fY/K1uB5I4364mMqCuIbGmPcDn5mwrQ74Fe6Hm8twbx7cboy5+TTHuRb3en8VuAj4b+A/jTFb5iTwacpTv6uBHwM/xI31vcBNnOZv0BhTCazG/SA59nr+2RyEfVamqmPODty/z7HxXnya4yyYawi8gcnPrZ8BB3Cv7VTHKbZrmPd9YTE9B0WkeKjlZBpyCchf4d7d+Xlu201AJ+6bzz0Tyl8FXANssW37QG7be4BfGmM+bNt25zyGPy3GmA3Ay4EX2bb9WG7b+4BXAm/BvXs70XZgj23b3fMW6LnZDti2bXedqeBCvIa2bSeBk9fCGOMH/h744VQtQzlFfQ2NMSuAbwJXA/aEh98DJIBbbNtOA/uNMRuBDwLfznPIDwE/sm37K7nfbzXGvAh4H+6H/3l1hvr9CXC/bdt/m/v9sDHmI8C3jTHvtW07McUhtwMW8Kht26E5CvusnK6OxhgvcAFw+1n8DS6Ya2jb9uCEsn8I3ABcYtv2aJ5DFs01nMb7QowF/hwUkeKjlpPpuQioBO4/sSH3prELeMkU5a8Guk58qM15ELe15cVzFeQ56gdeDTx9YoNt2w7um2Rtnn12APvmPrRZczbxLsRrONGfASuBvzxNmWK/hpcAQ7hxPjHhsauBh3Mfik64HzDGmMaJB8p1zXwRY57HY/aZ6nk8H05Xv78Dbp1iHx/u69FUduD+3YZmK8BZcLo6bgRKmebf4AK8hicZY8qBzwN/b9v2c6c5XjFdwzO9LyyG56CIFBm1nEzPib7Pxyds7wRW5Sk/rqxt20ljzECe8gWXeyP8+dhtuX7B63Gb3ZnwWAPQBLzEGPMXuG9UTwAftG374JwHPDPbgS5jzCPAJuAQ7h3bSfVjAV7DsYwxpcBHgS/laylaCNfQtu2fAj8FMMZMfLgZmPgh70SL1iqgd8Jj1UA5038ez7nT1c+27d1jfx/TgrvLtu3+PIfcDkSMMT8EXoj7f/Bt3HEA2dmNfnrOcA234yb87zfGvBLI4r4Ofcy27eEpDlfNArqGE7wXN6n87BkOWTTXcBrvC59lgT8HRaT4qOVkespy3yd2o4jj3vWbqvxUXS7ylS86uWb2bwH/lXvznWhb7nsGeDtuf+QK4LfGmKb5iXL6ch/sNuEO6PwY7iD3p3DHDV03xS4L/Rr+ERDEHdCfz4K6hlOY6hrFc9/zPS/Js09RX1NjjA/4Lm4XqD89TdFtwBLcrqbXA18H7gA+NcchztQ23ISkFXgN8Ne4z83/yt1ln2hBXsNc97W/AL6aJ+kaq2iv4RTvC+fNc1BE5o9aTqbnxMw4JWN+BvfFdKqZm2K5shPlK19UjDGvA+4GHgf+cKoytm0/YIyptW17aMx+rwfacGfe+dzcRzp9uVaPaiA9pq/+07lBmH8N/GbCLgv6GuImGz+0bXsgX4GFdg2nMNU1OvEBJ9/zkjz7FO01zQ2Qvhe4FrjRtu28XYeAlwGlY8YzPJfb/2PGmE8VqvXkND6F280plPt9rzGmC/gd7uDriXVdkNcQd/zaKuAb0yhblNcwz/vCefEcFJH5pZaT6TnRBL18wvblQHue8uPK5u7c1+UpXzSMMf8H+BFuU/6rTjdl6dgPtbnfI8BRTnWDKyq2bUemGET8HFPHu5CvYQNud5B7zlR2oV3DCSZdozG/d0xRfhD3A9B0n8cFZ4xZBjyCez1fmacV8yTbtlNTDLR+DrcrTc3cRDlztm07U4ytONFNaKq/wQV3DXNeDzxp2/bRMxUsxmt4mveFRf8cFJH5p+RkevYAI7h3vwDI3YW/BPeDw0QPA825mU5OuDb3/bG5CfHcGWNuAf4B+ApwU57ZgE6WNcb0G2OCY7ZV4Xaden7Ogz1LxpgdxpiwMWbiYPbLmDreBXkNc16I24//odMVWmjXcAoPA1fnusyccB3ujGwT+7qfGMj7W8Y8j3NeytTP44IyxtTgDhRuAF5s23a+NWxOlPcYY1qNMR+d8NDlQM/pWtEKxRhztzFm4pivy3PfJw2SX2jXcIwXM3kQ+CTFeA3P8L6wqJ+DIlIY6tY1DbZtJ4wxXwE+Z4zpw+0f/Xncu0Y/yr0wNwDDuTtKTwCPAvfkXtgrgH8E/tW27anuJhWcMWYT7kJaPwb+BmgcM7gzBoQZX8f7cAdD/qsx5lO44xv+BugDvjOvwU/P3tzX13LXpB93KtqrgMsXwzUc40LgqG3b0bEbp6jjQruGE30LuA34Z2PMncAVwPsZMx2pMWYJELBtuy+36YvAz40xu3HvAr8Ldza+d81f2NP297iL1L0C6DPGLB3zWJ9t25mx9bNtO2uM+T5wmzHmIO5sgtfh/h+9b76Dn6a7gZ/kPozfg5sY/z/gbtu298OCv4Ynnndbcd8zpnq8aK/hNN4XFvtzUEQKQC0n0/cJ4J9x57N/FHdhuxtya0usBLpwF0g7cXfoDbgL2T2A21/8F8At8x/2tN0I+IE/wK3L2K+7mFzH47h3u6pw/z9+A4SAa0/XFaxQcv20XwM8ibvK9m7gSuDluWk9F8M1PGEp7krNEy3oazhR7s7sDYDB/RD3SeBW27bHJlZ34U58cGKf/wFuxr2Ou3E/+P3+hCmjCy43GPwmIIB7x33ic3Jlrui4+gEfBu4E/ha35eEDwPts257OWId5Z9v2fcCbcBc5fQ73NfZHwP8eU2xBXsMx6nBfW/O1ehTzNTzt+8Jifg6KSOFYjuMUOgYRERERERG1nIiIiIiISHFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiBQlY4xV6BhERERkfik5EZGiY4x5LblV6o0x1xhjHGPMNYWNSkREROaar9ABiIhM4QNjft4FXIW7WraIiIgsYkpORKSo2bY9Ajxe6DhERERk7lmO4xQ6BhGRk4wxDwK/N2bTtcADwLW2bT9ojPkU8GbgQ8AdwAbgAHAL4AB3ATuAI8D7bNv+zZhjbwP+FnhJbtNvgL+ybfvoHFZJREREpkljTkSk2PwpsDv3dRVQNUWZlcAXgc8C/wuoBX4AfA/4Bm7y4gHuMcYEAYwxm4DHgEbgncD/BtYBjxpjGueuOiIiIjJdSk5EpKjYtr0PGAFGbNt+PPfzRGXAn9q2/T3btn8CfBVYDtxu2/Y3bdv+L+DjQD1gcvt8EogBL7Nt+0e2bX8ft1UmCNw6p5USERGRadGYExFZqB4b83N37vvYsSkDue/Vue/X4XYPixpjTrz2jQCPAC+foxhFRETkLCg5EZEFKTdQfqLoaXapA27KfU3UNytBiYiIyDlRciIi54sQ8Gvg76Z4LD2/oYiIiMhUlJyISDHKAN5ZPuZDwAXAM7Ztp+HkKvT/BhwGnpnl84mIiMhZUnIiIsUoBFxljHkpsGSWjvkZ4HfAfcaYrwFx4E+A1wM3ztI5RERE5Bxoti4RKUZfAVLAL3Bn0zpntm0/C1yNuxbKd3GnHl4GvN627R/NxjlERETk3GgRRhERERERKQpqORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCj8f6xzLlpTy7muAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load a chromatogram that is very heavily overlapping\n", + "df = load_chromatogram('data/bounding_example.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Fit the peaks providing only the known retention times\n", + "peaks = chrom.fit_peaks(known_peaks = [10, 10.6])\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "known_amplitude = 100\n", + "\n", + "# Print a summary statement demonstrating the underestimation \n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can constrain the parameter bounds for the amplitude of peak 1 more narrowly \n", + "than the other peak by passing a dictionary to the `known_peaks` parameter of `fit_peaks()`." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 0%| | 0/2 [00:00,\n", + " ]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9CUlEQVR4nOzdd3hU1dYH4N8509N77+3QQcDGBQFBAQuWq1fFjhVFREVBQEEUUT4EDIrSQUBUQFFRrKiIomIQBZIc0nvvmX7K98ckmEomQ0KSYb3Pk4eZOW3tSZiZNXvvtRlZlkEIIYQQQgghPY3t6QAIIYQQQgghBKDkhBBCCCGEENJLUHJCCCGEEEII6RUoOSGEEEIIIYT0CpScEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBegZITQgghhBBCSK+g7OkAekA1AA2Aoh6OgxBCCCH2CwZgBuDVw3EQQroRcwGuEG+UZVkrSV3fbpZl0B3n7U2cvY3O3j7A+dtI7ev7nL2Nzt4+oHvayLIMGIYxAdB16YkJIb3KhdhzUiRJcnRlpb5LT6pUsvD2dkVtrQGCIHXpuXsLZ2+js7cPcP42Uvv6Pmdvo7O3D+i+Nvr4uEKhYGjUAyFOjuacEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBeocfnnHAcFwkgu41ND/E8v5HjuGEA3gQwEkAFgESe51ecvwgJIYQQQggh50OPJycAhgAwAYgB0LS0Rw3Hcb4AvgWwD8CjAC4DsJbjuAqe57ec70AJIYQQ4nySkpLcYStVTCNKCOlaEoCiESNG1Nl7QG9ITgYD4Hmeb1WBg+O42bDVNJ/B87wAIIXjuHgAcwFQckIIIYQQhyUlJbEA5jMMew/DMCoATE/HRIiTkWVZtiYlJb0H4NURI0Z0WMKvNyQnQwAkt7NtDIBDDYlJo4MAnuc4LoDn+dJuj44QQgghzmq+QqGc4eHhbVGrtQaGYZx7ARpCzjNZlhmLxeRSW1s1QxQFAHilo2N6Q3IyGEARx3E/A0gAkAbgZZ7nvwYQBuBEi/0LG/6NAOBwcqJUdm3PrULBNvvXGTl7G529fYDzt5Ha1/c5exudvX1A32ljUlKSB8Ow93h4eFvc3b0rejoeQpyVRqMzAvCtrq64Jykp6c2Ohnj1aHLCcZwatoRED+BZAPUA7gJwgOO4qwC4wDasqylTw79aR6/Lsgy8vV0dPfysPDycf+FaZ2+js7cPcP42Uvv6Pmdvo7O3D+gTbQxiGEalVmsNPR0IIc6uoWfSRZYRDKD3Jic8z1s4jvMCIPA835iEJHEc1x/AHABGAJoWhzUmJQ4v8S5JMmpru/a1SKFg4eGhQ22tEaLonKv+Onsbnb19gPO3kdrX9zl7G529fUD3tdHDQ9fVvTEsAIaGchHS/Rr+nzGwo+hEjw/r4nm+rSTjBIDJAPIAhLTY1ni/4FyuKwjd86YgilK3nbu3cPY2Onv7AOdvI7Wv73P2Njp7+4ALo42EkK7XowNCOY4bwnFcPcdxo1tsGgngFIBDAMZwHKdosm0CbNW9aDI8IYQQQgghTqSne05ONvy8w3HcDADlAB4GcDmAiwGUAHgOwCaO45YDuATAbNjWPCGEEEIIIb1MYuLKkIMHv/Hdt++rlkWNeqXU1GRtfn6+ZuLEq2t6OhbSwz0nPM9LAK4H8AeA3QD+AnApgKt4nj/R0DsyCQAH4BiARQCe5Xl+Ww+FTAghhBBCnMi8ec/EJyef7J5KSaTTerrnBDzPlwF44Czbj8LWk0IIIe0yCsCY923vLUfuAFR2LKVmFIAxH7kDAH7+Xx10Pf6KSAgh5Pyjmgi9Cb0VE0IIIYQ0kCQJBoOhx0aWuLi4SCzbucuPHj1yxH//e1vRjz9+72u1Wtk333wn1cXFRVqzZlXYP//85aHX6xWenp7C+PETK558ck5BSkqy7pFH7huwdu3GlCFDhhkAYPbsx2JPnvzH46uvfvxLqVRClmVce+3EoffeO73gttvuLG95zfLyMuXKlcvDjh076imKIpOQ0K/+6afn5sXGxp1ZAmL9+rWB+/fvC6yrq1PGxcXr5817Mbtxe1sxh4WFW9atezv4p58O+lZVValCQ0NNd999f+HkyddWA8Du3R/47tq1Pfj++x8s2LRpfVhNTbWqf/+BdQsXvpS9deumoB9//M5XqVTKU6feXPLoozOLAcBsNjNvvbUq5PDhQ96VlRVqrVYnDR06rGbevBdyfXx8xRtvnDy4vLxc/dFH7wefOHHcfcOG9/iqqkrFW2+tDj169Devuro6ZXR0rP7hhx8ruOyyUfWNbdu3b6/Pzp3bgsvKyjQRERHG8eOvqti06d3ww4f/THLkd8KyrEPtc0aUnBBCCCGEwJaYTJv2336pqSk9NsSnX78B9e+/v4fvbILyzTdf+i9b9kaaKApMfHyCedq0/w7w9PSyvv766tPu7u7iTz8d9Nqw4Z3wAQMG6SdNuqbaz8/PcuTILx5DhgwziKKI5OST7mazmf3rryTXiy++VH/8+DGXurpa5ZVXXlXd8lqCIODJJ2ckAIy8ePGrGb6+vsKaNavCnnnmiYQ9ez4/AQDl5eXqkyf/cV+2bGWaxWJmXn31pehXX30patOm7Xx7Mc+e/VhsZmaGyxNPPJUbHR1r+uqrL3yWLl0cy7Js+tVXT6kBgIqKcvVnn30S8Mory9MNBj37wgtz4++//86BEyZcVb527aaUL7/8zHfHjq2hY8eOr+7ff6DpjTdeC/v99yNec+cuyA4PjzDzPK9bseLVqHXr3g55/vkX8zZu3J4yffqdA/7zn7GVDz88o0gURcya9WiC1Wpl5s5dmOXvH2D98MP3A+bNezph9eq1qcOGDTd8993XnitXvh59zz3T88eNm1D9+++/emzc+G74uf5OHGlfp/5I+ghKTgghhBBCzuib656MHXtlxbBhww0AYDQamSuvvKpi0qQpVeHhkRYAiIp6oHT37g+C0tNP6yZNuqZ65MhLq48dO+oBoPj48WOuCoVSTkjoV3/06O/uF198qf7nn3/yio/n6v39A4SW1/rll0MeOTnZui1b3j8ZH59gBoAFCxZnb926MaiyskIJAAqFQn755dezPD09RQCYMuW6sh07toa2F/Pp06naP//8w2vx4qXpEydOqgGAmTNnF2Vmprvs3LktuDE5EUWRefrpuTmNH8wHDx5ae/p0qtuzz87PZxgGDz/8eNFHH+0KTks7revff6Cpf/8B+vHjJ1RdfvnoegAID4+0fPvtV7XZ2Zk6APDz8xdYlpV1Op3k7e0jHjz4rUdWVqbLhg3bTjVeY+HCl3JPn0513blzW9CwYcMzP/hgZ9Bll42qfPDBR0sAIC4uviw/P0/z+ef7As/ld+JI+87lb6a3ouSEEOIUGAAjAkWolAowdsw3aTxmeMP7rp2HEEKcGMuyeP/9PXxfG9YFAGFh4WeGU+l0Ovnuu+8v/fLLz7137NjmWlhYoMnJyXKprq5SiaLEAMCYMeNqFi2a7280Gpnffz/iPnDgoLrQ0HDT338f8wBQfPTo755XXDGusq1rpaWd1rm4uIiNiQkABAYGCXPnLsxvvO/p6Sk0JiYA4O7uIVoslmYNaxozz6fqAGDkyEvrm+4zePCwuvfe2xTW9LG4uH+vq9FoJH//QDPT8MKv1WplADCbzSwA3HTTrZU///yT+8qVr4cWFORr8vPzdIWFBdp+/fo3u06j9PQ0nU7nIjb94M8wDAYMGFR/7NifHgCQnZ3pMnr0FVVNjxs69KL6lslJZ38njrTPGVFyQghxClolsGmSCd7erqiqAoRW3/W1fcz6icbuD44Q0mewLAs3N7c+t3qkRqM9E7PBYGAfeeQ+zmQysWPGjK26+uopFUOHDsudOfPhfo37XH75f+pUKqX022+/uP/1V5LH+PETKiMjo8yfffZxUF5ejjo7O9Nl8eKlmW1dS6FQykwH3wKxLNthD1TTmNublC5JIqNQKJptVKlUze6zbPuxLFnyQsQvvxzyGTduQsVll/2npl+/AUU7d24LqqgoU7e1vyy33TRJkqBUKmXb9VhZljvuYOvs78SR9jkjSk4IIYQQQpzITz8d9MjKynT5+OMv/g4ICBQAoKqqUlFTU6NsTALUarU8dOhFtYcO/eiVlnbabd68F3LCwsItDMPIa9euCQkODjE1ndzeVExMrEmv1ysyMzM0MTGxZgCoqChX3nHHzYNeeWV5miMxJyT0MwLAn3/+7tY4rAsATpz42y00NNyhb5EqKysU33xzwH/u3AWZ119/05mejvz8XK1Wq2uSGP374T8uLsFoMBgUKSmntE17T5KTT7mFhUWYACAyMsqYnHzKDcCZBcFPnTpx1nlK9vxOiI3TdgkRQgghhFyIAgODLADw2Wef+Obl5ah///2I25w5s+JEUWQsFuuZT+KjRo2u/uGH7/08PNyF2Ng4s0ajkTmuf/3hwz/5XnbZqOr2zj9mzNja6OhYw5IlC6OTko66pqYmaxcvXhDl6ellHTr0IoMjMXNcf9OwYcNrEhNXRnz33dee6elpmrfeWh2clHTU63//u6PEkXN6eHiKOp2LePjwIa/MzAxNcvJJ3aJF8yOzs7NcrNZ/nwetVisWFORrSktLlGPHjq8JD480LlnyQsyvv/7sfvp0qvbll1+MyM/P1d1++7QSAJg27Z6i33//1XvTpnWBmZkZmj17PvT94ovPA84Wi72/E0I9J4QQJ2EUgKl7XcCwwBc32r/OyfWf2r7s+vwGPa1zQghxCsOHjzRMn/5w3r59ewN37twW6u3tYxkzZlyln5+/hef/rUQ2fvzEmtWrVzCDBg2tbXzsootG1J448bfH2LFXVrd3fpZlsXz5qvSVK5eHz5v3TDwADBw4qG7lyjVpGo3G4W6A115bmbl69f+Frly5PMpgMCjCw8ON8+cvzpgy5dp2YzkbpVKJhQtfynz33TVhDzxw10BXVzdh0KAhdXfddV/Bnj0fBOv1etbV1VW64Yb/lm7evC7syScf0+3atTc5MfGd0ytXLg976aWFsVarwERHxxhee23l6REjLtEDwPjxE2tLS0tyPvhgZ9D27VtCo6NjDJMmTSk7cGB/uwmKvb8TAjD2jJlzMpmiKEVXVuq79KRKJdsw1l0PQehzQ1Xt4uxtdPb2Ac7dxqYLKh65Qw8V03H7+toijM78+2vk7G109vYB3ddGHx9XKBRsFoCYrjhfUlJSP5ZVfBUQEFqvVmudsuoR6R5Hjhx28/MLsDYtCPDOO2uCvvnmgN8nn3x5sidj660sFpO2tLTATZLEySNGjEg92769/K2YEEIIIYSQ3uO33371/PHHgz7PPTc/OzIyypycfEr32WefBE6Zcl1ZT8fmDCg5IYQQQgghxE6PPfZkodFoZF977ZXourpapY+Pr+WGG24ueeihGU67avv5RMkJIYQQQgghdtJoNPL8+YvyAOT1dCzOiKp1EUIIIYQQQnoFSk4IIYQQQgghvQIN6yKEOAUGwABfERCs+H3VCqhlKxJuuBlecfFnP8ZHPHObEEIIIT2LkhNCiFPQKoFn9VvB7t8PFWvrFC5KfgWFk6ZgwP9ub/eY9yY7tF4YIYQQQroBDesihDiF/Pw8/P3BLqhYFhkWM1JMRigYBszXB1Bw9PeeDo8QQgghdqDkhBDS58myjEWL5mPF6RR8LAuYuHELJry7Ef9YrVAwDPI2rIMsCD0dJiGEEEI6QMkJIaTPO3z4EJL+PgHlo7/j8PV7AbUL3NzcMeSZOai1WlFcU43jvx5udZxJAK7/1BXXf+oKE+UuhJA+avTokSN27/7A1979f/zxe4+bbrpm0Lhxlw1//fWlYd0Zmz0SE1eG3Hjj5MFdec7OPCf5+bnqzz77xLsrr08cR3NOCCF93m+bN8BNqYLJIwzFBgCyGWCAhCEXYXlUJN7/9GOM2b0La64Y1+w4GUCRnj1zmxBC+qK9e/f/7eHhKdq7/4YN74QFBgaZ33xz7Wk3N3e7j+tLOvOcvPTSC1EBAQGWqVNvquruuEjHqOeEENKnnf71MG5QKLFq4NA2t9/+wCNgWRY///wT8vJyz3N0hBDS/QIDgwSdTmf3dyx6vV4xYMBAfURElMXHx9cpk5POPScyFWzsRSg5IYT0ael7PwIAFGs1bW6PiIjEZZeNgptCiV92vnc+QyOEkPOi6RCmBQuejXr++Weily9fGjZlypVDr7xy1EWzZz8WW1JSrGzct7y8TP3RR7uCR48eOSI3N1styzLWr18beNNN1wy+8spRF02b9t8Bn3yyx6fx/L/++rP76NEjR6xfvzZw0qRxw+6889b+WVmZmtGjR454++03g6+5ZsLQG2+cPLi6ulpRU1OjWLRofuSUKeOHXnXVmGEPP3xfwvHjx1yaxrtr13a/m2++dtD48ZcPnz37sdj6+jrF2dr30EP3cKtXrwhZtGh+5MSJoy+aMmX80LfffjM4Le205oEH7ubGj798+B13/HfAX38lnblO43NSXV2tmDr16iGzZj0a17jt0KEf3ceMuXjEl19+7vXQQ/dwKSnJbj/99INv49CyG2+cPDgxcWVIyxgWLHg2qr3nQxRFFBYWqJ59dnbMVVddMWzy5HFDZ816NC4jI73tNyfSLkpOCCF9ltViQUBFJQDAe8y4dve7edwErB86HANPn4ZgoNLBhJCzE41Gtr0fyWxmzse+5+LIkV+8a2trlW++uZZ/8cWXM1JSkt3femt1KGAb7uTj42O9/vqbSvbu3f93aGi4ZdWq5aFffPFZwOOPP5m7adOO5JtuuqXk7bdXR27fvtW/6Xl///2I19q1G1PmzXshW6FgZQD48cfvfVateotfvPjVDE9PT3H27MfiCwsLNK+8sjx97dqNqf369dfPnv1YvxMn/tYBwGeffeL97rtvRdx00y0lGza8d6p//4H6Awf2B3TUpn379gQFBARaNm7cfuq6624o3bVre8jcuU/F33bbtOK3396QolarpJUrX49seZyXl5f47LMLsv76K8nz008/9qmsrFAsX740esKEq8uvueb66uXLV6fHxyfoL7/8P1UbN25P6czz3PT5MJlM7BNPPMJJkohVq97mV616m/fw8BQee+yB/oWFBarOnPdCR3NOCCF91j8H9sNDqYReFDHk+uuBT9veb9R1NyBp/2cIVGuQ8uV+DL7lf+c3UEJIn5LxxIyL2tumS+Bqwp97Pr3xfubTs4bKVmubX/ZqoqLrIxcu4hvvZ819ZrBkMLT52UsdEmqIWrK0Ux+O241RpxMXLXolR6VSyQkJ/UxHjvxSkZR01BOwDXdiWVbW6XRSYGCQoNfr2c8/3xc4Z87zWRMnTqoBgOjoGHNRUaFm794Pgu6++76yxvPedtu04tjYODMA5OZmqwHg2munlnFcfxMA/PzzT+5pabzrvn0H/vbz8xcA4Omn5xYkJ59y++CDHYGDBw/N/vjjjwJHjRpddffd95cBQFxcfHFKyinX7OxMF5xFeHiE8fHHnywCgPvvf7hk164dIWPGjKu8+uopNQBw9dVTKjZseDe8rWPHjBlbN2XK9aXvvvtW+Pfff+Pj6uoqzp27MBcAvL19RKVSKavVaqkxZns1fT4+/HCnX11drfK111ZmqVQqGQCWLFmWffPN1w7es+dD/1mzni7szLkvZJScEEL6rOKffoQ7gBJ3N/TTaNvdz8XFBaWengg0mlD+268AJSeEECcWGBhkbvyADACurm6iIAht9sycPp2qtVqtzBtvvBa1cuXrUY2Pi6LECIKVMRqNZ46Lioo2tzw+IiLS1Hg7NTXZBQBuu+3GZpW3BEFgrFYLAwB5ebm6ceMmVDbdPmDAoPqOkpOQkLAz13FxcZEAIDQ09Ew8arVGEgRru71PTz/9XP6xY0c9jx370/OddzYnd2aOTnuaPh+nT/MuRqNRMXnyuGFN97FarWxeXk77b1CkFUpOCCF9kiRJ8K6sAJQq+Fx6ORgAMZ4SFAoWaOPtyXvkJcDPh+BVWQlZksCwbMMxtrmgNBuSENIods07f7W3jWHZZh9qY1Ym/m3vvtGvv3HC3n3PRdPE5F9tn16SJAYA5s9flBkTE2dquV2j0Zw5UKvVSi23a7XaM9slSWJ0Op24bt3WVj1AarVaAgCGYSC3CEWpVHbYdqVS0WofhrF/dkJJSbGqurpKpVAo5CNHDnsMHjzEePYjml9OEMRWbxNNnw9JkhAcHGJ67bWV6S33c3V1dcqiA92F5pwQQvqkzOPH4KdUQZAkDL7+RmiVwMc3GPHd3YCuja9dhl9/A+oFAa4si7zffgUAaJXAR9ca8NG1BmjpqxpCSAOFTie198M2+bDenfueL3FxCSaFQiEXFRWqY2JizY0/hw794Ll9++ZAlrX/o2JsbLzRaDQqLBYz0/RcW7duDDp48FsvAIiMjDKcPPm3W9PjeD7FtWtb1ZwkSViyZGF0ZGS04bHHZuW+//57oSdPntD9uwfT/PekUMr19XpF0+NLS0vUZ7tGTEyssby8XO3h4SE2tjsiItL81lurQ//444h7V7fJmVFyQgjpk/5ITcYDx//EJ0oFdB4eHe7v5eOLXIXtJS/70I/dHB0hhPQNnp6e4lVXTS7bvn1L6Mcff+STnZ2l3rPnQ9+tWzeFeXv7dGoOxvjxE2oiI6OMixbNjz18+JB7ZmaGZvnypWE//PCdX3R0rAkA7rjjnuI//vjNe8OGdwIzMtI127ZtCvj99yPdugDi+vVrg7KyslwWLFicfdttd5b37z+w7pVXXow2NxQh0Ol0UmlpiaagIF8FAP37D6g/fPgnnyNHfnFLT0/TLFnyQqTRaDhrRbGpU2+udHNzFefOfSo2KekP17Q0XvvCC3Ojjx9P8oyP5zropSFNUXJCCOmTfv/9COoEASGX/8fuY9jIKACAnJ3dPUERQkgfNG/eC3k33HBzyXvvbQm97747Bu3cuS349tvvLHziic5N4lYoFEhMfPd0fHyCfunSRTEPPnj3gH/+Oe6+cOFLGWPGjK0DgIkTr6557rn5md98c8DvgQfuHnj48CGvqVNvKumelgEnTvyj++CDHSF3331fQUxMrBkAnn/+hZzy8jLNqlXLQwFg6tSby/LycrXTp985UBRFzJz5VEFCAle/YMFz8U888Ug/Dw8PYdSoMWddoNHT01Ncs2Z9qqenlzBv3pz4GTMe6F9aWqJ+9dUVaf36DWg1XI60j5FbDvxzfpmiKEVXVuq79KRKJQtvb1dUVekhCK2GZDoFZ2+js7cPcJ42CoKAsWMvhV6vx65de9G//0CYBOCer12hULB4b7IeKrRu358/fI9tLy9CsUqFj746CLPI4J6vbXMw35vU+4d2Ocvv72ycvY3O3j6g+9ro4+MKhYLNAhDTFedLSkrqx7KKrwICQuvVai19eCSkG1ksJm1paYGbJImTR4wYkXq2fXv5WzEhhLSWcugHzAmLxCmTERzXH4Bt6mJmTUNnsIw2Z7gPHjUav9fXwmKxICcnC4FhMcisUZw5hBBCCCE9i4Z1EUL6nMLff8NAdw9cGhSCzkzW1Gg0GDJkGADgzz//6KboCCGEEOIoSk4IIX2OkJsLAGBCQjp97Kghw3B9YDDEn37s4qgIIYQQcq5oWBchpM/xMhgAlQp+Db0gnTE4LgGjwyNh0hsgS8455p8QQgjpq6jnhBDSpxRmpMFfpQIAxF8xttPHc/8ZA6MoQsuyKE8965w8QgghhJxnlJwQQvqUjJ9/BgCUSSJcff06fbyHpycKJdtivblHf+vS2AghhBBybig5IYT0KdUppwAAeg/PZo8zAIJdJYS5o81KXU0ZvWzrfdWnpSHYVUKwq9TRIYQQQgg5D2jOCSGkTykvLUGYDOji4po9rlUCB/5rbFhfARDOsq6xa1w88PdxuJcX4fMbunbNI0IIIYQ4jnpOCCF9hiAIeDf5BKYf/xNhU651+DwRl10OAPCVZQhGY1eFRwghhJBzRD0nhJA+Izc3B2azGTqdCyKiHF8kOm7YcByzWuGuUKDw5AlEXHxJF0ZJCOnrGAYKhmF65AtcWZYlWYbYE9cmpDeg5IQQ0mfwqckAgPj4BCgUimbbTALw8NdaKBXA+olnf3FTqVTYZjXhj+RMhGVdBI8KF6yfaICWXhEJueAxDBQSwwQbTEKPvCK4aJUCC7motyUoiYkrQw4e/MZ3376vTnT22PT0NM3DD983YOvWnaciIqIs3REfcR70VkwI6TOEwz8jcdAwFAW1XnxRBpBcYUtYZBkdTooPSOgHIS0T+YIPUGk7nhBCGIZhDSZB+dvJIslgEs7rYkguWiV72aBgpbtWycqy3KuSE0clJ5/UzZv3TJzFYqapBMQulJwQQvoMtqwUQVotpICAcz4Xx/UDvviyC6IihDgjg0mQ9EZrT6zU6jQf4teuTQzas+eD4NDQMFNlZYW6p+MhfYPT/AcghDg3WZbhZbGNBvAbMOicz8dFx2J6eNQ5n4cQQnra6NEjR+zcuc1/+vS7uPHjLx9+++03DfjmmwPN6q1/993XnnfddWv/8eMvH37zzdcOWr16RYjZbD7Tx5yamqydPfux2EmTxg0bO/bS4TfffO2gLVs2tvtN0NatGwPGjbts+Ndff+nV3j5JSX94Pvvs/KwZM57I75KGkgsCJSeEkD6hLD8P/irbF29Rl1x6zueL6z8Ql3v7nvN5CCGkN9iyZUPY+PETKtev33Zq5MhLa15++cW4o0d/dwWAH374zmPp0sWxU6ZcV755885TTz75TO7hwz/5LFjwbDQAGAwG9plnZiVotTppzZp3U7dsef/U6NFXVG3a9G74iRP/6Fpea8eOrf7btm0KW7hwScakSddUtxfTpk07+ClTrmt3OyFtoWFdhJA+Ievo7/AGUC2KSPDzP+fzeXh6okQ6y2IohBDSh4wfP7H87rvvLwOAOXPmFZw8+bf77t27Ai6++NKsHTu2Bk+YcHX5nXfeWwYA0dExZqVSmTN37tMJubnZahcXV2nq1JtK77jj7lIPDw8JAGbOfKrw4493B6WlpeoGDx5ypub6rl07/DZvXh+2aNEr6ePGTajtmdYSZ0bJCSGkT6hMSYY3gFqttsvOqXdx67JzEUJITxo+fGRd0/sc119//PgxDwDIyspyychId/3hh+/OdBfLDVVA0tPTtFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROjP0q6qqSvXOO4mRCoVCDguLMJ+PdpELDyUnhJA+QSgsBAAwgYHt7uOtkcGwHZTpakIZHAx3Sw0khkGH5b0IIaQXUyqVzYoOyrIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZVmaIUC6FiUnhJA+IbemCgpRgl98QpvbdUrgh9sM8PZ2RVUVINgxYisgJgLrDk5HlSRBd+97XRwxIYScP8nJJ12vumpyTeP91NRkt9jYWAMAhIVFGPPycrQxMbFnejuOHDns9uGH7wc+//yLOfv3f+pbX1+n3L37s5MqlUpuOF/DXJN/cx4vL0/r2LHjawMCAiyPPjp9wJYtGwIfeOCRkvPURHKBoHSXENLrCYKArXwK5qecROi4K7vsvKFDLwIAeLMsRJOpy85LCCHn2+ef7wvct2+vT3p6mub115eG5eRk6+64454SALj99juL//jjN+/ExJUh6elpmsOHD7kvX/5qtF5frwwMDBICA4MsZrOZ3b//U+/8/Fz1Tz8d9HjppYUxAGCxWFp9Vuzff6DppptuLd65c1tIRka65ny3lTg36jkhhPR6BQX5sFqt0Gq1CA5uvQCjo8ITOPxltcIsiXBNT0PooMFddm5CSN/molWe9y9wz+WaV189pWzPng8CV69eoYuMjDQsW7YibeDAQUYAuPbaqVWyLGfu2rU9+OOPPwpycXEVR468pPqpp57Lb9yemppSvGHDO+Fr1qxk/fz8LZMmXVN+5MgvXikpp1wBlLW83owZTxT98ssh76VLF0dt3PgeT8O7SFeh5IQQ0utlnuahYBhERcWgvTdAkwA8+b0WKiWweqx9L24io8LTw5fAaDTg/yprENq1YRNC+iBZliUXrVK4bFCwEj0wwsRFqxRkWe704o/R0bHG555b0O56Itddd0PVddfdUNXWNoZhMGfOvII5c+YVNH286ZCtWbOeLpw16+nCxvsajUbevfuzU/bENmrUmLrDh/9MsmdfQig5IYT0eqY/fsP2iy5GuqtLu/vIAJJKFLbbMuya3y4DMPkPAwMgK/tt4IrRXREuIaQPk2WILOQi9x7oObFdX5ZkGWJPXJuQ3oCSE0JIr2ctKYaSZeHi5dNt18jKyuq2cxNC+hZZhijLMiUIhPQASk4IIb2epq4OUCjhFhnZbdcYk9fuaAhCCOnVaMgUcSY0e4kQ0qtJkgRvyVbK0r//gG67TiDDUMUuQgghpIdRckII6dWKsjLhpVIBAMKGDOu267AMg5Jku+Z2EkIIIaSb9KrkhOO4BI7j6jmOu6/JY8M4jvuJ4zg9x3G5HMfN6cEQCSHnWf7fxwEA1ZIIjbt7t16r6OQ/3Xp+QgghhJxdr0lOOI5TAdgJwLXJY74AvgVwGsBIAIsAvMxx3P09EiQh5LyrSj8NAKhTd7zOl1YpQ9fJmXRahQyVaBvOVZuT3dnwCCGEENKFetOE+JcA1LV47GEAZgAzeJ4XAKRwHBcPYC6ALec5PkJID8ipqkJhRTkChgw96346JfDbNAO8vV1RVQUIQsfn1imBw7fV47MXnodWMkMqL++iqAkhhBDiiF7Rc8Jx3BUAHgFwb4tNYwAcakhMGh20HcIFnK/4CCE957fiQiRmpUNx2eXddg3X8HAAgEav77ZrEEIIIaRjPd5zwnGcF4DtAJ7geT6P47imm8MAnGhxSOPqpBEASh29rrKL11ZSKNhm/zojZ2+js7cP6JttzM3NAQBER0d3+P/W0fYF9uuP8sM/o0QUu/y1oSv1xd9fZzl7G529fYBztJFhoGAYhhZhJKQH9HhyAuAdAEd4nn+/jW0usA3raqqx1qfW0QuyLANvb9eOd3SAh4euW87bmzh7G529fUDfaWNtTQ3YujowAIYOHQAPj/b/35oE4NEvbLffvVYHrR2vbo3HWOXJ+PHUbEA0414tC52udz8/feX3dy6cvY3O3j6g77aRYaDQsdZg2WLokc9IjNpFMEqqot6WoCQmrgw5ePAb3337vmr5pXG7du/e5bt370eBpaWlGm9vb+vVV08uf/DBGcUKhaI7QyV9XI8mJxzH3Q3b0K3B7exiBNByFmxjUuLw+AtJklFba3D08DYpFCw8PHSorTVCFKUuPXdv4extdPb2AX2vjcm//Ia3h1wEgyhCEFhUVbX/395oBX7ItiUv1TVGaNiO2/fvMWq4e3qjrrIY//yTgoQErsNje0Jf+/05wtnb6OztA7qvjR4euvPSG8MwDCtbDMp6/ndJMhvP6y+J1ehYN+5SJaPyYvv6CvX79u31efvtNyMfffSJ3Esvvbzu1KkTLomJb0RaLFbmiSeeKurp+Ejv1dM9J9MBBAJoOZzrXY7jngWQAyCkxTGN9wvO5cKC0D2vN6Ioddu5ewtnb6Oztw/oO20sTk1BEIB6loEoygDk9ndm/v0mThAlqBl0+MFIaPLWHx4ejuTKYmRmZCAmJv7cAu9mfeX3dy6cvY3O3j6g77dRMhsl0aTviQb03fFwTXz22Sf+Y8deWXH77XeWA0B0dIw5Jydb+/XXX/pRckLOpqf/A9wFoD+AYU1+AOBFANcAOARgDMdxTfv/JgDgeZ53eL4JIaRvqMvNAwCYtGcfHqJUKZBXVn/m/qnMSlhECSzL2H2tiX7+eHfIcLCHfnIsWEII6SGjR48csXPnNv/p0+/ixo+/fPjtt9804JtvDng23ee77772vOuuW/uPH3/58JtvvnbQ6tUrQsxm85kXydTUZO3s2Y/FTpo0btjYsZcOv/nmawdt2bKx3eJDW7duDBg37rLhX3/9pVdb2x99dGb+3XffX9zycb2+vqe/GCe9XI/+gfA836r3o6EHpZTn+RyO4zYDeA7AJo7jlgO4BMBsAI+ezzgJIT1DLLN9B8H4+LS7j1LJoqLWhJSsCgC299Gswmq4aRn0j/QBJPtGRnh5+8KnphKGqspzjpsQQs63LVs2hN177wP5zz//Yvann37s9/LLL8Z5e/ukXnzxpfoffvjOY+nSxbEPPvho3qhRY2pzc7M1a9asisjPz9WuWJGYaTAY2GeemZUwePDQujVr3k1VKlXyvn17/DZtejd85MhL6gYPHmJseq0dO7b6b9u2KWzhwiUZEydeXdNWPJdcclmzcbjV1dWKAwf2+w8delFtdz4PpO/r6Z6Ts2roHZkEgANwDLZFGJ/leX5bjwZGCDkvlPW2pY90IS1Hd/5LkGSk51VDb/y34rgMIDO/GhW1Jrurb7lFRNiuZTR1sCchhPQ+48dPLL/77vvL4uMTzHPmzCuIjY3T7969KwAAduzYGjxhwtXld955b1l0dIx57Ngra5966tmc33771Ts3N1ttMOjZqVNvKp0/f1FOQkI/U0xMrHnmzKcKASAtLbVZ1/WuXTv8Nm9eH7Zo0Svp7SUmLdXX17Nz5syKs1ot7KxZz+R1feuJM+l1XWs8zzMt7h8F0H0LHBBCei13QQTUCnjHxrW5XaVSoLDCgKLy1hPlTRYRWYU18Ha3b0mkgAQOOPQ9vADIogiGqskQQvqQ4cNHNlvImuP6648fP+YBAFlZWS4ZGemuP/zwnW/jdrlhCl96epr2yiuvqp027Z7S/fs/9cnISHMpKMjX5ORkuQCAKEpnPpdVVVWp3nknMVKhUMhhYREtq6m2qaSkWDlnzqz4kpJizWuvrTwdFRVtOffWEmfW65ITQggBgNrqavipVACA0IGD2txHkGTkFtdCECW01RFcXKFHTb0F3m7qDifHh/UbgCJRhEahQFV2FnzaSYgIIaQ3UiqVzSqGyLIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZdn2e6fT0njtnDlPxouiyKxevZYfMGCQsd2dCWnQq4d1EUIuXHlZGfi0uBBH6+vgHhzaartCwaJGb0Fpla0suJqV8GLkP1jWLxVq1vYebbaIyC+rA9POxHidEvhzWh3+nFYHPy83lIm2oWFFp052U6sIIaR7JCefbLYQVGpqsltsbKwBAMLCIox5eTnamJhYc+NPSUmRKjHxjbD6+jr288/3+dbX1yk3b96R+vjjTxZNmXJtdU1NdcMX2P/mPF5entaxY8fXzpu3MDszM91ly5YNge3Fk5OTrZ49+/EErVYrvfvu5hRKTIi9Ot1zwnGcEsA42KpmRQPwBFAOW9nfAwB+5Xn+LPU+CSGkY7nFRfigIA8XXTQCd7bxzRzLMigq18NsOfuE97JKAwxhAjQK5swwhvbUq9UAgOqsDIfjJoQ4B1ajO+9f4J7LNT//fF9gZGS0adCgIfq9ez/yz8nJ1s2d+0I2ANx++53Fr732ckxi4sqQa665vqK4uEj9xhuvRfn5+VkCA4OEwMAgi9lsZvfv/9T74osvqc/ISNeuXZsYDgAWi6VVTP37DzTddNOtxTt3bgsZN25CdWxsXKshXq+8sihKEKzsCy+8nKZSqeSSkuIznzkDA4OElvsT0sju5ITjODWAGQCeARAGoAq2hEQPIBzAdQDmAyjkOO51AOt5nrdrPCIhhLSUm5sDAIiIiGxzu9Eioqyq48VUq+vNqKozI8zPFVbr2RMZk5cXkvPyINXVnXU/QojzkmVZYtQught3qRI9MMKEUbsIsiR3en2Vq6+eUrZnzweBq1ev0EVGRhqWLVuRNnCgrbfi2munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794paSccgVQ1vJ6M2Y8UfTLL4e8ly5dHLVx43t80+FdRUWFqpSUU+4A8Oij9w9oeezhw38mdbZ95MJhV3LCcdwlALYBEAG8A+AjnudbfbXIcdxg2NYnmQXgSY7j7uZ5/kgXxksIuUBUZWbAV61GeFh4q21KJYvKGhOq6/79/kOQGXxaFgGFgsVU7xywDUMRZBkoKq9HiK9rq/OYReDFX7UAgCWjTKgfMBCJ332Na+PicHM3tYsQ0rvJMkSjpCpiVF49MvRdlmRJltHp1eGjo2ONzz23IL+97dddd0PVddfdUNXWNoZhMGfOvII5c+Y1W+LhgQceKWm8PWvW04WzZj1d2Hhfo9HIu3d/dqqt8wUHh1gpASGOsrfnZDuAeTzPf3K2nXiePwHgBIDXOY77H2wJTcK5hUgIuRANLSvDzUOGo7yNiewMw6Ck0tAwEd5GkhmkGLwAANd5Nf+6s6rWDINZgFbZfGiXJAPf59km3S+WTQgLs5UTzs+nSpeEXMhkGaIsy51OEAgh587ebwUGd5SYtMTz/EcA2i6xQwghHXAXbJ8LfGJaV80yCxKqauxfj6ROb0GdwQKF4uwveWFhYQCA4oJ8yB1NUCGEEEJIl7Or54TneYdqUjt6HCHkwlZbXQ3fhjLCIQObD1dWKBjU6a2o0ds/pU2SZZRWGhDs43LW/UJDw5E4aBgCNBrUFxXAPSSs88ETQsh5RkOoiDOxd87Ji505Kc/zSxwLhxBCgMLUFCgYBlZJalVGmGVZVNaaO6zS1VJVnRlmQTprd7GnpyfAMmAZBkUpyZScEEIIIeeZvXNOFre4LwNgYJsgXw7AG4AagAVAJQBKTgghDqvITIc/gBoATIsywqIso7ym4ypdLdXpzdCbBHi5KCGK7Q/Zqm9YGb4yM9NWMJ0QQggh541dc054nmcbfwBcBaACwO0AtDzPB/M8r4WtSlcFgKe7LVpCyAWhNi8XAGDUaJo9zjCAySKiTt/5EaMmi4jaejPOtpoxAFhcbFW9jEWFZ92PEEIIIV3PkTJ5bwF4gef5j3iePzOuguf5rwAsBLC0q4IjhFyYrGW2kvqSh0ezx1mWhcEkoM7g2HS2smpjhwsxsj4+tmtXVDh0DUIIIYQ4rtMrxAOIAJDbzrYyAIGOh0MIIcApfT1Sigpw0YgRzR5nWQaVtaY2h2WpGAnzwk9Ap1NDMMltJiF1BgtMgnjmhU+rAH7+X92Z2wDgEhIKFBVBbej80DFCCCGEnBtHek7+BvAEx3Gqpg9yHKcF8ByA37siMELIheuP4kLsKsiD5/CRzR4XJRlVtW2XEGYYQM3KULMyGKbt89YbLDCaRSgUzJljdErbT+Mx3tHRAAB3kZY4IIQQQs43R5KT5wFcCSCD47j1HMct5ThuI4BMAEMBPNOVARJCLiySJKGgwLbIcWho82pZZkFCvdHq8LnNFhF1BstZ550E9xuAlLpaHK2uhGCxv1wxIYT0VXq9nt2+fYt/4/0FC56Neuihe7juvGZ+fq76s88+8T6Xc+ze/YHv6NEjR7S3/Xy0Y/TokSN27/7Atzuvcb7k5marR48eOeLXX39278k4Op2c8Dz/E4BRsPWQXA9gDoApAL4DMILn+eNdGSAh5MJSVlyEWLUGAVodAgL+HSWqULAwmgXUtzPfRJAZfFoeht2FwRDkdrpOAFRUG221BgFYRGDxES0WH9GisTJxYHgEXs5Iw9uZ6SgtL++ydhFCSG+1efP6wL17PwxqvP/ccwvzli9fnd6d13zppReifv/9V8/uvAbpmxyZcwKe548BuLWLYyGEEBQln8JL/QbCIElQq9VnHmdZBjX1FlgFqc3jJJnB33rbZParPdv/5qXeYIHFKtlqocvA/izbCNW5F9uGiykUCoSGhiInJxv5+XkICQlt50yEEOIcZLn5Nzqenp7nYVzrWb5FIhc0h5ITAOA4bgpsZYWDAcwHcBGAJJ7nc7ooNkLIBagqKxMuAGpbDL2SgXbnm3SG3miFySLCRa1oOGtrYWHhKMjNQWFWJnDJZed8TUII6U41NTWKlStfD/vjjyNegiAw0dGxhscem5U/bNhwAwAYDAb2tdeWhP/551Evg8GgCA0NNd11132FU6ZcV52YuDLko4/eDwZsQ5Tef3/PiXXr3g4pLS3RbNjwHv/rrz+7z5v3TMKyZStOv/nmGxGlpaWaqKgow8KFS7K++eaA9/79+wJFUWTGjBlXsWDB4jyGYSDLMjZufDfwm28O+JWVlWpUKpXUr9+A+jlzns+NjIyyPPTQPVxKSrJbSkqy2403Tnbft++rExaLhUlMfCPkxx8P+hqNBkVYWIRx+vSHCseOvbK2sZ0HDnzhtW3bxpCSkmJtbGy8ftiw4bXtPSeNRFHC0qWLw3/88XtfpVIpX3XV5PJZs54pUCptH4H/+OM3182b14dkZKS5Wq1WNjAwyDxt2j1FN9xwc2XjOT799GOfDz/cGVRUVKj18vK2XnfdDaUPPPBISctrlZWVKh9//CHOy8vbunr12nQXFxfpp58OemzY8E5oQUG+LiAg0Pzf//6vODFxZdT77+85ERERZbnxxsmDL710VPVffyV51NTUqF58cUnGZZf9p27btk0BX375eUB5ebnaz8/P8t//3lZ8xx13lQPAr7/+7P7cc08lNJ4DsA3JmjbtlsHLl686PWrUmLoFC56NkiSJ8fb2sf7ww/e+ZrOJHTJkWO3zz7+YExgYJABASsop7apV/xeRnp7m6u3tbb3ttmlF5/SH2EU6PayL4zgXjuO+AfAFgOkA/gfbIowzACRxHDewa0MkhFxI9IUFAACLTtfscYsgod7oWAnhZuc3WWGwCGcmxbdlvJs7dgy/BO5JR8/5eoSQvkWWAb0VbE/9dFTuvHW8MmbPfiy+sLBA88ory9PXrt2Y2q9ff/3s2Y/1O3Hibx0ArFmzMiQ7O8vltdfeSNu2bdfJESMurnnttZdjcnOz1dOnP1x8/fU3lfj4+Fj37t3/d2hoeKsXWkmSsHZtYvjcuQuy16xZl1JTU6N8/PGH+ufm5ujefPMd/t57H8j/6qsvAr7//htPANiyZUPA7t27gh9++LH87ds/PPnSS69mFBYWaFetWh4OAMuXr06Pj0/QX375f6o2btyeAgAvvDA3KinpT8/nn38ha/36bclXXDGu6sUXn4/77jvbOY8e/d311VcXx44aNaZ6w4b3Tk2cOKli794Pgzt6fk6fTnWrrq5SrVmzLvWZZ+Zlf/fdN37Lly8NB4DCwgLVvHlPJ0RHxxrXrduasn791uT4eE6/atX/RZWWligB4IsvPvNesWJZ9NixV1Zu3Lj91PTpD+fv3Lkt5IMPdvo1vU5FRbly5syHOV9fP8ubb76T5uLiIp048Y/uxRefjxs69KK69eu3nbrrrnsLN21aF94yxq+/PuA/c+ZTua+/vvL0yJGX1r/++tLwDz/cGXLXXfcVbtq0/dQNN9xcsm7dWxHbtm0K6MzfxpEjv3jX1tYq33xzLf/iiy9npKQku7/11upQwJbQPvPME5yLi4u4du2GlFmznsl9//33Qjpz/u7iSM/JqwBGwLZ28s+wrQoPAHcD+BrAywBu7pLoCCEXHLFhfRHGy+vMYwzDwGwVoT+HyfCNZBmorjUjyEvX7j6ufv5gKyrB1tad8/UIIX2HLAN3feXSj69SuPZUDP28xfrtkw18e1UHWzp8+JB7Whrvum/fgb/9/PwFAHj66bkFycmn3D74YEfg4MFDs4uKCjU6nYsYGRlt9vT0FJ98ck7BRReNqPP09Bbd3NwknU4nsSwrN36j3pb773+oYMSIS/QAMGrU6Or9+z8NePHFl3NcXFyk+HjOtGPHttCMjDTdxImTasLDI8xz5jyfddVVk2sAIDw80vL770eqDh360RsAvL19RKVSKavVasnPz1/IzMzQ/PLLzz5vvbU+pbG3JzY2riQjI1334Yc7giZOvLpm9+5dAQkJXP2sWU8XAkBcXLw5MzND9+WXn531A7unp5f15Zdfz9JqtXK/fgNMZWVlBevWvRUxe/azBRaLhbn99rsKH3zw0ZLGQin33/9Q0Y8/fu+bmZmhDQgIrN+z54PAyy//T+Ujjzxe3BCX2WDQK7Ra3ZkxxrW1NcqZMx9J8PPzN7/xxpoMrVYrA8CuXdsDo6NjDM8+Oz8fAOLjE8yVlZWqDRveaZagXHTR8JorrhhXZztXLfv111/4P/DAI3k33vjfyoZrlhUWFmg+/PD94HvumV5q318GoNPpxEWLXslRqVRyQkI/05Ejv1QkJR31BIAvvvjU22KxsC+9tCzb09NT7NdvgMloNOS98sqiWHvP310cSU5uA/A8z/M/cBynaHyQ5/lijuNeAfB2l0VHCLngKPX1AMNCG3hmbiYUCgbGegFGU7vvm51SU29GG0ulnOEREQXwPFwt595TQwjpW5j2xnv2UqmpyS4AcNttNw5u+rggCIzVamEA4K677iteuPC5uBtumDQ0Pj5BP3z4xTVTplxX2Zm5JdHRsWfG1Wo0WsnT08vq4uJy5gO6Wq2SzGYLCwBXXTW5JinpqGti4hshBQX5mvz8PF1+fp7W29u7zW+YkpNPugDAM8880ayyliiKjIuLiwgAOTnZLhddNKKm6fbBg4fUd5ScxMbGGRqTBQAYMmSYXhAEJiMjXTN48BDjf//7v4r33tsckJOTpS0oKNBmZ2e6AIAkiQwA5Obm6K644srKpue87bY7m1VL2b59a6goCkzLa2Vmpru0HHo2fPjFdcA7zWIMDQ0789ymp5/WiqLIXHTRyPqm+wwbNrz+88/3BZaVldr92T0wMMisUqnOxOPq6iYKgsDYYstwCQwMNjX9Gxgx4uL6ts5zvjmSnHgByG5nWxUAN0eDIYQQV6sAqNXwjIw68xjLMqiuM0Pq7HiHdhhMVliF9t+T/ePjgW+/hjvDQBZFMApFu/sSQpwHwwDbJxt4g+DQUgtdwkUJyd5eEwCQJInR6XTiunVbU1puU6vVEgCMHHmJ/pNPDvzz888/ehw9+rvHN98c8Pvggx0hr7yyPG3MmLF2dRGrVMpmL8As236Q69evDdy1a3vo+PETy4cNG173v//dUfrjjwe9fv75R5+29pdlW46zevXaVFdXt2ZVTxQKhfzvfs0n0SuVqg7fFFiWbbaPJNle+zUatZyWxmtnzny4X1RUjGHEiItrRo8eV+Pj42N94olH+je9fke/j8GDh9Rec83U8qVLF8X+8MN3lePHT6xtOBaS1PHEf7Va06qNTIuLSpLtaWmabDR9S7RahVbXabrvv5o+1Pnn83xwJDk5CeBOAN+0se36hu2EENJpZrMZPg2JQGDCv1+giZKMmvquW3NEb7JNim+cENlSSHwCciQJKpZFdX4evJskSoQQ58YwgKsKbZcF7IViY+ONRqNRYbGYmX79Bpz5Bv7FF5+PjIuLN9xzz/SyxMQ3QoYOHV5/9dVTaq6+ekqNKIp5t99+08AffvjOe8yYsXUMw3Tph9KPPno/5Pbb7ypsHAoFADt3vhfU/Pulf68ZH88ZAaCkpEQ9ceLQM70jq1YtD2UYVp49e05hTEysISXlVLMvwFNSTnY4/C47O9NFkqQz61sdO/anu1qtliIjo80rViwL8/DwtK5bt+V04/7ffvuVJ2CbywMAoaHhJp5PaXadZcuWhJeUFKtXr16bAQBXXDG+asqUa6t/+OHbylWrlkeNGHHJSQ8PDykqKtrQ8tgTJ46fNea4uASTQqGQjx076jZo0GBj4+PHjx9z9/T0snp5eYsqlS3prK2tPfPNWU5Olqaj56Kp+PgEw8GD3/pWVJQrfX39BAD455+/emw4Y1OOfDPwCoC7OY7bD+BB2FKwsRzHrQHwGIDlXRgfIeQCUlSYj215OdhfVgqf6Jgzj1tFGQbT2eebqBgJz4SdwoK4NKg6eJ81mQSYzCJcVAy+vbke395cD22TzhE3dw9UCrYhZGVpp9s5CyGE9Lzx4yfUREZGGRctmh97+PAh98zMDM3y5UvDfvjhO7/GoVgFBQWa1av/L+Lw4UPueXk56i+++My7vLxMM3jwkHoA0Ol0kl6vV6Snp2msVus5l/j19fWzHDt21IPnU7Rpaac1q1b9X8gff/zmZbVaz3zu1Ol0UmlpiaagIF/Vr98A0/DhI2sSE1dEfvPNAc/s7Cz1xo3vBn788e6g0NBQMwBMm3ZvcU5Otu7115eGpaenaT75ZI/PgQP7/duPwqaiokL9wgtzo1JTk7Vffvm51/vvvxdy4423lGg0GjkgINBSWVmhPnjwW4+8vBz1gQP7vRITV0YCgMViGxI3bdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj22uuW1nntuQZ7FYmFWrHg1HLANp8vKynBdseK10PT0NM1XX33htX371lCgdc9II09PT3HixEnlO3duC923b69PZmaGZvv2Lf5ff/2l/0033VLCMAz69Rtg1Gq10pYtG4IzMzM0R4784rZp07qw9s7Zluuuu7HSw8NTWLDgueiTJ0/ojhw57Pb222+2mqzfExxZhPFTAHcBGALboDkGwBuwrXvyKM/ze7o0QkLIBaOgsBDfl5fiiFoJRcMaJyzLwGwRYehgvgnDAK4KEW5KER29PssAqupNYFkG3loZ3lq51TF1CtvLY1VOtoOtIYSQ7qdQKJCY+O7p+PgE/dKli2IefPDuAf/8c9x94cKXMhqHbC1YsDhnyJBhda+9tiT67rtvG/Tee5tD7733gfybbrq1EgCuvnpylZeXt/XBB+8Z+M8/x13ONaYFCxZnmc1mdsaMB/o/+eSj/bKzM3WPPTYrp66uVpmbm60GgKlTby7Ly8vVTp9+50BRFPHaayszL798dFVi4huR9903bdA33xzwe/zx2Tm33npHBQAMHjzE+Mory9NOnDju/uCD9wzcu/fDwFtvvaPD0rcjR15SrVAo5Mcff6j/W2+tipw8+brSxx9/shAA7rlneumoUWMqX399acz99985cMeObcH33fdggZ+fv+XkyROugG3+zMyZT+V88cVn/vffP23gtm2bQh96aEbuLbfcVtHyWn5+/sJDDz2Wf/Dgd34//vi9R//+A00vvLAk/ejR37wefPDugdu2bQq55prrSwFApVK3+y3a88+/mHvttVNLN29eHzp9+p0D9+//NOCRR2bmPvjgoyUA4O7uLs2duzCzoCBPN336nQMTE9+IeOSRmXmdSU5cXV2lxMR3eKVSKT/55KP9li17Ofp//5tW3PGR3Y+Rz2EMN8dxHABfANUAUnme7wvdoJmiKEVXVuq79KRKJQtvb1dUVekhtLNIXF/n7G109vYBvb+NH320C6+++hLGjbsSq1evBWCLuazGhJ//KuhwzgnLMtDp1DAaLZCks+8bEeyBi/sFQGznedg28xFY8vMRNPEqXD9ztkPt6Wq9/ffXFZy9jc7ePqD72ujj4wqFgs0CENPhznZISkrqx7KKrwICQuvVau25L6JESAt//ZXkolQq5cGDh54ZnrVv316f1atXRH333c/H2hta7IwsFpO2tLTATZLEySNGjEg9276dflY4jjsI4DGe51N5nudbbBsCYAfP80M6e15CCKlJT0N/N3dEB/5bup5lGdTqLR0mJoLM4LuKECiVClzpkQ+2g4I7BpMV9WYJicdsw3SfGm6GusnQroqYWLx3+CfcZRqN6x1vEiGEkAtUamqKy+bN68Oeffb5rAEDBhqzs7M127dvCfnPf0ZXXkiJSWfZ9cxwHDca/w4BGwfbHJO2SrddB6DH6yMTQvqmgPw8vNRvIAqkf79tlWSguq7jyfCSzODPetuaWOPc8zscs2o0CTBaJOxOsw0fm3VR82uEhIQCAAoLCzvRAkIIIcTm9tvvLK+oKFe9886aiKqqSpWHh4cwZsy4ypkznyro6dh6M3vTtgcB3APbUG0ZwFrY5po0/WqycaDb+10WHSHkgqI2GgGFEi5B//acWEUJBnPXrG/SlNEkwGRp/7whIaFQMMyZFesJIYSQzmAYBjNnzi6aOXN2h3NjyL/sTU6eBLAFtgTkIIDHASS32EeEbe7Jqa4KjhByYXETJUABeIZHArBNcjdbJRg7qNTlCEmWUWdsPzkJ9vTEzuGXAABkQQBDXfCEEEJIt7Pr3Zbn+RoAPwEAx3HjASQBcON5vrjhMW8A4TzP0xonhBCHGPR6eDckAAHx8QAAlmVhtlpg7IaeEwCoPcvaKSGxcciSZahZFlV5efCJju6WGAghhBDyL0fWOfkbwCcAfmzy2KUAjnMct4/juHMuQUcIufAUZ2ZAzbKQZBleYbZS6yzLQG+0wtpNVY3OtnaKq5v7v2udpNNaJ4QQQsj54Ehy8hqAgQDmN3nsIIAbAIwEsKQL4iKEXGDKM9MBALWyBFalAmAb1lXdhSvDt3S2OScAUN+w1kk1rXVCCCGEnBeOJCdTAczhef7jxgd4nrfwPP85bAnL/7oqOELIhaMmLxcAYGgyt8MqytAbu36+SSNTBws7WnW2jmBDMc1lJIQQQs4HR2Z4ugOoamdbCQA/x8MhhFyockwmfJOThcEXX3rmMUGU7J5vomIkzApNgVajhkqQYc/6spIgYOuVlfD30kKjaGMHLy+gtBRiZaV9jSCEEELIOXGk5+QYgAfa2XY/gH8cD4cQcqHKrKzAt2UlEOMTANjmm1isEkx2JicMA3gprfBWW8EwHe/feIxWMiLcgwHbxjHaANtyTkp9vX0nJIQQQsg5cSQ5eQXAjRzH/clx3AKO4x7iOG4+x3G/A7gFwOIujZAQckEoKrItdhgSEgLAVh/ebBW7rVJXozqDBZLUdjeLe3Qsfiovw3G9vltjIIQQAnz33deePJ+iPZdzPPTQPdyCBc9GdVFIDklMXBly442TB9u7/4IFz0Y99NA9XHfG1JQsy9iz50PfsrJSJQDs3v2B7+jRI0ecr+t3pNPJCc/z3wK4HrYFGJcAWAfgZdiGiN3A8/xXXRohIeSC4FNVhX5u7gj28wdg6zmpN1rbTRxaEmUG31YF48tSf4iyfV0nosxgV5YXVhxVwiq23h4wcBDezs7A3pwsu9tBCCGk8/LyctSLFy+Iq6goV/V0LM7ut99+cVu9+v+ijEYDCwDXXXdD5d69+//u6bgaObSqGM/zBwAc4DhOC8AHQA3P8/TVIiHEIYIg4G5vH7j4BcBDY/vSjGGAmk5U6hJlBkdqbYnNf1wL7XpxE2UGB8u8gTLg0SFmtHxHbOzFqaurRW1tLTw8POyOhxBCiP1keyYKki4hy82/wdPpdLJOp+veYQqd4PCSxxzH9QdwFYBgAG9xHHcRgL95nq/rquAIIReGktwcuChsL0d+sXEAbJW6jB1U0+pKLMPA1iH8LxcXV/h5e4PVG1CYmQGPYRedt3gIIT1Hb21/ZImCgaxV/vticbZ9WQayzsF9O+PgwW89tmzZEFpQkK/VaLTS8OEjaubMmZ/n7e0t/vrrz+7PPfdUwvvv7zkRERFlAYDc3Gz1tGm3DF6+fNXpUaPG1AHAli0bAz79dG9gTU21KiGhX/3gwUPrvvvuK799+746AQBZWZmaFSuWhaemJrvrdDrxxhtvKfnyy8/977jj7qJbb729AgB2797l+9FHu4LKy8s0fn7+5muumVp2773TS1nW1uy9ez/y/eij94NKSko0bm5uwqhRY6qeeWZufklJkWratFsGA8Bzzz2V8L//TSuaNevpwtOnU7VvvvlGWGpqsrtWqxMHDRpS9/TTz+UFBgYJAGA2m5mVK18PO3ToRx9BEJjJk68p66i3ffTokSNmzHgi9/vvv/XJyspwDQwMMk2f/nDB1VdPqWnc57vvvvbcunVjSEFBvs7b28dyxRXjK2fMeKJIo9HIAJCamqx99923QlNSkt1NJiPr6+tnuf76m0rvv//B0rauuXXrxoCtWzeGPf/8i5mTJl1T3dHvMz8/T/XWW6vD/vnnuIfJZGL79etfP3Pm7PwBAwYZG/f59NOPfT78cGdQUVGh1svL23rddTeUPvDAIyUdxdf49wAA06bdMvjJJ+dkA8Cbb66IOnz4zyQAqKqqVLz11urQo0d/86qrq1NGR8fqH374sYLLLhtVD9iGrZ04cdz94osvq/78832BdXV1yoQErv7ZZ+fnxMcnnHP9/04nJxzHKQC8C2A6gMZ3890AFgGI4ThuLM/z+ecaGCHkwlGafhquAPSSBKVOBwCwdqJSV1dgGBZA67FdT0fFIk6hROXRPwBKTgi5IIzd7d7uf/bhAULN+onG9Mb7V3/sNtQsMm0mHQN8xPr3Jhv4xvvX7XMbXGdl2vzsFespGj681pDS2VgrKsqVS5a8GPfAA4/kjRs3vqaoqEi1bNmSmFWrXg9bsuS1HHvOsX37Fv/t2zeHPvrozNzhwy+u/+abA967dm0P9fX1tQCAwWBgn3rqsYTg4FDTm2++m6rX1ytWrVoeUVZWqmk8x65d2/22bt0Y9thjT+YOHXpRfXLySZe3334zory8VP3ss/PzT506qVuzZmXks8/Ozxo6dJg+PT1Nu2zZkhhPT0/h0UdnFq1Zsy7liSce6b9gweKMMWPG1RYVFapmzXqUGz16bNWTTz6TYjQa2Y0b3w159NHp/Xfs2H3K1dVVWrZsScSff/7uOWfO89mhoaHmLVs2BPN8iltQUNBZPyBv2bIh7N57H8h//vkXsz/99GO/l19+Mc7b2yf14osv1f/ww3ceS5cujn3wwUfzRo0aU5ubm61Zs2ZVRH5+rnbFisRMg8HAPvPMrITBg4fWrVnzbqpSqZL37dvjt2nTu+EjR15SN3jwEGPTa+3YsdV/27ZNYQsXLsmYOPHqmvZialRXV8c+9tiD/QIDAy2vvPJ6mkajlTdtejdk9uzHuM2bdySHhUVYvvjiM+8VK5ZF33XXfQUTJ06qSk4+6bJq1fIoV1c3cerUmyrPFt/IkZfWL1iwOGPp0sWxa9asS+nXb4Bx//5PfRqvL4oiZs16NMFqtTJz5y7M8vcPsH744fsB8+Y9nbB69drUYcOGGwAgLe20q0ajFZcteyPNYNCzy5YtiV6x4tXIdeu2nvOqxY70nCwEcCeABwF8AaC44fFnAHwGYCmAe881MELIhaM6JweuAOoavl1jWQZWs9jhIoldiWGZlh0nABrWOrFYYKS1TgghvVBhYaFKEKxMcHCwJTw80hIeHmlZtmxFmiCIdtYtBPbu/TDo2munlv7vf9MqACAuLr44Pf20a2ZmugsAfPHFp961tXXKLVv+L9Pb20cEgBdffDnr4YfvG9B4jl27tofceusdRTfccHMlAERFRVv0+nrF2rWJkU888XRBXl6OBmAQFhZuDguLsISFRVi8vLxPu7m5iwqFAr6+vgIAeHp6im5ubtLGje8GeXl5WxcufCm38Rqvv74q87rrJg798svPvSdPvrbqxx+/950x44ncCROuqgGAl15alv3f/17n3lF7x4+fWH733feXAcCcOfMKTp7823337l0BF198adaOHVuDJ0y4uvzOO+8tA4Do6BizUqnMmTv36YTc3Gy1i4urNHXqTaV33HF3qYeHhwQAM2c+Vfjxx7uD0tJSdU2Tk127dvht3rw+bNGiV9LHjZtQa8/v4tNP9/rW19cpN2/ekeLn5y8AwKuvrsi85ZbrB3/wwU7/OXOeL9iz54PAyy//T+UjjzxeDACxsXFmg0Gv0Gp1ksGgZzuKz9PTUwQAX19fQafTNXvn++mngx5ZWZkuGzZsO9W//0ATACxc+FLu6dOprjt3bgsaNmx4JgCIosi8/PJrWY1/D1On3ly6bdvGMHva2BFHkpPpAF7keX5LQy8KAIDn+X84jnsRthXkCSHEbo2LHFq0jfNNbJW67C0j3BWkdsY7M2fWOqk4b7EQQnrWT7fW/dXeNgXT/GuMb26ub3ciMdti3/031p+wd197DR48xPif/4ypXLx4QVxi4krL0KEX1Y4aNbrmqqsmV9tzfGVlhaK8vFw9ePDQZjXTBw8eWteYnPB8qktwcIip8YMoAAwYMMio07mIAFBeXqasrKxU7dy5LXTXru0hjfvIsgyr1crk5mZrxo2bUPPxx7vrH3/8of6BgUHmYcOG115xxbjqoUMvMrQVV3r6aZfCwgLdhAn/adaLZbVa2ZycLG1GRppWEARm0KChZ+Y8a7VaOSoqus3zNTV8+MhmUxA4rr/++PFjHgCQlZXlkpGR7vrDD9/5/tuOxpjStFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROpMQVlVVqd55JzFSoVDIYWERdg91yszM0AUFBZsbE5PGdsXFxeuzsjJdACA3N0d3xRVXNluA67bb7ixvvG1PfO1JT0/T6XQuYmNiAtjekwcMGFR/7NifZyZeenh4Wpv+Pbi5uYmCINidEJ+NI8lJIIDj7WzLB+DtcDSEkAuS0LjIYcOEc5ZloDcJEO2s1NUlMUgS1G0MzNAEBgKlpVBSOWFCLhiuKkg9vW9nvP76qqy0tNOFhw//5JmUdNTj9ddfifnkkz3169f/O8Sm6fcvVuu/HyIVDfP9JKn9D64KhQKy3P52SbI168EHH827/PLRrXoIwsLCLWq1Wl6/fuvpEyf+1v3668+eSUl/eixcODd+7NgrK1555fXslsfIsswMHDi49tln5+e23Obp6Snm5eWqG/Zrtk2pVHb4xtFyH1mWwbIK2XZbYm688ZbiqVNvavWNVGBgkLW0tET58MP39Xd39xAuu2xU9YgRl9QOGTJUf9ttNw5pui/DsFiy5NW0zZvXhyxdujh606btqY1zb85GlmUwbSzWJUkSo1DYYlQoFHJ763nZG99Zrt/W5SFJUrPnTaXq+Hl2lCPrnKQDuKadbeMathNCiN3YetuXWGp/W7UtMEBtveksR3Q9qyC1uXijZ3gEAMBF6DWFTAgh5IykpD9cly1bEh4fn2C+//6HSt96a336k0/OyU5OPuleVlaqVKnUEgDU1taeGe2Sk5N1Zq6Ip6en6OfnZzl58oRr0/OmpJw6cz8uLsFQXFysqaqqPHOOtLTTGqPRoAAAf/8AwcPDQygoyNfExMSaG39OnfrH5Z131oTKsoyDB7/1eOut1cGDBw81PvLIzOL167eevuOOuwt+/fVnbwCtPpBHRkYZCwrydKGhYZbG83l7ewurVi0PT01N1sXHcyaVSiX/9defbo3HCIKA7GxbL8HZJCefbNbW1NRkt9jYWAMAhIVFGPPycrRN21FSUqRKTHwjrL6+jv38832Nw65SH3/8yaIpU66trqmpbviy/9/P615entaxY8fXzpu3MDszM91ly5YNgR3FBQAxMXHGoqJCTeMaJABgMpmYzMx0l4iIKCMAhIaGm3g+pVkbli1bEj579mOx9sTHMEy7iUVcXILRYDAoUlJONVtvJjn5lFtYWMR5eWN2JDlZDeBJjuPeAjARtpbGcxz3DIA5AN7uuvAIIReCbysrsCEnC64DBgIAREmGoZOVulSMhEeDecyOzoSq/dfdVsc8EpSKmeFpYCSpzW+r/GLjAQAeDAOZEhRCSC/j5uYufvXVF/4rViwLzczM0CQnn9QdPPitT2BgkNnX10/o12+AUavVSlu2bAjOzMzQHDnyi9umTevCmr7e3XrrHcVffvl5wJ49H/pmZmZoNm9eH3DkyC8+trpHwNSpN1W6u7sLCxfOjT558oQuKekP1yVLXogBbEkFwzC4+eb/FX/55ecB27ZtCsjKytR8/fWXXm+99WakSqWSNBqNrFAo8eGHO0M2b14fkJOTrT5+/JjL778f8YqP5/QA4OrqJgJAWtppXU1NjeK22+4sNRgMinnzno45ceIf3alTJ3Xz5z8bk56e5pqQ0M/o6uoqXXPN9aU7d24LOXBgv1daGq9dsmRhZFVVpbqj5+zzz/cF7tu31yc9PU3z+utLw3JysnV33HFPCQDcfvudxX/88Zt3YuLKkPT0NM3hw4fcly9/NVqvr1cGBgYJgYFBFrPZzO7f/6l3fn6u+qefDnq89NLCGACwWCytPlf37z/QdNNNtxbv3LktJCMjXdNye0vXX39jpYuLqzh//pzYY8f+dGlod7TJZFLceuvtZQAwbdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj222p74XFxcJQBITj7lUl9f3yzmsWPH14SHRxqXLHkh5tdff3Y/fTpV+/LLL0bk5+fqbr99WklH8XeFTg/r4nl+I8dx/gAWAJgB21/uLgAWAMt5nn+3a0MkhDgzWZbxe34uzGYznhxoW1BXEOVOT4ZnGCBAbYZOI8NobD6E4WzH+KtsQ4GtVhEsq2q16GNIfDwyJQlqlkVVXg58omM7FRchhHQnjutveuGFJRnbtm0OOXBgfwDLsvLAgYPrVqxITGNZFu7u7tLcuQszN258N2z69DsHBgeHmGbMmJW3cOFzCY3nuPPOe8tqa2sV27ZtCn3rrdXKAQMG1o0bN6E8JeWUOwBoNBr5//5vddobb7wW8cQTD/d3dXUTbrttWtG6dW9HqFQqGQAefPDREo1GK3322ccBmzevD/P09BQmTLiq/Mkn5xQAwNix42tnzXome8+eD4J27NgaqlarpYsuGlnzzDNz8wHAx8dXHD9+YvmWLRvD8vPzNAsWLM5btert1LVrE8Nmz57Rj2UVckICp1+5cg3v7x8gAMDTT8/NV6vV0ltvrY4wmYyKUaPGVI4YcXF1R8/Z1VdPKduz54PA1atX6CIjIw3Llq1IGzjQVqb32munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794NfQ2lbW83owZTxT98ssh76VLF0dt3Pgef7bhXV5eXmJi4rt8YuIbYc89N5tr+B3XJSa+mxoZaSsFfdVVk2uqq6tzPvro/aCtWzeG+fr6WR56aEbuLbfcViHLMjqKr3//gcZhw4bXvPbayzF33ZVX4OnpdeYNV6lUIjHxndMrVy4Pe+mlhbFWq8BER8cYXntt5ekRIy45L+Obmc4uesNxnDfP81Ucx3kAuByAL4BqAL/xPF951oN7h0xRlKIrK7v2+VUqWXh7u6KqSg9B6JYhpT3O2dvo7O0DemcbKyrKMWHCaDAMgz/++BtqtRpGQcYvxwtQZ7B06lwsy0CnU8NotNi9snyjYQkBSAj3hMXSupzwW7dMRZ3BgJuWLEO/kRd36rxdqTf+/rqas7fR2dsHdF8bfXxcoVCwWQBiuuJ8SUlJ/VhW8VVAQGi9Wq09v+NIe5kffvjOIz6eM4aFhVsbH1u0aH5kcXGhZt26radzc7PVWVmZ2rFjrzwzn6SoqFB1661Th6xYkcg3rn/RF4wePXLEk0/OyW5cm4WcHxaLSVtaWuAmSeLkESNGpJ5tX0cmxP/BcdxCnuc/BPC1YyESQohNYUYGxvj4weziApVKDZZlYLEKne45EWUGh6oDoapX4DLXIthT+EaUGRyuDQAARNSZ2u1t+VWtRnL6aVxaW4N+nYqKEEJ6v6+++tJ348Z3dU8//VxOQECg9Y8/fnf/+ecffWbMmJULAGazmX3hhXnx99wzPf+qqyZX1dbWKNatezs0MDDIPGLExVQthHQpR5ITbwDlHe5FCCF2qEpNwRMxcSiTbd+wMgwLo1mAtZPfuIoyg0M1tvmGF7sU2fXiJsoMfq4NAgDcbM6EILZ9zZCQUCQnn0RRUWGnYiKEkL5g3ryFuStWLAt/4YXn4wwGgyIwMND80EMz8hp7F+LjOdPcuQsz33//veD3338vRKVSy0OGDK198821pxuHdRHSVRxJTt4E8H8NE+BP8jzfamwdIYTYS19UAAAwq23zBFmW6fRwrq5gsgqwSnKbL4qhwcEIUGtQm5V53uMihJDu5u3tIy5d+n/ZZ9vn2munVl177dSq8xRStzl8+M+kno6BnJ0jyck9ACIBfAcAHMe13C7zPO/IeQkhFyBLua0jVnK3LeoryTLqDdazHdItzGYBFqsEtUbRar7KAFaBa4dchIK8vPMeFyGEEHIhcSSJ2NHlURBCLlhMnW1+pcrXthivIErndWX4RmaLCItVBKNVAi3mq7iHhQOnTsHFev6TJkIIIeRC4khykgXgIM/z+V0dDCHkwqMxmQGlEi7BIQAAqyjD3MnJ8F1BlACDSYC/pxZii4JdfjG28sHuDANZFMEoFG2cgRDSx0gAZFmW2135nBDSNRr+n8mw/b87K0cWYVwJYKQDxxFCSCtuku11yjsyqqFSlwhTG+V8z4dag6XNVeKD4zkIkgQlw6C2sOD8B0YI6Q7FsixbLRZThyuKE0LOjcVicpFl2QqgqKN9Hek5KQXg5cBxhBDSTF1tLbyVtpehgLh4MAwDiyB1uoxwVzGYrBDbWB/F3cMDlYKAALUapemn4Rke0QPREUK60ogRI2qTkpLeq62tmgHAV63WGhiGocpThHQhWZYZi8XkUltbpZZladOIESPqOjrGkeRkA4C3OY4bD+AkgFZL2fM8/569J+M4LgDAGwAmA9AB+AnAszzPJzdsHwZbhbCRACoAJPI8v8KBuAkhvUxRUQH+L+M0wj098VJwCFiWgcFotWt195aUjIQHgtKg0aiglOWW00baPWZ6wOkzt81mAYIoo60xHvUsiwAAVdnZnQ+OENJbvSqKAqqrK+5hGMYFaPO/PyHEcbIsy1ZZljYBeNWeAxxJTt5o+Pfu9oIAYHdyAuAz2MafTQGgB/AygO84jouDLVn5FsA+AI8CuAzAWo7jKnie39L50AkhvUlxSTH+qqmGMTgEDMuCYYBavdmhc7EMEKoxQqcTYTQC9iwQzzJAiMZ45r7JIsIqStAomFYJklmrBQQBhqIOe6QJIX3EiBEjJACvJCUlvSnLCIZjw90JIe2TABTZ02PSyJHkJNqBY9rEcZwvbBPsX+F5/lTDYy8DOA5gIICJAMwAZvA8LwBI4TguHsBcAJScENLHFRbaFjUMbpgML4gyDD1QqauRySLAIkjQKpWQW2QntQEB2PvnHwiOjOyh6Agh3aXhg5PdH54IId2n08kJz/M5jbc5jnMB4AGgguf5TtfY5Hm+AsAdTc4XCGAOgHwAyQBeAnCoITFpdBDA8xzHBfA8X9rZaxJCeg9TRjrG+Pgh3tcPACBIMswOToYXZQa/1fhDZVBguK4EjB3jukSZwR91tmtf4l4OS0M5YdZF1WqtEyaBw4effYyramscio8QQgghHXNosUSO48YAWA7gYjSMz+Q47g8A83me/8HBc64H8BBsPSVTeZ7XcxwXBuBEi10LG/6NgG1yvkOUyq7tuVUo2Gb/OiNnb6Oztw/ofW30LizAEzFxKIQMpZKF0SrZkgO288O+BYnBd9XBAICLIkuhaKvsVhvHfF9j67W52KMCDGsrJ6z0bV0qOCwsFIBtnkxXv37Yq7f9/rqDs7fR2dsHXBhtJIR0n04nJxzHjYJtdfhM2OaHFAMIAXA7gK85jhvL8/wRB2JZDWAdgBkA9nEcNxqAC2zJSlOmhn+1DlwDAMCyDLy9XR09/Kw8PHTdct7exNnb6OztA3pPG9UmE8Cw8IoMh7e3K4zl9WAULHQ6dafPpZD+TUY0GhXUbMc9J02P0enUULMyTFYJrq6aVglSPy4WAWoNPKqr4eWpA8P23Aev3vL7607O3kZnbx9wYbSRENL1HOk5eQXAzwAm8Tx/ZvwFx3EvAfgatqFYV3f2pE2qcz0M4HIAMwEYAWha7NqYlOg7HXkDSZJRW2tw9PA2KRQsPDx0qK01QhQ7XF+mT3L2Njp7+4De10YXqwCo1dAFhKC21oi6ejNqa032FNpqxdIk0TCbrRA7Xuep2TFGowUiK6O2zoSaWiNazoh3c/XCm4OHQcEwyOOz4B4U5ECU56a3/f66g7O30dnbB3RfGz08dNQbQ8gFwJHk5BIAdzRNTACA53mJ47g16ESlroYywhMAfNR4vobzJAMIBZAHW69MU433z2klNEHonjcFUZS67dy9hbO30dnbB/SONppMJng3rLTuEx0HSZJRZ7C0uc6IPaQmiYYkyZDsSHGaHwNIkGE02ybFsy2SE1d3L1QJVvip1ChMSUGsX4BDcXaF3vD7627O3kZnbx9wYbSRENL1HPkKog6Aqp1tanSuRngIgPcBjG18gOM4FYDhsE2IPwRgDMdxTQeATwDA02R4Qvq24qwMaBuTk6goMAxQr+90XY0uZ7YIsApSq5XiGYZBXcODVdlZPRAZIYQQ4vwcSU5+ATCf4zi3pg9yHOcO4HnYhnzZ62/YhoKt5ThuDMdxg2DrefEGsArAZtiqgW3iOG4Ax3H3AZgNYJkDcRNCepGyjHQAQK0kQqFWwyrKMPbQyvBNmS0iLIIEpo0J9WaNbZSpvqiw1TZCCCGEnDtHhnXNA5AEIJPjuP2wTYgPAnAdbPNB7rf3RDzPyxzH3QZbsvEhAC/YkpsxPM/nAgDHcZMAJAI4BqAIttXjtzkQNyGkF6nJzYUnAIPC9jIkSjLMvSE5sTaUE3ZtXU5Y9vAAqqphLS/voegIIYQQ5+bIOifpHMddDmARgGsA+ACoBPADgJcaJ7Z34nw1AB5r+Glr+1HYJsgTQpxIltWCnWmpGDX6CoxlAKsgObzGCQAoGQn3BGZAo1ZByciwZ1a9kpFwl3/6mduN6o0WBHm3rjSk9vMHqqrB1tFabYQQQkh3cKjsRUMC8iTP80E8z6sBDACwtLOJCSHkwpVbXoa/aqrBxsSCYRhYBAmmc0hOWAaI0uoR42qAvcukNB4TpdU3O6Zeb2015wQAXENsa51oLC0rnBNCCCGkK3Q6OeE4zovjuG8B/Njk4UsAHOc4bl/DqvGEEHJWRQ3zNoKDQ8CyDCwNw6l6A6NFgFVs3fXik8Bhb2E+vqygYV2EEEJId3Ck5+Q1AAMBzG/y2EEANwAYCWBJF8RFCHFy4dXVGO3ji2BvbzAMg3qj5ZzOJ8rA0TpfHKnyQht5RbvH/Fnniz/rfJsdY7YIbZY0DolPwIeF+fgiOxMWy7nFSwghhJDWHJkQPxXAHJ7nP258gOd5C4DPOY7zhm2RxjldFB8hxAmJoohr3dzh4eUDV62uS8oIizKLA5W2YVcDwsugtGPSiSiz+Ko6DAAwxLUKioZ5J2aLCKsgQatkmq3F6O3tA61WC5PJhOLiIkRERJ5TzIQQQghpzpGeE3cAVe1sKwHg53g4hJALQVlhITyUtuWS/GPje00Z4UaNyUnLcsIMw6BfaDgGuHugmE/toegIIYQQ5+VIcnIMwAPtbLsfwD+Oh0MIuRCUpPMAAJMkQeXu3lBGuHfMNwFs5YTNVhFsGzPr/+vrh8XcAJj+Pn7+AyOEEEKcnCPDul4BcIDjuD8BfAKgFIA/bHNORsC23gkhhLSrKicbOgB1DAOWZWASpF6xxklTepMVDNO6nLDk7gHU1MBSXtYDURFCCCHOrdM9JzzPfwvgethWEVgCYB2Al2FLdG7gef6rLo2QEOJ0DEVFAACzVgOGYWxrnPSSSl2N6vSWNssJq3x9AQBMXe15jogQQghxfo70nIDn+QOw9Z5oYVuEsYbneX2XRkYIcVqWigoAgOzu8W8Z4V40rAsATGYBQhsVu1xDQoHMTGhMtNYJIYQQ0tUcSk4a8TxvAlDYRbEQQi4QTK2t10Hl4wuGYaA3We1Z0P28MltECKLcqnvZOzIKOPwzPGQZsiy3mjRPCCGEEMedU3JCCCGO2F9dgX0lJXjkv7eCYYA6w7mvGaJkJNzunwWNRgklI8OebEfJSLjNL/PM7abMVgGCKEGjaF5OOCiBQzUALcvCXFMDrZfXOcdOCCGEEBtHqnURQojDZFlGckE+/qqpRmC//hBEGUbzuU+GZxkgwaUO/dz0aKPIVrvHxOvqEK+ra3WM2SLC0kY5Yb/gENRYbWuylKafPue4CSGEEPIvSk4IIedVXV0d9HrbFLWgoOBeV0a4kdkqwtJGOWGWZfG9yYB12ZkoNdBUO0IIIaQrUXJCCDmvijIzcGNQCK4Ki4CLiw5WUeqS5ESUgeP13kiq9oRo5wQWUQb+1nvjb713q2NkGTCYhDbnlGR5eeP78lIUVLW3Hi0hhBBCHOHQnBOO4/wAPAvgKgDBACYBuAnAcZ7nP+268AghzqY8jce0sAhUSVJDGWGxS8oIizKLzyrCAQDzwsuhtGPSiSiz+LwyAgDQX1cDRYt5J3WGtssJh4SEAgCKiqgeCCGEENKVOt1zwnFcNGyrwD8MIB9AAGxJTgKAvRzHXdulERJCnEp9QT4AwKhSgWEYWHrhAoyNjGYBYhvlhMMDAtDfzR1iVmYPREUIIYQ4L0eGdb0B26rw0QBuBsAAAM/zdwL4DMD8LouOEOJ0TKWlAADR1RUsy8BgEppVw+pNzBaxzbVOYlRqvNRvIIY0rNdCCCGEkK7hSHIyAcDLPM9Xo3WxznUABp1rUIQQ5yXXVAMAWC/vLisj3F3MFgFCGxNYvCIjAQBuktRqGyGEEEIc5+iE+PbGYGhg1+oChJALldJgBAC4BAVBkgCjydrDEbXPbBVhbaNiV2A8BwBwZRWw6ut7IjRCCCHEKTmSnPwM4HmO41ybPCZzHMcCmAHgly6JjBDilFxF23cbHuHhEKSuqdTVXdpb6yQgPAL1gq0dpelpPREaIYQQ4pQcSU7mAegPIB3Adth6SuYASAIwGsCCLouOEOJUzGYzvFkFAMAvJg5WUe6SSl3dRZJsC0S27DlRKBSolm1DuioyM3oiNEIIIcQpdbqUMM/zJzmOGwlgMYArAYiwlRT+CcA9PM+f6NIICSFOo7i4CC+knkKImzvejY2FsQsrdSkZCbf45UCtVkLJyHYNMFUyEm72zT5zuy31Rmuba50YVCoAQG1+nsMxE0IIIaQ5h9Y54Xk+DcCdXRwLIcTJFRcXIc9khDI4GEqNBtZ6S5cN62IZYIBrDXQ6NYxGoI0iW20f41Jz1n30RiukNsqJia6ugN4Ac0P1MUIIIYScO0cXYWQADAPgijaGhvE8f+jcwiKEOKPGRQuDg0PAsky764j0Ju1V7NKHhWPd1wcQERiICT0QFyGEEOKMOp2ccBx3CYDdAMIaHmoc7yA33JYBKLokOkKIUzGe5nFjUAiCvH3AMEC9sevKCEsykKr3hNqqRIzSvvVHJBlINXoCAPrpasC2sRq82SpClKRWL2quCRy+37kNl1WUnWPkhBBCCGnkSM/JKgBWAPfBtkI8FfonhNhFW1CAaWERyGdYyAD0hq4rIyzILPaU29YfmRdeCaUdk04EmcXHFVEAgOdCT0DdxryTxopdLioF5CbDu0JCQgEAhYUFXRA9IYQQQgDHkpPhAG7nef7Trg6GEOLcFHo9AEDj7w+rIPXqSl2NzBYRVkECq1FCbDK8Kzg4BP3d3BFiNkMwm6HUaHowSkIIIcQ5OJKclIJ6SwghDtBaLIBaDbeQMIiS3KvXOGkkiBJMZhGMW/PHAwICMTe+H1wUCpSnpyFo4KCeCZAQQghxIo6sc/I2gHktFmEkhJCzkiQJHg1zOnyjo2EVZJitXVNGuLvpjZZWa52o1WpUS7bkqjwzvSfCIoQQQpyOIz0n8QAGACjmOO4UAEOL7TLP81S8hhDSTHlJMbyUtrVBAuPjYRTEPtFzAtjWOmlrBotBaXsJrcnLPb8BEUIIIU7KkeQkDsDxJvdb1rdpo94NIeRCV5J2GhqGgUWWoPXxQU21CVahb4wQNVvENssJCy6ugNEIE611QgghhHQJR1aIH98dgRBCnFtlTjaCAdSBgULBQm/sukpd3c1kta3H0nIcLOvtDRiNkKuqeiQuQgghxNk4tAgjIYR0VrbVihUn/8b4MWMxFkBdF5YRBgAFI2Gqbx7UKiUUjAw7KglDwUi43if3zO32WBoqdmmVDJouFq8NDAIKC6E0tBzdSgghhBBH2JWccBwnAric5/k/OI6TcPa3fZnneUp6CCHNFJYUIc9khDI8AlZRhsnStZPhFQwwzK0KOp0aRqNtgUV7jhnq2nGvR2M5YZ1K2WytE8+ICOCvY3AV+8bEfkIIIaS3szeJWALbgouNt+142yeEkH8VFxcBAEJCQvpMGeFGFqsIs1UE66qC1CTr8ef6YU12JqplGSNlGQxDU+4IIYSQc2FXcsLz/EtNbi/utmgIIU4rqqIC3kEhCHNzhyBKsHRxGWFJBtIN7tCISoSzFruPyTC5AwBitXVg28ktZAAGkxUMo2v2eEhUDL4vt02Gr6qqgo+Pj8PxE0IIIcT+YV1XdOakPM8fciwcQoizGsEqEBQWAYVWC4sgdXnPiSCz+KAsGgAwL7waSjs6eAWZxYflMQCA50JPQH2WeSf1Bgtadoyo1Wr4+/ujrKwMRUUFlJwQQggh58jeYV0/4t+hXO2NW5AbtskAFOcWFiHEmdTW1sKnYY2ToIR4mBuGSfUlRrMIsY2JLENCwmCVZJSdOgkMHNwDkRFCCCHOw97khMoHE0IcVpyZDjXLQpJleISGI7fc2KzqVV9gtggQRLnVtzNj3T3QLzoO+akpPRIXIYQQ4kzsnXPyU3cHQghxXuWZGfADUC/LUKiUqDPYNyekNzFbbQsxqlosdsJ6eQHFJRCrKnskLkIIIcSZOFTyl+M4PwDPArgKQDCASQBuAnCc5/lPuy48QogzqMvPgx8Ag1IJUZJhNPe90rtmiwiLIEKjVTar2KUJCASKS6DU63swOkIIIcQ5tFzwuEMcx0UD+AfAw7CVFw6ALclJALCX47hruzRCQkifZyq1VbSyurj0uTLCjcxW21onLcsFe4RFAABchL6XcBFCCCG9TaeTEwBvACgFEA3gZjRMkOd5/k4AnwGY32XREUKcglRtW+iQ9faGVZT73GR4AJAaenzYFvWG/WLjAAAeDAuJEhRCCCHknDiSnEwA8DLP89VovRjjOgCDzjUoQohz+ay6Cs+c/BuKESNhFSSYu3h1eABQMBKm+BRgamAxFIx9s+0VjITJXvmY7JUPxVnKCDeqN1pb9ZwEx8XDKklQMAxq8vMcip0QQgghNg7NOQHQ3icLDWj1eEJICzmFBag0GRGUwMEqiN0yrEvBABe7V0CnU8NotC2waM8xI90r7L6G3miF1KLMmIurKyoFAYFqNUrSTsM7KrqzoRNCCCGkgSM9Jz8DeJ7jONcmj8kcx7EAZgD4pUsiI4Q4BaPRiMpKWwIQHh7e7nohfUFjOeGWvpclLD2dgiKx7w1XI4QQQnoTR3pO5sGWgKQD+AG2npI5AAYAiAMwpsuiI4T0eQUZ6XgoIhrVADw8PFCQW9Ut15FkINfkCo2kQiBjX6liSQZyzbbvWSI0erDtLTHbwGwVIUhSqxfO+sBA/H3iOArKyxyInBBCCCGNOt1zwvP8SQAjARyEbXFGEbaSwukARvE8f7wrAySE9G1laadxVUAgJvn5QwagN1i75TqCzOK9klhsyIuAIHeQZTQ5ZkdZHHaUxUGQO345NFvartgVEhIKACgqKux84IQQQgg5w6E5JzzPpwG4s4tjIYQ4odq8HPgC0CuVEESpT1bqamS2iLBaJbAaJcQmw7sifP1wha8f3HKyey44QgghxAk4ughjDAAtz/PJHMd5AVgKIBzAbp7nt3dhfISQPs5UUgIAEFxd++waJ40EUYLJIqJFxwlCXXSYGR2HCoOxZwIjhBBCnIQjizBOBpACYHrDQ+/CtiBjGICtHMc90HXhEUL6OqnKNsdE6ePTbWWEz6d6o6X1WicxtrVOPBkGstRxSWJCCCGEtM2Ral0vAvgGwEscx3kCuAnAMp7nhwNYBuDJLoyPENLHqYwGAIAuOBgWoW8P6wKAeoO1Vb304PgEiLIMJcOgtpDmnRBCCCGOciQ5GQpgNc/zdQAmwTY0bE/Dtm8BxHdRbIQQJ+DWUF7XJyoaZqttQnlfZra2Lifs5uGJKsE20b8kje+JsAghhBCn4EhyYsS/c1WmACjhef6fhvtBAKq7IC5CiBPQ6+vho7C9XARxHPTG7qnUdT6ZLSIEsXWCVcfaXk6raVI8IYQQ4jBHJsQfBjCH4zgfAP8DsAUAOI4bAWBRw3ZCCEFRUSEe+fsYonx8sScyElmZ1d12LQUjY6JXEVQqBRQM0GrsVTvHTPAsPHPbHmaLCKsoQ6lk0HSxeItWC1gF6KmcMCGEEOIwR5KTpwB8AWAngGQArzQ8/gUAA2yLNBJCCAoLC2CURMh+fhAZBczm7psMr2BkjPIsg06nhtEow55F6BWMjMs9Ordwom1omggXlQpyk+xE9vAEKiogVFR0NnRCCCGENOh0csLzfBbHcQMBBPA8X9Jk040A/uJ53tyZ8zX0wLwK4DoAHgD+ATCP5/nDDduHAXgTtoUfKwAk8jy/orNxE0LOv4KCfABAaGgoBEmG2dq3K3UBgMUqwmKRwLoykJpkQNbYOCw9chjRIy/BVT0YHyGEENKXOTLnBDzPyy0SE/A8/xsAZUOp4c74AMBlAG4HcDGAYwC+4TiuH8dxvrBNsj8NW3KyCMDLHMfd70jchJDzS05NwYMR0Rjm7tlQRrj7KnVJMlBg1iHPqLWr16TxmEKzDoVmnd3HAEC9ydJqlXjvuHj8XVuDtJLiTkRNCCGEkKY63XPCcVwkgHUAxgJQt7Obws5zxQG4CsB/eJ7/teGxJ2GbaD8Ntsn3ZgAzeJ4XAKRwHBcPYC4a5roQQnovXVkZrg4IRJFSaSsj3I3JiSCz2FRsKxY4L/wElHZMOhFkFptLEwAAz4WegJqxr5JYvd7aaiHGkJBQALahbIQQQghxjCM9J6sAjAKwHsBfAH4BsAK24VgybOue2KscwLUAkhof4HleBsAA8AEwBsChhsSk0UEAHMdxAQ7ETgg5j1QG2xonriGhtuFQfXyNk0ZGiwChRVdLSEgI/uPji/FaHfQV5T0UGSGEENK3OZKcjAWwkOf5J2HrvTDzPD8XtmFXPwG4wd4T8TxfzfP8l03nqXAcdyuAWABfw7bqfF6LwxpL4UQ4EDsh5Dxyayi56xMVBb2p9eKFfZWtnHDz1ri7e+Du8CjcHhqO4pTkHoqMEEII6dscqdblBuB4w+1kAIsBgOd5keO4twG84WgwHMf9B8BmAJ/yPP85x3GrYBvW1ZSp4V+to9cBAKXSoek27VIo2Gb/OiNnb6Oztw84v22sra2Fr9L2EhPcvx+yjVawLNPBUY5r2iKWZcCi42s1PwZ2x2cVRIiSDLWq+fNYyzDwAVCdmw2lcpxd5+oM+hvt+5y9fcCF0UZCSPdxJDkpgm2xRQBIB+DDcVwwz/NFACoBBDoSCMdxNwB4H8BvAO5oeNgIQNNi18akRO/IdQDbBxBvb1dHDz8rDw9dt5y3N3H2Njp7+4Dz08aCtFPQKBSQZBl+sTHITLWV+e0uCunfxEKjUUHNdtxP0/QYnU5t1zEAwCoUYFi21euI4KIFLAIspcXd9hoD0N+oM3D29gEXRhsJIV3PkeTkC9gqZuXzPP8rx3H5sC3KuBjAdACdng3KcdxM2MoFfwzgribDvPIAhLTYvfG+w7NOJUlGba3B0cPbpFCw8PDQobbWCLGN1aOdgbO30dnbB5zfNmb+dQK+AOpkGXqziNp6M4xGS7ddz9Ik0TCbrRDRcfuaHmM0WiDamZyYTEC93oxaNdvseRTd3IHKKuiLSlBV5fD3J+2iv9G+z9nbB3RfGz08dNQbQ8gFwJHk5EXY5pcsATARwHwA2wDMbtj+eGdOxnHcDABrACQCeIrn+aavZIcAPMpxnILn+caZtBMA8DzPlzoQ+xmC0D1vCqIoddu5ewtnb6Oztw84P22sysmFLwCjWgWLVYTJLDRbF6SrSU0SDUmSIdkxw6X5MbDrmEZ1Bgv8PbXNnkeVrx9QWQXU1nbr80t/o32fs7cPuDDaSAjpeo4swlgB4FKO44Ib7u/kOC4HwOUA/uB5/id7z8VxXAJsPSafAFgGIIDjuMbNRtjmnzwHYBPHccsBXAJbEvRoZ+MmhJxfpwQrXj52FPfcPg3DBQkmS/cuwKhgZFzhWQKVUgEFA9iTZygYGWM8is/c7ox6g6VVOWHX4BAgLQ1ac6fWoiWEEEJIA0d6TgAAPM8XcRzXD4A3gCKe5//PgdPcAkAFW/nhliWIt/E8fx/HcZNg61U5Btt8l2d5nt/maNyEkPOjoCAfRkmEf0zMeSkjrGBkjPMqgU6nhtEo27WoooKRMdazpOMd22A0C60qdvlExwCHfoIHAFmWWy3USAghhJCzcyg54TjuAdiGd4U1eSwPwPM8z++y9zw8z78K4NUO9jkKW68MIaQPKSiwVQEPDQ2DwSRAdpY6wg1MFlvFrqbpR+iAgXgqLRXFJhP2Gg1wcem+SfGEEEKIM+r0zLKGyesbYFs48V7YVnO/H0AKgB0N65QQQi5gsixjigw8EBGFMC8v1Om7f5iTLAOlFg1KzGq7EyFZBsqsGpRZNZ1OnswWEVZRaja0y8vXD+mShCKzCQUF+Z07ISGEEEIc6jl5EsBbPM/PavH4exzHbYRt3ZPd5xoYIaTvqigrxeWe3lAwDPz9g1BW1b3zTQDAKrN4t8g2Z21e+Ako7Zh0YpVZrCvuBwB4LvQE1Iz9k3fNFgFWQYJWqYTcJLMJD49AcvJJ5OXlIT6eO8sZCCGEENKSIzX5wgB83s62XQBiHA+HEOIMClJOQcEwsMgS1L5+MFm6d75JTzBbRZitYquFGy8KCsF/g0OhP36shyIjhBBC+i5HkpOjsJXzbctFAP5xPBxCiDOoyEgHYFsxXZBtQ6CcjSwDBpPQatJ7f1dX3BYaDm1OTg9FRgghhPRddg3r4jjuiiZ3dwFYxXGcO4CPABTDVrFrMoBZAB7p6iAJIX1Lfb5tvoVZq4NFkGDu5jLCPaVObwbDuDd7TBcSAhQVQa3v+kUYCSGEEGdn75yTH9F81QAGwAw0X2+k8evDD0BzTgi5oInl5QAAxtsblobhT86orXLCvrFxQFIS3CXnbDMhhBDSnexNTsZ3axSEEKeiqK8DWAV0wcEwmKxOV0a4UVvlhIP7D0QNADdWAXNtNTQeXj0UHSGEENL32JWcdGbVd0IIYc0WQKeDd0wM6vSWng6n2zSWE9YomDMJWEBYOHIFKzyVKhQmJyP6slE9GyQhhBDSh9g1IZ7juEMcxw3rzIk5jhvJcdxhh6IihPRZRqMBC0/9jfv+OorgS0fBYD4/800UjIzLPcowxqcCCjsXZlcwMi5zL8Vl7qVQMJ3v3jFbBFgEqdmkeIZhUN1wuyI9rdPnJIQQQi5k9g7rehPAVxzH/QlgB4DPeJ43tNypYZL8JNgmxV8E4LGuCpQQ0jfk59tWhle6usHVxxfmwqLzcl0FI+Mq7yLodGoYjTIkO3INBSNjopfj8ZmtIixWEayLClKTC5q0OkAQUJeX5/C5CSGEkAuRvcO69nIc9xOAFwFsBKDkOC4ZQBYAPQAvAOEABgGwNuxzF8/zJd0RNCGk98pr+EAeHh4OQXTeSl2ArZyw3mgF46Vr9nhhZCTe/XQvroyPpwl7hBBCSCfYvUI8z/PlAGZxHPcSgFtgmyQfA8ATQDmAFNh6WD7neb6iG2IlhPQB9X//hefj+8HsFwCLVTpvCzDKMlAtqGCyqKCR7ZvnIstAjagCAHgqrGDsHA7WVK3eArQ4zjs2DgUmE3IL8zt/QkIIIeQCZndy0qgh8VjX8EMIIc0IBQW4yNMLBRqNbdjTeUpOrDKLxIL+AIB54SegRMfjuqwyi7eKBgAAngs9ATUjdfq6JrMAscUYsvDwCABAXl5up89HCCGEXMg6nZwQQsjZMLU1AAB1QCD0RqsdKULfZrKIEES5WXWRsJBQ3BQcghAwEEwmKLXaHouPEEII6UvsqtZFCCH20ppMAACP8HDbkCcnZ7YIsApSsyFhQSGhuCEoBGN9/FByOrXngiOEEEL6GEpOCCFdRhAEeDVMwPCNS4DJiSfDNzJZRFgEsVk5YZVKhcqGoV6lPN9ToRFCCCF9DiUnhJAuU5yfB1+1GgDgG89dEMmJxSrCbBHBss1nxRsanofavJyeCIsQQgjpkyg5IYR0maLUFACASZIgubjBbD4/k+F7Wr3R2io5kT09AACWEqqoTgghhNjLrgnxHMfd05mT8jz/nmPhEEL6srLcHCgEAUaVClZBuiB6TgCgTm9pNfFfFRAIVNeAranpkZgIIYSQvsjeal1bO3FOGQAlJ4RcgFLr6zD/+J+45467EG8RYRU6X5rXUSwjY6RbOZRKBVgGsKdMGMvIGOFWfua2o4xmAYLY/HjPyCjg9Gm4WMwOn5cQQgi50NibnER3axSEEKeQm2ubXxERG4u681ypS8nIuMa3EDqdGkajDMmOXEPJyJjiXXDO1zZbRFhFqdkLakC//hC//QaeDAPJagWrUp3zdQghhBBnZ1dywvO83TM6OY5zYI1lQogzyM3NBgBEREah3uD8ZYQbmRrKCatUCsiyLSsK7z8A/0s5iQKDHl9UVSIgILCHoySEEEJ6P4cWYeQ47nYAYwGoATQmIywAVwCXAwjrkugIIX2GKIq4V62FIY5DiLsXCs7zfBNZBvSiAqKgAGvnCC1ZBgySAgDgworN1irpDJNFgMUqwU2jhNgwvEut1kD08YVVX4+cnCxKTgghhBA7dDo54ThuEYBFAGoajrc2/PgDkABs6MoACSF9Q2FONvq7uQMAfINDkZFdf16vb5VZvFEwEAAwL/wElHZMOrHKLFYVDgIAPBd6AmrGsTkyoijDaBbAemggNilQFhUVhby8HGRnZ+Piiy9z6NyEEELIhcSRUsL3AtgBwAfAKgCf8zwfCOBiABUATnVdeISQvqLg1AkAgEGSILu4XTCVuhrV6s2tel4u8g/AI5ExUB5L6pmgCCGEkD7GkeQkFMB2nudlAEkARgEAz/NJAJYCeLDrwiOE9BVVGekAgDqV0rYw4QWyxkkjvdEKscUs/Agvb0zwD4BXeXkPRUUIIYT0LY4kJ3r8W6QzDUA0x3G6hvvHQZW9CLkgmQoLAQCChwf0Risk2fHSvH2RySxAaJGceMclAAA8hAurF4kQQghxlCPJyR+wDe0CgAwAAoCJDff7A6Ci/oRciKqqAADqwCDU6i+8lwFTw7ouTYd2hQ8ZAgBwVyhgrK7umcAIIYSQPsSR5ORVALdxHPc5z/Nm2OafbOM4bi+ANwB83ZUBEkL6Bp3ZBABwj4qCwXTh9RQ0VuximmQn/qHhqLJaAQAFJ/7uqdAIIYSQPqPTyQnP84cAjATwYcNDMwHsAdAPwG4As7osOkJIn2CxWFBrNMIgCPDn+l9wk+EB20KMZqsIlv03OWEYBtUN98tPp/ZUaIQQQkif4dA6JzzP/wPgn4bbJgAPd2VQhJC+JS8vF6+mpcLNzQ3f9BsE0z9F5z0GlpEx1LUSCoUCLAPYUUkYLCNjiEvlmdvnqs5gQbCPrtljZlc3wGSCPi/vnM9PCCGEODtHF2H0BHAlbIsutup94Xn+vXOMixDSh+TkZAMAIiOjIIhyj/ScKBkZN/jlQ6dTw2iUIdmRaygZGVN9uy5pqNVb0LIOgNLfH8jLg6myssuuQwghhDgrRxZhnALb8C2XdnaRAVByQsgFpDE5iYqKhtEswCo4tphhX2cyC7CKzbMTxfARuPvTveg3eCiu7aG4/r+9O4+P66rvPv65s0ga7bJsyftuHzuxnT0hlKQJAQK0gbKVtWVvgbYP9GkJAcJSlhZCWcJDgRYKLRQIEFLKltJCQgIhJHGcxI6X402yrM1aR8vsy33+uGNbkjW2JEuaGfn7fr30knTn3Du/o6u5M797NhERkVIxk5aTfwD2A/8XaMdbFV5ELmDVT+/mMxfvIFoRYjiSLEgMrgvJrIM/65zRenG2fVKu1/gbdLJnLKI4XfFEmnQmS2DMcdZs2kwim+XYsZbzO7iIiMgFYCbJyRbgxdbaX892MCJSmoLhMCtDlQzU1TMaLUxyknJ93NG+HYDbVu0hMIVBJynXxx0d3j63rthDmXN+91piyTTJVIayigDZXL+yNWvWAhAOhwmHB6mvbziv5xAREVnIZjKV8DGgdrYDEZHSVZP0psutWbuOeOLCm6nrpHgifcaMXaFQJX+6yfDBzVs5/vBDBYxORESk+M0kOfkH4EPGmLWzHIuIlKCh8CBNAa8RtmnbJRfkNMInuS6MxlLj1joB2FLXwLbaOgYOaDphERGRs5lJt67XAiuAI8aYXiA64XHXWrvhvCMTkZLQuvtJQn4/KdelfOkK4j3dhQ6poIZGk2eMXck0NMDgIMnO9sIEJSIiUiJmkpy0575ERDixbx9rgbDPoSkNiVSm0CEVVCyROmPGrtCqVTA4SCA8VKCoRERESsO0kxNr7RvnIhARKU2RtlYAktU1BZupq5jEcjN2+cdsW7xlK+zeTX0mjeu6Z3T7EhEREc9M1jlZfZaHs8CotTY844hEpKR0DwxQFY0QMoaRaKLQ4RScNyg+S3W5//SMXZddzonv3kWVz89Idxe1y5YXOEoREZHiNJNuXa1w9jk6jTEDwJ3W2o/NJCgRKR0/OtZCV1cnX7v1NmKJwnXp8jkuWyvD+P0+fA7nuEqN2ScUPvXzbIgnMiRSGWoqAqeCaFjSzN50iqZgGW1P7GKbkhMREZFJzSQ5eT3wL8CvgO8A3UAT8HLgD4GPAtXA7caYfmvtl2YnVBEpNtFohK6uTgBWrl7H3mMT58eYPwHH5RVL2giFyojFXLJTyDUCjsvLFh+b1TiyrstoNElTXQWZMbnacLCMQDJJ5Fgr22b1GUVERBaOmSQnrwbummTsyX8YY74EXGGtfZExJgy8HVByIrJAtRw5jAM0LGokVFVLLDFS6JCKwtBoEiYMK3l64wa+fde3+NNLL+WmwoQlIiJS9GaSnNwAvDjPY/cAP8z9/BvgfTM4voiUiO6dj/HNy6/mmM8hFs+QvMBn6jopGj9zxq51GzYBcOTI4UKEJCIiUhJmsghjP3BJnscuAYZzP1cDkZkEJSKlYaTlKGU+H1WVVQxHCjsYPpn18ZFjO3jvgS0ks1ObDSuZ9fGx45fwseOXkMzO5HI4uXgiTTqdHbdtw4aNABw9quREREQkn5m0nHwL+IgxJgXcDfTgjTl5KfBh4MvGmAbgXcDvZidMESlGmd4eAHxNSxiJahrhk2KJNIlUhrKKwKkZu9atXcd7N21hVSjEyIluapqXFjhKERGR4jOTW4W3A3cBnwHagHju+2fwEpf3AS8ALsuVFZEFKhTxGker164nFk8XOJriEU+miacy+HynW3AaFjWysrKKxWXltO3aVcDoREREite0kxNrbdpa+yZgM/DnwPvxZvDabK39c2ttErgXWGGt3T2r0YpI0UgmkzTmFhNs3HIxsYSSk5NcF0YiyXHJCcBQ0Gus7j+4vxBhiYiIFL2ZdOsCwFp7BDiS57HBGUckIiWhdd9eGoJlANSsN8QO9Bc4ouIyNJI4YzrjTH0DhMPE29sLE5SIiEiRm1JyYow5CrzEWvuUMaaFsy9v5lprN8xKdCJStNqf3MVKYNB1qXYCpDPZc+5zIYkl0qTS2XEzCodWr4ZwmGBY929EREQmM9WWkwc4PQvXA0xp7WURWciOdXZwfKCfpnXrqB2JFzqcohNLpEllspT7HdzcFXPp9ktg924WZbK42SyOb/ZmCBMREVkIppScjF1w0Vr7hjmLRkRKxs6Odh46eoj3v/Z1RGKFH2/ic1w2hobx+3z4HKZ0C8XnuGysGD7182yKJVLEkxlCVUEyuTVP1l91NS3f/HdCPh+9hw/RtNnM6nOKiIiUuhmNOTHG1AC11toOY0wZ8E5gFXC3tfbB2QxQRIrToUMWgPUbNhFJpAocDQQcl9c0tRIKlRGLuWeM98i3z6uWtMxJPMlUlmg8TWNNOZmMtzhlZXUNx9IpkokEyw4eUHIiIiIywbT7FBhjrgaOAX+V2/R54JPA64D7jDEvmr3wRKQYDQ7044bDAKxavUHTCOcRHk3gTFgP8v7mZj5s97Gvt7cwQYmIiBSxmXR4/jhwAPhnY0wILyn5orV2EfCveFMLi8gCdnTX4/zTjsv46mVX4QuUE9c0wpMajSZJZ8Y34WzevAWAgwcPFCIkERGRojaT5OQa4KPW2hbgJiAEfDP32F3AtlmKTUSK1ImnvSWMEsEgQ5FUUcyQkcz6+Ie2bXzQbiaZdc69Q26fT7Zv45Pt20hmZ39weiyeJjlhFjNjvOSk5aCd9ecTEREpdTMZc5IFErmfXwiEgUdzv9cC0ZkGY4y5HXiOtfaGMdsuBe4ErgT6gc9ba/9xps8hIucv1tYGQLqhgeFI4hyl50/KnX6CkXL9cxCJJ5pIkUxmKKsIkM0Ngtm8bj13bruE5vIKYuEwofr6OXt+ERGRUjOTW4U7gbcYY64FXgn8xFrrGmOagNtyj0+bMeZdwEcmbGsE/hc4iJecfAj4qDHmjWccQETmjX9wAIDyVas13uQs4ok0sWRm3ErxzStXUeEP4HMcWh97pIDRiYiIFJ+ZJCfvxuvO9RCQBj6W2/40sAm4fToHM8asMMbcmzvOxH4Of4bXSvN2a+1+a+3Xgc8C75lB3CIyCzKZDIvS3uxTDVsuJhov/Exdxcp1YWg0MS45cRyHgaDXaN2zd0+hQhMRESlK005OrLVPABuBa4H11tpDuYfeDmyz1j4+zUNeDgwCO4CJtxGvAx601o69NXsfYHItNSIyz44fPUJTWRkAiy7aQVSD4c9qaDRBZsK8xplFjQAkjh8vREgiIiJFa0brnFhrR5iQSFhrfzDDY/0Y+DGAMWfM+b8SmHhrsTP3fTXQM5PnBAgEZnfwq9/vG/d9IVrodVzo9YPZqWPbY79jqeMw7GYJlVUBkXEtA4UytkY+n4OPc8c0fh/mpB7xZJqMO/6aU7NhAwwMUDYUnta1SP+jpW+h1w8ujDqKyNyZUXIyjyo5Pfj+pHjue8VMD+rzOTQ0VM04qLOprQ3NyXGLyUKv40KvH5xfHVt7u3i4q4OLtm2jOpEhFCqbxchmzj9mhq7y8iBlvnPPITZ2n1CobEr7TFcWBxeHhobKU9vM9b/H8GOPsTjrUlMVJFA2vb+h/kdL30KvH1wYdRSR2VfsyUkMKJ+w7WRSEpnpQbNZl+HhGU8qNim/30dtbYjh4RiZCVOHLhQLvY4LvX4wO3V8aN9+Huk4zofe+ueEh2PEYslZjnJmUlmHNRWj+BwfyUSKDOeuXyrrsKZ8FIB4LElmDpKTRDzF0EicioBz6m/evGU7XZk0Vf4AT/3iAdZf+8wpHUv/o6VvodcP5q6OtbUhtcaIXACKPTk5DiyfsO3k7x3nc+B0em7eFDKZ7Jwdu1gs9Dou9PrBzOvoui779u0DYP3GrfRFU6emyC00Py6vbz5KKFRGLJadUlx+XP6k6cip37NzcNqzuIRHEjTVV5z6mzuOnwPAUG8P6w8fYfVVz5jWMfU/WvoWev3gwqijiMy+Yr8F8SBwnTFm7EIENwHWWjvj8SYiMjPHW4+y3nFoqKhg+ap1mqlrisKj8TMSn7YtW/nysaM8efxYYYISEREpQsXecvI14FbgX40xdwBXA+8C3lbIoEQuVEcffpj3b97KqOsSSWTPmIVKJheJeSvFj70bdPHF2wDYt+/pwgQlIiJShIq65STXOnIzYIBdeIswvtta++8FDUzkAjWwfy8AI5WVhEeKZ2V4gGTWxz8ev4iPHdpIMju1WbeSWR+f6biYz3RcTDI7d5fDaDxFYsJijBdfvB2/4xBrbSEVj59lbxERkQtHUbWcWGvfMMm2x/DWVBGRAnO7uwDwLV9BNFZ8Xbqi2elf0mayz7SfI54imkhTEwqcGguzZs1avrDjMhqDZbQ88jCbf//GOY9DRESk2BV1y4mIFA/XdamLeXf467dcTETjTabMdWFwJI7jnG458fl8hINBALqe2FWo0ERERIqKkhMRmZKOY60sz63H0XjJFRoMP03Dowky7vgxOtklTQDEW1sKEZKIiEjRUXIiIlNy+KFfE/D5GHWzRCrqcDUWflpGYymSqfFTdtVsNgBUDQ8VIiQREZGio+RERKak/+k9AIxU1zAcKY6FF89XVej0eJOtq2u4aE0t65fX0dRQSTAwu5fHSCxFfMKg+PW/dx0Aix0fkf7+WX0+ERGRUqTkRESm5L72Nr7UeoTMJZcSKcLB8NNRW1XG1jV1bF9+egmlUM/TVPXuoTl+GFMX5fK1laxdVktZcHYuk4lkhtFYatwK1ys2baY3lcLnOBx84P5ZeR4REZFSVlSzdYlIcUokEjyyfx/pdIq33fhcjp4ovuTEwWV5WRTH55BvImG/z2H10hqWVSZxBw7T29nFWqcOgMH2ViJOxjuWz0/N4sWsXL6WxWuaONafpncwdt4x9g/FWNVUdTpmx2GwqpIlyRR9Tz0BL335eT+HiIhIKVNyIiLntG/fXtLpFI2Ni6mpayLR3l3okM4Q9Lm8ZdlhQqEyYjH3jBXZQ+UBNq2oojbVS/iAJTLodaP6QPldZxzLzWYY7jnBSF8vi1asZvOKTVSHamntGj6vsTYj0SSp9PjA3C0X8Z2f/RjKgjx35ocWERFZENStS0TO6ehvHuDmJc3cuH0HA8PFtfjiVFSHgly0qpLq0WOceHrnqcTkXNxslv7jrQwdeJyVwTBmVR1+39QWeJxMJOqNOxk7pfD6m57Df3Z38os9T5GdmFGJiIhcYJSciMg5Zffv481r1nFddS0jkdJKTqpDQbasqKCs/wjd+/eQTk5/MH8kPEDvvsdZ4vayeVXtjBOUSMxbjNHvP73/5s1bqKgIMTIyzNGjR2Z0XBERkYVCyYmInJXrulQPDwNQveViRot0MHwq63Bn+xY+eXgDqaz34T9UEcCsCBHsP8KJw/txs5lx+yTcALfG38it8TeScM/eyzURjdCz/0kas71sXFmLM4P8JOu6DAyNX4wxGAxyzbYdPKNhEYfu+8X0DyoiIrKAaMyJiJxV5/E2VpWVA7DkymfQ3lucyYmLw1CmLPczBAM+zIoqysMtdB8+gJuny1Q/tVN+jmQsSp/dTdPWy0ktq+do5/C04wyPJkhnxw9cuXnZcjbi0LL7yWkfT0REZCFRy4mInJX91X2U+XxEXJdI5WJKYe1Fn+OwaWUN1dFOThzalzcxmYlEZJSBw3tYXhFh2eKqc+8wwWg0SSKVGdfy0rjjUgAaIlFcrW4pIiIXMCUnInJWA08+AcBQXV3JLL64qrmGxuwAvYf2kk2nZ/340fAgkWP7WVvvUlddPq19R6JJovE0Pt/py+/Wm55LKpul3u+nc++e2Q5XRESkZCg5EZGzqujtBSBktjIaLc4uXRMtC8UYPLqPZCw6Z88R7u4k23OEjc3llAX9594hJ5NxGRyJj1spvnbRIjpzbVKHf6lxJyIicuFSciIieXV3dbLC733wbnrG9YzGSqPlJNF5ZMrTBZ+PvtbDhCKdrF9WnXfhx8kMDMXJTBh3klq2HID4QTuLEYqIiJQWJSciktfjux7nbbt38Y1EjMSiFee1AOFcGzuGY7CjbV6eM5vJ0Hf0AIv9w9MafzISTRKfMO6k+ZpnALA4GiWbyeTZU0REZGFTciIiee3c+SiJbJZFl19BeLS41zdZsaSK1ZUxVvoHpzWofLnTz3Jn5q0sicgokeOW1fVQFQpOaZ/Jxp1c9OznEs9kqPH7aX1854zjERERKWWaSlhE8tq581EAdlx6FSNFPBi+ujLIhvoMn1nyY2IDvaTSmSm18pQ7aT5a/h/n/fzhrk6W1TWyful69rYOkz3Hk2cyLn1DMZrqKzjZSBKqrubHAT/3PbmLtx49zPqrrznvuEREREqNWk5EZFKdbcd4W1UNr1u1hnXrtxAt0sUXfY7D+qWVMNDGcE93weLoazlEfXaQFU1T6941OBwnlR6fxDRf8wz6U0kee+x3cxGiiIhI0VNyIiKT2nPvT9hUXc0NTUuJZcuLdn2TFU1V1GUG6Ws5VNA4Uok4w20HWVmTpXoK3buGR5PEkulxq8VffbU37uTRRx8hPQdTIIuIiBQ7JSciMqnhp54EYHTJEoYixTnepDoUZGVNluE2SySR4fb4a7kt8moS7tR6rCbcAB9IvI4PJF435X3OZrinGwaPs25p5bjB7pMZjSUZiabw+09fhi++eDvPX7mav1q6nKfv/el5xyMiIlJqlJyIyBlSqRSNwyMA1F1xNcOjxTfexHFgbXMlzuBxhntOANDpNtKRXTSt43S6jXS6jbMWV3/rIercMMvPMXuX60LPYHRcEuP3+7lu7TouravnxG8enLWYRERESoWSExE5w57f/pqVFRVkXZfaK68nkSq+qW2XNVbRwBB9rYcLHco4qXicyPFDrKyDUMXZW2PCI3HiE/62NZdcBkB1T8+cxSgiIlKslJyIyBla7r8PgL6yIIOpqa9+Pl8qygOsqneItB8iFY8VOpwzhE90ERjuYG3z2VtPhkaTROLpcV27tt/yYtJuliV+P+17ds91qCIiIkVFyYmInMHX0uL9sH4jQyPFN95kbXMVgZEOwt2dhQ5lcq5Lf8shGv2jNC2qzFssmcrQF47j853u29WwdBkduZ8P/rfGnYiIyIVFyYmIjNPR0c6xgT6GUymWXHcTo9HiGm+yuCHE4kCEgdbD01pscb4lohHinYdZvchPWTD/pbYvHCWVGV+P7Lr13veDB+c0RhERkWKj5ERExrnvvl/wb8eP8S/BAPEl64tqCuFgwMeaxiCJ7iPER0cKHc45DXS0UxE9werm6rxlhkYTROOpca0nm1/4hwCszGYZ7Gif8zhFRESKhZITERnnvvv+F4DrbryJ8Ei8wNGMt6q5mspYDwPtbZM+3ugMs9gZntYxGxmmkentM1VuNsPgsUM0lydoqCmftEwklmJwJDFu3Mm6y6+kLZ1m9/AQD9//izmJTUREpBgpORGRU3pPdDN60OIAV1zz+wwV0RTCddXlLA0lGTx2iGzmzNnDyp00n6r4Nz5b/U3KnaktYFjupLmj4uvcUfH1Ke8zXdHwIJneFtY0VeD3Tb74SfdAhEx2fBtVyzOfyd8fOsBPH35oTuISEREpRkpOROSUx3/4Az6+dRufu/xqsr5qskUypsPnc1jbVEG2r5XIYH+hw5m2vrZWqlP9rGiavHtXeDhBJJ4e17Xruc97PgCPPPIwQ0Ph+QhTRESk4JSciMgpozsf835oXkp/Ec3StWJJFbXpAfqPHS10KDOSSSUZaTvEiuoM1ZXBMx4fiSYZGImP69q1du16Nm3aTI3j8NAP75nPcEVERApGyYmIANDdfpwNKa9rU+ONNxfNFMJVoSArarIMHz9EOpm/m1nS9fOR+Cv5YOTlJN2prc2SdP18NPEqPpp41ZT3manh3hMweJy1zVXjVoU/qasvQnpC167XXXYV/3zJFZQ/+MCcxiYiIlIslJyICACPfuc/qAoEGMYls2FHUXTpchxY11yJL9zOcE/3Wcu6OLS6zbRkm3GZfGxHvn1a3anvcz76Ww/T4IZZtvjMxRkHh+OMxsbP2nXVy/+YrOuyynE49uSuOY9PRESk0JSciAiu65LJrUYeW7eB/qHiaDVZ1lhFA0P0tRwqdCizIhWPMdp+kFV1EKoIjHssEkvRG47hD5y+LC/fbDiWS1YOfP+78xqriIhIISg5ERH279qJCXhjIZqe92KGI4WfpStUEWBVvUOk/RCpeKzQ4cyacHcX/uEO1i2tOqOtprsvQiKVHbet8pprAWjo6CCdSs1TlCIiIoWh5EREeOL73yXg89Hn9zNUs6zQ4eAA65ZW4R9uZ7C7s9DhzC7Xpf/oQRY5wyyd0L2rfyjGUCRJYEzryVWvei2jmTT1gQCP3/29+Y5WRERkXik5EbnAjYyM8IUH7uNDB/bi3vg8+sKFb6VYtriKRc4w/UcPQhGMfZltyViU6PGDrK53qBzTvSuVztLRMwpj2lQqqqvpblwMwMD//s98hyoiIjKvlJyIXOB+8pMfEotFSTQ1Uf+M55JMnbnA4XyqCgVZXQ+R45ZkLFrQWObSYHcngaHjrF86fvaunoEII/HxA+Mv/tM3kHVdFidTHHzqqQJEKyIiMj+UnIhcwFzX5e7vfhuAl77iNfQMFjYZ8Pkc1i+txDfYRrhr+t25qolR40yv5aeaKNUUoN6uS+/RgzQQZuWYxRmHI0l6BqLjBsav2XEp94YqePvuXXz9rrvmP1YREZF5ouRE5AL2yL0/5X31i3jzuo1c8YxnMzRa2IHwq5prqM8M0NtycNr7ljtpPh/6Cl+s/hrlTnrK+9xZ8RXurPjKlPeZTal4jOHWA6ysyVBXXXZqe3vPKLFEZlyLyrNe/ybi2Szf+973GBwcmPdYRURE5oOSE5ELlOu6HL/7u9QEglyyeg39o4WNp6G2ghWVCcKt+0knimMq4/kw3HsCt7eF9c0VBHOtJf3hGH1DsXED46+88mq2br2IeDzO97/8xUKFKyIiMqeUnIhcoHb96j4uzg28bnjJq+kfKtxA+PIyPxuaykifOMJof1/B4iiU3tbDVMVOsH55DQ6QdV3aukdIpE9PBuA4Dn/xprfyia3buHLffvra2goXsIiIyBxRciJyAXJdlyPf+iYBn48TFRWMLNlYsEmxfI7DxuXVVIy003fs6IyPk3T9fDLxUj4e/SOSrn/K+9yReBl3JF425X3mQjadpu/IPpb4h1m+xBt/cmIgQl94fOvJ9Te/gIpQiAq/n8f+6c5ChSsiIjJnlJyIXIAe/umP2Z7LRmpueQV9g4VrNVmzrIZF2QF6Du/HzWbPvUMeLg42u5IDmRW4ZyxveJZ93JVYd+WU95kridERRlr3s6YuQ0NtBZmMS2vXMMmMe2rsic/no/FFfwjAyt5e2vc9XcCIRUREZp+SE5ELTDqdpuPb38bvOHRXVxNZcRHZAjWbLG2sYkVFlMEjexfUKvAzNdzTTbr7EBubglRWBDjRH+HEQJRA4HSrzg1vfhPHcSn3+djz/z5XuGBFRETmgJITkQvMXV/9Vzb4/WRdl0WvenPBWk0aaspZ1+ASbdtPJKzZp07qO3aUYPgYm5dX4fM5tHQMEU2kcXLNJz6fj7VvfitZ12VDKs3Oe+4ucMQiIiKzR8mJyAXkxIluPva5z/LXe5+ixWyhp2wJhWgzqQ4F2dhcRrb7IINdHQWIoHi52Sw9h/ZTHetk88oaBoZiHO+JjBt7Yq67ntb6egDiP/oho+HBAkUrIiIyu5SciFwgXNflYx/7O0ZGRlixZSvLX/oWhiPzv65JqCKAWREi0H+U3tYj8/78pSCTTtFz8GkWZXrZuLKW1s5BBkYS+P2nL9nX3vo+wpk04XiMf77z0wWMVkREZPYoORG5QPz3V77M4OOPEwgEeMe7bqe9NzLvMYTKA2xZUUl5uJUThw/gFmqKsBKQisfoPfAUS+hn6aJKDreHSaZPTxhQ19yM8+rX8cEDe/nmf97NAw/cV8BoRUREZoeSE5ELwMEnn6DhoV/zvs1b+OCr/oRUoJFUeuYzY81EqCLAlpVVVA63ceLgXtxsZtafo4wUZaTmfJ/5kohG6LNP0ewMUBH00dYzMu68XfW85/Pq174egPe//z20HDxQqFBFRERmRaDQAYjI3Orp7KDl03ewrrycAQc2vPj1HOmZ30Hw1ZVBzPIQ5eEWug/uJZuZ/cSk3Enz5dCXCAb8pNKZKa3bUu6k+VJFca+2Hh8dodc+yRJzCSOpJjp6R2isLiOdS1Le9a6/Yd/ePWzr6+P433+Uhk9+mvrmpQWOWkREZGbUciKygEVGR/jN+25lXXk50WyWijf+FV2js58YnM2i2gouWl5OWf9huu3cJCYLXWJ0hN79u6iNdhKLxBiKpk4NkA8Gy7jj7z7OdUuaWBoIsvO2dzPc31/giEVERGZGyYnIAjU0OMjP/+odbAsESbsumZe9li7/4nlbCd4BVjZVs6UJ6NxP96H9c9KV60KRjEY5sf8JfH2HiY+OkMy4pwbIL1mzjoY3/xmRTIbVfj+/e/dfE+45UeCIRUREpk/JicgC1N3dzf1//Zds8/tJuy5DN72AnsVb5m2cSXnQj1ldx9qqCJEjT9B77AhznRWlXD+fS9zCP0b/gJTrP/cOJ/dJvojPJV805X0KKZ1M0nNgD7GW3cTDfWThVIKy6VnXE/rTNxDLZFjr8/HUrX9D216tIC8iIqVFyYnIArNz56O85jUvY8+JblJulpHnv5ihDdeSSM5Pq0VTQyXb11SyONlB397HGJ6nO/hZHHZn1/FUZi1ZnCnvsye7jj3ZdVPep9DcbJaeo4c4sft3RLtacMhQXu4NH9xy402E3vBmhjJplgUC9HzqEzz4ja8XOGIREZGpU3IiskBEI6N8/uN/x1vf+noGBvrZU1PNyKvfQt/Ky4nPQ2JSU1nGRWvr2NyQgPY9dO7dRSIyOufPe6Ea7j1By86H6LdPkIkMEgoFcBzY/Ps3sOq22+nOZqn2+/nnr3yJ9773b+lRNy8RESkBJTFblzHGB3wIeAvQAPwGeIe19nBBAxMpAslkgvv/5UuUP/oo2zJp/MDNt7yEW179l5wYSODOcVeu6sogyxorWVKegMGj9LUdJRGd/zVULkSpeJzW3U8y0tPN8s1bqGpeSTZQybItW2j4wpf54Wc/xf4nHmPvvT/h/vt/yTtf8nKe+7o3sHjFikKHLiIiMqmSSE6ADwBvA94IdAB3APcaYy621s7/EtciRaDj8CF2/ce/U3v0KOvKyqCsjGg2wMf/9oOUXXQ93f2JOXtun8+hobaCproyGoIJnOE2wkdbiYYH5+w5Jb/+7m6G+npZtmYVi9dsINS4lPKGGl79gQ9z0Ytewqc+9fd0HdjPdmvpvP02fldXy/Ln3MyO57+QQKBU3gZERORCUPTvSsaYMuBvgFuttT/LbXsl0Am8FLirgOGJzJtIZJS9e5/m4AP3s3jvXtb4/RjHgbIy4tksJ1avJfTC15FIBomNzn5iEvD7qK0uo766jMaQS3kmQnqwhfCJLmLDQ7P+fDI96XSG40da6W3voGnFMhatWEVF41KuuWIb3/nO97jvG99g8H9/TrPfz+bRCPzwHh67+7sM1NVTtfUiNj3neSzfsBHHKY2xNyIisjAVfXICXArUAPed3GCtDRtjdgHXo+REFohELMZAZztDnZ2M9JxgpKuLWFcHDAyyKzzAPQf24boua0OV3HHxDgBO4BLbcgkV199CLBUgknCB858Vy3GgojxAZXmQqlCAmgofNcE0wUyczHAn0a5eBgf6yaTUcFls4okUbUfb6G7roH5RHY3NTVQuXsrNf3wL7mtfweM/+hnt//M/LB2N0BgI0hiJwM7H+Mh3v8X+TIaNGzdx+cpVbCorp2JJM7XLl9OwajU1Tc3UNDZSVl5e6CqKiMgCVgrJycrc9+MTtncCq2d60JMLmM2W3+49xgNf/BJLE6Oc/HDoMP5j4s+Ci0g63vNemh5lXSb/Kt3/Hagn6nhTm27PRNicPV127H1N14WfB+oYyZW9KBPl4mz+4/7SX8OA4512k4mxI89xAe7zV9Ob+xfZlE1whRvFcRzcSaaEfcCppNMJArDeTfIMNzbp1LEu8BsnRFuu7Bo3xbPcaN4YfksFRwniAitI82zGxDvh+I9QjsU77lIy3Ez+v8PObJCnc2UXk+EWX3xMBKeP67rwhBvgSdcrW0+Wl54qe2a8u7MBHnODuK5LDVleGUiOKevic7MEs1mCuDwWifHTwUHSyQSNbprPGIPPcfABdbmvk9qiUVzXpXLRclJrL+GnS1bRe9ELCS/aQCbjQnfeqp7mgM+BwIgfN+vV0edzcBy85/U5+H0OAcfF7wMnksU3miGbTpJNJciksqSTDm62EWicwhPOr4x7+mx8J3UdvikkaeP3uR6/M0+LwMyQ44CT9uG62XPPzJwCOsDpBL/PRzAYIViRJlh5E75X/gG+VIKynT+ioXUXK0Z7ORCJMJxMsGvXTtZ3dbFuxSpobQUgCfTnvmKZDJ/o6KLdKcMXKOOZVSGuqwySwUfWcUg7PrKODxcHHPg5lfT6gjg4bCbF5W7cOzO5FpqT5VwcHgrW0esvx+dzWJ2Kckk6/4QKjwRq6PJ5idKqTJwrMvnL7vTX0O73yi7LJrgmPZK37BP+ao75KwBoyiZ5Zno4b9nd/iqO+kMANGZTXJfO34K431/FwUAl4NDgpLk+Pki+GwkH/ZXsD1QBUO2muSmZv7vkEX+IpwPVAFS4GW5ODuQte8xfwZOBGgCCbpYXJvMv1tnuK+fxYC0APtfllmRfnpIOXb4yHg2evmJtqq/hc59+z6lprkVEpqMUkpPK3PeJ/VTiwKKZHNDnc2hoqDqvoCa682t3ccOxp7hm8ZK8Zf5l5/2MpNMA3LB6LVc3Lc1b9t+eeJC+pPfB9pkrV3PV0uV5y35712/piHsfxK9cvpIrl6/MW/YHTz9CS26w8valy7hy5Zq8ZX/09E5aR703cbOkmcvXrMt7U/7nB5/k2FAYgHWNS7hs3Ya8x/3V4T20DXpvoCsaFnHZhs15yz7Uso+2fu9NcXFdPZdu2nL6wQmZwWPHDnK815uRqLamlh3morzHfarzMO0nugAor6pi+9btkxd04EBHCx1dHd6vFSG2b7sk73GP9Byno70NgCVl5WzbcdmZhXJv2DYZIdLvHXfQ78fnOGRdl9FMlmEXhghwwl9Ld6iZQ9tejP8Pnk+yuokTwLdOHku9qSb1YCbP+TyLX2env09JSQIT5ylY/jbIXVrcZ8fxDxzB7bWc6H2Yh5JdLMrGWOSkafD7KPN5/7chv5+R4X5GctecymUr2Fi7KndAF8jkvjx3799FW27Wtm3NS7li1drTRSf4+b5HOTziJQOrFjdxzdr1eavzwIGdHMmNcVq2qJFr1m/KW/Z3B3dxZMD7IL6ovoFrNpq8ZZ88/BRH+noAqKqt45rNW/OW3Xd0D0d6vDsDgepqrtmyLW/Zo617OdzdCcDaUCXX5Fo/J9Nx/ACHO7z7ccvKK7hm+6V5y/Z1HOTw8WMANASDXHPJFXnLjnQd5vCxFgCq/H6uueyqvGWT/S0cbvHmnPE7DtdccU3eso8ODnD4yMFTv1fU1PKjX7+Q1zwvfywiIvk4k90FLybGmJcBdwOV1trYmO3fA8qttS+e5iGPZjLZdcPD+e+qz8T+th7u/cq/Uzc6NP49d8wH6CfqV5D2eS0cayKDNCXG3Omb0M97d91ykgHvbv3K6CDN8fx3+vbVLSceKANgWTTMstjQGcc7GYytW0o04N1BbIoNsSIWHlfChVN9zg/XNjMarAAcFsdHWBkZGNew4I6pXEvtEkbKvYSvIT7KqtH8d+TaapsYypWtS0RYNdI7abwO0F69mHCFd6evJhVl9XDPhEKn9+uuWsRAqBZwqEzGWDt8Im/ZnsoG+qvqAahIJVg71OXVxnHO+NDUV1lPX1UDAGXpJOvCnZPE6h17IFRHb7WXMwezKdYNdIwvGCzDLQtBWYh47WJijSsIlFUQLKugxu/H17gM/HN7zyDg95POZHJ33t3Z6AVWNBzHIRDwk05nJm3hK3VzXj/HOf2qHvOSdAA3GScT7iU71MeQ4yeRjJFJp6gc6qFmqAcnncRJp3DTSXzpFLjeLHFHapuJBMrAdVkcDbMikmsxcN1c66f3M66LrVnCcLACx3FYHBthXTR/K8DB6sWEy7x7V42JCBsi+a85R6oa6T95fUpG2TSarxUAWioX0VvhtUTUpWKYkd68ZY9VNnAid32qTiW4aGTy6ZpdF9pDdXSGanGAqkyKi4e68770OkM1tIfqAajIpNgxlL9ptLuimrbK3PUpm+aySa5PJ/WUV9NS5V2f/NkMV4Y78pbtK6viSLXXQuq4LlcPTuy8cNpgMMTB6tM35jYtquHDt72JeCxJJjN7swXW1obw+30tQP6sVURKXim0nJy8Ii4HjozZvhx4aqYHTc/y9KpbVzfxzC98mMHBSN5jv2FWn3H+BQI+GhqqzlrHUlYc9UvmvubG6TrGF/g5VP3mxtx36SuO1+HcWej1A6+OZUE/kdHsgq2jiMydUugQ+hQwDNxwcoMxph64HPh1YUISEREREZHZVvQtJ9bahDHmC8AnjTG9QCvwKbwWlXsKGZuIiIiIiMyeok9Ocj6IF+tXgRDwIHCzFmAUEREREVk4SiI5sdZmgPfkvkREREREZAEqhTEnIiIiIiJyAVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRcFzXLXQM8y3mum5FNjv79fb7fWQy2Vk/bjFZ6HVc6PWDhV9H1a/0LfQ6LvT6wdzU0edzcBwnDoRm9cAiUlQuxOQkDJQDXQWOQ0RERKZuGZAA6gsch4jMoQsxORERERERkSKkMSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBSFQKEDKBXGGB/wIeAtQAPwG+Ad1trDeco3Ap8HXpjb9H3gr621kXkId0aMMYuAvwf+EKgFdgO3WWt/k6f864F/m+ShTfn+LoVkjFkDtE7y0FuttV+dpHxJnUNjzA3A/XkebrHWrp9kn5I5h8aY24HnWGtvGLPtUuBO4EqgH/i8tfYfz3GcVwB/B6wHDgK3Wmv/e47CnrI89bsF+CCwFejD+x/8oLU2dpbjtABrJ2z+lrX2dbMd83TlqePXgTdMKNphrV15luOUxDk0xvwK+P08xV9vrf1GnuMUzTk81/vCQnoNikhxUMvJ1H0AeBvwVuBawAXuNcaU5Sl/N7ABuAl4GfA84IvzEOf5uAt4BvAq4CpgF/A/xpgtecrvAH4FLJvw1TLnkc7MDiAOLGd8vN/KU77UzuFvOfNcPA9I4324mExJnENjzLuAj0zY1gj8L96Hmyvxbh581BjzxrMc50a88/1F4FLg58APjTFb5yTwKcpTv+uA/wR+gBfr24BXcpb/QWNMDbAG74Pk2PP5F3MQ9rRMVsecHXj/n2PjvewsxymZcwi8lDNfWz8FDuCd28mOU2znMO/7wkJ6DYpI8VDLyRTkEpC/wbu787PctlcCnXhvPndNKH8tcAOw1Vp7ILftz4D/Nsa811rbOY/hT4kxZiPwXOD3rLW/zW17J/AC4DV4d28n2g48Za3tnrdAz892wFpru85VsBTPobU2CZw6F8aYIPBZ4AeTtQzlFPU5NMasAL4KXAfYCQ//GZAA3m6tTQP7jTGbgPcAX89zyNuAe6y1X8j9/m5jzO8B78T78D+vzlG/Pwfus9Z+Ivf7YWPM+4CvG2PeZq1NTHLI7YADPGStDc9R2NNytjoaY/zARcBHp/E/WDLn0Fo7MKHsq4GbgcuttSN5Dlk053AK7wsxSvw1KCLFRy0nU3MpUAPcd3JD7k1jF3D9JOWvA7pOfqjN+RVea8uz5irI89QH/AHw+MkN1loX701yUZ59dgD75j60WTOdeEvxHE70F8Aq4K/PUqbYz+HlwCBenI9MeOw64MHch6KT7gOMMaZp4oFyXTN/jzGv4zH7TPY6ng9nq9+ngXdPsk8A73o0mR14/7fh2QpwFpytjpuACqb4P1iC5/AUY0wV8Cngs9baPWc5XjGdw3O9LyyE16CIFBm1nEzNyb7Pxyds7wRW5yk/rqy1NmmM6c9TvuByb4Q/G7st1y94A16zOxMeWwI0A9cbY/4P3hvVI8B7rLUH5zzgmdkOdBljfg1sBg7h3bE9o36U4DkcyxhTAbwf+Fy+lqJSOIfW2h8DPwYwxkx8eCUw8UPeyRat1UDPhMfqgSqm/jqec2ern7X2ibG/j2nB3WWt7ctzyO1AxBjzA+CZeH+Dr+ONA8jObvRTc45zuB0v4X+XMeYFQBbvOnS7tXZoksPVU0LncIK34SWVHz/HIYvmHE7hfeHjlPhrUESKj1pOpqYy931iN4o43l2/ycpP1uUiX/mik2tm/xrwX7k334m25b5ngD/F649cDfzGGNM8P1FOXe6D3Wa8AZ234w1yfwxv3NBNk+xS6ufwT4AQ3oD+fErqHE5isnMUz33P97okzz5FfU6NMQHgm3hdoN5xlqLbgDq8rqbPA/4F+Bjw4TkOcaa24SUkrcAtwN/ivTb/K3eXfaKSPIe57mv/B/hinqRrrKI9h5O8L1wwr0ERmT9qOZmakzPjlI/5GbyL6WQzN8VyZSfKV76oGGNeDHwb+B3w6snKWGvvN8YsstYOjtnvj4A2vJl3Pjn3kU5drtWjHkiP6av/eG4Q5t8Cv5ywS0mfQ7xk4wfW2v58BUrtHE5isnN08gNOvtclefYp2nOaGyD9PeBG4OXW2rxdh4DnABVjxjPsye1/uzHmw4VqPTmLD+N1cwrnfn/aGNMFPIw3+HpiXUvyHOKNX1sNfGUKZYvyHOZ5X7ggXoMiMr/UcjI1J5ugl0/Yvhxoz1N+XNncnfvGPOWLhjHmL4F78JryX3i2KUvHfqjN/R4BjnK6G1xRsdZGJhlEvIfJ4y3lc7gErzvIXecqW2rncIIzztGY3zsmKT+A9wFoqq/jgjPGLAN+jXc+X5CnFfMUa21qkoHWe/C60jTMTZQzZ611JxlbcbKb0GT/gyV3DnP+CHjUWnv0XAWL8Rye5X1hwb8GRWT+KTmZmqeAYby7XwDk7sJfjvfBYaIHgZW5mU5OujH3/bdzE+L5M8a8Hfh/wBeAV+aZDehUWWNMnzEmNGZbLV7Xqb1zHuw0GWN2GGNGjTETB7NfyeTxluQ5zHkmXj/+B85WqNTO4SQeBK7LdZk56Sa8Gdkm9nU/OZD3N4x5Hec8m8lfxwVljGnAGyi8BHiWtTbfGjYny/uMMa3GmPdPeOgq4MTZWtEKxRjzbWPMxDFfV+W+nzFIvtTO4RjP4sxB4GcoxnN4jveFBf0aFJHCULeuKbDWJowxXwA+aYzpxesf/Sm8u0b35C7MS4Ch3B2lR4CHgLtyF/Zq4MvAN6y1k91NKjhjzGa8hbT+E/gHoGnM4M4YMMr4Ov4EbzDkN4wxH8Yb3/APQC/w7/Ma/NQ8nfv6Uu6c9OFNRXstcNVCOIdjXAIctdZGx26cpI6ldg4n+hpwK/Cvxpg7gKuBdzFmOlJjTB1QZq3tzW36DPAzY8wTeHeB34Q3G9+b5i/sKfss3iJ1zwd6jTFLxzzWa63NjK2ftTZrjPk+cKsx5iDebII34f2N3jnfwU/Rt4Ef5T6M34WXGP8T8G1r7X4o+XN48nV3Md57xmSPF+05nML7wkJ/DYpIAajlZOo+CPwr3nz2D+EtbHdzbm2JVUAX3gJpJ+8OvRRvIbv78fqL3wu8ff7DnrKXA0HgJXh1Gft1J2fW8Tje3a5avL/HL4EwcOPZuoIVSq6f9i3Ao3irbD8BXAM8Nzet50I4hyctxVupeaKSPocT5e7M3gwYvA9xHwLeba0dm1jdiTfxwcl9/gd4I955fALvg98fTpgyuuByg8FfCZTh3XGf+JpclSs6rn7Ae4E7gE/gtTz8X+Cd1tqpjHWYd9banwCvwFvkdA/eNfYe4M1jipXkORyjEe/amq/Vo5jP4VnfFxbya1BECsdxXbfQMYiIiIiIiKjlREREREREioOSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5EpCgZY5xCxyAiIiLzS8mJiBQdY8yLyK1Sb4y5wRjjGmNuKGxUIiIiMtcChQ5ARGQS/3fMz7uAa/FWyxYREZEFTMmJiBQ1a+0w8LtCxyEiIiJzz3Fdt9AxiIicYoz5FfD7YzbdCNwP3Git/ZUx5sPAq4DbgI8BG4EDwNsBF7gT2AEcAd5prf3lmGNvAz4BXJ/b9Evgb6y1R+ewSiIiIjJFGnMiIsXmHcATua9rgdpJyqwCPgN8HPhjYBFwN/Ad4Ct4yYsPuMsYEwIwxmwGfgs0AW8A3gysBx4yxjTNXXVERERkqpSciEhRsdbuA4aBYWvt73I/T1QJvMNa+x1r7Y+ALwLLgY9aa79qrf0v4APAYsDk9vkQEAOeY629x1r7fbxWmRDw7jmtlIiIiEyJxpyISKn67Zifu3Pfx45N6c99r899vwmve1jUGHPy2jcM/Bp47hzFKCIiItOg5ERESlJuoPxE0bPs0gi8Mvc1Ue+sBCUiIiLnRcmJiFwowsAvgE9P8lh6fkMRERGRySg5EZFilAH8s3zMB4CLgCettWk4tQr9fwCHgSdn+flERERkmpSciEgxCgPXGmOeDdTN0jE/AjwM/MQY8yUgDvw58EfAy2fpOUREROQ8aLYuESlGXwBSwL14s2mdN2vtbuA6vLVQvok39fAy4I+stffMxnOIiIjI+dEijCIiIiIiUhTUciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFH4/7k05P7nzyfiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Define more stringent bounds as a dictionary with the retention time as the key\n", + "# and the parameter bounds as a value.\n", + "bounds = {10: {'amplitude':[99, 101]}, # Known parameters for peak 1\n", + " 10.6 : {} # Allow free inference for second peak\n", + " }\n", + "peaks = chrom.fit_peaks(known_peaks=bounds)\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "\n", + "# Print a summary statement demonstrating the improvement.\n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we've only bounded the `amplitude` parameter, but you can also provide \n", + "bounds for `location`, `scale`, and `skew`.\n", + "\n", + "---\n", + "\n", + " © Griffin Chure, 2023. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/.doctrees/nbsphinx/tutorials_calibration_curve_11_1.png b/.doctrees/nbsphinx/tutorials_calibration_curve_11_1.png new file mode 100644 index 0000000..246986b Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_calibration_curve_11_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_calibration_curve_13_1.png b/.doctrees/nbsphinx/tutorials_calibration_curve_13_1.png new file mode 100644 index 0000000..602cacb Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_calibration_curve_13_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_calibration_curve_17_1.png b/.doctrees/nbsphinx/tutorials_calibration_curve_17_1.png new file mode 100644 index 0000000..be9088f Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_calibration_curve_17_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_calibration_curve_5_1.png b/.doctrees/nbsphinx/tutorials_calibration_curve_5_1.png new file mode 100644 index 0000000..73a8ef5 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_calibration_curve_5_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_calibration_curve_7_1.png b/.doctrees/nbsphinx/tutorials_calibration_curve_7_1.png new file mode 100644 index 0000000..84ddcd3 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_calibration_curve_7_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_15_1.png b/.doctrees/nbsphinx/tutorials_quickstart_15_1.png new file mode 100644 index 0000000..0614ecc Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_15_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_22_1.png b/.doctrees/nbsphinx/tutorials_quickstart_22_1.png new file mode 100644 index 0000000..0674b6e Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_22_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_24_2.png b/.doctrees/nbsphinx/tutorials_quickstart_24_2.png new file mode 100644 index 0000000..82530cf Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_24_2.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_26_2.png b/.doctrees/nbsphinx/tutorials_quickstart_26_2.png new file mode 100644 index 0000000..1c86803 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_26_2.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_29_3.png b/.doctrees/nbsphinx/tutorials_quickstart_29_3.png new file mode 100644 index 0000000..cdad4eb Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_29_3.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_31_2.png b/.doctrees/nbsphinx/tutorials_quickstart_31_2.png new file mode 100644 index 0000000..dafa0a8 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_31_2.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_33_4.png b/.doctrees/nbsphinx/tutorials_quickstart_33_4.png new file mode 100644 index 0000000..6ba640f Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_33_4.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_35_5.png b/.doctrees/nbsphinx/tutorials_quickstart_35_5.png new file mode 100644 index 0000000..6d432df Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_35_5.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_7_1.png b/.doctrees/nbsphinx/tutorials_quickstart_7_1.png new file mode 100644 index 0000000..57113e1 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_7_1.png differ diff --git a/.doctrees/nbsphinx/tutorials_quickstart_9_1.png b/.doctrees/nbsphinx/tutorials_quickstart_9_1.png new file mode 100644 index 0000000..f794922 Binary files /dev/null and b/.doctrees/nbsphinx/tutorials_quickstart_9_1.png differ diff --git a/.doctrees/quant.doctree b/.doctrees/quant.doctree new file mode 100644 index 0000000..93b0000 Binary files /dev/null and b/.doctrees/quant.doctree differ diff --git a/.doctrees/quickstart.doctree b/.doctrees/quickstart.doctree new file mode 100644 index 0000000..6ac14c3 Binary files /dev/null and b/.doctrees/quickstart.doctree differ diff --git a/.doctrees/tutorials/calibration_curve.doctree b/.doctrees/tutorials/calibration_curve.doctree new file mode 100644 index 0000000..2f99bbe Binary files /dev/null and b/.doctrees/tutorials/calibration_curve.doctree differ diff --git a/.doctrees/tutorials/quickstart.doctree b/.doctrees/tutorials/quickstart.doctree new file mode 100644 index 0000000..4beab9a Binary files /dev/null and b/.doctrees/tutorials/quickstart.doctree differ diff --git a/.nojekyll b/.nojekyll new file mode 100644 index 0000000..e69de29 diff --git a/_images/getting_started_algorithm_1_1.png b/_images/getting_started_algorithm_1_1.png new file mode 100644 index 0000000..2ef6199 Binary files /dev/null and b/_images/getting_started_algorithm_1_1.png differ diff --git a/_images/getting_started_algorithm_3_2.png b/_images/getting_started_algorithm_3_2.png new file mode 100644 index 0000000..7335229 Binary files /dev/null and b/_images/getting_started_algorithm_3_2.png differ diff --git a/_images/methodology_baseline_11_2.png b/_images/methodology_baseline_11_2.png new file mode 100644 index 0000000..e1e8482 Binary files /dev/null and b/_images/methodology_baseline_11_2.png differ diff --git a/_images/methodology_baseline_2_1.png b/_images/methodology_baseline_2_1.png new file mode 100644 index 0000000..6c8d111 Binary files /dev/null and b/_images/methodology_baseline_2_1.png differ diff --git a/_images/methodology_baseline_5_1.png b/_images/methodology_baseline_5_1.png new file mode 100644 index 0000000..f7bfa17 Binary files /dev/null and b/_images/methodology_baseline_5_1.png differ diff --git a/_images/methodology_baseline_7_1.png b/_images/methodology_baseline_7_1.png new file mode 100644 index 0000000..e7383c1 Binary files /dev/null and b/_images/methodology_baseline_7_1.png differ diff --git a/_images/methodology_baseline_9_1.png b/_images/methodology_baseline_9_1.png new file mode 100644 index 0000000..9625c70 Binary files /dev/null and b/_images/methodology_baseline_9_1.png differ diff --git a/_images/methodology_fitting_14_1.png b/_images/methodology_fitting_14_1.png new file mode 100644 index 0000000..820e1a9 Binary files /dev/null and b/_images/methodology_fitting_14_1.png differ diff --git a/_images/methodology_fitting_3_1.png b/_images/methodology_fitting_3_1.png new file mode 100644 index 0000000..889447d Binary files /dev/null and b/_images/methodology_fitting_3_1.png differ diff --git a/_images/methodology_fitting_6_2.png b/_images/methodology_fitting_6_2.png new file mode 100644 index 0000000..c672263 Binary files /dev/null and b/_images/methodology_fitting_6_2.png differ diff --git a/_images/methodology_peak_detection_10_1.png b/_images/methodology_peak_detection_10_1.png new file mode 100644 index 0000000..80a4109 Binary files /dev/null and b/_images/methodology_peak_detection_10_1.png differ diff --git a/_images/methodology_peak_detection_12_1.png b/_images/methodology_peak_detection_12_1.png new file mode 100644 index 0000000..034edd9 Binary files /dev/null and b/_images/methodology_peak_detection_12_1.png differ diff --git a/_images/methodology_peak_detection_2_1.png b/_images/methodology_peak_detection_2_1.png new file mode 100644 index 0000000..b17d060 Binary files /dev/null and b/_images/methodology_peak_detection_2_1.png differ diff --git a/_images/methodology_peak_detection_4_1.png b/_images/methodology_peak_detection_4_1.png new file mode 100644 index 0000000..73dd00c Binary files /dev/null and b/_images/methodology_peak_detection_4_1.png differ diff --git a/_images/methodology_peak_detection_6_0.png b/_images/methodology_peak_detection_6_0.png new file mode 100644 index 0000000..b4a91ee Binary files /dev/null and b/_images/methodology_peak_detection_6_0.png differ diff --git a/_images/methodology_peak_detection_8_2.png b/_images/methodology_peak_detection_8_2.png new file mode 100644 index 0000000..0993914 Binary files /dev/null and b/_images/methodology_peak_detection_8_2.png differ diff --git a/_images/methodology_problem_1_1.png b/_images/methodology_problem_1_1.png new file mode 100644 index 0000000..2ef6199 Binary files /dev/null and b/_images/methodology_problem_1_1.png differ diff --git a/_images/methodology_problem_3_4.png b/_images/methodology_problem_3_4.png new file mode 100644 index 0000000..f1485f6 Binary files /dev/null and b/_images/methodology_problem_3_4.png differ diff --git a/_images/methodology_scoring_2_2.png b/_images/methodology_scoring_2_2.png new file mode 100644 index 0000000..d1ef618 Binary files /dev/null and b/_images/methodology_scoring_2_2.png differ diff --git a/_images/page_logo.svg b/_images/page_logo.svg new file mode 100644 index 0000000..8e9fd57 --- /dev/null +++ b/_images/page_logo.svg @@ -0,0 +1,5605 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_images/quickstart_15_1.png b/_images/quickstart_15_1.png new file mode 100644 index 0000000..d72b9e2 Binary files /dev/null and b/_images/quickstart_15_1.png differ diff --git a/_images/quickstart_22_1.png b/_images/quickstart_22_1.png new file mode 100644 index 0000000..48af20c Binary files /dev/null and b/_images/quickstart_22_1.png differ diff --git a/_images/quickstart_24_2.png b/_images/quickstart_24_2.png new file mode 100644 index 0000000..1dadcaa Binary files /dev/null and b/_images/quickstart_24_2.png differ diff --git a/_images/quickstart_26_2.png b/_images/quickstart_26_2.png new file mode 100644 index 0000000..26b2d7d Binary files /dev/null and b/_images/quickstart_26_2.png differ diff --git a/_images/quickstart_29_2.png b/_images/quickstart_29_2.png new file mode 100644 index 0000000..b533c93 Binary files /dev/null and b/_images/quickstart_29_2.png differ diff --git a/_images/quickstart_31_2.png b/_images/quickstart_31_2.png new file mode 100644 index 0000000..8207e1b Binary files /dev/null and b/_images/quickstart_31_2.png differ diff --git a/_images/quickstart_7_1.png b/_images/quickstart_7_1.png new file mode 100644 index 0000000..57113e1 Binary files /dev/null and b/_images/quickstart_7_1.png differ diff --git a/_images/quickstart_9_1.png b/_images/quickstart_9_1.png new file mode 100644 index 0000000..f794922 Binary files /dev/null and b/_images/quickstart_9_1.png differ diff --git a/_images/tutorials_calibration_curve_11_1.png b/_images/tutorials_calibration_curve_11_1.png new file mode 100644 index 0000000..246986b Binary files /dev/null and b/_images/tutorials_calibration_curve_11_1.png differ diff --git a/_images/tutorials_calibration_curve_13_1.png b/_images/tutorials_calibration_curve_13_1.png new file mode 100644 index 0000000..602cacb Binary files /dev/null and b/_images/tutorials_calibration_curve_13_1.png differ diff --git a/_images/tutorials_calibration_curve_17_1.png b/_images/tutorials_calibration_curve_17_1.png new file mode 100644 index 0000000..be9088f Binary files /dev/null and b/_images/tutorials_calibration_curve_17_1.png differ diff --git a/_images/tutorials_calibration_curve_5_1.png b/_images/tutorials_calibration_curve_5_1.png new file mode 100644 index 0000000..73a8ef5 Binary files /dev/null and b/_images/tutorials_calibration_curve_5_1.png differ diff --git a/_images/tutorials_calibration_curve_7_1.png b/_images/tutorials_calibration_curve_7_1.png new file mode 100644 index 0000000..84ddcd3 Binary files /dev/null and b/_images/tutorials_calibration_curve_7_1.png differ diff --git a/_images/tutorials_quickstart_15_1.png b/_images/tutorials_quickstart_15_1.png new file mode 100644 index 0000000..0614ecc Binary files /dev/null and b/_images/tutorials_quickstart_15_1.png differ diff --git a/_images/tutorials_quickstart_22_1.png b/_images/tutorials_quickstart_22_1.png new file mode 100644 index 0000000..0674b6e Binary files /dev/null and b/_images/tutorials_quickstart_22_1.png differ diff --git a/_images/tutorials_quickstart_24_2.png b/_images/tutorials_quickstart_24_2.png new file mode 100644 index 0000000..82530cf Binary files /dev/null and b/_images/tutorials_quickstart_24_2.png differ diff --git a/_images/tutorials_quickstart_26_2.png b/_images/tutorials_quickstart_26_2.png new file mode 100644 index 0000000..1c86803 Binary files /dev/null and b/_images/tutorials_quickstart_26_2.png differ diff --git a/_images/tutorials_quickstart_29_3.png b/_images/tutorials_quickstart_29_3.png new file mode 100644 index 0000000..cdad4eb Binary files /dev/null and b/_images/tutorials_quickstart_29_3.png differ diff --git a/_images/tutorials_quickstart_31_2.png b/_images/tutorials_quickstart_31_2.png new file mode 100644 index 0000000..dafa0a8 Binary files /dev/null and b/_images/tutorials_quickstart_31_2.png differ diff --git a/_images/tutorials_quickstart_33_4.png b/_images/tutorials_quickstart_33_4.png new file mode 100644 index 0000000..6ba640f Binary files /dev/null and b/_images/tutorials_quickstart_33_4.png differ diff --git a/_images/tutorials_quickstart_35_5.png b/_images/tutorials_quickstart_35_5.png new file mode 100644 index 0000000..6d432df Binary files /dev/null and b/_images/tutorials_quickstart_35_5.png differ diff --git a/_images/tutorials_quickstart_7_1.png b/_images/tutorials_quickstart_7_1.png new file mode 100644 index 0000000..57113e1 Binary files /dev/null and b/_images/tutorials_quickstart_7_1.png differ diff --git a/_images/tutorials_quickstart_9_1.png b/_images/tutorials_quickstart_9_1.png new file mode 100644 index 0000000..f794922 Binary files /dev/null and b/_images/tutorials_quickstart_9_1.png differ diff --git a/_sources/citation.rst.txt b/_sources/citation.rst.txt new file mode 100644 index 0000000..bb559cb --- /dev/null +++ b/_sources/citation.rst.txt @@ -0,0 +1,26 @@ + +Credit +------ + +This package is primarily written by `Griffin Chure `_ +with contributions from `Jonas Cremer `_ who +are both at Stanford University. Griffin Chure is supported by a National Science +Foundation Postdoctoral Research Fellowship under the award number 2010807. + +Citing `hplc-py` +================ +If you end up using `hplc-py` in your research, great! Please consider citing +the project. The package is being actively developed and improved, so please +ensure that you cite the version number you are using. + +.. code-block:: bibtex + + @misc{#10.5281/zenodo.8197910, + doi = {10.5281/zenodo.8197910} + url = {https://doi.org/10.5281/zenodo.8197910}, + author = {Chure, Griffin and Cremer, Jonas}, + keywords = {Github}, + title = {cremerlab/hplc-py: Version 0.2.00}, + publisher = {Zenodo}, + year = {2023} + } \ No newline at end of file diff --git a/_sources/getting_started/algorithm.ipynb.txt b/_sources/getting_started/algorithm.ipynb.txt new file mode 100644 index 0000000..88a1072 --- /dev/null +++ b/_sources/getting_started/algorithm.ipynb.txt @@ -0,0 +1,277 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methodology\n", + "**Note: This notebook is under active development and will change *a lot*.**\n", + "\n", + "## The Problem\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. The resulting data is a chromatogram, which may look something like \n", + "this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the \n", + "chromatogram that contain either singular or highly overlapping peaks, allowing \n", + "one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 663.24it/s]\n", + "Deconvolving mixture: 100%|██████████| 3/3 [00:08<00:00, 2.96s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1574500.67428623250.3493872.790042e+061
013.170.5828663.83986042250.7839745.070094e+062
014.450.353036-3.01915335229.5835554.227550e+063
015.530.3125631.63078714891.0414521.786925e+064
016.520.3442661.98416710770.6567321.292479e+065
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.157450 0.674286 23250.349387 2.790042e+06 1\n", + "0 13.17 0.582866 3.839860 42250.783974 5.070094e+06 2\n", + "0 14.45 0.353036 -3.019153 35229.583555 4.227550e+06 3\n", + "0 15.53 0.312563 1.630787 14891.041452 1.786925e+06 4\n", + "0 16.52 0.344266 1.984167 10770.656732 1.292479e+06 5" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgURfoH8G/33JP7Pgg5IcUNAiq6KCAKoojirj9RRFc88UARBBQUBVFURAyusnIriAq6qKwHi+CBIiKKcqVJQhLITUKuuaeP3x8zgyEkkEwmySS8n+fhYaa7uromPZPM21X1FqcoCgghhBBCCCHkQsC3dwMIIYQQQgghpK1QAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWCo27sBnVgVAB2A4nZuByGEEEKaLg6AHUBoO7eDENJKOFoItdVYFUXRyzL9fP0Bz3Oga+Ef6Fr4D7oW/oOuhf/geQ4cx9kAGNq7LYSQ1kE9QK2nmOO4lJoaC0RRbu+2XNDUah5hYQGga9H+6Fr4D7oW/oOuhX8JDw+ASsXR6A1COjGaA0QIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUBY4QgghhBA/t2/fviC41iiim9eEnE0GUDxo0KDaphRu9wCIMaYB8ByASQDCAOwHMEsQhJ/c+wcAeAPAYAAVADIEQVhc53gewDwA97qP3wXgIUEQsuuUaXEdhBBCCCFtbd++fTyApzmOv5PjOA0Arr3bRIgfUhRFce7bt+9dAC8OGjTonGsKtHsABGAugMkA7gJwDMAsAF8yxnrCtRLz/wBsAfAggCEA3mKMVQiCsMZ9/DPufXcDKATwivv43oIgOBhjES2tozVfPCGEEELIOTytUqmnBAeHObRavYXjOFoxl5B6FEXhHA6bsaamcookiQDwwrnK+0MAdCOA9wVB2AYAjLHpcPXEXAYgHa4gaIogCCKAI4yx7nAFSWsYY1oA0wHMFAThC/fxtwIoAnAzgA8A3O+DOgghhBBC2tS+ffuCOY6/Mzg4zBEUFFbR3u0hxJ/pdAYrgIiqqoo79+3b98a5hsP5wzjSCgBjGWPJjDEV/gpY9gO4AsD37sDFYwcAxhiLBjAAQJB7GwBAEIQqAL8BuNK9yRd1EEIIIYS0tViO4zRard7S3g0hpCNw95Jq4Jov1yh/6AF6DMCHAHIBSHBNYvqHIAg5jLEEAAfqlS9y/58IIMH9+EQDZRLdj31Rh9dUKn+IMS9snmtA16L90bXwH3Qt/AddC//C+dcMGx4AR8PeCGka92eFw3k6efwhAOoJoBLATXDNv7kPwLuMsSsBGOHqDarL5v5f796PRsqEux/7og6vBQcbWloF8RG6Fv6DroX/oGvhP+haEEJI22jXAIgxlgRgA4CRgiD84N78K2OsF4DnAVgB6Oodpnf/b3bvh7uMtV4Zs/uxL+rwWk2NFZJ0zkQUpJWpVDyCgw10LfwAXQv/QdfCf9C18C8hIQbwPPXGEdKZtXcP0CUANAD21tv+M4DrAOQDiK+3z/O80H2sZ1tOvTJ/uB+f8EEdXpMkGaJIf9D8AV0L/0HXwn/QtfAfdC38g0KDzTq9jIwl8Tt2bIvYsuWr+lMk/FJm5mF9QUGB7uqrR1W3d1s6i/a+xeGZd9Ov3va+ALIAfA/gCndyBI+RAARBEMrgClBqAAz37GSMhQIYCMDTo+SLOgghhBBCCGlzs2dP73748MGA9m5HZ9LePUC/wBVkrGOMPQSgAMCdAK4GMBSudYFmAljFGHsFrh6jx+FasweCINgZY28CeJkxdhJAHoBX4QqsPnGfY7UP6iCEEEIIIaQdULekr7VrACQIgswYuxGuxYrWAgiDK2PbSEEQfgYAxthoABlwpaUuBvCkIAjr6lTzLFyvYyUAA1w9PqM9C5gKglDW0joIIYQQQvyFLMuwWCztMorHaDTKzZ0jNXTo4EF///utxd9++02E0+nk33jj7Uyj0SgvW/Z6wp9//h5sNptVISEh4ogRV1c89tiMwiNHDhseeOCfvd56a+WRfv0GWADg8ccfSjt48M/gr7769ne1Wg1FUXD99Vf3v+uuyYW33jqxvP45y8tPqpcseSXht9/2hkiSxKWn9zA98cSsE2lp3U4nvXrnnbditm7dElNbW6vu1q27efbsZ/M8+xtqc0JCV8e///2vuO++2xFRWVmp6dKli23SpLuLrr32+ioA2LTpg4iNG9+Lu/vuewtXrXonobq6StOzZ+/auXOfz1u7dlXst99uj1Cr1cq4cTeXPvjgIyUAYLfbuTfffD1+167vw06dqtDq9Qa5f/8B1bNnP3M8PDxCuumma/uWl5drP/ro/bgDB/YHrVjxrlBZeUr15ptLu+zd+3NobW2tOiUlzXz//Q8VDhlyucnz2rZs+Th8w4Z1cSdPntQlJiZaR4y4pmLVquVdd+36dZ8314Tnea9en79q7x4gCIJQCeBh97+G9u+Fa1HUxo6X4FrUdNY5yrS4DkIIIYSQ9ibLMm6//e89MjOPtMuQqB49epnef3+z0NwgaNu2L6Jeeum1LEkSue7d0+233/73XiEhoc6XX156NCgoSPruux2hK1a83bVXrz7m0aOvq4qMjHTs3v1jcL9+AyySJOHw4YNBdrud//33fQEXX3ypef/+34y1tTXqq666pqr+uURRxGOPTUkHOOW5517MiYiIEJctez1h+vRH0zdv/vwAAJSXl2sPHvwz6KWXlmQ5HHbuxRefT3nxxeeTV616T2iszY8//lDasWM5xkcfnXY8JSXN9tVX/w1fuPC5NJ7ns0eNGlMNABUV5drPPvtP9AsvvJJtsZj5Z56Z1f3uuyf2HjnymvK33lp15IsvPotYv35tl2HDRlT17Nnb9tprixL27NkdOmvWnLyuXRPtgiAYFi9+Mfnf//5X/FNPPXti5cr3jkyePLHX3/427NT9908pliQJU6c+mO50OrlZs+bmRkVFOz/88P3o2bOfSF+69K3MAQMGWrZv/zpkyZKXU+68c3LB8OEjq/bs+Sl45crlXVt6Tbx5fc16k7Shdg+ACCGEEEJIc3S8dYGGDbuqYsCAgRYAsFqt3FVXXVMxevSYyq5dkxwAkJx8T9mmTR/EZmcfNYwefV3V4MGXVv32295gACX79/8WoFKplfT0Hqa9e/cEXXzxpeYffvgutHt3ZoqKihbrn+vHH78Pzs/PM6xZ8/7B7t3T7QAwZ85zeWvXrow9dapCDQAqlUpZsODl3JCQEAkAxowZe3L9+rVdGmvz0aOZ+l9//SX0uecWZl999ehqAHjkkceLjx3LNm7YsC7OEwBJksQ98cSsfM+X/759+9ccPZoZ+OSTTxdwHIf773+4+KOPNsZlZR019OzZ29azZy/ziBEjKy+7bKgJALp2TXL8739f1eTlHTMAQGRklMjzvGIwGOSwsHBpx47/BefmHjOuWLHukOccc+c+f/zo0cyADRvWxQ4YMPDYBx9siB0y5PJT9977YCkAdOvW/WRBwQnd559viWnJNfHm9bXkPdOaKAAihBBCCOkgeJ7H++9vFjrSEDgASEjoenromcFgUCZNurvsiy8+D1u/fl1AUVGhLj8/11hVVamRJJkDgCuuGF49b97TUVarlduzZ3dQ7959art06Wr744/fggGU7N27J+TKK4efauhcWVlHDUajUfIEPwAQExMrzpo1t8DzPCQkRPQEPwAQFBQsORyOM15Y3TYLQqYBAAYPvtRUt0zfvgNq3313VULdbd26/XVenU4nR0XF2Dn3Crt6vV4BALvdzgPA+PG3nPrhh++Clix5uUthYYGuoOCEoaioUN+jR88zzuORnZ1lMBiMUt3gguM49OrVx/Tbb78GA0Be3jHj0KFXVtY9rn//i0z1A6DmXhNvXp+/ogCIEEIIIaQD4XkegYGBHSpnuk6nP91ei8XCP/DAP5nNZuOvuGJY5ahRYyr69x9w/JFH7u/hKXPZZX+r1WjU8s8//xj0++/7gkeMGHkqKSnZ/tlnn8SeOJGvzcs7ZnzuuYXHGjqXSqVWPF/IG8Pz/Hl70eq2ubFEBLIscSqV6oydGo3mjOc833hb5s9/JvHHH78PHz58ZMWQIX+r7tGjV/GGDetiKypOahsqrygNvzRZlqFWqxXX+XhFaUI+9+ZeE29en7+iAIgQQgghhLSZ777bEZybe8z4ySf//SM6OkYEgMrKU6rq6mq1J9DQarVK//4X1Xz//behWVlHA2fPfiY/IaGrg+M45a23lsXHxcXb6iY0qCs1Nc1mNptVx47l6FJT0+wAUFFRrr7ttpv7vPDCK1netDk9vYcVAH79dU+gZwgcABw48Edgly5drd7UeepUhWrbti+jZs2ac+yGG8af7rEpKDiu1+sNdYKvvwKMbt3SrRaLRXXkyCF93V6gw4cPBSYkJNoAICkp2Xr48KFAAGWe/YcOHTjnnLGmXJPOxK+7pwghhBBCSOcSExPrAIDPPvtPxIkT+do9e3YHzpgxtZskSZzD4Tz9bf/yy4dW7dz5TWRwcJCYltbNrtPpFMZ6mnbt+i5iyJDLqxqr/4orhtWkpKRZ5s+fm7Jv396AzMzD+ueem5McEhLq7N//Ios3bWasp23AgIHVGRlLErdv/zokOztL9+abS+P27dsb+n//d1upN3UGB4dIBoNR2rXr+9Bjx3J0hw8fNMyb93RSXl6u0en86+eg1+ulwsICXVlZqXrYsBHVXbsmWefPfyb1p59+CDp6NFO/YMGziQUFxw0TJtxeCgC3335n8Z49P4WtWvXvmGPHcnSbN38Y8d//fh59rrY09Zp0FtQDRAghhBBC2szAgYMtkyfff2LLlo9jNmxY1yUsLNxxxRXDT0VGRjkE4a/sdiNGXF29dOlirk+f/jWebRddNKjmwIE/gocNu6qqsfp5nscrr7yevWTJK11nz57eHQB69+5Tu2TJsiydTud1d8aiRUuOLV36apclS15Jtlgsqq5du1qffvq5nDFjrm+0LeeiVqsxd+7zx5YvX5Zwzz139A4ICBT79OlXe8cd/yzcvPmDOLPZzAcEBMg33vj3stWr/53w2GMPGTZu/PhwRsbbR5cseSXh+efnpjmdIpeSkmpZtGjJ0UGDLjEDwIgRV9eUlZXmf/DBhtj33lvTJSUl1TJ69JiTX365tdEgqKnXpLPgmjJGkHjlGICUykozRLFDDdPtdNRqHmFhAaBr0f7oWvgPuhb+g66FfwkPD4BKxecCSG3vtuzbt68Hz6u+io7uYtJq9X6bUYv4l927dwVGRkY76yaBePvtZbHbtn0Z+Z//fHGwPdvW2hwOm76srDBQlqVrBw0alNlYOeoBIoQQQgghpJP4+eefQr79dkf4zJlP5yUlJdsPHz5k+Oyz/8SMGTP2ZHu3zV9QAEQIIYQQQkgn8dBDjxVZrVZ+0aIXUmpra9Th4RGOG2+8ufS++6aUtHfb/AUFQIQQQgghhHQSOp1OefrpeScAnGjvtvgrygJHCCGEEEIIuWBQAEQI8Vs7dvwPs6ZPxU8/fNveTSGEEEJIJ0EBECHEL2VnH8W655/BbadOQb9qJU7s/rG9m0QIIYSQToACIEKIX/rww40QZRlWSUKgWo2yDe+B0vYTQgghpKUoACKE+B1FUfDDD9/iUG0Nvo6LgyjLCLLZ4CgoaO+mEUIIIaSDowCIEOJ3srOPoqSkGDqdDg88PgP7a6oAABW/7mnfhhFCCCGkw6MAiBDid37duwd/C4/AsEEXIy4uHgUcBwCoPNipF7AmhJBOaejQwYM2bfogoqnlv/32m+Dx46/rM3z4kIEvv7wwoTXb1hQZGUvib7rp2r6+rLM5P5OCguPazz77T5gvz3+ho3WACCF+p+DPP/FYandITgmy0wE5Lh6wWKEUF7V30wghhDTTxx9v/SM4OERqavkVK95OiImJtb/xxltHAwODmnxcR9Kcn8nzzz+THB0d7Rg3bnxla7frQkE9QIQQv6MczwMAiNEx4DVaRKYzyIoCmyRBdjrbt3GEEEKaJSYmVjQYDE3OYmM2m1W9evU2JyYmO8LDIzplANS8n4nCtW5rLjzUA0QI8StWqxUBZgtgDEQw6wEA6NanH+5Y9W+kdk/HRxpNO7eQEELan2S1NnoTm+N5hdfplNYu21RDhw4e9NhjM/JuuWVCxZw5TybLssyFhYU7d+78JsJut/H9+g2oeeqpZ/NjYmLFoUMHDwKAjz7aGPfRRxvj3n9/84GuXZMcK1a8HfPll1ujq6ur1LGxcfZbbrmtZPz4f5wCgJ9++iFo5sxp6XfeObng448/iouMjLK/8MLLxyZN+r8+t902qei///0sWqvVyGvXfnCY4zgsWfJywi+/7A4VRZFLSUmzPPTQ1IIBAwZaPO3duPG9yE2bPoitrDyl7d//ouro6BjHuV7ffffdyXr37ldbWXlK8+OP34drNBp57NibykaNGnNq0aIFyceOZQfExsbbZs58Ou+iiwZZ6v5Mrrnm2qo77/y/3snJqZaMjOXZAPD9998GzZnzZPpTTz2b85//bIo5cuRw4JEjhwNvuunaoC1bvjpw003X9r3qqlEVU6c+UVS3DdHRMfaFC1/Na+jn8e67HxwpLS3RvP76q1337/8tWKXilfT0HubHHptxIi2tm72517SjowCIEOJXjh3LRorRCAAI6+EKgFJSUiAqCk6cOAFFUcBxdDOMEHJhy3l0ykWN7TOks+quM5/K9jw/9sTU/orT2WBgo0tOMSXNnSd4nufOmt5Xtlga/H6oje9iSZ6/8EhL2g0Au3f/GDZ06LBTb7zxllBUVKh96aUFqW++ubTLggWL8j/+eOsf9913Z6+//W3YqX/+856SyMgo8fXXX+ny3Xc7wx99dNrxtLTutl9/3RP4r38tTTKZTKpJk/550lPvnj27Q996a+URi8XCq1S8AgDffvtN+OuvvylYrVY+JCREmjz5jh5qtVp+4YVXsoODg6XPP98S8fjjD/VYtuzfR/r27W/97LP/hC1f/mbivfc+eOKyy4bWfPPNtrD169d2iYiIOGcQtGXL5thbbrmteOXK9w7997+fRmzc+F78N99si3jwwUdOJCR0dbz88gtJS5a8nPTeex+d8fMLDQ2VnnxyTu7TT89I//TTT8KvuGJY9SuvLEwZOXJU+XXX3VB12WV/q33iiUe6R0ZGOWbNmnu8OT/nuj8Pm83GP/roAyw5OcXy+uv/ElQqXtmw4d3Yhx66p+eaNe8fio/vckENr6AAiBDiV07k5yHR4AqA9InJAIC4uC7gOA5WqwWVlacQHt7kubSEEEL8jMFgkObNeyFfo9Eo6ek9bLt3/1ixb9/eEMA1NIznecVgMMgxMbGi2WzmP/98S8yMGU/lXn316GoASElJtRcXF+k+/viD2LoB0K233l7i6c04fjxPCwDXXz/uJGM9bQDwww/fBWVlCQFbtnz5R2RklAgATzwxq/Dw4UOBH3ywPqZv3/55n3zyUczllw+tnDTp7pMA0K1b95IjRw4F5OUdM57rNXXtmmh9+OHHigHg7rvvL924cX38FVcMPzVq1JhqABg1akzFihXLuzZ07BVXDKsdM+aGsuXL3+z6zTfbwgMCAiRPsBMWFi6p1WpFq9XKnjY3Vd2fx4cfboisra1RL1q0JFej0SgAMH/+S3k333x9382bP4yq25t0IaAAiBDiVyqyjiKV5+HkOGiiowEAWq0WwxKTMdJgRMm6NQifNqOdW0kIIe0rbdnbvze2j+P5M4appS7J+KOpZVNefu1AU8t6KyYm1u75Eg4AAQGBkiiKDXbtHz2aqXc6ndxrry1KXrLk5WTPdkmSOVF0clar9fRxyckpZw3lSkxMsnkeZ2YeNgLArbfedEZGN1EUOafTwQHAiRPHDcOHjzxVd3+vXn1M5wuA4uMTTp/HaDTKANClS5fT7dFqdbIoOhsdvvDEEzMLfvttb8hvv/0a8vbbqw83Z85UY+r+PI4eFYxWq1V17bXDB9Qt43Q6+RMn8vUtPVdHQwEQIcSvOE64evgtgYHg+L9GbMRGRoJxKtiKLqibVIQQ0iCVwSC3d1lv1Q1+/tLw931ZljkAePrpecdSU7vZ6u/X1ZmTpNfrz2q7Xq8/vV+WZc5gMEj//vfas4bxabVaGQA4joNSrylqtfq8wYharTqrDMc1PddYaWmJpqqqUqNSqZTdu3cF9+3bz3ruI848nShKZwVXdX8esiwjLi7etmjRkuz65QICAjploolzoSxwhBC/su9UBV7LOQpLnzOXXDBExwAAOFNtezSLEEJIO+jWLd2mUqmU4uIibWpqmt3z7/vvd4a8997qGJ5v+lfZtLTuVqvVqnI47FzdutauXRm7Y8f/QgEgKSnZcvDgH4F1jxOEIwG+fVVnkmUZ8+fPTUlKSrE89NDU4++//26XgwcPGP4qwZ0R7ahUasVkMqvqHl9WVqo91zlSU9Os5eXl2uDgYMnzuhMTk+xvvrm0yy+/7A7y9WvydxQAEUL8inDiOPZUnkL4JUPO2B6a4Bo6rXE6oUgX3M0qQgi5IIWEhEjXXHPtyffeW9Plk08+Cs/Ly9Vu3vxhxNq1qxLCwsKbNSdmxIiR1UlJydZ5855O27Xr+6Bjx3J0r7yyMGHnzu2RKSlpNgC47bY7S3755eewFSvejsnJydatW7cqes+e3a26COk777wVm5uba5wz57m8W2+dWN6zZ+/aF154NsVut3MAYDAY5LKyUl1hYYEGAHr27GXateu78N27fwzMzs7SzZ//TJLValGd6xzjxt18KjAwQJo1a1ravn2/BGRlCfpnnpmVsn//vpDu3dl5eps6HwqACCF+w2az4eTJMgBA165nzhWNSEyCKMvgAYjV1e3QOkIIIe1h9uxnTtx4482l7767pss//3lbnw0b1sVNmDCx6NFHmzdxX6VSISNj+dHu3dPNCxfOS7333km9/vxzf9Dcuc/nXHHFsFoAuPrqUdUzZz59bNu2LyPvuWdS7127vg8dN258aeu8MuDAgT8NH3ywPn7SpH8Wpqam2QHgqaeeyS8vP6l7/fVXugDAuHE3nzxx4rh+8uSJvSVJwiOPTCtMT2emOXNmdn/00Qd6BAcHi5dffsU5F0kNCQmRli17JzMkJFScPXtG9ylT7ulZVlaqffHFxVk9evQ6a2hhZ8cp9Qc6El85BiClstIMUWz14bTkHNRqHmFhAaBr0f7Ody2yjhzGu48/jFMAln35DeoObdizZzfENzMQpdOh69PPwJCa1oYt73zoc+E/6Fr4l/DwAKhUfC6A1PZuy759+3rwvOqr6OguJq1Wf8F9SSWkuRwOm76srDBQlqVrBw0alNlYOUqCQAjxG6VHDmNS1ySYFRn1x3VHRUXjoNOBKJ0OYuUpABQAEUIIIaT5aAgcIcRvVOfmAABq1Zqz9kVHx6DMbkOZ3QaHjW6EEkIIIcQ71ANECPEbzpJiAIAYHHzWvoCAAKwqKYbVmoNPE7qClkIlhBBCiDfaPQBijA0HsLOR3bmCIKQyxgYAeAPAYAAVADIEQVhcpw4ewDwA9wIIA7ALwEOCIGTXKdPiOgghrUvlTm6gjok5ax/HcYiKisLx4/k4ebIMSUnJbdw6QgghhHQG/jAE7icAcfX+jQIgAniRMRYB4H8AjsIVvMwDsIAxdnedOp4B8CCA+wBcBtfqUF8yxrQA4Is6CCGtL9DuAAAENRLcRLvXAvJkiiOEEEIIaa527wESBMEBoMTznDGmAfA6gI8FQVjJGHsKgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cddwKoAjAzQA+AHC/D+oghLQip9OJCHfigyjWo8EyvULDML5HH4R+uxMYM7Ytm0cIIYSQTsIfeoDqexhAVwDT3M+vAPC9O3Dx2AGAMcaiAQwAEOTeBgAQBKEKwG8ArvRhHYSQVlR6LAd6lQqyoiA2veEAKCw0FN0DA6GvqWnj1hFCCCGks2j3HqC6GGN6AHMALBUEodi9OQHAgXpFPQtfJbr3A8CJBsok+rAOr6hU/hhjXlg814CuRfs717UorizHi4cPoFdCV7wcaGzweGNkJJCXD60oQq2m69kS9LnwH3Qt/AvHtXcLCCGtza8CIACTABgAZNTZZoRr+Fpdnhy4evd+NFIm3Id1eCU42NCSw4kP0bXwHw1di4qqcuRazEjt2gVhYQENHhed3BX4dR80ioJgoxoqna61m9rp0efCf9C1IISQtuFvAdCdcM39qaizzQqg/rccvft/s3s/3GWs9cqYfViHV2pqrJAkWtm7PalUPIKDDXQt/MC5roUn4WJsbBdUVjb8sdMGhsIpy9DwPCpOlEATEdnqbe6s6HPhP+ha+JeQEMNZCzH7I46DiuO4Nm+ooiiyokBq6/MS4kt+EwAxxqIAXA7gxXq7TgCIr7fN87wQgKbOtpx6Zf7wYR1ekSQZokh/0PwBXQv/0dC10GVn47roWKSGhTd6nYJDwlEjOhGh1cFeWQMupEUdtAT0ufAndC38g6K0dwvOj+OgkjkuzmIT2/x7nFGvFnkoxf4WBGVkLInfsWNbxJYtX9Wf8nBe2dlZuvvv/2evtWs3HEpMTHa0RvuIf/GbAAiu4EcB8F297d8DeJAxphIEwfNhGwlAEAShjDFWDaAGwHC4gxfGWCiAgQDe9GEdhJBW1K3WhKsSk1GlbXxYW3h4OIpEERFaHcSa6jZsHSGE+A+O43iLTVT/fLBYttjaLmo26tX8kD5x6iC9mlcUxa8CIG8dPnzQMHv29G4Oh93/u/2Iz/hTANQfwDFBECz1tq8GMBPAKsbYKwAuAfA4XGv2QBAEO2PsTQAvM8ZOAsgD8CpcvT6f+LAOQkgrURQFIXDddo3s1r3RcuHh4Siz2xGgUiHCZkVgWzWQEEL8kMUmymars627DTtNoPDWWxmxmzd/ENelS4Lt1KkKWvfxAuJPAVAsgIr6G909NKPhSozwG4BiAE8KgrCuTrFn4XotK+FKovA9gNHuNYZ8UgchpPVUFBchRO0aiRrXq0+j5QwGI/5VeAI2mxVb47u0VfMIIYS0wNChgwdNmfLo8W+++V94bm5OQExMrG3y5PsLR40ac7orf/v2r0PWrl0ZX1hYYAgLC3dceeWIU1OmPFqs0+kUAMjMPKxfvvzNLkeOHA6y2ax8RESk44Ybxpfdffe9Da6MvXbtyui1a1cmPPXUs8dGj76uqqEy+/b9EvLkk0/nhoSESDNnTktvlRdP/JLfBECCIDx0jn17AVx2jv0SXIuazmrNOgghraPw8EEYAJgkCYbQ0HOWDQ8PR1FRIU6dqkBCQtc2aR8hhJCWWbNmRcJdd91T8NRTz+Z9+uknkQsWPNstLCw88+KLLzXv3Lk9eOHC59LuvffBE5dffkXN8eN5umXLXk8sKDiuX7w445jFYuGnT5+a3rdv/9ply5ZnqtUaZcuWzZGrVi3vOnjwJbV9+/arm8AK69evjVq3blXC3Lnzc66+elSj46VXrVovAMBPP/0Q1Nqvn/gXvwmACCEXrspjOTAAqGnCOihhYZ4A6FTrN4wQQohPjBhxdfmkSXefBIAZM2YXHjz4R9CmTRujL7740tz169fGjRw5qnzixLtOAkBKSqpdrVbnz5r1RPrx43laozFAHjdufNltt00qCw4OlgHgkUemFX3yyabYrKxMQ90AaOPG9ZGrV7+TMG/eC9nDh4+kVbNJg5odADHGIgCMhyuJQAqAEADlAPIBfAngv4IgVPmwjYSQTs5cWAgAcBgbXgC1rouDgjGxZx9od/8EDL+qtZtGCCHEBwYOHFxb9zljPc379/8WDAC5ubnGnJzsgJ07t0d49nuy8WVnZ+mvuuqamttvv7Ns69ZPw3NysoyFhQW6/PxcIwBIknx66drKykrN229nJKlUKiUhIbH+2o6EnNbkAIgxFglgDoB73ccdgStZQBaAMAB9AUwAYGeMLQfwsiAIDY7LJISQuuRTrul/fNj501qH6A3oJkqorKps7WYRQgjxEbVafUaCcUVRwPMqxfVY5m666R8l48aNP2sueExMrLOsrFR9//3/7BkUFCwOGXJ51aBBl9T069fffOutN/WrW5bjeMyf/2LW6tXvxC9c+FzKqlXvZXaENZ1I22tSAMQY+wdc6aD3AbgfwKcNZGsDYywYwBgADwA4zBh7SBCEj3zYXkJIJ/R5dRXW5mThoeuuP29ZVWAAYDIBNlsbtIwQQogvHD58MOCaa649PR8nM/NwYFpamgUAEhISrSdO5OtTU9NO99rs3r0r8MMP34956qln87du/TTCZKpVb9r02UGNRqO46zO4Sv4VV4WGhjiHDRtREx0d7Xjwwcm91qxZEXPPPQ+UttFLJB1IU3uAHgNwnSAIv52rkCAINQA+BPAhY+xSAEsAUABECDmn7IITOGU2I65Hz/OW1QQFAyWlUDkoQSMh5MJm1KvbtHujJef7/PMtMUlJKbY+ffqZP/74o6j8/DzDrFnP5AHAhAkTSxYtWpCakbEk/rrrbqgoKSnWvvbaouTIyEhHTEysGBMT67Db7fzWrZ+GXXzxJaacnGz9W29ldAUAh8NxVpt69uxtGz/+lpING9bFDx8+siotrRsNhyNnaFIAJAjCFc2tWBCEPQD+1uwWEUIuKGazCafcQ+ASEhLPW14bFAwAUEtiq7aLEEL8laIoslGvFof0iVOjjdflMerVoqIozV57aNSoMSc3b/4gZunSxYakpCTLSy8tzurdu48VAK6/flyloijHNm58L+6TTz6KNRoDpMGDL6maNm1mgWd/ZuaRkhUr3u66bNkSPjIyyjF69HXlu3f/GHrkyKEAACfrn2/KlEeLf/zx+7CFC59LXrnyXYGGwpG6OEVRzl+KeOMYgJTKSjPEtlukmTRAreYRFhYAuhbtr6FrIez7FV88NweVHIf5n3113jq+/GAD0rb/DyKAXivXtm6DOzH6XPgPuhb+JTw8ACoVnwsgtb3bsm/fvh48r/oqOrqLSavVnzHul+Og4jiuzb/VK4oiKwqk5hwzdOjgQY89NiPvllsmnDXHhxBfcjhs+rKywkBZlq4dNGhQZmPlmjoHaHVzTi4IwuTmlCeEXLhOZh7G9TFxKJeb9sXPGO5KEqQGIDsc4LW0eDch5MKjKJAURWlWIEIIcWnqHKCrUHeWGRAPQAPgOIBiABFw3SmxA/jDlw0khHRuNSeOIxqAVadrUvngyEjUOJ0QeQ6y3UYBECGEEEKapalzgJI9jxljtwN4GcDfBUH4pc72XgC2wJUEgXRgZVs+xrpDBxDVpQvuuutecBx3/oMI8ZKjzJUtXwkJaVL5oOAQ/OOPfQgNDcW37vlAhBBC/NeuXb/ua+82EFKXN2NHFwKYXTf4AQBBEA4DmAtgpi8aRtqH8+RJVG39HH0PHsQbS1/Dd9/tbO8mkU6Or3Ut1K2Ljm60jErr+gcAIe5AqaamBnITh80RQgghhHh4EwBFAqhuZJ8IIND75pD2Zsk8DACwyTIUAN98s619G0Q6PYPdlZ00ODGpwf0ajQpl1pMot1VArVYhONgVAMmyDLPZ3GbtJIQQQkjn4E0A9DOAeYyxiLobGWNxAJ4HQF0GHZgpNxcAoON53N01GZqjQju3iHRmTqcDYe4kRtHd0xssI3EiTlQVobCmFOBl6HQ6TE5OxYs9++DUvr1t2VxCCCGEdAJNTYJQ13QA3wHIY4zthiv3egyAywGcAvC4z1pH2lzNsWyoAGh4HmNiYrGn8hRsNhv0en17N410QoW5uQjWaAAAUd3ZWfs5joNVsqDaZoJWpYFdtkMFLboYA9DNGABrGS3wTQghhJDmaXYPkCAIfwLoDWA5gCAAgwEYACwG0E8QhDxfNpC0LanClaI/W+XKyBWl1SEvL7c9m0Q6scKyUtyz/1f8q6YKaqPxrP0qFQeL0wqzwwKLwwq7ZAfPc5DUrns3tpqatm4yIYQQQjo4b3qAIAhCEYAnfdwW0s4USYLaagUAVASEAE4TIrRaFBUVoEePnu3cOtIZnSg4gVpRBBcf3+B+juNQaa2GoiiwiXZYRTuCdRxkd6+Rvba2LZtLCCF+oyMthEqIv/EqAGKM6QBMBnANgDgAdwMYDuC3+tnhSMchVlWCB+CUZZjDYoAyE0I0Gggnjrd300gnVVDgem8lJHRtcL8ECbV20+nntfZaxBliAK0OcDohmk0NHkcIIZ0Zx0Fl4J1xisPi1fe4Fp1baxStsqaYgiDSkTX7g8MYiwSwA0BPAEfgGg5nBHA9gCWMsZGCIOz2aStJm+B1evyPAwoLjkPX+wqIZceghoJKCoBIKwk6dgx3dU1C9+CG1wASFSesTtvp5ya7GTJk8HpXACRZLG3VVEII8Rscx/GKw6I2CXtk2W5ts/UAeJ2BD2SXqjlNKK8oil8FQBkZS+J37NgWsWXLVweaesymTRsjPv74o5iysjJdWFiYc9Soa8vvvXdKiUqlas2mEj/gzZ2DxQCC4QqA8gA43NtvAfA1gPlw9QyRDkYVGIivS0twvKwE/wyLhk2jRaDTDkd5RXs3jXRScSYTesTEwaTRnbWP4zg4ZCdsTvvpbXbJCUmRoDIagVoTZJvtrOMIIeRCIdutsmQzt/WCaG0+7K41bNnycfi//vVG0oMPPnr80ksvqz106IAxI+O1JIfDyT366LTi9m4faV3evIlvADBXEIRsAIpnoyAINriCo0E+ahtpY4qioLTU9ZkPDouEXW9wba9tbNknQrwnSRKC3AuZRnbrdtZ+nufgkBxnBEAO0QEJEtQBgTCJIhyS2GbtJYQQ0nl89tl/ooYNu6piwoSJ5SkpqfaxY2+svPHGv5f+739fRbZ320jr8yYA0sOV7rohIgCt980h7alCOIJUjRahGg2CQyIh9Lkck3//Fbsqytu7aaQTKikuQpTW1fMTnX52Cmye52B1WiEpf93cdIhOOCUnzMnJmLz/V+wwUHp2Qgjxd0OHDh60YcO6qMmT72AjRlw2cMKE8b22bfvyjLHP27d/HXLHHbf0HDHisoE333x9n6VLF8fb7XbOsz8z87D+8ccfShs9eviAYcMuHXjzzdf3WbNmZXRj51y7dmX08OFDBn799RehDe1/8MFHCiZNuruk/naz2dTm86pI2/MmANoL4KFG9k0E8Kv3zSHtqWL7//B8j964PiEJao0GfEQcTJKIU6cai3cJ8V7hUQFanoekKNBFRp21n+OAWof5jG0OyQlREREYGAgAMJnMZx1HCCHE/6xZsyJhxIiRp955Z92hwYMvrV6w4Nlue/fuCQCAnTu3By9c+FzamDFjy1ev3nDoscemH9+167vwOXOeTAEAi8XCT58+NV2vN8jLli3PXLPm/UNDh15ZuWrV8q4HDvxpqH+u9evXRq1btyph7tz5OaNHX1fVUHsuuWSIuVu37qeHGFRVVam+/HJrVP/+F9H6ChcAb6LcZwBsZ4ztB/AFXMPgbmOMPQ9gtPsf6YCcVZXQAnCoXXfl9UbXzZmammo4nQ5oNNS5R3ynPCcLoQBMPAeugQmnMmRYnNYztjklEaIsIigoCABgMlEabEII6QhGjLi6fNKku08CwIwZswsPHvwjaNOmjdEXX3xp7vr1a+NGjhxVPnHiXScBICUl1a5Wq/NnzXoi/fjxPK3RGCCPGze+7LbbJpUFBwfLAPDII9OKPvlkU2xWVqahb99+p/9YbNy4PnL16ncS5s17IXv48JFNCmZMJhM/Y8bUbk6ng586dfqJ1nj9xL80OwASBOEHxtg1AF4CMBMAB+AJAL8BuF4QhJ2+bSJpK5J7TRW7e0J6kLkG9yalosJuw6lTpxATE9uezSOdTK07u6DDcPYCqAAgKiLsouOMbQoU2JwOBPM85qb3QAC4Bo8lhBDiXwYOHHzGHSvGepr37/8tGAByc3ONOTnZATt3bo/w7Ffcs8yzs7P0V111Tc3tt99ZtnXrp+E5OVnGwsICXX5+rhEAJEk+/YegsrJS8/bbGUkqlUpJSEi0owlKS0vUM2ZM7V5aWqJbtGjJ0eTkFMf5jyIdnbcLoX4P4G+MMQOAMAA1giCYAIAxphYEgWYmd0CcexFUp971hVRjNWFUVDSyzSZUVJRTAER8ylHumlvGhYY1uF9URDhE51nbLaIVAYGB6BccCllRoCgKOI4CIUII8WdqtVqp+1xRFPC8SnE9lrmbbvpHybhx489KOxsTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N99660396pblOB7z57+YtXr1O/ELFz6XsmrVe5k83/hsj6wsQT9jxmPdJUnili59S+jVq4+10cKkU2n2HCDG2DHGWH8AEATBKghCUZ3g5xIApT5uI2kjKrvrZolkcM2vkHSuYbXBajUqKigVNvGtLaUluHf/r+CvvOKsfTzPQZRFOMSzb8TZRDsCwlxBE89xUOxNuslHCCGkHR0+fDCg7vPMzMOBaWlpFgBISEi0njiRr09NTbN7/pWWFmsyMl5LMJlq+c8/3xJhMtWqV69en/nww48VjxlzfVV1dZX7Jv5fcVVoaIhz2LARNbNnz807dizbuGbNipjG2pOfn6d9/PGH0/V6vbx8+eojFPxcWJrUA8QYuw2Axv00GcB4TxBUz8g65UgHIjud0EjuNc0CXXN/JJ2rJyhQrUYeZYIjPiTLMgoKjsMuiujCep21n+M4OCUnHNLZPUBOyQlDaBRMigIVx0GyWsDrKRscIeTCw+sMbbomT0vO9/nnW2KSklJsffr0M3/88UdR+fl5hlmznskDgAkTJpYsWrQgNSNjSfx1191QUVJSrH3ttUXJkZGRjpiYWDEmJtZht9v5rVs/Dbv44ktMOTnZ+rfeyugKAA6H46w29ezZ2zZ+/C0lGzasix8+fGRVWlq3s+6UvfDCvGRRdPLPPLMgS6PRKKWlJae/E8fExNJIpk6uqUPgBgOY5n6sAHj2HGVfa1GLSLuQLa5sWrKiQBXourvu6QEyqtSorapst7aRzqe0tBR2ux1qtRpxcfFn7ec4wC46IcpnLzTulEQYgwNglSQEqtWwVlVCExbeFs0mhBC/oCiKzGmNYiC7VI02XpiU0xpFRVaavfjqqFFjTm7e/EHM0qWLDUlJSZaXXlqc1bu3q9fl+uvHVSqKcmzjxvfiPvnko1ijMUAaPPiSqmnTZhZ49mdmHilZseLtrsuWLeEjI6Mco0dfV75794+hR44cCgBwsv75pkx5tPjHH78PW7jwueSVK98V6g6FKy4u0hw5cigIAB588O6z7sLt2vXrvua+PtKxNDUAegpABlwJD44BuBnA7/XKSACqBUGgtEwdEKfVYRtklBacgLHvcACApNVDhus3q7WSAiDiOydyczAjLR1WnRZn539zDYGrnwHOQ5RE6I360wGQ+VQlglNat72EEOJPFAWSVdYUc5rQNg1+AECRFVlRcPbdqfNISUmzzpw5p6Cx/WPH3lg5duyNDX7Z4DgOM2bMLpwxY3Zh3e333PPA6WkXU6c+UTR16hNFnuc6nU7ZtOmzQw3VFxcX76Qg58LWpABIEAQHgHwAYIylACgC0EcQhN/d22IBXALgy1ZqJ2llKoMBOysrkVNajEkBwa6NPA8Hr4JeluCorm7fBpJOpeSogEvCwuEAgAZSYAOA2WlpcLsoi5Ahw+Ye922tpuCcEHLhURRIiqI0OxAhhHiXBU4CsB+AHkCae9sAAFsA7GWMXS8IQrMmjDDG7gQwG0AqgBwAzwmCsMm9bwCAN+AahlcBIEMQhMV1juUBzANwL1wZ6XYBeEgQhOw6ZVpcx4Wgyj3MzRgYfHqbQ6WGXpYg1tK6YMR3qvLyAQBWrbbBDG4SpAYTIACAKEuQFAl2AGZRhNbccKBECCGEENIQb7pOXwWgAnCrZ4MgCF8B6A8gCMCi5lTGGLsDwGoA/wbQB8AHAD5gjF3GGIsA8D8AR+EKXuYBWMAYu7tOFc8AeBDAfQAug2uO0peMMa27/hbXcSFwVJQjThQRo9PBGBByevvu9P6Y/PuvyLJSchTiO7aSYgCAHBLS4H5JkRpMgAAAoiRBkmWstlpw9/5fYYqObrV2EkIIabldu37dd8stEyidLPEb3vQAjQRwvyAIv9bdKAjCAcbYswCWNbUixhgHYAGA1wVBeMO9eQFjbCiA4e5/dgBT3GsLHWGMdQcwC8Aad4AyHcBMQRC+cNd5K1xD9G6GK5i63wd1dHqVv/yMZ7v3wM+nKmAICPprR0gkTJKIWhP1ABHfUaqrAZ0euqiGgxdJkeCUGk7CI8oiJEVCYKArXbvJRNMOCSGEENJ03vQAaQE0lv3DBlcvUFMxuNJqv193oyAIowVBeAnAFQC+r7ew6g4AjDEWDdfQuyD3Ns+xVQB+A3Cle5Mv6uj0rJVVAACLIkOj1Z3ernMvilpTQwEQ8Q1FUWCw2wAAwYlJZ+3nOA6iIsLZwCKogGsInCiLCAx0LSlhMplar7GEEEII6XS86QHaDWAaY+xLQRBOf0NhjGkAPA5gTzPqSnf/H8AY+xrARQByAbwgCMLnABIAHKh3jCfDR6J7PwCcaKBMovuxL+rwmkrV5glavOJ09/DYORV4/q85GbG1lbgnMRnHZRlqdcd4LfV5rkFHuRadmUrFo7i4GNFq1+jSaMbOel/xPAezKEFUxDPei3WJsoiBGi2u7N4DxqyjHfa92Z7oc+E/6Fr4lwamJRJCOhlvAqC5cCUJyGWMfQmgDEAUgGsBRMI1bK2pPLPt3wXwPFzD0v4O4FPG2DUAjHANX6vL5v5f796PRsp4FgbxRR1eCw42tLSKNqFYXRPJHSoVDIa/pj4ZrSb0iI7FtvIyhIYaG5yw3lF0lGvR2e3//ReEaFzrJcf27AZDWMBZZWqqq6DS8tCjkWl4KhnRGg3SQ0JRaqpBWAN1kKahz4X/oGtBCCFto9kBkCAI+xhjl8KVOGAsgAgAVQB+ALBAEIT9zajOk+bpVUEQ1rkf72eMDQTwBAArAF29YzxLvpvd++EuY61Xxux+7Is6vFZTY4UkNXu9sDZnr66BDoBTpYbV+lf2La3G9QfZwHEoLq6AwdDx/kCrVDyCgw0d5lp0ZioVj2O5uZjzxz6MHT4CPbUBsFWe+TFTq3nUWiywWs9auPs0k9UKaF3BkcNsQWVliz+qFxz6XPgPuhb+JSTEgLqLZhJCOh9veoAgCMKfAG7xwfk9C2LVH6J2CK7gKg9A/WXiPc8LAWjqbMupV+YP9+MTPqjDa5IkQxT9/w+aZHH1ADnVOsiycnq7onfdWTeq1Dh1qgoxMfVjyY6jo1yLzi4725VdPjI5DZIMQD7zmvA8B7PDesb7sD6raAevd93HUOwOuq4tQJ8L/0HXwj8ojf/q8SscBxXHcW2/EKri3UKohPgTrwIgAGCMjQFwDYA4AE/DNX9nnyAI+c2o5ncAtQCGwDWszqMvgGwAPwF4kDGmEgTB82EbCUAQBKGMMVYNoAauYXc57naFAhgI4E13+e99UEfnZ3ONCpQ0ZwY4ktbdA6RSoba2BjExMW3eNNK5eAKg5OSURstYRVuj+wBAkiSoja7Rq5yz4WQJhBDSWXEcVIpairNIVq+/x3nLoDaInKgq9rcgKCNjSfyOHdsitmz5qv5N9UatW7cq+rPP/hNdUVGhjYmJsf/97/9X8n//dzul674ANPuDwxgzwrXo6dVwBQ5BcK0NNAXARYyxYYIgHGpKXYIgWBljrwB4ljFWCOAXABMAjIIrSDkMYCaAVe5yl8CVaOFB9/F2xtibAF5mjJ2Eq8foVbh6fT5xn2a1D+ro9I7HxOB34TBqU/qcsV12B0RGdwBESEt1KSnD9LR0pDVym1VSJDgayQDnIcoSVJ4ASGw4XTYhhHRWHMfxFsmq/qVgv2x12tqs29Cg0fOXJAxQB3BBvKIofhUANdeGDeui1q1b3WXatBl5/fpdZP7pp13Bb765NDkoKEQaM+b6qvZuH2ld3tw5eBHAILgClB/w1zyeSQC+hmtdn5ubWpkgCC8wxiwAFgLoAuAIgJsFQfgWABhjowFkwJWWuhjAk3XmCwHAs+7XsRKAAa4en9GCIDjc9Ze1tI4LQY5eh/8UF+FvvS8/Y7us9QRAapjNNM+CtIzFYkYXWcGlYeEI1GgaLCNBgtjIIqiny8gSdO402Cq5Q/8NJoQQr1mdNtnssLb1uMlOMUHKZDKp7rzz7sIbbhhfCQBJScnlW7duif711z3BFAB1ft4EQLcCeEoQhJ2MMZVnoyAIJYyxFwD8q7kVCoKwBMCSRvbtBXDZOY6V4MoeN+scZVpcR2fn6d3R6c/MpiVpXfMsAlQqlFEARFooLy8PsTpXUB2S1PAQOFmRG10E1UOSJWiDAiErChSZ5kwQQog/Gzp08KApUx49/s03/wvPzc0JiImJtU2efH/hqFFjqj1ltm//OmTt2pXxhYUFhrCwcMeVV444NWXKo8U6nU4BgMzMw/rly9/scuTI4SCbzcpHREQ6brhhfNndd99b1tA5165dGb127cqEp5569tjo0ddV1d//wAMPl3geO51O7r///SyssLBAP2nS3UX1y5LOx5soPhSuYWINqQQQ6G1jSPtQJAkBp04hyWCEXm88Y58jMAxvg8fUg/thsVAARFomL/cYYnWuoFoTffZ8Mo5zDYFzyucOgERZgiY1BRP27cHik6Wt0lZCCCG+s2bNioQRI0aeeueddYcGD760esGCZ7vt3bsnAAB27twevHDhc2ljxowtX716w6HHHpt+fNeu78LnzHkyBQAsFgs/ffrUdL3eIC9btjxzzZr3Dw0demXlqlXLux448OdZ6WnXr18btW7dqoS5c+fnNBT81PXzzz8FXnXV5QMXL34p5YorhlecrzzpHLwJgA4CmNjIvhvc+0kHIlnMuMFkwau9+8FgrLeeikoFq96IWlGkIXCkxQqFTOhUKsgANBERZ+3nOA6iIjapB0hvdP3Ns7gzGBJCCPFfI0ZcXT5p0t0nu3dPt8+YMbswLa2bedOmjdEAsH792riRI0eVT5x418mUlFT7sGFX1Uyb9mT+zz//FHb8eJ7WYjHz48aNL3v66Xn56ek9bKmpafZHHplWBABZWZlnBEAbN66PXL36nYR5817IvvrqUdUNtaWutLRutrffXn146tQn8nbv3hX+2muLurTOT4D4E2+GwL0A4D+MsQgAnwNQAAxjjN0NV2KB23zYPtIGZHcGOJskQWcMOmu/Tu/5okkBEGmZqrxcAIDDYACnPvvXD8cBoiTBeb45QIoMncE1lI4CIEII8X8DBw6urfucsZ7m/ft/CwaA3NxcY05OdsDOndtP3xnz5MnJzs7SX3XVNTW3335n2datn4bn5GQZCwsLdPn5uUYAkCT59ArtlZWVmrffzkhSqVRKQkJi44vJ1REVFS1GRUWLffr0tVZWVmo2blwfP3Xq9CKtVttBEqITb3izEOqnjLE7ACwCcJ1782sAygA8KAjCZh+2j7QBxRMAyRL0BuNZ+y8RneiWmAypsrKtm0Y6GWdZGaA3ggsPb3A/x3EQZRHieRIbSLIEjVaFJ1K7Q69SwWmzQaPXn/MYQggh7UetVp8RUCiKAp5XKa7HMnfTTf8oGTdu/FkpqGNiYp1lZaXq++//Z8+goGBxyJDLqwYNuqSmX7/+5ltvvalf3bIcx2P+/BezVq9+J37hwudSVq16L7OxRW137PhfcEJCV0d6eo/T6y6kpXW3iqKTO3WqQh0bG0drLHRizR4CxxjrKQjC+4IgJALoCWAogD4A4gVBWOXrBpLW5+kBskgStLqzAyBmM2N0dCw4U+1Z+whpKlmWYamshEOWEZCQ0GAZjuNgE8+ffFGSJegDjRgSHoEBIaGwVlf5uLWEEEJ86fDhg2eMsc/MPByYlpZmAYCEhETriRP5+tTUNLvnX2lpsSYj47UEk6mW//zzLREmU6169er1mQ8//FjxmDHXV1VXV7lv4v8VV4WGhjiHDRtRM3v23Lxjx7KNa9asaHTxwpUrlyesWbMytu62Q4f+DAgMDBSjo2Mo+OnkvJkD9DVj7E7AtZKoIAg/CYJwWBAESsXUQdUdAqfVnX0XXVK5fsdIFmubtot0LsXFRdhSeAKTD/yO5LvubrAMxwG28yyCCgCSLEOj18Hu7imyUABECCF+7fPPt8Rs2fJxeHZ2lu7llxcm5OfnGW677c5SAJgwYWLJL7/8HJaRsSQ+OztLt2vX90GvvPJiitlsUsfExIoxMbEOu93Ob936aVhBwXHtd9/tCH7++bmpAOBwOM76LtuzZ2/b+PG3lGzYsC4+JydbV3+/65x3FO/a9V3Ee++tjTp2LEe3ceN7kVu2fBx7++13FjXWa0Q6D2/mAKkBnPR1Q0j7Ed1zKKyyDK22oQBIA8AK2U4BEPFeTk4WACCtWzdojUaIYsP3TKxNCIAUKJAUGXZZgY4HrNXnnedKCCGdjkGjb9Nv6i0536hRY05u3vxBzNKliw1JSUmWl15anNW7dx8rAFx//bhKRVGObdz4Xtwnn3wUazQGSIMHX1I1bdrMAs/+zMwjJStWvN112bIlfGRklGP06OvKd+/+MfTIkUMBaOB76ZQpjxb/+OP3YQsXPpe8cuW7Qv2gZty48ZWSJOZ+8MGGuFWr/t01MjLS8cADjxyfMGFiubevkXQc3gRAzwBYxhhbCFfGt7Ny0AqCcLylDSNtx+Ee2ubqATormyQk94KVsq1J8wkJaVB2tisAYow1WkZSJIjiuTPAeTglJxzuWbL2WhqeSQi5cCiKIhvUBvGShAFqtPHCpAaVQVREpdmjflJS0qwzZ84paGz/2LE3Vo4de2ODk405jsOMGbMLZ8yYXVh3+z33PHD6O+jUqU8UTZ36xOk1fHQ6nbJp02eHztWm8eNvOTV+/C2nmv4qSGfhTQC0HIAKwCrUHXh5JlUj24kfUqKjsbHwOEptdlyt0Z61X9a4e48d55+bQUhjyoRMvNqrLwLExhPryJDPuwaQh1N2wunO/UMBECHkQqIokDhRVRzABbX5WC1FVGRFwbkz1RDi57wJgO71eStIu3KGR+A/xUXQ6vQY1cC4V8UdFHFOmhNIvGctOIEkYwCkc/TwyJDOuwaQh1MS4eRcEZDdbPJJGwkhpKNQFEiKolAgQogXvAmAugD4VBCEc3Yrko7DanXNAWpo/g8AKO7tvEgBEPGOJElQV1UBhgAEJiU2Xk6RITYxAHJIDkjugN1JawERQojf2rXr133t3QZC6vKm63QmgK6+bghpP9biIiQZjAg1BDS4vzR9MB498Du2lBQ1uJ+Q8ykoOI4Yd09iZHp6g2VcawBJTR4CJ8oSvjDocOuvP+NkZKTP2koIIYSQzs2bAOgogL6+bghpP9yuXXi1dz8MDQlpcL8SHI5Sux0VJhMUhRZGJs2XnZ2FLnpXgg1j14bvn3AcIClik3uAZFmGLiAACv7qxSSEEEIIOR9vhsBtBfACY2wsGs4CpwiCsKDFLSNtRra50ls7VQ2/HdTuIXCKosBqtcBobLiniJDGZGcdxaV61/vIkNAFDaXT4DgOotT0HiBJkWA0uhbutVopRTshhBBCmsabAOg59/9XuP/VpwCgAKgDUeyu9NZiIwFQgKkatyckosJuh9lspgCINFtxdhaMajUUAIb4ODhMZ4dAHAc4JGeTexklWUY3UcK01O4IPnHCxy0mhBBCSGfV7ABIEARaHrezcae3ltVnp8AGAK2pCjfFxuOoqRYWi7ktW0Y6idL8PBzX6hAf3wW8RgM00AfEcRzsYtPXmpIVGWGKgu7hEcitqfFhawkhhBDSmXnTA3QaY6wHgFAAJwVByPFJi0ib86S3lhpYAwgAFPdCqHpeBbOZAiDSPA6HA3tzc7BbFLHt9YxGy3EcB2szAiBJlsDrXWtUUYp2QgghhDSVVwEQY+w2AIsBxNbZVgLgKUEQ3vVR20gb4d3rspxe8LQeSe3arldRAESaLy8vF6IoIjAwEHFxcY2WUyDD0awASD4dAIFStBNCLjAcBxXHcW2/EKpCC6GSjq/ZARBj7AYA6wHsAPA0gBIA8QDuALCGMVYhCMJ/fdpK0qp4T9atRtYBkt09QwYVDxMNgSPNJAhHAADp6T3AuRcubYikyHBKTf+bKikyVAbXe5Y7x+KqhBDS2XAcVDrZGSdZLC0ayeMNldEo2nlNsb8FQRkZS+J37NgWsWXLVweae6yiKHjooXu7i6KTX7HiXaE12kf8izcfnLkANgmCMKHe9jWMsQ8APAWAAqAOQlEUHA0LQ9bBgxB7JzdY5nQAxKtQSj1ApJkyjxzGyv6DIBoCINbUAGENJ9GQIUFsYgY4AJBlCWqDK7U2L8k+aSshhHQEHMfxksWirtizRxYt1jb7Bag2GviISy9Vc0GhvKIofhUAtcSaNSuiDxz4I7hnz16m9m4LaRveBEB9AcxrZN9aAJu8bg1pcxzHYb9Bjy2Fx3HN4KsbLOMZGqfmeVhNtW3ZPNIJlApHEKzRQHY6oQoMbLScrMhNXgMIcPUA6Y2uAEilUABECLnwiBarLJrNbf0LsFMlwzp8+KDhgw/Wx3fr1p3u8F5AvHkTlwOIaGRfJBpK70T8mmdej6axIXB1ssPZKNsWaQZFUeAsKgQAcNHR4PjGf+VIStPXAAJcc4A0Aa51gNQyLdBLCCH+aujQwYM2bFgXNXnyHWzEiMsGTpgwvte2bV+esfr69u1fh9xxxy09R4y4bODNN1/fZ+nSxfF2u/30uOnMzMP6xx9/KG306OEDhg27dODNN1/fZ82aldGNnXPt2pXRw4cPGfj111+ENlbGZrNx8+c/kzJx4l1FXbok2HzyYkmH4E0AtB3A84yxxLobGWNJcPUMbfNFw0jbkB0OGExmRGl10OoMDRfieXwUFIGpB/aj1kHxLWm6oqJCRLvn6AalpjVajuM4SIoEUW76iApZkcAnd8Wdv/2CF4poHSBCCPFna9asSBgxYuSpd95Zd2jw4EurFyx4ttvevXsCAGDnzu3BCxc+lzZmzNjy1as3HHrssenHd+36LnzOnCdTAMBisfDTp09N1+sN8rJlyzPXrHn/0NChV1auWrW864EDf5715WX9+rVR69atSpg7d37O6NHXVTXWptdeW5QQFhbuvPPOyWWt9sKJX/JmCNzTAH4FIDDGdsOVBCEWwGUATgGY7bvmkdbmKC7CHU4RY3r0wk5dw1ngAKAmIBAldhssNrpBQpouM/MwkgyuXhpDYlKj5TgOEGWpWUPgZEWBLtAImyzDZLG0uK2EEEJaz4gRV5dPmnT3SQCYMWN24cGDfwRt2rQx+uKLL81dv35t3MiRo8onTrzrJACkpKTa1Wp1/qxZT6QfP56nNRoD5HHjxpfddtuksuDgYBkAHnlkWtEnn2yKzcrKNPTt28/qOc/GjesjV69+J2HevBeyhw8f2eiwlZ07twf/8MO34WvWvH/4XAl6SOfkzUKoJYyxgQCmAxgGYDBcgU8GgCWCIJT6tomkNcl2V9phuyw33gOEv4bH2SgAIs2QmXkEfd0BkC6ha6PlPD1AzRkCBwAadxpsq9UCRVHOmWWOEEJI+xk4cPAZk4gZ62nev/+3YADIzc015uRkB+zcuf30FAvFPbI5OztLf9VV19TcfvudZVu3fhqek5NlLCws0OXn5xoBQJLk07/4KysrNW+/nZGkUqmUhITERtdVKC8/qV68eFHyI49MOx4XF0/rKFyAvE2fWAHgA0EQZgEAYywOwMVwBUKkA1EcfwVAjc0BAgBmMyOoS1eoamkOEGm6Y0cO4Rq9632l65LQaDmOAxySE4rSvLk8ag54MCkVOp6HzWKBIaDhDHOEEELal1qtPuMXvKIo4HmV4nosczfd9I+ScePGV9Q/LiYm1llWVqq+//5/9gwKChaHDLm8atCgS2r69etvvvXWm/rVLctxPObPfzFr9ep34hcufC5l1ar3MvkG5p5+++2OkOrqKs3rr7+S/PrrryQDgCiKnCzL3MiRf7to4cJXs4YMuZwywnVi3qwDlADXPB8dAM+g/v4AtgDYyxi7XhCEcp+1kLQq2e6a02OXJGh1jQdA3WqrMCSuC7aZaahRZ3LgwB8oLCzApZdejrCwMJ/WrSgKjmdlYU9gIAb36gtVUFCjZTmOg11q/vwytVaNq6Jcc2CttTUUABFCiJ86fPhgwDXXXFvteZ6ZeTgwLS3NAgAJCYnWEyfy9ampaad7bXbv3hX44Yfvxzz11LP5W7d+GmEy1ao3bfrsoEajUdz1uYet/BVXhYaGOIcNG1ETHR3tePDByb3WrFkRc889D5w1Mmn06OsqBw4cfEaA8+abrydUVJRr5s1bmBsXF08Tnjs5b3qAXoUrecKtng2CIHzFGOsP4EMAiwDc65vmkdZWtwdIe44eIEmtcT1w0u+EzkBRFLzyykJs3LgeABAUFIw33ngLAwcO9tk5iouLkFVajDcq1Ni14dzZ8TmOg83Z/OGVslYFWVHAcxysNTVAbJy3zSWEkA5HbTS0aUrqlpzv88+3xCQlpdj69Oln/vjjj6Ly8/MMs2Y9kwcAEyZMLFm0aEFqRsaS+Ouuu6GipKRY+9pri5IjIyMdMTGxYkxMrMNut/Nbt34advHFl5hycrL1b72V0RUAHA7HWW3q2bO3bfz4W0o2bFgXP3z4yKq0tG5nDIcLCgqSg4KCzthmMBgkrVarrhuEkc7LmwBoJID7BUH4te5GQRAOMMaeBbDMJy0jbUKyNW0OkCcA4igLXKfw+edbsOXDjRgZGY2Q4BD873gupk6dgo8+2oL4+C4+OceBA38CANLTe0Cvbzy4dlFgF5v/3pIUCQ5FgZ7jYDfRaAVCyIVBURRZZTSKEZdeqkYbr8ujMhpFUWn+4mujRo05uXnzBzFLly42JCUlWV56aXFW7959rABw/fXjKhVFObZx43txn3zyUazRGCANHnxJ1bRpMws8+zMzj5SsWPF212XLlvCRkVGO0aOvK9+9+8fQI0cOBQA4Wf98U6Y8Wvzjj9+HLVz4XPLKle8KDQ2FIxcubwIgLYDG3vg2AI2PcyF+R7S5hrTZZQkB5+gB8iyGyos0V7CjczgcWJXxOl7u1Rex7sDkxrBwLBIOY/78Z7B8+WqfnOfAgf2I0GrRt0/f85aVIEFsZgIEABAlEU5FgR6AjeanEUIuEIoCyc5rirmg0Db/Vi8qiqwoaPqaBW4pKWnWmTPnFDS2f+zYGyvHjr2xsqF9HMdhxozZhTNmzC6su73u8LapU58omjr1iSLPc51Op2za9NmhprZv4cJX85palnR83gRAuwFMY4x9KQjC6W/DjDENgMcB7Gluhe41hPIa2HWfIAgrGWMDALwBV8a5CgAZgiAsrnM8D9caRPcCCAOwC8BDgiBk1ynT4jo6IyU6Fp+VFCHXYsbIc6TBVjSuxVA5sdm/84if+frrL2CqqYIUnwBVaChUegNQUozZ3Xvg6f2/4aefduHyy4e2+DzZf/6Bt/sNhFhYBNnpAK/RNlpWUpqXAvuv42Q43eO/HRZaxJsQcuFQFEiKotAfZUK84M2dg7kAhgDIZYytYIwtZIy9AyAHwOUAnvKizn5w9R7FA4ir828DYywCwP8AHIUreJkHYAFj7O46xz8D4EEA98G1HpEC4EvGmBYAfFFHZyV3icf6guPYU1sLnlc1Wk5Ru34MvES/azu6LVs+RoXDgby//Q2Js+Yg8dnnYUhnMKhUeDSlO1avWt7iczidDqDIdaNOExR0zuAHABTIcDZjEVQPWZEhwpUB1WGiAIgQQggh5+fNOkD7GGOXwhUwjAUQAaAKwA8AFgiCsN+LdvR1VS0U19/BGHscgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cx9wKoAjAzQA+AHC/D+rolCzuBSTPNf8HABT38DiVF19Sif+orKzE77/vAwCMGnsjNFFRAIC4B6bg2JynkAogLP8YDh06gN69zz90rTGCIKCb3vWeCurZ+7zlJUX2agicJMsQeVcA5LRShkJCCPFHu3b9uq+920BIXV6NHRUE4U9BEG4RBCFOEAStIAjRgiD83cvgB3D1AB1uZN8VAL53By4eOwAwxlg0gAFwzTvaUad9VQB+A3ClD+volGzlJxGl1SHwHCmwAaAiuTdmHT6AzUWF5yxH/Nuu7V/jqvBIXNSjF7rUWZdHHRKK6H/cAsFgwE+nKrB+/boWnefAgf3oGRgMADCmp5+zLMdxkGQJohe9i7IiY4tWhbt+34tKH6fxJoQQQkjn5O1CqL7WF0AxY+wHAOkAsuDqTfoaQAKAA/XKeya5Jbr3A8CJBsokuh/7og6vqFT+nXVE2fEN/tXvImyuqgbPc40XDI1ErnuOBc8DHSmbiuca+Pu1aAsVP/2I+5NTUWM0wqiVAUWGxOshSTIir74a6XGxMP+wE9u3f425c59FSEioV+c5+Ps+TDQaAQCBPXtCrT7zGtS9FjzPwSLKkBXp3O/BBiiQwRmNsEoSHE7H6fOQ86PPhf+ga+FfuOb9GiKEdEDtHgC5h5+lAzADeBKACcAdcM2/uQaAEa7ha3V5FgzRu/ejkTLh7se+qMMrwcHnHlrW3jh36mFZrYHB0Pg8DZ4LPP3YYFDBaDQ2WtZf+fu1aAvGslLAYERAv15A8RHIohPGxF5Qh0UAAIYOvRS9e/fGoUOHsHPH17h78uRmn0NRFFQeOgh1XAIQHISY7klnlal/LWprqqHS8dArzZtyp9aqEBDgqUtEWBgthNpc9LnwH3QtCCGkbbR7ACQIgoMxFgpAFATBE4DsY4z1BDADgBVA/fRknvFaZvd+uMtY65XxzIr2RR1eqamxQpKanS6/zYgWG9QARF4Nq7XxdVhU1VW4MTYeJlFEUVE5IiIi2q6RLaRS8QgONvj9tWhthQUnkKZxreeUOKAnqo/nAIoMUVFBm9gXDtl19/nWEVfD5pBQsukTVI6/9VxVNignJxtd3QtzB/bohcrKvz5CDV0LlYqHxWaHxdL8hVCtih3dnBIeSEoBdyz/jHORc6PPhf+ga+FfQkIMHWqUAyGk+do9AAIAQRAa+tZyAMC1cA1Li6+3z/O8EICmzracemX+cD/2RR1ekSQZoui/f9AUx189QLKsNFrOUFOJiQmJyLOYYTKZERLS8eZb+Pu1aG0HduxAoloDu6LAGKKDo9q1bo617ARU4XGAMRqiKOPSHr1R/fMeWCQRB/fuRY+LBjXrPD///DP2VVchqUsCxl0ypMGfed1rwXEcbE77Od9/jRElGbFOCalRMcg+VXlBX19vXeifC39C18I/KM3/VUQI6WBafIuDMaZnjHk9YpYx1o8xZmKM1V94ZDCAQwC+B3AFY6xujuaRcGWNK4MrQKkBMLxOnaEABsKVmQ4+qqNzcrqWclLOk6ZYdvcc6HkVrFbrOcsS/1R96CAAoMqoh9NcdXq77LDDebIAas71xSv6b1egQqWCUaWGsHF9s8+zd+8eZJtNMF9yKQIHXHTe8hwH2MT6o0+bRlZkwP3e9ATzhBByIeA4qHie07T1P45D42tmENJBeNUDxBhjAOYDuAZAMIBLGGP3AjgiCMKyZlZ30P3vbcbYFADlcKWtvgzAxQBKAcwEsIox9gqAS+BacPVBABAEwc4YexPAy4yxk3AtqPoqXL0+n7jPsdoHdXROoisxnmedn8bI7v06nqcAqKMqLQHAQRUdAUV0nrHLUX0SWnsteHUwZBnQDBsG7NiBpJPlsFZWwtDEDGuiKOLnn38CAFxyyZAmN61FAZDW3YHrdJ67MCGEdBIcBxXP8XEOm9jmI3m0erUoQy5WFNC6GKTDavYHhzE2AK4elTIAGwA85N7lALCUMVYjCEKTc+gKgiAzxm4AsAjAJgChcKWfvkYQhAPuc44GkOHeXgzgyXrneNb9WlYCMLjbN1oQBIf7HGUtraOzOr2wqfbcabAVtetLpk7Fw2aj9VY6GkVREGa3Azo9wpNiz9ovWUyQayugigyFLEsYcMtt2PX1V4jXaPHn2lW4dNqMJp3njz9+xyCdDs6gIPRiPZt0jAwZotT8NYAAQJIlcDp38C56VwchhHQ0HMfxDpuoPnKwWLbb2m7cpE6v5nv2iVNr9CpeURS/CoAyMpbE79ixLWLLlq/qZ/1t1H333ZV+5MihoLrb0tN7mFavXi/4voXEn3hz52AxgF8BjHI/fxgABEF4nDFmBPAYgGYtIiIIwkkA95xj/164eoQa2y/BtajprNasozPKDw5GfuYROFjCOct5eoD0vAo1FuoB6miKigqxIPMQWHAIXrtvPICz/146Kkuhj+gKJ1RQazQo756O+Lw8GA4dhGS1QmU4f4aq3d/txD2JKdCrVBCLiqBJTT3vMZIiwellACQrMnidK78JTwEQIeQCY7eJss3qbOuJY50mQ8SJE/mGKVMePX711aMrPdu0Wi3NArsAePMmvgzA6+5FReu/ST6AK6U16SD2BRiw4nguJH3gOcvJ7h4gnuNgM1OmrY7m2LEcVDqdOBUaDHUjtz1EUxVgN59ei+fSO+9GgdUKPYCC/37epPNU7t0DvUoFR0Ag9CkpTTpGhgxRbkEAZHAFQJwXC6kSQgi5MBUXF2lMJpO6X7+LTDExsaLnX1hYOP0xuQB4EwDZ8Ne6OfVF4K/1dUgH4JnPo9WdewicXGeOkN1U26ptIr6Xl3cMAJDSJQ5QGr5ZKNkskM1Vpxdj7JqYhF8MeryTdwxfnyw97zmOHctBd3cvTNjlfwPXxNUEZUWGKHv390ZWFKj0rveuSqbsWYQQ4o+GDh08aMOGdVGTJ9/BRoy4bOCECeN7bdv2ZUjdMtu3fx1yxx239Bwx4rKBN998fZ+lSxfH2+32039IMjMP6x9//KG00aOHDxg27NKBN998fZ81a1ZGN3bOtWtXRg8fPmTg119/EdrQ/szMwwaO49C9ezp9b70AeRMAbQPwPGNnjJlSGGOBcK3bs90nLSOtTpEkcLUmBKrU5w2AwPPYyGvw1JEDMNNQow5HPngA/4jrgj7hoecs56wqgwp/Xd++4/+B7eVl+M9n/4F0nh6WnZ9+gv7Brvqjhg1vUrs4zjUEzts5QABgT+mKB//4De+aaryugxBCSOtas2ZFwogRI0+98866Q4MHX1q9YMGz3fbu3RMAADt3bg9euPC5tDFjxpavXr3h0GOPTT++a9d34XPmPJkCABaLhZ8+fWq6Xm+Qly1bnrlmzfuHhg69snLVquVdDxz486zx2evXr41at25Vwty583NGj76uqqH2ZGdnGYzGAGn+/GeSbrhhVL9bbhnXu37QRTovbwKgmQACAQhwJQpQALzmfp4I4CmftY60KrGqCnfbHfh3/4HQnCcJAgCU6AOQYzbDavcuYxdpP1Hl5fi/Ll2Roj13tj/RUgPOaYWn82bkyGsQGhqK4uIifPvNNoi1DQcZiqJA/OVnqDgOlqhoaGPjmtQujuMgyZLXPUAAoA4w4JTTgWobzU0jhBB/NWLE1eWTJt19snv3dPuMGbML09K6mTdt2hgNAOvXr40bOXJU+cSJd51MSUm1Dxt2Vc20aU/m//zzT2HHj+dpLRYzP27c+LKnn56Xn57ew5aammZ/5JFpRQCQlZV5RgC0ceP6yNWr30mYN++F7KuvHlXdWHtyc48ZnE4n16/fANMrr7x+9Lbb7ij++usvop57bk5S6/4kiD9odhIEQRBOMMb6A3gCwFVwLRwaCOB9AEsEQSj2bRNJa5HdgYxdlqHVnX+Cu6eXyGqlLHAdTbAoAhotwuIizllOtNRCtpmgCgyEKMrQ6/W45Zbb8P3G9Qj88AOUHDiILtOmg6u3Svpv33+Ly/WukbGJf/9Hk9vFcXAHQN73AGn0rvlplJ6dEEL818CBg88YP89YT/P+/b8FA0Bubq4xJyc7YOfO7af/SHkWpM3OztJfddU1NbfffmfZ1q2fhufkZBkLCwt0+fm5RgCQJPl0j01lZaXm7bczklQqlZKQkHjOu7ULFizKM5lMJ0JCQiQA6Nmzt02t1iivvLIwtaystCA6OoaGu3RiXuWPFwShAsAcH7eFtDHPwpE2WYK2CT1APWQRwTFx4GpoqFFHUlVehkh3EovYrjHnLizLEGvLoQr+K1X2rbfejq83vgejLMNy5BAqv/4S4WOuP+Owz/+zGUPtdhhCQ9F90MVNbhvHcRBbOARO7XTizoQkaM7Tu0UIIaT9qNXqMxJnKYoCnlcprscyd9NN/ygZN258Rf3jYmJinWVlper77/9nz6CgYHHIkMurBg26pKZfv/7mW2+9qV/dshzHY/78F7NWr34nfuHC51JWrXovk+cbHuykUqngCX480tOZFQCKi4u0FAB1bt4uhBoCV+9PABoYRicIwrstbBdpA7LDdXPEIcvnnwMEoL+lFiO7JuGHWkqC0JEc378feo6DWZKQGBJw3vJSbTU0kgOeXw+RkVEYct04rN2xHQ8kp6L8k83gAwIQeuVwAEBWloBPv9uB/wJ4f8W7TU5+4MLBITrPSifZHFqew9jYONgoCxwhhPitw4cPBlxzzbWnh6RlZh4OTEtLswBAQkKi9cSJfH1qatrpXpvdu3cFfvjh+zFPPfVs/tatn0aYTLXqTZs+O6jRaBR3fe6hK3/9BQkNDXEOGzaiJjo62vHgg5N7rVmzIuaeex5oMIvP5Ml3sK5dE23PP/9ivmfbgQN/BqjVaiUlJY0SI3Ry3iyEOgauBUsbywSnAKAAqANQ3EPgbJLcpDlAkkoNOO2QbfR7oSOpOCqgC4AqHk0KTkSrCXBawamCobjHIDz44MO44b+fIrG0BGNiYlH27lrU/LgLuqRkvPbdN1AUBcOuHo3ug5ve+wO4hsDZpZbNKfOkwdarVHDY7dC61wUihJDOTqdXt+maPC053+efb4lJSkqx9enTz/zxxx9F5efnGWbNeiYPACZMmFiyaNGC1IyMJfHXXXdDRUlJsfa11xYlR0ZGOtzpqR12u53fuvXTsIsvvsSUk5Otf+utjK4A4HA4zmpTz569bePH31KyYcO6+OHDR1alpXU76w/NiBEjT61cubzrxo3vmS+7bGjNgQP7A1av/nfCjTfeXBocHExpRTs5b3qAXgJwBK45QAVoaEVF0iH8NQdIatIcIFnlersoDkqC0JHYiosAAA5904aISTYzFLsZqqAQiKIrAAoPj8ADDzyM15e8AgsU3BzXBbacbNhysqHkHIVWq8Wjj05rdts4joNNdDT7uDPqMP4VvNtMJgqACCGdnqIoslavFnv2iVOjjRcm1erVoqw0f92BUaPGnNy8+YOYpUsXG5KSkiwvvbQ4q3fvPlYAuP76cZWKohzbuPG9uE8++SjWaAyQBg++pGratJkFnv2ZmUdKVqx4u+uyZUv4yMgox+jR15Xv3v1j6JEjhwIAnKx/vilTHi3+8cfvwxYufC555cp3hfpD4SZNuvskz/P4z382x/z7328lhoaGOseNu7n0gQceLvHuJ0M6Em8CoB4AbhQE4QdfN4a0Lac7mYErCcL5vzR6FkNVnM5WbRfxLbnKtcA1H3j+IBcAoCgQa8qhCulyxuY77vgn9uz5GR/++D12lJXiyoRE1NZUI89ixpNPPo2kpORmt02BDIfYsoBaVScAstZUIzji3IkeCCGko1MUSDLkYo1e1abBDwDIiiwrCpo95jglJc06c+acgsb2jx17Y+XYsTdWNrSP4zjMmDG7cMaM2YV1t9cd3jZ16hNFU6c+UeR5rtPplE2bPjt0rjZNnHjXyYkT7zoreCKdnzcfnHwAwb5uCGl7SnAwtp8sxf7qqiYNgfMEQJyzZXfsSdvaYjbhsQP7ISfFnr+wm2SuAV9vaBrP83jttQxce+11OGm34eOco9hZdQqTHn0Ct9wywau2yWhZCmwAUHjXPDYAsNH8NELIBUJRIMmy4mzrf94EP4T4G2+HwM1jjO0VBCHPx+0hbUiMjcM7+blQqdS4xB3cnIuscQ2h4mgh1A7lRFEhSuw2REWHNfkY0WYG57SBUwWdngcEAHq9HosWLcEDDzyCoqJC9OzZG+Hh4V63TVLkFmWAAwBJliEpCrQA7CZTi+oihBBCSOfnTQA0EUAXADmMsZMA6i8KowiCkNbilpFWZ7O5Ll1T5v8AgKJ2DZPjRbr501E4nQ6UlblGCMSGBTX5OMlmgeywQBUYfHoeUF0pKalISUltcfsUyHC2tAdIkSG6swDZTJSinRBC/M2uXb/ua+82EFKXNwFQgfsf6eAslZUwqlTQNXHSeElCd7z7zRYgJAT3tG7TiI+UZGfjgcRknHQ6ER4c2PQDZRlSbSW4oLjWaxzcPUAtWATVU8cqSy1yc/PwwuR7fdQyQgghhHRWzQ6ABEG4uzUaQtqe9N23WHvRxfiiiQubOkOjcLC2BqFtP+eSeKlMyMSIyGiUi85mrs8DSOYq6BQnnK2UYIjjOEhyyxZBBQBZkWHRanHSYYfVQfPTCCGEEHJuTQqAGGOJAIoFQXC6H5+TIAjHW9wy0uok93o+Mq9qUnm1xpUowUbrAHUYNSeOIwiA2YugVbRZoBftAJqYPa6ZOA4QlZYnQZBlGXqD571p9UXTCCGEENKJNbUHKBfAZQB+AZAHnHfh9qZ9oybtyrOgqcg37W0Q4LDh6sho1IoiZFlG/Zz6xP/YS13LGYi68ye5qE+ymaE4rVDpAyBJvl/ui+M4SJIveoAU9Fdr0TMhESgqOv8BhBBCCLmgNTUAmgwgp87j8wVApANQ3MOF5CZkgAOAIFMV7k9ORWZtDWw2K4zGgNZsHvEBuaoKQDPWAKpDEZ2QrbXgjVGQWiHvBccBoixCUloWXMmKjO7gkBobj+MV5T5qHSGEEEI6qyYFQIIgrKvzeG2rtYa0qeYGQJze9SVap1LBaqUAqCPQ2KwAOOhCmpEAoQ6x9hQ0kck+bZMHx3GwSy2fsyMpMhSVCoB4elgnIYR0dhwHFcdxbT4UQ1EUrxZCJcSfNHUO0J3NqFMRBOE9L9tD2pLTCQBQ1NomFVc0rmxxOp6H1UpzLToCgygBajUCQr0LViWrGTrRAaD5Q+jOh+MAm2g/f8HzkGUZikYNWO2QKQkCIeQCwHFQqTgxzmm3eJPNt0U0OqMoQV3sb0FQRsaS+B07tkVs2fLVgaYek52dpVu69NWuR44cCtLp9PLllw+tfOKJWQVGo9H3476JX2nqB2dtM+pUAFAA1AF4FjSVtU1Lg624e4r0vIomm3cAiqIgyJ35LSQy1Ks6JJsFimgDp9KesSCqr9h9EQApMqBxvTcVe8vrI4QQf8dxHO+0W9Q5h36THXZbm31Z1+r0fFrvgWqVLoRXFMWvAqDmOnWqQjV16oM9UlPTzP/614ojpaWl2ldeWZi8ePFLePbZBZTMq5NragCU0qqtIO2iOMCIssIC2FOattaL7O4pcvUA0VAjf2c2m3HfH/sQptHgg7tGe1WHZLdAcVihCgxpcEHUlpAhw9nCBAiAOwDSunsx3b2ahBByIXDYbbLdamnr3opOkQFp/fp1MWq1Slm8OCNHr9crPXr0shUXFxVt3bolSlGUZi8dQTqWps4Bym9sH2NMD8AuCAIlRuhgfg8KxObcbFzV+/ImlffMFdLxPMw2S2s2jfhAWVkpHLIMi1oFoztNdLMpCiRTVassiCopUosXQQVcARCndQ/REykAIoQQfzN06OBBU6Y8evybb/4XnpubExATE2ubPPn+wlGjxlR7ymzf/nXI2rUr4wsLCwxhYeGOK68ccWrKlEeLdTqdAgCZmYf1y5e/2eXIkcNBNpuVj4iIdNxww/iyu+++t6yhc65duzJ67dqVCU899eyx0aOvq6q/f9++vcFDhvytUq/Xn/7+OmHCxPIJEyZSNp0LgFdRPHP5kDF2CoAJwEWMsbcYY4/6tnmkNVksriBGq2val2NZ47rLruZ5WE3mVmsX8Y2yslIAQFR4WIvqkcxVUKHlgUp9vusBUsDpXO9Nz7BOQggh/mXNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs9Kcrl+/NmrdulUJc+fOz2ko+AGAkpIifUREpHPRogUJ48aN7nvzzdf3efXVFxNsNht1/VwAmh0AMcYGANgLYBCADQA8bxQHgKWMsbt81jrSahRFgWgxgwOg0TYxAFJr8b7dgQVHj8BK2bb8nungAUxJTsWwiMgW1SPZrYAP5urUJytyixdB9ahOjMf0g39gB/3ZIoQQvzRixNXlkybdfbJ793T7jBmzC9PSupk3bdoYDQDr16+NGzlyVPnEiXedTElJtQ8bdlXNtGlP5v/8809hx4/naS0WMz9u3Piyp5+el5+e3sOWmppmf+SRaUUAkJWVeUYAtHHj+sjVq99JmDfvheyrrx5V3VBbAMBqtao+/vjDWIfDwS9YsCjnvvumFHz33c7w55+fm9S6PwniD7zJHrIYwK8ARrmfPwwAgiA8zhgzAngMwLpGjiV+QnE4cK/JinsHD8HHTUyDDZ5HjlqLAzXVsDlosrm/kwsLMCIyGtktzBEk2SyA0wZea4As+26kq6S0fBFUDz44CCdsVkTbKTAnhBB/NHDg4Nq6zxnrad6//7dgAMjNzTXm5GQH7Ny5PcKz35N3Jzs7S3/VVdfU3H77nWVbt34anpOTZSwsLNDl5+caAUCS5NO3viorKzVvv52RpFKplISExHN+UVGr1XJcXBebJ+FB//4XWSRJ4hYtWpB68mRZQVRUNA0p6MS8+Wp0GYAJgiCIjDFVvX0fALi95c0irU2uE8Dw+qanSNa6M8ZRGmz/J1dXuR4Ympblr9F6HDYodgt4fQRkH/XYcBwHSfbNHCAA0OhcQTwl5yCEEP+kVqvPuIOmKAp4XqW4HsvcTTf9o2TcuPEV9Y+LiYl1lpWVqu+//589g4KCxSFDLq8aNOiSmn79+ptvvfWmfnXLchyP+fNfzFq9+p34hQufS1m16r1Mnm94sFNYWLgzKSnpjC8z3bunWwHgxInjWgqAOjdv5gDZABgb2Rfh3k/8nGcRVIcsQ6s/a/hso3qoVBgZGQ2ppqa1mkZ8hHfP8VIHNv36NkY0VaKRvyFe4Ti4AyDfBFR6pwN/j+uCwZSKhRBC/NLhwwfPuNuamXk4MC0tzQIACQmJ1hMn8vWpqWl2z7/S0mJNRsZrCSZTLf/551siTKZa9erV6zMffvix4jFjrq+qrq5y38T/6xd/aGiIc9iwETWzZ8/NO3Ys27hmzYqYxtrTu3ef2qysowF1l3g4ejTTwPM8EhOTaFG5Ts6brzTbADzPGEuos01hjAUCmAFgu09aRlqV7F4vxS5LTZ4DBADDRDseSE4F7+ldIH5L6w5yDSGN3a9oOslqAi/77u8Bx3EQfTgETud04tYuXTGkiQk9CCGEtK3PP98Ss2XLx+HZ2Vm6l19emJCfn2e47bY7SwFgwoSJJb/88nNYRsaS+OzsLN2uXd8HvfLKiylms0kdExMrxsTEOux2O79166dhBQXHtd99tyP4+efnpgKAw+E467tsz569bePH31KyYcO6+Jyc7AaHQUyaNLmktLRUN3/+3MTs7Czdt99+E7xixdtdr7xyREVkZBT1/nRy3gyBmwlgNwABwH64Qu/XADC4AqoJvmocaT2eBSPtkgytruk9BCLPA7IEiYbA+b1A912t4PCQFtcl2SzgJAeAlvcmeThEJ3zVYcMbXYGP1kf1EUJIR6DV6dt0TZ6WnG/UqDEnN2/+IGbp0sWGpKQky0svLc7q3buPFQCuv35cpaIoxzZufC/uk08+ijUaA6TBgy+pmjZtZoFnf2bmkZIVK97uumzZEj4yMsoxevR15bt3/xh65MihAAAn659vypRHi3/88fuwhQufS1658l2h/lC47t3T7a+9liH8619vdL3vvjt7GwxGafjwqyoee2xGobevkXQczQ6ABEE4wRjrD+AJAFcByAEQCOB9AEsEQSj2bRNJa5DdvQM2WYZW1/Q5IhKvAuCERJPN/ZosSQjkXVP0QiNCW1yfa0FUG3id0SeJEDiOg13yXSINzuh6D2to4TpCyAVAURRZozOKab0HqtHGC5NqdEZRUpRmL76akpJmnTlzTkFj+8eOvbFy7NgbKxvax3EcZsyYXThjxuwzgpN77nmg1PN46tQniqZOfaLI81yn0ymbNn126FxtuuiiQZaVK98Vmv4qSGfhVX4oQRAqAMzxcVvAGEsH8BuARwRBWOveNgDAGwAGA6gAkCEIwuI6x/AA5gG4F0AYgF0AHhIEIbtOmRbX0dmI7vkhDllqVg+QpHK9ZTxD6Ih/qiouAs9xkBUF4VGhLa5PcTog281QGSN9kgiB4wCb6LshdWqj6z2s43nIsozGJr0SQkhnoCiQJKiLVbqQNv9lJymKrCjwzQROQtqJtwuhXskYu9z9OIkx9l/G2J+MsWe8bQhjTAPXukIBdbZFAPgfgKNwBS/zACxgjN1d59BnADwI4D64MtQpAL5kjGl9VUdn5NRqsftUBQ7U1DRrDpAnAILD2UotI75Q5XDgjt9+wewcAVqtb97GkqkSvupgURQFDh+uLaQKcAVAPMfBbqZFegkhnZ+iQJJlxdnW/yj4IZ1Bs3uAGGN3wLXOz2sAfgKwHMBQuIKMOYwxhyAIL3vRlucB1Nbbdj8AO4ApgiCIAI4wxroDmAVgjTtAmQ5gpiAIX7jbdyuAIgA3w5WW2xd1dDpSVBReP5YFnufxTFPXAQIgu8sqtA6QX6uoKIdDlsH5IAOch2Q1QyM5ANTPfu9FXZDglHz3N1Qd8NfrtNZUwxAU5LO6CSGEtMyuXb/ua+82EFKXN0PgpgNYKwjCTMZYNIBrAMwWBGExY2w6gAcANCsAYoxd6T5uAIDjdXZdAeB7d+DisQPAU+5zJwMIcm8DAAiCUMUY+w3AlXAFL76ow2sqlX8OxXE4XHN4tDpDs9qoqF29CZwkQa32z9dWn+f1+eu1aA1VVacAAOHBQeB533TbKA4reMUBtbrp60bV57kGCmTIkHzWNl6rhlOWoeF5OC2mDvPebE8X4ufCX9G18C80lZCQzs+bAKgHgGnux2MAcAA+dT/fC+CF5lTGGAsF8B6AR90JFuruTgBwoN4hngluie79AHCigTKJPqzDa8HBvrsD70sFxyVwAHR6AwyGpg+RKk1Mw+afdyAoJQVhYd5/EW4P/notWoMqJwtTklOhBIdA34zrey4cL0ILEQE+uO4qLQ9ezfmsbWqtCq8U5KGq1oR14UEd7r3Zni6kz4W/o2tBCCFtw5sAqAquHhMAuA5AviAIWe7naQDKm1nf2wB2C4LwfgP7jHANX6vLk35Mj78WZG2oTLgP6/BaTY0VktTsZCmt7tTWr/Dh4CHYWVsLq7Xpk9GrAyPwS1UlupuiUFnZMeZaqFQ8goMNfnstWoN0/ARGREbjqJqHrRnX99wcUNdWw6YNgyh693P0XAurzQ6z1QqbzTdts/F2FAE4abXg5KlaRHaQ92Z7uhA/F/6KroV/CQkxUCIVQjo5bwKgbwA8xxjrA9ccmcUAwBj7O4AFAL5uakWMsUlwDVHr20gRK4D6OZo9M/bN7v1wl7HWK+P5BuSLOrwmSbLXXxZbk8NqhRqAwqualdaYV7nu2FssFr98Xefir9eiNcgm11uX1+t8krbaw1lbCVVYUot/jqIswiGKPmubJMnQ610fa5PJfMFcZ1+4kD4X/o6uhX9QfPcrkxDip7y5xfEYXL08z8KV+OBF9/bX4Zq/81Qz6poMIAbACcaYiTFmcm9fzhg7BNewtPh6x3ieF+KvYWsNlfHkmvdFHZ2OZHV1gkmq5k1oDxCduDwsAkmgQdL+TGVzXV9NQNMz/DWFZDWD98H6PaIsQZR8t9C2pMgYEhSCm+O6wF5S4rN6CSGEENL5eLMQagWA0Q3sGioIwvEGtp/LHTh7afksuIKrDwHcBuBBxphKEARPyqiRrmYIZYyxagA1AIbDtSCrZ07RQABvust/74M6Oh3ZvZCpxDfvLRBeU4HH07rjT1P9hH3En+hEEeB56IN8O6dAslvASU54uYTYX/XIEkTZdwGQoii4VKdHYpeuqCgtPf8BhBBCCLlgef0thjEWA0ALnO4K4BljvQFcIQjC8qbUIQhCYf1t7iQIZYIg5DPGVgOYCWAVY+wVAJcAeByuNXsgCIKdMfYmgJcZYycB5AF4Fa5enU/cVfqijk5HcbjmXsiq5r0FOK3rC7VGUaAoCjhKl+OXjO4xHIFhvk0HLdmsUJw2qPRGSJL340ScshOyD8eZSIoMyT1mX7RZfFYvIYT4K46DiuO4Np+spNBCqKQT8GYdoP4ANgJgjRRR4FobqMXcPTSjAWQA+A1AMYAnBUFYV6fYs3C9jpVw9SZ9D2C0IAgOX9XRGXkCIEndvCxcnN6VM0LHq+BwOKDT1Z9eRdqbLEkIcAcDIRFhPq1bER2Q7WbwxkhILVjHxyb69qMlKzJkFQ9ICkSr7fwHEEJIB8ZxUOlVqjg4pJZ1x3tDqxJtklTsb0FQRsaS+B07tkVs2fJV/cy/Dbrppmv7lpeXN/gl6NVX3xAuu+xvpob2kc7Bmw/OqwDCAMwAMBau7Gmfw5URbgxcQ8m8JggCV+/5XgCXnaO8BNeiprPOUabFdXQ6TicAQGnGIqgAwBlcAZBexcNms1IA5IdqSkvAcxxkRUF4pG8DIACQTJVQhSe1qA676NuFdGVZhqxWA5ITko0CIEJI58ZxHA+HpK7NKpdle9ulDuR1Kj6oe6SaU3O8oih+FQA118qV7x2peyNPkiTuyScf72Y0GuSLL76Ugp9OzpsA6FIATwiCsMqdtGCSIAhvA3ibMbYZwFQAu3zZSOJ7FXod8goLYOsS1azjPEPgdDwPq9WKkJDQVmgdaYlqpwMT9+1BbFAgNutv8nn9ktUMjewA0LwEGh6yLMPm6wBIkaGoVYDdCdnh27oJIcRfyXZJluxtnjqwU+QIj4yMOmMi6vLlb8aWlZXq1q//6KBa3fYda6RtefMm1gE46n6cCaBfnX1rcI6eFuI/fg8KxEtZmSg3hjTrONndY6TjVbDZrOcpTdpDRUUFnIoCGFtnUUXJbgXXgiFsouLbDHCAJwBy/cFS7BQAEUKIPxk6dPCgDRvWRU2efAcbMeKygRMmjO+1bduXZ3wB2b7965A77ril54gRlw28+ebr+yxdujjebrefHhWUmXlY//jjD6WNHj18wLBhlw68+ebr+6xZszK6sXOuXbsyevjwIQO//vqL0PO1r7i4SLNp08a4O++cXBgTE+vbP1DEL3kTAB0HkOp+nAUgmDGW7H5uhw8WDyWtz2p1BS9aXfPSJMvuOUN6noeNhhr5pYoK11rE4SG+TYDgIdtdiRB43rsEGKIswunDDHAAICsKFK17OKez007dI4SQDmvNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs+72rV+/NmrdulUJc+fOzxk9+rqq87Vt1ap/xwYHhzhvv33SSZ+/cOKXvAmAPoYrY9o/BEEogasXaCFjrC+A6XCnkib+zWJ2LZSp1TYvAJL0RqyvrERGbjasFsq25Y+kw4cxJTkVFwc1r3evqWSnHYrdApXKu1EQrhTYvh06LisySmKj8EzmIRwKCPBp3YQQQlpuxIiryydNuvtk9+7p9hkzZhempXUzb9q0MRoA1q9fGzdy5KjyiRPvOpmSkmofNuyqmmnTnsz/+eefwo4fz9NaLGZ+3LjxZU8/PS8/Pb2HLTU1zf7II9OKACArK/OMAGjjxvWRq1e/kzBv3gvZV189qvp87aqsrFTt3Lk98pZbJpSomrk2Ium4vBnk+DyAbnAtYroZwDQA/wEwAYDk/p/4ucm1ZvzzoouxrZlprBWVGvslGccrT+FO6gHyS6rSEoyIjEamtvVSlIvmKqjCu3p1rOTjRVBP1xscCMFUi+4ijV4ghBB/M3Dg4DMWEGSsp3n//t+CASA3N9eYk5MdsHPn9gjPfs9KCdnZWfqrrrqm5vbb7yzbuvXT8JycLGNhYYEuPz/XCACSJJ/+Y1dZWal5++2MJJVKpSQkJDZpPPS2bV+EKQowbtzNp1r+KklH4c1CqDYAtzDGNO7nXzPG+gAYBOA3QRCoB8jPKbIMLQCoVOCbOQQO+GvYHM0B8k+KxdW7xxual+K8OSSrCWpZRHM7kTkOEH28CKqHRud6vfS+JIQQ/6NWq89Y/E1RFPC8SnE9lrmbbvpHybhx4yvqHxcTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N996601156GD43jMn/9i1urV78QvXPhcyqpV72Xy/Ln/Tv344w+hgwYNrg4MDGzrZBKkHbUkzYWRMXYZXCmxywB8KQgCpQ3sABR3CmwA4A2BzT6+h16PqLBw2KtrfNks4iO8zXXTS21ovRTlst0CXnIAaF4AzXGcKwBqwRpCjQkURYyJjkWcyezzugkhhLTM4cMHA6655trTQ9IyMw8HpqWlWQAgISHReuJEvj41Ne10r83u3bsCP/zw/Zinnno2f+vWTyNMplr1pk2fHdRoNIq7PvfQt7/iqtDQEOewYSNqoqOjHQ8+OLnXmjUrYu6554HSc7VLEDID77prcoFPXyzxe94shMrDNQzuMQABADxdj2bG2EJBEBb5sH2kFch1smSpDM2fL3GTRoXgtHRknTrrRg3xAxr3EDCtsfUCIMmTCEFrgCwr5z+gjtZIggAAwTYH7k5MRqGThsARQi4MvM7LyZjtcL7PP98Sk5SUYuvTp5/5448/isrPzzPMmvVMHgBMmDCxZNGiBakZGUvir7vuhoqSkmLta68tSo6MjHTExMSKMTGxDrvdzm/d+mnYxRdfYsrJyda/9VZGVwBwOBxntalnz9628eNvKdmwYV388OEjq9LSujU4HK6g4LjWbDapundnNHTgAuNND9CzAGYDWAbgE7h6f2IB3AbgBcaYSRCEN33XROJrinudFLskQatvfqpkERwABaKVfl/4I50sAbwK+iBjq51DdtihOKzg9eHNCoA4joNTEiErvh9pwLl7vNStUDchhPgTRVFkaFViUPdINdp6XR6tSlSk5i++OmrUmJObN38Qs3TpYkNSUpLlpZcWZ/Xu3ccKANdfP65SUZRjGze+F/fJJx/FGo0B0uDBl1RNmzazwLM/M/NIyYoVb3ddtmwJHxkZ5Rg9+rry3bt/DD1y5FAAgLOyt02Z8mjxjz9+H7Zw4XPJK1e+KzQ0FK6srEwNAKGhYXTn7ALjTQA0GcALgiA8X2fbUQDfM8Zq4EqKQAGQH5PtrjTBdlmGVutFAMTzgCxBtFIWOH9kcHfKBrZSGmwP0VQJVWhCs47hOMDu40VQT9O75gCpm9chRQghHY6iQLJJUjGn5tp8UVJFkmRFQbPHMaekpFlnzpzT6FCzsWNvrBw79sbKhvZxHIcZM2YXzpgxu7Du9rrD26ZOfaJo6tQnijzPdTqdsmnTZ4fO1aaBAwdbdu36dV/TXwXpLLwJgCIB/NTIvq8APOp9c0hbkNyTxO2yDI0XSRBEXgXIEiTKAud3JIcDBvddruCw4FY9l2w1QSOL+GsU7PlxHAdrKwVAKveQP1q/mxByIVAUSIqi+H5CJSEXAG/uHHyDxlNdXwPgR++bQ9qCU1Gwv7oKmaaaZi+ECgCSO08+BUD+x+Z04I7ffsGUP35DSCsHQJLdCkjNC2YUKLC1UgDEu4fAtWL2b0IIIYR0Ak26WcoYu7PO090AnmOMxQL4CEAJXJngrgXwdwBP+LqRxLfEsDC8mJUJjuPwrKb5E+Ul3vW28cwlIv6jqqoKDlmGSa3AoGu9NNgAINksgNPerEQIstI6KbABQBXgmvOk5XgoigKumWtcEUIIaR00zIz4m6aOFlnbwLYx7n/1LQewwtsGkdZnsbjm7mh1eq++JMpqDQBAcTh82i7ScpWVruHToUGBrR4AyA47FKcVvD6syQGQpMgQ5dYZscEHuOazqTgOstMJlbZ1A0BCCCGEdExNDYBSWrUVpE3VDYC8kR8eg6//3Ivw3n182SziAxYhE1OSU1Gj17TB2RRIpipwwV2afITUij1A6gA9XjyaCbssYY0oUgBECCGEkAY1NQAqEgTBef5iZ2KMabw5jrQu5y8/Y+2AwfjNyzk8laHR2FlxEkOoB8jvOAoLMCIyGoLUNtdGstZCqzQ9EUJr9gCpDTrsr6kCANidDujRemnACSGEENJxNTUJwgHG2I3NqZgx9g8AB5vfJNLanGYzjGo1NO5kBs2lcc8bsttpHSB/46xxLbItqb27ts0l2azg5KYFWxzHQVIkSK3UA8TxHDQaV8+XldaoIoQQQkgjmtoDdCeAtYyxhQDWA9gsCEJ2/UKMsV4ArgNwHwAVgEm+aijxHU/2Nonz7ktyoCxjQHAowuzUA+RvZJPJ9UDbNsmgJbs7EYJGf955QBwHiLLYaj1AsiLjiqhoaJwirOUngdi4VjkPIYQQQjq2Jn1LEgThF8bYRQAehmuh04WMsSoAeQDMAEIBJAAIgWs13lcAvCUIAuVJ9kOedYBEL3uAYmsq8HR6Dxyw0+X1O+7FaXldW8wBAmSHDYrTBl4X2oQAiIMktd4cIFlRcHNULKI1GthLSoA+/VrlPIQQQgjp2Jp8m1gQBDuAJYyxZQCuAjACQCpcQc8JAFsBbAPwgyAItDCXH5PtrvTVMu9dL4GidSVPUMuyz9pEfEPl7pVTG5qf3twrigLZXAU++Py9LRwHOGQnZKVpGeOaS5ZleCYcOszmVjkHIYQQQjq+Zi+EKgiCUxCErwVBmC0Iwv8JgjBaEISJgiA8LQjCtxT8+D9PACSpWxgA+axFxFc0oqt3RRtoaLNziuYacE1YjJzjONhbaRFUwDUETnTnYqAAiBBCOg+z2cy/996aKM/zOXOeTL7vvjtZa56zoOC49rPP/hPWkjo2bfogYujQwYMa298Wr2Po0MGDNm36IKI1z9FWjh/P0w4dOnjQTz/9ENTSupodAJFOwOnqJZBV3g2T4vSu7FptM8iKNIfO3StnCA5os3PKdiv4JmSd4zgOtlYOgCTe9StNdA8FJIQQ0vGtXv1OzMcffxjreT5z5twTr7yy9Ky56L70/PPPJO/Z81NIa56DtB+6iX8BqlGpUWmqhSUq3KvjeXcApHXP6VB5OZeI+N6zBfmwV1ZiyeiBbXZOyW6FItrBqXRQzjG8TYEMm7M1AyClTgBEWeAIIaSzUBTljLUWQkJC2mC0kdK6q4mTdkUB0AVof0gwPsw8hGEp/dHdi+N5vat3Qc+rYLNZERAQ6NsGEq8oioKyU6cgik6EBre4d7jJJLsVisMGVWAIRLHxAEhSJDhbKQEC4O4BUvGApECiBB2EkE5MUQCL2D6jeIxqyFwzQ4Pq6mrVkiUvJ/zyy+5QURS5lJQ0y0MPTS0YMGCgBQAsFgu/aNH8rr/+ujfUYrGounTpYrvjjn8WjRkztiojY0n8Rx+9Hwe4hnO9//7mA//+97/iy8pKdStWvCv89NMPQbNnT09/6aXFR99447XEsrIyXXJysmXu3Pm527Z9GbZ165YYSZK4K64YXjFnznMnOI6DoihYuXJ5zLZtX0aePFmm02g0co8evUwzZjx1PCkp2XHffXeyI0cOBx45cjjwppuuDdqy5asDDoeDy8h4Lf7bb3dEWK0WVUJConXy5PuKhg27qsbzOr/88r+h69atjC8tLdGnpXU3DxgwsKaxn4mHJMlYuPC5rt9++02EWq1Wrrnm2vKpU6cXqt3TFH755eeA1avfic/JyQpwOp18TEys/fbb7yy+8cabT3nq+PTTT8I//HBDbHFxkT40NMw5duyNZffc80Bp/XOdPFmmfvjh+1hoaJhz6dK3so1Go/zddzuCV6x4u0thYYEhOjrG/ve//19JRsaS5Pff33wgMTHZcdNN1/a99NLLq37/fV9wdXW15tln5+cMGfK32nXrVkV/8cXn0eXl5drIyEjH3/9+a8ltt91RDgA//fRD0MyZ09I9dQCu4Wu33/6Pvq+88vrRyy+/onbOnCeTZVnmwsLCnTt3fhNht9v4fv0G1Dz11LP5MTGxIgAcOXJI//rrryZmZ2cFhIWFOW+99fbi5r3zGkcB0AXIYnHNj9C65/I0l2cInJ7nYbVSAOQvLBYzRNGVBiA0sA0XAVVkyJYa8MGx5ywmQ4YotW4ApKhVgCRC9nKRX0II8XeKAtzxlbGHUKlqu7HOdfQIk0zvXWsRmhoEKYqCxx9/qLtarZZfeOGV7ODgYOnzz7dEPP74Qz2WLfv3kb59+1uXLVsSn5eXa1y06LWskJBQ8eOPP4xatGhBau/efQ5Onnx/idVq5X/88bvwFSvePRwZGXXWHxJZlvHWWxldZ82a8//t3XeYXGXZ+PHvOdNntrdssunthISEkFAEqQICggo21NdXxA76Kj9RsIKKWFCkiCiogKKgINKkKr0T0utJr7vZzdbZ6XPK748zGzbJJtkybXfvz3XttbszZ55z754p5z7P89zPVq/Xb1199benfeUrXzji6KMXdt188+/0RYveLLnttlsmvetdJ4bPPPPsrrvu+kPdAw/cN/Zb3/rullmzjojv2LHdd8MNv5h0443XT7jppts2XX/9TRu/8Y2vzqipqU1dddX3twP84AdXTd6+fXvgO9/5wZb6+nGpF154tuLqq78z/Qc/uHbTmWe+t2vRojdDP/3pD6d99KOfaHrf+97f9vbbb5XefvutEw/3/1m/fl1JdXV1+je/uX3dzp07fL/+9fWTE4mE+t3vXrOjsXGX59vf/sbMs88+b8+VV35vu2Gklb/85a76G2/85eQTTnh3uK5ujPH4449W/upXP5vyqU99ZteZZ57dsWbNquCNN14/ORQqMT/+8f9p7dlPW1ur+6tf/aJWXV2T+vWvb90YCATslStXBK6++jvTzz//gy3XXHPd5nXrVgdvvfWmSfvH+PTTT9b++Mc/21BWVmYeccSc+C9+cd2EF198tvrSS7+2fe7co6KvvfZy2e233zoxlUqqF1/8uZb+PTPg9ddfrTzppFPbb775Nr2xcZf3Zz+7duqtt97UcO21P9/W1dXluuKK/9NmzpwVue22P6xtbm723njjLw6IbbD6lQBpmna2rutPZ2unorB6Fon0+gY3Ud4MlPLXpl10JxJcISeaRaN9wwYumzyNlnQKv8+b132b0U489qGrAlpYOSuBDc4H4IayEh557Q3OOPronO1HCCEKTYHclNPMgVdeeal0wwY99PDDTy7vSV6+8Y2rdq1Zs7rk73//65i5c4/a2tTU6AsEguakSVOS5eXl5te//s1dRx+9sLu8vNIsKSmxAoGApaqq3dMz0JdLLvnCroULj4sCnHjiSZ3//vcjdVdffe22YDBozZihJf761z83bNq0IXDmmWd3TZgwMfnNb35ny1lnndMFMGHCpNSbb77e8dJLL1QCVFZWmW632/Z6vVZNTa2xefMm36uvvlx16613rO3ptZo2bXrzpk0bA//4x1/rzzzzvV0PPHBf3cyZWuRrX/tGI8D06TOSmzdvCjzxxKN1h/r/lJdXpK+99hdb/H6/PWvW7MSePXt23X77rRMvv/xbu1KplPLxj3+q8fOf/3KzmhnifcklX2h64YVnqzdv3uSvqxsT+ec//z7mhBPe3f6lL31ldyauZCwWdfn9gb0fyuFwl/urX/3SzJqa2uQNN/xmk9/vtwHuu++eMVOmTI1961vf3QkwY8bMZHt7u+cPf/jdhN4xHn30gq5TTjmt22krrD799OO1n/vcl3ZccMGH2zP73NPYuMv3j3/cO/bTn/5svxOgQCBgXnPNT7Z5PB575sxZiddff7Vt8eJF5QCPP/5IZSqVUn/0o59tLS8vN2fNmp2Ix2M7fvKTa6b1t/1D6W8P0JOapu0A7gTu0nV9ezZ2Lgrjw11hPjzvaN44zAnrwVheHy9GI3R1dnCZTDYvGuHt2zitppZtyfzPfzGTcXxmEug78epZBDVtGjkrvWLaFtGyEpZ0dXLQkjtCCDHMKQrcc05MHy5D4NatWxMEuOiiC+b2vt0wDCWdTikAn/rUZ3Z///tXTv/gB88+asaMmdEFC47tOvfc89sHMtdnypRpe6/I+nx+q7y8Ih0MBvee6Hi9HiuZTKkAZ511TtfixYtCt9xyw7hdu3b6du7cEdi5c4e/srIy3Vfba9asCgJcccX/7VOxzTRNJRgMmgDbtm0NHn30wq7e98+dOy9yuARo2rTpsZ6EBGDevPlRwzCUTZs2+ubOnRf/8Ic/1vaXv9xZt23bFv+uXbv8W7duDgJYlqkAbN++LXDKKe9p793mRRe90/MDcM89dzeYpqHsv6/NmzcG9x+mt2DBsd3wu31ibGgYv/d/u3Hjer9pmsrRRx8T6b3N/PkLIo899vCYPXta+j26bMyY+qTH49kbTyhUYhqGU8918+ZNwTFjxiZ6PwcWLjw20lc7g9HfID8EfBr4DvADTdOeBf4APKLrep9PFlG8QpaN3+vD5R38WjFO71EHCekBKhrx9jY8QHKgg7OzwCmEkDpoIQRFUTAtM6cJEIDP7yRgiYQUQRBCjFyKAiEPw2IxPsuylEAgYN5++91r97/P6/VaAMccc1z0oYeeXPHyyy+ULVr0ZtkzzzxZ8/e//3XcT35y/YaTTz61uz/78Xjc+3z4qOrBPwvvuOO2Mffdd0/D6aef2Tp//oLuj33sEy0vvPBcxcsvv9BndSg7c8H4pptuWxcKlezzf3e5XPY72+1bOMHt9hy2p05V1X22sSznfN/n89obNuj+r371i7MmT54aW7jw2K6TTjqtq6qqKv1///elI3rv/3Af+3Pnzgu/730faL3uumumPf/8f9tPP/3McOaxWNbhiz14vb4D/kZlv51amSq0vROa3qcD6bRxwH56b/uO3jcN/P/ZX/06FdF1/WFd1z8EjAMuByqA+4FdmqbdoGnaEYd4uCgyPeWr1cDg54nMCJVwVFk58fBh5/eJPEl2dACQdhUiAYpBOnHQDxxFUTBsM6dD4AAqbIVTq2soy/wvhBBCFNa0aTPi8XjclUollalTpyV7vu6++4/1zz33nwqAW265Ydxbb71R+t73ntv1ve/9cMc///nYqrq6Mcnnn/9vJYCiKFkd8nf//feO+/jHP9V49dXXbv/EJ/63deHC46K7du3073v97p19zpihxQGam5u9vf+GRx55sOahh/5ZAzB16rTY2rWr95kUvXbtqsPO09q6dXPQ6rWw/JIlb5d6vV5r0qQpyfvvv6+2rKw8ffvtd63/4hcvaz7jjLO6Wlv3eIC9FxsbGiYkdH3tPvv52c9+POHyyy/bO1TslFNO7zj33PM6TzzxpPYbb7x+cjgcVgEmT54S2/+xK1cuO2TM06fPTLhcLnvJkkX7/K3Lli0pLS+vSFdUVJoej5PYhsPhvWWCt23bMqCr7jNmzIw1NTX62tpa93bWrFixNGvz3gZ0LVbX9XZd12/Vdf14YA7OkLiPAqs0TXtN07TPaZpWkEl5on9sw8CVydp7qrkNxhcrKvjezCNIt7UefmORF0a3k4xa7gKUJbcszFj4EAmQMwTOsHJbuXRMIslXpkxnakdnTvcjhBCif04//YyuSZMmx6+55rvTXnnlpdLNmzf5rr/+uvHPP//fmp5ha7t27fLddNMvJ77yykulO3Zs8z7++KOVra17fHPnzosABAIBKxqNujZu3OBLp9NDvspXXV2TWrJkUZmur/Vv2LDed+ONvxz31ltvVKTT6b3nxYFAwGppafbt2rXTM2vW7MSCBcd03XLLryY988yT5Vu3bvH+8Y+/H/Ovfz1Q39DQkAT45Ccv3r1t29bAL35x3fiNGzf4Hnron1VPPvnv2oNH4Whra/P+4AdXTV63bo3/iSceq7j33r+Mu+CCjzT7fD67rm5Mqr29zfvcc/8p27Fjm/fJJ/9dccstv54EkEo5wwc/+cn/bXrttVcq7777j3Vbtmz2PfroQ5XPPPNk7Uknndq5/76uvPJ7O1KplPKrX/10AjhDD7ds2RT61a9+3rBx4wbfU089XnHPPXc3wIE9PD3Ky8vNM888u/Vvf/tzw8MPP1i1efMm3z333FX79NNP1F544UeaFUVh1qzZcb/fb9111x/Gbt68yff666+W/OlPt48/WJt9Of/8C9rLysqN733vyimrVq0MvP76KyW//e3NEw7/yP4ZdBU4XdfXAt/WNO07wHuAjwHXAb8G+r1wlKZpdcANwDlAAHgR+Jau62sy988HbgaOAdqAW3Rd/1Wvx6vANcDngUrgFeAyXdc39tpmyG2MFFbynXVY1MDgE6A0zpM4FY0OOSaRHVY0MzTWW5glas1oJx6l7xEZziKoh18sdch8zt+u5LDanBBCiP5zuVzccsvv19944/Xjr7vumqnJZFIdN64h8f3v/2hTz/C2733vh9tuuOHnE37+8x9PiUQi7pqa2tTFF39u54UXfrQd4L3vPafj6aefqPn85z8954YbbtGHGtP3vvfDLb/+9S8mXnrp547w+/3WjBla5LLLvrbtd7/7zaTt27d6J06cnPrABz6051e/+unkz372f+Y88cRzy37+819vvvnmXzXccssNkyKRqLuuri75la9cvu2jH/1EG8DcufPiP/nJ9Rtuv/3W8U8++e+68ePHxz/60U80/eUvd44/VCzHHHNcp8vlsr/ylS8c4fP5rHPOOb/lK1/5eiPApz/92Zbt27f5f/GL66aapqGMGTM28ZnPfH7XPffcNW7VqpWh008/M3zWWed0dXZ2brv//nvr7777j+Orq2tSX/jCpds/8pGL2vbfV01NrfGFL1y288Ybr5/8nvc823HaaWeEf/CDH2/84x9/P/7f/354zNix4xLve9/7W/7xj7+N83i8B+11+853rt5+2203G3feeUdDONzlGTOmPvmlL311e08Z7NLSUuuqq76/+Y9//P34z372f+aMHTsucemlX9vx/e9fObO/xygUClm33PI7/frrfzrx61//8qxQqMT49Kc/23jTTb+c3N82DkU51MKF/aFpmht4H/AR4HzApev6QBKgNwAL+BoQBa4FTgSm4yRE64CHcRKrdwG34SQnd2Uefw1wGXAJsAu4HpgKzNF1PaVpWvVQ2xjEvwVgMzCloyOKYRTPMN10eztbrvwGhmXx+vlfpLp23KDaqbv7x9QosPWEE3jv576U5Sizy+1WqawMUWzHItte+NpljIvFWF3u5X2fODfv+/dW1hGYeRwJ88AEzOt1oXduZF3LRvwBL4l4CsvKfhGj9BOLmb1Mp1FROO0Pd2W9/ZFktLwuhgM5FsWlqiqEy6VuwTkPKKjFixfPUlXXU3V1DRGv1y+TbkVWLV26OOh2u+25c4/aO3H24YcfrLrppl9N/u9/X17SsxbRcJJKJfwtLbtKLMs8Z+HChesOtt2g/zJN004CPoWT+FQCrwL/D3hgAG1UA1uAn+i6vjpz27XAMpwhdmcCSeBSXdcNYK2maTOAq4C7NE3zAlcAV+q6/kTm8RcBjTiFG/4OfDELbYwYVmaByKRlDXodIABDUQAbIy6TzYuFK+X07nmCgz+uQ2EmYihGEkX10Nd1lbiRh8/uTPlvtyUnkUIIIcShrFu3NnjnnXeM/9a3vrNl9uw58a1bt/ruueeuce9+90ntwzH5GYgB/XWaps0G/gf4JDAR2I1TDe5OXdc3DHTnuq63AZ/o1f4Y4JvATmAN8CPgpUzi0uM54DuZoXOTgdLMbT1tdmqatgQ4BSd5OTkLbYwYqXSaDZEIScvE6xtCAqSqYJmSABWRew0DfflS/t+8DxZk/2Yyjp1OoAbKMM19ExDTNjGM3A9LUwJOAuQaYs+2EEIIMdJ9/OP/09rW1ur53e9+M7Gjo91TVlZmnHzyae1f/er/21Xo2HKtvwuhXoGT+BwFmMDjOEPWntB1PSuzmjVNuwP4Ak5vzQd0XY9qmjYeWLnfpo2Z7xOBnnGVO/rYpmf13Wy0MWguV0HK9B+UXVHO99atAuCHfv8hy0QeiqG6wDKxkwnc7uL6G/fXcwyK7VhkW1u4k/Z0isrKskEf16GxsBIRPGVj2X+eo62aGLaBkolLUZWcVMN2BZwiMx7son9eFtpoeV0MB3IsiksBVhIQoiAUReGrX7286atfvbyp0LHkW397gH6JM4/m28CfdV3v9yqvA3ATcDtwKfBwZohdECch6q1nHI0/cz8H2aanlns22hi0srLAUJvIqkjEWSvL6/URCg0+NtPtBiOFahlUVg6Pwn/FdiyyraurE4Da6nL8gb4XJM01V7KbUNCN4tq3dzGcjKC6FXyZIgU937MtVeY8Fz0ow+Z5WWgj/XUxnMixEEKI/OhvAnSSruuv5TKQXlXfvgicAHwViAP71w3vObOKZu4ns018v216ypNlo41BC4fjBwwHKqSmJqdstdfnJx4ffFWuHaEKXt6whobxDXR0FHclOJdLpawsUHTHIpuM7m4+GiqjY7yPoMcpMlAIVnc3Snc3KXvfBCypJIjG4yRTaXw+D8lkGjsHRRDs0hA3bdqAJxRiYZE/LwttNLwuhgs5FsWlvDyAqhZNb5wF2PsvsCmE6FvmtWLDoRcK7lcCtH/yo2naOJyS0hUH2f4v/Wk3MwfnDOD+nqF0uq5bmqatARpwhqXtX6as5/ddvLOm5zhg037bLM/8nI02Bs00raKq6hNbsoTb5h7NutTQqnA1llbzePNuPmCZRfX3HUqxHYts6ty5i1Oqqgmn05QFAzmpsNYf6UQUfyqBqbr3FkJQFIW0YpBKv5P02JadkxhdQT+vdbQRTMZH7LHOtpH8uhhu5FgUhyKbQrjbtu10KpUI+nwBmXQrxGGkUomgbdtp4JDD+gZc4iFTIe1uDuxV6WED/UqAcJKMe4FmMkUINE3zAAuARzO3f1nTNFevuUZnALqu6y2apnUBYeA0MsmLpmkVmcffmtn+pSy0MWKkw2FqfD5Khnjy6fE6hz+RkKqcxSDcvBuAbtPA7yvM8DcAK3FgIQRVBcM0SFu5L4Lgyfzt8Xgc27YPupCbEEIMBwsXLgwvXrz4L+Fwx6VAtdfrjymKUlwpmhBFwLZtJZVKBMPhDq9tW39auHBh96G2H0yNu58Ai4DLcRYVHYrlwNPAbZqmfQHoAL6HU1b7Rpx5OFcCf9I07XrguMx+vwyg63pS07RbgV9omrYH2IozX2kH8K/MPu7MQhsjRjoWA8AcYvd+SFGYESrBLwuhFoXulhY8QILCfi7alokZ60YNjcHMXG5QFAXDMkibRs6LM7i9bo6pqCSgukiEwwTK+70kmRBCFKufmqZBZ2fbpxVFCQJyZUeIA9m2badt2/oT8NPDbTyYBGgc8DVd15cM4rH70HXdzvQo/Qz4B86QupeBk3Vd3w6gadrZwC3AEpzurG/puv7nXs1cjfN3/BFn4dSXgLN7FjDN9PIMqY2RxIg7CZChuobUzpTuDj54xJGsSY64f9GwlOhoxwMki6DHw4x24ql7ZxiPoigkjPw8T9weN1+dPI2g201sT4skQEKIYW/hwoUW8JPFixffbNuMhZwU0RRiuLOApsP1/PQYTAL0OqABTw7isQfQdb0LuCzz1df9i3CKIhzs8SbOoqZXHWKbIbcxUpiZIWuma2gLXNkeZ6iRamalCroYolRnBwBGEZTRNRMxvGaKnul1ipKnRVABxaWStC2n9GN3v94DhRBiWMic2MkbmxBZMJiz4MuAxzRNKwfeBGL7b6Dr+ktDDUzkhpV0qn1bQ02AvE4hPZclE3aLgZE52Tc9Q+vZywYzEUMxkiiqFzszmzhh7F9lPjcs28bo2Wd3OC/7FEIIIcTwMpiz4JlAPXBN5vfekw56Ss8V/ixM9MlOOUORLPcQ12HJJEDuIiuXM1pZmblYSo7W1xkIMxnHTiVQg2WYpo1pm6SMdH72bVv07CkVjeRln0IIIYQYXgaTAP0K2IIzb2d3dsMRuRZVYGc8RiJYObSGfM76sR7Jf4rC6+VlPP3Cf7no7FMKHQpYJmYsjFriFEIwMTHM/CRAVu8EKCIFOoQQQghxoMEkQJOAD+i6/p9sByNyb0lJCf9cvYLTz5vH+CG0o/icFcsL398gANrDXXSk04RKg4UOBQAz2oEnswaZZVukzdyXwAawLIt0phCEEZMESAghhBAHGsyM6ZUwpHNnUUDxTBU4rzcwpHbUQMhpR1X2zvMQhdPR4RRBKC8pkgQoEUc1UygKmLaZlzWAwEm2DLUnATpgeqIQQgghxKB6gC4H7tM0zY1TEe6AmcY9JaxF8YllTgq9vqElQHZ5Nffv2kHENJiXSBAIDK09MTSnJ1PMGj+RSr+/0KEAYCZj2EYC1ePLrAGUvyFwKzwqz23cwAfPem9e9imEEEKI4WUwCdCzOCOfboeDrrooRRCK1Pu6o5w3Zx7rrKGdkKollfyzaRcAV8ZjkgAVkJVMcozXB/XjiIeKpAcoUwjB5a/AMM28DYEzbYsWv4/X2tt4j2fkD9D0eFwogGFaWJb0xAohhBD9MZgE6MtZj0LkTYVtUR4IssnjG1I7qqri9wdJJGLEYjGqqqqzFKEYKCPilMA2LIvyitICR5NhWVixLtyV40ibaQwrP+tF2baNz+88txOJeF72WQjJXbtQkzHUshKMri7iO3cS3dVE3Sf/t9ChCSGEEEVvwAmQrut/7s92mqYpwJ+AH8qQuOLhtgHlnTk8QzG5tBzTpRLt6oLxE4YenBiUaGsrAGHDoKF06Mc1W4xoJx6svK0B1KPK5ebYiko8LS153W8+tT30T6IrV9A0eTItkQjzmpsBKDvxJPyTpxQ4OiGEEKK45XLZeBW4GKjJ4T7EAPkyFbLUwNCHSn1vwgSuO+JI4iP4RHM46G52qtFHTBO/z1vgaN5hJmKotkksnd+emCmWzbema9Tv3JnX/eZLcucOIsuWYhoGP3v4QX7y+CO81tkOQPtjjxQ4OiGEEKL45TIBAmdhVFEkbNPE3ZMA+UuG3F4i8z3Z3TXktsTgRfbsASCRKTtdLKxkHMtIkTRSed2v7XXm/ijp/BReyLfw668BsKizgw7LZEJNLf/Y4XSyR1YsJ93eXsjwhBBCiKKX6wRIFBEr+c5QJFdw6HNFek5rk93dQ25LDF48c8KbUovreoOZjJM2khhDLLgxUHsTICM/hRfyybYs2l95CYCX21u57lOf4Y5Lv0b9uAbWdIfBtgm/9kqBoxRCCCGKmyRAo0gyEgHAtG28waH3AKUV5+mTyrQrCiPV5awBZLiK7OVs2xhGnHSeCiDs5XeGAbrMPO83D5LbtqJEo8QMg7qp0zhq8lQ8bjdXfPDDvNrhJMLNmQRJCCGEEH0rsjMmkUvxSDe74nGaEgk8Q1wHCN5JgIxYdMhticHbMmYMX1q+mFXe4uoBQlUx0kmMPBdBUAJOFbiRmAA1Znp3VnWH+ei7T9l7e31lJTVTpmDZNu7WVozOjkKFKIQQQhQ9SYBGkaTfz/9bvZyr1q/F5Rr6Uk1Gpg0js7iqKIzO7jAd6TS+0uJYA6iH6vaSMlKkzcThN87mfoPOYrBue+Sti9P69iIAOn0+Gqr3rS9z/okns6Y7zOLODnZt3lyI8IQQQohhQRKgUSSWSVR8/uwsWmq4nCrqViK/J7hiX52dnQCUh4prMVrF7SFtpkmnEihK/nqnehIgzwhMgG7evplfb1rPmOkzDrhvTEUlj1sGv9io88zitwoQnRBCCDE8SAI0isTj2U2AtgfLeKBxJ7tVeRoV0rTGRj49fhJ13uIpgQ2g9iRAyThKHgs0KOWl/GHbFh6Ojay5aTt2bGf1pk0sCndx3Jy5fW5zxtyjAHjiicewR2ACKIQQQmSDnLmOIqk1a/jl7Ll8orYuK+3tKq/hgcad7JQTrYKankhwfv1YKvy+QoeyD9XtIWEkMVOxvNbDd5cG+c+eZl4dYfNgXn3VKW4wb8pUQn5/n9u8e9YcfF4v4Z070Zcuzmd4QgghxLAx4ARI07RnNU37H03TDtmNoOu6CUwBVg42OJFdRlcnk4Ihqj2erLTXU0ghJkUQCsa2bfyZ/DNUNvTKftmkuL3E03FsI4Vi568ggTdTBa6nx3OkSL34Ah8dN56TJk896DYhv59vz5nH745awBZZFFUIIYTo02B6gNLA3UCTpml3aJp2wsE21HV9m67rI3M1wmGop1hBWhl6AQSAgMtNgz+AJzqyhhoNJ3YyiSczv6asYuhrO2WVy008ncAy0mAZeVsW2eP3opWUork8mCOkQIdpmsyKx/nouPHMrR1zyG1DlVUAWNu25SM0IYQQYtgZcAKk6/o5wETgp8CJwKuapumapn1H07SGbAcosseMx53vWagABzAp2sWNRx7FSUnJcQvFyCxCm7IsysqLKwEyPS5S6SS2kQbTyFshBI/Py9enTueKKdOINzbmZZ+5tmXFMircHgzbZsLUaYfcdvy06QA02BadmbWBhBBCCPGOQc0B0nW9Sdf163VdPxI4HngU+CywVdO0JzVNu0DTtCJblERYSadaW0/1tiHzOkPg3Ple6FLs1d3SDEDYSFNZFipwNPuyXG5SRhLbsrDSyTwmQB4SmTWAEuGuvOwz1za//hoA7ZaJ5zDFLmobxpOwLIIuN0v+81Q+whNCCCGGlWwUQfBkvno+lWuA+4HVmqb1XapIFERPuWrTlZ05QPidE+6RWG54uAg37wYgapr4sjS3KytUF6aqkEo7i6DaqTgK+XmeKC4XycxzMj5CEqDODToAqX5UcFQUhXDmudCYWTdICCGEEO8YVAKkadpUTdOu0TRtA/AycB5wOzBJ1/Vjgck4c4XuzVagYuiUVAoA052dcslKwEmAiqv48ugSbd0DQLGtxKRmhmv1JECWkUaxjLzs27ItUpmfk5khgsPeHuc4+ysr+7W5u8LZzm7clbOQhBBCiOFqMFXgXgU2AFcCrwPv0XV9hq7rP9V1vREg8/1fwIRsBiuGJm5btKdSpL3ZKZesBJyqY768FjkWvbXV1vKl5Yt5IllcJ/qq24OBRdrI9ADtLYSQ++eKZVsYmf2kRkCBjnA4TE2mR6tuXP+mWdY2ONuNsWza2lpzFpsQQggxHA2mB8gDXAaM1XX907quv3iQ7R4Gzh5sYCL7XgkE+PKKJWwtP3QVqf5yhZxJ935VxTDyc3Vf7Ksz3EVHOo0Sys7ittmieLykbZO04fTFWEYa20jnI/9xEqDMwqvpEZAArV+7mqrMvJ+y2tp+PaZ0TD2vxqI81NTI4sVv5zI8IYQQYtgZTAJ0K/BPXdfD+9+haVq9pmlXAui6vlzX9TeHGqDInp51UTy+vhdRHChXsAwAn8tFdKQMNRpmOjs7AagoCRY2kP2obi+J9L4D86xUPC99haZl7q10mI7G87DH3Fq/aQOXLH2be4wUSj9fu6rfz676Mbze0caSJTIPSAghhOhtMAnQXcDBVuKbD/x40NGInIpGnQVLvb7s9BYowRKeaGnmn407ictiqAVRvnEjF0+YxCR/dpLabFHcbqLpfZMPO51Esa2c79uyLTZ4VP60bQtd1VU531+u6fo6bKC6fuyAKunNnTgJgGXLluYoMiGEEGJ46lc9ZE3T/g3MzvyqAA9rmpbsY9MxwKYsxSay7MK0yfmz5rDdzlLZatXFA+2tRCPdfDzZ19NB5Fp1exuzx4xltbuIKsABtttDIr5fD1DPPCCyMwftYCzbpiUU4NU9zRzry+2+8mH9eqcC3NS6ugE9bmZ1LUeUlFLa0kwikcBfZEmyEEIIUSj9XRDmp8AXMj9PBpYCe/bbxgQ6cXqIRBEapygESkpp9mbvRMjvDxKNdBOLxbLWpug/d9pZhNZbZHOATLd7bwW4HraRxjbzs2iuP+A8x3uGfQ5X6XSaU+IJzpwynSkD7LktTyT50aw5NCXirFu3hvnzF+QoSiGEEGJ46VcCpOv6a8BrAJqmAVyr6/rmbASgaVoVToJ1PlAGrAC+rev6K5n75wM3A8cAbcAtuq7/qtfjVeAa4PNAJfAKcJmu6xt7bTPkNoY727bxZobP9JSvzoaaYAif30+sqzNrbYr+85kWKArBoloEVcFyuUnuNwfItizsdH56Css8XmaXluHas/91muFl27YtzC8ro9rroyQwsATIXVEBwFh/gLeXLZUEaABs2ya6cgXxdWtxV1RSduK7cZWUFDosIYQQWTLgOUC6rl+SreQn4+/Au4CPA8cCS4BnNE2bpWlaNfAfYD1O8nINcK2maZf0evwPgC/j9FCdANjAk5qmeQGy0cZIYKfTuDIJkCtUlrV2L6uu5qYj55PeuiVrbYr+sW2bnlPiYHnxnJwpbrdTAruPZMdKxrGtLA3BPIRJls0PtdlM2rYt5/vKpc26TnWmbL27dGCvW9XrJZEpBtG8cnnWYxupbMti951/oPGWG+l45in23H8f2350NcmdOwodmhBCiCzp7xwgEzhB1/W3NE2z4JBLutu6rve33enAWcC7M71MaJr2deBc4JNAHEgCl+q6bgBrNU2bAVwF3JVJUK4ArtR1/YnM4y8CGoEP4SRXX8xCG8OemXhnQro7U746G9KKk0Mnuw8oCihyzIrH9ia15RXZS2qHSvV4SWIf0AMEmWFwRppBrsHcfz7n2oVq5GfIXa60rF/HZJyFblXvwK/H2KWl0NlJasf2bIc2YrU+9CDdr7+GrSi01NRQFY+jJOIY4XCOZ68JIYTIl/7OAfoxsLPXz4dKgAaiFTgPWNxzg67rtqZpClCFU23upUzi0uM54DuaptXhzEcqzdzW8/hOTdOWAKfgJC8nZ6GNYS+eKZecME18gez1FhiqC7BIRaQKXL4lOzoBiJsm9RXZS2qHSnV7MbAOmAMEYBkpMA0UxUf23kb64HeSBZeR+96mXIpkEpekZ3BFLkpqajE7O6lIpejo6KCysjKb4Y04ia1baX/qCRTg5o3reW3R64RcLqaNbeDyRBwZRCiEECNDf+cA/ajXzz/M1s51Xe8Enuh9m6ZpHwWmAU8D1wEr93tYY+b7RGB85uf9xyY0Zu4ns81Q2xg0lyvHV7r7KRHudL5bFj6ff0DldA/FcLvBSGHGY7jdxfG37q/nGBTLsciWaGszAN2GgVYaRFXzscrO4bm8XhJGErAOXPjUMrGMJKrPj23nLl4l6BRBcFlW0T4v+8NubQWvDyUUGtTxDVZV0g1MCYZYu3Ylp5xy2t77RurrYig2vvkqhmGwpLODLX4vZ51xOkuWLmfFzu186UuXcNttd3DCCe/O+n7lWBSXfCzYLIQorP72AO1D07SpgF/X9TWaplXgJCoTgAd0Xb9nsMFomvZu4E7gEV3XH9M07Uac4Wu99Yyr8QM9qz/2tU3PAiDBLLQxaGVlxVGdazcGHakU3ZZFMJi9gRxxjxeMFEo6SWVlMU3EP1CxHItsaR5XyxeXL6aurJQHQ8VT4tgTChI3o7g9rj7vt5NxPCWVeLyDevvpXwzlzsvaa9tF/7w8GMuy8Eaj4PVRVl1FIDDwIXCeMbV0A+P9AZZt0vngB887YJuR9roYrPb2dq648w66W1s5/ZRTufeqy+ls2UX8ovdz8x1/4a23l3HfD3/AxEs+y5GXfiknMcixEEKI/BjwGYimaecAjwC/Ab4J/B74ME4vy92apnl1Xf/TINr9IHAv8AbwiczNcQ5cNKTnTC+auZ/MNvH9tukZk5WNNgYtHI5jmrlf/PFw9ri8fGnFEqpr6vl6PJW1dk2XMzQnFYnS0VGcw+BcLpWyskDRHIts2b6zmc50mgqfh0QWj+lQ2aZCJBHFSB84/ExRFFQjhZFMYdi5u9pt+ZyXuNe2aW/rRlGH35X1pqYmVMvCsC3KyiuID+IY24qbDTXV3P3yi0ypqtjnNTpSXxeD9cMf/pjm5mamTZvG9350NY2b15FKJACFSy/+JJ5wjC+XVdH51DPsPvUMfGPHZm3fciyKS3l5AHUYvmcIIfpvMJdgrwaeAX6kaVo5cCHwM13Xr9Y07SfA14EBJUCapn0Vp0z1v4BP6bre0xuzAxi33+Y9v+8CPL1u27TfNj1lj7LRxqCZpoVhFP4DraurGwBfIIhlZW/uhelxcks7mSyKv/NQiuVYZEtraysAFaUlWT2mQ5V2uUmmEth9hmTvXQ/IVnzYfW80ZEqJkwApikIqEsMVDB7mEcVn48aN3LxlI9NS4/n92IZBH+Pg9BlseOpxEvq6Pp//I+11MRibVq9i9dNPAfDDa64l2tFKotfaZm6Xmw98/EMsue9hFpRXsPTOP3HMVd/NehxyLIpDjt6WhBBFZDCXOI4CbtJ1vRs4GyeJ+mfmvv8AMwbSmKZpl+L0Jt0KXNQr+QF4CThZ07TeY2nOAHRd11twEpQwcFqv9iqABcDLWWxj2ItGI4CzcGk2dZZW80RzE5sN4/Abi+xas4aLJ0xiTpGtT2K5XX0WQOhhmwa2kcrpOHtvaYi/7dzOAx1tKK6+h+IVu61bndUGJtTXD6kHa0p1DQA7dmynu7s7K7GNNG/d+Qd+PGsOP3vXScw5Ygad7a0HbDOuvo7YVGdaqKqvw0wVT6+rEEKIgRnMp2qcd3qOzgWadV1fkfm9Hujsb0Oaps3E6fl5CPgZUKdpWn3mqxxnPlAZ8CdN02ZrmvYZ4PLMtmSSpVuBX2ia9gFN0+YB/8Dp9flXZjfZaGPYU9eu5UfabE4PZTcBaq9p4O4d21gWi2S1XXF4/qZdnDdmLBO8xTP/R3F7MbBJ9VEC+x02VjKetUIcffEFfDyyu5Enm5tQfcOzePGWLc7aWhNq64bUTtC0uGDKNM4bU8+GDXo2QhtRWlqaqW5qAmDKKafQ3bGHZDzW57ZHnnkKnek0JarKa/f8OZ9hCiGEyKLBJECvAN/UNO0TwMfIJAmapi3EWWT0lQG09RGcIWgXAk37fd2c6aE5G9BwFki9BviWruu9P3muxhly90fgVcAAztZ1PQWQjTZGAqWzgyNKy6hxD66c7sF4Mj1KkYhcWc43Je5MWVP9xbNer+pxEqC+1gDqzUonUezc9Rr6MlXgotEoljU8hxS5t2zmullHspChJYpWIs4nq2v52LgJ6OvWZCm67LAti/annmDr97/N1h98h/ann8Q281u6/Kl/3MvkYBDLttE+eD5dbXsOum0wFKSlxikl3vHyC/kJUAghRNYNZg7Q/wMeB/4GrAF+krn9cZyiAd/ub0O6rv8U+OlhtlkEnHCI+02cRU2vymUbw52VWQjVyHICFPAGqPB48MYPfcIrss+VdPJzT6h4ejhUj5e0bR6mBwhsIwWWAYovJwPuPX4fY31+KjwewrubqBjXkPV95Jqno4MZFZXElaFNxnaFSjCBgMvFrtWrshNclrT87S90vfjC3t9bH/gHqR3bGfPZL+SlcIVt2zS+/BKUlZOsrcV0KUQPs6hz/YkL4ckXmaq6WL10MXOOXpjzOIUQQmTXgBMgXde3aJo2B6jTdb25110XAEv3m8MjioSdcE5ITU92ewuqU1HuOGohLSk57Pnmy8y78pcUT5ln1eMllk4ctriBZaSxjTSq10cu6jeoHhdfmDyVI0vLCK9YPuwSoEQiQVmmJyRYUTGkthRVJR0M4orFiG/dOvTgsiS+YQNdL76ADTzY1k5XpIuLJ04m/MbrqA3jqTv3wJLd2bZixTImZ3oIx510Mt0drZhG+pCP8dfX0ako7I5G2PDg/ZIACSHEMDSoS2y6rtv7JT/ouv6GJD/FS8lM2O2p2pYtrpIKAIKqi3T60CcOInts2yaQSTJCFcVTBEFxe4mm+54/sQ/bxkrFclYIwbYtUpnGE+Gu3Owkh3bt2slYvzOML1hWMeT2fFXOkmb+cBfpdHGM7A3OnMHi+nru27md+7es5+k9zfx5+1YSpsl9999LJJL7eYVPPfYIR5aVA1C5YD6RzILRh6QotL/3ZK7W1/DAf58hfpD5QkIIIYrXYNYBqgVuAs4HQnDAAHVb1/XcrXAoBkXNJCemJ7sT5vcmQC4X3eEwVdXVWW1f9M2KxXBlTvDLq8oLHM07LI+HWDR++A0BO5VEsS0OfAsZOtO2SLuc6zup8KGHNBWjnTu2MTazlpErC1X+QlXVxHbuZILfz+bNm9G0WUNuc6geffQhfvHvhwG48P2f4dSTzkNfv5zvPXgbOzrb2fidK7j55t/lbD0Wy7JoeusNvHX1mKEQSk0F8aZNh38gMGHCOMY3NLBz1y5eeOE5zj33/JzEKIQQIjcG88lyG07Rgn8C1wE/3u/r2qxFJ7LGZWQmFme5DDYBZ/iVqihEOtqy27Y4qHRXJwBRw6CqsqywwfRiut2kUv1LgKx0Cqw0uegGMi0L0+2Uv07noSch23Zv2ULI7cbGxhUa+hBHV6nzHJkcCKHra4fc3lC1t7Xw858700c/eN6ned97P04oWMqC+SfxmS/+CK/Hy8svv8iDD96fsxjWrFnNyzu28dMtm2j430+TiHaTSvZvLqNtWZx60omEXC5efOKxnMUohBAiNwbTU3MOcLmu63dkOxiRO2nLImlZ4M/ufBHb5SZtW3gUlWhbG0zPavPiIGI+P19YtpiQ28UDpRcUOhyHqmK51MNWgOuRy3lAlm1ieZyCH0Ysmt3G8yC8zSmBHVddWVnHyF1Whg1Ueb28sWolfODCIbc5WInt29j202t5T0kZK6sbeN97L9rn/okTZvCpj3+JRY/8hSV/uZP3vvccyssrsh7HCy88i2nb1By9gOp3vYsdG5YN6PHvCZVy/vxjeHb7Drq6OnMSoxBCiNwYTA9QCtic7UBEbv2+u4v/XbqI7uqx2W1YUUhkzl5jHe3ZbVscVHtHO11GmqjbhdtdHAt9qh4fadsimepnRUDbxkrGcrIekGXb2D6n4IcV71+PVDHpaG5hdyJBKktrGCluN5umTuZzy95m5aYNWWlzsFpeepGQYTA9VMJHLvg8qnrg8/ekCUfwg5lH8LHqOv74u1tzEsdLLz0PwOmnn4FpJEhEB5YoB8fW4lIUjior4+WXXshBhEIIIXJlMAnQv4BPZDsQkVvRqDMMyBfIfsWwntPdeOfwm2w+XLW1OSvVV5WXFjiSd6geL2kskv0cAgc984Bysx5QTwLUUwFxOHmtaSdfW7WMsKZlrc36yVPpNgx0fd1hq/Tlim3btL/xGgBb3H60GfP63M6sn0wqWELI7ab1xedpb8/uxZX29jbGtbVzyYTJHD9xMulknPgAewrNuipMBcb4/Cx7/tmsxieEECK3BjMEbglwnaZp04A3gP1L4Ni6rss8oCLTU1HJl+05QMAqWyHW3MQRVu4WthT7Sq5czsUTJhErL6YS2D4SRgpzAM8Dy0iBaYCa/fWAwqUh7lurM2vSJN6V1ZZzy7Isdu3aCUB9WfYKXIwvq8DtdhOJdNPYuItJkyZmre3+im3bRjCRIG1Z1B171sE3VFTU+afAa09wckUlf//7X7nssq9lLY5Fi97k1Jpa5pSW4W3bQyxScdjy1wfweEjXVOPa00Z6vU46ncKT5WUGhBBC5MZgeoB+C1QApwBXAj/s40sUESPSzRVjG7hquobPF8h6+294A/x5xzZkAFz+KDt2cN6YsUwLZD+hHSzV4yOSGthVdMtIYRsp1ByUw05UlfFQUyObsjCHJp9aWppJp9O4XS5qS7LYwxeL8mVtNl+eNJX16/XstTsA6x9/FIA1sRhHH3P6IbeNjZ+NrShMD5Xw0kP/JJXKXvnuJa+/yqzM/7Z03jyiXR2Dasc3bRIARwQCvP32oqzFJ4QQIrcGsxBq7pfnFlkV7+hgVkkpcdNkXQ6GwPkDTpnefKzbIRx2pBsA1V88V5xtj4dofICVAG2wkjFUf/aH8vmDThnpSOZ/NVzs2L6NW+ceTQwbxTAgawmcwimBIJY/wMtrVnHWWYfogcmR6OpVhICu6rFMdnsOua0dKEGZMgs2r2W+18dzz/2Hc87JzuKokZUrcFVWY5SX46oqI9G0cVDtGGNr8QBHlpbzxPP/5YQT3p2V+IQQQuTWkJIZTdPKNU2bpWmaT9O04XWZdRSJtjknpTHTxOPN7jpAAMFAiHK3h7gUQcgbJe7Ma3EHs7uw7VCYHs+A5v/0sFIJlBwMn/QHfEwKBCnpGl5z03Zv2kCdz8dErw/Fc+gkYSBUn4+ky4WqKLTp67LWbn8lI91UJZ21ssvnnNCvx6SmOnOETq6q4V8PPpCVOHbt2skk0wKgcuExGKkEyfjgKgXaFWWkfV68qsruRW8VbG6VEEKIgRlUAqRp2mmapr0JtAOrgDnAvZqm3ZDN4ER2xDud4R1xy8rJooInpmL8Yf5CJjU2Zr1t0TdPZmFbf2mRDIFTVUyXSmIwCVBmHlC2q8GFXC5+OWceH04ksS0rq23nUtcWpwR2VFVRsvx6tcucnjarKf+v1cWvvcrLbXvYGI8zcfZx/XpMfMx0bK+PpGWxYdnivXOjhmLRW28wv9yZW1V17LEkYlHSgx1epyi4jl/AH7ZvZfGO7ezYsX3I8QkhhMi9AX+6apr2HuAZIA5cxTvLuC8Fvq5p2jeyF57IhlgmAUrmqH2rZ15RIld7EPvzZ07oQxXFUQXunRLYA0+AbMPANpIoWZ4I5M4UiFAUBSs5fJ6bqebdzndv9oc3hqprAahMpQiHw1lv/1BeWrKI323dzHN1E1Fd/Rx97fbgueRb3B8K0JFO89RTjw85jk2vvkyFx4uhqoRmziQaHtz8nx72rKm0NdTTZaR5883XhxyfEEKI3BvM5cXrgId1XT8NuIlMAqTr+s+B64HPZys4kR2JzBCglJKb6Vt2ZnFVNZ29Scri4GzDIJjpLSmvyl6VsKFQPT5SAyyB3ZuViKKQ3V4abyhIKpMoWrH9i1UWL7WzEwAllP35eoHKSgAmBUN5L4TwRqb89ayZRw/ocVElwFnvdeb+DDUBsm2bHfo6WpJJ7EmTQbFIxIf23DANg6PnzQXgjTdeHVJbQggh8mMwZ8TzgTszP+8/4PkZYPIQ4hE5kMxc6U3nYPgbAJkiCC5DymDnQzpzgmxYFpXVxZEAubw+4ukkpmUO6vFWOpn1eUC+UIBI5jlpRodPgY5AprcqUFqW9bZdpU6P4cRAEH3t6qy3fzC7tmxGaWnBparMmNr32j8Hk4inOf7YUwh4vLRu3cLGjYNfyHXz5k28sGMbV6xfw/Sv/T+MdJLkEBMggLnjx3F27Ri6V63CNAf3GhBCCJE/gzkj7gLGHuS+iZn7RRFJJuKkLIu0K3sTqntTQ85JuNeSCcD5EHOpfH7Z23xrzUqqyopjCJzi8dGdGnySYaVTYKSzOgzOG/C9kwB1D49KcOFwF7WZqm/lNTVZb18NhjAUhbRlsWPNmqy3fzBrnnqCX8yey/VHLSQYLBnw41MrVvKHoxZwyYTJPP30E4OO4623nCFq8+cvJFRZTjqZIJkYXK9lb+Na2/ncpCm8KxhizZpVQ25PCCFEbg0mAXoEZyHUY3rdZmuaNh74LvDvrEQmsmZLdTWfWvIWz/oGfuLRH67SCgD8irOIo8it9o4OwoZB2KXg9QxmLePsszxeYsnBX0m3Lcsph53FQgjeoI+I6SRAw6VC4Y7t22hOJmlLpwlUVGa9fUVR2HbkHC5Z9jZLNg2u9PNgtK92kgKjbHB/U8JfiRdYUFHJC08/OehqayveeAMVOP74d6GqCvFoOCsFMowxTrI6t6ycN16XYXBCCFHsBpMAfRtoAd4Eekre3AfoOEPivpOd0ES2dHc7Q+B8wdz0FrjLqgAIudx79yVyp62tFYDq8uLo/QEwvR4SqaENJbJScRQ7e8PgXB43kcxwpGjmf1bsdu7axS826twWDeMK5qbC36Sx4wDYuHE96Uw1wVyyLAtfu1OK3zNh5qDaiPmrUOvG4FVVGqJRdH3tgNswTZO5u5v44/xjOL68EtsyiXVnZ8CCVVuFqaqUezxsfvO1rLQphBAidwacAOm63gEcD3wZeAn4L7ACuBJYqOv68DjTGEV6qj35/Lk5obJLKnils4PnW1vozMxPEbmTXLaUSyZMYkFlVaFDAUBxe0grNokh9AABWKkkmOmslcO2bIvlqQT37dpOvLwiK23m2q5dOwBoyMHwtx61gRChYJBUKsWmTZtytp8emzZtZLLXWa+qZNrACiD0sFFwzXEGHZxUXcMzzzw14DbWrlzBnGCIErebyUfNxzJTJBOJQcVzAJcLc2wdAP6m3cSzMK9ICCFE7gymDPYpgEfX9T/ouv4JXdffq+v6x3Rd/y3g1TTt49kPUwzF3N3NXDl9Jg1ZLjPcw/IFuLeri3t2bicclilguaZs38a5Y8YyLUc9BAOlev2kbWtQawD1Zhlp7HT2ymGbtsUmr5uHmhrp9Gd/AeBc2LHd6VQfW5G75NaOx7lq5hH87IgjWbM694UQNrzxGkG3m5Rto1TVD7qd9KQjATiytIw3nn1mwMPgNjz3HwIuF1FFoWT6dIxUkmQie4mKZ8oEJ76SUpYuXZK1doUQQmTfYIbAPQ8ccZD7jgbuGnw4IhfqkkmOqagi5Mn+uiI9QpmKVdIDlHt2ZkK/GvAVOBKHy+sjYaVJpYd+NT2b5bBNy6Qss+BlV1dnVtrMtZk7d3LHUQs4Mof7UNxuZro9TAuVsHHpshzuydG2cjkAHb4AqK5BtxN1hXBPnIyqKExJJFi3bmBFHNJrne1j48bhcrtIJROksrh2WXpMNQCzSkpZLOsBCSFEUevXDGpN0/4MTMj8qgC/0zStr8keM4HdWYpNZInPtkBRIZT9sro9ykrKqPR4CA+TuRbDmTtTtcpXWjw9QN3JaFbastJJXKYBivvAIvsDZFomNeWlTAwEie/YfvgHFIFgIkGF3w+B3B1bxeUi4fMRTCbp0HO/FpC6ezd4fRg144bUjmFYeOcdi7F9K++ucobBHXHEnH49Nh6PMzGZAq+X+pNOQVEUYt2dDPlJ1ltZKUmfF1c8wY7Fi7LXrhBCiKzrbw/QP3ESn56xKUofXxbwBnBJlmMUQ2DbNoHMYVNCFTnbz+e8Hm4/aiFs3ZqzfQiHL1PaOVRRHEUQbI+XSDI76+yYqSS2kcxKNTgbmOH186s582hYuXLoweVYOp2iKvNnl1dX53RfrkzPmN3cMuiKav0Ri0V5dMsm/rFrB56ZC4fcXnLCbDqPnMvNmzfwzDP9rwa38j9PU+X1krQsJp96OtgGiViW14ZSFMyzT+ezy97mv2tWyXBgIYQoYv3qAdJ1/THgMQBN054HLtMHU4ZH5J2dSuHOnEy6B1mCtj9Sbg8YKdLyoZ9TtmEQsAEFKmpzdzwHwvB6iXdmaS6FbWMlo6hZKtmulgahtQs1lcpKe7nUuGMHtZliARU1dTndV1ltLcmWFsagsGdPC1VVtTnZz+rVq9C7w7T7A5wzqX+9NYcSs73M/uyX6Pr7PSR27WTt2tXMnn34AYNtr75MBbA7GGSu14tpJLOy/s/+/GNrGTNhAtu2bWPx4rc5/fQzsr4PIYQQQzeYKnCnS/IzfBiZ+SKGZeHJrNeTC2mPc+JmRLJ8VVXsI93VhaooGJZFdREkQIrbg6EqxLM0BA7ASiZQrOyUw3aVOYmUx8heee1c2b12DaqikLAs1BwXbfBmquJNC4VYty53b+erVq0AYOaM2VlpLxFPY1tuTj31dIB+V4P79/ZtPNi4E/fCY1BVBSOdmwTISKc4+qi5wDuLrgohhCg+A15FUdO0IPA94HwgxIFJlK3r+rQsxCayoGf9k27DwD+IFdj7y/D6Id4NMSn/mkvhxl0AdBlpZleWFzgacHn9JGxzyCWwe7NSCTBSKJ4gtjW04VmuCmfem9e2sS0LRR1M3Zf86NyymUqgCxiXxQVh++Iur8ACqr0+Fq1YzoknnpKT/bQuWcyxFZUcMWF61trsbI/xgfkLmL9pM6teegH761ccsnR6e3s7r651FmL94gcuQFUVUok46WT2CiD0dnJJKccdcSRLli3NSftCCCGGbjDLyN8MfBZ4AVgGWSrZJHIi0tFO0jSJmiYeT+6qhpn+EHTtQU1maV0N0ad2n5fPLXub+tJS/ur1FDocVK+fhJmdCnA9bMvCSsZQvUHMIbblqXTmSamAlYjjCoaGHF+uJDLJbcKT++OquN1EvR6aOzrYuWF9TvZh2zaT29r44HSNRnUwHzV9i3anmOb1U1tRSaA7zOrVqzjyyLkH3f6VV14EYObMWVRX16CqCvFI7obq1geCeEIlNLW10tbWSnV17tZ0EkIIMTiD+VT6MPBdXdd/ke1gRPbFq6r536WLqCir5PIcXlW2g5kTzWEw12I427NnD92GwZgiqgDXmeyrIOTQmMkYnhKTwVXqf4e/spSEaeJ3uTAj0aJOgJq6w5jhLvzjJxx+4yzomDuX795+G5Pj2Ru+2FtTUyOTMslcaOrBE5SBikaTjD/hVDqffJzZpWW88si/DpoAGeEwvif+zbyyck447T0AWKZBPJq7obrKhHpYvpp5ZeW89ebrnPu+9+dsX0IIIQZnMGcXbuCtbAcicqOnEpE3lLvhbwCUOPNRvOZQr9mLQ2lpaQagrgiGvwFYPh/RRPZPoPcOgxvioqiBkiCRzPwfs8jnp72wp5kfr1+LNW5o5aL7a0q1U/hg27atxOPZH7q67s3XqfB4MWwbarKX1FmmTdT2k5g6BYCqtWsOWg2u9b/PMMUw+di48Zz+nrMyj0+RTOSup9qqriCtKJR7PKx/9ZWc7UcIIcTgDSYBeho4N9uBiNzozhRBCARye+VbqZvAi617eLN1D+l0Oqf7Gs3cq1dyyYTJzC4tghLYioLh8RBLZD+xsE3TGQY3xF7LQEmIJ1p2c9/O7RAqjl6zvti2zY7MWkVjK/JT3KIyEKC6shI3sGF99tcDal66BIBOjxfc2R3W192VYMb/XoJp28z2B1j19BMHbGPGYnQ8+x8AXksl0bRZTgGEVJJUDgog7OVykah2jqGxMTfDC4UQQgzNYIbA/QP4vaZpdTjr/hxw6VDX9b8MNiBN074PnKnr+mm9bpuPM/foGKANuEXX9V/1ul8FrgE+D1QCr+CU6t6YzTaGI9eK5Vw1XWNTMMcnzOOm8LvtW7Esk690tFNXNya3+xulypqbOXdMPat9uZvP1V+q108Km3iW1gDan5WI4g5VMJRhcN6Alyf2NGNZFpepKoGsRZddHW1tGHHnpLw+TwmQbdt8b8p06lHYsPht5h11dFbbN3fuANVFsmoM2Z7VFIum8E1vYFMwwMx4gsRD/8I64yxUj3fvNu2PP4YrmWRXPE71CSeiKAqqqpJKxkmnclMAoYd/+hRobWeSDbt27aShYXxO9yeEEGJgBnNmcT9QBXwauA24e7+vuwYbjKZplwM/3u+2auA/wHqc5OUa4FpN03ovuPoD4MvAF4ATcNZAfFLTNG+22hiu1D0tLKyopM6X27K6qqpSXlEFQFum8pzIPm/COXHzlRd+LovLFyBpG8RzMAQOwMzCMDhLsSmvcIYLdnZ2ZCu0rGtc8jb3LDiO6488Cl8eiiAAKIpC0OfHrap0rlmd1bbT6TSVmWFmvokzs9o2QDJhEO1OMu2Sz9KZTlFumux++aW998fWrqEjUyL7rzu38YELPgyAqkI03Jn1eA7Q4KzjdERJKW+/8Wru9yeEEGJABpMATTnM19SBNqhpWoOmaU8CPwH2H4vxRSAJXKrr+lpd1+8CbgSuyjzWC1wBXKPr+hO6ri8HLgIagA9lsY1hyc6UpTa9uU2AAKoqqqj0eNjT3JzzfY1Gtm1TYjlzrCrHVBU4GqcEdncqimXnphCkbZpYiShDmQZkmiZ1FRVMCgQJb92SveCyrHOz09Fsu7JXLa0/3FUVACi7m7La7oa1q5nkd/rbfBOHvgBqXzrb48w97l08hc19O7fzYGbNociK5ez6zU1g2zzf2kJi/ARmzNAAsK00yVhuEvbe7LISOn0e3upoZ8Vbb+Z8f0IIIQZmMAuhbjvc1yDiWAB0APOA/T8tTgZe0nW990qGzwFaZhjefKA0c1tPjJ3AEuCULLYxLCmZstRmIMdFEIBrKiu5/aiFdGfmMojsMmMxfIrzkq0dW1vgaMD2+emMZ78CXG9mMjakRVENy+SUiip+OWceyuuvZTGy7Eo0NjrfPflNgGoaGgAYY1lEslgkYuWa1Vyxejn/RsEqyU2yHo0kSSdNTrr4czy0u5G/3fsXdu9uwopEsFMpVkQi/HHbFi6++HN7H2Ma6ZwsgHoARaHl9BO5ectGXly86KBFGoQQQhRGvz5tNU27E7hW1/UtmZ8PxdZ1/XOH2WYfuq4/BjyW2df+d48HVu53W2Pm+8TM/QA7+thmYhbbGBSXq7ALL3oyBQmUYBnqECtqHU5cVfHbFrHWPbjdxbPgZM8xKPSxGKrWbU4PRjidZnZ9dc6P5+GYPh/xzggDqVPQs2Cl8/3wJ4V2KgFmCpc3NKhFUS1MKA1BNIXd3V1Uz8velI7M8LxAIG/HVVUVqsePp2nJMiYFgugrl3L8yadmpe1Vq1fQnExiTJuNmqPXXSKeJhFPc845Z/PXvy5kyZLFXHXVN7jxBz/kv34ff3j7DabP0Dj77LNxuVRUVSEZTZJOJfLyP548fiw+n4/W1j1s376FadMOvhjsSHmPGilyvA6xEKII9Pdy4+k4BQQA3sOhz1yyfakriDN8rbeeGqb+zP0cZJueS4/ZaGNQysoKO+3ab1mAgruqhkAgt9OZkl4fJONY4U4qKws/R2V/hT4WQ7Wh0elc7bJMSgu8DpDi8RHzqCSNGG6Pa8CPdw0gEVFSMbwlZaAM/ORQATxVFRBtwRWPF+XzEiCQKYAQqqzI+et0Xx7C2JQpCs1LFlH5gfdlpdXVq53rTTNnzMEfyN2cpmgkRcPESm655Wbe9773sXz5Ut7zkQ8C4Ha7ueWWm6ipKdu7fXN4N243uN35+R/PO3IOTavXsmbJWxxzzFGH3X64v0cJIcRw0a8ESNf1Kb1+npyzaPoWB/YvedUzoSWauZ/MNvH9tukZ7J2NNgYlHI5jmrmZI3E4tmEQwLmUZYbKicdzu0ip4gtAMk6irY2OjtyPs+8vl0ulrCxQ0GORDbvXb6IaiLsUEjk+lofjdoeIpVN0R7qwrP6v/aQoCi63imlY/R4WZMUiEIhjKoM7kXZXVcCOFlzJZFE9L3vYhkGFbYOiEKioyvnrtIeqKvh8HuLBIGWxOOE167Ly/+nq6uQMw2b2mLE0VI4jEc9dWfyO1iidHTEqKur4/e//xJVXfoOdO3dQUVHBz3/+KyZMmLb3b3K7VTra2vL62rm4pJy6I4/i+edeoOOjnzzodiPlPWqkKC8PoKrSGyfESJbfAeeDswPYf2XAnt93wd4Kq+OATfttszyLbQyKaVoYRmE+0IxwhIRl4VEU3GU1WIMYQjSg/flLINwOkWjB/uZDKeSxyIa1Ph9/WrqIc9+1gLNyfCwPR/UG6Ex0Yw544Vsnbtu26e+0CDOZwErFwe/FGsTJobeuGgCfbZOKJ/YplVwMwpu34FYU4qZJff24nL9O9+etG8PrSxaz0kzz8Sy8Ppa/9jpn1Y3Bsm1iriBmDv+e7nCSWDRFqNTH7NlzefjhJ2ls3MWYMfX4fL59X+9WmkQ0ktf/r6e+FjZtJ9DcTDKZxuU6dG/pcH+PGilkypYQI99wuMTxEnCypmm9PznOAHRd11twEpQwcFrPnZqmVeAUVng5i20MP8EgFy9dxMVLFxEsrcj57qwSp9ywJ5nbNTZGq6bdjURNk/LqikKHgu0L0BnvytPObMxYNyqDOzEM1FSStpzHmuHcFm0YjMbm3fx3TzNvd3dRHsr/EL3xR8zmlq2b+O+2rTRnoYJj49tvAdDpcmO6cptsmqZFV0d875wet9vNxImT8O23TpaigGmm8lMAoZfgDGfwxBGBIOv1tXndtxBCiIMbDgnQnUAZ8CdN02ZrmvYZ4HLgZwC6rieBW4FfaJr2AU3T5uEs1roD+FcW2xh2wuEwtm2TsiwCuV4IFbBKnelSftOUqkc50JipFFZfVXaYLXNMUUh7PUTj3XnbpZWMg5HcW0RhIEKVpXRmioEYXXlK2gZgW7iLO7Zt4Xlz8NXuhiLg9TI1s1Dn6tUrhtxeMlNuPFFZPeS2+qO7M4F5mF4TVVUxUsm8J0DKmBpS2JR7PKx87tm87lsIIcTBFX0ClOmhORvQcMpSXwN8S9f1P/fa7GrgT8AfgVcBAzhb1/VUttoYjnoWfgyGSg879CIr6ifzYuseFne0EQ4X34nmcHdCV5hLJkyioTT3Jc0PxeULksQimuMS2L1ZRtpZE2gQ71gllWU80dLE33Zuh1Bhi0f0ZVumut/4qpqCxXDEhImM8/vZMsRS4bZtU9rtJMaeCdlfALUvke4kibhxyApqqqoQj0YwjTwnmS4XnZnnXGTlkEZTCyGEyKKimwOk6/pn+rhtEXDCIR5j4ixqetUhthlyG8NN5K03uGq6xro8jXk36ifxt65OOjva+FTjLsrLK/Ky39EgGYtxjM+POmYsntrKgsbiCoSImkniyfwWFDDjETzBcmBgyby/JMDTba0YhsGXLZtiq7PVtWkjHkWhobJwx/WUsgo+deR8tmzcOKR2tm7ZxGSfU1+mdPpRB5TVzIV02qSrM05JmZeDTUlTsIh2d+QhmgOpkxpgzUZqwmHS6RSeIpuDJoQQo1HR9wCJwUvv2snCikrGB/M3r6Cmrh6ApqbGw2wpBqJxzSrUzET5MWMK11MAoPiDtMc7875fMxnHTsUHvK6MaZnUjRkDwO7du3MR2qBZ6RTvb23nngXHMbmicAnQuMnOXJXxikJ3R/ug29FffAG/y0XctjFK8/c8DXfEMdIHHwZnmmlS8fwOf+tRMnsGADODIVa99VZBYhBCCLEvSYBGMDMz3yHp3r8CeO7UVo+h2uulccf+a8qKoWhe50yg7rDN/AxnPATT7yccLcAQR9vGjIVR7YFVnjMsg4ljxzIpEKR1zeocBTc4qaYmVEUhZpqMqxtTsDhq68fSbqTxqCrr/vP0oNtpXreGtGXRESrFtPK3mmR3OEEy0fcwOEVRMFIJEvFY3uLpTS0r5VXV4ifr17Jo5bKCxCCEEGJfkgCNZJEIAAmv/zAbZs/nzRS/m7eA2JbNedvnaNC1zVkENeEp7KhV1esnqUAkXxXg9mMmYmAkUNT+n1ynTZPjKir55Zx5lC15O4fRDVxrJrHdGY8xtrpwPXuKorDH7awG0L5k8aDbeXTjBj6zdBEdR5+YrdD6JZ0y6eqI43Id+LxwuRTSyQSpPBdA6C2qTWVVd5i33pYeICGEKAaSAI1g7kQCgHQgf5Pm05lkK97akrd9jgbpPU55YqWksDNY3MESYlY6rwUQerNNwymJPYDOhbSZxlvnJBfuaHEthNqxXgegzbbxugub3LqqnaptoT2De+12d3ezefNG0rbNeG1BNkPrl872WJ/D4FRVIdrdWdDKlLOmOUMMly1bSnd3/qonCiGE6JskQCOUbdv4ekr/ZtbnyQcj6CRbRkdn3vY5GrgyJ02BytyXMz8U1V9CW7y9oCeTZjyCMoCS2IZlEBg/FoCAYWBbxbPQZHqnM1Q06vEcZsvcGz9tBpZtU6eodDc1DfjxK1csw7ZtGhom4Pfm/3naHU6QiKUPGAZnW2nikcKu/1RfV8vxkybxP2PHsfT++woaixBCCEmARiwrHseTOUlVKuvyt99y5yqyu0Dj7UcqT8qpxl5ZX1XQOIyAn85IZ0FjsNIprER3v0tiW7ZN2aQGLNvGTfEshmrbNp4OpzKZXVLY0uYAY+vq2JZ0eo3XP/7ogB/f/p+nuX72XD40fSbJRDrb4R2WkbboaI/tMwxOUcBIpwo2/6e3syZN4rwxY0ktXlToUIQQYtSTBGiEMiMRErZFxDAIVtTmbb92pVMFrhyFcJGcaA53nZ0dfHPlMj637G0atMkFi8PlDxJXbMLRwpQT7s2IdqOYqX73AlXU19CeSSJTrXtyGVq/Ge3t+EwTw7KoHFNf6HBQFIXNoRA/27COZ1sGXi3Ps3Mnk4MhxlWNoVAdhF0dcdLJd4pkqKpKOhknGSt8AhQ8UgNgXDJFvL2twNEIIcToJgnQCOWtq+OrG3S+vGIJJWX5K69rlDo9QLVeH42NO/O235FswwZnnkhpVSWhUOHmALmDpUTMBLFE4ecwWKkEVrz/vUChqjJa004CtGfT0Na6yRbF6+HB1j083rybyfWFT4AAGqZNZ2lXJy+++vKAhjnGw2EaMkMLy+e+K1fhHVZ3V4JoNIXb7TwxXC6FeCSMaeZ5AdQ+jJ+tsS0Rx60orHnwn4UORwghRjVJgEaoVCpFONxFyrIoKcvfsKl0Zr5Rrc/L1q1b8rbfkWzt2jUAzJoyobCBBEtoibQWNoZezFi4371AJubeeTbtGzfkOrR+CadT/GPrJu5t3MHk2sKVwO7t6MlT8bjd7Nq1c0Cv33XPPIlXVWkz0lRMmZPDCA/Nsmza90RRcJ4TtmUSCRe+xxKc3qhdZc6abOllSwocjRBCjG6SAI1QbW3OMB+320MgmL/5BanSStZ7fTy7p4XNRXKlfbizly7hqukaJ2eqdBWC4nKT9HrpihTHySSAmex/L1DaTNNcVcnfdm5naz+HzeXahg3rAWioqsbv9RY4GkfA5+PkGTP5RMMEdtz1x34/ruNtZ15Lc6iEZGJg6zRlW1dHnGTCQFUVTCNJogiGv/UIzp2FadtUJZPEd0kPuRBCFIokQCNUx6OP8O3pGseNaej3PIlssLx+Vs08in807mTTZkmAsiHQ2srCikomhIIFi8EdKiNmG4Qj7QWLoS9GtKtfFeFSZhpVm84juxtZ3V74Xizbtml/5WXG+HxMLuACqH1ZMGEiF45toK5xF0ZX52G3ty2Lsj3OBRfX9CMwjMJW2YtFU3R1xvF4XKQTMRKxSEHj6W3mnFmsijhDSDc89GCBoxFCiNFLEqARyty2lQUVlVSH8l9dqq5+IgCbN2/K+75Hmng8RqXpnFDWTSjcibIaLKMl1o5h5r+616FYqSRWPIyqHnq+SsowmDR5EgBbimCR3nTzbqatXcsNc45iapElQEfNnose6UZFoem/zxx2+9ZlSyhTFGKGwZiFp+U+wH5oa4lg2zbR7k5Mo/Dzf3q43W5aqsrpTKdYtUXeH4UQolAkARqhlEwFtngeF0HtUV0zjlqvj2hTE+nMxHMxOOvXrqHB7ywuW12oBEhVSQf8tHcXR/W0/RmRLpR0AuUQq6OmzTQTp06mwe+npLERo8ALosYz85A2RiNMqR9b0Fj2N7ayCj1TAKH9xRcOWwxh6bq1vNC6h6WmQXllcRRzCHcmSMWTxLq7Ch3KAeqPP5pLVyzl1tdfIR6PFzocIYQYlSQBGoGsdBpPwlnPI12a/3Vj6tct5bfzjub9dWPYtm1r3vc/kmxY9BZuVSWFjaukMBXgPKEyoopFZ3fhh471xTLSmJFOXBx86FXKTDFh6kSumjGLrzRMYOfbb+UxwgNF9HUA6JFuZjUUuLhFH6qmTiVumgRiMaIrVxxy26cXv8VtWzfRfczxxKPF0UOoqgrRSIR4EQ1/6zFzxjSqq6uIxWK89NLzhQ5HCCFGJUmARiCjrQ0FSJgmnqr8LYLaIxFykq6x/gCbNskwj6FoWrEcgKTfm9e5XL2pJRU0R9tIpZMF2X9/GLEwdjKC6ur7Lc2ybUws2t1uAHYvX57P8A7QvW4tAE2mSW15eUFj6ctJc+bx3z3NADT+64GDbpdMJnnttVcBOO6Yk0mnC1sAoUewxEssHKa7q/uQPYOFoCgKJx67AAVY9uD9pJqbCx2SEEKMOpIAjUDpPS0AtCSTlFflf9hUIlN2e5zfj66vzfv+RwrLsrCbGgHwjylMBTjF5SYVCNDaVdwnabZlYXR3oJoHL4gQTccwa2oAiG8rXIl2o6sLtcOppueuzH8PbX9UlZbSWl1F2rJg506iq1cdsI1tWSz/zU3UYFNfP5b6usn5D/QggiEPne2txLoTBbtwcCinnXg8n580hQst2P7A3wsdjhBCjDqSAI1AycZdAOxKxCmvrM37/lNlzsl6jdfHuhWFvdI+nG3YsB4znSJhmdROLszcCk9pBWE7RUeRzv/pzUzEMKOduA5SECGailGhzQTA19mZx8j2FVu7GoDN0SiTGhoKFsfhnLngOJ7Z08zz7W2kqg5M1MKvv0bFurX8WJvDBee+n0SsOIa/KYqC32cT7uggFk1hpM2iS4JqqqtoriwFwFi2lHR7cVVXFEKIkU4SoBHITqWImQY7E3HKK/M/BM70B0n7nZLN4c2bMM3iGBYz3Cxe/BZ/3rGNO1STspnjCxKDUlZJY3g3plk8lbQOxYh0Yif6HgqXNFLMPPVkAKqAaHtbnqNzxNY4C9uuDHdxxPjim//TY96kybxmW/xu8wbu/vvf9rkv3d5Oc+a2h3c3cua5FxCNFkfBk2CJF8tKEO7oJJ02iUfTRTcMDmDOqe9mdXcYFdj92COFDkcIIUYVSYBGohNP4DNL3+aR5iZKyysLEoJZ51zZHutS2ZipeCUG5tVXXwFg4ZwZKC5X3vfvCpQQcavs6WjK+74HyzZNjHAbqnFgVbikkaJ+1gxajTSqorDmP4cv8ZyTGE8/jRs2rueljlZmjitMYtsfiqJwyRnvBeDee//Czq1baH3kIcKvvcrOX/4c4nE2RyMkjjyS0lANlnnoanH5UlLiJRbuIJV05qxFI0mnF6jIkqDZM6fzctJZpLXzxRdJFbBXUgghRhtJgEag5ubdAATKq1HV/J84AyQyc48mB0KsXLmsIDEMZ+FwmLfefB2AU+bPLkgM7vIaWhKdRGLFV0r4UMxkHDPSjgsTep3zJtJJ0pZBV1kZAM0FqgT31vKlvNnZTllNLUGfryAx9NexU6Zx7JwjSafTvPbja2h/7BF23/kH0ntaaEkm+PXmjXz285fS3ZUodKgAKAoEgtDR+s6QzXTaJBZJFd0wOEVR0E49kQ2RCC7LYtOf/1rokIQQYtSQBGiEsW2bbdu3A1BRgAIIPbrGTGVDTR1vdLSxbNnSgsUxXL388ot8YfxEfnv0MVR35D8BUb0+kqEAjW078r7vbEhHurCinbh7vcMljRQpM0nl6e/hhk3ruWvVcizr4KWzc+X1V18GYOHU6Xnf90ApisLX338hJaEQD61fi25bdIVCPNW6h++uXcVZH/koU6fMJNJdHBUCQyU+bCtB535zaqKRJOmkgVpkvUAnHLuAp+LdALQ99zzJxsYCRySEEKODJEAjTGTJYsY++igfb5hAde24gsURrZ9M8uT3srI7zBtvvFaQE83h7Nn/Ps28snJqXe6CvEo9lXW0JLtpD7fkf+fZYNukw23Y8TAul3PSa2MTTkY5/oILWZlMsKmpkeXL85ucN/7+t1Rt2EjI5WLhtBl53fdg1QeC/PzyK9hmmvxg8Vt84cVnuXPrJo5YeCzf/OZVdHXESaeKY55faZmPSGcrqcS+CZlhWES6kxxmTde8U1WV+WedyqKOdrbEY7S37C50SEIIMSpIAjTCJLduIZhKUeZ2U11X2ApTDVNmEwyGaG3dw9pM5StxeG1trWx6602qvF5wqfjr81sqWfX6SYRK2N66FbvYzhgHwDZN0l17IBnZmwSFE2E8Pg9nnnk2AA/ksQRxqqmRyNuLOL+qhoDXx6yG4p3/s7+5VTU8cOfdXHTRJznttDO46qrv8Zvf3I5L9dLVES90eAC43Cp+v0V7S99JeyySIhFP4zrIWlGFcuz8eTxJmu+sXsEv/3JXocMRQohRobg+CcSQJbY665tsjEaoKmAPEEAymuAjxxzPrJJSXnrphYLGMpw89NA/ObIkBEBgQj2KO7/zuLzV9TQnO2nrHP5Xo610mnRnC6SiqC6FWDpB2k7z8fdfwIfGNjBp7dq9c+ZyLZyZ07WyO8yR06bjKkBhi8FKR6LU2fDD7/+Am276LZ/4xP8SCPhJxFKEu4ojASqvCJBOddPR1ndJacu26e5KkC6yggiqqvKpT3wERVV55pmnefnl57Glx1wIIXJKEqARxDYMEls2A7AxGi14D5Br6RucH4txQf04Xnzx+YLGMlwYhsGDD97PcRVOr09gQn7XcXKHyokEfGxp3oTN8O396c1KJUl3tKCkoiTNBEkzhTZD46PjxnN6dQ333XxDzmOwDYOul18C4IXWFk47cl7O95ltkR07MVpb8XicxM2lKrS3RjHShT9ZVxQoLXPRtrsR6xBl95NJg0g4MzyueHIgJo4fxwfOOQMVWHzjDWz59fWSBAkhRA5JAjSCxDdvwkokCKfT7EjEqawZW9B4wvVTADiyrJzN69exceP6gsYzHDzyyL+I7dmDVuIskhiYlMdCFqoLtaaerd1NdEUKs0ZOrlipBOmOZmKRPSStOL6aKpjpLIpauW4db731Rk73H1m6BLOri45UitWJOMdNn5nT/eWCmUjSvXETaiKGqqokEwYd7bFChwVAabkfrBitu5sPu22kO0kskkJVi+vj7+MXnsexUyZzZkUVxrp17Hn8sUKHJIQQI1ZxfQKIIYmvWQU4CyxW1Y7D4/EWNJ5kRR1WWQVeVeXI0jIefPCBgsZT7BKJBLff/ltOqa5BVRR842pxlwTytn9/bQO7SbCtaWSu22SlkqTadtPWuQufB6Z96tPYwAlV1dxxzXfZtm1rTvZr2zYdTz8JwLOtLZx51AK8Hk9O9pVrsabdxLdvx+9V6eqIv9ObUkCKAhWVPtqbd5JMHL4ct23bhDvjJOPpPhfMLRSv18MnP/+/3NvsVIJrf+QhOt56s8BRCSHEyFQ87/5iyKIrlgOwPNxF/fhpBY4GUBQiEzQATqis5t//foR4vDjmCxSjO+74LS0tzez2eSk79mhKj5iUt317K2rpCvlZ37iWtJHK237zzTLStDZvJR7eTdn4Okrf/W4APlNTxxWXfo5169ZkfZ+RxYtIbN1C3DR5Zk8zHzjuXVnfR97YNt3bthPvCNO6J1LoaAAorwyC1c3unf0vIW0YFp3tcVJJo6iSoNrqKhZ87IM839aKCjTd8Ttal7xd6LCEEGLEKZ53fjEktmlSctR8OhSFtzs7qG+YWuiQAGibNAeAE6qrMWJR/v73vxU4ouK0YsUy7r77TwBcfMUVjH3fSYRm5GcOl6e0gmR1DetaNtLZPbKGvvWlq7uVru5WUrvWMfFD5+KqqqLO5+eLFVX832f/lzvuuI1YLJq1/XknTmKFkebR3Y0cP2ce46trstZ2IfirKtmzvZVwUweqq7ATadxulYpKNy27tvWr96e3VMqgsz3mrA9UREnQrBnTqHj/mbzd1YEbaP7tb1j370cLHZYQQowoxfOuL4ZEdbspef+FXL1zFxHToH58cSRA8ZoGjOoxeBWVM2rquPPOOwiH87+wZzFraWnmiiu+hmVZnHfe+znzhGNIdeRn/R1PWRXp2rGsa99KU+u2vOyz0GKJCO3JbmwjRWLHaiZf8hFcpSXUB0NgGNx22y2cc857+PWvf8HKlSuGXAr89nv/zE+WLeapjjY+856zsvRXFIa3rBSzpIod63YSb2mGZKKgSVDd2BISkZYB9f70lkwYdLTFSCWKKwmaM2smZRecw4poBI+ikHzwAW7+xU9ob++7wp0QQoiBKZ53fDEkbrfKhi2NNDdtB2DchCJZZFFR2DPreACOGlNPd3eYX/3q5wUOqnh0dHTw1a9+iT17WvjEEXO4dOw4ohtWYqUGdjV74BS81WNJ1NSxun0z25pGV4GK3Z2NpEtKsVJJjGgzDR87C+0Ln+LbP/4hEydOIhLuYvnD/+LT//sxzjrrFL75za9xzz138eabr9PS0tyvpKjlzdf56XXXcOfddwJw+fkXUFtenuO/LHdUjxv/hIk0t0QJ7wljRGIkmpshHi9IElRdF8KtRtm2ccMhK78dTjJp0N4aJR5JoapK0ZTInjxlEuM+/RFWYvGXHdu4676/ct55Z3DddT9ixYplw3qNLiGEKDR3oQMoFpqmqcA1wOeBSuAV4DJd1zcWNLB+aH3oQdwTJvL8ik0A1I2dRKi0eE60OqbOJTS+gclVLtQvfJpHH32I448/kfPOe3+hQyuobdu28o1v/B+bNm3gqPpxXFheSWzZcjpKoXTO5Jzt1+UP4a4dS5sb9KbV7OkY3NXz4WxPZxPttVOorawl1bYbxWOBEuH0adWc9adbeOuJFyh7+XVaUyneaG9j0Ruv89x/n6GnMHFJSSnjx0+grq6OuroxVFVV4/P58Hg8RDo7qV+3liNTaapbW1AUhS+9932cPveogv7NQ6G4XJRMnUJHXGWX/s7zxYjEiJu78ddU4yopxbIhH+flVTUhSkMG2zasIxruHnJ76bRJe1uUkpSPUKkPj8eFma8/5hDKyssou+QiUmvXs/2p/7Jh4ybWP/0Ez7/xGj81DWYecxzHHns8Rxwxm0mTpuAZpsU1hBAi3xS5iuTQNO0a4DLgEmAXcD0wFZij6/pgZoVvBqZ0dEQxjNyt5xB+/VV2/+kPANzlLefJ157m+FM/wLkf+XLO9jkYigJHTqvh6Yfv5p4/3k5aUbnhhps59dT35HzfbrdKZWWIXB+L/rIsi3//+xGuv/46IpEIJ4yfwP+bMh3icYJTxlHz3mNQlOxfhXYFS/CU1xAL+NkZa2NL03riyfxOZFcUcHtcGGmz0OeWjK2ZyPy6WSi7tmIl9y3OEd20m/aXl2El3qlylga2p1Ksam/lkaZGIqYBQMjlosztoc7n48jSck6rqaU8cyL6n0iY6ce9i4XTiqRHthdVVQgEvMTjKSzr4AfD5fMRmjKZsOln47JtJGMHVn5T3C58FRV4KsrB68Oy7JwcX5dLpba+BJ83zo6N6/pV9nqgvF43JaU+/EEPLreKbdvYh/j/ZIOqKvgDXhKHOBa2bbNp6w4aXnyTcsvGtG0Wd3bwansrS7o6MVUXkydPZty4BurrxzF27FhqamopLy+nvLwi872SsrKyYbUIbyFUVYVwudQtOOcAQogRSBIgQNM0L9AKXKnr+u8zt1UAjcBndV3/+yCazWkCZHR10vHkE3Q8+x+wbTrmnsg3//Vnurva+PgXr2bW3OKrNOX1qBzREKL5J99ma3srD+1u4qxPX8LFn/l8Tq9cFksClEqleO65/3DPPXezevVKpgRDfHLWHI5yucC28dXXUHfucai+7PwvFLcHlz+IK1CCFSwh5oLmeAe72rbTEd6TlX0MOKYiSoAUReGISfOZ5q/G2r0TM7Fv4QPLMEnsaCG+o5XYll1Y8XdO/H1f/z8aI1F2726m8s03GNe6b/GIhNeLOWcODePGF916Mz0OlwCpHg/+2hpc1bW0hy22rt5BKn7oa0Euvx9veSmuUAmK14ut9iQQQ4vV43FRVuGntEwlFW9n+8YNhDs6h9boYfh8bgJBL/6AB7dHdYbG2U5il+3Pzf4kQADYNkpjC+7V61F2Nu292bRtNkejvNbRyuPNuw+7P6/Xi98fIBAI4Pf78fvf+R4I+PH7/bhcblwu1z5fqurC7Xb1ed87X25cLnXvNqqq7v1SFBWXy/muqgoul2vvz6rqymyjZB6nZLZ3oShKpg1XZtt3ft63zb6/9t+mr+0VRdl74UkSICFGPhkC55gPlALP9dyg63qnpmlLgFOAwSRAdO5p467vXY+iALaCojiLjyfcXtbXTobMG+7sli34jdTeN1+l11fK42PthDkEyiqpGT+D2W8+SrBpM/6W7Sg4H5Q7jjyD/5RNorurDV+wjMD8D7GzwGsAHUz3W8s5yoYF5ZUsKK8k/MorPPnSK3gaplEyQaPrqNOIj3U+c7wdzZTrb4LS9wlkZNIc4pnFVj1drVSsfb3P7RQFklPnEa6bhG2DO9JB5cqXDxpjZNx0wvVTsS0TNdJJzaqXsG3LuQpsW9i2hWU63zsr62mtnYBlGKiJCJM2L8O2rMz2FkY6STLcTqpzD4t3bOT1FufkRKuo4drp050d2jZts45nx7svwPL4DvHfyzyBMt8VFPY+qVCdHxUXtqpgKQo2NoZpY3SbJNqTpFNJDCsEjIeCXQBWUCywVYDCX3zZtFOhLFhB0DUVlx9sI41tmc7QJ7cNU3C+Trbwd7QQ2rOdYOsuGu0jUMo9UOXBvyOCGX6TdFkN8ZrxdE48krYxMzBNC2dlLgWw+/5r8/4veKdnUVFAdbmwXJZzu6qgqC4UtwvV7cZUXJimQmxrklh3HEKzIdSPXZigRFRUtxvF7UZxq6A4J7EoCraiOFHYNrbSE1Xm/TFzn6IqqC4lc5IM2BZWOEWsqZtYt4ptzQR/1v85B4qDknR6nlSX4nxXnb9D7XkNZux7KAd+YF1pF6bRj7lMNcCpZ1LSsZux21dRv20Vge42ZpSU4J82F6thDuG2JiJ7Grkq2kTEtggbBt3pFPF0iqRlkTQt1ke7eS6TLCnAx8aNxwYs28ba+93GsGFnMsGizo69Ibx/zMEX2d6TSvJGxzvFGs6tq8d9kB7t9nSKV9vfuXhwVm0dPrXvN6eudJqX21v3/n56TS3Bg/RkRQ2TF9reuchzSnUNpe6+T3cSpsWzrU7RGUVVeXdVDbc+/m9qx+enCqcQojAkAXKMz3zfsd/tjcDEwTbqNw2Obz5wCtH2WIxbHv7T3t/fO+coGgJ9L3jZnEzwswfv2Pv7z45cSLXf6SHQyzUemvxRllfNx/rHRQCktAu5Z2vtYEPOg1OoP246F2x5gGNbXqPMA2UArduhdTsPvvwiL9W9G6qns8Cd5sot9x20pbtmfp7/jHfWGTqio50fLL33oNv+dfEG/u2ZDMkupsYa+am56qDbPtC4kwcadwIw3h/g10cefO7Go7sb+etOp/BErdfHb+cd3feGCsT9fl4vqUeZ90l2zv0o8WXfYXn10Tw54f1sKNdgy0F3I4rCFFCOh1qg99On5mtwUq/fDZxBtCIHxhQ6gCIyG+reA3VQE29hVucaur1lLK9YABVQMb4d96tfoEJRqfB6wbvvRTHvjPfy4rgPQjqOO9XNh7f97qB7ekut5m33TLAMsEz+x1py0ApKyw0vb9aVgW2Bmeaiim6CBxnRuzZl86p/srOtbfGRsT4qD1KNb3MixcuGf++2F45roN7bd295YyLBCx2de7d9/5ixTAr2nb23ppJ7EyDbsjinppaQW4YICjHSSQLkCGa+7z+4PQFUDbbRJAqLlIAzZCJzBdjGpivgZ9yC92HbFtg2y5QEG03Lubf3trZNVAlSO+vdJDqbibRs4f4dm3ApCluSaUqPncb4iigz19/E2u2vorp9nPWxLxMq5vwHgHE0zv86jxmXEmpcQ/rNf5Lc8AbeZIQdne1Y614CYE8gyPNj6nGpLlSXB0V1QWY4A0Dbq7/CF7sWy0wTURVeqizDNk3nCv5+dmy4B6urE4Cw18fz4w5+dW9LrzVgoqbBc3syJalVBQU103PnDJnYjptAVQOqy4PL4+alWBJQUDJxKqoLNVCGXVKFveDjXHjMh1EyQ6IeW3A3lsvDEcARQ/+nCiFGrTqgjiqgZ/lkxSrn0Sm344t14o934U3FcBlJ3OkELiOFXTmeD06ZB4BqptFf34ZiWyi2hZr5rljO2EVX7TQunPu+vXvb+vytKAcZBmhVTeTC+R/c+3vTi79DNdN9bpsuH8eHFn5k7+97Xv4DXalYn9vGS2v50OWf3Pt752t3kYiH+9w2EazgQ5dfvPf36Bt/ZWtkT2bY7TvFLWzbIukNcd5n/4JtOclSdMVjmO58dC8KIQpJ5gABmqZ9GPgnENR1Pd7r9vsBn67rHzzogw9uMzAlHI5jmtmZdxKJRHjhhef4y1/uZs2aA3swLr/8Cj7/+S9lZV/5Zts2Gzas57XXXmHt2jVs2bKZbdu2Eo0OfkHKYDBEaWkJJSWlVFVVEgw6P5eVlVJaWpb5KqWszPleWlpGWVkZJSWl+HzefcayF+s8juHG5VIpKwuQzdeFGBw5FsVDjkVxKS8PoKoyB0iIkUx6gBw9Q9/GAZt63T4OWD6Uhk3TytrEe78/yDnnnM/ZZ5/H4sWL+Ne/HmDp0sWUlpbyoQ99jIsu+mRRVDkbrKlTZzB16r7VspLJJJ2dnYTDnaTTadLpNKlUCtu2cbudSbZutxu324Pb7cbv91NaWkooVLK30tFQiyBYllO5TWRPNl8XYmjkWBQPORbFQa4LCzHySQLkWA6EgdPIJECZKnALgFsLFtVBKIrCMcccxzHHHFfoUHLO5/MxZswYxoyRsf9CCCGEEGLoJAECdF1Papp2K/ALTdP2AFuBX+L0DP2rkLEJIYQQQgghskcSoHdcjfP/+CMQAF4Czh7kIqhCCCGEEEKIIiQJUIau6yZwVeZLCCGEEEIIMQJJaSshhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUUGzbLnQMI1Uc8JumVeg4BOByqcixKA5yLIqHHIviIceieKiqgqIoCSBQ6FiEELkhCVDudAI+oKnAcQghhBCi/8YCSaCiwHEIIXJEEiAhhBBCCCHEqCFzgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUcBc6gJFE07TvA2fqun5ar9vmAzcDxwBtwC26rv+qIAGOIgc5Fu8HrgaOAFqBB4CrdV2PFyTIUaKvY7Hf/X8AztJ1fXI+4xqNDvK6GAv8GjgXMIGngK/rut5akCBHkYMcj2OAG4AFQCdwH/ADXdeThYhxpNI0rQr4KXA+UAasAL6t6/ormfvnI5/dQoxY0gOUJZqmXQ78eL/bqoH/AOtx3kSvAa7VNO2SvAc4ihzkWJwMPAQ8CMwHvgxcBNyW5/BGlb6OxX73XwB8Pl/xjGYHeV34cN6jpgJnAufhnHj/Jd/xjTYHOR41OAnoWuBo4AvAZ4Dr8hzeaPB34F3Ax4FjgSXAM5qmzZLPbiFGPukBGiJN0xqAPwInA/p+d38RSAKX6rpuAGs1TZsBXAXclddAR4HDHIsvAc/puv7zzO8bNU37LnCXpmlflqur2XWYY9GzzVjgDuBFYHLeghtlDnMsPoHzv5+m63pzZvvLgds0TSvTdT2cx1BHhcMcj5OAauBbuq5347xP/RU4G/hmXgMdwTRNmw6cBbxb1/XXMrd9HacX9JNAHPnsFmJEkx6goVsAdADzgDf3u+9k4KXMG2iP5wBN07S6PMU3mhzqWNwAfKuPx7iB0hzHNRod6ligaZoC/Bm4B3ghr5GNPoc6FucAz/YkPwC6rj+t6/o0SX5y5lDHoy3z/VJN01yapk0G3ge8kb/wRoVWnN7OxT036LpuAwpQhXx2CzHiSQ/QEOm6/hjwGICmafvfPR5Yud9tjZnvE4GWnAY3yhzqWOi6vrT375qmeYErgCUy1yH7DvO6APh/wFjg/cB38hfZ6HOYYzETeEnTtB8AFwMe4GngSl3XO/MY5qhxmPeplzVN+zlwLc78FBfOBYL/y2+UI1vmuf1E79s0TfsoMA3n+X8d8tktxIgmPUC5FcTpRu8tkfnuz3MsIkPTNDdOz8Ns4LIChzPqaJo2D2dM/f/I0MOCK8NJfI7CGfrzRZxhWI9keulEHmmaVoGTlP4WOA74KDAd+F0BwxrxNE17N3An8EgmQZXPbiFGOOkByq044Nvvtp43z2ieYxGApmmlwP3A6cBHdF0/YHiWyB1N0/zAvcBPdF1fUeh4BCkgAnxC1/U0gKZpFwNv4Uz+XlTA2EajXwAVuq5/OPP7Ek3TOoD/app2k67rywsY24ikadoHcd6T3sCZEwfy2S3EiCc9QLm1Axi33209v+/KcyyjXmbS/cvAicC5mSt9Ir+OB+YAP9Q0LaJpWgT4LjAx8/v/FDa8UWcnoPckPxmrM9+nFCCe0e4kDkw6e+b/zMxzLCOepmlfBf6FMxzufb2WRJDPbiFGOEmAcusl4GRN01y9bjsD54RDxhDnkaZplTiTWGuBk3Rdf77AIY1WbwEzcIZczc98/R5nfP184NECxTVavQQcpWlaoNdtczPfNxYgntFuB05xhN56jseGPMcyommadinwG+BW4KL9huPKZ7cQI5wMgcutO4ErgT9pmnY9zpjuy3HWoBH5dSPOWifnAHs0Tavvdd8eXdfNwoQ1umSusO5zYq1pWjtg6LouJ9z593vgq8C9mUII5Znbntd1fUlBIxudfg08pWnatcDdwCSctcqe0HV9WQHjGlE0TZuJs8jpQ8DPgLpeBSniyGe3ECOe9ADlUOZK0dmAhrPI2jU46zv8uaCBjTKapqk4i556cXqBmvb7mlC46IQonEwFxJNxqr+9iVOd7C3gwkLGNVrpuv4McD7OGjXLcE7EnwA+VsCwRqKP4DznL+TAz4Ob5bNbiJFPsW270DEIIYQQQgghRF5ID5AQQgghhBBi1JAESAghhBBCCDFqSAIkhBBCCCGEGDUkARJCCCGEEEKMGpIACSGEEEIIIUYNSYCEEEIIIYQQo4YkQEIIIYQQQohRQxIgIcSwpGmaUugYhBBCCDH8SAIkhBh2NE37APDnzM+naZpma5p2WmGjGjpN07ZqmnZ3oeMQQgghRjJ3oQMQQohB+Eavn5cAJwBrChRLNl0IhAsdhBBCCDGSSQIkhBjWdF0PA28UOo5s0HV9aaFjEEIIIUY6xbbtQscghBD9pmnaC8CpvW46HXgeOF3X9Rc0Tfsh8HHg28BPgOnAOuBSwAZuBuYBm4Cv67r+bK+2jwR+DpySuelZ4Apd1zcPMMatwF1AOfBpwAc8CnwJ+Arwf0Ap8F/gi7qut/V63Au6rn9G07TJwBbgY8BFwNmAATwIXK7remQgMQkhhBDCIXOAhBDDzWXA0szXCUBZH9tMAH4NXIeTQFQB/wTuA/6AkyCpwN81TQsAaJo2E3gNqAM+A3wOmAq8qmla3SDi/AYwKbOvnwKfBN4G3gt8Efgh8EHgx4dp53ZgK3ABcD3wWeB7g4hHCCGEEMgQOCHEMKPr+hpN08KZn984SPGDIHCZrutPAWiaNhv4GfA5XdfvzNzmxkmKNGAZcA0QB87MDKtD07Rngc3AtzJfA9ENXKTrugH8V9O0i4FxwPG6rncBT2ia9h7g3Ydp53Fd17+Z+flZTdPOAs4HvjPAeIQQQgiBJEBCiJHrtV4/7858+kcirAAAAaFJREFU7z1XqC3zvSLz/QycoXSxTHIETkGCl4GzBrH/tzLJT+8Ywpnkp3cMcw/Tzuv7/b4TmDyIeIQQQgiBJEBCiBGqpxdnP7FDPKQaZ67NRX3ct2cQIQx0/wez/2MsZPiyEEIIMWiSAAkhhKMTpyjBDX3cZ/RxmxBCCCGGIUmAhBDDkQm4stzmi8BsYFnP0DVN0xTgr8BGnHlCQgghhBjmJAESQgxHncAJmSIC5Vlq88c4823+rWna74AETtnqC4CPZGkfQgghhCgwGUcuhBiObgXSwJNAIBsN6rq+AjgZZ62ge3AqxI0FLtB1/V/Z2IcQQgghCk8WQhVCCCGEEEKMGjIETggh+kHTNJV+9JrvV/paCCGEEEVGhsAJIUT/3Ikz7O6QX5qmTS5UgEIIIYQ4POkBEkKI/vkhztyjw2nMcRxCCCGEGAKZAySEEEIIIYQYNWQInBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFHj/wNWMk1OIxk4dwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "import hplc.quant\n", + "chrom = hplc.quant.Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "peaks = chrom.fit_peaks()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence).\n", + "3. Clipping of the chromatogram into \"peak windows\" which contain at least one \n", + "peak. Regions of the chromatogram which are stacked with heavily overlapping signals\n", + "are grouped into single windows. \n", + "4. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "5. Given best-fit parameters for each distribution, the expected signal of the \n", + "compound across the entire observation window is computed. The integrated signal \n", + "over the entire peak is computed and stored.\n", + "6. The estimated mixture of all compounds is computed given the parameter estimates \n", + "of each distribution. \n", + "\n", + "The rest of this notebook will examine in detail how each of these steps is \n", + "implemented.\n", + "\n", + "#### Step 1: Correcting for a Drifting Baseline\n", + "\n", + "#### Step 2: Identification of Peak Maxima and Including Obscured Peaks\n", + "\n", + "#### Step 3: Clipping the Chromatogram Into Windows\n", + "\n", + "#### Step 4: Per-Window Estimation of Constituent Signals\n", + "\n", + "#### Steps 5 & 6: Integration of Signal and Evaluating Composition of Mixture" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/index.rst.txt b/_sources/index.rst.txt new file mode 100644 index 0000000..7241497 --- /dev/null +++ b/_sources/index.rst.txt @@ -0,0 +1,104 @@ +.. image:: _static/page_logo.svg + :align: center + +.. image:: https://img.shields.io/badge/License-GPLv3-blue.svg + :target: https://www.gnu.org/licenses/gpl-3.0 + +.. image:: https://github.com/cremerlab/hplc-py/actions/workflows/pytest.yaml/badge.svg + :target: https://github.com/cremerlab/hplc-py/actions/workflows/pytest.yaml + +.. image:: https://codecov.io/gh/cremerlab/hplc-py/branch/main/graph/badge.svg?token=WXL50JVR6C + :target: https://codecov.io/gh/cremerlab/hplc-py + +.. image:: https://badge.fury.io/py/hplc-py.svg + :target: https://pypi.org/project/hplc-py/#description + +.. image:: https://zenodo.org/badge/667610900.svg + :target: https://zenodo.org/badge/latestdoi/667610900 + + +---- + +About +===== + +Welcome to the documentation for `hplc-py`! This package provides a limited, yet +robust, interface for accurate and efficient peak detection and quantification +from chromatography data, specifically from High-Performance Liquid Chromatography (HPLC). + +Chromatography is an analytical technique which allows for quantitative +characterization of a chemical mixture. While many of the technical details of +HPLC are now automated, the programmatic cleaning and processing of the +resulting data can be cumbersome and often requires extensive manual labor. The +goal of `hplc-py` is to reduce this manual labor and make running of the +chromatographic separation the most time-consuming step in the process. + +Installation +------------ +You can install `hplc-py` using pip:: + + $ pip install --upgrade hplc-py + +Dependencies for `hplc-py` are as follows: + +- Python 3.9 or newer +- NumPy_ +- SciPy_ +- Pandas_ +- Seaborn_ +- Tqdm_ +- Termcolor_ + +Contributing +------------ +Development of `hplc-py` occurs on various feature branches which are merged and +released upon approval by Griffin. + +Please submit issues and bug reports using the `issue tracker `_. When filing an issue, +provide a reproducible example that demonstrates the bug or problem. Feature +requests can also be made through the issue tracker, though it is up to the +discretion of the maintainers what is worth implementing. + +.. _NumPy: http://www.numpy.org/ +.. _SciPy: http://www.scipy.org/ +.. _Pandas: http://pandas.pydata.org/ +.. _tqdm: https://tqdm.github.io/ +.. _Matplotlib: https://matplotlib.org/ +.. _Seaborn: https://seaborn.pydata.org/ +.. _Termcolor: https://pypi.org/project/termcolor/ + + +.. toctree:: + :maxdepth: 1 + :caption: Tutorials + :hidden: + + tutorials/quickstart.ipynb + tutorials/calibration_curve.ipynb + +.. toctree:: + :maxdepth: 1 + :caption: How It Works + :hidden: + + methodology/problem.ipynb + methodology/baseline.ipynb + methodology/peak_detection.ipynb + methodology/fitting.ipynb + methodology/scoring.ipynb + +.. toctree:: + :maxdepth: 1 + :caption: API Documentation + :hidden: + + quant + io + +.. toctree:: + :maxdepth: 1 + :caption: Credit & Citation + :hidden: + + citation + \ No newline at end of file diff --git a/_sources/io.rst.txt b/_sources/io.rst.txt new file mode 100644 index 0000000..5a5cc99 --- /dev/null +++ b/_sources/io.rst.txt @@ -0,0 +1,6 @@ +`hplc.io` +===================== +.. automodule:: hplc.io + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/_sources/methodology/baseline.ipynb.txt b/_sources/methodology/baseline.ipynb.txt new file mode 100644 index 0000000..d049efa --- /dev/null +++ b/_sources/methodology/baseline.ipynb.txt @@ -0,0 +1,383 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Baseline Correction\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What's in a baseline?\n", + "\n", + "In liquid chromatographic analysis, compounds are carried through an absorptive substrate \n", + "(termed a stationary phase) by a solvent (termed the mobile phase). In an ideal world, the column is saturated with the mobile phase and is held at a stable temperature and pressure. This sets baseline signal that can be subtracted from \n", + "the signal detected over the course of the chromatographic separation, allowing \n", + "for quantitation.\n", + "\n", + "However, we don't live in a perfect world. Often, variations in the column temperature or ineffective equilibration of the column with the solvent, resulting \n", + "in a drifting baseline. For complex samples, such as whole-cell metabolomic extracts,\n", + "a drifting baseline may result from the sheer number of compounds present in the sample at low abundance that convolve to a \"bumpy\" baseline. \n", + "\n", + "For quantitative analysis, we would like to correct for a drifting baseline, so we \n", + "can more effectively tease out what signal is due to our compound of interest and \n", + "what is due to nuisance. Take for example the following chromatogram with a known\n", + "\"true\" drifting baseline." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7KElEQVR4nO3dd3hUZd7G8e+U9J5AEhIC6YReJIB0qRYsiGV1ce1iX3QVX8WCq6xl7WIFVOysoK4oFrAgCNJ7gJBKEkhCei8zc94/ZmcyQ50kk8xk5ve5Li9Pzpw558nDQO48VaUoioIQQgghhAtQO7oAQgghhBD2IsFGCCGEEC5Dgo0QQgghXIYEGyGEEEK4DAk2QgghhHAZEmyEEEII4TIk2AghhBDCZUiwEUIIIYTLkGAjhBBCCJehdXQBHEFRFAwG+y+4rFarOuS+rkjqqnWkvmwndWU7qSvbSV3ZrqPqSq1WoVKpznqdWwYbg0GhrKzWrvfUatWEhPhRVVWHTmew671djdRV60h92U7qynZSV7aTurJdR9ZVaKgfGs3Zg410RQkhhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLsMtBw8LIYQ4NYPBgF6vc3QxnIrBoKKhQUNTUyN6vcyMOpO21pVGo0Wttk9biwQbIYQQKIpCVVUZ9fU1ji6KUyopUWMwyIwoW7S1rnx8/AkMDLVpSveZSLARQghhDjX+/iF4enq1+4eLq9FoVNJaY6PW1pWiKDQ1NVJTUw5AUFBYu54vwUYIIdycwaA3hxp//0BHF8cpabVqWcPGRm2pK09PLwBqasoJCAhpV7eUDB4WQgg3p9frgZYfLkI4gunz194xXhJshBBCAEj3k3Aoe33+JNgIIYQQwmVIsBFCCCGEy5BgI4QQwm0sXfoOV1xxsaOLYRft/V7Gjh3O6tWr7FiiMzt27Chjxw5nx45tHfocCTZCALm5OVx33dVce+0VZGdnObo4QgjR4f773x+YPHmqo4thdxJshNtTFIVHH32IvXt3k5a2jyeffNTRRRJCiA4XFtYNLy9vRxfD7mQdG+H28vPz2Lt3t/nrXbt2UFRUSEREpANLJYRoi6qqShYvfps//vidiooK+vRJ4fbb72bw4KFW133wwRJWrPic5uZmJk+exj333I+Pjw8Amzb9wZIlb5OTk4WPjy/nnjuG++57AF9ffwBycrJZtOhldu/eia+vL8OGpXL33XMJC+sGwN1330Z0dE+ysjLJy8tl7twHefrpJ/j44y+IjY0zl2Hu3DsJCwvjsceeoqamhjfeeJX163+lubmZPn36cued95KS0s98/X//+yWffvohx48fZ+TIUURE9DhjXeTlHeHll//N/v17MBgUBg4cxF13zSUhIREwdkU98sgTXHihsTvrP//5jC+++IzS0lIGDhzMkCFD+e67b1ixYhXHjh3lyisv4Z//fJbPPvuIzMzDhIV15/rrb2LGjEsBaGpq4r333uXXX9dSVFSIr68fqakjuf/+eQQFBbfjT7V1JNgIt7dt25aTzm3evIlLLpnpgNII4Tx++ukH3nrrNWprazv92X5+ftx5571MnXq+ze/R6/Xcd9/dNDc38eijTxIaGsbKlf9h7tw7eeutpeaQUFh4jG3btvDSS4uora3l+ecX8uST83n22ZeoqKhg/vwHufvu+xg9eizFxUU89dQTvP76Kzz00KOUlBznrrtuYfLkadx99300NDTw3nvvcPvtN/Phh5+bw9Hq1at47LGnSExMIiwsjB49ovnpp++57bY7ASgpKWHHjm28+OLrKIrCgw/ei1brwXPPvYK/vz8//PAdd9xxM++88z7JySmsXfsjL730HPfe+w9SU0fy+++/8u67bxIeHnHa+njiiUdITExiyZKP0Ol0vPHGKzzyyAMsX/71SdeuXPkf3nlnEffdN49Bg4bw669rWbr0nZPuv2jRy9x//zxiYnrz+ecf8/zzCxk2bDhRUdG8+eZrrF//G48//k8iInqQlZXJwoVPsGzZUu699x82/zm2lwQb4fZ279550rmDBw9IsBFub9mypQ4dc7Zs2XutCjZbtvzJoUMH+PDDz4mPN7ZK3H//PNLS9vHppx/xz38+A4Cnpyf//OczhIaGma+57767yc/Po76+jqamJiIiIomM7EFkZA+ee+4lVCrjFgFffbWCsLBu3H//Q+bn/vOfz3LRRZP59de15taPpKRkpk1rKfsFF1zE999/Zw42a9b8QLdu3TnnnFS2b9/K3r17WLVqDSEhIQDMmXMXe/fu5osvPmf+/AV88cXnTJkyjVmzrgJg9uwb2L9/L4cPp5+2Po4ezWfEiFH06BGFVqvl4YcfJzc3B4PBcNLKvp999hFXXnmNufXl+utvJj39IIcOHbS67i9/+Stjx04A4K675rJq1dfs37+XqKho+vbtx4QJ53HOOcPR6QxERvZgxIhzyczMsPnP0B4k2Ai3l5WVedK5Q4cOOKAkQjiXG264mTffdFyLzfXX39Sq92RlZeDv728ONWBc9G3w4CFs3rzJfC4mppc51AD06zfgf+/PZPz4iUyZMp2HHrqP8PAIUlNHMnr0WCZMmAhAevpBcnNzmDp1nNWzm5qayMnJNn/ds2cvq9cvuGAG77+/mL17dzNw4GB+/HE106dfiFqtJj3dGB6uuuqSk+7Z2Nho/t6mTJlu9fqAAYPOGGxuvfVOXnvtRb7+egXDhqUycuS5TJo09aRQU1lZQWHhMQYMGGh1fvDgoScFm969W7rS/P2NXXM6nXGl4OnTL2Tbti289dbr5OYeIScnmyNHchg0aMhpy9gRJNgIt6Yoivkfo8jIHuj1Oo4fP37KsCOEu5k69fxWtZg4mqIowMmr1xoMBrTalh93J/5g1+uN+xp5eHgAsGDBQm666Vb+/HMjW7duZsGC+QwaNJhXX30bg0Fh2LDh/OMf/3fSc/z9A8zHXl7W21P06BHF0KHn8NNPP+Dn509GRrq5BclgMODn58fSpR+fdE9TmUD1v++vheX3dCqzZl3FpElT2LTpD7Zv38I777zBe++9w/vvf2oV7DQa7f/KcfaNK1vK08JUrhdeeJaff/6Jiy6awejRY7n++pv47LOPKS4uOut97UlmRQm3Vl5eRlVVJQCxsXHExPQ2n6+r6/zfUoUQbZeQkEhNTTVZWdZdH3v27LIatJuXd8Tq7/eePbtQqVTExcWzb99eXnvtRXr1iuWqq67l3/9+lYcffpzt27dRXl5GfHwCubk5hIdH0LNnDD17xhAYGMhrr7140nNPdMEFM/j9919Ys+YHBgwYRK9exn9v4uMTqa2tpampyXzPnj1j+OSTZWzYsA4wdm3t2bPL6n4HDqSd9lllZaW89NJzNDc3c+GFF/PYY0+xbJlxYPDOnTusrvX39ycysgf79++1Or9//74zfj+WKisr+PrrFTzwwP8xd+4DXHjhxSQl9bFqxeosEmyEW8vNzTUfx8bGER3d0/x1QUG+I4okhGij1NRRJCQk8eSTj7JjxzZycrJ58cXnyMzM4MorrzVf19TUxGOPPUx6+kG2bv2Tl19+nvPPv4jIyB74+fnx5Zdf8Oabr5Gfn0dmZgZr1/5ITEwvgoKCmTnzCmpqaliwYD6HDx8iI+MwCxbMJy1tP3Fx8Wcs33nnTaG+voGVK//DBRfMMJ8fOfJckpKSefzxh9m+fSv5+Xm88carfPfdN+aun9mzb+D333/l008/JC/vCCtWfM66db+c9lmBgUFs3LiB555byOHDhygoyOerr1bg4eFBSkrfk66fPft6Vq5czvfff0t+fh7Ll3/Cr7+utXn/Jj8/f/z9/Vm/fh15eUfIzMzguecWkp5+kKamJpvuYS/SFSXcWnFxofk4MjKKhoZ689cFBQUkJfVxRLGEEG2g1Wp55ZU3WLToFebPn0dzcxN9+vTl1Vffsho/0qdPX5KSkrn33tsBFVOmGGc4AcTFxbNw4b95//3FfPXVF6jVaoYNS+Xll19HrVYTFRXNokXv8Pbbi7jzzlvQaDT07z+I1157i5CQ0DOWz9vbm0mTpvDTTz8waVLLwngajYaXX36TN998lSeeeJj6+np6945j4cLnGT58BACjR4/liSee5r333mXJkrfp338gf/nLbNas+eG0dfHCC6/xxhuv8Pe/30lDQwNJSck8//wrVr/AmVx22RVUVVXx7rtvUllZwZAh53DBBTNOaiU6U90/9dSzLFr0CrNnX01AQCDDhg1nzpy7+PDD96mvrz/7TexEpZzYaecG9HoDZWX27WbQatWEhPhRXl6LTmew671djTPV1YcfvsdLLz0PwDPPvIBer+fRR42zHR544GFmz77ekcUDnKu+nJ3Ule0s66q+voHS0mOEhfXAw8PT0UVzSlqt2qU/U3/+uZG4uHir9buee24hR4/m8+qrb7XqXm2tq+bmpjN+DkND/dBozt7RJC02wq1ZDmqLiIhEr9ef8jUhhHBlP/64mpycLP7xj4fp1q0bO3du56efVp9ykLSzk2Aj3FpRkXWw0emazV+XlBx3RJGEEKLT3Xffg7z++ss88sgD1NRUExXVk3vv/Yd5XZ6uRIKNcGtFRS1jbLp3D6e5uWWQ2/HjxY4okhBCdLrAwCDmz1/g6GLYhcyKEm7N1N0UEhKKp6cnfn7++Pj4AtJiI4QQXZEEG+G29Hq9uVXGcsBc9+7dATh+XIKNEEJ0NRJshNuqqCg3DxY2hRnL45qa6k6doiiEEKL9JNgIt1VeXm4+tlx/olu3cPOxdEcJIUTXIsFGuK3y8jLzsWWwCQvrZj4uLS3p1DIJIYRoHwk2wm2drsUmJCTEfFxZWdGZRRJCCNFOEmyE26qoaAk2wcHBFsctwcYy/AghnN/YscNZvXqVo4vRZgsXLuDuu29zaBlWr17F2LHDzV9fccXFLF36jgNL1Dqyjo1wW5ZdUaGhLS02liGnoqKiE0skhBDOZ/HiD/Hy8nJ0MWwmwUa4rdONsbFssbFs1RFCCHdk2T3fFUhXlHBb1l1RLX9xLf8SS7ARousqLy9j9uwruffe22loaGD16lVcccXFfP/9t1x99WWcd9653HLL39i3b4/5PY2NDSxe/BZXXnkpkyaN5sYbr+X3338DICPjMGPHDufQoYPm6x9++AGmTh2PTqcDQFEULrlkOt9++7VNzzsVvV7PK6/8m+nTJzBjxhTeeecN8/0B9uzZxdy5dzJ9+gTOO+9crrvuKqtdvsvLy3j00Ye46KLJTJo0hjvuuImdO7ebX29ububNN1/jsssuYOrUcdx22w1s2fLnactj2RW1dOk73H33bXzyyTJmzryQSZNGc++9t3PkSI75+pqaap57biEzZkxh+vQJ3Hvv7Rw8mHbG79meJNgIt3W6wcPSYiNE11dRUcG9995O9+7h/Pvfr+Dt7Q0Yl3D4+uuVPPbYU7z99vuoVCqefvoJFEUBYMGC+Xz//bf8/e//4IMPPmP8+POYP/9Bfv99HYmJSURG9mDrVmMI0Ov17Ny5nYaGeg4c2A/AwYNpVFSUM2bMeJuedyp79+6mrKyMt956j4cffoLvvvuGRYteAYxbvdx3310kJiazdOnHvP/+p/Tt259nnvknZWWlALzwwjM0Njbw+uvv8uGHnxMT05uHH/6HeV2uhQsXsHnzJh5//Cnee+8TJk2awrx5c9m4cYNNdbt//1527drB88+/wiuvvElh4TFefPE5wBjs7rvvXvLzj/Dcc6/w7rvL6N9/IHfccTPp6QfPcmf7kK4o4bZMXVEeHh74+fmZzwcFBVtcI8FGuLePD3jw6UHPs17XJ9TAyxOsF7S8b50Ph8rO/vvztSlNzO7bsgFtbTN8leFhda41qqoq+fvf7yAiIpKFC/9tNT5Ep9PxwAP/R1JSHwD+9rcbefjhBygtLaWmppr169fx3HMvM2bMOABuvPFWMjLS+eCDpYwePY4xY8axdetmZs++gYMHD6DVahk0aAg7dmxj4MDBbNy4gf79B5p/WTrT87p168aphIWFMX/+Ary8vIiPT+CWW27n5Zef5/bb76apqYmbbrqNa665DrXaWLfXXXcjq1evIi/vCKGhYRQUFJCQkEB0dE+8vLz4+9//wdSp56NWq8nPz2Pt2h9ZsuRDUlL6AfCXv8wmI+Mwn376IaNHjz1r/ep0Oh577J8EBgYBcMUVf+Gtt14DYPv2rezdu5tVq9aYW7/nzLmLvXt388UXn3fKflQSbITbMoWWkJBQVCqV+byHhwf+/gHU1FRLi41we7XNKorrzx5OIhpOboGoaLDtvbXNKquvlVOca413332T5uZm+vRJOeWg196948zHfn7+AOh0zWRmZgAwaNAQq+sHDx7GO+8sAmDs2PGsWvU1jY0NbNu2maFDzyEmphc7dmzj+utvZtOmP5g0aYpNzzudlJR+VuXu128Azc3N5OXlkpTUh4suupSVK/9DTk4WeXlHSE8/BGBeSf3GG2/lqaceY926Xxk8eBgjR45i0qRpeHl5ma+95545Vs/U6XT4+wectkyWQkNDzaEGwN/fn+Zm4/djapW56qpLrN7T1NREY2OjTfdvLwk2wi0pimIONpZdTyYhISESbIQA/DwUwn0MZ70u2PvkYBPsbdt7/Tys36s6xbnWGD58BBdddCnz5z/IpElTGTVqtNXrnp4nt0AZu4ZO/UyDQY9GY/xxOWTIOXh4eLBz5w62bdvC5MnT6NWrN59//gmFhcc4dOgATzzxtI3POzW1WnPS8wE8PDzJzc3h9ttvIjk5hREjRjJ27HiCg0O49dbrzddPmHAe55zzA5s3b2Tbti188smHLF78Nu+88z6KYvzzeOONxfj6+lk9x9QCdDYeHqdvwTMYDPj5+bN06UeneJ+HTfdvLwk2wi3V1dWaf2OynN5tEhwcQl7eESorK9HpdGi18ldFuKfZfZvb3CV0YteUrfw8aPMzASZOnMyECecxefI0nn9+IR99tNzcUnIm8fGJgHFwrqkrCmD37l3ExRlbXTw8PBgx4lw2bFjH/v17mTdvPhERkahUsHjxW/TuHUtMTK82lx3g8OFDGAwGc9DYs2cXXl5eREVF8+abrxIaGsqrr75pvn7Dht/Nx01NTbzzziKmT7+QyZOnMXnyNBoaGrj00uls2rSBc881djWVlJQwenSK+X3vvPMGarWaW2+9o11lj49PpLa2hqamJuLjE8znn3vuaRITk5g16+p23d8WMnhYuKXq6mrzcWBg4EmvWzaz1tRUn/S6EML5zZ374P8G0b5s0/VxcfGce+4YXnzxWf74Yz1HjuTy/vuL2bBhHX/969/M140ZM47Vq1cRHBxCTEwvPD09GTRoCGvW/MC4cRPbXe7i4iKeeeafZGVl8ttvP7N06btce+3f8PT0JDw8guLiIjZt+oPCwmOsW/cLL774LGAMNZ6enqSl7eP55//Fvn17OXbsKN999w11dXUMGDCI+PgERo8exwsvPMOGDesoKMjn008/4uOPPyAqKrrdZR858lySk/vw+OMPs337VvLz83jjjVf57rtvrLrkOpL8GircUlVVlfk4ICDopNcDAlr6mqurq0/ZXSWEcG4hISHcffd9LFy4gPPOm3L2NwBPPvkM77yziOeee5qammri4hJ4+unnmTRpMjqdsRtn9Oix6PV6hg1rWZ13+PARbN26mbFjJ7S73GPHTkCj0TBnzg14e/swc+YV3HDDLYBxoG5ubg5PPfU4zc3NxMTEcNttd/Lee++SlraPUaNG89RTz/Haay/xf/93P7W1NfTqFcsTTzzN4MFDAfjnP5/h3Xff4N//fobq6iqioqKZN28+F110yZmKZRONRsNrr73Ja6+9whNPPEx9fT29e8excOHzDB8+ot33t4VKOVNHn4vS6w2UldXa9Z5arZqQED/Ky2vNH35xas5QV9u3b+Xmm68D4G9/u4n7759n9fq//vVP/vOfTwH49NMV9Os3oNPLaOIM9dVVSF3ZzrKu6usbKC09RlhYjzOOn3BnWq1aPlM2amtdNTc3nfFzGBrqh0Zz9o4m6YoSbsmyxeZUXVGWLTaW1wohhHBuEmyEW6qutuyKOlWwCTzltUIIIZybBBvhls4+eLjlnLTYCCFE1yHBRrilqqpK8/GpW2ysBw8LIYToGhwebAoKCujTp89J/33xxRcAHDhwgNmzZzNkyBAmTpzI0qVLHVxi4QpaM91buqKEEKLrcPh070OHDuHl5cXatWutlrUPCAigvLycG2+8kSlTpvDkk0+ya9cunnzySYKDg5k1a5YDSy26uta02EhXlHAXbjhJVjgRe33+HB5s0tPTiYuLIzw8/KTXli1bhqenJwsWLECr1ZKQkEBubi6LFy+WYCPaxXLRPcsQ03JOBg8L96HRGJfwb2pqxNPz5L2VhOgMTU3GvaRM21e0lcODzaFDh0hMTDzla9u2bSM1NdVqOftRo0bxzjvvUFpaSlhYWGcVU7gY6wX6zjx4WMbYCFenVmvw8fGnpsa4N5qnp5dVC7oAg0GFXi8tWrZobV0pikJTUyM1NeX4+PjbvGfV6Tg82KSnp9O9e3euvfZacnJy6N27N3feeSfjxo2jsLCQ5ORkq+tNLTtHjx5tV7DRau07vMi0aJAtiwe5O2eoK1NY8fLyws/P56TXg4Jagk1NTZXdPy+t4Qz11VVIXdnuxLoKDe1GRYXKHG6EJRVqtQqD4fQbZQqTtteVn18AwcFh7Q7VDg02TU1N5OTk4OPjw7x58/D19eWbb77h1ltv5f3336ehoeGkXVFNW7m3Z/tztVpFSIjf2S9sg8DAk39IilNzZF3V1BhbbIKDg0/7WfD396empoba2poO+7y0hny2bCd1ZTvLugoN9Uev19Pc3PYNKIVoCw8PD3OXaHs5NNh4enqydetWtFqtOcAMGDCAzMxMli5dire3N01NTVbvMQUaX1/fNj/XYFCoqqpre8FPQaNRExjoQ1VVPXq9LLt9Js5QV5WVxmDj5+dPefmpt9cICAikpqaG8vKK017TGZyhvroKqSvbSV3ZTurKdm2tq/p6/VmvCQz0sak11uFdUacKKMnJyWzYsIHIyEiKi4utXjN9HRER0a7ndtSeH3q9QfYTsZGj6qq5uZm6OmNQCQgIPG0ZAgICOHbMOHjYGf5M5bNlO6kr20ld2U7qynaOrCuHdkQfPHiQoUOHsm3bNqvz+/btIzExkdTUVLZv345e35LkNm3aRFxcnAwcFm1WU1NjPj7VwOGW14yzpZqamtrV9SmEEKLzODTYJCcnk5SUxJNPPsm2bdvIzMzkmWeeYdeuXdx+++3MmjWLmpoa5s+fT0ZGBl9++SXLli1jzpw5jiy26OIs17A51eJ8JgEBLYv0Wb5HCCGE83JosFGr1bz99tsMHDiQuXPnMnPmTHbv3s37779Pnz59CAsLY8mSJWRnZzNz5kwWLVrEvHnzmDlzpiOLLbo4y+nbp1rDxsTf3998XFtbc9rrhBBCOA+Hj7EJDQ3lX//612lfHzRoEMuXL+/EEglXd7advU0sg01NjeMGDwshhLCdLPYg3I7lqsP+/qdvsfHzkxYbIYToaiTYCLdTW9vS+uLvf/r1aaQrSgghuh4JNsLtWAYbX9/TBxvLFhvZVkEIIboGCTbC7Vi2vli2ypxIuqKEEKLrkWAj3I5li41leDmRZTeV5XuEEEI4Lwk2wu1Ytr74+dnWFWW5qJ8QQgjnJcFGuB3bW2ykK0oIIboaCTbC7Vi32Jwp2LRMBZcWGyGE6Bok2Ai305auKGmxEUKIrkGCjXA7tbV1AGi1Hnh6ep72OsvQI4OHhRCia5BgI9yOqfXFz88XlUp12us8PT3NwUe6ooQQomuQYCPcjimknGl8jYnpGumKEkKIrkGCjXA7dXXGbqUzLc5nYrpGgo0QQnQNEmyEW2lubqaxsRE483YKJqYWm5qaWhRF6dCyCSGEaD8JNsKtmFprwNauKGP40emaaWpq6rByCSGEsA8JNsKtWA4CPtNUbxPL7qqaGtkIUwghnJ0EG+FWbF11+FTXyMwoIYRwfhJshFuxDDaWm1yejizSJ4QQXYsEG+FWLMOJLYOHAwIk2AghRFciwUa4FesWm9Z2Rcnqw0II4ewk2Ai3YusGmKe6RlpshBDC+UmwEW7F1g0wTaxnRUmwEUIIZyfBRriV9syKkhYbIYRwfhJshFtpfYuN5Q7fEmyEEMLZSbARbqU9LTbV1RJshBDC2UmwEW7FOtjYso5NyzWW2zEIIYRwThJshFtp7ZYK1mNsJNgIIYSzk2Aj3Ir1Jpita7GRMTZCCOH8JNgIt2IKJ56ennh4eJ71em9vH9Rq9f/eKy02Qgjh7CTYCLdi6oqyZeAwgEqlMm+9IC02Qgjh/CTYCLdi6oqyZTsFE9O1MnhYCCGcnwQb4VZM+z3ZsgGmial1R/aKEkII5yfBRriNpqYmdLpmwHrhvbPx8/MFoL6+Dr1e3yFlE0IIYR8SbITbsJ7qbXtXlOW1dXV1di2TEEII+5JgI9yG5eDf1nVFyZRvIYToKiTYCLdhOV27NYOHZZE+IYToOiTYCLfR1hYby2ulxUYIIZybBBvhNtraYmN5rbTYCCGEc5NgI9yGZWtLawYPS4uNEEJ0HRJshNuwDja2d0VJi40QQnQdEmyE27AMJa0JNtJiI4QQXYcEG+E22hpsLBfzq62VdWyEEMKZSbARbsMeC/RJi40QQjg3CTbCbVhuYtm6YCNdUUII0VVIsBFuw7rFpvWbYIIMHhZCCGcnwUa4DWmxEUII1yfBRrgNabERQgjXJ8FGuA1TKPH29kGj0dj8Pi8vL/P10mIjhBDOTYKNcBumrqjWbKcAoFKpzK020mIjhBDOzamCTXZ2NkOHDuXLL780nztw4ACzZ89myJAhTJw4kaVLlzqwhKIrM3VF+fr6tvq9pq4rCTZCCOHcnCbYNDc388ADD1BX17IAWnl5OTfeeCOxsbGsXLmSe+65h1dffZWVK1c6sKSiK1IUpc0tNiDBRgghugqtowtg8vrrr580oPM///kPnp6eLFiwAK1WS0JCArm5uSxevJhZs2Y5qKSiK2poaECv1wOtmxFlYtpWoaGhHp1Oh1brNH91hBBCWHCKFputW7eyfPlynnvuOavz27ZtIzU11eqHyKhRo8jOzqa0tLSziym6sLZugGli2cpj2aoohBDCuTj8186qqirmzZvHo48+So8ePaxeKywsJDk52epceHg4AEePHiUsLKzNz9Vq7ZvpNBq11f/F6Tmirhob683H/v7+rf7ztww2jY11aLXB9iraWclny3ZSV7aTurKd1JXtnKGuHB5sFixYwJAhQ7j44otPeq2hoQFPT0+rc15eXgA0Nja2+ZlqtYqQkNb/1m6LwECfDrmvK+rMusrL05uPQ0ODW/3nHxoabD5Wq/Ud9vk5E/ls2U7qynZSV7aTurKdI+vKocHm66+/Ztu2baxateqUr3t7e9PU1GR1zhRo2jKzxcRgUKiqsm93gkajJjDQh6qqevR6g13v7WocUVfHjpWYjz08vCgvb90gYA8Pb6t7RUR03iBi+WzZTurKdlJXtpO6sl1H1lVgoI9NLUEODTYrV66ktLSUiRMnWp1/4oknWLp0KVFRURQXF1u9Zvo6IiKiXc/W6Trmw6nXGzrs3q6mM+uqqqrafOzt7dfq5/r4tATpqqoqh/wZy2fLdlJXtpO6sp3Ule0cWVcODTYvvPACDQ0NVuemTZvGvffey4UXXsh3333H559/jl6vN6/8umnTJuLi4to1vka4H8tp2v7+re9Gst4vSqZ8CyGEs3LoSKiIiAh69+5t9R9AWFgY0dHRzJo1i5qaGubPn09GRgZffvkly5YtY86cOY4stuiCLGdFmaZut4YEGyGE6Bqceoh3WFgYS5YsITs7m5kzZ7Jo0SLmzZvHzJkzHV000cVYt9i0ZYE+2QhTCCG6AofPijrRoUOHrL4eNGgQy5cvd1BphKuwb4uNbIQphBDOyqlbbISwF2mxEUII9yDBRrgFabERQgj3IMFGuAXTBpjQ/hYb0y7hQgghnI8EG+EWLMNIe1tsLEOSEEII5yLBRrgFyzDSllWrrcfYSIuNEEI4Kwk2wi3U1BiDjY+Pr3mxx9bw9PREq/UAoLZWdvcWQghnJcFGuAVTi01bVh0GUKlU+PkZW3qkxUYIIZyXBBvhFkxjbNoyvsbE1B0l072FEMJ5SbARLk9RFHOLjeVYmdYyDSCWFhshhHBeEmyEy2toqMdgMO4yazm7qbVMoaixsZHm5ma7lE0IIYR9SbARLs+y68geLTYgU76FEMJZSbARLs+y68geLTbGe0qwEUIIZyTBRri8jmixkXE2QgjhnCTYCJdnvxablvea1sURQgjhXCTYCJdnGULaE2wsp4rLGBshhHBOEmyEy7MMIe0JNpabZ8pGmEII4Zwk2AiXZxlC2jfGpuW90mIjhBDOSYKNcHmWIcSy1aW1rMfYSIuNEEI4Iwk2wuVZhhB7bKkA0mIjhBDOSoKNcHnWY2xkurcQQrgyCTbC5VmPsZEF+oQQwpVJsBEuT1pshBDCfUiwES7PXuvYSIuNEEI4Pwk2wuVZttj4+vq2+T7WLTYSbIQQwhlJsBEuz9Rt5Ovri1rd9o+8p6cnHh4egEz3FkIIZyXBRrg8U+tKe8bXmJhabWS6txBCOCcJNsLlmVps2jO+xsQUjmTwsBBCOCcJNsKlKYpi5xYbU7CRFhshhHBGEmyES6uvr0NRFMBeLTbGezQ1NdHc3NTu+wkhhLAvCTbCpVm2rNizxebEewshhHAOEmyES7McC2PPFhvjvSXYCCGEs5FgI1xadXVLsGnPzt4mEmyEEMK5SbARLq2mptp87O8f0O77ybYKQgjh3CTYCJdm/2AjY2yEEMKZSbARLq26uiXYBARIi40QQrg6CTbCpXVki41sqyCEEM5Hgo1waZbhIyDAvoOHZVsFIYRwPhJshEuz7IqSFhshhHB9EmyES6uurjIf23tWlLTYCCGE85FgI1yadVeUvVtsJNgIIYSzkWAjXFpHrmMjLTZCCOF8tI4ugBAdydRio9Vq8fb2bvf9LIONjLERzmrTpj/4+OMP0Ol0XHPNdUycOMnRRRKi09gUbL7++utW3fSyyy5rQ1GEsD9Ti42/vz8qlard95MWG+HsfvvtF+6//24MBgMAmzdv4plnXuCCC2Y4uGRCdA6bgs3//d//2XxDlUolwUY4DdPgYXt0QwF4eHji6elJU1OTLNAnnE5VVRVPPvmoOdSY/Otf/2TUqDGEhIQ4qGRCdB6bgs3PP//c0eUQwu4URTF3F9lj4LCJn58/TU1lsqWCcDorVnxOeXkZABMnTsLb25sfflhNdXUVn376IXfd9XcHl1CIjmdTsImOjrb5hoqitLkwQthTQ0M9er0esF+LDRi7o8rLyzq0xaa+vp6MjHR6944lNFR+yxZn19zczGeffQQYW87vv/8hvLy8WLPmR/R6PStX/ofbbrsDDw9PB5dUiI7VpsHD3333HVu2bKG5udkcZBRFoa6ujl27dvH777/btZBCtIW9F+czMU357qjp3vv27eXee2+nrKwUb28fnn3231x55cwOeZZwHVu3bub48eMATJw4mV69egNw3nlTWLv2R8rKStm8+U/Gjh3vyGIK0eFaHWwWLVrEokWLCAgIQKfT4eHhgVarpaysDLVazZVXXtkR5RSi1ayDTfu3UzAxDSDW6ZppamrC09N+vwHX1NRw3313UlZWChhbnR566B+MGDGMwMBudnuOcD1r1vxoPr7ooovNxxdeeDFr1xpf+/nnNRJshMtr9To2X331FZdccglbtmzhhhtu4LzzzmPjxo2sWLGC4OBgkpKSOqKcQrSavdewMenIKd+fffaR+bduk8bGRl544QW7Pke4Fp1Ox6+/rgHA29uHMWNawsu5544xL3Xw228/nzSwWAhX0+pgU1RUxKWXXopKpaJ///7s3LkTgAEDBnD77bfzxRdf2L2QQrSFvVcdNumoKd96vZ7//OdTADQaDZ9//iXBwcEArFq1ipKS42d4t3BnaWn7qKioAGDs2PH4+PiYX/Px8WHUqNEAlJeXkZFx2BFFFKLTtDrY+Pr6mtcDiY2NJT8/n4aGBgD69u1Lfn5+q+5XWlrKgw8+yKhRoxg6dCi33XYbGRkZ5tcPHDjA7NmzGTJkCBMnTmTp0qWtLbJwU5YtNvaeFdXyDPu12GzevMncWjNu3ERSUvpx+eXGrt3m5mZWr/7Wbs8SrmXz5j/Nx6NHjz3p9dTUUebjrVs3d0qZhHCUVgebgQMH8tVXXwHQq1cvNBoNGzduBCAzM7PV4w3uuOMO8vLyWLx4MStWrMDb25sbbriB+vp6ysvLufHGG4mNjWXlypXcc889vPrqq6xcubK1xRZuqKMHDwN2nRm1Zs0P5uOLL74UgBkzLjOf+/nnNXZ7lnAtW7e2BJuRI8896fXhw0dYXCvBRri2Vg8evv3227nxxhuprq7m7bff5pJLLuH//u//GDlyJBs2bGDKlCk236u8vJyePXtyxx13mMfm3HnnnVx66aUcPnyYTZs24enpyYIFC9BqtSQkJJCbm8vixYuZNWtWa4su3ExHDR62bP2xfEZ7KIrCpk1/AODl5WUeIxEfn0BcXBzZ2dns2LGdsrIyQkND7fJM4RoaGxvZtWsHAFFR0URH9zzpmqSkZIKCgqisrGTHjm2yLIdwaa1usUlNTWXFihVccMEFADz++ONMnz6drKwszj//fB599FGb7xUSEsJLL71kDjUlJSUsXbqUyMhIEhMT2bZtG6mpqWi1Lflr1KhRZGdnU1pa2tqiCzfTUYOHAwODzMdVVZV2uWdOTjaFhccAGDZsuNW+VhMnTgaM4Ud+2xYn2r9/L01NTQCkpo485TVqtZrBg4cCxs/skSO5nVY+ITpbm9axSUlJISUlBTD+dvnUU0+1uyCPPfYY//nPf/D09OStt97C19eXwsJCkpOTra4LDw8H4OjRo4SFhbX5eVqtfTc212jUVv8Xp9dZdVVX19JNFBwcZLc/85CQYPNxbW21Xe67efNG8/GYMWOt7jl69Gjef38JANu3b+Giiy5q9/NclTv+Pdy/f6/5eOjQYaf9PA4cOIjff/8NgEOH0khOTgTcq67ayh0/V23lDHXVpmBTXV3Nn3/+SV1d3SmbNNuyV9T111/P1VdfzWeffcZdd93Fp59+SkNDw0ljdry8vABj82tbqdUqQkL8zn5hGwQG+pz9IgF0fF01Ntabj6Ojw+32Zx4VFW4+bmqqt8t99+3bZT6eOnWS1T0nTBiLVqtFp9OxbdvmDvvsuhJ3+nt46NB+8/HYsaNO+/kYNSqVN94wHh8+fIDAwKsB96qr9pK6sp0j66rVwWbdunXMnTuX+vr6U77e1k0wExONvz089dRT7Nq1i48//hhvb29zE6uJKdD4+vq2+hkmBoNCVVVdm99/KhqNmsBAH6qq6tHrZZ2IM+msuiopKbP4ypPycvtMzVarvczHRUXH7XLf7duNYyR8fHyJjOxldU+NRs3gwYPZvn07WVlZZGXlERIi42xOxR3/Hlp+drp3jz7t5zE2tmWNsR07dlJVVe92ddVW7vi5aquOrKvAQB+bWoJaHWxeeukl4uPjefjhh4mIiECtbntzU2lpKZs2beKCCy5Ao9EAxr7ghIQEiouLiYyMpLi42Oo9pq8jIiLa/FwAna5jPpx6vaHD7u1qOrquTOt6APj4+NntWZazoioqKtt935KS4xw7dhSAfv36oyiqk+45dOhQtm/fDsDu3Xtk9dizcJe/h7Z8dkwCAoKJiorm6NEC0tLSaGpqBnzcpq7sQerKdo6sq1ankqysLObOncvw4cOJiYkhOjr6pP9sVVxczD/+8Q+2bNliPtfc3ExaWhoJCQmkpqayfft280aGAJs2bSIuLq5d42uEezAN7PXz88PDw8Nu9w0IsBw8XNXu++3du8d8PGDAoFNeM3ToUPOx5ZgK4d727Wv5LJzus2OpX7/+ANTX15GXd6TDyiWEI7U62ERFRdltUbKUlBTGjh3Lk08+ybZt20hPT+ehhx6iqqqKG264gVmzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8cuzxeuzRQ6LGcx2YPldG97zIrat68l2AwceOofToMHDz7l9cK9WYbcAQMGnvX6xMSWyRiHD6d3SJmEcLRWB5s5c+bwxhtvtHqF4VNRqVS88sorjBo1irlz53LllVdSWVnJJ598QlRUFGFhYSxZsoTs7GxmzpzJokWLmDdvHjNnyk7H4swURTGHjqCgYLve28PDwzzGq7q6/S021sFm8CmviY2NNQe0/fv3yTokAoD09IPm4379Bpz1+sTElnE2EmyEq2r1GJtVq1ZRVFTE1KlTCQ0NtVpvA4xhZe3atTbfLyAggAULFrBgwYJTvj5o0CCWL1/e2mIKN1dXV4tOpwMgMDDQ7vcPDAyirq6u3V1RiqJw8GAaAN26dSciIvKU16lUKgYMGMjGjRsoKyvl2LGjREXZ3u0rXFN6+iHA2N3ao0fUWa+3DDayZ5RwVa0ONpGRkURGnvofXyGchWXgsHdXlPGegRQWHqOqqhJFUcz7p7VWeXkZlZXGliXLHzqnYgo2AAcPHpBg4+aqq6vNA4cTE5NtmsgRE9MbT09PmpqaOHz4UEcXUQiHaHWweeaZZzqiHELYlSksAAQFdUSwMd6zubmZhoYGq92UWyMzs2XD1/j4xDNem5zcx3yckZHOpEm2b18iXE9GRktXkuVn40w0Gg3x8YkcPJhGbm6ueQNjIVxJq4PN0aNHT/uaWq3G19e3Q5r+hWgNy0G9HRlsjM+qanOwycrKNB/Hxyec8dqkJBn4KVqYuqEAkpJsCzZgbBk8eDANg8FARkYG0dFxHVE8IRym1cFm0qRJZ212DwoK4m9/+xt33nlnmwsmRHtUVlaYjy2nZ9uLZXivrq5s87pKWVktLTYJCWdusendO9bcjWD527pwT5ZdSa0JNgkJLV2e6enpEmyEy2l1sHn22Wd5/PHHGTFiBDNmzKBbt26Ulpby448/8ttvv3HnnXdSW1vLW2+9RXBwMNdee21HlFuIM7IcY9MxLTYtwaY9A4gtW2zi4uLPeK1WqyUuLoFDhw6Qm5tDY2OjeYsR4X4sZ0RZtuadjeXnLCsri/POs2uxhHC4Vgeb7777josuuuiksTaXXnopTzzxBPv27ePtt98mMDCQzz77TIKNcIiO7oqy1yJ9pmATFtaN4OCQs16flJTMoUMHMBgMZGVl0Ldv/zY/W3RdBoOBw4eNs5qio3vi7+9/lne06N071nycmZl5+guF6KJavY7Nli1bmDFjxilfmzZtGn/++ScA55xzDnl5ee0rnRBtZDl4uKNmRbU8q6JN96ioKKe0tAQ4e2uNiSywJgAKCvKprzfud9eabiiAnj17mrewycrKsnvZhHC0Vgeb4OBgDh48eMrXDh48aP7Noa6urs0DKoVor84MNm1tscnObvmhcrYZUSaWXQ4yzsZ9ZWe3tLScbWzWiTw8PImK6gkYg40s9ihcTauDzcUXX8xrr73GsmXLKCoqorm5maKiIj766CMWLVrExRdfTGVlJcuWLbNaBl6IzlRd3Xmzotq6+rD1VO8zz4gykRYbASeGYts+O5ZiY2MB4y+gxcVF9iqWEE6h1WNs5s6dS2lpKc8++yzPPvus+bxarWbWrFncd999/Pjjj6SlpbFs2TK7FlYIW3X8OjaWLTZt2y/KcuBwQoJtP5zCw8MJDAyiqqrS6v3CveTkZJuPe/du/aym3r1jWb9+nfleYWHhdiubEI7W6mCj1Wp55plnuOOOO9i8eTPl5eVEREQwbNgwYmJiABg/fjzr16/H09PT7gUWwhamYOPh4YG3t/27RC1bbCxDVGtYTvW2tStKpVIRGxvHnj27KCoqpLa2Bj8/2weOCtdgGWxiY1sfbCzfk5OTwznnjLRLuYRwBq0ONia9evWiV69ep3ytI35DFqI1TN1DgYFBbd7u4ExCQlpmMFVUlLfpHqYWl6CgIEJDw2x+X1xcPHv27AIgNzfHps0PhWvJyTF2RXXv3r1VM6JMLGdGWYYkIVyBTcFm8uTJvPHGG6SkpJx1gb7WboIpREcoLzeGDXvv7G0SEBCIVqtFp9OZn9Ua1dXV5rEN8fGJrQpfcXEt3VbZ2dkSbNxMRUW5+TMXG2vbbLoTWXZfSbARrsamYDNixAj8/PzMxx3xG7AQ9lJfX09DQz1g3bJiTyqViuDgEEpKjlNeXtbq91vOamnt4M+4OMsfSjJd1920txsKoHv3cHx9/airq5VgI1yOTcHGcjG+Z599lpqaGmpra4mIiKCpqck8Q2ratGmMGDGiwworhC0sg0ZISGiHPSckpCXYtHaHb+s9olo3Xdfyt3TL2THCPVgHm7a12KhUKmJiYjh06CDHjh1Fp9Oh1bZ5ZIIQTqXV07337NnDpEmT+OijjwB4+umneemll/jmm2+44YYb+Pnnn+1eSCFao/OCjfHeTU1N1NXVtuq91gOHW9diEx3dE63WA5AWG3dkjxYbgJ49jZM9dDodRUWF7S6XEM6i1cHm5ZdfJj4+nquvvpqGhgZWrVrFNddcw5YtW7jiiit4++23O6KcQtjMcsxLR3VFAVZbIFRUVLTqvZZL2be2xUar1dKrV2/AOHhYr9e36v2ia7N3sAHjSsZCuIpWB5vdu3dzxx13EBMTw6ZNm2hoaODSSy8F4MILLzTvXyKEo1i32HRcsLG8d1lZ68bZmFps/P39CQ9v/RoipnE2zc3NHD1a0Or3i67L1Ern5eVFjx5Rbb5PTEzLrNb8fNn+RriOVgcbtVptXp9m3bp1BAYGMmjQIABqamrw9va2bwmFaKXO7oo68ZlnU1dXy7FjRwFjN1RbBuPLOBv31NzcbA4hvXvHola3+p9wM9O6YyDBRriWVv+tGDBgACtWrGDnzp18//33TJw4EZVKRWlpKYsXL2bAAJl6KhzLuivK+YJNW/aIOpHlppkyzsZ9FBTkodPpgLYPHDaRrijhqlodbObNm8emTZu45ppr0Gg03HHHHQDMmDGDnJwc5s6da+8yCtEqjmmxsX0tG+sZUa3f5wdObLGR6bruwvLPuj3jawCioqLMrYXSYiNcSavn9/Xr14+ffvqJzMxMkpKS8PX1BWDBggUMGzaM7t27272QQrSGI8bYtKbFpj1TvU1kLRv3ZK+Bw2Da5TuKgoICCgok2AjX0aYOWn9/fwYPHmwONQDTp0+XUCOcgmXIsJy5ZG9t3VahPVO9Tfz8/AkPjwAk2LgTyz/r9gYbwLwtTkVFBdXV1e2+nxDOoO0jz4RwUqZuoYCAQDw8PDrsOW0dY2NqsfHx8SUyskebn28aZ1NeXt6mbR1E12PPFhuA3r17m49lnI1wFRJshMsxhYyO7IYC632obA0WDQ0N5vEMcXHx7ZrVYr1Ds4yzcQemFpuIiEh8ff3afT/LjYylO0q4Cgk2wqU0NjZSU1MDdOzAYTAulBccHAxASclxm96Tk5ONoihA27uhTCxnRlnuPSVcU3l5OZWVlYB9WmvAusVGBhALVyHBRrgUy4DRGWO+uncPNz/XFFjOxB7ja0wsZ0bJOBvXZ+/xNWDdYpOfL11RwjVIsBEu5fjxYvOxKXR0JNMA3ubmZpu2VbDHjCiTuLiWYJSVJcHG1Vmuf9QxLTZH7HJPIRxNgo1wKZYtNt26dV6LDViHqtOxxxo2JuHh4fj5GcdZSIuN67PHrt4nCg0NNY/VkRYb4Sok2AiX4uzBJiMjHQBvb2+io3u269kqlcr8A66gIJ+GhoZ23U84t47oilKpVPTsafwcHjtWIBuqCpcgwUa4lOPHHTPGBqC4uOiM1544I0qj0bT7+aYBxIqicORIbrvvJ5yXqcXG29uHiIhIu93XtLWCTqejqKjQbvcVwlEk2AiXYj14uPPG2MDZW2xycrIwGAwAJCQk2eX5MjPKPTQ3N5nXmYmNjWvXMgEnMrXYgKxlI1yDBBvhUizDRbduHR9sLFuFzhZsMjIOm487JtjIOBtXlZeXZ+4mio2Nteu9LbtEJdgIVyDBRrgUU4uNVuthXmOmI7WmKyozs2Wqd2KivYJNywBkCTauy3p8jX0GDptER7fs8n30aIFd7y2EI0iwES7FNMame/fu5p2LO1JoaJi5W+DsLTbp5uOEhPZN9Tbp2TMGrda4l610Rbkue2+lYEm6ooSrkWAjXEZzc7N5O4XOmBEFxtWHw8K6AVBUZFuLja+vLz16RNnl+R4eHsTEGBdZy83NkVktLqojg01UVLT5WIKNcAUSbITL6Oyp3iamkFJaWkJ9ff0pr6mrqzU38yckJNm1NcnUHdXY2MixY0ftdl/hPCyDTe/esXa9t6+vrzmcS7ARrkCCjXAZlj/U7dUiYgvTdFk4/RiFzMyWbiJ7ja8xsfwNXsbZuKbcXGOwiYiIxMfH1+73j442ttocP15MY2Oj3e8vRGeSYCNchmWocFSwOd0OyYcOHTAf22tGlInlCsYyzsb1dMTmlyeKimoZZyMDiEVXJ8FGuAzLFpuoqM4LNpbTZU+3Q/LBg2nm4759+9n1+ZazZKTFxvVYd0N1TLCRKd/ClUiwES7j6FHHd0Wdbr+dtLT9gHEJ+5SUvnZ9flycdEW5MlM3FNh/DRsTCTbClUiwES7j2DHLrqjoM1xpX2frimpubuLw4UOAceCnn5+/XZ/v5+dvXmI/OzsTRVHsen/hWB05I8pEgo1wJRJshMswdUV5e/t0yuJ8Jt27h+Ph4QEYV4g9UWZmJs3NzQCkpNi3G8rE1B1VWVlJeXl5hzxDOEZnd0UdPSrBRnRtEmyES1AUhcLCY4BxXY7OWJzPRK1W06tXLABHjuSaQ4zJgQP7zcf9+vXvkDLEx8ueUa7K1BXl5eXVYV2sERGR5oUmpcVGdHUSbIRLKC0tMU9T7czxNSZJSckA6HTNVmMiAHbu3G4+HjBgUIc833oAsQQbV6HT6cytgL169bbr5peWPDw8zN2ZBQUyK0p0bRJshEs4ciTXfBwTE3OGKztGcnIf83F6+iGr10zBxsPDg/79B3bI8y1bbLKyZACxqygoyEenM7YAdlQ3lImpO6qqqpLq6uoOfZYQHUmCjXAJnTHA8kySkk4dbIqLi8jLOwIYW2u8vLw65PmWa+NkZh4+w5WiK7GeEdU5wQakO0p0bRJshEvIzc0xH5vGu3Qm6xabg+Zjy26oYcOGd9jzQ0PDzMvip6cflJlRLqIzA7sMIBauQoKNcAmd+ZvtqYSHR5iDxZ49u8ybUW7Y8Lv5mnPO6bhgAy3jfMrLyyktLenQZ4nO0RkzokykxUa4CocHm4qKCh5//HHGjx/PsGHDuOaaa9i2bZv59QMHDjB79myGDBnCxIkTWbp0qQNLK5yV6QeAl5cXkZE9Ov35KpXK3CJTU1PDoUMH0Ol0rF//G2DcaHD48JEdWoYzjfMRXZNlYLf35pcnkmAjXIXDg83999/P7t27eemll1ixYgX9+/fn5ptvJjMzk/Lycm688UZiY2NZuXIl99xzD6+++iorV650dLGFE9HpdOatDDpy5sjZDB8+wnz8xx/r2bZtCxUVFQCMHj0WT0/PDn1+YmKy+di0IKDo2nJycgBjV2NgYGCHPkuCjXAVWkc+PDc3lz/++IPPPvuMYcOGATB//nx+//13vv32W7y9vfH09GTBggVotVoSEhLIzc1l8eLFzJo1y5FFF04kJycbnU4HQFxcwlmu7jjjxk3gmWeMx9999w0HDrTsDzVt2oUd/nzLFpvDh9M7/HmiY1VXV5u7FDuje7Vbt+54eXnR2NgowUZ0aQ5tsQkJCeHdd99lwIAB5nMqlQpFUaisrGTbtm2kpqai1bbkr1GjRpGdnU1paakjinxadXV1/LRpHwfzSjEYZOBmZzp0qGWwbp8+KQ4rR1RUtHkcTU5ONr/8sgaAsLBunHfepA5/flxcAhqNBpCuKFfQmeNrwPhvb1SUcSuSo0cLZAC66LIc2mITGBjIhAkTrM59//33HDlyhLFjx/Lyyy+TnJxs9Xp4eDhg3PAwLCyszc/Wau2X6fR6PbNnX01G3M2oB/8VGivxqSugm7qS2IBmBkZ5MzKxGwNju6NWd96KuM5Ko1Fb/b+90tMPmI/79+9v1z/b1rrlljls377N6twdd9yNj493m+9pa31ptT7ExsaRmZnxvz2j9OatHtyFvT9bjpSXl2M+jo+Pt/vn+lR11bNnT7Kzs2hoaKCysoxu3brb9ZldlSt9rjqaM9SVQ4PNibZv384jjzzC5MmTmTRpEs8888xJ4xJM64CYVpltC7VaRUiIX7vKaslgMFBcXIRq+P9CmFcQ9V5B5AF5wPpCeLMQ+KUG7/oC+jTt4vyoEpKTk0lKSiImJsZh40IcKTDQxy73ycxs6XYZOfIcu/7ZttYll1zIrl1zeOeddwCYNWsWc+bcbJc/X1vqa8CA/mRmZtDc3Ex5eRF9+vQ563tckb0+W4509OgR8/GAASkd9rm2rKv4+DjWrzfO5KusLCEpKbZDntlVucLnqrM4sq6cJtisXbuWBx54gMGDB/PSSy8B4O3tTVNTk9V1pkDj6+vb5mcZDApVVXVtL+wpfPLJcp74oYSc8l1UeUZi8Is8+SJPfxo8k9nx+1dsf/8182kvv0C0f/0vYZTT27+JfpGepMaHMiwhAk8PjV3L6Qw0GjWBgT5UVdWj1xvadS9FUdi7dx9gHCPg4eFHeXmtPYrZZvfc8w+uuOIampub6dWrN5WV9e26X2vqKza2ZYzR1q07CQ/veYarXY89P1uOlpbW0hIZGRlj98/1qeqqW7eWf7cOHswgIaGvXZ/ZVbnS56qjdWRdBQb62NQS5BTB5uOPP2bhwoVMnTqVF154wdxKExkZSXFxsdW1pq8jIiLa9Uydzr4V3rt3HP/9vwGUl9ei0xkoqSpi48EidudVcbgMjjb5Uq0NR+cfBaXWAzsbfaPRBydzFDgKbCqBpSXAxga8avIIpYxefo30i/BiekoA8b2iXaKFR683tPvPITMzg8rKCgD69x9g9z/Xture3fgDwp7lsaW+kpJaxhjt3buH6dMvstvzuxJ7fLYc7fDhDMC4W31ERFSHfT+WdWW5z9qRI3ldvg7tzRU+V53FkXXl8GDz6aef8tRTT3HdddfxyCOPWP3ATk1N5fPPP0ev15sHRW7atIm4uLh2ja/pDN0CfblkRByXjLA+X1FTypGhc8jLnkxm5mGys7PYXx9BqUGPSn1C64zWm8bgJI4Bx4DNZbD4LwPwpp64uHgSEpIITDyXwB7JjEoKY1BsuNuN4dmxo2U8S0eu7NtVWO5FtX//PgeWRLRHQ0MD+fnGrqj4+PhO+0VGVh8WrsChwSY7O5t//etfTJ06lTlz5ljNdPL29mbWrFksWbKE+fPnc8stt7Bnzx6WLVvGk08+6cBSt0+wvzfB/foyqJ91E29VXTl/Hipk55Eq0kv0FDT4UKHpTrN/NCq18Y9JqSmGhnIagAMH0jhwIA311JGoPUeypBT4vQbvunzCVeXEBeoYFOXDmD7diY8McdnAs337VvPxsGGpDiyJcwgJCSE6uicFBfkcOLAfnU5nNatQdA05OVnmWUnx8Ymd9lxZy0a4Aof+i/fjjz/S3NzMmjVrWLNmjdVrM2fO5Nlnn2XJkiUsXLiQmTNn0r17d+bNm8fMmTMdVOKOE+jrxbShvZk21Pp8VV0FW9KL2J5bydHaUtTnTSEz8zD5+XkYDAZU3SwGh3r60+CZwhHgCLDuGLx+DFT1ZYQXrmW8djuJickkJSWTmJiEr6/jBtnag8FgYNu2LYCxuT4lRcYDgLHVpqAgn4aGBrKyMq3WtxFdQ2Zmpvk4IaHzgk1gYBD+/gHU1FRLsBFdlkODze23387tt99+xmsGDRrE8uXLO6lEzifQ14spQ3oxZYjpzETAOIg6OzuLVQcb2F+ynoJGP6q0EegDok+6h+ITyrGj+Xz2x8ctJ9VavG5dR5ChlF4+dfQL1zAyIZTUxMguM2B5//59lJQcB2DkyFFuN7X5dAYMGMhPP30PwP79eyXYdEGWO7R3ZrABY6vNoUMHKCw8Ji1+okuST2wX5eXlRUpKX1JOWI+upKqIPw4UsuNINellKgp1AdR49UA5ftD6wpB49EGxlBFLGbCrCj7dCWypx7v2COGqMhKDdQzt6cfUARF0C+nY5dzb4tdfW1r5Jkzo+AXwugrLcTb79u1h5swrHFga0RZZWRnm44SEpE59ds+exmCj1+spKiq06p4SoiuQYONiugX6cunIeC49Yb/FsssfJTPzSg4fTufw4cPsqvAjr6kWPE/ojvLwoSG4j7E7S4Ff8uC5h4fRI0BDcnIf+vTpS3jiUOLjkxkS77jByjqdjlWr/guARqNhwoTzHFIOZ9S3bz/UajUGg0EGEHdRmZktM6IsZyp1hhMHEEuwEV2NBBs3ERoaQmjoKFJTR5nP6fQ6dmSm82dGGfuLmsmt86FcG4HOPxqVyjgLQ6krg5oijtXAsWNHWbfuV9STFqAefiGsr8KvLpcobQV9w2BUQjDj+kXh49XxXUIbNvzO8ePGqf/jx59HWFi3Dn9mV+Hr60d8fAIZGYfJyEinoaEBb++2r3wsOpdxRpRxU9fOnBFlEhXVEmTy8/NJlTH5oouRYOPGtBo1I5J7MCK5h9X5kqrjrE87xrbcao41lGEYMozDhw9RW2tcIEwV3t94oVcgtV4DOAwcboJvDgB7G/CuyiJKU8KIsBouHBBCYmKyXXe2VhSFJUveNn99+eVX2u3erqJ//4FkZBxGp9Nx8GAaQ4YMc3SRhI0cNSPKRGZGia5Ogo04SbdAX2aOSmCmuXFnEgaDgYKCfA4dOsAXOfVkle+g0jPq5BWWtd40hPYjC8j44w0+/tetaLUeJCYmkdK3Hx59LmR8Shjnj+nf5vL9979fsm/fHsC4o/WYMePafC9XNXjwUP773y8B41o/Emy6DlM3FHT++BqQYCO6Pgk2wiZqtZqYmF7ExPRiisX5nKJ8ftt/jJ0F9WRUe1OiiUIfYPyHUTm2CwCdrpmDB9M4WFiLNulVvkqDuVuL8a3KpKe2hIHdYVxSKMMHJOLjc+atMv78cyPPPPNP89d///sDLrEKs72dc05L/8G2bVu46abbHFga0RqOnBEFmHf4Bgk2omuSYCPaJTYiiBsigrjB4tyx8kLW7iuk8ZIR5Bz0IC1tv7F5vccQ8zUqv3Dq/cKN3VjAl4dB2ZqLb9U+eqiPM9Y/h7iYaIKCgvD19aOoqIgtWzbxzTdfmZvpL7/8SmmtOY1evXrTvXs4x48Xs3PnDpqbm2U6fBeRleWYNWxMvL296datOyUlxzl6tKDTny9Ee0mwEXbXI8SP68YlwLgE4C8A1NfX8fPuPL7P2k5mrS9lHj0xeAZYvU8V3Jv64N5kNlaR/mo/QLG46VBQDKD2AH0T48dP5OGHH+u8b6qLUalUDB8+gu+//5b6+joOHNjPoEFDHF0sYYPDh417yfn4+Hb6jCiTqKhoSkqOU1JyXAafiy5Hgo3oFD4+vswY1YcZo0CrVRMc7MfWw+Ws3VfMtvwmsur8qPCMQtF4oxTuxSrUAOqxD6KOmwD6JrqryuiRFML3Rwz0CzMQF2jAhg1f3Y4p2ICxO0qCjfOrqqoyd/8kJSU7rJs1Orone/bsAuDo0QLi4xPO/AYhnIgEG+EQKhUkdfckblwUt/7vnM7QTEZ5EwWFkahHvcGxYwXU1NRQXVPNlxEjaQTQeHKcSFZmwsr/tdj7aBVSQvT0CzNwQWwzKaGy+y4Yg42JjLPpGtLTWxbSTEnp57BynDiAWIKN6Eok2AinoVVDSpiKlLBw6D/ZfL5ZDz0zYH9pM2llanKr1Ci0LAxYr1Ox87iWncehT4jeKtjUNMPBMg39w/T4uNmnvVev3oSHR1BcXMSOHdukS6ELOHjwgPm4T5+UM1zZsWRmlOjK3OyfetEVeWjg6j7NQDPQElb2l2rYX6omrVRDYZ2xyb5fmN7qvTuKNNz/uy8alUKfEAODuukZ3F3PkO56uvsqJz7KpahUKsaMGcdXX62goaGBrVs3M27cBEcXS5zBoUMtwcaRm7qeuPqwEF2JBBvR5fh7wPAIPcMjWkJMWYOKtFI1vQKsw8ruEuOGnnpFRVqZhrQyDZ8bx2YS7W9gyP9CztBwHbGBrhd0xo2byFdfrQDg999/k2Dj5EzBRqPRkJiY7LBySIuN6MpkyKVwCaHeCmOj9Zy4ddU54XpmJjQRH6Q/6T0FNWq+y/Zg4RZvHt/oc9LrigvknFGjzjVP816//jfzVHnhfJqamsxTvePi4vHy8nJYWSIiItFojL8UFBTIlG/RtUiLjXBpo6P0jI4yhpqqJthzXMPu4xp2HTd2ZTUZjEloSPeTg89fv/elm4/CsHA9w8J19AszoO1ivwr4+vqRmjqSjRs3UFh4jLS0fVa7fwvnkZlp3AIDHDtwGECr1RIZ2YOCgnxpsRFdjgQb4TYCPWFstJ6x0cYQ06SHA2Vqdh7XMqy7zurawloV6RUa0itg4zEt4IW3RmFwdz3nROgZFq6nf6geD03nfx+tNXnyNDZu3ADA999/K8HGSTnLwGGT6OieFBTkU11dRVVVJYGBQY4ukhA26WK/fwphP54aGNzdwA39mhjU3XqK+NFaNWHe1uca9Co2F2p5c7cXt6zxZeIKf+78xYfiuhP6v5zM1KnT0WqN3VE//rgavf7k1inheM4ycNhExtmIrkqCjRCnMCxczw8za1k5o4b5Ixq4ILaZcB/roNOoV7H7uIYQL+txKwfL1BwqV2NwkuEsgYFBjB07HoDjx4+zbdsWB5dInIpli01ysuNbbKKiJNiIrkm6ooQ4DZUKegcq9A5sZmZiM4oC+TUqthdr2V6kYXuRhrggw0ndUYv3ebIu34MgLwPnhOsZEalnRISOmAAFlYMady688GJ+++1nAL7+eiUjR57rmIKIU9LpdBw8mAZAjx5RBAUFO7ZAQHS0bIYpuiYJNkLYSKWCmACFmIBmLkswBp0666E56A2wvcj416qyUc0veWp+yTN2A0X6GkiN1DMyUseISD2h3p3XpDNhwnmEhIRQXl7OmjU/cv/98+jePbzTni/OLCMjnYaGBgCn2frCuitKZkaJrkO6ooRoI5UK/E7YMFunwO2DGpnYs5kAD+vgUlinZlWWB49u9GHal/58n915v1d4eXkxc+aVxjLqmvnii8877dni7Pbs2W0+HjhwsANL0iImppf5OC8v14ElEaJ1JNgIYUdeGvhLn2ZeGN/A2lk1fDi9lrsHNzIiQoen2jro9D1hleT0cjUfHfDgcLm6Q9bQueqqa8xrkyxf/gnV1dX2f4hok717W4LNoEHOEWxCQkLx9w8AICcn28GlEcJ20hUlRAfRqKFfmIF+YU3c0B8a9bD7uIYthRoyKjT0PmGV5LVHtLy334tXgTBvAyMj9YyO0jG6p4EQO5QnMrIHF1wwg2+//S+VlZV8+OF73HXX3+1wZ9FepmDj4eHh8DVsTFQqFbGxcezbt4djx45SX1+Pj8/JC1kK4WykxUaITuKlgRGReu4e0sQrE+tPGkj857GW3zNKG9SszjF2W03+jy8zPoPXd3qws1iDrh2bl99xxz3mqd8ff7yMkpLjbb+ZsIvKygpzi0jfvv3w9PR0cIlaxMbGmY+PHJHuKNE1SLARwkn8c3Q9D5zTwNgoHT7altYcBRV7i2HpXk9uXevLC9vbvtR+dHRPrrjiKgDq6+t4+ukFss2Cg+3bt9d8PHDgEMcV5BR6924JNtIdJboKCTZCOInYQIW/9GnmlYn1/Dyrhrcn1/G3vo0kh1iPxUmNsP66ohEW7fK0uTXnttvuIiQkFIDffvuZr79eabfvQbTe7t07zcfOMr7GJDY21nycmyvBRnQNMsZGCCfkqWnZwfx+rY4mTz9+ONDIhnw1IyOt55j/eUzLB2lefJAGgZ4Ko3roGBOlY3QPPSGnmFIeGhrK448/xX333QXA88//i8GDhxIfn9Ap35uwtmPHNvOxs0z1NrHsipIWG9FVSIuNEF1AhB9ckqDjX2Ma8D9hCMYmi7E5VU0qfsr14IlNPkz70o8bf/RlyV5PDpZZz7Q677zJzJx5BWDskrrzzlsoKirsjG9FWGhsbGTPnl2AsZuwR48oxxboBDExvVH9bzCYBBvRVUiwEaKL+/vQRhaMqmdqL+u1cxRU7C3V8PZeL2b/4Mfff7Oe0fLggw+bZ+AUFh7jhhuu5fDhQ51adne3d+9umpqaABg+fISDS3Myb29vc9jKzc2W8ViiS5BgI0QXF+qtMCNexzNjG1gzq4Z3p9Rxfb9GEoKsx+IM7Gb9tY+PH3957GOi4/sDcOzYUW644VrWrPmh08ru7iz37XLGYAMt3VG1tbUyi050CRJshHAhWrVxA897hjSx/KI6vr20hv9LNc60Oi/GemxOVqWap3dHUHLljwTe9C2qYTdSqw7iwQfn8o9/3EN+fp6Dvgv3sXXrn+bjc85JdWBJTi82Nt58LN1RoiuQYCOEC4v0U7giyTjTKjHYesrUugLj2By9oqKu21A0U55Ge8dWNNf/wC/1A7j0lvt5ZP48MjIOO6LoLq+6uppdu4wzomJiehMVFX2WdziG5QBimRklugKZFSWEmzq3h47yBhW/52spqG35HUcVMRBNxEAY+wA/Vubxw6tfMYYXuOyyWYwfPxEPD+dZQK4r27JlE3q9sXtw7NhxDi7N6VkGm8zMTAeWRAjbSLARwk31DTXQN7SR+4c1klGhZl2+lnUFWg6UaczXqIJiUELiWP/Nc6xfv47g4GCmT7+QydMuYvjQoajV0ujbVhs2rDcfjxkz3oElObPExCTzcWamtN4J5yfBRgg3p1JBUoiBpJAmbhnYRGGtit8LtPx6RMX2Ii3+xZup+N+1FRUVLF/5JSvCH8Fj7R4G+RZzdWo4E1MHmjfYFGenKAp//PE7YNx53VkHDgOEhoYRGhpGWVkphw+nO7o4QpyVBBshhJVIP4Wrkpu5KhlqmppQXfEAu7eP4ZtvvuLXX9fSFDMOlU8Iuphx7AB2ZIHmzz300eZx6YAALh7d36n2O3JG6emHKC4uAoyzoby9vR1cojNLSkpm8+ZNlJeXUVZWSmhomKOLJMRpSbARQpyWcTFADaNHj2X06LFUV1ezaG02qyrLaPIMNV+nDx9EGoNIOwrPLsmhV3M60xM9+OvEvvj5+Tms/M5q7dofzcfjxk10XEFslJCQxObNmwA4fDidkSPPdXCJhDg96SAXQtgsICCAh2cO4o/rPXhn/HHGe+3Dt856WrgSHEtu92m8k9WTSZNG8/e/38HXX6+kvLzcQaV2LoqimNcKUqlUTJkyzcElOrukpGTzsXRHCWcnLTZCiFZTqeCcnt6c07M3AJklJXy0sYA/irwp90kEtQbl8I80Njaybt2vrFv3KxqNhu5XvcmwGB+uHxtLn17hDv4uHCMjI928HsywYefQrVt3B5fo7BITW4JNRoYEG+HcJNgIIdotoZsXCy4xLuRWUlPJxxvzONazlu3duptXq9X7R1MSM4OfgB9/1+NbnsbQoDKuHRHJqBTn2iOpI33//bfm46lTz3dgSWyXmJiISqVCURRpsRFOT4KNEMKuuvl7MHdaPEy7E8MDt7N3725++WUtq/KCqPrfNSq1hvqwgWwENu4Aj1+z6e+Vx9VDQ5k8uBdqtcqR30KH0el0rFr1NQBarZZp0y5wbIFs5OPjS8+eMeTlHSEzMwODwSBT/YXTkmAjhOgwarWawYOHMnjwUO41KPyw+wBf7qogrSmK5oDe5uuag+LYRRy7DoB2UyZXNn7I1MlTGDBgkEv9AN24cQPHjxtbsMaPP69LzS5KSEgiL+8IDQ315Ofn0atX77O/SQgHkGAjhOgUGrWKi4b25KKhPQH489BhPt1SyM6qbtSH9DVf11SSxUdfLuGjZUuIiIhk0qQp9B93GdNS++Lp0bXXyvn884/Nx5deOtOBJWm95OQ+/PbbzwAcPHhAgo1wWhJshBAOMapPJKP6RAKwPzebDzfms7ksmOrDq83XFBUV8tny5Wi6P8yTB/T0bkrjwmQt14xNxMfLw1FFb5P09ENs3LgBgOjonowdO8HBJWqd/v0HmI/T0vYxbVrXGB8k3I8EGyGEw/Xv3Y3nencDoPza+1i3bjBr1/7E5s0b0UWfi8o7GAXI8RnNm0Xw5icVRDfs4/wENdeNT8Tfx/kXBPzoo/fNx9ddd0OXW6m5b9/+5uMDB/Y7sCRCnJkEGyGEUwkJCeGyy2Zx2WWzqK6u5tNf9/JV3jZKAgaA9n8r9HoHU+B9LktLYenyGiLr0pjaW8+cqUmEhDjfgoC5uTnm2VCBgUFceunlDi5R64WHR9C9ezjHjxezf/8+FEVBpXLNQd6ia3OdUXlCCJcTEBDAnEtG88NdffhpZiV/DdxERMUWaKppucjTn8LgEXyY14uJE0Zx6623snr1t9TW1pz+xp3s1VdfRKfTAXDttdfh4+Pr4BK1jak7qqammry8Iw4ujRCnJi02QoguITTAl/tmDOA+oKqugY9+38ePWQpHffqBVxBK+moa6utZvXo1q1evxtPTk6irXmN4fAg3TYgjKizQIeXeuHEDv/yyBoBu3brzt7/d6JBy2EPfvv357bdfAOM4GxlALJyRBBshRJcT6OvFXef35y6grrGJzzZs4WC342wLCTFv3dDkGUp+1MXkN8DXq5sIqtzH2PBabhwfS2xkcKeUs6qqkgUL5pu/vuuuv+Pr63xdZbbq189yAPF+zj//IgeWRohTc6pg8+abb7Jp0yY++ugj87kDBw6wcOFC9u3bR3BwMNdddx0333yzA0sphHAmvl6e3Dy5L0zuC4/cRXr6Plau/JrV+YHUmy7SeFIZOozvdPDtWh2BFfsYGVrB7FE9GBDfMaseNzc388gj88y7eI8aNZrLLpvVIc/qLJYzo/bu3e3Akghxek4TbD744ANee+01UlNTzefKy8u58cYbmTJlCk8++SS7du3iySefJDg4mFmzuvY/EEII+9NqtYwZM4Z+/Ybwj/pmvt6yk6/315KhSsLgFwGASq2lOnQIa4E1G/V4/3cnl/MtE8ePZ/DgoWi17f9n0WAw8M9/PsaGDesACAgI5Mkn/9XlB9uGhoYRE9ObvLxc9u3bQ2NjI15eXo4ulhBWHB5sioqKmD9/Ptu3bycuLs7qtf/85z94enqyYMECtFotCQkJ5ObmsnjxYgk2Qogz8vTQcNWYRK4aA3qDwrfb9rByTzWHDHHo/Y2tNCq1hvqGBj5avpiPli0mICCQMWPGMWLsFCaNHUVwcEirn1tTU8MTTzzMzz8bx9V4enry8suLiIiItOv35yjDhp1DXl4uzc3N7N+/l2HDhju6SEJYcfisqP379xMUFMQ333zD4MGDrV7btm0bqampVr9BjRo1iuzsbEpLSzu7qEKILkqjVnHpiDg+vGUQm27x51/90hiq24xnbQEc/t58XXV1FT/8+D0Lj05g8tJSZixYwcvvL2fr1j+prKw44zPq6+tYsWI5l156vjnUqNVq/vWvfzN8+IiO/PY61dCh55iPd+zY5sCSCHFqDm+xmTRpEpMmTTrla4WFhSQnJ1udCw8PB+Do0aOEhXWdfVaEEM5BrVYxbUgM04aAokDp5XPY/Gc/fv/9N/74Yz01wf1Q+UeAfwSFPYbyCfDxhr0Yln5KaOlm+kZ4Exsbi79/AAaDgfz8PPLzj3D48GHq6+vMz/H39+eZZ15k3LiutcLw2Vi20Ozcud2BJRHi1BwebM6koaEBT0/rFUVN/bmNjY3turdWa9/GKo1GbfV/cXpSV60j9WW7ttRVZEQYl156GZdeehnNzc18vD6HZdmFVHi0dB2pIgaiiRhIJbDp+EE2pq/GcOg7KDl4yntOmTKNBx/8P6Kje7br++lIbf1cxcXF0q1bd0pKjrNr1w5UKqXLraLcWvJ30HbOUFdOHWy8vb1pamqyOmcKNL6+bV/gSq1WddjqpIGBPh1yX1ckddU6Ul+2a09d3T9rCPcD2eXwydYyVh9WKNC1tA6ruqcY/xvyN/RvDgXFAEBkZCSTJ0/mL3/5C8OGDWvvt9Bp2lJXo0aN5Ntvv6W2tpajR3MYNGhQB5TM+cjfQds5sq6cOthERkZSXFxsdc70dURERJvvazAoVFXVnf3CVtBo1AQG+lBVVY9eb7DrvV2N1FXrSH3Zzp51FQzclerFXalQUFPHL0c0rM3Vsvu4sXVibGQdVy16i+jonkRH98THx4fPD2qp8DVQWlaL2sknQLWnroYMOYdvvzVuEfHjj2uJiUnoiCI6Dfk7aLuOrKvAQB+bWoKcOtikpqby+eefo9frzU2dmzZtIi4urt3ja3S6jvlw6vWGDru3q5G6ah2pL9vZu64ivOGaZD3XJDdRXKfi1zwtA7qF0T+sZfxMSY3Cv7d6oldUhHkbmBSjY1KMjqHheuzc821XbamrUaPGmo/Xr1/HDTfcau9iOSX5O2g7R9aVE/91g1mzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8fRRRNCuKlwX4Wr+zTTP8z6H+11BRr0irGZprRBzReHPbnjF1+mf+nPk396s75AQ6PeESW2v549Y8zbKezevYvq6moHl0iIFk4dbMLCwliyZAnZ2dnMnDmTRYsWMW/ePGbOnOnoogkhhJXzYnQsGFXP+OhmPNWK+Xxlk4pVWR7ct86XaSv9mf+HN67QmzFmzHgAdDodW7f+6eDSCNHCqbqinn322ZPODRo0iOXLlzugNEIIYbtAT5gRr2NGvI7aZthQoOW3fC0bjmqp1xlbcmp1Ko7VqjlxmECzHjy62MSiMWPG8dlnxu1vfv31ZyZNmurgEglh5FTBRgghXIGfB0yP1TE9VkeDDrYUavg134N1+VomxTRbXasocMW3fvTwNzCxp46JPXVE+imnubPzSE0dib+/PzU1Nfz66880Nzfh4eF59jcK0cEk2AghRAfy1sL4nnrG99SjM8CJ4ykPlKkpqDX+t61IywvboV+onokxOs7rqSMuyDn7rby8vJgwYRLfffcNNTXVbNq0kfHjJzq6WEI49xgbIYRwJVq1MehYqmhU0dPfOryklWl4c7cXV37nx6xvfVm0y5N9JWoUJ2vImTr1fPPxTz99f4Yrheg8EmyEEMKBRkfp+eriWj6/sJY5AxtJDrGeOpVbpeGDNC/u/c0XvZMFm3PPHYO/vz8Av/yyhtraGgeXSAgJNkII4XAqFSQGG7h1YBOfXlDHfy+p4b5hDQztrkOFMc2Mi9adtB7Okn2efJulpaLBMasBenl5cf75FwFQV1fH999/55ByCGFJxtgIIYSTifZX+GtKM39NaaasQcXvBVriAq1bcmqajcFGZ1ChVikM6qZnfLSO8dF6egcaUHVS1pk16ypWrDDOXF25cjlXXHF15zxYiNOQYCOEEE4s1FvhsoTmk85vPqZFZzCmF4OiYtdxLbuOa3ltF8T4GxjfU8e4aB1Dunfsysd9+/anX7/+pKXt58CBNHbs2Ga1A7gQnU26ooQQogua2FPHkil1XNe3idgTWnPyatR8ctCT2382rnxc03Sam9jJNddcZz5euvTdjn2YEGchwUYIIbogjRqGhOv5+9BGVsyo48sZNcwd2sCwcB0aVcso40g/A/4nLC+zs1hDfrX9+qrOP/8ievSIAuCPP35nz55ddru3EK0lwUYIIVxAr0CF2X2beXdKPT9dXsNT59YztVcz58eevCDgk396M+MrX6Z+DK/t8GBviRpDO2ZceXh4cPPNt5m//ve/n0Fxtrnpwm1IsBFCCBcT5AUXxOl4ZmwD1/W1DjY5VWrya4z/9KeXwnv7PLnxJz/O/8qPJ//05rc8LfW61j/zssuuID4+EYC9e3fz3/9+2e7vQ4i2kGAjhBBuJMBT4e7BjQzqrseyM6qsQc2qLA8eWO/D5BX+/P03H4rrbO+u0mq1PPDAQ+avn332abKzs+xYciFsI8FGCCHcSDcfhRv6N/HhBQ1suxUWjG7kvJ7NeGtauo6aDCp2FmsI9rLuTiqpV520JYSl0aPHMXPmlQA0NNQzb95cGhoaOuT7EOJ0JNgIIYSb6uYLlyXq+Pf4Bn6+ooZXJ9YxK7GJcB8Do3ro8Dxhx/GFW7yZvNKfeeu9+TrTg+OnaNGZN+8REhKSADh8OJ158+bS2NjYGd+OEACoFDcc4aXXGygrq7XrPbVaNSEhfpSX16I70680QuqqlaS+bCd1Zbsz1ZWiQG0zVrOpGvUweYU/DXrrMJMYrOfcHnpG9zCumeOhgczMDP761ytpaKgHYOTIc3n55UX4+vp1+PfVEeRzZbuOrKvQUD80mrO3x0iLjRBCCCsqFSdNEa9pUjGxp44gT+vfhTMqNHx0wJM7fvFl0kp/7l/nDWHJvP762/j4+AKwefMmrr/+GjIyDnfWtyDcmAQbIYQQZxXmo/D0mAZ+uryG96fVcsuARvqF6s17WQHU61T8XuCBl1YhNXUk77zzHgEBgeATwuHcAv7yl8t58cVnqaqqdOB3IlydbKkghBDCZho1DOxmYGC3Jm4f1ERFg4o/CzVsOqZl0zENvlro6W8MO4MGDeGDDz7l1g8PUJl4JcrRHXyc+Ttf3vQAM1LjuPyyy+nTJ8XB35FwNRJshBBCtFmwt8L5sTrOj9VhUIwzpywlJCQSPmIgVZVaiBmJJmYkjcCKhkq++OwPIhv/5JLB3bjmgnEEBQU55psQLkWCjRBCCLtQqyDc13oMjkGBYREGmgwGjlS3jH5QeQehSr6QYmCJAZZ8lk/vvHeZkahm3LjxJCQkoeqsLcqFS5FgI4QQosOoVTBveCPQyLFaFZuPadmQZ+DPY2oa8G65MLAnWQf38up3a3j11ReIjOzB8HHnEz7kQi4fEUPP7sGO+hZEFyPBRgghRKfo4adwWWIzlyWCQdGTXq7n271l/JrVQLE6CiVvo/nawsJjfHegFk3caJb9qMe7MoN4j2LGx3lx2YhedA/qmlPHRceTYCOEEKLTqVWQEmogZUIwD0wAncFAwcSVbNjwO3/88Tvbtm1B13ssACq1hsaQPhygDweOw9urdPhWHSbBs4Rxcd5cmtqLboG+Dv6OhLOQBfrsRBZwsp3UVetIfdlO6sp2zl5X9fV1fLIhm19zDGTrImkKij/9xdm/0u/Qvxk+fATDhqUyZMgw/P397VYWZ68rZ+IMC/RJi40QQgin4+Pjyy1T+3PL/77OKszj6235bMpXyCMaXWBv87X6I5vYs2c3e/bs5r33FqPWeOB3wzf08qpiVIyWS87pSe9wmXHlLiTYCCGEcHrxkcHcPyPY/HV6QS7/3V7A5qMK9Y2HKbC41tAthfqwQRwCDpXDsrXgUZlFT1Uh50QqXDg4kkFx4Z39LYhOIsFGCCFEl5McHcqD0aHGL25/jZKS42zfvo0dO7byW0kYpSdc3xwUTzbxZNfBik2gXnOMcF0e14TtJXXoYBISEtFoNCc9R3Q9EmyEEEJ0ed26dWf69AuYPv0CHgZyi/P577Z8NufryNGF0xAYj0rd8iPP4N+DY1UK/35mJgD+/v4MGjSE0GGXkxCfwEXDehIeLDOvuiIJNkIIIVxO7/Ag7r2wZVxNSWUpq7bn8UdOPZn1wVT7J6AUbDW/XlNTw8aNG9DEP4SqcBiLvjPgVZVNtKqIoZEwc2RP+ptaiIRTk2AjhBDC5XUL8uXGSX248X9f1zc2sPtgDw4n/x+7dm1n9+5dlFRUQ8RAAFQqNU1BCWSTQHYdfPkr0FBOcH0OiX41XJgAk4Ym2nX2lbAPme5tJzId0HZSV60j9WU7qSvbSV1ZUxSF7LyjLN9exs4iyDd0pzEwHpX61ONu9Cv+Btm/kJCQSL9+A4jrew7d4wczcWAM/r7ep3yPO5Dp3kIIIYQTUKlUxPeK5uFe0eZzxRXH+X5nPpuPNJBR50+ZV2/wDgFAObYTFIWMjMNkZBxGleWB5sIbUQ7W4V2VSQ91KX1DDYxJDGb8wF74ens56ltzOxJshBBCiFMID/bj+vP6cPP/WiFKS2vYdCCddWnHaJ4xnX37dpOefgi9Xo8qahgAKg9fGsMGkgPkKPD9YSCtDq+qLKLUpQwOa+TS/n4kJ/fBy0vCTkeQYCOEEELYQK1WMbJPD0b26QEzjUGmoaGBw4cPsWJfAzsqd3Bc0wOdXw/rN3r40hg2gGwgM30NK569Cq1WS0JCEv36DcAr5XyGJkYwfkAvfLw8O/8bczESbIQQQog28vb2ZuDAwQwc2HKuqLKEX/YfY0tuLYcrvSjRRLaEnaI9AOh0Og4dOsCh9HQ0c59hxSEf2FeHd3U2PdQl9AtTGJMYzLgBMRJ2WkmCjRBCCGFHEUFeXDM6lmtGt5wrrDjOL/uPUUEkx0IvIy1tP9nZmRhCE1F5+Bgv8vClIbQ/2UC2Hr47hEXYKeXC8KOM6h9LYmISHh4Sdk5Hgo0QQgjRwSKDvbl2TByMiQMuAYwbfW7el8XXhzdxuMqLEk0P9KfoxjKFnVdfTeXV6qN4eHiQlNSHyKEX4tPrHFJjAxjfL5LQANnhHCTYCCGEEA7h4+PLxNQBTExtOXesoohf9hay5UgdGVVelGiNYUepLYHqowA0NzeTlraPg5FXoI4ey4+ZoGQY8KjOI1RfRKxfA4N6eDG2T3f69eqGWq1y0HfoGBJshBBCCCfRI9iXv46L568W546WF7L5QB61DzxMWto+DhzYT05ONoT3N1+jUqnRBfammN4UA1tKYclG4JcKwgvXMkGzlaSkPiQl9SExMQkfH5/O/tY6jQQbIYQQwolFhfgxc3QKjE4xn6utreH7nQVsOfI7GZUeFCmhNPrHgvaEKeTewRQeO8Zn6z82n1KpNXjd8gtBSgW9fOrpF65lZEIowxMj8PTo+huBSrARQgghuhg/P3+uGNuHKyzONTTV8eehLP7MLCPtuEJBkz9VnlEox9Os3qsE9UIXnEgpUArsrIJPdgJbG/CqOUIYZcQFNDGwhzdT+4XSq0c4KlXX6c6SYCOEEEK4AG9PLRMH9mTiwJ5W58uveJiMjMtJT08nPf0gu8t8yW+uB48TuqO03jQGJ3MUOAr8UQyLnkzFX6kmMTGJxMQkguNTCYpKYnRyd+J7hDhl4JFgI4QQQriwkJAQUlNHkZo6ynyuqbmR7ZlH2JxZRlqRjiP13lRowmn272neH0tprILqo9QAu3btYNeuHajP64M6dTivHgVVfRl+DQWEa6tJCDIwMMqH8f0jCQnxc9B3aiTBRgghhHAznh4azk2J4tyUKKvzlbVlbDxUyPacKvKrytGMGU9WVgbHjhlnZBGWbL5W8QmlxieUGiDLAGvy4aV8CP/nE7wx9zLi4hI78TtqIcFGCCGEEAAE+XlzwbBYLhhmOjMBgOrqarKyMvjmkI608g0U6gKp8eqB4tv9pHscPfgnP//sxy23SLARQgghhBMKCAhg8OChDB5sfT63OJ9Nh4rYW1BHRqWaIl0QQwb35tJLL3dMQZFgI4QQQog26h0eRO/wIP7yv6+1WjUhIe9SXl6LTmdwSJnUDnmqEEIIIUQHkGAjhBBCCJchwUYIIYQQLqNLBBuDwcBrr73GuHHjGDx4MDfddBO5ubmOLpYQQgghnEyXCDZvvvkmn3/+OU8//TTLly9HpVJx66230tTU5OiiCSGEEMKJOH2waWpq4r333uOee+5hwoQJpKSk8PLLL1NUVMSaNWscXTwhhBBCOBGnDzYHDx6ktraWUaNaloIODAykX79+bN261YElE0IIIYSzcfp1bAoLCwHo0aOH1fnw8HCOHTvW5vtqtfbNdBqN2ur/4vSkrlpH6st2Ule2k7qyndSV7Zyhrpw+2NTX1wPg6elpdd7Ly4vKyso23VOtVnXYJl2BgT5nv0gAUletJfVlO6kr20ld2U7qynaOrCunDzbe3t6AcayN6RigsbERH5+2VZzBoFBVVWeX8ploNGoCA32oqqpHr3fMaotdhdRV60h92U7qynZSV7aTurJdR9ZVYKCPTS1BTh9sTF1QxcXF9OrVy3y+uLiYlJSUNt+3o5Z61usNDltGuquRumodqS/bSV3ZTurKdlJXtnNkXTl9h2FKSgr+/v5s3rzZfK6qqoq0tDSGDx/uwJIJIYQQwtk4fYuNp6cns2fP5oUXXiA0NJTo6Gj+/e9/ExkZydSpUx1dPCGEEEI4EZWiKIqjC3E2er2el156iS+//JKGhgZSU1N5/PHH6dmzZ5vupygKBoP9v22NRi39rzaSumodqS/bSV3ZTurKdlJXtuuoulKrVahUqrNe1yWCjRBCCCGELZx+jI0QQgghhK0k2AghhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNHRgMBl577TXGjRvH4MGDuemmm8jNzXV0sZzOm2++yXXXXWd17sCBA8yePZshQ4YwceJEli5d6qDSOV5FRQWPP/4448ePZ9iwYVxzzTVs27bN/LrUVYvS0lIefPBBRo0axdChQ7ntttvIyMgwvy51dWrZ2dkMHTqUL7/80nxO6qpFQUEBffr0Oem/L774ApC6OtHXX3/NhRdeyMCBA7nooov4/vvvza85tK4U0W6vv/66cu655yq//fabcuDAAeWmm25Spk6dqjQ2Njq6aE7j/fffV/r06aPMnj3bfK6srEwZOXKkMn/+fCUjI0NZsWKFMnDgQGXFihUOLKnj3Hjjjcoll1yibN26VcnMzFSeeuopZdCgQUpGRobU1QmuvPJK5eqrr1b27NmjZGRkKPfcc48yZswYpa6uTurqNJqampTLL79cSU5OVlauXKkoivwdPNHPP/+sDBw4UCkqKlKKi4vN/9XX10tdneDrr79W+vbtq3zwwQdKTk6OsmjRIiUlJUXZsWOHw+tKgk07NTY2KkOHDlU+/fRT87nKykpl0KBByrfffuvAkjmHwsJC5eabb1aGDBminH/++VbB5u2331bGjRunNDc3m8+9+OKLyvTp0x1RVIfKyclRkpOTle3bt5vPGQwGZerUqcorr7widWWhrKxMue+++5T09HTzuQMHDijJycnK7t27pa5O48UXX1Suu+46q2AjdWXtrbfeUi655JJTviZ11cJgMCjnnXee8uyzz1qdv+mmm5S3337b4XUlXVHtdPDgQWpraxk1apT5XGBgIP369WPr1q0OLJlz2L9/P0FBQXzzzTcMHjzY6rVt27aRmpqKVqs1nxs1ahTZ2dmUlpZ2dlEdKiQkhHfffZcBAwaYz6lUKhRFobKyUurKQkhICC+99BJJSUkAlJSUsHTpUiIjI0lMTJS6OoWtW7eyfPlynnvuOavzUlfWDh06RGJi4ilfk7pqkZWVRUFBARdffLHV+aVLlzJnzhyH15UEm3YqLCwEoEePHlbnw8PDOXbsmCOK5FQmTZrEiy++SExMzEmvFRYWEhkZaXUuPDwcgKNHj3ZK+ZxFYGAgEyZMwNPT03zu+++/58iRI4wdO1bq6jQee+wxxowZww8//MDChQvx9fWVujpBVVUV8+bN49FHHz3p3ympK2vp6emUlpZy7bXXMnr0aK655hrWr18PSF1ZysnJAaCuro6bb76Zc889lyuvvJJffvkFcHxdSbBpp/r6egCrH0gAXl5eNDY2OqJIXUZDQ8Mp6w1w+7rbvn07jzzyCJMnT2bSpElSV6dx/fXXs3LlSi655BLuuusu9u/fL3V1ggULFjBkyJCTfrsG+TtoqampiZycHGpqapg7dy7vvvsuAwcO5NZbb2XTpk1SVxZqamoAeOihh5gxYwbvvfceY8aM4c4773SKutKe/RJxJt7e3oDxL4XpGIx/eD4+Po4qVpfg7e1NU1OT1TnTh97X19cRRXIKa9eu5YEHHmDw4MG89NJLgNTV6Zi6DZ566il27drFxx9/LHVl4euvv2bbtm2sWrXqlK9LXbXw9PRk69ataLVa8w/lAQMGkJmZydKlS6WuLHh4eABw8803M3PmTAD69u1LWloa77//vsPrSlps2snUtFtcXGx1vri4+KSmOGEtMjLylPUGEBER4YgiOdzHH3/MPffcw/jx41m8eLE5LEtdtSgtLeXbb79Fr9ebz6nVahISEsx/76SujFauXElpaSkTJ05k6NChDB06FIAnnniCiy66SOrqBL6+vie1NCQnJ1NUVCR1ZcH0sy05OdnqfGJiIvn5+Q6vKwk27ZSSkoK/vz+bN282n6uqqiItLY3hw4c7sGTOLzU1le3bt1v9gNq0aRNxcXGEhYU5sGSO8emnn/LUU0/x17/+lVdeecXqH1ipqxbFxcX84x//YMuWLeZzzc3NpKWlkZCQIHVl4YUXXmD16tV8/fXX5v8A7r33Xt59912pKwsHDx5k6NChVmtHAezbt4/ExESpKwv9+vXDz8+P3bt3W51PT0+nV69ejq+rTpl75eJeeuklZcSIEcratWvN69hMmzZN1rE5wUMPPWQ13bukpERJTU1VHnroIeXw4cPKypUrlYEDBypffvmlA0vpGFlZWUr//v2Vu+66y2r9jOLiYqWqqkrqyoLBYFBuuukmZfr06crWrVuVQ4cOKffdd5+SmpqqFBQUSF2dheV0b6mrFnq9XrnyyiuVGTNmKFu3blUyMjKUf/3rX8qAAQOUgwcPSl2d4I033lCGDh2qrFq1SsnNzVXefPNNJSUlRfnzzz8dXlcSbOxAp9Mpzz//vDJq1ChlyJAhyq233qrk5eU5ulhO58RgoyiKsnv3buWqq65SBgwYoJx33nnKRx995KDSOdZbb72lJCcnn/K/hx56SFEUqStLVVVVyhNPPKGMGTNGGTRokHLTTTdZrWsjdXV6lsFGUaSuLJWWlioPP/ywMmbMGGXgwIHK1VdfrWzdutX8utSVtffee0+ZNGmS0r9/f+WSSy5R1qxZY37NkXWlUhRF6fh2ISGEEEKIjidjbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVyGBBshhFOSlSiEEG0hwUYI4XR+/vlnHnroIQA2b95Mnz59rLYtEUKI05HdvYUQTueDDz4wH/fv35/ly5ebd/IWQogzkWAjhHBq/v7+DBkyxNHFEEJ0EdIVJYRwKtdddx1btmxhy5Yt5i4oy66o119/nfPPP5+1a9cyY8YMBg4cyKWXXsrOnTvZtWsXV155JYMGDWLGjBls2rTJ6t7p6enMmTOHYcOGMWzYMO666y7y8vIc8W0KITqIBBshhFN54okn6NevH/369WP58uXU1NScdE1hYSHPPPMMt99+O6+88gqVlZXce++93H///Vx11VW89NJLGAwG7rvvPhoaGgDIzs7mL3/5C6WlpTz77LMsXLiQvLw8rrnmGkpLSzv72xRCdBDpihJCOJXExET8/f0BGDJkyCkHDdfX1/PEE08wfvx4ADIzM3nxxRdZuHAhV1xxBQB6vZ57772X7Oxs+vbty6JFi/D29uaDDz4w3//cc89lypQpLFmyxDxYWQjRtUmwEUJ0ScOGDTMfd+vWDcBqLE5wcDAAVVVVAPz555+MHDkSb29vdDodYBy/M3z4cDZu3Ng5hRZCdDgJNkKILsnU6mLJ29v7tNdXVFSwevVqVq9efdJroaGhdi2bEMJxJNgIIdxCQEAAo0eP5sYbbzzpNa1W/ikUwlXI32YhhNNRq9UYDAa73nPEiBFkZGTQt29fc5BRFIUHHniA3r1707dvX7s+TwjhGDIrSgjhdAIDA8nOzmbTpk3mMTLtdeedd3LkyBHmzJnD2rVrWb9+Pffccw/fffcdKSkpdnmGEMLxJNgIIZzOX//6Vzw8PLj11lvN07XbKyUlhU8++QSVSsW8efO49957OX78OG+88QbTpk2zyzOEEI6nUmSnOSGEEEK4CGmxEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVzG/wO7xz1RQ0Z1HQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a dataset with a known drifting baseline\n", + "df = pd.read_csv('data/sample_baseline.csv')\n", + "\n", + "# Plot the convolved signal and the known baseline\n", + "plt.plot(df['time'], df['signal'], '-', color='k', label='observed signal', lw=2)\n", + "plt.plot(df['time'], df['true_background'], '--', color='dodgerblue',\n", + " label='known baseline', lw=2)\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This chromatogram was simulated as a mixture of three peaks with a known (large) \n", + "drifting baseline (dashed blue line). But what if we don't know what the baseline is?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Subtraction using the SNIP algorithm\n", + "In reality, we don't know this baseline, so we have to use clever filtering\n", + "tricks to *infer* what this baseline signal may be and subtract it from our\n", + "observed signal. There are many ways one can do this, ranging from [fitting of polynomial functions](https://www.sciencedirect.com/science/article/pii/S0169743905001589?via%3Dihub) to [machine learning models](https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an00868h) and beyond. In `hplc-py`, we employ \n", + "a method known as [**Statistical Non-linear Iterative Peak (SNIP) clipping**](https://www.sciencedirect.com/science/article/pii/0168583X88900638). his is \n", + "implemented in the `hplc-py` package as method `correct_baseline` to the `Chromatogram` class. The SNIP algorithm works as follows.\n", + "\n", + "### Log-transformation of the signal\n", + "First, the dynamic range of the signal $S$ is reduced through the application of an [LLS operator](https://cds.cern.ch/record/264009/files/P00023745.pdf). This prevents enormous peaks \n", + "from dominating the filtering, leading to the erasure of smaller (yet still important) peaks. Mathematically, the compression $S \\rightarrow S_{LLS}'$ is achieved by computing\n", + "$$\n", + "S_{LLS} = \\ln\\left[\\ln\\left(\\sqrt{S + 1} + 1 \\right) + 1\\right] \\tag{1},\n", + "$$\n", + "where the application of the square-root operator selectively enhances small peaks while the log operator compresses the signal across orders of magnitude. Applying \n", + "this operator to signal in our simulated chromatogram yields the following" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa4ElEQVR4nO3dd3zTdf4H8Nc3O2maDroHe5Q9ZCMiKE4c5+kp95NT8TjXieJCz4GeIjgATxE5PRTPfe6Fg6EIgmxURsvs3itpm518f3+kCRQKpG3Sb8br+XjwEDO+33c/pPDqZwqiKIogIiIiikAyqQsgIiIiChYGHSIiIopYDDpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOERERRSyF1AWEAlEU4XYHZ4NomUwI2rUjDdvKf2wr/7Gt/Me28h/bqm2C0V4ymQBBEM74OgYdAG63iNrapoBfV6GQISEhBiaTGU6nO+DXjyRsK/+xrfzHtvIf28p/bKu2CVZ7JSbGQC4/c9Dh0BURERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYnEyMhERUQC53W64XE6pywgZbrcAq1UOu90Gl8u/lVdyuQIyWWD6Yhh0iIiIAkAURZhMtbBYGqUuJeRUV8vgdrdtxZVWq4fBkOjXEvLTYdAhIiIKAG/I0esToFKpO/wPdCSRywW/e3NEUYTdbkNjYx0AIC6uS4fuzaBDRETUQW63yxdy9HqD1OWEHIVC1qY9dFQqNQCgsbEOsbEJHRrG4mRkIiKiDnK5XACO/QNNHedty47Od2LQISIiChAOVwVOoNqSQYeIiIgiFoMOERERRSwGHSIiIopYXHVF1ArR7YZp4wY4qqtgmHA2VKlpUpdERNSpRFHE119/gc8//wRHjx4GACQlJWPIkGG4/fa7EB8fL22BfmLQIWpF5dtvwvjTegBA/Y/r0PWRx6FKSZG4KiKizrNw4ZNYu/Z7XHPNdNx88y1wuVzIy9uPb775Cmp1+KwuY9AhOoE5L9cTcgQBivh4OOvqUPXe28i86x6pSyMi6hS7du3A119/gcceewoXXHCR7/EJEybipptmhdXqMs7RITpB3ervAABxEych6765gCCg6fffYCsplrgyIqLOsXPndgDAyJGjTnounEIOwKBD1IKzvh5Nv+4GACRMvQCq1DToh40AAJg2bZSwMiKizqPV6gAAr7zyEgoLCySupmM4dEV0nMbfdgOiCE2PnlClZwAAYseMReOuHWjcsQNJV18bdj/NEJF0RFGEaLdLdn9BpWrX31nTpl2OdetW45tvvsI333yFzMwsTJkyFX/603QkJCQGodLgYdAhOk7T7l0AgJihw3yPxQweAkGlgqO6CvbSEqgzsySqjojCiSiKKFo4H9bDhySrQdO7D7Ln/qPNYcdgiMOrr67E7t07sWHDemzatAFvvfUGVq36AitXvo+EhARs3PgT3n33v1i27D8t3nuqx5uaGvHvf7+MPXt+h91uhyi6ce+9D2LEiJEd/jpPh0GHqJnodMKcux8AoD8u6MjUamh794F5316Y83IZdIjIf2HcAyyTyTBixEiMGDESd911L1as+DfeeOM1rF+/Dlde+UccOnQAffr0Pel9p3r8uecWoHv3Hlix4i0IgoDq6mrIZMFvHwYdombWwkKIdjtkuhioTggz2n45MO/bC0teLhKmnC9RhUQUTgRBQPbcf4Tl0FVrxowZhzfeeA325q/nwIE8jB8/4aTXnerxLVs246qrrvHVk5SUFJC6zoRBh6iZ9fBBAIC2d28Ispbz9HV9c1ADwJKXB1EUOU+HiPwiCAKEMNpzBgBqa2uQmNjlpMc3bFgPQRB8K7EOHjyAG264+aTXnerxs88+B/feOxtjx47HhAkTcf75F0KhCH4MYdAhamY55A06fU56TtOjBwSFAq7GBjiqq6BK5uaBRBSZHn30QWg0Wpx33lRkZGTCaDRiw4Yf8d13qzBjxk3o2bM3GhsbUVVVgR49erZ476keB4CHH34c06fPwM8/b8Drr7+KjRt/wlNPPRP0r4dBh6iZpXnCoKaVoCMoFFBlZsFWkA9bQQGDDhFFrIsvnoYff1yL//xnOerqaqFWq9Gv3wA8/fRzmDjxXADAwYN56NatO1QqVYv3nupxr549e6Fnz17o1q07li5dEuwvBQCDDhEAwGk0wlVfDwgCNN26t/oaTbfusBXkw1qQj9hWNtEiIooE06ZdgWnTrjjtaw4ezEPv3idPOD7V45s2/YyhQ4dDrdbAbrdj/fp1GD/+7IDVfDoMOkQAbMVFAABlSipkpxhPVzcHIFtBfidVRUQUmg4ePICff/4JV199me+x+fOfO+XjP/30A55/fiG0Wi0EQYZx4ybgpptmdUqtDDpEOBZ01FmnXjru7emxFhZwQjIRRbWHH368TY8PHPgInE538Ao6DR4BQYTjgk5211O+RpWZAQgC3I2NcJlMnVUaERF1AIMOEQC7r0cn+5SvkSlVUDZPQraXlXZKXURE1DEMOhT1RKcTtlJPcDnd0BUAqDI851/ZS0uCXhcREXUcgw5FPXtlJeByQVBroOhy+p06vQd92tijQ0QUFhh0KOo5KsoBAKq0tDNOMFb7enQYdIiIwgGDDkU9uzfopKad8bWq9EzPexh0iKgVoihKXULECFRbMuhQ1PMGHWVq6hlfq0pPBwC4GkxwNTYGtS4iCh9yuRwAYLfbJK4kcnjbUi7v2E443EeHop6jogKAZ+jqTGRqNRQJCXDW1cFeWQGtXh/s8ogoDMhkcmi1ejQ21gEAVCo199o6jtstwOXyr4dGFEXY7TY0NtZBq9VDJutYnwyDDkW9tgxdAYAyOQXOujo4qiqh7dkrmKURURgxGBIBwBd26BiZTAa3u20bBmq1el+bdgSDDkU1l8UCl9EIwHP8gz+UKSmwHMiDo7IymKURUZgRBAFxcV0QG5sAl8spdTkhQy4XEBeng9Fo9rtXRy5XdLgnx4tBh6Kad9hKbjBArtP59R7vpoEMOkTUGplMBpms9dO7o5FCIYNGo4HF4pLkGAhORqao1tZhKwBQNff82KsYdIiIQh2DDkU1h2/Flf9B51iPTkVQaiIiosBh0KGo5qiuAgAok5P9fo8yxfNal8kEt9UalLqIiCgwGHQoqjlqawEAyi5d/H6PXBcDWfOycgeHr4iIQlpIBZ1ly5ZhxowZfr3W7Xbj5ptvxksvvRTkqiiSOWuqAQCKRP+DDgCovKeYc0IyEVFIC5mgs3LlSrz44ot+vdZqteL+++/Hxo0bg1wVRTLR7W5Xjw5w3Dyd5qEvIiIKTZIvL6+oqMDDDz+MHTt2oEePHmd8/c6dO/Hwww/D4XDAYDB0QoUUqVwmI+ByAYIARXxCm96raA5G3h4hIiIKTZL36OzduxdxcXH44osvMHTo0DO+fsOGDZg6dSo+++wzxMbGdkKFFKkcNTUAAEVCAoTmc2r85e0B8l6DiIhCk+Q9OlOmTMGUKVP8fv1dd90VlDoUisBnPrlc1uK/dGpStJXb6NmmXdmlS5v//NXNK6+ctTVB+eycDj9X/mNb+Y9t5T+2VdtI3V6SB51QIJMJSEiICdr1DQZt0K4daTqzrZqaTACAmPS0Nv/5q3tkoQieoBPMz87p8HPlP7aV/9hW/mNbtY1U7cWgA8DtFmEymQN+XblcBoNBC5PJAper87e9DidStJWpuAwAIMbGoa6uqU3vdSs94cbVZEZ1SZXfx0cEAj9X/mNb+Y9t5T+2VdsEq70MBq1fvUQMOs2Cef6Gy+WW5HyPcNSZbWVvnl8jT0hs+z0VKshiYuBuaoK1sgrqrOwgVHh6/Fz5j23lP7aV/9hWbSNVe3GAkaJWe/fQ8VJ2SQLACclERKEspIOOy+VCVVUVrNxmn4LAUdO+PXS8uMSciCj0hXTQKSsrw9lnn41Vq1ZJXQpFGLfVArfZMy+n3T06iVxiTkQU6kJqjs7ChQtb/H9WVhby8vJO+fp169YFuySKUN7eHJlOB7m2fSsBuJcOEVHoC+keHaJgcdY2bxbYzt4c4Lihq1oGHSKiUMWgQ1HJ0Tyvpr3zczzv5WRkIqJQx6BDUcnZfJhnIHp0XMZ6uB2OgNRFRESBxaBDUcnbC6PsQNCR62MhqFQAjgUnIiIKLQw6FJW882o6MnQlCAIUiYme69Ux6BARhSIGHYpKvpPLOxB0AECZwJVXREShjEGHoo7ocsFZf+zk8o5QdGnu0eHKKyKikMSgQ1HHWV8PuN2AXA65Ia5D1/JtGsigQ0QUkhh0KOr45uckJEKQdexbwLtqi5ORiYhCE4MORR3vHjodnZ8DHBv6YtAhIgpNDDoUdbyhpCNLy728q64ctTUQRbHD1yMiosBi0KGoc2zFVWKHr6VI8FxDtNngbmrq8PWIiCiwGHQo6hzbLDCpw9eSqVSQx8Z6rssJyUREIYdBh6KO70DPAMzRATghmYgolDHoUFQRRfG4Hp2OD115rsNTzImIQpVC6gKIOpPbbIZoswLo2IGex/PO9XGwR4dClOh2w3LoIFxGIzS9+0CZkCB1SUSdhkGHooq310Wuj4VMrQ7INdmjQ6HMUVODsuUvw3r0iOcBmQxJV16FxEumSVsYUSfh0BVFlUCdcXU83xJznndFIcbV2IjiJc/BevQIZBoN1NnZgNuN6k8+Qt3330pdHlGnYI8ORRXvyqhA7KHjFezJyC6zGdUf/Q8NO7ZBHqNH0rRpSLjikqDciyJL5Xtvw1FeDkViIrLn/gPKLkmo/XYVqj/6H6o+/hC6/gM94YcogrFHh6KKM4B76Hj5hq7q6yC6XAG7LgC47XaUvLAIxp9+hLupCY7KCpS9vgLFn3wW0PtQ5DHv34eGLb8AgoCM2/4OZRfPdgoJF16MmOEjAJcLVR99IHGVRMHHoENRJZB76HjJDQZALgdE0XNgaADVfP4JrEcOQ6aLQeZd9yDxsisAAAVvvQPzoYMBvRdFDlEUUf35pwCA+MlToOnR0/ecIAhI+dN0QC6Hee8eWA4ekKpMok7BoENR5dgeOoHr0RFkMt9S9UBOSLZXlKNu9fcAgLSbZyFm8BB0ufxKxI0bD7jdKH/nHYhud8DuR5HDciAP1kMHISgUSLzkspOeVyYnI27C2QCAujXfd3Z5RJ2KQYeiSjDm6ADHjoII5O7Itd+sAtxuxAwZCv3QYQA8P42nXjcdMo0G1qNHYN67J2D3o8hRv3Y1AMAwYSIU8fGtviZ+yvkAgMbdu+A0GjurNKJOx6BDUUN0OuFq/gtd0SVwQ1ee6zXP0wnQyiun0QjT5p8BAImXtvyJXBEXh7QLPP9I1a3+LiD3o8jhbDCh8dfdADzDVqeizsqGpmcvwOWCadPGTqqOqPMx6FDUcNTVAqIIQaHwnU8VKN4eokBtGtiwZTPgckHTsye0vXqf9Hz6tEsBQYB5317Yy8sDck+KDA2bNwEuF9Tde0CddfoVVYazJ3res21rZ5RGJAkGHYoazuP20BEEIaDXVgRw00BRFGH82fMTtmHCxFZfo0lNgX7wYACAacvmDt+TIofpF8/nIe7s1j87x9MPHwEIAmyFBbBXVga7NCJJMOhQ1AjGiisvZQCPgbAXF8NeUgxBoUDsqNGnfJ1h7DgAQMPWXyCKYofvS+HPUVUFW2EBIAiIPWvUGV+viDVA2y8HAGDasT3Y5RFJgkGHokYwVlx5BbJHp3H3TgCAbtBgyHUxp3xd7PAREFQqOCoqYMs/2uH7Uvhr3OX57Gj79vN7eFY/4izPe3fvDlZZRJJi0KGocaxHJ7ArrjzX9IQnt9kMl8XSoWt5J5J6V1qdilyrRcyQoZ737N7VoXtSZGjctQPAsfDij5iBniFQ86GDHf7sEoUiBh2KGsfm6AR+6Eqm0UKm03nu04HhK2d9nad3RhAQM2TYGV+vb35N02+/tvueFBmcRiMszZtI6oeP8Pt9ypQUKJKSAJcLxr37glUekWQYdChqOGqrAQDKAB7oeTzf8FVd+4evGn/1BBZNj55QxMWd8fW6wYM9k0mLCuGoq2v3fSn8mfftBUQR6q7d2tRrKQgCYgYMAgDU72ZgpsjDoENRQXS7fT06yiD06ADHhq8cNe3v0Wna8xsAIOYMw1ZeiliDb3t/9upEN/O+vQAA3YCBbX6v9z3GX38LaE1EoYBBh6KCy2SC6HQCggBFQkJQ7uHbNLCdE5JFt9t37pCu/wC/3xczeAgAwLyPuyRHK1EU0dQcdGIGDmrz+3XNK6/MhUVwNTYGtDYiqTHoUFRw1HiGrRQJCRAUiqDcQ9nBYyDsZWVwNzZCUKmg6drN7/fpcjyhyJyXy7OvopS9tBQuYz0EpRKa3idvMHkm8thYqNLSAADmQ4cCXR6RpBh0KCoEe9gK6PgxEJYDeQAAba8+bQpjmh49IKjVcDc2wl5S0q57U3jz9uZp+/aDTKlq1zV0ffp4rtU8oZkoUjDoUFTw9egEYWm5l9K3l0775uhYDjYHnb592/Q+QaGAto/nPeZcrpqJRub9nj/39szP8dL29nyGvMOnRJGCQYeigm8PnaQg9uh4z7uqq23zEJIoijDneYNOvzbfW5fTHwBgzt3f5vdSeBPdbt+ycu9cm/bw9uhYjhzxzGcjihAMOhQVnN4enSAtLQcARXw8IAiAywWXydSm9zoqKz1zLBQK3yqqtvDO07EcyOM8nShjLyuF22yGoFZDnd213ddRpadDERsL0eGAtbAggBUSSYtBh6KCd+gqmHN0BLnct6KrrROSvcNWmh49IVO1fY6FumtXCGoN3BYL5+lEGe9Qk7ZnLwhyebuvIwgCYvt6JjLbCvIDURpRSGDQoYgniuKxoasg9ugAgKJ55VVbl5j7JiL3adv8HC9BJoO2Zy/PtQ5zMmk08Q5baXr36fC1Ynp6ehOtDDoUQRh0KOK5m5og2mwAgjsZGTgWpBxtXHllOdD8U3kH5lh4lxVbuGomqnj/vLUBCDr6Xp6wzB4diiQMOhTxvMNWcoOhXcNCbXHsGAj/V145amvgqK4CZDJom/+haQ/vP3TWw9wHJVo46urgrK4GBKFDnx0vfW9Pj46ttBRuh73D1yMKBQw6FPEc1VUAgrviyst7DISzDcdAeOdYqLt2g0yjbfe9NT16AoIAR1UVnMb6dl+Hwoe1uTdHnd21Q58dL1VSEuSxsYDLBXtxcYevRxQKGHQo4jkqKwEAyuTUoN/Lt8S8uRfJH5bmZeW6diwrP55cp4MqM8tzTe5uGxV8E5EDMGwFeCYka7p5duXmPB2KFAw6FPEcVc1BJyUl6PdSpnjClL2iAqIo+vUe30TkDgYdAND28szTsXKeTlSw5h8FAGgCMGzlpenew3NtBh2KEAw6FPHszT06qs4IOsnJgCBAtFnhMhrP+HqnyQR7eRmAwPxU7r2GhfN0Ip7odsNWXAQA0HTrHrDrapvPWePQFUUKBh2KeI7KCgDHeluCSaZUQpmUDACwV5Sf8fXe/XNUmVmQ6/Udvr935ZW1IJ+TSSOcvbwMot0OQa0O6GdbneUZ/rSVlnDzSYoIDDoU0dx2u+/sqc4YugIAZarnFGi/go53WXkAhq0AQJmUDLnBALhcsOVzd9tIZivw/Pmqs7tCkAXur3JVaioEhQKizdamuWZEoYpBhyKad8WVTKuFXB/bKfdUpXl+unb4FXQCMxHZSxAEaJrn6ViOcPgqktmaj2nQdG3/sQ+tEeRyqNIzAHD4iiIDgw5FtGMrrlIgCEKn3FPl69GpOO3rXOYm3xyL9u6I3JpjE5IZdCKZ9zwqdfOcmkBSeYevShh0KPwx6FBE8wWdTpif4+UdunKUn75Hx3LgACCKUKameQ4EDRDtcT06/q78ovAiiqKvRycYQUfdvE2BnUGHIgCDDkU0e/NE5M5YceXl69GpqoTodJ7ydea8XACALqf9xz60Rt2tOyCXw2U0enbNpYjjqK6C22IB5HKoMzIDfn1v0GGPDkUCBh2KaN6l26q09E67pyIxETKt1rO7bPP9W2PJ3Q+gY+dbtUamUkHT/FM+5+lEJl9vTmYWBIUi4Nf3bjxpLy+H2+EI+PWJOhODDkU0e0kJAECVkdFp9xQEAeqsbACAraiw1de4Ght983N0AQ46wLEN5HjuVWTyrbgKwrAVACgSEiDT6QC3+4xDsEShjkGHIparoQGuBhOAzu3RAQB1tjfoFLX6vOVgHiCKUKVnQBEXH/D7a3s1bxzICckRyVroCdDe4xoCTRCEY8NXpRy+ovDGoEMRy1ZWCgBQdOkCmUbTqfdWZ3mW/J4q6Hjn5wR62MrL26NjKy6C22YLyj1IOrbCfADB69EBAGVa81wz9uhQmGPQoYhlbw46qvTAT9Y8E3Xz3ibWooJWVz6Z9+wBAOhy+gfl/srELlAkJAJuN6xHjwTlHiQNZ309XCYTcNwQaTB4e0HtZaeeZ0YUDhh0KGLZSz1BR92J83O8VM2TRN2NjSdtHGivqPBMUpbLoRswMGg1+ObpHDkctHtQ5/Pun6NKS4dMrQ7afbxBx1HBoEPhjUGHIpa9tPMnInvJlEpoenqChveYB6+m33YD8GwSKNfpglaDbz8dTkiOKMHcP+d4vh6digqeeUVhjUGHIpIoirAedxaQFLR9Pbsdm5sP7vRq3L0LAKAfOiyo9/ceBWE9fJgbB0aQY0EnuJ9rZVISIJdDtNvhrKsN6r2Igimkgs6yZcswY8aM076mrq4O9957L0aNGoVRo0bh0Ucfhdls7qQKKVw4q6vhNjcBcjlUQdhQzR/avp6Jxua9e3w/ETtqanznW+mHjwjq/TVdu0FQKOBqbPCd4E7hzzt0penWPaj3EeRyqFI9O4pzng6Fs5AJOitXrsSLL754xtfNnj0bRUVFvtf//PPPeOKJJzqhQgon1oJ8AJ4N1WRKpSQ16Pr2g0yng8tkguXQQQCAadNGQBShzekPZVJyUO8vKBRQd+8BgMvMI4Wrqcm323Vn9FSqUpuHr7jyisKY5EGnoqICf/3rX/Gvf/0LPXr0OO1rd+3aha1bt2LBggUYOHAgxo0bh3/+85/4/PPPUXGGAxQpuniDjqZ7d8lqEBQK6Id5em2MP/0It82G+nVrAABxEyZ2Sg1a34RkBp1I4B22UiYlQx4TE/T7qdK9QYc9OhS+JA86e/fuRVxcHL744gsMHTr0tK/dvn07kpOT0av5L28AGD16NARBwI4dO4Jdapu5bTaILpfUZUQlm7dHJ8jd+2cSP+V8AEDDll9QvOgZuBoaoExKRuyo0Z1yf41348DDXHkVCaydND/Hy3tALYMOhbPAH5LSRlOmTMGUKVP8em1FRQXS01vucKtSqRAfH4+yDo4hKxSBzXwNu3eh6F8vQJDLoUxKgiolBcrkFKhSUqBKTYUqJRXK5GTJhlVCjVwua/HfjhBdLt+San3v3gH/s20Lfe+eiBs3HsbNm2A9cgQQBKTfeCOUGlW7r9mWtort2wdl8JxCLThskGu17b5vOArk5yoU2JuPFNF27xHwz3VrbaXN8sxvc5SXS/p9FGoi7XMVbFK3l+RBpy0sFgtUqpP/gVCr1bB1YPdXmUxAQkJgu4HlaUko1engamqCvby89TFuQYA6OQmatDRo0tOgSUuDNiMdmvR0aNJSIQ/iHhmhymDo+D/EDQcPwW21Qh4Tg7TB/SDI5QGorP0Mc/6OovQUmAuLkHbxhUgceVZgrutPWyXEoCAlBbbKSigqSxA/7PS9ppEqEJ+rUHC0+Xy0pIF9A/53ltfxbRWb0wv5AJz1dYhVC1AEcTuEcBQpn6vOIlV7hVXQ0Wg0sNvtJz1us9mg68A3oNstwmQK8MqttGz0X/YKNA4zag4XwlpWBntlJeyVlXBUVcJeUQG31QpbZRVslVUw/vb7SZdQxCdAlZoCVWqapxfI+yslNagbhUlBLpfBYNDCZLLA5erYnh0123cDALS9+6DeZA1AdR0Xd/lViGv+fV1dU4eu1da2UvfsBVtlJSp374HYrXeH7h1uAvm5kprbZoOl+ZBaV5e0Dn+OTnSqtpIb4uAyGVGZexjaHj0Des9wFUmfq84QrPYyGLR+9RKFVdBJS0vDmjVrWjxmt9tRX1+P1OZlkO3ldAb+w6pQyKBOToZWoYOyV98Wz4miCFdDAxwVFZ7gU1kOR2UV7JUVcFRWwG02w1lfB2d9Hcx5eSdfOyERyubgo0xJ9YShtDQok5IhKMLqj7UFl8vd4T+Lxv37AQCavv2C8ucaKvxtK3XPXsAvm9F08CASIrg9TicQnyupWfILAFGEPC4O0BuC9vWc2FaqtDRYTEZYikuhzO4elHuGq0j4XHUmqdorrP5FHDVqFJ5//nkUFBSgW/OpvVu2bAEAjBgR3D1JAk0QBCgMBigMBmj79DnpeVdjoy/02Cs8/3VUNvcEmZvgrKuFs64Wltz9Ld8ok0GZlOwJQM3hR5WWDlVaGuRx8RAEoZO+Qmm4bTaY9+8DAOj6D5C4mtDg3SHZeuQwRLcbgozzCsKRd4K9Jsg7Ip9ImZoKy4E82LkXE4WpkA46LpcLtbW1iI2NhUajwdChQzFixAjMmTMHjz/+OMxmM+bNm4crr7yywz06oUau10Or10Pbs9dJz7kaG2GvKIejogL2inJPEKooh72yAqLN1hyKKoDff2vxPplG0zL8pKdDlZYOZWoqZMr2T44NJeb9+yDa7VB06SLZjsihRp2VDUGlgttshr28DGqJNlCkjrEWeiYiB/vohxOpklMAAI6qyk69L1GghHTQKSsrw3nnnYcFCxbgqquugiAIWLp0KZ544gnccMMNUKvVuOiii/DQQw9JXWqn8oSg3r6f1L1EUYSzvt4TesrLjgWg8nI4qio9c4IK8n0/GfoIgmdlWFo6VOkZngCUngFVekan7NURSI27dgIA9EOHR3zvlb8EuRya7j1gOZAH6+FDDDphqrPOuDqRMsXzQ6SjkkGHwlNIBZ2FCxe2+P+srCzknTA/pUuXLn7toByNBEGAMiEByoQE6HL6t3hOdDo9E6EryjyrwMrKPGGorBRuiwWOqio4qqrQdEIvkDwuzhd61BkZUGVkQp2RCXlsbGd+aX5xW61o2L4NAKA/a6TE1YQWbe8+sBzIg+XwIcRNnCR1OdRGotMJW0kxAAmGrlKae3QYdChMhVTQoeARFAqoMzxh5XiiKMJlMsFeVtocfDzhx15WBmddLVxGIyxG40lzgeSxBqgyMz3hJzML6owsqDIzg3oa95k0bN0C0WaFMjUV2r79JKsjFHlPUrdy48CwZCstAVwuyHQ6KJKSOvXequag42psgMvcBLkuvHp5iRh0opwgCFDExUERF3dSL5DLYmkOPiWwl5bCXloCW2kJnDU1cDWYYMk1nRSAFF26QJ2ZBXVWNtRZ2VBlZUOVmhr0vWxEpxO1364CAMSdcy6HrU7gHea0l5XC1dQUdkOS0e74YavO/mzLNFrIDQa4TCY4Kqsg787PDoUXBh06JblWC23PntD2bLl3httqga20DPbSEtjLSmArKYG9pMSzEqymBs6aGjT99qvv9YJC4Rnyysry9P40hyBFXNyJt2y3+vU/wFFZAXlsLOInTQ7YdSOFPDYWytRUOCoqYD1yGDGDh0hdErWBtaD5xPJOHrbyUqakNgedCknPjyNqDwYdajOZpvUA5Gpqgq2kGPbiItiKi2ErLoKtpBiizQZbYYHvp1IveawB6mxP6NF26wbVoL4QYxLQ1iPYbEWFqP74QwBAl8uvhEyj6dDXF6m0vXrDUVEBy+FDDDphxtbJZ1ydSJWSAuuhg1xiTmGJQYcCRh4TA13fftAdNz9GdLvhqKluGX6Ki+GorICrwQTzvr0w79uLOgClACCXeyY+NwcgdVY21NldoTAYTrqfKIpo+nU3Kla+DtFuh67/QMSxN+eUNL16w7TpZ1gOHZS6FGoD0e2Grci7tLy7JDVw5RWFMwYdCipBJoMqOQWq5BTohx8748lts3mGvIqLYCsuhL3EE4JcTWbYi4tgLy5Cw3HXkRsMUKWlQxYTA7lW63l/UZFnvyB4TilPv+12boZ3Grp+OQAA66GDcNtsEXeMSKRyVJRDtNshqFRQpaVJUoNv5RX30qEwxKBDkpCp1S2GvxQKGeLjdag8VAhzfoGn56eo8Fjvj8kEi8l00nUElQrxk6egyxVXQdbKga90jDI1DYouXeCsqYE5Lxf6IdF5wGe4sXqHrbK7ShbkvZsGcuiKwhGDDoUMQRCgSkqCLD4R+mHDfY97en+K4aiugttigdtshiCXQ5mWDm3vPpIuaQ8ngiAgZuBgGH/6Eea9exh0woTU83OAY0NXLqMRbquV8+AorDDoUMjz9P70avU4DGob3cBBMP70I5r2/i51KeQnqVdcAZ75d7KYGLibmuCoqoI6O1uyWojaihMaiKKIrn9/QCaDo7wcjppqqcuhMxBFETaJzrg6kaq5V4fDVxRuGHSIoohcFwNND8+8qKY9eySuhs7EWVMNt7nJsxpR4jPKeBQEhSsGHaIo491Dp2n3TokroTPxnViekQmZUilpLb4l5lXs0aHwwqBDFGX0IzzL/M3798FlNktcDZ2OrTAfAKDuJu2wFXD8yiv26FB4YdAhijLqjEyo0tIhOp0nnVZPoSVU5ucAgLI56DiqqySuhKhtGHSIopC3V6dx53aJK6HT8a24yg6FoJMMAHDW1EB0OiWuhsh/DDpEUUg/YiQAoOn33+CyWCSuhlrjNNbDZawHBCEklnPL4+IgKJWAKMJRWyt1OUR+Y9AhikLqbt08w1d2Oxq3bZW6HGqFtSAfAKBKTQuJDfoEQfD16vAoCAonDDpEUUgQBBgmngMAMP68QeJqqDW25mErdffu0hZyHGVSc9DhPB0KIww6RFHKMHY8IJPBevgQbKWlUpdDJ/D26Gi6dZe0juP5JiRXMehQ+GDQIYpSirg4xDSfd2XasF7iauhEtuagow6poMOhKwo/DDpEUSzunEkAAOPGn7inTghxGo1w1tUBgiDpGVcn8g1dsUeHwgiDDlEUixk0BKqMDLgtFhjX/yh1OdQs1CYie3EvHQpHDDpEUUyQyZBw4cUAgLo138Fts0lcEQGhOWwFAMqkJACA22yGq6lJ4mqI/MOgQxTlDGPGQZGUBJfRiLrvv5W6HMJxE5FDaMUVAMjUasjj4gBw+IrCB4MOUZQTFAok//FPAIDab76Go65O4oooVHt0gOOXmHNCMoUHBh0ign7kKGh69YZot6Pynf9CFEWpS4paoToR2evYyiv26FB4YNAhIgiCgNTrbwDkcjTt3gXTpp+lLilqhepEZC/upUPhhkGHiAAA6uxsdLnsCgBA5dtvwpp/VOKKopP16BEAobUj8vG4xJzCDYMOEfkkXjINMUOGQnQ4ULL0X3DUVEtdUtSxHjkMAND26i1xJa3zDV1xjg6FCQYdIvIRZDKkzboVqowMuOrrUfTMAtgrKqQuK2qIbrcv6GhCNug0D13V1EB0uSSuhujMGHSIqAW5VovMOfdDmZoGZ20NCuf/E017fpe6rKhgLy+D22KBoFJBnZkldTmtUsTFQVAoALcbztpaqcshOiMGHSI6iTIhAdkPPAhNz55wm5tQ8q/FqPrf+3BZLFKXFtF8vTnde0CQyyWupnWCTMZTzCmsMOgQUasUcfHIuv8hz3lYooi6779F/iMPwrR5E5efB4nl8CEAgKZnL4krOT3vPB07D/ekMMCgQ0SnJFMqkfqXm5Axew6UKalwGY0oX/EqihbOR9Oe3xh4Asx6xLPiKlQnIntxLx0KJwqpCyCi0KcfMhS6/gNQv/o71Hz9JayHD6HkhcVQd+2GxIsugf6skSE71BIuXGYz7KUlAMKgRyeJe+lQ+GDQISK/yJRKJF4yDYbxE1D33beo/+lH2AoLUPbqK1AkJCLu3MmIO2cSFLEGqUsNS9ajRwBRhDIpGYrm86RC1bEl5gw6FPoYdIioTRTxCUi+djoSL70M9evWoP6HtXDW1aLm049R++XniB09BvGTz4OmR0+pSw0rlrxcAICmTx+JKzmzY0NXnKNDoc+voPPZZ5+16aJXXnllO0ohonAi1+vR5fIrkXDxpWjcvhV1a9fAln8Upk0/w7TpZ6i790D8uVMQO3oMZCqV1OWGPHNz0NH16y9xJWfmXXXlbmqCy9wEuS5G4oqITs2voPPggw/6fUFBEBh0iKKITKmEYdwExI4dD+vRI6hftwaN27fBln8UFStXoOp/7yPu7ImImzQZqtRUqcsNSW6bzXfkhq5fjsTVnJlMo4E8Lg4uoxGOyirIuzPoUOjyK+isXbs22HUQUZgTBAHanr2g7dkLzmunw7RxA+rX/wBndTXqvv8Wdd9/C92gwYifcj5iBg2GIOOiTy/LoYOAywVFYhcokpKkLscvqpRUWIxGOCoroAnRc7mIAD+DTmZmpt8X5HJTIlLEGpB48aVIuPBiNO35DcYf1qFpz+8wN/9SpqQifsp5MIw/G3KdTupyJeedn6PLyYEgCBJX4x9lcjIsBw/AXskjQii0tWsy8tdff42tW7fC4XD4go0oijCbzdi9ezd++umngBZJROFJkMmgHzIM+iHDYK+shPGHtTBu/AmOygpUvf8uqj/9GIbxExA/+XyoMzKkLlcy3vk52jAYtvJSpniGIbnEnEJdm4PO0qVLsXTpUsTGxsLpdEKpVEKhUKC2thYymQzXXHNNMOokojCnSklB8rXT0eWKP8D0yybUr1sDe2kpjD+sg/GHddANHISEqRdAN3Bw2PRqBILbagmr+TleypTmvXTYo0Mhrs2D5J9++ikuv/xybN26FTfeeCMmT56MTZs24aOPPkJ8fDz6hMHSSCKSjkyjQfy5U9DtifnIuvcBxAwbDggCzHv3oOSFxSh47GHUr/8BbptN6lI7hXn/PsDlgjI52beaKRyomk8xt1dyiTmFtjYHnYqKClxxxRUQBAEDBw7Erl27AACDBg3Crbfeig8//DDgRRJR5BEEAbr+A5D597vQ/elnEH/+BZBpNLCXlaLyrTdx5IF7UP3px3Aa66UuNaiafv8NABAzeKjElbSNd+jKZayPmlBK4anNQUen0/m6lbt3747i4mJYrVYAQP/+/VFcXBzYCoko4qmSU5By3Z/R47klSL52OpRJyXA3NaH26y9xdO59KF/5OmzNxyNEElEUjwWdIeEVdOQxMZDFeJaVc+NACmVtDjqDBw/Gp59+CgDo2rUr5HI5Nm3aBAA4fPgwVNwYjIjaSa7VImHqhej+9DNIv+3v0PTqDdHphGnjTyh47GGUvLgE5tz9EbO601ZUCGddHQSVCtp+/aQup82UHL6iMNDmyci33norbrrpJjQ0NGD58uW4/PLL8eCDD2LMmDHYuHEjzj///GDUSURRRJDJEHvWSMSeNRKWQwdR9/23aNy1E02//Yqm336FunsPJF58KfTDR4T1fjxNv/0KAND1HwCZMvx+SFSlpMKWf5Q9OhTS2hx0Ro0ahY8++gh5eXkAgMceewwymQw7d+7ERRdd1KZdlImIzkTbuw+0vfvAXlGOutXfw/TzBtjyj6LslaVQpqUh8aJLEDtmHGRKpdSltlnjzh0AgJghw6QtpJ248orCQbv20cnJyUFOjmcZpFqtxpNPPhnQooiITqRKTUPq9X9Bl8uvRP261ahftxaO8nJUrHwdNZ9/ioSpFyFu0rmQqdVSl+oXe0UFbIUFgEyG2BFnSV1Ou3iHrhwcuqIQ1q6g09DQgF9++QVms7nVsXKedUVEwaIwGJB05R+ReNElqF//I+pWfwdnXR2q/vcealZ9iYTzpiJ+8nmQ6/VSl3paDdu3AvAMW8ljYyWupn1UzSuv7By6ohDW5qCzfv163H333bBYLK0+z0M9iagzyDRaJF54MeKnnI+GzZtQ+83XcFRVoubzT1H33TeIm3weki++GEgIvQMnRVFEw5ZfAACxI0dJXE37eYeunDU1cDscYTl8SJGvzUFn8eLF6NmzJx566CGkpqZCFsYTAYko/MmUSsSdMwmGCWejYcc21K76GvbiItR98zXq165G40UXIGbKBRD0BqlL9bEeOQx7aQkElQr6s0ZKXU67yQ0GCGoNRJsVzppqqNLSpS6J6CRtDjpHjhzBsmXLMHJk+H5zElHkEeRyGEaPReyoMWj6dTdqvvoCtvyjKP3iKwirvoNh4jlIvPhSKBMTpS4Vxg3rAQCxZ42CXBd6PU7+EgQBqpRk2IqKYK+sYNChkNTmoJORkYHGxsZg1EJE1GGCIEA/bDhihg6DLXcv6lZ9hYb9uTD+sBamDeuPCzxdJKnPZbGgYesWAEDcOZMkqSGQlCmpsBUVwVHJwz0pNLU56Nxyyy14+eWXMXjwYGRlZQWjJiKiDhMEAfrBQ5A1cSxKNm1H5aefwHLwAIw/rINpw08wTJiIxEundXrgMf74A0S7HaqMDGh6h//ZgMdWXnGJOYWmNgedL7/8EhUVFZg6dSoSExOh0WhaPC8IAtasWROwAomIOkIQBMQMGIDsvjkw5+5HzRefwXIgD8b1P8C48SfETZyExEumdcqQltthR92a7wAACRdeHBGntHsnJHN3ZApVbQ46aWlpSEtLC0YtRERBpcvpD11Of5jzclHz5eew5O6H8cd1MG38CQZv4ElICNr969esgctohCIxEYYx44J2n87kXWLO3ZEpVLU56CxYsCAYdRARdRpdvxzo+p3Qw9M8hyfunHORcNHFAR/ScjaYULvqSwBAlyuugqBo1zZmIce3O3J1FUSXC4JcLnFFRC21+TuttLT0lM/JZDLodDoYDKGzjJOI6FR0Of2h7ZcDS14uaj7/FJaDB1C/bg3q1/8Aw7jxSLzokoCsJBJFEZXvvAW3xQJ1124wjBsfgOpDgyI+AYJCAdHphLO2FsrkZKlLImqhzUFnypQpZxxXjouLw1/+8hfcfvvtZ7ye2+3G0qVL8eGHH8JkMuGss87CvHnz0K1bt1ZfX1RUhPnz52Pnzp1QKpW4+OKLce+990Kr1bb1SyEigiAIxwJP7n7PkNaBPJg2boDp543QjzgLiRdPg6Z793bfw7RpIxq3bwPkcqT+5aawPoj0RIJMBmVyCuxlpbBXVTLoUMhp83fbwoULoVQqMWHCBCxYsACvvfYaFi5ciMmTJ0MQBNxxxx34wx/+gFdeeQXvvvvuGa+3bNkyvP/++3jqqafwwQcfQBAEzJo1C3a7/aTXNjQ0YPr06TAajfjPf/6D5cuXY8+ePbjjjjva+mUQEbUgCAJ0/Qcg+4GHkP3QI4gZNhwQRTTu2I7Cpx5H8aLnYN6/r9Vjb06ncfcuVL71JgCgy7TLOxSYQhUP96RQ1uYena+//hqXXnrpSXN1rrjiCsybNw979uzB8uXLYTAY8N577+HPf/7zKa9lt9vx+uuv4/7778ekSZ79JJYsWYKJEydi9erVuPTSS1u8/tNPP0VjYyNefvllJDavkFiyZAkmT56M7du3cxNDIgoIba/eyPz7XbCVFKP221Vo2PILzPv3wrx/L9Tde8Awbjz0w0ZA2eXU83hEtxvGn35E5btvA2439GeNROKll3XiV9F5eLgnhbI29+hs3boV06ZNa/W5Cy64AL/84jm/5ayzzkJRUdFpr5Wbm4umpiaMHTvW95jBYMCAAQOwbdu2k15/9OhR9OzZ0xdyACA9PR0JCQnYunVrW78UIqLTUmdmIf3mv6HH088gbvJ5EJRK2PKPouq9d3B07r0oePJx1Hz1Baz5+XA1NsJtt8NRUwPTls0ofPpJVL79X8DthmH8BKT/7baIGrI6nsq3xJw9OhR62tyjEx8fj9zcXEyYMOGk53Jzc6FvPjHYbDafcd5MeXk5AE9YOV5KSgrKyspOen1ycjKqqqrgcrkgb57Z39jYCKPRiJqamrZ+KS0oFIH/C0gul7X4L50a28p/bCv/BaqtFGmpyLzhBqReeSWMmzehYedOmA8egK0gH7aCfNR89kmr75NpNEi+4g9IvPDCkA85HWkrTYbn73BHRXlQ/i4NNfwebBup26vNQeeyyy7Diy++CIVCgYsuugiJiYmora3F999/j6VLl+K6666D0WjEm2++iaFDh572Wt4T0FUqVYvH1Wo1jEbjSa+/9NJLsXz5cjz99NO455574HK58MQTT0AQhFbn9PhLJhOQEMQTjg0GTpT2F9vKf2wr/wWsrRJikNz9amD61bDXG1G3bRtqftmKhrw8OBuaj8aRyRDTvRsSRgxH+rRLoArivjzB0J620uX0RiE8Q1dxsWrIImTp/Jnwe7BtpGqvNn8a7777btTU1GDhwoVYuHCh73GZTIY//vGPmDNnDr777jvs27cPb7755mmv5d1V2W63t9hh2Waztdob1K1bN7z00kt47LHH8M4770Cj0WDGjBkYNGiQryepPdxuESaTud3vPxW5XAaDQQuTyQKXyx3w60cStpX/2Fb+C25bKaAaOQ7pI8chHYDbbofodEKm0fh6b5oANNU1Bfi+wdGRthLlGsg0GritVlTmHYE6IzNIVYYGfg+2TbDay2DQ+tVL1Oago1AosGDBAtx2223YsmUL6urqkJqaihEjRiA7OxsAcM4552DDhg0n9dScyDtkVVlZia5du/oer6ysRE5OTqvvmTRpEtavX4+qqirExsZCo9Fg/PjxuOqqq9r6pbTgdAbvw+pyuYN6/UjCtvIf28p/ndJWMgWgUsDlBuAO3z+X9raVMi0dtvyjMBeVQJ4SHaeY83uwbaRqr3b3L3bt2rVFODleXFycX9fIycmBXq/Hli1bfNcymUzYt28frr/++pNev2PHDixZsgSvv/46kpv3ati6dSvq6uowfnzkbMBFRBRuVOmeoGMvO/WmskRS8CvonHfeeXj55ZeRk5Nzxg0D23Kop0qlwvXXX4/nn38eiYmJyMzMxHPPPYe0tDRMnToVLpcLtbW1vp6bXr164eDBg3j66adx8803o6ioCA888ACuu+46X28SERF1PnV6BhoA2FtZSEIkJb+CzujRoxETE+P7fSBP3J09ezacTiceeeQRWK1WjBo1CitWrIBKpUJxcTHOO+88LFiwAFdddRXi4+Px6quvYsGCBbjsssuQkJCA6667DrfddlvA6iEiorZTNU9FYI8OhRpBbOs2n/As6W5qakJqairsdjvefPNNVFRU4IILLsDo0aODUWdQuVxu1NYGfsKgQiFDQkIM6uqaOI57Bmwr/7Gt/Me28l9H28peXob8Rx6CoFKh99LlIb+cviP4uWqbYLVXYmKMX5OR2/xJ/O233zBlyhS89dZbAICnnnoKixcvxhdffIEbb7wRa9eubXu1REQU1pTJKYBcDtFuh7OuTupyiHzaHHSWLFmCnj174tprr4XVasWXX36J6dOnY+vWrbj66quxfPnyYNRJREQhTJDLoUpNBcDhKwotbQ46v/76K2677TZkZ2dj8+bNsFqtuOKKKwAAl1xyCQ4ePBjwIomIKPSp0jMAMOhQaGlz0JHJZL79cdavXw+DwYAhQ4YA8MzdOX7jPyIiih7HJiRz5RWFjjbvozNo0CB89NFH0Gg0+Oabb3DuuedCEATU1NTgtddew6BBg4JRJxERhThvj46ttETiSoiOaXOPzgMPPIDNmzdj+vTpkMvlvqXd06ZNQ35+Pu6+++5A10hERGFAneXZ+NVeXAQxjHeHpsjS5h6dAQMG4Pvvv8fhw4fRp08f6HQ6AMDjjz+OESNG+HYsJiKi6KJKS4OgUMBttcJRXQ1VSorUJRG1vUcHAPR6PYYOHeoLOQBw4YUXMuQQEUUxQS6HKjMLAGArKpC4GiKPyN3RiYiIOp062zN8ZSsqkrgSIg8GHSIiChh1V2/QKZS4EiIPBh0iIgoYdZbngGUGHQoVDDpERBQw3qDjrK2Fq7FR4mqIGHSIiCiA5DodlM0LU2zFnKdD0mPQISKigPLup2Mr5PAVSY9Bh4iIAso7IdnKJeYUAhh0iIgooNTdugMArEeOSFsIERh0iIgowLQ9ewEAHBXlnJBMkmPQISKigJLr9VCmpQEALEcOSVwNRTsGHSIiCjhtz94AAOvhwxJXQtGOQYeIiAJO08sTdCyH2aND0mLQISKigNP28szTsR49AtHlkrgaimYMOkREFHCqjEzINBqINhtsJcVSl0NRjEGHiIgCTpDJjg1fHTggcTUUzRh0iIgoKHQ5/QEA5v17Ja6EohmDDhERBYVuwEAAgCUvF6LTKXE1FK0YdIiIKCjU2V0h0+vhtlphzT8qdTkUpRh0iIgoKASZDLqcAQAA8z4OX5E0GHSIiChodAM8Qadp7x6JK6FoxaBDRERBEzNoCADAeuQwHHV1EldD0YhBh4iIgkaZmAhN7z6AKKJx+1apy6EoxKBDRERBFTt6DACgYdsWiSuhaMSgQ0REQRV71khAEGA9cgSOqiqpy6Eow6BDRERBpYiL920e2MDhK+pkDDpERBR0+lGjAQANWzl8RZ2LQYeIiIIudsRIQC6HragQttISqcuhKMKgQ0REQSfX6xEz2LPUvH7dWomroWjCoENERJ0i4fwLAACmTRvhamyUuBqKFgw6RETUKbT9cqDOzoZot6P+B/bqUOdg0CEiok4hCAISLroUAFD3/bfs1aFOwaBDRESdJnbUaKgys+C2WFD77Sqpy6EowKBDRESdRpDJkPSHPwIA6teuhr2qUuKKKNIx6BARUaeKGToM2pz+EB0OVLz5BkS3W+qSKIIx6BARUacSBAGpM26EoFLBkrufE5MpqBh0iIio06lSU5F8zbUAgOqP/gdrfr60BVHEYtAhIiJJxE2ajJghQyE6HChd9iKcRqPUJVEEYtAhIiJJCDIZ0v56C5SpaXDW1qLkX4vhMjdJXRZFGAYdIiKSjFynQ+add0Mea4CtsAAlLyyG22qRuiyKIAw6REQkKVVaGrLuuR+ymBhYjxxGyYsvwGU2S10WRQgGHSIikpw6OxtZc+6DTKuF5UAeihY8BXtFhdRlUQRg0CEiopCg6d4DWffNhSIhAfayUhQ+/U+Y9++TuiwKcww6REQUMjTduqPrw/Og6dET7qYmFC95HvU/rJO6LApjDDpERBRSFPHxyHrgQcSOGQe43ah857+oeOe/EJ1OqUujMMSgQ0REIUemVCHtr39D0lVXA4IA4w/rUPzCIp54Tm3GoENERCFJEAQkXjINGbffCUGthiV3Pwrn/xO2okKpS6MwwqBDREQhTT98BLo++AgUXbrAUVWJwqefhHHjBqnLojDBoENERCFPnZ2Nbo8+Ad2gIZ5Tz1euQPnKFXDb7VKXRiGOQYeIiMKCXK9H5uy70eXKqwBBgGnjBhQ+/ST326HTYtAhIqKwIchk6DLtcmTOuQ/y2FjYi4tQ+NTjaNi5Q+rSKEQx6BARUdiJGTAQ3eb9E5peveG2WFC27CVUffg+l6DTSRh0iIgoLCniE5B9/4NIuOAiAEDdd9+ieNGzcNbXSVwZhRLJg47b7caLL76IiRMnYujQoZg5cyYKCgpO+fqqqircc889GDNmDMaMGYO77roL5eXlnVgxERGFCkGhQPKfrkP6bX/3nJN18AAK/jkP5tz9UpdGIULyoLNs2TK8//77eOqpp/DBBx9AEATMmjUL9lPMpJ8zZw7Kysrwxhtv4I033kB5eTluv/32Tq6aiIhCSexZI9H1kXlQZWXDZTKhePFzqP12FURRlLo0kpikQcdut+P111/HnXfeiUmTJiEnJwdLlixBRUUFVq9efdLrTSYTtm3bhlmzZmHAgAEYMGAA/va3v2Hv3r2oq2NXJRFRNFOlpqHrQ48gdtx4wO1G9Uf/Q+myl+Aym6UujSQkadDJzc1FU1MTxo4d63vMYDBgwIAB2LZt20mvV6vV0Ol0+Oyzz9DY2IjGxkZ8/vnn6N69O+Li4jqzdCIiCkEytRppM2chZcYNEBQKNO3aicInH4etuEjq0kgiCilv7p1bk56e3uLxlJQUlJWVnfR6tVqN+fPn45///CdGjhwJQRCQnJyMt99+GzJZxzKbQhH4zCeXy1r8l06NbeU/tpX/2Fb+i7S2SjrvPMT06IHil1/y7aacceNMxI0f3+FrR1pbBZvU7SVp0LFYLAAAlUrV4nG1Wg2j0XjS60VRRF5eHoYPH46//vWvcLlcWLJkCe644w6899570Ov17apDJhOQkBDTrvf6w2DQBu3akYZt5T+2lf/YVv6LpLZKOGswkl9YhAOLlqB+968oeXU53KWF6H7jXyBTKjt8/Uhqq84gVXtJGnQ0Gg0Az1wd7+8BwGazQas9uUG+/vprvPvuu/jhhx98oWb58uWYPHkyPv74Y9xwww3tqsPtFmEyBX4MVy6XwWDQwmSywOVyB/z6kYRt5T+2lf/YVv6L3LaSIX32HCg+/QTVX36Bsq9WoT7vILLvuBOK+Ph2XTFy2yo4gtVeBoPWr14iSYOOd8iqsrISXbt29T1eWVmJnJyck16/Y8cO9OjRo0XPTVxcHHr06IH8/PwO1eJ0Bu/D6nK5g3r9SMK28h/byn9sK/9FalslXnEVVF27o/z112A5eBCH5z2GjFtvh7ZP33ZfM1LbKlikai9JBxhzcnKg1+uxZcsW32Mmkwn79u3DyJEjT3p9eno6CgoKYLPZfI9ZLBYUFxejW7dunVIzERGFJ/3wEej68DyoMjLgMtaj6PlnUL9uDZegRzhJg45KpcL111+P559/HmvXrkVubi7mzJmDtLQ0TJ06FS6XC1VVVbBarQCAK6+8EgBw9913Izc31/d6lUqFq666SsKvhIiIwoEqLQ1d//EYYkeNBlwuVL77NireWAG3g6egRyrJp4zPnj0bV199NR555BFMnz4dcrkcK1asgEqlQllZGc4++2ysWrUKgGc11rvvvgtRFHHDDTfgpptuglKpxHvvvQeDwSDxV0JEROFAptEg7W+3Iemaaz2noG/aiKJnFsBRUyN1aRQEgsg+O7hcbtTWNgX8ugqFDAkJMaira+I47hmwrfzHtvIf28p/0dpWTfv2ouzVV+BubIRcH4v0W2+HLqf/ad8TrW3VXsFqr8TEGL8mI0veo0NERCSVmAED0e3Rx6Hu2g2uxgYUL34Odau/47ydCMKgQ0REUU3ZJQnZDz7sOzqi6oP3UP76a3Cf4sxFCi8MOkREFPVkKhXSZs5C8nV/BmQyNGzehKJnnoajlvN2wh2DDhEREQBBEJBw/gXIuud+yPR62AryUfjkEzAfyJO6NOoABh0iIqLj6HL6o9sj86DOzoarwYTiRc+ifv2PUpdF7cSgQ0REdAJlUjKyH3wE+pHN++28tRIV/10J0emUujRqIwYdIiKiVsjUaqTfchuSrroaEAQYf/oRxYuehdNkkro0agMGHSIiolMQBAGJl0xDxp13Q6bVwnLwAI48/hgajxyVujTyE4MOERHRGeiHDEXXfzwKZWoanLW1+P3Bh2HatlXqssgPDDpERER+UKVnoOs/HkXMoEFw22wofnkpqj//FKKbuyOHMgYdIiIiP8ljYtB1zr3IuOIyAEDtl5+j7N/L4LbZJK6MToVBh4iIqA0EuRw9Zt6IjJv/CsjlaNyxHUULn+KhoCGKQYeIiKgd4ieeg+z7HoQ81gBbUREKn/4nLEcOS10WnYBBh4iIqJ20ffqg6yPzoMrMgstoRPGzC2Daslnqsug4DDpEREQdoOzSBV0fehgxQ4dBdDpR/tq/Uf3px5ykHCIYdIiIiDpIptEi447ZSLj4UgBA7ddfomz5y5ykHAIYdIiIiAJAkMmQ/MdrkHbzLAgKBRp37mg+Ab1W6tKiGoMOERFRABnGTUDWfXMhj42FrbAAhfOfgDWfOylLhUGHiIgowLS9W05SLnp2ARp37ZC6rKjEoENERBQEyi5JyH7wYegGDoJot6N02VLUfvcNRFGUurSowqBDREQUJHKtFpmz5yBu8hRAFFH94Qeo+O8bEJ1OqUuLGgw6REREQSTI5Uj58wwkX/dnQBBg2vATSv61GK6mJqlLiwoMOkREREEmCAISzr8AGXfMhqBWw7x/H4oWzoejukrq0iIegw4REVEn0Q8bjuy5/4AiIQH2slIUzn8S1qNHpC4rojHoEBERdSJN127IfuhRqLKy4Wowoei5hWjctVPqsiIWgw4REVEnUyYmInvuP45bkfUS6taslrqsiMSgQ0REJAG5VovMO+9G3DnnAqKIqvffQeX77/CMrABj0CEiIpKIoFAgZcYNSPrjnwAA9WtWo/SVpTwjK4AYdIiIiCQkCAISL74E6X+7DYJCgaZdO1H03EI4jUapS4sIDDpEREQhIHb0GGTd+wBkMTGw5R9F4YInYS8vl7qssMegQ0REFCK0ffqi6z8ehTI5Bc7qahQufAqWw4ekLiusMegQERGFEFVqGrIfegTq7j3gbmxE8aJn0bh7l9RlhS0GHSIiohCjMBiQfd9c6AYN8Sw/f/lF1P/0o9RlhSUGHSIiohAk02iQ+ffZMEyYCIgiKv+7EtWff8rTz9uIQYeIiChECQoFUm+cicRplwEAar/8HBVvvgHR5ZK4svDBoENERBTCBEFA0pV/RMr1f/Gcfr7xJ5S+/CL32vETgw4REVEYiD93CjJuvxOCUomm335F8fPPwNlgkrqskMegQ0REFCb0w0f49tqxHj2CogXzYa+qlLqskMagQ0REFEa0vfug64MPQ9GlCxyVFSha8BSshQVSlxWyGHSIiIjCjCo9A10fehTq7Gy4TCYUP7cQ5gN5UpcVkhh0iIiIwpAiPh5Z9z8IbZ++cFssKFn8HBp37ZC6rJDDoENERBSm5LoYZM65DzHDhkN0OlG6bCmMGzdIXVZIYdAhIiIKYzKVChm3/d23sWDFyhWo/e4bqcsKGQw6REREYU6Qy5F640wkXHgxAKD6ww9Q/clH3EUZDDpEREQRQRAEJF9zLZL+eA0AoHbVV6h8+78Q3W6JK5MWgw4REVEESbz4UqTMuBEQBBjX/4Dy/7wK0emUuizJMOgQERFFmPhJ5yJ91q2AXI6Grb+gdNlLcNvtUpclCQYdIiKiCBQ7egwy/36X78iIkiXPw2WxSF1Wp2PQISIiilAxg4cgc859kGm1sBw8gOJFz8LV2Ch1WZ2KQYeIiCiC6fr2Q9Z9cyHT62HLP4qi55+B0xQ9h4Ey6BAREUU4TbfuyL7/Qcjj4mAvLkLRs0/DUVsjdVmdgkGHiIgoCqgzs5D9wENQJCbCUV6O4mcXwlFdJXVZQcegQ0REFCVUqWnIfvBhKFNS4aiuQtEzC2CvKJe6rKBi0CEiIooiysQuyLr/QajSM+Csq0XRswthKy2VuqygYdAhIiKKMsqEBE/YycyCy1iP4ucWwFZSInVZQcGgQ0REFIUUBgOy75sLddducDU0oPi5hbAWFkhdVsAx6BAREUUpeWwssu65H+ruPeBqbEDxomcjLuww6BAREUUxuV6PrHvuh6ZHT7ibmlD8fGSFHQYdIiKiKCfX6ZA55z5oevWG29wcdgrypS4rIBh0iIiIyBN27r4Xmp69PGFn8XMR0bMjedBxu9148cUXMXHiRAwdOhQzZ85EQUHrDfvSSy+hX79+rf566KGHOrlyIiKiyCLXaj09Oz17eYaxFj0LW1Gh1GV1iORBZ9myZXj//ffx1FNP4YMPPoAgCJg1axbsrRwnP3PmTGzcuLHFr7vvvhsajQY33HCDBNUTERFFlmNhxzNnp2jRs7AVF0ldVrtJGnTsdjtef/113HnnnZg0aRJycnKwZMkSVFRUYPXq1Se9PiYmBsnJyb5fFosF//73v/Hggw8iJydHgq+AiIgo8si1Ws8wVo+ecDc2enp2SsNznx1Jg05ubi6ampowduxY32MGgwEDBgzAtm3bzvj+hQsXok+fPrj22muDWSYREVHUketikHn3vVB36+7ZZ+f5Z2AvC78dlBVS3ry83HO+Rnp6eovHU1JSUFZWdtr3/v7771i7di3efPNNyGQdz2sKReAzn1wua/FfOjW2lf/YVv5jW/mPbeW/aGorRVwsut//AAqeXQhrYSGKFz2H7g/9A6rUVL+vIXV7SRp0LBYLAEClUrV4XK1Ww2g0nva9K1euxNChQ1v0BrWXTCYgISGmw9c5FYNBG7RrRxq2lf/YVv5jW/mPbeW/qGmrhBjEzX8Cv//jUViKilG06FkMfvpJqJOT23QZqdpL0qCj0WgAeObqeH8PADabDVrtqRvEbDZj9erVmDdvXkDqcLtFmEzmgFzreHK5DAaDFiaTBS6XO+DXjyRsK/+xrfzHtvIf28p/0dlWcmTfNxf5Tz8FW0UFfnt4Hro/9DAU8fFnfmeQ2stg0PrVSyRp0PEOWVVWVqJr166+xysrK087uXjDhg1wu92YOnVqwGpxOoP3YXW53EG9fiRhW/mPbeU/tpX/2Fb+i7q2iolF5r1zUfTMfNgrKpD/7DPIfuAhyPV6v94uVXtJOsCYk5MDvV6PLVu2+B4zmUzYt28fRo4cecr37dixAwMHDoTBYOiMMomIiAiAMjERWffOhTw+HvbSEhQveR6u5mkooUrSoKNSqXD99dfj+eefx9q1a5Gbm4s5c+YgLS0NU6dOhcvlQlVVFaxWa4v35ebmom/fvhJVTUREFL1UKSnIuucByPWxsBXko/SlF+BuZe+7UCH5lPHZs2fj6quvxiOPPILp06dDLpdjxYoVUKlUKCsrw9lnn41Vq1a1eE91dTXi/RgXJCIiosBTZ2Qgc869kGm1sBzIQ9nylyE6nVKX1SpBFEVR6iKk5nK5UVvbFPDrKhQyJCTEoK6uKbrGcduBbeU/tpX/2Fb+Y1v5j211jPlAHkpeWATRbkfs6DFI++stEE7Y8iVY7ZWYGOPXZGTJe3SIiIgoPOn69kP6rXcAcjkatm5B5XtvI9T6Txh0iIiIqN30Q4YibeYsQBBg/GEdar/8XOqSWmDQISIiog4xjBmLlD/PAADUfPEZ6tetkbiiYxh0iIiIqMPiJ09Blyv+AACofO8dNOw485mVnYFBh4iIiAIicdrliJs0GRBFlL/2b5gP5EldEoMOERERBYYgCEj5vxmIGT4CotOJ0qX/grWoUNKaGHSIiIgoYASZDOmzboWmdx+4zWYULlkMe12dZPUw6BAREVFAyVQqZN55N1Rp6XDW1qJ223bJapH0UE8iIiKKTPKYGGQ98BAsv/+KpLPPRoNNms0V2aNDREREQaEwGJAwaRIUOq1kNTDoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYjHoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLEEURVHqIqQmiiLc7uA0g1wug8slzdH04YZt5T+2lf/YVv5jW/mPbdU2wWgvmUyAIAhnfB2DDhEREUUsDl0RERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBp0gcLvdePHFFzFx4kQMHToUM2fOREFBgdRlhZxly5ZhxowZLR7bv38/rr/+egwbNgznnnsuVqxYIVF10quvr8djjz2Gc845ByNGjMD06dOxfft23/Nsq2Nqampw//33Y+zYsRg+fDj+9re/4dChQ77n2VatO3r0KIYPH45PPvnE9xjbqqWSkhL069fvpF8ffvghALbXiT777DNccsklGDx4MC699FJ88803vuckayuRAu6ll14Sx40bJ/7444/i/v37xZkzZ4pTp04VbTab1KWFjDfeeEPs16+feP311/seq62tFceMGSM+/PDD4qFDh8SPPvpIHDx4sPjRRx9JWKl0brrpJvHyyy8Xt23bJh4+fFh88sknxSFDhoiHDh1iW53gmmuuEa+99lrxt99+Ew8dOiTeeeed4oQJE0Sz2cy2OgW73S5eddVVYt++fcWPP/5YFEV+D7Zm7dq14uDBg8WKigqxsrLS98tisbC9TvDZZ5+J/fv3F1euXCnm5+eLS5cuFXNycsSdO3dK2lYMOgFms9nE4cOHi++++67vMaPRKA4ZMkT86quvJKwsNJSXl4s333yzOGzYMPGiiy5qEXSWL18uTpw4UXQ4HL7HFi1aJF544YVSlCqp/Px8sW/fvuKOHTt8j7ndbnHq1KniCy+8wLY6Tm1trThnzhzxwIEDvsf2798v9u3bV/z111/ZVqewaNEiccaMGS2CDtvqZK+88op4+eWXt/oc2+sYt9stTp48WVy4cGGLx2fOnCkuX75c0rbi0FWA5ebmoqmpCWPHjvU9ZjAYMGDAAGzbtk3CykLD3r17ERcXhy+++AJDhw5t8dz27dsxatQoKBQK32Njx47F0aNHUVNT09mlSiohIQGvvvoqBg0a5HtMEASIogij0ci2Ok5CQgIWL16MPn36AACqq6uxYsUKpKWloXfv3myrVmzbtg0ffPABnnnmmRaPs61OlpeXh969e7f6HNvrmCNHjqCkpASXXXZZi8dXrFiBW265RdK2YtAJsPLycgBAenp6i8dTUlJQVlYmRUkhZcqUKVi0aBGys7NPeq68vBxpaWktHktJSQEAlJaWdkp9ocJgMGDSpElQqVS+x7755hsUFhbi7LPPZludwqOPPooJEybg22+/xfz586HT6dhWJzCZTHjggQfwyCOPnPT3FNvqZAcOHEBNTQ3+/Oc/Y/z48Zg+fTo2bNgAgO11vPz8fACA2WzGzTffjHHjxuGaa67BunXrAEjbVgw6AWaxWACgxT9QAKBWq2Gz2aQoKWxYrdZW2w1A1Lfdjh078I9//APnnXcepkyZwrY6hRtuuAEff/wxLr/8ctxxxx3Yu3cv2+oEjz/+OIYNG3bST94AvwdPZLfbkZ+fj8bGRtx999149dVXMXjwYMyaNQubN29mex2nsbERADB37lxMmzYNr7/+OiZMmIDbb79d8rZSnPkl1BYajQaA5xvE+3vA8wep1WqlKissaDQa2O32Fo95vwF0Op0UJYWENWvW4L777sPQoUOxePFiAGyrU/EOMTz55JPYvXs33n77bbbVcT777DNs374dX375ZavPs61aUqlU2LZtGxQKhe8f6UGDBuHw4cNYsWIF2+s4SqUSAHDzzTfjD3/4AwCgf//+2LdvH9544w1J24o9OgHm7QqurKxs8XhlZeVJ3XbUUlpaWqvtBgCpqalSlCS5t99+G3feeSfOOeccvPbaa77wzLY6pqamBl999RVcLpfvMZlMhl69evm+79hWHh9//DFqampw7rnnYvjw4Rg+fDgAYN68ebj00kvZVq3Q6XQn9UT07dsXFRUVbK/jeP9969u3b4vHe/fujeLiYknbikEnwHJycqDX67FlyxbfYyaTCfv27cPIkSMlrCz0jRo1Cjt27GjxD9bmzZvRo0cPdOnSRcLKpPHuu+/iySefxP/93//hhRdeaPGXLdvqmMrKStx7773YunWr7zGHw4F9+/ahV69ebKvjPP/881i1ahU+++wz3y8AmD17Nl599VW21Qlyc3MxfPjwFvtXAcCePXvQu3dvttdxBgwYgJiYGPz6668tHj9w4AC6du0qbVsFfV1XFFq8eLE4evRocc2aNb59dC644ALuo3OCuXPntlheXl1dLY4aNUqcO3euePDgQfHjjz8WBw8eLH7yyScSVimNI0eOiAMHDhTvuOOOFnt3VFZWiiaTiW11HLfbLc6cOVO88MILxW3btol5eXninDlzxFGjRoklJSVsqzM4fnk526oll8slXnPNNeK0adPEbdu2iYcOHRKffvppcdCgQWJubi7b6wQvv/yyOHz4cPHLL78UCwoKxGXLlok5OTniL7/8ImlbMegEgdPpFJ999llx7Nix4rBhw8RZs2aJRUVFUpcVck4MOqIoir/++qv4pz/9SRw0aJA4efJk8a233pKoOmm98sorYt++fVv9NXfuXFEU2VbHM5lM4rx588QJEyaIQ4YMEWfOnNliXx221akdH3REkW11opqaGvGhhx4SJ0yYIA4ePFi89tprxW3btvmeZ3u19Prrr4tTpkwRBw4cKF5++eXi6tWrfc9J1VaCKIpicPuMiIiIiKTBOTpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOEYUF7oRBRO3BoENEIW/t2rWYO3cuAGDLli3o169fi2NWiIhOhaeXE1HIW7lype/3AwcOxAcffOA7qZyI6HQYdIgorOj1egwbNkzqMogoTHDoiohC2owZM7B161Zs3brVN2R1/NDVSy+9hIsuughr1qzBtGnTMHjwYFxxxRXYtWsXdu/ejWuuuQZDhgzBtGnTsHnz5hbXPnDgAG655RaMGDECI0aMwB133IGioiIpvkwiChIGHSIKafPmzcOAAQMwYMAAfPDBB2hsbDzpNeXl5ViwYAFuvfVWvPDCCzAajZg9ezbuuece/OlPf8LixYvhdrsxZ84cWK1WAMDRo0dx3XXXoaamBgsXLsT8+fNRVFSE6dOno6amprO/TCIKEg5dEVFI6927N/R6PQBg2LBhrU5CtlgsmDdvHs455xwAwOHDh7Fo0SLMnz8fV199NQDA5XJh9uzZOHr0KPr374+lS5dCo9Fg5cqVvuuPGzcO559/Pv7zn//4Jj8TUXhj0CGiiDBixAjf75OSkgCgxVye+Ph4AIDJZAIA/PLLLxgzZgw0Gg2cTicAz/yfkSNHYtOmTZ1TNBEFHYMOEUUEb6/M8TQazSlfX19fj1WrVmHVqlUnPZeYmBjQ2ohIOgw6RBSVYmNjMX78eNx0000nPadQ8K9GokjB72YiCnkymQxutzug1xw9ejQOHTqE/v37+4KNKIq477770K1bN/Tv3z+g9yMiaXDVFRGFPIPBgKNHj2Lz5s2+OTYddfvtt6OwsBC33HIL1qxZgw0bNuDOO+/E119/jZycnIDcg4ikx6BDRCHv//7v/6BUKjFr1izf8vCOysnJwTvvvANBEPDAAw9g9uzZqKqqwssvv4wLLrggIPcgIukJIk/KIyIiogjFHh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxPp/1KcZtkcixEEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Apply the LLS operator to the signal and visualize\n", + "import numpy as np\n", + "S = df['signal'].values\n", + "S_LLS = np.log(np.log(np.sqrt(S + 1) + 1) + 1) \n", + "plt.plot(df['time'], S_LLS, '-', color='r', label=\"$S_{LLS}$\")\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the y-axis has been compressed to a small range and that the first peak \n", + "is now comparable in size to the other two peaks.\n", + "\n", + "### Iterative Minimum Filtering\n", + "\n", + "With a compressed signal, we can now apply a minimum filter over a given window \n", + "of time $W$ over several iterations $M$. For each time point $t$ in the compressed signal, the filtered value $S'_{LLS}$ for iteration $m$ is computed as \n", + "$$\n", + "S'_{LLS_m}(t) = \\min\\left[S_{LLS_{m-1}}(t), \\frac{S_{LLS_{m-1}}(t-m) + S_{LLS_{m-1}}(t + m)}{2}\\right] \\tag{2}\n", + "$$\n", + "Note that the average value of the signal at time $t$ is compared to the average \n", + "of the window boundaries, with the window increasing in size from one iteration \n", + "to the next. To see this in action, we can plot the filtering result over the first 200 iterations of this \n", + "procedure applied to the above compressed signal. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuM0lEQVR4nOydd3hUVf7/X3d6yqRXEkISqrTQpSNNLIis4qrooqjsV3+uuLiytmVXFEVc0BVdlWUtqKuiuyqogF0EFKSGGkJCeiZl0mcy/d7fHzeZEEIJkFDP63l4mLnlnDMnd+687+d8iqQoioJAIBAIBALBRYjmXA9AIBAIBAKBoL0QQkcgEAgEAsFFixA6AoFAIBAILlqE0BEIBAKBQHDRIoSOQCAQCASCixYhdAQCgUAgEFy0CKEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQCC4aNGd6wGcDyiKgiy3T4JojUZqt7YvNsRctR4xV61HzFXrEXPVesRcnRrtMV8ajYQkSSc9TggdQJYVKivtbd6uTqchPDyI2tp6vF65zdu/mBBz1XrEXLUeMVetR8xV6xFzdWq013xFRASh1Z5c6IilK4FAIBAIBBctQugIBAKBQCC4aBFCRyAQCAQCwUWLEDoCgUAgEAguWoQzskAgEAjOCWrEq4ws+871UE4JWZZwOrW43S58PhF5dTJOZ760Wh0aTdvYYoTQEQgEAsFZRVEUHA4bNlvNBSdyGrFaNciyiLhqLaczXwEBwYSERLQqhPxECKEjEAgEgrNKbW0lDocNkykIkykQjUZ7xj9mZxutVhLWnFPgVOZLURTcbhc2WxUAoaGRZ9S3EDoCgUAgOGvIsg+Hw05wcBjBwaHnejinjU6nETl0ToFTnS+DwQiAzVaF2Rx+RstYwhlZIBAIBGcNn88HKBiNpnM9FMF5TqPY8fm8Z9SOEDoCgUAgOAdcWEtVgrNPWy1nCqEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQHAajBw5iDVrPgfA6/WycuV/zkq/mzZtICfnMAA7dmxj5MhBWCzF7drn9u1bufvu3zFu3AhuueU3rFv3Zbv215YIoSMQHIO8kjoWvredP7/2M59tOIwsizBSgUDQnFWr1jF+/EQAvvlmHS+//GK791lSYuGRR+ZQVVUJQJ8+aaxatY6YmNh26zMvL5e5c//IsGEjePvt/zBlyg0sXPgU27b92m59tiUivFwgOIqqOhd//2An9S7V03/1plwApo5KPYejEggE5xuRkVH+14pydh6Gju5Hr9c3G0d7sHLlf+jSpSv33HMvANOnJ5OZmcH777/LoEFD2rXvtkBYdASCo/jvj9l+kdPIl7/kYa1xnKMRCQSC85HGpas1az7n2Wfn+7ft2LENUJeY7rrrdsaNG8HNN09l+fLXcLvdzc7/179e5cYbJzNlyiTy83MpKyvlqafmcd11VzJmzOXccMO1LFv2T2RZxmIp5qabpgAwe/a9vPHGshZLVy6Xk+XLX+Omm65n3LjhzJw5nZ9++tHf55o1nzNt2nWsXfsFN988lbFjh3HPPTPYu3f3cT/n7t27GDhwcLNtAwcOZvfunWdN4J0JwqIjEBxBjc3FrwdKAQgy6RjcI4YfdxXjkxW+317Eb8d1OccjFAguXrZmlPHZhsM43We/LITJoOU3o1IZ1CPmlM8dP34iNpuNpUuXsGrVOkJCQtm8+WfmzXuU2bPnMHjwUIqKCnnxxefJz8/j6aef85+7evUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB58cM6S7rKysxdJYVFQUTqeTmpoawsLCTnnOziZC6AgER/DLvlJ8Df44Y/olcOWQjmzcU4LXJ/PLvhKmje2M5gJLVS8QXCis25KHpaL+nPW/dkv+aQkdo9FEcHAw0LSc9c47bzJ58hSmTp0GQEJCInPnPs7s2fdisRQTH98BgEmTrqFHj56Aao2ZNOkaxo4dT1xcPADTpt3Ce++tIDs7i1GjriAsLBwAszmEwMDAZuPIzc1hw4b1LFr0IiNGjAJg5sxZZGVlsmLFm36h4/V6efjhR+natTsAM2bM5LHHHqaiooKoqJbLYC6XE71e32xbYzI/t9t1yvN1thFCRyA4gl2Hyv2vR/aNJyTQQO+UCHZlWamxu8kuqqFrYti5G6BAcBFz9eWd+PQcWnSuvjypzdrLzMzgwIF9rF37hX9b4zJPbm6OX+gkJjb1aTSauPHG3/Ljj9/x0UfvU1hYQFbWIazW8oaM0icmOzsLgL59+zXbnpY2gNdff6XZtk6dUvyvg4JUkeb1eo7ZrsFgxONpvq9R4JhMAScd17lGCB2BoAGbw8OhohoAOkdAWManOOxVjI2+jF1ZqhVnV5ZVCB2BoJ0Y1CPmtCwq5yOyrDB9+gyuvnpyi31HOg8bjUb/a6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67H9ZWTZh07X/OfeYDC0PPs4/jaxsbFYreXNtlmtVgICAv2WrPMZIXQEggb251aiKBAkOblH9zWevdUAJLONocZhbHZ1JTO/+pyOUSAQnJ8c7duSmtqZvLxcEhM7+rft3Lmdjz76gIcffpSAgJaWkC1bfubgwQOsXv0VERFqxe7a2hoqKyuO20/zPlUfwt27d/mXrgDS03eRnJxyvNNOSlpaf3bu3N5s27Ztv9KnT9oZFds8W5z/IxQIzhJZhao159qAXQR6q5vtuyFoGyFSPTmWOpzuMyswJxAILj4ahUtGxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurPW44eHS0as366qu1lJRYSE/fxaOP/gmv1+uP1mrs5/DhLGw2W7PzU1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hjem699fbT/mw33ngz+/fv5bXXXiYvL5cPPniPH3/8jttum3HabZ5NhEVHIGggq6iGUKmeocZD6ga9CW10Cr7iAxjxMNqUwReOAWQV1tA7NfLcDlYgEJxXDBgwmJ49e3PffXcxb97TjBs3gfnz4d133+S9997GbA5hxIhR3Hff7OO20bNnbx54YA4rV77P8uWvER0dzfjxVxITE8v+/XsBCA0N49prp/Dqq0spLCxg9OixzdqYP38hy5a9wqJFC7DZ6khJ6cyCBc8zZszYY3XZKlJTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRcj5+YqkXAhB8O2MzydTWWlv83Z1Og3h4UFUVdnxeuU2b/9i4lzPlcvt4/4Xf2K8MZ3JgbsAMAyYgr7nOOzv/wlkH3Wyib9WT+P6UZ25bsTpm4HPlHM9VxcSYq5az9maK4/HTUWFhcjIePT6ln4iFwo6nUZcU6fA6czXya6ViIggtNqTL0yJpSuBAMix1CIrCoONhxu2SOi7j0YTGIYueQAAZo2TLroSckvqzt1ABQKBQHBKCKEjEAD5pXVEauqI1dYCoI3risasrqPrUpvMs30MBeSVCqEjEAgEFwpC6AgEQEG5jZ76Iv97bce+/te6xD6gUd3ZeukLqax1UVvvbtGGQCAQCM4/hNARCICCMhuXHSF0dB37+F9LhgC0cV0BiNTaCdfYyBfLVwKBQHBBIISO4JLHJ8tYrDZSdWUASAEhaCKbZ0jVxnf3v+6iK6XI2vbO6wKBQCBoe4TQEVzylFQ6iKSaAI2a4lwb27VFUq5mQkdfSrEQOgKBQHBBIISO4JKnoKyOZF1TenNtbOcWx2hjOoNGC0CyrpziCiF0BAKB4EJACB3BJU+xtZ5kbZPQ0cS0FDqSzoAmIhGAGE0NFdaa49aFEQgEAsH5gxA6gkue0sp6knVWABRJgzb62MkAtVHJAGgkiPCVUWMXkVcCgUBwviOEjuCSp6KillitWudKE5GIpDt2tlZNg9AB6KitEH46AsElzsiRg1iz5nMAvF4vK1f+56z0u2nTBnJy1OSmO3ZsY+TIQVgsxe3a55dfrmbGjJuZMGEkt9zyG9599218Pp9/v8vlYsmSRUyePJGJE0fzl788QlVVZbuOqbUIoSO4pFEUBaW2GI2kLkNpj4q2OhJtdLL/dUddpRA6AsElzqpV6xg/fiIA33yzjpdffrHd+ywpsfDII3P8IqJPnzRWrVpHTExsu/X59dfrWLx4ITfddCsrVnzI739/P//5zwpWrHjDf8ySJc+xdetmnnnm77z00qsUFxcyb96j7TamU0EIHcElTbXNTYxS4X+vjeh43GM1EYkokuqQnKCtpKzK0e7jEwgE5y+RkVEYjSaAs+azd3Q/er2eyMgotFptu/X56acfc9VVk7nuuqkkJCQybtwEbrnlNr74YhUA5eVlrFv3JX/841zS0vrRs2dvnnzyWXbt2sHevXvabVytRQgdwSVNSWU9HXTV/veayOMLHUmrhxD1qSlGW0t5la29hycQCM5jGpeu1qz5nGefne/ftmPHNkBdYrrrrtsZN24EN988leXLX8Ptdjc7/1//epUbb5zMlCmTyM/PpayslKeemsd1113JmDGXc8MN17Js2T+RZRmLpZibbpoCwOzZ9/LGG8taLF25XE6WL3+Nm266nnHjhjNz5nR++ulHf59r1nzOtGnXsXbtF9x881TGjh3GPffMYO/e3cf9nPfd9wC33np7i+11dWrJnN270wHo33+gf19SUieio2NIT99xOlPbpujO9QAEgnNJaWU9HbRV/veNkVXHQx+ZgLemGJ0k46sube/hCQSCC4Dx4ydis9lYunQJq1atIyQklM2bf2bevEeZPXsOgwcPpaiokBdffJ78/Dyefvo5/7mrV3/C4sVL8Xp9JCUlc+ed0wkPD+eFF14mMDCIX37ZyD/+sZiePXsxfPgoli9fwaxZd/DMM88zePBQMjL2NxvLk08+wcGDGTz00CMkJXXiu+++5okn5rJw4WJGjhwDgNVazmef/Y95855Gr9ezePFCFiz4Gx988EmLHGIAffv2a/a+rq6Ozz77H0OGDAWgvLyU0NAwjEZjs+OioqIoLS1piyk+I4TQEVzSlFTY6d4gdHwGM5qAkBMerwlPBLYCYLCXIMsKGk3LG4NAIDh1PId/xb3tUxSP86z3LelNGAbdgP6IIr6txWg0ERwcDKjLWQDvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfHxHQCYNOkaevToCajWmEmTrmHs2PHExcUDMG3aLbz33gqys7MYNeoKwsLCATCbQwgMDGw2jtzcHDZsWM+iRS8yYsQoAGbOnEVWViYrVrzpFzper5eHH36Url3VRKgzZszksccepqKigqioqBN+1vr6eh577E+4XC7+3/97EACn04ler29xrMFgbGbBOlcIoSO4pKmtKCdY4wJAOoF/TiOa8A7+1zFSNVV1LiJDTe02PoHgUsKdvha52nJO+lYa+j8doXMsMjMzOHBgH2vXftHUR4N/TW5ujl/oJCY2BUAYjSZuvPG3/Pjjd3z00fsUFhaQlXUIq7W8WYTT8cjOzgJaWmDS0gbw+uuvNNvWqVNTGo2gIFWkeb2eE7ZfUWHlz3+eQ1FRIS+88DIJCYn+cXs8Lc91u12YTAEnHXd7I4SO4JJGqWm6qRqiWyF0IhL8r+O01ZRV1QuhIxC0EYa0a3Bv++TcWXTSrm6z9mRZYfr0GVx99eQW+xqtPkCz5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxHaJl2YdO1/zn3mBomUbjRA7VeXm5PPTQH/D5fPzzn8vp3LmLf19MTCy1tTV4PJ5mlh2r1UpMTEwrx95+CKEjuGSRFQWjwwoNDxzasPiTnqMJiUWWtGgUH3HaaizVDi5r53EKBJcK+tTBbWZROdsc7duSmtqZvLxcEhObHqB27tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiIhIAGpra6isbIoMPZYPTVOfqvjYvXuXf+kKID19F8nJx06E2hqKi4uYPfv/MJtDWbJkKbGxcc32p6X1Q5Zl0tN3MmjQEADy83MpLy+jb9/+p91vWyGirgSXLHV2N1FStf+9JjTu+Ac3IGm0eIPUJxQ18krk0hEIBPiFS0bGAVwuJ7fdNoP167/njTeWkZ+fx/btW3n22aeoq6ttZtE5kuho9d7y1VdrKSmxkJ6+i0cf/RNer9fv69LYz+HDWdhszSM/U1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hj+mNGTbWWhQufwu328Le/LUCn01FRYfX/A4iKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nHa/bcV5ZdF59dVX+eWXX3j33XdPeqwsy8yaNYt+/frxwAMPnIXRCS42KmpdxGhq/e81YScXOv7jbBa0kkJ9RQnQrZ1GKBAILhQGDBhMz569ue++u5g372nGjZvA/Pnw7rtv8t57b2M2hzBixCjuu2/2cdvo2bM3Dzwwh5Ur32f58teIjo5m/PgriYmJZf/+vQCEhoZx7bVTePXVpRQWFjB69Nhmbcyfv5Bly15h0aIF2Gx1pKR0ZsGC5xkzZuyxujwpVms5O3duB2DmzOkt9m/cqIbS//nPT7B06RIef3wuAEOHDmfOnLmn1WdbIynnSWXCt99+m+eee47BgwefVOg4nU6eeOIJvvjiC/7whz+csdDx+WQqK9v+yVyn0xAeHkRVlR2vV27z9i8mzsVcbc0oI+qHp4jS2vBqDITdveyEZuFGHFs+xpv+JQD/017LnXff1N5DbYa4rlqPmKvWc7bmyuNxU1FhITIyHr3+2OVWLgR0Oo24pk6B05mvk10rERFBaLUnX5g65xad0tJSnnjiCbZv305KysnXEHfs2METTzyBx+MhJOTEocACwYmorKqjm0Y1/XoCY1olcgB0YXF4G14bHRUnPFYgEAgE55Zz7qOzb98+QkNDWb16NWlpaSc9fsOGDUycOJHPPvsMs9l8FkYouFhxV1rwp8AJaX2dGCm06dgQuQqX++RhnwKBQCA4N5xzi864ceMYN25cq49/8MEH22UcOl3ba75Gk1prTGuXOudirpTaMv9rY1RCq68BTUQ8jVWuojV1VNtdJAQGt8MIj424rlqPmKvWc7bmSpYv/ASbjcZfSYLzw/nj/OZM50urlc7oN/qcC53zAY1GIjw8qN3aDwk59wmTLhTO5lwZHOX+1zEpqYS08hpQwgKp0BjRyS6itbU4fbTr9XM8xHXVesRctZ72niunU4vVqjnjH6/zASGgT41TnS9ZltBoNISGBmIynX6+MiF0UBM71dbWt3m7Wq2GkJAAamsd+HzCae1EnIu5CnBa/d8AlzGSqiNCxQ9X5/F9/gbqPQ76RvdkVOJQtJqm6sDugEh09mIiNHZ2F1jpHHd2LTriumodYq5az9maK7fbhSzL+HzKBevMK0nqfPl8srDotILTnS+fT0GWZWpq6nE4WroIhIQEXBjOyOcL7fmF8/nkC/YLfbY5W3PlcvsIU6r975WgGH+/Pxdv5f2M/6I0ZBndV3GQnaV7+b++d2LQqlk/leAYsBejkRTqyi14vUkt+mhvxHXVesRctZ72niuf78JXBo0/1kLktI4zna8zFcXC7ia4JKmodRKhVS04Dk0gkl5Nw364Jq+ZyGkko+oQn2Q11azRhzfl3JFFFXOBQCA4bzmvhY7P56O8vByn8+zXPRFc3FRW2wiR1OVKl0GtBiwrcjORMyZxBP8v7W4MGtWKs6HoF/JqCwAIiGoq7qmxlyEQCASC85PzWuhYLBZGjhzJmjVrzvVQBBcZddZSf2i5HBgBwK7yvVjsqnUmyZzAjV0m0yuyO9elTvKftybnGwAMEU11sQzOyrM0aoFAIBCcKueVj85zzz3X7H1iYiIHDx487vHff/99ew9JcJHiqmpabtKao1AUha9ym66n61Kv8jsfj04czvcFG6lyVbO3IoP8ukISzU21aoJ9NXh9MjoRgSEQCATnHeLOLLgk8dU2hZYbwmPJrS2g0FYMqNacyyKa6lfpNDqu7NRUJ2ZT0RakwFB8qEIoQmOnqs51lkYuEAjOF0aOHMSaNZ8D4PV6WbnyP2el302bNpCTcxiAHTu2MXLkICyW4rPSt6IoPPTQH/jDH37fbLvL5WLJkkVMnjyRiRNH85e/PEJV1flh7RZCR3BJoqlv+gIGR8Xxi2Wr//3ohOEtykEMieuPQavWWtlWmo5H9uHQhwIQobVRUe1AIBBcWqxatY7x4ycC8M0363j55Rfbvc+SEguPPDLHLyL69Elj1ap1xMS0Prv7mfDRR+/z66+bW2xfsuQ5tm7dzDPP/J2XXnqV4uJC5s179KyM6WQIoSO4JDG6qv2vdeGR7CjbrW7XGugf07fF8SadiQHR6nanz8mByky8JtW3xyh5qa4UNa8EgkuNyMgojEY1kd3Zqo99dD96vZ7IyCi0Wu1xzmg7srOzeOutf9OrV59m28vLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tPu4ToYQOoJLDllWCJZr/O9zfHYcXtUi0zvyMkw64zHP6x/T9OVOL98LR/jpOCtK2mm0AoHgfKVx6WrNms959tn5/m07dmwD1CWmu+66nXHjRnDzzVNZvvw13G53s/P/9a9XufHGyUyZMon8/FzKykp56ql5XHfdlYwZczk33HAty5b9E1mWsViKuemmKQDMnn0vb7yxrMXSlcvlZPny17jppusZN244M2dO56effvT3uWbN50ybdh1r137BzTdPZezYYdxzzwz27t19ws/qcrmYP/8J7rnn/0hK6tRs3+7d6QD07z/Qvy0pqRPR0TGkp+84zdltO84rZ2SB4GxQbXMR3lC1vF4KYm/VIf++vlE9j3te9/AuGLUGXD43e60HmBjSFxqWxb211nYds0BwKbCjbDdfHP4al+/s+7wZtUYmp17JgGNYdE/G+PETsdlsLF26hFWr1hESEsrmzT8zb96jzJ49h8GDh1JUVMiLLz5Pfn4eTz/dFHizevUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB5+0WLZv5LXXlhIVFc2NN97sF3WNlJeXEhoahtHY/CExKiqK0tJz/xAohI7gkqOyyk6sRrXgOAyh7LaqNwqNpKFnZPfjnqfX6ukV2YMdZbuxe+spidDSpWGfZBNCRyA4U77NW09p/bnLS/Vt/vrTEjpGo4ngYLUMTGSkaul95503mTx5ClOnTgMgISGRuXMfZ/bse7FYiomPV3NxTZp0DT16qA9YLpeTSZOuYezY8cTFqSkspk27hffeW0F2dhajRl1BWJia98tsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZV73czZszksccepqKigqioKI5m8+af+eabdaxY8eExhZDT6USv17fYbjAYm1mwzhVC6AguOWqtFhrd9sqDQ7E6VP+aLqEpBOoDj38ikBbd2+/PkyXV+oWO3nV+RBcIBBcyEzqNOacWnQlJY9qsvczMDA4c2MfatU0Z1Rv9a3Jzc/xCJzGxqXyM0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fla1no6muzsLAD69u3XbHta2gBef/2VZts6dUrxvw4KUkWa1+tp0WZVVRULF87nT396jKio6GP2azSa8Hhanut2uzCZzn1BXSF0BJcczsqmJ8Zcc9NXoE/UZSc997KIbkhIKChkOkq5qmF7kLcGRVGOa/YVCAQnZ0BM39OyqJyPyLLC9OkzuPrqyS32NVp9gGbLPU6nk/vvn4XT6WDcuIlMmnQtc+b04v77Z7Wy12M7RMuyD52u+c+9wWBoefYxHKo3b95ERUUFCxfOZ+FCdcnK7XajKAoTJ45i8eKlxMTEUltbg8fjaWbZsVqtxMTEtHLs7YcQOoJLDu8ROXQKDV5oqBV32QmWrRoJ0gfS0ZxAfl0hxfVlVGgNRPrchEt12J1eggNamm8FAsHFz9EPOampncnLyyUxsaN/286d2/noow94+OFHCQhoaenYsuVnDh48wOrVXxEREQlAbW0NlUdEdZ7oYSo1VbUx7969y790BZCevovk5JTjnXZCxowZS58+ac22vfbaUsrKyvjb3xYQHR1NXV0dsiyTnr6TQYOGAJCfn0t5eRl9+/Y/rX7bEhF1JbjkkOyqP40MFCq1AATrg4gLbN2TR4+Irv7XGcFqLp1wjZ3Kmvq2HahAILhgaBQuGRkHcLmc3HbbDNav/5433lhGfn4e27dv5dlnn6KurraZRedIoqPVe9BXX62lpMRCevouHn30T3i9Xr+vS2M/hw9nYbPZmp2fkpLKsGEjWLLkOTZt2kB+fh5vvbWcjRvXc+utt5/W5woMDCIxsWOzf4GBQRiNRhITO2I0moiKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nLyTdkZYdASXHAZXFQAlBh1ORV1X7hKW2uplp25hnfk67wcA8gNNjKgBnSRTU14OcaHtM2iBQHBeM2DAYHr27M19993FvHlPM27cBObPh3fffZP33nsbszmEESNGcd99s4/bRs+evXnggTmsXPk+y5e/RnR0NOPHX0lMTCz79+8FIDQ0jGuvncKrry6lsLCA0aPHNmtj/vyFLFv2CosWLcBmqyMlpTMLFjzPmDFjj9Vlm/HnPz/B0qVLePzxuQAMHTqcOXPmtmufrUVSzlaWo/MYn0+mstLe5u3qdBrCw4OoqrLj9cpt3v7FxNmcq72vzaWTtpyNoQF8EW0GYFrXKYztOLJV5zu8Tub+9DcUFKJ9Bv6UUwjA/m73cPkVrWvjTBDXVesRc9V6ztZceTxuKiosREbGo9e39BO5UNDpNOKaOgVOZ75Odq1ERAShbUWNQbF0JbikqHd6CZNUc2/WEWvkXcNSW91GgM5Eh+A4AKxaN64GS5C35tyFxQoEAoHg2AihI7ikqKyqI1TjQAEKAtSV2wBdgF+4tJbU0GRAjXHINzWsAItcOgKBQHDeIYSO4JKiplzN0lmr1WBvKA3TyZyIRjq1r0JqaFMK9DyTGmmlc1a1zSAFAoFA0GYIZ2TBJYWjoSZVoanp0k8KSTzldhotOgD5DUInwFN9RmMTCNqL7OIaNqRbqKt30yUhlCv6JxBgFLd/waWBuNIFlxSeGjWHTpGxKd9NJ/OpC51IUzghBjO17jryTAZkIESpwyfLaDXCUCo4f1i7JY///pDtTyW385CVH3cVMfeW/kSFnfustQJBeyPuyIJLisaaVIVHPM12PA2hI0mS36rj0kqUGbSEaexU1zjaZJxH43B52Xu4guziGmQRKCloJZv2WPi4QeRIyOhQywiUVztZ8lE6LvfJywoIBBc6wqIjuKTQu6pQgKKG5aZgfRARprDTais1tBO7yvcAqp9OnNtJRVkJkeGd22i0Ktsyynh7bQb1Li8AyfFm5t01FL2oNiE4AZW1Tt77JpNAycl1ATsYEpCHTvFQRCwf1Q4gtzKa/63PZvrEbud6qAJBuyIsOoJLigBPDdU6DfaG3AtJ5sTTrk91pENyo5+OvcEHqK3Yc7iC11bt9YscgFxLHX9Z9jP1Tu8JzhRc6nz0QxYGj40HQ75iuCkLXUNyzARKecD8FT31hXy/o4iyKpHRW3BxI4SO4JLB65MJoY7CI/xzTscRuZGE4A5IqCKpxKAaR91VbZdLp97p5c01B1AUkFAY1klHcri6z2K185+vD7ZZX4KLi2KrnW0HSpkRvIE4bY26UW9CMqvVp3WSzB3BPxEu1fLFz3nncKQCQfsjhI7gkqG6IYdO0ZERV6fhn9OIQasnNlD94Sgxqt4PShvm0lm7JY8am5vOulKejPqCW+reZI70Dv8X8gPBkoMNuy3kltS2WX+Ci4c1m/MYYTxIN71qYZSCwgm68WmCbn4OXcogAEySl2mBW9i834LN4TmXwxUI2hUhdASXDNVl6k2/WcTVGVh0ABKC4wHwSRLlBi1aR+UZtddIvdPL9zsK6aIr4T7zN4TJTTl6euoKmB3yFQGSizWb89ukP8HFg83hIf1AIVcFpPu3mcb+Hk1INJJGi2nM3UhBEQD0NBSTLJXw8x7LuRruBc3IkYNYs+ZzALxeLytX/ues9Ltp0wZycg4DsGPHNkaOHITFUtyufebn5zF37oNMnDiKKVMm8cILi3A6nf79LpeLJUsWMXnyRCZOHM1f/vIIVVVtcz88U4TQEVwy1FeUoNAUcWU2BBNqCDmjNhPNHfyvLQYdJnf1GbXXyMbdxUhuOzOCN6CX1PowmsiOSAHqeGO1tdwS9AvbD5ZhrW6fSC/Bhckve0sYod9PsMYFgK7zUHQdLvPvlwwBGIdM87+fGLCHn3YLoXM6rFq1jvHjJwLwzTfrePnlF9u9z5ISC488MscvIvr0SWPVqnXExMS2W581NdX84Q+/B2DZsreZN28+69d/zyuv/MN/zJIlz7F162aeeebvvPTSqxQXFzJv3qPtNqZTQQgdwSWDu6acSp0GR4MjcqczcERuJCG4SegUG/WY5TNfSlIUhY17LFwbsItQjSpitIm9CfzN3wicOg/JGARAP0M+3bTFrE9v3yc5wYWDoij8nF7AaFOG+l7SYBz0mxbH6Tpf7vfX6aG34KssoqjcdlbHejEQGRmF0WgC1Lk/Gxzdj16vJzIyCq1W2259/ve/K9HpdCxY8DypqZ0ZPHgo99xzH/v370VRFMrLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tNu4WosQOoJLBqXO6g8rhzPzz2kk8QihYzHqCJHs1Nc7T3DGyckvtWGvKGWoMUvdoDepyw0aHRpzNAEjb/cfe13gDrbsLzlrN1nB+U2x1U5k7QHMGvUa1KcMRBPa8klf0mgx9J7ofz/UmMXWA6Io7anSuHS1Zs3nPPvsfP+2HTu2AeoS01133c64cSO4+eapLF/+Gm63u9n5//rXq9x442SmTJlEfn4uZWWlPPXUPK677krGjLmcG264lmXL/oksy1gsxdx00xQAZs++lzfeWNZi6crlcrJ8+WvcdNP1jBs3nJkzp/PTTz/6+1yz5nOmTbuOtWu/4OabpzJ27DDuuWcGe/fuPu7n3LLlF0aPHovRaPRvu+66qbz55ntIksTu3eoyaf/+A/37k5I6ER0dQ3r6jjOc5TNH5NERXDLonZUcDjmz0g9HE2o0Y9YHU+exYTHqkCTVFygwOfm029y8v4Txpn3oGpasDL0nogkK9+83dBuGd983uEsO01FXSVhtHoeLe9M5IfRMP47gAmd7ZjkjjU3RePqe4497rL7rcJxbPkKSvQw2Hmb5AQszr+9zNoZ5XOq2/UrFZ58iu87sYeF00BhNRE69AfOgwad87vjxE7HZbCxduoRVq9YREhLK5s0/M2/eo8yePYfBg4dSVFTIiy8+T35+Hk8//Zz/3NWrP2Hx4qV4vT6SkpK5887phIeH88ILLxMYGMQvv2zkH/9YTM+evRg+fBTLl69g1qw7eOaZ5xk8eCgZGfubjeXJJ5/g4MEMHnroEZKSOvHdd1/zxBNzWbhwMSNHjgHAai3ns8/+x7x5T6PX61m8eCELFvyNDz745JhW7oKCfEaPvoKXX36BH374Dr1ez5gxY7n77nsxGo2Ul5cSGhrWTAgBREVFUVratik3TgchdASXDCZPdfPQ8jaw6IDqp3OgMhO7VkOdVkO91QKnKXQURWHvIQuzjdnqBp0RQ59JzY6RJA1hQ6+n7DPVH+AK03427x8khI6ArIPZjNWrlhklJA5tfPfjHiuZgtF36oc3ZxtmjRNTVTblVY5z+qNQuW4t7pJz5y9U9dXa0xI6RqOJ4OBgQF3OAnjnnTeZPHkKU6eq/lAJCYnMnfs4s2ffi8VSTHy8ag2eNOkaevToCajWmEmTrmHs2PHExamBDtOm3cJ7760gOzuLUaOuICxMfegxm0MIDAxsNo7c3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1etjxoyZPPbYw1RUVBAVFdXi89XX23nvvRVMmDCJZ59dTGmphRdf/DsVFRXMm/cUTqcTvV7f4jyDwdjMgnWuEEJHcEmgKApmuZYio3ozCjWEEGo8M0fkRhKC4zlQmQlAsVGHqbL0tNsqqawn0X4AU7CaDFDf5XIkU3CL44J6DIWgcLBX0UtfxNeH8lEmdD1jnyPBhUt5tYOY2v3Q8Ntn7Db8pNeDLnUI3hx1maWvIZ9dmWUM6tbyh+5sEXHVNVR89sk5s+iET7q6zdrLzMzgwIF9rF37hX9b4xJzbm6OX+gkJib59xuNJm688bf8+ON3fPTR+xQWFpCVdQirtRyf7+TlOrKz1eXuvn37NdueljaA119/pdm2Tp1S/K+DgtR7jNd77DQDOp2OpKROPPyw6lzco8dl+Hwyf/3ro/zhD3/EaDTh8bQ81+12YTKd+3pqQugILglsdXbcRg+uxozIbbBs1cjRfjqd6k4/l86uLCvDGn1zAH2PK455nKTVYeo+EueOz9FICimuDIqtQ0mIbimKBJcGOw9ZGWDI9b/Xd778pOfoOvZB0eiQZC99DAV8e/DcCh3zoMGnZVE5H5FlhenTZ3D11ZNb7Gu0+gDNlnucTif33z8Lp9PBuHETmTTpWubM6cX9989qZa/H9tWTZR86XfOfe4PB0PLs4/j6RUfHkpravLRNSkoqABZLMTExsdTW1uDxeJpZdqxWKzExMa0ce/shnJEFlwRVJRYshqYv+pHi5ExpzKUDaoi5xn76uSOyDx4mRa9WWJdDOqCJTjnusYZuw/2vBxlzSM+uOO1+BRc++Yey6KhTrz1fWNIxnZCPRjIEoE3oBUCoxkF59n5RNPY0Odp6lpramby8XBITO/r/lZeX8c9/vkR9vf2YbWzZ8jMHDx7g5ZeXcffd/8f48RMJCgqisrLpu30iK11qahcAdu/e1Wx7evoukpOPfy85Gf369efAgX3NhNDhw1lotVri4xNIS+uHLMukp+/078/Pz6W8vIy+ffufdr9thRA6gksCm7WEEuORQif+BEefGrGB0egkNbTTYtRhdFed5IxjU+/0ElK5z//e1G3oCW9q2ogEfOGq2TtJV0FeZtZxjxVc3Hi8PgKtTU6pAd1Obs1pRJ/c9EOU6M2noFSEmZ8OAQHqEk1GxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurbWbROZLoaNX68dVXaykpsZCevotHH/0TXq/X7+vS2M/hw1nYbM3/VikpqQwbNoIlS55j06YN5Ofn8dZby9m4cT233no7p8v06b+jqKiQxYsXkp+fx5Ytv/DPf77EpEnXEB4eTlRUNBMmTGLRomfYsWMbBw7s48knn6B//4H07n1uHdxBLF0JLhHc1WWUGJryTHQIjjvusd6aaur37cNdYsFdVorPZiOoVx/CJ16JpGv5ldFqtHQIjie/rhCrXoterjmtMWYV1dBX35TpWJc66KTnBHQdivtX9Rxz1QGc7jGYDOJrfamRVVhDN22B/72uU+ufonUJvXA1vO6ut5BZUE1CVFAbj/DiZ8CAwfTs2Zv77ruLefOeZty4CcyfD++++ybvvfc2ZnMII0aM4r77Zh+3jZ49e/PAA3NYufJ9li9/jejoaMaPv5KYmFj2798LQGhoGNdeO4VXX11KYWEBo0ePbdbG/PkLWbbsFRYtWoDNVkdKSmcWLHieMWPGHqvLVpGUlMzLLy/jn/98iTvvnE5wcDCTJl3DrFn3+Y/585+fYOnSJTz++FwAhg4dzpw5c0+7z7ZEUkQCDnw+mcrKY5sSzwSdTkN4eBBVVXa8XrnN27+YaO+52rFyGZ+FHqTCoEOPlhfGPoNGamnQrP11M6VvvYFyDMc6Y1In4mbeg7Fjxxb7/nPgY362bAXg/xVU0mP6q2j1LdfAT8Tqb9MZk/0iGglcgbFE3b7omMcdOVcuayH1Hz0OwCFPLPqr/0yf1MhT6vdi5lL5Dn76/QGuOPR3dJKM2xhGxIwXm1kDnV4Xlc4qwoyhBOpbOodWv/cntPUVeBUNn8Q+wN1T22+5weNxU1FhITIyHv0pfkfOJ3Q6zUV9TbU1pzNfJ7tWIiKC0GpPvjAlHv0ElwSK00pllGrRiTVFHVPk1G3bSsnyZXAc7e/KzyNvwZNETLqayKk3IGma2kgwd4CGqFiLUUdCeQlhHZKO2c5xKdiJpuG3yZAy8MTHNqAJjccdEIXBYSVVV8YPh4uF0LkEsefu9udd0iel+UWOzWPn06wv+bVkB7Iio5E0DIjpy7SuUzAbmhzXDR174zu4Hp0k47FkAufer0IgaCuEj47gksBODUrDzT8xtGXElW33LizLX/eLHPPgISQ8+BDJzyyi42N/wdAhQT3Q56NyzRdUrVvT7PzEZqUgdNSVn1ouEJfHR3R9tv99UPchzfbLiozdU49Pbh5iKkmS38dCKyl48tIRXFrYnR6ibE3XTmCqej1UOatZsv2fbLZsQ1ZUESQrMttKd/H3ba9Q6WzyJdMn9vK/jnXnU1l79sO7BYL2Qlh0BJcEdQYHoJrsE0MSmu2rzzyI5dVXoCFPRciIUcTeMbPJYhMbS9K8J6n8cjWVX6iViiu+WE3woCEYGkInE47w+bEY9DgrTi2XzuHCKrroVHHk1AQSHKlag+rcNr44/BXbSnfh9LkwaPT0i+nNjIE3oG/4PIGdB+I48A0AUfWHsTs9BJlaJu8SXJxkFdbQQ6+m//ehRdvhMtw+D8t2v01ZvZrqIEAXwGURXTlYlYXdU0+Fs5LXd7/N3IF/QK/Vo43v5m8vRVdOVlENQ0JM5+TzCARtjbDoCC567HV2aoxNy1EdgppEiezxUPrmv1G8aoI+8+AhzUVOAxq9nqipNxI2Qa0PpLjdlK54E0VWn5QDdAGYGzK1lRi1eGpPrW5QaeZeTJI6BmdkdyRJw+GaXBZsWcLG4i04faq7qFv28GvJTv789bMcqFCTFGpju+CVVGHTTW8hM+/0or4EFyYFOXlEatXoG2doMpLeyKrsNRTYVPETZYrgscF/5O7et/P4kDlEB6hLm0U2C1/kfA2AJjAMT8P2JJ2V7ILTT5EgEJxvCKEjuOipLi2i5IhIpCMjrqq//xaPVc1bE9CtO3F3/76FyDmSqKk3ootUfxAcBzOo+OwT/75Yk2rdcWs01DrLT22Qlqaw8uDUNIptJby869/YPKqTvElrpEd4V4L0qpiq9zj45863yKnJQ9LqcIWrybxCNQ4sOdkt2xdctHiKDvhfByT1pKCumPWFPwOg1+j5v753Ehmglg0IM4Yyq88MdBr1+/BDwUbK6tVr1dChq3qOJFNvOXw2P4JA0K4IoSO46LGXWyhtEDoBstbvhOmrq6Pyi9XqQZJEzK23HTN8/Eg0JhNxd94NDf4+lWu+oPr7bwHoGNbkfFxF60PMvT6ZaEeO/70+pTvL9qzA7VPzZnQP78Lfhv2ZB/rPYv6wR+kbrdbF8cgelu95F7unnoDk3v7zZcsBBJcGHq9MiC3X/z6oUy8+OfQ5SkOG3GuSJ7RIpZAQHM+EJLXmkU/x8cVh1aoTkNBUF8tUk4ssX/IBuYKLBCF0BBc91VWF2HTqpR4hmf3bras+RXY4AAgZMRJjx9ZFSQVe1pPoW29rauezT5E9bjpHdfJvq9I5Wj2+vLwSEjXWhvOi+TD/O6wONRNqx+AO3Nv3TkIM6rgDdCZ+nzaDy6LVp+8ady0fZX5GcEpff3uR9Tl4RNjrJUFeSR2pWrU6tA8tuUYtmdWqRS86IJJxSaOOed7EpCsI1qu5cnaU7cbqqEAb19W/P0lTiqWyvp1HLxCcHYTQEVz0VDibIqBiTNEAuAoLqFn/AwCS0UTU1BtPqc3wcRMIbqjJI9fbse3YQZK5ycm5wgiK13W805thPbjDH1Z+KLYjO8t2AxCkD2RWnzswaJvnj9BrdDw49C4Cdaoz8rbSXeRovDg16rJWF10JeZbqU/o8gguT/MO5RDX459Sbk/iq8Cf/vknJ4/1LVEdj0hm5InEkAAoK3xdsRBuRiE+r1l1K1pWTV1LbzqMXCM4OQugILnqq5Wr/68TwTiiKQvnKD/yh5JHXTkYXFnbK7YaNHe9/XbP+ByJM4eh9qmIpNupwVbXOIVlbmgGAD/jJ3PTjckOXyX7fiqOJCAzjhm7X+t9/kv0l9jC1yJ5J8lCSdfCUPovgwsRR0LRMWdshhf0V6t89whTOkNgT58IZnTgMg0Z1Yv+1ZAcexYccoVolwzQOLIWnliJBIDhfEUJHcNFTo23KCdIlvgvO7CzqD6h1gfRR0YRNvPK02g3o1h1DnFozy5F5EFd+HuFe9Ym4VqelpCT3pG34fDIxTtU/Z3twAFavKnRSQpIYEjfghOeOSBjijyDLqy2gIL6pSrC7OOOUP4/gwkJRFAJrmpyG94Y0+dSMSRyOVqM91ml+gvSB9I9RlzwdXge7yvYS0rFp+cpVmnO8UwUNjBw5iDVr1JQTXq+XlSv/c1b63bRpAzk56t9+x45tjBw5CIuluF37/PXXzdx99++YMGEkv/3t9fznPyuaFfl0uVwsWbKIyZMnMnHiaP7yl0eoqjo/oveE0BFc1MiyTJWhKcleorkD1Q1LVgAR101Bc5pp6CVJaiaSKtd8QYQU6n+fYz155Epxbh7hGjsy8ENkiH/71C7XHjN785FoJA1TOl/lf79F21ThOKg2F1Hd5eKmvMZJoqTma3Kj4dc6VZjoJC1D405eJw1gWHzTcT8Xb8Wc1CR09LWFwiH5JKxatY7x49WUE998s46XX36x3fssKbHwyCNz/CKiT580Vq1aR0zMyavVny55ebk8+uhDjBw5mhUrPuT//u8PvPnmv/jkk4/8xyxZ8hxbt27mmWf+zksvvUpxcSHz5j3abmM6FYTQEVzU1FrLKTeqT7Zmr4Te6cW29VcANIFBmAe3vsrzsQgZOhytWXUUtm3fRpfKpkR9pY6TJw2sOKRmMt4fZKRKr/6odA5NoUtYSqv67xXZg/gg9QaXU28hM0D100mSSiivbr1DtODCo7CwjDitGt23PTwGu1d1Hu4X04dgQ+uKcnYJSyXKFAFARsUhnBFNP5YdJCvlNeIaOhGRkVEYjWpixbP1YHF0P3q9nsjIKLTaE1vwzoQtW37GZApg5sxZJCQkMn78RC6/fDhbtmwGoLy8jHXrvuSPf5xLWlo/evbszZNPPsuuXTvYu3dPu42rtQihI7ioyS/KwtWQFyfcZ6T2503+5IAhw0egMZxZUUGN0UjUjTf53ydvycDkVCOeqnx1J2+g9CAK8EN4oH/TpORxre9f0jAx6Qr/+58jVJ+eYI2LgkOHWt2O4MKjNr/JD2tvWFOhzhEdhhzr8GMiSRIDYtMA1Sk5vb4Mr0b9TiRqKyksa/tixxcTjUtXa9Z8zrPPzvdv27FjG6AuMd111+2MGzeCm2+eyvLlr+F2u5ud/69/vcqNN05mypRJ5OfnUlZWylNPzeO6665kzJjLueGGa1m27J/IsozFUsxNN00BYPbse3njjWUtlq5cLifLl7/GTTddz7hxw5k5czo//fSjv881az5n2rTrWLv2C26+eSpjxw7jnntmsHfv7uN+zpCQUGpra/jmm3UoikJ2dha7d++iVy81rcXu3eoDW//+TTX6kpI6ER0dQ3r6jjaY6TNDCB3BRU1hVZOfQbhkbrZsFTbmijbpI2TEKAIbvvBaez39DqpP1jWaE0ddybJMlDOPQwEGihpKNnQM7kDPiG4nPO9oBsSm+UOFDwV4sTeEcNnzRT6di5qGpVGHRiJXq15zoYYQujQ4pbeWtOimOle/FqXjaYgejNDaKSs5tQzflyrjx09k9uw/AepyVp8+aWze/DPz5j3KlClTeffdlfzpT4/y/fff8PTTf2127urVn/DMM8/z7LOLSUpK5s9/VpelXnjhZd5//39Mn/473n33LTZt+omYmFiWL18BwDPPPM+tt/6uxViefPIJ1q79ggcf/BNvv/0Bo0eP5Ykn5rJx43r/MVZrOZ999j/mzXua119/C0mSWLDgb8e1Sk2YMIlrrrmOp5/+K1dcMZQ77riFQYOGMGPGXQCUl5cSGhqG0Whsdl5UVBSlpSWnP7FthKh1JbioqXCUNJa4IrVSh6fhSxfQvQeG+A4nOLP1SJJE7B0zyfmzeqPrUuhic1owVfoT57Ipzc8jVKrnw4gw/7Yrk8f5K0+3Fr1Gx+XxA/ku/yd8KGwPMTG62oGhSmS3vZgx1xeCRl329DUkCBwQ0/ekvl1Hk2ROJMwYSrWrhj2lGVwT3QVq1AcEZ0kO0OvEDbQh2Rnl/LohF4/be9b6bERv0DFkVDKde0Sf8rlGo4ngYDURaWRkFADvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfEN959Jk66hRw81CajL5WTSpGsYO3Y8cQ2BDtOm3cJ7760gOzuLUaOuICxMtdqazSEEBgY2G0dubg4bNqxn0aIXGTFCzaE0c+YssrIyWbHiTUaOVBNFer1eHn74Ubp2VZNEzpgxk8cee5iKigqioqJafL7KygpKS0u5++7/Y9iwEWRmHuSVV/7BW28t5667fo/T6USvb1lfz2AwNrNgnSuE0BFc1FT7mjIUdzjU9HQaPnFSm/ajj4jElJKKM+cwkTU+zHYfdUFaqmoqCA+NPOY51oO7qDXoyAlQlwpiA6PpF937mMeejJEdLue7fDWHyuaQQEZWO4j3FuFweQkwiq/5xUZ1nYME1Ot5V3DTj13jMtSpoJE0pEX3Zn3hJryyl6KoYHpkqft0NQVtMt7WsmtLAdUV5ypRoZtdWwpOS+gci8zMDA4c2MfatV/4tzVaTHJzc/xCJzGxKVGp0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fl8nIzsbPUP17dvv2bb09IG8PrrrzTb1qlTkx9gUJAq0rxezzHbfe65p4mLi+OOO+4GoFu3HoDC4sXPccMNv8VoNOHxtDzX7XZhMgW02H62EXdAwUVNjc4JSERVedAVqD8M+thYgvqe+g/CyQjqm4azIeQzpcjF7m6BHMrfx5A+o499QslBfg1tqhB9ReLIU34abyQmMJpu4V3IrMqi0qClwKSjk9NOQU4e3Xp0Pq02BecvxYdz6KhxU6+RyA5Ub+PhxjCSQzqeVnu9I3uwvnATAIcUBz0atge7yvF4ZfS6s+Pl0O/yjufUotPv8tObv2MhywrTp8/g6qsnt9jXaPUBmi33OJ1O7r9/Fk6ng3HjJjJp0rXMmdOL+++f1cpej730JMs+dEeVtzEcwz/xeEtXu3fv4g9/+GOzbT179sHr9WKxFBETE0ttbQ0ej6eZZcdqtRITE8O5RggdwUWLz+driGSSGLK/6SkxfMKkExbuPF2C0vpRsepTAFIL3ezuFkixNRtoKXRkWcbsymOnWfWtMWgMDI47cYK3kzE0biCZVeoT3a5gE52cNqqy94EQOhcd9gLVETkz0IDcsNLZP6bPaQvlLmEp6DQ6vLKXA/YirkFCi0K8tgpLhZ2kWPPJG2kDOveIbjOLytnm6CXn1NTO5OXlkpjYJJ527tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiAjVElxbW0NlZVPqiBMtbaemdgFUYdK4dAWQnr6L5OTWRXIei5iYWLKyspptO3w4C0mSSEjoSHR0DLIsk56+k0GDVGf4/PxcysvL6Nv3zO5rbYFwRhZctBSV5ODUajC5ZDrnq47BmsAgQoaPaJf+jB2T/JXNk0rchNh8WO3Hzi5bmnOY7BDFHxE2KLYfATrTMY9tLX2je/lT/u8JNuEDsIpK5hcjUqXqQ5MR1GQN6BPV87TbM2gNdG1IaVDprKYoSLU4xGprKCoVpSBaQ6Nwycg4gMvl5LbbZrB+/fe88cYy8vPz2L59K88++xR1dbXNLDpHEh2tWj+++motJSUW0tN38eijf8Lr9fp9XRr7OXw4C5vN1uz8lJRUhg0bwZIlz7Fp0wby8/N4663lbNy4nltvvf20P9stt9zO559/yscff0hxcREbNvzIyy+/wNSp0wgJCSEqKpoJEyaxaNEz7NixjQMH9vHkk0/Qv/9Aevfuc9r9thXCoiO4aMkqVLMfdy5woWmwyIaOGInmqMiAtkKSJEJHX0HFp/9DAgbtt3O4d0sHPQDroXR+DWl6ohuZcGb5fEAt+Nk7sge7yvdi02k4HKAnzF6ArChoTtHBWXB+E+ooQpbgYKC6/GDSmugcmnxGbV4W2Y0DlWpKguywUJLs5egkmarifOibcJKzBQMGDKZnz97cd99dzJv3NOPGTWD+fHj33Td57723MZtDGDFiFPfdN/u4bfTs2ZsHHpjDypXvs3z5a0RHRzN+/JXExMSyf/9eAEJDw7j22im8+upSCgsLGD16bLM25s9fyLJlr7Bo0QJstjpSUjqzYMHzjBkz9lhdtoopU36DXq9n5cr3WbbsFaKiYvjNb27i9tvv9B/z5z8/wdKlS3j88bkADB06nDlz5p52n22JpIj0qfh8MpWVbZ8vQqfTEB4eRFWVHa+oJn1C2mOu/vP1K/ysy+f6H6pJtqhPQx0f/ysBqacWfnsqeOtqyXl0LopLtSBtHBjMXfe90uK4bz94ik9j1aexWH0E80Y+0upoqxPN1Y6y3byx9z0ABtY6uLHURv31fyc+7thPkBc7F+N3sK7Ohvz+A+QH6Hg9UY3A6R/dh3v6tAw1PhVKHCU8/csLAPTQhHFnZiYA3wddw/W3/fbMBn0EHo+bigoLkZHx6E8zK/n5gE6nuWiuqbPB6czXya6ViIggtNqTL0wJi47goqXSXYlekUksVUWOLiICU8rpr1O3Bp05hKjf3Ej5h+8DMHSnjcLcDBKTe/iP8ck+DgVUAuoXd1zKWL/Iqc88iNdqxVtTjX13Oo7D2ejDIzAmp2BMSCCgazfMvY6/RNE78jJMWiNOn4v9QUZukOoozdxLfNwV7faZBWeXsuxDxEgKGYFNN/5eUZedcbsJwfGYjcHUuWzkU4+M6tugt537PCgCwZkghI7goqVWspNU4kbX8BARlNbvlHPUyLJCTqaVnENWAgL0pHSPIiwikF9/ysXp8HD5mBTCI5vnsggbP5H9P64iusSOToacreubCZ3DB9I5YFaXtEw+iSHxA1BkGeun/6Nq7ZctxuCxluOxlmPb1vA5evXGdN8sCG5Z2dyg1dMrsgfby9JxaDXkBOjxFGcCV5zS5xacv9QVZRMDZAQdIXQiu59xu5Ik0SOqM1uL0qmX3ZQZtMS5fYR6zm7klUDQ1gihI7go8fl8VBl89CpqSlYVfFRuiWOhKArZGeUcSLdQWV5Pvb15sqvd24qavS/Or+aam/qg12v4cV0moeEBjL2mO+7UJChRMxO78pqXYtiR8yO+QFVwDagyU/Xhh7gtxTgyWmYy1ppDkB31/rIVAPZ9e9n14ENEXjuZ8MnXt4ggS4vuxfYyNSX7viAj/ay5J/3cgguIyjxqtRpKjKpYTjInEmJom6ioy6K7sLVIvXayTSbi3HbitdWUVTtIiGpd/SyB4HxDCB3BRYmlJBePItG5QPWVkYxGAnr0OO7x1ZX1HNxTSk6mlapTSFjmcnpZ9Z9daDQSXq9MWXEd0bHBdBx8Bb6fD+DQh2C0Nq95lS2pSwHB9T4G/VRAjfOIsE1JIqhff4J69yWwRw8MsXEoXi/usjKch7OoWL0Kb2UFis+HdfUqnEVFxM+6F+mIHBk9I3ugk7R4FR/7g4xMKi/DXu8gKPDcJ+4SnDlBDgtZ5iZrzqmWDDkRl0U3VS/PDg5mRK2dSE0d2WVVQugILliE0BFclOzP3UX3PCdGj+prbx40BM0xnNkURWHXr4X8+lMOsq+5X74pUE9IqIngECOde0Tj86nLWPY6F2ERAZSV2KiuqEeWFWS56dxtm/K57d4hrIkbQmlwL8zOcvpWVRIaHkF23gFqZR8Gt8S1m2qRnE3ZRLXmEGJn3k3wUckMJZ0OY4cOGDt0wDz4cqq/Xov189Ugy9i2b8MiLVPFTkP14gCdiW4RXdhfcZAavRarCbQHM+jW/9znsxCcGU6Hkyilkp8CmkRH94gubdZ+clgiRq0Rl89FgUmDAmgkqLPkQc/ENutHIDibnFdC59VXX+WXX37h3XffPe4xVVVVLFiwgJ9+UtPdX3XVVTz22GMtan4ILm2KanLoc8jhfx92RcvQynq7m43fZJGdUd5se2xCCINGdKJjSngLn57uvWP9r31emY3fZZGxu6SZSHK7vKz89zbqg9UaQXWmaDav/pJJd/yOfeve57Yddgw+J0e23OH+2QT26n3Sauoao5GY39xAdN+eZCz8O4rXg23bVkq0OuLunuVfxkqL6sX+CjWp3P4gI8n5B0AInQueksNZREgy2Q1lQ/QaHSkhndqsfa1GS2pYJw5UZFKn8VGl0xDhlXFXFLdZHwLB2ea8ETpvv/02S5cuZfDgwSc8bvbs2bhcLt5++21qa2t54oknmD9/PosWLTpLIxVcCHgrSomtVP1alNhojEdkBXW7vOzYnM+ebUV4PU3hjmlDEuk3pCOBwa0LedXqNIyZ1I0R47ugyAoul5eV/96K2+Vr4dtjLfThcjqpL+7MxpQJJFXtoWvFNtBqSXxoLoHdj7+sdiwiBg0kcfZsCl76B/h81G35BUNcHJHXXQ9A76jLQNU5HAw00KVEFPi8GKgtOISi11KjV613nUNT0GuPnavpdOkalsKBCjW0PCfAQESdE6mutE37EAjOJufcjb60tJR77rmHl156iZSThP7u3LmTX3/9lYULF9KrVy+GDRvGU089xapVqygtFV9EQRPxeU3ZXKMnXuW3zLhdXlZ/kM7OXwr8Ikdv0HLVjb0YPq5zq0XOkeh0GvQGLcFmI1ff2BujqeXzg11K5IvX3qYqQL3G88P7oCR3J3HOw6cschox902jw733Q8Nnq1j9GfUH1CSJYcZQEoPVooFFJj0mXzE+n8j5caEjV+SRFdAkbLqHt92yVSOdw5L9rwsbCsIGuKzHrYMkEJzvnHOhs2/fPkJDQ1m9ejVpaScutLht2zaio6Pp3Lmpds+QIUOQJInt27e391BPiV1bf+E/X/yX1955i9WfriRjz65zPaRLhqKiLDo1RFt5dBJhw0YCqj/Od19kUF6iJurTaCV6D+jArbMGk9K1bRLqdUgK47Z7L+eam3pz6+8HEyqrJRh8Gj1lrua5TqpG3YyxS3e2bshlzX/3Ul156lWbg/sPIPL636hvFAXLv17HW10FqIUaGykKlinJzz/NTyU4XwisLyb7iPw5J/LPUWQZx6FDVH39FVXffEV9xgEU+eRit1NIIlLDwmq+Se0rimpqj7JSCgQXCud86WrcuHGMGzeuVceWlpYSHx/fbJvBYCAsLAyL5dg1hVqLro1zRPzicVEQ2VTjY6MTAn7dTYhsw+yxEeSox1RfT6isofvAwSSmdjnlHC8XE43ZLVuT5fJkZP7yNQkNTsiVccEYggJQFIVN3x0m95BaHM9g1HHjjP5ExQafcX9Hows20Lm7Wphw4KQ+/PhVDbKm5fLCrs2FZO0ro65WjQxz1Lv57cyBJ70Ojp6rmClTcGZnYd+zG19dLaUr3iLpoT/RN7Yn6/K+B+BgkIGYw3vp1LX9skKfj7TldXWu8bjdRMhWsgMiAAjUBZAS3vGYhTxte/dQ+v77uIqbp0PQR0URe+t0QgYOanFO4xwFm4KIDYqmxF6GxajFC8Roaymvricy7Mwj92T5wr/PNX5FJQmEoevknOl8abXSGf1Gn3Ohcyo4HI5jlpY3Go24GlLunw4ajUR4eNuGTuplb4ttDikAhzaAUm00mICGfG8by2yElGzA7LET5KwnoM6Ood5BZFQEvYaPomNK6iUjgkJCzvxG6slpyltj6NoF2avw/ZqDHNitimFJgmkzBtClR8wZ93UyRl41joLM5eQeDsOjDSDYW0Ri/15k7KlGURS/yAEoK65j3w4LfQYkYC2zEREVRMQJQnqPnCvzn+ew68E/4a6sxL5nN97d2xkwehSB24zUyy4OBRoYVp7V5tf5hUJbXFfnmuw9OVQYNdQ3CJJesd2IjGieP0dRFPLfe5/C/35yzDY8ViuFLy8lcdoNJN0+/Zj3lZCQALpFp1BiL0OWJCxGHR1dXuyVZYT3Tzrjz+F0arFaNWf843U+MGLEIP7ylyeZPHkKXq+Hjz9eeUbFM1vLxo0/kZCQSEpKKtu3b+P++3/PJ598QYcOHdq97/z8PGbMuJX33/9vs/5cLhdLl77A999/i8vlYujQ4Tz88KNERET4j9m5cxuvvPISOTmHiY6O4e67Z3H11ZOP25csS2g0GkJDAzGZTr/o8QUldEwmk7+C65G4XK4zirqSZYXa2lNfNjgRt/Ybwlfrv6I+IIB6YwB2XSB1UjBOqeUfq55A6jWBlBgBIxCqbg/Ayc/7D2HevYvABgFkrKlF4/USmpxEStrlxMXGXxQiSKvVEBISQG2t44x9SUJKm/LWBKSO5bXn1zcL/77i6u5Exqr1j04HRVFQZBnZ58Xn8yL7fGh1OvTGgGP+La763XRcbieVllLiO41t+HwHydjTMrX+D2sP8sNa1YtYo5WYOr0fCZ3Cmh1z7LnSEvu7Oyh46UUAct56B22PPvSM7M628t24NBqqPfmn/ZkvVNryujrXFO7fQ8ER/jnJwZ1a/D3LPvkf1tWr/O8DUjsTNmYMSBI1v/zi9+Eq/O8nuLwK0VN/4z/2yLnqYGr6ASsw6eno8lKRf5iqqjMvNeF2u5BlGZ9PuWBrRUmSOl+rV68jKCgYr1dm7dq1vPTSC9x00/R27bukxMLDD/+RpUtfp2PHZHr27MOqVesICwtv9/nMzs5i7twHcTqd+Hxys/4WLXqW3bt3sWDB39HrdSxevJDHH/8zr7zyLyQJCgryeOihB5k+/Xf89a9Ps3HjBhYsmE94eBSDBg05Zn8+n4Isy9TU1ONw+FrsDwkJuPhqXcXFxfHtt9822+Z2u6muriY2NvY4Z7WOtr5AgoJD+O31N7coKJixL51DednU6bTUBwRh0wdRozHjklpW1HZgwqExUWJALYsUAiRAIPWEKbUcyNyJefcmAm12dFU2PDYHkllPdJdupPYcQnhYRIs2z3eO/vKcKpbsDCKqVWtaWXgQh7ba/CLHFKBj9KRudO4RfcI+ZFnGYaumrqqc2ooSaitLGv4vxeN2Ivt8QEv7q0ajxRQcijk8GnNYDOaIGEIiYomMT0ZvMBGd0NHf79hruzNwRBIej0xEVCBbN+axfVNe83H4FL76dB/X39aP0PCWFomj5yqgTxpB/fpj37UTb3U1ZV98Qe/Le7GtfDcApYEuqqyVmMPCTmlOLwbO9Lo6H/CU5pAb2CR0Us3JzT5T7S+bmkSOJBF90y2ETbzSL76Dh42k+vtv1TpsikL5Z5+ii4vHfNSPjM8nkxTclDOnoMEhWa60tMkc+nwX/lpP4/JLRETUEdvOzuc6uh+9Xk9kZPsX7V2x4g3eeedNkpNTKStrHvxTXl7GunVf8vzz/yAtrR8ATz75LNOn38jevXvo3bsPH374H7p06co999wLwPTpyWRmZvD+++8eV+g0cqai+IISOoMHD2bx4sXk5eXRqZOaO2LLli0ADBgw4FwOrdX06JVGj17Nna4VRcFaXcWe/bspc9iwGYzY9EHUas3HtwBJgaBH/WcG4hVCsBGm1FDhtVG48xsC6+rRV9tx1jlx4SY0oQOJlw0kKbUHBn3bhqSeLxz48TMab9E5kcNx1qsJ+TokhXLVDceOiAJw2mspyt5LUdZuSgsykX0tlx5Phiz7qK+tpL62ktK8g/7tkkZDVIdU4pMvo0Pn3oRExCFJEiFH+DsMGZVMdFwwmXtLkX0KuVmqL5Hd5ubDf28lNj6EDkmh9BmUgDnk+Cbc6Gk3Y9+zG3w+qr5aS7dhf0VSQJEgI9DIgIzdmIeOPuXPJjj3GO1F5Eaq31uDxkBCcJO/orvEQul77/jfR988nfAJE5udL0kS4eMnoni9WD9eCUDpO29j6twVfXjzumkdguPRSlp8io9CU0OfzrJ2+VwXMiNHDuLxx/8GwLPPzvdvW7r0dQYMGMSmTRt4441l5ObmEB0dzYQJk7jjjrv9LhgjRw5ixoy7+OqrNXg8Hl55ZRkmUwCvv/4KW7duoba2hsjIKCZNuoZZs+6jtLSEm26aAsDs2fcyc+Ys+vcfyOzZ9/Lxx6uJj++Ay+XknXfe4uuv11FRUU6nTsnMnPl7Ro++AoA1az7nzTf/xd13/x9vv/1vyspK6dy5K3/848P07t33uJ91y5Zf+Otfn8ZsDmH27Hub7du9Wy0b0r//QP+2pKROREfHkJ6+g969+7Br105Gjbqi2XkDBw7mpZcWoyhKu65MnNdCx+fzUVlZidlsxmQykZaWxoABA5gzZw5PPvkk9fX1/O1vf2Pq1KlnbNE5l0iSRHR4BONGXNFiX63DQcbhTPIryqhGok4fRI3WjLuFBUiiFjO1krlJAAWDJt5HGHWEU43La6PespvCrC1oapw4a9zYHQ4CYszEdulJ6mWDCA0Na/8P3J4UqFaRYnNXbA2Sx2jSMWHKZc1Ejsthx5K7n7rKMkrzD1JhyeNYVpojCQgOxRgQjEarQ6vVodFq0WjU/31eD876Ouy1lXhcjmbnKbJMeWEW5YVZ7N74OUGhkXRI7U1Kr8sJj2l6ck7pGuWP/qq3u1n9QTpV1npkn4KlsAZLYQ2Z+8r47V0Dj+trY4iLI2zsOKq//QbF7cbx+VriUsOwKNWUGXWUFO+hK0LoXGj4vD40UiW1ujAAUkM7odWouXQUrxfLv15HafBTDBk5uoXIOZLwK6/ClZdL3a9bkOvrKXtvBQkP/LHZMXqNjsTgDuTVFVBu0OHUSIS6K/HJMlpN+/nVFGTuZM/Pa/C6ne3Wx/HQGUz0GX4NHbudemLN8eMnYrPZWLp0CatWrSMkJJTNm39m3rxHmT17DoMHD6WoqJAXX3ye/Pw8nn76Of+5q1d/wuLFS/F6fSQlJXPnndMJDw/nhRdeJjAwiF9+2cg//rGYnj17MXz4KJYvX8GsWXfwzDPPM3jwUDIy9jcby5NPPsHBgxk89NAjJCV14rvvvuaJJ+aycOFiRo4cA4DVWs5nn/2PefOeRq/Xs3jxQhYs+BsffPDJcQXHq6/+G4AdO7a12FdeXkpoaBhGY/PfpaioKEpL1SX6srIyYmJiW+x3Op3U1NQQ1o6W5vNa6FgsFsaPH8/ChQu54YYbkCSJV155hfnz53PHHXdgNBr9mZEvVkICAhjSK40jDXuKolDr9nDYUkhOiQWr10utNpAabTA+qfmfVEZLJWFUEqb+tXVAEOhjPIRTQzjV4LNR7irCvikLyebFUevDZnOgMeuJTEmhS++hxESf/75A1dZSokrcZEUMIC+8KeJt1JVdCQpWv4BOey0Ht/9AVvpGvJ5jO7AHBIcREZtEcFgUIZGxhETEERIZh8F4codWRVFwOWzUVZVRV1lGVVkBJbkZ2Gqs/mPsNRUc2rmeQzvXE9OxK90HjiM+5TKkI6JnAoMM/Ob2/uzcnM+h/WXYGpyW62qcfL5yN7f/fuhxxxA5+Xpqf/4Zud5O7S+bGJg8li+kagBKvAUn/QyC84/yglyKA5uujy5hTTnHqr//Dle+KvANcfHE3HrbCduSJImY6b+j/uBBfDXV2NN3UX9gPyF9ejc7rlNIR/Lq1OulwKgj3ltDZa2L6DaIvDoeGVu/o67yXOVEqyFj2/enJXSMRhPBwWoEZ+My0jvvvMnkyVOYOnUaAAkJicyd+zizZ9+LxVJMfLzqBzVp0jX06NETAJfLyaRJ1zB27Hji4lSL3bRpt/DeeyvIzs5i1KgrCAtTrW9mc0gL39Tc3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1ar3M2bM5LHHHqaiooKoqFNfBnM6neiPsUpgMBj9frUuV8tjDAb1vux2n34wUWs4r4TOc8891+x9YmIiBw8ebLYtMjKSpUuXns1hnXdIkkSo0UD/5FT6JzeFC8uKQqXTQ0GllZzSEsqcLqo1Ruo0QShHhaB60FNGFGVEgRYIVP+Zop1ESDVEUE2Irw63q5KcHZ+QbVdw1kJdnRtMGqI7daLrgBFERcWcNwJoy6fvUtJhCvWGMP+2Xv1jiQivpyBzJ8U5+8nP2H7MZamQyDgSOvclsUtfwmM7nvZnkiQJU6AZU6CZ6ITOwDAA6qrKKc7ZS3H2PsqLsvz5TMoKDlFWcAhzeAzdBo4l+bLB6BpqchlNOoZekcrQK1Kpqqjn8w/SsdvclBXX8c/nfmDg8CR6DUhoEbmiDQ4mcsr1qi8G0PXXHBiigCRhMTnxelzo9C19wgTnL1W5meSYmn4kOjcIHW9tLRWrP1U3ShKxd81CYzz531YbHEzUDdMofUt9Si//eCXmXj2bHZMUkggN0enFRj1dHfUUlpYTHXbmkVfHo8fg8efUotNjUOtSnbSGzMwMDhzYx9q1X/i3NfrX5Obm+IVOYmLTfBqNJm688bf8+ON3fPTR+xQWFpCVdQirtRyfr6Uz7tFkZ6sFgvv27ddse1raAF5//ZVm2zp1ahLLQUGqSPN6PZwORqMJj6fluW63C5MpoOEYY4tjGgVO4zHtxXkldARnhkaSiAowEJXQgf4JTVETXlnB6nRTVFtLXnkZFruDavTYtS0j1ZyYKFZMFBOrppMMUP8FR9qIlGqIoIYQuRbZXUbezg/JrtfgqgNbnRuvXkt89250TxtGaGh4i7bbE1mWqSqOoN4YBoAkKfRKM1BTsJJv91W0OF6j1ZLSayhxnXoQHtuRoJD2ddw2h0fTPXws3QeMxe2sJ//gdg5u/xFbtVpnq66qjO3frmTvpi/o2n8M3QZcgd7Q5IsTHhnItb/tw5cf78Fe58bl9PLz94fZt9PCdbf0xRza3G8n7IpxVP/wHZ7SUuTsXHrEh5GRZOBwoJ6izH106nVh+LQJVDzlueSGqEJHg0RyiPrjWLVuDbJTFQUhI0cRkNr6PEkhw4ZT/e1XuAoKcOXnYUtPJ2LcSP/+jsFN9xBLg0OyraQAuref0OnYrf9pWVTOR2RZYfr0GccMnz7SefjI5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxl99l2YdO1/zn/lipWk7XoTomJpba2ho8Hk8zq43VaiUmJsZ/jNXavK6g1WolICDQbw1rL4TQuQTQaSTiAo3EBUYzMC7av93lkylzuCm22SmoqMBir6dK0ePUtPwC2AjGpgSTRwJIgBEko0xYeB0RUjURUg2hcg2KK5vsrRl47HqcNqi3e/GY9CSn9ad7z0EY28mS8O0HH1JlVDNma2UbfQc6yd+/AUVp7qmvMxjp3GcE3QeOJSA4tF3GcjIMpkC6pI2ic98RFB/ex8HtP1BeqD6JuRx29v68hkM713PZkCvpkjYSrU69cUTGBDPtzoFs/SmXA7stKArUVDn44qM9/Ob2fpiOCD2WdDqip/2W4n++DMDQfU4yOurxaCQOFGwVQucCw2svxBql3q4TA+MxaPV4a2qo/lFNCCnp9URdf8MptSlpNERefwPFr7wEgPXLz+k4doR/f1xQjN8hudig9u2qPLPErBczR1uBU1M7k5eXS2JiR/+2nTu389FHH/Dww48SENDSirFly88cPHiA1au/IiIiEoDa2hoqK5se1k5kbU5NVTNl7969y790BZCevovkI+r9tTVpaf2QZZn09J3+CKr8/FzKy8vo21cVrv37D2DnzuYVDLZt+5U+fdLQtKPfFwihc0lj1GroGGyiY7CJy+Mi/dttHi+lDjcl9S4Kq6qw2OxUKjq8R/n/KGioIpQqJZTsxgcBI+iMXsJDa9QlMKmGCLkKn20zB37ajLtej9MmUe9QwBxCt2EjSUnozJlQV1tLSb6NYP1mJJzoNZXk7Wt6MgmLTiCxaxrhMYnEdOyGVqtHrnHiOlSBXOdGMmiRjFokjYTiVVA8PhS3+g9AE6BHCtAhaRtvMBKSUYsm2IDGbEA6zay7kqQhoXMfEjr3obI0n4Pbf6Dg4E4URcblsLNr/adk7viRPiMn06nHICRJIjDIwPjrejBqQlc+fHMrNVUOqivq+WLlHq6Z1rtZra6gfgMwJnXClZ9HaJWTlGIjOQlG8lzCT+dCQpZ91OmrAPWpt1tUVwCqvlqL0uD/EDpmLLrTcOYM6puGoUMC7uIiHFlZ1O7bDwnJAOg0OuKDYim0FVNu0OKRgDoReXU8GoVLRsYBUlJSuO22Gfz1r4/xxhvLmDjxKsrLy3juuQXExsYeNxw8Olq1fnz11VrGjh1PaWkpy5a9gtfr9fu6NPZz+HAW3bo1r5OXkpLKsGEjWLJEdQPp2DGJ7777mo0b1/PUUwvb5XMDREWpEWWLFj3DY4/NIyAggL///Vn69x9I796qv+RNN93CjBm38tprL3PNNdfx888b+fHH73jhhVdO0vqZI4SOoAXBeh3Beh2dQwIhTl2CUhSFarcqgEodLopq6rDY7FTJWuSj/H+86CgnknIlssmSagCzwUZUaBVRUhVRVBGhlOHK/5jdmXrcDj0uuwanW4MmMpa+I8cSGRxxUl8Zt8vB1/96nbCAGjyKC6/iQUIiSBtGjDGJTuF9MXhNSPkapBIt9TuzkZ1eaKucKhJoggxoQgxozEa0IUY0IUa04SY0Qa0vEBoRm8Swa+6g97Cr2fvzWvIPqk8+9XVVbFn7LoWH0hk04WZMgWom3NgOIVw/PY3/vr2Derub8pI6/vfODq66oRfRceoxkiQRed31FP9T9WkbssdOTgcDhUZHu4dzCtqOyuIiio5yRPbW1jaz5kRcdc1ptS1pNERcfS0lb/wLgKJPVxH/hwf9+xPNHSi0FaNIEiUGHQZny2VggcqAAYPp2bM39913F/PmPc24cROYPx/effdN3nvvbczmEEaMGMV9980+bhs9e/bmgQfmsHLl+yxf/hrR0dGMH38lMTGx7N+/F4DQ0DCuvXYKr766lMLCAkaPHtusjfnzF7Js2SssWrQAm62OlJTOLFjwPGPGjD1Wl23Gn//8BEuXLuHxx+cCMHTocObMmevfn5rameeee4HXXlvKxx9/QHx8B/761wUMHDi4XccFICmiJC0+n0xlZdtnjNXpNC0SBl5s+GSFCpeHUoeLEocbi82Opa6eGlnTVODkBATg8AufaKmSKKmKIMWO06XD5TTirtfjsutwufWYYuLoPngw0RFx1NbUsmf1GkIdwSQYm4oQnk9ozAZ0ccHqv/hgNAGtz11UVV7Eno2fY8lpCh01BgTRd9T1dE0bSkSEmaoqO6XFtXz58V7sdapTn06nYdzkHnTuoS5RKopC/lN/xVWgWnE+uyKUvA5G/phyG11TTlxE92LgYvgOHtzwLZ/UfenPZ/P8qCepX/UFVevWABA2YSIxt5w40upEKD4fOY/NxVtZCRoNXf++BKnBx+6Hgo3899BqAH5TVktCVSDd712C5gxEssfjpqLCQmRkPHp96x8Gzjd0Os0Fe02dC05nvk52rUREBF18mZEF5x9ajURMgIGYAAOqgVJdAnP7ZMqdbiz1LorrXRTZHJTUu/AcJUgcBFCgBFBAB7/1x4iLaEMlMYYKYkIriZEqCJSc+GQL5Rl7yHPqsTl12IJ0FGqr2O2xEEwgZgIIwoQBHRISXnz4kAkwBhAsBWL2GtFrdUhGLdrwALRRgWjDTCg+GcXlA1kBrQbJoFGXswxakBUUh1e1AjWWkVAUZKcXuc6NXOvCV+sCT8svsFznxl1XiftQJQCaUKNf9Ohig9EcJ3khQHh0AqN/cy+Fh9LZ9u2HuBx2XA47W79+n9x9m5n427uR9KGq384dA1j3yV5Ki+vwemW+XX2AILOBuIRQJEkiYvL1WF5TzcND9tWTF29gW/Yvl4TQuRiwlWZRHK5eKxFSMAGKDstP6wHVF+t0rTmNSFotoaPGULHqU5Blqjf8RPjk6wFIPMohOU1TS3Wtk4jQC792mODSQQgdQbtg0GpICDKRENQUDSQrClanxy9+iuudFNtdOI6qQeTCSKESTyHxfvETjJ1oqZIYYwUxxgoSwyoxSGqYuMcrYXPqsTt1VDt12Bx66l06ZKVBVB1RHi3IFIw5KASdrEdXqUNXq0Ov1xMaGk5EVCRhYWEtohNOhqIoKE5vg+hRxY+33I6vvL5JHAFyjQt3jQv3QdX8r4sLRp8ahqFTmCqqjkFi1zSiOqSw44f/UZC5E4DyosN8uPRv9Bs9hS79xhAYbGDK9H6sX3uQzH1lyLLC15/u5ze/64851ERw/wEYOnTAXVxMh3IPCWUeckOFn86FQrWrELnBgpIckkzd1i3I9aoFOnjwEHRhZx7hGDJiFBWrPwNFoeqn9YRdcx2SRkOiuSn7crFBj0myYSktJyK0/SKvBIK2RggdwVlDIzVZf9IiVT8Sv++Py02lTybLWkeBzYnd2zxnhI0gbEoQOUpjBINCOLVESxXEaCqJCaogPqgarSQ3tAv1Lq1fANU59Ngceux2G3a77bhjlCSJ4GAzAQGBBAQEEhgYRGBgIGFh4URGxhyzgq4kSUgBejQBenRHJP5UvDLeMjveEhveEhs+a32z6M/G7Y7NReg7hqBPCUefaG7h3GwKCmH45JmU5A1n+3cfYasuR/Z52fHDJ5TkHWTIpNsxBgQx9toe2GpdFBfUYLe5+fKjPUxtiMaKuHqy3w9j8D47n1+hx+FxEKAXT+bnM4qiUKWvBdTr7rK4HtS8vc6/P+yKtsn7oo+IILhvX2zp6XgrK3EcyiSwew8CdAFEmSKwOispMWqRgbqyQugmhI7gwkEIHcE5RZIkwo16ooOMqi9FtB2Px0eN20uB3UmR3dXwvxO3fKQ7meSP+MpU1NwhGnxEUk2sZCVOKifOaCXW1Lwcg8ujpc7RKHzU/93eJmuKoijU1dVSV1d7zPGazSFERcUQGRlFREQU4eGRLdKe+0eo06DvYEbfoUHUuX2q8LHY8BTUINc1mJpkBU9eDZ68GiSDFn1yKMbLotGGNRdVcZ26M+l3j7B/8xoObFUdUYsP7+Ordxcx7No7iE7ozJW/6cmn7+6ipspBVUM01pRb+2IecjkVqz7FYy2nU4mH0Dofm/f+yNj+V7f6byU4+9SWlWAJaFruTa7TY8s5DICxY0dMqWcWsXgkocNGYEtXaxbVbdlMYHc1oifR3AGrsxK3RkOFXourorjN+hQIzgZC6AjOOyRJIsyoJ8yop0+EKhJkRaHc6abQ7qLQ5qTQ7qTE4eLIQsgyWn+0115FTW0ejJ04yUqsVE6cZCVSV01UiIuokCNSjmuC8BKKzWmivFrBWuXG5T52FtJGEZSTk+XfFhQUTEREFBERkURFxRAdHXvMZFySQYs+MQR9YgimQfH4rA7cOVV4cqpRnOoynOL24c6sxJ1ZiS7BjLF3DLrYIH+ElE5vYMDYG+jSK42vVy7H5bDhsFXzw0cv03v41Vw2ZCKTb+7Dp+/tot6mRmOt+e9erv1tH8LGT6B85QcApGU6OGDaxViE0DmfKTt8kPwGJ2SjrEHza7p/X+gV49s0cs7cvz8akwnZ6aRu21Zipt+OpNORGJzArnI14qfYqEOqKz9JSwLB+YUQOoILAo0kERtgJDbAyMCoEAA8skxJvZtCuyp8CuxOrM7mKcZtBJGlBJGlqNXudXiJlazEYiVeKidWsmKQ7eiwE2aAsBjoGqNBHxCDxhCLTwrH6Q2motqB1WqlosKKLDcXQY3LYQUFuf5tYWERxMTEEh2t/jObQ5r9KEmShC46EF10IMqgDngtdbgPV+PJr/GHvnuL6vAW1aGNDMDYKxp9pzAkjdpGp+59uebOR9n4+duUF2ahKDJ7Nn1JhSWXodfcwXU39+Wz/+zC5fRiKajh60/3c+U1Iyn/5L/g8XDZYQd7elaIMPPznJKyDOrN6lJmvBKObdtWACSDgZDLj1/v7HTQGI1EXj6E8vU/Idfbse/dQ3C//iQEx/mPKTXo6FRlPUErAsH5hxA6ggsWvaYp4WEjDq+PfJuTPJuDfJsqfjxHLHl50VGkxFFEHCggoRAtVRFPKR2kMuKkcoySB4+jBBxq1V0dEG8KpFO3BAyB3XETSU0dVFZVUFlZQVVVZYsaMdXVlVRXV5KZeQCAgIBAEhOTSEzsRHx8QjOHZ0kjoU8IQZ8QguLx4TpUiWt/OYpdbdNX4aD+p3w0wSUYe0ah7aEmGws0h3HFtD+wf/M69m/5CkVRKD68j+9XvsTo39zL5Jv7svqDdDxuH/mHK0nfZabjyNHU/PAdeh90zHeSXZRJl8Tu7fL3EZw5Ze4i/+u0uuAmJ+T+A9Acw1/sTIkaPZLy9T8BUPfrZoL79afDEUKnxKCjl7dKCGTBBYUQOoKLigCdlu5hQXQPCwLUPD8lDhd5R4ifGndTUU8FiTIlgjIiSFcuAxSiNDbilWI6SGXES2WYJDeytx5n7SGctYfUfrQBpMYk0zM1BWPwCBxuHZWVVsrKSikvL6WqqqJZ3RiHo55DhzI4dCgDrVZLXFwCCQkdSUjoiNkc4j9O0msx9YzG2CMKT241rn3l+CpVPyPZ5sbxazHO3WVIwzqiJIWg0WjoPfwaohI688sXb+F21VNdXsS3H7zA6N/cy9U39ubzD9NRFNi2KY/oK4fBD98B0O9gPZv3fyuEznlMpc4GqEtXnQqbcn2ZLx/WLv2F9UtDGxyMz2bDtmsnsstFhCkcg9aA2+em1KAlUlNLrc1FqLnthZZA0B4IoSO4qNFqJH+Y+/DYMACqXR7ybE5ybQ5y6hyUOY6IP0fCKpux0p09DX4+Udp6Eiimg1JEvFSGQfIi+xw4qg/gqFYtNlp9CCHmFKK7JGPq3wdFCqCiopyyshLKykooKbH4l7x8Ph9FRfkUFeUDEBISSmJiJ5KTOxMZGaVGcWkkDKnh6FPC8JbYcO0rx1tUB4Di9GL9IQdNoB5jnxgMXSOI69Sd8bfOYf0nr1FfW0l9XRXfrfwHI667m0Ejk9m6IRdFge/Wl5LWqRvmvExC6mXknMyz84cQnDL2qgpKTKrVxOiW0Rw4hAJog80E9ezVLn1qdDpCBg2m6scfUNxu6vfvJbj/QOKDYsmrLaBSr0Wj8VJRVk6ouePJGxQIzgOE0BFccjQ6OjeGuNs8XnLrnOTUOcitq6fE4W5WA9jqC8RKF9LpggaFOJ2deKWARIqIoQKtJOPz1GKvTMdeqTqL6oyRmMwpdElKoXfPsfgUHSUlxRQW5lFYmI/DUe9vv7a2hv37d7N//27M5hBSUrqQnNyZsLBwJElCH29GH2/GV+XAubsMT241AHK9B8eWIlz7yjH1j8OcEsOEWx9iw6evU1VWiMflYP3//kmfkVNITI6iMLcal9PL/tBR9NfmY/A5ST5sp9xaTHRUBwTnF4XZ+yhtyK/UJ8+H4lGXMoMHD0Y6xVxPp0LwgAFU/fgDALZduwjuP5AOQXHk1RagSBJlBh3u0kLoLISO4MKgfUuGCgQXAMF6Hb0jgrmuUzQP9O7EX/qn8ruu8YyMDSMh0Ngsl7OMRLE3mO2+y1jlm8Db8k2s42rS5Z5UKqE0rlZ5XRXYrNuw5nxM4Z6/U5H9NsGaQ/TrlcANN/yWyZNvoH//wcTExDXzdairq2X37h2sXv0xn3/+X/bs2ekPddeGBxA0phNhU7sT1CWiaUw2N/Ub8rGtyULv0jP2tw8Sn6I+8SuKwu4Nq4gI2kFElLrUYKuX2ZE4AZ+kJa7Cy9Zv32/fCRacFrml+1Earo3uBU0+YCHttGzVSFCPy5AaUibYd+9CkWU6BDUliCox6EQV8wZGjhzEmjWfA+D1elm58j9npd9NmzaQ05BmYMeObYwcOQiL5eyE/efn5zFhwsgW/ZWWlvC3vz3OlCmTuOqqsTz00AMcPpzd7Jjt27dy992/Y9y4Edxyy29Yt+7LszJmYdERCI4iQKflsrBgLgtTq0XXe30crnWQXVdPdm19s8guj6Ih1xtGLmH8QhpmrZckqZwEXzYJUglGST3W7bDgdlioK/sZJC3GoEQ6xXTjsm6j8CoB5OfnkJubTUlJ082jqqqSqqpKdu7cSnR0LN26XUanTqmYIgOJntqTsswy7FuL8VrUBIg+az22LzIxXhbNiGvuYv+2r9i/5WsACg/tJDqxHpczDbvNh10fzcHoYfQs24hx/6GzNbWCU6DUbYEACHTIRJaqf2NdVBSmzl3atV+NwUBQr97YdmzHV1eHMzubDpFNGZJLDDo614oq5gCrVq0jOFi9T3zzzTpefvlFbr759OuOtYaSEguPPDKHpUtfJyUllT590li1ah1hbZAh+2RkZ2cxd+6DOJ3OZtvdbjdz5z5IeHgEzz//DwwGA2+//W8efPA+3nlnJeHh4eTm5jB37h+ZPv13/O1vT7Nx4wYWLnyKqKhoBg0a0q7jFkJHIDgJgTotvSOC6R2h3tBq3B6yax1k1arCp87TFG5e59OxzxfPPuKRUEgwOEmkiARfFlFUqXVOFR8uWx4uWx7Vxd+gD4glNrQHyaMG45GDyM/PIScnG6u16cekvFx1ct669Re6du3G4MED0UcHEXxlZzxFdTi2FiHXuEAB1/5y3LnVdB88kvDrOrJl3bt4PW7KCw/SIV4hx9Ubr0fCEtKVGFsuCZZCMnZsoseAEWd7agUnoEJrA7R0zXciNVgKQ4YMPSvRTkFp/bDt2A6Afe9u4q+50r+v1KilR7UIMQeIjIzyvz5b9bGP7kev1zcbR3uxYsUbvPPOmyQnp1JWVtpsX3r6Tg4fzuazz14hKkotKPyXv8znmmvGsWnTT0yefD0ffvgfunTpyj333AvA9OnJZGZm8P7777a70BFLVwLBKRJq0DMgKoTfpsbxaFoKD/ZO4tqOUXQLDUR3xI+QgkShO4DN7i78z3cV73ELG3TXkKvpjkdpesbwOEqpKVlPScYyavLeJi6khPFjBjF16s307z+k2ZOa2+1i3749vP3223z55SqyszORYgMwX9cNU/840Kr9K/Ue6tfnEZYTzOgr/w9dQ+XfCksmcWFbkFAjuTJihiNLegq/+d/ZmDpBK7HX1lLaENR0WU7T03N7RVsdTVCvPk1j2beXEEMwQbpAQLXoBHmrzso4zncal67WrPmcZ5+d79+2Y8c2QF1iuuuu2xk3bgQ33zyV5ctfw+12Nzv/X/96lRtvnMyUKZPIz8+lrKyUp56ax3XXXcmYMZdzww3XsmzZP5FlGYulmJtumgLA7Nn38sYby1osXblcTpYvf42bbrqeceOGM3PmdH766Ud/n2vWfM60adexdu0X3HzzVMaOHcY998xg797dJ/ysW7b8wl//+jT33/9gi32pqZ35+99f8oscUHOFKYpCba269L5r104GDhzc7LyBAweze/fOdheJwqIjEJwB0hGJDEfEheORZXLqHGTW1JNZY2+2zGX3SezzhbKPAWilASQZXXQin0TPfoIl1TnZ66qkruwX6sp+Qas3kxDWnS5XDKDWEcChQwfJzT3sj94qLbVQWmrh1183kZLSlZ49+2BO7o7j1yJ/hJbXYkNfAlf0vouf9q7A7XFQX1NEhKmSGtfluHSR7I8ZSZf8H7HXVRFkbn/zt+DkZB3aSZ1OS2idl9hKNR2CsWNHjAkJZ6V/XVgYhsSOuAsLcOXlIttsdAiO41D1Yep0WkyaKtweLwZ92/6EuHOrce4qQfHIJz+4jZH0Gkz94jAkh53yuePHT8Rms7F06RJWrVpHSEgomzf/zLx5jzJ79hwGDx5KUVEhL774PPn5eTz99HP+c1ev/oTFi5fi9fpISkrmzjunEx4ezgsvvExgYBC//LKRf/xjMT179mL48FEsX76CWbPu4Jlnnmfw4KFkZOxvNpYnn3yCgwczeOihR0hK6sR3333NE0/MZeHCxYwcOQYAq7Wczz77H/PmPY1er2fx4oUsWPA3Pvjgk+NaDF999d8AfhF3JJGRUQwb1tyq9PHHH+B2uxkyRE1sWVZWRkxMbLNjoqKicDqd1NTUEBYWdmqTfgoIoSMQtCF6jYZuoUF0Cw0Coql0esistXOoRl3maqzX5VMgx2kkh65AV2INXjpJFhK9+4mmEkkCn6cOm3UbNus2NFoTl3XsRp8eQ7CU+8jKzqKyshIAj8dDZuZ+MjP3k5SUQq+0voR2i8Txa5GadFABbb6HK+JvZ1fN95TVZKPIDsz6n7B7B1AenIzZ1ZeKD19l/Kwnzt3kCfwcLt8PBuie21Sq5GxZcxoJ6tUbd2EBKAr2/fvoEK4KHYAqIxjKyohLaNtoPdfeMnUJ9hygAK595acldIxGk99Xp3EZ6Z133mTy5ClMnToNgISERObOfZzZs+/FYikmPl6du0mTrqFHj56Aao2ZNOkaxo4dT1yc6hc1bdotvPfeCrKzsxg16gq/hddsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZVU2jMmDGTxx57mIqKCqKiznwZbP3671m27J9Mm3YLXbp09X82vV7f7DiDQXV6d7vb928uhI5A0I5EmPQMNYUxNCYMryxzuM7BgWo7GdX2ZokLS906SunIr3QkWCuTorXSybufeErQSgqyz4m9cjdU7iZIo2d0/+445F4cLnCRk5uL16u2lZ+fQ35+DjExcVw2sBfR1eG495aDrCDZZfrrr6AkNpW9pT/gw0uQdhuKouNw5AA6Z/2A2+3y33wE545SVwnoFbrnNSxbSRLmIZef1TEE9e5D1VdrAajft4f4SU3LWaVGHaaSojYXOsbeMefUomPsFX3yA1tJZmYGBw7sY+3aL/zbGpdocnNz/EInMbGpErzRaOLGG3/Ljz9+x0cfvU9hYQFZWYewWsvx+Y5df+9IsrPVGnx9+/Zrtj0tbQCvv/5Ks22dOqX4XwcFqSLt6Azvp8Nnn/2XF1/8O+PHX8kDD8zxbzcajXg8zdtvFDgmU8AZ93sihNARCM4SuiOsPVOSFCwONxnVNg5U2Smqb3qisfk07PHFsIcYAjQKqboqknwHSFQK0UoyiuyhumwvsJfEID2dh3ajwmZm78ESHA71h7ExUWFwsJnuvboTX2RCU6lad+K8SURFT2d/zc9Y3FkE636lzjuS3NCRfL/iX1w164FzNEOCRip09cRUeYmoVX/cArp2Qx8ReVbHYOrSFclgQHG7se/bR/xvJvj3lRq0xFrbPsTckBx2WhaV8xFZVpg+fQZXXz25xb4jnYeNxqYHC6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67F9XWTZ16zsDHDMwsNn6ivz2msv85//rGDatFt48ME/NVsGi4mJxWptXhDWarUSEBDot4a1F0LoCATnAEmS6BBopEOgkXEdIql1e8losPRk1dbjbbjhOGSJfa4I9jECg0YhVV9LJ99BEuVc9JIPRfbgrNlHEDCsRzBuKYHMPDdlFaqzsc1Wx/a929Dr9aTEdCS5PAyTokcn6+lrHkNHTw/22TcCm7AxFEtpEnVVVZjDha/OuaKutoYyIwzbf4QT8tCzu2wFoNHrCezeA/ue3fhqqompbnoaL9Pr8NWUnuDsS4+jfVtSUzuTl5dLYmJTYsWdO7fz0Ucf8PDDjxIQ0NKKsWXLzxw8eIDVq78iokHY1tbWUFlZcdx+mvepph7YvXuXf+kKID19F8nJKcc7rU149dWlvP/+O/y///cg06f/rsX+/v0HsHPn9mbbtm37lT590tBo2jcuSkRdCQTnASEGHUNiQpnRrQNP9E/l1s5x9IkIxqBpuqm5ZYkMZyhfeYbwjvJbvtNOJovOeBQ1e67staHzHKRnhxyu6O+jR4oRnUZdAvB4PGSWH+Y7TTr7zRYcqJEf4fpYhoZeR4yhA8G6n1EMVtb8e+XZnwCBn72ZW/BK0C2/wcqn1WIeMKhV5zodHoryqjiQbuHXDbns+CWfkqKa035SDzwi+krOyCJYq/qElBl06OpFiPmRNAqXjIwDuFxObrttBuvXf88bbywjPz+P7du38uyzT1FXV3vccPDo6BgAvvpqLSUlFtLTd/Hoo3/C6/X6o7Ua+zl8OAubzdbs/JSUVIYNG8GSJc+xadMG8vPzeOut5WzcuJ5bb729vT46O3Zs4/3332HatFuYNOlqKiqs/n/19WqgxU033cL+/Xt57bWXycvL5YMP3uPHH7/jtttmtNu4GhEWHYHgPMOo1dAnwkyfCDMeWSartp59lTYOVNtx+BqEiwyHXGYOMQS9NJhUfRXJ3n0kScVoJRm85cQFQ1xvLfXeSLILfVTU6vDJPrJs+WRrCuigjSLZE02EFEx/80QOO3aR7diJyxfL1u+/ZfC4CScZqaA9yLUeIK7WS7BD/VsH9eqN9iSm/dLiWjZ+k0WZpe6Y+0MjAkgbnEj3PnHodK1/vg3q3ZvGxQb7vj3Ej43jUM1hbDoNeCtb3c6lwIABg+nZszf33XcX8+Y9zbhxE5g/H959903ee+9tzOYQRowYxX33zT5uGz179uaBB+awcuX7LF/+GtHR0YwffyUxMbHs378XgNDQMK69dgqvvrqUwsICRo8e26yN+fMXsmzZKyxatACbrY6UlM4sWPA8Y8aMPVaXbcI333wFwH//+yH//e+HzfbNnDmLu+/+P1JTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRch5eyApZyvL0XmMzydTWWk/+YGniE6nITw8iKoqO17v2Xeuu5AQc3VyfLLC4bp69tfY2V9lp+4IZ+ZGjJJMqraEVPkgCVIpGqnp6+1TTBRZ9VgqjTjcTc84oUogXUkgnnBqvRXst22kyu3l6rv/SPhZ9gtpay7E6+qlz/9C1KFKBu9Xn4Rj77yL0JGjj3msx+Nj64Zcdm8tpDV38sAgA6MndSWlW0uLwrHmSlEUch6bi9dqRdLp2HX/VfxY/isAMwvqGPC7f57ysoPH46aiwkJkZDx6fUs/kQsFnU5zwVxT5wOnM18nu1YiIoLQak9+/QmLjkBwgaDVSHQNDeKySDN3hQWyPc/KrvIa9lbZqG+4gbgUDQe8HThABwI0PjoreXSWDhNHOVrJSVK0k6ToOmodRoorjJTXmKiR69nGIcKUIHrpOjE09HqKXYf44c1/M3n2nGM6LQraD6veyZDChmUrSSLoqAiaRiwFNXz/ZQa11U2+PGGRgXRMDicsIoDgECOOeg+Ze0spLqgBoN7uZt0n+xh6RQr9hyYds90jkSSJoF69qVn/I4rXS0drU+RPtVHBVl1FyAUuhgUXP0LoCAQXIBpJoktoIMlBJq5LiiGrtp7dlXXsr7LjklXR45C17CWVvaRi1rjoKmfRTZNDmFRHSICLkEQXXTvYKK8xYKkKpNqusIn9xBFON1MCow3JbF32IcP/8LuzUnZAACVlBchOmcjGaKsuXdGFhDQ7RlEUtv+cz7aNuX4rjlYrMWhkMmlDEls84V6WFk95SR1bN+SSl60uN23+MQefT2HQiE4nHVNg98uoWf8jABGWWohTt5cZdFRZCoXQEZz3CKEjEFzgaDUS3cOC6B4WhEeWOVitip6Mars/eqtONrKDXuzw9SJWU01XDtFFysekcRMX7iQu3InDpcVSFYClysdP3iqiNaF0C0lh1+uf0mPmJAJMQef4k1787M7cQmphU6qBoH79WxyzZX0OOzcX+N/HJYZwxdXdCY8MbHFsI9FxZq6e1psdv+Tz60+5AGzdkItGIzFg2IktO6au3fyv9fklRwgdLfXlxUBaKz6ZQHDuEEJHILiI0Gs0/gKkLp/MgWobuyrqOFRT78+wUSqHUcpgfmYQnaRiukmHSZKKCTD6SI2zkRxjo7zGRFGlm0311UQEmnG++xWxQzqTmiZ+1NqTgppsUouaaiEFpzUXOgfSLc1EzpBRyfQfloRGc3KLmyRJDBzeCa1Wwy8/qBmOt6zPITDIQI++ccc9Tx8ejj4qGo+1HG9uHgEDY3BovZTpdXirSv5/e/cdH1WZLnD8d6ZkJr333kMKJRTpHXFR0VWxlwVlbVdWV13doq5r96J4saEu2AsqCNJURFF6L1ICJCQkgdRJb5PMzLl/TBiIgCRImBCe7+eTj8k7p7znMcw8eWtHH1GIc04SHSG6KYNWQ29/L3r7e1HbYmGHqZZt5TUUNdo/SG0o5Krh5KrhGJUW4sklSZNLkFJBsG8Twb5N1DbqOGxqJKfKlaLttRzYtI0xf7r5hMXHxNlR02QitLx1vRp/P1xCjiUghw9V8fO3Bxw/D7s4gfTMju991fuiSGw2lQ0/5QKwctk+vP1ciYw59dpJrolJtJSXoVosJNUY2eFbR7VeS0uDrKUjuj5ZR0eIC4CnXsfQEF/uS4/mvrQohoX44KnXOl5vUvXsVpP4yjqeL2wT2GlLplF1wdPVQkpEDYNSSgkKLaPavYGlH37CT59/6cSn6Z5aWlpwNTWiaW168+k7wPFadWUj3361G1vrXmkZfcPPKMk5qs/ASDL62c9XVfhxyT5aWk69xYDrcd1XsdXHktwGm0wxF12f/FkmxAUm1M1AqFsgF0cEkFPTwLbyWvZU1dHS+iFaoXqzVs1kPb2JVQpIUQ4SoS0mKrCByIAGKmprOWxyY/GcD3A3ujDqxuud/ETdw659m4gsOtZt5dknEwBzUwtLv/gFc5N9OYHIOF8Gj4n/XfdSFIXBo+MpPVJDyZFaqisb2fBTLpdPOnnXpGvSsUQnqLQBYuzf12sbflc9hDgXJNER4gKlVRTH3ltNViu7KurYXF5Dfp19urINDTlqNDlqNB7Uk6I5SLJyEH+vBvy9zDSYazhicmPRB3NwadEw7MZJuLnKgOUzdaBwK6mtiU6LixZjvH05/5++OUBVhX1LD98AN8ZNTG3XmJzT0WgURl2awhdzNmO1qmzfUMiAobG4GLUnHKsPDkHr6YW1tgZjYRlKPy9UjUK1QaWloQa9m9dJ7iBE1yBdV0IIjFot/QK9uatHJPenRzM02Ad33bEPvDrc2WzL4GPrRJZYR5Jji8TgopIQVkt6WiHeMWX8uPBjlr41m6JDOU58kvOX+UgeLhZ7q5o1NhpFoyH3QDk5Wfa1iQ1GHROuScdgPHt/n/r6u5E52D7FXFVVls7bddLtIhRFwTUx0f59kxn/anvrUomLjqqiwrNWHyE6gyQ6Qog2glxdmBAVyCO9YrkxPoQkbzeOtR8oFKihLLcN5SPrRDZaM2hQ3AjzayQjuZiItFL2bPuGZW/PYdOKZU58ivOLqqp4lh7btyh86BiazRZWfXds8PHQcQl4+Zy4EeTv1fuiSLx97dctyK0ga+fJZ1IdP04nstSe6JTptdSWHD7rdTpfDB3aj6VLFwFgsViYO/fjc3LfNWtWkZtrnzm3detmhg7tR1HRkXNy7/z8Q4wdO/Q377djxzaGDx/A1q2b25Rv2bKJ22+/hdGjh3D99X/km2+WdHZ1gXZ2XS1YsKBDF73yyivPoCpCiK5Ep1FI9/Mk3c+TKnMLW001bCmrobJ164lGXNmqprPNmkqUcoQ0JZtItyJ8ok2YwzSUVFTz3XtHUDVWRlx3G0aDwclP1HUdyNtLeGu3lU0Bn96ZrFmZS32tvSwyzpfE1KBOubdOp2HYxQksnvsLAGtW5BAZ54fRVd/mONfEZMf30WUq25KhQq+lvuLcfMB2RQsXfoNH6z5ky5d/w6uvzuC6627q1HsWFxfxyCMPMHPmLGJj48jI6MXChd/g43PqWXNnS05ONg8//BeamppOeUxdXR1PPfU4Nlvb7R7y8nJ5+OH7ufHGW3jiiadYvXoVzz33HwICAunXb8AprnZ2tCvRefTRR9t9QUVRJNERopvxMegZHebPyFA/cmoa2FhWw97KOmyAioZDagSH1Ag8qSNVk02K7iBRwbXYAmsprXJl9Zcf0lhVT78/Xk1oWISzH6fLObD9BxLr7R8M1QFuFJU0sXubPYHQ6TUMvzipU1enjoz1IyE1iOw9pTQ2tLDh51xGjE9qc4whMhLFYEQ1NxFcZgbVFVVRqGoo6rR6dXXH70J+rraN/PV99Hr9KXdDP5vef382H3wwh5iYOEpLT72swPTpzxEeHkFxcdvfi88++5iEhETuuOMuAG68MYb9+7P45JMPu0ais2LFik6thBDi/KBR7PttJXq7U9NsYVNZNZvKaqhpsbfy1OLBBltvNpFBnFJAmuYAIb7lhPg1UlHrwr61S9hSZCa4X0/6DRwhW0u0suZmO75XYxP5cek+x8+DRsbh5WPs9DoMG5tAfo6JZrOVvduL6D3gWJcWgKLV4pqQQMPuXRgbW/Cus1LtqaPWVtXpdeuqhg7txz/+8QQAzz77pKNs5sxZZGb2Y82aVcye/RZ5ebkEBgYydux4brvtdsf+cUOH9uPWW6fw7bdLaWlp4bXX3sJodGXWrNfYtGkDNTXV+PsHMH78BKZOvZuSkmImTZoIwLRpdzF58lT69OnLtGl38cUXXxMaGobZ3MQHH7zLd999g8lURnR0DJMn/5nhw0cCsHTpIubMeZvbb7+T9977L6WlJcTHJ3L//Q+Rnt7zlM+6YcM6Hn/8KTw9vZg27a6THvPtt0vZvfsXnn/+ZW67re1szO3btzFs2Mg2ZX379uf//m86qqp26ntBuxKd8PD2r9cgm6ELcWHwctExJtyfkWF+7KuqZ0NpNQdq7NONbWjJVmPItsbgRxXpmv0keuTh51lCfbiO8rLdLHtjL0qwjlGX3YLR2Pkf5F2V1WrF57jxOTU+w6g7WA9AeLQPaZlh56QeHl4GBo9KYOU3+1BV2L6hgBGXtG3VcU1MomH3LgDCylqo9tRRp208J/XrysaMGUddXR0zZ77EwoXf4OXlzfr1a3nssUeZNu0B+vcfyOHDhcyY8SL5+Yd46qnnHed+/fV8pk+ficViJSoqhj/96UZ8fX15+eVXcXNzZ9261bzyynRSU9MYPHgY77zzPlOn3sYzz7xI//4Dycra06Yu//73P9m3L4u//vURoqKiWbHiO/75z4d57rnpDB06AoDy8jIWLJjHY489hV6vZ/r053j66Sf49NP5p0w43njjvwAnjLs5qqjoCK+8Mp3nn38JN7cTtyMpLS0lKCi4TVlAQABNTU1UV1fj4+PT7nh31BkN31+yZAkbN26kpaXFkdioqkpDQwPbt2/n559/PquVFEJ0XVpFIdXXg1RfD0xNzWwsq2ZLeY1jR/UKfPjZNoAN9KKHkkO64QDRkSaaQzSUmjz5+YMPqNWUM2jCLYSFRTr5ac69A3s3E2Syt4gV+EWS05rk6F20jPxD8jlt9RowNIY1P2TT0mwl65di+g2Nxt3j2Ngq14REx/dhZS3sjXOl2kXFam5Aazj1XlvtlZd3kB07NtPS0vK7r9VRer2e3r37ER0d1+FzDQajY6zO0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERQkPtCez48RNISUkFwGxuYvz4CYwaNYaQkFAArrnmej766H1ycrIZNmykYyyOp6fXCQlFXl4uq1b9xAsvzGDIkGEATJ48lezs/bz//hxHomOxWHjooUdJbB13deutk/n73x/CZDIRENDxbjCr1cpTTz3OFVdcRa9efU46UNlsbkKvbzvuy8XF/rvV3Gw+4fizqcOJzmuvvcZrr72Gp6cnFosFvV6PTqejoqICjUbDpEmTOqOeQojzgL/RhT9EBjI23J9dFXVsKK0mv94+cNGMge1qKjusKcQqhWTo9hEeXI4tqJqySnf2Lv+G9dVFxA8bRa8+w5z8JOfOoQ3LiVXtW3Lk+Q10lA8eHX9OuqyOZ3TVk9E3jK3rCrBZVXZuOsygUcc++I1x8aDVgtVKeKk9GSnTa6kuLsQvOulUl2233bt3UF1d9buv83vufyaJzsns35/F3r27WbZssaPsaMNAXl6uI9GJiDi2qarBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1lOvXH1UTo69C7Rnz95tynv1ymTWrNfalEVHxzq+d3e3J2kWy5klmB9++C6NjQ3cfvudpzzGYDCckMAeTXCMxrM/m/B4HU50vvrqKyZOnMgLL7zAzJkzOXLkCC+88AK7du3iz3/+M4mJiae/iBCiW9NrNPQJ8KJPgBeF9U2sK6liZ0UtVtU+ePmgGsVBaxQBVJCh2U+C3yGC/eqpqDVQuW8vX61chXdaLMNGX4Nepz/9Dc9j+gL79OxizwSasX/ghEZ606PXqTfa7Ey9B0SyfWMhNqvK7m1HyBwU5Vi7R+PigjEmlqacbHxrrbg12ig16Kg5S4lOenovtm93XotOWtrZ27TWZlO58cZb+cMfLjvhteMHDxuOm43Y1NTEvfdOpampkdGjxzF+/KU88EAa9947tZ13PfnQEZvNesL+dEfHCbU5+wyHnixZ8jXl5WVMmDC6zXUeeugv9OnTl5demklQUDDl5WVtzisvL8fV1c3RGtZZOpzolJSUcMUVV6AoCmlpaSxZYp8Hn56ezl133cUXX3zBzTfffNYrKoQ4P0W4G5kUF8IlkQFsLK1mQ2k1dRb7X6fl+PGjbSDr6U2qkk2q5wH8vYqpjdRTWVrFsldnooRpGXXpHZ3+ZugMjY31BJQ2YUPDQf/ejvKBI2KdNlDb3dNASkYIe7YX0dJsZdfWw/RtXVQQ7N1XTa0tByGmFg5GGCg35R/dFeJ3iY6OO2stKufar/9/xcXFc+hQHhERx7pjt23bwueff8pDDz2Kq+uJrRgbNqxl3769fP31t/j5+QNQU1NNRYXplPdpe0/7ato7d253dF0B7NixnZiY2FOd9ru9+upbWCwWx89lZaXcd9+dPProv+jTpy8Affpksm3bljbnbd68kYyMXmg0nbukX4ev7ubm5gh0TEwMhYWFjjn1PXr0oLBQVskUQpzIU28fvPy3XjFMig0m3O3YX7KNGNmipvOxdSI/Wi+ixdWNqJgyUgY3EuCuZdV77zHvv09SVNS9Fqfb9t08jM0qh72TMevsiVxUvB8hEd5OrVfviyI5+nm6c/PhNht+Ht2aAiCkdad1U9PJFxm8kBxNXLKy9mI2N3HTTbfy008/MHv2W+TnH2LLlk08++x/qK2tOeV08MBA+1pJ3367jOLiInbs2M6jjz6IxWKhubm5zX0OHsymrq6uzfmxsXEMGjSEl156njVrVpGff4h3332H1at/4oYbOq8BIiQklIiISMfX0fFFAQGBjmeaNOl69uzZxZtvvsqhQ3l8+ulHrFy5gptuurXT6nVUh1t0MjIy+Oqrrxg8eDBRUVFotVrWrl3L6NGjycnJOWlzmBBCHKVr7dbq7e9Jfl0Ta0uq2N26Jo8NLfvUOPZZ44hUjtBbl0VYWAnBIQqmCm92L1rEmubD9Bw7iaSUU0+FPV807N2KRdGR63usy2TAsBjnVaiVt68r8SmBZO8to6mhhX07i0nva5996xp3rMXlaKJTY6t2Sj27kszM/qSmpnP33VN47LGnGD16LE8+CR9+OIePPnoPT08vhgwZxt13TzvlNVJT07nvvgeYO/cT3nnnTQIDAxkz5mKCgoLZs8c+283b24dLL53IG2/MpLCwgOHDR7W5xpNPPsdbb73GCy88TV1dLbGx8Tz99IuMGDHqZLc8Z+Li4nn++Zd5882ZfPHFp4SGhvH440/Tt2//Tr+3onawU27Tpk1MnjyZoUOHMmvWLP75z3+yfPlyLrroIlavXs3YsWP53//9386qb6ewWm1UVNSf9evqdBp8fd2prKzHYrGd/oQLmMSq/bpjrKqbW1hXUs3GsmqarG2fKYAKemmyiFPy0aBSUe1GdYEnZaYjxA8dSWb/U7+Bd+VYWa1Wtj04lXJ9T3L9+wCQ0COQcVekOqU+v45VeUkdX7xr72rw9DJww50D0GrtnQAH//YglgoTLVp4c1IgmbUWpvxxRrvu09LSjMlUhL9/KHr9+fuHsU6n6XK/U13ZmcTrdL8rfn7ujt/J37x3h+4K9O/fny+//JJ9++wLWj3++ONoNBq2bt3KJZdc0qFVlIUQAsDbRc8lkQGMCvNjc1k1a0qqqGrdaqIcP1bYBrOBXmRo9tHDOwd/nxIC6l2pyt3HvJ/XEtQ3nSHDL+/0vv6zae/6H9A1uXMoKAOw7yY+YHjnjaPoqIBgD6Li/Mg/WEFtjZm8AybiUwIBcI2Pp7bChN4K/tUWKg0qtuYmNC4X7npIous6o3V0UlJSSElJAewjxp966qmzWikhxIXJoNUwJMSXgcE+7K6oY1VxJYcb7FNQ63BnnS2TLaTTQ8khw20fUYmlBETqqCw+wqL/m4FHcjAjxl+PTnv2dvjuLEfWfkdF0GBsGntd0zLD2qxE3BX07B9O/sEKALJ+KXYkOsa4eGo3bQQgtNxCXqwLdaVH8Io4PwcSi+7tjN4NamtrWb9+PQ0NDSedjiZ7XQkhfg+totDT35MMPw/y6ppYVVxJVpW9e7kZF3aoPfjFmkSykktvw17CY8rwD9NQUVrFt6+/iSbUhdETJ6PTdc0WBovFgtXkQ6WPfS0Vo6vCRe1ozVFVlaqyQkoLskEBF4MbeoMrehcDWp0Lehcjnn5BaDTas1LPiBhfPLwM1NWYKThYQX2tGXdPg309nVYh5S38kuhKSVGuJDqiS+pwovPTTz9x//3309h48mW/ZVNPIcTZoigKsZ6uxHq6UtrYzJqSSraV12JRVWxo2asmkGWNI14poI9+D2ERFQSGKJjKvflpzhyaPc1cd+cDzn6ME2xfsZAi996On0dflobe5cTkxGazUl9dQbWpCNORXAr2b6O+puI3r2108yS6R3/iew7B0zfwd9VTURSS04PZsjYfVYX9u0voMzAKQ1Q0ik6HarEQ2joguagyD1lFTXRFHU50Xn75ZeLi4vj73/9OcHDwedUnLoQ4fwW5uvDHmGDGhvuztqSK9aXVmK02VDRkq9FkW6OJUg6Tqd1DSEg5gUFgqvDk6/+bRb2+ltHX3ImHe9dYi+fQlkOY9fb1Rdx0JqLj/du8brPZyNmxml3rltLc1NChazc11LJvyw/s2/IDIdEpJPQeRmhs2hm/VydnhLBlbT4AWb+U0PuiSDR6PYaoaJoO5uBba8VotmFqLj2j6wvR2Tqc6Bw8eJA33niDfv36dUZ9hBDiN3nqdYyPCGB4iC8bSu0Dl+tbFyDMV8PJt4YTSimZmt1E+BcT6F+LqcqNTV9+Sk1LDaOuuwMvT+etU1NecoQaa6JjFbMBY3q0ff1ILlt/+ILK0hPXJFMUDUFRiYTHZeBidKOluZFmcyOW5mYsLWYaaiooytuDrXW7gOJDWRQfysLN05f0IZcS06N/hxci9PZ1JTTSm6KCaqpMDZQW1RIc5oUxLp6mgzmAvfuq2qPmDKIhROfrcKITFhZ2wiJFQghxrrnqtIwM82NwsA+by2tYVVxJdetMrSKCWGILIoAKMjW7ifUpJMC3gcoaI9sXz6Wqup5hN/wJX2/fc17vVXMX0qS3TyF3s5XQo88IzI31FBzYTv7ezZQdzmlzfEh0Cn4hUfgEhhMYkYDRzfM3r29urOPgrvXk7Fjt6OZqqK1k4zcfcfjADvqNvQ6ju1eH6pySEUJRgX2tnKxfigkO88I1Lp6qo3U0tVDp3bkbMwpxpjqc6Nx55528/vrrZGRkEBER0Rl1EkKIdnPRahgc7MOAQG92VNTyU1EF5U32cSPl+PGdbRh+VNFXs4s4zwJ8U4qpqdeza/lcqspaGHz9Dfj7dnzH5jNhNjdRVRPmeOeNTDbwy5rFZG3+AZvV0uZY74Aw+o65lsDwjg3wNbh60KP/WJL7jqY4by/Z21dRlLcHgMM5v1B2+CD9xl5LZFKfdl8zLjmAVcsPYGmxkb2nlCGj4zHGtx2QfDDFiGppRtGdv2vjiO6pw4nOokWLKCkpYdy4cfj5+WE0tp3VoCgK33///VmroBBCtIdOo9A3wIs+/p7sqaxjZVElR1qnplfgw3LbUHypoq9mN3FuBXjFlxIQrmPPyi+oLoF+V11OSFDn/vH27bsf06Szb6HgZinGaGhgz4ZtbY7x9A0iKXMEcRmDf9fsKY1GQ1hcGmFxaRRm72Tz93MxN9TS3FTP2sXvknrREdIHT2hXV5aLQUd8ciD7dpXQbLaSe8BEQo9AtF5eWGtqCK6wUK7TUFtWiFeozLwSXUuHE52QkBBCQpyzq64QQpyORlFI9/MkzdeDnLpGfiyuJLfKPqC3Eh++tw3Bl2p7C4+hgOiYMhpCtOxbu5CtJS70vnwcYWExZ71e9fV1mMr9QQcaGnD32knB/lrAPvYmvucQ4jIG4hMYcdY39IxI6ElAWCxbVnxO4YEdAOzZ8C1NDbX0HXNtuwYqJ2eEsG9XCQBZO4tJTA3CGBNL/c4dGJtVPOtt5B7eRy9JdEQX0+FE57nnnuuMegghxFmlKAopvh4MjA1iQ14Zy/PLya+3b0BciTff24bgQzV9NbuJN+QTG22yJzybF7O92I3EkQNJTDp72zEsnfUJzboI3LQ7MGhysbYOoNbq9Ay+bAphcWln7V4nY3TzZPBlUziw7Se2rfwKUDn4y1psVgv9L76R0+3xHBbljZePkZqqJgrzKqmtbsIYG0f9TnviFGyyUORWQK/fvEr3MnRoP/7xjyeYMOFyLBYL8+bN5brrbur0+65Zs4qwsHBiY+PYunUz06bdxRdffE1oaFin3zs//xBTptzEhx9+fsL9PvnkQ7766ktMpnJiY+O4996/kJl5bOLSli2beOONmeTmHiQoKIg//ekOLrnk0k6vc4fnGx45cuSUX8XFxdTUyMh7IUTXoSgKyT7u3NkjgslJYUR7HOtur8KbFbbBfG6dwH5bNEYXG/GRFcT3LCI/63uW/Pc9dmzd9LvrsO3nH2myVeGt/wajNhtFsSc5ru7ejLzmfzo9yTlKURSSMkcyaMKtKK2tOHl7NrLx24+x2X57HyJFUUjpeaw1P+uXYowxxxY5DDa1UG4u65yKd1ELF37DmDHjAFi+/BtefbV9+339HsXFRTzyyANUVtoHmmdk9GLhwm8ICgru9Hvn5GRz//330NTUdMJr7733X+bMeYupU+/i/fc/pUePNB555AGOHDkMQF5eLg8/fD+DBg3hvfc+ZuLEq3juuf+wefPGTq93h1t0Ro8efdpmVW9vb2699Vbuueee017PZrPx2muv8cUXX1BTU0Pfvn154okniI6OPunxBQUFPPPMM2zduhW9Xs8f/vAHHnzwQcfW9UIIcTKKopDo7U6Clxs5tY38cNhEXp39DbsKL36wDWYbqfTX/EKsSyGJkVU0BdeQf7iaxdv34BcVzuCxYzt834qSIvZu+BEXbZWjTKvVE5s+kIwhl+JidDtbj9huUSl90Wh1rF3yLqrNxqG9m1AUmHDTXb95XnJ6CJtW5aGqsG9nMX1uPtbiFVxhYZd6Yc3I9fc/Noi9g/tjn7Ff30ev17epR2d5//3ZfPDBHGJi4igtLWnzWmNjIx9//D533z2Niy/+AwAPPPAwv/yyg507txMWFs5nn31MQkIid9xh/x278cYY9u/P4pNPPqRfvwGdWvcOt+g8//zz6PV6hgwZwnPPPcc777zD888/z6hRo1AUhXvvvZc//vGPvPnmm3zyySenvd4bb7zBZ599xtNPP83cuXNRFIWpU6fS3Nx8wrG1tbXccMMNVFdX89///pdZs2axa9cu7r333o4+hhDiAqUoCglebkxNieD25HBiPI/9kVSJD9/ZhjHfejH5tlAMehtJEdUkpRXQ0LSLhe+9x4pP57b7Q+3woVy+eX8W2tYkR1U1xKQN5fI/P0nfMZOckuQcFZHYiyGXTXEMeM7bs4nvv3jnN5/Nw8tAZKwfALU1ZopMFjR+9p8DKy1UaU983+7Ohg7tx9Kli1i6dBHPPvuko2zr1s2AvYtpypSbGT16CNdddyXvvPNmm8+2oUP78fbbb3D11ZcxceJ48vPzKC0t4T//eYzLL7+YESMu4qqrLuWtt17HZrNRVHSESZMmAjBt2l3Mnv0WW7duZujQfhQVHQHsM/veeedNJk26gtGjBzN58o38/PNKxz2XLl3ENddczrJli7nuuisZNWoQd9xxK7t27fzNZ92wYR2PP/4U9977lxNe27FjG01NTYwbN95RptVqef/9Tx1dU9u3b6Nv3/5tzuvbtz87d27r9CSxwy06S5Ys4dJLLz1hrM4VV1zBE088wa5du5g1axZeXl58+umn3Hjjjae8VnNzM3PmzOHhhx9mxIgRAMyYMYNhw4axfPlyLr20bd/dV199RV1dHa+//jp+rf+4ZsyYwahRo9i8ebMsYiiEaDdFUYj3ciPey42cmgaWF5ocY3jK8GepbSQhlDJAu5MwlzKSwmswB9WRX+bOVx+8i7FJITQ9md6DB520lfvH+XMpztmBVmdv5VBVLUFRfblo/LXn9Dl/S3hCTwZfPoW1i+Zgs1nZv309Hr5hJPYZecpzUnqGODb6zN5bRnJsHHUVFbhYVGyNNqwWM1qd4Yzq01C5h6qilai2c78mj6Ix4BM6Ejffjo/LGjNmHHV1dcyc+RILF36Dl5c369ev5bHHHmXatAfo338ghw8XMmPGi+TnH+Kpp553nPv11/OZPn0mFouVqKgY/vSnG/H19eXll1/Fzc2ddetW88or00lNTWPw4GG88877TJ16G8888yL9+w8kK2tPm7r8+9//ZN++LP7610eIiopmxYrv+Oc/H+a556YzdKj9c7a8vIwFC+bx2GNPodfrmT79OZ5++gk+/XT+KXts3njjvwCOJO54BQX5eHp6kZ19gHfeeZOCgnxiYmK58857yciwj9oqLS09oXstICCApqYmqqur8fHx6XDc26vDic7GjRt54403TvraxRdf7Ghd6du3L2+99dZvXisrK4v6+noGDhzoKPPy8iI1NZVNmzadkOjk5uYSFxfnSHIAQkND8fX1ZePGjZLoCCHOSLyXG3E9XNlX3cDywyaKWqelFxPE19axRChF9NfsJFhfQWJYLebAegrK3Nmd8wt5Bw7gZtFibFHQoaK36fDSeZKijyDRP4QGazV1lhps7u70HDAa84EKbLVmbA0taDxc0AW4oQ1yR3OSva7OhfD4DAZdNpk1X9s/yLb/tBC/kFj8Q08+fCA6wR+dXoOlxUbeARMZCTGwxf7h51dpobgkh/DwMxvEXVO6Fou5/IzO/f1qqSlde0aJjsFgxMPDvr3I0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERx0De8eMnkJJiv6fZ3MT48RMYNWoMISGhAFxzzfV89NH75ORkM2zYSHx87Itcenp64ebWtkUwLy+XVat+4oUXZjBkyDAAJk+eSnb2ft5/f44j0bFYLDz00KMkJiYDcOutk/n73x/CZDIRENDxbrD6+jrM5iZefPFZ7r77fwgODmXhwvn85S93M2fOx8TExGI2N6HX69uc5+JiT4ibmzs3se1wouPj40NWVhZDhgw54bWsrCzH/+yGhobTjpspLi4G7MnK8YKCgigqKjrh+MDAQMrKyrBarWi19jeFuro6qqurMZlMHX2UNnS6s79nl1arafNfcWoSq/aTWLVfR2OVHuBJqr8Huyrq+K6gnNJGezdDoRpKoTWUGKWQ/pqd+OurSQirJSqwnoJyd45UuGJ10eCvehJDEIH4om0dGeCh9SHIBVChYWXeCfc8+hav9TGiGHUoGvtf1IpBi0uUN4ZobxR95yZBMSm9qSq9mN3rv8Nms7Ju6Xv84bZHMJyka02n0xCT4E/23jKaGluo8zm29lBwhYWDRfuJjk4/5b1stlOP8fQKGuzUFh2voMHtO7Yds//3789i797dLFu22FF2tIsmLy/XkehEREQ5XjcYjFx99bWsXLmCzz//hMLCArKzD1Bebv/cO52cnGwAevbs3aa8V69MZs16rU1ZdPSxgeTurXvAWSwtp3+wk9Dr9ZjNZv7ylwcZNMieGyQn/4Ndu3Ywb97nPPTQIxgMhhOufzTBMRp/O1fQapXf9Rnd4UTn8ssvZ+bMmeh0Oi655BL8/PyoqKjgu+++47XXXuP666+nurqa999/n169fnui4dEd0F1c2q6kaTAYqK6uPuH4Sy+9lFmzZvHss8/y17/+FavVypNPPomiKCcd09NeGo2Cr6/7GZ9/Ol5eMlC6vSRW7Sexar+OxmqEnwdD44LZcKSCrw8UYWpNePLUCPKs4SQrufTT/IKnvoH40FoiA+soLHfnsMnGFlstLqqOCAKIVgPxVNo3DsdadeJMlubcKup1GtxifHCN8MYlwA0XP1d0noazvtbO8MsmYTqSQ3F+DvXVJjYv/4RLb77PMTvreBmZEWTvtc+wKm/x4OiGEkEVForrjvzm+2lTk5bycs1JP7y8AtPxCjx1ktQVaTT259C0JqhHn0lVVW6++TYmTLjshHMCAgIdx7m6Gh3fNzU1cs89d9DY2MjYseOYMOEyUlPTueuu2x33OT55//XPR/9X6XSaX8VWRafTtamnm9ux2YdHr3H0Hr/l1/cHHGvrJScntTk/Li6e4uIjaLUagoKCMZnK27xeUWHCzc0NHx+vk67lZLMpaDQavL3dTlicuCM6nOjcf//9mEwmnn/+eZ5//lg/o0aj4eqrr+aBBx7g22+/Zc+ePbz//vu/ea2jFW9ubm7zEGaz+aStQdHR0bz66qs8/vjjfPzxxxiNRm655RbS09MdLUlnwmZTqanp2A7B7aHVavDycqWmphGr9benbl7oJFbtJ7Fqv98bqx7uRhJ7xrCptJoVhSZqWiyAwj41jmxrDOnKPjI1uzHoWogLqSMyoJ78MncOm9w4qBZzUCkmLDicaP8IQo2BuGj0KDoNWk8XNK56rDVmWkrqaSmpsyc61hMHZaoWG/XZFdRnVzjKFIMWY0oArmmBaFz1J5xzJrRaDeNvuJvPZj6BubGevL3bWf3tAtIHjj/h2MBQdzQaBZtNJWuviT6eHuhr6wisbGF3XSmVlfWnvE9zsxmbzYbVqmKxnJ+/v4py7APfZrM/x9HxtEefKTY2ntzcXEJDj7V4bdu2hc8//5SHHnoUvd7Q5nyANWvWkJW1l6+//hY/P/uO9jU11VRUmBzH2Wz2G1mtNiwWm+P32mq1ERNj35Zj69atjq4r+323EhMT2+b842N//DVO9//kZMemp/dCURR27NjBqFH2mYmqqpKTk0O/fv2xWm306ZPJli2b21x/48YNpKf3wmbjpMsbWK0qNpuN6uoGGhtPbNHy8nJtV2tthxMdnU7Hc889x913382GDRuorKwkODiYzMxMIiMjARg+fDirVq06oaXm1452WZWWlhIVdaz5rrS0lJSUlJOeM2LECH766SfKysrw9PTEaDQyePBgrrrqqo4+Shud+Q+uPb88wk5i1X4Sq/b7vbHqH+BFbz8P1pVUs7KogiarDSsadqg9yLIl0Uf5hXRlP3qdlfjQOiIDG8gvdedIhRtHSg5zpOQwiqIQEhJGYmIKUcGxoNGg9TGijfLGSGu3hlUFVQUVrBWNNOdW0ZJfjdrUdh8s1WylcUcJjbtKcUnww9AjAK33mf/Fe5Svrz+DL7uNH794E1DZuWoxvkFRBEcltzlOq9MSHu1DQa594cDmiB7o925CbwVrbe1vxtp6kmTufHOySUJH/zjPytpLbGwsN910K48//ndmz36LceMuoayslOeff5rg4OBTTgcPDAwC4NtvlzFq1BhKSkp4663XsFgsjl6Lo/c5eDCbpKS2n5OxsXEMGjSEl16yN0JERkaxYsV3rF79E//5T+ct9hscHMKll07klVemYzQaiYiI4ssvP6Oo6DBXXfUiqgqTJl3PrbfewJtvvsqECZezdu1qVq5cwcsvv3ba6//epLjDic5RUVFRbZKT43l7e7frGikpKXh4eLBhwwbHtWpqatizZw8333zzCcdv2bKFGTNmMGfOHAIDAwH74OjKykoGD25f36oQQpwJvUbD8FBf+gV68VNRBetKqrGoKmZVy3q1N7s1qfRVt5Kk5OGis9nH8AQ1kFfiRlGlG6oKRUWHKSo6jIeHJ6mpPYmPT3IM0FQUBXTHuqN0IR7oQjxQLwrHWtmItaIJW3UT1qomLEV1YLMnRs37TDTvM6HxNqCP8cElzhet15nNegIIi00lfdAl7Fq3DFVVWbfkfS6++W+4efq0OS4mMYCC3EoAqn2TcMe+sKKhthlVVc9611pXl5nZn9TUdO6+ewqPPfYUo0eP5ckn4cMP5/DRR+/h6enFkCHDuPvuaae8RmpqOvfd9wBz537CO++8SWBgIGPGXExQUDB79uwCwNvbh0svncgbb8yksLCA4cNHtbnGk08+x1tvvcYLLzxNXV0tsbHxPP30i4wYMepktzxrHnrIntS98MIz1NTUkJSUzIwZrxMVFQPYu7Gef/5l3nxzJl988SmhoWE8/vjTJ0w57wyK2o4J7GPGjOH1118nJSXltAsGdnRTzxkzZvDZZ5/x7LPPEh4ezv/+7/9SWFjIokWL0Gq1VFRUOFpuqqqqGD9+PH/4wx+4/fbbKSgo4G9/+xvjxo3jiSeeaPc9f81qtVFRceqm1jOl02nw9XWnsrJe/vI+DYlV+0ms2q8zY1VlbuH7wya2mWo5/k3UX9vIAHUjUcoRx6BVq+rKoTIv8ksAjr1/6vUuJCQkkZychpdX+/5ABLDVN2PeU455vwl+/VwKGHoEYuwd3KFBzMfHqqXFws9fvUVx3l77M4XFMvrav7QZR1FfZ+aD19YD4Omuof+O2SjAjkRXRv/P0/i7+5/0Pi0tzZhMRfj7h6LXn787net0Gvn31wFnEq/T/a74+bmfva6rAQMG4O7u7vj+bGbq06ZNw2Kx8K9//Yumpib69+/P7NmzcXFxobCwkDFjxvDcc89x1VVX4ePjw9tvv81zzz3H5Zdfjq+vL9dffz133333WauPEEK0h49BzzVxIQwJ8eW7wnL2VdvH+ZmsrixjBJH6Ggba1uCvVKFVGokLaiQuzI8Ckz85+TWAQktLM3v37mLv3l2EhoaTmNiDyMhox6zSU9G4u+DaPwxDzyCasytpya/CWto6zlAF854ymvOqcL0oHJeo9idQRymKhoF/uJXvPnqRhtpKTEdyObhrHQk9j822dfcwEB7tw+FDVdTW26g2BuHTVEpwRQv78/cwqMew37iDEOdOu1p0fq2uro76+nqCg4Npbm7m/fffp6SkhIsvvpgBAzp3KefOIC06ziexaj+JVfudy1gdrGngm8JyCuuPTY1WgDSXEjKta3FTjs2q0hojOFIVxP6DJSdMGzYajSQlpdKjRwYGQ/u7oGwNLZj3mzDvKm0zqFkX4YVrvzC03r99rZPFqrQwmx8/nwmAi9GNCZMfw+B6bEbVvl+K+WHJPgBC6veTVrQGiwZ23TiCa0dOPul9pEXnwuTMFp0OT0zfuXMno0eP5sMPPwTg6aef5uWXX+brr7/mT3/6EytWrOjoJYUQ4rwX5+XG3T0iuT4+BF8Xe2O5CuxqDuYz9Y/s1FyERbW/5VqbCgk2bmXsQC/69knHw8PTcZ2mpiZ27tzK/PmfsGPHlnYvnaFx0+PaOwTPK5LRhR+7nqWwhtqFWTRsKMT2q0HNpxMUkUBUSl8Ampsa+GXN4javxyUHotPbn6nMLQYbGnQ2aCo+1KH7CNGZOpzozJgxg7i4OK677jqamppYtGgRN9xwAxs3buSaa65h1qxZnVFPIYTo8hRFoaefJ/dnRDM+wh9D65iWZhusbY7jC+VaDmpSHLN2zDV78bT+yMgBfowdM4bo6DjHOJiWlhZ27NjC/PmfsHPn1nYnPFpPA+5jYnEbEY3i2jo6QYXmLBM18/fSnFPx2xf4ld7Dr0TXOhU6Z+daKkoKHK/pXbTEJtlnEFkVF8rd7TNvdaaqDt1DiM7U4URnx44d3H333URGRrJu3Tqampq44oorAJgwYQIHDhw465UUQojziV6jYUSoHw/2jGZAoJdj+HG1ReG75j4s1l1DmdK6Irxqpa5sA1bTl/RJceWKiVeTmJjiGAvZ3NzM9u2bmT//U375ZRstLadPeBRFwSXGB68/pmDsHQxHF2lrsdGwuoCGtQWo7exGcPXwJm3gJa0/qWz94QtU9di5yenH9i8q8bSvtutxksUPhXCWDic6Go3GsT7OTz/9hJeXFz179gTsY3d+z+qFQgjRnXjodVwZE8x9aVEkeB1bIfmwWc+8lpH8rJ9IA/bFTlWrmaojK6gp+ICeKf5cccW1JCQkH5fwmNm2bRPz53/Grl3baWk5/XL9il6LsVcIXn9MQR/v6yhvPlBB7dIDWKvbt9VCYuYIPH3ta7yYivLI27PJ8Vp4tC/G1kULy90isSo6/Kos1DbVtuvaQnS2Dic66enpfPnll2zbto1ly5YxcuRIFEXBZDLxzjvvkJ5+fi3fLYQQnS3EzcDkpDBuSwwj0HhsJeM9je58ZpvIHsNorEfH7zRXY8qbR2PxV/TrncQVV1xLXFyiI+Exm5vYunUjX331Gbt378RiOf24G42bHvehUbgNjXS07tgqm6hdsp/mvKrTnq/V6sgcdbXj5x0/L8DcaN+VXaNRHN1XNo2OCrcwAqosHDi4o33BEaKTdTjR+dvf/sa6deu44YYb0Gq1jqndl112GXl5edx///1nu45CCHHeUxSFZB93pqVFc3lUIK7ao+N3VH6uD2a+9gZKjH0cx5vr8yne9w4tlT8x6KL+TJw4idjYBMfrTU2NbNmynq+++ozs7H20ZwKtS7wfnhMS0RydgdVio+GnQ9SvzsfW/NubRobE9CAisbe9bo31bPtxvuO1mMRja+aY3MLQqFCyd+tp6yPEudDhlZFTU1P57rvvyMnJITEx0bFN/L///W8yMzMdKxYLIYQ4kVajMCjYh17+nnxXaGJTWTUqYGq28VVzCsnuyVxkW4Vby2EA6iu201C1B++QYQwdMpyMjD7s3LmFvLyDADQ2NrB27U/s27ebfv0GERwc+tv39zXieWkiDesLaTlYBUBLTiU1NWZ8ru/5m+dmjr6Gkvx9tJgbOZS1maiUvoTFpREe5ePY+6rCNRwA65HC3xcoIc6SM9r33MPDg169ejmSHIDx48dLkiOEEO3kptNyZUwQ96RGEuVxbGzjvnqFT5pG8Iv7FVg09vdY1dZM1ZEVFGXNwqCUMXz4WC6//BoiIqId55lM5Xz77SJWrvyOmpqq37y3otfiNjQK1yGR0Do93FLWwJEvd2Mzn7orzNXdiz4jj+0ruPn7ubQ0m9G7aAmJsO9h3ujiRYPOE0OFjNERXcMZJTpCCCHOjnB3I3emRDApNhjP1i0bLKrKmmo3vlSv4oj7CFTVPj7HYq6g7OBnlOZ8gocbjB49nnHjLsXX189xvfz8PBYu/IJNm9b+5oBlRVEwJPjheUkCisF+36aiWmq+yf7NZCcmdQDB0fZNPhvrqsjZuQaAyNhjdahwC8Orun3T4c9nQ4f2Y+nSRQBYLBbmzv34nNx3zZpV5ObaW/S2bt3M0KH9KCo6ck7unZ9/iLFjh55wv4aGeqZPf54rrhjPJZeM5MEHpznqeNSWLZu4/fZbGD16CNdf/0e++WbJOamzJDpCCOFkiqLQJ8CLBzKiGRbig6Z1PnpVi5Wvq8NY4XoTTa6JjuObarIp3juL6uKfCQkO5tJLr2LQoOGOna1VVWXv3l0sWvQlR07ThaT1c8VjfDyK0T6SwVLeSN23OdgaT54kKYpC5sirObpn174tP2C1tBAZe2xWV4VbON61VirKS840JOeFhQu/YcyYcQAsX/4Nr746o9PvWVxcxCOPPEBlpX09pIyMXixc+A1BQcGnOfP3y8nJ5v7776Gp6cTlA15++UW2bdvM00+/yKxZ76LVannwwfswm+0z+/Lycnn44fsZNGgI7733MRMnXsVzz/2HzZs3dnq9JdERQoguwqjV8ofIQKalRbeZjp5dZ+Wjuv7s9ZoEOh8AVNVCddFKirLeork+j8TEFK688np69err2Currq6W779fytq1P/3mgoNaX1e8JySgdbfPCLNVNlG7+ACWsoaTHu/lH0JEon08T1N9Dbm71xMQ7IHRzX5+hVsYKlqyN/z4u2PSlfn7B2Aw2Lsdz2A3pTPy6/vo9Xr8/QNOuz/a7/X++7P5859va9N6eLzVq3/ij3+8hoyMXsTExPLnP99DaWmJo1Xns88+JiEhkTvuuIuoqBhuvPEWRo0ayyeffNip9QZJdIQQossJcnVhclIYN8aH4qVvbWlRVX6q0PGlejmV3iM52qJiMZsozf6I8rz5aGiiV6++XH75NW0GJWdn7+Prr7/g8OH8U95T5+tKxHU90bQmO2pDC3XfZNN8sPKkx/cYMM7x/d5NK1BtNqLj7B+CVo2eStdQalt3P++ujnZdLV26iGeffdJRtnXrZsDexTRlys2MHj2E6667knfeebNNwjl0aD/efvsNrr76MiZOHE9+fh6lpSX85z+PcfnlFzNixEVcddWlvPXW69hsNoqKjjBp0kQApk27i9mz3zqh68psbuKdd95k0qQrGD16MJMn38jPP6903HPp0kVcc83lLFu2mOuuu5JRowZxxx23smvXzt981g0b1vH4409x771/OenrXl7e/PDD91RWVtDc3MySJV/j7e1NRIR9tezt27fRt2//Nuf07dufnTu3dXqS2OFZV0IIITqfoiik+3mQ6O3GisMm1pZUYQPKzRbmmkPp6X0LA2yr0DXmAtBQuYvG6gP4hI3CM6AfF198GQcO7GXz5g1YLC00NNSzYsU3xMUl0q/foJMu7uri54rPxGSqVxy074ZuU2lYlY/abMWQEtDmWL/gKEJielCct5eGmgpyd28gLjmJfbvs3VWlHjF4mbZ16Jl/qajl+8MmzNZz0zpyPINWYWy4Pxl+nqc/+FfGjBlHXV0dM2e+xMKF3+Dl5c369Wt57LFHmTbtAfr3H8jhw4XMmPEi+fmHeOqp5x3nfv31fKZPn4nFYiUqKoY//elGfH19efnlV3Fzc2fdutW88sp0UlPTGDx4GO+88z5Tp97GM8+8SP/+A8nK2tOmLv/+9z/Zty+Lv/71EaKiolmx4jv++c+Hee656QwdOgKA8vIyFiyYx2OPPYVer2f69Od4+ukn+PTT+Y71mn7tjTf+C+BI4n7t0Ucf45ln/s3ll1+MVqvFaDQyY8breHjYF8QsLS09oXstICCApqYmqqur8fHx6XDc20tadIQQogszaDVMiArk3rQoIt2PJSc7q1v4qGEweT5/RNG0js2xmaks/IaSfbNpbjhCUlIqEydeQ2houOO8gwcP8PXXn5Obm33Sv6Q1bno8Lo7HJfFYF0XjhsM0H6o+4djUi8Y7vv9l7RKCw9yObfLpHoVbO1dePmpVcSVlTS3UtFjO+VdZUwurik/eenU6BoPR8YHu7x+AXq/ngw/mcNllE7nyymsID49gwICBPPzwP/jxx+/bDOQdP34CKSmppKdnYDY3MX78BB555F8kJiYTHh7BNddcT0BAIDk52Wi1Wnx87GOhPD292sx8Bvs4mFWrfuLBBx9l6NDhREVFM3nyVIYPH8n7789xHGexWHjooUdJT88gOTmFW2+dTGFhASaT6YyeH+DgwWwiIiKZMeN1Xn/9v2Rm9udf/3qEsrJSwN7SpNfr25zj4mJfz6m5uWO/Jx0lLTpCCHEeCHUzcGePCDaX1fBtYTmNVhtNVhvflBuJcJvEaOM+3Go2ANDcWETJ/tl4Bl6Ed9hoxo6dQHb2PjZvXk9LSzNNTU2sWvUDBw8eYNCg4bi5ube5l6LV4DooAsWgxbyrDICGVYfQuMajCzp2bGB4HBGJvSg8sANzQy37t35PTGIi2XtKsWgN2FqCqKs24eHtT3sMC/F1aovOsBDf0x/YTvv3Z7F3726WLTu24/vRxDIvL5fQ0DAAIiKijtXBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1t9e0BHsg4UBevbs3aa8V69MZs16rU1ZdHSs43t3d3uSZrGcfluRk9m1ayf/938v8cUXiwgJCQHgqaee58Ybr+bTTz9k2rQHMRgMJ8wCPJrgGI2uZ3Tf9pJERwghzhMaRWFAkDepvu4sKyhnm8m+Vk1hQwsfNcYx2C+RjKbvUc3FANSWbaCxej9+UZeRmJhCeHgkGzeuIT8/D4DDhwtYvHg+I0aMIzw8rM29FEXBmBmKrcFCy8FKsKrU/5CLxx8S0R5dWRnoNewKjhzchc1qZf/WH0kdmkx2a29KmXsMe9d/T//x17Xr+TL8PM+o66grstlUbrzxVv7wh8tOeM3f/1g3oMFwLJZNTU3ce+9UmpoaGT16HOPHX8oDD6Rx771T23nXkyeINpsVna7tx/3RPSvbnH2GY2V27tyOr6+fI8kB0Ol0JCWlUFBgHxcWFBRMeXlZm/PKy8txdXVztIZ1Fum6EkKI84yHXsekuBDuSA537J1lU2G1ycoXloup8bsElNY1eZorKc3+EFP+YowGLSNHXsyIEeNwdbV3ezQ1NfLdd4vYtWvHCR90iqLgNjgCXWjrxqNmK/XfH2wz9dzDJ4DkzFH2OlitlB/6EQV760OZRzQV2W3HkHRXvx7bEhcXz6FDeURERDq+yspKef31/6Ohof6k19iwYS379u3l1Vff4vbb72TMmHG4u7tTUXGsS+lUY2js97RvEbJz5/Y25Tt2bCcmJvYkZ5wdQUHBVFdXUV5e7iiz2Wzk5R10tFj16ZPJtm1b2py3efNGMjJ6odF0bioiiY4QQpyn4rzcuC8titFhfmhbP//KzS18UurLZs9bwO3Yh1u9aStFe9+koXof0dGxXH751YSE2FtxVFVl48Z1LFq06ITxEopWg/vIGDS+9vFBtrpm6lfkorYc60rpcdF4XD28ASjO24Ovp337ihatEbPpwviYObqGUVbWXszmJm666VZ++ukHZs9+i/z8Q2zZsolnn/0PtbU1bVp0jhcYaN8h/ttvl1FcXMSOHdt59NEHsVgsjtlaR+9z8GA2dXV1bc6PjY1j0KAhvPTS86xZs4r8/EO8++47rF79EzfccHNnPTpDhgwnNDScxx77G7t37yIvL5cXX3yGkpJiJk26HoBJk65nz55dvPnmqxw6lMenn37EypUruOmmWzutXkddGL+BQgjRTek0GsaG+/M/vxqsvLnCzCeNQyj3uxxFY++msLbUUn5wLuV589HrVMaOnUB6em/HOQcOHGDhwnkndDEoLlo8xsShtK6TYzU1Urf8oGMjUL2LgV7Dr3Qc76I5AK2tOs2Wtl1i3VVmZn9SU9O5++4prFmzmlGjxvLkk8+xevVP3Hbb9Tz55L/o168/zz47/ZTXSE1N5777HuCLLz7lxhuv4dln/03v3pmMHTuePXt2AeDt7cOll07kjTdm8t//vnnCNZ588jmGDRvBCy88zZ/+dAOrV//M00+/yKhRYzvt2V1dXXn11VmEhITxj388yF13TaGkpJg335xDWJh9IHxcXDzPP/8y69evYfLkG1m8eAGPP/70CVPOO4OinqtVjrowq9VGRcXJmxJ/D51Og6+vO5WV9VgstrN+/e5EYtV+Eqv2u9BiZVNV1pdW811hOc22Y2/tad4GBrMObf0+R5lG54ZfxARcfXpQWHiINWtWOloNNBoNmZkD6NEjo01XibWykbpvclBbExytnyvu4+LQGHWoqsqPn8+k7HAOAPUtmZjVWPTWJsZfHUZkSgYALS3NmExF+PuHotefOE7kfKHTaS6I36mz5UzidbrfFT8/d7Ta07fXSIuOEEJ0ExpFYXCwD39JjybJ+9jU493VZj6q60eB71UomtYuKEsD5XlfYsqbR1hoMFdccQ2hofZFBm02G5s3r+fHH79ts9y/1rftdhHWikZ7N5ZNRVEUMoZe7jjWVWtPqlq0Rnau2tDpzy7EqUiiI4QQ3YyvQc9tiWFcGxeMm87+Nt9otbGkzMD3huuxeGQ4jm2o2kPx3jfR2kq57rrryMjo5XitsDCfxYvnUVJS5Chz7I3l2prslDfQtMM+yysgLBafQHtXhUZTj1axr0tTU37BdxwIJ5JERwghuiFFUejt78X96dH0Pm7K9oFaMx/V9qTQ7xpH647VUkfx/o84vH8hfTP7MmbMJY49nBoa6lm+fAkHDx5wXEPrY8R9dOzRXSgw/1KKpaQORVFI6DXUcZxRY+/GMltPPvhWiHNBEh0hhOjGPPQ6ro0P4dbEUDz19innTVYbi0v1rDBch8U92XFsWcE6Du+eRYCPps2sLJvNxurVP/LLL8f2JdIFuGHs3bpuigr1q/KxmS1E9+iH3sWeJLlo8lFopFHnR37rYnZCnGuS6AghxAUgxceDv6RH08f/WOvO/tpm+9gdn4mg2LuiWswVlOx/l+bqjYwZM56kpB6O47dt28TatT85Vuk1pAehbV0pWa1voWFlHlqNnvieQwBQFBVX7X4AdqxY86saSXeW+G1na66UJDpCCHGBcNNpmRQXwi0JbVt3lpS786Prjdg84luPVKkpXkXpgffI7JlEnz4DHNfIydnPt98uoqGhAUWj4D4syjE42VJcT8PaApIyR6LV2aeiGzQHUWiktrx1ppZWCyiYzccGOQtxMkfXdNJqf98mDjK9HJle3hVIrNpPYtV+EqtTa7BYWXyojO0VtY4yN52W0d4mwqu+RVFa46Vo8Qkbi6nOn7XrjrXmuLq6MWrUxQQEBGEpa6Du22xo3aPK0COArPoN7N+2EgCzNQqLOYk//eMyNBoN1dUmGhvrMBrdMRrd0Gi0v7nib1ek1SpYnbAn1/mqI/FSVZXmZjN1dZW4unrgfYq90to7vVwSHSTR6QokVu0nsWo/idXp7amsY0FeKXWWYysdp3hqGWJbgd58bLaV0SsRjedQVv78s2MLA41Gy6BBw4iPT6I5v5qGlXmOHildmi/fbXidFnMjANUtI8m8yId+I0ejqiqNjfXU1VVhs51+s8quSKPRYLPJ71R7nUm8XF098PLyO2USLIlOB0ii43wSq/aTWLWfxKp9GixWFheUsb38WOuOh07DxZ6HCapd6SjT6j3xCJnAus37KC0tdpSnpvYkM3MALTmVNK4tdJTXhTWy5pdPALDYfNFpwrjur3c6XldVFZvNdt4lO1qtgre3G9XVDdKq0w5nEi+tVnfaPbDam+jI7uVCCHGBc9NpuTExjEFRzXywM596i5U6i435laFket9A36bFaK21WFtqqS6Yy0UZQ8jKT+LAAftA4z17dlJbW8Pw4WMwNtto2nwEAI8jrgS6xVLWkItOU0mLuW0XhKIoaLXa1nE75w+dToPRaKSx0SoJdDs4O14yGFkIIQQAmSG+/LVXDMnHraq8tRrmqVdQYTy2yGBt6Rpi/Q8ysH8fR7dCQUEeK1d+hzbJB0NGkOPY3v5jUFo/arQu+fyyYf05ehoh7CTREUII4eDpouPWxDCuiA5Cr7EnMRXNVr6oS2en2+VYVfvHRnN9Ia4tPzBqSIqjRebw4QK++24xtiQvtP72XbY1DSoxRvvGjRqlmT1rfnTCU4kLmSQ6Qggh2lAUhYuCvLnvuB3RVWBtjQdL9NdTo7Nv86Bazdiqf2REPw8MLvZkx2QqY9k3CzCnezhWTk50T8NbFwiAzVp31tZHEaI9JNERQghxUgFGF/7cI4Kx4X6OD4sjTSpfmEew3zCco/mKrWEfQ9Ib8Pex7zDd0FDP8nXfUhFtP0BBoafHaPSKCxptLasXf+WEpxEXKkl0hBBCnJJWURgd5s9dPSIJMNoXAWxRVX6oD2eFYRJNin1lZFtLJRlRRcRFtB7T0sKa/E3keVQA4Kb1oLfnWBQ0HM7a5ZyHERckSXSEEEKcVoSHkf9JjWJgkLejLLtBx5fqFRTpUuwFagtRvgX0SVJRFBVVVdlZf4BftIewoeKnDyXdYxiqppqSw/lOehJxoZFERwghRLu4aDVMjA7itsQw3HX2MTl1FpWFTX3Y7DLOMVDZ21DC4LRGjHoLALm2YjYrB7BhI8yQQIp7b376/GOnPYe4sEiiI4QQokOSfdyZlh5FotexaeibGwJYrLuGauwtPnqlhotSagjwagagmEq2cRAVlVjXnkS6BFFbW+WM6osLjCQ6QgghOsxTr+O2pDD+EBmAtnV2VZFZyzzbBLI1aagqKDSTHl1BfGgdCiqHFRPbOIgNlR4e/dj6gQxKFp1PEh0hhBBnRKMoDAvx5a4ekfgb7IOQm23wfXNPftKOp1m1L74fGVBH77gKXHRWCpVyNrMfKzaSXVMoys115iOIC4AkOkIIIX6XcHcj/5MWRd8AL0dZVrMf85SrKFHt6+d4u7fQL9GEj7uZYqWKNewBrY6iZVucVW1xgZBERwghxO9m0Gq4OjaY6+JCMLRutFht0bLAOpYd9EZVwUVno1dsJRH+9VQpdfzMLnzcgln3+Xwn1150Z5LoCCGEOGt6+XtyX1oUUcetqLzO0oNvlUtoVF1QFEgIq6VHZDXNmmbWKftwqXOhsqj4ty8sxBmSREcIIcRZ5WfQM7VHBCNDfY/uAkGexZf5XEGRGgBAsE8TmfEm9C7N7NYeYdviH2lubnZepUW3JYmOEEKIs06rKFwcEcCfko6tuVNr1fG1dSzb1XRUFTxcLfRNMOHraabQUMsP733q5FqL7kgSHSGEEJ0m0dud+9KiiPW072auorDemsE3jKVRdUGvU+kZU0lUYB2lhia+eec951ZYdDuS6AghhOhUXi46piSHMyrUz9GVdcgayDzb5RSpASgKxIXUkRZdRYXRLMmOOKsk0RFCCNHptIrCuAj/Nl1ZdaoLX1vHss3WA1WFQG8zmYnl1Hk2suztd51cY9FdSKIjhBDinDlZV9YGW2+W2kbRqLrgZrCSmVCONaCOpW+/j01VnVxjcb6TREcIIcQ55ejKCjvWlVWghjDPNoES1Q+dViUjphLXiAqWzfkAU2mZU+srzm+S6AghhDjntIrCuHB/JieFH9eV5cpC6zh22RIAiA+tJTC2hNXLlrBz7VpnVlecxyTREUII4TQJ3m78T1oU0R72BQZtaFht688PtkG0qFpCfJuITygiJ3cPP3w618m1FecjSXSEEEI4lbeLjjuSIxgS7OMoO6DGMN96MVWqJ15uLaQnFlOrLWfZOzJIWXSMJDpCCCGcTqtRuDQqkBviQ3DR2EfuVOLDPOt4DtoiMOht9Io3oQmuYdk7H1BVYXJyjcX5QhIdIYQQXUaGnyf3pEYRZHQBoAU939mGsc7aG1VR6BFZjVdMKeu+WsqOjWucXFtxPpBERwghRJcS5OrC3amR9PTzcJTtUHuw2DqaetVIZEADoYmHKcrK4duPpCtL/DZJdIQQQnQ5Bq2G6+JCuDwqEG3rHPQigvjSeglH1ED8PJuJSSxA1aosfPVVWiwtzq2w6LIk0RFCCNElKYrCoGAfpqZE4KXXAdCIK4uso/nFloSrwUpiwmGMoTq+e/NdCgoPObnGoiuSREcIIUSXFuXhyv+kRRLvdXQ1ZQ1rbH350TYQRashOa4MY0wjexb9yKoflji5tqKrkURHCCFEl+eh1zE5KZzhIb6Osv1qLAusY6nHjcSIajwTymk8WMGXc15Fla0jRCunJzo2m42ZM2cybNgwevXqxZQpUzh06NTNj2VlZfz1r3/loosu4qKLLuIvf/kLxcXF57DGQgghnEGjKFwSGcD18SHoW6egl+PHPOslHLYFExHQQGDSYby1Psx9ZTo1dbVOrrHoCpye6Lzxxht89tlnPP3008ydOxdFUZg6dSrNzc0nPf6BBx6gqKiId999l3fffZfi4mLuueeec1xrIYQQztLTz5O7e0TiZ9AD0ISBxbaR7LCl4OfRTERSPv7BgXw/6z12Z+10cm2Fszk10WlubmbOnDncd999jBgxgpSUFGbMmEFJSQnLly8/4fiamho2bdrE1KlTSU1NJTU1lT//+c/s3r2byspKJzyBEEIIZwhxM3BvaiRJ3m6AfdzOOlsfVtgG42KAuMQCPGMM5H2znmWLPnVybYUzOTXRycrKor6+noEDBzrKvLy8SE1NZdOmTSccbzAYcHNzY8GCBdTV1VFXV8fChQuJiYnB29v7XFZdCCGEk7nqtNyaGMbI0GPjdrLVaBZYx9GodSMxrhi3ODP6/CY+fft/aW6RKegXIp0zb350bE1oaGib8qCgIIqKik443mAw8Mwzz/Cf//yHfv36oSgKgYGBfPTRR2g0vy9n0+nOfs6n1Wra/FecmsSq/SRW7Sexar/zOVYTYoKI8nTls+wimm0qJnyZZx3PWM1a4iOLKTC0EH4olM9nTmf8bZMJDQn7Xfc7n2PlDM6Ol1MTncbGRgBcXFzalBsMBqqrq084XlVV9u3bR58+fbjjjjuwWq3MmDGDe++9l08//RQPD48TzmkPjUbB19f9jM5tD6/WKZHi9CRW7Sexaj+JVfudr7Ea5utOfLA3b2w9SEm9GTMGlthGchE76B24l3JDC9G5Mfww+zPSLhvAqJHjf/c9z9dYOYuz4uXURMdoNAL2sTpHvwcwm824up4YkCVLlvDJJ5/w448/OpKaWbNmMWrUKObNm8dtt912RvWw2VRqahrO6NzfotVq8PJypaamEavVdtav351IrNpPYtV+Eqv26w6xcgXuSY3ks+wi9lbWAwobbL0xKT6M9NqIMTkXmy6afUu2k713J1dfdzeKonT4Pt0hVudSZ8XLy8u1Xa1ETk10jnZZlZaWEhUV5SgvLS0lJSXlhOO3bNlCbGxsm5Ybb29vYmNjycvL+111sVg675fVarV16vW7E4lV+0ms2k9i1X7ne6z0KNwUH8oPRyr44UgFANlqDNVWT8YbVxGWnIvNJYKGAjMfvPYMV976F9zdz6xF/3yP1bnmrHg5tYMxJSUFDw8PNmzY4Cirqalhz5499OvX74TjQ0NDOXToEGaz2VHW2NhIYWEh0dHR56TOQgghujaNojA23J+bEkJxaV1vpwx/5lnHU6nzJSa+ANdoCLEGMX/WTHJz9zm5xqIzOTXRcXFx4eabb2b69OmsWLGCrKwsHnjgAUJCQhg3bhxWq5WysjKampoAuPLKKwG4//77ycrKchzv4uLCVVdd5cQnEUII0dWk+XpwV49IfF2O7ZP1tXUMB5QY4mNK0Mc0EOcRydpPl7Fq9UIn11Z0FqcPGZ82bRrXXHMN//rXv7jhhhvQarXMnj0bFxcXioqKGDp0KEuXLgXss7E++eQTVFXltttuY/Lkyej1ej799FO8vLyc/CRCCCG6mhA3A/ekRhHraR/3aUPLSttA1tn6EBVWjTauhISgMApXFTLvs1ew2qQrqrtRVNkQBKvVRkVF/Vm/rk6nwdfXncrKeunHPQ2JVftJrNpPYtV+3T1WVpvK4oIyNpQem9EboRQxTrOGuloNzXnxFJYW0+RhYuLNf8XT0/OU1+rusTrbOitefn7u7RqM7PQWHSGEEKKzaTUKV0QHcWV0EK3DdihUQ5lnHY/G04Bn4n6CwwLwbvJn0VuvcFDG7XQbkugIIYS4YAwI8ub25AjcdFoAavBkvvViTIYgghOz8Qz3JMQQzMaPF7F61RIn11acDZLoCCGEuKDEerpyb2okIa72xWpb0LPMNpw92mQi4w6hiYCYgGAKVh7kq7n/h03G7ZzXJNERQghxwfE16LmrRyRpvkfXZbMvLriSQURGldISWUlySChNOXrmvv1vGhrP/qKy4tyQREcIIcQFyUWr4Yb4EMaE+TnKstUYFtvGEBjaREvsIVJCItDWBrPotefILzjoxNqKMyWJjhBCiAuWRlEY86vFBUsIYL71Ylz8dBC/l7igcIy6IDbOmcvGdcudXGPRUZLoCCGEuOCl+Xrw5x6ReOvtiwvW4c4C6zjqPPxxTdxDYFAInr5eHPomi0WfzURWZjl/SKIjhBBCAGFuBu5OjSTC3QAcG6R80BCPf8I+XIO8CQkyULXHhXeefhBzs/k0VxRdgSQ6QgghRCsvFx1TUyLIOG6Q8jpbJhu1fQmLz8MSrCExyJ26iggWvPQEZaZSp9ZXnJ4kOkIIIcRx9BoN18WHMPq4Qcp71QS+UUYSGlNOXWgVPYP8aSSCVW+8Ttberc6rrDgtSXSEEEKIXzm6A/q1ccHoWldSPqIGs1Adh19kM7Xh+fT0j6TFzZe9ny7n5+VfOrfC4pQk0RFCCCFOobe/F3ekRODeupJyNV58ZR2HNsiVpugskvwS0PrqKV1VzNcfvySDlLsgSXSEEEKI3xDl4co9qZEEt66kbMbAEttIKnzCUOJ3EeIfj1eAlfpsL+bP+hdN5kYn11gcTxIdIYQQ4jSOrqSc7O0GgA0NP9sGkOWWhlvCblwDQokMsNJQEcuSV/9NaWmxk2ssjpJERwghhGgHg1bDLYlhDAv1dZTtVFNY7TIY/4SDNAe4kupvpM4aw9q3XmXPrk1OrK04ShIdIYQQop00isLlMUHckh7l+ADNV8NZqozBP66cqsAGMn2DqTMGcWDud6z6/nOn1ldIoiOEEEJ02PCoAO5IjcCotU/JqsCHr7kYj5gWTCFH6OOXQJOPgfIfi1j06XTZAd2JJNERQgghzkCCtzv3pEbhb7BvG9GIkcW2MVjDPakM30+aXxpKgJmGvd589c6/aG5udnKNL0yS6AghhBBnKMDowt2pUcR5GgGwomWFbTAlATHUR+8ixi8dT/8qGkuS+fr1f1FZVeHkGl94JNERQgghfgc3nZbJSRH0D/RylG1R09nl1Qdb3C4CfBMJ9a2kviGdlW++QG7uPifW9sIjiY4QQgjxO2k1CldGBzEhMgCwLxqYo0azyjgUfWI2Bv9QEn2aqFYS2fXeR2zZ9KNzK3wBkURHCCGEOAsURWFoiC+3Joahb902ooRAvtWNxphQRHOgkZ4+rpjcgzmyYA0rln7o3ApfICTREUIIIc6iFB8P/twjEs/WTbJq8GSJMhaX2AaqAuvp6xtOjY8rdavLWfjxizIjq5NJoiOEEEKcZeHuRu5OjSbYaJ+RZcbAUkZiizZQHnyYPr4pmP3NtOz1Yv5//0lzs9nJNe6+JNERQgghOoGPQc+dqVEkerkCYEPLD+pgqsJDKQ/fT7pvb/QBlViOJLJw1t+prjI5ucbdkyQ6QgghRCcxarXcmhhO/4BjM7I22XqSG5hKddRu4rwz8fEtp6m6Dz/MepZD+fudWNvuSRIdIYQQohNpNQpXxgQxPtzfUbZPjWOrzwDq43YT6JtKhI+Jalsvdr47m507Vjmxtt2PJDpCCCFEJ1MUhRFhftwQH4JWsU8/P6yGsMptOC3xObj6RpHgXU+5IYWCL5bz84/znVzj7kMSHSGEEOIcyfDzZGpKJG5a+8+VeLPcZRSWhGJsfj5keCuUeoVTs3wvS7+a5dzKdhOS6AghhBDnUJSHK3enRuPvYv8IbsSV77SjaIlvotYfMr19qfD1xLKxgfkfPoNVpp//LpLoCCGEEOeYv9GFu9NiiHbXA2BBxwplCLVxrpgCq+jrE02dvw1lry/zZv9DNgT9HSTREUIIIZzATafl9pQoevm6tZYorFczKY4KozS4gD6+abT410B+AgveeZTammqn1vd8JYmOEEII4SQ6jYZr48MYFerjKNulJrM/LI2SsGzSfXuj8y3DWtqLb2Y/QWnxYedV9jwliY4QQgjhRIqiMC4ikKtjgtC0bgh6SI1gW0B/yqIPkOSbiZdvEea6vqx5bzoHDvzi5BqfXyTREUIIIbqAvoHe/Ck5AhfFPvi4DH/WeA2jPD6HML90grxLqLH2IevT99i6WXY/by9JdIQQQoguIsHLjbvTYvDS2Vt26nBnpesIKhKK8PGLJ9q7CpO+JyULv+OnH75wcm3PD5LoCCGEEF1IsKuBe9LiCDHYf27GhR/1wyhPrEPvH0Syt5lij0Qavt/FssX/dW5lzwOS6AghhBBdjJeLjjvT4kn0tO9+bkPLas1AihJcMAcY6O3tQrFPGOqaYhbMnY6qqk6ucdcliY4QQgjRBRm0Gm5NjqG/v6ujbCsZ5MUGUxnUSF+fAMr9fNBvszLvo6ewWmVhwZORREcIIYToorSKwpWx4YwP83aU7SeerMhkysPKyPSJoirAgGG3J1+890/MZllY8Nck0RFCCCG6MEVRGBEexHWxgWiwt9oUEsq24ExKow7Tyzee+kArxpwI5r//KHV1dU6ucdciiY4QQghxHugV4MPtyZEYFCsAJnxZ7zeI4rjDpPqmYAmoxyU/mUUf/IsKk8nJte06JNERQgghzhOxXm7cnRaHl9ae7NThzmqPYRQnlhDnn4zGvwptUQbfffIkR44UOLm2XYMkOkIIIcR5JMjVhXszEghxsXdjNePCz8YhHEmqITwwAVf/cjBlsvrT/yUnZ4+Ta+t8kugIIYQQ5xlPvY470xOJd1cA+/TztbqBHEpU8A2Kxtu3nJb6vuz4chZ792xxcm2dSxIdIYQQ4jxk0Gr4U0o8mb56R9k2TQbZiT64hgYR7FtBXUtfshZ+yPbta5xYU+eSREcIIYQ4T2k1ClfHRzMu1MNRtp94dsfGoInwJsqnlhpbHw4tnseG9d87sabOI4mOEEIIcR5TFIVREaFcG+PvmH5+mFC2RmTQEutGnK+ZKm0GJd8t4+efFzm5tueeJDpCCCFEN9A70I/bk8Ix0AJABT5sDMqkMVFLoi9U6FOp/mEVK77/3Mk1Pbck0RFCCCG6iVhvD+5Oj8dLY18huR531voMpCYFevgbMBkTaPp5C98t+9DJNT13JNERQgghupEgVwP/0zOZYJ092WnGhTXugyhLVUkL9KLcPZaWNXtY/PVbTq7puSGJjhBCCNHNeOh13NWzB7FGCwBWtKw1XERBqoa0IF8qvSLQbDjE1/NndvudzyXREUIIIbohg1bDlLQUMjyPlihs1vUhK9WN5NAAqn1C0W8q46t5L3frZEcSHSGEEKKb0moUrk9OYIj/sbV29mhS2JocSExkEDUBgRi31PDVF9O7bbIjiY4QQgjRjSmKwqVxMVwa5o7SOv38kBLJ+vhoQmOCaAj0w7C9kflf/C82m83JtT37JNERQgghLgBDwsO4Oc4ffev08zL8WR2VjG9SEC2BPrhsb2H+5y9i7WbJjiQ6QgghxAWih38Ad6ZE4U4TAHV4sCq4J4a0IDTBXrjsggVzn+9WyY4kOkIIIcQFJMzTg//pmYS/Ug+0Tj/37Y2tVxCGIA90u7V8Nfe5bpPsSKIjhBBCXGC8DQbu7Z1BlLYOsO9+vs69D7WZoXiGe6PfrWfBZ890i2RHEh0hhBDiAmTUaZnauzcphvrWEoWthp4U9Q7HJ9IX7V4DC+ee/8mO0xMdm83GzJkzGTZsGL169WLKlCkcOnTopMe++uqrJCcnn/Tr73//+zmuuRBCCHF+02oUbsnoxQCPZkfZbl0K2b2jCYwJRNljZMFnz57XyY7TE5033niDzz77jKeffpq5c+eiKApTp06lubn5hGOnTJnC6tWr23zdf//9GI1GbrvtNifUXgghhDi/KYrClT3SGOMHYF9LJ0cTy46MOEISg1GyDCz87MXzdp0dpyY6zc3NzJkzh/vuu48RI0aQkpLCjBkzKCkpYfny5Scc7+7uTmBgoOOrsbGRt956i0cffZSUlBQnPIEQQgjRPYyJT+SPoQY0qhWAQiWMNT1SCEiLgH16Fsx96bxMdpya6GRlZVFfX8/AgQMdZV5eXqSmprJp06bTnv/888+TmJjIdddd15nVFEIIIS4I/SOiuSnGF71q71WpwJef49LwzoxE3afw9ef/d94lOzpn3ry4uBiA0NDQNuVBQUEUFRX95rm//PILK1as4P3330ej+f35mk539nM+rVbT5r/i1CRW7Sexaj+JVftJrNqvu8cqIywUXzcjc/bkUqe404ArP4VlMMCoo2VDPkvmvc6V109r9/WcHS+nJjqNjY0AuLi4tCk3GAxUV1f/5rnvvfcevXr1atMadKY0GgVfX/fffZ1T8fJy7bRrdzcSq/aTWLWfxKr9JFbt151j5evrzuNBvkxfuZ5SxRcLOtb6pTNgmELz2jyWzX+bG29/oEPXdFa8nJroGI1GwD5W5+j3AGazGVfXUwekoaGB5cuX88QTT5yVethsKjU1DWflWsfTajV4eblSU9OI1Xr+jlg/FyRW7Sexaj+JVftJrNrvQorVtAH9mL1xHblKEKCw0SOd/sNU6lcf5pM5/8cf/njHaa/RWfHy8nJtVyuRUxOdo11WpaWlREVFOcpLS0t/c3DxqlWrsNlsjBs37qzVxWLpvF9Wq9XWqdfvTiRW7Sexaj+JVftJrNrvQoiVBg139B/Mh5vXkUUgAJtcM+gzTIN53RG+03/E6EtubNe1nBUvp3YwpqSk4OHhwYYNGxxlNTU17Nmzh379+p3yvC1btpCWloaXl9e5qKYQQghxwVIUhVv6DSJDU+Uo22ZMo3ZwJE27avh5xQKn1a09nJrouLi4cPPNNzN9+nRWrFhBVlYWDzzwACEhIYwbNw6r1UpZWRlNTU1tzsvKyiIpKclJtRZCCCEuLIqicH1mP/q61DjKfjGkUDI4lrodxaxffeKSMF2F04eMT5s2jWuuuYZ//etf3HDDDWi1WmbPno2LiwtFRUUMHTqUpUuXtjmnvLwcHx8f51RYCCGEuAApisLVvfoyxLXOUXZAH0f24AxKdh5k+5Y1TqzdqSnq+TYhvhNYrTYqKupPf2AH6XQafH3dqays7/b9uL+XxKr9JFbtJ7FqP4lV+0ms4Md9O1lR44INLQCeai0pe7eR2i+T5LQ+bY7trHj5+bm3azCy01t0hBBCCHF+GZXck0lBKkbVPrSkVvFke+pAdh3YR27OfifXri1JdIQQQgjRYb2iezA52hdfWxUALbiwJTyTtXlZFB7KdW7ljiOJjhBCCCHOSGRwBHelpxDRcnQ3A4XdXj349lA25SXFTq3bUZLoCCGEEOKMebp7MnXAYHrUZzvKclxjWHDgF6orTU6smZ0kOkIIIYT4XfQ6HbeM/AN9KnajYB9wfNAQw+e7t1HfcPYn+3SEJDpCCCGEOCsmjb+SPqZjyU6uIZpP1v2M2Wx2Wp0k0RFCCCHEWXPNJVfRu2yXI9k54BbH219+7rT6SKIjhBBCiLNq0oSr6Vmx1/FziVeQ0+oiiY4QQgghzrrrxl9Jb9MvhFhLiS4rdFo9nLp7uRBCCCG6r2svuarNysjOIC06QgghhOi2JNERQgghRLcliY4QQgghui1JdIQQQgjRbUmiI4QQQohuSxIdIYQQQnRbkugIIYQQotuSREcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbktRVVV1diWcTVVVbLbOCYNWq8FqtXXKtbsbiVX7SazaT2LVfhKr9pNYdUxnxEujUVAU5bTHSaIjhBBCiG5Luq6EEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG5LEh0hhBBCdFuS6AghhBCi25JERwghhBDdliQ6ncBmszFz5kyGDRtGr169mDJlCocOHXJ2tbqcN954g1tuuaVN2d69e7n55pvp3bs3I0eOZPbs2U6qnfNVVVXx+OOPM3z4cDIzM7nhhhvYvHmz43WJ1TEmk4mHH36YgQMH0qdPH/785z+TnZ3teF1idXK5ubn06dOH+fPnO8okVm0dPnyY5OTkE76++OILQOL1awsWLGDChAlkZGRw6aWXsmzZMsdrTouVKs66V199VR00aJC6cuVKde/eveqUKVPUcePGqWaz2dlV6zLeffddNTk5Wb355psdZRUVFepFF12k/vOf/1Szs7PVL7/8Us3IyFC//PJLJ9bUeSZPnqxOnDhR3bRpk5qTk6M+9dRTas+ePdXs7GyJ1a9MmjRJve6669SdO3eq2dnZ6n333acOGTJEbWhokFidQnNzs3rVVVepSUlJ6rx581RVlX+DJ7NixQo1IyNDLSkpUUtLSx1fjY2NEq9fWbBggdqjRw/1vffeU/Py8tTXXntNTUlJUbdu3erUWEmic5aZzWa1T58+6ieffOIoq66uVnv27KkuXrzYiTXrGoqLi9Xbb79d7d27t3rJJZe0SXRmzZqlDhs2TG1paXGUvfTSS+r48eOdUVWnysvLU5OSktQtW7Y4ymw2mzpu3Dj1lVdekVgdp6KiQn3ggQfU/fv3O8r27t2rJiUlqTt27JBYncJLL72k3nLLLW0SHYnVid5880114sSJJ31N4nWMzWZTR40apT7//PNtyqdMmaLOmjXLqbGSrquzLCsri/r6egYOHOgo8/LyIjU1lU2bNjmxZl3D7t278fb25uuvv6ZXr15tXtu8eTP9+/dHp9M5ygYOHEhubi4mk+lcV9WpfH19efvtt0lPT3eUKYqCqqpUV1dLrI7j6+vLyy+/TGJiIgDl5eXMnj2bkJAQEhISJFYnsWnTJubOncsLL7zQplxidaJ9+/aRkJBw0tckXsccPHiQw4cPc/nll7cpnz17NnfeeadTYyWJzllWXFwMQGhoaJvyoKAgioqKnFGlLmX06NG89NJLREZGnvBacXExISEhbcqCgoIAOHLkyDmpX1fh5eXFiBEjcHFxcZQtW7aM/Px8hg4dKrE6hccee4whQ4bwzTff8Mwzz+Dm5iax+pWamhr+9re/8a9//euE9ymJ1Yn279+PyWTixhtvZPDgwdxwww2sWrUKkHgdLy8vD4CGhgZuv/12Bg0axKRJk/jhhx8A58ZKEp2zrLGxEaDNBxSAwWDAbDY7o0rnjaamppPGDbjgY7dlyxb+8Y9/MGbMGEaPHi2xOoXbbruNefPmMXHiRO699152794tsfqVf//73/Tu3fuEv7xB/g3+WnNzM3l5edTV1XH//ffz9ttvk5GRwdSpU1m3bp3E6zh1dXUAPPLII1x22WXMmTOHIUOGcM899zg9VrrTHyI6wmg0AvZ/IEe/B/v/SFdXV2dV67xgNBppbm5uU3b0H4Cbm5szqtQlfP/99zz00EP06tWLl19+GZBYncrRLoannnqK7du389FHH0msjrNgwQI2b97MokWLTvq6xKotFxcXNm3ahE6nc3xIp6enk5OTw+zZsyVex9Hr9QDcfvvt/PGPfwSgR48e7Nmzh3fffdepsZIWnbPsaFNwaWlpm/LS0tITmu1EWyEhISeNG0BwcLAzquR0H330Effddx/Dhw/nnXfecSTPEqtjTCYTixcvxmq1Oso0Gg3x8fGOf3cSK7t58+ZhMpkYOXIkffr0oU+fPgA88cQTXHrppRKrk3BzczuhJSIpKYmSkhKJ13GOfr4lJSW1KU9ISKCwsNCpsZJE5yxLSUnBw8ODDRs2OMpqamrYs2cP/fr1c2LNur7+/fuzZcuWNh9Y69atIzY2Fn9/fyfWzDk++eQTnnrqKW666SZeeeWVNm+2EqtjSktLefDBB9m4caOjrKWlhT179hAfHy+xOs706dNZunQpCxYscHwBTJs2jbffflti9StZWVn06dOnzfpVALt27SIhIUHidZzU1FTc3d3ZsWNHm/L9+/cTFRXl3Fh1+ryuC9DLL7+sDhgwQP3+++8d6+hcfPHFso7OrzzyyCNtppeXl5er/fv3Vx955BH1wIED6rx589SMjAx1/vz5Tqylcxw8eFBNS0tT77333jZrd5SWlqo1NTUSq+PYbDZ1ypQp6vjx49VNmzap+/btUx944AG1f//+6uHDhyVWp3H89HKJVVtWq1WdNGmSetlll6mbNm1Ss7Oz1WeffVZNT09Xs7KyJF6/8vrrr6t9+vRRFy1apB46dEh944031JSUFHX9+vVOjZUkOp3AYrGoL774ojpw4EC1d+/e6tSpU9WCggJnV6vL+XWio6qqumPHDvXaa69V09PT1VGjRqkffvihk2rnXG+++aaalJR00q9HHnlEVVWJ1fFqamrUJ554Qh0yZIjas2dPdcqUKW3W1ZFYndrxiY6qSqx+zWQyqX//+9/VIUOGqBkZGep1112nbtq0yfG6xKutOXPmqKNHj1bT0tLUiRMnqsuXL3e85qxYKaqqqp3bZiSEEEII4RwyRkcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSHEeUFWwhBCnAlJdIQQXd6KFSt45JFHANiwYQPJyclttlkRQohTkd3LhRBd3nvvvef4Pi0tjblz5zp2KhdCiN8iiY4Q4rzi4eFB7969nV0NIcR5QrquhBBd2i233MLGjRvZuHGjo8vq+K6rV199lUsuuYTvv/+eyy67jIyMDK644gq2bdvG9u3bmTRpEj179uSyyy5j3bp1ba69f/9+7rzzTjIzM8nMzOTee++loKDAGY8phOgkkugIIbq0J554gtTUVFJTU5k7dy51dXUnHFNcXMxzzz3HXXfdxSuvvEJ1dTXTpk3jr3/9K9deey0vv/wyNpuNBx54gKamJgByc3O5/vrrMZlMPP/88zzzzDMUFBRwww03YDKZzvVjCiE6iXRdCSG6tISEBDw8PADo3bv3SQchNzY28sQTTzB8+HAAcnJyeOmll3jmmWe45pprALBarUybNo3c3Fx69OjBa6+9htFo5L333nNcf9CgQYwdO5b//ve/jsHPQojzmyQ6QohuITMz0/F9QEAAQJuxPD4+PgDU1NQAsH79ei666CKMRiMWiwWwj//p168fa9euPTeVFkJ0Okl0hBDdwtFWmeMZjcZTHl9VVcXSpUtZunTpCa/5+fmd1boJIZxHEh0hxAXJ09OTwYMHM3ny5BNe0+nkrVGI7kL+NQshujyNRoPNZjur1xwwYADZ2dn06NHDkdioqspDDz1EdHQ0PXr0OKv3E0I4h8y6EkJ0eV5eXuTm5rJu3TrHGJvf65577iE/P58777yT77//nlWrVnHfffexZMkSUlJSzso9hBDOJ4mOEKLLu+mmm9Dr9UydOtUxPfz3SklJ4eOPP0ZRFP72t78xbdo0ysrKeP3117n44ovPyj2EEM6nqLJTnhBCCCG6KWnREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG7r/wGAGBXLInHb8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a function to compute the minimum filter\n", + "def min_filt(S_LLS, m):\n", + " \"\"\"Applies the SNIP minimum filter defined in Eq. 2\"\"\"\n", + " S_LLS_filt = np.copy(S_LLS)\n", + " for i in range(m, len(S_LLS) - m): \n", + " S_LLS_filt[i] = min(S_LLS[i], (S_LLS[i-m] + S_LLS[i + m])/2)\n", + " return S_LLS_filt\n", + "\n", + "# Apply the filter for the first 100 iterations and plot\n", + "S_LLS_filt = np.copy(S_LLS)\n", + "for m in range(200):\n", + " S_LLS_filt = min_filt(S_LLS_filt, m)\n", + " # Plot every ten iterations\n", + " if (m % 20) == 0:\n", + " plt.plot(df['time'], S_LLS_filt, '-', label=f'iteration {m}', lw=2)\n", + "\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the number of iterations increases in the above example, the actual peak signals \n", + "become smaller and smaller, eventually approaching the baseline. \n", + "\n", + "### Inverse Transformation and Subtraction\n", + "Once the signal has been filtered across $M$ iterations, the filtered signal $S'_{LLS}$ can \n", + "be passed through the inverse LLS operator to expand the dynamic range back to the scale of the observed data. This inverse operator, converting $S'_{LLS} \\rightarrow S'$ is defined as\n", + "$$\n", + "S' = \\left(\\exp\\left[\\exp\\left(S'_{LLS}\\right)-1\\right] - 1\\right)^2 - 1. \\tag{3}\n", + "$$\n", + "\n", + "Performing the subtraction $S - S'$ effectively removes the baseline signal leaving \n", + "only the \"true\" signal\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTR0lEQVR4nOzdd3wb5f3A8c+dTtO2LG/Hzk4IAbIhEDaEETZNgdL2By2UUsJqwygtUEooZRbCKIUUGtq0lA1lljJbVsNIIDSE7DjTcbyHbO273x+yJTlObNmWLFn+vl+vvHI6ne4ePz5ZXz3j+yiGYRgIIYQQQmQANdUFEEIIIYRIFAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDC3VBUgFwzDQ9cQnXFZVJSnnzURSV70j9RU/qav4SV3FT+oqfsmqK1VVUBSlx+OGZGCj6wb19a0JPaemqeTlZdHc3EYwqCf03JlG6qp3pL7iJ3UVP6mr+EldxS+ZdZWfn4XJ1HNgI11RQgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyxpAcPCyEGNp0XScUCqa6GCml6wperwm/30coJLN9uiN1Fb++1pXJpKGqiWlrkcBGCDFkGIZBc3M9Ho871UVJC7W1Krous3ziIXUVv77Wld2ejdOZH9eU7u5IYCOEGDI6gprs7DwsFmu//4AOdiaTIi0QcZK6il9v68owDPx+H253AwC5uQX9ur4ENkKIIUHXQ5GgJjvbmeripAVNUyUvS5ykruLXl7qyWKwAuN0N5OTk9atbSgYPCyGGhFAoBET/gAoh0kvHe7O/498ksBFCDClDvftJiHSVqPemBDZCCCGEyBgS2AghhBAiY0hgI4QQg0xVVRXvvPNmqovRxW23LeCKK34yoNe84oqfcNttCwb0miK9pVVgU1FRwfTp03nxxRcj+1avXs15553HtGnTOOaYY1i8eHEKSygyVaC+nm133c6WWxfg31mZ6uII0a3bbruZTz9dmupidPGzn13L7bf/LtXFEENc2gQ2gUCAa6+9lra2tsi+hoYGLrzwQkaPHs0LL7zAlVdeyQMPPMALL7yQwpKKTFT7/LN41q/Dt2Uzu574a6qLI0S3DCM986lkZ2fjdOamuhhiiEubPDa///3vycrK6rTv2WefxWKxsGDBAjRNY9y4cWzZsoXHHnuMs846K0UlFZnGCAZxr/gCAOuIEZReNLBN6UL0xhVX/IQVK75gxYov+PLL5Tz//KucffbpHHXUMXz22SfU19fz29/exeOPP8qwYWXceOOCyGtvu20BO3dW8tBDjwJQXV3NAw/cy6efLsVkMjFp0hSuuOIqRowYucdrh0Ih/vjHP/DOO2/S0FDPsGFlfOc73+Nb3zp7j+dfs2Y1v//9Qtas+Yb8/EIuvnget922gPvu+wMzZhzEFVf8hIkT96elpZn3338PXTc46qhjuPrqX+BwOAD46KMP+Pvf/8KGDesJhUKMGzeen/zkcmbOPCSJtSwGs7QIbD7//HOeeeYZXnrpJY455pjI/mXLljFz5kw0LVrMWbNm8cc//pG6ujoKCvqXnVAIAH/VTgy/HwDLsDLM+fkpLpEYSJ+vqealDzfh9YdScn2bxcTcI8dy0MTiuI6//fbfcd11V1FcXMJVV10X2f/SSy9w1133kZOTw9ix43s8j8fj4bLLLmb8+An8/vePYjKpPP303/nJTy7gr399mqKiruX5xz+e49//fpdbbrmdoqJiPv74A+65507GjBnP1KnTOh1bW1vDz342jyOOOJprr72eqqqd3HPPHZF8Qh1eeOEZvvvd83j00SWsX7+W225bwPDhI7jggh+zZs1qbrjhWi699KfcdNOttLa28thjD/Ob39zEiy++jtlsjqvOxNCS8sCmubmZ6667jl/96lcMGzas03NVVVVMmDCh077i4vCbrbKysl+BjaYlthfOZFI7/S/2Lt3qyl25PbLtzS9N+L3RX+lWX+msu7rS9T3nyPjXp1vYWde2x+cGyhufbo07sHE6c9E0DavVSl5eXmT/rFmH96oV491336SpqZFbbrkNkyn8UfDLX97El18u55VX/sFFF13S5TU7duzAbrdRVlZOQUEhZ511LiNHjmbkyK4tPC+//CLZ2Tlcf/2v0TSNMWPGctVV1/HLX17d6bhRo8ZwySWXAzBy5Cjeeect/ve/FUD49/izn13LWWd9J3L8Oed8l6uuuoL6+jpKSkrj/nn7oyO9iqJAmvYCpo1E1JXJpPTr73DKA5sFCxYwbdo0Tj/99C7Peb1eLBZLp31Wazgzoc/n6/M1VVUhLy+r5wP7wOm0J+W8mShd6qqpdldk++9fuTl5Wg0nHTo6dQXai3Spr8FgT3Xl9ZqorVW7/NE89bDRvPCfjSltsTn1sFG9+kOuKAqK0vnnGDlyZKfHezomdt/69WtpbW3lpJOO7XRuv9/P1q2b91iec845lw8//Ddz557CxIn7c8ghszjuuBMoKirscv5169YwceJ+2GzRv+EHHnggEA5YNE1FURTGjBnT6Vo5OTm0trrRNJX99tuPvDwXTz31V7Zu3cLWrVtYt25t+7WInGP3nzNZ5MtF/PpSV7quoKoqubkObDZbn6+d0sDmpZdeYtmyZbz66qt7fN5ms+Fv7yLo0BHQdPS/9oWuGzQ3J/Ybmsmk4nTaaW72EArJeiLdSbe6atm+M+aRwfvPvcN+nok4p09PWZlipVt9pbPu6srv96HrOqGQ0Wkdmxn7FDFjn6KBLmoXvVlbxzAMDKPzz2E2Wzo9NgwDXdc77QsEApHXhUI6I0eO4q67Fnb5Zm232/dYnrKy4Tz99Et8+eUyPv/8U95//9/85S+LueGGmzn55NM6lUtVTV2u37EdCoX3G4aBppn3Wu4VK77g6quvYNasw5k6dRqzZ5+A1+vl+uuv7XSO3esi0RQlfG+FQrq02PSgP3UVCoV/901NbXg8Xb9oOJ32uAKmlAY2L7zwAnV1dZ3G1QDcfPPNLF68mLKyMqqrqzs91/G4pKSkX9dO1pug480mepYudeWtrY1sf7vqP2iGTuXfPsMxeWoKS9VVutTXYLCnusqklZnjST1vNptpbXV32rd9+7ZIq/eYMeP4179ex+HIjnRpBYNBFiy4gWOPPZ7jjjuxyzmfe+5p8vLyOP74OcycOYvLLvsZ8+dfxrvvvsXJJ5/W6djx4/fh9ddfIRgMRsZJfvPN1736OZ966m9Mn35Qpynkzz//NDCwM8M6LiVBTc8SUVe7f/norZS2q91zzz3885//5KWXXor8A/jpT3/Ko48+ysyZM1m+fHmnwWZLly5lzJgxMnBYJIyvtg6ANtVKnTk8VTXU0IARSk3XhBA9sdsd7NxZSXX1rr0eM3nyVD7//FM++ugDduzYzuLFf2TTpg2R5+fMOQWnM5cbb/w5X3+9ki1bNnPHHbewdOnHjBkzbo/nrK+v47777uajj96nqmonn3zyX9avX8ukSVO6HPvtb5+D2+3mrrt+y+bNFSxb9hkLF94FxL8mUHFxKRs3ruerr1awc2clr7/+Cn/60yIg3PokxJ6kNLApKSlh1KhRnf4BFBQUUF5ezllnnYXb7ebGG29kw4YNvPjiiyxZsoRLLuk6qE2IvjBCIWhpBqDZnEWzOTz2SjF0Qi0tqSyaEHv1rW+dRUXFRn74w+91mWXU4bvf/T+OOeY4br31Ji666Dzq6mr5zne+H3k+OzubRYv+RF5eHtdeeyU//vEP2LlzJwsXPsTYsXsObC666BJOPfVMFi68m+9979v87ne3M3fuOZx//oVdjs3Ly+feex9k8+ZNXHjh97n77ts488xwmo54ZzP9+MeXcMABk/jFL+Zz4YXf59VXX+L663+N1WrtdeuPGDoUI80yPe27777ccccdfPvb3wbgf//7H7fddhvffPMNRUVF/OhHP+K8887r1zVCIZ36+tZEFDdC01Ty8rJoaGiV7oIepFNdGbrOq0//m7WrNhNSTIxt28G05vUAjPz1LdhGjkpp+SC96ivddVdXgYCfurqdFBQMw2y27OUMQ4umqUm7pyoqNtHS0syUKdMi+1au/IpLL72IF154bcBmNCVKMusq0/S1rnp6j+bnZ6X/GJs9Wbt2bafHU6ZM4ZlnnklRaUSmU1SVTeZCVueEm8ZLfHWR50LNTakqlhCDXm1tNdde+zN++cubmD79QGpra3jwwYVMmzZj0AU1YnBJu8BGiIFW0+gBwKypkJUDDeH9wabmFJZKiMFt5sxZzJ//c5544i/87ne3k5WVzRFHHMWll16Z6qKJDCeBjRjy6pvDKQQKnDZU1RnZ72+UFhsh+mPu3LOZO/fsVBdDDDES2IghrWXLVsoat+IxWSmwjURTowv4eerrU1gyIYQQfSGBjRjS6j/8kHN3vgvAFyO+g5bnijzna2hMTaGEEEL0mQQ2YkjzxYyjseQ6sea3JypTVAxfMFXFEkII0UcS2IghLdDSQkdGDUdeLll5Tu4Z+32CqsZ5x03ggJSWTgghRG/Jil5iSNPd0ZTzWfkuXE4bQTUc7ze6/Xt7mRBCiDQlgY0Y2trCiRq9qplcp50cRzQjqtsjKduFEGKwkcBGDGkmTziw8Zhs5GZZybJJYCPS3xFHHMQ///lqSstwxRU/4bbbFgDwxRfLOOKIg9i5szKlZerJP//5KkcccVC3xzQ1NfLaay8ltRyGYfDGG6/R0NC/mZdnn306ixf/sU+vjacuEm3x4j9y9tmnJ/06EtiIIcvQdbSAFwgvgJnjMJNtN3NA80ZOqPmUiZ+/QsjjSXEphUh/kydP5eWX/0VxcUmqi9Jvf/jDA/zrX/9M6jVWrPiC225bgNfrTep1unPccSfw8sv/Stn1k0kGD4shS/dGgxafyYLDpmE1mxjnqWT/lgpoglBLCya7PYWlFCL9mc1mCgoKU12MhBiI5RPTYYlGq9WG1WpLdTGSQgIbMWTpbW2Rbb9qwWo2oSgKIYst5pjELpYqRKJs2bKZSy+9iLVrV1NePpyf/vRqZs6cBYQ/OJ966m+8/vorVFbuwGKxMHXqdObP/zllZeUALF36MYsXL6KiYhN2u4NDDz2cK6+8GqcznH178+YKHnroPr766kscDgczZszkiivm7zGA+eKLZfz0p/N47rlXGDasjLPPPp1vfessVq9exWeffYLFYmHOnFO47LKfoWnhj52VK79i0aKHWL36G1wuF4cffhTz5l1OVlb2Xn/mbdu2ct99v2PVqv+h6waTJ0/h8svnM27ceCDcRXfDDTdzyinR7o6zzz6dk08+jYsuuiSy79VXX+Lxxx+lpaWZWbMO55prfkleXh633baAN954LXKujz5axhVX/ITy8uFUVGxi69bNzJ//c2bPPoHHH3+U9957m+rqXTgcWcyceQhXX30dubkuABoaGvjDH+5n6dKPCAaDTJ48lZ/97Fpqaqr56U/nAXDOOWdEyttTfbjdbu6//3d89NH7aJqZH/yg64rqu3vjjdf4+9//SmXldpzOXI499nguvfRKLBYL//znq9x++y189NGySHnvv/9uPv10KSaTiVNPPZM1a75h6tTpXHTRJSxe/Ee+/HI5hx56OM8//wxNTY1MmjSFa6/9JSNHjgZg06aNPPbYw3z11Qra2lopKSnlrLPO5Tvf+V6PZU0k6YoSQ5bu8xNUTACELFYUJbwQpm6NttCEWiWwEenpueeeYs6cU/jLX57iqKOO5eqrr2TNmtUAPPvsk/z1r3/m0kt/ylNPvcgdd9zL1q1b+P3v7wOgsbGRG2/8OaeddiZ///vz3H7771ix4ksefvgBAGpra7j88h9TVlbOY4/9lbvuup/WVjfz5l2EJ87u2ccff5Rp0w7k8cf/zo9+9BOee+5p3nnnTQA2bFjPz352GTNnHsKSJU9x8823sXbtaq666opuWzNuvvkGCgsL+dOf/sajj/4FVVW54YZre113zz//NL/5zR089NBj1NRUc/XVl2MYBj/72bXMnn0CkyZN6dRN889/vsq5536Phx9ezKGHHs7DDz/I22//i1/+8iaefvof/OpXt7Bs2acsWbIYgGAwyNVXX86mTRu4/fZ7ePTRJaiqiauvvoLJk6dy2213A/DYY0s47rgT4qqPX//6l6xevYq77rqP++57iI8//pCqqp17/Rk3bFjP3XffxkUX/YQnn3yR66//Nf/61+s8+eRfuxyr6zrXXTefbdu2cc89D7Jw4R/45puv+fLL5Z2OW7VqJStWfMHdd9/P/fc/TFXVTu699y4AvF4vV111GXa7gz/+cTFPPPEcs2efwIMP3sv69Wu7XDOZpMVGDFnW8nL+sP8P8Hn9lLpszG3fr9gdkWP8LS1kpaZ4YgA1vPUvGt5+s8fjrCNHUX7l/E77dvz+fnxbt/T42rwT5pB34kmRx7rXw+abbuiyP17f+tZZfOtbZwFw8cWX8sUXn/Pss0/y61/fSnn5CH71qwUcccRRAJSWDuPYY4/n3XffAqCmZhd+v5/S0lJKS4dRWjqMu+5aSCgUAuAf/3iegoJCrr76F5Hr/eY3d3Lqqcfx73+/06lFZG8OOeRQzjnnuwCMGDGS1157mf/9bwUnnXQqTz31Vw46aCYXXPDjyPMLFtzGd75zJl9+uZwZM/Y8qLWycjsHHzyLYcPK0DSN66//NVu2bEbXdVQ1/u/pv/rVb9hnnwnt27fwve99m2XLPmPmzEOwWq1omtapZWqffSYwZ87JBIM6APvttz9HH30s06cfGKnfgw8+lI0bNwDhFqz169fx5JPPR1ozfvGLG3nyyb/R0tJMTk64VczlysNqtfVYH4WFhXz22Sfcf//DTJ06HYCbb/5ttwNxKyt3oCgKw4aVt/+eS7nvvodwOLr+RVux4gtWr17Vqby33nonZ53V+fzBYJCbbvoNTmd46Zmzz/4ujzzyIAAej4dzzvkec+eeTW6uk2BQ50c/+gl/+9uf2bhxA/vss2+cv53+k8BGDFm6buDxhUAxYcuKttIoMW98T2MLeakonBhQIY+HYENDj8dpefldX9vSEtdrdx+IbhgQbGjo8wD1jg+4DvvvP4nly8PdCkcccRSrVn3N4sV/ZNu2rWzZUsGmTRspKioGYJ999uX44+dw7bXzKS4uYebMQzjssCM4/PBwILRu3Rq2bNnMCScc2ekafr+fzZsr4irfqFFjOj3OysomGAxn8167di3bt2/tcn4Id7HV1tbwu9/dHtk3Zcp07r33QS6++DIefPBeXnrpeWbMmMkhhxzK7Nkn9CqocTiyIkENhIOInBwnFRUbmTnzkD2+ZvjwkZ0ez5lzCsuWfcYf//gHtm3byubNFWzdupkpU6YB4daS7OycSJAAUFBQyJVXXgXQpQ57qo+mpkYgHFB1yM8viHQr7skhhxzKpElT+PGPz2f48JHMnHkIRx55NPvuu1+XY9euXUNOjrNTefPy8hk5clSn4/Lz8yNBDUB2djaBQKD9+Dy+/e1zeOedt9i0aT1bt25l/fp1QLhFaCBJYCOGrLaYJRMctuhbwZQVDWxil1wQmctkt6Pl9RzCmnJy9rgvrtfuNghdUUDLy+vz4PTdP8xDIR2zOZyu4O9/X8LixY9yyimnM336gZx99nf56KP3I11BAAsW3MbFF1/Cxx9/xOeff8qCBTcyefJUHnxwEbpuMGPGQVxzzS+7XDc7u2sd7ElHWWJ1dKsYhs6JJ57MD37woy7HuFx5qKrC/vtPiuyzWq0AnHXWd5g9+3iWLv2Y5cvDgcXjj/+RP//5SfLzCzpdo0NHMNVhT0GQYeiYzZa9/iwd1+9wzz138u67b3Hyyady2GFH8MMf/oinnnqC6updAGiaFunajkdP9fH5558A4S9jsUymvX+EW61WHnxwEevWreHTTz/h888/4eWXX+Ckk07lhhtu3u08Jgyj5+Cjuzqqr6/jkksuJDfXxVFHHcP06TPZb7/9+fa3T+3xvIkmgY0Yslq90Tw1sflrLFkxXVHuNkTmyzvxpD51BwFduqbipdrsjP3dfX16LYS/ZR955DGRxytXfsX48fsAsGTJ4/zoRxdz3nkXRJ5/6qm/Rj70v/56Je+99xZXX/1zystH8p3vfJ+33nqD3/zmJhoa6hk7dhzvvvsWxcUlWCzhD7Pm5iZ++9ub+e53z9trV1G8xowZR0XFRoYPHxHZt3XrZh566AHmzbucsWPHd+kyqa+v4y9/+RPnnXcBp5xyOqeccjo1NdXMnXsKX375BccddwKaptHaGs0m3trq7pIrxu1uYceO7ZSXDwdg48YNuN1uxo4dB9BjQNLU1MhLLz3PLbfcznHHnRjZv3lzBQ6Ho/3nG0NLSzPbt2+L/IyNjY1897tzufvu+7pco6f6mDBhIhD+HR922BEAtLS0sGPHtr2Wc+nSj1mz5hsuvPBiJkyYyPnnX8CSJYv5618f7xLYjB+/D263my1bNjNq1Ggg/Pvevn1rt3UR66233qCpqYmnnnoRm81CMKhHuuYGehaYBDZiyHJ/+QUnVn+CT7VgDxwe2a/FBDZBjwQ2Ij0988zfKS8fzgEHTOKll15g06YN3HzzbwEoLi7h888/5fDDj8JkUvnXv/7J++//O9KqkZWVxYsvPofFYuG0076Fz+fjnXfeZPjwkeTmupg792xefvlFFiy4kQsv/DGKovLwww+wbt1axowZ2++yf/e753H55T/md7+7nbPP/i5tbW3ce++dtLW1den26eB05vLf/37Ejh07mDfvchyOLF5//RXMZjMTJ4a7V8L5dF5k6tQZmM0ajz32SGQWVgdVVfn1r6/nqquuA+Cee+5g2rQZka49u91ObW0tlZU79tjVk5WVTXZ2Nh9++D777rsfPp+P559/hnXr1kRamQ488GAmTtyfW2/9NT/96TXY7XYWLfo9+fn5TJy4P5s2bQRg/fp15Oa6eqwPi8XCsccez3333d0+tb6ARYv+EOkG2hNNM/HnPz+Gw+HgyCOPobm5iY8//pBJk6Z2OXbGjIM44IDJ3Hrrr5k//+dYrVYWLXoIr9cbd8tTcXEpXq+H9957mxkzZrBpUwUPPrgQgEBgYJenkVlRYsjyb9rAjOZ1HNr4Nc5QdJyDNTv6TVES9Il0dcEFP+a5557mhz/8Hl9+uZy7774/Mibippt+g9fr5cc/Pp/LL/8JmzZt4Nprr6ehoZ6dOysZM2Yst932O5Yv/5wLL/w+l112ESaTxr33PoiqqpSVlfPQQ3/E6/Vw2WU/5oorLkZRVB588BHy9jDOqLcmTZrMwoUPsWnTBi666Hyuu+5nlJcP5/77H460EO1O0zTuuedBVFXhZz+7jPPPP5flyz/n7rvvj7S+XHvt9RQUFHLppT/i2mt/xvTpB3b5IHe58pgz5xSuv/4arrrqMkaNGs1vf3t35PmTTz4Nn8/L+ed/h9ra2j2W49Zb76SiYiM/+MF3ueaaK/H5vFxyyeVUVGzC4/Ggqip33nkvpaWlXHPNFZH6XbjwISwWC+PGjefQQw/n5puv5+WXX4yrPn71qwXtr7mByy67mDFjxu5xvEyHmTNn8ctf3sRrr73M+ed/h2uuuTIyKHlPbrvtboqKipk//1Lmz7+U/fbbn5KS0j12Ke7Jsccex/e+dz4PPXQ/5557Fg8+eC+nnXYG06bN4JtvVsV1jkRRjHTIFDTAQiGd+vrETuPVNJW8vCwaGlojI+fFnqVLXa188GGs//sMgO3fvpTZp4QHDv738400/e1xfKqZYdMmccgFZ6esjJA+9TUYdFdXgYCfurqdFBQM63aswFCiaarcU3HK5LpqbGxk1aqVHHLIoZEWrkAgwCmnHMc11/yCk07q3TiZvtZVT+/R/PwsTKae22OkK0oMWaG2PbfS2HOd/KnsOAC+PaH/ze5CCJHOTCYTN998PWeeeRZz555NIBDgqaf+hsViZtasw3s+QZqRwEYMWUbMkgo2Z3Smh90afVt4fJ1nVAghRKbJycnh7rvv57HHHuaVV/6BoihMmTKVBx/8Iy6XK9XF6zUJbMTQFbMAXVZuTIuNBDZCiCFmxoyDeOSRx1NdjISQwcNiyFL84cDGr2jY7dE8FXarKbLt8YcGvFxCCCH6TlpsxJBlag9sfKqZophgxm7V+PbOf1PqrcO61YAzHklVEYUQQvSSBDZiyDIFfAD4VAs2S/StYLdq2EM+nKE2CIERDKJo8lbJFENwIqgQg0Ki3pvSFSWGJEPX0ULh5FY+1YzNEm2x0UwqQVM0d4MeMxZHDF4mU/h37Pf7UlwSIcSedLw3u1sqIh7yNVQMSUYoyJbC8QTaPNRbcrFonWP8oDk65kb3eDBlZw90EUWCqaoJuz0btzu8YKXFYu3Vej6ZSNcVQiFpwYqH1FX8eltXhmHg9/twuxuw27N7tajpnkhgI4Yk1WzhvbHHs6u+DYdV47zdPuD02MBGWmwyhtMZzprbEdwMdaqqDvjKy4OV1FX8+lpXdnt25D3aHxLYiCHL2z6V2xYzcLiDYYkGNkFPG9YuR4jBSFEUcnMLyMnJIxQa2lP5TSaF3FwHTU1t0hLRA6mr+PW1rkwmrd8tNR1SHtjU1dVx55138uGHH+Lz+Zg5cybXXXcd48ePB+D666/nxRdf7PSakpISPvjgg1QUV2QQb/tU7tiBwx0Miy2y7WtpJavLEWIwU1UVVR3ayypomorNZsPjCWXsUgGJInUVv3Soq5QHNpdeeimqqvLYY+FVSB944AEuuOAC3n77bex2O2vXrmXevHmcd955kdd0DAIUoq90w8AXCAc2dkvX+0m1xQQ27sSuKyaEECJ5UhrYNDQ0MHz4cC699FL22WcfAC677DLOPPNM1q9fzwEHHMCGDRu47LLLKCoqSmVRRYZp+up/XFbxPAFVY7t5JnBQp+dVmz2yLYGNEEIMHikNbPLy8li4cGHkcW1tLYsXL6a0tJTx48ezefNmfD4f48aNS2EpRSbyNrVE8tTU0jW7sGKPttgEWz1dnhdCCJGeUt4V1eGmm27i2WefxWKx8Mgjj+BwOFi3bh2KorBkyRI++OADVFXl6KOPZv78+eTk5PR80m5oWmJT+HQspR7PkupDXTrUVTBmppNqs3a5H/SS4bxRNIuAqnHGPvsn/H7pjXSor8FC6ip+Ulfxk7qKXzrUVdoENj/84Q8599xzeeqpp7j88st58sknWb9+PaqqUl5ezqJFi9iyZQt33XUX69atY8mSJX0eQa2qCnl5yRkO6nTaez5IAKmtqy16dEaMLSery/2QNbyMr3InAPDtsvKk3S+9IfdW/KSu4id1FT+pq/ilsq7SJrDpmAV16623smLFCp544gluv/12LrjgApxOJwATJkygqKiIc889l5UrVzJ16tQ+XUvXDZqb2xJWdghHp06nneZmD6GQjJrvTjrUVUt9cyTttq6ZaWjoPI7GCEW7p2ob2ro8P5DSob4GC6mr+EldxU/qKn7JrCun0x5XS1BKA5u6ujqWLl3KySefHJnppKoq48aNo7q6GkVRIkFNhwkTwt+iq6qq+hzYAEmbhhYK6TIdME6prKtAmzeSm8ZktXUphznmzdPmDaTF71TurfhJXcVP6ip+UlfxS2VdpbTDsLq6mmuuuYbPPvsssi8QCPDNN98wbtw4rrnmGi666KJOr1m5ciUQbeERoi9C3uiAYLOja5OpVVPI9zdR6q1Fr9o5kEUTQgjRDykNbCZOnMgRRxzBLbfcwrJly1i3bh2/+MUvaG5u5oILLuC0007j448/5pFHHmHr1q28//773HDDDZx22mkyU0r0i+6LLoRoyeoa2NgI8pOtL3PB9n/i+u8bA1k0IYQQ/ZDSrihFUbj//vu59957mT9/Pi0tLRx00EH8/e9/p6ysjLKyMh544AEWLVrEokWLyMnJ4fTTT2f+/PmpLLbIAIYvOivK4nB0ed4aG+zIatBCCDFopHzwcE5ODgsWLGDBggV7fH7OnDnMmTNnYAslMp/PH9m07qnFxmalVVHRDB0l4O/yvBBCiPSU8sBGiFSoHD+TTYFCLHqQOTldp3JbLSYaFQ3N8KMGJbARQojBQgIbMSRV54/gq1wzAGfaui6GaDWb8Ktm7LofNRgY6OIJIYToI0mjKIYkX8w0RKu56yKYNosJvxqO+03SYiOEEIOGBDZiSPIHogn4LOaubwOr2URAaQ9sQgEMwxiwsgkhhOg7CWzEkGSv30m+vwlH0LPHFhtVVQiawl1VCmD4pdVGCCEGAxljI4YcwzA45vOnORaotBZg1k7Z43Gh9sAGQPf7UK3WPR4nhBAifUiLjRhyDL8fpX07aDKjKMoej9O16KBiwyu5bIQQYjCQFhsx5MRmHQ6Zus6I6vDFuCN5vXYGhsXCQ4WFA1E0IYQQ/SSBjRhy9JiswyHNvPcDs7Jpa9RBB90wMO2lZUcIIUT6kK4oMeTEdivFdjftzhYzqNjnlxV9hRBiMJDARgw5sS02unnvgY3VEm3Q9MVMDxdCCJG+pCtKDDkBjyeybXQT2OS31XFIw9dY9ACtm4aRN3W/gSieEEKIfpDARgw5gbZoi023gY27moPqvgDAt3V/kMBGCCHSnnRFiSEn4IkGNko3gU1s3ppgzGuEEEKkLwlsxJAT8MYENpa9BzYmmy2yLYGNEEIMDtIVJYaeyTP5/bIAmhFkxqhRez0sNrAJeSWwEUKIwUACGzHk+BWVVs0OgMnu2Otxmj0a2OiSeVgIIQYF6YoSQ44/EM1JY7V0XQCzQ2xgYwQksBFCiMFAAhsx5PhjctJYtL2/BcwxXVGyurcQQgwO0hUlhhx97SoOafiagKJhC5Xt9TizIzoryvAHBqJoQggh+kkCGzHkmNZ8xbHt+Wl2BQ/b63HWmK4oAtJiI4QQg4EENmLI0WO6lbSYXDW7M9ttVFpcBBQNLSd/IIomhBCinySwEUNO7HgZS2yrzG6sVjOPjzwDgCMmD+PIpJdMCCFEf8ngYTH0xHQrxY6j2Z01ZmCxPyiLYAohxGAggY0YeoLRgcAW294DG4s5OhXc55fARgghBgMJbMSQo7S32AQUExaLea/HWWMCG39Q3+txQggh0oeMsRFDjtLeYhNQNHLN3eSxMaucWP0Jxf4GHFXA96YPUAmFEEL0lQQ2YshROwIb1dSpu6nLcYpCSaCRcm8NAEYwiKLJW0YIIdKZdEWJIUcNBQEIKlqnAcJ7EjJFAxk9IEn6hBAi3aU8sKmrq+PnP/85s2bNYvr06fzkJz9hw4YNkedXr17Neeedx7Rp0zjmmGNYvHhxCksrMkFLVj41FhcNZme3LTYAuik6Bsfwy3pRQgiR7lIe2Fx66aVs27aNxx57jOeffx6bzcYFF1yAx+OhoaGBCy+8kNGjR/PCCy9w5ZVX8sADD/DCCy+kuthiEHtv+tksHnkGz5fNxtLNGBsAXYsGNrqsFyWEEGkvpQMGGhoaGD58OJdeein77LMPAJdddhlnnnkm69evZ+nSpVgsFhYsWICmaYwbN44tW7bw2GOPcdZZZ6Wy6GIQ61gEUzMpmNTuAxsjtsXGJy02QgiR7lLaYpOXl8fChQsjQU1tbS2LFy+mtLSU8ePHs2zZMmbOnIkWM2Bz1qxZVFRUUFdXl6pii0HOHwhP3bZo3XdDARjmaGAT8HqTViYhhBCJkTZTPG666SaeffZZLBYLjzzyCA6Hg6qqKiZMmNDpuOLiYgAqKyspKCjo8/W0HgaN9pbJpHb6X+xdquuqI4uw1WLq+T6wRBP4hXz+hN838Uh1fQ0mUlfxk7qKn9RV/NKhrtImsPnhD3/Iueeey1NPPcXll1/Ok08+idfrxWKxdDrO2r5ooa8f3QKqqpCXl9Wv8u6N02lPynkzUSrqyrOzitPWvILPUKkuGUde3kndHm+KyUxsVvSk3TfxkHsrflJX8ZO6ip/UVfxSWVdpE9iMHz8egFtvvZUVK1bwxBNPYLPZ8O82YLMjoHE4HH2+lq4bNDe39b2we2AyqTiddpqbPYRCkqW2O6msK09lDWVtuwDwewtpaGjt9nhdjb5FGmubcfZwfDLIvRU/qav4SV3FT+oqfsmsK6fTHldLUEoDm7q6OpYuXcrJJ5+MyRQe76CqKuPGjaO6uprS0lKqq6s7vabjcUlJSb+uHUxSivxQSE/auTNNKurK3+aJbBuaucfrtxUN5+O8yQQUjRPzilL6u5V7K35SV/GTuoqf1FX8UllXKe0wrK6u5pprruGzzz6L7AsEAnzzzTeMGzeOmTNnsnz5ckKh6AKES5cuZcyYMf0aXyOGroAnpgvTvPd1ojr4S0fxYcF0PsmfTDCvf8G0EEKI5EtpYDNx4kSOOOIIbrnlFpYtW8a6dev4xS9+QXNzMxdccAFnnXUWbrebG2+8kQ0bNvDiiy+yZMkSLrnkklQWWwxifk+0xQazZe8HtovNc+MLygrfQgiR7lIa2CiKwv3338+sWbOYP38+55xzDk1NTfz973+nrKyMgoIC/vSnP1FRUcHcuXN56KGHuO6665g7d24qiy0GsdgWG8XSc2DTaYXvgAQ2QgiR7lI+eDgnJ4cFCxawYMGCPT4/ZcoUnnnmmYEtlMhYwZhcNPEENhZNRdODmI0gfncrUJTE0gkhhOivlAc2QgykoLd3LTbZDZVcu+lJAFo/OhSmSzeoEEKkM8k2JIaUUExgY7Laejxes0WP0X2yVpQQQqQ7CWzEkBKKSeyoWntusYkNbIyABDZCCJHupCtKDCm+sjGsyJuEWQ9R7Mrv8XiLI5p5GFndWwgh0p4ENmJI8YwYzwcF4QDl/wp6HghsscekBQ8EklUsIYQQCSJdUWJIiZ2ybYljQUuLPWYcTlBabIQQIt1JYCOGFH8gmuLbEpOjZm+sNjOh9reJImNshBAi7UlgI4aUQFsbJj0EhtEpq/DeWM0mAmr7OmZB6YoSQoh0J2NsxJAy7K0n+fmuLRhAULm7x+MtZhMBRcNGADUUTH4BhRBC9Iu02Iihpb07yUDBEsd0b6tZJaCG4381JC02QgiR7qTFRgwpSnt3UkAx4bD0PMZGM6m8WnokhgHFxblMTnYBhRBC9IsENmJI6QhsgqoW1+BhRVGozynB5w+hWrKSXTwhhBD9JF1RYkjp6E4KKFpc070BrO3HyereQgiR/iSwEUOKGgwPAA6oprhabCA6LVwCGyGESH/SFSWGDMMwMOntXVGKhjXOwGaYr46ilmrsrTohz0GYYrMRCyGESCsS2IihIxRCNQwAAqqGZlLietl+1asYW70GgGDDKZjs5UkrohBCiP6RrigxZOgxK3uHVA1FiS+wMczmyHbA4+vmSCGEEKkmgY0YMvSY1bl1k7mbI3ejRfPd+No8iSySEEKIBJOuKDFkmLKzeWH8GfjavNhyszk53hdaYlps2rxJKZsQQojEkMBGDBmq2cw2SwFeQpTlxp+TRjFbI9sBrwQ2QgiRzqQrSgwZhmFEVveON4cNgGKJdkUFvTLGRggh0pkENmLICOkGevusqHhz2ACosYGNDB4WQoi0Jl1RYshoq65hYstmAqpGbqAXgU3MYplBn3RFCSFEOpPARgwZres38K1dHwCwNvdo4Oi4Xqdao2NsQj5psRFCiHQmgY0YMoIxA39jx830xGSz41XNBBUNlfhbeoQQQgw8CWzEkBHwxAQ21vgDG330eO4f+z0ALpw6MeHlEkIIkTgyeFgMGSFfNEGfyWLt5sjOrFq0lcYnC2EKIURak8BGDBmxXVFqL1psYmdQ+YN6QsskhBAisSSwEUOGHttiY+1Fi405+jbxS4uNEEKkNRljI4YM3R+d0WSy2eJ+nYUQJ1f/F00PkvfFFjhybDKKJ4QQIgFSHtg0NjaycOFC/vOf/+B2u9l333255pprOOiggwC4/vrrefHFFzu9pqSkhA8++CAVxRWDWGyLjWaLv8XGbFaZ2rwBgOYq6YoSQoh0lvLA5uqrr6auro6FCxeSn5/Pk08+yUUXXcSLL77IuHHjWLt2LfPmzeO8886LvMZkkim3ovdiV/c296IrymKzEWjfVoL+bo8VQgiRWikdY7NlyxY+/vhjbr75Zg466CDGjh3LjTfeSElJCa+99hqhUIgNGzYwefJkioqKIv/y8/NTWWwxSOmKgk/R0FEw23sxxsZiwq+EvwMowUAPRwshhEillLbY5OXl8eijjzJp0qTIPkVRMAyDpqYmNm/ejM/nY9y4cSkspcgU2w//Fi8bU8EwuMrlivt1FrOJoGLCYgRRJbARQoi0ltLAxul0cvTRndPav/HGG2zdupUjjjiCdevWoSgKS5Ys4YMPPkBVVY4++mjmz59PTk5Ov66t9WJ153iYTGqn/8XepaqugqH28TGKgt1mjvseyLKZCaga6D7UUDDh905P5N6Kn9RV/KSu4id1Fb90qKuUj7GJtXz5cm644QaOO+44Zs+ezYMPPoiqqpSXl7No0SK2bNnCXXfdxbp161iyZAmq2reKU1WFvLysBJc+zOm0J+W8mWig60qJuV8KC7Livgd03SDQ3hVlCgWTdu/0RO6t+A31ujJ0ndqP/ounspL8gw8ie+zeZ/IN9brqDamr+KWyrtImsHnnnXe49tprmTp1KgsXLgTgyiuv5IILLsDpdAIwYcIEioqKOPfcc1m5ciVTp07t07V03aC5uS1hZYdwdOp02mlu9hAKycyZ7qSqrprc0QR9Po+fhobWuF8bNGkQAFMoQH29G0VRklHEPZJ7K35SV2AYBjsfX0zjh+GZo9uefZ6RP7uK7ClTOh0ndRU/qav4JbOunE57XC1BaRHYPPHEE9x2222ccMIJ3HPPPVjaFyhUFCUS1HSYMGECAFVVVX0ObACCScogGwrpSTt3phnouhr5xducVNeC22THpBzaq2uH1PBbRcUg6AugaAP/1pF7K35Dua5aV/4vEtQAEApR+efHGf3bOzqtVB99eujWVW9JXcUvlXWV8g7DJ598kltvvZX/+7//4/77748ENQDXXHMNF110UafjV65cCcD48eMHtJxi8CvZvpppzes5wF3RaZmEeOiaObodk+hPiHRT/+YbXfYFG+pp+fyzFJRGiIGX0sCmoqKC22+/nRNOOIFLLrmEuro6ampqqKmpoaWlhdNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdFraig8oymgmLD2MrDZlVvO1zljWZm3Lygp/z4gxF6Vzbsc/ZSzWecax1+HnxzZ3/SRJDUVQ0NKu6LefPNNAoEAb7/9Nm+//Xan5+bOncudd97JAw88wKJFi1i0aBE5OTmcfvrpzJ8/PzUFFoOWYRhoehCAgKJhNvcuOFk38kC2Wt2YVIWz7DKAUKQvN2Ye2uKkrfBwMAxqLC6K/I14N6wn2NSIlutKdRGFSKqUBjbz5s1j3rx53R4zZ84c5syZM0AlEpnKCETzz4RMGmovB/92dF2FdINgSEeTaZ8iTf3zk620+cJBPIrCuqwRFPkbAWj9+mtyDz8idYUTYgDIX2cxJBgxyynoau/jeWtM7pqADB4UacoXCPHRyp0AmDWVs44eS4WjDB2FpoLhmBzS2igyX1rMihIi2WIH/MYOBI5X7GBjfyCE3SpvHZFePOvXseHdjyitN7PdXszB+43g+ING8MbSCh6wnAs2Ow9Onp7qYgqRdNJiI4YEwx/titJNvQ9sxm5bwU83PcPVG5/E/b8VCSyZEInR+vVKrMs+4Nyd7zK2bQeH7FeC1Wxi+oQSfCYLvkCIddsbU11MIZJOAhsxJMS22Bh9aLHRFAOH7sNiBAl4ZLq3SD/ezRWR7brsEvYd6QJg8riCyP6VG+sGulhCDDgJbMSQEPL1L7BRLdHEZgGvBDYivRiGQVtFOLBpNdkYPm44Zi3cfbr/6Hw6hsqv3daIEQymqJRCDAwZKCCGBN1iY1X2GMxGkNbcol6/XrFGE0eGJLARaSZQWwNt4SVCdloL2GeEK/Jctt3MiDwLB696g+LNDWxr+ICRV12TopIKkXwS2IghQS8s5dXSIwGYNrKw1683xaSiD3m93RwpxMDzbd4c2a6yFnBEeW6n50cNz2f48hpsuh/v1q0DXDohBpZ0RYkhwR8IRbYtvUzOB527omK7tYRIB75t0WBll72Q0aU5nZ4fN9xFtSUv/KCliZDbPZDFE2JASWAjhoTOgU3vllMA0GzRrijd5+/mSCEGXtv27ZFtS/nwLvf42GFOaqyuyGPf9m0DVTQhBpwENmJI8Mck1evtOlEAms0W2ZZFMEW68bYHNn5Fo2hUWZfnSwsc1FrzI499O7Z3OUaITCFjbMSQ4P/oPa6o+BdBRaNu1BnAhF693twpsJEWG5E+dL8fo6EOBaiz5DK8OLvLMZpJRSkuherwY2/lzoEtpBADSFpsxJAQam0jO+TFFXRj6eU6UQBmR3SMjSGBjUgjht9P9ZipbLMVU2krZHhR18AGIHt4eWS7dfuOgSqeEANOWmzEkBDy+SI3u8lm7fbYPTE7c3mt+HACqsYBE8cltnBC9IMpO5uPRh7JerUJgDOLsvZ4XMnwQjyqBbvuJ7CraiCLKMSAksBGDAmx3Ud9CWwsWQ6+doYDmuHO0oSVS4j+MgyD7TXhHDb5TisO254TUJYX5VBndlLuq8XkbkL3+YA9B0FCDGZxBTYvvfRSr076rW99qw9FESJ5YgMbzdqHwCZminjsDCshUq2+2YfHF84mvLduKAgPIF5vCQc2AP5du6A0f6/HCzFYxRXY/PKXv4z7hIqiSGAj0k7suBizvS+BTczq3jEzrIRItR1VDZHt8r10QwEUOm2scu3DZvswtKISriqVlkeRmeIKbN59991kl0OIpDICMS02dls3R+6ZVVMp9DVg0YPYq/3AAQksnRB9YxgGloW/5go0NjuGUVJw8V6PVVUFf/lYNte2ogVV6MOaaUIMBnEFNuXl5T0f1M4wjD4XRoikiWmxsfZljI3ZxLmV75AT8uCpzQZOSmDhhOibUFMjaihANgFsIR8l+Y5ujy/Js1NZ20owpFPX5KWgYO9dV0IMVn0aPPz666/z2WefEQgEIoGMYRi0tbWxYsUKPvjgg4QWUoj+UoKByLa5Dy02FrNKUNUgBGpIVkcW6cFfXR3ZbjTnUJJn7/b40gIHrA9v76xvY8LYZJZOiNTodWDz0EMP8dBDD5GTk0MwGMRsNqNpGvX19aiqyjnnnJOMcgrRP+2BTRCVnJjlEeJlUlWCSvjtYtIlsBHpIVATDWxa7blk27vvXirNc5DnbyY/0Ezzx2446P+SXUQhBlyvE/T94x//4IwzzuCzzz7jggsu4Nhjj+W///0vzz//PC6Xi3322ScZ5RSiXzZNPILXiw/j7aKD+7QIJkDIFA5sND2IocsAYpF6vl27IttKQSFKD8knS/IdfKvqfc7Z+R55/34JIyQz/ETm6fVf+F27dnHmmWeiKAoHHHAAX375JQCTJk1i3rx5PPfccwkvpBD9VZU/mpXO8XyVOwGL1vu1oiAa2AAYgUA3RwoxMFp2RJdGsBWX9Hh8kctOozm88rdi6Pjq6pJWNiFSpdeBjcPhiHwrGD16NNu3b8fr9QKw3377sX27LK4m0k9s7pm+LIIJEDJFm/llWQWRDjrG2BiAs3xYj8fnZltosUQHDHurdnVztBCDU68Dm8mTJ/OPf/wDgJEjR2Iymfjvf/8LwMaNG7FYej9+QYhkiw1s+toVZcRMj5WFMEVaqA+3uLRoDoqLcno8XFUUgjl5kcfeXRLYiMzT68HD8+bN48ILL6SlpYVFixZxxhln8Mtf/pJDDjmEjz76iOOPPz4Z5RSizwzDILuhkiKfH79mRTP1P7AJ+XxIFhCRSqG2Nky+NgAatRzG9TDVu4OSXwBbw9vN26soOihZJRQiNXod2MycOZPnn3+etWvXAvDrX/8aVVX54osvOOmkk3qVpViIgWD4/Zz41QsAbMsqBU7r23liAht/m5feTxoXInFiZ0Q1mHMocnU/1buDtbg4st28YydFCS+ZEKnVpzw2EydOZOLEiQBYrVZuvfXWhBZKiESKHQ8TUvvezmKYo92sfo+nX2USor8sZWW8vP+3Mepq8NlzONsW35/z7JJoKOOrqU1W8YRImT4FNi0tLXzyySe0tbXtMdOwrBUl0okes5yC3o808tv2O5yXlX0IqCbuGDEmEUUTou80M+tDOQRzsikvyupxqneHgiIXXtWMTQ8QbKhPciGFGHi9Dmzef/995s+fj2cv31hlEUyRbmJbbAytT7E8ACabHZ8p3GoTCMrSISK1mtx+gqHwfVjojL9jtDDXxk4tC5u/EbWlSXIyiYzT67/yCxcuZOzYsVx//fWUlJSgqn0biNmhsbGRhQsX8p///Ae3282+++7LNddcw0EHhUe0rV69mttuu42vv/4al8vF+eefz0UXXdSva4qhJeTzRbYNU99n7cXOpvIFJLGZSK26Zm9kuyC3F4GNy85aLQtnsJVAVi661wsWGTEmMkevA5tNmzbx8MMPRwKP/rr66qupq6tj4cKF5Ofn8+STT3LRRRfx4osvkp+fz4UXXsjxxx/PLbfcwooVK7jllltwuVycddZZCbm+yHxBT/QDAHPfu6IsMflv/BLYiBRr+vxTJrgradKyKMwdH/frnA4zr42YjTekMLw4m0McDoJBabURmaPXgU1ZWRlutzshF9+yZQsff/wxTz31FDNmzADgxhtv5IMPPuC1117DZrNhsVhYsGABmqYxbtw4tmzZwmOPPSaBjYibzxPTYmPue4tNtruOw+r/h1kPEtiYDSMPTkTxhOgT279f49utzbSabIRyj477dYqikOfKYmddGzWNnj2OkxRiMOt1P9Ill1zCH/7wh4RkGM7Ly+PRRx9l0qRJkX2KomAYBk1NTSxbtoyZM2eixYyLmDVrFhUVFdRJKnARp0DMeDClHy02Wa0NHFW/gkMbv8bYVpGIognRJ4auo7W1AOHkfL3pigLIy7EC4POHaPPKoq4is/S6xebVV19l165dnHDCCeTn52OzdX5DKYrCO++8E9e5nE4nRx/d+ZvGG2+8wdatWzniiCO47777mDBhQqfni9tzMFRWVlJQUNDb4kdoWv/GBu3O1J70zdTH5G9DyUDXVWyWYMVi7fPv3myP3uu635/we2hv5N6K31Cpq0BDE0p7S0uL5qAk39Gr+7EgZrBxY6uf8sKshJcxkwyV+yoR0qGueh3YlJaWUlpamoyysHz5cm644QaOO+44Zs+ezR133NFliQartf2bRsyA0N5SVYW8vOS8kZ3O+JJkiYGrq+1GdPyAJcve5999tiu6xo5JDybtHtobubfil+l11VK9I7LdaslmZLkr7uneAMNdGnOqPyEn2Ir71Sryrr4kGcXMOJl+XyVSKuuq14HNHXfckYxy8M4773DttdcydepUFi5cCIDNZsO/25o8HQGNwxFf+vA90XWD5ua2vhd2D0wmFafTTnOzh1BIBuJ1Z6DrqnWfqdw/5lzMRpCjRo6loaG1T+cJKjGzolo9fT5Pb8m9Fb+hUldNW6KBjZ6dS2Nj7/6e2axmpjevA8C7Xhuwe3mwGir3VSIks66cTntcLUG9DmwqKyv3+pyqqjgcDpxOZ6/O+cQTT3DbbbdxwgkncM8990RaaUpLS6muru50bMfjkpKSXpa8s2TNAgiFdJlhEKeBqitvwMBrsuLFimqz9/mappgpsbrPN+C/Z7m34pfpddVcWRPZVnNdvf5Zc13ZtKlWHLoPmhozuq4SKdPvq0RKZV31OrCZPXt2j02eubm5/OAHP+Cyyy7r8XxPPvkkt956K+effz433HBDp7w4M2fO5OmnnyYUCmEyhafaLl26lDFjxvRrfI0YWhKxsjeA2W6NPgjI6t4iddzV0cDG0oe/hXk5NjZrDhx+H1pbM4auo/QzJ5kQ6aLXd/Kdd96J2Wzm8MMP54477uCxxx7jzjvv5Nhjj0VRFC6//HLmzp3LI488wpNPPtntuSoqKrj99ts54YQTuOSSS6irq6OmpoaamhpaWlo466yzcLvd3HjjjWzYsIEXX3yRJUuWcMkl0h8s4ufrFNiYujmye7GDh41AoF9lEqI/fLXRWaFZxYW9fn1ejpVmLTxGTDEMgk1NCSubEKnW6xab119/nVNPPbXLWJszzzyTm2++ma+//ppFixbhdDp56qmn+P73v7/Xc7355psEAgHefvtt3n777U7PzZ07lzvvvJM//elP3HbbbcydO5eioiKuu+465s6d29tiiyFMWb+KQ+tXElQ1bMHhfT6PxW6jY8i6Ii02IoVCjQ2R7dxhvV+fO8um0WrNhvahOcH6Osx5eYkqnhAp1evA5rPPPuPhhx/e43Mnnngil19+OQAHHnggf/zjH7s917x585g3b163x0yZMoVnnnmmt8UUIsK8fhVH168AoDFwZJ/PY7Vbo4FNUFpsROp4VTOGGu4aLSjo3ZhGCKflCGU5oT0+CjY2JrB0QqRWrwMbl8vFmjVrOPzww7s8t2bNGrKzw1Ni29rasNtlapxIPcMfTQ1gsfV9TRyr1cx2WxEGCkp2778lC5Eon0w5g6821qEaIe7pZXK+DqozN7LtqasnJ1GFEyLFeh3YnH766Tz44INomsZJJ51Efn4+9fX1vPXWWzz00EN897vfpampiSVLljB16tRklFmIXokdD2N29D2wsZhVnhh+MgCTxuYzu98lE6JvGlrCwbpi0nBm9W2ZEM3limy31kgmd5E5eh3YzJ8/n7q6Ou68807uvPPOyH5VVTnrrLO46qqrePPNN/nmm29YsmRJQgsrRJ/EBDYWW99bEa2dFsGUKZ8iderbAxtXthW1F4n5YtkL8yPb3rr6hJRLiHTQ68BG0zTuuOMOLr30Uj799FMaGhooKSlhxowZjBgxAoCjjjqKDz/8sEvWYCFSQQlGB/paHNZujuyeSVVQFQXdMGR1b5EygWAItyccrHes+dQX2aXFrMwZi9tkZ+KIfRNVPCFSrteBTYeRI0cycuTIPT6Xm5u7x/1CpET7QN+gopJr7fsimIqiYDGreP0h/JKkS6TIrg8/5js73qZFy8I77LA+nyevyMVfSo4AwFU0JlHFEyLl4gpsjjvuOP7whz8wceLEHhP09WYRTCEGghoJbLR+5bEBmL3rU4rcu7Bt1zGCB6Joff5uIESftFZsZqxnJwDrtYP7fJ78nOh4s/pmb7/LJUS6iOuv8sEHH0xWVlZkuzeLrQmRah2BTUAxYe1H5mGA/EAzw3zhgZZ6IIBJAhsxwPz19XR0QNmLep+cr0NsN1ajW/IyicwR11/l2GR8d955J263m9bWVkpKSvD7/SxZsoRdu3Zx4okncvDBff8GIUQyqKEgAAG1/y02uinalWX4fSApDcQA02OS82WX9D2wyXaYMakKeiiEv64OPRBANfe9q1aIdNHrr6//+9//mD17Nn/7298A+O1vf8vChQt55ZVXuOCCC3j33XcTXkgh+qMhq4Aqaz51FhdaHCvDdseIaaHRfb5ujhQiOZSW8PIHXtVCfkHfxzOqisIJzV9x3cYnmLv8r/i2bklUEYVIqV7/lb/vvvsYO3Ys5557Ll6vl1dffZXvfe97fPbZZ5x99tksWrQoGeUUos/enHg6fxlxGv8cfXy/z2Vo0Zl+AY+MSxADyzAMLJ4WAJo1R79mRQFoDjsdAwv8DQ3dHivEYNHrwOarr77i0ksvZcSIESxduhSv18uZZ54JwCmnnML69esTXkgh+qNjanZ/u6EAjJimel+btNiIgRVyt6Dq4fvZrTnIze5fSg1TbnR9KEnSJzJFrwMbVVUj+Wnef/99nE4nU6ZMAcDtdmPrR8p6IZLB155Mz6r1P7BRYgIbv8fT7/MJ0RvBmFYVry2n312rlvxoYNNWI0n6RGbo9ZSOSZMm8fzzz2Oz2XjjjTc45phjUBSFuro6HnvsMSZNmpSMcgrRZ4lsscEc2xUlLTZiYPnroq0qoez+5wvLKi6IbPvqJbARmaHXgc11113Hj3/8Y15//XXy8/O59NJLATjttNPQdZ3FixcnvJBC9JWvehffrXiNoGKiXh8P9G/WnmKJjmkIemWMjRhYLVU1kW3F6er3+bKLo4u5hpqb+n0+IdJBrwOb/fffn7feeouNGzeyzz774HA4AFiwYAEzZsygqEhWPRbpw9fkpsxXC0DIV9Lv8ymWaFdUUFpsxADzFAzj47wp5ARbMZWW9ft8eSV5eFDR0KFFAhuRGfqUXSw7O7vLyt1z5sxJSIGESCR/W1tk20jA2mX+khF8mD+VgKJxZFH/P1iE6I1GZykfFkwD4KxRo/t9voJcO2s0B66gG1NrS7/PJ0Q6kLSpIqP522K6i8z9D2yM0uF8nB/O0npIXnG/zydEbzS0RFsJ+zvVGyDfacOt2XEF3Zj9HknSJzJC/4bUC5HmAjEzl5QEtNhYYmZW+YKywrcYWJ0Dm/7PQHVmW2nVotmzZZyNyATSYiMyWuw4GMXS/w8CS8xaU/5A8lb4bl76X+rffAMtN5fhl8yDvKykXUsMDoZh4Nm1C5MRIqSYyE9Ai41JVVhZfhCfufdHceZyS15+AkoqRGpJYCMyWtDrjWRWVW39b7GxagrWkB+zESTY3AwkfpyN+6sVVC1+FADnwYdgyslJ+DXE4KO3tnLou49xKLA6exSunKMTct5g8TB2hFpQgmCgIEsci8FOAhuR0YJeLx0jBlRr/1tsrM31XFXxNADNlulw5MR+nzOWoevUvvAsADkHzyL3mNkoinzUCAg2RPPM6JoFayLyMgF52VY204JhQHObH1d2/1uChEglGWMjMprujXZFmaz9/4NtdkSDIyMJi2B6N27EX1kJQKCuFlVWDxftAjEJ9ELZzoSdNzaQaXL7E3ZeIVJFAhuR0UIxwYdm739gY4kJNBR/4gObls8/jWy7jjlWWmtEhLs6mpwPZ97eD+wll01hH/dWpjetpXn5soSdV4hUka4okdHaysfxRUUTZiPIeFdBzy/ogSXLTuQ7bSDx325bV60EwFBNPLXNSnbzWk7b14anajN+zU7WQf3LnCwGr9ZdtZFtLc+VsPPm2VXOqvoPAL5ldXDqsQk7txCpIIGNyGjNpWP5qCA8e2m/ggQENjYLHhRMGCgJDmyCjY0Edu0CoNKSz6ebmskJ7GTmcy8AYJ8wQQKbIcxXWxf5g20rTFyG99wCF0FFRTN0DHdzws4rRKpIV5TIaB0LYELnqdp9ZTVrBNTwcGQ1mNjAxrN+XWR7iz28/EOLOYs6c3g8hWfjRnRZn2rICjZGV/bOKilM2Hlzc2y4TeGlcST7sMgEEtiIjOaLCWwSMYvEYlbxq+HvzaYEBzZt69ZGtrfZoutabWsPcgiF8G3bmtBrikGkpREAv6KRV9D/lb075OVYcbcn6TP7PRjBYMLOLUQqSGAjMlrI3YpF96MYOpYEBDZWswm/Em6xMQUD/T5fLN/WLZHtSlsR3z9+H8aWOdlpjXaheTdXJPSaYnAwDANzezdRi+bA5ex/6oIOziwzrabooPhgk2QfFoObjLERGW3Cf/7OjKZqQqhYzIf2+3xmTSXQ0WITCmAYRsJmLpWc9wOefuLfhOrr8JssHLx/CcGQwfubYgObzQm5lhhcdE8bplA4kG7RHAnJOtzBpKr4bdnQGn4cbGrEnIDxaEKkigQ2IqOp7a0qflXDqvW/gVJRFIKm9jE2GBjBAEoCFtcE8BWU8r4yAgpGMLIkG6fDwvR9Cnn+vejgTu8WabEZilSbnWenn09bTR1mzcQJ1sT+6dazsqEuvB1obESyJ4nBLK0Cm4cffpilS5fyt7/9LbLv+uuv58UXX+x0XElJCR988MFAF08MQh0DfAOqhsWSmEytH5Qfhs/rJyc3mxtMiXsLrd3aGNnef3R4zZ7iPDvOHDvVlnzKfLUEqqrQvR5Um3z0DCmKwg6vhs9WSEm+I+H5jRSnK7LdWlNH4tL/CTHw0iaw+ctf/sKDDz7IzJkzO+1fu3Yt8+bN47zzzovsM5kS8wElMl9H831A0bBqiblv2nIKqDN8+DQLipq4YWoVldGpthNGuIBwC9GEkXlUb3JR5gvnMfHv3IltzNiEXVekP48vFBkIn8huqA4mZ3QwclttfTdHCpH+Uh7Y7Nq1ixtvvJHly5czZsyYTs+FQiE2bNjAZZddRlFR4vI2iKHDFArP8AioGuYETPcGIoOQE7m6t/urFXi+qSA3oNKkZTO6NLrw5b4jXKyxuCKPfZWVEtgMMQ3uaJbrvCQENtaCfNrU8OyoPDUxXatCpErKZ0WtWrWK3NxcXnnlFaZOndrpuc2bN+Pz+Rg3blyKSicGMyMYRDXCwUdQNaMmqPneonUENqEejoxf7fPPcuiKl7l468u4ss2d1u8ZW+ak2uKi1pxLbdkEtNzETfUVg0PjZ59yYONqJri3kG9P/J9t+4gRPDj2XB4feQb1+89K+PmFGEgpb7GZPXs2s2fP3uNz69atQ1EUlixZwgcffICqqhx99NHMnz+fnJycPb4mXloCBpLGMpnUTv+LvRuougr5otOxQ5o5Yb/zwkAj2c2bsRhBAnWTsJeU9Pyibhi6jr86nHG4wexkdJmrU1lHDXOyLauMPznOZFRpDkdNm7q3Uw15mfo+NJYt5YTa9QDsdByRkHs5tq7yc6PTx5vb/An/+zjYZep9lQzpUFcpD2y6s379elRVpby8nEWLFrFlyxbuuusu1q1bx5IlS1D7OL5BVRXy8rISXNowp1MGdcYr2XXlC0Wz9OqaOWG/81FNW5hQ/TEARvUR5E3sX7eQt6oKQuHWn3qzk4mjC7qUtbw4m2273OyoaSU7x45ZPni6lWnvQ8Udzi0TUEyUjylN6N8vp9POiGHRVkBPQE/a38fBLtPuq2RKZV2ldWBz5ZVXcsEFF+B0hsfoT5gwgaKiIs4991xWrlzZpesqXrpu0NzclsiiYjKpOJ12mps9hEKJG3uRiQaqrny7ooMgQyYzDQ2tCTmvrkXHIDRUN+Do53nd66JTuOvNOUx2WjqV1WRSGVOWy7ZdboIhnW82VDOypH8tlpkqU9+HSnM4sGnRHDhNSkLu5di6MhlGZP+uutaEvVcyRabeV8mQzLpyOu1xtQSldWCjKEokqOkwYcIEAKqqqvoc2AAEg8m5OUMhPWnnzjTJrit/myeybWiWhF1LsUTHv3jdbf0+r6dyZ2S7weKkxGXvcs6xZbl88OUOACp2NDLMZUOR2YF7lUnvw5DHgxYMDx5u0bJw2s0J/dlCIZ0sm8aBjasZ27aDgp0+vLNvQst1JewamSKT7qtkS2VdpXVgc80119DY2MjixYsj+1auXAnA+PHjU1UsMUioxaX8ecSpmPUgxcOLE3deWzSwCXj6vyhlYFdVZLve4qQ4z9HlmFHDnOzr3sIR9V9R8Ac37ot/Qo6s9D0kBBuii1+6NQc5WYmftaSZVIbpLYxrq2y/ZqMENmLQSuuO+tNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdGjgKKxy1rAdnsJQVfiVkPWYpLjBWNahfrKXxUNbNTCkj2OnxlenA0YFPkbUUNBAtXV/b6uGByCDdEuVb/DmbDZfbsLOaLdm4GYlcSFGGzSusXm2GOP5YEHHmDRokUsWrSInJwcTj/9dObPn5/qoolBwOuPrlKciJW9O5js0RkkIW//W2y87UGKTzGTV5y/x2OK8hy4rdEBnn4JbIYMX21dZNvISd5UfyUn2u3fVluPjOISg1VaBTZ33nlnl31z5sxhzpw5KSiNGOx8/mieGWuCllMA0ByJC2wMXSfU0IACNJmzGFaYvcfjTKqCpbgI2hcA75geLjKfe1dNZFt15SXtOqaY/EhtNXXdHClEekurwEaIRPLs2M4BzRsJqBo5wcR907XEdEXpPl83R/ZM93oJ5uRhNDXQrGVRWtB1fE2HwtJwdliH7sO3SwKbocIb02Jjyd9zi14iWPOjQZO3XrqixOAlgY3IWIHVX3N6e76ZrU2JW5LDkh0NbAxv/wIbk8PBijkX8+6ybWhGiGvz9x7YDMt30GDOweHzYTQ1ovv9qBZJf5/pPNZsmqz55ATbcBQnbqzY7hwFBZHtYFNj0q4jRLJJYCMyVsjjo6MDymRL3Po6FocDj2rBr5rRzf0/b32zFxSFoKJR5Np7UqthhVnssDgpb18MM1BTg7W8vN/XF+lt56QjebZmGACXFBf0cHTfZRflYQAKYLTnzRFiMJLARmSsUEw3UexMpv6y5WRx59jvAjDn4BEc0s/z1TWHx+mYVIXcbqbyDitwsEqLjsEJ1FRLYDMENLQkdwHMDi6ngxaTjayQF7W1JWnXESLZ0nq6txD9ofuiA3vNMTOZ+ssWMxDZ6+//Qpj1zeEPrrwcK6q696m8JXkOGizRmSsBGUA8JMSu7O1KYmCTm23BbQp/AdC8rRi6JKITg5O02IiMpfv8kW2LIzmBja+fgU3VM09z4qZVNGtZVA47pttjs+xmPA5X5LG/RqZ8DwUNLdEAPS87eWOqXNkWVjrHsSHkw1GYz766Dn1cj0+IVJLARmQswx/9pmvO2vug3N6yWaJvm/622LhXr2ZC6zYMoM11So/Hq8WlvOGeRbM5m5+feFK/ri3SX9vaNRz/yRMcpNpZU7QfZi15y2iYNROrS6fQ6g1SlGvjXE0+HsTgJHeuyFwxXVHWBAY2VouJI+u+pMDfRG6jCc6e0udzhRrqUQC3yU6eq+cVlV2FuSyrC6+X1qw5SFw7lEhH/ppq8nyN5NFIrSn5y8jkZltp9QZpdPsxDAMlSVmOhUgmaWcUGUuJabGxZiVu8LBFUxnt2cnE1q0Mq63o81gEPRBAaR+k2axlUeDsOUyJnTVV09j/rMcivbXuqo1sK0lMztfB1d7VFQjqeHzBHo4WIj1JYCMylhoIj7HxKxo2mzlh51UUhaApOtZB72P24djFDZvNWeT3OrDp/zpVIr15aqKBTTKT83XIzbKiGiGcATf1lTKGSwxO0hUlMpbfZEFVLfhVDVsC14oCCMXkr9G9HkyO3nd1BeujGWXDLTY9z3gpctlxBD0U+psILm8gMHo25rzkf5MXqeGvq4v8kbYXJS85X4dhvlqu2/h3ANxvVcO8Hyf9mkIkmgQ2ImN9eNA5fLM53CrycALXigIIaTEtNp4+ttjUR1dtbtbibbGxMbV5PUfXr4BK8E4fhfnAg/p0fZH+jPYMwEFFxVmY/ADWHrOsQqCxMenXEyIZpCtKZKzYqdiWBLfY6JZo60rI09ancwRiWmx8did2a8/fM/KdNprN0SR9wTpZrDCTqS2NALRoWeTFEfj2V05RtLtLb5Hsw2JwksBGZCxvIBzYWM0m1ATP7jAs0Q8Zv7u1T+cIxAQl8a7arJlUcEU/fAJ1td0cLQYz3evBFAgPgG/WHEnNOtzB5cqiTQ1fR3U3J/16QiSDBDYiY3W02FgT3A0VPmk0sPG5+9Zi440ZGGotjH8NIEvMYoXempo+XVukv0DMCtstWtaABDa52RbcWnv2YY8bwzCSfk0hEk3G2IiMFGxs5Nj1b9FmmGgoGAEckdgL2PrfYhOcdCCfVhlkB9vI7sX4ieySQkIomDDwVUtgk6mCDdExWK2WrLi6KvvLlWWl1WQHGjHpIfS2NkxZPedXEiKdSGAjMlKopYVxzZsBWO9I/DddNWZRzUBr31psGkdP4t/tE13Ozo0/z06By0GLloUr6EaP+fATmcUyrIy3hx2O3dtCS9GoAUmWZ7WY8Fgc0J5JINjUKIGNGHQksBEZKRAzoNcwJ359nZCrkJU54/CpZg4qGtanc3Ss6g2QH8dU7w4FThtN5nBgo/g8hNra+jTdXKS3YJaT5VnjIAsmlrkG7LohRw60jxsONTVBmawgLwYXGWMjMpLfHZO8zpL4FhujtJzXSw7nnaKD8Q0f16dzxAY28WQd7lCYa6NJk5lRma5z4Dtwi2cY2dEV5Ntq5N4Sg48ENiIj+WO7h5IQ2PR3IcxQWyvu6jpoH5zZm8CmwGmjWYt2D8jMqMxU3xxdEqQ3LXr9ZXLmRrZbayWwEYOPdEWJjORvjQ7oVayJ/7Zri5lp5fX3fk2dlk8/4Zj3/saRqLxeegS52cfE/VpXjpUmSzYhVNps2Rih/q0wLtJTy/r1uPzNtMSZvDFRQqPHs2TXKbhNdi6bPmvAritEokhgIzJSoC3aFaXakhjYGAZej6/7g/egI4eNCR0tOwuTGn/jqWZSqRy2H7/LHke2w8KDknk44xiGQf5LjzMv6KfO7CQrZ8aAXTs7P4+dtvCo9kZP3xZ4FSKVJLARGSnY5qFjDolqT0JgY1b56aZnsOp+/M3lcMhve/V6f0wTvyk//hw2HfJcDurcAdyeAL5ACGuCMyuL1NI9HkzB8CKuLZqDEQPYFeXKiQ62b3T3PmgXItVkjI3ISMGYFbdNtvinUsfLYbdgMkKYMMDX+7WivLXRcTH2wt4vblgY0zVR39y3tapE+orNYdOiZfVqDFZ/ubKiQVST2z9g1xUiUSSwERkpdmFKzZH4wMZu1fCp4W+2aqD3gUXHAphtqhVXfk6vXx875qKuSQKbTBO7QGqbNXtAkvN1yM22MKqtkhmNa3Ate3fAritEokhXlMhInuLhrM0Zh0UPkJfT+8ChJ3arCb9qhhCYAr37VmuEQtC+wGCzOYuCPnQzFOTamNa0llGeKlj8Hvqvb0K1Dlx3hUguf0xgY+S4BvTarmwrhzV8Hb63akH3/qBTQkoh0p0ENiIjNYyZzD8rwn+M5/Whq6cnDquGTzUDoAX9GLqOEucA4GBTI4oRHpTZrGUxvA/dDAVOG8M91ezn3gLu8JRvqyRSyxhtMUtlxLtAaqLYLCbazDHZhxubsJRKYCMGD+mKEhnJ44tOwU5GM77NqoVbbNrpvvgHWQbrot/Gm/s4fqIg10aTWZL0Zaq26tgFUvO7OTLxFEUhaI+5t5oaB/T6QvSXBDYiI3l80dwudkviAxtVUQiao10/uif+9aICDdEgJBzY9KErymmVJH0ZLBATqDqKigb8+kZ2tPvWWyfrkYnBJa0Cm4cffpjzzz+/077Vq1dz3nnnMW3aNI455hgWL16cotKJwcTjj22xSc5U6FDMGlSxg5V7Etti47X1bWCozaLhc0QzxAakxSajGE0NAPgUDVdhbg9HJ57qdEW23dVyb4nBJW3G2PzlL3/hwQcfZObMmZF9DQ0NXHjhhRx//PHccsstrFixgltuuQWXy8VZZ52VwtKKdHfgG49wkM9LgzkHu/WwpFzDsES7kHrTYuM6/gTu+CJElq8Fc+mwPq/abMrPhy3hbWmxyRyGYaC0uQFoMmdT0IuV3xPFHDOuR1psxGCT8sBm165d3HjjjSxfvpwxY8Z0eu7ZZ5/FYrGwYMECNE1j3LhxbNmyhccee0wCG9EtLeDFrPux6IFO6zolkm6NfuAE3K3E+/Hj9hvUmbKoc2QxuaDv4ydsRdFB0d5dNd0cKQYTRVH4z4lXsHrVVqy6n58PYHK+DvaCaGDjb2wc8OsL0R8p74patWoVubm5vPLKK0ydOrXTc8uWLWPmzJloWvSDadasWVRUVFAnTe9iLwxdR2vP2upTzZ3WdUqkuvJ9ebH0GJ4sOxG9fFT8r+u0qnffP7Ty8nNoNYVbjYL18n7IJA0tPlo1O/WWXPJzBj6wySqKBtyh5qYBv74Q/ZHyFpvZs2cze/bsPT5XVVXFhAkTOu0rLi4GoLKykoKC3qei76BpiY3pTCa10/9i75JdV6HW6HIKAc2KJUmBjVFYyrpd7de02uO+pxpbo3lvCl09v25v9VWcZ6dJyyYr5MVoacaEjqKl/C2dUpnyPqxvCc+yc2ZZsNvMPRzdN93VVX6RC7+iYTGCKO7mhP+9HGwy5b4aCOlQV2n9V9Dr9WKxWDrts7YnIfP1Ynrt7lRVIS8vq+cD+8DplHwP8UpWXXkD0ZW9Q2Zr0n7XrtzoGBuTRYvrOiGfD+U/bzC1qZVqaz4jy2bEXb7d62tkmYvV5izKfLUoGNiDHuxFpb37ITLUYH4fBkN6ZI2m4jx70u7fDnuqq5HlIT61uMLLhrhKkl6GwWIw31cDLZV1ldaBjc1mw+/vnNW1I6BxOBx9Pq+uGzQ3xz/YMx4mk4rTaae52UMoJCvidifZdeWtinbLhMxWGhpauzm672LfPLtq3BRmW/Z6bAdfZSWOT97lZODrnLHYTHN6LN/e6stmUtjkKKfVZKdoVBkT/AbeJP2sg0UmvA+3vf4mx9Z8SZOWhTb2kKTdv93Vlarr/HXEKQBMGpPPUXJfDfr7aqAks66cTntcLUFpHdiUlpZSXV3daV/H45KSkn6dOxhMzs0ZCulJO3emSVZd+Zqjf4R1iy1pvw+ryaDcU41N9+NZl0VwxCE9vsZbE5291Kw5cGVZ4i7f7vXlyraw0jmelcCkknxOcGTLvdduML8Pm79YzsGNawBYkXV40n+OPdWVRVPRTCrBkE6D2zdo6zLRBvN9NdBSWVdp3WE4c+ZMli9fTigUTba2dOlSxowZ06/xNSKz+VrckW3DmrxVkbOUEOfv+Bfn7HwP09L34npNbIbgFi0LVz8GhubYzVjaxz7UyQrfGSPUPhDcr2jkFQ1s1uEOiqLgam+BbGzpe7e/EKmQ1oHNWWedhdvt5sYbb2TDhg28+OKLLFmyhEsuuSTVRRNpzBsT2JDExfuszui4AyPOPDaBmNlLoRwXWj8G2CmKQkH7OJ+6Ji+GYfT5XCI9GIaB2hxOztdkzqbQlbpxCh1Bd6s3iD8Q6uFoIdJHWgc2BQUF/OlPf6KiooK5c+fy0EMPcd111zF37txUF02kMX9MYJPMVYkddhve9vWiFK8nrtf4a6NdUaa8/i9uWOC0gWFg8rXRsGV7v88nUivU3IQaCmfNbtKyUhrYjDCa+U7lO1y09WWqXn01ZeUQorfSaozNnXfe2WXflClTeOaZZ1JQGjFYBcbtz/PDjsUW8jOqbHTSruOwajSoFmx6ADXOwMYTM8bGloA1gApzbVy25QWcwTZqH3qH/HsW9vucInUCMYFvkzm7TwukJorLYWZsWyUAbTsqU1YOIXorrVtshOgLn93JhqwRfO0ch6mgsOcX9JHdasJjCjfXm/yeuLqCOsbYeFUzuQX9XwOoINeGRw2XwWhuxNBlYONgFrs0hsfmxGFL3XdPR0k08A42yLIKYvCQwEZkHI8/Oh4gWcspADhsZrxqeIClaugYPeRWMnQdmhsBaNYS8228INdGkzkbAEXXCTY29PucInViuypxpWbgcOTyhXkElHByS6OpMaVlEaI3JLARGcfjS/7K3gDZdg2vGp3VFGrtPtdHqLkJRQ8HXc1aFvkJWAOoMNdOsxYdxBzblSEGH/fOXZFtcxJbG+ORn2uL3Fuau0kGp4tBQwIbkXH0rRWM8FRR7KvHbkneLW7WTPjNsYGNu5ujwQgEaSgeQ605lzqLMzEtNs5oiw10nk4uBh/frmjeLntJ/8dg9Ue+00aLFk6EagoFerWCvRCplFaDh4VIBNd/3+D/asIzhLzmo5J6rVDMCt96W/d/+M1FRXw05QxWbQ53F81NQGCTm23BbYkGNrFjNMTg4x42hp272sgKesgrSW2urhyHGbc5C9rHxQfr6zE5ZGkFkf4ksBEZR/GFk9X5FQ2HPckrI9vC32i9qhnd33Mis7rm8DFWs4msBAwMVRUFxZUP7ZNWAtJiM6htHXcwr+4KL/T70xRO9YbwvRXIckJz+HGgvh7r8BEpLZMQ8ZDARmQc1R8ObHyqGVcSx9gAbB93IG9p4zAUlYcmTOr2WMMwqG/PEJzvtKIoSrfHx8tSGB2L4aupScg5RWrUNkUzSBfmpm6qd4QzD3aGNz01tWR3f7QQaUHG2IiMYwqEW0V8qoUsmzmp18rKsmEo4beR2xvo9tgWTwB/+9opicxP4ix04VfC31H8Mnh4UKtriuZDSofARotJIumukqBZDA7SYiMyihEKoYXCAYZPNSc9D0iWPRo4tXoC0E33wa6Fd3PBznoazDk0TftewspQ4HLQZM6iyN+E3liPYRgJaw0SA0f3+6ltD2yy7eakpiqIl7msnI/zJtOsZXH8uANSXRwh4pL6d44QCRRqi0659mq2yCKRyZId0yLk9nTfYqPv3E6pz4tVD6Al8Nt4odPGK8VHEFA15hw/mX0lqBmUql98gQtXvEOTls2yySelujgA5JQW81LBdACm22XhYTE4SGAjMooek0smaLElveUi22bi6NovcIS86G9vhUsu2ONxoba2yKDmZi0rsnhlIhTk2thlC3/o1LRK5uHBqrVyJ2YjRGGgCWd+/7NSJ0JeTJdpvawgLwYJCWxERolNkhc7FTtZsh1WDmxag8UI4t/QtNfjYvPLNGlZjHEmrmyxYzHq5MNn0ApUV6MCIVRyS4tTXRwA8nOiswrrW3qe9SdEOpDBwyKjBFqaI9t6+1TsZMqym2k1hQMLtW3vCfr8NdHEa43mnIS22LiyrZjUcMtU7KwaMXgYhgEN4eC30ZxNSWF65IvJd9pQDJ3cQAvq5vXocS72KkQqSYuNyCjeljZ0FFQMFHvyA5tsu5k6k428oBvN58EIBlG0rm+rQExg02zJITfbkrAyqKpCcZZKXuV6ippaafrYR+7hRybs/CL5Qk2NqO2D3hvMOUzIS/69G48sm8YJ9cuZ0bAatoDvhInY95mQ6mIJ0S0JbERGMQ6Ywd3jfFj1AAeOLUn69bLtGm2aDdpb6UPuFjRXXpfjAtXRNYAMVwFqgsf+FOWYOWXXRwA0/tcrgc0g46+qimw3mJ0U56U2OV8HRVEI5uRB+9qq/poaCWxE2pOuKJFRWr1BUBR8Jgu2rOR/681xWGg1RT+Egs3NezzOWxUNbLSixI+fcOa7IiuN+2OCKDE4+HfujGw3O1zk2JObf6k31JjFON2VVd0cKUR6kMBGZJS2mCR5jiQn5wOwWzV85mhgE9pLYOOvDndFeVUzOYWuhJej0GWnwZwDgN7YgB7ofuq5SC/enZWRbaOwJK3yEFmLooFNa5UEzSL9SWAjMkqrNxjZTsRaTPHQs3Ii28HGxi7PG8EgemO4Lb/RnENhbuK7GQpybZHARjEMgrIY5qDSuj0a2NhKh6WwJF1lDyuNbAdqJfuwSH8yxkZkFHXpexxXsxWPyYrDPH5Arqk7XZFt314Ciuo53+d/y9YSUDVmJiFVfmGujXXmaIDlr96FJc0+IMXeBXbtRCXcoucqTa9EeIXFLjyqBbvuh4b6VBdHiB5JYCMyinX9SmY2VaKj0OZI3LIF3YkdLOyp7hrYKJrGFucIlrvCDaSnJmFgaJHLToPZGXkcqK7u5miRbipPu4gP/70Ce8jH4fnpMdW7Q2Gunc3mHOy+OrTW5r3O/BMiXUhXlMgoircNAK9qIcueuCnV3TEXFFFhH8ZXOePxDx+zx2OqG6L5P4qTMJXXlWOl2Rob2MhYiMFkZ8DCFkcZa3LGpM2MqA5FLhtNWnhdbwWDgLTaiDQnYbfIKCZfOIDwmiwUDMDgYYCsglyeKT8BgHHjJu/xmI7AxmYx4XQkvlyqooRnW20LP/ZLi82gUtXQFtlORuDbHw6bGbfNCe1JvYO1tViSMLNPiESRFhuRMYxQCC0QTijjUa1kD9CUWVdWtGWoqdXf5fmmL77AUrUVa8hPcZ49aTNenEX5+JTwdxVvlUzLHUx21oWjBodVS0rg2196bri7NaioBPYy80+IdCEtNiJjdFrZ2zRwgU1sFuEmd9f1dKqXPM55rW7cJjufHHB50spRnO9gu70EzQgyctQ4DMNIq2nDYs9qP/qY4du+xmFxYi8bn5a/M/e4yfxBL6LF5ODufaemujhCdEsCG5ExQi0tkW2f2Y5ZG5gGydys6EKBzU2t6IEAqjkcVAWbmzFaw2tI1VpyKUni+IniPDtPlB0HwAWHTWTfNPyAFF3V/+ufnFKzAx2FTw6alOri7JGr0EVLRfj9VdPkpdCVXuOAhIglgY3IGLHJ8YIDsABmB1eOlSlN6zm6/kuyNnhpHXY5OQfOBMBfuSNyXK3FxYgkBzYddsWM2RDpywiFMGp2oQD1ZifDSnJTXaQ9KooJZGobPTCq67IhQqQLGWMjMkagqSmyrTtyujkysZwOMyGzlaxQeGXt2PT4uwc2JUkcGBo76DR2FpZIX/5du1BC4aSSNVYXZWmyqvfuCmNyL9U0yb0l0psENiJjeOobow+yswfsuoqioBdEZ4n4Y9Lje7dsiWxXW/IozU9eYFPgtGJSw91P1Q0e9EDXgcwivfh3bI9s11jyGFaQXjOiOhTn2RndVskxtcspefMpgu2ZtIVIR9IVJTKGP8vFmqxROEJecA1s9lZLSQn6SgUVA8+OmMBmcwUAIRTa8opxZiUvt45JVSnNNnH0N69TWNFEZdN4hl91bdKuJ/rPt2NbZLvBkU++M/FZqROhyGVnbFslBzd+A4RbJfe0ir0Q6UACG5ExvGMm8tKw8NiSOSNGDOi18/OyaTRnkx9oIbirCkPXMfy+SFdUjTWP0uLkj5/IK8ih2N+ATffj3bGj5xeIlPJujQY2SmkZapoO+NZMKoHcAmgMP/ZV7cSx3/4pLZMQezMouqJ27NjBvvvu2+Xfc889l+qiiTTS0hZd0Xqgpnp3KHTZqLG0f4MN+PHv3Im3ogIMA4Cd1gLKi5LfPVaSl0WtJRxA6Y0NhDwyHiKdebaFAxu/opFblt5re5mKSyLb7m2V3RwpRGoNihabtWvXYrVaeeeddzrleMjJGbgBoiL9uT3RMSU5joFZTqFDYa6d5bZC9m3dCoB34wb8NdHsv9vsJRxUlPyBocV5dmotLoZ7w6sw+3dWYh87LunXFb2nez0YDXUA1FhclA3A/dEfWWVlke22SglsRPoaFC0269atY8yYMRQXF1NUVBT5Z7OlZ3+0SA23J3UtNsPyHeywRQcQt61fi5bjpC0nH4DN9mEML0x+i01pgSPSYgPglw+gtOWL6SqssbooK0jvwKagvBh/e2brUI0s2SHS16BpsRk/fnyqiyHS3Ognfse8kMJOWwHZ9hkDeu3SAgc19kJ8iobVCNK64ktKfnAhL2x10VhVg8/iYGRJ8gObYQUOai2uyOPY6eYivSgmE1XF47HXV7LLWsDsAbg/+qOkIIsai5NSXz2m5npZ5VukrUFxV65bt46ioiK+//3vs3nzZkaNGsVll13GkUce2edzagnOSmsyqZ3+F3uXjLrSfT7MvlZcQHMwi4JcW8J/x93RNJWiohzW7xrJpJZNWIYNw+92U1nbiqE5GF2cjaOPrUi9qa/ifAfNjuhslUBV5YDWQ6oNpvdh9vhxvFx+LA1OHw6riZJ8x4Aup9DbuiovymKtORzYKIZBqK4aW/nwZBYxbQym+yrV0qGu0j6w8fv9bN68GbvdznXXXYfD4eCVV17h4osv5s9//jOHHnpor8+pqgp5eclp9nU6JdV4vBJZV95d7sh2m8nGqOF52K0De3uPK3exfNtEttuKuOjan1DfGsBof26/MQX9vufira/88hK8m8zY9AD+nTuTdq+ns8HwPmxy+2hoCa8tNm54Hvn5qWmxibeuXC4HL9jzwb0ZAK2hlrxJ+yaxZOlnMNxX6SKVdZX2gY3FYuHzzz9H0zQslvCA0EmTJrFx40YWL17cp8BG1w2amxObct5kUnE67TQ3ewiF9ISeO9Mko65aK6JdLm3WLLxtPrxtXRekTKZh+XY+sBWy01bI8tW7qGmMzkgaVZxFQ0NrN6/eu97WV3GegzpzLuW+Wvw1NdRW1mKyD40/yIPpffj1prrIdlmBvc/3R1/1pa5ChaUQHpdO7er1aJOmJa+AaWQw3Veplsy6cjrtcbUEpX1gA+BwdM3GOWHCBD766KM+nzMYTM7NGQrpSTt3pklkXfnqoh8SQYczJb+DCSNcke2vK+qpqgt/UCnAxFF5/S5TvPVVmu+gxuqi3FcLQNvWbdjHDa0xaun+PtR9Piq210ceDy/KTll5e1NXWlk5mzYPo9aax9Flo9O6jpMh3e+rdJLKukr7DsM1a9Ywffp0li1b1mn/119/LQOKRYSvNhrYkJOahQRHleREur+Wralme004sBk9zIlzAKeflxVmsTJnPK+UHMGGb12GbczYAbu2iE/jf95jzF9u5wfbXqfcU82I4vQeONwhf0QZz5afwHuFB7Erd2CTYAoRr7QPbCZMmMA+++zDLbfcwrJly9i4cSN33HEHK1asYN68eakunkgTbTXRwEbJS02qd1VVmLFPYZf9h08uHdByDCtwsMNezDc5Y9kcdKCoaf82H3J8mytQ9RBlvjpCmjltF7/c3fCYAGxbtbubI4VInbT/i6eqKosWLWLy5MnMnz+fuXPn8tVXX/HnP/+ZffcdWgPXxN756qLN+ta8/JSV4/iDRhA7ryU328KhBwxsYFOcZ48shrmzdmDHbYj4tG3cCEBAMWErK0cbJLNthsckEdxeI4GNSE+DYoxNfn4+t99+e6qLIdJYqKEeU/u2oyh1gc2o0hx+ePJEnv/PRrJsGhedtv+Az84yqSql+Q521LZSVd9GMKQPmg/OoSBQX0eoPtzCWGkrZMyIwbOYZKHLjtVswucP0rR9J4HaYZgLi1JdLCE6GRSBjRA9MVqaAGg12XA6U9usf9TUMo6aWtbzgUk0ojibxqpayr01bHnqGUYcfyyW0oFtORJ75lm/LrK93VbCvmXOFJamd1RFYX+bhyPX/gOH7qPmn1WU/eCHqS6WEJ1IYCMywtbDz2TVik2ohs7x2QO7TlQ6GlmSQ9BdwfG1ywhVgWdkmQQ2acKzLhrYbLMXc0pZaga795VrRCmOL8OpFNztXWpCpBNpnxYZYbu9lFU5Y1npHE9+jjXVxUm5kSXZ7LIWRB57t2xOXWFEJx0tNjoKjbnDKM4bXDmGSssKqDOHW5mMnTswgsEUl0iIziSwERmhvtkb2c53yuKoI0ty2GXNR28fyuzdtCHFJRIAoZaWyPpdVdZ8Ro4sHNBlFBJheFE2O9uDZkUP4duxPcUlEqIzCWxERqhrD2wcVm3AB+umo2y7mRxXNjXtC2L6tm8n1JbYbNui91pXr4psb7WXMnYQja/pMKI4mypbTGvg5ooUlkaIriSwEYNe24YNuCo3ku9voiC7bwtNZqIRxTlstxeHHxgG3k0yHiLV/Dt3RtYPq3CUMW6Qja+BcNDsKYgOjvdUSGAj0osENmLQq3nrTc6qfJefbH2ZEZqn5xcMESNLstluK4489mxY183RYiAUnjmXp6b9gFdKjmCno4Tx5YMvsAHIGTs60s3pXi/dnCK9SGAjBj1fdXVk215aksKSpJdRpTEtNoBng3wApVp9s5etbvgmZyyjhudhtZh6flEaGjWikGprOP+OvmsnIbck6xPpQwIbMejpdeHFHptNDvLzBseaOwNhXFkuLVoWTVo4r4934wZ0vz/FpRraVm9piGzvN2rwJObb3ZhhTrbawl8iFAw8G9anuERCRElgIwa1UEsLqie8bECDJUdmRMVwZlkozrNT4RgGgBEI4Fm3NsWlGroMXWdNhgQ2o0py2OYIBzZ+k4VQc3OKSyRElEwfEYOar33qLECtxcWEfEcKS5N+xpfnUrGtnGHeOkoOnoG5sOsinSL5AnW1bP3tbyiwlDHMPoa67BLGDsKBwx2sFhOhkeN5XMum1uLigYMPS3WRhIiQFhsxqPljApsaS96gS3aWbOPLc1mbNZI/jzydTfsdjaV0WKqLNCS1LPucUEsz+9etYUzbTiaOysOsDe4/v2PHFFNtzUdXVNZta0x1cYSIGNzvLDHk+XZEAxtPbqHksNnN+OG50J4Abv32xtQWZghr+fyzyPaa7FFM22fwt5ztG7N459qtjakriBC7kcBGDGqe7dGsp+bS1C48mY7KCrPIsoWDvbVbGwnpeopLNPT4tm3D157Ebpclj3pLLlPHDf7AZsKIaFfa2m2NsrSCSBsS2IhByzAM/O3p3FtMdvJL8lNcovSjKgr7jw7XS5svSMXXG2l8/98pLtXQ0vTh+5Htr5z7MGaYk7wMWM8sx2FheFEW05rWcujyF9h0/XUYEjiLNCCBjRi09LY2AgWl+BWNKmsBpTJweI8OGBMObE7d9RH6g7dR/bcl+HdVpbhUQ4Pu99P8yVIAAoqJVTljmZ4B3VAdJo7KY1zrDkZ7qgg11MvyCiItSGAjBi1TVharjv4+9439Lv8sOYyyQgls9uSA9habGkt0TETz0v+mqjhDStOH76O3hdMRrM0ehc9k4cB9i1JcqsSZOq6Q9dkjIo9b2oM4IVJJAhsxqG3b1YKhqHhMNkaW5KS6OGmpINdGab6Db3LGRNLgN33wHxkTkWRGMEjDv96IPP7MtT9jhjkZVpCVwlIl1oQRLja7xhBUwh8lLZ9/KveVSDkJbMSgZRgGW3aFU7k7HWZysywpLlH6mjKuALfmYF1W+Nt1qLmZluXLUlyqzNb8yX8JNtQDsMFRTrU1n8Mnl6a4VIll1lTGjx/G+o77qqWF1lVfp7hUYqiTwEYMSnrAT0NjG25PAIARJTko7dOaRVczJ4bXjPoid2JkX/0/X5PBnklkLixCKw5n5/1v3hRMqsLB+2XeWmbTxheyKmds5HHz0o9TWBohJLARg1TLZ59Rc8NVfHvnvxnmrWVksawR1Z0xZeGZOFvtJVTawoNX/Tu207Lssx5eKfrKMXE/Kr51KS+XHEmlvYhD9i8h225OdbESbsaEQrbmDKfVFF7OxP3FcgLt67cJkQoS2IhBqfWrL1ECfia0bsNkhMKJ6MReqYrCQfsWg6LwYd7UyP7a555B93pSWLLMpesGb31RyeqcMQDMOXhkikuUHA6bmcnji/nSOSG8Q9dpePut1BZKDGkS2IhBJ9TaSuv/vgKg1WRjh62IfYa7UluoQeCIKeHlFCocZexwhT9kgw0N1Dz3TCqLlVF0rwc9EO4e/WzNLmoavQAcMDqPERncqnjopFKWuyYSUExAeHB6oL4+xaUSQ5UENmLQafnsk8jMi1XZYygrysnIJv5EG1GczbhyJygKr+QeCFq4znSvT8baJIDu87HjgfvYdsdvaduxkxff3xR57qRZo1JYsuSbOr4AR14uK9pbbUz7T0ExyceLSA1ZWEcMKkYoRMNbb0Yef+0cx+RRed28QsQ6Zlo5G3c002TO4at9j+X4SQW4jj9RBl73U7ClmZ1/fATP+nUAVPzuLupLTgXFxAGj8yK5hDKVSVU57sARvNwwhbXZI9lnnxmMzXWlulhiiJKQWgwqjf95j0BNNQAV9mFUW/MzKpNrsh2yfwkFznA6/zd8pdQfMKtTUGPouoy56aW2NavZsuDXeNasDu+w2ni64Ah0xYSiwNnHjE9tAQfIkVOHgc3BdnsJH3xVSVV9W6qLJIYoCWzEoOHfWUndP16IPP4ofyp2q8aEEa7UFWqQ0Uwqpx42OvL46XfWoxtG5HHTB/+h4oZfUPvyP/Bs3CDJ1rrhr6qi6i+L2X7v3YSaGgFQnU7e2udkdpjDLTRzDh7JqNKhkTgyy2bmxJnt+Wx0g2ff2wCAd8tmQq2tqSyaGGKkK0oMCv6qnWy79250b3gw5grneHbYizli3yI06cvvlSMmD+Otz7ZRVd/Gxspm/v3FDo47cDjB5mZqX3weva2N+ldfpv7Vl1GsVuzj98FSVo7mcqHl5qLaHdjGjkXLcUbOqft8BJuawuMqFBXFpKKoJlBVUNVwq5CqgqKgmgf3eKjmT5fS+M7beCs2ddpv329/3iw7ii+2hFsqSvMdfOuIMakoYsqcPGskH/yvkia3nxUbalnx0ltkvfkc5qIihs27AmtZWaqLKIYACWxEWjJ0HUWNBixqVha6JxzU1DsKeLdwJhAeMyJ6RzOp/GDOvtz91JcAPPPeekYPy2GkXcex/wG4ly+D9lYcw+ejbdXXtO2WTbb8qmvRDpgUedy2+hsqH3qgx2srmsY+i/7UaV/100/S9MF/wr/vSCCkQntwpJjC+xz7HUDJeT/o9Nqdjy4i2NyEoqooJhOqprHLZiEQMjDUaHDlnHUojon7RV4XbGyk/o3XMUIh0EMYwVB0O9TxT4dQiNKfXNIpiPNu2tQpqFHtdnJPOpVXjNH89+twN6nNYuLyb0/GYjb1WCeZxGbR+M4x43nstW+whvwY/3oZIxjAX1nJ1t/8mryTTyXvuBMwZWfuDDGReoMisNF1nYceeojnnnuO5uZmDjzwQG6++WZGjcrsmQaDgWEYGIEAht+P7vdh+Hzofn/4sc+HdcRItNxojplAbQ31//2IRtXA09JGyOfHCPjR/X70tjb0tjZCnjYUk8aY2+6MvE7LcZJ34hx2LVvB32yHEFDNjC1zMmbY0GjmT7SJo/I47sDhvLt8O8GQwYPP/4/550xlzLzLCdTV0bpqJZ61a2hbsybSzRJLtVo7PTZCofgurHZtXTPa7xdjD4fHCg7r+m3fs2kDwdqek8HZRo3uFNiE2tpofPftHl8H4eCOmNvMUhYOpq0jRpBz8KH4phzCH97ayNZd4aBGVRQuOeMAygszZ02o3ph1QAlfbazls9XV/LX8JL6369+4vI0YwSD1r75MwxuvY993IlmTp2IbOxZLSSmmrKFZVyI5BkVg8/DDD/P0009zxx13UFJSwu9+9zsuvvhiXnvtNSwWWR+oJ4ZhYASDXboAfNu2EqitJdTWiu71dglKOoIVx8T9cB17XKfXbrruGkKtbgy/P/Ltfk+GXXoFOQceFHkcbGik9pWX4yp3qKUFU070EyU461ge3ejC4w9fb+5RY2U2Tz+cO3s823a1sG57Ey1tAe5+8ksuOnU/Dty3CNdRx+A66hgMwyBYV0ugvp5gYwOhpiZ0rxdzYecB21pePjmHzAJdx2j/RygU/t8wwvsNA8XUtQXDlJuLpXx45LXh/0OdH4d0VJut6w8RinOa+m7dlXsqx94Yu10je/oMHBMnohQU8cFXO3n+ma/x+cOBnWZSufj0/Zk6fugOaFcUhR/MmciO2lZ21MCfyk7huOaVTKtbhWLoGMFgl1bAsffch+aKWX3+06W4v1iOarWimM3h35dJQ1EVaG/FU1QT5qIinIce3un6Lcs+R29rC7f8qSqoSvt2R+ufCcVkwlJairkwutK6EQziq9wRbS00mcItfiYTWM0ENJ1QmxfdUMJl2kOQLtJD2gc2fr+fxx9/nJ///OccffTRANx3330ceeSRvP3225x66qkpLmFyGbqO3taGv7qaYH0djon7dWrG9W7ZTMtnn6B7veF/Hg8hdwuh1tZwfhKfF93nQ3O5GPu7+zqdu+71V3Ev+7zHMqhWK+wW2Oi+cCDUY/n9nY9RLD2MrzCZMDmyMOXkEGxqjAQ2GyubePgfq2hpD2oO3q8446fQJptmUrny7Cn8/vn/sW57E75AiIdf+ppJY/I5dkY5k8cWoJlUzIVFnT4A9sQ+diz2sfP6VI7CM+dSeObcPr12zB13h7uNdB2CQUwqOLOtNNa3EPQHwkGJoaPtNvVYy89jxA03dfrwUkztH3wmrX2/iqKZUCzR1ildN9jqhuVr3SxdtYFGtz/yXGm+g3lnHiCrzAMOm8bV35nG3U99ya76Nt50TeeTrPGcrGxhdEMFNDV0Ot6U3bnOfFu3hrtEe2CfuF+XwKbu1Zfx79je42sLz/oO+SefEnkccrew9Tc39/g6gFE3/wbriGgm6eZP/suuv/01fN9oJpT2eyhyX2nhxyank/Ir53c6V+O/38VbsQlF08L3nhbzz2RqD+w0rOXlOPbbv9Nr21Z/A0p7oGU2o2hm1I7tyD5tyAVhaR/YrFmzhtbWVmbNmhXZ53Q62X///fn888/TNrAxOr6lhkIYgQC6pw3d5wt/2y0o6PTtRPf7qfzDg+Hj2o/RPW3hVhS/v9N5R9zwa+wxgY1/ZyUNb/6rx/LoewhCVIt1D0d2FfL60HUDI6azwFw6DN3jQbVYUCwWFIu1fdva/tiCarWglpYRCIaijTr5hQz72dXk5OfQ6tPRVQ3FbEGxmFHsDhSzGVBodPv4uraNyv9uZv22Rr6uiGYxLS/M4gdzJiL6L8tm5prvTuNPr63m8zXhrpSvK+r5uqKebLuZ/UfnMao0h2KXndwsKzlZZmwWDatZxaKZUFUlfK9D9O4wOv5r379bg56x24GGEfOot68FQMVABU3DZFKw2rPwZakErXrknD7AaPV3OolRPHyP19B1A68vSKs3SKO7lZ11beysa6Wyto1dDW0Egl1biQ6fVMr/nTgBmyXt/6QOmLwcKzeefyB/fPlrVm1uoMmcw9NMgsIDGDesjammekpDzdgDHtbvdOPKsWKzmLBqJkLtkwR6sseWtziTTe6eQLBXSSrVztc1/AEMn7fH7lQtr2vOrba1a+L6guk87IgugU3lIw+FW6d6UHrxPJyHRD9DfZU7qPrTo+G/0x1/r2P/bw+SFJOJvDknd+p67viSHf4bb0W1WFGs1kjrWjpMtlYMo5t+hDTw1ltvceWVV/LVV19hi2mK/tnPfobX6+WPf/xjr88ZCuk0Nyc2V8fz/9mI7cW/MKJlO6qhY+rmFv+w6ECWFU6J/PE26UF+tvaJuK7z1IiT2G6PrhA83r2VuZX/7nKcVzXj7/inaPhUC8+Wn9CpVONbt1Hka8BrsuJXzQQUDb+qEVRMBBSNgKq17zPjM6VHl9/44bn89OwpuLLjC8oygcmk4nTaaW72EIq366WXDMPg89XVPPnOOuqbe26JE6AoMGNCEacfPoaxZc6eX5BmBuK+gvC99d+VVTz97nqaWv09vwAw6wHsIT8WApgMHZOhoxo6CgaqYaAaOioGHpOVKlvn1sR93Fuwhfyo6CiG0R726qiGgYLRfi6DiqwyKu3FkdfZQj6OrP1it2uEjzXRfn0jfK5/lR5Oizn6BXPf5s0cVrci/Jr2snWUueM8mqHTZM7mT+PO7lTeM7e/y3j3th7r5CvXBN4ddlinfT9d8zc0o+fxba+WH8sG52ggfN+Wte3iO5v/2ePrAB7e9//wx/z9n1X9JbNqV+z1+ICi8e9pZ3HueccyrMAR1zXi5XTaMcUxCzbtv154POEAZPexNFarlaampj6dU1UV8vISN1gtENR545MtnBkMYo7jJsvzNuALRI9TYqINHQW/quFTzfhUSyQwaTZn02jOpt6URUiPvmCrtYgnyucQUDV8SjiQ8Zqs6ErPv/wNWSPYkDWidz9sihS67Jx17HjmzBqNWUv9N4JUcDrtST3/nMOzOX7WaL5cV8N7y7bx2TdVkbEjAkyqwrDCLEaU5HDgxBJmTSolNwMC7GTfVwCnHT2eEw8bw4crdvDhih2s3FiHP7D3eyugmgmocaYF2O27+dqsXiw2GvO3tFWx8K+iWd0cvJtQ9LWrskaxKquHySztgZWxW4vfG4WzsObPaA/gQpFAzmSEMBHdbjDn4A90fu3SvEloegjNCGEywv93/DNF/tdpwtLpMyfkDxBERaPngLYlqHSaHKAEuw9OzUaQypoW/ldRz/7ju+/CTpa0D2w6Wmn8fn+nFhufz4fd3rc3pK4bNDcnNivmd4/bh9YXl1OPF0NR0BUVXVExFJWQYiKgWQiYzARVM81ZhQwvCgdWiqKAYfBswUWEVC0ckCgKexoTqygK+UA+EH06B5QiNMAOKDHP7G1cbef9ez5+b0NyYwfr7uU0nfbvaXCvooCmmQiF9PZujK5lyLKbKS/Morwwi7L2f6qq4G4ZellxB+qbdYdxpdmMO20/fnTKvuyoaWVbtZv6Zi9Nbj/NbX58gRA+v04gGIp8LnT83nb/bXf8/iP7dztu9/sj/FDZ8zkjjzs/H/taRVHQNBPBYMwf4piN7l7bcW5FCU9bdtg0chwWSgsclBVmUZJn75QzSQ8EaWgYvAkMB/q+ApgxvoAZ4wsIhnS217iprG2jocVLY4uPJnf7vRXQ8QdD6Hr3nQnx9DUYPXUOxXWO8D2kmlT0kN7lJf3v9Mju2uUKBNv/ddCA3b+Gbi3uPL6ou7IMJ/rjBhnPU6PGoxg6Jj2IFgqi6UE0PYApFMSkhzDpIRQMylydxz+1mEaz0mENHx8KRF4XPkf4/wnjijloQiENDYlNzJgxLTbDhoVXJK6urmbkyGgkXl1dzcSJfR9nEdxDP3l/nDBzBHknLqChoTXh5840mqaSl5fVq7rSdaPHP3SZLhTSB/zeKivIoqxg8EzF7cu9FTcj8X830kEq7iuA4YXZDC8cHPlsknpfDTqHdPuspqmcluK6Svs2/YkTJ5Kdnc2nn34a2dfc3Mw333zDQQcd1M0rhRBCCDHUpH2LjcVi4bzzzuOee+4hPz+f8vJyfve731FaWsoJJ5yQ6uIJIYQQIo2kfWAD8NOf/pRgMMivfvUrvF4vM2fOZPHixZKcTwghhBCdDIrAxmQy8fOf/5yf//znqS6KEEIIIdJY2o+xEUIIIYSIlwQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhmL0f831QccwkrNStMmkEgoN9ZVf4yN11TtSX/GTuoqf1FX8pK7il6y6UlUFRVF6PG5IBjZCCCGEyEzSFSWEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBTQLous6DDz7IkUceydSpU/nRj37Eli1bUl2stPPwww9z/vnnd9q3evVqzjvvPKZNm8YxxxzD4sWLU1S61GtsbOTXv/41Rx11FDNmzOB73/sey5YtizwvdRVVV1fHz3/+c2bNmsX06dP5yU9+woYNGyLPS13tWUVFBdOnT+fFF1+M7JO6itqxYwf77rtvl3/PPfccIHW1u5deeolTTjmFyZMnc+qpp/LGG29EnktpXRmi337/+98bhx56qPGf//zHWL16tfGjH/3IOOGEEwyfz5fqoqWNP//5z8a+++5rnHfeeZF99fX1xiGHHGLceOONxoYNG4znn3/emDx5svH888+nsKSpc+GFFxpnnHGG8fnnnxsbN240br31VmPKlCnGhg0bpK52c8455xjnnnuu8b///c/YsGGDceWVVxqHH3640dbWJnW1F36/3/j2t79tTJgwwXjhhRcMw5D34O7effddY/LkycauXbuM6urqyD+PxyN1tZuXXnrJ2G+//Yy//OUvxubNm42HHnrImDhxovHFF1+kvK4ksOknn89nTJ8+3XjyyScj+5qamowpU6YYr732WgpLlh6qqqqMiy66yJg2bZpx0kkndQpsFi1aZBx55JFGIBCI7Lv33nuNOXPmpKKoKbV582ZjwoQJxvLlyyP7dF03TjjhBOP++++XuopRX19vXHXVVca6desi+1avXm1MmDDB+Oqrr6Su9uLee+81zj///E6BjdRVZ4888ohxxhln7PE5qasoXdeNY4891rjzzjs77f/Rj35kLFq0KOV1JV1R/bRmzRpaW1uZNWtWZJ/T6WT//ffn888/T2HJ0sOqVavIzc3llVdeYerUqZ2eW7ZsGTNnzkTTtMi+WbNmUVFRQV1d3UAXNaXy8vJ49NFHmTRpUmSfoigYhkFTU5PUVYy8vDwWLlzIPvvsA0BtbS2LFy+mtLSU8ePHS13tweeff84zzzzDXXfd1Wm/1FVna9euZfz48Xt8TuoqatOmTezYsYPTTz+90/7FixdzySWXpLyuJLDpp6qqKgCGDRvWaX9xcTE7d+5MRZHSyuzZs7n33nsZMWJEl+eqqqooLS3ttK+4uBiAysrKASlfunA6nRx99NFYLJbIvjfeeIOtW7dyxBFHSF3txU033cThhx/Ov/71L2677TYcDofU1W6am5u57rrr+NWvftXl75TUVWfr1q2jrq6O73//+xx22GF873vf48MPPwSkrmJt3rwZgLa2Ni666CIOPfRQzjnnHN577z0g9XUlgU0/eTwegE4fSABWqxWfz5eKIg0aXq93j/UGDPm6W758OTfccAPHHXccs2fPlrraix/+8Ie88MILnHHGGVx++eWsWrVK6mo3CxYsYNq0aV2+XYO8B2P5/X42b96M2+1m/vz5PProo0yePJmLL76YpUuXSl3FcLvdAPziF7/gtNNO4/HHH///9u4upKk+jgP4V9FYtiIqqKsiHGuv5oazl4FUhAWNIkgrpIsMMRQHljS62oVYETWEsqBXIQu8MARrN62roOlWpBDDTJNaQa0GNYKi1N9zEZ62rB540s48z/cDg3HO2P776rYv//MGt9uNurq6rMgq798fQr+j0+kAfPtQTN4Hvv3x5s6dq9awZgWdTocvX75kLJv8py8oKFBjSFkhFAqhqakJq1evRiAQAMCsfmVys0FzczP6+/vR0dHBrNJ0d3fjwYMH6Onp+el6ZvXdnDlzEI1GkZeXp/wo22w2jIyM4PLly8wqTX5+PgDgwIED2LlzJwDAbDYjFovh6tWrqmfFGZs/NDm1m0gkMpYnEokpU3GUadmyZT/NDQCWLl2qxpBU19HRgYaGBpSVleHixYtKWWZW3yWTSdy6dQvj4+PKstzcXBQWFiqfO2b1TVdXF5LJJDZs2ACHwwGHwwEA8Pv92LZtG7P6QUFBwZSZBqPRiDdv3jCrNJO/bUajMWO5wWDAy5cvVc+KxeYPmUwm6PV69PX1KctSqRRisRhKSkpUHFn2c7lcePjwYcYPVDgcxsqVK7F48WIVR6aOGzduoLm5GVVVVWhtbc34gmVW3yUSCRw+fBiRSERZ9vXrV8RiMRQWFjKrNKdOnUIwGER3d7dyAwCv14sLFy4wqzSDg4NwOBwZ544CgMePH8NgMDCrNBaLBfPmzcPAwEDG8qGhISxfvlz9rP7KsVcaFwgEpLS0VEKhkHIem/Lycp7H5gc+ny/jcO93796Jy+USn88nT58+la6uLrHb7XLz5k0VR6mOZ8+eidVqlfr6+ozzZyQSCUmlUswqzcTEhFRXV8uWLVskGo3KkydPpLGxUVwul7x69YpZ/Yv0w72Z1Xfj4+NSUVEhHo9HotGoDA8Py7Fjx8Rms8ng4CCz+kFbW5s4HA7p6emR58+fy7lz58RkMklvb6/qWbHYTIOxsTE5efKkrF27VoqLi6Wmpkbi8bjaw8o6PxYbEZGBgQGprKwUm80mGzdulGvXrqk0OnWdP39ejEbjT28+n09EmFW6VColfr9f3G63FBUVSXV1dcZ5bZjVr6UXGxFmlS6ZTMrRo0fF7XaL3W6X3bt3SzQaVdYzq0xXrlyRTZs2idVqle3bt8udO3eUdWpmlSMiMvPzQkREREQzj/vYEBERkWaw2BAREZFmsNgQERGRZrDYEBERkWaw2BAREZFmsNgQERGRZrDYEFFW4pkoiOi/YLEhoqxz9+5d+Hw+AEBfXx9WrVqVcdkSIqJf4dW9iSjrtLe3K/etVis6OzuVK3kTEf0Oiw0RZTW9Xo/i4mK1h0FEswQ3RRFRVtm3bx8ikQgikYiyCSp9U9SZM2ewdetWhEIheDwe2O127NixA48ePUJ/fz8qKipQVFQEj8eDcDic8dxDQ0Oora2F0+mE0+lEfX094vG4Gm+TiGYIiw0RZRW/3w+LxQKLxYLOzk58/PhxymNev36N48eP4+DBg2htbcWHDx/g9Xpx6NAhVFZWIhAIYGJiAo2Njfj8+TMAYHR0FHv27EEymcSJEyfQ0tKCeDyOvXv3IplM/u23SUQzhJuiiCirGAwG6PV6AEBxcfFPdxr+9OkT/H4/ysrKAAAjIyM4ffo0WlpasGvXLgDA+Pg4vF4vRkdHYTabcfbsWeh0OrS3tyvPv27dOmzevBmXLl1SdlYmotmNxYaIZiWn06ncX7JkCQBk7IuzcOFCAEAqlQIA9Pb2Ys2aNdDpdBgbGwPwbf+dkpIS3L9//+8MmohmHIsNEc1Kk7Mu6XQ63S8f//79ewSDQQSDwSnrFi1aNK1jIyL1sNgQ0f/C/PnzsX79euzfv3/Kurw8fhUSaQU/zUSUdXJzczExMTGtz1laWorh4WGYzWalyIgImpqasGLFCpjN5ml9PSJSB4+KIqKss2DBAoyOjiIcDiv7yPypuro6vHjxArW1tQiFQrh37x4aGhpw+/ZtmEymaXkNIlIfiw0RZZ2qqirk5+ejpqZGOVz7T5lMJly/fh05OTk4cuQIvF4v3r59i7a2NpSXl0/LaxCR+nKEV5ojIiIijeCMDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERacY/ynqhxCE52igAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the inverse transform\n", + "S_prime = (np.exp(np.exp(S_LLS_filt) - 1) - 1)**2 - 1\n", + "\n", + "# Perform the subtraction and plot the reconstructed signal over the known signal\n", + "S_subtracted = S - S_prime\n", + "plt.plot(df['time'], df['true_signal'], '-', lw=2, label='true signal')\n", + "plt.plot(df['time'], S_subtracted, '--', lw=2, color='r', label='baseline-subtracted signal')\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With 200 iterations of the filtering, the baseline-subtracted signal is almost exactly overlapping the known signal, demonstrating the power of the SNIP algorithm.\n", + "\n", + "## How many iterations?\n", + "\n", + "The above is dependent on how many iterations are run. As described by Morhác and Matousek (2008), a good rule of thumb for choosing the number of iterations $M$ is\n", + "\n", + "$$\n", + "M = \\frac{W - 1}{2} \\tag{4},\n", + "$$\n", + "\n", + "where $W$ is the typical width (in number of time points) of the preserved\n", + "peaks. Choosing $W$ is dependent on your particular signal. In HPLC chromatograms,\n", + "the observed peaks are typically on the order of a minute or two wide. In\n", + "general, it’s advisable to be generous with the approximate peak widths as an\n", + "underestimation can result in subtracting actual signal.\n", + "\n", + "## Implementation in `hplc-py`\n", + "The above SNIP background subtraction algorithm is included as a method\n", + "`correct_baseline` of a Chromatogram object. The above steps can be called in a\n", + "few lines of code as in the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 187/187 [00:00<00:00, 490.64it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACycklEQVR4nOzddXgbV9bA4d+M2DKzwzxJGmqbppRiysywZYYtbhm2uG2/drfcbmlTSJmZmZtCmrQNTNjMDJKF3x8jOw5aliVLts/7PH5sS6OZq2vZPrpwjhIMBhFCCCGEGAjUeDdACCGEECJaJLARQgghxIAhgY0QQgghBgwJbIQQQggxYEhgI4QQQogBQwIbIYQQQgwYEtgIIYQQYsCQwEYIIYQQA4Y53g2IgwbABpTHuR1CCCGECF8B0A6kb+kgZRBmHnYFg0F7IBD9562qCrE470Al/RU+6avwSV+FT/oqfNJX4YtVX6mqgqIobsCxpeMG44hNeSAQHF1X1xrVk5rNKhkZTpqa2vD5AlE990Ak/RU+6avwSV+FT/oqfNJX4YtlX2VmOjGZlG5nW2SNjRBCCCEGDAlshBBCCDFgSGAjhBBCiAFDAhshhBBCDBiDcfGwEEL0qUAggN/vi3cz1hMIKLjdJjyedvx+2e2zJdJX4Yu0r0wmM6oanbEWCWyEECJGgsEgTU11uFwt8W7KJtXUqAQCsssnHNJX4Yu0rxyOZFJTM1EUpVfXl8BGCCFipCOoSU7OwGq19foPdrSZTIqMQIRJ+ip8Pe2rYDCIx9NOS0s9AGlpWb26vgQ2QggRA4GAvzOoSU5OjXdzNslsViUvS5ikr8IXSV9ZrTYAWlrqSUnJ6NW0lCweFkKIGPD7/cC6P9hCiC3r+F3p7Xo0CWyEECKGEm36SYhEFa3fFQlshBBCCDFgJNQaG03TJgALgAt0XX86dNsM4H5gJlALPKDr+n/i1UYhhBBCJK6EGbHRNM0CPA84u9yWBXwKLMcIbG4EbtU07bS4NFIIIUTczZ37GEcddXC8mxG21atX8cMP38W7GYNGwgQ2wM1A8wa3nQ20A+fpur5U1/WngHuBq/q6cWLg+/TTj3j66bn4fImVSE0I0b9dddWlLF26ON7NGDQSYipK07RdgXOAGUBRl7t2Ab7Rdb3rf5ovgGs0TcvVdb2q71opBrKlSxdzxRWXAGAyqZx0kgwKCiGiIxiU/Dd9Ke6BjaZp6cCzwIW6rhdrmtb17mHAnxs8pCz0eQQQcWBjNkd3sMpkUtf7LLYs0frrk08+XO/r0047I46tWV+i9VUiS6S+CgQ2vcMjGAzidrv6uDUGu93RufOkYwOKokB3/3dnz57JySefzscff4DX6+Whhx7Dbnfw6KMP8csv82lqaiQrK5t99z2As846j9WrV3Hqqcczd+5zaNpEAK655nJ+/fVnPvzwC8xmM8FgkEMP3Y+zzz6Pgw46bKNr1tfX8/DD9/Hjj9/h8/mYOnU6F198OcOHj+g85vnnn+H111+hoaGByZO34qqrru+8f1NtzsvLZ968p/jkk4+ora1m5MhRnHba2ey66+4AfPDBuzzzzFzOPvt8Hn30IWpra5kxYxuuvfafvPjis3zwwXuYzRaOOeb4zjc/Ho+HJ598nC+++JSqqkqSkpxst932/OMfV5KWls5RRx1MRUU5Tz31BL///hsPPfQ4TU2NPPHEo3z//Tc0NDSgaRM599wLmD59687n9sknH/HMM/+jvLyMsWPHsffe+/PAA3fz3Xe/RvQzUVV1s8/vmmv+yQsvPMuHH76HxbL+8+upnryuNsdkUnr1PzrugQ3wCPCjrusvbOK+JIypqK7coc/2SC+oqgoZGc7uD4xAaqojJucdqBKlv5YtW8yc7FyG2h28pi/D6bRgtVrj3az1JEpf9QeJ0Fdut4maGnW9P9LBYJCTTvobCxcuiEubtt56G+bNe3G9bbXhBoHvvPMG9977EH6/jzFjxnDSSceRkZHJ/fc/jNPp5Pvvv+Oee+5i6tSp7Lrr7uTnF/Dbbz+z1VaT8fv9LFz4G263i+XLlzJt2nSWLFlMQ0M9u+66+0b/xHw+H5dddgGgcOedd5OensGDD97HP/5xAa+++haqqlBRUc4ffyzk7rvvx+v1cvPN/+TOO2/l0UfnbrbNV175D3R9GZdffhUjR47i008/5rrrruDOO+9h1113Q1UVKisreOut17nrrntoa2vjiisu4eSTj+fggw9h7tx5fPzxBzz22MPsuutujB07jgceeJBvvvmSf/7zFoYMGcLq1au45ZYbefbZJ7nkkst56qnnOOWUv7HXXvtwyimnoyhB/vGPC/B6vdx44y1kZmbx2msvc8kl5/P4408xadJkvvvuG2677UbOP/9CdtllN3799Rfuv/9uYP035T39mWzu+Z1yivH8nnxy4+cXqUjeXAQCCqqqkpaWhN0e8b/4+AY2mqadhDHdNHUzh7iADbNbdTzb1kivGwgEaWpqi/Thm2QyqaSmOmhqcuH3S3bK7iRSfwWDQTyr13LpqDEANPu8LFjwZ+c7zXhLpL5KdInUVx5Pe6j4ZbAzC2u8pySCQfD5AiiKgqIY/eX3B8J6Z73vvgcwfrzxO9Ha2sY++xzAHnvMIT+/AIAjjjiGefOeYvny5ey0067svPMuzJ//I3/728ksXrwYk8nMtGkz+OWXn5k8eSrffvsNW201ldTU9I2y1P78888sX67zwguvMWLEKACuvPI6XnjhWerq6gkEgphMJv75z1tJTk4G4JBDDufxx/+73rm6tnnlylV8881X3Hnnvey44y4AnHLKmSxfrvPUU/9jp512IRAI4vP5uPTSKxg92vinvu22s1i8+E8uuOASAoEgf/vbqcyd+wQrVqxg5MgxaNokdtlld6ZP3waAnJx8Zs3agRUrVuDzBUhJSUNVVWw2O05nCj/88D3Lli1l3ryXGDPGuMYll1zJX3/9xbPPPsMtt9zBc8/NY/fd53DssSeGnttwCgsLefnl5zf7/ML5mWzp+Z177kUoirLR8+upnr6uuvL7gwQCARob23C5/Bvdn5rqCCtgiveIzelAHrDhFNSjmqZdARQCQzZ4TMf3pb25cKxSY/v9AUm73QOJ0F9VVZVMtlg6v98+I5MVK1YwduyEOLZqY4nQV/1FIvTVpmrlKIrCU089nxBTUR3/dML95zNs2LopIJvNzpFHHsNXX33OK6+8QElJMStXrqCmproz4/Ls2bvy7rtv0d7u5tdf57P11tsyfPgIFiz4lVNOOYMff/yePffca5PXWrlyBcnJKZ1BDUBWVjYXXnjpet93BDUAKSmptLevP8Dftc2rVq0EYNq0GesdM336Njz66EPr3db1una7nYKCISiKQjAYxGYz3mt7PB7ACC5+/fVnHnvsYYqLi1i7dg1FRWs3uk6H1atXkpyc3BnUgPG6mD59BvPn/wiAri/j7LPP36CdW/Pyy89v9vmF8zPp7vkZ51n/+fVUT19Xm9L1zUAk4h3YnAhsOGa8ArgBeBk4HjhX0zSTrusdP5k5gC4Lh0W0lJWVEujySzjCkcTPpSXxa5AY0BRFweFIinczeqzjHx6A2+3m738/C7fbxZ577s2++x7IpZduxd//flbnMTNmbIvFYuH33xfw668/M2fOPowYMZKXXnqeiopydH0pN974r01ey2w2d5uFNpxaQl3bDJv+TxsI+DGb1/9XuOH3W2rLf/7zf3z++Sfsv/+B7LTTbE455XRefPE5qqoqN3m8MWq38fkCgUDndU0mE8Fg9//Ye/ozieT59UdxDWx0Xd9o1CU0clOl63qhpmlPAlcCczVNuwuYBVwCnNuX7RQDW2VlBc+XFrEkN4fLrXYsQGvh2ng3S4iENX/+D+j6Ut5552MyM41KzE1NjdTV1XYeY7FYmDVrR7777msWL/6TK6+8jry8fBQFnnjiEUaOHLXeQuCuRo8eTXNzEyUlxQwbNhyAhoYGjjvucO66696I2twxQvLHHwvZeeddOm9ftGgho0aNjuicjY0NvPXWa9x88+3MmbNP5+1r164hKWld8No1cBg7dhwtLc2sXr1yvVGbP/5Y145x48azePH6+2aWLPlri20J52cyWMR/68AWhEZl9gU0jIzENwJX6Lr+TFwbJgaUiopyAPLy8vGkGlWYPVUyICjE5uTk5ALw8ccfUlFRzqJFC7n66svw+XzrTWHsvPMufPDBu6SnZzB8+AisVivTps3g008/Ypdddt/s+bfddhYTJ07m1ltvYPHiv1i9ehW3334TmZmZTJw4OaI2jx49hh133Jm77/4/vv/+W4qKCnnqqSf47ruvOf74EyM6p9OZTHJyMt9++zUlJcWsWrWSO++8jeXLl63XDw6Hg5KSYurqatluux0YO3Y8N998PQsW/MratWu4++47WbVqJUcf/TcATjzxVL766gteeuk5SkqK+fDD93jttZe22JZwfyaDQbynojai67qywfe/ADvGqTliEKioqAAgP7+A9slb8fdrLmfomLFc2s3jhBisJk+ewoUXXsrLL7/AE088Qk5ODnPm7ENubt56Iws77TQbv9/PNtvM7Lxt5sxZ/PLLfGbP3m2z51dVlf/7v7t58MF7QrujYOutZ3LPPQ/1arfizTffwWOPPcSdd/6LlpZmRo8ey7/+dRe77bZHROczm83ceuv/8dBD93HyyceRmprKNtvM5Jxz/s68eU/hcrlwOBwcddRxPPzwfaxevYpnnnmR++57mIceuo/rrrsSr9eDpk3i/vsfYcoUYx/NDjvsxBVXXMO8eU/x2GMPo2mTOPTQI3njjVc225ZwfyaDgRLvVfpxsNrvD4yuq4t4U9Ummc0qGRlO6utb475osT9IpP565MJzmdbQSGD8eHKP/RvHHnsYmZlZfPHF93FtV4dE6qtEl0h95fV6qK0tJyurAIslsVIHdDCb1bj3U3/Rl331+++/kZWVtd4i33nznuS9997mlVfe7pM29EakfdXd70xmphOTSV0DbHG7VkJPRQnRF0xNTeTYbDgtVrKyjLnphob6jXYSCCFEX/j555+49NILWLDgVyoqKvjuu6955ZUX2XffA+LdtH4h4aaihOhrFo8HLFZsmZkk+/ycOXI03kCAhoZ6srKy4908IcQgc9ppZ+Fyubj11htoaKgnNzePY4/9G3/728nxblq/IIGNGPTsoZEZR3Y2itfDPjl5NHq91NTUSGAjhOhzVquVSy65nEsuuTzeTemXZCpKDGoej4fkUD6M5Nw8TGnpAKRZLNRWy84oIYTobySwEYNafX09aWYj63ByfgGm5GQ6VtY0lZdt/oFCCCESkgQ2YlBraKgnPVROwZyahqKquEMjOK2byRwqhBAicUlgIwa1htoailxt1Pv9mNNCyflCgY63oSGOLRNCCBEJCWzEoNbQ3MT1yxbzuAqq3ShbFgglAPM2N8ezaUIIISIggY0Y1Orr6wHIyMhYd6PDCHCCrrZ4NEkIIUQvSGAjBrX6+joA0tPXBTZ1287k1N9/4SdPe7yaJcSA4nK5eP31deUAbrvtJi644OyYXrOiooLPPvu4V+f44IN3mT175mbv74vnMXv2TD744N2YXqOvlJeXMXv2TBYs+DWm15E8NmJQc5aW8NDUGbQ3t3TelpydTZvfT2NTUxxbJsTA8eKLz/LBB+9y5JHHAHDxxZcTCMQ2s/dtt91Ifn4Be+21b0yvIxKPBDZiUFNaW8m12alV1tVeTU1NB6BJAhshomLDmoTJycl9fk0xeEhgIwY3txsAJbSuBiDF1cZZI0fTqspMrRAALS0tPPzw/Xz77Zd4vV40bRLnn38REydOBsDtdnPfff/mhx++o6WlmZEjR3HqqWey2257MnfuYzz11BOAMa3y6qvv8OSTj1NeXsZDDz3OggW/cumlf+feex/mnnvupKyslPHjNa677ia+/PIzXnvtZXw+H/vssx+XXHIFiqIQDAZ58cVnef/9dygrK8VqtTJ9+tZccskVDBkylAsuOJuFCxewcOECfv/9N1577V28Xi9PPPEIn3zyIa2tLYwePZYzzzyXWbN26HyeX3/9JXPnPkpJSQmTJ2/Ftttu123f+P1+7rvv33z44XtYLBYOPvhwzjjjHMxm49/rH38s5MknH2fp0sV4PB6GDRvOySefzt5779d5jk8//Yjnn59HUVEhWVnZHHnk0Rx33IkbXau+vo4LLzyHzMws7rrrPux2Oz///BOPPvoQa9euYciQoRx33An83//dyquvvkNBwRCOOupgdt11d37++Sfq6ur417/uZPr0rXnttZd4663XqaysIC8vn+OPP4lDDjkcgAULfuWii87tPAcY00hHH30IDzzwKNtsM5PbbruJQMBPZmY2H374Hi5XG7Nm7cDll19DXl4uAKtXr+S++/7DkiV/kZ2dy4knnhLJy6/H5C+3GNRUj8f4nOTsvC3J72fvnDymOZIIBKTysYiuYBBcvvh8RDKIEQwGueKKiygpKeLOO+/j8cefYautpnLeeWewfPkyAJ544hFWrVrBv/99P8899yo77LAzN9xwDeXlZRx//Ekcd9yJ5Obm8fbbH5Gbm7fRNfx+Pw8+eA9XX30Djz32FPX1dZx77ukUFq7loYce55xz/s7rr7/CDz98B8Arr7zAvHlPcd55F/Hii29wxx13U1RUyIMP3gvA7bf/mylTprHnnnvzxBPzAGM9zPz5P3LDDbfy5JPPs+eee3HllZd0nvPPPxdx/fVXsttue/L00y+w774H8OyzT3fbP3/+uYi6ujoeeeRJrrnmRt5//x0eeug+AKqrq7j00r8zbtwE5s59jqeeeoFJk7bijjtuoa6uFoAvv/yMW2+9gb322odnnnmRc8+9gCeeeIR3331rves0NDRw0UXnkpOTy7//bQQ1K1boXHHFxcycuR1PP/08p512Jg8/fP9GbXzrrde5+OLLueeeB5kyZRoPPXQfTz89l9NOO5tnnnmJo446jnvvvYvXXnup+xdEF1988RmNjQ089NDj3H77f1i0aCGPP/5fwAiGL774fJxOJ48//gyXXXYlTz/9vx6dP1IyYiMGNZPXC1Ybli5D48k5ebQAySYzLS0tpKamxq+BYkAJBuGMT5P4o8YUl+tPz/Hxv71cdJl57dZvv/3Cn3/+wbvvftq5e/Ccc/7On38u4tVXX+K6626irKyEpKRkhg4dRnJyMmeeeS7Tp29NSkoqSUlJOBwOVFXdYu21M888jylTpgKw++578sorL3Lllddht9sZOXIUTz75OKtXr2LnnXdh6NDhXH/9TcyevSsA+fkF7LHHXnz++ScApKamYTabsdlsZGRkUFJSzGeffcz//jevc5TpuONOZOXKFbzwwjx22mk2r732MlOnTueMM84BYMSIkaxevYpXX31xi/2TlZXFddfdhM1mY8wYYxTo3nvv4txzL8Dj8XD66Wdz/PEnoYZGgE866TQ++OBdiouLyMzM4uWXX2CPPfbixBNPBWD48BG4XK3YbPbOazQ1NXLxxeeRl5fPbbf9G5vNBsDLL7/AxImTOf/8i0NtHkV9fR333fef9dq4ww47s9122wPQ2trCm2++yoUXXso+++zXec2yslLmzXuKI488dovPtyun08mVV16H2Wxm1KjR7LffAfz44/cAfPbZx7jdbq677maSk5MZM2YsF110GddeG/v6VxLYiEHNEiqAae0SvNgz0gFIMZtpbm6SwEZElaL0r7UfHaMyxxxzyHq3ezwe2tuNnYMnnHAKV111KQcfvDdbbTWVWbN2YM6cfXq0lmbEiJGdX9tsdjIzs7Db1/1zt1qteEI7FWfP3pXFi/9i7tzHKC4uorBwDatXryInJ3czz0EH4MILz1nvdp/PR3JyCmBMm3SdlgKYMmVat4HNxImTOwMNgMmTp+D1eikuLmT8eI0DDzyU119/hbVrV1NcXNTZFn/ob8+qVSvYc8+91zvnQQcdtt73jz/+39AU4MT1rrV8+bLOgKXD9Olbb9TGYcOGd35dWLgWn8/HtGkz1jtmxoytefnl5zt3ioZj6NDhnVNuAE5nMj6fDzD6c/jw4eu9BqZOnRb2uXtDAhsxqFlDY/O2UPFLAFNoWsphMtFYX8fQocPi0TQxACkK/G8vF+7YbgjaLLuJHo3WAAQCAZxOJ3PnPrfRfZZQlu4pU6bxxhvv88sv8/n115957723mTv3Me6++0FmzpwV1nW6/oMEOkc4NuX5559h7tzHOeCAg9l662056qjj+O67rze7vTsYNKaUH374CZK6TDtveJ0NFxxv2KZNUdX1R986dntZLFYKC9dy7rmnM2HCRGbN2p7Zs3clPT2Ds85at9bEZDKjdPNDmTlzFgceeCjXXXcFe+65NzvssFPosSYCge4D5a7B0LqnuP41O6bduz7nrv3REbB01fHz76rrYzbsT5Opb0IOWWMjBq1gMEi1202F240je90QudplIXFbD969CBEORQGHOT4fPQ1qAMaMGUdra2vnwteOj+eff4bvvvsagLlzH+OPPxYye/ZuXHLJFbz44hsMHTqMr776IvScI7jwFjzzzJOcfvpZXH751Rx66BFMmTKV4uLC9f6Rdr3m6NFjAaipqVnvObz//ju8//47AEyYoPHnn4vWu86yZUu6bcuKFfp6a/H++GMhNpuNIUOG8uabr5KZmcn99/+XE044hR13nE1tbe16jx89ejTLli1e77YHHriba665rPP73Xefw2677cGcOftw11230dpqpKcYN24Cixf/ud5jFy/+a4vtHTlyFCaTiT/++H292xct+p2srCxSUlI7A5aO6wCUlBR31xXrmTBBo6iokIYupWnC6c9okMBGDFouVxsPrF7BRX8tJHP6jM7bFbMZb+gPZFtDY5xaJ0Ri2H77HRk/fgI33HANv/32CyUlxTz88P28//47jBw5GjD+6f3733fw22+/UFFRzpdffkZFRUXn1IPDkURzcxNFRYWbfOffU7m5efzyy3zWrFlNUdFaHn/8v3z9tbFjq4PDkUR5eRlVVZWMGTOWnXbahf/85w6+++5rSktLeOGFZ3nuuacZMmQoYKy5WbFiOQ89dB9FRYV88smHvPHGK5trQqeqqkruuOMWVq9exVdffc7cuY/zt7+djNVqJTc3j6qqSn788XsqKsr5+usvuPvu/wOMqTyAE044lc8++4RXX32J0tISPvvsY9566w123XWPja51ySVX0N7u7lwkffzxJ6LrS3nkkQcpKirkm2++4n//exTYfDCZnJzMIYccwf/+9xiffPIRJSXFvP76K7z55mscd9xJKIrC2LHjSEpy8swzcykpKWbhwgU8/vjDPQpQ58zZl8zMLG666VpWrFjO77//xgMP3B3243tDAhsxaDWHkvKZTCbsdsd693lCv8DuJglsxOBmMpm4997/MnnyVtx44zWccspx/PbbL9x2212d00yXX3412247i1tu+SfHH38Ec+c+xnnnXci++x4AGIuBs7KyOfXU49H1Zb1u0z//eQtut5szzzyJv//9bFavXsnll19DfX0d5eVlABx22JGsWbOKU045Hr/fzy233MHuu+/Jv/99ByeddAwffPAOV155HQceaKwdGj9e4z//eYAFC37l1FOP56WXnufkk0/vti2zZ++GyWTinHNO5e677+Tww4/i1FPPBOCoo45jzz335tZbb+Ckk47lmWfmcvbZ51NQMIQlS/4KPX5Xrrrqet566zVOPPFo/ve/x7joon+w//4HbXStjIwMLrjgUt57723mz/+RMWPGcdtt/+aHH77llFOOY+7cRzniiKMBMJs3nibqcPHFl3HUUcfy6KMPctJJx/Dmm69x6aVXcvzxxhbzpCQnN9xwK2vXruWkk47h3nvv4vzzL97i9OCGHA4HDzzwKBaLhfPPP4Nbb72BE07om+3eyiBMYrTa7w+MrqtrjepJzWaVjAwn9fWt+HyyRbg7idBfq1at5MgjDyItLY2vv56/3n03/ONCPv/6Cy68/BqOO37jfBJ9KRH6qr9IpL7yej3U1paTlVWAxWKNa1s2x2xW495P/UUi9tXSpYsxmUxMmDCx87ZPPvmI//u/W/jkk2/CWiMUC5H2VXe/M5mZTkwmdQ0wZovX7/GVhRggWqqrjHIKqkowEEDp8m5ESUmh1e+nTQphCiES1IoVy/nvf+/n+utvZtw4jdLSYp588jHmzNknbkFNIhi8z1wMem319eTa7LQHg+sFNWBsWwQjyZQQQiSigw8+jNraGu6//x5qaqrIyMhkr7326czFM1hJYCMGLXdjAwCeTdw3rr2ds0aOxl5d1adtEkKIcCmKwmmnncVpp50V76YkFFk8LAatjoXBvk0siMt1u9k7Jw9ns4zYCCFEfyKBjRi02kNBi9+0cXp7pSPjaSjTqRBCiP5BAhsxaHlDyacClo1nZE1JSQCoHu9G9wkhhEhcEtiIQcvfseNpE9sKzaG066pPAhshhOhPJLARg5bL46XC7ca/Qe0YAGuKURjPHEisvBVCCCG2LO67ojRNywXuBvYDHMDXwBW6ri8J3f8UcOoGDyvVdV0qE4peWawEuf+vhVxz8CEb3WdNMSp6WySwEUKIfiURRmzeAcYC+wPbAS7gM03TkkL3TwNuBwq6fGxcl12IHmprM6aikpKSNrrPkZYGgHXQJeYWQoj+La4jNpqmZQFrgH/pur44dNutwEJgK03TFgCTgVt1Xa+IW0PFgLSlwCZl0lac+cfvtPl97On3Y9rEzikhBouKigr++msRe+21b7ybsp7bbruJ8vIyHnro8T675gUXnE1BwRCuu+6mPrum6Jm4Bja6rtcCx3d8r2laHnA5UAIsAcYD9tDXQkTVbv4Ax02aSlpF5Ub3JWdkUB3a6t3W1kZKaM2NEIPRbbfdSH5+QcIFNhdffDmBgD/ezRAJJu5rbDpomvY4cBbQDhyi63qrpmlTgSBwiaZp+wMB4APgel3Xe1V22WyO7iycyaSu91lsWSL0VyYwxunEa1I2ej2YzXYsFgterxe3u42MjLT4NJLE6Kv+IpH6KhBQ4t2ELQoVsEdRoLtayIlaLDk5OblPrtO1r8SW9eR1tTmmTfxN7omECWyA+4DHgPOAtzRNmw1MwQhm1gIHY4zg/AeYqmnanrquR7SyU1UVMjI23gkTDampjpicd6CKZ39ZQr91aTlZG70e/O3tnDJyNEGPBxVPzF4vPSGvrfAlQl+53SZqatRN/pEOtG8h8aOioFqtMT+2Q3dB4HnnncXChQtYuHABv//+G2+99T6HHXYgu+++Bz/99CN1dXXcccdd/O9/j1NQMIQbbri587G33HIj5eVlPPLIEwBUVVXxwAP38NNPP2AymZk6dRoXXfQPRowYsclr+/1+HnnkIT755CPq6+sYMmQoxx77N4444qhNnn/ZsiXcd9/dLF26lKysLM4++zxuvfVGHnjgEbbddibnnXcWkyZNprm5iS+//JxAIMjuu+/B5Zdf3Tkl/e23XzNv3tOsXLkcv9/PuHHjOffcC5g1a3tMJhVFUVCU3v3jHQwieXMRCCioqkpaWhL2jiSpEUiYwKbLLqizgR2BC4AzgHt1XW8IHfaXpmnlwI8YC43nR3KtQCBIU1N0qzabTCqpqQ6amlz4/bKTpjuJ0F+W0LuJgNlOfX3revcFvF72Sc8EoLKkkryCkX3dvE6J0Ff9RSL1lcfTTiAQwO8P4vOt35bl52y+to9z6jSGXvyPzu9XXPh3gp5NVTQDxwSN4Vde0/n9qsv+gb+leZPH2kaNZuT1N3Z+ryhGf/n9gS2+s77ttru48spLyc3N49JLr+x8Lm+88Rp33nkvKSkpjBkzjmAwSDC4/nPtepvL5eL8889i3LgJPPjg45hMKi+99DxnnHEy8+a9RE5O7kbXfu21l/n888+4+ebbycnJ5fvvv+Guu25n5MgxTJ8+Y73z19RU8/e/n8Ps2btx2WXXUFFRzn/+cwd+vx+/P4DPFyAYDPLqqy9x3HEn8vjjz7Bihc5tt93EkCHDOPXUM1m2bClXXXUZ5513Ef/85y20trbyxBP/5cYbr+Oddz5EVU2bfJ5inXBfV5vi9wcJBAI0Nrbhcm08xZia6ggrYIr34uFcYA7wiq7rfgBd1wOapi0Bhuq6HgQaNnjYn6HPw4gwsAFi9qLs+AUS4YlXfwUCAWyhMVNrcspGbQii4g8GMSkKrQ0NCfEzlddW+BKhr/z+xJy+6dDxT6e7fz6pqWmYzWZsNhsZGRmdt++ww85st932YV/v888/pqGhgZtuug2z2fjXc/XV/+T333/jnXfe3GRF6tLSUhwOO0OGDCUrK5sjjzyWESNGbXKE5+233yA5OYVrrrkBs9nM6NFjuPTSK7n66n+sd9zIkaM555y/AzBixEg+++wT/vhjIWD8Q7744ss58shjOo8/+ujjuPTSC6irqyUra+PgS6wv3NfVlmzqzUBPxHvEZgjwAlAJfAGgaZoF2AZ4R9O0F4AsXde7rljbLvRZFhSLiLW3u3GEdjo50tM3ul9RFDwYiZXcTZt+ByxEpMY9/Njm71TXX8gx9t4HN3/sBos+Rt/5n7CP7a1hw4b36Hhd12lra2X//fdY73aPx0Nh4dpNPuaII47mm2++5PDDD0DTJjFr1g7suefeZGRkbuL8y9C0SZ1BE8D06RtnBhk5ctR63ycnJ9MSGuUaP14jJSWN559/hqKiQoqLi1ixQgeI+wigCF+8A5tFwMfAfzVNOwuoB64DMoB7MXLYvKNp2nXAS8AE4GHgBV3Xl8anyWIgaGtr6wxs7KmpmzzGF/pH4GmVCt8iulSbLe7H9pZtE9facJGxz+frcl+AESNG8n//d89Gj3M4Nr0mavjwEbz88lv8/vuv/PLLfL799ivmzXuSa6+9kf33P2i9Y00mE8Fg98GHdRPrjDravXDhAv7xjwvYYYedmT59BnvttQ9ut5trrrm82/OKxBHX1U+hqaZjMUZrXgZ+xtissouu60W6rr8HHA0ciTEFNRd4A2PtjRARa21poc7jocnn66wLtaGOwMbbIoGNGNyUMEZ7LBYLrRu8CSgpKe78evTosVRUlON0JjNs2HCGDRtOfn4Bjz76IAsXLtjkOV999SW++upztttuB84//2LmzXuZbbfdjs8//2SjY8eNG4+uL1svmFqy5K9wnyIAL774LFtvPZPbb/83xx57AttttwOVlR0p1BJ7alGsE+8RG0Lbts8PfWzq/teB1/u0UWLAc7ndXPTXQrKzc/jMuZnAxqSCz4/XFd2F5kL0Nw5HEuXlZVRVVZKbm7fJY6ZOnc4LL8zju+++YfToMXz00fusXr2SSZO2AmDffQ/g+eef4brrruD88y8mJSWFefPm8uOP33P66RuvrwGoq6vl6aefwG63M27cBNauXcOKFTpHH338RsceccTRvPzyC9x557844YRTqKmp5p577gTCC8wAcnPz+fbbr1i0aCG5ubksWPAr//vfo4AxZSb6h7gHNkLEQ0fWYYdj46zDHQImM/j8+F2uvmqWEAnpsMOO5LbbbuSUU47nvfc+3eQxxx13AmVlpdx66z9RFIU999ybY475G3/+uQgw1rI89NDjPPzwfVx++YX4/QHGj5/APfc8xJgxYzd5zjPOOAe/388999xFfX0dmZlZHH740Zx00mkbHZuRkcnddz/AAw/czWmn/Y2cnFwOO+wo/vvf+7FYLGE9zzPPPIe6uhquuuoSAEaNGsM119zALbf8k8WL/2LYsPjtjhThUxI18VIMrfb7A6Pr6lq7P7IHzGaVjAwn9fWtcd+N0R/Eu79++OFbzj//LDRtEi+//OYmj3no9lt4+63XOfRvJ3LBJVf0cQvXiXdf9SeJ1Fder4fa2nKysgqwWDZe15EIzGY17v0ULWvWrKa5uYlp02Z03vbnn4s477wzeP3198jLy+/V+QdSX8VapH3V3e9MZqYTk0ldA4zZ0nkkw5AYlLylpdw+aQrHOzdfKkFJS6Pa006L292HLRNCRKKmpooLLzyHDz98j4qKcv766w8eeOAeZszYptdBjehfZCpKDErepibGOZOp2cLUe8dODZdMRQmR8LbbbgcuueQKnnvuaf7979txOpOZPXtXzjvvwng3TfQxCWzEoOQJrbEJqJsftMxzuThh6AgcDb0qSyaE6COHH34Uhx9+VLybIeJMpqLEoORzG6MwgVAum01Jb27h0IIh5MpUlBBC9BsS2IhBydcxvWTe/KClOTQVpfq8fdEkIYQQUSCBjRiUAu2hURjz5reBmkKBjcm/cTE2IcI1CHeeChGRaP2uSGAjBiV/e7vxxSbSq3ewOJMBMAVki6foOVNomtPjaY9zS4ToHzp+V0ym3i3/lcXDYlBq93pp8nphC7V1rKGMxOaAvOMWPaeqJhyOZFpa6gGwWm1hZ8DtK4GAkvBVyBOF9FX4etpXwWAQj6edlpZ6HI5k1C1s6giHBDZiUPqNIPcs+o0bDj1ss8dYk5PxAxapESMilJpqVKHuCG4SjaqqBGREMizSV+GLtK8cjuTO35nekMBGDEodJRWSkjZfUsGemkorYCWx3mWL/kNRFNLSskhJycDv93X/gD5kMimkpSXR2NgmIxHdkL4KX6R9ZTKZez1S00ECGzEohRPYOEeP4fzFf9Dm97OT15OwafFF4lNVFVVNrNeP2axit9txufxSKqAb0lfhS4S+ksBGDEqzgSMnTCKlsnKzxzjT0ykMVfZ2uVwS2AghRD8gu6LEoJSDwpTUNKy+zU8PWCxWzKHt4B0jPEIIIRKbjNiIQckcypdgTXJu9pigz8fRw4aD10tbczPkF/RV84QQQkRIAhsxKJlDa9o6tnRvkqpyeHYuAK7GxNzVIoQQYn0yFSUGnWAwiCW00WlLIzaKquINjey4m1v6omlCCCF6SQIbMeh4PB6sivHS3+KIDdBRJcrd3BzjVgkhhIgGCWzEoON2u7CF8iXYQmUTNqdjabGnrTXGrRJCCBENEtiIQcftduMLBvEEAliSHFs81q8ac1Ze2RUlhBD9Qo8XD2uaZgZ2B+YAo4E0oAYoBD4EftB1XVIzioTldru46K+FJCen8N2QoVs81q+q4A/gc7n6qHVCCCF6I+zARtM0K3AecBkwDKjHCGZageHAQcC1QJmmaXcCj+u6LmVtRcJxudwAOBz2bo8NqCbwB/C7JbARQoj+IKzARtO0WcAzgB94BHhF1/VVmzhuKnAAcBFwsaZpJ+m6/mMU2ytEr7lDQYrdvuVpKIAFOdl88enHHLT11rFulhBCiCgId8TmWeBqXdff3NJBuq7/CfwJ3Klp2jEYwdCE3jVRiOhqb2zk+gmTsDgcBINBFGXzRS49qamsdbXRuoUMxUIIIRJHuIuHp3YX1GxI1/VXgCk9b5IQseVpaWZaahrjzZYtBjWwblTHLVNRQgjRL4QV2Oi67onk5JE+TohY8rQaW7e9W45pAMhvb+ew/CGkNjTEtlFCCCGiItw1Njf05KS6rt8SWXOEiD1vqGK3n+4jm9ymZv42bASLWiSPjRBC9AfhrrG5aYPvg4CCsZi4BsgArIAHqAMksBEJyxvauu1Xux+wVG1W4wufd8sHCiGESAjhTkWpHR/A3kAtcBxg13W9QNd1O8ZuqFrgHzFrrRBR4Att9w4vsDG2hKuyeFgIIfqFSKp7PwT8M7Q4uJOu6x9pmnY9cBvwUrgn0zQtF7gb2A9wAF8DV+i6viR0/wzgfmAmRuD0gK7r/4mg3UIAdOakCZhM3R5rshuBjeL3x7RNQgghoiOSkgojgKLN3FcN5PXwfO8AY4H9ge0AF/CZpmlJmqZlAZ8CyzECmxuBWzVNOy2CdgsBgM/jwR8MEgwjsDGHdkWpgUCsmyWEECIKIglsFgEXappm6Xqjpml24EpgfrgnCgUua4CzdF3/Vdf1pcCtQAGwFXA20A6cp+v6Ul3XnwLuBa6KoN1CALDWZuX43+azcEL3KZbMDiOwMUlgI4QQ/UIkU1HXAB8DqzRN+4h1ozQHAE5gt3BPpOt6LXB8x/eapuUBlwMlwBLgZuAbXde7LnD4ArhG07RcXderImi/GOTcbmONjd3RfebhjiKZ5qCUPxNCiP6gx4GNrutfa5q2E0aAczCQibEz6jPgFl3XV0bSEE3THgfOwhihOUTX9VZN04ZhZDLuqiz0eQQQcWBjNke3sLnJpK73WWxZPPurvd0IbJKSkrp9HSRNmMA1yxaDw8HBUX7NhEteW+GTvgqf9FX4pK/Clwh9FcmIDbquLwCOjnJb7gMewyi0+ZamabOBJIxApyt36HP3FQw3Q1UVMjKckT58i1JTux8FEOvEo7/GtLVy+dgJjGhu6PZ1UDB2BEtbmrH7vDF7zYRLXlvhk74Kn/RV+KSvwhfPvooosAHQNG1/jK3fBRhVvbcGftN1vTCS83XZBXU2sCNwAcZCYtsGh3YENBFnTAsEgjQ1tUX68E0ymVRSUx00Nbnw+2U9Rnfi2V/ONjczMzJpaGimvn7LL6P2dmMKyu12U1vbjBrGFvFok9dW+KSvwid9FT7pq/DFsq9SUx1hjQT1OLDRNC0JeAvYC2gCUoB/Y4y0bK1p2m66ri8O81y5wByMauF+AF3XA5qmLQGGAsXAkA0e1vF9aU/b3pXPF5sXp98fiNm5B6J49Jfi84PJhGKzdXttk9fHvjl5qIpCa2sbDkdSH7VyY/LaCp/0Vfikr8InfRW+ePZVJG8/bwe2xQhIsqEzL/1JGMHGrT041xDgBbosOA7tttoGY/HwN8AumqZ13Zc7B9Bl4bCIlBowctKY7d3PZpoDAc4YOZoTho3A5XJ3e7wQQoj4iiSwORa4Rtf1LzFKKwCg63oF8C9gdg/OtQhjh9V/NU3bRdO0KcA8jBIN9wJPAqnAXE3TJmuadipwCXBHBO0WAli3dbsjR80Wjw0FP1ZVxdUm9aKEECLRRRLYpANrN3NfPZAc7ol0XQ9iBEpfAC8DP2PsstpF1/Wi0KjMvoAGLMBI0HeFruvPRNBuIYB1gY0pjO3eqnXdEi93S0vM2iSEECI6Ilk8/BdwAvDJJu47OHR/2HRdbwTOD31s6v5fMBYTCxEVHTlpLGGsl1Es6/JQtrc0xaxNQgghoiOSwOZfwJuhrMHvYkxH7RYqc3AuXRLuCZGIOhZsWZ3db99WVBVPMIhVUWhvkakoIYRIdD2eitJ1/W3gRGAa8AjG4uG7MfLanKvr+mtRbaEQURQIBLh2yZ+c8Nt8kqdOC+sx3tAIj6dVpqKEECLRRZqg7wXgBU3TNCALaACW6bou++BEQmtvN/I9eoNBHGGM2AD4FGPjn6cturmPhBBCRF8keWy+AM7XdX2Zruv6BvdNA57TdT28t8JC9LGOOlEANlt4yas/MqksW7qYEw86JFbNEkIIESVhBTah8gYd01a7Y6ypyd3EoQcBY6PTNCGiz+128fdRY1FNKsHWVkhN7fYxtUkOFjc30eb3dXusEEKI+Ap3xOZM4GSMhcJB4L8Ya2u6ljzuSNT3QtRaJ0SUud1uds7MwqyqBP3+sB5jD+Wy6TraI4QQIjGFG9hcDDyFEbx8AfwdIzNwV36MtTZhlVMQIh7crS2YQ/WeVKs1rMeMQmGfnDzUutpYNk0IIUQUhBXYhHLNfA2gadoewG9AcijbMJqmZQDDdV3vUQ4bIfqau6WFjiXDSpiBjeZys+fI0SytlcBGCCESXSSZhxcBbwJfdblte2ChpmlvhYpkCpGQ2luNXDSBYBDFHOaAZShJX8DTHqtmCSGEiJJIApv/A7YCru1y2xfAocBM4JYotEuImPCEAhsvoCjKlg/uEApsgh5PjFolhBAiWiIJbA4BLtd1/Y2OG3Rd9+i6/i5GsHNMtBonRLR5Q4UsfeEGNXQpq+D1xqJJQgghoiiSwCYFo9jlplQC2ZE3R4jY8oaS7Pl7ENiotlAhTK9s9xZCiEQXSWCzADhjM/edBvwReXOEiK16u42TFvzM22nd56/p0BnY+CSwEUKIRBdpEcwPNU37FWMRcRWQg7HGZluMJH1CJCR3ezvtgQBKUvhr3E2hDMWqJOgTQoiEF0kRzE+BgzGS890CPAbcihEkHarr+kdRbaEQUeRyuQCw2x1hPyYwZjR3rljGN+2yK0oIIRJdpEUwP8QYtbEDmUCjruutUW2ZEDGQVFvL+aPGktWDgpaWnDx+a2xgbHZODFsmhBAiGiJZYwOApmmTgLOBC4F0TdNma5qWErWWCRED9tZWds/OIa8H5RHWlVRwxapZQgghoiSS6t4m4FHgdNbVi3oVuBEYo2nabrqul0S1lUJESbAjyV7HFu4w2P0BdsnMxqaaYtQqIYQQ0RLJiM31wAkYhTHzWVf88jLABNwWnaYJEX3BUC4apQeBjbWlmQvHjOPg9IxYNUsIIUSURBLYnA7coOv6U0Bn8Rxd1/8AbgD2jlLbhIg6JbRlu3MLdxiszmQALIpCMBjs5mghhBDxFElgkwcs3Mx9JYC8rRUJqyOwCbcAJoA92QhsrIqKV7IPCyFEQosksFkJHLCZ+3YP3S9EQuoIbDpy04TDnmqsibepKu4eLDoWQgjR9yLZ7n0f8JimaVbgXYzFw+M1TdsDuBz4R/SaJ0R0qYEAmMBkDz+wsTicANhMJlxtraSmhp+1WAghRN+KJEHf/zAWEJ8KfICxePhFjEXD/9F1/dFoNlCIaHqpvpazFv6GMn1G2I8xdVmP425tiUGrhBBCREsk270zdF2/Q9O0h4EdgSygAfhJ1/W6KLdPiKhqdrtp9Hmx92DUpet6nPZmCWyEECKRRTIV9bOmadfruv4y8HG0GyRELHWskelJSQVFVZlXX0tlbQ0XBvyxapoQQogoiCSwyQBqot0QIfrCfqlpONPSsTY39+hxS4FVDfW4pcK3EEIktEh2Rd0P/FvTtD00TZPiOaLf8Pv97JiWwf55BZh7uG1byioIIUT/EMmIzcnASOAzAE3TNrw/qOt6RMU1hYil9nY3NtWI5Tty04RLs9tJz8zCU18fi6YJIYSIkkgCkOei3goh+oDb3Y41FNjYnM4ePXZP1UzumPEUVVXFomlCCCGiJJLAZg3wRbQKXWqalgncDhwEpAJ/AFfruv5d6P6nMLaWd1Wq6/qwaFxfDB5ut6tzxKYneWwAAqoKfj8+mYoSQoiEFskam3uAmVFsw0vADsBxwHbAAuATTdMmhu6fhhH4FHT52DqK1xeDhMvlwmYyKnQr1vBrRQEEQo/zS+ZhIYRIaJGM2FQB6dG4uKZp4zCKZu6s6/oPodsuBvYH/qZp2s3AZOBWXdcronFNMXi1tzR3vuDVHtSKAgh2BDbt7VFulRBCiGiKJLB5Ang4VELhL6BywwN0XZ8X5rlqgAOB37o8NqhpmgJkAuMBO7AkgnYKsR53SwsdS4Z7UgQTIGg2flUCEtgIIURCiySwuTv0+aTN3B8EwgpsdF1vwCjL0EnTtKOBsRjJ/6aGzneJpmn7A4HQ8dfrut7Y45Z3YTZHMgu3eSaTut5nsWXx6C+vCucs+o1J4ybwuLVnL33FagEg6PVE/bXTHXlthU/6KnzSV+GTvgpfIvRVJIHN6Ki3IkTTtJ2BJ4G3dV1/NzQVFQDWAgdjjOD8B5iqadqeuq4HIrmOqipkZPRsV0y4UlPDz2gr+ra/TBaFeq8Xj9PR45+/xWEsNjYH/DF77XRHXlvhk74Kn/RV+KSvwhfPvupxYKPremHH15qmJWHsZKrVdb1nGc82oGnaocALwE/A8aGbbwLuDY3sAPylaVo58CPGQuP5kVwrEAjS1NTWm+ZuxGRSSU110NTkwu+PKN4aVOLRXzU1DQCYzVbq61t79Ni6/AJe/uYbRmZu1+PH9pa8tsInfRU+6avwSV+FL5Z9lZrqCGskKKJEepqm7QLchRFcKKHbfgau1XX9ywjOdwFGRuM3gBN1XW8HY70NRoHNrv4MfR5GhIENgM8Xmxen3x+I2bkHor7sL29VNacMH0m6aurxNT3ZuXxbV4PZ643bz1deW+Eb7H3V2NjA5ZdfzIIFv7L//gdx4423YrFsel3ZYO+rnpC+Cl88+6rHk2Capu2EkXU4HbgVOB/4F8Zi3481Tduxh+c7D3gQeAg4tiOoCd33gqZpGxba3C70WRYUi55pbOTAvAImRvAuQkoqiP7khhuu4Zdf5uP3+3nvvbeZO/fxeDdJiD4TyYjNv4BvgX11Xe8sdRxaD/MxcDOwTzgn0jRtAsZIzZvAHUBulxINLoypqXc0TbsOI9/NBOBh4AVd15dG0HYxiHUk1+vISdMTzkCAbdPSyXLLriiR2BYt+p2vv/4Sk8nE8cefyHPPPcPTT8/lhBNOISUlJd7NEyLmIlm2PAu4v2tQAxBayPtg6P5wHQVYgMOB8g0+7td1/T3gaOBIjCmouRjTVWdE0G4xyHVs1Q5GENik1NZy1fiJ7BAMRrtZQkTVW2+9we5ZORy1z/5cdtnVjBkzDrfbxUcfvR/vpgnRJyIZsWnGCEY2xUpozU04dF2/HSOr8JaOeR14PezWCbEZnYGNuecve7PDWOFvksBGJLD29nYWfvU5d4wZj9LQiK+hgRP22of2L1Q++fA9jj76uHg3UYiYi2TE5nvgWk3T1iuPrGlaCnANxjSVEAmnM7leBIGNJcnY4i2BjUhkCxcuYKekZFRFIWn8BMxpaUxbtYqZ6ZlYC9fS3Nwc7yYKEXORjNhcjZEpeLWmae8BFUA+RhFLO3Ba9JonRPQEvR7jC8vmBhw3z5rkJMjmhyqFSATzf/qe2VlZAKTvvieKqpIxe1fq3n+X2RlZ/Pzzj8yZE9YSSCH6rR6P2Oi6vhLYEfgSOAC4PPT5S2AHXdf/iGoLhYiSoNdItdTTcgoAtmRjgFICG5HI1v7yC1lWGwGTCefUqQCkzDSWPW6VksrCX3+JZ/OE6BMR5TzWdX0JcLGu6/m6rlsxClXeFrpdiIT0G0Eu/nMh9et23oXNlmxMRVkVhaBMR4kE5HK1kV5XA4B1/ATUUN4a67Bh+Ox27CYTTUv+imcThegTkeSxSdc07VPgqy43zwIWapr2VigbsRAJp7G9nfJ2N5aMzB4/1p5sbJO1qirtUghTJKBly5YyOfQ6zdx2ZuftiqJgmzgJAGddHR6PJy7tE6KvRDJi83/AVsC1XW77AjgUmAncEoV2CRF1brcbALu95zVMHNk5PFG4hrmFayVJn0hIi//6kzFJxpSpY9yE9e7LmjodgLGOJJYtk4F1MbBFEtgcAlyu6/obHTfouu7Rdf1djGDnmGg1TohomhQIcOyQYThber4zxJqczFcNdXxbV9MZIAmRSBYv+Yu///k7f0yciHXo0PXuc4wdC0CaxcJyyW0qBrhIApsUoH4z91UC2ZE3R4jYmayaOHLIMOyNTRE9vmOkR0ZsRCJasuQvXH4/BTvujKKu/6fdOmQon2saly/+g+UrVsSphUL0jUgCmwVsPvPvaYDsihIJqSMHjcUZ2TKwKWnpbJ2WjltygYgE09raQmHhWgAmT56y0f2KqjIidPvKlcv7smlC9LlIa0V9qGnarxg1nqqAHIw1Ntti5LMRIuGYQ4GNNSmywObc3Hwc+UNoq6mNZrOE6LXVq1dzxohRmO12kgObLvI6fryx7mb5cl129okBrceBja7rn2qadjDGIuFbMEooBIGFwKG6rn8U1RYKESUdOWisSclbPG5zfKHPnraWqLRHiGhZvWoFe2TnYlVVgj7fJo8ZoihcN2ESTV4vFRXlDB8+rI9bKUTfiGTEBl3XP8QYtbEDmUCjruutUW2ZEFHk9/uxKsbMa0dOmp7yhaqgedraotUsIaKictlSJqkqPkXBkpOzyWPMZjPTU9No8HpYs2a1BDZiwIoosOmg67obKItSW4SImfZ2N9bQgkqrM8IRm1Bg5JPARiSYtqK1ALSnpGy0cLiDdchQgkC6xcqi5ctg1137roFC9KGIMg8L0d+43W5saseITWSBjV81hmy8LtkVJRKLqbYOAMuQIZs9RrXZaAuVE2lcvbpP2iVEPPRqxEaI/sLlcnH9sr9ItTt4PjuyjAQB1QQBH37Z7i0SiMvlIiO0riZj/JbLhQTS06GqivaK8j5omRDxISM2YlBwu92Uut2UE+ysodNTQZMJAL9bSiqIxFFYuIZhDiPHUvr4CVs81l5gjOiYGxtj3i4h4kUCGzEodCTVi6ScQofC9HSeLFpDrVVqfIvEsXrVSpJNxuC7bQtTUQDpY4wMxKl+v2TQFgNWRFNRmqZlA1cAewMFwL7A4cBCXdffjl7zhIgOd1MTRw8ZRlJaWsTnqMvK5KOqSvIUJYotE6J3ikuKuXbRbxx78GFcnZa+xWPTR4+h0u/D7fdTXFxEQUFW3zRSiD4USXXv0RjZhc8GSoBcjABpAvC6pmkHRrWFQkSBt7GBo4cMY68Ic9iAlFQQiam4uAiAnJGjULoJupMmTeYuVxv3r1lJaWlJXzRPiD4XyVTU3RjZhkcDR2Ak6EPX9ROAd1i/6rcQCaEj98ymU5eFJ1VRmJScgqVZEvSJxNERoAwbNrzbYxVFYWioQGZJiQQ2YmCKJLCZA9yq63oDRsbhrh4DNi5UIkSceVpDgU0vppGG1dZy88StGNskCy9F4pjS3MSV4yYw3Bte2D50qJGYT0ZsxEAV6Xbvzf0G2dg42BEi7nwuI7Dx9yKwUa02AJTNpKwXoq+5XC5GqiampaaTareH9Zht3e1sM2U6K9ZILhsxMEUyYvMtcI2maV3z0gc1TVOB84Dvo9IyIaLIF1oXEzBFvhHQZDcCG9Xvj0qbhOit0tIS8m3G2q/UEaPCekyazc4QuwO1sSmGLRMifiIZsbkaI3hZCXyJMUJzOTAZGAfsErXWCREl/tDWVr9qivgc5tDiYUUCG5EgSgrXkh/KJmzNzwvrMcnDhhFYugR7e7tU+RYDUo/fvuq6/hcwE/gC2APwY2z7XgnspOv6wmg2UIhoCLQbSfU6kuxFwhxKgmYKBKLSJiF6q3rFclRFwQOYUsNLZZA12shlk2EyUV9fH8PWCREfkVb3XgGcEOW2CBEzJTYrzy/9i30POpRIS/9ZkpIAMAXkXa5IDC2lxQC47fZut3p3SCooACDXaqOoqIiRI8fHrH1CxEOkCfoUYAbgZBOjPrquf9O7ZgkRXU1eHytbW5iTnh7xOToCG7OsjxcJwlNdDUAwzNEaAHOWUSst1WKhaOUqCWzEgNPjwEbTtFnAq8Cw0E0dbxOCoa+DQOTj/ULEQDRKKtjyhzCvpAiXycycaDVMiF5oaajH5XBiz80J+zGmpCTaFQVbMEjd2jUxbJ0Q8RHJiM29gBc4FSPzsCw4EAkvs7mZg/IKyG6PvD6OIz+ftyrKsFojK6IpRDQFg0FeXr2SZz0e3rvp1h49tikpicaqSmorq2LUOiHiJ5LAZhvguGjVhNI0LRO4HTgISMUo13C1ruvfhe6fAdyPsWC5FnhA1/X/ROPaYvAY6nZz4PCRVNc3RHyOjtEej8eD3+/H1IuFyEL0VkNDAx6PB4C8bopfbqhohx24887bOGD0iFg0TYi4iiSpRxXRHaV5CdgBOA7YDlgAfKJp2kRN07KAT4HlGIHNjcCtmqadFsXri0FA8RlbtNVQLppI2CwWRjmSmOBMpr0XIz9CRENlZQUAWVnZWCw9G0XMyzMWEJeXl0e9XULEWyQjNg8DV2ua9oWu6629ubimaeMwtorvrOv6D6HbLgb2B/4GuIB24Dxd133AUk3TxgNXAU/15tpicFH9PjCZMdnCy866KRa/n7u2mgaAq62NpCRnN48QInaqykq4a/JU2q02Ah4Pag+mSPPz8wEoKyuLVfOEiJtIApvxGMn4KjRNWwy0bXB/UNf1cNdW1gAHAr913KDrejC06yoTGAN8EwpqOnyBkfk4V9d1mSAWYVEDATCty0UTCVOXlPWupibIDn/BphDR1lBUyMQkJx5AsVh69NjMNhf3TZlOvdeL1+tFUWRaVQwckQQ244CFXb7fMHlC2MV4QoU0P+h6m6ZpRwNjgY+B24A/N3hYx1uMERjTYhExmyNPrb8pZa0mntGhwG5hapaPgmTZErwlplBpA1MvShz06HqhpHrWpKSIf/ZBdd00ls/dFvXX0Ob0dV/1Z4Opr9oqjGkkt9WCxdKzwCQjJ5shdgc2VaW2tob8/IJYNHHAGEyvq95KhL7qcWCj6/oesWgIgKZpOwNPAm/ruv6upmn3YkxFddWxuCHiOQVVVcjIiO40wr2L4JlFAFbAyrBU2HEY7DTM+FyQEtXLDRipqZGPoPRExws9LTu9Vz97TyCAVVUxB71Rfw11p6/6aiAYDH0VqK8DIJia2uPXonPscAqBDIuVpsYaJk0aF4MWDjyD4XUVLfHsq0ire0edpmmHAi8APwHHh252YVQM76ojoIl4fU8gEKSpacMZtN45UVNRcPBzSQC9TqGkSeHVJfDqEuP+ESkBdhziZ4cCP9vl+0ke5DuGTSaV1FQHTU0u/P7YZwwwh2ri+DBTXx/50jAvRuhaW1nbq/P0RF/3VX82mPrKXxcqh5Ca1uPXYjBgxk8Qk6JQuHgZE7SpMWjhwDGYXle9Fcu+Sk11hDUSFFZgo2maH9hR1/WfNU0LwBZTrwZ1Xe9RwKRp2gUYW7rfAE7Udb1jlKYY2HAfY8f3pT25xoZ8vuh2eI4dbt4d6utdNLkCLKw28WuliV8rzSyrVylqVinSVV7WLZiUIFtlBdg+38f2BX6mZPnpo1mNhOP3B6L+s9iUJ4rWYg8G+b+Ro3t1PW/os7u5uU/a3VVf9dVAMBj6yuJygd2BNSc3oufqUk0kBwLUFxUP+L6KlsHwuoqWePZVuAHILRjJ+Dq+jtoCEk3TzgMeBB4ALtV1vWtPfAOcq2maSdf1jpLKcwA9kRcOJ1lgpyF+dhriBzy0eODXSjPzK0zMrzBT1KzyR42JP2pMPPEXOM1Bts3zsX2+n+0LfIxMCRJm2RcRBr/fz4qmRgCSQunkIz5X6AfjdUV3xE+InggGgySH3g2nDhse0Tm8dju0tdEW2jYuxEARVmCj6/rNXb6+KVoX1zRtAsZIzZvAHUCupmkdd7sw1ttcCczVNO0uYBZwCXButNrQF5KtsPtwH7sP9wHtlLcqzC83Ap2fK8w0ehS+KbXwTamxsyEvKTSak+9nVr6fDLssRO6Nrjln7PbIt3sDLDKpVBUXsb2aMLO4YhBqbm7G7ffi9vvJGz0monMoqanQ1oa3ri7KrRMivsKdiupRQeQeFME8CrAAh4c+unpG1/VTNU3bF2M0ZwFQDlyh6/ozPWlPoilwBjlsnJfDxnkJBEGvV/kpFOgsqjZR2abyzmor76w2jtcy/J3TVjNy/NhkZ2aPuN1u9svNwxsIYgn2LkhcluTgq/JStpLdESKOqqoq+NfyZaSnp/OlNjGic5gLCli5aiXV7RKki4El3Ff0V6ybftrcJEmPi2Dqun47RjmFLR3zC7BjWK3sh1QFJmUGmJTp4bStwOWD36uMKav5FSZWNpjQ642PeUvBZgoyI2ddoDM+PYAq01Zb5Gpr4/QRo41vvN4tH9yNjhEft1syD4v4qaysBCA3Nx8lwnnrlH325fQnHiEzM4sro9k4IeIs3MAmZlu8xfoc5q7rc6DGpfBzxbpAp8alhr42w0LIsAWYlb8u0MlLkmmrDblb1+0YUW2Rl1QASLdYGeFIwh9asyNEPHSUU8jLy4v4HHl5RvbhurpavF4vlh4m+RMiUYW7xubrWDdEbFq2I8gBo30cMNpHMAirG9XORcgLqkzUt6t8XKjycaHxR2lUqt9YhJzvY5s8P8nyt4r2lqbOF7rSy8rcM5tbOGKraegVsuBSxE9g2VLumjyVNmvkgXp6ejoWiwWv1ytJ+sSAEtHkqqZp2cAVGHWeCoB9MdbILIxW1W+xMUWBsekBxqYH+NtEL14//FFj6gx0ltaprG0ysbbJxMvLrZiUIFOy/czKM4KdKdmDc1t5e0sLZsAbDKKoveyA0LvaoGfDvJFC9J1AbQ2jkpxU9LD45XrnaGnh3q2m4UShuqpKAhsxYPQ4sNE0bTTwPeAAvgWmh84zAfinpmmH6rr+flRbKTbJYoJt8/xsm+fn/OkemjzwS8W63VYlLSqLqs0sqjbzxF+QZA6yba6fWfk+dijwMyo1MCi2lXtaW3EC3ihkKVA6A5verdURoleamwEwp2dEfApTUhLZJjOqolBWXATTpkerdULEVSQjNndj1GjaHWgBPAC6rp+gaZoDuBaQwCYOUq0wZ4SPOSOMbeWlLcq6QKfSRGO7yrdlZr4tM37sHdvKdygwgp303i0/SVie0BobX/hlzDarYyor2MtFyEL0hsXdDlYrjtzI19goZjMuk4ozEKSptKT7BwjRT0QS2MwBTtd1vUHTtA13Pz0GvNL7ZoloGJocZGiXbeXL61V+rjDxU4WZhVXrbytXCDIpM8AOBUagMzXLTw/r6iWsjmR6vigMT6mhNQ2Kz9fNkULETpLf2FyQOnRor87jsdlwuty4qxM236kQPRZpAoPN/VW3EcWsxCJ6VAUmZgaYmBng5Mle3D5YWG3ix3IzP5WbWNVoYkmd8fHkYmPaamaeEeTskO9jeD/OhtxstfGv5UuZMm06O/TyXB27qiSwEfHS2tpCmsl415E5clTvTuZ0gsuNr16S9ImBI5LA5lvgGk3TPmNdpe2gpmkqcB7G+huR4OxmjKClwHjnV92mML/CCHTmV5hoaFfXy4Y8xLluNGe7PB8p/aiIZ2vAzx9NjRQ4k3t9LrPDyGOjBPzdHClEbFSWl5MeWuuVUrBhKb2eMWekQ00tgdCaHSEGgkgCm6sxgpeVwJcYIzSXA5OBccAuUWud6DM5SUEOGuPjoDG+zmmrn8rN/FhuYlGNibJWlTdWWnljJahKkClZoUAn38fkrEBC77bqSKbX23IKAOTm8XZ5Gf6sLA7u/dmE6LHqkmJa3C4ybHZMKSm9OpcjJwdWrMLkckWpdULEX48DG13X/9I0bSZwE7An4MfY9v01cLKu639GtYWiz62btvJw6lbQ5oUFVSYj0KkwUdhk6izi+fifNpItQbbP97HTEB87D/GT7Uis2UhTfT17ZucwtJflFABMw0fwfGkR4xwDdKW1SHgVjQ3cuPgPdtppNv/tZfqC1JEj+OPTzyhrl/QFYuCIaI2NrusrgBOi3BaRoJIsMHuon9lDjemXjiKeP4W2lTd5FD4vtvB5sTE8rmX4O4OcKVnxz52TWlfHuaPGUtLa+4rcUlJBxFtVlVFOoSNzcG+M2HsvDrrsHwBcJNmHxQARaYK+MYBd1/UlmqalA7cBw4FXdV1/NortEwmoaxFPfwCW1ql8X2bm+zIzS+rW1bZ6ajGkWoPsUOBjpwIfOw3xkxmPSuUej/HZ3Ptif3azhRyrjRRZPCzipKOcQm4vtnp3yMjIwGw24/P5qKurjUqwJES8RZKgbz/gbeBBjLU1jwJHAn8CT2uaZtV1fW5UWykSlkmFKdkBpmR7OGeahzq3wo/lJr4vM/NTuTGa80mhhU8KLZ1bynce4mPX4QF2TuubNga9RmCj9rKcAoC1sYGHp21NdUewJEQfG1lSwl2Tp2Jp7/1rUFVVsrNzqKgop6qyUgIbMSBE8hb2BuAT4GZN09IwSincoev6DZqm/Qu4GJDAZpDKtAc5cLSPA0f78AVgce260Ry9ft2W8if+gkwH7JBvY6cCLzsUxDBBoNcYXVF6WQATwOZMxgtY++ved9HvOVwuRiU5aXE4en2uYDDIDUOGk1IwjLqitZJ9WAwIkQQ204FDdF1v1jTtmNA5Xgvd9ylwWbQaJ/o3swrTcwJMz/Fw/nQPNS6FH8qM0Zz5FWbqXAofrDHzwRpz506rXYb62HWojzFp0Sv30JFzpreVvQHsKSm0AFZVlYrIIi4cPh9YrKQM6d1WbwBFUbCbTNiCQZrKy6PQOiHiL5LAxtXlcfsDlbqu/xH6Ph9oiEK7xACU7QhyyFgfh4z1EVRV1ridfLjUw3elJlY0rNtp9fAiG0OTA+w61Mduw3zMyOndAmQ1lKU1WoENgE1VcblcEtiIPuV2u0kL7YTKGDEqKuf0WK3Q3o5Lsg+LASKSwOY74HJN0zKBY4CnADRN2xa4MXS/EFtkUWH7oTAhycvfp7dT2abwXamZb0vN/FxhorRF5UXdyou6lRRL0FiXM8xYhJzcw6Uyqt8PJhNme++H7q1JTuOcioK7tYXU1NRen1OIcFVWlpMRqujd23IKHYJJSdDejkeyD4sBIpLA5lKMIpfPA0uAf4Vufx9ow0jgJ0SP5CUFOXK8lyPHe3H5YH65ma9LzXxXaqK+XeWjQgsfFVowKUG2zfOza2jKakhy97usPm9r4b2qSs445rhet9PUZdTH3dwMBb0+pRBhqy5cS6qqEggGsfSisndXamoq1NcTaGqKyvmEiLdIEvSt0TRtKyBX1/XKLncdBvyu67pkehK94jDD7sN97D7chz8Af9WqfFNq5psSM2uajNw5P1eY+c9vMC7dCHJ2H+ZjUuam1+WsaGmmtL6O8/N6vz1WMZvxB4OYFIX21pZen0+InmgoLiIVaFMUlCikLwCwZWZCYSEml+RmEgNDpAn6gkDlBrf9pGmaU9O0PXRd/ygqrRODnqnLAuQLZ3goalKMIKfUzMJqEysbjI8nF9vISwqw53Afew73MS3bjym0LscVShfvcCRFpU3ftrbQ3NLMPl7JZSP6Vn1NDYqrDUtaetTO6czLIwjYvJLCQAwMkeSxGQk8BuwGbG61g6k3jRJic0akBjkx1cuJk7w0tMMPZWa+LjHzQ7mZyrZ163Ky7AF2G2YEOVtZrPgysrBHqfD8R552VpcUsasSu2SDfr+f7777mpSUVGbNmhWz64j+ZWVbKy8v/oMzzzyXXaN0zvRRY/iltYXC5ibZ6ScGhEhGbO4FdgIeB3bGWFfzI7APMBU4ImqtE2IL0m1wwGgfB4z24fbBTxVmviw2pqxq3UbRztdXWHg4r4BMq5VlxT5yxxiVzXvDEcof4opR4cBgMMjVV1/Gp58aA5+XXXYV//jHRTG5luhfKiujV06hQ96sWdywYhk+n48TJfuwGAAi2US7G3C9rusXY+yIatd1/SpgJkYhzEOj2D4hwmI3w+7DfNy8o5tPjmjhoT3aOHych0xzG9bQ9tgH9Bz2fiOZq7+z80mhmVZvZNfKdCSRbbXiitFiy2+//bozqAG4//57KCkpicm1RP9SVWWUU8iLwnqxDqqqkpWVHTq/bPkW/V8kgU0ysDD09RJgBoCu637gYYyK30LEjcUEOxT4uW5WOy/MqcYeCmxS05Jx+RQ+K7Jw7fcO9nkjmSu+tfNpoRl3D5bLHK2q/HfaNqjFxTFp//PPzwPgtJNOY7uZs/D5vDz//PMxuZboXw4OwF2Tp5Ib5YW+2dk5ANRILhsxAEQS2JRjJOIDWAlkaprWsem1DojeWwkheqm9rQVzKLCZd2iQZ/Zt5ZTJ7QxPDtDuV/iy2MI13zvY6/Vkrv3ezlfFZtr9Wz5nwGQsIfPFYCqqtraGX375iTnZuey/fAX/sDnQkpN54403CAbjUEBUJAyv10OeycSoJCcZmVlRPfc5zhSe22YWLatXRfW8QsRDJIHN+8CtmqbtpOt6MVCCkbAvBTgdKI1mA4XoDVdTY+fXqs3KVlkBLpzh4Y2DW3luPyPIGeIM4PYbxTov/9YYybnhBzvflZrwbiLICZqMRTqxCGy+++4bCqxWzhw5Gvw+TO3tXDJ2AlVlZaxcuSLq1xP9R1VVFZmhQq7pw4ZF9dw2sxmrqtImIzZiAIi0COZM4BZgL+Ba4BngktD9f49Ky4SIAndLMzYgEAyimNft9lAUmJgZYGKmhwume1hcq/JpkYXPiozdVR+stfDBWgup1iB7DPey9wgfM/NCpR0sFnC78bdHP7BZsOBXDswrwKQoOCZOgmCQv1YuB+Cnn35k9OhxUb+m6B+qSopxhoJqS0ZmVM8dcDjA48FTJ9mHRf8XSYK+WmD7juknXdef1zStENgR+FnX9a+j3EYhItbe0oIN8BJE2UxVTUWBKdkBpmS3c/HW7fxRY+KTQjOfFxm7q95eZeXtVVYybAHmjPAxXTECJH979HNR/rHgV27MygUg66BDSJo4Cdu8J/HM/4GffvqB448/KerXFP1DXeFanIA7GES126N6biUlBRobCTRL9mHR/0W88VXX9XJN0yYCGUC5ruv/jl6zhIiONmDuquWMGD6CqWEcryowI8fPjBw/l23Tzu/VRpDzRbGZ+naV11ZYSW6zMxaobvCytlFlVFogKm2tqqokvamJpLwhmNIzcEzQANhuOyOPzaJFvxMMbj5AEwNbc5kxy++KUsbhrqwZmVBSgilGKQyE6EsR/YZomnYGxpTUsC63FQPX6Lr+YpTaJkSvtfl8/Fhfh3dsz6dwTCrMzPMzM8/PlTPb+bXSxMeFFnw/2MAHLS4fR73vZFKmn/1HedlnpI9sR+QLfBcv/os2v4/FXg+zt98eJbToeWxePrvm5FLW1kZZWSlDh0Z3fYXoH9zV1QD4HL0v5rqhpFxjlNDqkezDov+LJPPwBcADwFvAdUAVxi6p44HnNE3z6br+aiSN0TTtemAvXdd373LbU8CpGxxaquu6/HUX3VpXTqF3/wzMqrGFfIcCP58syOLTj36iPHUYJiXI0joTS+tM3Pd7kO3zjSBn92E+knqYwHX58mXoLS0sGDGCw49eV7Cz+csvuGDkGD6rrmTJkr8ksBmk6pubKHK1YR8+POrnTikYQivgxMh6bTJJ8njRf0WyK+pi4CFd14/Qdf05Xdc/0XV9nq7r+2Mk7LspkoZomnYJxoLkDU0Dbseoo9zxsXUk1xCDj6++ju0zMhlp3lz1j55Txo/jiaI11FtdfHR4K1fOdDMt208gqPBjuZkbfjR2Vl3/vZ3vy0z4wpypWr58GQATQlNQHZImTABgYnIKS5YsjtrzEP3LD/V1XL74Dzy7RKuYwjoZo0azsrWFwrZW6upqo35+IfpSJFNRw4B3N3Pfi8AJPTmZpmlDgf8BuwD6BveZgMnArbquV/S8qWKws1ZXc9nYCVRGcaFvRzHNtrY2MuxBjpng5ZgJXoqbFT5aa+HDtRaKmlU+KrTwUaGFTHuAfUf6OGSMl/EZm49ySlesIMdqY8L49QMbx/jxAAxzJPHO4r+i9jxE/1JZafwJzM2NfsmDpFGjuae6kpqaavaoqSYnJzfq1xCir0QyYvMLMGcz920N/NHD820D1GOMzMzf4L7xgB0jw7EQPeZ3Gxlag1FccJlkt+M0mcDVtt7tw1OCnDXVw+sHtfL0Pq0cO8FDhi1Andsoznn8h05O+DCJl3QLDe71FwC3trYw2u3m4Wlbk//rL+vdZ05OQckytvf6yyRN1GDk8/moqTHW2ESznEJXHdmHq0NreYTor8L6a69pWtexzxeBe0MJ+V4BKjB2Ru0HXASc05MG6Lr+LqERIE3TNrx7KhAELtE0bX8gAHyAUauqccODe8JsjiSm2zyTSV3vs9iyvuqvYMdiSIs5aj/z5NISntp6O3S3a7PnnJEPM/K9XD7Ly49lJt5ZZebrYhN6vQn9N2M9zm7D/Bwy1sdOQ/2sXbuaMUlOAFJHj17vvCaTStr48TTUzifD56W1tYm0tPSoPJeBZqD+HtbU1HH3pKn4CZKuROfv14Z9lZOTw7JlUFdbHfW/j/3dQH1dxUIi9FW4b2O/wggwOijAecC5G9wG8BIQ0eLhTZiCEcysBQ7GGMH5DzBV07Q9dV2PaJ+tqipkZDij1MT1paZGf8fCQBbr/lL9RqVLs90etZ95Rk4G9YA5GAzrnIdmwaFTod4Fby+H15bAn1UKnxcZuXJykmBiZSkHOo1zZW+lbXTetPHjaPhpPqMcTqqryxg1amhUnstANdB+D1ctr2FoaAF8ztBcLKnR+/vV0VdHKyrnbDOL1cVrY/b3sb8baK+rWIpnX4Ub2OwR01Zs3k3AvbquN4S+/0vTtHLgR2A7Np66CksgEKSpqa37A3vAZFJJTXXQ1OTC749OXpOBrK/6yxsqFhgwmamvb43KOQMmGwAWoK6upUd5ZQ4dYXysqFd4d5WF91abqW5TqF6wkrPtxh+CN+qGsFdFK2nGZTCZVJyjRwEwKimJhQv/ZNy4yVF5LgPNQP09XPvXMgoAXzBIs09BicJrecO+soTKKrSUV0Xtd2WgGKivq1iIZV+lpjrCGgkKK7CJVzZhXdeDQMMGN/8Z+jyMCAMbAF+4W1V6yO8PxOzcA1Gs+yvoMUZsFKs1atexOFMAsKsqra0u7BFkgR2dAhfN8HP+NPihzMQTn6zEZFZwYeLWpQX833LYfZiPw8d52WFogDRtAr8MG8rTH7zHPitWymusGwPt97C+qJgCoM1kwu8Psv4Aeu909pUzBZqa8TU2Dqi+i6aB9rqKpXj2VViTYJqmfaNp2oyenFjTtJmapn0XUavWneMFTdM+3uDm7UKfZUGx6JbiMwIb1Ra9FPSOtDQA7KqpM09OpMwq7DrMzxhPKKtsSgZaZgBvQOHTIgvnf5HEIW86eHRJMv7JW1PtaWfNGqnAPNi4QsUpvTZbzK5hyUgHQG2L7mi2EH0t3Kmo+4GPNE37FXgOeEfX9Y1e/aEFxftiLCDeGji/l+17AXhH07TrMNbuTAAeBl7QdX1pL88tBoEFnnZ+LC3hiP32i9o5zUnGdm+7yURbWysZGRm9Ol8gEMDS1ARJyWSPLOD5/dtYVqfy9iqjEGdJi8q/fwSldCsAlixfiS9gBEVicPDVG8Upg8kpMbuGI7QryuKV7MOifwt3Kup1TdO+xiij8D/ArGnaEmAN0AqkA8MxFvt6Q8ecqOt6ZW8ap+v6e5qmHY2R4fg6jGmpF4Dre3NeMXisdrWxvKaao4dEL1tvx+iPVVVpa2nu9fmqq6v4s6EOm6Jw1pnGpkKj8rhRlPPLUivvrLFRU2VmasFQSlxtHPSayiGamUPHehmaHL1pCZGgWlpANWHpZRC9JSn5BbiBpEBAapKJfi3s5B66rtcAF2madjNwFMaC4jFAGlADLMUY2Xk3VAG8x3RdP3UTt70OvB7J+YRYV1IhKWrnVO12FrS1Ut/aws6tvV9kWVi4Fr2lBXdWNlfssON699nNcPBYHyfPtPFT40r8Q4fzfW0Nv1WU8KRP48nFNmbl+zh8rJfdhvmwSib8Aam6uZkiq5X8obHbDZc+bDgVQJrJTGNjA+npsQuihIilHmctCwUtj4U+hEhow4NBMlPTiObGQ8Vs5jWPm5WFa9g6CkUDi4oKARg+fOQWjxsyZgjFwBCHg5MLlrM8ayzzK8z8HPpItwU4cLQR5ESr4riIv0AgwAtrVjLP5+Oju++P2XUceXmsdrkoa2tlSE21BDai34peOlYhEtCR6ZkMzx+KpaE+qudNCq2z6e3iYYDq0hK2SklldDdp7K0FRir9ApudKtcaHt7TRWmLwjurLLyz2kK1S+X5ZVaeX2Zl21wfR403inFaZBSnX6urq8Xn86GqKllZ2TG7jiUrm/+1t7FyzUomVVczbtyEmF1LiFiSwEYMWMFgEGtonYAtJbqLLpPsSSSZTLS1tPT6XO2lpdyoTcZdueUladbsHAKKgt1kombtGgCGJgc5b7qHs6Z6+LHcxBsrrXxfZuK3KjO/VZnJtAc4dIyXw8d5GSJrcfqljhpRWVnZWCw9LBnfQ9nZOaxcuYLq0C4sIfojCWzEgNXe3o5NNbYO2VPSonruU1HI3Ho7VpWV9Ppc3roaQCXYTfClmM14k5zYWlto3+C6ZhV2Gepnl6EuKloV3lpl4a1VFmpcKk8tsfH0Eis7DfFz5DgPOw/xI5nh+4/qwkKenDGTFlUlGAigqLH74XXUi6qRwEb0YxLYiAHL5XJhV415GEdaalTP7VdVCATwRWHxME3NkJqGOTOz20PVnGxobSFQV7fZY/KdQc6d5uHMKR6+LjHz+koLP1eY+b7M+MhLCnD4OC+HjfWS7ZBRnETXWFLEELMZRVFiGtQA7OVyc9w2s1i0enVMryNELMn7NjFgtbW2YDcZgY3FGd3aN/5QtXBfL9fYBAIBbO1G2YekvIJuj3cOMXbF2N1uvF7vFo81qzBnhI//7unijYNaOHGihzRrkMo2lUf/sHHgW06u/NbOzxUmAhLfJKy20BSlx2qN+bVsdjtWVcXf1Ksaw0LEVbjVvU/uyUl1XZ8XWXOEiB5XU1Pn19HMPAyAxQxuCLjdvTpNXV0tmWZj3UTq0O5z7RQcdCjHPf0EJc3NHF1RzvDhI8K6zojUIJds085509v5vMgYxVlUbeaLYgtfFFsYkRLgiHEeDhrjJT12yW1FBDx1RvaMYJSD800xpaVDZSVKNEYihYiTcKeinu7BOYOABDYi7tzNTViBQDCIEuVFl0GL8e450N7eq/OUl5eTFXonbsvJ6fZ4W24uSnYu3qYmiouLwg5sOh9vggNG+zhgtI8V9SpvrLTwwRoLRc0q9/1u57+LbOw1wscxEzxMyZYt44kg2NQEimoEHTHmyM6G5TqWXr6uhYincAOb0TFthRAx4PL5eGrtavJycrgyyllUlY6aPb38B1BZWU62NVQtPCsrrMcMHTqU1atXUlZW2qtrj88IcNV27Vw4o52PCi28tsLC8noTH6w1SjlMzvRz9AQPe4/wYZfVeHFjcrkgyYk9d8vpAKIhOb8AL2D3S/Zh0X+FW1KhMNwTapomvwkiIbT5vHxeU8VWeXlRP3dnYNPLujrlZWV8VFrMrImTGZvd/YhNMBhkd3sSk0eOoaq4qFfX7pBkgSPGeTl8rJfFtSqvrrDyaaGZJXUmbv7JwX2/G1vGjxovW8b7WjAYJMnvByBlyJCYXy992DCqgTSTidbWVpKTk2N+TSGiLaL3YZqmHQfsBliBjkBGBZzAjkD0CvMIEaHW0DoBZwzWJgSyc/hhwW80ZvcuYVplVQWf1VQxZMxBmBzd50dWFAWtpYWpObm8U9r7rebrnxumZAeYku3mkq0V3l5ljOJUtKnMW2rj2aVWZg/1c+wED7Py/ajyFibm6uvrqHC5SDObmTV6TMyv58zNoxrIsFqoqamSwEb0Sz0ObDRNuxG4EWgMPd4b+sgBAsAT0WygEJHy1NcxNTWN4bZoFlQw+CdM4L5HH2Racu9qUFVUlANQUND9jqgOgdRUqK3FV1vTq2tvSYY9yKlbeThpkodvy8y8stzYMv5tqfExIiXA0eONxcYpsd+sM2hVVlbwRNEasrNz+GzylJhfz5yeTqHXQ0VLCxMrKxk1KvbBlBDRFsl271OA54BM4F6Mopd5wHZALbA4es0TInKm8nL+OWESu/l8UT+302m8k21tbevVedwVFUxKTqEgNfwEgpbQImO1qfeVxbtjUmH3YcaW8dcOauG4CR6cliBFzSp3L7Cz/5vJ3P6zjZUNkjkiFioqjKzDeXn5fXI91e7gJbOJu1ctp6YuolrGQsRdJH+NhgLP6roeBH4DdgLQdf034DbgzOg1T4jI+UM5ZoLm6K98TU5ORgE8bb3bFjvW7ebmiVuRv3Jl+NceOtz47PPi7eUan54YlRrk8pntfHhYC1dv52ZMmh+3X+GNlVaO+8DJ2Z85+LTQjE82U0VNZWhEr68CG4CcUOBcU1PdZ9cUIpoi+YvfirGlG2AFMFrTNIeu6y5gIbKDSiQIvzsU2MSgvo6jopyXZ+7A2l4k6PN4PCSFRpOSQ4n3wpE6YgQuINdmo7KykmHDhkfchkgkWeCo8V6OHOfltyoTry638FWJmQVVxkeOI2AsRh4nmY17y7t6FU/OmEmzv++ixc6yClVSVkH0T5GM2PyMMR0FsArwAXuFvp8ESAIEkRACbuOlqMQgY6sjVHvKohjZgyNRWVnRmcMmpQeBjSVUBTzXaqe8vHdbvntDUWBmnp87d3HzzqGtnDmlnSx7gGqXymN/GpmNr/3ezsIqE0GJbyLSXlNDstmMwxzb4pddzWps4vltZpETpV13QvS1SAKb24FjNU17V9f1doz1Ns9omvY6cDfwcTQbKETEPKHAJtpZh4Gk9HQAHKoJlyuydTYVFT3PYQNgCe3EyrZaKS2J7s6oSOUlGfWp3ju0lX/t5GJ6jg9/UOGTQgtnfpbEiR8l8c4qM+3+eLe0fwk0NQBgSo9uEdctsSU5sagqtEj2YdE/9Tiw0XX9G2Am8HLopguA14CJwKvARVFrnRC9EPQYtZRM9ugHNvYUo6imXVVpifAfQEV5WWdgY84MP7Axp2fwQUE+py38lfLQGoxEYTHBfqN8zN3bxfP7t3LoWA82UxC93sQt8x0c+JaThxdZqWyTveLhMLUZU522MHIcRYs9FGSb23tXLkSIeIloVaWu638Af4S+dgNnR7NRQkSD6vMaqejDyA/TUx3ntJtMtLQ0kxdBEsDakhK0ULVmc0ZG2I9TVBXniFG0BwKUl5f1+Lp9RcsI8M/tjczGb6+y8upyIyfOU4ttzFtiZY/hPo6b4GV6jh9JcLuxQCCAI7QGK6Ug9sn5Ojjz8ggAthjsJhSiL0SaoC8N2BMjId9Goz5SBFMkgt/dLn6vqeagAw6K+rlVuzHSoioKbY0NEZ2jJVQSod1sRu3hAuchoSy0vS2r0BfSbXDKZA8nTPTwTamZl3ULv1WZ+azIwmdFFiZk+Dlugod9R/mwmeLd2sRRX19HZmhHX/qIntUE6420ocOpB1JVFbfbjT0GI55CxFIkCfr2x5hy2lxmMimCKRLCn81NFFVWcOSoUVE/t2JdVwK7taE+onMU1tXw+NrVHHTgIT1+7PD2ds4ZOZri+siuHQ9mFfYc7mPP4UYBzpeXW/hwrVGf6pb5Dh5YGODwsV6OHO8l3ymrjY3F5cbrzJ4T+zpRHVLyC6gHMixWamqq+3zXnRC9Fcni4TuApRglFcZibO/u+iGpKkVCaGszFvUmJUW/pIKiqujBAD/W1XaWbuip1ZWVfFZThW2HHXv82NTWNubk5DHE58fv738rcsdnBLh++3beP6yFC2e0k58UoKFd5aklNg59x8lV39r5fZDvpqooK2NVWwtVgQDmjMw+u64ltDA+2Wymujyx1nAJEY5IpqImAofquv5ttBsjRDTlBQJkOJNJikGCPoCPHQ6+++1nboowsKioMNbH5OeHX06hQ9qw4VQDWRYL1dVVEZ0jEXSdpvq21MxLoWmqz4stfF5sTFMdO8HDviMHX4Xxqpoq/m+Fzpw5ezO7D2s2qU4nhYEAFY31DKmq6LPrChEtkfypKARSo90QIaIpEAhw1pBhDLE7sEW4BqY7ycnGSFBLS0uPH9vc3MwIRYXkFHJTe/7rZA1lh82x2igvL+u3gU0Hswp7DPexR2ia6pXlFj4ITVPd2mWa6qhBNE21rpxC3/5sFUXh48x0PlvwM1c1NfbptYWIhkinom7UNG1UlNsiRNS0tbVhC+04sqfEJgeI02mUVWhr6XnNpoqKMk4YNoKbJ25FYO3aHj++Y3t4ttVKWVni7oyKxPiMANdt384Hh7Vw0Qw3+UkBGttVnu4yTbVgEExTrSun0PMdd73VkX24ulrKKoj+J5IRmxMw6kWt0jStGtgwO1lQ1/WxvW6ZEL3Q1taKXTW22NhTUmJyjd3q6jl25g78HkFgUV4eWXK+Dh2PSTKbqSwq7PHj+4M0G5w82cvfJnr5ttTMy8st/FrZZZoq3c+x2sCdphpbVcWTM2biren7YpQdgU1dtZRVEP1PJH8OSkIfQiSs1tYWHCYjsDElRT+PDdC5RTsQQebhqvIypoQe35PkfJ3XttnwmM1YfT5aSot7/Pj+pOs01coGlZf10DRVw8bTVMP6LkFvzJldLpKdyXj6cH1Nh0k1tbywzSx+q6zs82sL0Vs9Dmx0XT8tFg0RIpraGhqwhLK+qfbYBDaKzRhxCbp7nqG1vrgIVVHwKwqmCEeU/E4nNDbiGkTTBePSjWmqC2a08/YqC6+usFLeakxTzVtqZc/hfs6eBeNj8yPvM4FAgKTQovSUocP6/PpJKSmYVRVzBK9tIeItkjw2W8oUFQBadF1viLhFQkSBq7EBC+APBmNSBBNAdRipnBSPp8ePdVUaC0M9NhtKhGl32w84iLOvuJiCESMjenx/1jFNdUJomuql0DTVZ0VmPiuCCRl2jpngZb+R3n45TVVXV0tmaEQvIw4/36TQuh7JPiz6o0h+5ddiJOHbLE3T6oD7dV3/VySNEqK33I1NpAIeiDhw6I7ZaQQ2qtfb48f66mpBMRGMYEdUh4IJGu2BABUV5QSDwZg9z0RmUmH34T52D01TvbrCyvtrjN1U/5pv4sHfbRw2zsPR/Ww3VWVlBdkWIyC35/RdnagOaUOG0QQkA16vF0sPM2MLEU+R7Io6BeP/xSfAacD+odvexQh4bgGeBq7XNO28npxY07TrNU37aoPbZmia9rWmaa2aphVpmnZ5BG0Wg0yL38+84kLmq7H7Z29ONqaQTJG8q202dlJZMrMjvn5+fj6KouB2u6mvr4v4PAPFuPQA/9zRw/wz4JJtPBQ4AzR6FJ5ZYuOQd5xc8a2dXyv7x26qqpLizvxLkazB6q20oUMBSLdYqKvr+8XLQvRGJCM2xwMvbWKtzXOapj0CbKvr+iGapjUA5wGPhHNSTdMuwQiKvulyWxbwKfAWcC6wA/BfTdNqdV1/KoK2i0GiJeDjvcpydp80OWbXsIYqfFsCgR49zu/3801ZKaV1dVx62hkRXz9YU8NFEybR0NZKWVkZmXH4B5iI0u1w6hQvx09oX2+a6stiC18WWxib5udYzcv+o7w4EnSaqq5wLUMBt2IsFO9rlnSjKGuq2UJ1ZSV5efl93gYhIhXJiM3uwAubue8NYE7o6+8wSi5skaZpQzVN+xD4F6BvcPfZQDtwnq7rS0PBzL3AVRG0WwwiHWUOnM7ol1PoYM/LY2FjA6tae5agr7a2hrUtzXxZV0P+9j0vp9Ah0N7Ozimp7JiR1S+KYfa1jmmqR+e4eOmAVo4Y58FuCrKq0cTtP9s54M1k7ltgo7Ql8abwqquqWNBYT31ybFIVdMeUkkIgGERVFOpKBvauOzHwRBLY1ALTN3PfdKAp9HUyEE4RnW2AemAaMH+D+3YBvtF1vetY/xeApmla31WFE/2Ot76esU5nZxHBWEjbagq3r1jGs2tXE+jBqE1FKPFabm4e5l6Ue+iYosi0WqkY4Fu+e2tceoBrZ7XzweEtXLK1m6HJAZq9Cs8ts3LYO04u/drB/IrEmaZaXlfL/63QKd9++7hcX1FVCs1mfqqrpb528Oy6EwNDJH9Vnwdu0TTNC7wGVAG5wBHATcCjmqZlAJcAP3V3Ml3X38VYn4OmaRvePQz4c4PbOrKhjQhdOyJmcyQx3eaZTOp6n8WWxbq/MqoquWPSVMqbm6L+s+6QmWkM1weDQVyuVtLSwkuiUl1Vwc6ZWWQVDMFEAKWb4GZzfWXKSDO2iweDNJWWxOx59ifdva4yzXDqVD8nbeXiu1ITLy6z8FO5iW9LzXxbamZMWoBjNS8Hj/WRFMf1suXlxgjcsGHDY/Zz7a6vfh0xnFfnf895ba2D/rUlf9/Dlwh9FUlgcz1GIHNP6KNDAHgSuBY4Ctga2LOX7UvCmIrqqiOxgj3Sk6qqQkZGbKYoUlP7eQKNPhar/lI8xsvG4nTG7GcNThwOB26XC0Xxhn2dppoKLh4zHoC0VDumMNdQbKqv/E4nppYWvDVVMXye/U84r6vDsuCwabCyDp5ZBK8vhdWNKnf8bOOhhTaOngynTIdR6bFv74aqyo33b5MmjYv5z3VzfTVihLGAuKmpXl5bIfL3PXzx7KtIEvT5gNM1TbsN2APIxshE/L2u62sAQmtmhuq6vmFQ0lMuYMO/+h0BTTjTXJsUCARpaup5ttgtMZlUUlMdNDW58Pt7tph0MIp1f/naXAAELVbq6yN+qWyRv7WVRydNxaYoFK0pITU1vB1OVSvXshXgMZloavNB25Z3VW2xr1JToaUFd3VNzJ5nfxLJ6ypLgX/MgLMnwzurzLy0zEJRs8qTC+HJhbDzUB/HT/Sx0xA/Mdxk16mlpYXzcwsYM2oc6ppi6vOGx+Q63fVVSko6ClBWVDLoX1vy9z18seyr1FRHWCNBEU/w67q+Cli1mfvqIz3vBoqBIRvc1vF9r1ZL+nyxeXH6/YGYnXsgilV/GUnzFFRHUsx+HkGTBUeo0GZdVXXY13GF0tT7knrWtk31lTUnF8rKMLW0yuuui0heV3YVjhnv4ahxHn4qN/Hycivfl5n5vtT4GJES4JgJHg4a4yU5htNUxcXF5FhtOM1m7GmZMf+5bq6vRlRW8/w2s/i9sUleWyHy9z188eyrsAIbTdNWA4frur5I07Q1bDlBXzSLYH4DnKtpmknXdX/otjmAruu6VGcTm6X6fGC2YIlhnR3FbMYTDGJVFFp7kOsj0FgPVjtKWnqv25A6dBhNixZiDwZobm4mJUYFPwcTVYGdhvjZaYiLoiaFV1dYeWe1MYrzn9/s/HeRjQNHezl2gpdRadH/w11eWkJ2KFu2OSvyPEe9lZKZSVBVsUaQWVuIeAp3xOZr1u12+ppuMg9H0ZPAlcBcTdPuAmZhLEo+t4+uL/opk98PZgu2lMgz+4bDo6pYg0FcDeEPUppb28Bqx57T+419OfsfyCkP3k1lfT37lZeRkrLRAnzRCyNSg1y2bTvnTmvngzUWXlluYU2TiVdXWHl1hZXt830cp3nYqcBPtNZKVq9dQ76q4gfM6enROWkE0oePpB5IUVRcLhcOh6wvEf1DWIFN12R8uq6fGrPWbHzdKk3T9gUeABYA5cAVuq4/01dtEP1TR9I8ey9KFoTDbzKBz4eroSGs49vb23GG2pYSyu7aGyaHg8z8Airr6ykvL2XCBAlsYsFpgaMnGBXEf6408bJu4dtSM/MrjI+hyQGOHu/h0LFeUnpZmqy52Ni677JYUNT47SxJHTqUeiDbaqWyspxRo8bErS1C9EREa2w0TUsBUnVdL9U0zQpcDAwHXtN1/ZstP3rzNhU06br+CxB5FjMx6ASDQT6rquQPi4WTR8a2gGDAYgGfD0+oREJ3KisryApNMyQP6X1gA1BQMJSlS5dQXl7W/cGiVxQFts/3s32+n9IWhddWWHlrpYXSFpX7frfz6B82Dhjt5ZgJXsalRzZN1V5tzLL7YziNGg5zRiYAqRYLlaWlEtiIfqPHbwc0TZsFFAIXhm56ALgTOBH4QtO0Q6LXPCF6zu1282V1JS+XlZA2OlrLvTYtGApSfGFmHy4vL+Pl0mJeb2nCMTY6bdtXNXHt+InUFhVG5XwiPEOTg1y8tZH079pZbsam+XH7Fd5YaeW4D5yc+7mDL4vN9HhjSGj0Lx41orpSnU46yrvWrl0T17YI0RORjHPeBiwDHtM0zYER0PxX1/VMYC5wXRTbJ0SPtbQYoyeKopCUlBTTa3mysljY2ECd2939wRiBzdKWZooyMrBEaWHoEJebGWnptJXJiE08OMxwxDgvLx3QxqNz2thjuBdVCfJrpZkrvnVw6DtOnl5ipSHM5Bdr6utY0FhP0thxsW14NxRFwRVKHtkio4GiH4kksNkeuDWUs2YO4ACeDd33EjAlSm0TIiLNzc2MTXIyNiOTWKcdcW07k9tXLOOvtvDyfHRMFxUUbJjFoBfSjHVEPqnCHFeKAjPz/Px7FzfvHNLKqZPbSbMFqGhTeWihjQPfSubW+TaW12/+z67L1cZHxYX83wqdgv0O6MPWb1pjZiY/1tVS1YPF8ULEWyRrbAKsywZ8ANAA/Bz6PhWIbuY7IXqotaGeOyZPBSDoaUexx243R0po11VTU2NYxzeVlLBLZjYTorhby5KdA1VVqC09K8YpYiffGeSCGR7OnOLh40IzLy+3srzexNurrLy9ysr0HB9Hj/ey53AfVtO6x5WFRt2Sk1NIjfHC93A0bTeLez94h50LCuLdFCHCFklg8ytwpqZpLuBY4D1d14OhopRXh+4XIm5a6uqwAYFgEMUWceWNsHTUh2pqaurmSIO5qpILx4yjraIiam1IGTqM1iWLSfb7cbvd2O2xfc4ifHYzHDrWxyFjfCyqNvHycgtfFJtZVG18ZNoDHDrWy5HjvOQ7g5SWFONQTQyJ0sLy3srLywegsrI8zi0RInyRBDZXAB8BxwHVwL9Ct/+FMbW1b3SaJkRk2hoayAI8GOsEYslZVsZTM2ay1u0K63ilqQlSUqO6MNQ5dCitQI7VRkVFmexeSUCKAjNy/czI9VPdpvDWKgtvrLRQ7VJ5arGNZ5ZY2WWoj+ELV/LMNtvRqigEg8GYv367k59fgAI0VUuFb9F/9HiNja7rvwPjMLZgj9F1fUXorvOAKbqu/xbF9gnRY+2NDQB4+qCwjzMtDafZjFNV8XSToTUQCGBtNxYZO/Pzo9YGa2gRco7V1jmVIRJXTlKQs6Z6ePfQVu6c7WK7PB+BoMLXJRZ++cOoFNOuWmj2xjeoAUhvauT5bWZx+dDhtIW5jkyIeIsoj42u683A/A1uez0qLRKil7yh9S5eU8Sl0MLmzM4xsrOazTQ2NpCzhWzCdXW1ZJmNIkOpw6OXX8ecbQQ2NlWlvKxXJdREHzKrMGeEjzkjfKxpVHlthYXy98ogCUqUNC57M5l9R3o5eoKXSZnxqbnjzMnFrKpkW21UVFQwZkxs0ycIEQ3xS2spRIx4W413ln5z7AMbS2gRcLLJTEM3O0fKy8s7awDZc3tfTqGzDVnZvDFyJOf/+TvlFbIWoj8anRbgipntjAnWAdCWmku7X+Gd1VZO+sjJKR8n8d5qM+3+bk4UZR1J+pLNZipLivv24kJESAIbMeAEQoFNwNrL3PZhUEPZYW0mE3VVW67LWl5WSo7NBoAlK3prbBRVJW/YMOMakm+k3/L7/SS1GxtOd9l6CP/bu439Rnoxq0EW15q46ScHB7zl5P7fbZS09M00lSkpqXMLbH3R2j65phC9Ffu3tEL0sRKfl1VlJUzT5sT8Wqrdjp8gJhQaugkqqkuKGBWaHot2VtmOvDhlMhXVb1VVVZIbCsYzxoxldI6fGTl+LnUpvL3awusrLFS2qTy71MpzSy3sNMTP0eM97BjFApyb4raYsXl9NMv6LdFPyIiNGHBWtbXxclkJ3vETYn4tRVHwKMavUUtNzRaPLauq5Pbly/hz6FDU0MhNtAyrr+fa8RMZ2RhePh2ReEpKisgPpSdwDFmXwDHLEeT0rTy8c0grd+/axo4FPoIofF9m5pKvkzjiXSfPLLFS747NKI4/yQmAu5sRSSEShQQ2YsDpSJaXmprWJ9erdTpZ2NhAYzdJ+korK1nY1IB/q+gn507x+5mRlk6W34/X6+3+ASLhFBcW8mN9LWsVBcsmFqGbVNhtmJ8H93DxxkEtnDDRQ4olSGmryoMLbRzwlpNrv7fza6WJYDB67TKlZwDgb6iL3kmFiCEJbMSAY25ppsBmJ93p7JPrrdpqCrevWEaxa8tJt8vKSoAol1MISR0+AoBsi5Wqqsqon1/EXklZCXOL1vLr6NGo3SRZHJEa5NJt2vnw8BZu2N7F5Ew/3oDCJ4UWzv08iaPeT+K5pRYaojCKYx87lh/rallRJ4GN6B8ksBEDzmEOJ/dPnUFKFLP7bklmprFzpLZ281NRwWCQlLp6dsnMZlgMAi5rdg4AOTabrLPpp4qLjV1Hw4cPD/sxdjMcMtbHvP3aeG6/Vg4f5yHJHKSwycR9v9vZ/y0n139vZ0FV5KM4eXvtw72rV/BJ4Rp8Pl9kJxGiD0lgIwaUQCBAx3tdZxR3Hm1JVihBXt0W3tHW1dWye1oaF44ZR0r1ltfiRMLSJUlfqWzL7ZdqitbiUE2MHDkqosdPzAxw3SxjFOfaWW4mZhijOB8VWjj7sySOeT+JF5ZZaAyzyniH7OwcLBYLfr+fysq+ebMgRG9IYCMGlJaWFpwmo6pgcmgUI9Zyigp5asZM5vg3n0StuLiIbKuxYNielxf1NpizjFEjh8lE+ZrVUT+/iK1AIMBsX4BnttmOYWW9y0XktMAR47w8t38b8/Zt5bCxHhzmIGuaTNyzwM7+bybzzx/s/F6phjWKo6oqQwqGkGGxUFZa0qu2CdEXZLu3GFCamhpJCm2ptqen98k1k1JSsZjN2Nv8m63vU1JSTL41+jlsOqgWKx6rFavHQ1NxUdTPL2KroqKcnFBCycxRo6J23slZASZntXPJNu18tNaoT7W83sSHay18uNbC+F/g8LFm9hvpIXUzaZ+CgQD/yi3AllvAipUrYNYOUWufELEgIzZiQGlsqCcpNGKjOpL65JqpBQUApKjqZuvplK1dQ6rFKKdgDk0bRb8hqTR5vTTI4uF+Z+3a1eSHFgzb86O/uDzZAkeN9/L8fm08vU8rh4zxYDcHWVEHd/1iY/83k7nxRzuLqjcexVFUFU8o6GqUoFn0AzJiIwaUpupqskIjJqY+2hWVlJNLLZBusVJVVcXo0ckbt6uoEACP2YwpKTYBl+P0szjxmENxOp0JURlahK9o5Qq2sRhDJpbc2E2hKgpMyQ4wJbudK2Z5+arCybOL/CyvN/H+Ggvvr7EwJs3PIWO8HDDaR6bdiHJ8Tic0NtJeKUGzSHwyYiMGlJaaagA8BFH6oFYUgDk05ZVhsWy2CKU3lNwskBa73DrDRo5CURRaW1upr5etuf1J7apVAHhMJkxJfROQp1jh5Onw8kFuntqnlYPHeLGZgqxuDO2oetPJFd/Y+a7UhBqqGRVsbOiTtgnRGxLYiAGl0eXitbISFkc5s++WmFKNQpgWVaW6dNM7kkxNTQBYc6O/cLiDzWYjP9+YFisKjRCJ/sEdCoh9oddSX1IUmJod4MYd3Hx8eAvXbOdmqyw//qDClyUWLvk6iS/dRp4kS9uWczUJkQgksBEDSp3bxStlJegx2Hm0OarFikc1pn0aSjbeNdLU1MgHxWu5ffkycvbdP2bt8NZUc8nQEdyoTaZY1kL0K2q9URneGoPkjT2RbIUjx3t5Zt82XjqgleM1D2m2AEXOsQCkBAKc+ZGJ99eYcUtKG5GgJLARA0pjqFZSeh/tiOq8bloGCxrrqQlNhXW1evUqGrxeyh12sqZMjVkbFKuN0cCk5BRKCtfG7DoiulpbW1hUVcmnVZVkbTsz3s3pNC49wGXbtvPhYa0cvZuRNDDXZuP3leXc+KODfd9M5vafbSyuDW/buBB9RQIbMaB46mopsNnJSNp4AW8s1e26K/+3Qmd5be1G961ebayfGDNmbEzbYEpJwa+aUBWFhrVrY3otET2FhWtZ2NTA6y1N5O22R7ybsxGrCWZPzeYvr4fvamvYP1VniDNAq1fhjZVWTvnYyfEfJvHiMkvMCnEK0RMS2IgBZWRdHfdPncH4it4lOeupjrUtlZUbX7dw5XKOLBjKLtm5BAObT+LXW4qi4A+t0WiXDLH9xpo1awAYNWp0nFuyeaaUFH7IyeaF0mImqqt565BWHtmzjf1Gev+/vTuPb+OuEz7+0cxIlnzIt+M4ce54Eue+mqul6RGaNm0pfcrRhefZloUCXXg4W1hYFpYC+xS2QB+WhUJhWY7S0t1CaZ+W3k1zNPcdJxPndBLHjm/5kCzNaJ4/Rj4bl6SJPZL8fb9eeo08Go2+/mmk+er3+83vh0+xOdKq8tBOP2v+mMXn1/l5pUYjarkdtRit5HJvkVaUSAS8Pry5eSP6uj2JTVN9HfF4HEXp+83QcuwYHx5XjtnYiEcZ3t8SvjFjoLUFJdQ6rK8jLp+Thw8yOTOTislT3A7lbU2YMBFwOqYrHlhSarGk1CIUhb+c8PLsMS9VzSpvnPHyxhkvQZ/NuyfGWDs5xuzCODL6gBgpktiItKLFYuD1EUhMTDlSgnV1/GrBEg53tFNfXzdgBm+zvg4Ki/EUDdPAfP3klE+g3ThEbhza2lrJHeEET1y8SPVhHqycS1dzi9uhvK0J5RPJ93ppPHF8wPqgD95fEeP9FTGOtSk8d1zjueNezoUV/qvax39V+5iQE2ft5Bg3TY4xNks65IjhJU1RIm3Yto0v0dSTNULzRPXw5uSQqaqUZGRwvN9cTaFQiGA0CkD2xOFvasgsGwdAqd/fO1u0SG52YlJUb6LWL1lNO3uWR+YtYmZi6ILzmZIb51Pzozzznk5+fG0XN02K4VdtatoVfrI3g1uezuYTrwR45phGZ2wEgxejiiQ2Im10dHSQnZhOIXeETxI9s2sX+TI4nugsDFBVtZ9yfwCA7MnDn9h4S0oI2zbdlsVJuTIq6bW3txOMOWf4/GnTXI7m7eUnmspyLYvu7refIlxVYGmpxTdXRHjh9g6+sSzM4jHO9eHb6zX+eXOAG55yJuPcfFbFHL6uZ2IUSommKF3XJwInzvPQxwzDeHSEwxFJqrm5iWBitOFAweWfaPLtaAUFxAGfolB3tLp3/f79e6lIzFmVMW78sMcR0Gfw9MQJPLVjCx87IbN8J7sjR6oZF3AS35wk7jwMkD9lGp3AWL+f06dPMXXqhSViWV64eYrJzVNMznZ6eC4xdUNNu9I7GWehP87qCSZrJsWYJf1xxCVKicQGmAtEgClA/wbaNnfCEcmouamJHM2ZaFLNGdnLvT2qipWZidLVNeBSa2P/Pq5MjILsSzQTDWscHg9TpjgnnGPHjgz764lLc6TaoCJRo+cbO/zHx6XwlZYCUOzL4OSxoxec2PQ3Nsvm72ZH+cisKAeaFJ497uWlk16aIgqPH/bx+GEf47Lj3DAxxppJJlNypSpHXLxUSWzmAIZhGCN7Da9IKc1NDWw+e4bJY0qZljWyiQ04o8baR49g1Z8lFouhqirNh6pQxk8knpmJNkLD5feMl3OsX5OYSE5nDlYxT1WxPB58JSVuh/O21GCQqMeDD2ioNmD1De94X/0n4/zCwm621Km8cNLL66c1znQo/PJABr88kEFFnsUNk0xumBijVDodiwuUKonNXKDK7SBEcmtubeXJ2tOsqtD5G693xF8/d/p0Wo8eYazmpbraQFEUdtSd5b5wmN/8+8i1mI6vreWHs+fxcmMDsVgUb2LWaJF8IidPgKISCwZHbNLWd8rj8RAOBPB1ddF+8vLNReZV4cpxFleOswib8MZpjRdOamw6q3G4VeXwbpUf7c5gfrHJmkkm15eb5PklyRFDS+5PUp85wFld19cDFUA18IBhGC+80x1q2uXtN62qyoCleHvDUV6trc6M1sXFRZf9/b0QORUV7H7xL5zs6mL79i1EIhEAJs1fQMG8ue94vxdbVtkZPsr8Acr9fs6cOcW0adPf8WunmlT6HMbjcTYfPUKH389dN35yxI/Zd1JWalER1NRgNtQPS7w5GqydFmfttCht3VFePqnx/HGNHfUKuxs0djdo/Ot2m6VjLVZPtFhVbpLnv+xhvEUqHVduS4aySvrERtd1H04y0wncB3QAHwae13V9tWEYr1zsPhXFQ35+1uUNNCEYDAzLftPV5SyvaGsTZX4/5SVFw/b+vp38696FdeYEL//DP3Dm+WcJh8MA3H77bZclngstK6tiCo3AOH+AurpTLFky/5JfO9WkwufwyJEjnGhroT4a4Mcf/Vs0l2psLqasSlYs5fGtmzkUi5KXl4lnGHv55gMfLYWPLoW6DnjmMDxtwL5zHjbWamys1dC2ZLBiPNw0HW6YCgXD/LanwnGVLNwsq6RPbAzDiOq6ngeYhmH0XGO4Q9f1mcAXgYtObOJxm1Co6zJG6WSnwWCAUCiMZUmHt79mOMor+1QtP5w9n5bjp2hp6bws+7xYV155DT6fj4MHDzI2w89XZ8xitqVcUjwXW1axoHNF2Dh/gG179nPllde+49dONan0Ody0aSsAM2bMpL29G3j7S6gvt3dSVmOveTe//9L9WJaFYRxjzJjSYY7SkQHcMdm5nQx5ePGExksnVQ63qLxRA2/UwFdftVlSGuf6iSbXTjApuIw1Oal0XLltOMsqGAxcUE1Q0ic2AIZhnO+ssA9Y8073aQ7TwAmWFR+2faejy1le8fZ2UDW0vDzX3oOcnDw+/ZF7eOw/HmVhXh7zsnMI79qFee3qS973hZaVUlSCDWRpGrXV1aPyeEyFz+HBPXtYkV/I7KkVrsZ6MWWlql7Kyydw4sRxDOMwhYUj3+F5XCbcXWlxdyXUhDy8csrLyzUaRovK5rPO7V+2+FhUYnHdBJNryk0KLlOfnFQ4rpKFm2WV9ImNrutzgU3AGsMwNvR7aDFwwJ2oRDLSIhHIysZfOPxTFwyl9Y3XWbp9O0vWrMUTjUHDObLmLRjRGBSvFysYRAuF6DpVM6KvLS5cy6EqPjt1OrFz59wO5aLMmjKVzKYmThgHWbHiSldjmRC0uXtWlLtnRTnV7uGVGifJOdSisrVeY2u9xoPbbRaWWKwab7JqvClXV40CSZ/YAPsTt5/ouv5JoBG4B1gOLHEzMJE84vE4fsuZTjhYVvZXth4+WbPngqKgnDkDgEfTCC5bPuJx+MvGY4aqUFtbiUQi+P0j0MNSXDDTNFEaGmDsOHzjy90O56Lc0R0jS6/kVeOQ26EMUJ5jc9esKHfNinK63cPLp7y8UqNxsFlle73G9nqNf90Ben5fkjMtTwYDTEdJ38XbMIw4cAuwFXgS2AUsBVYbhrHPzdhE8mhubiI30fkyt2z4R/gdireggLxV1/T+XbD2FtTskR9TJ1hRwclIhC4zRnX14RF/ffH2jh8/yiSfM3Bj/sxKl6O5SIl52My6OpcDGdr4HJu7KqP8Zk0Xf7q1g88uiLCg2ETx2BgtKo/sy+DO57N4z5+zeGhHBtvrZVqHdJIKNTYYhtEA/J3bcYjkVV9fR15i7JqMEZ7Ze7DiD/wN/slT8Xi9ZC9a7EoMRbfexh//8iyb9jdylVHFnDnv/HJzcfnt37+PaYmEN/AORvB1U/bkydhnThNobycej6Moyf37eHy2zYdnxvjwzBgtEQ/rz6i8flpjS51GbafC7w0fvzd85Ppsrhrn1OQsG2viT4mzozgfeetEWjhXV8fYnukUgrmuxuJRVYLLV7gaA8CMGZVs2rSBgwdlbMtkc3D7Vu7I8GMD/iSfI2qw4srZnNuwnjKfj5qaE0yaNMXtkC5Yvt/m1qkmt041CZuw+azGutMa689otEU9PHvcy7PHvWSoNleMsVg5zuTKMpPx7n6liIskiY1ICw31dWyoPc3sSVOYnpPjdjhJYcaMSlSPh8OS2CSdkHEI8gqw8vJQMzPdDueiZE6YCEB5IJMD+/enVGLTX0CDa8qdq6bMOOxpcGpy1p12anLW12qsr3VOkdPz4lw/FZYUKVTmx3Fh/E9xESSxEWmhrrGB/z57Bu/Vq/AkedX4SJl6sIrfLFjCj2tOEIvF8LowzYR4q8bGBvLCYciDHH2G2+FcNG9JCabHg09RqNm7C26+1e2QLpmmwKIxFovGWHx+YTfVrQobajU2nNHY36RQ3apQvQN+QoAcr82ysSYry0xWllnky/QOSUcSG5EWzp2rB6CkZIzLkSSPrNxcLEVhvM/H8ePHqKjQ3Q5JADt37uC5+rN05ebyD9e92+1wLppHUTCDuWhtrYSOpN8M8h4PVOTHqch3ZiFv7Yat9V62NPh5/bhNW9TDSzVeXqrx4sGmsjDOlWUmy8eazCyII7MuuE8SG5EWOs6cZpzfz/gRGgk1FfgnTCTEeiZnZlFVtV8SmySxa9cOQqZJ5tx5BKakaDPOlVfxyI8f5mB3N1+0LFRVdTukYZOXATdNsfjQImhs6mJ3PWys1dhQq3G4ReVAk3N7ZF8GQZ/NkjEmy8ZaLBtrMlbGzHGFJDYiLVR2dnHv7PlYp067HUrSyCh3+kJMyszihT27uO22/+FyRAJg69bNACxcmLrDcE259TY2PPgtIpEwJ0+eYMqUqW6HNCJUBeYVx5lXHOXeeVHOdXnYVKux8azKtjqNUNQZCfmVU06z74ScOMvGmiwrNVk0xiJLWoNHhCQ2IuVFIhGyEoPz5U2c6HI0ySOjvBwbKPD5qN6zy+1wBFBXd5aS5iYWjStn0YQJbofzjqmqysyZlezatYOqqv2jJrEZrCTT5rZpMW6bFsOMQ1WTwpY6jc11KvsbVWraFWraffzhsA/VYzOnyGLJGIvFYyzmFFn40reiy1WS2IiUd+bMaYoynMHOcsaNczma5KH4/WjFJVgN5/A1NdHS0kJ+fr7bYY1qb765kasLi1mYl49ScwpmpNjgfP0smzKNwlOnOLJ7J9z8HrfDcZ2mwNziOHOLo3xsDnREYXu9k+RsPqtxukNhd4PG7gaNn++HDNVmXpHF4lKLxSUmlYVytdXlIomNSHlnzpyiyOcDwOviPFHJKKtCJ9RwjorsHPbs2cWqVaNnpu9k9ObG9XwoJwhAYEbqXRHV3/L2Dq6ZNIUnq2Q4gfPJ9sGqcpNV5SbQzekOD9vrNLbXq2yrV2mKKL3zWUEGmZrNghKLxWNMloyxmJ4nHZHfKUlsRMqrPXGchYnB+bSCQpejSS5Zs+ewf+d2jnd2krFrhyQ2LjJNk3N7dhOYOBnb7ycjxeaIGix3xky6N20gq72dUKiNoMsDYya78dk24xPNVrYNJ0IK2+pVtter7Kh3BgjcWKuxMTF2To7XZl6xxfwSi4XFzhVXXmm6uiCS2IiU13rsKAARTUMNBFyOJrnkLLmCSP1Ztqx/jdDWN90OZ1Tbu3c3UxPzmWXPrEz58ZYKZs/h7KYNzMjOYdeuHVx9tSTNF8rjgcm5cSbnxnl/RYy4DdWtCtvqnCRn5zmV9pjHGUun1qnRyVBtZhdaLCixmF9sMbfIIlM6I5+XJDYi5XWdPg14iMsvxvNavnwlAAcPVtHU1EihNNe54qWXXmBRntPHKXvuPJejuXSBxPABkzIzeXHrZklsLoHiAT0/jp4f58MznY7Ih1sUdjWo7DqnsrtBpbVbYcc5jR3nnNO26rHR8+PMLbKYm0h0xmTaMls5ktiINLDj1EnaFYX3rU69wc5GQkFBIStnzqbmxFE2b97E2rWpP1JsqonH42x77WXeO34iNpA1d77bIV0yLS+PaFY2vs4OmvfsdjuctKIpUFkYp7Iwzodm9DVd9SQ6u86p1HUpVDWrVDWrPH7YeV5xIM6cIifJmVtkMaMgPiqvvJLERqS05uYmDtTXUeXxcP+tt7kdTlJqfeVlPpOVzbaycjZuXC+JjQv27t2Nv7OTDsukcFoFWm561C5mV1YS3baV7NZWqQ0cRv2brm6fFgOgrtPD7gaVvY0q+xpVDrcoNIQVXj2l8GpiHB2vYjMjP5HsFDuXmI/JTP9BAyWxESnt6NFqAMaNG08gkFqTCY6UwPTpAMwKBvnlmxswTRNNk4/+SHr22afZ3x7ij2Vl/NO9n3Y7nMumYO586rZtpSI7h40b13Prre91O6RRozTLZk2WyZpJJgBhE6qanCRnb6PCvkaVlm6FfU0q+5pUHjOc543JdJqvemp2pufHyUizWh35dhMp7eiRapbk5VM6eQq2beORBua3yCifgJKdTWZHB0Uxkx07trF06XK3wxo1wuEunn/+WQBuve12vGk0llDm7NnsmjqVh578PVevXyeJjYsCWt9EngC2DWc6POxtVHtvR1oV6rsUXqpReKnGqdVRPTZTc+PoBXH0fKf5qiIvtTsmS2IjUtrJfXu5b5pOPBIFywKpiXgLj6KQVTmL9q1bmBfM5S9/eU4SmxH00ksvoHVHKR9fzqJFV7gdzmWl5QSZufYWok/8jjff3EA0GsWXGFNKuMvjgfE5NuNzTG6a7NTqdMWgqjnRfNWgsq9JobVb4XCryuFWlWdwshkPNhOCcWbk9yU7er5Fboab/9GFk7OASGmhI9UQzMPKy8cjSc2QMhOJzfzcPB589UW+8pWv4fXKCWi42bbNH/7wez4/dTqTC4uIHKkmM80mI509ey4lJWM4d66e9etf57oUnLF8tMj0wuLElA7g1OrUd3k41KJiNCscalYxWhTOhRVOhlROhlReONlXdVOW5SQ4ekGcGYmEpyiQfH125EwgUlZbWyuZHR0QzCN76jS3w0lqWXPmgcfDtKxsvOEwb7whJ6CRsHXrZs4dNpg5dwHEYvhKStwO6fKLxfjcwiWYJ47z3DNPy3GVQjwep69OaZbJqvF965vCHowWBaNF5VCzwqEWlTMdCrWdzu21fnMNF/rjvTU6MwrizCq2ycsb8X9lAElsRMrav38fkxIdhoPTJLF5O1puLoHpFYQPGyzNL+CJJx6TE9AI+MUvHuHdJWMAp9ZMy0uf/jU9PF4vU8NhyM7hmb17aG1tIS8N/8/RpDBgsyJgsaLM6l3XHqU30TFanJqdEyGFpojCxlqld8RkgPIgPPpuD4UuVQpLYiNS1o7tW7kiKxuAjAkyq/dfU3DzrTTX1/HyF/833fV1HD16hKlS0zVsdu3ayb7t27h33gIA8q673uWIhodHUchbvpLWl19kWW4ef/nLc3zwgx9yOyxxmeX4+jdjOZech02o7qnZaXGaso62KdR1eAjHAJcSm9Qe01uMalVvbqLA58P2ePBPmux2OEkvq3IW5ddcx8rECLG/+MUjLkeUvizL4nvf+zbXFheTqWr4SseSNXuu22ENm+DSZQAszsvnj0/8jng87nJEYiQENGdG8/dVxPja0m5+d2MXb97Zxd5PwKRc9/reSGIjUlJDwzkyGs4B4J0wEUWuxLhg99zzSQCef/5ZqqsNl6NJT0899SSHD1axtrQMgLzVN6T83FBvJ2PSZLQxpfhVlSmdXaxb95rbIQmXeFVcv1Q8fT9pIq29/PIL7Gxr4cloNyW3vMftcFJGvLubokOH+MkVK9CA73znm/Lr+jI7fvwYDz30IAty8yjy+tDy8wkuX+F2WMPK4/FQkJjS5MaSUn7+sx9jWdZfeZYQw0MSG5GSnnnmadpNk8lrbiR7/gK3w0kZHq+X0JsbKYzHWVM2nl27dvDEE79zO6y00dHRwZe+9DkikTCKPoNxX/oKJf/zrlFRoxhcvhJPIECp30+g9ix/+tN/ux2SGKUksREp58CBfVRV7UfTNNasWet2OCnFoygU3OiU2QcmTsbr8fDQQw+yc+d2lyNLfZFIhM9+9l4OHzbIzy/ggQf+D1nTK9JiJu8LoWRkkLfqWhpLSznW1cGPfvR9mpub3Q5LjEKS2IiU8/Of/5QbS0q5b+XVZMdMt8NJOcGVV6EVFOCLRvnclaswTZNPf/rjbN68ye3QUlZt7Rnuuedv2b59K8tKxvDjb3+XksRl3qNJ0e13cMU3vkXhxEm0trbyhS98mmg06nZYYpSRxEaklA0b3mDDule5o2wcCzo7iZ6tdTuklKN4vRTdfgcAS0yT1YuX0tnZyac+dQ+//vUvicViLkeYWtate5UPfvB29u7dw5ziEj43eRre3/6a8LFjboc24jweD5qm8d3v/pDs7Gyq9uziW9/6OradfKPTivQliY1IGTU1J/na177MlQVF5GhetPx8suak7yW0wyln6XICM2Zix2L8ffkE1t5wI6Zp8v3vf5cPfOA2/vCH33PqVI2ckIZgWRabN2/i4x//CJ/5zL2EQm2smj2Xr1XOwWNZZM6YiX/SJLfDdM2E4mJ+uvpGvjhN55k//5GvfvV+wuEut8MSo0RKDNCn67oCfB34KJAPbADuNQzjiKuBiRFh2zbr1r3GN77xFTrb2rhzwRIA8q5bjUdVXY4uNXk8Hkrv/ig1D3yDWH09X/ncF1m8bCUPP/yvHDt2lO98558BKCkZw6JFS5gyZRrFxcUUF5eQnZ2N3x/A7/fj8/lQFKXfTUVRPIOWCh6Pp/fW/+9UYNs2jY0NHDlSzZEj1VRXG2zcuJ6mpkYANE3jvptuYWFTM3ZnJxnlEyj92CfS+vLuv8Zqbyejvp55wVzumTSVnz33DHv27OL++7/CVVetQhnFZSOGnycVfpHpuv514F7gbuAM8F1gCjDLMIyLbcA9Zlnxyc3NnZc1Rk1TyM/PoqWlE9OUy2f/mv7lFYlE6e6OEIn03Wprz2AYBzGMQ1RV7efMGWdyks/PW8gyrw81L4/J334QJSNFppu9BMN5bIWrD6P4A2SUlwMQCoX44x+f5LXXXmH//n2Y5vA2S/UkQ6qq4PEoiWSo/30VVVUHJE+qqqFp6oDkSVVVNM1Z+v0ZxOM2Ho/S+1xn2XcfwDRjxGIxTNMkFjvffWfZ0dFBe3voLbHn5uaydvWN3JGXj7l7FwCBGTMp+8Tfo2ZnD2u5XQ7D/Z3Vvn0bZx/5d7BtdnR18vChA0TiccaNG8+7330jV1yxjJkzK1Ni+gX5fr9ww1lWBQVZqKpyHOf8P6SkT2x0XfcBjcD9hmH8NLEuD6gFPmIYxuMXuctRldjYtk002pc4OPe7iUa7iUQidHd3D/gyj8V6Ho8Si0UTy9iAW88X/vnWmabZu7+e+6bZ/76Z2NbEspztLmQcFb8/wFevXY1+zhmUr+xTnxk1l3mP5LEV2roZOxoj54qldFsWe/fuZteuHZw9W0tjYwMNDQ2Ew12Ew2EikTDRaJR43CYet9J6PBxFUSgvn8D06RVMnTqduXPnc8UVy+ja8ib1v/oleDwU3nobBWtvSZmampE4rkJvbqTuV78EyyKsafznyeO8dvYM/c86wWAupaWlZGVl4/f7CQQyE8sAGRn+fkmsMqDWDxhQEziwFtCDx0Pvc8CDovQ97vH0r0Uksc++1xhcq6hpKjk5ASIRE9umNxnvSa57kmiPx5NIovvW9d2chFzTNFRVG7Bu4H2tNyFPlVrN/pIhsUmFpqj5QA7was8KwzBadV3fCbwLuNjEJilYlkUoFCIa7UksokQiEcLhCF1dnXR2dhKJhAmHw4RCbbS3t2NZFqYZIxqN0d0dobs7ktgu0pu49Pzdk0zEYrGU6ifh9wcIBPzk5xeiV+jo+kxmzKykcrpO8//9AVGg8D3vHTVJzUiyOjo499hviXd00PDEY+QsuYLKWXNY+L4PouUX/NUTtm3b2LaNZVm9y3jcwrZ7Hotj2zbxuN37t7NNz/r+yziWFScet3qX8XiceDyOaVpYltn7dzxuJdZZQBy/X6O9PZxInp3nDVw6A8d5vT40TcPr9fYu+9/XNC+aouKPdlOEB7upkejZs/gnTiRv5VUABJetoH3bVgpuXEvmjJnD/RalnODylWiFRdT/x6PQ0MAnxpVzx5qbeK7hHDt3bqfhbC0doTYOh9rcDjUpOUnQ4MTIi8/nw+fz4fX6BhyzPesHb9N331mvqs72fn8Gfn+AjIyMRPNyz99+/H4/GRl+AgFn6fP5UibRSoXEpmcy9VOD1tcCE97pTjXt8v6qqqk5yRP/+BMCrW3OF3M8Tty2sRNfpqYZ48/tIVq7umhvb2ee10tldpD+h0n/Y+a3p2toN51LmZfnF7IgN69vu0Gv/diZGloSV7IszSvgisKi/nsdsP+nGxtpUyAjI4MFwTwWBbKc6vzEr5SeXy2KorAvmE04Mwufz0dZd5RJoVDvLxHnOUrv3826Try4GE3TyGpsJKe62vnFoygoOOOnOL+AFLwrVxCYNo38/BxCVYfpen2d8+vH0/Oe2JihEN21tZSvWEH2rNkAZH/ms3QerCL/6lWX8lalHFVVBiyHi5IVoOimtbS88jKxpiba3lhH2xvreoIg/+qrGfu/7gKcEYzP/PxnTh+n3sTZpueneKY+g4LrnUkf49EoZx75Kb0P9m7u3AlMn07RTX3jEdX88Adg23j7b5xY+CdPpuS9t/dt+/APsHuu4rKdY1xVFSwzjm/8eErv/JvebU/96GGsri5nX/1jBnxjyyi76+7ebU/8y3eINpzDCrVjmzEa+pVT5Gg1hatXO1/ymo9J991/IcWbdEbquApWziT72/9C03P/j+aXXmTpnR/iXWXOVBNnn/4TLX/6I/FAANPvx1QUTI8HEzDjcQ6WFNOpqth2nOLWNsaG2gHbedfsxL3EW1mVl0u7V8O2bUrDYSZ2dPVsCTbE7b7ag/2ZmbRoKrZtM6Y7yvTubucHYGKfzn3n2Xs0hQbF+a4rjMSYbcWxiWPH7cShFHeeZ9tsi3Zz0jSJxy1KPQor/H7suO2cC3qS+7hN3I6zvqWZ/W1tmGaM8f4AN48ZO2QZbmppYm8i+RuTkcHNpeMgDnRHnVs/21qb2dnWCkCh18cdZeMGPB5L3CLAurZWtrW2OO+TpvHBceVDxrC/PcSucBd+v588f4D3Fhb1JlyqqqKpGoqqoGkakUqdOz7xKTTNnbkVUiGxyUwsuwetjwAF72SHiuIhPz/rkoIa7Ac/eBz/7j1cXVQ8xItq/NvxY73JSsWESVxXXDLk/qpLirGynCrZK2NxprcO/Ytm4b0fxzd2LH6/H+/W7URfWzfktvf+8hfkTHdmdD791J84+Z+/GbiBbYNlgWXxns9/jtzZswA4+/+e59jPHh1yv8vu+TsKFi8CoP7lVznyyitDbjvlvbdQNMf5ddt44iTGgf1Dbqu2NPS9V/mTQR+9k10Gg4Fhf43CD70f+847aNt/gKaNm2g3quk6dQrbNPFnZfa+F9HWGO3btw25H39O37ZWROXQjqEHAPRlZgz4PFYl+qucj9erDtj20IEDxIcYJyXosQdse7i6GjP01r4yAErcGrDtsbYWzMTgch6vl8C4MjLHjydQPp7M8nLycwNp03F9JI4ryKLw7g8T/9D7B4zC3GJGwbZRurrwdXW9ZTLo1f/4ZbKnOK0Op578b2p++9iQr3Dz175CcOYMAGqfeZbjj/7HkNve8uX7yV8wH4C6F1/i6I9/OuS2773vixQuXwpAw7r1HP7+DwGl3zXFfcfB+++/j5JV7wKgactWDn3nwSH3e9dX/oHSG5xpKJp37uLgP39r6Bju+RiBq1ZimibhI0fp/Nkvhtx24TWraJg2he7ubtSmZiq37hhy26IJE8hUnMEl/eEI1/uGPhai8TibmpsIh8Pg7WDZuH71CjZgmmAC3VG+/bvHWLxmDYsXLx5yf8MpFfrY/A/gv4BMwzDC/db/AcgwDONiJwo6ZlnxyaFQ+K9veREaG8+x5Xe/Rm1uTdRo9O/sqOLz+bAXLSIzN4+srCwC9fVojY29HRkHy7/2OtRMJ6frPHiQ8PFBY2L0q97Ju/IqtJwcALqqqwkfPXLe7QByly5Dy8sDIHziOF3V1X2bDnpOzqJFePOd3DFy6hRdhwdNmNhv39lz5+ErcmqKumtr6TIODRlDVuUsAmNLCQYDNB45SWj/gX7bOgs1kEnGuDJ8JWPwaKmQfw8fVVUIBgOEQmEsa+T7sdiWhdnaikdVe48dKxymbeNG7LgFHs+gY8eDb2xpb02bbZq09NT84OnbLHHHW1zcuy1Ay7rXne08PZv09ZvQ8vPJnt23bdubm7Djdu+2iqIQCPiIRGJ4srMH7De0fRu2afWF0dPfAg9KVuaAbbuOVONRVdTsHLyFhSnTb+ZiuH1cAU6NdihErLUFs7WVeKSbeLQbOxrFtixyl69ACwYB6Dp6lHD14SH3FVy6tPf7KnziBF0HDw65bc7ixfiKnR+hkVM1dOwf+sdVzoKFZI4rIxgMcO7gEdp27hx623nzyRjn1JB019XR/jYJffbsOfgnTgQg2tBAaMvmIbfNqqwkMGUqALHmZto2bRxy20xdJ3N6BQBmW1u/z955tp02jayZlYDTFN386lt/kMYtC9OyYGwp9sRJzgUeoRDmls1Yie4OlmU5/SotE8u0UGfP5Pr33clb2xcuTTAYSJvOw1cAW4BphmEc7bd+A7DHMIy/v8hdjqrOw8lKyuvCSVldOCmrCydldeGkrC5cMnQeToWfIXuAELCqZ0XiqqiFwHp3QhJCCCFEMkr6On7DMLp1Xf834EFd1xuAE8D3cDoTP+VmbEIIIYRILkmf2CT8E06sjwIB4A3ghncwOJ8QQggh0lhKJDaGYVjAlxI3IYQQQojzSoU+NkIIIYQQF0QSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaUMSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaSPpZ/ceBmHbtv3x+OX/v1VVwbJk5tcLJeV14aSsLpyU1YWTsrpwUlYXbrjKSlE8eDyeCM7USkMajYlNK5ABnHU5DiGEEEJcuLFAN5D3dhuNxsRGCCGEEGlK+tgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbmtsBpANd1xXg68BHgXxgA3CvYRhHXA0syei6/o/A9YZhrOq3bj7wMLAYaAL+r2EY/+pKgC7Tdb0A+A5wMxAE9gJfNgxjQ+Lx+UhZAaDregnwELAGCADrgPsMw6hKPD4fKau30HW9AtgJfMowjF8l1s1HygoAXdcnAifO89DHDMN4VMpqIF3X/xfwZWAKcBT4hmEYTyYem49LZSU1NpfH14BPAB8DlgM28Lyu6z5Xo0oiuq5/FvjmoHWFwEvAYZyD/+vAA7qu3z3iASaHx4FlwAeBJTgnoBd1XZ8hZfUWfwamAjfilFUYeFnX9Uwpq/PTdd0L/A7I6rdOymqguUAEKAPG9rv9TspqIF3XPwz8EngEmI3z/fW4ruvL3S4rqbG5RInk5QvA/YZhPJdY9wGgFrgd580etXRdHwc8ClwFGIMevgfoBj5pGIYJHNR1fTrwJeA/RjRQl+m6Pg1YDaw0DGNTYt1ncE7cf4Nz4payovdkfBz4lmEYBxLrHgB2A7OA65GyOp9/BtoHrZPP4EBzAMMwjLODH0j8OJOyAnRd9wAPAD8wDOPhxOoHdF2/EliVuLlWVlJjc+nmAznAqz0rDMNoxfm1/S53QkoqC4EWnF9CWwY9dhXwRuLA7/EqoCeaGkaTRmAtsKNnhWEYNuABCpCy6mUYRpNhGHf2S2rGAF8ETgNVSFm9ha7r7wI+DvztoIekrAaai3MMnY+UVR8dmAQ81n+lYRg3GIbxL7hcVlJjc+nGJ5anBq2vBSaMcCxJxzCMZ4BnAHRdH/zweGDfoHW1ieUE4NywBpdEEsnwc/3X6br+PpzmlheAbyNl9Ra6rv8Mpwm4G7jVMIxOXdfluOpH1/U84DfApw3DODXocyhlNdAc4Kyu6+uBCqAaeMAwjBeQsuqvIrHM0nX9BWABfbWoz+ByWUmNzaXLTCy7B62PAP4RjiXVZHL+coNRXna6rq/Eab9+OvFFIWV1fj/EacP/LfAnXdcXImU12E+ANw3DeOw8j0lZJSS6FVTgdNz/R+AmYBtOf8nrkLLqL5hY/hqn1ubdwIvA08lQVlJjc+nCiWVGv/vgvHmdIx9OSgnjlFt/PQf9qC07Xdffg/NlsRm4M7Fayuo8+l0FdQ9Ox/1PIWXVS9f1/4nTLDBniE2krBIMw4gmardMwzB6Tso7dF2fidPUKWXVJ5pYfs8wjP9M3N+d+GHxeVwuK6mxuXQ9TVBlg9aX4bT5i6Gd4vzlBnBmhGNJCrqufwp4CqdZ6ibDMHqSZSmrBF3XS3Rdv1PXdbVnnWEYcZy+EeOQsurvI8AY4JSu6x26rnck1v9U1/UDSFkNYBhGZ7+kpsc+nKYVKas+Pee2wc1NB4DJuFxWkthcuj1ACKcXONDbpr0QWO9OSCnjDeCq/ico4DqcqxJGU3s1ALqufxL4EfBvwAcGfcFKWfUpw6nRurpnReJS5oU4yY2UVZ8PAzNxLnLouQH8E05Ti5RVgq7rcxPJ35WDHlqMc8KWsuqzC+cKu2WD1s8BjuByWXls2x7u10h7uq5/G+eKg4/gDO70PZwe43MMw4gO/czRRdf1XwGTegboS/SOP4QzJsl3gStw+gN8ol/15qiQGDhtP/AscO+gh3uqdaWs6L3U9Hmcz9jHcK66+ypwA86JO4KU1ZB0XbeBuw3D+JV8BvskBlrdhDPOzydxrlS8B+fzuASoR8qqV2LA1ftxzn1bccbf+iZOAlOFi2UlNTaXxz8Bv8AZr2UjYAI3SFLz9hKZ+w04lw7uxBnE6b7R+CUB3AF4gfcCZwfdHpay6pO4DP4DOJePPoHzpVoAXGUYRo2U1YWTsuqTaM68Bed4ehKnVmIpsNowjH1SVgMZhvEt4Bs4V2xWAe8DbjcM43W3y0pqbIQQQgiRNqTGRgghhBBpQxIbIYQQQqQNSWyEEEIIkTYksRFCCCFE2pDERgghhBBpQxIbIYQQQqQNSWyEEEkpMRCfEEJcFElshBBJR9f1W4H/TNxfpeu6rev6KnejEkKkApndWwiRjD7f7/5OnJm7q1yKRQiRQiSxEUIkNcMwQsBmt+MQQqQGmVJBCJFUdF1/nX4zdwPXAK8B1xiG8bqu69/AmXDvy8C3gGk4E+59ErCBh4G5wFHgM4ZhvNJv37OB/wO8K7HqFeALhmEcG8Z/SQgxgqSPjRAi2dyLMwHhLpwmqOB5tikHvo8zAd/7cSbB/C/g98DPcRIfBXhc1/UA9M6gvgkoAe4C/g6YAmxMzHIthEgDktgIIZKKYRhVQAgIGYaxOXF/sEzgXsMwfm8Yxp+BfwfKgAcMw3jUMIynga8BRTgzDIMzw3AYuN4wjKcMw3gSpzYoANw3rP+UEGLESB8bIUSq2tTvfl1i2b8vTlNimZdYXofTpNWl63rPd18IWA+sHqYYhRAjTBIbIURKSnQqHqzrbZ5SCHwgcRus4bIEJYRwnSQ2QojRohV4GXjoPI+ZIxuKEGK4SGIjhEhGFqBe5n2uAyqB3YZhmNA7uvFvgSPA7sv8ekIIF0hiI4RIRq3Acl3XrwVyL9M+vwm8CTyr6/pPgAjwceA24I7L9BpCCJfJVVFCiGT0b0AMeB7nqqVLZhjGXuAqnLFufoNzefhY4DbDMJ66HK8hhHCfDNAnhBBCiLQhNTZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdLG/weN9Vctp7byAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the dataframe as a chromatogram object\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Subtract the background given a peak width of ≈ 3 min\n", + "chrom.correct_baseline(window=3)\n", + "\n", + "# Show the chromatogram\n", + "fig, ax = chrom.show()\n", + "\n", + "# Plot the true signal\n", + "ax.plot(df['time'], df['true_signal'], 'r--', label='true signal')\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/methodology/fitting.ipynb.txt b/_sources/methodology/fitting.ipynb.txt new file mode 100644 index 0000000..5a334c4 --- /dev/null +++ b/_sources/methodology/fitting.ipynb.txt @@ -0,0 +1,406 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Fitting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "The meat of `hplc-py` is its ability to take in windowed regions of a chromatogram \n", + "and fit a number of peaks such that the chromatogram in that region is well reconstructed. \n", + "As is the theme in these notebooks, it's easier to look at a chromatogram and see \n", + "what the reconstituted signals should like than to do it quantitatively. \n", + "\n", + "Ideally, one would have a physical model that would describe how an analyte interacts \n", + "with the stationary phase of the chromatography column and a generative model that \n", + "would capture the statistical distribution of the measurements as a function of time.\n", + "However, having this in chromatography is exceedingly rare, so we are left with \n", + "phenomenological descriptions of peak shape that we relate to chemical species and \n", + "concentrations through calibration curves and control experiments. This is what \n", + "`hplc-py` excels at–phenomenological quantitative description of signals in a chromatogram.\n", + "It is important to note that `hplc-py` does **not** provide a model of the components \n", + "of the chromatogram but rather fits the parameters of a minimal number of convolved \n", + "signals that can capture the observed data in the chromatogram. In this notebook,\n", + "we outline how this fitting procedure is executed and how the total chromatographic \n", + "signal is reconstructed. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## The Skew-Normal Distribution \n", + "\n", + "In `hplc-py`, we consider that each detected maximum in a chromatogram results from \n", + "a single compound $i$ whose time-dependent signal intensity $S_i$ can be phenomenologically \n", + "well described by an amplitude-weighted [skew normal](https://en.wikipedia.org/wiki/Skew_normal_distribution) distribution. Mathematically, this is defined as\n", + "\n", + "$$\n", + "S_i(t) = \\frac{A}{\\sqrt{2\\pi\\sigma_i^2}} \\exp\\left[\\frac{(t - \\tau_i)^2}{2\\sigma_i^2}\\right]\\left[1 + \\text{erf}\\left(\\frac{\\alpha_i (t - \\tau_i)}{\\sqrt{2\\sigma^2}}\\right)\\right], \\tag{1}\n", + "$$\n", + "\n", + "where $\\text{erf}$ is the [error function](https://en.wikipedia.org/wiki/Error_function), $A$ is the amplitude, $\\tau$ is the retention time, $\\sigma^2$ is \n", + "the signal variance, and $\\alpha$ is the skew parameter. The skew normal distribution is \n", + "used because the skew parameter $\\alpha$ can break symmetry, allowing for heavily \n", + "tailed signals. When the distribution is unskewed, meaning $\\alpha = 0$, Eq. 1 simplifies to \n", + "a Normal distribution symmetric about $\\tau$. To get a sense of how $\\alpha$ \n", + "impacts the resulting signal, we can use `scipy.stats.skewnormal` to examine \n", + "the amplitude-weighted output," + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG3CAYAAABIcHTrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIKklEQVR4nOz9d3xU953vjz/Pma4y6oUi1CV6x4ALYDAGF2zjGjt24sQpTjbZzSbZ7C/JvXu33LT73U022WziTeLELW5xd9yxDRiMwfSqglABhHoZjUaaen5/nKkU1el8no8HD+acOed83kfSzLzmXSVFURQEAoFAIBAIkgQ51gYIBAKBQCAQhBMhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFQIcSMQCAQCgSCpEOJGIBAIBAJBUiHEjUAgEAgEgqRCiBuBQCAQCARJhRA3AoFAIBAIkgptrA0A6Ovr4+c//zlbt27FarVSXV3Nd77zHZYuXQrA97//fV566aWQcwoKCti+fXsszBUIBAKBQBDHxIW4+fa3v013dzc///nPyc7O5umnn+ahhx7ipZdeory8nNraWh5++GHuv/9+/zkajSaGFgsEAoFAIIhXpFjPlmpubub666/nmWeeYfHixQAoisKGDRu46aab+MY3vsGiRYv4+c9/znXXXRe2dRVFweMJ/63LshSR68YTyX6P4v4Sn2S/x2S/P0j+exT3N/HrSpI06nEx99xkZWXxu9/9jrlz5/r3SZKEoij09/fT1NSE3W6nvLw8rOt6PAo9PYNhvaZWK5OVlYrFYsPl8oT12vFCst+juL/EJ9nvMdnvD5L/HsX9TZzs7FQ0mgQQN2azmdWrV4fse+utt2hpaeHqq6+mrq4OSZJ4/PHH2b59O7Iss3r1ar71rW+Rnp4+qbW12vDmU2s0csj/yUiy36O4v8Qn2e8x2e8Pkv8exf1FnpiLm/PZt28fP/jBD1i3bh1r167lV7/6FbIsM23aNB555BGam5v52c9+Rl1dHY8//jiyPLEfnixLZGWlhtl6FbPZFJHrxhPJfo/i/hKfZL/HZL8/SP57FPcXOWKecxPMli1b+O53v8uCBQv4n//5H4xGI4qiMDAwgNls9h938OBB7rnnHp5//nkWLFgwobXcbg8Wy1C4TAdUlWo2m7BYhnC7k8/VCMl/j+L+Ep9kv8dkvz9I/nsU9zdxzGbTmDxCceO5eeqpp/jRj37E+vXr+fd//3f0ej2g5t8ECxuAqqoqANra2iYsboCIxTrdbk9SxlGDSfZ7FPeX+CT7PSb7/UHy36O4v8gRF+Lm6aef5t/+7d944IEH+MEPfhASavrOd75DX18fjz76qH/fkSNHAKioqIi6rQKBQCAQhBu1gteDx+OOtSmTxuORGB7W4HDYcbvHHhzSaLQTTjU5n5iLm8bGRn784x+zfv16vvrVr9Ld3e1/zmg0cvPNN/O1r32N3/72t9x00000Njbyr//6r9x8881hr6ASCAQCgSCaKIrC0JAVq7U/KYSNj64uGY9n/F4bkykNszl7TOXeIxFzcfPOO+/gdDp57733eO+990Ke27x5Mz/96U/55S9/ySOPPMIjjzxCeno6mzZt4lvf+lZsDBYIBAKBIExYLD0MDVkxGlMxGlOQZc2kP9jjAY1GGpfXRlEUHA47VmsvABkZOZNaP+bi5uGHH+bhhx8e8ZgNGzawYcOGKFkkEAgEAkHk8XjcDA0NkpaWSVpaRqzNCStarTzufBu93gCA1dpLenrWpEJUyVlkLxAIBAJBnONyuQEFg8EYa1PiBp/Acbtdk7qOEDcCgUAgEMQEX9gm8cNQ4SJcITkhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFTEvFpKIBAkN4qisL+uk60HznKmcxCjQcu8smxuXFFMZpoh1uaNi45zAxz4pIWOcwNIksSU6RksuGI6uQVpsTZNIBAEIcSNQCCIGEN2F4++cYL9dZ3+ff2DDtp7bOw+3s7f3jGf8mmJUQJ7ZN9Zdm45SfA0voH+YeqPt7PsmhIWr5yRFP1JBIJkQISlBAJBRBiyu/j5cwdDhE2aSYdGVgXAgM3JL54/RHuPLVYmjpm6Y+3seC8gbHR6DTq9BgBFgT3bm9j5fgNxNIdYIBgVRVF45ZUX+Nzn7mHt2iu5557b+PDDLXg8Hh544G6eeOKPsTZxwgjPjUAgCDseReF/XjtGQ6sFgFSjls9vnMmS6jwGbE4eefUoNS192OwuHnn1GP/r80vQhGmmTLix9A2z7a06//bC5UVcsaoERYEDu1rYu7MZgCN7z5JuNrLgiumxMlUgGDOKovBP//R9Pv74Ix566KtUVlbz5z8/zo9//C8MDg4yMDDA3XffF2szJ0x8vpsIBIKE5vWdTRxuUOfEpRq1fO++xSydmY8kSZhT9XzzjvlMyUkBoLl9gA/3n42luSPy8fsn/Z1WZ84vZMWaUjQaGa1WZtk1JVx7Y7X/2F0fNnDuTH+sTBUIxsybb77Ohx9u4R//8X9z332fY9my5XzhC19maGiI//7vX/LQQ1/FaEzc5oJC3AgEgrDS3DbAazsbAZAk+NptcynKD024NRm0fOGGWf7tv37chN0Zf0MDz53pp7FeFWkpqXquWld+QV7NzPmFLLlyBqCGqD74aw1OR/zdi0AQzIsvPk9ZWTnXX7/Rvy89PR2AnJwcbrxxU6xMCwtC3AgEgrDh9nj401sn/Lkpt15VyuyS7IseWzE9g2Uz8wGw2JxsP9gaLTPHzKHdp/2Pr1hVgt5w8Uj+0qtLKJxmBtQw1p6PGqNin0AwESwWC/X1tVx11aqQ/W636qH88pe/jkajiYVpYUOIG4FAEDbe33eWlnYrANPyUrlxZfGIx2+6ssT/+MMDZ+MqIbevx+b32qSm66maW3DJY2VZYu3NM9Fq1bfUo/ta6e0ajIqdAsF4OXv2NIqiMGXK1JD9r732MgCzZs2OhVlhRYgbgUAQFmzDLl7fGfBYPLhxJlrNyG8x0/PTqC7KBKCtx0Z9HOWr1Bxp8z+et2QamlHuJSPLxMIVRQB4PIqonhLELbKsemX6+nr9+2pqTvDaay8BJMXfrRA3AoEgLLy1u5nBYXWS74o5BWPuX7NqYeDb4/ZD8RGaUhSF+mMdgJo3VD2vcEznLVxeRJpZbUx4urGXs819kTJRIJgwpaVlZGZm8fzzT/Puu2+zZcs7/OM//j1r1qwDVA9Oe3vbKFeJb4S4EQgEk6Z3wM57n6r5KVqNxO3XlI353KXVeZi8uSwH6jtxeeP+seTc6X6sFjsARaXZpKTqx3SeTqdh+epS//anO5qS4luwILnQ6/X8+Mf/HwUFU/jJT/6F//iPn3HjjZv453/+Ebfcspk///lxdu3aEWszJ4XocyMQCCbNO3tacHjLpa9dNJ3cTNOYz9VpNSysyGHXsXaG7G5ONPcyrywnUqaOiVO1Xf7HlXPyx3Vuxax89n/cQm+3jbYzFs409VJUevGkaoEgVsyfv5BHH33ygv3f+94P+d73fhgDi8KL8NwIBIJJYR1yss1b6aTTyqMmEV+MxVUBAbGvtnOEIyOPoig0e3v0yLJEcfn4hJYsSyy9OvAz+HRHs/DeCARRRogbgUAwKT7Yd8bfo+aa+VPIGGMIJ5i5ZdnovZVGB092xVQM9PUMYekbBqBwegYG4/gd3OUz88jKVZsUtp+10HbGElYbBQLByAhxIxAIJozd4WbLvjMAyJLEhitmTOg6Bp2GmcVZAFgGHZztjF0ZdYvXawNQXD6xcJIkSSxaXuTfPrTn9AhHCwSCcCPEjUAgmDDbD7diHXICcMXsfPLGkWtzPsHN/o439UzatonS3BBYe6LiBqBidj6paaoXq7G+m74EGBAqECQLQtwIBIIJ4VEU3vd6bQBuWD7+XJtg5pRk+R8fa+od4cjI4XZ5aDurhpDSzAYyvfOvJoJGIzNv6TT/9uFP43d+lkCQbAhxIxAIJsTxxh46eocAmFWcdcH8qPEyNTeVDK+no/Z0b0xKwjvbBnB7q76mFmVeMEdqvMxeOAWtTn2brT3Shn3YOWkbBQLB6AhxIxAIJkSw12bt4umTvp4kScycoXpvHE4Ppzusk77meAme6D2laGxNCEfCYNQx09sA0OXyUHukfdLXFAgEoyPEjUAgGDedfUMc9ibeZpsNLKwMT1+aiqCuxg1noz+KofV0eMUNwJxFgQ7Mxw6eE2XhAkEUEOJGIBCMmw8PnMX3Eb1m4TQ0cnjeSoLFzckoixuPR6HN67kxpujIzJ54cnQw2XmpfqHU122jtSV+5mcJBMmKEDcCgWBcOF1uPvLOgNJqJFYtmDrKGWNnen4qem+OSrQ9N71dgzjsar+eKdMzJp1vE0yI9+ZAfMzPEgiSGTF+QSAQjIv9dV3+AZlLZ+ZjnkDTvkuhkWXKppipaemj22Knd8BOVrohbNcfiY5zA/7HhdPMYb12WXUuxhQdwzYnjXVd2KwOUtLC93MTCOIRl8vF+vXX4HSGJtJ/7nNf5Ctf+XpE1xbiRiAQjIsdhwOeh1Xzw+e18VE+LYOalj5A9d4snTm+2U4TpbM9kMCcVzi5yq/z0WhkZs0v5MAnp/F4FGqOtLF45cQaHgoEiUJzcxNOp5PHHnuGrKxAqweTaeItFsaKCEsJBIIx09U/xHFvD5q8TCNVMzLDvkbZlIDXpLl9YIQjw0tnkOcmtyA97NefvXCK/3HNkTaRWCxIehoaTpKWlkZFRSU5Obn+fykpQtwIBII44uMjbf5E4qvnTUEOY16KjxlBwiJa4sbt9tDtLT3PyDZNaJ7UaJgzTUydoSYW9/cM0d4q5k0JkpuGhnpKSspisrYISwkEgjHhURR2HDkHgARcNW/KyCdMkGyzgVSjlsFhFy3t0el109tlw+1WZVteYfi9Nj5mziv0V0vVHG6ncFp4ys0FycenNR288tEphh3uqK9t1GvYfE3ZpEPCp06dxO128e1vf4P6+jry8wu4++572bDhxjBZemmEuBEIBGOitrmXrn51Wvac0myyzcaIrCNJEjMK0jnR3Itl0EGf1U5mWmSTijvaAh6i/DDn2wRTVp3HR++dxOlw01DTwVXXlaPTaSK2niBxeXt3M+e6YzeP7K3dLWEQNw1otVoeeuhhcnJy+PjjHfz4x/+C0+nk5ptvDZOlF0eIG4FAMCY+8nptAK6eHxmvjY9ir7gBaGkfiLi46Q5JJo6c50an11BenUfNkTYcdjeNdV1UzSmI2HqCxOWG5cW8HEPPzQ3Lx5fw/sQTf+TJJ//k39648UaefvpFFEXBaFS/CFVWVtPR0c4zzzwpxI1AIIg9tmEn+2o7AUg1allUmRvR9WYUBLwnze1W5pdHdr3uzkH/4+y81IiuVT2/gJojbYA6b0qIG8HFWDozP2qVguHgttvuYO3a9f5tszkdg+HCLyVlZRW8++7bEbdHJBQLBIJR2VvbidM7UHL57AJ02siGUoKTilsinFSsKAo9XnGTmqbHaNJFdL0p0zMwZ6rfZM809THgDfUJBImM2ZzB9OlF/n8ajYaNG9fwzjtvhhxXU3Oc0tLIJxkLcSMQCEblk2Nt/sdXzo1sSAqgMDsFrUZ9e2rtGhzl6MlhG3Rg9zYljLTXBrwDQr3DNAHqjolhmoLkIyMjg6VLl/M///Pf7N69i9OnW3jyycd49923eOihr0Z8fSFuBALBiPQO2Kn1NtXLzzJROiVyOSk+ZFliSo7aC6O9ZwiX2xOxtXqCQ1K5kRc3AJVBoaj64x2i540gKfnhD/+ZtWvX87Of/V8+//nP8MEH7/Jv//Yzli9fGfG1Rc6NQCAYkd3H2/29bVbMLgjrzKWRmJqbyukOKx5Fob3HxrS8yFQx9XQGKlKi4bkBMGcaKZxupu2Mhd4uGz2dg+TkR65KSyCIBSaTiW9841t84xvfivrawnMjEAhG5JPjgZDUijmFIxwZXqbmBLqYtkawJLanK3rJxMFUzg4ki9Yf74jaugLB5YAQNwKB4JK0dg36G+mVFKZTmB35tuk+puYGPBlnOyPXzC84LJWVE737K5+Zh88JJkJTAkF4EeJGIBBckk+OB5JdV8yObsny1NzIe24URfF7bsyZRnT66DXUM6XoKSrNBsBqsdN2RoxjEAjChRA3AoHgoiiKwm5vSEqS4Iooi5v8LBMaWXVtnItQxdRAvx2XU01WjlYycTAiNCUQRAYhbgQCwUU51Wqhs0/twTKrOCviXYLPRyPLFHrDRG09tohUTPX3BjxCmVEMSfkoqcxBq1XfhhtqOnBHsCpMILicEOJGIBBclE+C+q8sj7LXxsfUHNWb4vYodPYNhf36fT2Ba2Zmm8J+/dHQG7SUVOYAMDzk4kxjb9RtEAiSESFuBALBBbg9HvbUqOJGq5FZUhWbNvBTg0JFrV3hz7vpDxI3GTEQNyBCUwJBJBDiRiAQXEBNSx8DNicACypySDHGpiVWQZDg6OgNv7jpCw5LRbESLJiismwM3p9vY30XzhgMShQIkg0hbgQCwQXsrQl4EK6YFbvBjgVZAcHRHgFx4/Pc6PQaTCmRnSl1KTQambLqPABcTg8tp3piYodAkEwIcSMQCEJwezz+CeB6rcz8spyY2VKQFey5CW/Ojdvl8Q+tzMw2Ra3z8sUonxmYet5Q0xkzOwSCSPHOO29y552boraeEDcCgSCEmpY+rENqSGp+eQ6GKPZ+OZ8Uo44075Tu9jCLG0vfEL6+eRkxCkn5mFachdGkhqaaG7pxOkVoSpA8vP/+u/z0p/8W1TWFuBEIBCEEh6SWzoxNInEwvryb3gE79jB+6PcFiaXMrNgkE/uQZYnSKtV743J6aGkQoSlB4jM4aOVf//V/86//+r8pLi6N6tpC3AgEAj/nh6QWlOeOckbkyc8MeFU6w+i9iYdKqWDKZ+b5H5+qFaEpQeLT2tqKxdLPH/7wBNdcszqqa4up4AKBwE9tHIWkfARXTLX32pgepunZse5xcz5TZ2RiMGqxD7toOtmNy+lGq4v9z18QG5yn9uDY+zKKczjqa0s6I/qlt6MrWzap61RWVvHv//4rALZv3xoGy8aOEDcCgcDPp3EWkoLzK6bC6LkJqr7KyIptzg2oVVOlVbnUHG7zV035qqgElx+OQ2/h6TsXk7UV7/qTFTexRIgbgUAAxGdICtQZUz7C2evGF5Yypuj8fWZiTfnMPGoOq/O8Gmo6hbi5jNEvuBHH3pdi57lZcMO4znniiT/y5JN/8m9v3Hgj3/nO98Nt2piJj1e0QCCIOcEhqXlxEpKC0HLw9p7weG5cTjeDVgcAGZnGsFwzHEwrFqEpgYqubFlCeU5uu+0O1q5d7982m9NjaI0QNwKBwEtwldSyOAlJQaAc3DrkpCNM86UGLHb/4/TM2Ofb+LgwNNVLWXV8eNAEgpEwmzMwmzP821qtjMsVu0GwolpKIBCoIam6+AtJ+cjzCpC+ATvOMLxhWoJEkjkjfjw3EFo11SCqpgSCCREX4qavr49/+qd/YtWqVSxevJh7772XvXv3+p8/ceIE999/PwsXLmTNmjU8+uijMbRWIEg+aoNmScVTSMpHrleAKEDPwORzEHydiQHS4ygsBYHQFECzNzQlEAjGR1yIm29/+9scOnSIn//857zwwgvMmTOHhx56iIaGBnp7e/nCF75ASUkJL774It/85jf55S9/yYsvvhhrswWCpGFvkIcgnkJSPnKDvCtdfeEVN/HmudFoZEorVc+Z0+HmdGNvjC0SCCbPQw99lRdeeD1q68U856a5uZmdO3fyzDPPsHjxYgB++MMfsn37dv76179iNBrR6/X88z//M1qtlvLycpqbm/n973/PHXfcEWPrBYLEx6MoHKhXxY1WIzO/PHazpC5FblBeTFf/5PNuLEECyRxnnhuAspm51BxRq6Ya67r83YsFAsHYiLnnJisri9/97nfMnTvXv0+SJBRFob+/n71797Js2TK02oAOW7FiBY2NjXR3d8fCZIEgqTjVaqHfWzk0tzQboz7m33kuIMRz0x8+z40kQWq6YdLXCzfTi7PQeUODTSe7cbtjl5gpECQiMX8XM5vNrF4d2pb5rbfeoqWlhauvvppf/OIXVFVVhTyfn6+6zVtbW8nJmfi3TK02vNpOo5FD/k9Gkv0eL8f7O1Df5X+8dGZ+2F8X4aAwJ9Bkr9syPKKNY/kd+sRNWroBgyHmb4MXoNXKlFTkUH+8A/uwi45WC0Wl2UDy/41C8t9jst+fJAX+9w2nHS8ajTSp96K4e1Xv27ePH/zgB6xbt461a9fyk5/8BL1eH3KMwaB+07Lb7Re7xJiQZYmsrNRJ2XopzOb4KS2NFMl+j5fL/SmKwkGvuJFliTXLZpCRFn+ejJS0gOemz+oY02v3Ur9D+7CT4SEXANl5qRF7H5gs85dMp/64Wp5/tqmP+YuLQp5P9r9RSP57TEszIsvypD/I45WJiDePR0KWZTIyUjAaJx4yjitxs2XLFr773e+yYMECfv7znwNgNBpxOBwhx/lETUrKxFumezwKFkv4up2C+os0m01YLENJ60ZO9nu83O7vdIeVc92DAFQXZeJxuujtdcXYyouTkaan3+rgXPcgvb2DlzxutN9hZ7vV/zglVT/itWJJbmEqGo2M2+3h+OFzLF9TiiRJSf83CpfP69BqHcbj8eB2KzHtCRNuJAn/3+54PTdut4LH46G/38bQ0IWVgmazaUyiKW7EzVNPPcWPfvQj1q9fz7//+7/7vTWFhYV0dHSEHOvbLigomNSakfpjcrs9SfWHejGS/R4vl/v79Hi7f9+iyty4vufcDCP9Vgf9Vge2ISf6UTr3Xup32Ncd+FKTZjbE7T3LGpnpJZk0N/QwOOCg9XQ/BVPN/ueT/W8Ukv8ek1G4QSAUNdGQFDBpwRcXfrCnn36af/u3f+Ozn/0s//mf/xkShlq2bBn79u3D7Q4ouF27dlFaWjqpfBuBQAD76wIl4Iur4nuOUW5GIETRbZl4UnFwpVQ8dSe+GMFVUo11XSMcKRAIgom5uGlsbOTHP/4x69ev56tf/Srd3d10dnbS2dnJwMAAd9xxB1arlR/+8IecPHmSl156iccff5yvfvWrsTZdIEhoOvuGaOlQQzQlhelkm+OvJDqYcFVMxXOPm/MpqczxJ2eequ1CmcxXYYHgMiLmYal33nkHp9PJe++9x3vvvRfy3ObNm/npT3/KH/7wB370ox+xefNm8vLy+N73vsfmzZtjZLFAkBwcSCCvDYRP3FiCuxPHubgxpeiZMj2D1tP99PcO0dtlI39KbAcSCgSJQMzFzcMPP8zDDz884jHz58/nueeei5JFAsHlQSKFpCA0LNU1iQGaVm9IS5YlUtL0oxwde0qrcmk93Q+ooSkhbgSC0Yl5WEogEEQfy6CD+jPqB2ZhdgpTc+OzHDqY3MzweG6s3ongqekGZFmatF2RJjjv5pTIuxHEMR6Ph0cf/R9uu+0GVq++kr//+7/hzJnTMbFFiBuB4DJkf10nvuyNJdXx77UByE4PiJuJDs90OtzYh9VS97Q47Ex8MdIzjOQVpgHQ1W4NSYgWCOKJxx77A6+88iL/+I8/5A9/eAxJkvjud/8Wp9MZdVuEuBEILkP21QbaKyRCSApAp5Uxp+gA6LFMrIGndSBwXpo5McQNnOe9CRpyKhDEC06nk2ef/TMPPfQVVq68msrKKv7lX35CZ2cH27Z9EHV7hLgRCC4zbMNOjjX2AJCVbqCkMHFyOLK8FV19Vjtuz/h7YFiDSsgTVdw0CHEjiEPq62ux2QZZvHiZf196ejpVVTM5ePBA1O2JeUKxQCCILntPtONyq0GpxZV5SFL85534yE430Nw2gKJAv9Ux7vJ1qyUxPTdZOSlkZJvo7xni3Ol+Bq0THz0jSAz2dxzmr6fexe6O/u/aoDFwc9n1LM6fP+ZzOjsv3lw3NzePjo62sNo3FoS4EQguM3YdOed/vDjII5AIhOTdWOzjFzfBYakEybkBkCSJsqpcDnxyGkWB2qPtlFaLJqbJzJbmbbTbOkY/MFLrt2wbl7gZHla9ojpdaAWiXq/HYrGE1baxIMSNQHAZ4XC52VejjlxINWqpmpEZW4PGSXaQt0VNKs4Y1/mhnpv47nFzPqVecQNQd0yIm2TnuuLVMfXcXDdj9fjO8Q60djodGAyB15bD4cBkiv5rTYgbgeAy4kRTL0N2dZTJwopcNHJipd1lBYubCSQVJ2pYCiB/SjopaXpsVgen6jpxOt0JFVIUjI/F+fPH5TmJNfn5ajiqq6uLadOm+/d3dXVSUVEVdXsS651NIBBMiuCuxIsSpEoqmMmWg/vCUlqtjMGYWN/tJEmipEL11rhcHk6f6omxRQJBgIqKKlJTUzlwYK9/38DAAHV1NSxYsDDq9iTWq1sgEEwYRVE4UK82gdNpZOaUZMfYovETHJbqHafnRlEUf7VUqtmQkF6Pkoocjh9Uc6Ya67qZUS5CU4L4QK/Xc/vtd/Pb3/4XmZlZTJs2jf/6r/8kP7+A1avXRt0eIW4EgsuElnYrvV7PxezSLAx6TYwtGj+ZaQYkQGH8nhuH3YXLqZaPpydYSMrHtOJMtDoZl9NDY30X12yoTIguy4LLgy996WHcbjc//en/xeGws2DBIn7+81+j0+mibosQNwLBZcKB+qCQVGXihaQAtBoZc5qefqtj3Dk3Ifk26YmVTOxDq9MwoyybU7VdDNmcdLRaKJw+vqRqgSBSaDQavv71v+XrX/9btFoZl2v8vajChci5EQguEw6d7PY/XliZWCXgwfjybiyDDlzusb95DgSJm9QE9dwAlAWV7zcF/U4FAkEAIW4EgsuAHsswze0DAFRMzxh3f5h4wpd3owB9A2P33iRypVQwJRU5+NKFGuuFuBEILoYQNwLBZcChhsCH4BWzC2NoyeQJrZgah7gJytFJpAZ+52NK1TPdmwze122jr8cWY4sEgvhDiBuB4DLgoLdKCuCKOQkubkJ63Yw9qXgwSTw3ANVzAi3um4T3RiC4ACFuBIIkZ9jh4kRzL6DOZiqbltgJqFnpwV2KJxiWSmDPDUCVEDcCwYgIcSMQJDnHGnv9ibcLqxJrUObFCM4XGpfnxuoAQG/QoDckdqFobn4amTkpALSd7WfI5oyxRQJBfCHEjUCQ5Bw6GQhJLUrgKikf2enjH8GgKIp/knZKWmJ7bXyUVakN/BQFWhqE90YgCEaIG4EgifF4FA41qOLGoNMwqyQrxhZNnow0vb9aqM86NnHjsLv9DfxS0/SjHJ0YlAYJVVE1JRCEIsSNQJDEnDpnYcAbsphTmo1em3hdic9HI8uYU1WBMlZxYws6LjVJPDeF0zMwmtTOr6cbe2LaME0giDeEuBEIkpjgKqmFFYkfkvKR6RUo/YMOPB5l1ON9+TYAqenJ4bmRZYniCrUk3OX0cNabNC4QxAN//OMf+MY3vhKz9YW4EQiSGF++jQTMT6Ihi1lecaMoYLE5RjkaBgeSz3MDUBIkWEXVlCBeeP75p/n9738bUxsSu2RAIBBcko6+Ic52DQJQPi3DH8pJBjKD8mb6rHa/J+dSBHtuUpIk5wagqDQLjUbC7VZoPtmNoigJXw0nSFw6Ozv46U//L4cPH2DGjOKY2iI8NwJBknIoKCS1oCJ5vDZAiJjpGxjdc2NLwrAUgE6vYbo3SXzQ6qCzzRpjiwSXM7W1NaSnp/PYY88wZ868mNoiPDcCQZJyMKgEfGGCTgG/FJlB5eC9Y0gqtiZpWAqgpDKH5oYeAJrqu8ifkh5jiwSXK1dfvYqrr14VazMAIW4EgqTENuyk7nQfAHmZRqZ6G74lC6Gem9HFTXC1VDKFpQCKy3OAekDNu7liVWlsDRKEhYG9e+h+5WU89rE3qgwXssFIzm23k750WdTXDhdC3AgESciRUz24vVVECysSvyvx+ZyfczMavpwbY4oOjSa5ovGp6Qbyp6TTcW6A7s5BLH3DmDMTd+q7QKXn7bdwtJ2L2fq977wlxI1AIIgvQkNSyVMC7iM4LNVnHTnnRlEUf85NsjTwO5+Syhw6zg0A0HSyi/lLp8fYIsFkyd54I92vvBQzz03Whhuivm44EeJGIEgyXG4PR7zt+E0GLZXTE3tQ5sVIM+nQyBJujzKq52bI5vT3wklN8IGZl6KkIoc925sANTQlxE3ik750WUJ7TmJNcvlnBQIB9Wf6sdldgNrbRptkYRgAWZL8oanRxE1IpVSSem6y81JJz1BDUedO92MfdsXYIoEgtiTfu55AcJkTPCgz2UrAg/ElFQ/YnDhHGD0Q3MAvWYZmno8kSZR4f9cej8Lpxp4YWyQQxBYRlhIIkghFUfwjFzSyxLyyJBY3QSGm/kE7uRmmix43eBl4bkDNuzmy7yyghqYqZuXH2CLB5cw//dO/xHTemfDcCARJxLluGx19QwBUTs8g1aiLsUWRI6QcfISk4sHgoZlJmnMDMKUoA71BHYza3NCD2y0GaQouX4S4EQiSiGRu3Hc+IeXgI/S6uRxybgA0GpkZZeogTYfdRdsZS4wtEghihxA3AkESESJukjjfBs733Fxa3CTr0MyLURz0O28K+lsQCC43hLgRCJIEi81Bw5l+AKbmppKflVxdic9nrL1ufDk3kgSm1OQN0wEUl2fj69fYVK8O0hQILkeEuBEIkoQjDd34PsqSuUrKR7DnpneEsJQv5yYlzZB0nZrPx2DUMaVI7Wtk6Rumr9sWY4sEgtggxI1AkCQcDJoCvqgiufNtALLGEJZyuz0MDTqB5M63CaakItCRuulkdwwtEQhihxA3AkES4HS5OertbZJm0lE21RxjiyKPyaBBr1Pfwi4lboYGL49k4mBKKoPybuqFuBFcnghxIxAkATUtfdidbkANSclycodfQG1c5wtNXUrcBPe4SUniMvBgMrJMZOWq+VZtZy3YBkeevSUQJCNC3AgESUBolVTyDcq8FJmpqjdmyO72i7tgLpcy8PMpCcq5amkQ3YoFlx9C3AgECY6iKP6RC1qNxJzS7BhbFD3MQXk3lot4KIK9Fimpl6e4EXk3gssRMX5BIEhwTndY6bGoYZlZxdkY9ZfPyzojSLD0DzrIywwdwRDsubmcxE3+VDPGFB3DNienG3twuTxoteK7rCCytLWd4847N12w/x//8X+xadNtUbXl8nkXFAiSlOAqqWg17lMUD57OJtxt9bi7m1Fs/SiOISSdAcmYhpw9HU1+OZopM5E0kXubCe5S3H+RXjchnpsIh6XcViu248cYbm7E0daGx2ZDcbvRpKaizcnFWFJCSvUsdHmRr2STZYmS8hxqjrThcno429xLcXnytwcQxJaTJ+vR6w08//yr6HSyf7ZUWlpa1G0R4kYgSHAOhEwBj2y+jcfWh/PoFpwnd6FYRwh3nPpU/V9vQle2DN28jWiypobdHnOQN8YyeGFScbC4MUXAc6MoCrZjR+jdsgXbiWPgvjDvx0e/939DSSkZ16zGfOWVyLrICa7iClXcgBqaEuJGEGlOnTrJjBnF5ObmotXKMR2cKcSNQJDA9A7YaW4bAGBGQRrZZmNE1lEcNux7X8F54kNwO8d+omMIZ812nDXb0ZZdgWHFPchp4fuQzUgduUtxiLhJCW93YltdLZ3PPo29pXlc59mbGuloaqT7tZfJuWUzGdesQpLDHzIqKs1Co5FwuxWa67tRrleSvomhILY0NNRTUlIaazMAIW4EgoTmUBSqpJynPsX+8Z9RbH2BnZKMZvpctMUL0eSXI6fngj4F3A4Uaw/urmZcLYdwNR8A5zAArlN7cDUfxHDFnejmrg/LB+35OTfnM+QVPEaTDo0mPALCPTRE5zNPYfl4Z8h+bXY26UuWYZo1C8P0GWjS05FkGffgII5zrQydrMe6b69fDLn7++l48jH6P9pG4Re+hGHatLDY50On1zCtJIuWhh4GrQ662q3kFaaHdQ1B5Gio6WTPR004Ha6or63Ta7nimhLKZ44vhNrQ0EBOTi5f//qXOH26henTi3jwwS+xfPnKCFl6aYS4EQgSmNAp4OEVN4rLgf3jp3HWbA3s1OrRzV6Lfv5G5JTMC0/SGpAypyBnTkFXsQLFMYSzZhuOg2+gDA+A24F919O4zhzFdO1XkIyTi8VnpAWHpULFjaIofs9NuPJthluaOffIb3B2tPv3GYpmkH3zLaQtWnxRD4zWbEZrNpNSPZOcmzYx3HiKnjffwHpgH6B6clp+9C/kfeY+Mq5ZHVbvSklFjr8UvKm+W4ibBOLg7tMxHJ/h4ODu0+MSN06nk9OnmzGZjHz9639Henoqb775Bt/97t/yi1/8N0uXXhFBey9EiBuBIEGxO9wcb+oF1MTa4oLwfXB5BnsZeuc/8XQFQi6aGQsxXnW/6qUZI5LehH7+RnTV12Df+xLOY+8D4D59mMFX/o2UG/4eOaNwwnamp+iQAAXoPy/nxmF34Xar07bCUSk1sG8vbb9/BMWlfpOWTSZy77iLjFVrxhVWMpaWMfVvvomttoaOPz+Bo7UVxeGg44nHsDc1kv/ZzyFpNJO2F/Dm2dQDat7NsmtKwnJdQeRZuLwopp6bhcuLxneOTsfbb29Fo9Gg1+vRamUqKmbS1NTEM888JcSNQCAYG8ebenC51YS9hRW5YfvG7+lrw/bm/xdIGNboMV79ANqqqye8hmRIxXjVA2hnLGR46+9RhiwolnZV4Gz8ezQFFRO6rkaWSU/VYxl0XBCWGgxjGXjfh+/T8fRT4J2ybSgpZcpXv4Y+L3/C10ypnsmM//XPdD7/LP1bPwCgf/s2nD09TH3468hG0yhXGJ00s4G8wjQ626x0tVuxWoZJi1BeliC8lM/MG3dYKNaYTBf+zZaXV7B798dRt0U0PhAIEpQDEQhJubuasb32I7+wkdJzSdn8v9FVXxMW8aQtmkfKbf+EnDVd3WEfxPbmf+DuaJjwNX15N/1WB4qi+PeH9LhJm3gyce9779Dx5yf9wsa88iqK/vEHkxI2PmS9noL7P0fhl7+KpFW/a9qOHuHsL3+BZ3h40tcH0dBPEB1Onqxn/fprOHToYMj+mprjlJaWRd0eIW4EggTEoygc9oobvU5mVnHWpK/p7m1l6M1/V3NjADm7iJRb/xea7PG5p0dDTs8l5dYfoJk6S93hHML2xr/j7myc0PV84sbtURgcDrjww9GduG/bVjqfe8a/nX3jzRR88UvIuvBWXpmXr2Tat/8BOSUVgKH6Os7+6hd47BefmTUeioW4EUSBsrJySkvL+Y//+AmHDh2kqamR//qvn3Ps2BE+97mHom6PEDcCQQLS2GrBYlNLsueUZKPTTi5Hw2PpZOiN/xcQNgUVpGz6/108aTgMSPoUTBu/FSJwht7+BZ6BznFfK6RiKmiAZrDnZiI9bgY+3UPHU4/7t3NuuY3c2++MWDl1SlU107/7vYDAqaul9de/8uf4TJTcgjRSvUNDzzb34bBHP4dDkPzIsszPfvYLZs2awz/90z/y+c/fx/HjR/nFL/6b8vKJhZ0nZU/UVxQIBJMmnIMyFfsgtrf+w1/qLecUk7Lx75EMqZO67mhIWgOmDd9CU1il2jFkYejtX6DYB8d1HXPaxcvBJ5NzM9x4irY//t4fisrasJHsTbeO6xoTwTijmOnf/gfkFHWqt+3EMdqffDwk3DZeJEmipFL13njcCqcbe8Niq0BwPllZWXz/+//Eq6++w7Ztu/jtb//IggWLYmKLEDcCQQLiEzcSMH8S4kbxuBl6/7co/WonWzlzCqYbvxNxYeND0hkwXf+3SN6KKU9vq2qPZ+ydTTODGvkFi5vQnJuxixtnby9nf/0rFKfqGTNfeTW5d94TtQZ4xpISpv3t3/tzcCw7P6Lnjdcndc3gvJtmEZoSXAYIcSMQJBidfUOc7VS9G2XTzCFhmfFi/+RZ3GeOAiAZ0jBt/DayyRwWO8eKZEwj5YZvIxnVUnb3maM49r865vMzLjFfyhZUGj5Wz43icnHut7/G3d8HgKmyivwHPh/1zr6mikoKv/QV/3b3Ky9hPS9RczxMm5GJTq+GLpsbuvF4Ju4JEggSASFuBIIEI1whKefJXTiPvqduyBqM138T2Ryb0lPZnI/xur8Br4hw7H8N1+kjYzo3tEtxQND4wlKyLGEwjq3rRdcrLzF8Sq3c0ubkMOXr3wh78vBYSV96Bbm33+nfbnv0dzg7x5+TBKDRyhSVqknnw0Mu2s9awmKjQBCvxJ24+c1vfsMDDzwQsu/73/8+1dXVIf9WrVoVIwsFgtgSOgV8YuLG3d/O8EeBZFnD1Z9DO6V60rZNBu3UmeiX+T7MFYY/+B88wSMfLoH5EiMYgrsTj8XzMnj0CL1vv6luaDRM/do30KZH14t1Plk33ETaoiUAeGw2Wh/5bzyOC8dMjIXQkvCuEY4UCBKfuBI3jz32GL/61a8u2F9bW8vDDz/Mjh07/P9eeeWV6BsoEMQY27CLutN9AORlGpmaO/7cGMXlZPDd//bPfNJWXoV+5upwmjlh9AtuQDNjIQCK3crw9j+NmkwbPDzTF5byuD0MDao5M2MJSbn6+2l79Hf+7bw77sIYBwMAJUmi4AsPocsvAMDe3ETHX56f0LVmlOf4HGM0newJl4kCQVwSF+Kmvb2dL33pS/zyl7+ktDT0DcXtdnPy5EnmzZtHXl6e/192dnaMrBUIYsfRxm7c3nyJBRPsStz94VO4O5sAkDIKMV79wMgnRBFJkjGueQjJm/fjbjmEs3b7iOeYDBr0WvWtzDdfanBwfGXgHU8/iXtALYNPnTefzOuun5D9kUCTksLUr/0Nkjc81vPeu/QdPDTu65hSdBRMU3+ufd02+npiNbdIEMD3+hU5UD4mUxkYTFyIm2PHjpGRkcFrr73GggULQp5ramrCbrdTXl4eI+sEgvghOCS1aAIhKefZE1j2/FXd0Ggxrfsaki6+2vHLxnSMq77g37bvegaP5dK5JpIk+UNTvrCU1RLIvUkdpVJqYO+nWPftBUCTlk7BF740rllR0cBQNIPcO+72b9f/6r9xD46vZB6gJKiTdVO9qJqKNVqtBpCw28PTjToZcDjU165GM7npUHExW2rt2rWsXbv2os/V1dUhSRKPP/4427dvR5ZlVq9ezbe+9S3S0yc3KFCrDe8bmEYjh/yfjCT7Pcbz/bncHg6fUj+QUgxaZpVmox2HnYrTjuXDR/3bphX3YCiMfejlYmjLl+CeuQpHzXZwDmPf+ThpN//DJT1VmekGuvqHsQ45UQDrQJC4STdc8rXusg7Q8fST/u3C+x/AmJ0ZzlsJG7nXr8d2+ACDx4/j6O6m/c9PMvUrD4/rGhUz8/jkw1OAWjW19KriSJg6aeL5dRgOfPel0+lITU3Dau3D5XJiNKYgy5qoV+eFG0kCj0fC41EYqyNGURQcDjtWax+pqeno9Ukgbkaivr4eWZaZNm0ajzzyCM3NzfzsZz+jrq6Oxx9/HHmC37BkWSIrKzK9PMzmyQ+8i3eS/R7j8f6OnOzC5h0vsHRWAXm54xP3Xe8+i8fSAYCxaBaFq29DkuL3wyPj5i9z+uwx3APduE4fRd92iLTZV1302LysFE6e6QfAjcxgkLjJy0+75Gu97rE/4LaolUPZy5dRvHFtXH+wpH777zjwd3+Pe9BG38cfU7jmGnKWj33aclZWKjl5qXR3DnLujAWDXheWiemRIh5fh+HEbDaRnj6D/v5+2ts7sFgub2+aJEFOThZTpkyZ9Osw7sXNN7/5TR588EHMZjVWXFVVRV5eHvfccw9Hjhy5IIw1VjweBYslvDFnjUbGbDZhsQzhdo+9CVkikez3GM/3t23/af/jOSVZ9PaOPSzhbK3F+qlaCSRp9ZjWPERf31DYbQw3xqvuZ/DtXwLQ+c4fcWRXIRlSLjjOpA+MnzjT1h8ibpC46M9q8MQJOreq+TxySgo5n7mfvr44z0PRmpjywOc488gjAJx85PcoRWVoLjKN+VLMKM+mu3MQxaNwaN9pZs4rjJS1EyaeX4fh4ML705GXNxWPx4Pb7SbRc3A0Gpm0NCNW6/A4fn8SWq0GWdaM+Do0m01j8ujFvbiRJMkvbHxUVant2tva2iYsbgBcrsi8aNxuT8SuHS8k+z3G2/0pisKBWjXvRJYkZpdkjdk+xe3CtvWP/u2sNfehpOfH1f1dCnnGIrTFi3A1H0Cx9TH4yQsYr7r/guPMKYFeNL2WYRwDgRwGg0l7wb0qLhfnngqEo3LvvBspPSMhfibpy1eSufsT+g4cxNXTQ/uLL5D/mc+O+fwZZdkc+EQVyqdqu6iYNfnp5pEi3l6H4ebC+5OQ5bj/WB4VjUbGaDQyNORGUcb++/N4wDOO7uQjEb8+aS/f+c53eOih0ImiR46ozb0qKqI/jEsgiAXnum10eD0tVUUZpBrH3ljOceRdPH3nANAUlJOx7MaI2BgpDFd+FrRq6MR5/H3cXc0XHBPcyK/P6ghJKL5Y2KVv6wc4zp5Rr19SSsbVidM3S5Ikyr/2FSS9el99729huGnsE9ULp2f4mxq2nOpJSs+IQBD34ubmm29m586d/Pa3v6WlpYVt27bxgx/8gJtvvllUUAkuG0K6EleOvYuwx9qNY/8r6oYkkbLq80jy5CaIRxs5PRf94tvUDUXBvuuZC8pFQ3rdDNpDEorPLwV39ffT/erL/u38+x6Iu+qo0TAWFJB322Z1Q1Fof+KxMc/jkmWJ4nK1oZ/T4aa1pS9CVgoEsSPuX9HXXnstv/zlL3n33XfZtGkTP/zhD7n++uv58Y9/HGvTBIKoETpyIWeEI0Ox73oGXGp5tG7WWrR5JeE2LSro512PZFYb2bnP1eBqPhDyfPB8qWDPjd6gQacLFXNdL7+IZ0j1gpmvXoWprCySpkeMnOs3oJ9eBIC9pZn+j0buBxSMb0o4iJJwQXISd8G9n/70pxfs27BhAxs2bIiBNQJB7LHYHDR4K4Gm5qaSn3VhQu3FcJ0+gqtR7d8iGdMxLLs9YjZGGkmjxbD8bobf+y8A7LufQ1s0H8nbCyNkvpTVjtHruTnfa2M/exbLzo8AkE2mkNlNiYak1ZJ/3/2c+X8/AaD75RdJX7YMTcroVaBFpVnIslqq23Sym6vXV8R1lZhAMF7i3nMjEFzuHGno9tdOLBij10bxuLF/8ox/27DiHiRDZFofRAttyWI03vlXSn87zuMf+J8LmS81YMdhV0vmz8+36XrxeXyNN7Jv3ITWHNvZUZMlpaqa9GVqKbjbOkD366+N6Ty9Qcu04kxAbXjY0zn+hoACQTwjxI1AEOeEdiUeW76Ns/YjPL2tAMj55WgrL94fJpGQJAnDinv92/b9r6LY1Q9lrUYmzaQmWQ8OBEYvBIsbW10tg4fVsQXarGwy110XDbMjTu6d9/hHM/R9sAXHudYxnRcySFOEpgRJhhA3AkEc43S5OdqoDjlMT9FRNnV0T4PiGMKx9yX/tnHFZ5Im5KDJK0FbeaW6YR/EceQd/3O+0NSQ7UJxoygKXS8859+fc+tmZH38Nq8bD7qcHLI2eivg3G46n392TOcVh0wJF+JGkFwIcSMQxDE1LX3YnW4A5pfnIMujixTH4bdQhtSuu9rSpWgKKyNqY7QxLNkM3oovx5F38Xjv1ReakoJKm1O8icbW/XsZPqWOHdBPm475ysT3ZAWTvfFGtFnqMOHBI4ex1ZwY9Zz0DCM5+WqosuPcQGjjQ4EgwRHiRiCIY4JDUgvHEJLyDPbiOPS2uiFrMFxxV6RMixmyOQ/dzNXqhnMYxyG187KvYkpLQACmpOpRPJ6Q0u/cO+5MuNLv0ZANBnJuCySMd734lzFNVw4OTTU39ETENoEgFiTXK1wgSCIURfGXgGs1MnNKs0Y9x/7pS+D2ln7PXoecURBRG2OFftEm0Kh5Js5j7+MZ7PWHpYLbG6ak6bHu24ujVc1DMZZXkDpv4l3N4xnzyivRT5sOwHDjKaz79416TmhJeNcIRwoEiYUQNwJBnNLSbqXXGyqYVZyFcZQpue7es7jqdqgb+hQMi2+JtIkxQ07NQjdnnbrhduI48Lq/kV+wuDGZtHS//qp/O+eW25Im/+h8JFkmd/Md/u3ul19EcbtHPCevMN0fujvT3IfTOfLxAkGiIMSNQBCnhHYlzh31eMe+V/AN3NMvvBnJmBYhy+ID/cKbQGcEwFmzjRyt2phPFxSWUk6dwNF6FlC9Nimz50Tf0CiSumAhxgo1x8rRdg7LxztGPF6SJH9oyu3ycKapN+I2CgTRQIgbgSBOCc63WVA+cn8bd1czrlOfAiCZzOjnrouobfGAbExHP8dbzu1xM7VT/SD3eW4kCQbfCfR9SWavjQ9Jksi7427/dvdrr+BxOEY4Q5SEC5ITIW4EgjikxzJMc/sAAMUF6WSbjSMer3ptVPSLNiFpDZc+OInQzbseNGpYJf3sJ6RJQ35xY9BJOC8jr40PU2UlqQsWAuDq7aV/24cjHj+tOBOtVv0oaD7ZPaZEZIEg3hHiRiCIQw41BL5BjxaScnec8s9aklKzA5VElwGyyYxulnq/ktvJasMJv7jRDVv8x+VsujXpvTbBBOfe9Lz95ojeG61Ow3RvsvqQzUl760DE7RMIIo0QNwJBHHIoZFDmyOLGHtSwT/XaJEdzurGin3+Dv+/NCkMjsjfnxidujGVlpMyZGzP7YoFhehFpS5YC4O7vp3/71hGPDykJFw39BEmAEDcCQZwx7HBx3JvYmZVuYEbBpRODXedqcZ85CoCUnouu+pqo2BhPyGnZ6KquBsATNAvY4LIB6gypy8lr4yNn063+xz1vvTGi90Z0KxYkG0LcCARxxtFTPbi8XXYXVuSO+MHs2B8oczYsvtU/JftyQ7/wJpAkhj2Biel69zD6KVNJnZ+cfW1GYzzem5RUPQVT0wHo6RzE0jcUDRMFgoghxI1AEGccqO/0P15cdemuxO6OBtxnjwMgmfMDM5cuQ2RzPtryFQx5AonXepeNrA03JF034vGQc/PYvTclQbldompKkOhcvq96gSAOcbk9HPKGBUwGLdUzMi95rH3/6/7H+oU3IXnzTi4Xhl3D1Pee4sPTO3im5kUeNyt8pA/q4qx18kJ6Iy/Uv8bHrZ/SYjmD23N5NakzFBWRtngJ4PPebLvksSUiNCVIIi5PH7ZAEKfUne7DZncBam8brebi3z/c3S24Ww4C3gqpyuQaBHkpuoZ62N9xiOPdtTT0N+FRPCHPX9FTis0bxWuc6uJg91EI+pw2aY1UZ1UwN2cWC/PnYdKOXGKfDORsutU/iqHnrTfIWL0GWae74Lis3BTMmUYsfcOcO92PfdiFwSg+IgSJifjLFQjiiP11gZDUohFCUo4Df/U/1i+4IalzbdweNwc7j7CjdQ91vScveVyqzU26VYdNTR3hZPGF/VqGXMMc7DzKwc6jPF/3Cgvz57F6+pWUmGdEyvyYYyiaQdqiJVgP7MPd34dl104yV6254DhJkiiuyOHI3rN4PAotp3qonJ0ffYMFgjCQvO+IAkGCoSgKB+p9gzIl5pZmX/Q4T9+5QDdiYzq6mauiZmM0cXlc7G7bx7vNW+kaujBMkmfKoTqrgqL0aUxLm4Lu7e3sDMqv+bv2c2gWf4XeNDNnredosrRQ23OSQW8VlcPjZE/bfva07acqq4KNxWupzq6I2v1Fk6wbbsJ6QPXe9L79FhlXr7poLlKJV9yAGpoS4kaQqAhxIxDECU1tA/5BmbNLsjEZLv7ytB98A98MKd38DUnZjfho1wlePPk6HbbQSdV5phxWTlnGovz55KcEEmA9djundn6CI0cdOyHjJg07upqPKbj+m8zMVucteRQPTZbTfNq2n0/bDzLkUquC6npPUtd7krk5M9lccTOFqcn1oW4qK8M0cxZDNSdwdrRj3beX9GVXXHDclKIM9AYNDrubloYe3G4PmkuERgWCeEaIG4EgTgiuklp0ia7EnoEuXPW71A19CvrZyTVDqnuol+frXuZod03I/uqsCq4vvpbqrIqLlsZbPtmFxzaII98EgF6yI0ngatqPp78dOaMAAFmSKcsopiyjmNsrbmZP+37ea95Kp9czdLS7huM9dawrWsVNpevRaS7MTUlUsm+8mbM1JwA19yZt6bILfpYajcyM8hxOHu/AYXfRdqafacVZF7ucQBDXCHEjEMQJB+pUL4XEpbsSOw69BYpa8aOfex2S3hQt8yKKoih8cm4vL9S/xrDb7t9fllHC5oqbKMsoHvHcvvffQ0HCqfFOCQ88i+PIuxivfuCC83QaHVdNXc7KKcv4tO0Ar516mz57Px7Fw3stWznSdZz7Z91NaUZy5OOkzJqNobgEe3MT9pZmbMeOkjp33gXHlVSo4gbUknAhbgSJiPA3CgRxQHuPjbNdgwCUT8sgI+3CUJNneABn7UfqhlaPfu710TQxYticNn535AmeqvmLX9hkGjL4wux7+fbir40obABsJ47jaD2LU2NAkdS3tD7FgMP73c1Z9xGKffCS58uSzPIpS/g/K/6BG0uuQyupJfVttg7+Y99/83bT+xdUZSUikiSRfeNN/u2et9646HEzyrKQZdWj0yQGaQoSFCFuBII4wJdIDLCo6uJeG+fxD8CtNmHTzVyNZLz0WIZE4fRAKz/99Fcc7jrm37eicCn/a/m3WVq4aExjE/q2vAuAQxPwYg0jsd+l5tngcuCs3THqdfQaPTeVXc8/Lvs7ZqRPB0BB4fVT7/Dbw3/C6ry0QEoU0hYtQVdQCMBQbQ1DDRdWnxmMOqYUZQBg6Rumt9sWVRsFgnAgxI1AEAfsD+5KXHlhCbjicuA8ukXdkCT08xLfa7OnbT//se/XdA/3AJCmS+Wr8z7PA7PvxqQdW7jN0d7O4JHDALgyA0nATuADa2XguOPvo4zR+zI1rZDvLvkbbixdj+Qdwnm8u5af7vklrda2MV0jXpFkmeyNN/i3L+W9CWnoJ7oVCxIQIW4EghjTP+ig4Uw/AFNzUynITrngGGf9xyjDAwBoS5chp1+6B068oygKb5x6l8ePP4vTozYsLE4v4h+X/S3z8+aM61p9H24Bb9hEO2eRf78TaPdk4imYqa5p6cB9+siYr6uRNdxUup5vLPwSabpUAHrtffzHvt9wortuXDbGG+krrkSbpebRDB48gKPt3AXHlFQGi5uuC54XCOIdIW4Eghhz6GQXvqyGi1VJKYoHx+G3/dv6BTdccEyi4Pa4ebrmBd5s2uLfd9XU5fz9kq+RbRxf4qp7aAjLDjUHSdLroSjQo8bl/d8642r/Psex98dt78zsSr5/xbf8Yaph9zC/OfxHdrbuHve14gVZpyPzuoDnr/e9dy84xpxpIjtPFXXtrQMMDtgvOEYgiGeEuBEIYkxwV+KLDcp0Nx9C6VfDIZop1WjySqNmWzhxuJ387sjjfHzO24AQiTsqbua+mXegk8dfuGnZuQPP8DAA5hUrGXYF8nOcXrnYmVaFlKZ6IdynD+Ppbx/3OpmGDL61+GHm56peJY/i4emaF9nScuk5TfFOxjWrkAxqZZnl4x24BwYuOKY0KPerUXhvBAmGEDcCQQwZsrs43tQLQFa6geLC9AuOcRx+y/84Ub02DreD/zn8mL9/jVbS8MW5n2XtjIl1V1Y8HjUk5SVz3XqGBgMTr32l4BabC11QL6CJeG8ADBo9X573ANcWBTxBL598g7catyRkNZEmJZWMa64BQHE66dv24QXHlAWJm1O1QtwIEgshbgSCGHKssQeXW010XViZi3xedZC7owF3m5rjIWdORVM0P+o2Tha728FvDz9GTW89oAqFbyz8EovzJ34vtpoTONtVL4xp5iwM06Zju4i46bfa0c9cBd5mfM66j1CcwxNaU5Zk7qy8hU1lG/z7/tr4Lq+dejshBU7WuuvB+/fW98EWPE5HyPM5+amYM1XvTmtLH8NDzguuIRDEK0LcCAQxZLQqKcehgNdGN38DkpRYL1mH28FvD/3RP/DSqDHwjYVfpjKrfFLX7d/6gf9x5pq1ANgG1Q9fWSPh9h036EAypqGrWOE1aAhn/ceTWntjyTpur7jZv/1u84e83TQxj1As0eXlkbZ4CQBui4WB3aF5RJIk+UNTiiKqpgSJxZjfKX/6059y5513XvS5U6dOUVNTg8eT+I2uBIJo4XJ7OHRS/cAwGbRUz8gMed5j6cDVpA47lExmdJVXRtvESeH2uPnD0aeo7zsFgElr5BsLvzxqU77RcPX1Yj14AABNRgZpC9UqKZ/nxpgSGJnQ792nm3Odf5/z2PuT9rSsm7GKe6pu82//tfFdPjj90aSuGQuyrt/of9z73jsX/FzKqoNCU3UiNCVIHMYsbvbs2cOcOaFlmk6nk4ceeoibbrqJzZs3c91117Fv376wGykQJCO1LX0M2dW6ngXlOWjPG1DoOPKuv8xZN3c9UgLNOfIoHp488TzHvDk2Ro2Bby78clhGGfR/tB28X6QyrlmFpNXi8SgM21TPTVpQd2eLV9xocovRFHiHZ/ae9Yf6JsOq6VeGeHBerH894aqoTOUVGMvVKjPH2TPYjh8Leb5gqpmUND0AZxp7cNhdF1xDIIhHxixuzp49y7Jly0L2vfTSS+zcuZOKigruuusuAL761a9y7tyFfRMEAkEo+2o7/I8XnVclpThsOOu8XXW1evSzro2maZNCURRerH+dT9tV74pW1vLw/AcpNhdN/tpuN/3bvVVKkkTGNWsAGLIF8kVS0/SkmlQh2B+Uh6ObHfgZOk9snbQtoHpwbixd799+puYlDnUeG+GM+CNrfSCHqPfdt0OeCw5Nud0KLad6omqbQDBRxixuBgcHKSgoCNn35ptvYjAYeOKJJ/jXf/1XXn75ZXJycvjjH/8YdkMFgmTC41H8JeB6rcy8suyQ5501H4E38VVXeVVCjVp4r2UrW8/sBNRy7y/O+eykc2x8DB45jKtX/YBNnb8AXY5a5m2zBkRMSpqerHTVexMsbrSlS8Gg9m5xNX6KMmwNi003llzHuiK16ktB4U/HnqbZcjos144GaYuXoMtVxbXt2FHsZ8+EPB9cNdUoQlOCBGHM4iYzM5POzkDyo8Ph4MCBAyxfvpwsb7fLjIwM7r33Xj76KPFizwJBNKk/04fFG0aZW5aDUR/o86J4PDiOBcqcdXPXX3B+vHKw4wivNgSSoD87804WjLPr8Ej0bQ2ULGesDnhihmyBSp6UVD1Z6WqVj93hZtihhlIkrR5dlbeU2+0KeMYmiSRJbK64iaUFCwFwepz89vCf6B5KDC+HJMtkXhf4G+t9952Q56cUZWAwqn+fzQ09uFwit1IQ/4xZ3CxZsoTXX3/dv71r1y4cDgfLly8POa6qqkqEpQSCUdhXG/iisKQ6NCTlbjmEMqA+r5k+F03W1KjaNlFaLGd47Piz/u2bSzewcuqyEc4YH87OTmzH1BEK2txcUufO8z93Kc8NBPJuAPSz1gSud2Jr2Eq4JUni/ll3U56hNlgccFj5zaE/YnMmxtDJjKuvQTap87wGdu/CZbH4n9NoZP84BqfDzRlvXyaBIJ4Zs7h58MEH2bp1K//wD//AK6+8wi9+8QskSWLNmjWhF5RlZDmxylUFgmjiURT2eUNSGlliQXnoyAXH0UA7fP3c60gE+uz9PHL4MZwe1YOyrGAxG0vWhneN7Vv9CdaZq9YgBb3PBOfcpKTqyQwSN8GhKTlzCpop6rwpT38b7nM1YbNPJ2v56vzPU5CiitU2Wwd/PPY0njEO7IwlstFExqrVACguF/3bt4Y8HxKaEg39BAnAmFXIokWL+D//5//w9ttv8/3vf5+amhrWr19PeXloLL2+vp7c3Avn4wgEApXGVgu93lk9c0qzSTEGQlLuntO4W08AIGUUJETTPl/34X6H+m2/LKOEz866E+m8hoSTweN0YtmxXd3QaDBfdU3I8yGem/PFjTW0OZ0u2Htz/MLOvJMhVZfC1xd80T9s80RPHa81vD3KWfFB5rXrAk39PvwAxRWojJpemo1Wp35cNNZ34fEkXtNCweXFuFwsn/nMZ9iyZQv/7//9P37zm9/wn//5nxcc88YbbzBr1qxw2ScQJB0hIanzqqScR9/zP9bPuS7um/YpisKztS/TMnAWgBxjFl+Z97kJzYoaCeuBff75R+mLl6DNyAh53hacc5MWyLmBUM8NgLZ0CZJRHXPhatqHZ8hCOMk15fClufcje39377VsZV/7wbCuEQl0uXmkensGufv7GNi/1/+cVitTXK6GpuzDLlpb+mJhokAwZsb9zllQUMCmTZtYu3btBeGnzs5OjEYja9eG1x0tECQLiqKw11sCLktSSAm4MmzFWb9L3dAZA8mvccyO1k/Y3ab2ttJr9Dw8/wuk68Nf2dUfnEi85sL3l/M9N1nmi4elACSNDl211/PjceOsDU9icTCVWeXcUbHJv/3Uib9wZqA17OuEm6x1gcTivve3hDwX3NBPVE0J4p2wfi3My8vjscce47bbbgvnZQWCpKGl3UpXv1riPbM4kzRToDGfo2YruFUPhK76GiS9KRYmjpkmSwsv1L3m375/5p1MTSsM+zqOc60M1dUCoC+cgqmq+oJjfDk3Wp2MTq8J8dxYzhM3ALqZq/2PnTVbUSKQF7N6+pUsL1THGzg8Tn535Im4TzA2Vc9EP206AMMNJxluavQ/N6MsG1mjhq0a67oScp6W4PIhvn3eAkGSsa8u0LhvSXW+/7HiceE85puXJKGP8/LvAYeVPxx5CpeiTnG6dvrVLPGWQoebfl+uDZCxas1Fc3l8nhtTih5Jki5ZLeVDzihAM00tUVcsHbjPngi32UiSxL3Vt1OcrjYv7B7u4akTf4lrUSBJEpnrAknswd4bvUFLUYna9mPQ6qC9dSDq9gkEY0WIG4EgSiiKwt4aNd9GAhZXBtz8rsb9KINqXxTNjAXI5vyLXSIu8CgeHjv2DL32PkBNIN5ccVNE1lJcLiwfq4MuJa0W88oL52u53R7sw2ryq29UgDnN4MuNpX/QftFrhyQWnwhvYrF/DY2OL897gFRtCgCHuo75GxzGK+blK5FT1ITogU934+rv9z9XFtS24FRQ7phAEG8IcSMQRInWrkHaetSwROX0DDKCZiCFJBLPuz7qto2H95q3UtNbD0C6Po2H5n4WjayJyFrWQwdxD6gJv6kLF6NJT7/gmKHBoGRi79BMjSxhTlGFzvk5Nz60JYuQTGYAXE0H8Nj6L3rcZMkyZvK52ff4t18++UZcdzCWDYZLloUXV+T4ReOpWhGaEsQvQtwIBFEitHFfwDPj7mzC3a6KBTlrGpqp8Vtt2NjfzF8b1T486miF+8g0ZIxy1sSxBIekrll10WNsQeLF5PXcAGR4H/dbHRf9EJZkbSCxWHHjqv84HCZflLm5s1g3Q7Xfrbh59OhT2JxDEVtvsmReuzZQFr71Q39ZuClFx7RiNTQ10D9MZ1t4RlgIBOFGiBuBIErsvURX4uCmfbq568PaHyacDLmG+NOxZ/xN6TaUrKUqqyJi6zl7ehg86u1InJNDyqzZF7drMLRSyofZ+9jtURgcvvg0a7+4AZw12yLqibi17AZKzepU9O7hXv5cE7/5N7qcXNIWLQa8ZeH7AmXh5bMCf7sNNR0XnCsQxANC3AgEUaC9x8aZTvVbbtlUM9lmtZrHY+vD1bBbPciQiq5yZaxMHBFFUXim5iW6h9W8oFJzMTeWRLZ7suXjHf6OxBlXrwrpSByM7RLiJiP10uXgPuSMQjRT1OorT38b7vaTk7b7UmhkDV+c+1lStGoV3MHOo+w692nE1pssmSFl4YGwaWllrj801XCiM24FmuDyRogbgSAK+HrbQKjXxnn8Q/CoFUf6mauRtIYLzo0HPmnbx76OQwAYNUa+MOfeiOXZgDo81F8lJUmYr7x0z59LiZvMoBCVxXrxpGIAXXUg3OWs2X7J48JBtjGL+2fd5d/+S/1rdNq6I7rmRDFVVaOfrlZ6DZ9qYOjUKXV/io7p3qqpAYudzjZRNSWIP4S4EQiiwN6L5NsoblegSkeS0c1ZFwvTRqXD1snzda/4t++beTs5puyIrmmrOYGrS20UlzJnLrqcnEseG5xQbEoN9A3KCBI3l/LcAGjLloK3p5Dr1G4UR2RzYRbkzeXKKVcA6uiKx48/g9srcOMJSZLICi4L/yDgvSmbGRDoJ0+IqilB/CHEjUAQYdp7bTR7v90WF6STn+n9IG38FMXb+l9bshg57dIf4LHCo3h44vjzONyqOLhyyrKI9bMJJiSR+OqLJxL7GEtY6mK9bnxIWgO6Cm840OXA6QsTRpA7KjeRa1J/342WFt5p/mCUM2JD+vKVyKm+svA9uPr7AHWQpr9qqkaEpgTxhxA3AkGE+fREICR1xaxAlZTjaKBBmm5OfE7/3tKyjUZLM6DOTLqj8paIr+m2WrHuV0c6aNLSSfPOO7oUIdVSqRdWS8HInhuIbmgKwKg18ODsz/jnT73V9D5NlpaIrzteZL2ejFVr1A23mz7vGAyjKTQ01XFOhKYE8YUQNwJBhNkTJG6WzVTFjbuzEU9HAwBy9nR/Ums8cdZ6jjdOBcq+PzfrHoxRyAmyfLLLX3psXnklknbkIZw+caPTa9DpAnlAwX2ERhM3cm4xco5ayeTpPIW7J/J9aEozitlYrM7J8jVGtLtHtjMWZF67FrzJ3P3bt/p/N+Uzg6umRGhKEF8IcSMQRJBz3YMhVVK53pCU41io1ybeyr9dHhdPHn/OP15h3YxVlGeWRHxdRVHo/2ibf9t8id42wfhKwYNDUgCZqWP33EiSFHXvDcDGknUUm9Wk3c6hbl5teCsq644HXXZOUFl4PwP71Aqv0qpcZFn9u20QoSlBnCHEjUAQQYK9Nld4vTaeIUug/FufEsj3iCPebnqf01Z1ivWU1AJuLo1O12R7UyOOs2cAMJZXYJg6bcTjXS4PDrsqwIKTiQFSjFq03kGP/dbRPSK6ypWgUb1EzvqPUdzOUc6YPBpZw4OzP4NOVm3fdmYn9b2nIr7ueMlcGzxvSk0sNpp0TCvJBMAqQlOCOEOIG4EgQiiKwp4T7f7tpV5x46zZDm7Vta+buQpJF1/l382W07zTrOZWyJLM52bdg06jG+Ws8ND/0egdiYO5VAM/UL0xvkZ+lkvMlwo53pCKtnSpumEfxNV0YCwmT5r8lDxuKd/o336q5i/+BO54IbQs/BTDjaoAKw9qa9AgqqYEcYQQNwJBhDjbOci57sAsqWyzEcXjxnk8aPr37LWxM/AiON1Onjj+nL8L8caSdcwwT4/K2h67nYE9nwAgGYykL71i1HMuVSnlI8O7b8DmxO3xjHq90NDUthGODC9rpl9FWUYJAF1D3bx26u2orT0WJEkiK8h70/uBGlYNCU3VitCUIH4Q4kYgiBB7aoKrpAoAcDUfCJr+PT/upn+/3fQ+bTbV7hnp0/wJr9FgYO8ePMPDAKRfcQWy0TjqOaOLG9UrpqAKnNHQTJ2JlK56I9xnj+MZiI43QpZk7p91FzpZDYttPb2Tk32NUVl7rKQvXxEoC9+jTgsPrpqyWuy0t4rQlCA+iDtx85vf/IYHHnggZN+JEye4//77WbhwIWvWrOHRRx+NkXUCwdhQFIVPvSEpSYKlXve989j7/mP0cVb+fWaglXdbtgKgkTQ8MOueiHYhPh/Ljo/8j0frbeNj6BJl4D7MwUnFY8i7kSQ5aN6UgrN2x5jsCAcFKXncXLbBu7LCn0/EV3hKNhjIuEadFo7b7Z8WHlo1JWZNCeKDuBI3jz32GL/61a9C9vX29vKFL3yBkpISXnzxRb75zW/yy1/+khdffDFGVgoEo9PSbqW9V+10W12USUaaAXfPGdytJwCQMgrRTJ8TSxNDcHvc/LnmL/5w1PXF1zI1rTBq6zvOtTJUXweAfuo0jGXlYzrPZg323FyYF5QxjoopH7rqa/wTsZ21H6GMIZwVLtYWXeMfrtkx1MXrp96J2tpj4WLTwkurckTVlCDuiAtx097ezpe+9CV++ctfUlpaGvLc888/j16v55//+Z8pLy/njjvu4MEHH+T3v/99jKwVCEZnT00gkXiZNyTlDCr/1s9ZhyTFxcsPgA/P7KBl4CwAhSn5bCiJbi5Q/3lem7GWxttswaMXLhKWCp4vNUZxI6dmoSmaD4Ay2IP77LExnRcO1PDU3Wi94akPT++gsb85auuPhi4nl7SFQdPC9+/FYNRRVKqGpgYHHJw73R9LEwUCIE7EzbFjx8jIyOC1115jwYIFIc/t3buXZcuWoQ1q5LVixQoaGxvp7o7PgXOCyxs1JKW652VJYkl1Hop9EGf9x+oBOiO6qksPgow2HbYu/hrUrO+zQbkf0UBxubB8vFPd0Ggwr7xyzOcGe25S0y6dUAzQP4aKKR+xSiwGKEzN95feKyg8XfNiXM2eygyeN/W+KtgrZgdyx+qPi9CUIPZE7x1sBNauXcvatRf/ptjW1kZVVVXIvvx89YXU2tpKzggD9UZDqw2vttNo5JD/k5Fkv8dw3F/D2X66+tXE2NklWWSbjQwf2gou9YPYUH01upTUSds6Ec6/P0VReLb2RZwe1QNy7YyrqMopveT5kcBy8BDuAXXGlnnxEgxZGWM+NzjnJj3DiEYjh9xjtjmQlDww5Bzza15Ttgi7yYwyZMHVfADZaUU2mcds12S5vnQ1+zoOcXrgLK2DbXxwZjs3lKmDVWP9GkyfMxvD9OnYz5xhuOEkzjPNVMwqYtvbdbicHk7VdrLmhqpJ2Rfre4w04v4iT1yIm5EYHh5Grw/9RmYwqBUQdvvYv4mdjyxLZGVF5gPGbDZF5LrxRLLf42Tu79BHgSqXa5fNIDPTxOnjgcGIeVdtQh+hv72x4ru/9xt2UNurjoHIS8nmwaV3YNSNXqUUTs7t2ul/PP2mDeN6XQ55w1IpqXpyc9NDnjObTcyYlhk41uEZ17WVBdfS/8mr4HGjOf0pmcsjP1crmL9Z8QDf3/IzFEXhjVPvsbZqBYXpAQ9JLF+DjltuouE3/wPA4PYPqfy7bzJzbiFHD7QyPOSip8NG1eyCSa8j3mcSm1jeX9yLG6PRiMMRGiv3iZqUlJQJX9fjUbBYbJOy7Xw0Ghmz2YTFMoTbHb0kxGiS7Pc42fvzeBS27Vc77GpkiVlFGXQe+gRXbxsA2ulzGNRkMdg7GFa7x0rw/XUP9vLEwUBi/r0z72DI6maI6Nnm7Omhd7/aLE+Xk4Myo5zeMf5sFEVhwKJ6yEypOv95wfeIKxDO6ewZHPO1AZTSK+GTVwHo27cFT+XaqI7JyJJyWTfjGrY0b8fpcfGbT57iW0u+glariflrULdgKXLKk3hsNjq37yDztjspqczh6AG1q/X+T5rJm5I24euL95nEJpL3ZzabxuQRintxU1hYSEdHaAzXt11QMLlvBi5XZP6o3G5PxK4dLyT7PU70/k409dA7oIrveWU5GHUabIff8z+vnb0uLn5ubreHZ068zJBLFQdXFC6mOrMy6rb1bN8O3uoa81XX4PYAY6xOGh5y4nGr56ak6i+w3e32oJElDHoNdoebPqtjfPeXXoCmsAp3Wx2e3rM4WuvRFFSM/fwwcEPxeva3H6FnuJeanno+PrOXq4qWATF+DWp0ZFyzit533kZxuej+4AOm3nAzBqMW+7CLU3VdDNmc6PSTayUg3mcSm1jeX9wH/JYtW8a+fftwuwPfwHbt2kVpaemk8m0Egkiw63igSmrFnAI8/W24Tx8GQErLQTtjYYwsC+VI53EOdh4FIE2Xyh2Vm6Jug+LxBHrbSBLmq8aXZB1aBn5hMrEPX1LxWEvBgwn0vAFnbXSGaQZj1Bq4p+o2//aLJ19nwGGNuh0XI3PNOn9ZeP+2D5EVj7/njcvpoemkKPgQxI64Fzd33HEHVquVH/7wh5w8eZKXXnqJxx9/nK9+9auxNk0gCMHpcrOvVvUqGvUaFlbk4jgWyLXRzV6HJMf+JWd3OXjmxMv+7TsqN5Gmi34O0FBtDc4utQNwyuw56HJyx3V+SHfii1RK+fCJmyG7C4dzfFVH2rIrwJuD5GzYg+IcHtf54WBu7iyW5KtVpINOGy/Uvh51Gy6GLi+P1AULAXD19mI9sJ/K4KqpY+2XOFMgiDyxf6cdhZycHP7whz/Q2NjI5s2b+fWvf833vvc9Nm/eHGvTBIIQDp3sZsg7oXpJdR46nDhrvZ4JjQ79zLF13Y00Lx5/k+7hXgCqMstZVrAoJnb07wgakjnGjsTBDA4ECgrGIm5g7L1ufEg6A7ryFeqGcxhXw57xGRkm7qi8BZNWTc785Nw+DrediIkd55O1br3/cd8HW5hSlEFquvrzPt3Yy/BQ5CerCwQXI+7EzU9/+lOefPLJkH3z58/nueee48iRI3zwwQfcf//9MbJOILg0u461+R+vmFOo9rVxql2KdRUrkYwTT7AMF63WNl6vUXOAtJKGz1RvjmqSrA/34CDWfXsBkNPSSF04foEV7LlJTbv0ZHXffCmAftsEQlNBotQRg9AUQIYhnc0VN/q3f7/3aRzu2AsH08xZ6KdOBWCovg776RYqZqneG49H4VStmBQuiA1xJ24EgkTEOuTkcIOaY5CRpmdmUWbIHCndnHWxMs2Poij8+fiLuL0jFtYXr6EgNTaDOwd270JxuQAwr1iJrLtwdMJoDI4x58Yc3KV4DPOlzkfOK0XOVieje9pP4u5tHfc1wsHKKcuoyFR7ELUPdvF24/ujnBF5JEkic21oU7/Q0JRo6CeIDULcCARhYG9tB26PWrmzfFYBSlsNnl51nIGmsApNbnEszQPgk7Z9/knTeaYcro/ixO/zOX/cwkQISSgeY1hqIknFkiSFdiyOkfdGlmTurb4djaRWIL3T+CHttth7RswrrkQ2qSGzgd27yEpRyMxWt1tP92O1RD9PSSAQ4kYgCAOfBCVPrpxTGHdeG6tzkJdP/tW/fe+s29Frxu8tCQfDLc3YW9R5SYaSUgzTiyZ0nbGKG/MkxQ2ArvJK8I6kcNXtRHG7JnSdyVKYWsD6EnUyt0tx83ztKzEfVCkbjZi9AlVxubDs2B7qvTkRewEmuPwQ4kYgmCTd/cPUne4DYEpOCtNThnE17wdASslEW7okhtapvHryTQadatPKK4uWMCe3Oma29H8UlEh8zcSTrH05N3qDBp3u0v1UJuu5AZCMaWhL1IGRyvAAruYDE7pOOLip7DryUrIBqOmtZ3/H4ZjZ4iPz2nVB08I/oHxmoPKt7mh7zAWY4PJDiBuBYJJ8cjw0kdhVs9XfmE4361qkKA6hvBgNfU18fO5TAIxaI59bdGfMbPE4HAzs3gWApNeTvmz5hK81aPV2Kh8h3wbOEzfWiY9sCU4s9lfBxQC9Rs8XFt/t336x/jV/M8ZYoc/PJ3WeOknd1dODtvkEBdPUWVw9nYN0tcdHbx7B5YMQNwLBJPkkuHFfVRbOE94p0rIG3azVMbJKxe1x82ztS/7t2yo2km3KjJk91gP78NhUD1L6kmVoJjhCxWF34XKqidEjhaQgNCw13lLwYDTTZiOlqY1D3WeO4LHGrknd0mkLmJc7C4B+xwBvNr43yhmRJzO4LPz9LVTPDXSQrzsqet4IoosQNwLBJGhpH+BspzqvqGJaBpndh1Hs6rdUbdkVyCmZMbQOPjj9Ea2DqmdpRvo0VhddGVN7gkNS5jCEpABSRigDB9BqZNJMan7RRMNSAJIkBxKLFQVn3Y4JXyscfGbmbei8XsGtZ3ZyZiA2VVw+UmbPQV84BYChulqK0h1oNGqoqu54R1LOUBLEL0LcCAST4OOjgZDUytn5OI4GvkHrY5xI3D3U6/9GLyFxb/UdyFLsXvKOzg6GatTmc7r8AkyVVRO+VnAyceooYSkIHcEwmfwPXfXVgPqB7az9CEWJ3Qd2bkoOG0vUvzGP4uG5upfxxNAetSw88Ddv2/kBJZVq7s2wzcnpUz2xMk1wGSLEjUAwQVxuj79xn1YjsyzXgqe7BfD2Rskvj6V5vHjydRwetdHbqulXMsM8Pab2WHYGl39fM6nmgYNjrJTy4QtNOV0ehh3jG8EQjJyWg2b6HACUgS7crTUTvlY4WDdjNfkpqoA41d/MJ+f2xdQe85VXBcrCP9lFRbnZ/1ytCE0JoogQNwLBBDnS0M2ATRUPi6ty0dQG5kjp510fk86/Po5113DIOxjTrE9nU9n1MbMFvEMyd+5UNyQJ85VXTep6Yy0D95GRNvmKKR+6mYE8KmdNbHre+NDJWu6pCoyieaXhDazOwZjZIxtN/gGoitOJ+fRhTClqSLDpZLcYxyCIGkLcCAQTZMeRc/7Hqyv055V/L4uVWTjdTp6ve9W/vbniJv9colhhO3YUV68alkidNx9tZtbkrjcYqHpKHYu4CVPFFIC2eBGSMR0AV9NelOHYVgLNzK4MGaz5WsNbMbUn89rr/GXhlq3vUzlLnRTucSucFD1vBFFCiBuBYAJYbA7/uIXMND0l/fsC5d+z1yJpYlf+vaVlG11Dqm0VmaUxG4wZTMiQzEkkEvsI9dyMnFAM582XmqTnRtJo0VZ6E7PdLpwnd03qeuHg9sqbMWrUe9zZuofG/uaY2aIvKCB17jwAXD3dTNf1+p+rC8pREwgiiRA3AsEE2H2s3T9u4erZWbjqvB/eGh26WWtiZlfXUA/vNKvhMVmSuacqNoMxg3ENWLAeVJveacxmUuctmPQ1xzpXykdwWKpvYHKeGyB0HEPN9pg3qcs0ZHBz2Qb/9rO1L+P2TDy3aNL2rAvMm5L3fkhOXioA7a0D9HbbYmWW4DJCiBuBYALsDApJXZPaBI7A9G/ZZL7EWZHnhfpXcXrU0QBrpl/F1LTCmNniY2DXx+BWP2jNK69C0k7eq+UrBddqZfSGS3cn9pEV5N3pnWRYCkCTPc2fMO7pOY2nq2nS15wsq6atZFqaWop9xtrK9rOx8yilzJ6LrkD92xuqOUF5UeDnL3reCKKBEDcCwThpaR+gpUPNsyibko6pKRBy0c1bf6nTIs6RruMc6VJLrTP0Zm4qjZ0tPhRFCQ1JXX1NWK7rC0ulpOnH5JnKSg8SN2Hw3MB5HYtjnFgMoJE1fKb6dv/2X0+9S7/dEhNbJFkOKQvPPXvQl4ZD3TExjkEQeYS4EQjGyc4jgbyBG2dYUPrVb6KaqbPQZE9sCORkcbid/KXuNf/27ZU3Y9QaY2JLMMONp3C0qs3ljBWV6KdMnfQ1XS4P9mHVOzWWSimAzCDPTTjCUgC6sitAq17XefITFFd4rjsZyjKKuXKKmsw+7B7m5ZNvxMwW85VXIxnUv0HHpx8xfUYGAFaLnTNNvSOdKhBMGiFuBIJxcH5vm0proK+Ifl7syq3fa/6Q7mG1Gqkqs9xfPRNrLCFem8knEsN5ycRjyLcBMOg1mAxqOKzPOrmEYh+S3oSu/Ap1wzmE69TesFx3stxafiOpWnWsxaftB6jrPRkTOzQmExm+snCHgxlyh/+5E4dEYrEgsghxIxCMg8MN3Vi9vTquLQPOHQdAMuejmREbQdFp6+bdlq2AmkR8d/VtMU8iBvAMD2PZvRsAyWAkfWl4yuNDy8BHr5Ty4QtN9VrtYQuLhCQW18Y+NAWQpk/llvKN/u3nal/B5c3DijaZawOJxSkH3vP3vGms62LIJnreCCKHEDcCwTjYfigwv2e1MdCdVj93PVIMRhsoisJf6l/1f3itK1rFlNSCUc6KDgN7dqPY1WnV5uXLkY3hCZMNDoyvgZ+PrLRAl+LB4fB82MsFFciZaqjNfa4WT198eCSunHoFxWY1RNpm6+DD07GZg6UvLCTFWxbu6eqkNF/d7/EooixcEFGEuBEIxkiPZZgjp9T+MdPNCult3pCUzoiu6uqY2HS46zjHulWRlWnI8M8aigf6tm/1P85YdW3YrjsYVO2Umj52z01mevjzbiRJQjczkCQdL94bWZL5TPVmJO8crDcb36N3uC8mtgR7b/Kbd/sfnzjUJhKLBRFDiBuBYIzsOHzO16eP26e2glt1q+uqVyHpo98B2OF28EJ9IIn4jspNGLVj/7CPJMPNTdibGgEwzCjGWFIStmsHe27G0p3YR0hScRjKwX1oK68CSS1Hd9btRIlhf5lgZqRP55ppKwFweJwhfyvRJHXuPHSFalm4pv4QBXne8GC3jfazsanmEiQ/QtwIBGPA41HYflgNSWklN2UDvkRiCf3c6y59YgR5p/lDeobVqpOZWZUsypsXEzsuRv/2bf7HGavXhPXagwMT89xEohwcQDaZ0ZaoXaCVoX7cLYfDdu3JsqlsA+m6NAAOdh7lWHdt1G2QZJms9YEcoGm2U/7HIrFYECmEuBEIxsDRxh56LOoH4i3TupCG+gDQFi9ENudH3Z4OWydbmrcCoJE03F11a1wkEYOaSDywW20gJxkMpF+xIqzXDxY3aeMRN2Fu5BdMcGKxo2bbCEdGlxSdic0VN/m3n697Bac7+om85pVXoklX53GZj36ITqd+9Jys6cBhj02ysyC5EeJGIBgD2w6e9T5SWCEFvpnrFtwYdVsUReH5uldxKWr4Y92MVRSkRl9gXYqBPbvxDKuJxOlXLEdjCm/Izjd6QW/QoNOP3p3YRyRybnxops9FSs0GwH36MJ7B+OnjckXhYioySwHoGurmPW9lXTSR9Xoyr1XzwTRuJ0XGAQBcTg8nT3SMdKpAMCGEuBEIRqHPaufQSTWReHF6J4ZBdfSCnF+OpqAi6vYc6jzKiZ46ALIMmXGVRAyhicSZq8OXSAyqsLN6hcl4QlJwfs5NeHrd+JBkGV21N6lc8cRNYjGoSc/3VG1G9lbzvdP8IZ227qjbkXHtWiSdWgqed/Ij/34RmhJEAiFuBIJR2HH4HB5vJvFNmXX+/fr5G6MeCrK7HbxQ/7p/+87KTRg0Y0+qjTTDLc0hicSG4pKwXt8+7MLt8gDjC0kBZKTqkb2/r3Dm3PjQzVyNb8aA88S2uEksBpiaVsi1Rar4cnlc/KX+1ahXKmnTzZhXXgVA2sA5Mk3q77Hj3ABd7dao2iJIfoS4EQhGwKMo/t42UzW95A6qyZBSeh7akiVRt+ftpvfptfcBMCu7igV5c6Nuw0j0b9vqf5yxanXYxV9IMvE4GvgByLLknw4e7pwbADktB+2MhQAogz24T8dPYjHAjSXryTSoIxCOdddwuOtY1G3IWh/o4j2l84j/8bGDrRc7XCCYMELcCAQjcKKpl65+NX9kc26gjb1+/gYkObovn7bBDt5vUcMd2jhLIobzEon1etKXrwz7GtaQSqnxe6x8oamBQQcutydsdvnQzQqE4RzHPwz79SeDUWvgjspN/u2/1L2G3R3e8Nxo6KdMJXW+2sk7v/0IWm/KVN3RdpFYLAgrQtwIBCOw9YCaSJwhDVLp8pbRGlLRVYVnuvVYURSFv9S9itubRHxd8RryU/KiasNoDHwanEi8IuyJxBBIJobx59wAZHo9NwpgGQz/B7tm+lyk9FwA3KeP4LF0hn2NybAobx4zsyoB6LX38XbT+1G3IWvDDQBoFSdTHWcANbG47mh71G0RJC9C3AgEl6C7f5j99eqH0/XmOiRF/aavn70WSRfdZnkHOo9Q01sPQLYxiw3F4U3UDQfBvW0yw9zbxsegZWI9bnxEqteND0mW0c1c491ScMZRWTioycV3V9+G1tt08P2W7bQNRrdayVRV7c/FKjwbGDZ69ECr6FgsCBtC3AgEl2DrwbMoChhwsELnTSSWtejmRLdp37BrmBdDkohvQR9HScSgJhIPN6r5SIaiGRhKSiOyTvDohfEmFEPkxQ2ArvqaQMfi2u0o7vgKtxSk5HFd8RoA3Iqb5+peiaqokCSJrOvVpn7pjl6yZTWZuLfLxrnT/VGzQ5DcCHEjEFwEp8vjTyS+ynQSrUf9INRVXYmckhFVW95qep8+u/qmPzdnJvNzZ0d1/bEQmki8JmK5QCGjFyaRcwORSSoGkFMy0JaqyebKkAVX0/6IrDMZNhRfS44xC4C63pPs6zgU1fXTlyxFm632BZrSGuS92S8SiwXhQYgbgeAi7DnRzoDNiYyH61IDLet18zaOcFb4abW28cFptSeIVtZyZ2V8JREDuG02LJ98DHg7Ei8Pb0fiYHwJxbJGwmjSjfv8kEZ+ERI3ALrZgbCh8/gHEVtnoug1eu6qutW//VL96wy5hqO2vqTVknXdBgDyrc0YJNW71VjXFeKdEwgmihA3AsFF2LL3NABL9I2ketRuqpoZC9BkTY2aDR7Fw7O1L+Hx5vpcP2MNeSk5UVt/rFh27USxqx9I5hVXoklJidhavlLw1DTDhERe8AiGcHcpDkYzZSZShjos0n2uBndf/Hkk5uXOZp7XC9jvGOCNxnejun7GqtXIqanIeJjScxxQZ7idOHguqnYIkhMhbgSC86g/3UvDWQsSCjekBXqB6BfeHFU7Pjm3j4b+JgDyTDlcH4dJxIqi0P9hwDORuTZy3ZJdTjf2YfUb/kRCUhCdnBtQ80r0s4K9N1sjttZkuKvyFnSy6gHbduZjzgxET4TJRiOZa9X8tWn9Nag1bHD84DncESjTF1xeCHEjEJzHGzvVDrvzdC3k0AeAprAKbWFl1GywOgZ55eQb/u17qjej04w/DBNphmpO4GhTv2mbqqoxTJsesbWCy8AnkkwMYDJoMXjnUUVS3ADoqq4C7+/MWbcDxRXdnjJjIceUzcaStYDqKXyu7mW/pzAaZK1bj2QwYHQNkmdTy8IHrQ4a67qiZoMgORHiRiAIYsDmYPuBs4DChpSj/v36RdH12rzc8AaDLhsASwsWMiu7Kqrrj5W+DwJ9UnyDESNFSHfiCYobgByzEYCeAXtEq4QkYxra8ivUDYcNV8PuiK01GdbNWE1+itqb51R/M7vP7Yva2pq0NDJWrQFgWu9x//6De85EzQZBciLEjUAQxLaDrThdHqq155iuUYcLyjnFaKbPi5oN9b2n+OScWkFi0hq5vWLTKGfEBmdPN9aDaiWQJiOTtEWLI7qeNUziJtt7rtPlYWDIOWm7RiI4NOU49n5c9nHRyVruqdrs336l4U0GnbaorZ+1fgNoNGQPtZLqVKsCz53up/V0X9RsECQfQtwIBF5cbg9bPlUTidebAnNv9ItujlqFksvj4tnal/zbt5TdQIYhPSprj5f+7VvB+2GdsWo1klYb0fWCPTcTDUsBZHs9NwC9lsiGpuT8cuTcEgA8XU14Ohoiut5EmZldyeL8+QBYnYO8durtqK2ty87GvPIqJKCoN+At3b29MWo2CJIPIW4EAi97azroGbBTou2gUqe2gpczCqM6IPP9lu202dSOscXmIq6etjxqa48HxeUKdCTWaCLWkTiYkB43aRNvYphjDgijbktky58lSUI/N9D00XH0vYiuNxnuCJowv/Psbpotp6O2dvbGG0GSKBxoQOftKXXsYCvWCItPQfIixI1AgFr1884er9fGGJRrs/CmqA3I7Brq5q2mLQBISNxbfTuyFJ8v0YF9e3FbLACkLVqMNjMr8msGCZG0DOMIR45MsOcm0uIGQFt2BZJR9b65Tu3FM9gb8TUnQqYhg5tK1andCkpIG4JIoy8sJG3JUjSKm2l9NYBaFn54r8i9EUyM+HznFAiiTN3pPprbB5iq6WGuXn1DlVKz0VaEf7L1xVAUhefqXsHpUUud1xRdRVH6tKisPRH6PoxeIrEPa7+3gZ8skZI6cc9NNMNSAJJWj27WGnVDceM8EV/TwoNZM/0qpqaq/XlaBs6y4+wnUVs7+0Y1aX96/wn/HLdjB1pxOt1Rs0GQPAhxIxCA32tzXbDXZsENSJrI5pH4ONh5lOPdaifkTEMGN3u/Qccjwy3NDJ9Uh3jqp07DVFUdlXV9npvUdAOyPPEcqGiGpXzoZq8FrxfOeWIrijuyicwTRSNruKc6kFz8asPb/tEfkcY4o5iUufMwuIcoGFDnlA0PucS0cMGEEOJGcNnT1mPj0MkuCuQ+FuubAJBM6ehmrorK+kOuYf5S96p/+87KWzBqJx52iTR9WwJ5I5nXrotKsrXTEWjgl26e3ET2rPTAz7YnSuJGTs1CW7oU8M6batgTlXUnQkVmKSunLANg2D3M87WvRG3tnJtuAWBGX6B55uFPz8RllZkgvhHiRnDZ897e0yjABtNhfJ/TxoU3Imkn9yE6Vl5reJt+h5q/MidnJgvz5kZl3Yng6u9jYI8aqpBTUjBfeVVU1g3JtzFPTvjptDJmb1irJ8KN/ELWnbve/9hxbEtcf2BvrriJdF0aAIe6jnGw48goZ4QHU2UlKbPmkO7oIXNIbQ7Z1zNEy6meqKwvSB6EuBFc1liHnOw8fI4CuY9FXq+NnGLGEFThEkka+pr46OwuAPSyjrurbou7wZjB9G39EMWlelAyVq1BNkRHAA70B8RNesbk1/SFpvoG7Lii1OpfU1CBnFsMgKezMW7LwgFSdSncVXWLf/v5ulewOYeisnbOLepAzxl9gaZ+Bz6JXuWWIDkQ4kZwWfPB/jM4XB42mA7jS+PIXHErki7yH9pOj4una15A8c7U2VS2gVxTdsTXnSgep4P+rd45UrIc0TlS5xNcEjxZzw1Atjc0pRDZAZrBSJKEfk5wWfiWqKw7URbnL2BuzkxAHaz5asObUVnXVFlF6pw55A62kOLoA9Smfm1nopP7I0gOhLgRXLbYHW627D0T4rWRjOmYl2yMyvrvNn0Q6GmTXsSaoqujsu5EGdi9G/eAOiE9fekydNnRm1AeKm4mLzyDK6aiGZrSli8PKgv/NG7LwkEVY/dUb/b3vtnRupuTfdFprJd3621IQHFvIBy2X3hvBONAiBvBZcu2Q61Yh5whXhvjohuR9ZFP5m21tvFOs1oSLEsyn511Z9z2tAG1VL33vXf825nXRbeaKzjnJn0SPW58xKJiCrxl4TNXqxuKG+ex90c+IcZkG7PYVBYQ+0/XvOhvVxBJUqqqyZg/j8KBUxicgwA0n+ymu3Mw4msLkoP4fTcVCCKI0+XhnT0tF3htopFr41E8PF3zAm5F7d9x/Yw1TEubEvF1J8NQzQkcZ9X+P8byCkxl5VFd39fjBiY3esFHiOcmiuIGQDdnHcjqZHLH8Q9QnNFdf7ysnn4lJeYZALTbOnin6YOorFv0mbuR8TCjL9Ce4eAnLVFZW5D4CHEjuCzZdayN3gF7iNdGv+DGqOTabD+7i0aL+iadn5LLxpLo5a5MlGCvTVaUvTYQ8NwYTTp0es2krxcqbqLb4l9OzQo0h3TYcNZ+FNX1x4ssydw38w6/Z/Hd5g9ptbZFfN2MObNJnT2baZY6dG71919/vANLX3yLQUF8IMSN4LLD7fHw5q5mpmh6Q7w2utlrI752z3AvrzW85d++r/pOdBpdxNedDI62NgYPHwJAm51D2uLozdoCtQ2/b2hmOPJtIHZhKR/6+YFQj+PIOyie+O7COy1tCutnrAHArbh5pvbFqIxmyL11MxrFxXRv5ZSiwKE9IvdGMDpC3AguO/bWdNLRN8RNpgNR9dooisJztS9jd6sDIK+eupzKrLKIrhkOere863+cue46JM3kPSfjYXDA7hs+HpZ8G4D0VD0a7y8/FuJGkz0dTdE8AJSBLlyN+6Juw3i5oWQd+aZcAE71N7PtzMcRXzO1upqUOXMp6j+BxqN2dT5xuA3boGOUMwWXO0LcCC4rFEXhjV1NlGg7mOefIZWl5kFEmD1t+znarQ4FzNCnc1vFjRFfc7K4LBYsO9WwiWQwknF1dLo2BxPuSikAWZLI8Qqlrv7hmDTU08+/wf/YcfituG7qB6DT6Lhv5h3+7Vcb3qLD1hnxdXM334nO42BavzqexO3ycHC38N4IRkaIG8FlxcGTXZzptLLJtN+/T7/kNiTtxAcxjoU+ez9/qX/Nv31P9e2YtKaIrhkO+t5/D8WpfmPOXL0GTWpq1G0IqZQKk7gByPOKG7vDjXUo+rOeNFNnIeeoibqezkbcbXVRt2G8VGaVs3r6lQA4PU6eOvGXiIenjCUlpC1dxoy+o8jeSq1j+1uF90YwIkLcCC4bPIrCKx81MkvXSoVO7S8jZRSiq4psfxlFUXi65kWGXGqH12UFi1mQNyeia4YDz/BQYPq3RkPm+g0xsSPcDfx85GUGxGVnDJJUJUlCvyDIe3PorRGOjh9uLb+RXKPabLKhv4mtZ3ZGfM3c227HoNiZZlG9Ny7hvRGMghA3gsuG/bWdnOkY4OYgr41h2e1IcmRzSD45t5djQeGo4Lb28Uzftq14bDYAzCuuRJeVFRM7wj16wUdukLjp6o/OaIHz0ZYtQ0pVhYK75SDuvtaY2DEeDBo998+6y7/9WsPbEQ9P6QunYL7yaop7j4R6b6zCeyO4OELcCC4LPIrCqzsaWahvYrpW7Qor55b4JzVHit7hPl6of92/fe/MO0jVpUR0zXDgcTpDy7833DDC0ZEluPTXnBm+UF5uUHJyZ19sxI0ka9HPC5TWOxPEe6OGp9ShqU6PkyejEJ7KueVWjJKTaRb1i4LL5eHAbtH3RnBxEkbcnD17lurq6gv+/eUvf4m1aYIEYG9NB+e6BrjJdNC/z3DFnUgR7AqsKAp/rnmBYW+PjuWFS5iXOzti64WTgd27cPf1AZC6aDGGqVNjZovFKzz0Bg0GozZs1411WMqHbuZq0KuC11n3MR5rd8xsGQ+3lt9ArkkdwXEqCuEpXXYOmdeuC/XeHDjHoDW6fYoEiUHCiJva2loMBgMfffQRO3bs8P/btGlTrE0TxDkej+q1ucpQS55GnY2kmToLzbTI5r183LqHEz1qkmiG3sydlYkRjlI8HnreDgxJzN4Yu6ouj0fx59yYM0xhnZieFwdhKQBJb0Lv64ytuHEcjM6Aysli0Oi5f2Z0w1PZN96MSQfT+1XvjdvlERPDBRclYcRNXV0dpaWl5Ofnk5eX5/9nNEZ+DpAgsdl9op2+nl5uMB3y7zNccVdYPyjPp3uolxdPBsJRn511Jym6+K+OAhg8dABnm9qB1lRVjam8Ima2WC3DeDxqibQ5K7yv9VSjFpNBzbeKVVjKh37u9aBV84mctdvw2Ppias9YqcwqY01QeOqJ48/jjmBDQk16Olkbb2RGX8B7c/xAa0jSuUAACSRuamtrqaiI3ZusIDFxuT28uqORDabDpMpq8qG2YiWa/Mg1z/MoHp488Zy/Wd/KKcuYkzMzYuuFE0VR6P5rQJRlxdBrA+fn24RX3EiSRG6GKjh7LHbcnsh33L2kLcY0dLOvVTfcLhyH346ZLePllqDwVKOlmXebt0Z0vazrN5KakcL0/hMAuN0Kn+5oiuiagsQjfAHsCFNXV0deXh733XcfTU1NFBcX8/Wvf51rrrlmwtfUasOr7TQaOeT/ZCTR7nHrwbMo/e1ck6GWkKLVk7rybuRL/O7DcX9vN26lvu8UAFnGTO6ZeUvY/9Ymymj3N3DwIPbmJgCMM2aQsWhhRD1coxH8jTwzO2VMP8fx/A7zs0yc7rDi9ihYbM6QUFW0SVl8I/3H3ge3E+fxD0lZugnZmH7BcfH2GtRqjXxx3r38f3v+GwWFN5veY25+NaUZMyZ8zRHvUWuk4K67Gfr9n2g1V+HSGKg90saSlTPIzot+H6aJEG+/w3ATD/eXEOLG4XDQ1NSEyWTie9/7HikpKbz22mt8+ctf5k9/+hMrV64c9zVlWSIrKzIvBLM5McIPkyER7tE27OTVHY3ckbIfraR+K89ccQvZM0Z/053o/Z3qaeG1BrXKSELi71Z+gan5uRO6ViS52P0pikLLG4FGgyX3fYbs7LRomnUB9iGX//G0oqxxvWbH8jssKjSzr1bNExl2KxF7TxgTWakoC9dh2fc2uOxIdR+StfreSx4eT6/BpVlzuGPwBl449iYexcPjx57lZxt+gFE7udL9S91j5sZ19H/wPsWdR2jIXYqiwN4dzdzzxWWTWi/axNPvMBLE8v4SQtzo9Xo+/fRTtFoter3aSXbu3Lk0NDTw6KOPTkjceDwKFostrHZqNDJmswmLZQi3O3Yu7kiSSPf44tYG8oZbWGBWy0WllAyYdT29vYOXPGcy9+dwO/jPTx715xxsKL2WKbppI64XbUa6v4FDh7DWnwTAUFSEVDU75rZ3tFn8jzVaaUz2jOd3mB5UfXWqpZeinNiW6Uuzr4cD74HHTf+eN6H6OiRDqE3x+hpcO2U1e08foclymnPWDv6w+1k+O/vOCV1rLPeYe/c9FP34J5zJnIVdm0rtsXaOHT7L1KLMSdxFdIjX32G4iOT9mc2mMXmEEkLcAKSkXPimU1VVxY4dOyZ8TZcrMn9UbrcnYteOF+L9Hvusdt7e3cQ3U/b69xmW3oFb0sMY7J7I/f2l9nXaBtXOx0Xp07ih+Lq4/Rmdf3+KotD5ysv+7eybb8XtAWKYhwLQ36sm+koSGFN14/p5juV3GDwdvL3XFvvflykbXeVVOGu3ozhs2A69i2Hxxavs4u81KPH52Z/hJ3v+E4fHyfYznzArq5r5k+jGPdI96ksryFiyhLLaA5woULuM79zSwG33xzaUOh7i73cYXmJ5fwkR8KupqWHRokXs3bs3ZP/Ro0dFkrHgory6o5FFch1F2h4A5JwitBEcs3C06wTbz+4CQCfreHD2vWjlhPnugO3YEYYb1Twh/bTppC1aHGOLVPp71YTiNLMxIvF7X0IxxLbXTTD6hTepag5wHH4bxR4/nr/RyE/JC2l58OeaF+i3D0Rsvbw77mLKUBMpjj4A2s5aaKpPjD5BgsiSEOKmqqqKyspK/uVf/oW9e/fS0NDAT37yEw4ePMjDDz8ca/MEcUZr1yB7D58KGY5pWHkfkhyZP/cBh5WnTgSaSd5ecTOFqfkRWSsSKIpC92uv+rdzNt0asZ/VeLAPO3HY1ZybcFdK+QjuUtwV43JwH3JGAdpKtbwahw3HkXdGPiHOuHLqFczPVb01VucgT9U8H7GJ57q8PLLXX09F9z7/vl1bTyVlqEcwPmL/DjYGZFnmkUceYd68eXzrW99i8+bNHDp0iD/96U9UV1fH2jxBHKEoCs9+UM9NxoOkyWqljbZ8OdqpsyKynkfx8PjxZxlwWgGYmzOLa6atiMhakcJ27CjDpxoAr9dm8ZIYW6QSyTJwH3qdhsw0NY+vvTc+xA2AYfGt4J155jjyLp7hyHk/wo0kSdw38w7S9Woy+vHuWt4/vT1i6+XctIlCvZXMIbU3U3/PEEf3nY3YeoLEICHEDUB2djY//vGP2bFjB4cPH+bZZ59l6dLIzgUSJB6HGrrpb65jpUHtDIzWgGHFZyK23pbmbf4uxOn6NO6fFdnmgOFG8XjoevlF/3bOzbfEhdcGIjdT6nwKstR8PuuQk8FhZ8TWGQ+yOU8dywDgHMZx8I3YGjRO0vVpfG7WPf7tVxveorE/MnOgZKOR/HvupbJrD3g9RHt3NGMbFEM1L2fi411MIAgDTpeHZ7fUcVfqbmSvvjAsvQ05NTLTrE/2NfJ6Y6Ds+8HZ9/q/rSYK1v17/X1tDEVFpC2Jny8MfT2BasaMrAiKm+xAsUJbT3grKCeDftEm0Kh5W85j7ydM12Ifs3Oqub5YbUzoUTz88difsTkj8/NNW7KUwvJCplrULxoOh5s92xsjspYgMRDiRpA0vPtpC+VDhynWqgmFcuZUdHPXR2Qtq2OQPx172j8JeWPJWmZmV0ZkrUihuFwhXpvc2++KG68NQF9PIEyUmR05cVMYJG7a40jcyKlZ6GavUzfcThz7Xx/5hDjk5tLrKcsoAaBnuJenal6ISP6NJEnk33c/5X2H0Hg7g5841EZnW+KE8wThJX7eyQSCSdA7YOfDXbWhScRXP4AUgYolj+LhiRPP0WfvB6Ays4wbSyMjoiJJ/8c7cLa3A+oMqZS582JsUSjBnhtzBD03hSGem/jJuwFv5ZRv5lTNVjwDkR1MGW40soYvzrmPVK36Mz7UeZRtZz6OyFr6wikUrr+Wst6D/n073jsZsWRmQXwjxI0gKfjL1pPcrNsVmB9VviJiScTvt2znWLc6lThNl8qDc+5FlhLrpeSx2+l+7RX/du4d8ZUrpCgKfd2q0EgzG9DpNBFbqyDIKxRPnhsA2WRG7/M+etzY97488glxSJYxkwdm3+3ffvnkX2mxnInIWtk3baJEbgspDa8/1hGRtQTxTWK9IwsEF+FEcy+Wun0sMTSpO/QpGFZeum39ZDjZ18hrp9Shhr48m0xDRkTWiiQ972/B3dcHQOrCRTGd/H0xhocCZeCZ2ZHtGpyXaUL2Crt4yrnxoV9wAxjUsRCu+o9xdSReLsm83NmsK1oFgEtx84ejT2J1hr9/j2wwUHj/A2pysZedW04yPBQfieKC6CHEjSChcbrcPPv2Ye5O+cS/z3jlfcgp4RccffZ+/nD0SX+ezfXF1zIrpyrs60Qa58AAXW/8Vd2QJHI3T6xFfiTxeW0gsvk2AFqNTJ631Ly914YnzsIYkiE1pEvx0MfPJmSo5ZbyjZSa1blu3cO9PHbsGf9rKZykzV9I6dwi8q2qCBwedvHJ1lNhX0cQ3whxI0ho/vpxM8vtH5OlUb9xa6bNCTRACyNOj4s/HHmSAYfaz6Y6q4KbEjDPBuD0s8/jGVS/NZtXXIlh2rQYW3Qhwfk2kfbcQKBiyuH00DdgH+Xo6KObvQ7JrDaGdLWewFa/d5Qz4g+trOWhufeTrlMrCk/01PH6qcg0KMy79z6qbUfReALJxa2n+yKyliA+EeJGkLCc7RrkxKd7uMZYC4Ci0WNc9WBEckdeqHuVRovapyPbmMUX53wWjRy5PJBIYW89y7k3vWE1vZ6czXfE2KKLE1wplRFhzw2cn1Qcf6EpSaPFcMVd/u2eD55AcbtGOCM+yTJm8tDcz/pz1N5t/pCDHUfCvo423cyMu26nPKhz8bY3a0Xn4ssIIW4ECYlHUXj6rSPcnRKovDBecQdyel7Y1/q4dQ87WncDoJO1fHneA6TpU8O+TjRof/ZZ/zDM7BtuQpedHWOLLk60PTfxWg4ejLZ0KZoCtd2As7sV+4mtsTVoglRmlbO54ib/9hMnnvMPnA0n6StWUjVdh3lYrTDr6x3m4Cenw76OID4R4kaQkGw72Mrs3g8p0FgAkPLK0M0Jf5ioydLCc7WBCpV7q+9gRvr0sK8TDQaPHsZ6+BAA2uxssq7fGGOLLk2/13Oj0UikZxhGOXryFMRxObgPSZIwrAx02x7e83JCDdUM5trpV7O0YCEAdreD3x15nCFXeH/ukiRR+LnPM6vvUyRvbs/enU30dCXmz0wwPoS4ESQcHX1DHNi2jVXecJRH1pFy7ZfD3oCuz97P7w4/gUtxA7B6+pUsnxIfc5fGi+J20/ncs/7tgrvuRjZEXjRMBLfbQ793zlNGdkpUStSDPTfnuuP3w0+TX46uQp1dpgwPYP/0pRhbNDHU+VN3MjW1EIB2WyePHv0zbo87rOvocnIpu/0GivqOAarT8v3XjuPxJF5CtmB8CHEjSCg8isKf/3qAu4w7/PtMK+5BzpwS1nWGXXYeOfQn+h2qZ6g8o4TbK24O6xrRpO/DD3CcawUgvboK84qVMbbo0vT3Dvk/fLJzIx+SAshM02MyqA0fz8b5N/uUlfcg6byN/U58gLurOcYWTQyDRs9X5n3e3+DvRE8dL54MfxfmjGtWM2+qy9/7pqvDxv5difkzE4wdIW4ECcWWvWdY1PsumbKaFyFNmY1uztqwruFRPPzxyNOctqpiINeYzZfnfQ5tBLodRwNXXy/drwTGLJQ+9IW4ath3Pj2dAXGRnRud3CZJkpiWp67VO2DHFicDNC+GnJ5D1tXe8n1FYXjnkygRKKmOBnkpOXx53gNoJDU5f9uZj9l6ZmdY15AkiakPfoF5A/vA+3Pat6OZrnZrWNcRxBdC3AgShnPdgzTsfM/frM+jNZGy9stIYe4O/PThVznUqbqxTVojX1vwhYQbiBlM53PP4BlWJ2xnrlpNenV89+YJETd50Uvcnh4kpFq74jOp2EfG8k3ImWpIx9N+Eld9ZEYaRIPKrHLurb7dv/1C3Wsc7aoJ6xrajAwq772Vkl61MsujwPuvHhXVU0mMEDeChMDl9vDCa7u40xR4E09Z9fmwT/zeeXYPr9W8C4AsyTw0534KUwvCukY0GTx2lIFP1W6tcloa+XffPcoZsacnSFhEU9xMywsI2DNd8f2tXtLoSLn6Af+2/ZPnEja5GGDl1GWsn7EGAAWF3x9+itP9rWFdI33xEuZXp5Jm7wGgp8fOp9tEc79kRYgbQULw6tY6rht6A6Ok9vaQy1f6EyvDxbHuWp46/oJ/+67KWxOyA7EPj9NBx5+f9G/n3XkP2rT0GFo0NnzVLFqtTHqGMWrrTgvy3JztjH+hoJsxD23pUsCbXLznLzG2aHLcUr6RBblzABh2DfPj7b+md7g/rGsU3ncf8x1H/dVTB/ac4UxTb1jXEMQHQtwI4p6jjd0Yj73MdK36JuRKKyBl1efDukaTpYU/HHnC3w5+7YyrWTU9fpNux0LPm2/g7PBO/a6swnxl+Ds3hxuX043FWymVmZOCLEcvN2hqXrC4iW/PjQ/DynsDU8NPbMXVeiLGFk0cWZL5/Jx7KUpXO2Z323r51f7fY3OGL0SoMZmo/vIDlPce8O6R2PLSEWyDjrCtIYgPhLgRxDX9gw52vfmmv+zbLWkxb/gGki583+jbBzv47aE/4fCoSaQrpi/mrupbRjkrvrGfOU3Pm975URoN+fd/Luyl8pGgt9uGb2xSNENSAOYUPeZUPRD/FVM+5LQcDFcEZoMNb38MxZW4H9QGjZ6vzf8iuSa1uWSrtY1HDj+Owx2+BG9jSQlLNswne1CdTD7kUHj/5cMJOa9LcGni/91OcNniURT+8upObtVs9+8zXfVZNDlFYVujz97Prw896p9QXJVVzjdWPOhvD5+IKG43bX96FNxqz5Cs6zdimJYYjQdjlW/jwxeaGrA5sSTIt3nd7HXIBepUd8XSjmPfK7E1aJJkGNL5uyVfwWxQc6Aa+ht57Hh4h2xmrV3HsgILepf693bmzCAHRXl4UpG47+CCpOfN7bWs7n8Fk6x+a1OKl6GftSZs17c5bfzm0B/pGVbDXdPSpvD1hQ+i1+jCtkYs6H3nLezNTQDop04l55bbYmrPeOgJCgdFq8dNMNOCBNWZBAlNSbKMcdUXwduqwHH4LdydjTG2anLkp+Ty/VXfwKBRPWmHOo/ybO3LYfOuSJJE8Rc/x/zhw/59u7c3cbZF5N8kC0LcCOKSg/UdZB95ikKNmlDoSCskfe1DYevPMuQa5teHHuWs9RwAOcYs/mbBQ5h0kR/SGEnsZ8/S/dor6oYkUfDgl5B1iSPWOtsCgiI3P/rl90VBaza3D0R9/YmiyZqKfrE3lKooDG99NKHDUwDl2cU8vPBBfw+cna27efHk62ETOJqUVOZ9+R5K+o8CoCDxzvOHsMbhVHjB+BHiRhB3tPfYaHznaebp1Zi4U2Mk6+Zvhy3PZthl5zeH/kizRR2il65L428WfokMgzks148VistF25/+gOJSK8qyNtyAqawsxlaNHUVR/I3VUlL1pKZHfzxESWHgb6C5LXHEDYB+4Y3I3pCtp/cM9k9fHOWM+Gd2ThWfm30PEuqXmg9P7+DVhrfCJnCMxSWsvGUR2bazANhdEm89vRe3S/S/SXSEuBHEFcMOF++8+CrX6Q8C4EEi/fq/QTbnh+X6DreT/zn8GKf6mwBI1aXwt4u+QkFK+KeJR5vu117B3qSGI/SFU8i59bbYGjROBvqHsQ+rwiyvMDZNE6fmpqDTqm+LiSZuJFmL8dqvgEYNTzmPvIPrzLEYWzV5lhYs5L6ZgaTp91q28mbje2G7fubKK7lqtgajU/19d/W62P7XI2G7viA2CHEjiBs8HoWXX3qfmzxb/Pu0S+5EVzQvLNd3up387sjj1PU1AGDSmvjGwi8xNa0wLNePJbaaE/S89Ya6odFQ+NCXkXX62Bo1TkJCUgWxETcaWWa6t5lfe+8QNq/YShQ02UUYrrjLvz289fcow4mROzQSV05dxmeqN/u332zawjtNH4Tt+tPuvosrUlqQPervu6amj8O7Ejtv6XJHiBtB3PDXdz9ldd/L6CW1ysc1Yxkpi28My7UdbgePHH6MEz11ABg1Bv5mwUPMSE+MKqKRcFuttD36O3w11Lm33Y6xNHHCUT46gzwleYWxazZYErT26Y7E8t4A6OauRzNNbYan2PoY/uixpChzvmbaSu6sDLRoeO3U27zV+H5Y7k2SZWY+/Hnm2I/69+3c1kxjbfukry2IDULcCOKCbbvrmNP4JOmyOgNpOKuczPVfCUsC8ZBrmF8ffJSa3noA9Bo9X1vwRUozZkz62rFGURTan3wMV69a5WGaOYusDTfE2KqJETzIMFZhKYDiIHHTlGChKQBJkjGu+RIY1MovV+NenCc+jLFV4eHaoqu5rTzwheevje+ELQdHk5rKFV//DKVW31wrifdePk7nOcukry2IPkLcCGLO4dpzZO77Pfka9YNkyJRP7i3fRgpDSfag08Z/Hfw9Df2qi9moMfLNhV+iIrN00teOB/refw/rvr0AyKmpFD70lYRo1nc+iqL4PTfGFF1Mkol9FBcExE2i5d34kFOzMK76gn/b/vHTCV8e7mN98Ro2V9zk336vZSvP170alj44///27js+juJu/Phn94pOvRf3Jqu4W64UG2xjjOndAUwI5kfNYwLBQEh5/OSVEBNC7/UBQsIT0wkdbDAG3OQCLrhJlizZ6u1U7nRt5/fHSSfJOskqJ13JvF8Infb29mY8W747MztjTE1l/vWLSG1yj3njQuWjf2ynsV4+QRVsgu8sKIWUvKJqmtc/xVh9JQA2XRRJF9+DEtb/Adzq7Q08vut5z1NRkfoIfjX9JsbGju73tgOB5dBBKt9a6/k77Rc3YIj37USig6XBbKPZ2tKZODXKZ4/898Ww5Ej0Ovf3FwTxXbthzEwMkxa7/9CcWL98KiT63wCcNfIMfpZ5iecpqo3HN/HP/W/j0lz93nbEuHQWXjSR2OYKAJpdOj743000W303SrI08GRwI/lNUWkdFR89Sbbe/RimQzEQe8FdqNFJ/d52uaWSh7Y/7RnHJtoYxR05tzAyJvj72AA46+ooff6ZtlGIl55H1PQcP6eq78qOt02QmDLUv4/k63Wqp/amvNZKvSV4x4sJm7MMNWUcAKKxGuuGFxE+HOnXn+YNO4Vrs6/0BDhbyrbz0t5/YHf1v7ziZs5g4SnxhDvcwW19s8oHL32P3RZcHcz/k8ngRvKLsupGjr7/FJP1hQA40RO59NcYUvrfXHTEfJSHdzxNdXMNAPFhcdyZc2tIPBUF7vFsSp9/BpfZHRBEZE8g6eJL/Zyq/ik/3lZDMmS4/8cbSh8e63mdf8y3M1MPJkWnJ/ys21BapjJwFf2Ifft7fk6V78wZMoMbJi33DPS3u2ofj+96gQZ7/2uo0pacxYKJeKZoqGlS+PB/v8fp6H/tkDTwZHAjDbqq2iYOvPUU03R5gLtd27R4JWHDs/u97R8r9/LErudpaplJeFjUEFbN/GVIjGMDLR2I//F3rIfdT33pExJIu+kWFJ3Ozynrn7JjbcFNypAACG6GxXleHz4evMENuCfXNC26BVpqOOy7PsSRt9m/ifKh6SmTuXXq9Zh07n5ahfVFPLTjaSoslf3e9shLzueMsVb0LveDDhVm+PjVTXKQvyAggxtpUFVUN7B/7WPMUN1PJGgo6M+8mfAxU/u1XSEE64s28uKe13G0jFWRGZ/OnTm3EBcWe5JPB4/azz6h/jv3RKKKXs+QW/4LfbT/g4H+sNucVLfM45SYHEmYSe/nFHWsuckL4pqbVvrhkwibu8zzd/M3L+Mqz/NjinwrOyGDO3NuJdboPhaqrNU8tONp8usK+7VdRVEYd9UlzBtmRqe5+9yUVGt8+PK3OGWAE9BkcCMNmtLKevLffIRpqvuRbA0FTruBqIw5/dquw+Xg9f1v8m7eRwjcj4TOSp3ObVNXEK4P7rmi2mvYnkvVO295/k5bcWNQTa/QlYrShtYhekgbHhiBaGykkZR4975TWFaPwxn8TRGGyUswZM13/+FyYv3iCbSGKv8myoeGRw/l7pn/xdBId/Nzk8PC47ue57vjW/q1XUVRyLzuCk5NrkJtCXBKa+HfL3yDQzZRBSwZ3EiD4nhZLcfefohJOvfjqC5UmHczsRNP79d262xmHtv1PFvLdniWnTN6ET+fsAy96v8aAF+x5h12D9TXIvHiS4me3b+gMFCUFLfVjKQNC5xaqPHD3IGW0yUoKA3OR8LbUxSFsNN+jm5IFgDCWo/1k4fQrMH7RNiJ4k1x/HrGrWTFjwfAJVz838F3+b+D7+LU+t4ZWFEUJt5wJaen1XpqcMrrVT547hvZyThAyeBGGnCH849T894DZOmKAHCgQ7fgl8Rmz+3Xdo+YC3kw9wkK693bNaoGbpi0nAvGLkFVQmfXthUXcfzxRxAO90k15tTTSDjvAj+nyneOH631vB46MjBqbgDGj4jzvD5YXOe3dPiSotMTvvi/UGLdtRuauQzrp48g7FY/p8x3wvXh3DZ1BQuGt904fXd8C0/sepF6e9+DVEVVmXD95cwf1Yiu5YmsyiYd7zy9gab65n6nW/Kt0LkCSAFp9w/7Ub/4K6N17mHM7egxLL6D6PEz+rxNTWh8eXQDj+58DnPLySo+LI5fz/glOSlTfJLuQGEvK+PYIw+hWd0Xn4jsiaT+/Hq/jgPjS3abk4oSdxnGJYQTFeObmd99IWtU25hBPxXU+DElvqWYoog4dxVKpDt/WlUh1i+eQDiD95H3E+lUHZdnXMi12Vd6anDzzQWs2fYYB2v63tdIURSyrrmYBRl29C73wH51dgNvP/stNWXB3zcrlMjgRhowm7/ZRNKWx0nRuau9LUoE4ef9hugxfZ8Is9HexLO7X+H9/E88I5KOjxvLvbNuZ0T0UJ+kO1A4qqs49siDuBrc/36mcekM/a/bUfSh09xWWmxG09wdboaNDqwBCFPiwj39bvKOm7GGUPODGp1E+LmrPFM0uEr2Y133NMIVWgPVzR0ykztzbvF0NK63N/DkDy/y4ZHP+zXg3/grzuPsHANhDndHeIsw8u4ruRw/VOKTdEv9J4MbyeccTo2v336LjAMve+aKMusTib/if4gYlt7n7R6qzWNN7mP8VH0QAAWFc0YvYuW0G4k2+m8uooFgr6ig+ME1OGvcNQZhI0Yw7Fd3oob5b1qCgXCssK1JaviowApuACaOSQDApQkOFtX5NzE+posfRsQ5d4LePXu8q+hHrF88GVI1OACjY0bym9m/IjshAwCB4LPC9Ty+6wVqm+v6vN1RSxdw/pKhRNnd+7BDMfDROwfYs2HvST4pDQYZ3Eg+VWduYttrjzKz5mPP7N414aMYevUfMcal9Gmbdpedtw59wOO7XqDO5q76jTZE8ctpN3DB2CXo1OAe4+VE9tISih/8C87qagAMqWkMu2MVuoj+T0kRaIpbghtFgWGjAqe/TatJoxM8r/eFUNNUK11qOuHtA5zi3SHXRAUQY4zmtqkruGjsUk9/vHxzAfdve4TNpdv7PPFmyuzpXHT1VBLs7qkaNEXHd1uqWf/3jbhc8lFxf5LBjeQzR/KLOP5/f2SKa49nWXXqHEZe/XtUU99qVgrMRazJfYwNx773LMuIG8d9s+/w3ImFEtuxYooffABXXR0AxqFDGXH3b9DHBt6Fv7/MtVZqq9yDLaYMjSHM1P+JUn0ta1Q8OtXdv2lvQbWfUzMw9EOzCV96F+jdtYKuY3uxfvowwtbk55T5lqqonD16AXfm3EJ8WBwAVmcz/9j/Js/veRWzrW9PjcWkj+GiWxcwUjvuWXaoRPDOE1/SZLb4IulSH8jgRuo3TRNs/uwzwr+8n5Gq+w7GKXQ0TruK0Rfd2qfZvZudNt7N+4iHdzxNhcU9FodB1XP5+AtZOf1GYsMC55FhX7Hs/4niv/7F08cmbMRIht/9G/Rxcf5N2AApONQ2xsqY8Yl+TEnXwsP0jGt5JLy81kppdWhd8Fvph2S6++AY3B26XaUHsfx7DVpj6NVWjY0dzW9n38HstLa52PZU7ef+rY+wtXRHn2pxTMlJLL37cqbHVqAId411tc3Ev575niM7QmewxGAigxupX2prG9j26sNMKvoXUar76YEGJQrd0nsZMntJn7b5Y+U+/rz1YdYXbfQMyjcqZgS/mXUHC0acHlKPebcyf/8txx572PNUlGnMWIavujfoRx/uTuHhtpqQ0eP7P1nqQMlpl7btB/s/pH+g0qeNJ+K8e1BM7klDtdpjWD74M66aY35Ome9FGCK4bsLPuGnydUQb3LXKTU4Lf9+/lsd3PU9pU3mvt6kajMy99QoWT9F55qOyK0Y+//I4X722Qc5JNchC7yohDQohBD9u2UrN2t8z0dnWga4yKpOUa+4nZmTvm4yqrTU8v/s1XtjzGrW2OgD0qp4Lxi7hrpzbSIvsW5+dQCY0jar33qH8lZc9M3xHTp3G8FX3oosMvT42rawWu2cm8LiEcOITI/ycoq7NyGzb73YcqPBjSgaeLmUsERf9DiXaPRebaKrB8sGfcRTuOMkng9PU5In8fs5dzEhpm/7lcN0R/rLtUd7P+wRbH2YYH3feGVx6eQZJzrZ95WCpwtpHv6A8r9Qn6ZZOLnSeKZUGTVVlDVv+/jRZ1h9QW8Jjh9DRNOlSxpx6bq/HYLE6rXxe+DVfH/uuwyiiWfHjWZZ5CSkRgXtX3x+uxkZKX3wOy7624DBu4SKSf3YNihra9x15+ys9Uy6MyQjs8k2MNTFmSDQFpQ0UVTRSUWshJT5wg7H+UmPTiLjo91g/fwytsgAczTR/8SRazoUYZ1yMEmI1p1HGSFZMuoY51TN48+D7VDXXuMfSKtpAbvkuLhi7hNlpOb2qMY7PGselq4ax5ZVP2FMXh1B01GsRvPfWAbKHH2T+NfMHMEcSgCL62k08yLlcGjU1vm0/1+tV4uMjqa1tCslJ1VwujT3ffk3igXeJU9v+7ar0qSSd+0ui00b2bnuai+9KtvJJwZc0Otq2F2OM5vLxF5CTMnXQB6sbrDJsLiyk5NknPU9EoSgkX/kz4s46e0DzHCj76Duv7aSiZUqDK2+YSWKy72qpBiKPn2w5ytsb8gG4+PQxXHj6GJ9sty8GqwyFw0bzxv/Fmb/Vs0w3YgqmM/8favjANpf6az+1uxx8cfRrvjz6NU7R1ow0LGoIl4w7j+zE3tdIF32Ty4ZvS2nStz0UEImF8y+fQkrWiJC8Vgxk+SUkRKLTnTzQlMGNDwXKhWMg5O/7CcumNxgt2trf7UJH3biljF14CUovHsd2aS62l//Ap4XrqLS29bvQq3oWDD+dJaMX+G3Cy4EuQ6Fp1H7+KVXvv+tphtJFRzPkpluJyJ7g8+87USDso7XVFv71Yi4ASSlRXLGi76NVezMQeaypb+buZzYhgKRYEw/ccgqqn0aJHswyFELg2P0Ztm1v0lrVpoTHYlpwI/rhkwbse/29n1ZYKnnn8IfsrT7QYXlW/HjOG3s2Y2NH9Wp7dnM93//9Sw42xiOUtnPl8EgL8y6bTdzQwOxQ31eBENzIZimpW5XllRR+8U/GW34kRWmLg8vDRpF27s2MS+75qMAuzUVu+S4+K1zfIagBmJEylYvGLSUxPKGLTwc/R1UlZS+/iPXwIc8y09hxDLnllxgSQjffJzq4p8zzOmNScPSjSogxMXFsAnuP1FBlbubA0VomjA79MlMUBePUpaiJI2n+6jlEcwPCasb6yUMYJi0mbPblKPrQGlgSICUimVunruBQbR7v5X1MUYP7Me8DtYc5sOMwmfHpLB19FuPjx/Zoe8bYGBasvIzxW35k47oCzHr3gJXHmiJY+9oPZA9VmHvFaRgjQu/f0l9kzY0P+ftuw5dqKqs5sv4dRpm3YVLa+sGYicZ02lWkTjkNl6tnu06z08aW0u18XfwtVc0dHy3NiBvHheOWMia2d01aA2UgylC4XNStX0fVB+8hbC0T7CkK8UuWknTxpYM6nYK/91GHw8XrT2/B1uxEVRWuvW0uEVFGn37HQOVx+4EKnnnf3T9qZlYKt108cDUX3fFXGWqWOpq/eRlXcds4Vkp0MqbTf45+RN+nVPHG3/tpe5rQ2Fmxm3/nf0b1Ceev9LgxLB55JhMSM3vcJ8dpbWbXm1/x4zEdDl3bXGpGzcbEcSZyLpqL0eTbY2KwyZobKeDUVFZz5Ov3GFm7lUzFAS017zahp3rEQrLOuYKk1ARqa5uA7oOb2uY6Nhz7nu9LtmJ1dpw1NyM+nXN7cecTrKz5eVT84zVsxcWeZfqkJNJW3EhERqYfU+Yfh/eVY2t2B8vp2ck+D2wG0tT0JGIiDNRbHOw4WBHyHYtPpEbEEX7OnTj2rce2dS24nIiGSqyfPow+fS5hc3+GGhHn72T6nKqozEydxvTkyWwt28nnhes9N2l5dQXk1RWQEpHEGcNPY27aTEwnqcnSh5s45YbzOb2pkY+f+5w8SxxCUbGrYewqEPz0yNdMSg9n2oXBH+T4k6y58aFAutvorWP5+VRs/oiRTXsIa1dT4xQqpQkzGLVoGZEJSSfNoyY0fqo+yKbSXPZU/eSZ3LJVVvx4zhm9KGCDGl+VoaOqkqoP3qNhy2ZPXwUUhdj5Z5B0+TJ04aHZp6g7miZY+/J26qrdY4Bcdl0OKUOiff49A5nHjzYV8u7GIwAsyBnGtWcPfoAaCOcZra6U5m9fxVV6sF3CwjBOPRfjlHNQDP1rXgmEPHaltc/gZ0fXewYYbWXSmThlyExOHTqboVFpXW6jff6O79zPlk/3UaIluOchaWHQbIwfopBzwSyik+IGKjsDIhBqbmRw40OBfEB643A6yd++BftPXzHKcQS1Xf9Il1AoiZvGiEXLiE5qO0i7ymOVtYbNpblsKd3umf/J8xlFx6y0HBaMOJ1hUUMGPF/90d8ydDU0UP3JR5i/Xo9wtgWJYSNGkLL8OsLH9X3iUF/w5z56cE8ZX33svhgOGR7LxcunDcj3DGQem5odrHp6EzaHC4NeZc1Nc0mIMZ38gz4UKOcZIQTOg9/SvHUttJuqQYmIwzjjYgwZp/VpdHIInDx2RxMae6r2s6H4Ow7V5Xd6f1T0CE4ZOpMZKdOIMHS8mfGWv5Lt+9i2/hClomNfLlW4GBllZcqZ2QydNGbQnyDtCxnc+NF/cnBTcfwYx7d8QVLVTuKUxg7v2YSe8oQchs+/mNjUzp2F2+exqqmWnRW72Vm+m4L6o53WjTFGc9rQOcwffgoxRt/foQ+Evpaho6aa2i8+x7xxA8LeNvCXGhlJ4gUXEbdgEYrO/xN8+msfdbk0/u+FXBrM7ubJi66eytCRcQPyXQOdxze/yuOzbUUAnDopjf93/sA/5dZeoJ1nNGs99h0f4Nj/NbSrqVUiEzBOXYoha36vOx0HWh5P5nhjKRuKv2Nb+a4OY3WBe9qYiYlZ5KRMYWJiNiZ9WLf5O5a7j50bDlHidDdXtRcjGhk/NorJS3IIjwvcc6oMbvzoPy24qa2sonj7RvTHdzLMdaxDLQ1AvYjEPPx0xs4/D1M3Q/7X2mvIa8rnu4Lt5NUVdHpfVVQmJmZx6pBZTEzMCroZu3tbhs2FhdR9tY76rZs9j3YDKAYDcWedTcLScwNqNm9/7aPbvysk9zt3ADxiTDznL5syYN810HlstDq47/nNNLX0HfrDdTMZM2TwpskI1POMq64E+9a3cB7d1WG5Eh6DIftMDFlnokb17AmzQM3jyTQ5LGwv/4HNpbkUNxzv9L5BNTAxMYuZaVM4NX06jia6zF9tfjE7PttFgTkcp9qx740qXKSFNTEuO5XxZ0wmLMI/zdxdkcGNH/0nBDeVJccp3b0V/bFdLQFNx6LWhEJJ2GiMWfMZPeN0dIbOVcgOzUl+XQH7qg+wt3p/pzbmVkMj05iZOo05Q2YQFxa8M1j3pAy1Ziv1W7di3rgB29HCDu8pRiOxp88jfun5GOLjByHFveOPfbS2qok3X9mB5hIoClz+ixkkpfZtlvieGIw8fpFbzL/WHwZgaFIkq38xE4N+cAL5QDvPnMhVkY9t54e4in7o+Iaioh81HcOEBeiGTuh2FO5Az2NPFDeUsLk0lx3lP3QYpLSVqqiMjR3FhIRMJiRmMTxqiNcmJ2uNmX2f53KooAmzGtd5O5qTtDALY7OSSD9tUkDU6Mjgxo9CMbix25op2rOLxvwfiDEfIplar+vVEkN92gxGzl1CTErHTm8OzcnR+mIO1x4hr+4IR8yF2DWH1+2kRqQwI2UKOalTGRKZ6vP8+ENXZajZ7TTt3UPj9m00/vgDwmbr8Dk1IoK4hWcRt+isgJ7scrD3UYfdxbuv76Km0n2sTZ87grlnDmxn8sHIo9Olcf/fd3C03D3K8qKc4Vxzdu9Hr+0Lf59nespVXYx914c4C7Z3aK4Cd22OftwcDOmnoCZ37kcSLHnsCZfmIq+ugJ2Vu/mhYo/XQAfczfjj48aSHjeG9LixpEWmdHi8XAhB2Y+H2PvdIY6ajR0eI29bSSNeaWRYahhjpo1i6JR0VD80h8vgxo9CIbhpqjdzfP8eLMX7MdUVkOIqx6B4n3m2lhjMiZNJmnI6aelZKIqCEIKa5jqKGo5R1HCMAvNRCuqLOrUZt2q905g9cirpkeNIMaUERee23mhfhs01dVj27aVpz+6WgKa50/pho0YTe8aZxMyei2oa3I6lfTGY+6imCdb9ez/5B9wzaccnRnD5L3LQGwb2ZDtYeTxe2cgfX83F2TLe08+XZHLm9GED9n2tgu3CrzXV4ti/AceBbxCWuk7vK1GJ6EdORT9yKrqh2Sh6Y9DlsadaA519tQfYX3OQkoauZx+PNESQHjuG0TEjGRkznJHRw4gwuIcecNrsFHy/m7zdJRxvCvMe6OB+4irB0ExqajjDs4YybOp49GED/3i5DG78KNiCm6b6BiqOHKTh+BGoKSLSWkKSqOnUd6aVJhTKdanYkrJInDCHxLHjqGqupqypnJLGMooajlPUcKzLu4hWcWGxZMSPY1JiFtkJGcSER4XkSQfA1dSE/egRtKNHqN6+k+ajnTtJg7uTcPTMWcTOOxPT6NGDm8h+GqyLhqYJNnxykIN73Sdvg1HHZdflDMrs34N5Ydz4Ywmvfuoeol9R4BdLs5g3peejdvdFsF74hebEefQHnIc34yz6EbzdROmM6IZkYBiWTULmNCzhabhEcPXb64nWMjx0vIjdFfvZV32AvLojJ52FPCk8kVHRwxkRPYwhkamkRaYSq0ZSuGkvhftKKDWrNOm6bvJVNSexqoX4KIXktBhS09NIzR7t84BHBje9oGkaTz31FG+99Rb19fXMmDGD1atXM2pU7+b4aBWIwY0QgobaGqqPHaWp/BiuulJ0jRVE2ytJUOpP+vlqEUNJzDCsQ0ejH56GGStlTeWUWsqptFQjTjLoHkCiKYH0uDGMjxvL+PixJJoSOtTOBOuJ9URasxXb8ePYjh2jueAIzfl52EtLulxfjYggKmcG0TNnE5GVPaijCvvSYJSf1WJn3b/3c6ywDgBVVVhy6URGpw/O/DmDvY+u/eown29rG6Rx6dyRXDJvLPoenID7IhSOQWFrwlmwA8eRbbhKDngPdAB0BnTJY1CTRqNLGoWaNAo1bkiv5rILRN7K0KW5ONZY4hkYMK/uCBan9aTbMqgG0iJTGBKZSmpECrFVKrb9DdSUuqhxhHdZq9NKES6ihYVok0ZcrJH4lBgSRyWTOHYYYVF9uxmRwU0vPPXUU7zxxhusWbOG1NRU/va3v1FcXMxHH32E0dj7qNMfwY1Lc9FYXYO5sgxLdQV2cyWiqQadtZYwh5lozUykYvOyZXABTTqVer1Kg07FrNNRro+kNiKapogwmgwuzI5GXMJ7s5Q3UYZIRsYMZ1T0cEZGD2dkzPCTdgYOphOr0DSctbU4KitwVFXiqKjAVnIc+7FjOKoqT/r5sJGjiJw0mYiJkwgflx60AU17A1l+LpfGwb3lbN1whGar+2KlqgqLL8pmbGayT7+rO4O9jwoh+L/1h1m3vW1S2VGp0SxbmE7WKN93Kg+mY7AnhKMZ5/F9uI7+iLN4t9emqw50BtS4oahxaaixaS2/h6DGJIMxIiiaynv04ILQKLdUUlR/zNN1oLihBEcXfSC9CVMMjKlLIqkiBtUcgcURQ3M3NTsnMrksROgcRBghKspAVKyJ2KQYYtISiBmSgCkuGtVLx3AZ3PSQ3W5n7ty53H333Vx11VUA1NfXM2/ePP7yl79w3nnn9XqbAxHcWOprKflhE9baKjRrA6qtEb2zkTCXBZOwEk4zQhXYFAW7qmBTFayqikXX+lvFqipYdSqWlt9NOoUGnY5GneqZCqG3DKqetIgU0iLTGBKZQlpkCiOihxEfFtfrE4G/T6xCCITdjma14Gqy4Ko34zTX4TSbcZnNOM0tf9fW4Kiq6vB4drd0OkwjRxGRnk7S1EkwcixEDNwTPf7i6/ITQlBTZSH/QCUH95TRWN8WnJsiDJxzyUSGjBjcp+f8sY8KIfgit5i3N+Tj0tpOqWOGRDNvylCmjEv02WB//j4GB5IQAlFfjig/jFqTj6VgL1qD9yc0vTKYUCMTUCLjUaMSUCITUCLiUExRKKbolp8oFFMkiuq/m5W+lqFLc1FmqeB4YymlTeWUNVVQ1lROpbVnNfMAEU06UiojiTVHY7TGIrR4mnUx0MO5sdpThAujZidMcWDSC0xGMJn0REYZGZU5lGFzJqD5eBcNqeBm9+7dXHHFFXz22WeMGTPGs/yqq64iMzOT//mf/+n1Nn0d3Lg0F9/+804OxkCz2ha82FsCGXvLazFAdxUm1UhieAKJpgQSw+NJDIsnKTyBtIgUEkzxqCdERm3FLjr84sTd4YT1dDqVuLgI6moacdqdCM2FcGnQ/remIVwucLV7fcJvYbejOewIuwPhsKPZ7S3LHAi7DWF3oDnsaFYrmsWCy2JBs1jQrJYOI//2hRIWhnHYcMKGDXf/HjEC0+gxqMaWjoxxkdTWeT/p9OVo6dMh1s1Hut1aF9/VutRr/rrZoMulYbe5sNuc2O1ObM1OGs02GszN1NVYKC+p99TStJeencxpi9L9MneUPy/+R0rqefXTAxyrbOz0Xmp8OCNSohiaFElCjImYSCOxkUbCw/QY9SpGgw6DXsWgU1EUurzxCOXgplX7PNobzWhVR3FVHXX/rj6KqK/o28HYnjECxRiOYjCBwYTS8oOx9XU46I0oOj3oDKDq217rDO1e692BkqpzBwiKCqqC0vras8z9W1FUdAYd8fHR1JmtODXaTbug4LmLVTz/O+lNqN3loMJSSbmlkurmGqqtNVQ311Jlraamue6kNfp6h0JCjYnY+nAiGyMx2KJAi8ahROHU9X0MnZnjXMy6YmGfP+9NSE2cWVZWBsCQIR2H7k9JSaG0tLTP29Xrfdcm7mhupqA0G7VoLOGKSu92h94HPN0d1tUoVOPgEOVA173xe/xdfQrIevoZBQhr+ekiXyoQpUBXFSl9DRhLW362++bfSYLR6YnMOG0kQ0fE+S0NrSe+npwAfS1jZBx/vnEO3+8p5YvcYo6WNXjeK6+1Ul5rhYMnbxKFtmubqiieYEfx/N26zwf8vWkfufPqjl9a8xgFTAQmosNFgtJAsmomSa0nWTETrzYSqzQRqzRh7OKp0Q7sFoTd4rd/QfPJV/HKXTHoLv/2aY9EYSwwFhDtzr8uoEGvw6xXadAr1OtUGvVtXRwaW5ZXplioSLUCHWc+N9gV4urCiGoMI8ISTpjNhM4RAVoYAhMuxYRTNXUaTRngWG0xp/jwOtsbQRHcWK3uTlUn9q0JCwvDbO7bLqKqCvHxvhs5Nsqqx+bMRATAEPuSNFjCIwwMHx3PmPFJTJg6hJjYwBkpNSbGf2m58MzxXHBGOnnH6sj9qZydBys4ctyMoxc1La3XddeJtawSAI1EU4S3AesEEYqNONVCvGohSrESqdqIUmxEqs1EKjai1GaiFBthioMwxdlhsuBA535C1tu+4H3/MAAml4tkF+C9SycAGu5Wh9buEZaW7hEWnYpFr9KcoGBLcrdANLW0TLS2TthQ0NmMhFmMRFgNhNkMOI02otKSfXqd7Y2gCG5MLeOH2O12z2sAm81GeB9nV9Y0QX29xSfpa5UzBg4VNKC1ViX2ZSNePtSr7XRTi9Hr9CheX3rGyHF/l9L6X9t3KydUpSpK221oy2/FfSuKoiot1bZelrVW7apq20e7TGsf8u3131pBp1NxaVo31d5dbLGbBHaf9q4W922D3eVXUVry59JOaC7z/ilVpxAWpscYpsMYpsdo1BEVYyImzkRMXDjRsWGecnZpGrW1vu3H1hc6nUpMTDj19VZcLv822yRFGVk6ewRLZ4/ApWlU1FopqWrC3GjH3OT+sdmd2J0adocLu0PD4dIQoqX/iQCB6Pi3ECiqgssV2sGOTtefPEYBidRCF0OZdqQIDQMOwnBgwIERB0bsGHCiw4UOF3o0VOFE7/nb1fKehh4XChoqAgWBiobiee19maoIFNG6DNoHJ0qH123vdX7tbX3vnz3xPa80948J90/rZBndXztEy08zGs04FXAYQehjGTnrIp+fE2JiwkOnWaq1OaqiooKRI0d6lldUVJCVldXn7fq6vfrUa8/ivP+gtvBQzKPMX++4Lz6BeZF1ubSAK8Pk2HCS+1m7Fer7KIR+HmX+Bp5/GsN6KSsri6ioKLZu3epZVl9fz08//cTMmTP9mDJJkiRJkgJNUNTcGI1Gli9fzkMPPURCQgLDhg3jb3/7G2lpaSxevNjfyZMkSZIkKYAERXADcPvtt+N0Ovn9739Pc3Mzs2bN4uWXX+7TAH6SJEmSJIWuoAludDodd999N3fffbe/kyJJkiRJUgALij43kiRJkiRJPSWDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQogghAnNK3wEmhEDTfJ91nU7F5Qq9WV7bC/U8yvwFv1DPY6jnD0I/jzJ/faOqCoqinHS9/9jgRpIkSZKk0CSbpSRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKTK4kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuOkFTdN44oknmDdvHlOnTmXFihUcPXq0y/Vra2u56667mDVrFrNmzeIPf/gDFotlEFPcO3V1dfz3f/838+fPJycnh6uuuort27d3uf57771HZmZmp5/u/k387fjx417T/NZbb3ldP9jKcOvWrV7zl5mZyaJFi7x+JpjK8ZlnnuHaa6/tsGz//v0sX76cadOmceaZZ/Lyyy+fdDuffvop5557LpMnT+aCCy5g48aNA5XkXvGWv6+++orLLruM6dOns3DhQv7617/S3Nzc7XYWLlzYqTxXrVo1kEnvEW/5u++++zqldf78+d1uJ1DLDzrn8dprr+3ymHz//fe73E4gleHJrg0BeQwKqceefPJJccopp4gNGzaI/fv3ixUrVojFixcLm83mdf3ly5eLK664Quzdu1ds2rRJLFiwQNxzzz2DnOqeu/7668WFF14ocnNzRX5+vvjTn/4kpkyZIvLy8ryuv2bNGrF8+XJRUVHR4cfpdA5yyntu/fr1YvLkyaK8vLxDmq1Wq9f1g60MbTZbp/L47rvvxIQJE8Sbb77p9TPBUo6vvPKKyMzMFMuXL/csq6mpEXPmzBG/+93vRF5ennj77bfF5MmTxdtvv93ldjZv3iwmTpwoXn/9dZGXlyceeOABMWnSpC7388HiLX+5ubkiOztbPP/886KwsFB888034owzzhC/+c1vutxOQ0ODyMzMFF9//XWH8qyvrx+MbHTJW/6EEOKSSy4RjzzySIe0VldXd7mdQC0/Ibznsba2ttOxddNNN4lzzjlHNDQ0eN1OoJVhd9eGQD0GZXDTQzabTUyfPl288cYbnmVms1lMmTJFfPTRR53W37lzp8jIyOhQWN9++63IzMwUZWVlg5Lm3igsLBQZGRlix44dnmWaponFixeLxx57zOtnrr/+evHnP/95sJLoE88++6y48MILe7RusJWhN3a7XZx33nnijjvu6HKdQC/HsrIyccMNN4hp06aJc845p8OF47nnnhPz5s0TDofDs+zhhx8WS5Ys6XJ7K1as6PTvsWzZMvGHP/zB94nvge7yd9ddd4nrr7++w/rvv/++mDBhQpc3VTt27BAZGRnCbDYPaLp7qrv8OZ1OMXnyZPHll1/2eHuBVn5CdJ/HE3344YdiwoQJ4sCBA12uE0hleLJrQ6Aeg7JZqocOHDhAU1MTc+fO9SyLiYlhwoQJ5Obmdlp/+/btJCcnM27cOM+y2bNnoygKO3bsGJQ090Z8fDwvvPACkyZN8ixTFAUhBGaz2etnDh48SHp6+mAl0Sd6k+ZgK0Nv/vnPf1JaWsp9993X5TqBXo779u0jNjaWf//730ydOrXDe9u3b2fWrFno9XrPsrlz51JQUEB1dXWnbWmaxs6dOzscxwBz5szptgl2IHWXvxUrVnDPPfd0+ozT6aSxsdHr9g4ePEhycjIxMTEDkt7e6i5/hYWF2Gy2DsdYdwKx/KD7PLZnsVh48MEHue6668jMzOxyvUAqw5NdGwL1GNSffBUJoKysDIAhQ4Z0WJ6SkkJpaWmn9cvLyzutazQaiYuL87q+v8XExHDGGWd0WPbpp59SVFTE6aef3mn9mpoaqqqqyM3N5fXXX6euro6pU6eyatUqxowZM1jJ7rVDhw6RnJzM1VdfTWFhIaNGjeK2225j3rx5ndYNtjI8kc1m47nnnuO6664jJSXF6zrBUI4LFy5k4cKFXt8rKysjIyOjw7LWvJaUlJCYmNjhvfr6eiwWC2lpaZ0+468y7S5/EyZM6PC33W7nlVdeYeLEiSQkJHj9zKFDh4iIiGDlypXs2rWLhIQELr30Un7+85+jqoN/P9td/g4dOoSiKLz22mts3LgRVVU544wzuOOOO4iOju60fiCWH3Sfx/b+9a9/0dTUxK233trteoFUhie7Njz66KMBeQzKmpseslqtgPvi1l5YWBg2m83r+ieu2936gWbHjh389re/ZdGiRV4P2kOHDgGg0+n461//yqOPPorFYuHqq6+mqqpqsJPbI3a7ncLCQhobG7njjjt44YUXmDx5MjfeeCObN2/utH6wl+EHH3yAzWbr1IGzvWAsx/aam5u9HpOA1zJq7Yjb0+M4kDidTu655x7y8vJYvXp1l+sdPnyYhoYGzj33XF5++WWWLVvG448/zpNPPjmIqe2Zw4cPo6oqw4YN47nnnuPee+/lm2++4bbbbkPTtE7rB3P5uVwuXn/9da6++mqvgVt7gVyGJ14bAvUYlDU3PWQymQD3BbL1NbgLLzw83Ov6dru903KbzUZERMTAJdQH1q1bx6pVq5g6dSqPPPKI13Xmzp3Ltm3biI2N9Sx7+umnWbBgAe+++y433XTTYCW3x4xGI7m5uej1es+BNWnSJPLz83n55Zc55ZRTOqwfzGUI8P7773P22WcTHx/f5TrBWI7teSuj1hOktzJqPel6+4y34zhQtAbkW7du5Yknnui26eOVV17BZrMRFRUFQGZmJk1NTTz77LOsXLnSL7U3XVm5ciW/+MUvPM0vGRkZJCcns2zZMvbs2dMpn8FafgDbtm2jpKSEK6+88qTrBmoZers2BOoxGDh7eYBrbZ6oqKjosLyioqJT9RpAWlpap3Xtdjt1dXWkpqYOXEL76R//+AcrV65k/vz5vPjiix0CuRO1vyCCe0cePnw45eXlA53MPouIiOh0x5CRkeE1zcFahuBubtq1axfnnnvuSdcNxnJs5a2MWv/2VkZxcXFERET0+DgOBBUVFVxzzTXs2rWLF1988aTNHwaDwXNRbJWRkYHFYumy/5y/KIrSqV9JaxNHa1eA9oKx/FqtW7eOKVOmMGLEiJOuG4hl2NW1IVCPQRnc9FBWVhZRUVFs3brVs6y+vp6ffvqJmTNndlp/1qxZlJWVdRgrpPWzOTk5A5/gPnjjjTf405/+xDXXXMNjjz3mtUmm/bpz5szpMN5GY2MjhYWFAds59cCBA0yfPr1Tp7W9e/d6TXMwlmGrnTt3oigKs2fP7na9YCzH9mbNmsWOHTtwuVyeZZs3b2bMmDGd2vrBfTHNyclh27ZtHZZv3bqVGTNmDHh6e8tsNnPddddRU1PDG2+80akT5ok0TWPhwoU8++yzHZbv2bOHpKSkbmvx/OGuu+7ihhtu6LBsz549AF73v2Arv/Z27Nhx0vKDwCzD7q4NgXoMyuCmh4xGI8uXL+ehhx5i/fr1HDhwgDvvvJO0tDQWL16My+WisrLSc5GYOnUqOTk53HnnnezevZstW7awevVqLr744oC86y8oKOAvf/kLixcv5uabb6a6uprKykoqKytpaGjolL8FCxYghOCee+7h8OHD7Nmzh5UrV5KQkMAll1zi59x4l5GRwfjx4/njH//I9u3byc/PZ82aNfzwww/ccsstQV+G7R04cIARI0Z0quYNhXJs77LLLqOxsZHf/e535OXl8e677/Laa69x8803e9ZpaGigpqbG8/f111/Pxx9/zCuvvEJ+fj4PPvgg+/fv57rrrvNHFrq1Zs0aiouL+dvf/kZCQoLnmKysrPRcTNrnT1VVlixZwksvveTp9Ll27VpeeuklfvWrX/kzK16df/75fP/99zz77LMUFRXxzTff8Nvf/pbzzz/f8wRVMJdfK5fLRV5eXqeOt60CuQxPdm0I2GPQZw+V/wdwOp3iwQcfFHPnzhXTpk0TN954oyguLhZCCFFcXCwyMjLEO++841m/qqpKrFy5UkybNk3MmTNHrF69WjQ3N/sr+d169tlnRUZGhtefe++912v+fvrpJ7FixQoxY8YMkZOTI1auXClKSkr8mIuTq66uFvfdd5847bTTxOTJk8WyZctEbm6uECL4y7C91atXiyuvvLLT8mAvx3vvvbfTGCI//vijuPLKK8WkSZPEggULxOuvv97pMwsWLOiw7L333hOLFy8WkydPFpdcconYtGnTgKe9J9rnz+VyicmTJ3d5XLaee07Mn8PhEM8884xYtGiRmDhxoliyZIlYu3atX/JzIm/l99lnn4mLL75YTJkyRZx22mnigQce6HCMBVP5CeE9j1VVVSIjI0Ns3Lixy88Eahme7NogRGAeg4oQQvguVJIkSZIkSfIv2SwlSZIkSVJIkcGNJEmSJEkhRQY3kiRJkiSFFBncSJIkSZIUUmRwI0mSJElSSJHBjSRJkiRJIUUGN5IkBSw5UoUkSX0hgxtJkgLS+vXruffeewH30OyZmZkdpj+RJEnqipwVXJKkgPTqq696Xk+cOJG1a9cGxXxXkiT5nwxuJEkKeFFRUUybNs3fyZAkKUjIZilJkgLOtddey7Zt29i2bZunOap9s9STTz7JOeecw7p16zj//POZPHkyF110Ebt27eKHH37giiuuYMqUKZx//vls3ry5w7YPHTrEzTffTE5ODjk5Ofzyl7+kuLjYH9mUJGmAyOBGkqSAs3r1aiZMmMCECRNYu3YtjY2NndYpKytjzZo13HLLLTz22GOYzWZuv/12fv3rX3PllVfyyCOPoGkad955p2cW9IKCAn72s59RXV3NAw88wP33309xcTFXXXUV1dXVg51NSZIGiGyWkiQp4KSnpxMVFQXAtGnTvHYktlqtrF69mvnz5wOQn5/Pww8/zP3338/ll18OgMvl4vbbb6egoIDs7GyeeuopTCYTr776qmf7p5xyCmeddRYvvfSSpwOzJEnBTQY3kiQFrZycHM/rpKQkgA59c+Li4gCor68HYMuWLcyZMweTyYTT6QTc/XlmzpzJpk2bBifRkiQNOBncSJIUtFprX9ozmUxdrl9XV8cnn3zCJ5980um9hIQEn6ZNkiT/kcGNJEn/MaKjozn11FO5/vrrO72n18vToSSFCnk0S5IUkFRVRdM0n25z9uzZ5OXlkZ2d7QlmhBCsWrWKUaNGkZ2d7dPvkyTJP+TTUpIkBaSYmBgKCgrYvHmzp89Mf912220UFRVx8803s27dOr799ltWrlzJxx9/TFZWlk++Q5Ik/5PBjSRJAemaa67BYDBw4403eh7l7q+srCz++c9/oigK99xzD7fffjuVlZU8/fTTnH322T75DkmS/E8RcmY6SZIkSZJCiKy5kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKf8f6IqaUphhN74AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np \n", + "import pandas as pd \n", + "import scipy.stats\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Set a range of skew parameters to demonstrate the signal as a function of time\n", + "alpha_range = [-5, -1, 0, 1, 5]\n", + "time = np.arange(0, 20, 0.01 )\n", + "\n", + "# Set constants for each signal\n", + "A = 100\n", + "tau = 10\n", + "sigma = 3\n", + "for alpha in alpha_range:\n", + " # Compute the skew normal distribution and plot the resulting signal.\n", + " signal = A * scipy.stats.skewnorm(alpha, loc=tau, scale=sigma).pdf(time)\n", + " plt.plot(time, signal, label=alpha, lw=2) \n", + "\n", + "# Add necessary labels\n", + "plt.xlabel('time')\n", + "plt.ylabel('$S$')\n", + "plt.legend(title=r'$\\alpha$')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the skew parameter $\\alpha$ is large and negative, the signal is heavily\n", + "skewed towards shorter retention times. Even though all signals in this plot\n", + "have different heights and locations of the maxima, they all have identical\n", + "values for $A$, $\\tau$, and $\\sigma$. The flexibility of $\\alpha$ in defining the \n", + "signal trace allows for a broad array of peak shapes to be well described by \n", + "this distribution." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## Fitting Peak Windows\n", + "As described in the notebook for Step 2, a chromatogram is broken down into\n", + "multiple \"peak windows\" which likely contain overlapping analyte signals. Each \n", + "window is fitted independently, which assumes that distant peaks have no influence \n", + "on each other. As an example, let's look at a real peak window from a sample chromatogram.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3935.20it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpT0lEQVR4nO3deVhUZf8G8HsWdhw2EdxFdlzYlczdzErNjPZo0TLT0l/1mlma2au2WuaSaYrma4uammVq5pJriICCC6CiiCuorLIzy++PaQZJVAbOcGa5P9flJc6ceeb7ZXC8Pc8zz5FoNBoNiIiIiKjBpGIXQERERGRuGKCIiIiIDMQARURERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYHkYhdgqTQaDdRq093kXSqVmHR9QmGfloV9Wh5r6ZV9mgepVAKJRNKgYxmgjESt1qCgoEzsMuoll0vh5uaEkpJyKJVqscsxGvZpWdin5bGWXtmn+XB3d4JM1rAAxSk8IiIiIgMxQBEREREZiAGKiIiIyEAMUEREREQG4iJyIiKiO1Cr1VCplE14vASVlTJUV1dBpTLfT6jdjTn0KZPJIZUKc+6IAYqIiKgeGo0GJSUFqKgobfJY169LoVab5yfTDGEOfTo4OEOhcG/wdgW3wwBFRERUD114cnZ2g62tXZP+wZXJJCZ7VkZIptynRqNBdXUVSksLAQAuLh5NGo8BioiI6F/UapU+PDk7K5o8nlwuNdu9kQxh6n3a2toBAEpLC9GihVuTpvO4iJyIiOhfVCoVgNp/cMly6F7TpqxrAxigiIiIbqup62TI9Aj1mjJAERERERmIAYqIiIjIQAxQREREBADo3TsKW7ZsavTjL1++jN69o3D4cLKAVTXMtm1b8Nhjw5vt+fgpPCKiZlJaWorU1MM4fDgJBQUFCA7ugu7dQxEUFMK1NmQSfv31Dzg7O4tdhsF27vwTn3wyEx4eLZvtORmgiIiMTKPR4OefV+PLLz9DZWWF/vaNG9cDAMLCIjBz5ido376DWCUSAUCzBhAhlJWV4osvPsXOnX/Cx8cXpaU3mu25OYVHRGREBQX5mDDhVXz00YeorKxA27btMGLEo3j55VfRq1dv2Ns7IDX1MJ544hFs2PCz2OXSXWg0GlRUlBv8q7zc8MfU90ujMWyTytGjn8VXX32u//O+fbvRu3cUduzYpr9t0aJ5GD/+ZQB1p/Bmz56BmTPfx9dfz8OwYYMxaNC9ePfd/yA//7r+sWfPZmHixFdx33298dRTjyIl5dAtNWzd+jteeOFpDBx4Lx57bDj+97/lUKvVUKvVGDZsMFav/l5/7Nq1P6F37ygcP35Mf9v770/BzJnv19vf5cuXUVJSjGXL/oc+ffoZ9L1pKp6BIiIykhs3buCVV15EVtZp2Nra4v/+bxKefjquzuZ9ly5dxPTp7yIlJQn//e/7kEqBMWNGi1g13Y5Go8GLLz6DtLQjotUQFhaBFSt+aPCU77339sWuXdv1f05OPgSJRIKUlGTcd98QAMDffx/AQw/Vv3Zo164dGDz4ASxc+C3y8nLx4YfT8O23i/Duu9NRWlqK//u/8ejatRu+/XYl8vOv4dNPZ9d5/Nq1P2Lx4oV47bU30KNHDDIy0vHll5+iuLgYEya8iXvuuRdJSYfw1FNxdeo7fDgJXbt2g1KpRFLSQbzzzrR66/P3D8CcOfMBAHv37m7Q90QoPANFRGQENTU1mDTp/5CVdRqenp748cf1ePbZ52/Z+bht23ZYunQlRo8eAwCYOXMGdu/eLULF1BDmtlbt3nv7IifnHPLycgFoA0rfvv1x5Ih2kfeVK5dx7txZ9O3bv97HOzk5YfLkqejUyQc9e96DBx54CEePpgIAduzYhsrKSkyd+iE6d/ZFdHQM3nxzkv6xGo0G33+/Eo8++gRiY59A+/YdcP/9D+Dll8di/fo1KC0txb339kFa2mFUV1dDqVQiNfUw+vbtr1+EfvRoKqqrq9GzZy/jfZMaiWegiIgEptFo8NFHHyIx8W84ODhiwYIl8PPzv+3xUqkUEya8hatXr+L333/FK6+8glWrVqNz59s/hpqfRCLBihU/1FnH1lAymRQqVdMvcWJv72BQiAsKCoanZyskJSWiZ897cPHiBUyfPgsvvRSHvLxc/P33fnTq1Bnt2rWv9/Ft27aHXF4bFZycnKFUanfwPns2C+3bt6+z6Lxbt1D910VFhSgoyEf37mF1xgwNjYBSqUROzjn06HEP1Go1jh1Lg42NDezs7PDII7GYMuU/qKmpQULCAURGRsPR0bHBPTcXBigiIoHt2rUdv/yyDlKpFJ99NhdBQSF3fYxEIsEHH8zEtWt5SEw8iGnT3sWqVWsgk8maoWJqKIlEAgcHw/8xF/Macb169UZS0kHIZDIEBYUgMDAI3t6tcfhwMhIS9t9x7ZCNjc0tt928Duvfa7JuDlu6+/6d99Rqtf5YR0dHhIVF4tChg7Czs0NERBS6dw+HRgOcOHEMCQn78cQTzxjcc3PgFB4RkYBu3LiBTz6ZCQB46aWxBi1stbGxxaeffgmFQoH09ONYs+YHY5VJVqR3775ISUlCUlIiIiKiAACRkdFISDiAw4dTGr34OiAgEOfP56CoqEh/W0bGCf3Xbm7ucHNzR1paap3HpaUdgY2NDdq2baevLynpIA4fTkZkZDTs7OzQrVt3/P77r8jJOYd77+3TqPqMjQGKiEhACxbMxbVr19ChQ0e8/PKrBj++ZcuWePfddwEAX389D3l5eUKXSFYmIiIaVVVV2L17JyIjowEAkZE9sHv3TigUCgQHd2nUuIMGDYG7uwdmzHgPp0+fwpEjKZg7d47+folEgqefjsOGDWuxYcPPuHjxAv788w8sX/4tHn54pH7q7957+yAr6zSOHz96U33R+PPPrejSpZvJbq3AAEVEJJCjR1Px888/AQCmTfsQdnZ2jRonLi4OoaFhKCsrw+effyRkiWSF7OzsEBXVE0DtGqWoqGhoNBr07t230QvjHRwcMH/+YtjY2GD8+Jcwc+Z0PPfci3WOeeaZ5zFu3ESsXfsj4uIex7Jl3+DZZ1/AxIn/0R/j5eUNX18/eHi01J+ViorqAbVajd69+zaqtuYg0Ri6qQQ1iEqlRkFBmdhl1Esul8LNzQmFhWWizck3B/ZpWcyhz5dffh7JyYcwbNgIzJr1aaPG0PWZkJCMJ54YCbVajdWrNzRoHZW5MeXXtKamGvn5V+Dh0Ro2NrZNHk/MNVDNyRz6vNNr6+7uBJmsYeeWeAaKiEgAycmHkJx8CHK5DV5//Y0mjxcUFIwhQx4CACxbtrjJ4xGRsBigiIgEsGTJ1wCAkSNj4e3dWpAxX3ppLABgx44/kZV1WpAxiUgYDFBERE2k+4STXG6D0aNfEWxcPz9/3Hff/QCA5cu/FWxcImo6Bigioib69ttFAIBHHnkUrVu3EXRs3Sf5/vhjM86fzxF0bCJqPAYoIqImOH36JBITEyCTyQQ9+6QTFBSC3r37Qa1WY+3aHwUfn+6Mn7OyPEK9pgxQRERNsHbtagDAgAGD0KZNW6M8x5NPandi3rRpI6qqqozyHFSXbgf46mp+vy2N7jWVyZp2MRZeyoWIqJFKS0uxefOvAGDUy0306tUb3t6tkZt7BTt2/ImhQ4cb7blISyqVwcHBGaWlhQAAW1u7Jl1IWK2WQKWy/LNZptynRqNBdXUVSksL4eDgfMuFvQ3FAEVE1Ei///4rysvL4ePTGdHRPY32PDKZDCNHPoZvvlmADRvWMEA1E4XCHQD0IaoppFKp/hpwlswc+nRwcNa/tk3BAEVE1AgajQZr12p3HX/iiaebdHaiIR555DEsWfI1UlKSkZ19Fj4+nY36fKS9FImLiwdatHCDSqVs9DgymQQuLo4oLi432bMzQjCHPmUyeZPPPOkwQBERNcLhw8k4ezYL9vYOGDbsEaM/n5eXF/r27Y/du3dh/fo1mDTpXaM/J2lJpVJIpY3fjVwul8Le3h4VFSqT36W7KaylTx0uIiciaoRNmzYCAB58cChatGjRLM/56KOPAwC2bPkdSmXjz4gQUdMxQBERGaiqqgo7dmwDAAwd+nCzPe899/SGq6srCgrykZx8qNmel4huxQBFRGSgvXv/QmlpKby9WyMiIqrZntfGxgaDBml3Jt+2bWuzPS8R3YoBiojIQFu2/A4AePDBYYItSG0o3QWGd+78EzU11c363ERUiwGKiMgAxcVF2LdvDwDgoYeGNfvzR0ZGw8OjJUpKinHwYEKzPz8RaTFAEREZYPv2bVAqaxAQEAh//8Bmf36ZTIbBg4cAALZt29Lsz09EWiYRoDZu3IiHHnoI3bp1w9ChQ7F1a+3cfkZGBuLi4hAWFob+/fsjPj6+zmPVajXmz5+PPn36IDQ0FKNHj0ZOTt0LbgoxBhERAGzdugkA8OCD4m1mOWTIUADAX3/t4KVdiEQieoD69ddf8d577+HJJ5/E77//joceeghvvfUWjhw5gsLCQowaNQqdOnXC+vXrMWHCBMybNw/r16/XP37RokVYvXo1Zs2ahTVr1kAikWDMmDGortauDRBiDCIiACgoyMfhwykAgCFDHhStjtDQMHh5eaOsrAyJiX+LVgeRNRM1QGk0GsybNw8vvPACXnjhBXTs2BGvvfYaevXqhUOHDmHt2rWwtbXFjBkz4Ovri9jYWLz44otYunQpAKC6uhrLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYiIAGD37l3QaDQICelitAsHN4RUKkW/fgMBAHv2/CVaHUTWTNQAdfbsWVy6dAnDh9c9FR4fH4+xY8ciOTkZ0dHRkMtrN0yPiYlBdnY28vPzkZmZibKyMsTExOjvVygUCAkJQVJSEgAIMgYREQDs2rUDADBgwGCRKwH69RsAANi7dzc0GtO8bAaRJRP1Ui7nzp0DAJSXl+Oll15Ceno62rVrh3HjxmHgwIHIzc1FQEBAnce0atUKAHD58mXk5uYCAFq3bn3LMVeuXAEAQcZoLLlc9BnSeslk0jq/Wyr2aVnE7rO0tFQ/XXb//fcb7e93Q/uMiYmBg4Mjrl27ilOnMtClS1ej1GNMYr+mzYV9WiZRA1RpaSkA4J133sHrr7+OSZMmYdu2bRg/fjxWrFiByspK2NrWvf6QnZ0dAO1OwBUVFQBQ7zHFxcUAIMgYjSGVSuDm5tToxzcHhcJB7BKaBfu0LGL1uXfvDtTU1MDX1xeRkd2NfvHgu/fphP79+2Hr1q1ITNyP3r17GrUeY+LPrmWxlj5FDVA2NjYAgJdeegkjR44EAAQHByM9PR0rVqyAvb39LQu5dZ84cXR0hL29PQDtOibd17pjHBy0L6AQYzSGWq1BSUl5ox9vTDKZFAqFA0pKKqBSWe4FH9mnZRG7z19/1X76rn//QSgqMt7fbUP67NWrL7Zu3Yo//tiG0aNfNVpNxiL2a9pc2Kf5UCgcGnwGTdQA5e3tDQC3TLH5+flh9+7daNu2La5evVrnPt2fvby89BfTvHr1Kjp06FDnmKCgIP1zNHWMxjL1q1GrVGqTr1EI7NOyiNFnVVWVfvPMAQMGN8vzN6TPe+/tC4lEgvT0E7h06Qq8vLyMXpcx8GfXslhLn6JOVIaEhMDJyQlpaWl1bj916hQ6dOiA6OhopKSkQKVS6e9LSEiAj48PPDw8EBQUBGdnZyQmJurvLykpQXp6OqKitNenEmIMIrJuSUmJKC8vR6tWXia11sjd3QPdunUHAOzbx0/jETUnUQOUvb09Xn75ZXz99df4/fffcf78eXzzzTc4cOAARo0ahdjYWJSWlmLq1KnIysrChg0bsHLlSowdOxaAdt1SXFwc5syZg507dyIzMxNvvvkmvL29MXiw9lMyQoxBRNbtwIG9AIA+ffoZfe2Tofr21X4aT3eGjIiah6hTeAAwfvx4ODg46Pde8vX1xYIFC9Czp3ZB5LJlyzB79myMHDkSnp6emDx5sn69FABMnDgRSqUS06ZNQ2VlJaKjoxEfH69fFO7h4dHkMYjIuu3frw1QvXv3E7mSW917bx8sXPgVkpMPoaamRr+2lIiMS6LhBiJGoVKpUVBQJnYZ9ZLLpXBzc0JhYZlFz1OzT8siVp85OecwYsQDkMttsHfvQTg6GvfTtYb2qVarMWjQvSgsLMSKFT8gPDzSqPUJiT+7lsUS+nR3d2rwInLr2KyBiKiRdGefIiOjjB6eGkMqlaJHj3sAAAkJB0Suhsh6MEAREd3B/v3atUW9e/cVuZLbi4npBQA4eJDXxSNqLgxQRES3UVFRjpQU7SWd7r3X9APU8eNHUVJSInI1RNaBAYqI6DaSkhJRXV2NNm3awsens9jl3Fbr1m3QsWMnqNVqJCcn3v0BRNRkDFBERLexf/8+ALUbVpoy3VmohARO4xE1BwYoIqLbOHhQuyi7V6/eIldydzEx9wLgOiii5sIARURUj8uXL+H8+RzIZDJERfUQu5y7io7uCZlMhgsXcnD58iWxyyGyeAxQRET1OHToIACgS5duaNGihcjV3J2zszOCg7sAgH7hOxEZDwMUEVE9dFNhurVF5iAyMhoAAxRRc2CAIiL6F7VajcTEBABAz573iFxNw+mmGhmgiIyPAYqI6F+ysk6jsLAA9vYO6N49VOxyGiw8PBJSqRQXLpxHXl6u2OUQWTQGKCKif0lM1E7fRUZGw8bGfC4q7uzsjKCgYABAcjLPQhEZEwMUEdG/HDyonb6LiTGf6Tud2mm8QyJXQmTZGKCIiG5SU1OtX0PUs6f5LCDX4UJyoubBAEVEdJPjx4+jsrICbm5u8PcPELscg4WHR0EikSAn5xyuXbsqdjlEFosBiojoJrqpr8jIHiZ/+Zb6KBQKBAQEAeBZKCJjYoAiIrpJcrI2QEVFRYtcSePppvEOH04RuRIiy8UARUT0j5qaGqSmHgEAs7h8y+2Eh0cAAFJTD4tcCZHlYoAiIvpHenrt+qfOnf3ELqfRwsK0ASor6xRKS0tFrobIMjFAERH9Qzd9FxERBanUfN8ePT1boW3bdlCr1Th6NFXscogskvm+QxARCUy36Nqcp+90dGehOI1HZBwMUERE0K5/OnJEGzYsKUClpR0RuRIiy8QARUQEIDMzHRUV5XBxcYGvr7/Y5TRZWFg4AODo0TQolUqRqyGyPAxQRESovXZcRES0Wa9/0vH19YezcwtUVJTj9OmTYpdDZHHM/12CiEgAqanaPZMiIqJErkQYUqkUoaFhALgOisgYGKCIyOppNBr9WiHd2iFLULuQnOugiITGAEVEVu/cuWwUFRXBzs4OQUFBYpcjGN06KJ6BIhIeAxQRWT1dwOjatRtsbGxFrkY4Xbt2h1QqRV5eLq5ezRO7HCKLwgBFRFZPF6BCQy1n+g4AHBwc4eur3VH9xInjIldDZFkYoIjI6ukClCWtf9Lp2jUUAHDsWJrIlRBZFgYoIrJqBQUFyMk5BwD6T61Zkq5duwEATpw4JnIlRJaFAYqIrJru03edO/vBxcVV3GKMoGvX7gC0AUqtVotcDZHlYIAiIqtWO30XLnIlxuHr6wd7eweUlpbqz7QRUdMxQBGRVbPk9U8AIJfLERLSBQDXQREJiQGKiKxWVVUV0tO1n06z1AAF1K6DOn6c66CIhMIARURWKz39BGpqauDu7oH27TuIXY7RdOmiXQd1/PhRkSshshwMUERktW6evpNIJCJXYzy6M1CnTp1EVVWVyNUQWQYGKCKyWmlplr2AXKdNm7Zwd/eAUlmDkyczxC6HyCKIHqAuXbqEwMDAW379/PPPAICMjAzExcUhLCwM/fv3R3x8fJ3Hq9VqzJ8/H3369EFoaChGjx6NnJycOscIMQYRWRZLvYBwfSQSyU3roDiNRyQE0QPUyZMnYWdnh3379mH//v36X8OHD0dhYSFGjRqFTp06Yf369ZgwYQLmzZuH9evX6x+/aNEirF69GrNmzcKaNWsgkUgwZswYVFdXA4AgYxCR5cnJyUZhYSFsbW0RFBQidjlGp9sP6tgxBigiIcjFLuDUqVPw8fFBq1atbrlv5cqVsLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHYq1a9c2eQwisjypqdqzT126dIOtreVcQPh2+Ek8ImGZxBkoPz+/eu9LTk5GdHQ05PLanBcTE4Ps7Gzk5+cjMzMTZWVliImJ0d+vUCgQEhKCpKQkwcYgIstj6fs//VuXLtoAdeFCDoqLi8QthsgCmMQZKE9PTzzzzDM4d+4cOnbsiPHjx6NPnz7Izc1FQEBAneN1Z6ouX76M3NxcAEDr1q1vOebKlSsAIMgYjSWXi55P6yWTSev8bqnYp2URuk/dAvLIyEiT+rtqrNfTw8MdHTt2Qk7OOWRmnsC99/YRdPzG4M+uZbGWPnVEDVDV1dU4d+4cHBwcMHnyZDg6OuK3337DmDFjsGLFClRWVt5yat3Ozg6AdgO8iooKAKj3mOLiYgAQZIzGkEolcHNzavTjm4NC4SB2Cc2CfVoWIfosKChAdnY2AKBfv3tN8u+qMV7PyMgI5OScw+nTGRg27AHBx28s/uxaFmvpU9QAZWtri6SkJMjlcn2A6dq1K86cOYP4+HjY29vfspBbt4eJo6Mj7O3tAWiDmO5r3TEODtoXUIgxGkOt1qCkpLzRjzcmmUwKhcIBJSUVUKks9+Ki7NOyCNnnnj0HAAA+Pp0hkdihsLBMiBIFYczXMyAgBMAGHDqUbBI982fXslhCnwqFQ4PPoIk+hefo6HjLbQEBAdi/fz+8vb1x9erVOvfp/uzl5QWlUqm/rUOHDnWOCQoKAgBBxmgspdK0f4BUKrXJ1ygE9mlZhOgzLU17Tbhu3UJN9ntmjNdTtw7q2LGjqKlRmczmofzZtSzW0qeoE5WZmZkIDw9HcnJynduPHz8OPz8/REdHIyUlBSqVSn9fQkICfHx84OHhgaCgIDg7OyMxMVF/f0lJCdLT0xEVFQUAgoxBRJZFtxdSt26hIlfSvAICgiCX26CwsACXL18SuxwisyZqgAoICIC/vz8+/PBDJCcn48yZM/j444+RmpqKV199FbGxsSgtLcXUqVORlZWFDRs2YOXKlRg7diwA7RRgXFwc5syZg507dyIzMxNvvvkmvL29MXjwYAAQZAwishwajUb/UX7dR/uthZ2dHQICAgFwQ02iphJ1Ck8qlWLx4sWYM2cO3njjDZSUlCAkJAQrVqxAYKD2L/myZcswe/ZsjBw5Ep6enpg8eTJGjhypH2PixIlQKpWYNm0aKisrER0djfj4eP2aKg8PjyaPQUSW4/z5HNy4UQJbW1v4+QXc/QEWpmvX7khPP47jx49iyJCHxC6HyGxJNBqNRuwiLJFKpUZBgfiLNOsjl0vh5uaEwsIyi56nZp+WRag+N2/ehKlT30b37mH43/9WC1ihMIz9em7atBHvvz8FYWER+O67HwUf3xD82bUsltCnu7tTgxeRW8dmDURE/9BNXekubWJtgoO7AABOnsysszaUiAzDAEVEVuXECV2Asq71Tzo+Pp1hb++Aiopy5OScE7scIrPFAEVEVqOmphqZmRkArPcMlEwmQ2CgdouWjIwTIldDZL4YoIjIapw+fQrV1dVQKFzQvn2Huz/AQoWEaKfx0tMZoIgaiwGKiKyGbvuCLl26mswmkmIICgoBAGRmMkARNRYDFBFZDWtfQK6jOwOVmZkBtdo8Py1FJDYGKCKyGidOHAdgvQvIdXx8fGFvb4+ysjKcP39O7HKIzBIDFBFZhbKyUpw9mwWg9ppw1koul+t3JOc6KKLGYYAiIquQnn4CGo0GrVu3QcuWnmKXIzrdflD8JB5R4zBAEZFVqF1Abt1nn3RqA1S6yJUQmScGKCKyCrUbaFr3AnIdXYDKzEznQnKiRmCAIiKroDsDZe0LyHU6d/aFra0tSktLceHCebHLITI7DFBEZPGuXbuK3NwrkEql+o/wWzsbGxsEBHBHcqLGYoAiIoun276gc2dfODo6iVyN6QgO1m6oyXVQRIZjgCIii8cNNOvHT+IRNR4DFBFZvNoAxfVPN9NNZ2ZkpEOj0YhcDZF5YYAiIoumVqtv2oGcZ6Bu5uvrBxsbG9y4UYKLFy+IXQ6RWWGAIiKLduFCDm7cKIGdnR18ff3FLsek2NjYwt8/AADXQREZigGKiCyabvuCoKAQ2NjYiFyN6eE6KKLGYYAiIoumW//EHcjrpwtQvCYekWEYoIjIop04wQ0076R2IfkJLiQnMgADFBFZrJqaamRmZgDgAvLb8fMLgFxug5KSYly+fEnscojMBgMUEVms06dPobq6GgqFC9q37yB2OSbJ1tYWfn7axfVcB0XUcAxQRGSxbr7+nUQiEbka08V1UESGY4AiIovFHcgbRrcOKjOTWxkQNRQDFBFZrJvPQNHtBQXVXhOPC8mJGoYBiogsUmlpKbKzzwDgFgZ34+8fAJlMhsLCAly9mid2OURmgQGKiCxSRsZxaDQatG7dBh4eLcUux6TZ29vDx6czAE7jETUUAxQRWaTa6Tuuf2qIm6fxiOjuGKCIyCLVLiDn9F1D6D6JxzNQRA3DAEVEFolnoAwTHMwzUESGYIAiIotz9Woe8vJyIZVK9cGA7iwwMAgAkJeXi4KCfJGrITJ9DFBEZHFOnDgOAPD19YOjo5PI1ZgHJydndOzYCQCn8YgaggGKiCxO7QWEOX1nCC4kJ2o4Bigisji6BeTc/8kwugCluwAzEd0eAxQRWRS1Wq2fwuMn8AyjWy/GKTyiu2OAIiKLcuFCDm7cKIGdnR18ff3FLsesBAUFAwAuXDiPkpISkashMm0MUERkUXTbFwQFhcDGxkbkasyLq6sbWrduAwA4eZLTeER3wgBFRBaldgNNLiBvDG6oSdQwJhWgsrOzER4ejg0bNuhvy8jIQFxcHMLCwtC/f3/Ex8fXeYxarcb8+fPRp08fhIaGYvTo0cjJyalzjBBjEJF5qN1Ak+ufGoMbahI1jMkEqJqaGkyaNAnl5eX62woLCzFq1Ch06tQJ69evx4QJEzBv3jysX79ef8yiRYuwevVqzJo1C2vWrIFEIsGYMWNQXV0t2BhEZB5qaqr1Z054BqpxAgO166D4STyiO5M35KCFCxc2+glef/31Bh23YMECODnV3fBu7dq1sLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHSrIGERkHk6dOomamhq4uLigXbv2YpdjlnRnoM6dO4uKinI4ODiKXBGRaTJqgJJIJA0KUElJSVizZg02btyI/v37629PTk5GdHQ05PLaMmNiYrBkyRLk5+fj0qVLKCsrQ0xMjP5+hUKBkJAQJCUlYejQoYKMQUTm4ebr30kkEpGrMU+enq3QsqUnrl+/hlOnTiI0NFzskohMUoMCFKA9G9S9e8NPiaempuLpp5++63ElJSWYPHkypk2bhtatW9e5Lzc3FwEBAXVua9WqFQDg8uXLyM3NBYBbHteqVStcuXJFsDEaSy43mRnSOmQyaZ3fLRX7tCwN6TM9XRugunXrbrJ//+7GFF7P4OAQ7Nu3B6dOZSAyMtJoz2MKvTYH9mmZGhSgIiIibpleu5sWLVogPPzu/3OZMWMGwsLCMHz48Fvuq6yshK2tbZ3b7OzsAABVVVWoqKgAgHqPKS4uFmyMxpBKJXBzM+1rcCkUDmKX0CzYp2W5U5/p6doNNO+5p4fJ//27GzFfz4iIMOzbtwdnzpxqlu8jf3Yti7X02aAAFRkZCZlMZtDAvr6++PHHH+94zMaNG5GcnIxNmzbVe7+9vf0tC7mrqqoAAI6OjrC3twcAVFdX67/WHePg4CDYGI2hVmtQUlJ+9wNFIJNJoVA4oKSkAiqVWuxyjIZ9Wpa79Xnjxg1kZWUBADp1CkBhYVlzlygIU3g9fXy0G5CmpqYZ9ftoCr02B/ZpPhQKhwafQWtQgFqxYgWWLVuGqKgoPP744xgyZIj+LE5TrF+/Hvn5+XXWPQHABx98gPj4eLRp0wZXr16tc5/uz15eXlAqlfrbOnToUOeYoKAgAIC3t3eTx2gspdK0f4BUKrXJ1ygE9mlZbtfnsWPHoNFo0KZNW7i4uJn990LM19PfX/vel5WVhfLyW8/iC83af3YtjbX02aCYtW/fPrz77rsoKyvD5MmT0bt3b/z3v/9FRkbTPuY6Z84cbNmyBRs3btT/AoCJEyfi22+/RXR0NFJSUqBSqfSPSUhIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6ejqioqIAQJAxiMj0nThRu4CcmqZNm7ZQKFygVNbgzJnTYpdDZJIaFKDc3Nzw/PPPY8OGDdi0aRMef/xx7NixA48++ihGjhyJH3/8ETdu3DD4yb28vNCxY8c6vwDAw8MDbdu2RWxsLEpLSzF16lRkZWVhw4YNWLlyJcaOHQtAu24pLi4Oc+bMwc6dO5GZmYk333wT3t7eGDx4MAAIMgYRmb7aHci5gWZTSSQSbqhJdBcN/hSejr+/PyZPnoxJkyZh//79+PXXX/HZZ5/hs88+w+DBg/HEE08gOjpakOI8PDywbNkyzJ49GyNHjoSnpycmT56MkSNH6o+ZOHEilEolpk2bhsrKSkRHRyM+Pl5/ylmIMYjI9N28hQE1XVBQCBITExigiG5DotFoNE0dpKysDLt27cLXX3+NnJycJk/tWQKVSo2CAtNcxCqXS+Hm5oTCwjKLnqdmn5blTn1evZqH++/vB6lUigMHks1680dTeT3/+GMzpkz5D7p1C8WqVWuM8hym0quxsU/z4e7uJOwi8js5fvw4Nm3ahO3bt+PKlSvo2bNnU4ckIjLIiRPa7Qt8ff3MOjyZEt0U3qlTmVAqlXU2IyaiRgaoCxcuYNOmTdi0aRPOnTsHLy8vjBw5ErGxsWjXrp3QNRIR3VHt+idO3wmlffuOcHR0RHl5Oc6dy4afn7/YJRGZlAYHqMLCQmzZsgWbNm1CWloa5HI5Bg4ciPfeew+9e/fmZROISDS69U9dunABuVCkUikCA4Nx5EgKMjPTGaCI/qVBAerVV1/F/v37oVQq4e/vjylTpuDhhx+Gm5ubsesjIrojtVrNLQyMJCgoBEeOpCAjIx3Dho0Quxwik9KgAJWcnIzY2FjExsYadD08IiJjO3/+HEpLb8De3h6+vn5il2NRdOugMjNPiFwJkelpUIDav39/ncucEBGZCt30XVBQCGxsbESuxrLUBqgMqNVqSKXWcZFYooZoUID6d3jatm0bDh8+jJKSkluOlUgk+Oijj4SpjojoLriBpvH4+PjCzs4OZWVluHDhPDp27CR2SUQmw+BP4c2ZMwfLli2Ds7MzFArFLfdzMTkRNSduoGk8crkc/v6BOH78KDIzMxigiG5icID65Zdf8MQTT+C///2vMeohImqwmppqnDyp3biXAco4goND/glQ6Rgy5EGxyyEyGQZPaFdVVeGBBx4wRi1ERAY5deokampq4OrqirZtuQedMQQGBgMAMjK4kJzoZgYHqPvvvx+7du0yRi1ERAap3f+pO5cPGEntQvJ0CHDlLyKLYfAU3nvvvYfHH38czz33HEJDQ29ZYC6RSPDaa68JViAR0e1wAbnx+fkFQC6Xo6ioCLm5V9C6dRuxSyIyCQYHqFWrViE7OxvZ2dlISkq65X4GKCJqLtxA0/js7OzQubMfTp3KREZGOgMU0T8MDlDff/89hg4dinfffRctW7Y0Rk1ERHd148YNZGefBcBLuBhbcHAITp3KRGZmOgYOvE/scohMgsFroMrLy/HEE08wPBGRqDIyTkCj0aBt23Zwd3cXuxyLdvM6KCLSMjhA9erVC4mJicaohYiowXTrn3j2yfiCgrQBKiODAYpIx+ApvBEjRmDatGnIyclBeHg4nJ2dbznmkUceEaI2IqLbqt1AkwHK2AICAiGRSHDt2lVcv34NLVt6il0SkegMDlATJ04EAGzevBmbN2++5X6JRMIARURGV/sJPC4gNzZHRyd06uSD7OyzyMzMQO/eDFBEBgeonTt3GqMOIqIGy8vLw9WreZBKpfr1OWRcQUEhyM4+i4yMdPTu3VfscohE16A1UPPmzUNeXh4AoG3btnf9BWjf4ObNm2e8yonIaum2L/Dz84eDg6PI1ViH2oXk3JGcCGhggFq8eLE+QDVUbm4uFi9e3KiiiIjupHYBOafvmkttgMoQuRIi09CgKTyNRoMZM2bUu2D8dkpLSxtdFBHRndRuoMkF5M0lMFAboC5duoiSkmIoFC4iV0QkrgadgYqOjoaTkxM0Gk2Dfzk5OSEqKsrY9RORlVGr1Thx4jgALiBvTgqFQn/BZm5nQNTAM1CrVq0ydh1ERA2Sk3MOpaU3YG9vD19fP7HLsSrBwV1w6dJFpKefQM+e94hdDpGoDN5Ik4hITEePpgHQfipMLjf4g8TUBLpNS3VTqETWjAGKiMzKsWPaANW9e6jIlVifLl26AgDS04+LXAmR+BigiMisHD2q20CTAaq5BQd3AQBcvnwJBQUFIldDJC4GKCIyGxUVFTh1KhMA0K0bF5A3txYtWqBjx04AeBaKiAGKiMzG8ePHoVQq0bKlJ7y9W4tdjlXSrYNigCJr16AVmBs3bjRoUF4Lj4iM4fDhwwC02xdIJBKRq7FOISFdsWXLJi4kJ6vXoAA1ZcqUBg/IiwkTkbEcOXIEAKfvxMQzUERaDQpQvIAwEZmC2gDFBeRiCQoKhlQqxbVr15CXlwcvLy+xSyISRYMClO4CwQ2h0WgaXQwR0e1cv34dFy9ehEQiQUhIV7HLsVoODg7w9fXD6dOnkJ5+nAGKrFajdqHbvHkzDh06hJqaGn1g0mg0KC8vR2pqKvbu3StokUREuv2f/Pz8DbouJwmvS5duOH36FE6cOIYBAwaJXQ6RKAwOUAsXLsTChQvRokULKJVK2NjYQC6Xo6CgAFKpFI8//rgx6iQiK6fbgZzrn8QXEtIVGzeu5zoosmoGb2Pwyy+/4OGHH8ahQ4fw4osvYsCAAfj777+xbt06uLq6wt/f3xh1EpGVO3o0FQB3IDcFuh3JT5w4xmUbZLUMDlB5eXkYMWIEJBIJunTpol/U2bVrV7z66qv4+eefBS+SiKybSqXC8ePaj81zAbn4/P0DIZfboLi4GJcuXRS7HCJRGBygHB0d9fuvdOrUCRcvXkRlZSUAIDg4GBcv8i8TEQkrO/ssysrK4OjoCD8/nuUWm62tLQICAgEAJ05wGo+sk8EBqlu3bvjll18AAB06dIBMJsPff/8NADhz5gxsbW2FrZCIrN7x49rr34WGhkImk4lcDQF1p/GIrJHBAerVV1/F1q1b8eqrr8LW1hYPP/wwpkyZggkTJuDTTz9F7969DRovPz8fb7/9NmJiYhAeHo5XXnkFWVlZ+vszMjIQFxeHsLAw9O/fH/Hx8XUer1arMX/+fPTp0wehoaEYPXo0cnJy6hwjxBhEJB7dJ/DCw8NFroR0uKEmWTuDA1R0dDTWrVuHBx98EAAwffp0DBkyBGfPnsUDDzyAadOmGTTeuHHjcOHCBSxduhTr1q2Dvb09XnzxRVRUVKCwsBCjRo1Cp06dsH79ekyYMAHz5s3D+vXr9Y9ftGgRVq9ejVmzZmHNmjWQSCQYM2YMqqurAUCQMYhIXMeOac9ARUREiFwJ6ejOQGVknIBarRa5GqLm16h9oIKCghAUFAQAsLOzw8yZMxv15IWFhWjXrh3GjRun//Te+PHjMWLECJw+fRoJCQmwtbXFjBkzIJfL4evri5ycHCxduhSxsbGorq7G8uXL8fbbb6Nfv34AgLlz56JPnz7Yvn07hg4dirVr1zZ5DCIST0VFObKyTgHgGShT4uPjC3t7e5SVlSEn5xx8fDqLXRJRs2pUgLpx4wYOHjyI8vLyej/C2tBr4bm5ueHLL7/U//n69euIj4+Ht7c3/Pz8sGDBAkRHR0Mury0zJiYGS5YsQX5+Pi5duoSysjLExMTo71coFAgJCUFSUhKGDh2K5OTkJo9BROI5ceI41Go1vLy84e3tjcLCMrFLIgByuRxBQSFITT2MEyeOMUCR1TE4QO3ZswdvvPEGKioq6r2/sRcTfv/99/Vni7755hs4OjoiNzcXAQEBdY5r1aoVAODy5cvIzc0FALRu3fqWY65cuQIAgozRWHK5wTOkzUImk9b53VKxT8uQnq5dpBwaqt2+wFL71DGn17Nr125ITT2M9PTjeOSRkQY/3px6bQr2aZkMDlBffvklOnfujHfffRdeXl6QSoX5Rr3wwgt48skn8dNPP+G1117Djz/+iMrKyls+1WdnZwcAqKqq0oe4+o4pLi4GAEHGaAypVAI3N6dGP745KBQOYpfQLNinecvMPAEA6NEjGoDl9vlv5tBnz55R+P77lTh5Mr1J73fm0KsQ2KdlMThAnT17FosWLUJUVJSghfj5+QEAZs6cidTUVHz//fewt7e/ZSF3VVUVAO1+VPb29gCA6upq/de6YxwctC+gEGM0hlqtQUlJeaMfb0wymRQKhQNKSiqgUlnu4k/2aRlSUlIAAAEBIQBgsX3qmNPr2amTdu3q8ePHcfVqEWxsbAx6vDn12hTs03woFA4NPoNmcIBq06YNSktLDS6qPvn5+UhISMCDDz6o39tFKpXC19cXV69ehbe3N65evVrnMbo/e3l5QalU6m/r0KFDnWN0i9yFGKOxlErT/gFSqdQmX6MQ2Kf5ysvLQ15eHmQyGYKCtAHKEvusjzn02bZtBzg7O6O0tBQnT57Uv0aGModehcA+LYvB829jx47F119/LciO41evXsV//vMfHDp0SH9bTU0N0tPT4evri+joaKSkpEClUunvT0hIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6err+DJkQYxCROI4e1V4qys8vAI6OjiJXQ/8mlUrRpYv24s66iz0TWQuDz0Bt2rQJeXl5GDx4MNzd3etMewHaReQ7duxo0FhBQUHo3bs3PvzwQ8yaNQsKhQKLFy9GSUkJXnzxRdjZ2WHZsmWYOnUqXn75ZRw9ehQrV67Ehx9+CEC7bikuLg5z5syBu7s72rZti88//xze3t4YPHgwACA2NrbJYxCRONLStAEqLIzbF5iq0NAwJCb+jaNHU/HEE0+LXQ5RszE4QHl7az9KLASJRIKvvvoKX3zxBd544w3cuHEDUVFR+OGHH9CmTRsAwLJlyzB79myMHDkSnp6emDx5MkaOrP20x8SJE6FUKjFt2jRUVlYiOjoa8fHx+kXhHh4eTR6DiMSRlpYKAAgNZYAyVd27hwEAjh5NFbUOouYm0dS3kRM1mUqlRkGBae5XI5dL4ebmhMLCMouep2af5q2yshK9e0dDqazB5s070LFjB4vs89/M7fUsLi5Cv37affT++isBbm5uDX6sufXaWOzTfLi7OxlvEfnly5dve59UKoWjoyMUCoWhwxIR1ZGRcQJKZQ08PT3Rpk1bscuh23BxcUWnTj44dy4bx46lom/fAWKXRNQsDA5QAwcOhEQiueMxLi4ueP755zF+/PhGF0ZE1i01Vbv+KTQ0/K7vOSSu7t3DcO5cNo4eTWOAIqthcID65JNPMH36dPTo0QPDhg1Dy5YtkZ+fj23btmH37t0YP348ysrK8M0338DV1RXPPPOMMeomIgunW0DO9U+mr3v3MPz22y9cB0VWxeAAtXnzZgwdOhQff/xxndtHjBiBDz74AMePH8fixYuhUCjw008/MUARkcE0Gg0DlBnRLSQ/fvwoVCqVfl8/Iktm8D5Qhw4dwrBhw+q97/7778fBgwcBAJGRkbhw4ULTqiMiq3ThwnkUFhbA1ta20ZszUvPx9fWDk5MTysvLceZMltjlEDULgwOUq6srMjMz670vMzMTzs7OAIDy8vImXQqFiKyX7uxTcHAXbidiBmQyGbp21W2oeUTkaoiah8EBavjw4Zg/fz5WrlyJvLw81NTUIC8vD6tWrcLChQsxfPhwFBcXY+XKlfqrpxMRGYLTd+ZHN42n27uLyNIZvAbqjTfeQH5+Pj755BN88skn+tulUiliY2Px5ptvYtu2bUhPT8fKlSsFLZaIrAN3IDc/3bpp/8N87Bgv6ULWweAAJZfL8fHHH2PcuHFITExEYWEhvLy8EBERgfbt2wMA+vbti3379vHUOxEZ7MaNG8jKOg2g9qwGmb7u3bUB6ty5bBQXF8HFxVXcgoiMzOAApdOhQwd06NCh3vtcXFwaXRARWbdjx9Kg0WjQrl17tGzpKXY51ECurm7o2LETcnLO4ejRNPTp00/skoiMqkEBatCgQfj6668RFBR01400DbmYMBHRv3H9k/nq1i0UOTnncOwYAxRZvgYFqB49esDJyUn/NXcFJiJjYYAyX6Gh4fj991+5kJysQoMC1M2bZt68cJyISEgqlQrHjx8FwABljmo31Ezjhppk8QzexgAASktLkZeXBwCorq7GsmXLMGvWLCQlJQlaHBFZl7Nns1BaWgpHR0f4+fmLXQ4ZyNfXDw4OjigrK8PZs9xQkyybwQHq6NGjGDhwIFatWgUAmDVrFubMmYPffvsNL7zwAnbu3Cl4kURkHXTTd926hfHshRmSy+Xo2rUbAODoUW5nQJbN4AA1d+5cdO7cGU8++SQqKyuxadMmPPPMMzh06BAee+wxLF682Bh1EpEVSE3VrX8KE7cQajTdNB4vLEyWzuAAlZaWhnHjxqF9+/ZISEhAZWUlRowYAQB46KGHcPr0acGLJCLroFt8zA00zZcu/DJAkaUzOEBJpVL9Bpl79uyBQqFA9+7aayCVlpbC3t5e2AqJyCpcv34NFy7kQCKRoGtXXgbKXHXrFgYAyM4+i6KiQnGLITIigwNU165dsW7dOhw5cgRbt25F//79IZFIkJ+fj6VLl6Jr167GqJOILNzhwykAAH//QCgUCpGrocZyc3ODj09nALVTskSWyOAANXnyZCQkJODpp5+GTCbDuHHjAADDhg3DuXPn8MYbbwhdIxFZgcOHtZ/ijYyMErkSaqrw8EgAwOHDySJXQmQ8Bl/KJSQkBH/++SfOnDkDf39/ODo6AgBmzJiBiIgIeHry0gtEZDjdP7YREQxQ5i4iIgobNvyMI0dSxC6FyGgadS08Z2dnhIbWXaMwZMgQQQoiIutTXFyE06dPAWCAsgS6M1AZGSdQUVEOBwdHkSsiEl6jNtIkIhJSauphaDQadOrkAw+PlmKXQ03Upk1beHl5Q6lU4tixo2KXQ2QUDFBEJLqUFE7fWRKJRMJ1UGTxGKCISHS6f2QjI6NFroSEogvDXAdFlooBiohEVV5ehoyMEwB4BsqSRERoz0ClpaWipqZG5GqIhMcARUSiOno0DSqVCq1bt0Hr1m3ELocE0rmzHxQKF1RWViAzM0PscogExwBFRKLi9gWWSSqVIjw8AgCQkpIkcjVEwmOAIiJR6f5xZYCyPFFRPQAAKSmHRK6ESHgMUEQkmurqahw7lgaAO5BbIl2AOnw4GUqlUuRqiITFAEVEojlx4hiqq6vh7u6Bjh19xC6HBBYQEIQWLRQoKytDRka62OUQCYoBiohEc/P0nUQiEbkaEppMJtNvTZGczGk8siwMUEQkmtr9nzh9Z6l003jJyYkiV0IkLAYoIhKFUqlEauphAEBEBDfQtFTR0T0BaDfU5H5QZEkYoIhIFCdPZqC8vBzOzi3g5+cvdjlkJP7+AXBxcUF5ebl+w1QiS8AARUSi0E3fhYdHQCaTiVwNGYtUKkVkpG4aj+ugyHIwQBGRKGovIMzpO0sXFaV9jZOSuA6KLAcDFBE1O5VKxQXkVqRHjxgA2nVQ1dXVIldDJAzRA1RRURGmT5+Ovn37IiIiAk8//TSSk5P192dkZCAuLg5hYWHo378/4uPj6zxerVZj/vz56NOnD0JDQzF69Gjk5OTUOUaIMYhIOCdPZqCkpBhOTk4ICekqdjlkZL6+/mjZ0hOVlZVISzssdjlEghA9QL311ltIS0vDl19+iXXr1qFLly546aWXcObMGRQWFmLUqFHo1KkT1q9fjwkTJmDevHlYv369/vGLFi3C6tWrMWvWLKxZswYSiQRjxozR/y9HiDGISFiJiQkAtB9xl8vlIldDxiaRSNCz5z0AgIMHE0SuhkgYogaonJwcHDhwAB988AGioqLQuXNnTJ06FV5eXvj999+xdu1a2NraYsaMGfD19UVsbCxefPFFLF26FID2MhDLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYhIWLoA1aPHPSJXQs2lNkD9LXIlRMIQNUC5ubnh22+/RdeutafwJRIJNBoNiouLkZycjOjo6Dr/Q42JiUF2djby8/ORmZmJsrIyxMTE6O9XKBQICQlBUpJ2h2MhxiAi4VRXV+v3f+rZM+YuR5Ol6NmzFwAgPf04iouLxC2GSACinjtXKBTo169fndu2bt2K8+fPo3fv3pg7dy4CAgLq3N+qVSsAwOXLl5GbmwsAaN269S3HXLlyBQCQm5vb5DEaSy4XfYa0XjKZtM7vlop9mqbDh9NQWVkJD4+WCAwMbPAlXMytz8ay1D7btm0NX18/nDmThZSUQ7j//gcsttd/Y5+WyaQWH6SkpOC9997DoEGDMHDgQHz88cewtbWtc4ydnR0AoKqqChUVFQBQ7zHFxcUAgMrKyiaP0RhSqQRubk6NfnxzUCgcxC6hWbBP05KWpv2QSN++feDu7mzw482lz6ayxD779+/3T4BKxJNPxupvt8Re68M+LYvJBKgdO3Zg0qRJCA0NxZdffgkAsLe3v2Uhd1VVFQDA0dER9vb2ALRTArqvdcc4ODgINkZjqNUalJSUN/rxxiSTSaFQOKCkpAIqlVrscoyGfZqm3bv3AADCw6NRWFjW4MeZW5+NZcl9RkT0QHx8PPbs2YvCwjKL7vVm7NN8KBQODT6DZhIB6vvvv8fs2bMxePBgzJkzR382yNvbG1evXq1zrO7PXl5eUCqV+ts6dOhQ55igoCDBxmgspdK0f4BUKrXJ1ygE9mk6SktLcfz4MQBAVFTPRtVrDn0KwRL7DAuLhFwux8WLF5CdfQ4+Pp0AWGav9WGflkX0icoff/wRM2fOxLPPPouvvvqqzlRadHQ0UlJSoFKp9LclJCTAx8cHHh4eCAoKgrOzMxITa3e3LSkpQXp6OqKiogQbg4iEkZJyCCqVCu3bd0CbNm3FLoeamZOTM0JDwwAAf/+9X9xiiJpI1ACVnZ2Njz76CIMHD8bYsWORn5+Pa9eu4dq1a7hx4wZiY2NRWlqKqVOnIisrCxs2bMDKlSsxduxYANp1S3FxcZgzZw527tyJzMxMvPnmm/D29sbgwYMBQJAxiEgYiYkHAdTuTE3W5957+wIADhzYK3IlRE0j6hTetm3bUFNTg+3bt9+y59LIkSPxySefYNmyZZg9ezZGjhwJT09PTJ48GSNHjtQfN3HiRCiVSkybNg2VlZWIjo5GfHy8/kyWh4dHk8cgImEcOqTd/0n3kXayPvfe2xfz53+JQ4cO/rMe1bQ/bEN0OxKNRqMRuwhLpFKpUVDQ8AWyzUkul8LNzQmFhWUWPU/NPk3L9evXcN99fQAAf/2VADc3N4Meby59NpWl96nRaHD//f1w7dpVLFmyHMOGDbHYXnUs/TXVsYQ+3d2dGryIXPQ1UERkHQ4d0k7fBQYGGxyeyHJIJBL07q2dxtu3b4/I1RA1HgMUETULXYDi7uOkC1D793MdFJkvBigiMjqNRsPr35Fez569IJfLce5cNs6dOyd2OUSNwgBFREZ38eIFXLlyGXK5DSIiIsUuh0Tm7OyMsLAIAMBff/0lcjVEjcMARURGpzv71L17KBwd+akrqt3OYOfOnSJXQtQ4DFBEZHS103dc/0Ra/foNAAAcOHAAZWWlIldDZDgGKCIyKqVSiYMH/wYAxMRw/yfS8vHpjA4dOqK6uhoHDnBXcjI/DFBEZFTHjx/FjRslUChc0LVrd7HLIRMhkUgwYMAgAMCuXTtErobIcAxQRGRUumuexcRoP3lFpDNwoDZA7d27BzU1NSJXQ2QYBigiMirdXj/33ttH5ErI1ISFRcDd3R0lJcVITU0RuxwigzBAEZHRFBTkIz39OACgV6/eIldDpkYmk+G+++4DAPz11y6RqyEyDAMUERlNQoJ28XhgYDA8PVuJXA2ZoiFDhgAAdu/eCV6alcwJAxQRGc2BA7rpO559ovr169cPdnZ2uHz5Ek6ezBS7HKIGY4AiIqNQq9VISNAuIO/Vi+ufqH4ODg76a+Nt3/6HyNUQNRwDFBEZxYkTx1FYWAgnJyeEhoaLXQ6ZsCFDHgSgDVCcxiNzwQBFREaxb99uANqzTzY2NmKWQiauX7/+sLW1xfnzOTh16qTY5RA1CAMUERnF3r27AQB9+/YXtQ4yfU5Ozujdux8ATuOR+WCAIiLB5eXlIjMzHRKJRH/RWKI7GTxY+2m8P//cymk8MgsMUEQkuH37dgMAunULhbu7u5ilkJno25fTeGReGKCISHC66bt+/QaIWwiZDScnZ/3Zyj//3CpyNUR3xwBFRIKqqKhAYmICAK5/IsM88MBDAICtW3+HWq0WuRqiO2OAIiJBJSUdRFVVFVq3bgM/vwCxyyEz0rfvADg5OeHy5UtISzsidjlEd8QARUSC2r1be02zPn36QyKRiFwNmRMHBwcMGnQ/AGDz5t9ErobozhigiEgwKpVKH6D69x8ocjVkjoYOfRgA8Oeff6C6ulrkaohujwGKiARz9GgaCgry4ezcAtHRPcQuh8xQVFQPeHq2QklJMfbv3yt2OUS3xQBFRIL566/tALSLx21sbEWuhsyRTCbDgw8OAwBs2cJpPDJdDFBEJAiNRoNdu3YAAAYOvE/kasic6abx9uz5C0VFhSJXQ1Q/BigiEkRW1ilcvHgBtra26NWrt9jlkBkLCAhEYGAwampqsGXLJrHLIaoXAxQRCUJ39umee+6Fo6OTyNWQOZNIJBg58jEAwIYNP/PSLmSSGKCISBC6ADVgAKfvqOkeemg47OzskJV1GsePHxO7HKJbMEARUZOdP5+DkyczIJPJ0K8fty+gplMoFBg8+AEAwC+//CxyNUS3YoAioibbvv0PAEB0dE+4ubmJXA1ZCt003h9/bEZ5eZnI1RDVxQBFRE3255/aAHX//Q+KXAlZkoiIKHTo0BHl5eXYunWz2OUQ1cEARURNkpOTjZMnMyCXy7l9AQlKIpHgsceeBACsWfMDF5OTSWGAIqIm0Z196tnzHri6cvqOhPXII7Gwt3fAqVMnceRIitjlEOkxQBFRk/z551YA0C/4JRKSQuGCoUOHAwB++ul7kashqsUARUSNdvbsGZw+fQpyuQ2n78honnrqWQDArl3bkZeXK3I1RFoMUETUaH/8oV3YGxPTCwqFi8jVkKXy9w9EZGQ0VCoVfv55tdjlEAFggCKiRtJoNPrLbDz00DCRqyFL9/TTcQCAdetWo6KiQuRqiEwsQC1atAjPPfdcndsyMjIQFxeHsLAw9O/fH/Hx8XXuV6vVmD9/Pvr06YPQ0FCMHj0aOTk5go9BRHUdPZqKixcvwMHBEQMGDBK7HLJw/fsPQrt27VFUVIRff10vdjlEphOgvvvuO8yfP7/ObYWFhRg1ahQ6deqE9evXY8KECZg3bx7Wr6/9y7No0SKsXr0as2bNwpo1ayCRSDBmzBhUV1cLNgYR3WrzZu3Zp0GDBsPBwVHkasjSyeVyPP/8aADA//63AkqlUuSKyNqJHqDy8vLw8ssvY968efDx8alz39q1a2Fra4sZM2bA19cXsbGxePHFF7F06VIAQHV1NZYvX44JEyagX79+CAoKwty5c5GXl4ft27cLNgYR1VVTU4M//9wCQHvNMqLm8PDDI+Hm5o7Lly/pP/1JJBbRA9SJEyfg4uKC3377DaGhoXXuS05ORnR0NORyuf62mJgYZGdnIz8/H5mZmSgrK0NMTIz+foVCgZCQECQlJQk2BhHVlZCwH0VFRWjZ0hM9esTc/QFEArC3t8czz2iXeXz3XTw31iRRye9+iHENHDgQAwfWf/HR3NxcBAQE1LmtVatWAIDLly8jN1f7cdbWrVvfcsyVK1cEG6Ox5HLR82m9ZDJpnd8tFfs0ns2bfwMAPPjgUNjb2zbLc/L1tDyN6fWZZ57F8uVLcepUJv7+ey/69RtgrPIEYy2vqbX0qSN6gLqTyspK2NrWfXO2s7MDAFRVVek/iVHfMcXFxYKN0RhSqQRubk6NfnxzUCgcxC6hWbBPYRUWFmL37l0AgGeeebLZf875eloeQ3p1c3PCiy++gG+++QZLlnyNESOGQiKRGLE64VjLa2otfZp0gLK3t79lIXdVVRUAwNHREfb29gC065h0X+uOcXBwEGyMxlCrNSgpKW/0441JJpNCoXBASUkFVCq12OUYDfs0jh9+WI2qqioEBgahXbvOKCwsM/pzAnw9LVFje3366Rfw3XcrcfToUfzyyyaT/xSotbymltCnQuHQ4DNoJh2gvL29cfXq1Tq36f7s5eWl/xTG1atX0aFDhzrHBAUFCTZGYymVpv0DpFKpTb5GIbBPYW3YoP0E6yOPxEKl0gBo3nUofD0tj6G9KhSuePpp7VTewoXz0bt3f7M4C2Utr6m19GnSE5XR0dFISUmBSqXS35aQkAAfHx94eHggKCgIzs7OSExM1N9fUlKC9PR0REVFCTYGEWllZJzAyZMZsLGx4afvSFTPPz8ajo6OOHkyA7t28RPT1PxMOkDFxsaitLQUU6dORVZWFjZs2ICVK1di7NixALTrluLi4jBnzhzs3LkTmZmZePPNN+Ht7Y3BgwcLNgYRaf3yi/bs08CBg+Hi4ipuMWTVXF3d8OyzLwAAvv56HveFomZn0lN4Hh4eWLZsGWbPno2RI0fC09MTkydPxsiRI/XHTJw4EUqlEtOmTUNlZSWio6MRHx+vXxQuxBhEpP1Ahu7SLY88EityNUTas1A///wTzp49g19+WYfHH39K7JLIikg03EjDKFQqNQoKmmdxraHkcinc3JxQWFhm0fPU7FNYv/32C6ZPfxetW7fB5s07IJU27wlsvp6WR4heV6/+Hp98Mgvu7h747bdtcHZ2FrjKprOW19QS+nR3d2rwInKTnsIjItOxdu1PAIDHHnuy2cMT0e3Exj6JDh06oqAgHytWLBW7HLIifBckors6ceIYjh8/ChsbG4wc+ZjY5RDp2djY4I033gYAfP/9d7h06aLIFZG1YIAiortas+ZHAMDgwQ/A3d1D5GqI6howYBCionqgqqoKn302W+xyyEowQBHRHRUVFWLbNu2Fg5988hmRqyG6lUQiwbvvTodcLseePX/pd8onMiYGKCK6o40bN6CqqgpBQSHo3j1M7HKI6uXr64fnnx8FAPj001moqDDNK0GQ5WCAIqLbqqmpwZo1PwDQnn0yh92eyXqNGTMOrVu3wZUrl/HNNwvFLocsHAMUEd3Wjh3bcOXKZbi7e3DncTJ5Dg6OmDJlGgBg1aoVSEs7InJFZMkYoIioXhqNBitXLgcAPP10HOzs7ESuiOju+vUbiGHDRkCj0WD69HdRWVkpdklkoRigiKheSUmJyMxMh729PXd4JrMyefJ78PT0RE7OOXz99Vdil0MWigGKiOqlO/s0YsSjcHV1E7kaooZTKFzw/vszAQCrVn2Hv//eL3JFZIkYoIjoFidPZuLAgb2QSCSIi3tR7HKIDNa3b3/9mdNp097B9evXRK6ILA0DFBHd4ttvvwYA3H//g2jfvoPI1RA1zn/+MwUBAYEoKMjH1KmToVKpxC6JLAgDFBHVcfr0SezcuR0SiQRjxowTuxyiRrO3t8enn86Fvb0DEhMT8M03C8QuiSwIAxQR1fHtt98AAO67bwj8/PxFroaoaXx8OuP99z8EACxbthh//vmHyBWRpWCAIiK9rKzT2LFjGwDglVd49oksw9ChD+O5514EAEyf/i5OnswUtyCyCAxQRKT3zTfzodFoMGjQYPj7B4pdDpFg/u//JuGee+5FZWUFJk58FXl5uWKXRGaOAYqIAACpqYexc+d2SKVSjB//f2KXQyQouVyOTz/9Ej4+nZGXl4vXXhuDkpISscsiM8YARUTQaDSYO/dzAMCIEbHw9fUTuSIi4SkULvj666Xw9PREVtZpvPnma9ypnBqNAYqI8NdfO5GWdgT29vYYN+51scshMpo2bdpiwYJv4eTkhJSUJPznPxNQVVUldllkhhigiKxcTU015s2bAwB49tkX0KqVl8gVERlXUFAw5s9fDHt7Bxw4sA+TJk1EdXW12GWRmWGAIrJy33+/Ejk55+Du7oEXX3xZ7HKImkVkZDQWLPgG9vb22LdvD9588zVUVJSLXRaZEQYoIit25cplLFmyCADw5ptvo0WLFiJXRNR8oqNjMG/eN/ozUWPHjkZxcZHYZZGZYIAismJffPEJKisrEB4eiWHDRohdDlGz69nzHixZshwKhQuOHk3FqFFxuHTpothlkRlggCKyUvv27cGOHX9CJpPhvfemQyKRiF0SkShCQ8OxfPn38PRshbNnsxAX9zgOH04WuywycQxQRFaopKQY//3v+wCAZ599nptmktXz8/PH99//jODgEBQWFuKVV0Zh7dqfoNFoxC6NTBQDFJEV+uyzj3Dt2lV07NgJ48ZNFLscIpPg5eWF5ct/wODBD0CprMFHH32Id9/9D8rKSsUujUwQAxSRldm9exd+//1XSKVS/Pe/H8PBwUHskohMhoODAz77bC7eemsyZDIZ/vhjC556KhapqYfFLo1MDAMUkRXJy8vDhx9OBQA899wohIaGi1wRkemRSCR4/vnRiI9fBW/v1rhwIQejR8dh/vwvuOkm6TFAEVmJmpoavPPOmygsLERQUAjGj+fUHdGdhIVFYO3aXzFs2Aio1WosX74Ujz/+MBITE8QujUwAAxSRlVi48Cukph6Gs7MzPv/8K9jZ2YldEpHJUygUmDXrU3z55QJ4enri/PkcjB07Cm+//QZycs6JXR6JiAGKyAps3fo7Vq6MBwB8+OFHaN++g8gVEZmXgQMHY8OGLXjqqWchkUiwffsfiI0dhtmzZ+Datatil0ciYIAisnBHjqRg+vR3AQDPPz8agwbdL3JFROapRYsWmDLlfaxZsxG9e/eDUqnEzz+vxvDhQ7BgwVzuYm5lGKCILFhOzjm8+eZrqKmpwcCBg/HGG5PELonI7AUEBGLhwiWIj1+F7t1DUVlZgfj4JRgyZABmz/4Q586dFbtEagYMUEQW6uLFCxg7dhSKiorQtWt3zJ79GaRS/pUnEkpkZDRWrlyNuXO/RmBgMCorK/Dzzz/hkUcewuuvj8XBg39DrVaLXSYZiVzsAohIeJcuXcSYMS8gN/cKfHw6Y968RdzvicgIJBIJBgwYhP79ByI5+RB++GEl9uz5C/v378H+/XvQpk1bDBv2MJ599il4eLQWu1wSkETDfeqNQqVSo6CgTOwy6iWXS+Hm5oTCwjIolZb7vyNr7fPMmSy8/voruHLlMjp27IRly/4HT89WYpfZZNb6eloyS+01J+ccfvppFTZt2oiystp/B7p06YoHHxyOAQMGoW3bdiJWaByW8Hq6uztBJmvYmXoGKCNhgBKfNfb5999/4623JqC09AY6duyEpUtXolUrL7FLFIQ1vp6W3Cdg+b1WVlZiz55d2LJlEw4c2AelUqm/z9fXH3379kffvgPQvXsoZDKZiJUKwxJeTwYoE8AAJT5r6tPV1RGLFi3BZ599DKVSifDwSMyduxCurm5ilycYa3o9raFPwHp6lculUKsr8dNPa/Hnn9uQmnoYKpVKf3+LFgpEREQiKqoHIiOjERgYbJaByhJeTwaoRlCr1Vi4cCF+/vlnlJSUIDIyEh988AE6duzYqPEYoMRnLX2WlhZj5szp2LZtGwDggQeG4sMPP7K4jTKt5fW0lj4B6+n1332WlBTjwIF92Lt3Nw4c2IeSkuI6xzs7O6Nbt1CEhHRFSEgXhIR0hbd3a0gkEpE6aBhLeD0ZoBph4cKF+PHHH/Hxxx/Dy8sLn3/+OS5cuIDff/8dtra2Bo/HACU+S+9To9Fgy5bf8eWXnyI//zpsbGzw1luT8dRTcSb/RtsYlv566lhLn4D19HqnPpVKJTIy0pGSkoSUlEM4ciQFpaWlt4zh5uaGgIAgdO7sB1/f2l8KhUtztXFXlvB6MkAZqLq6GjExMXj77bfx9NNPAwBKSkrQp08ffPTRRxg6dKjBYzJAic+S+0xLO4IFC+YiOfkQAMDX1xeffPIF/P2DRK7MeCz59byZtfQJWE+vhvSpUqlw6lQmjh8/hvT040hPP4EzZ07XWT91M1dXV7Rt2x5t27ZDu3bt0LZte7Rrp/2zl5c3bGxsjNFSvSzh9TQkQHEbAwCZmZkoKytDTEyM/jaFQoGQkBAkJSU1KkAZy/Xr15Cbm4va3Kv9XfdnjUZz09eo9xipVIIWLexRUlIBpVL1r2Nwy3j/Hrchx95aV/3H3nzcrePgrsdq+5HBxkYOudwGcrlc/7WdnS3c3VugvLwGMpkc9vaOcHBwgIODQ7O+qQhFrVYjMTEBK1fG4+DBvwEA9vb2eOWVcXjjjQkoL1ea7ZsWEWnJZDIEB3dBcHAX/W1VVVU4deokzpw5jTNnTuPs2TM4cyYLublXUFRUhKKiIpw4caze8dzc3NCypSdatvSEp2erf373hLt7S7i6usLFxQUKhQtcXFzg6OhkkWevjYUBCkBubi4AoHXrunt0tGrVCleuXBGjpHrl5eVi6ND7bvs/EWo4GxsbODg4wtFRG6oUChe4urrC1dUNLi6u+q9vvs3NTft7cy7u1Gg0OHkyA3v2/IXffvsFly5dBADI5XIMGzYCY8aMQ8eOHWBnZ4fycv5cEFkiOzs7dOvWHd26da9ze1lZKS5evIhLly7i0qULuHjxAi5duoRLly7g0qWLqK6uRmFhIQoLC3H69Km7Po9cLkeLFoo6ocrJyRmOjrr3ytrfHRwc/rndSf91ixbOqKhwQ0WFChKJDLa2trCxsbHYDXwZoABUVFQAwC1rnezs7FBcXFzfQxpELhf2h8bd3Q3h4ZH6f0R1/1Oo/Q+D5F+31/5e91gJZDIp1Oraszj1PabumLc/pr5j71bHrbU2tI66vWg0gFqtQk2NEkplDZRKJZRKJWpqtF+r1SpUV1ejpqYG5eXl+k++1NTUoKam+JbFm3cjlUrh6uoGD4+W8PDwgIdHS7Rs6QF3d486t3l4eMDd3R02Ng1fP6fRaHDt2lWcO3cOmZnpSEtLxeHDKXUuVNqiRQsMG/YwXnhhNNq1aw8A+tPNDT3tbK7Yp+Wxll6N1aeLiwIuLiHo0iXklvvUajWKiopw7dpVXL9+DdeuXcO1a1dx7do1XL9+Dfn511FSUoLiYu0ZrOrqaiiVShQWFqCwsEDQOrUzA7b6QGVrW/v1zbfLZDLI5TLIZHLIZFLIZHJIpVLI5drfb77dzs4Ojz76GPz9AwSt1aC+RHtmE2Jvbw9AuxZK9zWgPW3a2N2bpVIJ3NycBKlPx83NCRs3bhB0TGui0WhQXV2N8vLyOr9KS0tRVFSEwsJCFBQU6P/Hpvu6oKBAf5pcrVajoCAfBQX5OH367s/p6uqKli1bokWLFre8eSiVSlRWVqK0tBT5+fm4fv26PszfzMHBAX369MFDDz2EYcOG3fZnUqGwjp3G2aflsZZem7tPD48W8PVt36BjKyoq9O9zxcXF+vfE0tJSlJWV6d8vy8rKUFZWhoqKCv3XN99XWVmJmpqaOmPr/mNbUVEuaH+lpcVYuHChoGMaggEKtVN3V69eRYcOHfS3X716FUFBjVuUq1ZrUFIi7A+LUGQyKRQKB5SUVEClstw1M7fv0xaOjrZwdHQ1aLyamhoUFRUiP/+6PvAUFBT882ftbfn52tsKCvKhUqn0b0gNr1mGNm3aws/PH926dUdoaBjCwyP1Z0crK9WorCz712Os/fW0LNbSJ2A9vZpLn/b2Cnh7K+Dt3bjH6/osKipDZWUVampq/pkBqEZ1dbV+NkD3Z939ul9qtRoqlRIqVd3f1Wo1lEoV1GoVlEoVVColJBIJhg4djsJCYT+spVA4cBG5IYKCguDs7IzExER9gCopKUF6ejri4uIaPa6pL+hVqdQmX6MQhOpTIpHBza0l3Nxaws/vzseq1WoUFxf/E6jyUVFR/s+bhPbNo6amBnK5HLa2dnB0dISbmxvc3T3QunXreqf9GlI/X0/LYi19AtbTq7X0qdEAMpkNZDIb2Ns7GvW5xPx+MkBBu/YpLi4Oc+bMgbu7O9q2bYvPP/8c3t7eGDx4sNjlkRmSSqVwc3ODm5sbAH+xyyEiIoExQP1j4sSJUCqVmDZtGiorKxEdHY34+PhGbaJJRERElo0B6h8ymQxvv/023n77bbFLISIiIhNn2Z8dJSIiIjICBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGUii0Wg0YhdhiTQaDdRq0/3WymRSqFRqscswOvZpWdin5bGWXtmneZBKJZBIJA06lgGKiIiIyECcwiMiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGYgBioiIiMhADFBEREREBmKAIiIiIjIQAxQRERGRgRigiIiIiAzEAEVERERkIAYoIiIiIgMxQFmYRYsW4bnnnqtzW0ZGBuLi4hAWFob+/fsjPj7+jmOo1WosW7YMQ4YMQVhYGIYOHYqff/7ZmGUbTIg+b1ZdXY3hw4djypQpQpfaJEL1efToUTz77LPo3r07+vXrh/nz50OtVhurbIMJ1eemTZswdOhQhIaG4qGHHsL69euNVXKj1dcrAGRnZyMsLAwXL1686xg//PADBg0ahO7du+PJJ5/EsWPHjFFqkzS1z8rKSnzxxRcYOHAgwsPD8eijj2Lnzp3GKrfRhHg9dQoKCtC7d28sWLBAyBIFIUSfe/bswaOPPopu3brhvvvuww8//GCMUpuPhizGihUrNIGBgZq4uDj9bQUFBZqePXtqpk6dqsnKytKsW7dO061bN826detuO86iRYs00dHRmi1btmhycnI0a9as0XTp0kWzYcOG5mjjroTq82YzZ87UBAQEaN555x1jlW0wofo8e/asJjQ0VDNlyhTN2bNnNVu2bNGEhYVpvv322+Zo466E6vPvv//WhISEaH766SfN+fPnNd9//70mKChIs2vXruZoo0Hq61Wj0WgyMzM1/fr10wQEBGguXLhwxzE2bNigCQ0N1fz222+a06dPa95++21Njx49NPn5+cYs3SBC9Dl16lRN//79NXv37tWcO3dOs3jxYk1QUJDm4MGDxizdIEL0ebPx48drAgICNPPnzxe61CYRos/ExERNcHCw5osvvtDk5ORoVq9erQkODtZs3rzZmKUblVzsAEdNl5eXh6lTpyIlJQU+Pj517lu7di1sbW0xY8YMyOVy+Pr6IicnB0uXLkVsbGy9461evRqjR4/Ggw8+CADo0KED0tLSsG7dOowcOdLo/dyO0H3q7Nu3D1u3boW/v78xy28woftcsmQJ/Pz88NFHH0EikcDHxwenT5/G4cOHm6Od2xK6z127diEwMBBPPfUUAODZZ5/FunXrsH//fgwYMMDo/dzJnXr95ptvsHjxYvj6+uLKlSt3HWvx4sWIi4vD8OHDAQAfffQR7rvvPqxbtw6vvPKKUepvKKH6rKiowMaNG/Hxxx+jT58+AICxY8ciISEB69evR8+ePY3WQ0MI+XrqrFmzBtnZ2fD09BS63EYTss8FCxbgvvvuw1tvvQWg9t+V5ORkPPTQQ0ap39g4hWcBTpw4ARcXF/z2228IDQ2tc19ycjKio6Mhl9dm5ZiYGGRnZyM/P/+WsdRqNT755BM88sgjt9xXXFwseO2GELJPnYKCArz77ruYOXMm3NzcjFa7IYTuc9++fRg2bBgkEon+tokTJ+Kbb74xTgMNJHSfrq6uyMrKwsGDB6HRaJCYmIgzZ87cMrYY7tTrvn378Pnnn+Odd9656zj5+fk4d+4cYmJi9LfJ5XJERUUhKSlJ8LoNJVSfEokEixcv1oenm4n9PgQI16dOdnY25syZg88//xy2trZCl9toQvVZUVGB5ORkfejX+eijjzB9+nRBa25OPANlAQYOHIiBAwfWe19ubi4CAgLq3NaqVSsAwOXLl+Hh4VHnPqlUinvuuafObRcvXsTmzZv1/7MXi5B96kydOhUDBgzAwIEDsWLFCmELbiQh+ywtLcX169fRokULvPfee9i7dy8UCgUeeeQRvPTSS5DJZMZpogGEfj2ff/55HDt2DC+88AJkMhlUKhXGjBmDhx9+WPjiDXSnXn/88UcAQGJi4l3Hyc3NBQC0bt26zu2tWrVCZmZmE6tsOqH6tLe3R+/evevclpaWhoMHD2Lq1KlNL7SJhOoTAGpqavCf//wHL730Erp06SJYjUIQqs+cnByo1WrIZDJMnDgRSUlJaNWqFeLi4vD4448LWnNz4hkoC1dZWXnL/2js7OwAAFVVVXd9/LVr1/DKK6/Aw8MD48aNM0qNQmhMn6tXr8aZM2fw7rvvGr0+oRjaZ2lpKQDg008/RZs2bbB06VK8/PLLWLJkCRYuXGj8ghupMa/nlStXUFRUhOnTp2P9+vWYMmUK/ve//2HDhg1Gr7e5VFRUAEC935uG/H02V2fPnsVrr72Grl274sknnxS7HEHNnz8fdnZ2GDNmjNilGI3ufWj69OmIiorC8uXLMXLkSHz44YdYt26dyNU1Hs9AWTh7e3tUV1fXuU33Ruvo6HjHx549exavvPIKampqsGrVKri4uBitzqYytM+zZ8/i888/R3x8/F2/D6bE0D5tbGwAAL169cLrr78OAAgODkZBQQG+/vprTJw4sc7UnqlozM/txIkTMXz4cDz77LMAtH0WFxfj008/xSOPPAKp1Pz/v2hvbw8A9X5vHBwcxCjJ6A4fPozx48fD09MT3377rUlNcTXVoUOH8NNPP+GXX34R9WywselesxEjRuD5558HoP37mZOTgxUrVuCxxx4Ts7xGM/93FLojb29vXL16tc5tuj97eXnd9nEpKSl46qmnYGdnh9WrV6NDhw5GrbOpDO1zy5YtKCsrw6hRoxAeHo7w8HAkJydj06ZNCA8Px+XLl5ulbkMZ2qerqyvs7OxumQ7z9/dHeXk5CgoKjFdsExjaZ0FBAbKzs9GtW7c6t4eFhaGoqAhFRUVGq7U5tWnTBgDq/d54e3uLUZJRbd++HS+++CJ8fX3xww8/wN3dXeySBPXLL7+gvLwcDz/8sP596PLly1iyZAnCw8PFLk8wur+z/34f8vPzM2ibB1PDAGXhoqOjkZKSApVKpb8tISEBPj4+t10XdPToUbz88svw9/fHjz/+eMt6C1NkaJ9xcXHYtm0bNm7cqP/VtWtXDBw4EBs3btSvtzE1hvYpk8kQERGBtLS0OrefPHkSCoUCrq6uxi65UQzt09XVFQ4ODjh58mSd20+dOgWFQmEx//C6u7vDx8enzroTpVKJ5ORkREVFiViZ8Hbt2oU33ngD/fv3x4oVK6BQKMQuSXCTJk3C1q1b67wPtWrVCk899RQ2btwodnmC8fLy0n/q7manTp0y+f+c3wkDlIWLjY1FaWkppk6diqysLGzYsAErV67E2LFj9cfcuHFDfyZCqVRi0qRJ8PDwwCeffILq6mpcu3YN165dM9mzFYDhfbq6uqJjx451ftnb28PJyQkdO3as8+kvU2JonwAwbtw47Nu3DwsWLMD58+exdetWfPvtt/rF1qbI0D6lUileeOEFfPPNN9i4cSMuXLiAjRs3YvHixXUeY47+fQZt9OjRWLFiBX755RdkZWXhvffeQ2VlpdlOg+jc3GdxcTHeeecddOnSBVOnTkVxcbH+fcjczybe3KeHh8ct70NyuRwuLi7o2LGjuIU20b9/bl9//XWsWbMGP/zwAy5cuIA1a9Zg/fr1eOmll8QrsolM818JEoyHhweWLVuG2bNnY+TIkfD09MTkyZPr7Oc0e/ZsHDp0CLt27cLRo0eRk5MDALjvvvvqjNW2bVvs2rWrWetvKEP7NFeN6bNnz55YsmQJ5s6diyVLlsDT0xOvvPIKXn75ZbHauKvG9Dlx4kS4urpiyZIluHLlCtq1a4e3335b9E+PNtWECRMAAKtWrQIAPPHEE7hx4wa++uorFBUVoWvXrlixYoXZn2W7uc+9e/eipKQEaWlp6Nu3b53jevToof9emKN/v56W6t99jhgxAoB2X7qPP/4Ybdu2xQcffFDvljnmQqLRaDRiF0FERERkTjiFR0RERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUEZkN7rpCRKaCAYqIzMLOnTvxzjvv6P+cmJiIwMDAOpc1aU5TpkxBYGAgAgMDMWnSpCaNFRgYiAULFjT4+Kefflr/3IY8joiEw53IicgsfPfdd3X+3KVLF6xZswZ+fn7iFATA09MTCxcubPIu4GvWrDHoYsAzZ85EaWkpnnzyySY9LxE1HgMUEZklZ2dnhIWFiVqDra2tIDUYOoaYoZGItDiFR0Qm77nnnsOhQ4dw6NAh/bTdv6fwFixYgAceeAA7duzAsGHD0K1bN4wYMQJHjhxBamoqHn/8cXTv3h3Dhg1DQkJCnfFPnTqFsWPHIiIiAhEREXjttddw4cIFg+sMDAzETz/9hClTpiAyMhI9evTArFmzUFlZiU8//RQxMTHo2bMnpk6diqqqqjqP003F6fpKSEjA6NGjERoail69euHTTz+FUqlswneRiITEAEVEJu+DDz5ASEgIQkJCsGbNGnTp0qXe43Jzc/Hxxx/j1VdfxVdffYXi4mJMnDgRb731Fp544gl8+eWXUKvVePPNN1FZWQkAyM7OxlNPPYX8/Hx88sknmD17Ni5cuICnn34a+fn5Btc6Z84c2NraYuHChRgxYgRWrVqFRx55BFeuXMHnn3+Op556CuvWrbvrxWQnTZqEyMhILF68GMOHD8fy5cuxbt06g+shIuPgFB4RmTw/Pz84OzsDuPN0V0VFBT744AP07dsXAHDmzBl88cUXmD17Nh577DEAgEqlwsSJE5GdnY3g4GAsXLgQ9vb2+O677/TPcc899+C+++7DsmXL6ixcbwhfX1/897//BQBER0dj3bp1qKmpwZw5cyCXy9GnTx/s2rULhw8fvuM4jz/+OF577TV9PTt27MDu3bvx1FNPGVQPERkHAxQRWZSIiAj91y1btgRQN3S5uroCAEpKSgAABw8eRM+ePWFvb6+fInN2dkZUVBT+/vtvg58/PDxc/7VcLoebmxu6du0Kubz27dbV1RU3btxo8DgA4O3tjfLycoPrISLjYIAiIouiO4t0M3t7+9seX1RUhC1btmDLli233NeYT9fV9/wODg4Gj/PvmqVSKffBIjIhDFBEZNVatGiBXr16YdSoUbfcd/NZIyKim/HdgYjMglQqhVqtFnzcHj16ICsrC8HBwfrApNFoMGnSJHTs2BHBwcGCPycRmT9+Co+IzIJCoUB2djYSEhJQXFws2Ljjx4/H+fPnMXbsWOzYsQP79u3DhAkTsHnzZgQFBQn2PERkWRigiMgsPPvss7CxscGYMWOwd+9ewcYNCgrCDz/8AIlEgsmTJ2PixIm4du0avv76a9x///2CPQ8RWRaJhqsSiYgMNmXKFBw6dAi7du0SrYbAwEC8/vrrmDBhgmg1EFkrroEiImqk6upqpKamwt3dHR06dGi2583KykJpaWmzPR8R3YpTeEREjXTt2jU8+eSTmD9/frM+7/vvv88LCROJjFN4RERERAbiGSgiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiID/T9oZFtulprtswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd\n", + "\n", + "# Load an example chromatogram and correct the baseline\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "chrom.correct_baseline()\n", + "\n", + "# Assign the peak windows with a modified buffer and prominence filter\n", + "windows = chrom._assign_windows(buffer=50, prominence=0.01)\n", + "\n", + "# Get the first peak window and plot\n", + "first_peak = windows[(windows['window_type']=='peak') & (windows['window_id']==1)]\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To determine the properties of this peak (including its area which is proportional\n", + "to concentration), we will find the best-fit parameters using a non-linear least \n", + "squares [trust region](https://en.wikipedia.org/wiki/Trust_region) fitting method\n", + "as is implemented in `scipy.optimize.curve_fit` which is a robust estimation \n", + "algorithm for bounded problems. \n", + "\n", + "To do so, we must provide i) initial guesses for the parameters $[A, \\tau, \\sigma, \\alpha]$\n", + "and ii) reasonable bounds on their values. \n", + "\n", + "### Default settings for initial guesses of parameters\n", + "In `hplc-py`, initial guesses are set given the properties of the observed \n", + "chromatogram. These default parameter guesses are:\n", + "\n", + "* $A_0 \\rightarrow$ the observed value of the chromatogram at the location of the maxima\n", + "* $\\tau_0 \\rightarrow$ the observed time-location of the maxima \n", + "* $\\sigma_0 \\rightarrow$ one-half of the observed peak width at its half-maximal value\n", + "* $\\alpha_0 \\rightarrow$ 0, which guesses that the peak is approximately Gaussian.\n", + "\n", + "These values are determined using peak measurements returned by `scipy.signal.find_peaks`\n", + "and `scipy.signal.peak_widths`. These properties are accessible via the \n", + "chromatogram attribute `.window_props` " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[65992.999952423, 10.98, 0.16630057317687066, 0]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the initial guesses from the window properties\n", + "props = chrom.window_props[1]\n", + "p0 = [props['amplitude'][0],\n", + " props['location'][0],\n", + " props['width'][0] / 2, \n", + " 0]\n", + "p0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default bounds for parameters\n", + "By default, `hplc-py` applies broad, permissive bounds on these parameters given \n", + "information of the chromatogram. The default bounds given to each parameter are \n", + "\n", + "* $A \\in [0.1 \\times A_0, 10 \\times A_0]$ where $A_0$ is the initial guess for the amplitude.\n", + "* $\\tau \\in [t_{min}, t_{max}]$ where $t_{min}$ and $t_{max}$ correspond to the minimum and maximum times in the peak window.\n", + "* $\\sigma_{bounds} \\in [dt, \\frac{t_{max} - t_{min}}{2}]$ where $dt$ corresponds to the time sampling interval of the chromatogram.\n", + "* $\\alpha \\in (-\\inf, +\\inf)$.\n", + "\n", + "These bounds can be overridden for all peak inferences by providing a dictionary \n", + "of their values, as is specified in the documentation for `hplc.quant.Chromatogram.fit_peaks`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Give initial bounds for the parameters (lower, upper)\n", + "bounds = [[], []]\n", + "bounds[0] = [p0[0] * 0.1, first_peak['time_min'].min(), chrom._dt, -np.inf]\n", + "bounds[1] = [p0[0] * 10, first_peak['time_min'].max(), 0.5 * (first_peak['time_min'].max() - first_peak['time_min'].min()), np.inf]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optimization of parameters\n", + "Given initial guesses and parameter bounds, the best-fit parameters are estimated \n", + "by calling `scipy.optimize.curve_fit` on the observed data in the peak widow. The \n", + "cost function is defined as a method `_fit_skewnorms` of a `Chromatogram`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal parameters (amplitude, location, scale, skew) : [2.33773945e+04 1.09020036e+01 1.59217385e-01 7.03685471e-01]\n" + ] + } + ], + "source": [ + "import scipy.optimize\n", + "\n", + "# Perform the fit\n", + "param_opt, _ = scipy.optimize.curve_fit(chrom._fit_skewnorms, first_peak['time_min'],\n", + " first_peak['intensity_mV_corrected'],\n", + " p0=p0, bounds=bounds)\n", + "print(f'Optimal parameters (amplitude, location, scale, skew) : {param_opt}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the optimal parameters estimated, we can compare the inferred signal to \n", + "the observed chromatogram " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0JUlEQVR4nO3dd3wU1frH8c/sbnoIhAAJRXoJRXoUFYSLYm+IWFGsFxv8rFwVC17FckW9ICIiiFgQEBBF5CqCBaSGDgm9lwRIQkJ6sju/P5YsRIrZsGGSzff9euWVzezs2eckk8mTc545Y5imaSIiIiIiJWazOgARERGRikYJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeMlhdQD+yjRNXK7yu8i7zWaU6/h8Rf30L+qn/6ksfVU/KwabzcAwjBLtqwSqjLhcJqmpWVaHcUoOh43IyDAyMrIpLHRZHU6ZUT/9i/rpfypLX9XPiqN69TDs9pIlUJrCExEREfGSEigRERERLymBEhEREfGSEigRERERL6mIXEREyi2Xy4XTWWh1GGfF5TLIzbWTn5+H01lxr1D7OxWhn3a7A5vNN2NHSqBERKTcMU2TjIxUcnIyrQ7FJw4ftuFyVcwr07xREfoZEhJORET1Ei9XcDpKoEREpNwpSp7CwyMJDAw66z92VrPbjXI7KuNL5bmfpmmSn59HZmYaAFWrRp1Ve0qgRESkXHG5nJ7kKTw8wupwfMLhsFXYtZG8Ud77GRgYBEBmZhpVqkSe1XSeishFRKRccTqdwPE/diK+VHRcnW1tnRIoEREplyr6tJ2UT746rpRAiYiIiHhJCZSIiIiIl5RAiYiIlANdu3bmxx9nlfr1Bw7sp2vXzqxcGe/DqErmp59+5JZbrj/n72slXYUnInKOHTiwn5SUFJo1a05QkAqlxe277/5HeHi41WF4bd68n3nrrdeIiqphdSjnlBIoEZFzYPv+wwx550O2rFpA4ZG9ANjsATRrEcs9d93NNddcr6LpSq6iJSBZWZm8++7bzJv3M40aNSEz86jVIZ1TmsITESlDpglDJv7BzbfcSOKvX7uTJ5sDQiJxOQvYlLCOIUMG89RTA0lNTbE63HLNNE1ycrIt+zBN7xaIvP/+u/jvf9/xfL1gwW907dqZX375ybNt9OgRPProg0DxKbxhw4by2msv8eGHI7juul5cdtklPP/806SkHPa8dvv2rQwa9DCXX96V22+/mRUrlp8Uw5w5P9C//x307HkJt9xyPZ9//ikulwuXy8V11/Vi8uQvPftOnfo1Xbt2Zv36dZ5tL730HK+99tIp+7d//34yMtIZN+5zunXr7tX3xh9oBEpEpIy4TLj7pdFs+GGke0PNlti6D8GodwEEhELGXswN03AtGsGvv/7C2nVr+PKLr4mMbGlt4OWQaZrce++drFmzyrIY2rfvyIQJX5V4pPCSSy5l/vy5nq/j45dhGAYrVsRz+eVXArBo0Z9cc82pa4fmz/+FXr2uYtSosSQnJ/Hqqy8yduxonn/+ZTIzM/m//3uUNm3OZ+zYiaSkHOLtt4cVe/3UqZMYM2YUjz32BBdc0IXExATee+9t0tPTGTjwSS666BKWL1/G7bf3KxbfypXLadPmfAoLC1m+fAn/+teLp4yvWbPmDB/uPrb/+OO3En1P/IlGoEREyoDTBfe/M8OTPBlxD2O/eza2xv/ACAzDMAyMqudhu/hJ7PfMhqhmpBw+xCOPPERaWprF0ZdPFW2K85JLLmXXrp0kJycB7gTl0kt7sGqVu8j7wIH97Ny5nUsv7XHK14eFhTF48BAaNmzEhRdexFVXXcPatasB+OWXn8jNzWXIkFdp3LgJcXFdGDToac9rTdPkyy8ncvPNt9Knz62cd159rrjiKh58cADTp08hMzOTSy7pxpo1K8nPz6ewsJDVq1dy6aU9PEXoa9euJj8/nwsvvLjsvkkVmEagRETKwKtfL2L11+6pD9slT2O75KnT7mvUao391sk4v7yenTt38OCDDzJ69DhsNp2iixiGwYQJX5Gbm2NZDMHBIV4lcbGxLalZsxbLly8lIOAS9u7dw8svv84DD/QjOTmJRYsW0rBhY+rVO++Ur69b9zwcjuPHQFhYOIWF7tWzt2/fynnnnVes6Pz889t6Hh85kkZqagpt27Yv1ma7dh0pLCxk166dXHDBRbhcLtatW0NAQABBQUHcdFMfnnvuaQoKCli8+E86dYojNDS0xH2uTPTbKSLiYwsTk/h+xCAwnRht+mJc/OTfvsaoEoP9ls9xftWbJUuW8N//Duepp547B9FWHIZhEBJSsf6YX3xxV5YvX0JAgIPY2Fa0aBFLTExtVq6MZ/HihWesHQoICDhp24l1WH+tybLbHSc999d8z+Vy36fO4XAQGhpK+/adWLZsCUFBQXTs2Jm2bTtgmrBhwzoWL17Irbfe6XWfKwtN4YmI+FBOgcngoa9DfibU6YTtyv+UeNTCqNkSx/WjAPjyy89JTNxQlqHKOdC166WsWLGcZcuW0LFjZwA6dYpj8eI/WblyRamLr5s3b8Hu3bs4cuSIZ9vGjQmex5GR1YmMrM6aNauLvW7NmlUEBARQt249T3zLly9h5cp4OnWKIygoiPPPb8sPP3zHrl07ueSSbqWKrzJQAiUi4kPPT5hP9qZfwBaA/ep3MeyB3jXQ5HJssTfgcrl47bVXPDfWlYqpY8c48vLy+PXXeXTqFAdAp04X8Ntv84iIiKBly9alaveyy66kevUohg59gS1bNrNq1QpGjnzX87xhGNxxRz9mzJjKjBnfsHfvHn7++X98+ulYbriht2fq75JLurF16xbWr197Qnxx/PzzHFq3Pr/CLa1wLimBEhHxkS1JR/lt4qsAGF0ex4hqVqp2jJ5DIbAKCQnr+eabr30Wn5x7QUFBdO58IQDnn98OgM6d4zBNk65dLy11YXxISAgjR44hICCARx99gNdee5m77upfbJ8777yHRx4ZxNSpk+jXry/jxn3EXXf1L1ZsHh0dQ5MmTYmKquEZlerc+QJcLhddu15aqtgqC8P0dmELKRGn00VqapbVYZySw2EjMjKMtLQsCgtdVodTZtRP/1IR+tnnmXfZ9ssnENkY+31zMRzBpW9s1WcUzh1CeHgVfvzRPVrhb073My0oyCcl5QBRUbUJCPByBK+ccjhs5fa49aWK0M8zHV/Vq4dht5dsbEkjUCIiPrByRyrbfvsCAFvPoWeXPAFmu7shqjmZmUeZMmWSDyIUEV9SAiUi4gNDP5gAhblQuwNG455n3Z5hs2O/eCAAX331GdnZ5XNEW6SyUgIlInKW4rensvuPY6NPlzzluwUfW9wA1Rpy5MgRvvlmsm/aFBGfUAIlInKW/vPRCaNPjf7hs3YNmwPHRe5RqM8/n0Bubq7P2haRs6MESkTkLOxLOcrm374CwHbxkz6/3YjZqg9E1CUl5TA//PCdT9sWkdJTAiUichaGfz4LCrKhRguf1D79lWEPwN7pAQCmT5/i8/ZFpHSUQImIlFKh0+SP2e4r5Gwd7im7m9227gv2QBITE0hIWF827yEiXlECJSJSShP+F4/z8FYICMNo1afM3scIrY7R/BoApk3TKJRIeaCbCYuIlNKUqe5Vwo3WfTCCqpTpe9na3YUzcSZz5szm6af/RVhYeJm+X3mVlGVwJK+MRvr+RrUgk5gwrT0tbkqgRERKYfOegxxe+xPgnr4rc+ddBNWbkJO6jTlzZnPLLbeV/XuWM0lZBjfPCiPfZU0CFWgzmXF9lldJVNeunXnhhVe44YYbS7T/0qWLeffdtzh06CB9+tzG448/UcpofWP8+I+ZM+cHpk2bVarXF/X/mmuu93Fkp3bgwH769r2BkSPHeG7eXFaUQImIlMKHX30PphPqXYBRs2WZv59hGNjb3YXz13/z7bfTKmUCdSTPsCx5Ash3uUe/vEmgvvvuf54b95bEmDEfUKdOXUaM+IjQ0NDShFmueNv/ikQ1UCIiXjJNkyXz3UsK2Nqcw0SmVR8wbGzYsI49e3afu/eVUouKqkFQUMlv65OZmcn557ejdu06VK1arewCO0e87X9FogRKRMRLv67YRN7BLWAPwmhxzTl7XyOsBkaDrgD89NOP5+x9pfS6du3Mjz+6p7+GDRvKa6+9xIcfjuC663px2WWX8PzzT5OSctiz74ED+5kw4RPPY9M0+eqrifTteyOXXXYJ9957Jz//PMfT/sqV8XTt2pmvvprINddcxv3338W+fXvp2rUzn302jhtuuJJbbrmeo0ePkpmZydtvD+O66y7nyiu7M2jQw2zcmFAs3u++m8Ftt91Ez57u2I4ePXrG/u3Zs5unnhrIlVd2p1evS/m//3uUbdu2nrL/AFOnfk3fvjfQs+cl/N//PcqECZ9wyy3u6b0DB/bTtWtn5s//hYce6k/PnhfTt++NxdY/y8/PZ8yYUdx664306NGFa665jFdeeYH09COl+wGdBSVQIiJemjDtBwCMppdjBEWc0/e2xbr/2Jz4R1QqjvnzfyE9/QijRo3ljTeGs2bNasaOHQ24p7tq1Yrm9tv7eR6PHTuaGTO+4YknnuHzz6fQt+/tDB/+FjNmfFOs3UWLFvLxxxN4/vmXsdncf9p//nkOI0Z8xOuvv014eDjPPjuIvXt38/bb/2Xs2Im0bn0+jzzyAJs3bwTgl19+4r333ubWW+/ks88m0br1+cyYMfWM/XnllReoUaMG48Z9wdixn2Gz2XnhhWdOue/06VP5+ONR9O//AJ99NomOHTsxYcInJ+03atT79O9/PxMmTKJz5zj+859h7N+/D4DRo0cyd+7/eO65l5g8+VtefPFV4uOXMnHieO9+ED6gGigRES8UFjrZsPB7gDJduuC0ml0NP7/A5s2b2L59G40bNzn3MUiphYWFMXjwEBwOBw0bNuKqq65h8eI/Afd0l81mIyQkhKioGuTk5DBlyiReeulVLrmkGwB169YjKekAkyZ9zs039/W0e8cd/TjvvPqAeyQHoHfvvjRq1BiA+PhlrFu3llmz5hIZGQnAgAGPsW7dGr75ZjJDhgzlm28mc/nlV9Cnz60A9Ot3Lxs2rGPLls2n7c/+/Xu54IIu1K5dB4fDwYsvvsK2bdtxuVyeRK7I119/Qd++d3Ddde6C+v793cnbpk0bi+13++130bVrdwAee+wJZs2ayYYN66hTpy4tW7aie/d/0KFDJwBiYmpzwQUXFRv1OleUQImIeGH6/GW4Mg9CcDWMxr67711JGSGRGA0vxdw+j59++pFHHhl4zmOQ0qtb9zwcjuN/esPCwiksLDzlvjt3bic/P4/XX3+FN9541bPd6XSSn59PXt7xeyPWq1f/pNfXq3ee53HRKNOtt95QbB93O3kAbN++lcsvv7LY823atD1jAvXQQ48ycuS7zJw5jY4d47j44ovp3v3yk5Kn9PQjJCUdoE2b84ttb9euw0kJVIMGjTyPiwrQi75HV155DfHxy/j44w/Zs2c3O3fuYPfunbRt2/60MZaVcpFAzZw5k7Fjx7Jnzx7q16/P448/ztVXXw1AYmIiw4YNY/369VSrVo27776bBx54wPNal8vFqFGj+Oabb8jIyKBTp0688sorNGjQwLOPL9oQEQGY/v2x6bsW12HYAy2JwdbqBpzHEqiHH3687FZAF58LCAg4aZtpnvqqPpfLvf3f/36LBg0anqKt48dfUFDQSc+fuM3lchEWFsb48V+eISbjpFhOTPZOpU+fW+nZ83IWL/6TFSuWMXr0KD75ZAwTJkyievUoz352u6NYn87kTN+j4cPfYt68n7n66mu5+OKu9O9/P19//SUHDyb/bbu+ZnkN1HfffccLL7zAbbfdxg8//MA111zDU089xapVq0hLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/uef3o0aOZPHkyr7/+OlOmTMEwDB566CHy8/MBfNKGiAhAQUE+W+N/AcDWqrd1gTS5EuxB7Ny5g82bN1kXh5SpBg0aYrfbSUo6QL1653k+Fi/+k6+//uKkUZ4zady4KVlZWeTn5xdr66uvJrJw4e8ANGvWnLVrVxd7XWJiwilac0tNTeG9996moKCAa665npdeeo0vv5xCSkoKq1atLLZveHg4MTG12bBhXbHtGzaU/NZE6elHmDlzGs888xyDBj3NNddcT7NmLdi5c0eJ2/AlSxMo0zQZMWIE/fv3p3///jRo0IDHHnuMiy++mGXLljF16lQCAwMZOnQoTZo0oU+fPtx777188om76Cw/P59PP/2UgQMH0r17d2JjY3n//fdJTk5m7ty5AD5pQ0QE4Iff43HlpkNoDagbZ1kcRlAVjEbuGpHff59vWRxStsLDw7nppj588slH/O9/s9m3by9z5vzARx+NLDa6UxIXXngRzZo15+WXn2fFiuXs3buHDz8cwezZ33umzPr1u5c//viVSZM+Z8+e3UybNvmMx1dERFUWLVrI228PY8uWTezbt5cZM74hICCA2NiT10br168/06dPYc6cH9i7dw9TpnzFr7/+UuIR1LCwcMLDw1mw4Hf27t3Dtm1befvtYWzevNGSAQ9LE6jt27ezb98+rr+++Aql48ePZ8CAAcTHxxMXF1dsCLFLly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fDmAT9oQEQGYMcc9+mQ0uxLDZrc0FnvTywH4/fdfLY1DytbAgU9x++13MX78x/Tr15cJEz7hvvse4v77/+lVO3a7nfffH02rVq155ZXn6d//dlasWM6wYf+hc+cLALj44q688srrzJ79Pf37387vv//K7bf3O22bDoeD4cNHYrMZ/N//Pcrdd99GfPwy/vOf/1K3br2T9r/pplu45577GTt2NPfccxtLly7h6quv+9tpwhPf77XX3mLHjm3cc8/tPP30QPLychkw4DF27NhOTk6OV9+Ts2VpDdTOnTsByM7O5oEHHiAhIYF69erxyCOP0LNnT5KSkmjevHmx19SqVQuA/fv3k5SUBEDt2rVP2ufAgQMAPmmjtBwOy2dIT8lutxX77K/UT/9idT9dLheJy9yj0kazqy2J4URmY3cCtWHDOtLSDlOzZi2LI/Le6X6mrtOsNl4tyCTQZlp6K5dqQd7dC2/hwniKBlhefHEofy13euCBATzwwADP13+9ZYrD4eDeex/k3nsfPGX7HTt2ZuHC+GLbateuc9I2gGrVqvHCC6+cMd7LLruCyy67oti2AQMeO+3+DRs24p13RgBgGO6fpdPp8vTzxDiWLFnElVdewz333O/Z9vbbw6hVK/qMcZ+4LS6uCxMnTj5pn7vvvg+AkJCQU7ZxKna7cVZ/py1NoDIzMwH417/+xeOPP84zzzzDTz/9xKOPPsqECRPIzc0lMLB4kWZRUVxeXp4n2zzVPunp6QA+aaM0bDaDyMiwUr/+XIiICLE6hHNC/fQvVvVzzu/LKTx6CAKrYDS4xJIYTmSER0NMe0haTXz8Yu68806rQyq1v/5Mc3PtHD5sO+kPXL2q8N1NOZbeTLh2uAGU7v39/Z+cIqfr588/z2Hnzu0MHvw8UVE1WLVqJT//PIdnn33unA44uFwGNpuNqlVDCQ4u/SrpliZQRZX2DzzwAL17uwsyW7ZsSUJCAhMmTCA4OPikec2iyy1DQ493PD8/v9g3IS8vj5AQ9y+kL9ooDZfLJCMju9SvL0t2u42IiBAyMnJwOl1Wh1Nm1E//YnU/x02eDYDR5HLLrr77K3vTy3EmrebHH//H1VeX7Ga15cnpfqb5+Xm4XC6cTpPCwuI/65rB7g+rnGbFgTM61ciMP/q7fj7xxDN88MH7DB78NJmZR6lTpx6DBj3FVVddd9LPuSw5nSYul4v09GxycpzFnouICClxomtpAhUTEwNw0hRb06ZN+e2336hbty4HDx4s9lzR19HR0Z51IQ4ePEj9+vWL7RMbG+t5j7Nto7TO5QFRGk6nq9zH6Avqp3+xop+mabJ60c8AGM2tn77zaNILFg5n8eI/yczMPqv/pq3015+p0+lfWUZRMuHPyRP8fT8jIqoyZMjQcxbP3zlVgu4NS8cTW7VqRVhYGGvWrCm2ffPmzdSvX5+4uDhWrFiB03k8Q1y8eDGNGjUiKiqK2NhYwsPDWbp0qef5jIwMEhIS6Ny5M4BP2hCRym3Dps3kHt4FjmCMRud+8czTqtUaqtQhNzeXZcuWWB2NSKViaQIVHBzMgw8+yIcffsgPP/zA7t27+eijj/jzzz+577776NOnD5mZmQwZMoStW7cyY8YMJk6cyIAB7oK7wMBA+vXrx/Dhw5k3bx4bN27kySefJCYmhl69egH4pA0Rqdym/bQAAKP+JRiBoRZHc5xhGNiOXY33xx+6Gk/kXLJ8JfJHH32UkJAQz9pLTZo04YMPPuDCCy8EYNy4cQwbNozevXtTs2ZNBg8e7KmXAhg0aBCFhYW8+OKL5ObmEhcXx/jx4z1F4VFRUWfdhohUbov+/AMAo0lPiyM5hUY9YdXnnvup+ZPTrdAtcjZ8dVwZpo7QMuF0ukhNzbI6jFNyOGxERoaRlpbl1zUz6qd/saqfGRkZXNrjInA5sf9zMUa1k+85ZiUzPwvnyNbgKmDWrJ89N5StCE73M3W5nBw8uJfw8EjCwyMsjNB3HA6bX/9+FqkI/czMzCAzM41atc47aTX36tXDKkYRuYhIeffjb4vB5YTqTctd8gRgBIZBnY6wdylLliyqUAnU6dhsdkJCwsnMTAMgMDCowt/vz+Uy/K44/lTKcz9N0yQ/P4/MzDRCQsK9uhXOqSiBEhE5gx/nH6t/alwOp++OsTe6FOfepSxe/Cd9+95udTg+ERFRHcCTRFV0NpsNl6t8j8z4QkXoZ0hIuOf4OhtKoERETsPlcpG4wn2j1XJZ/1SkwaWw4B2WLVtCYWFhiW+NUZ4ZhkHVqlFUqRKJ01mKxZfKEbvdoGrVUNLTs8vt6IwvVIR+2u2Osx55KlLxf8tERMrIhoRECo4egoBQjLoXWB3O6cW0g6CqZGamk5CwnrZt21sdkc/YbDZstop9QY/DYSM4OJicHGe5rw86G5Wln0Uqx7ryIiKl8O0vCwEwGnTDcARZHM3pGTY7RoOLAff9xkSk7CmBEhE5jcWLjyVQjXpYGkdJGA27A/jlcgYi5ZESKBGRU8jOzuLAllUAGI26WxzN3zMaXgrA2rVryMrKtDgaEf+nBEpE5BQWL4sHVyFUrY9RrYHV4fwto1oDqHoeTmcha9assjocEb+nBEpE5BRm/+a+t5zRoJvFkZSc7bwuAMTHL7M4EhH/pwRKROQUVsW7i7GNhl0tjsQL510EQHz8cosDEfF/SqBERP7i8OFDpO3dBIBRv+IkUMaxBGrDhvXk5GRbHI2If1MCJSLyF78tck/fUasNRujZr1h8zlQ9D6rUweksZPVq1UGJlCUlUCIif/HzH0uB41e2VRSGYWCr7x6FWrFC03giZUkJlIjICUzTZP3KovqnilNA7nGeEiiRc0EJlIjICfbs2U126n6wB2LUjbM6HK8Zx67EW7duLTk5ORZHI+K/lECJiJzgzyXHlgCo3REjIMTaYEqjWkMIj6GwsIB169ZYHY2I31ICJSJygvmL3FNfxrFaoorGXQel9aBEypoSKBGRY0zTZMMad9JRNBVWIdW9EEArkouUISVQIiLH7N27h+y0JHf9U51OVodTakY9d+3WmrVrKCwstDgaEf+kBEpE5JjFS4vqnzpUzPqnIjVaQFAEuTnZbNmyyepoRPySEigRkWPmFdU/VeTpO8AwbBh1OgKwevVKi6MR8U9KoEREOFb/tPpY/VMFLSA/UdESDFqRXKRsKIESEQH27dtLZuoBsAVg1OlsdThn71gCtXKVRqBEyoISKBERYOmyY/VPdSp4/dMxRu0OYNg5dDCJAwf2Wx2OiN9RAiUiAvyxdAUARr0LLY7EN4zAUIzoNoDqoETKghIoERFg7Vp3klERb99yWnXdU5FKoER8TwmUiFR6qakppB3YCYBRt+Ku//RXhqcOSoXkIr6mBEpEKj3PlWo1WmAEV7M0Fl8qSqC2bt1ETk62xdGI+BclUCJS6f25vGj6zg+uvjuBUSUGqtTGdLlITEywOhwRv6IESkQqveUr3SNQflX/dIxRuz0A69atsTYQET+jBEpEKrW8vDz2btsA+GsC1QGAtevWWRyJiH9RAiUilVpCwnpchfkQVhOqNbA6HN+LaQ/AGiVQIj6lBEpEKrVlK44vX2AYhsXR+J4R0w4wOJy8j5SUw1aHI+I3lECJSKW2KL6o/sm/CsiLGEHhGDWaA7B+/VqLoxHxH0qgRKTSMk2TTev9t4Dcw1NIrgRKxFeUQIlIpbVz5w5yM9PAEQTHbnvij4oKyVesUR2UiK8ogRKRSmvVqmO3OInpgGEPtDaYMlSUQCUmrMPlclkcjYh/UAIlIpXW4qIC8nr+Wf/kUaMFOILIzcpg9+6dVkcj4heUQIlIpbVqVSWofwIMewBEtwVg/XpN44n4guUJ1L59+2jRosVJH9988w0AiYmJ9OvXj/bt29OjRw/Gjx9f7PUul4uRI0fSrVs32rVrx/3338+uXbuK7eOLNkTEv6SmpnJ4/w4AjDr+cwPh0ylakXz1WhWSi/iC5QnUpk2bCAoKYsGCBSxcuNDzcf3115OWlsZ9991Hw4YNmT59OgMHDmTEiBFMnz7d8/rRo0czefJkXn/9daZMmYJhGDz00EPk5+cD+KQNEfE/a9Ycu4FwVHOMkEhrgzkHiuqg4ldrBErEFxxWB7B582YaNWpErVq1Tnpu4sSJBAYGMnToUBwOB02aNGHXrl188skn9OnTh/z8fD799FOeffZZunfvDsD7779Pt27dmDt3Ltdeey1Tp0496zZExP+sWHV8Ac3KoCiB2r0tkfz8fAID/bdoXuRcKBcjUE2bNj3lc/Hx8cTFxeFwHM/zunTpwo4dO0hJSWHjxo1kZWXRpUsXz/MRERG0atWK5cuX+6wNEfE/S1ccq3/y9wLyIlXPg5DquJwFbNqUaHU0IhVeuRiBqlmzJnfeeSc7d+6kQYMGPProo3Tr1o2kpCSaN29ebP+ikar9+/eTlJQEQO3atU/a58CBAwA+aaO0HA7L89NTstttxT77K/XTv/iyn3l5eWzftB6oRCNQhoFRuz3m9vls2LCODh06WB2Sjl0/U1n6WcTSBCo/P5+dO3cSEhLC4MGDCQ0N5fvvv+ehhx5iwoQJ5ObmnjTMHBQUBLhPgDk5OQCn3Cc9PR3AJ22Uhs1mEBkZVurXnwsRESFWh3BOqJ/+xRf9XL48AWdhPoTWgGoNzz6oCsKo3RFz+3xWbUhgYDk6P+nY9S+VpZ+WJlCBgYEsX74ch8PhSWDatGnDtm3bGD9+PMHBwScVcufl5QEQGhpKcHAw4E7Eih4X7RMS4v4B+qKN0nC5TDIyskv9+rJkt9uIiAghIyMHp9N/F9VTP/2LL/u5cOFiwH31nT/eQPi0jl2Jt2LFStLSsqyNBR27/sYf+hkREVLiETTLp/BCQ0NP2ta8eXMWLlxITEwMBw8eLPZc0dfR0dEUFhZ6ttWvX7/YPrGxsQA+aaO0CgvL9wHkdLrKfYy+oH76F1/0c8Vq96X8Rh3rp7HOJaN2OwAO799JSkoqVatWszagY3Ts+pfK0k9LJyo3btxIhw4diI+PL7Z9/fr1NG3alLi4OFasWIHT6fQ8t3jxYho1akRUVBSxsbGEh4ezdOlSz/MZGRkkJCTQubO7MNQXbYiIf1m77til/MdGZCoLI6S6Z8pyw4b11gYjUsFZmkA1b96cZs2a8eqrrxIfH8+2bdt48803Wb16NQ8//DB9+vQhMzOTIUOGsHXrVmbMmMHEiRMZMGAA4J4C7NevH8OHD2fevHls3LiRJ598kpiYGHr16gXgkzZExH+kpqaQkrwXACOmncXRnHtFyxloQU2Rs2PpFJ7NZmPMmDEMHz6cJ554goyMDFq1asWECRNo0aIFAOPGjWPYsGH07t2bmjVrMnjwYHr37u1pY9CgQRQWFvLiiy+Sm5tLXFwc48eP99RURUVFnXUbIuI/PLcyqd4UIyjC2mAsYNRuj5n4LUtXreVRq4MRqcAM0zRNq4PwR06ni9RU64s0T8XhsBEZGUZaWpZfz1Orn/7FV/0cPXokY8eOxmh9C/ZrR/gwworB3Lcc51c3EVatJn/+tsDSWHTs+hd/6Gf16mElLiKvHIs1iIgcs3KtewSqaCqr0qnVBgwbWUcOcfBgstXRiFRYSqBEpNIwTZOEDUUJVHtrg7GIERACUc0ASEzcYHE0IhWXEigRqTT27t1D9tEjYA+Emi2tDscyRnQbAOLXJFgciUjFpQRKRCqN9euPXXlWqxWGI8jaYCxkRLcFYOV6JVAipaUESkQqjXXrKnn90zFGjDuB2rFZU3gipaUESkQqjeMF5O2tDcRqtVoDBtlHkjl8+JDV0YhUSEqgRKRSKCgoYOuxERcjpr21wVjMCAyDqKYAbEjQKJRIaSiBEpFKYdu2LRTm50FQBFRvbHU4ljOizwdg8SrVQYmUhhIoEakUigrIjZh2GIZOfUUJ1Or1GoESKQ2dRUSkUqisNxA+naJC8l1bNQIlUhpKoESkUlhV2Vcg/6tabQCDnLQDpKamWB2NSIWjBEpE/F5WViZ7dm4BdAVeESMo3FMLtnqdpvFEvKUESkT8XmJiApgmVKmNER5tdTjlRtGCmgtVSC7iNSVQIuL3NmzQ9N2pGDHuQvK1GzQCJeItJVAi4vfWrtMCmqd07Eq8vVuVQIl4SwmUiPi9NUVX4FXyBTT/quimwrlp+0lNTbU4GpGKRQmUiPi1lJTDHE7eBxieS/fFzQiKgMhGAKxQIbmIV5RAiYhf89Q/RTXDCKpicTTlT1Eh+YKViRZHIlKxKIESEb+2fr0W0DyTolG59bonnohXlECJiF9bu+7YLVyUQJ3asULyfSokF/GKEigR8VumabJuvZYwOJOiQvK8tL2kpaVZHI1IxaEESkT81p49u8k6mg72IKgZa3U45ZIRXBWqNQRg8WrVQYmUlBIoEfFb69cfm76Lbo1hD7Q4mvLLODaN96dWJBcpMSVQIuK3jheQa/ruTIoKyTeokFykxJRAiYjfWlc0AqUFNM/sWB3UgR0agRIpKSVQIuKXCgoK2JjoTgh0Bd6ZeQrJU3aRnpFhcTQiFYMSKBHxS1u3bqagIB+CqnpW25ZTM0KqQ0Q9AP5YucniaEQqBiVQIuKX1q8/fgNhwzAsjqb8KyokX7Ra03giJaEESkT8UtEVeFqBvGSKpvESE5VAiZSEEigR8Uvr1h0fgZISODYCdWCHrsQTKQklUCLid7KyMtmxYyugK/BKqmgKL+/gNo5mZVscjUj5pwRKRPxOQsIGTNOEiLoY4bWsDqdCMMJrQVg0YDJ/xWarwxEp95RAiYjfKSogt2n6zitFdVBL1my0OBKR8k8JlIj4nQ0bjhWQx2gFcq8UFZJvVCG5yN9RAiUifkcF5KVTVAd1YLsKyUX+jhIoEfErhw4dJDn5ABg2OHaPNykZTyF58iYysvMtjkakfFMCJSJ+ZcOG9e4HUc0wAsOsDaaiiagLwdXAVcj8VVutjkakXFMCJSJ+pWgBTRWQe88wDM8o1OLViRZHI1K+lasEaseOHXTo0IEZM2Z4tiUmJtKvXz/at29Pjx49GD9+fLHXuFwuRo4cSbdu3WjXrh33338/u3btKraPL9oQkYrh+ArkKiAvlWMJ1EatSC5yRuUmgSooKOCZZ54hO/v4Am5paWncd999NGzYkOnTpzNw4EBGjBjB9OnTPfuMHj2ayZMn8/rrrzNlyhQMw+Chhx4iPz/fZ22ISMXgcrk8U3iGEqhSKVrKQCuSi5yZoyQ7jRo1qtRv8Pjjj5dovw8++ICwsOL1ClOnTiUwMJChQ4ficDho0qQJu3bt4pNPPqFPnz7k5+fz6aef8uyzz9K9e3cA3n//fbp168bcuXO59tprfdKGiFQMe/bs4ujRDHAEQ40WVodTIRVN4eUnbyQtu5DI0BL9mRCpdMo0gTIMo0QJ1PLly5kyZQozZ86kR48enu3x8fHExcXhcBwPs0uXLnz88cekpKSwb98+srKy6NKli+f5iIgIWrVqxfLly7n22mt90oaIVAxFC2ga0W0w7AEWR1NBRTaEwHDIz+S3tbvo3aWJ1RGJlEsl/tdi6tSptG1b8kuCV69ezR133PG3+2VkZDB48GBefPFFateuXey5pKQkmjdvXmxbrVru2zLs37+fpKQkgJNeV6tWLQ4cOOCzNkrL4Sg3M6TF2O22Yp/9lfrpX0rSzw0btAL52TIMG9RqA3uXsHRNIn27Niuz99Kx618qSz+LlCiB6tix40nTa3+nSpUqdOjw9zUIQ4cOpX379lx//fUnPZebm0tgYGCxbUFBQQDk5eWRk5MDcMp90tPTfdZGadhsBpGR5fsS6oiIEKtDOCfUT/9ypn4mJrrrn8yYDhjnKiA/ZES3wdy7hE2bEomM/Pt/hM+Wjl3/Uln6WaIEqlOnTtjtdq8abtKkCZMmTTrjPjNnziQ+Pp5Zs2ad8vng4OCTCrnz8vIACA0NJTg4GID8/HzP46J9QkJCfNZGabhcJhkZ5fOO5na7jYiIEDIycnA6XVaHU2bUT//yd/0sKMhn/fqiAvL25zg6/2JEt8EE9m5dR1paVpm9j45d/+IP/YyICCnxCFqJEqgJEyYwbtw4OnfuTN++fbnyyis9ozhnY/r06aSkpBSrewJ45ZVXGD9+PHXq1OHgwYPFniv6Ojo6msLCQs+2+vXrF9snNjYWgJiYmLNuo7QKC8v3AeR0usp9jL6gfvqX0/UzISGRgoIC90KQ1Rqc+8D8SFEhecGBDSRlOKkRWrbjeZX92PU3laWfJUqzFixYwPPPP09WVhaDBw+ma9eu/Pvf/yYx8ewWWhs+fDg//vgjM2fO9HwADBo0iLFjxxIXF8eKFStwOp2e1yxevJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7cGcAnbYhI+ecpIK/dHsPQBN5ZiWrqvpKxIIvf1++xOhqRcqlECVRkZCT33HMPM2bMYNasWfTt25dffvmFm2++md69ezNp0iSOHj3q9ZtHR0fToEGDYh8AUVFR1K1blz59+pCZmcmQIUPYunUrM2bMYOLEiQwYMABw1y3169eP4cOHM2/ePDZu3MiTTz5JTEwMvXr1AvBJGyJS/mkFct8xbA6o2RLQiuQip+P1Ah/NmjVj8ODBPPPMMyxcuJDvvvuO//znP/znP/+hV69e3HrrrcTFxfkkuKioKMaNG8ewYcPo3bs3NWvWZPDgwfTu3duzz6BBgygsLOTFF18kNzeXuLg4xo8f7ykK90UbIlL+FV2BZ9ZWAbkvGNHnYx5YdWxF8iutDkek3DFM0zTPtpGsrCzmz5/Phx9+yK5du856as8fOJ0uUlPLrvjybDgcNiIjw0hLy/LreWr107+cqZ9Hjx7l0ksvwDRN7I+twQirYVGU/sO1ZhKun57F0bAry78dR1nMiurY9S/+0M/q1cN8W0R+JuvXr2fWrFnMnTuXAwcOcOGFF55tkyIiXklM3IBpmlD1PCVPPlJUSF6YtJ4DWVAn3OKARMqZUiVQe/bsYdasWcyaNYudO3cSHR1N79696dOnD/Xq1fN1jCIiZ1RU/2TEtLc2EH9SoznYAiD3CAs3JnNr52irIxIpV0qcQKWlpfHjjz8ya9Ys1qxZg8PhoGfPnrzwwgt07dpVV72IiGWKrsCz12lvbSB+xHAEue8neHA9S1YnKIES+YsSJVAPP/wwCxcupLCwkGbNmvHcc89xww03EBkZWdbxiYj8raIRKK1A7ltG9PmYB9eTmJgA/MPqcETKlRIlUPHx8fTp04c+ffp4dT88EZGylpyczMGDyWDY4FjdjviGEdMGcx0c3LkBlwk2ZaciHiVKoBYuXFjsNiciIuVF0fIF1GiBERhqbTB+xqjVBgBn0np2ZdhoVLViXlklUhZKlED9NXn66aefWLlyJRkZGSftaxgGb7zxhm+iExH5G54Cci2g6Xs1W7lH9rIOsmTLYRp1rm51RCLlhtdX4Q0fPpxx48YRHh5ORETESc+rmFxEzqWiESi7EiifMwJDoXpTSNnMkrWJ3NH5EqtDEik3vE6gvv32W2699Vb+/e9/l0U8IiIl5nK5TliBvKMKyMuAEd0GM2XzsUJyJVAiRUq23OYJ8vLyuOqqq8oiFhERr+zatZPMzEwICHGvWyQ+V7Sg5uGd6ylw/s3OIpWI1wnUFVdcwfz588siFhERrxTVPxHd1n0DXPG5ogTKlbyebele/8kQ8Vten3FeeOEF+vbty9133027du1OKjA3DIPHHnvMZwGKiJyOCsjPgejW7s8Z+1i2M4PY6rqniwiUIoH64osv2LFjBzt27GD58uUnPa8ESkTOlaIVyB2123PWd0WXUzKCIqBaQziyk2VrErmnY5zVIYmUC14nUF9++SXXXnstzz//PDVq6KadImKN/Px8Nm3aCICrtlYgL0tG9PmYR3aSkJgAKIESgVLUQGVnZ3PrrbcqeRIRS23atJHCwgIIjYII3cS8LBkx7jqotN0byC6wOBiRcsLrBOriiy9m6dKlZRGLiEiJbdhwrP4ppr3WnytrxwrJzeR1bEyzWxyMSPng9RTejTfeyIsvvsiuXbvo0KED4eEnFxTedNNNvohNROS0iuqfVEBe9opu6ULaDlbuyaJjLd3aS8TrBGrQoEEAzJ49m9mzZ5/0vGEYSqBEpMwVXYFnr6MC8rJmhFaHKnXg6H6Wrt3Eg53aWR2SiOW8TqDmzZtXFnGIiJRYRkYGO3fuAMAV014F5OeAEX0+5tH9bNqYACiBEilRDdSIESNITk4GoG7dun/7AZCcnMyIESPKLnIRqbQSEta7H1RrgBGiG9yeC0ULah7du57UXKWsIiVKoMaMGeNJoEoqKSmJMWPGlCooEZEzOb6AZgeLI6lEot11UGbyehJStCK5SImm8EzTZOjQoacsGD+dzMzMUgclInImKiA/94pGoEjZwur9+XStq6vxpHIr0b8RcXFxhIWFYZpmiT/CwsLo3LlzWccvIpWMaZqeESiHEqhzJzwawmqC6WLZus1WRyNiuRKNQH3xxRdlHYeISIkkJydz+PAhsNlx1mqjAvJzxDAMdyH59vls3rQB02yJlt+SykwT2SJSoaxbtwYAo0YsRkCIxdFUMjHuq+/y9q1hb6ayJ6nclECJSIWydq07gUIF5OecEdMWADNpLesPqwZKKjclUCJSoXhGoOoogTrXjGMjUKRsYfW+XGuDEbGYEigRqTAKCwvZsMG9BpRdCdQ5Z4RHQ3iMu5B8baLV4YhYSgmUiFQYmzZtIicnB1tQFVzVm1kdTqVUtHTE7i3ryHdaG4uIlUp0Fd7MmTO9alT3whORsrBy5UoAzJj22Az9/2cFI6Yd5pb/4Tqwhi1H+tE6ymV1SCKWKFEC9dxzz5W4Qd1MWETKyqpVq9wPNH1nnWN1UGbSatYftiuBkkqrRAmUbiAsIuVBUQJl0xV4lim6Eo8ju1i1J5PbWgRZG5CIRUqUQBXdILgkTNMsdTAiIqeTmZnJli1bAHcBucY9rGGEREK1hnBkJyvWrofLO1kdkoglSpRA/dXs2bNZtmwZBQUFnoTJNE2ys7NZvXo1f/zxh0+DFBFZv34tpmniiKyPK7Sm1eFUakZMW8wjO0nZuY70vE5U1SCUVEJeJ1CjRo1i1KhRVKlShcLCQgICAnA4HKSmpmKz2ejbt29ZxCkilVzRAprO6A5oCUdrGTHtMDd+j3lgDRtS7FxcR5fjSeXj9WUs3377LTfccAPLli3j3nvv5R//+AeLFi1i2rRpVKtWjWbNdGmxiPheUQKlBTStZ5xQSL5OK5JLJeV1ApWcnMyNN96IYRi0bt3aU9TZpk0bHn74Yb755hufBykilZtpmp4EyqYEynrR5wMGHD1A/PYUq6MRsYTXCVRoaCjGsVtwN2zYkL1795Kb617Sv2XLluzdu9e3EYpIpbd//z5SU1Mw7AEY0a2tDqfSM4LCIco927BhwwZcunZIKiGvE6jzzz+fb7/9FoD69etjt9tZtGgRANu2bSMwMNC3EYpIpbd+/VoAHDGtMe0hFkcjcHw5g5x9a9h91LA4GpFzz+sE6uGHH2bOnDk8/PDDBAYGcsMNN/Dcc88xcOBA3n77bbp27epVeykpKTz77LN06dKFDh068M9//pOtW7d6nk9MTKRfv360b9+eHj16MH78+GKvd7lcjBw5km7dutGuXTvuv/9+du3aVWwfX7QhItYpuoFwYbSm78qLolu6kLSG9aqDkkrI6wQqLi6OadOmcfXVVwPw8ssvc+WVV7J9+3auuuoqXnzxRa/ae+SRR9izZw+ffPIJ06ZNIzg4mHvvvZecnBzS0tK47777aNiwIdOnT2fgwIGMGDGC6dOne14/evRoJk+ezOuvv86UKVMwDIOHHnqI/Px8AJ+0ISLW8hSQawHNcqNoBMpMWsPaQ7qtjlQ+pVoHKjY2ltjYWACCgoJ47bXXSvXmaWlp1KtXj0ceecRz9d6jjz7KjTfeyJYtW1i8eDGBgYEMHToUh8NBkyZN2LVrF5988gl9+vQhPz+fTz/9lGeffZbu3bsD8P7779OtWzfmzp3Ltddey9SpU8+6DRGxTkFBPhs3JgDuBTRVblNO1GoNNgdkp7B8SxJcWN3qiETOqVIlUEePHmXJkiVkZ2efcuXxkt4LLzIykvfee8/z9eHDhxk/fjwxMTE0bdqUDz74gLi4OByO42F26dKFjz/+mJSUFPbt20dWVhZdunTxPB8REUGrVq1Yvnw51157LfHx8WfdhohYZ/PmTeTn5+MIrYZZrZHV4cgxhiMYasTCwfXs2bKOnMLuhJTqL4pIxeT14f7777/zxBNPkJOTc8rnS3sz4ZdeeskzWvTRRx8RGhpKUlISzZs3L7ZfrVq1ANi/fz9JSUkA1K5d+6R9Dhw4AOCTNkrL4Sifw9p2u63YZ3+lfvqHhIR17ge1O4ChYuXyxIhph3lwPc6ktWw6chmdY7y7wY6/H7tF1E//5HUC9d5779G4cWOef/55oqOjsdl8843q378/t912G19//TWPPfYYkyZNIjc396Sr+oKC3PcMyMvL8yRxp9onPT0dwCdtlIbNZhAZGVbq158LERGV42om9bNi27hxAwCumI7eF21KmTJqt8Nc+xUkrWZrVgi9IkvXjr8eu3+lfvoXrxOo7du3M3r0aDp37uzTQJo2bQrAa6+9xurVq/nyyy8JDg4+qZA7Ly8PcK9HFRwcDEB+fr7ncdE+ISHuH6Av2igNl8skIyO71K8vS3a7jYiIEDIycnA6/feWrOqnf4iPX+F+oALycuf4iuTr+HNHPrc3KfDq9f5+7BZRPyuOiIiQEo+geZ1A1alTh8zMTK+DOpWUlBQWL17M1Vdfjd3uvgzWZrPRpEkTDh48SExMDAcPHiz2mqKvo6OjKSws9GyrX79+sX2Kitx90UZpFRaW7wPI6XSV+xh9Qf2suNLTj7Br104AAuq0Q3dcK2dqtABHMORlsGLTbgq6R5dqltUfj91TUT/9i9cj4gMGDODDDz/0yYrjBw8e5Omnn2bZsmWebQUFBSQkJNCkSRPi4uJYsWIFTufx0+bixYtp1KgRUVFRxMbGEh4eztKlSz3PZ2RkkJCQ4Bkh80UbImKNouULgmo0xhlcyvkhKTOGPQCi2wCQuWsl+zJVoyaVh9cjULNmzSI5OZlevXpRvXr1YtNe4C4i/+WXX0rUVmxsLF27duXVV1/l9ddfJyIigjFjxpCRkcG9995LUFAQ48aNY8iQITz44IOsXbuWiRMn8uqrrwLuuqV+/foxfPhwqlevTt26dXnnnXeIiYmhV69eAPTp0+es2xARa6xZ477XZmHtOAz0x7k8Mup0wtwXj7l/JWsOX0+9KoVWhyRyTnidQMXExBATE+OTNzcMg//+97+8++67PPHEExw9epTOnTvz1VdfUadOHQDGjRvHsGHD6N27NzVr1mTw4MH07t3b08agQYMoLCzkxRdfJDc3l7i4OMaPH+8pCo+KijrrNkTEGkUJlFmns9Kncsqo08m9Ntf+Faw7bOfaRkqgpHIwzFMt5CRnzel0kZqaZXUYp+Rw2IiMDCMtLcuv56nVz4qtsLCQrl3jyM3NwX7/fIwaLawOSU7BPHoA50edwbDR9KX1TLu55JUh/nrs/pX6WXFUrx5WdkXk+/fvP+1zNpuN0NBQIiIivG1WRKSYLVs2kZubQ0BoBEaNplTM07H/M6rUhip14Oh+dmxaR1ZBO8ICrI5KpOx5nUD17NkT428us6hatSr33HMPjz76aKkDE5HKrWj6LqBuJ/LRzWrLM6NOJ8xN+zH3ryQhpSNxMbpeUvyf11fhvfXWWwQEBHDJJZfw5ptv8sknn/DWW2/xj3/8A8MweOyxx+jduzcfffQRkyZNKouYRaQSWL3anUDlRutq2PLOqNvJ/WD/CtYeVrIrlYPXI1CzZ8/m2muv5c033yy2/cYbb+SVV15h/fr1jBkzhoiICL7++mvuvPNOnwUrIpVH0QgUdZVAlXdGnY4AuPavZNVBrRcvlYPXR/qyZcu47rrrTvncFVdcwZIlSwDo1KkTe/bsObvoRKRSSk5O5sCB/RiGDXud9laHI3+nVhuwB0JOKqs278alS5OkEvA6gapWrRobN2485XMbN24kPDwcgOzs7LO6FYqIVF5r17pHn8LqtoSA8n1PSQHDEQTR5wOQs2cVO9I1CiX+z+uj/Prrr2fkyJFMnDiR5ORkCgoKSE5O5osvvmDUqFFcf/31pKenM3HiRNq1a1cWMYuInyuaviuI6YypFaAqBKOOuw7K3LeCNaqDkkrA6xqoJ554gpSUFN566y3eeustz3abzUafPn148skn+emnn0hISGDixIk+DVZEKoc1a1YDUBAT5/1/eWIJo24nzHhg/wpWH7Rzc1PvbiwsUtF4nUA5HA7efPNNHnnkEZYuXUpaWhrR0dF07NiR8847D4BLL72UBQsWaCVvEfFabm4uiYkJABgqIK8wigrJzUOJLN+Ta3E0ImXP6wSqSP369alfv/4pn6tatWqpAxKRyi0xcQOFhQWEVK2Fq2pdtKJQxWBUqQNVasPRAyTvWMfhnLbUCFE1ufivEiVQl112GR9++CGxsbF/u5CmNzcTFhH5q6L1nwLO60S2JvAqFPeCmj+4p/EOdeDy+rovnvivEiVQF1xwAWFhYZ7Hf7cSuYhIaRUVkGfVjFP5eAVzYgK15tAAJVDi10qUQJ24aOaJheMiIr5kmqYW0KzAPAtq7lvBimSNHop/K1UNVGZmJllZWURHR5Ofn8/nn39OUlISV155JXFxcb6OUUQqiT17dpOWloo9IBBbrdaogqaCiT7fs6Dmlh17yCmsQUipK21Fyjev/0VYu3YtPXv25IsvvgDg9ddfZ/jw4Xz//ff079+fefPm+TxIEakcikafws9r616cUSoU94KabQBw7l/JOq0HJX7M6wTq/fffp3Hjxtx2223k5uYya9Ys7rzzTpYtW8Ytt9zCmDFjyiJOEakEihKo/OjOuFQBVSEVLajJ/hWsOqgESvyX1wnUmjVreOSRRzjvvPNYvHgxubm53HjjjQBcc801bNmyxedBikjlUJRA5cWoFKCiKkqgXPtWsEIJlPgxrxMom83mWSDz999/JyIigrZt2wLu2qjg4GDfRigilUJGRgZbt7r/AfOMYkiFU1RIzqFE1u7PpUALeYmf8jqBatOmDdOmTWPVqlXMmTOHHj16YBgGKSkpfPLJJ7Rp06Ys4hQRP7d69UpM06RKdCMc4TWsDkdKyYioCxF1wXSSv3clG9N0NZ74J6+P7MGDB7N48WLuuOMO7HY7jzzyCADXXXcdO3fu5IknnvB1jCJSCaxcGQ+A7bwLcZqqf6rIjHoXuh/sXcLKg7oMT/yT10d2q1at+Pnnn9m2bRvNmjUjNDQUgKFDh9KxY0dq1qzp8yBFxP+tXLkcgMzoLiofr+CMehdgJszA3LOMFcl2+reyOiIR3yvVvwbh4eG0a9eu2LYrr7zSJwGJSOWTk5NNQsIG9xf1LrI2GDlrxnldADAPrGJlkhOnC+yayRM/o0NaRCy3du0aCgsLqRJVB3u1ulaHI2erelMIqQ6FueTsXce2dP2pEf+jo1pELLdihXv6LrjhhZhafrzCMwwDo94FAJh7l2o9KPFLSqBExHJFBeQZtbpgqgLKLxxPoJYRn6wESvyPEigRsVR+fj7r1q0BoLBOF4ujEV8puhLP3Luc5Uk2jSyK31ECJSKW2rBhPXl5eYRGVMeo3tjqcMRXottAQCjkpXN0/ybVQYnf0REtIpYqWr6gSuMLsdk0fecvDJvDs6K8uXcJKzSNJ35GCZSIWKqo/ikzugsuLaDpV4z67iUpzD1LVAclfkcJlIhYprCwkNWrVwKQG6P6J39jnHcxAObuxSxLsuFSHZT4ESVQImKZzZs3kpWVRXBoFajZ0upwxNdqt4OAEMhJJfPAFrarDkr8iI5mEbHMihXu6bvIJnE4tFS13zHsgRh14wAwd/+paTzxKzpjiYhliuqfcmK66AbCfsqoXzSNt4jlSqDEjyiBEhFLuFwuVq1yJ1BHo1X/5K88CdSeJSxXHZT4ESVQImKJ7du3ceTIEQKCQiD6fKvDkbIS3da9HlTuEbL2b2Rzmv7siH/QkSwiliiavqveuCMOR4DF0UhZMewBnlXJ0TSe+BElUCJiiaIFNPNrX6j6Jz9XNI3n2r2YxQccFkcj4htKoETknDNNk/h4dwKVXlP1T/7ueB3UYlYlmeQ7LQ5IxAcsT6COHDnCyy+/zKWXXkrHjh254447iI+P9zyfmJhIv379aN++PT169GD8+PHFXu9yuRg5ciTdunWjXbt23H///ezatavYPr5oQ0R8Z9u2rRw+fIiAwCCMup2sDkfKWvT5EFwN8jLI37+WdYc1jScVn+UJ1FNPPcWaNWt47733mDZtGq1bt+aBBx5g27ZtpKWlcd9999GwYUOmT5/OwIEDGTFiBNOnT/e8fvTo0UyePJnXX3+dKVOmYBgGDz30EPn5+QA+aUNEfGvZssUARDXtjCMgyOJopKwZNrtnFIqdf6gOSvyCpQnUrl27+PPPP3nllVfo3LkzjRs3ZsiQIURHR/PDDz8wdepUAgMDGTp0KE2aNKFPnz7ce++9fPLJJwDk5+fz6aefMnDgQLp3705sbCzvv/8+ycnJzJ07F8AnbYiIby1btgSAwnpdVf9USRgNugHg3LmARftVByUVn6UJVGRkJGPHjqVNmzaebYZhYJom6enpxMfHExcXh8Nx/JetS5cu7Nixg5SUFDZudN8GokuX4zUUERERtGrViuXL3fUVvmhDRHynsLCQ+PhlAKRFX2pxNHKuGA2P/az3ryQxKYfMAmvjETlblv4bEBERQffu3YttmzNnDrt376Zr1668//77NG/evNjztWrVAmD//v0kJSUBULt27ZP2OXDgAABJSUln3UZpORyWz5Cekv3YLTPsfn7rDPWzfNqwIYHMzExCwiPI1/pPlYYR2RCq1of03Tj3LGHN4a70bOheVbOiHLulVdF+R0ursvSzSLkaR12xYgUvvPACl112GT179uTNN98kMDCw2D5BQe56iby8PHJycgBOuU96ejoAubm5Z91GadhsBpGRYaV+/bkQERFidQjnhPpZvqxZ475IpFbsJSQ77BS6LA5IzhmjYTfMNV9h7PyDlamXc1Nb9/aKcuyeLfXTv5SbBOqXX37hmWeeoV27drz33nsABAcHn1TInZeXB0BoaCjBwcGAu46p6HHRPiEhIT5rozRcLpOMjOxSv74s2e02IiJCyMjIwen0379e6mf59NtvfwCQFXOxkqdKxmh4Keaar3DuXMDcrS6e6ZhXoY7d0qpov6Ol5Q/9jIgIKfEIWrlIoL788kuGDRtGr169GD58uGc0KCYmhoMHDxbbt+jr6OhoCgsLPdvq169fbJ/Y2FiftVFaheX8r4PT6Sr3MfqC+ll+5OTksGrVCsBd/6Ty8crFqH8JYEDKZvYlJbP7SFXaRFSMY9cX1E//YvlE5aRJk3jttde46667+O9//1tsKi0uLo4VK1bgdB5fdW3x4sU0atSIqKgoYmNjCQ8PZ+nSpZ7nMzIySEhIoHPnzj5rQ0R8Y/XqlRQUFBARFQ3Vm1gdjpxjRkgkxLQDwNz5O4v2azkDqbgsTaB27NjBG2+8Qa9evRgwYAApKSkcOnSIQ4cOcfToUfr06UNmZiZDhgxh69atzJgxg4kTJzJgwADAXbfUr18/hg8fzrx589i4cSNPPvkkMTEx9OrVC8AnbYiIbxQtX1Ct2SWU02sspIwZjf/hfrD9V/5UAiUVmKVTeD/99BMFBQXMnTv3pDWXevfuzVtvvcW4ceMYNmwYvXv3pmbNmgwePJjevXt79hs0aBCFhYW8+OKL5ObmEhcXx/jx4z0jWVFRUWfdhoj4xtKl7gU0j9a+VOs/VVK2xv/Aueh9XDv/YPFekwLd1kUqKMM0TdPqIPyR0+kiNTXL6jBOyeGwERkZRlpall/PU6uf5Ut6+hF69LgI0zSxP7ICo0qM1SGJBUyXE+eH7SAnDfsdM5j25IU0Cy3fx+7Zqii/o2fLH/pZvXpYiYvINYguIudEfPwyTNOkRt0mGFWirQ5HLGLY7BiNjk3j7ZjH77rtqFRQSqBE5JxYutRd/xTWpCt2zd5VakUJlHPbfObvsDgYkVJSAiUi50TRDYQP1eqm+qdKzmjUAzDgUCIbdhwgJcfigERKQQmUiJS55OQkdu7cgWGzkVfnYqvDEYsZodWhTgcAzO2/snBfuViSUMQrSqBEpMwVXX1Xq2Eb7CERFkcj5YGtUU/3g+3z+H2vljOQikcJlIiUuaL1n4yG3XDpul8BjCaXA+Da+Tt/7szXcgZS4SiBEpEy5XK5WLRoIQAptS4F3cBFAKLbQJU6UJBDzvY/WX1Io1BSsSiBEpEytWlTIqmpKQSFhOGqe4HV4Ug5YRgGRtMr3F9s/YkFqoOSCkYJlIiUqYULFwBQs8XFOBwBFkcj5YnR7EoAXNt+4bfd+nMkFYuOWBEpU4sWuROorHr/0PIFUoxxXhcIrAJZh9i3dTW7M3R8SMWhBEpEykxGRgZr1652P67b09pgpNwx7IEYjd3Hhbn1J/7QNJ5UIEqgRKTMLF26CKfTSfU6TbBVrWd1OFIOeabxtvzM/D1KoKTiUAIlImWm6Oq7oKY9rA1Eyi2j8T/AFgCpW1m7aQepuZrGk4pBCZSIlAnTNPnzT3f90+GYnphavkBOwQiKwGjQFQDXptks2KflDKRiUAIlImViy5bNHDyYTEBQMK56XawOR8oxI/Z6AMxNs/h1j67UlIpBCZSIlInff/8VgBotLsEREGRxNFKeGU2vAJsD89BGFq3fSXaB1RGJ/D0lUCJSJhYscCdQmef10vIFckZGSCRGg24AFG78gSVJKiaX8k8JlIj4XGpqCuvWrQUgu/7lFkcjFcHxabwf+FVX40kFoARKRHxuwYLfMU2Tmg3bYI+IsTocqQCOT+MlMn/1LvJ1c2Ep55RAiYjPLVjwGwCuxpfhMq2MRCqKE6fxchJmsTRJV+NJ+aYESkR8qqAg37P+05G6V4KWL5ASMlreAICZMJOfdmoaT8o3JVAi4lPx8cvJzs4mrFpNjJg2VocjFYjR7GpwBGOmbmX+8gRN40m5pgRKRHzqjz/cV9+FNu+JYegUIyVnBFXBaOq+tUvOuhksOaBpPCm/dHYTEZ8xTZNff50HQFq9q7T6uHjNaH0zAGbid/y0Q8ePlF9KoETEZxIS1pOUdIDA4FDMhpdaHY5UQEbD7hBSHbIPM3/BYk3jSbmlBEpEfGb+/F8AqBbbA7tWH5dSMOwBGC1vBCB3/bcs2q9icimflECJiM/8+qs7gUo772pcWn1cSsnWug8A5pY5fJeQY3E0IqemBEpEfGLnzu1s374NuyMAV2OtPi5nIaY9RDWDghwWzJ/N0XyrAxI5mRIoEfGJoum7qk27YA+uYnE0UpEZhoGt7R0AFK75mnl7AiyOSORkSqBExCeKEqiM+tdo+k7OmtH6FrAFQNIapi7cbHU4IidRAiUiZ+3Agf2sX78WwzAwj63jI3I2jNAojGbuYynx96kkZSkpl/JFCZSInLVffvkJgIjGcdir1LI4GvEXRts7ATA3zOCHLVrPQMoXJVAictZ+/vl/AGQ1vlHTd+IzRsNuEFEP8tKZPGsupm5MLeWIEigROSv79u1l3bo1GDYbZrOrrQ5H/Ihh2LC1c49CHV70GWsP60+WlB86GkXkrMyd656+C290IbZwTd+Jbxlt7wJ7IBxYxYR5CVaHI+KhBEpEzsrPP88BIKvxDbr3nficEVYDI/Z6ABb+8AVZBRYHJHKMEigRKbW9e/eQkLAew7Bhb3GN1eGIn7J1vB+AwsRZfLsu3eJoRNyUQIlIqf30048ABDW6GDM0yuJoxF8ZtdtD7Q7gzOfLr7+xOhwRQAmUiJSSaZrMnv09APktbgZN30kZKhqFSlr0OYkHCy2ORqScJVCjR4/m7rvvLrYtMTGRfv360b59e3r06MH48eOLPe9yuRg5ciTdunWjXbt23H///ezatcvnbYhIcRs3JrjvfRcQhKPFVVaHI37OiL0OqtSGrIO8+8Usq8MRKT8J1GeffcbIkSOLbUtLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/u2Wf06NFMnjyZ119/nSlTpmAYBg899BD5+fk+a0NETlY0+mQ0vQJXYFWLoxF/Z9gDsXV+CIAVsz8hPUcLa4q1LE+gkpOTefDBBxkxYgSNGjUq9tzUqVMJDAxk6NChNGnShD59+nDvvffyySefAJCfn8+nn37KwIED6d69O7Gxsbz//vskJyczd+5cn7UhIsUVFhbyv/+5659cLftYHI1UFkbbuyCoKmbqdkZ887vV4UglZ3kCtWHDBqpWrcr3339Pu3btij0XHx9PXFwcDofDs61Lly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fLnP2hCR4pYtW8Lhw4ewh0Zib9Td6nCkkjCCwjE69gdg9tSxuFxamlys4/j7XcpWz5496dmz5ymfS0pKonnz5sW21arlXqhv//79JCUlAVC7du2T9jlw4IDP2igth8Py/PSU7HZbsc/+Sv0sOz/+6J6+c7W4EcMeeM7eV8TW8QGcyz4mb+9qJs1dzr3Xdvn7F1lM5yL/ZHkCdSa5ubkEBhY/OQcFBQGQl5dHTk4OwCn3SU9P91kbpWGzGURGhpX69edCRESI1SGcE+qnb2VkZPDLLz8D4Gh9MxoDkHPJCKuB0e5OzJUTGDf2A564qyeGUTGuANW5yL+U6wQqODj4pELuvLw8AEJDQwkODgbcdUxFj4v2CQkJ8VkbpeFymWRkZJf69WXJbrcRERFCRkYOTqfL6nDKjPpZNqZO/Ybc3FxsNZrhqt1RixfIOWe78HGcayZxZNtyxk/9mT5XdLU6pDPSuajiiIgIKfEIWrlOoGJiYjh48GCxbUVfR0dHU1hY6NlWv379YvvExsb6rI3SKiws3weQ0+kq9zH6gvrpW9OnH1vIsM3tFeY/f/EvRpUYjPZ3Y64Yx4gPRnLDPy6qEMeizkX+pVxPVMbFxbFixQqczuOXqy5evJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7c2WdtiIjbli2b2LBhHdgc2Frr6juxju3Cx8ARTOqO1cyZv8DqcKQSKtcJVJ8+fcjMzGTIkCFs3bqVGTNmMHHiRAYMGAC465b69evH8OHDmTdvHhs3buTJJ58kJiaGXr16+awNEXH79lv3+mlG0ysgrKbF0UhlZoTXwuhwLwDvjni/2D/JIudCuZ7Ci4qKYty4cQwbNozevXtTs2ZNBg8eTO/evT37DBo0iMLCQl588UVyc3OJi4tj/PjxnqJwX7QhIu46wdmzvwPA3vY2i6MRAVuXx3CunUTK7kSmf/cdt958s9UhSSVimKapi2jKgNPpIjU1y+owTsnhsBEZGUZaWpZfz1Orn741Z84PPP/8MxAeg/3hZRg2e5m9l0hJuZaNwfXba4RFRvPLj/87q4t/yorORRVH9ephJS4iL9dTeCJSfkyZMgkAe7s7lTxJuWF0vBeqnkdWWjKffjbB6nCkElECJSJ/a9OmjaxevRJsDmjXz+pwRDwMRzC2S58H4LPPxpGcnGxxRFJZKIESkb81ZcpXANiaXY0RHm1xNCLFGbE3QJ1OFORl85/hb1kdjlQSSqBE5IwyMjL48ccfgGPTJSLljGEY2K94Ewwb8+bOYdGihVaHJJWAEigROaPvv/+W3NwcqNEC6l1odTgip2TUao3R8X4Ahr3xmueOEyJlRQmUiJyW0+lk0tdfAGDrcG+FWO1ZKi9b12cgPJp9e3cxbtwYq8MRP6cESkROa/78uezftxdCIjHa9LU6HJEzMoKqYLvs3wCM/3QsiYkbLI5I/JkSKBE5JdM0mfDZpwAYHe7FCCh/6+uI/JWtxXXYWlyHy+nkpZeeO+lm8iK+ogRKRE5p9eqVJGxYC/YgbMdumSFSERi93oDQKLZu3cKYMaOsDkf8lBIoETmlcRPGA2C0uQUjrIbF0YiUnBEaheOKNwD32lDx8cssjkj8kRIoETnJ1q1b+POP+QDYOv/T4mhESqH5dRhtbsXlcvH888+QmppqdUTiZ5RAichJRox2X8FkNL8GI6qpxdGIlI7t8texRTXl0KGDvPTSc7hcFfP+bFI+KYESkWK2b9/Ggl9/BMB28RPWBiNyFozAMGw3foQtIIg///yD8eM/tjok8SNKoESkmDdHjgHTxGh2FUat1laHI3J2arSCy4YB8OGHI/jtt/kWByT+QgmUiHhs2rqd5b/PBsB28ZMWRyPiG/a2txMS1x+AF154hq1bt1gckfgDJVAi4vHc2x+C6cJoegVGdBurwxHxCRODwu5DqdG8C9nZ2fzf/z3C4cOHrA5LKjglUCICwA9/rmPH8tmA4b4lhogfMW2BpF3xCVEx9dm3by8DBw4gKyvT6rCkAlMCJSIUOE3eGP4ucGzdJ9U+iR+yhUaS23sSVatVJzExgaefHqSVyqXUlECJCC99uZDsHUvcq453fdbqcETKhIlBYURDou+eSEhIKEuWLGLw4CcoKFASJd5TAiVSyS3f7+J/n78DgNHpAYyIuhZHJFJ2nKbBjpAOXPTIxwQFBfHbb/P517+epqCgwOrQpIJRAiVSiR3Nh6fenwQpmyEkEluXx6wOSaTMmRj84ejJ7f8aQ2BgIPPnz+XZZ/+P3Nxcq0OTCkQJlEgl5TLhuTlHOPr7+wDYug/BCK5mbVAi54zJlLxe/N/Q0Z6RqMcee5CjR49aHZhUEEqgRCqpT9cHsujrNyA/C+p0wjj/NqtDEjmHDFwmjM++iqHDxxMeHs6KFfE88EA/kpIOWB2cVABKoEQqoT/22hn9/RLMjd+DYcPe6w0MQ6cDqVxcGGQVwIcp3Xn3wy+JiqrB5s2buOuuvqxdu9rq8KSc0xlTpJLZmGrj+XkFuP7nXuvJ6HifFs2USstpGhzKMXh/X0dGj59C8+YtSEk5zIMP3sPMmdMxTdPqEKWcUgIlUonsPWrw2PwQcn55FY7uh2oNsXV7zuqwRCzlNA22p9t4NaEZI8dOokePnuTn5zN06BBeeuk5cnKyrQ5RyiElUCKVxOEcg0fmh5K+cT6udVMAA/vV72EEhlodmojlXKbB1nQbTy+uyStvjuLxx5/AZrPxww/fcccdfVi/fp3VIUo5owRKpBI4lG3w0NxQkpOTKfzxaQCMzg9inHehxZGJlB8u02DrERv3z63CtXc8wtixn1GzZk127txB//63M3r0SK1cLh5KoET8XFKWwf1zQ9l31En+949D9mGo2RJbt39ZHZpIueM0DfZnGfT/XygRTbrwzTffc9VV1+B0Ohk7djS33XYT8fHLrA5TygElUCJ+bOsRG/f9HMrBbIOCP4bD3iUQGI79xo8xAkKsDk+kXHKaBkfyDe79KZTl6TV56633ePvt96lePYodO7bz4IP38NxzT7N37x6rQxULKYES8VOL99u596dQUnINChJnYS4dBYDtquEY1ZtYHJ1I+eYyDQpc8PyfIYxYGcRlva5m5swf6dv3dgzD4H//m81NN13DW2+9RkrKYavDFQsogRLxMy4TPk8I4P9+CyHPCc698bhmPwGA0fkhbLHXWxugSAVhYgDw5cYA+v8UShrVGDJkKJMmTeOiiy6hsLCAyZO/4rrrrmD06JFkZGRYHLGcS4apRS7KhNPpIjU1y+owTsnhsBEZGUZaWhaFhS6rwykzlbGfh7NcvLwohEUHHACYaTtxfnk95KRiNL0S202fYNjsFkcsUvHYDRO7AYM65NG3WQF2GyxbtoQRI95lwwb3FXohIaHceGNv7rzzHurXb+B5bWU8F1XUflavHobdXrKxJSVQZUQJlPUqWz+nrc7l34sDOVpg4DINzPQ9OL++BTL2Qkw77LdP05IFIj7QPNLJSxfm0rK6C9M0mTfvZ8aMGcXWrVsAMAyDSy/tQb9+/enc+UICAuyV6lxUkfupBKocUAJlvcrSz8N5dv67OpT/bQMDExMDM30vzsm3QPoeiGyM/Y7pGOG1rA5VxC/YDBOXCdc0LOTRdnnEhJmYpsnSpYv58suJLFz4u2ffevXO47rrbuDOO2+jevUYvz4X+cM5VwlUOaAEynr+3s/sAvg8MZCJCYG4TAPnsd9kM2ULzml3H0ueGrlHnqrEWBusiB+yG+4qqd5NC+jfKp+YMPcv4c6d2/nqqy/44Yfviq1ifv75bbn66uvo0eMy6tSpa1HUZccfzrlKoMoBJVDW89d+ZhbA1M2BfJ4QSFbB8UJXANeuP3HNfAjy0qFaQ+x3TMOoUtvCaEX8n81w/xm9skEht7fIp3WU+3yTk5PNr7/OY86cWSxa9CdOp9PzmmbNmnPppf/g0kt70KZNW+z2il+b6A/nXCVQ5YASKOv5Wz93Zhh8szmQ77cFkOssnjiZpom5eiKueUPBVQB1O2Pv/SlGaJR1AYtUMnbDxGkatIh00rtpAb3qF1A1yH0uKizM5uuvv+Hnn//HmjWrcLmOn5OqVq1Kx45xdOoUR+fOcTRr1qJCJlT+cM5VAlUKLpeLUaNG8c0335CRkUGnTp145ZVXaNCgwd+/+BSUQFnPH/qZnge/7A7gh+0O1qU4PCfoE5k5abj+9yzmljkAGC2ux3btfzEcwVaELFLpGbj/rNoM6FLbSa8GTm5oE4Qtz30uOnIkjT//XMiCBb+ycOECMjOPFnt9eHgV2rVrT6tWbWjZsjWtW7ehVq1oDMM41duVG/5wzlUCVQqjRo1i0qRJvPnmm0RHR/POO++wZ88efvjhBwIDA71uTwmU9SpiP00TdmTYWHLAzq97HKw5ZMcFGBQfcXLva2Imfofr139DVjLYArD1GILR6cFyf6IVqSxsmMd+hw1aVHdyce1COkc7aRPlJDQACgoKSEzcwIoVy4mPX87q1SvIyjr5b0f16lE0b96CJk2a0bhxE5o0aUrjxk2JiIg49506jYp4zv0rJVBeys/Pp0uXLjz77LPccccdAGRkZNCtWzfeeOMNrr32Wq/bVAJlvYrQz5xC2JJmY32KnbWH7cQn2zmSZ/P8B/vXpKmIuX8lrj/ewtz9p3tD9SbYrxuFEdP2XIUuIl5zryXlNA1smDSu5uL8Gk5aVXfRrJqTxlVdBBqFbNqUyPr160hIWE9i4ga2bdtarH7qRJGRkdStex5169ajbt161Kt3HvXqub+uVSuagICAc9a7inDO/TveJFCOMo6lQti4cSNZWVl06dLFsy0iIoJWrVqxfPnyUiVQZSUl5TBJSQcoSnuP57+m5+uibcc/U2wfmw2qVAkhIyOHwkLnadrhL22c3G5J9j0xrtPtW7TfyXGf+jUn7uvujx2Hw0FAQAAOh+PYRwDBwQFUrx5BdnYBNpuDkJAQQkJCCQkJweE4d4d+oQsO5xjsy7SxP8tgd4aNHRk2NqfZOZBlYGJgYGIY7ttHuHt4cuJkmi7MXQsxl43B3HnsMmlHMLaLBmHEPYzhCDpnfRKR0jh+tawLg61H7OxMt/HtVvdzADVDXDSqegENGnemWVsX3cNNIu3ZZO7fyMHdm9mxfQvbt29j27atJCcnkZaWRlpaGuvXrz353QyDatUiqVmzJjVq1KRmzVrHPtekevUaVKtWjYiIqlStWpWIiAhCQ8M0eu0FJVBAUlISALVrF79aqVatWhw4cMCKkE4pOTmJa6/tRWFhgdWhVHiBgYGEhIQQGhpGSEgIERFVqVatGtWqRVK1arW/PI4kNKIaoVUiCQqLJN+0kVNokF1gkFUImfkGmQUGR/MN0vMNjuQZpOYaHMw2OJzj/vrEhMhhmDjNvxSBY3CqsWDTNOHgBsytc3Gtnwrpu91PGHaMNrdgu+gJjGr1y/rbJSJlpPAvNY2HcmwcyjFYmeyevnf/UxUCXIKNi6nS0KR6rEmjEJO2Zgb29N04j+wmP3U3WYf3cPTwHo4k7yEleQ+FBQWkpaWSlpbK5s2b/jYWh8NxQkLl/hwWFk5oaOgJ58uix6HFzqGhoaFUqRJOTk4kOTlODMNOYGAgAQEB2Gz+edc4JVBATk4OwEm1TkFBQaSnp5e6XYfDtwdNZGQ1Ys/vQML2fbhMKPqPBc9/DCd+/Zf/Ik65z7Gvz/Rcsa9P8VxJYvjrfzQl2vfU7Rsn7WNiulzuK8+cBe7PrsJjjwuPPc53f12QDaZ7xC0/P5/8/Hzvf76GDUKjILQGRlhNCK1x/HHYscehJzy2nzx8/tcTZhHTNCEzGdJ2YB5cj7l/JebeZZCZdHynwCoYrW/GFjcAo1rpLnAQkfLOoPAU/1C5cP+Tlp4POzIAqrs/QtpDXdwfx5imC3t2KmQlY2YehKyDkJmMWfQ5+zDkpkPOEchNA2c+hYWFpKamkJqa4tvu2BxgDzz9hyMQwxbg3s/mAJsdDPsJnx3uqROb4/h2exC33nILL13f2LexekEJFBAc7L5aKT8/3/MYIC8vj5CQkFK1abMZREaG+SS+IpGRYXz4+bfcPNV9dZZ4xzRNcOa5E6n8bPfngmzM/EzIPQI5aZCThpmTevLj3CPuD9MFWYcg6xDmocTjbZ/mPR2h1QiqUgNHSBVsjkAMewA2RyA2RyCmsxBnQS6FuZkUZKaQf/Qwzvyck9qwB4ZQPbYb0e2vIabjddgDS3dMioh/cwFZ+e5FdrMLbGSF1yC3sAY5ha3JP3UJFXDs3FiY606kco5Abjpm0TkxPxMKsjALciA/CwqyPOdQsyD7hG3Hni/Mdf8jWyywY//MFmSf6u3dMZSiv2tCUoi8Z1QpXukbSqA4PnV38OBB6tc/Ph1y8OBBYmNjS9Wmy2WSkXH6g6W0ogz4/baza8NutxER4a6BcjorZqFfSZy+n0HHPiK9aq+goIAjR9JISTlMSkoKhw8fJjU19djX7m0pKe5tqakpOJ1OCrOPUJh9pMTvYbPZqFOnLk2bNqNt23a0a9eeDh06nTA66gKKX5ygn6d/qSz9hMrT14rTz6rHPkqnqJ9HjmSRm5tHQUGBZ7Q/Pz+fggL3R35+gefr488V4HQ6cbmcFBa6PzudJ364cDoLPZ8Nw+Daa68nLc23F2tFRISoiNwbsbGxhIeHs3TpUk8ClZGRQUJCAv369St1u+X9KgSn01XuY/QFX/XTMOxERtYgMrIGTZueeV+Xy0V6evqxhCqFnJzsYyeKgmMnkQIcDgeBgUGEhoZSvXp1IiOrU7t2bQICTl42oyTx6+fpXypLP6Hy9LWy9NM0wW4PwG4PIDi4bG9gbuX3UwkU7tqnfv36MXz4cKpXr07dunV55513iImJoVevXlaHJxWQzWYjMjKSyMhIoJnV4YiIiI8pgTpm0KBBFBYW8uKLL5Kbm0tcXBzjx48v1SKaIiIi4t+UQB1jt9t59tlnefbZZ60ORURERMo5/1ycQURERKQMKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvGaZpmlYH4Y9M08TlKr/fWrvdhtPpsjqMMqd++hf10/9Ulr6qnxWDzWZgGEaJ9lUCJSIiIuIlTeGJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlJ8ZPXo0d999d7FtiYmJ9OvXj/bt29OjRw/Gjx9/xjZcLhfjxo3jyiuvpH379lx77bV88803ZRm213zRzxPl5+dz/fXX89xzz/k61LPiq36uXbuWu+66i7Zt29K9e3dGjhyJy+Uqq7C95qt+zpo1i2uvvZZ27dpxzTXXMH369LIKudRO1VeAHTt20L59e/bu3fu3bXz11VdcdtlltG3blttuu41169aVRahn5Wz7mZuby7vvvkvPnj3p0KEDN998M/PmzSurcEvNFz/PIqmpqXTt2pUPPvjAlyH6hC/6+fvvv3PzzTdz/vnnc/nll/PVV1+VRajnjil+Y8KECWaLFi3Mfv36ebalpqaaF154oTlkyBBz69at5rRp08zzzz/fnDZt2mnbGT16tBkXF2f++OOP5q5du8wpU6aYrVu3NmfMmHEuuvG3fNXPE7322mtm8+bNzX/9619lFbbXfNXP7du3m+3atTOfe+45c/v27eaPP/5otm/f3hw7duy56Mbf8lU/Fy1aZLZq1cr8+uuvzd27d5tffvmlGRsba86fP/9cdKNETtVX0zTNjRs3mt27dzebN29u7tmz54xtzJgxw2zXrp35/fffm1u2bDGfffZZ84ILLjBTUlLKMnSv+KKfQ4YMMXv06GH+8ccf5s6dO80xY8aYsbGx5pIlS8oydK/4op8nevTRR83mzZubI0eO9HWoZ8UX/Vy6dKnZsmVL89133zV37dplTp482WzZsqU5e/bssgy9TDmsTuDk7CUnJzNkyBBWrFhBo0aNij03depUAgMDGTp0KA6HgyZNmrBr1y4++eQT+vTpc8r2Jk+ezP3338/VV18NQP369VmzZg3Tpk2jd+/eZd6f0/F1P4ssWLCAOXPm0KxZs7IMv8R83c+PP/6Ypk2b8sYbb2AYBo0aNWLLli2sXLnyXHTntHzdz/nz59OiRQtuv/12AO666y6mTZvGwoUL+cc//lHm/TmTM/X1o48+YsyYMTRp0oQDBw78bVtjxoyhX79+XH/99QC88cYbXH755UybNo1//vOfZRJ/Sfmqnzk5OcycOZM333yTbt26ATBgwAAWL17M9OnTufDCC8usDyXhy59nkSlTprBjxw5q1qzp63BLzZf9/OCDD7j88st56qmngON/V+Lj47nmmmvKJP6ypik8P7BhwwaqVq3K999/T7t27Yo9Fx8fT1xcHA7H8Vy5S5cu7Nixg5SUlJPacrlcvPXWW9x0000nPZeenu7z2L3hy34WSU1N5fnnn+e1114jMjKyzGL3hq/7uWDBAq677joMw/BsGzRoEB999FHZdKCEfN3PatWqsXXrVpYsWYJpmixdupRt27ad1LYVztTXBQsW8M477/Cvf/3rb9tJSUlh586ddOnSxbPN4XDQuXNnli9f7vO4veWrfhqGwZgxYzzJ04msPg+B7/pZZMeOHQwfPpx33nmHwMBAX4dbar7qZ05ODvHx8Z6kv8gbb7zByy+/7NOYzyWNQPmBnj170rNnz1M+l5SURPPmzYttq1WrFgD79+8nKiqq2HM2m42LLrqo2La9e/cye/Zsz3/2VvFlP4sMGTKEf/zjH/Ts2ZMJEyb4NuBS8mU/MzMzOXz4MFWqVOGFF17gjz/+ICIigptuuokHHngAu91eNp0oAV//PO+55x7WrVtH//79sdvtOJ1OHnroIW644QbfB++lM/V10qRJACxduvRv20lKSgKgdu3axbbXqlWLjRs3nmWUZ89X/QwODqZr167Ftq1Zs4YlS5YwZMiQsw/0LPmqnwAFBQU8/fTTPPDAA7Ru3dpnMfqCr/q5a9cuXC4XdrudQYMGsXz5cmrVqkW/fv3o27evT2M+lzQC5edyc3NP+o8mKCgIgLy8vL99/aFDh/jnP/9JVFQUjzzySJnE6Aul6efkyZPZtm0bzz//fJnH5yve9jMzMxOAt99+mzp16vDJJ5/w4IMP8vHHHzNq1KiyD7iUSvPzPHDgAEeOHOHll19m+vTpPPfcc3z++efMmDGjzOM9V3JycgBO+b0pye9zRbV9+3Yee+wx2rRpw2233WZ1OD41cuRIgoKCeOihh6wOpcwUnYdefvllOnfuzKeffkrv3r159dVXmTZtmsXRlZ5GoPxccHAw+fn5xbYVnWhDQ0PP+Nrt27fzz3/+k4KCAr744guqVq1aZnGeLW/7uX37dt555x3Gjx//t9+H8sTbfgYEBABw8cUX8/jjjwPQsmVLUlNT+fDDDxk0aFCxqb3yojTH7aBBg7j++uu56667AHc/09PTefvtt7npppuw2Sr+/4vBwcEAp/zehISEWBFSmVu5ciWPPvooNWvWZOzYseVqiutsLVu2jK+//ppvv/3W0tHgslb0M7vxxhu55557APfv565du5gwYQK33HKLleGVWsU/o8gZxcTEcPDgwWLbir6Ojo4+7etWrFjB7bffTlBQEJMnT6Z+/fplGufZ8rafP/74I1lZWdx333106NCBDh06EB8fz6xZs+jQoQP79+8/J3F7y9t+VqtWjaCgoJOmw5o1a0Z2djapqallF+xZ8Lafqamp7Nixg/PPP7/Y9vbt23PkyBGOHDlSZrGeS3Xq1AE45fcmJibGipDK1Ny5c7n33ntp0qQJX331FdWrV7c6JJ/69ttvyc7O5oYbbvCch/bv38/HH39Mhw4drA7PZ4p+Z/96HmratKlXyzyUN0qg/FxcXBwrVqzA6XR6ti1evJhGjRqdti5o7dq1PPjggzRr1oxJkyadVG9RHnnbz379+vHTTz8xc+ZMz0ebNm3o2bMnM2fO9NTblDfe9tNut9OxY0fWrFlTbPumTZuIiIigWrVqZR1yqXjbz2rVqhESEsKmTZuKbd+8eTMRERF+84e3evXqNGrUqFjdSWFhIfHx8XTu3NnCyHxv/vz5PPHEE/To0YMJEyYQERFhdUg+98wzzzBnzpxi56FatWpx++23M3PmTKvD85no6GjPVXcn2rx5c7n/5/xMlED5uT59+pCZmcmQIUPYunUrM2bMYOLEiQwYMMCzz9GjRz0jEYWFhTzzzDNERUXx1ltvkZ+fz6FDhzh06FC5Ha0A7/tZrVo1GjRoUOwjODiYsLAwGjRoUOzqr/LE234CPPLIIyxYsIAPPviA3bt3M2fOHMaOHespti6PvO2nzWajf//+fPTRR8ycOZM9e/Ywc+ZMxowZU+w1FdFfR9Duv/9+JkyYwLfffsvWrVt54YUXyM3NrbDTIEVO7Gd6ejr/+te/aN26NUOGDCE9Pd1zHqroo4kn9jMqKuqk85DD4aBq1ao0aNDA2kDP0l+P28cff5wpU6bw1VdfsWfPHqZMmcL06dN54IEHrAvyLJXPvxLiM1FRUYwbN45hw4bRu3dvatasyeDBg4ut5zRs2DCWLVvG/PnzWbt2Lbt27QLg8ssvL9ZW3bp1mT9//jmNv6S87WdFVZp+XnjhhXz88ce8//77fPzxx9SsWZN//vOfPPjgg1Z142+Vpp+DBg2iWrVqfPzxxxw4cIB69erx7LPPWn716NkaOHAgAF988QUAt956K0ePHuW///0vR44coU2bNkyYMKHCj7Kd2M8//viDjIwM1qxZw6WXXlpsvwsuuMDzvaiI/vrz9Fd/7eeNN94IuNele/PNN6lbty6vvPLKKZfMqSgM0zRNq4MQERERqUg0hSciIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiFYZWXRGR8kIJlIhUCPPmzeNf//qX5+ulS5fSokWLYrc1OZeee+45WrRoQYsWLXjmmWfOqq0WLVrwwQcflHj/O+64w/Pe3rxORHxHK5GLSIXw2WefFfu6devWTJkyhaZNm1oTEFCzZk1GjRp11quAT5kyxaubAb/22mtkZmZy2223ndX7ikjpKYESkQopPDyc9u3bWxpDYGCgT2Lwtg0rk0YRcdMUnoiUe3fffTfLli1j2bJlnmm7v07hffDBB1x11VX88ssvXHfddZx//vnceOONrFq1itWrV9O3b1/atm3Lddddx+LFi4u1v3nzZgYMGEDHjh3p2LEjjz32GHv27PE6zhYtWvD111/z3HPP0alTJy644AJef/11cnNzefvtt+nSpQsXXnghQ4YMIS8vr9jriqbiivq1ePFi7r//ftq1a8fFF1/M22+/TWFh4Vl8F0XEl5RAiUi598orr9CqVStatWrFlClTaN269Sn3S0pK4s033+Thhx/mv//9L+np6QwaNIinnnqKW2+9lffeew+Xy8WTTz5Jbm4uADt27OD2228nJSWFt956i2HDhrFnzx7uuOMOUlJSvI51+PDhBAYGMmrUKG688Ua++OILbrrpJg4cOMA777zD7bffzrRp0/72ZrLPPPMMnTp1YsyYMVx//fV8+umnTJs2zet4RKRsaApPRMq9pk2bEh4eDpx5uisnJ4dXXnmFSy+9FIBt27bx7rvvMmzYMG655RYAnE4ngwYNYseOHbRs2ZJRo0YRHBzMZ5995nmPiy66iMsvv5xx48YVK1wviSZNmvDvf/8bgLi4OKZNm0ZBQQHDhw/H4XDQrVs35s+fz8qVK8/YTt++fXnsscc88fzyyy/89ttv3H777V7FIyJlQwmUiPiVjh07eh7XqFEDKJ50VatWDYCMjAwAlixZwoUXXkhwcLBniiw8PJzOnTuzaNEir9+/Q4cOnscOh4PIyEjatGmDw3H8dFutWjWOHj1a4nYAYmJiyM7O9joeESkbSqBExK8UjSKdKDg4+LT7HzlyhB9//JEff/zxpOdKc3Xdqd4/JCTE63b+GrPNZtM6WCLliBIoEanUqlSpwsUXX8x999130nMnjhqJiJxIZwcRqRBsNhsul8vn7V5wwQVs3bqVli1behIm0zR55plnaNCgAS1btvT5e4pIxaer8ESkQoiIiGDHjh0sXryY9PR0n7X76KOPsnv3bgYMGMAvv/zCggULGDhwILNnzyY2NtZn7yMi/kUJlIhUCHfddRcBAQE89NBD/PHHHz5rNzY2lq+++grDMBg8eDCDBg3i0KFDfPjhh1xxxRU+ex8R8S+GqapEERGvPffccyxbtoz58+dbFkOLFi14/PHHGThwoGUxiFRWqoESESml/Px8Vq9eTfXq1alfv/45e9+tW7eSmZl5zt5PRE6mKTwRkVI6dOgQt912GyNHjjyn7/vSSy/pRsIiFtMUnoiIiIiXNAIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4qX/B2D9wbLR1ok6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the amplitude-weighted skewnorm with the inferred parameters\n", + "fit = param_opt[0] * scipy.stats.skewnorm(param_opt[3], loc=param_opt[1], scale=param_opt[2]).pdf(first_peak['time_min'])\n", + "\n", + "# Plot the data and the observed peak\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.fill_between(first_peak['time_min'], fit, color='dodgerblue', label='inferred signal')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With an adequate reconstruction of the observed peak, the signal area is computed \n", + "by integrating the signal over the entire time range of the peak window, and \n", + "the procedure is repeated for the next peak window." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/methodology/peak_detection.ipynb.txt b/_sources/methodology/peak_detection.ipynb.txt new file mode 100644 index 0000000..8b15a14 --- /dev/null +++ b/_sources/methodology/peak_detection.ipynb.txt @@ -0,0 +1,393 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Detecting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peak detection is a common problem in time-series analysis. In some cases, they are very easy to spot by eye, but that can be difficult to define mathematically. This is particularly true for signals that are “noisy” or have pronounced variations in their baseline values. There are several Python libraries out there for automatically identifying peaks in time-series data, such as [findpeaks.py](https://erdogant.github.io/findpeaks/pages/html/index.html) and [PeakUtils](https://peakutils.readthedocs.io/en/latest/). In `hplc-py`, peak detection is executed using the [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html) which is very mature and actively maintained. In this notebook, we won’t cover the algorithms used under-the-hood for peak detection, but will outline how `hplc-py` leverages `scipy.signal.find_peaks` and `scipy.signal.peak_widths` to 1) identify peaks in chromatographic data and 2) clip the chromatogram into discrete peak windows which are used in the fitting procedure.\n", + "\n", + "## Selecting peaks by topographic prominence\n", + "Peaks are defined by a handful of quantitative properties. The most relevant \n", + "to `hplc-py` is the [topographic prominence](https://en.wikipedia.org/wiki/Topographic_prominence), \n", + "which is a measure of the relative height of a maxima in the signal to its nearest \n", + "baseline. For chromatographic data, peaks are often highly pronounced relative\n", + "to their surrounding signal, except in two limits:\n", + "\n", + "1) The concentration of the analyte is close to the sensitivity limit of the \n", + "detector \n", + "2) The peak overlaps with a nearby peak which is much higher in concentration, \n", + "drowning out or completely subsuming the signal.\n", + "\n", + "As an example, we can load a real chromatogram of a [minimal medium for \n", + "bacterial growth](https://www.sigmaaldrich.com/US/en/product/sigma/m9956) \n", + "which has a slew of compounds, some of which overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10.0, 20.0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCSklEQVR4nO3dd3xT9frA8U+SbrpLFxvKqOxVLMoShet1IaJXveIARVxw9So4QEUFx08UQcTBUK6L6d6AA1T2XmWWMgptKaVt2qZtmvz+iCdtZSXNSXKSPu/Xixc0OfnmS0/aPHm+z3m+OqvVakUIIYQQQqhG7+0JCCGEEEL4GwmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsgBvT8BfWa1WLBZpkq8Ver1OzodGyLnQDjkX2iHnQhv0eh06nU6VsSTAchOdTkdRUSlms8XbU6n3AgL0xMQ0kPOhAXIutEPOhXbIudCO2NgGGAzqBFiyRCiEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCKFZS5YsZPLkZ8nOPubtqQghhFMCvD0BIYQ4m19//ZnJk58FYMuWTSxa9CV6vXwmFEL4BvltJYTQpI8++sD+7/3797F+/VrvTUYIIZwkAZYQQnOMRiNbtmwCoFevdAB+++0Xb05JCCGcIgGWEEJz1q1bg9lsplmz5tx00y0AbNiwzsuzEkIIx0mAJYTQnHXrVgNw6aV96dixMwAHDx6gsrLCm9MSQgiHSYAlhNCc3bt3AdCpUxeSkpIJD4/AbK7k0KFML89MCCEcIwGWEEJTLBYLe/fuAaBdu4vQ6XS0bdsOwH67EEJonQRYQghNOXIki7KyUkJCQmjRoiUAbdq0BSTAEkL4DgmwhBCakpGRAUCbNu0wGAwApKS0AeDQoYNem5cQQjhDAiwhhKYcPpwFQMuWrey3NWnSBEA6ugshfIYEWEIITTl27AgATZs2s9/WqFHjv+47itVq9cq8hBDCGRJgCSE05ehRW4DVqFET+23JybYAq7S0lMLC096YlhBCOEUCLCGEphw7dhSoXhYECA4OJj4+vtb9QgihZRJgCSE0o7KykpycEwA0btyk1n1KFkvqsIQQvkACLCGEZpw4cRyLxUJISAhxcQ1r3acEXMeOSYAlhNA+CbCEEJpRs/5Kp9PVui8hIRGAvLxcj89LCCGcJQGWEEIzlCsIa9ZfKRo2tNVgnTyZ59E5CSFEXUiAJYTQDGX5r3Hjpmfcl5CQAMDJk5LBEkJonwRYQgjNUJYI/17gDtUZrNxcyWAJIbRPAiwhhGZUt2g4M4MlS4RCCF/i1QBr7dq1tGvX7qx/Lr/8cgB2797N8OHD6dq1KwMGDGDu3Lm1xrBYLMyYMYO+ffvSpUsXRo4cSVZWVq1j1BhDCOF+Sg1W48aNz7hP6YNVVlZKSYnRo/MSQghneTXA6tatG7///nutP/PmzSMgIID77ruPgoICRowYQYsWLVi6dCljxoxh+vTpLF261D7GrFmzWLBgAZMnT2bhwoXodDpGjRpFRUUFgCpjCCHcr7i4mMLCQuDsS4RhYQ0ICwsD5EpCIYT2eTXACgoKIj4+3v4nOjqal156icGDB3PTTTexaNEigoKCmDRpEikpKQwbNoy77rqL2bNnA1BRUcG8efMYM2YM/fv3JzU1lWnTppGTk8OyZcsAVBlDCOF+yvJgTEwsYWENznqMskyYlyfLhEIIbdNUDdbHH3/M8ePHefLJJwHYsGEDaWlpBAQE2I9JT08nMzOT/Px8MjIyKCkpIT093X5/ZGQk7du3Z/369aqNIYRwv+oWDWfWXymUAOvUqXyPzEkIIeoq4MKHeEZ5eTnvvPMOd955p/1y7BMnTtC2bdtaxyn3ZWdnc+KEbUuN5OTkM445fvy4amPUlcGgqfi13lLOg5wP7zvfuTh+3NaioUmTJgQEnP1cxcbGAlBUdPqcxwjHyM+Fdsi50I6/9Td2iWYCrC+//JLy8nJuv/12+20mk4mgoKBaxwUHBwO2gKysrAzgrMcotRxqjFFXkZGhLj1eqEvOh3ac7Vzk5dk+7LRu3YqYmLMvESYl2T4clZUZz3mMcI78XGiHnAv/opkA64svvmDw4MHExMTYbwsJCTmj0Ly8vByAsLAwQkJCAFsdlfJv5ZjQ0FDVxqiroqIyqqosLo0hXGcw6ImMDJXzoQHnOxcHDhwEoGHDJAoKSs76+LCwCACys0+c8xjhGPm50A45F9oRFRWKXq9OJlETAdapU6fYvHkzo0ePrnV7UlISubm1rxZSvk5MTMRsNttva9asWa1jUlNTVRujrqqqLJjN8sOiFXI+tONs5+LoUVuRe3Jy43Oep6go2wewU6cK5FyqRH4utEPOhfdZreqNpYkF302bNqHT6ejVq1et29PS0ti4cSNVVVX221avXk3Lli2Ji4sjNTWV8PBw1q5da7+/qKiIXbt20bNnT9XGEEK4l8VisV9FeLYWDQolw11QcMoj8xJCiLrSRICVkZFB06ZNz1iSGzZsGEajkQkTJrB//34+++wz5s+fb890BQUFMXz4cKZOncqKFSvIyMjgkUceISkpiUGDBqk2hhDCvfLy8qisrMRgMJCYmHTO46KjJcASQvgGTSwRnjx5kujo6DNuj4uLY86cOUyZMoWhQ4cSHx/P+PHjGTp0qP2YsWPHYjabmThxIiaTibS0NObOnWsvWldjDCGEeyktGpKTG9VqqfJ3ylWEp0+f9sS0hBCiznRWq5orjqKmgoISWU/XgIAAPTExDeR8aMC5zsVXX33OM888ycUX9+bdd98/5+Nzck7wj38MICAggPXrt6NT85rqekZ+LrRDzoV2xMY2UK1dhiaWCIUQ9Zsj9VdQvURoNpspLi52+7yEEKKuJMASQnidEmCdr4s72PrTKfsRnj5d4PZ5CSFEXUmAJYTwOkczWACRkVGA7WpfIYTQKgmwhBBed/Sorci9cePzZ7AAIiJszUaLilzbaUEIIdxJAiwhhFeZTCby8mzNfx3LYEUCSA2WEELTJMASQnjV8ePZADRo0OCs7Vr+LiLCtkRYXCwZLCGEdkmAJYTwqurlwSYOtV1QMlhSgyWE0DIJsIQQXlVd4H7h+iuAiAhZIhRCaJ8EWEIIr1K6uDdpcuH6K6iZwZIlQiGEdkmAJYTwqqNHHW/RALJEKITwDRJgiTMcOnSQ0aNHsmTJAm9PRdQDdV8ilABLCKFdmtjsWWjLiy8+z7p1a1i79k/S0y+9YHdtIerKarXalwglgyWE8CeSwRK1GI1GNm3aYP961apfvTUVUQ8UFp6mpKQEgEaNGjv0mOo2DRJgCSG0SwIsUcvu3Tsxm832r7dv3+bF2Qh/p9RfxcfHExIS4tBjpMhdCOELJMAStRw4sO9vX+/30kxEfVC9POj4MrSyVU5xcTFWq9Ut8xJCCFdJgCVqOXDgAACDB/8TgMzMA1gsFm9OSfgxZzZ5ViibPVssFvvyohBCaI0EWKKWnJzjAHTv3hO9Xk9FRQX5+Se9PCvhr2p2cXdUSEgIQUFBgCwTCiG0SwIsUUtOTg5ge8OLj08AqveKE0Jtx44dA5wLsEC6uQshtE8CLFFLbu4JABITk0hObgRIgCXc5+jRwwA0bdrMqcdJobsQQuskwBJ25eXlFBQUAJCQkEBCQiIAJ0/KEqFQX2VlJSdO2JaknSlyB2k2KoTQPgmwhF1urm15MDg4mKioaGJjYwE4dSrfm9MSfurEieNUVVURHBxMfHy8U49VAixpNiqE0CoJsISdEmAlJCSh0+mIjY0D4NSpU96clvBTR47YlgcbN26KXu/cr6Lw8HAASkvlKkIhhDZJgCXscnKU+ivb0qCSwSookAyWUJ9yBWGTJs4VuAM0aNAAQNo0CCE0SwIsYXfyZB4ADRvalmuqM1gSYAn1KQXuTZo4V+AOEmAJIbRPAixhd/r0aQBiYmL++luWCIX7KNvkNG3q/GbiDRrYlghLSoyqzkkIIdQiAZawO33adgVhVFQ0UHOJUAIsoT41MlhGowRYQghtkgBL2BUWngYgOjoaqF4iLCkpwWQyeWlWwh9ZrVaOHFFqsOqewZIidyGEVkmAJeyUJcLoaNsSYXh4OIGBgYBksYS68vPzKSsrRafTOd3FHSSDJYTQPgmwhJ2SwVKWCHU6HTEx0gtLqE+5gjAxMcm+r6AzJIMlhNA6CbCE3d+XCAGioqIA2fNNqKu6B5bz2SuoDrCMRgmwhBDaJAGWAGw1MQUFp4HqDBbIliTCPZQAy9k9CBXVbRpkiVAIoU0SYAnAttRiNlcCtTNYERERgGSwhLqUAKsuBe5QHWDJEqEQQqs0EWB98cUXXHXVVXTq1Imrr76a77//3n7f7t27GT58OF27dmXAgAHMnTu31mMtFgszZsygb9++dOnShZEjR5KVlVXrGDXG8HdKgXtQUBChoWH22yWDJdxBqcFyNYNlMpkwm82qzUsIIdTi9QDryy+/5KmnnuLmm2/mm2++4aqrruK///0vmzdvpqCggBEjRtCiRQuWLl3KmDFjmD59OkuXLrU/ftasWSxYsIDJkyezcOFCdDodo0aNoqKiAkCVMeqDmgXuOp3OfrtksIQ7KC0aGjd2LYMFksUSQmhTgDef3Gq1Mn36dO68807uvPNOAB588EE2bdrEunXrWLduHUFBQUyaNImAgABSUlLIyspi9uzZDBs2jIqKCubNm8e4cePo378/ANOmTaNv374sW7aMq6++mkWLFrk8Rn1QWFgIVBe1KySDJdRWWlpq35apLl3cAQIDgwgKCqKiogKj0UhkZNSFHySEEB7k1QzWwYMHOXbsGNdee22t2+fOncvo0aPZsGEDaWlpBARUx4Hp6elkZmaSn59PRkYGJSUlpKen2++PjIykffv2rF+/HkCVMeoDo9GWoQoPj6h1e3i47WotyWAJtRw+bKu/ioiIrHVBhbNkuxwhhJZ5NYN16NAhwPaJ9u6772bXrl00adKE+++/n4EDB3LixAnatm1b6zEJCQkAZGdnc+LECQCSk5PPOOb48eMAqoxRVwaD11dgHaYss0RERBAQUD1vJaNlNBbXut2XKOfBl86HvzIY9Paf+6ZNm7n0mgoPD6eg4BQmU5nPvja9SX4utEPOhXbUqJBxmVcDLKUL8+OPP85DDz3EY489xo8//sgDDzzA+++/j8lkOqMJYXBwMADl5eWUlZUBnPUYZclLjTHqKjIy1KXHe1JVVTkADRvGEhNTXd+SnBwPQFlZSa3bfZEvnQ9/dvDgQQDatm3t0msqMtKWbdXpzD7/2vQm+bnQDjkX/sWrAZayDcvdd9/N0KFDAbjooovYtWsX77//PiEhIWcUmpeX2wKBsLAwQkJCAKioqLD/WzkmNNT2QlVjjLoqKiqjqsri0hiekptr69QeFBRKQUF10bBebws8CwpO17rdlxgMeiIjQ33qfPgrg0FvD7CSk5u49JpSrnbNycn32demN8nPhXbIudCOqKhQ9Hp1MoleDbCSkpIAzljCa926Nb/++iuNGzcmNze31n3K14mJifbLs3Nzc2nWrFmtY1JTU+3P4eoYdVVVZcFs9o0flqIiW41VgwYNas05LCz8r/uLfOb/ci6+dD78mRJgNW3a3KXzoQRYRUXFcl5dID8X2iHnwvusVvXG8uqCb/v27WnQoAFbt26tdfvevXtp1qwZaWlpbNy4kaqqKvt9q1evpmXLlsTFxZGamkp4eDhr1661319UVMSuXbvo2bMngCpj1AfnKnKvvopQityFOpQAq3nzFi6NU71djhS5CyG0x6sBVkhICPfccw9vvfUW33zzDYcPH+btt9/mjz/+YMSIEQwbNgyj0ciECRPYv38/n332GfPnz2f06NGArW5q+PDhTJ06lRUrVpCRkcEjjzxCUlISgwYNAlBljPpAeZM6M8CyfV1WVkplZaXH5yX8S3FxMXl5thYNzZq1cGks6eYuhNAyry4RAjzwwAOEhoYybdo0cnJySElJ4c033+Tiiy8GYM6cOUyZMoWhQ4cSHx/P+PHj7fVaAGPHjsVsNjNx4kRMJhNpaWnMnTvXXrQeFxfn8hj1QXUGK7zW7X9v6OjKZfVCZGUdAiAurqE9eK8radMghNAyrwdYACNGjGDEiBFnva9z584sXLjwnI81GAyMGzeOcePGnfMYNcbwd+daIgwMDCIwMJDKykpKS0slwBIuUQKsFi1auDyWEvzLEqEQQouk6YYAoLjY9ial1FzVpLyRlZTIUoxwzaFDmYDr9VdguwoYsLdaEUIILZEASwBgNNq2womICD/jPuVqrbKyUo/OSfifw4dtm6i3aNHS5bHkdSmE0DIJsARWq9Wewfr7EiHULCaWNzLhGjUzWNUBlmSwhBDaIwGWoLy8HLPZdoXg2QIsZSlGlgiFK6xWa40aLNczWMrrUgJ/IYQWSYAlal3mrrxp1RQWZstgyVKMcMWpU/kYjUZ0Oh1Nmza78AMuQNlpQV6XQggtkgBL2JdYQkLOvkWAEmBJBku4QsleNW3aVJUWKFLkLoTQMgmwhD0DcK69F2UpRqghM9PWwb1Vq1aqjKe8XuV1KYTQIgmwhD0DcO4ASzpmC9cdPHgAgDZt2qgyXvXStWSwhBDaIwGWqBFgnVl/BTUzWBJgibo7eHA/cObm7nWlfCAwmcqwWGSDXCGEtkiAJexLLOfKYEmbBqEGtTNYNT8QmEySxRJCaIsEWOKCNVjKG5lksERdGY1GcnJOAOoFWCEhIeh0OkCCfyGE9kiAJS5YgyUZLOEqpcA9Pj6B6OhoVcbU6XSEhCitGiSDJYTQFgmwhMM1WNKmQdSVUn+VkpKi6rhyhasQQqskwBIOtGmQRqPCNUr9VatWrVUdV5qNCiG0SgIs4UCbBslgCdcoGaxWrdyTwZIlQiGE1kiAJRwOsGQZRtSVksFKSVE3g1VdgyWvTSGEtkiAJRyowZIlQlF3ZWVlZGcfA9QPsCSDJYTQKgmwRI0arAs1Gi3FarV6bF7CP2RlZWK1WomJiSE2NlbVsatbiEjwL4TQFgmwhL1J44XaNFgsFkwmk8fmJfzDgQO2+quWLdWtv4KaGSwJsIQQ2iIBlrhgDZZS5wLSbFQ4b+/ePQC0bq3OFjk1yYbPQgitCnDkoPXr19f5CdLS0ur8WOEZF1oi1Ov1hIWFUVpaSmlpKXFxnpyd8HV792YA0LZtO9XHrm7TIDVYQghtcSjAuv322+1bUjjKarWi1+vZtWtXnSYmPOdCGSywFbqXlpZKqwbhNCWD1a5dqupjKx8KJMASQmiNQwEWwNNPP03r1o5fAbRv3z4mT55cp0kJz3IkwKp+I5OlGOG4/PyT5OefRKfT0bq1OnsQ1iT7ZAohtMrhAKtjx4507tzZ4YGDg4PlijMfcaE2DVBd6C4ZLOEMJXvVtGmz876+6kopclcu1BBCCK1wqMj9nXfecSq4AujSpQs7d+6s06SEZ11oqxyAkJAQAMrL5SpC4bjq+iv1lwdBityFENrlUIB13333cdlllzFz5kyys7MdHtxgMNR5YsIzrFarQ0uESoAltS7CGe6svwJpNCqE0C6HAqyZM2fSoUMH3n33Xa644gruvvtufvjhByorK909P+Fm5eXl9qVcR2qwZClGOMOdVxCCNBoVQmiXQzVYV1xxBVdccQWnT5/mm2++4csvv+Thhx8mJiaGIUOGcNNNN5GSon4TQeF+NT/51+x39XfVGSxZIhSOqaioIDPzIABt2rgrwJK9CIUQ2uRUo9Ho6GiGDx/O4sWL+fbbbxk2bBg//PAD11xzDbfccguLFy+WT5I+RnljCg4OPu+SrhJ8SSd3/7F162YefHAUo0bdycqVv6g+/t69ezCbzURHR5Oc3Ej18aE6wJLXpRBCa+rcyT0lJYXHHnuMX375hXnz5tG2bVveeOMN+vbtq+b8hJs5Un8FNTNYEkD7g4yM3YwadSd//LGK9evX8p//PMBXX32u6nPs3LkdgPbtOzrdR89REvgLIbTK5a1yqqqqKC0txWQySU2WD3KkRYPtfnkj8xcWi4Xnn59IRUUF6emXcP31w7Barbz44nNkZWWq9jxKgNWxo3NXIDtDCfylNlAIoTUO98H6uw0bNvDVV1/x448/UlRURPfu3XnyySe58sor1ZyfcDNHWjTUvF/eyHzfmjV/sGvXTsLDw5k8+RViY+M4fjybtWtX89prrzBjxjuqPM/OnTsA6NChoyrjnY2SwaqoqKCqqkquXBZCaIZTGaz9+/czbdo0Bg4cyO23384vv/zCv/71L77//ns+/vhjhg4desE36r87duwY7dq1O+PP4sWLAdi9ezfDhw+na9euDBgwgLlz59Z6vMViYcaMGfTt25cuXbowcuRIsrKyah2jxhj+Sslgna/A3Xa/kimQDJavW7RoAQDXXjuUhg3j0ev1PPnk0+j1elau/JXt27e6/BylpSVkZh4AoEOHTi6Pdy7K6xKkR5sQQlscCrDmzZvH0KFDufbaa5k7dy4XXXQRb731Fr/++iuPPvooLVq0qPME9uzZQ3BwMKtWreL333+3/7n22mspKChgxIgRtGjRgqVLlzJmzBimT5/O0qVL7Y+fNWsWCxYsYPLkySxcuBCdTseoUaOoqKgAUGUMf+Z4DZZsqusPjEYjv/++EoBhw/5lv71Fi1ZcffV1AHz00XyXn2f37l1YLBYSE5No2DDe5fHOJTg42P5vCf6FEFri0BLh//3f/9GqVSseffRRhg4dSlxcnGoT2Lt3Ly1btiQhIeGM++bPn09QUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD8C0adPo27cvy5Yt4+qrr2bRokUuj+HPqpcIHa3BkgDLl61Z8wdmcyXNmjU/Y2/A2267k6+//oIVK34iNzeHhITEOj+PUn/lzuwVgF6vJyQkBJPJJMG/EEJTHMpgffLJJ3z33Xfcc889qgZXYMtgnWsT6Q0bNpCWlkZAQHUcmJ6eTmZmJvn5+WRkZFBSUkJ6err9/sjISNq3b8/69etVG8OfKQGTo1cRSpbAt61c+SsA/foNOOO+1NSL6NatB2azmSVLFrr0PDt2KAGW++qvFPLaFEJokUMZrO7du9f6Oicnhx07dlBcXHzW46+//nqHJ7B3717i4+P597//zaFDh2jevDkPPPAAffv25cSJE7Rt27bW8UqmKzs7mxMnTgCQnJx8xjHHjx8HUGWMujIYXL5I0+2UupUGDcIICDj3fBs0CLMff77jtEg5D75wPtxt0ybbh4a+ffud9TzeeuttbN68kW+//YqHHhqLXu/898xqtbJly0YAunXrXut53HEubMvXp6msLPe516Y3yc+Fdsi50A41O8o4fRXhd999xxNPPHHO+iSdTudwgFVRUcGhQ4cIDQ1l/PjxhIWF8dVXXzFq1Cjef/99TCYTQUFBtR6j1FyUl5fblwTOdkxhYSGAKmPUVWSkcwX/3mC1mgGIjo4kJqbBOY+Lj48BbAHW+Y7TMl84H+6Uk5PD0aNH0ev19O9/KRERZ57HG264jhdeeJZjx46yb9/OWpldR2VlZZGbm0tgYCD9+vU+a3ZUzXOhBP+Bgfjsa9Ob6vvPhZbIufAvTgdYb7zxBp06deKpp54iOjrapScPCgpi/fr1BAQE2AOcjh07cuDAAebOnUtISMgZgVx5eTlg2+RVWRqoqKj429VE5fZf6mqMUVdFRWVUVVlcGsPdCgpsQaReH0hBQck5jzObbWF9SUnpeY/TIoNBT2RkqE+cD3f69dffAWjTpi1ms/6c53HQoH/w2WdL+PjjT2nXzvkaqp9/thXRd+jQCZPJgslU/TzuOBdBQbYPTHl5BT732vQm+bnQDjkX2hEVFVqnzP3ZOB1g5ebmMmHCBDp06KDKBMLCziyubtu2Lb///jtJSUnk5uae8fwAiYmJmM1m+23NmjWrdUxqaiqAKmPUVVWVBbNZ2z8sJSXKVjkh551rYKDtTcxkKtP8/+lcfOF8uNPmzZsA6NKl+3m/D1dddR2ffbaEn376gfHjJ9b64OGIDRtsy5C2eq6zP4+a5yI42Da/kpLSen1+66q+/1xoiZwL77Na1RvL6TCta9euZGaq0+05IyODbt26sWHDhlq379ixg9atW5OWlsbGjRupqqqy37d69WpatmxJXFwcqamphIeHs3btWvv9RUVF7Nq1i549ewKoMoY/c3arHCkk9l179mQA0L79+T8cde/ek+TkRhiNRn777Wenn2fTJtvPc7duPZyfZB3Ia1MIoUVOZ7CeffZZ7rvvPoxGI507dz7rG3NaWppDY7Vt25Y2bdrw3HPP8eyzzxITE8OiRYvYsmULS5YsoWHDhsyZM4cJEyZwzz33sG3bNubPn89zzz0H2JYYhw8fztSpU4mNjaVx48a8+uqrJCUlMWjQIACGDRvm8hj+rC5b5VgsFtVSqMIzrFYre/bsBqBdu/NnZvV6PddcM4TZs9/m66+/5B//uMrh5zl27CiHD2dhMBjo2rX7hR+gAunRJoTQIqcDrEOHDnHy5ElmzpwJUGsTV6vVik6nY/fu3Q6Npdfreeedd5g6dSoPP/wwRUVFtG/fnvfff5927doBMGfOHKZMmcLQoUOJj49n/PjxDB061D7G2LFjMZvNTJw4EZPJRFpaGnPnzrXXdMXFxbk8hj9zdqscsBW6XyggE9qSm5tDYWEhAQEBtGp19rYoNV1zzXXMnv02q1f/zsmTeQ43C1292lbn1alTFyIjI12as6MkgyWE0CKnA6xXXnmFJk2aMHr0aBo2bOjyBGJjY3nxxRfPeX/nzp1ZuPDcPXkMBgPjxo1j3Lhxbh3DXzm6RKjUudgeIwGWr1GyVy1atKzV/fxcmjdvSefOXdi2bSvff/8tt99+l0PP8+effwBwySV96jxXZ0kTXCGEFjkdYGVnZ/P2229z6aWXumM+wsMcDbD0ej3BwcGUl5fLG5kPOnDAti/g37u3n88111zPtm1b+eabLx0KsCorK1m3bjUAl1zSt07zrAvJYAkhtMjpQpq2bdvam3MK3+foVjkgb2S+7PBh2+blzZu3dPgx//jHPwkICGTPnt3s3bvngsdv2rQBo9FITEwMF13Uvs5zdZZksIQQWuR0gPXUU08xc+ZMFi1axN69e8nOzj7jj/AdjtZg2Y4Jq/UY4TsOH7Zd+du8eQuHHxMVFU3//gMA+Prrzy94/I8/fgfAZZddgcFgcHqOdaUUuUvgL4TQEqeXCO+66y7MZjPPPPNMrQL3mhwtchfe5+gSIUgGy5dlZSkZrBZOPe7aa4eyYsUyvv76Cx588OFz9sSqrKzk55+XATB48D9dmquz5HUphNAipwMspb2B8H1Wq9UeYIWEOLJEKJkCX2Q0Gjl5Mg+AZs1aOPXYPn36kZzciOPHs/nhh2+5/vphZz1u3bo1nD59mpiYWHr27OXqlJ1S3aZBMqtCCO1wKMBavXo1nTt3pkGDBrXaG5yP0Whk+/bt9O7d26UJCveprKy0N2B1LoMltS6+5PDhQwDExTUkIiLCqccGBARw88238cYbr/LJJx8yZMgNZ81cL1liu0rXVrfl9Oc2l0gGSwihRQ7VYI0cOdJ+FZKjDhw4wMiRI+s0KeEZNT/xO1aDJQ0dfVFW1iHA+eVBxdChwwgNDWPv3gx++WX5GfcfO3bU3vH9pptures066w6syqvSyGEdjj0UdNqtbJkyRJWrlzp8MA5OTl1npTwDCVQCggIJDAw8ILHyxuZb3I1wIqKimb48DuZPftt3nxzGv36XVYrSzV79ttYLBbS0y8hJeXCTUzVpmSwysokgyWE0A6Hc/mLFi1yevBzFcELbXCmwB3kjcxXHTlyGIBmzZrXeYw77hjJokWfkJl5kPffn82oUfcDsGXLJr76ynaF4QMPjHV9snUQGipLhEII7XEowMrIyHD3PIQXONOiAaTI3VcdP25rndKoUeM6jxEREcFjjz3J008/waxZMwgNDSMlpTXPPPMEFouFa64ZQufOXVWasXMksyqE0CLPVqMKTXE2g1VdgyVXa/kSJcBKTm7k0jjXXDOEbdu2snjxp0yd+pL99pSUNjz++ESXxnaFFLkLIbRIAqx6rDrAcmxfQXkj8z1ms5ncXFs9ZFJSsktj6XQ6nnzyaZo1a87HH8/HaCzmssuu4NFHH3f66kQ1SQZLCKFFEmDVY84uEcqWJL4nLy+XqqoqAgMDadgw3uXx9Ho9t99+l8ObP3tCzcDfarVK7acQQhOc3ipH+I+6FrlLBst3KMuDSUnJ6PX++eOuZLAsFguVlZVeno0QQtj4529c4ZC612BJBstX1Ayw/FXN7XskuyqE0AqnA6xBgwbx9ttvc/z4cXfMR3iQ8zVYskToa9QqcNeywMBAe18uaSEihNAKpwOs3r178/7773P55ZczYsQIvvnmG8rLy90xN+FmzrdpkCVCX1MfMlgg2zgJIbTH6QDr+eef5/fff2fq1KkEBgby+OOP06dPH5555hm2bNnihikKd3G+BksyWL5GjR5YvkB6tAkhtKZOVxEGBQVx1VVXcdVVV3Hy5El+/PFHvvrqK2699VZatGjBzTffzI033kh4eLja8xUqUgIs5c3pQqQGy/ecOGFbypcMlhBCeJZLRe7l5eWsXr2aP/74g4yMDCIiImjTpg3vvPMOV1xxBatXr1ZrnsINqpcIpQ+Wv1J6YCUmJnl5Ju4lr00hhNbUKYO1Zs0avvzyS3766SdKS0vp1asXkydP5h//+AdBQUGYTCZGjhzJxIkTWbFihdpzFipRPu07u0Qondx9Q1lZKUajEYD4+AQvz8a9ZPlaCKE1TgdYAwYMICcnh8TERO644w6GDRtGkyZNah0TEhLCJZdcwocffqjaRIX66toHSy5q8A15eXmALUPZoEEDL8/GvSSDJYTQGqcDrC5dunDjjTfSp0+f83ZMvuGGG7jxxhtdmpxwL2fbNFR3cjdhsVj8tnGlv8jLywWgYcN4v+9uXp1dlQyWEEIbnH6HbNOmDW3btj3rL+yjR4/y/PPPA9CoUSOSkvy77sPX1bVNA0gWyxecPGnLYCUkuL5FjtZJBksIoTVOB1hvvfUWOTk5Z71v69atLF682OVJCc9QPu2HhTmWwQoOrtkxW97ItC4315bB8vf6K5AASwihPQ4tEd5yyy1s3boVAKvVys0333zOYzt16qTOzITbOVuDZTAYCAoKoqKi4q9i4hg3zk64quYSob+rbiEiF2AIIbTBoQBrypQpfP/991itVt566y2GDRt2xvKfXq8nMjKSwYMHu2WiQn3O1mCBrdbFFmBJpkDrlCXC+pTBkqVrIYRWOBRgpaSk8NBDDwGg0+m46aabSExMdOvEhPs5W4MFtjeyoqJCuRzeBygZrPoRYEmbBiGEtjgUYGVnZxMfH09gYCA33HADVVVVZGdnn/P4Ro38d2NZf2E2m6msrAScD7BAal18QXWA5f9LhPK6FEJojUMB1uWXX87ChQvp3LkzAwcOvOAl37t371ZlcsJ9al7O7swSoXKsXA6vffVriVAyWEIIbXEowHrxxRdp2rSp/d/+3lOnPlCWBw0GA4GBgQ4/TjIFvqG0tKTedHEHCA4OBsBkkhosIYQ2OBRgDR061P7vG264wW2TEZ5T8wpCZwJmyRT4hvz8fMB2vho08P9N16ub4MrrUgihDXVqxb1+/Xo2bdoE2JqL3nvvvVx77bW89dZbLk0mMzOTbt268dlnn9lv2717N8OHD6dr164MGDCAuXPn1nqMxWJhxowZ9O3bly5dujBy5EiysrJqHaPGGP7G2RYNitBQyWD5glOnbAFWXFycl2fiGZJZFUJojdMB1pdffskdd9zB8uXLAZg0aRLr16+nefPmvPPOO7z33nt1mkhlZSWPPfYYpaXVfWwKCgoYMWIELVq0YOnSpYwZM4bp06ezdOlS+zGzZs1iwYIFTJ48mYULF6LT6Rg1ahQVFRWqjeGPlAArJMTx+ivb8cobmWQKtOzUqVMAxMbWlwCrehsnIYTQAqcDrPfff5+hQ4cyfvx48vPz+fPPP3nooYeYOXMmjzzySK3AxRlvvvnmGRvSLlq0iKCgICZNmkRKSgrDhg3jrrvuYvbs2QBUVFQwb948xowZQ//+/UlNTWXatGnk5OSwbNky1cbwR3Vp0QDyRuYrlAxWTEz9aAYrgb8QQmucDrAOHjzIkCFDAFi5ciVWq5XLL78csHVxP378uNOTWL9+PQsXLuSVV16pdfuGDRtIS0sjIKC6VCw9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9+e9evXqzaGP1LeiJwPsGQpxhfUtwyWso2TNBoVQmiFQ0XuNUVGRlJSUgLAb7/9RqNGjWjRogUAhw8fdvoTc1FREePHj2fixIkkJyfXuu/EiRO0bdu21m0JCbYrorKzszlx4gTAGY9LSEiwB3pqjFFXBkOdStw8orzcFiCFhYUREOD4PJV9C8vLTU49zpuU86Dl86G206dtAVZcXJymzpO7zkV4uO11aTKVaer/q2X18edCq+RcaIeaTRKcDrDS09OZOXMm+/btY9myZYwcORKAH3/8kenTp9OnTx+nxps0aRJdu3bl2muvPeM+k8lEUFBQrduUy7HLy8vtdURnO6awsFC1MeoqMtK57JAn6XRVAERFRRAT0+ACR1eLiYkEwGo1O/U4LdDy+VCb0Wh77TZpkqzJ86T2uUhMjAVsP+9a/P9qWX36udA6ORf+xekAa8KECTz22GO89dZbXHLJJYwePRqAl156iUaNGvHoo486PNYXX3zBhg0b+Prrr896f0hIyBmF5soSQFhYmH25qqKiwv5v5Rhl6UuNMeqqqKiMqiqLS2O4S37+aQAMhiAKCkocfpzVagCgsLDYqcd5k8GgJzIyVNPnQ20nTuQAEBoaoanz5K5zUV5uBWwXb5w6ZZRefQ6ojz8XWiXnQjuiokLR69XJJDodYMXExJzR5gDgk08+cXqLnKVLl5Kfn8+AAQNq3f7ss88yd+5cGjVqRG5ubq37lK8TExMxm83225o1a1brmNTUVACSkpJcHqOuqqosmM3a/GEpKbEVuYeEhDg1x6CgYPvjtfp/Oxctnw+1KX2woqJiNPl/VvtcBAZWZ6BLSspqfVgS51effi60Ts6F91mt6o3ldIClKCwspKysDIul+sWg7E/oaKA1derUM4qlBw8ezNixY7nqqqv49ttvWbBgAVVVVRgMtszJ6tWradmyJXFxcURERBAeHs7atWvtwVFRURG7du1i+PDhAKSlpbk8hj9S2mFIkbt/qq9F7mCrD5QASwjhbU4HWIcOHeKJJ55g69at5zzG0b0IExMTz3p7XFwcjRs3ZtiwYcyZM4cJEyZwzz33sG3bNubPn89zzz0H2Oqmhg8fztSpU4mNjaVx48a8+uqrJCUlMWjQIABVxvBH1W0anOuDJR2ztc9isXD6dAEAsbGxXp6NZwQEBBAQEIjZXInJZCIqytszEkLUd04HWC+88AKHDh3ioYceIikpSbW1yrOJi4tjzpw5TJkyhaFDhxIfH8/48eNrbd0zduxYzGYzEydOxGQykZaWxty5c+1F62qM4Y/q2sldMljaV1hYaM8sR0fXjz5YYHttGo2VEvwLITTB6QBrw4YNTJkyhWuuucYd82HPnj21vu7cuTMLFy485/EGg4Fx48Yxbty4cx6jxhj+pu4BlmSwtE5pMhoVFeXURt6+LjQ0BKOxmLIyCf6FEN7ndPopPDycKMm/+7zqAKuuW+XIm5hWKQFWfam/UkjwL4TQEqcDrCFDhvDxxx9jVbPUXnicbJXjv6oL3OtH/ZWiZn87IYTwNqeXCENDQ9m4cSODBg2iU6dOZ1yto9PpePHFF1WboHAP12uwJEugVQUFyj6EksESQghvcTrA+vzzz4mIiMBisZz1SkJp8Ocb6r4XoWSwtK6+tWhQyPK1EEJLnA6wfv75Z3fMQ3iYksEKCXG2TYPtTcxsNlNZWVmviqh9hVKD5ey+oL5OCf6V17YQQnhTnXssWCwWMjIyWLlyJUajkdOnT6s4LeFurtZggWQKtKr+ZrCkBksIoR116uT+5Zdf8tprr5Gbm4tOp2PJkiW8+eabBAYG8tprr/l1/yh/UdcarMDAQPR6PRaLBZOpjIiICHdMT7igOoNVv4rcpQZLCKElTmewvvvuOx5//HHS09OZNm2a/WrCwYMHs3LlSmbNmqX6JIW6qqqq7J/ynW3ToNPppNZF4woLTwMQExPt1Xl4mrwuhRBa4nQG65133uGWW25h0qRJVFVV2W+/4YYbyM/PZ9GiRTz88MNqzlGorOYnfGczWGDLFJSWlkqmQKOU5fqoqPpWgyUBlhBCO5zOYGVmZp5zj74uXbqQk5Pj8qSEeynLgzWzUc6QNzLtslqtFBUVAtS7hsCyRCiE0BKnA6y4uDgOHDhw1vsOHDhAXFz9Kqz1RdVXEIbWqa2GvJFpl9FotGeWo6KivTsZDwsOVgJ/KXIXQnif0wHWVVddxYwZM/jhhx+oqKgAbJmQHTt2MGvWLK688krVJynUVdcCd4WSwZI937RHqb8KCQmpU3bSl0kTXCGEljhdg/Xwww+zd+9eHn74YfR6W3x2++23U1paSs+ePfnPf/6j+iSFuuraokGh9MKSJULtqa6/ivbqPLxBXpdCCC1xOsAKCgpizpw5/PHHH6xZs4bTp08TERFBr1696N+/v3Ry9wGuZ7BsVx5KpkB7lAxWfQywZOlaCKElTgdYX3zxBf379+fSSy/l0ksvrXVfXl4eX3zxBaNGjVJtgkJ91QGWcy0aFJIp0C4lgxUdHe3VeXiDXHwhhNASp2uwnnzySY4cOXLW+3bv3s2MGTNcnpRwL1eXCCVToF2FhQVA/cxgKUXu5eUSYAkhvM+hDNbo0aPZv38/YLsM/MEHHzxrt/b8/HyaNWum7gyF6tQqcpdMgfYUFtbPFg0gr0shhLY4HGAtXrwYgM8//5z27dsTG1t7Gw69Xk9kZCQ33HCD+rMUqlIvwJIMltZIDZZs9iyE0AaHAqzu3bvTvXt3+9cPPPAATZs2ddukhHu5WoNV/UYmmQKtqc81WFIbKITQEqeL3F966SV3zEN4kFKDpQRKzpKlGO2SDJa8LoUQ2uB0gHXq1CmmTJnCr7/+SllZmX2zZ4VOp2PXrl2qTVCoz/UlQily1yolwKqPGazg4GDAVuRutVqlZYwQwqucDrAmTZrEb7/9xtVXX01SUpK92ajwHUpgVPclQslgaVV9bjSqBP4Wi4XKysqzXogjhBCe4nSAtWrVKp566iluvvlmd8xHeIDrndwlg6VV9TmDVXNrIJOpTAIsIYRXOZ1+CgoKkgJ3HydtGvxTZWUlJSUlAERGRnt3Ml4QGBhIQIDtM6NcgCGE8DanA6xBgwbxzTffuGMuwkOkBss/FRXZemDpdDoiIyO9PBvvkBYiQgitcHqJsH379rzxxhscOXKELl261ErLg+2X+4MPPqjaBIX6XG/TIBksLVLqryIiIjEYDN6djJcEB4dgNBopLy/39lSEEPWc0wHW888/D8D69etZv379GfdLgKV9rm+VIwGWFtXnFg0KyWAJIbTC6QArIyPDHfMQHiRLhP6pPjcZVUgvLCGEVkiPhXpIrSVCKSTWFslgSQZLCKEdDmWw7rjjDp599llSUlK44447znusTqdj/vz5qkxOuIerGayabRqkoaN2KBs91+8Mlq3ZqMkkNVhCCO9yKINVs1u71Wo97x+LxeK2yQrXWa3WGo1GXavBAqSYWEOUDFZkZJR3J+JFsnwthNAKhzJYH3744Vn/LXyPyWSyB8xhYXVbIgwOrt3Q8e9XkgrvkBosuQBDCKEdXq/Bys/PZ9y4caSnp9OtWzfuvfde9u/fb79/9+7dDB8+nK5duzJgwADmzp1b6/EWi4UZM2bQt29funTpwsiRI8nKyqp1jBpj+AtleRDqvtmzwWCwd8mWNzLtkBosyWAJIbTD6wHW/fffz5EjR5g9ezZLliwhJCSEu+66i7KyMgoKChgxYgQtWrRg6dKljBkzhunTp7N06VL742fNmsWCBQuYPHkyCxcuRKfTMWrUKCoqKgBUGcOfKC0aQkJCXNpHUt7ItKewsACQDBZI4C+E8D6vBlgFBQU0adKEF154gU6dOpGSksIDDzxAXl4e+/btY9GiRQQFBTFp0iRSUlIYNmwYd911F7NnzwagoqKCefPmMWbMGPr3709qairTpk0jJyeHZcuWAagyhj9xtQeWQt7ItOf0aVuRe33OYCnL1/K6FEJ4m1cDrJiYGF5//XXatGkDwMmTJ5k7dy5JSUm0bt2aDRs2kJaWZt9fDCA9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9/e3gRVjTH8ibJEWNflQYW0atCe+rzRs0ICfyGEVjjdaNRdnn76aXu26e233yYsLIwTJ07Qtm3bWsclJCQAkJ2dzYkTJwBITk4+45jjx48DqDJGXRkMXl+BPUNFhe2NJywsjICAus9PyYBVVpa7NI4nKOdBi+dDLVar1R5gxcXFavacuPtcNGhgu3CjosKk2e+BVtSHnwtfIedCO9TsOuRQgPXFF184Nej111/v9ETuvPNObr75Zj799FMefPBBPvnkE0wmk72YWhEcbOtzU15ebs/GnO0YpSeQGmPUVWSka1kid9DrbW00IiLCiYlpUOdxwsNtjw0IsLo0jidp8XyopaSkhMrKSgCaN29EgwbaPifuOhcxMbZNri0Ws8+8Lr3Nn38ufI2cC//iUID1xBNPODygTqerU4DVunVrAF544QW2bNnCRx99REhIyBmF5krfpbCwMPtyQEVFxRm9mZQMixpj1FVRURlVVdrqC5aXZyuEDgwMpqCgpM7jBAYG2cdzZRxPMBj0REaGavJ8qCU7+xgAgYGBlJdbqajQ5jlx97mwWm2bXBcWFmv+delt9eHnwlfIudCOqKhQly4Aq8mhAGvFihWqPNnf5efns3r1av75z39iMNh+Mer1elJSUsjNzSUpKYnc3Nxaj1G+TkxMxGw2229r1qxZrWNSU1MBVBmjrqqqLJjN2vphKSmpvorQlbkpxcQlJaWa+z+eixbPh1ry808BtvqrqiorYD3/A7zMXedCCfxNJpPfnmu1+fPPha+Rc+F9VhV/dToUYDVu3NjhAa1OzC43N5dHH32UuLg4evfuDUBlZSW7du1i4MCBNGzYkAULFlBVVWUPwFavXk3Lli2Ji4sjIiKC8PBw1q5daw+OioqK2LVrF8OHDwcgLS3N5TH8SfVVhHVrMqqQNg3aojQZrc9XEIK8LoUQ2lGnIvdvv/2WdevWUVlZaQ+orFYrpaWlbNmyhZUrVzo0TmpqKn369OG5555j8uTJREZG8s4771BUVMRdd91FcHAwc+bMYcKECdxzzz1s27aN+fPn89xzzwG2uqnhw4czdepUYmNjady4Ma+++ipJSUkMGjQIgGHDhrk8hj9xdR9CRfV+hHK1lhZIk1EbubpVCKEVTgdYM2fOZObMmURERGA2mwkMDCQgIIBTp06h1+u56aabHB5Lp9Pxxhtv8Nprr/Hwww9TXFxMz549+fjjj2nUqBEAc+bMYcqUKQwdOpT4+HjGjx/P0KFD7WOMHTsWs9nMxIkTMZlMpKWlMXfuXHvRelxcnMtj+BMlwKrrNjkKuRxeW2SbHJvQUHldCiG0wekA6/PPP+e6667jlVdeYcaMGWRnZ/PKK6+wY8cO7r33XntPK0dFREQwadIkJk2adNb7O3fuzMKFC8/5eIPBwLhx4xg3btw5j1FjDH9RWipLhP6oqEiajIK8LoUQ2uF0qXxOTg5DhgxBp9PRoUMHNm/eDEDHjh257777WLx4seqTFOpRrwZLlmK0RGqwbJSLL5QrhYUQwlucDrDCwsLQ/dWJq0WLFhw9etSejr/ooos4evSoujMUqlICLNeXCCVToCVSg2VTvXQtr0shhHc5HWB16tSJzz//HIBmzZphMBj4888/AThw4IBf1i35E2WJUGqw/IvUYNnUfF06c0WzEEKozekarPvuu48RI0ZQXFzMO++8w3XXXccTTzzBxRdfzO+//84VV1zhjnkKlagfYEmmQAskg2WjZFarqqowmyvtfbGEEMLTnA6w0tLSWLJkCXv27AHgmWeeQa/Xs2nTJq688kqnur4Lz6sucpc2Df5ENnq2qbkbQ1mZSQIsIYTX1KkPVmpqqr3LeXBwMC+88IKqkxLuo2Sc1CpylwBLG6TI3SYwMBC9Xo/FYqG83AREentKQoh6qk4BVnFxMWvWrKG0tPSsdQ512YtQeIZ6S4S2DJZSNC+8p6qqiuLiIkAyWDqdjpCQEEpLSyX4F0J4ldMB1m+//cbDDz9sb1j5d3Xd7Fl4hlp9sJQA7VyvA+E5RUVF9n9HREjGJiQk9K8AS16bQgjvcTrAev3112nVqhVPPvkkiYmJqu06LTxDrTYNSoCmBGzCewoLCwAIDw8nMDDQy7PxPlm+FkJogdMB1sGDB5k1axY9e/Z0x3yEG1VWVlBZWQmoEWDJEqFWSP1VbRJgCSG0wOn0U6NGjTAaje6Yi3Czmst5rl5FGBbWALC9iVVVVbk0lnCNtGiorb4EWAsWfMTgwf0ZPLg/n3zyP+n7JYTGOB1gjR49mrfeeks6tvsgJcAKCAh0+fL1mhkwqcPyLmkyWlt92GXggw/m8vLLk8nNzSE3N4f/+78XefvtN709LSFEDU4vEX799dfk5OQwaNAgYmNja/WdAVuR+/Lly1WboFCPWlcQAgQFBWEwGKiqqqK0tITw8HCXxxR1Ixs91+bvGayDBw/w1ltvAPDAA2MJDAxk+vTXeO+9WVxySR+6du3u3QkKIYA6BFhJSUkkJSW5Yy7CzUpLSwB1AiydTkdoaBhGY7HUYXmZZLBqq24h4p8ZrNmz36ayspI+ffozatT96HQ6Dh3K5MsvP+O1117hf/9bYN8vVgjhPU4HWC+99JI75iE8QHnDcbX+ShEWZguw5EpC71JqsCIjo7w7EY2obiHif6/LnJwTLFv2AwAPPjjWHkiNGfMIP/74Hdu3b2XTpg306JHmzWkKIahDgJWdnX3O+/R6PWFhYURGSi8eLVKrB5ZCeSOTAMu7JINVm/IBwh9fl9999w1ms5nu3Xty0UUd7Lc3bBjPNdcMYcmShXzyyf8kwBJCA5wOsAYOHHjB9HNUVBR33HEHDzzwQJ0nJtSnVg8shTQb1Qa5irA25QOEP74uf/rpOwCuuuraM+67+eZ/s2TJQn777VeKiorkg64QXub0VYQvv/wygYGBXHrppbz00kvMnj2bl19+mcsuuwydTseDDz7I0KFDefvtt/nkk0/cMWdRR8objloBljQb1QbZ6Lk2f10izM4+xu7duzAYDAwcOOiM+9u0aUdKShvM5kp++UUuNBLC25zOYH377bdcffXVZ9RiDRkyhGeffZYdO3bwzjvvEBkZyaeffsq///1v1SYrXKMUuau/RFiiyniibqTRaG3+ukS4du1qADp27ExsbOxZj7nyyqt4663p/PTT9wwZcoMnpyeE+BunM1jr1q3jmmuuOet9gwcPZs2aNQD06NGDI0eOuDY7oSo12zTYxrE1G/W3TIGvqc5gxXh3IhpR/br0ryXCdetsv1svvrj3OY8ZPPifAKxZ82etPSqFEJ7ndIAVHR1NRkbGWe/LyMiw90MqLS1V7Wo1oQ4pcvc/ZWVllJeXA7JEqPDHzKrVamX9+rUApKVdfM7jmjdvQcuWraiqqmL9+jWemp4Q4iycDrCuvfZaZsyYwfz588nJyaGyspKcnBw+/PBDZs6cybXXXkthYSHz58+nS5cu7pizqCO12zQo/YYkwPKe06dtGz0HBATaMzf1nT8uER48eICTJ/MIDg6mS5du5z02Pf1SAFav/sMTUxNCnIPTNVgPP/ww+fn5vPzyy7z88sv22/V6PcOGDeORRx7hxx9/ZNeuXcyfP1/VyQrXuOsqQn96I/M1NQvcpbmkjZKh9aetcjZt2gBA167dCQo6/zZXvXtfyqeffigBlhBe5nSAFRAQwEsvvcT999/P2rVrKSgoIDExke7du9O0aVMA+vXrx6pVqy74i0B4lvo1WP55tZYvkR5YZ/LHDNauXTsAW4H7hfTsmUZAQCDHjh3l8OEsmjVr7u7pCSHOwukAS9GsWTOaNWt21vuioqSjtBYpgZDUYPkPZYlQriCspiyV+tPrcudOW4DVoUPHCx4bFtaALl26sHHjBjZsWCcBlhBe4lCAdfnll/PWW2+Rmpp6wUajstmzdqld5C59sLxPyWDFxMgVhAp/a4BrMpk4cGAfAO3bXzjAAujatQcbN25gy5ZN3HDDTe6cnhDiHBwKsHr16kWDBg3s/5ZaD9+kfg2Wcjm8/1yt5Wuki/uZlCXCsrJSLBYLer3T1/Joyt69GVRVVREbG0diYpJDj+nWrQcAmzdvcufUhBDn4VCAVbOpaM3CduFb1O7kLkuE3idLhGeq+fo2mcp8/upKpf6qffuODn+47dy5KzqdjiNHssjPP0lcXEN3TlEIcRZ1+mhnNBrJyckBoKKigjlz5jB58mTWr1+v6uSEuqqXCNVp0yABlvfJEuGZgoND7IGIPywT7t69C4D27Ttc4MhqkZGRtG7dBoAtWySLJYQ3OB1gbdu2jYEDB/Lhhx8CMHnyZKZOncpXX33FnXfeyYoVK1SfpFCHu64ilADLe2SJ8Ex6vd6verTt32+rv2rduq1Tj+vatTsAW7duVn1OQogLczrAmjZtGq1ateLmm2/GZDLx9ddf8+9//5t169Zx44038s4777hjnkIF1Y1G1VkyUYrcpU2D9yhLhLJNTm3+EvxbLBYOHjwAQEpKa6ce26FDJ6D6CkQhhGc5HWBt3bqV+++/n6ZNm7J69WpMJhNDhgwB4KqrrmLfvn2qT1K4rrKyArO5EnBPBstqtaoypnCO9ME6O3/p0Xb8eDZlZaUEBAQ63W5Baemwe/dOLBaLO6YnhDgPpwMsvV5vbyD622+/ERkZSefOtuZ3RqORkJAQdWcoVFHzk7zaNVgWi8W+H57wLClyPzt/aTZ64MB+wLbHYGBgoFOPbdkyhZCQEEpLS8nKOuSG2QkhzsfpAKtjx44sWbKEzZs38/333zNgwAB0Oh35+fnMnj2bjh0d69OiOH36NM888wz9+vWje/fu3HrrrWzYsMF+/+7duxk+fDhdu3ZlwIABzJ07t9bjLRYLM2bMoG/fvnTp0oWRI0eSlZVV6xg1xvB1yhtNUFAQAQF17i9bS81+WiUlRlXGFI6rrKywn1cpcq/NX5avlQDL2eVBsO260a7dRQDs2rVT1XkJIS7M6QBr/PjxrF69mltvvRWDwcD9998PwDXXXMOhQ4d4+OGHnRrvv//9L1u3buX1119nyZIldOjQgbvvvpsDBw5QUFDAiBEjaNGiBUuXLmXMmDFMnz6dpUuX2h8/a9YsFixYwOTJk1m4cCE6nY5Ro0ZRUVEBoMoY/kAJgBo0CFdtTL1eb++PVlIivbA8TVke1Ov1hIdHeHcyGuMvzUaVBqN1CbCg+spDpdWDEMJznE5ltG/fnp9++okDBw7Qpk0b+y+ySZMm0b17d+Lj4x0eKysriz/++INPP/2U7t1tV7xMmDCBlStX8s033xASEkJQUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD9iK8Pv27cuyZcu4+uqrWbRokctj+AMlAFICIrU0aBBOSUkJRmOxquOKC6teHozy+WaaavOXXQbqWuCuUDq/S4DluPLycubNe49vv/2K06dP06FDR0aNup+ePXt5e2rCx9Tpt3J4eDhdunSpVSz9j3/8w6ngCmzLGu+9916tZUWdTofVaqWwsJANGzaQlpZWa0krPT2dzMxM8vPzycjIoKSkhPT0dPv9kZGRtG/f3t6TS40x/IGSwVK76WJ4eHit8YXnVBe4y/Lg3/lLkfuRI4cBaNGiZZ0erwRYu3fvoqqqSrV5+auioiJGjhzOu+++xdGjRzAai1m7djX33HMH8+fPvfAAQtSgTjFOHUVGRtqzRorvv/+ew4cP06dPH6ZNm0bbtrV7vyQkJACQnZ3NiRMnAEhOTj7jmOPHjwNw4sQJl8eoK4NBO1kFk8m2VBIREU5AgHrzioiwLU2VlpaoOq6alPOgpfOhBqOxCLBdQajV7/3feepcKJlak6nMZ743f1dYWEhxse0cN2/evE7/j9atUwgNDaOsrJQjRw7Zm4+C//5c1JXFYuHJJx9l587tREdH88QTE2ndug2ffvoRS5cuZtq0V2nYMI4hQ25Q/bnlXGiHmjsBejXA+ruNGzfy1FNPcfnllzNw4EBeeukl+xWLiuDgYMCWxlXqK852TGFhIWDbKNXVMeoqMlKdq/XUYLXaWjRERUUSE6NeFis6Oso+vprjuoOWzocaystty74JCfGa/97/nbvPRUxMJAAWi/Zfl+dy5IhteTA+Pp5Gjeq+1U379hexceNGjh07RFpa1zPu97efi7r64IMP+OOPVYSEhLBw4UL7ykrv3j1JTk5k5syZvPDCJPr370PLlnXLKF6InAv/opkAa/ny5Tz22GN06dKF119/HYCQkJAzCs2VdgBhYWH2lhAVFRW12kOUl5fbL9NWY4y6Kioqo6pKG/1ncnNPARAcHEpBgXoF6cHBoX+Nn6/quGoyGPRERoZq6nyoITvbtl1VWFiEZr/3f+epc6HX21oaFBQU+cz35u927doLQKNGTVz6P6SktGXjxo1s2rSV/v0H2W/315+LuigsLOT//u9VAB555DEaN25Z63t+770PsX79BtauXcP48U/w3nvzVH1+ORfaERUVqlpNqyYCrI8++ogpU6YwaNAgpk6das8mJSUlkZubW+tY5evExETMZrP9tmbNmtU6JjU1VbUx6qqqyoLZrI0fFqPRViMVGhqm6pyUqxILC4s18389Fy2dDzUUFNiK3CMjo3zu/+Xuc6FslWM0Gn3ue6M4fNhWf9W4cROX/g/KFjsZGRlnHcfffi7q4pNPPqaw8DStWrVm2LBbzvr9mDjxeYYOvZo///yd1atXk5Z2serzkHPhfWr2zPb6gu8nn3zCCy+8wG233cYbb7xRa6kuLS2NjRs31irOXL16NS1btiQuLo7U1FTCw8NZu3at/f6ioiJ27dpFz549VRvDHygBllKUrpbqNg1S5O5pSoAlRe5nUgL/0lLfzF4BHD16BIAmTZq6NE6bNu0A2Ldvj8tz8kcVFRUsXPgxAHfffe85+wQ2bdqMG264CYBZs2bI7hXigrwaYGVmZvLiiy8yaNAgRo8eTX5+Pnl5eeTl5VFcXMywYcMwGo1MmDCB/fv389lnnzF//nxGjx4N2Oqmhg8fztSpU1mxYgUZGRk88sgjJCUlMWiQLRWuxhj+QHmjUf8qQluRuwRYnqds9Czb5JxJ+SBRXOy77UOOHTsK2DJYrmjTxpbBys3Nsbf2ENV++ul7Tp7MIz4+nsGDrzzvsXffPZqgoCA2b97I9u1bPTRD4au8ukT4448/UllZybJly1i2bFmt+4YOHcrLL7/MnDlzmDJlCkOHDiU+Pp7x48czdOhQ+3Fjx47FbDYzceJETCYTaWlpzJ07154Ji4uLc3kMf6BksNzRBwt8+43MV0mbhnNTXpe+3ABXCbBczWCFh4fTuHETjh07yr59e0hLS7/wg+qRL76wNZ3+17/+TWDg+X/nJyYmcuWVV/PVV5+zcOEndO7c1QMzFL7KqwHWfffdx3333XfeYzp37szChQvPeb/BYGDcuHGMGzfOrWP4OiWDpWYnd5A+WN4kGz2fm6+/Ls1mM8ePZwOuZ7AA2rZN5dixo+zdu1eTAVZ5eTmFhaeJjY1TbSsvR+TknGDjRlu/w6uvvs6hx/zrX//mq68+56efvufRR58gNjbWnVMUPszrNVjCM9yVwap+I/PdTIGvUpYIZaPnMymvS+V172tyck5gNpsJDAwkPj7B5fGUZUKt1WGVl5fz+uuvMGBAbwYP7s+gQf348MMPsFg8U+j944/fYbVa6datB40aNXboMR07dqJ9+45UVlby3Xdfu3mGwpdJgFVPuCuDpYwnW+V4VmVlJUVFtj5tMTHyCfrvfP11qSwPNmrUGIPB4PJ4bdvaCt337s1weSy1VFRU8J//3M///ve+veN+QcEpXnvtZZ57bqJHgqwff/wegH/+8xqnHnfdddcD8MMP36o9JeFHJMCqJ4xG9+xFqHRy99VMga9SipUNBgNRUVFeno32KAFWZWWlT27arlb9laJtW1vLmQMH9ttb03jbjBmvsWbNn4SGhjFt2lusX7+dJ598BoPBwJdffsb778926/Pn5eWyc+d2AAYOvMKpxw4adCUGg4EdO7Zx+HCWO6Yn/IAEWPWEuzNYvlrr4qtOnbI1jo2JiZWNns+i5gcJXwz+lRYNjRurE2A1adKUkJBQysvLNREQ7Ny5nY8//h8AL788lcsuu5zAwEBuvvnfPPXUswC8/fabbl3S/P33lQB06NCJhg2d20c3Lq4hvXrZatl+/PE71ecm/IP8Zq4nlADIXVcRGo1G6QvjQadO5QNIge05GAwG+4bPvrhMeOyYEmA5Vhd0IXq9XlN1WG++OQ2r1cpVV11L//4Da913ww03MWDA5ZjNZqZNe9Vtc1i58lcA+vUbUKfHDx78TwB++WWFSjMS/kYCrHrAbDZjMpkA9ftgRUTYAqyqqir7cwj3UwKsmJg4L89Eu3w5u3r0qLpLhFCzDsu7Adbu3TtZs+ZPAgICePDB/5xxv06n49FHHycgIJA///ydP//8XfU5VFZWsGbNn0DdA6y+ffsDsGvXDnJzc9SamvAjEmDVAzW7WaudwQoNDUP31/bjvvhG5qskg3VhvlwfWJ3BUi/AUjq6e7vQffHiBQBcccU/ztmComnTZvzrX7cC8MEHc1Sfw44d2ykrKyUmJpZ27S6q0xgNG8bTsWNnAFat+k3N6Qk/IQFWPaC0UAgMDFS9eapOp/P5K7Z8kVKDFRsrGaxz8dVmoyUlRvs2SGr0wFIoGaz9+/epNqaziouL+e67bwC46aZbznvsHXeMwGAwsG7dGjIydqs6jw0b1gHQo0eaSzWM/ftfBsDKlb+oMi/hXyTAqgeUzJLa+xAqqjMFvvVG5sskg3VhSrbW1wL/Y8eOAbYGssrPlhpat24DwPHj2RQVFak2rjOWLfsBk6mMVq1S6N79/Hu9JiUlM2jQPwD4+OP5qs5jwwZbc9GePXu5NE6/frYAa+3a1VIiIc4gAVY9oHyCV7v+SiEbPntedYAlGaxz8dVmo8oVhI0aqZe9AoiMjCIpKRmAAwe8k8VascK2JdpVV11rLy04n1tvvR2wBWZqncfKygq2bt0EuB5gtW3bjqSkZEwmk70jvBAKCbDqgeorCN2VwYoEsDe+FO5XvUQoGaxz8dWNyJX6KzUL3BXKlYTeKHQvLi5m7drVAFx++WCHHtO5c1datGiJyWRi2bIfVJnHjh07MJlMxMTEkJLS2qWxdDodvXtfCmD/vwmhkACrHlAyWGoXuCuURpfeWnaojySDdWG+ehWhksFq0kTdDBZUB1j79+9VfewLWbXqV8zmSlq1SqFly1YOPUan0zFkyA0AfPnlZ6rMo7r+qpdDWbQLUfphSYAl/k4CrHpASa27qwYrMlIJsCSD5QlWq5WCAilyvxDlA0Vxsa8FWLYWDWpeQaiovpLQ8xkspe/UZZc51zX96quvQ6fTsWXLJvsG2K5QAqyePdNcHguqA6w9e3bbL04QAiTAqheKi22ZJWUpT21KBquwUAIsTygrK7UX1MoS4bkpBeK+lsHKzla/B5aiZgbLk42BrVYr69evBeCSS/o49diEhES6d+8BwPLlP7o0D1v91WbA9forRVxcQ/v3dd26NaqMKfyDBFj1QHGx7SoqNa9IqikyMhqQAMtTlPqrkJBQQkPDvDwb7fLFJUKLxaL6PoQ1NW/ekoCAQEpKSsjOPqb6+Ody4MA+8vNPEhISQqdOXZx+/KBBVwK4XIe1c+cOTKYyYmJiaNXKtfqrmnr16g3AunWyTCiqSYBVD3gqg1VUdNot44vapEWDY2pu4+Qr8vLyqKiowGAwkJiYpPr4gYGBtGplq3/y5DKhktnp1q1HnXrxXX75YHQ6Hdu2beXEieN1noda/a/+7uKLbcuEksESNUmAVQ9U12C5J4MlS4SeJU1GHeOLbRqUKwiTkpIJCAhwy3NU12F5rtBdCTyUTI+z4uMT6NZNWSb8qc7zqK6/Umd5UNGjRxoGg4EjRw7bM5BCSIBVD1RnsNy1RChF7p4kGSzHVAdYvtNotPoKQvWXBxWe3jLHbDbbA5tevS6u8zhXXGFr7bBiRd0CrMrKSrZssdVf9eihToG7okGDcPu2OUqtmRASYNUD1TVYUuTuD/LzpUWDI6oDf99pH6JkP9TcIufvlILsffs8k8HKyNiN0WgkIiKS1NT2dR5n4MBBAGzZsomTJ/OcfvyuXbb6q+joaFJS2tR5HufSo4etM/3mzRtVH1v4Jgmw6gF3Z7CioqIBCbA8RTJYjlEC/+LiIqqqqrw8G8e4s8BdoQRYWVmHPLK9y44dWwHo0qUbBoOhzuMkJSXTsWNnrFYrv/66wunHu6v+StG9uy0rtmnTBtXHFr5JAqx6wN0ZLCVTYDKVUV5e7pbnENXy808CEBvb0Msz0TbldQm+k8VSlgjdmcGKj08gKiqKqqoq9u/f77bnUezYsR2ADh06ujzW5ZfbsljKljvOcFf9laJLl27o9XqOHDlMbm6OW55D+BYJsOoBpQYlIsI9jUbDw8Ptn0ylDsv98vJyAVt/IHFuAQEB9jqswkLfaACpFLm7o8moQqfT2euwdu3a5bbnUezatQOADh06uTzWwIG2JqXr16916ndNZWUFmzers//guURERNC2bSogy4TCRgIsP1dVVWW/ispdGSydTkdkpG1sWSZ0PyXAio+P9/JMtM+Xlq/LysrIy7PVFrljm5yalGXC3bt3u/V5SkqMZGYeBKBjR9cDrObNW9K6dRvMZrO9M7wjduzY/lf/q1i31F8pune31WFt3CjLhEICLL9Xs8miu9o0gFxJ6ClWq9Ve4Bsfn+Dl2Whf9QUYp707EQcojT/Dw8PtgaG7KBmsjAz3Xkm4a9dOrFYrycmNVLsoQyl2d2aZUGkTkZZ2sVvqrxRKofumTevd9hzCd0iA5eeU+quQkJA6NfhzlFxJ6BnFxcX2wuSGDSWDdSG+lMGqvoKwqSqbEJ+PEmC5O4O1c6eyPOh6/ZXi8stt7Rr+/HMVZWWlDj2mug9X3dtEOKJbN1uAtX//Pp8I6oV7SYDl59y9TY4iIsJ3MgW+TFkejIyMIiQkxMuz0T4l8D99+rR3J+IApf7K3cuDAK1bt0an05GXl2dv++EOO3cqBe6uLw8q2rZtR5MmTSkvL+ePP1Zd8HiTycS2bVsAWwbLnWJjY2nZ0tYpX6n5EvWXBFh+zt3b5ChqXhIv3Ke6/kqWBx2hZLB8Yen66FH398BShIaG0bRpMwD27XPfljnuCLB0Op19mdCRru5bt26msrKShIREmjVrodo8zkWpw5JlQiEBlp9TMljK1VTu4kuZAl8mBe7OUQIsX3hdeuIKwprc3XD01KlT9rqyiy7qoOrYSlf3Vat+paKi4rzHKlmuXr3S3b70CtX9sKTQXUiA5ec8lcGKibE1vVT2yRPuIRks51TXYJ326jwc4Yltcmpq29ZWh7Vnj3syWEr2qkWLlqqXKHTs2Jn4+ARKSkpYu3b1eY9dufIXAPr2HaDqHM6le3fbnokZGbsoLS3xyHMKbZIAy895qgZLuULo1KmTbn2e+k4CLOdER0cD2i9yt1qtHDtmy/Z4ogYLqgOsvXvdG2CpuTyo0Ov19p5YP/987qsJs7IOcehQJgEBAVxySR/V53E2ycmNSE5uRFVVFVu3bvHIcwptkgDLz1U3GXVvBisuztZV3J0Fs0KWCJ2ltA/RegaroOAUZWWl6HQ6kpMbe+Q5lQDrwIF9btlKqDrAUu8KwpqUqwl//XUFZrP5rMco2asePdLc/iGzJmUzadk2p36TAMvPVddgufeXS1ycLYOlbOMi3ENpRCkZLMdUZ7BOe3UeF6IsDyYkJLq1nUpNTZo0JTQ0lPLycg4fzlJ1bKvVWqNFg/oZLLAVk0dHR1NQUMAff6w86zHLlv0IQL9+l7llDucihe4CNBZgzZo1i9tvv73Wbbt372b48OF07dqVAQMGMHfu3Fr3WywWZsyYQd++fenSpQsjR44kKytL9TF8lfLGUnNfNndQMlinTuVjtVrd+lz1mbLHmQRYjvGVDFZ1/ZVnlgcBDAYDF110EWCrF1LTiRPHOXUqn4CAANq1u0jVsRUBAQFcd90NACxc+MkZ92dlHWLbti3o9XoGD77SLXM4F6UOa/v2bbI/az2mmQDrgw8+YMaMGbVuKygoYMSIEbRo0YKlS5cyZswYpk+fztKlS+3HzJo1iwULFjB58mQWLlyITqdj1KhR9itL1BjDlylXTymf5N1FCbDKy8spKZHCTncwm832ACs5uZGXZ+MblNd9aWkplZXa/Xmu2WTUk7p06QJU7xeoFmV5MCWljVv7tf3rX7ei0+n488/fycrKrHXfF1/Yfsf37n2pxz+QNG/ekoYN46moqGDHjm0efW6hHV4PsHJycrjnnnuYPn06LVu2rHXfokWLCAoKYtKkSaSkpDBs2DDuuusuZs+eDUBFRQXz5s1jzJgx9O/fn9TUVKZNm0ZOTg7Lli1TbQxfpnxyj46OcevzhISE0KBBAwDy8/Pc+lz1VW5uDlVVVQQEBEoXdweFh0fYL83XcqG7ksHyRA+smjp37gy4I8CyjafG/oPn06RJU/r06QfA7Nnv2G83Go0sXrwAgBtvvMWtczgbnU5Hz562Oqz169d6/PmFNng9wNq5cydRUVF89dVX9k9Tig0bNpCWlkZAQID9tvT0dDIzM8nPzycjI4OSkhLS09Pt90dGRtK+fXvWr1+v2hi+zFMZLIDYWCl0d6cTJ44DkJSU5Nb91PyJwWCwf7jQcguRo0cPA9ibf3pKdQZrl6qF7u68gvDv7rvvIQC+/fYrNm60/c5+++03MRqLadmyFf37e7b+StGzZy8ANmxY55XnF94XcOFD3GvgwIEMHDjwrPedOHGCtm3b1rotIcGW6s3OzubEiRMAJCcnn3HM8ePHVRujrgwG778JFhYWABAbG0NAgHvn07BhHEeOZHH69Cm3P5czlPOghfPhipwc2+uxUaPGmvr+OsMb56Jhw3gKCk5RUJCv2e/bkSO2AKtlyxYem6PBoKd169aEhoZSVlbK0aNZpKS0dnlci8Viz4h17tzZ7f+fLl26cP31w/jii6U8+ugYBg/+pz179fjjTxEU5J23uYsvtn1o37ZtC1VVlQQHB5/zWH/5HeUP1OxF6/UA63xMJtMZV9QoL9Ly8nLKysoAznqMshygxhh1FRkZ6tLjXWU2mykqsjUabdmyCTExDdz6fMnJSWzeDGVlxW5/rrrw9vlwVUGBbem1RYtmmvz+OsOT5yI5OZF9+/ZQVlakye9bWVkZubm29hsdO6Z6fI6dOnVi3bp1ZGbupWfPLhd+wAXs378fo9FISEgIaWlda60euMurr77MwYP72LZtG4sWfQrAfffdx7XX/tPtz30u0dEdSUhIIDc3l8zMPfTu3fuCj/H131GiNk0HWCEhIWcUmitXZISFhdmLJysqKmoVUpaXlxMaGqraGHVVVFRGVZXFpTFcUXNJxGIJoKDAvcXnERHRABw5ku3253KGwaAnMjLU6+fDVQcPHgIgLi5BU99fZ3jjXERH23YZOHz4mCa/b8pWNZGRkUCQx+aonIvU1PasW7eOdes2csUVV7k87p9/2pbEUlPbU1xcDnjmKrp58z7igw/msn//Pvr1G8C11w7x+vnu0SON77//lp9//o3U1M7nPM5ffkf5g6ioUNVKMDQdYCUlJdk/2SmUrxMTE+3N5XJzc2nWrFmtY1JTU1Ubo66qqiyYzd77YTl50lYLZWsyqnf7XJRu7nl5eV79f5+Lt8+Hq5RO34mJyT79/wDPngulNjAnJ1eT37fMzEMANGnSjKoqK+DZNidKndSOHdtV+f5s22a7aq59+44e/X4HBARxzz3327/2xvfy73r06MX333/LunVruffeBy94vK//jvIHanYZ0vSCb1paGhs3bqxVfLl69WpatmxJXFwcqamphIeHs3Zt9VUaRUVF7Nq1i549e6o2hq/y1BWECmk26l7Hj2cD0qLBWdW7DGjz6tYjR2w992p+wPMkpdP6nj27z9kR3RmeLHDXurQ0W6H7tm1bpB9WPaTpAGvYsGEYjUYmTJjA/v37+eyzz5g/fz6jR48GbHVTw4cPZ+rUqaxYsYKMjAweeeQRkpKSGDRokGpj+CpPXkEIEBdnax1w8qQEWGqzWq32qwglwHJOw4a2AEurr8vqJqPeCbCaNWtOeHg45eXlHDiw36WxKisr2bNnNwAdO7pnixxf0qxZC+Ljbf2wtm3b4u3pCA/TdIAVFxfHnDlzyMzMZOjQocycOZPx48czdOhQ+zFjx47lxhtvZOLEidx6660YDAbmzp1rL1pXYwxfdfq07QrCqKhojzxfYmIiUH21m1BPQcEpTCYTAElJyRc4WtSkBFhazawePuydFg0KvV5P+/a2YGj79i0ujXXgwD7Ky8sJD4+gadPmKszOt+l0Onr0kHYN9ZWmarBefvnlM27r3LkzCxcuPOdjDAYD48aNY9y4cec8Ro0xfJGnM1jKJrV5eXlUVFT4fICqJcrWTcnJjeT76iQls6rs46g11UuE3gtIunbtzrp1a9i8eZNLjTm3b7fVX3Xo0El6tf2lZ89e/PDDt2zYsBYY4+3pCA+SnwA/Vl2DFe2R54uOjrZfiZmTc8Ijz1lfHD58CLAtOQjnKJlVo7EYo9Ho5dnUVllZYV/69VYGC6BbN9veeZs3b3RpHGVbmE6dzn3FXH3Tq5fSD2srpaXau4pVuI8EWH6seonQM0XuOp3Ovnx14kS2R56zvsjKOgRA8+YtvDoPX9SgQbh902clmNGK7OxjWCwWQkPD7MX43tC5cxf0ej3Z2cdc+nCkZLAkwKrWtGkzmjRpSmVlpWybU89IgOXHlCXCmJhojz2nUoCdnS0BlpqUDJYEWHVTHfhrK8BSln6bNm1q3zPRGxo0CKddO1tbmi1bNtVpDKPRSGbmAQA6dXK9Yam/0Ol0XHJJXwD++ON3L89GeJIEWH5MWSL0VJE7QFKSLcDS2huZr1MyWN6s0/FlylZYWsusHjp0EIAWLVp5eSbQtatry4Q7d27HarXSqFFje088YXPppX0A+OOPlVjVbLQkNE0CLD9WUGDr5O6pPlhQ/Uam9GwSrrNYLPa96iSDVTdKBsvV/UXVdvCgLePTsqX3AyylDmvTproFWNu3bwUke3U2aWkXExgYyLFjR+3ZaOH/JMDyY/n5tk7uDRvGe+w5lSVCrb2R+bLc3BxMJhMBAQE0atTY29PxSVrNrCoBVqtWKV6eCXTvbguw9u3bU2ubLUcpBe4dO0r91d+FhTWge3db4+rff1/l5dkIT5EAy0+Vl5dTXGzb6FnpsO4JUuSuPmV5sEmTph7ZONcfKZnV7OxjXp5JNavVSmambYmwZUvvB1gNG8bTtm07rFYra9b84dRjrVYrW7duAWwF8+JMl1xiWyb8808JsOoLCbD81KlTtuxVYGDgX3sReoaSYTlx4rjUGqhk//59gDbqdHyV0iVdWWrVgvz8kxQXF6HX6zWz9Nu7txIEOFeMffDgAQoKThESEkL79h3cMTWfd+mltkL39evXSruGekICLD+lbAvSsGG8R69OSkhIJCAggPLycumFpZK9ezMAaNu2nZdn4ruUAObkyTzN9MJSrrhr3LgJwcHBXp6NjZJlWbPmT6c+IG3cuB6Azp27EhgojXDPJiWlDU2aNKWiokKWCesJCbD8lLItiKev5gkMDLQ3TFSWP4Rr9uyxBVipqRd5eSa+KyIiwt5nSitFxgcOaKfAXdGtWw9CQkI5eTKPvXv3OPw4JcDq0SPNXVPzeTqdjssvHwzAihU/eXk2whMkwPJTSoCl7MPmScpSlvIJXdRdZWUlBw7Ylgjbtk318mx8m5LFUmravE05r61atfbyTKoFBQXRs6dt7zxHlwmtVqsEWA664gpbgLVq1a+Ul5d7dS7C/STA8lNKgOWN7tDKJ/LMzEyPP7e/OXToIJWVlYSHh8sVhC7SWoC1Z89uAHuDT63o08dWK/TLL8scOv7gwQOcPJlHUFCQtGi4gA4dOpGQkEhpaanTFxII3yMBlp9SarC8G2BJBstVyjJNmzbtZPNcF7Vo0RKovmjAm6qqqti7dy8AqantvTyb2gYOHIROp2Pbtq0OtbVYteo3wNbrSSu1ZFql1+u5/PJBAPz00w9eno1wN/mN7adOnswDvBVg2S45P3RIMliuysjYBUiBuxqUJValps2bsrIOYTKVERISqrnu/AkJifaeWMuW/XjB41et+gWAvn0HuHNafuOf/7wGgBUrllFSoo0LLoR7SIDlp5RPnkpfKk9SMgUnT+ZRVFTk8ef3J1u2bAakO7YalEzRkSNZXn9jU5YH27Zth8Fg8OpczmbQoCsB+OGHb897XGHhaftrtG/f/m6flz/o1KkLzZu3wGQqcyiAFb5LAiw/lZubA0BSUpLHnzs8PJyEhEQADh7c7/Hn9xdlZaXs3r0TqN7GRNRdTEwMiYm2nwdnrpBzh4wMW4ClteVBxeDB/yQgIJCdO7fbs6hns2rVb1RVVZGS0obGjZt4cIa+S6fTcd11QwH4+uvPvTwb4U4SYPmhysoKe5F7QoLnAyyoXo5RAgThvO3bt2E2m0lMTJICd5UorS527tzh1XkoQYtWW2/ExsbZa4UWL15wzuO++eZLAAYN+odH5uUvrrlmCDqdjo0bN3D4cJa3pyPcRAIsP5Sbm4vVaiUoKIiYGM9t9FxTx46dANixY7tXnt8fbNq0AbBlrzzZLNafdenSDYDNmzd4bQ5ms9m+MbKW9+276aZbAPjuu28oKCg44/7jx7NZu3Y1YAsYhOMSE5PsTV0XLPjYy7MR7iIBlh9SOqgnJiZ57Y1ZeeNQNoAVzlMCLGWTWOE65Xu5adMGr23ltHdvBqWlpYSHR9C6dRuvzMERPXqkkZranrKyUubOfeeM+z/55H9YrVbS0i6mSZOmXpihb7vttjsA+OKLJRQXF3t5NsIdJMDyQ0qBu1Jv4g1KBisr6xBFRYVem4evKi4uZtOmjQD06nWxl2fjPzp06EhISAgFBQUcOOCd+kDlvHbt2l3TrTd0Oh1jxz4CwMKFn9TaxzEnJ4clSxYBcMcdI70yP1/Xu3cfWrVqTWlpKUuXLvL2dIQbaPenW9RZzQyWt0RHx9i3zPF2vYsv+vPPVZjNlbRo0VI2eVZRYGCQPYul9G/yNGV5UmmFoGW9e/fh4osvobKykscf/y8lJUbMZjMvvPAMZWWldO7chT59+nl7mj5Jp9Nx++13AfDhh/MxmUzenZBQnQRYfkj5pOntq3o6dLBlsbZu3ezVefiiX35ZAcCAAZd7eSb+57LLrgDgl1+We/y5rVYrmzdvAqBbN+0v/ep0OiZNmkxkZBS7du3g5puHctttN/H7778RFBTEhAnPSX2gC6666loSE5PIyTnBBx984O3pCJVJgOWHlADL2w0Mnd3TTNhUVFTw++8rARgwYKCXZ+N/+ve/DIBt27aQnX3Mo8+9Z89uTp3KJyQklA4dOnr0uesqObkRs2bNISYmlqNHj7Bnz26Cg4N5+eXXNbfNj68JDg7m/vvHAPDmm29K30A/IwGWH1ICLGWJzluUpYMdO7ZRWHjaq3PxJb/8shyjsZiEhERpMOoGCQmJXHxxbwA+/3yJR59bWZZMT+9NUFCQR5/bFR07duKrr37kmWde4Iknnuarr35k4MArvD0tv3DttdfTunUbTp8+zdtvz/T2dISKJMDyM+Xl5fYaLG8HWElJyaSktMFisbB6tWxs6iil4PX664dpssu3Pxg27GbA9r0uKyvz2PP+9pvvbisTERHBDTfcxC233ObV+k5/YzAYeOyxxwH46KP5bNmyycszEmqRAMvPHDt2FKvVSoMGDYiJifX2dLj00r4A9iUvcX5ZWZmsW7cGnU7H9dcP8/Z0/NZll11O48ZNOHUqnwULPvLIcx4+nMWOHdvQ6/X2ZUohwJbtv+mmm7BarTz77FMeDfqF+0iA5Weysg4B0KRJM00UnypvJL/8spyyslIvz0b75sx5F7Dt6ybd290nMDCQ0aMfBOC9997m2LGjbn/Ob7/9CoD09Eto2DDe7c8nfMukSZOIj08gK+sQTz/9BBaLxdtTEi6SAMvP7N+/F0AzDQy7d+9J06bNKCkpYfnyn7w9HU3Lysq0vwmPGvWAl2fj/665Zgg9evSkrKyURx8dS2lpidueq6Kiwr70K13PxdlER0fz2mtvEBAQyPLlPzJz5htea4Yr1CEBlp9RNrFt06adl2diY9vY9AbA1rFYnJ3VamXq1JexWCz06zeATp20u4WKv9Dr9Tz//MvExsaRkbGLsWPvd1tT3G+//YqTJ/OIj0+QffvEOXXv3pOJEycBMG/ee8yY8boEWT5MAiw/s2+fLcBq21YbARbAddddj8FgYOPGDWzbtsXb09GkH374llWrfiMwMJCHHx7n7enUG40bN2H69FmEhoaxYcM6/v3vG+3766mlpMTIrFnTAbj99rsIDPSdqweF511//TD++9/xALz//myefPJRjEajl2cl6kICLD9iMpnsO7NrKcBKTEyyL4vMmjXDy7PRnqysQ0yZ8hwA99xzH61apXh5RvVLp05d+OCDT0hObsTRo0cYPXoEd989nBUrfnK5u7bVauWll14gLy+PJk2acsstw1WatfBnd9wxkokTn8NgMPDDD99xyy1D+e23nyWb5WMkwPIju3btwGKxEBfXkLi4ht6eTi333vsAAQEBrFnzJ7/99rO3p6MZp06d4pFHHsRoLKZr1+6MHDnK21Oql9q1S2XRoi+55ZbbCAgIZOPGDTz66FgGDryERx8dw8cf/4+dO7dTXl7u8JiVlRW8/PILfPPNl+j1ep577kWf6n0lvOvGG29m3ryP7IH/f/7zACNHDmf58h8xm83enp5wgM4qITEAFouFmTNnsnjxYoqKiujRowfPPvsszZvXvRt6QUEJZrPnrgSZPfsd3nrrDQYNupJXX33DY8/rqNdf/z/+9795xMU1ZPHir4iN9UwbiYAAPTExDTx+Pi4kLy+XBx+8l717M0hISOTjjxcTH5/g7Wm5lVbPRU05OSdYsOBjfvjhW44fz651n16vp1mz5rRsmUKjRo1JTm5EUlIS4eERBAeHEBAQQEHBKXbv3sk333xpb/o7ceIkbrzxFm/8d87JF85FfXG+c2E0Gpk7910++ugDKisrAYiJiaV//8vo128AXbp009wHal8WG9sAg0Gd3JMEWH+ZOXMmn3zyCS+99BKJiYm8+uqrHDlyhG+++abOnzo9/YvrvvtGsmbNnzzxxERNLkWUl5dz663DOHhwP507d+Xdd+cRGhrm9ufV4hvJli2bGDfuP+Tl5dGwYTxz5syvF5s6a/FcnIvVamXHju2sW7eaTZs2sn37VqeL4GNiYnn66ecYOHCQm2ZZd750LvydI+ciJyeHxYs/ZenShRQUFNS6Lzm5Eamp7WnevAVNmjSladNmxMcnEBsbS2RkFHq9LFY5SgIslVVUVJCens64ceO49dZbASgqKqJv3768+OKLXH311XUa15O/uMrKSrnssksxmcpYvPhLzVxF+Hf79+9j5MjhFBUV0qVLN15//U23f/rS0htJTs4J3ntvFp99thir1UpKShumTZvp9X0jPUVL58JZVquVkyfz2L9/H4cOHeT48eMcP55NTs5xSktLKS8vp7KykpiYGJo0acYll/Thyiuv8siHiLrw5XPhb5w5F5WVlWzevJFfflnB2rV/kpl58Ly1WQaDgZiYWGJjY4mIiCQsLIywsAZ//QmjQYMGhIaGERoaQkBAIIGBNf8E1fq65v0BAQEYDAb0ej16vR6dTo/BoLd/bftjQK/X/fV37fu0Ss0AK0CVUXxcRkYGJSUlpKen22+LjIykffv2rF+/vk4BVlVVFYWFp6mqsgI6dDrlD/Z/K7fbXpz87ThdjeMu7JdfVmAyldG0aTNat27r9Hw9pXXrNrz55js8+OC9bN26mRtvvI7//OdRrr76OgIDA709PdVVVFRw+PAhtm7dwqpVv7Jq1W9UVVUBtn5ITz75NA0ahHt1jsIxOp2O+PgE4uMT6N37Um9PR9RTgYGB9OqVTq9etvcro9HI7t072bt3D0ePHubIkSMcO3aE/Px8iooKqaqq4uTJPE6ezPPyzGs7MwDTXTAocyx4O99jLzz2lCnP07ChOh/6JcACTpyw7d2XnJxc6/aEhASOHz9epzGPHj3KpZde4vLcwPYD1bhxE9q2bUefPv248sqrCAur/an4yy+XAnD11dcSGKjt/et69OjBggVLePjhh9i/fx+TJk3g7bdncM01Q+jffwDt23ckJCREtedTPo0YDHqsVitlZWUYjcUUFxdjNBpr/LuY4mLl6yKKi4spKTFSUVGB2VxFVVUVVVVmqqqqMJvNf319rn+bqaqyYDQWn9GRuWfPXowZ8x969EhT7f/oK2qeC+Fdci60w5VzER0dSe/evendu/cZ91VWVlBQUMCpU/l/BVxFlJaW/vWn5K8/pZSUlNgzsMofs7my1tfVfyrs/66qsmC1WqiqqsJqtWKxWBzuQO/MsZ701FOPS4ClJmXfp7/XWgUHB1NY6J7Gg86orKzk0KFMDh3K5KeffuC1117h9ttv55577iE+Pp7ly5ezdu0aAgMDufPO4cTENPD2lC8oJqYjy5b9xNy5c3n33XfJyclh7tz3mDv3PQwGA61ataJJkyYkJSURHx9PgwYNCAkJISQkhMDAQCwWiz2osVqtlJeX1/jFUYrRaKS4uJiiIlugVPPfnr4CJzIyktTUVPr168c///lPUlNTPfr8WhQZGertKYi/yLnQDvXPRQMSEmIAz9V3Wq1WrFYrVVVV9iBK+X3tzNfKbTXHcvTrujyf8tjo6GjVvhcSYIE9W1JRUVErc1JeXk5oaN1e8M2aNWPbtt1/nbTqF53yB5R/c47bq+8zmco4cuQwmzZt5OuvbVcmzZw5k9mzZ9OpU2d27twJwL//PZyIiDgKCty35YfabrnlDm644RaWL/+JX35ZwZo1f1JQUMC+ffvYt2+f255Xr9cTHh5BREQE4eHhf/1d+98REZGEh4cTHBxsrzcwGAw1/h1AQIDtb9vtNf9t+zs8PJy4uIa1lnp96fyozWDQExkZSlFRGVVV2vv0Wp/IudCO+nEuDIABnQ4MBtsfLYqIUC/IlQCL6qXB3NxcmjVrZr89Nze3ztkGW22VAYtFh6t7LkdFxZCY2IiePdO5++77WLnyV+bNe4/t27eyYcN6AC6+uDf33TfWJ4tV9foABg++isGDr8JqtZKbm8uBA3vJyckhNzeH/Px8ystNlJebMJnKMZvNGAy2okpl3TwgIOCv4s0wQkNtfyuBUlRUJMnJ8UAgoaENCA8PJyysgcc2w7bV4dX7a0lqqaqy+ORr1R/JudAOORfep+ZlfxJgAampqYSHh7N27Vp7gFVUVMSuXbsYPlxb7Q4MBgOXXXY5AwYMZM+e3ezdu4eEhER69UrX9JUZjtLpdCQmJpKYmKjamHK1lBBCCE+TAAtb7dXw4cOZOnUqsbGxNG7cmFdffZWkpCQGDdJe/xqwBSKpqe1JTW3v7akIIYQQ4m8kwPrL2LFjMZvNTJw4EZPJRFpaGnPnzpWtLYQQQgjhNGk06kayJKUNskSoHXIutEPOhXbIudAONRuN+n7RjhBCCCGExkiAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJnsRulFVlewppRUGg17Oh0bIudAOORfaIedCG/R6HTqdTpWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUtGsWbO4/fbba922e/duhg8fTteuXRkwYABz58710uzql7Odi59//plhw4bRrVs3Bg4cyCuvvILJZPLSDOuPs52LmiZOnMjAgQM9OKP662znIjc3l//+97/07NmTiy++mEcffZRTp055aYb1x9nOxfbt2xk+fDjdunWjf//+/N///R8VFRVemqF/O336NM888wz9+vWje/fu3HrrrWzYsMF+vxrv3RJgqeSDDz5gxowZtW4rKChgxIgRtGjRgqVLlzJmzBimT5/O0qVLvTTL+uFs52LDhg089NBD/OMf/+CLL75g0qRJfP/99zz33HNemmX9cLZzUdPy5ctZvHixB2dUf53tXFRUVDBy5EiOHDnC+++/z7vvvsuuXbt4/PHHvTTL+uFs5+LUqVPcc889tGrVii+++IIXXniBzz//nGnTpnlplv7tv//9L1u3buX1119nyZIldOjQgbvvvpsDBw6o9t4d4Ka51xs5OTlMmDCBjRs30rJly1r3LVq0iKCgICZNmkRAQAApKSlkZWUxe/Zshg0b5qUZ+6/znYsFCxaQnp7OvffeC0Dz5s155JFHeOqpp3juuecICgryxpT91vnOhSI3N5enn36aXr16cezYMQ/PsP4437n45ptvOHbsGMuWLaNhw4YA9p8Jo9FIeHi4N6bst853LjZt2sTp06cZP3484eHhNG/enOuuu47ff/9dAl6VZWVl8ccff/Dpp5/SvXt3ACZMmMDKlSv55ptvCAkJUeW9WzJYLtq5cydRUVF89dVXdOnSpdZ9GzZsIC0tjYCA6jg2PT2dzMxM8vPzPT1Vv3e+czFy5EjGjx9/xmPMZjNGo9FTU6w3zncuAKxWK0888QRDhgyhV69eXphh/XG+c7Fq1SrS09PtwRVA3759Wb58uQRXbnC+cxEdHQ3Ap59+SlVVFUePHuW3334768+PcE1MTAzvvfceHTt2tN+m0+mwWq0UFhaq9t4tGSwXDRw48Jz1IydOnKBt27a1bktISAAgOzubuLg4t8+vPjnfuWjfvn2trysqKnj//ffp0KEDsbGxnphevXK+cwG2JZK8vDzeeecd3n33XQ/OrP4537k4dOgQPXv25K233uKLL77AbDbTp08fxo0bR2RkpIdn6v/Ody569uzJvffey/Tp05k2bRpVVVX06tWLp59+2sOz9H+RkZH079+/1m3ff/89hw8fpk+fPkybNk2V927JYLmRyWQ6Y+kpODgYgPLycm9MSWDLWo0fP579+/fz7LPPens69U5GRgYzZ87k1VdflaVZLzMajXzxxRfs2bOH1157jeeff56NGzfywAMPYLVavT29eqWoqIhDhw5x2223sXjxYqZPn87hw4eZNGmSt6fm9zZu3MhTTz3F5ZdfzsCBA1V775YMlhuFhISccQWIcnLCwsK8MaV6z2g08vDDD7N27VpmzJgh6XcPKy8v57HHHuP+++8nNTXV29Op9wIDAwkLC+O1114jMDAQgKioKG666Sa2b99O586dvTzD+mPq1KkUFRXx5ptvAtChQweioqK46667uPPOO+XnxU2WL1/OY489RpcuXXj99dcB9d67JYPlRklJSeTm5ta6Tfk6MTHRG1Oq13Jzc7ntttvYvHkzs2fPltYAXrB161b27dvHzJkz6datG926dePdd98lOzubbt268dVXX3l7ivVKUlISLVu2tAdXAG3atAHg6NGj3ppWvbRx40Y6depU6zblA2BmZqY3puT3PvroI8aMGUO/fv2YPXs2ISEhgHrv3ZLBcqO0tDQWLFhAVVUVBoMBgNWrV9OyZUupv/KwwsJC7rzzToxGI5988gnt2rXz9pTqpc6dO/PTTz/Vuu3DDz/kp59+4sMPP5SfCw/r2bMn//vf/zCZTPY3l7179wK2K22F5yQlJbFnz55atynnokWLFl6YkX/75JNPeOGFF7j99tt56qmn0Our801qvXdLBsuNhg0bhtFoZMKECezfv5/PPvuM+fPnM3r0aG9Prd556aWXOHLkCK+++iqxsbHk5eXZ/1RVVXl7evVGSEgIzZs3r/UnKiqKgIAAmjdvLleuedgtt9yCwWDg0UcfZe/evWzcuJGJEydy8cUX06FDB29Pr14ZMWIEq1at4o033uDw4cOsXr2aJ554gv79+3PRRRd5e3p+JTMzkxdffJFBgwYxevRo8vPz7e8HxcXFqr13SwbLjeLi4pgzZw5Tpkxh6NChxMfHM378eIYOHertqdUrFouF7777jsrKSu68884z7l+xYgVNmjTxwsyE8K7Y2Fg+/vhjXnrpJf71r38RFBTEFVdcwZNPPuntqdU7ffr04d133+Wtt95i/vz5xMTEMGjQIP7zn/94e2p+58cff6SyspJly5axbNmyWvcNHTqUl19+WZX3bp1VLhURQgghhFCVLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgifIV1lhBC+QgIsIYRPWLFiBY8//rj967Vr19KuXTvWrl3rlfk88cQTtGvXjnbt2vHYY4+5NFa7du3sm/w64tZbb7U/tzOPE0J4jnRyF0L4hA8++KDW1x06dGDhwoW0bt3aOxMC4uPjmTlzJrGxsS6Ns3DhQpKSkhw+/oUXXsBoNHLzzTe79LxCCPeRAEsI4ZPCw8Pp2rWrV+cQFBSkyhycHcObQaUQwjGyRCiE0Lzbb7+ddevWsW7dOvuy4N+XCN98802uvPJKli9fzjXXXEOnTp0YMmQImzdvZsuWLdx000107tyZa665htWrV9caf+/evYwePZru3bvTvXt3HnzwQY4cOeL0PNu1a8enn37KE088QY8ePejVqxeTJ0/GZDLxyiuvkJ6ezsUXX8yECRMoLy+v9ThlqU/5f61evZqRI0fSpUsXLrnkEl555RXMZrML30UhhCdJgCWE0Lxnn32W9u3b0759exYuXEiHDh3OetyJEyd46aWXuO+++3jjjTcoLCxk7Nix/Pe//+Vf//oXr7/+OhaLhUceeQSTyQRAZmYmt9xyC/n5+bz88stMmTKFI0eOcOutt5Kfn+/0XKdOnUpQUBAzZ85kyJAhfPjhh1x//fUcP36cV199lVtuuYUlS5bw4Ycfnnecxx57jB49evDOO+9w7bXXMm/ePJYsWeL0fIQQ3iFLhEIIzWvdujXh4eHA+ZfTysrKePbZZ+nXrx8ABw4c4LXXXmPKlCnceOONAFRVVTF27FgyMzO56KKLmDlzJiEhIXzwwQf25+jduzdXXHEFc+bMqVVY74iUlBSef/55ANLS0liyZAmVlZVMnTqVgIAA+vbty88//8ymTZvOO85NN93Egw8+aJ/P8uXL+fXXX7nlllucmo8QwjskwBJC+JXu3bvb/92wYUOgdlAWHR0NQFFREQBr1qzh4osvJiQkxL4EFx4eTs+ePfnzzz+dfv5u3brZ/x0QEEBMTAwdO3YkIKD61210dDTFxcUOjwOQlJREaWmp0/MRQniHBFhCCL+iZKFqCgkJOefxp0+f5rvvvuO777474766XB14tucPDQ11epy/z1mv10sfMCF8iARYQoh6LSIigksuuYQRI0accV/NrJMQQjhDfnsIIXyCXq/HYrGoPm6vXr3Yv38/F110kT2gslqtPPbYYzRv3pyLLrpI9ecUQvg/uYpQCOETIiMjyczMZPXq1RQWFqo27gMPPMDhw4cZPXo0y5cvZ9WqVYwZM4Zvv/2W1NRU1Z5HCFG/SIAlhPAJt912G4GBgYwaNYqVK1eqNm5qaioff/wxOp2O8ePHM3bsWPLy8njrrbcYPHiwas8jhKhfdFapmhRCCKc98cQTrFu3jp9//tlrc2jXrh0PPfQQY8aM8dochBBnJzVYQghRRxUVFWzZsoXY2FiaNWvmsefdv38/RqPRY88nhHCeLBEKIUQd5eXlcfPNNzNjxgyPPu/TTz8tGz0LoXGyRCiEEEIIoTLJYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqOz/Ab1LKcmPLql6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a sample chromatogram and show the trace, cropped between 10 and 20 minutes\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "plt.plot(df['time_min'], df['intensity_mV'], 'k-')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal intensity [mV]')\n", + "plt.xlim([10, 20])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this signal, the location of peaks (meaning, the index where a local maxima is \n", + "detected) can be identified using `scipy.signal.find_peaks`, even with a very \n", + "low prominence filter. TO allow prominence filters to be comparable between \n", + "chromatograms, we normalize the chromatogram first between 0 and 1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHJCAYAAACG+j24AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsQUlEQVR4nOzdd3hTZRvA4V9G23QvWgqUvfdGkCUoDhQXbkUFFQcIooLiApWhTEVAceBGFAcgIJ+AynCwh6yyd6FAF93N+P6IJ23pStKkOWme+7q4aJMznpP3pHnyTo3FYrEghBBCCOGjtJ4OQAghhBDCkyQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQQgjh0yQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQwk4yR60QVZMkQ0KIMg0aNIhBgwZ5OgyX27hxI9dddx2tWrXikUce4b333qNp06a25y+/7kWLFvH22297ItRyHTlyhKFDh9KxY0euuOIKXnrpJdLT08vdb9euXTzwwAO0b9+e7t278/bbb5OXl1fq9sOHD+fFF190ZehCqILe0wEIIdRt3Lhxng7BLd5++23MZjMffvgh0dHRhIeH07Nnz1K3f//99+nSpUslRmif9PR0Hn74YWJjY5kyZQoXL15k6tSpnD17lvnz55e634kTJxg8eDDt27fnnXfe4fDhw8ycOZNLly4xYcKEItuaTCYmTZrEqlWruO2229x9SUJUOkmGhBBlatSokadDcIvU1FQ6d+7MlVdeaXssLi7OgxE555tvviE9PZ3FixcTFRUFQPXq1Rk6dChbtmyhU6dOJe738ccfExwczNy5c/H396d3794YDAbefPNNnnzySWrVqgXA/v37efPNN9m9ezcGg6HSrkuIyiTNZEKoRN++fZk5cyaTJ0+mS5cudOnShdGjR5OSkmLb5sUXX+Shhx5i3LhxdOrUidtuuw2j0Uhubi5z5szh+uuvp3Xr1lx77bV8+OGHmM1m276DBg3itdde4/3336dnz560bduWxx57jAsXLvDDDz/Qr18/2rdvz8MPP8ypU6eK7Fe4uahp06Z8/fXXvPzyy3Tp0oX27dszYsQILly4UOR6Vq9eze23307r1q3p3r07EyZMICsry/b8e++9R79+/fjjjz8YMGAArVq14rrrruOnn34qcpyLFy/y0ksvceWVV9K+fXvuv/9+tm7danteqd3p16+f7Rhffvllqa/zqVOnaNq0KadPn2bx4sU0bdqUjRs3Fmsmu7xsTp8+zU8//UTTpk1tr8+ZM2d49tln6dKlC23btuWhhx5i7969xc716aefcsMNN9ClSxd+/PHHUmMq7V9ZzZQbNmygY8eOtkQIoGfPngQHB7Nu3boy97vqqqvw9/e3PXb99ddjNpvZsGGD7bEXXngBs9nMt99+S3R0dKnHE8KbSc2QECqyYMEC6taty6RJk0hOTmb69OkcOXKERYsWodVav7ts2bIFjUbDe++9R2ZmJjqdjscee4wdO3YwbNgwmjdvzsaNG3nnnXc4efIkb775pu34y5cvp0WLFkycOJEzZ87w5ptv8sADD2AwGHjhhRdITU1l4sSJvPHGG3z44Yelxjlz5kz69evHjBkzOHnyJJMnT0av1zNjxgwAfv75Z55//nkGDBjAM888w+nTp5k5cyaHDh3i008/RaPRAHD+/HneeOMNW03EJ598wosvvkibNm1o2LAhWVlZ3HPPPeTn5/Pcc88RFxfH559/zqOPPsr3339Pw4YNGT9+PD/++COPP/447du3Z/PmzUyaNIn09HSGDRtWLPbY2Fi+/fZbhg8fTosWLXjqqado1KgRmzZtKvV6Z8+ezdChQ23bx8bGkpyczD333ENgYCCvvvoqgYGBfP7559x///222Aq/Xq+99hphYWG0atWq1JhKExISUupzhw8fpn///kUe02q1xMfHc+zYsRL3ycnJ4fTp09SvX7/I41FRUYSEhBTZ7+2336ZZs2alnl+IqkCSISFURKPR8OmnnxIaGgpYP5yGDRvGunXruOqqqwAwGo28/vrr1K1bF4C1a9fy119/MXXqVG6++WYAunfvjsFg4N133+Whhx6yNXXl5+cze/ZswsPDAVi1ahUbNmxg9erV1K5dG4B9+/axZMmSMuNs0qQJkydPtv2+a9cuVq5cCVhHXE2bNo2ePXsybdo02zb16tXj4YcfZu3atbZryc7OZuLEiXTr1s22TZ8+fVi7di0NGzbkp59+4uTJkyxevNj2gdypUyduvfVWNm/ejFar5bvvvuPZZ59l6NChAPTo0QONRsO8efO47777iIyMLBK7v78/7dq1w9/fn6ioKNq1a1duubRo0aLY9p9//jmpqal88803tialXr160b9/f959911mzZpl2//aa6/ljjvuKPX4SkzOSE9PJzg4uNjjwcHBZGRklLoPlJxkXb6fJELCF0gzmRAq0qdPH1siBNbmGT8/P7Zs2WJ7zGAwUKdOHdvvmzZtQqfTFasdUBKjjRs32h5r2LChLRECiImJISoqypYIAURERHDp0qUy47z8gzsuLo7s7GzAOrLp7Nmz9O3bF6PRaPvXuXNnQkJC+PPPP0s9ltJnR2lO27JlC/Hx8UU+kAMCAvjll1+45557+Oeff7BYLMXO1bdvX3Jzc4s0p7na33//TfPmzalevbrtvFqtll69evHXX38V2bZJkyblHq9w/Jf/M5lMZe6r1LQVZrFYSnxcea40Ze0nRFUlNUNCqEhsbGyR37VaLREREUWGSUdHRxf5sEpLSyMyMhK9vujbOSYmBqBIYlNSTUBgYKDDcV6+j1artX3ApqamAvD666/z+uuvF9s3KSmp1GMpTYGFj1VWPxXlXDfeeGOJz587d66Mq6iY1NRUjh8/TsuWLUt8XkkOAapVq1bmsU6dOsXVV19d6vNdunQptR9USEhIiTVAWVlZpXYIVxLuzMzMEvcrnJAL4QskGRJCRZQPd4XJZCIlJaVI59jLhYeHk5KSgtFoLJIQKUnH5c1E7hYWFgbAmDFjShyKXrhmqjyhoaFFOnMrtm/fTkhIiO1cn3/+eYlNRTVr1rT7XI4KDQ2lS5cujBkzpsTnC3dMLk9sbCzff/99qc+XdG2K+vXrc+LEiSKPmc1mTp06xbXXXlviPkFBQVSvXp3jx48XeTw5OZmMjIwqO4JQiNJIM5kQKrJ+/foik96tWbMGo9Fo61NTki5dumAymVixYkWRx5cuXQpAx44d3RNsKRo0aEB0dDSnTp2idevWtn9xcXFMnz69yGir8nTq1ImTJ0+SkJBgeywvL4+nn36a7777js6dOwOQkpJS5Fypqam88847xZLLilBqrRRdunTh6NGj1K9fv8i5ly5dyqJFi9DpdHYf29/fv8gxLv/XoEGDUvft3r07mzdvJjk52fbY+vXryczMpHv37mXu98cffxS531auXIlOp6Nr1652xy5EVSA1Q0KoyNmzZ3nyySd58MEHSUxMZMaMGfTo0YMrrrii1H169erFFVdcwbhx40hKSqJFixZs2rSJjz76iNtuu63Sv+XrdDpGjRrFa6+9hk6no0+fPqSnpzN37lzOnTtXarNSSW6//Xa+/PJLnnzySUaOHElUVBRff/01OTk5DBo0iDp16nDzzTfz6quvcvr0aVq1asXRo0eZOXMm8fHx1KtXz2XXFRYWxt69e9m0aRNt2rTh4YcfZsmSJTz88MMMGTKEyMhIVqxYwXfffcfYsWNddt7y3HfffXz11VcMHjyY4cOHk5qaytSpU+nVqxft27e3bbdjxw6ioqJs/c0effRRli9fzqOPPsrgwYM5duwYM2bM4O6776ZGjRqVFr8QaiDJkBAqcuONNxIWFsYzzzxDUFAQt912G6NGjSpzH2Xk1KxZs/jiiy9ITk4mPj6eUaNGMXjw4EqKvKg777yT4OBgPv74Y7799luCgoLo0KED06ZNK9JZuzwhISF89dVXTJkyhYkTJ2I0Gmnbti1ffvml7UN98uTJzJs3j4ULF3L27Fmio6Pp378/zzzzjEO1M+UZMmQIkyZN4pFHHuHTTz+lU6dOLFy4kOnTpzN+/Hhyc3OpV68eEydOLHPkmKtFRUXxxRdfMGnSJJ5//nmCg4O5/vrrizXf3X333dx222289dZbgLUz/fz585kyZQojRowgMjKShx9+mJEjR1Za7EKohcYiKw8KoQp9+/alS5cutg8rIYQQlUP6DAkhhBDCp0kyJIQQQgifJs1kQgghhPBpUjMkhBBCCJ8myZAQQgghfJokQ0IIIYTwaZIMCSGEEMKnyaSLWBeFNJulH7kaaLUaKQuVkLJQFykP9ZCyUAetVlNk0eqKkGQI6wy+6elZGI1mT4fi0/R6LZGRwVIWKiBloS5SHuohZaEeUVHB6HSuSYakmUwIIYQQPk2SISGEEEL4NEmGhBBCCOHTJBkSQgghhE+TDtRCCAGYzWZMJqOnwyiR2awhJ0dHXl4uJpOMYvIkKYvKodPp0Worr75GkiEhhE+zWCykpyeTnZ3h6VDKdOGCFrNZRi+pgZRF5QgMDCEsLMplw+fLIsmQEMKnKYlQSEgk/v4BlfKH1xk6nUZqIlRCysK9LBYLeXm5ZGSkABAeHu32c0oyJITwWWazyZYIhYSEeTqcMun1WpnXRiWkLNzP3z8AgIyMFEJDI93eZCYdqIUQPstkMgEFf3iFEOqhvC8roy+fJENCCJ+n1qYxIXxZZb4vVZUMzZ07l0GDBpW5TUpKCs899xydO3emc+fOvPrqq2RlZVVShEIIIYSoalSTDH322WfMmjWr3O1GjBjByZMnbdv/+eefvP7665UQoRBCCCGqIo8nQ+fOnePRRx/l3XffpX79+mVuu337djZt2sTkyZNp2bIl3bp144033mDJkiWcO3eukiIWQghRERMnjmf48KEAJCaeoUePTmzbtqVSzueobdu20KNHJxITz7g4KvdIS0tl2bLFng7D63h8NNmePXsIDw9n6dKlzJkzh9OnT5e67ZYtW4iJiaFhw4a2x7p06YJGo2Hr1q3079/f6Th0Oo/nhT5PKQMpC89ztCxyc3OZO3cWOp2exx57gsDAQHeG5zJms3f0FVK6Tmg0YKliI7pjY6uzZMlKwsLCPR2KXdReFnPmvMuZM6e56aZbPR2Ky+h0GvT64n+LXNmlyOPJUN++fenbt69d2547d44aNWoUeczf35+IiAgSExMrFEdYmHf88S4sKx+az7X+vO8pCPLzbDyu4o1l4W6eKmt7y+Ll8e/wVfR4ADJnj2PKJO9ous7J0XHhgrbUP7auYrbA7iTrz61iQevkH3FPf1Fw1XVoNBo0GutrrtdrqV491q0xFT6fowp/MSi8v6fLoizOXqvamM0atFot4eFBGAwGt57L48mQI7Kzs/H39y/2eEBAALm5uRU6dnp6NiaTd80bkZ0PEAxAakomuV6eDOl0WsLCAr2yLNytssvakbLIycnhm2++gadeBuD7H37g6SefIiQkxL1BukBeXu5/y3BYiswbY7FYyMnJdtl5zBbIybZ+OF26ZC4ziTAYAouNotForGViMplLrY3o0aMTY8a8zG+/rWLXrp2EhYUxcOBdDBo02LbNX39t4LPPPubo0cMEBQVzzTXXMXToUwQEBNiO8eCDQ/jf/1aQn5/P7NnzePbZp7nnnvvZvn0r//zzF4Eh4Qy453GMreozc8ZbnDhxnCZNmvLKK29Qq1Y8ALt27WD+/A/Zt28PeXl5xMfX5sEHh9Cv3/WA9fW1WKyveWLiGe6882ZmzfoAgBEjnijx+t57bx7t23fk/PkkZs+eycaNf6PT6WjZqg03PPAc1WvWwWg0o8HC559/wpIlP3LpUjrXXHMdubk5tvOVxGg08vnnn/DLL8tISUmmbt36DB36FF27Xmm7/9evX8eSJT9w8uQJ4uNr89RTI+jWrQcAw4cPpVateI4cOczJk8d55pnRXH/9jfzyyzIWLvyakydPEBUVxc0338YDDzyMVqu1XffUqe/w8cfzOHr0MPHxtRkz5hWOHj3MZ599zKVLl7jyyh6MHfuarYyWL1/K998v5Pjx42i1Gpo1a8HTTz9L06bNmDhxPL/8sgyArl07sGHDFkwmE99/v5DFi3/g3LmzVK8ex733DuLmm2+zXf/+/ft4770Z7N+/l6ioajz22BNMnDiemTPn0KFDpxKvr2/ffsyf/yG//baKpKRzBAUF07nzFTz77BjCwyOcvr7CTCYLZrOZtLQssrNNxZ4PDw902fxDXpUMGQwG8vLyij2em5tLUFBQhY5tMpm9bhIto6nwz2aM3lHjXy5vLAt381RZ21MWGzduJDc3x/bHJDc3h7/++ou+fa9xf4AVVNIswhaLhYcfvo+dO7d7ICJo164Dn376dZGESEmAymuWmTv3XUaNGsOzz77A//63gnnz5tCmTTvatm3PunV/8MorYxgyZCivvDKekydPMn36W5w9e4aJE6fajrF06Y9MmzYLo9FEnTr1APjgg9mMGPEcTz41krnzv+TrDybzV736jBz5HEFBQbz66ljef38WEyZM4fz5JEaNGsZtt93J88+PxWg0smDBF0ye/AYdO3YmKqr02YRbt27LkiUrbb/n5OQwevRIYmKq07p1W7Kzs3n66cdp1KgJ7733ITqdloULv2by6AcZN+s7iKrGV199xoIFXzJ69FiaNm3GkiU/smzZEtq161DqeWfNms5vv61i1KgXaNasOb/8soyxY59j/vyvbdssWrSQMWNeolq1GObNm82rr77I0qW/2j57Vqz4mVdffZNGjRoTHR3Nd98t4IMPZjNs2DN06dKVffv2MmPG26SlpfH006Nsx50xYypjxrxEbGx1JkwYx+jRI2nWrDlTprzDqVMnGD/+ZVq3bsPAgXezdu3vTJs2mTFjXqZ9+45cvHiRd96ZyltvvcGnny5g5Mjnyc3NJSnpHBMnTgFg9ux3WLlyOaNGjaF58xZs2vQPM2dOIS8vlzvuuIcLF84zcuQT9OjRm+efH8vZs4lMmzbZNgeX4vLrmzt3FuvX/8HLL4+nZs1aHDlymIkTx/H5558wYsRzTl1faS7/sqJwZTOlVyVDcXFxrF69ushjeXl5pKamUr16dQ9FJYRv+/PP9cUe27Jlk1ckQ6Xx1nmHbrhhANddZ+07+dhjT/Ljj4vYtWsHbdu258svP6VXr6t4+OFHAahTpx4Wi4UXX3yWY8eOUq+edQDLddf1p1mzFkWO27Xrldx8822YLdD3pntZ978fGDjwbjp06ARA377XsH79H4D1b/KQIUO5995Btm/tgwYNZsWKn/+rISk9GfLz8yM6uhpgTUpfeWUMABMmvI1er2flymWkpqYyfvxE9Hrrx9eYF15l45atrP/1R7o2eozvv/+WO++8x1YL9fTTz5bZOTsrK5Off17MyJHPc/XV/QB49NEnMJlMRaZtGTnyWdv1DhnyGGvX/s6xY0do0aIVAI0bN+Haawtqvr766nNuv/0uBg68C4DateuQnp7K7NnvMHjwY7bj3nPPfXTufMV/5XcTM2a8zXPPvUh8fG0aNmxE48ZNOXLkMADh4eG88MIrXH/9jQDExdVgwIBbmTZtMgAhISEEBASg1+uJjq5GZmYGP/20iKefHmWLrXbtOpw5c5ovvviUgQPvZsmSHwkJCWXs2NfQ6/XUr9+AUaPG8OKLzxZ5nQpfH0Dz5i3o3bsP7dt3tMXSpUs3Dh8+VGQ/R67Pk7wqGercuTPTpk3j+PHj1K1bF7B+KwXo0KH0rL+q0gAdYo22n0XVpeay3rTpb7BYaOB3HpPZxGGLhQMH9ns6LKdpNBo+/fRrlzeTnbxkLbnaoRaHm8nsVbduvSK/BwcHk5+fD8CRI4fo1++6Is8rtSWHDx+0JUPx8XWKHbd27bq2n8NDrM0ZNWrWsj3m7+9vq7WvVSueG2+8hR9++I5jx45w8uQJDhxIAChW21CW99+fxfbt25g371NCQ0MBSEhIICsrkxtu6FNk29zcPM6fPkpaWhoXL16gefOiyVzLlm04duxIiec5ceI4+fn5tGzZusjjjz8+DMCWSCm1ZAChoWH/nbege0bh1y01NYXk5Iu0adOuyDHbtu2A0Wjk+PFjREVF/XfcgtdW6RdTs5TXtl27Dhw7dpTPPvuYU6dOcuLEcQ4dOlDqorHHjx/DaDQWi6Ndu/Z8++3XpKQkk5Cwn6ZNm9uSS2uc7Ysd6/L74rrr+rNlyybmzZvDyZMnOHbsKCdOHCt2Lkeuz5NUnQyZTCaSk5MJDQ3FYDDQtm1bOnTowKhRoxg/fjxZWVmMGzeOW2+91Sdrhgx6+PAa1/3BFuql1rLOycnh6NEjYDIxu3caycnJ3GPM4eDBBCwWi9fWsGg0GgIDK9b0frlmrj1ciUrqU2n5ry3B+l/R8jCbrclJ4Q/CkvpuKM9rNRAfYj2erpSM7vjxYzzxxBCaNGlGly5X0KNHLyIiInnssYfsvo6ff17Md999w4wZs6ldu+BD2GIxU6dOXd56a0axfQIDA21JpuWy9pPC13c5nc76XHn3akl9Uwqfp/Drpjx++SGVpKVwPMr5yzsXwOrV/+PNN1+jX7/rad68JTfddAtHjhxmxoy3S9y+ILzLy70gDp1Oh8VSfreEy++LadPeYs2aX7nhhhu58soePPTQEL755iuSkopOc+PI9XmS+iIqJDExkR49erBixQrAerPOnj2b+Ph4HnroIZ555hl69erF+PHjPRuoED7q0KGDmEwmIiOjiImJpUGDhuh0OtLS0or9URSe1bBhQ3btKtoPSukXVbdu2XO8OeKnnxYRFRXFu+/O5f77H6Jbtx5cvHjR7v23bNnE9OlvMWrUGFuzlKJ+/YacPZtIcHAI8fG1iY+vTVxcDT744D127NhGREQEsbHV2bVrZ5H99u/fW+r5ateug16vZ//+PUUef+yxB1mw4Au74y4sMjKKyMgodu7cUeTxnTu34+fnZ+to7qgvv/yUAQNu5ZVXXmfgwLto164Dp0+fAgonYAWJT9269dDpdCWWe3R0NKGhYTRq1JiEhP0YjQXrf+3du7vMONLSUlm8+Huef/5FRox4jv79B9C4cVOOHTvq1HWpgapqht56660iv8fHx5OQkFDksejoaLtmqhZCuJ/yIdOsWXM0Gg3+/v7Uq9eAw4cPcuBAAtWrx3k4QqG4994HGTduLJ999jF9+/bj5MkTzJw5lSuv7GlrInOF2NjqJCWd4++//6R+/QYkJOzjnXemAZTbHHLs2FFeeeUFbr11IL179+XixQu25wIDg7juuv58/fXnvPzyaJ56aiShoaF88cUn/P33nwwZ8jgADzzwMLNnv0PdunVp06Y9//vfCvbt20Pr1m1LPKfBYGDgwLv56KP3iYiIpH79hixfvpSjR4/w8ss9SU62P5FTaDQa7r33AT7++ANq1qxFly5d2bt3D/Pnf8jNN99GSEgIly6lO3zc2Njq/PvvThIS9hMSEsKGDWv58cfvAOtrGxAQQGBgIBcuXODMmdPUrFmLm2++nY8/nkdoaDgtWrRk48a/+emn7xk6dBgajYbbb7+Tb79dwNtvT+D++x/iwoXztpqm0mrLgoNDCAkJYf36tTRt2pzc3Fy+//5bDhzYb+tD5W1UlQwJx2QbYcAS63Drn2/JJFBKs8pSa1knJFj7BjVs1pZrfrDG17ZxCw4fPsixY0fo2bO3J8NTDbMFDqZaK+IbR5Q9tN5d+va9BpPJyFdffcbnn39CREQk/fpdxyOPPG73McwWOJJmvY7SBvLcccc9HD9+jDfffI38/Hxq167N0KFPMX/+h+zdu5uuXa8s9fhr1vxKRsYlvv/+W77//tsizw0e/BiPPPI4s2d/yJw57/D8809jMplp3LgJz7w+h/zIxpgtZm6//U7MZhOffz6fixcvcsUV3bjppls4fvxYqed94onh6PV6pk17i0uX0mnYsDFTp75LvXr1nUqGAO6770H8/Pz57rsFzJo1ndjY6tx//0Pcd1/Z62+WZdSoMUyZMpHhw4fi7+9Ho0ZNeOWV1xk37iX27t1N+/YdueGGm1i37g8GDbqLb79dwsiRzxEREcEHH7xHSkoytWrVZtSoMbah9ZGRUUyfPotZs6YzePB9xMTEcuutdzB37rv4+ZU8h4der+fNN99i9ux3ePDBewgLC6NDh048/vgwvvjiU7Kz1dekXx6N5fLGVR+VkpLpdcO5s43Q8ztrx8L1d11SzQeks/R6LZGRwV5ZFu5W2WVtb1k8/vgQNm78i1den8pbmfcBcO+FiXw5fy733vsAL7zwinsDraD8/DwuXkwkOroGfn7F+9u4itkC+5OtSUSzKOeSIb1e6/H3hSuuw9U8EZMaysJVjh49wqVL6UU6Pv/7706efPIRfvhhmUdrd8t7f0ZFBbts8ktV9xkSQqjb6dMnAWuTtqJGjZr/PXfKIzEJIex34UISTz/9OL/8soyzZxPZvXsXs2bNoF27Dj7VzO3ldQlCCE8xGo22xStr1KgF/3XvU5KhM2dKX2dQCKEOnTt35ZlnRvPVV58xdeokgoND6NGjF08++bSnQ6tUkgwJIZxy7txZTCYT/v7+VKtWzfZ4zZpKzdBprx5eL4SvuO22O7jttjs8HYZHSTOZEMIpSjNYzZq1iswbUr26dTHl7OwsUlNTPRGaEEI4RJIhIYRTlGSoVq3aRR4PCAggJia2yDZCCKFm0kzmxTRAiyiT7WdRdamxrE+dsnaerlUrvlh8sbHVOX8+ifPnkzwXoMp4+2hPhRqvQ40xCe8it5AXM+jhi+uzyt9QeD01lnXhkWSXxxcTEwPAhQvnPRKb2mg1UD/c+4diq/E61BiT8D7STCaEcMrp09bRYvHxtYs9pzSTSc2QEMIbSDIkhHCK0kxWs2bxdZaqVbPWDJ0/LzVDQgj1k2YyL5ZjhDuXW5dAWHRjJgYpzSpLbWWdlZVJSkoyYO0zdHl8SjJ04YLUDIF1luTD/y1j0TBcHTM3O0ON16HGmIT3kZohL2YBEjO1JGZqS10nSFQNaitrZZRYeHg4oaGhxeKTPkPF5Zus/7zZ/PnzeH7IjXZfx8SJ4xk+fKh7g6LgtbVYLPzyyzJbor5ixc/06NHJ7ecX3k+SISGEw06dKnlYvUKayYQn7NyxjYkTx5OTkwPA1Vf3Y8mSlR6OSngDaVgRQjisYI6h4v2FoCAZSk6+iMlkQqfTVVpswndZLqs3DQgwEBBg8FA0wptIMiSEcFjBsPqSa4aioqLRaDSYzWZSU1OIjq5W4nZqlm0s/TmtBgJ09m2rAfwv27a0fi0acLo/WI8enXj++Rf53/9+ISFhP/Hx8Qwd+hQ9evS2bfPnn+v55JN5HDt2lJiYGK655joeeugR/P2tK4IfOXKYjz6ay86dO8jKyqR69TgGDrybu+66t8RzLlq0kLlz3+WNNybTs+dV5cZ47txZ5s2bw5Ytm8jKyqRNm/YMGzaShg0b2bZZtWolX3/9BSdOHCc6uhoDB97JPfc8UGp8tw+8m9ZX30/Cv1uY/soTANx558289NI4ACZNep0NG7YAkJ6exkcffcCff64jNTWVpk2b8cQTw2nbtj0An3wyj+3bt9KtW3e+//5b0tJSadWqDc8//yJ16tRzrECEV5FkSAjhsIKaoVolPq/X6wkLCyMtLY2UFO9Mhnp+F1rqc91rGnn3qmzb7/1+CCHHVHKG0yHWyAdXF2x7y9JgUnNL7qHQIspUofmk5syZxRNPDGfs2FdZvvxnXnppNHPmfETr1m3555+/ePXVFxkxYhSdO3fl9OlTzJw5hRMnjvPmm2+Rk5PDqFFP0bFjF+bO/Ri9Xs/y5UuZNWs67dt3oHHjpkXOtfin73n//feYOHEqV17Zo9zYsrIyefLJR6hZsxZvvTUdf/8APv30Q4YNe4zPPvuGuLg4fv99NW+++RpDhz5F7959OXAggUmTxhMcHEK/fteXGN97s6bzav1ONGzWljcnTOHVV8bw0Uef06BBQ9asWWU7v8lkYtSo4eTn5/HKK68TFRXNDz98xzPPPMX7739Cs2YtANiz518CAwOZMuUdsrOzmDBhHNOnv827777vdLkI9ZM+Q0IIh5XXZwggMjIKwNaZVbjfjTcOYODAu6hTpx5PPvk0zZu35PvvvwXgiy/mc9NNN3PrrXdQq1Y8Xbp0ZfTol/j999UkJp4hOzubO++8l+eee4F69eoTH1+bIUOsnZ8PHz5U5Dzrf/2ROXNmMnnyNLsSIYD//e8X0tJSefPNt2nRohWNGjXmtdcmYDAY+PHH7wD49tsF9OlzDQ888DC1a9fh6qv7MWrUaAwGQ5nxnTp+EL2fH2FhYQBEREQWax7btOkfEhL2MX78RDp06ES9evV59tkxNGjQiAULvrRtZzQaefXVN2jcuAlt2rTjjjvuYdeuHY4XhvAqUjPkxTRAg3B1LdEg3ENNZW2xWDhzxpoMKc1kJcUXEREJHCUlJaXyg3SB9XddKvW5y5u5Vg3MKHVbZVOlWW3JzZllNpNVRPv2HYv83rJlKzZv3gjAgQP72bdvD7/8ssz2vMVi7WNz7NhRunXrzu2338nq1b9y6NABTp06ycGDBwAwmwtmeE5NPs/X709Gr9dTo0ZNu2M7fPgQtWvXJTIy0vZYQEAAzZu3tCVbhw8fpG/ffkX2u+mmW20/lxafDjMBOsimdEeOHCIkJIQGDQqa5DQaDW3btmPjxr9tj0VFRREWFm77PSQkhPz8fLuvU3gnSYa8mEEP392oriUahHuoqawvXrxATk4OWq2WuDjrCvUlxafUDKWmemcy5Mh6V/Zs2zDC/UtG6HRFAzGbLWi1OtvP9933IDfccFOx/aKjq5GcfJHHHx9MeHgEPXr0omPHLjRv3oLbb7/Rtp0G0Gm1vD11Bh999AGTJ7/OnDkfo9Xa08hgQVNCtmc2m9Drdbb4NSVtBGXGFxtkoWGEmW1lnd1ioaR002w2o9cXvG5+fv52XIuoaiQZEkI4RJl5unr1OPz8/ErdTqkBkGayyrN//1569Ohl+33Pnl00bdoMgAYNGnL8+LEind63b9/Kd999w/PPv8iqVStJS0vjm29+tCUHSo2NUoME1s7xnTt3JTq6GkOGPMB33y2wdXAuS4MGjWxzACmJcm5uLvv37+P6660JV/369dm/f0+R/WbNmk5i4hnatm1fbnylJVIADRs2IiPjEkeOHCpSO7Rr1w7q1atfbvyiapM+Q0IIhyhrkpU2rF5hbSaTZKgyfffdN/z660pOnDjO7NnvcPDgAe666z4A7r//Qdau/Y1PPpnHiRPH2bp1M5MmvcGlS+lER1cjNjaOnJxsfvttFWfPnmXTpn8YN+4lAPLz84qdq0GDRtx//0N89NH7nDx5otzY+vW7ntDQMF599UX27t3NoUMHefPNV8nOzuaWW27/L8aHWb36VxYtWsjp06dYvfp/LF78I7169bErvsDAIAAOHjxAVlbRmsrOnbvSsGFjXn/9FbZt28KxY0eZPv1tDh8+xJ133ufkKy6qCqkZ8mI5Rnjwf9Y3/xfXZXl8iQbhPmoq65KG1ZcUn7c3k7mS2QJH/1syor4bl4y45ZbbWbjwK44dO0LDho2ZMWM2jRo1BqBPn2t4/XX48sv5fPXVZ4SGhtG9e0+efHLEf89fTULCIGbPfofMzAxq1KjJTTfdwoYN69i7dw+33noHFsBohsOpWuqHm3nooUf44481TJr0OnPmfFRmc1loaCizZ3/InDnv8MwzwwBo06Yt77//CTVrWkcl9ujRixdeeIWvv/6cuXPfpXr1GowY8Sw33HATFoulxPjWr1/HPzv20Pqqu6jfoBHdunVn3LixDB06jPDwgr4/er2ed96Zw+zZ7/Dyy2PIz8+jadPmvPvu+7Rq1do9BSK8hsZSuP7Th6WkZGI0ur9N35WyjQXDf9ffdcmhPg5qpNdriYwM9sqycLfKLuuyyuK118aydOlPDBs2kscee7LU+JYvX8rLL4/hiiu6MW/ep+4N2En5+XlcvJhIdHQNt/YVMVtgf7I1UWgW5VwypNdry3xf9OjRiZdeGkf//gOcDbNcrrgOV/NETOWVhXCN8t6fUVHB6HSuaeCSZjIhhEPKm31aUdBnSGqGhBDqJsmQEMIhSjJU2uzTCqXPkDSTCSHUzssbVoQQlSk/P49z584C5dcMKXO1pKenuz0ugW3JCSGE46RmSAhhtzNnzmCxWDAYAomKii5z29BQax+inJzsEkcjCSGEWkgyJISwmzKSrFat+DLndAEICSlY2+vSpdJnc1YDGUcihPpU5vtSmsm8mAaoEWy2/SyqLrWUtTLHUHx80SaykuLT6XSEhISSkXGJ9PS0cmuSPEGns858nJeXi79/gFvP5acrfxtvoMbrUGNMouLy8nKB4jOru4MkQ17MoIefb8n0dBiiEqilrJXZp2vWLJoMlRZfWFjYf8mQOvsNabU6AgNDyMiwdvL29w8ot8bLWfWCrf+bjGByYn+zWYPJ5PkarIpehztUdkxqKYuqymKxkJeXS0ZGCoGBIXYu91IxkgwJIexm70gyRWhoGHBa1c1kYWHWySGVhEittFptkQVThedIWVSOwMAQ2/vT3SQZEkLYrWD26bJHkinCwsIASE9Pc1tMFaXRaAgPjyY0NBKTyejpcEqk02kIDw8iLS1LaiQ8TMqicuh0+kqpEVJIMuTFcowwdLV1CYQPr5HlOKoytZT1qVMlT7hYWnwFyZA6m8kK02q1aLXumYW6ouWn12sxGAxkZ5s8OvOxWu7Dwio7JrWUhXAtFdzKwlkWYG+ytefg9h3b6Napg2cDEm5TuKw99V00PT2NS5esSc3lyVBp8VmbybDt56vUUH6uoMbrUGNMwvvI0Hovlp2dbfv5lVdekOHBwq2U/kJRUdG21cHL4001Q0II3yXJkBfbsWO77eeLFy9w6NABD0YjqrqCztP29RcCCA21zkLt6zVDQgh1k2TIi+3evavI7//+u6uULYWoOKW/0OXD6sviDR2ohRBCkiEvdvTooSK/Hz58qJQthai4gpFk9g2rh4IlOdQ8tF4IISQZ8mJHjx4t8vuRI5IMCfdRmsnKW6C1MFmsVQjhDWQ0mZeyWCycPXsWS9ZFgoKCuAScOXPa02EJN4oI8OwwXmX26dL6DJUUnzSTFfB0+bmKGq9DjTEJ7yLJkJfKyMgg59JFmN2G+YuWcGd+NmfPJmKxWNy2nIDwnEA9rB7oueU4TCYTiYlngJL7DJUWX8HQet9uJvN0+bmKGq9DjTEJ7yPNZF7q3LmzgLUZol69+mg0GnJzc0lOvujhyERVlJR0jvz8fPR6PXFxNezeT6kZysi4JMsXCCFUS5IhL5WUZE2GYmNj8fPzJzLSun7LhQsXPBmWqKJOnToBQI0atWwrvdtDSYYsFgsZGb5dOySEUC9JhrzUuXPnQG/g4tVzGbo6kIhqcQBSM1RFWZccCGTo6kByPLB8ljKsvnbtkkeSlRafn58/BoMB8O2mMk+Xn6uo8TrUGJPwPtJnyEslJZ0DjYZL4S3YlgRto6oBkJyc7OHIhDtYgG1JetvPle3kSWvNUHx8nRKfLyu+4OAQcnJyyMz03X4dni4/V1HjdagxJuF9pGbISyl9hhRRkZGA1AwJ9yhvJFlZgoODAcjMzHBpTEII4SqSDHmpCxfOF/k94r8+QykpkgwJ11P6DJVWM1SWgmTId2uGhBDqJsmQl0pNTS3ye2RkNCDNZMI9yuszVJbg4BBAaoaEEOolyZCXSk1NKfJ75H/NZCkpkgwJ10pPT7NNmujIUhwKpWYoI0OSISGEOkky5KXS0lKL/B71XzOZ1AwJV1M6T0dHVyMwMMjh/ZWaoawsaSYTQqiTjCbzQiaTybrWk95AgNaMRqMhMko6UFd1Bp1nxsoUdJ4uu1aotPikZsjKU+Xnamq8DjXGJLyLJENe6NKldCwWC+Rn88fAFPz8/DlxIgKQmqGqKlAPG+72TDKhJEO1a5feebqs+KRmyLPl50pqvA41xiS8jzSTeSGliSw4OBg/P38AwsOtq4NnZ2eRn5/vqdBEFaQkQ46sVl+YkgxlZPhuMiSEUDdJhrxQSoq183R4eITtMeUDB6Q5QriW0meorJqhsgQHW/sZyWgyIYRaeTwZMpvNzJo1i549e9K2bVuGDBnC8ePHS93+/PnzPPvss1xxxRVcccUVjBw5krNnz5a6fVWk1AyFRcUw8o9ARv4RiEmjt/XNuHQp3YPRCXfINWEr61xT5Z7bnj5DZcVXMLTed2uGPFl+rqTG61BjTML7eDwZmjt3LgsXLmTChAl8++23aDQaHnvsMfLy8krcftSoUSQmJvLpp5/y6aefcvbsWZ566qlKjtqzlDmGwiOi+fOMnj/P6DFbIDTUuiimJENVj9lCkbKuLHl5ebbZzsuqGSorPpmB2nPl52pqvA41xiS8j0eToby8PObPn8/TTz9N7969adasGTNnzuTcuXOsWrWq2Pbp6els3ryZxx57jBYtWtCiRQuGDh3Knj17bE1HvkCpGQoPCy/yeGhoKODbC2IK1zp9+hQWi4XAwCCioqKdOoZ0oBZCqJ1Hk6H9+/eTmZlJ165dbY+FhYXRokULNm/eXGz7gIAAgoKCWLx4MRkZGWRkZLBkyRLq1atn60DsC9LSrBPghYWHFXlcaoaEqxUs0BqPRqNx6hgytF4IoXYeHVqv9PWpUaNGkcdjY2NJTEwstn1AQAATJ07kjTfeoFOnTmg0GmJiYvjqq6/QaiuW1+l0Hm8xtFtWlvVDRUl+APQ6ra1mKDMzA73ee65HoZSBN5VFZdEXqv7X67To3fzOVcrgzBllGY46Zd5TZcUX/l/SnpmZ6ZX3pStUtPzU8t6o7PvQHp56b3i6LAQ4+f2sRB69lbOzswHw9/cv8nhAQICt9qMwi8VCQkIC7du359FHH8VkMjFz5kyGDRvGN998Q0hISLF97BUWFuj0vpUtN9f6usXERMF/o+gjIoOJjrZOvGgy5RIZGeyp8CrMm8qisgQUmi0hIjKYIL/KOW9i4mkAGjduWOY9VVZ8NWvGANZmsoiIIKdrmLyZq8rP0+8NT92HZfFUTJ4uC+FaHk2GDAYDYO07pPwMkJubS2Bg8Rtt+fLlLFiwgN9//92W+HzwwQf06dOHH374gYceesjpWNLTszGZzE7vX5mSk1MB0OsDbMlQakomBoN1CPO5cxdISfG+/hk6nZawsECvKovKkp0PYE1GUlMyyXXzH3ylLA4cOARAXFytMu+psuIzGq3foPPz8zl3LoWAgAB3ha1aFS0/tbw3Kvs+tIen3hueLgsB4eGBFW4VUng0GVKax5KSkqhTp2CkSlJSEs2aNSu2/datW6lfv36RGqDw8HDq16/PsWPHKhSLyWTGaPSOG1vpExQYGAzWSiKMJjPBwdZmsrS0NK+5lpJ4U1lUFqOp8M9mjJVUuXLs2FEA4uPrllkmZcXn71/wRSct7RJRUSr4BK1krio/T783PHUflsVTMXm6LARYXDh60KPJULNmzQgJCWHjxo22ZCg9PZ29e/fywAMPFNu+Ro0arFixgtzcXNu3y+zsbE6dOsWAAQMqNXZPunTJ2mcoOiyQLdcXjByT0WRVV6AettxXueWal5fH6dPWPkN169Yrc9uy4tPpdAQGBpGdnUVmZgZRUVGuDlX1PFF+7qDG61BjTML7OFy/tHjxYnJyclxycn9/fx544AGmTZvGmjVr2L9/P6NGjSIuLo5+/fphMpk4f/687Xy33norAM888wz79++3be/v78/tt9/ukpi8QUaG9Y0fEhJa5HEZTSZc6cSJE5jNZgIDg4iJia3QsUJCZK4hIYR6OZwMvfTSS3Tv3p1XX32Vbdu2VTiAESNGcMcdd/DKK69w7733otPp+OSTT/D39ycxMZEePXqwYsUKwDrKbMGCBVgsFh566CEGDx6Mn58f33zzDWFhYeWcqepQhigXT4asv6enSzIkKu7IkSOAtVaoop2eg4KUZMj7+rIJIao+h5vJ/vjjDxYvXsySJUtYtGgRdevWZeDAgdxyyy1Ur17d4QB0Oh2jR49m9OjRxZ6Lj48nISGhyGMNGzbkgw8+cPg8VYXFYrF9u/YPDOWF9db+GG9cmSOT21VhuSZ47a+Csg7Quf+chZOh8pQXX8GSHL5ZM+SJ8nMHNV6HGmMS3sfhmqHY2FiGDh3K8uXL+e6777jyyiv5/PPP6du3L48++igrVqyQVdPdKDs7C5PJ2mMwKCSENSf9WHPSD7MFgoKso8mysrI8GaJwA7OFImVdGRxJhsqLz9cnXvRE+bmDGq9DjTEJ71OhDtRt2rShTZs23H777UydOpUNGzawYcMGIiMjeeihh3j00UfRq2FWripE6Tyt1+sxGIpOP6B84EjNkHAFR5Kh8iiJujK3mBBCqInTmcqpU6dYunQpS5Ys4cSJE9SpU4dnn32WPn368McffzBnzhyOHDnClClTXBmvz1M6R4eEhBTrxxEYKDVDwnWOHrUOq69Tp16FjyX3phBCzRxOhhYtWsSSJUvYunUrBoOB66+/nokTJ9KpUyfbNo0bNyY5OZmFCxe6NFhR+kgyKKgZys3NxWg0Sq2ccFpWVqZtuZy6detW+HhKMpSTIzVDQgj1cfjT8tVXX6Vt27a8/vrr9O/fv9QlMJo2bcrdd99d4QBFUaWNJIOCETtg/QbuSyPshGsdP34cgKioKMLCKr4IsvRnE0KomcPJ0LJly2jUqFGpz589e5a4uDjbnEDCtZShyUotUGH+/v7o9X4YjflkZ0syJJynzDztiv5CgG15nexsSYaEEOrj8GiyAQMGsGvXrhKf27JlCzfccEOFgxKlUz5MlGaHyynfwGU+F1ERx48fA6Bu3fouOZ50oBZCqJldNUPz58+3VW9bLBYWLVrEunXrim23ffv2YivQC9dS+lwEBgZi0MH6u6x9iAz/za0RFBREenqaNEdUMSWVtTsdPWodSVavXj27ti8vPqVmyFfvy8ouP3dR43WoMSbhfexKhvLy8pg9ezYAGo2GRYsWFdtGq9USGhrKk08+6doIRRHKN+vAwEA0Guu6PIUp/YZkeH3VUlJZu9Phw9bV6hs2LL1JvLDy4lNqMn21Zqiyy89d1HgdaoxJeB+7bqEnnniCJ554ArAurvrtt9/Stm1btwYmSlY4GSqJdFQVFWUymWw1Q/YmQ+UpSIYkSRdCqI/D+fT+/fvdEYewk1LjExgYRJ4JJm2yTkP/Upcc/HUy8WJVVVJZu8uZM6fJzc0lICCAWrXisdgxq2958fl6n6HKLD93UuN1qDEm4X3sSobGjh3LU089Re3atRk7dmyZ22o0GiZNmuSS4ERxhWuGTBZYdtQPgBc65/z3uFIzJMlQVVJSWbvL0aOHAes6gDqdDqPRXOH4fL3PUGWWnzup8TrUGJPwPnYlQxs3buShhx6y/VyWiq5uLcpWXjNZQc2Qb37oiIo7fNiaDDVp0sRlxywYWu+bNUNCCHWzKxn67bffSvxZVL6CZEiG1gv3OHLE2nm6cePGLjtmQcd+SdKFEOrj8DxDJdm1axe//vor6enprjicKEPBPEOldaAOLrKdEI46ckRqhoQQvsXhZOj8+fM8+OCDzJkzB4AvvviCu+++mxEjRnDttddy8OBBlwcpCtg7mkxqhoQzLBaLLRlybc2Q9b40GvPJz89z2XGFEMIVHE6GpkyZwpEjR2jTpg1ms5kPP/yQK6+8ksWLF9OoUSOmT5/ujjjFf2RovXCns2cTyc7OQq/X2z3hoj0K369SOySEUBuHk6ENGzbwwgsv0LNnT3bs2MGFCxd48MEHadasGY8++ihbtmxxR5ziP+X3GZJmMuE8ZSRZ3br18PPzc9lx/fys6+aBJENCCPVxeJ6hrKws4uLiAFi7di3+/v507doVsC4UarFnUhLhtJycgrXJDDpYdbt1FfvCy3GANJNVNSWVtTsoI8kcnWzRnvgCAwO5dCnfJ2stK6v83E2N16HGmIT3cTgZqlevHlu2bKFt27asXLmSLl26EBAQAMDSpUtdWrUuirt8OY5IQ9HkU4bWV00llbU7KCPJGjRo6NB+9sQXFBTEpUvpPllrWVnl525qvA41xiS8j8PNZI8//jizZ8+mW7dunDx5ksGDBwNw5513snTpUh555BGXBymsLBZLuX2GZNJFUREHDiQA0Lix60aSKXx94kUhhHo5XDPUv39/qlevztatW+nSpQvt2rUDoFOnTowYMYKePXu6Okbxn/z8fEwmE1CwHMfMbdZauVEdci9bjkM+cKqSksra1UwmE4cPW0eDNm3azKF97YnPl4fXV0b5VQY1XocaYxLex6m1fjt27EjHjh2LPPbCCy+4JCBRusLNC4GBgeRbYNFBfwBGtM8FpM9QVWUqoaxd7cSJ4+Tk5GAwBFK7dh2H9rUnPl9en6wyyq8yqPE61BiT8D5OJUN//vknv//+O9nZ2ZjNRdctkrXJ3Ef5EPHz80Ov15NvLL5NYGDBaDKLxSLLowi7FW4i0+lc//XaYJAmXCGEOjmcDH388cdMmzaNgIAAoqKiin3Yyoev+5Q3rB4KmslMJhO5ubkYDIZKiU14vwMH9gPu6S8EBTVDOTm+VzMkhFA3h5Ohr7/+mgEDBjBx4kT8/f3dEZMoRXlLcQC2kX0Aubk5kgwJuynJUJMmjvUXspd0oBZCqJXDo8kuXrzIHXfcIYmQB5Q3kgyUJjSZ3E44Tmkmc7TztL18uc+QEELdHE6GWrRoIeuPeYg9yVDh56U5QtgrLS2Vc+fOAtCokXuayQqmfZCaISGEujjcTPbSSy/xzDPPEBQURNu2bUv8YK5Zs6ZLghNFFTSTld5nCMBgMHDpUjo5OTmVEZaoApQmspo1axEaGuqWcxQMrZdkSAihLg4nQ/feey9ms5mXXnqp1M7S+/btq3BgorjLa4YCdLD05gzbzwqDQfnQkWSoqvh1+U80WbeWyMhITnW5n8aNHFsuozx79uwBoHnzFk7tX9q9WFhBjaXv3Zf2vD7eQI3XocaYhPdxOBmaMGGCO+IQdrg8GdJqoGZI8WnoAwMN/20v38Crgu+/X8iECeNtv//75wo++uhzl/bt2bPnXwBatmzt1P6l3YuFKUm6LyZD9rw+3kCN16HGmIT3cTgZuu2229wRh7CDkgwpHyql8eUPnarm3LlzzJgxBYD77nuQ3bt3smvXTl56aTQLFnxfZPRgRSjJUKtWbVxyvJIoIxulL5sQQm0c7kANkJeXx4IFCxg+fDh33303hw8f5ptvvmHXrl2ujk8UcnmfoXwTvLs9gHe3B5BvKthOOlBXHd9++xVZWVm0btsR/2vG0+KJb4isVp3Dhw/y7bdfu+QcycnJnDlzGoDmzVs6dYzS7sXCCpIh30vS7Xl9vIEar0ONMQnv43AylJyczMCBA5k4cSLHjx9n165d5OTksHbtWgYNGsT27dvdEaegeDOZ0QJf7vPny33+GAvVEvvyh05Vkp+fx08//QDA/YMe4av9AXx/LJwnnhoFwPz5H7pkNue9e3cDUK9efac7T5d2LxZWUGPpe0m6Pa+PN1DjdagxJuF9HE6GpkyZQmZmJitWrOCnn37CYrHefe+++y6tW7dm1qxZLg9SWNk7tL6gA7XvfehUJZs3byQlJZlq1WLo3qOX7fH+/W+idu06pKamsnz5zxU+T0X7C9lLknQhhFo5nAz9/vvvjBw5krp16xYZTRYQEMCQIUNso1KE69k7tF6ayaqGdev+AKBXr6vQ6wu69+n1eu6++34AFi782vaFxFkFyVCrCh2nPJKkCyHUyuFkKDc3l4iIiBKf0+l05OfnVzQmUQoluSm/Zki+gVcFBclQn2LP3XLL7QQGBnH48EG2bNno9DksFgu7d1dOzZAyylHuSyGE2jicDLVu3ZoFCxaU+NzPP/9Mq1bu/XbpyxxtJpOaIe+VmHiGM2dOo9Pp6NLlimLPh4aG0r//TQAsXbrY6fOcOHGc5OSL+Pn50ayZc3MM2UtGOQoh1MrhZGjkyJH8+eef3HLLLbz77rtoNBqWLVvGE088wcqVKxk2bJg74hQ4kgwp8wxJMuStduzYBkDTps0JCgoucZsBA24FYPXqX52eU2r79q0AtG7d1mXD9EtTeGh9RZv2hBDClRxOhjp16sSnn35KYGAgH3/8MRaLhc8++4zz588zb948unbt6o44Bc70GZJv4N5KSYbatetQ6jZt27andu06ZGdn8dtvq506z9atmwFo376jU/s7QqkZslgs5OXluf18QghhL4cnXQTo3LkzCxcuJCcnh7S0NEJCQggOtn57NRqNRTp7CtcpaTmOb/tn2n5WSDOZ99u1awdQkAyVVNYajYYbb7yZDz6YzbJlS7jxxpsdPo9SM9ShQ6cKxVvavVhkm0I1Tzk52W6viVITe14fb6DG61BjTML7OFwzdPXVV7N/v3VRR4PBQPXq1W2J0K5du+jevbtrIxQ2JS3H0TDCTMMIM9pCy8QVNJNJzZA3ys/P59Chg0DBCK/Syvqmm24BYOPGvzl37pxD5zl37hynTp1Eq9XStm37CsVcWnyF+fn5odf7Ab5Xa2nP6+MN1HgdaoxJeB+7qnCWLVuG0WgE4PTp06xatcqWEBX2999/y2gyNypIhspbtV6pGZK1ybzRsWNHyM/PJyQkhJo1a5W5bXx8bdq378j27Vv55ZdlPPzwI3afZ+PGvwBo1qwFISEhFYrZXgaDgYyMfKm1FEKoil3J0O7du/nss88Aa9X8nDlzSt128ODBLglMFFfQZ8ia7OSbYP4efwCGtMzD778qYuV5qRnyTgcOJADQpEkz21xepZU1WGuHtm/fys8/L+ahh4YUmf+rLH/9tR6AK6/sUeGYy4qvsMBAAxkZl3zu3rT39VE7NV6HGmMS3seuZOjZZ59l0KBBWCwWrrnmGmbPnk3z5s2LbKPT6QgJCam0b5i+xmg02mrdCi/H8dFua7+LB1vk4ffftjKfi3dLSNgHQJMmTW2PlVbWAP36Xc/bb0/g8OGDJCTss2uIvMlk4p9/rDVDrkiGyoqvMF/tz2bv66N2arwONcYkvI9dyZC/vz+1almr69esWUNsbCx+fnLLVabCw+TtbybzrQ+cquLw4cMANGrU2K7tw8LCuOqqq/n111/4+ecldiVD+/btJTU1lZCQEFq3bluheB0hE4IKIdTI4WFftWrV4ujRo6xdu5asrCzMZnOR5zUajcw15AZKE5lOpys3EZUPHO924sRxAOrWrW/3PjfddAu//voLK1b8zDPPPF/uPbJ27W8AdOnSrVK/2Mi0D0IINXI4GVq8eDFjx44tddI0SYbco3B/ofL6hCg1RzLpovfJz8/jzJlTANStW8/u/bp1605UVDTJyRf566/19O7dt9RtLRYL//vfCgCuuebaCsXrKKm1FEKokcND699//32uvPJKfv/9d/bt28f+/fuL/Nu3b5874vR59s4+DTLTrzc7ffoUJpOJwMAgYmJi7d7Pz8/PtjzH999/W+a2CQn7OXHiOAEBAfTuXXzdM3eSWkshhBo5nAydOXOGRx99lBo1atg9akVUnJIMGQxl9xeybiMz/Xqr48ePAdZaIUffX3feeS8AGzasszW1lUSpFerRoxfBwZU74KFg5XqZ9kEIoR4OJ0P169cnMTHRHbGIMlw+rL4syrdvkOYIb1M4GXJU3br16NGjNxaLhYULvy5xm7y8PJYs+RGAG264ydkwnSY1Q0IINXK4z9Bzzz3Hm2++Sa1atWjXrp1PTanvSSU1k/lr4fPrMm0/K/R6PX5+fuTn55OdnU14eERlhioqoLRkqLSyvtx99w1iw4a1/PDDtzz00CNUr169yPOrVq0kOfkiMTGxZfYrcpS98RXUDPlWkm7v66N2arwONcYkvI/DydDEiRO5ePEiDz/8cInPazQa9u7dW9G4xGVKSoZ0WmgZbS5xe4MhkPx8menX25SWDJVV1oV169bdNiP1vHmzee21N23PGY1GPvxwLgB3332fS0eR2Rufr9YM2fv6qJ0ar0ONMQnv43AydPPNji8GKSrO3qU4FAaDgUuX0n3uQ8fbnTx5AoA6deo6tb9Go2HEiGcZPPh+fvrpe2688WY6duwMwJdffsbx48eIjIzk3nsfcFnMjvDVZEgIoW4OJ0PDhw93RxyiHCX1Gco3wTcJ1m/39zbNLzINfUFzhHzoeIv8/HySkqyLrV6+JllZZX259u07csstt7NkyY8899zTvPHGZJKSkpgz5x0ARo583uUdp+2Nr2CeId+qsXSk/NRMjdehxpiE97ErGdq8eTMtWrQgODiYzZs3l7t9586d7Q7AbDYze/ZsFi1aRHp6Oh07dmTcuHHUrVvyN+P8/HxmzZrF4sWLuXTpEq1ateLll18utjxIVVNSM5nRArN2WL9p39kkv8g09AXrk8moHW+RlHQOi8WCv78/UVHRRZ4rq6xL8sILL3Po0EH27PmXESOetD1+0023cMstt7s6dLvj89WaIUfLT63UeB1qjEl4H7uSoUGDBvHdd9/Rpk0bBg0ahEajKTZ/jfKYRqNxaK6huXPnsnDhQiZPnkz16tWZOnUqjz32GMuWLcPf37/Y9uPHj+e3335j8uTJ1K5dm5kzZ/LYY4/xyy+/EBoaavd5vY0j8wyB737oeLMzZ04DEBdX8WkrgoKC+eCD+cyaNYNff12Bn58/d911L4888rhHp8SQSReFEGpkVzL0xRdf0LBhQ9vPrpKXl8f8+fMZPXo0vXv3BmDmzJn07NmTVatWceONNxbZ/uTJk3z//ffMmzePq666CoBJkyZx6623snv3brp16+ay2NSmoJnMvj5Dvtoc4c3OnrVOWVGjRq1ytrRPaGgoL788jpdfHueS47mCJOlCCDWyKxnq0qVLiT9X1P79+8nMzKRr1662x8LCwmjRogWbN28ulgxt2LCBsLAwevXqVWT73377zWUxqZXUDFV9iYlnAKhZs6aHI3EfqRkSQqiRwx2oXens2bMA1KhRo8jjsbGxJU7seOzYMWrXrs2vv/7Khx9+yLlz52jRogUvvviirebKWTqduieoyM21JjXBwUHo9dZY9YVaKvU6LfpCpRkUFGTbT9le7ZQyUHtZuMvZswXJ0OVlVlZZu4OjZWFvfMHB1vsyJ8d77ktXqGj5qeW9Udn3oT3U/t4Q7uPKFn+P3spKbcflfYMCAgJIS0srtn1GRgYnTpxg7ty5jBkzhrCwMN5//33uu+8+VqxYQXR0dLF97BUWZl+Ni6fk5+cCUK1aJJGRwQAE5Bc8HxEZTFChnoPh4db+UxqNyba9t1B7WbjLhQtJADRqVL9YmZVV1u5kb1nYG19sbCQAeXm5XndfVoSrys/T7w1P3YdlUft7Q3gHjyZDSlNOXl5ekSUkcnNzS2wO8vPz49KlS8ycOdNWEzRz5kx69+7NTz/9xKOPPup0LOnp2ZhM6p24Kz09AwCzWUtKinW21ex8AOsHSmpKJrmF/ghotdaiTUlJt22vdjqdlrCwQNWXhbucOHESgPDw6GJlVlZZu4OjZWFvfPn/fXBlZWV5zX3pChUtP7W8Nyr7PrSH2t8bwn3CwwPRal1TQ+fRZEhpHktKSqJOnTq2x5OSkmjWrFmx7ePi4tDr9UWaxAwGA7Vr1+bUqVMVisVkMmM0qvfGzsqydqAOCDDY4tRa4IOrs/772YzRWLC9v7/Btp+ar6skai8Ld7BYLLY+Q7GxNYpdf1ll7U72loW98fn5WWuBs7NzfKqMXVV+nn5veOo+LIva3xvCfS4b1F4hHk2GmjVrRkhICBs3brQlQ+np6ezdu5cHHig+Q26nTp0wGo38+++/tG7dGrD2PTh58mSxztZVjdLh9PLlODpVN5W4fcE8Q9JR1RukpCSTm5uLRqMptp4YlF3WamBvfL7agVrt5WcvNV6HGmMS3seuZKhv3752z02i0WhYvXq1Xdv6+/vzwAMPMG3aNKKioqhVqxZTp04lLi6Ofv36YTKZSE5OJjQ0FIPBQKdOnbjyyit54YUXeOONN4iIiGDWrFnodDpuueUWu87prZSkxmCwfzkOkNFk3kKZeToqKtpWe1IVKfdlfn4+RqMRvRp64AohfJ7dQ+vdNVHbiBEjMBqNvPLKK+Tk5NC5c2c++eQT/P39OXXqFFdffTWTJ0/m9tuts+a+9957TJs2jeHDh5OTk0OHDh344osviIqKckt8alHSchxGM/x4yNpAfnujfAoPzilYjkNmoPYG58+fByAmJrbE58sqazWwNz7lvgRlpKNrlwVRK7WXn73UeB1qjEl4H7uSobfeesttAeh0OkaPHs3o0aOLPRcfH09CQkKRx0JCQhg/fjzjx493W0xqVNI8Q/lmmLLF+k17QIPLkyGlZii38oIUTjt/3jqSLCYmpsTnyyprNbA3voCAANvPOTk5Ll8jTa3UXn72UuN1qDEm4X2crqO+cOEC+fn5tmU5zGYz2dnZbNmyhXvvvddlAQowmUzk5lqTGvtXrffNvhneSkmGqlUruWaoqtBoNBgMgeTkZEsTrhBCNRxOhvbv38+zzz7L0aNHS3xeo9FIMuRihRMae2egDgyUPkPe5MIFpZms5JqhqiQw0EBOTrZ07hdCqIbDydCUKVNIT0/nhRde4Pfff8ff358+ffqwbt061q1b59K1y4SV8qFh/VZtKGdrq4KaIUmGvIFSMxQbW7VrhkC5N1Pk3hRCqIbDras7d+5k5MiRPPzww9x4441kZWVx33338cEHH3DNNdfw5ZdfuiNOn1a4v5C9HdkL+gzJt29vkJTkG81kUHBvSud+IYRaOJwM5eXlUb9+fQAaNGhQpIPz7bffzo4dO1wWnLAqSIbs6y8EUjPkbXypmUxJhpR+cEII4WkOJ0M1a9bk5EnrsgF169YlIyPDNvuzv79/iWuKiYopaVh9eaRmyHuYTCYuXrwAlD60viqRzv1CCLVxuM/Qtddey7Rp0wgMDOT666+nQYMGzJw5k6FDhzJ//nxq167tjjh9WknD6gH8tPBO7yzbz4UVnnTRYrG4bZ4oUXEpKcmYTCY0Gg1RUSUvNlxWWauBI/H54oSgai8/e6nxOtQYk/A+DidDw4cP5/jx4/zwww9cf/31jB07luHDh7NixQp0Oh0zZsxwR5w+rbRkSK+FHrVKW47D2qRmMpkwGvOr9KzG3k5pIouOrlbqjMxllbUaOBKfL9YMqb387KXG61BjTML7OJwMBQQEMGvWLPL/W366Z8+e/Pzzz+zZs4eWLVsWWXBVuEZBM5kjfYYKRp1lZ+dIMqRiSudpX+gvBAUTL8qEoEIItXB60kU/Pz/bz3Xq1JEkyI1KqxkymuGXY9YivKGescjMq35+fuj1eoxGIzk52YSFhVVavMIxSn+h6OjSk6GyyloNHIlPuY99qWZI7eVnLzVehxpjEt7H4WQoOzubDz74gN9//53s7GzMZnOR5x1ZqFXYp2CR1qLJUL4ZXv/H+tg1dS4V+yNgMBjIyMjwqb4Z3ig5+SIA0dEl9xeC8sva0xyJzxf7DKm9/OylxutQY0zC+zicDE2cOJEffviBLl260Lx5c7RaufPczZmh9WBNniQZUr/k5GSAUjtPVzW+2GdICKFuDidDv/76K6NGjWLo0KHuiEeUwJmh9SDD672FUjMUGRnp4Ugqhy/WDAkh1M3hah2j0UibNm3cEYsoRWl9hsojHzrewddqhgIC5L4UQqiLw8lQjx49WLdunTtiEaVQanYcT4akOcIbpKRYa4aioqI8HEnlkCRdCKE2DjeT9e/fn3HjxpGcnEzbtm1L/IC+9dZbXRGb+I8zQ+uh8BpQ8qGjZr5WMyTJkBBCbRxOhp555hkAFi9ezOLFi4s9r9FoJBlyMeebyaRmSO3MZjMpKdZkKDLSN5IhXxxaL4RQN4eToTVr1rgjDlGGspbjeKtHtu3nyxXUDMmHjlqlp6dhMllnz42KKr0DdXll7WmOxOeLNUNqLz97qfE61BiT8D4OJ0O1atVyRxyiDFlZJTeT6bVwTR1jqfv54oeOt1GayEJDw8qcJby8svY0R+JTOlDn5vrOfan28rOXGq9DjTEJ7+NwMjR27NhSn9NqtQQFBVGvXj369+/vM0OF3c3ZZjJpjlA/pYnMVzpPgyTpQgj1cTgZOnv2LNu2bSM3N5datWoRExPDxYsXOXXqFFqtlmrVqnHx4kXef/99vvnmG1nF3gVKm2fIaIY/TlmL8Kr44tPQy4eO+ilzDJXXebq8svY0R+Lzxb5sai8/e6nxOtQYk/A+Dt82ffr0ITQ0lIULF7JmzRoWLlzIqlWr+PHHH6levTpPPfUUf/75J/Hx8bKCvYuUVjOUb4YXNwTy4oZA8s3F9/PFDx1vUzCSrOyaofLK2tMciS8w0PdGOaq9/OylxutQY0zC+zicDH322Wc899xztGvXrsjjzZs3Z+TIkcybN4/w8HCGDBnCxo0bXRWnT3N+OQ6pGVI7e2uGqpKCJF3uSyGEOjicDKWkpJT6LTY8PJyLFwsmkFM6/grnmc1mmXSxClNqhiIjfafPUEBAAABGYz5Go3R8FUJ4nsPJUIsWLfj444/Jy8sr8nheXh7z58+nefPmAOzZs4caNWq4JkofVnjEjSzHUfUUzD7tezVD4FsjyoQQ6uVwB+rnn3+ewYMH07dvX6666iqio6O5ePEia9euJSMjg48//pgtW7YwY8YMnnzySXfE7FMKzxFU+EPEHsr2vtQ3w9v42uzTUFAzBNZEPTg4xIPRCCGEE8lQ+/bt+eGHH5g3bx7r168nOTmZuLg4evbsyRNPPEGdOnX4+++/GTFiBI888og7YvYpSjJkMBjQah2ryFM6qkozmXr52or1YJ2l3mAIJCcnW2othRCq4HAyBNCwYUOmTJlS6vPdunWjW7duTgclCpQ2rN4e0kymfr5YMwRgMARIMiSEUA27kqHFixfTu3dvIiMjS1yP7HKyNpnrFNQMFU+G/LQwrmtZy3FIB2o1y8/PJz09DSi/A3V5Ze1pjsZnvTdTfebeVHv52UuN16HGmIT3sSsZevHFF/nuu++IjIzkxRdfLHNbWajVtcoaVq/XwoAGshyHt1ISIY1GQ3h4eJnbllfWnuZofL52b6q9/OylxutQY0zC+9iVDK1Zs4aYmBjbz6LyVKyZTGqG1Cw1NRWwrkum0+k8G0wlk7mGhBBqYlcyVHhx1pIWajUajWRkZBAREeGywIRVWeuSGc3wT6L1Q7RrDZMsx+FllJqh8mqFoPyy9jRH4yu4N30jUVd7+dlLjdehxpiE93H4tjEajcyePZulS5cC8Pfff3PllVfSrVs3HnroIdLS0lwepC8rKxnKN8Mza4N4Zm1Qmctx5ObmYjbLPPVqo9QMhYdHlLtteWXtaY7Gp6xcn5OT6+bI1EHt5WcvNV6HGmMS3sfhZOi9997j/fff59KlSwBMmjSJyMhIxo4dy4kTJ5g+fbrLg/RlBc1kji3FYd3HYPtZJrdTn7S0VMC+ZKiqkWkfhBBq4nAytGzZMp599lnuv/9+jhw5wsGDB3nyySd58MEHGTVqFL/99ps74vRZZdUMlUf59m09jiRDaqPUDPli87I04Qoh1MThZCgpKYm2bdsCsG7dOrRaLb169QIgLi7OVmMkXKMiyZBWq/W5vhnexJdrhqRzvxBCTRxOhmJjYzl16hQAq1atonnz5raFW7dv305cXJxrI/Rxzq5Yr5Bv4OolNUNyXwoh1MHhZOjmm29m8uTJPPLII2zdupWBAwcCMHHiRN577z0GDBjg8iB9WUWG1oN8A1czX64ZUppwpS+bEEINHF6OY8SIERgMBjZv3sxzzz3HfffdB8C///7LkCFDeOqpp1wepC+rSDMZyDdwNStIhsofWl/VKPel9GUTQqiBw8mQRqPh8ccf5/HHHy/y+MKFC10WlChQVjLkp4UxnXJsP5dEaobUy5GaIXvK2pMcjc/X7ku1l5+91HgdaoxJeB+nFmoVlae85TjuapJf5v5SM6ReSjJkT58he8rakxyNr2BovW/cl2ovP3up8TrUGJPwPpJHq1zF+wxJc4QaWSwWhyZdrGp8rWZICKFuUjOkcsqHRUmr1pvMsP28dRr69jEmdLJyvdfIzs4iP9/6bdaemiF7ytqTHI0vICAAsM6O7gvUXn72UuN1qDEm4X0kGVK5sprJ8szwxBrr4+vvukRgicmQbzVHeAulVsjPz8+uaRPsKWtPcjQ+X0vS1V5+9lLjdagxJuF95LZRuYqOJlP285UPHW9RuL+QRqPxbDAeIEm6EEJN7KoZGjt2rEMHnTx5slPBiOJc1WdIPnTURVnQOCwswrOBeIhSMyR92YQQamBXMrRx48YivyclJWE0GqlZsyYxMTGkpqZy8uRJ/P39adasmVsC9UUWi8UF8wxJzZAaFdQM+d4cQyALtQoh1MWuZKjw4qs///wz06ZN47333qNNmza2xw8dOsSwYcO44YYbXB+lj8rLy8NsNgOyHEdVUzCSLNKzgXhIwQzUvtGBWgihbg73GZo5cybPPfdckUQIoFGjRowcOZKPP/7YZcH5OqWJDFwxtF6+gauJLy/FAcgCwkIIVXE4GUpJSSE0NLTE5/R6PVlZWSU+JxynJDB+fn7o9c4N/CtoJpOaITXx5UVaoeC+zMvLw2QyeTgaIYSvc/gTtl27dsyePZt27doRGVlQxZ+UlMR7773HFVdc4dIAfVl5K9brNTCiXY7t55JIM5k6OVozZE9Ze5Kj8Sn3JVgXaw0KCnZXaKqg9vKzlxqvQ40xCe/jcDL0wgsvMGjQIPr27Uv79u2JjIzk4sWLbN++nfDwcN5//313xOmTyhtJ5qeDB1uUtxyHdKBWI2U0mb01Q/aUtSc5Gp8y6SJATk5ulU+G1F5+9lLjdagxJuF9HG4ma9asGcuWLeOee+4hMzOT3bt3k5OTw5AhQ1i6dCnx8fHuiNMnVXQkmXVfqRlSI6VmKCzMN0eTabVaW0IkiboQwtOc6ohSvXp1XnjhBVfHIi6jJENBQSU3k5nMsD/Fms82izTLchxexNE+Q/aUtSc5E5/BYCA3N9cnEnW1l5+91HgdaoxJeB+nkqG8vDy+//57/vrrL86fP8+kSZPYtGkTLVu2LDbKTDivvJqhPDM89D9r84Isx+FdHO0zZE9Ze5Iz8RkMgaSlpflEoq728rOXGq9DjTEJ7+PwbZOcnMzAgQOZOHEix48fZ9euXeTk5LB27VoGDRrE9u3bHTqe2Wxm1qxZ9OzZk7Zt2zJkyBCOHz9u174///wzTZs25dSpU45ehlfIysoEwGBwbo4h674ymkxtTCYTly6lA747mgwkURdCqIfDydCUKVPIzMxkxYoV/PTTT1gsFgDeffddWrduzaxZsxw63ty5c1m4cCETJkzg22+/RaPR8Nhjj5GXl1fmfqdPn+b11193NHyvonxjrkifIZnPRX3S09Nt7xtf7TMEBRMvSjIkhPA0h5Oh33//nZEjR1K3bt0iC0wGBAQwZMgQ9uzZY/ex8vLymD9/Pk8//TS9e/emWbNmzJw5k3PnzrFq1apS9zObzYwePZqWLVs6Gr5XcUUHavn2rT5paSkAhISE4Ofn5+FoPEfuTSGEWjicDOXm5pZata/T6cjPt3+I4/79+8nMzKRr1662x8LCwmjRogWbN28udb8PPviA/Px8Hn/8cbvP5Y3Km2fIHkozmdFodKhshPsow+p9dfZphZLkS62lEMLTHO5A3bp1axYsWEDv3r2LPffzzz/TqlUru4919uxZAGrUqFHk8djYWBITE0vcZ9euXcyfP5/vv/+ec+fOORB52XQqHIKQm2v9kAgODkKvLx6f3lLoZ52WkiapDg0tSKSMxjwCAwOKb6QSShmosSxcSekvFB4eUWK5lsSesnYlR8vCmfiUZCgvL9fu18FbVbT81PLeqOz70B5qf28I99G4cJJNh2+bkSNH8vDDD3PLLbfQu3dvNBoNy5Yt47333mPDhg0OrU2m1Hz4+/sXeTwgIMD27bmwrKwsnn/+eZ5//nnq1avn0mQoLMz5pih3MZmsNTlRUeFERhaflC6gUEVPRGQwQSW0uFgsQeh0OkwmE/7+lHgctVFjWbhSfr51Ms2YmGi7y8OesnYHe8vCmfjCwkIA0GrNXnFfVoSrys/T7w1P3YdlUft7Q3gHh5OhTp068emnnzJ9+nQ+/vhjLBYLn332GS1atGDevHlFmrzKo/QZyMvLu2x6/twS+8lMmDCBevXqcc899zgadrnS07MxmcwuP25FpKam//eTnpSUzGLP55vg8TbWd35GWj65upKPYzAYyMzM5Ny5ZAICSl5XTg10Oi1hYYGqLAtXOnPGmsQHB4eWWK4lsbesXcXRsnAmPq3W+ucnJSXd7tfBW1W0/NTy3qjs+9Aean9vCPcJDw9Eq3VNDZ1TFYqdO3dm4cKF5OTkkJaWRkhICMHBjn+zU5rHkpKSqFOnju3xpKQkmjVrVmz7H374AX9/f9q3bw9gW+Dxpptu4uabb+aNN95w5nL+O5YZo1FdN3ZWlrXmLCDAUGJsGuCxVrnWXyxgNJZ8HIMhkMzMTDIyslR3jSVRY1m4UnKytQN1WFi43ddpb1m7mr1l4Ux8/v7WL0CZmd5xX1aEq8rP0+8NT92HZVH7e0O4j8VS/jb2cjgZGjt2LAMHDqRTp04YDIYiNTr79u1j+PDhrFmzxq5jNWvWjJCQEDZu3GhLhtLT09m7dy8PPPBAse1//fXXIr/v3LmT0aNH8+GHH9KwYUNHL0X1ylubzF7SUVVdHJ1wsaqS0WRCCLVwOBn66aef+Pnnn3n11Ve5++67izyXl5fHmTNn7D6Wv78/DzzwANOmTSMqKopatWoxdepU4uLi6NevHyaTieTkZEJDQzEYDNStW7fI/koH7Jo1axIdHe3opaheectxmC1wNM1aRVg/3IxWVq73Co4uxQH2l7WnOBOfL92Xai8/e6nxOtQYk/A+TjW29e7dm3HjxvH666/bmqqcNWLECO644w5eeeUV7r33XnQ6HZ988gn+/v4kJibSo0cPVqxYUaFzeKusLKVmqORkKNcEd68I5u4VweSWUQyyPpm6pKc7PrTe3rL2FGfi86UaS7WXn73UeB1qjEl4H6f6DD3++OPceOONvPTSSxw6dIj33nvP6WUFdDodo0ePZvTo0cWei4+PJyEhodR9r7jiijKf93YFzWTOzzMEBd/As7Or/jdwb6DUDPl6M5myan1ubq6HIxFC+Dqnu2H379+fr7/+mhMnTjBw4EASEhLQq2HSiSqkvGYye0nNkLpInyEruS+FEGpRoTFpLVu25Pvvv6datWrcc889/Pnnn66KS1CwUGvFkyHf6ZvhDZRkyJcXaQW5L4UQ6lHhAfoxMTF8+eWXXHvttcyYMcMVMQms66+5rmZIFmtVi5ycHNuHv9QMWWuGlPtcCCE8xeF2reHDh1O9evUij/n7+/P222/TrFkzfvvtN5cF58tyc3NsK5u7bmi9fAP3NKVWSK/XExIS4tlgPMxgsPYZkvtSCOFpTiVDpRk8eDCDBw+uUEDCqvC3ZeUbtLOkOUI9lM7TYWHhaFy5sI4XUu7r3Fy5L4UQnmVXMvTggw8ybtw4GjZsyIMPPljmthqNhs8//9wlwfmywsPqS5tuXK+BQc3zbD+XpqA5Isu1QQqHpaenAo73F7K3rD3Fmfh8KUlXe/nZS43XocaYhPexKxmyFJrz2lLO/NflPS/sU5AMlV4r5KeDke3LH5as9DmSvhmeV7hmyBH2lrWnOBOfL40mU3v52UuN16HGmIT3sSsZ+vLLL0v8WbiPUotT0c7TUDBPkZJgCc+RkWQFfKlmSAihbjIxkEopiUtZyZDZAmczrfXCccGWUqehV2qXJBnyPGcnXLS3rD3FmfiUZCg3Nxez2eyy1afVSO3lZy81XocaYxLex65kqFmzZnZ39tRoNOzdu7dCQQn7Zp/ONcHNS60jktbfdYnAUkqzoJlMkiFPc3bCRXvL2lOcia/wIs+5ubkVHjWpVrm5uUyeNo1l9d8CYFrdVVzVvauHo3KOGu9DNcYkvI9dt82wYcN8fuRLZVP697jiAyIoKBiQmiE1cGaR1qoqIKAgGcrJyamSyZDFYuH550ew/p9N6EdZk6Fnnx3G7JnvcuWVPTwcnRBCYVcy9PTTT7s7DnGZgmay4AofS6kZUma0Fp7jzCKtVZVOp8Pf35+8vLz/OlFHejokl1uy5EfWr19LQEgkyhqiZrOZl18ew9Kl/yM0NNSj8QkhrJyqUMzJySEhIYH8/Hzb6DFlxuQtW7bw/PPPuzRIX+SqpTigoKlNmsk8T2qGijIYAsnLy6uSIx2NRiMffDAbgEcffYJ5/z1et259jh/ay/z5HzJy5HOeC1AIYeNwMvTPP/8wcuRI0tPTS3w+ODhYkiEXcG0zmYwmUwulz5CjQ+urqqCgINLT06pkor5mza+cPZtIZGQUd955D/OWWB8fNmwkY0Y9znffLeCRRx73+ZnIhVADh4dvvPPOO0RERDBr1iyuueYarr32Wj744APuu+8+NBoNH330kTvi9DmFJ12sqMLJkMwD5VkytL6oqjzScenSxQDceec9BAQE2B7v0aMX9es3IDMzk59//slD0QkhCnM4GUpISODpp5+mX79+9O3blzNnztC7d29effVV7rjjDt5//313xOlzXDnPkHIMi8VCbq5MTuYpZrOZtDTpM1RYQRNu1WomS01NYePGvwDo3/+mIs9pNBruuuteAJYv/7nSYxNCFOdwM5nZbCYuLg6A+vXrc+jQIdtz1113HS+88ILrovNh9qxYr9PAnY3zbD+XpvDaZllZWUWGNIvKk5FxCbPZDEBEhGOdhe0ta09xNr6qOu3DunV/YDQaadKkKfXqNSDPVPT1ufbaG5g6dTK7d+/i9OlT1KoV7+GI7aPG+1CNMQnv43AyVKdOHRISEujUqRN169YlOzubw4cP07BhQ4xGI5mZMmLJFexpJvPXwQudy6/p0Wq1BAYGkZ2d9d+HTpSrwhQOUDpPBwYG4e/v79C+9pa1pzgbX1VtJtu48W8Aeva8Cij++kRHV6Nz5yvYuPFvfv31FwYPfswTYTpMjfehGmMS3sfhZrIBAwYwbdo0vvzySyIjI2nVqhUTJkzgt99+Y86cOTRq1MgdcfocV44mK3wcGV7vOdJfqDhl6oiqVDNksVjYtOkfAK64olup21177Q0ArFq1slLiEkKUzuGaoUcffZSUlBR27doFwLhx43jsscd46qmnCAkJkT5DLmJPzZDFAqm51nrhiAALZc2LGRQUxMWLVe8buDepyLB6R8raE5yNryqOdDx27Cjnzyfh7+9PmzbtgJJfn169rgJg3769JCcnExWl/hpbNd6HaoxJeB+HkyGtVlukX1Dr1q1ZvXo1R44coUGDBjJM1EWUlbzLGlqfY4J+P9o3DX1VbY7wJqmpKYBznacdKWtPcDY+pT9bVbovlVqhdu06FCxGW8LrExMTS5MmTTlwIIFNm/7m+utv9FjM9lLjfajGmIT3ccnKiCEhIbRp00YSIReyZ6FWR8jEi54nEy4WV9CBuuqMJtu2bQsAnTtfUe62Xbt2B+Dvv/90a0xCiLI5nEOfOXOGN954g23btnHp0qViz8tCra7h6mSoKjZHeJuCPkNVb9kJZyk1llUpSd+7dzcArVq1KXfbbt2688UX8/n77z+xWCyyBqQQHuJwMvTyyy+zY8cOBg4cKN9w3ahgaH3F1yazHkeSIU+rSDNZVVXV7sv09DROnjwBQIsWLcvdvn37jvj5+ZGUdI6TJ09Qp05dd4cohCiBw8nQjh07ePXVV7n99tvdEY9AWedN6UDtmpW8lWayqvKh442UZrLISKkZUlS10WR79+4BID6+tl1Jr8FgoEWLVuzcuZ0dO7ZJMiSEhzjcZygmJobwcFlXyZ2UztPgmuU4oOBDR4bWe47STCY1QwWqWsd+pYmsRYtWdu/Tvn1HALZv3+aWmIQQ5XM4GXr88ceZM2cOp0+fdkc8goImMo1G47LZoqvqTL/eRJrJiqtqHfudSYbatesAwI4dW90SkxCifA43k1111VV8/PHHXHPNNURFRRX7sNZoNKxevdplAfqigjmGAsvsUKnTwE31820/l6Wq9c3wRhVpJnOkrD3B2fiq2miyffusg0cu7y9U1uvTtm17AI4ePUJKSoqqm1HVeB+qMSbhfRxOhsaOHcvJkyfp3r07MTEx7ojJ5xWMJCu787S/DsZ3y7HrmNJnyLMsFkuFmskcKWtPcDa+qtRMlpWVyenTpwBo1KhJkefKen0iIyOpX78BR48e4d9/d9CrVx+3x+osNd6HaoxJeB+Hk6FNmzbx2muvcdddd7kjHgGFOk+7pr8QSDOZp2VnZ5GXZ11MUs3f/CtbQV82778vjxw5AkBkZJTDs0m3bNmao0ePsGfPblUnQ0JUVQ73GQoLC6NmzZruiEX8x945hiwWyDZa/1ksZR9Tmsk8S2ki8/f3t8267AhHytoTnI2vKjWTHT58EICGDYuvz1je69OypbWPkdLnSK3UeB+qMSbhfRxOhu677z4+/PBDMjIy3BGPALuH1eeYoOd3ofT8LpQcU9nHlGTIswp3nnZmYj1HytoTnI1PuceNxnzy8/PcFF3lOHz4EFByMlTe66N0uN67dw8WFX+iq/E+VGNMwvs4NQP13r176dGjR4lrkWk0Gj7//HOXBeiLXD37dOFjZWZKEusJMsdQyQon/FlZWYSH+3swmoopSIYaO7xvkybN0Ol0XLx4gaSkJKpXr+7q8IQQZXC4Zujo0aM0b96c1q1bExwcjMViKfLPbDa7I06foiQswcGuW+stJCT0v2PLPEOeIHMMlczPzx8/Pz/A+5vKjhwpvWaoPIGBgTRo0BBQf1OZEFWRwzVD48ePp2HDhu6IRfxHSViCg12zFIf1WNbEKiOj+Hpywv1kjqHSBQYGkZ+f5tVNuFlZmSQmngGcS4bA2lR28OAB9u7dTZ8+V7syvCorKekc78yZC01nADB+/CuMePIJatWK93Bkwts4XDP0yCOPsHjxYjeEIhRKzZCr1iUDbM2ZWVlZmEzSsF7ZpJmsdFVhpOPJkycBiIiIcHoh3oJ+Q1IzZI8DBxK4++5bWbFiqe2x//1vOXfeeTObN//jwciEN3I4GTIajfIH3c2UmqHL+2NVhNJMVvj4ovJIM1npqkLn/tOnrclQfHwdp49ROBlScydqNUhJSWHYsMdISUmhUaOmtsfbtGlHVlYWI0Y8xaFDBz0YofA2DidDI0eOZMKECfzwww/s2rWLM2fOFPsnKkZJVlxZM+TvX9A3QzpRVz6lmczZWoOqTJlqwJtrhk6dsiZDFWmeady4CVqtlpSUFC5cOO+q0KqkSZNe5/z5JOrXb8CcOR/ZHp816wM6depCdnYWL7zwrNePUBSVx6k+QyaTiZdffrnUIcL79u2rcGC+rKBmqOxkSKuBq2vn234uT0hICCkpKZIMeYDSTBYREeHU/o6WdWWrSHxVYa6hU6esM0+XlgzZ8/oYDAbq1q3H0aNHOHgwgZiYWLfEWhFquA+3bdvCqlUr0Wq1TJ48jYjwUFtMgYYApkx5h4EDb+Lw4YN88cWnPPLI454JVHgVh5OhCRMmuCMOUYiysnx5NUMBOni7p/3T0IeEhJKSksKlS5IMVbaKNpM5WtaVrSLxFUz74L3NtwXNZLVLfN7e16dx46YcPXqEhIQErryyp0tjdAU13Ifz5s0F4Lbb7qBZsxZA0ZgCoqJ4/vkXefnlMXz66cfceec9hIWFeyRW4T0cToZuu+02d8QhClEmtHRlnyEoGFEmNUOVr6BmSJrJLldwX3pvMqQ0k5WWDNmrceOm/PrrLxw8mOCKsKqcAwcS2LjxL7RaLUOGDC11uxtuuIlPP/2IQ4cO8uWXnzFs2MhKjFJ4I4f7DAEkJyczffp07rrrLq6//nruvfdepk+fzsWLF10dn0+yt2bIUUpyJclQ5atoM1lVptyX3jrtg9ls5syZ00DF+gwBNG1q7QwsyVDJFiz4AoC+ffuV+VprtVqefPJpABYu/Nqrm2BF5XA4GTp79iy33XYbn332GQEBAbRo0QK9Xs+nn37Krbfeyrlz59wRp09RaobKm2co2widFoTSaUEo2cbyj6t86Fy65J0fOt4qNzfX1jnY2ZohR8u6slUkPm+vsTx/Pon8/Hz0ej3Vq8eVuI29r0/jxtZk6OjRI7aFfdXEk/dhdnYW//vfLwDcf/+D5cbUp8811KoVz6VL6axcubxygxVex+FkaOrUqej1elasWMGXX37JjBkz+PLLL/nll18wGAzMnDnTHXH6FKVmyJUzUBc+nrd+6HgrpVZIr9e7vOmzKiiosfTOZjKliSwurgZ6vcM9D4qIi6tBaGgYRqORo0ePuCI8t6ns4f9//PEb2dlZxMfXpl27DuVur9VqufPOewH49tsFMl2BKJPDydCGDRsYMWIEtWsXbRuvXbs2w4YNY926dS4LzheZzWa3zEAN3v+h462UztNhYeFOLdJa1RU0k3lnkl4wrL5i/YXAurZjkyZNAPU1lZ07d44xY0bZfr/vvjv5668NlXb+X35ZBlj7A9n7Prr11tvx9/dn//69JCTsd2d4wss5nAyZTKZSJ12Miory2j9oalF4rhV31QxJM1nlSklJBiAyMsrDkaiTty8Vc/q0dVh9fLxrloBQmsoOHFDPh3di4hkefPBu1q//w/bYsWOHeeqpR1m8+Ae3nz89Pd2WeN1ww0127xcREUmvXlcBSFOZKJPDyVDTpk1ZsmRJic8tXrzY9q1GOCcjw1pro9PpCAgIcOmxQ0OVxVolYa1MycnWgQVRUZIMlcTbm28LkqGK1wyBdQV7sI6cUgOj0cjzz4/k3Lmz1KlTz/b4gAG3A/DGG6+ybdsWt8bw998bMBqN1K/fwLagrb2U5GnlyuWykLgolcMN3E899RSPPPIIqampDBgwgGrVqnHhwgV+/vln/vrrL2bNmuWOOH1G4f5Crm5S8fYPHW+VnGytGYqOjvZwJOoUGqrUDHln860rm8mgcM2QOpKhb775ij17/iU0NIx3353Lnf/1hBg79hWM2Wn88ssyXnnlBX78cTkGg8EtMaxb9wcAvXr1cXjfHj16ExISwtmziezcuZ327Tu6ODpRFThcM9S9e3fefvttEhISePHFF3n00Ud58cUXSUhIYNKkSfTr188dcfoMe0eSOaOgOUKSocqk1AxFRkoyVJKq0kxWq1YtlxyvUaNGaDQakpMvcvHiBZcc01kZGRl8/PH7AIwaNZq4uBq25zQaDa+8Mp7q1eM4c+a0bdi7q5lMJjZsWAtga/JyREBAAL179wXg99/XuDI0UYU4Nc/QLbfcwvr161m+fDkLFixg+fLlrF+/XiZkdAFH5hjSaqB7TSPdaxrtmhq/4Bu4JEOVqaCZzPlkyNGyrmwVic+bayyzs7Nt64iV1UzmyOsTGBhEnTp1Ac/XDv300yLS0tKoV68+N998W7HrCA4O4emnrZ2qP/lkHikpKS6P4d9/d5KWlkZoaBht27Yv9rw9r61So7Ru3e8uj09UDU6PA01PTyc4OJjAQOsii4mJibbnatasWfHIfJTygWBPzVCADt69yv7JxLz5Q8ebuaLPkKNlXdkqEl9BX7ZMzGYzWq1T39E8QqkVCgkJLXPJB0dfn8aNm3L8+DEOHNhPt27dKxynMywWC4sWLQTggQceRq/Xo6f4dfTvP4Cvvvqc/fv3smjRNwwd+pRL49i8eSMAV1zRrcSpC+x5ba+8sgd6vZ5jx45y/Pgx6tat59IYhfdz+K/OsWPHuOeee+jatSt9+vTh6quvLvZPOM9dw+qtx5SaIU9Q+gxVpGaoKis8ajIry7tWrj9zpqDztCv7+DVposxEfcBlx3TUpk3/cOLEcYKDg7nhhhtL3U6r1fLQQ0MA62zPubm5Lo1jy5ZNAHTq1MXpY4SGhtKxY2dAaodEyRyuGXrzzTc5duwYw4cPJy4uzqu+xXmDgpoh10/Op3wDl2SocslosrL5+/uj1/thNOaTkXHJqyamLFiTzDXD6hWNGilzDXkuGVqy5EfAWvNT3t+ja665jnfemca5c2dZuXI5t9xyu0tiyM/PY+fO7UDFkiGwNpVt3Pg3a9f+zqBBg10RnqhCHE6GtmzZwsSJE7npJvvnehD2c6RmKNsI/X6w/pFaNTCDwHJKUzlmTk42RqOxwrPlCvu4ombI0bKubBWJT6PREBISTGpqqtcl6qdOWWuGatYsOxly9PVRaoaOHDn033vVv+LBOiA/P89Wg3LjjTfbHi/tOvz8/Ljrrnt5772ZLF78g8uSod27d5OTk0NkZCQNGzYqcRt7X9vevfswdeoktm/fSmZmhlu+cArv5XC1TkhICOHhpbeNi4pxtGYox6Qhx2Rf9XxISKjtZ5l4sXJkZ2fZJtKsaM2QI2XtCRWJT7k3va0/2+nT9q9W78jrU7NmLYKCgsjPz+f48WMVCdEpmzZtJCMjg2rVYmjTpl2R50q7jptuuhWtVsv27Vs5ceK4S+JQmsg6duxSZjOkPa9tfHxtateug8lkYutW986LJLyPw8nQLbfcwtdffy3rvLiJO/sMFV4bKz09zeXHF8UptUIBAQF2jRD0Vd7auV+pGXJ1M5lWq6VRo8YAHDpU+U1la9b8ClgXO7W3K0T16tVtnb2XLv3JJXG4or9QYV26dAVg48a/XXI8UXU4XNkeGBjI1q1b6devH61bty42yZZGo2HSpEl2H89sNjN79mwWLVpEeno6HTt2ZNy4cdStW7fE7Q8ePMjUqVPZuXMnWq2Wzp078+KLL1aZEWxKM4G7+k2EhYWTkZEhyVAlKdxEJuuSlS4kxJooXrrkPcmQxWIpNMeQayZcLKxx46bs2rWTAwcSuPHGyuuWYLFYbMtu9O17jUP73nzzbfz553pWrlzOsGEjK3TPW/sLbQOgU6fOTh+nsC5duvHDD9+xaZMkQ6Ioh2uGfvrpJ0JDQzGbzezcuZONGzcW++eIuXPnsnDhQiZMmMC3336LRqPhscceIy8vr9i2KSkpDB48mODgYL766is++ugjUlJSePTRR10+gsFTLl1KByA0NMwtx1eaONPSJBmqDCkpyoSL0nm6LN7YTJacfJGcnGw0Go1bvow1bmztRF3ZNUNHjx7h/PnzBAQE0KFDJ4f27dXrKgwGA6dOnWT//r0VimPPnoL+Qg0alNxfyFFKzdDBgwc8PqGlUBeHa4Z+++03l508Ly+P+fPnM3r0aHr37g3AzJkz6dmzJ6tWreLGG4sO51y9ejXZ2dm89dZbtnW7pk6dSu/evdm2bRvdunVzWWyeovTlUUZ+uVpYWAQgyVBlkWH19vHGZjJlJFlcXA38/FzfwdlTy3IotSbt2nVweH3EwMAgevToxerVv7Jq1UqaN2/pdBwF/YU6u2zUcmRkJE2bNichYR+bNv3j0KKvomrz6JiU/fv3k5mZSdeuXW2PhYWF0aJFCzZv3lwsGerWrRtz5swp8Q1a0Q93nU4dUwQoSxJERISj15cdk75Qty29Tos9g8MiIsL/O09aucevbEoZqKUsXCE11ZoMVasWXaHX25myrghHy6Ki8SnJf1ZWpuruy9IkJp4GoFateLe8V5s1a/bfec6QlZVJZGRwpbw3lEkOu3btVuy67LmO6667gdWrf2X16l8ZNep5p5vKtm7dDECXLleU+fo6+tp27dqNhIR9bN78DwMG3Fz2xiWoin+nvJUrex54NBk6e/YsADVq1CjyeGxsbJEZrRXx8fHFOirOmzePgIAAOneuWJtyWFhghfZ3FeWbcc2asURGlt3hNtAIXf9bDikqKhiDHaUZG1sNgLy87HKP7ylqKQtXyMy0NnvWrBlXodfbmbJ2BXvLoqLxVasWCUB+fo5q78vLXbhg/fvVsGF9t7xXIyODqVGjBomJiZw5c5xatWLd/t4wmUy2Gpl+/foWuy57ruOWW27k1VfHcuLEcc6cOUarVq0cjiM/P58dO6z9ha6++qoyX19HX9t+/fry+efz2bTpHyIigpxO1qrS3ynh4WQoO9s6hbq/f9Eq5oCAALtqer744gsWLFjA2LFjK7wieHp6NiaTuULHcIWC6/YjJaX8Vbw/+G/C7+xLYM9k/waD9Y/K2bPn7Tp+ZdLptISFBaqmLFzhzJlzAAQFhVb49Xa0rCvCmbKoSHx6vbW298KFFNXdl6U5dOgIALGxNdzyXgXr5IuJiYls27aTzp07u/29sXv3v6SlpRESEkJ8fIMSr8ue6+jevSdr1qzixx+XUKtWfYfj2LFjO9nZ2URERBATU6vc19eR17ZJk1bo9XpOnTrF7t0Jdk2LUFhV/DvlrcLDA13WhOrRZEgZiZaXl1dkVFpubq5tzbOSWCwW3n33Xd5//30ef/xxHn744QrHYjKZMRo9e2MbjUbb0PrAwBC3xKN0zE5NTfX49ZZGDWXhKhcuWDtpRkREeeU1VVZZhIRY78u0tDSveZ1OnrT2GapRo5bbYm7UqAnr168lIcHab8jd5fHPP/8AylB2rdPn6tv3WtasWcWqVb/y5JMjHN5/40ZrHB07dsZsto46dhV/fwMtWrRk166dbN68mbi4Wk4dpyr9nfJWrpzhx6ONnkrzWFJSUpHHk5KSiIuLK3Gf/Px8Ro8ezQcffMCYMWN49tln3R5nZSnceVRZYd7VlMUkpQN15VBGk8lSHGVT7sv09FTPBuIAZVi9ozULjlBGlB04sN9t5yhs9+6dALRr17FCx+nZszd6vR9Hjhzi6NEjDu/v6vmFLtehg7VbxbZtMvmisPJoMtSsWTNCQkKKDMdPT09n7969dOpU8pDOMWPGsHLlSqZPn84jjzxSWaFWCmUkmcEQaNfolGwjXPNDMNf8EEy20b5zhIdHAN71oePNlJqhqKhqFTqOM2VdmSoaX0REBACpqd6RpOfl5XHunLXPUK1a5U+46OzroyRDBw8eqJSJbvfs2Q1Ay5Yl9/Ox9zrCwsK44grrwJjfflvlUAzW/kL2r0fmzGurTBkgyZBQeDQZ8vf354EHHmDatGmsWbOG/fv3M2rUKOLi4ujXrx8mk4nz58+Tk5MDwI8//siKFSsYNWoUXbp04fz587Z/yjbeTBlJ5kitUGqultRc+4tR5hmqPPn5+bZFWmNjq1f4eI6WdWWrSHwF92WqCyNyn8TE01gsFgyGQLunTXDm9alXrz56vR8ZGRmcPn3amVDtlpx8kcTEM2g0Glq0KH1IvL3X0bdvPwDWrHEsGdqz51+ys7OIiIigYcPGdu3j6Gvbrl0HNBoNx48f48KF8w7FJ6omj/9lHTFiBHfccQevvPIK9957Lzqdjk8++QR/f38SExPp0aMHK1asAGDZsmUATJkyhR49ehT5p2zjzdw94SIUbo6QZMjdlEnd9Hq9reZDlEypsUxLS/WKpX4KL8PhzpnF/fz8qV/f2gF5796KTWJYnt27/wWgfv0GLlnEtE+fq9FoNOzdu5vExDN276cM7e/U6QqXdY69XFhYmG0ep23btrrlHMK7eHzta51Ox+jRoxk9enSx5+Lj420dBwHmz59fmaFVOqWZrPCCqq5WuGbIbDa77Y+NgPPnrd84q1WLkde5HMp9mZ+fT3Z2lurXcVMmXHRnfyFF48ZNOXjwAPv376dz5+5uO8+ePdZkqEULx4fClyQqKpoOHTqydesWfvttNfff/6Bd+23aZO08rcwW7S4dO3biwIH9bNu2mWuvvd6t5xLqJ3+hVSQ9vfJqhsxms23kmnCP8+etAwNiYmI9HIn6BQYG4efnB3hHE6471yS7nFKDsW/fPreeR+kv1KpVa5cds2/fawH47bdf7do+NzeXnTut/YW6dLnCZXGUpKDfkNQMCUmGVEVZpNVdS3GAdQ4nZRoDaSpzL0mG7KfRaIo0land6dNKzZBrV6svidKJev9+940os1gstpqhli1dmQxZF3rdtm2rXWuB7dq1nby8PGJiYqhb1/H5iRyhJEMHDybI30IhyZCaVEafIZB+Q5WlIBmK8XAk3qEgGVL/fan0GbJnJFlFKTVDhw8fLnEBa1dITDxDSkoyer2eJk2auey4NWrUpEWLVlgsFn7/fU2522/aZO0v1LlzV7f2xQKIjq5G3br1sFgsttmuhe+SZEhFChZpta/zogZoEWWiRZQJR/5sKP0zUlNTHQtQOMSVNUPOlnVlcUV8yrp5ar8vLRaLrWbI3mayirw+sbGxhIWFYzKZOHLkkIN720fpPN24cZMyF2d15jquuUZpKit/VNmff64HHOsvVJHXVplvaOtWGWLv6zzegVoUcLRmyKCHL67Pcvg8kZHWCQCVFdWFe7gyGXK2rCuLK+ILC4sA1N9MlpaWamvSrlnTvtmLK/L6aDQamjRpypYtm0hISKBRI9fV3CjsbSJz5jquvrofs2bNYNOmf0hPTycsrOS/b0lJ59i719pvqUePXnYfvyKvbYcOHfnpp0Vs3y7JkK+TmiEVKagZcl+fIcA2L0pycvlt+MJ50mfIMcr0A2pvJlM6T8fExJS5bJArNWmizESdUM6WznFHfyFF3br1adiwMUajkfXr/yh1u/Xr1wLQqlUbqlWrnKZlpd/Q3r17yM5W75cN4X6SDKlIwaSL7u0zFB1tnQ354sWLbj2Pr5M+Q44pWComxcORlK2gv5D7R5IpmjSx9hs6ePCAy49tNpvZt28P4J5kCKy1Q1D2BIzr1v0OQO/efdwSQ0lq1qxFXFwNjEYju3btrLTzCvWRZEhFHJ1nKMcIA5YEM2BJMDkOTPEfHW2tGbJndIdwTl5enq3viytqhpwt68riivi8p2ZI6S9kf+fpir4+SqfmhATXjyg7duwomZmZGAwGGjRoWOa2zl7H1Vdb+w2tX/9Hic3z6enp/P33nwD06uVYMlSR11aj0dhqh7Zu3ezYzqJKkWRIRZS+Eso35PJYgMRMLYmZWhyZs1epGVKWihCup9QK+fv720ZJVYSzZV1ZXBFfQc1QqqvCcgtlwkVHkqGKvj6NGjVGq9Vy8eIFkpLOOXGE0ilNZM2atUCvL7sbqbPX0bRpM1q0aEV+fj6LF39f7PnVq/9HXl4eDRo0stWC2auir22HDtZFaWWdMt8myZCKKDUJ7l66QZrJ3O/MGes6UnFxNdw+RLiq8J6aIfevVn+5oKAgW78hpUnLVdzZX6iwu+++D4BFixZiNBZU4VgsFn76yZogDRhwS6W/X5TFYP/9dye5ubmVem6hHpIMqURubi45OdkAREREuvVcBc1kskChuyhrMdWoYd9oI1G1a4ZcoU2bNkDBTNGu4o6Zp0ty3XX9iYiIIDHxDMuWLbE9vm3bFv79dyf+/v7cfPNtbo2hJHXr1qdatRhyc3P591/pN+SrJBlSCaVWSK/XExJS8UUSyxIVpTSTJWM2m916Ll919mwiADVq1PBwJN6jYJSjeqd8yM/PsyW6tWvXqdRzt23bFnBtMpSfn0dCgnWZD3fXDBkMBoYMGQrA7NnvkJx8EaPRyPTpbwEwYMCttlrryqTRaOjUyTrf0JYtmyr9/EIdJBlSidRU6wiasLBwt1cTR0VZ5xkymUyqb5LwVgU1QzU9HIn3qFbN+kGYnp7mtpmWK+rMmTOYzWYMBkOlT5mg1Azt3bsbi8U1PccOHTpIXl4eYWHhlZLc3X33/dSv34ALF87z5JOP8txzT7N37x5CQ8N44onhbj9/aZSmMkmGfJckQyqhNA24u4kMwM/PzzYLtYwoc48zZyQZclRYWLhtsVa13peFV6uv7L4tzZs3R6/Xk5KSbKt5rKiClepbVsr1BAQEMHXqu4SHh5OQsI+1a39Hr/fj9dcnenQ+LiUZ2rVrh/Qb8lGSDKmEM52nNUCDcBMNwh2fhl5GlLlXYqK1A7WrkqGKlHVlcEV8Go3GNtnehQvqTIZOnjwOQO3adR3azxWvT2BgII0aNQawzdRcUUqTm71NZK64jkaNGvPtt4u55577uemmW/j448/p27efk0dzTUxKv6G8vDzpN+SjZDkOlVCayRwZhm3Qw3c3OjdranR0NY4cOazab+DezGw2276527tcQ3kqUtaVwVXxRUdXIzHxDBcuqLNz/4kTJwDH+wu56vVp1ao1+/fvY8+e3ba5eyrC0ZFkrrqOuLgavPjiqxU+DrgmJmu/oS6sXLmcLVs22WqKhO+QmiGVqMxmMigYUabWb+DeLDn5Inl5eWg0GmJjZSkORyj9htQ60lGpGapTp3I7TytatmwFuKZmKDs7i8OHD/13XPd2nvYGSgK0efNGD0ciPEGSIZWorDmGFNHR1uYIqRlyvcREa61QTEwsfn7+Ho7GuyjNt2pN0gv6DHkqGbImLXv37qlwJ+r9+/dhMpmIiYmhevXqrgjPq3XuLPMN+TJJhlTCmWayHCPctTyIu5YHOTwNvfLHz1UdMUUBZcJFV3aerkhZVwZXxVcwIaj6kiGTyWRLhhxtJnPV69O4cWMCAgJIT0/j+PGjzh8I2L3b8ckW1XgfuiqmOnXqERNj7Te0a9cOl8UnvIMkQyrhTM2QBTiSpuNIms7haeiVD2plCLhwnRMnlE62rqs9qEhZVwZXxad0oD5/Xn3NZOfOnSU/Px+93o+4OMfmj3LV6+Pn52+bHHH79m0VOBLs3r0LgJYt29i9jxrvQ1fFpNFo6NhRmsp8lSRDKlHZfYbi4qzJkNQMud6JE8cA6wgV4Zi4uDgAzp1T331Z0EQWj06n81gc7dpZ19Lavn1rhY6jJEOtW9ufDFV1Xbp0BWDjxr89HImobJIMqYQzzWQVocyMfP58Evn5+ZVyTl9x/PgxAOrWrefROLyRmpN0pcbPU/2FFO3bK8mQ8zVDycnJnD59Co1GI52nC+nWrTtg7TeUni4T0voSSYZUQmkmi4yMqJTzRUVF4+/vj9lsdvkq2L6uoGaonkfj8EZK81NKSgrZ2dkejqYodzR/OqNNm3ZoNBpOnjzu9BQEu3db59KpX78BoaGhrgzPq9WoUZMGDRphNpv55x+pHfIlkgypQH5+PhkZlwAID6+cZjKtVkv16tYPHjV+C/dWaWmptsTWU8OvvVloaCjBwcGA+prKjh07AlgTCE8KCwujcWPrCvY7djhXO/Tvv9YmslatpInsct279wDgzz/XeTgSUZkkGVIBpb+QRqMhLCys0s6rNJVJJ2rXUWoPYmOrExgY5OFovI9Go7E1lSlTFKjFkSOHAc8nQ1DQb2jbNuf6DSmzLLdu3dZlMVUV3bv3AuCvv9a7bA04oX6SDKnAxYvWJTGioqId6pipAWoEm6kRbHZqGvqCEWXq+tDxZu7qL1TRsnY3V8anNJWpqcYyJyeH06dPAdCgQUOH93d1+XXs2AmATZscb8oxm822YfWOdp5W433o6pjat++IwRDI+fPnOXAgwQVHFN5AluNQAWW2XWVWaHsZ9PDzLZlOn7fgQ0dqhlzFXclQRcva3VwZn1JjqczXpAbHjx/DYrEQFhZOVJRj71NwffldcUU3NBoNhw4d5Ny5cw5NmnjkyGEyMi5hMATSqFETh86rxvvQ1TEFBATQuXMX1q9fy19/radp02YuO7ZQL6kZUgGlZkiZcK6yyFxDrnfo0EEA6tXzfFOKt1JGaylLX6jB0aMFTWSVvVp9SSIiImnRwro0x99/b3Bo361bNwPQtm079Hr5PlyS7t17ArBu3R+eDURUGkmGVEBZeqCyk6H4+NpAQT8XUXEHDuwHoGnTph6OxHvVq2edn0mpZVMDpb+QM01k7nLlldaOvn///adD+ynJUMeOnV0eU1XRu3dfwNpBXa2LBgvXkmRIBQqayRxLhnKM8ODKIB5c6dw09EpH0NOnT8laPC5w6dIlW7+SJk1cW7Ve0bJ2N1fGpzQxKk1TalDRztPuKD8lGfrnnz8xmUx27WOxWCqUDKnxPnRHTDVq1KRly9ZYLBZ+/32Naw4qVE2SIRVQmsmUFbvtZQH2JuvYm+zcNPRRUdGEhoZhsVhU9S3cWx08aO1sGRdXw+WTZ1a0rN3NlfHFx8ej1WrJyspSzbfyw4etzZ8NGjRyan93lF+rVm0ICQkhLS2NvXv32LXP8eNHuXjxAv7+/k4Nq1fjfeiumK655loA1qz51YVHFWolyZAKKItSVnYzmUajsX3TPXr0SKWeuypKSNgHIB0uK8jPz59ateIBdTSVZWdnceyYdVFUNZWtn58fXbteCcDvv6+ya5+NG/8BrEPqAwIC3BZbVdC3bz8AtmzZZJv+RFRdkgypgKf6DAGFkqHDlX7uqkYZhuvqJjJfpPQbUjqke9LBgwewWCxER1cjJibW0+EU0a/f9QCsWvU/u5oU169fC0CPHr3cGldVULduPRo3boLRaOS331Z7OhzhZpIMqYDSFOCZZMjaIVSZXVc4b//+vQA0aSKdpytKSSgTEvZ7OBLYv99a49esWXMPR1Jcz569MRgMnDx5wlYzWZrs7CzbvEQ9e15VCdF5vxtuuAmAn39e7NlAhNtJMuRh2dlZtgUBlXl/KlP9+tZv4EeOSDJUEVlZmbaaIZnVt+KUxKO8D/jKUND8qb5kKCgo2FbL88svy8vcdtOmf8jLy6NmzVo0bOhc3ydfc+ONN6PRaNi2bQsnT57wdDjCjSQZ8rBz584CEBISQkhISKWfX6kZOn78qN0jUkRxO3fuwGQyUaNGTY8ktVVNs2YtADh06AD5+fkejaWgZqiFR+MoTf/+NwOwdOlP5OXllbqdMiqqZ8/eqpgryRtUrx5n65cltUNVmyRDHnb2rDUZio2Nc2r/iAAzEQFmp89fq1Y8QUFB5ObmcuTIIaeP4+u2b7euEdWhQye3naOiZe1uroyvVq14QkJCyMvL4/Bhz92X+fn5HDp0AKh4M5m7yq9Xr6uIja1OSkpyqSOfcnJyWLVqJVDQz8hZarwP3RnTzTffBliTIfnCWHVJMuRhyvpLcXGOJ0OBelg9MJPVAzMJdHIiWZ1OZ5vJVlmvSDhu27YtgHVdI3dwRVm7k6vj02q1tGnTDoDt27dU/IBO2r9/L7m5uYSHh9smKXWGO8tPr9dz++13ArBgwZcldqRes2YVmZmZ1KhRs0IJuxrvQ3fH1KfPNYSFhZOYeIa1a393/QmEKkgy5GFJSecAa3WspyjzjezevctjMXizvLw822vnzpohX6O8llu3ei4ZUmr82rfviFar3j+XAwfehcFg4N9/dxb7wLZYLHz11acA3HrrQFVfhxoZDAbuuOMuAL7++jPPBiPcRt4VHqbUDHkyGVJWrpaaIeds3ryRnJwcYmJinJ6hWBSnzJC8detmzGbPNMts22ZNhtq1c0+Nn6vExMRy332DAJg1a0aRvkNr1/7Ovn17MRgM3HXXfZ4K0avdffcD6PV6tm7dIn8nqyhJhjxM6UDtTDKUY4ShqwMZujqwQtPQKzVDhw4dIDs72/kD+ag//rB2TO3du6/bOqa6qqzdxR3xtWrVmuDgYFJSktmzZ7drDuoAs9nMjh1KX7CKJUOVUX4PP/wYERERHDlyiKlTJ2OxWLh48QJvvfUmAPfeO4jIyMgKnUON92FlxFS9enWuu64/APPnf+SekwiPkmTIw5ThmvHx8Q7vawG2JenZlqSv0DT0sbHViYmJwWQysWePfOtxhNls5o8/fgPgqquudtt5XFXW7uKO+Pz8/OnRozcAv/9e+ZPeHT16hNTUVAwGA82bV2wkWWWUX1hYGK+/PgmARYu+4cEH7+Heewdy9mwitWvXYejQJyt8DjXeh5UV08MPP4JGo+HXX1eyY8cON55JeIIkQx5kNBo5c+Y0ALVr1/VYHBqNho4duwDw118bPBaHN9qzZzfnzycRFBREly5dPR1OldOnjzXBXLVqZaU3lSnvhbZt2+Pn51+p53ZW7959ee21N9Hr9fz7706Sks4RF1eDOXM+IjAwyNPhebXGjZty443WaQwmTpyomkWEhWtIMuRBZ88mYjQa8ff3Jza2ukdjUSZu+/PP9R6Nw9ssXfojAL169cHf3zs+ML1J7959CAkJ4eTJE2zevLFSz71hg7J0Re9KPW9F3X77nSxZspIxY17i9dcn8dNPy6lTx3NftqqSp54agZ+fH3/99ZesZl/FSDLkQQVNZLU9PsLjyit7ANbZds+fT/JoLN4iKyuTFSt+BmDgwDs9HE3VFBgYZJtU8OuvP6+08166dMk2iq1Xr6sq7byuUqtWPPfd9yC33HK71Ai5UM2atXjwwYcBePPN8bbVA4T3k2TIg5RkqHbtOh6OBKKiom3zDUntkH1++WU5mZmZ1K5dl06drvB0OFXW/fcPQqvVsm7dH+zataNSzrl69f8wGvNp2LAxdevWq5RzCu/w5JNP07BhQ86fT2LKlEmeDke4iCRDHnT8+DEA4uM9nwyBtUkC4Jdflnk4EvXLz8/ns88+BuDOO++W5Q3cqG7d+tx00y0ATJz4eqUsz7Fs2RIAbrxxgNvPJbyLwWBgxowZaDQali1bwsKFX3s6JOECkgx5kDLNf6NGjZ0+hkFnwaBzTUe+AQNuRaPRsHHj35w+fcolx6yqli9fysmTJ4iMjOLOO++plHO6sqzdwZ3xjRz5HOHh4SQk7GPy5Dfc2nn1wIEEtm7djFarpX9/1yVDai8/e6nxOio7pk6dOjFq1PMATJ06ifXr11bauYV7SDLkIRaLhQMH9gPWUQrOCNTDhrsz2HB3hkumoa9ZsxZdunQDYMmSHyt+wCrq0qVLzJnzLgCDBz9aKX0yXF3Wrubu+KKjq/Hmm2+h1Wr58cdFTJ/+ltvWifr8808AuPrqa1226K7ay89earwOT8U0ePCj3HTTLZhMJp59dji//Vb50z8I15FkyEMuXrxASkoKWq2Whg0beTocm9tuGwhY5ynJzMzwcDTq9M47Uzl/Pok6derKjL6VqFevPowZ8zIAX331OU8++QgnThx36Tn27PmX5cuXAtZ5ZYQojUajYdy4N7nmmmvJz89n9OiRfPrpRx6bLV1UjCRDHnLgQAIAderUJTAw0MPRFLjmmuuoU6cuKSkpfPPNV54OR3X+979f+OGH7wB47bU3MRgMHo7It9xzz/1MnjyNgIAANm36h9tu68/LL49h+/atFf4QysrK5NVXXwSgf/8BtGzZ2hUhiyrMz8+ft96awa23DsRkMvHuu9N5/PHBti4QwntIMuQhysKeTZs2d/oYuSYY+UcgI/8IJNdFLQZ6vZ7HHx8OwGeffWxbO03Av//uYvx4a83Eww8/SqdOXSrt3O4oa1eqzPhuuOEmFi1aSvfuPTGZTCxfvpTBg+/n+uv7MH78yyxZ8iPHjx91qBnt4sULDBs2lCNHDhMTE8vzz7/o0pjVXn72UuN1eDomvV7PuHETbF+ONm/eyF133cqLLz7Hv//urPyAhFNU0urre5Q5TCqyyrnZAn+e0dt+dpXrr+/PN998ye7d1g//uXM/9vg8SJ62c+d2hg0bSnZ2Ft26dWf48Gcq9fzuKmtXqez46tSpy5w5H7F3724WLPiSP/5YQ1LSORYv/oHFi38AICAggAYNGlK3bn1q1qxJXFxNYmOrExQUREBAAABJSefYtm0LP/+8hIyMS4SEhDJz5hyioqJdGq/ay89earwONcSk0Wi4/fY76dKlKzNnTmHNmlWsXLmclSuXU69efXr37kuPHr1o2bIVQUHBnglSlEmSIQ/Iz89n587tAHTs6Hwy5C46nY4JE97i7rtv459//mLq1MmMGfOSTw4ft1gs/PDDd7z99gTy8/Np374j06fPQq+Xt44atGjRigkT3iYvL49Nm/5h69bNbNu2hf3795Kbm8u+fXvZt2+vXcdq2rQ5Eye+TaNGTdwctaiq4uNrM336e+zbt4cFC75k5crlHDt2lGPHPuHzzz9Bq9VSv35DmjZtRu3adahduw61atUmOjqaqKhogoODffLvrBrIX3QP2LFjGzk52URERNCggXo6TxdWr14DXnttAi+/PJpvvvkSozGfMWNe8po1mlxh797dzJgxhS1bNgFw9dX9ePPNt+SbnQr5+/vTo0cv27IyJpOJ06dPcejQAU6ePEFi4hnOnk0kKSmJnJwccnNzsFgsVKsWQ8OGjenTpy89evT2+RpQ4RrNm7fkzTffYsyYl/nrrw2sXfsb27Zt4ezZRA4fPsjhwwdL3M/f35+oqGiioqIICQklKCiIwMAggoODCQoKIijI+r+/fwB+fn5l/PMv8r9Op0On06HRaC77X4tWq0Gr1aHVatHptGg0hf/X+Uxy5vFkyGw2M3v2bBYtWkR6ejodO3Zk3Lhx1K1b8lo6KSkpTJgwgXXr1gFw/fXXM3bsWIKCnB/ebDKZSEtLw2SyoNFo/vuH7WfQFHrc+lzxxzR23zTKpIZXXXW1qv/43njjAC5dSufttyewaNFCdu7cwZgxL9GxY+cq+Qa5dOkSR48eZuvWzaxZs8rWrysgIIAnnnjatmq1UD+dTkedOnVlTS7hUaGhoVx33Q1cd90NAJw/n8SePbs5evQwJ06c4NSpE5w5c5rk5GSys7PIy8vj7NlE1fXVLJ44lZ9AKf9rtdpi+1z+7/J97dlHq9UyceIbVKtWzSXX6PFkaO7cuSxc+P/27jwoinNdA/gDjMOIAwiITqJHRE3YVAQB0YPoJZrVRD1uUOo1GpVEBTdEInrALUhAccFE4oYhbhETrkWwImglmoRgROVYMUqwUHHFAlkGGAaGuX8QRicQjsSBRvr5VXVNT3dP9zu8NP3yfb0cRlRUFHr06IGYmBjMnTsXqampTT74Mjg4GNXV1UhMTERZWRnCw8OxZs0aREdH/+0Ybt++jX/+c/izfA0dMzMz9OrVGwMGDMSoUa/Ax8dXr+BRKpVIT/8WAAx6Q7fW4u8/DS+++CJWrQpDbu5VzJnzv3BycsYbb4zF8OE+sLfvBxMTk1bZdl1dHSorK1FeXgalshxKpRLl5eW68frXcpSX149XVChRW1sLjUaje60falFb+3j8r+YrleV625dIOuG1197A/PnB6NmzV6t8RyISD1vb7hg1yg+jRvk1mldVVYni4mIUFxfj0aMiKJVKVFZWoqqqEhUVFXrjarUatbU1qKn56+HxfDVqa2tRV6dFXZ0GdXV1uuFpb15afzFCOzlj/gkrV67oGMWQWq3G3r17sXz5cowcWf9k6Li4OIwYMQLp6el466239Ja/ePEizp07h7S0NPTr1w8AsHbtWsyZMwdLly5Fjx7CPvkdACorK5GbexW5uVfx1VdH8Y9/2GHGjHcxbty/YGpqis8++wTl5WWws+uDIUM8hQ73qfj6/g9SUk7g00+34fjxr3XnYWze/DFkMhn69u2H7t0V6N69B6ysrCCTdYZMZgpTUxmMjY3/2PE0up1RpapGVVXlH0OVrrCpqFCiqqoSJSWlKC+vf9+adxpuiq2tLRwdnTF8uA9effUN2NgYZkcjImpO585m6NnTrE3/8dJqtY3+Pte/1zYx7c9D/XyNRgOttg4aTd2fXjXQah/Pf7zs032muW02vFpaWhrsZyFoMXT16lVUVFTA29tbN83CwgLOzs745ZdfGhVD58+fh62tra4QAgAvLy8YGRkhOzsbb7755t+Ko3fv3vjPf377IxH1vyBPDkDDOP5i+uN5paUluHEjHz//nInU1P9DQcFNfPTRGuzcuR329n11V5EtXx4GU9NOfyveBpIn6gSJiTFa85ze7t27ISJiLYKDF+Obb1Lx3XenkZNzEVVVVbhy5VdcufJrq21bIukEc3M55HJzmJtbPDFuDrncHHK5HObm5ujSRQ6pVAqJRKLrI388LoFEYqIb159XP9jYdIO5uXmrfY9n0Za5BgATE2O91/+mreN73jzrz6el+Wgt7THP7X3faP9MADzbsUgoFhaGu0efkbat//V+wsmTJxEUFIScnBy9m9ctWrQIKpUKCQkJesuvX78eOTk5OHr0qN70YcOGYc6cOXjvvfZ1x9jKykocPnwYn376Ke7evaubHhQUhLAww97HRAgajQb5+fm4fv067t27hwcPHqC4uBgqlUo3aLXaP/qE6/t9jYyMIJPJYGb2+KTALl26wMLCQjeYm9cXOg3jMpmM5+oQEVGrEbSur6qqAoBG5waZmpqitLS0yeWbOo/I1NQU1dXVzxRLWVkVNBrD30Z9woSpGDv2X8jO/gUPHtyHg4MTHB2d8OhRhcG3JQQbmxdgY2OY5zeZmBjDwqKzXi5UqjqoVJUGWT89vaZyQcJhPtoP5qL9sLTsbLCLkAQthhpag9RqtV7LUHV1dZOPqJDJZFCr1Y2mV1dXP9PVZACg0dShtrZ1frGNjEzg4fG4K7C1ttNRtGYuqGWYi/aF+Wg/mAvhGbJfS9BOzxdeqG9RKCws1JteWFgIhULRaHmFQtFoWbVajZKSknZx8jQRERE9fwQthhwdHSGXy5GVlaWbVlZWhitXrsDDo/GdmT09PXH//n3cvPn4SdUNn3V3d2/9gImIiKjDEbSbTCqVYvr06YiNjYW1tTV69uyJmJgYKBQKjBkzBhqNBsXFxbqTaF1dXeHu7o4lS5YgMjISlZWViIiIwPjx49kyRERERH+L4NcGBgcHY9KkSVi1ahUCAgJgYmKCPXv2QCqV4t69e/Dx8UFaWhqA+jtCx8fHo1evXpg5cyYWL14MX19fREZGCvsliIiI6Lkl6KX17cmjRxU8GU5gEokxrKy6MBftAHPRvjAf7Qdz0X5YW3cx2P2eBG8ZIiIiIhISiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI03XfyDRsObZ7UHJibGzEU7wVy0L8xH+8FctA/GxkYwMjIyyLpYDBEREZGosZuMiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjURFkMffLJJ5gxY4betN9++w3Tp0/H4MGDMWrUKOzZs0eg6MSlqVycPn0aEydOhJubG/z8/BAdHQ2VSiVQhOLSVD6etGrVKvj5+bVhROLVVC4KCwuxdOlSeHh4YOjQoVi2bBmKi4sFilA8msrF5cuXMX36dLi5uWHkyJH4+OOPoVarBYqwYyspKcG///1v+Pr6wt3dHQEBATh//rxuviGO36IrhhITE7Ft2za9aY8ePcKsWbPQp08fHDt2DEFBQdi6dSuOHTsmUJTi0FQuzp8/j4ULF+K1115DSkoKIiMjceLECaxZs0agKMWjqXw8KSMjA0ePHm3DiMSrqVyo1WrMnj0bBQUF2LdvHxISEnDlyhWsWLFCoCjFoalcFBcXY86cOejbty9SUlKwbt06fP3114iLixMoyo5t6dKlyMnJwebNm5GcnAwXFxe89957uH79usGO35JWir3defDgAcLDw5GdnQ17e3u9eV9++SWkUikiIyMhkUjQr18/3Lx5E7t27cLEiRMFirjjai4Xhw8fhre3N+bNmwcAsLOzw5IlS7By5UqsWbMGUqlUiJA7tOby0aCwsBCrV6+Gl5cX7ty508YRikdzuUhNTcWdO3eQnp6Obt26AYBuv1AqlZDL5UKE3GE1l4sLFy6gpKQEoaGhkMvlsLOzwzvvvIMffviBxamB3bx5Ez/++CMOHToEd3d3AEB4eDjOnDmD1NRUyGQygxy/RdMy9Ouvv8LS0hLHjx+Hq6ur3rzz58/D09MTEsnj2tDb2xv5+fkoKipq61A7vOZyMXv2bISGhjb6TG1tLZRKZVuFKCrN5QMAtFotwsLCMG7cOHh5eQkQoXg0l4uzZ8/C29tbVwgBwIgRI5CRkcFCqBU0l4uuXbsCAA4dOgSNRoPbt2/j+++/b3L/oWdjZWWFzz77DAMGDNBNMzIyglarRWlpqcGO36JpGfLz8/vLcx3u37+Pl19+WW9a9+7dAQB3796FjY1Nq8cnJs3lwtnZWe+9Wq3Gvn374OLiAmtr67YIT3SaywdQ303w8OFD7Ny5EwkJCW0Ymfg0l4sbN27Aw8MDO3bsQEpKCmpra+Hj44Ply5fDwsKijSPt+JrLhYeHB+bNm4etW7ciLi4OGo0GXl5eWL16dRtH2fFZWFhg5MiRetNOnDiBW7duwcfHB3FxcQY5foumZag5KpWqUfeLqakpAKC6ulqIkAj1rUGhoaHIy8tDRESE0OGI0tWrVxEfH4+YmBh2UQpMqVQiJSUF165dw6ZNm7B27VpkZ2dj/vz50Gq1QocnKmVlZbhx4wamTZuGo0ePYuvWrbh16xYiIyOFDq3Dy87OxsqVK/HKK6/Az8/PYMdv0bQMNUcmkzW6CqDhh2hmZiZESKKnVCqxePFiZGVlYdu2bWx+FkB1dTVCQkLwwQcfwNHRUehwRK9Tp04wMzPDpk2b0KlTJwCApaUlJk+ejMuXL2PQoEECRygesbGxKCsrw/bt2wEALi4usLS0xLvvvouZM2dyf2klGRkZCAkJgaurKzZv3gzAcMdvtgwBUCgUKCws1JvW8L5Hjx5ChCRqhYWFmDZtGi5evIhdu3bxUm6B5OTk4Pfff0d8fDzc3Nzg5uaGhIQE3L17F25ubjh+/LjQIYqKQqGAvb29rhACgJdeegkAcPv2baHCEqXs7GwMHDhQb1rDP2z5+flChNThffHFFwgKCoKvry927doFmUwGwHDHb7YMAfD09MThw4eh0WhgYmICAMjMzIS9vT3PF2pjpaWlmDlzJpRKJQ4ePAgHBwehQxKtQYMG4eTJk3rTkpKScPLkSSQlJXHfaGMeHh74/PPPoVKpdAeC3NxcAPVXXVLbUSgUuHbtmt60hlz06dNHgIg6toMHD2LdunWYMWMGVq5cCWPjx+04hjp+s2UIwMSJE6FUKhEeHo68vDx89dVX2L9/PwIDA4UOTXSioqJQUFCAmJgYWFtb4+HDh7pBo9EIHZ6oyGQy2NnZ6Q2WlpaQSCSws7PjFUxtzN/fHyYmJli2bBlyc3ORnZ2NVatWYejQoXBxcRE6PFGZNWsWzp49iy1btuDWrVvIzMxEWFgYRo4cCScnJ6HD61Dy8/Px0UcfYcyYMQgMDERRUZHumFBeXm6w4zdbhgDY2Nhg9+7d2LBhAyZMmABbW1uEhoZiwoQJQocmKnV1dUhLS0NNTQ1mzpzZaP6pU6fQq1cvASIjEp61tTUOHDiAqKgoTJkyBVKpFKNHj8aHH34odGii4+Pjg4SEBOzYsQP79++HlZUVxowZg0WLFgkdWofz7bffoqamBunp6UhPT9ebN2HCBGzcuNEgx28jLS9DICIiIhFjNxkRERGJGoshIiIiEjUWQ0RERCRqLIaIiIhI1FgMERERkaixGCIiIiJRYzFEREREosZiiIhaBW9hRkTPCxZDRGRwp06dwooVK3Tvs7Ky4ODggKysLEHiCQsLg4ODAxwcHBASEvJM63JwcNA9rfxpBAQE6Lbdks8RUdvh4ziIyOASExP13ru4uODIkSPo37+/MAEBsLW1RXx8PKytrZ9pPUeOHIFCoXjq5detWwelUompU6c+03aJqPWwGCKiVieXyzF48GBBY5BKpQaJoaXrELIAJKKnw24yIjKoGTNm4Ny5czh37pyua+zP3WTbt2/H66+/joyMDIwdOxYDBw7EuHHjcPHiRVy6dAmTJ0/GoEGDMHbsWGRmZuqtPzc3F4GBgXB3d4e7uzsWLFiAgoKCFsfp4OCAQ4cOISwsDEOGDIGXlxfWr18PlUqF6OhoeHt7Y+jQoQgPD0d1dbXe5xq6uxq+V2ZmJmbPng1XV1cMHz4c0dHRqK2tfYafIhG1JRZDRGRQERERcHZ2hrOzM44cOQIXF5cml7t//z6ioqLw/vvvY8uWLSgtLUVwcDCWLl2KKVOmYPPmzairq8OSJUugUqkAAPn5+fD390dRURE2btyIDRs2oKCgAAEBASgqKmpxrLGxsZBKpYiPj8e4ceOQlJSE8ePH4969e4iJiYG/vz+Sk5ORlJTU7HpCQkIwZMgQ7Ny5E2+//Tb27t2L5OTkFsdDRMJgNxkRGVT//v0hl8sBNN+lVFVVhYiICPj6+gIArl+/jk2bNmHDhg2YNGkSAECj0SA4OBj5+flwcnJCfHw8ZDIZEhMTddsYNmwYRo8ejd27d+udtP00+vXrh7Vr1wIAPD09kZycjJqaGsTGxkIikWDEiBE4ffo0Lly40Ox6Jk+ejAULFujiycjIwHfffQd/f/8WxUNEwmAxRESCcXd3141369YNgH4B1bVrVwBAWVkZAODnn3/G0KFDIZPJdN1QcrkcHh4e+Omnn1q8fTc3N924RCKBlZUVBgwYAInk8Z/Grl27ory8/KnXAwAKhQKVlZUtjoeIhMFiiIgE09C68ySZTPaXy5eUlCAtLQ1paWmN5v2dq8Sa2n7nzp1bvJ4/x2xsbMz7LBE9R1gMEdFzw9zcHMOHD8esWbMazXuyNYeIqCX414OIDM7Y2Bh1dXUGX6+Xlxfy8vLg5OSkK360Wi1CQkJgZ2cHJycng2+TiDo+Xk1GRAZnYWGB/Px8ZGZmorS01GDrnT9/Pm7duoXAwEBkZGTg7NmzCAoKwjfffANHR0eDbYeIxIXFEBEZ3LRp09CpUyfMnTsXZ86cMdh6HR0dceDAARgZGSE0NBTBwcF4+PAhduzYgVdffdVg2yEicTHS8iw/IurgwsLCcO7cOZw+fVqwGBwcHLBw4UIEBQUJFgMRNY3nDBGRKKjValy6dAnW1tbo3bt3m203Ly8PSqWyzbZHRC3HbjIiEoWHDx9i6tSp2LZtW5tud/Xq1XxIK1E7x24yIiIiEjW2DBEREZGosRgiIiIiUWMxRERERKLGYoiIiIhEjcUQERERiRqLISIiIhI1FkNEREQkaiyGiIiISNT+H75rcUtLrMlnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import scipy.signal\n", + "\n", + "# Create a normalized signal\n", + "signal_norm = (df['intensity_mV'] - df['intensity_mV'].min()) / (df['intensity_mV'].max() - df['intensity_mV'].min())\n", + "\n", + "# Find peaks with a low prominence filter of 0.01\n", + "peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=0.01)\n", + "\n", + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "plt.plot(df['time_min'], signal_norm, 'k-', label='normalized chromatogram')\n", + "plt.vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', \n", + " color='dodgerblue', label='peak location')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('normalized signal intensity')\n", + "plt.xlim([10, 20])\n", + "plt.title('prominence filter = 0.01')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These maxima have prominence values greater than or equal to 0.01, meaning that \n", + "maxima with prominences as low as 0.01 units above the local background are considered \n", + "to be bonafide peaks. Increasing the prominence filter begins to remove peaks \n", + "we would otherwise care about." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAMQCAYAAADctJqBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddhkSW7MQm9qaE2ptSVUrpsFuq1OgwqrVHlaJmq0pVtVV+tXXRltqb+iE2QfYQ2bnc/f643x3Zl8sld5e8n49HHuJ73/H+3ueb3DufqdBoNBqEEEIIIYSe0twBCCGEEEJYGkmQhBBCCCEykQRJCCGEECITSZCEEEIIITKRBEkIIYQQIhNJkIQQQgghMpEESQghhBAiE0mQhBBCCCEykQRJCCEKgczBK4R1kwRJCGEygwYNYtCgQeYOw+ROnDhBt27dqFevHiNGjGDFihXUrFlT/3rm+966dSsLFy40R6h5unXrFiNHjuSZZ56hefPmfPjhh8TFxeV53MWLF3n99ddp3LgxrVq1YuHChaSmpua4/9ixY5kyZYopQxeiSNmaOwAhRPExY8YMc4dQKBYuXIharWbt2rV4enri5uZGmzZtctx/zZo1BAYGFmGEhomLi2Po0KH4+Pjw6aefEhUVxaJFiwgNDWX9+vU5Hnfv3j2GDRtG48aNWbZsGTdv3mTp0qU8fvyYuXPnZtg3PT2d+fPn88cff9CnT5/CviUhCo0kSEIIk6lWrZq5QygUsbGxNGvWjJYtW+q3+fn5mTEi4/zwww/ExcWxY8cOPDw8APD19WXkyJGcPn2apk2bZnvcunXrcHJyYvXq1djb29OuXTscHByYM2cOo0ePply5cgBcvXqVOXPmcOnSJRwcHIrsvoQoDNLEJoQV6tixI0uXLmXBggUEBgYSGBjIBx98QExMjH6fKVOmMGTIEGbMmEHTpk3p06cPKpWKlJQUVq1aRffu3alfvz5du3Zl7dq1qNVq/bGDBg1i+vTprFmzhjZt2tCwYUPefPNNIiMj+c9//kOXLl1o3LgxQ4cO5f79+xmOe7qpqWbNmmzevJlp06YRGBhI48aNGTduHJGRkRnuZ//+/fTt25f69evTqlUr5s6dS2Jiov71FStW0KVLF/7++2969epFvXr16NatG9u3b89wnqioKD788ENatmxJ48aNee211zhz5oz+dV0tUJcuXfTn2LRpU47v8/3796lZsyYPHjxgx44d1KxZkxMnTmRpYstcNg8ePGD79u3UrFlT//48fPiQd999l8DAQBo2bMiQIUO4fPlylmtt2LCB5557jsDAQH7++eccY8rpK7cmzsOHD/PMM8/okyOANm3a4OTkxKFDh3I9rn379tjb2+u3de/eHbVazeHDh/XbJk+ejFqtZsuWLXh6euZ4PiGsgdQgCWGlvv/+eypVqsT8+fOJjo7ms88+49atW2zduhWlUvu3z+nTp1EoFKxYsYKEhARsbGx48803OX/+PGPGjKF27dqcOHGCZcuWERwczJw5c/Tn37t3L3Xq1GHevHk8fPiQOXPm8Prrr+Pg4MDkyZOJjY1l3rx5zJ49m7Vr1+YY59KlS+nSpQtLliwhODiYBQsWYGtry5IlSwDYvXs377//Pr169WLChAk8ePCApUuXcuPGDTZs2IBCoQAgIiKC2bNn62ssvv76a6ZMmUKDBg0ICAggMTGRgQMHkpaWxnvvvYefnx8bN27kjTfeYNu2bQQEBDBz5kx+/vlnRo0aRePGjTl16hTz588nLi6OMWPGZIndx8eHLVu2MHbsWOrUqcPbb79NtWrVOHnyZI73u3LlSkaOHKnf38fHh+joaAYOHIijoyMff/wxjo6ObNy4kddee00f29Pv1/Tp03F1daVevXo5xpQTZ2fnHF+7efMmPXr0yLBNqVRSvnx57ty5k+0xycnJPHjwgCpVqmTY7uHhgbOzc4bjFi5cSK1atXK8vhDWRBIkIayUQqFgw4YNuLi4ANoPrDFjxnDo0CHat28PgEqlYtasWVSqVAmAgwcPcvToURYtWsQLL7wAQKtWrXBwcODzzz9nyJAh+maytLQ0Vq5ciZubGwB//PEHhw8fZv/+/VSoUAGAK1eusHPnzlzjrFGjBgsWLND//+LFi/z666+AdqTX4sWLadOmDYsXL9bvU7lyZYYOHcrBgwf195KUlMS8efN49tln9ft06NCBgwcPEhAQwPbt2wkODmbHjh36D+mmTZvy4osvcurUKZRKJT/99BPvvvsuI0eOBKB169YoFAq+/PJLXn31Vdzd3TPEbm9vT6NGjbC3t8fDw4NGjRrlWS516tTJsv/GjRuJjY3lhx9+0DdHtW3blh49evD555+zfPly/fFdu3alX79+OZ5fF5Mx4uLicHJyyrLdycmJ+Pj4HI+B7BOvzMdJciSKE2liE8JKdejQQZ8cgbZpx87OjtOnT+u3OTg4ULFiRf3/T548iY2NTZZaBF2ydOLECf22gIAAfXIE4O3tjYeHhz45AihTpgyPHz/ONc7MH+Z+fn4kJSUB2hFVoaGhdOzYEZVKpf9q1qwZzs7OHDlyJMdz6foA6ZriTp8+Tfny5TN8SJcqVYpffvmFgQMHcvz4cTQaTZZrdezYkZSUlAxNcaZ27Ngxateuja+vr/66SqWStm3bcvTo0Qz71qhRI8/zPR1/5q/09PRcj9XVyD1No9Fku133Wk5yO04Iayc1SEJYKR8fnwz/VyqVlClTJsOQbU9PzwwfYI8ePcLd3R1b24w/+t7e3gAZkp3sagwcHR3zHWfmY5RKpf5DNzY2FoBZs2Yxa9asLMeGh4fneC5dM+LT58qt34vuWj179sz29bCwsFzuomBiY2O5e/cudevWzfZ1XcII4OXlleu57t+/T6dOnXJ8PTAwMMd+Vc7OztnWFCUmJubY6VyXhCckJGR73NNJuhDFiSRIQlgp3Qe+Tnp6OjExMRk64Gbm5uZGTEwMKpUqQ5KkS0QyNzEVNldXVwAmTZqU7bD4p2uw8uLi4pKhw7jOuXPncHZ21l9r48aN2TYzlS1b1uBr5ZeLiwuBgYFMmjQp29ef7vycFx8fH7Zt25bj69ndm06VKlW4d+9ehm1qtZr79+/TtWvXbI8pXbo0vr6+3L17N8P26Oho4uPji+3IRSGkiU0IK/XPP/9kmKjvwIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfmratWqOR7bqlUrTp06RXR0tH7bP//8Q0JCAq1atcr1uL///jvD8/brr79iY2NDixYtDI5dCGsiNUhCWKnQ0FBGjx7N4MGDCQkJYcmSJbRu3ZrmzZvneEzbtm1p3rw5M2bMIDw8nDp16nDy5Em++uor+vTpU+S1ATY2NkycOJHp06djY2NDhw4diIuLY/Xq1YSFheXYJJWdvn37smnTJkaPHs348ePx8PBg8+bNJCcnM2jQICpWrMgLL7zAxx9/zIMHD6hXrx63b99m6dKllC9fnsqVK5vsvlxdXbl8+TInT56kQYMGDB06lJ07dzJ06FCGDx+Ou7s7+/bt46effmLq1Kkmu25eXn31Vb777juGDRvG2LFjiY2NZdGiRbRt25bGjRvr9zt//jweHh76/mtvvPEGe/fu5Y033mDYsGHcuXOHJUuWMGDAAPz9/YssfiGKkiRIQlipnj174urqyoQJEyhdujR9+vRh4sSJuR6jG7G1fPlyvv32W6KjoylfvjwTJ05k2LBhRRR5Rv3798fJyYl169axZcsWSpcuTZMmTVi8eHGGDuF5cXZ25rvvvuPTTz9l3rx5qFQqGjZsyKZNm/Qf9AsWLODLL7/kxx9/JDQ0FE9PT3r06MGECRPyVYuTl+HDhzN//nxGjBjBhg0baNq0KT/++COfffYZM2fOJCUlhcqVKzNv3rxcR6yZmoeHB99++y3z58/n/fffx8nJie7du2dp+hswYAB9+vThk08+AbQd9tevX8+nn37KuHHjcHd3Z+jQoYwfP77IYheiqCk0sqKiEFanY8eOBAYG6j/AhBBCmJb0QRJCCCGEyEQSJCGEEEKITKSJTQghhBAiE6lBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiExkokgT0Wg0qNXS392clEqFlIGZSRmYl7z/5idlYF5KpSLDAt0FUSwTpNWrV3Ps2LEcV7QG7XpMc+fO5dChQwB0796dqVOnUrp0aaOuqVAoiItLRKVSG3W8KBhbWyXu7k5SBmYkZWBe8v6bn5SB+Xl4OGFjY5oEqdg1sX3zzTcsX748z/3GjRtHcHCwfv8jR44wa9asIohQCCGEEJau2NQghYWFMW3aNM6cOUOVKlVy3ffcuXOcPHmSffv2ERAQAMDs2bN54403ePfdd/H19S2KkIUQQghhoYpNDdJ///tf3Nzc2LVrFw0bNsx139OnT+Pt7a1PjgACAwNRKBScOXOmsEMVQgghhIUrNjVIHTt2pGPHjgbtGxYWhr+/f4Zt9vb2lClThpCQkMIITwiRyePHj7Gzs8PBwcHcoQghRBbFJkHKj6SkJOzt7bNsL1WqFCkpKUaf18am2FTIWR3dey9lYD6GloFGo2H16hV8+eVqSpUqxUcfzaR37z5FEWKxJj8D5idlYH4mGsAGlNAEycHBgdTU1CzbU1JSjB7FBuDq6liQsMxCrYEb0drvq3mA0oQPlzlYYxkUFnOVbV5l8P3337NmzSrwrE4SMGPGR7Rq1Zzq1asXTYAWzBRlZu6fAUv7nWKOeMxdBsI0SmSC5Ofnx/79+zNsS01NJTY2tkAdtOPikkhPt66hnUlp0OUHJwCOvZKAo52ZAzKSjY0SV1dHqyyDwlLUZWtIGTx+/Jj58+eDnQO2I/4CQLW0GrNmzWHFijWFG6AVKEiZWcrPgKX9TinKeCylDEoyNzdHlErT1OCVyASpWbNmLF68mLt371KpUiUATpw4AUCTJk2MPm96utrq5r5QpT/9vRqVldcgWWMZFBZzlW1uZfCf/2wjJiaGigG1efjU9oMH/+LBg5ASP4LUFGVm7p8BS/udYo54zF0GJZnGhHN0loiG0vT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF0v8L2ghCotGo+E//9kCwMsvv6rf3rBBY9RqNfv27TJXaEIIkUWJSJBCQkJo3bo1+/btA7SzXq9cuZLy5cszZMgQJkyYQNu2bZk5c6Z5AxWiGDt79jS3b9/C0bE03br10G/v1l37/V9/HTBXaEIIkUWxbGL75JNPMvy/fPnyBAUFZdjm6elp0IzbQgjT2LtXW0PUvXsPnJ2d9NuffbYVAJcuXSQu7hGurm5miU8IIZ5WImqQhBDmlZ6erq8herr2CMDPz5+qVQNQq9UcP37MHOEJIUQWkiAJIQrduXNniImJxtXVjWeeaZbl9ebNn/3/fqeLOjQhhMhWsWxiE4azVcCg2qn670XxYUlle+DA7wC0a9cBOzs7SM8YW4MGjfjhh++4cOG8GaM0P0sqM2NZ2j1YWjzCekiCVMLZ2cD4xsbPHi4sl6WUrVqt5sCBPwDo3LkrkDW2Bg0aAXDt2lWSk5NL7PIjllJmBWFp92Bp8QjrIU1sQohC9d//XiI8PIzSpUvTokWrbPcpW7Ycnp5eqFQqrly5XMQRCiFEVpIglXBqDTyMV/AwXoHahBNsCfOzlLLVNa+1adOeUqVKZRubQqGgVq06AFy/HpTjuYo7SymzgrC0e7C0eIT1MEuC1KVLF9asWUNISIg5Li+ekpIOL+xy5oVdzqSk572/sB6WULYajUbfvNaxY5dcY6tRoyYA169fK/I4LYUllFlBWdo9WFo8wnqYJUF69tln2bBhA506dWLYsGHs2bOHlBRpIxaiuLl+/RrBwXext7enTZu2ue5brVqN/x9TcmuQhBCWwywJ0uzZszl8+DCLFy/Gzs6OyZMn07p1a6ZPn8758+fNEZIQohDs3/8bAC1btqZ0aadc961RQ5sg3bhxHY0pF1QSQggjmG0Um729PT169KBHjx5ERkby22+/sWvXLl555RUqV67MgAED6NevH87OzuYKsUQIDw8HXMwdhiimdM1rnTp1zXPfypWrYGtrS3z8Y0JDQ/D3L1vY4QkhRI7M3kk7JSWFY8eOceTIEa5evYqLiwvVq1fniy++oHPnzhw7JjPrFpaEhHjeGjVM//+7d++YLxhR7Ny+fYubN69ja2tHu3Yd8tzfzs6eKlWqAtLMJoQwP7MlSMePH2fq1Km0bNmSSZMmkZCQwNy5czl8+DDLly/n77//pmrVqnz00UfmCrHY++WXvYSEPtT/f+PG9WaMRhQ3+/drR681b97C4PXVdP2Qbt68UWhxCSGEIczSxNa+fXvCwsLw9fVl8ODBvPTSS5QvXz7DPg4ODrRs2ZJNmzaZI8QSYd++3Rn+f+jQ36hUKmxtZf5QUXC64f2GNK/pVKpUGYB79+4VRkhCCGEws3wSNmzYkH79+tG6dWsUipznfu/bty/9+vUrwshKjujoaM6ePQ029vQoG8Nvv/9CwuNYrlz5L/XrNzR3eMIEbBTQv3qq/vuidP9+MFevXkapVNK+fSeDY6tQoRIA9+7dKYowLY45y8xULO0eLC0eYT3MkiBVr16dGjVqZJsc3b9/n/Xr1zN9+nTKlpVOmoXl4sXzAFStVJHZ7W1J2P07B9JTOX78qCRIxYS9DUxuZp7pM3S1R02bBuLh4ZHl9Zxiq1hRmyAFB5fMGiRzlpmpWNo9WFo8wnqYpQ/SqlWrCAsLy/a1CxcusHXr1iKOqOS5ePEcAA0bNgKgWbPmACV+sVBhGrr+R/lpXgOoWLEiAOHhYSQlJZk8LiGEMFSR1SANHDiQCxcuANrZdQcMGJDjvvXr1y+qsEosXSJUv34jYpIVlA3Q1hrJ6KHiQ6OB2BRtLW2ZUhpyac02qZCQh/z77wUUCgUdO3bOV2xubmVwdXUjLu4R9+/fo3r1mkUTtIUwV5mZkqXdg6XFI6xHkSVI8+bN45dffkGj0bBq1Speeukl/Pz8MuyjVCpxdXWla9f8/dUp8kej0RAUdAWAarUb0uVnZ6Al2DkSFhbKo0exuLmVMWuMouCS0/l/2cI/Lz/GsYh+2vft2wNAkyZN8fb2yXdsFStW4tKli9y7d7fEJUjmKjNTsrR7sLR4hPUoskclICCAsWPHAtqFKfv374+vr29RXV48JTw8nPj4eGxsbKhUqRJoW9vw9ytLSPBNrl0L0je5CZFfe/ZoR0f26NHLqOMrVKj4/wSpZPZDEkJYhiJLkB4+fIi3tzd2dnb07duX9PR0Hj58mOP+0kG78Ny6pZ1jpkKFitjb2+u3V6teg5Dgm9y4cU0SJGGUy5cvc/16EHZ2dnTp0s2oc+g6at+7d9eUoQkhRL4UWYLUqVMntmzZQoMGDejYsWOuw/sBrly5UkSRlTy6SfgCAqpl2F6pYmX+QT6YhPG2b98OQJs27Q2eHDKzcuW0c6I9fPjAZHEJIUR+FVmCNH/+fCpUqKD/Pq8ESRQeXQ1S1aoZE6Ry5bXlExwcXOQxCeunVqvZsWMHAD16PG/0eXRrsIWG5lzDLIQQhc3gBGnq1Kn5OvGCBQsy/L9Pnz767/v27ZuvcwnT0tUQVa5cJcN23WzmwcFSgyTy78yZ0zx8+BAXFxfatGlv9HmeJEghaDQa+WNKCGEWBidIJ06cyPD/8PBwVCoVZcuWxdvbm9jYWIKDg7G3t6dWrVp5nu/UqVPY2NjQpEkT7t+/z+zZswkJCaF79+6MGTMm/3ciDPbgwX3gSVOGTvn/1yA9ePBAlhwR+bZzp7Z5rXPnbpQqVcro8/j6+qJQKEhJSSEmJhoPD09ThSiEEAYz+BPwzz//1H+/e/duFi9ezIoVK2jQoIF++40bNxgzZgzPPfdcrufauXMnU6ZMYdiwYTRp0oSZM2dy5swZWrVqxRdffIGdnR0jR4404nZEXtLS0ggLCwW0CZKNAp6vkgaAv68v9vb2pKamEhYWmiWBEtbl6bIt7CUW4uPj+e23fQD06fNSnvvnFpudnT1eXt5ERIQTEvKwRCVIRVlmhcXS7sHS4hHWw6gqgqVLl/Lee+9lSI4AqlWrxvjx41mwYAFDhgzJ8fgNGzbQp08fJk2aRFRUFEePHuW9995jxIgRrF+/ni1btkiCVEhCQ0NQq9WUKlUKLy9vFAqY+Wzy/19VUq5ceW7fvsX9+8GSIFk5e5uny7Zw/frrHpKSkqhevTqNGzchPV1ToNj8/f2JiAgnNDSEunVLzsSxRVlmhcXS7sHS4hHWw6ilRmJiYnBxccn2NVtbWxITE3M9/tatW/Tu3RuAQ4cOodFo6NRJu6Bl/fr1CQkJMSYsYYD797UdsMuVK59t3w4/P39Am0gJYaiff9YuD/TKK6+YpM+Qn5+2H5L8LhBCmItRCVKjRo1YuXIlMTExGbaHh4ezYsUKmjfPfQ4dV1dXEhISADh48CBly5alcuXKANy7dw93d3djwhIG0PU/KltWWzuk0UCSSvul0TxJkHTNcMJ6ZS7bwnL16mUuX/4vdnZ29O/f3ySxPUnUS9ZItqIqs8JkafdgafEI62FUE9vkyZMZNGgQHTt2pHHjxri7uxMVFcW5c+dwc3NjzZo1uR7fokULVq5cyfXr1/njjz8YPnw4AL/99huff/45rVu3NiYsYQBdgqQbsZacDm1+0tYG/vPyY3x9tcu/SA2S9ctctoW1xMLWrT8C0KlTFzw8PIiJSShwbLqJYkNCSlaCVFRlVpgs7R4sLR5hPYyqQapVqxZ79uxh4MCBJCQkcOnSJZKTkxk+fDi7du3Sf/jmZNq0abi7u7Nq1SpatmzJqFGjAO3UAGXLluW9994zJixhgJxGsOlIDZLIj5iYGPbs2QnAK6+8ZrLzShObEMLcjM6lfX19mTx5slHHuru78/XXX2fZ/v3338sSI4XsSYJUIdvXn9QgSYIk8rZt2xZSUlKoU6cuTZo0Ndl5dQtZS6IuhDAXoxOk1NRUtm3bxtGjR4mIiGD+/PmcPHmSunXrZhndlpNHjx6RlJSEWq3Wb9OtzyaJUuHQLd+Q0/v7pAZJ/nIXuUtLS+WnnzYD8NprQ0w6oaO3tw8A0dFRMieXEMIsjPqtEx0dzZAhQ7h16xZVq1blxo0bJCcnc/DgQT755BO++eYbGjdunOPxd+7cYcqUKVy4cCHHfWQtNtNLTU0lJiYaAB8fv2z30f3lHh8fz+PHj3McrSjEb7/9QkREBN7e3nTt2t2k53Z398DGxob09HSioqLw9fU16fmFECIvRiVIn376KQkJCezbt49y5cpRr149AD7//HNGjBjB8uXL2bBhQ47Hz5kzhzt37jB27Fj8/PxQKo3qCiXyKSIiHAA7O7scRwo6OpbG1dWNuLhHhIWFSIJkpTQaDZcu/Qu0AiA6KopyvqabcDE9PZ2vv/4SgIEDX8fOzt5k5wZQKpV4eXkTFhZKRES4JEhCiCJnVIL0119/8eGHH1KpUiXS09P120uVKsXw4cOZMmVKrsefPn2aefPm8fzzxi9oKfIvPFybIHl7++TaHOLn50dc3CNCQ0OpVq1GUYUnTCQ6OoqpU9/nxNnz2E7ULkzc+8XnGPzKQEaPHmuSZObXX/dx+/Yt3NzcGDDAdJ2zn+bt7aNPkIQQoqgZlSClpKRQpkyZbF+zsbEhLS0t1+OdnZ1xc3Mz5tKiAMLDw4AnHbEBlAroVCFN/73u9WvXgmSovxV6/Pgxb7wxhFu3bmBf2gX3qBOkpKQQm5rC+vVrOX36JCtXfomrq/E/fyqVirVrVwEwaNAwnJ2d832O7J67zHT9kEpSgmTI+2LpLO0eLC0eYT2MSpDq16/P999/T7t27bK8tnv3bn2TW0569+7N5s2bad26tazUXYR0CZKPz5PmilI2sLBNxmn4dQlUSfpgKi7mzZvJrVs38Pb2Ye3ab6hSpSoajYYDjT5l1qyPuXjxPG++OZQ1a77Gw8PDqGv8/PNW7t69g5ubGwMHvm7UObJ77jIriQmSIe+LpbO0e7C0eIT1MCpBGj9+PEOHDqV37960a9cOhULBnj17WLFiBYcPH2bdunW5Hu/o6MiZM2fo0qUL9evXx8HBIcPrCoWC+fPnGxOayEVEhC5B8sl1Py8vbwAiIyMKPSZhOmfPnubXX/diY2PDkiUrqFKlKqD9eercuRuVK1dh1KjhBAVd4a23hrNu3cZ81yTFxsawatUyAEaPHmdU7ZGhSmKCJISwHEb1jm7atCkbNmzA0dGRdevWodFo+Oabb4iIiODLL7+kRYsWuR6/fft2XFxcUKvVXLhwgRMnTmT5EqaXXQ1SdiRBsj4ajYZlyxYB0Ldvf+rXb5hln2rVavD119/i6enFtWtXGTNmJAkJ8fm6zsqVy3j06BHVq9egX78BJok9J97e2udQEiQhhDkYPblIs2bN+PHHH0lOTubRo0c4Ozvj5ORk0LF//vmnsZcVBaDrpP10gpSkyjoN/5MPJkmQrMXp0ye4ePECDg6OjBo1Bsi+bCtXrsqXX65nxIhB/PvvBcaPf5uVK9dmqcXNzpEj/7Bt2xYAJk/+qEBzE2UXW2a6ms6SlCAZ8r5YOku7B0uLR1gPo2qQpk6dyunTpwFwcHDA19dXnxxduXKFTp06GXQetVrN1atXOXToEPHx8cTGxhoTjjCQ1CAVX1u3ahOXXr1e1JdfTqpVq8Hq1etwcnLi9OmTvPfeONLSUnM9JiTkIdOnTwXglVdep2nTQNMEngtpYhNCmJNRCdL27dsZOnQoW7ZsyfJaamqqfjbs3OzcuZP27dvz4osvMmrUKO7evcuUKVN45513SE3N/Ze1yD+NRpOPBOnJLMZPz3IuLFNUVCR//vkHgMHNXnXr1mfFii9xcHDgyJFDTJ36PiqVKtt9Y2JiGDfuLaKiIqlevQbjx79vsthzo0uQYmJi5HeCEKLIGT1DY7t27ZgxYwazZs3KMBeSIfbt28fkyZNp0aIFS5cuRaPRANC1a1cOHTrE6tWrjQ1L5CA2Nlb/IaP74MmJh4cHCoUClUpFbGxMUYQnCuDXX/ehUqmoX78hNWvWMvi4Jk2asmTJSuzs7Ni//3dGjhyqX6tP59q1IIYNe5Xr16/h5eXN8uVfGNQcZwpubmWws7MDpDZTCFH0jG6NHTVqFD179uTDDz/kxo0brFixIse5kTL74osvGDhwIDNnzsyQXPXt25eoqCh++uknJkyYYGxoIhu62iN3d3fs7XOfKNDOzo4yZdyJiYkmMjISDw/TzcAsTO/PP38HoHv3nvk+tmXL1nz22QqmTn2Ps2dP07v3c7Rv34GqVatx69ZN/vprP+np6fj5+bN69Tr8/YtujUSFQoG3tw8PHz4gIiKcsmXLFdm1hRCiQGt89OjRg82bN3Pv3j1eeuklgoKCDOq4efv2bbp06ZLtaw0bNiQsLKwgYYls6BIkb2/DlmzQddSOjJT+H5YsKiqSs2fPANCxY2ejztG2bXt++OFnmjdviUqVxv79v7N27Wr27/+N9PR0OnfuyqZNW6haNcCUoRtE159K+iEJIYpagfvz161bl23btjF27FgGDhzI6NGj8zzG09OTmzdv0qpVqyyv3bx5E09PqbEwNUP7H+l4eXlz7VqQjGSzcH///ScajYY6deoVqHanYsVKfPnlei5d+pdjxw4THh6Gl5c3bdu2p3btuiaMOH90I9l0z68QQhQVkwx49Pb2ZtOmTXz88ccsWbIkz9mxe/TowfLly/Hx8dHPxq1QKLh06RKrV6+WNdoKwZMEKWP/I6UCWpVV6b/XkZFs1uHIkX8A6NAh68jRnMo2N/Xq1adevfomiy8nhsam6y9XUp5DY8rM0ljaPVhaPMJ6GJUgjR07Nsvq2vb29ixcuJBatWrlOc/RhAkTuHbtGhMmTECp1LbyDRo0iMTERJo2bcr48eONCUvkIrs5kEA7Df/n7ZOy7C8JkuVLT0/n5MnjADz7bOssr+dUtpbA0Ng8Pb0AiIyMLOyQLIIll5mhLO0eLC0eYT2MTpByMmzYMIYNG5br8fb29qxbt44jR45w/PhxYmNjcXFxITAwUL90iTCt/DaxyWSRlu/y5f8SH/8YFxdXateuY+5wCoUk6kIIczE4QRo8eDAzZswgICCAwYMH57qvQqFg48aNOb6+Y8cO2rVrR6tWrbL0Q4qIiGDHjh28+eabhoYmDPBkHTbD+yCBfDBZshMnjgIQGNgcGxsbM0dTOEpaE5sQwnIYPIpNN1eR7vvcvvKaXHDq1KkEBwdn+9qVK1dYvny5oWEJA+VUg5SkgtZbnGm9xZmkp+YJ1CVIUVElo2nDGuma1wIDn8329ZzK1hIYGtuTUWwlI0Gy5DIzlKXdg6XFI6yHwTVImzZtyvZ7Q40aNYobN24A2gRrzJgx2c7HExUVRcWKFfN9fpGzlJQU/TIumTtpAySnZ23SfPqDSaPRSLOnhVGpVFy8eAGAZ55pluN+2ZWtpTAkNl1Tb0xMNGlpafqJI4szSy4zQ1naPVhaPMI6FNmyfaNGjWLr1q2AdqmSOnXq4OHhkWEfpVKJq6srffv2LaqwSgTdHDL29va4uZUx6BhdgpScnERCQgLOzs6FFZ4wwo0b10hOTsLZ2cUs8xMVlTJl3LG1tUWlUhEdHYWvr5+5QxJClBAGJ0i1atUyuBZBoVBw+fLlDNuaNGlCkyZN9P9/++23qVChgqGXFwXwdPOaoWXo6OiIs7Mz8fHxREaGS4JkYc6fPwdAgwYN9SNBiyOlUomHhyfh4WFERERIgiSEKDIGJ0hjxowxWTPLggULTHKep6nValauXMnWrVuJi4vjmWeeYcaMGVSqVCnb/bdv386UKVOybP/9999zPMZa5XcEm46Xlzfx8fFERERQuXLVwghNGOnixfMANGjQyKxxFAUvL2/Cw8Oko7YQokgZnCC98847JrtodHQ08+bN4++//yYpKSlDB3DIvgYqL6tXr+bHH39kwYIF+Pr6smjRIt5880327NmTbV+noKAgAgMDWbJkSYbtmZv9ioOcJonMi5eXN3fu3JYPJgt04YKuBqmReQMpAk+WvZHnUAhRdIzug5ScnExQUBBpaWn6BEetVpOUlMTp06d5//33czx25syZHDx4kJ49e+Ln51fgJoLU1FTWr1/PBx98oJ+Ze+nSpbRp04Y//viDnj2zLuJ57do1atWqpf/lW5wVpAYJ5IPJ0kRGRvDgwX0UCgX16zc0dziF7slkkfIcCiGKjlEJ0vHjxxk/fjxxcXHZvu7k5JRrgvTPP//w4YcfMmDAAGMun8XVq1dJSEigRYsW+m2urq7UqVOHU6dOZZsgBQUF0a1bN5Nc39LpZtHObqFaBdDER6X//mkyWaRl0o1eCwiohouLS4775Va25paf2EpSom7JZWYoS7sHS4tHWA+jEqRly5ZRpkwZ5s6dy65du1AqlfTt25dDhw7xww8/8NVXX+V6vL29vUk7aIeGhgLg7++fYbuPjw8hISFZ9o+OjiYyMpJTp06xadMmYmNjadiwIe+//z5VqlQxOg4bG8vsLKubJLJsWX9sbTPG6GwL67un/P9/GV/TLScTFRWZ5ThLo3vvLbUMTOnatSsA1KvXINdyya1sC0N+yiA/sVnTc1hQBSkzS/kZKOrnLi9FGY+llEFJZsoZaYxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCptumH9AQCXc3Z0MPq5yZW0SGxMTma/jzMlSy8CUbt7UPr/PPNPIIsvF1GVQpYruOYyyyPu1NCXhZ8DSSRkUD0YlSGq1Gj8/7XDbKlWq6CeABOjWrRuTJ0/O9fg6deqwbNkygoODadiwIQ4ODhleVygUjBkzxuB4dMenpqZmOFdKSgqOjlkf1BYtWnDy5Enc3Nz021atWkWHDh34+eefGTlypMHXflpcXBLp6bnPIl7U1Go1oaHaGqTSpd2IiUkw+NjSpbXvT0hISL6OMwcbGyWuro4WWQam9u+/lwCoUKGqRZVLYZWBo6O2GTEkJNSi7tfSlKSfAUslZWB+bm6OJpv6xKgEqWLFigQFBdG0aVMqVapEUlISN2/eJCAgAJVKRUJC7r/EZs+eDcCpU6c4depUltfzmyDpmtbCw8MzzMIdHh5OrVq1sj3m6eQIoHTp0pQvX56wsDCDr5tZeroalcqyfiiio6NQqdIAcHf3zBJfkgp67dT+Vb67dwKOTz0RHh6egLYPkqXdV04ssQxM6dGjWEJDtc3GAQE1cr3X3Mq2MBlSBvmJzd1dW6MbFRVJaqqqWM/7ZIoyM/fPgLmeO0uKx9xlUJJlGhRfIEY9Kr169WLx4sWo1WoGDRpEvXr1mDt3LoMGDeKLL76gWrVquR5/9epVo4LNSa1atXB2dubEiRP6BCkuLo7Lly/z+uuvZ9n/+++/5/PPP+fgwYP6Gqf4+Hju3LlDv379TBqbuelGsHl4eGJnl3W6A4DYlOw/cHQLhcbHx5OUlIijY+nCCVIY7No17c9OuXLlc+2grZNT2VoCQ2Pz9NQm6iqVitjY2GI5FcfTLLnMDGVp92Bp8QjrYNRT88YbbzBw4EAuXrwIwIwZM7hy5Qpvv/02t27dYtKkSSYNMi/29va8/vrrLF68mAMHDnD16lUmTpyIn58fXbp0IT09nYiICJKTkwHo0KEDGo2GSZMmcf36df7991/eeecdPDw86NOnT5HGXth0CZKuo2t+ODk565MiGclmGXR/XNSokX3NaHFkZ2ePu7s7AFFR8hwKIYqGUTVISqUyQz+j+vXrs3//fm7dukXVqlWzXZZi8ODBzJgxg4CAAAYPHpzr+RUKBRs3bsxXTOPGjUOlUvHRRx+RnJxMs2bN+Prrr7G3t+f+/ft06tSJBQsW0LdvX/z9/dm4cSOLFy/mlVdeQaPR0KpVK7799tss/aGsna7JML9zIOl4e3tz795dIiLCqVixeM0wbo10NUg1a5acBAm0cyHFxMQQERFB9eo1zR2OEKIEMFlrrLOzMw0aNMjx9adny848c3Zu+xrKxsaGDz74gA8++CDLa+XLlycoKCjDttq1a/P111/n+zrW5skkkcatYeXt7cO9e3dLxBw01iAoSJcg1TZzJEXLy8ubGzeuy3MohCgyRiVIDx8+ZPbs2Zw9e5bHjx9neT27pUI2bdqU7feicIWFaeeIKkgNEjyZbFKYT1paKrdu3QRKXg1SSZosUghhGYxKkKZNm8b58+d56aWXKFOmjIlDEqZUkD5I8KSjtnwwmd+tW7dQqdJwcXHF37+sucMpUrrnUPrCCSGKilEJ0vnz5/n444/p27evqeMRJpbXOmwKoI5Huv77zHR/uesmmxTmExSknUG7Ro2aKAyYLjavsjWn/MZWUmqQLLnMDGVp92Bp8QjrYVSC5O3tnWUeIWGZntQgZd8HycEWvu2emOPxT/5ylwTJ3PLb/yivsjWn/MZWUhIkSy4zQ1naPVhaPMJ6GDXMf9SoUaxatYoHDx6YOh5hQgkJ8cTHxwPademMoeuDVNw/mKzB0zVIJc2T5zDSzJEIIUoKo2qQ2rdvz7p16+jcuTMeHh7ZLhWyf/9+kwQojKfrWO3s7IyTU9apFwwhNUiWQaPRcO2adiRmrVolawQblJwaJCGE5TAqQZo6dSrBwcG0atVK/5ddXnbs2JGva7z44ov5D0xkkFf/I4BkFfTfq52Gf2vPBBwyPRFeXjKbtiUIDQ0hLu4Rtra2VK2a+0z1OnmVrTnlNzbdAtJJSYkkJMQbnfBbOksuM0NZ2j1YWjzCehj1qJw8eZLp06fz8ssvG3zMlClTDN5XoVBIgmQChgzx1wAhCUr995k5OTnh6FiapKREIiIiZLJIM9H1P6pSpSr29tkvGZNZXmVrTvmNrXRpJ0qXLk1iYiKRkRHFNkGy5DIzlKXdg6XFI6yHUQmSq6srZcvmb5jxgQMHjLmUKABDapDyolAo8PLyJjhYO1mkJEjm8WQG7ZLXvKbj5aWb1T2CSpWqmDscIUQxZ1SC9Oqrr7J27VoaNWqU7bIi2SlXrpzB5zdmJm2RlW6ZkZxGsBnKx0ebIEk/JPPRddAuaRNEPk237I30QxJCFAWjZ9K+fPkyrVu3znbtNUPWUtu7dy8nT54kLS1NnxBpNBoSExM5f/48hw4dMiY08ZSIiILXIMGTjtoym7b5lNQlRp6m6w8nk0UKIYqCUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk/6IBk3xF9Hl2CFh4cWOCaRf/Hx8dy/HwyUzCH+OiVhJJv2jxAXAFJTU3G0Nay/mRDC9IxKkGbOnElAQIDRF92+fTsvvPACCxcuZPny5Tx8+JCFCxdy6dIlRo4cSfXq1Y0+t3hCV+NT0CY2Pz9/AEJCQgock8i/69e1w/t9ff0oU8bdzNGYjy5BiooqfnMhRUZGsGDBbA4cOoztxBsAvPBCN0YOG8Yrr7yOUmnUlHVCiAIw6qduxIgR+R62/7SwsDB69+6NQqGgbt26nDt3DoB69erx1ltvsXXrVqPPLbTS0lL1HyS5NbEpgKpu6VR1S89xGn4/P22H/NBQSZDMwdj+R4aUrbkYE5tuSpHi1sQWHHyPV1/tx4EDf6AA7B7dRhlzg0exMSxaNJ8PPhhPWlqqucM0mKU9d5YWj7AeRtUgqVQq3N2N/0u2dOnS+rWkKleuzP3790lOTsbBwYHatWtz//59o88ttHS1R3Z2drnWOjjYwk89c5+G399fW4MkCZJ5BAVpa5Bq1MhfgmRI2ZqLMbEVxya2xMQExox5k/DwMKpUqcqnny6lenUvVCoV232m8Omn8zhw4A8mT36PxYs/t4qaJEt77iwtHmE9jPppGz9+PHPnzuU///kPFy9e5OHDh1m+clO/fn22b98OQMWKFbGxseHo0aMA3Lx50+B5XkTOQkK0ZeDnV7bAv1R1NUiRkRGkplrPX7LFhYxg03qSIBWfwQILF87j3r27+Pn5s27dt1Svru1jZmtrS//+A1m+/Avs7e35888/+OqrNWaOVoiSxeg+SOnp6UybNi3HVcWvXLmS4/FvvfUWw4YN4/Hjx3zxxRe88MILTJkyhebNm3P48GE6d+5sTFjiKboEqWxZw6dXyEmZMmVwcHAgOTmZsLBQKlSoWOBzCsOoVCpu3LgGlOwRbPBkNu1Hjx6Rmppq9X9InTlzip07f0apVDJ//iI8Pb2y7PPss62YNm0mM2Z8yBdfrKRFi5Y0bNjYDNEKUfIYlSDNnTu3QBdt1qwZ27Zt0zcdTJ8+HaVSydmzZ+nevXu+Zt0W2Xv4ULuQcF4TeiarYPBv2uVDvu2WmO00/AqFAj8/f+7cuU1o6ENJkIrQ3bt3SE1NpXTp0pQvXyFfxxpStuZiTGxubmWwt7cnNTWViIhwypUrX8hRFh6NRsPSpYsA6Nu3P02aNAWyf1969+7LqVMn2LNnJ7NmfcyPP/5s0cmhpT13lhaPsB5GPSp9+vQp8IVr1apFrVraJoNSpUoxZ86cAp9TPPEkQcq9BkkD3Hpko/8+J7oESUayFa2rVy8DUL16zXw3lRpatuZgTGy6RP3evbs8fPjAqhOkQ4f+4tKlizg6luatt8bqt+f0vnzwwVSOHj3MrVs3+PHH7xg8eHjRBpwPlvbcWVo8wnoYnUtHR0ezYcMGTpw4QVxcHO7u7jRt2pShQ4fi6emZ5/GPHz/m+PHjJCYmZjtvkqzFVjCmbGID8PeXkWzmoEuQ6tSpa+ZILIO/fznu3burf76t1bffbgBgwIBX9X2rcuPmVoZx495l5sxpfPXVF/Tu3Rc3tzKFHKUQJZtRCVJoaCgDBgwgOjqaRo0aUadOHSIiItiwYQM7duxg27Zt+PrmPLT84MGDTJgwgaSkpGxfl8VqC05Xg6RLbApK5kIyjytXtAlSSe9/pKNrMrbmBOny5UucOXMKW1tbXnnldYOP69XrRb777htu3LjO119/ybvvTi7EKIUQRiVIixYtwtbWln379lGhwpN+EcHBwQwfPpylS5fyySef5Hj8kiVLqFq1KlOnTsXX19cqhq5ak/T0dEJDtbNem7oG6eFDmYKhqGg0Gq5e1Q52qF1bapDgyXNozQnStm1bAOjSpXu+JnG1sbFhwoQPGDt2JFu2fM+QISOy7dgttNRqNefOneHE2QvgNBGA3bt30r5ViwIvvyRKBqMyk8OHDzNu3LgMyRFAhQoVGDNmTJ7rqN26dYsJEybQtGlTKlSoQLly5bJ8CeNFRkagUqVha2urX0etoCpUqARoJ7UTRePBg/vExz/Gzs6OqlWNn7m+OLH2BCkpKYnff/8FgJdeejnfx7dq1Yb69RuSkpLC5s3fmjq8YuPQob/p27cnI0YMYu3aVfrt8+fP5LnnOjJ16vtW+wyJomNUgpSenp7jRJEeHh7Ex8fnenzZsmXz3EcYT9e85uvrh42NjUnOWbGiduRaaGiIzIVURK5c+S+g7aBtZ2dn5mgsw5OaTOv8cPvrr/3Ex8dTtmw5/ci1/FAoFAwfPhKAn376nri4OFOHaNVUKhWLFi1g3Li3uHPnNk5OTnTp3F3/et269UlPT+eXX/bQt+/z/PrrXjNGKyydUQlSzZo12blzZ7av7dixgxo1auR6/KhRo1i1apXMmF1IdB8ehjSvKQB/JzX+Tupcp+H38PCkdOnSqNVqHjyQcisKuv5HtWoZ1//I0LI1B2NjezJY4CFqtbpQYitMu3ZpJ8jt1evFbLsWGPK+tGvXgYCA6sTHx/PTT98XXrBGMtdzl56ezkcfTWLz5o0ADBo0lN9/P8icOQv08Xy97lt++OE/NGrUhKSkRKZMeY+vv/6yCKMU1sSoPkhvv/02I0aMIDY2ll69euHl5UVkZCS7d+/m6NGjLF++PNfjd+/eTVhYGF26dMHDwwMHB4cMrysUCvbv329MaIL8ddB2sIXdvRPy3E+hUFChQiWCgq4QHHyXKlWqFjhOkTvdDNrG9j8ytGzNwdjYfHy0fRbT0tKIioo0WRNyUQgPD+PEiWOANkHKjiHvi1KpZPjwkUyb9gGbN3/L668PzfI71BxSUlLYv/93jhw5hPv9YOzt7Vl2pTrt23eiefNnc5xU2FQWL17Ar7/uw9bWlvnzF9O165Oao6ff09q16/L115tYuXIZGzZ8xYoVS1GrNbz55luFGp+wPkYlSK1atWLhwoUsWrSII0eO6Ld7eXkxf/58unTpkuvxfn5++PkVbIV5kbOQEMPmQMqvChUqEhR0hXv3pB9SYdNoNFy+rG1iq1WrjpmjsRx2dnb4+PgSGhpCSMhDq0qQ/vzzDzQaDQ0aNMz3pJ+Zdev2HCtXLiUk5CF79uykX78BJorSOP/8c5B582ZmmQbk9OmT/PjjZmrXrsNHH82ibt36hXL9fft288MP36FQKJg3b1GG5Cg7NjY2jB//Hs7OzqxYsZRVq5ZRtmw5evbsVSjxCetk9DxIvXv3pl27dly/fh1bW1vc3Nywt7dHqVTy8OHDXGdwXrBggbGXFQZ48MC0Q/x1dP2QgoPvmvS8Iqvw8HBiYqKxsbGhevXcm6xLmnLlyhEaGsL9+8E0aNDI3OEYbP/+3wHo3Llbgc9la2vL668PZdGi+WzatIG+fftjZI+JAtFoNHzzzdd8/vliQFvD17t3X2rWrEVKSgpnzpzil1/2cuXKZQYNGsC7707mtdcGm7Q26e7d28yZMwOAN954i27dnjP42BEjRpGQEM/69V8xa9Y0KlWqTL16hZPECetjVIJ0584dpkyZwoULF3LcJ7e12HLrYKlUKildujSurq7GhCaAe/fuAFCxYuU8901Wwcj92mn413bOfRp+GclWdP7734sAVK0aYHTzSX7KtqgVJLaKFatw5sxp7ty5XUjRmV50dBRnz54GoFOnrjnul5/3pU+fl/jii5XcvXuHgwf/yrPmvjBs3LhenxwNGPAqEyZ8gMLOUXsPNrD2wxcYO3YiCxfO5bff9rF48QLCw0OZOHGSSZIkjUbDnDkzSEpKpFmz5hlmJdfJ6z0dO3YiN25c59Chv5k69T22bNlO6dJOBY5NWD+jfmXOmTOHO3fuMHbsWPz8/PI9j1HHjh3z/OFwc3Nj8ODBvP3228aEWGKlpKToq7krVaqU5/4a4HK0YdPw69Zgu3dPapAK24UL5wEKtDBpfsq2qBUktsqVKwPadeqsxZ9/7ketVlOnTt1cl0jJz/tSurQT/fsPZP36tWzc+HWRJ0h//rmfZcu068mNG/eufnRdkirjPXh4ePDJJ59Rt249liz5lG+/3YCtrR3jxr1b4Bh27vyZ06dP4uDgwMyZ87IdtZvXe6pUKpk791Nefrk3wcH3WLz4E6ZPl6WvhJEJ0unTp5k3bx7PP/+8URf95JNPmD59OoGBgTz//PN4eXkRFRXFb7/9xt9//83bb79NQkICa9asoUyZMrz66qtGXackCg6+h0ajwdnZBXd3D5OeW9cx+8GD+yQlJeLoWNqk5xdPXLhwDihYglRcVa5cBcCqapD27/8NME3z2tNeeeV1vv12A+fPn+X8+XN06NDapOfPSUREOLNmTdPHoEuOcqJQKBg8eDilSjmwYMFs1q9fi5+fPy+//IrRMURHR7N06acAvPXWOwVam8/V1ZU5cz5h5Mih/PzzVtq160C7dh2NPp8oHoxqtHZ2dsbNzc3oi+7du5eePXuybt06XnzxRVq3bk3v3r1ZvXo1/fv359KlS0yePJm3336bH374wejrlES62p2KFSuZfNSIp6cX7u4eaDQabt68adJziydSU1O5fPkSgFX1sSkqugTp7t07VjHUPzY2hlOnTgC5N68Zw9vbR9+x+JtvvjbpuXOi0WiYOfMjHj16RO3adXj33UkGHztgwKu88452VutPP53HqVPHjY7js88+4dGjR9SoUYvXXhts9Hl0mjVrzqBBQwGYP382CQkyV19JZ1SC1Lt3bzZv3pztIrOGOHnyZI61T127duX4ce0PzTPPPENwcLBR1yipdM0OlSpVLpTz6zoM37hxrVDOL7QL1KampuLu7k7Fink3k5Y0ZcuWx9bWluTkJMLDw8wdTp7+/vtP0tPTqVGjZqH8XA4aNAyAAwf+4Pbtwq9V++uvAxw5cgh7e3vmzFmInZ19vo4fPnwkzz33PCqVivffH2/UvGrHjx9l795dKBQKPv54tskmUn377fGUL1+BsLBQ1qxZYZJzCutlVILk6OjImTNn6NKlCxMnTmTq1KkZvj788MNcjy9TpgxXr17N9rWrV6/i7OwMQGJiIo6OjsaEWGI9XYNUGKpXrwnA9euSIBWWp/sfFfbcMdbIzs5O35xiDc1sf/75B2D62iOdatWq07p1OzQaDWvXri2Ua+ikp6ezcuUyQJuYVatWPd/nUCgUzJgxlzp16vHo0SMmThyb48Ll2UlKSmLuXO2otQEDXqV+/Qb5jiEnDg4OTJ06HYDvv9/E1auXTXZuYX2MSpC2b9+Oi4sLarWaCxcucOLEiSxfuenVqxfLly9n48aNhIWFkZaWRlhYGJs2bWLlypX06tWLR48esXHjRho2bGjUjZVU+RnBZgypQSp80v8ob9bSDyk+Pp5jx7RzxRVWggQwZMhwAH766Seio6ML7Tq//LKHW7du4OLiypAhI4w+j4ODA0uWrMDd3YNr164ye/bHBrdIfPnlKu7fD8bX14+xYycaHUNOWrVqQ9euz6FWq5k7dybp6ekmv4awDkZ10v7zzz8LdNEJEyYQFRXFJ598wieffKLfrlQqeemll5g4cSK//fYbly9fZuPGjQW6VknzJEEyvAapTCnD+3FUq6ZNkKQGqXBoNBrOnTsDmCZByk/ZFrWCxFalSgAHD/7FzZs3TBiR6R0+fJC0tDQqV65CQEA1g44x5n1p2jSQOnXqcfnyJX78cTMjR47J9znykpaWqm92GjbsjVynYjHkHvz8/Fm0aBmjRg3jl1/2UKdOPX0foJxcvXqZTZs2APDhh9P1rQ15ye97+v77Uzhy5BCXLl3kP//5qUCdyYX1UmiM7UhkAvfu3ePEiRPExMTg6+tLkyZNqFBBO8Pso0ePcHR0xN4+f+3b5hQTk4BKZb4PpEePYmnXrgUAR46cxsnJsF8e+ZGUlETLlk3QaDTs3/8PXl7eJr+GMWxtlbi7O5m9DArq2rUgXn65N46OpTl06Hi++3eYU1GWwS+/7GHq1Pdp0KAh3367pVCvVRDvvz+e/ft/Y/jwkSYZ1p6b33/fx6RJ7+Lu7s4vv/xl8uVHtmz5ngULZuPl5c3u3b+brPvD999/y6efzsfGxoY1a74mMLBFtvslJibw2mv9uX37Fl27Psenny41yfVz8sMPm1i4cB7Ozi7s3PkLnp5eeR5TXH4PWTMPDydsbEwzaWrRT736lIoVK9K/f39GjhxJ79699ckRoJ+ZWxhOV6tTtmy5QkmOQNv/TPeX8MWLOU8UKoxz/Li2OeaZZ5pZVXJU1HTLr1y7ds1im0CSk5M5fPgQAJ06Ff4cRV27dqd8+fLExMSwe/cOk547KSmRr75aA8Cbb442ad/QV14ZxPPP9yY9PZ13332H//733yz7qFQqpk+fyu3bt/Dx8WXKlI9Ndv2cvPzyq9SpU5f4+McsWfJpoV9PWJ4iS5A6deqk75jdsWNHOnXqlONX586diyqsYkXXL6iwl6Zo1KgJAOfPny3U65REusVMmzd/1syRWLaKFSvh4OBIcnKSxU4YefToYZKTk/D3L0udOvUK/Xq2tra8+eabAGzatMGkieOPP24mMjKCcuXK07dvP5OdF7Sdtj/6aBZNmjQlPv4xo0YN488/nyxWnpyczEcfTWb//t+xtbVj4cIleHiYdo637NjY2DBt2kwUCgV79+7i5EnjpyQQ1qnIFh8IDAzEyclJ/72MzjG9a9eCgCcjzQyRrIJxf2v/GlzePsmgJR8aNmzMtm1b9J2JhWlo167SLkfx7LMtC3w+Y8q2qBQ0NhsbG2rWrMWFC+e4dOkiVasGFEKUBaMbvdaxYxeDf98V9H155ZVX+Oyzz7h37y4HD/5Jx44Fr7mKi4tjw4Z1AIwe/U6eNZvG3IODgwMrVnzBuHFvcebMad59dyzPPNOUSpWqcOzYEUJCHmJjY8Onny6hceNn8hV/Qd7TunXr07//K/z00/fMnz+Ln37aKS0bJUiR/cp8eoHapztmC9MxpgZJA5wNt9V/bwhd5+HLly+RmpoqvzBM5NixIyQnJ+Hn509AQP6HT2dmTNkWFVPE1qhREy5cOMf582d54YU+JovNFFJSUvj7b+1glvw0rxX0fXFycuLll19h3bovWbfuC9q375TvpaAy27jxa+LiHhEQUJ3nnst79QRj78HJyZkvvtjAihVL2Lz5W86cOa3/g8Hb24fZsxfw7LOt8h1/Qd/TsWMncODA79y5c5uNG9fz5ptvGXEWYY3M1gcpPj6esDDtJG+pqamsW7eOuXPncurUKXOFZNXUajU3blwHnow0KywVKlTE3d2DtLQ0/YzPouB0y1Hkp8ahJNPVJFhiU+/Bg38RH/8YPz9/fZN0URk0aChOTk5cvvxffvllb4HOFRUVyebN3wIwZsz4bNc6MyU7OzvefXcyu3f/zpQpHzFq1BgWLlzCnj1/GJUcmYKrqyvvvTcZgHXr1shi3SWIWRKkixcv0rFjRzZt2gTA3LlzWbx4Mbt27WLIkCEcOHDAHGFZtQcP7pOYmIidnV2hz76sUCh45plmgLafhSi4tLQ0Dh78C4DOnQtvvpzipFEjbU3mrVs3iY6OMnM0Ge3duxOAHj2eL3ANTn55enrq10ZbsWIJycnJRp9r3bovSE5Ool69BnTo0MlUIeapbNlyDBz4OqNHv0O3bj0oVapUkV07O8899zzNmz9LSkoKM2d+aLEDA4RpmSVBWrp0KVWrVmXAgAEkJyeze/duXn31VU6ePEm/fv344osvzBGWVdONKKtVq47Jpt3PTdu27QE4dOjvQr9WSXDs2GEeP47Dw8NTJog0UJky7tSsWRuAI0f+MXM0T0RHR+vj6dmzt1lieO21Ifj7lyU0NITvvvvGqHPcvXuHrVt/BOCddyaW6FpN3ZImjo6lOXPmtNHvqbAuZkmQLly4wOjRo6lQoQLHjh0jOTmZ3r21v0h69OjB9evXzRGWVbt4UdthuqgWN23dui0KhYKrVy/rm0qF8X7+eSsAPXv2KvRmjOJEl6j/889B8wbylN9+24tKpaJ27ToGTw5pag4ODvpFYb/6ag137+Z/xvHlyz9DpVLRqlVbGVUJlC9fgfffnwLAypXL9INiRPFllgRJqVTqO/YePHgQV1dXGjTQrqcTHx9v8gnOSoJ//9XWIDVoUDRLs3h4eFK/vvZahw79VSTXLK7CwsL0NXF9+75s3mCsjC5BOnLkUL7W8yosGo1GX+ti7o7jzz33PM8+24qUlBSmT89fs9CZM6c4cOAPlEolEyd+UIhRWpe+ffvTtm170tLSeO+9d4iLe2TukEQhMkuCVK9ePbZt28a5c+f45ZdfaN++PQqFgqioKL766ivq1Sv8OUOKk6SkJP1fM8bUIDnYaHCwyf/4Dt0Q4t27t+f7WPHEli2bUavVPPNMU6pUqWrScxtbtkXBFLHVrVufcuXKk5CQwF9/7c/7gEJ28uRxbt26SenSpenVy7gEyVRlplAomD59Dk5OTly4cI4vv1xl0HHJycnMnq2diLFv3/5GLUhrac+dKd/TWbMW4O9fluDge0yd+oH0RyrGzJIgTZo0iWPHjvHKK69gY2PD6NGjAXj++ee5c+cOEyZMMEdYVuvy5UuoVCq8vX3w8/PP17GOtnB4QDyHB8TjmM9JH3r16o2trS0XL17g+nWpbjZGTEwMP/74HQCvvz7MpOcuSNkWNlPFplQq6dXrRQC2bTP/kiO6vinPP/+iweuEPc3UZebvX1a/Ov3atav1IyVzs2LFUu7evYO3tzfjxr2X72ta2nNn6njc3d1ZunQlpUqV4siRQyxevMDghXaFdTFLglSnTh1+//13tmzZwv79+6lcuTIAM2fOZM+ePVKDlE+6GV4bN36mSDtSenp60b59R8AyPpys0fr1X5KYmEjt2nX076XInz59+mFra8fZs6c5d858Q/7//fci//xzEKVSyWuvDTJbHJk9/3xvXnttCADTpk3i6NGcO7Tv2bOTzZu1C4R/9NGsXBekLclq1arDzJnzAPjhh+9YsWKJJEnFkNnmQXJ2dqZhw4aULl1av61bt254e1vG4qfWRDdipmXL1kV+7f79tatcb9++jZCQh0V+fWv23//++9QcMxNK9CihgvD19dPXIi1ZshC1uugXCdVoNKxatQyAnj1foFKlKkUeQ24mTvyA9u07kpKSwrhxb/P9999meJ80Gg0//7yV6dOnAvDGG2/Rrp0k7Ll57rnnmTZtJgDr139ltmdPFB6zLlYrCi46Olq/uOOzz+Y/QUpJh/F/OzL+b0dSjGhKDwxsQdOmgaSmprJmzYr8n6CEevz4MR9/PAW1Wk337j1o3bqtya9R0LItTKaObfTosTg5OfHvvxfYsOGrgp8wn37//ReOHz+Kra0do0aNMfo8hVVmtra2LFq0jG7deqBSpfHpp/Pp3783X365iu++28hbbw1n9uyPUavVvPjiS4we/Y7F3YMlxtO//0Dee087sm3Tpm+YMGEMMTExpr2IMBtJkKzcgQO/o9FoqFWrDr6+vvk+Xq2BIw9tOfLQFrURNcQKhYJx494FYNeu7RY1H42lSklJYfLkidy6dRNvbx8mTfqoUK5T0LItTKaOzcfHV/9BtXLlMv1IsqIQFhbKJ5/MBeCNN0ZRvnwFo89VmGVmZ2fPJ598xpQpH+Hs7MLNm9dZs2YFixcv4MSJY9ja2vL22+OYMWNugaaasLTnrrDjGTRoKPPnL8LOzo4//zxAp06dZH64YkISJCv36697AHjuuZ5mi6FBg0YMGPAqANOnT+XBg/tmi8XSRUdHM3bsSI4ePYyDgwOff766SFYmLwn69OnHq68ORqPRMG/eTD7+eArh4YU7R1dcXBzvvPMWMTHR1KhRkxEjRhbq9QpKoVAwcODr7Nt3gKlTp9Oz5wt07tyN0aPfYefOXxk58m1p6jVCjx692LDhe6pUqUJYWBhvvz2SUaOGcf78WembZMWKTYKkVqtZvnw5bdq0oWHDhgwfPpy7d+/muH9MTAzvvfcezZo1o1mzZnz88cckJiYWYcQFd+PGNc6cOY1SqaRbtx5mjWXixElUr16DqKhIRo4cyt27d8waj6XRaDQcOPA7/fu/wKlTJ3BycmLFii+oU0cGJJiKQqHggw+mMmrUGBQKBbt376BHj05MmjSRPXt2EhYWZtIPq+vXgxgyZCDXrl3Fw8OTpUtX5bnSvaVwdXVlwIBXmTfvUxYv/pxRo8ZQrlx5c4dl1erVq8/WrTsZNWoUtrZ2nDhxjKFDX2XAgBfZtGkDt2/fkmTJyljAIEzTWL16NT/++CMLFizA19eXRYsW8eabb7Jnz55sV5sfN24cKSkpfPPNN8TFxTFt2jRmzZrFwoULzRC9cTZsWAdAp05d8z2839QcHBxYteorRowYRHDwPV57rR/vvTeF3r37FvlaVJYkOTmZv/7az+bN33Lp0kUAqlatxieffEaNGjXNHF3xo1AoGD36HVq2bM2yZYs5d+4Mv//+C7///gsAZcqUISCgGv7+5fD29sHHxwcPDy9cXFxwcXHB2Vn7r5OTE7a2dtjY2KBUKtFoNCQmJhAZGcGVK5f5668D/PHHr6jVanx8fFmx4ktJMAQODg5Mnz6dl14ayJo1q9i7dxfXrgXx2WcL+eyzhfj7l6Vu3frUrFmLatVqULZsOXx9fXFzKyM1dxZIoSkGKW1qaiotWrTggw8+4JVXtKOq4uLiaNOmDfPnz6dnz4zNT+fOnWPgwIHs27ePgIAAAA4fPswbb7zBwYMHjerLAxATk4BKVTSjGM6cOcWIEdqhxJs3b6Vu3fpGnSdJBW1+cgHgn5cfF3iekIiIcD74YIJ+hfUKFSrRr9/LtGvXgUqVqhTaLwFbWyXu7k5FWgbZefz4Mffu3eHSpX85deo4x48fIz7+MQAODo689tpgRo58u0gW3zR12eYlP2VQVLFdvnyJAwf+4OjRfwgKumrUKCNdgp/dsZ07d2XSpGn4+Bj3OyOzgrwvlvIzUNTPnSXFk7kM4uIesW/fbv7660/Onj1FWlpatsc5ODji6empT9CdnV1wdnbG2dkZe/tS2NvbU6pUKezs7ClVyl6/zd7eHqVS+f9E3uap77P+q1TaYGOjRKFQ/P9L9z3//72seOq1J9uf7KfQ//7OuF/2X0/ORzbbctuufS3rtifXz42HhxM2Nqb5o7xY1CBdvXqVhIQEWrRood/m6upKnTp1OHXqVJYE6fTp03h7e+uTI4DAwEAUCgVnzpyhR4/8N1eFhYUxcuRbANk8JJkfKGWWbZkfnFKlHPDz86ds2bJUrFiZSpWq4OPjg0Kh4OLF87z//nhA2+/C2OSoMHh7+/DVVxv58cfv+PLL1QQH32Xp0kUsXboIb28fqlevQZUqAfj5+VGmjDvu7h44OTljb2+n/wVgb2+PQqFAo9Hk+JWWlkZaWiqpqdqv9PQ07O2VREfHkZycQkpKyv/3SUOlUqFSqUhPV+m/V6me3p6u/1etTkelSic9PZ30dBXp6er//5vxtey+T0iIz3ZVeX//svTq9SIvv/wKXl4yjUVRqlOnHnXq1OOddyaSkpLC7du3uHXrBmFhYUREhBMeHkZMTBSPH8fz+HEc8fHxxMc/ztAU8nRi5ODgQLVqNWjUqDHPP9+bWrXqmOO2hJVwdXVj4MDXGTjwdZKSkrhw4RxBQVe4di2IW7duEBoaSkxMNMnJSdJ3Mx+yT8a02w8ePEjFihVNcp1ikSCFhoYC4O+fsZnJx8eHkJCQLPuHhYVl2dfe3p4yZcpku78hkpOTOX36pFHHGqp0aSfKlCnDw4cPAKhTpy5TpnyIra3x2bLtU/WHtjZKbE3wRNjalmLYsBEMGDCQvXt38+uv+zh79gwREeFERIRz9Ojhgl/Egnl6elG9enWaNWtBYGBzGjZsZJZmxsIo29zo/moz5K+3oo4NwNbWkXr16lKvXt1c91Or1SQnJ/0/AdYm0RqNBhcXVxwcHAq1KaQg70t+3v/CZI6yzU1RxpNbGbi4ONG6dWtat844HUtKSgphYaHExMTw+HEcjx8/5vHjx8THPyY+Pl7/R2BqagqpqamkpKQ8tS0VtTqd9HT1//9NR61Wo1Jp/3DL+Jr2X+0fmWT6o1OdYTtk/qM0p+2619QZthW23K5jyusXiwRJt0hl5r5GpUqV4tGjrIsJJiUlZdsvqVSpUqSkpBgVg5eXF2vWrNEXTm61H4Z8JSYm8uDBA+7du8etW7e4d+8eiYkJJCYmYGNjQ58+fZg9ezZubm5GxavjDtwdr/ufU4HOleXc7k6MHDmCkSNHkJSUxMWLF7l+/To3b94kIiKCqKgooqKiSEhIyPCDn5KSgkajybX61s5OW+Okq3rWVTc7ODjov9d92djYYGdnh62trf5f3ZednZ3+daVSqd9uY2Oj/9Jt073+9Pan/3V0dKRSpUq4uLiY9H00VmGWbW5cXR3z3MdcsRnOPGVoivfFkPe/MFla2ZojnvyVgRN+fsVvJKshn3OFsZ+xXWSyUywSJAcHB0DbF0n3PWgzc0fHrA+qg4MDqampWbanpKRkmNk7P5ycnGjfvgvp6YXT9p+WlkpwcDCxsbFUrVqVMmXcUau1/Z6sRY0a9ahRo3BGbdnYKHF1dSQuLqnQysAQKpV1lYkpWUoZlFTy/puflEFBKP7/lWmrIuO/eTFlbX2xSJB0zWXh4eEZ2h7Dw8OpVatWlv39/PzYvz/jyt+pqanExsYWKPtMT1cXWudIhcKWihWroLs9c3bCtGSFWQbCMFIG5iXvv/lJGZiPKVv4isX461q1auHs7MyJEyf02+Li4rh8+TJNmzbNsn+zZs0IDQ3NME+S7tgmTZoUfsBCCCGEsGjFogbJ3t6e119/ncWLF+Ph4UG5cuVYtGgRfn5+dOnShfT0dKKjo3FxccHBwYGGDRvSpEkTJk6cyMyZM0lMTGTGjBm8+OKLJm2/FEIIIYR1KhY1SKCd+LFfv3589NFHvPLKK9jY2PD1119jb29PSEgIrVu3Zt++fYB2KODKlSspX748Q4YMYcKECbRt25aZM2ea9yaEEEIIYRGKxUSRlkI65ZmXjY1SysDMpAzMS95/85MyMC+l0rAJJQ0hCZIQQgghRCbFpolNCCGEEMJUJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQoAhqNxtwhCCHyQRIkIUShGTRoEIMGDTJ3GCZ34sQJunXrRr169RgxYgQrVqygZs2a+tcz3/fWrVtZuHChOULN061btxg5ciTPPPMMzZs358MPPyQuLs7g4+Pj4+nYsSM///xzIUYpRNGzNXcAQojia8aMGeYOoVAsXLgQtVrN2rVr8fT0xM3NjTZt2uS4/5o1awgMDCzCCA0TFxfH0KFD8fHx4dNPPyUqKopFixYRGhrK+vXr8zw+NjaW0aNH8+DBgyKIVoiiJQmSEKLQVKtWzdwhFIrY2FiaNWtGy5Yt9dv8/PzMGJFxfvjhB+Li4tixYwceHh4A+Pr6MnLkSE6fPk3Tpk1zPHb//v3MmzePxMTEogpXiCIlTWxCFAMdO3Zk6dKlLFiwgMDAQAIDA/nggw+IiYnR7zNlyhSGDBnCjBkzaNq0KX369EGlUpGSksKqVavo3r079evXp2vXrqxduxa1Wq0/dtCgQUyfPp01a9bQpk0bGjZsyJtvvklkZCT/+c9/6NKlC40bN2bo0KHcv38/w3FPNzXVrFmTzZs3M23aNAIDA2ncuDHjxo0jMjIyw/3s37+fvn37Ur9+fVq1asXcuXMzfBCvWLGCLl268Pfff9OrVy/q1atHt27d2L59e4bzREVF8eGHH9KyZUsaN27Ma6+9xpkzZ/Sv62qBunTpoj/Hpk2bcnyf79+/T82aNXnw4AE7duygZs2anDhxIksTW+ayefDgAdu3b6dmzZr69+fhw4e8++67BAYG0rBhQ4YMGcLly5ezXGvDhg0899xzBAYGZtuMpdsvp6/cmjgPHz7MM888o0+OANq0aYOTkxOHDh3K8bi4uDjeeecdAgMDWbduXY77CWHNpAZJiGLi+++/p1KlSsyfP5/o6Gg+++wzbt26xdatW1EqtX8LnT59GoVCwYoVK0hISMDGxoY333yT8+fPM2bMGGrXrs2JEydYtmwZwcHBzJkzR3/+vXv3UqdOHebNm8fDhw+ZM2cOr7/+Og4ODkyePJnY2FjmzZvH7NmzWbt2bY5xLl26lC5durBkyRKCg4NZsGABtra2LFmyBIDdu3fz/vvv06tXLyZMmMCDBw9YunQpN27cYMOGDSgUCgAiIiKYPXs2o0ePply5cnz99ddMmTKFBg0aEBAQQGJiIgMHDiQtLY333nsPPz8/Nm7cyBtvvMG2bdsICAhg5syZ/Pzzz4waNYrGjRtz6tQp5s+fT1xcHGPGjMkSu4+PD1u2bGHs2LHUqVOHt99+m2rVqnHy5Mkc73flypWMHDlSv7+Pjw/R0dEMHDgQR0dHPv74YxwdHdm4cSOvvfaaPran36/p06fj6upKvXr1cowpJ87Ozjm+dvPmTXr06JFhm1KppHz58ty5cyfH4xwcHNi7dy9Vq1bNkBALUZxIgiREMaFQKNiwYQMuLi4AeHh4MGbMGA4dOkT79u0BUKlUzJo1i0qVKgFw8OBBjh49yqJFi3jhhRcAaNWqFQ4ODnz++ecMGTJE30yWlpbGypUrcXNzA+CPP/7g8OHD7N+/nwoVKgBw5coVdu7cmWucNWrUYMGCBfr/X7x4kV9//RXQjvRavHgxbdq0YfHixfp9KleuzNChQzl48KD+XpKSkpg3bx7PPvusfp8OHTpw8OBBAgIC2L59O8HBwezYsYNatWoB0LRpU1588UVOnTqFUqnkp59+4t1332XkyJEAtG7dGoVCwZdffsmrr76Ku7t7htjt7e1p1KgR9vb2eHh40KhRozzLpU6dOln237hxI7Gxsfzwww+UK1cOgLZt29KjRw8+//xzli9frj++a9eu9OvXL8fz62IyRlxcHE5OTlm2Ozk5ER8fn+s1q1atatQ1hbAW0sQmRDHRoUMHfXIE2qYdOzs7Tp8+rd/m4OBAxYoV9f8/efIkNjY2WWoRdMnSiRMn9NsCAgL0yRGAt7c3Hh4e+uQIoEyZMjx+/DjXODN/mPv5+ZGUlARoR1SFhobSsWNHVCqV/qtZs2Y4Oztz5MiRHM+l6wOka4o7ffo05cuX1ydHAKVKleKXX35h4MCBHD9+HI1Gk+VaHTt2JCUlJUNTnKkdO3aM2rVr4+vrq7+uUqmkbdu2HD16NMO+NWrUyPN8T8ef+Ss9PT3XY3U1ck/TaDTZbheiJJEaJCGKCR8fnwz/VyqVlClTJsOQbU9PzwwffI8ePcLd3R1b24y/Cry9vQEyJDvZNdU4OjrmO87MxyiVSv0cQbGxsQDMmjWLWbNmZTk2PDw8x3PpmhGfPpenp2eOceiu1bNnz2xfDwsLy+UuCiY2Npa7d+9St27dbF/XJYwAXl5euZ7r/v37dOrUKcfXAwMDc+xX5ezsnG1NUWJiolV2OhfClCRBEqKY0H3g66SnpxMTE5OhA25mbm5uxMTEoFKpMiRJukQkcxNTYXN1dQVg0qRJ2Q6Lf7oGKy8uLi7Z9o85d+4czs7O+mtt3Lgx22amsmXLGnyt/HJxcSEwMJBJkyZl+7q9vb3B5/Lx8WHbtm05vp7dvelUqVKFe/fuZdimVqu5f/8+Xbt2NTgGIYojaWITopj4559/SE1N1f//wIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfkrt75CrVq14tSpU0RHR+u3/fPPPyQkJNCqVav836gQxYjUIAlRTISGhjJ69GgGDx5MSEgIS5YsoXXr1jRv3jzHY9q2bUvz5s2ZMWMG4eHh1KlTh5MnT/LVV1/Rp0+fIp/HyMbGhokTJzJ9+nRsbGzo0KEDcXFxrF69mrCwsBybpLLTt29fNm3axOjRoxk/fjweHh5s3ryZ5ORkBg0aRMWKFXnhhRf4+OOPefDgAfXq1eP27dssXbqU8uXLU7lyZZPdl6urK5cvX+bkyZM0aNCAoUOHsnPnToYOHcrw4cNxd3dn3759/PTTT0ydOtVk183Lq6++ynfffcewYcMYO3YssbGxLFq0iLZt29K4cWP9fufPn8fDwyND/zUhijtJkIQoJnr27ImrqysTJkygdOnS9OnTh4kTJ+Z6jG7E1vLly/n222+Jjo6mfPnyTJw4kWHDhhVR5Bn1798fJycn1q1bx5YtWyhdujRNmjRh8eLFGTqE58XZ2ZnvvvuOTz/9lHnz5qFSqWjYsCGbNm3Sf9AvWLCAL7/8kh9//JHQ0FA8PT3p0aMHEyZMyFctTl6GDx/O/PnzGTFiBBs2bKBp06b8+OOPfPbZZ8ycOZOUlBQqV67MvHnzch2xZmoeHh58++23zJ8/n/fffx8nJye6d++epelvwIAB9OnTh08++aTIYhPC3BQaWUFRCKvXsWNHAgMD5QNMCCFMRPogCSGEEEJkIgmSEEIIIUQm0sQmhBBCCJGJ1CAJIYQQQmQiCZIQQgghRCaSIAkhhBBCZCIJkhBCCCFEJpIgCSGEEEJkIjNpm4hGo0GtlgGB5qRUKqQMzEzKwLzk/Tc/KQPzUioVKBQKk5yrWCZIq1ev5tixY2zatCnHfWJiYpg7dy6HDh0CoHv37kydOpXSpUsbdU2FQkFcXCIqldqo40XB2NoqcXd3kjIwIykD85L33/ykDMzPw8MJGxvTJEjFrontm2++Yfny5XnuN27cOIKDg/X7HzlyhFmzZhVBhEIIIYSwdMWmBiksLIxp06Zx5swZqlSpkuu+586d4+TJk+zbt4+AgAAAZs+ezRtvvMG7776Lr69vUYQshBBCCAtVbGqQ/vvf/+Lm5sauXbto2LBhrvuePn0ab29vfXIEEBgYiEKh4MyZM4UdqhBCCCEsXLGpQerYsSMdO3Y0aN+wsDD8/f0zbLO3t6dMmTKEhIQYHYONTbHJN62O7r2XMjCf/JTB7t07Wbp0EaVLOzF9+iwCA1sUdnjFnvwMmJ+UgfmZqH82UIwSpPxISkrC3t4+y/ZSpUqRkpJi9HldXR0LEpZZqDVwI1r7fTUPUJrw4TIHayyD4iavMvjjjz/48MPJaDyqwWMY+87b/HPoIH5+fkUUoeUyxc+juX8GLO13ijniMXcZCNMokQmSg4MDqampWbanpKQYPYoNIC4uifR06xq5kJQGXX5wAuDYKwk42pk5ICPZ2ChxdXW0yjIoLgwpg9TUVD766GM0tqWwHfEXAIlLqzFnzjzmzv2kKMO1SAX5ebSUnwFL+51SlPFYShmUZG5ujiiVpqnBK5EJkp+fH/v378+wLTU1ldjY2AJ10E5PV1vd0E5V+tPfq1FZeQ2SNZZBcZNbGezevYv794Px8q9A7FPb9+7dzcSJk3BzK1MUIVosU/w8mvtnwNJ+p5gjHnOXQUmmMeEUVCWyobRZs2aEhoZy9+5d/bYTJ04A0KRJE3OFJUSxt23bFgD6939Fv61atRqkpaXx66/7zBWWEEJkUSISpPT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF2WIvxCFJCjoKv/+ewFbW1ue79lbv/2553oC8Oeff5grNCGEyKJEJEghISG0bt2affu0f6EqFApWrlxJ+fLlGTJkCBMmTKBt27bMnDnTvIEKUYzt3r0dgA4dOuPh6anf3rJlWwDOnj1NUlKiWWITQojMimUfpE8+ydjZs3z58gQFBWXY5unpadCM20KIgtNoNBw4oK0heu655zO8VqlSJfz9yxIS8pBTp07Stm17M0QohBAZlYgaJCGEeV258l9CQh7i4ODIs8+2yvCaQqGgRYuWgLYWSQghLEGxrEEShrNVwKDaqfrvhSgMutqj1q3b4ujoSFp6xueuYcPGbN++jYsXz5sxSvMrDj+PlnYPlhaPsB6SIJVwdjYwvrHxk2MKkRdt89rvAHTq1AXI+tw1aNAIgMuXL5GWloadnZVOyFVAxeHn0dLuwdLiEdZDmtiEEIXq1q2b3LlzGzs7O9q0aZ/tPpUrV8HV1Y3k5GSuXw/Kdh8hhChKkiCVcGoNPIxX8DBegdqEE2wJoaOrPWrRoiXOzs5A1udOqVRSq1ZtAK5dK7kJUnH4ebS0e7C0eIT1MEuC1KVLF9asWVOghWGFaaSkwwu7nHlhlzMp6XnvL0R+6fofderUVb8tu+euevWaQMlOkIrDz6Ol3YOlxSOsh1kSpGeffZYNGzbQqVMnhg0bxp49ewq0SKwQwjLdvx9MUNAVbGxsaNeuY677Vq9eA4AbN64VRWhCCJErsyRIs2fP5vDhwyxevBg7OzsmT55M69atmT59OufPnzdHSEKIQrB/v7Z57ZlnmuHu7p7rvroE6fr1IDSmXFBJCCGMYLZRbPb29vTo0YMePXoQGRnJb7/9xq5du3jllVeoXLkyAwYMoF+/fvo+C6JwaGcudjF3GKKYejJ6rWsee0LVqtVQKpXExMQQFRWJl5d3YYcnhBA5Mnsn7ZSUFI4dO8aRI0e4evUqLi4uVK9enS+++ILOnTtz7Ngxc4dYbKWlpTJmzEj9/yMjI8wYjShuQkND+PffCygUCjp27Jzn/o6OjlSoUBGA69elmU0IYV5mS5COHz/O1KlTadmyJZMmTSIhIYG5c+dy+PBhli9fzt9//03VqlX56KOPzBVisbd//+9cufJf/f83bfrGfMGIYkfXObtRoyZ4e/sYdMyTfkjXCy0uIYQwhFma2Nq3b09YWBi+vr4MHjyYl156ifLly2fYx8HBgZYtW7Jp0yZzhFgi7N27O8P///jjN6a+/z4KhUw3KwouP81rOpUqVQHg3r27hRKTEEIYyiwJUsOGDenXrx+tW7fO9cO4b9++9OvXrwgjKzkeP37MsWOHARu6+ISzf//vxESFc+PGNf1wayGMFRkZwblzZ4Ans2c/zUYB/aun6r/XqVixElByE6Sc3hdrYmn3YGnxCOthlgSpevXq1KhRI9vk6P79+6xfv57p06dTtmxZM0RXMvz77wXS09MpX74sCzo7Erd9D0fSUzl+/KgkSKLA/vrrABqNhnr1GuDvn/Xn2N4GJjfLOrWHLkEKDi6ZCVJO74s1sbR7sLR4hPUwSx+kVatWERYWlu1rFy5cYOvWrUUcUcmjWxS0fv2GADRr1gKAc+fOmiskUYzs3/8bkL/mNXiSIIWGhpCammryuIQQwlBFVoM0cOBALly4AGgXrxwwYECO+9avX7+owiqxdAlSgwaNiElWUKFmIwBZB0sUWExMNKdPnwSgc+fsEySNBmJTtDXIZUpp0FUme3h4Urp0aRITE3nw4D5VqlQtkpgtRU7vizWxtHuwtHiE9SiyBGnevHn88ssvaDQaVq1axUsvvYSfn1+GfZRKJa6urnTtmr+/OkX+6Uav1ajbmC4/OwPtwc6R4OB7JCTE4+Qk808J4/z22y+kp6dTu3Yd/bD9zJLT+f9zB/+8/BjH//8mUigUVKhQiaCgK9y7d6fEJUg5vS/WxNLuwdLiEdajyB6VgIAAxo4dC2h/Cfbv3x9fX9+iurx4SnR0NDExMSgUCu0H0CXtdi8vLyJDgrlx4zoNGzY2b5DCau3Zox0d2aNHL6OOr1hRlyDdM2VYQgiRL0WWID18+BBvb2/s7Ozo27cv6enpPHz4MMf9pYN24bl16wYAZcuWw9HRUb+9WrWaRIYEc/16kCRIwij37t3j/PmzKBQKunXrYdQ5dLVOJXUkmxDCMhRZgtSpUye2bNlCgwYN6NixY55z7Vy5cqWIIit5bt26CUDVqgEZtleuXJnj/8gHkzDe9u3bAQgMfBYfH+NqiHUJ0sOHD0wWlxBC5FeRJUjz58+nQoUK+u9lMkLzuXlTO0txQED1DNvLltWWjzRtCGNoNBp+/vlnAHr0eN7o8/j5+QMQEpJzDbMQQhQ2gxOkqVOn5uvECxYsyPD/Pn366L/v27dvvs4lTOvu3TsAVK5cJcN2XQIbHCwJksi/K1cuc+PGDUqVKpXv4f1P0zWvh4Y+RKPRyB9TQgizMDhBOnHiRIb/h4eHo1KpKFu2LN7e3sTGxhIcHIy9vT21atXK83ynTp3CxsaGJk2acP/+fWbPnk1ISAjdu3dnzJgx+b8TYbAHD7RNF+XLV8iwXff/+/fvoVarUSrNvpaxsCK7d+8EoH37jjg7Gz8K0tdXW4OUmJjI48dxuLq6mSQ+IYTID4MTpD///FP//e7du1m8eDErVqygQYMG+u03btxgzJgxPPfcc7mea+fOnUyZMoVhw4bRpEkTZs6cyZkzZ2jVqhVffPEFdnZ2jBw5MtdzCOOkp6frmy7KlSuPjQKer5Km/b+/P7a2tqSkpBARESGjDIXBUlJS2LVrBwC9e/fJfWfI8NxlXv7BwcEBd3cPYmKiCQkJKVEJUm7vi7WwtHuwtHiE9TCqD9LSpUt57733MiRHANWqVWP8+PEsWLCAIUOG5Hj8hg0b6NOnD5MmTSIqKoqjR4/y3nvvMWLECNavX8+WLVskQSok4eFhqFRp2Nra4ePji40NzHw2+f+v2uLvX5bg4HsEB9+VBEkY7M8//+DRo1jKli1Lq1Zt0Ghy398+w3OXlb+///8TpIfUrJl3jXRxkdf7Yg0s7R4sLR5hPYxqQ4mJicHFxSXb12xtbUlMTMz1+Fu3btG7d28ADh06hEajoVOnToB2Fu2QkBBjwhIGuH8/GAB//7LY2NhkeV23blZYWGiRxiWs288/a5cHGjhwYLbPVX7pnsPQUOmoLYQwD6MSpEaNGrFy5UpiYmIybA8PD2fFihU0b9481+NdXV1JSEgA4ODBg5QtW5bKlSsD2hFU7u7uxoQlDPDgwX0AypcvD2in4U9Sab80GvD11c5uHhoqSaowzL17dzl16gQKhYKBAwcadEzm5y4zPz9tglTS/ljK632xBpZ2D5YWj7AeRjWxTZ48mUGDBtGxY0caN26Mu7s7UVFRnDt3Djc3N9asWZPr8S1atGDlypVcv36dP/74g+HDhwPw22+/8fnnn9O6dWtjwhIG0CVI5cppE6TkdGjzk7Y28J+XH+uHWIeGSg2SMIyu9qhVq9aUK1eOmJiEPI/J/NxlXv7hyXNYshKkvN4Xa2Bp92Bp8QjrYVQNUq1atdizZw8DBw4kISGBS5cukZyczPDhw9m1a5e+diIn06ZNw93dnVWrVtGyZUtGjRoFaKcGKFu2LO+9954xYQkDZE6QMtPVIIWFlawPJmGcxMQE/vOfnwAYMOBVk53X3183F5JMFimEMA+jc2lfX18mT55s1LHu7u58/fXXWbZ///33ssRIIXuSIFXI9nWpQRL5sXv3Th4/jqNChUq0a9fBZOfVNbHJcyiEMBejE6TU1FS2bdvG0aNHiYiIYP78+Zw8eZK6detmGd2Wk0ePHpGUlIRardZv063PJolS4dAt31C2bLlsX/fzkxokYRi1Ws3mzRsBeO21QSadN8vb2weAqKhImZNLCGEWRiVI0dHRDBkyhFu3blG1alVu3LhBcnIyBw8e5JNPPuGbb76hceOcFzu9c+cOU6ZM4cKFCznuI2uxmZ5KpSIqKhIgxyH8ukn6dMnr04vZCvG0w4cPcu/eXVxcXHnhhbznPsoPT09PFAoF6enpxMRE4+npZdLzCyFEXoxKkD799FMSEhLYt28f5cqVo169egB8/vnnjBgxguXLl7Nhw4Ycj58zZw537txh7Nix+Pn5yV+HRUT317itrS0eHp7Z7uPi4oKTkxMJCQmEhYVQuXLVIo5SmEp0dBRXr17BxcWFWrXqYGdnZ7JzazQa1q37AoC+fftTurSTyc4N2ulCPD29iIyMICIiXBIkIUSRMypB+uuvv/jwww+pVKkS6enp+u2lSpVi+PDhTJkyJdfjT58+zbx583j+eeMXtBT5Fx4eBoCXl3euc9X4+vpz69YNQkNDJUGyQsnJyXz22UL+858t+uZrb29vxoyZQO/efU2yttnRo4e5ePECDg4ODBo0tMDny463tzeRkRGEh4dTq1adQrmGEELkxKgEKSUlhTJlymT7mo2NDWlpabke7+zsjJtbyVk+wFLoEiQfHx/9NqUCOlVI038P2n5I2gRJ+iFZm7S0VMaPH82JE8cA7YLEMTHRREREMHPmNI4fP8qcOQuws7M3+hoajYYvvlgJQP/+A/Hy8s73ObJ77jLz9vbhypXLRESEGx2rtTHkfbF0lnYPlhaPsB5GJUj169fn+++/p127dlle2717t77JLSe9e/dm8+bNtG7dWlbqLkJPEqQn/Y9K2cDCNhmn4dcN9dftL6zH8uVLOHHiGKVLl2bx4uW0bNmatLRUNm36htWrl/Prr3uJj4/ns8+WU6pUKaOuceDA7/z7r7b2aOjQN4w6R3bPXWa6jtolKUEy5H2xdJZ2D5YWj7AeRiVI48ePZ+jQofTu3Zt27dqhUCjYs2cPK1as4PDhw6xbty7X4x0dHTlz5gxdunShfv36ODg4ZHhdoVAwf/58Y0ITuQgP137QeHvnvsaarkYgIiKi0GMSpnPjxjU2b/4WgHnzFtGypXbCVTs7e4YPH0mtWnV4992xHD58kHffHcvSpauwt89fTVJSUhKffbYQgMGDhxdq36CSmCAJISyHUb2jmzZtyoYNG3B0dGTdunVoNBq++eYbIiIi+PLLL2nRokWux2/fvh0XFxfUajUXLlzgxIkTWb6E6WVXg5QdXYKkG/EmrMPnn3+GWq2mc+eudOjQKcvrLVu2ZuXKtTg4OHLkyD9MnfoeKpUqX9fYsOErQkIe4ufnz7Bhb5oq9GxJgiSEMCej50Fq1qwZP/74I8nJyTx69AhnZ2ecnAwbyfLnn38ae1lRANklSEmqrNPwe3trE6TISPlgshZXrvyXf/45iK2tLe+8MzHH/Zo2DWTp0pWMG/cWBw78wcyZ05g9e4FBI0kvX77E+vVrAXj33ckFmgIiu+cus5KYIBnyvlg6S7sHS4tHWA+japCmTp3K6dOnAXBwcMDX11efHF25coVOnbL+9ZodtVrN1atXOXToEPHx8cTGxhoTjjBQdp20syNNbNZn69YfAejcuRuVKlXJdd9nn23Fp58uw8bGhj17drJgwWw0eaziGRcXx4cffoBKpaJz56506dLNZLHnRPecynMohDAHoxKk7du3M3ToULZs2ZLltdTUVP1s2LnZuXMn7du358UXX2TUqFHcvXuXKVOm8M4775CammpMWCIXGo2GsLD8NbFFRkbk+cEpzC8+Pp5fftkLaEeVGaJDh07MnbsQhULB1q0/snTpohzLOiUlhUmTJnDnzm18fHz56KNZRTK44unZtPPbFCiEEAVl9AyN7dq1Y8aMGcyaNSvDXEiG2LdvH5MnT6ZFixYsXbpU/4u5a9euHDp0iNWrVxsblsjB48ePSU5OAgxPkNLS0oiLe1TosYmC+eOPX0lKSqRq1QCaNGlq8HHPPfc806fPAeDbb9czffpUEhMTMuwTHR3FmDFvcvz4URwdS7N8+RrKlHE3afw5cXf3wMbGBo1GQ1RUVJFcUwghdIxujR01ahQ9e/bkww8/5MaNG6xYsSLHuZEy++KLLxg4cCAzZ87MkFz17duXqKgofvrpJyZMmGBsaCIbuuY1FxfXPPuO2Nvb4+bmxqNHj4iIiMDNrUwRRCiMdeDAHwA891yvfNfs9OnTj5SUFD79dB67d+/gyJF/ePHFvgQEVOfWrZts3fojcXGPcHJyYtmyVUU6YaNSqcTLy5uwsFAiIsJzXB5HCCEKQ4HW+OjRowebN2/m3r17vPTSSwQFBWFrm3fOdfv2bbp06ZLtaw0bNtQ3BQnTMXQEm46n55NmNmG5Hj9+zIkTRwHo1Cn7n6m8DBz4GmvXfkOFChWJjo5i/fqvmDZtEl9//SVxcY+oWbM269dvplmz3EenFoaS2FFbCGEZCtyfv27dumzbto2xY8cycOBARo8enecxnp6e3Lx5k1atWmV57ebNm3h6Zr9OmDCeoR20dby9vbl164YM9bdwhw8fJC0tjSpVqlK1aoDR52naNJCff97LH3/8ytGjh4mICMfLy5s2bdrRuXM3g/7wKQySIAkhzMUkv/W8vb3ZtGkTH3/8MUuWLMmzmr9Hjx4sX74cHx8f/WzcCoWCS5cusXr1almjrRDoPmAy1yApFdCqrEr/vY6MZLMOhw79DZDtvEf5ZWdnR48evejRo1eBz5WXnJ67zJ48hyUjQTL0fbFklnYPlhaPsB5GJUhjx47N0h/A3t6ehQsXUqtWrTznOZowYQLXrl1jwoQJ+vlXBg0aRGJiIk2bNmX8+PHGhCVykVMTWykb+Lx9Upb9n4xkKxkfTNZIo9Ho11xr2bKNmaPJn5yeu8yezMlVMhJ1Q98XS2Zp92Bp8QjrYXSClJNhw4YxbNiwXI+3t7dn3bp1HDlyhOPHjxMbG4uLiwuBgYH6pUuEaeW3D9LTQ/2FZbpx4xrR0VE4ODjSoEEjc4dTKKQmUwhhLgYnSIMHD2bGjBkEBAQwePDgXPdVKBRs3Lgxx9d37NhBu3btaNWqVZZ+SBEREezYsYM33yzcZQxKGmP6IIF8MFmy48e1tUfPPNM032uqWQtJ1IUQ5mLwKLanJ5HTaDS5fqnV6lzPNXXqVIKDg7N97cqVKyxfvtzQsISBdAvVZq5BSlJB6y3OtN7iTNJTc/HJB5PlO3lSmyA1b/6smSPJv5yeu8x0iXpUVMl4Dg19XyyZpd2DpcUjrIfBNUibNm3K9ntDjRo1ihs3bgDaBGvMmDHZ/tUbFRVFxYoV831+kbO0tDSio7UT7WXXxJacnrVJs6T1/bA2arWa8+fPAfDMM83MHI1xsnvuMvP09AK0vxfS09OxsbEp7LDMzpD3xdJZ2j1YWjzCOhTZ2N1Ro0axdetWQLtUSZ06dfDw8Miwj1KpxNXVlb59+xZVWCWCbskQW1s73N098j6AJ/MgJSQkkJSUiKNj6cIMUeTTnTu3efw4DgcHB2rUqGXucAqNh4cnCoUCtVpNTEy0vmZTCCEKm8EJUq1atQzuPK1QKLh8+XKGbU2aNKFJkyb6/7/99ttUqFDB0MuLAtD1P/L29jZo1XYAJycnHBwcSU5OIjIykgoVpFbPkly8eB6AunXrYWdnZ95gCpGtrS0eHp5ERUUSGRkhCZIQosgYnCCNGTPGZKPLFixYYJLzPE2tVrNy5Uq2bt1KXFwczzzzDDNmzKBSpUrZ7r99+3amTJmSZfvvv/+e4zHW6kmCZFgHbdAmud7e3gQH3yMyMkISJAtz4YK2ea1hw8ZmjqTweXl5ExUVSUREBLWKb2WZEMLCGJwgvfPOOya7aHR0NPPmzePvv/8mKSkpyyri2dVA5WX16tX8+OOPLFiwAF9fXxYtWsSbb77Jnj17su3rFBQURGBgIEuWLMmwPXOzX3GQUwftvHh5aRMkGclmeS5cOA9AgwYlI0EKCroi/eGEEEXK6D5IycnJBAUFkZaWpk9w1Go1SUlJnD59mvfffz/HY2fOnMnBgwfp2bMnfn5+Bjf75CQ1NZX169fzwQcf6GfmXrp0KW3atOGPP/6gZ8+eWY65du0atWrV0ndGLs50NUi+vn75Ok4mi7RMcXGPuHVLO+ChuM5/9DQZMCCEMAejEqTjx48zfvx44uLisn3dyckp1wTpn3/+4cMPP2TAgAHGXD6Lq1evkpCQQIsWTxbTdHV1pU6dOpw6dSrbBCkoKIhu3bqZ5PqWLrc5kBRAEx+V/vunyVB/y/TvvxcBqFChktXWeOb23GVWkiaLzM/7Yqks7R4sLR5hPYxKkJYtW0aZMmWYO3cuu3btQqlU0rdvXw4dOsQPP/zAV199levx9vb2Ju2gHRoaCoC/v3+G7T4+PoSEhGTZPzo6msjISE6dOsWmTZuIjY2lYcOGvP/++1SpUsXoOGxsClYTVlh061j5+/tja5sxRmdbWN895f//y/ian5+2SS4yMiLLcZZG995bahmY0tWr2ubnBg0aWFS55KcMcnvuMvP11Sb20dGRFnW/hSE/70tmlvIzUJB7KAxFGY+llEFJZsqFOIxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCpuuiSwgoBLu7k4GH1epUnkAYmOj83WcOVlqGZjSrVva57dJk0YWWS6mLgPdcxgTE2WR92tpSsLPgKWTMigejEqQ1Go1fn7a/ixVqlTRTwAJ0K1bNyZPnpzr8XXq1GHZsmUEBwfTsGFDHBwcMryuUCgYM2aMwfHojk9NTc1wrpSUFBwdsz6oLVq04OTJk7i5uem3rVq1ig4dOvDzzz8zcuRIg6/9tLi4JNLTc59FvKhpNBp9LZqjoxsxMQkGH+vkpH1/Hj4Myddx5mBjo8TV1dEiy8DU/v33EgAVKlS1qHIprDJwdHQFIDQ0zKLu19KUpJ8BSyVlYH5ubo4F7tesY1SCVLFiRYKCgmjatCmVKlUiKSmJmzdvEhAQgEqlIiEh919is2fPBuDUqVOcOnUqy+v5TZB0TWvh4eEZZuEODw+nVg7jgp9OjgBKly5N+fLlCQsLM/i6maWnq1GpLOuH4tGjWFJStNXLHh5eWeJLUkGvndq/ynf3TsDxqSfCw0PX9yPc4u4rJ5ZYBqaUkBBPcPA9AKpVq2GR92pIGeT23GXm4aGt0Y2ICCctLb1YL2adn/clJ+b+GTDFPVh7POYug5Is06D4AjHqUenVqxeLFy9GrVYzaNAg6tWrx9y5cxk0aBBffPEF1apVy/X4q1evGhVsTmrVqoWzszMnTpzQJ0hxcXFcvnyZ119/Pcv+33//PZ9//jkHDx7U1zjFx8dz584d+vXrZ9LYzE3XQdvNzS1LTZ1ObEr22bZu9NCjR49ISUmhVKlShROkMNj169fQaDR4e/vg4eFp7nAKJKfnLjNdJ+3U1FQeP47D1dUtjyOsm6HviyWztHuwtHiEdTDqqXnjjTcYOHAgFy9qR9PMmDGDK1eu8Pbbb3Pr1i0mTZpk0iDzYm9vz+uvv87ixYs5cOAAV69eZeLEifj5+dGlSxfS09OJiIggOTkZgA4dOqDRaJg0aRLXr1/n33//5Z133sHDw4M+ffoUaeyFTTcHUn6H+AO4uLjqkyIZyWYZgoK0f1zUrFnbzJEUnVKlSuHiom1mKwkj2YQQlsGoGiSlUpmhn1H9+vXZv38/t27domrVqjg7O2c5ZvDgwcyYMYOAgAAGDx6c6/kVCgUbN27MV0zjxo1DpVLx0UcfkZycTLNmzfj666+xt7fn/v37dOrUiQULFtC3b1/8/f3ZuHEjixcv5pVXXkGj0dCqVSu+/fbbHGtZrFVYmHaEn7d3/iaJBG05eHl58+DBfSIiwilXrrypwxP5dO2aNkGqUaOmmSMpWt7e3jx+HEdkZAQBAbnXUAshhCmYrDXW2dmZBg0a5Pj607NlZ545O7d9DWVjY8MHH3zABx98kOW18uXLExQUlGFb7dq1+frrr/N9HWvzZJLI/CdIoF2eRJcgCfMriTVIoG1mu3XrJpGRkeYORQhRQhiVID18+JDZs2dz9uxZHj9+nOX17JYK2bRpU7bfi8Kl63Se32VGdGSySMuRnp7OjRvaIf45DT4ormRWdyFEUTMqQZo2bRrnz5/npZdeokyZMiYOSZiSscuM6OgWuJUaJPO7d+8uycnJODg4Ur58yVo8WBJ1IURRMypBOn/+PB9//DF9+/Y1dTzCxMLDtX2QcqpBUgB1PNL132emG8kmnWPNLyjoCgA1atTAxsbGzNEUTF7PXWa6yVuL+3OY3/fFElnaPVhaPMJ6GJUgeXt7Z5lHSFimvPogOdjCt90TczxeapAsR3Hqf5TXc5dZSalByu/7Yoks7R4sLR5hPYwa5j9q1ChWrVrFgwcPTB2PMKHk5GT9UivSB8n6PRnBVrL6H8GTmkx5DoUQRcWoGqT27duzbt06OnfujIeHR7ZLhezfv98kAQrj6WqPHBwc9fPI5JfUIFmOJzVIJS9B8vLSPoeSIAkhiopRCdLUqVMJDg6mVatW+r/s8rJjx458XePFF1/Mf2AiA12C5OPjk+PyDMkq6L9XOw3/1p4JOGR6Inx8tB9MMpu2eUVFRRIZGYFCoaB69RrmDqfA8nruMtPVZMbHx5OUlJTtGovFQX7fF0tkafdgafEI62HUo3Ly5EmmT5/Oyy+/bPAxU6ZMMXhfhUIhCZIJ6Ib45zaCTQOEJCj132fm4uKKvb09qampREZGyGSRZqKrPapUqTKOjqXNHE3B5fXcZebs7IyDgwPJyclERUVSvnyFQo3PXPL7vlgiS7sHS4tHWA+jEiRXV1fKli2br2MOHDhgzKVEATypQTKu/xFok9WnJ4uUBMk8dAlSSex/BE9mdb9/P5iIiIhimyAJISyHUQnSq6++ytq1a2nUqFG2y4pkp1y5cgaf35iZtEVWuiH+xs6iraNbbkT6f5iPboh/Sex/pKNLkGSySCFEUTB6Ju3Lly/TunXrbNdeM2Qttb1793Ly5EnS0tL0CZFGoyExMZHz589z6NAhY0ITTzFFDRJIR21LoBvBVhyG+BtLRlQKIYqSUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk+WGTFuFm0dXYKlO58oWsnJydy5cxsoeYvUPq0kTBapUqnMHYIQ4v+MSpBmzpxJQECA0Rfdvn07L7zwAgsXLmT58uU8fPiQhQsXcunSJUaOHEn16tWNPrd4wlQ1SP7+/gCEhj4scEwi/27cuI5arcbd3UNfm1cSFecapOTkZNauXcWWn3fCyHMADB36KmNGjqRt2/bmDU6IEsqoiSJHjBiR72H7TwsLC6N3794oFArq1q3LuXPaXwj16tXjrbfeYuvWrUafW2ipVCr9B4luqH52FEBVt3SquqXnOA2/n582QQoJCTFxlMIQT/c/ymm6BmtjyHOXWXFNkGJjYxg27FXWr/+KhPg4iLqGJjKIoKuXGTfuLZYtW2xV/TKNKdvCZGnxCOthVA2SSqXC3d3d6IuWLl1a/4u+cuXK3L9///+LcDpQu3Zt7t+/b/S5hVZUVBRqtRobGxs8Pb1y3M/BFn7qmfs0/H5+2hGLoaGSIJlDcZxB25DnLjNd7VlxSpDS0tIYP/5trly5jLu7Ox9/PId27XyIi4vj69QBfPfdRr75Zh0qVRrvvz/V3OEaxJiyLUyWFo+wHkbVII0fP565c+fyn//8h4sXL/Lw4cMsX7mpX78+27dvB6BixYrY2Nhw9OhRAG7evIm9vb0xYYmnhIRol4Hx8fEt8MKmuia2iIhw0tLSChybyJ/itAZbQTypQYo0cySms3btai5cOIezswvr1m2iY8fO2NjY4O7uzvvvT2X69DkoFAq++24jO3f+bO5whShRjO6DlJ6ezrRp03Ks8r9y5UqOx7/11lsMGzaMx48f88UXX/DCCy8wZcoUmjdvzuHDh+ncubMxYYmnPHyoTZDKljV8eoWceHh4YmdnR1paGhER4SY5pzCMWq1+agRb8alBMoZu1v6YmGhUKhW2ttY9JfKNG9f4+usvAfj449kEBFTLsk/fvv2JjIxg9erlzJ8/i4YNG1G5ctWiDlWIEsmo3zBz584t0EWbNWvGtm3bCAoKAmD69OkolUrOnj1L9+7d8zXrtsheSIi2Fi+vZCZZBYN/087M/G23xGyn4Vcqlfj5+RMcfI/Q0BBJkIrQgwf3SUxMxN7ensqVq5g7HJMx5LnLrEwZd2xtbfX963R946zVsmWfoVar6dSpC926PQdk/7688cZbnD17muPHjzJ79nTWrfsWpdKoyv8iYUzZlqR4hPUw6lHp06dPgS9cq1YtatXS/kVcqlQp5syZU+Bziid0NUj+/rnPeK4Bbj2y0X+fE12CJB21i9bVq5cBqFatutXXmDzN0OfuaUqlEh8fXx4+fEBISIhVJ0jnzp3h8OGD2NraMm7ce/rt2b0vSqWSjz+eTb9+L3D27Gn27NnJCy8U/HdwYTGmbAuTpcUjrIfRv3Gjo6PZsGEDJ06cIC4uDnd3d5o2bcrQoUPx9PTM8/jHjx9z/PhxEhMTsx2hIWuxFYwpm9jgyUg2GepftK5c0SZItWvXNXMklsHfv+z/E6QHNG7cxNzhGO3bbzcA0KtXHypVqpzn/uXKlWfkyNF8/vlnrF69nK5dn8PBwaGQoxSiZDMqQQoNDWXAgAFER0fTqFEj6tSpQ0REBBs2bGDHjh1s27Yt1+UtDh48yIQJE0hKSsr2dVmstuB0TWz5WeIlN7qaKBnJVrR0NUi1atUxcySWQfcc6p5va3T37h3+/lu7NuWgQUMNPu6VVwaxZcv3hIaG8MMP3zFs2BuFFKEQAoxMkBYtWoStrS379u2jQoUni0YGBwczfPhwli5dyieffJLj8UuWLKFq1apMnToVX19fi25Pt0YajUb/AeLvb9oaJF3NlCh8Go1GX4MkCZKWrkbUmhOkbdt+RKPR0Lp1O6pWNXzCXQcHB8aMGc/HH09h/fq1vPzyQJycDFsLs6QKCwvj5LnzQD8Azp8/S9OG9bCzk5HSIm9GZSaHDx9m3LhxGZIjgAoVKjBmzJg811G7desWEyZMoGnTplSoUIFy5cpl+RLGi46OIiUlBaVSWeCFanUqVKgIQHDwPZOcT+QtPDycmJhobGxsqF69hrnDsQjWniClpaWxd+9uAPr3H5Dv43v06EXlylV4/DiObdu2mDq8YuPmzRu8884oundvz8cfPxn0M3r0CLp168CaNStISpK5kUTujEqQ0tPTc5wo0sPDg/j4+FyPL1u2bJ77COPpanl8fHxN9pdSxYqV9OeW9aKKxtWr/wWgSpWq0t/k/6y9ie3YscNER0fh4eFJy5Zt8n28jY0NQ4dqm9Y2bfqGlJQUU4do9X766QcGDHiRf/45iEajyVD7WqaMB9HRUXz55Sr69n2eCxfOmTFSYemMSpBq1qzJzp07s31tx44d1KiR+1+7o0aNYtWqVTJjdiExdAQbaKfh93dS4++kznUafm9vH0qVKoVKpZJ+SEWkODevGfrcZaZ7ph8+fGhVy2/o7NqlnSC3R4/nsbOzy/K6Ie9Lz5698PPzJzIyQn8+S2Js2ZrCypXLmD9/FiqVirZt27Nz5y98s2GzPp49u39j4cIllC1bjpCQh4wYMZhff91bxFEKa2FUH6S3336bESNGEBsbS69evfDy8iIyMpLdu3dz9OhRli9fnuvxu3fvJiwsjC5duuDh4ZHlr2OFQsH+/fuNCU2AfiZzQ0awOdjC7t4Jee6nVCopX74iN29e5969u5QvXyHPY0TBXL2qnWy1OI5gM/S5y0zXFy45OYnY2NgCLXlU1B49iuXvv/8C4IUX+ma7jyHvi52dPUOGDGfhwnl88806+vTpZxFTQGg0Gi5d+pejR/+hYfA97O3t+TmhOu3adaRcufKFfv1vv13PunVfAPDOOxMZPnykfiLjJ++pLd269aB167bMmPEh+/f/zocffoBaraZHj16FHqOwLkb9VLVq1YqFCxeyaNEijhw5ot/u5eXF/Pnz6dKlS67H+/n54efnZ8ylhQHyU4OUHxUqaBMk6YdUNJ6MYCvZS4w8zd7eHm9vbyIiIggJeWBVCdLff/+JSpVGtWrVqVGjZoHO9eKL/Vi7djUPHtznzz/307VrdxNFaZwbN64zd+4Mzp8/m+W1RYsW0LXrc7z77mST9YnM7NSp4yxbthiA8ePfz3OEn5OTM59+uozZsz9mx47/MH36VLy9vWnWrEWhxCesk9F/dvTu3Zt27dpx/fp1bG1tcXNzw97eHqVSycOHDylbNucP5wULFhh7WWGAwkqQKlbUddS+a9LziqxiYmL0TZklfQ22zPz9yxEREcH9+/epU6eeucMx2IEDvwPQuXO3Ap/L0dGRl19+lS+/XMXGjV/TpUvBz2ms/ft/48MPPyA1NRV7e3vat+9EzZq1SElJ4ezZ05w+fZLfftvHkSP/MG/eQtq162jS60dFRTJlyvuo1WpeeKGPwdMfKJVKpk+fQ0pKCr/8sof33x/P5s3bpHZc6BmVIN25c4cpU6Zw4cKFHPfJbS223BazVSqVlC5dGldXV2NCEzxJYHQJTW6SVTByv3Ya/rWdc5+Gv0IFbUfte/ckQSpsly9fArSd452di99Q7vw8d5lVrFiJixfPc/funcIJrhDEx8dz7Ji2tj23BCk/78uAAa/yzTfr+O9//+Xs2dM0b97cpDEb4rfffmHKlHfRaDS0atWG6dPn4Obp9+QeRiZy58YV5s6dwaVLF5kwYQwffjiD/v0HmiyGhQvnERUVSbVq1Zk6dXqW13N7T5VKJTNmzOXu3TtcvnyJyZPf5Ztvvs+2f5goeYxKkObMmcOdO3f+x959hzdVdwEc/ybp3i10sMooS1aZBVlCEUQQkCVDmQq8DBkOpkJBpiDIFBVFZCkgICAuQPZGhsjeBTqALrqbJu8fMYHuNk2bjvN5njxtb+44ufc2OflNRo0ahZeXV47HMfL3989wkls9Z2dn+vfvz4gRI4wJsdhKSkriwQNd43dv76zn7tICl8KyNwy/vqu/JEh5T9+7pk6duuYNJI/k5L5LTT8n3d27t00bVB46ePAvkpKSqFChYrqT0url5Ly4uZWgU6fX2bLlR77//tt8T5DOnz/Lxx9PQKvV0rVrTz76KACVSkWcOuVrqF79BVavXs+8eTPZsuVHZs0KwMLCgq5de+Q6hkOHDvDHH7+iUqmYOXMetra2adbJ6pza2NiwcOFSevbswr///sOqVSsZPvzdXMcmCj+jEqTTp08za9YsXnvtNaMOOnfuXKZOnYqfnx+vvfYaJUuW5MmTJ/z+++/s37+fESNGEBMTwxdffIGLiwt9+/Y16jjF0cOHD0hOTsbGxhYPDw+T7lv/wXT/fiBJSYky2Foe0idIdevWM3MkBY/+Prxzp/AkSM9Xr2X15TAn+vUbyE8/beLAgb+4efMGDRv6mmzfmYmOjmbSpA9ITEykdeuXDclRRiwtLZkyJQAbGxvWrVvDjBkf4+bmlqvqtri4WGbPng7Am2/2z1VvTy+vUkyZMo2JE99n1aqVNG/ektq18+dcioLLqG7+Dg4OODs7G33QX375hY4dO7Jq1Spef/11mjdvTpcuXVixYgU9e/bk4sWLTJgwgREjRrBx40ajj1Mc6asdvL3Lm/SNGMDT0wsHB0fUajW3bxeeD6fCJjk5mX/+0VVf+/pKgpTa8wlSYejqHxcXy5EjhwDTtD96XvnyFWnVqg3wbH63/PDZZ3N5+PABpUuX4ZNP5maaHOkpFAref38i3br1RKvVMmnSB9y4cd3oGL74YhlBQQ8pVaq0SUp82rfvSPv2HUlOTiYg4COSkpJyvU9RuBmVIHXp0oX169cb/eZ08uTJDEuf2rVrx/HjxwFo0KABgYGBRh2juNJXf+kHdjQlhUJhGNH5+vVrJt+/0Llx4zqxsbE4ODhQqVLG1THFVblyuuQ/OvopYWFPzB1Olg4fPkh8fDxly5ajWrXqJt//gAGDAdixYzuhoaEm339qZ8+eYdu2LSgUCmbMmJOjNnIKhYJJk6bSsKEfsbGxjB07gsjIiBzHcOXKZdavXwPApElTsbW1y/E+0jNx4ke4urpy8+Z11q1bY5J9isLLqATJ1taWM2fO0LZtW8aNG8ekSZNSPCZPnpzp9i4uLly5ciXd565cuWL4h4uNjU23TllkTJ8gZWeGcGNUrqxPkK7myf7Fs+q12rV9s/XNvLixtrY2jPFVGKrZ9NVrbdq0M3mpLkDduvWpU6cuSUlJrF6dt6VIWq2WJUsWAtC1aw8aNvTL8T4sLS2ZP38xZcqU5f79QCZOfJ/k5ORsb5+cnMyMGR+TnJxM27btadmyVY5jyIiLiyvjxo0H4Msvlxnac4riyagEadu2bTg6OqLRaDh//jwnTpxI88hMp06dWLJkCWvWrCEkJISkpCRCQkJYu3Yty5Yto1OnTkRGRrJmzRp8faUeOCeer2LLC1KClPcuXDgHFN0G2qag/wJQ0BOkhIQEDh7cD8DLL7fLs+PoS5G+//57YmNzPgBndh05coizZ89gbW3NsGGjjN6Pq6srixYtx8bGlmPHjrB8+efZ3nbDhrVcunQRBwdHxo/P/Mu4MTp1ep0GDRoRHx/P3LmfFIpqXJE3jGqkvW/fvlwddOzYsTx58oS5c+cyd+5cw3KlUkn37t0ZN24cv//+O5cuXWLNGinmzIl79+4A4O1dIdvbuFhrsr2uPkG6cUMSpLyg1Wr5++/TQNFvf5ST+y61ihV9OHr0MDdv3jBhRKZ34sRRYmNj8fT0ombN2tnaxpjz0qpVG7y9y3Pv3l22bfuJXr3eyvE+sqLRaFi6dBEAvXq9memgj9l5DVWrViMgYCYTJ77Pt99+TfXqNbMc8PLBg/ssX74YgPfeG4+7e/Y6ouTknCoUCj76aDo9e3bh0KED7Nv3J23a5F1yKwous4xPb2FhwZw5cxg+fDgnTpwgPDwcT09P6tevT7lyukG6WrZsyaFDh7Cykp5S2RUTE22YxLNixay7+APYWsCe7tn/xunjUwWAkJBgIiMjcHZ2yXGcImOBgfd4+PABlpaW1KtX39zh5Jmc3nep6Ueivno14/HWCoI9e3TVa/7+L2drOBRjz4tKpaJ//0HMnBnA999/R/fuvU0+/ciff/7G1auXsbe3Z9CgIRmul5PX0L59Ry5d+pfvv/+WadMmU6lSJUM1fmpqtZqPPppAfHwcDRo0yvYwAcac04oVKzFw4NusWrWSTz+dTZMmTbG3L3rjkYnMGVXFZire3t707NmToUOH0qVLF0NyBBhG5hbZp+8R4u7ugYtL3kzB4OTkZBgw8uLFf/LkGMXZ8eNHAV3pkakanhZF+i7dV69eKbBVIElJSRw4oCtt9/fPfPolU+jSpStubm48eHCfvXv/NOm+1Wq1oeSmf//BJp3iZfTo92jc+EXi4mJ5993/GWYCeJ5Wq+Xzz+dz9uwZ7O3tCQiYlSftuZ73zjv/o2zZcoSEBLNy5bI8PZYomPItQWrTpo2hYba/vz9t2rTJ8PHyyy/nV1hFir5dkL4aLK/4+tYFnjUmFqZz4oQuQWrcuKmZIynYKlXywdLSkujopwW2Ie2ZM6eIjIzE1dWN+vUb5vnxbG1tGThwIABr1nxj0sRxx45t3Lt3F1dXV956a4DJ9gu6GoW5cxdSvnwFgoIe8vbb/QzzEIKuam/FiiWGXmXTps0yDFqbl2xsbJg48WNA1+7p2jXpmFLc5FsVm5+fH/b29obf8zr7L4707YIyKqJOT7waRu/X9RRc0iouW1M+1K1bj127fpYEycTUajUnT+o6ODRpUrQTJGPuu+dZWlpSpUpVLl36l3//vVgg58/Sl+K0atUm270Rc3teBg4cyPLly7l06SJnzpwyqpdZagkJCXz55XIABg8elmVVkzGvwdXVla++WsOQIf25d+8u/fr14rXXXqd8+Qrs37/XMAnu++9PzPHEvLk5p82bt+Tll9uxZ88fzJw5je++25DjmSNE4ZVvCdLzE9Q+3zBbmI4xJUha4O9QC8Pv2aFvPHzhwnnUarXJ2zoUV3//fZqnT6NwcXGhRo2a5g4nTxlz36VWp05dLl36l3Pn/uaVV141WWymoFar2bdPlyDlpPdabs9LiRIl6NKlG5s2beSbb740SYK0adNGQkKC8fT04o03+mS5vrGvwdPTk3XrNjF16iT279/Htm2bDc9ZWVkxfvwUevTolcPoc39OP/xwMkePHubChXNs27aF7t3fMGIvojAyWyocHR1NSEgIAImJiaxatYqZM2dy6tQpc4VUqGm12nyrYvPxqYKDgwNxcbEyHpIJ6Rv0tm79sox/lA316jUAdAMXFjQnTx7jyZPHuLi44OeXv3OkDRz4NhYWlhw7doSjRw/nal8xMdF8++2XAAwbNhJra2tThJghJydnFi1aztdfr6FPn7do374jI0eOYefOP4xKjkzB09OL4cNHA7B48WeEhYWZJQ6R/8ySIF24cAF/f3/Wrl0LwMyZM1mwYAE7duxgwIAB7N271xxhFWqhoaFERUWiUqmoWNEnT4+lVCqpW1f34XT8+LE8PVZxodFo+OsvXYmDdCnOHv09eO3aFZ4+fWrmaFLatWsHAK+80iHf5yz09vamVy/d/JWLFn2ao0EYU1u3bg3h4eGUL1+Bzp27mirETCkUCho1asyECR8xd+5nDBkyHE9Pr3w5dkb69HmLqlWrExUVKWMjFSNmSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28aJu7i4fn8p5/i0PoEWLlwDdLOUi986ePcOjR49wcHDAz6+JucMpFDw9PfH2Lo9GozE0bi8IYmNj2LdvDwCvvdbFLDEMHTocJydnrl+/xs8/bzVqH48fP2LNmm8AGDFidLGuSrewsGDatE9QqVT88cev/PrrLnOHJPKBWRKk8+fPM3z4cMqVK8exY8eIj4+nSxfdG0mHDh24ft34CQyLq/PnzwH5N/qyPkE6f/4sERHh+XLMomzbti2AbjJTGd4i+/TTTBw6dMC8gTxn794/iY+Pw9u7PLVq1TFLDM7OLgwdOgKAxYsX8PjxoxzvY+XKZcTGxlKzZm3ats1Zw+iiqGbN2gwZMhyA2bNnEBwcZOaIRF4zS4KkVCoNHwIHDhzAycmJOnV0byTR0dHY2NiYI6xCLb+npyhdugxVq1ZDo9EYZioXxomMjOCPP34FoHt387SzKKxatGgFwMGD+wvM7OubN/8A6KasMGdv3V69+lK9eg0iIyOZNWt6jqqFbty4ztatukbS778/QXpu/eftt4dRs2ZtoqOfMn78WBITE80dkshDZrnra9WqxZYtWzh79iy//vorrVq1QqFQ8OTJE77++mtq1apljrAKraSkRC5dugg8G6MoJ2xUWmxUOa9Tb9WqDQC//LIjx9uKZ7Zv/4nExESqVq1OrVrZm46iKDD2vnte/foNcXMrQXh4GMeO5a5BsilcunSRCxfOYWFhme2RnlMzxXkB3VAIM2bMwcLCgr/+2mMopcyKfjJYjUaDv39bo8ZwMtVrMBVTntO5cz/D0dGJCxfOM2/eTBNEJwoqsyRI48eP59ixY/Tp0weVSsXw4bpiy9dee407d+4wduxYc4RVaF25coXExERcXFxyNAcb6IbhP9wrmsO9orHNYRODTp1eB+DYsSMFdrC+gi4uLpbvvtO18+jbt1+xGR8sN/fd8ywtLenYsROAocTDnDZs0HU8adeuPSVLuud4e1OdF72qVasxfPi7gK5aSD+eUGbWrfuOCxfOYW9vb9RksKZ+Dbll6njKlfNm7tzPUCgU/PTTJtav/z73OxUFklkSpBo1avDHH3/w448/smfPHipUqABAQEAAu3btkhKkHDp9+iSgq17Lzw/YcuW8ady4KVqtNtvfTkVKGzeuIzw8jLJly9GxY2dzh1Modev2BgqFgv3795l18tq7d2+ze/dOAPr27W+2OFIbNGgIL7/cDrU6iXHjRmU6NMepU8dZsmQhAOPGjcfLq1R+hVmoNGvWgtGj3wNg/vzZBSI5F6ZntoplBwcHfH19sbN7Nt/UK6+8grt7zr91FXdHj+raADVt2jzfj92jh27QtB9+WE9kZES+H78wCwy8x1dfrQB0Y8xYWlqaOaLCqWLFSvj766YnWrx4gdm6YK9cuRyNRkPLlq0KVFWpUqlkxow51KhRk/DwMN55pz+HDx9Ms97Jk8cZM2YEycnJdOzYWQZEzMLAge/Qv/8gAD75ZCpbtvxo5oiEqUnLu0IuJiaas2d1xeZNm7bI8fYJyTBmvy1j9tuSYMRwKf7+balSpSrR0U/59tuvc76DYiopKZFp0yYTHx9Po0aNi13pUW7vu9RGjhyLhYUlBw/uN0ubuFOnjhu6fo8YMdro/Zj6vOjZ2dmzcuVq6tTxJTIyklGjhjJ27Eh+++0XDh7cz6xZAfzvf4OJjY3Fz68JH388w+jS6Lx6DcbKq3gUCgXjxo3njTf6otVqmTlzGvPnzy0wnQVE7kmCVMgdOPAXanUS3t7l8fYun+PtNVo48tCCIw8t0BjxxVulUvHuu7qi5vXrv+fy5X9zvpNiRqPRMHv2DP7++zR2dnZMnfpJsesllNv7LrVKlXx4551hgO7bfH72rIyOjmbGjKkA9OzZm+rVaxi9L1Ofl+c5OTmxatVa+vR5678qyb1MnPg+o0f/j82bf0Cj0dCxY2eWLv0yVz2J8/I1FLR4FAoFkyZ9bGjntWbNt3Tq1IkbN2SomqKgeL0rF0H6b63t23c0WwwtWryEv39b1OokJk36gKioSLPFUtAlJiYSEDCFbdu2oFQqmTt3Yb7MTF4cDBkynFat/ElISGDMmBGsWrUyz7thJyUlMX78WAID7+Hp6cWYMR/k6fFyy8rKigkTPmLr1l94880B1K7tS9Wq1ejYsTNff72GWbM+zZeBZosShULBsGEjmT//c5ydXfjnn3/o0aMLs2YFGKbTEoVTkUmQNBoNS5YsoUWLFvj6+jJ48GDu3r2b4frh4eG8//77NGrUiEaNGvHxxx8TGxubjxHn3sOHDwxzLb366mtmi0OhUDB16gw8PDy5c+c2I0YMkfZI6bh69QpvvfUGO3ZsQ6VSERAwyzDQocg9lUrF/Pmf8+qrr6FWJ7Fs2ee8+qo/y5Z9zoUL53I15UZ6wsPDGTVqKEePHsbGxpZFi5bh4JD5TPcFRcWKlfjww0msXfsjmzb9zKxZn9KoUf7OGVfUtG3bnu3bd9G2bVvUajWbN/9Ax44v88EHozl48C/i4uLMHaLIoQLQCdM0VqxYwQ8//MCcOXPw9PRk/vz5DBkyhF27dqU7MvHo0aNJSEjgu+++IyoqiilTpjB9+nTmzZtnhuiNs27dGpKTk2ncuCkVK1YyaywuLq6sWPE1b7/dj4sXL9CnT3c++WQuDRo0Mmtc5qbVarl06SLr13/Pr7/uQqvV4urqyowZcw2jkQvTsbS0Yvbs+TRv3pLFiz8jNDSEVatWsmrVSuzs7PDxqULlylUoVao07u4eeHh4UqJECRwdnXB0dMTe3iHTiYKTkhK5fv0af/21l40b1xEd/RRbWzvmz/+cGjWk921x5+7uwXfffceff+5nyZJF/P33afbs+YM9e/7A0tKS+vUbUrNmbapVe4EqVapSqlRpbG1tzR22yIBCWwRm3UtMTKRJkyZ8+OGH9OnTB4CoqChatGjB7Nmz6dgxZfXT2bNn6d27N7t378bHRzex6+HDh3nnnXc4cOAAnp6eRsURHh6DWq3J3YvJpps3b9Cr1+uo1WpWrFhldA+2ODW02OQIwKE3nuZ6nJBr167y3nujuH8/ENB1h+3RozdNmjTN0zcCCwslrq72+XoNMhIdHc3Fixc4efI4hw7t5/r1a4bn2rZtz4QJU4waI6egy8k1MPV9l56kpCT27tV9OJ04cYynT6OytZ29vT12dvZYWlqiUllgYaFLmJ4+fUpERDhqtdqwbtWq1fnkk7lUq1bdJDHn5rwUlP+B/Li2BTWe1Nfg2rWrbNu2hf379xIU9DDdbZydnfH0LGVI1B0cHP776YiDgz2WllZYW1tjZWWFlZX+57OHUqlCpVKm+ql7KJVKw0/98wqF4r8G+LqfSqUSXXt8heG55x+FjZubPSqVaSrHikQJ0pUrV4iJiaFJk2eTfDo5OVGjRg1OnTqVJkE6ffo07u7uhuQIwM/PD4VCwZkzZ+jQoUOOY3jy5AnTp3+CVkuqm0uBUqlIc1PqHvzXODf1TQnW1jZ4enpRunQZvL3L4+HhaWjIGxwcxHvvjUKtVtOyZStefLGZMactT1StWo0NG7awZMlCfvppE0eOHOLIkUNYWVlRp05dqlSpSsWKPnh6euLi4oqrqxsODo6Gf3ZLS8ss/ym1Wi1qtZqkpEQSE3WP5OQkHj+24PHjCOLiEkhISCApKYmkpCTUajVqtZrkZLXhd91D/1wyyclqkpOTUz10z2k0z5ap1Wo0Gs1zzz37PSYmmnv37hIW9iRFvFZWVvj7t6V//0FSypCPLC0tad++I+3bd0StVnP37h1u3LjOrVs3CA0NITQ0lEePQggLCyM6+inx8fEAxMTEEBMTk+F+HR2dqFu3Hq+91oWXX34l0xInUbxVrVqNCROmMH78ZO7cuc3Jk8e5evUy165d5datG8TGxhIZGUlkZMFut5k2adJ9TukTrGefYWT4WZf+ckWGyVlWx027XPfcxo0bKF26tEled5FIkIKDgwEoVSrloGYeHh4EBaWdUDAkJCTNulZWVri4uKS7fnZER0fz0095N1iYra0t5ctXwMXFlfPnzxIXF0epUqUJCPgES0vj36Atnis/tFApMcWE3W5urgQEfMLgwe/w448b+e233YSEBHP69EnDoJaZsbKyQqFQoNVq/3uAVqt57u+CX+jp5VUKP7/GNG7chFat2uDs7GzukPKc/ltbdr695cV9l+nxLKyoVq0q1apVzXCdpKREnj6NJjr6KdHR0YbENzk5Ga1Wi6OjAy4ubnh6eubZN+vcnJecnP+8lN/XNiv5GU9m16BKlcpUqVLZ8LdWq+Xp06cEBwcRHBxEeHg4T58+JTr6KU+fRvH06VNiYmIMXwJ1X/qe/Z6YmEhSUiLJyZr/vsQ9+6n7wqf7W6PJfWliYXnfBUw6zEKRSJD0jd9StzWytrZONzOPi4tLt12StbU1CQkJRsXg4uLC+PHjU9xIz3+gazRpP+Azek6r1RIbG8uDBw8IDAzk3r17xMXFceXKZcPxGjRowLJly/D2zl0PKFfg7hj9X/a52leafbvWwNf3E2bNmsHNmzc5ffo0169f5+bNm4SGhhIWFsaTJ0/SNI7Pac8jlUplKIJ+/qelpSVWVlZYWFgYHpaWlml+qlQqLC0tUSqVWFhYoFKpDD+z87uFhQVKpRIbGxsqVqxIxYoVcXR0NOWpLFScnLKuSs3L+8549nh4uJo1AlOcl+yc/7xU0K6tOeLJ7jVwc3OgfPm8Ha1c/xmjLwXXL8vu51Nmj+f3n9U62dmPKdbz8PAw2bkrEgmSfsyOxMTEFON3JCQkpNvuxcbGJt0P4YSEhBQje+eEs7MzgwYNJTnZ9HX/SUlJ3L8fyJ07t4mMjMTHpzK1atVGoVAQHp5xVUBBUqJEKV55pROvvJL2OY1GQ1JSUopvSVqtNt0qSv0yffJjZWX1X8KixMnJlqiouDy5BjmhVlNorospFaRrUBzJ+Te/wncNFP89npV46QtHC2HzIwCTDlNRJBIkfXVZaGhoihKV0NBQqldP23jSy8uLPXv2pFiWmJhIRESE0Q20AZKTNXnSOFKhUFGuXAXKlavw3LG0QOEo8swOlcoSW1tLbG1z9g1PqyXFOc+rayCyT66Becn5Nz+5BuZjyprAIjEOUvXq1XFwcODEiROGZVFRUVy6dImGDRumWb9Ro0YEBwenGCdJv239+vXzPmAhhBBCFGhFogTJysqKt956iwULFuDm5kaZMmWYP38+Xl5etG3bluTkZMLCwnB0dMTGxgZfX1/q16/PuHHjCAgIIDY2lmnTpvH666/nqgRJCCGEEEVDkShBAt3Ajz169OCjjz6iT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HURXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQFI5GeUWXSqWUa2Bmcg3MS86/+ck1MC99px5TkARJCCGEECKVIlPFJoQQQghhKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBC5AOtVmvuEIQQOSAJkhAiz/Tr149+/fqZOwyTO3HiBK+88gq1atXi7bffZunSpVSrVs3wfOrXvXnzZubNm2eOULN069Ythg4dSoMGDWjcuDGTJ08mKioqy+02bdpEx44dqVOnDq+88gpr1qyRJFAUKRbmDkAIUXRNmzbN3CHkiXnz5qHRaPjqq68oUaIEzs7OtGjRIsP1v/jiC/z8/PIxwuyJiopi4MCBeHh48Omnn/LkyRPmz59PcHAw3377bYbbbdiwgenTpzNkyBCaNWvG+fPnmTdvHnFxcfzvf//Lx1cgRN6RBEkIkWcqV65s7hDyREREBI0aNaJp06aGZV5eXmaMyDgbN24kKiqK7du34+bmBoCnpydDhw7l9OnTNGzYMM02Wq2Wr7/+mldffZUPPvgAgBdffJE7d+6wbt06SZBEkSFVbEIUAf7+/ixatIg5c+bg5+eHn58fH374IeHh4YZ1Jk6cyIABA5g2bRoNGzaka9euqNVqEhISWL58Oe3bt6d27dq0a9eOr776Co1GY9i2X79+TJ06lS+++IIWLVrg6+vLkCFDePz4MT/99BNt27alXr16DBw4kPv376fY7vmqpmrVqrF+/XqmTJmCn58f9erVY/To0Tx+/DjF69mzZw/dunWjdu3aNGvWjJkzZxIbG2t4funSpbRt25b9+/fTqVMnatWqxSuvvMK2bdtS7OfJkydMnjyZpk2bUq9ePd58803OnDljeF5fCtS2bVvDPtauXZvheb5//z7VqlXjwYMHbN++nWrVqnHixIk0VWypr82DBw/Ytm0b1apVM5yfhw8f8t577+Hn54evry8DBgzg0qVLaY61evVqXn31Vfz8/Ni6dWuGMWX0yKyK8/DhwzRo0MCQHAG0aNECe3t7Dh48mOF2q1at4sMPP0yxzNLSksTExAy3EaKwkRIkIYqIDRs2UL58eWbPnk1YWBifffYZt27dYvPmzSiVuu9Cp0+fRqFQsHTpUmJiYlCpVAwZMoRz584xcuRIXnjhBU6cOMHnn39OYGAgn3zyiWH/v/zyCzVq1GDWrFk8fPiQTz75hLfeegsbGxsmTJhAREQEs2bNYsaMGXz11VcZxrlo0SLatm3LwoULCQwMZM6cOVhYWLBw4UIAdu7cyQcffECnTp0YO3YsDx48YNGiRdy4cYPVq1ejUCgAePToETNmzGD48OGUKVOGb775hokTJ1KnTh18fHyIjY2ld+/eJCUl8f777+Pl5cWaNWt455132LJlCz4+PgQEBLB161aGDRtGvXr1OHXqFLNnzyYqKoqRI0emid3Dw4Mff/yRUaNGUaNGDUaMGEHlypU5efJkhq932bJlDB061LC+h4cHYWFh9O7dG1tbWz7++GNsbW1Zs2YNb775piG258/X1KlTcXJyolatWhnGlBEHB4cMn7t58yYdOnRIsUypVFK2bFnu3LmT7jYKhcIQn1arJTIykj///JPt27fz9ttvZ3gsIQobSZCEKCIUCgWrV6/G0dERADc3N0aOHMnBgwdp1aoVAGq1munTp1O+fHkADhw4wNGjR5k/fz6dO3cGoFmzZtjY2LB48WIGDBhgqCZLSkpi2bJlODs7A/Dnn39y+PBh9uzZQ7ly5QC4fPkyP//8c6ZxVq1alTlz5hj+vnDhAr/99hug+8BdsGABLVq0YMGCBYZ1KlSowMCBAzlw4IDhtcTFxTFr1ixefPFFwzqtW7fmwIED+Pj4sG3bNgIDA9m+fTvVq1cHoGHDhrz++uucOnUKpVLJpk2beO+99xg6dCgAzZs3R6FQ8OWXX9K3b19cXV1TxG5lZUXdunWxsrLCzc2NunXrZnldatSokWb9NWvWEBERwcaNGylTpgwALVu2pEOHDixevJglS5YYtm/Xrh09evTIcP/6mIwRFRWFvb19muX29vZER0dnuf3ff/9N3759AahZs2aRbJAvii+pYhOiiGjdurUhOQJd1Y6lpSWnT582LLOxscHb29vw98mTJ1GpVGlKEfTJ0okTJwzLfHx8DMkRgLu7O25ubobkCMDFxYWnT59mGmfqD3MvLy/i4uIAXY+q4OBg/P39UavVhkejRo1wcHDgyJEjGe5L3wZIXxV3+vRpypYta0iOAKytrfn111/p3bs3x48fR6vVpjmWv78/CQkJKariTO3YsWO88MILeHp6Go6rVCpp2bIlR48eTbFu1apVs9zf8/GnfiQnJ2e6rb5E7nlarTbd5amVLVuWtWvXsmDBAqKjo+nevXua6lIhCispQRKiiPDw8Ejxt1KpxMXFJUWX7RIlSqT44IuMjMTV1RULi5RvBe7u7gApkp30qmpsbW1zHGfqbZRKpaF7eEREBADTp09n+vTpabYNDQ3NcF/6asTn91WiRIkM49Afq2PHjuk+HxISksmryJ2IiAju3r1LzZo1031enzAClCxZMtN93b9/nzZt2mT4vJ+fX4btqhwcHNItKYqNjc1Wo3NPT088PT0B8PX1pV27dmzevJnhw4dnua0QBZ0kSEIUEfoPfL3k5GTCw8NTNMBNzdnZmfDwcNRqdYokSZ+IpK5iymtOTk4AjB8/Pt1u8c+XYGXF0dExRYNxvbNnz+Lg4GA41po1a9KtZipdunS2j5VTjo6O+Pn5MX78+HSft7Kyyva+PDw82LJlS4bPp/fa9CpWrMi9e/dSLNNoNNy/f5927dqlu010dDT79u3D19fXUFUL4O3tjbOzM0FBQdmOXYiCTKrYhCgiDh06lKIX0d69e1Gr1YY2Ounx8/MjOTmZ3bt3p1i+Y8cOABo0aJA3wWagUqVKlChRgvv371O7dm3Dw8vLi88++yxFL6+sNGzYkMDAQK5evWpYlpiYyLvvvsumTZto1KgRAOHh4SmOFRERweeff54m4cwNfemWnp+fH7dv36ZixYopjr1jxw42b96MSqXK9r6trKxS7CP1o1KlShlu26xZM06dOkVYWJhh2aFDh4iJiaFZs2bpbqNSqZgyZQqrVq1KsfzChQtERESkqNIUojCTEiQhiojg4GCGDx9O//79CQoKYuHChTRv3pzGjRtnuE3Lli1p3Lgx06ZNIzQ0lBo1anDy5Em+/vprunbtmu/jGKlUKsaNG8fUqVNRqVS0bt2aqKgoVqxYQUhISIZVUunp1q0ba9euZfjw4YwZMwY3NzfWr19PfHw8/fr1w9vbm86dO/Pxxx/z4MEDatWqxe3bt1m0aBFly5alQoUKJntdTk5OXLp0iZMnT1KnTh0GDhzIzz//zMCBAxk8eDCurq7s3r2bTZs2MWnSJJMdNyt9+/Zl3bp1DBo0iFGjRhEREcH8+fNp2bIl9erVM6x37tw53Nzc8Pb2xtbWliFDhrBixQpcXFxo2rQpt2/fZtmyZVSvXp3u3bvnW/xC5CVJkIQoIjp27IiTkxNjx47Fzs6Orl27Mm7cuEy30ffYWrJkCd9//z1hYWGULVuWcePGMWjQoHyKPKWePXtib2/PqlWr+PHHH7Gzs6N+/fosWLAgRYPwrDg4OLBu3To+/fRTZs2ahVqtxtfXl7Vr1xoaqs+ZM4cvv/ySH374geDgYEqUKEGHDh0YO3ZsjkpxsjJ48GBmz57N22+/zerVq2nYsCE//PADn332GQEBASQkJFChQgVmzZqVaY81U3Nzc+P7779n9uzZfPDBB9jb29O+ffs0VX+9evWia9euzJ07F4BRo0ZRsmRJNm7cyJo1a3B2dubVV19l7NixWFtb51v8QuQlhVYmzxGi0PP398fPz8/wASaEECJ3pA2SEEIIIUQqkiAJIYQQQqQiVWxCCCGEEKlICZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqMpK2iWi1WjQa6RBoTkqlQq6Bmck1MC85/+Yn18C8lEoFCoXCJPsqkgnSihUrOHbsGGvXrs1wnfDwcGbOnMnBgwcBaN++PZMmTcLOzs6oYyoUCqKiYlGrNUZtL3LHwkKJq6u9XAMzkmtgXnL+zU+ugfm5udmjUpkmQSpyVWzfffcdS5YsyXK90aNHExgYaFj/yJEjTJ8+PR8iFEIIIURBV2RKkEJCQpgyZQpnzpyhYsWKma579uxZTp48ye7du/Hx8QFgxowZvPPOO7z33nt4enrmR8hCCCGEKKCKTAnSv//+i7OzMzt27MDX1zfTdU+fPo27u7shOQLw8/NDoVBw5syZvA5VCCGEEAVckSlB8vf3x9/fP1vrhoSEUKpUqRTLrKyscHFxISgoyOgYVKoik28WOvpzL9fAfHJyDU6dOsny5Uuwt7fnvfc+xMencl6HV+TJ/4D5yTUwPxO1zwaKUIKUE3FxcVhZWaVZbm1tTUJCgtH7dXKyzU1YwgTkGphfVtfg77//Zvjwd4iPjwfgypVL7N+/Hycnp/wIr8iT/wHzk2tQNBTLBMnGxobExMQ0yxMSEozuxQYQFRVHcnLh6rmg0cKtSF3KXclZi9KE2Xd+UqmUODnZFsprUFRk5xpoNBomTJhIfHwCtVv15NGjUIL/Pci8eQv44IMJ+RxxwZOb/0f5HzA/uQbm5+xsi1JpmhK8YpkgeXl5sWfPnhTLEhMTiYiIyFUD7eRkTaHr2hmnhh47HAE49MZTbAv5HVEYr0FRk9k12LfvTy5d+hd7F3cu+32uW3itMps3/8CwYaOwtS3e37xN8f8o/wPmJ9fAfLQmHIKqWFaUNmrUiODgYO7evWtYduLECQDq169vrrCEKPI2b/4BgG7dehqWlS5VhpiYGPbt25PRZkIIke+KRYKUnJzMo0ePDG0efH19qV+/PuPGjePChQscP36cadOm8frrr0sXfyHyyP37gRw7dgSALl26GZa3f/U1AP74Y7dZ4hJCiPQUiwQpKCiI5s2bs3u37g1YoVCwbNkyypYty4ABAxg7diwtW7YkICDAvIEKUYTt2LENgBdfbEaZMmUNy1u0eAmAU6dOkJSUtm2gEEKYQyFvcZK+uXPnpvi7bNmyXL16NcWyEiVKZGvEbSGEaezd+ycAHTt2TrG8atVquLq6ER4exrlzZ2nUqLE5whNCiBSKRQmSEMK87ty5xc2b17GwsKBly9YpnlMqlTRp0hTQlSIJIURBIAmSECLP6UuP/PyapDveUd26us4RFy6cy8+whBAiQ0Wyik1kn4UC+r2QaPhdiLywd+8fALRp0w5Ie9/5+tYF4OLFC2g0GpONY1LYyP+jEAWHJEjFnKUKxtQzfvRwIbLy8OEDLl36F6VSSevWbYC0913lylWxtbUjOjqaW7duULlyVXOFa1by/yhEwVE8v6YJIfKNvnqtXr0GuLmVSHcdCwsLqld/AYCrV6/kW2xCCJERsyRIbdu25YsvvsjVxLDCNDRaeBit4GG0Ao0JRyAVQm/fPl2C1KZNW8Oy9O47fanR9evX8j3GgkL+H4UoOMySIL344ousXr2aNm3aMGjQIHbt2pWrSWKF8RKSofMOBzrvcCAh2dzRiKLm8eNHnDv3NwD+/s8SpPTuu6pVqwHFO0GS/0chCg6zJEgzZszg8OHDLFiwAEtLSyZMmEDz5s2ZOnUq586dM0dIQog8sG/fHrRaLTVr1sbLq1Sm6z4rQbqa6XpCCJEfzNZI28rKig4dOtChQwceP37M77//zo4dO+jTpw8VKlSgV69e9OjRAwcHB3OFWCxoTTmznxCp6HuvvfzyK1muW7lyFQBCQ0OIiorEyck5T2MTQojMmL2RdkJCAseOHePIkSNcuXIFR0dHqlSpwsqVK3n55Zc5duyYuUMssjQaDZMmfWD4Ozo6xozRiKImIiKc06dPAvDyy+2yXN/R0ZHSpcsAxbuaTQhRMJgtQTp+/DiTJk2iadOmjB8/npiYGGbOnMnhw4dZsmQJ+/fvp1KlSnz00UfmCrHIO3LkEAcO7DP8vXHjWjNGI4qa/fv3kZycTNWq1SlXzjtb21SpIg21hRAFg1kSpFatWjFo0CCOHTtG//79+fPPP1mzZg2dOnXCysoKABsbG5o2bUp0dLQ5QiwWfvnl5xR//7p7p1S5CZP588/fAWjbNuvqNb0KFSoBcPfunbwISQghss0sbZB8fX3p0aMHzZs3R6HIeLjYbt260aNHj3yMrPiIi4tj//59wLPzHxT8kPv3A7P9bV+IjERFRXHihK56XD96dnZ4e5cHIDDwXp7EJYQQ2WWWEqQqVapQtWrVdJOj+/fvM2PGDABKly6Nl5dXfodXLFy+/C/x8fGUdHOlR5VEStzfDZpkTpw4au7QRBFw6NB+1OokKlXyoVIlnzTPqxTQs0oiPaskonrubcDbW5ec37t3J1/iLGgyOi9CiPxnlgRp+fLlhISEpPvc+fPn2bx5cz5HVPycP38OAN9aNZnYKIHuLv9AcqKhUa0QubFnT+a916xUMKFRAhMaJWClera8XDldCdLDhw9Qq9V5HmdBk9F5EULkv3yrYuvduzfnz58HdF3Le/XqleG6tWvXzq+wii39rOl16tQFoEaNWgBcuyZj0IjciY2N4ejRQ0DOqtcAPDw8sba2JiEhgaCgh1LdK4Qwm3xLkGbNmsWvv/6KVqtl+fLldO/ePU31mVKpxMnJiXbtcvamKnLu33//AaB27bqExyvwKK+bB+vOndskJCRgbW1tzvBEIbZ37x4SEhLw9i5vGB07Na0WIhJ0dUgu1lr0te1KpZKyZb25efM6gYF3i12ClNF5EULkv3xLkHx8fBg1ahQACoWCnj174unpmV+HF8+JiooiNFRXxVm2YjXabnUAHHAuWYrIx0HcunWDF16oad4gRaG1a9cOADp06JRhJ4z4ZP677+DQG0+xfe6dyNu7PDdvXufevbs0bdoiz+MtSDI7L0KI/JVv/34PHz7E3d0dS0tLunXrRnJyMg8fPsxw/dKlS+dXaMXO7ds3AV11hqPjs5HKfXyq8PfjIK5evSIJkjDKo0ePOHbsCKBLkIyhLzW6d096sgkhzCffEqQ2bdrw448/UqdOHfz9/TPt3g9w+fLlfIqs+Ll1S5cgpe5dVLFiRf4+cbDY9iASubdjxw40Gg21atUxdNnPKX2CdP++JEhCCPPJtwRp9uzZlCtXzvB7VgmSyDs3b14HoFKlyimWly0r39xF7mzbtg2Ajh2NKz0CKFVKV3ocHBxskpiEEMIY2U6QJk2alKMdz5kzJ8XfXbt2NfzerVu3HO1LmNadO3cAqFSpUorlZcvqElgZpE8Y4+7dO5w9exaVSsUrr3Qwej9eXqUACA4OMlVoQgiRY9lOkE6cOJHi79DQUNRqNaVLl8bd3Z2IiAgCAwOxsrKievXqWe7v1KlTqFQq6tevbxgcMigoiPbt2zNy5MicvxKRbQ8eBALPSoz09H/fv38PrVYrpXwiR3bu1E1d8+KLTXFzK2H0fkqV0iVIUVGRxMREY2/vkMUWQghhetkeKHLfvn2Gx7hx4yhRogSbNm1i3759/Pjjj/z+++/s2LEDT09PXn311Uz39fPPP9O/f3/27NkDQEBAAKdOnaJ8+fKsXLmSr776KnevSmRIo9Hw8OEDAMqUKZviudKlS6NQKIiJiSE8PMwc4YlCKjk5me3btwLQuXPXLNbOnL29A05OzgAEBUkpkhDCPIwaSXvRokW8//771KlTJ8XyypUrM2bMGFatWpXp9qtXr6Zr166MHz+eJ0+ecPToUUaNGsWyZcsYN24cP/30kzFhiWx4/PgRCQkJKJVKvLxKoVLAaxWTeK1iErbWVobqjXv37po5UlGYHD16mODgIFxcXGjTpm2W6z9/36U3pUZxrWbL6rwIIfKPUY20w8PDcXR0TH+HFhbExsZmuv2tW7cMbZoOHjyIVqulTZs2gG4U7c8//9yYsEQ2PHigKz3y9PTC0tISgIAX4w3PlypVmqCgh8Xug0nkztatuumBevTogbW1NWq1JtP1rVQp77vUSpUqxbVrVwgOzngokKIoq/MihMg/RpUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAHQ9aBydXU1JiyRDQ8f3geeNchOzdNTN7q59CAS2fXoUSgHD/4FwJtvvmmSfepLkDIbK00IIfKSUSVIEyZMoF+/fvj7+1OvXj1cXV158uQJZ8+exdnZmS+++CLT7Zs0acKyZcu4fv06f/75J4MHDwbg999/Z/HixTRv3tyYsEQ23L+va6Ctb3+k1epG7wWwUT37YAoJkRIkkT0//7yV5ORk6tatT9WqVQkPj8lym9T3Xer+AKVKlQGKXxVbVudFCJF/jCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2bKZbj9lyhRcXV1Zvnw5TZs2ZdiwYYBuaIDSpUvz/vvvGxOWyIYHD3QlSPoEKT4ZWmxypMUmR+KTpQRJ5ExSUhKbNm0EoGfPjCegTi31fZeavidbcUuQsjovQoj8Y/RAkZ6enkyYMMGobV1dXfnmm2/SLN+wYYNMMZLH9F38U/dg05MSJJETf/75G6GhIZQs6c6rr3Y02X71iXpQkFSxCSHMw+gEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodE8a9Cpb3MgiVLe0J/frBIkKUESWdFqtaxbtwaAN97og5WVlcn27eGhm8j68eNHMiaXEMIsjEqQwsLCGDBgALdu3aJSpUrcuHGD+Ph4Dhw4wNy5c/nuu++oV69ehtvfuXOHiRMncv78+QzXkbnYTE+j0fDoUSjw7Bt6al5euuVhYU9ITEw06YeeKFrOnfubS5cuYmVlRY8evU2675Il3QFdFV5kZAQuLtJxQwiRv4xKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIofCwp6gVqtRKpWUKFEy3XWcnV2wsbEhPj6ekJBgw8ShovBJTk4mODgIe3v7PEkwvv1WN6Brx45dcHNzM+m+rayscHV1JTw8nEePQiVBEkLkO6MSpL/++ovJkydTvnx5kpOftSS0trZm8ODBTJw4MdPtT58+zaxZs3jttdeMObwwUmhoCAAlSpQwjIGUmkKhwNPTi7t37xAcHCQJUiGk0WhYv/57vv32S8NQHHXr1ufdd8fRoEEjkxzjn38ucOjQAVQqFQMHvm2Sfabm7u5hSJCqVKmWJ8cQQoiMGFV0k5CQgIuLS7rPqVQqkpKSMt3ewcEBZ2dnYw4tciE0VFe95u7umel6zxpqSzukwkar1TJjxsd89tlcwsPDDYnwuXN/8847/fnii6VotdpcH2flymUAdOjQifLlK+R6f+lxd/cAnt23QgiRn4xKkGrXrs2GDRvSfW7nzp2GKreMdOnShfXr15vkjVpkn74ESd8AFkCpgDblkmhTLgnlf+1g9e2TJEEqfNat+47t239CpVIxadJUjh07yx9/HOD117uj1Wr58svlzJnzSYqOETl15swpjhw5iEqlYsiQ4UbtI737LjV9gvTo0SNjQy10snNehBD5w6gqtjFjxjBw4EC6dOnCSy+9hEKhYNeuXSxdupTDhw9nORebra0tZ86coW3bttSuXRsbG5sUzysUCmbPnm1MaCIT6SVI1iqY1yLl1Ab6BrKPHxefD6aiIDg4iGXLPgfgww8n06tXX0B3vQMCZlGrVh1mzQpg06YNaDTJTJkSkOPeYWq1mnnzZgLQtWsPvL3LGxVrevddas8SpOJTgpSd8yKEyB9GJUgNGzZk9erVfPbZZ6xatQqtVst3331HjRo1+PLLL2nSpEmm22/btg1HR0c0Gk26PdmkS2/eeJYgeWS6nru7LkEqTt/ci4IVK5aQkJBAgwYNDcnR83r06IWtrS0ffzyRLVt+xNbWlvfem5Cj/7efftrEtWtXcXJyZuTIsSaMPq3imCAJIQoOo8dBatSoET/88APx8fFERkbi4OCAvb19trbdt2+fsYcVuZBeCVJ6SpSQEqTC5t69u+zcuR2AsWPHZ5j0dOzYmaSkJAICprB27XfY2dkzfPi72TrGgwf3WbLkMwBGjHg3z+dMlARJCGFORrVBmjRpEqdPnwbAxsYGT09PQ3J0+fJl2rRpk639aDQarly5wsGDB4mOjiYiIsKYcEQ2pZcgxamh4QZHGm5wJE6tW6YvQZIEqfDYsuVHtFotzZq1pHbtzAdqff317kyYMAWAL79czpo1aUe1Ty0pKZEpU8YTExND3br16dmzT67iTe++S604JkjZOS9CiPxhVIK0bds2Bg4cyI8//pjmucTExGzNwP3zzz/TqlUrXn/9dYYNG8bdu3eZOHEi7777LomJicaEJbKQ3RKkZ22QHktD+kIgMTGRHTu2AvDGG9kbsLFPn368++44ABYtmm+YTy09Wq2WmTMDOHfub+zt7Zk5cx4qlSr3gWdBnyA9fvwoV43KhRDCGEaP0PjSSy8xbdo0pk+fnmIspOzYvXs3EyZMoEmTJixatMjwIdyuXTsOHjzIihUrjA1LZCA2Nobo6Ggg+wlSfHwcMTFZz8wuzOuvv/YSERGBp6cXzZq1zPZ2b789jMGDhwIwe/Z0vv56ZZpEJDExkWnTJvPzz1tRKpXMm7eIsmXLmTT+jJQoUQKFQkFycjLh4WH5ckwhhNAzug3SsGHD6NixI5MnT+bGjRssXbo0w7GRUlu5ciW9e/cmICAgRXLVrVs3njx5wqZNmxg7dqyxoYl06EuP7OzscHBwyHRdW1tbHBwciI6O5vHj0CzXF+a1d+8fgG5MIguLnP1Lv/vuOBISEli/fg3Ll3/O3r1/0Lv3m/j4VOHWrRusXv01d+7cRqVSMW3aTJo3z34CllsWFhaUKFGSx48f8ehRaIajvwshRF7I1RwfHTp0YP369dy7d4/u3btz9erVbL1B3759m7Zt26b7nK+vLyEhIbkJS6RDP9heVqVHevpSJOnJVrAlJCRw6NABANq0aZfj7RUKBR98MJGAgFnY29tz5colAgKm0K/fG0ybNpk7d25TokRJPv98BZ07dzV1+FnSt4eTwSKFEPkt15Og1axZky1btlCyZEl69+7NkSNHstymRIkS3Lx5M93nbt68SYkSJXIblkglu+2P9GQspMLh+PEjxMXF4unpRc2amQ/QmhGFQsHrr3dn1649DBs2kjp16uLlVYratX0ZMWI027btpkWLl0wcefYUx4baQoiCwegqtue5u7uzdu1aPv74YxYuXJjluCodOnRgyZIleHh48NJLujdehULBxYsXWbFihczRlgckQSqa9u//CwB//5dzPX6Yq6srw4e/m+1u//nhWUmmJEhCiPxlVII0atQoPD1TftBaWVkxb948qlevnuU4R2PHjuXatWuMHTsWpVJXiNWvXz9iY2Np2LAhY8aMMSYskYmMBolUKqBZabXhd72SJXXtPaSKreDSarUcP64rsc1J4+yCIKP7LrXilqhn97wIIfKe0QlSRgYNGsSgQYMy3d7KyopVq1Zx5MgRjh8/TkREBI6Ojvj5+RmmLhGmlVEbJGsVLG4Vl2b9kiV1idSTJ4/zPjhhlPv3AwkKeoiFhSX16zcwdzg5ktF9l9rzXf2Lg+yeFyFE3st2gtS/f3+mTZuGj48P/fv3z3RdhULBmjVrMnx++/btvPTSSzRr1oxmzZqleO7Ro0ds376dIUOGZDc0kQ05rWKTwSILvhMnjgK6jg12dtkbxb6wkc4CQghzyXYj7ecHDNRqtZk+shrUbdKkSQQGBqb73OXLl1myZEl2wxLZpE+Q3N2lF1tRcfz4MQAaN25q5kjyTnGrYhNCFBzZLkFau3Ztur9n17Bhw7hx4wagS7BGjhyJlZVVmvWePHmCt7d3jvcvMpacnGyoKktdghSnhrY/6cY5+rN7NLb/3RHywVSwabVazp37G4CGDf3MHE3OZXTfpaYvyXzy5DEajcbQZrGoyu55EULkvXz79xs2bBibN28GdFOV1KhRAzc3txTrKJVKnJyc6NatW36FVSw8efKY5ORklEplukMoxCenbfOl/2CKiookISEBa2vrPI9TZN/Dhw94/PgRFhYW1KhhXPd+c0vvvktNf7+q1WoiIiLSvGcURdk5L0KIvJftBKl69erZbjytUCi4dOlSimX169enfv36hr9HjBhBuXL5M2VBcadvoF2iRMlsj7Ts6OiElZUViYmJPH78iDJlyuZliCKHzp8/C0D16jWwsbExczR5x9LSChcXFyIiInjy5FGxSJCEEAVDthOkkSNHmqx32Zw5c0yyn+dpNBqWLVvG5s2biYqKokGDBkybNo3y5cunu/62bduYOHFimuV//PFHhtsUVjltoA26JLdkSXdDSYUkSAWLPkGqU6eueQPJByVLuhMREcGjR4+oUqWaucMRQhQT2U6Q3n3XdIPHhYWFMWvWLPbv309cXFyaGePTK4HKyooVK/jhhx+YM2cOnp6ezJ8/nyFDhrBr16502zpdvXoVPz8/Fi5cmGJ5UfyGakyCBBgSJOnqX/BcuHAOAF/feuYNJB+ULOnOjRvXpT2cECJfGd0GKT4+nqtXr5KUlGRIcDQaDXFxcZw+fZoPPvggw20DAgI4cOAAHTt2xMvLK9cNLxMTE/n222/58MMPDSNzL1q0iBYtWvDnn3/SsWPHNNtcu3aN6tWrG9raFGX6BCn14J5ZkZ5sBVNcXCzXrl0FwNe3rnmDyQfSYUAIYQ5GJUjHjx9nzJgxREVFpfu8vb19pgnSoUOHmDx5Mr169TLm8GlcuXKFmJgYmjRpYljm5OREjRo1OHXqVLoJ0tWrV3nllVdMcvyCztgSJH3yKNM8FCwXL/5DcnIyHh6eeHmVMnc4ee7ZfGySIAkh8o9RCdLnn3+Oi4sLM2fOZMeOHSiVSrp168bBgwfZuHEjX3/9dabbW1lZmbSBdnBwMAClSqX8sPDw8CAoKCjN+mFhYTx+/JhTp06xdu1aIiIi8PX15YMPPqBixYpGx6FSFcwuyI8e6RIkLy8vLCxSxmgJNPBM1v1uoeT5Ntz6hOrJk8dptito9Oe+oF4DU7pyRVf97Otbt0Bdl5xcg8zuu9T00+OEhRX8+zC3cnJeUitO/wMFlVwD8zPlRBxGJUhXr17lk08+oW3btkRHR7NhwwZeeuklXnrpJZKSkvjiiy/46quvMty+bdu27Nq1i6ZNTTPAXVycbmj+1G2NrK2tiYyMTLP+tWvXAFCpVMybN4/Y2FhWrFhB37592blzp2EespxycrI1aru8pq+a8PEpj6tr2hGXt/bW/5byuYoVdUlsZGRYutsVRAX1GpjS7dvXAahXz7dAXpfsXoOM7rvUKlTQdRAID39SIF+vqWX3vGSkOPwPFHRyDYoGoxIkjUaDl5cXABUrVjQMAAnwyiuvMGHChEy3r1GjBp9//jmBgYH4+vqm6aasUCgYOXJktuPRb5+YmJhiXwkJCdjapr1RmzRpwsmTJ3F2djYsW758Oa1bt2br1q0MHTo028d+XlRUHMnJmY8ibg5BQboSNjs7Z8LDY7K9nZ2dEwAPHjzM0XbmoFIpcXKyLbDXwJQuXPgHAG9vnwJ1XfLqGujvw6Cg4AL1egua4vQ/UFDJNTA/Z2dbkw0oa1SC5O3tzdWrV2nYsCHly5cnLi6Omzdv4uPjg1qtJiYm8zexGTNmAHDq1ClOnTqV5vmcJkj6qrXQ0NAUo3CHhoZSvXr1dLd5PjkCsLOzo2zZsoSEhGT7uKklJ2tQqwvWP0V0dDSxsbrrUaKEe47ic3PTtUEKDQ0tcK8rIwXxGphSQkICt2/fAqBKlWoF8rWa+hq4uupKdB8/flwgX29BU9T/BwoDuQbmk6pTfK4YlSB16tSJBQsWoNFo6NevH7Vq1WLmzJn069ePlStXUrly5Uy3v3LlilHBZqR69eo4ODhw4sQJQ4IUFRXFpUuXeOutt9Ksv2HDBhYvXsyBAwcMJU7R0dHcuXOHHj16mDQ2c9M30HZwcEh3QtM4NXT6Wbd8Z5eYFFMb6HsPhYeHkZSUhKWlZd4HLDJ18+Z1kpOTcXFxyXGj+4Iks/suNX2Vd1xcLDEx0djbO+RHiGaRk/MihMhbRpVDvfPOO/Tu3ZsLFy4AMG3aNC5fvsyIESO4desW48ePN2mQWbGysuKtt95iwYIF7N27lytXrjBu3Di8vLxo27YtycnJPHr0iPj4eABat26NVqtl/PjxXL9+nX/++Yd3330XNzc3unbtmq+x57VnPdi8MlwnIkFJRELaW8HFxQULC11SJGMhFQxXr+q+XFStmv2R7QuqjO671Ozs7LGzswOKR1f/7J4XIUTeMur7iVKpTNHOqHbt2uzZs4dbt25RqVIlHBzSfsPr378/06ZNw8fHh/79+2e6f4VCwZo1a3IU0+jRo1Gr1Xz00UfEx8fTqFEjvvnmG6ysrLh//z5t2rRhzpw5dOvWjVKlSrFmzRoWLFhAnz590Gq1NGvWjO+//77ITdsQEqJrf6TvCZQTSqWSkiVLEhwcxKNHj4pFl/KC7to1XYJUrVr6VcdFVcmS7ty7d5dHjx5RvrzxPU2FECK7TFaA6+DgQJ06dTJ8/vnRslOPnJ3ZutmlUqn48MMP+fDDD9M8V7ZsWa5evZpi2QsvvMA333yT4+MUNvp52Dw9My5Byoy7u8d/CZKMhVQQ6EuQqlV7wcyR5C93d12CVBxKkIQQBYNRCdLDhw+ZMWMGf//9N0+fPk3zfHpThaxduzbd30XeCg3VlyAZ115FP0iffDCZn0aj4erVy0BxLEGSwSKFEPnLqARpypQpnDt3ju7du+Pi4mLikIQpGTvNiN6z6UakBMncHj58QExMDJaWllSoUMnc4eQrmW5ECJHfjEqQzp07x8cff0y3bt1MHY8wMf2wBbktQZIEyfz07Y98fKoUux6F+gRJOgsIIfKLUQmSu7t7mnGERMGUVS82BVDDLdnwe2rP5mOTb+7mduVK0aley+q+S6243Ic5PS9CiLxjVII0bNgwli9fTvXq1SlTpoypYxImkpSUSFjYEyDjEiQbC/i+fWyG+5ASpIJDX4JUtWrhT5Cyuu9SKy5VbDk9L0KIvGNUgtSqVStWrVrFyy+/jJubW7pThezZs8ckAQrj6XuwWVpa4urqatQ+issHU2HwrAdb4U+Qcko/WOTjx5KoCyHyh1EJ0qRJkwgMDKRZs2aGou+sbN++PUfHeP3113MemEhBnyB5eHgaPaigvgQpLOyJjKZtRlFRkQQFPQSKRglSTukT9cjISBITE9NMTC2EEKZmVIJ08uRJpk6dyhtvvJHtbSZOnJjtdRUKhSRIJpCdLv7xauj5i25qg80dY7BJdUfoRtO2QK1WExb2xOjxlETu6EuPSpUqjZOTk5mjyb2s7rvUnJ1dsLS0JCkpicePH1G6dNGs2s/peRFC5B2j/v2cnJwoXbp0jrbZu3evMYcSuZCdLv5aIChGafg9Nd1o2u4EBwcRGhoqCZKZXLumG+i0qAwQmdV9l5pCoaBkSXeCgh4W6QQpp+dFCJF3jEqQ+vbty1dffUXdunXTnVYkPTlpzG3MSNoirWfTjORuUlN9giQNtc2nuA4Q+bznEyQhhMhrRo+kfenSJZo3b57u3GvZmUvtl19+4eTJkyQlJRkSIq1WS2xsLOfOnePgwYPGhCae86wNUu5KfWQ0bfMrrlOMPO9ZhwEZC0kIkfeMSpBu377NCy88e6NOXeKTVQnQsmXLWLZsGY6OjqjVaiwtLbGwsCAsLAylUknPnj2NCUukYqoSJH2CpN+fyF9JSYncunUDkBIkkERdCJE/jEqQAgIC8PHxMfqg27Zto3PnzsybN48lS5bw8OFD5s2bx8WLFxk6dChVqlQxet/imdxOM6JXqlQpQBIkc7l9+zZJSUk4ODgU2bY32VGUB4vUaDTs2LGNDZt/go47AZj68USGvT2YypWrmjk6IYonpTEbvf322znutv+8kJAQunTpgkKhoGbNmpw9exaAWrVq8b///Y/NmzcbvW+ho9FoDG2GcluC5OWlS5D03cxF/nq+/ZGxwzUUBc9KkIpWW7jExETef380AQFTuHbtsmH5n3t+p0+f7mzdKu+HQpiDUQmSWq02euBBADs7O8MbfYUKFbh//z7x8fEAvPDCC9y/f9/ofQud8PAw1Gq1ofdPRhRAJedkKjknZzi1gZeXrsdicHCQ6QMVWSpKI2jrZee+S+3ZYJFFpwRJq9UyefKH/PXXHqysrBgxYgzl7BIobR1Ds2YtSEpKYsaMj/nhh3XmDlWIYseoKrYxY8Ywc+ZMHj9+TJUqVQxvXM/LbBiA2rVrs23bNpo2bYq3tzcqlYqjR4/i7+/PzZs3ZRA4E3j4UFfa4+7ukengjjYWsKlj5lMbPKtiCyE5ORmVSmW6QEWWimID7ezcd6kVxTZImzf/wJ49v2Npacny5V/RqFEThpIIgLbbYpYsWcjq1V/z6aez8fauQNOmzc0csRDFh9FtkJKTk5kyZUqGRf6XL19OdznA//73PwYNGsTTp09ZuXIlnTt3ZuLEiTRu3JjDhw/z8ssvGxOWeI6+OqxUqZyNV5WekiXdUalUqNVJPHnyONdVdiL7tFqtdPH/jz5BevLkSZFI1IODg1i4cB4AY8Z8QKNGTVI8r1AoGD36PSIiIti2bTOTJr3PTz/tyrREWAhhOkYlSDNnzszVQRs1asSWLVu4elU3+N3UqVNRKpX8/ffftG/fPkejbov0PXz4AMAkjXotLCzw8PAkKOghwcFBkiDlo9DQECIjI1GpVFSqVNnc4ZiVm1sJlEolGo2GsLAnht6VhdXy5YuJj4+nfv2G9O3bL911FAoFkyZ9zOXL/3LlyiXmzp3JggWL8zlSIYonoxKkrl275vrA1atXp3p13Tdia2trPvnkk1zvUzwTFJS9BCleDf1/twPg+1diM5zawMurFEFBDwkKCqJOnbqmDFVk4sqVSwBUrFgJa2trM0djOtm9755nYWGBu7sHISHBBAcHFeoE6caNa+za9TMA48aNR6nUNQdN77xYWVkREDCLN9/swZ49v3Po0AFatHjJbLELUVwYPdNPWFgYq1ev5sSJE0RFReHq6krDhg0ZOHAgJUqUyHL7p0+fcvz4cWJjY9MdN0nmYssdfQlSVlVsWuBWpMrwe0b0PdmCg6UnW366fFmXIFWvXsPMkZhWdu+71EqVKk1ISDAPHz6kdm3fPIktP3z//Wq0Wi1t2rSldu06huUZnZfq1V/gzTf78/33q/n88wU0bdq80FcxClHQGZUgBQcH06tXL8LCwqhbty41atTg0aNHrF69mu3bt7Nly5ZMx945cOAAY8eOJS4uLt3nZbLa3NM30jbVuDn6htrSky1/6UuQXnihppkjKRhKlSrNuXN/F+ohJx49CmX37l0ADBjwdra3e+ed/7F9+1Zu3rzOzp3bef317nkVohACIxOk+fPnY2Fhwe7duylXrpxheWBgIIMHD2bRokXMnTs3w+0XLlxIpUqVmDRpEp6enobiZWEaWq3WUMWWkznwMqPv6q8vmRL548oVXQPtF14oWiVIxtKXiOrv78Jo69bNqNVJ+PrWy1F1tZOTM0OG/I/PPpvHF18spUOHTtLjNwtJSYncvHmDkJBgrK1tqFKlKiVKpO11LUR6jEqQDh8+zOTJk1MkRwDlypVj5MiRfPrpp5luf+vWLVasWEHDhg2NObzIQmRkBLGxui7U+sQmt8qW1V3rwMBAk+xPZC0sLMxQYleUxkDKDf3wIYW1BEk/YjbAG2/0yfH2b7zRl++/X01ISDC//LKDrl17mDrEIiEiIpyvv17Jzp3biYqKTPFczZq16du3P6++2lG+nItMGXV3JCcnZzhQpJubG9HR0ZluX7p06SzXEcbTf3iULOlusoa93t7lAbh//x4ajcYk+xSZ01eveXuXTzMhdHFVqpSuRLSwJkh//32aBw/uY29vj79/zoczsba2pn//QQCsXv01ycnJpg6x0Dty5BBdurRn/fo1REVF4uTkTI0atahYsRIKhYJ///2HKVM+ZNCgN3nwQAYlFhkzKkGqVq0aP//8c7rPbd++napVM587aNiwYSxfvlxGzM4jz7r4m6b0CHSNtC0sLEhMTDTM8Sbyln78I2l/9MyzKrbCmSDpS4/atXsVW1s7o/bRvfsbODs7c+/eXfbs+cOU4RV627f/xLvvDiMyMpIqVaqybNlX/PXXUTZs2MK2bbvZu/cwI0eOwc7OjvPnz9K3b3fOnv3b3GGLAsqoKrYRI0bw9ttvExERQadOnShZsiSPHz9m586dHD16lCVLlmS6/c6dOwkJCaFt27a4ublhY2OT4nmFQsGePXuMCU3wrIG2/tt2ZhRAKXuN4feMWFhYULp0Ge7du0tg4F1DrzaRd571YCs6I2jrZfe+S03fWSA6OpqoqCicnJxMH1weiYuL5c8/fwegc+f0h0rJznmxs7OnT59+rFy5jG+//Yp27doXmDn6wsKecOLEMe7fD8TKyorKlatSv35DbG1t8/zYf/zxG9Onf4RWq6VLl25MmRKQpo2Wm1sJhgwZzmuvdeHDD8dy8eIFRox4h+XLv6J+fWnyIVIyKkFq1qwZ8+bNY/78+Rw5csSwvGTJksyePZu2bdtmur2XlxdeXl7GHFpkQ04GibSxgJ1dYrK133LlynPv3l3u3buXZtRfYXpFtYs/5Oy+e56trR2urq6Eh4cTFPSwUCVIR44cIi4ultKly1C3bv1018nueenT5y3WrPmWq1cvc+LEMZo0aWrqcHMkLCyMxYsX8MsvO1Grk1I85+joRJ8+bzFo0JA8S5Ru3LjO1KmT0Gq19OjRiylTAjJNGkuVKs3XX69h7NiRnDhxlFGjhvL99z9SuXKVPIlPFE5Gj4PUpUsXXnrpJa5fv46FhQXOzs5YWVmhVCp5+PBhptU7c+bMMfawIhv0PXxMMc3I87y9vTlyBAID75l0vyKt6OhoAgPvAkUzQcqNUqXKEB4ezoMH9wvV9Ct79uhKj15++ZVcl/g4O7vw+uvd2bhxLWvWfGPWBOmffy4wZsxwwsKeALr7tVq16iQkxHPu3FmCg4P46qsV/PrrLubPX2zyEtHY2Bg+/HAM8fFxNGnSlEmTpmbr/Nra2rJ48QpGjhzCmTOnGDt2BOvWbcLFxfiJ2EXRYlSCdOfOHSZOnMj58+czXCezudj0VUDpUSqV2NnZFapvhgXNvXu6BEbf88xUypXzBjB8cIu8c/nyv4Cu7VdGHSKKK2/v8ly6dJG7d++YO5RsS0hI4ODB/QC0bfuKSfb51lsD+PHH9Rw7doRr165So0b+V8WePXuG4cPfIT4+jsqVq/DxxzPw9a1neF6j0bB37x8sWDCXwMB7DBzYlwULFtO8eUuTxbB06efcvn0LDw9PZs9ekKMBNG1sbFiwYAlvvtmD+/cDmTp1EosXf1FgqiyFeRmVIH3yySfcuXOHUaNG4eXlleOukv7+/lnegM7OzvTv358RI0YYE2KxlZyczP37ugSpfPkKWa4fr4ahe3SNRb96OfMpH8qV0/Vku3dPEqS8duHCOYAiO61LTu671PT39d27t/Mgsrxx7NgRYmNj8fT0ombN2hmul5PzUqZMWdq2bc/vv+/m+++/Ze7c+aYOO1N3795h7NgRxMfH8eKLzfjssyXY2dmnWEepVNK2bXsaN36R8ePHcfz4Ud57bxSff76Cpk2b5zqGixf/4Ycf1gEwffps3NzccrwPV1dXFi1azltv9eTgwf389NMmevTolevYROFnVIJ0+vRpZs2axWuvvWbUQefOncvUqVPx8/Pjtddeo2TJkjx58oTff/+d/fv3M2LECGJiYvjiiy9wcXGhb9++Rh2nOAoODiIxMRFLS8tsNaTWApfCsjflQ4UKFQHdG6NarcbCwugaWpGF8+fPAqT4Nl6U5OS+S01/H965U3gSJH31Wps27TL9QpnT89K//yB+/303v/32C2PHvo+rq48Jos1aUlIiEya8R2RkJLVr+7Jw4bJM2xc5OTmzdOmXTJjwHvv2/cl7741i1aq11KqVcbKYFbVazSefTEWr1dKhQydefLGZ0fuqVq067747joULP2XBgrn4+TUxDG0iii+juvk7ODjg7Oxs9EF/+eUXOnbsyKpVq3j99ddp3rw5Xbp0YcWKFfTs2ZOLFy8yYcIERowYwcaNG40+TnGkL90pV87b5HM1lSlTFhsbWxITE6UdUh7SarWGBKmoliDlxrNEvXAkSElJiezfvw+Al19uZ9J916xZmwYNGqFWq1m3bo1J952Zr79eyZUrl3B2duazz5Zkq/G1paUl8+Z9RrNmLYmPj2fcuJE8ehRqdAwbNnzP1auXcXZ25oMPJhq9H7233hpIo0aNiY+PY/r0KenOESqKF6MSpC5durB+/Xqjb6CTJ09mWPrUrl07jh8/DkCDBg1k5OYc0rfL8PauYPJ9K5VKfHwqA3D9+jWT71/o3L17m8jISKytralevfA0Qs4v+iq28PBwIiMjzBpLdpw8eYLo6KeULOmeJyWC+vncNm/+gaioKJPvP7UbN67zzTdfAjBlynQ8PDKedzM1S0sr5s1bSKVKlXn0KJRx40aRkJCQ4xgePLjPihVLARg3bjxubllPkJ4VpVJJQMAsbGxsOXPmNDt3bs/1PkXhZlSCZGtry5kzZ2jbti3jxo1j0qRJKR6TJ0/OdHsXFxeuXLmS7nNXrlwxjBocGxubL+NnFCX6EqS8Kh6uUkU3COiNG5Ig5ZXz588ButIBS0uZays1Ozt7w4dyYWiorR/MsXXrl01eqgvQvHlLKlXyISYmhg0bNph8/6ktX76Y5ORkWrd+mXbt2ud4ewcHBxYvXoGTkzMXL15g9uzpOfqyrdVqmT17BvHxcTRo0JAuXbrlOIaMlClTlmHDRgKwaNGnRESEm2zfovAxKkHatm0bjo6OaDQazp8/z4kTJ9I8MtOpUyeWLFnCmjVrCAkJISkpiZCQENauXcuyZcvo1KkTkZGRrFmzBl9fX6NeWHGV9wlSNUBKkPJSUW9/ZAqFpR2SWq1m/37doLemrl7TUyqV9O8/GICvv/6apKTEPDkOwD//nOevv/agVCp5991xRu+nXDlvPv10EUqlkp9/3srmzT9ke9vffvuFI0cOYmlpyUcfzTB5j7O33hpA5cpVCA8PZ/Hiz0y6b1G4GNXKdt++fbk66NixY3ny5Alz585l7ty5huVKpZLu3bszbtw4fv/9dy5dusSaNflXr14U6L9RZ6cHmzGkBCnvnTunm/pA2h9lrHz5ipw8eZxbt26aO5RMnT17hvDwcJydnWnQoFGeHadDh04sXbqI4OBgfv11Nx06dM6T4yxb9jkAr73WhUqVctcgvEmTpowe/T6ffz6fTz+dRZUqValXr0Gm20REhPPpp7MBGDJkOBUrVspVDOmxtLRkypTpDBrUl23bttC5c9cs4xJFk1mmMrawsGDOnDn8/vvvzJgxg3HjxjF37lx+++03ZsyYgZWVFS1btuTQoUPSBiMH4uPjefBA12ZL/w07O1ysNbhYZ28C2sqVdQnS/fuBxMbmfCRkkbmQkBBu3bqJUqmkQYOiPfVBTu671KpV05Vk6uerK6j27tVVr7Vq1SbbvT6NOS9WVla8+WY/AL777ps8aWB84sQxTpw4hoWFJf/73yiT7HPAgMG0a/cqarWaDz4YQ0hIxvM8arVaZs4MIDw8DB+fKgwa9I5JYkhPvXr16dq1JwCzZgWQlJSUxRaiKDJLgqTn7e1Nz549GTp0KF26dKFcuWcDG+pH5hbZd/v2TTQaDS4uLpQs6Z6tbWwtYE/3GPZ0j8E2G+/fbm5ueHp6odVquXTp31xGLFI7ceIoADVq1MLJyfieogVdTu+71KpV040ufuXK5QLb20ij0bBvn656rU2bzKdf0svNeenVqw92dnZcu3aV48eP5jTcTGm1WpYuXQRAz569sjWNUXYoFAqmT59F5cpVePLkMWPHDs+wofmGDWvZs+d3LCwsCAiYleft88aMeQ9XV1du3LjO+vXf5+mxRMGUbwlSmzZtDA2z/f39adOmTYaPl19+Ob/CKlL07YIqV66apyPB6tvG6KuChOmcOHEMgMaNXzRzJAVblSpVUalUhIeHERpqfFfxvHTx4gVCQ0Owt7enceO8nwrE2dmFPn36ALBmzTcm3fdff+3l4sUL2NjY8s47/zPpvm1t7Vi4cBmurq5cvnyJ4cPfTlOStHPndhYs0E1RNWbMB9SuXcekMaTHxcWVsWM/BGDlymWGOS5F8ZFvI/35+flhb29v+F2Gcjc9fbsgfTuhvOLrW48//vjV0JhYmIZWqzUkSOaefLSgs7GxoUKFSty8eZ3Ll//F0zP7Xc3zy969fwLQosVLWFtb58sxhwwZwurVqzl+/ChXr14xyVx1ycnJhrZHb77ZnxIlSuZ6n6l5e5dn5crVDB06gH///YfevV+nf/+3qVChIn/9tYcdO7YB8MYbfXnrrQEmP35GOnfuys8/b+Xvv0/z6aez+fzz5fl2bGF++ZYgPT9B7fMNs4XpXLt2FXjW0yw74tUwer9uKIUlreKyNeWDvgTpwoVzaDSaHE81I9J38eI/PH78CDs7uyLfg82Y+y61OnV8uXnzOufPn6VVK38TR5g7Wq3W0P6oTZvs917L7XkpV64c7dq157ffdrN69dfMnZv7Xli//rqLW7du4OTkbBhzKS9Uq1adtWs38cEHo7l27SqLFy9I8Xz//oMZO/aDfP1yrVAomDx5Gr17d2X//r3s37+vwN1rIu+Y7ZMtOjraUIyamJjIqlWrmDlzJqdOnTJXSIXejRvXgZyVIGmBv0Mt+DvUIttTPlSrVh0bGxsiIyMLxTg0hcW+ffoSh1ZFvv2dMfddanXr1gfg779PmywuUzl//iz37wdia2uXo4lZTXFe3n57KKDrDv/vv/8YuRedpKREvvhCNyDjoEHv5Pkk4t7e5Vm/fjMffzyDZs1aUKNGLV57rQtr1mzkvffGm+XLWOXKVejXbxAA8+bNJC4uNt9jEOZhlgTpwoUL+Pv7s3btWgBmzpzJggUL2LFjBwMGDGDv3r3mCKtQCw8P5/HjRwCG0a7ziqWlJbVq6doA6BsVi9zRarWGAQX9/bPXoLe4q19f18vv338vEh8fb+ZoUvrllx2ArnG2ra1dvh77hRdq0LGjrpv/woWf5qoR+9atW3jw4D4lS7rTu/dbpgoxU5aWVnTv/gbLl3/Nhg1bmDlzntlLVIcOHU6pUqUJCnrIsmWLzRqLyD9mSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28eIFQDf+UeoZtfNC8+YvAXDo0IE8P1ZxcPXqFQID72JlZUWLFtkvcSjOypYth4eHJ2p1EmfOFJyS56SkRH7//VcAQ6KS3959dxzW1tacOXPKMA9cTsXERPPVVysA3ZhDxXlWA1tbO6ZMCQBg/fo1nDx53LwBiXxhlgTp/PnzDB8+nHLlynHs2DHi4+Pp0qULAB06dOD69evmCKtQu3DhHJB/gwu2bNkKgJMnj8t4SCawffsWAFq2bJ0vCW5RoFAoDNVXhw7tN2coKRw6dJCoqEjc3T3w82tilhi8vErx1lsDAZg/fzYxMdE53sd3333DkyePKVeuPN269TBxhIVP8+Yt6dGjFwBTp07Kl3nvhHmZJUFSKpWGNhYHDhzAycmJOnV0VTbR0dHY2NiYI6xCTZ8g+frWzZfjVaxYiXLlvElKSuL48WP5csyiKi4ujl27dFUy3bu/YeZoCpeWLVsDcODAX2g0xg06aWo//fQjoBvdOi/mXsuut98eSunSZXj48AGLFy/M0bYhIcGsXbsagHHjPpA5Af/z3nvjKVfOm+DgIKZNm1xg7jmRN8ySINWqVYstW7Zw9uxZfv31V1q1aoVCoeDJkyd8/fXX1KpVyxxhFVrJycn88895AOrUyZ+6eoVCYfhw+vXXXflyzKLqt99+ITr6KWXKlJXxj3KoceMXsbe3JyjoIWfPnjF3ONy9e5sjRw6hUCgMpQ3mYmdnT0DALAA2bdrAkSOHsrWdVqtlzpxPiI+Pp169BrRuLePS6dnZ2TN79gIsLS356689fPPNV+YOSeQhsyRI48eP59ixY/Tp0weVSsXw4cMBeO2117hz5w5jx441R1iF1s2bN4iNjcXe3t6oBto2Ki02qpw35OzcuSugG0QuLCwsx9sLSEpK4ptvvgTgjTf6FKshE4y9755na2tLu3YdANi2bYspwsqVH37YAOiqY8qV8zZqH6Y4L3p+fk14442+AEyc+H62ep3+9tsv7N+/FwsLSyZPnipj1qVSu3YdJk+eBsCKFYsNo6WLoscs78Y1atTgjz/+4Mcff2TPnj1UqFABgICAAHbt2iUlSDn099+6Bqq1atXJcZG+rQUc7hXN4V7ROZ7aoFq16tSsWRu1OskwkJvImV27fub+/UDc3Erwxht9zB1OvsnNfZeavn3Mb7/tJjg4yATRGefRo1C2bt0EQJ8+/YzahynPi94HH0ykTp26PH0axbvvDiM0NOP5zm7cuMaMGVMBXRVdTsZUK066du1Bz5590Gq1TJgwjqNHD5s7JJEHzPZ11cHBAV9fX+zsnnWBfeWVV3B3z94cYuIZ/T9nkybN8v3Y+jYzGzZ8X+C6Whd0YWFhLFmiG8hv0KB38r07eFFRu7YvDRv6oVYnsXLlMrPF8e23X5GQkECdOnV58cX8/1/MiJWVFQsXLqVUqdLcu3eXt9/ux/XrV9Osd+vWTUaMGEJcXCx+fk0YMmS4GaItPCZMmMLLL7cjKSmJ994bJUlSEVR8yvOLqMTERE6ePAFA06bN8/34r73WhVKlShMaGsIPP6zP9+MXVrp2HjMIDw+nSpWq9O79prlDKtRGjRoLwPbtPxmma8lP165dZfPmHwAYOXJMgauWKlnSnVWrvqd06TIEBt7jrbfeYOHCT7l06SJ3795m7drV9O/fi9DQECpV8mHevEVYWOTbRAuFkoWFBXPmLKBFi5eIj4/n3XeHsWnTDwV28mSRc5IgFXLHjh0mPj4Od3cPqlbNeXF4QjKM2W/LmP22JCTn/PhWVlYMH/4uAKtWfcGDB/dzvpNiaNWqL/nzz99QqVRMm5b3M5MXNLm971KrW7e+oTRz4sT3DNPu5IekpCSmT/8ItVpN69Yv56qhvanPy/PKlCnLunWbadasJQkJCXz//bf07duDLl1e5bPP5hEdHY2vbz2++WYdrq6upj14EWVpacVnny2lY8fOJCcnM2PGVIYOHSptMosISZAKOX0PsldeedWob60aLRx5aMGRhxZojPzi07FjZ+rUqUt0dDSTJ39IYmKicTsqBrRaLV9/vZLlyz8HYOLEj6lVq7Z5gzIDU9x3qX344WRq1KhFeHg4b7/djz/++C3Pv81rtVpmz57Ov//+g4ODI5MmfZyr/eXFeXmem5sby5Z9ydKlX9K8+Us4OTljY2NDrVp1+Oij6Xz7rSRHOWVlZcXMmfMYPfo9LCws2L17N126vMratd+RkJBg7vBELii0RaQ8UKPRsGzZMjZv3kxUVBQNGjRg2rRplC9fPt31w8PDmTlzJgcPHgSgffv2TJo0KUWbqJwKD49Brc6/cTHCw8N59dXWxMfHs27dZqM+aOPU0GKTIwCH3nhqdMPQBw/u88YbXYiJicHfvy3z5n2Wr6UiFhZKXF3t8/0a5ERY2BNmzPjYMLLx0KEjGDFitJmjMp2cXANT3XepRUVFMXr0/zh37m9A13GhV6++NGvWEjc3N9Mc5D9JSYnMmfMJW7duRqlU8vnnKwwDqBorN+elMPwPFHXXrl1m6tRJXLlyBdBVbXbu3JXOnV+nQoVKZo6ueHBzs0elMk3ZT5FJkJYtW8aGDRuYM2cOnp6ezJ8/n8DAQHbt2pXuxJ/9+vUjISGBadOmERUVxZQpU2jUqBHz5s0zOob8fmP68svlfPHFUmrUqMn69VuMKkEy5QfVsWNHGD36fyQlJVGnTl3mzFlAmTJljd9hDhTkD4ewsDA2bdrAunXfER0djaWlJe+/P7HItTsqCAkS6Ce/Xsl3360ylGYqFAqqVKlK1arV8fGpQunSpXF398DDw5MSJUpgY2Ob7f+fp0+fsn//XlatWsndu3dQKpVMnjzNJOMeSYJUuFlYKHF0tOa779bxxRfLUvSqLFu2HC++2JxatWpTrVp1KlWqXOQnpTYHSZBSSUxMpEmTJnz44Yf06aPrKh0VFUWLFi2YPXs2HTt2TLH+2bNn6d27N7t378bHxweAw4cP884773DgwAE8PT2NiiM/35hCQ0Po2rUDMTExzJ37Ge3bd8x6o3SY+oPqyJFDTJjwHtHRT7Gy0k062bNnHypV8sndjrNQ0D4cHj58wMmTxzl0aD8HDuxHrU4CoHr1GsyYMceo9mIFXUFJkPTCwp6wZcuP7NnzB9euXcl0XQsLCxwcHHBwcMTR0RE7O3ssLS1RqSywsNANnfH06VMePQolMPCeYTtXVzemT5+d65IjPUmQCrfnr0FcXDwHD+5n69YtnDhxzPAeoKdUKilZ0h1PTy88Pb0oWbKk4f5zcNA/HLCyssLKygpra2ssLXU/9cusrKxQKlWoVEqUShVKpbLAdRDIb6ZMkIpEN4UrV64QExNDkybP5j1ycnKiRo0anDp1Kk2CdPr0adzd3Q3JEYCfnx8KhYIzZ87QoUOHHMcQGRnJt99+h1arRaFQ/HeTKgy/KxQ897syxfKU6+ke1tbWeHmVplSpUnh4eKYYQDA2NoYJE94jJiaG2rV9adfu1RzHm1eaNWvBxo0/8cknUzl58jgbN65j48Z1lCvnTaNGjalSpSoVK/rg5eWFi4srTk7OJhscUa1WExsbS1xcPAkJCSQlJaFWJ5GUpEatVpOcrPuZ8pFEcnIyanUyyclqNBrNf+smp3qoSU7W/Pcz5XMajW77mJho7t27y927dwgLe5Iitho1ajJgwNu0bdu+WA0GaU5ubiUYOnQEQ4eO4NGjUC5e/IcbN65z69YNQkODCQ19xKNHIcTHx6NWq4mIiCAiIiJb+y5fvgKvvdaF3r3fwtHRMW9fiCiULC2taNOmHW3atCMmJprTp09y8uQJrl69zLVrV4mKiiQ0NITQ0BDDTAimoFQqUyRNqX+m/tx5PqlK/TmkWyej5brndO9naT/r0n6ukc6yjJend+znj5tyfaVh+YIF8/HwMM1wQUUiQQoODgagVKlSKZZ7eHgQFJR24LiQkJA061pZWeHi4pLu+tkRERHBwoWfGrVtVmxsbPD2Lk+FCpVwcXHl4MG/CA4OwsHBkYCAWQXuA7dcOW++/HI1x44dYdOmDRw+fJDAwHspvnnrKZVK7OzsDd+GdN+QrFAoFGi1WrRa/vup+e+n7pGUlERSUhKJiYn/PRIK1LxIKpWKmjVr4+fXhHbtXi2SJUaFibu7B61bt6F16zYplmu1WuLiYnn6NJqnT6OIjn5KdHQ0MTHRhqRZrVaj1WpxdHTC1dUFH5+qJm/PJIo2e3sHXnrJn5de8gd0992TJ48JDg4mJCSI4OBgIiLC/7sHn78XY0hK0r3H6b70JZKQoHu/S05Ov5ujRqP574tefr7CgiMuLtZk+yoSCVJcXBxAmvpca2trIiMj010/vbpfa2tro3sd2Nvb06VLVzQajeGDHbQpPtT1tZlarfa59bT/rUeK9WJjYwkOfkhwcDDx8fFcu3Y1RddlL69SfPbZYqpVq2pUvHoWz1WwWqiUmHLok5YtW9KyZUuio3Xfns6ePcOtW7e4c+cWjx8/5unTp2g0GqKjn5ruoP/RT4isqyZRYWFhiYWFBRYWFlhaWvxXdaJ7qFS6ZbpvWSosLFSoVBYolcr/nleleligUikN1S/6dW1tbSlXzpvy5StQsWJF7OzsTf66CjJ9sXZ2irfz8r7LKUtLR5ycHIFSWa6b13JzXnJy/kXeyMk18PLyxMvLE/A16lhqtZqkpCQ0mmSSkzUpfqrVyamWJ6PRaP5LqtJ+3ui+gKZepv9sSrl+2s810nyBzewz8PnPwewvTy/m9OMzZS/MIpEg2djYALq2SPrfARISErC1tU13/fS6oickJBjdi61kyZKsWGH6UXzVajWBgYHcuHGDmzdvEh4eTvXq1Wnfvn26ry2nXIG7Y/R/5c0HuqurPeXKdaJr104plicmJhIWFkZMTIzhG1JiYmKKEbn1xb/6n/qHpaWloV4+vZ8yyJ35ODllfV/mx31XGJnivGTn/Iu8JdegaCgSnyL66rLQ0FC8vZ9NEBkaGkr16tXTrO/l5cWePSknGExMTCQiIsLoBtoAUVFxJCebvprHxcWDhg09aNiwqWFZfLyG+PgYkx8rv1lbO2Jtnfs2HCqVEicnW6Ki4v4rBZTxR/Lb89cgL/4PRObk/JufXAPzc3a2NVmzkyKRIFWvXh0HBwdOnDhhSJCioqK4dOkSb731Vpr1GzVqxIIFC7h7965hnKQTJ3TTddSvX9/oOJKTNdJ7xMzkGpifXAPzkvNvfnINzMeU/fKLRIJkZWXFW2+9xYIFC3Bzc6NMmTLMnz8fLy8v2rZtS3JyMmFhYTg6OmJjY4Ovry/169dn3LhxBAQEEBsby7Rp03j99ddzVYIkhBBCiKKhyLTmGz16ND169OCjjz6iDT2Z0QAAYLBJREFUT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HUPXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQSJ2zealUSrkGZibXwLzk/JufXAPzUir1YyblniRIQgghhBCpFJkqNiGEEEIIU5EESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQgh8oFWqzV3CEKIHLAwdwBCiKKrX79+AKxdu9bMkZjWiRMnmDp1Kg8ePKBx48bUrVuXZcuWcfXqVSDt6968eTM3b95k4sSJZos5I7du3WLu3LmcOXMGCwsL2rRpw8SJE3Fycsp0u2bNmvH48eM0yw8fPoy7u3tehStEvpEESQiRZ6ZNm2buEPLEvHnz0Gg0fPXVV5QoUQJnZ2datGiR4fpffPEFfn5++Rhh9kRFRTFw4EA8PDz49NNPefLkCfPnzyc4OJhvv/02w+0eP37M48ePmTRpEnXr1k3xnIuLS94GLUQ+kQRJCJFnKleubO4Q8kRERASNGjWiadOmhmVeXl5mjMg4GzduJCoqiu3bt+Pm5gaAp6cnQ4cO5fTp0zRs2DDd7S5dugRA27ZtKVOmTL7FK0R+kjZIQhQB/v7+LFq0iDlz5uDn54efnx8ffvgh4eHhhnUmTpzIgAEDmDZtGg0bNqRr166o1WoSEhJYvnw57du3p3bt2rRr146vvvoKjUZj2LZfv35MnTqVL774ghYtWuDr68uQIUN4/PgxP/30E23btqVevXoMHDiQ+/fvp9hOX90EUK1aNdavX8+UKVPw8/OjXr16jB49Ok1VzZ49e+jWrRu1a9emWbNmzJw5k9jYWMPzS5cupW3btuzfv59OnTpRq1YtXnnlFbZt25ZiP0+ePGHy5Mk0bdqUevXq8eabb3LmzBnD8/pSoLZt2xr2kVl14P3796lWrRoPHjxg+/btVKtWjRMnTrB06VKqVauW4bV58OAB27Zto1q1aobz8/DhQ9577z38/Pzw9fVlwIABhsTj+WOtXr2aV199FT8/P7Zu3ZphTBk9nj//qR0+fJgGDRoYkiOAFi1aYG9vz8GDBzPc7sqVKzg5OUlyJIo0KUESoojYsGED5cuXZ/bs2YSFhfHZZ59x69YtNm/ejFKp+y50+vRpFAoFS5cuJSYmBpVKxZAhQzh37hwjR47khRde4MSJE3z++ecEBgbyySefGPb/yy+/UKNGDWbNmsXDhw/55JNPeOutt7CxsWHChAlEREQwa9YsZsyYwVdffZVhnIsWLaJt27YsXLiQwMBA5syZg4WFBQsXLgRg586dfPDBB3Tq1ImxY8fy4MEDFi1axI0bN1i9ejUKhQKAR48eMWPGDIYPH06ZMmX45ptvmDhxInXq1MHHx4fY2Fh69+5NUlIS77//Pl5eXqxZs4Z33nmHLVu24OPjQ0BAAFu3bmXYsGHUq1ePU6dOMXv2bKKiohg5cmSa2D08PPjxxx8ZNWoUNWrUYMSIEVSuXJmTJ09m+HqXLVvG0KFDDet7eHgQFhZG7969sbW15eOPP8bW1pY1a9bw5ptvGmJ7/nxNnToVJycnatWqlWFMGXFwcMjwuZs3b9KhQ4cUy5RKJWXLluXOnTsZbnf58mWcnJwYNWoUx44dQ6PR0KpVKyZNmoSHh0eG2wlRmEiCJEQRoVAoWL16NY6OjgC4ubkxcuRIDh48SKtWrQBQq9VMnz6d8uXLA3DgwAGOHj3K/Pnz6dy5M6BrfGtjY8PixYsZMGCAoZosKSmJZcuW4ezsDMCff/7J4cOH2bNnD+XKlQN0H5w///xzpnFWrVqVOXPmGP6+cOECv/32G6Dr6bVgwQJatGjBggULDOtUqFCBgQMHcuDAAcNriYuLY9asWbz44ouGdVq3bs2BAwfw8fFh27ZtBAYGsn37dqpXrw5Aw4YNef311zl16hRKpZJNmzbx3nvvMXToUACaN2+OQqHgyy+/pG/fvri6uqaI3crKirp162JlZYWbm1ua9jfpqVGjRpr116xZQ0REBBs3bjSUwrRs2ZIOHTqwePFilixZYti+Xbt29OjRI8P962MyRlRUFPb29mmW29vbEx0dneF2ly9fJiQkhDfeeIOBAwdy8+ZNlixZQr9+/di2bRt2dnZGxSNEQSJVbEIUEa1btzYkR6Cr2rG0tOT06dOGZTY2Nnh7exv+PnnyJCqVKk0pgj5ZOnHihGGZj4+PITkCcHd3x83NzZAcga6B7tOnTzONM/WHuZeXF3FxcYCuR1VwcDD+/v6o1WrDo1GjRjg4OHDkyJEM96VvA6Svijt9+jRly5Y1JEcA1tbW/Prrr/Tu3Zvjx4+j1WrTHMvf35+EhIQUVXGmduzYMV544QU8PT0Nx1UqlbRs2ZKjR4+mWLdq1apZ7u/5+FM/kpOTM91WXyL3PK1Wm+5yvTlz5rBp0yaGDRtGw4YN6dWrF0uWLOHOnTts3749y3iFKAykBEmIIiJ11YZSqcTFxYWoqCjDshIlSqT44IuMjMTV1RULi5RvBfpu2s8nO+lV1dja2uY4ztTbKJVKwxhBERERAEyfPp3p06en2TY0NDTDfemrEZ/fV4kSJTKMQ3+sjh07pvt8SEhIJq8idyIiIrh79y41a9ZM93l9wghQsmTJTPd1//592rRpk+Hzfn5+GbarcnBwSLekKDY2NtNG5/Xq1UuzrEGDBjg6OnLlypVM4xWisJAESYgiQv+Br5ecnEx4eHiKBripOTs7Ex4ejlqtTpEk6ROR1FVMeU0/9s748ePT7Rb/fAlWVhwdHVM0GNc7e/YsDg4OhmOtWbMm3Wqm0qVLZ/tYOeXo6Iifnx/jx49P93krK6ts78vDw4MtW7Zk+Hx6r02vYsWK3Lt3L8UyjUbD/fv3adeuXbrbREVF8ccff1C3bt0UvRS1Wi1JSUn5fs8IkVekik2IIuLQoUMkJiYa/t67dy9qtdrQRic9fn5+JCcns3v37hTLd+zYAehKBfJTpUqVKFGiBPfv36d27dqGh5eXF5999lmKXl5ZadiwIYGBgYbBGwESExN599132bRpE40aNQIgPDw8xbEiIiL4/PPP0yScuaEv3dLz8/Pj9u3bVKxYMcWxd+zYwebNm1GpVNnet5WVVYp9pH5UqlQpw22bNWvGqVOnCAsLMyw7dOgQMTExNGvWLN1tLC0tmT59epqG+Hv37iU+Pp7GjRtnO3YhCjIpQRKiiAgODmb48OH079+foKAgFi5cSPPmzTP9wGrZsiWNGzdm2rRphIaGUqNGDU6ePMnXX39N165d830cI5VKxbhx45g6dSoqlYrWrVsTFRXFihUrCAkJybBKKj3dunVj7dq1DB8+nDFjxuDm5sb69euJj4+nX79+eHt707lzZz7++GMePHhArVq1uH37NosWLaJs2bJUqFDBZK/LycmJS5cucfLkSerUqcPAgQP5+eefGThwIIMHD8bV1ZXdu3ezadMmJk2aZLLjZqVv376sW7eOQYMGMWrUKCIiIpg/fz4tW7ZMUY127tw53Nzc8Pb2xtbWlnfeeYcVK1ZQokQJWrZsydWrV1m6dCmtWrVKMTaUEIWZJEhCFBEdO3bEycmJsWPHYmdnR9euXRk3blym2+h7bC1ZsoTvv/+esLAwypYty7hx4xg0aFA+RZ5Sz549sbe3Z9WqVfz444/Y2dlRv359FixYkKJBeFYcHBxYt24dn376KbNmzUKtVuPr68vatWsNDdXnzJnDl19+yQ8//EBwcDAlSpSgQ4cOjB07NkelOFkZPHgws2fP5u2332b16tU0bNiQH374gc8++4yAgAASEhKoUKECs2bNyrTHmqm5ubnx/fffM3v2bD744APs7e1p3759mqq/Xr160bVrV+bOnQvAu+++S8mSJdm4cSPr16/HxcWFXr16MXr06HyLXYi8ptDKDIpCFHr+/v74+fkZPsCEEELkjrRBEkIIIYRIRRIkIYQQQohUpIpNCCGEECIVKUESQgghhEhFEiQhhBBCiFQkQRJCCCGESEUSJCGEEEKIVGSgSBPRarVoNNLe3ZyUSoVcAzOTa2Becv7NT66BeSmVihQTcudGkUyQVqxYwbFjxzKcwRp08y/NnDmTgwcPAtC+fXsmTZqEnZ2dUcdUKBRERcWiVmuM2l7kjoWFEldXe7kGZiTXwLzk/JufXAPzc3OzR6UyTYJU5KrYvvvuO5YsWZLleqNHjyYwMNCw/pEjR5g+fXo+RCiEEEKIgq7IlCCFhIQwZcoUzpw5Q8WKFTNd9+zZs5w8eZLdu3fj4+MDwIwZM3jnnXd477338PT0zI+QhRBCCFFAFZkSpH///RdnZ2d27NiBr69vpuuePn0ad3d3Q3IE4Ofnh0Kh4MyZM3kdqhBCCCEKuCJTguTv74+/v3+21g0JCaFUqVIplllZWeHi4kJQUJDRMahURSbfLHT0516ugfnk5BrcuXOb1atXYW9vz9tvD6NEiRJ5HV6RJ/8D5ifXwPxM1D4bKEIJUk7ExcVhZWWVZrm1tTUJCQlG79fJyTY3YQkTkGtgflldg9u3bzNgQF+ePHkCwMmTx9m9ezfW1tb5EV6RJ/8D5ifXoGgolgmSjY0NiYmJaZYnJCQY3YsNICoqjuTkwtVzQaOFW5G6lLuSsxalCbPv/KRSKXFysi2U16CoyM410Gq1fPjhBJ48CaOsrz9Pnz7lypXTLFv2BYMHD8nniIsW+R8wP7kG5ufsbItSaZoSvGKZIHl5ebFnz54UyxITE4mIiMhVA+3kZE2h69oZp4YeOxwBOPTGU2wL+R1RGK9BUZPZNTh16gTHjh3BwtaJ4Ff+G4ZjUWVWr/6GPn36Y2lpmY+RFk3yP2B+cg3MR2vCIaiKZUVpo0aNCA4O5u7du4ZlJ06cAKB+/frmCkuIIm/Tpo0AvPZaF8MyV9cShIeHcfToIXOFJYQQaRSLBCk5OZlHjx4RHx8PgK+vL/Xr12fcuHFcuHCB48ePM23aNF5//XXp4i9EHnny5DF//aUrue3atadhefv2rwLw66+7zBKXEEKkp1gkSEFBQTRv3pzdu3cDulGvly1bRtmyZRkwYABjx46lZcuWBAQEmDdQIYqwXbt+Rq1WU7u2L1WrVjUsb9myNQDHjx8lOTnZXOEJIUQKhbzFSfrmzp2b4u+yZcty9erVFMtKlCiRrRG3hRCm8eefvwPQqdPrKZbXrFkbBwcHIiIiuHz5ErVq1TZDdEIIkVKxKEESQphXcHAQFy9eQKFQ0Lp1mxTPWVpa4uf3IgAnThw1R3hCCJGGJEhCiDynb3vk61sPd3ePNM/Xq6frHHHhwrn8DEsIITJUJKvYRPZZKKDfC4mG34XIC3v2/AFAmzbtgLT3XZ06dQFdgqTValGYcjhcIYQwgiRIxZylCsbUM370cCGyEhb2hLNndXMc+vu/DKS976pXr4GFhSXh4eEEBt7D27u8WWIVQgg9qWITQuSpv/7ai0ajoUaNmpQpUzbddaytralWrToAV65czs/whBAiXWZJkNq2bcsXX3yRq4lhhWlotPAwWsHDaAUaE45AKoTevn1/AuDv39awLL37rmrVagDcuHEt32MUQojUzJIgvfjii6xevZo2bdowaNAgdu3alatJYoXxEpKh8w4HOu9wIEGGoBEmFhUVxYkTx4Fn7Y8g/fuucmXd2EjXrl1Nsx8hhMhvZkmQZsyYweHDh1mwYAGWlpZMmDCB5s2bM3XqVM6dO2eOkIQQeeDgwb9Qq5OoVMmHihUrZbqufvBIKUESQhQEZmukbWVlRYcOHejQoQOPHz/m999/Z8eOHfTp04cKFSrQq1cvevTogYODg7lCFELkkr732ssvv5LlupUr66rY7t8PJDY2Bjs7+zyNTQghMmP2RtoJCQkcO3aMI0eOcOXKFRwdHalSpQorV67k5Zdf5tixY+YOsUhbvmyx4fekpCQzRiKKmtjYGI4dOwykrF7LiKurK+7u7gDcuHE9T2MTQoismC1BOn78OJMmTaJp06aMHz+emJgYZs6cyeHDh1myZAn79++nUqVKfPTRR+YKscg7e/Zv1q3/zvD3tm2bzReMKHIOHTpIQkIC5cp5GxpgZ0XfDun6dalmE0KYl1mq2Fq1akVISAienp7079+f7t27U7Zsyu6/NjY2NG3alLVr15ojxGJh585tKf7++edtDOjb10zRiKJmzx7d3Gsvv/xKtgd+rFSpMseOHeHu3Tt5GJkQQmTNLAmSr68vPXr0oHnz5pm+cXbr1o0ePXrkY2TFR1JSkmHyUL1bt24QGhqCh4enmaISRUV8fDyHDx8Esle9pleunDcA9+7dzZO4hBAiu8xSxValShWqVq2abnJ0//59ZsyYAUDp0qXx8vLK7/CKhatXr/D0aRRODvZ0r5yA850doEnmxAlp8yVy7+jRw8TFxVKqVGlq1qyV5nmVAnpWSaRnlURUz70N6EfQDgy8l1+hCiFEusySIC1fvpyQkJB0nzt//jybN0tbmLx24cJZAOrUrMkkv0S6OJyF5EROnTph5shEUbB3r37utbbpfhGyUsGERglMaJSAlerZcn2CdP/+PTQaTb7EKoQQ6cm3KrbevXtz/vx5ALRaLb169cpw3dq1a+dXWMWWftZ0X9+6ANSu7QvoSpaEyI3ExEQOHNgHQJs2WXfvf56XVyksLCxISEggNDQEL69SeRGiEEJkKd8SpFmzZvHrr7+i1WpZvnw53bt3T1N9plQqcXJyol277LdZEMa5ePEfAGrV8iU8XoFnhRqArh1SUlISlpaW5gxPFGKHDx8kOjoad3cPQwKemlYLEQm6kiUXay36QiYLCwvKlCnL3bt3uHfvriRIQgizybcEycfHh1GjRgGgUCjo2bMnnp7SGNgc4uJiuX8/EIDylWvQdqsDUBU755LERj7m7t07VK5cxbxBikLrl192AtC+fQeUyvRr8eOT+e++g0NvPMX2uXeicuXKGxIkP78meR6vEEKkJ98SpIcPH+Lu7o6lpSXdunUjOTmZhw8fZrh+6dKl8yu0Yuf27VsAuLq64erqYlju41OZf/5+zLVrVyRBEkaJiopi/35d9VrHjp2N2oe+HZL0ZBNCmFO+JUht2rThxx9/pE6dOvj7+2c5Lsrly5fzKbLi59atmwBUquSTYnnFij788/dx7ty5bY6wRBHw66+/kpCQQKVKPlSr9oJR+yhXrhyAoZRTCCHMId8SpNmzZxve+GbPnp3tgeOE6d26dQPQDcr3PBmDRuTW1q1bAXj11U5G/4+XLl0GgODgjEuYhRAir2U7QZo0aVKOdjxnzpwUf3ft2tXwe7du3XK0L2Fat27pqtgqVUo5u3q5sroEVsagEcYIDQ3hyJEjAHTo8JrR+/Hy0lWvBwUFmSQuIYQwRrYTpBMnUo6PExoailqtpnTp0ri7uxMREUFgYCBWVlZUr149y/2dOnUKlUpF/fr1DYNDBgUF0b59e0aOHJnzVyKy7cEDXdVFuXLlUywvXUZftSEJksi53bt3odVqqVevPmXKlM16gwyUKqXruRYeHkZ8fDw2NjamClEIIbIt2wNF7tu3z/AYN24cJUqUYNOmTezbt48ff/yR33//nR07duDp6cmrr76a6b5+/vln+vfvz549ewAICAjg1KlTlC9fnpUrV/LVV1/l7lWJDGm1Wh48uA+Q5kOsbFld1UZkZCSRkRH5HZooxLRaLVu3bgGgU6fXc7UvR0cn7OzsAAgJkVIkIYR5GDWS9qJFi3j//fepU6dOiuWVK1dmzJgxrFq1KtPtV69eTdeuXRk/fjxPnjzh6NGjjBo1imXLljFu3Dh++uknY8IS2RAeHk5sbCyga+uhUsBrFZN4rWISDnZ2uLu7AxAYKA1kRfadO3eWW7duYmtrm63qtefvO1WqpkoKhYJSpXTJemY9XYUQIi8ZlSCFh4fj6OiY7nMWFhaGD+CM3Lp1iy5dugBw8OBBtFotbdq0AXSjaEvbg7yjLz1yd/fA2toaKxUEvBhPwIvxWKkwfDAFBT0wZ5iikNm6dRMAnTt3xsHBIcv1U993qekHiAwOlvcCIYR5GJUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAGAe/fu4erqakxYIhsePtQlSGX/a5Cd2rMPpuB8i0kUblFRUfz5528A9O3b1yT71LdDCgqSEiQhhHkY1c1/woQJ9OvXD39/f+rVq4erqytPnjzh7NmzODs788UXX2S6fZMmTVi2bBnXr1/nzz//ZPDgwQD8/vvvLF68mObNmxsTlsgG/dgy+vZHWq1uVGMAGxWG6V+k7YfIrl9/3UV8fDyVK1ehQYMGRERkXoIMae+71CMCSAmSEMLcjCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2cx7sEyZMgVXV1eWL19O06ZNGTZsGKAbGqB06dK8//77xoQlsiF1A+34ZGixyZEWmxyJTwZPTylBEtmn0WjYuHEtAD169Mr22Eep77vUnlX1SgmSEMI8jB4o0tPTkwkTJhi1raurK998802a5Rs2bJApRvJYRj3Y9J6VIEmCJLJ29Ohh7ty5jYODA127mm58M30Vm5QgCSHMxegEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodFoDMv0vVYkUcobWSVIz0qQ5INJZG3duu8A6Nq1B/b2WTfOzi4PD91E1o8ehaLVamXkfSFEvjMqQQoLC2PAgAHcunWLSpUqcePGDeLj4zlw4ABz587lu+++o169ehluf+fOHSZOnMj58+czXEfmYjM9rVZLaGgI8KyNR2r6EqTHjx+RlJSEpaVlvsUnCpcbN65x/PhRlEolvXu/ZdJ9lyypG24iPj6ep0+f4uTkZNL9CyFEVoxKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIociIiJITEwEwMPDI9113NxKYGFhiVqdxKNHoYZ5sYRI7bvvdNXk/v5tczVydnpsbGxwcnImKiqSR49CJUESQuQ7oxKkv/76i8mTJ1O+fHmSk5+1sLS2tmbw4MFMnDgx0+1Pnz7NrFmzeO014+drEjmnLz1ydXXD0tIq3XWUSiWenp48eHCfkJBgSZAKqYMH/+Lrr1dy+fK/ODg40LJla4YOHZHh8A45dffubXbv3gnAwIHvmGSfqbm7exgSJB+fyllvIIQQJmRU0U1CQgIuLi7pPqdSqUhKSsp0ewcHB5ydnY05tMgFfYKkb9+REX01m7RDKpy++eZLRo8ezj//nEetVhMREcGOHdvo2bMLv/yywyTH+OqrL9BoNLRs2YpatWqbZJ+p6Ud1f/QoNE/2L4QQmTEqQapduzYbNmxI97mdO3caqtwy0qVLF9avX49WqzXm8MJIzxKkZ9VrSgW0KZdEm3JJKP9rB6tvqB0SEpLvMYrc+f333SxdugiAvn37s3PnH3zzzVoaNGhIXFwsU6aMZ926Nbk6xo0b1/j1110A/O9/o4zaR3r3XWr6dkiSIAkhzMGoKrYxY8Yw8P/t3Xd4U3UXwPFv0nQA3QMKyF5lQ1mVVWQ5QAGRJUtQhiwBmYKCDAFBNshUhiBLQUVU1sveUxFo2ZTVpgPa0pk27x8xKZ20aZp0nM/z9KFNcu895N72nvzG+X3wAR06dMDX1xeFQsHu3btZsmQJx44de+labIUKFeL8+fO0adOGmjVrplqtW6FQ8NVXXxkTmshAWi1ItlYwp1lMstd5eOgSqOBguTHlJc+ePWXmzC8BXbfXyJFjAChVqjSrVq1n0aJv2LDhO+bNm0VCgoa+fT/M8jG0Wi1ff/0ViYmJtGrVhmrVMv4wlJ60rruU9Im8JEhCCEswKkGqX78+33//Pd988w1r1qxBq9Wybt06qlWrxsqVK/Hx8clw+507d+Lg4EBiYmKaM9lkSm/OCArS3Whe1sWm/+QeHKzO8ZiE6axdu4rw8GdUrFiJYcNGJnvOysqKUaPGUrhwYVasWMqCBXOxsytEt25ZWxrkwIG9nDlzCltbW0aPNq4OWmbpE3W1Wq5DIYT5GV0HqUGDBmzZsoWYmBiePXuGvb09RYoUydS2Bw8eNPawIhsyOwYpaeyH3JjyCrU6iC1bfgBg5MixqFSpf7UVCgWDBw9Do9GwZs0KZs2aRqFChXjnnU6ZOsbTp2HMmTMDgL59PzT5zLWUkhIkaUESQpifUWOQJk6cyLlz5wDddNxixYoZkqNr167RqlWrTO0nMTGR69evc+TIESIjI3n69Kkx4YhMCgrSVcd+MUGK1kD9zQ7U3+xAtEb3mLQg5T27dv1MXFwctWrVoUmTZhm+dujQT+jRozcAU6dOMiw0mxGtVsuMGVNQq9WUK1ee/v0HZivetK67lCRBEkJYklEJ0s6dO/nggw/YunVrqufi4uIM1bAz8ssvv9CiRQs6duzIoEGDuHfvHhMmTGD48OGGWj3CtNIapJ0WfQuSJEh5Q0JCAj//vA2Arl17vLSLWqFQMHbsRDp1eo/ExEQmThzL0aOHM9xm1arl7N+/F5VKxcyZX6caN5gTXkyQZEKHEMLcjK7Q6Ovry5QpU/jyyy+T1ULKjD179jB+/Hh8fHxYsGCB4Y9f27ZtOXLkCMuXLzc2LJEOfVcovLyLzc1NlyA9f/6c6OiXr8wuLOvUqRM8fvwIJycnWrd+PVPbKJVKJk/+kjfeeAuNJp4xY0awd2/qliStVsvq1Sv49tslAEyc+IXRA7OzSt+SGR8fz7NnT81yTCGE0DM6QRo0aBDz5883tCZlpXtsxYoVdO/ena+//pq2bdsaHn/33XcZNmwYv//+u7FhiXTouylsbW1xdMy4BlWRIkWwsysEQHBwcI7HJrJH30X2+uvtstSyY2VlxfTpc2jRoiWxsbGMGzeSsWNHcvHiecLDn3Hx4gWGDh3AsmULARg0aCidO3fNif9CmmxsbHBxcQGkm00IYX7ZWuPjrbfeYtOmTdy/f5/OnTvj5+eX5uDQlO7cuUObNm3SfK527dpSfycHvDhAOzNdMNLNljdoNBoOHToAQJs2bV/y6tSsra2ZN28x/fsPQKFQsG/fn/Tr15PmzRvRr9/7nDhxDGtrayZMmMzHHw83dfgvJeOQhBCWku1F0KpXr86OHTtwd3ene/fuHD9+/KXbuLm5cevWrTSfu3XrFm5ubtkNS6SQ2fFHeklF+iRBys0uXjzH06dPcXZ2pm7d+kbtQ6VSMWLEp2zbtos332xvaLVxdHSiXbt32LHjN5MvRptZ+gRJX6JCCCHMxehp/i/y8PBg48aNfP7558yfP/+lLRRvvfUWixcvpmjRovj6+gK6VosrV66wfPlyWaMtB+gTJA+PjMcf6SXNZJMbU272v//pSmb4+rbMVOttRipVqsKsWfPQarXEx8djbW1t8Zpk0oIkhLAUo/6iDhs2jGLFkt9obWxsmDNnDl5eXi+tczRy5Ej8/f0ZOXIkSqWuEat3795ERUVRv359PvnkE2PCEhlIr0ikUgFNSmgM3+vJVP+84dSpEwA0a+Zrsn0qFApsbNJezNhU0rvuUpKWTCGEpRidIKWnX79+9OvXL8PtbWxsWLNmDcePH+fUqVM8ffoUBwcHGjZsaFi6RJhWekUiba1gUYvoVK+XYpG5X1BQILdv30ShUNCgQSNLh5Ml6V13Kbm7uwMQEiLXoRDCvDKdIPXp04cpU6ZQoUIF+vTpk+FrFQoF69envyDmrl278PX1pUmTJjRp0iTZc2q1ml27djFgwIDMhiYyIbNVtPWkBSn3O3PmFABVq1bHycnZssHkEGlBEkJYSqYHab9YqE2r1Wb4lZiYmOG+Jk6cSEBAQJrPXbt2jcWLF2c2LJFJWR+krf/kLtP8cyt995qPz6sWjiTnSKIuhLCUTLcgbdy4Mc3vM2vQoEHcvHkT0CVYQ4cOTXOcQ0hICKVLl87y/kX6EhMTDZ/AU7YgRWugzU/2AOzrHEmh/64Id3dZKDS3u3BBt9xP/fp5q3sN0r/uUtIP0g4OVqPVaqX7XQhhNiaZxZYZgwYNYvv27YBuqZJq1arh6uqa7DVKpRJHR0feffddc4VVIDx9GoZGEw8kjS16UUxC6puO/pN7WFioYUaTyD3U6iAePXqIQqGgVq06lg7HKGlddynpr8O4uDgiIsJfWuRUCCFMJdMJkpeXV6Y/vSkUCq5evZrsMW9vb7y9vQ0/DxkyhFKlSmX28CIb9N1rrq5uWFtnbnaSs7MzKpUKjUZDaGgIxYp55mSIIov+/vsSABUrVsLe3t6yweQgW1tbHBwciYgIR61WS4IkhDCbTCdIQ4cONVnz9qxZs0yynxclJiaydOlStm/fTnh4OPXq1WPKlCmUKVMmzdfv3LmTCRMmpHp879696W6TV+kTpJSlGTKiVCpxc3MnMPAJarVaEqRc5vLlSwDUrl3XsoGYgYeHBxER4QQHq6lQoaKlwxFCFBCZTpCGDzfdMgOhoaHMnDmTQ4cOER0dnWql7rRaoF5m+fLlbNmyhVmzZlGsWDHmzp3LgAED2L17d5pjnfz8/GjYsCHz589P9njKbr/8IKsz2PTc3T0IDHwiA2RzocuXLwLk2e61rHB39+D27VuyLqAQwqyMHoMUExODn58f8fHxhgQnMTGR6Ohozp07x5gxY9LddurUqRw+fJh27drh6elpKBZprLi4OL777jvGjh1rqMy9YMECmjVrxr59+2jXrl2qbfz9/fHy8kpzTE5+k16RyJdJWo9NqhjnJnFxcVy79i9QMFqQpKq7EMISjEqQTp06xSeffEJ4eHiazxcpUiTDBOno0aN89tlndOvWzZjDp3L9+nWeP3+Oj4+P4TFHR0eqVavG2bNn00yQ/Pz8eP31101y/NwuOy1IIDPZcpvr168SFxeHi4sLpUvnr+7gtOhLTkhLphDCnIxKkBYuXIizszMzZszg119/RalU8u6773LkyBF+/PFHVq9eneH2NjY2Jh2g/eTJEwCKFy+e7PGiRYvy+PHjVK8PDQ0lODiYs2fPsnHjRp4+fUrt2rUZM2YM5cqVM1lcuUVgoO790U+ZfpEC8C6qMXz/IqlBkzv9++8/ANSoUSvPTnvP6LpLSRJ1IYQlGJUg+fn5MX36dNq0aUNkZCSbN2/G19cXX19f4uPj+fbbb1m1alW627dp04bdu3fTuHFjowN/UXS0bsmClGONbG1tefbsWarX+/v7A2BlZcWcOXOIiopi+fLlvP/++/z222+GT6xZZWWVva7CnKJf6LN48eKoVMljtFfBd2/E/vdT8uc8PXUtTsHB6lTb5Tb69z63ngNT8vf3A6B69Rq56rxk5RxkdN2lpJ9cEBISnKv+v7lNQfodyK3kHFieKT8zGpUgJSYm4umpm9VUrlw5QwFIgNdff53x48dnuH21atVYuHAhAQEB1K5dGzs7u2TPKxQKhg4dmul49NvHxcUl21dsbCyFChVK9XofHx/OnDmDk1PSlOFly5bx2muv8fPPPzNw4MBMH/tFjo6pj5Ub6BOkSpXK4uJSJNPblSunK9gZFhaSpe0sKbeeA1O6eVOXINWrVydXnhdTn4Ny5XStzaGhwbny/5vbFITfgdxOzkH+YFSCVLp0afz8/Khfvz5lypQhOjqaW7duUaFCBTQaDc+fP89w+2nTpgFw9uxZzp49m+r5rCZI+q61oKCgZFW4g4KC8PLySnObF5MjgMKFC/PKK68QGBiY6eOmFB4eTUJCxsusmFt0dLShFc3OzpGwsIzPzYsKFXIE4PHjJ1nazhKsrJQ4OhbKlefAlOLj4/Hz0yVIJUuWy1XnJafOgZ2dAwCBgYG56v+b2xSU34HcTM6B5Tk5Fcr2xC89oxKkt99+m3nz5pGYmEjv3r2pUaMGM2bMoHfv3qxYsYKKFTOuVXL9+nWjgk2Pl5cX9vb2nD592pAghYeHc/XqVXr16pXq9Zs3b2bRokUcPnzY0OIUGRnJ3bt3ee+994yOIyEhEY0md/1SPHqkG4NlZ1eIQoWKpIovWgNv/6L7VP5bh+fJlnxwdU1ajy02Nh4rKyvzBJ0NufEcmNKtW7eIi4ujSJEieHqWyJX/18ycg4yuu5RcXHTXYWRkJBERz9NsFRZJ8vvvQF4g58ByUlQNyhaj0qyPPvqI7t278/fffwMwZcoUrl27xpAhQ7h9+zbjxo0zXYSZYGNjQ69evZg3bx4HDhzg+vXrjBo1Ck9PT9q0aUNCQgJqtZqYmBgAXnvtNbRaLePGjePGjRv8888/DB8+HFdXVzp16mTW2HPai0Ui0xvQ+zRWydPY1JeCi4srSqWSxMREQkNDcjROkTl+froPF5Ure5nsU5KlpHfdpWRvb2/4ICOLJwshzMWoFiSlUplsnFHNmjXZv38/t2/fpnz58mkufdCnTx+mTJlChQoV6NOnT4b7VygUrF+/PksxjRgxAo1Gw+TJk4mJiaFBgwasXbsWGxsbHjx4QKtWrZg1axbvvvsuxYsXZ/369cybN48ePXqg1Wpp0qQJGzZsSDUeKq8zdoo/6Aaxu7m5o1YHoVYHpTkLTphXUoJUxcKRmI9CocDd3YMHDwJQq9W88oosUSSEyHkmW6zW3t6eWrVqpfv8i9WyU1bOzui1mWVlZcXYsWMZO3ZsqudeeeUVw7gNvapVq7J27dosHyevSWpBMm6pEA8PD9TqIJnqn0voE6QqVapaOBLzcnNz58GDACkWKYQwG6MSpEePHjFt2jQuXLhAREREqufTWipk48aNaX4vcpa+BlLRosa1/uhajf41VOMWlqPVavH3vwZAlSppTz7Ir5KqukuiLoQwD6MSpEmTJnHp0iU6d+6Ms7OziUMSppS0zIhxLUhSLDL3CAoKIiwsDKVSSYUKlSwdjllJsUghhLkZlSBdunSJzz//nHfffdfU8QgTy84YJEiqvq2vpSQsx99f171Wtmz5fDdW7mUkURdCmJtRCZKHh0eqOkIid9J3semrEaekAKq5Jhi+T0luTLmHn1/+6V572XWXklyHQghzMypBGjRoEMuWLcPLy4uSJUuaOiZhIhqNxjAtOr0WJDsVbHgjKt196McuSQuS5b04xT+ve9l1l5K+JVMSJCGEuRiVILVo0YI1a9bQunVrXF1d01wqZP/+/SYJUBgvJCSYxMREVCoVrq5uRu1DuthyD30XW35oQcqqpBYkqYMkhDAPoxKkiRMnEhAQQJMmTQyzS15m165dWTpGx44dsx6YSEY//sjd3cPoKtj6G1NISAgJCQl5opp2fhQV9Zz79+8BBTNB0v+dCQsLRaPRoFKZrEKJEEKkyai/MmfOnOGLL76ga9eumd5mwoQJmX6tQqGQBMkEkqb4pz9AO0YDXX7XLfmwvd1z7FJcEa6ubsmqaUuxSMu4ccMfrVaLh4cHbm7ulg4n21523aXk7OyClZUVCQkJhISEpDumTgghTMWoBMnR0ZESJUpkaZsDBw4YcyiRDZmZwaYFHj9XGr5PSVdN2w21Wk1wsFoSJAvx99cVOs0P44/g5dddSkqlEldXt/+KlgZJgiSEyHFGJUjvv/8+q1atok6dOmkuK5KWrAzmNqaStkgtMDB7U/z1PDyKolarUauDqFq1uilCE1mUn2awGUuqugshzMnoStpXr16ladOmaa69lpm11H7//XfOnDlDfHy8ISHSarVERUVx6dIljhw5Ykxo4gUvLlSbHVKkz/IK6hIjL5LrUAhhTkYlSHfu3KFq1aQ/1ClbfF7WArR06VKWLl2Kg4MDGo0Ga2trVCoVoaGhKJVKunTpYkxYIoWgoJePQcoMfbeafkyTMK+EhARu3PAH8k8XmzGkFpIQwpyMSpCmTp1KhQoVjD7ozp07eeedd5gzZw6LFy/m0aNHzJkzhytXrjBw4EAqVSpYyyjkFP0yI8YuVKvn6akbbyYJkmUEBNwjJiYaOzs7SpcuY+lwLCa/J0gXLpxjy5ZN3LjhR5Ei9jRu3JTu3Xvh6upq6dCEKJCUxmz04YcfZnna/osCAwPp0KEDCoWC6tWrc/HiRQBq1KjB4MGD2b59u9H7FjparTZTs9gyo3jx4gA8efI423GJrNN3r1WqVKVAl1lIKhaZv2ohJSYmMn/+1/Tv34u9e//gzp3bXLnyN6tWLadz53acPHnc0iEKUSAZlSBpNBpcXFyMPmjhwoVRKHQLDJQtW5YHDx4QExMDQNWqVXnw4IHR+xY6z549JS4uDiDDmWcKoLxTAuWdEtJd8sHTU5cgPX78yMRRisxIqqBdxcKRmE5mrruU8msL0sKFc9mw4TsAOnXqwrffrmXGjDlUqlSZsLAwRowYzKFDBy0cpRAFj1FdbJ988gkzZswgODiYSpUq4e6eui5LRmUAatasyc6dO2ncuDGlS5fGysqKEydO0LJlS27duoWNjY0xYYkX6Ft7XF3dsLW1Tfd1dirY1i7jJR+KFy9h2KdWqzUkt8I88uMA7cxcdynlxwTp0KGDbNjwPQDTps3inXc6GZ5r2/ZNJk0ax759fzJhwmjWrfsRL6/8cw0IkdsZPQYpISGBSZMmpXuzvHbtWrrbDx48mH79+hEREcGKFSt45513mDBhAo0aNeLYsWO0bt3amLDECx49eghAiRLZXyuvaNGiKBQK4uLiCAsLNXrZEmEcf3+Z4g9J1bSDg4PzRaIeHv6ML7+cBECfPv2TJUcANjY2zJo1j6ioKI4fP8Knnw5n27ZdFCmSudIqQojsMSpBmjFjRrYO2qBBA3bs2IGfn6743RdffIFSqeTChQu88cYbWaq6LdL26JGuO0zf+pMd1tY2uLvratA8fvxIEiQzCg0NQa1Wo1AoqFSpsqXDsSg3N911p9HEExYWlucHL69Zs4KwsDAqVKjE8OEj03yNSqXiq6++pnv3d3n48AFLlixgwoTPzRuoEAWUUQlSp06dXv6il/Dy8sLLS/eJ2NbWlunTp2d7nyJJZluQYjTQ56/CAGx4PSrdJR+KFy+OWh3EkyePqV69pkljFem7fl3XelSqVGkKFy5i4WhMJ7PX3YusrW1wc3MnJCSYwMDHeTpBevz4ET/++AMAo0aNxdo6/WEFTk7OTJkyg8GD+7N162batetAzZq1zBWqEAWW0Ss+hoaG8v3333P69GnCw8NxcXGhfv36fPDBB4ZPehmJiIjg1KlTREVFpVk3SdZiyx79gOqXJUha4PYzK8P36fH0LMHff1/m8WOZyWZO169fBch3Fcwze92lVLx4CUJCgnn8+FGefk82bVpPfHw89es3pEmTZi99vY9PY9q378Du3b+wcOHXrFmzMc93MQqR2xmVID158oRu3boRGhpKnTp1qFatGmq1mu+//55du3axY8eODKs3Hz58mJEjRxIdHZ3m87JYbfbpW5BM0cUGSTPZnjyRmWzmpG9B8vKqZuFIcofixUtw5crfhi7kvCgiIoKdO3cA0K/fgEwnOsOGjWTfvj85f/4cR478D1/fljkZphAFnlEJ0ty5c1GpVOzZs4dSpUoZHg8ICKB///4sWLCA2bNnp7v9/PnzKV++PBMnTqRYsWIolUZVGxAZMOUgbUiqhSRT/c3r2jVdC5LMXtLRJ/x5+Tr89dedPH/+nPLlK9K4cdNMb+fpWZyePfvw3XerWbRoPs2atZC/nZnw/HkkQUFB2Nra4ulZXN4zkWlGJUjHjh3js88+S5YcAZQqVYqhQ4fy9ddfZ7j97du3Wb58OfXr1zfm8OIlIiIiiIgIBzIut5AVJUvqznVAQIBJ9ideLiIigoCAe4C0IOnpr+e8nCD98svPAHTr9n6Wu8k++GAA27Zt4fbtmxw6dICWLdvkRIh5Xnx8PDt37uDnn7cbuqkB7O0daNbMl/ff703NmrUtGKHIC4xKpRMSEtItFOnq6kpkZGSG25coUeKlrxHG0988nJ2dTTawt3Tp0gAEBNx/6Vp7wjT8/XX1j4oXL5Gtwqz5ib5F9PHjhxaOxDjXr1/D3/861tbWvPHGW1ne3tHRke7dewKwdu0q+V1Mw82b/nTr1omvvvrSkBzZ2ztgbW1NZGQEf/yxm969uzF58ni5D4kMGZUgValShV9++SXN53bt2kXlyhlPRx40aBDLli2Titk5RH/zMFX3mm5fr6BUKomOjiIkJH8t9ZBb6bvX8lOByOzK611sv/66E4AWLVrh5ORs1D7ef78PdnZ2/PvvP5w+fdKE0eV9J08ep0+f7ty+fRMXFxfGjv2MgwePc+zYWU6evMiGDVto3163zNXu3b/w/vuduXfvrqXDFrmUUV1sQ4YM4cMPP+Tp06e8/fbbuLu7ExwczG+//caJEydYvHhxhtv/9ttvBAYG0qZNG1xdXbGzs0v2vEKhYP/+/caEJsja+CMFULxIouH79NjY2ODpWZxHjx4SEHDfUNVY5JykGWz5r3sts9ddSsWL667pp0+fEh0dRaFChU0fXA6Jj4/njz9+A0hVFDIrXF1deffdrmzevIG1a1fi49PYVCFmm0ajwd//OgEBAdjY2FCpUmVKlnzFLDPuLl68wKhRQ4mJiaFBg0bMnbsQZ+eklleVSkWtWnWoVasOXbp0Z/z40dy/f4+PPurDmjXrKVOmXI7HKPIWoxKkJk2aMGfOHObOncvx40kLKbq7u/PVV1/Rpk3G/eKenp54emZvhXmRvqzMYLNTwW8dnmdqv6VKleHRo4fcv3+PunXrZStG8XL5OUHKynX3Int7exwcHImICOfRo0dUqFAxB6LLGWfPnvqvwKUbr77aJFv76tOnH9u2bebs2dP8++8/Fq9NFh8fx4YN3/Pjjz+kWgqmYsVKfPDBR7z11ts5NkA6MDCQ0aOHERMTQ5MmzVm4cGmGtaVq167Lpk3bGTiwH7du3WDAgA/44Ydt2V7YW+QvRtdB6tChA76+vty4cQOVSoWTkxM2NjYolUoePXqU4eDgWbNmGXtYkQmZrYGUVaVLl+b06RMEBNw36X5FatHR0dy+fQuQAdopFS9e4r8E6WGeSpD27dsLQKtWbVCpjP7TC+hmtL3xRjt27/6FDRu+Z86c+aYI0SgPHz5g5Mgh3LjhD4CDgyMVKlQkLi4Wf39/bt68weTJ49m16ydmzpybYQkYY8THxzNhwmjCwkKpXNmLefMWZZgc6bm5ubN69Xo++qg3t2/fYvTo4axduzHDtStFwWLUb+ndu3eZMGECly9fTvc1Ga3FllENE6VSSeHChXF0dDQmNEHSTLOSJV8x6X5LlUoaqC1y1o0bfiQmJuLq6oaHR1FLh5OrlC5dGn//69y7d5dmzXwtHU6maDQaDh3SDRto1aqtSfbZu3c/du/+hX37/mTEiNGUKVPaJPvNinv37vDhh30IDlbj4uLKqFFjefPNdoYEJTw8nG3bNrNmzUrOnTtDr15dWLJkpUnLVqxfv5aLF89jb2/PvHmLKFSoUKa3dXV1ZdGib+nZswtXrvzN11/P5PPPp5ksNpG3GZUgTZ8+nbt37zJs2DA8PT2z3GzasmXLl/ZJOzk50adPH4YMGWJMiAWWVqvl/n3d1PAyZcq+9PUxGhi4XzeOY1XrjJd8KFWqDIBh6rnIOZcvXwKgZs1a+bJiclauu5T0Y0Xu3buTE6HliAsXzhEWFoazszP16jUwyT6rVPHi1VebcPLkcX74YT2TJpl3jbbQ0FCGDh1IcLCaihUrsWzZaooVSz50wtHRkY8+Gkzbtm8ycuRQbt++yeDB/Vi9ej2VKlXJdgz3799j1arlAEyY8DmlS5fJ8j5KlSrNnDnzGTLkI376aRu+vq/RvPlr2Y5N5H1GJUjnzp1j5syZtG/f3qiDzp49my+++IKGDRvSvn173N3dCQkJ4a+//uLQoUMMGTKE58+f8+233+Ls7Mz7779v1HEKIrU6iOjoKKysrChR4uUtSFrgamjmlnzQ//G5e/cOiYmJUnAtB12+fBHQjZXIj7Jy3aVUtqwuQbp7N+8kSPv367rXWrRohbW1tcn226dPf06ePM6uXT8xbNhwXFzMs16fVqtl8uRxPHgQwCuvlGLVqnUZLmJdunQZ1q//kY8//pArV/5m0KD+bNy4NVut3FqtlpkzvyQuLg4fn8a0a/eO0ft69dUm9O79ARs2fM/UqZPZseO3PL3WnzANo+5w9vb2ODk5GX3Q33//nXbt2rFmzRo6duxI06ZN6dChA8uXL6dLly5cuXKF8ePHM2TIEH788Uejj1MQ6aeslijxikn/EIPuj5xKZU1UVFSenWadF2i12nyfIGVHXkuQEhMTOXhwHwCtW79u0n37+DSmcmUvoqOj2LrVfH8rt2/fwokTx7C1tWXhwuUZJkd6Dg4OLF++mipVqhIaGsInn3zM8+fG1yHas+c3Tp8+ga2tLZMmTc12S+vQoSOpWLESoaEhzJol3WzCyASpQ4cObNq0yegiZWfOnEm39alt27acOnUKgHr16knl5izSd68Z09T8MtbW1pQvXwHAMCBTmN6TJ49Rq4NQqVRUq1bD0uHkOvquY7U6KFs3WHO5fPkiwcFq7O0daNTIx6T7VigU9O3bH4BNmzYSGxtr0v2n5cmTx8yfr1stYcSIT6lYsVKmt3V0dGLx4hW4u3tw8+YNJk0aT2JiYpZjePo0jHnzdJN9Bgz42DA+MjtsbW2ZMeNrrKys2LfvT44dO5LtfYq8zagEqVChQpw/f542bdowatQoJk6cmOzrs88+y3B7Z2dnrl+/nuZz169fx97eHoCoqKgsDbgTSS1ImRl/ZIxKlXRFQCVByjn61qMqVarK9Z8GR0cnXFx03R95ochfUvday0zNrsqqtm3fpFgxT0JCgtm5c6fJ95/SypXLiImJpk4db3r06JXl7YsVK8aCBUuxsbHh0KEDrFy5LMv7mD//a8LCwqhQoZIhQTQFL6+qvP9+bwBmzZqW7oLqomAwKkHauXMnDg4OJCYmcvnyZU6fPp3qKyNvv/02ixcvZv369QQGBhIfH09gYCAbN25k6dKlvP322zx79oz169dTu7asl5MVOdmCBFCxoi5BunlTEqScIt1rL5dXutm0Wq2he81Us9dSsra2pmfPPgCsWLHCqBaZzLp797ahGvjIkWOMHodYs2ZtJk/+EtAlXIcOHcz0tqdPn+TXX3eiUCj4/PMvTZ50fvzxcIoV8+ThwwesWbPCpPsWeYtRg7QPHsz8xZyWkSNHEhISwuzZs5k9e7bhcaVSSefOnRk1ahR//fUXV69eZf369dk6VkGT0wlSUguSX47sX8ClSxcAqF27jmUDycXKli3HxYvnc32CdPXqFR4/fkShQoWzXRwyI+++25VVq5Zz48YNjh49TJMmOVP+YPnyJSQkJNC8eQvq1PHO1r7eeacTV69eYcuWTUyePI4ffthG2bLlM9wmJiaGGTOmANC1a49sx5CWwoWLMH78ZEaPHsb69d/x1ltv56l6W8J0LDINSaVSMWvWLP766y+mTZvGqFGjmD17Nn/++SfTpk3DxsaG5s2bc/ToUby8vCwRYp4UHx9vmIKflS42Z9tEnG0z96lTnyDdu3fXLOMdCpqnT8O4fl1XQ8zbu76Fo8lZWbnuUtJfh35+6ddbyw0OHNB1rzVt2jzVkkqmZG9vT5cu3QH4/vu1OXKM69evsnfvHwAMGzbKJPv89NMJeHvXJzIyklGjhr108dglSxYQEHCfokWLMXz4aJPEkJbXXmuFr+9raDTxfPXVl7IocAFl0XnapUuXpkuXLgwcOJAOHTpQqlQpw3P6ytwi8+7du0t8fDxFihTJdBXtQirY3/k5+zs/p1Am2hOLFi2Gi4sLCQkJhtXmhemcOXMarVZLxYqV8nWByKxedynpq4vrk8ncSKvVGsYftWqV8fJLptCzZx9UKhXnzp3hypV/TL7/JUsWAvDGG+2oXDn7NYxA1z04d+5CihYtxp07t5k48VPi4+PSfO3Bg/vYtEnXozB58peGsao5QaFQMH78ZOzsCnH+/Fl27057cXaRv5ktQWrVqpVhYHbLli1p1apVul+tW7c2V1j5ir7bq2LFyjlWXFChUFCrVh0ALl26mCPHKMhOnz4BQKNGuWcB0tyocmVdy3Jg4BPCwsIsHE3abt26wf3797C2tjZLxW9PT086dOgAwIYN35l03xcunOP48SOoVCqGDBlh0n27ubnzzTeLsbW15ejRw4wbN5ro6Khkrzl79jSffTYWgN69P6B58xYmjSEtJUqUZNAgXaHi+fPn8OzZ0xw/pshdzJYgNWzYkCJFihi+z+irQQPTVJotaPQzy/TdDzlFP3hYP5hYmM6pU7oEKTet0J4b2dvbGyq7X7v2r4WjSduBA7rB2a++2oQiRXKuteNFgwcPBmD//r94+PCBSfap1WpZsmQBAB07ds6R8Y01a9Zm/vylWFtb87//7adXr24cPLifW7dusnbtSoYOHUBMTAzNmvkyYsSnJj9+enr16kv58hUJCwtj8WLLrXcnLCN7KyZmwYsL1L44MFuYjn5mmX6mWWbEaGDEId1U8sUtojO15ENSgnQBrVabL5fCsIRbt27y8OEDrK2tqVcvf48/Mua6S6lGjZoEBNzj8uWLNG7c1MQRZp9+/FFOzV5LS7Vq1WjcuCknThxjw4bvmDjxi2zv89ixI1y8eB5bW1sGDMi5pZ+aNGnGypXfM27cKG7dusHo0cOSPd+iRSvmzJlv8gK4GbG2tmHSpCl8+GFvfvppG++800lmlxYgFhuDFBkZSWBgIABxcXGsWbOGGTNmcPbsWUuFlOcZ04KkBS4EqbgQpMr0kg/Vq9dEpVKhVqt59Ohh1gMVadJPB/fxaUzhwuZZMsJSjLnuUqpbtx6QNOsvN7l50x9/fz9UKmtatGhp1mN/+OEAAH76abthVquxEhMTWbp0IQDduvWkWLFi2Q0vQ97e9dm27Rf69v2QUqVKY2/vQK1atZk+fTYLFizF1tY2R4+flnr1GvDOO50AmDnzSzQajdljEJZhkQTp77//pmXLlmzcuBGAGTNmMG/ePH799Vf69u3LgQMHLBFWnhYREWFY/iOnu9js7OwMg2TPns245pXIvKQBveZrccjLvL11CdLly5eIj4+3cDTJ7d79KwDNmvni5ORs1mM3avQqjRs3RaOJZ/Hib7K1r337/sTP7xpFihShf/8BJoowY66urowaNZbfftvLsWNn2bBhK2+/3dGiLdUjR47F0dEJf//rbNy4zmJxCPOySIK0YMECypcvT7du3YiJieG3337j/fff58yZM7z33nusWCHFubJKPw6jePESODoav05eZum7NI4dO5zjxyoIAgLu4+d3DSsrK3x9zdvikFeVL18RJycnYmKi+eefy5YOxyAhIYE9e34DoH174xdQzY7Ro8ehVCrZv38vFy+eN2of8fFxLF26CNAtiuvs7GLKEPMUV1dXRo8eB8Dy5Yvw95c6cAWBRRKky5cv8/HHH1OqVClOnjxJTEyMYfbFW2+9xY0bNywRVp52+fIlAMMMs5zm6/saACdOHCMuLu1puSLzfvnlZwAaNvTBxaXg3oiyQqlU0qRJcwCOHs09ifr582cJCgrE0dGJZs1aWCSGihUr07FjZwBmz55hVAvb9u1bCAi4h5ubO7169TV1iHlOhw7v4uv7GvHx8UyaNFb+7hUAFkmQlEqlocbR4cOHcXR0pFatWoBubFJOFlTLr/755xKgmw1iDlWrVsfd3YOoqCjOn5dxY9kRHx/PL7/8BMC773axcDR5i376/OHD/7NwJEl+/nk7AG3bvmHRWm5Dh36Ck5MTfn7XWLduTZa2DQ9/Zlgj7eOPh5ttFl5uplAo+OKL6bi4uHDjhj/z58+xdEgih1kkQapRowY7duzg4sWL/PHHH7Ro0QKFQkFISAirV6+mRg1ZwTwrtFqtoYvBXMtTKJVKw6fjvXv/NMsx86sjR/6HWq3G1dXN7AN687omTZpjbW3N7ds3c0XRSLU6iP37/wLgvfe6WTQWNzd3xo+fDMDKlcuzVA5hyZIFPHv2jAoVKhlaooTuPZ06dSYAW7Zs4rffdlk2IJGjLJIgjRs3jpMnT9KjRw+srKz4+OOPAWjfvj13795l5MiRlggrz7p//x5hYWHY2Njg5VU1y9vbWWmxs8r6XCL9+Io///yd588zXiJApE2r1RoWxOzU6b0cWe09tzL2unuRo6Mjr72mKyyrb4WzpB07tqLRaKhTx9swkcGS3nyzPa+91hqNJp7Ro4cTGhry0m3Onj3N9u1bAJgwYTIqldmqweQJvr4tGThQV+5gxowp/PPP3xaOSOQUiyRI1apVY+/evWzdupX9+/dTtmxZAKZOncru3bulBSmL9IMwq1atnuUbbCEVHOsWybFukVle8sHbuz5ly5YjOjqKP//ck7WNBQCHDh3k2rWrFC5cmN69P7B0OGaTnesupY4d3wV047gsWe04IiKCH3/8AYAePXpZLI4XKRQKvvxyJqVLl+Hx40eMHj2cqKjn6b4+KCiQiRPHALoWsAYNGpkr1Dxl8OBhNG/egtjYWIYOHSCDtvMpi9VBsre3p3bt2hQuXNjw2Ouvv46Hh4elQsqzTpw4Buim95qTQqEwjJn54Yd1Uh8ki6Kjo/jmG13R1B49ehfoWULZ8eqrTalc2YuoqCjWr8+ZhVozY9Om9YSHP6NcufK0bv26xeJIydHRiYULl2Nvb8+lSxcYMmRAmi1JoaEhDBs2iOBgNRUrVjLM2hKpKZVKZs2aR61atQkPf8bgwf25eVMmF+U3Fl2sVmSfRqMxLE/RpEkzsx+/U6cuODk5cefObVnQMYuWLFnIgwcBFCvmSb9+5qkxkx8pFAo+/ng4ABs2rDOsSWhOT548Nqx/NnjwcKysrMweQ0bKl6/At9+uxd7egUuXLtC1a0d++mkbERERxMfHc/jwQXr37oa//3VcXFyZP39pvi9Wml1FitizdOlqvLyqERoawgcf9ODEieOWDkuYkCRIedzFi+cJD3+Go6MT1avXzPL2sQnwyaFCfHKoELEJWT++g4MDH344CIBlyxbJgo6ZtHv3L2zevAHI+ZXJc6PsXncptWjREl/f1/4bazOCoKDA7O80k7RaLTNnTiUqKopaterQpk3uaT16Uc2atVm//kcqVKhEcLCa6dO/oFmzBvj41OGTT4bw8OEDSpQoybp1m3JkvbX8yNHRkRUr1uLtXZ/IyEgGD/6QWbNmSQmAfEISpDzujz92A9CqVRujBlMmauH4IxXHH6lINHK8bLduPSlTpixqdRDTpn2OVpu9gbf53Z9//s7UqbrZRf37DzTLSu+5jSmuuxcpFAqmTv2K4sVLEBBwj379evLvv/9kf8eZsGbNSo4ePYy1tTVTpsxAqcy9f1YrVKjIpk3bGTNmoiEJSkhIwMnJiT59+rNt2y+UKVPOwlHmLc7OLqxY8R0dO3b+b2mWpXTt2okjR/4nfwvzOIU2n5xB/YW5fft2wsPDqVevHlOmTKFMmbQ/CYWFhTFjxgyOHDkCwBtvvMHEiROTjYnKqrCw52g0iUZvn1XR0VG0bduCiIhwVq1aR8OGPlnfhwaabXMA4GjXCKMHzF69eoU+fXqg0cTTq1dfPv10glmXBlCplLi4FDH7OciK2NhYli1byMaN69Bqtbz5Zntmzvw6V99QsyIr58BU111KDx8+YPDg/gQE3EepVPLmm+3p2rUHNWvWNvn7rNVqWb/+OxYunAvAZ59NoWvXHiY9RlYY8zvw9GkYsbFxeHh45Jvr0JL+9799zJgxlZAQ3Riv6tVr0qVLd9q2fUO6LM3E1bUIVlamuZbzTYK0dOlSNm/ezKxZsyhWrBhz584lICCA3bt3p1msrXfv3sTGxjJlyhTCw8OZNGkSDRo0YM4c44t/mfvmvGXLD8yePYNSpcqwa9ceo8Y9mPJGtWvXT0ydOgnQTS+ePHmq2QrM5eYESaPRsG/fnyxfvoSAAN3ioT169GbMmAm5bqxKduSGBAl0H37mzJmebGali4sL9eo1pHLlKlSsWInixUvg4VEUV1e3LCcG+rpjK1YsNUyQ+OCDjxg5cozp/hNGyM2/AwWFSqUE4liwYBGbNm0kJiYGAFtbW+rVa8CrrzalRo1aVK5cWYpv5hBJkFKIi4vDx8eHsWPH0qOH7hNceHg4zZo146uvvqJdu3bJXn/x4kW6d+/Onj17qFChAgDHjh3jo48+4vDhw0avWG3OP0wRERF06vQWwcFqJk78gm7d3jdqP6a+Ue3YsZVZs6aRkJCAh4cHH344iPbtO+b4GJvcdnOIj4/jypV/OHLkELt370KtVgPg6urGF19Mz5cFIXNLgqR39eoVNm3awKFDB3j+PO2p7SqVChcXFxwcHLG3d8DBQfdVuHARVCprrKysUKl0SWxERARqtRo/v2sEB6v/296aTz8dR/fuvSy6mKoultz1O1AQvXgOAgOD+OWXn9m58yfDB6MXlSz5CsWLl8DTszjFinni5uaW7Dq0t3fA3t4ea2sbbG1tsLGxwcbGVupSvYQpE6R88U5fv36d58+f4+OT1MXk6OhItWrVOHv2bKoE6dy5c3h4eBiSI4CGDRuiUCg4f/48b731VpZjiIqK4sCBfSQm6sZDKBT89wdT8d/PihceV6Z6LOXrbG1tKV68BC4urqn+8CYkJDB9+hcEB6spXbpMrqp0+9573ShfvgJTpnxGQMB9Zs+ewcKF86hXrwENG/pQqVJlypWrgIdHUbP8omu1WjQaTbKvhIQXf45Ho0kgISGBhATNf/8mfWk0GhITEw3PaTQJJCamfk6jSeD580ju37/H/fv3uH79GtHRUYY4XFxc6NGjNz179pFPjmZSrVoNZs78mvj4eP755zJ//32Zmzf9uX37FkFBgYSEBKPRaFCr1YYENrPs7ArRunVbBg4cIgOaRZrc3Nzp338g/foN4NatG5w8eZwzZ07h53edoKBAHj58wMOHD7K8X91SXbb/JUw2KJVKrKysUCqVKJVWWFkpsbJSYWWl+/nF562srFLdb3QtqEn3LP1X0mvSezzz9zP9PSzlY0n7e/mxUx83rccVjB79Ca6upimZki8SpCdPngBQvHjxZI8XLVqUx48fp3p9YGBgqtfa2Njg7Oyc5uszQ61W88knQ43aNiN2dnaUKlWaMmXKUbZsOZydXdi79w/+/vsSKpVuUKitra3Jj5sd3t71+emn3fz88za2bt3MnTu3OX78KMePH032OicnJ5ydXbC3dzD8sus/LSkUCrRaLVot//2b+N+/uq/4+Hji4+OIi4snNjaW+Pg4EhI0REfHEBcXS1yc7nlL1mZycXGhfv1GvP76m/j6vlagqmTnJtbW1nh718fbu36yxzUaDSEhwYSGhhAZGUFEhO4rMjKS588j/0umdcmwVqvF3t4BFxdnKlWqQuXKXhQqVMhC/yORlygUCipWrEzFipXp3bsfoOsGvn37Jk+ePCEw8DFPnjzh6dMwIiLCiYyMNPwbGRn539+2pKmeiYmJxMREExMTban/Uq42YEA/SZBeFB2tu1BSjjWytbXl2bNnab4+rXFJtra2xMbGGhWDra0tderUTXYTT/oi1Q1e17Gp+z4xMfG/2Q5JCUFUVBTBwWpiYmK4ccOfGzf8kx2vUKHCfPXVHBo1yl6lW9ULHawqKyWmatRRqezo1asPPXv2xt/fj1OnTnDx4gVu377F/fv30Gg0PHv2LM3zk9MUCgUqlQqVyhpra9V/3SjWKJVKVCrdz8m/VKhUViiVuu4W3acx/fdJr09KZstSsWIlKlasVKAGvuqbtTPTvJ1T111WqFQ2lCxZgpIlS5j/4DkgK++/yBmZPQceHm54eLhler8ajYa4uLj/PhTGERsbS1yc7ntdK3ZCin81JCQkGlq7X3wu5f0JSPX4i/ei1I8nfw60L2xPitdpX/J48nthWrGl/Xjq+PT7cHBwyNpJy0C+SJDs7OwA3Vgk/fegmzWU1qc8Ozu7NOtUxMbGGj2LzdPTk99/323UtumJi4vj4cOH3L59m1u3bnHr1i3CwsLw8vKiW7dulCxZMtvHcAHufaL/KWdmWfj41MPHp57h54SEBMLCwggNDSUkJITIyEjDL3tsbCyxsbFotdpkTcApm2Wtra2xsbHB1tY23X/1r9ElQ7ova2vrfDUwOjdydHx5y4o5rruCKjPvv8hZcg7yh3yRIOm7y4KCgihdurTh8aCgILy8vFK93tPTk/379yd7LC4ujqdPnxo9QBsgPDyahATTDo50di6Kt3dRvL1TT+EPC0t/TaXczsqqEB4eJfHwyH6Sp9ufEkfHQmmeA60W4uMhPj6B6GgTVCUUacroHIicJ++/5ck5sDwnp0Ima7nPFwmSl5cX9vb2nD592pAghYeHc/XqVXr1Sr1oZIMGDZg3bx737t0z1Ek6ffo0AN7e3kbHkZCQKLNHLEzOgeXJObAsef8tT86B5ZhyXn6+SJBsbGzo1asX8+bNw9XVlZIlSzJ37lw8PT1p06YNCQkJhIaG4uDggJ2dHbVr18bb25tRo0YxdapuiYApU6bQsWPHbLUgCSGEECJ/yDej+UaMGMF7773H5MmT6dGjB1ZWVqxduxYbGxseP35M06ZN2bNHVzhOoVCwdOlSXnnlFfr27cvIkSNp3rw5U6dOtex/QgghhBC5Qr4oFJlbSJ+zZVlZKeUcWJicA8uS99/y5BxYllKZVHcpuyRBEkIIIYRIId90sQkhhBBCmIokSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgiSEEEIIkYIkSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgpQNy5cvp3fv3skeu3btGr169aJOnTq0aNGCtWvXWii6/C+t9//gwYN07tyZunXr0rJlS+bMmUNMTIyFIsz/0joHL5o8eTItW7Y0Y0QFS1rvf1BQEKNHj6Z+/fo0atSITz/9lNDQUAtFmP+ldQ7++ecfevXqRd26dfH19eXrr78mLi7OQhHmP0+fPuWLL76gefPmeHt706NHD86dO2d43lT3YUmQjLRu3ToWL16c7LGwsDD69etH2bJl+emnnxg+fDiLFi3ip59+slCU+Vda7/+5c+cYNmwYr7/+Ort27WLq1Kn88ccffPnllxaKMn9L6xy8aP/+/Wzfvt2MERUsab3/cXFx9O/fn4CAAL7//ntWrlzJ1atXGT9+vIWizN/SOgehoaF89NFHlC9fnl27djF9+nR27tzJggULLBRl/jN69GguX77M/Pnz2bFjB9WrV+fDDz/k1q1bJr0Pq3Ig9nwtMDCQSZMmcf78ecqVK5fsuW3btmFjY8PUqVNRqVRUqFCBe/fusXr1ajp37myhiPOXjN7/LVu24OPjw8CBAwEoU6YMo0aN4rPPPuPLL7/ExsbGEiHnOxmdA72goCA+//xzGjZsyMOHD80cYf6W0fu/e/duHj58yL59+3B3dwcwXP+RkZHY29tbIuR8J6NzcOHCBZ4+fcq4ceOwt7enTJkyvPPOOxw7dkwSVRO4d+8ex48f58cff8Tb2xuASZMmceTIEXbv3o2dnZ3J7sPSgpRF//77L05OTvz666/Url072XPnzp2jQYMGqFRJeaePjw937twhJCTE3KHmSxm9//3792fcuHGpttFoNERGRporxHwvo3MAoNVqmTBhAh06dKBhw4YWiDB/y+j9P3r0KD4+PobkCKBZs2bs379fkiMTyugcODs7A/Djjz+SkJDAgwcPOHz4cJq/KyLrXFxcWLVqFTVq1DA8plAo0Gq1PHv2zKT3YWlByqKWLVumO6biyZMnVK5cOdljRYsWBeDRo0e4ubnleHz5XUbvf7Vq1ZL9HBcXx/fff0/16tVxdXU1R3gFQkbnAHTdDmq1mhUrVrBy5UozRlYwZPT+3717l/r167Ns2TJ27dqFRqOhadOmjB07FkdHRzNHmn9ldA7q16/PwIEDWbRoEQsWLCAhIYGGDRvy+eefmznK/MnR0RFfX99kj/3xxx/cv3+fpk2bsmDBApPdh6UFyYRiYmJSdePY2toCEBsba4mQCiyNRsO4ceO4efMmU6ZMsXQ4Bcb169dZunQpc+fOlS5NC4iMjGTXrl34+fnxzTffMG3aNM6fP8+QIUPQarWWDq9ACA8P5+7du/Ts2ZPt27ezaNEi7t+/z9SpUy0dWr50/vx5PvvsM1q1akXLli1Neh+WFiQTsrOzSzVTQX9CChcubImQCqTIyEhGjhzJ6dOnWbx4sTRtm0lsbCxjxozh448/xsvLy9LhFEjW1tYULlyYb775BmtrawCcnJzo0qUL//zzD7Vq1bJwhPnfvHnzCA8PZ8mSJQBUr14dJycnPvjgA/r27Su/Gya0f/9+xowZQ+3atZk/fz5g2vuwtCCZkKenJ0FBQcke0/9crFgxS4RU4AQFBdGzZ08uXrzI6tWrZYq5GV2+fJkbN26wdOlS6tatS926dVm5ciWPHj2ibt26/Prrr5YOMd/z9PSkXLlyhuQIoFKlSgA8ePDAUmEVKOfPn6dmzZrJHtN/SLtz544lQsqXfvjhB4YPH07z5s1ZvXo1dnZ2gGnvw9KCZEINGjRgy5YtJCQkYGVlBcDJkycpV66cjD8yg2fPntG3b18iIyPZvHkzVapUsXRIBUqtWrXYu3dvssc2btzI3r172bhxo/wOmEH9+vXZsGEDMTExhhuGv78/oJvVKXKep6cnfn5+yR7Tn4OyZctaIKL8Z/PmzUyfPp3evXvz2WefoVQmtfWY8j4sLUgm1LlzZyIjI5k0aRI3b97k559/Zv369QwaNMjSoRUIs2bNIiAggLlz5+Lq6oparTZ8JSQkWDq8fM/Ozo4yZcok+3JyckKlUlGmTBmZRWUG3bt3x8rKik8//RR/f3/Onz/P5MmTadSoEdWrV7d0eAVCv379OHr0KAsXLuT+/fucPHmSCRMm4OvrS9WqVS0dXp53584dvvrqK9q0acOgQYMICQkx/J2PiIgw6X1YWpBMyM3NjTVr1jBz5kw6deqEh4cH48aNo1OnTpYOLd9LTExkz549xMfH07dv31TPHzhwgFdeecUCkQlhPq6urmzatIlZs2bRtWtXbGxsaN26NRMnTrR0aAVG06ZNWblyJcuWLWP9+vW4uLjQpk0bPvnkE0uHli/89ddfxMfHs2/fPvbt25fsuU6dOjF79myT3YcVWpnaIIQQQgiRjHSxCSGEEEKkIAmSEEIIIUQKkiAJIYQQQqQgCZIQQgghRAqSIAkhhBBCpCAJkhBCCCFECpIgCSGEEEKkIAmSEMLipBybECK3kQRJCGFRBw4cYPz48YafT58+TZUqVTh9+rRF4pkwYQJVqlShSpUqjBkzJlv7qlKlimFV98zo0aOH4dhZ2U4IYXqy1IgQwqLWrVuX7Ofq1auzdetWKlasaJmAAA8PD5YuXYqrq2u29rN161Y8PT0z/frp06cTGRlJt27dsnVcIUT2SYIkhMhV7O3tqVOnjkVjsLGxMUkMWd2HJZNCIURy0sUmhLCY3r17c+bMGc6cOWPoVkvZxbZkyRLeeOMN9u/fT/v27alZsyYdOnTg4sWLXLp0iS5dulCrVi3at2/PyZMnk+3f39+fQYMG4e3tjbe3N0OHDiUgICDLcVapUoUff/yRCRMmUK9ePRo2bMiMGTOIiYlhzpw5+Pj40KhRIyZNmkRsbGyy7fRdZfr/18mTJ+nfvz+1a9emcePGzJkzB41Gk413UQiREyRBEkJYzJQpU6hWrRrVqlVj69atVK9ePc3XPXnyhFmzZjF48GAWLlzIs2fPGDFiBKNHj6Zr167Mnz+fxMRERo0aRUxMDAB37tyhe/fuhISEMHv2bGbOnElAQAA9evQgJCQky7HOmzcPGxsbli5dSocOHdi4cSMdO3bk8ePHzJ07l+7du7Njxw42btyY4X7GjBlDvXr1WLFiBW+//TbfffcdO3bsyHI8QoicJV1sQgiLqVixIvb29kDG3VHR0dFMmTKF5s2bA3Dr1i2++eYbZs6cyXvvvQdAQkICI0aM4M6dO1StWpWlS5diZ2fHunXrDMd49dVXad26NWvWrEk2MDwzKlSowLRp0wBo0KABO3bsID4+nnnz5qFSqWjWrBkHDx7kwoULGe6nS5cuDB061BDP/v37OXToEN27d89SPEKInCUJkhAiT/D29jZ87+7uDiRPqpydnQEIDw8H4NSpUzRq1Ag7OztDF5a9vT3169fnxIkTWT5+3bp1Dd+rVCpcXFyoUaMGKlXSn1FnZ2ciIiIyvR8AT09PoqKishyPECJnSYIkhMgT9K1AL7Kzs0v39U+fPmXPnj3s2bMn1XPGzE5L6/iFChXK8n5SxqxUKqUOlBC5kCRIQoh8ycHBgcaNG9OvX79Uz73Y6iOEEGmRvxJCCItSKpUkJiaafL8NGzbk5s2bVK1a1ZAQabVaxowZQ5kyZahatarJjymEyD9kFpsQwqIcHR25c+cOJ0+e5NmzZybb75AhQ7h//z6DBg1i//79HD16lOHDh/P777/j5eVlsuMIIfInSZCEEBbVs2dPrK2tGTBgAEeOHDHZfr28vNi0aRMKhYJx48YxYsQI1Go1y5Yto23btiY7jhAif1JoZXSgEEIYTJgwgTNnznDw4EGLxVClShWGDRvG8OHDLRaDEAWdjEESQogU4uLiuHTpEq6urpQuXdpsx7158yaRkZFmO54QIn3SxSaEECmo1Wq6devG4sWLzXrczz//XBaqFSKXkC42IYQQQogUpAVJCCGEECIFSZCEEEIIIVKQBEkIIYQQIgVJkIQQQgghUpAESQghhBAiBUmQhBBCCCFSkARJCCGEECIFSZCEEEIIIVKQBEkIIYQQIoX/AwmvwN3DqZbZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "fig, ax = plt.subplots(4, 1, figsize=(6, 8), sharex=True)\n", + "for a in ax:\n", + " a.plot(df['time_min'], signal_norm, 'k-')\n", + " a.set_ylabel('normalized\\nsignal intensity')\n", + "\n", + "# Plot for a few prominecne values\n", + "for i, p in enumerate([0.01, 0.1, 0.3, 0.5]): \n", + " peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=p) \n", + " ax[i].vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', color='dodgerblue')\n", + " ax[i].set_title(f'prominence filter = {p}')\n", + "\n", + "# Add necessary labels\n", + "ax[3].set_xlabel('time [min]')\n", + "ax[2].set_xlim([10, 20])\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The choice of a prominence filter is going to be dependent on the size of peaks \n", + "that you care to resolve in your chromatogram, their degree of overlap, and how \n", + "noisy your signal is. The prominence filter can be passed as a keyword argument \n", + "in the `fit_peaks` method of a `Chromatogram`. For example, passing a restrictive \n", + "prominence filter of `0.1` can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3788.10it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:02<00:00, 1.03s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADw1UlEQVR4nOzdd3gUVfcH8O/M9k2y6ZWEJAQYereDgDRRRNDXVyygYkURG1IEQSmKvDTBH6h0BUFRREWxoFhAVARBIMmQ3gvpZfvO/P6Y3RBIXzbJJjmf5+FJsjNz52QyJHP23nsuI4oiCCGEEEIIIaQjYFs7AEIIIYQQQghpKZQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOgxIgQgghhBBCSIdBCRAhhBBCCCGkw6AEiBBCCCGEENJhyFs7gHasBIAKQE4rx0EIIYSQxgsFYALg08pxEEKaCUMLoTYbgyiKakFw/fVlWQbN0S65HF3nlkHXueXQtW4ZdJ1bRnNdZ5ZlwDCMEYDG5Y0TQtwC9QA1nxxBEKOLiipd2qhczsLX1wNlZXpYrYJL2yaX0HVuGXSdWw5d65ZB17llNOd19vPzgEzG0OgNQtoxmgNECCGEEEII6TAoASKEEEIIIYR0GJQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOg6rAEUIIIYS4uZMnT3pBWqOI3rwmpCYBQM7gwYPLG7MzJUCEEEIIIW7q5MmTLIBXGIadxjCMAgDT2jER4oZEURQtJ0+e/ADAG4MHD663Pj4lQIQQQggh7usVmUw+Q6fzNSuVaj3DMLTKLiFXEEWRMZuN2rKy4hk2mxUAltW3PyVAhBBCCCFu6OTJkzqGYafpdL5mLy/fwtaOhxB3plJpDAD8S0oKp508efLt+obD0ThSQgghhBD3FMIwjEKpVOtbOxBC2gJ7L6kC0ny5OlECRAghhBDinlgADA17I6Rx7P9XGDSQ41ACRAghhBBCCOkwKAEihBBCCCGEdBiUABFCCCGEkA5j/fo1YZMm3dq3teNorPj4WPXhw997t3Yc7QklQISQNiEpKREPPvhfLFo0HxaLubXDIYQQQlrEvHkvdYuNPefR2nG0J5QAEULahNdfX4hz5/7Fl19+jr17d7d2OIQQQkgLoRoYrkbrABFC3F5GRjr+/fd01dcHD36JqVMfab2ACCGkFQmCAL1e3ypvYmu1WoFlm3bqoUOHDL777ntzfv75R3+LxcK+/fameK1WK2zYsDb833//0VVWVsq8vb2tI0eOLnzuudlZcXGxmieffLjXxo1b4vr1G6AHgOeffzrm3Ll/dd9++/M/crkcoiji9ttH93/ooelZ9977QMGV5ywouChfs2Zl+KlTJ7xtNhvTvXuPihdfnJsRE9PV5Njn/fc3Bh88eCC4vLxc3rVrt8p58xalOrbXFnN4eIT5vff+L/SXX37yLy4uVnTq1Mk4deoj2bfeensJAOzbt9d/z54PQx955LGsrVvfDy8tLVH07Nm7fOHC11N37Nga8vPPh/3lcrk4ceJdeU89NTMXAEwmE/POO2vDjh791beoqFCpVmuE/v0HlM6b92q6n5+/bdKkW/sWFBQoP/nko9CzZ097bd78AV9cXCR75511nU6c+MOnvLxcHh0dU/nEE09nXX/9jRWO7+3Agc/8du/eGXrx4kVV586dDSNHjincuvXdiKNH/z7pzM+EZVmnvj93RQkQIcTt/fXXHwCAqKhopKamgOfjUFJSDB8f31aOjBBCWpYgCLj//rt7xMfHtcqQqB49elV89NGnfFOToO+//ybwzTdXJ9hsVqZbt+6m+++/u5e3t4/lrbfWXfDy8rL98stPPps3b4ro1atP5bhxt5UEBASYjx8/puvXb4DeZrMhNvacl8lkYv/556THNddcV3n69ClteXmZ/JZbxpRceS6r1YrnnpvRHWDE1157I8nf39+6YcPa8Jdeerb7p59+dRYACgoKlOfO/ev15ptrEsxmE/PGG69Hv/HG61Fbt37I1xXz888/HZOcnKR99tkX0qOjY4zffvu13/Llr8WwLJs4duz4UgAoLCxQfvnl50HLlq1M1Osr2VdfndvtkUce6D1q1JiCjRu3xn3zzZf+u3bt6DR8+MiSnj17G1evXhH+55/HfebOXZAaEdHZxPO8ZtWqN6Lee+//wubPX5SxZcuHcdOnP9DrppuGFz3xxIwcm82GWbOe6m6xWJi5cxemBAYGWT7++KOgefNe7L5u3cb4AQMG6Q8f/s57zZq3oqdNm545YsSokj///F23Zcu7EVf7M3Hm+2vSTdKCKAEihLi9Eyf+BACMHTseP/zwLVJSknHu3FkMHXpzK0dGCCGtoe2tCzR8+C2FAwYM0gOAwWBgbrllTOG4ceOLIyIizQAQFfVo/r59e0MSEy9oxo27rWTIkOtKTp06oQOQe/r0KQ+ZTC52796j4sSJP72uuea6yt9++8WnWzeuIjAwyHrluY4d+1WXlpaq2b79o3PdunU3AcCCBa+l7tixJaSoqFAOADKZTFy69K0Ub29vGwCMHz/h4q5dOzrVFfOFC/Hqv//+y+e115Ynjh49rhQAZs58Pic5OVG7e/fOUEcCZLPZmBdfnJvmePjv27d/2YUL8Z4vv/xKJsMweOKJZ3I++WRPaELCBU3Pnr2NPXv2qhw5clTxDTcMrQCAiIhI8w8/fFuWmpqsAYCAgEAry7KiRqMRfH39bD/99IMuJSVZu3nzzvOOcyxc+Hr6hQvxHrt37wwZMGBQ8t69u0Ouv/7GosceeyoPALp27XYxMzND9dVXB4Kv5mfizPd3NfdMc6IEiBDi9s6c+QcAMGTItUhNTUFKSjKSkxMpASKEdDgsy+Kjjz7l29IQOAAID4+oGnqm0WjEqVMfyf/mm698d+3a6ZGdnaVKS0vRlpQUK2w2gQGAYcNGlC5e/EqgwWBg/vzzuFfv3n3KO3WKMJ45c0oHIPfEiT+9b755RFFt50pIuKDRarU2R/IDAMHBIda5cxdmOr729va2OpIfAPDy0tnMZvNl31j1mHk+XgMAQ4ZcV1F9n759B5R/8MHW8Oqvde166bwqlUoIDAw2MQwDAFCr1SIAmEwmFgAmT76n6LfffvFas+atTllZmarMzAxNdnaWukePnpedxyExMUGj0Wht1ZMLhmHQq1efilOn/tYBQGpqsnbo0JuLqx/Xv//AiisToKb+TJz5/twVJUCEELdWUVGBnJxsAADH9UCXLjEAgOTkpNYMixBCWg3LsvD09BRaO46mUKnUVfHq9Xr2yScf5oxGIzts2PDisWPHF/bvPyB95swnejj2ueGGm8oVCrnwxx/HvP7556Ru5MhRRZGRUaYvv9wfkpGRpkxNTda+9try5NrOJZPJRccDeV1Ylm2wF616zHUVIhAEGyOTyS7bqFAoLvuaZeuOZcmSVzsfO/ar34gRowqvv/6m0h49euXs3r0zpLDworK2/UWx9m9NEATI5XJROh8rimLDnYRN/Zk48/25K0qACCFuLSkpAQAQGBgEb28fdOnSFQCQnJzYmmERQghx0i+//KRLSUnW7t//9ZmgoGArABQXF8lKS0vljkRDqVSK/fsPLPv11599EhIueM6b92paeHiEmWEYcePGDWGhoWHG6gUNquvSJcZYWVkpS05OUnXpEmMCgMLCAvl9993VZ9mylQnOxNy9ew8DAPz995+ejiFwAHD27BnPTp0iDM60WVRUKPv++0OBc+cuSL7jjslVPTaZmelqtVpTLfm6lGB07drdoNfrZXFx59XVe4FiY897hod3NgJAZGSUITb2vCeAfMf28+fP1jtnrDE/k/bErbunCCEkMVH6W9WtW3cAuKwHqDHvcBFCCHEvwcEhZgD48svP/TMy0pR//nncc/bsWV1tNhtjNluqnvZvvHFoyZEjPwbodF7WmJiuJpVKJXJcz4qjR3/xv/76G0vqan/YsOFl0dEx+iVLFkafPHnCIz4+Vv3aawuivL19LP37D9Q7EzPH9TQOGDCodP36NZ0PH/7OOzExQfXOO+tCT5484fPf/96X50ybOp23TaPR2o4e/dUnOTlJFRt7TrN48SuRqakpWovl0nVQq9W2rKxMVX5+nnz48JGlERGRhiVLXu3y+++/eV24EK9eunRR58zMdM2UKffnAcD990/L+fPP3323bn0vODk5SfXppx/7f/31V0H1xdLYn0l7QQkQIcStJSVJPT0xMVLPT+fOkQCkoXGlpSWtFRYhhBAnDRo0RD99+hMZX375edC0aVP6vPXWsqg+ffqX33TTsCKev1TdbuTI0aWCYGP69Olf5nht4MDBZaIoYvjwW0rqap9lWaxcuTYxMDDYPG/eS92effapHjKZTFyzZkOCSqVy+p2zFSvWJF977fUla9asjHrssWm9//zzd59XXnkt6fbbJxY3fHRNcrkcCxe+npyenqZ59NEHe8+Z80I3k8nEPvjgw1lZWRmayspKFgDuvPPu/FOnTng/99zT3eVyOdav33QhKqqL/vXXF8Y89dSjPVNTUzQrVqy5MHjwtZUAMHLk6LJnnnku7eDBLwKnT3+g99dffxE4btz4i44hcrVp7M+kvWDoHdRmk2yzCdFFRZUubVQuZ+Hr64Hi4kpYrW1q+G+bQte5ZTTmOj///NP4+eef8Mori/Hf/94HABg1aigKCwuwd+/n6NGjZ0uG3GbRPd0y6Dq3jOa8zn5+HpDJ2BQAXVzasBNOnjzZg2Vl3wYFdapQKtVuW1GLuJfjx496BgQEWaoXgdi0aUPI998fCvj882/OtWZszc1sNqrz87M8BcF26+DBg+Pr2o96gAghbi0nJwcAEBoaVvVacHAIACA3N6dVYiKEEELc1R9//O49e/as7seO/eqVmZmu/P77Q95ffvl58MiRo2utmtcRUREEQohbc1SACw0NrXotJCQUsbHnKAEihBBCrvD0089lGwwGdsWKZdHl5WVyPz9/85133pX3+OMzcls7NndBCRAhxG1VVlagrEwqthMScqkHKCRESoYoASKEEEIup1KpxFdeWZwBIKO1Y3FXNASOEOK2HMPfvLx08PT0rHo9JISGwBFCCCHEOZQAEULc1qXhb2GXvR4cLPUA5eVRbz4hhBBCmoYSIEKI23L08FSf/wMAAQEBAIDCwoIWj4kQQgghbRslQIQQt5WTkwWgZg+Qv78/AKCoqLDFYyKEEEJI20YJECHEbTnmAIWEhEEwGlH+918AAD8/qQeooqICJpOpzuMJIYQQQq5ECRAhxG055gCFBQQi/c1lKDywH0qlDD4+OigUCgA0DI4QQgghTUMJECHEbTnmAIUnXoA5KxOwWCBknoMKZvj7O+YB0TA4QghxZ0OHDhm8b99e/8bu//PPP+omT76tz4gR1w96663l4c0ZW2OsX78mbNKkW/u6ss2mXJPMzHTll19+7uvK83d0rb4OEMdxIwAcqWNzCs/zXTiOGwDgbQBDABQCWM/z/KpqbbAAFgN4DIAvgKMAnuZ5PrHaPlfdBiGk5VgsFuTn56GTWg35+fMAgOAJw1GZwcNTrkC3gEDk5uagqIh6gAghxJ199tnBMzqdt62x+2/evCk8ODjE9PbbGy94eno1+ri2pCnX5PXXX40KCgoyT5w4ubi54+oo3KEH6HcAoVf8GwvACuANjuP8AfwA4AKk5GUxgKUcxz1SrY1XATwF4HEANwAQARziOE4JAK5ogxDSsi5ezIcgCJgcFgGIInR9e0HmycBcWIrYhW/hUbUWDKgHiBBC3F1wcIhVo9GIjd2/srJS1qtX78rOnaPMfn7+7TIBato1EZnmjabjafUeIJ7nzQCqFvPgOE4BYC2Az3ie38Jx3HwAJgAzeJ63AojjOK4bgLkAttsTlJcAzOF5/ht7G/cCyAZwF4C9AJ5wQRuEkBaUk5MNL7kcN/j6AQC8h/SAaLNC4e0BCAK0ACI0WkqACCEdks1gqPNNbIZlRValEpt738YaOnTI4Oeem516zz1TChcseDlKEATG19fPcuTIj/4mk5Ht129A2fz5i9KCg0OsQ4cOGQwAn3yyJ/STT/aEfvTRp2cjIiLNmzdvCj506GBQaWmJPCQk1HTPPfflTp78nyIA+P3337zmzHmh+7Rp0zM/++yT0ICAQNOyZW8lT5363z733Tc1++uvvwxSKhXCjh17YxmGwZo1b4X/9ddxH6vVykRHx+iffnpW5oABg/SOePfs+TBg3769IcXFRcr+/QeWBgUFm+v7/h5/fBrXu3e/8uLiIsWxY7/6KRQKYcKESfljx44vWrFiaVRycqJHSEiYcc6cV1IHDhysr35Nxoy5tWTatP/2jorqol+//t1EAPj115+9Fix4ufv8+YuSPv98X3BcXKxnXFys56RJt3odOPDt2UmTbu17yy1jC2fNejG7egxBQcGm5cv/l1rb9fjgg71xeXm5irVr/xdx+vQpnUzGit2796h87rnZGTExXTtcNaFWT4Bq8QyACABj7F8PA/CrPXFx+AnAfI7jggBEAfCyvwYA4Hm+hOO4UwBuhpS8uKINQkgLys3NwciAQCgYBprO4WC1DGADGJkMqhA/GDMvooenF0pLaUQAIaTjSXp2xsC6tmm6c6URc+ZXDeFPfnFWf9FiqTWxUUVFV0QuXMw7vk6Z+1JfQa+v9flQGdZJH7VkedzVxA0Ax48f8x06dHjR229v5LOzs5Rvvrm0yzvvrOu0dOmKtM8+O3jm8cen9brppuFFDz/8aG5AQKB17dqVnX755Yjfs8++kB4T0834999/ev7f/62LrKiokE2d+vBFR7t//nncZ+PGLXF6vZ6VyVgRAH7++Ue/tWvf4Q0GA+vt7W2bPv3BHnK5XFi2bGWiTqezffXVAf/nn3+6x4YN78X17dvf8OWXn/u+++47nR977KmMG24YWvbjj9/77tq1o5O/v3+9SdCBA5+G3HPPfTlbtnx4/uuvv/Dfs+fDsB9//N7/qadmZoSHR5jfemtZ5Jo1b0V++OEnl10/Hx8f28svL0h55ZXZ3b/4Yr/fsGHDS1euXB49atTYgttuu6PkhhtuKn/xxZndAgICzXPnLkxvynWufj2MRiP77LNPclFR0fq1a/+Pl8lYcffuD0KefvrRntu3f3Q+LKyTpSltt3VulQBxHKcGsADAOp7nc+wvhwM4e8Wujoy3s307AGTUsk9nF7bhFLnctaMMZTL2so+kedB1bhn1Xefc3Bx08/AEAPgM6glWtAGsNApAFegDY+ZFRGg0KCgvc/n/s/aI7umWQde5ZdB1bts0Go1t8eJlaQqFQuzevYfx+PFjhSdPnvAGpKFhLMuKGo1GCA4OsVZWVrJffXUgePbs+SmjR48rBYDo6C6mnJxs1Wef7Q2pngDde+/9uY7ejPT0VCUA3H77xIsc19MIAL/99otXQgLvceDAoTMBAYFWAHjxxblZsbHnPffu3RXct2//1P37Pwm+8cahxVOnPnIRALp27ZYbF3feIzU1WVvf9xQR0dnwzDPP5QDAI488kbdnz66wYcNGFI0dO74UAMaOHV+4efO7EbUdO2zY8PLx4+/If/fddyJ+/PF7Pw8PD5sj2fH19bPJ5XJRqVQKjpgbq/r1+Pjj3QHl5WXyFSvWpCgUChEAlix5M/Wuu27v++mnHwdW703qCNwqAQIwFYAGwPpqr2khDV+rzmj/qLZvRx37+LmwjSZjWQa+vh7OHl4vnU7TLO2Sy9F1bhm1XeeionzsTkrAvIdvxP3dQsAIl/57eoT4oRTSELgMQ2Wz/T9rj+iebhl0nVtGR77OMRs2/VPXNoZlLxum1mXN+jON3Tf6rdVXvmFc577OCg4OMTkewgHAw8PTZrVaa53ncuFCvNpisTCrV6+IWrPmrSjH6zabwFitFsZgMFQdFxUVXWMoV+fOkY7nPcTHx2oB4N57J11W0c1qtTIWi5kBgIyMdM2IEaOKqm/v1atPRUMJUFhYeNV5tFqtAACdOnWqikepVAlWq6XOuTwvvjgn89SpE96nTv3tvWnTttimzJmqS/XrceECrzUYDLJbbx0xoPo+FouFzchIU1/tudoad0uApkGa+1N9UL8BgOqK/Rw/qEr7dtj3MVyxT6UL22gyQRBRVqZveMcmkMlY6HQalJUZYLMJLm2bXELXuWXUd51TU6Wefq/QAJj0FYBY7W+Bl/TQE6HRoKCgEMXFTv837TDonm4ZdJ1bRnNeZ51O0yZ6lmQaTaO/8eba11nVk59Lan/eFwSBAYBXXlmc3KVLV+OV21XV5iSp1eoasavV6qrtgiAwGo3G9t57O2oM41MqlQIAMAxz2Z8bAJDL5Q0mI3K5rMY+DNP4+ygvL1dRUlKskMlk4vHjR3V9+/Yz1H/E5aezWm01kqvq10MQBISGhhlXrFhTo7qxh4dHuyw0UR+3SYA4jgsEcCOAN67YlAEg7IrXHF9nAVBUey3pin0c73i4og2nWK3N83vEZhOarW1yCV3nlnHldRZFEQX2RVADNHIIVzzgyHWeEAF4yRWwFRfSz6gJ6J5uGXSdWwZd5/ava9fuRplMJubkZCsdQ+AAYMeOLUFpaSnqxYuXN3peTExMN4PBYJCZzSamR49eVcnUokXzI7t27aafNm36xcjIKP25c2c8AeQ7tvN8XLMOMxAEAUuWLIyOjIzWjx17a+GmTRs633jjsLI+ffrakyDmsmxHJpOLFRWVsurH5+fnKcPCwmokiA5dusQYfvnliL9Op7M5htJZrVbMmfNCl5Ejbym+446OVWLbnd7iuBFSOvvLFa//CmAYx3Gyaq+NAsDzPJ8PKUEpAzDCsZHjOB8AgwD85sI2CCEtxJichIU+fngyMhqBHjUr0TNyGYQuodiXnYnS8rJWiJAQQkhL8Pb2to0Zc+vFDz/c3mn//k/8UlNTlJ9++rH/jh1bw319/Zo0J2bkyFGlkZFRhsWLX4k5evRXr+TkJNXKlcvDjxw5HBAdHWMEgPvum5b7119/+G7evCk4KSlRtXPn1qA//zzerIuQvv/+xpCUlBTtggWvpd577wMFPXv2Ll+2bFG0yWRiAECj0Qj5+XmqrKxMBQD07Nmr4ujRX/yOHz/mmZiYoFqy5NVIg0Evq+8cEyfeVeTp6WGbO/eFmJMn//JISODVr746N/r06ZPe3bpxDfQ2tT/ulAD1B5DM8/yVY8a2AdAB2MpxXC+O4x4G8DyANwGA53kTgHcAvMVx3ESO4/oB+BhSr89+F7ZBCGkhBcd+g4qVQcnKEKBV1LqPx5Du2JediaziIohXjlcghBDSbsyb92rGnXfelffBB9s7PfzwfX12794ZOmXKA9nPPtu0ifsymQzr1797oVu37pXLly/u8thjU3v9++9pr4ULX08aNmx4OQCMHj22dM6cV5K///5QwKOPTu199OivPhMnTs5rnu8MOHv2X83evbvCpk59OKtLlxgTAMyf/2paQcFF1dq1KzsBwMSJd13MyEhXT5/+QG+bzYaZM1/I6t6dq1iwYE63Z599sodOp7PeeOOwentwvL29bRs2vB/v7e1jnTdvdrcZMx7tmZ+fp3zjjVUJ1XvDOgrGXR4cOI7bCGAgz/M31LLtGkiFEQYCyAGwmuf5d6ptl0EaOvcIpCIKvwJ4huf5VFe20UTJNpsQXVTk2rkJcjkLX18PFBdXUrd/M6Lr3DJqu86iKOLCyy+AKSnBezmZeOP1Z2o91mAyY8QziwEAx4+fgkZT7/zUDo/u6ZZB17llNOd19vPzgEzGpgDo4tKGnXDy5MkeLCv7NiioU4VSqe5wD6mENJXZbFTn52d5CoLt1sGDB8fXtZ/bzAHief7peradAFAjMaq23QZpUdO5zdkGIaT5WXJzwJSUwCIIKFTV/StKJWMRrvWAzWZDaWkpJUCEEEIIaRR3GgJHCCGoOHMaAHC+vAx+vl517ld5IRNrevXFQxGRKC0trXM/QgghhJDqKAEihLiVyn+lwosnS4oR4udd535yL6nHJ0ClQllZSUuERgghhJB2gBIgQojbsFVUwJCYAAA4VVqCEH+fOveVeUhLefkplNQDRAghhJBGowSIEOJWAu+6G2csZlw0m+pPgLRSAuQpl6O8uKjO/QghhBBCqqMEiBDiNmSengieeAc2pUnrEYf41730AqtSQLCvhG0oKmyR+AghhBDS9lECRAhxK+bKMhSVSEPaQvx86tyPYRiYGAYAYCrqUAtYE0IIIeQquE0ZbEJIx2a+mA9zWipKVVKvjkalhM5DU+8xFjkLjUWArYzmABFCCCGkcSgBIoS4hYoTf6Fg/6ewhIcAAEL8fcDYe3jqUuyjxXdn4sF461oiREIIIYS0A5QAEULcgj4uFgBQoJBG5tY3/M2hItQX+w5lYmiX6OYMjRBC3A7DQMYwTItPZRBFURBF2Fr6vIS4EiVApNkIFjNKjvwETY+e0HSObO1wiBsTzGYYEi4AAJJNegCotwKcg4dGqgRXXl7ebLERQoi7YRjIBIYJ1RutLf4cp1XLrSzEHHdLgtavXxP200/f+x848O3Zph6bmJigeuKJh3vt2LH7fOfOUebmiI+4F0qASLPJ/XQfKn78AaWCDZHL30JQaFhrh0TclP7CBYhWKxS+PkgsKADQuB4gD6UCoSo1VHp9M0dICCHug2EYVm+0yv84lyPojVahpc6rVcvZ6/uEyr3UclYURbdKgJwVG3tOM2/eS13NZhMVButAKAEizabw96NQAdiWkoS+n+/D008/19ohETdVGXseAOARE4mcI1JPUGN6gHQlerzddwDiDIbmDI8QQtyS3mgVKg2WFkuA7NpNorBx4/qQTz/dG9qpU7ixqKhQ2drxkJZDCRBpFrbycqjsD6VnykphPPFXK0dE3FnleSkB0kQEIq+oBAAQ3IgeIJW9SpzKvh4QIYQQ9zN06JDBM2Y8m/7jjz/4paQkeQQHhxinT38ia+zY8VUlPA8f/s57x44tYVlZmRpfXz/zzTePLJox49kclUoqDRofH6t+9913OsXFxXoZjQbW3z/AfMcdk/MfeeSx/NrOuWPHlqAdO7aEz5+/KHncuNtKatvn5Mm/vF9++ZUUb29v25w5L3Rvlm+euKV2k8UT92LOzQUA5JtM0NtsSEjgIYr0kEpqslZUwJieBgBQBPkgr0j6exhazyKoDhpPKQHSMiwEoaXfBCWEENJY27dvDh85clTR++/vPD9kyHWlS5cu6nrixJ8eAHDkyGHd8uWvxYwfP6Fg27bd55977qX0o0d/8Vuw4OVoANDr9exLL83qrlZrhA0b3o3fvv2j80OH3ly8deu7EWfP/ltjvYRdu3YE7ty5NXzhwiVJdSU/ALB16y5+/PgJdW4n7Rf1AJFmYc6XEiCbKOCpyC5QsAwKCwsQEBDYypERdyP39ESPdetgOHcKBeVZsNpskLEsAny8GjxWq/OEAYCnXA6DQQ8PD8/mD5gQQkiTjRw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI1ffv2qxoHvWfProBt294PX7x4WeKIEaPKWue7Je6uyQkQx3H+ACYDGAUgGoA3gAIAaQAOAfia5/kSF8ZI2qBS+zv6pVYrbgkMQoXVioyMdEqASK2U/v6Qde2Es4fPAAACfXSQy2QNHqf2kKrAaWUyVJSXUwJECCFuatCgIZeV6+S4npWnT5/SAUBKSoo2KSnR48iRw/6O7Y5BI4mJCepbbhlTdv/90/IPHvzCLykpQZuVlalKS0vRAoDNJlQtGFdcXKzYtGl9pEwmE8PDO5ta4vsibVOjEyCO4wIALADwmP24OACpABIA+ALoC2AKABPHce8CeIvn+VrHZZL2rzw3FwoAWYKAHpDeoc/Iy2ntsIibYgULTBUlyC2Uhr8FN6IAAgDI1CrpeIZBZVEhEBLaXCESQgi5CnK5/LJx8KIogmVlovS5wEya9J/ciRMnF155XHBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM+yNNuD1NSoBIjjuP8AeAfASQBPAPiC5/kadWc5jtMBGA/gSQCxHMc9zfP8Jy6Ml7QRGRGdsf2zvfCN7IabRUDBAKXZ2a0dFnEz1rIyxL7zNjTRnaHu7IncwmIAQIifd6OOZ2QsjIIANcuisrDG301CCCFuIjb2nMeYMbdWFT2Ij4/1jImJ0QNAeHhnQ0ZGmrpLl5iqXpvjx496fvzxR8Hz5y9KO3jwC/+KinL5vn1fnlMoFKK9Pfvcn0t5lY+Pt2X48JFlQUFB5qeemt5r+/bNwY8++mReC32LpA1pbA/QcwBu43n+VH078TxfBuBjAB9zHHcdgDUAKAHqgDKKi8BXVOCGgGBU6svgIwrQ51OHILmc/gKP4r9PwpCVhZDJNyLHXgGuMQUQHI7ry1BQVoExVkszRUkIIe5Jq5a3aPfG1Zzvq68OBEdGRhv79OlX+dlnnwSmpaVq5s59NRUApkx5IHfFiqVd1q9fE3bbbXcU5ubmKFevXhEVEBBgDg4OsQYHh5hNJhN78OAXvtdcc21FUlKieuPG9REAYDaba8TUs2dv4+TJ9+Tu3r0zbMSIUSUxMV1pOBy5TKMSIJ7nhzW1YZ7n/wRwU5MjIu1CUZG0mKWnzg8Gswk+FgNMRUWtHBVxN3qeBwBoo8IgCjbkFEg9QKEBTUiAbEaczs7EDSJVgSOEdAyiKApatdx6fZ9QOVq4oq9WLbeKYtN/4Y4dO/7ip5/uDV63bpUmMjJS/+abqxJ69+5jAIDbb59YLIpi8p49H4bu3/9JiFbrYRsy5NqSF16Yk+nYHh8fl7t586aIDRvWsAEBgeZx424rOH78mE9c3HkPABevPN+MGc/mHDv2q+/y5a9FbdnyAU9D4Uh1VAWOuJwoiojKzMStQcHQajxhVmsAiwFCWWnDB5MORX9BSoDUoQEAgNzCEgCNWwTVwUMjzQOqrKxwaWyEEOKuRBE2FmKOVwv3AEnnFgVRhK2px0VHxxjmzFmQWdf2CRPuLJ4w4c7i2rYxDIPZs+dlzZ49L6v669WHt82a9WL2rFkvVo21V6lU4r59X55vTGw33jis/OjRv082Zl/SPjR2DtC2pjTK8/x058Ih7YFoMmKgwYiBnaPxhVYHq1YHlBfBVlnZ2qERN2LT62FMTwcAqIK9YRNMyLHPAQprwhA4P5UaoSo1jNTDSAjpQEQRNlEUm5yIEEIa3wN0C3DZUuthABQA0gHkAPAH0AWACcAZVwZI2h5rqVR232izQeHlgwz/MCz85mP4+PnhqVaOjbgPQ+IFQBShCgoAIxdRWqSHwWQG0PgqcABwk0yNqX0HIDk1tXkCJYQQQki70tg5QFGOzzmOux/AWwDu5nn+r2qv9wJwAFIRBNKB2cqkBKjEYoFaq4Payxc2UURxcTFEUQTDMA20QDoCw4ULAADPLhEQbVbk2Ie/+Xt7QaVQNLodUS4DrAIEg7E5wiSEEHKVaHgZcTfOjB1dDmBe9eQHAHiejwWwEMAcVwRG2i6rfS5Ghc0KtdYLGo20OKUgCKikYXDETjCZwCgU0IRLi+M6hr+FNqH3BwBYhfQ+jmiiBIgQQgghDXOmCEIAgLpms1sB0FLsHZyhWHqQrbRaofX0hoehHM/FdEOFxYKyslJ4etItQoDgB6Yi8r7JsKacgqG06NIaQE2Y/wMArFIOwAyYzc0QJSGEEELaG2d6gP4AsJjjOP/qL3IcFwrgdQBHXBEYabsqi6QFKQ2iCKVSDdZiwk2+/hjs7Ysy+/A4QliWAStaAUFKXBwlsJtSAAEAZGql1J6F1gEihBBCSMOc6QF6CcAvAFI5jjsOqfZ6MIAbARQBeN5l0ZE2yVBcBDkAi0y6vWxKabFmT7kc5eWUABFAFATIFArYysohWu0JkH0R1KaUwAYAhUpKgGRWqytDJIQQQkg71eQeIJ7n/wXQG8C7ALwADAGgAbAKQD+e51NdGSBpe0o6R2JB3Dkct0nVOW0qKQFSy2QoL6W1gAiQvXEDEl+Zh5J//ql6zZlFUAFAYV8HSCGKDexJCCGEEOLkQqg8z2cDeNnFsZB2okywIaGyAj3siY+gUFVt0xcVtFZYxE2IoghjYiJsFeUAbHD8GrpUBKGJCZDOA9/k5cCi1WCki2MlhBB3xTCQMQzTZhZCJcSdOJUAcRynAjAdwBgAoQAeATACwKkrq8ORjqe8vBwAoNHaix2wLIwA1LhUIIF0XJb8PNgqysHI5VD4qAGIKNcbUGkwAWj6EDilnw47MtIQ4O9P78oQQjoEhoFMw1pCRbPeqee4qzq3Ums1CIocSoJIW9bk/zgcxwUA+AlATwBxkIbDaQHcDmANx3GjeJ4/7tIoSZuiTUrEbUEhsKnUVa+ZGBZqUYCZhsB1eMakJACAJqKTNP9HrkC2ffibr5cHNPY5PY2lte+vNxjAMACNhCOEtHcMw7CiWS+v4P8UBJNBaKnzsioN68ldJ2cUPqwoim6VAK1fvybsp5++9z9w4NuzjT1m3749/p999klwfn6+ytfX1zJ27K0Fjz02I1cmkzVnqMQNOPPOwSoAOkgJUCoAR+3ZewB8B2AJpJ4h0kEFZWbi4c5R+Epx6UHWxMoBmxmWCiqC0NEZkhIAAOrwoKps5VIJbJ8mt6dWKuAtV8BDEGGz2sDSHy5CSAchmAyCzVjZYgmQXYsPu2sOBw585vd///d25FNPPZt+3XU3lJ8/f1a7fv3qSLPZwjz77As5rR0faV7OJEB3AHiO5/lEjuOqnjR4njdyHLcKwM6mNshx3DQA8wB0AZAE4DWe5/fZtw0A8DakYguFANbzPL+q2rEsgMUAHgPgC+AogKd5nk+sts9Vt0EaT26vxsWotVWvHQqOwbdf7cCtwRNaKyziJgz2HiBV8KW5Po4eoKbO/wEAjUKBzQMGS22XFMPDP8AFURJCCGnPvvzy88Dhw28pnDLlgQIAiI7uYkpLS1V/9903AZQAtX/OZPFqSOWua2MF0KTxKxzHPQhgG4D3APQBsBfAXo7jbrCvNfQDgAuQkpfFAJZyHPdItSZeBfAUgMcB3ABABHCI4zilvf2rboM0jdxe/Q0aj6rXZJ7esIkirQPUwdkMBpizMgEAygBd1eu5hSUAml4BDgA0GhXMgvQGqLG05KpjJIQQ4lpDhw4ZvHv3zsDp0x/kRo68YdCUKZN7ff/9Ie/q+xw+/J33gw/e03PkyBsG3XXX7X3WrVsVZjKZGMf2+PhY9fPPPx0zbtyIAcOHXzforrtu77N9+5agus65Y8eWoBEjrh/03Xff+NS2/amnZmZOnfpI7pWvV1ZWtPi8KtLynPkhnwDwNIBvatn2AIC/G9sQx3EMgKUA1vI8/7b95aUcxw2FVFRhBAATgBk8z1sBxHEc1w3AXADb7QnKSwDm8Dz/jb3NewFkA7gLUjL1hAvaII0kCgKUjkkYGq+q11VqqSJcZWVla4RF3IRoMsL7hhthK8wDIxOltxpQvQfIp8ltsiwLg80GJctCX1IC/4YPIYQQ0sK2b98c/tBDj2bOn78o9Ysv9gcsXbqoq6+vX/w111xXeeTIYd3y5a/FPPbYUxk33jisLD09VbVhw9rOmZnp6lWr1ifr9Xr2pZdmde/bt3/5hg3vxsvlCvHAgU8Dtm59N2LIkGvL+/btZ6h+rl27dgTu3Lk1fOHCJUmjR4+tdfLxtddef9kDSUlJiezQoYOB/fsPpHdqOwBnEqBXARzmOO40pCRIBHAfx3GvAxhn/9dYHIAoAB9Vf5Hn+XEAwHHcNwB+tScuDj8BmM9xXJD9WC/7a45jSziOOwXgZkjJyzAXtOE0udy1Q2VlMvayj+5GMJrheLuG9dSBZaWvulSW4Nnorsgzm11+TZqDu1/ntkoe4I/Ip5+GkJ+AysTTYOz3R/ZFqVO5U6B/1T3TFCZR6gGyVJS1ifurNdA93TLoOrcMus5tz8iRowumTn3kIgDMnj0v69y5M1779u0Juuaa61J27doROmrU2IIHHnjoIiANR5PL5Wlz577YPT09VanVeggTJ07Ov+++qfk6nU4AgJkzX8jev39fSEJCvKZ6ArRnz66AbdveD1+8eFniiBGjGpXMVFRUsLNnz+pqsZjZWbNeymiO75+4lyYnQDzP/8Zx3BgAbwKYA4AB8CKAUwBu53n+SBOa627/6MFx3HcABgJIAbCM5/mvAIQDuLKaR7b9Y2f7dgC48mbNtm+Hi9pwCssy8PX1aHhHJ+h0mmZp92qZi6WaGIIowsPbBxqNNIpQYzMh0j8Av+krm+2aNAd3vc5tmWCzotJUBrX93hBFEZn2BKhLRHDV601hcvQ6mg1t6v5qDXRPtwy6zi2DrnPbMWjQkPLqX3Ncz8rTp0/pACAlJUWblJToceTI4apOfMev9cTEBPUtt4wpu//+afkHD37hl5SUoM3KylSlpaVoAcBmE6reNSsuLlZs2rQ+UiaTieHhnU2NiSsvL1c+e/asbnl5uaoVK9ZciIqKNjd8FGnrnF0I9VcAN3Ecp4FUNKCM5/kKAOA4Tn5Fb0t9HJMAPgDwOqRhaXcD+MKeZGkhDV+rzmj/qLZvRx37+Nk/d0UbThEEEWVl+qtpogaZjIVOp0FZmQE2W0sXfmmYOU8aymQUbBBlKhgM0u8RpVxaDFVms6K42P2Hwbn7dW6LREGAKTMTXuGBMJaVwWIwg2EZVJpM0BtNYBgG/l6eMBqa/rfHbB9LV15Q3Cbur9ZA93TLoOvcMprzOut0GupZagZyufyyRQpEUQTLykTpc4GZNOk/uRMnTi688rjg4BBLfn6e/IknHu7p5aWzXn/9jSWDB19b1q9f/8p7753Ur/q+DMNiyZI3ErZtez9s+fLXordu/TCeZev+WSYk8OrZs5/rZrPZmHXrNvK9evUx1LkzaVecWQcoGcBknufP8DxvAGCotu1aAIeARg/Ddzzp/I/neUf1uNMcxw2C1KtkAKC64hjH4jKV1c6tqh6HfR/HU5Ar2nCa1do8fwBtNqHZ2r4qXt5YnpoEi8mEMQoNBEH6fSeqpDxTLojuGXcd3PY6t0Gm7GykLVoIuc4LEY/cDkEQwQLIyCsAAAT66KCQyavumaaw2t//M1dU0M+rAXRPtwy6zi2DrnPbERt7zmPMmFur5uPEx8d6xsTE6AEgPLyzISMjTd2lS0zVm9HHjx/1/Pjjj4Lnz1+UdvDgF/4VFeXyffu+PKdQKER7e/buv0t/M3x8vC3Dh48sCwoKMj/11PRe27dvDn700SfzaosnLS1V+fzzz3T39PS0rV694UJ4eISlWb5x4pYalQBxHHcfAIX9yygAkzmO61/LrqOq7dcYmfaPVw5ROw9gAqR1hsKu2Ob4OqvaucIglc+uvs8Z++cZLmiDNJZcjjMFFwEAt6kulcFm7BXhlACsVivkciqy0tEYk6Wq8qqgAAhmY9XrGXnSG37hgc53uKaJViTn5aC/6sr3OgghpP1iVZoW7aq6mvN99dWB4MjIaGOfPv0qP/vsk8C0tFTN3LmvpgLAlCkP5K5YsbTL+vVrwm677Y7C3Nwc5erVK6ICAgLMwcEh1uDgELPJZGIPHvzC95prrq1ISkpUb9y4PgIAzGZzjZh69uxtnDz5ntzdu3eGjRgxqiQmpmuN4XDLli2Oslot7KuvLk1QKBRiXl5u1YNJcHBIY0cykTaqsU+hQwC8YP9cBLConn1XN+H8/wAoB3A9pLV3HPoCSATwO4CnOI6T8TzvWHF4FACe5/l8juNKAZRBqhaXBAAcx/kAGATgHfv+v7qgDdJIBsOlIX+qausAsfaKcFqZDHq9HjqdrsaxpH0zJicDANRhlxZABS71AHUKcr5+W4JcxC8ZaVjkQfN/CCHtnyiKAqPUWj256+Ro4YVJGaXWKgpik7vdxo4df/HTT/cGr1u3ShMZGal/881VCb17S0PObr99YrEoisl79nwYun//JyFarYdtyJBrS154YU6mY3t8fFzu5s2bIjZsWMMGBASax427reD48WM+cXHnPQBcvPJ8M2Y8m3Ps2K++y5e/FrVlywd89aFwOTnZiri4814A8NRTj/S68tijR/8+2dTvj7QtjU2A5gNYD6ngQTKk8tD/XLGPDUApz/PlaCSe5w0cx60EsIjjuCwAfwGYAmAspCQlFlKhha32/a4F8DykNXvA87yJ47h3ALzFcdxFSD1G/4PU67PffpptLmiDNFJ5SgpuCwpBntkEueLSZHZGI/VUq2Uy6PWVlAB1QMbUFACAKvCypR+QmW+vABfgfA+QRiXda9UTcEIIaa9EETaDoMhhFD4tPllJFERBFGFreM/LRUfHGObMWZBZ1/YJE+4snjDhzuLatjEMg9mz52XNnj0vq/rr1Ye3zZr1YvasWS86ilxBpVKJ+/Z9eb629kJDwyyU5HRsjUqAeJ43A0gDAI7joiFVSOvD8/w/9tdCICUWh5oaAM/zyziO0wNYDqATgDgAd/E8/7O97XGQkq9TAHIAvFxtvhAg9UbJAWwBoIHU4zPOHjPsvTxX1QZpPH1SAh7uHIUz5WVgmEvljG0KaWiSlpXRWkAdkGA2w2RfAFUR4AVpzWRJZlUPkPMJkIdSCW+5AhZaCJUQ0kGIImyiKDY5ESGEOFcFzgbgNKQiATH21wYAOADgBMdxt/M8X9CUBnmeXwNgTR3bTgC4oZ5jbZCqx82tZ5+rboM0jrmyEiwAC8NeNhnM6BeCF9PSkFuQi+16SoA6GlNGOmCzQe7lCSiY6vmPS+YA9RLluHfAYGQnp1xtqIQQQghp55zpOv0fABmAex0v8Dz/LYD+kBYUXeGa0EhbZLH37liuXMySlcGqVMEqitBTAtThGFOkxEQT0QmwXiq0YzSZcbFEWqeuU6Dzc4BkCvt7ORYq4kMIIe7m6NG/T95zz5QaJa4JaS3OJECjAMzjef7v6i/yPH8W0lCy210RGGmbrPYEyMrKamxzFEWorKR5Gh2Npnt3BN11F3R9ul72elaBNNzbU6OGzsP5BQ1ZpZQAMZQAEUIIIaQBzgyBUwKoq/qHEVIvEOmgrEZpKSWbrOatdbenByzRMTCV1jrHkbRj6s6R8InuBGPCXzAVXVqSITPfPvwtyP+yOWNNJVdKAy5ZGw2HJ4QQQkj9nOkBOg7gBY7jLlvvx/718wD+dEFcpI0SjVKp/doSoIFyGYb5B8JUWlpjG2nfGAZgrCbYjJf3/mVdvPr5PwAgV0tV4FiBFkQkhBBCSP2c6QFaCGnNnhSO4w4ByAcQCOBWAAGQ1tMhHZRgkha4FOQ118O1MAxUEGGmKnAdijkvD9bcbLCh3rCZDJdtqyqBfRVrAAGAQiklQHJKgAghhBDSgCb3APE8fxLAdZB6giYAeBnAJAAnANzI8/xfrgyQtC3JoaFYfiEOmZqaC1Ja7UOcrLRWS4dScfIEMje8jayPP4Nou3xx7ayL9gToKnuAlBp7AiQ2sCMhhBBCOjxneoDA8/y/AO5xcSykHSgAcKasFP4azxrbLAwLiAJsBkPNA0m75agApwqumeRcmgN0lQmQhwY/F1wEo1FjCAOIlAgRQto5hoGMYZiWXwhVdG4hVELciVMJEABwHDcewBgAoQBeATAQwEme59NcFBtpgwz23h2lSl1jm42VAYIVgsnU0mGRVmRMtSdAAbrLXrfabMi2V4ELv4oS2ACg9vbExtQkBPj744mraokQQtwfw0Amym2hepvB6ec4Z2nkGitjleW4WxK0fv2asJ9++t7/wIFvzzb2mJ07twZ9+eXnQYWFhcrg4GDT3Xf/N/e//72fynV3AE3+j8NxnBbSoqejAZRBqvr2PwAzAAzkOG44z/PnXRkkaTtCLhZgpH8gPGQ15wBZZXLAaoLNSAlQR2EtKYG1uAhgGMh9PSDaLv3scwqKYbXZoFLIEeznfVXnUdurwBmNRjAMA5G6gAgh7RjDMKzeZpD/lXlaMFiMLTb5UaNQs9eGD5B7MF6sKIpulQA11e7dOwN37tzW6YUXZqf26zew8vffj+reeWddlJeXt238+NtLWjs+0ryceefgDQCDIa0H9BsAs/31qQC+A7AUwF0uiY60Of1LS3FDdAy+ZWv2yguOynBmSoA6iqren5AgiOLla/Sk5xUAADqHBIJlWQiC80mLSqGAkmWhtNogCgIA50tqE0JIW2GwGIVKs6Glq7+0+LC75lBRUSGbNu2RrDvumFwMAJGRUQUHDx4I+vvvP3WUALV/ztzE9wKYz/P8EQBVTyw8z+cCWAZgqItiI22Qwv7OO2Nf9LS6v0K74dHTf+OM0KbfNCJNYExNBgBoOoUAV1RoS8+VEqCosKCrPo9aqcC2AUPwbt8BMOTlNXwAIYSQFjN06JDBu3fvDJw+/UFu5MgbBk2ZMrnX998fuqzr//Dh77wffPCeniNH3jDorrtu77Nu3aowk8lU9W5WfHys+vnnn44ZN27EgOHDrxt0112399m+fUudf0B27NgSNGLE9YO+++4bn9q2P/nkM7kPP/xYPgBYLBbmwIHP/LKyMtXXXHNdmYu+beLGnEmAfACk1rGtGEDN2e+kQxAFAVUD32pJgEQPL5RbrdDbS2WT9s9RAEEZ5FtjW1reRQBAVGjgVZ9HrVLAaF8E1VxZcdXtEUIIca3t2zeHjxw5quj993eeHzLkutKlSxd1PXHiTw8AOHLksG758tdixo+fULBt2+7zzz33UvrRo7/4LVjwcjQA6PV69qWXZnVXqzXChg3vxm/f/tH5oUNvLt669d2Is2f/1Vx5rl27dgTu3Lk1fOHCJUnjxt1WUl9cf/zxu+ctt9w4aNWqN6OHDRtR2ND+pH1wJgE6B+CBOrbdYd9OOiCx2tA2Vl2zDLZCoQIAGKgKXIcR9MA0dH78UWg713yTLs3eAxTtgh4gpVwOk72HyVheftXtEUIIca2RI0cXTJ36yMVu3bqbZs+elxUT07Vy3749QQCwa9eO0FGjxhY88MBDF6Oju5iGD7+l7IUXXk7744/ffdPTU5V6fSU7ceLk/FdeWZzWvXsPY5cuMaaZM1/IBoCEhPjLEqA9e3YFbNv2fvjixcsSR48e2+DK6zExXY2bNm2LnTXrxdTjx4/6rV69olPzXAHiTpyZA7QMwOccx/kD+ArSMLjhHMc9AuApAPe5MD7Shgj24gaCKEJWSw9QqL4Uj3aOQqmNFqvsKNQhwVAGaFAR+ztsV3T8pee6rgeIYRiYRem+MlVQAkQIIe5m0KAhl/1y5rieladPn9IBQEpKijYpKdHjyJHDVSVBHbVsEhMT1LfcMqbs/vun5R88+IVfUlKCNisrU5WWlqIFAJtNqBomV1xcrNi0aX2kTCYTw8M7N2rCcWBgkDUwMMjap09fQ3FxsWLPnl1hs2a9lK1UKqmaTjvW5ASI5/kvOI57EMAKALfZX14NIB/AUzzPf+rC+EgbItiHthkFG2TKGj3S8DVW4rqgEPypr2zp0EgrYVkGotkAm+nyXr8KgxEFpdLfQlfMAQIAs/2vpYXuL0IIcTty+eVLVYuiCJaVidLnAjNp0n9yJ06cXKMEdXBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM/WUpQJAH766QddeHiEuXv3HlVvz8XEdDNYrRamqKhQHhISaqn1QNIuNHkIHMdxPXme/4jn+c4AekIqetAHQBjP81tdHSBpO0SzVBDQLAhQKGuuA8TY1waSCdQD1BGUHf8dRd8dgiE1qcbKpBn2CnB+Ok94aWsmy86w2muymCspASKEEHcTG3vusrHx8fGxnjExMXoACA/vbMjISFN36RJjcvzLy8tRrF+/Oryiopz96qsD/hUV5fJt23bFP/PMcznjx99eUlpaYn8T/9LfFx8fb8vw4SPL5s1bmJqcnKjdvn1zcF3xbNnybvj27VtCqr92/vy/Hp6entagoGBKfto5Z+YAfcdx3DQA4CW/8zwfy/M8PdV2cDI/f7yZEI9NqcmQK1U1d7AnRXJao6VDKP3tF+Tu2YOKC4k1tqXZh79FhgS47HxW+0eLXu+yNgkhhLjGV18dCD5w4DO/xMQE1VtvLQ9PS0vV3HfftDwAmDLlgdy//vrDd/36NWGJiQmqo0d/9Vq58o3oysoKeXBwiDU4OMRsMpnYgwe/8M3MTFf+8stPutdfX9gFAMxmc41n2Z49exsnT74nd/funWFJSYm1PJAAU6Y8mHP06C/+H364IzA5OUm1Z8+HAQcOfBZy//3TsuvqNSLthzNzgOQALro6ENL2WVgG/5SWAADGK2vOAXKUxlZA6vpmGFqrpb0SBQGmjHQAgCLAC9XfoQMuFUDoHHL1838cUq1m5BfoMVBds/eREELaI41C3aJP6ldzvrFjx1/89NO9wevWrdJERkbq33xzVULv3n0MAHD77ROLRVFM3rPnw9D9+z8J0Wo9bEOGXFvywgtzMh3b4+Pjcjdv3hSxYcMaNiAg0Dxu3G0Fx48f84mLO++BWp5LZ8x4NufYsV99ly9/LWrLlg/4K5OaiRMnF9ts1pS9e3eHbt36XkRAQID5ySdnpk+Z8kCBs98jaTucSYBeBbCB47jlkCq+1Vh0g+f59KsNjLQ9evs77wzDQK5Q1tjOqKQESMWyMBqN0GhcM/SJuB/LxXwIBgMYhQJyTxUE8+UVENKreoBclwCdtBnxb2oa3vb3b3hnQghpw0RRFDRyjfXa8AFytPDCpBqZxipaxSaP+omOjjHMmbMgs67tEybcWTxhwp3FtW1jGAazZ8/Lmj17Xlb11x999MmqZ9BZs17MnjXrxWzH1yqVSty378vz9cU0efI9RZMn31PU+O+CtBfOJEDvApAB2Ior39a9ROZ0RKTNqsjMxHD/QJRBRG3dx6y9B0hNCVC7Z0pLAwCoO4VCsNQsxJNmnwPkyiFwaqW0ChWVWSeEtHeiCBtjleV4MF4tPlZLtIqCKIJWNCdtmjMJ0GMuj4K0C6bkRDwTHYNzdUxCF+3zgtSsDAaDHr6+NRfHJO2DMd2eAIUE1CiAYBMEpOVIPUDRoa6pAAcAaqUSCoaBiRZCJYR0AKIImyiKlIgQ4gRnEqBOAL7geb7ebkXS8Vj0eigA2Bim1v54k28w5iQloKi8FNvpXfp2zZSWCgBQBnjX2JaVXwiz1QqVUoFOgX4uO+d1CjVmDr4OBWf+Be6e4rJ2CSGEXJ2jR/8+2doxEFKdM12ncwBEuDoQ0vZZjVJSY2VrL24gyuQoYViUWa0wmSgBaq9EUYQpUxrmrfD3qrE9KUsash0dGlTrUElnMTL7yNtahtwRQgghhDg40wN0AUBfAN+6OBbSxlmN0oOnwNQ9BcyxPhDN02i/GIZBzP9WQ0iNh60yo8YcoORsKQGK6VTn8gzOnVcuA6yAaLE2vDMhhBBCOixnEqCDAJZxHDcBtVeBE3meX3rVkZE2RzBJlb5sdb2rLwi4y9cXZoUMxgqap9GeydUqyMKDUXY+qca2ZHsPUBcXJ0CsXAbABlho/TpCCCGE1M2ZBOg1+8dh9n9XEgFQAtQB2Uz2HiBZHT1ADIORWg1YDy0yy8paMDLS0liWgVBZUqMAAgAkNVMPECuXA7ABNpoTTAghhJC6NTkB4nmelscltRLMZukjW3cCZAagBmCpo1IccS/OLFibv3c3WJsFuh5hNbZZrFak20tgdwlzbQIkU8gBmMBSAkQIIYSQelxVMsNxXA+O467nOC7GVQGRtisnMBBrkxKQrFLXuY8F0sO0RU8JkDtLSOBx99134Jpr+uH111+FpZHDykRRRPmff6DoyM+wVtTs5UvPK4DNJsBDo0KQb80KcVdDppLez2GFJq/PRwghhJAOxJkhcOA47j4AqwCEVHstF8B8nuc/cFFspI0pUihwvLgQw9Qede5jYRgAIqwGfcsFRpqkrKwMs2bNQE6OtKD255/vgygKeO215Q0eay0uhq28HGBZyL01EK3my7YnZuYCkHp/mtqz1BBGrcJfxUVQBQbgOpe2TAgh7odhIGMYpuUXQhVpIVTS9jU5AeI47g4AuwD8BOAVALkAwgA8CGA7x3GFPM9/7dIoSZvgqOymUKjq3MfKsIBog4WqwLmtvXt3IScnG+HhEXjssaewZMmrOHDgM4wfPwHXXXdDvceaqhZADYJoq1mN7UJ6DgCge+eaw+OuFqPTYlXSBVzn5417XN46IYS4D4aBTCVYQm16vVNvZF8NmVZrNbGKHHdLgtavXxP200/f+x848O3Zph4riiKefvqxblarhd28+QO+OeIj7sWZ/zgLAezjef7KlQa3cxy3F8B8AJQAdUBehYW4ztcP3nUVQQBgsydANqOxBSMjjWWxWLB3724AwNNPz8Jtt92B+PhY7N27G++++06DCZDRvgCqOjQIEGsORePTswAAPZohAVIpFAAAk4nuLUJI+8YwDGvT6+WFf/4pWPWGFhv3K9dqWP/rrpMzXj6sKIpulQBdje3bNwedPXtG17NnLypR20E4kwD1BbC4jm07AOxzOhrSpnEXL+KmmO44ItT9O9HKsoAA2Iy0WKU7OnnyBIqKCuHr64cxY24FAEyf/gQ+/fQT/PPPSZw9ewZ9+/av83iTPQFSBvrU2CaKIvg0aVgdF9nJ5bGrlfYEyGAEw9RagI4QQtoVq94gWCsrW3riY7sqhhUbe06zd++usK5du9Hk5A7EmQSoAIB/HdsCAJjr2FYnjuMiAaTWsulxnue3cBw3AMDbAIYAKASwnuf5VdWOZyElZY8B8AVwFMDTPM8nVtvnqtsg9WMck8+VdQ+B+9UnDH8c2Y/hERNaKCrSFEeOHAYAjBgxCgp7j0pQUDDGj78dX311ALt3f4AVK1bXebzRPgROGaCrsS2nsARlegPkMhm6hAW5PHYNw+CjQddCzrIQbQJQ13pUhBBCWtTQoUMGz5jxbPqPP/7gl5KS5BEcHGKcPv2JrLFjx5c69jl8+DvvHTu2hGVlZWp8ff3MN988smjGjGdzVCqVCADx8bHqd999p1NcXKyX0Whg/f0DzHfcMTn/kUcey6/tnDt2bAnasWNL+Pz5i5LHjbutpLZ9jEYjs2TJq9EPPPBQ9oUL8dr8/Ly6H2BIu+LME8JhAK9zHNe5+ov2JGYxgO+daLMfACOkuUSh1f7t5jjOH8APAC5ASl4WA1jKcdwj1Y5/FcBTAB4HcAOktYgOcRyntMd21W2QhskcPT/1zAEyajyRZzKh0tzkPJm0gN9/PwoAGDnylstev/feBwAAP//8Iyorax8hIBgNYGRygGEg99bU2B6fJg1/i+kUDIXc9cPWVRo15PakR7TQ/UUIIe5k+/bN4SNHjip6//2d54cMua506dJFXU+c+NMDAI4cOaxbvvy1mPHjJxRs27b7/HPPvZR+9OgvfgsWvBwNAHq9nn3ppVnd1WqNsGHDu/Hbt390fujQm4u3bn034uzZf2v8wdm1a0fgzp1bwxcuXJJUV/IDAKtXrwj39fWzTJs2vdYkirRfzjyFvALgbwA8x3HHIRVBCIGUNBQBmOdEm30B8DzP51y5geO45wGYAMzged4KII7juG4A5kKad6QE8BKAOTzPf2M/5l4A2QDuArAXwBMuaIM0QCZIY44YZd1lsOVKKZ+keRru5+LFfGRkpINhGAwcOOSybb1790FkZBTS0lLx00+Hcccdk2ocz6o16LZqDdiCVFSk/FNjO29PgHo0w/A3AFCpFFWfi2YzmHrKsRNCCGlZI0eOLpg69ZGLADB79rysc+fOeO3btyfommuuS9m1a0foqFFjCx544KGLABAd3cUkl8vT5s59sXt6eqpSq/UQJk6cnH/ffVPzdTqdAAAzZ76QvX//vpCEhHhN3779qior7dmzK2DbtvfDFy9eljhixKg6V10/cuSw7rfffvbbvv2jWFdXJSXuz5mFUHM5jhsEKWEYDqlHpQjAegBreJ7PcyKOfgBi69g2DMCv9sTF4ScA8zmOCwIQBcDL/pojxhKO404BuBlS8uKKNkgDZKIIMAxQTwIUadLjvk4RYCqpCpy7OX36FACgWzcOXl5el21jGAa33z4RGzeux9dff1lrAgQALMsAsAK1rMXDp9vn/zRDAQQAUKtUKBcEKFkWgsXcvgapE0JIGzdo0JDy6l9zXM/K06dP6QAgJSVFm5SU6HHkyOGqKRaOeZyJiQnqW24ZU3b//dPyDx78wi8pKUGblZWpSktL0QKAzSZUZS/FxcWKTZvWR8pkMjE8vHOdk40LCi7KV61aETVz5gvpoaFhjVvojrQrzo5DKQSwl+f5uQDAcVwogGsgJULO6Asgh+O43wB0B5AAYCnP898BCAdwZUnDbPvHzvbtAJBRyz6OYXquaMMpcrlrH8NkMvayj+7EcTPJ1Gr7g3BNYcZyjAjthD8tFpdfG1dy5+vcXM6ePQ0AGDx4cK0/mzvukBKgv/76A8XFBQgMrDmPR86KMOtLavz8RVFEbGomAKBnVKeq7Uy1j1d7pbVqJQoEG5QsC1jMbn1/tYaOeE+3BrrOLYOuc9sjl8svK00jiiJYViZKnwvMpEn/yZ04cXLhlccFB4dY8vPz5E888XBPLy+d9frrbywZPPjasn79+lfee++kftX3ZRgWS5a8kbBt2/thy5e/Fr1164fxbC3zQX/++Sfv0tISxdq1K6PWrl0ZBQBWq5URBIEZNeqmgcuX/y/h+utvpIpw7Zgz6wCFQ5rnowIQY3+5P4ADAE5wHHc7z/MFTWhPCSnpqQTwMoAKSGsKHeI4bgwALaTha9U5xk+p7dtRxz5+9s9d0UaTsSwDX9+6FwW9GjpdzTkWrUkUxaqbSenhCY2m9qlTFpU0P4gVbM12bVzJ3a5zc0pMvAAAuOaawbX+bHx9e2LQoEE4deoUfvvtJzz66KOXbT/9wmzIPbQIGTUQ6it+/qk5+Sit0EOpkKN/j6gac4CqD19zljcLmO09T3LR0ibur9bQke7p1kTXuWXQdW47YmPPeYwZc2tV0YP4+FjPmJgYPQCEh3c2ZGSkqbt0ial6Djt+/Kjnxx9/FDx//qK0gwe/8K+oKJfv2/flOYVCIdrbs//wL+VVPj7eluHDR5YFBQWZn3pqeq/t2zcHP/rokzVGJo0bd1vxoEFDLktw3nlnbXhhYYFi8eLlKaGhYTSRtJ1zpgfof5CKJ9zreIHn+W85jusP4GMAKyBVUmsUnufNHMf5ALDyPO+48U9yHNcTwGwABkjJVnWOMVaV9u2w72O4Yh9HSUNXtNFkgiCirEzv7OG1kslY6HQalJUZYLO1dOXLuomCgN0lRagsLUGvW9QwGGr/3cGw0oMuY7WhuNh9K06663VuLqIo4ty58wCAiIgudf5sxoy5FadOncL+/Qdw112XlgKzlpejMjkFAOA3vDdwRZGLE+ekYoq9osJhswiw2YsUMCwDlUoBk8kCUbi6utWiIMBkT4CK8gshd+P7qzV0tHu6tdB1bhnNeZ11Ok2b6VmSazUtGujVnO+rrw4ER0ZGG/v06Vf52WefBKalpWrmzn01FQCmTHkgd8WKpV3Wr18TdtttdxTm5uYoV69eERUQEGAODg6xBgeHmE0mE3vw4Be+11xzbUVSUqJ648b1EQBgNptrxNSzZ2/j5Mn35O7evTNsxIhRJTExXS97g9vLy0vw8vK67DWNRmNTKpXy6kkYab+cSYBGAXiC5/m/q7/I8/xZjuMWAdjQ1AZ5nq/tSeUsgFshDUu7ctKA4+ssAIpqryVdsc8Z++euaMMpVmvz/AG02YRma9tZx4qLUFRUiD4qDYQ6HmYZhdQzwAruF39t3PE6N4ecnGyUlZVCLpcjMrJLnd/zLbeMw8qVb+L06VPIzMxCSEgoAFQlP8rAAIiCtUYycyZRKo/dLybysnvD8VdLFMQ675nGY8BXViDbaMBIsfn+77V1HeWebm10nVtGR73OoigKMq3W6n/ddXK08Lo8Mq3WahVrWem6AWPHjr/46ad7g9etW6WJjIzUv/nmqoTevfsYAOD22ycWi6KYvGfPh6H7938SotV62IYMubbkhRfmZDq2x8fH5W7evCliw4Y1bEBAoHncuNsKjh8/5hMXd94DwMUrzzdjxrM5x4796rt8+WtRW7Z8wNc2FI50XM4kQEoAdd34RkjFBBqN47h+AH4HcCvP80erbRoC4DyA0wCe4jhOxvO8Y4XNUZCqxuVzHFcKoAzACNiTF3uP0iAA79j3/9UFbZAGGI3SqEKZvJ4y+grHELiO9wfLnSUk8ACAqKhoKJV1V34PDg7GwIGDcerU3/j++0OYNm06gEsLoKrDgiHWshDuv/YEqG/Xq5pS16Dd+dkoqzTgJh/fZj0PIYS0JlGEzcQqchgvnxZ/qreKoiCKqHvF8zpER8cY5sxZkFnX9gkT7iyeMOHO4tq2MQyD2bPnZc2ePS+r+uvVh7fNmvVi9qxZLzrmd0OlUon79n15vrHxLV/+v9TG7kvaPmcSoOMAXuA47hDP81WVMziOUwB4HsCfTWzvnP3fJo7jZkBaaPUJSGW1rwGQB2AOgK0cx60EcK39PE8BAM/zJo7j3gHwFsdxFyEtqPo/SL0+++3n2OaCNkg9rHo9+qrUqJTJIK8nAWLsCZBcvNp3+4krpdkTmOjomPp3BDB27Hh7AvRtVQLkWABVFVQz8Sgur0BKtrTEQt+Y5k2A1EolyioNVGadENLuiSJsoig2OREhhDiXAC0EcBRACsdxhwDkAwiENFwtAFIvSqPxPC9wHHcHpLlD+wD4ADgFYAzP82cBgOO4cZDKbJ8CkAPgZZ7nd1ZrZpH9e9kCQAOpx2ccz/Nm+znyr7YNUj9jbi5eiumGEosZyYp61o61l8h2/TKY5Gqk2xOYzp0jG9x3zJhxWLlyOc6d+xdZWZno1CkcpjTpeGWArsb+f8VK83+6RYTC18vThVHXpFJKd5ajN5IQQggh5ErOrAN0kuO46wC8CmACAH8AJQB+g1S6+rQTbV4E8Gg9209A6hGqa7sN0qKmc5uzDVI3Y6VU3t8sCFAo6+4BqgyNxpzz/6LSZsMdoghafMw9OHqAIiOjGtzX3z8AQ4Zci7/++kMaBnfv/bBclHp4FL6eEIXL5486EqBre3V1acy1eSAgFH07xcB68m+g38BmPx8hhJCGHT3698nWjoGQ6px6I57n+X8B3OPiWEgbZqqU6liYBREyWd23FePhjVSDVBnPZDJBra570VTScpqSAAHSMLi//voD3313CA9OmASPXr0hlJcCrHDZDEFRFFs0AZKxLBQsC4OBeoAIIYQQUjsqiUFcwmxPgKwN7KeoNsGe5mm4B4PBgLy8XABA585RjTpm1KixkMlkiI+PRba+ElFz5yHmhScgWi9fUDspKw/5xaVQyuUY0C3a1aHXINoXVrXRvUUIIYSQOlACRFzCopd6dSwN7Ke0mDE5tBPuDAmD0Uil9t1BRkY6AECn84aPj0+jjvH19cV110kjSr///hAYBrBVltTY78e/zwIAruvTDWrl1S922hBHAiSY6N4ihBBCSO0oASIuYbYPa7M2MKeHNRtxX6cI3BXaiXqA3ER6eioAafhbU+ZkjR07HgDw07ffgLGaYDNevuivKIr4yZ4AjRrc1zXBNkC0L14omCkBIoQQQkjtKAEiLmE1GAAAtgYeoEW51AugZFmYTIZmj4s0LCMjAwAQHh7RpONuuWUMvLVaLPbxw5nnnoelvPSy7YmZuUjNvQiFXIZh/Xu6LN76MPYESDRT8UZCCCGE1O6qqxFzHKcGYOJ5nhZ26cAqfX2xKzUZyqAQXFvPfoI9AZIxDEx66gFyB3l5OQCA0NCwJh2n0+lw36ixYHNyUVFeAVG8fAbY/p+lJcGG9u8JT20LFbuQyQAbIFoaGoxJCCFtG8NAxjBMi7+RLTq5ECoh7sSpBIjjOA7AEgBjAOgAXMtx3GMA4nie3+DC+EgbUaFS43BBPnqGhNebAInVKsSZ9RXNHxhpUG6ulACFhIQ2+dgx/QbAlvMt+JJiyBJT0COyEwCgoKQM3xw/BQC4Z2Sd1eddzqyQ4VxBMdQhQS12TkIIaWkMAxnLsKFmo7XFl9VTquVWAUIOJUGkLWvyfxyO4wZAWiQ0H8BuAE/bN5kBrOM4ruyKBUZJB2A0SsPZ6lsDCABEVgZBFMEyTFXpbNK6cnKcT4A8yitQBiBZX4mvd3+B9+Y8Cblcho37v4fRbEHvLhEYxDV/9TeHQg8lVl+Iw9RrBuO2FjsrIYS0LIZhWLPRKo87lyOYjFah4SNcQ6WWsz37hMoVahkriqJbJUDr168J++mn7/0PHPj2bGOPefzxh7rHxZ33qv5a9+49KrZt28W7PkLiTpx552AVgL8BjLV//QwA8Dz/PMdxWgDPAaAEqKMpKEBfLx0CFA1U+mIYWACoAFgN+vr3JS3i0hC4pidApow0AECO1YJzyXl45b2PEOrvi69/PwmGYTDrnttadLFblb3SnCMhJ4SQ9sxktApGg6XFEiC7djN/PCMjTTNjxrPpo0ePK3a8plQqaUpHB+BMAnQDgCk8z1s5jpNdsW0vgPuvPizS1vimpuBVrhf+aMTDrkUEVAxg1tNDamszGPQoKSkBAAQHNy0BEixmmLKzAQD/vXcCjm/cjl/+ia3a/sSdozGgW5SrQm0UlcKRANH8MkIIIXXLyclWVFRUyPv1G1gRHBzS0DKGpJ1xJgEyAtDWsc3fvp10MI5J544qb/XZZRaQmhyLh8ePb+6wSANyc6UFUD08PODl5dXA3pczZ2UBNhtkHh64fkhvvPvyE/joh6MwGE24/abBGHtt/+YIuV7+VgFb+g+GsaC44Z0JIYS0iKFDhwyeMePZ9B9//MEvJSXJIzg4xDh9+hNZY8eOryofevjwd947dmwJy8rK1Pj6+plvvnlk0YwZz+aoVCoRAOLjY9XvvvtOp7i4WC+j0cD6+weY77hjcv4jjzyWX9s5d+zYErRjx5bw+fMXJY8bd1vJldvj42M1DMOgW7fu9NzaATmTAH0P4HWO444ByLG/JnIc5wlgNoDDrgqOtCH2BEhoRAKUK1chWV8Jo43ecGltlwoghDV5qBqjVMF3xEiwghGixYR+XSPRr2tkc4TZaAq5HDqFAoLQ0iNCCCGE1Gf79s3hDz30aOb8+YtSv/hif8DSpYu6+vr6xV9zzXWVR44c1i1f/lrMY489lXHjjcPK0tNTVRs2rO2cmZmuXrVqfbJer2dfemlW9759+5dv2PBuvFyuEA8c+DRg69Z3I4YMuba8b99+lw0p2bVrR+DOnVvDFy5ckjR69NjS2uJJTEzQaLUetiVLXo08e/aMTq1W22666ebi6kkXab+cSYDmADgOgAdwGoAIYDUADtK40CmuCo60IVZ7MtOIBEiuUAIAjEZarLK1XUqAQpp8rCosDGGPTIeYfR6VaXGuDs0pcpW9zLpIf7sIIcSdjBw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI11ROgPXt2BWzb9n744sXLEkeMGFVWVzwpKckai8XC9Os3oGLq1Idz4+LOazdvfjciLy9X+eabq1Kb+XKQVtbkBIjn+QyO4/oDeBHALQCSAHgC+AjAGp7nc+o7nrRPjCMBsic39ektYxAVEgpZMQ1Tam05OdIcHmcqwAGADFaY9HX+fWlxCpV0/8kp/yGEELcyaNCQ8upfc1zPytOnT+kAICUlRZuUlOhx5Mhhf8d2x/tYiYkJ6ltuGVN2//3T8g8e/MIvKSlBm5WVqUpLS9ECgM0mVA1fKC4uVmzatD5SJpOJ4eGd632XdenSFakVFRUZ3t7eNgDo2bO3US5XiCtXLu+Sn5+XGRQUTMNU2jGn6sfzPF8IYIGLYyFtGGOTqmGKyoYToIGiBVHhkThbWmuvNGlBBQUXAQCBgU1bN0e02WBKT4OycxBsJvcZPq2w339yAAxz6Q8oIYSQ1iWXX/7WlCiKYFmZKH0uMJMm/Sd34sTJhVceFxwcYsnPz5M/8cTDPb28dNbrr7+xZPDga8v69etfee+9k/pV35dhWCxZ8kbCtm3vhy1f/lr01q0fxrNs7UXrZDIZHMmPQ/funAEAcnKylZQAtW/OLoTqDan3xwO1lEPkef6Dq4yLtDGsfc4Fo6h/HSAAsLEywAYIZhoC19oKCwsAAAEBgU06zpybg/TlSyDTahHx2B3NEZpTlGopAVIwDERBAFp+kXRCCCG1iI095zFmzK1V73zGx8d6xsTE6AEgPLyzISMjTd2lS0zVg8Hx40c9P/74o+D58xelHTz4hX9FRbl8374vzykUCtHenkba81Je5ePjbRk+fGRZUFCQ+amnpvfavn1z8KOPPplXWzzTpz/IRUR0Nr7++htpjtfOnv3XQy6Xi9HRMe7zzh5pFs4shDoewD7UXQlOBEAJUAdzghFRkJGG0N7Xw7eBfW2sVD1dNJubPzBSr4IC5xIgU7r090IVGgTR4j6JrFJ1qQdStFjBNKJHkhBC2iqVWt6i7/Jczfm++upAcGRktLFPn36Vn332SWBaWqpm7txXUwFgypQHclesWNpl/fo1Ybfddkdhbm6OcvXqFVEBAQHm4OAQa3BwiNlkMrEHD37he80111YkJSWqN25cHwEAZrO5Rkw9e/Y2Tp58T+7u3TvDRowYVRIT07XGH6qRI0cVbdnybsSePR9W3nDD0LKzZ097bNv2Xvidd96V55hnRNovZ3qA3gQQB2kOUCYAukkIzpjN+CcvB494+TS4ryiTbjtH6WzSehw9QP7+AU06zpgmJUDqkEC3Gmem0iiRWFkBgWXQTXCrRcoJIcRlRFEUlGq5tWefUDlaeGFSpVpuFcSml9ocO3b8xU8/3Ru8bt0qTWRkpP7NN1cl9O7dxwAAt98+sVgUxeQ9ez4M3b//kxCt1sM2ZMi1JS+8MCfTsT0+Pi538+ZNERs2rGEDAgLN48bdVnD8+DGfuLjzHgAuXnm+GTOezTl27Fff5ctfi9qy5QP+yqFwU6c+cpFlWXz++afB7723sbOPj49l4sS78p588plc564MaUucSYB6ALiT5/nfXB0MabuMRqkAi7wRRRBs9gQIlAC1KlEUq/UANS0BcvQAKQN0Lo/raqiVSrwSdw5qlQoTtVoIgvskZ4QQ4iqiCJsAIUehlrX4OF9BFARRRJPfYYqOjjHMmbMgs67tEybcWTxhwp21VkdiGAazZ8/Lmj17Xlb116sPb5s168XsWbNezHZ8rVKpxH37vjxfX0wPPPDQRUflOdKxOJMApQFwr6ce0upCrDZYPDyhkDVcBtuxWGpV5TjSKsrKSmG1SkloU3qAREGAKSMdAKD018GdOoFVSuneMppMqD4unBBC2htRhE0URerqJsQJzrxz8CaAxRzHRbk4FtKGPaHzwRs9+0DdiOFQVYul2uj3dmty9P7odN5QNmGujOXiRQgGAxi5HDLPhotetCSV4lICbjZTDyMhhBBCanKmB+gBAJ0AJHEcdxGA/ortIs/zMVcdGWkzRKsVMkYqw8+qNQ3unxUQjv1Hv0VATAz+29zBkTpdqgDn3PA3dadQCFb3KYAAAGqlAou5XuikVqOMj4df776tHRIhhHR4R4/+fbK1YyCkOmcSoEz7P0IAAEK1am6s0qPB/U2ePjhfXoYeRqoy2ZocawA1tQCCqnNnBN87BTKhEmj6PNhmJZfLoJPL4aNQwlxR3vABhBBCCOlwmpwA8Tz/SHMEQtouRwIkiCJkKnWD+yvsawUZKQFqVc5WgFMGh8Dr9vGwJJ+EITet4QNamMU+DNOsv7JzmhBCCCGkkQkQx3GdAeTwPG+xf14vnufTrzoy0maYKisAAGZBgKwRC6F6Wc0YGxgMmX09INI6nK0ABwCMzQybyeDqkFzCMbOMEiBCCCGE1KaxPUApAG4A8BeAVDRcXomebDsQk32okVkQwMobnkzvY6rEY5HRSDa65wN0R3GpB6jxi6DaKiqgjz0HNiLIbRMgq/3Xk9XgnvERQgghpHU1NgGaDiCp2udUX5ZUMVbYe4BEAWxjenWU0jA5ZyagEddxzAFqSg+QITEBOe+/i+KwUIRMvrG5QrsqNntBDisl2IQQQgipRaOeQXme31nt8x3NFg1pkyxKJXZnpgMKBQY2Yn9WJVWKU4Bp3sBIvZyZA3SpAlwwRJt7ruMk2G8rC80xI4QQQkgtGjsHaFoT2hR5nv/QyXhIG2RUKPFFbjb8AwIblQAx9gRIyTKwWCxQKBpePJW43qU5QI0fAme0J0DKAO9mickVykQBKfpK+Lb8AumEEEKaQWVlJbt//yf+U6c+chEAFix4OSo/P0+1efMHfHOdMzMzXXnq1EmPiRMnFzvbxr59e/3ffntVVF1lwFvi+xg6dMjg556bnXrPPVMKm+scLSU9PVV5//3/6bty5doLN9447KpKvTZ2FNKOJrQpAqAEqAMx2ocaqRpRAQ4AWLVW2p+VwWQyUQLUCqxWK0pKpN/pTRkCZ0qzJ0D+umaJyxWOC0aciEvCyoepYCUhhLQH27a9H/zjj98FOBKgOXMWZghC8y6m/vrrr0YFBQWZryYBIu6rsQlQdLNGQdo0U3Exumg94K3RNmp/ViXtp2RZmM1GAJ7NGB2pTWlpCURRBMMw8Pb2adQx1vIyWIuLAAAKXw8IFvecY6OyJ9QmEw2BI4SQ9kAUxcvGzHt7ezdv9iOdlcbpt2ONnQNU52IfHMepAZh4nqfCCB0Uk5SIFb36It5qRWOWxRTtD6hKloVBrwf8mjc+UlNxsfSGlre3N2SyxhVtNKVL1e2VQYEQRfec/wMAKqV0f9E6U4SQ9koUAb0VrTLOVyuHwDQxNSgtLZWtWfNW+F9/HfexWq1MdHSM/umnZ2UOGDBIDwB6vZ5dsWJJxN9/n/DR6/WyTp06GR988OHs8eMnlKxfvybsk08+CgWk4VwfffTp2ffe+78wx9Cx33//zWvevJe6v/nmqgtvv726c35+vioqKkq/cOGSlO+/P+R78OCBYJvNxgwbNqJwwYLXMhiGgSiK2LLl3eDvvz8UcPFivkqhUAg9evSqmD17fnpkZJT58cencXFxsZ5xcbGekybd6nXgwLdnzWYzs3796rCff/7J32DQy8LDOxumT388e/jwW8oc3+ehQ1/77Ny5JSwvL1cdE9OtcsCAQWV1XRMHm03A8uWvRfz884/+crlcHDPm1oJZs17KksulR/S//vrDY9u298OSkhI8LBYLGxwcYrr//mk5d955V5GjjS++2O/38ce7Q3JystU+Pr6WCRPuzH/00SfzrjzXxYv58meeeZzz8fG1rFu3MVGr1Qq//PKTbvPmTZ2ysjI1QUHBprvv/m/u+vVroj766NOznTtHmSdNurXvddfdWPLPPyd1paWlikWLliRdf/1N5Tt3bg365puvggoKCpQBAQHmu+++N/e++x4sAIDff//Na86cF7o72gBqDl9bsODlKEEQGF9fP8uRIz/6m0xGtl+/AWXz5y9KCw4OsQJAXNx59dq1/+ucmJjg4evra7n33vtzmnbn1c2pQlwcx3EAlgAYA0AH4FqO4x4DEMfz/AZng+E4rjuAUwBmOootcBw3AMDbAIYAKASwnuf5VdWOYQEsBvAYAF8ARwE8zfN8YrV9rroNUjeb/UHTxrKNKmtgU6qxNj0NFYZKvG62NG9wpFaO4W8+Pr6NPsaUlgoA0HQKhmh1359bH5kSd/YZAPF8LHBPa0dDCCGuJYrAg99qe/DFMo/WOH8PX1vFh7fq+cYmQaIo4vnnn+4ml8uFZctWJup0OttXXx3wf/75p3ts2PBeXN++/Q0bNqwJS01N0a5YsTrB29vH+tlnHweuWLG0S+/efc5Nn/5ErsFgYI8d+8Vv8+YPYgMCAmu8AycIAjZuXB8xd+6CVKVSLSxaNC/mmWce7zlw4ODSt9/exJ848afnxo3rI6+//say0aPHlW7fvjlo3749oS+//EpKjx49DRkZ6arVq9+KXLt2ZcS6dRuTVq5cl/jiizO7BQQEmufOXZgOAK++OjcqPT1dM3/+qykhIWHmn3/+0WfRovldX311adLo0WNLT5z40+ONN16Lueee+3Juu+2Owr///svrvffeaXDtzAsX4j39/f0tGza8F5+ZmaFas2ZllNFoZF95ZXFGdnaWYt68F7uPG3f7xTlzFqRbrRbmgw+2h6xd+7+oG264qSwoKNj69ddf+q5a9Wb0gw8+nDV69Lji2Nhz2rVrV0Z5eHjapkx5oMBxnsLCAvnMmU9w/v4B5jVr3knUaDTi2bP/ahYtmt91woQ78xcvXp4cH39e+8476yKvjPG77w4FLlnyZoJOp7P17Nnb8NZbyyN++eVH/xkzZqX37du/8vfff9O99947nc1mE/vQQ4/mN+7OAI4fP+Y7dOjworff3shnZ2cp33xzaZd33lnXaenSFWmlpaWyl156luvevUfFxo2b4/Ly8pRr175VIzZnNTkBsicTvwLIB7AbwNP2TWYA6ziOK6teNa4J7Srs7XlUe80fwA8ADgB4CsD1ADZyHFfI8/x2+26v2rc9AiALwEoAhziO683zvNkVbTT1e+lorFUJkKxxNxQrw3mzGWXlZTCbTc0aG6mdMwmQ7qah0EZ0AlORC8B9e1c0MhlC1ArkG2ghVEJI+8S0oeVIjh791Sshgfc4cODQGUfy8uKLc7NiY8977t27K7hv3/6pOTnZKo1Ga4uMjDZ5e3vbnntudtbAgYPLvb19bZ6enoJGoxFYlhUdPQO1eeSRx7MGD762EgBuvHFoycGDXwQtWrQ0TavVCt26ccZdu3Z2SkpK0IwePa40IqKzafbs+SljxtxaCgAREZHmP/88Xvzrrz/7AoCvr59NLpeLSqVSCAgItCYnJ6mOHfvN75133o9z9FrFxHTNS0pK1Hz88a6Q0aPHlu7btyeoe3euYtasF7MBoGvXbqbk5CTNN998GVTf9fH29rEsXfpWilqtFnv06GW8ePFi1nvvvdP5+edfzjKbzcyUKQ9mP/bYU3ksyzq+z5yff/7RPzk5SR0UFFzx6ad7g2+44aaiJ598Jtcel0mvr5Sp1ZqqQTllZaXymTOf7B4QEGhavXpDklqtFgFgz54Pg6Oju+hffvmVTADo1q27qaioSLF586aI6jEOHDio9OabR5RLbZWx3333deCjjz6ZMWnS3UX2c17Mzs5SffzxR6HTpk1vdAKk0WhsixcvS1MoFGL37j2Mx48fKzx58oQ3AHz99Re+ZrOZff31N1O9vb1tPXr0MhoM+oxlyxbHNLb9+jjTA7QKwN8Axtq/fgYAeJ5/nuM4LYDnADQ5AQLwOoArKzo8AcAEYAbP81YAcRzHdQMwF8B2juOUAF4CMIfn+W8AgOO4ewFkA7gLwF4XtUHqIZikJEZozBpAdnKFtGAqzdNoHc4kQHJvH3gO6AdjogmmQpf1QrscI5MBECFa3LeXihBCnMUwwIe36vm2MgQuPj5WCwD33jupb/XXrVYrY7GYGQB48MGHcxcunNP1zjvH9e/WrXvloEHXlI4fP6GoKXN9oqNjqh4oVCq14O3tY9FqtVVJgFKpEEwmMwsAY8bcWnry5AmP9etXh2VlZaoyMzM0mZkZal9f31r/cMTGntMCwEsvPctVf91mszFardYGAGlpqdqBAweXVt/et2+/ioYSoJiYrnpHQgIA/foNqLRarUxSUqKqb99+hrvv/m/hBx9sC0pLS1FnZWWpU1OTtQAgCDYGANLT0zQ333xLUfU27733Us8PAHz44Y5ONpuVufJcycmJ2iuH6Q0adE05sOmyGDt1Cq+6tomJF9Q2m40ZOHBIRfV9BgwYVPHVVweCL17Mb3RuERwcYlIoFFXxeHh42qxWKyPFlqQNDg41Vr8HBg++pqK2dpzhTAJ0A4ApPM9bOY678ol3L4D7m9ogx3E3A3gSwAAA6dU2DQPwqz1xcfgJwHyO44IARAHwsr8GAOB5voTjuFMAbrbH44o2SD0Es9RJJsgafztd46WDVbTBXFra8M7E5YqLSwAAvr6NT4AAgLGZYTO5d88KI5cDsICxtsAcWUIIaQUMA3goGjXtttUJgsBoNBrbe+/tiLtym1KpFABgyJBrKz///NC/v/32s+7EiT91339/KGDv3l1hy5atTBg2bHijyh0rFPLLesVYtu4s7f33Nwbv2fNhp5EjRxcMGDCo/L//vS//559/8vntt59rnZUsitKlXrduY7yHh+dl110mk4mX9ru8cIJcrmiwp45l2cv2cVS3U6mUYkICr54584keUVFd9IMHX1M6dOiIUj8/P8uzzz7Zs/r5G0pI+/btV3bbbRMLli9fHHPkyOGikSNHl9mPhSA0XOxBqVTV+B6ZK04qCNJlqZ7QiNW+M4vFWuM81fe9pPpLTb+ejeVMAmQEUFe5L380cWwMx3E+kMpmP8vzfIY0vahKOICzVxySbf/Y2b4dADJq2ccx7tIVbThNLnftGzQy+9omMjda40S0SAmQKJfV+wunuru9veHj54vi4iKXXyNXcMfr7EplZSUAAD8/30Zdf2NmJipOnYQtKgSizdjon3NDGHs7DMu47K1MmUIGwALGZnPLe6u1tPd72l3QdW4ZdJ3bjpiYbgaDwSAzm01Mjx69qp4RFy2aH9m1azf9tGnTL65fvzqsf/9BFWPHji8dO3Z8qc1my5gyZXLvI0cO+w4bNrycYRiXDvn75JOPwqZMeTDbMWwMAHbv/iBEvOwsl87ZrRtnAIC8vDzl6NH9q965Xbt2ZSeGYcXnn5+d3aVLjD4u7vxlZW3j4s41OE8rNTVZKwgCHEPcTp3620upVAqRkdGmVaveDNfpvC3vvbf9gmP/H3741huQ5lYBQKdOEUaej7vsPG++uSQiLy9XuW7dxiQAuPnmkcXjx99ecuTID0Vr166MGjz42nM6nU6IiorWX3ns2bOn6425a9fuRplMJp46dcKzT5++VeVgT58+5eXt7WPx8fG1KRRSYltWVlbVUZKWlqJq6FpU161bd/1PP/3gX1hYIPf3D7ACwL///uOyeW/OJEDfA3id47hjABzjYESO4zwBzAZwuIntbQJwnOf5j2rZpoU0fK06x38eNS4lYrXt48jiXdGGU1iWga9v88xR1Ok0zdKuM2Si/Z12hRIajbJRxzjeB2BFa7NdI1dwp+vsSpWVUo93WFhIo65/9m8JyN//GUz9eyFsdB9A3rifc2OpVK5bC0qlUQEwghVsbn1vtZb2ek+7G7rOLYOus/sbOXJU6fbtUYbFi1+JefbZF9PDwjqZP/10b+CRI4cDxoy59QIAZGVlqY4c+dFPJpOlRUZGmv7555RHQcFFVd++/XIAQKPRCJWVlbLExARVZGTUVc/N9vcPMJ86dULH83ElLCsTDx78wv+vv/7w0em8q0YLaTQaIT8/T5WVlano0aOXcdCgIaXr16+KFARbWvfuPQyHD3/nu3//vpBZs15MBYD7738od+bMx3u+9dby8Lvv/u/Fs2fPeBw6dLDBlcYLCwuVr746N2rq1Edyk5OT1B999EHYpEn/yVOpVGJQULC5qKhQ+dNPP+i6detuPHfurHbjxvWdAcBsloYP3n//1JxlyxbH7NixpXL48FtKz549o/3++0OBzzzzfI0KznPmLMh48MF7eq9a9UbEkiUr0h588OHcJ598pPeqVSs6TZp0d0Fi4gXNhx/u6ATU7OFx8Pb2to0ePa5g9+6dnXQ6b1u/fgMqjx37Vffdd98EPvjgw1kMw6BHj14GtVotbN++OXTmzOez8vJyFVu3vhdeV5u1mTBhUtGePbtCFyyYEz1z5guZ5eWlsv/7v7cjGj6ycZxJgOYAOA6AB3AaUl/VagAcABbAlMY2xHHcVEhD1PrWsYsBwJUZo2O1zUr7dtj3MVyxT6UL23CKIIgoK3PtcCGZjIVOp0FZmQE2m3v0fqcplPg9OxMewRHwMDTu95LS3qtZWVKG4uKruszNwh2vsyvl518EAKhUHo26/kXx0ptPygBfGBv5M24MhmWgUilgMlkgCq55g0909CrZBLe8t1pLe7+n3QVd55bRnNdZp9NQz5ILyWQyrF//7oW1a1eGL1++uIvJZGLDwjoZFy58PckxvG3BgtfSVq9eEbFixZLoiooKeUBAoPmhhx7NnDz5niIAGDv21uLvvvsm4LHHpvVevXo9f7UxLVjwWsqaNW91njHj0Z5qtVro1o2rePrpWWmbNm2ITE9PVXbuHGWeOPGui6tWvRE1ffoDvb/55qfTK1asSX777VWd1q9fHVlRUSkPCgoyPfPM82n33HNfIQD07dvPsGzZyoT33nsn/NChg0Hh4eGGe+65L+eDD7aF1xfLkCHXlshkMvGZZx7vqVKphFtvnZD/zDPPZQPAtGnT89PT09RvvbW8i81mZYKDQ40PP/xY1ocfbg87d+6sx8iRo8vGjLm1tKSkJO2TTz4K2bFjS7i/f4D58cdnpP/nP/cWXnmugIBA6+OPP525du3KqFtu+bF4xIhRZa++uiRxy5Z3ww8ePBAcGhpmvO22O/I//nh3mEKhrPOP8vz5i9I3bnzbum3b+53KykoVwcEhpiefnJnuKIPt5eUlzJ27MHnLlnfDp09/oHdoaJhxxoxZGQsXzune2J+Rh4eHsH79Jn7lyjc6P/fcUz08PDyt06ZNz1637n9RjW2jPowoNv2hw15Z7UUAt0Aa9lYC4BcAa3ieb/TsaI7jjgAYist7XzzsXycBSANQyPP81GrHjIZU1S0Y0vydPwF05Xk+qdo+RwGc4Xn+GY7jvrnaNhr7/Vwh2WYToouKXPsAJpez8PWVHlqtVvf44/r66wvx+eefYvKUJ9D/pkmNOsZr+xJEsEDqoEEY+/Ss5g3QCe54nV3p/vv/g9jYc1i/fhNuvnlkg/unLl4Ic1Ymwv47Hgo/1/X+sCwDtUYJo8EMwUUJ0OEffofn+XSYtFqMfX97wwd0EO39nnYXdJ1bRnNeZz8/D8hkbAqALi5t2AknT57swbKyb4OCOlUolWqqGkRc6p9/TmrlcrnYt2//qg6AAwc+81u3blXU4cO/nXKsRdSWmM1GdX5+lqcg2G4dPHhwfF37OfWd8TxfCGCB09Fd8iCAK/uvEwAsAvAxgPsAPMVxnIzneceM5lFSCHw+x3GlAMoAjICUMDnmFA0C8I59/19d0Aaph2PBSUdlt8awMgwAEQItVtkqmlIFTjCbYc6Rps0p/Twhwr0rwwveHnju3Blcd801VaUqCSGEEHK5+Pg47bZt74e//PL8lF69ehtSU1NVH364Peymm4YWtcXkpymcXQj1ZgBWnud/5zguEsBGABEA9vE8v7Sx7fA8n1VL2wCQz/N8Gsdx2yANudvKcdxKANcCeB7Smj3ged7Ecdw7AN7iOO4igFQA/4NU0GC/vUlXtEHqodLrEapSQ92EKnA2VgaIVthoHaBW0ZQEyJSZCQgCZF6egAKAm1eXVimk+URGSq4JIYSQOk2Z8kBBYWGBYtOmDZ2Li4sUOp3OOmzYiKKZM1+o8Xze3jizEOqDkNb5WQ3gdwDvQhrG9gOABRzHmXmef8sVwdl7aMYBWA/gFKSiCy9fsdDqIkjfxxZIvUm/AhjnWMDUFW2Q+t2i1+P+vgNwwtj4+U5WlgVsl9YQIi3HZDJBr5d+Vo1KgNJTAQCaTqFVFf/cmUop/Voz0hpThBBCSJ0YhsHMmc/nzJz5vPsu7tdMnOkBegnADp7n59jX0RkDYB7P86s4jnsJ0no+TidAPM8zV3x9AtLaQ3Xtb4O0qOnceva56jZI3WSCKC1KoGp8hcMzah2+OnMMQ7p3a8bISG1KSkoASBNTvby8GtzflCEtzaUKvqqiiC1GDQYre/WFVqmEVKPFNSW7CSGEENI+OJMA9QDwgv3z8ZCeLr6wf30CwDIXxEXaELkoJUCMUt3wznYFGh1OlBSjq0iThFta9eFvjSlJGXT/VASPuQXWXB42q8sWYW42KpUSUVqp/LVosYBpwtw0QgghhLR/ztR5LAHgeNv4NgBpPM8n2L+OAVDggrhIG+LIohll49djcBRMMBhomFJLa8r8HwBgZDJoQoPBaly3Vk9zUlXriRTNbj5hiRBC6icAEEVRpK5sQhrB/n9FhPR/p07OJEA/AniN47j5AO6CVK0NHMfdDWAppIVSSQdS1Y3YhB6gAEbATX7+0FWUN0tMpG6XEiCfRu3PsgxEixE2k6Hhnd2AWq2EzV7eX7S6/5wlQgipR64oihaz2ahteFdCiNls1IqiaIE0579OzgyBew7AR5AKB/wA4A3762sBpAOY70SbpA1T2odRsarG/37uYtTj7i7dEFfp2oViScOKi6UEyNe34R6g8r//gv7sGfj06gLI2kZvnUqpQJkgQCOTQTCZIWvtgAghxEmDBw8uO3ny5AdlZcUzAPgrlWo9wzCuWTSNkHZEFEXGbDZqy8qKlaIobB08eHC977A3OQGyrwE0rpZNQ3meT29qe6RtE61WyBwJkKbxCZBgL1XMWG0N7ElcrSlD4CrPnUXZsWOQKwV4ckHNHZpLqBQKmO0JkMWgR9sYuEcIIXV6w2azoqSkcBrDMFpQZRdCaiOKomgRRWErLnXO1MnpVY44jgsGoMSl/4gsx3G9AQzjef5dZ9slbYsoijiQmw0FwyCiCXOAYJ8DxAqUALW00tISAIBO593gvqa0VACAKqDhfd2FSimHWZCG/horKkDjRgghbdngwYMFAMtOnjz5tigiFM5NXyCkvRMA5DTU8+PgzDpA/QHsAcDVsYsIaW0g0gFYRREfZUodf4s1Ho0/UCFNVGcFqgLX0srKygAA3t71JzWC2QxTlrQWmsLfC0DbmE8jl8lQYDZBgAhvCxVBIIS0D/YHO5o4S4gLONMD9D8AvgBmA5gAwATgK0gV4cYDGOGq4Ij7MxovzQuRyZUQGjsyWSklQLJGH0BcpaysFEDDPUCmzAxAECDz8gSjYCC2kVyCYRisSE2EwWTGN0FtY9geIYQQQlqOM92o1wFYyPP8WgB7AXjyPL+J5/k7ABwAMMuF8RE3ZygvQ7BKBX+VBgzb+OnmjEKqGCcXKQFqaY4eIJ1OV+9+juFvmogwiBZTc4flUir7HDOTqW0UbiCEEEJIy3GmB0gF4IL983gA/apt2w4a/tahGDIysKHvQBRazMhvSm+OSpov5PQkNOK0Sz1A9SdAxtRUAIAq2L+5Q3I5lVK6s6r3UBJCCCGEAM71AKUD6GL/PAGAjuO4KPvXJgB+LoiLtBFmfSUAwCoCTenMMfsEYkNyIvbkZjVTZKQujh4gL68G5gAZ9ADDQBXo0wJRudZdgSF4s2cfWGPPt3YohBBCCHEzzrwB/xmAtziOq+R5/lOO4+IBLOc4bgWAlwAkuTRC4tbMej2UAJo8PcTTG78VFUAmpz6gliSKYqN7gMKefhYKUwkMSSdh05e1RHguE6hQIkbtAX1paWuHQgghhBA340wP0OsAfgMw3f71CwAmAzgNYBSA11wRGGkbLAZ7DxDTtGUJ5PYqcDarFRaq1NVijEZj1fVuqAocyzKQyRiI1rZR/a06m/1+tNIQOEIIIYRcwZmFUI0A7uE4TmH/+juO4/oAGAzgFM/z1APUgVj10gOmrYkJkJKVYbC3D5SsDEajEQoFLVfZEhzD32QyGbTa+suWsywD0ayHYG5bBRAAQGSl+9FmanuxE0IIIaR5Xc34Iy3HcTdAKomdD+AQz/MVrgmLtBUWowEAYGOb1pmoYFnM7dYDAGDWVwBeXi6PjdRUXn5p+BtTT9Kat/sDWDIz4H9jP7Catlepz5EAtcXkjRBCCCHNq8lD4DiOYzmOWwogA8DXAHYD+AFADsdx81wcH3FzNqOjB6hpt5JYrcfHWE55c0u5VACh/vk/hgsXoE9IkAohtEGiPSEXTG1v+B4hhBBCmpczc4AWAZgHYAuA4QB6QFr8dBeAZRzHzXRZdMTtlavVOJSXi/SmFjNgZbDay8aZKikBaimX1gCqe/6PYDLBnC1V51P4ebZIXC4nk361iTS/jBBCCCFXcGYI3HQAy3ief73aaxcA/MpxXBmkogjvuCI44v4KtVpsz0jF0JgeiGjisWZBgFwmqyqlTZpfaWkJgPorwJky0gFRhFynAxRwosRf6xNkLMpMFlhEobVDIYQQQoibcaYHKADA73Vs+xZAqPPhkLbGsdCkQqFs8rGO52rqAWo5l3qA6k6AjGmpAABNeChES9scQpbuocBjZ04iNiS4tUMhhBBCiJtxJgH6EcCUOraNAXDM+XBIW2OrKIe3XAG1EwmQ2T4EzqI3uDosUofyckcC5FPnPqbUVACAKsS/BSJqHiqlNMfMSGWwCSGEEHKFRg2B4zhuWrUvjwN4jeO4EACfAMiFVAnuVgB3A3jR1UES9xWTmYnNAwbjH2PTJ8tbIVXqsujb5kT7tqgxi6A6eoCUAfWvE+TOVArpV5vJRAkQIYQQQi7X2DlAO2p5bbz935XeBbDZ2YBIG2O1AgBEJ3qADpusKMtIxUTNHa6OitShoSFwoiBAGRICobLcXgChbQ6BCxAYLOZ6QZWb39qhEEIIIcTNNDYBim7WKEjb5UiA5E1fyDSekSOh8CJGN3ENIeK8hqrAMSyL8JmzoDAWoiLuDwhtsAACAGhYFpyXDoXmtpnAEUIIIaT5NDYByuZ5vsmPQhzHKZw5jrQdjE1KgOBED5BcKR1jMtFilS2lMUPgZDIWolkPwdJ2fy4y+xwgVqAqcIQQQgi5XGPfej/LcdydTWmY47j/ADjX9JBIWyKzSQ+YjFLV5GPD5HIM9PaBWFzk6rBIHRwJUF0LodoqKgCIsJUXt2BUrie3zwGS2QttEEIIIYQ4NLYHaBqAHRzHLYe04OmnPM8nXrkTx3G9ANwG4HEAMgBTXRUocU+sKABgACcSoJtYAX269UBSTq7rAyO1amgIXNrSxYDFgk7/HevcKmFuQqGSeoBklP8QQggh5AqNesThef4vjuMGAngG0kKnyzmOKwGQCqASgA+AcADeAC4CWAlgI8/zVIKpnZMJIsAyYBTqJh8rsHJAsLTZtWbaGlEUqxIgb++aCZC1tBTWwkKAYcCqZRCsbXf0qsI+vLIN53CEEEIIaSaNfj7ged4EYA3HcRsA3AJgJIAukJKeDAAHAXwP4Dee523NECtxQ+fMJrAVFfD0rHtOSV1sMhlgBURz233QbkuMRgOs9qSmtjlAxpRkAIAqJAgi2vZ/YYWaEiBCCCGE1K7Jzwf2ogbf2f+RDu7r0mJkZKTjeW9/aJt4rCCThilRD1DLcPT+yOVyaDQ1f1rGVCkB0oSHQmzDvT8AoFIrYRYEWCBCtFrByCkVIoQQQoiEngrIVTEaDQAAuaLpc4BEmXT7MfZS2qR5VS+AwDBMje3GlBQAgCrIt0Xjag4qrQb3nfoLvj4++FkhB9VCIIQQQogDLcBCrorcYoGSZSGXN70Mtqiwrx1ECVCLqG8RVFEUq4bAKYN8WjKsZqGyl8E2Go0AaiZ7hBBCCOm4qAeIOE20WvF21x4AgPNo+norgj1pYm1te75JW1Fa6lgDqGYBBEt+HgS9HoxcDrmXGoJZ39LhuZTKXgbbaDJBpO4fQgghhFTT6gkQx3FBAFYDuBWABsAvAF7meT7Wvn0AgLcBDAFQCGA9z/Orqh3PAlgM4DEAvgCOAni6epluV7RBarIYDFWfMyqPJh9f7OWPbX8fgVdkNMa7MjBSq/oWQWXkcviNuxWoLIFgbfvFG1VKBZ6N7gofhQKG3BxoQkJbOyRCCCGEuIlGDYHjOG5cM8bwJYAYAOMBXAPAAOAwx3FajuP8AfwA4AKk5GUxgKUcxz1S7fhXATwFae2hGwCIAA5xHKe0x37VbZDaGSvKAQCCKEKuamoJBKDSyxff5ueBN7X9B+62oLy87jWAFP4BCHvgAYROHA0ITe/NczcqhQK9vLzQV+cNQ3HbXtSVEEIIIa7V2B6gQxzHZQDYBmA7z/Pprji5PTlJAbCM5/nz9teWAjgNoDeA0QBMAGbwPG8FEMdxXDcAcwFstycoLwGYw/P8N/bj7wWQDeAuAHsBPOGCNkgtTBUVAACzIICVKwFr0x6cFUpp7SAjJUAtor45QADAiDZYKkpaMKLmo5DLYBakoW8WQ0UrR0MIIYQQd9LYIgh3ATgJYD6AZI7jvuM47j8cxymu5uQ8zxfyPH9fteQnGMBsAJkAYgEMA/CrPXFx+EnalQsCMACAl/01R5slAE4BuNn+kivaILUwlks9QGZRgDOzLDQMg56eXgi10hyglnBpCNzlPUCi1Qp9XCzEihLYTG177o8DwzCw2uf+mCrax/dECCGEENdoVA8Qz/MHABzgOM4PwP0ApgL4BEABx3EfAtjC83zc1QTCcdz7kIagmQBM5Hm+kuO4cABnr9g12/6xM4Bw++cZtezT2f65K9pwmlzu2kJ7Mhl72cfWZDVKD5Zme/bDsk2rtuVjNeL1Hr1RYLW4/DpdLXe6zq5SYR+y6OPjfdn1NmRmIXP1SuR4eiDysTua/HO8Goz9XAzLuLwkpdWelttMBre7v1pDe7yn3RFd55ZB15kQcjWaVASB5/kiAO8AeIfjuJ4AHoKUED3PcdyfALYC2MvzfKUTsawD8B6AGZCSraEAtJASouoc46XU9u2oYx8/++euaMMpLMvA17fpxQEaQ6fTNEu7TSGHFRYAFohQqRVNXmvF7OUF/H979x0fx1knfvwzs12rXi1Z7mWcuKb3SgmB0AOhHPzoB4E74Djq3RGOesDBEY56QAKht1BCICHFidNtx72Ne5HV6/Y2M78/ZteWZVlltU3S9/16ySvtzj7z1WgszXee5/k+gIv8HaepKoXjnCvRqP3fsrm58YzjHXumDQD/glY8Dgt8hZ/65vFMqTN5VJkuX9VMlez5VQwz6ZwuZXKcC0OOsxAiG1lXgUv3+HxC07RPAjcCrwe+AHwdOHuW9fjtZaq+vQe7EMEHsAsijFxh05t+DKdfJ71NdMQ2mSQsF21kxTQtAoHcDr9xOFQqK30EAlEMo7iT1QdiSTb29WB4fTRHEpN+v6HYF9ouRWFgYEqHOudK6TjnSm9vHwAOh+eM4923y+689TTVEYuOvA+QX4qq4PG4iMeTWGZuy1Ub6R6g0MBQyZ1fxTATz+lSJMe5MPJ5nCsrfdKzJMQMl4sy2A7Aj13CelK3jtNzcF4A/EbXdQNA13VT07Q9wFzsYWktI96W+fok4Br23KER22xPf56LNrKWmmRhgIkyDDNvbU9UyOvjW0cOsWSpxluyuHi1PHYe6lYVkkkDRSm9BStL4TjnSmYdIL+/4ozvKXrIPu1dDVWYOU5CxpO5xLBMK+f7NhSFlGmSiCdmzM8wF2bSOV3K5DgXhhxnIUQ2sr7FoWna1ZqmfQ/oBP4ALAQ+DExmwY0W4BfAdcPadQEXYhdB2ABco2maY9h7XgDouq53YycoAeD6Ye+vTr//ifRTuWhDjCIWs0cSejzecbYcncNrD0tyKiqJWHScrcVUZarAVVWd7qA1QiESnR0AuOsqihJXvvw+MsCbtmwkuGhhsUMRQgghRAmZVA+QpmnnA2/GnvczHzv5+QFwl67rB7LY/3bgQeA7mqa9GxgA/g17MdL/wZ6H8zHgR5qmfQW4FPgQ9po96Loe1zTtW8CXNU3rAY4CX8Xu9bk3vY+7ctCGGEUsEsGlKLg8I0cYTozqPb12UCwUxOOb/FpCYmIsyxp1HaDoYbv3x93YAKoJM+hGqsdtd+5mEnUhhBBCCJhgAqRp2kewE5+1gAHcD/wz8NfM0LVs6Lpupdfc+RLwa6Aau9flmsxaQ+lFWL+JXZa6A/iorus/GdbMp9Pfxw+xh+FtAG7SdT2R3kf3VNsQo/Pr+/j5RZexJ8uha6rLg2lZqIpirynU0JTjCEVGNBohlbLLAgxfByh2+CAAZQvmYqWSRYktXzwuOwGKyzpTQgghhBhmoj1AXwX2AZ8AfpIeOpYTuq4PAbenP0Z7fRN2UYRzvd/AXtT042NsM+U2xNnMuD1h3lSdWY2lVFSVX3d2EE8muH2yJeTEpGSGvzmdLrze01WTKi+/Cm9tDQ4lhH1vY+ZY5fZx1ZLl+A8eLHYoQgghhCghE02ArtZ1/em8RiKmHTNhd5AZDkfWk8n+PjREODTEO60ZNPaqBGUSoMrKyjOKTbjnzKGqpZbI/o0kBnuKFV5e1DmcXFBTS9fAYLFDEUIIIUQJmehCqGckP5qmtQAXYw9ZG237e6YcmSh5VjoBspzZFxN0uuz5Q/F4YcsvzzZDQ4PAmcPfwF6rykrFMWK5LddeChSHCiZYyZk1tE8IIYQQUzPpK9f0nJ0fc/baOhkWIAnQLJBJgExH9otYzivz05QoJzY4lKuwxChOF0A4nQBF9u3F6O2mckE9RnwGJkBOByQtSYCEEEIIcYZsbt1/HtiEXUmtL6fRiOklPal+Kj1Ab6+vZV5zE8GTJ3IVlRjF6SFw1aeeG3rqCYLPPE3yBVfhX1ZfpMjyR3E4gBTKDCvuIIQQQoipyebKtQX4Z13Xt+Q6GDG9KJkEyDWp9W/PkMKej5KIzLweiFISCNg9bGdUgEsXB/A0VhcjpLxTXZkEaGYVdxBCCCHE1GQzd/0ZQMt1IGL66VQUNg70EyvLfgHNZHpCviFrteTV8CIIAKlAgGSPXczRNcMWQM1Q0z2TiiEJkBBCCCFOy6YH6HbgPk3TqoDngLNu3eu6vmGqgYnS9xwmTxzaz1tf8Cpqs2wjpTjsx2g0d4GJs5xOgOxFUGOH0r0/zU1Aqlhh5ZXDZZ9biikJkBBCCCFOyyYBWg7MAe5Ifz18ARcl/bVjinGJaSCaTlpcHm/WbaRUFTAxpQcorzJD4Coq7B6gaDoBKps/8xZAzYjVlPOm+x7iqquv5qpiB5NjqqrgdKok40lM00rPdxJCCCHERGSTAP03cAT4EtCZ23DEdBLLJEDuKSRADieYCYy4JED5NHIO0KkeoKaaosWUbx63i5RlEU9XK5wJhp54nEQsiuPydYS6jmP+8i9UXXYlNS9+SbFDE0IIIaaNbBKgBcArdF1/KNfBiOnlA24vlRdeys5oOOs2zHQCZMo6QHk1fAicZRjEjh0FwNNQzUwdAud12+XZYzOkd9FMJGj7+U9xpVLc+V+f57y1K3hxIEX/wCBVN7wA1ZV9OXohhBBiNsmmCMJOoDXXgYjpxwU4VRXV48u6jTZvOb8+eYJ2d/aV5MT4Mj1AVVVVKA4HS7/2DRb903tR/NmXMC91PkvhnxYt4aVZ/ZorPRt+9H+4Uim643Ge6evlrkefJOxQMAIBItueL3Z4QgghxLSRzdXPh4BfaprmxK4IFxi5ga7rx6cYl5gGXOkKbqq3LOs2Ov01PNpxkteoSq7CEqMYuRCqq6IC79L5BPZ2FDOsvPI4HVxT10DKssbfuMRFoxF6NzxGi7+c3tYmXnP9P/C7//0Zf2s7wa3NrQQ3baT8ksuLHaYQQggxLWSTAD2CffP/+5xZAGE4mZE7w1mWdSoBckwhAXJ7PABEIlIFLl8syzo1BK6iwq4Cp6qQCs7sdYxdHntImFNRsEwTRZ2+PUF/+v1vWOWz/5/Nve0luCpVdj+3g+d2HuTW5lZCu3ZhxuOo6f9PQgghhDi3bBKg9+Y8CjHtmMkkjlM9QH7MLNspc7iY7yvDG8l+HpEYWyQSxkivhVNRUcHJO79O2fxWKlc0Fjmy/PJ4hyUDqSS4p29ysPtvf+VCXxlxr4ehGg8YSW58/U18e+MOehJxGoD4AR3fqjXFDlUIIYQoeZNOgHRd/8lEttM0TQF+BHxGhsTNPNH0nBIAh6886wSoNRHmDSvX0BaZGRPVS1Gm98flcqEO9BPeuYPIvr2UL3ltkSPLL7fXc+q8NBMJHNM0ATp69DC1gSHwleFapRE37LLlLYvnMXfpfHYODXFjQyPRA/slARJCCCEmIJ9jQlTg/wH1edyHKJJoek6JYVkoruzLYCvpAgpOM9sUSoxnaChTAruK2MEDAJQtWoCZnNmV97weN8n0eWVO41LYGzY8ht/hxARSy86sP3PhDZeyNTDIHiOBZ+H84gQohBBCTDP5HhQvM9tnqFg8webBfnYEA6BM4TRypxOgGTBRvVQFg6fXAIru1wHwzWsCa2YnnV63i0Q6AUrFIkWOJnvPPfcs3zl6iI3XXE5gWcsZr624ZDXPDfTzn9u2El40r0gRCiGEENPL9J0VLIoq7nTwlYP7+W5PF6aZffKipCd2z9xizMV3ugBCJdED+wHwzqktZkgF4XGdToDioek5xyyZTLJly2YAVl92EWErecbr1fU1tCyZh2VZPPLoQzgccs9JCCGEGI8kQCIr0ahdtc3r9WFOofdG8fgB8Mh1W95kEqDWikpS/f3gUHHVlRc5qvxzOR18ZM8O/mHLRsz6umKHk5Vdu3YSjUaorq6hcWEzCSN51jbnXbIagO3rHyfZ1VXoEIUQQohpRxIgkZUzEqAp9AA5fHYC5FZULBkGlxeZOUBLvfZcrbJ5rVjG9J0TM1GKopBSFRKmSSw2Pec7bdmyiQ8vXsYXtPMJ7N416jZL12q8rGkO74gadP3uNwWOUAghhJh+JAESWTEP7OdnF17Ke6urp9SOWmYnQA5FwUqdfXdbTF0gXbGvwuPFUV6Ob34LlpEqclSF4XHbawHF49MzAdqzZxdL/eU0GAaxUXp/AOYumU97+v9O8ODBQoYnhBBCTEuSAImsJCMR3KqKQ53amrcOXwV/6mznNydPkIjP/F6JYsgkQH3z53P+N++k9srVRY6ocG6ub+L2hUuIHz1c7FCycnTvXhrSi5uG6ipG3cbhdJBqbbC/GBzElDW1hBBCiDFJAiSykkoPgTPUqZ1CLq+Pn7cd53cdJ0+tbyJyKzMErqqqCtVMYKZmT6K5sryc6+sbSHV3FzuUSRscHMCbLjev1NYQcRjn3HbOyqV0x+21tBJtJwoSnxBCCDFdSQIkspKK2QmQOcUeIFV14HTaw5Qy84pEbgUCARyKQlVlFVYighENFTukgjHSlfhTsem30O7evXtYkK6S6JjXTMo8dwK08PwlHEn3/MSPHytIfEIIIcR0NekESNO0RzRNe7Omab6xttN13QAWATuzDU6ULjN9QWk4pl7AutFfTqvXRzQ9VEvkViAwyFta57Po7w/S+9hjs2b+D4CZri6YmoZzgPbu3c3C9By55Dhly5sXtXIsfQNhKL3YrRBCCCFGl00PUBL4MdChadr/aZp2xbk21HX9mK7rMq5pBjLTF5Smc+oJ0McWLOLrq9YSO3pkym2Jsw0NDbGyohJHOAzm7Bn+BmCpdgZkTMMeoP37dRaU2T1A8abqMbf1+DwEyuy5QoEj8v9ICCGEGMukEyBd118CzAe+CFwJPKVpmq5p2ic1TZub6wBFabIS9oW0mR6+NhWZDDkxTRerLHVWOMyCdE+CZ5wL6ZnGTCdA5jTsATp8+BDtsSjJykoitaMXQBguMbeeeztOsqdq5q/xJIQQQkxFVnOAdF3v0HX9K7qurwIuA/4MvAM4qmna3zRNe5WmabK05Qw2iMWuwBARb9mU28r0SSTDs2duSqEYhsHCdKEK15xGLOXc80hmpPT3biSmVwJkGAbHjh3hzsMHcX34fUSqxhxxDEDF8vn86uQJHmk7jqrKr18hhBDiXHJRBMGV/nCnv64HfgPs1jRt9tTbnWV2Op18dv9e2hpbptxWUrFPw+k4Ub3UBYMBVlVUAeBfsmD2rbWUToDMxPT6vjs62onH47jdburm1BNLjZ/AtS6dD8De3bvzHZ4QQggxrWWVAGmatljTtDs0TTsAPAG8DPg+sEDX9UuAhdgjm36Rq0BFaclUbHO5vVNuK5VJgCKRKbclzjQ0NMTKykoA/Jm1YmYR3avw7m3Pc2huc7FDmZTDhw/iUBQWLlxM1IxjWda475mzsIVqj4eFlsKJTc8VIEohhBBiepr0DHZN054CLgdiwO+Bd+m6/vjwbXRdb9c07V7gwzmJUpSc0wmQZ8ptpVQHYE3LieqlLnCyjRavD9OycDVWYSVnV5Kpul0MpZJEk9OrB+jw4cO8ae48XlxVQ+jBR2DV+Amc0+Xi1UuXcLOvku4HH2DuRZcWIFIhhBBi+smmhJcLuB34pa7rgTG2+yPwQDZBidL32mSSd6+9iMOh4JTbMlQHkMKMSwKUa6FgkIe7OmitqWXxLKsAB1DmsUfmRqPTK/E7fPggK7xePJZFbBLTeWK1FRCFVFdn/oITQgghprlsEqBvAfePlvxomjYHeGu6QML2iTSmaVotdkW5W4BKYAfwCV3Xn0y/vg64E7gY6AO+qev6fw97vwrcAbwLqAGeBG7Xdf3gsG2m3IY4k9eCSpcLh9s9/sbjaHP76DyuM3/ZshxEJoYbMFL85MQxLquv4hWzaP2fjEbFwTvmL6Sps6vYoUzKsWNHucFjFz5I1EyiqltrAxzopSwcwbIsFEWKIWRYpklw03NEDx7A09JK1TXXouSgjL8QQojpJ5s5QHcDi8/x2jrgs5Ns71fYQ+reAFwCbAH+rmnaCk3T6oCHgP3YycsdwOc0TXv7sPf/B/Be4N3AFYAF/E3TNDdALtoQZ3Ol5ySonqlXgTteVs1P245zwuWYclviTIGAfZ+iwjs7T+UqReUljXOYE5pePUDtbSdo8tjDSyPV41eAyyhbNh/DsnABxtBgfoKbhizDoOP736HzB99naP2jdP/8Hk585YunFnQWQggxu0zo9pemaX8Bzk9/qQB/1DRttLJETcChie5c07SlwIuAq3Rdfzr93AeBm4E3AVEgDrxP1/UUsFfTtGXAx4G70wnKR4CP6br+1/T7bwPagddgJ1fvyUEbYgRX5sZyDspge7z2BV4wJGWwcyk1NITadgKXolDhm/pcrenI5bbXqVKM6VP+OxqNoIaCOFUVnE4iZS7sezLja1w4l+74UzR7fYRPHKequia/wU4TffffR+j5zaQsiycH+rispg4OH6brnrtpfs/7ih2eEEKIAptoD9AXgcfTHwBbh32d+XgU+C7w+knsvxe7gtzzmSd0Xbewk6xa4BpgQzpxyXgU0DRNa8TucapIP5d5/yB2L9K16ady0YYYwZOu3Kb6/FNuy+f2UOd2YwWmPp9InBbatpV1+/bxiWUrqPBMfcHa6ciVngOkmmaRI5m4trYTzPHY1RXVxjqMCSY/AOXVFXSnhzp27NmVl/imG8uy2PH4egC+e+QQ3zl8kM/v241pWfTu2Y0h1SeFEGLWmVAPULp3JtNDA/A5XdcPT3Xn6UTjr8Of0zTtdcAS4EHgC8DOEW9rTz/OB1rTn58YZZv56c9bc9BG1pzOXCy1dJrDoZ7xWAymYeBJr6+ilpVjTXHRxaWpGP9vzYWcCARyfryyVQrHeaqie+31YPYGA8zxLyjJxTGVdEyKquRkUbKRPF6758thmSVzbo2nvd2u3Adg1VdP+ucW8trJ7uCRw2d8zzPhnM7GQw89yL888iAtXi/XveIf+NzyS/nbQ7/hi3s3oYfD/PjYQVavXpez/c3W41xocpyFEFMx6Rmguq6/ffytsqNp2lXAXcCfdF2/T9O0/8EevjZcZtC2F8iMvxptm9r052U5aCMrqqpQUzP1HpLRVFZOfF5AroUHB099XlZVg+mZ2vwSl98+Rg7DzNvxylYxj/NUWIaBvncPANsDQ6ysrsDrK915QJ489VD5q+z/3k6Lkju3zqW3t5P+RII2t4u5i1sm/XNrb67m28/tZs3yJbx8lO95up7T2QiFQnz5y18A4IW3vpmbbnwTALe/55N86/ufJ75xPZ/61CdYv/5RXK7cnoOz6TgXkxxnIUQ2JjoHyACu0HV9o6ZpJmMPSLd0Xc9mfaFXYi+c+izwxvTTUWDk5IXMypvh9Oukt4mO2CacwzayYpoWgUBuh1c4HCqVlT4CgSiGUZxhPf3t3ewJBvCoKqrqJh6dWnllw2H/OBymycDAlA55zpTCcZ6KyIEDGOEwUcviYDiEz+0mNsWfUz4oqoLH4yIeT2KZEx/qNVEO1S6s4YSSObfGc+DAIZ4b7GfVqhVUXb6aWKhvUu83l8zl8b8+RvTwwTO+5+l+TmfjF1/9Msn+fubNm8/NL3oDkdDp9aDe/Pp/YveeLRw/eoRf/M83ecW735uTfc7G41wM+TzOlZU+6VkSYoabaKLyWaBt2Oc5vVLRNO0D2GWq7wX+Qdf1TG/MCaBlxOaZr09ir0mUee7QiG0yZbhz0UbWUqn8/AE0DDNvbY8nbFh8Rt+D2+3mP1ExzSlOME8XUnBZVtG+p3Mp5nGeisCOHQAcSMSwgAqfDzMPCcZUZS4xLNPKS3xun51cuxUFwzCxSu8QnOX48eMANM9tIZqIT/q4NM6zF009sH//qOfudD2nJyuRSNC4dSvfXn0BbZdcQSRsnnEsvZ4yXvei13P54ecpe+JJQq+5DW9VVc72P1uOc7HJcRZCZGOic4D+c9jnn8llAJqmvQ/4X+CbwId1XR/+m2wD8F5N0xy6rmeusl9gh6F3a5o2BASA60knL5qmVQMXYq9XlKs2xDCR9KRhrzc3F9Wqz17nxCNrluRMZJc97W17uhRypX92DhMpq/Lzzp1bSVrwqJWpr1La2k6cwO9w0NTSTDw1+V67xnlzOL+ikrkOF73Hj1A/f1Eeoix963/3axa5PRiWxdKrXkrP4NkXyZdc+wqih56nWlXZ9LMfc837P1iESIUQQhRaVqvAaZq2GPDqur4nnSx8AZgH/FbX9Z9Oop3l2D0/fwC+BDSmiyyAPRztLuBjwI80TfsKcCnwIew1e9B1Pa5p2reAL2ua1gMcBb6K3etzb7qdXLQhholE7GE1ZWV+jFwkQGWVAHhUVRZvzAEjFCJ29AgAm3q7AaiYrQlQmY+uuN2hHI8n8HhKuxx4KpWC/j7uvuAS+M0fOHj7LZNuw+1x857FS2lxuTmxefOsTYDa1j/CImCouhrFdHH2NE9wOl201c2lOdhDaPMm+f0jhBCzxKQHuWqa9hJgL/CO9FPfw15rpxX4saZp75xEc7diD0F7NdAx4uNOXde7gZsADbss9R3AR3Vd/8mwNj4N/Aj4IfAUkAJu0nU9AZCLNsSZEgcO8H9rL+R9jXNy0gPkKLcTIKeikIxKSdqpUv1+Fn3mczS+/tV0RuxpbZX+qa/XNB153acntkenwbnV1dVJY3oyvlLux8pyzN5geqGuwcMTXpatIKxUisDTT+V9P729PbSk1xWru/wawqFz/ypvutJOMhcoKvqOKY96FkIIMQ1k0wP0aeDvwH9qmlaFnbx8Sdf1T2ua9nngg9jJxLh0Xf8i9hpDY22zCbhijNcN7EVNP57PNsRp8WCAepebgGGQi6VLnf5KHunpImqYvCsawV02Pap1lSpFUShbuIBg+CQADlWlbIqV+qYrh6ry+tZ5lCkqoa5Oqkt8YdD29jaa02sAmfXVWbcTrSiDYJJ4Z0eOIsuOZVlYySSWQ+X4scMozz1H4pFHMONxqm+4MW/7ffwvf2K1vxzLsvCvuozB3nPPU/TNWUCfBXWqypY//o4Va9flLS4hhBClIZsyJ2uBb+i6HsTuWXECv0u/9hCwLEexiRKVDNtD4FIOR07ac7rc/PBkG/e0HSOSTI7/BjEuh5Wkv8OuW1JR5pvVw3peUNfIS5uaifX2FDuUcXV0dNDstROgVF1l1u0Y9fZkfnVoKCdxZSu0eRP7P/YRPvW6V/Hq17yCe+75MQDdv/klyb7JVbebjI6nnrT3X1VFxBx/2GO4aSEAxr59GMYUi7oIIYQoedkkQFFO9xzdDHTpur4j/fUcYDAHcYkSlkwXQTDV3CRAAJ50JbjM/CKRnXh7Ox0//D5DTz9Jb3cXANUVs7tHLZkuWhkLBoscyfg6OztoTi+CmqipyLodx/wmAMqLeEPBsizaf/sr1FCQimgUr9vNn7o62BMMQDJJ+29/lZf9RqMRyvv7AahcvY5IePyRzJVrrgHgPI+XHdu25CUuIYQQpSObBOhJ4F81TXsj8HrShQI0TbsIe37Nk7kLT5QiI2bPKzFy1AMEUOkto9blJjxY3DvW011453aCzz5D35NP0t/XC0B1+eyc/5ORSYASoVwM2Myvjo6OU0Pg4jXlWbdTtmw+ALUOJ4GB/pzENlmBHdtR+vuJGCk6qqv47b9+ih//80f4e8D+Px7ZvIlkHnqoNm3ayI+OHebugT7qrriBRDw17nuU5kU8pbj43P69PPnUhpzHJIQQorRkkwB9GJgL/Bw4Anw+/fz92IuJfiI3oYlSZcRiAJjO3K2c/i8tLXxv7YUkD+7PWZuzUXj7NgD8C1sYDNq9adXls7sHKDOgKREu/QSor+MktW57vlakKvvKfc6GaqKmgaooHC/SxH79Vz8H4LlgkI+88lZ8Hg/NNbW849W3cigcxgFs/8ndOd/vM888STCVouKiiwh7qif2JlUlfP6VHImE2fDE4zmPSQghRGmZdAKk6/oRYCXQrOv6Kl3XO9MvvQo4X9f10io7JHLOSidAlit3E+sT6Tkq0+EufakyQiGiBw8A4J3XwGDIToCqKmZ3D5Ch2udWKhotciTj6+vu4m9dnUQWziPmnsK8LUXhd0aET+/bzdH+/M21OZfo4AAV3XYJ9tq1a6n0nU7mFjbNYaCuFoDk1s0kczxM75ln7Cpzl192FdEJDH/LWHXexaiqgwMH9nPyZNv4bxBCCDFtZdMDhK7rlq7rXSOee1bX9bMXWhAzTtA0ORIJE/Pm7sI6qdinYqbAgpi88K4dYJp4W+aguGAwZM/VmvU9QOkEKFni88ssy+JQezt3nzhK6raXZ10CO6O7pZZ9oSCHTxzLUYQTt/lXv8ChKLQn4ly77qKzXr/iymuImQapVIonH/hLzvbb0dHORfEEr5s7j7ULlhCNTDy58vv8vOa8Nbx7/iKefOzRnMUkhBCi9Ey6DLamaQ3AN4BbAD9nL61u6bqe1QKrYnp43qHy0J6dvPmKF+as5F9SdQAWRqT012opVZnhb+XaYqxUgqFQZgjc7O4BQlXBAiMaK3YkYxoaGiSWnl/nrSmDwOCU2mtstQshHDlS+E750JbNNAHRhgYcpnnW6xV+Pw/W1fK9hx7kQpeTG17+6pzsd8vzm3lJ4xyqXC4IRkjEJ3GPT1G4pdxPmc/DH596At781pzEJIQQovRkk6h8B3gZ8EugDTj7r5uY0TKV2tye7OcojJRyOMFKYkyDYUqlyEqlCO/aCYBvfiNgSQ9Q2p4yB//77DZee8G6Yocyps7ODhrcHlyVlZjq1BcYnltfxwvqG6k/Wdi1gLq7u/jN/n1cXl3DDTfecM7tbrz4Mn746MNs2bKZ/ft1li/XprzvI5s3sszlwlAU4tXNEJpE5T9FId4wn7LOw7jaT5JMJnG5cjfPUQghROnIJgF6CfAhXdf/L9fBiOkhHM4kQN6ctZlyuiGZxIyV9l36UpUaGsTV2Igx0I+zyouZiJ4qglA1y3uAFJ+bjniMYGLi80GKoaOjgw8uXsry8grCO/bC/Ooptddc7ufGhYvpSyRIJBI4nbn7/zqWRx75O1sHB7BaW7mtvumcc69qvT6uu/Qy1j/zNH/78x9Y/q9Tr58TP7AffGUkG5uIxiZ/b869eDV0HkbzlbF3727WrFk35ZiEEEKUnmzmACWAw7kOREwft6Fw56q11MVy11tjZu60JmQaWTZcdfUs/eznWfbJf8ZM2D+XIekBAsDnSVdVK/E5QJ2d7czJlMCunHrS6lowB4A6t5tjhw5Mub2JeiJdRe36Sy8bt/DErS2t/HDdxaSefXrKC5CGQiEa0zdQqlavJRadfHEFo2UJAIvL/GxJF1MQQggx82STAN0LvDHXgYjpoxqFZq8Pp2v8FdYnaqisikd6umk7a0qZmCgHKczo6XVVBjJzgGb5QqiNlsptLa3M6St8NbTJ6GtrozJ9IyBaNfXeGqvMS9iye0Had++ccnsTEY1GKD98iOX+ci5bvGTc7ec1NFHudKI5XWzevHFK+965YxvnV9iLx9asvjCrBMjyVxJyelAVhc4tz08pHiGEEKUrmyFwW4AvaJq2BHgWGDlr3dJ1/XNTjkyULE+6ZLValv1CjSP11jRx37HDXLtwAW/PWauzgxEKoThUFMsiFbYToFg8QTxhXwDO9iFwNZbCa1taORwu7QIbsQ57rk7c7SKmAlOfBsSQU8FvQN/Bg1NvbAI2PrGBd8ydj6ooNDhcGMbYSYi7to4IsNRfzv1/f4DLLrsi630fevZpLnW6SCoKybpmzP7sFoBNNbZC+yEcHe0kEgnc7tyV+xdCCFEaskmAvp1+vDb9MZIFSAI0Q1mWhVe1Ow7VsoqcVcDw+uxkKhgI5KjF2WNw/SP0338fDS++Ht8C+zhmCiA4HQ783tz11E1HLq99AaukUkWOZGxWfy843SSrKjCt3PzPivi9EIgT62jPSXvjOfbEYzQrCkGnk/oJbK96PCQqynEHQwxu2YxlWShKdr3AHfv2EjFSGE1ziISz/1m7F5wP7YeodzjZvXsXF1xwYdZtCSGEKE2TToB0Xc9q7SAxMyQiEZyZHiBf7hIgn8+PT3VgBidRtUkAENy8CSuVwuFRIb12zOCwEtjZXlDOFF6fPZxMneIck3xzh8NQ5casr85Zm6n6Kgh0owwO5qzNsRhHj4LHizWnCTMxsSFo1YuXENm+ncUo7Nmzi5UrV09+v4bBH3fv4JfhML+6+xdZDX/LSC5cyXef+RvrjxzkQ9u3SgIkhBAz0JSSGU3TqjRNW6FpmkfTNEeughKlKzI4cOpz1V+Zs3YbjAQ/ufASbi/PXZuzQaKzk8TJNnCoeFvrTj1/OgGa3fN/ADw+uwfMaeZgTFmeJJNJqgz7doLSPJG+k4lxzGsEoDyRmHKRgfEEAkPUJe3Eo2HBwgm/z9Nor1e0pqqKx9Y/ktW+Dx48QDgcxuf3s/D81cRiU+jtc3tpXHA+ANu3b8m+HSGEECUrqwRI07TrNU17DugHdgErgV9omva1XAYnSk9kwE6AooaB4sjdGhkOfxVwen6RmJjQls0AlC9fimmcrqCXqQBXVTG75/8A+Pz2elWuXEyqyZPu7i42DfbzcF8PLJuXs3aV1Uv5/EGdrx/UaW8/mbN2R7P1+U0sLrMT7qp0UjMRis+H4XRS4XRxMF1BbrK2bbULFqxZsw4zBfGpJEDAogUrANi+fSuWVbrnjRBCiOxMOgHSNO1G4O9AFPg4nCrbtRX4oKZp/5K78ESpiUTCHImEOZmIY+bwjrqzohoAr6qSlFLYExbcvAmA8uULwDx9hz+zBpD0AEFZOgFyK0ree0Gy1dnZwVP9ffzNSBJrbchZu1ZlGb3VfgaSSQ4fPpSzdkdz4OmncKsqCUXBdExidLUFFRdcwO86TrLryOGsErXks0/zzVXruKVlLuFwYspJy2Kvj08tP483VtZw4sTxKbUlhBCi9GTTA/QF4I+6rl8PfIN0AqTr+n8BXwHelavgROmJer18fM9Ovtnfh2HkMgGqAUBVFAK9pV2uuFQkerqJHz8Gqopv3pnDpjJFEGZ7CWwAf7oKnld1nFrEt9R0dtoV4BrnNJFI5XbB1sZ59npAR47kd/m26BE7wUpUVWHGJ3cTo/6SSzjU1EhPIn5qHaHJ8Pf2MsfrpbW5hXBw6jdQnE4X6yqruKCq+lTvkhBCiJkjmwRoHXBX+vORV8B/BxZOIR5R4jIXkD6fDzOHQ0NUt4e4ac+BCPV256zdmSz0vD38zb9sMZZ55kXf0LAiCLOdr7qcT+/fyyf27iQUKs0qg73Hj7HAV0ZLYwPxHCdAF1RX88a58wjs3ZPTdoezLIt79+v8295deNatnfT7k+EI1111NcCkE6Durk4WOe3huAuuvo74FAogZBi1c0ihUOlycST9/0wIIcTMkU0Z7CGg+RyvzU+/LmaoUMiu0laWwzWAMiKmiUdVCff35rztmajisitweV04zBCWeebQroH0ELgqvyRAisNBj2LSF4sRCpVmD5Dz6BG+unINXeEYgRyVwM4433KwoHkuj7XnrxR2e/tJBgJDhJxOWhcvIdkzuV7cVDjCtWvW8UR1Df27dhCNRvH5fBN6777H1zPH6SRqmVQsXk7bzs5svoUzOZyEyqupDg0QPbh/6u0JIYQoKdn0AP0JeyHUi4c9Z2ma1gp8CvhLTiITJcmxbx/fWLWWmyd4cTIZsXSHUrR/YOwNBQDu2hoarr8ab2vtWa9lEqCaytwnqtORP10Ku1R7gDJlqpPVFblvfI59friCobxN6Nf1vQAsWbwE4pPvwTLiccr37uWjSzVeUFPLpk3PTvi9A9vsSm39/nJSKWvKBRAylLnLAKiLRAnI+mRCCDGjZJMAfQLoBp4DMrNDfwno2EPiPpmb0EQpMgNDtHh9VExmkvME7TFMHunpJmSW5kT1UuNwqFjRAMnQ4Fmv9Q3ZPXV1lXm4oJ6Gbqyp47aWVsLdpTm80heNAWA0VOe8bcd8ew5Qg9NJe556gU4+v5l3zV/EC1vnkQpHsmrD3WwPLFhbWc2Gx9dP+H3ezi77/cuWEQknclacxTlvOQBaeQU7d27PSZtCCCFKw6QTIF3XB4DLgPcCG4CHgR3Ax4CLdF2X8UszmBGxL24MlzvnbT+muPn+scP0qbLW7lgsy6Ljh99naMN64l0nwDx7yFR/IARAXZX0AAFc5avgtS2tJHp7ih3KWSzLojr9M3S05K4CXEYmqZrj8bJ/f36GcxmHD/HixiZWqQ6sLCvtOSoqsFwuKl0ujm98dkK9VbFQiLnpzxdedz2hHBRAyEg1tGICc7xe9m56LmftCiGEKL5symBfC7h0Xf+Brutv1HX9xbquv17X9W8Dbk3T3pD7MEWpMGP2nWorDwmQ12dfrAeDMtxkLLEjhwk++wwdP/s5ycDZcy3iySShdI9CrfQAAZBS7Wr98UDpTVEMDA3R4Lb/PzkXzMl5+8ka+xyodLk4sGtXztsHKBuyj6u3oTHrNoxYnPLz7PV35qUM9u/Xx32PvmsHj/Z2sz8aYe7qdcRjUy+AcIrby4C3nB2BIQ7tyc9xE0IIURzZ3GpfD5x3jtcuAO7OPhxR8tJr9Fie3M8B8vrK8Koq0fR8CDG64LNPA1C5+nzMZPSs1zO9Py6ng4oyb0FjK1VGOgFKlGARhK4DOm5VJWmZpGpz32NnuZ2EHfav+u594ycVkzUwMMA8pz0ktnHBgqzbSUUiVK6wE6ALqqrZsOGxcd+zff8+7jp+lEcaG7DMqS+AOlLHla/m8/v38viunSW7hpQQQojJm9BEDk3TfgJklidXgO9qmjbabfrlQA5K8IhSpSbTd1i9uU+ArrWSfOTCSzl07FjO254prFSK4MaNAPiXz4NRhgll5v/UVpajKMpZr89GpkMF0yIVCRU7lLP0HzpALTBgWSTM3F7AZ0TLvfiHIgSP535Rz/3Pb6LO7cG0LLzVNZhZFEEAMJMpvAuXALDUX859TzzGu9/93jHfs23bVgDWrr2AZMLIeQI0d+5CfN4yIpEwhw4dZPlyLaftCyGEKI6J9gD9DjvxyVxNKaN8mMCzwNtzHKMoIc6UfYFh+XK/wKbpsXsrlEkuojibhPfsxggFcVSU424cvbfg1PwfGf52mtMBkPUE/Xxqj0T56Ylj7Pa6MHJcAjvj2LWruH3HFv60X895JbjOdBIyqKpYyaklIJZp4pgzB1VRMI8fp7+//5zbJgYHCO7ehQpcdtllxKJJDCO3x09VHSxZvIIKp5Od22RBVCGEmCkm1AOk6/p9wH0AmqatB27XM3VPxawylErhMUyssqqct2167KRKTeRwHP8ME3jqCQCq1p6PGR/9Yr5vyE6AaqUE9imKywnRFFZ6DlspOR4Y4r6uDl527SW05mkfZSsWMmAYGKEQnZ2dNDQ05aztxLEjAMQrK7BGKcgxGclwmAVvfzsf+LdPsmmwn6effoJbbnnlqNse/utf+Oi8BWyvqWHlylW0HcnP/K53VlUxd93FPLJ5M7z+TXnZhxBCiMLKpgrcDZL8zF539XbzgZ1biTXPz3nbqt/usXCk8jMMaLpLBQKE0nfbK1ac+/j3B9IlsKukByjD4XbZnyRKr3exo8MuTV3VUJO3fThdTppa7TLThw4dyGnbZnrOnrcx+wIIGalIlLLWuay+5jqAMecBBbbYPTLBmloUHMSi+blx4qywfy5WW+6HDwohhCiOSS/momlaGfBvwC2An7OTKEvX9SU5iE2UoFDIvrh2e8ty3rZaXm23PcW7yDOVGQ7hX3EeViSI4lOwznG91xeQHqCR4q11fPKJp2lcvIQ3FjuYEco7O5nn81FVk/te1Qw1nuT1zXNJKh4OHtjP5ZdfnZN2o9EI/7VrOxUOB/e84pX2SnBTkIpEMWNxrrvuBn7wg+/yzNNPkkwmcblcZ2yXHBigMp14lV9wEYZh5nz+T4Z74fnQ386clMHg4ADV1flLVIUQQhRGNqtZ3gm8A3gM2IY990fMApZlEQxmEqDczwFyVtor1nvT+5IJ/GdyN7ew+OMfJXFkK7GOI+fcTtYAOlt5fTWHwmHiA+eeU1IMZizGbS43t61cy5bK3N9UyLAcKpenFNT6Bv5wIHc9QAcO7MeyLNxVVVSX+UmFp1Zlz0qlSAUDLK+u4t/OW0UoFmPbti1ccsllZ2zX98RjqMCeYIALb3yBXQAhnp8EyDlvOWx5mGX+cnZs28q119+Yl/0IIYQonGwSoNcCn9J1/cu5DkaUtnB3J18/bxXBVArL5SXXRWFd1fUA+B0OIpEwfr9cwA+nKKAmwhihgTG3O10FTobAZVRX2An7wMDYx67QIidPABBIJvE21+VtP5bTQdTnxh9NED52NGft7ttnj4bWliwlFT27JHs2EgODOOsbWOsvJ+UrY/2jD5+RAFmWRe9j63EDuyyT12orCPRHSSbyU6barKonioLP4eDYxmdAEiAhhJj2skmAnMDGXAeSoWnavwMv1HX9+mHPrcPueboY6AO+qev6fw97XQXuAN4F1ABPYhdqOJjLNma7YHc3zV4f5akUXS4vRirHFZcqatg4OEAwmeTlfX2SAA0T2raV8qVLMKwhkqGxJ3sPL4MtbBWWwsubmokYBolEArc79wv5ZqN3/34AOhJxXH5PXvcVq6/Ef6IX+vpy1sPqfvZp/m3ZChL1DZCjoavJcISKVXOI1Tfg7e1BfX4zqVQKZ3qtocjunbgDAWKGQdWll+NwKISCeZzbpagMlVXhiwwSzWHvmRBCiOLJZiHUB4Gbcx0IgKZpHwI+O+K5OuAhYD928nIH8DlN04aX2/4P4L3Au4ErsEei/03TNHeu2hAQSZekjZgmRo5L6QLgcvOD/n6+f+wwg4H8VHSajoxQiI7vf4f9H/4gof17Rl37J8OyLLoH7GPXVFtdoAhLnzdp8JZ5C7i5cQ4DJTQMLnD0MAADqnJ6kYF8aW0AoEl10NnZkZMmqwcHWVtVTWtl7uYvpaJRrESMBbe9AYCr/OU8+eBfT70+tHs3AA/3dHPti27CNCyikTxXjmxZDED50JAsiCqEEDNANj1Avwa+p2laI/a6P2fV4tV1/Z7JNKhp2lzgh8A1wMilyt8DxIH36bqeAvZqmrYM+DhwdzpB+QjwMV3X/5pu7zagHXgN8KsctTHrRQb68QAxLAwjDwkQ4C+vYqi/p6QuUott6IkNWMkk3tYWcKRgjKkOg6EwyZR9gdZQLUPgMlSPPYne53AwMNBPU9OcIkdkS3R24gVCPjf5GwBnSzXak/dbfT4OHNBpbm6ZUnuJSIRGxb6H1jR/4VTDOyUVjmDGYtRcdDG6z0d1NEr0D7/HuumlKE4nGyyTv+3fi1lXz4fXrEsXQMhvAlSmXcjjmx7m+f5eLjp4AE1bkdf9CSGEyK9seoB+A9QCbwW+A/x4xMfdWbR5ITAArAGeG/HaNcCGdOKS8SigpZOwdUBF+jkAdF0fBLYA1+awjVkvPmj3LMSVbE6biSnzV+FTHQz29uZtH9OJZRgMrn8YgJpLVmOlEmNu3z0QAOzhby5nNvc3ZibVbR+LMoejpOYBKelYYpW5LyoyUqLB7qWZ5ytj3949U27v2KZncSoKQ6kkDXW5S98swyAVDOJwqLS8/V0kTJMlKOz84meJRML86EffZ3tgiJfd9kYcDpVkwsxbAYRTMdW38pi7nGcH+tmxY1te9yWEECL/srlCWpTrIEYstDry5VZg54jn2tOP89OvA5wYZZvMYim5aCMrTmdukwWHQz3jsZBSIfviOuFw4FTzM17nnX4vSy68hIOHDuT82E1GMY/zcIGtm0n19+OsKKdsYT1mfOwqWz3pJLWppgo1Tz+jXFLSMSqqktXdmIlyeOyRrD6Hg+6hgaKeWxmWZeFNFw4wG6rz/vNKNVRhAW5V5ei+vVM+Bt3bt9EA9CgqS5LJUz/LXEgODuJTYeGll/CTRQtZeegwnbrO1973Lnp6umltbeV1r7sNl8tBJJggmTDyfvwWL1zB7r1b2LVrO29847kXRC2V3x0znRxnIcRUTDoB0nX9WD4CGUMZ9vC14TLLuXvTr3OObWpz2MakqapCTU1+7uxWVvry0u5YlLh9sZZyOqnw5WdqVNzthkQUMxzM27GbjGIc5+Ha1j8CQP2VF+FWkzDOcR8I2QnSnIYavHn6GeWDx+Maf6MpMNMX+6qiEA8PlcS5ZRkGD7lUBg8foeaGVQX5eW295TK+/Jk7mTd//pSPgXHCXhg0WV2Jz5vbn58jlcSjmJTXlPOPX/4ib73tNnoOHOJAOITX6+XOO+9kzpxaLMuipyOE15ff8wfgvGUr2fO4n9jePRM6dsX+3TFbyHEWQmRjQgmQpml3AZ/Tdf1I+vOxWLquv3PqoZ0SBUaWR/KmH8Pp10lvEx2xTeZ2eS7amDTTtAgEzpoiNSUOh0plpY9AIIphFHYJpqFIlGQ8Tqyqhmh07KFY2Uq5vJCIkhgMMDAwtTVFpqKYxzkjevQogT17waFStnwusej459LJLnvuVH1lBbE8/YxySVEVPB4X8XgSy8zPvDKwe1tM7DG/vW0dRT23hnusvZ2jne38Y5U/7z8vRVWoWrUICzh+/DjHjnVQWVmZdXvegUH7saEh578PUoMBfIEQYUPBsuAb3/0hP//5T+np6eE1r3ktmnY+AwNhHKrK4ECEWDTPRRCAxU4XXzp/NZ2xGIcPn6CmZvR7Y6Xwu2M2yOdxrqz0Sc+SEDPcRHuAbsAuIQ1wI2Ov953rq5gTwMjZupmvTwKuYc8dGrHN9hy2kZVUjktFZxiGmbe2z2WX3889O7dy8yveyGV5ulg1vGUQHkCJRAr+/Y0aTxGOc0b0ZDuK203l6vMwjChM4Jh39Q8C0FBdiZnHhCJXMpcYlmnlPV5DAdWCUH9fSZxblmXR0WGPxC2vrcr7968C3gofTc1NdHV0sWfPHi6++NKs2jISCU6GQ7g8XhrmL8x57IlQBCMSxfJVYBgmbrePt7/9Padez/z8DCxi0WRBznXH3OUYlsUcr5cdTzzBVS99+ZjbF/N3x2wix1kIkY0JJUC6ri8a9vnCvEUzug3AezVNc+i6nqk/+gI7FL1b07QhIABcTzp50TStGruwwrdy2MasNzg4CEBZefZ3jcdjllVC30kcidLvvci3yssup3a1RnT/85ip4ITekymC0FiTu7LEM8XB1hrueXADS6tKozpe55MbWO0rY79hUllXXZB9OrsHed/8RXS6/ezbtzfrBKizp5v/3LsLl9PJX297AyRy2wNjGQbJQABPYxPnqjqtqgrJuJH3CnCnuL10KU5aMOjevBHGSYCEEEKUrunQx3sXUAn8SNO08zVNexvwIeBLALqux7GTlC9rmvYKTdPWYJfqPgHcm8M2Zr2hoUEAfGX5u4BUyu1Sve6UrLXhdKo41CTWqelq48usASQJ0NmcjdUcioTpS5/HxTb0t/v52FKNi+c243QVqGKfYXK+AZfW1LJv7+6sm9H1fQAsWbgQJZmfCmyJgYExF1dVVYVEPEU8lt8KcMOFaprsfR8fWS9HCCHEdFLyCZCu693ATYCGXZb6DuCjuq7/ZNhmnwZ+hL2W0FPYK6XcpOt6IldtCHhZMMwXVqyiPo9lsJ219mKNPsvCzNHK8tNNamiI6IH9OEmR6DmBlZrYHW7Lsug6lQDlr5duuqoutyeu9/cXf40pyzShrw+AaAF7pFINVZiqQrnTSc/BA1m3c2C3XVRz+bwFYy7MOxWpSAQlMbIuzWmqqhAOJvK1+1G5F68GoDmZJJksUM+TEEKInCu5hUJ0XX/bKM9tAq4Y4z0G9qKmHx9jmym3MdvNAbzl5Qz6yvO2D2fDXDYO9NMdj7NqoJ+6uvq87atUDfz9AQYe/BuR66+mcs3EF6vsGwoSTyRRFYU5BRpSNZ3UJA1e3tRMZyQ6/sZ5luzpQTUMEqaJ1VRduB07HcTrq/B1D+Lo7SUej+PxjKwPMzbLMLh6+3bOW7WOtvqGPAUKyXAUMx5H9XtGneNjmhbh8LkTpHyo0i4ivulvVLtcHH7uWbSrryno/oUQQuRGyfcAidJgJhN41XQp4cr8rVlvVtXzf3193NN2jK6uzrztp1SlggEGH1sPgK+lFnOMO+AjneyxezaaaqtkEdRR+PvDvGXeApY5HMTjhb1wHinR3gZAWzRCVVPWlfazkpxr31RY4PWyN4thcPGTbbiACqeT+c0TT9AnKxWJYEaj51zfx0hZxKOFG/4GoLrctKU7pk8+80RB9y2EECJ3JAESE5IcsifXp0wTZ0VNXvdVVW1foHV3d+V1P6Wo/6/3Y8Vj+Oa34qzzjv+GYU722gnQ3Ib8JajTmbfCXu6rwumip6e7qLHET54E4EQ0Sk1TYX9e8Tl2wrWozM+OHdsm/f6+9HsOhkMsymcPrWWRGBxAUc5OgFRVIZkwiBWqAMIwR5oWcce+3TzQ2T7+xkIIIUqSJEBiQkLp3pihVBJ3HosgAFRW1+FzOOjp7MjrfkpNsr+PoczCp9dejJWcXC9Fe08mASpsj8J04fDaC41WOJ1F712MpxcRPR6NUDunsMM84832+bG4zM+O7dsm/f7eHfbKAD1OBx5G753JleTgEKpxdi9PMQogZNSvupK9oSDPbtqEca4SdUIIIUqaJEBiQgKd9gVj0DABR1739V63yk8uuITU4UPjbzyD9P35T1ipFP5li3HUTH5l+7Z0AtQiCdCoVI+dAJU7nUXvXYweOwrAkUi44AlQorEa06EymExyYNfOSb3XsizUE3YFtFR1dR6iO1MyHIFRbgSoqkIwMPHqiLk0f95SvN4yAoEhDhzQixKDEEKIqZEESExIpNceMhQh9yvdjhR32ZOyE+kqWbNBoqOdwNNPAlB3zQVYyckXH8zMAWqVBGhU6hk9QMVNgIxXvoY7Dx+gQ7Xw+csKum/L6aD9X/+Bj+u7OdbVQeckelqT3d14kklSpklVa2seo7SlwqPPAzINi0i4OAU6HQ4H1yxbzdvnLaTtD78rSgxCCCGmRhIgMSGRaIzueIyQmv9TJumzh9iZgUDe91UqjFAYV109FavPQy3LbliRDIEb2/AhcMXuAToZi/BUfx9ljcX5WZkelaXLlwGwIz2kbSKi6fV/9odDLJmTvwIIGUY8TioUwuE48/dOKmUSixavDPXqlgXc3DQH/+EjRYtBCCFE9iQBEhPSVV/HB3Zu40HH5IdmTZZRUQ2AMxrJ+75KRdnyZaz4/B00vOCSCa/7M1wsnqB3KAhAS70kQKPJ9ACVO5x0FXkC+8mT9jCyQhdAyIinEqxYdT4ORWHr1ucn/L5IWRkPdXfx7EA/C2sKc54l+vpRh/U7Oxz2/J9iJkAVKy/HsCzqLItIhxRDEEKI6UYSIDEhg4ODAJT5C7BoY7W9tog3mcIq5CqHReRyqljhHoxEMKv3H+3sAezFPqvKCzukarpw+Dz0rV7Ef+zbzcl0FbZiGHz0Ybw7d9Lg9hR8/k+GGk3wiqEQP1p3EVs2Pjvh9x2IhPjB8SMc8LjxOgpTaj0RDMGwcvCqqhINJ0kli7dQcsuCFRyM2Ddojjz8YNHiEEIIkR1JgMSEDA0NAlDmr8z7vpz19tCaKoeD3t6evO+vmAYffZih9Q+jRgeIdRwFM7uLusPt9pCuxS2NOYxuZlEcKnXLF3AoEqbt5ImiJdcDjz7Mmr5+WrxeGuY2FSUG0+vCH0tQ5nBCV8eE/59t27YVgBXzF+QzvDMkw2HMWOyMeUCBoeIuZquqKp0++3fh0JYtRY1FCCHE5EkCJCZk7Z49fH7FSpo9k1ubJhtWep2hOrebE+lywTNRoquTnt/+mq6f/4y+DY+SDA5k3dbhk3YCtKhIF9TTRXOdfdEaCoVO9WoWkhmLkkwXYDgaidDQWqSfl6KQXNgMwIrySp57bvxeoOiB/fRs24ICrJ6/ML/xDZMKRzAj4VMJUCppEosUb/hbhmPZWgCqAwGMyOwZriuEEDOBJEBiXJZlUROPs7y8Am95Vd73l/RXsdcwebq/j+PpcsEzjWVZdN3zY6xkkvIVy3DVeabUnvQATUzqeCdvXLKUZo+XtrbCJ9fRw4fBsuiJxxlKJYvWAwQQnm+fK2sqq3juuafH3b7nj/fyFtXJixuaOK85/wUQTrEs4r19qIpyagHUaBHn/2QsXHstJ6NRnIpCxxOPFzscIYQQkyAJkBiXGY2SKX2gVOf/Att0e3iweg4/On6U4zO0ByjwxAai+j5Ut9sufDDJRU9HOtxulylf3CI9QGMJ7jrCq2vqWV5eUZTexdjBAwDsCwWpbqjF7Z1a4jsVgYX2XLvzyivYuvHZMYcEGtEo0QP7AThqmbRU5v9GyHCJoSGUZByHQyUWTRRlAdSRKiqq2Wsp9MTjHND3FjscIYQQkyAJkBhXatAemhVKpXBXFqbyU3WdPTznxIljBdlfISW6u+n+9S8BaHjxtZjm1IbPRGJxOnrtn5EkQGNz+O0hnLUuF0ePFr6EcfTA6QSocd6cgu9/uGRNBWZtFU5VpTEa40A6wRlNeOd2FNOkPRalecECFCW7Uu3ZSgbDWLEoiqIQGCzOAqij6V20mvfv3Mq9siCqEEJMK5IAiXElB+yL64FkAm9ZdUH2WV3XTLnDSc/xmZUAWakUnT/8HlY8hn/pYsoW18EUJ+MfSs//qa0sp7rCn4swZyxHmZ0AVbvcHEz3xhSKZRhEDx8CQA8FaWwtbgKEopBabhczuLCqmofHqGYWTM8Reqa/jwsWLSlIeMMlw2FSoRBmyiQcKs4CqKNZu/ZqAJ555ilCoewqOAohhCg8SYDEuMIn2wDoScQpK8AcIICL+05w1wUXszIWn1GlsGNHDhM7dgxHmY/Gmy7HTEz9bvbuI/aaMuctnDvltma6Uz1AbhcHD567xyMfkj3dWKkkMSxORItYAGGY4LK5BBvr2RYY5NFHHxp1GyMUIrxrJwBP9vdx0YLFhQzRZlmkAkESiRTRSOkkQC3NC5jbvBDLMHjm3t8UOxwhhBATJAmQGFewzb7AHjBMXO7CzFlw1Np3xxscTrq7uwqyz0LwLVvO0k//Oy2veymmkZvKUbsP2z+fVYvn56S9mWx4D9CJE8eJRgtXTtk9pxntu9/jC0cPYQHNi4qfsA7Mr6X+Y7ezNRTk4MEDHDp08KxtghufBcPgaCSMu76eOZX5L4U/GstIEQnGSmL+z3BXrruK76+5kHkbniDZ31/scIQQQkyAJEBiXNFUiu54jKECLXwIkEwvhtrs9aLPoAnGbreKt9KJo0IBctOzteuwPZl/5aJ5OWlvJnOmE6B6jxfLsjhQ4Lkbnb096L29OJwOmuY3F3Tfo7Esi6TT5JprrgPg3nt/e9Y24T27AXi0t5vLz19Z0PiGMxUHQz1BCjz9aFxrL76RE7EoKtCz/uFihyOEEGICJAES42qbN48P7NzGFlfhKlYlKusAaPZ42bd3T8H2mw9mLMrJb/4PyZPHUUM9RE/oWKnclPHtD4Ro7x1AURRJgCYgMwSu2mXXNdy5c0dB979j1zYAmuY343S5xt64QIZiQW59+S3c1tLK03+7n1jszGGZVW97B189epjHenu4ZsX5RYlRcToxVDfBvgCKWloZUFPjXHaYdkx96x/FynIxYyGEEIUjCZAYV2dnJwBVNQ0F22eiohoT8DocHE/fgZ6OrFSK9m9/i/CO7Zz81jeJHNtDKpK7ydI7D9m9PwvmNFBelv9Faqc7R5mXpldcy85VKwDYsWNbQfYbPXSQo3f8G7FHHgWgZUnpDFcMxcLM27Wb17a0cnNlFX/84+/PeP2BB+5nU283TS0tLKsr3O+A4dyVFSRMhUBnH0oJJhiV664jnErhicVO9ZgJIYQoXZIAiTFZlkVXVwcAldX1hdux6iDmsyuaBabpYqiWadJ594+I7N2N6vHQ/KobSQ715nQfG/fYlcwu0hbltN2ZSnGo+OY3svzSCwHYtm1LQYpshHftJHHyJGaXvV7T3MWl01sXTkRwv8QeAnd9fQPP/vTHhEJBBh97lFh/Pz/+8Y8AeM21N1Csvhd3VSWBwTiJUARSSYoWyDlcfOkLeTK9XMCR3/y6yNEIIYQYjyRAYkzxY0e5+dAhPrJkGeVVdQXddzK96Ko7FGJoaLCg+54qy7Lo+dXPCT73DDgczL3tFnDmvnrVs7vsSmaXrVye87ZnKiuVZM15y3G73XR1dXLkyOG87zOcHmr3dPtJAOYuLZ0eIAvobyqn6sYbAfjHOS3s/ciH6P7ZPez/t4/T19FOTXU1L1l3YXECVBTwVzLUG8SIJzBjcdQSGwbn9ZbR1bIU07JwHD9O5PjMXMBZCCFmCkmAxJgS7e34LPA7nJRVFDYBisxfweOhIMeiEXaly/BOB5Zp0v2LnzL46COgKLS85iWo5eaU1/sZ6URXL209/TgcKhefV/i1WaareNcAgfVPcOuFFwPw1FMb8rq/ZF8f8aNHsIBnu7vx+n00l1jJ8qFokLo3v47E0mU4FIUqw8CwLH52cD9Rw+Bj73s/jnhxyk+7KytIWk4CfQEAUqEQSgmWxr/4ulezccCuArf/gb8XORohhBBjkQRIjCne0Q7AyViUqurCjv8fWHEJO1oWcCAcYtOm5wq676kYemIDQ+sftZOf174Ud4MH8jBv4emddgWztUsW4PcWrkDFdBc90U33Xx/h6kZ7HZ5HH81v5a7Qls0ADFaWM5RKsmjlUlRHaf3qDcSChM0Y6/79Pzh23fX877EjvH/HVv7e08Xt772dG1ecn5dzeCLcNdUMBRIkonYClorGIJkouWFwc1sWsr28no/u3sH3t24pdjhCCCHGUFp/hUXJiaXXAGqLRqksYBGEjCUr1gGwceOzBd93tqqvvgr/8mW03PpS3E1eLNPIy34efG4bANdeUJzKXNOVs7IMgGavD0VR2Lr1edrS53k+BJ+3E6CNwUEAFq9alrd9ZStlGnSH+1BUeNFb3sanf/Fb/v3LX+PPf36QD7z9HcQHBosSl6KqKBXVDHQPnXrOiMcxotGSGwYHcMVL3sSxaIS//OU+jhw5VOxwhBBCnIMkQGJM0XQBgh7AV1Ze8P0vXHgey/3lnDy4n0BgaPw3FEmyvx/LMHA4VHwui3lvfSWuBg+WkZ9FG4939rD7SBsOVeXFl67Nyz5mKleVXVzD6u3lssuuAOB3v8vPxPVEZyexgwdAUfjLHns9q1JMgAD6wwPETLsEdkNDIzfe+CKWLFlEoq+fRCB3lQsnw1NTTdxwMNR95v/9ZDBUktXgFsxbxgVrr8Q0Te783H8S75o5izgLIcRMIgmQOKfU0BAEApiWRaC8GqUIKxAu3HA/nz9vFRdXVpfsMLjQ1i0c+8y/M/CXP+FKhYif2E305EHIU88PwP1P20NsLj1/KXVVFXnbz0zkqq0EIBUI8OZX3wrAb3/7SwbTVbxySXE4qL7uegLzW+gKh6mqr6FpQUvO95MLA9EAgUQQp/P0nwU1mSDa3p7z+WsT5a6ro68vTCpx5o2EVCSKFY+V3JpAALe95h+5rqGJt6dM9n/9K7IukBBClCBJgMQ5xY4eAez5P2V1xVm1PtxkV8taWVHJQw89UJQYzsWMx+n+1c9p//Y3MSMRIru2Ez34PNGOo3m9YIzGE9z7uJ0Mvvzqi/O2n5lKdTlxVtq9QBcvXMjy5RrhcJhvfOO/c74vV0MDze98G3cN9QCw8vK1RbmRMBGGadAe7ALVvmB3OlVSQ4NEe/qKEo+zzEfKU05/+9mJqZVKkQqGUCm9YggN9XNovewFpCwLT18fbfffV+yQhBBCjCAJkDgnxeWi0+tlZ2CImvri3LUOz1kI2AnQY4+tJxqNFCWOkcJ7dnPsjn9n8OGHAKi7/krmvOJKEjle52c09z25mUA4SmtDLddfuDLv+5uJXLV2r1myvZ1PfvIOAP74x9+zfv0jOd2Pqiqc7DvJpg3PALDm6iKVkp6g3tAAwVQYVVVwWAbRE22YieJUf/M2NhIIJgn1h0Z9PRkKQTJBKeaTL3r5W3koYg8nHPzjvYTb2oockRBCiOEkARLn5D9/JT+NR/nxiWPUNhYnAYo2tGK63NS43cxVVR59NLcXqJOVGhyk4/++y8mvf5Vkbw+umhrmveVVVKxsxojnPzkLRWLc9Zf1ALzpxdfgUOW/cDbcdVUAxI4f54ILLuSNb3wLAJ/85Ed47rlnpty+ZRh0/fynJNqO8fNf/IxkIknzorm0Llsw5bbzKRQP0xnqxuVWMQYHiXR0FiUOh9cDFTV0n+g/5zZGLE4qGEQtwQzI5XKz6g3/gh4O41EUtn3u0ySj0WKHJYQQIk2unsQ5WZbF/v37AGhoKs7K9ZbDSbjVnjR+WU0tv/jFPVjFXANEUQjv2A6KQu3VlzHvrS9F9Vt5K3Yw0g/ve5iBYIgFcxp4xTUy/C1b5SvmM/+dr2Xe2+3E5yMf+ThXXXUtsViM97//3fzgB98lMYWej8HH1zO0/hGOfPnL/PkXvwPgyluuL9nhb8N1DHVjpKJEjx8nFSnORbuvuZmhkMFg1+CY2yWGApCIl2QvUENjC+GrX00wlaLBMPn7h/+JcKg4xSSEEEKcSRIgMap42wm6D+1naGgIVXXQ2LywaLEMzj8PgGvrG9i3ZxebNxeuGEK8/SR99/0Jy7JwOlXK6yqZ+8bXsuCdt1K5Zi5GfPThOfmwed8hfvXw0wB8+A0vw+V0FmzfM42zogxXdRmqmURRwOl08vWv/y8333wLqVSKb3/7Tl71qpu55567GBiYXHGEVCBA3x//AMBjJBkaCtIwt4m1106PhNXjdBHqOEmkvb0o+3dVlGOW19B+pHvcmx1GLE5yaIgSrIUAwJI1V3JkxeWkLItlqRRffNfb2LdvT7HDEkKIWU+uoMSoen79K8J7d3NdXT37PBU4Xa6ixRKatxyzrJyaSIhFZX6+8Y2vcc89v8LhcORlf2YsysCWzbQ9+zSBdOniqvOW453XQKLnBM7yJGYygVXA4k4dfQN8+ge/xrIsXnnNJVyxSivczmeoVDSMGQvjKC8nlTLxeDx88Ytf5dprr+drX/sy7e0n+frXv8I3vvHfrFmzjiuvvJqVK1dz3nkrqa2tHbVNyzTpvOsHmJEwgx4333l8A4qi8Orb35i38zWXfC4vLY5yOnbswBOJ4lW9mGbhelwVVcU3bx4dPRECPYEJvSc+OISjrAzVX17QWCdqwVW30OZ0cPjZB7j/oM4Db34dr3nN63jb297F3LmtxQ5PCCFmJUmAxFni7e1E9u1BAfYEg7QsKe46M5bDSdclN9G8vIXOj/wjod07+fWvf86b3vTWnO3DCIUIbX2e0PZtRPbsxsoMf1IUKlefjzlwjFD4CGYynrN9TlRX/yAf+p+76RsKsnTuHD78hlsKHsNMlBoMcvyuezBNB80f+BAAiqJw8823cP31L+CBB+7nN7/5BXv37mHbti1s27bl1HsbGhqZP38+c+fOY+7cVsrLK/D5fDTu3UPjkSMkLIvPPb8JC7jlna9lwXmLi/NNToJTdbCocg7msU66jh2iwuOnqdyFojgKNuy0fMF8Qik3Jw8cmfB7rFSKeF8fPrcLxeXBKsEkqOaym9HOv4zrHriLxzc8zIN/+B1P338fSy+5lJtueinXXHM9FRVSzl4IIQpFKep8ihKiaZoK3AG8C6gBngRu13X9YJZNHjYMc1F/fzhXIQJ2adqaGj8DA2FSqfx0QbR/91uEnt/MPtPk01s28rLb3s8lV78sL/uajAXNlRzc9jBf+PxncDpdfP/7d3HRRZdk1VZqcAArlcJV3wBA9NBBTnzp86de9zQ1UHfJarwLmzDMeF7X9BnL3qNtfPTbP6VnIEBjTRU//OT7aKqtKkos+aCqCl6fm1g0UfC796lQlJM/+zsAC+74LJ5580fdrqOjnSef3MCWLZvZs2cXx9KLAw+nAG9unc8r5tjFQr595BCbk1Fe/u5bWX1VaVR+G+tYOxSVJTWtVPYEOb75OVLxGIqiUO+vpdZbjWXmfykg/9wWktVNHNxxkmD/5OfKeGqqcDc0YqqOYi1bBGSOs4tYNHnWcVZVhd7BQ/CHe5hrmvylq4M/dbQTs0yWLdNYt+5Cli5dxqJFi1m0aDG1tXWoUuhkVPn8W1hb68fhUI8ApX/nQgiRFUmA0jRNuwO4HXg7cBL4CvYvv5W6rmczG3paJkBDTz5B149/BKrKx3fv5Eg4yD99+ofUNRR/8UaXU+Wi85r49X9+FO+Rw/yxv49Pf/nrXHHFVaNub1kWqcFBUr09JLq7SLS1EW9rI952AiMYoOrqa5j3nvegmCmUZJTDX/8GvtYmyhY04vA78TitolyYA/QNBfnZg0/w64efwjBNFjY3cueH3s6cuuqCx5JPxUyAAHoefp7IwTb8q1bT8s8fRpnAxWYwGOTIkUO0tZ2gre0EHR3tRMJhrgwEOC9lsKnGz8k1C1h64Xl4fJ4CfBcTc65j7XV6WFTVjL8nwMmtm4mHT89rc6gq9f46qj2VWKaSn54gVaV8XivJ8jqO7OtioDP7BWk9tTW46+uwHK6iDYcbKwECIBGl6qnfw3H73lrMNHm0p4sn+no5HAmfsbKRy+WioaGRxsYmGhubqK2tpaKikoqKijMey8vL8Xp9eL1efD4fHo8Hr9c3LYZdZksSICHEVEgCBGia5gZ6gY/puv699HPVQDvwDl3Xf5VFswVNgJLJBKFQmHg8RiwWJR5PYFnmqQsWy7LSH/b2ZWVlNDc34/OVAWBEIgw8+Df6//oXsCw6l5/HP//ibqpqG/nQZ+4umepVDW6Dxnu+hhWPYVgWRyJhPHOaWaqtwOP24GpspO6WVwB2KeIDt78HjFF6b9JD2+a95bWkgv0Y0RCpSPBUNbd8XJgbpolhmKQM46zPU4ZJ72CAg22dPLfnAM/s3E8iZcfyokvX8LE3v4pKvy8ncZSSYidAycEgHb99HMswqLruBhpe/wZUz9hJi2UYJHu6iezdg7OujvI163A6VWLJIEc3P8mhBhcpszBVASdj5LF2qg4a/LXMcfihvZv2XdtJxs6u+uZQVWrKqqn2VOLAmdOfk6emGk9zM2HDw9F9HQR6JzbvZyzuygrc9XUoXh+maRW8N2jcBAjAsvB2HsC35RHM3q5TT8ecTp5Q4G8njnHyZNupKkVGlt+Ey+U6lRid/rATJI/Hi8fjwe124/V6cbs9eL0e3G77Nb+/jLIyP+Xl5fj95ace/f5yKisr8Hp9gELcgHBSIZqCcEohklSIpUBRQB3+AaiKdeZz6Q8FcCigKFb68cz3Kcrp1zPPu50qLQ1+BgclARJCTJ7MAbKtAyqARzNP6Lo+qGnaFuBaIJsEKC9+9fAWhv7yOxzJBJgGlpkiEeglONiLZVn0JeI80H36D+rrWlopdzgABSX9h0ZBQQH6kwn2VFdx440v4lUvfAkDD/wVLAvX5dfw3cc3ALDygmuKnvyoioKq2h9BxUnFG95DxeN/gaOHWeovh2CQ+OZNxIF4XR3mRWtpnduMqpi46+sglcJVV4OnoQZ3XSWumkqclV4sM0no0PZz7jeZStE3FCQQjhIIRwlF04+RGMFIlOCpx+gZX0fjiTMSG8MwMUxz0nfPVy6exztuuZGr16yY4hEU5+KqrqD22rX0PbaFocfXE3j2aSouuYw5b3vHqW26fnYPqcEBzHAYIxQi2dONlU5Oy9esoeyilXTGBjnWf4KuOgWrBJMfAFVR8Tm9+P1+yp0+qi0XjkCYoUM76D95HMsc/SLSME36QgPEkjGqfVV4nV6cOE/dUJnMea263TjLfLjK/Tgqq0moHk52h+k4dJhkLJmT7zMRCJKKx/FUV+EsrwC3G0tRTt8AGidcyzq9yelH5fTn1unXzng+/aFaKilDJWY4MEwr/fqI7SywGlbCi8+jvO8I1Ye34Dq2F28izi1vfjevveI64okEgxufwvurH5H0+IirKnHLImZZRE2TeCrJs7E4e4IBIuEg9ZbJFf5yUqkU1rBvMvPZ5v5+DqR79xrdHm5ID/8dLp7+eCIwhJ4u2V3rcvOChsazD5SigsPD7qTCHsuH4q2iylvOi30WONzYf22Gb6+gK+XsUKpAAb+V4qVm94htTn96UClnq1oDgMcyeIXZccamFgp7L76VX76vNIaYCiGmF0mAbJlSPCdGPN8OjD4xYIKcztyO3/6v//wY31/QQIVzWFU2jwuamgE4EA7z90AMxeVBURRuaJhDvWv0H/PxSITf79nB3r17+M7/fZ83XfQSYhe8nC1xP0d2/TcAvRd+kN9H7ZtgI9Og4XmRco7nz3rtXC8woia7wqm/3Ge2Z9lvu/IaqtZ0Ub7zPtjxF8yhDiyg+9B+nrn5flS3D091C57qOajeShx9UdQjoDgC9oWemcIyTSwzhZmIYMTDGLEwRjxIKhogFRnCTMZGPW45pagoqhPF4cRVVk1Zs0bFgnXUrnoR/rkr+YOicG/o3AnoeNeeY7081TvjU2n7jJdHjHia0vc09ltH36ARllz9PC/cejc1oS62Hxjkkw+Xn3r5Q09vxJc4s9x50uGmo2Yx+5QL2Hh/NRZVWIyxyOkUvicY+5hM7L3Dr+ozn2d6hS+D6nEaGS6TJ2X+Y2ZOz8zjqQThzPPWsixIgBUHa8AOwzQtTAvwguU5nUScSiys089lkohzPm+dfi+AFbY/zn7fKMnIKPEWzvkw72U45yZZMbiHtqPzGezwAT6ua/fwj4A7HsWNfZduuCfWfZjO5hsAWNq7iZft+K9z7qV/7ds5VH4eJKM0hY/w2v6HzrltpHEN+2NOSISosUK8ru7cf8eskyfY07kfC6jw+rh11TmK5ljwp452trcdB8Dn9nDrmgvO2ibjge5Othw/CoDb6eTWdWeWkTcsi7f85H2o79+Iosg8KSHE5MgQOEDTtH8Afgo4dF03hz1/D9Ci6/oLs2j2sGVZi3Lde/L1XzxC4k+/waWAhYqlOIg7K4l452C5K+jzNfLgvNMFC2459kd8qQgoyrA/8gqmohCwVB4KG5hbfwKd6Z4QxQGWPWRMWfNmHC/5Sk7jzwfLsqBjC6b+V6wTz0D3HjBzczcZAE+l/eGtQvFWgacKvFXgqbS/PvVc+muXHxwu+1g6XKA6QM08Os/4XP5wlw7FMpkfOorHSLC/+nSv200n7iepugi7ygk5y+n2NdHrbcCSn52YBAXr1NAu+7ew/Y8Cp3vnh72mKPY5WZEMUBvrw5eKUJaK4jMieFNRnGaSvY0X0F05DwWYEzzBpW2P4bAM+2aSAmrmN74C++dfQVfTClwq1IfaWas/gJoeWmY/no6vb9mlBBeuweOEmnA3zRv/hEsFlwNcCqiksFIJrFSC1PxW4s31BAMBwl3dlO/aTTKZPKtn0LIs+srL6amuxLIsXKkUSzt7Tr8+IpXvLyujs7oSAIdhsLyjO70dpx5rbn0Nt9yStwI9MgROiBlMEiBA07TXAr8DynRdjw57/jeAR9f1V2bR7GHDMBcFArldSd3hUKms9BEIRDGM00NWBmIQSCjEUgoxAxLGmUM1hhv+I7fvgFrs3ryBP9/zTY7odiK08uJree9/fBuPt+yMbc9o5xxtjrbtWPuf6Gvn2m7ktslknIGeDgZ7Ohjs6yQejZCMRYnHo1imiaKqqKqKoqioDgduTxken9/+KPPj81fhr6impqEeS/HYyaN1ds/WSGO9PG4aPJW28xjXVPL3ibStqgplZR4ikfgZ8yWKHVfW753CjpUxz/ipnwOqqlLm9xAJxzGHDXeb6j2aqcaVSQRGTQw4Myk4nTBYZ753+HbDOqZGfe+IbU8/Wufcbvz3nt7O6VCpqvQRDEYxDXPKx1eM7lx/C3OhstInc4CEmOFkCJwtM/StBTg07PkW4NyTRCYgX6WqDcM8o+0Kp/2RrUtfdhVve+mVtLefRFVVmpszVd9y2JNSMCosnAvMzbqFQpQbF5nj7GFgICXHOc/kWOeJdebnigoO1V4UN9cX5uJsI/8WCiHERMgYDtt2IABcn3kiXQXuQuCJ4oRUeIqiMHdu67DkRwghhBBCiJlFeoAAXdfjmqZ9C/iypmk9wFHgq9g9Q/cWMzYhhBBCCCFE7kgCdNqnsY/HDwEfsAG4KctFUIUQQgghhBAlSBKgNF3XDeDj6Q8hhBBCCCHEDCRzgIQQQgghhBCzhiRAQgghhBBCiFlDEiAhhBBCCCHErCEJkBBCCCGEEGLWkARICCGEEEIIMWtIAiSEEEIIIYSYNSQBEkIIIYQQQswakgAJIYQQQgghZg1JgIQQQgghhBCzhiRAQgghhBBCiFlDsSyr2DHMVFHLsrymmfvj63CoGIaZ83bFmeQ4F4Yc58KRY10YcpwLI1/HWVUVFEWJAb6cNy6EKAmSAOXPIOABOoochxBCCCEmrhmIA9VFjkMIkSeSAAkhhBBCCCFmDZkDJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGJEBCCCGEEEKIWUMSICGEEEIIIcSsIQmQEEIIIYQQYtaQBEgIIYQQQggxa0gCJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGs9gBiPFpmvbvwAt1Xb9+2HPrgDuBi4E+4Ju6rv93UQKcIc5xnF8OfBo4D+gFfgt8Wtf1aFGCnCFGO9YjXv8B8CJd1xcWMq6Z5hzndDPwdeBmwAAeAD6o63pvUYKcAc5xnC8GvgZcCAwCvwT+Q9f1eDFinK40TasFvgjcAlQCO4BP6Lr+ZPr1dcjfQiHEJEkPUInTNO1DwGdHPFcHPATsx/6lfwfwOU3T3l7wAGeIcxzna4A/AL8H1gHvBW4DvlPg8GaU0Y71iNdfBbyrUPHMVOc4pz3YvzsWAy8EXoZ9gX5PoeObKc5xnOuxE8u9wAXAu4G3AV8ocHgzwa+Ay4E3AJcAW4C/a5q2Qv4WCiGyJT1AJUrTtLnAD4FrAH3Ey+8B4sD7dF1PAXs1TVsGfBy4u6CBTnPjHOd/BB7Vdf2/0l8f1DTtU8Ddmqa9V+7kTs44xzqzTTPwf8DjwMKCBTeDjHOc34h9XJfout6V3v5DwHc0TavUdT1QwFCntXGO89VAHfBRXdeD2L87fgbcBPxrQQOdxjRNWwq8CLhK1/Wn0899ELv38k1AFPlbKITIgvQAla4LgQFgDfDciNeuATakf+FnPApomqY1Fii+mWKs4/w14KOjvMcJVOQ5rplorGONpmkK8BPgp8BjBY1sZhnrOL8EeCST/ADouv6grutLJPmZtLGOc1/68X2apjk0TVsIvBR4tnDhzQi92L2Uz2ee0HXdAhSgFvlbKITIkvQAlShd1+8D7gPQNG3ky63AzhHPtacf5wPdeQ1uBhnrOOu6vnX415qmuYGPAFtkvsTkjXNOA3wYaAZeDnyycJHNLOMc5+XABk3T/gP4f4ALeBD4mK7rgwUMc9ob53fHE5qm/RfwOez5Kw7spP6fChvl9JY+J/86/DlN014HLME+b7+A/C0UQmRBeoCmpzLsbv/hYulHb4FjmRU0TXNi90ycD9xe5HBmHE3T1mCP33+zDC3Mq0rsxGct9hCi92AP1/pTugdO5ICmadXYyea3gUuB1wFLge8WMaxpT9O0q4C7gD+lE1D5WyiEyIr0AE1PUcAz4rnML/twgWOZ8TRNqwB+A9wA3Krr+lnDt0T2NE3zAr8APq/r+o5ixzPDJYAQ8EZd15MAmqb9P2Aj9iTyTUWMbSb5MlCt6/pr019v0TRtAHhY07Rv6Lq+vYixTUuapr0S+/fEs9hz2UD+FgohsiQ9QNPTCaBlxHOZr08WOJYZLT0p/wngSuDm9F1HkVuXASuBz2iaFtI0LQR8Cpif/vrNxQ1vRmkD9Ezyk7Y7/bioCPHMVFdzdjKZmf+zvMCxTHuapn0AuBd7ONxLhy1DIH8LhRBZkQRoetoAXKNpmmPYcy/AvrCRMc85omlaDfaE2gbgal3X1xc5pJlqI7AMe1jWuvTH97DH8q8D/lykuGaiDcBaTdN8w55bnX48WIR4ZqoT2MURhssc5wMFjmVa0zTtfcD/At8CbhsxRFb+FgohsiJD4Kanu4CPAT/SNO0r2GPMP4S9To3Inf/BXi/lJUCPpmlzhr3Wo+u6UZywZpb03dwzLr41TesHUrquy0V5bn0P+ADwi3QhhKr0c+t1Xd9S1Mhmlq8DD2ia9jngx8AC7PXD/qrr+rYixjWtaJq2HHuR0z8AXwIahxWciCJ/C4UQWZIeoGkofWfrJkDDXhTuDuz1Jn5S1MBmEE3TVOxFT93YvUAdIz7mFS86IbKTrl54DXb1t+ewq5htBF5dzLhmGl3X/w7cgr2GzTbsC/W/Aq8vYljT0a3Y5+qrOft38J3yt1AIkS3FsqxixyCEEEIIIYQQBSE9QEIIIYQQQohZQxIgIYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEENOSpmlKsWMQQgghxPQjCZAQYtrRNO0VwE/Sn1+vaZqladr1xY1q6jRNO6pp2o+LHYcQQggxkzmLHYAQQmThX4Z9vgW4AthTpFhy6dVAoNhBCCGEEDOZJEBCiGlN1/UA8Gyx48gFXde3FjsGIYQQYqZTLMsqdgxCCDFhmqY9Blw37KkbgPXADbquP6Zp2meANwCfAD4PLAX2Ae8DLOBOYA1wCPigruuPDGt7FfBfwLXppx4BPqLr+uFJxngUuBuoAt4KeIA/A/8IvB/4J6ACeBh4j67rfcPe95iu62/TNG0hcAR4PXAbcBOQAn4PfEjX9dBkYhJCCCGETeYACSGmm9uBremPK4DKUbaZB3wd+AJ2AlEL/A74JfAD7ARJBX6laZoPQNO05cDTQCPwNuCdwGLgKU3TGrOI81+ABel9fRF4E7AZeDHwHuAzwCuBz47TzveBo8CrgK8A7wD+LYt4hBBCCIEMgRNCTDO6ru/RNC2Q/vzZcxQ/KANu13X9AQBN084HvgS8U9f1u9LPObGTIg3YBtwBRIEXpofVoWnaI8Bh4KPpj8kIArfpup4CHtY07f8BLcBluq4PAX/VNO1G4Kpx2rlf1/V/TX/+iKZpLwJuAT45yXiEEEIIgSRAQoiZ6+lhn3emH4fPFepLP1anH1+APZQukk6OwC5I8ATwoiz2vzGd/AyPIZBOfobHsHqcdp4Z8XUbsDCLeIQQQgiBJEBCiBkq04szQmSMt9Rhz7W5bZTXerIIYbL7P5eR7zGR4ctCCCFE1iQBEkII2yB2UYKvjfJaapTnhBBCCDENSQIkhJiODMCR4zYfB84HtmWGrmmapgA/Aw5izxMSQgghxDQnCZAQYjoaBK5IFxGoylGbn8Web/MXTdO+C8Swy1a/Crg1R/sQQgghRJHJOHIhxHT0LSAJ/A3w5aJBXdd3ANdgrxX0U+wKcc3Aq3RdvzcX+xBCCCFE8clCqEIIIYQQQohZQ4bACSHEBGiapjKBXvMRpa+FEEIIUWJkCJwQQkzMXdjD7sb80DRtYbECFEIIIcT4pAdICCEm5jPYc4/G057nOIQQQggxBTIHSAghhBBCCDFryBA4IYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEEEIIIYQQs8b/B5kpIXDICiQaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the signal trace as a Chromatogram object and crop between 10 and 20 min.\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "\n", + "# Pass a prominence filter, fit the peaks, and show the result\n", + "peaks = chrom.fit_peaks(prominence=0.1)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though the small peak at ≈ 13 minutes was not detected by the prominence filter, \n", + "`hplc-py` still attempted to fit its signal as if it was part of the peak with a \n", + "maximum at ≈ 14.2 min. This because the small peak was considered part \n", + "of the same window of the major peak, as we will explore next.\n", + "\n", + "## Clipping the signal into peak windows\n", + "Once peak maxima are identified, `hplc-py` slices the chromatograms into *windows*–regions \n", + "of the chromatogram where peaks are overlapping or *nearly* overlapping. This \n", + "is achieved by measuring the widths of each peak at the lowest [contour line](https://en.wikipedia.org/wiki/Contour_line).\n", + "Peaks which have overlapping contour lines are considered to be close enough that their signals may be influencing one another. \n", + "This is achieved under the hood in a method `_assign_peak_windows` of a `Chromatogram`\n", + "which is called as part of `fit_peaks`. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ+0lEQVR4nO3deXwU9f0/8Nccu9ndJAtJCAk34QyHnAlGOUWx1qOUH1q1xSpai1Whag1aQUUFj0pBUKkW8ahVQYVSz69FWg8UIQFEFAJyXwmBXJtrjzl+f6zZZGZ2kz1mdjfZ9/Px4KEzOzP7ybAk77w/73l/GFmWZRBCCCGEkKCxsR4AIYQQQkh7QwEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJCxMd6AB2VLMuQJGOavLMsY9i1STO6z9FB9zk66D5HD93r6DDiPrMsA4ZhgjqWAiiDSJKMysp63a/L8yzS0pLhcDRAECTdr0+86D5HB93n6KD7HD10r6PDqPucnp4MjgsugKIpPEIIIYSQEFEARQghhBASIgqgCCGEEEJCRAEUIYQQQkiIqIicEEJIwvI+MS1BkkRdridJDJxODm63C6JIT+IZJdz7zHE8WFaf3BEFUIQQQhKOLMtobKxDXV2NbsFTk3PnWEgSPYFntHDvs9WaArs9Peh2BYFQAEUIISThOByVaGysg8WSDIvFBpblIv6B2oTjGMo+RUGo91mWZbjdLtTVVQEAOnXKiOj9KYAihBCSUCRJRGNjPVJSOiMlpZPu1+d5lnpARUE499lsTgIA1NVVITU1LaLpPCoiJ4QQklBEUQQgIynJEuuhkBhoCqJEUYjoOhRAEUIISVD6TNmR9kWvqVoKoAghhBBCQkQBFCGEEEJIiCiAIoTEPVmS4P7hUzRu/htcu96HLLhjPSRC2r077/w9lixZFNE1rr76KqxZ86I+A4qAy+XEjTdeh48+ej9q70lP4RFC4p5r2zp49nzi3Ti0DdK5Y7BOuzO2gyKknXv88afBslyshxExh6MGDz54Pw4dOhjV96UAihAS16S6Cni+/49in3CkGGL5YXBd+8VoVKSjkiQZdU5PRNfgORaCGHobgxSLCSwbvcJ2u13/Fg7RtmXL51i27C9IS0uP+ntTAEUIiWvC4SJA1jbL8xzaRgEU0VVRSTne+M9+OBoiC6DCZbeZ8JtLByM/t2tY5z/77DIUF2/Ha6+tBQA4HA5ceeUluOqqX6Kw8AEAwNatW7BgwX348MNPUVj4R3Tr1h0LFizCRx+9j5df/jtuuWUOXn31JZSXn0H//gNx1133YvjwEQCAuro6PPPM09iy5XPwvAm//e1szRi+//47/P3vq7B//z7wPI8JEybjjjvugt1uxwMPFEIUBTz11HIAwI8/HsDs2b/GnDl34oYbbgIAbNjwDv75z1exYcOHWLPmRbzyymps2VIc8Gv+6qstuPrqa3HNNdfjoosuCOu+hYtqoAghcU04vc/vfvF0SZRHQjq6Vz8uiVnwBACOBg9e/Tj8z/X48ZNw6NBBVFScAwDs3FkEWZaxY0dzAPL1118hLy8fVqtVc/65c2exceN6PPjgY3jhhVfAMAwWL34Y8k+/wDz00P3Yt+8HPPXUcixf/hy++upLlJWV+s7fu/d7zJ07B3375uCFF17BY489hb17v8c999wJSZIwYcIk7Nq1E4Lg7b9UXLwdDMNg584i3zW2bt2CCRMmAQCuv/4G/Pvf/9fq13zffQvw61//FiaTKcy7Fj4KoAghcUuWRIil+/2+JlUcp2JyQloYMWIUUlPtKCraBsAboEyaNAUnTx7H2bPlALwBysSJU/yeLwgC7r33fgwffh4GD87Fb387GydPnkBFRQWOHz+K7du/wd13z8fIkaMxcOBgPPzwYpjNZt/5a9e+gf79B+Kee+5DTk4/jBmTh0WLHkdJyV5s27YVF1wwAU5nI374YY9ifHv27IbH44HL5cTOncW+8dlsNmRkdDHuhkWIAihCSNySqk4DHmeAV2VI1aUBXiMkdDf9PBd2W/QzGU3sNhNu+nlu2OfzPI+CggsVAdSVV05H165Z2LGjCIcPH0J5+RmMHz8x4DX69Mnx/X9ycgoAQBA8vgLtIUOG+l5PT89A9+49fNuHDx/EeeeNVFyvf/8BSElJxaFDPyItLQ3Dhg1HUdE2eDwefPfdLtxww2yIooi9e7/Hjh3FMJnMGD16bNj3IJqoBooQErekqpOtv159GlyXPlEaDeno8nO7YuygzHZdRD5+/EQ8++wylJaeRmnpaYwcOQZjxuRh585iVFScw7Bhw5GeHngR3ZYZpSZyixpESVLWI3IcrzjOX5NvWZbA897jLrxwEr788jOMHZsPm82G3NyhGDbsvJ/GV4ELLhjvOzbetY9REkISklTZRgBVeSpKIyGJgmUZ2G3aICIUsVxMuKBgPBYvfhjvvPMWhg4dBpvNhry8cViz5kWcOnUSEyZMDuu6gwZ5M2N79uzGhRdOAADU1tbi1KkTvmP69RuA3bu/VZz3448HUF9fj759vQ98TJgwCS+99Dd89tlmjBmTDwDIyxuHHTuKcPr0Kdx++x/DGl8s0BQeISRuiW0FUNWnozQSQtqHlJQUjBw5Ghs3rlcEKKWlp7Fnz+6A9U9t6dGjJy666BIsX/4XFBVtw+HDB/HYYw/B42nO1l177a9x8OABLFv2FI4ePYJdu3bg0UcXYtCgwcjLGwcAyMnph+zsbnj//Y0YOzYPADB2bD52796FysoKXHDBhb7rNTQ0+Ari4xEFUISQuCVVKQMkrvsQ5euOs9EcDiHtwvjxk+B2uzF2rDeA6tIlE3375qBXr97o3Tv8Ke+FCxfhggvG4+GHH8Dtt9+KnJx+GDy4+d/k8OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlmJYbP34i3G63L8AbMmQYrFYrxozJh82W7Dvurbdex/Tpl4U9XqMxsuynwQqJmChKqKys1/26PM8iLS0ZVVX1MUsRJwK6z9HR2n2WJRF1a24F5Ob95nHXwL39neaDzDak3rQqWsNtt+jzrOTxuFFRUYqMjG4wmSKbrvMnllN4iSTc+9za3396ejI4LrjcEmWgCCFxSW6oVgRPAMBlD1Ie5G6A7G6M3qAIIeQnFEARQuKSVFeh3MGZwXXprT2uvjJKIyKEkGYUQBFC4pJcqyweZVPSwfBJYCypyuPUgRYhhEQBBVCEkLgk1SkzS0yqtyMxk5Le6nGEEBINFEARQuKSXKfNQHn/m6E6jjJQhJDoowCKEBKXNBmolJ8yULbOiv1yoyNaQyKEEB8KoAghcUmbgfJmnhirXXkcBVCEkBigAIoQEndkWYZUq5yaYwIEUFJjTdTGRQghTSiAIoTEH1c9ILgUu5ozUJ0U++XG2qgNixBCmlAARQiJO5oeUGDApKQBAFjNFB5loAgJx513/h5LliyK6BpXX30V1qx5UZ8BhWHPnt24887f42c/m4xf/vLnePLJx+BwROd7QkwDqG3btmHw4MF+/1x88cUAgH379mHWrFkYNWoUpkyZgjVr1iiuIUkSVq5ciYkTJ2LkyJG4+eabcezYMcUxelyDEBI96gCKSe4MhvWupcXYlBkoCG7IHme0hkZIh/H440/jj3+8N9bDCNvx48dwzz13YuDAwVi9+jU88sgT2LfvByxceF9U3j+mAdTo0aOxZcsWxZ+XX34ZPM/jtttuQ1VVFWbPno2+ffti/fr1mDt3LlasWIH169f7rrFq1SqsXbsWixcvxrp168AwDG699Va43W4A0OUahJDoUrcmYFq0LlDXQAFUSE5IOOz2TkhJSYn1MML20UcfoEuXTMybdw969+6LkSNH4Z577sfOncU4deqk4e8f0wDKbDYjMzPT96dz58544okncOmll+Kaa67B22+/DbPZjEWLFqF///6YOXMmbrrpJqxevRoA4Ha78fLLL2Pu3LmYPHkycnNzsXz5cpw5cwabNm0CAF2uQQiJLnUGStH7iU8COOUCoHIDTeMRfciSBKnREZM/shTZAsTPPrsMN954nW/b4XBg0qRxePrpx337tm7dgqlTx6OxsVExhffRR+/j6quvwscff4Brr/0lLrroAvzud7/F999/5zu3rq4Oixc/jMsum4Irr5yGt99+UzOG77//DvPm3Yaf/WwyrrjiYjzxxKNwOLy/4DzwQCHuu+9u37E//ngAEybk4fXXX/Xt27DhHfy//3cFAGDNmhcxYUJewK/3Zz/7ORYseAQMw2heq601/pcq3vB3CMEbb7yB0tJSvPzyywCA4uJi5Ofng+ebh1lQUIAXX3wRFRUVOHXqFOrr61FQUOB73W63Y+jQoSgqKsIVV1yhyzUIIdGlXcalRQaKYcBYUxVZKtlZF7WxkY7Lc3g7XF/9M2YZTcZqR9L4WTD1GxfW+ePHT8K6dW+iouIcMjK6YOfOIsiyjB07in3HfP31V8jLy4fVatWcf+7cWWzcuB4PPvgYTCYTli59AosXP4y33toAhmHw0EP348yZMjz11HLYbDY899wzKCsr9Z2/d+/3mDt3Dq666pe4++75qKqqxPLlf8E999yJv//9VUyYMAnPPLMUgiCA53kUF28HwzDYubMIN9xwEwBvgDdhwiQAwPXX34Bf/nJmwK83J6cfBEEZdL7xxqvIyMjAgAGDApyln7gJoFwuF1544QXceOON6Nq1KwCgrKwMgwYpb0LTa6dPn0ZZWRkAoFu3bppjSktLdbtGuHhe/wQfx7GK/xJj0H2OjkD3WVYtEMx16qL498RaUiC2CKAYocGQf28dBX2elSRJm7EAAOcXrwDuxiiPppnc6IDzi1fCDqBGjBiF1FQ7ioq24bLLrkBx8XZMmjQFn3/+P5w9W47MzK7YunULbrzxFr/nC4KAe++9HwMHDgYA/Pa3s/HnP9+LiooKNDTUYfv2b/DMM6swcuRoAMDDDy/G1Vdf5Tt/7do30L//QNxzj7cGKSenHxYtehw33ngdtm3bigsumIAnn3wMP/ywByNHjvaNb9u2rfB4PJAkETt3FuPJJ5cBAGw2G2w2m9+xNiWdGAaQZe//P/vscmzd+hUWL35KkTQJhOOYiL5vxE0A9e9//xsulws33HCDb5/T6YTZrEzVJyUlAfAGXI2N3g+6v2Nqamp0u0Y4WJZBWlpy2Oe3xW7X/vZA9Ef3OTrU99mhCqA6ZfeErcW/J2eKHY0tklQW1oPOBv576yjo8+zldHI4d47V/ABlwECO4biaxhDuD3WeN+OCC8Zjx47tuPLKq1BcvB333FOIffv24ttvizF48BCUl5/BpEmTwfOsN5vLeN+PZb0RSf/+/X3vb7d76w1lWcDRo4cBAOedN9z3eteumejevQdY1nuNw4cP4vzzCxTjHzx4EFJTU3HkyCFMnDgRw4adhx07tmPEiBH47rtdWLVqNb7+egv27/8B9fX1MJvNyM/PC/oecBwLQfDgiScW46OPPkBh4Z9x8cWXtHqOJDFgWRadOtlgsVhCu8ktxE0AtXHjRlx66aVIS0vz7bNYLJpCbpfL2xvGZmv+wt1ut+ImuFwuX3pSj2uEQ5JkOBwNYZ8fCMexsNutcDgaIYqRzZeTwOg+R4e/+ywLboj11YrjGphkuKrqfdsCp/y32VBVCbnF60SJPs9KbrcLkiRBFGXFFFDSpJviYgpPPS0VigsvnIBnn12GEydOorT0NIYPH4UxY/JQVFSE8vKzGDZsODp1SoMgSJBlGbLsvQeS5A0dWZb3vX/TZ0UQJN//u90ikpKax8dxPCRJbnE9aMYvSRJYloUgSLjwwon48svPMHp0Hmw2GwYOzMWwYeehqKgIFRUVKCgYD4Br8x4wjPdz7XDU4s9/LsR33+3Cww8vxiWX/KzNc0VRhiRJqKlpQGOjqHjNbrcGnamNiwCqsrISu3btwpw5cxT7s7OzUV5ertjXtJ2VlQVBEHz7evfurTgmNzdXt2uEK5J/BG0RRcnQ6xMvus/R0fI+SzXnNK9L1nTILf8ezMq0vthYR39PQaDPs5co+s8zmfqNA983D7Irspo6nmfDus9MUgoYNrJp1oKC8Vi8+GG8885bGDp0GGw2G/LyxmHNmhdx6tRJTJgwOazrDhrk/Xm4Z89uXHjhBABAbW0tTp064TumX78B2L37W8V5P/54APX19ejbtx8AYMKESXjppb/hs882Y8yYfABAXt447NhRhNOnT+H22/8Y1HhkGfB4PCgsvAsHDx7AX//6LMaMCVxw7o86gA5VXEyI79y5EwzDYNw45bxvfn4+duzYAVFsjhC3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvL0+3axBCoke9iDDMVjBmZcaJSVI+ei27KPtE9MGwLFirPSZ/Ig2eACAlJQUjR47Gxo3rFQFKaelp7NmzGxMnTgnruj169MRFF12C5cv/gqKibTh8+CAee+wheDwe3zHXXvtrHDx4AMuWPYWjR49g164dePTRhRg0aDDy8rw/33Ny+iE7uxvef38jxo71/owdOzYfu3fvQmVlBS644ELf9RoaGlBRof2Fqsmrr67Bd999i8LCB9CnT19UVJzz/Wk5LqPERQBVUlKCXr16aabMZs6cibq6OixYsAAHDx7Ehg0b8Nprr/kyVWazGbNmzcLSpUuxefNmlJSU4O6770Z2djamTZum2zUIIdGjfQKvi+YYJklZ70QBFCHNxo+fBLfbjbFjvQFUly6Z6Ns3B7169Ubv3n3Cvu7ChYtwwQXj8fDDD+D2229FTk4/DB48xPf68OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlKOoeP34i3G63L8AbMmQYrFYrxozJh83W/G/7rbdex/TplwUcz3/+83+QZRmLFi3A9OmXKf7s2bM77K8zWIwsy7GumcOiRYuwb98+rFu3TvPad999hyVLlmDv3r3IzMzEzTffjFmzZvleF0URy5Ytw4YNG+B0OpGfn4+HHnoIPXv21PUaoRJFCZWV+n9T53kWaWnJqKqqp1S8geg+R4e/++wq/hfcO//tO4brPQq2y+5SnOcp+QLOL172bbOZOUie8XBUxtwe0edZyeNxo6KiFBkZ3WAymds+IUThTuGR0IR7n1v7+09PTw66BiouAqiOiAKo9o3uc3T4u8+Nn70E4cAW3zGmoRfDMuEGxXmeozvg/M+zvm0mNRMp1z8dnUG3Q/R5VqIAqmOIdQAVF1N4hBDSRL2MC5uaoTmGaqAIIbFGARQhJK5oFhJO8RdAqXo+uRsiXgaDEEJCQQEUISRuyLIEWfUUHhtMAAUAbv37rhFCSCAUQBFC4obc6AAkQbEvqAwUaBqPEBJdFEARQuKGuoUBWA6MrZPmOIY3A5xJeS4FUISQKKIAihASN9RNNJnkdDCM/29T2l5QkXWPJoSQUFAARQiJG3KdqolmqraJZhN6Eo8QEksUQBFC4ob2Cbz0gMcyScr18CiAIoREEwVQhJC4IdWqekD5WcbFR7U+nuxxGjEkQgjxiwIoYpit35fhkVeK8PyGPaiqdcV6OKQdkOtDyECpAii4G40YEiEd1p13/h5LliyK6BpXX30V1qx5UZ8BhaGoaBtuvfVGXHzxeMyYcTlWrVoJt9sdlffm2z6EkNB9d+gcVn+wFwBw7Ewtyqsb8fDsfLAME+ORkXgWSgaKMakyUBRAERKSxx9/GizLxXoYYfvxxwOYP/8uzJp1ExYtWoLTp09iyZJH4Ha7cddd9xr+/hRAEUN8WnxSsX2ivA4/nqjG4N5pMRoRiXeyu1HTDNNfE80m6gwUBVBED5Isod4TWVNWXgpvjbZkkw1sgKdOjWC3a1uEtCdlZaW4/PKrcMstcwAAPXr0xNSpl2D79m1ReX8KoIjuREnCgZPVmv37jlVRAEUCUheQA61P4cFkUW5TDRSJ0M7y7/D2/o2o9cSmJUaqKQW/GvxLjOk6Iqzzn312GYqLt+O119YCABwOB6688hJcddUvUVj4AABg69YtWLDgPnz44acoLPwjunXrjgULFuGjj97Hyy//HbfcMgevvvoSysvPoH//gbjrrnsxfLh3PHV1dXjmmaexZcvn4HkTfvvb2ZoxfP/9d/j731dh//594HkeEyZMxh133AW73Y4HHiiEKAp46qnlALwZpNmzf405c+7EDTfcBADYsOEd/POfr2LDhg+xZs2LeOWV1diypdjv1ztx4mRccMFEAIAsy9i79wd8/vn/MHnyRWHdv1BRDRTR3bkaJ9we7W9fJ8/SU1IkMPUiwozV7m2YGQBloIje3ix5N2bBEwDUeurwZsm7YZ8/fvwkHDp0EBUV3nYgO3cWQZZl7NjRHIB8/fVXyMvLh9Vq1Zx/7txZbNy4Hg8++BheeOEVMAyDxYsfhizLAICHHrof+/b9gKeeWo7ly5/DV199ibKyUt/5e/d+j7lz56Bv3xy88MIreOyxp7B37/e45547IUkSJkyYhF27dkIQvKsNFBdvB8Mw2LmzyHeNrVu3YMKESQCA66+/Af/+9/+1+XWLoohLLpmAOXNuQqdOnTB79u/DuHuhowCK6O5ctf9MQGkFBVAksGAWEVa8rnkKjwIokthGjBiF1FQ7ioq8U1jFxdsxadIUnDx5HGfPlgPwBigTJ07xe74gCLj33vsxfPh5GDw4F7/97WycPHkCFRUVOH78KLZv/wZ33z0fI0eOxsCBg/Hww4thNjf/krN27Rvo338g7rnnPuTk9MOYMXlYtOhxlJTsxbZtW3HBBRPgdDbihx/2KMa3Z89ueDweuFxO7NxZ7BufzWZDRkYrT+L+RJZlPP/8aixduhJOpxP33jsPUhQWF6cAiujubI3/H2Rnqxt9v8kQoqbOQLVW/wQA0BSR0xQeicyvc69Gqiml7QMNkmpKwa9zrw77fJ7nUVBwoSKAuvLK6ejaNQs7dhTh8OFDKC8/g/HjJwa8Rp8+Ob7/T0723gtB8ODQoYMAgCFDhvpeT0/PQPfuPXzbhw8fxHnnjVRcr3//AUhJScWhQz8iLS0Nw4YNR1HRNng8Hnz33S7ccMNsiKKIvXu/x44dxTCZzBg9emzIX3du7lAUFFyIBQsewQ8/7MF3330b0jXCQTVQRHeBMlCCKKPeKSDFavL7Okls6ifwQs1AqQvQCQnVmK4jMCpzeORF5HzsisjHj5+IZ59dhtLS0ygtPY2RI8dgzJg87NxZjIqKcxg2bDjS0wP/22qZUWrS8hdfSVL+EsxxvOI4fw9ay7IEnvced+GFk/Dll59h7Nh82Gw25OYOxbBh5/00vgpccMF437FtKSnZi9raekXA1a9ffwDwZdyMRBkoortzATJQAFBTR/2giH9SCMu4ADSFR4zBMixSzSkx+aPHE3gFBeNRU1ODd955C0OHDoPNZkNe3jjs2rUDX3+9BRMmTA7ruoMG5QIA9uzZ7dtXW1uLU6dO+Lb79RuA3bu/VZz3448HUF9fj759+wEAJkyYhP379+GzzzZjzJh8AEBe3jjs3Fn8U/1T8OP7+OMP8fjjj0AURd++vXu/BwDf+xmJAiiiu7MBMlAAUF0fnQZnpP3RFJG39gQetH2gIAqQRY/ewyKkXUlJScHIkaOxceN6RYBSWnoae/bsDlj/1JYePXrioosuwfLlf0FR0TYcPnwQjz32EDye5n9z1177axw8eADLlj2Fo0ePYNeuHXj00YUYNGgw8vLGAQBycvohO7sb3n9/I8aOzQMAjB2bj927d6GysgIXXHCh73oNDQ2+gnh/Zs68FtXV1Vi69EkcP34M33zzNZ588jFMmTIVAwcOCuvrDAUFUER3jvrAWSbKQBF/ZFGAXF+t2NfqMi4AYLZodtFyLoR4n8Zzu90YO9YbQHXpkom+fXPQq1dv9O7dJ+zrLly4CBdcMB4PP/wAbr/9VuTk9MPgwUN8rw8fPgJLl65ASck+3Hzzb/Dgg/dj+PCReOaZVYppufHjJ8LtdvsCvCFDhsFqtWLMmHzYbMm+495663VMn35ZwPH07t0bK1f+DSdOHMMtt8zCE088gsmTp+KhhxaH/TWGgpGpqtcQoiihslL/p854nkVaWjKqqurDmmOPhtuWfgZ3gLFdM6U/fl4Q/j/gaGkP97kjaLrP544ehuONQsVrKTc+DyYpOcCZgCy4UPfyHMW+5Ov+Atbe1ZCxtmf0eVbyeNyoqChFRkY3mEyBW2WEK9waKBKacO9za3//6enJ4LjgckuUgSK6cnnEgMETANTQFB7xQ6pVpelN1laDJwAAZwZUNSPUC4oQEi0UQBFd1Ta0HiBV0xQe8UMdQLVVQA4ADMMAmkJymsIjhEQHBVBEV7UNrRfxtvU6SUzqAKqtFga+49TLuVAGihASJRRAEV3VNbYeINU7KYAiWuFkoACAMdsU2zL1giKERAkFUERXbU3hNTiFKI2EtCfaACrIDBRN4RFCYoQCKKKrOtUUHccq29JSAEX80XYhDy4DBdUUHhWRk9DQQ+iJSK/mAxRAEV3VqqbwuqYpMwSNLgESdc4gLciSCKmuUrEv+Ck89XIuFECRtnEcB4CBy0UZy0TkdnsfZmq5DE04aC08oit1DVRWmg2lFc11KTK8QVSyhdbDI15CbQUgK1tfMMEGUKYkxbYs0FOepG0sy8FqTUZdXTUEwQOLxQaW5bxPdupAkhiIIv2iaLRQ77Msy3C7Xairq4LVmgKWjSyHRAEU0VWjSzlF16Wztlt0g5MCKNJMqD6r3MGbwSSlBHcyr/p8eSiAIsGx29NhMiWhrq4aTqe+TY9ZloUkUSNNo4V7n63WFNjtrS8VFQwKoIiuGlQBVFpKEjiWgdhiBW+qgyItCTXKAIpN7RJ0JkCTgaIichIkhmFgs6XAak2GJEmQJLHtk4LAcQw6dbKhpqaBslAGCvc+cxwfceapCQVQRFeNquDIauFhTeIVU3vUyoC0JNSUK7aDLiAHAJrCIxFiGAYcx/1UFxU5nmdhsVjQ2CjSci4Giof7HBdF5Bs3bsTll1+O8847D1dccQU+/vhj32v79u3DrFmzMGrUKEyZMgVr1qxRnCtJElauXImJEydi5MiRuPnmm3Hs2DHFMXpcgwRHnYGyJfFItijjdMpAkZb8ZaCCxfDKAIqm8Agh0RLzAOrf//43HnjgAVx77bX44IMPcPnll+Oee+7Brl27UFVVhdmzZ6Nv375Yv3495s6dixUrVmD9+vW+81etWoW1a9di8eLFWLduHRiGwa233gq329uPSI9rkOCpa6CsSTxsqnondZBFEptHFUAF24Uc0HYipwwUISRaYjqFJ8syVqxYgRtvvBE33ngjAOCOO+7Azp07sX37dmzfvh1msxmLFi0Cz/Po378/jh07htWrV2PmzJlwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oor8Pbbb0d8DRI8fxkomyoDRVN4pKVIMlDqKTxQDRQhJEpimoE6fPgwTp06hauuukqxf82aNZgzZw6Ki4uRn58Pnm/+AVxQUIAjR46goqICJSUlqK+vR0FBge91u92OoUOHoqioCAB0uQYJjiBKcHuUc9HWJG8NVEuNLn2KNUn7J8sShBpVF/JQMlC8uoicMlCEkOiIaQbq6NGjAICGhgbccsst2Lt3L3r27Ik//OEPmDp1KsrKyjBo0CDFOV27dgUAnD59GmVlZQCAbt26aY4pLS0FAF2uES6e1z8+5ThW8d940ujWTs2lJpthUwVQbkE05N7oKZ7vc4fSUAlIys+NKa0r2CA/H7JF1UhTcMX9ZysW6PMcPXSvoyMe7nNMA6i6ujoAwH333Yc777wT9957Lz755BPcfvvteOWVV+B0OmE2mxXnJCV5f+N0uVxobPR2HfZ3TE1NDQDoco1wsCyDtLTksM9vi91ubfugKHP6SSx1z7ajs11VpwJj742e4vE+dySNjiOKbcZkQXr37kG3MXA5O6OuxbYsuNrNZysW6PMcPXSvoyOW9zmmAZTJ5C0uvuWWWzBjxgwAwJAhQ7B371688sorsFgsmkJul8uborfZbLBYvD+Y3W637/+bjrFavTdVj2uEQ5JkOBz6rwzPcSzsdiscjkaIYnw9IltW7lBscyyDhjonoGp0VlPrRFWVvo3r9BbP97kj8Zw+odhmUzNRXR38vxuxUdX/RRRQea4GTIRLNHQ09HmOHrrX0WHUfbbbrUFntWL6XSY7OxsANFNsAwYMwGeffYYePXqgvFzZI6ZpOysrC4Ig+Pb17t1bcUxubq7vPSK9RriM7E0hilLc9RipVS0kbE3iIYoyzCZlf5UGlxB3Yw8kHu9zRyJUn1FsM/bMkO63xJo1+wRnI5gkykL5Q5/n6KF7HR2xvM8xnaQdOnQokpOTsXv3bsX+AwcOoHfv3sjPz8eOHTsgis1zQ1u3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIMER93fyZrkDZwsZmUA5XRTETnxEmtUAVRqZkjnM7w2gKJCckJINMQ0gLJYLPjd736H559/Hh988AGOHz+Ov/3tb/jqq68we/ZszJw5E3V1dViwYAEOHjyIDRs24LXXXsOcOXMAeOuWZs2ahaVLl2Lz5s0oKSnB3XffjezsbEybNg0AdLkGCY7LowqgzN4EpyaAoqfwyE8khzI7zNq7hnYBdRsDALJArQwIIcaLeaHA7bffDqvViuXLl+PMmTPo378/nn32WZx//vkAgJdeeglLlizBjBkzkJmZifnz5/vqpQBg3rx5EAQBCxcuhNPpRH5+PtasWeMrCs/IyIj4GiQ4LlVmqSlwspiVHzN1oEUSl+RQ9YAKMYBiWB5geeWTfJSBIoREQcwDKACYPXs2Zs+e7fe1ESNGYN26dQHP5TgOhYWFKCwsDHiMHtcgbXN6lAFUUqAMFE3hEQCyqx6yS/kwQcgZKMCbhWrRwJWm8Agh0UCNKohu1FNzSQEyUBRAEUA7fQeGBZMafBNN32mq5VxAU3iEkCigAIroxqXKQFlM/ovIPYIEUaKnUxKdOoBiUjK8U3Ih0nYjpzUsCSHGowCK6EadWWrOQHFtHksST6T1Tz60Hh4hJAYogCK60WSgAkzhAfQkHgFk9RN4IbYwaKLJQAlUA0UIMR4FUEQ36qfwkgJM4QGA08+6eSSxaKbwdMpAURE5ISQaKIAiulEHRU1TeCzLwGxiVcdSBirRaXtAhZmBUheR0xQeISQKKIAiuglURA40Z6MCHUsSiyx6INdXKfaFWwNFU3iEkFigAIroJlAROaANoNweegovkcm15wAoFwLWr4icAihCiPEogCK6UQdQLWuf1AsKUwYqsWnqn6ypYMzWsK6lbWNAU3iEEONRAEV0o13KpfnpuyRVDZSbAqiEJlWXKbZZe1b4F1MvKCx6wr8WIYQEiQIoogtZljVZpZbTdmaeMlCkmVRTqtjm0rqFfS1tDRQ10iSEGI8CKKILQZQhSsqalpZTeEmqVgZugWqgEpk6A8V1zg7/YqoMFBWRE0KigQIoogt/GaWWQZOZV37U1NN9JLFINaopvM6RZKBUU3gCTeERQoxHARTRhb/GmEmttDFwCxRAJSrZ3Qi5oVqxj4sggNLUQFEGihASBRRAEV34yygpaqA0T+HRFF6iUmefwLBgO4XZwgDaDBTVQBFCooECKKILp2oKz2xiwbKMb1vbB4oyUIlKqlYWkPOdu4LhTOFfUJOBogCKEGI8CqCILjQtDFQBk3opF3oKL3GpM1Cm9Aim7+DnKTyRAihCiPEogCK6aK0LOUCdyEkz9RN4powekV2QV2WvBDdkWfZ/LCGE6IQCKKILdQYqycQrtqkTOWmi7gFlTu8e0fXUGSgA1EyTEGI4CqCILtQ1UBZz61N4VAOVmGRZglR9RrHPlBFZAKWpgQKoDooQYjgKoIguNBmoNqbwKAOVmOT6KkBVoxTpFJ6mDxSomSYhxHgUQBFdqDNK6oBJPYVHNVCJSao6pdxhsoBLSYvsopy/DBRN4RFCjEUBFNGFS9C2MWgpSd2JnDJQCUmqVAZQXHoPMAwT4OggsRzAKD9flIEihBiNAiiiC3VGSb14sFmzFh4FUIlIrFIHUD0jvibDMNQLihASdRRAEV2op/C0GSjtFJ5Ej5onHPUUnh4BFEDdyAkh0UcBFNGFW1BmoDQ1UKoMFAB4BKqDSiSyLGmn8DL0CaA0GShqpkkIMRgFUEQXmgwU33oNFEB1UIlGrj2nCWwoA0UIaa/4tg8hpG3qDJT6qTv1NkC9oOKVLEvwfP8pPIe+AWTA1H8cTMOngWG1f4ehECtPKraZpBQwVntE1/RRN9OkAIoQYjAKoIgutDVQrfeBAgAXtTKIS64t/4Bn32fN22cPQyw/BMvUP4Bhw09aq+ufWD2ewPuJNgNFT+ERQoxFU3hEF9qn8JQfLZZlwHPUjTzeeQ4XKYKnJsLhInj2/F9E15ZUGSg2Taf6JwDg1OvhUR8oQoixKIAiulC3JfA3ZZdEy7nENVmW4d75XsDXXTs2QqqvCvv60rljim1Wp/onQLseHtVAEUKMRgEU0UVbReSAvwWFaQovnoil+yFVngh8gOCG5/tNYV1bdjdCqlGugcd16RPWtfzS9IGiKTxCiLFiHkCdOnUKgwcP1vx55513AAD79u3DrFmzMGrUKEyZMgVr1qxRnC9JElauXImJEydi5MiRuPnmm3HsmPI3XT2uQVqnDob8Z6DUvaAoAxVPhCNFim22Uzb4QRMV+9z7PoPscYZ8bbHyBIAWfb8YVucMFD2FRwiJrpgHUPv370dSUhK+/PJLbNmyxffnqquuQlVVFWbPno2+ffti/fr1mDt3LlasWIH169f7zl+1ahXWrl2LxYsXY926dWAYBrfeeivcbu83UD2uQdqmncLzk4Gi5VzilizLEI7uUuzjB16IpFGXA2hR6O1ugOfHrSFfXzN9l9bD7yLAYaM+UISQKIt5AHXgwAHk5OSga9euyMzM9P2xWCx4++23YTabsWjRIvTv3x8zZ87ETTfdhNWrVwMA3G43Xn75ZcydOxeTJ09Gbm4uli9fjjNnzmDTJu9Ugx7XIK2TZVlTRK7uPA4AJlVQRY0044dUXQq5vlKxj+87FmznbuD7jFLsFw6GHkCJ544qtlk9p+9AGShCSPTFPIDav38/BgwY4Pe14uJi5Ofng+ebuy0UFBTgyJEjqKioQElJCerr61FQUOB73W63Y+jQoSgqKtLtGqR1/gIh/xko9Xp4FEDFC7HsgGKbSU4Dm9YdAGAaPElzrOQ4G9L11RkoXeufAFoLjxASdTHvA3XgwAFkZmbi17/+NY4ePYo+ffrg9ttvx8SJE1FWVoZBgwYpju/atSsA4PTp0ygrKwMAdOvWTXNMaWkpAOhyjXDxfgqpI8X91AqA42Ie+/o0ugXNPpvFpPn61XVRoiQZco/0EI/32UiuMz8qtvlug2H66e+LyxkJZ1IyZFe973Xx8DaY834R1LVlwQ2p6rRinzkrBzzP6nafBbNFuUN0x+1nKxYS7fMcS3SvoyMe7nNMAyi3242jR4/CarVi/vz5sNlseO+993DrrbfilVdegdPphNms/M0yKcn7uLLL5UJjYyMA+D2mpqYGAHS5RjhYlkFaWnLY57fFbrcadu1QCX4SmV0zU5FsVfbmSbEp7zHLc4beIz3E0302Uu3ZQ4pte//z0KnF3404bDxqd/6nefvQVnS+5LqgGmE6T55Atdwy28ggY0AuWHPzvY30PjvsKWhssc1DjPvPViwkyuc5HtC9jo5Y3ueYBlBmsxlFRUXged4XwAwfPhyHDh3CmjVrYLFYNIXcLpf38WSbzQaLxftbp9vt9v1/0zFWq/em6nGNcEiSDIejIezzA+E4Fna7FQ5HI0QxPqbAzlbUa/Y11DvhdqqmUWTleB21LlRVac+NB/F4n40iuxshVJUp9rlTeyr/bvqMA1oEUJ6KUzh3sAR8l95tXt95YI9im03vgZp6Caiv1+0+u1QfNY+zMW4/W7GQSJ/nWKN7HR1G3We73Rp0VivmU3g2m02zb9CgQdiyZQuys7NRXl6ueK1pOysrC4Ig+Pb17t1bcUxubi4A6HKNcAkG1viIomTo9UPR6FRO4XEsA8jar9+k+lC63ELcfA2BxNN9NopQfly5g+Eg27spvm65Sz8wyemKQnPXgW+Azm23IvCUKqcHuawBmnsa6X2WGGW2U/a4O/zfWzgS4fMcL+heR0cs73NMJ2lLSkowevRoFBcXK/Z///33GDBgAPLz87Fjxw6IYvPj7lu3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIO0Tv0EnilA7YmJisjjklShajHQuZvmqTaGYcH3H6fY5zlcBFmW0RpZliGeUQdQAyMYrX+0Fh4hJNpiGkANGjQIAwcOxCOPPILi4mIcOnQITzzxBL799lvcdtttmDlzJurq6rBgwQIcPHgQGzZswGuvvYY5c+YA8E4Bzpo1C0uXLsXmzZtRUlKCu+++G9nZ2Zg2bRoA6HIN0jpXEMu4ePdTG4N4JFWo1qjL6OX3OFM/ZQAlO85ogi81ufYs5EaHYh+XrX8Ape0DRWvhEUKMFdMpPJZl8cILL2Dp0qW466674HA4MHToULzyyisYPHgwAOCll17CkiVLMGPGDGRmZmL+/PmYMWOG7xrz5s2DIAhYuHAhnE4n8vPzsWbNGl9NVUZGRsTXIK0LZhkXQJuZok7k8UGqUT5tyqb38Hscm5kDJjUTcm1zCwPh0HZwXfoGvLZ4ukSxzVjtYFIzwx9sANQHihASbTGvgUpPT8fjjz8e8PURI0Zg3bp1AV/nOA6FhYUoLCw09BokME0TzUAZKNUUHmWg4oN6jTq2U7bf4xiGgan/OLi//dC3z3N4O8zjrgn4NJ5w6gfFNtdtcFBP7oXMz1p4siwb816EEII4aKRJ2j9NBspPE03ATwaKAqiYkz1OyA3Vin2BAigA4NXTeLXnIJ097P/asgTx1F7FPq7HsPAG2gbNsjCyDEja/mSEEKIXCqBIxNSBkDrT1LxfXQNFU3ixps4+AQBr7xrweDajNxhVgOU5tN3/tStOQHbWKvbxPY0JoMAnaffRNB4hxEAUQJGIaTNQ/gMo9Vp4lIGKPXUAxaRktLrIL8MwMPXLV+wTDm+HLGv/LoXju5Xn2ruCNaD+CQAYzqTZR3VQhBAjUQBFIuYKcgpPUwPloQAq1qQaZQNNtlNWm+fw/c9XbMv1VRDPHNIcJxxWriXJ9zovjBEGyV/QR60MCCEGogCKRExdDB7sFJ6bpvBiLtgC8pa49J6+hYabCAe3Kq9bXQqp8oRiH5+jzFzpijMBUBaMywK1MiCEGIcCKBIx7VN4wRWR01N4sdeyJQEAsPa2M1AAwPdTZqE8B75SLDbsOfiN4nXG2glctnJRbz0xDPNTENWCSFN4hBDjUABFIhZ8I03qRB5vpLoKxTaT2iWo80yDJwBMi28fggvufZ8BAGRJgKfkc8XxfE4eGNbYbzfUC4oQEk0UQJGIqYvIAy/los1AtbUUCDGOLImQ66sU+9iU9KDOZVMywOcolzpy7/4IsqsenpIvNa0RTLmTIhprUDS9oGgKjxBinJg30iTtn3oKL2AGyk9g5RGkgMcTY8kN1YDq6TkmJSPo880jLoNwuEULA1c9Gv69BFLdOcVxXPYgcF36RDLU4PCqBYVpCo8QYqCgAqjnnnsu7De48847wz6XtA/qYvCkIBcT9p5LAVSsyHWVyh0cD8aSGvT5XNd+4HPyIBxpXgxcqj6tOc6cN0OzzwgMZ4Yin0lTeIQQAxkaQDEMQwFUAgg6A+WnuJwKyWNHU/+UkhHy0idJBddBOLUXcDf4fZ3PyQPffUjYYwyJJgNFU3iEEOMEPYX39ttvY8SIEUFf+Ntvv8X1118f1qBI+xLsUi7+pvColUHsSKoMFJscXP2T4pzULrBefBsa/7MSEJVLp7BpPWCZNDuiMYaC4dQ1UJSBIoQYJ6gi8jFjxiA5OTmkC6empmL06NFhDYq0L64g+0DxHAt1foOaacaOXK/NQIWD7zUCtl8sANdjqLeVQFIyTEMvhm36QjBJoX3fiAg9hUcIiaKgMlBjx44Fx4VWp9K/f3+8+eabYQ2KtC/BLuXCMAxMPKtoX0CtDGJHXQPFhhlAAQCXmQPbFfMjHVJENMu5UABFCDFQUBmoV155BT//+c9xww034L333oPLRUskkGbqACpQI03AXysDmsKLFW0NVOhTeHFF3caAaqAIIQYKKoD68ssv8ec//xn19fWYP38+JkyYgEcffRT79u0zenykHdAs5dLKU3XUTDN+qHs1hVMDFU+okSYhJJqCCqDS0tLw29/+Fhs2bMD777+Pa665Bp9++in+3//7f5gxYwbefPNN1NbWGj1WEockWdYEQf6KxZuoM1DqJ/hIdMiSCLlR+W+WsXWOzWD0oslAUQBFCDFOyJ3IBw4ciPnz5+Ozzz7Diy++iH79+uEvf/kLJk6ciMLCQhQVFbV9EdJh+GtD0GoGiqbw4oLsrAWUXZPAWO2xGYxO1DVQtJgwIcRIYXciZ1kWkyZNwqRJk1BfX4///ve/eP755/HBBx/Q1F4CUdc/AW1loGgKLx7IDTXKHQwTUhPNuKRZyoUyUIQQ40S8lMv333+P999/H5s2bUJpaSnOP//8tk8iHYa/KbjQMlAUQMWCOoBiLHbDF/s1nKoPFDXSJIQYKawA6sSJE3j//ffx/vvv4+jRo8jKysKMGTMwc+ZM9OzZU+8xkjjmrxFmoMWEAcCkekKPGmnGhtyoCqBsnWI0Ev0wPLUxIIRET9ABVFVVFT766CO8//772L17N3iex9SpU/HAAw9gwoQJIS8BQToGdQaKYxnwXOAASt1kkxppxoakzkB1gACKGmkSQqIpqADqtttuw5YtWyAIAgYOHIj7778fv/jFL5CWlmb0+EiccwXZRNP3uvopPJrCiwlNBsra/gMoTSNNegqPEGKgoAKo4uJizJw5EzNnzgxpPTzS8amn4AKtg9dE08aApvBiQl0DxXaIDFSSYpOewiOEGCmoAGrLli2wWCxGj4W0Q+opvKQA6+A10UzhUQYqJjpkBkpdA0UZKEKIgYIKoNTB0yeffIKdO3fC4XBojmUYBo8//rg+oyNxL+QMlLqInGqgYqJD1kCpn8KjGihCiIFCfgpv6dKleOmll5CSkgK7Xdt4j4rJE4s6AAq1BooaacaGpo1Bh8hAqftA0RQeIcQ4IQdQ//rXv/CrX/0Kjz76qBHjIe2MupFma000AX81UJSBijZZcAGeRsW+jlEDpZ3Ck2WZfqkjhBgi5M55LpcLl112mRFjIe2QZh28NjNQVAMVa3KDn6n3DhBAMaopPAAANdMkhBgk5ADq0ksvxX//+18jxkLaoZAzUNRIM+bUBeTgTIDJGpvB6Ek9hQdQM01CiGFCnsJ74IEHcM011+CGG27AyJEjNQXmDMPgjjvu0G2AJL5FXANFReRR56+AvCNMc2n6QMG7nEv7/8oIIfEo5ADq9ddfx5EjR3DkyBEUFRVpXqcAKrG4NE/hhTaFRzVQ0Sc3KqfwGKv2YZB2iTJQhJAoCnkK75///CeuuOIKbNmyBSUlJZo/+/btC3swR44cwejRo7Fhwwbfvn379mHWrFkYNWoUpkyZgjVr1ijOkSQJK1euxMSJEzFy5EjcfPPNOHbsmOIYPa5B/Iu0iJyewos+2Vmr2GYsqTEaic44E6DKN8nUC4oQYpCQA6iGhgb86le/QpcuXXQdiMfjwb333ouGhgbfvqqqKsyePRt9+/bF+vXrMXfuXKxYsQLr16/3HbNq1SqsXbsWixcvxrp168AwDG699Va43W7drkECi3QKjzJQ0Sc76xTbHSWAYhjmpyCqBWplQAgxSMgB1IUXXoht27bpPpBnn30WycnJin1vv/02zGYzFi1ahP79+2PmzJm46aabsHr1agCA2+3Gyy+/jLlz52Ly5MnIzc3F8uXLcebMGWzatEm3a5DA1BmopDYbadIUXqxpM1ApMRqJAVStDKiZJiHEKCHXQE2fPh0LFy7EsWPHMHr0aKSkaL/5/vKXvwzpmkVFRVi3bh02btyIKVOm+PYXFxcjPz8fPN88zIKCArz44ouoqKjAqVOnUF9fj4KCAt/rdrsdQ4cORVFREa644gpdrkECUwdApjaXcqEi8liTXeoMVMcJoBjeDNlV37yDpvAIIQYJOYCaN28eAODDDz/Ehx9+qHmdYZiQAiiHw4H58+dj4cKF6Natm+K1srIyDBo0SLGva9euAIDTp0+jrKwMADTnde3aFaWlpbpdI1x8G/VA4eA4VvHfWPOIygDImsS1+nVbLcqPnCTLAAPwcfL1NIm3+6wr1RQeb7Mb8lkNht73meHNkFtss7IQs68tnnToz3OcoXsdHfFwn0MOoDZv3qzrABYtWoRRo0bhqquu0rzmdDphNiufrElK8q647nK50Njo7abs75iamhrdrhEOlmWQlpbc9oFhstvjo2+PKMmK7bTOtla/bn8PlSenWGCzaB9Bjwfxcp/1VOuuV2yndumCZAM/q8HQ6z7XJyWhZc7JlsQgNcZfWzzpiJ/neEX3OjpieZ+DCqBWrFiB6667DllZWejRo0dQFz5z5gzWrl2LP/7xjwGP2bhxI4qLi/H+++/7fd1isWgKuV0uFwDAZrP5elC53W5FPyqXywWr1arbNcIhSTIcjoa2DwwRx7Gw261wOBohirGf/mpwCoptj1tAVVV9gKOBxnrtlEr52Vp0SknSfWyRiLf7rCdB1Ym8QTTB3crfmZH0vs+i6ltafU0thBh9bfGkI3+e4w3d6+gw6j7b7dags1pBBVAvvPACLrroImRlZQU9iLKyMrzwwgutBlDr169HRUWFou4JAB5++GGsWbMG3bt3R3l5ueK1pu2srCwIguDb17t3b8Uxubm5AIDs7OyIrxEuwcACaVGUDL1+sNRF5BzDtDou1k9Xw0angOQ4zUDFy33Wiyx6AI9TsU80JQMx/hp1u8+qp/BEt6tD/f1FqqN9nuMZ3evoiOV9DiqAkmUZixYt8lswHkhdXV2bxyxduhROp/Kb+aWXXop58+bh8ssvx4cffoi1a9dCFEVwnLc4eevWrcjJyUFGRgZSU1ORkpKCbdu2+YIfh8OBvXv3YtasWQCA/Pz8iK9BAgv1KTx1I02AnsSLJnULA6DjtDEAAPDKTKZMbQwIIQYJKk+Vn5+P5ORkyLIc9J/k5GTk5eW1et2srCz06dNH8QcAMjIy0KNHD8ycORN1dXVYsGABDh48iA0bNuC1117DnDlzAHjrlmbNmoWlS5di8+bNKCkpwd13343s7GxMmzYNAHS5Bgks1MWEWZYBp0pD0YLC0aMNoBgw5o5TI6RZzoWewiOEGCSoDNTrr79u9Dj8ysjIwEsvvYQlS5ZgxowZyMzMxPz58zFjxgzfMfPmzYMgCFi4cCGcTify8/OxZs0aX1G4Htcg/kmyrAl+1J3G/TGbWDS6mjNXtKBw9Gh6QCUlg2E70NNC6uVcqA8UIcQgIT+FZ7T9+/crtkeMGIF169YFPJ7jOBQWFqKwsDDgMXpcg2j5yxy1lYECvL2ilAEUZaCiRduFvOP0gAIARt1IU6QpPEKIMTrQr54k2tT1TwCQFEwGSr2ci5/rEGN02HXwmnCUgSKERAcFUCRs4Wag1MdQDVT0dPwMlDKAoqVcCCFGoQCKhM3lJ3MUTA2U+hj1gsTEOB0/A6VeTJgCKEKIMSiAImFTBz4cywS1JItmPTwqIo+ajp6BUheRUw0UIcQoQRWRb9y4MaSLhrqYMGmf1FNv5jZ6QPmOU2egaAovajp6Bko9hUcZKEKIUYIKoO6///6gLxjqYsKk/XKpMkcmP00y/VHXQFERefQkXgaKAihCiDGCCqD0XkCYdAzqwEedWQpEUwNFGaio0WagOlYApWmkSZ3ICSEGCSqACnYBYcC77AtJDOoaqKQgnsADtMu50FN40SO7VQtcJ3WsAIoyUISQaAmrkeaHH36I7du3w+Px+AImWZbR0NCAb7/9Fl988YWugyTxSd1BPJgn8ADAZKIMVCzIkqBZSJhJssVoNMZgNH2gKANFCDFGyAHUc889h+eeew6pqakQBAEmkwk8z6OyshIsy+Kaa64xYpwkDqkzUMH0gAKAJJ5qoGJBdjVo9jFJHWcdPACAuhO54IrRQAghHV3IbQz+9a9/4Re/+AW2b9+Om266CRdddBG+/vprvPvuu+jcuTMGDhxoxDhJHFJnoIJ9Co9qoGLEXwBl7mAZKM1TeJSBIoQYI+QA6syZM5g+fToYhsGwYcOwa9cuAMDw4cNx22234Z133tF9kCQ+edQZqKCfwlP1gaIMVFTI7nrlDs6kDTjaO/UUnuimukxCiCFCDqBsNhsYhgEA9O3bFydPnoTT6a2rGDJkCE6ePKnvCEncUrcxCD4DpZrCowxUVMhOZQDV4abv4CcDBQDUTJMQYoCQA6jzzjsP//rXvwAAvXv3Bsdx+PrrrwEAhw4dgtncwX6jJQFpaqDCzECppwKJMdQZqI4YQKmfwgNAARQhxBAhF5HfdtttmD17Nmpra/HCCy/gF7/4Be6//36cf/752LJlCy655BIjxknikHoJlnA7kaunAokxZFfHD6A0faDgXVC4I36thJDYCjmAys/Px7vvvov9+/cDAB566CGwLIudO3fisssuC6lrOWnfws5A0RReTGiewutgBeQAKANFCImasPpA5ebmIjc3FwCQlJSExx57TNdBkfbBpe5EHuZTeLSYcHQkQgYKATJQhBCit7ACqNraWnzzzTdoaGjw+4QLrYWXGNSZo+BroJTHuWgKLyrUGaiO1kQT8K7FCc6kzDpRAEUIMUDIAdTnn3+Ou+66C42NjX5fp8WEE4e6/UDYNVA0hRcdiVBEDnin8VoEUJSBIoQYIeQAatmyZejXrx/+/Oc/IysrCywb8oN8pINwhZmB0jbSFCHLsq89BjFGQkzhwVtIrsiL03p4hBADhBxAHT58GKtWrUJeXp4R4yHtiHoJlmAzUOpFh2UZECUZPEcBlJESJYACn6TYlKkbOSHEACGnj7p37466ujojxkLaGfXUW7gZKIDWw4uGRKiBAgBGtR4eZaAIIUYIOYCaM2cOnn/+eeo4TsLOQPlbdJhaGRhPk4Eyd9AMlGo5F6qBIoQYIeQpvPfffx9nzpzBtGnTkJ6eDovFonidYRh8+umnug2QxC9NDZSfwMgfvxkoCqAMJUsCILiUOzvoFJ4mA0VTeIQQA4QcQGVnZyM7O9uIsZB2RJZlP4sJh9cHCqAFhY2maaKJjjuFp2mmSVN4hBADhBxAPfHEE0aMg7QzoiRDUvUACzYDxTIMTDyrqKGiDJTBVNN3QMctImc0U3iUgSKE6C/kAOr06dMBX2NZFjabDXa7PaJBkfjnr+g72AxU07GKAIoyUIZS1z+BN/tdN65D0EzhufwfRwghEQg5gJo6dWqb/Xo6deqE3/72t7j99tvDHhiJb/4yRsFmoAB/y7lQBspICdPCAH4yULQWHiHEACEHUE8++SQeeughjBs3DldeeSW6dOmCiooKfPLJJ/jss89w++23o76+Hn/729/QuXNn/PrXvzZi3CTGIs5AmWhB4WhKmCfwAD8ZKKqBIoToL+QA6sMPP8QVV1yhqYWaPn06Hn74YXz//fd44YUXYLfb8dZbb1EA1UG5/axf5684PBB1sOWmBYUNlSg9oACA0TTSpACKEKK/kPtAbd++HVdeeaXf1y699FJ88803AICxY8fixIkTkY2OxC2XoO0BFcpSLCZV001/ARnRj5wo6+AB3sWEW6IpPEKIAUIOoDp37oySkhK/r5WUlCAlJQUA0NDQAKvVGtnoSNzStjAIvv7JezzVQEWTpo1BB85AqdsYUAaKEGKEkAOoq666CitXrsRrr72GM2fOwOPx4MyZM3j99dfx3HPP4aqrrkJNTQ1ee+01jBw5ss3rVVRUoLCwEAUFBRg9ejR+//vf4+DBg77X9+3bh1mzZmHUqFGYMmUK1qxZozhfkiSsXLkSEydOxMiRI3HzzTfj2LFjimP0uAZRUk+5BduFvPl4dQ0UTeEZSVtEnhKjkRiP0fSBogwUIUR/IQdQd911Fy6//HI8+eSTmDJlCkaMGIEpU6bgySefxFVXXYW7774bX3zxBfbu3Yu77rqrzev94Q9/wIkTJ7B69Wq8++67sFgsuOmmm9DY2IiqqirMnj0bffv2xfr16zF37lysWLEC69ev952/atUqrF27FosXL8a6devAMAxuvfVWuN3e3zr1uAbRUk+5RZyBoik8Y2kCqA6cgVJN4VEGihBihJCLyHmexxNPPIE//OEP2LZtG6qqqpCVlYUxY8agV69eAIBJkybhyy+/hNlsbvVaVVVV6NmzJ/7whz9g4MCBAIDbb78d06dPx48//oitW7fCbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkTbrcbL7/8MgoLCzF58mQAwPLlyzFx4kRs2rQJV1xxBd5+++2Ir0G0NBmoEArIAcCkylipa6qIvhLpKTxNBooCKEKIAULOQDXp3bs3rrnmGvz+97/H9OnTfcET4O0D1VbwBABpaWlYtmyZL3g6d+4c1qxZg+zsbAwYMADFxcXIz88HzzfHeQUFBThy5AgqKipQUlKC+vp6FBQU+F632+0YOnQoioqKAECXaxAtTQYqhB5QAGWgoi2RnsLTZKBoKRdCiAGCykBdfPHFeP7555Gbm9tmI81wFxN+8MEHfdmiv/3tb7DZbCgrK8OgQYMUx3Xt2hWAtyN6WVkZAKBbt26aY0pLSwFAl2uEiw8xKxMMjmMV/40VQVIGPElmLqSv12JWfvQESTbkfoUrXu6zXtRP4fG21Li430bcZzlJucA5BE9cfK2x1NE+z/GM7nV0xMN9DiqAGjduHJKTk33/H8rj6sG68cYbce211+Ktt97CHXfcgTfffBNOp1OTyUpK8vZ4cblcaGxsBAC/x9TU1ACALtcIB8sySEszbprEbo/tE44cr/zoJFvNIX29qSnKXj0w+H6FK9b3WS/VbmUGyt4lA5Y4ut963udGhx11LbYZyROXn61Y6Cif5/aA7nV0xPI+BxVAtWya+eSTTxoykAEDBgAAHnvsMXz77bf45z//CYvFoinkdrm861rZbDZYLN7fNN1ut+//m45paqGgxzXCIUkyHI6Gtg8MEcexsNutcDgaIYqxm/aqcTQqthnIqKrSLlgbiKQae129K6TzjRYv91kPsihA9ijXg6tzs2iMg/ttxH0WGpXXkTzx9dmKhY70eY53dK+jw6j7bLdbg85qhVxEDgB1dXWor69HVlYW3G43/vGPf6CsrAw/+9nPkJ+fH/R1KioqsHXrVvz85z8Hx3lraFiWRf/+/VFeXo7s7GyUl5crzmnazsrKgiAIvn29e/dWHJObmwsAulwjXIKBvY1EUTL0+m1xupVF3yaODWk8PKvMYrrcsf16Aon1fdaD1FCr2SfyNshx9HXpeZ9F9bc1wQOPRzQkc97edITPc3tB9zo6YnmfQ548/O677zB16lS8/vrrAIDFixdj6dKleO+993DjjTdi8+bNQV+rvLwcf/rTn7B9+3bfPo/Hg71796J///7Iz8/Hjh07IIrNP6y3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvLw8AdLkG0VKvXRdpHygPPYVnGPUTeEDHLiJn1GvhQQYkISZjIYR0XCEHUMuXL0e/fv1w7bXXwul04v3338evf/1rbN++HVdffTVeeOGFoK+Vm5uLCRMm4JFHHkFxcTEOHDiA++67Dw6HAzfddBNmzpyJuro6LFiwAAcPHsSGDRvw2muvYc6cOQC8dUuzZs3C0qVLsXnzZpSUlODuu+9GdnY2pk2bBgC6XINoqRcTDrUPlHrdPFpM2EDqAIpPAsOGlXxuHzg/TwBTKwNCiM5C/i66e/duLF++HL169cL//vc/OJ1OTJ8+HQBw+eWX47333gv6WgzD4JlnnsFf//pX3HXXXaitrUVeXh7eeOMNdO/eHQDw0ksvYcmSJZgxYwYyMzMxf/58zJgxw3eNefPmQRAELFy4EE6nE/n5+VizZo2vKDwjIyPiaxAtTQAVagZKHUB5KANllIRaBw9++kDB20yzo3/dhJDoCjmAYlnWF1h8/vnnsNvtGDFiBABvbVTLQuxgpKamYtGiRVi0aJHf10eMGIF169YFPJ/jOBQWFqKwsDDgMXpcgyhpp/BCzUCpl3KhDJRREqoHFABopvBAy7kQQnQXcgA1fPhw35IrH3/8MaZMmQKGYVBRUYHVq1dj+PDhRoyTxBl1xkg9JdeWJFXGihYTNo52HbwOnonhtAEULedCCNFbyDVQ8+fPx9atW3H99deD4zj84Q9/AABceeWVOHr0aFDr35H2T50xSgo5A0VTeNGiyUCZO3YGimFYbRBFARQhRGchZ6CGDh2K//znPzh06BAGDhwIm837zXjRokUYM2YMMjMzdR8kiT/aIvLInsKjKTzjaJ7CS0qJzUCiiTcrpu1kmsIjhOgsrEdxUlJSMHLkSMW+n/3sZ7oMiLQP6oBHXdPUFnUGyiNIkGWZevUYQFtE3rEzUADAcCbILXdQBooQojNarIeERZ2BUtc0tcVf0TnVQRlDdiZYDRTgzUC1QAsKE0L0RgEUCYvbE9lTeP6m/GgazyDuBHsKDwCj7gUl0BQeIURfFECRsLiFyJ7C8xtAUSG5IRLuKTxA08pAFlwBDiSEkPBQAEVCJkoSBFFRYRLyU3j+MlaUgTKGJoAyd/wAStNMkzJQhBCdUQBFQuZyawOdUAMonmPBaRYUpgyUERKukSagbWNANVCEEJ114AWxiFFcfqbaksyhBVCANwvV6Gpe5NXfdUlkZNGjCR6YBGhjwPBJim25A2SgpJozcH2zFsLJPWCSUmAaPg3mEZeBYUP/t0cIiRwFUCRk/mqVQn0Kr+mcxhalKVQDpT9NDygASIQMlHo5l3aegZJqylC/8THfwtByQzXc29+BVHkClovmUPsPQmKApvBIyNSZIobxTsmFSj3tRxko/fkLoBJhCk/9FF57XspFliU0/vdFX/DUknDwG3j2fRb9QRFCKIAioVMHOkkmLqzfgCmAMp66/gkmCxg2ARLP6gxUO57CE47ugnT2SMDX3Tv+BdnjjOKICCEABVAkDP4CqHCYzeoAip7C053mCbyOn30CAKgzUO14Cs/93cetvi43OuAp+TxKoyGENKEAioRM/RReuAGUJgNFT+HpLiF7QMFfG4P2GUBJjnJIZw4q9lmmzgHXW7mUlmff55BlZWsRQoixKIAiIdMsJBxuBkrVTJOKyPUnJ2AXcgB+Gmm2zwDKc2ibYpuxpILvlw/ziMsU+6Xq05DOHo7m0AhJeBRAkZBppvDM4X2M1K0PXAIFUHrTZqA6fgsDwM9SLmL7rIEST+xRbPP98sGwPLhuuWDsWYrXhKM7ozk0QhIeBVAkZHrVQKnPc/tp0Ekiow2gEiUD1f6fwpM9TohnDin28b1HAQAYhoGpX77iNeHormgNjRACCqBIGIwKoOgpPP1p2hgkag1UOywiF0sPAHKLfxMMB67bIN8m33e04nip+jSk6tJoDY+QhEcBFAmZbk/hUQBluEQtIlcv5dIeO5ELp/cqtrms/mBMFt82m5kDxtZZeY5qyo8QYhwKoEjI1FNt4RaRq7uXUwClv0QNoDrCU3hi6QHFNtd9iGKbYVjwvc5TnbPf8HERQrwogCIhMyoDRU/hGUCzkHBiBFDqGqj2VkQuSwKkyuOKfVz2IM1xXLdcxbZQWgJZplpCQqKBAigSMt2ewqMpPMPJrjrFdqIEUIxmCs8V4Mj4JFWeAkRBsY/r0kdzHNdtsHKHqx5S1Skjh0YI+QkFUCRkxhWR02/OepJlWbOUS6IEUJoMlOBpV40mxXNHFdtMaiYYi7YFBZvaBUxqF+W5p0uMHBoh5CcUQJGQ6dVIU9PGgDJQ+hLcgKTMYiRKAKXpAwVZcy/imXTumGLbX/bJ95oqCyWWU0NNQqKBAigSMv0yUFREbiT19B2QOAGUZjFhoF0VkqszUGxm34DHcl37K89tZeFhQoh+KIAiIVNPtem3mDAFUHpST98BDGC2xmQs0cbwSZp9cjspJJdlCVLlScU+rkvfgMdzmTnK82vKtP2/CCG6owCKhEy96G/YGShePYUnQWpHdSrxTpOBSrKBYRLkn3w7zkDJdRWasbJpPQIez6b3AlhesU9UTQESQvSXIN9NiZ60U3jhfYzUGSgA8FAhuW4StoAc0DTSBNpPM02pStVN3GzVNMxsieF4sBm9FPtEWliYEMNRAEVCpiki9xMIBcNf5oqm8fSTqC0MAG+TSXDKrEx7Wc5Fqj6t2GY7dwfDMK2eo57Gk8qpDooQo1EARUIiyTLcgj41UP4yVxRA6ShBu5D7cO1zQWGpShlAcWnd2zxHHUBRITkhxqMAioTEX6sBvTqRAxRA6Smhp/DQfpdzEf1koNrCqgvJ6yshOWt1HRchRIkCKBISf80uww2gWIaBiVd+BN1UA6WbRJ7CAwConsRrDxkoWZYhVStroNi0bm2ex3buppmyVD/JRwjRV8wDqOrqajz00EOYNGkSxowZg+uvvx7FxcW+1/ft24dZs2Zh1KhRmDJlCtasWaM4X5IkrFy5EhMnTsTIkSNx880349gx5RMoelyDePnLEIUbQPk71+VuP80O412iLiTchDGpWhl4nLEZSAhkZ61m6jWYDBTDcmA7K5/UowCKEGPFPIC65557sHv3bixbtgzvvvsuhg0bhltuuQWHDh1CVVUVZs+ejb59+2L9+vWYO3cuVqxYgfXr1/vOX7VqFdauXYvFixdj3bp1YBgGt956K9xu72+belyDNHO7tQGUKcyn8ADAoipAd/q5PglPwk/hmSyK7fawHp5ce1a5g+HApGQEdS6b3lOxLVWe0GtY7Z5YeQqNm55D7St/QO2aW9Hw/hMQTnwX62GRdo5v+xDjHDt2DF999RXeeustjBkzBgCwYMECfPHFF/jggw9gsVhgNpuxaNEi8DyP/v3749ixY1i9ejVmzpwJt9uNl19+GYWFhZg8eTIAYPny5Zg4cSI2bdqEK664Am+//XbE1yDN1Bkos4kF28YTQq2xmJUfQQqg9JPwU3jtMAMlOcoV20xqFzBscBleLr0nWuZvRcpAAQCEo7vQuHkV0KKRqli6H42l+2EedSXM+TPbfMqREH9imoFKS0vD3//+dwwfPty3j2EYyLKMmpoaFBcXIz8/Hzzf/EO2oKAAR44cQUVFBUpKSlBfX4+CggLf63a7HUOHDkVRUREA6HIN0kyvZVyaWJKU5zfSFJ5uNJ3IEyyAUncjlz3xn4FSB1CsPTPoc7UZqFOQ5cSuKRTPHdUETy25v/0Anu8+jvKoSEcR0wyU3W73ZX2afPzxxzh+/DgmTJiA5cuXY9CgQYrXu3btCgA4ffo0ysrKAADdunXTHFNa6i3ELCsri/ga4eJ5/eNTjmMV/402QVJ2Ck8ycRF9nbYk5UfQLUiG3LdQxfo+60JVS8PbUuLi3rZk5H1mk5TL1jCiK+6+fjVX3TnFNt+pa9BjZrv2QWPLHYILbEMFuE5ZHePzHCJZEtHwxSsBg6cmrqL1MPcaBr5rTqvHBSsR73UsxMN9jmkApbZjxw488MADuPjiizF16lQ88cQTMJuVjyInJXl/q3S5XGhs9H678HdMTU0NAMDpdEZ8jXCwLIO0NON+47fbY7OmGW+qUmzbrKaIvs7UFNU0C8saet9CFav7HClZElHlVmagOmdmwhxH97YlI+6zmJKCllWMZlaMq8+WP431ygAqObsXOgc5ZrmzDbXWVEiNze0LrK6zSE7r59tur5/ncNQU/59mSZvkoeORlNUXlf97E8BPvwxKIjzb1qLLDY/pOpWXSPc6lmJ5n+MmgPr0009x7733YuTIkVi2bBkAwGKxaAq5XS5vGt5ms8Fi8RaJut1u3/83HWO1WnW7RjgkSYbDoV7MNXIcx8Jut8LhaIQoRj89X1mt/Jp4lkFVVfgLl6onAKtrGiO6nl5ifZ8j5a8HUK2LARsH97YlI++zW1Q94VlXFxefrda4KsuU26bOIY2ZTesJqXGfb7vm+EG4uw5v95/nUMmSCMdXGxT72LQeME28BTLHw+KohXPHe77XnCf2oXznlzD3GxvxeyfavY4Vo+6z3W4NOqsVFwHUP//5TyxZsgTTpk3D0qVLfdmg7OxslJcrawKatrOysiAIgm9f7969Fcfk5ubqdo1wCYJx/3hEUTL0+oE0OpU1SmaejWgcZtUTfA1OISZfVyCxus+Rkuq1AZTI2yDF6ddixH2WVJ3IJbczrv8uZcENuV6Z4ZWTu4Q0ZiatB3C6OYASzp1QnN9eP8+h8hwuglRXodiXNH4WRJkFBAn8yCvBHPgacm1zxq9xx/tge4/WbQyJcq9jLZb3OeaTtG+++SYee+wx/OY3v8EzzzyjmErLz8/Hjh07IIrNhctbt25FTk4OMjIykJubi5SUFGzbts33usPhwN69e5GXl6fbNUgzp95F5Jqn8KiIXA+aAnLOpO3M3cFp2hjE+VN4krqFAUIrIgf8FJJXJGYrA88PmxXbbGY/cN2afyFmeDOS8mcqjpHOHoZ45mBUxkc6hpgGUEeOHMHjjz+OadOmYc6cOaioqMDZs2dx9uxZ1NbWYubMmairq8OCBQtw8OBBbNiwAa+99hrmzJkDwFu3NGvWLCxduhSbN29GSUkJ7r77bmRnZ2PatGkAoMs1SDOXqs2AJSmyJKaV+kAZIuFbGACaNgbx/hSerG5hYLVrgsC2cOoAylEOWUysX0qkugqIpfsV+8znXaqpb+L7jdP02HL/8Knh4yMdR0yn8D755BN4PB5s2rQJmzZtUrw2Y8YMPPnkk3jppZewZMkSzJgxA5mZmZg/fz5mzJjhO27evHkQBAELFy6E0+lEfn4+1qxZ48tkZWRkRHwN0kydIVI3wgyVOgCjAEofid6FHAAYk6qGUYjzDJRDmYFi7F1DvgarXnhYliA5zgCZvSIZWsSapicZqx2M2diiX+HwduUOsw18jra2iWE5mIZeDPf2t5vPPbITsrvR8DGSjiGmAdRtt92G2267rdVjRowYgXXr1gV8neM4FBYWorCw0NBrEC91gBNxAKXJQCXWb8tGoQBKu5RLvGeg1FN4bGpo03cAwJhtYGydITdUN1+36nTMAijZ3QhX0bvwlHwJiG6AYcD3GYOkC64Hm9rFkPf0HFIGUKacsWA4k99jTYMnwF30LtDUL0t0Qzi6E6ZB4w0ZG+lYYl4DRdoXbQAVWQxOS7kYgwIoAO2sBkquq1RshxtgsJ2VPe3UixNHi+xuQMOHf/HWI4k/PQktyxCO7kDDxkchVp7S/T2lhmpIZ48o9vH9zw94PGu1g+s5XLHPc3Cr7uMiHRMFUCQkuk/h0VIuhpCdyhqoROtCDvhbTDjOM1Cqp8aCXQNPTb34sFR9OuwxhUuWZTi/eEUTzPheb3Sg8ZPlmkA/UuLJH5Q7TBZw3Vt/mto08ALlNU7tg+zWvwUN6XgogCIhUQc4STSFF5fUARRjSY3RSGKH4VUF2JIQ1wXVsiqAYlPSw7oOm6bKQFVFPwMlHt8N4XDrS2HJtefg2vZ2q8eESji5R7HN9xgKhm09S873GQ20PEYWIZz8XtdxkY6JAigSEs1TeDoHUIIoQ6DmcxGTVY00EzGA0iwmDMTtgsKy4Nb+nemWgSqN6pp4sizDteNfyp1JybBe9WewXfspdnv2f6HboseyLGkyUOrpOX8YP1kq4dhuXcZEOjYKoEhItFN4kdZAac+nabzIqTNQrCUlRiOJHX8tAGQhPqfx1PVPAMAmh5uBUj2JJ7oh1Vb4P9gA4vHdkFRLqFguuB58t8GwXnIH0LIfmSzDXbRel/eVKo5rglC+53lBncv3HqXYFk98B1miX+RI6yiAIiFRBzfqPk6h8pfBcrrid5qlvaAMFABem4GK10Jydf0TkpLDfpSesXYCVC0cpKro1UG59/1POZ5O2eAHXAgAYFMyYB55ueJ14dguSDXKJWzCIaiyT4w9K+hGpHzvkYpt2VkL6ezhiMdEOjYKoEjQZFnW/Sk8fzVUlIGKnLYGKgEzUCwLqJZziddCcr3qnwCAYRhNHZQYpQBKaqiBeEJZh2Qe+XPv30XT9ojLALNNcYz7+8gbWIplPyq2+R5Dgz6XtWeCTeuh2Ceovg5C1CiAIkETRAmiJCv2RVoDxTKMJoiiACoysuAGVFNVjDUBM1Dw1wuqfWSgmOTw6p+aqOugxCi1MhAOftPcUwkAeDNM/cYpjmFMFphyJyv2eQ5s8X5uwyTLMiTVMixc9sCQrsH1Uk73iS3WFCTEHwqgSNAa/QQ2kQZQ/q5BT+JFRtPCAAk6hQdoekHFawZKUveACrOA3He+upA8Shko4egOxTbfd6zfqUjzsIsBtFhaxeOEcOzbsN9XrinTLF8UagDFqwrJxfJDcVszR+IDBVAkaOon8IDI2xgA1AtKb+r6JzAskKBLU2gyUHG6nItcr08PqCZcDKbwZGcdxDPKaTTTAP9NLNnULuBUU2yeH78K+73V03eMrTOYlNAakXLZg73/VppIoua6hLREARQJmjqwYQAkmSIPoNSF6A1URB4RbQF5ChgmQf+pq7uRu+MzgFJP4UVSAwVoM1Cysw5ifU1E12yLcPJ7QG4xxc+ZwHUfEvB4TQPLE9/7zZ4GQ1RP32UN0Cwe3BbGbAWb2Vd53dMlYY2HJIYE/a5KwqGeWksycyF/k/LHZlFmoBqcFEBFggrIm2laGcRhDZQsy36KyCPLQDGpmQCn/HflrtCn31IgwnFl7ySu+xAwfp6EbML3HQu0XKNOFjXXCJY68xXq9J1vTN2VWTHh9N6wrkMSAwVQJGh6LyTcxGZRLvRJGajIUAuDZozqaa94XKJDdtYCqg7pkU7hMSwLtlO2Yp/nnP5rzzWRZVlTdM33HtHqOYzZCl7V6FI4tiv093bWadb747LCC6DUDTWls0fjfhFqEjsUQJGg6d3CoIktSXmdRspARUSTgUpK4AyUqvYrLgModQ8ohgVj6xzxddXTeO5zxmWgZEc55IZqxT6+R9tdwPm+YxTbwok9IT+NJ5Yrp+/AmcF26R3SNXynZg1Q1kHJEsQA6/kRQgEUCZq6waV+GShlAFXv8uhy3URFGagWNAFUY4wGEpi2hUGaom9SuNjOykJyj4FTeGLpfsU2Y7WD6ZTV5nlc75FAyzIAwQUxxGkzsUxV/9Q1p8317wJhTBawGb2U1z9DheTEPwqgSNCcHmOm8JKpBkpXVAPVTDOF54r/DFSk9U++66gCKLeBU3hCmTKA4roNDqo+krXaNdNtwtGdIb23pv4pzOm7QOerC9QJaUIBFAlatKbwqAYqMpoMVII20QS0ARQ88ZiBUvaAirT+qYl6TTzRcc6wRqJi6QHFNpc9OOhz+b6jFdvC8e8gy3KAo5VkSYBYrpxi47IGBP3e/qjPF88cjOpizKT9oACKBE27kLBBReSUgYqINgOVyAGUagovkTJQnbKhaFYJQKzSvyO57KqHXHtWsS+Up+DUC/nKDdWQKo4Hda507jggKmumIg6g1GN31UOqjnytPtLxUABFgmbcU3jqKTyqgYqEvz5QiYpJiv+n8DQ1UBH2gPJdhzeDSVU2kzSioaaoDnZYHmx6D/8H+8F0ygZjV9ZLCce/De69VdNrbOduEX/e2ZQMMMnKvwOqgyL+UABFgqYpIk+iKbx4I8syZaBa0rQxiL8pPFnnZVwU11ItkCtW6l9ILp07pnzP9B4hFXEzDKNpeRBsPyh/DTT1oJnGK6M6KKJFARQJmnpqTR34hEudgXJ7JAgi1RyExd0ASKqeQomcgVLXQLkb46qeRRY9kBuVHcL1qoECAC7N+DXxRFUAxWX0Cfka6mk8qfwIpIa2O6drMlAGBVASZaCIHxRAkaA1qjJDVt0CKJNmH9VBhUdudGj2MdZOMRhJfNAuZCvH1YLCcn2VZp+xGSj9n8STKk4o3zOMHkxct8GqZXdkiCe+a/196yog1yuzd7ploFR1UFJNGST1GpMk4VEARYLW4FLWQOmWgfJznXqqgwqL5rd2sxUMb47NYOKANoCKrzoodf0TzFa/Yw6XuhZJcpyFLOgXQMqCG1K1MqvFhpGBYjgefI9hin1tTeOJZw4pd5htmtYN4WIzegGc8t+NpH4/kvAogCJBa1Q1uNQrA2XiWZh55UeR6qDCo85AJXL2CcBPjTSVT6LFUwBl1BN4vut17gbl1y9rlj2JhFR5ElBMiTLgVI0og8X3GaXYFk5+D1kM/H3A/wLC+vxIY1geXNecVt+PEAqgSNA0GSiLPgEUAFhV16LlXMKjrqdhbYkdQDEMq5oaiq9Ccu0TePoGUAyfpHkST9JxGk/9BB7TKUu7gHOQuF7nKXd4nBDLDvg/GP4CqP5hvW/A8XRVXk8spwwUUaIAigRFkmXNU3h6ZaAA7TRePQVQYZFVU3iM1R6jkcQPzZRYHPWCkmtVGahkfVoYKK6pqoOSqvQLoNT9mriM8NagAwDW1hlspjLrE2gaT/a4NE//RdqBXDMe9ZN45YchS2KAo0kiogCKBMXlFqHuDWxN0qcPFAAkq5tp0hReWDRPdCX6FB7iuxeUJgOVqm8GCtA+iadnLyj1E3jhLuLbhO89UrEdqB+UWHYAkFsEMwwHrmu/iN5bTVOQLri8U5aE/IQCKBIUf0/F2ZK0T8+Fi5pp6kPS1EBRBkqzHl4cT+HpXQMFGJeBkiUJUqXyCbxwWhi0pOlKXnPGbxdw8fQ+xTbbNSfsqcNAWKsdTGqm8n2pDoq0QAEUCYq6hQEDwKJrBkoZQNU2UAAVDs0UXoLXQAH4qZC8WbxkoGRZ1hSRMyldAhwdPvWTeHLtOV2exJMcZYCgXEaFjWAKD/BmsNRZU3/TeIIqgOJ7DI3ofQPxty4eIU0ogCJBUU+pWZI4sEGsth6sVJvykWEKoMKjfgqPpSk8bQYqTmqgZGctICo/56xOy7gormnQk3jSOVUBua1zxA8tMAzb5jSe7KyDdO6oYh/XfUhE7xuIJoCiQnLSAgVQJChGNdFskmpTTgfWNroDHEkCkWVZWwNFGShNJ3b1UjexIteeU+5gWDC2NN3fh+GTwNqVU1F6PImnqX+KMPvUhOujDKDE0gOKaVfh+G5AblGRyZk0T8zpRR1AyY5yzTQ5SVwUQJGgqDNQejXRbEIZKB246gHVU0JUA+UvgIqPjtKaAvLkNDCsMd+SOXVDTR3qoDRP4HWJrP6pCd9jGNByLT1ZhHBij29TOFKsPL7ncMOaxbLpPQE+SbGPGmqSJnEVQK1atQo33HCDYt++ffswa9YsjBo1ClOmTMGaNWsUr0uShJUrV2LixIkYOXIkbr75Zhw7dkz3ayS6aGeg6hooAxUqqaFas48CKO1iyvESQGmaaKbqX//ku7bOT+LJsqwJoPTKQDEmC7juuYp9ngNfet/X44Jw8nvFa3xOni7v63csLAdO1VpBLKc6KOIVNwHUq6++ipUrVyr2VVVVYfbs2ejbty/Wr1+PuXPnYsWKFVi/fr3vmFWrVmHt2rVYvHgx1q1bB4ZhcOutt8Ltdut2DRKNAIoyUJFSrwvGWO1gOP2elGyv4jWA0mag9K9/asKl91S+d4QZKLm+SnMf9cpAAYCp3zjFtnhiDyRHOYRD25R1Y35qpvRGheQkkJgHUGfOnMHvfvc7rFixAjk5ykj/7bffhtlsxqJFi9C/f3/MnDkTN910E1avXg0AcLvdePnllzF37lxMnjwZubm5WL58Oc6cOYNNmzbpdg2ibWOgZxdyQJuBcgsSXG5qWhcKSbUwLZOsfz1Ne6TOwsVLABXNDJR6Ck+uPRtROwepQpWhN1k1Hc8jwQ84H0hKVuxzf/sB3D8ovydzPYdppmj1pu5wLp49Qg01CYA4CKB++OEHdOrUCe+99x5GjlT+JlFcXIz8/HzwfPMP64KCAhw5cgQVFRUoKSlBfX09CgoKfK/b7XYMHToURUVFul2DRCEDZdXWMNTSNF5I5DplBsqIrtbtkeYHrLux1TXWokWqNXYZl5a49B4Aq2w7ol6GJRTiOXX9U2/d1qEDvIXvpkETFPs8JV9AqlD2nTIPnarbewbCqgvUBbem/xVJTPr+FAzD1KlTMXWq/38EZWVlGDRokGJf165dAQCnT59GWZm3wVq3bt00x5SWlup2jXDxvP7xKcexiv9Gi1OVDUqxmHT9+lKTTeBYBqLU/HRNg1sw5B4GI1b3ORKuxmrFNpeaHrP7F6xo3Gc2RfskIifUg02KbYZOrlcGUKZOXQz7++I4HuYuveAuP9q8s+oE+F7hPf7vrFQGUHxmH93Hbhv9c9Ts+5+m11QTNq07knJGG1Z475PaGY2dsiDVnPHtks8eBp/tv/N5e/ze0R7Fw32OeQDVGqfTCbNZmZlISvI+EeFyudDY6E1B+zumpqZGt2uEg2UZpKUlt31gmOx2a9sH6cgjKRdySU+z6f71dUpJQqXD6duWWc7QexiMaN/nSDhdys+rrUt2zO9fsIy8z3InC2rAAC0WI0oxCUiK4b2R3E5UqdopdO7RC2YDx+TM7qsIoDjH6bA/H7WqDIy990Ck6j32tGRwE69B5f/e8Pty18t+B1tGqt/X9ObpnYu6Pc0BFFd5pM17156+d7RnsbzPcR1AWSwWTSG3y+XtoGuz2WCxeFv3u91u3/83HWO1WnW7RjgkSYbDoX/DPo5jYbdb4XA0QhQl3a8fSFWLwAYAWFlGVVW9ru+RYuVR2aLFyukzDlRlG1vfEEis7nMkXNVnldtciu5/R3qL1n1mLMmK/k815eUwmTNbOcNYop8+THWSDYxBf18cxyIpKwd1+My3r/H0wbA+H5KzHkJNuWKf09YNggFjl3OnwXzyCNw/fq3Yby24Bq60AXBF6fMtpfUF8Llvu+FEScB71x6/d7RHRt1nu90adFYrrgOo7OxslJcr/6E2bWdlZUEQBN++3r17K47Jzc3V7RrhEgTj/vGIomTo9dXqVE/F2ZI43d8/xaosJK+pc0f1a/Qn2vc5EpKqBkq2dm43Yzf6PjOWVEUAJdTVgInhvRFqlMEuk5QCkTEBBo7Jkq16HL/yFDwuNxgutB8DQstpQABgecip2Yb9/Zmn/A5sj2EQju0COB6mgePB9zovup/tLsrpOslxFm5HVaud19vT9472LJb3Oa4nafPz87Fjxw6IYnP9zdatW5GTk4OMjAzk5uYiJSUF27Zt873ucDiwd+9e5OXl6XYNAtQ1KgModbCjB3UrAwcVkQdNdjcCqqeqWHoKzyfeWhloCshTjSsgb5LUta9qEGJY7QzUS7iwaT1CDsJCwTAsTIPGwzrtTlin3ga+13mGvVcg/hpqUj8oEtcB1MyZM1FXV4cFCxbg4MGD2LBhA1577TXMmTMHgLduadasWVi6dCk2b96MkpIS3H333cjOzsa0adN0u0aiEyVJ04k82ZAASrWcSz0FUMGSGqo0+6iNQTNtABXb5VzkWmUGijVgEWE11pIM1t5VsU/dDDMYoqqFAddFnwaa8YxhOXBdVVko6kie8OJ6Ci8jIwMvvfQSlixZghkzZiAzMxPz58/HjBkzfMfMmzcPgiBg4cKFcDqdyM/Px5o1a3xF4XpcI9HVO7WPfBuRgeqcovwNr6ou8hXjE4W6hQGSksGofmNOZHGXgXIoywoYVWBjFK5LH8V7i+eOwTR4YkjX0GSgMvRroBnPuKwBEE/v821TQ00SVwHUk08+qdk3YsQIrFu3LuA5HMehsLAQhYWFAY/R4xqJrL5R2xU82aJ/AJWWqgqgaimACpbkUGU0DGzK2B4xVlUAFeMFYdUBlDozZBSuSx94Djf3t5POhbZklSy4IVUrl4FhdexAHs/8NtQUBUOnL0l8i+spPBIf1PVPSSYOJgP61aRTABU2zZRQauyeMItHjKrYV921PZpkWY5ZAMVnKoMd8dwxyFLwTUWlypOA3LJgl9EsE9NRcV2VS7pA9EA6eyQ2gyFxgQIo0iZtAbkxv3F1VgVQTreo6YBO/IvVD+T2Qr3OnBzLAMpZC3hUbUGilYFSZVEgujXdvVsjnjuq2GY6ZYExJ0a/I8aS4i0mb0FoMaVHEg8FUKRN6gDKiAJyAEhL0dbsVFIWKijqKTyGMlAK6icS5YYayFJsHn2WVcEuGA5MSnSW3WEtKWA7ZSv2iSEUQ0tnjyq2ucy+Ooyq/eC6Kzu3ixRAJTQKoEib6huVWSAjCsgBwGziNNeupgCqTbGcEmovNE8kyiJkZ2zqoDQF5KldwKjWqTMSq67lCeFxfPGccsqK65IT4MiOie8+VLEtnvkRcoClZkjHRwEUaVM0ekA1UT+JV1nrDHAk8XHVAx5VDyg7ZaBaYix2gFEGKbGaxtMU/Ef570pdyxNsBkoW3JAqVQXkiZaB6jYIYJjmHaIAsZzaGSQqCqBIm6I1hQcA6XYqJA+VOqMBho3alFB7wbBs3BSSxzpbqK6DkmvPQmpoe91PqfIEILdcVJwBl9Hxe0C1xCQlg+3SV7FPPLU3NoMhMUcBFGmTuo1BigEtDJqoWxnQFF7bJNUTeExKBhiWHq1WU0/jaXpnRYm6BiraARSb5qerdtmBNs8TVU+csZ2zE6aAvCVeVQdFheSJiwIo0qZoTuGpC8mpiLxtUpVqWoXqn/xS98ZSB57REqsmmr73Y1lwWappvCCCAPGssmeUOhOTKNSF5FL5Yciu+F60mxiDAijSpjpn9AKodLtFsX22ujHAkaSJej0zNq1HjEYS39S9sTRPw0WB7KqH3KicLmM7ZUV9HFyPYYpt4dQPbZ4jnvlReY3MxCogb8J1GwS0bJ4pSxBOtn3/SMdDARRpU22DKoCyGRdAZaUrpwTOVjdCkmTD3q8j0ARQ6RRA+aNZB84R/QyUVF2q3MFwMQmg+B7Kp8nkmjOQ6ioCHA1IjQ7INWWKfVz2QEPGFu8YPkmThRKO747RaEgsUQBFWiVJMmoblI/pdko2bo3Armk2xbYgyqh00JN4gciiB1LNGcU+jjJQfjGqp92k2nLIcnSDc1Ed7HbKikm9GpvRG0hKVuxrrRhaLFNmn8Anea+RoPheIxXb4onvYtZXjMQOBVCkVbUNbqh/xhgZQNltJljMysfNz1TRNF4gUk2ZamkNgE3rHqPRxDdNbZjg1kynGU1TrxajvyuGZbXF0K1MQ6mLzLmsAVHtXRVv+N7KAEp21kI6ezhGoyGxQgEUaVVNvTL7xDBAqs24AIphGGSpslBnqhoMe7/2TqpUZjSY5HQwZluAoxMbk5ymrF2Bnyk1g6nfj+3cLarv35KmDurEdwHXxRNL9yvPTdDpuyasPVMT/ApHd8ZoNCRWKIAirXKoAqhUmxksywQ4Wh/qOqgzlZSBCkSqPKnYpuxTYAzDgu2svD/qANRo8VTwz/ceodzhboB4ukRznNRQA0m1Bh7XbbCBI2sf+D6jFduew9ujPiVMYosCKNIqdQbKbmD2qYm6DqqcMlABqbsgJ1pjw1CpF4NVB6BGkt2NkFWF2rHMQLEpGWAz+yn2CUeKNceJJ75T7jBZwGUldgYKAPh+4xTbcu05msZLMBRAkVapM1CdUowPoLLSlBmoskoKoPyRJUnb3FDVZZoosWnKAEqsil4AJVYcV+5guJgGUADA54xVbAuHiyGLyqduBVUAxfcYBoajRq1sRm8wqicoPYe2x2g0JBYogCKtUmegjCwgb9K9i/LpoPKqRjjd/mszEplUfRrwKJ9Q5LpSANUazk8GKlpPT0lnjyq22fTuYHjj/z21xpSTp9iWXXUQjuxo3hZcEE7sURyjLqBOVAzDwKTKQgmHtkGWxABnkI6GAijSKvVadNEIoHpmJoNtsWCnDOBEeZ3h79veqKfvmJQMsLbOsRlMO8F26aPc4XFq6pKMIqrriOKgkzfbKUtTz+TZ9z/f/wtHdyqDdIYBp66dSmB8/wLFttxQDc/Rb2MzGBJ1FECRVqkDKPVadUYw8Ry6dVHWQR0/QwGUmnTmoGKb69ovwJGkCWvrBEbVkVxU3UejqAux42UpFNOQixTbYul+CKf3QZZluH/YrHiN6zGMgvQWuPQemjoy197/BTiadDQUQJFWVdYqp4jUS60YpXfXVMX2sTO1UXnf9kKWZU3fHvX6ZsQ/9TRnMAvpRkr2OCFVqzp5Z/Y1/H2DweeMBWPtpNjn+mYdxOPfaoJ006AJ0Rxau2AeqgxAheN74Kk+E+Bo0pFQAEUCkiQZ1bXKGqh0u/EZKADok60MoI5TAKUgVZ2GXF+p2Mf1HB6j0bQvXLZqId1TP0CWja2D8ma5WjzizrBg03sZ+p7BYjgTzGOnK/ZJ546i8ZMVyuNSMsD3U9ZMEYDvPw4wt3zwRUbNtg9iNh4SPRRAkYCq61yQVH1N0lOjk4Hqk5Wi2D51th4uNxVnNhFPKgt7meR0TY8j4h/f8zzFttzogKR+Qk5n6v5KbGbfmBeQt2TKnQS2U3arx5jH/CImy87EO4ZP0mTmar/9FFJ9dWwGRKKGAigSUKWq/onnGKQauJBwS32yU8G1aNgpSjJ+PFUdlfduD9SLl/K9hoNhjG1w2lGwnbLA2JWPnwuHtf2P9CSc3qfY5rsPDXBkbDAsD8vUOZpO7U24HsNgGjwxyqNqP8wjLgNaLG0jC244v/0whiMi0UABFAlIvYhvWmpS1H5IW8w8crrZFfv2HauKynvHO6muUpPR4HrRk1Gh4Puqukj/+LVh03iyuxGSql8X1z3XkPeKBJeZA+vP7tIsMsz1GArrJbeDYejHRSBsSgZMg8Yr9rn2bNYs9E06FvoXQQIqVy3i26WTNcCRxsjtk6bY3neUAigA8Bz8Bop6GpMVPAVQITENvFCxLddXQji6y5D3Ek+XKBd8Zrm4XUuO7zkcKdf9BUmTZsM87lew/vxPsF5eCEYVVBEt86grgZZBpiTA+fU/aXmXDowCKBKQehFfdYdwow1RBVDHztSitsEd4OjEIMsShANfKvaZ+uXHVT1Ne8Bl9AaboewJ5d6x0ZAmiB7V8ihc1kAwfHQexggHk5QMc+5kJI26HHyv82hqOEisvStMw6cp9okn9kD48asYjYgYjQIoEtAZVQZKvUad0Qb0sMPMN39EZRnYsf9sVMcQb8TjuyFVlyr28QMviNFo2jfzyMsU21LlCXj2fKLre8iCG8KxnYp96uVTSMeRNPaXYFR9spxb/gExyotWk+igAIoEpJ7Cy0qPbgbKxHMYMaCLYt+2vYlbUyDLMlyqwlQ2rSe4bvFXT9Me8P3GadbGc21fD+Hk97q9h3B4O+BW/jvi+1IA1VExZitsE2cpdwpuNP7fMkiqhaRJ+0cBFPGr0SVoFhLOinIGCgDOH6J8WurAiWqcq2kMcHTHJhzermlsaB75c5piCRPDcrBMvFG5UxbR+Mkz8Oz/MuLaFVmW4P5OmdHieg4Hm5Ie0XVJfDP3H4fUMZcq9sl1FWj44C+QasoCnEXaIwqgiF8nzyqXTmEZBpmdo5uBAoAR/dNhTWrxeDCA/xSdiPo4Yk121cP1zTrFPia1C/gB58doRB0Dlz0Q5pGXK3eKApyfr0HjB09COL477KfzhANfQapUflZNqq7VpGPKmDYbXGaOYp/sOIP6fz0Kz+HtVFjeQVAARfxSrz3XvYsNJj76HxcTz+HC4d0U+77YfRqOBComl2UZzi9e0XQeTyq4jhob6sA87mrw/cZp9oul+9H4f8tR/+af4PzyVXiOFEOqqwzqh5947hicX7+h2Mem9QTfZ3SAM0hHwvJmpFz5J21zW3cDnJ+uQuNHSyFEYQkhYiz67kv8Uq8910u1Nl00/Sy/F/6385SvK7rbI+Hd/x3CzVcMidmYosldvAGC+kmuHsOolkYnDMPCMnUOXJZUePZu1rwu11fBs+8zePZ95j3eageb3gusPROsvSuYlAwwJgvAmyG7GiCe+RGevf8FBGWQn3T+1dRLKYGwVjusVxSi8eNlmkykeOoHNJ76AWx6L/D98sH3GQU2rScYlj4f7QkFUD+RJAnPPfcc3nnnHTgcDowdOxYPP/ww+vTp0/bJHdDxMmUApV5aJZq6dLaiYFgWvv6+uX5gy55SjBmUiVEDu7RyZvsmyxJcW9fC8/1/lC8kJcMy5XdU+6QjhuVgmXADuJ7D4Pr6DcitFPzKjQ6Ip36AGMKDVfzA8eB7j4p8oKRdYZPTYJu+EM7PX4JwuEjzulR5Au7KE3AXbwBMVnBd+4FN6w62U7a3Y74tDaytE5CUTP/e4xAFUD9ZtWoV1q5diyeeeAJZWVl4+umnceutt+KDDz6A2ZxYPXbqGj04Ua6cwlMv7httMyf3x84DZ+FssR7ei+//gD9dOwoDenRq5cz2Saw6DdeWf0AsVXYcB8PAetEcsMlp/k8kETH1HQO+53B4Dm6F54dPIVVEXm/HdRusLVYnCYMxJcFy8e0QcrbD9fWbkBtr/B/oafwpMP9B+xrLgbF2AmNNBWOygjFbAZMFjNnqzX6aLGB4E8DyAGcCw3IAZ/Kex5m8S/SwPBiO9/4/w3mbfrKMNyvKsADD/PTfn/6wbODXGIYCOlAABQBwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oorYjzCZk63gPKqBtTUOCEK3uJWGdqaDAYMWJYBw3gLwBX/zzAw8SxY1v8/gJJjVYormnkW/brHNkhJS03CzMn98cam5roBl1vE0rd24dqpAzB5VI+AX097IEsS5PoKiGcOQji0HcKxbwE/f69JE24E35u6jhuJ4c0w506GafAkSNWnIR7fDeHkDxDPHta0JGjjSjANvchbq0aNThMawzAw9T8ffJ9R8JR8AffujzU1ja2SRMj1laGdYzRfUKUMrpifgi//rzGtvPbTeWBwkpOw1eyBIzkVvK0zAAbsT+cz8P4M4zkeo3sMwai0kTG7BRRAASgpKUF9fT0KCgp8++x2O4YOHYqioqK4CaDe/ewQNhWdgEeMfM0ujmXQpbMV/bvbkTe4K0YMyAD7028Uu35UNqsc1KtzTArI1aaO6YFDp2vwzQ/NvaDcgoTX/3MAnxSdwJRRPTBqYBdkpVl1++1IliXIrnrIzroW/9X+PwSPt4u1LAKSBEii95seZO+2LHk7gSr+K3kLkgUX5EaHcrkPNYaDZcotmiVIiHEYhgGX1gNcWg+YR14OWZYhO8ohnjsGyXEGsqMckqMccqMDsuAGPC6AN4NNyQDXbTD4gReCS+ve9huRhMHwSTAPnwbT0Ishlh2AcHg7hBN7INe2wwbBsuz9fqfe3dopQVy2gWXwUu8M1LMs0FgPNAZu/bC9dCf+38BqXNxrchBX1h8FUADKyrx/Qd26KZ/26tq1K0pLS/2dEhRex6CjtKIeH31zTLfriZKMM5UNOFPZgK+/L0P3Lsn45cQcDO2bjuIS5T/mEQMydP1aIvG7q4aiwSngu0PKGpXyqka8/b+DePt/B2Gz8OjeJRnpdgvSUpNgNXMwmzgkS3XoLR5Ht04cWEiAJHiDHsED2VUPydXgDYxc9ZDdDahx1UNy1nm/UcQQm5IB2yVzYIrDBWgjxXGs4r9xL6Ob90870+7uczsW3L1mYeo9FOg9FAAg1VdDKPsRYsUJiNVlkKpLIdWe8/5ylmBqeRb1Ify8OeI4FrOfTxRAAWhs9Kbl1bVOSUlJqKkJMF/dBpZlkJam3wKcjaKxP8RPn6vHqn9pOzDzHIPLJ/RHp5T4WbvrkTkXYvXGPfjo66N+X29wCjh4sgZA899dN64Kf7J/CBMjwRWdYUaMMVvRKf8KdL5gOtik6DcxjSa7Pfo9xhIR3efoCelepyUDPXtodsuCB2JDDYS6aoh1VZAaayG5nZBcDZDcjT/90tcIyd0IWRQgix7vfwUBkDyQBUG5X/Tua8qAx6MMt4ieTg9OWkxBHV/Qe7SuP2tDQQEUAIvFAsBbC9X0/wDgcrlgtYb3DUeSZDgcDW0fGCQrx+Cai/rjw6+PocEl6HbdtowbkgXJI6CqKnrvGYzrpg7A8L5pePu/B3FU9cSgP3nmwzAx8fkNoyUmKRlc1gCY++XB1D8PTFIyahpkoKFj/ibKcSzsdiscjkaIOkxNE//oPkeP/vfaClitgFWZ+WQRWSNHWZYV5QRN5QWyJCn3SZKqFOGn8gNNaULTfj/X/Ok6iuNkP9f86fi5ght7xWo4UtMAs8U7fQ4ZsixDkr3jYVkWo3sOQS9Lb1RV6ff90W63Bp2ppQAKzVN35eXl6N27t29/eXk5cnPDnzYRBH2/Uf38/D64/II+SE6xorq6vtXre/9tyJBkQJJlyJL3/2VZhiTJqKl343CpA1/uPo2TZ/1/+JItPGZO7q/716GX3N5pePDGPOw7VoVte89g96EKzfIzTUpFHZ5a43gwSSneP5ZkxX9hSgIYztvHheW8T7m0KJb0/zSL9/8Zjgdj6wTG1tn7pM1P9VsSAClO773eRFGK289ZR0L3OXraz73+KRRj4P0T4WyYv+rTUCtSUwBoW9sq8TyLtLRkVFW1/rPQSBRAAcjNzUVKSgq2bdvmC6AcDgf27t2LWbNmtXF2dHEsC2sSD6eZh8CG/6Hp0tmK/j064eKxPbHrwDn868vDOH2uOZBKsZpwx4zhSEuNn6k7fxiGwdC+6RjaNx2yLKPS4cLx8lpU1DhRWeuCo94Nt0eE25OOLxs4DGSOoUuqGUkWs/cRX5bzPt6bZAOTlAyYk8Ek2cDbUmDv0gV1Hh4SbwVjSQE4Mz26SwghBAAFUAC8tU+zZs3C0qVLkZ6ejh49euDpp59GdnY2pk2bFuvhGYplGIwdnInRg7rg4MkanD5Xj2SrCcP6psNmaV8fD4ZhkNHJgoxOlgBHjAr6WjzPwpqWDGcMf7shhBASv9rXT0gDzZs3D4IgYOHChXA6ncjPz8eaNWsSpokmyzAY1KszBvXqHOuhEEIIIXGPAqifcByHwsJCFBYWxnoohBBCCIlz1BSEEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBAxsizLsR5ERyTLMiTJmFvLcSxEUTLk2qQZ3efooPscHXSfo4fudXQYcZ9ZlgHDMEEdSwEUIYQQQkiIaAqPEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBVDuwatUq3HDDDYp9+/btw6xZszBq1ChMmTIFa9asidHoOg5/9/m///0vZs6cidGjR2Pq1Kl46qmn4HQ6YzTCjsHffW5p4cKFmDp1ahRH1HH5u9fl5eW45557kJeXh/PPPx9/+tOfUFlZGaMRdgz+7vOePXswa9YsjB49GpMnT8Zf/vIXuN3uGI2w/aqursZDDz2ESZMmYcyYMbj++utRXFzsez2WPwspgIpzr776KlauXKnYV1VVhdmzZ6Nv375Yv3495s6dixUrVmD9+vUxGmX75+8+FxcX484778TPfvYzbNy4EYsWLcLHH3+MRx55JEajbP/83eeWPv30U7zzzjtRHFHH5e9eu91u3HzzzThx4gReeeUVvPjii9i7dy/uu+++GI2y/fN3nysrK/G73/0O/fr1w8aNG/HYY4/hX//6F5YvXx6jUbZf99xzD3bv3o1ly5bh3XffxbBhw3DLLbfg0KFDMf9ZyEflXUjIzpw5gwULFmDHjh3IyclRvPb222/DbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkzRiNun1q7z2vXrkVBQQF+//vfAwD69OmDu+++Gw888AAeeeQRmM3mWAy5XWrtPjcpLy/Hgw8+iHHjxuHUqVNRHmHH0dq9/uCDD3Dq1Cls2rQJXbp0AQDf57murg4pKSmxGHK71Np93rlzJ6qrqzF//nykpKSgT58++MUvfoEtW7ZQsBqCY8eO4auvvsJbb72FMWPGAAAWLFiAL774Ah988AEsFktMfxZSBipO/fDDD+jUqRPee+89jBw5UvFacXEx8vPzwfPN8W9BQQGOHDmCioqKaA+1XWvtPt98882YP3++5hxBEFBXVxetIXYIrd1nAJBlGffffz+mT5+OcePGxWCEHUdr9/rLL79EQUGBL3gCgIkTJ+LTTz+l4ClErd3nzp07AwDeeustiKKIkydP4vPPP/f72SeBpaWl4e9//zuGDx/u28cwDGRZRk1NTcx/FlIGKk5NnTo1YB1IWVkZBg0apNjXtWtXAMDp06eRkZFh+Pg6itbu89ChQxXbbrcbr7zyCoYNG4b09PRoDK/DaO0+A95pkLNnz+KFF17Aiy++GMWRdTyt3eujR48iLy8Pzz//PDZu3AhBEDBhwgQUFhbCbrdHeaTtW2v3OS8vD7///e+xYsUKLF++HKIoYty4cXjwwQejPMr2zW63Y/LkyYp9H3/8MY4fP44JEyZg+fLlMf1ZSBmodsjpdGqmj5KSkgAALpcrFkPq8ARBwPz583Hw4EE8/PDDsR5Oh1JSUoLnnnsOTz/9NE2LGqyurg4bN27E/v378de//hWPPvooduzYgdtvvx2yLMd6eB2Gw+HA0aNH8Zvf/AbvvPMOVqxYgePHj2PRokWxHlq7tmPHDjzwwAO4+OKLMXXq1Jj/LKQMVDtksVg0T3M0fVhsNlsshtSh1dXV4a677sK2bduwcuVKSsPryOVy4d5778Uf/vAH5Obmxno4HZ7JZILNZsNf//pXmEwmAECnTp1wzTXXYM+ePRgxYkSMR9gxLF26FA6HA88++ywAYNiwYejUqRNuuukm3HjjjfRZD8Onn36Ke++9FyNHjsSyZcsAxP5nIWWg2qHs7GyUl5cr9jVtZ2VlxWJIHVZ5eTl+85vfYNeuXVi9ejU9Xq+z3bt348cff8Rzzz2H0aNHY/To0XjxxRdx+vRpjB49Gu+9916sh9ihZGdnIycnxxc8AcDAgQMBACdPnozVsDqcHTt24LzzzlPsa/rF68iRI7EYUrv2z3/+E3PnzsWkSZOwevVqWCwWALH/WUgZqHYoPz8fa9euhSiK4DgOALB161bk5ORQ/ZOOampqcOONN6Kurg5vvvkmBg8eHOshdTgjRozAf/7zH8W+119/Hf/5z3/w+uuv0+dZZ3l5efjHP/4Bp9Pp+yF04MABAN6nTIk+srOzsX//fsW+pvvct2/fGIyo/XrzzTfx2GOP4YYbbsADDzwAlm3O+8T6ZyFloNqhmTNnoq6uDgsWLMDBgwexYcMGvPbaa5gzZ06sh9ahPPHEEzhx4gSefvpppKen4+zZs74/oijGengdgsViQZ8+fRR/OnXqBJ7n0adPH3oyTGfXXXcdOI7Dn/70Jxw4cAA7duzAwoULcf7552PYsGGxHl6HMXv2bHz55Zd45plncPz4cWzduhX3338/Jk+ejCFDhsR6eO3GkSNH8Pjjj2PatGmYM2cOKioqfN+Da2trY/6zkDJQ7VBGRgZeeuklLFmyBDNmzEBmZibmz5+PGTNmxHpoHYYkSfjoo4/g8Xhw4403al7fvHkzevbsGYORERK+9PR0vPHGG3jiiSfwq1/9CmazGZdccgn+/Oc/x3poHcqECRPw4osv4vnnn8drr72GtLQ0TJs2DX/84x9jPbR25ZNPPoHH48GmTZuwadMmxWszZszAk08+GdOfhYxMj14QQgghhISEpvAIIYQQQkJEARQhhBBCSIgogCKEEEIICREFUIQQQgghIaIAihBCCCEkRBRAEUIIIYSEiAIoQki7QV1XCCHxggIoQki7sHnzZtx3332+7W3btmHw4MHYtm1bTMZz//33Y/DgwRg8eDDuvffeiK41ePBg38Kzwbj++ut97x3KeYQQ/VAnckJIu/Dqq68qtocNG4Z169ZhwIABsRkQgMzMTDz33HNIT0+P6Drr1q1DdnZ20Mc/9thjqKurw7XXXhvR+xJCwkcBFCGkXUpJScGoUaNiOgaz2azLGEK9RiyDRkKIF03hEULi3g033IDt27dj+/btvmk79RTes88+i8suuwyffvoprrzySpx33nmYPn06du3ahW+//RbXXHMNRowYgSuvvBJbt25VXP/AgQOYM2cOxowZgzFjxuCOO+7AiRMnQh7n4MGD8dZbb+H+++/H2LFjMW7cOCxevBhOpxNPPfUUCgoKcP7552PBggVwuVyK85qm4pq+rq1bt+Lmm2/GyJEjceGFF+Kpp56CIAgR3EVCiJ4ogCKExL2HH34YQ4cOxdChQ7Fu3ToMGzbM73FlZWV44okncNttt+GZZ55BTU0N5s2bh3vuuQe/+tWvsGzZMkiShLvvvhtOpxOAd8X36667DhUVFXjyySexZMkSnDhxAtdffz0qKipCHuvSpUthNpvx3HPPYfr06Xj99dfxy1/+EqWlpXj66adx3XXX4d1338Xrr7/e6nXuvfdejB07Fi+88AKuuuoqvPzyy3j33XdDHg8hxBg0hUcIiXsDBgxASkoKgNanuxobG/Hwww9j0qRJAIBDhw7hr3/9K5YsWYKrr74aACCKIubNm4cjR45gyJAheO6552CxWPDqq6/63uOCCy7AJZdcgpdeeklRuB6M/v3749FHHwUA5Ofn491334XH48HSpUvB8zwmTpyI//73v9i5c2er17nmmmtwxx13+Mbz6aef4rPPPsN1110X0ngIIcagAIoQ0qGMGTPG9/9dunQBoAy6OnfuDABwOBwAgG+++Qbnn38+LBaLb4osJSUFeXl5+Prrr0N+/9GjR/v+n+d5pKWlYfjw4eD55m+3nTt3Rm1tbdDXAYDs7Gw0NDSEPB5CiDEogCKEdChNWaSWLBZLwOOrq6vx0Ucf4aOPPtK8Fs7Tdf7e32q1hnwd9ZhZlqU+WITEEQqgCCEJLTU1FRdeeCFmz56tea1l1ogQQlqi7w6EkHaBZVlIkqT7dceNG4eDBw9iyJAhvoBJlmXce++96NOnD4YMGaL7exJC2j96Co8Q0i7Y7XYcOXIEW7duRU1NjW7Xvf3223H8+HHMmTMHn376Kb788kvMnTsXH374IXJzc3V7H0JIx0IBFCGkXfjNb34Dk8mEW2+9FV988YVu183NzcUbb7wBhmEwf/58zJs3D2fPnsXzzz+PSy+9VLf3IYR0LIxMVYmEEBKy+++/H9u3b8d///vfmI1h8ODBuPPOOzF37tyYjYGQREU1UIQQEia3241vv/0W6enp6N27d9Te9+DBg6irq4va+xFCtGgKjxBCwnT27Flce+21WLlyZVTf98EHH6SFhAmJMZrCI4QQQggJEWWgCCGEEEJCRAEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJC9P8B1qhMsSg1ewIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Fit the peaks using a permissive prominence filter \n", + "window_df = chrom._assign_windows(prominence=0.01)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peaks within each colored region are considered to be interacting signals, and \n", + "are fit together as one unit. In the above example, the peak at ≈ 11 min (in window 1) \n", + "is considered to be isolated from the peaks at ≈ 13 min onward. \n", + "\n", + "The extent of each peak window can be controlled by a buffer parameter passed \n", + "to `fit_peaks` and `_assign_windows`. This, given in units of time points, extends each peak window \n", + "on to account for nearby baseline signal. The above windows can be expanded by \n", + "increasing this parameter, which has a default value of 0." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHJCAYAAABKYwdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSs0lEQVR4nO3dd3wUdfoH8M/MluymbEhCSCjSSyjSg6g08bjzLOfx42x3eIp3HjbswQIqFs6GIoKcHkU5TwUVzrOeoncWFOligYj0GgLpbdvM/P6IWTIzm2R3M7O7ST7v18uXzOzM7DfDkjx5vs88X0FRFAVEREREFDIx1gMgIiIiamkYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBGR4SZOnIi7777bkGu9//77OOecc3D66afj/vvvR0FBAaZOnYrTTz8dZ555Jmpqagx5n1AtXLgQ/fr1i+p7huPuu+9Gv379GvzvyJEjAIA9e/YEff28886L8VdA1DJYYz0AIqLGPPjgg+jevTsee+wxZGVlYcWKFdi2bRuefPJJZGVlwel0RnU8l1xyCcaOHRvV9wzHDTfcgMsvv1y1r6ysDLfccgtGjRqFjh07AgDy8/MBAP/4xz+QkJAQONbhcERvsEQtGAMoIoprpaWlOPvss3HGGWcEtjt06IDzzz8/JuPJzs5GdnZ2TN47FF27dkXXrl1V+2688UakpqZi3rx5EMXaiYedO3eic+fOgftKROHhFB4RmcLn8+GRRx5Bbm4ucnNzcdddd6G4uDjw+t13342JEyeqzjl8+DD69euHNWvWYMOGDYGpsueeew79+vXDxIkTsWbNGhw9ehT9+vXDwoULAdQGVffffz/OOussnH766bj00kuxfv161bX79euHRYsWYcqUKRgxYgQWL14cdNyHDh3C9ddfjzPOOANDhgzBZZddhs8++yzwev0pvLoxBvuv/td29OhR3H777Rg1ahSGDBmCq666Cjt27Gj0/l155ZWNTsUdPny4qb8CAMD//vc/fPzxx7jnnnvgcrkC+3fu3In+/fuHdA0i0mMGiohM8cEHH2Dw4MF47LHHUFxcjHnz5uHAgQNYuXJlSOcPHDgQq1atwmWXXYbf/e53uOSSSyAIAp577jns2LEDixYtQnZ2NjweD6666iqcPHkSt912Gzp06IDVq1fjz3/+M5YuXYozzzwzcM2//e1vuOWWW9CvX7+gWSRZljF9+nRkZmbiiSeegNVqxT/+8Q/ccMMNeP/999GtW7egY6xv3bp1WLhwIS699FIAQHFxMS6//HI4nU7cd999cDqdWLFiBf7whz/gzTffRK9evYJ+/Q888AAqKysbvD8dOnRo8h7KsownnngCo0aN0tU25efno1evXrjsssuwY8cOuFwuTJ48GbfccgtsNluT1yZq6xhAEZEpXC4Xli5diuTkZABAWloabrzxRqxbtw5jxoxp8vzk5GQMHToUQO20Wd2f09PTYbfbA9uvv/468vPz8frrr2PIkCEAgHHjxuHKK6/EvHnzsHr16sA1Bw8ejL/85S8NvmdRURH27NmD6667DuPHjw+cs2jRIng8nkbHCAD79u3DihUr8Otf/xrXXXcdAGDFihUoLS3Fa6+9hs6dOwfGd/7552PBggV49tlng46ld+/eTd6jpvz3v//F3r17cd9996n2nzx5EidPnoQgCLjzzjvRqVMnrF+/HkuWLMGxY8fw1FNPNfu9iVo7BlBEZIrx48cHgieg9sk8m82Gr776KqQAKlTr169HZmYmBg4cCL/fH9h/zjnn4IknnkBZWRlSU1MBAH379m30Wu3bt0fv3r1x33334auvvsK4ceMwZswY3HPPPU2Oo7y8HNdffz26dOmCRx99VDW+/v37IysrKzA+URQxbtw4vP322w1eT5IkKIrS4OtWa9Pfvl955RX0798fZ511lmp/cnIyXnzxRfTo0SNQVD5q1CjY7XY888wzuOGGGxrMjBFRLQZQRGSK9u3bq7ZFUUS7du1QXl5u6PuUlpbixIkTGDhwYNDXT5w4EQigtGPSEgQBy5cvx9/+9jesXbsW//rXv2Cz2fCLX/wCc+bMQbt27YKeJ0kSbrvtNpSXl2P58uWqJwNLS0tx4MCBBsdXU1MT9EnCq6++Ghs3bmxwrJ988gm6dOnS4OslJSXYsGED7rjjDt1rDodDF1QBwIQJE/DMM88EpveIqGEMoIjIFNpASZIklJSUICMjA0BtsCJJkuqY6urqsN8nJSUF3bt3x7x584K+3liQEUxWVhbmzJmDBx54APn5+fjPf/6DJUuWIDU1FQ8++GDQcx5//HFs2LABL730Ejp16qQb36hRozBz5syg59rt9qD7H3zwQVRVVTU4zqZqoL744gtIkhS0r9PevXuxYcMGXHTRRaosodvtBlA73UpEjWMARUSm+Oqrr+D3+wNTTR9++CH8fn/gsfmkpCSUlJTA4/EE+hBt3bo17PcZNWoUPv30U2RkZKiCl7///e/44YcfGgysgtm2bRtuvPFGPP/88xg8eDD69++P/v3747PPPkNBQUHQc1avXo0VK1bg4YcfxsiRI4OO75133kGPHj1UwcrcuXPh8Xjw0EMPBb1uz549Qx53MN9++y2ys7MDdVf1HT9+HHPmzIHNZsPvfve7wP73338fSUlJDWbLiOgUBlBEZIqTJ09ixowZuPLKK7F//348/fTTOPvsswNPxZ1zzjl4+eWXce+99+KSSy7BTz/9hOXLl8NisYT1Pv/3f/+Hf/7zn5g2bRquu+46dOzYEV999RWWLFmCqVOnhvVE2YABA+BwODBz5kzMmDED7du3x1dffYWdO3fij3/8o+74b775Bg888AAmTZqEQYMGYfv27aq6pQEDBuDqq6/Gv//9b1x99dW45pprkJaWhvfffx+vv/56SLVVkfrxxx8bLEQfNWoURo0ahcceeww1NTXo2bMnPv30U7z88suYOXNmYMqTiBrGAIqITHHppZfC7XbjxhtvhN1ux0UXXYS8vDwIggAAOPvss3HXXXfh5ZdfxkcffYSBAwdi0aJFui7aTUlMTMQrr7yCp556Ck8++SQqKirQuXNn3HHHHbjmmmvCulZCQgKWL1+Op556CnPnzkV5eTm6d++Ohx56CP/3f/+nO/6LL76Az+fD2rVrsXbtWt3rdXVKK1euxFNPPYU5c+bA4/Gge/fumDt3rir7Y7SioqIGl5yxWCxYvHgxFi5ciBdffBEnTpxA165d8dBDDwXaLxBR4wSlscc8iIiIiEiHnciJiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsRGmiZRFAWybE6LLVEUTLs2ncL7HB28z9HB+xw9vNfRYcZ9FkUh0Oy3KQygTCLLCoqLG14INFJWq4i0tCSUl1fD75cNvz7V4n2ODt7n6OB9jh7e6+gw6z6npyfBYgktgOIUHhEREVGYGEARERERhYkBFBEREVGYGEARERERhYlF5ERE1GbVPjEtQ5YlQ64nywLcbgu8Xg8kiU/imSXS+2yxWCGKxuSOGEAREVGboygKamoqUVlZZljwVOfkSRGyzCfwzBbpfXY6k+FypYfcrqAhDKCIiKjNKS8vRk1NJRyOJDgciRBFS7N/oNaxWARmn6Ig3PusKAq8Xg8qK0sAAKmpGc16fwZQRETUpsiyhJqaKiQnt0Nycqrh17daRfaAioJI7rPdngAAqKwsQUpKWrOm81hETkREbYokSQAUJCQ4Yj0UioG6IEqS/M26DgMoIiJqo4yZsqOWxaipWgZQRERERGFiAEVEREQUJgZQRBT3FFmG94ePUfPJ3+DZ9g4UvzfWQyJq8W666S+YO3dOs67xu99dhGXLXjBmQM3g8bhx1VWX4/3334nae/IpPCKKe54Nq+D77sPajT0bIJ88AOekm2I7KKIW7q9/fRKiaIn1MJqtvLwM9913N/bs2R3V92UARURxTa4sgu/7j1T7/Ps2QyrcC0uHnjEaFbVWsqyg0u1r1jWsFhF+Kfw2BskOG0QxeoXtLpfxLRyibd26z/D0008gLS096u/NAIqI4pp/7yZA0TfL8+3ZwACKDLUpvxCvfPQjyqubF0BFypVowx9+2Q+5OR0iOn/hwqexefNGrFixEgBQXl6OCy/8BS666LfIy7sXALB+/TrMmnUX3nvvY+Tl3YKOHTth1qw5eP/9d7B8+d/xpz9Nx0svLUVh4XH06tUHt956JwYNGgwAqKysxDPPPIl16z6D1WrDH/84TTeG77//Fn//+2L8+ONOWK1WjBkzHjfeeCtcLhfuvTcPkuTH44/PBwD89NMuTJv2e0yffhOuvPJqAMCaNW/gn/98CWvWvIdly17Aiy8uwbp1mxv8mr/8ch1+97vLcMklV+Ccc86M6L5FijVQRBTX/Ed3Bt0vHc2P8kiotXvpg/yYBU8AUF7tw0sfRP65PvvscdizZzeKik4CALZu3QRFUbBly6kA5KuvvsTIkblwOp2680+ePIG33lqN++57GM8//yIEQcAjjzwA5edfYO6//27s3PkDHn98PubPX4Qvv/wCBQXHAufv2PE9ZsyYju7de+D551/Eww8/jh07vsftt98EWZYxZsw4bNu2FX5/bf+lzZs3QhAEbN26KXCN9evXYcyYcQCAK664Ev/+938a/ZrvumsWfv/7P8Jms0V41yLHAIqI4pYiS5CO/Rj0NbnoIIvJieoZPHgoUlJc2LRpA4DaAGXcuAk4fPggTpwoBFAboIwdOyHo+X6/H3feeTcGDTod/frl4I9/nIbDhw+hqKgIBw/ux8aNX+O222ZiyJBh6NOnHx544BHY7fbA+StXvoJevfrg9tvvQo8ePTF8+EjMmfNX5OfvwIYN63HmmWPgdtfghx++U43vu++2w+fzweNxY+vWzYHxJSYmIiOjvXk3rJkYQBFR3JJLjgI+dwOvKpBLjzXwGlH4rv51DlyJ0c9k1HEl2nD1r3MiPt9qtWL06LNUAdSFF16MDh2ysGXLJuzduweFhcdx9tljG7xGt249An9OSkoGAPj9vkCBdv/+AwKvp6dnoFOnzoHtvXt34/TTh6iu16tXbyQnp2DPnp+QlpaGgQMHYdOmDfD5fPj222248sppkCQJO3Z8jy1bNsNms2PYsBER34NoYg0UEcUtueRw46+XHoWlfbcojYZau9ycDhjRN7NFF5GfffZYLFz4NI4dO4pjx45iyJDhGD58JLZu3YyiopMYOHAQ0tMbXkS3fkapjlKvBlGW1fWIFotVdVywJt+KIsNqrT3urLPG4YsvPsWIEblITExETs4ADBx4+s/jK8KZZ54dODbetYxRElGbJBc3EUAVH4nSSKitEEUBrkR9EBGOWC4mPHr02XjkkQfwxhuvYcCAgUhMTMTIkaOwbNkLOHLkMMaMGR/Rdfv2rc2Mfffddpx11hgAQEVFBY4cORQ4pmfP3ti+/RvVeT/9tAtVVVXo3r32gY8xY8Zh6dK/4dNPP8Hw4bkAgJEjR2HLlk04evQIbrjhlojGFwucwiOiuCU1FUCVHo3SSIhahuTkZAwZMgxvvbVaFaAcO3YU3323vcH6p6Z07twF55zzC8yf/wQ2bdqAvXt34+GH74fPdypbd9llv8fu3bvw9NOPY//+fdi2bQseemg2+vbth5EjRwEAevToiezsjnjnnbcwYsRIAMCIEbnYvn0biouLcOaZZwWuV11dHSiIj0cMoIgobskl6gDJ0qm/+vXyE9EcDlGLcPbZ4+D1ejFiRG0A1b59Jrp374HTTuuKrl0jn/KePXsOzjzzbDzwwL244YZr0aNHT/Trd+rf5KBBgzFv3gLk5+/ENdf8AffddzcGDRqCZ55ZrJqWO/vssfB6vYEAr3//gXA6nRg+PBeJiUmB41577WVcfPF5EY/XbIKiBGmwQs0mSTKKi6sMv67VKiItLQklJVUxSxG3BbzP0dHYfVZkCZXLrgWUU/vtoy6Bd+Mbpw6yJyLl6sXRGm6Lxc+zms/nRVHRMWRkdITN1rzpumBiOYXXlkR6nxv7+09PT4LFElpuiRkoIopLSnWpKngCAEt2X/VB3moo3proDYqI6GcMoIgoLsmVReodFjss7bvqj6sqjtKIiIhOYQBFRHFJqVAXj4rJ6RCsCRAcKerjtIEWEVEUMIAiorgkV6ozS0JKbUdiITm90eOIiKKBARQRxSWlUp+Bqv1/huY4ZqCIKPoYQBFRXNJloJJ/zkAltlPtV2rKozUkIqIABlBEFJf0GajazJPgdKmPYwBFRDHAAIqI4o6iKJAr1FNzQgMBlFxTFrVxERHVYQBFRPHHUwX4PapdpzJQqar9Sk1F1IZFRFSHARQRxR1dDygIEJLTAACibgqPGSgiir6YBlAbNmxAv379gv537rnnAgB27tyJqVOnYujQoZgwYQKWLVumuoYsy3j22WcxduxYDBkyBNdccw0OHDigOsaIaxBR9GgDKCGpHQSxdi0tIVGdgYLfC8XnjtbQiFqNm276C+bOndOsa/zudxdh2bIXjBlQBL77bjtuuukv+NWvxuO3v/01HnvsYZSXR+eXqpgGUMOGDcO6detU/y1fvhxWqxXXXXcdSkpKMG3aNHTv3h2rV6/GjBkzsGDBAqxevTpwjcWLF2PlypV45JFHsGrVKgiCgGuvvRZerxcADLkGEUWXtjWBUK91gbYGCmAhOVEk/vrXJ3HLLXfGehgRO3jwAG6//Sb06dMPS5aswIMPPoqdO3/A7Nl3ReX9rU0fYh673Y7MzMzAts/nw6OPPopf/vKXuOSSS/DCCy/Abrdjzpw5sFqt6NWrFw4cOIAlS5ZgypQp8Hq9WL58OfLy8jB+/HgAwPz58zF27FisXbsWF1xwAV5//fVmX4OIokubgVL1frImABY7IJ36BUepLgNcHaI1PGrFFFmG4qls1jVkqwg5gkVuhYRkCGL08houV2rTB8Wx999/F+3bZ+Lmm2+HIAjo2hW4/fa7ceONf8aRI4fRuXMXU98/pgGU1iuvvIJjx45h+fLlAIDNmzcjNzcXVuupYY4ePRovvPACioqKcOTIEVRVVWH06NGB110uFwYMGIBNmzbhggsuMOQaRBRd+mVc6mWgBAGCM0WVpVLczfuBRwQAvr0b4fnynzHLaApOFxLOngpbz1ERnb9w4dPYvHkjVqxYCQAoLy/HhRf+Ahdd9Fvk5d0LAFi/fh1mzboL7733MfLybkHHjp0wa9YcvP/+O1i+/O/405+m46WXlqKw8Dh69eqDW2+9E4MGDQYAVFZW4plnnsS6dZ/BarXhj3+cphvD999/i7//fTF+/HEnrFYrxowZjxtvvBUulwv33psHSfLj8cfnAwB++mkXpk37PaZPvwlXXnk1AGDNmjfwz3++hDVr3sOyZS/gxReXYN26zUG/3l/96tcYPXoMBEHQvVZRYf7fYdwEUB6PB88//zyuuuoqdOhQ+5tkQUEB+vZVr75e99rRo0dRUFAAAOjYsaPumGPHjhl2jUhZrcb/JmGxiKr/kzl4n6OjofusaBYItqS2V/17Eh3JkOoFUIK/2pR/b60FP89qsqz/gQsA7s9fBLw1UR7NKUpNOdyfvxhxAHX22eOwatWrKCo6iYyM9ti6dRMURcGWLacCkK+++hIjR+bC6XTqzj958gTeems17rvvYdhsNsyb9ygeeeQBvPbaGgiCgPvvvxvHjxfg8cfnIzExEYsWPYOCglM/J3fs+B4zZkzHRRf9FrfdNhMlJcWYP/8J3H77Tfj731/CmDHj8Mwz8+D3+2G1WrF580YIgoCtWzcFAqj169dhzJhxAIArrrgSv/3tlKBfqyAAPXr0hCTJUJRT+1955SVkZGSgd+++Qc+rz2IRmvV9I24CqH//+9/weDy48sorA/vcbjfsdrvquISEBAC1AVdNTe0HPdgxZWVlhl0jEqIoIC0tKeLzm+Jy6T/8ZDze5+jQ3udyTQCVmt0FifX+PbmTXaipl6RyiD60M/HfW2vBz3Mtt9uCkydF3Q9QAQKURs6LBgGR/1AfPnw4XC4Xtm7diF//+kJs2bIJ48efg08//S+Ki0+iQ4cOWL9+HaZN+zOsVrE2myvUvp8oCvD7/bjrrnvRt28/AMC0aX/CzJm3o6ysGFVVVdi48WssXPg3jBgxAgDw0EN/xeTJF0AUa6+xatUr6N27D2bOvCcwpocffhRTp16GzZs3YOzYcXjssYeRn/89hg4dji1bNmL8+HPw9ddfQVEkSJKErVu34Mknp8JqFeFyJcPlSm70a67/S8GCBU9j/fov8de/PgGHw97gObIsQBRFpKYmwuFwRHSvgTgKoN566y388pe/RFpaWmCfw+HQFXJ7PLW9YRITT33hXq9XdRM8Hk8gujbiGpGQZQXl5dURn98Qi0WEy+VEeXkNJCn8OXYKDe9zdAS7z4rfC6mqVHVctZAET0lVYNtvUf/brC4phlLvdVLj51nN6/VAlmVIkgJ/vVqlhHFXx8UUnj+C+qlaIs444yx8/fXXmDTpfGzatAG33HIHduz4ARs3bkDfvjkoLDyOM88cA79fhqIoUJTaeyDLtaFjly7dAu/vcCQCANxuL3bt2gUA6Nu3f+D11NQ0dOrUGbJce409e3YjN3e0avzdu/dCcnIKdu36EaNGnYmBAwfh66+/Rr9+A7F9+zYsXPgCvvzyC3z77beoqqqCzWbD4MHDmrwHglD7uZYkGT6fH088MRcffPAu7rjjLowde06j50uSAlmWUVZWjZoaSfWay+UMOVMbFwFUcXExtm3bhunTp6v2Z2dno7CwULWvbjsrKwt+vz+wr2vXrqpjcnJyDLtGpCL/R9A0SZJNvT7V4n2Ojvr3WS47qXtddqZDqf/3YE9Un19Tyb+nEPDzXEuSgueZbD1Hwdp9ZLOLyK1WMaL7bEQR+dlnj8XChU/j2LGjOHbsKIYMGY7hw0di69bNKCo6iYEDByE9PaPB87WzMUDtygB16gKtOhaLVXVckHIkKIocqEM+66xx+OKLTzFiRC4SExORkzMAAwee/vP4inDmmWerapYbUjekqqoq3HNPHr79dhseeOAR/OIXv2ry3DraADpccTEhvnXrVgiCgFGj1PO+ubm52LJlCyTpVIS4fv169OjRAxkZGcjJyUFycjI2bNgQeL28vBw7duzAyJEjDbsGEUWPdhFh2J0Q7OqMk5CgTusrHmafyBiCKEJ0umLynxFP4I0efTbKysrwxhuvYcCAgUhMTMTIkaOwbdsWfPXVOowZMz6i6/btW5tQ+O677YF9FRUVOHLkUGC7Z8/e2L79G9V5P/20C1VVVejevScAYMyYcfjxx5349NNPMHx4LgBg5MhR2Lp188/1T6GPz+fzIS/vVuTn/4CnnloYVvBkhLgIoPLz83HaaafppsymTJmCyspKzJo1C7t378aaNWuwYsWKQKbKbrdj6tSpmDdvHj755BPk5+fjtttuQ3Z2NiZNmmTYNYgoevRP4LXXHSMkqOudGEAR1UpOTsaQIcPw1lurVQHKsWNH8d132zF27ISIrtu5cxecc84vMH/+E9i0aQP27t2Nhx++Hz6fL3DMZZf9Hrt378LTTz+O/fv3Ydu2LXjoodno27cfRo6sTZD06NET2dkd8c47b2HEiNokxYgRudi+fRuKi4tw5plnBa5XXV2NoiJ9RrrOSy8tw7fffoO8vHvRrVt3FBWdDPxXf1xmiYspvJMnT6Jdu3a6/RkZGVi6dCnmzp2LyZMnIzMzEzNnzsTkyZMDx9x8883w+/2YPXs23G43cnNzsWzZskAa0ohrEFH06LqQJ+unGxhAETXs7LPHYcuWTRgxojaAat8+E92794CiKOjatVvE1509ew6ee24BHnjgXsiyjIsv/j+UlpYEXh80aDDmzVuAJUuexzXX/AGJiUkYO3YCrr/+JtW03Nlnj8Xrr78WCPD69x8Ip9OJQYOGIDHx1L/t1157udE2Bh999B8oioI5c2bpXnv22ecxfLi5s0iCUn9ykwwjSTKKi43/pm61ikhLS0JJSRVrGUzE+xwdwe5zzadL4d+1LnCMbcC5cIy5UnWeb/8WuD9aGNgWUjKRfMWT0Rl0C8TPs5rP50VR0TFkZHSEzWb8L8qR1kBReCK9z439/aenJ4VcRB4XU3hERHW0y7iIKcEyUKyBIqLYYgBFRHElkik8eKuhyPyNn4iihwEUEcUNRZGhaJ7CE0MJoADAa3zfNSKihjCAIqK4odSUA7JftS+kDBQ4jUdE0cUAiojihraFAUQLhET9ivGC1Q5YbOpzGUBR2PgMVVtk1LNzDKCIKG5om2gKSekQhODfpvStDJrXPZraDovFAkCAx+OO9VAoBrze2uXc6ndRj0Rc9IEiIgIApVLTRDNF30SzjpCQDKW69NS5zEBRiETRAqczCZWVpfD7fXA4EiGKFgjB1iGJgCwLDS4XQ8YJ9z4rigKv14PKyhI4nckQm9n5nQEUEcUN/RN46Q0eKySo18NjAEXhcLnSYbMloLKyFG63sZ8dURQh86lQ00V6n53OZLhcDX9vCRUDKCKKG3KFpgdUkGVcAjTr4yk+TsdQ6ARBQGJiMpzOJMiyDFmWmj4pBBaLgNTURJSVVTMLZaJI77PFYm125qkOAygyzfrvC/DRpkNon+rA7yf1RVpKQqyHRHFOqQojA6UJoOCtMWNI1MoJggCLxfJzXVTzWa0iHA4HamokdiM3UTzcZwZQZIpv95zEknd3AAAOHK9AYWkNHpiWC9GgGgNqncLJQAk2TQaKARQRRRGfwiNTfLz5sGr7UGElfjpUGpvBUIugeGt0zTCDNdGso81AMYAiomhiAEWGk2QZuw6X6vbvPFCiP5joZ9oCcqDxKTzYHOpt1kARURQxgCLDnSxzw+vTz0kfPsGnpKhh2kWEBaertmFmA5iBIqJYYgBFhjtZGjwTcKyIARQ1LJRFhFWv657CYwBFRNHDAIoMd6Is+A+yE6U1hrXQp9ZHm4FqrP4JAKArIucUHhFFDwMoMlxDGSi/pKDK7Q/6GpH2CbxwM1DaAnQiIjMxgCLDnWwgAwUAZZWeKI6EWhI5jGVcAE7hEVFsMYAiw51oIAMFAKVV3iiOhFoSXRF5Y0/gQd8HCpIfiuQzelhEREExgCLDlVc1nGViBoqCUSQ/lKpS1b5Gl3EBALtDt4vLuRBRtDCAIsNVVDecBSirZAaK9GqfwFM/YBDuFB4ALudCRFHDAIoM5fFJ8DayLlEZp/AoCLlCXf8EmxNCQlLjJ1nsgKD+FsZeUEQULQygyFAV1Y0HSKWcwqMgtAFUU9knoHYRWOgKyTmFR0TRwQCKDNXY9F0or1PbpA2gmmphEDhOu5wLM1BEFCUMoMhQlTWNB0hVbgZQpBdJBgoABHuialthLygiihIGUGSopqbwqtlIk4LQB1AhZqA4hUdEMcIAigxVqZmis4iCapsBFAWj70IeWgYKmik8FpETUbQwgCJDVWim8DqkqTMENR4/ZK6HR/UosgS5sli1L/QpPO1yLgygiCg6GECRobQ1UFlpmhoV1AZRRHX8FUWAom59IYQaQNkSVNuKn095ElF0MIAiQ2mDo/bt9N2iOY1H9flLT6h3WO0QEpJDO9mq+Xz5GEARUXQwgCJDVWsCqLTkBNZBUaP8ZeoASkxpX9vjKQS6DBSLyIkoShhAkaFqNMGR02GFM8Gq2sdWBlSfv6xQtR1yATkAcAqPiGIkLgKot956C+effz5OP/10XHDBBfjggw8Cr+3cuRNTp07F0KFDMWHCBCxbtkx1rizLePbZZzF27FgMGTIE11xzDQ4cOKA6xohrUGi0GajEBCuSHOoAihkoqi9YBipUglUdQHEKj4iiJeYB1L///W/ce++9uOyyy/Duu+/i/PPPx+23345t27ahpKQE06ZNQ/fu3bF69WrMmDEDCxYswOrVqwPnL168GCtXrsQjjzyCVatWQRAEXHvttfB6a/sRGXENCp22BsqZYEWiw6bapw2yqG3zaQKoULuQA/pO5MxAEVG0WJs+xDyKomDBggW46qqrcNVVVwEAbrzxRmzduhUbN27Exo0bYbfbMWfOHFitVvTq1QsHDhzAkiVLMGXKFHi9Xixfvhx5eXkYP348AGD+/PkYO3Ys1q5diwsuuACvv/56s69BoQuWgUp0cAqPGtacDJR2Cg+sgSKiKIlpBmrv3r04cuQILrroItX+ZcuWYfr06di8eTNyc3NhtZ76ATx69Gjs27cPRUVFyM/PR1VVFUaPHh143eVyYcCAAdi0aRMAGHINCo1fkuH1qR9Hdyboa6BqPFI0h0VxTFFk+Ms0XcjDyUBZtUXkzEARUXTENAO1f/9+AEB1dTX+9Kc/YceOHejSpQuuv/56TJw4EQUFBejbt6/qnA4dOgAAjh49ioKCAgBAx44ddcccO3YMAAy5RqSsVuPjU4tFVP0/ntR49VNzKUl2JGoCKK9fMuXeGCme73OrUl0MyOrPjS2tA8QQPx+KQ9NI0++J+89WLPDzHD2819ERD/c5pgFUZWUlAOCuu+7CTTfdhDvvvBMffvghbrjhBrz44otwu92w2+2qcxISan/j9Hg8qKmp7Toc7JiysjIAMOQakRBFAWlpSRGf3xSXy9n0QVHmDpJY6pTtQjuXpk4F5t4bI8XjfW5Nasr3qbYFmwPpnTqF3MbA426Hynrbit/TYj5bscDPc/TwXkdHLO9zTAMom622uPhPf/oTJk+eDADo378/duzYgRdffBEOh0NXyO3x1KboExMT4XDU/mD2er2BP9cd43TW3lQjrhEJWVZQXm78yvAWiwiXy4ny8hpIktz0CVFUUFiu2raIAqor3YCsHmdZhRslJVXRHFrY4vk+tya+o4dU22JKJkpLQ/93I9VolgWS/Cg+WQbBEtNvbXGHn+fo4b2ODrPus8vlDDmrFdPvMtnZ2QCgm2Lr3bs3Pv30U3Tu3BmFheoeMXXbWVlZ8Pv9gX1du3ZVHZOTkxN4j+ZeI1J+v3n/eCRJNvX6kajQLCTsTLBCkhTYbRbV/mqPP+7G3pB4vM+tib/0uGpbcGWGdb9l0a7b53fXQEhgFioYfp6jh/c6OmJ5n2M6STtgwAAkJSVh+/btqv27du1C165dkZubiy1btkCSTs0NrV+/Hj169EBGRgZycnKQnJyMDRs2BF4vLy/Hjh07MHLkSAAw5BoUGm1/J2dCbeDksKsDKLeXReRUSyrTBFApmWGdL1j1ARQLyYkoGmIaQDkcDvz5z3/Gc889h3fffRcHDx7E3/72N3z55ZeYNm0apkyZgsrKSsyaNQu7d+/GmjVrsGLFCkyfPh1Abd3S1KlTMW/ePHzyySfIz8/HbbfdhuzsbEyaNAkADLkGhcbj0wRQ9toEpy6A4lN49DO5XJ0dFl0dwruAto0BAMXPVgZEZL6YFwrccMMNcDqdmD9/Po4fP45evXph4cKFOOOMMwAAS5cuxdy5czF58mRkZmZi5syZgXopALj55pvh9/sxe/ZsuN1u5ObmYtmyZYGi8IyMjGZfg0Lj0WSW6gInh139MdMGWtR2yeWaHlBhBlCCaAVEq/pJPmagiCgKYh5AAcC0adMwbdq0oK8NHjwYq1atavBci8WCvLw85OXlNXiMEdegprl96gAqoaEMFKfwCIDiqYLiUT9MEHYGCqjNQtVr4MopPCKKBjaqIMNop+YSGshAMYAiQD99B0GEkBJ6E83AaZrlXMApPCKKAgZQZBiPJgPlsAUvIvf5ZUgyn05p67QBlJCcUTslFyZ9N3KuYUlE5mMARYbRZpZOZaAsTR5LbU9z658CuB4eEcUAAygyjC4D1cAUHsAn8QhQtE/ghdnCoI4uA+VnDRQRmY8BFBlG+xReQgNTeADgDrJuHrUtuik8gzJQLCInomhgAEWG0QZFdVN4oijAbhM1xzID1dbpe0BFmIHSFpFzCo+IooABFBmmoSJy4FQ2qqFjqW1RJB+UqhLVvkhroDiFR0SxwACKDNNQETmgD6C8Pj6F15YpFScBqBcCNq6InAEUEZmPARQZRhtA1a990i4ozAxU26arf3KmQLA7I7qWvo0Bp/CIyHwMoMgw+qVcTj19l6CpgfIygGrT5NIC1bboyor8YtoFhSVf5NciIgoRAygyhKIouqxS/Wk7u5UZKDpFLjum2rakdYz4WvoaKDbSJCLzMYAiQ/glBZKsrmmpP4WXoGll4PWzBqot02agLO2yI7+YJgPFInIiigYGUGSIYBml+kGT3ar+qGmn+6htkcs0U3jtmpOB0kzh+TmFR0TmYwBFhgjWGDOhkTYGXj8DqLZK8dZAqS5V7bM0I4DS1UAxA0VEUcAAigwRLKOkqoHSPYXHKby2Spt9giBCTI2whQH0GSjWQBFRNDCAIkO4NVN4dpsIURQC2/o+UMxAtVVyqbqA3NquAwSLLfIL6jJQDKCIyHwMoMgQuhYGmoBJu5QLn8Jru7QZKFt6M6bvEOQpPIkBFBGZjwEUGaKxLuQAO5HTKdon8GwZnZt3Qasme+X3QlGU4McSERmEARQZQpuBSrBZVdvsRE51tD2g7OmdmnU9bQYKAJtpEpHpGECRIbQ1UA5741N4rIFqmxRFhlx6XLXPltG8AEpXAwWwDoqITMcAigyhy0A1MYXHDFTbpFSVAJoapeZO4en6QIHNNInIfAygyBDajJI2YNJO4bEGqm2SS46od9gcsCSnNe+ilmAZKE7hEZG5GECRITx+fRuD+hK0nciZgWqT5GJ1AGVJ7wxBEBo4OkSiBRDUny9moIjIbAygyBDajJJ28WC7bi08BlBtkVSiDaC6NPuagiCwFxQRRR0DKDKEdgpPn4HST+HJfNS8zdFO4RkRQAHsRk5E0ccAigzh9aszULoaKE0GCgB8ftZBtSWKIuun8DKMCaB0GSg20yQikzGAIkPoMlDWxmugANZBtTVKxUldYMMMFBG1VNamDyFqmjYDpX3qTrsNsBdUvFIUGb7vP4Zvz9eAAth6jYJt0CQIov7vMBxS8WHVtpCQDMHpatY1A7TNNBlAEZHJGECRIfQ1UI33gQIAD1sZxCXPun/At/PTU9sn9kIq3APHxOshiJEnrbX1T6IRT+D9TJ+B4lN4RGQuTuGRIfRP4ak/WqIowGphN/J459u7SRU81fHv3QTfd/9p1rVlTQZKTDOo/gkALNr18NgHiojMxQCKDKFtSxBsyi6By7nENUVR4N36doOve7a8BbmqJOLryycPqLZFg+qfAP16eKyBIiKzMYAiQzRVRA4EW1CYU3jxRDr2I+TiQw0f4PfC9/3aiK6teGsgl6nXwLO07xbRtYLS9YHiFB4RmSvmAdSRI0fQr18/3X9vvPEGAGDnzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DggPo3XSOuQY3TBkPBM1DaXlDMQMUT/75Nqm0xNRvWvmNV+7w7P4Xic4d9ban4EIB6fb8E0eAMFJ/CI6LoinkA9eOPPyIhIQFffPEF1q1bF/jvoosuQklJCaZNm4bu3btj9erVmDFjBhYsWIDVq1cHzl+8eDFWrlyJRx55BKtWrYIgCLj22mvh9dZ+AzXiGtQ0/RRekAwUl3OJW4qiwL9/m2qftc9ZSBh6PoB6hd7eavh+Wh/29XXTd2mdgy4CHDH2gSKiKIt5ALVr1y706NEDHTp0QGZmZuA/h8OB119/HXa7HXPmzEGvXr0wZcoUXH311ViyZAkAwOv1Yvny5ZgxYwbGjx+PnJwczJ8/H8ePH8fatbVTDUZcgxqnKIquiFzbeRwAbJqgio0044dcegxKVbFqn7X7CIjtOsLabahqv393+AGUdHK/als0cvoOzEARUfTFPID68ccf0bt376Cvbd68Gbm5ubBaT3VbGD16NPbt24eioiLk5+ejqqoKo0ePDrzucrkwYMAAbNq0ybBrUOOCBULBM1Da9fAYQMULqWCXaltISoOY1gkAYOs3TnesXH4irOtrM1CG1j8BXAuPiKIu5n2gdu3ahczMTPz+97/H/v370a1bN9xwww0YO3YsCgoK0LdvX9XxHTp0AAAcPXoUBQUFAICOHTvqjjl27BgAGHKNSFmDFFI3l+XnVgAWS8xj34Aar1+3L9Fh03392rooSZZNuUdGiMf7bCbP8Z9U29aO/WD7+e/L0mMI3AlJUDxVgdelvRtgH/mbkK6t+L2QS46q9tmzesBqFQ27z367Q71D8sbtZysW2trnOZZ4r6MjHu5zTAMor9eL/fv3w+l0YubMmUhMTMTbb7+Na6+9Fi+++CLcbjfsdvVvlgkJtY8rezwe1NTUAEDQY8rKygDAkGtEQhQFpKUlRXx+U1wup2nXDpc/SCKzQ2YKkpzq3jzJiep7LFotpt4jI8TTfTZTxYk9qm1Xr9ORWu/vRhp4Niq2fnRqe896tPvF5SE1wnQfPoRSpX62UUBG7xyI9lP3trn3udyVjJp621ZIcf/ZioW28nmOB7zX0RHL+xzTAMput2PTpk2wWq2BAGbQoEHYs2cPli1bBofDoSvk9nhqH09OTEyEw1H7W6fX6w38ue4Yp7P2phpxjUjIsoLy8uqIz2+IxSLC5XKivLwGkhQfU2Aniqp0+6qr3PC6NdMoinq85RUelJToz40H8XifzaJ4a+AvKVDt86Z0Uf/ddBsF1AugfEVHcHJ3PqztuzZ5ffeu71TbYnpnlFXJQFWVYffZo/mo+dw1cfvZioW29HmONd7r6DDrPrtczpCzWjGfwktMTNTt69u3L9atW4fs7GwUFhaqXqvbzsrKgt/vD+zr2rWr6picnBwAMOQakfKbWOMjSbKp1w9HjVs9hWcRBUDRf/02zYfS4/XHzdfQkHi6z2bxFx5U7xAsUFwdVV+30r4nhKR0VaG5Z9fXQLumWxH4jqmnBy1ZvXX3tLn3WRbU2U7F5231f2+RaAuf53jBex0dsbzPMZ2kzc/Px7Bhw7B582bV/u+//x69e/dGbm4utmzZAkk69bj7+vXr0aNHD2RkZCAnJwfJycnYsGFD4PXy8nLs2LEDI0eOBABDrkGN0z6BZ2ug9sTGIvK4JBdpWgy066h7qk0QRFh7jVLt8+3dBEVR0BhFUSAd1wZQfZox2uC4Fh4RRVtMA6i+ffuiT58+ePDBB7F582bs2bMHjz76KL755htcd911mDJlCiorKzFr1izs3r0ba9aswYoVKzB9+nQAtVOAU6dOxbx58/DJJ58gPz8ft912G7KzszFp0iQAMOQa1DhPCMu41O5nG4N4JBdp1qjLOC3ocbae6gBKKT+uC760lIoTUGrKVfss2cYHUPo+UFwLj4jMFdMpPFEU8fzzz2PevHm49dZbUV5ejgEDBuDFF19Ev379AABLly7F3LlzMXnyZGRmZmLmzJmYPHly4Bo333wz/H4/Zs+eDbfbjdzcXCxbtixQU5WRkdHsa1DjQlnGBdBnptiJPD7IZeqnTcX0zkGPEzN7QEjJhFJxqoWBf89GWNp3b/Da0tF81bbgdEFIyYx8sA1gHygiiraY10Clp6fjr3/9a4OvDx48GKtWrWrwdYvFgry8POTl5Zl6DWqYrolmQxkozRQeM1DxQbtGnZiaHfQ4QRBg6zUK3m/eC+zz7d0I+6hLGnwaz3/kB9W2pWO/kJ7cC1uQtfAURTHnvYiIEAeNNKnl02WggjTRBIJkoBhAxZzic0OpLlXtayiAAgCrdhqv4iTkE3uDX1uRIR3Zodpn6TwwsoE2QbcsjKIAsr4/GRGRURhAUbNpAyFtpunUfm0NFKfwYk2bfQIA0dWhwePFjK4QNAGWb8/G4NcuOgTFXaHaZ+1iTgAFa4J+H6fxiMhEDKCo2fQZqOABlHYtPGagYk8bQAnJGY0u8isIAmw9c1X7/Hs3QlH0f5f+g9vV57o6QDSh/gkABItNt491UERkJgZQ1GyeEKfwdDVQPgZQsSaXqRtoiqlZTZ5j7XWGalupKoF0fI/uOP9e9VqS1tNOj2CEIQoW9LGVARGZiAEUNZu2GDzUKTwvp/BiLtQC8vos6V0CCw3X8e9er75u6THIxYdU+6w91JkrQ1lsANQF44qfrQyIyDwMoKjZ9E/hhVZEzqfwYq9+SwIAEF1NZ6AAwNpTnYXy7fpStdiwb/fXqtcFZyos2epFvY0kCMLPQVQ9EqfwiMg8DKCo2UJvpMlO5PFGrixSbQsp7UM6z9ZvDCDU+/bh98C781MAgCL74cv/THW8tcdICKK5327YC4qIookBFDWbtoi84aVc9BmoppYCIfMosgSlqkS1T0xOD+lcMTkD1h7qpY6829+H4qmCL/8LXWsEW864Zo01JLpeUJzCIyLzxLyRJrV82im8BjNQQQIrn19u8Hgyl1JdCmienhOSM0I+3z74PPj31mth4KlC9b/nQq48qTrOkt0XlvbdmjPU0Fg1CwpzCo+ITBRSALVo0aKI3+Cmm26K+FxqGbTF4AkhLiZcey4DqFhRKovVOyxWCI6UkM+3dOgJa4+R8O87tRi4XHpUd5x95GTdPjMIFjtU+UxO4RGRiUwNoARBYADVBoScgQpSXM5C8tjR1T8lZ4S99EnC6MvhP7ID8FYHfd3aYySsnfpHPMaw6DJQnMIjIvOEPIX3+uuvY/DgwSFf+JtvvsEVV1wR0aCoZQl1KZdgU3hsZRA7siYDJSaFVv+kOielPZznXoeaj54FJPXSKWJaZzjGTWvWGMMhWLQ1UMxAEZF5QioiHz58OJKSksK6cEpKCoYNGxbRoKhl8YTYB8pqEaHNb7CZZuwoVfoMVCSspw1G4m9mwdJ5QG0rgYQk2Aaci8SLZ0NICO/7RrPwKTwiiqKQMlAjRoyAxRJenUqvXr3w6quvRjQoallCXcpFEATYrKKqfQFbGcSOtgZKjDCAAgBLZg8kXjCzuUNqFt1yLgygiMhEIWWgXnzxRfz617/GlVdeibfffhseD5dIoFO0AVRDjTSBYK0MOIUXK/oaqPCn8OKKto0Ba6CIyEQhBVBffPEF7rnnHlRVVWHmzJkYM2YMHnroIezcudPs8VELoFvKpZGn6thMM35oezVFUgMVT9hIk4iiKaQAKi0tDX/84x+xZs0avPPOO7jkkkvw8ccf4//+7/8wefJkvPrqq6ioqDB7rBSHZEXRBUHBisXraDNQ2if4KDoUWYJSo/43KyS2i81gjKLLQDGAIiLzhN2JvE+fPpg5cyY+/fRTvPDCC+jZsyeeeOIJjB07Fnl5edi0aVPTF6FWI1gbgkYzUJzCiwuKuwJQd02C4HTFZjAG0dZAcTFhIjJTxJ3IRVHEuHHjMG7cOFRVVeG///0vnnvuObz77ruc2mtDtPVPQFMZKE7hxQOluky9QxDCaqIZl3RLuTADRUTmafZSLt9//z3eeecdrF27FseOHcMZZ5zR9EnUagSbggsvA8UAKha0AZTgcJm+2K/pNH2g2EiTiMwUUQB16NAhvPPOO3jnnXewf/9+ZGVlYfLkyZgyZQq6dOli9BgpjgVrhNnQYsIAYNM8ocdGmrGh1GgCqMTUGI3EOIKVbQyIKHpCDqBKSkrw/vvv45133sH27dthtVoxceJE3HvvvRgzZkzYS0BQ66DNQFlEAVZLwwGUtskmG2nGhqzNQLWCAIqNNIkomkIKoK677jqsW7cOfr8fffr0wd13343f/OY3SEtLM3t8FOc8ITbRDLyufQqPU3gxoctAOVt+AKVrpMmn8IjIRCEFUJs3b8aUKVMwZcqUsNbDo9ZPOwXX0Dp4dXRtDDiFFxPaGiixVWSgElSbfAqPiMwUUgC1bt06OBwOs8dCLZB2Ci+hgXXw6uim8JiBiolWmYHS1kAxA0VEJgopgNIGTx9++CG2bt2K8vJy3bGCIOCvf/2rMaOjuBd2BkpbRM4aqJholTVQ2qfwWANFRCYK+ym8efPmYenSpUhOTobLpW+8x2LytkUbAIVbA8VGmrGha2PQKjJQ2j5QnMIjIvOEHUD961//wqWXXoqHHnrIjPFQC6NtpNlYE00gWA0UM1DRpvg9gK9Gta911EDpp/AUReEvdURkirA753k8Hpx33nlmjIVaIN06eE1moFgDFWtKdZCp91YQQAmaKTwAAJtpEpFJwg6gfvnLX+K///2vGWOhFijsDBQbacactoAcFhtgc8ZmMEbSTuEBbKZJRKYJewrv3nvvxSWXXIIrr7wSQ4YM0RWYC4KAG2+80bABUnxrdg0Ui8ijLlgBeWuY5tL1gULtci4t/ysjongUdgD18ssvY9++fdi3bx82bdqke50BVNvi0T2FF94UHmugok+pUU/hCU79wyAtEjNQRBRFYQdQ//znP3HBBRfgnnvuQfv27c0YE7UgzS0i51N40ae4K1TbgiMlRiMxmMUGQACgBHYp7AVFRCYJuwaquroal156qSnB0759+zBs2DCsWbMmsG/nzp2YOnUqhg4digkTJmDZsmWqc2RZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg4Jr7hQeM1DRp7grVdutJYASBOHnIKoetjIgIpOEHUCdddZZ2LBhg+ED8fl8uPPOO1FdXR3YV1JSgmnTpqF79+5YvXo1ZsyYgQULFmD16tWBYxYvXoyVK1fikUcewapVqyAIAq699lp4vV7DrkEN02agEppspMkpvFjTZ6CSYzQSE2haGbCZJhGZJewpvIsvvhizZ8/GgQMHMGzYMCQn67/5/va3vw17IAsXLkRSUpJq3+uvvw673Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFhlyDGqYNgGxNLuXCIvJYUzzaDFTrCaAEqx2Kp+rUDk7hEZFJwg6gbr75ZgDAe++9h/fee0/3uiAIYQdQmzZtwqpVq/DWW29hwoQJgf2bN29Gbm4urNZTwxw9ejReeOEFFBUV4ciRI6iqqsLo0aMDr7tcLgwYMACbNm3CBRdcYMg1ImVtoh4oEhaLqPp/rPkkdQDkTLA0+nU7HeqPnKwogABY4+TrqRNv99lQmik8a6LLlM9qKIy+z4LVXq8CChAVf8y+tnjSqj/PcYb3Ojri4T6HHUB98sknhg6gvLwcM2fOxOzZs9GxY0fVawUFBejbt69qX4cOHQAAR48eRUFBAQDozuvQoQOOHTtm2DUiIYoC0tKSmj4wQi5XfPTtkWRFtZ3WLrHRrzvYQ+VJyQ4kOvSPoMeDeLnPRqrwVqm2U9q3R5KJn9VQGHWfqxISUD/nlJggICXGX1s8aY2f53jFex0dsbzPIQVQCxYswOWXX46srCx07tw5pAsfP34cK1euxC233NLocXPmzMHQoUNx0UUX6V5zu92w29WPJickJACo7YheU1O7HEWwY8rKygy7RiRkWUF5eXXTB4bJYhHhcjlRXl4DSYr99Fe126/a9nn9KCmpauBooKZKP6VSeKICqckJho+tOeLtPhvJr+lEXi3Z4G3k78xMRt9nSfMtraqsAv4YfW3xpDV/nuMN73V0mHWfXS5nyFmtkAKo559/Hueccw6ysrJCHkRBQQGef/75RgOot956C5s3b8Y777wT9HWHw6Er5PZ4PACAxMTEQBNPr9eraujp8XjgdDoNu0ak/CYWSEuSbOr1Q6UtIrcIQqPjEoN0Naxx+5EUpxmoeLnPRlEkH+Bzq/ZJtiQgxl+jYfdZ8xSe5PW0qr+/5mptn+d4xnsdHbG8zyEFUIqiYM6cOUELxhtSWVnZ5DGrV69GUVGRqu4JAB544AEsW7YMnTp1QmFhoeq1uu2srCz4/f7Avq5du6qOycnJAQBkZ2c3+xrUsHCfwtM20gT4JF40aVsYAK2njQEAwKrOZCpsY0BEJgkpgMrNzQVQG0iFKikpCSNHjmz0mHnz5sHtVv82/Mtf/hI333wzzj//fLz33ntYuXIlJEmCxVL7g3f9+vXo0aMHMjIykJKSguTkZGzYsCEQ/JSXl2PHjh2YOnVqYOzNvQY1LNzFhEVRgEUUVLVTXFA4evQBlADB3npqhHTLufApPCIySUgB1Msvv2zKmzc0JZiRkYHOnTtjypQpWLp0KWbNmoU///nP+Pbbb7FixQo8+OCDAGrrlqZOnYp58+YhPT0dnTt3xpNPPons7GxMmjQJAAy5BgUnK4ou+NF2Gg/GbhNR4zmVueKCwtGj6wGVkARBbEVPC2mXc2EfKCIySdhP4UVTRkYGli5dirlz52Ly5MnIzMzEzJkzMXny5MAxN998M/x+P2bPng23243c3FwsW7YsUBRuxDUouGCZo6YyUEBtryh1AMUMVLTou5C3nh5QACBoG2lKnMIjInPEXQD1448/qrYHDx6MVatWNXi8xWJBXl4e8vLyGjzGiGuQnrb+CQASQslAaZdzCXIdMkerXQevjoUZKCKKjlaUu6doizQDpT2GNVDR0/ozUOoAiku5EJFZGEBRxDxBMkeh1EBpj9EuSEzmaf0ZKO1iwgygiMgcDKAoYtrAxyIKIS3JolsPj0XkUdPaM1DaInLWQBGRWUKqgXrrrbfCumgkiwlTy6OderM30QMqcJw2A8UpvKhp7Rko7RQeM1BEZJaQAqi777475AtGspgwtUweTebIFqRJZjDaGigWkUdP28tAMYAiInOEFEAZvYAwtQ7awEebWWqIrgaKGaio0WegWlcApWukyU7kRGSSkAKoUBcQBsLrVk4tm7YGKiGEJ/AA/XIufAovehSvZoHrhNYVQDEDRUTRElEfqPfeew8bN26Ez+cLBEyKoqC6uhrffPMNPv/8c0MHSfFJ20E8lCfwAMBmYwYqFhTZr1tIWEhIjNFozCHo+kAxA0VE5gg7gFq0aBEWLVqElJQU+P1+2Gw2WK1WFBcXQxRFXHLJJWaMk+KQNgMVSg8oAEiwsgYqFhRPtW6fkNB61sEDAGg7kfs9MRoIEbV2Ybcx+Ne//oXf/OY32LhxI66++mqcc845+Oqrr/Dmm2+iXbt26NOnjxnjpDikzUCF+hQea6BiJFgAZW9lGSjdU3jMQBGROcIOoI4fP46LL74YgiBg4MCB2LZtGwBg0KBBuO666/DGG28YPkiKTz5tBirkp/A0faCYgYoKxVul3mGx6QOOlk47hSd5WZdJRKYIO4BKTEyEIAgAgO7du+Pw4cNwu2vrKvr374/Dhw8bO0KKW9o2BqFnoDRTeMxARYXiVgdQrW76DkEyUADAZppEZIKwA6jTTz8d//rXvwAAXbt2hcViwVdffQUA2LNnD+z2VvYbLTVIVwMVYQZKOxVI5tBmoFpjAKV9Cg8AAygiMkXYReTXXXcdpk2bhoqKCjz//PP4zW9+g7vvvhtnnHEG1q1bh1/84hdmjJPikHYJlkg7kWunAskciqf1B1C6PlCoXVC4NX6tRBRbYQdQubm5ePPNN/Hjjz8CAO6//36IooitW7fivPPOC6trObVsEWegOIUXE7qn8FpZATkAZqCIKGoi6gOVk5ODnJwcAEBCQgIefvhhQwdFLYNH24k8wqfwuJhwdLSFDBQayEARERktogCqoqICX3/9Naqrq4M+4cK18NoGbeYo9Boo9XEeTuFFhTYD1dqaaAK1a3HCYlNnnRhAEZEJwg6gPvvsM9x6662oqakJ+joXE247tO0HIq6B4hRedLSFInKgdhqvXgDFDBQRmSHsAOrpp59Gz549cc899yArKwuiGPaDfNRKeCLMQOkbaUpQFCXQHoPM0Sam8FBbSK7Ki3M9PCIyQdgB1N69e7F48WKMHDnSjPFQC6JdgiXUDJR20WFFASRZgdXCAMpMbSWAgjVBtamwGzkRmSDs9FGnTp1QWVlpxliohdFOvUWagQK4Hl40tIUaKAAQNOvhMQNFRGYIO4CaPn06nnvuOXYcp4gzUMEWHWYrA/PpMlD2VpqB0iznwhooIjJD2FN477zzDo4fP45JkyYhPT0dDodD9bogCPj4448NGyDFL10NVJDAKJigGSgGUKZSZD/g96h3ttIpPF0GilN4RGSCsAOo7OxsZGdnmzEWakEURQmymHBkfaAALihsNl0TTbTeKTxdM01O4RGRCcIOoB599FEzxkEtjCQrkDU9wELNQImCAJtVVNVQMQNlMs30HdB6i8gF3RQeM1BEZLywA6ijR482+JooikhMTITL5WrWoCj+BSv6DjUDVXesKoBiBspU2vonWO1B141rFXRTeJ7gxxERNUPYAdTEiROb7NeTmpqKP/7xj7jhhhsiHhjFt2AZo1AzUECw5VyYgTJTm2lhgCAZKK6FR0QmCDuAeuyxx3D//fdj1KhRuPDCC9G+fXsUFRXhww8/xKeffoobbrgBVVVV+Nvf/oZ27drh97//vRnjphhrdgbKxgWFo6nNPIEHBMlAsQaKiIwXdgD13nvv4YILLtDVQl188cV44IEH8P333+P555+Hy+XCa6+9xgCqlfIGWb8uWHF4Q7TBlpcLCpuqrfSAAgBB10iTARQRGS/sPlAbN27EhRdeGPS1X/7yl/j6668BACNGjMChQ4eaNzqKWx6/vgdUOEux2DRNN4MFZGQcpa2sgwfULiZcH6fwiMgEYQdQ7dq1Q35+ftDX8vPzkZycDACorq6G0+ls3ugobulbGIRe/1R7PGugoknXxqAVZ6C0bQyYgSIiM4Q9hXfRRRfh2WefhdVqxXnnnYf09HQUFxfjo48+wqJFi3D55ZejrKwMK1aswJAhQ8wYM8UB7ZRbqF3ITx2vrYHiFJ6Z9EXkyTEaifkEXR8oZqCIyHhhZ6BuvfVWnH/++XjssccwYcIEDB48GBMmTMBjjz2Giy66CLfddhs+//xz7NixA7feemuT1ysqKkJeXh5Gjx6NYcOG4S9/+Qt2794deH3nzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg9S0U27NzkBxCs9cugCqFWegNFN4zEARkRnCDqCsViseffRRfPjhh3jooYdw22234bHHHsN//vMfPPTQQ7Db7Rg3bhy++OIL5OTkNHm966+/HocOHcKSJUvw5ptvwuFw4Oqrr0ZNTQ1KSkowbdo0dO/eHatXr8aMGTOwYMECrF69OnD+4sWLsXLlSjzyyCNYtWoVBEHAtddeC6+39pumEdcgPV0GKowCcgCwaTJW2poqMlZbegpPl4FiAEVEJgh7Cq9O165d0bVr16CvpaamhnSNkpISdOnSBddffz369OkDALjhhhtw8cUX46effsL69etht9sxZ84cWK1W9OrVCwcOHMCSJUswZcoUeL1eLF++HHl5eRg/fjwAYP78+Rg7dizWrl2LCy64AK+//nqzr0F6ugxUGD2gAGagoq0tPYWny0BxKRciMkFIAdS5556L5557Djk5OU020gxnMeG0tDQ8/fTTge2TJ09i2bJlyM7ORu/evbFw4ULk5ubCaj01zNGjR+OFF15AUVERjhw5gqqqKowePTrwusvlwoABA7Bp0yZccMEF2Lx5c7OvESlrmFmZUFgsour/seKX1QFPgt0S1tfrsKs/en5ZMeV+RSpe7rNRtE/hWRNT4uJ+m3GflQT1Aufw++Lia42l1vZ5jme819ERD/c5pABq1KhRSEpKCvw5nMfVQ3XfffcFskV/+9vfkJiYiIKCAvTt21d1XIcOHQDULilTUFAAAOjYsaPumGPHjgGAIdeIhCgKSEszb5rE5YrtE44Wq/qjk+S0h/X1piSre/XA5PsVqVjfZ6OUetUZKFf7DDji6H4beZ9ryl2orLctyL64/GzFQmv5PLcEvNfREcv7HFIAVb9p5mOPPWbKQK666ipcdtlleO2113DjjTfi1Vdfhdvtht2urmdISKj9wevxeFBTUwMAQY8pKysDAEOuEQlZVlBeXt30gWGyWES4XE6Ul9dAkmI37VVWXqPaFqCgpES/YG1DZM3YK6s8YZ1vtni5z0ZQJD8Un3o9uEqviJo4uN9m3Gd/jfo6si++Plux0Jo+z/GO9zo6zLrPLpcz5KxWRDVQlZWVqKqqQlZWFrxeL/7xj3+goKAAv/rVr5CbmxvJJdG7d28AwMMPP4xvvvkG//znP+FwOHSF3B5P7Q+CxMREOBy1qXqv1xv4c90xdT2ojLhGpPwm9jaSJNnU6zfF7VUXfdssYljjsYrqLKbHG9uvpyGxvs9GkKsrdPskayKUOPq6jLzPkvbbmt8Hn08yJXPe0rSGz3NLwXsdHbG8z2FPHn777beYOHEiXn75ZQDAI488gnnz5uHtt9/GVVddhU8++STkaxUVFeHdd9+FJJ36YSyKInr16oXCwkJkZ2ejsLBQdU7ddlZWVmDaLdgx2dnZAGDINUhPu3Zdc/tA+fgUnmm0T+ABrbuIXNCuhQcFkP0xGQsRtV5hB1Dz589Hz549cdlll8HtduOdd97B73//e2zcuBG/+93v8Pzzz4d8rcLCQtxxxx3YuHFjYJ/P58OOHTvQq1cv5ObmYsuWLaoAa/369ejRowcyMjKQk5OD5ORkbNiwIfB6eXk5duzYgZEjRwKAIdcgPe1iwuH2gdKum8fFhE2kDaCsCRDEiB/AjX8Wu34fWxkQkcHCDqC2b9+O66+/HqeddhrWr18Pt9uNiy++GABw/vnn46effgr5Wjk5ORgzZgwefPBBbN68Gbt27cJdd92F8vJyXH311ZgyZQoqKysxa9Ys7N69G2vWrMGKFSswffp0ALV1S1OnTsW8efPwySefID8/H7fddhuys7MxadIkADDkGqSnC6DCzUBpAygfM1BmaVPr4CFIHyiwmSYRGS/sX0NFUQwUXH/22WdwuVwYPHgwgNraqPp1RE0RBAHPPPMMnnrqKdx6662oqKjAyJEj8corr6BTp04AgKVLl2Lu3LmYPHkyMjMzMXPmTEyePDlwjZtvvhl+vx+zZ8+G2+1Gbm4uli1bFhhjRkZGs69BevopvHAzUNqlXJiBMkub6gEFALopPHA5FyIyXNgB1KBBgwIdwz/44ANMmDABgiCgqKgIS5YswaBBg8K6XkpKCubMmYM5c+YEfX3w4MFYtWpVg+dbLBbk5eUhLy+vwWOMuAapaTNG2im5piRoMlZcTNg8+nXwWncGSttIE2AGioiMF/YU3syZM7F+/XpcccUVsFgsuP766wEAF154Ifbv3x/S+nfU8mkzRglhZ6A4hRctugyUvXVnoARB1AdRDKCIyGBhZ6AGDBiAjz76CHv27EGfPn2QmFj7zXjOnDkYPnw4MjMzDR8kxR99EXnznsLjFJ55dE/hJSTHZiDRZLWrpu0UTuERkcEiehQnOTkZQ4YMUe371a9+ZciAqGXQBjzamqamaDNQPr8MRVHYq8cE+iLy1p2BAgDBYoNSfwczUERkMC7WQxHRZqC0NU1NCVZ0zjoocyjuNlYDBdRmoOrhgsJEZDQGUBQRr695T+EFm/LjNJ5JvG3sKTwAgrYXlJ9TeERkLAZQFBGvv3lP4QUNoFhIboo29xQeoGtloPg9DRxIRBQZBlAUNkmW4ZdUFSZhP4UXLGPFDJQ5dAGUvfUHULpmmsxAEZHBGEBR2DxefaATbgBltYiw6BYUZgbKDG2ukSagb2PAGigiMlgrXhCLzOIJMtWWYA8vgAJqs1A1nlOLvAa7LjWPIvl0wYPQBtoYCNYE1bbSCjJQctlxeL5eCf/h7yAkJMM2aBLsg8+DIIb/b4+Imo8BFIUtWK1SuE/h1Z1TU680hTVQxtP1gAKAtpCB0i7n0sIzUHJZAareejiwMLRSXQrvxjcgFx+C45zpbP9BFAOcwqOwaTNFglA7JRcu7bQfM1DGCxZAtYUpPO1TeC15KRdFkVHz3xcCwVN9/t1fw7fz0+gPiogYQFH4tIFOgs0S0W/ADKDMp61/gs0BQWwDiWdtBqoFT+H592+DfGJfg697t/wLis8dxREREcAAiiIQLICKhN2uDaD4FJ7hdE/gtf7sEwBAm4FqwVN43m8/aPR1paYcvvzPojQaIqrDAIrCpn0KL9IASpeB4lN4hmuTPaAQrI1Bywyg5PJCyMd3q/Y5Jk6Hpat6KS3fzs+gKOrWIkRkLgZQFDbdQsKRZqA0zTRZRG48pQ12IQcQpJFmywygfHs2qLYFRwqsPXNhH3year9cehTyib3RHBpRm8cAisKmm8KzR/Yx0rY+8PgZQBlNn4Fq/S0MgCBLuUgtswZKOvSdatvaMxeCaIWlYw4EV5bqNf/+rdEcGlGbxwCKwmZUDZT2PG+QBp3UPPoAqq1koFr+U3iKzw3p+B7VPmvXoQAAQRBg65mres2/f1u0hkZEYABFETArgOJTeMbTtTFoqzVQLbCIXDq2C1Dq/ZsQLLB07BvYtHYfpjpeLj0KufRYtIZH1OYxgKKwGfYUHgMo07XVInLtUi4tsRO5/+gO1bYlqxcEmyOwLWb2gJDYTn2OZsqPiMzDAIrCpp1qi7SIXNu9nAGU8dpqANUansKTju1SbVs69VdtC4II62mna8750fRxEVEtBlAUNrMyUHwKzwS6hYTbRgClrYFqaUXkiuyHXHxQtc+S3Vd3nKVjjmrbfywfisJaQqJoYABFYTPsKTxO4ZlO8VSqtttKACXopvA8DRwZn+TiI4DkV+2ztO+mO87SsZ96h6cKcskRM4dGRD9jAEVhM6+InL85G0lRFN1SLm0lgNJloPy+FtVoUjq5X7UtpGRCcOhbUIgp7SGktFefezTfzKER0c8YQFHYjGqkqWtjwAyUsfxeQFZnMdpKAKXrAwVFdy/imXzygGo7WPYp8JomCyUVsqEmUTQwgKKwGZeBYhG5mbTTd0DbCaB0iwkDLaqQXJuBEjO7N3ispUMv9bmNLDxMRMZhAEVh0061GbeYMAMoI2mn7wABsDtjMpZoE6wJun1KCykkVxQZcvFh1T5L++4NHm/J7KE+v6xA3/+LiAzHAIrCpl30N+IMlFU7hSdDbkF1KvFOl4FKSIQgtJF/8i04A6VUFunGKqZ1bvB4Mf00QLSq9kmaKUAiMl4b+W5KRtJP4UX2MdJmoADAx0Jyw7TZAnJA10gTaDnNNOUSTTdxu1PXMLM+wWKFmHGaap/EhYWJTMcAisKmKyIPEgiFIljmitN4xmmrLQyA2iaTsKizMi1lORe59KhqW2zXCYIgNHqOdhpPLmQdFJHZGEBRWGRFgddvTA1UsMwVAygDtdEu5AGWlrmgsFyiDqAsaZ2aPEcbQLGQnMh8DKAoLMFaDRjViRxgAGWkNj2Fh5a7nIsUJAPVFFFbSF5VDNldYei4iEiNARSFJVizy0gDKFEQYLOqP4Je1kAZpi1P4QEANE/itYQMlKIokEvVNVBiWscmzxPbddRNWWqf5CMiY8U8gCotLcX999+PcePGYfjw4bjiiiuwefPmwOs7d+7E1KlTMXToUEyYMAHLli1TnS/LMp599lmMHTsWQ4YMwTXXXIMDB9RPoBhxDaoVLEMUaQAV7FyPt+U0O4x3bXUh4TqCTdPKwOeOzUDCoLgrdFOvoWSgBNECsZ36ST0GUETminkAdfvtt2P79u14+umn8eabb2LgwIH405/+hD179qCkpATTpk1D9+7dsXr1asyYMQMLFizA6tWrA+cvXrwYK1euxCOPPIJVq1ZBEARce+218Hprf9s04hp0iterD6BsET6FBwAOTQG6O8j1KTJtfgrP5lBtt4T18JSKE+odggVCckZI54rpXVTbcvEho4bV4knFR1CzdhEqXrweFcuuRfU7j8J/6NtYD4taOGvTh5jnwIED+PLLL/Haa69h+PDhAIBZs2bh888/x7vvvguHwwG73Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFeP3115t9DTpFm4Gy20SITTwh1BiHXf0RZABlnDY/hdcCM1ByeaFqW0hpD0EMLcNrSe+C+vlbiRkoAIB//zbUfLIYqNdIVTr2I2qO/Qj70Athz53S5FOORMHENAOVlpaGv//97xg0aFBgnyAIUBQFZWVl2Lx5M3Jzc2G1nvohO3r0aOzbtw9FRUXIz89HVVUVRo8eHXjd5XJhwIAB2LRpEwAYcg06xahlXOo4EtTn13AKzzC6TuRtLIDSdiNXfPGfgdIGUKIrM+Rz9RmoI1CUtl1TKJ3crwue6vN+8y58334Q5VFRaxHTDJTL5Qpkfep88MEHOHjwIMaMGYP58+ejb9++qtc7dOgAADh69CgKCgoAAB07dtQdc+xYbSFmQUFBs68RKavV+PjUYhFV/482v6zuFJ5gszTr60xMUH8EvX7ZlPsWrljfZ0NoammsiclxcW/rM/M+iwnqZWsEyRN3X7+Wp/Kkatua2iHkMYsduqGm/g6/B2J1ESypWa3j8xwmRZZQ/fmLDQZPdTybVsN+2kBYO/Ro9LhQtcV7HQvxcJ9jGkBpbdmyBffeey/OPfdcTJw4EY8++ijsdvWjyAkJtb9Vejwe1NTUfrsIdkxZWRkAwO12N/sakRBFAWlp5v3G73LFZk0zq61EtZ3otDXr60xJ1kyziKKp9y1csbrPzaXIEkq86gxUu8xM2OPo3tZnxn2WkpNRv4rRLkpx9dkKpqZKHUAlZZ+GdiGOWWmXiApnCuSaU+0LnJ4TSErrGdhuqZ/nSJRt/o9uSZukAWcjIas7iv/3KoCffxmUJfg2rET7Kx82dCqvLd3rWIrlfY6bAOrjjz/GnXfeiSFDhuDpp58GADgcDl0ht8dTm4ZPTEyEw1FbJOr1egN/rjvG6XQado1IyLKC8nLtYq7NZ7GIcLmcKC+vgSRFPz1fXKr+mqyigJKSyBcu1U4AlpbVNOt6Ron1fW6uYD2AKjwCxDi4t/WZeZ+9kuYJz8rKuPhsNcZTXKDetrULa8xiWhfINTsD22UHd8PbYVCL/zyHS5EllH+5RrVPTOsM29g/QbFY4SivgHvL24HX3Id2onDrF7D3HNHs925r9zpWzLrPLpcz5KxWXARQ//znPzF37lxMmjQJ8+bNC2SDsrOzUViorgmo287KyoLf7w/s69q1q+qYnJwcw64RKb/fvH88kiSbev2G1LjVNUp2q9iscdg1T/BVu/0x+boaEqv73FxylT6AkqyJkOP0azHjPsuaTuSy1x3Xf5eK3wulSp3hVZLahzVmIa0zcPRUAOU/eUh1fkv9PIfLt3cT5Moi1b6Es6dCUkTAL8M65EIIu76CUnEq41ez5R2IXYcZNoa2cq9jLZb3OeaTtK+++ioefvhh/OEPf8AzzzyjmkrLzc3Fli1bIEmnCpfXr1+PHj16ICMjAzk5OUhOTsaGDRsCr5eXl2PHjh0YOXKkYdegU9xGF5HrnsJjEbkRdAXkFpu+M3crp2tjEOdP4cnaFgYIr4gcCFJIXtQ2Wxn4fvhEtS1m9oSl46lfiAWrHQm5U1THyCf2Qjq+Oyrjo9YhpgHUvn378Ne//hWTJk3C9OnTUVRUhBMnTuDEiROoqKjAlClTUFlZiVmzZmH37t1Ys2YNVqxYgenTpwOorVuaOnUq5s2bh08++QT5+fm47bbbkJ2djUmTJgGAIdegUzyaNgOOhOYlMZ3sA2WKNt/CANC1MYj3p/AUbQsDp0sXBDbFog2gyguhSG3rlxK5sgjSsR9V++yn/1JX32TtOUrXY8v7w8emj49aj5hO4X344Yfw+XxYu3Yt1q5dq3pt8uTJeOyxx7B06VLMnTsXkydPRmZmJmbOnInJkycHjrv55pvh9/sxe/ZsuN1u5ObmYtmyZYFMVkZGRrOvQadoM0TaRpjh0gZgDKCM0da7kAOAYNPUMPrjPANVrs5ACa4OYV9D1C48rMiQy48Dmac1Z2jNVjc9KThdEOzmFv36925U77AnwtpDX9skiBbYBpwL78bXT527bysUb43pY6TWIaYB1HXXXYfrrruu0WMGDx6MVatWNfi6xWJBXl4e8vLyTL0G1dIGOM0OoHQZqLb127JZGEDpl3KJ9wyUdgpPTAlv+g4ABHsihMR2UKpLT1235GjMAijFWwPPpjfhy/8CkLyAIMDabTgSzrwCYkp7U97Tt0cdQNl6jIBgsQU91tZvDLyb3gTq+mVJXvj3b4Wt79mmjI1al5jXQFHLog+gmheDcykXczCAAtDCaqCUymLVdqQBhthO3dNOuzhxtCjealS/90RtPZL085PQigL//i2ofushSMVHDH9PuboU8ol9qn3WXmc0eLzodMHSZZBqn2/3esPHRa0TAygKi+FTeFzKxRSKW10D1da6kAPBFhOO8wyU5qmxUNfA09IuPiyXHo14TJFSFAXuz1/UBTOB12vKUfPhfF2g31zS4R/UO2wOWDo1/jS1rc+Z6msc2QnFa3wLGmp9GEBRWLQBTgKn8OKSNoASHCkxGknsCFZNAbbsj+uCakUTQInJ6RFdR0zTZKBKop+Bkg5uh39v40thKRUn4dnweqPHhMt/+DvVtrXzAAhi41lya7dhQP1jFAn+w98bOi5qnRhAUVh0T+EZHED5JQV+Np9rNkXTSLMtBlC6xYSBuF1QWPF79X9nhmWgjkV1TTxFUeDZ8i/1zoQkOC+6B2KHnqrdvh8/N2zRY0WRdRko7fRcMEKQLJX/wHZDxkStGwMoCot+Cq+5NVD68zmN13zaDJToSI7RSGInWAsAxR+f03ja+icAEJMizUBpnsSTvJArioIfbALp4HbImiVUHGdeAWvHfnD+4kagfj8yRYF302pD3lcuOqgLQq1dTg/pXGvXoapt6dC3UGT+IkeNYwBFYdEGN9o+TuEKlsFye+J3mqWlYAYKgFWfgYrXQnJt/RMSkiJ+lF5wpgKaFg5ySfTqoLw7/6ceT2o2rL3PAgCIyRmwDzlf9br/wDbIZeolbCLh12SfBFdWyI1IrV2HqLYVdwXkE3ubPSZq3RhAUcgURTH8KbxgNVTMQDWfvgaqDWagRBHQLOcSr4XkRtU/AYAgCLo6KClKAZRcXQbpkLoOyT7k17V/F3Xbg88D7ImqY7zfN7+BpVTwk2rb2nlAyOeKrkyIaZ1V+/yar4NIiwEUhcwvyZBkRbWvuTVQoiDogigGUM2j+L2AZqpKcLbBDBSC9YJqGRkoISmy+qc62jooKUqtDPy7vz7VUwkArHbYeo5SHSPYHLDljFft8+1aV/u5jZCiKJA1y7BYsvuEdQ3LaerpPqnemoJEwTCAopDVBAlsmhtABbsGn8RrHl0LA7TRKTxA1wsqXjNQsrYHVIQF5IHztYXkUcpA+fdvUW1bu48IOhVpH3gugHpLq/jc8B/4JuL3VcoKdMsXhRtAWTWF5FLhnritmaP4wACKQqZ9Ag9ofhsDgL2gjKatf4IgAm10aQpdBipOl3NRqozpAVXHEoMpPMVdCem4ehrN1jt4E0sxpT0smik2309fRvze2uk7IbEdhOTwGpFasvvV/lupI0u66xLVxwCKQqYNbAQACbbmB1DaQvRqFpE3i76APBmC0Eb/qWu7kXvjM4DSTuE1pwYK0GegFHclpKqyZl2zKf7D3wNKvSl+iw2WTv0bPF7XwPLQ90Gzp6GQtNN3Wb11iwc3RbA7IWZ2V1/3aH5E46G2oY1+V6VIaKfWEuyWsL9JBZPoUGegqt0MoJqDBeSn6FoZxGENlKIoQYrIm5eBElIyAYv635W3yJh+Sw3xH1T3TrJ06g8hyJOQdazdRwD116hTJN01QqXNfIU7fRcYUyd1Vsx/dEdE16G2gQEUhczohYTrJDrUC30yA9U8bGFwiqB52isel+hQ3BWApkN6c6fwBFGEmJqt2uc7afzac3UURdEVXVu7Dm70HMHuhFXT6NJ/YFv47+2u1K33Z8mKLIDSNtSUT+yP+0WoKXYYQFHIjG5hUCcxQX2dGmagmkWXgUpowxkoTe1XXAZQ2h5QggghsV2zr6udxvOeNC8DpZQXQqkuVe2zdm66C7i1+3DVtv/Qd2E/jScVqqfvYLFDbN81rGsETs3qra6DUmRIDaznR8QAikKmbXBpXAZKHUBVeXyGXLetYgaqHl0AVROjgTRM38IgTdU3KVJiO3Uhuc/EKTzp2I+qbcHpgpCa1eR5lq5DgPplAH4PpDCnzaQCTf1Thx5Nrn/XEMHmgJhxmvr6x1lITsExgKKQuX3mTOElsQbKUKyBOkU3heeJ/wxUc+ufAtfRBFBeE6fw/AXqAMrSsV9I9ZGi06WbbvPv3xrWe+vqnyKcvmvofG2BOlEdBlAUsmhN4bEGqnl0Gag22kQT0AdQ8MVjBkrdA6q59U91tGviSeUnTWskKh3bpdq2ZPcL+Vxr92Gqbf/Bb6EoSgNHqymyH1KheorNktU75PcORnu+dHx3VBdjppaDARSFTL+QsElF5MxANYs+A9WWAyjNFF5bykClZkPVrBKAVGJ8R3LFUwWl4oRqXzhPwWkX8lWqSyEXHQzpXPnkQUBS10w1O4DSjt1TBbm0+Wv1UevDAIpCZt5TeNopPNZANUewPlBtlZAQ/0/h6WqgmtkDKnAdqx1CirqZpBkNNSVtsCNaIaZ3Dn5wEEJqNgSXul7Kf/Cb0N5bM70mtuvY7M+7mJwBIUn9d8A6KAqGARSFTFdEnsApvHijKAozUPXp2hjE3xSeYvAyLqpraRbIlYqNLySXTx5Qv2d657CKuAVB0LU8CLUfVLAGmkbQTeMVsA6K9BhAUci0U2vawCdS2gyU1yfDL7HmICLeakDW9BRqyxkobQ2Utyau6lkUyQelRt0h3KgaKACwpJm/Jp6kCaAsGd3CvoZ2Gk8u3Ae5uunO6boMlEkBlMwMFAXBAIpCVqPJDDkNC6Bsun2sg4qMUlOu2yc4U2MwkvigX8hWiasFhZWqEt0+czNQxj+JJxcdUr9nBD2YLB37aZbdUSAd+rbx960sglKlzt4ZloHS1EHJZQWQtWtMUpvHAIpCVu1R10AZloEKcp0q1kFFRPdbu90JwWqPzWDigD6Aiq86KG39E+zOoGOOlLYWSS4/AcVvXACp+L2QS9VZLTGCDJRgscLaeaBqX1PTeNLxPeod9kRd64ZIiRmnARb1vxtZ+37U5jGAopDVaBpcGpWBsllF2K3qjyLroCKjzUC15ewTgJ8baaqfRIunAMqsJ/AC12vXEeqvX9Ete9IccvFhQDUlKsCiaUQZKmu3oapt/+HvoUgNfx8IvoCwMT/SBNEKS4cejb4fEQMoCpkuA+UwJoACAKfmWlzOJTLaehoxsW0HUIIgaqaG4quQXP8EnrEBlGBN0D2JJxs4jad9Ak9IzdIv4Bwiy2mnq3f43JAKdgU/GMECqF4RvW+D4+mgvp5UyAwUqTGAopDIiqJ7Cs+oDBSgn8arYgAVEUUzhSc4XTEaSfzQTYnFUS8opUKTgUoypoWB6pqaOii5xLgAStuvyZIR2Rp0ACAmtoOYqc76NDSNp/g8uqf/mtuBXDce7ZN4hXuhyFIDR1NbxACKQuLxStD2BnYmGNMHCgCStM00OYUXEd0TXW19Cg/x3QtKl4FKMTYDBeifxDOyF5T2CbxIF/GtY+06RLXdUD8oqWAXoNQLZgQLLB16Nuu9tXQF6X5P7ZQl0c8YQFFIgj0Vl5igf3ouUmymaQxZVwPFDJRuPbw4nsIzugYKMC8Dpcgy5GL1E3iRtDCoT9eVvOx40C7g0tGdqm2xQ4+Ipw4bIjpdEFIy1e/LOiiqhwEUhUTbwkAA4DA0A6UOoCqqGUBFQjeF18ZroAD8XEh+SrxkoBRF0RWRC8ntGzg6cton8ZSKk4Y8iSeXFwB+9TIqYjOm8IDaDJY2axpsGs+vCaCsnQc0630bEmxdPKI6DKAoJNopNUeCBWIIq62HKiVR/cgwA6jIaJ/CEzmFp89AxUkNlOKuACT151w0aBkX1TVNehJPPqkpIE9s1+yHFgRBbHIaT3FXQj65X7XP0ql/s963IboAioXkVA8DKAqJWU0066QkqqcDK2q8DRxJDVEURV8DxQyUrhO7dqmbWFEqTqp3CCKExDTD30ewJkB0qaeijHgST1f/1MzsUx1LN3UAJR3bpZp29R/cDij1KjItNt0Tc0bRBlBKeaFumpzaLgZQFBJtBsqoJpp1mIEygKcK0DwlxBqoYAFUfHSU1hWQJ6VBEM35lmzRNtQ0oA5K9wRe++bVP9Wxdh4I1F9LT5HgP/RdYNO/b7P6+C6DTGsWK6Z3AawJqn1sqEl14iqAWrx4Ma688krVvp07d2Lq1KkYOnQoJkyYgGXLlqlel2UZzz77LMaOHYshQ4bgmmuuwYEDBwy/RlsX7QxUZTUzUOGSq0t1+xhA6RdTjpcAStdEM8X4+qfAtQ1+Ek9RFF0AZVQGSrA5YOmUo9rn2/VF7fv6PPAf/l71mrXHSEPeN+hYRAssmtYKUiHroKhW3ARQL730Ep599lnVvpKSEkybNg3du3fH6tWrMWPGDCxYsACrV68OHLN48WKsXLkSjzzyCFatWgVBEHDttdfC6/Uadg2KRgDFDFRzadcFE5wuCBbjnpRsqeI1gNJnoIyvf6pjSe+ifu9mZqCUqhLdfTQqAwUAtp6jVNvSoe8glxfCv2eDum4sSM2U0VhITg2JeQB1/Phx/PnPf8aCBQvQo4c60n/99ddht9sxZ84c9OrVC1OmTMHVV1+NJUuWAAC8Xi+WL1+OGTNmYPz48cjJycH8+fNx/PhxrF271rBrkL6NgZFdyAF9Bsrrl+HxsmldOGTNwrRCkvH1NC2RNgsXLwFUNDNQ2ik8peJEs9o5yEWaDL3Nqet43hzW3mcACUmqfd5v3oX3B/X3ZEuXgbopWqNpO5xLJ/axoSYBiIMA6ocffkBqairefvttDBmi/k1i8+bNyM3NhdV66of16NGjsW/fPhQVFSE/Px9VVVUYPXp04HWXy4UBAwZg06ZNhl2DopCBcuprGCo4jRcWpVKdgTKjq3VLpPsB661pdI21aJErzF3GpT5LemdAVLcd0S7DEg7ppLb+qath69ABtYXvtr5jVPt8+Z9DLlL3nbIPmGjYezZE1Bao+726/lfUNhn7UzACEydOxMSJwf8RFBQUoG/fvqp9HTp0AAAcPXoUBQW1DdY6duyoO+bYsWOGXSNSVqvx8anFIqr+Hy1uTTYo2WEz9OtLSbLBIgqQ5FNP11R7/abcw1DE6j43h6emVLVtSUmP2f0LVTTus5isfxLR4q+CmBDbDJ1SpQ6gbKntTfv7slissLc/Dd7C/ad2lhyC9bTIHv93F6sDKGtmN8PHnjjs1yjb+T9dr6k6YlonJPQYZlrhfUBKO9SkZkEuOx7YpZzYC2t28M7nLfF7R0sUD/c55gFUY9xuN+x2dWYiIaH2iQiPx4OamtoUdLBjysrKDLtGJERRQFpaUtMHRsjlcjZ9kIF8snohl/S0RMO/vtTkBBSXuwPbimgx9R6GItr3uTncHvXnNbF9dszvX6jMvM9KqgNlEIB6ixEl2/xIiOG9kb1ulGjaKbTrfBrsJo7Jnd1dFUBZyo9G/Pmo0GRgXF37IMXosaclwTL2EhT/75WgL3c4789IzEgJ+prRfF1zUPndqQDKUryvyXvXkr53tGSxvM9xHUA5HA5dIbfHU9tBNzExEQ5Hbet+r9cb+HPdMU6n07BrREKWFZSXG9+wz2IR4XI5UV5eA0mSDb9+Q0rqBTYAICoKSkqqDH2PZKcVxfVarBw9Xo6SbHPrGxoSq/vcHJ7SE+ptS7Lhf0dGi9Z9FhxJqv5PZYWFsNkzGznDXFKQPkyVciIEk/6+LBYRCVk9UIlPA/tqju6O6PMhu6vgLytU7XMndoTfhLErOZNgP7wP3p++Uu13jr4EnrTe8ETp8y2ndQfwWWC7+lB+g/euJX7vaInMus8ulzPkrFZcB1DZ2dkoLFT/Q63bzsrKgt/vD+zr2rWr6picnBzDrhEpv9+8fzySJJt6fa1KzVNxiQkWw98/2akuJC+r9Eb1awwm2ve5OWRNDZTibNdixm72fRYcKaoAyl9ZBiGG98Zfpg52hYRkSIINMHFMjmzN4/jFR+DzeCFYwvsx4K8/DQgAohVKSrZpf3/2CX+G2Hkg/Ae2ARYrbH3OhvW006P72W6vnq6Ty0/AW17SaOf1lvS9oyWL5X2O60na3NxcbNmyBZJ0qv5m/fr16NGjBzIyMpCTk4Pk5GRs2LAh8Hp5eTl27NiBkSNHGnYNAipr1AGUNtgxgraVQTmLyEOmeGsAzVNVIp/CC4i3Vga6AvIU8wrI6yR06K4ZhBRROwPtEi5iWuewg7BwCIIIW9+z4Zx0E5wTr4P1tNNNe6+GBGuoyX5QFNcB1JQpU1BZWYlZs2Zh9+7dWLNmDVasWIHp06cDqK1bmjp1KubNm4dPPvkE+fn5uO2225CdnY1JkyYZdo22TpJlXSfyJFMCKM1yLlUMoEIlV5fo9rGNwSn6ACq2y7koFeoMlGjCIsJaoiMJoquDap+2GWYoJE0LA0t7YxpoxjNBtMDSQZOFYkfyNi+up/AyMjKwdOlSzJ07F5MnT0ZmZiZmzpyJyZMnB465+eab4ff7MXv2bLjdbuTm5mLZsmWBonAjrtHWVbn1j3ybkYFql6z+Da+ksvkrxrcV2hYGSEiCoPmNuS2LuwxUubqsQNAENmaxtO+mem/p5AHY+o0N6xq6DFSGcQ0045klqzekozsD22yoSXEVQD322GO6fYMHD8aqVasaPMdisSAvLw95eXkNHmPENdqyqhp9V/Akh/EBVFqKJoCqYAAVKrlck9EwsSljSyQ4NQFUjBeE1QZQ2syQWSztu8G391R/O/lkeEtWKX4v5FL1MjCigR3I41nQhpqS39TpS4pvcT2FR/FBW/+UYLPAZkK/mnQGUBHTTQmlxO4Js3gkaIp9tV3bo0lRlJgFUNZMdbAjnTwARQ69qahcfBhQ6hfsCrplYlorSwf1ki6QfJBP7IvNYCguMICiJukLyM35jaudJoByeyVdB3QKLlY/kFsK7TpzSiwDKHcF4NO0BYlWBkqTRYHk1XX3box0cr9qW0jNgmBvG/2OBEdybTF5Pf56U3rU9jCAoiZpAygzCsgBIC1ZX7NTzCxUSLRTeAIzUCraJxKV6jIocmwefVY0wS4EC4Tk6Cy7IzqSIaZmq/ZJYRRDyyf2q7Ytmd0NGFXLYemk7twuMYBq0xhAUZOqatRZIDMKyAHAbrPorl3KAKpJsZwSail0TyQqEhR3bOqgdAXkKe0haNapM5OoreUJ43F86aR6ysrSvkcDR7ZO1k4DVNvS8Z+gNLDUDLV+DKCoSdHoAVVH+yRecYW7gSMpwFMF+DQ9oFzMQNUnOFyAoA5SYjWNpyv4j/LflbaWJ9QMlOL3Qi7WFJC3tQxUx76AIJzaIfkhFbKdQVvFAIqaFK0pPABId7GQPFzajAYEMWpTQi2FIIpxU0ge62yhtg5KqTgBubrpdT/l4kOAUn9RcQGWjNbfA6o+ISEJYvvuqn3SkR2xGQzFHAMoapK2jUGyCS0M6mhbGXAKr2my5gk8ITkDgshHq7W003i63llRoq2BinYAJaYF6apdsKvJ8yTNE2diu+w2U0Ben1VTB8VC8raLARQ1KZpTeNpCchaRN00u0UyrsP4pKG1vLG3gGS2xaqIZeD9RhCVLM40XQhAgnVD3jNJmYtoKbSG5XLgXiie+F+0mczCAoiZVuqMXQKW7HKrtE6U1DRxJdbTrmYlpnWM0kvim7Y2lexouChRPFZQa9XSZmJoV9XFYOg9UbfuP/NDkOdLxn9TXyGxbBeR1LB37AvWbZyoy/Iebvn/U+jCAoiZVVGsCqETzAqisdPWUwInSGsiyYtr7tQa6ACqdAVQwunXgyqOfgZJLj6l3CJaYBFDWzuqnyZSy45Arixo4GpBryqGUFaj2WbL7mDK2eCdYE3RZKP/B7TEaDcUSAyhqlCwrqKhWP6abmmTeGoEd0hJV235JQXE5n8RriCL5IJcdV+2zMAMVlKB52k2uKISiRDc4l7TBbmpWTOrVxIyuQEKSal9jxdBSgTr7BGtC7TXaKOtpQ1Tb0qFvY9ZXjGKHARQ1qqLaC+3PGDMDKFeiDQ67+nHz4yWcxmuIXFagWVoDENM6xWg08U1XG+b36qbTzKarV4vR35Ugivpi6EamobRF5pas3lHtXRVvrF3VAZTiroB8Ym+MRkOxwgCKGlVWpc4+CQKQkmheACUIArI0WajjJdWmvV9LJxerMxpCUjoEe2IDR7dtQlKaunYFQabUTKZ9P7Fdx6i+f326OqhD3za4Lp507Ef1uW10+q6O6MrUBb/+/VtjNBqKFQZQ1KhyTQCVkmiHKAoNHG0MbR3U8WJmoBoiFx9WbTP71DBBECG2U98fbQBqtngq+Ld2Haze4a2GdDRfd5xcXQZZswaepWM/E0fWMli7DVNt+/ZujPqUMMUWAyhqlDYD5TIx+1RHWwdVyAxUg7RdkNtaY8NwaReD1QagZlK8NVA0hdqxzECJyRkQM3uq9vn3bdYdJx36Vr3D5oAlq21noADA2nOUalupOMlpvDaGARQ1SpuBSk02P4DKSlNnoAqKGUAFo8iyvrmhpss0qYlp6gBKKoleACUVHVTvECwxDaAAwNpjhGrbv3czFEn91K1fE0BZOw+EYGGjVjGjKwTNE5S+PRtjNBqKBQZQ1ChtBsrMAvI6ndqrnw4qLKmB2xu8NqMtk0uPAj71E4qWDgygGmMJkoGK1tNT8on9qm0xvRMEq/n/nhpj6zFSta14KuHft+XUtt8D/6HvVMdoC6jbKkEQYNNkofx7NkCRpQbOoNaGARQ1SrsWXTQCqC6ZSRDrLdipADhUWGn6+7Y02uk7ITkDYmK72AymhRDbd1Pv8Ll1dUlmkbR1RHHQyVtMzdLVM/l2/i/wZ//+reogXRBg0dZOtWHWXqNV20p1KXz7v4nNYCjqGEBRo7QBlHatOjPYrBZ0bK+ugzp4nAGUlnx8t2rb0qFnA0dSHTExFYKmI7mkuY9m0RZix8tSKLb+56i2pWM/wn90JxRFgfeHT1SvWToPZJBejyW9s66OzLPjfw0cTa0NAyhqVHGFeopIu9SKWbp2SFFtHzheEZX3bSkURdH17dGub0bBaac5Q1lIt7kUnxtyqaaTd2Z30983FNYeIyA4U1X7PF+vgnTwG12Qbus7JppDaxHsA9QBqP/gd/CVHm/gaGpNGEBRg2RZQWmFugYq3WV+BgoAumWrA6iDDKBU5JKjUKqKVfssXQbFaDQtiyVbs5DukR+gKObWQdVmueo94i6IENNPM/U9QyVYbLCPuFi1Tz65HzUfLlAfl5wBa091zRQB1l6jAHv9B18UlG14N2bjoehhAEUNKq30QNb0NUlPiU4GqltWsmr7yIkqeLwszqwjHVYX9gpJ6boeRxSctcvpqm2lphyy9gk5g2n7K4mZ3WNeQF6fLWccxNTsRo+xD/9NTJadiXeCNUGXmav45mPIVaWxGRBFDQMoalCxpv7JahGQYuJCwvV1y06BpV7DTklW8NOR0qi8d0ugXbzUetogCIK5DU5bCzE1C4JL/fi5f6++/5GR/Ed3qratnQY0cGRsCKIVjonTdZ3a61g6D4St39goj6rlsA8+D6i3tI3i98L9zXsxHBFFAwMoapB2Ed+0lISo/ZB22K3o0dGl2rfzQElU3jveyZXFuoyG5TQ+GRUOa3dNF+mfvjJtGk/x1kDW9OuydMox5b2aw5LZA85f3apbZNjSeQCcv7gBgsAfFw0RkzNg63u2ap/nu090C31T68J/EdSgQs0ivu1TnQ0caY6cbmmq7Z37GUABgG/311DV09icsDKACoutz1mqbaWqGP7920x5L+lovnrBZ9ESt2vJWbsMQvLlTyBh3DTYR10K56/vgPP8PAiaoIr07EMvBOoHmbIf7q/+yeVdWjEGUNQg7SK+2g7hZuuvCaAOHK9ARbW3gaPbBkWR4d/1hWqfrWduXNXTtASWjK4QM9Q9obxb3jKlCaJPszyKJasPBGt0HsaIhJCQBHvOeCQMPR/W007n1HCIRFcH2AZNUu2TDn0H/09fxmhEZDYGUNSg45oMlHaNOrP17uyC3XrqI6oowJYfT0R1DPFGOrgdcukx1T5rnzNjNJqWzT7kPNW2XHwIvu8+NPQ9FL8X/gNbVfu0y6dQ65Ew4rcQNH2y3Ov+ASnKi1ZTdDCAogZpp/Cy0qObgbJZLRjcu71q34YdbbemQFEUeDSFqWJaF1g6xl89TUtg7TlKtzaeZ+Nq+A9/b9h7+PduBLzqf0fW7gygWivB7kTi2KnqnX4vav7zNGTNQtLU8jGAoqBqPH7dQsJZUc5AAcAZ/dVPS+06VIqTZTUNHN26+fdu1DU2tA/5NadYIiSIFjjGXqXeqUio+fAZ+H78otm1K4oiw/utOqNl6TIIYnJ6s65L8c3eaxRShv9StU+pLEL1u09ALito4CxqiRhAUVCHT6iXThEFAZntopuBAoDBvdLhTKj3eDCAjzYdivo4Yk3xVMHz9SrVPiGlPay9z4jRiFoHS3Yf2Iecr94p+eH+bBlq3n0M/oPbI346z7/rS8jF6s+qTdO1mlqnjEnTYMnsodqnlB9H1b8egm/vRhaWtxIMoCgo7dpzndonwmaN/sfFZrXgrEEdVfs+334U5W2omFxRFLg/f1HXeTxh9OVsbGgA+6jfwdpzlG6/dOxH1PxnPqpevQPuL16Cb99myJXFIf3wk04egPurV1T7xLQusHYb1sAZ1JqIVjuSL7xD39zWWw33x4tR8/48+KOwhBCZi999KSjt2nOnadami6Zf5Z6G/209EuiK7vXJePN/e3DNBf1jNqZo8m5eA7/2Sa7OA1lLYxBBEOGYOB0eRwp8Oz7Rva5UlcC381P4dn5ae7zTBTH9NIiuTIiuDhCSMyDYHIDVDsVTDen4T/Dt+C/gVwf5CWf8jr2U2hDR6YLzgjzUfPC0LhMpHfkBNUd+gJh+Gqw9c2HtNhRiWhcIIj8fLQkDqJ/JsoxFixbhjTfeQHl5OUaMGIEHHngA3bp1a/rkVuhggTqA0i6tEk3t2zkxemAWvvr+VP3Auu+OYXjfTAzt076RM1s2RZHhWb8Svu8/Ur+QkATHhD+z9slAgmiBY8yVsHQZCM9Xr0BppOBXqSmHdOQHSGE8WGXtczasXYc2f6DUoohJaUi8eDbcny2Ff+8m3ety8SF4iw/Bu3kNYHPC0qEnxLROEFOzazvmJ6ZBTEwFEpL47z0OMYD62eLFi7Fy5Uo8+uijyMrKwpNPPolrr70W7777Luz2ttVjp7LGh0OF6ik87eK+0TZlfC9s3XUC7nrr4b3wzg+447Kh6N05tZEzWyap9Cg8n78ESZvmFwQ4z5kOMSkt+InULLbuw2HtMgi+3evh++FjyEXNr7ezdOynL1anNkOwJcBx7g3w99gIz1evQqkpC36gr+bnwPwH/WuiBYIzFYIzBYLNCcHuBGwOCHZnbfbT5oBgtQGiFbDYIIgWwGKrPc9iq12iR7RCsFhr/yxYapt+igIEiIAoAoJQu0849Weh3p9rj9G81sYxgALg9XqxfPly5OXlYfz48QCA+fPnY+zYsVi7di0uuOCCGI/wFLfXj8KSapSVuSH5a4tbFehrMgQIEEUBglBbAK76syDAZhUhisF/o8k/UKK6ot0qomen2AYpaSkJmDK+F15ZWxtQnGY5id8mbEbNv9/F8RET0SH3Vy06/a3IMpSKE5AK98C/dxP8B74Bgvy9Joy5Ctau7DpuJsFqhz1nPGz9xkEuPQrp4Hb4D/8A6cReXUuCJq4E24BzamvV2Oi0TRMEAbZeZ8DabSh8+Z/Du/0DXU1jo2QJSlVxeOdEg9BI4CWKAIR6gZc2MNMGZ0GCNs2fhXrHixYbLH2GQOkauwdpGEAByM/PR1VVFUaPHh3Y53K5MGDAAGzatCluAqg3P92DtZsOwSc1f80uiyigfTsnenVyYWS/DhjcOwPizynibT+pm1X2Pa1dTArItSYO74w9R8vw9Q/H8Yekr9DRWlr7wvZVqN7/GWz9x8PSdQjE1I6GprsVWYLirQY8VVA81VC81bX/91RB8VYBnupT+73VgN9b++SWLKn+0+5Tb/trO4U2RLDAMeFPuiVIyDyCIMCS1hmWtM6wDzkfiqJAKS+EdPIA5PLjUMoLIZcXQqkph+L3Aj4PYLVDTM6ApWM/WPucBUtap6bfiNoMwZoA+6BJsA04F1LBLvj3boT/0HdQKlpog2BF/vn3PHUH/6YeszDqGcSTP30F55nFsJ7+a4OuGB4GUAAKCmprazp2VD/t1aFDBxw7dizYKSGxGhh0HCuqwvtfHzDsepKs4HhxNY4XV+Or7wvQqX0Sfju2BwZ0T8fmfPU/5sG9Mwz9WprjzxcNQLXbj8Qij2q/XFZQ+5j/16sgOJIhpmbB4upQm/K2OyHYnD//RlT/JAmKzwPF74Hi8wA+DxRfTW1g5KlGua8Gck0lFJ96UeVoE1PaI/Hcv8AWhwvQNpfFIqr+H/cyOtb+18K0uPvcgoV2r0XYug4Aug4AAMhVpfAX/ASp6BCk0gLIpccgV5yE4qmKwohbNun4bjiGxeZzzQAKQE1NbVpeW+uUkJCAsrIG5qubIIoC0tKMW4CzRjK3b8jRk1VY/C99B2arRcD5Y3ohNTl+1u56cPpZ+N+re5B68O2gryvuSkjuSkjH90R5ZMYSEhKROuJXaHf2FIj26PfgiiaXq3V/ffGC9zl6wrrXaUlAl8663YrfB6m6DP7KUkiVJZBrKiB73ZA91ZC9NZA91VA8NZC9NVAkPxTJV/t/vx+QfVD8fvV+qXZfbeao+TMZ8SB1wGikGPizNhwMoAA4HA4AtbVQdX8GAI/HA6czsm84sqygvLy66QND5LQIuOScXnjvqwOo9vgNu25TRvXPguzzo6Qkeu8ZipEX/g6+IwNRs+4VSEUHYz0cwwiOZFizesPWYxjsvc6AkJCIsioZqGqdv4laLCJcLifKy2sgGTA1TcHxPkeP8ffaCTidgFOd+RTRvEaOiqLUlg3UBVM//1mp25YVADIgyz/vr3esXHt84Nh650ORocj1r6s5VtYcq2iOlUO7riAKaNdnCLxpvVBSYtz3R5fLGXKmlgEUTk3dFRYWomvXroH9hYWFyMmJfNrE7zf2G9Wvz+iG88/shqRkJ0pLqxq9fu2/DQWyAsiKAkWu/bOiKJBlBWVVXuw9Vo4vth/F4RPBP3xJDiumjO9l+NdhFCGrH5z/9yCkY/nw7foS0pEfoFSVmPumohVCQiKEhKTaR4vtibXb9tp9gj0RsCXUFjyKFkCse9ql9s+CKNY+KfPzPqHe60Jiau2TNj/Xb0kAEKf33miSJMft56w14X2OnpZzr38OxQTU/meAYJcxugmD1SrCmZYEd0njPwvNxAAKQE5ODpKTk7Fhw4ZAAFVeXo4dO3Zg6tSpTZwdXRZRhDPBCrfdCr8Y+YemfTsnenVOxbkjumDbrpP41xd7cfTkqUAq2WnDjZMHIS0lfqbughEEAdZO/WHt1L+2yLfiRG39QHkh5IqTgLcairemto5JW6QtCD83QEyAYEuo/b/dAcGeBIszCa6MDFT5REhWZyA44tNUREQEMIACUFv7NHXqVMybNw/p6eno3LkznnzySWRnZ2PSpEmxHp6pREHAiH6ZGNa3PXYfLsPRk1VIctowsHs6Eh0t6+MhCAIEVweIrg7NvpbVKiIxLQmekqo2kwUiIqLQtayfkCa6+eab4ff7MXv2bLjdbuTm5mLZsmVtpommKAjoe1o79D2tXayHQkREFPcYQP3MYrEgLy8PeXl5sR4KERERxTk2BSEiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKk6AoihLrQbRGiqJAls25tRaLCEmSTbk2ncL7HB28z9HB+xw9vNfRYcZ9FkUBgiCEdCwDKCIiIqIwcQqPiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoFqAxYsX48orr1Tt27lzJ6ZOnYqhQ4diwoQJWLZsWYxG13oEu8///e9/MWXKFAwbNgwTJ07E448/DrfbHaMRtg7B7nN9s2fPxsSJE6M4otYr2L0uLCzE7bffjpEjR+KMM87AHXfcgeLi4hiNsHUIdp+/++47TJ06FcOGDcP48ePxxBNPwOv1xmiELVdpaSnuv/9+jBs3DsOHD8cVV1yBzZs3B16P5c9CBlBx7qWXXsKzzz6r2ldSUoJp06ahe/fuWL16NWbMmIEFCxZg9erVMRplyxfsPm/evBk33XQTfvWrX+Gtt97CnDlz8MEHH+DBBx+M0ShbvmD3ub6PP/4Yb7zxRhRH1HoFu9derxfXXHMNDh06hBdffBEvvPACduzYgbvuuitGo2z5gt3n4uJi/PnPf0bPnj3x1ltv4eGHH8a//vUvzJ8/P0ajbLluv/12bN++HU8//TTefPNNDBw4EH/605+wZ8+emP8stEblXShsx48fx6xZs7Blyxb06NFD9drrr78Ou92OOXPmwGq1olevXjhw4ACWLFmCKVOmxGjELVNj93nlypUYPXo0/vKXvwAAunXrhttuuw333nsvHnzwQdjt9lgMuUVq7D7XKSwsxH333YdRo0bhyJEjUR5h69HYvX733Xdx5MgRrF27Fu3btweAwOe5srISycnJsRhyi9TYfd66dStKS0sxc+ZMJCcno1u3bvjNb36DdevWMVgNw4EDB/Dll1/itddew/DhwwEAs2bNwueff453330XDocjpj8LmYGKUz/88ANSU1Px9ttvY8iQIarXNm/ejNzcXFitp+Lf0aNHY9++fSgqKor2UFu0xu7zNddcg5kzZ+rO8fv9qKysjNYQW4XG7jMAKIqCu+++GxdffDFGjRoVgxG2Ho3d6y+++AKjR48OBE8AMHbsWHz88ccMnsLU2H1u164dAOC1116DJEk4fPgwPvvss6CffWpYWloa/v73v2PQoEGBfYIgQFEUlJWVxfxnITNQcWrixIkN1oEUFBSgb9++qn0dOnQAABw9ehQZGRmmj6+1aOw+DxgwQLXt9Xrx4osvYuDAgUhPT4/G8FqNxu4zUDsNcuLECTz//PN44YUXojiy1qexe71//36MHDkSzz33HN566y34/X6MGTMGeXl5cLlcUR5py9bYfR45ciT+8pe/YMGCBZg/fz4kScKoUaNw3333RXmULZvL5cL48eNV+z744AMcPHgQY8aMwfz582P6s5AZqBbI7Xbrpo8SEhIAAB6PJxZDavX8fj9mzpyJ3bt344EHHoj1cFqV/Px8LFq0CE8++SSnRU1WWVmJt956Cz/++COeeuopPPTQQ9iyZQtuuOEGKIoS6+G1GuXl5di/fz/+8Ic/4I033sCCBQtw8OBBzJkzJ9ZDa9G2bNmCe++9F+eeey4mTpwY85+FzEC1QA6HQ/c0R92HJTExMRZDatUqKytx6623YsOGDXj22WeZhjeQx+PBnXfeieuvvx45OTmxHk6rZ7PZkJiYiKeeego2mw0AkJqaiksuuQTfffcdBg8eHOMRtg7z5s1DeXk5Fi5cCAAYOHAgUlNTcfXVV+Oqq67iZz0CH3/8Me68804MGTIETz/9NIDY/yxkBqoFys7ORmFhoWpf3XZWVlYshtRqFRYW4g9/+AO2bduGJUuW8PF6g23fvh0//fQTFi1ahGHDhmHYsGF44YUXcPToUQwbNgxvv/12rIfYqmRnZ6NHjx6B4AkA+vTpAwA4fPhwrIbV6mzZsgWnn366al/dL1779u2LxZBatH/+85+YMWMGxo0bhyVLlsDhcACI/c9CZqBaoNzcXKxcuRKSJMFisQAA1q9fjx49erD+yUBlZWW46qqrUFlZiVdffRX9+vWL9ZBancGDB+Ojjz5S7Xv55Zfx0Ucf4eWXX+bn2WAjR47EP/7xD7jd7sAPoV27dgGofcqUjJGdnY0ff/xRta/uPnfv3j0GI2q5Xn31VTz88MO48sorce+990IUT+V9Yv2zkBmoFmjKlCmorKzErFmzsHv3bqxZswYrVqzA9OnTYz20VuXRRx/FoUOH8OSTTyI9PR0nTpwI/CdJUqyH1yo4HA5069ZN9V9qaiqsViu6devGJ8MMdvnll8NiseCOO+7Arl27sGXLFsyePRtnnHEGBg4cGOvhtRrTpk3DF198gWeeeQYHDx7E+vXrcffdd2P8+PHo379/rIfXYuzbtw9//etfMWnSJEyfPh1FRUWB78EVFRUx/1nIDFQLlJGRgaVLl2Lu3LmYPHkyMjMzMXPmTEyePDnWQ2s1ZFnG+++/D5/Ph6uuukr3+ieffIIuXbrEYGREkUtPT8crr7yCRx99FJdeeinsdjt+8Ytf4J577on10FqVMWPG4IUXXsBzzz2HFStWIC0tDZMmTcItt9wS66G1KB9++CF8Ph/Wrl2LtWvXql6bPHkyHnvssZj+LBQUPnpBREREFBZO4RERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUEbUYbFtHRPGCARQRtQiffPIJ7rrrrsD2hg0b0K9fP2zYsCEm47n77rvRr18/9OvXD3feeWezrtWvXz8sXLgw5OOvuOKKwHuHcx4RGYdLuRBRi/DSSy+ptgcOHIhVq1ahd+/esRkQgMzMTCxatAjp6enNus6qVauQnZ0d8vEPP/wwKisrcdlllzXrfYkocgygiKhFSk5OxtChQ2M6BrvdbsgYwr1GLINGIqrFKTwiintXXnklNm7ciI0bNwam7bRTeAsXLsR5552Hjz/+GBdeeCFOP/10XHzxxdi2bRu++eYbXHLJJRg8eDAuvPBCrF+/XnX9Xbt2Yfr06Rg+fDiGDx+OG2+8EYcOHQp7nP369cNrr72Gu+++GyNGjMCoUaPwyCOPwO124/HHH8fo0aNxxhlnYNasWfB4PKrz6qbi6r6u9evX45prrsGQIUNw1lln4fHHH4ff72/GXSQiIzGAIqK498ADD2DAgAEYMGAAVq1ahYEDBwY9rqCgAI8++iiuu+46PPPMMygrK8PNN9+M22+/HZdeeimefvppyLKM2267DW63GwCwb98+XH755SgqKsJjjz2GuXPn4tChQ7jiiitQVFQU9ljnzZsHu92ORYsW4eKLL8bLL7+M3/72tzh27BiefPJJXH755XjzzTfx8ssvN3qdO++8EyNGjMDzzz+Piy66CMuXL8ebb74Z9niIyBycwiOiuNe7d28kJycDaHy6q6amBg888ADGjRsHANizZw+eeuopzJ07F7/73e8AAJIk4eabb8a+ffvQv39/LFq0CA6HAy+99FLgPc4880z84he/wNKlS1WF66Ho1asXHnroIQBAbm4u3nzzTfh8PsybNw9WqxVjx47Ff//7X2zdurXR61xyySW48cYbA+P5+OOP8emnn+Lyyy8PazxEZA4GUETUqgwfPjzw5/bt2wNQB13t2rUDAJSXlwMAvv76a5xxxhlwOByBKbLk5GSMHDkSX331VdjvP2zYsMCfrVYr0tLSMGjQIFitp77dtmvXDhUVFSFfBwCys7NRXV0d9niIyBwMoIioVanLItXncDgaPL60tBTvv/8+3n//fd1rkTxdF+z9nU5n2NfRjlkURfbBIoojDKCIqE1LSUnBWWedhWnTpuleq581IiKqj98diKhFEEURsiwbft1Ro0Zh9+7d6N+/fyBgUhQFd955J7p164b+/fsb/p5E1PLxKTwiahFcLhf27duH9evXo6yszLDr3nDDDTh48CCmT5+Ojz/+GF988QVmzJiB9957Dzk5OYa9DxG1LgygiKhF+MMf/gCbzYZrr70Wn3/+uWHXzcnJwSuvvAJBEDBz5kzcfPPNOHHiBJ577jn88pe/NOx9iKh1ERRWJRIRhe3uu+/Gxo0b8d///jdmY+jXrx9uuukmzJgxI2ZjIGqrWANFRBQhr9eLb775Bunp6ejatWvU3nf37t2orKyM2vsRkR6n8IiIInTixAlcdtllePbZZ6P6vvfddx8XEiaKMU7hEREREYWJGSgiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgrT/wNkObGJlc9D5AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Increase the buffer and plot the change in the peak window.\n", + "buffer = 75\n", + "window_df = chrom._assign_windows(prominence=0.01, buffer=buffer)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.title(f'buffer size = {buffer}')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that increasing the buffer size expanded the extent of the orange window\n", + "by half a minute or so.\n", + "\n", + "Once the chromatogram is clipped into peak windows, each window is passed \n", + "to an inference stage where the peak mixture is inferred." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/methodology/problem.ipynb.txt b/_sources/methodology/problem.ipynb.txt new file mode 100644 index 0000000..230ec93 --- /dev/null +++ b/_sources/methodology/problem.ipynb.txt @@ -0,0 +1,321 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Problem\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---\n", + "\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. This measurement is typically performed by measuring a change in index of refraction \n", + "or absorption at a specific wavelength. The resulting data, the detected signal as a function of time, is a chromatogram which may look something like this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of [skewnormal distributions](https://en.wikipedia.org/wiki/Skew_normal_distribution) to regions of the chromatogram that contain either singular or highly overlapping peaks, allowing one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3337.39it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:08<00:00, 4.10s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 18.533) R-Score = 0.9977\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0025\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0013\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 18.542 - 19.000) R-Score = 10^1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5944813.90350443149.0696795.177888e+062
014.450.349681-2.99602134710.5675084.165268e+063
015.530.3134761.61561315048.9650591.805876e+064
016.520.3392471.90911410805.7979781.296696e+065
017.290.3392531.56526612533.5412841.504024e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594481 3.903504 43149.069679 5.177888e+06 2\n", + "0 14.45 0.349681 -2.996021 34710.567508 4.165268e+06 3\n", + "0 15.53 0.313476 1.615613 15048.965059 1.805876e+06 4\n", + "0 16.52 0.339247 1.909114 10805.797978 1.296696e+06 5\n", + "0 17.29 0.339253 1.565266 12533.541284 1.504024e+06 6" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsH4N/M9k2y6dkQEtIgQwcBsbwgIAiiiKKvryhiwYoFRZEiCAqiiIgY/LDQBQTFgopiBQuKiGABkgxJSCe9Z/uU74/dQAhJSDab/tzXlYtk5syZM9klO8+cc57DyLIMQgghhBBCCOkK2LZuACGEEEIIIYS0FgqACCGEEEIIIV0GBUCEEEIIIYSQLoMCIEIIIYQQQkiXQQEQIYQQQgghpMugAIgQQgghhBDSZVAARAghhBBCCOkylG3dgE6sDIAGQG4bt4MQQgghjdcNgA2AXxu3gxDSQhhaCLXFWGRZ1kpS5/z9siwDuraOh66tY6Jr65jo2jomlmXAMIwVgK6t20IIaRnUA9RychmGia6oMEMQpLZui0cplSz8/b1A19ax0LV1THRtHRNdW8cVEOAFhYKh0RuEdGI0B4gQQgghhBDSZVAARAghhBBCCOkyKAAihBBCCCGEdBkUABFCCCGEEEK6DAqACCGEEEIIIV0GZYEjhBBCCGnnjh496gPnGkX08JqQC0kAcocOHVrZmMIUABFCCCGEtFNHjx5lATzLMOxdDMOoADBt3SZC2iFZlmXH0aNH3wPw0tChQxvM0d/mARDHcSoAzwOYDsAfwN8A5vE8/5tr/2AAbwAYBqAYQDzP86tqHM8CWALgftfxBwE8wvN8So0yza6DEEIIIaQNPKtQKGcaDP52tVprZhimc65AS0gzyLLM2O1WfUVF6UxRFADgxYbKt3kABGARgBkA7gZwGsA8APs4jusDwAbgOwB7ADwM4HIA6ziOK+Z5frPr+Odc++4FkANgpev4fjzP2zmOC2xuHS158YQQQgghdTl69KiBYdi7DAZ/u4+Pf3Fbt4eQ9kyj0VkABJaVFd919OjRNxoaDtceAqAbAbzP8/y3AMBx3NNw9sRcASAOziBoJs/zAoBEjuN6wRkkbeY4Tg3gaQBzeZ7/ynX8bQDOALgZwC4AD3qgDkIIIYSQ1hbKMIxKrdaa27ohhHQErl5SvSyjG4B6A6D2MJGuGMAkjuOiOI5T4FzA8jeAkQB+dgUu1fYD4DiOCwEwGICPaxsAgOf5MgDHAFzl2uSJOgghhBBCWhsLgKFhb4Q0juv/CoOLxDjtoQfoCQAfAEgDIMKZxeG/PM+nchwXDuB4rfJnXP/2ABDu+j6rjjI9XN97og63KRTtIcb0rOpromvrWOjaOia6to6Jrq3jYijFACGdXnsIgPoAKAVwE5zzbx4A8B7HcVcB0MPZG1ST1fWv1rUf9ZQJcH3viTrcZjDomltFu0XX1jHRtXVMdG0dE10bIYS0P20aAHEcFwlgB4CxPM//4tr8J8dxfQG8AMACQFPrMK3rX5NrP1xlLLXKmFzfe6IOt1VUWCCKDWbi63AUChYGg46urYOha+uY6No6Jrq2jsvXVweW7Zy9W8QpPn512P793wbu2fN17RFC7VJSUoI2OztbM27c+PK2bktn0dY9QMMBqAAcqbX9dwDXAcgAEFZrX/XPOa5jq7el1irzj+v7LA/U4TZRlCAIne8DAqBr66jo2jomuraOia6t45Fptg1pZ+bPf7rX1VdfU0wBkOe09SOO6nk3A2ttHwAgGcDPAEa6kiNUGwuA53m+AM4ApQLA6OqdHMf5ARgCoLpHyRN1EEIIIYQQ0gYoKve0tu4B+gPOIGMrx3GPAMgGcBeAcQBGwLku0FwAGzmOWwlnj9GTcK7ZA57nbRzHvQngFY7jCgGkA3gVzsDqE9c5NnmgDkIIIYSQdkGSJJjN5jZ5iK3X66WmDhEcMWLY0FtuuS33xx9/CHQ4HOwbb7yVpNfrpbVrXw//99+/DCaTSeHr6yuMGTOu+Ikn5uQkJiboHnronr7r1m1IHDhwsBkAnnzykdgTJ/41fP31j38plUrIsozrrx836O67Z+Tcdtu0otrnLCoqVK5evTL82LEjvqIoMnFxvaueempeVmxsz7Nzvt99d51x7949xsrKSmXPnr1M8+cvTq/eX1ebw8Mj7O+883/dfvppf2Bpaamqe/fu1unT7z1z7bXXlwHA7t27Anfu3Nbt3nvvz9m48d3w8vIyVZ8+/SoXLXohfcuWjaE//vh9oFKplCdPvjn/4YcfywMAm83GvPnm62EHD/7sX1JSrNZqddKgQYPL589/LjMgIFC86aZrBxQVFak//PD9bseP/+2zfv17fGlpieLNN9d0P3Lkd7/KykpldHSs6cEHH8m5/PIrq6qvbc+ejwN27NjarbCwUNOjRw/LmDHXFG/c+HbEwYN/HnXnNWFZ1q3ra6/aNADieV7iOO5GOFdr3QLAH86MbWN5nv8dADiOmwAgHs601LkAnuF5fmuNahbDeR0bAOjg7PGZUL2AKc/zBc2tgxBCCCGkPZAkCXfccUvvpKREr7Y4f+/efavef/8jvqlB0LfffhX88suvJYuiwPTqFWe7445b+vr6+jleeWXNKR8fH/Gnn/b7rV//VkTfvv1NEyZcVxYUFGQ/dOhXw8CBg82iKCIh4YSPzWZj//rrqNell15m+vvvY/rKygrl1VdfU1b7XIIg4IknZsYBjPz88y+lBgYGCmvXvh7+9NOPx3300RfHAaCoqEh94sS/Pi+/vDrZbrcxL730QvRLL70QtXHjNr6+Nj/55COxp0+n6h9/fHZmdHSs9euvvwxYvvz5WJZlU8aPn1gOAMXFRerPP/805MUXV6aYzSb2uefm9br33mn9xo69pmjduo2JX331eeD27Vu6jxo1pqxPn37W115bEX748CG/efMWpkdE9LDxPK9bteqlqHfe+b+wBQsWZ23YsC1xxoxpff/zn1ElDz44M1cURcya9XCcw+Fg5s1blBYcHOL44IP3Q+bPfypuzZp1SYMHDzF///03vqtXvxJ9110zskePHlt2+PBvhg0b3o5o7mvizvU16U3Sitq6Bwg8z5cCeNT1Vdf+I3Auilrf8SKci5rOa6BMs+sghBBCCGkfOt66QKNGXV08ePAQMwBYLBbm6quvKZ4wYWJpRESkHQCiou4r2L17V2hKyindhAnXlQ0bdlnZsWNHDADy/v77mJdCoZTj4npXHTly2OfSSy8z/fLLT369enFVwcEhQu1z/frrz4aMjHTd5s3vn+jVK84GAAsXPp++ZcuG0JKSYiUAKBQKedmyV9J8fX1FAJg4cVLh9u1butfX5lOnkrR//vmH3/PPL08ZN25COQA89tiTuadPp+h37NjarToAEkWReeqpeRnVN/8DBgyqOHUqyfuZZ57NZhgGDz74aO6HH+7slpx8StenTz9rnz59TWPGjC294ooRVQAQERFp/+67ryvS00/rACAoKFhgWVbW6XSSv3+AuH//d4a0tNP69eu3nqw+x6JFL2SeOpXktWPH1tDBg4ec3rVrR+jll19Zcv/9D+cDQM+evQqzs7M0X3yxx9ic18Sd62vOe6YltXkARAghhBBCGodlWbz//kd8RxoCBwDh4RFnh57pdDp5+vR7C7766gv/7du3ep05k6PJyEjTl5WVqkRRYgBg5MjR5UuWPBtssViYw4cP+fTr17+ye/cI6z//HDMAyDty5LDvVVeNLqnrXMnJp3R6vV6sDn4AwGgMFebNW5Rd/bOvr69QHfwAgI+PQbTb7eddWM0283ySDgCGDbusqmaZAQMGV7733sbwmtt69jx3Xo1GIwUHG22Ma4EprVYrA4DNZmMBYMqUW0t++eUnn9WrX+mek5Otyc7O0p05k6Pt3bvPeeeplpKSrNPp9GLN4IJhGPTt27/q2LE/DQCQnn5aP2LEVaU1jxs06JKq2gFQU18Td66vvaIAiBBCCCGkA2FZFt7e3h0qBZ9Goz3bXrPZzD700D2c1WplR44cVTp+/MTiQYMGZz722IO9q8tcccV/KlUqpfT777/6/PXXUcOYMWNLIiOjbJ9//kloVlaGOj39tP7555efrutcCoVSZi6yoi3LshftRavZ5voSEUiSyCgUivN2qlSq835m2frbsnTpcz1+/fXngNGjxxZffvl/ynv37pu7Y8fW0OLiQnVd5WW57kuTJAlKpVJ2no+V5UakM2zqa+LO9bVXFAARQgghhJBW89NP+w1paaf1n3zy5T8hIUYBAEpLSxTl5eXK6kBDrVbLgwZdUvHzzz/6JSef8p4//7mM8PAIO8Mw8rp1a8O6dQuz1kxoUFNMTKzVZDIpTp9O1cTExNoAoLi4SHn77Tf3f/HFlcnutDkurrcFAP7887B39RA4ADh+/B/v7t0jLPUfWb+SkmLFt9/uC543b+HpG26YcrbHJjs7U6vV6moEX+cCjJ494yxms1mRmHhSW7MXKCHhpHd4eA8rAERGRlkSEk56Ayio3n/y5PEG54w15jXpTNp19xQhhBBCCOlcjMZQOwB8/vmngVlZGerDhw95z5kzq6coiozd7jh7t3/llSPKDhz4Ichg8BFiY3vaNBqNzHF9qg4e/Cnw8suvLKuv/pEjR1VER8ealy5dFH306BGvpKQE7fPPL4zy9fVzDBp0idmdNnNcH+vgwUPK4+NX9/j++298U1KSNW++uabb0aNH/P73v9vz3anTYPAVdTq9ePDgz36nT6dqEhJO6JYseTYyPT1N73Cc+z1otVoxJydbU1CQrxw1akx5RESkZenS52J+++0Xn1OnkrTLli3ukZ2dqZs69Y58ALjjjrtyDx/+zX/jxneMp0+naj766IPAL7/8IqShtjT2NeksqAeIEEIIIYS0miFDhplnzHgwa8+ej407dmzt7u8fYB85cnRJUFCwnefPZbcbM2Zc+Zo1q5j+/QdVVG+75JKhFceP/2MYNerqsvrqZ1kWK1e+nrJ69cqI+fOf7gUA/fr1r1y9em2yRqNxuztjxYrVp9esebX76tUro8xmsyIiIsLy7LPPp06ceH29bWmIUqnEokUvnH777bXh9913Zz8vL2+hf/+BlXfeeU/ORx/t6mYymVgvLy/pxhtvKdi06Z3wJ554RLdz58cJ8fFvnVq9emX4Cy8sinU4BCY6Osa8YsXqU0OHDjcBwJgx4yoKCvIzdu3aEbpt2+bu0dEx5gkTJhbu27e33iCosa9JZ8E0ZowgcctpANGlpaZOt1K2UsnC398LdG0dC11bx0TX1jHRtXVcAQFeUCjYNAAxbd2Wo0eP9mZZxdchId2r1Gptu82oRdqXQ4cOegcFhThqJoF46621od9+uy/o00+/OtGWbWtpdrtVW1CQ4y1J4rVDhw5Nqq8c9QARQgghhBDSSfz++2++P/64P2Du3GfTIyOjbAkJJ3Wff/6pceLESYVt3bb2ggIgQgghhBBCOolHHnnijMViYVeseDG6srJCGRAQaL/xxpvzH3hgZl5bt629oACIEEIIIYSQTkKj0cjPPrskC0BWW7elvaIscIQQQgghhJAug3qACCFdUklJCd7b9A6CweCWmY9D69XpktwQQgghpA7UA0QI6XJkWcbCObMw4K+/cGlSEk7OeRKi2a2lIQghhBDSwVAARAjpco4d+xM9CwoQodMDAHwcDuR+9mkbt4oQQgghrYECIEJIl/P9t/swOigYAHDMYQcAlP/6C2Sp861pQgghhJDzUQBECOlSJElC3qHf4KNUQdTpUDH8MmzMSMPnajXAMG3dPEIIIYS0MAqACCFdSnLyKeSVFON4VSX8/zMSgy+9DN8U5uOXpJNgKAAihBCPGzFi2NDdu3cFNrb8jz/+YJgy5br+o0dfPuSVV5aHt2TbGiM+fnXYTTddO8CTdTbld5Kdnan+/PNP/T15/q6OssARQrqUf//9G4lVlfjW1xc333Y7vKqqAABnzuSgpKQEAQEBbdxCQgjpXD7+eO8/BoOv2Njy69e/FW40htreeGPdKW9vn0Yf15E05XfywgvPRYWEhNgnT55S2tLt6iqoB4gQ0qX8++/fAICBAweBYRj4+PigX0wsJgQbkf7+trZtHCGEdEJGY6ig0+nkxpY3mUyKvn37mXr0iLIHBAR2ygCoab8TmYYneBj1ABFCupScE8cRoFJj4MDBZ7f15/rglsIiSP/8DVkQwCjpTyMhpH0TLZZ6H2IzLCuzGo3c0mUba8SIYUOfeGJO+q23Ti1euPCZKEmSGH//AMeBAz8E2mxWduDAwRULFizOMBpDhREjhg0FgA8/3Nntww93dnv//Y+OR0RE2tevf8u4b9/ekPLyMmVoaDfbrbfenjdlyn9LAOC3337xmTt3dtxdd83I/vjjD7sFBQXbXnzxldPTp/+v/+23Tz/z5Zefh6jVKmnLll0JDMNg9epXwv/445CfIAhMdHSs+ZFHZmUPHjzk7FoIO3duC9q9e1doaWmJetCgS8pDQoz2hq7vgQfu4vr1G1hZWlqi+vXXnwNUKpU0adJNBePHTyxZsWJZ1OnTKV6hoWHWuXOfTb/kkqHmmr+Ta665tuyuu/7XLyoqxhwf/3YKAPz8848+Cxc+E7dgweLUTz/dbUxMTPBOTEzwvumma3327Pn6+E03XTvg6qvHF8+a9dSZmm0ICTHali9/Nb2u38d77+1KzM/PU73++qsRf/99zKBQsHJcXG/TE0/MyYqN7Wlr6mva0dGnPCGky6isrMTlMjB/0BB4FRWf3d69dx+Ycw9Ar1TCnp8HTfc2H3JOCCENSn185iX17dPFceURcxekVP98+qlZg2SHo87ARhMVXRW5aAlf/XPavKcHSGZznfeH6rDu5qilyxOb024AOHToV/8RI0aVvPHGOv7MmRz1yy8vi3nzzTXdly1bkfHxx3v/eeCBu/r+5z+jSu655768oKBg4fXXV3b/6acDAY8/PjszNraX9c8/D3v/3/+tiayqqlJMn35PYXW9hw8f8lu3bkOi2WxmFQpWBoAff/wh4PXX3+QtFgvr6+srzphxZ2+lUim9+OLKFIPBIH7xxZ7AJ598pPfate8kDhgwyPL555/6v/32mz3uv//hrCuuGFHxww/f+m/fvqV7YGBgg0HQnj0fhd566+25GzZsO/nll58F7ty5LeyHH74NfPjhx7LCwyPsr7zyYuTq1a9Ebtv24Xm/Pz8/P/GZZxamPfvsnLjPPvskYOTIUeUrVy6PHjt2fNF1191QdsUV/6l86qnHegUFBdvnzVuU2ZTfc83fh9VqZR9//CEuKira/Prr/8crFKy8Y8d7oY88cl+fzZvfPxkW1t3RlLo7OgqACCFdRnp6GmK8vAAAvjExZ7dHRkUj0/oVenv7wJadTQEQIYS0IJ1OJy5Z8mKGSqWS4+J6Ww8d+rX46NEjvoBzaBjLsrJOp5OMxlDBZDKxX3yxxzhnzoK0ceMmlANAdHSMLTf3jObjj3eF1gyAbrvtjrzq3ozMzHQ1AFx//eRCjutjBYBffvnJJzmZ99qzZ98/QUHBAgA89dS8nISEk967dm03DhgwKP2TTz40XnnliNLp0+8tBICePXvlJSae9EpPP61v6JoiInpYHn30iVwAuPfeB/N37tweNnLk6JLx4yeWA8D48ROL169/O6KuY0eOHFU5ceINBW+//WbEDz98G+Dl5SVWBzv+/gGiUqmU1Wq1VN3mxqr5+/jggx1BlZUVyhUrVqepVCoZAJYufTn95puvH/DRRx8E1+xN6gooACKEdBlZp1MQo9UBALSRUWe39+gRhX0WM3p7+8Ce26U+AwghHVTs2rf+qm8fw7LnDVOLWR3/T2PLRr/y2vHGlnWX0Rhqq74JBwAvL29REIQ657mcOpWkdTgczGuvrYhavfqVqOrtoigxguBgLBbL2eOioqIvGMrVo0ektfr7pKQEPQDcdttN52V0EwSBcTjsDABkZWXqRo8eW1Jzf9++/asuFgCFhYWfPY9er5cAoHv37mfbo1ZrJEFw1DuX56mn5mYfO3bE99ixP33femtTQlPmTNWn5u/j1Cleb7FYFNdeO3pwzTIOh4PNysrQNvdcHQ0FQISQLqM0KREsw8CsUEDp53d2e3h4OIrsztENVWdyENRG7SOEkMZS6HSNXrm5pcq6q2bwc07d9/uSJDEA8OyzS07HxPS01t6vqTEnSavVXtB2rVZ7dr8kSYxOpxPfeWfLBcP41Gq1BAAMw0Cu1RSlUnnRYESpVFxQhmEan2ssPz9PVVZWqlIoFPKhQwcNAwYMtDR8xPmnEwTxguCq5u9DkiR06xZmXbFidUrtcl5eXp0y0URDKAscIaTLcGRnAwBsNYIfAFCp1BBcQ+PMebmt3SxCCCH16NkzzqpQKOTc3DPqmJhYW/XXzz8f8N22bZORZRt/Kxsb28tisVgUdruNqVnXli0bQvfv/84PACIjo8wnTvzjXfM4nk/08uxVnU+SJCxduig6MjLa/MgjszLff/+97idOHNedK8GcF+0oFEq5qsqkqHl8QUG+uqFzxMTEWoqKitQGg0Gsvu4ePSJtb765pvsffxzy8fQ1tXcUABFCugxNeRkAQFXHHB91cDAAQCqlZRYIIaS98PX1Fa+55trCbds2d//kkw8D0tPT1B999EHgli0bw/39A5o0J2bMmLHlkZFRliVLno09ePBnn9OnUzUrVy4PP3Dg+6Do6FgrANx++115f/zxu//69W8ZU1NTNFu3bgw5fPhQiy5C+u6760LT0tL0Cxc+n37bbdOK+vTpV/nii4ujbTYbAwA6nU4qKMjX5ORkqwCgT5++VQcP/hRw6NCv3ikpyZqlS5+LtFjMiobOMXnyzSXe3l7ivHmzY48e/cMrOZnXPvfcvOi//z7q26sXd5Heps6HAiBCSJcgSRL8BOdnpX8cd8F+dXgEFiQcx8Ho6NZuGiGEkAbMn/9c1o033pz/3nubu99zz+39d+zY2m3q1GlnHn+8aRP3FQoF4uPfPtWrV5xp+fIlMfffP73vv//+7bNo0QupI0eOqgSAcePGl8+d++zpb7/dF3TffdP7HTz4s9/kyVPyW+bKgOPH/9Xt2rU9bPr0e3JiYmJtALBgwXMZRUWFmtdfX9kdACZPvrkwKytTO2PGtH6iKOKxx2bnxMVxVQsXzu31+OMP9TYYDMKVV45s8Omdr6+vuHbtu0m+vn7C/Plzes2ceV+fgoJ89UsvrUru3bvvBUMLOztGrj3QkXjKaQDRpaUmCEKLD6dtVUolC39/L9C1dSxd/drOnMnBi9P+h54+Ppi5fit0RuN5+zdvXo833ngN118/GcuXr2yNZjdKV3/dOiq6to4rIMALCgWbBiDmooVb2NGjR3uzrOLrkJDuVWq1tsvdpBLSVHa7VVtQkOMtSeK1Q4cOTaqvHPUAEUK6hPT0NPxWWoyDSsUFwQ8AhIZ2AwDk0RwgQgghpFOjAIgQ0iVkZKQBACIj6x7iFhraDcP9/HG5yQzzKb7OMoQQQgjp+CgAIoR0CWV8Evp4+6BnRI869xuNoRjuH4BR3j6wpF6QJZQQQgghnQStA0QI6RLCcnLwQu9+yJfqnvcYHByCcoczSYIpPx+Brdk4QgghhLSaNg+AOI4bDeBAPbvTeJ6P4ThuMIA3AAwDUAwgnuf5VTXqYAEsAXA/AH8ABwE8wvN8So0yza6DENJxGWx2QK2Gb2zPOverVCoIGucyCqbCgtZsGiGEEEJaUXsYAvcbgG61vsYDEAC8xHFcIIDvAJyCM3hZAmAZx3H31qjjOQAPA3gAwBVwLo+7j+M4NQB4og5CSMdlNlUhWOl83hM2YGC95Rgf51pwjjJaC4gQQgjprNq8B4jneTuAvOqfOY5TAXgdwMc8z2/gOG4BABuAmTzPCwASOY7rBWAegM2uAOVpAHN5nv/KVcdtAM4AuBnALgAPeqAOQkgHlXn8ONQsC4ckITAmtt5yKl9/wGSCXFXViq0jhBBCSGtq8wCoDo8CiABwjevnkQB+dgUu1fYDWMBxXAiAKAA+rm0AAJ7nyziOOwbgKjiDF0/U4RaFoj10snlW9TXRtXUsXfnaCk8lwgigjAFU6vr/7GmDAgCTCQqrFUpl+/g9deXXrSOja+u4GKatW0AIaWntKgDiOE4LYCGANTzPVy/GEQ7geK2i1Sv/9nDtB4CsOspUp3vyRB1uMRh0zTm8XaNr65i64rVZz2QDAOxeXvD396r3+MCIcCAjC2pRhK+PBqyy/fyJ7IqvW2dA10YIIe1P+/l0d5oOQAcgvsY2PZzD12qqXg1Z69qPesoEeLAOt1RUWCCKnWulbIWChcGgo2vrYLrytVlynM875IAAlJaa6q1H4xeIuSf/BTd0GPpUWMG0g0fBXfl168jo2jouX18dWLb9924xDBQMw7R6Q2VZlmQZYmuflxBPam8B0F1wzv0prrHNAkBTq5zW9a/JtR+uMpZaZarvdDxRh1tEUYIgdL4PCICuraPqitd2oKQYP+Xn46bxExq8dv+AIKRbzNAVF0EUZThzobQPXfF16wzo2joeuf38t68Xw0AhMUw3s1Vo9fs4vVYpsJBz21sQFB+/Omz//m8D9+z5uvaIn4tKSUnWPPjgPX23bNlxskePKHtLtI+0L+0mAOI4LhjAlQBeqrUrC0BYrW3VP+cAUNXYllqrzD8erIMQ0gHJsozDaakwm814ZOilDZYNCgoCABQXFzdYjhBC2hLDMKzZKih/P5Erma2tF4XqtUr28v7dlD5aJSvLcrsKgNyVkHBCN3/+0z3tdlv77/YjHtOeXuwr4Xzc+lOt7T8DGMlxnKLGtrEAeJ7nC+AMUCoAjK7eyXGcH4AhAH7xYB2EkA6osLAAZrMZLMsiIqLhKX2BgcG4wj8QE7U6mPikVmohIYS4x2wVJJPF0WpfrRlstYZ16+JDH3vswd6+vr7CxUuTzqTd9AABGATgNM/z5lrbNwGYC2Ajx3ErAQwH8CSca/aA53kbx3FvAniF47hCAOkAXoWz1+cTD9ZBCOmAMhOOY0xgMGwGA9Tqhpf1CggIwDA/f4wMDEJZYiK8uN6t1EpCCOm8RowYNnTmzMczf/jhu4C0tFQvozHUOmPGgznjx08sry7z/fff+G7ZsiEsJydb5+8fYL/qqjElM2c+nqvRaGQASEpK0L799pvdExMTfKxWCxsYGGS/4YYpBffee3+dK1dv2bIhZMuWDeELFiw+PWHCdWV1lTl69A/fZ555Ns3X11ecO3d2XItcPGmX2lMPUCiAC8aduHpoJgDgAByDcxHTZ3ie31qj2GIAGwFsAPArnIuoTnCtMeSROgghHVPJ8ROYGR2L24JCLlpWpVLBoXB2FJuKC1u6aYQQ0mVs3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94J0hNu3bwneunVj+KJFS1PrC34AYOPG7fzEiZPq3U86r3bTA8Tz/CMN7DsC4IoG9otwLmo6ryXrIIR0PJYcZwpsh49Po8pLGme+FGtJSYu1iRBCupoxY8YVTZ9+byEAzJkzP+fEiX98du/eGXLppZelbd++pdvYseOLpk27uxAAoqNjbEqlMmPevKfiMjPT1Xq9lzR58pSC22+fXmAwGCQAeOyx2Wc++WR3aHJykm7AgIFnE1jt3Lk9aNOmd8OXLHkxZfTosRVtc7WkvWtyAMRxXCCAKXDOoYkG4AugCEAGgH0AvuR5vsyDbSSEELfJrkBGZTQ2qjyj1wMyIFRWtmSzCCGkSxkyZNh5f1Q5ro/p77+PGQAgLS1Nn5qa4nXgwPeB1furs/GlpCRrr776moo77rirYO/ezwJSU5P1OTnZmoyMND0AiKJ0dr2C0tJS1VtvxUcqFAo5PLxH7aVNCDmr0QEQx3FBcC5Ser/ruEQ458okA/AHMADAVAA2juPeBvCKa+gZIYS0GS+rFVCrYYiKblR5Ru8FmEyQzM3KgE8IIaQGpVJ5XoJxWZbBsgrZ+b3E3HTTf/MmT55ywVQIozHUUVCQr3zwwXv6+PgYhMsvv7Js6NDhFQMHDjLddttNA2uWZRgWS5e+lLxp07thy5c/H71x47akjrCmE2l9jQqAOI77L4A3ARwF8CCAz+pIVgCO4wwAJgJ4CEACx3GP8Dz/oQfbSwghjWaz2RDo+vDr1rdfo45R+vgAJhNYq/XihQkhhDRKQsIJr2uuufZs0oOkpATv2NhYMwCEh/ewZGVlaGNiYs/22hw6dND7gw/eNy5YsDhj797PAquqKpW7d39+QqVSya76XHN/zsVVfn6+jlGjxlSEhITYH354Rt/Nm9cb77vvofxWukTSgTS2B+gJANfxPH+soUI8z1cA+ADABxzHXQZgNQAKgAghbSKTT4S3UglJlhEc17iMbho/PyAvDwqHo2UbRwghzaTXKlu1e6M55/viiz3GyMhoa//+A00ff/xhcEZGum7evOfSAWDq1Gl5K1Ysi4mPXx123XU3FOfl5apfe21FVFBQkN1oDBWMxlC7zWZj9+79zP/SS4dXpaamaNeti48AALvdfkGb+vTpZ50y5da8HTu2ho0ePbYsNrYnDYcj52lUAMTz/MimVszz/GEA/2lyiwghxEPyEk7CCKBClqFwJTe4GHW3bpjz8YcYfMV/MKhlm0cIIW6RZVnSa5XC5f27KdHKGX31WqUgy3KT1wMaP35i4Ucf7TKuWbNKFxkZaX755VXJ/fr1twDA9ddPLpVl+fTOndu6ffLJh6F6vZc4bNjwstmz52ZX709KSsxbv/6tiLVrV7NBQcH2CROuKzp06Fe/xMSTXgAuSNs5c+bjub/++rP/8uXPR23Y8B5PQ+FITe0mCxwhhHhaankZ3uUTcOXwyzG8kcf4BgYh02JGSEX5xQsTQkgbkGWILORcn1buAXKeW5ZkGWJTj4uOjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNnfk7N7TWHt82a9dSZWbOeOlP9s0ajkXfv/vxkY9p25ZUjKw8e/PNoY8qSzqGxc4A2NaVSnudnuNccQgjxnNTsLByvrMDIJixo6ufnDwAoK6vzc5gQQtoFWYYoy3KTAxFCSON7gK5GzVlmQBgAFYBMALkAAgHEALAB+MeTDSTth2SzgVGr27oZhDRaRkYaACAysnEZ4ABnAHRtiBGRjAKOwkKogoNbqnmEEEIIaQONnQMUVf09x3F3AHgFwC08z/9RY3tfAHvgTIJAOhmxshKn5s9BlSQh9rnF8Pfv29ZNIqRBsiwjtqwcfoFBiArt1ujj/P39MS7IiB56PeyFBRQAEUJIM9HwMtLeuDN2dDmA+TWDHwDgeT4BwCIAcz3RMNK+pOXn4b1kHr4OBz5b+nxbN4eQiyopLsYtQSF4LLonwvwDGn2cn58/zKIAADAVX7AkBSGEEEI6OHcCoCAA9c0OFgB4u98c0l7t27cXDsmZ9CW4rBzFdGNI2rmsk8ehZlkIsgzv7t0bfZxGo0H1CkBVJfQ+J4QQQjobdwKg3wEs4TgusOZGjuO6AXgBwAFPNIy0L3/++QdOVFYAAKL0ehz5/XAbt4iQhhWcSgIAVDAMGIWiSccKrvKW0hKPt4sQQgghbcudNNhPA/gJQDrHcYfgzL1uBHAlgBIAT3qsdaRdKD9yGKNNJvyu18Miy9CxLBL++AOXXTmqrZtGSL0qMzMBADa9/qJllSoWYADB7uzlFJUqAIC9srLlGkgIIYSQNtHkHiCe5/8F0A/A2wB8AAwDoAOwCsBAnufTPdlA0vYKj/6J//gFIM7ghwqtFwCgODm5jVtFSMOkIue6eGxQUIPlFAoW5UIZcs25UKmcfxJlV7ZDRxUFQIQQQkhn49ZCqDzPnwHwjIfbQtopS14uNAAsWh3sPgGAzQypmIYGkfZNbTIBag28wiMaLMcoZGSVnkGl1YTA7oFgoQS0GsBqg2g2t1JrCSGkaRgGCoZhOsxCqIS0J24FQBzHaQDMAHANgG4A7gUwGsCx2tnhSMcnlZUBAARvX4hBYcjLTkFBSQlEUQTAtGnbCKmLIAjwlZxLlwU3sAgqwwBWyYpiUxnMdgvMDjN8Fb7IDQjA0999jVuGDMEVrdVoQghpJIaBQsc6usl2s1v3cc06t1ovWCRVLgVBpCNr8n8cjuOCAOwH0AdAIpzD4fQArgewmuO4sTzPH/JoK0mbUlY/BfcNROWwa7Bg5zqIooDHCvIRHBzato0jpA45OVlYfioRUQZfrBt0Sb3lFAoWZQ4zKm0miJKIClsl/L39ofLzR5bFgmIL9QARQtofhmFY2W5WVvGHJclmkVrrvKxGx3pzlykZlR8ry3K7CoDi41eH7d//beCePV8fb+wxu3fvDPz44w+NBQUFGn9/f8f48dcW3X//zDxFExPnkI7HnScHqwAY4AyA0gHYXdtvBfANgKVw9gyRTkC0WKBypb9mAkOhUCjg6x+EkqI85OdTAETap9OnT6PQbkNQcBBU3vVn5mcYBiWWMoiS83O8xFKOHj4yDAYDAKCioqJV2ksIIe6QbBZJtJpaLQByafVhdy1hz56PA/7v/96IfPjhxzMvu+yKypMnj+vj41+LtNsdzOOPz85t6/aRluXOm/gGAIt4nk8BIFdv5HneCmdwNNRDbSPtgFDinOtTJQjQB4QBAAx+zkUlCwsL2qxdhDQkPf00ACAqKqbBchIEVFjPJTqwOCwQZAcCNFrc0q07ehUVtWg7CSGEtI3PP/80eNSoq4unTp1WFB0dY5s06cbSG2+8Jf+7775uOHMO6RTc6QHSwpnuui4CALX7zSHtjVBeBgAostvg4xcMRhTwpK8B2oFDkJ1LD0hI+2RNTMStYeHoGRTcYDm77IDZbjl3nMMGh+SAr1aL27pHwGqztXRTCSGk0xsxYtjQmTMfz/zhh+8C0tJSvYzGUOuMGQ/mjB8/sby6zPfff+O7ZcuGsJycbJ2/f4D9qqvGlMyc+XiuRqORASApKUH79ttvdk9MTPCxWi1sYGCQ/YYbphTce+/9dT6N3bJlQ8iWLRvCFyxYfHrChOvKau9/+OHHsgMCAoXa202mqlafV0Vanzs9QEcAPFLPvmkA/nS/OaS9YaOjccfRw1h+Kgm+ASGQFUoEMgwC1GpU5p5p6+YRUidDYQFuDQtHQ/0/LMvAJtphtlvPbrM6bLBLDngFOns51TIgS609uoQQQjqfzZvXh48ZM7bk3Xe3nhw27LLyZcsW9zxy5LAXABw48L1h+fLnYydOnFS0adOOk0888XTmwYM/BSxc+Ew0AJjNZvbpp2fFabU6ae3at5M2b37/5IgRV5Vu3Ph2xPHj/+pqn2v79i3BW7duDF+0aGlqXcEPAAwffrmpZ89eZ59ylZWVKfbt2xs8aNAlNPa5C3Anyn0OwPccx/0N4Cs4h8HdznHcCwAmuL5IJ1FUVARBlmFVKqHTO+dSWBQqaEQ7rDQ8iLRDsixDZ7EC3t7wi64/BGJZBla7FTbhXC+PXXTAJtphcPUcsQwDyWqFohGLqRJCCKnfmDHjiqZPv7cQAObMmZ9z4sQ/Prt37wy59NLL0rZv39Jt7NjxRdOm3V0IANHRMTalUpkxb95TcZmZ6Wq93kuaPHlKwe23Ty8wGAwSADz22Owzn3yyOzQ5OUk3YMDAs135O3duD9q06d3wJUteTBk9emyjgpmqqip2zpxZPR0OOztr1tNZLXH9pH1pcgDE8/wvHMddA+BlAHPhzIP8FIBjAK7nef6AZ5tI2lJJSTEAwODrf3abTaMFzHY4SmktINL+FBcXIUTl/NNm7N233nIsy6DSWnVuIqOLyW6Gb2AgSiUJapaFZDFTAEQIIc00ZMiw81aW5rg+pr//PmYAgLS0NH1qaorXgQPfB1bvl11/nFNSkrVXX31NxR133FWwd+9nAampyfqcnGxNRkaaHgBEUTq7HkdpaanqrbfiIxUKhRwe3qNRY5jz8/OUc+bM6pWfn6dZsWL1qaioaPvFjyIdnbsLof4M4D8cx+kA+AOo4Hm+CgA4jlPyPH/BmErSMdl/PIDHomNxQnPuBtCh8wHMFZCrqtqwZYTULS3lFILUGgCAvnt4veUkSKi0my7YbrKb0d3XiBxRgJpVw15ZCVUgzYklhJDmUCqV5z1vkmUZLKuQnd9LzE03/Tdv8uQpxbWPMxpDHQUF+coHH7ynj4+PQbj88ivLhg4dXjFw4CDTbbfdNLBmWYZhsXTpS8mbNr0btnz589EbN25LYtn6Z3skJ/PaOXOe6CWKIrNmzTq+b9/+lnoLk06lyXOAOI47zXHcIADged7C8/yZGsHPcAD5Hm4jaUPK7CxcFRgMo5fP2W2Sjx8AQGWlCeKk/TmTkACWYWADoHCls66LIAuwOi58D9sEG7x8vGASnKmxTcUXfB4TQghpooSEE141f05KSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eb6yvPRkZ6eonn3w0TqvVSm+/vSmRgp+upVE9QBzH3Q5A5foxCsCU6iColrE1ypFOgLE4/x5I+nNrqTC+zh5qjSjCbrdDrabEf6T9KE9zpsC2aLVgGKbecoIsnDf/p5pdcIBVsrDKzuQHphIKgAgh7ROr0bXqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/hj/+KLS6IEwcE+99yyZJVKJefn5529JzYaQ2kkUyfX2CFwwwDMdn0vA1jcQNnXmtUi0q4o7M6hsIz+3JN0xi8IZ6wWVAgOlJWVIiSk3gcshLQ6W34eAIAJCKi3DMsyzoQHwoVDve2iA6Is4oOKMhSnpeDlwMdbrK2EEOIOWZYlRq0XvLnLlGjlhUkZtV6QJbnJ6THHj59Y+NFHu4xr1qzSRUZGml9+eVVyv37OXpfrr59cKsvy6Z07t3X75JMPQ/V6L3HYsOFls2fPza7en5SUmLd+/VsRa9euZoOCgu0TJlxXdOjQr36JiSe9ABTWPt/MmY/n/vrrz/7Llz8ftWHDe3zNoXC5uWdUiYknfQDg4YfvvWCy6MGDfx5t6vWRjqWxAdACAPFwJjw4DeBmAH/VKiMCKOd5vhKkU5BFEerqFMCuYW8AUBUzAK9mZqCyogyTyssoACLtyqeZ6fi4tBSv3HlXvWUYhoGjngDIIQoQJAEmnQ5ZFgsqrDQqghDSvsgyRIukymVUfq0a/ACALMmSLENs6nHR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzM+puf2++x46O+1i1qynzsya9dTZ9Tk0Go28e/fnJ+uqr1u3MAcFOV1bowIgnuftADIAgOO4aABnAPTnef4v17ZQAMMB7GuhdpI2IJpMYABIsgyF7/mTwPXePqisKEN5eXndBxPSBsxmE87kORfojbpkSL3lWJaB2WGBJNfOAQc4RAcEWYDB4AsAqKykJSEIIe2PLEOUZbnJgQghxL1uUxHA3wA+qrFtMIA9AA5yHEfpkjoJsdLZmVclCNB6+523z8vbeXNYXl7Wyq0ipH5paWkAgICAQPj6+tVbjmGAStuFGeCAcz1AcXov3NKtO5CS0hJNJYQQQkgbcScN9qsAFABuq97A8/zXrqQIHwBYAeD+plTIcdxdAOYDiAGQCuB5nud3u/YNBvAGnPOQigHE8zy/qsaxLIAlrnP6AzgI4BGe51NqlGl2HV2RaHKmua4UBOhqzgFy2PGkjzeUAy9BQWmdvdWEtIn05FN4NCoWbGAAZEkCU0/6U1EWYRWsde6TIcMq2BGjUmFQ9wjk5dQ7YoMQQkgj0HAz0t640wM0FsB8nuf/rLmR5/njcCZHuL4plXEcdyeATQDeAdAfwC4AuziOu4LjuEAA3wE4BWfwsgTAMo7j7q1RxXMAHgbwAIAr4EzSsI/jOLWr/mbX0VVpYnvijmN/4Lmkk9C7enwAQFaqEMIAQWoNTCVFbdhCQs5XwCdhVFAwhitU9QY/ACBChF1w1LvfJtig0OkAAJK17kCJEEIIIR2TOz1AagD1Zf+wAvCpZ98FOI5jACwD8DrP82+4Ni/jOG4EgNGuLxuAma7FVRM5jusFYB6Aza4A5WkAc3me/8pV521wzlG6Gc5g6kEP1NElVVVVQpAkVEGCrsY6QGAY2BgWOlmCtbSszdpHSG1VWZkAAIe3d4PlRFmsMwFCNYvDBpWXa8kKOy0KTgghhHQm7vQAHQIwm+O489b7cf38JIDDTaiLg3NdofdrbuR5fgLP8y8DGAngZ1fgUm2/83RcCJxzj3xc26qPLQNwDMBVrk2eqKNLqqhwTv7WanVQKM6PlW2unx3lNASOtB9SoTMTqrKBzIQMw8AhOWAX6+8Bsot2KL2dARAr0HIQhBBCSGfiTg/QIjjnyKRxHLcPQAGAYADXAgiCs9emseJc/3pxHPcNgEsApAF4kef5LwCEAzhe65jqFIc9XPsBIKuOMj1c33uiDrcpFK2eodJjTL//hseiY5EgiGDZcwtKsiwDh0oNCHaIVSYolR33Gmurfr068utWn85+bTabDV5WK6DzQkCvXvW+L1mWQZVDhCA5zntf1yTKItSuAEgpim36Hu/sr1vNfzsTuraOq4H1kwkhnUSTAyCe549yHHcZnPNmJgEIBFAG4BcAy3ie/7sJ1VXPrH8PwAtwDku7BcBnHMddA0AP5/C1mqoH5Gtd+1FPmepVED1Rh9sMBl1zq2g7Z7JxVWAwTCYTdLrzp0MJGh1gqQKsFvj7e7VRA1tOh37dLqKzXltCQgK6abQAgB6XDGzwfVlSWgylRgElFHXuZ5UM9AF+AAClLLWL93hnfd0AuraOqjNfGyGkc3OnBwg8z/8L4FYPnL96cP2rPM9vdX3/N8dxQwA8BcACQFPrGK3rX5NrP1xlLLXKVOe49UQdbquosEAUm7xgcrtgLSuHHoCgVMFiOTcPgmUZKLWuuNFsRmlps39N7YZCwcJg0HXo160+nf3a+KQkhLkCIIchoN73pVKpQLmpElZL/XN7zLBCoXfe3KkkuU3f4539daNr63g687UBgK+vDmwDSVTaC4aBgmGY1l8IVXZvIVRC2hO3AiAA4DhuIoBrAHQD8Cycw9eO8jyf0YRqqvPL1h6idhLO3qV0AGG19lX/nANAVWNbaq0y/7i+z/JAHW4TRQmC0DE/IESzGQAgqTWQpPMXjBQNAchJS0KZxdxhr68hHfl1u5jOem2n/z2OS1kWIgDWP7Dea2RZBlU28wXv6ZrsggAfoxHPJZ2El38ANrWD31dnfd0AuraOqrNeWx3rI7c7DAOFrBS7mUWL2/dx7tIpdQIjKHLbWxAUH786bP/+bwP37Pm69j1lvbZu3Rjy+eefhhQXF6uNRqPtllv+l/e//91R3JLtJO1Dk//jcBynh3PR03EAKuBMIPAqgJkALuE4bhTP8ycbWd1fACoBXA7nvKJqAwCkAPgNwMMcxyl4nq/+jzYWAM/zfAHHceWuNoyGK3jhOM4PwBAAb7rK/+yBOromm3NUoKy5cJhDyeCReOn9t6BSqbCwtdtFSB2Op6ch/tgfWPj4U+ijqHtoG1C9BlDDmd0ESYDWNwB8VSUMHeBJMCGka2EYhjWLFuUf2X9LFoe11aJQnUrLDg8frPRifFhZlttVANRUO3ZsDd66dVP32bPnpA8ceInpt98OGt58c02Uj4+vOHHi9WVt3T7Sstx5cvASgKFwBhG/4NwwtukAvoEzrfXNjamI53kLx3ErASzmOC4HwB8ApgIY76o/AcBcABtd5YbDmWnuYdfxNo7j3gTwCsdxhXD2GL0KZ6/PJ67TbPJAHV0S60r/K1cPd6tBq3fOiXA4HLDZbNBoao8yJKR18TwPQZYRMXBQg+VEiHA0kAEOcAVAOudwOpOpCrIsg6GZ0YSQdsbisEomu6W1u+E6xVOhqqoqxV133Ztzww1TSgEgMjKqaO/ePSF//nnYQAFQ5+dOAHQbgAU8zx/gOO7sY1ae5/M4jnsRwP81pTKe51/kOM4MYDmA7gASAdzM8/yPAMBx3AQA8XCmpc4F8EyN+UKAc/FVJYANAHRw9vhM4Hne7qq/oLl1dFVn0/9qL5wArtHqwTAMZFlGVVUlBUCkTZnNJmRmOtcAio3t1WBZURYbTIENAIIoQuulxTXBRvgolTAVF8M7KMhj7SWEkK5kxIhhQ2fOfDzzhx++C0hLS/UyGkOtM2Y8mDN+/MTy6jLff/+N75YtG8JycrJ1/v4B9quuGlMyc+bjuRqNRgaApKQE7dtvv9k9MTHBx2q1sIGBQfYbbphScO+99xfUdc4tWzaEbNmyIXzBgsWnJ0y4rqz2/oceejSv+nuHw8F8+eXn/jk52drp0+89U7ss6XzcCYD84OwlqUspgIZXIKwDz/OrAayuZ98RAFc0cKwIZ/a4eQ2UaXYdXZFKcj5UYvSGC/bp8rPwar+BKLBaUFVVicBAujkkbSc1NQX39YiCQaeH3mIB/P3rLMcwgCALF+0BkiFDoVbh1rBw+KlUqMo7QwEQIYQ0w+bN68Pvvvu+7AULFqd/9tknQcuWLe7p7x+QdOmll5kOHPjesHz587H33/9w1pVXjqzIzEzXrF37eo/s7EztqlXxp81mM/v007PiBgwYVLl27dtJSqVK3rPno6CNG9+OGDZseOWAAQNrJrHC9u1bgrdu3Ri+aNHS1HHjxpfX1yYA+P3337yfeeYJTpZljBkzrqiuYIl0Pu50Y54AMK2efTe49pNOYJ2Sxf1//wnRx+/CnbKMHlodumt1qKysavW2EVJTcnIyrvAPxBU+BshC/cENwzAQJAH2BspUE2QBNtn5EMBSRgv+EkJIc4wZM65o+vR7C3v1irPNmTM/Jza2p2n37p0hALB9+5ZuY8eOL5o27e7C6OgY26hRV1fMnv1Mxu+//+afmZmuNptN7OTJUwqefXZJRlxcb2tMTKztscdmnwGA5OSk8yYq79y5PWjTpnfDlyx5MeViwQ8AxMb2tL711qaEWbOeSj906GDAa6+t6N4yvwHSnrjTA/QigE85jgsE8AUAGcAojuPuhXNeze0ebB9pQ6WVFagQBGh0F3bqSa50w14KJaqqKlu7aYScJyMpAb1VzoSOamNoveUYhoEgCnCIwkXrtIn2sxMcLeUX/QwlhBDSgCFDhp13s8BxfUx//33MAABpaWn61NQUrwMHvg+s3l+djS8lJVl79dXXVNxxx10Fe/d+FpCamqzPycnWZGSk6QFAFKWzEzRLS0tVb70VH6lQKOTw8B6113esU3BwiBAcHCL07z/AUlpaqtq5c3vYrFlPn1Gr1R0gHyBxlzsLoX7GcdydAFYAuM61+TUABQAe5nn+Iw+2j7Shykrn3yp1HUkQJLUzANIrFMitqmjVdhFSW3nqaQCAXacD28B8NJZlYHXYIePin2t2wQGHa4kNWyUF+YQQ0hxKpfK8P7yyLINlFbLze4m56ab/5k2ePOWCFNRGY6ijoCBf+eCD9/Tx8TEIl19+ZdnQocMrBg4cZLrttpsG1izLMCyWLn0pedOmd8OWL38+euPGbUn1rem0f/93hvDwCHtcXG9r9bbY2F4WQXAwJSXFytDQbhcfKkA6rCYPgeM4rg/P8+/zPN8DQB8AIwD0BxDG8/xGTzeQtA17Xi7+q9Xj1rBwaLR19QA5e5yVLIsqejpO2pijIB8AoDQaGyzHMIBZsDRY5mydkgOiggIgQgjxhISEE+dlVEpKSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eX++HwoYNb4dv3rzhvCEDJ0/+6+Xt7S2EhBgp+Onk3JkD9A3HcXcBzoV0eJ7/jef5BJ7nO99qaF2YvbAQlxt8camfPzT6CwMgWaVG9QtuowCItKHS0lL4OpxD2nyjYy5a3uKwXrQM4MwEJymdn6+Ciea5EUJIc3zxxR7jnj0fB6SkJGteeWV5eEZGuu722+/KB4CpU6fl/fHH7/7x8avDUlKSNQcP/uyzcuVL0SZTldJoDBWMxlC7zWZj9+79zD87O1P900/7DS+8sCgGAOx2+wX3sn369LNOmXJr3o4dW8NSU1PqHBYwdeqduQcP/hS4bduW4NOnUzU7d24L2rPn49A77rjrTH29RqTzcGcOkBJAoacbQtoXS6lz0rdJFKGrYw4QGAY2MNBBhq2CAiDSdng+ERE6Z4+kd1RUg2UFWWxUAgTAmS5bUikBmwOC2dzcZhJCiMfpVNpWvVNvzvnGj59Y+NFHu4xr1qzSRUZGml9+eVVyv379LQBw/fWTS2VZPr1z57Zun3zyYahe7yUOGza8bPbsudnV+5OSEvPWr38rYu3a1WxQULB9woTrig4d+tUvMfGkF+q4L5058/HcX3/92X/58uejNmx4j68d1EyePKVUFIW0Xbt2dNu48Z2IoKAg+0MPPZY5deq0InevkXQc7gRAzwFYy3HccjgzvuXXLsDzfGZzG0baltmV9coqSdCp655TUa5QoaSqHJYqU2s2jZDzJCUlIkDhXJJMEx7RYFkJF0+BXU2URKQE+GHngR9x3ZAhzW4nIYR4iizLkk6pE4aHD1ailRcm1Sl0gizITR71Ex0da5k7d2F2ffsnTbqxdNKkG+tMuckwDObMmZ8zZ878nJrb77vvobP3oLNmPXVm1qynzq7ho9Fo5N27Pz/ZUJumTLm1ZMqUW0safxWks3AnAHobgALARqDemcSKeraTDsJaVgYGgI1loKunzOfGGHx/eAtu6tWzNZtGyHl4PhH7kk5iwdNz0CcqCmID+Q1EWYJDungGOAAQJBGiny+SqipxhYOGgxNC2g9ZhsgIilwvxqfVx2rJgizJMsTWPi8hnuROAHS/x1tB2h1bZQW0ABxs/W8Rrc45n5HSYJO2xPOJAIA+gwaCUSgAoe4Hk41dBLWaKInQezkzIFZV0RwgQkj7IssQZVmmQIQQN7gTAHUH8BnP8w12K5KOTXAFNYJSVW8ZjZZuDknbslgsSE9PAwD079+/wbLORVDFRq0BBDh7gAIYFteGGBFUfEFmVkIIIY108OCfR9u6DYTU5E4ANBfAMQAUAHViosk56VtUqestM6AsD5f1HYATlsalFSbE01JSTmFaWDh6+/pDmZEJ9Opbb9nqRVDtTegBCnA4MKNHNLIpyCeEEEI6DXfGjp4CMMDTDSHtSyoXh/v//hMJ6vpmAAFesoQovRe0dpofQdpGUlIiensb0Eung3yReToMw8AuOiDLjVvcW5REKL2dvZwKkUaZEEIIIZ2FOz1AewG8yHHcJNSdBU7meX5Zs1tG2lSVxYIKQQCj09dfSOO6ORQaN6SIEE/jkxIw2ZUCWx/ZA7YGyrIsYHE0vrdSlCRofZwp4FVNT3hECCGEkHbKnQDoede/I11ftckAKADq4MxmZ2prtUZbbxlZ67zxVEp0c0jaRv4pHlqNDjLLQtetG2wVDS9y2thFUAFAhgyVjzPRh7pxnUaEEEII6QCaHADxPE/L43YBsZmZmNEjCmWK+pMgMFrXzSEAURShUFD2c9J6BEGAmJcLRMaADTE6M8A1QILU6Pk/1RSuHiANw7jdTkIIIYS0L+70AJ3FcVxvAH4ACnmeT/VIi0i7EFFegV4hofhCVX8AxOqdN4c6BQuz2QwfH5/Wah4hyMhIR3dXkg6f2JiLlhdksckBkMrb2cupYVnIkgSGpec/hBBCSEfnVgDEcdztAFYBCK2xLQ/AAp7n3/NQ20gbUlZPFNfUnwQBrjTYOlZJARBpdUlJiYjRO3sh9VHRFy0vQ4TQyBTY1Rifc+9/u8kEDb3HCSHtBMNAwTBM6y+EKtNCqKTja3IAxHHcDQC2A9gP4FkAeQDCANwJYDPHccU8z3/p0VaSViULwrk3hmuYW10kjR5lggNVonB2zhAhreXEiX/hJzhgVSigbUQAJMiNXwOomsJbg5eTk2AVRbwtCNC421hCCPEghoFCIzm6iWZzs0byuEOh1ws2VpXb3oKg+PjVYfv3fxu4Z8/Xx5t6rCzLeOSR+3sJgoNdv/49viXaR9oXd/7jLAKwm+f5qbW2b+Y4bheABQAoAOrAJPu5XFqs1rvechZjD7yUmYXSkgJsN1EARFrXyZP/4t/004h44GFc0rNng2UZhoEoiXA0cQgco1DguMkEQXDAarfBtzkNJoQQD2EYhhXNZmXx4cOSYLa0WiYipV7HBl52mZLx8WNlWW5XAVBzbN68PuT48X8Mffr0pUXfugh3AqABAJbUs28LgN1ut4a0C5LVGQAJkgSFtoEhcADUWmeWOIuFAiDSehwOO5KSEgEA/QcMAnORJAUsCwiiAIfUtB4gUZKg1+tRUVEOs9nsdnsJIaQlCGaLJJhMrZ2KtVNNhkxIOKHbtWt7WM+evehGpgtx501cBCCwnn1BAOzuN4e0B7LNmSrYKklQqi4SALnWAqKbQ9KakpNPQXY4YDD4IiKix0XLMwwDQRKaPAROkkVcHhCICcFGmPPz3G0uIYR0aSNGDBu6Y8fW4Bkz7uTGjLliyNSpU/p+++2+8zrVv//+G98777y1z5gxVwy5+ebr+69ZsyrMZrOdfbqVlJSgffLJR2InTBg9eNSoy4bcfPP1/Tdv3hBS3zm3bNkQMnr05UO++eYrv/rKWK1WZunS56KnTbv7TPfu4Y1fJ4F0eO4EQN8DeIHjuPPuOjiOi4SzZ+hbTzSMtB3J5uwBsooilOr61wGCKOIxPwNW9h0AS0VFK7WOEOD48X/xVGwc1sT1gemfvy9anmEYWIWmP5sRJQkT/fxxX2Q07Gdy3GgpIYQQANi8eX34mDFjS959d+vJYcMuK1+2bHHPI0cOewHAgQPfG5Yvfz524sRJRZs27Tj5xBNPZx48+FPAwoXPRAOA2Wxmn356VpxWq5PWrn07afPm90+OGHFV6caNb0ccP/7vBU9qt2/fErx168bwRYuWpk6YcF1ZfW167bUV4f7+AY677ppR0GIXTtold4bAPQvgTwA8x3GH4EyCEArgCgAlAOZ7rnmkLWgieuCRhH8hCwKm/7eBHiCWRSTLgtV7IbGivPUaSLq8E8f/wQ1eXvAGoGhEZjaGAayC7aLlahMlEaIr9bWd5rkRQojbxowZVzR9+r2FADBnzvycEyf+8dm9e2fIpZdelrZ9+5ZuY8eOL5o27e5CAIiOjrEplcqMefOeisvMTFfr9V7S5MlTCm6/fXqBwWCQAOCxx2af+eST3aHJyUm6AQMGWqrPs3Pn9qBNm94NX7LkxZTRo8fW+3T2wIHvDb/88mPA5s3vJ1xsGDXpfNxZCDWP47ghAJ4GMArAMDgDn3gAq3mez/dsE0lrEyQJRa4hbZqG5gAxDGwMoANgr6psncYRAiArMQF+/oGQGQaaRgyBAwCL0PTRDaIsQnAFQA7KdEgIIW4bMmTYeTcKHNfH9PffxwwAkJaWpk9NTfE6cOD7s1MsqlfjSElJ1l599TUVd9xxV8HevZ8FpKYm63NysjUZGWl6ABBF6Wz0UlpaqnrrrfhIhUIhh4f3qPepV1FRoXLVqhVRjz02O7Nbt7CmZcchnYK76ROLAezieX4eAHAc1w3ApXAGQqSDs1jOzedRN7QOEAA7w0InS3BU0c0haR2VlZVQlxQD/oFQhoaCVasveowoi3AITf+MEyUJkoIFRBkCzXMjhBC3KZVKuebPsiyDZRWy83uJuemm/+ZNnjyluPZxRmOoo6AgX/ngg/f08fExCJdffmXZ0KHDKwYOHGS67babBtYsyzAsli59KXnTpnfDli9/Pnrjxm1JbB0LWP/4437f8vIy1euvr4x6/fWVUQAgCAIjSRIzdux/Llm+/NXkyy+/kjLCdWLurAMUDuc8Hw2AWNfmQQD2ADjCcdz1PM8XeayFpNWVnzyBeyOikG6zQqFo+C3iYFhAliDQ0/EuTZZlnDhxHMXFRRgyZCgMhpZLGH38+D/gvJzp2b3juEYdI0FqcgY4ABBlCZJSCYgOCBbLxQ8ghBBSp4SEE17XXHPt2fHySUkJ3rGxsWYACA/vYcnKytDGxMSe7bU5dOig9wcfvG9csGBxxt69nwVWVVUqd+/+/IRKpZJd9bme0J6Lq/z8fB2jRo2pCAkJsT/88Iy+mzevN95330MXjEyaMOG60iFDhp0X4Lz55uvhxcVFqiVLlqd16xZGCb06OXd6gF6FM3nCbdUbeJ7/muO4QQA+ALACwP2eaR5pC9b0dEw0huL3RszrERRKQBIgmOnmsKtyOOxYuHAevv12HwDAx8eAl19ehREjrmqR8/3111Fw3s55P7qecY06RkTT1wACnHOAZLUKsDkg25o+h4gQQlqSUq9r1ZTUzTnfF1/sMUZGRlv79x9o+vjjD4MzMtJ18+Y9lw4AU6dOy1uxYllMfPzqsOuuu6E4Ly9X/dprK6KCgoLsRmOoYDSG2m02G7t372f+l146vCo1NUW7bl18BADY7fYL2tSnTz/rlCm35u3YsTVs9OixZbGxPc/7A+7j4yP5+Pict02n04lqtVpZMwgjnZc7AdBYAA/yPP9nzY08zx/nOG4xgLUeaRlpMw6zCUoAAnPxv3OCQgk4ANlKAVBXtXLly/ju233obfBFSEAgDmWk4cknH8G7727BkCHDPH6+f48dwRi9FwBA17NXo44RZRGC2PQ1+0RJAlQqAIBkpQyphJD2QZZlSaHXC4GXXaZEK6/Lo9DrBUGWm7z20PjxEws/+miXcc2aVbrIyEjzyy+vSu7Xr78FAK6/fnKpLMund+7c1u2TTz4M1eu9xGHDhpfNnj03u3p/UlJi3vr1b0WsXbuaDQoKtk+YcF3RoUO/+iUmnvQCUFj7fDNnPp77668/+y9f/nzUhg3v8XUNhSNdlzsBkBpAfW98K4CLp2Qi7ZrD5AqAFIqLlrWrNCirLIHdTg9MuqKEhBPY9+luvNC7H3q7emXuCzbijVOJmDdvNj755Cv4NCJLW2PZ7XYkJ5zEvsBg3DhiFJRBQRc9hmEYiJJ7PUCSLCI3JBCfHj6MIRHjMMGdRhNCiIfJMkQbq8plfPxa/a5ekGVJltHkJ0rR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzD9vPYKaw9tmzXrqzKxZT52p/lmj0ci7d39+srHtW7781fTGliUdnzv/cQ4BmM1xnKrmRtfPTwI47IF2kTYkuuY6iBeZ/wMAf0b2x4P/HMNfDhou2xVtePctzI7phd7ePmA0Wih8DNDJMub25NDD7sC6dfEePd/Jk8dRYrHgS7MJsfOeRWNSl7IsnIugujEHSJJlCAF+OFZehnyh6ccTQkhLkWWIkiQ7WvvLneCHkPbGnR6gRQAOAkjjOG4fgAIAwQCuBRAEYHRTK3Qtoppex64HeJ7fwHHcYABvwJlyuxhAPM/zq2ocz8K5COv9APxd7XuE5/mUGmWaXUdXIbqG+kjKi7891Fo9AMBEa6R0OQUF+RBPHMeAqBhApUKP+c9CFdoNBdu2oiQpAan/mvDP7p2YPv0ehIV198g5jx49AgAYMmRYo4IfwPnkUJBFCKJ7AYxa68wyVzM7IiGEEEI6rib3APE8fxTAZXD2BE0C8AyAmwAcAXAlz/N/uNGOgXAOnwsD0K3G1w6O4wIBfAfgFJzByxIAyziOu7fG8c8BeBjAA3AuyCoD2MdxnBoAPFFHVyLZqgOgi1+6WqMFQAFQV7R372fIt1qQK8sIuuFGaCJ6gFWpYLxnBrgXloMbcikEQcDmzes9ds5/jh7BIIMvhg2+pNHHMAwDm8MO+eJF6+QDGVcFBiG0ijKiEkKIOw4e/PPorbdOvSDFNSFtxa11gHie/xfArR5sxwBntXxu7R0cxz0JwAZgJs/zAoBEjuN6AZgHYLMrQHkawFye579yHXMbgDMAbgawC8CDHqij67A7h7NJStVFCgLh5UV4nuuLDIl6xLuaAwd+QFJVJQqvnQj/8dee3c6wLBQ6HR566BEcPvwbvv7sU9x//8MwGkObdT5BEGBOPoWFcX0gH/sL8rS7G9ULxDCA1Y1FUKsZzFY8Ft0TOQ4aAkcIIYR0Bu0lJcZAAAn17BsJ4GdX4FJtPwCO47gQAIPhTLywv3onz/NlAI4BuMqDdXQZ/4SHY9bxv5GlN1y0rE6W0NfHgBDKrtKlFBUV4sSJfwEAV40aA5VWDY1GCaXyXOKMwQMGYu7Q4YjvOwB7tm9p9jmPH/8Xca4eR5++fRs9BA4ALEIzknToNQAApeRuHxIhhBBC2hO3eoBawAAAuRzH/QIgDkAygGU8z38DIBzA8Vrlq7N89HDtB4CsOsr0cH3viTrcolB0vMCgQnAgz2bFAJ0XWPbCm8zqbSzLgHWlI1bLgELBNOmmtD2qfr064ut2MZ68tt8P/oSxgcEwhxoREREGhaUUjqIsqPyMUBmMcAgyZIUGA0OMUBcWQvfHYQiCHVqt1u1zHj78Kwa6Flg1DBgIpfLcdTR0bQwrQ5Acdb6XG4PVO9usgnzeOVsLvSc7Jrq2jquDf4wRQhqhzQMg1/CzOAAmOOcTVQG4E875N9cA0MM5fK2m6vEsWtd+1FMmwPW9J+pwi8Gga87hbUIUnUPg9N5e0Onqnwek0aig8vMHAOgUCmi1LPR6fb3lO5KO+Lo1lieuLe+P3/FgVAysajV0jA2WvFOQygsgmIqh16jhHeRMenDJnNk4PncBLvfxxe+ffIApjz7i9jmPH/4No10Bd/crL4Xa3+uCMnVdm8VhBaNkoG3gvdwQxs8bAKACA/86ztla6D3ZMdG1EUJI+9PmARDP83aO4/wACDzPVwcgRzmO6wNgDgALAE2tw6ofI5tc++EqY6lVpnpmvifqcEtFhQWi2OT1wtpUTHYupnaPAGQWFsuF6a1ZloFGo4LN5gAUzl+rjlUgJ6cAQUHBrd1cj1IoWBgMug75ul2MR68tLQ3w8gEbEwNzfiZMeTkAZMBSAjEjCVqFHnaoAWM4ikKNCMkvgHXfNyieOh3uLEZXVlYKXXYO2MgYKMIjYGLUMJWe+6/Z0LWJCgfMFgusdbyXG0OrcQZOGoZBaWnrJ/ug92THRNfWcfn66tz6O0UI6TiaHQBxHKcFYON53u0B8jzP13VXcRzO1NpZcGaHq6n65xwAqhrbUmuV+cf1vSfqcIsoShCEjvUB0ddixaBu3bFPoYTUwLwHSZIhujLFaRUsKiqq4OcX2FrNbFEd8XVrrOZeW35+PmJY51yfiP9cBlthDiTpXH2WojwoA/LA+PeAwyGhz4MzceaFxeihUOKfDz/AgP/e1uRzHjx4EMP9nJ2x/sMvq7f9dV2bAAF2wdHge7khCr3zKbeaZWGz2KBQXTw5SEug92THRNfW8cgdZLofw0DBMEyrR2qymwuhEtKeuBUAcRzHAVgK4BoABgDDOY67H0Aiz/Nrm1jXQAC/AbiW5/mDNXYNA3ASwN8AHuY4TsHzfPV/uLFwZo0r4DiuHEAFnOsPpbrq9AMwBMCbrvI/e6COLkGWpLPRILQXH+4jKc/1AJnNlAq7K/j38CFE6pxDHQN6RcOSVWt6nSTCXpgFra8RDqgQGBmNA76+GFhZBdu330C+6RYwjVhjqqaDP3yHO3ycSTm8hwxr9HEMw0CQRDjcXAMIABSGc8M6LRXl8A4McrsuQgjxBIaBgmXYbnar0OojedRapSBByqUgiHRkTf6P41pQ9Gc4F0DdAaB6UL8dwBqO4yp4nt/ahCpPuL7e4jhuJoAiONNWXwHgUgD5AOYC2Mhx3EoAwwE8CeeaPeB53sZx3JsAXuE4rhDOBVVfhbPX5xPXOTZ5oI4uQbafmwbFNCYAUqlhl2XYJAmSidZJ6QoK/vkLkQAqVSpAqIRcR3BhLy+GxlQGpbcRgiCh/733o3TVSmgUCuT++zfCmhDE2Gw27P/1ZxwVJax6Yg7UoY1Pp80wgCg3LwBS6jSIP50CqyTiZYcD3m7XRAghnsEwDGu3CsrEE7mSzdp63XAarZLt07+bUqVVsLIst6sAKD5+ddj+/d8G7tnzde2kV/V64IG74xITT/rU3BYX17tq06btvOdbSNoTd54crALwJ4Dxrp8fBQCe55/kOE4P4AkAjQ6AeJ6XOI67AcAKALsB+MGZfvoanuePAwDHcRMAxLu25wJ4plaQtdh1LRsA6OAM0CbwPG93naOguXV0FZLVGQBJsgxWe/GEBoLeB/OLSpCdkYw3Le6vtUI6DjEzAwAgGUMgVJXVWUYWHHAU50DlEwwBQO+Bg7FIweLn439h6u+/4ZEmBECHDv0Ks9kMH2Mo+t4+rUltZRgGgihAkNwPgCTI+MtmgclkgsXepf4cEELaOZtVkKwWR2uPQ+w0E6SysjJ0M2c+njlu3ITS6m1qtbqDDIIkzeFOAHQFgKk8zwscxylq7dsF4I6mVsjzfCGA+xrYf8R13vr2i3AuajqvJevoCiSbM4ixiiJUmsZldFNrnHMkrFZzi7WLtA+yLMPXZAL0XvDjYiGYK+st66gohsZeBYb1gSzLGDl1Gvb+9Sc++ugD3H//w1CrG5eV7fvvvgYAXH31NU1Os84wgF10QGrGoH5RlqDT62EymWA203ucEEI6g9zcM6qqqirlwIGXVBmNobTSdRfjThRvxbm00bUF4lx6adIBSTZnD5BVkqBSN27NFpVrcUq6Oez8cnPP4PXkJLySmozoywZDste/wKhgqoRYVXp27Zyrrx6HkBAjSkqKcXDbFtjz8y96PrPZhJCEk3gmNg7XDrqkye1lGAa25iyCCkCSJAz09cXIgCBYiwqaVRchhHRFI0YMG7pjx9bgGTPu5MaMuWLI1KlT+n777T7fmmW+//4b3zvvvLXPmDFXDLn55uv7r1mzKsxms5196pWUlKB98slHYidMGD141KjLhtx88/X9N2/eEFLfObds2RAyevTlQ7755iu/uvYnJSXoGIZBr15xdN/aBbkTAH0L4AWO48JrbJM5jvOGM2319x5pGWkTgiuIsUoiNI3sAbpFrcQSri/EwsKWbBppB06d4lHmcMAUEgy15mK9MTIcpXlQyA4AgEqlwq233o5bw8IRfug35G/dBFlqeOTGd599itF+AbjUPwCx4RFNbi/DMDA7mvfZJsoSbvDxw+MxPeHIyWlWXYQQ0lVt3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94IFqbZv3xK8devG8EWLlqZOmHBdWV3tSUlJ1un1XuLSpc9F3nDD+IG33jq5X+2gi3Re7gRAcwF4A+DhnCcjA3jN9XMPAAs81jrS6uQQI544/jdeTTkFtbZxi9z1YIB+PgZIlfUPhyKdQ1qaM0t8z9gYiJaLJ71wVJUBdvPZoWu33PI/HKqsgFUUYTnFo+zADw0eX/bNPmgVClR5e8OrX/8mt1eGBLvYvHk7oiRCcK0JYqdEH4QQ4pYxY8YVTZ9+b2GvXnG2OXPm58TG9jTt3r0zBAC2b9/SbezY8UXTpt1dGB0dYxs16uqK2bOfyfj999/8MzPT1WaziZ08eUrBs88uyYiL622NiYm1PfbY7DMAkJycdN7Nys6d24M2bXo3fMmSF1PGjRtfXl970tJO6xwOBzNw4OCqlStfP3X77XfmfvPNV8HPP78wsmV/E6Q9aPIcIJ7nsziOGwTgKQBXw5k22hvA+wBW8zyf69kmktZkdjiQa7OCZRVQKhu33omDZQFJOtt7RDov4eRJ/C8sHL2CgiBaLRctL5pNkMxlUPr7wuEQERAQgDE33YwdX+/DfZHRKPxwF7SRUdD17HXBsSd/OoBLXesNdbv1tibP/wGcGeCEZmSAAwBJliArWEACHCZ6jxNCiDuGDBl23lNSjutj+vvvYwYASEtL06empngdOPD92cUEq6dupqQka6+++pqKO+64q2Dv3s8CUlOT9Tk52ZqMjDQ9AIiidPbDobS0VPXWW/GRCoVCDg/v0eD452XLVqRXVVVl+fr6igDQp08/q1KpkleuXB5TUJCfHRJipHlBnZhb+eN5ni8GsNDDbSHtgMXiXMtHp9c3+obTwSoASWjUDTHp2IKLizAqLBzlChairTGvtwxHaT7U/udGzN599324/sOd6FtSjCsCAnFm3VpEPDMf6m7n1iqWrBZU7HgPgSyLTI0a4/4z0q32ipCalQIbcM4BkhQKQBIhWigAIoQQdyiVyvOy0ciyDJZVyM7vJeamm/6bN3nylOLaxxmNoY6Cgnzlgw/e08fHxyBcfvmVZUOHDq8YOHCQ6bbbbhpYsyzDsFi69KXkTZveDVu+/PnojRu3JbFs3YOdFAoFqoOfanFxnAUAcnPPqCkA6tzcXQjVF87eHy/UMYyO5/n3mtku0kbMPI//hYWjQNH4t4aoUAKCDZKV5hF2ZrIsw+AQAIUSQT3CALlxmVcFUwW0DgsYRgdZBoKCgnHnnfdg3eb1iPD2QXhFBTJXLEfYzMeg790HksMBfunzCJRklNjtiJk12+02S7IIRzNSYAPOOUCySgk4RIj0HieEELckJJzwuuaaa88OSUtKSvCOjY01A0B4eA9LVlaGNiYm9myvzaFDB70/+OB944IFizP27v0ssKqqUrl79+cnVCqV7KrPNfTtXFzl5+frGDVqTEVISIj94Ydn9N28eb3xvvseqjPjzowZd3IRET2sL7zwUkb1tuPH//VSKpVydHQs/bHv5NxZCHUinOv11DdDXgZAAVAHJWSk479h4fi9CcPZRIVzqJxsa162LdK+5eflIcSVurpbZDdAatx8GMFcAclaCYW3FwTXen333/8w9u3biyUJ/+LV4VciwGQC4wq67aKI0zlZMILBkfBwPD5wkFvtrV4EtblD4AA4AyDYzmZJJISQ9kCjVbbqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/jjPWbM2JING96O2Llzm+mKK0ZUHD/+t9emTe+E33jjzfkGg6G111YircydHqCXASTCOQcoGwC9STqR6nk8oqL2Ek/1E1Wu9VxokchOLfP4P/BjWThkGWofLRzljUwIIEkQyguhMHQ7u0mn02HRoufxyCMP4NFDv+D5/05Fz9hYWK1WLFz4DE6dSoTW2wfvrnnT7fYyDANBEps9BA4AZBUF+YSQ9kOWZUmtVQp9+ndTopUXJlVrlYJ0sRSedRg/fmLhRx/tMq5Zs0oXGRlpfvnlVcn9+vW3AMD1108ulWX59M6d27p98smHoXq9lzhs2PCy2bPnZlfvT0pKzFu//q2ItWtXs0FBwfYJE64rOnToV7/ExJNeAC5IQztz5uO5v/76s//y5c9HbdjwHl97KNz06fcWsiyLTz/9yPjOO+t6+Pn5OSZPvjn/oYcezXPvN0M6EncCoN4AbuR5/hdPN4a0PcFSHQA1/q0hKdVwSBJEh6OlmkXagaJTSfADUKlgITuaFggIVWVQiVYA5xJrXHnlSDz++GysXfs6ntu9E+/+/hvMZhOKi4ugVCrx1kuvwt/f3+32MgwDURKaPQQOAApC/PHdH3+i1xVXYmKzayOEkOaRZYgSpFyVVtGqwQ8ASLIkyTLEi5c8X3R0rGXu3IXZ9e2fNOnG0kmTbiytax/DMJgzZ37OnDnzz1uLoObwtlmznjoza9ZTZ6p/1mg08u7dn59sqE3Tpt1dOG3a3bSGRxfkTgCUAcDg6YaQ9kGyOm9sxUZmgAOAxKj+eO6bj9C//wDc00LtIm2vKisLAODw0kO0N214tGCuBGxmsGo/SNK58dr33fcQvLy88cYbryEryzkMOzAwCC+99CouvfSyZrWXYQCHJECUmvw5fQFLgC9+KSmCXqA5sYSQ9kGWIcqy3Pw/cIR0Qe4OgVvCcdwRnufTPdwe0sZkuzMAkpXqRh+j1jjnIZrMphZpE2knSksAAKpAf8hC03r7JJsFkqUCCl0ApFoBydSp03DddZNw7NhRKJVKDB9+OdTqxr//6sMwDKxN7Kmqj1rrbI+Z3uOEEEJIh+dOADQNQHcAqRzHFQKoPVte5nk+ttktI22ieo6DpGp8D5BaowUAmGmNlE7t/bwz2JifhxWTx7p1vFBeCFVARJ37DAZfjB59dXOadwGGAayCZwIgPYChvv4IprWuCCGkyQ4e/PNoW7eBkJrcCYCyXV+kE2JcQ3xktabRxwSZKzC3ZxyKJfnihUmHJIoiss+cgSA40K17MCA3fc0nwVwJtWAFoPV8A+vhqQDI32zFvF4cckQabUIIIYR0dE0OgHiev7clGkLah0N+fvj1z8MYcM3N6N7IY7SQ0dsvACkmGh7UWRUWFkAQHFAqlQg2eEModycAqgLsZii0eohiyyePFOGZDHAAwOidDwSUMgX5hBBCSEfXqACI47geAHJ5nne4vm8Qz/OZzW4ZaROFDjtSzSYM0Hs3+hhG61wSSssycDjsUKmaP3+DtC85CSfwaFQsKjVqQHQv258s2CGayqDwCkZrdKQ41wDyTGZCVu+c59b4gaGEEEIIaa8a2wOUBuAKAH8ASEfNZXfr1vhFZEi7Uj3JuzqxQWMo9D4AAC2rgNlshq8vBUCdTVlKCkYFBaMAMqRmJBYQKkqgCW6dYWQSJI+kwAYAhasHSMMwHqmPEEIIIW2nsQHQDACpNb6ncSCd1ACTCQZjN+iasA4QXMGSVqGAxWKBr69fyzSOtBlTrnNpBYdW26wASLRUgmmleUDOHiDPBFust/M9rqYAiBBCCOnwGnWXy/P81hrfb2mx1pA2JcsyRsoMroqIxPdNWAdIUjmfjusUCphoHlCnJBQXAwAYgzfQ9AXAz9VjMUG2maHQtew8IOciqKLHeoBYL+cwTxXLwm4xQ63Te6ReQghxF8NAwTBMqy+EKsuyWwuhEtKeNHYO0F1NqFPmeX6bm+0hbUi228G4nnCzWq9GHye51gxSMAysVZUt0jbSthRVVQDLQhvQvDWQZcEB0VwGhXfLzgNiGECQRDg8NAdI4X1uSKi5vJwCIEJIm2IYKBSM0M1hM7uTzbdZVBq9IEKZ296CoPj41WH7938buGfP18cbe0xKSrJmzZpXIxITT/poNFrpyitHlD711LxsvV7f8pl6SJtq7H+cLU2oUwZAAVAHJNnODW1idU0IgFxJDwRJgqW83OPtIm1P77ADGi18QwKaXVdrzANiWQaiKEDwUBY4VqPCxqwMWAQHFjgc8PNIrYQQ4h6GYViHzaxMPXlMstusrXazrtZo2dh+Q5QKjS8ry3K7CoCaqqSkWDFr1sO9Y2JiTf/3f+sT8/Pz1StXLo9ateplLF68jJJ5dXKNDYCiW7QVpF2QbFYAgFUUodI0PgACw2BuUSnS03msvXdGC7WOtBW73Q5/1pnXJDAspNn1iZaqFp8HxDAMrILdY5MVJUnCIYsJFRUVmC14JqgihJDmstusks1ibu3eilYfdtcStm/falQqFfKqVfGpWq1W7t27rzU398yZvXv3BMuyfHZEDOmcGjsHKKO+fRzHaQHYeJ6nxAgdnGR1BUCSCKWqaTenrCsRgtls9ni7SNvKy86Et9L5p8Iv2A+yo3mvsWCpgmw3Q6HVQRRb5s8GwwA2Dy2CCgCiLEGr06GiouJspkRCCCGNM2LEsKEzZz6e+cMP3wWkpaV6GY2h1hkzHswZP37i2WEj33//je+WLRvCcnKydf7+AfarrhpTMnPm47kajUYGgKSkBO3bb7/ZPTExwcdqtbCBgUH2G26YUnDvvfcX1HXOLVs2hGzZsiF8wYLFpydMuK6s9v6jR48YLr/8P6VarfbsB9HUqdOKpk6dVtQCvwLSzrgVxXNOH3AcVwKgCsAlHMet4zjucc82j7Qma0WF819Rglrb+DTYAKDWOAMmi4UCoM6moKQE0479gRXF+WBVzX/wJwsOSOYKsGzLPkS0NCNbXW2SLCHOYMAQXz9YXQkhCCGENN7mzevDx4wZW/Luu1tPDht2WfmyZYt7Hjly2AsADhz43rB8+fOxEydOKtq0acfJJ554OvPgwZ8CFi58JhoAzGYz+/TTs+K0Wp20du3bSZs3v39yxIirSjdufDvi+PF/L7hh2b59S/DWrRvDFy1amlpX8AMAeXlntIGBQY4VK5aFT548YcDNN1/f/9VXXwq3Wq3U9dMFNPkOhOO4wQCOABgKYAeA6jeKHcAajuPu9ljrSKuyuAIgmyRC5crs1ljXqBR4JjYOTF5eSzSNtKH8/HyIsgxVYABkh2eSCggVxWBbcP6sBAl20e6x+kRJws3evpjfqzeE7CyP1UsIIV3FmDHjiqZPv7ewV68425w583NiY3uadu/eGQIA27dv6TZ27PiiadPuLoyOjrGNGnV1xezZz2T8/vtv/pmZ6Wqz2cROnjyl4Nlnl2TExfW2xsTE2h57bPYZAEhOTjovANq5c3vQpk3vhi9Z8mLKuHHj652YbLFYFB9//EGo3W5nly1bkfrAAzOzf/rpQMALLyyKbNnfBGkP3MkesgrAnwDGu35+FAB4nn+S4zg9gCcAbK3nWNKO2YMCsSDxONRqLW5r4tP5KBaI8A9AoiuIIp1Hfn4uACA0OAiS4JmgQrCYoBZtAJoWaDeWKItweCgBAuDsARJd/yccNMyTEEKabMiQYeelieW4Pqa//z5mAIC0tDR9amqK14ED3wdW75ddA9NSUpK1V199TcUdd9xVsHfvZwGpqcn6nJxsTUZGmh4ARFE622NTWlqqeuut+EiFQiGHh/docBiAUqmUunXrbq1OeDBo0CVmURSZFSuWxRQWFmQHB4fQhM9OzJ0A6AoAU3meFziOU9TatwvAHc1vFmkLFlFCqskEf03Thr8BgINVAqIIkW4OOx1d8ik8GhULX4323CdSM4lWE2C3gFVrIUmenwckQYLgoTWAAGcAJChYQAIEeo8TQkiTKZXK8/7Yy7IMllXIzu8l5qab/ps3efKUC8YYG42hjoKCfOWDD97Tx8fHIFx++ZVlQ4cOrxg4cJDptttuGlizLMOwWLr0peRNm94NW778+eiNG7cl1Tfc2t8/wBEZGWmpua1XrzgLAGRlZaopAOrc3BmEbwVQ3yIYga79pAOqntyt1TU9ABIUzli6Zipt0jl4l5ZiVFAwjArPzdmR7FZI1iooPFjnefXLkkd7gABAVDif94g0z40QQposIeHEeellk5ISvGNjY80AEB7ew5KVlaGNiYm1VX/l5+eq4uNfC6+qqmS/+GJPYFVVpXLTpu1Jjz76RO7EideXlZeXuR7in4ur/Px8HaNGjamYP39R+unTKfrNm9cb62tPv379K5OTT3nJNR7snTqVpGNZFj16RHpuDDVpl9y5+/gWwAscx4XX2CZzHOcNYA6A7z3SMtLq7GmnMcnYDX29m77YpahUAQBkG8W/nY3KFdTqfL09Wq9QWQyW8XzvD8MAguy5NYCqSUpXAGSl9zghhDTVF1/sMe7Z83FASkqy5pVXlodnZKTrbr/9rnwAmDp1Wt4ff/zuHx+/OiwlJVlz8ODPPitXvhRtMlUpjcZQwWgMtdtsNnbv3s/8s7Mz1T/9tN/wwguLYgDAbrdfcC/bp08/65Qpt+bt2LE1LDU1pc6x1tOnz8jLz8/XLF26qEdKSrLmxx9/MKxf/1bEVVeNKQ4KCqben07OnSFwcwEcAsAD+BvO0Ps1ABycAdVUTzWOtC4mPR13RUTisND0yemSKwCCnR6adDZ6UQIUgCG4+Yug1iSaq1zzgFQerZdhGIiSCIcHh8ABgKxSAhY79XISQtoNtUbbqmvyNOd848dPLPzoo13GNWtW6SIjI80vv7wquV+//hYAuP76yaWyLJ/euXNbt08++TBUr/cShw0bXjZ79tzs6v1JSYl569e/FbF27Wo2KCjYPmHCdUWHDv3ql5h40gtAYe3zzZz5eO6vv/7sv3z581EbNrzH1x4K16tXnO211+L5//u/NyIeeOCufjqdXhw9+uriJ56Yk+PuNZKOo8kBEM/zWRzHDQLwFICrAaQC8AbwPoDVPM/neraJpLWIVudQ2OqhPk0hubLGMR7KEkbaB5vNBj/X+yHQ6OEAyGICHFawSrVH5wExDANB9GwSBACQVM4/lzIF+YSQNibLsqTS6IXYfkOUaOWFSVUavSDKcpMXX42OjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNn/nnByX33PZRf/f2sWU+dmTXrqTPVP2s0Gnn37s9PNtSmSy4Zat6w4T2+8VdBOgt3eoDA83wxgIUebgs4josDcAzAYzzPb3FtGwzgDQDDABQDiOd5flWNY1gASwDcD8AfwEEAj/A8n1KjTLPr6Aokq/PJ9tnenCaQ1a4ASKBe486kICsTWlcA5BvkB9nuufkvos0M2WYCq/b1cAAEOCQHpKZ/PjeoINCA34/9gx4hl3m0XkIIaSpZhihCmavQ+LZq8AMAoixLstyC6xgQ0grcXQj1Ko7jrnR9H8lx3Jccx/3Lcdxz7jaE4zgVnOsKedXYFgjgOwCn4AxelgBYxnHcvTUOfQ7AwwAegDNDnQxgH8dxak/V0VXI9uoAqOmXnRHWE9OOHsZH5ipPN4u0oaK00wAAsySB8fR8HVmGUFkClvXsmnMMw8AieH6YWlWAAd8U5iPLw0PrCCHEHbIMUZJkR2t/UfBDOoMm9wBxHHcnnOv8vAbgNwBvAxgBZ5CxkOM4O8/zr7jRlhcAVNba9iAAG4CZPM8LABI5jusFYB6Aza4A5WkAc3me/8rVvtsAnAFwM5xpuT1RR9fgGtpT3ZvTFEqdNxyyDDOlCO5Uys5kwwuAmQFkwfPDG0VzBVSSHUDTh13Wh2EYWB2eT1Sg1jr/X1gslouUJIQQUtPBg38ebes2EFKTOz1ATwPYwvP8XI7jQgBcA+AFnudvhnNY3H1NrZDjuKsAPATg7lq7RgL42RW4VNvvPIQLATAYgI9rGwCA5/kyOIfRXeXBOrqEs/N33AiA1BotAMBMKYI7lQwZuOPoYez394bs4Tk1gHMeECPYwHiwE0iGBFsL9ADpFSz6ePvA10TvcUIIIaQjc2cOUG8As13fTwTAAPjM9fMRAC82pTKO4/wAbAPwuCvBQs3d4QCO1zqkeoJbD9d+AMiqo0wPD9bhtpZa56QlsNU3uGptg8OSqvfVLOMv2PFoVCzsLAOlsuNcc23Vr1dHet0ay51rKy0tgiDL8Any9/hQNQCQ7RbAYYHKy6dZ84BqXpvICBBk0ePtDTTb8ELvfsiVpFZ9j9N7smOia+u4PPlAhhDSPrkTAJXB2WMCANcByOB5Ptn1cyyAoibW9xaAQzzPv1/HPj2cw9dqqh7bosW5BVnrKlOdssoTdbjNYGj6oqJt5aCXDscPH8aw/pdBp7v4PCCN5lyyBKVGiSFBwSi02eDnpwfTwT9BOtLr1lRNubbycmdCHmOAL7SNeE+4Q+Ewwdu3vrWVm8Zg0MFkN4NVMh5vr+TjbKNSluHv73WR0p5H78mOia6NEELaH3cCoB8APM9xXH8458isAgCO424BsAzAN42tiOO46XAOURtQTxELgNrjsbSuf02u/XCVsdQqY/JgHW6rqLBAFD2bjaqlnK4y4XhlBQZrvWCx1J/ql2UZaDQq2GyOc0/tlc4PQp1Cgby8Emi12nqPb88UChYGg65DvW6N5c61RWfn4dGoWBgFCdYG3hPNUlIIyd8EezOm1da8Nqtshcls8Xh7ZVfAr4KM0tJm/2loNHpPdkx0bR2Xr68OtdeMIYR0Lu4EQE/AuebPYjgTH7zk2v46gEwAC5pQ1wwARgC1h769zXHcMwAyAITVOqb65xycW0ExDM71iGqW+cf1fZYH6nCbKEoQhI7xAWEyOW/qVCpNo4YjSZJ8thyrdT4R17IsKiqqoHQjk1x70pFet6ZqyrVFCA6EBwWjSqnwaKrqmhxmE9QOCwSp6XPPapMkCQ5JgF1weLy9jCuo14Bpk/cGvSc7Jrq2jkdumT91hJB2xJ2FUIsBTKhj1wie5zObWN2dAGr3oSfDGVx9AOB2AA9zHKfgeb76+fBYZzP4Ao7jygFUABgNV/DimlM0BMCbrvI/e6COLuESUUJIUAg0iqavAwSN82VUsizMlRUICPDsopmkbXi7/jUE+bfYOUSrCbLdAlat9UDQwkCQPL8IKgCw3s73uJplIctyhx/mSQghhHRVbi2ECgAcxxkBqOFMggAALMdx/QCM5Hn+7cbUwfN8Tu1trp6gAp7nMziO2wRgLoCNHMetBDAcwJNwrtkDnudtHMe9CeAVjuMKAaQDeBXOXp9PXFV6oo5OTxYETNJ7AVEx+FXV9N6bmmsHWcrLPNgy0lYsJhMMCuefiICQlguAJLsVss0MVhsISWre8hIMA4iyAKEF1uphvZwBkIJhINhsUHXQYZ6EEEJIV9fkQa4cxw3iOC4Bzixp6QDSXF+pAP6FB3tNeJ4vgLO3iYMzLfUSAM/wPL+1RrHFADYC2ADgVwACgAk8z9s9VUdXIFnPrZui0Pk0ULIeLAu75BwKYa2o8FSzSBsqykgHyzAQZBnevt4XP6AZhMpieGLIPcMwcEgChGYGUnVR+pzrrDaXlXm8fkIIIXUzmUzstm2bg6t/XrjwmagHHriLa+iY5srOzlR//vmnzXr6t3v3rsARI4YNrW9/a1zHiBHDhu7evSuwJc/RWjIz09UjRgwb+ttvv7hxo3o+d3qAXgXgD2AOgElwZk/7As6McBPhHErmNp7nmVo/HwFwRQPlRTgXNZ3XQJlm19HZSTZnEjy7JEGpdS8jl012dgnaqmqvZ0s6otKsTGgBVIoiGElESw6LF82VUIk2NKNTGoCzB8jq8PwaQADAqJXYkZMJmyhitsMO3xY5CyGEkNo2bXrX+MMP3wRNn35vIQDMnbsoq7kjBi7mhReeiwoJCbFPnjyltEVPRNqEO89cLwOwiOf51wHsAuDN8/xbPM/fAGAPgFkebB9pJdVBi1UUoVS5N7Tn1Yoq3HnsD5i0zZ/MTtpeVa5zuSwzy0ASHS16LtFqBiNYm73+BsMwsLbAIqgAIMsyvq8sx9cF+bBKnW/iNyGEtFeyLJ/36eDr6yv6+we0bAQEmSZ6dmLuPG7VADjl+j4JwMAa+zYDaNT8H9K+VA/psUqS2wGQQ6WBXZJgtlguXpi0e6biYgQBcKiUQAvf8AtWM2S7Faze0Ky0ujJkWB3Wixd0gyRL0Op0MFWZYLGYW+QchBDSGLIMmAW3HmI3m14JqakPq8rLyxWrV78S/scfh/wEQWCio2PNjzwyK3vw4CFmADCbzeyKFUsj/vzziJ/ZbFZ0797deued95yZOHFSWXz86rAPP3y/G+AczvX++x8df+ed/wsrKMjXrF//Hv/bb7/4zJ//dNzLL6869cYbr/UoKCjQREVFmRctWpr27bf7/Pfu3WMURZEZOXJ08cKFz2cxDANZlrFhw9vGb7/dF1RYWKBRqVRS7959q+bMWZAZGRllf+CBu7jExATvxMQE75tuutZnz56vj9vtdiY+/rWwH3/cH2ixmBXh4T0sM2Y8cGbUqKvPjvvft+9Lv61bN4Tl5+dpY2N7mQYPHnLROQGiKGH58ucjfvzxh0ClUilfc821RbNmPZ2jVDpv0f/443evTZveDUtNTfZyOBys0Rhqu+OOu3JvvPHmkuo6Pvvsk4APPtgRmpt7Ruvn5++YNOnGgvvueyi/9rkKCwuUjz76AOfn5+9Ys2Zdil6vl376ab9h/fq3uufkZOtCQoy2W275X158/Oqo99//6HiPHlH2m266dsBll11Z9tdfRw3l5eWqxYuXpl5++X8qt27dGPLVV1+EFBUVqYOCguy33HJb3u2331kEAL/99ovP3Lmz46rrAJzD1+64478DVq58/dSVV46sXLjwmShJkhh//wDHgQM/BNpsVnbgwMEVCxYszjAaQwUASEw8qX399Vd7pKQke/n7+ztuu+2O3Ka98+rnTgCUCSAGwC9wZmwzcBwXxfN8OpzD4Sj9VwdkrSgHANhkCaxC4VYdarUzcDKbKQDqDE5pNZh/9DBun3QtRrX0ySQRoqkMCh8jxGY80xMlEY4WSIAAOAOgSG8fBFtssJSWXPwAQghpAbIM3Pm1vjdfqmj9FZkB9PYXq7Zda+YbGwTJsownn3ykl1KplF58cWWKwWAQv/hiT+CTTz7Se+3adxIHDBhkWbt2dVh6epp+xYrXkn19/YSPP/4geMWKZTH9+vU/MWPGg3kWi4X99defAtavfy8hKCj4gj/ykiRh3br4iHnzFqar1Vpp8eL5sY8++kCfSy4ZWv7GG2/xR44c9l63Lj7y8suvrBg3bkL55s3rQ3bv3tntmWeeTevdu48lKytT89prr0S+/vrKiDVr1qWuXLkm5amnHusVFBRsnzdvUSYAPPfcvKjMzEzdggXPpYWGhtl//PEHv8WLF/R87rllqePGjS8/cuSw10svPR97662351533Q3Ff/75h88777zZ42K/n1OnkrwDAwMda9e+k5SdnaVZvXpllNVqZZ99dknWmTM5qvnzn4qbMOH6wrlzF2YKgoN5773Noa+//mrUFVf8pyIkxCh8+eXn/qtWvRx955335IwbN6E0IeGE/vXXV0Z5eXmLU6dOK6o+T3FxkfKxxx7kAgOD7KtXv5mi0+nk48f/1S1evKDnpEk3FixZsvx0UtJJ/Ztvroms3cZvvtkXvHTpy8kGg0Hs06ef5ZVXlkf89NMPgTNnzsocMGCQ6bfffjG8886bPex2G3v33fcVNO6dARw69Kv/iBGjSt54Yx1/5kyO+uWXl8W8+eaa7suWrcgoLy9XPP3041xcXO+qdevWJ+bn56tff/2VC9rmLncCoI/hzJhm4nn+I47jkgAs5zhuBYCncf5aOqSDsFY6H1I0Z6DTZWolro6KhSr3guR+pAMqKiqEKMvw9W+d2S5CVRnUkoBziSWbTkTLpMAGAFGScIdfAHoEGlGelg5cMaJFzkMIIRfDoEWnZXrUwYM/+yQn81579uz7pzp4eeqpeTkJCSe9d+3abhwwYFB6bu4ZjU6nFyMjo22+vr7iE0/MybnkkqGVvr7+ore3t6TT6SSWZeXqnoG63HvvAzlDhw43AcCVV44o27v3s5DFi5dl6PV6qVcvzrp9+9buqanJunHjJpRHRPSwzZmzIO2aa64tB4CIiEj74cOHSn/++Ud/APD3DxCVSqWsVquloKBg4fTpVM2vv/4S8Oab7yZW91rFxvbMT01N0X3wwfbQcePGl+/evTMkLo6rmjXrqTMA0LNnL9vp06m6r776PKSh34+vr59j2bJX0rRardy7d19rYWFhzjvvvNnjySefybHb7czUqXeeuf/+h/OrF+e9994Hcn/88YfA06dTtSEhxqqPPtplvOKK/5Q89NCjea522cxmk0Kr1Z0dTlFRUa587LGH4oKCgm2vvbY2VavVygCwc+c2Y3R0jPmZZ57NBoBeveJsJSUlqvXr34qo2cZLLhlSftVVoyuddVWw33zzZfB99z2UddNNt5S4zll45kyO5oMP3u92110zGh0A6XQ6ccmSFzNUKpUcF9fbeujQr8VHjx7xBYAvv/zM3263sy+88HK6r6+v2Lt3X6vFYs568cUlsY2tvyHuBEAvAOgJ5yKmHwGYDeBTAFMBiK5/SQdjCQjAa6cS4e0fiPFu1hHDMugdFIzkUpov2BkUFRUCAIJ8m51spVFEqwmMaIdzlK17JFlqsQBIhgyBcX4AOcymFjkHIYRcDMMA26418x1lCFxSUoIeAG677aYBNbcLgsA4HHYGAO688568RYvm9rzxxgmDevWKMw0Zcmn5xImTSnx9fRs9JiA6Ovbs+GeNRiv5+vo59Hr92SBArVZJNpudBYBrrrm2/OjRI17x8a+F5eRka7Kzs3TZ2Vlaf3//Op8DJySc0APA008/fl7GNlEUGb1eLwJARka6/pJLhpbX3D9gwMCqiwVAsbE9zdUBCQAMHDjYJAgCk5qaohkwYKDlllv+V/zee5tCMjLStDk5Odr09NN6AJAkkQGAzMwM3VVXXX3esITbbjvX8wMA27Zt6S6KAlP7XKdPp+hrD9MbMuTSSuCt89rYvXv42d9tSsoprSiKzCWXDKuqWWbw4CFVX3yxx1hYWNDo2MJoDLWpVKqz7fHy8hYFQWCcbUvVG43drDXfA0OHXlpVVz3ucGchVCuAWzmOU7l+/objuP4AhgI4xvM89QB1QCZJxr8V5YgKavD/aYMEhQKQAMnaMpPQSesaWlGBwdGxCG2lBT9FqxlwNG9BVEEWWiwAAgBRwQIy4DDTHCBCSNthGMBLhQ6RjUWSJEan04nvvLMlsfY+tVotAcCwYcNNn366799ffvnRcOTIYcO33+4L2rVre9iLL65MHjlyVKNSy6pUyvM+OFi2/s+ud99dZ9y5c1v3MWPGFQ0ePKTyf/+7veDHH/f7/fLLj3VO45Bl5696zZp1SV5e3uf93hUKhXyu3PmJE5RK1UU/zFiWPa9MdXY7jUYtJyfz2scee7B3VFSMeejQS8tHjBhdHhAQ4Hj88Yf61Dz/xT6mBwwYWHHddZOLli9fEnvgwPclY8aMq3AdC0m6eLIHtVpzwTXWXgxccs0VrhnQyDWuzOEQLjhPzbLn1NzU9N9nYzUn56ye47gr4EyJXQBgH8/zHovMSOsyu55oa91MgQ0AolIFOCyQbRQAdQaxYGAMDIagVrXK+SS7FbLVBIXO/QVRBUmEILVcxjpRqQAcEkQrzXMjhJDGiI3tZbFYLAq73cb07t33bE/C4sULInv27GW+664ZhfHxr4UNGjSkavz4ieXjx08sF0Uxa+rUKf0OHPjef+TIUZUMw3h0yN+HH74fNnXqnWeqh40BwI4d74XK553l3Dl79eIsAJCfn68eN27Q2V6e119f2Z1hWPnJJ+eciYmJNScmnjxv0bzExBMXnaeVnn5aL0kSqoe4HTv2p49arZYiI6Ntq1a9HG4w+DreeWdzdfIxfPfd176Ac24VAHTvHmHl+cTzzvPyy0sj8vPz1GvWrEsFgKuuGlM6ceL1ZQcOfFfy+usro4YOHX7CYDBIUVHR5trHHj/+d4Nt7tkzzqpQKORjx4549+8/4OyH4d9/H/Px9fVz+Pn5iyqVM7CtqKg4O6k8IyOtScM7evWKM+/f/11gcXGRMjAwSACAf//9y2Pz3txZCJXlOG4ZgCwAXwLYAeA7ALkcx833VMNI65Kys3F1UDCitLqLF66vDqUaAMA4usz6sZ2WKIrwdg338gv0a7XzCpUlzUqFLUit0AMEQLK0TKY5QgjpbMaMGVseGRllWbLk2diDB3/2OX06VbNy5fLwAwe+D6oetpaTk6NZs+bVHgcP/uyTlZWh/vLLz/2Ligo1AwYMrAIAnU4nmUwmRUpKssbhcDR7WEJgYJD92LEjBp5P1CYnn9K8/vqrYX/88bufw+E4e1+s0+mkgoJ8TU5Otqp3777WIUOGlcfHr4r89tt9vunpaeoNG942fvLJ7tDu3bvbAOCOO+7Oy8hI173yyvLwlJRkzaeffhSwb9/e4Ppb4VRcXKx+7rl5UUlJCdqvvvrC7/333wu76ab/5ms0GjkkxGgvKSlW79//nSErK0O9b99ev/j41ZEAYLc7hw/eccf03N9+O+i/ZcuGkLS005rPP//U/9tv9wWPGDGqrPa55s5dmGW325lVq16KAJxDD9PSUr1WrVrRPSUlWfP111/6bdu2pTtwYQ9PNV9fX3HcuAlFO3Zs7b5nz8cBp0+narZt2xz8zTdfBU+Z8t98hmHQu3dfi1arlTZvXt/t9OlUzaFDv3pv3PhOeH111mXSpJtKDAZfYeHCudEnThzXHTp08P/bu+/wOKpz8ePfmZ3t6sVy7/aAjY3poQZIgUAKuSEhITedNEISctN/qTc9pPdKSbmhhITQCaGDAVNs3DDj3tS7tu9O+f0xKxCyZUmrbZLez/PokbQ7e+Zd7Wh33jnnvKfiV7/62bzRHzk2uYwf/SrwBeCPwCuBo3AXP/0r8C1d16/IV3CieIIH9vORhUtYpeXeKWh73eReyRR2zRhReL1dnYSzx0J1Q/GW/LQSEVQr9x5EtweocEtDOF73b2KnJAESQoix8Hg8/Pznv92+bNny2Le//bXFl132rhWbNj1X+eUv/++uweFtX/rS1/etXr0m8r3vfWPRu951yTF//vM1c97zng8cfPOb39oD8NrXnt9bU1Obueyyd6/ctOm53IeqZH3pS1/fk0ql1I9+9ANHf/KTHzlq797dwcsv/8S+SGRA279/rw/gjW/8r84DB/YH3v/+d660LIvvfe/Hu0899Yzen//8Rwve+95Lj7n33rsbPvaxK/e99a3v6AZYtWp14lvfumrH5s3PVV522btX/uMfNza99a3vGLVs84knntzn8Xicj33sg0f/8pc/WXD++a/v+NjHPtkC8O53v7/jtNPO7Pn+97+9+H3ve+fKv/71T7Pe+97LmhsaGtNbtmwOgzuf6YorPrXvzjtva3zf+y5d+ac/XT3ngx/86P6LL76ke/i+GhoazQ9+8PKDDzxwX8NDD91fdfTRK5Nf+co3dj799JM1l132rpV/+tPVsy+44A0dAF6vb8Rety9+8av7L7zwjR3XXPP7Oe9//ztX3nHHrTM+/OEr9l922UfaASorK+3Pf/7Lu5ubDwTf//53rvz5z380/8MfvuLAeBKgcDhs//znvzE0TXM++cmPHPXd735z0dvedmnb6I8cG8VxxterqOv6fuBqwzD+9zD3fR+42DCMvFRomOR2A4t6e2OYZvkP0334S59nVns76/xBKt/+2SNuq6oKwaCPRCL9srka8X//lRPbdrNDVbjw99cWOuSC0DSV2towk+V1G4/xPDfj6adQfvdrLMdhyScuwckUZ1ijFqqk4uhTSaphxvPWNPjcNrcYPHtgS8HiS/z2Nlb3RNlbU8Nrf/jTgu1nKDkmJyd5bpNXXV0Yj0fdg7vkR0k9++yzR6mq554ZM+ZEfb6AXHkRebVhw7MhTdOcVauOfXEo27/+9Y+6n/70hwvvu+/R9doELoqXSjqdDHR0NFfYtnX+CSec8MJI2+XSA9QAPD7CffcAs3JoU5SYk3aHrQ0OY8upjew6QJ6JLOQiykJ/tpR5zLGhgD0qw7kLoiZeHAs9XokCJ2pdNRVc37yfff7c/0+EEEKIcvDCC9tC//M/H9fvvffu6oMH9/see+yRyr/85drZp59+Rs9kTH7GI5dndz9uqev/HOa+1wBrJxSRKI1sAuT4ci9B3DljPh+87S/MW7KE8/MVlyiJWGcnNUBCVXEKOKfmEBNYENW2bZJmYS+QDtRXc0trCxeMs+dcCCGEKDdvf/s7u7q7u7y/+c0v5vf29nirqqrMM888u+eKKz415Rd0HFMCpOv6u4f8+gTwdV3XZwI3AW24leDOB94C/E++gxSFp5jZk9wJJECeUCX9ZoYqKRE86SV63SUFTM0zypb5Z0b78Dnj73UqdAEEAF/A/f9IJKQKnBBCiMlNURSuuOLK1iuuuHLUuUpTzVh7gK47zG2vy34N91vgD7kGJErjpQQokHMbPr/72LgkQJPeDq+Xrzy7jndfdCGnFXnf7oKoKca7IGrGNslYhS3AEfB4WBAMEYrJQqhCCCHEZDXWBGhRQaMQJefJzvNQ/LkXVwk5Du+btxDvFB83Oh309HRjOQ5VVZVF37eVjEN6/AuiWo6FaRe2B6ghkeIHK1fTZso8NyFEUdiAM3yBTSHE4WX/Vxw48kLBYz1TbTEMY9yXVnVd9+byOFF8/85kaN+3h+NPPJdcix77NS+va5pJ2rYZuqiXmHx6etzqmTWVeVtzbMzsdBInFUcNjG9BVNOyCj4ETgm6vVJemQMkhCiONsdxMul0MuT3B2XsrRCjSKeTIcdxMsARh/WNNQHarOv65w3DuHWsAei6fjHwbUAf62NE6bwQj7K9t4fjK3Jf88UTdnsLfKpKMh4jVFH83gORH8cPRFizaClNJTrRNyPdeGrGvt6ZoiikizAHSA25wzy9Bd2LEEK4TjjhhIFnn332zwMDvR8F6n2+QFxRFLkCI8QwjuMo6XQyNDDQ63Mc++oTTjghcqTtx5oAvRu4Ttf1b+MueHqzYRg7h2+k6/oK4ALgg4AHeNf4whelEsvOafD5gzm3oQYrXmqvt1cSoElsETC7voF0CYogAFjxKF4njfs2MjpFyRZBKPAQOCXk9gD5xrGYmxBCTNB3LMukr6/73YqihAB5AxLiUI7jOBnHsa8GvjPaxmNKgAzDeErX9eOAjwGfAr6t63ofsBeIATXAXKAa6ASuAn5tGIYs2jUJOLbNGo/G/No6vJ7c1zdRPBpp28anqiT6+2De/PwFKYrGcRxC2c/XitqqksRgJWMomSTKGBdEVRSFtJXBKvCaRZ6we4EgoKo4to0iwzyFEAV2wgkn2MC3nn322Z85DrPIbQ1HIaY6G2gdredn0JhnqxuGkQJ+rOv6L4BzgXNwV0muBg4AdwD3Ao8ahiEzhCcRO5nkPTNmwoyZrJ9AGWyAVDYBSg4M5Ck6UWzxWJSqbCGLmrrch0ROhJWM42QSqMFKLGv0leYVhYKvAQSgVLzUQ2qlUmjB3HtMhRBiPLIndmM6uRNCHNm4y3Vlixr8O/slpoBMdvibadtogYlNek8BlUAqIgnQZNXT3IyaHeIVqgzhWOmix+DYFlZsAE/F2BZEVRSFRCZV8Li0iiC246AqCsmBfiokARJCCCEmHelGFcT7+wBI2jbeCawDBJDODldKReQi1WTV13IQgJhtMUoVyYIyoz0oY1wQ1cYmaRY+AfJ4NW5pbebG5gMkMlLgUgghhJiMJAESJPr7AXf4muqZWH2rq2MJPrTxWSK1NXmITJRCpL0dgDjgFLiq2pFYyTiqNbakxrKtghdAAECB23q7+UdrM4VPt4QQQghRCJIAiRfn66QcB2scC08eTsIboC+TIZ6U+heTVbzbXQMo7Snt24M7DyiJqo5e8MjCwixCsmY5NoGg20saj8cLvj8hhBBC5J8kQIJkdr5OPmZ6eP3uyWEiIeu1TVZ7/T7e8ew6nqgt/iKoQ9mpBE4yNqYFdW3HxixCD5Bt28ysqGReMEiir7fg+xNCCCFE/o0pAdJ1/bxCByJKJxV15+uYeVjbZJXXy/vmLcB38OCE2xKl0dvbi+U4VFSXfh0nM9LDaPmPoihkirAGEICDw/vqGvnRymMxdx2yFJoQQgghJoGx9gDdrev6Pl3Xv6bruizuMsVEq6r58a7tPDqWclujWKTC65pmEcgOoxKTT0+P+9rVVlWMsmXhWYko6ihV6AYXQS1GDxCAmR2Sl4nJEDghhBBiMhprAvRfwLPAF4Hduq7/W9f1i3Vdn9iMeVEWIgo82dtDywTXAAKwNPeQcFIyRXyyOqqri48vWsrsiU0HywsrGUMxkxypc1JRFEzbJFOkgg1mtkvKTEgCJIQQQkxGY0qADMP4l2EY/wXMBq4EaoCbgGZd13+k6/rRBYtQFFwsuw6QLzDxNU1sbzYnzhR/7RiRH/NMkzPrG6j2jHuZsLx7qRDCyG9VqqqQMtM4FCdjs7LFIaykzHMTQgghJqNxFUEwDKPHMIxfGoZxCrASuAZ4K7BF1/XHdV3/gK7rpZ05LcZNaWvjFbV1zPJOvAfI1tw2FFkjZdIKOm4iEa4t/RwgxzKxYv14PCN3ASkKJIqwBtAgS/O436XQhxBCCDEp5VwFzjCMbYZhfAFYALwW2Ax8G2jJU2yiSOpamvmfJcs52pn4opd2diFVNVO69WNE7izLolJ1T/Cr66pKHI3LjPaOuiBqIlO8ZMT2uj1jtgzzFEIIISalfIxx8QBhIAj4xvtgXddnAD8Czs+28TDwWcMwns/evwb4GXAi0A383DCMHw55vAp8DbgMqAUeAy43DGPnkG0m3MZUNjhfx8nDHCCyZbA9eSioIIqvv7MDX3a4WVVdFRRpWNmRWMlYdkHUwx+flmORtorX42h73QTRScswTyGEEGIyyrkHSNf1M3Rd/y3QBtwCLAQ+BcwaZ1O3AUuA1wEnAQngPl3XQ7qu1wP/AbbjJi9fA76p6/r7hjz+K8BHgA8Cp+Kesd2t67ovG+eE25jqBoer5ScBcucRefLQmySKrzdbvjxpW/h8pZ8DBGAlYkdcENXCIlPEBKi3MsytbS00+6bF24MQQggx5YzrDEfX9RXAO4FLgfm4yc8fgGsMw9gx3p1nk5M9wLcMw9iave2bwHO4c4xeDaSAjxqGYQLbdF1fBnweuDaboHwa+JxhGHdlH38J7jC8/wJuAD6UhzamNNXMDlfzT7wIQqR2Jp/c/BxN8xdw1oRbE8U20NZCGIg5Dk6RqqqNxk4n3QVR/XXY9qE9i7ZjF60CHEBvQxU3HdzP69ccV7R9CiGEECJ/xpQA6br+adzE51jAAu4EPgHcZRhGzmOdDMPoBt4xZD9NwGeAg8DzwP8Cj2QTl0EPAF/MDp1bCFRmbxtss0/X9fXAWbjJy5l5aCNnHk/OnWxFMzhcTQmERrzKPtTgNofbVgtX0ppKosRjaFr5P/fhBl+vyfC6jddYnlu8p5ug45BUFFQFjlh/uoisaC/e+vkcrtM6qViYjvvvrahK7t3aY+QPuj2lqVSyKMf4dD8mJyt5bpNXmbztCSEKaKw9QD8AXgC+APzJMIyOfAei6/rvcYegpYA3GoYR03V9Lm5xhaEGiyzMB+Zmfz5wmG0GF2zNRxs5q6qaeK9KoWmODSh4KyoIBsc+rMfvP3QZqKpqd+J8Ih6ntnbyFgScDK9bro703Prqq/n4s+u44JWn8+pxHAuF5rETBL0OFZWHHlPt0QSKB7AOf0zmWygUoNHnJ5hKFPUYn67H5GQnz00IIcrPWBOgMwzDeLygkcBPgd8BHwX+pev6GUAINyEaKpn9Hsjezwjb1GV/zkcbORsYSGBZ5T0fxmPboHqwvAESidEndquqgt/vJZXKYNvDJsmbDpfMnkvY56OnawDF4ylQ1IXh8ahUVQUnxes2XmN5bgcOtGAD4aoKkmM4ForFo/TjiUbIJB2cIYecqirEM0liiQSaz0MqlcEZfkzmWV1/nF+tPo7OWIre3lhB9wVyTE5W8twmr+rq4BHXHhNCTH5jSoCGJz+6rs/GLShQM8L2fx5vIEOqvn0ItxDBFbgFEYbPzA9kv8ey95PdJjFsm8Ezk3y0kTPLsjHN8v6A+GdfL+mBfk581VsPTWiOwLadQ7bX/EHeMtvtVEv0R/BVlUcp5fGaDK9bro703Lq7uwGoragY17FQaHY8hp2MY4cqXnbCpWkqKTONaVloeHAOc0zmmxJw3040xynqMTJdj8nJTp7b5OOUz1ufEKJAxl3mKVsg4DpGqknrVlAbUwKUnYPzKuCmwblEhmHYuq4/D8zBHZY2e9jDBn9vBrxDbts1bJuN2Z/z0caUtq6ni76+Pk6qrJlwW1ogjGnbaKpKor9/0iZA09XClhY+sWgpTeU2CN62sGJ9eCqbGFphXVHcHqCiCrlvfd4yKBEuhBBCiPHLpY/3W8DTuD1Aiw7ztXgcbc0G/ga8cvAGXde9wPG4RRAeAc7UdX3oOKpXAUZ2HtJGYAA4e8jja7KPfzR7Uz7amNJiMbejy+cLjLLl6DTNS8J2rwgm+nsn3J4orqZkkjPqG6jRyqME9lBmtA912IKoigLxdPEWQQVQw+7/iY8ySxKFEEIIMSa5nOXMBj5hGMb6POx/I/Bv4Ne6rn8Q6AW+hLsY6U9w5+F8Drha1/WrgJOBK3HX7MEwjJSu678Evq/reiewF7dgwwHgn9l9XJOHNqasVCzK8eFK4raFlocESFEUkrZNJZAciEw8QFFUAcsGTSVYXVHqUA5hJWNgJnlpBCvY2KSt4s5VUkPZBEhVcSxr0s1zE0IIIaa7XHqAngD0fOzcMAwHuAS3BPWNwFO4hQfONAxjf7aH5rzs/tbjLmL6WcMw/jSkma8CVwN/BNYCJnCeYRjp7D4m3MZUFm1r5dNLl/PZJcvx+vJT0SeVHUCdigzkpT1RPOHs0LfK2vIbumglYpBJvKz8uuVYpIu4CCqAWvHS/4mVLPLwOyGEEEJMWC49QJcDt+u6Xg2sA+LDNzAM45GxNmYYRn+2zctHuP9p3KIIIz3ewl3U9PNH2GbCbUxV8b5+AFK2DYoKTHxC62DWmI5JD9Bkkk7ECWd7M6rrakobzGHYmRR2Ioon2PDigqiWY5EpcgKkhQMvznNLRQbQwpO33LsQQggxHeWSAC0HZuL2pAAvmwmsZH+XMSGTRKI/mwCRv+pZ6ezciHQ0mpf2RHH0HHSXwjIdm6rqIFjmKI8oPjPSg7d+AeDO/7Eci7RZ3Dg9Xi//7mzHdhzea5pI+iOEEEJMLrkkQD8E9gDfBdryG44otmRkgABur42VpwToX6kM7Tue59MXX5yX9kRx9DW3oAJRy0Z1nLKscWYlovisFOBFURQytln0HiBUuL6jjXQqxTtkrRAhhBBi0sklAVoAvNEwjP/kOxhRfKlohACQyWPZ44gWoDmZJF7kK/NiYiKd7VQ6DnEcHNsa/QEl4M4DSqJ4fCiKgmllE6AiFmSzHZtAMEA6lSIeP2QEsBBCCCHKXC6XLzcDc/MdiCiNTHaYmqnmb9Siz+9WyZKTw8mlIxTmHc+u4xZP+S5saKXiOKk4Ho+CokDaymA5xY+3NhSi3ucj0ddX9H0LIYQQYmJy6QG6Erhe13UNtyLcIaW+DMPYP8G4RJFkskmKlccEaLFPY+XsuQQOHMhbm6Lwenq6cYBwdWWpQxmZ42BGe/BUu2sZJzLFXQNo0Acamjhq9gLi27bCiSeVJAYhhBBC5CaXBOh+wAv8DkacJiBFECaJrlCI2/bupklfyfI8tblQVTlz9lyaOzry1KIoht7ebgBqK8t7Wr8VG8Brp7FVH7ESJUCZ7NyfTDxWkv2Xmp1K0XnzTcQ2PYevaSaNb3s7/rnzSh2WEEIIMSa5JEAfyXsUomS6Fbi/q4NzTzg1bwmQrfkgE0PJTPlllKaUWfv28cnFS6lUc3lbKB4rEUMxU9g+D2mzNMeY6XETIHMaDvN0HIeW3/yK+JZNAJjd3fTecyczL5OPBiGEEJPDuM90hi0gOiJd1xXcxUW/LkPiylcs5l7B9gdCeWvT9vohAUqmyNW5xITURqIcW9fAAa3ME6BkDCedwPIFir4I6iBT84AFdmL6LYTa/+jDbvKjaXQtW0qtP8Cct7wFRVMxzfKdPyaEEEIMKuSZjgq8B/glIAlQmfL19rCqqpoaT/4OBcfnA0CRKnCTis80QVUJVJX3EDjHMrFifTiV1cUvgZ1leVSwHOzk9EqAHNOk5/ZbAfjb/r3868nHAHjdlk1890c/QamowXHKsYC6EEII8ZJCL2JRxOK0IhfLurv5yvKjWZjO34mc4w8C4LHKs5SyOLxQ9sS1oqaqxJGMzopHMO1MyXqAbF/2gkEqVZL9l0rk6XWYvb30ptPc0drMzJpaFEXh7icf54ufvpKBh+6XBEgIIUTZk1X8pjnPYC9NNmnJC5/blpanhVVF4Tm2TTg7sb+qroyrwGU5ZgbTTJE2S5QAeb3uD9NsnlskmWRXIs49nW1cfPpZ/OXKz/Kd/34vAY/GRfEUrX/5M6l9e0odphBCCHFEkgBNc+pgL00e5wApAXcIlVeuBE8a8Z4ePNnFcGvqq0sczehsK03GTGE6pelljFQEua+znRa/vyT7L5VrHnuYL27dhOH38/5XvRZFUThp6XLede5r2BJxV0ToefCBEkcphBBCHJkkQNOcZruTltU89gClqmr5f9u28Nv+3ry1KQqr96C7ZlPENAn5fSWOZnQKColUtGSDbPtrK/j9vj087/OWJoAS6Onp5vbb/wXAB199Pqr60sfHxaeeztZsb1jvk0/gyPBXIYQQZUwSoGnOm+2kUYL5m/juDVWyMxZlX+SQNXJFmRpob8N2HGKODXb5n7wqmo9ovA9lxKXICssXcHt+EonSrENUCvdfdzVey2LFkqUcM2zNH4/Hw6mnnMpAJoPXsohs21qiKIUQQojRSQI0zQ1e61dC+Zv3MVhSOxqN5K1NUVg94TDveHYd1yai4JR/KWNH04gnoyh2aSoNen0aIY8HJTY9FkK1UilWbN3K1WtO5G0nnYyiHNr1dtbKVWzNLgxr3HFbsUMUQgghxqy8F/wQBefPnsiowYr8tRkMc8GMmYQ1DTMWRQvnr21RGD093ThAqKb8CyAA2JpGaiAGWCh5LOE+VtUOXHfcSaSS06MK3I4H7sOrKHSl05xw1MrDbuPxePDNnAWJBOzYgeM4h02UhBBCiFKTHqBpzLIsrt2/l78c2IdaUZu3dgOBMBfPnstbZ88l0taWt3ZF4fT09ABQVzU5EiBL00il4jhmCkUtwUl20B0C51cUHLv8e8wmav9jjwDQFfATVEb+2Fhz/IkkLYtqRaFty5ZihSeEEEKMy7gTIF3X79d1/Z26rh9x1rxhGBawCNica3CisJLJBPd1dXB7eyueUP56aTSvl2T2pDDe15O3dkXh1OzYzicXL2W5Vv6T+hWPhqVAOpPETidKMg9IrQi8+LM9DdYCUltbAAjPmXPE7Rrr6rhhoI8PPvcsD23ZUIzQhBBCiHHLpQcoA1wHtOq6/ntd108daUPDMPYZhlGahTrEqKJRd7y+qqqoWn4rf6WyJbAT/f15bVcURmVfH6fXNVDvLf8ESPX6MB2bdCaFnUmjlKBogxrwY2WPcTuZv0WEy1Ffdxczs+X2Fi4/atTtFy0/in4zwz333FXo0IQQQoicjDsBMgzjfGA+8B3gNGCtruuGrutf1HX9yJcHRVmJ9fZwTGUVR9XWk+8lewaXh0wOSCW4yUBLu6+YryJ/1QALRdF8ZLBJZ5I4mTTYGSjyXBNv0E8iW+rZnuKV4Db++x58qkrUtqmtHX2o7JkrjkFRFDZufI62ttYiRCiEEEKMT05zgAzDaDUM4yrDMI4BTgFuA94P7NV1/W5d1y/SdV1mv5a5xIH9fFVfwRXz5mPZ+c2A0tkrxikphT0pBLIn86Hq8k+AVK+PlJnGsi1sM4Njpoud/6D5vS8lQMmpnQC1Pfs0AJFwCDuVHmVraKiq4l3Lj+LLy49iw51SDU4IIUT5yUcRBG/2a3AMVQNwE7BV1/VVeWhfFMhgcpJBwc5zApTJLpKYjkTz2q7IP8dxGEx7KuuqShrLWKial3jmpaTDTiWKvh6qN+gjkR16l5ziwzzv2GHwm7278C1bNubHHF9bz+qqGvrWP1vAyIQQQojc5JQA6bq+WNf1r+m6vgN4FLgQ+B2wwDCMk4CFuHOF/pavQEX+pQbcE7d0AS6fm6pbmjgTnx7rpExmViKBL5uwVtZNgipwmo9YOv7ir3YmheIUdz0gX8DP03293N/ZQco7dVcT6OnpZvP+vTzU3cWS1ceO+XEVs2YBEOzpIZORaaBCCCHKSy5V4NYCO4DPAU8A5xqGscwwjO8YhtECkP3+T2DeyC2JUktF3IVKMx5P3tt+UgvypW1baK6tznvbIr9iHe0AJCyLuuryT4Asr0Yq81LlNSeTBqu4CZCiKNzR38Pv9u0mWTF117navHkjAIsXLsI/jk7iOYsWu48LBNn03PpChCaEEELkLJdLl17gcuB6wzCONMHjX8A9uQQlisPMVoEzC7CQZDRUyY5YlL60XP0td31trdiOw4BpEtA8OEVOJsbL0jTSmZcqr9mWOw+o2ELhELFo7MVqilPR7nVPcl5jE3OWLseMj32uk1ZVTcpxCHg8bHjwfk446ZQCRimEEEKMTy5nvr8E7jxc8qPr+kzg3dkCCRsnHJ0oKCvhDiOyvN68z6HwB9xloiLZXiZRvvpDId7z7DoWz5rN38o8+VE0L5YCqSEJEA7YqTg4dUWNJRQOE/T0EO3pLup+i8ncbvCBBYvoU1Ucc+zHhqIoJAIB/KkU0Re2FTBCIYQQYvxymQN0LbB4hPvWAN/IORpRVE62epXtze8aQACzPB4ubJpJbWdn3tsW+dXb24MDhGrKf/ibqvnIODbp9MvX3rEzKRyruL2Nb6qq5U/HnYT21Lqi7rdYLMvCny3wUJmd0zMe4aYmACr6+0lO8bWShBBCTC5j6gHSdf0OYEX2VwX4l67rh1v+vAnYlafYRIHt9misPbCPOa84m5l5bnu2Y3PavIXsHZAeoHLX09MDMCnm/6heH2Z2DaChnEwax8yA4gPyvKjVCEyvBxywpmihj927dzLP5wegce74p3PWzp5L1949pC2LzZs3cpIMgxNCCFEmxjoE7jvAB7M/LwQ2AMMv7VtAH24PkZgE9pgZ/tPeyjvrm/KeAJEdAqeW+ZAqAcEtm7ly8TJS2desnKleHwkzhe3YL7vdNk2cTArFl//ezJHYPi+kHJwpuhDq9q1bWBIIAOAJV2CNcz6ft6GBPzkW9+/dxUfXPyMJkBBCiLIxpgTIMIzHgccBdF0H+KZhGLsLGJcogmjU7Z3xB/O/+KUScNv0WvYoW4pSC3Z3c1pdPVuKmDzkShlWAvsljrsekK94vViW3wupNKQO1xk++bVv3sgyRSHhUXPqU1MUhWPmzuf+DevZsOGZvMcnwLFtrIF+FH8AT7D8L2AIIUS5GHcRBMMw3pfPAHRdr8PtYXo9UAVsAr5gGMZj2fvXAD8DTgS6gZ8bhvHDIY9Xga8BlwG1wGPA5YZh7ByyzYTbmIqqYjGWhMKECjAHiJBbGtjnFGc4ksidJzs/w1sRKnEko3O8XuKJwxcdsM0Uqm2Sn/WdxyDgh4E0arr4FeiKIbV/PwBmVTV2jtUcV81fCMDmjc+RyaTxFuK9ZpqKPreBzhuvJ9PZAR4PlSeezIxL/xtPOP8XtIQQYqoZ6xwgCzjVMIyndF23OfIge8cwjPEkVjcAM4C34w6r+xhwr67rx2d//w9uSe2PAK8Afq3rerdhGIND7b6Sve99QDNwFXC3rusrDcNI67peP9E2xvFcJpU3ejQaV6xiSyr/E5SVsLv+T6AAi6yK/PJlq3sFqsp/PRtL00ilD3+8OmYarAyKGsApRuIdDAAR1HFUR5ssHMfB198HVTUEm2bk3M4cj4dfrD6O3lSKrVu3sGbN8fkLchrrX/so7dddA4PHuWUReepJwquPpeqUV5Q2OCGEmATGmqh8Azg45Oe8nF3our4UeA1wenaYHbqufxJ4HXApkABSwEcNwzCBbbquLwM+D1yr67oP+DTwOcMw7so+/hKgBfgv3OTqQ3loY0ryZ78r4aq8t61V1AAQVFUc20JR87/Yqpg4x3EIOQ4oChW1+T8O8kpRsIetATSUY5k4ZgolEMSxCp8AOWF3fozXsgq+r2Lr6Ojgml07uC8U5hdvexskchvmp/oDNPn81GpeNjy3XhKgPEju3Uv7n68Dx+Gh3m6u3rOLJVXVnHHiyVw0bx5l/l8shBBlYaxzgP53yM9fz+P+u4ALgWeHtO/ouq4Adbjlth/JJi6DHgC+qOv6DNyCDJXZ2wYf36fr+nrgLNzk5cw8tDElBRR3qJAnXEW+Z+p4KmsAUBWFRH8/odrirtEixsZJJfFle+lq6sq7CpzqdUtgp0ZIgACsZAI1UF2cgCqDPNHTTaihkWOLs8ei2b79BWKWRbqxkUC4gmSuCVA4TEZR8KkqBzc+l98gp6kDf/sLWBbrenv49a4dADzf18vz9/2b/3viMX7wg59x2mlnlDhKIYQob7kshIqu64uBgGEYz+u6XgN8G5gH/N0wjL+MtR3DMPqAu4a1/VZgCfDvbLubhz2sJft9PjA3+/OBw2wzP/vz3Dy0kTOPp0jzEcYpnUjgU7MJUEUNqGMfqqZmt1WP8Bh/RRXf3r6NuGXxB8emSivPv8Nwg69Xub5uE3G45xbv7wMgaVnMrK8+4mtaah6fn4Rik84kGD6yUsne4JgpVMfEUXN6axsXpbaSn+zewZqqSt5RwOO7FMfkzp0GAEctXYqdSk7guFCwwmG80SiZ/fvQhv2dptv/20R1dXXx6Uce4FTVw0avxtV/vJbF82bwzLonuPqvN/DC9p385AufpubCN3LMpz+Lmq3il29T+XUDDnl/EUJMPeM+S9B1/XzgVuAXwGeA3wJvwU0yrtN13WcYxtW5BKPr+unANcCthmHcruv6T3CHrw01ePk3AAzO2j7cNoNdDqE8tJGzqqryrMzTMdD14s8VDY2knfEPUfP7vUe8/4V0hlQyjqrZ1NZOrom55fq65cPQ5zZg9GI5Dv1mhtV1lXic8q3a56mooA8bR7HQvIc/XlXHxIOFN1j4gg7haveYTibjRTm+i3lMRndt591zF7C8rg6f4uAN5l68oGb2LJLbd9BoWqTTUZqyC6QONV3+3ybCcRyuuOL/sb+tFe+SJfzjH//ASgxwcPcLLFkwi//9/Mf5yW+u5e1JB23HDjruuYOj3/eevOx7JFP5dRNCTG25XCb9KnAv8L+6rlcDbwa+axjGV3Vd/xbwSWDcCZCu628C/gY8Cbwje3OCl6aqDBq8pBXL3k92m8SwbQZXJ8xHGzkbGEhglWEp6NY97pSupGWRMiE5jkpWqqrg93tJpTLY9shzLfyBEKlknNbWTurq8r7SUEF4PCpVVcGyfd0m4nDPrdlWufTZdcxrbOAV8RSZIi0imgt/WCGSjGJmDp1zoygKHk3FTGdQEnEUNYhtF/b1UzwaCpDsH6Cnsx9FK0yvU0mOyf3NvH7mLOKRGPHoxNY58tbUkgSWhMM8+ugTvOpVr3nxvun2/zYRd/3j7zz00EMEAgF+8pNfoNgWB3bvIB556WPqI+9+B7f/6louCQRpufU2Gl57AVoo/xcDpvLrBlBdHURVp2bvlhDClcsn9rHAGw3DiOi6/rZsGzdn7/sPbkGBcdF1/QrcMtX/BP7bMIzB3pgDwOxhmw/+3gx4h9y2a9g2G/PYRs4sy8Y0y+8DYqCrBxVIOg4Z0z5iIjMS23aO+Ljja+oI+zUie/dh6isnEG3xlevrlg9Dn1t7ewcOEKqpLnjCMFGOx0skNcDhC7y5NzqOg5WMo4VqKPTT0fxefr5qDU3+ANHdewguXlLQ/RXrmHQch0AsBj4/wfqGnN4bhvJU1QAwPxji/g3reeUrX3XINtPl/y1XyWQS7R83852jj6H3tNNZsmQJ7fsNov39L9tO07yc+JYLab3tfmYFAjx5zR95xUeumNC+j2Sqvm6yeoMQU18ulzgSvJQ4vQ5oNwxjU/b3mUDfeBrTdf2juMPpfglcMiT5AXgEOFPX9aHjXV4FGIZhdOAmKAPA2UPaqwGOBx7NYxtTTgyHvxzYx0OJOFaBKmadU13Fe+YtxNy3tyDti4nr6uoEoKG2prSBjIHl9ZIcoQT2UHYmDZYJBR7H7w34SGQrwFmxCXcWl42urk5met3rQjWHGa42XmowSJ/fz4NdHezYumXC7U1HD/zlWub6/MwLhnjLu95LOhGht6PtsNvOmzuH1sZaAFJPPkEmk9saTkIIMZXl0gP0GPCZ7AKmbwOuBdB1/QTcxUQfG2tDuq4vx+35uQX4LjBD1/XBuxO484E+B1yt6/pVwMnAlbhr9mAYRkrX9V8C39d1vRPYC/wAt9fnn9l28tHGlBNxHG5vb+WounqWF+hyVzo7ET01MFCQ9sXEBbZs5lOLl5EswDCZfLM1jVR69OFY7npAaRSvt6DrAXlDfuLZBCjR30f5r6I0Nvv27mFewJ3b4auqIi8jnFYfy+/WPkyoswPLsvB4yrcsvmOa9D/6MLFNG1F8PqrPPIvwMatLFo9pmnQ9+ABLQ2Eis2dT2dhAV/MOErHoiI9Zet45pG66g1malwf/ch2vff8HixixEEKUv1x6gD4FzAH+D9gDfCt7+52482i+MI62LsYdgvZmoHXY18+yPTTnATqwHjfB+qxhGH8a0sZXcecc/RFYC5jAeYMLmOajjakoGo0AEAoX7rQto7lXkc3oyB/UorQCnZ2cWldPk2/4NLnyonh9ZHBIZcaQANk2diqBWuBSTl6fl7jtJkDJ3r6C7quYDhovENI0tzS+Lz9VxBbMaCLo9xOPx9izZ9foDyih1IH9dP79RmKbNxF99hmaf/pjOm++qTiL6x7GQ/fezbF+93U4+pJLsTJx+ro6jviYQFUFbdXue3vHffdiTcG1qoQQYiLG3QNkGMYeXddXAjMMw2gfctdFwIZhQ9hGa+s7wHdG2eZp4NQj3G/hLmr6+UK2MdWkujpZHApTHyhcFR/T64d0BiseL9g+xMR4Uu6/q6+yvKv0qV4/Sewx9QAB2OkEmmOS2zWesVEUhXQ2yUoO9I+y9eQxsGsnAHGvhp2n4VMeVWXlgkV0HtjP5s2bWLp0eV7aLYTg4sX0nnMuW/9zL0QinB4O03vPXSjhMA2vu7Do8Tx/6y2c7/EQ8/s5es2xJAY6iI3heGs89QRabv8PW7s6efTRhzn77HOLEK0QQkwOOZUtMgzDAdqH3fZkXiISRVGxdx/fW7GKbQ4Fq/tl+4OQjkJy9HkbojR8mQwoCsHq8h7ApXp9pG2LdGZs11fsTAosE0X1F/TKfTq7Pk4mMnWGeabaWgEwKytx8tRz4Jgmn66qwbOyhls2roc3X5yXdvPNsiyuuupb3Hjj9S/etmPGTN47fyFdN9+EOWcuM1cXb9nb1tYW6ru7oKaO6leciqpCf1c7tj3666LNmckjC2Zx9+bn6Ln+r5IACSHEELmsA9QI/BR4PRDm0KnGjmEYhV+FUEyInXB7ZSyvt2DXyJ1ACCKgpHNbRV4UXggHUKiqqyp1KEfk8fqJpsdeaMDOZHDMFEoggFOgIh8AZnYuS2YKDfO87eAB/trawlWfvDJvbSqahun14slkGNi+PW/t5ovjOHT85Tru3rOLG2+5GUVReNXZF7F65ckcOLCLZ7at5cSqap780fc59xe/oaqquihx3XnLzbwiW0VvzjmvwkwniI61t1FReOWpJ/Gvu/7NunWPs3v3LhYXuFKhEEJMFrkkKr8GLgSuBw4CU68G5jTgZIc+OXka439YQbdXwZMxC7cPkTM7mcSvuOlvVX1xTuhy5vUTTXeNvt0QdjKGGihsYtelqTzR083ScHkPIRyrTCZNS8tBLMti9uy5EM3f8FVvbS10dBDq7yeRSBAMls8imrGNz9H/yMMcZ1mENY1L//sznHzC2QAcrR9H5/JV3PT3n3Prvt089NUv8pOf/AqlwHPMAP5937083dPD+197PkcvmE98oIN4LDLmx9fX1nD6Ccdj7tzDnf/8Ox//zHim6AohxNSVSwJ0PnClYRi/z3cwonjU7MKnjr9wCVC0YQ7fvu9mKmfORgZflJ9Yp1sCO2VZzKmpLHE0R2Z5vSTHuSCnnU7hsU2gcBXH9oZ9/HPjJr7c+M6C7aOYDhw4gGVZhEIhagIBUnlMgMKNM0h0dLA4GMIwtrFmzfF5a3uieu67F4B7O9s569y3vJj8DGqcr7Py0v/h1h9cyUMPPcCtt/6Tiy56S0FjOnjwADt278Tj8fCDKz6JR4WBnk6ccS5w9b6KaiqWLOMvjz2CeeVn0Aq0YK8QQkwmuYx+SgO78x2IKC41ky1wFyzc3A9PTQMbB/oxersLtg+Ru96Wg5i2TZ+ZIez3jv6AUlEULM1DcowFEAbZmRSYaRS1cFfqQ5Xu/09//9QogrD/hW18dsly3r9kOVYyv0NXvbXu2jRLwmG2btmc17YnIt3RQfKFbdiOwwbb4Q3nHz6ZnTtrCZde4paT/uMvfsJAgcv7P/roQwCsWXM8VVXVmJkk8cj4jzP/4vkAHOXRWLfuifwFKIQQk1guCdA/gXfkOxBRXF4zO4k2XLgr/8GQ2/bAFKqQNZX0BYO8c/1T/LS7A8YwqbpUVK/fLYGdHl9vhGPb2Ol4QYcqhSpDKEC0p6dg+yimHmMbJ9XWsSYYxE7ldxUAT1U1NlDj9bF388a8tj0RXY88BMCmgX7OPP9SvF7fiNu+cskafrHmRD7QMIPf/e5XBY1r10MPcvGsOZx3wkl4PCqZZJx4LnPNFs4DYHVVNXfddkueoxRCiMkpl77w9cC3dV1fAjwJDD8rcQzD+OaEIxMF5c9WxlIrCjf3IxgIcXZ9I2HNQzIeIxCaGvMkpoquri4coKK2vOf/qF4/aexx9wAB2KkEWtjCPqRWS37M0rz87YRTSO/YUZD2iy1+8CAA6VAobyWwBykeD5lAAH8ySXJP+Qwi6HjkYULAC8B5x551xG3tYDUzvF6atCr+dsetdL3vMhoaGvMeUzweo6mzg1fOmYeqaqiqQnSgF8sc/2vi1FWTCQbwJ5L0bVhPKpXC7y/vdb+EEKLQcukB+hVQA5wFfA74+mG+RJn7d3cXt7Q2Q+2Mgu3DHwzzkYWLec+8hfS3tRVsPyI33d1uUYH6mvKuAKf6/CStFKY1/pM/O50CK1OwXiBPZRiPouCz7ZItlJlPaq/bk+WprilI+4EFC/m/g/t5Zt/egg8hG4vkwYOE4jEytk3TaeehqkeeL+aEq7EXrwTg3Jo6/vznawsS15OPr+X4bKW5WWefg2NniPb35taYoqAsyvYChUI8+eTafIUphBCT1rgTIMMw1FG+CjfjWOSFbdvcdnAf1zcfwFNXuARIUVUS2Qm7kVFWLhfFV7lpI59avIyjyqga1+GoXj8DqdzKTNtmBieTLNg8ILUmW+kQt6reZBfOPoeKhoaCtF+7XOdpK0NrKsm2bVsLso/xeGHDs+yJx9gSjbD6uHPG9JjE8pMBOLO+gbv++feCDPHdfv+9VGpeUh4PYf0ozHSSZHzsZeCHcxbMAeCE6lruu/eefIUphBCT1oSWgNF1vVrX9aN0Xffrui6JzyQRjUZfvFrt8xd2WFosmwDFusZXwlgUXrinh1Pr6mks8+Ewts9HLJV7NTI7GUMp0HK/vuoKUtnFQq3o2MsTl6P+/j5mZCuE1c+aXbD9HDV/AQBbt5a+EMLN6x7n889vZvOi5WiesVXEtBrnwYzZ+FSVk0Jhbr/91rzGZNs22q5dADhLlqJ5PaSSMZLx3P8HnKYGLK9GldfLvqfWkcnkd36XEEJMNjklQLqun63r+jqgB9gCrAT+puv6j/IZnCiM/q5OloTCzK2oQvEUtvpXIjv3ItEjleDKjS9bCj1Y5kPgLK+X1AQSICudQrEyhy7ZnAf+cJCI5a5zZU/yxVD3bn+Bep+bDAeqCzcvbPWMWZxaW8eeTaUthJBOp3nwwfsAOO2088b+QEUhteQ4AM5paOTmm2/I6/DHbc9vYVXA7ZWd/5rzUBSFaF8PjjOBJfdUFfucU/ny/j1s6mzn6afX5SlaIYSYnMadAOm6fi5wL5AAPs9LpxUbgE/quv4/+QtPFEJkz26+u2IVX166HMsq7Dq2yeyY+lRfX0H3I8bHcRxC2d65yjJeBFXRvJiqQnKcFeCGsjMpHDOFWoB5QIFwgKjpJkBWbHInQK0vvEDSsoji4BTwfeGEeJxPLVmOsm9fwfYxFk898B/MRIIZM5qYM2vZuB6bXHAMeDQWhsI4bW0880z+EoqNd99Jrc9HCqhetRrHSpGITny+lDN3FvqJbuL2wAP3Tbg9IYSYzHLpAfo28C/DMM4Gfko2ATIM43vAVcBl+QpOFEYiW7I3AZgFToBSHndITUZKYZcVO5nEn00I6mfUlTiakak+P2nHIjmBHiAcxx0GV4geoFCASDYBSvbmOEm9TGzv7eY9G57mwaYmrHThhkiFslXTGi2Trq7Ogu1nNLE7bueaNSfynjUnkU6Nswy8P4h9xoU83NTEvkScG2+8Pm9x7dv0HDHTJDFnDqrXi5lOTWj+z1DHHbMCgEcffXhKFO0QQohc5ZIArQGuyf48/B30XmDhBOIRRZDoc0/U0qpKoT8D05q7poYdzc8HuMiPRKdblCJmmtTXlu8QOI8vQMo2SWUmVmDATidRbDNPUb1EC/rYFovyRE83SS2XVQXKx969e3GAmbNmUsg3hkC9W2BhSbiCLSVaEDWdStEQjeJVVeasPDGnNmKLj+eUt74LB3jooQfo65t4AtzZ2cGNmzdy2cZnWfT+y/B4FFLJGKnk+EvAH85yj4fPLz+KNbbDjh3b89KmEEJMRrkkQP3ArBHum5+9X5Sxwd6YTBFO2HZW1vPt7dt43je5Tw6nmp59ewHoMzNUBUde+LHUVF+ASI4V4Iay00kw03mvBqcoCv+JDfCT3TtINOZ/PZhi2rt3DwBzawvbI6jV1gCwMBhia4nmAW194D9UahoJy2LmqtNzasO2Heqr53D00SswzQz//vfdE47rscceAeDolatoXLDIXf+nvzdvvTVqJMoJVTWcWlfPo48+lJc2hRBiMsolAboVdyHUoZfNHF3X5wL/D7gjL5GJgjGzk7VNrfAnvonqRjYO9HNwkk8Qn2r62tswbZuYooA9zuE/ReR4fXlJgBzbxk7FKUQ17IqqSgD6+yfvtR/LsrhE0/jU4mXM9o2tGlqu1GCIjKqiqSodJeoBaln7GADtwSDJCaz3Gmnp4CPLV/DJxUu5886JV4N7+qEHADjrrLMBsM00iVj+qgva893qfnpFJU8/+nDe2hVCiMkmlwToC0AHsA7Yn73tesDAHRL3xfyEJgrFypZTtXyFL39cUVUDQLdUgSsrrZWVvHP9U9yplm/yA2D5fCRS+Rk+aaXiKAVI9sKVFSjAQPfkPcab9+/j2MpqTq2rp66ioqD7UhQFO7sPq7m5JHNR1OaDAHgWLiWTzv2YiEeTzGpu5vS6BtpeeIF92Z7VXCSTSc7v6eXnx6zhzKNWoCgKZmZi6/8coiKMWV2JR1HwHjiQl2F7QggxGeWyEGovcArwEeAR4D5gE/A54ATDMGTBl3KXcMeT24HCL4BZEwjxyvpGlkQnMIld5F17exsOUFNXU+pQRqRoXjKqQmIiBRCGsNNJsPI/DO6EcCXXn3AK1ZO4slbzls2oikLStlE9hV/SrWJGEwCzFZUDBw4UfH9D9XR1MSdbvLRhzWkTassKVaMucivIndPQyJ133pZzWxv/czcz/X7qfD6Wn3QKHo9CJpXI2/yfQUp2UdTjq6p54om1eW1bCCEmi1zKYJ8FeA3D+INhGO8wDOO1hmG8zTCMXwE+Xdffnv8wRT7txOGW1mYi1fUF31etz8fHFi3hgnBhF1wV49PR0Q7AjDIvgDDhCnBDOJaFnYqj5LkcnBryuyW2E/k9US2mnuyE+AHNg13ACnCDQnPncuNAHzc0H+C5554r+P6Geu6eOwl4PMRtm8DMxRNuz8yOBj+nYQZ333lbzj1aHY+4Q9Law2E8waC7/s9AH46d30qdg8Pg1lTX8NgjD+W1bSGEmCxyGQL3IHD0CPcdB1ybeziiGDYm4lzffID4jMKt9j7IW+tODA+pHpKT+ARxqlm2Zw+fWryM+f7CzveYCNUXIGGlSU+wAtxQdjKG6uS3GpwTdntSPUVIHAol1dIMQCYcKugaQIM8lVVYM2bQk0kXPQFat20r1+3fy94ZTSQSEx8SGZuxBKWikjqfj5mxGM89t37cbdi2TV2nWxI8fEJ2eq2Tycv6P8M5DXWYPi9hTaNzw7NYVnkPgxVCiEIYU2kuXdf/BMzL/qoAv9F1/XDvzMuBtjzFJgpkYMB96QLBwo71B9Cq3ZK3qqLQ09LM7CVLC75PMbpZyRRH19XTGg6VOpQRqb4A/an8TQAHsNIpNDONogVx7DzNPakMQXsEzcx/me1iUft6AQWtuqZo+1w+070As3Fj8SrBOY7Dg0+vo6OjnVede8GE5v8MshUP2uqTyTx+P69ubOKOO27luONOGFcbu59YS6PmJW3brLrozSgKWJk0yUQBhg6rKsrCuRjPbSEWi7F162ZWr16T//0IIUQZG2sP0M24ic/g2BHlMF828CTwvjzHKPKsMhGnye/H7y/8ya/i0YhlrzD2tR4s+P7E6BzbZjD1rW6oKWUoR2T7/cSS+V0/yrHMvA+D81S5f02v42BnJlBSrIQqUm7vVWXjjKLt86jKKt48czb+vfuK1gvR3HyQjo52NM3LgvlH5a3d9LLjADi2qppnH7ifVCo1rscfvOcuAPZqGuGaOlRVdef/FCIBAqzTT+Q/dZVsjQy8WHpbCCGmkzH1ABmGcTtwO4Cu6w8ClxuGsa2QgYnCcByHTzU04Z0xiy1FKr4UdyAMRDo6irNDcUTpvj40RcF2HOpn1JY6nMNTFEyvl3gy/+XT7WQMLVyDndMI4ENpNRXYjoOqKNixKGpNmf5NRxCLRUlm0mS8XhpmjbTEW/41WBbvmDuf9f297Nmzm4ULlxR8n1see4Sz6xux587FMfPz+gPEPFU0Hncidz3yAP3RAR5++EEuuOCCMT3WMU1qWlpAUVBXHwuAqiokYhGsQvUqKgprjlnBI489ztq1j3L55Z8ozH6EEKJM5VIF7hxJfiavTDyOV3Vfdq2qsAseDkoo7v5i2THuorQ6d+0EoDeTob66PItTqF4/aZy8lcAeykonwUzlrRpcuKaSSPZE1YpMvvWu9u3by5df2Mon9ux4sWx9Mfjq3SIsy8OVbNm8qSj77H3maS5ftIS31dSRSOSvt86ybHxvejfmWWfRm8lwxx3/GvNju3t7+MH2bdzT0cZx/3Vx9lab2EBf3uI7nBVLF1Ph0ejfvZOenp6C7ksIIcrNmHqAhtJ1PQR8CXg97oX94UmUYxhG4S/liZz0Zte/SNs2WkUNeRgCP6qURwMskr3yIVsOunbvwgcMYONxCj/hPRcef5CUYxYkAXIsCzsZR60MYzHxbtBQVQXr+3up8AdY6B33W2rJ7d27B4AF8+ZhjXPo1kR4qqoxgQpNY9/6Z+ENby74Pn3tbeAPoC1aSiqZ396Vgf4kF17wRv7wh9+ydu2jdHd3U1s7+gWGhx95iK2RAZx58/nEbLdEtW2mCjP/Z4jK9k7+uOYEtkUjPPHEY1x44RsLuj8hhCgnuYwB+BnuYqhdwFrg4WFfMqC4jPW3tgAQsSxsCr/eB8D6ijq+vX0be/JcfljkJtLsVvxKauV7su7xB4mkY9gFWLgUwErGUOz89AAEq0L8Zu9ufmA8j1LfkJc2i+nFBGjWHJwiFnJQVJVkwK1CmNq9q+D76+7uZoHqvufVHXNS3tuPRpLMmjmPC1ev4UPzFnDXHWNbE+jBB+8H4NxzXw24w98y6VTB5v8MchpqURWFoyoqeUrKYQshpplczoDeAvw/wzC+n+9gROHFOjsIAwnALEK5W4BIbRMbB/qZO9BflP2JI4v29FBt29ih8i2B7fgD9CXaC9a+nU7imClUbxh7gtXg/OEgqqpi2zZ9fb00FrGQQD7Men4r31+ximQJSqIHGxvhwAGqIhEymTRer69g+9r6yIPM9HpJOw7BWUugJ7+9XWbGpr87yqUVVXh9Af55z11w5RVHfMzBP12LfvAAL/h8nHPOYAKkkk7GSKfyV/79sCorSIVD+GNxElu3YFkWniIsgiuEEOUglx4gDXgq34GI4oh3dQGQLOIHXUWlOym8u7u7aPsUI3vSo/DO9U/RNbd8T9RNn49EAQogDHJsGzsRJR+dko7iUF1bgwJ0t02+VQCqYjEWhcLUVxS+LP5wNdkhX8tCYbZvNwq6r/ZnngagNxgglS5MBZhIxKTuNa8F4CxUnl23bsRtM93dRB97lPMaZnDMwsUsXuyOHFdViPX3FiS+4dTF8wE4yuvj+ee3FGWfQghRDnJJgP4NvC7fgYjiSPf1ud81b9H2WecP8Mr6RuYM5H9RPzF+LS0tOMCMxvKsVqZ6/WQUClIBbig7FUexMi8V95+A1zXN4m8nnEL6jlsn3lgR2bZNQ/YPUDezeBXgBnnr63Ach1qvj23PbSjovpTs0E/PvEV5LYAwVDSSou7VFxL1qDT4/Tz9q9+MuG33rf9EdWy2DPSz5nWvf7E0u22mScTzP/ftsOa7azGtqa5h7aMPF2efQghRBnIZAncj8Ftd12fgrvtzyEBlwzD+PNHARGG0qQrrWpupWr6S2UXaZ6Pi8NpFS2hJF2+CtRhZS4t7Iji7vjwTIE8gSBSr4AmQlU6hZRKogWrsCQ4HVUMBPCgkB/K7cGuhtW83CHo8mLbNjKaZkCzu/6jq9bG2popfPXAfr58/j4tHf0hO4vEYs2wL0KhbfSIRqzA9QOmUSTxpE77gQrj9dvTefto2baJhxTEvj2fb8ww8vhaA61sO8uvXuwUIFAXMTOHn/wxyGutIax4qgANPPg5SDlsIMU3kkgDdlP3+7uzXcA6QcwKk6/qXgVcbhnH2kNvW4BZfOBHoBn5uGMYPh9yvAl8DLgNqgcdw1yramc82poI9pslNzQd446mvKloC5KltAqBK9WCaJloZT76f6jKJBB8OVdK5eBlN5VoC2x8iko5h2QWekO84WPEImr8Ce4LdQHZlCCIZiE2uMtgtm56jEui0LWZaFqWoCTh3/nwsx2Hr1s0F28emTRv5wvObOXXeAj62cCWRrsIlen09CVZcdDG33fovlqkeDvzy59R89yq06hoAMj3dtF79ewD+3dHGjGOPe3HemKqqJNOFWwD1EKqKPWcm7GumrqeXnp4e6uqKszyCEEKUUi5D4BaN8rU412B0Xb8S+Maw2+qB/wDbcZOXrwHf1HX9fUM2+wrwEeCDwKm4Sdjduq778tXGVNGbLUUdrqwu2j61+pmAW+62q62laPsVh2o1trM0HObY6hoaqoo/52NM/AF648UpmGGnEmClXxx+lLPs31IrYhnpfOjPrgkV9fmwM8WrADfUinnzANi1ayexAiWQGzY8S8Q00Y5eQcrK3wKohxONpEinLRre9W7aU0nC6TStTz4BQKa3lwPf/TZWXx/NyST/d3A/l176rhcfq6oK8Ug/tl28VNRzjM4/ov3c1tbCE0+sLdp+hRCilMZ9Kd4wjH35DkLX9TnAH4EzgeEzYT8EpICPGoZhAtt0XV8GfB64NpugfBr4nGEYd2XbuwRoAf4LuCFPbUwJnt4emvx+wsEinvwGQmRsG6+q0rl3DzPnzi/evsXLtG3fDkC/beFRbPKwDE7emX4/8d7iDCWzzQx2MoZaEcCaQMVtT10VNPfisywcy0KZJNW0rHa30p5dggIIg+oqKvjk8qNZ6PWx+emneMXZ5+Z9Hxs2PAvAsauPJ1mg+T+DkokM0YEUZ53/Oj51w/9Re7CZ/ofu5zvnvQ6tshLHzBDxevnWpvUsXH4Up512xksPdkzikeJWy3SaGrD0pfS/sI21ax/hwgvfUNT9CyFEKYzpUpiu69four5oyM9H+ro6hziOB3qB1cDwsjlnAo9kE5dBD7ih6DOANUBl9jYADMPoA9YDZ+WxjSnhzbbDL1YdR0MRrzCiKESyJ9q9Bw8Ub7/iEN273TVf4h4PFPMYGCPVHySFQyxRvLk0ViKKMsHhdoGmeizHQQGsyOQp9tERjdKSTOCvL92wJ0VVWVlZxZxgkP2PP5b39jOZDCd39/DW2XNZsTD/C6AeTm93HMd2+NiXv8SNrc3cdfcd/OMfN6FoGt2nnMoVTz1OdzrNpz712Zf1PlpmmmQiUfD4hjvmqKUAPPHEY0XtfRJCiFIZaw/QObjzZwDO5cjXjcd9TdkwjNuB2wF0XR9+91xg+ODwwXFU87P3Aww/s27J3p+vNnLi8RR2uMV4OI5DODvXQatpQFVzG/Yz+LjxPD6meqjDIdbehqaVz99kuMHXq5xet3zxeFSiBw5QBVjhQM6vfyF5g2EGHJNEanwlqgdPIt3v43sLctJJyCTxBCpxclwTqKqhlt5MmgafH2egD62hPqd2DqeQx+Sf9u+mo6ODP1xwQUmOh8F9pivCEItj7t6V9/eHbc+u56zaOqito6JmNq3dhU+A4rEU6ZTF8ccfz0c/+jF+9atf8M1vfpX777+XZ555irRl8V//dTGnn376i49RVYVULEkmlSj6a7F4RgMXzZ1PBWAYW1m16tgjbj+V3yeBvJTHF0KUtzElQIZhLBry88KCRXN4Idzha0MNrhAXyN7PCNsMXtbMRxs5qaoKTuTheZUeGMCnuh9YoZlz8AYnNr3J7x97Ke20PwDpBJm+Hmpry3Py/VDl9Lrlk5ldi8lfV01ggq9/IXgrKxnIRPBoCjD+YWSeXE+eU1F8FVUontzKwzfMqmdDXx8VPh/H1lVRUYBjPN/H5MDAAB0dHQAsaZpB0CndeMiGhQtg6zZmJJKEQhp+vz9vbR98ci0LgB5VpSIQJhAsfIEBx4Fkwk20vvCFz2FZGX7729/yeLaH64ILLuDHP/4hXu/Lj7fWvhY0DTStuP+bTjrFpTNnYzkOG554jLPOOm1Mj5uq75NCiKlvMpTjSgDDPw0HlyyPZe8nu01i2DaDiynko42cDAwksCZYYjdfugx3/kfUNLG9FSQS6ZzaUVUFv99LKpXBHuMV8511c7jhkdtZXFdDb2+R1rjIgcejUlUVLKvXLV88HhVfLAGqSkVjLckcX/9CMlUvvX29mJnxTchRFAWPpmKZNk4OJ/KWE0UJxbG1YE6P94WD/GG/O7zwYsVHJo/HeKGOyc0bngOgsb4eJZUhUYLjffC9pHH+Qrq3bmN+MMhj9z7I8Wecmbd99G99HoD0jCYG+hMFnwM0qLN9gKZZlSRTGa644n8455zXsmnTcyxevISTT34F0WgaeOl/UPMo9HZ1lub/0ucn5fcRTqXZ/8ij9H7oY0fcfCq/TwJUVwdR1anZuyWEcE2GBOgAHFKxefD3ZsA75LZdw7bZmMc2cmJZNqZZHh8QPfvdEX79lonteLAneMXXtp0xJ0DJpvlsHOhH6Wgvm7/HkZTT65YvjuOQTKUw/X4a5jSN+bUrFsWjkdY8ROL9jP/QdB/gOE4OjwUnk8FKRFAqAzn9XRxNoaa2hr7ePlpaWgiHK8cfxCjyfUz23X031x13Is84DtY4E858U3x+umybBlVl76OPsPoVp4/+oDGwbZuqgQgEglSvXE08li7acR/pTxKPpUEF07TR9RXo+goALMth+FBNx8qQiMVK9n/pLJgN2/cyo3+Azs5uamtHXydsKr5PAjm9hwghJpfJcInjEeBMXdeHjod5FWAYhtGBm6AMAGcP3qnreg1uYYVH89jGpBfNVnyKwoSTn/GqqmkAoLW1taj7FS/p7u7ic1s38q7nnmH2omKtAjV2nmCYpGMRS5SmiICViKJY6ZwmAJiWSeOMGShAx/79+Q+uAOzWVkIejVBleZRDT4TckcjWzh15a3PXtueZ73c7+5uOOzWbeBRHIp4hMpAc0zwZVVUw00mSidL1jvuXuiPd11TX8MTaR0oWhxBCFMNkSICuAaqAq3VdX6Hr+nuBK4HvAhiGkQJ+CXxf1/U36rq+GrgRt9fnn3lsY9JLdnUCkPAUv+OvPlzJ2fWNHGM7ZDLlN/RqOti7dy8As2fNwquU3yVOLRCmPx0lY5bm+LDSSZxUPKcJ6JZjc1J9PX874RRC99xVgOjyy3EcwlF3zR1fXf4KNkxE9dx5tKeSbG9rxTTzU6hg14P3oyoKvUDaW5WXNsejtzuOPYYhYqqqkkrGSCeTo25bKM6MelKKQoWmsfPhB0sWhxBCFEPZJ0DZHprzAB23LPXXgM8ahvGnIZt9Fbgady2htYAJnGcYRjpfbUwFXX4//2g5yF5v/iYYj1WNonD5oiVcMnuO9AKVyN697hyVhfPn4mSKMw9iPOxgiJ5Yb+kCcMCMD6Dauf1tvLXVeBQFNVa+c9wGWf19hBwHy3Gomzmr1OEAMHe5zpd27eD6fXvYsmVTXtps2WkQM03ijY0k48U/5mPRFMmEOWpSraoO0f4SHvtuEMQa3WFv6p7dUg5bCDGlld0cIMMw3nuY254GTj3CYyzcRU0/f4RtJtzGZLffsrix5SCvXHE8y4u8b7OiBoAar4/m/XuZP39BkSMQyjPP8J2jjyFWWUXZrYCqekh7vUTixV0Ecjg7GcdJJ1ADVWO6cj+Ud0YdtPfhS6dxbBuljCdRR3e5Ux2bEwnm1ZVuDaChNI+H45cs5aHNG1m37nHWrDl+Qu05jsMNz2/llx3t/Oa9vyVRpOIHQ6WSJpH+JA0zK7DtkedZ2WaaRCxaxMgOL3z0MjJtT2CmUjz//FaOOWZVqUMSQoiCKN9PaJF3XdkhcFU1xT/hsfxB0tl5R527dhZ9/wLUri6WhitoDAVG37jItGAFSSyi8b6SxuE4DlasH9UZ/xCs0NyZmLaNBzD7Snw1fxRtG58D4GAmTZ2/fEoZn7BoCR5FYc+TT0y4rebmg3R0tKNqXpYevYZ0qvDr/xxOb3cM+whzj1RVIZNOkoyXvudQWTCH36kZrjuwj7UyD0gIMYVJAjSNqO1tNPr8VFSOXt0n7xSFiOp2OA4cPFj8/Qv82ROs2lkzShzJobRQBX2pKOnM8KW4is9KxtxeoHHOBaqbM4POtBt/Jru+TrmK7XYvQsQDgRcXkS0Hx89fyNXHnsB7VY3+bNGWXK1/6kkAVq1aRap0U2uI9CdJJjIjFkNQVYV0Mk46mTjs/UWlaSzTlwHwyCMPlTYWIYQoIEmApgnHtrkonuRXq4+j3leaHoBE9kpzsqOtJPufzgYGBpihukUQ5y6bV+JoDuXO/+kpdRiA+79ixfpRGd8QuNqmOtpTbgIUay7vJH+/47C+vxfGUOq4mJoaGxmwbVRF4YU7b5tQW76HHuAXq9Zw/uKlbjnqEkmnLfp6Ri6uoaoK0f6enNafKoTjV61EVRW6dm7n4P59pQ5HCCEKQhKgacKKDKApCrbj4KkvzaTnTLgaALu3ryT7n852PbeekKZhOQ41jeV10qtoXlJejYFSFkAYxkrGcDLj6wXyBf30Zk9ie/fsKVRoeXFvTxff22FQPbv8yqF3+n0AJJ7bkHMbjm1TH4nS5A8wb6lOogQFEIbq7Y6PuLivbaaIRyNFjmhk1VWV/O/q4/jFquN49p9/L3U4QghREJIATRPpri4AejJp/JUlmvRc6w698sRiZXO1c7po2eyu5zugKjh2aeZCjEQLVRGzM0TKKAFyLAsr2jeuXqC0ZdITCrC2u4tuT/kMKzucHTu2A7CwTEpgD1WZLZAyIxbDzLGi3v6nn6La4yFhWSw98zWkkqVNgCIDSeLRDJr28o/ccpr/M5S/zr1IksnOFRNCiKlGEqBpoi87lKE7ncYfrC5JDOkVp/CdnQbXH9hLe7sMgyumSLZHwqyqwLHKqwS2J1RBV7wX6whVskrBSkRx0nHUMSxkCZCxMnTPbuJne3ZiKOX71trxwjYyfX0AzC9BQZTRrDx6Jc3JBJqisPPuO3JqY/8D/wFgn6rgEKDU11tsy6G7M4rCyxNjVVVJJaKkEmUw/2eIquPd6m/LUWjes7vE0QghRP6V76e0yKuBgwcA6HMcPB5PSWKwamfQGqqkK51m9+5dJYlhumrtaKc1mSDYVGZX/BWFTChEb7Sr1JEcwrFttxdojBXhMlaGeQvnA7Br145ChjYhndf/lT+sOYE3LVpC0F/8NcFG4/d6OZAtId7z+Nqc2vAMDkFcuoxYtPSFNQD6exMkk5mXDatUFIdIXzflVpa+YtE8uiyLgMfD5r9fX+pwhBAi7yQBmiaS2apUMc1b0jiaZrkniHvkqmLRmKbJDcbzfHLLRma/+hWlDudltGAFcSz6I+VRAGE4KxnDSUbH1AtkOw7zFi9AAXp278ROlceJ91CObaNmFyLWyqwAwlCVCxYCUNPfjxWPj+uxibY2Gmwb23FYePZrSj7/Z1A8lmagN/GyanC2mSIRLf36P4dQFDqzcwW927aVOBghhMg/SYCmiUy3e4U9FQiVNI6Tqut46+y5tO80ShrHdLJ79y5SqRThcJh5DTWlDudlPOEq+lJRkunxneQWi2PbmNE+VDsNYygX3bRgFt9fsYpPBiuIbS+/YzzdfBCPbRO3TBpnlV8BhEFrVq7ib80H+NzWTRwYZ9XIXdnqcdsTcRatOJZEvHQV4Ibr7oxhZtx5ZR6PQiYVL4sFUA9n5pknY9o28zwahpTEFkJMMZIATRO7w2FuaW1moKq0Y/5PSsd56+y5pPbtL2kc08mmjetRgNXHrASrfE4GAexwBR2R8l4zx0rFseMRxjIVqLqxhq6M2+PQue35Akc2fomd7vo/O6JRljbNLHE0I6sMBmmtrORgMsFdd90+rseua2/j3o522mfOJBZJl3z+z1ADfQli0RSa5sHjUYlHBsiky6+nECBcX8dOxf3j7b7j1hJHI4QQ+SUJ0DSxORHn+uYDpBtLe9U3U+3OQTG7OrDt8a2zInLT/dQ6rllzIpdU12GX0cmWJxgmrkLvQPnN/3kZB8xoL4qZRBmlLLbpWMRC7npXfWU4D6jv+S0AbI9FWdZUmnL4Y/XqY48D4Pbbb8UyxzYPy3Ecbnn8Uf64fw9LLnwDsUh5JfyW5dDVHgUcHNsk0lfex35m5XJ+smsHP356HZlMef0thRBiIiQBmiba2txx/5XVDSWNQ2mcC0CdonIwW5hBFFbm4AHCmkZ9VQWUUQlsraKGnnSUeLJ81kAZiZ1JY0V78YxSFjtlptFmuT0rmexcm3LhOA6JF9z5HD0+L+FAaRZEHqvT9KNZWFnF2wIhXvjet8b0mO3bDQ4ePIDf7+fkk04r6QKoI+ntjpNMmFiZZNkOfxu09KQ1PG9l6OztYe3aR0odjhBC5I0kQNNApqeHcHc3NV4v4arSJkCZmkYAZgeCvPCCTK4ttK6uThoybtIzY9mCEkczhKJghStp75885dDN2ABOMnLEgghpK0P9yqMBCMdjOFb5lPZOt7bgSSRI2zaBxhmlDmdUfq+XU5brnFpXj3fvXpLZUv4jsRIJWq75A4tCYc444yywNZKJ8iiAMFQ6ZRKLpEglYiRyXOeoWDweD2e+4kQAbrz+r2V1PAshxERIAjQNRJ7bwMfqG/nwgsVUVDeWNJZUjZuAzQsEeWHb1pLGMh2se/IJFofDAFTPLe1rP5QWqiKm2vT0l/f8n6Ec28aM9KJaSZQRCiKkzDSLTz2JuGniQyE+ykl7MWk1tdztUbix+QBLZpZvAYShzjnpFazt6Qag5e83HnHbvkceYk53Nx9ftITXvua19PaW19o6Q2VSGXo72ym38teH8+ozT+Pchhm8M55i553jm48lhBDlShKgaSCyz10TozWVorK6tKVvU9WN2ECV18verZtLGst0sPmJx6jx+rABraq0FQCH8lTV0h7vLdvqbyOxUgmsaB8e9fBD4dJmhtkL57I3lQTgwFNPFjO8I7K9Gjdseo7b21tZNW9+qcMZk6WzZrPN48F2HMxtzxPbsumw21mJBJ23uxP1/9PXyytf+RriZbL+z3AejwJOmu6O7petCVSuGurrOGb+XGb4/fTcfSeOzN0UQkwBkgBNA/HsXJsBTUNVS7MI6iBH85IMVwMQ2b0bc4yTm8X4OY5D1xY3yXTqasAuj/kQiuYlFQzS0Vdec2TGyoz24SQi7onsMA4OCStFc3U1/2g5yJbu8pnkvmXLZhKJBLWVlSyc0VTqcMbsrJNO5q52d6hk65+uw04mD9mm+9ZbUJNJWpIJqk8/AwWNWLQ8jvfhwpV+LDNOZ2sXmYw1Ym9iOak9/WTilkltJkP7YzIXSAgx+UkCNA047e0ARMNVJY7E1XrWW/j8ru0809WBYcg8oELZtm0rTdkx+zWLF+BY5ZFs+qrq6LeS9AxMnuFvQzm2TWagGyWTOOwV/EgqRv3Zr+TGloP8Z+NzxQ/wMBK7d9N+6y3MDgRYs2TppDjpHvSK5UexQYWuVAq7t4fWP/4OZ8iFk+hzG+i7714A/nRgH//97vfQ35vAMsuzp6Ki0sdATyeJeJJELDNqZcFysPSoZaxNuL21LTddL71AQohJTxKgKc6KRNCyV0zTdeWx7kdqxlxqlhyFA2zYsL7U4UxZDzxwHwcTcZo1D5ULyuO1R1Gwq2o40NeMbU/eCdV2OoU50I3qZA5JJhKZJKeecQYA69c/TTxe+onuA0+sZfHBg7yhaTar55VRMYwxUFWV9736PH66ewcZ2yba0vziZPyBdU/S+ttfAXBvRzt1J57E/HmLGOgrz/k/Hk3F77Po63bnNcWiKcy0VfZJkKIoVJ9+ElHTpCKZouX++0odkhBCTIgkQFNcKjv8rS2ZJNxQPhOfFy1fBcBTTz1R4kimJsdxuP/+e3m4uwvzTRcSWjKn1CEB4K2spV+x6extKXUoE2bGI1iRHjyKDUPOX5OZFHMXzGHx3HmsDoV56pZ/lC5I3B6r6IZnAXiqr4c1CxeXNJ5crF6wiLlHHcUPdm7nm89vpi9bPc3q78cxTdb1dvPX1oN86lOfJZUwiUbKc/5PZVUAMxOnv6cXgEzGIhZNo1DeCRDAscev5rGk+3dvu+lGrMMMRRRCiMlCEqApLnVgPwB74zGq68tk4UPH4TTNy2eWLOf5Z58hlSrPk5XJbMuWzezZs5tAIMDZp56ElSiP9UaUmgYORlpJpcvzCv14mZFe7Hgf2pB30qSZIu2YfGDNCXx+2VGkHnmoZPEBJPfuxerrI2FZdGoac+tLWwo/Vx9/7YW0B3xs2buH973vUu65507ufOF5fr9/Lz/etYPLPvwxFi9eRF9fgky6PHsXK6u89HW2Yg0pJx2LpkinTFS1vD+OFUWh8ezT6EilCGYy7PyP9AIJISav8n7HFRMWOvY4rm1t5v6uDuoay6MXAEWhqXkvJ9fWMU/TWL/+mVJHNOXcfvu/WBIOc+E5ryKs2NiZ0ieZ3spaBjRo7Zw6C+A6jkOmvwsn0f9iUYREJknKTLHiTRcBMC9j0r5vb8lijGR7Wdf393Ly8qMm1fyfoSoDAX7ysSuZ2dTEvn17+cIXPs0Pr/kd93W0ceHr38QHPvBhzIxNf095VhYMBDU0NU1358sLY1iWTXQgieM4lHtH0DGrVnBnJs6Xtm3hqn/dUupwhBAiZ5IATXExr8bdzQfYFBmgtqFM5oEAiQY3GdMrKnn44QdKHM3UMjDQz+23/4tPLlrG2zq76SuHeVaKglLXyIGBVhKp8uiNyhfHssj0dUFyAI9HwXEcBtJR9NNPp92x0VSVtVf/viSx2ZkMA088DsDDXV2cph9VkjjypUH1cMNPf8F73v1eli/XOe64E/j617/NN7/5PbxeD4lYmkh/eQ7NqqoJkoj2EO0fOOS+eDxDPJaeFL1AZ73lDexKxLnnnntYu1YqwgkhJqfyfrcVE7Zz5w4A6hpm4vX6ShzNS2JN7kTsYyqruPfee6Qcdh7ddNP11Ng2MwMBVI8Hb13p1//x1TTSq9oc7NhT6lAKwjYzZPo6IOmWx+5PDGBjEzjhJACqd++mOzvxvZhiG9Zjx2J0pVMcxGbV/IVFjyGvbButu5fPX/EJbr75Nq699v+46KK3oCgKiqLQ0xXHLMPqbx6PSjjk0Nl2+LlvjuMQ6U+SSVtlvzbQvDmzOf/cswD42de+QtsDMhROCDH5SAI0hSV27KD/wfuZHQjQNHtRqcN5mdhsdyL20nAF6f5+niqjBSMns0Qiwd/+9hdOrasHILxsMbZZ2iviiubFqqljT/e+KTP353DsTIZMbzsk+klaSdJOmjXvei8px2FeIMDNV32n6DGZ0Qhp4KGuTs5dfRweT2nXAcuHZHcPif378Q759FIUhXTSpK9Mh7/V1AXJpCL0dIy8LlQmYxHpT+I4QJkPU3zbG1/HcfPm8sVZc+n921+JZS+0CSHEZCEJ0BTWv/YRFuzYwasbmphRZgmQGa4iVTsDVVE4trqaf/7z76UOaUq49to/0NPTzTkz3OGOFUcvghKv2eFvnEObGaW1a19J4ygG28yQ7usg1tdCxk4SqKlGPe54AJYcOMD9/7mnqPFEli7jg889wx3trZy35vii7ruQInv2YnZ14PW6CZ2mqfT3Jsqy+puqKlRWeuhsPfCy4geHE4+miEVSqGWeAPl8Pv77sneyMTKAB9j1w+9j9vWWOiwhhBgzSYCmKMe2iWUXYVzf30vTnPJKgAAic5YCcHJNHQ8+eB9tba0ljmhya24+yHXX/ZEloTBNXi+K10twbn1JY/JW19Mf9LGj1cCaxOv+jIdjmgx07Gegv42gx2LlBz5I2uOhK5Pim1/7f0Xt7fzzn68hYZqsXqazoHFG0fZbaGY8QWTHTpREDI9HwcxYdLaX59yymroQZqafzta2Ubd1gIH+JIl4GtVT3h/PixbOJ3PGCRxIxAmYJpu/8TVsKY0thJgkyvsdVuQsuXsXViRCzDLZFo2UZQLUv+gYHFWltq4Oy7K4+urflTqkScs0Tb761S+QTqf57xXHAFB17Apss3RDzjyBEFb9DHZ072Ug2lOyOErBsW3aOveR6j1IwGey7Ktf5bEZTfTF43z84x/mX//6h1v1q0ASu3ay/Z47ueWWmwG45LQzCravUom3tpPYsxu/R6G/N1mWi59qmkpllULHwf2YmbHNc7Qsm/7eBKmEWfZJ0CmvOImN85qImBnCAwOs/9LnsWVZAyHEJFDe764iZwPr3KvM6/v68AXD1NQ1lTiiQ6Vqm9j3zs9S+4GPAvDPf/6dffum5iT5Qvvtb3/Js88+Q1U4zMqKSgBqVi+FAp5kH4mi+VBnzmNPvIPmjt0liaHU+qLdRFMxErs3Ulnt4de//Dlnn30u6VSKm370fa644kNs27Y17/u1Mxnarrsabv4759bV88rVa1i1oPwugEyY4xDdf5BETz9d7QPYdmmO9SOprQ+RjHbR0TK+3u1MxqKvN046Wf5J0GvecD6P1VURN02q+vt54tOfJNnfX+qwhBDiiMr7nVXkxE4miTyxFoCHujqYv+SY8iyvqijEVT9N84/mla88B8uyuOqq7xb0yvhUdPPNN/LHP/4WgP/3lW+gX/VD5lx6MUqoNK+5onnxzVnI/swAOw5snbavZ3+0m6iTwcEhuvM5aDX45fe+wS8ufCNf11dwXEsLl7/77bzrXZdwww1/pbn5YF722/n3G8i0ttKfybAlmeRDrzovL+2Wo8DMJtr2ddK7v/3FdZjKRWV1AK+W4ODuXdg5zMNLp9yiDumkiaeMkyBFUXjVxW9g3ewG4pbJ/rZW3v+R9/PCC9tKHZoQQoyofN9VRc76H30YO5mkV1HYEhlgwZJjSh3SEbV2xfjI297JCXX1rF37CDfc8NdShzRp3HTT9Xz7218H4P3v/xDnn38h/pCXimUzccx00eNRfQG8cxazz4yybf9GTCtT9BjKhWWZtEU6UCtrccwMiZbdJHeuZ+Wq5aAonFXfyM+OWcPq3l6u/vEPuPDCV/OGN5zHF7/4Gf7yl+tYt+4JWltbxnXyvOum6+l/4H4AfrdvDx9/y1tpqqkp0DMsrUBDPZlANQdeaCbe1okdGaBc8gSfX6O+XqOjeS8Dfbn3hqRSJj1dsZfmBJVxcYTTX/9adq1ZwbWdbTy/bSuXXvoWvvfNr9KSp8ReCCHySSt1AOVC13UV+BpwGVALPAZcbhjGzpIGlgM7lULRNP51YD8OsGBpeSdA6Re24rnvb/zPUSv50Lq1/OhHV7FgwUJOO+3MUodWtpLJJD/96Q+44Yb/A+Cdb7mEd61YhaapOP3NpLpHn3Cdb96qOuyGJnYluth+YAuZEiRg5aajt4VFC2bjC4axEjGsZIzQ0nrmNr2O7sc2wb6DvGnmbN44cxabBga4t6ONu+++g7vvvuPFNvx+PwsXLqS+vpH6+gYaGhqpqanB5/Ph9fpIpVJ0d3ZQu3kTpyhuBnBzewtveuvbOHnuglI99YLSwiG8s+ayd18fsd4YAIm2DgKNNp7qKmxHKdXoTzSvyqw5YQZ6DtCyb+KVDzMZi56uOFXVNqEKP6qq5tSjVAz6SWv48rKF3HTbPTz25FM0rV/Pxuc/xc3z5nLmO97FmjXHoZRxEieEmD6U6To8ZThd178GXA68D2gGrgIWAysNw8jlTG43sKi3N1b0hfk8HpX7b7ud//nSpwlUVPPpb/01r+t/qKpCMOgjkUjnZdy9YpksveMPePs6afZqfPbJtXh8Pr773R9x7rmvzkPEY6dpKrW1YUrxuo2F4zg8+eTj/OAH32H37l0AXPHBj/LaaIzkju00vOZcao5bSGbg0EU3VVUhEPSRzNPr9mK7Pj+++lkMBP3s6t3P/radOE5x/3aKAprXg5mxSnbiO5KVi45nqVpFqnnXy253HId0e5TIll3Edronysk1a3g6GGTLls207t1NVX8/uyIRujNHfgv6X30FR1dWAfC05uH4N72JxnT5V93L5b1ECwYJLV5CW6/F3k37XjbEUvGo+Otq8dbU4Hh92FZxDwafX2PWnDCJSCu7nn8eHAvTtPMyDFQBgmEflVUBfH4NBwenRPOexvJesu+F7SxYuwFfNuF5ITLAukya+tNO5xWnncHxx59EIBAoZthjVlcXxuNR9+CeAwghpiBJgABd131AF/A5wzB+m72tBmgB3m8Yxg05NFvUBMjOpLEGBvA1NGIr8IkrP82jD9zBiWdcyOsv+Vhe95XvBAjA39PO4nuuRcmkOaiqfHPD0/RmMrzjHe/i8ss/QWVlZV72M5pyTYDi8RgPPng/N998Ixs2PAtAY2Mj3/roJ5jx7LNk2ttQgwHmvefNwOEXg8x3AuQJhNGq60mFw7Sl+tndtp2BWGnWAinnBKgiVM2JC0+kqqeXdF/nYbcxoykS+7uoPWEN4eUrUPwV9D63lf0//xkAjqaRDoVIAEnLwsmkWef30+LYeL0+TtI0jukfoPL1r2fW4sX0bd9ZsgIY4zHe9xJ/bQ2+OfPo7LXYs3kftnX4/1EtHMJfV4saCuN4PG7bBf5zVNcGqavTiPQ2s/sFA8s00TQ1bwnQII9HJVzhI1Thx+tVAQXbsQv+/IYa83tJPEnqyfWE9x58cbx9zDRZ39/Hf3q7qDlqBcceexyrVh3LMcesoqam9pAmHAdSFgykFQbSCkkT/B7weRz8Hgh4wK+5P6t56lySBEiIqU8SIEDX9ZOBdYBuGMb2Ibc/BmwyDOPyHJo9bALU19fLvn17SSaTpNNp0ukU6XR6jEMaFGpra5kzZw7z5i1AATLtbcQ2b6bvgftwMhnmffFLbO1O8OH3vIlUMsF7PvE9Fi1bnUP4IytEAgQQbt3N/AdvQsmksRSFBzvauKW1hUwoyEUXXcyb3/wWFhS4mlUuCZDjOJimiWVZ2LaFZdnZ71b2NvvF+90vE9N0v1uWlb1v8Db39kwmQ3t7OwcPHuD557ewdesWTNOdTzMrXMH7zzqHEysqyexxK6xpNdXMueR1oCQZ6UxowgmQ6kELhPCEKrHDFSQ8Cl2pAQ52H6C7rw2nmGdgw5RzAgQwu3EhqxqX4evuJNN/aO/cUIrXhzdURWxPG92PPE2qo+uwi9nOvvwKKo4/EVVV0LAxO9tJHGwmsu/ApEh+YOzvJVo4THDmDMxgDW0tEZp3tIze+6GqeCtC+KqqUYMB8PpwHLCd/CVDqqpQUeWnpsaPQoyO5r207D+IY9soilKQBGiQpqkEgl5CYR9en+fFanGO7RS88MhY3kssRyHteEg7Hqx4htDO3fi3bsSfdstk/2TXdp7odcvj6xUVnF7XQJcnQLRiBvGqeURrl9Bbt4KeyqWkQ00oyugTvLyqg88DPtVBU8Gj4H5XHTQFPCpog7cp7jaqMuQLUFWHH5+v0RBWJAESYgqTOUCuudnvB4bd3gLMz7XRgbZ2/v7+y1Fwr845ZhrHdN/8rzuwj/0J90r9K2rruKBpFgpkv5QX57oqwDX797Ij5i7yd3JNLW+dPZcWr49ar/dlVSyUyiq2bdnL7+64jVQyQdOcxcxdshpzWK2LsVwkO+IwbUXBdMBWVBxl6Iffyz8Ix7SfIT/HZy9hz4WXMf+pO9Fa9vHqxiY2er2s27md6677I5F/382ZTTPxhsIEgkECwRA+vw+f34/m9TLnwx9Fq3KHAfU88ACR9c+OGNvsD1yGWlVNPB6n56GHiK9/BjubrDiOTTqdcZMTy2LzzCba02lisSiz+/pZnkoNSWYsbMt68YTj2v17OZB01yM5pbaO82fMHPHv8ZcD+9gVd+cvnFBdyxtnznrZ/RXA0YrCcarK1YEAibrZvP71b+TCmbOI3XYbmc5O8KjUnXw8tacchZ0eXAjy8H95JXt5VFGVlx8RioqiqtnvHhSPB8WjuV+aDzQflteL6dWIORb96RidffvoiXQSix9+grczplc/f48DFRwVC2VciZjjFCfOfR3NpB0fS+sXUhWqx470YSXj2GZ6SLKSbTMNpAegNkT1m16JonnxmJDqj4GtoqDiCVXgnz8Hx8qQiiQY6OwkdqAZMxID1f/i38DhcHNhsvdNIA840t/tSG0O/7upQNL2kkLFBlAUVM2D4vXi8fvQgkHUcAUJNUBzJEPH9i4ivVEggKO+vE13vwrO0J+jQGwA1Z/C4/ejBkMoXi94NBw1e/brgJ190GCa+dLfxm0PRUH1KHg8KqpHRfN68Po8aJpNn5XihX1d9HR1k0yawCwcQHEUFFvFcuwhMR4a60vfX3o+w28f/Hu/7PEZBScDRBQ0zYOqqXg0DUVTQfG42yoKNgq2o7j/Gw4v/m477n0OL/384veh23K4bVVMRSNpqaRtN8lJ2R7SjuYmPbYHk2HDrmtBOd1m6cB2Tux4ih1Hr0Bt3YLTup6j4i9wfv1gL38aUrugbRe03QvA17a/wDYnhFY1kzMrg7w+aGM5YGX/Jnb2NbOBv8S97LLcfa/xWlwQeHkhlqH/Dzcnveww3W1XahZvyG5rn/YrCE+dhYOFEIeSBMgVyn4fvoJbEqjLtVEfsNILLxbb8wUAd8xzuG4RWBp4fNRWaBxVMfJpQ3j2cSgZFRyLsNLPglD4xfvSts2OZIYnq47m0ZkXkbzteewH/g5A5ylf4fvNx+Yafuno53JU0/Oc0PU0z7zynai778d57i80cZDZmhfSafervx8H90VLAee8+jX0Khp4/LynqZ4Lq4Mj7uJ1559HW8w9eX/HnHm8edYcFHjxI3voP8btjz/Kvmyy+uZZs1k4Z757CVHzHtJucMhcq3qvj5XZeRmHE6pqQvFZoHqorQpzdGV4xG0bLriKpxa+nj8qCmsPbOFNtXvYUreatTPPojdQj7NpxIdOIKkQeTX88spE7R/6yxxgTZ53UCSRcW4/8r/1kQ2+URTEwsPfXIxRtA7ZpLkI+8pRwGMT8Nj4PQ7pykWsn7+Q+R6Ho449mirfxczt2caOPU8R7NqDP9KDNxUnYGYIZN+6MpYJsRbMSAsVTbOYVzG0uMfLPzuDbRtwIgMA1DXM4NiFI3fi3Lt/E06fO2y3pq6e4xYvA8BjZ2DEF1UIMRXIEDhA1/W3ADcDIcMwEkNuvwnwG4bxphya3d3f3bfouh9d416NUzXSaoiBwBy6M0G21KyiR6smZUFttJ0F0b04ipK9+qe8+DPArqqlRHzVANSmupkd2Uei7yBd+9fRt+Vf2Mm+Q3auHP8+1Fd9c0pV3Gnq20HDgUfx9+5E6T+IGmtHSfWjZOKoKDzZ200mezwvCYeZE3j5mdLQQ/2Zvl4StjtJfEG4knkVteDxgRYAbwC0IGh+0II8520k7q8FXwVzPQ7zlBRoQZTsdo4WzCZDHrbWrXJfK1VjZqKNhbGXV4Eamoy8UHM0A74aABoT7SyMHLoIrKMoJD0B9lcsZCB7DAgxVSmM/HmkKNke8sHv7gNeftuQ+17sRR/Smz7S/Ye777DtH+6+keJT3N58FOeQx77YxoiPe/l9Y33+HgXU7NCvwWFdQ2/zuJ1C7s/qkPsPs62a3Wboz+4QMfe2oFchoDkENdwvLwQ092vobX5P7tW77UyG1MAAPbEY7V1dtLW1ke7uRu3rx7HcPim3u87tslMch9SMBuxscQVtIIKvu2dIiy8/vlIzZmCF3eufnmgUf0cXAK+64nJClZUJXro4KoSYYiQB4mVzgJYahrFryO2PARsNw8ilisCYiyDYg0Mwhhj+shzuVXJwyyE/+MC93HvPnezcaVBVVc3rLngjb7/0vYet/Da8ncO9/IdsM+x3j0elpiZMX18MK/vcRnvMWPbDYYbVjKXddCpFX18PqVTSnVOVSpNKJXEcG0VRUVX3S1FVVEXF5/cRCIYJBsOEQmG8Pt+Ln9AeTaWmOkRfXxxz2ARrxxnfB/kRRxEe6b4cTxZGa1PzKFTXhOnvi2EOq46Va6woRzhhHSWenB43wu0eTaU2e0wOf91ybRNyj/NIxtumprn/b/19I7+XTOQ6R0FepzHGU65FR/JBntvkJUUQhJj6ZAicayMwAJwN7IIXq8AdD/yy0DsfvPqWC384wEVveCMXveGN+Q3qCDQNqvxg+cDM68KDOSbjQR+zamaOvt0Y9q1pDrUV4M84mObUujigaQq1IfCkmILPDSr9YPrANEsdTX5pHvBr4PUcMd8UQgghxBhJAgQYhpHSdf2XwPd1Xe8E9gI/wB21/89SxiaEEEIIIYTIH0mAXvJV3L/HH3Gn2T4CnJfjIqhCCCGEEEKIMiQJUJZhGBbw+eyXEEIIIYQQYgrK6wwOIYQQQgghhChnkgAJIYQQQgghpg1JgIQQQgghhBDThiRAQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg3FcZxSxzBVJYCAZdmljqMgPB4VeW6Tjzy3yUme2+Qkz21yUlUFRVGSQLDUsQghCkMSoMLpA/xAa4njEEIIIcTYzQJSQE2J4xBCFIgkQEIIIYQQQohpQ+YACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG5IACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLShlTqAqUTX9S8DrzYM4+wht60BfgacCHQDPzcM44clCXACDvfcsrcvBzYAKw3D2FuC0CZshNftDcBXgaOBLuDvwFcNw0iUJMgcjfDc3g78P2AZ0AL8HrjKMAynJEHmaKRjcsj9fwBeYxjGwmLGlQ8jvG7XAu8dtmmzYRhzixjahI3w3GYBPwZeB1jAPcAnDcPoKkmQORr+3HRdfwh45Qibv8cwjD8XKbS8GOG1OxH4EXA80AdcD3zFMIxUKWLM1QjP7VXAd4CVuO+VPzcM45eliVAIkU/SA5Qnuq5fCXxj2G31wH+A7bgJ0NeAb+q6/r6iBzgBh3tu2dtXAfcBoWLHlC8jvG5nArcA/wDWAB8BLgF+XeTwJmSE5/Y64C/Ab4EVwGeBLwNXFjm8CRnpmBxy/0XAZcWKJ5+O8NxW456MzRrydVzxIpu4EY5JP+775GLg1cCFuCfTky05uJJDX7f/4uWv1yzgTuAF3PeYSWOE164BN1ndhnssfhA3Sf92kcObkBGe2yuAe4H1wEnAp4Ev6br+paIHKITIO+kBmiBd1+cAfwTOBIxhd38ISAEfNQzDBLbpur4M+DxwbVEDzcGRnlv2Q+BLwPPAvOJHNzGjvG4fBh4wDON72d936rr+/4BrdV3/SLlf2Rzluc0CvmcYxmAyt0fX9Xfhnnj+pHhR5maU5za4zSzcXq2HgYVFC26CRvl/8+AmrN80DKOtBOFNyCiv2ztwX6clhmG0Z7e/Evi1rutVhmEMFDHUcTvSczMMo2fYtu8AzgOONwwjUrQgJ2CU1+4MoB74bPb57NR1/a+4z/EzRQ00B6M8t88BzxiG8dHs79t0Xf8M8Htd139Y7p8DQogjkx6giTse6MW9Ortu2H1nAo9kk59BDwC6ruszihTfRBzpuZ0P/DeT4ENuBEd6bj/C7RkZTgMqCxxXPoz43AzDuMYwjK+Ae1Kt6/r5wNm4VzongyO9bui6rgB/wu3leqiokU3ckZ7bMiCAe8FhMhrtveT+weQHwDCMfxuGsaTck5+sIx6Tg3RdDwM/AH5iGMbmIsWWD0d6ft3Z7x/Nvp8sBC4AnixeeBNypOemA48Ou20D7oiHkwofmhCikKQHaIIMw7gduB1A1/Xhd88Fhn/QtWS/zwc6ChrcBB3puRmGcWb29rOLHlgejPLcNgz9Xdd1H+7wh/WTYU7CKMck2dvnA7sBD/Bv4DfFim8ixvDcPoXby/UG4IvFi2ziRnluqwAHuDI7jNEG7gK+bBhGfzHjzMUoz2058Iiu618B3gN4cY/JzxmG0VfEMHMylv+3rI/gXkCZVMPDRnmvfFTX9e8B38QdnunBvfDw8eJGmZtRXrtWDh3dsDD7vamggQkhCk56gAorhDsEbqhk9nugyLGIHOi6ruH2JqwALi9xOPnUh3sV863AsbjPcVLTdX017jy7d07B4SnH4CY9e3GTu8/gXmm/Vdf1yf4+XoWb+BwLXIo7dPgM3OemlDKwfMkOYfwE8OvJkLCOla7rNbgJ7K+Ak3HfT5YySS6ojOJa4GJd19+l67pX1/WlwLdwL0T4SxuaEGKipAeosBIc+kY5mPjEihyLGCdd1yuBm4BzgIsNwxhxeMtkkx1atAHYkD05u0HX9c8ZhrGvxKHlRNf1APA34FuGYWwqdTwF8HXcoVN92d+36LreCjyBm8hO5mMzDUSBdxiGkQHQdf09wFO4xWOeLmFs+XI2bq//H0ocR759H6gxDOMt2d/X67reC9yn6/pPDcPYWMLYJsQwjP/TdX0ebjJ3LW410M8B1wFTJokVYrqa7FcOy90BYPaw2wZ/by5yLGIcshPpHwVOA16XHSox6em6fma2bO1QW7Lfhx+rk8kpuKVqv67relTX9Shuqe/52d/fWdrwJsYwDOcww8EGh9dOqjLYh3EQMAaTn6yt2e+LShBPIVwEPGUYxu5SB5JnZ3Bogjo4/2d5kWPJu2whnCrc5HUO8AygADtKGZcQYuIkASqsR4Azs1fYB70K98O+rOf/TGe6rtfiFqtoBM4wDOPBEoeUT5/m0GpvpwAmbrn2yeop3EIBx+KWLl+DW+q7JfvzbSWKKy90Xf+bruv/Hnbz4ETsyVoYYdAjwLG6rgeH3LYq+31nCeIphDNw31OmmgO4BQSGGnztJnWSoOv6x3Rd/41h6QYasgAABURJREFUGLZhGC2GYVi4Q/z2GIYxmd8rhRDIELhCuwa3y/xqXdevwh0jfSXuZFhRvn6CuybJ+UCnruszh9zXmf0gnKx+CDyk6/r/4s77OR64CviZYRjdR3xkGcsuUPuyk2Vd13sA0zCMqXAS/Tfgtmz5+Rt4ad7F3wzD2FbSyCbut8AVwN+yhRCqs7c9aBjG+pJGlgfZC2ArcSvATTU/Bu7Rdf2buEPDFuCul3aXYRjPlTCufNgK/EzX9Wdx16k6D7dX+V0ljUoIkRfSA1RA2V6e83DLaa7HnaD9WcMw/lTSwMSIshPKLwF8uFdsW4d9Tbo1j4YyDOMx3IUmLwA24Z6U/Qg3URdlyjCMO3CvPr8Fd+jb1cA/gQ+UMq58yFZWPBO3+ts63KpcTwFvLmVceVSP+9wm7QWGkRiGcS/weuA1wHO4F/3uAt5WwrDywjCMh3D/vz6Lu9Drx4D/NgzjplLGJYTID8VxnFLHIIQQQgghhBBFIT1AQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg1JgIQQk5Ku60qpYxBCCCHE5CMJkBBi0tF1/Y3An7I/n63ruqPr+tmljWridF3fq+v6daWOQwghhJjKtFIHIIQQOfifIT+vB04Fni9RLPn0ZmCg1EEIIYQQU5kkQEKISc0wjAHgyVLHkQ+GYWwodQxCCCHEVKc4jlPqGIQQYsx0XX8IeOWQm84BHgTOMQzjIV3Xvw68HfgC8C1gKfAC8FHAAX4GrAZ2AZ80DOP+IW0fA3wPOCt70/3Apw3D2D3OGPcC1wLVwLsBP3Ab8GHgY8DHgUrgPuBDhmF0D3ncQ4ZhvFfX9YXAHuBtwCXAeYAJ/AO40jCM6HhiEkIIIYRL5gAJISaby4EN2a9TgarDbDMP+DHwbdwEog64Gbge+ANugqQCN+i6HgTQdX058DgwA3gv8AFgMbBW1/UZOcT5P8CC7L6+A1wKPAO8FvgQ8HXgTcA3Rmnnd8Be4CLgKuD9wJdyiEcIIYQQyBA4IcQkYxjG87quD2R/fnKE4gch4HLDMO4B0HV9BfBd4AOGYVyTvU3DTYp04Dnga0ACeHV2WB26rt8P7AY+m/0ajwhwiWEYJnCfruvvAWYDpxiG0Q/cpev6ucDpo7Rzp2EYn8n+fL+u668BXg98cZzxCCGEEAJJgIQQU9fjQ35uy34fOleoO/u9Jvv9VbhD6eLZ5AjcggSPAq/JYf9PZZOfoTEMZJOfoTGsGqWdJ4b9fhBYmEM8QgghhEASICHEFDXYizNM/AgPqceda3PJYe7rzCGE8e5/JMMfYyPDl4UQQoicSQIkhBCuPtyiBD86zH3mYW4TQgghxCQkCZAQYjKyAE+e23wYWAE8Nzh0Tdd1BfgrsBN3npAQQgghJjlJgIQQk1EfcGq2iEB1ntr8Bu58mzt0Xf8NkMQtW30RcHGe9iGEEEKIEpNx5EKIyeiXQAa4Gwjmo0HDMDYBZ+KuFfQX3Apxs4CLDMP4Zz72IYQQQojSk4VQhRBCCCGEENOGDIETQogx0HVdZQy95sNKXwshhBCizMgQOCGEGJtrcIfdHfFL1/WFpQpQCCGEEKOTHiAhhBibr+POPRpNS4HjEEIIIcQEyBwgIYQQQgghxLQhQ+CEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG/8fMEGI/X4WTKUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "chrom.crop([10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "scores = chrom.assess_fit()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence) and clipping of the signal into peak windows.\n", + "3. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "4. The estimated mixture of all compounds is computed given the parameter estimates of each distribution and the agreement between the observed data and the inferred peak mixture is determined via a reconstruction score.\n", + "\n", + "The following notebooks will go through each step of the algorithm in detail." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/methodology/scoring.ipynb.txt b/_sources/methodology/scoring.ipynb.txt new file mode 100644 index 0000000..9001c9e --- /dev/null +++ b/_sources/methodology/scoring.ipynb.txt @@ -0,0 +1,400 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Scoring the Reconstruction\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After estimation and subtraction of the baseline, detection of peaks, splitting into windows, and fitting\n", + "the peaks to a phenomenological function, we are left with the irritating problem \n", + "of assessing how well we have done. Consider the following chromatogram:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3977.22it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:10<00:00, 5.20s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8PElEQVR4nOzdd3gUVdsH4N/M9k2y6ZWQQiBDBykWBAFBEEUEfX1FERTEggUbUgRBQRR8aQY/RekKgoKKiGJBsYCICKKUZEjvvWf7zsz3x24whNTNpj/3dXElu3PmzNnJkMwz55znMJIkgRBCCCGEEEI6A7a1G0AIIYQQQgghLYUCIEIIIYQQQkinQQEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCCOk0KAAihBBCCCGEdBoUABFCCCGEEEI6DXlrN6ADKwGgApDdyu0ghBBCSMMFAzAD8GrldhBCmglDC6E2G6MkSWpRdP35ZVkGzVEvuRKd55ZB57nl0LluGXSeW0ZznWeWZcAwjAmAxuWVE0LaBOoBaj7ZoihFFhXpXVqpXM7C29sNZWUG2GyiS+sm/6Lz3DLoPLccOtctg85zy2jO8+zj4waZjKHRG4R0YDQHiBBCCCGEENJpUABECCGEEEII6TQoACKEEEIIIYR0GhQAEUIIIYQQQjoNCoAIIYQQQgghnQZlgSOEEEIIaeNOnz7tAfsaRfTwmpCriQCyBw8eXN6QwhQAEUIIIYS0UadPn2YBvMQw7AyGYRQAmNZuEyFtkCRJkvX06dMfAHh98ODBdebHpwCIEEIIIaTtekkmk8/R6bwtSqXawDAMrbJLSDWSJDEWi0lbVlY8RxBsAPBaXeUpACKEEEIIaYNOnz6tYxh2hk7nbfHw8C5s7fYQ0papVBojAN+SksIZp0+ffquu4XA0jpQQQgghpG0KYhhGoVSqDa3dEELaA0cvqQL2+XK1ogCIEEIIIaRtYgEwNOyNkIZx/F9hUE+MQwEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCOo2YmHUhkyff2q+129FQcXEX1UeOfOfZ2u3oSCgAIoS0C4mJCXjggf9i6dJFsFotrd0cQgghpEUsXPhCj4sXz7u1djs6EgqACCHtwuuvLsGF8//g4MHPsXfv7tZuDiGEENJCKAeGq9E6QISQNi89PQ1cYSEe6T8IH2Wm4dChg5g+fWZrN4sQQlqFKIowGAyt8hBbq9WKLNu4Qw8fPmTw3Xffm/3TTz/4Wq1W9q233o3TarXixo3rQ//55y+dXq+XeXp62kaPHlv4zDPzMmNjL2oee+yh3u+8syW2f/+BBgB49tknos6f/0f3zTc//SWXyyFJEm6/feyABx+clXnvvdMKqh+zoCBfvm7dm6FnzpzyFASBiY7uWfH88wvSo6K6myvLvP/+O4GHDh0ILC8vl3fv3kO/cOHSlMrtNbU5NLSr5b33/i/4559/9C0uLlZ06dLFNH36zKxbb729BAD27dvru2fPh8EzZ87O3Lr1/dDS0hJFr159ypcseTVlx46tQT/9dMRXLpdLkybdlfv440/lAIDZbGbefnt9yLFjv3gXFRUq1WqNOGDAwNKFC19O8/HxFSZPvrVfQUGB8pNPPgo+d+6sx+bNH/DFxUWyt9/e0OXUqd+9ysvL5ZGRUfpHH30i8/rrh1VUfrYDBz712b17Z3B+fr4qLCzMOHr0LYVbt27qeuzYn6ed+ZmwLOvU52urKAAihLR5f5w8geG+fvBRKqFmZQgpKEDOrz8jaMTI1m4aIYS0KFEUcf/9d/eMi4ttlSFRPXv2rvjoo/18Y4Og77772v+NN9bGC4KN6dEj2nz//Xf39vT0sq5eveGSh4eH8PPPP3pt3vxu1969++rHj7+txM/Pz3LixHFd//4DDYIg4OLF8x5ms5n966/TbkOHXqc/e/aMtry8TH7zzbeUVD+WzWbDM8/MiQYY6ZVXXk/09fW1bdy4PvSFF56O3r//y3MAUFBQoDx//h+PN95YF2+xmJnXX3818vXXX43YuvVDvrY2P/vsE1FJSYnap59+Li0yMsr0zTdf+axc+UoUy7IJ48ZNKAWAwsIC5cGDnwe89tqbCQaDnn355QU9Zs6c1mfMmFsK3nlna+zXXx/03bVrR5eRI0eX9OrVx7R27arQkydPeC1YsDila9cwM8/zmjVrXo94773/C1m0aGn6li0fxs6aNa33jTeOLHr00TnZgiBg7tzHo61WK7NgwZJkf/8A68cffxSwcOHz0Rs2vBM3cOAgw5Ej33quW7c6csaMWRmjRo0pOXnyN92WLZu6NvVn4szna9RF0oIoACKEtHkJv/+GfkoVbCyLID8/THTzQP4P31MARAjppNrfukAjR95cOHDgIAMAGI1G5uabbykcP35Ccdeu4RYAiIh4OG/fvr1BCQmXNOPH31YyZMh1JWfOnNIByDl79oybTCaXoqN7Vpw6ddJj6NDr9L/++rNXjx5chb9/gK36sY4f/0WXmpqi2b79o/M9ekSbAWDx4ldSduzYElRUVCgHAJlMJq1YsTrZ09NTAIAJEybm79q1o0ttbb50KU79559/eL3yysqEsWPHlwLAU089m52UlKDdvXtncGUAJAgC8/zzC1Irb/779RtQdulSnPuLL76UwTAMHn30yexPPtkTHB9/SdOrVx9Tr1699aNHjym+4YbhFQDQtWu45fvvvylLSUnSAICfn7+NZVlJo9GI3t4+wo8/fq9LTk7Sbt6880LlMZYseTXt0qU4t927dwYNHDgoae/e3UHXXz+saPbsx3MBoHv3HvkZGemqL788ENiUn4kzn68p10xzogCIENLmWZKTAW8fSMHBkNy0QHkFkJ/f2s0ihJAWx7IsPvpoP9+ehsABQGho18tDzzQajTR9+sy8r7/+0nvXrp1uWVmZqtTUZG1JSbFCEEQGAEaMGFW6bNlL/kajkTl58oRHnz59y7t06Wr6++8zOgA5p06d9LzpplFFNR0rPv6SRqvVCpXBDwAEBgbZFixYklH52tPT01YZ/ACAh4dOsFgsV3ywqm3m+TgNAAwZcl1F1TL9+g0s/+CDraFV3+ve/d/jqlQq0d8/0MwwDABArVZLAGA2m1kAmDLlnqJff/3ZY9261V0yMzNUGRnpmqysTHXPnr2uOE6lhIR4jUajFaoGFwzDoHfvvhVnzvypA4CUlCTt8OE3FVfdb8CAayqqB0CN/Zk48/naKgqACCFtWkVFBYIE+98or9594ZmfC5w9C5XZDMFggEyrbeUWEkJIy2JZFu7u7mJrt6MxVCr15fYaDAb2scce4kwmEztixMjiceMmFA4YMDDtqace7VlZ5oYbbixXKOTi778f9/jrr9O60aPHFIWHR5gPHvwsKD09VZmSkqR95ZWVSTUdSyaTS5U35LVhWbbeXrSqba4tEYEoCoxMJrtio0KhuOI1y9beluXLXw47fvwXn1GjxhRef/2NpT179s7evXtnUGFhvrKm8pJU80cTRRFyuVyyH4+VJKn+TsLG/kyc+XxtFQVAhJA2LTExHt3d3AEAXr37ICzbG4V/nISvUgVLViY03Xu0cgsJIYQ0xs8//6hLTk7SfvbZV38HBATaAKC4uEhWWloqrww0lEqlNGDANWW//PKTV3z8JfeFC19ODQ3tamEYRnrnnY0hwcEhpqoJDarq1i3KpNfrZUlJiapu3aLMAFBYWCC/7767+r722pvxzrQ5OrqnEQD+/POke+UQOAA4d+5v9y5duhqdqbOoqFD23XeH/RcsWJx0xx1TLvfYZGSkqdVqTZXg698Ao3v3aKPBYJDFxl5QV+0FunjxgntoaJgJAMLDI4wXL15wB5BXuf3ChXN1zhlryM+kI2nT3VOEEJLIxyFYrQYAqMLC0K1bFNKN9r815qzM1mwaIYQQJwQGBlkA4ODBz33T01OVJ0+ecJ83b253QRAYi8V6+W5/2LDhJUeP/uCn03nYoqK6m1UqlcRxvSqOHfvZ9/rrh5XUVv+IESPLIiOjDMuXL4k8ffqUW1zcRfUrryyO8PT0sg4YcI3BmTZzXC/TwIGDSmNi1oUdOfKtZ0JCvOrttzcEnz59yuu//70v15k6dTpPQaPRCseO/eKVlJSounjxvGbZspfCU1KStVbrv+dBrVYLmZkZqry8XPnIkaNLu3YNNy5f/nK333771ePSpTj1ihVLwzIy0jRTp96fCwD33z8j++TJ37y3bn0vMCkpUbV//8e+X331ZUBdbWnoz6SjoACIENKmpSYm4Nu8HOS4u0Om80RYWDjyzfaHfhXZWa3cOkIIIY01aNAQw6xZj6YfPPh5wIwZU/uuXv1aRN++A8pvvHFEEc//m91u9OixpaIoMH37DiirfO+aawaXSZKEkSNvLqmtfpZl8eab6xP8/QMtCxe+0OPppx/vKZPJpHXrNsarVCqnuzNWrVqXdO2115esW/dmxOzZM/qcPPmb10svvZJ4++2Tiuvf+2pyuRxLlryalJaWqnn44Qf6zJ//XA+z2cw+8MBDmZmZ6Rq9Xs8CwJ133p135swpz2eeeSJaLpcjJubdSxER3Qyvvrok6vHHH+6VkpKsWbVq3aXBg6/VA8Do0WPLnnzymdRDh77wnzVrWp+vvvrCf/z4CfmVQ+Rq0tCfSUfBNGSMIHFKkiCIkUVFepdWKpez8PZ2Q3GxHjZbuxr+267QeW4ZDTnPzz77BH766Ue89NIy/Pe/9wEA/nfXHbjTxxdS337gnn2hJZvcbtE13TLoPLeM5jzPPj5ukMnYZADdXFqxE06fPt2TZWXfBAR0qVAq1W02oxZpW06cOObu5xdgrZoE4t13NwZ9991hv88///p8a7atuVksJnVeXqa7KAq3Dh48OK62ctQDRAhp07KzswEAwcEhl99L0ajxKn8RuT2iW6tZhBBCSJv0+++/ec6bNzf6+PFfPDIy0pTffXfY8+DBzwNHjx5bY9a8zoiSIBBC2jRrQT40rAzBwcGX31MFBuHChXPIKi+rY09CCCGk83niiWeyjEYju2rVa5Hl5WVyHx9fy5133pX7yCNzclq7bW0FBUCEkDZLr6/AE4EhCIvsDu/Sf4OdoCB7MJSTk91aTSOEEELaJJVKJb300rJ0AOmt3Za2iobAEULarKysLASqVAAAj9Cul98PCgzEzX7+CE5MhGB0KvsoIYQQQjopCoAIIW1WXlIiVDIZBEmCwtf38vuBQSG4v0sYrjEaYSsqbMUWEkIIIaS9oQCIENJmlaYkAwAqWBaM/N8Ru35+fiiz2QAAQnl5q7SNEEIIIe0TBUCEkDbLmG1f6NTkWAi1kq+vL8psVgAUABFCCCGkcSgAIoS0WWKRPWOn5Ol1xfs+Pn4odwRA5mLK6kkIIYSQhqMAiBDSZikqKuxfAwOveN/DwwMVgn3xw/K8vBZvFyGEEELaLwqACCFt1p/FxfguLxfu0VcueMowDKxKBQDAREkQCCGkTRs+fMjgffv2+tZf0u6nn37QTZlyW99Ro64ftHr1ytDmbFtDxMSsC5k8+dZ+rqyzMeckIyNNefDg596uPH5n1+rrAHEcNwrA0Vo2J/M8343juIEA3gIwBEAhgBie59dUqYMFsAzAbADeAI4BeILn+YQqZZpcByGk5VitVnydmgRRFHHvoCFXbRfVGgCApbSkhVtGCCGkMT799NDfOp2n0NDymze/GxoYGGR+6613Lrm7ezR4v/akMefk1VdfjggICLBMmjSluLnb1Vm0hR6g3wAEV/s3DoANwOscx/kC+B7AJdiDl2UAVnAcN7NKHS8DeBzAIwBuACABOMxxnBIAXFEHIaRl5efnQRRFKBQK+Pr6XbU918MDy+IuIC2yWyu0jhBCSEMFBgbZNBqN1NDyer1e1rt3H31YWITFx8e3QwZAjTsnEtO8rel8Wr0HiOd5C4CcytccxykArAfwKc/zWziOWwTADGAOz/M2ALEcx/UAsADAdkeA8gKA+TzPf+2o414AWQDuArAXwKMuqIMQ0oKyU5IRptFC5e8Plr36WY3K3x+xFeXIoYVQCSGdkGA01voQm2FZiVWppOYu21DDhw8Z/Mwz81LuuWdq4eLFL0aIosh4e/tYjx79wddsNrH9+w8sW7RoaWpgYJBt+PAhgwHgk0/2BH/yyZ7gjz7af65r13DL5s3vBh4+fCigtLREHhQUbL7nnvtypkz5TxEA/Pbbrx7z5z8XPWPGrIxPP/0k2M/P3/zaa6uTpk//b9/77pue9dVXBwOUSoW4Y8feiwzDYN261aF//HHCy2azMZGRUYYnnpibMXDgIENle/fs+dBv3769QcXFRcoBA64pDQgItNT1+R55ZAbXp0//8uLiIsXx47/4KBQKceLEyXnjxk0oWrVqRURSUoJbUFCIaf78l1KuuWawoeo5ueWWW0tmzPhvn4iIboaYmE0JAPDLLz95LF78YvSiRUsTP/98X2Bs7EX32NiL7pMn3+px4MA35yZPvrXfzTePK5w79/msqm0ICAg0r1z5v5SazscHH+yNzc3NUaxf/7+uZ8+e0clkrBQd3VP/zDPz0qOiupsb+zNt71o9AKrBkwC6ArjF8XoEgF8cgUulHwEs4jguAEAEAA/HewAAnudLOI47A+Am2IMXV9RBCGlB5RfPY02f/shGzX9rvb19AAClpTQigBDS+SQ+Peea2rZpornSrvMXXR7Cn/T83AGS1VpjYKOKiKwIX7KMr3ydvOCFfqLBUOP9oTKkiyFi+crYprQbAE6cOO49fPjIorfeeofPyspUvvHGim5vv72hy4oVq1I//fTQ3488MqP3jTeOLHrooYdz/Pz8bevXv9nl55+P+jz99HNpUVE9TH/+edL9//5vQ3hFRYVs+vSH8ivrPXnyhNc772yJNRgMrEzGSgDw008/+Kxf/zZvNBpZT09PYdasB3rK5XLxtdfeTNDpdMKXXx7wffbZJ3pu3PhebL9+A4wHD37uvWnT22GzZz+efsMNw8t++OE77127dnTx9fWtMwg6cGB/0D333Je9ZcuHF7766gvfPXs+DPnhh+98H3/8qfTQ0K6W1atfC1+3bnX4hx9+csX58/LyEl58cXHySy/Ni/7ii898RowYWfrmmysjx4wZV3DbbXeU3HDDjeXPP/9UDz8/f8uCBUvSGnOeq54Pk8nEPv30Y1xERKRh/fr/42UyVtq9+4OgJ554uNf27R9dCAnpYm1M3e1dmwqAOI5TA1gMYAPP89mOt0MBnKtWtDLiDXNsB4D0GsqEubAOp8jlrh1lKJOxV3wlzYPOc8uo6zwbcuwdw1aNpsb/Rz4e7hjvH4iwrCzIZAwYhkYI1IWu6ZZB57ll0Hlu3zQajbBs2WupCoVCio7uaTpx4njh6dOnPAH70DCWZSWNRiMGBgbZ9Ho9++WXBwLnzVuUPHbs+FIAiIzsZs7OzlJ9+uneoKoB0L333p9T2ZuRlpaiBIDbb5+Uz3G9TADw668/e8TH824HDhz+28/P3wYAzz+/IPPixQvue/fuCuzXb0DKZ599Ejhs2PDi6dNn5gNA9+49cmJjL7ilpCRp6/pMXbuGGZ988plsAJg589HcPXt2hYwYMapo3LgJpQAwbtyEws2bN3Wtad8RI0aWT5hwR96mTW93/eGH73zc3NyEymDH29tHkMvlklKpFCvb3FBVz8fHH+/2Ky8vk69atS5ZoVBIALB8+Rspd911e7/9+z/2r9qb1Bm0qQAIwHQAGgAxVd7Twj58rSqT46vasR21lPFxYR2NxrIMvL3dnN29TjqdplnqJVei89wyajrPkiO5gcLbq8b/R0GBfrguPBIoK4enmwIylaq5m9kh0DXdMug8t4zOfJ6jNr77V23bGJa9ouu827qYvxtaNnL12uoPjGst66zAwCBz5U04ALi5uQs2m63Gp1iXLsWprVYrs3btqoh161ZHVL4vCCJjs1kZo9F4eb+IiMirhnKFhYVX3u8hLu6iFgDuvXfyFRndbDYbY7VaGABIT0/TjBo15ooF5nr37ltRXwAUEhJ6+TharVYEgC5dulxuj1KpEm02a61P6p5/fn7GmTOnPM+c+dPz3Xe3XWzMnKnaVD0fly7xWqPRKLv11lEDq5axWq1senqq+qqdO7i2FgDNgH3uT9W8tkYA1e9sKn9Qesd2OMoYq5XRu7CORhNFCWVlhvoLNoJMxkKn06CszAjBsQ4KcT06zy2jrvMslpYCAFhvXxQXX/3fUK7xgCBJkDEMCjPzofCmDKF1oWu6ZdB5bhnNeZ51Ok276FmSaTQN/uDNVdZZVYOff9V8vy+KIgMAL720LKlbt+6m6ttVVeYkqdXqq9quVqsvbxdFkdFoNMJ77+24ahifUqkUAfsyC1K1psjl8nqDEblcdlUZhmn4dZSbm6MoKSlWyGQy6cSJY7p+/frXM8H1ysPZbMJVwVXV8yGKIoKDQ0yrVq27Kruxm5tbh0w0UZc2EwBxHOcPYBiA16ttSgcQUu29yteZABRV3kusVqbyiYcr6nCKzdY8v0cEQWy2usm/6Dy3jJrOs8psARQKaIOCa/wZuHvooLfZoFMoYCmrAOPh2VLNbdfomm4ZdJ5bBp3njq9792iTTCaTsrOzlJVD4ABgx44tAampyeply1Y2eF5MVFQPo9FolFksZqZnz96Xg6mlSxeFd+/ewzBjxqz88PAIw/nzf7sDuLzKNs/HNs9wHgdRFLF8+ZLI8PBIw7hxtxa+++7GsGHDRpT17dvPEQQxV0Q7MplcqqjQy6run5eXqwwJCbkqQKzUrVuU8eefj/rqdDqhciidzWbD/PnPdRs9+ubiO+7oXCm229IjjmGwh7M/V3v/FwAjOI6TVXlvDACe5/k82AOUMgCjKjdyHOcFYBCAX11YByGkhUiSBA/H0y2f8Igay+h0XtAL9uHQosHpjlpCCCFtmKenp3DLLbfmf/jh9i6fffaJT0pKsnL//o99d+zYGurt7dOoOTGjR48pDQ+PMC5b9lLUsWO/eCQlJarefHNl6NGjR/wiI6NMAHDffTNy/vjjd+/Nm98NTExMUO3cuTXg5MkTzTrE4P333wlKTk7WLl78Ssq9904r6NWrT/lrry2NNJvNDABoNBoxLy9XlZmZoQCAXr16Vxw79rPPiRPH3RMS4lXLl78cbjQaZHUdY9Kku4rc3d2EBQueizp9+g+3+Hhe/fLLCyLPnj3t2aMH1+nSqbalAGgAgCSe56uPGdsGQAdgK8dxvTmOewjAswDeAACe580A3gawmuO4SRzH9QfwMey9Pp+5sA5CSAspKSqEt9zeMRvYPbrGMp6entAL9l57m54CIEII6agWLnw5/c4778r94IPtXR566L6+u3fvDJ46dVrW0083buK+TCZDTMymSz16ROtXrlzWbfbs6b3/+eesx5IlryaOGDGyHADGjh1XOn/+S0nffXfY7+GHp/c5duwXr0mTpuQ2zycDzp37R7N3766Q6dMfyuzWLcoMAIsWvZxaUJCvWr/+zS4AMGnSXfnp6WnqWbOm9REEAU899VxmdDRXsXjx/B5PP/1YT51OZxs2bESdPTienp7Cxo3vx3l6etkWLpzXY86ch3vl5eUqX399TXzV3rDOgpGqD3RsJRzHvQPgGp7nb6hh21DYEyNcAyAbwFqe59+usl0G+9C5mbAnUfgFwJM8z6e4so5GShIEMbKoyLU3ZnI5C29vNxQX66nbvxnReW4ZtZ3n2H/OYu/859FFp8Mjez8DU8M6QEajAYdm3I8Bnl7wmf4g/EaObsmmtzt0TbcMOs8toznPs4+PG2QyNhlAq6+yfPr06Z4sK/smIKBLhVKp7nQ3qYQ0lsViUuflZbqLonDr4MGD42or12bmAPE8/0Qd204BuCowqrJdgH1R0wXNWQchpGVkFxTgi5ws9PH1xaM1BD8AoFZrYJTsNz76okL4tWQDCSGEENJutaUhcIQQAgDIzraPaggOrp675F8Mw+AHvR7L4i7AFBbRQi0jhBBCSHtHARAhpM0pS0tBmEaL0ICAOsuVazSIrShHmdioebCEEEII6cTazBA4QgipFJSejjV9+iPLbKmznE6nAwCUlpbWWY4QQgghpBL1ABFC2hy50Z6RUxMQWGe5cA8PjPcPhMTzLdEsQgghhHQA1ANECGlztDYBkMnh2TWsznLhSjWGh0eiJCmxznKEEEIIIZWoB4gQ0qaYTCZ4y+zruflHRdVZVuluX5xbstQ9VI4QQgghpBIFQISQNiUnPRXucnvntGfX8DrLqjzsc4BYq7XZ20UIIYSQjoECIEJIm5KXEA8AMIoi5FptnWVVHh4AAJkgNHu7CCGEENIx0BwgQkibUpKeBi8Aeln9z2eUjh4ghSQ1b6MIIaSNYRjIGIZp8QfZkiSJkgR66kTaNQqASLORBAGlv5+Apnt3qAKDWrs5pJ3IrKjA8Yw09Ow/EMPqKavx9AJgD4AkSQLDMM3ePkIIaW0MA5nIMMEGk63F7+O0armNhZTd1oKgmJh1IT/++J3vgQPfnGvsvgkJ8apHH32o944duy+EhUXQpNJOgAIg0mxyPv8U5d98jXJRRNfX3kBASJfWbhJpB5KKi/BlTha6/ue/9ZbVenkCAFiGgWSxgFGpmrt5hBDS6hiGYQ0mm/z389miwWQTW+q4WrWcvb5vsNxDLWclSWpTAZCzLl48r1m48IXuFouZpoV0IhQAkWaT/8vPUAP4JD0V4Qf244knnmntJpF2IDs7CwAQHFx/wOzm5Y3V8XFQe3rhbUfmOEII6SwMJpuoN1pbLABy6DCBwjvvxATt3783uEuXUFNRUaGytdtDWg4FQKRZCHo91AY9AOB4USHyTv3Ryi0i7YWqsABhGi2C/f3rLevm7oHTpSVwF2xg5PTrjBBC2qLhw4cMnjPn6bQffvjeJzk50S0wMMg0a9ajmePGTSitLHPkyLeeO3ZsCcnMzNB4e/tYbrppdNGcOU9nq1QqCQDi4i6qN216u0ts7EUPk8nI+vr6We64Y0rezJmz82o65o4dWwJ27NgSumjR0qTx428rqanM6dN/eL744kvJnp6ewvz5z0U3y4cnbVKHieJJ22LJyQYAFJjNqBBsiI/nIdFEdVIPURRxr7sOa/r0h38DMru5u7sDAPR6PUSxpR+CEkIIaajt2zeHjh49puj993deGDLkutIVK5Z2P3XqpBsAHD16RLdy5StREyZMLNi2bfeFZ555Ie3YsZ99Fi9+MRIADAYD+8ILc6PVao24ceOmuO3bP7owfPhNxVu3bup67tw/murH2rVrh//OnVtDlyxZnlhb8AMAW7fu4idMmFjrdtJx0SNT0iwsebkAAKMoYHJQCNQyGQoLC+DnV/9TfdJ55eflwldhH4XgF1nzIqgMw4BVSGAkFm5u7hjs6Q0/pRLlmRnw7BrWks0lhBDSQKNHjy2YPn1mPgDMm7cw8/z5vz327dsTMHTodcm7du0IHjNmXMG0aQ/mA0BkZDezXC5PXbDg+ei0tBSlVusmTpo0Je+++6bn6XQ6EQCeeuq5rM8+2xcUHx+n6devv7HyOHv27PLbtu390GXLXksYNWpMWet8WtLWNToA4jjOF8AUAGMARALwBFAAIBXAYQBf8Txf4sI2knaoNDUFAGAURNwfGoZymxXp6WkUAJE65SQnQsOyECUJaj+/GsvIFQwyDNnwUXtBrVbhP11CEaV1Q3liIgVAhBDSRg0aNKS86muO66U/e/aMDgCSk5O1iYkJbkePHvGt3F45aCQhIV598823lN1//4y8Q4e+8ElMjNdmZmaoUlOTtQAgCOLl9J/FxcWKd9+NCZfJZFJoaJi5JT4XaZ8aHABxHOcHYDGA2Y79YgGkAIgH4A2gH4CpAMwcx20CsJrn+RrHZZKOrzwnBwoAmaKIaAAecgXS8nJau1mkjStKSUEXAHqg1jk9VsmKzJIcKHzkCFBqUZmv1FhWWmN5QgghrU8ul18xDl6SJLCsTLJ/LzKTJ/8nZ9KkKYXV9wsMDLLm5eXKH330oV4eHjrb9dcPKxk8+Nqy/v0H6O+9d3L/qmUZhsXy5a/Hb9v2fsjKla9Ebt36YRzL0mwPcrUGXRUcx/0HwHkA0QAeBeDL8/wgnufv4nl+Os/zE3meHwDAB8AsANcAuMhxXP15bEmHlB7aFS/HXcBfChVsjl95ZVlZrdso0uaVZWYAAIwKRY3bWZaBUTCh1FSOIkMJWJaBzbH2j6WcRjoQQkhbdfHiebeqr+PiLrpHRUUZACA0NMyYnp6q7tYtylz5Lzc3WxETsza0oqKc/fLLA74VFeXybdt2xT355DPZEybcXlJaWuJ4SvZvXOXl5WkdOXJ02cKFS1KSkhK027dvDmzBj0jakYb2AD0D4Dae58/UVYjn+TIAHwP4mOO46wCsA/BJ05pI2qP04iLwFeW4wS8QekMZPCURese8IEJqY87PBwCIbm41bmdZBkaLEUaLCRVmPWywQZDZf41ZKiparJ2EENIWaNXyFu3eaMrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXWn4XDkCg0KgHieH9HYinmePwngxka3iHQIRUUFAAB3nQ+MFhM8rSZYCotauVWkrZNKSgAAMh+fGrezLItSUzkkSDBZzbCJNogK+68xqyPtOiGEdHSSJIlatdx2fd9gOVo4o69WLbdJktTotJvjxk3I379/b+CGDWs04eHhhjfeWBPfp09fIwDcfvukYkmSkvbs+TD4s88+CdJq3YQhQ64tee65+RmV2+PiYnM2b36368aN61g/P3/L+PG3FZw4cdwrNvaCG4D86sebM+fp7OPHf/FeufKViC1bPuBpKBypirLAkWYRnpmJ8f6BcNO4w6LSAlYTBJqjQerxR0kRLpaWYuKE22rcLkJAhdke6JhtFlglKySFArAJEAyGlmwqIYS0GkmCwELK9mjhHiD7sSVRklD/OgXVREZGGefPX5xR2/aJE+8snjjxzuKatjEMg3nzFmbOm7cws+r7Dz/82OWhJXPnPp81d+7zl8faq1Qqad++gxca0rZhw0aUHzv25+mGlCUdQ4MCII7jtjWmUp7nZznXHNIRiCYTBhmMGBQeiYNaD9i0HkBFERg9PaEntZMkCb+lpcJoNGDWkKE1lrFJVpis9pEMZsECq2AFlCrAZoBgNLVkcwkhpFVJEgRJkhodiBBCGt4DdDOqzjIDQgAoAKQByAbgC6AbADOAv13ZQNL+2Mrsk9HNggC5uxeydX7Y+OMXkNzd8Ugrt420XSUlJTAa7b04QUEhV21nGMAi2mCy2QMgq2CDRbQi39sLq//+C6P69sXwFm0xIYQQQtqjhs4Biqj8nuO4+wGsBnA3z/N/VHm/N4ADsCdBIJ1Y5VC3UpsVajdPyDy8kWkygbVYIEkSGIappwbSGWVnpOEaTy+IWjcolcqrtjMMA6tohdlmufye0WqC5OOD06XF6C3YWrK5hBBCGoiGl5G2xpmxoysBLKwa/AAAz/MXASwBMN8VDSPtl82RjavcZoNa6wGNxh0AIIoi9DQMjtQiLyEei3r0xPyQ0Bq3sywDi2CFxWa9/J7eYoSHh/36qqiga4sQQggh9XMmCYIfgNpms9sAuDvfHNIRGEvscxj1gg1ad09oLUbcGxoGk82GsrJSuLvTJUKuVpqehhAAepmsxl5ChmFgtJkgVRmNa7GZoZMrMMLHD/7FlGWQEEIIIfVzpgfodwDLOI7zrfomx3HBAF4FcNQVDSPtl77QvpCzUZSgVKohN1bg7qAQjPMPRFkZLVZJambIzQEA2LTaGrczDFBhuTLTm1W0wUsU8XS37hhMvYuEEEIIaQBneoBeAPAzgBSO407Anns9EMAwAEUAnnVZ60i7ZCwughyA1bFApaDSAADc5DKUl1MARGpmK7b3HDKenjVuFyHCZL0y05tVsEHpYQ+YZKJU026EEEIIIVdodA8Qz/P/AOgDYBMADwBDAGgArAHQn+f5FFc2kLQ/JWHhWBJ7Hr8J9uycgtIeAGllcpSX0lpApGYyx9wxlX9AjdsFSYBFsF7xnlWwQeEYUqkABUCEEEIIqZ9TC6HyPJ8F4EUXt4V0EGWigEv6CvR09PwISvXlbYaigtZqFmnj1BYLoFRB16XmJAiCJMBquzIAsokC3B09QApQdkFCSOfBMJAxDNNuFkIlpC1xKgDiOE4FYBaAWwAEA5gJYBSAM9Wzw5HOp7y8HACg0TqSHbAsTADUAIzFNS7yTDq5srIyeDmGTPpGRl61nWEqe4CuTHVtE2xQuLkBAOQMA8lmAyN36tcaIYS0GwwDmYa1BksWQ4v/wmOUWptRVGRTEETas0b/x+E4zg/AjwB6AYiFfTicFsDtANZxHDeG5/kTLm0laVc0SYmYEBAEUfVvz4+ZYaGWRJgpCQKpQVZWBj7OTEektzfmRXa7art9DSAbrMLVPUAqndfl16LFAhkFQISQDo5hGFayGOQV/ElRNBvFljouq9Kw7tx1ckbhxUqS1KYCoJiYdSE//vid74ED35xr6D779u3x/fTTTwLz8vJU3t7e1nHjbi2YPXtOjkwma86mkjbAmTuFNQB0sAdAKQAqVyW8B8C3AJbD3jNEOqnAjAzMDIvAIcW/i1laWDkgWGClJAikBllZWThZUoTykBDIPb2u2s4wDGw1BECCaIPcQwuLJEHGMBBMRshqySJHCCEdjWg2ioJJ32IBkEOLD7trDgcOfOrzf//3Vvjjjz+ddt11N5RfuHBOGxOzNtxisTJPP/1cdmu3jzQvZwKgOwA8w/N8Asdxl0NknudNHMetAbCzsRVyHDcDwEIA3QAkAniF5/l9jm0DAbwFe7KFQgAxPM+vqbIvC2AZgNkAvAEcA/AEz/MJVco0uQ7ScDKr4yZV/e+N6M9+YTj+w34MDvBrpVaRtiwzMxMAEBLSpcbtDANYBSsE6cq/8xIAhUqBNUkJsEkiNshkUNZYAyGEEPKvgwc/9x858ubCqVOnFQBAZGQ3c2pqivrbb7/2owCo43MmilfDnu66JjagcfcfHMc9AGAbgPcA9AWwF8BejuNucKw19D2AS7AHL8sArOA4bmaVKl4G8DiARwDcAPs90WGO45SO+ptcB2kchSP7GzRul98zefoh02RCsWN+ECFVlaQm4xpPL/TwrTlAti+Caq55m4LFieJCnCophlloUyMyCCGEABg+fMjg3bt3+s+a9QA3evQNg6ZOndL7u+8OX7HmwZEj33o+8MA9vUaPvmHQXXfd3nfDhjUhZrP5cnabuLiL6meffSJq/PhRA0eOvG7QXXfd3nf79i01pw0FsGPHloBRo64f9O23X3vVtP3xx5/KmD59Zk719/X6ChpH3Qk4EwCdAvBELdumAfizoRVxHMcAWAFgPc/zb/E8n8Dz/AoAR2BPqvAoADOAOTzPx/I8vx3AegALHPsrYV+XaBnP81/zPP83gHsBdAFwl+MwrqiDNJAkSVBIjnTEGvfL76vU9oxwelqsktRAlZGJRT16YmAtc8QYhoGx2hpAlayiDRqN/foyGAw1liGEENK6tm/fHDp69Jii99/feWHIkOtKV6xY2v3UqZNuAHD06BHdypWvRE2YMLFg27bdF5555oW0Y8d+9lm8+MVIADAYDOwLL8yNVqs14saNm+K2b//owvDhNxVv3bqp67lz/2iqH2vXrh3+O3duDV2yZHni+PG3ldTUnmuvvV7fvXuPy0/WSkpKZIcPH/IfMOAaGqvfCTgT5b4M4AjHcWcBfA17b8l9HMe9CmC8419DcQAiAHxU9U2e58cDAMdxXwP4hef5qqmffgSwiOO4AMe+Ho73Kvct4TjuDICbYO9NGuGCOpwml7t2qKxMxl7xta0RTabLUbXMXQeWtT+8CTUbcE9IKIxms8vPSXNo6+e5o7h8fsvKAKUKKn//Gq8PRibBIpgvX09VWUUrBvj4QmY0wpSfC3lEeHM3u12ia7pl0HluGXSe25/Ro8cWTJ8+Mx8A5s1bmHn+/N8e+/btCRg69LrkXbt2BI8ZM65g2rQH8wH7cDS5XJ66YMHz0WlpKUqt1k2cNGlK3n33Tc/T6XQiADz11HNZn322Lyg+Pk7Tr19/Y+Vx9uzZ5bdt2/uhy5a9ljBq1JgGBTMVFRXsvHlzu1utFnbu3BfSm+Pzk7al0QEQz/O/chx3C4A3AMwHwAB4HsAZALfzPH+0EdVFO766cRz3LYBrACQDeI3n+S8BhAKons0jy/E1zLEdAKpfrFmO7XBRHU5hWQbe3m71F3SCTnfVA482wVJsz4khShK0nt7QaOyjCDXmMtwQEopfDBXNdk6aQ1s9zx2JJElQGI2AUoWA7t1qvD5MVjMYOQO15upRqYwcmOIbgEilEmxeVru6vloDXdMtg85zy6Dz3H4MGjTkijHwHNdLf/bsGR0AJCcnaxMTE9yOHj3iW7m9cjBJQkK8+uabbym7//4ZeYcOfeGTmBivzczMUKWmJmsBQBDEy0/GiouLFe++GxMuk8mk0NCwmsdNV5ObmyOfN29uj9zcHNWqVesuRUREWurfi7R3zi6E+guAGzmO08CeNKCM5/kKAOA4Tl6tt6UuOsfXDwC8CvuwtLsBfOEIsrSwD1+rqnIcjNqxHbWU8XF874o6nCKKEsrKXDskRyZjodNpUFZmhCC0dOKX+lly7ev8mEQBkkwFo9H+e0Qpt6fElgkCiovb/jC4tn6eOwqZjIXVaoCnI+WoW1BojdeHILPCYDTCZLz675JRaYbg6BkqLShpF9dXa6BrumXQeW4ZzXmedToN9Sw1A7lcLlV9LUkSWFYm2b8XmcmT/5MzadKUwur7BQYGWfPycuWPPvpQLw8Pne3664eVDB58bVn//gP09947uX/VsgzDYvny1+O3bXs/ZOXKVyK3bv0wjmVr/1nGx/PqefOe6SEIArNhwzt87959jbUWJh2KM+sAJQGYwvP83zzPGwEYq2y7FsBhAL617V9N5d3M/3ier8wed5bjuEGw9yoZAaiq7VO5uIy+yrFVVdvhKFN5F+SKOpxmszXPH0BBEJut7ibx8MTrKYmwms0Yq9BAFO2/7ySV/SmdXGyj7a5Fmz3PHUhKSgr8lPaeHaVfQI3nW4AAi9V6+XqqyiYIEBx/4Cx6Pf286kHXdMug89wy6Dy3Hxcvnne75ZZbSytfx8VddI+KijIAQGhomDE9PVXdrVvU5YfRJ04cc//4448CFy1amnro0Be+FRXl8n37Dp5XKBSSoz5H99+/fxe8vDytI0eOLgsICLA8/vis3tu3bw58+OHHcmtqT2pqivLZZ5+Mdnd3F9au3XgpNLSrtaZypGNqUADEcdx9ABSOlxEApnAcN6CGomOqlGuIDMfX6kPULgCYCPs6QyHVtlW+zqxyrBDY02dXLfO34/t0F9RBGkoux9mCfADABNW/abAZR0Y4FRjYbDbIabFK4pCanAx/x5pRCt+rO10ZBhAkAVax5gxvgihAlMsAEbAZKQkCIaTzYFWaFu2qasrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXW/ajjca68ti7DZrOzLL6+IVygUUm5uzuUbk8DAoIaOZCLtVEPvQocAeM7xvQRgaR1l1zbi+H8BKAdwPexr71TqByABwG8AHuc4TsbzfOXdzxgAPM/zeRzHlQIogz1jXCIAcBznBWAQgLcd5X9xQR2kgYxVbkBVVdYBYjUeAACNTAaDwQCdTnfVvqRzyr4Uj0CGgQBA5nH1dWFfBFWATaj575EgCpBkMkAUYDPWnCmOEEI6EkmSREaptblz18nRwguTMkqtTRKlRne7jRs3IX///r2BGzas0YSHhxveeGNNfJ8+9iFnt98+qViSpKQ9ez4M/uyzT4K0WjdhyJBrS557bn5G5fa4uNiczZvf7bpx4zrWz8/fMn78bQUnThz3io294AYgv/rx5sx5Ovv48V+8V658JWLLlg/4qkPhsrOzFLGxFzwA4PHHZ/auvu+xY3+ebuznI+1LQwOgRQBiYE94kAR7eui/qpURAJTyPN/ghV54njdyHPcmgKUcx2UC+APAVADjYA9SLsKeaGGro9y1AJ6Ffc0e8Dxv5jjubQCrOY7Lh73H6H+w9/p85jjMNhfUQRqoPCUZEwKCkGsxQ674d8I6o7EHQxpWBoNBTwEQuSw5Jxs/J8XjtptvQa8axmozDANBtMEq1hYAiZAUCsAqQDRTAEQI6fgkCYJRVGQzCq8Wn6wkiZIoSWj0omuRkVHG+fMXZ9S2feLEO4snTryzuKZtDMNg3ryFmfPmLcys+n7V4W1z5z6fNXfu85VJrqBSqaR9+w5eqKm+4OAQKwU5nVuDAiCe5y0AUgGA47hI2DOk9eV5/i/He0GwBxaHG9sAnudf4zjOAGAl7GvvxAK4i+f5nxx1j4c9+DoDIBvAi1XmCwH23ig5gC0ANLD3+Ix3tBmOXp4m1UEazpCQgJlhEfi7vAwM82/KYkFun4alkcloLSByhcT0dPxRVIg7hgytcTvDAFZRgFDLEDibKAAK+68y0dygpD+EENLuSRIESZJo9WdCnODMRAwBwFnYkwREOd4bCOAAgFMcx93O83xBYyrkeX4dgHW1bDsF4IY69hVgzx63oI4yTa6DNIxFXwEWgJVhr5gMZvbyx6qsLOQU5WG1gQIg8q/U1FQAQGhozVnnGYaB2Vb7swhBFJDr44Uf/zqLgZGRzdJGQgghhHQczgRA/wMgA3Bv5Rs8z3/jSIrwMYBVAGa7pnmkvbHq9VABsFVbsFJSKJHFsMgxmWCgAIg4GI1GBBpNCPH0Qhdv7xrLMAxgstU+tE2URJh9vPBrUQGCmquhhBBCnEbDzUhb48zY0TEAFvI8/2fVN3mePwf7ULLbXdEw0j7ZDPYkCFZWdtW2yqQIej1l6iJ2mZkZuCckFIt69IQsK6vWcmZb7UPbBFGAWmPPbG+kLHCEEEIIqYczPUBKALVl/zAB8HC+OaS9sxntSykJsqsvrVFubqgI7gJzWUkLt4q0VenpaQhQ2ueHKf0DaiwjQoS1lgxwACBIIjxYFoM9veBdXtYs7SSEEEJIx+FMD9AJAM9xHHfFej+O188COOmCdpF2qjILl1hDAHSLQoZ7u3SFuaSkhVtF2qrMlGR4OxZBVfj51VhGkATYaskAV8nTaMKCHj0xxECLeBNCCCGkbs70AC2Bfc2eZI7jDgPIA+AP4FYAfrCvp0M6KclkD4AE+dXr4VoZBkpIsFAWOOJQlJwMALCyLFg3txrL1NcDBAAyjb0XSSbSivCEEEIIqVuje4B4nj8N4DrYe4ImAngRwGQApwAM43n+D1c2kLQvScHBeCM+Dpmaq29mrY602Daap0EcjDnZAADB3f2KtOlViZJoT3VdB8YRACkkybUNJIQQQkiH40wPEHie/wfAPS5uC+kACgD8VVoCb437VdtsDAtI4uV5QoQIRUWAuw4yX98atzOMYwhcPT1ArNaeBEFO8Q8hpJNgGMgYhmn5hVAl5xZCJaQtcSoAAgCO4yYAuAVAMICXAFwD4DTP86kuahtphyqzcClV6qu22VgZINposUoCALDZbFAajIC7Du5dutRYhmEYCA3oAWK19h4geS29SIQQ0pEwDGSSXAg2CEan7+OcpZFrbIxNlt3WgqCYmHUhP/74ne+BA9+ca+g+O3duDTh48POAwsJCZWBgoPnuu/+b89//3l/YnO0kbUOj/+NwHKeFfdHTsQDKYM/69j8AcwBcw3HcSJ7nL7iykaT9CCwowEhff7jJrp4DJMhkgA0QTRQAESArKxPf5WUj1WzEqtHLaizDMIAg1J8EgdXYEykoKQAihHQCDMOwBsEo/yPjrGi0mlps8qNGoWavDR0od2M8WEmS2lQA1Fi7d+/037lzW5fnnpuX0r//Nfrffjume/vtDREeHp7ChAm3l7R2+0jzcubJwesABsO+HtCvACqXaJ8O4FsAKwDc5ZLWkXZnYEkphkVG4Rv26l55wREUSRYKgAiQmpqCLJMJnpHecIuKgs1W099wxjEErp4eILW9x1HGMJBsNjDyFn8oSgghLc5oNYl6i7Gls7+0+LC75lBRUSGbMWNm5h13TCkGgPDwiIJDhw4E/PnnSR0FQB2fMxfxvQAW8Tx/FMDlEfc8z+cAeA3AcBe1jbRDcsckdEatuWrbuYBwLIk9D76e4Uykc0hJsWeA69atW61lGAawCFZIqHtyD+uuxZbUZPxfciKstrp7iwghhLSs4cOHDN69e6f/rFkPcKNH3zBo6tQpvb/77rBn1TJHjnzr+cAD9/QaPfqGQXfddXvfDRvWhJjN5svd+nFxF9XPPvtE1PjxowaOHHndoLvuur3v9u1bal5ADsCOHVsCRo26ftC3337tVdP2xx57Muehh2bnAYDVamUOHPjUJzMzQz106HW0oFwn4MxjUi8AKbVsKwZw9ex30ilIoghl5Qv11VngDDpfXNJXwNOxVhDp3LKSEjEhIAiDfWpOgADY5wCZBUut2yspNAp8l58LALDYbP9eh4QQQtqE7ds3hz744MMZixYtTfnii8/8VqxY2t3b2ydu6NDr9EePHtGtXPlK1OzZj6cPGzaiLC0tRbVx4/qwjIw09Zo1MUkGg4F94YW50f36DSjfuHFTnFyukA4c2O+3deumrkOGXFver1//K7Ir7dq1w3/nzq2hS5YsTxw7dlxpXe36/fff3F988RlOkiSMHj22YPz420qa9USQNsGZHqDzAKbVsu0Ox3bSCVUd2saqtVdtVyjsE9WNlAWOADCkp2JmWAR6pmXUWoZhGFhs9QdAjFx2OY22yUTXFyGEtDWjR48tmD59Zn6PHtHmefMWZkZFddfv27cnAAB27doRPGbMuIJp0x7Mj4zsZh458uay5557MfX333/zTktLURoMenbSpCl5L720LDU6uqepW7co81NPPZcFAPHxcVcMOdmzZ5fftm3vhy5b9lpCfcEPAERFdTe9++62i3PnPp9y4sQxn7VrV9WclYd0KM70AL0G4HOO43wBfAn7MLiRHMfNBPA4gPtc2D7SjlQmNxAlCbIaeoD8LEbcHhgEwUpDlAggFhQAfgFQBgbWUUqCSah/zpgkSejr7QO5IMBYUgL4+busnYQQQppu0KAh5VVfc1wv/dmzZ3QAkJycrE1MTHA7evTI5SEBlcu6JSTEq2+++Zay+++fkXfo0Bc+iYnx2szMDFVqarIWAARBvDxMrri4WPHuuzHhMplMCg0Na9CEY3//AJu/f4Ctb99+xuLiYsWePbtC5s59IUupVNLCCh1YowMgnue/4DjuAQCrANzmeHstgDwAj/M8v9+F7SPtSGV6a5MoQKa8eg5QYHkRhneNwO/6ipZuGmljKioq4G61AgC8IiNqLSdArHcNIAAQJBFPhkXAR66AKScb6N7DVU0lhBDiAnL5lSu1SZIElpVJ9u9FZvLk/+RMmjTlqhTUgYFB1ry8XPmjjz7Uy8NDZ7v++mElgwdfW9a//wD9vfdO7l+1LMOwWL789fht294PWbnylcitWz+MY2tIygQAP/74vS40tKslOrrn5XH5UVE9jDablSkqKpQHBQVbXfLBSZvU6CFwHMf14nn+I57nwwD0gj3pQV8AITzPb3V1A0n7IVnsQ5UsogiF8up1gKCyB0UyqaUT1pC2JjU1GcGOtaI8IyJqLSc2IAOcvZwIq+NPq0Wvd0UTCSGEuNDFi+evGBoSF3fRPSoqygAAoaFhxvT0VHW3blHmyn+5udmKmJi1oRUV5eyXXx7wragol2/btivuySefyZ4w4faS0tISx0P8f+MqLy9P68iRo8sWLlySkpSUoN2+fXOtQwy2bNkUun37lqCq71248I+bu7u7LSAgkIKfDs6ZOUDfchw3AwB4u994nr/I8zzd1XZyrLc3Vifw2JSSBLlSdXUBR1BUmSmOdF4pKSkIcqSuVocE11pOhFjvGkAAIIoiBMcgCIuBAiBCCGlrvvzyQOCBA5/6JCTEq1avXhmampqiue++GbkAMHXqtJw//vjdOyZmXUhCQrzq2LFfPN588/VIvb5CHhgYZAsMDLKYzWb20KEvvDMy0pQ///yj7tVXl3QDAIvFctW9bK9efUxTptyTs3v3zpDExIQabkiAqVMfyD527GffDz/c4Z+UlKjas+dDvwMHPg26//4ZWbX1GpGOw5k5QHIA+a5uCGn/bDIWp0uKAQC3Kq9OgsA4EiMoJHvXN0OLVnZaqSlJGOHoAdKEBKO2vIASJAgNSJsuSCJEx/VkpSQbhJBOQqNQt+idelOON27chPz9+/cGbtiwRhMeHm5444018X369DUCwO23TyqWJClpz54Pgz/77JMgrdZNGDLk2pLnnpufUbk9Li42Z/Pmd7tu3LiO9fPzt4wff1vBiRPHvWJjL7ihhvvSOXOezj5+/BfvlStfidiy5QO+elAzadKUYkGwJe/duzt469b3uvr5+Vkee+yptKlTpxU4+xlJ++FMAPQygI0cx62EPeNbbvUCPM+nNbVhpP0xGAwA7Jm75IqrExFXrg2klslgMpmg0Vw9T4h0DnnJSVDJZBAZBqqAAJjKr56ryjCAIAqwNnAInOAIgAQKgAghHZwkSaJGrrFdGzpQjhZemFQj09gkW+PHskdGRhnnz19ca9rPiRPvLJ448c7imrYxDIN58xZmzpu3MLPq+w8//Njle9C5c5/Pmjv3+azK1yqVStq37+CFuto0Zco9RVOm3FPU8E9BOgpnAqBNAGQAtgK1rk4oc7pFpN2qyMzATb5+KANQU/cx68gMp2JZCoA6OT4tFYszMzD/iafByuUAakrWw0CQBAgNGAIniCIEGQtIgM1E60wRQjo2SYLA2GTZboxHi4/VkmySKEmgFc1Ju+ZMADTb5a0gHYI5MQFPRXbHhVrmYEiOdYBUrAxGowHe3t4t2TzSRgiCgMSUJFgsFnQZfXOt5RgGECQBtgYMgRMlEZJMBthECoAIIZ2CJEGQJIkCEUKc4EwA1AXAFzzP19mtSDofq9EIBQAbGChq2G7x9MXa9FQUVpRjNQ1T6rQyMtJgsVigVqsRGtq11nIMw0AQxAYHQPEaJX69EIuhQ4a6srmEEEKa6NixP0+3dhsIqcqZrtP5AGq/ayGdls0R1AhszckNRKUavNWGBH0FzGYKgDqrhIR4TAgIwn+je0IoK6u1HMMANtEGsYFDzXN0bvgmLxclCmee6xBCCCGks3AmALoEoJ+rG0Lav8qhRwJT+xSwyvWBjNQD1GklJiZgSnAIJirVsBXVPveUYRiYhYYvxaBU2hNvmGgIHCGEEELq4Myj0kMAXuM4biJqzgIn8Ty/osktI+2OYHYEQLXlz5ckjNDpYBSDYKqoaMGWkbYk/RKPUY4sgaqQkFrLMQxgsdWUHKFmOhmLXu4ekJeWNLWJhBBCCOnAnAmAXnF8HeH4V50EgAKgTkg0229WRVntPUD/9XAHq/NARh1Dn0jHZkhLBXReENw9wDoWQ60ZA7NgaXC9UeVGTOrZB0l5tEwZIYQQQmrX6ACI53laHpfUSLTYb1ZFtpYAiGFgBaACYNXXnCmOtC2uXrDWarVAWVYK6Lyg6tKl7mNDhKURQ+AkpePXma3+tNmEEEII6byaFMxwHNeT47jrOY6LclWDSPuV7e+Pt5LikaSq/am+BfabaWstqbJJ2xAfz+Puu+/A0KH98eqrL8NqbXggUpfU1BSEKO3p0D26dauzrAgBQgMywF3mSH7ANGDhVEIIIYR0Xk6lS+I47j4AawAEVXkvB8Ainuc/cFHbSDtTpFDgeFEhRjgWPK2JjWEASLAZDS3XMNIoZWVlmDt3DrKz7Qtqf/75PkiSiFdeWdnkuuPjL6GrRgsAUIWE1llWlKQGpcC+TGWfV8QK1ANECOn4GAYyhmFafiFUiRZCJe1fowMgjuPuALALwI8AXgKQAyAEwAMAtnMcV8jz/FcubSVpFyozuykcC57WxMYwgCTBSlng2qy9e3eBLS7G6/2vQVdvH+zjY/HFgU8xYcJEXHfdDU2qOy72IkaoNQAAZT1D4ESIsDUimGFU9tWnGLFhabMJIaS9YhjIVKI1WDAYWjzvv0yrtZlZRXZbC4JiYtaF/Pjjd74HDnxzrrH7SpKEJ56Y3cNms7KbN3/AN0f7SNvizH+cJQD28Tw/tdr72zmO2wtgEQAKgDoh96IiXOvlDc86kiDYGBkgiRAoVXGbZLVa8fW+vVga3QveSiWg1+OB0DCYBAGbNr3d9ACIj8W+82ex7PGn0T249gxwgH1x08b0AFUGQDJRalIbCSGkrWMYhhUMBnnhyZOizWBssac+cq2G9b3uOjnj4cVKktSmAqCm2L59c8C5c3/revXqTSlqOwlnAqB+AJbVsm0HgH1Ot4a0a1xeHoZ353C0jptWgWUBEbCZG57emLSc06dPYYxGC2+lEoqQLvAcdiPK0tLw89nTMOfn4ty5v9Gv3wCn6pYkCbGxF2EQBISPuAmsQlFrWYYBBKlxc4BYxxA4mUQBECGkc7AZjKJNr2/pbu8OlQzr4sXzmr17d4V0796DJid3Is4EQAUAfGvZ5geg4XlrHTiOCweQUsOmR3ie38Jx3EAAbwEYAqAQQAzP82uq7M/CHpTNBuAN4BiAJ3ieT6hSpsl1kLqxjqFHjLL2IXB/6gLwwe/fo0+Xup/+k9Zx7Mi3uM0vAAAQeP8D0PbsBR8A49JT8OWXB7B79wdYtWqtU3VnZWWirKwUcrkCUVHd6yzLMAyERvYAWX10+CgjDayHDjc51UJCCCHNYfjwIYPnzHk67YcfvvdJTk50CwwMMs2a9WjmuHETSivLHDnyreeOHVtCMjMzNN7ePpabbhpdNGfO09kqlUoCgLi4i+pNm97uEht70cNkMrK+vn6WO+6Ykjdz5uy8mo65Y8eWgB07toQuWrQ0afz420pqKmMymZjly1+OnDbtwaxLl+K0eXm5td/AkA7FmSj+CIBXOY4Lq/qmI4hZBuA7J+rsD8AE+1yi4Cr/dnMc5wvgewCXYA9elgFYwXHczCr7vwzgcQCPALgB9rWIDnMcp3S0rcl1kPpVBkBSHXOACt28cLasBCU212QVI65l+udvyFkWVm9vaHv2uvz+vfdOAwPg/PFfodc7N0IgNvYCpnUJw5N9+kIqKqq3vCA2rgdI8tHhQE4Wfi2pv25CCCEta/v2zaGjR48pev/9nReGDLmudMWKpd1PnTrpBgBHjx7RrVz5StSECRMLtm3bfeGZZ15IO3bsZ5/Fi1+MBACDwcC+8MLcaLVaI27cuClu+/aPLgwfflPx1q2bup4794+m+rF27drhv3Pn1tAlS5Yn1hb8AMDatatCvb19rDNmzKoxiCIdlzM9QC8B+BMAz3HcCdiTIATBHjQUAVjoRJ39APA8z2dX38Bx3LMAzADm8DxvAxDLcVwPAAtgn3ekBPACgPk8z3/t2OdeAFkA7gKwF8CjLqiD1EPWgB4gudIeT5rNNAeorcnPz0N8Tjb+BoPhd9x5xbYefn54a+BgyEURPx75DnfceVej64+9eAGj/fyhUyggGurOAmjvARJgExueBEHuSINtpuGVhBDS5owePbZg+vSZ+QAwb97CzPPn//bYt29PwNCh1yXv2rUjeMyYcQXTpj2YDwCRkd3Mcrk8dcGC56PT0lKUWq2bOGnSlLz77puep9PpRAB46qnnsj77bF9QfHycpl+//pczK+3Zs8tv27b3Q5ctey1h1Kgxta66fvToEd2vv/7ks337Rxddud4daR+cWQg1h+O4QbAHDCNh71EpAhADYB3P87lOtKM/gIu1bBsB4BdH4FLpRwCLOI4LABABwMPxXmUbSziOOwPgJtiDF1fUQeohlyT75A3lVQ9jLgu0WTHK1x86A2WBa2vOnj2Dv8tKYQwKxtS77oISFkiMHGaBhcLXD94aLVRWK05/9SXgRACUGXcROoUCEsNAGVp3CmyGAWyiALER83nkcjkiNFq4sR1qeDohhHQIgwYNKa/6muN66c+ePaMDgOTkZG1iYoLb0aNHLk+xqPz1n5AQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8XL0UlxcrHj33ZhwmUwmhYaG1fo0rKAgX75mzaqIp556Li04OISGpHRCzqZPLASwl+f5BQDAcVwwgKGwB0LO6Acgm+O4XwFEA4gHsILn+W8BhAKontIwy/E1zLEdANJrKFM5TM8VdThFLnftzZhMxl7xtS2pvJhkajVYtuanKVH6ItwaGYWTFqvLz40rteXz3FzOnTsLABg8eDBUMMGccg4yrTs0wT1hkamgGzMG5m++QV+DAUWFeQgIDKq7wiokSYKUlgYEhQCBQVBq7Ivl1nae5XIWNqO11uuoJgpIeLNPf8cBBcjrSLLQGXXGa7o10HluGXSe2x+5XH7FEy1JksCyMsn+vchMnvyfnEmTphRW3y8wMMial5crf/TRh3p5eOhs118/rGTw4GvL+vcfoL/33sn9q5ZlGBbLl78ev23b+yErV74SuXXrh3FsDQ/FfvrpR8/S0hLF+vVvRqxf/2YEANhsNkYURWbMmBuvWbnyf/HXXz+MMsJ1YM6sAxQK+zwfFYAox9sDABwAcIrjuNt5ni9oRH1K2IMePYAXAVTAvqbQYY7jbgGghX34WlWV46fUju2opYyP43tX1NFoLMvA27v2RUGbQqervZelNUiSdPliUrq5Q6OpeeqUTWUfHseIQrOdG1dqa+e5OeXH8/BWKDBk8DVgy3OBinyIphLIfQLhFhCGgQ8+gJ8PH0YXtQZ/ffoxpi5+qcF1JyYmIsyRHj146OCrfvY1nWfJIEBdy3VUEwXz768zlUyErh1cX62hM13TrYnOc8ug89x+XLx43u2WW269nPQgLu6ie1RUlAEAQkPDjOnpqepu3aIu34edOHHM/eOPPwpctGhp6qFDX/hWVJTL9+07eF6hUEiO+hw//H/jKi8vT+vIkaPLAgICLI8/Pqv39u2bAx9++LGrRiaNH39b8aBBQ64IcN5+e31oYWGBYtmylcnBwSGNTuhF2hdneoD+B3vyhHsr3+B5/huO4wYA+BjAKtgzqTUIz/MWjuO8ANh4nq+88E9zHNcLwDwARtiDrarUjq96x3Y4yhirlalMaeiKOhpNFCWUldU916GxZDIWOp0GZWVGCELbWfBREkXsKS1GRUkJet2shtFY8+8OhnUsVmkTUFzcdjNOttXz3FwkScKAolLMHDAYsoJC6HMzYDGaAZghZSTCpvKCRZShJDwcQWlpEH4/1aif3y+//Iae7h4AAEVk1OV9azvPCoUM5QYjTLVcRzVh2H+DpdyMXAgsJfOpqrNd062FznPLaM7zrNNp2k3PklyradGGNuV4X355IDA8PNLUt29//aeffuKfmpqiWbDg5RQAmDp1Ws6qVSu6xcSsC7nttjsKc3KylWvXrorw8/OzBAYG2QIDgyxms5k9dOgL76FDr61ITExQv/NOTFcAsFgsV7WpV68+pilT7snZvXtnyKhRY0qiorpf8YDbw8ND9PDwuOI9jUYjKJVKedUgjHRczgRAYwA8yvP8n1Xf5Hn+HMdxSwFsbGyFPM/XdCd1DsCtsA9Lq54zufJ1JgBFlfcSq5X52/G9K+pwis3WPH8ABUFstrqd9WtRIYqKCtFHpYFYy2KUrNx+qlmx7bW/Jm3xPDeH7OwshCjsAUQIFwVLWcnln6GppAAKQykklTd6TJ2G4tUrEcGySP3jFLoMGtyg+s+f+gN3aewdrcrI7led0+rnmWEBs81S63VUE1HGwCKKULIsKkpK4RXS8X9uzugs13Rro/PcMjrreZYkSZRptTbf666To4XX5ZFptTabJDX6pI8bNyF///69gRs2rNGEh4cb3nhjTXyfPn2NAHD77ZOKJUlK2rPnw+DPPvskSKt1E4YMubbkuefmZ1Ruj4uLzdm8+d2uGzeuY/38/C3jx99WcOLEca/Y2AtuAPKrH2/OnKezjx//xXvlylcitmz5gK9pKBzpvJwJgJQAarvwTbAnE2gwjuP6A/gNwK08zx+rsmkIgAsAzgJ4nOM4Gc/zlTlxx8CeNS6P47hSAGUARsERvDh6lAYBeNtR/hcX1EHqYTLZRxXK5LU/eZcUjrkfYuf7g9WWJVw4hyC1/Wej9feEKeffvyWi2QihLB+yIB8ER3P4HUAfAJe+PNDgACjz4gUUadzg4e8PmUf9vyJENC4FNgCIkgirJEEJwFxBQ7cJIR2XJEEws4psxsOrxe/qbZIkShIa9wsaQGRklHH+/MUZtW2fOPHO4okT7yyuaRvDMJg3b2HmvHkLM6u+X3V429y5z2fNnft85fxuqFQqad++gxca2r6VK/+X0tCypP1zJgA6AeA5juMO8zx/OXMGx3EKAM8CONnI+s47/r3Lcdwc2BdafRT2tNpDAeQCmA9gK8dxbwK41nGcxwGA53kzx3FvA1jNcVw+7Auq/g/2Xp/PHMfY5oI6SB0EowF9VCoYZDLI6wiAKlNkyxqR3Ys0v4K4WAQC0LMMIF6dotxakg+1fyQAOZhhN2L5jq2AyYDRDai7qKgIv8bz+BXAkS++aVB7BElq1CKowL8BEACYDRQAEUI6NkmCIElSowMRQohzAdASAMcAJHMcdxhAHgB/2Ier+cHei9JgPM+LHMfdAfvcoX0AvACcAXALz/PnAIDjuPGwp9k+AyAbwIs8z++sUs1Sx2fZAkADe4/PeJ7nLY5j5DW1DlI3Y04OXoyKRqnVikRFHRPXlfZeBgUFQG2KOT0NAGB0d4NgvHpEqrWiFGpzBVilN0ZMvhvL/+8tiOf/QWZmBrp0qTul9cmTvwEAoqN7wi88okHtkSA2vgdIFFGZ595azzpDhBBCCOm8nFkH6DTHcdcBeBnARAC+AEoA/Ap76uqzTtSZD+DhOrafgr1HqLbtAuyLmi5ozjpI7UyOIUdmUYSijoVQTf6hWJ94CcVWK+6QJNDiY22DrNCewV4W4A/BfHXwIFpMEPUlkGl84evrhyFDrsUff/yOI4cPYfqMWWCVtQe9p347BgbA9dcPa3B7REmETWj4IqiV+/xuM0Ofm41b5M5m+CeEEOJqx479ebq120BIVU7dJfA8/w+Ae1zcFtKOmfX2AMgqiZDJar+sRE8/nCi232ybzWao1epay5KWozWZALUauq7BEC01J8CxluZD5RcOKxiMGzcBvikpGHjiBMq6dYfXzWNr3EeSJPjxPN4fMBgynWeD2sIwjgCokfPEJAB/shIuZmfiRjmtAUQIIYSQmlFKDOISFr2918Baz8g2RZWeArP56rkmpOUZjUZ8lZmOA9mZCIyqfd1fm6ECjNUEhgHGjBkHiWGgYRjkHf4KUi3BSvylOAxWa+CpUCCi34AGtoiBIAkQxMb1AAGASm3vfTSZjPWUJIQQQkhnRQEQcQmrwT5vxFbPiDaFIOAGH1/c4O0Dk4lS7bcF6elp+K24EF+Vl8EnuPZ1fwVjBSSLHizLwtvbG4Zu3VBhswHFxSg/VXPuk78+2w9vpRJGAN6DhzSoPQwDCJLQ6CQIAOCjUCBMo4W1tLT+woQQQgjplCgAIi5hMTp6gFB3BCQ3VeC5bj3wWHg36gFqI9LSUgAAEeFhkKy1B6WSYINQUQyWtf+Mbx5/G77MtWccLdj3CUTzlftKkgSPuFgAgCmqO5gGzsthGAaC2PgkCAAwRmCwpk9/aDPSG70vIYQQQjoHCoCIS9iM9iFHQj1JDUSZfW6GkmVhsVAA1BbkJsSjl7sHeoQEQ6jnZ2IrL4ZMsg9Nu/nmW3CkpBh5ZhNsJcXI3/fxFWXjv/8W3RVK2CQJ3LTpDW4PwwA2SYDQ+HX2IMpk9q9m6l0khBBCSM2aHABxHKfmOI5SeXVyem9vbE5Nxp9C3U/tRcfkdDnLwqSneRptgSolGa/27IORVrHWBAiVbEY9GMEeJOl0Otw68U5sTk0GAJT+9CNKfvnJXq60FPrP9gMA4lRKeIWFN7g9DMPAYnMu+7wotwdAkoWy1xNCOjaGgYxlGUVL/2MYyFr7sxPSVE5lgeM4jgOwHMAtAHQAruU4bjaAWJ7nN7qwfaSdqFCp8X1+LnoFdsG1dZSTqmTnstSw3gxpeYxjvgzrpYNks9ZZVjDpIVmMkKndIAgipk2bgcn79mJ/VgbuDgmFTOsGACjIzoLcYkGOxYKuM2vNcF8rq1B3O2ojyuzPdCSrc/sTQkh7wDCQsQwbbDHZWjznv1Itt4kQsyUJtAgrabca/R+H47iBsC8SmgdgN4AnHJssADZwHFdWbYFR0glUZt2qaw0gAJBYGURJAsswMDvWDiKtS200AnIF1H5e9ZaVbFaIxnKwWn8IAhAR0Q0TJkzEJ4cPodzfD8sHDAQAvPPRByhNTYIUEoq3hg1vVHsYhoFJcK4HR6rsAaIAiBDSgTEMw1pMNnns+WzRbLI1frywk1RqOdurb7BcoZaxkiS1qQAoJmZdyI8/fud74MA35xq6zyOPPBgdG3vBo+p70dE9K7Zt28W7voWkLXHmycEaAH8CGOd4/SQA8Dz/LMdxWgDPAKAAqJORCgrQx0MHP0XtC2ICABgGNgBKADZKVdwmeDhSWOv8a88AV5WtvAgKv4jLr5955gX8+utPOPz3WZjmP4eQkC44ePBzMAyDbWvecmKxWwlWJ4fASQr7rzQKgAghnYHZZBNNRmuLBUAOHWb+eHp6qmbOnKfTxo4dX1z5nlKprGdBD9IROHMR3wBgPc/zNtjXHqxqL4DoJreKtDs+KclYxvXGwAbc61ocV03l2kGk9RgMeng5Fq71DfJr0D6CUQ+2SoASFBSM1157E3K5HEePHsHu3fbnH088MRfXXDO40W1yNgU2AMARADFC49cQIoQQ0nlkZ2cpKioq5P37X1MRGBhkq/zn7e3Tpnq2SPNwpgfIBEBbyzZfx3bSyVQ+ca86x6c2X9kk5GQk4FbZrc3dLFKPnNRUqB2Z03Q+OgjG+tfPEUwGSDYTGJkSkmSPZkeNuhlbtnyAXbt2wGAwYNKkKbj11tudapMI0ekAqNTTDV+c+gfaqG5O7U8IIcT1hg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzfh8h+dI0e+9dyxY0tIZmaGxtvbx3LTTaOL5sx5OlulUkkAEBd3Ub1p09tdYmMvephMRtbX189yxx1T8mbOnJ1X0zF37NgSsGPHltBFi5YmjR9/W0n17XFxFzUMw6BHj2i6b+2EnAmAvgPwKsdxxwFkO96TOI5zBzAPwBFXNY60I5cDoPovqVhWiYtFhRjp7FN+4jIFSYnwAqAXRTBsw3r9BbPRngjB3RM227/7DBw4CAMHDmpym0RITq0BBABl/t7YnZmGGyMimtwOQgghrrN9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FmPpdu3b479y5NXTJkuWJY8eOq/HJXkJCvEardROWL385/Ny5v3VqtVq48cabiqsGXaTjciYAmg/gBAAewFnYh8GtBcDBPqRuqqsaR9oRm33IkSSvZw4QALljnpDJRGu1tLac8jLsS01CdLdu6Gtt4LwbSYSoLwGrC26WNkkQYROdG8KmUNp/pdEiu4QQ0raMHj22YPr0mfkAMG/ewszz5//22LdvT8DQodcl79q1I3jMmHEF06Y9mA8AkZHdzHK5PHXBguej09JSlFqtmzhp0pS8++6bnqfT6UQAeOqp57I++2xfUHx8nKZqALRnzy6/bdveD1227LWEUaPGlNXWnuTkJI3VamX69x9YMX36QzmxsRe0mzdv6pqbm6N84401Kc18Okgra3QAxPN8OsdxAwA8D+BmAIkA3AF8BGAdz/PZde1POihHAIT6kiAACJPLoPbyBsrqH25FmldGUSG+z8+D943XQ2xE4gGbvhRK0QbA9UuACZIAQXRuTq9SLoO/UgWNmdYBIoSQtmTQoCHlVV9zXC/92bNndACQnJysTUxMcDt69Ihv5XbHCGskJMSrb775lrL775+Rd+jQFz6JifHazMwMVWpqshYABEG8/IeouLhY8e67MeEymUwKDQ2r8ynrihWrUioqKtI9PT0FAOjVq49JLldIb765slteXm5GQEAgTSbtwJzKH8/zfCGAxS5uC2nH2MoFUBsQAN0kmhHRncM/RcX1liXNq6AgHwAQ4OMNNCLoEExGsKIFQN1pzxuLYRgIovM9QD6levxf/2uQTUkQCCGkTZHL5VcMK5MkCSwrk+zfi8zkyf/JmTRpSmH1/QIDg6x5ebnyRx99qJeHh852/fXDSgYPvrasf/8B+nvvndy/almGYbF8+evx27a9H7Jy5SuRW7d+GMeyNef7kslkqAx+KkVHc0YAyM7OUlIA1LE5uxCqJ+y9P26oIZMcz/MfNLFdpJ1hK2+e61kHCABElgUEQLTQELjWJs/LQ093DwS4qRu1n2A2QLKawSrUEEXXDZVmGEBsQhY4VmUPwGU0epsQQtqUixfPu91yy62Xh37ExV10j4qKMgBAaGiYMT09Vd2tW9TlG4MTJ465f/zxR4GLFi1NPXToC9+KinL5vn0HzysUCslRn8Ze8t9f+F5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbVn1qwHuK5dw0yvvvp6auV758794yaXy6XIyCgaR93BObMQ6gQA+1B7JjgJAAVAncwpRkJheiqC+lwP73rKCqxjrRYLDVNqbQP1evynZx+U6hu3JpNoMUGyGsGqvFwcADEQRMHpJAiM2h4A1Z+LkBBC2j+VWt6ia/I05XhffnkgMDw80tS3b3/9p59+4p+amqJZsODlFACYOnVazqpVK7rFxKwLue22OwpzcrKVa9euivDz87M40lNbzGYze+jQF95Dh15bkZiYoH7nnZiuAGCxWK5qU69efUxTptyTs3v3zpBRo8aUREV1v+qJ6+jRY4q2bNnUdc+eD/U33DC87Ny5s27btr0Xeuedd+VWzjMiHZczPUBvAIiFfQ5QBgC6SAj+tljwV242Znp41VtWdKw7A1qsstW5iSIgA7Q+no3bUZIgVJSC1XWBK38FMAwcQ+CczBCosQdActdPTSKEkDZDkiRRqZbbevUNlqOFFyZVquU2UWr8RM1x4ybk79+/N3DDhjWa8PBwwxtvrInv06evEQBuv31SsSRJSXv2fBj82WefBGm1bsKQIdeWPPfc/IzK7XFxsTmbN7/bdePGdayfn79l/PjbCk6cOO4VG3vBDUB+9ePNmfN09vHjv3ivXPlKxJYtH/DVh8JNnz4zn2VZfP75/sD33nsnzMvLyzpp0l25jz32ZI5zZ4a0J84EQD0B3Mnz/K+ubgxpv0wmew+CvAFzgCoDIIkCoFYlSRJ0jj8Inv5ejd5fMJRCJlrh2kQIDKyi89cF6+gBUjIdZqFyQgi5iiRBECFmK9SyFv9lJ0qiKElo9FOqyMgo4/z5izNq2z5x4p3FEyfeWePkYIZhMG/ewsx58xZmVn2/6vC2uXOfz5o79/msytcqlUrat+/ghbraNG3ag/mVmedI5+JMAJQKQOfqhpD2LcgmwKJ1g0JW/+Aj0bFYKmOj+YWtqbSwAG6OYNTHzxuQGjcnSzAbwYpWAPUHvQ3FMIBZcD4AYjT2uUwqloUoiqht8ishhLR3kgRBkiRaUI8QJzhzd/AGgGUcx0W4uC2kHXtU54U3eveDpgG94lJlACTQ7+3WVJBmn/dpFUUo1Y2fNSOajZCsJrCs63qAGIaBpRHpuKtj1f8m4bAYDK5oEiGEEEI6GGd6gKYB6AIgkeO4fADV7zIknuejmtwy0m5INhtkjP0mmFHXlhvjX7neQTh+6ieoQkPx3+ZuHKlVaVYmPADoJQmSE2mjBbPJHgC5NBGCBLPQhADITYVv83JgEUXMNhmhdnd3UbsIIYQ469ixP0+3dhsIqcqZACjD8Y8QAIBYJZsbq3Krt3yFpx9+KMhDTz/fesuS5lOemwMPACaWcSoAgiRCNJSD1QW7rE0iRNiasIYPo5BjR2Y6BEHAdCcXUyWEEEJIx9boAIjn+ZnN0RDSflUGQKIkQaaqfz0ZhcI+TMlkojT7rSlXFPFVajK4Xj1xnZNBh2AogUJyXaAhSE3IAAdAkkQoVSoYDQaYzbTOFCGEEEKu1qAAiOO4MADZPM9bHd/Xief5tCa3jLQbZn0FAMAiipAp6l8IVSOJ6KfzhLtEq1W2pqyKCnyfn4uQ0Tc6XYdgNkEpWuCqlXckiLCJzvcAiZIIX40WJpsNxopyl7SJEEIIIR1LQ3uAkgHcAOAPACmouuxuzWRNaBNpZ8yOG02LKIKV158RzM9QgpejeyHR1LjFN4lrFRYWAAB8PT2crkMwG8HYLGBYBVwRz4oQnV4EFbD/YlrcNRy+cgUsGRlArz5NbxQhhBBCOpSGBkCzACRW+Z4e3ZPLTBWOHiBJBMs2IPZVagAAcrqKWpUiPw+93D3gp6m/1642lzPBaTwgCE0fCic2cQgcAFQm0bZSFjhCCCGE1KBBARDP8zurfL+j2VpD2iWrUomPMtIAhQIDG1CedcwTUrhy/UzSaNebLbivZx+Um5zPuiYJNogmPVi3ADQ1qznDAIIkQGhiRYIjI6GNehgJIR0Yw0DGMC2/6rMkSU4thEpIW9LQOUAzGlGnxPP8h062h7RDJoUSB3Ky4Ovn36AAiFHZU2UrWRZWqxUKhWvmj5DG0ThSV3t4ezapHkFfCplf09vDMAwEsek9QDZHYG2lAIgQ0kExDGQyxhZsNRucyebbJAqV1iZAnt3WgqCYmHUhP/74ne+BA9+ca+g+CQnxqg0b/tc1NvaCh0qlFocNG178/PMLMrRaLaUR7eAa+h9nRyPqlABQANSJmBw3mqoGZIADAFZlHwKnZFiYzWYKgFqBzWaDO2t/cOjp69WkugSzHgrRgqZO/WMYQBSFJgdAguNz2YyUZZAQ0jExDMNazQZ54oUzosVsarGbdaVKzUb1GSSXqTxZSZLaVADUWEVFhbK5cx/v2a1blP7//m9zbG5urvLNN1dGrFnzBpYuXUHJvDq4hgZAkc3aCtKumYuLEanVwlNT/yKoAMA6FktVsSwsFhMAWqyypZUUFsBdbv/vr/P1BCTnU0aLZiMYwYqm5z5h7EPgmpAFDgBElgFEQDRTAEQI6dgsZpNoNhpaureixYfdNYddu3YGyuUyac2amES1Wi317NnblJ2dlXXo0AF/SZLAMDROvyNr6Byg1Nq2cRynBmDmeZ6mtHdSTGICVvfujzibDQ35LSw5MsWpZDIYDQbAp3nbR65WnJkJABAkCXKVDGITYgXBbIJkNYNVaiCKzv8aYBjAKghNzrAisCwgShBoHSBCCGkThg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzehtLLMkSPfeu7YsSUkMzND4+3tY7npptFFc+Y8na1SqSQAiIu7qN606e0usbEXPUwmI+vr62e5444peTNnzs6r6Zg7dmwJ2LFjS+iiRUuTxo+/raT69tOnT+muv/7GYrVaffnPztSp0wqmTp1W0AyngLQxTo0d5TiOA7AcwC0AdACu5ThuNoBYnuc3OtsYjuOiAZwB8FRlsgWO4wYCeAvAEACFAGJ4nl9TZR8WwDIAswF4AzgG4Ame5xOqlGlyHaR2gmNBU4Fl0ZDnJaJShY9ycqA3GzHH7PwEfOK88pxsuAOoEEWgiUPORIsZktUIVu3dxACIgUVo+vWQqZIjLTsDIX37NrkuQgghrrF9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FpM9du3b479y5NXTJkuWJY8eOK62pPTk5Wephw4aXrFq1IvS33455y+Vy6YYbbix5+unnM6sGRaRjanQ3piOYOAVgMIDdwOV7XguADRzHPehMQziOUzjqc6vyni+A7wFcgj14WQZgBcdxM6vs+jKAxwE8AvtaRRKAwxzHKV1VB6mb7XIA1LAhUJJMjh8ryvF9fi4sVgqAWoOhwP7AzMgyEG1NG3IGSBANZWDZpg0XYBjA7IIA6JJOg82pychVN2xOGiGEkOY3evTYgunTZ+b36BFtnjdvYWZUVHf9vn17AgBg164dwWPGjCuYNu3B/MjIbuaRI28ue+65F1N///0377S0FKXBoGcnTZqS99JLy1Kjo3uaunWLMj/11HNZABAfH6epepw9e3b5bdv2fuiyZa8l1Bb8AIDRaJR9+unHQRaLhV2xYlXiI4/Myfj556M+r766JLx5zwRpC5zpAVoD4E8A4xyvnwQAnuef5ThOC+AZADtr2bcurwKovnT7owDMAObwPG8DEMtxXA8ACwBsdwQoLwCYz/P81wDAcdy9ALIA3AVgr4vqIHUQHUONxAYGQAAgV9hjSzPN02gVhQyDL1KT0K1Hd1zXxB4gALAZyqGUmj4M3WxregCkUNmTaphpCBwhhLQZgwYNueIej+N66c+ePaMDgOTkZG1iYoLb0aNHfCu3Vy6unZAQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8fLTt+LiYsW778aEy2QyKTQ0rM4/AnK5XAwO7mKqTHgwYMA1BkEQmFWrVnTLz8/L8PcPaOrTQdKGORMA3QBgKs/zNo7jqt/x7gVwf2Mr5DjuJgCPARgIoGrmjREAfnEELpV+BLCI47gAABEAPBzvAQB4ni/hOO4MgJsc7XFFHaQOosV+0yrKGn45ddO6IdhDB7NjEVXSsvJMZnyfn4e7rx3kkvpEsxGMaAHgfEY/ERJsgrX+gvVQKRRwk8lg0+ubXBchhBDXkMuvXP5ckiSwrEyyfy8ykyf/J2fSpCmF1fcLDAyy5uXlyh999KFeHh462/XXDysZPPjasv79B+jvvXdy/6plGYbF8uWvx2/b9n7IypWvRG7d+mEcy9Y82Mnb28caHh5+xdC5Hj2ijQCQnp6mpACoY3MmADIBqC3dl69je4NxHOcFe9rsp3meT7dPL7osFED1fO5Zjq9hju0AkF5DmTAX1uE0udy1yVJkMvaKr22B5BjGJsllDR4G9ZiPDzz9/VBUmO/yc+QKbfE8u1JZWQkAwFvn3uShawAg2cxgRSsUCtXlp3YNUfU8C4wNAsQmt6d/mREPXDMUSXm5bfLaai0d/ZpuK+g8tww6z+3PxYvn3W655dbLQ9Li4i66R0VFGQAgNDTMmJ6equ7WLepyr82JE8fcP/74o8BFi5amHjr0hW9FRbl8376D5xUKheSozzH07d8/Ol5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbWnT5++5fHxl9yqZny7dClOw7IswsLCaXx+B+dMAPQdgFc5jjsOINvxnsRxnDuAeQCONLK+dwGc4Hn+oxq2aWEfvlZVZYClxr+BWE1lKnOLuaIOp7AsA29vt/oLOkGn09RfqIXIKpcCUCih0TRs2pTVcY8rE23Ndo5coS2dZ1dSFBeit4cOgVoV1A38mdWJFaBgbHDzcu5nqdNpYLAYIZMzTW6PQWXfXyaKbfraai0d9Zpua+g8tww6z+3Hl18eCAwPjzT17dtf/+mnn/inpqZoFix4OQUApk6dlrNq1YpuMTHrQm677Y7CnJxs5dq1qyL8/PwsgYFBtsDAIIvZbGYPHfrCe+jQaysSExPU77wT0xUALBbLVVFwr159TFOm3JOze/fOkFGjxpRERXW/ajjc9Omzch57bGbv5cuXhE2b9lBuRkaaavPmd7vedNPoQj8/f+r96eCcCYDmAzgBgAdwFvbQey0ADvakClMbWhHHcdNhH6LWr5YiRgCqau9VzmzWO7bDUcZYrUzl+BdX1OEUUZRQVmZoShVXkclY6HQalJUZIQhtY6HiNIUSJ7Iz4RbYFW7Ghj00UTpyZ+hLylFc3PaGKrXF8+xKUXkFuJXrjdxyE0wN/JnVzQJFeRnMSh/YbA0/X1XPs1kywWAyN7k9otw+MleyWtvktdVaOvo13VbQeW4ZzXmedTpNu+lZUqrULdrQphxv3LgJ+fv37w3csGGNJjw83PDGG2vi+/TpawSA22+fVCxJUtKePR8Gf/bZJ0FarZswZMi1Jc89Nz+jcntcXGzO5s3vdt24cR3r5+dvGT/+toITJ457xcZecAOQX/14c+Y8nX38+C/eK1e+ErFlywd89aFwPXpEm9eujeH/7//e6vrIIzP6aDRaYdSomwufeWZeprOfkbQfjQ6AHMPUBgB4HsDNABJhX8nyIwDreJ7Prmv/amYBCARQfejbJo7jXgSQCiCk2j6VrzPx74SDEEc7qpb52/F9ugvqcFpjbgYbQxDEZqu7sZJkMnyemY4pIyagawPTIAuOAMhiMLSZz1GTtnSeXUlmtQIyOVTu2ialrq7KWlECmbfk1PkSBBECRFht1ia3R1LYf60xgtAhf3ZN1VGv6baGznPL6KznWZIkUaHS2qL6DJKjhRcmVai0NkFqfNabyMgo4/z5izNq2z5x4p3FEyfeWVzTNoZhMG/ewsx58xZeEZxUHd42d+7zWXPnPl85xQEqlUrat+/ghbradM01gw1btnzAN/xTkI7CqXWAeJ4vBLDYBcd/AED1/ut4AEsBfAzgPgCPcxwn43m+MlXVGHsT+DyO40oBlAEYBUfw4phTNAjA247yv7igDlIHkyMNdmVmt4awMQwAWqyytShFEZABGg/XDRETjXooRCuc+VvMMIAgCrCJLriRcWSBY11RFyGEtEGSBEGAPFum8mzxripBkkRJQtPThxLSipxdCPUmADae53/jOC4cwDsAugLYx/P8iobWw/P8Vd2Mjp6gPJ7nUzmO2wb7kLutHMe9CeBaAM/CvmYPeJ43cxz3NoDVHMflA0gB8D/Ye30+c1TpijpIHZQGA4JVaqjlDb+cbKwMkGwQKQ12q6hc4s3N091ldQoWEyBacfWI04ZgIIgCBLHpw64ZpT0AkrmoZ4sQQtoiSYIgSRIFIoQ4wZmFUB8AcBTAZMdbm2BPF50AYDHHcQtc1Tie5/MAjId9ftEZ2BcxfZHn+arrDC0FsBXAFgDHAdgAjOd53uKqOkjdxhgMeKvfQAQZGz7fSWDsl55oplPc0sxmM9xk9nkyOi/XBUCixQRYzU5lcWMYQJAE2FywJhHj6AGSNSYdHSGEkGZz7Nifp++5Z+pVKa4JaS3O9AC9AGAHz/PzHevo3AJgIc/zaziOewH29XxWO9sgnueZaq9Pwb72UG3lBdgXNa018HJFHaR2MlGy38GqGv7k/5LaHX/wfyEyqlsztozUpLigABpHAOSu0wIuGskgWEyAzQxGaR/e2BgMw0CQRJcEQDYPN/xaWACLWo0RTa6NEEIIIR2NM2NHe8K+bg8ATADAAPjC8foU7EPhSCcidzxpZ5Tqekr+K03rhS9zs5HvgjVoSOOU5uYAAERJAiuvvpZxE4giBGOF0+v4WAUbJBf02lj9PLExOQEHigqaXBchhBBCOh5nAqASAB6O728DkMrzfLzjdRQAuuvoZCq7ERllw9djqEyYYDTSHKCWVqKvwObUJHxrrAAan8inToKhDAzT+CCGYQCL4JrhkDKFPagz0/wyQgghhNTAmQDoBwCvcBy3CMBdsGdrA8dxdwNYAftCqaQTuTyOshE9QB4yBlFaNygNtE5LSysx6PF9fh7OqxSQBNfOnxXNBrBOBDIMw8DsogBIoVRAxjCAxeqS+gghhBDSsTgzB+gZ2Nf8WQrgewCvO95fDyANwCLXNI20F0rGPuSJVWkbvE8vQznu790PF8srmqtZpBbFxfZlFrw9PdDYuTr1EcwmMKINzvxqMdtckxJdKQjYM/g6AIAoCGBlLhzmRwghhJB2z5mFUAthz6pW3XCe59Oa3iTSnkg2m/1pOwBW0/AASFLYM3UxNsrg2dJMuTno7aFDF03Dhyw2lGgxQbKawCo1jVrQVJREWIWmp8AGAEbzbzIOi14PtU7nknoJIYQQ0jE4tQ4QAHAcFwhACXsSBABgOY7rA2AEz/ObXNE40vZJkoQvcrKgZBh0acQcIMjtc4BYF2T9Io3jnp2NV7jeyDa6foiYaDFDsprBqplGBUACBAguuhbYKgGQsbyMAiBCCCGEXMGZdYAGcBx3EUAW7IuGJjv+JQL4B8DbrmwgadtskoTdGWnYnp4Kmcat4Tsq7DeprODaSfikfpJjvSZGpWyO2iEayhqdCU50UQpsAGDkLCyi/boyV9AQS0IIae/0ej374Yfb/StfL178YsQjj8zgmvOYGRlpyoMHP/duSh379u31HT58yODatrfE5xg+fMjgffv2+jbnMVpKWlqKcvjwIYN/++1Xj/pL182ZJAj/A+ANYB6AnwB8C+ApAF/DPqFgVFMbRdoPk+nfTFsyecNvqCWlPQCSuzgLGakf4/iZsermCIAAwVgGppE/V1cGQAD+DYAoyQYhhLR727a9H/jppx8HVb6eP39J+ptvbkhozmO++urLESdP/ubZnMcgrceZAOg6AEt4nl8PYC8Ad57n3+V5/g4ABwDMdWH7SBtnrChHgFIFH5UaDNvwyeaVawbJXDsHnzSAzGof+qbQNjxrX2PYEyE0bnidPQByzRwgALA6kjtY9BQAEUJIeydJ0hXDCjw9PQVvb59mHkMv0UKFHZgzc4BUAC45vo8D0L/Ktu0AaP5PJ2JMS8Pb/a9BodWCvEbM+ahMmS13cRYyUj+FzQYoZVC6uT4JAmBPhMAIFjCMHA1d11SQBAguTMltcxzXYjC4rE5CCGkrJAkw2Jx6iN1kWjlEppGhQWlpqWzdutWhf/xxwstmszGRkVGGJ56YmzFw4CADABgMBnbVquVd//zzlJfBYJB16dLF9MADD2VNmDCxJCZmXcgnn3wUDNiHc3300f5z7733fyF5ebmqzZs/4H/77VePhQtfiH7jjTWX3nprbVheXp4qIiLCsGTJ8uTvvjvsfejQgUBBEJgRI0YVLl78SjrDMJAkCVu2bAr87rvDfvn5eSqFQiH27Nm7Yt68RWnh4RGWRx6ZwcXGXnSPjb3oPnnyrR4HDnxzzmKxMDExa0N++ulHX6PRIAsNDTPOmvVI1siRN5dVfs7Dh7/y2rlzS0hubo46KqqHfuDAQWW1nZNKgiBi5cpXuv700w++crlcuuWWWwvmzn0hUy6336L/8cfvbtu2vR+SmBjvZrVa2cDAIPP998/IvvPOu4oq6/jii898Pv54d1B2dpbay8vbOnHinXkPP/xYbvVj5efnyZ988hHOy8vbumHDOwlarVb8+ecfdZs3v9slMzNDExAQaL777v/mxMSsi/joo/3nwsIiLJMn39rvuuuGlfz112ldaWmpYunS5YnXX39j+c6dWwO+/vrLgIKCAqWfn5/l7rvvzbnvvgcKAOC33371mD//uejKOgD78LX77/9PvzffXH9p2LAR5YsXvxghiiLj7e1jPXr0B1+z2cT27z+wbNGipamBgUE2AIiNvaBev/5/YQkJ8W7e3t7We++9P7txV17tnAmA0gB0A/ArgHgAOo7jInieTwFgBuDjqsaRts9itD9ht0lo8M0uANg8fbA/KwMGhqExky1M6fhBqd0bnrWvMQSzCZLVDEblBqmBF4UgCS4dAhdnMyO+vAwD6PkdIaSDkSTggW+0PfliWSMm3rpOT2+h4sNbDXxDgyBJkvDss0/0kMvl4muvvZmg0+mEL7884Pvss0/03Ljxvdh+/QYYN25cF5KSkqxdtWptvKenl+3TTz/2X7VqRbc+ffqenzXr0Ryj0cgeP/6zz+bNH1z08/O/ariAKIp4552YrgsWLE5RKtXi0qULo5588pFe11wzuPStt97lT5066f7OOzHh118/rGzs2PGl27dvDti3b0/wiy++lNyzZy9jenqaau3a1eHr17/ZdcOGdxLffHNDwvPPP9XDz8/fsmDBkjQAePnlBRFpaWmaRYteTg4KCrH89NMPXkuXLur+8ssrEseOHVd66tRJt9dffyXqnnvuy77ttjsK//zzD4/33ns7rL7zc+lSnLuvr69148b34jIy0lXr1r0ZYTKZ2JdeWpaelZWpWLjw+ejx42/Pnz9/cZrNZmU++GB70Pr1/4u44YYbywICAm1ffXXQe82aNyIfeOChzLFjxxdfvHheu379mxFubu7C1KnTCiqPU1hYIH/qqUc5X18/y7p1bydoNBrp3Ll/NEuXLuo+ceKdecuWrUyKi7ugffvtDeHV2/jtt4f9ly9/I16n0wm9evUxrl69suvPP//gO2fO3LR+/Qbof/vtV917770dZrGY2QcffDivYVcGcOLEce/hw0cWvfXWO3xWVqbyjTdWdHv77Q1dVqxYlVpaWip74YWnuejonhXvvLM5Njc3V7l+/eqr2uYsZwKgTwGs5jhOz/P8fo7j4gCs5DhuFYAXYE+GQDoJi94AJYDG5hMTdb74JCsDMrkcrzVHw0iNJEmCxpG4UevRPAGQZLNAshjBahqeCU4QXTsE7iurEUlJiXjHrVXuDwghpFkxrl7ErRkdO/aLR3w873bgwOG/K4OX559fkHnx4gX3vXt3BfbrNyAlOztLpdFohfDwSLOnp6fwzDPzMq+5ZnC5p6e34O7uLmo0GpFlWamyZ6AmM2c+kjl48LV6ABg2bHjJoUNfBCxduiJVq9WKPXpwpl27dnZJTIzXjB07vrRr1zDzvHmLkm+55dZSAOjaNdxy8uSJ4l9++ckbALy9fQS5XC4plUrRz8/flpSUqDp+/Feft99+P7ay1yoqqntuYmKC5uOPdwWNHTuudN++PQHR0VzF3LnPZwFA9+49zElJiZqvvz4YUNf58fT0sq5YsTpZrVZLPXv2NuXn52e+997bYc8++2KmxWJhpk59IGv27MdzWZat/JzZP/30g29SUqI6ICCwYv/+vYE33HBj0WOPPZnjaJfZYNDL1GrN5cm4ZWWl8qeeeizaz8/fvHbtxkS1Wi0BwJ49HwZGRnYzvPjiSxkA0KNHtLmoqEixefO7Xau28ZprBpXedNOocntdZey3337l//DDj6VPnnx3keOY+VlZmaqPP/4oeMaMWQ0OgDQajbBs2WupCoVCio7uaTpx4njh6dOnPAHgq6++8LZYLOyrr76R4unpKfTs2dtkNBrSX3ttWVRD66+LMwHQqwC6A5gFYD+A5wB8DmAqAMHxlXQSVqMeSgC2RvaHyx1Z4ASbDVarFQrHukCkeZlMJuzPyoCPQoGn/W9vtuMIhjIwXg2/JgTJdWmwAUChtCd4MJlcs7gqIYS0FQwDfHirgW8vQ+Di4i5qAeDeeyf3q/q+zWZjrFYLAwAPPPBQzpIl87vfeef4AT16ROsHDRpaOmHCxCJPT88G/2GIjIy6nJVJpVKLnp5eVq1WezkIUCoVotlsYQHglltuLT19+pRbTMzakMzMDFVGRromIyNd7e3tXePz3IsXz2sB4IUXnr4iY5sgCIxWqxUAIDU1RXvNNYNLq27v169/RX0BUFRUd0NlQAIA/fsP1NtsNiYxMUHVr19/4913/7fwgw+2BaSmJqszMzPVKSlJWgAQRYEBgLS0VM1NN91cVLXOe+/9t+cHAD78cEcXQbAx1Y+VlJSgrT5Mb9CgoeXAu1e0sUuX0MvnNiHhkloQBOaaa4ZckWZ14MBBFV9+eSAwPz+vwbFFYGCQWaFQXG6Pm5u7YLPZGHvbErWBgcGmqtfA4MFDXZba1ZmFUE0A7uE4TuF4/S3HcX0BDAZwhud56gHqRGwG+/8JoZEBkEImR4haDRXLwmQyUQDUQsrKyvBzYT5kMhkWeblDspjq38kJgrEcSsmGf5cJq5tFsLr0caZSpQQDwGSkOUCEkI6HYQA3BdpFGlVRFBmNRiO8996O2OrblEqlCABDhlyr//zzw//8+utPulOnTuq+++6w3969u0Jee+3N+BEjRpY35DgKhfyKPyN1Lcfw/vvvBO7Z82GX0aPHFgwcOKj8v/+9L++nn370+vXXn2qcxiE5Mptu2PBOnJub+xXnXSb7N51T9WQNcrmi3j9tLMteUUZ0PAxUqZRSfDyvfuqpR3tGRHQzDB48tHT48FGlPj4+1qeffqxX1ePXdwvWr1//sttum1SwcuWyqKNHjxSNHj22zLEvRLH+ZA9Kpeqqz8hUO6joyL5aNaCpOgrearVddZyqZf9V9a3Gn8+GcnohVABajuNugD0ldh6AwzzP06IbnYzVZAQACGzjHkQpGWBD34EAHPOIPJqc0p00QHm5/eGUzsMDaMZFaEWLCaxohX2t5PqZBYtLj/8fVoWXh1yPrPhL9RcmhBDSbKKiehiNRqPMYjEzPXv2vvzUbenSReHdu/cwzJgxKz8mZm3IgAGDKsaNm1A6btyEUkEQ0qdOndLn6NEj3iNGjCxnGMalQ/4++eSjkKlTH8iqHDYGALt3fxB05bTVf4/ZowdnBIDc3Fzl2LEDLvfyrF//ZheGYaVnn52X1a1blCE29oJ71RpiY8/XOw47JSVJK4oiKoe4nTnzp4dSqRTDwyPNa9a8EarTeVrfe2/75T9m33//jSeAy3Nsu3TpauL52CuO88Yby7vm5uYoN2x4JxEAbrppdPGECbeXHD36fdH69W9GDB587XmdTidGREQaqu977tzZOtvcvXu0SSaTSWfOnHLv27efsfL9s2fPeHh6elm9vLwFhcIe2JaVlV1OD5yamqyqqb7a9OgRbfjxx+99CwsL5L6+fjYA+Oefv1w2rt2ZhVBZjuNWAEgH8BWA3QC+B5DNcdxCVzWMtA+CqbIHqHGXklRlzSBTOcXNLaWsoAB9PHTo4eUFyYVZ16oTzCZAsKChHYMWm2sDIMnxh0Q00xA4QghpTaNHjykND48wLlv2UtSxY794JCUlqt58c2Xo0aNH/CqHrWVmZqo2bPhf2LFjv3ikp6cqv/rqoHdBQb6qX7/+FQCg0WhEvV4vS0iIV1mt1iant/H19bOcOXNKx/Ox6vj4S6r16/8X8scfv3tZrdbLNzMajUbMy8tVZWZmKHr27G0aNGhIaUzMmvDvvjvsmZKSrNyyZVPgZ5/tC+rSpYsZAO6//8Gc1NQUzerVK0MTEuJVn3++3+fw4UP+tbfCrrCwUPnyywsi4uIuqr/++kuvjz76IGTy5P/kqlQqKSAg0FJUVKj88cfvdenpqcrDhw95xcSsCwcAi8U+fPD++6dn//bbMe8dO7YEJCcnqQ4e/Nz7u+8O+w8fPrKk+rHmz1+cbrFYmDVrXu8K2IceJicnuq1Zs6pLQkK86ptvvvL68MMdXYCre3gqeXp6CmPHji/YvXtnlwMHPvVJSkpUffjhdv9vv/3af8qU/+QyDIOePXsb1Wq1uH375uCkpETViRPH3bdufS+0tjprMnHi5CKdztO2ePH8yPPnz2lOnDjm/n//91bX+vdsGGfGjy4FsBDAFgAjAfSEffHTXQBe4zjuKVc1jrR95WoVvs3LQbq8kZ2JLAvB8fTCrKcAqKUYMzKwjOuNR3wCgGZchFa02DPBsQ3oGRQlESYX9wCJcvtxBYtr6yWEENI4MpkMMTGbLvXoEa1fuXJZt9mzp/f+55+zHkuWvJpYObxt8eJXUvv3H1i+atXyyOnT7+37wQfbujz44MMZU6bcUwQA48bdWuzl5W2dPXtGn3/+OdvkDD6LF7+SbDab2TlzHu71zDOP90xJSdI88cTc1PLyMnlaWooSACZNuis/PT1NPWvWtD6CIGDVqnVJN9wwvDgmZm34Qw/d3/e77w77Pfnks6n33HNfIQD069ff+Nprb8afO3fWY/bsGX0+/fTjwHvuua/etM1DhlxbIpPJpCeffKTX22+vD7/11ol5Tz75TBYAzJgxK2/YsBFFq1ev7DZz5rQ+u3btDH7oodmZfn7+lvPnz7kB9vlMTz31XOpXXx30nznz/j47d27t8sgjc9L+8597C6sfy8/P3/bII09k/PjjEb+ffvpB16tXH9PLLy9POHXqd6/Zs6f32blza8htt92RBwAKhbLWXrdFi5am3X77pLxt297vMmvWtD6HDn0R8NhjT6XNnv14LgB4eHiICxYsScrMTNfMmjWtT0zM2rDHHnsqvTEBkJubmxgT8y4vl8ulZ555vOcbb6yI/O9/78+pf8+GYRqaprYSx3FpALbyPP9qDdtWA/gPz/MuydDQziUJghhZVOTahRjlchbe3m4oLtbDZmv94b8ffrgDa9euwvBRt2Ls3Y1bAzdy+yvQsCzEh2ej5w3Dm6mFzmlr59lVjmzehLCTvyP//9u77/g4zjrx45+Z2b7qluUat9gel8RxbEMIJBAIgVCOkqNzRzkOjnY/yh3tuCMcHY7j6D0J5egtlAukd1JtJ+7jXmRZtvpq+7TfHzOyZVl1Nbsryd/366WXpN2ZZx7Prlfzned5vl9cNr39ZWU9Vq2+CbdpCaY58khTKKRSUxfhgYOPc6S7LbBj5778K9ZlTQ7Pm8fzPvnZwNqdzmbqe3qqkfNcGeU8z01NSTRNPYRX8qOqNm/evEpVtb+0tCxIRyKx8izaFOetrVs3J0KhkHvxxZecnsp2882/afryl7+45I477t8SmujN7SmgWMzHTp06XuM49rUbN27cM9J2pYwANQN/HeG5vwDzSmhTTFN5fwpcODy+tR6DmadHgIINEsXIin3e1GVTK3/yIDvbN64pcLYTbA0gADfkTzs2ZQRICCGEGM6ePbsT73//P+u33fbn+tbWo5EHHriv9sc/vmn+M55xRfd0DH4mopR/3Z14qa5vH+a5a4AHJ9UjMa1Y6X5qQyGiJQVA/vdcbvQNRWCstJdMxwmX/4PNyWcJOyZj3WexXDvQGkBwJgByzWDbFUIIIWaK17zm9Z1dXZ3hb33ra4t6errDdXV11pVXXtX97ne/73i1+1Zu47oK0nX9DYN+fQj4uK7rc4FfAu14meCuBf4WeH/QnRRT1/LWVm5Yv4mt+YmnGx5Itm9mJVVxpThZf7QtUv4AyC7kURwTGD3xi+M4WAEnZHAHAjxLAiAhhBBiOIqi8O53v/fEu9/93jHXKs00470K+sEwj73A/xrq28D3Su2QmGb8C0y3hBGgx0wbs6Odp4a0sTcWwch5UxaV6ISyUZbEKeZwrSKKFmO0tYbeCFCwAVA2GWNL32Hs2pqxNxZCCCHEeWW8AdDSsvZCTF8DAVBo4oVMH3Y19h0/xtrIxIMnURrFTwsdipc/ALKLeTALqGEF2x4+AFIUBcsJfgrcqZYGfrbP4LmLF/P6QFsWQoiKcgB3aIFNIcTw/P8rLoxeKHi8AVCbYRjm2JudTdf1cCn7ielDsf0L1xJGgEJ+4FOQWi0V80QhzxMn23nOxlXlP5jjYOfTqDVzGGmGm6KA5djYAY8Ahfwpfvm8vLeEENNau+u6ZrGYT0SjcVkwK8QYisV8wnVdExh1Wt94A6Dtuq5/yDCM34+3A7quvwL4NKCPdx8x/Wi2F2ArkYmPKNSFwsyNxrD6U0F3S4xga18Ph9vbeMG8WRU5np3pIzRGGTi7DCNAobA3IlnIS9ZYIcT0tXHjxtTmzZt/lEr1vAOYFYnEsoqiTKx+iRDnAdd1lWIxn0ileiKu69ywcePG/tG2H28A9AbgB7qufxqv4OmvDcPYP3QjXdfXAC8E3gpowN9PrPtiulFdB1CghADoWtVm7cXrOdDaGnzHxLBSKS/YrI3HKnI8p5BDdYp4HwfnUhQF07ZwJliPbCwtqRw/uvQp9DhynSCEmPY+Y9sWvb1db1AUJQHIdDghzuW6rmu6rnMD8JmxNh5XAGQYxqO6rl8KvAt4H/BpXdd7gcNABmgAFgL1QAfwBeCbhmHI7dcZTnNcUBWU8MQvqG01BI6JW5RaLZXgui7zbIfaeIKa6MTXbJXCKeZQbJORAyAoWMFPU1MiIWKaRijg7HJCCFFpGzdudIBPbd68+SuuyzxKq+EoxEznACfGGvkZMO5cuIZhFIAv6br+NeA5wLPxqiTXA8eAPwG3AfcbhiFXHeeJncUCu9NpkjV1E97X0TSwwDVlmVgl5HJZ/n35SjRFIVmhY9qFPK5VQA3HcYYZjVEUhaId/OuvRr31ZTO7jJsQ4nziX9iN6+JOCDG6CV8f+EkNbvW/xHnuT309HDt2lPfWzyIxwX0dzXv7uUUJgCoh1dmJpngzJ+LJOGMkSAmEYxZwzQJqVBk2AALIl2EEiJg3wlWZcS4hhBBCTCcyjComJZ/3ktKEwhNfA+Ro/uWpJQFQJaROnQSg6DioWoWmkLsuTrYfVR3+eLbrYNrBFytV/TTfIUWmygshhBDibBIAiUnRiiZhRSEUmngabNfP1KVYwV8Ai3NlOjsByLkuBJx2ejR2tg9lhNEmx7Wx3DL0xR8BiijKqEVYhRBCCHH+kSnyomSubfPVFV49mZ3uxKdTuX7QpMhC9YrIdneRBAoVHhSxi3kitslwHzcODnbAKbABlJiXlENVFBzTRJNiu0IIIYTwVT0A0nW9Bfhv4FogDtwLfMAwjF3+8+uBrwCbgC7gq4ZhfHHQ/ipwPfCPQCPwAPDOwWm6g2hDnMvMnanJpsQmvqy+P1nPn0+egLnzguyWGEG+txcAc4TpaOXiFHIodhFFCTF0MMZxHawyjEZpiQi7+lMUHYdFhYIEQEIIIYQ4bVxT4HRdf34Z+/AH4ELgBcBTgBxwh67rCV3XZwG3A3vxgpfrgU/quv7mQfv/B/B2vNpDlwMu8Gdd1yN+3yfdhhhe3i9g6rguoehEUyBAb/1sbjp2hM0FyZZeCQMFZ+3Q8Cmpy8Uu5nHNAsow63Fs18YuQwCkxsJ83NjFZ/btoShT4IQQQggxyHhHgP6s6/ox4EbgJsMwjgZxcD84OQR8yjCMnf5jnwSeANYCzwUKwDsMw7CA3bqurwA+BNzkByj/AnzQMIxb/P1fDbQB1wE/B94WQBtiGIVMGvAX1YciYE1sGlw44k1TyksAVBEnVZWHWo9y4UV6RY/rmkXcYg41fnYmOEVRsBy7LCNAaiiE4q//KRTywMTTtAshhBBiZhpvEoTrgM3AR4CDuq7fquv6K3Rdn1SWWcMwugzDeO2g4GcO8K9AK7ALuBK4zw9cBtzlbaq3AOuBWv+xgTZ7gS3AM/2HgmhDDCPf75UjKLoOpdxjj2ghGsJhYlIItSKOWyY3t7fRP6u+4se2s6lzRoAUxRsBKkcApCgKUX8dUKFQhjTbQgghhJi2xjUCZBjGzcDNuq43Aa8D/h74JdCp6/qPge8bhrF7Mh3Rdf27eFPQCsBLDMPI6Lq+ENg+ZNM2//siYKH/87Fhtlnk/xxEGyULhYJNtKdp6lnfq8nKZwEo+tHPSKmOR9JcTPPdSzbSYZqBn6fJmkrnOSjptBew1tUkJvxaTZabTxNRHdxBr7OqKjimg+1aKKoSeErKT164kpZwhOLRw4SWLA649elnJr6npyI5z5Uh51kIMRkTSoJgGEY38HXg67qurwbeiBcQvVfX9UeAG4CfG4aRKaEvXwa+A7wDL9i6AkjgBUSDDcyXivnPM8I2Tf7PQbRRElVVaGyceHKA8airi5el3YkIuRYmYOISjYXPWeA+FrPWm5YUVsp3niZrKpznoMTT/SyOJ2hKxIjFK7u8TVNsYmGXZF3NWY93dXfiuC7RaPAlSzVNI65phLGm7PurGmbSe3oqk/NcGXKehRClKDkLnD/i82Fd1z8CPAd4FfBp4EvAhOfYDMr69ja8RATvxkuIMLTCZsz/nvGfx98mN2SbgSAsiDZK4jguqVR2Mk2cQ9NU6uripFI5bHviqaeD1JM3eayrEzsWY2524tPYLMW76A0r0NMzqVMduKl0noNyWX+GV61dR1d/nnyustMONfoJpTOYBfV0oBwKqWT8QrqFgonrBJusYOA/fU9Hz5R7f1XDTHxPT0VyniujnOe5ri4uI0tCzHBBpMHWgCReCusJ3Vb21+BcDfzSMAwbwDAMR9f1XcACvGlp84fsNvD7cSA86LEDQ7Z50v85iDZKZk0wMcB42bZTtrbHKx2L87VD+7lwuc7fl3Lx6idBiCgqpmkPmyWs2qbCeQ5KxHFA1YjWxM9KRlAJbj6HU8zjaLWnL1ZUVSFveQOvruMG3ifLfz8VM5kZ8xoGYSa9p6cyOc+VIedZCFGKkm9x6Lp+ha7r3wbagd8BS4D3ARMp6jIf+CnwrEHthoENeEkQ7gOu1HV9cN7eqwHDMIxTeAFKCrhq0P4N/v73+w8F0YYYRj7vzSSMRmNjbDk81a8dFFZVivncGFuLyYrhBQSJmspPB3NtCyefOWft0UAAVA6WfygzL1kGhRBCCHHGhEaAdF1fA7web93PIrzg53vAjYZh7Cvh+E8CtwLf1HX9rUAP8FG8YqT/g7cO54PADbqufwF4KvBevJo9GIZR0HX968DndV3vAA4D/4U36vNb/xg3BtCGGEY+m0VTFMLRoTMMx0eNnakdlE+nicYnXktIjI/ruiRV735Hsq4659nO9KE1n/ndwcGyrZF3mOzx/GDLlgBICCGEEIOMKwDSdf1f8AKfSwAb+D/g/wG3DExdK4VhGK5fc+ezwC+ABrxRlysHag35RVi/ipeW+gTwAcMwfjiomY/5/47v403Duw94vmEYRf8Ypybbhhhe0tjDzzZexq4Sp66pkTMjR4VMGma3BNU1MUS2r5eIHwDV1lcnIYBdyBByinizZgdSYJcvAHJUBVywJQ22EEIIIQYZ7wjQfwF7gA8DP/SnjgXCMIw+4J3+13DPP4aXFGGk/W28oqYfGmWbSbchzuX4F5aOGippLqWiqtzV1YVpm7zcKt+FsIC+UycBsF2XWDwKZai9MxankEe1TQYCIAcH0y5fP3pCGnt6+olOwbVlQgghhKie8QZAVxiG8dey9kRMO45fwNTWtJIXk/244xSZdB8vlGvUskp3dACQdWyUksrWTp5dzONaBdSwl4TBcZ2yjgA9WhPhrw/t5H0veGHZjiGEEEKI6We8hVDPCn50XZ8PbMKbsjbc9j+adM/ElOf6AZAbKj2ZYCjsrR8qyDSlskqZJn9qPUpDQwMXOdXJmOQU87hmATWq4LquPwXOnkQqltFFIl6CR3lvCSGEEGKwCV+5+mt2fsC5tXUGuIAEQOeBgQDI0UovYpmIxnBCIfKZYOslibOlHJub29u4ZNaES3QFx3VxsinUunk4joLl2F4ShDIFQCG/uGpeMgwKIYQQYpBSbt1/CngML5NaV6C9EdOLv25nMiNAH5gzm4UL59N/5BA85bKgeiaGSKVSANRXIQX2YHa2j7DroChgO14ShBDa2DuW4OKsxSvWbaDn6LGytC+EEEKI6amUK9f5wP8zDGNL0J0R04sykLggPKH6t2cx/do0xayMAJVT/tRJFscTNCeqm2rcLuSJOCaKEsFyLCzHLlsAFNFUmiIRUqYkcxRCCCHEGaVMPnkI0IPuiJh+2hWFx3q6ycVrSm7DUqRWSyU0HD7Mf61dx6bKJ387i1PIoVgFFEWhaJllPdbAyKRiVfkfLYQQQogppZQRoHcCf9R1vR54BDjn1r1hGPdNtmNi6nsEh/sP7OUNV7+MphLbsBTv7r+Vk3Ua5eT651eNlj5aF4SBTHBaXKFglzc5gRvxA6Ayptquho5f/Zz8kSPM+puXktBXVbs7QgghxLRTSgC0EpgLXO//PjinruL/Xp45LWJKyfkX1eFobIwtR2apKuBgy0L1slL9TGhafKTcJZXhWiZOIYtWp5Azy5ydzc8Cp1ah5lE51T/1Mnpuv422r/4PF3z0eqLz51e7S0IIIcS0UkoA9EXgEPBZoD3Y7ojp5HQAFCk9ALJVDVwHR6bAlZVmetPNQonSX6ug2Ole1NkOpl3mtTl+AKQ51al7VA6apkIyTnj+fMzWVjp/+VMWvPdfq90tIYQQYlopJQBaDLzEMIzbg+6MmF7+ORKjdsNT2ZHLlNyGFQqDaeJIrZayCts2qCrRZLzaXcHOZ9CcImaZR2Zcf7pfyK1O3aMguY6Dk83yo1//lK99/as0aSG+cvF6Mjt2UDh6hOiixdXuohBCCDFtlJIEYTuwMOiOiOknDIRVFTVa+kV1ZyTBvZ0ddGoya7Kcon4QEK+tbhps8Aqi2o7l1QAq53GSUY5kM3RY5T1OJWR372L/+/6Z3M03Y1oWJwt5HuruBKD/oQer3DshhBBieillBOi9wM90XQ/hZYRLDd3AMIyjk+yXmAZCXgI31FjpqZUP187irsMHuG7DpQH1Sgwn7mfbS9RWNw02eIkQNMfEKvMIUG5WHR/YtZ3Fi5fwsrIeqfx6H3kIxXUxHZe/e9ZzmN80i9vvup1nNDXT/dCDzHrla1DUMlWUFUIIIWaYUgKgO/Fu/n+HsxMgDCa382c413WJKN4FlzaJACgS9RblZ7OSBKFcHMfh5vY2EqrG6+pLT1keFNe2sOwitlvekZmwnwWuMM2nV7quS/eWzUSBw67DB571HDRN46HdO0lbFjXpDMUjh4guvbDaXRVCCCGmhVICoLcH3gsx7TimieaPKqixJKWusgiHo4QVBSsnhVDLJZfL8ru24wC8vb4GSn61gqGoGlYxX/YRIC08EABN7wQb5qmTRPN5LMfh4o2b0Pzpoq+76mp+87tfUXDh36NRqpvfTwghhJg+JhwAGYbxw/Fsp+u6AtwAfFymxM08uVTf6Z+1eE3Jl9TL8v38ZONlHMvICFC5pFLeLNVwOEwkpIJd3QBIDYUpWAUsp7yFUDVV4X/WXkI8pOHkc6ix6ieAKMWxv3prfPZl0lyxau3px1fMm8/+UAjjeCsb7rqN1/3dP1Sri0IIIcS0Us5J4yrwRqC5jMcQVZLr9y6qbddFCU8itbKfQjvkTP9MXVNV36lTLI4nWNTQCFOgJo6ihTAtE9sqbxpsLRZhXixGUziCnZu+o0Btmx8DIJ1IUB8/O4h73iUbALj9tlsr3i8hhBBiuir3qlmlzO2LKsnnC2zu7WF7uh+U0t9Gip9BLuTOnFotU01un8F/rV3HO+cvhClwnpVQmHwxC65V1k+IcCxCwQ+szWzpqdqrTTl5EoDkvHnnPHf5qtVcEIvT0t5Ox64dle6aEEIIMS1J2iBRkkI4xOf3G3zzVDvOJApNKjEvLXNoxHwaYrLyvT0AmFMkS5iqhcgXc2BbKGWMgMKRMHnbG/HK9/eX7TjlZJomt7cd56HuLhYvX3HO8y31Dbxh2XLesmgpe//vj1XooRBCCDH9lJIEQQhyOW/NTiwWx5nEqILiZ5CLyGBh2RT9NUBWaGoEQGghsmY/rlVEKePKfS0UOj0CVEhPzwBox47t/P74URrq6/n13Hlgnps5L9TYCIUi2QP7q9BDIYQQYvqZIldEYro5KwCaxAiQ6o8ARRUJgMrF8kc/3HC4yj3xOJpG0TJxiuVNT60oCkU/OC+mp+cUuC1bvPU/my5eN2zwAzB30RIAmgoFbLv6a7yEEEKIqU4CIFESZ/9efnzpU/inhoZJtaMm/ClwqoprlTcr2PnKyfopxqNTJwCyrKI3AuSW94K94E+tLGbSZT1OuZzc/iRzozHWLl4y4jZLLlxO0XGo1UIc9AMmIYQQQoxMAiBREjObJapphNTJ1bzVErU82tPNfV0d5Kdxpq4pLe+N1qmxSJU74nFCIUyriGNbZc9K1+VYHMtlMd3pmWVwY1cPX714PRdpI89WDofDdPjn8fCDD1Sqa0IIIcS0JWuARElMfwqcM8mF9eFYgs8e2AvAKx2L6VmpZWpTC1666VB8EunKg6JqOAqYVtEb8bOHn9YVlJ/299Le2saN8z9Y1uOUQ09PN3P8oqfzL1g86rZWIgFFk779eyvRNSGEEGJakxEgURLbD4DsSY4AqapGKORNzRpYVySCtcO2+X17G2pjXbW7ghoKY7uuFwA5Dq5d3lpAEX/aXz4//UYX925+jEQohO26JOpGf+3qZrcAEOnpG3U7IYQQQpQQAOm6fqeu66/XdX3Um/WGYdjAUmB7qZ0TU5fjX1Dao0zNGa9wNIamKOSmca2WqezhdB8/aT1KtKWp2l1BCYWwcDD9IqhOMV/W2kSRqJdmrlAob8KFcjj+5BMApDQVxxx9fdy85Sv4hLGLz+/ZQUfHqQr0TgghhJi+ShkBMoEfACd0Xf+uruuXj7ShYRhHDMOQle0zkONfUDqhyQdAn7lwBT/beBl5SeNbFn193qhAXaL6U+BULYyNi2l57x/XMnHLOA3uymiCL61dR8wPJqaTzNEjANg1Nbj26GuYEnX1pJNJMrbNLimIKoQQQoxqwgGQYRjXAouAzwBPBx7Udd3Qdf0juq4vCLqDYmpyi/4d/NDkM4sNLIOfrqmKpzLXcWgoFmmORKiZAkkQlFCYglXE9Ud9HMvELWMihJpQiIXxBMo0LISq9XgFbMNN4xu50+fNB2DnTgmAhBBCiNGUdPveMIwTwBeAL+i6/hTgVcA/AJ/Qdf0O4DvA7w3DKN/cFlFVfbjs6k+RbVlAcpJtFf0iqNM1VfFUZqbTfHzJhQDUxcpYdXScVC1E3jozHc21LbBNFCUGBP9xYWsqWOCWueZQ0GzbJlYsQiRKffPsce2zqXk2LQsXYW57ssy9E0IIIaa3IJIghP2vgdvLzcAvgZ26rl8cQPtiCtoWCvFxYxetLfMn3ZblF0G1p+FC9akudeokADnbpnYKTIFDC5GzzrzOrm152eDKVAfXCflJOsZYQzPVnDjRxi3tbfy6vY1ZFywa1z4XxhP8zdz5NPf0nB5hE0IIIcS5SgqAdF1fpuv69bqu7wPuB16EN+qz2DCMpwBL8NYK/TSojoqpZSBjWzgy+YtqU/HehuZAwU4RmH5/QXzGsdGmQM5HNxSiYJ6d+c0p5ssV/2CHp2cAdPDgfh7v7eHJWJRQIjGufZrnLwRgfijM8eOt5eyeEEIIMa1NeAqcrusPAk8D8sBvgH80DOPewdsYhtGm6/pvgfcF0ksx5ZwJgCY/rcpSNcDFyUsa7KBlujqJAAUXXLu8RUfHw9ZCpxMgDHCtIkqZCpU64RBgoVjlrTcUtIMHDwKwdNFi7Pz4pu/FGhvJA/NiMXbv2MbChReUsYdCCCHE9FXKPeEw8E5gnmEYbxga/AxyM/D8UjsmprbrTJPvXrKBOenJLy4fqCU03gs9MX55fyF9QYVyrLGZKDeknU6Bffox2wKnTAFKxJuZO90CoPZ9BpfU1bNmTgtOcXy1kpRolILroioK7ZIIYViu62L19uCY5a0/JYQQYmorJQnC14H/MwwjNfQJXdfnAm8wDOMLhmGMayWurutNeBnlXgzUAduADxuG8YD//HrgK8AmoAv4qmEYXxy0vwpcD/wj0Ag8ALzTMIz9g7aZdBvibHHXpSEcQYtMPrNYVzjKY6dOkVy6NICeicEKvb0AWNrkCtYGQVE1bIVhAiATHAtFDQe+dsWOR+gsFChOgQQQExE5fpyPrlxNtrNn3PsoikIuHCZqWfQfPlTG3k1PxfYTnPjOtygcO4oajzP7la+h/pnPqna3hBBCVEEpI0A3ActGeG498IkJtvdzvCl1rwGeAmwBbtN1fZWu67OA24G9eMHL9cAndV1/86D9/wN4O/BW4HK829x/1nU9AhBEG+JcIf86VY2OWg93XPYkm/ivA3s5GJ9eF6nTgdnv3aewQ1MgAAqFsVyXojlkCpxj41omihL8SqBUUy3v3L6VW8a5jmaq0PyR1Uh93cT2q631fujsCLpL05rVn+LYFz9P4dhRAJxcjpM/uonUIw9XuWdCCCGqYVwjQLqu/wlY4/+qADfruj7cfKU5wIHxHlzX9eXANcAzDMP4q//Ye4AXAK8DckABeIdhGBawW9f1FcCHgJv8AOVfgA8ahnGLv/+rgTbgOrzg6m0BtCGGiAxcq8YmmwQbojEviOpPSxrsoJ0Kh3msvY3mldUfXVNDYSycc0aAwE+EEKsP/JgRv/ZRLjd9Emzkcllq/MKnNU2zJrRv7axm6OkhXiiQy2WJx6dX4Fcu2V27sHp7OWVZfGrfbv5u5Wou00Kc+smPSaxeQ6huYoGmEEKI6W28I0CfAe71vwC2Dvp94Osu4Ft4NYHGqxMvg9zmgQf82kEK0ARcCdznBy4D7gJ0Xddb8Eacav3HBvbvxRtFeqb/UBBtiCEi/t16NTb5C6yIP4qUkQAocEeAn7Qepb+p+hd43giQgzVMAOQlQgg+SUM46gVA2WmUYbC19Rhzot5oaLy+YUL7Nly4nA/u38tXDu7nwIFx34ua8W746/18eNc2vmjs4mQmw/9sfZxD2QwFx6Z4oq3a3RNCCFFh4xoB8kdnBkZoAD5pGMbByR7cDzRuGfyYruuvBC4EbgU+DWwfstvAX6tFwEL/52PDbDNQPGNhAG2ULBQKNvew5ucy1qqY09ixbWJ+4gI1WYurTm7q0kozyxs2PJW23r7Az1eppsJ5DkI67U2Bq0smUCf5Ok2WFo5QsIuguKfTXg9Me3NtE8W1UdVwoMeMhzU+tWotDS5oOCihkmo/V1RbWystfgCkxWMwgddNjUWZ1TKbw73dHDiwl/XrLzn93Ex5T0/U7bffyg9/eAMA/+//vY/nXHUl3/rm1/nCvQ+Qdh1uePs7WB/g5875ep4rTc6zEGIyJnw1YBjGm8feqjS6rj8DuBH4vWEYf9R1/X/wpq8NNlBFMQYMDD8Mt02T/3MigDZKoqoKjY2TnyI2nLq6ya+9KVXGX1gPkKhvwIlObqlUNJEgpKqotlO281Wqap7nIIT7UzRHIjTWJojFq7ukLZyIU3SyhMLnrkdScdBwCAfcx0R9kpU13rqYuniIUM3Uen8Np+vkcS4Ke+chVpuc8NqoFfPns3mvwdGjB4f9/zTd39MTkerq4lv/9TkA3v3ud/O+976Lo/t28ra/u45sup/7H36M66//N+68807C4WCD7/PpPFeTnGchRCnGuwbIBi43DONRXdcdRs+n6xqGUUp9oZfiFU59GHit/3AOGLoyfqDyZsZ/Hn+b3JBtMgG2URLHcUmlgp16o2kqdXVxUqkctl2e2ilj6W47xe7+FFFVQ1EjFHKTSylrhbyXI+TY9PRM6pQHZiqc5yBc05fmVes20F6wyE/ydZos14a0mcMyz0x1UxQFLaRiFU3UQh60GI4TXCY4O6RhOQ4hVaX7VDfhaVAP9cSevVwEmKpKLm9OuEjspeEoCy9cyfHtO8/6/zRT3tMT8btPfY5PzFvIQw1N/MNb30HHiRO0Hz2KbVu88dUvZ9uuPRw6cICff/6LvOid/xxIIo7z8TxXQznPc11dXEaWhJjhxhuofAJoHfRzoLlqdV1/N16a6t8Cf2cYxsBozDFg/pDNB34/jleTaOCxA0O2GUjDHUQbJbOs8vwBtG2nbG2PJWO7XG/sIhKJ8J9oOM7k1m4oUW8QLuyW73yVqprnOQgx1wVFIVabDDSwKIWtaRQyec7OdO394roudjGHGq8PtJ+hSISCHwCZmRxK7dR/LQ+cOIFxaD/XXX0Ncxx3wh+2c9UQSxub+L+urmHfu9P9PT1exWIRdu5AjSdYtempaKpC54lWTNOLgmPRGC+/9ho27j7InMcep9fYS+3yFYEd/3w5z9Um51kIUYrxrgH6z0E/fzzIDui6/g7ga8BXgfcZhjH4k+w+4O26rmuGYQxcZV/tdcM4pet6H5ACrsIPXnRdbwA24NUrCqoNMcjAgvJYLB7Ixaqa8KbpRKq7RGXGcW2buOrdxaypq342MFsLYVojF7t1zYFECMHdeY3EouQdmyQh7Hx+7B2mgH2trRzr6uR1q1aVtH9dczNmVyfNKHR2dtDcPDvgHk4Pt//xZpb7GSY3vP7vKWT76e/tPmubq668nD3bDOZEY+z4za+4/EP/Vo2uCiGEqLCSVgTrur4MiBmGscsPFj4NXAD8yjCMH0+gnZV4Iz+/Az4LtPhJFsCbjnYj8EHgBl3XvwA8FXgvXs0eDMMo6Lr+deDzuq53AIeB/8Ib9fmt304QbYhBsllvWk0ikcQOIABSEl6GsqgiUw6CZPlZ9RzXpaautrqdUVQcTcU0R56G51gmODYoamBjzNF4lILj3VMppNNM9dUClmVx4sRxAObV10M6N8Ye54o1NmICC2NxDh48MKUCINd1y1LvaTjGX25hhaKQicepWbiAjmMGZvHsADykaViL5kN3P46xu6L9E0IIUT0TvuLUdf1aYDfwD/5D38artbMQ+IGu62+ZQHOvwJuC9nLgxJCvrxiGcQp4PqDjpaW+HviAYRg/HNTGx4AbgO8DDwIW8HzDMIoAQbQhzlbcv4/vrNvA21vmBjICFEp6AVBEVTGnUb2WqS7X3QVA1rapS1a3yKzqp8AujjYCZJlgB1sQNRyJkPfXB+T7+gJrt1xOnmxnbSLJhsYmGkKlLcofKIY6Nxbj8IH9QXZvUvKHDnL0kx+n2H6i7Mfq7OygoasTgIaNm3Cs/DmjPwOWP/NyLMdhtqph/PXBsvdNCCFE9ZUyAvQx4DbgP3Vdr8cLXj5rGMbHdF3/FPAevGBiTIZhfAavxtBo2zwGXD7K8zZeUdMPlbMNcUYh5WUW67dtgqjcoyXr2dmfImdbzMmkqZfijYHoP3XK+25ZxMMhb3SlSpSBIqjmKAGQ6+KYBZRIDRNf+TI8VVPpsy26igWixZGPPVW0tbXy+oWLWJJIUmw7gZKYeNY6JRqjiFerq2ufEXwnS+Jw9Pe/g6NHaP2vz7Po458gVFu+2lR33PZn1tc1ADD/ymdiFrJk0/3DblvT1MAxFZYCxi1/YNUzrihbv4QQQkwNpcw5ugT4smEY/XgjKyHg1/5ztwPBrSIVU5KZ8abA2dq56YxLEYpE+dSBfXxh/15yljX2DmJcMl0dAORwwanuImE1HMHCHXUECMAp5lEItq/f7DjBO7Ztpbhw4dgbV9mJtrbTNYDUaGmjdoqiUIh4abRzrUPLm1WO67qkHvor27Y8yote+Dze9pMf0JrLYvX1cuzG75f12Mbdd1ETCmGGQtSsXEGmv++c6W9nucDLi6MeOYJtV+9GgRBCiMooJQDKcWbk6AXAScMwtvm/zwV6A+iXmMJMPwmCrQYTAAFEY96oz8D6IjF5/arK70+0sdMqEnDixglTQmHyVgHXHb0frmWiBDxSFY17gcRA8o6prLP1GAnN/3gNl14TSauppWDbZDo7A+rZxGV3bKf9hu/S+z//w4m2VnKKxjcOH8JxXczt2zj5xJayHDeXy3Lfjif59uEDxJ97DSgu6RGmvw2Yc+nFACyLRNm2+bGy9EsIIcTUUUoA9ADwr7quvxZ4FX6iAF3XN+Ktr3kguO6JqcjOewuzgxoBAohGveXpmbQEQEHpUjV+cvwouyLBvU6lUkNhcsWxF/Q7VhEcK9B1QLGYV2dqOgRAmeNeAoRCKIQ7iVG7+kvW84atj/Gbg/vp7x9+6le59dxzFwCP93SzevVGvviZn/GWf/0aj2W812HzN782ZkBciscee5SuXI49kQjLXvEqbLNAfowbK6FZDTygwceMndz/kPwJE0KIma6UAOh9wALgJ8Ah4FP+4/+HV0z0w8F0TUxVA+mEnRIXaQ/nffPn8b8bnkrR2BNYm+e73t4eABrqaqrcE0ALkzXHDoBcy/JGgQJMxHV5TR2fXLUWbfPjwTVaJpY/bdGOTy5fXW1NDbPqGwA4fPjgZLs1YXY6TXqbV0Ztc7HIW9/4YWLROLOb59L8vNcBsMx2uP+WPwV+7If8AObpT78CTdMoFnJjBkAoCs5FOgcyGe67/77A+ySEEGJqmXAAZBjGIWAtMM8wjIsMw2j3n3oZsMYwjAMj7ixmBNcPgNxJTNEZKqRqXha4ERYqi4nLnWxndiRKU7L6SSXssEZxlAQIgznFXKABUEMkjF5Ti9Iz+jSoqUBJee9/tWbyQeuiOXMAOHiw8h/JPQ/9FdV1OZTNsPG5ryCZPJOGvXnFpbSHo6iKwtb//QFWwOv+Dj76MNe2zOHKNRehaQq5dB+2PfYxLlq1HFVV2b9/L8ePt465vRBCiOmrpMIrhmG4hmGcHPLYw4ZhTP00S2LS+h2Hw9kM+VhwF9ZFvwbQQIIFMXmL9+/nG+suZW2AhUVL5YTCYyZAGOCaBRQ3uEQIdshbU+NM8UKorusSK3jnKOaP3kzGKxqa+OKadXTs2T3ptiaq9e47ANiaz/O0Tdec83z4ipfztePH+MHundxzz52BHffEiTYWZnP8w6KlLG1rw3VsMqnece1bk0zyijVreOuipTx05+2B9UkIIcTUU0odoNm6rv9E1/U+XdctXdftIV+SxmuG26ypfHDXdo7NWxRYm6afUMGSJAiBUf2sV+FEdct/KqqGrTD+ESDLBMeCgEaBnIifVKAwtct69fX1csuJ43zj0H4ali+fdHstmsaiRILssSMB9G78nEKBiJ+CPbF2E+FhRopDi1bR/JRn4wI//em4a2ePacuWzazx02vXrb0Y2yqQz42/mOzzahu4pmUOrQ9LPSAhhJjJSqkD9E3gRcDPgFYIOGetmPIGMrVFosFdWNtaCFwTewIXK2J0IdO7FxGtqe4UOCUcwXSdcQdAXkFUCyUcCWSRvBMNQ7aAYk7tAKi9/QRHc1ky8RjxWbModPdMqj01WQO9vdDZFUwHx+nEls2EgM5igbWXv2DE7a542gv5w//9nC1bHmfvXoOVK/VJH3v7E1t4UdKbPphcvRqrWKAwgeLKztxmONZO6EQ7pmkSDge3zlEIIcTUUUoAdC3wXsMwvht0Z8T0kMkMBECxwNq0QmEwzSk/TWk6iToOqCqJuokX0wySGvJrAJnje21dx8Ex86iRJHYA6bvdSAQooFrmpNsqpxMnTgAwb85cnOLkg7Vk0yzo7aW2WKRYLBIKBff/dTT3HT7Ajdu28tRVa3h5XQsjxbB10QTv3/g06lM9/OmPN/P+f5l8HequHduIJmuxo1FiCxaQ6W0bvf7PEIlli+FYO8tjcXbv3sm6desn3SchhBBTTymLA4pA5dMKiSnjVSh8+aJLmJUPbrTGDvnTZKb4NKXpwnVd4n4mgZr62jG2Li81HKbgmFj2+AMQp5AjqMFlN+a9tzRrahe47Dh2hKubW7h01izsAAKg2lnNACyIxTh69PCk2xuv+++/l45igbkbnzFi8AOAFuJSVWFlTS37775z0gVI0+k0dX19AMRWrETTFDKpvok1Mq8FgCWJBFsekmlwQggxU5USAP0WeG3QHRHTRyMK82PxYef2lyobr2FXf4quSdQ+EWe4hTwhPwCqbaxuGmwlFCFXnNjInlcQNZjlhG48Qta2mNrjP5A7epR/WrKMZ1suTnHyvdXqvMB3fizOwf37J93eeORyWR5//FEALl7z1NE31kI4S9YAsBzl9H6l2r79SVbXeP/mxkvW49gm+Wx6Yo0k4mTCIVRF4eSWzZPqjxBCiKmrlClwW4BP67p+IfAwMHSCtWsYxicn3TMxZUX9xelKIriRhbZZ8/nObb/mmXPnSHQdgIy/7qPoODTXVncKnBIKkzF7J7SPYxW9dUBaeNLrgAqNtbxp6+NceeVVjHFJXlVmx0ANoGCmqqnxBBYuEVWl3dgNL35xIO2OZusf/8A/X7CEg8Csxvnkc6MHsebCVUT2P8mmhkbuvOM2Lrvs8pKPve2JLVyW8N7r8ZWrcKwixRKm1Nots+D4ScLtJygWi0Qiwd3oEUIIMTWUEgB9w//+TP9rKBeQAGiGcl2XmJ+yWk3UBpYBIxb3Rin6U6mAWjy/pXIZfn+ijbCm8o5oGMZRB6VcnHCI/AQvRF3b9tJhhxO49uQCoGgiCkA6PbXfW0qqD7QQSjKYETtFUUiHQqRS/XQcOxpIm2M59fijXNbYxNxEgkJ+7PecNX8ZjqIyNxZjz4P347ouSolFoLY+uZUbt23h+re+E33hAqxCH4USpunGly6C4yeZpYXYuXMHl166oaT+CCGEmLomHAAZhlH9oiKiaoq5HCHVD4DiwQVA8YR30ZeSACgQKcviJ8ePMrt5Fu9wqrv2xQ6Fx50AYTCnmENNNEz6+FE/DXh//wSnQ1VYNJ+HZA2x+rrA2jy5dBn/8bMfo9uVWVunnTwJ4TChRctHX/8zIBzFWbAMtXU/Sx2HXbt2sHbtxRM+rm3bbN/+JAXH4cLnPBdN08jlc1glZP5zlyzkuw88xB0H9/HeJ7dKACSEEDPQpIIZXdfrdV1fpet6VNd1LahOiakr29N9+mc1GdyFWrNd5LuXbOA9NdVdsD9T9PR4KZQb6+sZ35VomagatqpQnEAmrgGOWQxkHVAkHuV9y1bw1nji9DSzqcY0Ter816lm1qzA2l0021vUf/jwoUknGRhLX28PC/zRm6Y1m8a9n7nQS3+9qaGRe+65q6Rj79+/j0wmQzKZZPnyFagqZNITTIAwIBJm3oWLAXjyyS2ltSGEEGJKKykA0nX9Kl3XHwG6gR3AWuCnuq7/d5CdE1NP1r+wztk2ihZcjYxwvIaGcIQaRQYYg9DffoLZkSjNddXOABfBch0KpYwADawDKnFK1IBoIsryZA1LozHsdP+k2iqXU6dO0hLxpurVNDQF1u7cxiYioTCFQoG2tuOBtTucHffeTU0oRNF1ic6/cNz7mQtXUgxHOJrLcs/dd5R07Ce2PM7H9TW8a83FKKaJY1sUJlFU+cJFCwF48smtgdSiEkIIMbVM+GpT1/XnALcBOeBDnKnXvhV4j67r7w+ue2KqyWYzHM5mOGEWcZzgLgxCtY0AxDUNc4oXrJwOYjt38I11l3JNgMVqS6GGI5g4FMyJr8VwLQvXKqCokwuAYok4OX/0w8yUflFcTu2tx2jyF9trseDq9SimyefWXMz3L9nIwQPlzQTXuvlxAHqjUQqF8U+OdZP1FN/wr9xw7Aj79u8rKVBr3fI4a2rruETVUCIRHLtIsVB6TbGl8QQfXbmaNzXM4liF1k8JIYSonFJut38auNkwjKuAL+MHQIZhfA74AvCPQXVOTD25WIwP7trOl7s6sSe5OH0wrbbB+64o9Hd1j76xGJOT9ta7uNFoVfuhhiIUbBO7xCQMTiGHMsliqLFkjKy/DirX2zuptsql/dRJrt+zkz+7Fs4kR7wGU8Jh5obD1IXDtO3eFVi7w7H8wEVpmUexOLHpdpoa55J1lwJeHaGJco4cBsBdsAAtpGGbpWWAGxCKhLmkrp5L6ht4YsvjJbcjhBBiaiolAFoP3Oj/PPTK5DZgyST6I6a4jH8HPR6P4wQ4NUSNxLD8GkD9nacCa/d8peS8ERctEdxoQinUcIRMcWim/PFzzMKk1wGFwmEK/nsr29czqbbK5cTJdnan++luno1rBpexT1FVspq3PLPv4IHA2h3KdV0yvT2YjkNs0finvw0oFm2euvHprEjW8Nf77pnQvh0dp1joj0Y3X7oRVVUwzQJmCevOBriN9RQVb0T66OOPldyOEEKIqamUAKgPmDfCc4v858UMlfbXUCQSARfXVBSy/kVqpqsz2LbPQ6GCd/EXTlZ3ChyhSQZAAa0DKvrT6Ap9U/Pjqb39BABzmpoCT1rhxL33gNneHmi7g7W1Heeb+/fyD9u2UrvpqpLaeObxo3x69UUUjT3kcuOfMrntiS2s8pOnNFy8DlVVyGf6J7d2R1HI1HmfccVD5QschRBCVEcpAdDv8QqhDk7z4+q6vhD4N+BPgfRMTEnanj38z9pLeEE8+AvrgUueXM/UvEs/nUQsbxQhVlfdIqh2OEyhWPpUpKDWARX8/YtTNACKtB7n6uYWLijDlMV4o7e+LtqfLtuCfsPYDcCSC5fjUlrh0NACb+RofU0Njz328Lj3O/ToIyRDIUxFIXrBInAdcgEkuwhfMB+A5lxe0vMLIcQMU0oA9GHgFPAIMLA69GeAgTcl7iPBdE1MRU6qjwXxOLVaKTV0R3fccdnVnyIzicXLwpPwZ6fWNQaXqnziFOyQVlIGuMGcQnbS64DMkEbOtikWp2aCjeXZDP+0ZBnzCsH3r95PhT03HKatrS3w9gH27PECoJUrV1EolDaFL7/AS4e9sb6R+++9e9z7Wfv3AVCYMwdF03Bsc1IJEAZEFy0AYFVtLdu3PTHp9oQQQkwdEw6ADMPoAS4D3g7cB9wBbAM+CGw0DEPmL81gdtabzmSHS7vLO5rfuWE+buyiMxxceu3zkVMoEPHTidfPqq9aP5RwGAuXQnHiGeAGC2Id0P0ReOPWxzhx4cTXp5Sb67rU2N70z2RjcCmwB0TrGwBYGIuz1zACbx8guX0bn19zMU9P1lIsMQAqzlqIHYl6CRsee3Rco1XFYpGTJ9vpNYs0XroRRQHbCiYAcmc3YQEN4Qh7H3lo0u0JIYSYOiZ8G1/X9WcCWwzD+B7wvSHPNei6/hLDMH4eVAfF1OL4mZXcMgRAsbg3576/X6abTEYhn+d3J45TGwrxqsbq1QHSwlHyJabAHswxi2CbKKEQbomp1+PJBDA131v9/f00+0F/Y/PswNtXk0m6HYf9qT6Su3ax/tLLAj9Goq+PpYkkvbWNpS9hUjW0FWth5xZWuC579xro+qpRd9m9eye/a2vlvnyO21/yMlRVoZgvUCyUngDhNE2jNxGjrf0kB/wpfkIIIWaGUqbA3Q2sHuG5S4GbSu+OmPL8zEpuGerLxBLeepX+/qlZrHK66Mmk+dnxY9zU1kptLPhAdbzUcJSCY1E0J3cx6to2TjE/qUQIsYT3fk376cGnkvbDB6kJefeiYjUBJxfBywT31/o6vnhgL8ahQ4G339PTwzx/SmzdsrWTastZ4u3/lIYm7hvHNLgnn9wKwMXr1qOGw6iqilnIY1vmpPoxoOcZG/jU3t3ctWM7tj2x1N5CCCGmrnGNAOm6/kPgAv9XBfiWruvD3UpdCZQv1ZCoOtX0LyxiwQdAl7kWb7lkA6fKcJF2Punys+g1NzWCU72LtsmmwB7MKWQJJRsYf3nNs80JR/jwCp05u6fenfzOA/tpBtKOQ7NT6r9wdIv8kSWjDFPgjCe30uInb9BaFkO29PVaueYlxFSN2dEo+x+8D972jlG3P7BlMwpwySXrAVAUyKaDG+W7YMF84rEY2WyGAwf2s3KlHljbQgghqme8I0C/xgt8Bm7BKsN8OcDDwJsD7qOYQkJ+djE3Fnx2sUg4TEM4gjqJAoYCeo4fZ3YkytymxsBTKk9IOEq6mAmkKccsgG2e+QSaoHgswob6RmZNwRGg1FEvl0xG03CKwYxcDLWkZQ4Axw8cCDwTXNvWLQCkVJWiMrn1exYa6nNfxL/v3sFt256gu3vkosi2ZfGi3l6+tW4DT1nqre1yHZtCLpj3HICqqqy4cBm1oRDbt0pBVCGEmCnGNQJkGMYfgT8C6Lp+N/BOw5BJ0eejPssiZju4yeCziw0EVWqZLgLPF+6TT/CNdZeyW6li8ANY4TD59OTW/wxwzCKuZaJGIqUV4K3x1gBFHAfXdSddVyhIhQ6v8G8xFi1bwDpXVblx/SZ6zSLt7e3Mnj0nsLYzhw8CUKirRy0xAcJgsUufhXrBj3H37Oavf72fF7/4pcNut++eO2kIhcnaNvrTng7gZ4ALYP3PIG9qaGLh+k3c+/hj8OrXB9q2EEKI6iglC9yzJfg5f93YeYp3bd9Kft7iwNtWEt6CfS2g+fvnKyvl17qp4vofFAUnpJGfZAa401wXp5gpOXBRar0ASAXcKZZmfUshz8eNXfTMnVu2Y0RqaqgJhZgfiwe+oD/U3QVAeMEF2Nbkp/DlskWuvOIqAO67754Rtzt5370AHImECcdiKIqCbRUxA359w/XezR617Xig7QohhKieUrLAJYCPAi8GkpwbRLmGYUy9XLMiEGm/wGAklgi8bbWmAYBwmdZBnC/cjDcFSE3EqtYHNRzFxCUf0Bog8AIXpcailNwtoZoYpuMQVlXsTBa1DGvYSnXoZDu7+lP8fUtL2Y6hRGPkXJe4onBi+zbwA4zJyuWytPb0MK8B5ixbQxATDLMZk8tXX4y7aCmNhw9jmibhIanxHbNIvV/TSF3tJU5QVYWCWQx8BCixbBGc6ma+49Lb20NDQ2Og7QshhKi8UrLAfQWvGGon8CBw75Cv+wLrnZhSXNc9naEtUoY1QKE6rwZKzD+WKI2a90ZdojXBB6nj7kMkShFn0jWABrP9dUCljALFa5Ok/fVrdmZqrQM6ccK7kG+pL1/NJkVRSIc0ANIBJhnZt28vP2k9yqfa24ivfkogbdq2w7y5S7l6dgtPqatn2x23nbNN14MPkAA6CwX0F7wQ8AOgXAYn4MQf0cULAViaSLJ9s6wDEkKImWDCI0DA3wL/ZhjG54PujJjaMqdO8t+rLyJlWSjhGEHnFws3zAIgqWrkclkSieCDrPNBxDRBUYnVVe/8qeEoOauAZQc3ndG1LNxiHiURx7UnFiDH65JkbItGIjjZ4EalJquYz3F1JMrJ5tk0J5IwwX/XRCg1tdDXh9LREVibe/Z40+l0fVXJBVCHU4jUcSwRZ0kuT//tt8ILXnT6Odd1af+/PxEFHi0WeM9Kr1aQokAuwAxwpyUTpIA6RaH10Yfh6muCP4YQQoiKKiUACgGPBt2RAbqu/zvwXMMwrhr02Hq8kadNQBfwVcMwvjjoeRW4HvhHoBF4AC9Rw/4g2zjf9Z86xfxYnFrL4mQ4Fsh8/8HUmgaO5nKkLZPGzk4SiyQAKkXCdUGBmqbyjSiMRY1ESRWCH2mx8xlCifoJp8OO18RJWxY526aYyVC9sbGzte/dy3XzFlB0HGojMZxccCNmQyWbm6Gvj7p8PrBEEPt27UABVq5cRSHAACiXKRK98iqcW//M/FSK/h3bqb3oYgDyhw4S7emmYNuENz3l9L/DsU0K+fKcv3Rtgrr+LMWDB8rSvhBCiMoqZQrcrcALgu4IgK7r7wU+MeSxWcDtwF684OV64JO6rg9Ot/0fwNuBtwKXAy7wZ13XI0G1ISDrp6TNOg52GaaoudE4nzzRxseNXfQOLOQXE2IXi9So3lSn5jlNVeuHE4mQLQSXjvh0uyWmw44m43xiv8Ebtz5GYeHCwPtVqq4DewHocWwoc/KP2fMXALAwGjs97W6yFh06xE2XbmITWqAjQNlskQ3Pewn3pnoBOPbdb2H29ABgt8zh4wf38b2jh7jiedee3se1LcyA1/8MCC2cB0B9Oi0FUYUQYgYoZQToF8C3dV1vwav7c858EsMwfjSRBnVdXwB8H7gSGFqp721AAXiHYRgWsFvX9RXAh4Cb/ADlX4APGoZxi9/eq4E24Drg5wG1cd7L9nQRBfK42GWaqpOsqaevu4OenpHrf4iR9XZ18Zu2VhrCEd7Q3ABOcBelE2GHI+TKEgAVca3ChNNhK4pCbUM9PV3d9PR0M2dO+TKuTUT/0WMk8WsAmeV9raINDWzO59jT28Nlxm7m+wFRqSzLoqFYJJGsITJvIRknuM8Ex3Yp5BzcK67kxGOPMQ84/O8fYcl/fpI/3XEbu7q7WLJkKevWrQe89T9WoUCxTBn+6lct556/PsoT3d2s3r8PXV9VluMIIYSojFJGgH4JNAFvAL4J/GDI100ltLkB6AHWAY8Mee5K4D4/cBlwF6D7Qdh6oNZ/DADDMHqBLcAzA2zjvFfo80ZlCkopb5vxSSS9aVs9/t1eMTEdfT38oq2V3/T3Eq5SqRslHAk8A9xprouTz1DK7K06P53xVHpvFU+d9L7Hyp+xT1FVHoyG+UnrUYz9+ybd3qFDB1jkZ9OrWbxm0u0N1Z/Kc91r/47PHdzPoWwGxyxSjEa54YbvAPCa17z+9PQ3VVWwzAJmsTwjQEpjPfdHNf7a08W2bU+U5RhCCCEqp5QRoKVBd2JIodWhTy8Etg95bGD+xiL/eYBjw2yzKMA2ShIKBRssaJp61vdKsvq9BcZFTSOklufq+jXJOIsu2cCp/fsCP3cTUc3zPBmdnV5RzTkts1FcG6VMr9NoQrE4ecWhUMyOGagMXMB638c3guAW86iOhatO7ONrQ0MDr12hoz70IKErr5zQvuWi+lM9lWQStcyvlaoqrJg3n78Ae/funvT/r8NbHmexpmG6LuH6WahdwY6+5HMmS1fO49pXv4YP33QDq5tnE373P9HRcYqFCxfyyle++vS/IRTSKOS8wLhcRW6XL13E9l172LHjSV772teNuN10/eyYbuQ8CyEmY8IBkGEYR8rRkVEk8KavDTbwlzbmP88I2wwsggiijQlTVYXGxvIs5K+rq3wdE6XgLTC2QiFq4+VZGhUOh2kgwsl0qmznbiKqcZ4nI3OyjTnRKAtnzyJWptdoLKHaWjpdE1exCYW1ce2jTeRi3LVQXZNwYmKpDJqTCTaoMdKdHVPivQUQy3sfQ/GmRuIVeL1WLlhAjRYiu3//pM9Bap83Wzkdj5PUQsTi4TH2mBjXBcdy+ehHP8K2bU+wefNm6OwgFovxla98hblzz3w0O7ZNezFb1vf82hUXsi2RxNq9e1znbrp9dkxXcp6FEKUYVwCk6/qNwCcNwzjk/zwa1zCMt0y+a6flgOiQxwbmi2T85/G3yQ3ZZmARQhBtTJjjuKRSwU4D0jSVuro4qVQO265swdC+bA67UKBQ30guVyzLMZxwFMwchd4+enqCX0MyXtU8z5Oy+Qm+dvGl7FfD5Mv0Go0lWqvRnenDMsdeLK4oClpIxbacCdR+slEy/dihBM4E1p3YiTjkMjjpdFXfWwNc16XOcUFRSJbx/9QAVVVYVlfLjZduImtZHD50nPqGhpLbyx0+CoDbMod0Xz7QLHADOjvSJOua+Na3vs9PfvJjOjo6uO66v0XX15z1GqqYZNKZsr7nl8YTfHbNxaRMkwMHjtLUNGvY7abtZ8c0U87zXFcXl5ElIWa48Y4APRsvhTTAcxh9rkrQq+OPAfOHPDbw+3EgPOixA0O2eTLANkpiBZwqeoBtO2VreyQ7kkl+tH0rL3jJa7kswAXPg9mxBGR7IZup+L9v2P5U4TxPhpPypimGaiYWHATJioRJ96UZXzzjbeS67ji399iFLKpt4rjjG2ECcOsS0JUhVChOidfUcRw+aOykUVH592ueV5HXq3F2Cz2OQyIUYu/DD3Hpc59fUjuu65LMpCFZQ/LCleTz5oRev/Hq78tTLFhEInHe/Oa3nX588OunKGA7RQq5XFnPYXT+XIquQ104zPZ77uEZL3n5qNtPt8+O6UrOsxCiFOMKgAzDWDro5yVl683w7gPeruu6ZhjGwC3lq72uGKd0Xe8DUsBV+MGLrusNeIkVvh5gG+e93t5eABI1dWU7hpOohW7QCtUZvZjuQv6UqlhDbXU6oCjYoTC5fHlHWJxiwcsGF06O+6JXbagDOojaNq7joKjVvcPb09NNWzrNCUWhKZmECowWKKpKp+swH5WTTz4BJQZAbW3H2dLdRdGyuXL1pRwv08udzRQpFmzCUW3E11lVFYr5YtkywJ2maZxUFS5woWvL4zBGACSEEGLqmg5jvDcCdcANuq6v0XX9TcB7gc8CGIZRwAtSPq/r+kt0XV+Hl6r7GPDbANs47/X19QIQT5Tx4rqmEYCIVZ30zdNdzD9v1SqCqkZiFHDKkgJ7MNdxcPLpCWWDU2d5gbsGONkyZKiboNZWL+fKnNmz0So4VSrvZ24rHi19Oadh7OGPJ0/wOw3shnlBde0c+ZxJLlMcdTqSoqiYhRyWWd46SgDZWQ0AhFuPl/1YQgghymfKB0CGYZwCng/oeGmprwc+YBjGDwdt9jHgBrxaQg8CFvB8wzCKQbUh4IX9GT61ai3NZUyDHW6cDUDMcXEcmdYwEa7rUutHBI2zG6vSBy0ap+DaZQ+AAJx8DsUZ/0VvvL6GtB8gWlOg0G7vQ3/lNQsu4ClzyhdADCc2y1u7kuxLldzGnj27AFi1ak2gBVCH09uTG/V5VYVsuvR/y0QkVi4DYL5tY+bLPOIkhBCibEpJg11WhmG8aZjHHgMuH2UfG6+o6YdG2WbSbZzv5gGxmlpS8ZqyHSM0ay5Hc1nacjl6erqZNau5bMeaaTpaj5LQvDUxLfNn48XwlaVF46QK/bhu+YNXu5gnZBZQI+FxTYOL19XQa5poioKTG/2iuhK0/fu4bt4CHo8Emz1tLHMXLYL2duaoKvlMhlhy4tng2nfvpD4UZuUKnUK+vO+zTLowakIN17Eo5CqT1GL2imWk7nuUulCYgw/ch/7c51XkuEIIIYI15UeAxNTgmEVi/poJpa7kzOBjsmbN4xPHj/Olg/s4ebK9bMeZidr2+GmJbZvIONNPB82JxujL9VfmYK6Lk+tHUca3BqimoZYP7NrGG7c+hrrwgjJ3bmyRtHeeQvWVna7YPGcuKcsioqrsu/+ektq4tLuH763fyBrTKfsIUDZdpJCzRpwG59gmhQqNxqiaxlE/cUf7Iw9V5JhCCCGCJwGQGBfTny5jOQ6h2vIFQAD1Dd6oz6lTJ8t6nJmmvaeLX7e1skMDx6rGzE0FKxImm69QAATYhRyKbTKexUCRZJRQ1KsT09FxqtxdG5Vr29SaXuCQrPAop6qqbLZNvnXoADvbWie8f2dnBwtC3uSBltXrMMeR7nwyLMsh1ZcftlCsqipYZgUSIAzSPm821+/Zyf91d1TsmEIIIYIlAZAYl7Q/GpOyLCLlTIIA1EkAVJLD3V38sq2Vo/OaKUtO4jGo0RhF3IoGQE6xgFvMDXtxPJTtODTP9taYVXt00ew4haYo5G2b2bOGrydT1uPPmcfdXR1s2bN7wvvuffQRGsIRLNdFm7O4DL07V39ffthpjqqqYBXzmBUMgBZcvIrd6X4efuxRbLu8wZ8QQojykABIjEuq3btg7LdtvDxa5fP3UY3vXbIR8+CBsTcWpw1kFVswuzrrprRogrxrky1zCuyh7Gw/qjv2haiLy9Na5vCRFasw7727Aj0bWf/hQwC05XPMqa18xr41FywC4Mkntk5431NPbAGgJxIhX/7EawCk+wsU89Y5ga6qKmTT/RMoojt5Sy5YSDwWI5VKsX+/UbHjCiGECI4EQGJcsl3edI+sEnyl26FiWoj6cJh8p0wxmYh8aytzolEWzqpOCmwtFqcn31eRBAiD2YUcWAWUcYwCza5Ncml9A0pbWwV6NrKuvXsBOGVbJMOVTYIAsGL+ApYkkmxAoW3n9gntax876n2fM7fsCRAG5HMm2WHSYbuuQy5TmQxwAzRN4xkrlvMPi5Zw4hc/q+ixhRBCBEMCIDEu2WyWjkKBdBlTYA8o+lnmnEmk6T0fPc+2+drFl7KgWJ0aSk4sTipb+dfMtS3sXD/jiH9w/QKxoSrXAcq0ekFEtgrBD0A8EuEfli3nzYuWcOyeuya0b0PGG+GrX72WQqFCQ0BAT1f2nLsvjlWkWIV01GsXXcC1LXNpPHoMV9L1CyHEtCMBkBiXk83NvGv7Vv6ilf+Cza5pAECbAsUqp4tcLkeDn6Vv9vyWih9fUTXMcIhMrjpBq5PPoNhFGCMIUv36SLFisaLTpobaNn8+7962lbYSUlAHJRv3C6LuHf80rlOtx1gQ9hJJLNh0OYV85dbAZPoLFIv26XwXiqJgm0UK+cqnNG+5aBVpyyIOpI09FT++EEKIyZEASIxLb28vAIlkeRMgALj13hqWaJUvUqeTw/v30uBfmNY3V34KnBZPknNt0rnqFBi1i3ncYnbMZAjxRV7R0TDgZCq7Vmmw1uOtnCoWaGyqfAKEAbULFgLQlM7gFArj2mfP3j1849AB7s3nUGqbK/r/M5Mukhs0DU7TFMxiviojQBdcsIDtGS/Zx7G776j48YUQQkyOBEBiXPr6egFIJOvKfqxQs3eR2qCF6JR1QONybPs2AAquC6FxzAULmBZLkjZzFM3xXUgHzh1fMoTG+XPoNb0U4cUqvrcOHfISfCysQga4AfpKnVOFAmFFof2xR8a1zxM7tnN/dyfHl19Itr+yr7XruvR0ZlD8ISAvAUKq4mvOvGOrdNZ7U3ULO3fIjRohhJhmJAAS47Ju1y4+uWot86Kxsh/LqfWmKTVFwhzzF1yL0XXt3wdANhrBtSq3LuO0eILOTHfljzuInc+OmRK7oaWRzqIXAPUdO1aprp0lu3sXz0lnedas2VzQUN6aWqNpSNZwyH+vHL/v3nHt84SfAe7S9RvJVygBwmD9qQJmwZsG5zoOuXT11gnWrVqB6TgkC0XM9hNV64cQQoiJkwBIjMl1XZoKBfSaWmI15Z9eZSbrOOW4HMllOXrkcNmPNxPk244DoNTXQqXviKsqZiRCOlud6W8DXMfBzqZQR8lTqGgqKQXSlkVXlS5au598gk01tayprWVBQ2NV+jDAqm8AQDtyeMxRjFxvL0tPnmRZIsm6iy+lUKkc2INk0oXT2eAcu0AhX711ghetW8OOfi8Aa69yWnUhhBATIwGQGJOTyzGQ+kBpKP8Ceztew0/r5/C5fQZHZQRoXNQ+L/hItFR+RCEUS5LDpj/bW/FjD2XnMmDmRkyJbToWd8Qj/MMTj3Mkmahw7zypA95oXbeiEo9EqtKHAQuWL6foOIRNE7Ora9Rt991xG6+et4D3LNeZO2dhxVJgD+Y4Lt2dGVRVxSoWKOQqnwBhQG1NDftV6CwUONRWndFEIYQQpZEASIzJ8hMgpC2LSF1lLrAbZnnrgI4dO1KR401n2WyGO48f4zdtrbSsubDix9cStfQVMxSK1bsYHeDaFna2D00ZfjTDtE3mLvIW/x/2i5FWmnPCG3mya2uqcvzB1i5Zxmf37+UtTzzOkZ7RA6DezY8B0FVbQzZj4jjVWffS35fHsR0K+SzFQuUTIAymrFjCu7Zv5dcH95/OTieEEGLqkwBIjMnq8dZ29JhFYomGihzzdAAkU+DGtH//Pral+rizkGP28kUVP76bSNKZHv3iuZKsXHrEUSDLtlh84VLAO2+VZmcyRPysZfEqJkAYEA2HqZ8/n6LjcOedt4+4nWtZNJw6BUBs3TrS/dULPDLpAsW8Rba/t2p9GLDx0nW4wEMPP0w6na52d4QQQoyTBEBiTOnjrQB0FAskKrAGCODS3nZuXL+JtbmcZFgaw3Y/A9xFa1bjFCt7YaqEwhTCIVKZnooedzSuZWFnhh8FcoELFs7nQ8t1ruvuGXf656Dk/VGn9nyeObOaK3rskVyxei0Ad955G/YIF/Edjz9GTFHoLhZZ98KXUMhVp9gugOtCLpMln6l+wLFg3lwWzp+La9s8/PMfS1FUIYSYJiQAEmPqb/Xmt/fYDuFItCLHjCVrqQmFaFZDnDp1siLHnK72P7GVS+rq2bRyBU6xshf0oWQdGcekfwoFQABWNj1iXaA5Fy5kZU0NLaEQ/UcrO8Uy54867c30s2zW7IoeeySX66tZVVvHOyIxDnzlS8Nu03rrnwHY7VjMnbOAXK4KmQZ9kYhGsZAj058+nRK7mp62YT1fXLOOCx56hNzundXujhBCiHGQAEiMKWeadBQK9Gmhih3T9IuhzovFMIzdFTvudKQcOsBHV65mw8kunArX4dEStZzKdGI7o9ffqTTX9kaBVM69Ix+pidFmehfwrf66lkpJdZzCchwOZLMsaZlT0WOPpDYeZ8nCC5gfi8OhgxRaz17Qb/X2kPCTkbhrLyKfMykWqjcCFE9EKOaz9Hb3jZjsopKetulSnkz1AtBx+63V7YwQQohxkQBIjKl10SLetX0rW8KVGf0BKNZ56yPmx2Ls2SMB0Ei6u7to8OvaNC5dWNmDqxrFeJye/qmz/mcwO9uPW0ijamdfJJuORa62FoCuCr+3DixezBu3PsaxaJRIqHI3FMZy5YZNPOKv9Wv/6f+eNe00dfQo/ZbJnv4Ul7/s5aR6q5t4IJYIk071kE0XcGwHqhwDzW2ZzS6/+HB+xw6KnZ3V7ZAQQogxSQAkxtTe3g5AfWPlpuwU/WxzDeEI+3fJtJKRPPnkEyyJe+mca+ZWdlF9OFlH2rXo7Z+aF3yu42Cle1Edk8Epuoq2SWyJlyzC9d/blbJ7905M12XpggUVPe5YNi1fya3pFEXHobDXoO/+M4VR79q7m/+37Ql+bxZYu+ZispliFXsK8ZhLf18vhYJFsWCjqtX/M7b2aZvYnupDAfruvafa3RFCCDGG6v/lEFOa67qcPOml7a1rqNyibScSo+CPOPUeOlCx4043Dz/0AIsSXgAUbqqt6LG1mnpOZbswrepeEI/Gzmdwsim0QZ90RctkzoZLAGgoFnHsykzfcx2HXX4wv7xlbkWOOV6aqvLcyy7n121ewpNTP/4hbd/6OoVUih/84AZyjs1z/vZVmEWHXLZ663+isRBgku5L4bou2XQBt0rpuAd7+lM2cLefRvzUHbfjFKfu/wkhhBASAIkxFI4c5toDB3j/shXU1Fd2hGFgHVAo1U9fX29Fjz1dGI8+TEIL4aoqWrJyUxQVLUQ+Hqejb4onqHDB6u9BGZQQoWAVWX7F08nYFnFV5dAjD1WkK23f/iZ/m85wcW0dK+fOq8gxJ+KFl25iMw63nzoJrkt68+Pc/I2v0Np6jMbGRl75yteQz5rkq5gAIZGMYBWzZNMZAHI5E7NoD5vsopLisRixlcvoLBZQcjlO3nl3VfsjhBBidBIAiVEVT7SRcKE2HCZRW9kAKD9nEbvyOfotkx07tlf02NPB0aNHiPf1ARCdNwfHqtzajHBdEymnQG+qo2LHLJVjmVj93aiuBYpC0S4Sioc5EQqzN93P9gokQnAdh/SuHSyOxdEiEZZNwQAopGm8/7pXcUPrET5h7OLPvd388o83A/CBD/wbyWSC3t7qFrtNJEOkujtPr1FyHJdMurKJP0Zy9bOv5A/tbQAcf/TRKvdGCCHEaCQAEqMqtHl/0FtzWeobKpu299Sma7izZQHb+1M89tgjFT32dPDAA/eyqsab9lazZCFUsAaJUtdAW6p9ymV/G4mV68fJ9hFSXRzXJVvM0ffsq/j3PTv5/ZbHy378wtGjKPk8Wduidv4CtCmwbmU4F8+Zx3++5/3sLeS5af9eDmQzvO1t7+QFL3gxlumQ6a9esKFpCpGwTV/P2SnXc1mT4hQYBbpg/jx65s3mP/bs4HvHj06JFN1CCCGGNzX/CospI+8XQW3N5airYBKEAReuWg/Ao48+XPFjT3W33PIn/nSynSOrV1GzeknFjhtK1NKvKXT0tFXsmJPmgpnqxs17WeFShTTPf8ELURSFrVs30zok9XPQ0k9uBWBnKsW6RYvLeqzJeo6+mtv/cAtf+tLX+P3v/8I73/n/CIU0CnmLbLp6a1uStVFsK0+qt++sx227uoHZYC9+wfMw0mlu+fNfOHRoX7W7I4QQYgQSAIlR5Q4fBqADiCdqKn78xcvXUR8Kc8DYTSrVN/YO54kjRw6xY8c2um2Ly9/8BiJNlXtttIZm2rNdZHL9FTtmEFzbwkp1opo58nae5pZmLrvscupCIf78kx+V9dj9j3vT7B7p7eaSRUvKeqzJynd20aipPP/517J48RIAVFWhvy+HaVZvxK+mJkKqpwPbOrcGUTZTpJC3UbXq/klbumghmy65GMdx+OLHryez7Ymq9kcIIcTwJAASI7L6+iDVh+O6pGoaqjKlY+ldv+N76zdyUU2tTIMb5A9/uBmAyy9/Bs21cexcpiLH1WIJsrEobV3lHTEpF7uQx0p1UiyksRWbNz/tGXx73Qaat26ht7dn7AZKUGhrwzzRhuU4HAWWzplaGeCGcm2bzJGjqMUzoyqO7dLXU731P5qmEo069I5QY8dxXNL9eS8jXJVnnv3dK1/K4poa3mzDsW98DbNj6q+TE0KI840EQGJE+cOHAGjL50jMqs6i7YKfeGFNbR233/6XqvRhqsnlsvz61z/nmtlzeMPaiym0t+KYlZkCFGqaQ3u+Z8rW/hkPK5sm03MCy8qy8W9egqoorK2p5ab/+mxZjtfvT9/clupj0+q102JtSPZkB2ZnB6GQiqYp5HMm/anqTTOrq49hmWn6ukcOUnMZk2ymWPW6QC3Ns3ja1VdyIJNGtW2Ofe9buBVcnyeEEGJsEgCJESnhMCdjMbanUjQ2z69KHzJzvfUSq2vruOeeu8nlslXpx1Ry882/oa+vj79deAENmzeT3rO7IscNJWrJxCIcPXWwIscrp1T3CTLpTurnNuGuWAHAXMPg7rvuCPxY7pKlPNrXw91dHTxr9ZrA2y8H17JIHzqMVsihaSp9PTmKhXOnnlVKbX2YnlPt2KPUbHJx6e/LT4m02Nf9zfO5xcyRt22sgwfpuv3WqvZHCCHE2SQAEiNKrlnLjwo5bjp2mKaW6gRA2TleALQskSRsmdx1151V6cdU0d/fz/e+922WJhI0aSGUSJjInPryH1hRUWfP42j6JH3p7vIfr8xc16Gzpw2rp43Vb3w9DrCxoZE/fuHTPBJwXaA/bX2cL+4z6K6pYdWCCwJtu5yyJ0+Rbz+BYzn0dFXvxkOyJoJKns6Tp8bc1jRt+vvyuC5QxZG2cDjM373l7/jVKa+IdOevflGxGxVCCCHGJgGQGJHruuzduweA2XOqc+FmJevIz5qHqihsamjkpz/90ekaIOej73zn63R3d/E3S5cDULdGxzHLvzYjOmsuHYrFkfb9ZT9WpfRlesllUyhmF3P+5oUAvGneQr78gffyve99i2Jx8hnPUqkUP/zhDQBcd9nl02L622mOg9nTS39XP+lU5WpMDdXQFKO/9xTZdHpc22fTBdL9BdQqn+uW5lmsve5FPNTTjQrs/+8v0OdPKxZCCFFdEgCJYRWOH+fUgX309fWhqhot85ZUrS+pC3QArpg1m507t/P44+dnMoTHHnuYn/zkR0RVlac3NAJQs3oplDkgDNXUk62rY1/7XgrF6hbCDFJ/to9iWKPQc5L61XNIrLyQmKbxgWUruOnbX+dlL3sBP/rRjfT0lJYcoe+B+7nvox+CTIYl8+fznDUXB/wvKDNVhViCtn1tuJZZleQCiWSEcKhIe2vruPdxgVRvzlsPVOWscBet1tGe8wwOZ7MkXJdbPvZv7Nmzq6p9EkIIIQGQGEHHL35K7+c+wzNnNTN77iJC4XDV+tK39CJcFC6qraMlEuXLX/7vUdcCzERtbcf5yEc+gOu6vO85z0MtFIg0zyIyO1HW42qxBG7LfPb3HaOz90RZj1Vp/dle0k6RcLIOM9VNyzUbSC5fgrV+HYnGJtrajvOlL32Bq69+Bm960+v47ne/yYMP3k9399hTALMn2mj90U2szOW4oqmZf3nZK9A0rQL/quAkWmaTdSKc3NuK1dODplQ+w9qs2XH6utro751YCnzHcenryZKbAkHQ+ksvJnf107mjp5v/3v4Er3/9K/n0pz/O8ePjD+qEEEIEK1TtDoipp3iijezuXSjAnv5+5l14SVX7Y9Y10XXps2jWF5Hbs4OdO7fzi1/8hNe97g1V7VeltLef4F3veiudnR1cvEJnk2XhAE3P2IhTLN/UJC2WRJl3AfszJznctrdsx6kWx7E52d9Bc81s6O3EtYvMuvoS5jfP47Y3v5Zb7n2YB3/xK+b3p/jLnt1884ktp/edPbuFRYsWsWDBBSxYsJCamlri8Ti2bXPy0AHW7tzJgnCEvel+Vj/veayeU50siqVSIxG02XNoP9SDmS9iFbuJaRqhhkZs8IZZyqypOYni9HP80JGS9rcsh97uLLgQT0ZwXLfso6UjuXD1SmbNn8vTfn8LDzz8KL/99S/ovOdunNWref61L+LKK6+itra2Kn0TQojzkXI+r6cYTNd1Fbge+EegEXgAeKdhGKUuejho287S7u5g67OEQiqNjUl6ejJYVnlSq7Z96+ukNz+O4Tj8x5ZHedGr38VTrnhRWY41EYvn1bH/iTv49Kc+TigU5jvfuZGNG59SlmNV4jyPx86d23nf+97NqVMnmTNnLj/8/o9Qbr+V/OEDzH/Fs3GK5VmcHq5rwm6ew4FMO/uO7cRxyjPipigQCmtYpl2Va9OG2lk89YINhI4fwSmcmd6nRqJEmuZz5IZfkT92HIBToRCP9nZz5+GDtOXzw8YAl9TV85ZFS5kbi9FnWfQ/+1msnz0PxzQr9C8amaoqxOMRcrkijjPKyVYU6pZfSLcVZ+/jB7zaOoCiacRmzyLU0IiDUtbXK1kbpaVF4+j+HXS0tU+qLU1VqWuIkayNoiiM/m8PgKoqxOIR8iOc50PHT9J16908HZWDmTQ/aT3KjnQ/K1borF+/geXLV7B06TKWLl1GU9Osqqf1nqrK+Rnd1JRE09RDwLJAGxZCTBkSAPl0Xb8eeCfwZuA48AW8D7+1hmGUshp6WgZAfQ8+wMmbvg+Kwod37+Bgup9//tj3mTW7OlngBguHVDaunsPPPvEB/nj/fRQiYb74xa9y+eXPCPxY1Q6Auro6+eEPb+AnP/kRtm2zbNmFfOMb32P+/AVElCK53Y9g9gdfYFGNxIjMmksqHmVf92FaTx4oa9KJagdAAOsvfCpLnCj5E4fPetx1XYod/aR3HSVtHDxr9MCNROifO48tc+dw4kQbZibDS3t6qfe3sRIJFv/TP2F3dlGc4PStchlXAKQo1CxeRD7exN6tR8j154Y2QqypgXBjI244gmMH/6J5wU+Yzrb9HNkfTMp1BUgko9TUR4lEQ7iuezqwC9pYARBA+MBR+OtmFD8wPpjJcGfnSR7r7aF3ULAcDoeZPbuFlpY5tLTMoampidraOmpra8/6XlNTQywWJxaLEY/HiUajxGLxaTftciIkABJCTIZMgQN0XY8A/wJ80DCMW/zHXg20AdcBP69i98bFNIuk0xkKhTz5fI5CoYjrOqcvXl3X9b+87ROJBPPmzSMe99aQ2LkcPbf+me5b/gRA+/JVHHzsIeqbWmhqnhrTd0zL4cjDW3lRrsCzL9nAjw8f5H3vfhvXvfr1/OM//hNNTbOq3cVR2baNbdtYlollnfnZ+27R0dHBvn0GDz30IA8+eB/FYpGwovCWZz+Xv1m1hnktLURDNnb7IcxMV3AdUxRCiVq02ibyiTiHC30cPLqT1AxIdz0eh04eYNaiS0nUz8LsO3NeFUUh2lJHtOUiGp6mU2jrJXvwONkjbVAsMi8Z593v/mds28VxXA7863uxs1manvksZl/9bPr3HZgywc94qJEIyUUXkAvXcXDH8XODHwDHId/ZjZXLE21sREsmcLWQd6E/yXhCVRWampPU1jp0tu3n6IHgMqa5QCZToFAwSdREveQKYRUUBddxK55Z0rxwEcyfQ3zPAezte1iWTLIsuYy3Lob9qso3245x/HgrpmnSf+okJ9qOl3R6w+Hw6cDozJcXIEWjMaLRKJFIhFgsRiQSJRaLEol4zyWTCRKJJDU1NSSTNae/J5M11NXVEovFAYWCDRlTIWdBxlLImgp5y7u5oQ7+AlTFPfsx/0sBNAUUxfW/n72fopx5fuDxiAsNcv9WCFEiGQECdF1/KvAIoBuGsXfQ4w8A2wzDeGcJzZZlBOjX9zxB359+jWYWwbFxHYtCqpP+3k5wXDqLBW7tOHl6+1fMW0BNKOSvXVZQlDPrmHtMk90N9TznOdfwsudeS8/nPgW2TfiyK/i3++5n9/ZHePrVf8vzXvaWQP8NkxFK97Hsvl8S6vAW5FuOw9Fcjl7bIjm7hfizrmLV069gwYKF5A8dJLPtCUZauV33tKcTmTsXgPyRw6S3nlnjoaoKkbBGb18/+Xye3OIlpCIRUqk+zLY24kePUCwWKRQKFAoFikXvq1Ao8FhfL4ezGWzbplnVeFpdPc4IleA39/VwIOO9RxbE4rxwzlxCikJtKMQFdQ20hMMofsKH2c+/htlXbSDbuh/XLq0opaKFUEJh1HAULRJDicUxYzGy2HTkejnRfZzuvpO4lVjkwdQYAQJYOOdC1jQvI97bR7Gv08t6NiIVO2uhKGHqLlqLlqhHiSXIt7YTaZ6NlUqR2rufYk/voBsQAG5V/43DjQApmka4JkmkoR7qmujLOBzZfZxcahzZ/lSVcDJBuK4WLRaHcAhX1cD1b7jAmEFRKKQSjYdJJCMkk2AV+mg7cojO9pOj7zhJoZBKNBYmnggTiYRQNQVVVXDxpsi5fjznno7rlNO/D/wM4PifLe6gKYGK6rWdz5vY/n97b1/lzM+n21BQ8gXqj7cSO3gA5UQb2qVPIfHmd2PaNl3t7SS+8FFcRaEQClNQFAou5ByHnG1xoFjkrr4+spl+zEKeVzbNwrRMvHjUPX08gOP5HPd1dZ4+B6+av/B0qvCh1wEnCwXu6TozwvzSufOJDJ2Kp6igRekmxJ3FCEqsHqJ1vDjuEg+FOOdzV1HoI8Rt6pzTT13rnKLWHfRZNmiXNCH+rJ25+fZc+ySNnPl/6aKwe9Mr+Nk7NmDbMgIkhJgYGQHyLPS/HxvyeBuwaDINh0LBzt/+3H9+kO8snk1taFBWtmgY/EXW+zIZbu/Po4SjKIrCc1rm0Rwe/mU+ms3y213b2L17F9/87nd4/aZrya97MZuLNRza8d8AdG14D7/NeX8DhpbVUEb4ZWi4Mfh3ZbTtRnjurOPGQL36aWzY+2cu2XsbDel2liWT3nOFAtd/9Uvs/sx/okbivGjhMv6+aeSFxZ+65WF2umGcQobL7H7eFB95ncvXf3gDj/R4IyKXN87ifReuOHejcBTCUfZ1nKKvz7vzv7K+gevmjjx9sMe0OJg3UbQQLY1zuGb2nLM3sG36E7PYu+TpbEm+hOzORuDMuqfRry9Hvwh1h/485CJorGv1UZ8fY2d38Cs8JI/DWEHCaE+P2eeRNjgMyuEz+5/p3Zmfht318TMjH67b7J/HFmD5WZ+uY/er9PRqE/o3FwHN+zp9QZ8BN+215LpA/CKID7PvsMdWwITT16Wn/xmj/3tc/1hnRqa9321nLi4rcbUzQcZAwDDQn7MCEn8Dd9DvZwcag7YdeJ1QcP0+u6nB+1axblAUWA11F/ZSY6Zpu7kGgIaCw9ddUF2HeLEw8LKc1r3wKtqf/z4AVMfm2nteNeIhHq9ZzgMtLwIzB1ael574X8IMHzhsd2LcO7sOimncYpqXzoaaEbLp7U33c+fRJ0+/Xi9cdymziJ67oQtHshlu3fWr0w89/6JLmB+Ln7XNgPZ8nlt2/PL071evvvjMZz1guy5//8N3oL7rURRF1kkJISZGRoAAXdf/DvgxoBmG4Qx6/EfAfMMwnltCswdd110adOHDL/30Tszf/4IwCq6i4igahVAd2dhciNTSGW/h1gvOJCx48ZGbSVgZ74+7cuYPvauo9DkKt2cdnK0/hPYnvR0UDVwvEFDWvR7t2i8E2v9AuS6zCp0sTh2kvnM7de1buffEYTpP7ATHZE1tHZc1NI24+20dJzme9+50r0jWcEVT8/AbahHuzpgcVhIosXqWxpNclfAe976i3vdQBEWLcH/TJg7ULgNFY2Gxk+d2PuTdLVUU7ztnfn54zjMwGtYA0Jw7xZXt92KpIbKhBJ2x2ZyMz6U9Pq+qVe2FEJOn4J6e2qXgh4gDPw/9zpn/8ppr0Vjooa7YS9LMErNzxK0MMStPR8089szZ4E0hc2yu3fsLQq6N5o9NnT4m0NVwAbtWXE1YhbAGVz7+AzTXQVMHpqf5XyrkG+fRvvGFRENQE4YL7v4REbtAWIOwAioWrlXEtYrYyRj5i1bRn0qRSqWo2fokTi53zqiS67oUwiEOzWk5/dyF7aeIWN7fm6GjzkVNY/+c2ad/X3qyk5hpnhUYN77iOl784rIl6JERICFmMAmAAF3X/xb4NZAwDCM36PFfAlHDMF5aQrMHbdtZmhrPVJIJ0DSVuro4qVTurGH/njykigp5SyFvQ9EefMfzbINfcu/OqMvOx+/jDz/6KocMLxBau+mZvP0/vkE0ljhr27PaGaHN4bYd7fjjfW6k7YZua5oFejpO0Ntxgt6udgq5LGY+R6GQw3UcFFVFVVUURUXVNCLRBNF40vtKJIkn60nWNtA4uxlXiXqBozt2DDLa02OGL5Npu4z9mkzcNZ62VVUhkYiSzRbOWjBe7X6VvO8kDqyM+o6f/HtAVVUSySjZTOGsKZmTja0n26+BQGDYwICzg4IzAYN79r6Dt1MGtT1Wm2d9d0fcbux9z2wX0lTq6+L09+dwbEfuXZTJSH8Lg1BXF5cpcELMcDIFzjMw9W0+cGDQ4/OBJyfTcLkyiNm2c1bbtSHvq1RPfdEzeNMLn05b23FUVWXevIFpW9VP3ztxKixZACwouYVqZ4E7X3jnOUpPjyXnuczkXJfJkLmkigqaCq7jBH5hLs419G+hEEKMh0yc9TwJpICrBh7Qdb0B2ADcX50uVZ6iKCxYsHBQ8COEEEIIIcTMIiNAgGEYBV3Xvw58Xtf1DuAw8F94I0O/rWbfhBBCCCGEEMGRAOiMj+Gdj+/j5UC6D3h+iUVQhRBCCCGEEFOQBEA+wzBs4EP+lxBCCCGEEGIGkjVAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOG4rputfswU+Vc1405TvDnV9NUbNsJvF1xNjnPlSHnuXLkXFeGnOfKKNd5VlUFRVHyQDzwxoUQU4IEQOXTC0SBE1XuhxBCCCHGbx5QABqq3A8hRJlIACSEEEIIIYQ4b8gaICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeSNU7Q6Isem6/u/Acw3DuGrQY+uBrwCbgC7gq4ZhfLEqHZwhRjjPfwN8DFgNdAK/Aj5mGEauKp2cIYY710Oe/x5wjWEYSyrZr5lmhPf0POBLwAsAG/gL8B7DMDqr0skZYITzvAn4b2AD0Av8DPgPwzAK1ejjdKXrehPwGeDFQB2wDfiwYRgP+M+vR/4WCiEmSEaApjhd198LfGLIY7OA24G9eB/61wOf1HX9zRXv4Awxwnm+Evgd8BtgPfB24NXANyvcvRlluHM95PmXAf9Yqf7MVCO8p6N4nx3LgOcCL8K7QP9Rpfs3U4xwnpvxAsvdwKXAW4E3AZ+ucPdmgp8DTwNeAzwF2ALcpuv6KvlbKIQolYwATVG6ri8Avg9cCRhDnn4bUADeYRiGBezWdX0F8CHgpop2dJob4zz/E3CXYRif83/fr+v6vwE36br+drmTOzFjnOuBbeYB3wXuBZZUrHMzyBjn+bV45/VCwzBO+tu/F/imrut1hmGkKtjVaW2M83wFMAv4gGEY/XifHf8LPB/414p2dBrTdX05cA3wDMMw/uo/9h680cvXATnkb6EQogQyAjR1bQB6gHXAI0OeuxK4z//AH3AXoOu63lKh/s0Uo53n/wY+MMw+IaC2zP2aiUY71+i6rgA/BH4M3FPRns0so53na4E7B4IfAMMwbjUM40IJfiZstPPc5X9/h67rmq7rS4AXAg9XrnszQifeKOXmgQcMw3ABBWhC/hYKIUokI0BTlGEYfwT+CKDr+tCnFwLbhzzW5n9fBJwqa+dmkNHOs2EYWwf/rut6BPgXYIusl5i4Md7TAO8D5gF/A3ykcj2bWcY4zyuB+3Rd/w/gjUAYuBX4oGEYvRXs5rQ3xmfH/bqufw74JN76FQ0vqP/nyvZyevPfk7cMfkzX9VcCF+K9bz+N/C0UQpRARoCmpwTesP9gef97rMJ9OS/ouh7CG5lYA7yzyt2ZcXRdX4c3f//1MrWwrOrwAp9L8KYQvQ1vutbv/RE4EQBd1xvwgs1vAE8FXgksB75VxW5Ne7quPwO4Efi9H4DK30IhRElkBGh6ygHRIY8NfNhnKtyXGU/X9Vrgl8CzgVcYhnHO9C1ROl3XY8BPgU8ZhrGt2v2Z4YpAGnitYRgmgK7rbwQexVtE/lgV+zaTfB5oMAzjb/3ft+i63gPcoev6lw3DeLKKfZuWdF1/Kd7nxMN4a9lA/hYKIUokI0DT0zFg/pDHBn4/XuG+zGj+ovz7gacDL/DvOopgXQasBT6u63pa1/U08G/AIv/311e3ezNKK2AMBD++nf73pVXoz0x1BecGkwPrf1ZWuC/Tnq7r7wZ+izcd7oWDyhDI30IhREkkAJqe7gOu1HVdG/TY1XgXNjLnOSC6rjfiLaidDVxhGMbdVe7STPUosAJvWtZ6/+vbeHP51wN/qFK/ZqL7gEt0XY8Peuxi//v+KvRnpjqGlxxhsIHzvK/CfZnWdF1/B/A14OvAq4dMkZW/hUKIksgUuOnpRuCDwA26rn8Bb475e/Hq1Ijg/A9evZRrgQ5d1+cOeq7DMAy7Ot2aWfy7uWddfOu63g1YhmHIRXmwvg28G/ipnwih3n/sbsMwtlS1ZzPLl4C/6Lr+SeAHwGK8+mG3GIbxRBX7Na3our4Sr8jp74DPAi2DEk7kkL+FQogSyQjQNOTf2Xo+oOMVhbser97ED6vasRlE13UVr+hpBG8U6MSQrwuq1zshSuNnL7wSL/vbI3hZzB4FXl7Nfs00hmHcBrwYr4bNE3gX6rcAr6pit6ajV+C9V1/OuZ/BX5G/hUKIUimu61a7D0IIIYQQQghRETICJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhJiWdF1Xqt0HIYQQQkw/EgAJIaYdXddfAvzQ//kqXdddXdevqm6vJk/X9cO6rv+g2v0QQgghZrJQtTsghBAleP+gn7cAlwO7qtSXIL0cSFW7E0IIIcRMJgGQEGJaMwwjBTxc7X4EwTCMrdXugxBCCDHTKa7rVrsPQggxbrqu3wM8a9BDzwbuBp5tGMY9uq5/HHgN8GHgU8ByYA/wDsAFvgKsAw4A7zEM485BbV8EfA54pv/QncC/GIZxcIJ9PAzcBNQDbwCiwB+AfwLeBfwzUAvcAbzNMIyuQfvdYxjGm3RdXwIcAl4FvBp4PmABvwHeaxhGeiJ9EkIIIYRH1gAJIaabdwJb/a/LgbphtrkA+BLwabwAogn4NfAz4Ht4AZIK/FzX9TiArusrgb8CLcCbgLcAy4AHdV1vKaGf7wcW+8f6DPA64HHgecDbgI8DLwU+MUY73wEOAy8DvgD8A/DREvojhBBCCGQKnBBimjEMY5eu6yn/54dHSH6QAN5pGMZfAHRdXwN8FniLYRg3+o+F8IIiHXgCuB7IAc/1p9Wh6/qdwEHgA/7XRPQDrzYMwwLu0HX9jcB84DLDMPqAW3Rdfw7wjDHa+T/DMP7V//lOXdevAV4MfGSC/RFCCCEEEgAJIWauvw76ud3/PnitUJf/vcH/fjXeVLqsHxyBl5DgfuCaEo7/qB/8DO5Dyg9+Bvfh4jHaeWjI763AkhL6I4QQQggkABJCzFADozhDZEfZZRbeWptXD/NcRwldmOjxRzJ0HweZviyEEEKUTAIgIYTw9OIlJfjvYZ6zhnlMCCGEENOQBEBCiOnIBrSA27wXWAM8MTB1Tdd1BfhfYD/eOiEhhBBCTHMSAAkhpqNe4HI/iUB9QG1+Am+9zZ90Xf8WkMdLW/0y4BUBHUMIIYQQVSbzyIUQ09HXARP4MxAPokHDMLYBV+LVCvoxXoa4ecDLDMP4bRDHEEIIIUT1SSFUIYQQQgghxHlDpsAJIcQ46LquMo5R8yGpr4UQQggxxcgUOCGEGJ8b8abdjfql6/qSanVQCCGEEGOTESAhhBifj+OtPRpLW5n7IYQQQohJkDVAQgghhBBCiPOGTIETQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDf+P8g1wXYS4vGjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd \n", + "\n", + "# Load the sample chromatogram and fit the peaks using default parameters.\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'}, \n", + " time_window=[10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, this looks like a very good reconstruction of the chromatogram, but \n", + "it would be nice to have a quantitative measure. \n", + "\n", + "## The Reconstruction Score\n", + "Quantifying concentrations from HPLC data requires a measure of the **A**rea **U**nder\n", + "the **C**urve (AUC), or more correctly stated, the integrated signal over a \n", + "given time interval. A perfect reconstruction of the chromatogram, resulting from \n", + "summing over all constituent peaks in a mixture, would yield an identical AUC\n", + "over any given time interval as the integrated signal of the original chromatogram. \n", + "This can be defined mathematically as \n", + "$$\n", + "\\frac{\\sum\\limits_i^{N_\\text{peaks}} \\sum\\limits_{t=0}^{t_\\text{max}}S_i(t)}{\\sum\\limits_{t=0}^{t_\\text{max}}S(t)^\\text{(observed)}} = \\frac{\\text{AUC}^\\text{(inferred)}}{\\text{AUC}^\\text{(observed)}} = 1, \\tag{1}\n", + "$$\n", + "where $i$ represents the $i$-th component signal, $N_\\text{peaks}$ denotes the number of \n", + "peaks in a given peak window, and $t$ denotes the discrete time point.\n", + "In peak windows where the constituent signal is very small $S_{i}^\\text{(observed)} \\rightarrow 0$,\n", + "even small deviations between the inferred mixture and the observed signal can cause \n", + "this quantity to be much larger or much smaller than one, even if the total integrated \n", + "signal difference is small. \n", + "\n", + "To account for this fact, we can modify Eq. 1 as \n", + "\n", + "$$\n", + "R = \\frac{1 + \\text{AUC}^\\text{(inferred)}}{1 + \\text{AUC}^{(observed)}}, \\tag{2}\n", + "$$\n", + "which we term a *reconstruction score* or $R$-score for short. \n", + "\n", + "In practice, you'll never get an $R$-score of exactly 1, but you can get close. \n", + "For example, an $R$-score can be computed for the chromatogram reconstruction \n", + "shown above by calling the `_score_reconstruction` method of a `Chromatogram` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_typewindow_idreconstruction_score
0peak10.997252
1peak20.995222
0interpeak10.390152
1interpeak20.000200
2interpeak30.084916
\n", + "
" + ], + "text/plain": [ + " window_type window_id reconstruction_score\n", + "0 peak 1 0.997252\n", + "1 peak 2 0.995222\n", + "0 interpeak 1 0.390152\n", + "1 interpeak 2 0.000200\n", + "2 interpeak 3 0.084916" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Compute the R_score for the above chromatogram\n", + "scores = chrom._score_reconstruction()\n", + "scores[['window_type', 'window_id', 'reconstruction_score']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the two peak windows (rows 1 & 2), the $R$-score is very close to one, within 0.01.\n", + "Whether that is sufficient for your case or not is up to you, dear reader. My job is just \n", + "to give you that number. \n", + "\n", + "## Scoring the regions between peaks\n", + "But what about the interpeak regions? These windows correspond to the chromatogram \n", + "signal that lies outside of peak windows -- thus, an $R$-score is a measure of \n", + "how well you are reconstructing the subtracted baseline. As there will almost always \n", + "be 0 inferred signal in this region, your $R$-scores will typically be terrible and \n", + "close to 0. \n", + "\n", + "While this will *usually* mean you are just not reconstructing the signal noise, \n", + "a terrible $R$-score in an interpeak region may mean that there are peaks present, \n", + "but your choice of a prominence filter is not detecting them. In this case, \n", + "it is better to have a measure of what the noise-to-signal ratio is in these regions. \n", + "\n", + "Mathematically, we can compute this as the [Fano factor](https://en.wikipedia.org/wiki/Fano_factor) of the region,\n", + "which can be thought of as a measure of the \"predictability\" of the signal in this \n", + "sequence. This can be computed as \n", + "\n", + "$$\n", + "F = \\frac{\\langle S^2 \\rangle - \\langle S \\rangle^2}{\\langle S \\rangle}, \\tag{3}\n", + "$$\n", + "where $S$ is the signal within a peak window. If the Fano factor is small, then \n", + "the region is likely background noise whereas a large Fano factor would indicate \n", + "there may be a peak present and you need to adjust your peak detection criteria. \n", + "\n", + "But what determines if it's big or small? As all chromatograms have a peak (why \n", + "else would you be using `hplc-py`?), we can compare the Fano factor of the interpeak \n", + "regions to the average Fano factors of the regions where we know there is signal. \n", + "If this quantity, which term the *Fano ratio*, is close to zero, then it is likely \n", + "the interpeak region is just noise and you are not missing anything substantive. However,\n", + "if the Fano ratio is *not* close to zero, there may be a peak present. Again, \n", + "what determines \"close\" to zero is arbitrary. \n", + "\n", + "\n", + "## Generating a chromatogram report card\n", + "In `hplc-py`, you can automatically generate \"report\" cards by calling the \n", + "`assess_fit` method of a Chromatogram object. For the chromatogram above, the\n", + "report card looks pretty good!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Generate a report card with the default tolerances\n", + "scores = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This report card is telling you that the two peak windows seem to be really well \n", + "reconstructed, whereas the interpeak regions *may* be poorly reconstructed and \n", + "you should take a look. If you have a sense of what the relative tolerances \n", + "should be (meaning, you have made a subjective decision of how close or far from 1.0\n", + "you deem to be successful), you can pass different tolerances to `assess_fit`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Assess the fit, but with different tolerances.\n", + "scores = chrom.assess_fit(rtol=1E-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In either case, `assess_fit` will still print out the $R$-scores and Fano ratios \n", + "for you to make your own call on what is good or bad. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assessing the fit ≠ computing uncertainty \n", + "\n", + "If you take one thing away from this page, please let it be that an $R$-score \n", + "is **not** a measure of the uncertainty in your reconstruction. It is solely \n", + "to be used as discriminator for you to make a judgement call of whether \n", + "you are properly reconstructing the signal.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/quant.rst.txt b/_sources/quant.rst.txt new file mode 100644 index 0000000..78a68fc --- /dev/null +++ b/_sources/quant.rst.txt @@ -0,0 +1,6 @@ +`hplc.quant` +===================== +.. automodule:: hplc.quant + :members: + :undoc-members: + :show-inheritance: \ No newline at end of file diff --git a/_sources/quickstart.ipynb.txt b/_sources/quickstart.ipynb.txt new file mode 100644 index 0000000..1432706 --- /dev/null +++ b/_sources/quickstart.ipynb.txt @@ -0,0 +1,1126 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3574.88it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:09<00:00, 4.86s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5947213.90547143163.8800695.179666e+062
014.450.349615-2.99574234698.9663174.163876e+063
015.530.3139991.62113515061.4147981.807370e+064
016.520.3472751.99020210936.9918121.312439e+065
017.290.3480011.70371512525.2861051.503034e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594721 3.905471 43163.880069 5.179666e+06 2\n", + "0 14.45 0.349615 -2.995742 34698.966317 4.163876e+06 3\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4\n", + "0 16.52 0.347275 1.990202 10936.991812 1.312439e+06 5\n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks()\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD300lEQVR4nOzdd3gUVdsH4N/M9k2y6ZVACIEMvYOKKCBNFFH8Xl9RBAUbKGJDiiAgiKIvAgYFlS4gKqiI2BEsIDYQBZIM6b33ZPvMfH/sLoaQumySTfLc18WVZOfMmbOTYTPPnHOew0iSBEIIIYQQQgjpCNjWbgAhhBBCCCGEtBQKgAghhBBCCCEdBgVAhBBCCCGEkA6DAiBCCCGEEEJIh0EBECGEEEIIIaTDoACIEEIIIYQQ0mFQAEQIIYQQQgjpMCgAIoQQQgghhHQY8tZuQDtVCkAFIKeV20EIIYSQxgsFYALg08rtIIQ0I0aSpNZuQ3tkkCRJLYrNc25ZlkFz1U3+Ree5ZdB5bhl0nlsOneuW0RznmWUZMAxjBKBxacWEELdCPUDNI0cUpcji4iqXVyyXs/D19UB5uR5Wq+jy+okNneeWQee5ZdB5bjl0rltGc51nPz8PyGQMjd4gpJ2jOUCEEEIIIYSQDoMCIEIIIYQQQkiHQQEQIYQQQgghpMOgAIgQQgghhBDSYVASBEIIIYQQN3b69Gkv2FJ004NrQmonAsgZMmRIRWMKUwBECCGEEOKGTp8+zQJ4nmHYmQzDKAAwrd0mQtyUJEmS5fTp0+8BeHnIkCH1poekAIgQQgghxD09L5PJ5+p0vmalUq1nGIYWmCKkFpIkMWazUVteXjJXEKwA8FJ95SkAIoQQQghxM6dPn9YxDDtTp/M1e3n5FrV2ewhxdyqVxgDAv7S0aObp06ffqG84HI0lJYQQQghxPyEMwyiUSrW+tRtCSFth7ylVwDZnrk4UABFCCCGEuB8WAEPD3ghpPPv/FwYNxDgUABFCCCGEEEI6DAqACCGEEEIIIR0GBUCEEEIIIaTDiIlZH3bHHTf3a+12NFZ8fKz66NFvvVu7He0JBUCEkDYhOzsLGzb8D3/9daa1m0IIIYS0mMWLn+0RG3veo7Xb0Z5QAEQIcXuiKGL+/DnYvXs7Hn30AWRmZrR2kwghhJAWQnkwXI3WASKEuL0///wd1xlNuC68C77Oz8OhQx9j3rynWrtZhBDS4kRRhF6vb7UH2FqtVmTZph1+5MihQ/7v/+7O+eGH7/0tFgv7xhtb4rVarbhp04bwf/75S1dVVSXz9va2jhkzrujJJxdkxcXFah599IHemzdvi+vff6AeAJ566rGo8+f/0X399Q9/yeVySJKEW28dN+D++2dn3X339MKaxywsLJCvX/9a+Jkzf3gLgsBER/esfOaZRRlRUd1NjjLvvrs5+MiRQ8EVFRXy7t17VC1evDzVsb22NoeHdza/885boT/+eMy/pKRE0alTJ+OMGbOyb7751lIAOHDgA//9+/eEzpr1UNb27e+Gl5WVKnr16lOxbNmLqbt2bQ/54Yej/nK5XJoy5c68OXPm5QKAyWRi3nxzQ9iJEz/5FhcXKdVqjThgwMCyxYtfSPfz8xfuuOPmfoWFhcqPPno/9Ny5s15bt77Hl5QUy958c2OnP/741aeiokIeGRlV9cgjj2Vde+2ISsd7O3ToY799+3aHFhQUqLp06WIYM2Z80fbtb3c+ceLP0878TliWder9uSsKgAghbu+PX05gfGAw1DIZfispxsVTJ2G9737IfXxbu2mEENJiRFHEvff+X8/4+LhWGw7Vs2fvyvffP8g3NQj69tsvA1955fUEQbAyPXpEm+699/96e3v7WF59deNFLy8v4ccfj/ls3bqlc+/efasmTrylNCAgwHzq1Eld//4D9YIgIDb2vJfJZGL/+uu0x7Bh11SdPXtGW1FRLr/ppvGlNY9ltVrx5JNzowFGWrny5SR/f3/rpk0bwp999onogwc/PwcAhYWFyvPn//F65ZX1CWaziXn55RcjX375xa7bt+/h62rzU089FpWcnKR94omn0yMjo4xff/2F35o1K6NYlk2cMGFSGQAUFRUqDx/+NOill15L1Our2BdeWNRj1qzpfcaOHV+4efP2uC+/POy/d++uTqNGjSnt1auP8fXX14b/9tspn0WLlqZ27tzFxPO8Zt26l7u+885bYUuWLM/Ytm1P3OzZ03tff/2o4kcemZsjCALmz58TbbFYmEWLlqUEBgZZPvzw/aDFi5+J3rhxc/zAgYP1R49+471+/auRM2fOzhw9emzpb7/9otu27e3OV/s7ceb9NekiaUEUABFC3F7JX6ehVqhgUKlwU0AQbtJ4oOjETwiefHtrN40QQlpY21wXaNSom4oGDhysBwCDwcDcdNP4ookTJ5V07hxhBoCuXR/MP3Dgg5DExIuaiRNvKR069JrSM2f+0AHIPXv2jIdMJpeio3tW/vHHb17Dhl1T9fPPP/r06MFVBgYGWWse6+TJn3RpaamanTvfP9+jR7QJAJYuXZm6a9e2kOLiIjkAyGQyafXqV1O8vb0FAJg0aXLB3r27OtXV5osX49V//vm7z8qVaxLHjZtYBgDz5j2Vk5ycqN23b3eoIwASBIF55plFaY6b/379BpRfvBjv+dxzz2cyDINHHnk856OP9ocmJFzU9OrVx9irV++qMWPGllx33chKAOjcOcL83Xdfl6emJmsAICAg0MqyrKTRaERfXz/h2LHvdCkpydqtW3dfcBxj2bIX0y9ejPfYt293yMCBg5M/+GBfyLXXjih+6KE5eQDQvXuPgszMDNXnnx8KvprfiTPv72qumeZEARAhxK0ZDAZoiouB4FDo+g9AZU42AKDkIo/gBvYlhJD2hGVZvP/+Qb6tDYEDgPDwzpeGnmk0GmnGjFn5X375ue/evbs9srOzVGlpKdrS0hKFIIgMANxww+iyFSueDzQYDMxvv53y6tOnb0WnTp2Nf/99Rgcg948/fvO+8cbRxbUdKyHhokar1QqO4AcAgoNDrIsWLct0/Ozt7W11BD8A4OWlE8xm82VvrHqbeT5eAwBDh15TWb1Mv34DK957b3t49de6d//3uCqVSgwMDDYxDAMAUKvVEgCYTCYWAKZOvav4559/9Fq//tVOWVmZqszMDE12dpa6Z89elx3HITExQaPRaIXqwQXDMOjdu2/lmTN/6gAgNTVZO3LkjSXV9xswYFBlzQCoqb8TZ96fu6IAiBDi1pKTE9HDwxMA4N9vAIQ/fgUAmLOyW7NZhBDSKliWhaenp9ja7WgqlUp9qc16vZ599NEHOKPRyN5ww6iSCRMmFQ0YMDB93rxHejrKXHfd9RUKhVz89deTXn/9dVo3ZszY4oiIrqbDhz8JychIU6amJmtXrlyTXNuxZDK55LghrwvLsg32pFVvc12JCERRYGQy2WUbFQrFZT+zbN1tWbXqhS4nT/7kN3r02KJrr72+rGfP3jn79u0OKSoqUNZWXpJqf2uiKEIul0u247GSJDXcUdjU34kz789dUQBECHFriRd5dNfahruro7pD3TkCyMiAorwMkiiCceJJJCGEkNbz44/HdCkpydpPPvni76CgYCsAlJQUy8rKyuSOQEOpVEoDBgwq/+mnH3wSEi56Ll78Qlp4eGczwzDS5s2bwkJDw4zVExpU161blLGqqkqWnJyk6tYtygQARUWF8nvuubPvSy+9luBMm6OjexoA4M8/f/N0DIEDgHPn/vbs1KmzwZk6i4uLZN9++1XgokVLk2+7beqlHpvMzHS1Wq2pFnz9G2B07x5t0Ov1sri4C+rqvUCxsRc8w8O7GAEgIqKrITb2gieAfMf2CxfO1TtvrDG/k/aE7hwIIW4tL/Y8FCwLC8tCERSE4GgOJkGATJJgyc9vuAJCCCFuJTg4xAwAhw9/6p+Rkab87bdTngsWzO8uCAJjNlsu3e2PGDGy9Pjx7wN0Oi9rVFR3k0qlkjiuV+WJEz/6X3vtiNK66r/hhlHlkZFR+lWrlkWePv2HR3x8rHrlyqVdvb19LAMGDNI702aO62UcOHBwWUzM+i5Hj37jnZiYoHrzzY2hp0//4fPf/96T50ydOp23oNFohRMnfvJJTk5Sxcae16xY8XxEamqK1mL59zyo1WohKytTlZ+fJx81akxZ584RhlWrXuj2yy8/e128GK9evXp5l8zMdM20affmAcC9987M+e23X3y3b38nODk5SXXw4If+X3zxeVB9bWns76S9oACIEOLWCtLTUWg2weztDYZhENktCnlm20M/S9EVmU8JIYS4ucGDh+pnz34k4/DhT4NmzpzW99VXX+rat++Aiuuvv6GY5//NcDdmzLgyURSYvn0HlDteGzRoSLkkSRg16qbSuupnWRavvbYhMTAw2Lx48bM9nnhiTk+ZTCatX78pQaVSOd2dsXbt+uThw68tXb/+ta4PPTSzz2+//eLz/PMrk269dUpJw3tfSS6XY9myF5PT09M0Dz54X5+FC5/uYTKZ2PvueyArKytDU1VVxQLA7bf/X/6ZM394P/nkY9FyuRwxMVsudu3aTf/ii8ui5sx5sFdqaopm7dr1F4cMGV4FAGPGjCt//PEn044c+Sxw9uzpfb744rPAiRMnFTiGyNWmsb+T9oJpzBhB0mTJgiBGFhdXubxiuZyFr68HSkqqYLW2uSHAbQad55bRmPN8220TkJGRju3v7sKQ4dciLS0Vvy14CgO9fRB0/yz43DCqhVvd9tD13HLoXLeM5jrPfn4ekMnYFADdXFapk06fPt2TZWVfBwV1qlQq1W6bTYu4n1OnTngGBARZqieB2LJlU8i3334V8OmnX55vzbY1N7PZqM7Pz/IUReHmIUOGxNdVjuYAEULcliiKyM3NAQCEhtuWMAgODsEvxUVIqqrEw75+rdk8QgghxO38+usv3j/8cMxv4cLnUyMiuppiYy9oDh/+NHjSpMkFrd02d0EBECHEbRUVFcJisYBlWQQF2bJ3qtVq/C0KKMnOxJ0KBQJauY2EEEKIO3nssSezDQYDu3btS5EVFeVyPz9/8+2335n38MNzc1u7be6CAiBCiNvKycpETN+BKAfAmE2A3PaRFRoaipKSYuTl5YDjrsjQSQghhHRYKpVKev75FRkAMlq7Le6KkiAQQtxWQXISQtRqdFOpwKo1l14PCQpBsEqFsvg6h/cSQgghhNSKAiBCiNsqT08DAFTK5Zet9xPlH4BN/QYh6s8/WqtphBBCCGmjKAAihLgtU65tuLJZq73sdc9g23wguShCtFhavF2EEEIIabsoACKEuC2mrNT21e/ybG/egUGwirbUt0JFRUs3ixBCCCFtGAVAhBC3pdLbFuxWh4Re9rp/QCAqrFYAgFBJARAhhBBCGo8CIEKI2/Ky9/LoIrpe9rq/vz/Krbahb9QDRAghhJCmoACIEOKWKisrUWQ0othsRlCP6Mu2+fsHoMzeA2QtL2+N5hFCCGmkkSOHDjlw4AP/xpb/4YfvdVOn3tJ39OhrB7/66prw5mxbY8TErA+7446b+7myzqack8zMdOXhw5/6uvL4HV2rrgPEcdxoAMfr2JzC83w3juMGAngDwFAARQBieJ5fV60OFsAKAA8B8AVwAsBjPM8nVitz1XUQQlpWbm42Xk6Ih07njZ8iu122zc/PDxX25AdVhfnwbo0GEkIIaZSPPz7yt07nLTS2/NatW8KDg0NMb7yx+aKnp1ej92tLmnJOXnzxha5BQUHmKVOmljR3uzqK1u4B+gVAaI1/EwBYAbzMcZw/gO8AXIQteFkBYDXHcbOq1fECgDkAHgZwHQAJwFccxykBwBV1EEJaXnZ2NgAgNDTsim0KhRL/mIw4mJ0Jgzc9FCOEEHcWHBxi1Wg0UmPLV1VVyXr37lPVpUtXs5+ff7sMgJp2TiSmeVvT8bRqDxDP82YAuY6fOY5TANgA4GOe57dxHLcEgAnAXJ7nrQDiOI7rAWARgJ32AOVZAAt5nv/SXsfdALIB3AngAwCPuKAOQkgLy83NAQCEhobWuj1FqcDx1BSM16gR1ZINI4QQ0iQjRw4d8uSTC1Lvumta0dKlz3UVRZHx9fWzHD/+vb/JZGT79x9YvmTJ8rTg4BDryJFDhwDARx/tD/3oo/2h779/8FznzhHmrVu3BH/11ZGgsrJSeUhIqOmuu+7JnTr1P8UA8MsvP3stXPh09MyZszM//vij0ICAQNNLL72aPGPGf/vec8+M7C++OBykVCrEXbs+iGUYBuvXvxr++++nfKxWKxMZGaV/7LH5mQMHDtY72rt//56AAwc+CCkpKVYOGDCoLCgo2Fzf+3v44Zlcnz79K0pKihUnT/7kp1AoxMmT78ifMGFS8dq1q7smJyd6hISEGRcufD510KAh+urnZPz4m0tnzvxvn65du+ljYt5OBICffvrBa+nS56KXLFme9OmnB4Lj4mI94+JiPe+442avQ4e+PnfHHTf3u+mmCUXz5z+TXb0NQUHBpjVr/pda2/l4770P4vLychUbNvyv89mzZ3QyGStFR/esevLJBRlRUd1NzfF7d2et3QNU0+MAOgN42v7zDQB+sgcuDscAcBzHBQEYCMDL/hoAgOf5UgBnANzowjoIIS1M/c/feLPfIIxSqWvd7udnGzpdUkIjAgghHYtgMLB1/RNNJqYlyl6NU6dO+paXl8vfeGMzv3z56qS4uFivN9/c2AmwDQ3z8/Oz3Hbb1LyPPz7yd6dOnc0bNrzW6YsvDgc9/viT6du3742dOvU/eW+9tTFiz55dgdXr/e23Uz6bN2+LW7z4hVSZjJUA4IcfvvfbsOFNfuXKl5O8vb2Fp556rEd2dpbqpZdeS9y8eVt8z569qp566rGe5879rQGAw4c/9X377Te7TJ36n7ytW9+70KtXn6qvvjoS1NB7OnToYEhQULB527Y9FyZPvj1///49YYsWPd3j7rvvzX3rra1xSqVCXL/+1Yia+/n4+AjPPbc05a+/Tnt/9tknfsXFRbLXXlsTOXbshMJbbrmt9LXXNib26BFddd1115ds27Ynrinnufr5MBqN7BNPPMqJooANG97iN2x4i9fpvK2PPfZgr+zsLEVT6m0PWrUHqDqO49QAlgLYyPN8jv3lcADnahR1RLtd7NsBIKOWMl1cWAchpKWVliBIpYJZ61HrZl8vHUJVapiyM1u4YYQQ0rqSnpg7qK5tmmiurPPCJZfmMCc/M3+AZLHU+sBb1TWyMmLZCt7xc8qiZ/uJen2t94bKsE76rqvWNOkGvM42ajTCihUvpSkUCik6uqfx1KmTRadP/+EN2IaGsSwraTQaMTg4xFpVVcV+/vmh4AULlqSMGzexDAAiI7uZcnKyVR9//EHIjBkPFDjqvfvue3MdvRnp6alKALj11ikFHNfLCAA///yjV0IC73Ho0Fd/BwQEWgHgmWcWZcXGXvD84IO9wf36DUj95JOPgkeMGFkyY8asAgDo3r1HblzcBY/U1OTLV+SuoXPnLobHH38yBwBmzXokb//+vWE33DC6eMKESWUAMGHCpKKtW9/uXNu+N9wwqmLSpNvy3377zc7ff/+tn4eHh7Bo0bJ0APD19RPkcrmkVCpFR5sbq/r5+PDDfQEVFeXytWvXpygUCgkAVq16JfXOO2/td/Dgh4HVe5M6ArcJgADMAKABEFPtNS1sw9eqM9q/qu3bUUcZx8qJrqjDKXK56zvYZDL2sq+kedB5bhn1nWe53gCwLLShobX+X+qh0eDRfgNRdeYM5A/R76k+dD23HDrXLYPOc9sWHBxictyEA4CHh6dgtVpr7WG6eDFebbFYmNdfX9t1/fpXuzpeFwSRsVotjMFguLRf166RVwzl6tIlwnHPh/j4WC0A3H33HZdldLNarYzFYmYAICMjXTN69Nji6tt79+5b2VAAFBYWfuk4Wq1WBIBOnTpdao9SqRKtVkudvWjPPLMw88yZP7zPnPnTe8uWHbFNmTNVl+rn4+JFXmswGGQ33zx6YPUyFouFzchIq32oRTvmTgHQTNjm/hRVe80AQFWjnOOXVGXfDnsZQ40yVS6so8lYloGvb+1Prl1Bp9M0W93kX3SeW0Zt51krWAFWiZDoqFr/L3kG+AGFRZBZLc36f609oeu55dC5bhkd9TxHbdryV13bGJa97Ma52/qYvxtbNvLV12uOmKmz7NWoHvz8q/bqRVFkAOD551ckd+vW3Vhzu0qlurSjWq0Wa25Xq9WXtouiyGg0GuGdd3Zd0ZOlVCpFAGAYBlKNpsjl8gbfu1wuu6IMwzQ+QM/Ly1WUlpYoZDKZdOrUCV2/fv0N9e9x+eGsVuGK4Kr6+RBFEaGhYca1a9dfkeHYw8OjXSaaqI9bBEAcxwUCGAHg5RqbMgDUTAHl+DkLgKLaa0k1yjj+w7uijiYTRQnl5fqGCzaRTMZCp9OgvNwAQbji/zlxETrPLaOu82yxWODD2v5weIZ1RknJlc8iWI0t6JFZrLVuJ/+i67nl0LluGc11nnU6TZvoVZJpNI1+081VtqV07x5tlMlkUk5OttIxBA4Adu3aFpSWlqJesWJNemPriorqYTAYDDKz2cT07Nn7UjC1fPmSiO7de+hnzpxdEBHRVX/+/N+eAPId23k+rlmfsomiiFWrlkVGRETqJ0y4uWjLlk1dRoy4obxv3372IIi5LNqRyeRSZWWVrPr++fl5yrCwsCsCRIdu3aIMP/543F+n0wmOoXRWqxULFz7dbcyYm0puu61jpdh2iwAItuBHAvBjjdd/AjCH4zgZz/OO6HQsAJ7n+XyO48oAlAMYDXvwwnGcD4DBAN50YR1OsVqb73NEEMRmrZ/Y0HluGTXPc1ZyCrQy28eTT+fIWn8Hah/bCFWFJMFisoCRya4oQy5H13PLoXPdMug8t3/e3t7C+PE3F+zZs7OTh4eHMHjwsMo///zda9eu7eF33vmf3IZr+NeYMWPLdu7salix4vmoJ554Jj0srJP54MEPAo8fPxowfvzNFwHgnntm5r744tLuW7duCb7ppvGlJ0786P3bb6d8fXx8LM3zDoF3390ckpKSot227b3Ybt2iTD/8cMz3pZeWR+7e/UGcSqWSNBqNmJ+fp8rKylR06hRu6dWrd+WJEz/6nTp1siQwMMiyd++uEINBX+8fwSlT7iw+cGB/6KJFT0c99tj8TJ3OW9ix493Qs2dPez/yyNwONf8HcJ8scAMAJPM8X7PLZAcAHYDtHMf15jjuAQBPAXgFAHieN8EWpLzKcdwUjuP6A/gQtl6fT1xYByGkBeUnJQAAqkQRck3tQ1w8/P5dQFvUu763lRBCiHtYvPiFjNtvvzPvvfd2dnrggXv67tu3O3TatOnZTzzRtIn7MpkMMTFvX+zRI7pqzZoV3R56aEbvf/4567Vs2YtJN9wwqgIAxo2bULZw4fPJ3377VcCDD87oc+LETz5TpkzNa553Bpw794/mgw/2hs2Y8UBWt25RJgBYsuSFtMLCAtWGDa91AoApU+4syMhIV8+ePb2PIAiYN+/prOhornLp0oU9nnji0Z46nc46YsQN9fbgeHt7C5s2vRvv7e1jXbx4QY+5cx/slZ+fp3z55XUJ1XvDOgpGqjnQsRVwHLcZwCCe56+rZdsw2BIjDAKQA+B1nuffrLZdBtvQuVmwJVH4CcDjPM+nurKOJkoWBDGyuNj1w3Lkcha+vh4oKamip17NiM5zy6jrPH+3dzeMRw5D6emFidt21brvr7/+As07W6CRydB1zatQBge3UKvbHrqeWw6d65bRXOfZz88DMhmbAqCbyyp10unTp3uyrOzroKBOlUqlusPdoBLiDLPZqM7Pz/IUReHmIUOGxNdVzi2GwPE8/1g92/4AcEVgVG27ANuipouasw5CSMtJNejxVvwF3H77nZhYRxlvb2+UWK3QyGQQ9TQHiBBCCCGN4y5D4Agh5JKcHNuohpCQ0DrL6HTe+K4gD5/l50Km07VU0wghhBDSxrlFDxAhhFSXk50FAAgNrZnA8V86nTc+zbUFSk94eKLDLWNNCCGEEKdQAEQIcTuT9UZM7zcImnrS23p6ekImk0EQBJSXl0Gt7nDruBFCCCHECTQEjhDiViRJgjckBKlU8A8OqbMcwzAI8fFBqEqNMnuPESGEEEJIQ6gHiBDiVkqKi+Entw1oC+zevd6y/wkJw/UaDxhP/QIMHNwSzSOEEEJIG0c9QIQQt5KblAA5y0KUJGgDg+ovrFQCACyVlS3QMkIIIYS0BxQAEULcSnFqCgCgAhIYWb0LW4NR2eb9WCgNNiGEEEIaiQIgQohbKcvMBAAY5A3ndWPVGgCAaDA0a5sIIYQQ0n7QHCBCiFsxFeQDAAQPjwbLsmo1UFkJmM3N3SxCCHEbDAMZwzCt8hBbkiRRkiC0xrEJcRUKgEizspaWQO7j29rNIG1IQWUF+MoKeERFNVhW4aEFCkEBECGkw2AYyESGCdUbra1yD6dVy60spBx3C4JiYtaHHTv2rf+hQ1+fa+q+iYkJqkceeaD3rl37LnTp0pX+oHQAFACRZpP90Qeo/PZr5HXujBtWrG7t5pA24seiAsTGX8CGRx9rsKxca+slklmtzd0sQghxCwzDsHqjVf7r+RxRb7TWvVhaM9Cq5ey1fUPlXmo5K0mSWwVAzoqNPa9ZvPjZ7maziaaFdCAUAJFmIVmtqPz2awDA17/8DJ9z/6Bfv/6t3CrSFuTk5AAAQkPDGizL+Prhq7wc+EZEYnhzN4wQQtyI3mgVqwyWFg2A7NpNoLB5c0zIwYMfhHbqFG4sLi5StnZ7SMtpNxcxcS+mjHQAQIXVgi/ycnHq1M+t3CLSFhgMBpSWFAMAwsIaDoCUQUHYmZGGU4KluZtGCCHESSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3PntjrXSti1a1vQ6NHXDv7mmy996ipz+vTv3s8993zK3LlPZLrkjZI2gwIg0iz0aakAgOQqW3ri2NgLrdga0lbkZqZj3+Dh2Nx/MDwUDWeB8/DwBABUVdE6QIQQ4s527twaPmbM2OJ33919YejQa8pWr17e/Y8/fvMAgOPHj+rWrFkZNWnS5MIdO/ZdePLJZ9NPnPjRb+nS5yIBQK/Xs88+Oz9ardaImza9Hb9z5/sXRo68sWT79rc7nzv3j6bmsfbu3RW4e/f28GXLViVNnHhLaV1t2r59Lz9p0uQ6t5P2i4bAkWZRmppq+2qxoIeHJ8RMerhCGpaXmAg/loWXQnEpxXVNDAMoFDJYrSI8PbTwliug0hsgiSIYlp7pEEKIOxozZlzhjBmzCgBgwYLFWefP/+114MD+oGHDrknZu3dX6NixEwqnT7+/AAAiI7uZ5HJ52qJFz0Snp6cqtVoPccqUqfn33DMjX6fTiQAwb97T2Z98ciAkISFe069f/0trIezfvzdgx453w1eseClx9Oix5a3zbom7owCINAt9ViaUAHp4eWFUQCBOl5XAarVCLqdLjtStLCMdfgCqWAYMw9RaRq5gkanPRpg2GB5aD2wdOAQAIFRVQu6la8HWEkIIaazBg4dWVP+Z43pVnT17RgcAKSkp2qSkRI/jx4/6O7ZLku1rYmKC+qabxpffe+/M/CNHPvNLSkrQZmVlqtLSUrQAIAjipT8WJSUlii1bYiJkMpkUHt7F1BLvi7RNdDdKmoWlpARKAPlyJcIAeMsVKCkpRmBgncN1CYE+15YAwaxW11nGKBpRUFkEH5UOnjpvlAoC1DIZRKMRoACIEELcklwul6r/LEkSWFYm2b4XmTvu+E/ulClTi2ruFxwcYsnPz5M/8sgDvby8dNZrrx1ROmTI8PL+/QdU3X33HZdlV2IYFqtWvZywY8e7YWvWrIzcvn1PPEsjA0gt6KogzSLZ0wOf5WQj38sHAOCnUKKwsKB1G0XcnqXY9rdPqiOQkclYVFn1yC7Lg95igE7nBaNoy8Qq6PUt1k5CCCFNExt7/rLVrePjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDW7Bt0jaEAqASLP4w6jHvqx0VASGAwC8FQoU5ue1cquIu2MqbCMklP4BtW6XyRiUGStgFiwoN1XA21sHg2ALgPSlpS3VTEIIIU30+eeHgg8d+tgvMTFB9eqra8LT0lI199wzMw8Apk2bnvv777/6xsSsD0tMTFCdOPGT12uvvRxZVVUpDw4OsQYHh5hNJhN75MhnvpmZ6coffzyme/HFZd0AwGw2X3Ev26tXH+PUqXfl7tu3OywpKVHV0u+VuD8aAkeaRUGBrbdH4RcEMfUCZAyD0pzsVm4VcXdKkwlQa+BZxxpAEkSUGcoAAOXGCsh1chhF2zIYhrLSlmomIYS0Oq1a3uIPsa/mmBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAcMUQk7lzn8g5efIn3zVrVnbdtu09nobCkeooACIuJ5pM8KyogL9CCaWHN/QMC09IqMyjHiBSN6vViqSyMrBWKwZ371FrGbNkhcFim9dqtJohQIDZnizBUFbWYm0lhJDWIkmSqFXLrdf2DZWjFUbyaNVyqyRJTV6ANTIyyrBw4dI6U8JOnnx7yeTJt5fUto1hGCxYsDhrwYLFWdVff/DBRy/dWMyf/0z2/PnPXHrSqlKppAMHDjdqDY4RI26oOHHiz9ONKUvaBwqAiMuZMjPwuM4H+T374IJGB71MAU/BDCPNASL1yM/Pw3sZqZDLFfh96LArtjMMYBEtMFptAZDJaoYgCbDaAyBzRcUV+xBCSHsjSRBYSDlerdADZDu+JEoShNY4NiGuQgEQcTmLfS5GqcUMjYcOvG8IPj/9I7ReHvXvSDq07Gzbg73Q0DDUNlSBYRiYRQtMVjMAwCxYYBEtSIKE9LxcXFdP5jhCCGlPJAmCJEkUhBDiJAqAiMtV2ZMdlFks0HrocLFTd3zz9UcYVNqplVtG3FlOViYYAGFhtc//YVkGJrP53wDIaoFVtCJWqcSZjFT08vRswdYSQghpLBpeRtwNBUDE5fT2oW56BvCQK6DRegEAystpQWZSN3NcLPYNHo5cRe0JexiGgd78b6prq2iFWbTA0x74VFVVtkg7CSGEENK2UUoM4nJG+2R0i8wWX3vJ5OA8veBpMLRms4ibMxUWQM6yUGk0tRdggErz5Wv9GC0meHt4wFuugLGk1rmzhBBCCCGXoR4g4nLminIoAAj2J/nhxTlY3bMPfi2lG1RSN6nUFjjL/fxq3S7CCpM9AYKD0WrCAEHCjIFDkMPHN3sbCSGEENL2UQ8QcTlrZRUAQFLZJqWznjoAgJphYDKZ6tyPdGxyg613RxMcUut2QRJhtloue81gMUKmsQXaEl1bhBBCCGkECoCIy+V46/BpThZKNLa5GYzWFgB5yuWoqKB5QORKgiDAw76gqU+XiNrLSALMwuUBkFW0Qqa2DZljrNbmbSQhhBBC2gUKgIjLpahU2J+VgTJPbwCAqNECADxlckqEQGpVUFAAf4UCAODXNfKK7QzDwCJarwiALIIVMrXSVoYCIEIIIYQ0As0BIi5XWWlbkFKlsa37IyhtT+g95DKUl5e1WruI+8rOSIevwhbIqAODrtjOsoBVsMJSSw+QXGu7vmQiLYlBCOkYGAYyhmFoIVRCnEQBEHE5RUkxglUqqFW2nh9RaZsL5CGTo4ACIFKL3Ix0ZBUXoYu/P3p4eV2xnWEYWEULLMLlvTxWUYDcw3adyUSpRdpKCCGtiWEg07CWUMmsb5V7OEaptRpERY67BUExMevDjh371v/Qoa/PNXafAwf2+3/88UfB+fn5Kl9fX8uECTcXPvTQ3FyZTNacTSVugAIg4lKSJGFKaTnu6DcIX8htl5egsj2hZxkGVcXFrdk84qYyCwsQk5KI2/r2xVj2yoeaDMPAYL0yyYFVECBz9ABJYrO3kxBCWhvDMKxk1ssr+d9E0WRo0Q8+VqVhPblr5IzCh5Ukya0CoKY6dOhjv7feeiNizpwn0q+55rqKCxfOaWNiXo8wmy3ME088ndPa7SPNyy0CII7jZgJYDKAbgCQAK3meP2DfNhDAGwCGAigCEMPz/Lpq+7IAVgB4CIAvgBMAHuN5PrFamauugzSOZDJemljmSH4gyeQ4LrJIzUzGYH1V6zWOuK3s7CwAQFhYp1q3MwwDg8V4xetW0Qq1jw4/FhaA8fTEsGZtJSGEuA/RZBAFY1VrPPlpF/PHDx/+NHDUqJuKpk2bXggAkZHdTGlpqepvvvkygAKg9q/VL2KO4+4DsAPAOwD6AvgAwAccx13HcZw/gO8AXIQteFkBYDXHcbOqVfECgDkAHgZwHQAJwFccxynt9V91HaTxBL0tlbFVFCHX/juU6XeNDl/l56K0igIgcqW8zEwwqDsAAqRaAyBBFCAP8MNbqUn4pLiwWdtICCHEOSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3Pntisnjdrt2rUtaPToawd/882XPrVtnzNnXuaMGbNya75eVVXpFp0DpHm16i+Z4zgGwGoAG3ief8P+8mqO40YCGG3/ZwIwl+d5K4A4juN6AFgEYKc9QHkWwEKe57+013k3gGwAd8IWTD3igjpII4lVtgCoUrBCofa49LrKPh+oqqqyVdpF3NuwikrMHTwcloL8WrdbJeGK+T+AbQ6Q0r4OkMG+jhAhhBD3s3Pn1vD7738wc8mS5amfffZJwOrVy7v7+vrFDxt2TdXx40d1a9asjHrooTkZI0bcUJ6enqratGlDl8zMdPW6dTHJer2effbZ+dH9+g2o2LTp7Xi5XCEdOnQwYPv2tzsPHTq8ol+//obqx9q7d1fg7t3bw5ctW5U0btyEWicfDx9+7WVPZEtLS2VffXUkcMCAQZSutgNo7R4gDkBXAO9Xf5Hn+Yk8z78C4AYAP9kDF4djADiO44IADATgZX/NsW8pgDMAbrS/5Io6SCOJRttnkEEQoLDP/QGAALkcnKcnLJQGm9QgiiLUFgvkLAvvoNoXQRUhwCJaat2mUCqgZFnIzWZIIs0DIoQQdzRmzLjCGTNmFfToEW1asGBxVlRU96oDB/YHAcDevbtCx46dUDh9+v0FkZHdTKNG3VT+9NPPpf366y++6empSr2+ip0yZWr+88+vSIuO7mns1i3KNG/e09kAkJAQr6l+nP379wbs2PFu+IoVLyXWFfzUVFlZyS5YML+7xWJm589/NsP17564m9bu5ou2f/XgOO4bAIMApAB4ief5zwGEA6iZzSPb/rWLfTsA1LxYs+3b4aI6nCKXuz6+lMnYy766G9HkCIBEaDQeYFlb7/VNVUW4r2df/FRW1iznxdXc/Ty3FzIZi5ycHPjJbWsABUZ1q/X6sDAWiJJw6XqqTq6SY/egYZAxDMTyUqgCApq93W0NXc8th851y6Dz3PYMHjy0ovrPHNer6uzZMzoASElJ0SYlJXocP37U37Fdsif2TExMUN900/jye++dmX/kyGd+SUkJ2qysTFVaWooWAARBvPSHoaSkRLFlS0yETCaTwsO7XJk5pxZ5ebnyBQvm98jLy1WtXbv+Yteukearf7fE3bV2AKSzf30PwIuwDUv7PwCfcRw3HoAWtuFr1TkmAqjt21FHGT/7966oo8lYloGvr0fDBZ2k02kaLtQKys22AMgoCvDx84XcfmMrKZWAqQqwmJr1vLiau57n9uT8+TQEKG3T7YK6R0Bby/VRrLeAVTBQa66clqf2UKNMFKCVySGHpU1dXy2NrueWQ+e6ZdB5bjvkcvllaxVIkgSWlUm270Xmjjv+kztlytSimvsFB4dY8vPz5I888kAvLy+d9dprR5QOGTK8vH//AVV3331H/+plGYbFqlUvJ+zY8W7YmjUrI7dv3xPP1pJZ1CEhgVcvWPBkD0EQmI0bN/O9e/c11FmYtCutHQA5ouz/8Ty/2/79WY7jBgN4BoABgKrGPmr71yr7dtjLGGqUcYztdEUdTSaKEsrLXT8nQSZjodNpUF5ugCC433CfEkaOT3OyUCaKuNYiwWKx/Yo1MlsgJBiMKClx/0QI7n6e2wuZjEVGYhLC7SnTDXItTDWuD4ZhUCUaUVllgNF65YM5s0aASRShlQH5WXmQBYS2SNvbErqeWw6d65bRXOdZp9NQr1IziY097zF+/M2XhqTFx8d6RkVF6QEgPLyLISMjTd2tW9Slh9GnTp3w/PDD94OXLFmeduTIZ/6VlRXyAwcOn1coFJK9Pnv0+29c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p60tFTlU089Hu3p6Sm8/vqmi+HhnWsfZ03apSYHQBzHyWFLTjAWQCQAbwCFANIAfAXgF57nG7siYab9a80hahcATAaQCiCsxjbHz1kAFNVeS6pR5m/79xkuqMMpVmvz/fETBLFZ63dWhUaL/VkZ8PXzx/BqC1MKClsMypgtbtnuurjreW5P8hISEA7AxLIQZQqINc63TMbCIlhhtlog1rLYqUW0wmwfK1FZUkq/r3rQ9dxy6Fy3jI58nlmVpsUjtas55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgO99JLK7parRb2hRdWJygUCikvL/fSPXFwcMiVWXdIu9LoAMieLW0ubBnTwgGUwBb0VAHoDFvA8jyAbI7jXgXwLs/zDY2//AtABYBrYVt7x6EfgEQAvwCYw3GcjOd5x4JbYwHwPM/ncxxXBqActoAsyd5OHwCDAbxpL/+TC+ogjVRlT3OtVmsve11S2jrdZFb6TCGXK8+0PQexamofysIwtiDHKta+5p4gCnA8tjNVUpZBQkj7JkmSyCi1Vk/uGjlaIZkVo9RaJbHpK09PmDCp4ODBD4I3blyniYiI0L/yyrqEPn1sQ85uvXVKiSRJyfv37wn95JOPQrRaD2Ho0OGlTz+9MNOxPT4+Lnfr1i2dN21azwYEBJonTryl8NSpkz5xcRc8ABTUPN7cuU/knDz5k++aNSu7btv2Hl99KFxOTrYiLu6CFwDMmTOrd819T5z483RT3x9pWxoVAHEcNxzAbgACgC0APuJ5PqmWcv0A3AJgPoAnOY6bwfP8qbrq5XnewHHcawCWcxyXBeB3ANMATIAtSIkFsBDAdnu54QCegm3NHvA8b+I47k0Ar3IcVwBbj9H/YOv1+cR+mB0uqIM0krGwEMEqFXSaywMg2NNgs0KbXjiaNIO0/HycLK9Av959at3OMAzMtQx9cxBEEVbGNgfWTGnWCSHtnCRBMIiKHEbh0ypj9SRREiUJTf5jHhkZZVi4cGlmXdsnT769ZPLk20tq28YwDBYsWJy1YMHirOqvVx/eNn/+M9nz5z/jSHIFlUolHThw+EJt9YWGhlkoyOnYGtsDtAfAYp7nP62vEM/z52AbzvYqx3H/hS1oim5gn5c4jtMDWAOgE4A4AHfyPP8DAHAcNxFADGxpqXMAPFdtvhAALLe/j20ANLD1+Ezked5srz//ausgjaf86ww29RuEHyw1enrUtqf7ijqe4pOO65fUFHxZWoqP1r5e63aGAYzWujuTBVGAcCkAcv/5ZYQQcrUkCYIkSfQHlRAnNTYA6tfUYIDn+Y84jjvUyLLrAayvY9sfAK6rZ18Btuxxi+opc9V1kMYRTbYEe6JMcdnrxqAu+PC7A0g3GDBdksAwV6YzJh1PeXk5SktLAQDh4eF1ljNajXVuEyQB6SyDrKICcPLWzutCCCGEEHfXqLsFZ3tCqAel45FMtif1ouLyS8sS2hUf59h6rg0GPbRaSlVMgIyMdHjLFVB4e9d5TYgQYRHqnjsmiCLOapQ4dSYJqzw9m6uphBBCnETDzYi7aewcoOVNqZTn+VXONYe0efYASFJcvl6LQqECw7CQJBFVVVUUABEAQEZ6Gt7oOwAqmQzmvFwog0OuKCNIQgMBkACN1jbHzGCgJRwIIYQQUr/GjhdZWeNnCQADW1KEQgC+AJSwretTDIACoI7KYsvHJSouX3qJFQV09/aF1WyAXk/zNIhNbmoKutiHrcl9fGstI0KEVawnAJJEqNVqyBkGxoqKOssRQgghhACNHwJ3KdMIx3FjAewHMA/Ax47U0hzH3QxgO2xpskkHxTqe1CsvD4CU5cVY070Hyi2WS6myCSlNSwMAmBQKsKqa6xXbiJJYZwpswNYDNMxoxgNDrkF6UmKztJMQQggh7YczKRTfBPACz/MfVVtXBzzPfw1gGWzZ3EgHxVptl4Rj3R8HUW5LiqBiWQqAyCXGPFsGU9HLq9btDGMbAmetZwicKIlgFLbrSzLTtENCCCGE1M+ZAKgLgPQ6thUACHa+OaSt4xUKfJ2fC4v28hta0T4nSCWTwWTQt0bTiBuSSm1LPigDA2vdzjCMLQCqbwicKIBR2a4vxmKpsxwhhBBCCND4OUDV/Q3gCY7jjvI8f+lug+M4NWwLjv7mqsaRtucURJxIT8W0cd6XvS7K/02KYKykxSoJYLGYobH32HiFd661DMMAgiDAUs8CuqIkgVHbh89ZKQAihLR/DAMZwzCtsxCq5NxCqIS4E2cCoCUAvgGQxHHc1/i31+cWAB4ARrmueaStcQxvU9QYAifJ5BAlCSzD0GKVBACQnZ2FIPtcMe8uXWot4+gBEurpAQIAVm3vAaonUCKEkPaAYSCT5EKoXjC0ysJnGrnGylhlOe4WBMXErA87duxb/0OHvj7X2H12794edPjwp0FFRUXK4OBg0//9339z//vfe4uas53EPTT5Pw/P8z9yHDcCtkDoNgB+sGWCOwpgFc/zNAu5g5JEEWqjATq5HIoaSRDAMLCCsaUKrKIeIAKkpqbg7/JSyD08EFlHAAQwMAtWSA3Uxapsc4BYQXRpGwkhxN0wDMPqBYP898yzosFibNEPPY1CzQ4PHyj3YLxYSZLcKgBqqn37dgfu3r2j09NPL0jt339Q1S+/nNC9+ebGrl5e3sKkSbeWtnb7SPNy6ukBz/NnANzl4raQNk4oL8fTHjqIA4bgeI0eIACwMLZc6VZaq4XAFgB9kZcLdvgw/DeyG6zWK/+OMwxgspoarsyeQU4mUQBECOkYDBajWGU2tMaHXqsMvXO1yspK2cyZs7Juu21qCQBERHQtPHLkUNCff/6mowCo/XO6+5TjuEkAxgMIBfA8gEEATvM8n+aitpE2RjQZAQBGUYBCpb1i+59yDfLTE9Bp4ICWbhpxQ2lpqQCAqKioOsswDANjIwIgwUuDP0qKYfbwwI2uaiAhhBCXGDly6JC5c59I//777/xSUpI8goNDjLNnP5I1YcKkMkeZo0e/8d61a1tYVlamxtfXz3zjjWOK5859IkelUkkAEB8fq3777Tc7xcXFehmNBtbfP8B8221T82fNeii/tmPu2rUtaNeubeFLlixPnjjxltKa2x999PFcx/cWi4X54ovDvllZmeoZM2ZlN8MpIG6myVE8x3FajuO+BfAFgNkA/gvbQqhzAZzmOK6Pa5tI2grRZLtRNQoiFIor13Q5o/XFgexMlIv0lJ4AuWkp8FcqEdWtWz2lJJitDae2tgT54X9JF3G4oqzBsoQQQlrezp1bw8eMGVv87ru7Lwwdek3Z6tXLu//xx28eAHD8+FHdmjUroyZNmly4Y8e+C08++Wz6iRM/+i1d+lwkAOj1evbZZ+dHq9UacdOmt+N37nz/wsiRN5Zs3/5253Pn/tHUPNbevbsCd+/eHr5s2aqk2oKf6n799RfPm24aMXjdulcib7hhdFFD5Un74Ew35ssAhgAYCyAAAGN/fQaALACrXdM00tYI9qFtRlGATHHlEDjHvCADDYEjAAIKi7Gl/2CE/fpHnWUECLDUswiqg1xp68w2Go0uax8hhBDXGTNmXOGMGbMKevSINi1YsDgrKqp71YED+4MAYO/eXaFjx04onD79/oLIyG6mUaNuKn/66efSfv31F9/09FSlXl/FTpkyNf/551ekRUf3NHbrFmWaN+/pbABISIi/LADav39vwI4d74avWPFS4rhxExp8KhYV1d24ZcuO2Pnzn0k9deqE3+uvr+3UPGeAuBNnhsDdDWAJz/PHOY6TOV7keT6X47iXALzlstaRNsVUUQEAMAoClKorHsjAWyZHuFoDkZIgdHgVFRXwsi9u6tM1os5ygiQ2mAEOAORKWxIEs5GCa0IIcUeDBw+tqP4zx/WqOnv2jA4AUlJStElJiR7Hjx/1d2yX7NlvEhMT1DfdNL783ntn5h858plfUlKCNisrU5WWlqIFAEEQHQ/iUVJSotiyJSZCJpNJ4eFdGjGBFAgMDLIGBgZZ+/btZygpKVHs3783bP78Z7OVSmVD+XdIG+ZMAOQDILWObSUAPJ1tDGnbjBXlAACTKEKuUF6xfVR5Hmb0HYCT5eUt3TTiZlJTUxCqsvUSetcTAEkQYW1ED5DKbMH7g4eDZRhIkgSGYRrchxBCSMuRy+WXBRSSJIFlZZLte5G5447/5E6ZMvWKFNTBwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO2DnY4d+04XHt7ZHB3d89LQgaioHgar1cIUFxfJQ0JCaWG5dsyZIXDnAUyvY9tt9u2kAzLZFzi1AKjtA0eQ257SS2b6TOno0tJSEKq2BUDq0NA6y4mSCKvQcA8Qq1VDzrK2AMjacHlCCCEtKzb2vEf1n+PjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDa6rPdu2vR2+c+e2kOqvXbjwj4enp6c1KCiYblTaOWcCoJcAzOA47giAh2C78kZxHLcJwGMAXnNh+0gbYvbwwDf5uYg11T4PQ5Tbe4Us9LnS0aWmJCPE3gOk6RRWaxmGAQRJaFQPkEzzb9INEy20Swghbufzzw8FHzr0sV9iYoLq1VfXhKelpWruuWdmHgBMmzY99/fff/WNiVkflpiYoDpx4iev1157ObKqqlIeHBxiDQ4OMZtMJvbIkc98MzPTlT/+eEz34ovLugGA2Wy+4l62V68+xqlT78rdt293WFJS4pVZmQBMm3ZfzokTP/rv2bMrMDk5SbV//56AQ4c+Drn33pnZdfUakfbDmYVQP+M47j4AawHcYn/5dQD5AObwPH/Qhe0jbYje1w/b01MREtYZ/WvZLtmHxTEUAHV4hcnJULAsRIaBKiAAhvIrg2aGYZoQACkhShJYhoGhogwaH59maDUhhLgPjULd4nfpV3PMCRMmFRw8+EHwxo3rNBEREfpXXlmX0KdPXwMA3HrrlBJJkpL3798T+sknH4VotR7C0KHDS59+emGmY3t8fFzu1q1bOm/atJ4NCAg0T5x4S+GpUyd94uIueAAoqHm8uXOfyDl58iffNWtWdt227T2+ZlAzZcrUEkGwpnzwwb7Q7dvf6RwQEGB+9NF56dOmTS909j2StsPZhVDfB/A+x3EcAH8ApQDieZ6n/MYdmMFge/KuVl+ZAAGoFgAJbXrxaOICptwswEMHUacDI5PVWoZhAEEQYW1EEgRGLoNZFKGWyS4NxSSEkPZIkiRRI9dYh4cPlKMVFiXVyDRWydr0VacjI6MMCxcuzaxr++TJt5dMnnx7SW3bGIbBggWLsxYsWJxV/fUHH3w0z/H9/PnPZM+f/8ylNXxUKpV04MDhC/W1aerUu4qnTr2ruPHvgrQXTQ6AOI47BuAxnufjeZ7na2zrD2Avz/O1dQCQds5QWgovuRwa1ZUpsAFAsqfGllEA1KGJooj4rCwc8qrAf8eNr6ekvQeoEdeLKIowSxLUAIwUABFC2jFJgsBYZTkejFerjNOSrJIoSaA/5KRNa1QAxHHcSPz7lGE0bHN+gmopOhlA3cu6k3bN4+xZbB84FCfFOjJHKu0BEC2E2qFlZ2chpbwMmQY9Fk67p85yDANYBCskNJyJVJBEWOzlzFV6l7WVEELckSRBkCSJghBCnNTYHqCHAMyELeGBBGAzbAugVr8zceSdfd9lrSNtimg2277Kar+sDP6h+Dw3G9lWAfe2ZMOIW0lMTAAAREZGQS6v+yOIYRiYBXOj6hQlEYlmM1IrK9Gn6SMzCCGENKMTJ/483dptIKS6xgZATwLYCVuQcwzA4wBia5QRYJsLVO94S9J+SRbbzapURwBkDO6CPZnpYFmW1mrpwBITL6KXpxd6R0ZBkuru3WEYwNTYAEgU8YmpCilJyXhHq3VVUwkhhBDSDjUqAOJ5vgzAjwDAcdwYAKcBePI8n2t/zRdAZ57naQ2gjsye3U2yr/dTk8I+BE4URZjNZqhUtWamJO1cRsJFvNizD1BUBNFgQH1rJ5usjVrIG6IkQm1fV8hURxp2QgghhBDAuewhfwP4FMAP1V67BsBZjuMOcRxHj187KKmBAEgpk8FfqUSQUgWj0dCSTSNupCo9FQAgaD0gq6e3RoQISyMWQQVsc4BUaltAbTBQAEQIIYSQujkTAK0F0AfA89VeOwbgdgBDAaxyQbtIG+RIby0pag+AtOWF2NJ/MFZwvWEwUADUEVmtVsiKbVlOlZ061VtWlEQIjVgDCLD1Kk6VqbB38HCo+firbichhBBC2i9nAqApABbwPP+J4wWe5808z38OW1D0X1c1jrQtjNX+tF5R+9A2UW5bB0gtY6kHqIPKyEhHmNJ2HXhFdqu3rAixUYugAoAECXIZCyXLQqAhcIQQQgiphzMLoXoBqHWhKgB5AAKcbw5pyzIUCsTmZMHQhat1u2NonIqVUQDk5rKyMvHOO2/BYDBg5szZ6NfPNUt7JSZeRGeNbdibqlN4vWVtAVDjhsABgMjKbHuZG5c4gRBCCCEdkzMB0BkADwL4qpZtswD8c1UtIm3W73IW36ck4a4bJte63dEDpGRZVNFaLW6rrKwUjz46C5mZGQCAn3/+Ae+8sxMDBgy66roTExMwRKMBAKgaMQSusT1AACDKZYDJAtHUuMQJhBDSVjEMZAzDtM5CqBIthEraPmcCoJcAfMVx3J+wJUPIBxAI2xygIbAthko6IKPRNvRIXucQuH/nBhkqK1ukTaTp3nlnM6rycvEw1wteXjrs/PsMli1bjIMHD1915r60+DiMVSghAVCGhtVZjmEAQRIgCI3/GyspZAAA0UI9QISQ9othIFOJllBBr3fmHu6qybRaq4lV5LhbEBQTsz7s2LFv/Q8d+vpcU/eVJAmPPfZQD6vVwm7d+h7fHO0j7qXJ/3l4nv+O47jbYEt2sAr/Loh6FsDtPM9/7dIWkjZDMhqgYBgoFMrat1dbH8iir2qpZpEmKC8vw/HPD2F1z74Isgc7/fsOxAtx53Hw4IeYPn3mVdUfdzEeb5ktePiuaWDrCaYYhoEgNq0HSLIvqiqZLVfVRkIIcWcMw7CCXi8v+u030ao3tOjKz3KthvW/5ho54+XDSpLkVgHQ1di5c2vQuXN/63r16k1PZzsIp54e8Dz/FWy9QGoAfgDKeJ6nO9oO7nHIoBhyDX4U6/g8ZhiYJQlKhoGpsqJlG0ca5dixo/hPQCCCVCrIAwIh02hQZjQi/+/T2LdvN+6++17I5c49dCwuLkZaTjbSALw84/56yzIMIIhCk+YAwd4DdCkZByGEtGNWvUG0VlW1aABk1ypD75pLbOx5zQcf7A3r3r0H3cd2IE53n3Ic1wvAeAChAN7kOG4QgL95nm/SnS3HcREAUmvZ9DDP89s4jhsI4A3YUmwXAYjheX5dtf1ZACsAPATAF8AJAI/xPJ9YrcxV10HqJ0kSFAwDAGBU6jrL/SkyKCnMQTe6SXVLZ77/Fvf62fKYhM19HMrgYAQKIrS//ozs7CwcP34U48ff7FTd8fGxAICIiK7w8Kh78VPA1gMkSkKj02ADgMFDjfPlZTB6eDjVPkIIIc1j5MihQ+bOfSL9+++/80tJSfIIDg4xzp79SNaECZPKHGWOHv3Ge9eubWFZWZkaX18/8403jimeO/eJHJVKJQFAfHys+u233+wUFxfrZTQaWH//APNtt03NnzXrofzajrlr17agXbu2hS9Zsjx54sRbSmsrYzQamVWrXoicPv3+7IsX47X5+Xm0QnsH0eQonuM4GcdxWwGcB7ARwEIAwbAFEGc5jqs/tdOV+gMwAgiDLZhy/NvHcZw/gO8AXIQteFkBYDXHcbOq7f8CgDkAHgZwHWzD8b7iOE5pb+9V10Ea5lgEFQCgqntxy6OsErsz0kApENyP2WyGNjUVLMMAkZFQR3QFq9ZA6+GB//u/uwEAnx36pIFa6hYfH4sx/oEY1b0HpAYDYAZmwQqpCfUXhAZg1cU4/ClrVw8nCSGkXdi5c2v4mDFji999d/eFoUOvKVu9enn3P/74zQMAjh8/qluzZmXUpEmTC3fs2HfhySefTT9x4ke/pUufiwQAvV7PPvvs/Gi1WiNu2vR2/M6d718YOfLGku3b3+587tw/mprH2rt3V+Du3dvDly1blVRX8AMAr7++NtzX188yc+bsWoMo0n450wO0DMB02HpLvgCQa3/9WQCHAawBUP/4lsv1A8DzPJ9TcwPHcU8BMAGYy/O8FUAcx3E9ACwCsNMeoDwLYCHP81/a97kbQDaAOwF8AOARF9RBGiBVSz3MKK/4LLpEbs8EZ6K1WtzOhQvnoWNZiJKE0DHjLtt263Uj4PH9UZRnpKO4uAh+fv5Nrj/p/DnMjYwCyiogmkyQ1TOUjmEAs9C0ZAZKle3aohTrhBDifsaMGVc4Y8asAgBYsGBx1vnzf3sdOLA/aNiwa1L27t0VOnbshMLp0+8vAIDIyG4muVyetmjRM9Hp6alKrdZDnDJlav4998zI1+l0IgDMm/d09iefHAhJSIjX9OvX/9IH//79ewN27Hg3fMWKlxJHjx5bXld7jh8/qvv55x/8du58P5axj2AhHYczAdBsAMt5nt/JcZzM8SLP8/9wHLccwNom1tcfQGwd224A8JM9cHE4BmAJx3FBALrCti7RsWrtKOU47gyAG2ELXlxRB2mAY+0VqyhCXs8QOK1cAV+FAmZKg+12zp49jXfTUpDdrRvWDB8OpYKBIDGwWkUEaz1xvX8AzKKIY0c+w39mzm5y/YbUFMAvAIJOB1kDw9QYBjBZmxYAyZS2LIMUXBNCiPsZPHjoZVMkOK5X1dmzZ3QAkJKSok1KSvQ4fvzopadrkn0IQGJigvqmm8aX33vvzPwjRz7zS0pK0GZlZarS0lK0ACAI4qXopaSkRLFlS0yETCaTwsO71LkmQmFhgXzdurVd5817Oj00NIwy53RAzgRAwbBlfKtNJmxzaJqiH4AcjuN+BhANIAHAap7nvwEQDqBmOsNs+9cu9u0AkFFLmS72711Rh1PkctcPxZHZh/fI3GyYj1WwfX6YRREKpRosW/vTlP9aKxE2YAjOFBc1y/lxFXc9z83p7NkzAIDew66BRiXCknUeCt8QyDyDIevbB1U6HTzKy1F+7HvIZz/UpLrLysrgZ7A9oPPs0ePS776u8yyTsTCL5jqvo9oElldh24AhKBYZt762WkNHvJ5bC53rlkHnue2Ry+WXjWqWJAksK5Ns34vMHXf8J3fKlKlFNfcLDg6x5OfnyR955IFeXl4667XXjigdMmR4ef/+A6ruvvuOy1bpZhgWq1a9nLBjx7tha9asjNy+fU88y155jfzwwzHvsrJSxYYNr3XdsOG1rgBgtVoZURSZsWOvH7Rmzf8Srr12BGWEa8ecCYASAdwC4Ggt20bbtzeKffhZNIAqAM8BqARwH2zzb8YD0MI2fK06x+NdtX076ijjZ//eFXU0Gcsy8PVtvsnYOl3dw8xaQ2mB7XPNJIrw9PKERlP79ClRJgcEC1jR2qznx1Xc7Tw3J56PAwCMuG4omNIsiEVpEK16aL19Idd5o/t99yBn8zsYCAalBVmIjI5udN1nzvyKnl46AEDosCFX/O5rnmerYAUrY6Cu4zqqjaRWQqdQwCC0jWurNXSk67m10bluGXSe247Y2PMe48fffCnpQXx8rGdUVJQeAMLDuxgyMtLU3bpFXboXO3XqhOeHH74fvGTJ8rQjRz7zr6yskB84cPi8QqGQ7PXZf/n/xlU+Pt6WUaPGlAcFBZnnzJnde+fOrcEPPvhoXs22TJx4S8ngwUMvC3DefHNDeFFRoWLFijUpoaFhtKBcO+dMALQRwDv24OVz2K68HhzHjQGwAMAzja2I53kzx3E+AKw8zzsu+tP2DHMLABgA1MzI4RhfVWXfDnsZQ40yjnSGrqijyURRQnm564d5yWQsdDoNyssNEITWyH5Zu+JyA04WFUIvCggTWRgMtX92aOwLV1v0BpSUuG/GSXc9z82luLgY830DIPkEIFgUUZWbCYvBDBizAa9gMIFK+Ay9DnF4Bz5yOU68vRU+L6xsdP0nf/4F1zsyv4V3vfS7r/M8y0QYjCYY67iOaiMqbR9ncglufW21ho52PbcmOtcto7nOs06noV6lZvL554eCIyIijX379q/6+OOPAtPSUjWLFr2QCgDTpk3PXbt2dbeYmPVht9xyW1Fubo7y9dfXdg0ICDAHB4dYg4NDzCaTiT1y5DPfYcOGVyYlJao3b47pDABms/mKX1ivXn2MU6felbtv3+6w0aPHlkZFdb/sIbeXl5fo5eV12WsajUZQKpXy6kEYab+cWQh1G8dxgQCWApgL20Ko+wGYAbzG8/zbTayvtjuVcwBuhm1YWs3l4h0/ZwFQVHstqUaZv+3fu6IOp1itzffHTxDEZq2/qYwaLd5ISYRMJscLjAyiWHv+LoG1TRsTzRa3an9d3O08N5fYf/5BpNYDMoaBh1YJQ04JIEoAJJgKsqD2CYUgKqDv3Rs+sbHwTkiAxWwFU8vQgtpk//UX1DIZrAoFZEEhV5zTK84zI8AiWOu8jmqltPUWydG8//faso5yPbsDOtctoyOfZ7lW0+KR2tUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPr20oHOm4mhwAcRzny/P8KxzHvQVbymh/AKUAfuV5vriJdfUH8AuAm3meP1Ft01AAF2CbazSH4zgZz/OOBUHGwpY1Lp/juDIA5bANvUuy1+kDYDCAN+3lf3JBHaQBRqNtVKFSVX8KfVFmjzctNOfQnWSePQM/hoGRYQAYgWqL2ZoriqE2VECmCcCA6TORsmgB/OVypBz9Bt0mTGqwbqvVCllONhDaCfKIro0KmkSITVsEFQCrtXXsKiibDyGkHZMkSZRptVb/a66RoxUWJZVptVarJDU56oyMjDIsXLg0s67tkyffXjJ58u0ltW1jGAYLFizOWrBgcVb116sPb5s//5ns+fOfcczxhkqlkg4cOHyhse1bs+Z/qY0tS9o+Z4bA/c5x3DKe5z8E8M1VHv+8/d8WjuPmAiiELW31dQCGAciDbZ2h7RzHvQZgOICnYFuzBzzPmziOexPAqxzHFcC2oOr/YOv1cSxYssMFdZAGGPV6yBgGqnoywAGA6Eh9TAGQWzGkpdm+enpA0F++lrFkMcNalg+ZZyB8g0PwsUqJtNQURCYmNCoAio+Pw+GsDKRbLNi0cEmj2iNKIqxNWAQVAFi1rQdIyTKQJAmU1pQQ0h5JEgQTq8hhvHxapUvDKkmiJKFpH9CEuBln/vP4whaoXDWe50UAtwH4HcABAH8BuAbAeJ7nz/E8nw9gIgAOwBnYFjF9juf53dWqWQ5gO4BtAE4CsAKYyPO82X6Mq66DNMz891/YP+QaPBlW/zq4kr0HiBHos9OdyIptiXdkQQEQDFeOSrWUF4G12nr5Am+ZjM/zcvDF9981qu5ffz0JEYB3n77wiOYaLM8wgCCJEJoaANl7gOQMCwulwiaEtGOSBEEUJUtr/KPgh7QHzvQAvQHgfxzHPQvgPM/zV4y7bAr7/g/Ws/0P2HqE6touwLao6aLmrIPUz2owQglAZFnI6ilXqvPD9/FnUOLj3VJNI43gbTIBag28uoRDMF2ZvMNaVQ6Yq8AqfTFmzDi89NIKJCUlIDExAd2796i37l9//QUAcO21IxrVFoZhIIgCrE0MklkPNZKqKmEWRYRU6aFUU3YoQghxBydO/Hm6tdtASHXOBEAzAUTAngab4654oivxPO9MvaQNsxptN80CU38AlB/UBXvSktFD2XBPAGkZVVWVCJbZ/ssGdQsHJMMVZUSzEWJVKWQaf+h0Ooy47npYzp1D8aaNsKxYBYWf/xX7AIDBoEfv/HwM6NIVw7tFNao9DAOIotDkIXCMSoGlfCxEUcSIJu5LCCGEkI7DmUBlr8tbQdo8q9GWNVJoYIK7XGFLkmCiIUpuIz0lGQlVleik9UD3AB0sZVcGQABgKSuEKqArLAAmTLwVptw8+FRVofT7owi86+5a9/nz5AmM9w+ESiZDSB1B0pUYp4bASZCgVquh1+svJeUghBBCCKnJmQAoBcAxnufrzORBOh7RZA+AZPX1/wAKuRwaVgbGRNOr3EV6ViZeTeQxeNAg3MDUHXQIhgowVgMADUaPHoOn17+KvjpvFP9wDH63ToZMe+Xioylff4FrZTKUKxRQN6EHyCJYIaEJKbBhS5yguhQA1R7EEUIIIYQ4kwRhPWxpqgm5RDTbAiCJrT8A6lSYjd2Dh+EBv4CWaBZphLS0VABA187hEMx195xYDVWQTHrIZCw8PDzh2X8g0g16MCYTig4fuqK82WxGaK4tQ6ly0OBGZ2VjGAZmoekBsiiKWNSpC94dMBimjPQm708IIYSQjsGZACgfgI+L20HaOMlsu2G9lOa6Lkr7Wi1NfLpPmk+GPQDqEh52KZCtjWS1QNCXQSazBTI3T5qM3Rm29Nmlx76HMTX1svJ/H/wIEWo1jKKInnff0+j2MAxgciYAkiR4yeXwUShhrqxtfWVCCCGEEOeGwG0F8BbHcWNgW8Mnr2YBnuffu9qGkbalTKlEZmkJysO6or78bozanqoYtFaLu+ifl4epA4fCqDdCsta/PpO1vBjKACsABmPG3IT//W8NThUX4To/f+S8/Ra6LF0OmZcXhMpKsMe/BwCk+fmiv7dPk9pktjY9AJIgwbF0qtVAQ+AIIYQQUjtnAqDX7V9n1LFdAkABUAeT7K3DjkQe46IHoHM95VilLTWxkmVhNpuhUqlapoGkTlqTGZ4qFZS6K+fw1CQYq8AIJgBqKBRKTJt2H97ZHAPO2wd+hQXQ83HwGjocGd99Ay9JQr7JiJ6zn2tSeyRIsAjOLZRrtQfUFpoDRAhpxxgGMoZhWmUhVIkWQiXtgDMBUKTLW0HaPIPBNndEoaw/oGHsa7OoWBYmk5ECoFYmiiJ87UGDT0jDWdoEYxVgMYJVaiCKEv7zn7uxa9d2rI47h2f+ey+ihw4HALzz60kMKy/DGT9fvNS7T5PaJEgirKLY9DcDQGBt78VKWeAIIe0Uw0DGMmyo2WhtlSVHlGq5VYSY425BUEzM+rBjx771P3To63ON3efhh++Pjou74FX9tejonpU7duzlXd9C4k6a/J+H5/k0x/ccx2kB6AAU8Tzv3CNb0i4Y7UOOGgyAFLYhcEqWhdFohE5HC6K2pqL8PPgpFACAgLBAwFr/3BnRbIJorIRM4w9RFODt7YM5c+bhf/97GUs/eh8eI0YiNTUFX33zJb4C8P77B5vcJhECBNHacMHa9mVZQAQECoAIIe0UwzCs2WiVx53PEU1Gq3NPi5ykUsvZXn1D5Qq1jJUkya0CIGdkZKRp5s59In3cuIkljteUSiVNUu4AnHp6wHHcDQBeAzAMAGN/7XcAz/M8f9x1zSNtxU25ufi/wcPxq6n+oUeSQgnA1gNkrmfCPWkZuUmJUDEMLJIEhUYJa0XDyQOEimLI/Lpc+nnatOk4ceJHnDp1EnPmzL70+sMPz0Xv3n2b3CYJUpMXQb3UNpYBRAkirTNFCGnnTEaraDRYWjQAsmuVoXeulpOTraisrJT37z+oMjg4xLmnbqTNavJFzHHcCABHYcsEtxrAYwBeAuAH4BuO465zZQNJ28CKIpQsC1aurLecoFTj9/JynCoposUq3UBpuq1DtxJSgwkQHARDJdhqWdpkMhnWr9+EKVOmQi5XQKvVYu7cJzB37hNOtUmURKcDoEqFHCn6KtAMIEIIcR8jRw4dsm/f7sDZs+/jxoy5bvC0aVN7f/vtV5cNATl69Bvv++67q9eYMdcNvvPOW/tu3LguzGQyXcqUFB8fq37qqceiJk4cPXDUqGsG33nnrX137twWVNcxd+3aFjR69LWDv/nmS5/atsfHx2oYhkGPHtF0M9IBOdMD9BKAnwFM5Hn+0l0Kx3EvAvgGwIsAJrimeaStkDnmbDQwBE5UabCtsAClxQUYaaIeoNZWnp2FYABGuRyipXGZ1wSjHozVBIaVQ7IPFNBotFi16hUsW/YiWJaFvKF06HVgGECQBAhOBkB/+nniu59/xpwbRzm1PyGEkOaxc+fW8PvvfzBzyZLlqZ999knA6tXLu/v6+sUPG3ZN1fHjR3Vr1qyMeuihORkjRtxQnp6eqtq0aUOXzMx09bp1Mcl6vZ599tn50f36DajYtOnteLlcIR06dDBg+/a3Ow8dOryiX7/+lz332rt3V+Du3dvDly1blTRu3ISy2tqTmJig0Wo9hFWrXog4d+5vnVqtFq6//saSuXOfyFGpVDQMrp1z5i5lOIB7qgc/AMDzvMhx3CZQBrgOSSZJAMOAsa/zUx+5whYkmSgAanUFFRWoKCuBd2TXxvcAGfWQLAawGi8IwuWjL5TK+nsAG8IwjD0JgnMBkEJlm89E1xYhhLiXMWPGFc6YMasAABYsWJx1/vzfXgcO7A8aNuyalL17d4WOHTuhcPr0+wsAIDKym0kul6ctWvRMdHp6qlKr9RCnTJmaf889M/J1Op0IAPPmPZ39yScHQhIS4jXVA6D9+/cG7NjxbviKFS8ljh49tryu9qSkJGssFgvTv//AyhkzHsiNi7ug3br17c55ebnKV15Zl9rMp4O0MmcCoAoAijq2KWGfE0Q6FtvCpsylhU7ro1QobVngKFVxqztfWY6jCTyev2Us0MjFaSVRgKCvAOsRDKEZpsAKovM9QAql7SPNSNcWIYS4lcGDh1ZU/5njelWdPXtGBwApKSnapKREj+PHj15KR+oYYZCYmKC+6abx5ffeOzP/yJHP/JKSErRZWZmqtLQULQAIgnjpvrOkpESxZUtMhEwmk8LDu9T7JGz16rWplZWVGd7e3gIA9OrVxyiXK6TXXlvTLT8/LzMoKJjmBbVjzgRAJwE8z3HctzzPVzpe5DjOC8AS2IbHkQ5Gbo97GZWmwbKvBAVCExKEvKLC5m4WaUBenm0d40BvzybtJ1SWQBHk+rm3DMNc1RwgrsKEN/oOQEnuFeszE0IIaUVyufyyp2ySJIFlZZLte5G5447/5E6ZMrWo5n7BwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO3T3WUyGRzBj0N0NGcAgJycbCUFQO2bMwHQYgCnASRzHHcEQC6AEACTAagBzHJd80hbIEnSpQupMQGQBYAGgEVPT+lbW5k9CA3w0jZpP8FkgFIwo+7OYOcwDGAVrRAl54IrFcMgVK2B3ty4+UyEEEJaRmzseY/x42++NB8nPj7WMyoqSg8A4eFdDBkZaepu3aIu9dqcOnXC88MP3w9esmR52pEjn/lXVlbIDxw4fF6hUEj2+uw3HP/GVT4+3pZRo8aUBwUFmefMmd17586twQ8++GitT8Rmz76P69y5i/HFF1++tLzLuXP/eMjlcikyMooSI7RzzqwDlGjP9LYCwC2wZX8rBnAcwIs8z8e6tonE7QkCLuj1YAQrWHXDN9KORypWg75520XqJUkSng8MhjIoFD7WpvW4/JsIQQlJct1cUYZhYBKcX1JMUtg+0pjmGJtHCCFuRKWWt3g66qs55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgON2bM2OJt297uvH//nqrrrhtZfu7cWY8dO94Jv/32O/Mc84xI++VUqiae52M5jnuS5/lcAOA4zg9AOAU/HRMjl2NdahIMBj0WaBoeSmVhbMPlrJQGu1VVlJXBR64AyzDw8dfh39C0YYLJAMlsBKvVQRBcGQABFuEqem/sSRBYJ4fQEUKIu5MkSVSq5dZefUPlaIU1eZRquVWUxCYHCBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAUFDzeHPnPpFz8uRPvmvWrOy6bdt7fM2hcDNmzCpgWRaffnow+J13Nnfx8fGxTJlyZ96jjz6e69yZIW1JkwMgjuN8ABwA0BlAT/vLwwF8yXHcYQD38jxPj/Y7EEmSLk06l8vrT4MNAALDAJAgUADUqorSUsAyDKySCI2XFkJVnclyriQKEAwVYD1dnQiBgdHqfADEKB0BED28I4S0T5IEQYSYo1DLWmVBUlESRUlCkz/5IyOjDAsXLs2sa/vkybeXTJ58e0lt2xiGwYIFi7MWLFicVf316sPb5s9/Jnv+/GeyHT+rVCrpwIHDF+pr0/Tp9xc4Ms+RjsWZHqC1APoAmFfttWMAbgewBcAqAAuuvmmkrTCbzZeGQckUDadBtjIsIAkQTBQAtaaSrEx4AqgUJUBo+lxPoaoUikDXLpUgQYTlKobA4VIAREs4EELaL0mCIEkSdXUT4iRnAqApABbwPP+J4wWe580APuc4zhe2hVIpAOpAKlOS8d6gYSg0m1AiazgAElgZIAgQTTRRvTVV5uXBE4CRZSA2cg2g6gSjHkrRDCdH0tbqajLAAQCjsl1/cieTKBBCCCGk/XPmzsULQK1dlADyAAQ43xzSFhkrK6CWyaCSySCTyRosn6PQILcgB1KXzi3QOlIXQ6EtA5xFIYdkbXoPkGgy2BMhyOGqPAgiRAii85lHRY0KuUYjimk1MkIIcRsnTvx5urXbQEh1zowfPQPgwTq2zQLwj/PNIW2RuarK9rWRd8FnvQKwITkB2fKGgyXSfCxltucYklqFxi6CWp1gMkCymFDXGgvOEHF1PUDmUH/MP38Wm/NyXNYmQgghhLQvzvQAvQTgK47j/gTwKYB8AIGwzQEaAtt6QKQDMev1YND4HGJypW2YkslU7yLNpJnlG02oLCuBT6cgp/aXBCtEYyVYj0CXJUKQIEG4igBIprR9pJlofhkhhBBC6tDkR7c8z38H4DbYHhmvAvAOgNWwBVO38zz/tUtbSNyeWW/rAbKiceOOFApbpjizkRZCbU2nDVVYm8DD0i3c6TqEqjIwLhpuxjCAIApX1QMkVzgCIAquCSGEEFI7Z9cB+gq2XiA1bAuhlvE8X+XSlpE2w2owQAVHeuuGDSnPx/1DrsG58ormbRipV6F9DpC/zsPpOgRjFRSCGYArhjMyEKSrC4AUoohXe/eDkmEhiqJLh+cRQgghpH24qvRNPM8bAWQ3WJC0axaDrSfHyjTuZpOR2RbfZKyUwbM1lRXZAiA/74YXr62LYDKAES1wRQDEMIAgiVc3BE6tQKTWFtCZqqqg8fK66nYRQgghpH1xXf5a0mGZZCziKspRpPWAfyPKS3LbWi2Ma1fQJE0gCAJeDo8A2zkCPoLzKaNFswGSxQhWqYF4lWvvMAxjGwLnxJpEDjKN+tL3psoKCoAIIe0Sw0DGMI186uhikiQ5tRAqIe6EAiBy1Yr8/LGSj8WgoSNweyPKS/bFUlmR1mppLSWFBfCU2/77e/t5A5Jzc2ZEswmS2QBW7eeCAMg2B0i4ijV8GIUMVkmEnGFhrKQhloSQ9odhIJMx1lCLSd8q93AKldYqQJ7jbkFQTMz6sGPHvvU/dOjrc43dJzExQbVx4/86x8Vd8FKp1OKIESNLnnlmUaZWq6UblHaOAiBy1YxGW8YthVLdQEk7pS0JgowCoFZTlJEOBoAgSZCrZBCvImmaoC8D4+18IgUHhmFgFpq+IGt1oiTCLEqQywBjJU1LJIS0PwzDsBaTXp504YxoNhlb9A+pUqVmo/oMlstU3qwkSW4VADVVcXGRbP78OT27dYuqeuutrXF5eXnK115b03XdulewfPnq9NZuH2leFACRq+YIgJQqVeN2sGeBk7lq9UzSZGU52fABUCWJwFXMuQEAQV8JpYseBJoF81XtL0oSLPbrypGdkBBC2iOzySiaDPrWeJLYLrLL7N27O1gul0nr1sUkqdVqqWfP3sacnOzsI0cOBUqSBMZVKU6JW3IqAOI4LgDAcwDGAwgFMBHAVABneZ7/zHXNI21Bp4SLeHfAYMQ2du6GvadITvFPqzEUFMAHgIFlIVqdn3MD2OYBsYIZgPKq6mEYBibr1QVAAGCxL+rqWKCXEEJI6xo5cuiQuXOfSP/+++/8UlKSPIKDQ4yzZz+SNWHCpDJHmaNHv/HetWtbWFZWpsbX1898441jiufOfSJHpVJJABAfH6t+++03O8XFxXoZjQbW3z/AfNttU/NnzXoov7Zj7tq1LWjXrm3hS5YsT5448ZbSmttPn/5Dd+2115eo1epLdyPTpk0vnDZtemEznALiZpocAHEcFwngJAANgJ8BDLDXEw3gBY7jbud5/gtnGsNxXDSAMwDm8Ty/y/7aQABvABgKoAhADM/z66rtwwJYAeAhAL4ATgB4jOf5xGplrroOUjfWZIKPQgmFrHGZwEQPb5wtK0W+YMXEZm4bqZ2ppBgAYJHLrr4HyGSAZDWDkakgXVWvnnTVPUAAUCaKEE1GeFiubjgdIYQQ19m5c2v4/fc/mLlkyfLUzz77JGD16uXdfX394ocNu6bq+PGjujVrVkY99NCcjBEjbihPT09Vbdq0oUtmZrp63bqYZL1ezz777Pzofv0GVGza9Ha8XK6QDh06GLB9+9udhw4dXtGvX//LFhbcu3dX4O7d28OXLVuVNG7chLLa2pObm60eMWJk6dq1q8N/+eWEr1wul6677vrSJ554Jqt6UETaJ2e6MV8HkA8gEsCdgG31S57npwM4DOB5ZxrCcZwCwD4AHtVe8wfwHYCLsAUvKwCs5jhuVrVdXwAwB8DDAK6DbYHWrziOU7qqDtIAew+CJG/c6TIGdMLLCfHYlZ7ajI0i9bGU2f4eCErFVdclmoyA1QiWvbrhAgLEq1oDyGGrsQLzzp2F3sfnqusihBDiGmPGjCucMWNWQY8e0aYFCxZnRUV1rzpwYH8QAOzduyt07NgJhdOn318QGdnNNGrUTeVPP/1c2q+//uKbnp6q1Our2ClTpuY///yKtOjonsZu3aJM8+Y9nQ0ACQnxmurH2b9/b8COHe+Gr1jxUmJdwQ8AGAwG2ccffxhiNpvZ1avXJj388NzMH3887vfii8simvdMEHfgzBC4sQBm8zxfynFczUf+7wD4yMm2vAigZtqmRwCYAMzled4KII7juB4AFgHYaQ9QngWwkOf5LwGA47i7YVub6E4AH7ioDlIPxjGESt64m2mF0hYoWa1WWK1WyOU0Fa2lFVmtqCgtgUdw1FXXJYkCRGMVWA8GV5PZXJQEWF2QGl2lts0xM5muIrMDIYQQlxo8eOhl93gc16vq7NkzOgBISUnRJiUlehw/fvTSahqOAQWJiQnqm24aX37vvTPzjxz5zC8pKUGblZWpSktL0QKAIIiXnr6VlJQotmyJiZDJZFJ4eJd605vK5XIxNLST0ZHwYMCAQXpBEJi1a1d3KyjIzwwMDLq68eHErTl751nXRaEC0ORuQ47jbgTwKICBAKpn3rgBwE/2wMXhGIAlHMcFAegKwMv+GgDAHpidAXAjbMGLK+og9XCs5yMpG5cEQa74t6fIZDJCLnd+IU7inPNWC75N5LF43AiX1CdUlUEWcHV1SJCuahFUB4W9V8uRnIMQQkjrk8svn/krSRJYVibZvheZO+74T+6UKVOLau4XHBxiyc/Pkz/yyAO9vLx01muvHVE6ZMjw8v79B1Tdffcd/auXZRgWq1a9nLBjx7tha9asjNy+fU88y9Y+2MnX188SERFx2dC5Hj2iDQCQkZGupACofXMmAPoZtuDhKADHHYZkn0czF7b5QY3GcZwPgD0AnuB5PoPjuOqbwwHUzOeebf/axb4dADJqKdPFhXU4RS53faIUmYy97Ks7YO03rYxC2ahhUFqrGbsGDQULBlarpVnO09Vyx/PsSmVlJQAAXy/tVQ9dAwDJbIBcskKUN24emEP182yFBBHiVbdnrEyFe3r1hSot1S2vrdbQ3q9nd0LnumXQeW57YmPPe4wff/OlIWnx8bGeUVFRegAID+9iyMhIU3frFnWp1+bUqROeH374fvCSJcvTjhz5zL+yskJ+4MDh8wqFQrLXZx/69m9c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p4+ffpWJCRc9Kie8e3ixXgNy7Lo0iXi6iekErfmTAC0GLYgJxHAcdiuvAUAegPoDluPS1NsAXCK5/n3a9mmhW34WnWOoEtt3446yvi5sI4mY1kGvr4eDRd0kk6nabhQC5HZF8CUa7TQaBqeB8QyHtDKbJeeSiE163m6Wu50nl2pstz2NyjAVwd1I35nDZExVqgVIjw8dE7tr9NpUGIwQ6Zgrro9fiyLKA9P5JkMbn1ttYb2ej27IzrXLYPOc9vx+eeHgiMiIo19+/av+vjjjwLT0lI1ixa9kAoA06ZNz127dnW3mJj1YbfccltRbm6O8vXX13YNCAgwBweHWIODQ8wmk4k9cuQz32HDhlcmJSWqN2+O6QwAZrP5iii4V68+xqlT78rdt2932OjRY0ujorpfMRxuxozZuY8+Oqv3qlXLukyf/kBeZma6auvWLZ1vvHFMUUBAIPX+tHNNDoB4nj/PcdxQACsB3ARAgC0d9o8AZvI83+gVeDmOmwFbwNSvjiIG2IbVVedYbbPKvh32MoYaZRw5cF1RR5OJooTycr2zu9dJJmOh02lQXm6AILjHQqIFooAqgwEWhQoGQ8MPTRjrv09r8rPz4am7yrFTzcAdz7MrzVVqoBs0DMryKhgN3lddHytUQF5ZCYtF2aRMcI7zXFFhgN5qgt5ghNF8dQ/eBJYFIMBUqUdJCaXCBtr/9exO6Fy3jOY6zzqdps30KilV6hZv6NUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPrzkUrkePaNPrr8fwb731RueHH57ZR6PRCqNH31T05JMLspx9j6TtcGoOEM/zCQCmu+D4swEEA6g59O1tjuOeA5AGIKzGPo6fswAoqr2WVKPM3/bvM1xQh1Os1ub74ycIYrPW3xQf6SsRFxeLOZOmw0tsxM0v8+8wKUN5pdu8j9q403l2FUmSoGFYqGUyaLw8IDbmd9YA0WiEYDJCUkpOnS9RlGAVrDBbrVfdHlFmC4AEk6nd/e6uVnu8nt0VneuW0RHPsyRJokKltUb1GSxHKyxKqlBprYIkNfmkR0ZGGRYuXJpZ1/bJk28vmTz59pLatjEMgwULFmctWLD4suCk+vC2+fOfyZ4//xnHFAeoVCrpwIHDF+pr06BBQ/Tbtr3HN/5dkPbC2YVQGdgSFniglv98PM//1Miq7oNtPaHqEgAsB/AhgHsAzOE4TsbzvGN29FjbIfh8juPKAJQDGA178GKfUzQYwJv28j+5oA5SD8dkc7micUkQwDAwiyKULAuznp7Qt7Sqygp42Nds0vl4uahWCaK+HKx3zWcNjSdIgkvSYNvmIVkg0TpAhJB2SJIgCJDnyFTerdJVJUiSKEm4+g9rQlqRMwuhDgdwAP8mD3DMWJbs30sAGjUTmuf5K7oZ7T1B+TzPp3EctwPAQgDbOY57DcBwAE/BtmYPeJ43cRz3JoBXOY4rAJAK4H+w9fp8Yq/SFXWQejjSDcsVjV9TxiwBSoACoFZQmpcH1j7hU+uhhmitN1Noown6ciia/lAQgO3pniAKLskCJzkSMVAARAhppyQJgiRJFIQQ4iRneoA2ALAAeABAJoBm63u299BMBBAD4AyAHADP8Ty/u1qx5bC9j22w9Sb9BGAiz/NmV9VB6iZJEpYHhsLsF4TsJozDttiztlj0hgZKElcrzcuFEoBJFP99fOECgtkIpWiBs9n1zYJr5pxKCvvxrTSHlRBC3MGJE3+ebu02EFKdM3cqgwFM43n+M1c3BgB4nmdq/PwHgOvqKS/AtqjponrKXHUdpA6CAD+FAlAokKdUN1zeLlUQkVFVgQC6SW1xlQUF8ANghATRRUEHAIgmAxirCQwrRxPyIACw9QCZBdc8bxBVCpRbLDCLHWteACGEEEIax5nxo/loxl4f0rYIpn+HTzFqbT0lL/eRBXjpYjyqNI2cN0RcRl9cCAAwsyzggiFnDoLZCMlqcmodH4YBTC4KgNI7BeChv0/jJ1Xjh2QSQgghpONwJgB6C8BijuNogQ1yaQ6PKElglY1fj0FhT5hgNLpm/glpvDKDAadLS1CkdG6oWl0kqwWS2QiGafrHigQJJhfNRVIobYGPwWBsoCQhhBBCOiJn7oB6wLboaS7HcRcA1FzsRuJ5fuxVt4y0CcaKCgCAWRQhV6rQ2AzGCqVtsUuTiQKglpYpitieyGN6v2hMdHHd1qpSyHw7N3k/URJdkgEOAOT2AMiRnIMQQgghpDpnAqDuAM5W+7nmeBcXTqsm7s5YWQnANqGeYWRo7OSP2xkBTw8ciuy0tOZsHqlFaaltmQVvz8YPWWws0VgFuWhFUz8GBMk1GeAAwFdvwvLoXrQIJSGEEEJq1eQAiOf5Mc3RENI2matsAZAFEsQmzHxXsiw85XJI9JS+xZWWFAMAfJojADIZwYoW2JKcN2E/iLAKrgmAVAD66ryR76L6CCGEENK+uHYSAOlwzBYr0vRVqAQDpgmZvwSZDBAAyUxrtbS0EWXluH/QMFSWVrq8bsFsAKxmMDIVpCYExJIkwSq6KCOdyja/TI4mpqIjhBBCSIfQqNnKHMcJ9gVQwXGcaP+5rn+U17gDMfp447nYc3inpKhJ+4msLfaWLLTUUkuTW61Qy2RQq12fgU80OZcJTpAEl80BYjW2OUByGo1LCCHtQlVVFbtnz85Ax89Llz7X9eGHZ3LNeczMzHTl4cOf+l5NHQcOfOA/cuTQIXVtb4n3MXLk0CEHDnzg35zHaCnp6anKkSOHDvnll5+9rrauxvYArYJt0VPH9/RolQD4d6K5StX4NYAAQJQ5AiDqAWppSvv6OCqPxmftayxJFCAaq8B6BKEpI9BcGQAx9sCOkmATQkj7sGPHu8Hff/9NwIwZswoAYOHCZRmiC5dxqM2LL77QNSgoyDxlytSSZj0QaRWNCoB4nn+x2vcrm601pM1xpBpucgAkt92eMrQQaotT2x9faHXNk8le0JdBFtDEfUTRZUkQGJVt/pGCdSbLPyGEEHcjSdJlXfre3t4tMMlTomEE7VijAiCO425sSqU8z//kXHNIWyO7yGNDnwHIUDRt0rtkD4BAAVCLsljM8JDZAgMPneuTIACAYNRDLlrQlGXGBEmAVXDNtcBobNeinGEgWq1g5TTVkRDSfkgSoLc6tY6jS2jlEJkmhgZlZWWy9etfDf/991M+VquViYyM0j/22PzMgQMH6wFAr9eza9eu6vznn3/46PV6WadOnYz33fdA9qRJk0tjYtaHffTR+6GAbTjX++8fPPfOO2+F5efnqbZufY//5ZefvRYvfjb6lVfWXXzjjde75Ofnq7p27apftmxVyrfffuV75MihYEEQmBtuGF20dOnKDIZhIEkStm17O/jbb78KKCjIVykUCrFnz96VCxYsSY+I6Gp++OGZXFxcrGdcXKznHXfc7HXo0NfnzGYzExPzetgPPxzzNxj0svDwLobZsx/OHjXqpnLH+/zqqy98du/eFpaXl6uOiupRNXDg4PK6zomDIIhYs2Zl5x9++N5fLpdL48ffXDh//rNZcvvfrt9//9Vjx453w5KSEjwsFgsbHBxiuvfemTm3335nsaOOzz77xO/DD/eF5ORkq318fC2TJ9+e/+CDj+bVPFZBQb788ccf5nx8fC0bN25O1Gq14o8/HtNt3bqlU1ZWpiYoKNj0f//339yYmPVd33//4LkuXbqa77jj5n7XXDOi9K+/TuvKysoUy5evSrr22usrdu/eHvTll58HFRYWKgMCAsz/9393595zz32FAPDLLz97LVz4dLSjDsA2fO3ee//T77XXNlwcMeKGiqVLn+sqiiLj6+tnOX78e3+Tycj27z+wfMmS5WnBwSFWAIiLu6DesOF/XRITEzx8fX0td999b07Trry6NfbO4Af8O+ytrstesm+TAMiurlmkrRArK9BJo0FZE/czqj1wsbICJTpds7SL1K6srAye9uGHHl7N0wMkmo1gBDOAxvcKWkUBguSatNWMVg2zKMIsijBVVUHj7e2SegkhpLVJEnDf19qefIms1Raj7+krVO65Wc83NgiSJAlPPfVYD7lcLr700muJOp1O+PzzQ/5PPfVYz02b3onr12+AYdOm9WGpqSnatWtfT/D29rF+/PGHgWvXru7Wp0/f87NnP5JrMBjYkyd/9Nu69b3YgIDAK56WiaKIzZtjOi9atDRVqVSLy5cvjnr88Yd7DRo0pOyNN7bwf/zxm+fmzTER1147onzcuIllO3duDTpwYH/oc889n9KzZy9DRka66vXXX43YsOG1zhs3bk567bWNic88M69HQECgedGiZekA8MILi7qmp6drlix5ISUkJMz8ww/f+yxfvqT7Cy+sTho3bkLZH3/85vHyyyuj7rrrnpxbbrmt6M8/f/d65503uzR0fi5ejPf09/e3bNr0TnxmZoZq/frXuhqNRvb551dkZGdnKRYvfiZ64sRbCxYuXJputVqY997bGbJhw/+6Xnfd9eVBQcHWL7447Ltu3SuR9933QNa4cRNLYmPPazdseK2rh4enMG3a9ELHcYqKCuXz5j3C+fsHmNevfzNRo9FI5879o1m+fEn3yZNvz1+xYk1yfPwF7Ztvboyo2cZvvvkqcNWqVxJ0Op3Qq1cfw6uvrun844/f+8+dOz+9X78BVb/88rPunXfe7GI2m9j7738wv3FXBnDq1EnfkSNHFb/xxmY+OztL+corq7u9+ebGTqtXr00rKyuTPfvsE1x0dM/KzZu3xuXl5Sk3bHj1irY5q7EBEKW+JrUSTLYkBiIra9LjqOyAcGz8bDcGDhyMB5qlZaQ25UVFkNuHhslVCgCuH0UgmGyZ4FiFBmIjV8Y1C65LhiHTKHHfmd8BAD8xgOtnOhFCSOth2tg87BMnfvJKSOA9Dh366m9H8PLMM4uyYmMveH7wwd7gfv0GpObkZKs0Gq0QERFp8vb2Fp58ckHWoEFDKry9fQVPT09Ro9GILMtKjp6B2sya9XDWkCHDqwBgxIiRpUeOfBa0fPnqNK1WK/bowRn37t3dKSkpQTNu3MSyzp27mBYsWJIyfvzNZQDQuXOE+bffTpX89NMPvgDg6+snyOVySalUigEBgdbk5CTVyZM/+7355rtxjl6rqKjueUlJiZoPP9wbMm7chLIDB/YHRUdzlfPnP5MNAN279zAlJydpvvzycFB958fb28eyevWrKWq1WurZs7exoKAg65133uzy1FPPZZnNZmbatPuyH3poTh5r/9s9a9bDOT/88L1/cnKSOigouPLgwQ+Cr7vu+uJHH308194uk15fJVOrNZeeKpaXl8nnzXs0OiAg0PT665uS1GrbYPj9+/cER0Z20z/33POZANCjR7SpuLhYsXXrlstWNB80aHDZjTeOrrDVVc5+880XgQ8++GjGHXf8X7H9mAXZ2VmqDz98P3TmzNmNDoA0Go2wYsVLaQqFQoqO7mk8depk0enTf3gDwBdffOZrNpvZF198JdXb21vo2bO30WDQZ7z00oqoxtZfn8bOAfrRFQcj7Y9oNtm+NjEAUtiHzBlpHaAWVVFagtjSEvhoNIhgATTDWqGi2QRYTWCUjg7hhpkF1yXDYGQsWJaFKIowGo3Q6agHiBDSPjAMsOdmPd+WhsDFx8dqAeDuu+/oV/11q9XKWCxmBgDuu++B3GXLFna//faJA3r0iK4aPHhY2aRJk4ubMtcnMjLq0g2FSqUWvb19LFqt9tJfOaVSIZpMZhYAxo+/uez06T88YmJeD8vKylRlZmZoMjMz1L6+vrX+MYqNPa8FgGeffeKyjG2CIDBarVYAgLS0VO2gQUMuGxDTr1//yoYCoKio7npHQAIA/fsPrLJarUxSUqKqX7/+hv/7v/8WvffejqC0tBR1VlaWOjU1WQsAoigwAJCenqa58cabiqvXeffd//b8AMCePbs6CYKVqXms5OREbc1heoMHD6sAtlzWxk6dwi+d28TEi2pBEJhBg4ZetpbGwIGDKz///FBwQUF+o8edBweHmBQKxaX2eHh4ClarlbG1LUkbHBxqrH4NDBkyzGXrdzg1OJ7juAAAzwEYDyAUwEQAUwGc5Xn+M1c1jrg/yWzvAZI17VJSKG3Do0xGCoBaUrnZjFcTefTmonFTc2XQkUQIhkqwniGNzgRnsppcd3wGUKpUMBoMMJlcWC8hhLgBhgE8FM3x+Kp5iKLIaDQa4Z13dsXV3KZUKkUAGDp0eNWnn371z88//6D744/fdN9++1XABx/sDXvppdcSbrhhVEVjjqNQyC974lbfcgzvvrs5eP/+PZ3GjBlXOHDg4Ir//vee/B9+OObz888/+NVWXrIP0d64cXO8h4fnZedeJpNJ/5a7PHGCXK5o8Ckgy7KXlXFkt1OplFJCAq+eN++Rnl27dtMPGTKsbOTI0WV+fn6WJ554tFf14zcUkPbr17/8llumFK5ZsyLq+PGjxWPGjCu37wtRbDjZg1KpuuI9MjUOKtozzFYPaKovB2ixWK84TvWy/6r+UtPPZ2M1+QkCx3GRAP4B8AhsqbGDYAukogF8zHHcra5qHHF/jgBIauJE8wB9GTb3G4SHPGkOUEsqL7c96NF5ejbrcQR9GdhGrowriiJMVteuB/VI5wgsi+4FY3aWS+slhBDSNFFRPQwGg0FmNpuYbt2iTI5/u3ZtCzl27DsfAIiJeT3s999/9ZowYVLZ0qUrMw4e/Px8UFCw6fjxo74AwDBNWWq9YR999H7YtGn3ZS9fvjr9nntmFA4ZMrwqKytTffn63f8es0cPzgAAeXl5yurv4bPPPg749NODAQDQrVuUPi7uwmV/XOPizjc4Vys1NVnrCB4A4MyZP72USqUYERFp+uij/YE6nbflnXd2Xnzkkcfyxo4dX1ZYWKAAcGmx8U6dOht5Pu6y47zyyqrOTz312KWhYjfeOKZk0qRbS0eMGFm8YcNrXcvLy1kA6No1Ul9z33Pnztbb5u7do40ymUw6c+aPy97r2bNnvLy9fSw+Pr6CQmELbMvLyy/lBEhLS2nS4oM9ekTrc3KyVUVFhZduMP/55y+XzX1zpgv1dQD5ACIB3Al7UgSe56cDOAzgeVc1jrg/yZ7F7VJWt0aSyxUIUKmgYyhVcUsqL7MtZ6DzbJ4McA6i0QCmkcParJLVZWsAOURrPNBf5w1zWVPTcxBCCHGlMWPGlkVEdDWsWPF81IkTP3klJyepXnttTfjx40cDHMPWsrKyVBs3/q/LiRM/eWVkpCm/+OKwb2Fhgapfv/6VAKDRaMSqqipZYmKCymKxXHV6an//APOZM3/oeD5OnZBwUbVhw//Cfv/9Vx+LxXLppkSj0Yj5+XmqrKxMRc+evY2DBw8ti4lZF/Htt195p6amKLdtezv4k08OhHTq1MkEAPfee39uWlqq5tVX14QnJiaoPv30oN9XXx0JrLsVNkVFRcoXXljUNT4+Vv3ll5/7vP/+e2F33PGfPJVKJQUFBZuLi4uUx459p8vISFN+9dURn5iY9REAYDbbhg/ee++MnF9+OeG7a9e2oJSUZNXhw5/6fvvtV4EjR44qrXmshQuXZpjNZmbdupc7A7ahhykpSR7r1q3tlJiYoPr66y989uzZ1Qm4sofHwdvbWxg3bmLhvn27Ox069LFfcnKSas+enYHffPNl4NSp/8ljGAY9e/Y2qNVqcefOraHJyUmqU6dOem7f/k54XXXWZvLkO4p1Om/r0qULI8+fP6c5deqE51tvvdG54T0bx5m7z7EAVvM8X4orB/i/A6Dv1TaKtB0GSUS+yQiLskmBPRiVbWq6nLLstyiP5GS8N2gYxgrNe+IFsxGM2LgASBAEl60B5ODoaLfo9S6tlxBCSNPIZDLExLx9sUeP6Ko1a1Z0e+ihGb3/+ees17JlLyY5hrctXboyrX//gRVr166KnDHj7r7vvbej0/33P5g5depdxQAwYcLNJT4+vpaHHprZ559/zl71E7ylS1emmEwmdu7cB3s9+eScnqmpyZrHHpufVlFRLk9PT1UCwJQpdxZkZKSrZ8+e3kcQBKxduz75uutGlsTEvB7xwAP39v32268CHn/8qbS77rqnCAD69etveOml1xLOnTvr9dBDM/t8/PGHwXfddU+DaZuHDh1eKpPJpMcff7jXm29uiLj55sn5jz/+ZDYAzJw5O3/EiBuKX311TbdZs6b32bt3d+gDDzyUFRAQaD5//pwHYJvPNG/e02lffHE4cNase/vs3r2908MPz03/z3/uLqp5rICAQOvDDz+WeezY0YAffvhe16tXH+MLL6xK/OOPX30eemhGn927t4fdcstt+QCgUCjr7HVbsmR5+q23TsnfsePdTrNnT+9z5MhnQY8+Oi/9oYfm5AGAl5eXuGjRsuSsrAzN7NnT+8TEvN7l0UfnZTQlAPLw8BBjYrbwcrlcevLJOT1feWV15H//e29uoytoACNJTetV5DiuDMBMnuc/4zhOBsACYCjP82c4jpsC4D2e531c1cA2KlkQxMji4iqXVyyXs/D19UBJSRWs1tYfArx06UJ88cVh3DXjcfQZ3vjRj+bMBAz8fj8qrFYM2bW3GVvoHHc7z67y6eIF6FNYiEwPNa6fMbHZjsMq1fDqfR3MSt96M8HJ5SwUWuCnpN+RX1FcZ7mmUq3ejS4yBcrHjcPQafe5rN62qr1ez+6IznXLaK7z7OfnAZmMTQHQzWWVOun06dM9WVb2dVBQp0qlUk0TZonL/fXXaa1cLpf69RtgcLx26NDHfhs3rut69OjPZ+RtcB09s9mozs/P8hRF4eYhQ4bE11XOmR6gnwEs4Tiu+jg8ieM4FsBcACedqJO0USZ7FjeFomk9QDKV7QGOimVhsbguAxipn2Swfcax6qYtXNtUotkEyWKqdxKqgyAJLh8CZ7UvV2YxGBooSQghhHRM8fFx2meeeYL79tuvvDMz05UnTvzktWfPzrDrrx9Z3BaDn6Zw5t0thi3ISQRwHLZhcAsA9AbQHcANLmsdcXsGgy0AkiubdkPNqm0BkJJlYTTooVBQquKWwNoDVlbdtIC16SSI+nKw3mH1lmIY2yKorg6ABHvgZaUsg4QQQkitpk2bXlhUVKjYsmVTl5KSYoVOp7PecMPo4nnznm73GYSaHADxPH+e47ihAFYCuAm2lRTHA/gRtqFx51zaQuLWJhiNuLVXXxQZm/aknVX9O4TXVFUJL1qrpUXILBaAYaHQNncABAiGciikhoamMBBE188BElnbUoGCkdJgE0IIIbVhGAbz5j2VM2/eUw3OVWpvnOrf4nk+AcB0F7eFtEH+EhDk4YlyVtZw4WokuQKZRgOMgoD+ehqm1FLkVgFQsFB6aJr9WILJCKVoBlB3hkCGcQyBq3Nxb+eOzbIQrBIEi2vTaxNCCCGk7XN2IdRuANQ8z8dyHOcDYA2AzgAO8Dy/x4XtI25Obk+iwTQxCxxYFstSUqCvKsenjZgnQlxDZe+RUTdzGmwAEM1GMIIFDKNAXblWGIZpliFwR3VKrPzuJzx1w40urZcQQgghbZ8zC6HeDCAOwGz7S2/DtihqOIBdHMc96LrmEXfniKAdaa2bQmGfN2Rs4vA54rzkqkrEV1ZA6928C6ECth4gyWKqcy0BB4tgRVOzUTZEYZ/j5EjSQQghbZAIQJIkiZ4SEtJI9v8vEmz/f+rkTBa45QC+BfAi9//t3Xd8HGed+PHPzPZVL5Z7i8skcXCcOAkphAAhJIHAAUc9ONrRkuMox1EPyN3RDzh+4YCjhHr0o7dQE1JIt+Nuj4tsy7KtXrbv1N8fM7JlW7Kk1eyuZH3fr5deknZnn3k0O9qd7z7P8/1qWgPwAuDjuq5fCnwceFsJbYpZKuJf3CqxqY8ojGSOKxZlnUYlGIbB5w/s40N7dtKwqLXs+3MtA9fInzUTnKJA0Q7++Y9EvWl3EgAJIWaxLtd1TcMolH/IXohzhGEUkq7rmsBZ1zWVMgXuYuB5uq6nNU17id/Gj/37/gi8s4Q2xSw1EgCp8fiUH/uWtjZa58/D6jwCGzYG3TVxmlRqGPCmndVEI2CXP/24nUuhNJ4tAFIoWsGv01ll2PzLqrXEjwdWM00IISpq48aNqU2bNn07lRq8FWiJRuM5RVGCHS4X4hzhuq5iGIVkKjUYdV3naxs3bkyfbftSAqD8qMfdDHTrur7N/30BMFRCm2IWci2L8EgAFJ36B1SN4TBt4RD9mUzQXRNjSKVSANTX1aLgUol3UTufIcrZ1/cUrOBHgBoduKSpmYO54IsRCyFEBX3Mti2GhvpfpShKEpDpcEKMzXVd13Rd52vAxybauJQA6AHgXzRNawZeAnwDQNO0jcDt/v1iDjALBfqKRaKqippITvmCemT8wZJilRWRPtTOty+5nAHHxrWDTTowHsfIo9oGMHadKKcMRVAB3Ij30qZYlfk7hRCiHDZu3OgAH9m0adMdrstCSlu6IMRc4ADHJxr5GVFKAPQO4DfAd4FdwEf8238D5PAKpYo5wFTgtu1PAPDheC32RCVfTmMp3uu4FKusjFz/AC2hEDEFqMj4j5cIAdtAUaNjZoKz3OBrAMGoAKhCgZ4QQpSTf1E3qQs7IcTESimEelDTtHVAm67r3aPuej7whK7rsqJ9jij4gYuiKKhqGNuZWgRkKyrgYksShIooDA0CYEyQlS1IjuFlglMT9dhjRMgOTllGgPCTIKjlaFsIIYQQs1pJQ6m6rrunBT/ouv4wEPbTZIs5YCQAisXi49Z5ORtL9U4/R0aAKsLwkyBY4crNoHBtC6eYGzcTnOM62G4ZgpSY99lOaIpBuRBCCCHOfVMeAdI0bTnwZeA6xpvYD6HpdErMDrmOw3z0/IsYdB2cEiIgWw2BY8sIUIVYaW/2hBMuqf5xyezsEKGWM29XFG8KXDlGgBS/xpTqSMIkIYQQQpyqlCuhzwJXA18BrsFb9/MQ8CzgScALp9KYpmltwGeAm4AEcC/wLl3Xd/n3bwDuAC4D+oHP6br+6VGPV/GSL7weaMJLwnCbruv7R20z7TbEmczUMGtqa+kyDQZLuNDMhSIczQ5TDLgIphibk8t5P/jTwyq230KOiGNy+oCzoijYjo3lWMHvNO79jSE5t4QQQghxmlLmwlwHfEDX9bfhZYAr6rr+Hrzg4l7gb6bY3i+BVXgptS/HS7P9J03TkpqmteDVFtrrt3878GFN01476vEfBN4MvAG4Cm91912apkUBgmhDjM3IehfUJkpJS+ofqW3hHTu3cqCuNtiOibH52fbUeGVPa9sojFtzyHadsiRByM5v5hWbHuE/B3oDb1sIIYQQs1spAVAtsMX/eRewAUDXdRv4AvCMyTbkBycHgTfouv64ruu7gQ8DC4F1wBuBInCrruu7dV3/Bt4I1Hv8x0fxCq/eruv6b3Vd3wq8FFjMyZGoINoQYzDzXgBkl7ioPuJPUyoUJA12JfRbJnsyaaitbFFxxyiAVTxjHdDJEaDgA6BwLILpuifWqQkhhBBCjCglADqOV/AUYD/QrGnaQv/3AWD+ZBvSdb1f1/WX67q+E0DTtPnAvwCdeMHVtcB9uq6PniNzt7ep1oYXfNX5t420OQRsBp7q3xREG2IMth+4WCUGQOFIDEAuUivk3kKeD+3Zib18wcQbB8guegGQopweAIHhmGUpyRqKerN7i0U5t4QQQghxqlLWAP0GbwpZp67rD2qa1olXGPXfgNcBR0vpiKZpX8GbglYEnqfrelbTtCXA9tM2PeZ/XwYs8X8+MsY2y/yfg2ijJOEyZNsKhdRTvlfTSPICW1XHzfJ1NpqR48YL1zM8MFiWYzUdM+k4ByWdTgHQkIyX9HyVzsUpZIg0LGJ0DBQOqxh5AwBFVQKt7hdT4C0rV5EIRwiFlDOCr7nmXDyfZyo51pUhx1kIMR2lBEAfwltL8x/AM4H3A98C3u7f/48l9uX/4WWXuxX4uaZpTwGSeAHRaCMf6cb9+xlnm2b/5yDamDJVVWhqqin14ROqr0+Ure3JCvnrOpxQiGRi6utKasIhliWTtNtWWY/VdMyE4xyUkQCopbGWeAnP13SEzCw1NREUNX7K7U7Gm/4WiwWbmMGpSXBxyzwAGmoihGKxQNufrc6l83mmk2NdGXKchRClKKUQaj/w5JFpb7quf1fTtMN4yQMe1XX93lI6Mirr2xv9tt6ClxDh9CuXkSuorH8//jb507bJ+j8H0caUOY5LKpUr9eHjCoVU6usTpFL5MQtLVlI2XyRqWZjxBHn/k/ypsFTv9FMsm8HBkg91Wcyk4xyU/1iwBGf+IiL5IoUSnq/pcDIZlFQGwz35khOOqGT8dWTFookbYMpqc9QIV/fRXhJNTYG1PRudi+fzTCXHujLKdZzr6xMyqiTEHFByQRBd149rmnY+Xtro47quf2qqbfhrcK4HfuQnUUDXdUfTtF14SQiOAItOe9jI70eByKjbDpy2zVb/5yDaKIllle/Nz7adsrY/GYdbW3nnlsd52jNv4WklXLy64ZFaLdX/W8YzE45zEAq5HE0R71SvrU3iVLg+jlXI4ZpFrFET3VzVxbC9pXmu4wbaJyUWwXZdQopCZihFpK4hsLZns3PlfJ4N5FhXhhxnIUQpSvqYQ9O0f/BHfXbi1czZq2naIU3TXj7FphYB38NLrT3SdgS4FC8Jwn3AtZqmjS6sej2g67regxegpICnjXp8o//4+/2bgmhDjGEkeUEkWtr0IsWflhSWWi1lN9zTfeLnZG3lp4w4xQLuaZngHNfGLkcNICAUDmM43kVRMZspyz6EEEIIMTtNeQRI07S3AJ8Dfg78K9CDlxXu5cB3NE2zdF3/v0k2txX4PfBFTdPeAAz6bTbhpaouAO8GvqZp2n8CV+CtNXozgK7rRU3TPg98UtO0XuAQ8Cm8UZ+f+vv4egBtiDGMpK+OROMTbDmOiHchHpb4p+zSPT0A5GwbVVEoQ+K1s3LMIq6RR403nxjpcXAw7fIEQIqiYLoOCUIYEgAJIYQQYpRSpsC9Dfi8rutvPe32b2uadifwb8CkAiBd111N014KfBz4IdCIN+pyra7rHQCapt2IF3BtxkvB/S5d1781qpkP+X/HnUACb8TnRl3XDX8fPdNtQ4xt5fEuPrD2AgaN0lINKzEvcApX+mp8Dsr295EACq4LZai7Mxl2LoXauOTE747rlKUG0AjTP62K2Zm1vkwIIYQQ1VVKALQE+NU4930feMVUGtN1fRi4zf8a6/7H8JIijPd4G6+o6XvOss202xBnqs3nWV7fwCZKTDEcS9JvFBmyq3NBPpfkBwe8AKiK2aDtXJqQ6z3XigK2a2M5VokTcSdm+oG1kQs+GYkQQgghZq9SLj0ew1tDM5ZLgG2ld0fMJurI9KVoaSmVzeb53LrtCf7twN4AeyXGUhwaAsCsYnYjx8ij2n7dH0XBcmysMga/dwz18PebH6XQ2lq2fQghhBBi9pnUCJCmaU8d9ev3gc9qmlYH/AjowluzcxPwVuBNQXdSzEyqn3rUjZSWBCES8QKnYqGAtyhlbherLKe0aTKcTmE2VS8bml0sgG2gqFEURcF2vBGgMKGJH1zK/iIRio5D0Ti9xJcQQggh5rLJToH7C6cum1bwCpa++bTbAH7AJNcAidlN9bNsKSWOAIVHBU7FokFMilWWzZFohC/ru3jJc27glir1wTEKuGYRNVGPooDlWFiOXbYAKBLzzstCQQIgIYQQQpw02QDo6WXthZiVQo4DqgolZoGLhMN8+Px1RFWVwvAgsbYFAfdQjEilUgDUJatXNd21LZxCFrWmDQDDMsu6v6tiCW5YsQr1SEdZ9yOEEEKI2WVSAZCu6/eWuyNi9hnJ3qaUGACFIlFW19QSUhQK6TQNEgCVTTrtBUD1Ncmq9sPODhPyl+QU7fKOzJwXinJh6zy6BvrLuh8hhBBCzC6TWhGtadp9mqZtmErDmqZdpmnaAyX1SswKtuNiuy5KtPRRhZFilYV0OqhuiTFc09vL/6y/hMWF8o66TMQuZlEcLxFC3ixvAOT4CR/sokyBE0IIIcRJk50CdwfwO03THge+A/xS1/Uzcsv6iRFuxEuEcAnjpLYW54Z/O9pBb28P/3LLqyl19U7RdUmAFKsss5hl0RKNYcdKW68VFKdYQLVNTDWCaZe3zJYdUsFycIxzp5yXa9sM/ukPqPE49Vc/BTUSqXaXhBBCiFlnslPgfqJp2r14BUPvBMKapu0CDgJZvAKmS4GLANPf5pW6rneXo9NiZsjn8wBEYtMYAXK9aXTFjARA5RRzHAipxOuqPAWumMc1i7iRGGaZC7K6IRU4twIgJRTC6u1h6C/3kNuxnYW3/ROKItkThRBCiKmYdFEQXdf7dF1/K7AceBuwFy/oeTLQAuwG3gAs1XX9rRL8nPsKBS8ACkdKWwMEMHJpKiNA5RX3kzQmaqsbADlGEdfM4you1kgdqXLtK+xnlzOrO+0vSKGQyoKbb0IJhcg8sZn0gzLLWAghhJiqyU6BO0HX9X7gy/6XmKOK6RTvXrkaw3EIhyOn5EifCtO/MDey2eA6J07hOg41qvdZR119bbV7g5NL4TS2YjnlDoDCQPGcCoD+cNev+PqXv8jT4jVcl0gycNdvqLvqGhS1egVuhRBCiNlmygGQEAC5oWE2NDRiuy7t0TimU1o7WRSGTAPTPHemKc00+eFhVH+aVG1jtQMgsAs5bMfELPcIUMQbAVKs8u6nElIPP8iBX/+Sb993DztTwxxQVS67+FLo6qKg7yZxwbpqd1EIIYSYNeRjQ1GSvJ9Wueg4qKHSF2L/0Anxxq2b6WtqDqpr4jTD3V0AFB2bmkR1kyAAuLaJbXtFUMvp8LwG3rBlE/fXVT/om66B++6lpquLVTW13HzpZaxavJQH+7303unHHq1y74QQQojZRQIgUZJixktbbboOjlvqBDiIRL38cSPriUTwMuk0e9IpDhUK4JY4VBcgx7KwHQOzzFPglGSMYcskO8vTYDuGQX7fXgC6olHe/twX8KGX/h2PpYcBGHj4IVyn+s+rEEIIMVtIACRKUvSTFpguOE7pAVDUL6I6klFOBC8TDvEhfRdfTQ3ATLhQdmxMy8B2yzsCFI56I5PFYqGs+ym3rL6HkOvSbxR55tVPIaSqtNTVc+G6J9GRy7GzkIdZ/jcKIYQQlSRrgERJipksCcBSphcAXao4/I12IcrhjuA6J04xPOyNFDTMlKlgikLRyHnpm6cxejiResvhtUuX05Sf3SNAB++9hziwJ5fjptVrT9x+yxVX8srP/ieO63LlQB+LFy+rXieFEEKIWWRSAZCmaa+aSqO6rn+7tO6I2cLIZbwACKXkDHAADarCBXX1HJQ02GWTSnkBUF1NTZV74lHDEfKFDApM69yZSBx4xvyFDJcxyKqE1J7dxIFQ2zwi4ZMv2W0NjVy6ajWP79/H73/3W173D2+uXieFEEKIWWSyI0DfnEKbLiAB0DnOzBdwXBdrmul33bC/KP8cSlU80yR37OBL6y+lYxr1mgKlhsgXcyiujVvOWbgx79wqPUl79bmOQ30uB6rKwvNWn3H/Uy64iE3797Hznj/jvOofUCOlJyQRQggh5orJBkAry9oLMesMtLZy26ZHuOyyK7llGu04Ee8iVTFnf6rimcrNpGmORumNzIwZr244TNEYAseGctavSXjBQMSvNTUbdR8+REcuy8J4nLWrVp1x/9XaBaw42M6ieILurU+w8LIrqtBLIYQQYnaZ1BWRruuHJ9ugpmmz92pDTNpI0oJwPDGtdtyIlwVOKXNNmDnNf66UePVTYAM4oRCGWQBslFAZ+xT3zq2IouDaNkooVL59lcmmXTv4wJ6drFu7ljtCkTPWTDXX1bEHWATsu/ceCYCEEEKISSjpI2FN014GXAdE4cTHqypQA1wFLAmkd2LGyudzAMRi05tW5fppsEP2DMhOdo5S/DTQ4USsyj3xOOEwplHADeG9gpTLqJpHTrFIKJks487K47HHHgHgsgvXjZ8wor4BDIN8+4EK9kwIIYSYvaYcAGmadjtwOzDsP970v+YBDvDVIDsoZqa6zk7++bw1FKcZuChRbwQpNBPSM5+jQv76qkhyeqN1gVBVHAVMy8CxHUKJhrLtKhSP4rguqqLgGkWYhQHQzh3bAFi3bMW42zQvXgwHD1KfzeK6rpddTwghhBDjKmUC/quB7wDNwGeBX+m6Ph+4HOgHdgbXPTFTxVMprmxuoXW6C8zjCQq2jeGUtybMXBaxvWMbr6l+AKSGIliui2kZuJaBUsbCrOFYlIL/t9uF2VcnJ5fL8a6aOj69bj2r6+vH3W7lqtU4rktLOMLhndsq2EMhhBBidiolAFoM/K+u6y6wCbgaQNf1TcBHgdcH1z0xU7mm4X0PTS/rVLplEa964jHu6OsJoltiDDF/6lS8rvojIEo4jM1IAGRBGYuhRmIR3r1rO2/augmlsbFs+ymX/VufoDESZUk8QVPd+CNlsUSSfj/Q2/vA/ZXqnhBCCDFrlRIAZTlZvmMfsFLTtJGPlrcgGePmBHckbXVkeos4olFvDdFIUgURvOPFIp35HDX11S+EqoQiWDjeFDjLhDImv4hEI/QYRQZNk4Ix+9KsH9m8CYBhRcGZIEtiMeat7xrU9bL3SwghhJjtSgmAHsWbBgdwALCAZ/q/XwDM7rLrYlJG0laPJDEoVSQ2EgDlpt0ncSbXdfl3fSf/vHMb9a3lW28zWWo4jOlYOI6Na1u4ZQyAQuHwifUwxeLsmwI33L4fAKMmiWuffaRMmT+fHx49woOdHZXomhBCCDGrlZIF7mPAnzRNa9R1/bmapn0H+JamafcANwI/C7SHYkZSRy7IotMbAYqrId67WiMeCuGYBuo0R5TEqbLZLLb/XNUlYnh5SqpHCUcoWCc/I3HNwvjZzaa7L0XhWQsWsiAcIX/wIMxrK8t+yqavDyJRYi0tE266RLuAn/zypyiKQjaboaam+qN9QgghxEw15REgXdfvAy4Dfujf9Bbgx8D5wP8Bbw2sd2LGCp0IgKaXBjsUT3JpYxMX1tVTSGcC6JkYLZUaBiAajRILV78OjhqKkDdPjsY4ZhG3jBkAr2xs5jnzF1I8drRs+ygHx3GoN7x1do3zF0y4fVNtLfObmnBdl927JQ+NEEIIcTYl1QHSdX0bsM3/uQC8MchOiZkv5DgQCqHEppdZLJpIYjoOEVWlkBoi2dwcUA8FQGrXDr60/lI6LaOs080mywmFKBRGjQBZFq5jcbKcWLAMv1krly1L++Vy/Pgx5vmjoU3z50/qMZcsWkqvA/s3b+Kyy55czu4JIYQQs1qphVAbgGfgFT49YxRJ1/VvT7NfYob7wvAAnYcOctsNL2I6K0tUNURxJABKpwPrn/Dk+/tpjkZJKZRtqtlUOKEQlmWc/N32EyEoUZhuSvUxWCMB0CxLsnFg/z4OZtIsq29gXiyOPYkkDs+tq2feGo0Hdu6oQA+FEEKI2auUQqg34011Gy+nrgtIAHSOy+XzFB2HcLxm2m0VXZdaoJiRAChohcFBagAzVEq+k+A54TDG6DVAtoVrmShlWvtlqd7fbc2yOkAHD7Xz2fZ93PiM67l4knFhtLER+vpQeiSlvBBCCHE2pYwAfRzYDfwz0Em1V1WLqhjJ2haOTC8LHIDhj0wUM7IGKGhGKgWAMwPW/6CqOKqCOWoECNfFMYso0fIs2jdVbwjImWUBUHv7AQBWLl6CY04uhXfzgoXYfX20OA5DQ4M0NjaVs4tCCCHErFVKAHQ+8De6rkvFvTnsNa1tFBubmX74A4b/CbchAVDg7Kx3TJ1ISbNdA6WGIpiue2oAhJcJTnHL8zmK4498zbYAqOPgARRgxSTX/wDUNLeQApYkkuzbq3P5FVeWrX9CCCHEbFbKVdFhoD6oDmia1oyXWvsWv91twHt1XX/Av38DcAde5rl+4HO6rn961ONV4Hbg9UAT8ABwm67r+0dtM+02xEmWaXJ1o5esYG84ynSX1huKguE4FKUWUOCcnHdMlVj104sr4TA2YwRAtoXiWEDwo1ROOAwO2MXZVZ5sYybHOy+9glBvH9RNbiQnVFuL47rUhsNs3bVTAqDTWEOD9P30xxQOHyZ+3nm0vuBFhOsDeysTQggxi5SyMODjwO2apq0IqA8/AK4EXgZcDmwG/qBp2vmaprUAfwT24gUvtwMf1jTttaMe/0HgzcAbgKvw1iDdpWlaFCCINsSp8qmhEz+H4tOfunRn3uSVmx9laN68abclTqX4Ix9qvPqnshqOYOFgmqcGI65tgWOfKFoapN2JMG/fsYWDK5YH3na5DA8P0agoRFWV+tq6ST9OCYXI+WueBvfq5ererGSlUhz55MdJPfhXjKOdpO6/j87//Di2jDoLIcScVMoI0CuAxcABTdN6gdM/tnd1XV81mYY0TVsN3ABco+v6g/5tbwNuBv4OyANF4FZd1y1gt6Zpa4D3AN/wA5R3Au/Wdf23/uNfChwDXogXXL0xgDbEKPlhr7aM7boo0TiY05u+FPFTaWezsytV8WwwbNso+Ryh2oXV7gpKKIJhmzinTXdzbQvXNlEiscAT1Tk1cY4VCqQmuY5mJjhy5AhtMW9yaWwKARCAnUhALkfxWGc5ujZr9f/ip5i9PWRCIR6PRrjaAbqO0/OD77Lw9W+qdveEEEJUWCkjQJ3Az/Eyvd0F3Hva131TaKsPeA6waeQGXdddvKIgzcC1wH1+4DLibkDTNK0N2ADU+beNPH4IbxTpqf5NQbQhRsmnvGxtRcfBDaB+SyzuBUC5WVarZTa4yyzyzzu34S6q/uiaGj61COpJLq5RgDKMAEXjXiCRy82e6ZVHOztoi3r9VuJTKzQcWbaMO9r38fv2AzhlLDA72/y+kOf3PV38+7Yn+OL9f+H2Jx7DdV3Sjz6C2dtb7e4JIYSosCmPAOm6/tqJt5p0W0PAb0ffpmnai4FVwO+BjwLbT3vYMf/7MmCJ//ORMbZZ5v+8JIA2ShIOB596OOQv6g5VMa2xmfUCIMN1cQFVnd6F68ZwiGev1qg7fKgsx6wUM+E4ByGd9rLANdQkpv08TZcaiZC3hk+Jc0amvTlmkTAOBNzHllCYly5awtKu4zPm3JpI9+GDrAx7L81qLIprTz6QWbx6DY+mhjEti+7uYyxd6r2EnSvncyl+97vf8l9fuAOA5z3v+Tx/xTK++c1v8vmDB1CWLeWO1uZAz425fKwrSY6zEGI6SqkDdLagwAEyfmAzZZqmXQN8HfiFruu/0jTts3jT10Yb+Qg5zslaRGNt0+z/nAygjSlTVYWmpunXyBlPfX2ibG1PJOQYOIABxGJhItOctjQ/EmJjYxMd6XRZj1kpqnmcgzASALU01hJPVHcdUCgRx0r3EY6cmexAxSGkukSiQeQVPKk5EuYZi5aQGk7NuHNrPLnjRwEwwmHi0anPUl65cBF7j3Rw/HgH69dfcMp9s/18nqrBwUE+8YmPAHDbbbfxL+98B537d7NqYQPv+8hnyG55gu9+9xu84x3vCHzfc+1YV4scZyFEKUpZA3SICUq2a5o2ANyh6/pHJtuopml/A3wPeBh4uX9zHs7ItDwyJyTr34+/Tf60bUbmUwXRxpQ5jksqFfy0m1BIpb4+QSqVx57CJ8NBGurppwawgGzOmGjzCVmqdxpa+QKDgzNjGtxMOM7T5RSLfKh1AenGFmJAIT/952o6Qg4UCnks0z5xm6IohMIqVrGIahiYTgg3wIVAth9AqLY9Y86tiaQ7jwIqdjJBvoTn7Or581ldNNj+6CauuOIpwLlxPpfiJ+9+H29ubuXR5lbe/Oa30HOsk2Mdh2htauY1L30hX/j6d/jCF77AzTc8m/mLl0zc4CTM1WNdaeU6zvX1CRlVEmIOKCUAejXwFeAvwPeBLqANeBFeKusPA7XABzRN69d1/X8malDTtLfgpan+KfBKXddHRmOOAItO23zk96NAZNRtB07bZmuAbZTEssr35mfbTlnbP5uhphZu3fwoF15wEc9zpn+x6vrFVF3DrNrfNJ5qHufpyvf10xSJUBsKUZNM4ATwXE2LqmKYxmmJDrxfHMvEsUzcUDzQfo6k/w677qx5Hjt6e3gkHGHDmjUlHYvr1Ag1y1Zwl66f8TfP5vN5qlKpFI1HOllY38iKa56C4tr0HevEMr3loFduvIRH7nuYZyohDt/+IZq/+BUUNbgL37l0rKtJjrMQohSlvNq/HPiBrus367r+bV3X/6Dr+nd0XX8+8FVgo67r78ILhG6dqDFN024F/hv4PPDSUcEPeAkVrtU0bfScmesBXdf1HrwAJQU8bVR7jcClwP0BtiFGyRfyFBwHJza1BdrjcaNeO6o1ezJ1zQbpnm7vu2VRV+Xpb0oojK2AYY1fj8cx8oGnwlaSXnAdCTq9XJkYhsEDHYf5zIF9tDz5ySW14Sa9Wb1m1/Eguzbr/P6732JhLIbpulz2ildSyKZIDw2euF9RFG6+5VloNXXUWha9W56oYm+FEEJUUikB0NPwpqqN5ad4wQV4xUTPmg5b07S1eCM/P8OrL9SmadoC/6sBbz1QPfA1TdMu1DTtNcDb/W3xg6XPA5/UNO15mqatB36IN+rzU383QbQhRhnJ1hZPJCfYcnJcP5AK2fYEW4qpyPjZrXKOg3r2Watlp4QjWO6ZNYBGc00DxQ32HFBqvPUBIUXBtaZbsrf8jh7txHVdkokE9SV+wFDT7C1dTObzGEZ1pz1Wi+u6HL3vXgAKbW1EahIM9XVh26eeA2vXrGKv7X3wsuNnP654P4UQQlRHKQFQP3DxOPddjDeaAt40uIkm3b8IbwraC4Djp33d4Y/Q3AhoeGmpbwfepev6t0a18SHga8CdwF/xlqbcqOu6ARBEG+JU0Y4O3rz8PJ6knrmYvSRxb3F6WObLByrX3w9AQQGqnBJZjUSxcM8+AmSZ4AQbAKnJk8v/nMJYKbhnliNHOqgLh1m6ZAlOicFLbUsrAItjcTo6DgfZvWnJ6XsYuufuQNd4jWfvXp2V/jm/5LqnYxt5MqMKOI9QFIXwaq9IbvxIB7Z8CCOEEHNCKWuAvgv8h6ZpJvBjoAdvDdALgX8DvqRpWhPeKMvDZ2tI1/WPAR+bYJvHgKvOcr+NV9T0PeVsQ5wUHRjgGfPa2BlQe4ofAKmuBEBBKgwNEgWMKqe/Bq8GkOlYZ3wCP5prGeCYKOEIbkDrgMKJGIbjEFVVnGKBUG1tIO2Wy9HODr60/lJQVUy/4PBUherqAViaSHKwfT+rV68JsoslCYdVhu76DZkd2zH7epj34peVdX93/+YXPN0vIjvvyisp5jPkM+kxt115zZMxvvcLWsMRtt/9RzbccFNZ+yaEEKL6ShkB+gDwA+C/gA68dNEd/u/fBd4P3Axc4m8rzjFu0fsU3w1HJthycnLzFvHyTY/w750dgbQnPGbKu4C2wwGN1E2DEo6QM/Nn3cZ1HG8aXIDrgKKJGB/cs5P37ttNuKExsHbLZfDIESKqSghwldIW5Idqa3FwqQ2H6dy3N9gOToHrOFipFB0dB/nHW9/IN+/5MwCDv/8d2R3byrdf16XroQdRFQWjoYF4Wyupwf5xC8NGkwmO+3WA9v3hd2XrlxBCiJmjlEKoFvA6TdM+CjwdaAU6gb/qun4QQNO0u4DFpyU0EOcI1/Sm5riRYBbWx+K12K5LLjs70hTPFhnLIpfPUaivfv0bJRQhb479CfxojpFHTTYGtt9oPMZBf82aoyhUPxQ8u4KfuMCIRkuetqiEQuTVEDWOQ6r9wMQPKJP0ow/T9c2v8/Ou49x7yOtHwrF5zvyF7P3SF9nwuS8GmnVtxJEjHRzp6WabonLNs5+DYxnk0mcfTQstXwwHjxLuPIplWYTDpUyOEEIIMVuU/Cqv6/oBTk0bPfq+wbFuF+cI08/WFlDRymjcW6iez+dwXQelxE++xan21tby1Z3beNktz6p2V3DDYQq5idfgOJZJyLUpbXD6TNH4yXM0n89TO8OnwDmDAxCO4tZML2jtX7iQj/zpdySWnq1udXkN/PEPYFnki3nOW3kBL37+69m9/WHSfe3UFeDhb9zJVf/wxsD3++CDD7B5eAh1zVpe8qKXYBZT5HNn/3Bl3sXr2L59D4/097Fs6xNs3Hh54P0SQggxc0wqANI0rR14ga7rWzVNO8jZC6G6uq6fNfubmN1Uv44GsWAqcMeicf5p5WoSIZVM/wB1ra2BtDvXDfkpfxtrqz8CZIfDGGfJADfCtQywLVBjEMBi+XAkzNUtrSyOxUnt30vthkun3WY5hbNZaIgSqaubVjuty1dwIJslfuigP/Wrsh8qGF3HMQ4fwnZdNpsO73jbf1BTU8fq89ax94f/xcZCiuF77ib38leQTAZ7fj700AMAXH31UwiFVHL5LEbh7NMvleZG7mup5949O1l4318kABJCiHPcZN8V7+Vkdrd7J/i6L+A+ihlG9ReyK9Fg6gCFozGuaGrissZmsgN9gbQpYHDQD4Dqqh0AKTihyQVAjmXh2iZB5W1QFIXrWtt48aIlFA4dDKbRMjFNk1o/VXeiqWlabS1sbCISDlMoFDh+/FgQ3ZuSPj8F9dbhIW587qupqTkZ0K189muxXJfz4nF++j+fD3S/pmlwcMtmGsIRrrrqGhTFJT08MKnHXnyBBsD99/8l0D4JIYSYeSY1AqTr+mtH/fyasvVGzAphx4UQEFAdIEVRKDguMRXyQzJ7MijPGRripnXrAy8uOlVKOIyFg3mWFNgnuC6uUYBYHWcfaJ48w//zjfTEa5Cqqaenm3n+tNKaxukFQKrr8qIV56HmCxw82M7y5ZWdCtd7/70kgJ0u3LLhqafcF6proqttGQ9tfYj79d08/03/GNjUxK1bt/CcphaevuYCWg4dwlmnUchmJvXYdeevYV4sTlP/AEeOdLC0itMHhRBClFdJ8yI0TavTNG2x/3NU07R3aZr2OU3TnjrRY8Xs98X+Xt60dRPZBcFdIBT8Bd+FVGqCLcVkNbsuyxJJapPBBKqlGqkBVDQnV4fHMQuoARZENf3hJHOGJ9no6jrOltQQ2wt5QtOcAgfwgsZm/mbhIo7s3RNA7ybP7O0lkc9juy6Lr7kRdYx6YbU3v46H1TBd6WF+8Yvg6k1v2vQY6/w04Illy7HMIsV8blKPrQG+8KQNvGv1Wh68+4+B9UkIIcTMM+UASNO0K4DDwD/5N30O+CTwSuBuTdOeF1z3xEw0mM0waJqEk9O/SBsxMjZQTJVW+0ScyrVtEn4yibrG6k6BU8NRLJxJTYEDcEwTggyAQt5xsHKTuxCulq6u4/zs+DH+EIsQmmYSBCUcJueP/A3t3x9E9yat/e4/AbAvm+GiDdeNuY2iKDzr+hcA8IMffGfcFNVTdeCJTbTF4riKQq22FrOYpzjZArjJBJlwCFVROPb4o4H0RwghxMxUygjQR4E9wJc1TUvgBT5f1HW9Gfga8K8B9k/MQFn/k/RIQGuAAAz/Yq04w6cpzRZW5uS0n/qG4ALVUijhCAXLwJ1koVsvEYKJEtBCIMuvg+RMciSgWkbW6ixsa8MuGtNuz4x7/59mV2XXAP3l4AG+29lBR3Mrscj4gdzGi57CU+YvRMsX2LJl87T3a9s2dPi1xBYsJJRIkE0PT/q8A7DmNQOgdh712hNCCHFOKiUAejLwYb/mz/VAAvhf/74fABcF1DcxA1mmyavnL+RVS5YTU4OrlWH4oxUzfZrSbJHu6Qa8WkANdcFk6yuVGomSMyYffHgFUYuBrV0aKQTrTHYkoEr6jx6lIRxhfnMLbgAX39H6BgAiqRRuABn1Jut3jzzIL7qO0XTl9WfdLj7Uy1uXLucVS5Zx169/Me39Hjiwn1VRrzZZ4/r14NrkM1P7QCV53nIAVsVi6PruafdJCCHEzFRKAORwcsbSs4EhYGS+QD0wsz9mFdOSGx7i+nlt3LJgIeFocBfWlr9OQAKgYKS6uwDI2jaxUJXLf4YjZM2zpyE+nVPMowSUBMGJRrwfijO7LnPj8WN8dcNGLusJJhNiw7x5AMxTQwwMTC4T2nR1dh7h4MF2QqEQ56++5Kzb2vOXYUbj1ITDHP7rAxjG9Ea9tm59ggv99T+1F1yIYxkUJ0h/fYZFbQCcl6xh08MPTqs/QgghZq5SAqDHgddrmnYV8FLg17quu5qmtQHv9e8X56isfyFlOU5gabAB/hCp4+WbHuFgS3Ngbc5lmd5eAAoKuH7a8mqZbA2g0RzLQHGC6ffRmhjv372DPUuXBtJeuYT8aYuRgDKixRsbAVgST9DePmbN6sBt/tXPuaa5hWvWX4KqTFAoWVFxV1wIwLpolEceeWha+9636THmx+I4QHLNWiyzOGH9nzPU1pAPhwirKscef2xa/RFCCDFzlRIAvQtv6ttfAQv4iH/7DmAN8IFguiZmovzQkPfdcXAILr1yqKYO23VJyxqgQGTzOY7kcwxXNwM2MBIATW36mWOaYFuBTINz6xLsz2boNc1pt1UuruuSMLwgcbo1gEaEar21X83RKIf0ymSCc7c8wdvOW8NzFi/HsiZee2Mu8WrvbGxs5p5pZl7btHM7n2vfR/7SjURqkhjFAsZUR/0UBbPV+xBGOdqJZVX3wwMhhBDlMeUASNf1J4DVwFXAebqu7/PvuhW4SNf1TQH2T8ww+eEhAIq42HYwmZsA4glvsXQ6LWmwg9BVU8M7d27jL7GSMt0HRglHsBUmnQJ7hGtbuFYxkEQIsYQ3VXMmB9fpdJqWkDdVrz6gUVAlEuHuaJTXPfE47UePBNLm2di2TVPeG3GpW7t+Uo+xFq7EUUO0xWLsf+jBkrPB9fX1cuBIB38dHGDNq16LoijkMylKqSUVu2QdXzhymF8fPcL+/XtL6o8QQoiZraSrI13X07quP6LrenbUbT/Rdb0ruK6JmajoBygGCo4T3MLqFbj808pVLO/uCazNuWzILyjbWBfMdKpSqeEoputgGFNPQOAYwawDqovHuGX+Qlb39U67rXLp6jpOW8ybMharrQ+s3Zp588jYVkWmwO3b+gQL/EKuzedfNrkHhaM4S1YBsFpR2L59a0n7Hskit2bNWq+oqmuTz5UW8CoL20gvmEfKstiy5YmS2hBCCDGzVffjYTHrjKSpNpWglqh7mkMK17bMY15+Zmfqmi2G/KmKjbUzoQiqM+UpcACOaaA408+GloiFedXS5WzMFyqaDW0qujsOURv2sypGIoG1u6zVS4RQiQDowP33AtCvgKlOfn3gyDS4JfEE99zz55L2vXvTYzxvwUKedv46ABzbxJhG1r81560AYOvW6afnFkIIMfNIACSmZKS+jKkGe+oocW8KXLjKC/bPFecfOMCn163nPKXKU+AiUfJWEWcKtVhGuKYBjjntdUAhPwhUAXeamcbKZfDgQcBLoRlkjLYkkeTvlyzjqUroRP2ucknpOgDFlnkUC5Nfb2UsX8f2Jz+Nzx3cz333/aWkfWd37eKVS5bzlGwWRVGwTQOjWHoAtK61hRcuXIzr/01CCCHOLRIAiSnpbmnhzVs3c3csuAxwACS9BduRAKfVzWXJQoFliSQ18QkycZWZGo6SnUINoNEcy8S1jOkHQHUJHD+qcPJTzApWId2DA/y66zhH62pwA1x4nwypPHfBIq5rmcf+/fsDa3csUX/aZXL56qkFcdE4qy6+llAoRHv7fo4e7ZzSfguFAnX+2sTaCy5EVRUvA9w0AqDlqLxs8VLWqyrd3d0ltyOEEGJmkgBITEmmUGDANDAT41d4L4Va6xVtDDismrNifiHNeH2wz9NUuZHIlIqgns4p5lCU6QXF0WSCnH88nKmmRa6QAwP9fLvzMH0rVgTa7kgmuNZYjH07dgba9mgDA/0s8qfw1Z+3bsqPV4hx8cWXElIU7r//L1N67O7dOzm/xlvrNu+SjaiqQj6XwS0xoQJAeMkCALTaOrZukWlwQghxrpEASExJNutNgYvFg11bEqprBCChqjN2ncZs4bouI89OTUN1kyDY4TDFEhIgjAhiHVAsGSPvB0B2bmYGQF1dxwFoqwsuAQKAGo2eqEx9fGf5AqA9e3bxwT07+ebwIGrb8ik/3shk+YfmVr568UYeuveeKT12x2OPsjThnfHJtRoKrp8BrnRuSxMmUBeO0P7YI9NqSwghxMwjAZCYksajR/n7JctYFnC74Tqv9kk8FCKXHg649bnFLRaI+tPG6pqCvaCeEkXBCYennAJ7NMcsTnsdUDyZIOuvLTNSM/Pccvv7qA+HmVdXF3jbxWgUgFT7wcDbHrFnz276DANz+UqKdglvK+EozbZDbTiMtW8vudzk1ysNbfMyx+WSSUJ1dX4ChGkGuqpKptZLn57bJ+uAhBDiXCMBkJiS1tQwz12wiLaA21WTJy/Uh3tmbrri2SDf3w9AwbZpbqxeAKRGYn4K7NIvRl3LwjWnVw8oloiT8dfV5Ab6S26nXCzL4jUNTdy54TJaypAFMexPg6O/fH+77hdaXbNawyiWsIZJUVDXeLWDLq1r4JFHHp7Uw1zXJdHjrdGJrl4DgG2b01r/MyK02JsG15DOkJ+ha8eEEEKURgIgMSWq6WV3UmKJQNtVQiHetn8ff7fpEXIEV2B1Lhrs9BaRpyyLunhwKZWnSo1EMXGmNQIE4BSnVw9IDan8qK+H9+/eQXHR4mn1pRx6e7qZ59fPqW8KpgjqaPXzWgGoM8yyXci3Hj7E3y5czKqmtpLrgxWXnA/ApQ2N/PW+yU2D6+w8woqwd44vuuZaVFXBNosYxWJJfRgtvmIpAFpNLbt27Zh2e0IIIWYOCYDElKiWvx4j4DVAAGY0juW6pNOZwNueS4aHh+jI5ehzbJRpLASfLjUSpeiYmNb0Uk87ZhHFmV5mtN6wwv5s5sRUuJmku/0AUVXFcV3UWPBZ+2pbvACoJRotSz2gXC7LxlCEly5eyvxY6WvOio0LsWNxasJhuh9/bFJrAbdufYL37N7Ot80i9Rc9CVVVMIoFLDOAdOdtLTi41IfD7Nr02PTbE0IIMWNIACSmJOxfUKsBZ4EDiCe9i6fUDF2nMVv0xaL8y65t/J9VgEDL1U6NGomRKZaeAW6EYxbBnt46oGSNd76m/UK+M8ngwXYAUoBjBh+ghRubuGN4gHfv2s6BA8Gnwt67cweL4l7+xvji1aU3pKiENW8anKao6PruCR+ydesT2K5L88UbUGMxFEUhnw3oOY5EuHfJPF7zxGNs3l2+BBJCCCEqTwIgMSUx/1NZtSb4tSVPq6vnn1auwj7UHnjbc0m/v9ajpYrrfwCIRMkY0y++6do2rlmY1jqgFbU1PGf+Auzdu6bdn6Bl/Lo3+Ug40BpAI5RQiNbWeQC0twcfAHVs3oSqKOQAIzS9RPbOCi+F9uWNTdw/iWxwW7c+AcDFF1/i3eA6FHPBjSDPW7USB9i2bYtkpxRCiHOIBEBiSuL+p/CKX7cnSGuiEa5tmYcjSRCmpb+/D6h+AGRHIhSnkQDhlLYKOdRprA1bFU/w6qUriO/fF0h/gmT2ec+XnQh2Xd1oy/1pcPvL8Pen9u8FIFtbS9GYXsryXMtS0s0t/LzrGH994L6zbjvQdZzbonFetWQ5F697EgCubQSy/mfEimVLCIfD9Pf309l5JLB2hRBCVFe42h0Qs4dj2yRDIQCUmobAJ1eZ4TDYBlZW1gBNx9Ldu/nMuvUMhKqXAAFFwQ6HKQQUADmmAbYJSqSkWX12IgY5B7cQfJa16VLTXs2aUG35ajZpiQTvWrWW/q7uwNtWenogEiW0YDGWOb01Z5aj0vi6t3LXy25E6e2mv7+PFj94O92eX/+SRfEEkXlRWuYvQFEULCuYDHAjoqEQ/3zBOhY4sOPxR1m6NOgCAEIIIapBRoDEpOXyOd60dRPv3LmVUF3w2aqsiDd9xs5Of9rUXBbLZVmaSFKXmN50pOlQIzEM16FoTH8NEHjrgFzbRC1xHZAT92rhqAGODgTlidQwv+k+TnTevLLtoy1Zw+VNzSx3CTQTnGmaNBlewoHkirWBtBkL13HhhRfhui4PnGUUqOjX/+lvbUVRFFRVwTKLmEE+x6rKmkSSJYkEXZseD65dIYQQVSUBkJi0bDbLoGlyzDBRo8FfXDt+am1Xam5MS8RfSJ9oKN+IwkTUaAwTO7ARIFwXp5gtPRFC0jtfQ34a95nCdV3+1HGIbx05TMOy5WXbT0PbfACWJ5IcDHAd0MH2A8z3M9fVLj8/kDZzOYOnXXUNT2+ZR8fdfxpzGzuToc3/oKTpyqsBvAxwhTx2wJn+8o1eHSWn43Cg7QohhKgeCYDEpI1k0KqtraUs2ZUT/gV7YeZ9Sj+bJFzvyan1L9yqQY3GyVtGoBejTrGA4pbWnlLnZYGL2NNboxK0dDpN1r+Qb60pX8Aaqq3Fcl2S4TAdO7YH1u4efTdv2LKJr7k2Vk0wo8L5rMHVtQ3cunIV6wcGx5zSduS3vyaiKBzKZVn/zBsAUBTIZ1OB9GG0+PIlAMwzDPL5YEY0hRBCVJcEQGLSMocO8qoly7l+3nzsMkRAStJbtD/TPqWfTVzHoUbx/q0bmoNPVDFZaiRKqhjsWi7HLIJVWjrscJMXDIYBxwigRkxAjh9sZ3VNLUubW4iWcT+KqpLys+gN7d0TWLu6vgcHaF57PsY01/+MsCyH+dc/l5xtszAWY+fPf3bK/a7jkLrvLwDsSSZpaGgEwLEtimUIUJLneSNzq5I17NjyRODtCyGEqLwZlQRB07QPAM/Udf1po27bANwBXAb0A5/Tdf3To+5XgduB1wNNwAPAbbqu7w+yDQHm0aPcsmAhByyLYhkywobqvAv2iDOzPqWfTbK9PaiKguO6tDRXbwTIicTIZYLN5udalpcOO5LAtad2AkYb67Bdl5Ci4OSyqNFyhhuTN7hjGx+74CKO2xZ2sbyBmZVIQC6PdexYYG3u2eOlFV+9SqNYDG60L2eotDc2cFE6g3PPn3Fe+LeoEe85Sz30IPFCgYxl0fbMZ554jGubgWaAO6G+liwuNarK4Uce5PKrrgl+H0IIISpqxowAaZr2duA/TrutBfgjsBcveLkd+LCmaa8dtdkHgTcDbwCuwssRdZemadGg2hAew89WZajlOW2KS9by+i2P8/7dO3DKMsfu3NfrF9UctixqE7Gq9cOORigElADhlHYLWVR36udGor6Gj+3bw2d6jqOWcarZVGX9GkC5SAS3zNPzEi3eFLV4QMVgXdfliqFh/nHFKlbVNuJMMSg9m3zWYPELXsyAYVBnWXT93w9P3JdbsIA/9Hbzk+OdPO2ZNwLe+h/LMjADzAB3gqIw7K8hy+3dG3z7QgghKq7qAZCmaYs1TbsL+Aign3b3G4EicKuu67t1Xf8G8FngPf5jo8A7gdt1Xf+trutbgZcCi4EXBtiGAKyMN6XJDJcnvXKioYWUZWFYFul08HP554LBvl4O5bL0uQ5Uab2LEo5i4lIoBh8AOWYRHNNb8DEFifok21PDbOnuQgnPnIFvq9cbJbMrkLFv3uIlFG2bXC5HNoBU852dR7i0to7rWufRVNsSQA9PymVNLr7san5d8M6hzN1/5vhXv4Truvz8D3dx5+GDHFu0mAULFgKgKAq2aWAY5Vk/qCyaT2c+z6GjnVIQVQghzgFVD4CAS4FBYD3wyGn3XQvcp+v66LkVdwOapmltwAagzr8NAF3Xh4DNwFMDbEMAjn/RZEXKEwCFIxHiiSQAQ0MDZdnHue4Y8O5d2/lVBEoqmBOAUDSGgUO+TAGQaxannA47XuudV8VikUJh5mQZDGe80Ri1pvzTFVuXLeWf2/fyX+372BvASMaBLZtpiESwXRe7cUEAPTzJth2y6SLrX/RivtfZAUD+0EHS6TQ/+tH3AXjZy15xYntVVSjkMrhlGjmuv3Ij79Z38tPDBzlypKMs+xBCCFE5VQ+AdF3/la7rf6frevsYdy8BTi+/PTKBfZl/P+NsM1KxLog2BJwoImlFyje16u+XrOCtK1czGOA6hbmku7sLgPmtTVXrgxpLULANTKsMn8a74BQyKMrUgrtwLML6pmZumb+QXr9+zEyQ9Nf9JJoay74vRVVZtXAxAHv37p52e93btwGQjkQw3RLTk59FerjAC1/wYh5R4F937+BP2Qz//u//yuDgACtXnscznnHDiW0VxS1LBrgRkWiE85Z7bwfbtm0p236EEEJUxsyZCzK2JN70tdFGJnnH/fsZZ5uRnKxBtFGScDj4+DIUUk/5XkkjRSTdWAJVDf6CB+DJdbXUqyp93cfLcvwmq5rHeTp6e7sBmN/cWLbnaCKhWJxUMT2pWWojGd2875MLahyzSNgxcdWpjEQqPGP+Aq6urSe3awfha6q/kN11HBr8v7+htbWsz9dI26sXLODhPbvYq++a9v+X4Y+EWC2tmIYdeP8LeZNIOMqHP/xR3vSm1/PFv/wZgHA4zAc/+O8kRq9xcy3MYrGsx3D1ymUcaD/I3q2bCT//BeNuN1tfO2YbOc5CiOmY6QFQHjh9uGFksnzWvx9/m/xp22QDbGPKVFWhqamm1IdPqL4+Uba2xxOyvPTUam0tiUR58kPkFZV6wEwNlfX4TVY1jvN0rO/o4PJ163HDEeJleo4motYkyQ/3EY6EJv2Y0FQuxl0L1TWJJKd2fhhR7+XOzaRmxLmVOtJJWFGwHIdFCxeSCE/+eJXqsuZmLlm3nszBw9M+BvHUMCRqqFu1BlVViCeCnRrruuDYLjff/CzuvPNOPvWpTwHwvve9j2c84xmnbJtND6ModlnP+WtbWnjZhsvYt2//pI7dbHvtmK3kOAshSjHTA6AjwKLTbhv5/SgQGXXbgdO2GZnnEkQbU+Y4LqlU8GsgQiGV+voEqVQe265sprSf2Rb7dm7lpkuvpS5fnpS9rhoC1yZ9vIfBwZLjz2mr5nGejppCkYWJJAOJOIUyPUdnp6CgkMmmscyJkzAoikIorGJbzhQWl9somTR2uAbHmfxUOMNPfZ3rG6jquTXi8JEuvtFxiPpYjDe7CvkyPl+qqhCLRWhraiGcSDJgGvT0DBEpcT3fwMAAi1Tv7aNx7UX05MpTu6u3J0OyLsrll1/Dj350ctRu9POnqgrFXIZMKoNZxhpPzYsWEj9wlEWGTWdnNzXjZBOcra8ds025jnN9fUJGlYSYA2Z6AHQf8GZN00K6ro9cTV0P6Lqu92iaNgykgKfhBy+apjXiJVb4fIBtlMSyyvfmZ9tOWdsfy7HhYY7k84Trmqd04TkVxXAUzDzG8FDF/76xVOM4T0fScUGFhtamsj1HZ6NGYxiuS76QYXLxjLeR67qT3N5jF/OoloGjhCed68FKxiBn42YyM+I5PTo4yF09XaxYupQ3GJUp/tu2eAl9W7bQHImyb/MTrN14WUnt7NiyhYJjY7sutC7D6S1P9rX0cAGjaJ+18HI4rGIUChQLZUiBPUrNymWY9z1KSzTKjvvuY+MNN511+9n22jFbyXEWQpRipn/M8XWgHviapmkXapr2GuDtwMcBdF0v4gUpn9Q07Xmapq0Hfog36vPTANsQwPDwEACxZPkyVllRbzqDE0Ca3rmmmM9RF/KmUbW0TWv5WslCsThFbPLF8o6w2EYB15paNji3zpu2pJb5QnmyOju9vCsLW+dVbJ9qJEKvnx796ObHSm5HP7CPd+7cxv+2NGGW8XO0XNbAKFpnXdujqir5TDC1jc4qHOa4/2PPo6cnLBVCCDGbzOgASNf1HuBGQMNLS3078C5d1781arMPAV8D7gT+CljAjbquG0G1IcAxDJ4dT/CChYuIx5ITP6DU/fjBlZsNfvrgua67vR1VUbBcl4am6hT7VGMJ0kYW2ylzDSLX9bPBTeEx9V4AFC3jNKmpyO7ZxXnJGpY1B1tDZyKZiBewZPfvK7kNXfeyyK3WLqRYtCbYunSFvEk+Z5x1SpLr2BRyFQiAgExTPQBqx+GK7E8IIUR5zKgpcLquv2aM2x4DrjrLY2y8oqbvOcs2025jrsv393FjyzwMx2Fvsr5s+1HrmqD3MKEZ8in9bNKzfx/1QMqxURy7OlWAonGGC70V2ZVdyBOqNUCJTGoaXKi5AThO1HVxTAM1Up0kESPWHjrMJy58EjsSlV3EHWpshMEhov39JbexZ48XAK1ZrWEUyhcAAQwN5GlqHT/pgGMbGMXyTME7XXz1Cnh8BwtME8c0UctUE00IIUR5zegRIDFzDB/36vKkLJNwtHwjQOnVG3jDlk18at8eqbg+RUMdhwDIh8O4dnkvSsdjx2Lk8pWZvugVRS2gqpN7GYu1NvCJfXv4SiGHopY/49rZuLZNvT8Vra6lclPgAFoWeaXP5tsOljn1tUf5fI5bk7X8x/nrWF7bhGGUd7QvmymOm1BDURRsy8CoUHHbBResIW2ZJNQQhx9+sCL7FEIIETwJgMSkZHq8+jIZx6Wca+uTrQsZtkzyxeKJNUdicvoHBzmUy1KsiU+8cRkokSiGArlChdZvuS52Po3K5BZA17c2snl4iC1dx1FC1Q2AzN4eQopCwbZpbW2t6L4XL1/BoXyOhwb6ad+9c8qP37N1CyuTNZxfW0esofzBWy5jUMxbY06DU1UFyyhiFCszYhyORHjUMvhuZwfbDx+syD6FEEIETwIgMSm53j4A8lNadDF14UiE2rpGALq7u8u6r3PN4+kU7961nX5teVX2H4olKWKTLVRmPQaAUyyAVTxRUPVsahu9qZv9/X2YJYx8BGnwwH4AjhXytNWWb0rpWMKhED8o5PnS4Xa279s75cd3PuYlAEgpCsUzSqwFz7IcUsOFMRMhqKpCIZfBOUuWuKD1rVjML7qO8dftJVdJEEIIUWUSAIlJKQ4NAFAo8yfnim3xmqXLeevK1fR2HSvrvs41R496WcWWzKtSBrh4krSRw67g9DvHNHCKOZSzZAkbEa9Lsr6xiee0LaBn6xMV6N34+vfq3nfHITbJKXxBunDJUgC2b5/6ccjv94K3fHMzxUJlAsnUUB7HHmvo2SWXSVWkDyPWaWsAeOzRRyoaeAkhhAiOBEBiUqxh7yLDDJd34birhrg6keApLa0M+mmCxeR0dnYCsLilOgEQsTgDuaGK79bOZ1CdiS/EHRyuX7iYVy1dztATmyvQs/Hl/XM7F61OIoYLlixFBXq3b8ed4kV8ctD7MCR+3pqyZoAbLZsZOx22a1du/c+I85YvpTmZYJ2i0n7/Xyq6byGEEMGYUVngxMzl+HU2jGiZp7woCllVpcF1SB+TEaDJGh4e4lMrVpGxLdpiESZdHTQwClYsRm6wctPfRjjFvFcTKFJz1uKvlmNTjHsBR6G3p1LdG5Pb500pdWrGz25WTucvXsr/rL+UpmiU/r17aD3/wkk9LpNOscQfBV6w8XJ6ypwBbkQhb5LNFGlJ1uL4KdYVBWzLpFjhACgcDvOqNRpXR+L0/fEPrL7uGRXdvxBCiOmTESAxKVuam3nnzq0cbih/zZJc2Auyqn2ROpsc3b+PpmiUpYkk8SokQVBjcYo4ZHKVnY4E4DoOTi6Fqkwc9Nm1XsBhDw6Wu1tn9Wg8zreOHEJtbqrK/htqauj1pyp23PeXST9u30MPkgyFKToOtUvXnjXgDNpgf47RiSFVVcU0ChhVSJlvLpoPQE1XF65VnYyLQgghSicBkJiUvmyGI/k8Sn35L9iKcf8iVbLATdpxvy5LxnWBMhchHUM4UUPOMckXK5QB7jR2IQeWMWEyBLW1EYBQpjr9HLGpr5vfdHfRXOEiqKMNxbxAOb9r16Qf035gH48NDtAZi5LNV/bCP5suYhatE8+xlwAhW9E1ZyPmP+kCUqZJDMj667mEEELMHhIAiUkZSUkdT9aVfV9ObYP3Q7q6F6mzSX/7AQCKsQhuFTKcqfEaBvJDVavd5JgGTiEzZqaw0SILvLTNcdOsap2pQ4cOAbCoobFqfahf6iVCaEyncSZZSPSRg+186sBejm28nGKFA6Bc1iCXMQiHR962XHLpoYr2YcSKZUvYlvWme3bc/ceq9EEIIUTpJAASE3JMk8uHUzx/wSIS8fKvWVCaFwAQLRaxZHrJpBT8QrVKQx2VX/8DVjzOcHao4vsdzc6nUWwDzhID1axYCEAEcLLZynTsND2bHkNzXFoiUZY0VGcKHMAFazV6igUiikLPY49OuL3rujzxxCYA1l+8oWIZ4E7uHwb6sydOb9c2KOZzFe3DCFVVGWz0Pgwydu2Uos1CCDHLSAAkJmQPDXF5KMyLFi0hXlf+C7ZQixcANYTDHDt2tOz7Oxeow8MAJNsqP6VKjcYpqgqZ/HDF9z2aXczjGjnUs6SVblw0nyHTAKBYpTVmfX/6A29ftYably4jESt/HZ3xNNXWccAfLey8/y8Tbt+5V0dNDRMOR9BWr6NQoQQIo6VTxRPZ4CyzWPEECKM1rFuL4TgkDRPjyOGq9UMIIcTUSQAkJmQOeQvGBwyDRG35A6DskjV8oKeXf9d30dEhFxYTyefzNNjeup95SxdUfP+hRA051yRbhQQIp3DBzg6fNSV2fWsDXzh8kH/ZuY1UlVJQW352Q6u2tir7H81qbAQgfOjQhOmwD//21/z3ky7hves34DohbKvyNXBymSLZjEE0GsIsFiqeAnu0iy66kM3DgziuS8+W6taVEkIIMTUSAIkJZbu7ABg0DeLJhrLvz41Eic9biAsckU9WJ3ToUDud+TxHiwUaF7ZWfP+hRC39uUEct/pFIe1CzhsFCo390ubgMlBfR0c+R8fRzgr3DpxikZg/9S7aXKV6TaMsOm8VPz9+lM8fPTLhxEln/z4AIosWk0lVPvMa+NPg+rIoikouM1zVQqS1NTU8pLrctu0JHjGqF4gJIYSYOgmAxIRSR71paMOOQzRWmRTLzfMWAdDR0VGR/c1m+/fv48uH2/leVCXaXP4kFadSMBMJhjIDFd7v2FzX9UaB3LGnZ1m2xcpV5wFw4MC+SnYNgOLRoyjAkGnQNq+t4vs/3cXnreZnvd083tnBrl07x93OTA0zz0833Xb1NeTzlU+0MSI9XMAsFslnqjziCCxfdz4DpsHvf/fbCTMQCiGEmDkkABITKvR0A5BVQxXb51W4vHPVWnKHDlZsn7PVzp3bAbhg7WocY3LZvIISSiQpKC6pKidAGM0u5HCL2TEzwpmOxfnLl3LL/IVEHn+84n0rHvbO54O5XFUTIIyIRiJcsfZ8AO65Z/xsZod+/ztCikJ7Lsv6p15PoYoBUCFvUsjlKBarP+pyxaUXA7Bp82YGuo9XuTdCCCEmSwIgMSGzrxeAbLRyC7aXGnme3NSMIsVQJ7R721YUYP0FGo5Z2QAonKwnZeXJFdIV3e/ZuI6DnfFHgU6LgQzbZPmC+bxq6XLWDlU+bffwbq/mzr5MmhUzYAQI4NoL1rEikWTeww8z/MD9Y24z9PCDAByrryOkRChUOAX2aIlkhGw6Q6FKWfxGa2ttYf3KFbx31VqO3/5BHMOodpeEEEJMggRAYmJ+hrFCPFmxXTp+JrhYPk8uV/0LnZmqUChwcSbDty65nLWDlc/C5tbU0p3urfh+J2IVsrjFM+sCua5L6zoNy3GIKwrFvsr2PeevoxmKRqiNV2Y66USevEZjQ1MzlyaSHPvlz85IhlA8dpSG4WEc16XpqmvIpIpVTfucSEbJpIYp5AooE9R9qoQnXbKeRfEEYdMk8/jE6cSFEEJUnwRAYkIPrVjBu3ZuY7C+cou2nRavXsvCWBxdl0rr49mzZxdLY3HioRANjeWv0TSaGolRCIcYTvdVdL+T4rpYmSFU2zhjbUbL8oUc86cKHnn8sYp267FVq/jMgb2EW+dVdL9nk4jFcBcuJGdbhAYGSD/80Cn3H7/nzwA8PjTINTc9m0y6sqOMp4vHVYYH+snlzBmx7uaKjRv4U683Tbjn93dVuTdCCCEmQwIgMaGjfb0czueIN1Zuyo7hB1sL43H27Bl/cfZct33bVlYkvcAn2lz+DH2jhWsbSNvFGbX+ZzS7kMfJpzi9LFDRMUj5oy9d27ZUtE9b2w/wyOAAKxYsrOh+J/KsjVfw0+NespPuH30fO31ySuMfsxk+176PPU0NtM1bSD5fvWleqqoQiTpkhlMUcia25VQ9CGppauR4cz2m4+AcPUr+YHtV+yOEEGJiEgCJCXX7i3trGipXZNOo9/a1MBZnj79uQpxp56MP0RCJ4ALh+gpPqaptoCvTjTsD0l+Px0oPoZi5U6bCGbZJeLGXZdA4cqSi/dm92wvmV8+Q9T8jtMVL6Egm6czncTMZOj/7aTJbnqBQKPD9H3yXBwb6ufqFL8YoWuRz1UuAkKiJ4thFMqk0hmFRyJszYhrcVU+5iocH+wEY+PP4ySSEEELMDBIAibPK7tzBNdk8VzQ2UVNXwQCotgkXiIdCHN0rU+DGYhgGA3v2AKA2N+GOk/q5HNRonHwkRP/wzFv/M5pjmViZQVTsEwkRDMugbeMlADRlszh+EdlyO3znl3my41IXDrN6waKK7HMqXvuMZ/GZAzppy6LYcZhj//N5vnnnlxgY6GfhwkU8+9m3kE4Vq1IAdUSyJkI+M4TpJxvIZQ0c2zkj2UWlXfKkC3kwlwFg6MGHKPbPjLTwQgghxiYBkDir3J7dXJ2sYX19I/VNFVy3EApRrKknb9sMH+2kUKhO4cWZ7IknNrE4HAagfvkSXKtyn8xH6poYtHKkM4MV22eprGwaN58i5I8UFC2DC254OgXHJq4otD+xuex9sDMZCg8/xMuXLGPNosXUJhJl3+dUrVu6jHUbLuE9u7bxYGqIPkXh19/7NgBvf/u7CIfDpIer+3+YTKgMD5wMLooFi2LBGjPleSWFQiGWXbqePekUiuPQddfvqtofIYQQZycBkDirbMdhAI4W8tQ3Vm4ECODwza/jnUcOsS+dYluF12rMBn/9631otV7h09iCyiWoQFGw6xo4PnQMl+plA5s018VMDZyYCle0DMLJGD+JRnn1E49x//YtZe9Cbs9uFKAjn+O85SvLvr9Svf2W57Ng1Wr+39493PbwA3TmcrzkJX/HTTfdjFm0yWWrlwAhGgujKibpoaETt7muSzZj4DpUfRToWU9/Kj/p7earhw+ys66yCUmEEEJMjQRA4qyKx7yF0YPhMKFQuKL7tmvqOf+ijQA8+ujDFd33TOc4Dn/84+/ZmhqmsHA+8UWtFdt3pLaRjOrQN9RVsX1Ol2MaWKl+VNfEdCyKlsGGG2/EdF1+85tflj2tc3bHNgB2pIa5eOmysu5rOqK2w1c+eDvvf98H+Nu/fQmf/ORned/7PkgopJLPm+Sy1Vv/U1sXwyhmyKYzp9xeyJsU8ibq6dkuKqyutoalG9fzx95uPvv5/676qJQQQojxSQAkxuUUi+B/2pqrqWyGsRGrL9gASAB0us2bH+f48WPcn8tw8fveVdEECGpjC0fT3RSNfMX2GQQrl8HODBJSHNJGhptuejaRSIQD+/exY+uWsu3XtSzSmzYBsGl4iCfN4BEgALtvgFc+/wV86EMf5sYbb0ZRFBRFYag/V9X6PzW1IYb6us/og+u6ZNNFfy1QdYOOm5/5NGKxKLt27eYXP/s/rHSqqv0RQggxNgmAxLiKHR0orsuAYRBqXlDx/Su2xTXdx/ivdRezf/dOMpnMxA+aI37zm18C8Kxn3URUtbELuYrsN5ysIxMJcby/stnTgmKlB3Hzw2TNLHUNddz61Kdzx0UbeOxrXy7bPnP6Htx8jmHThJaWGVMAdTzFoWGK3V1EwieDCcu0yaSqO/0tHDIZGhh7zVkhb5LPmVUfdWmoq+MFz34Wa2tqqf3hjzl255erGjQKIYQYmwRAYlwFv57FgWyGxtbKZ61yQ2GSAz0sSSRYnUhy3333VLwPM9HAwAB33fVr1tc38PwbnoU13A8VSkUdam7jWK6PTG64IvsLmus4GEN95DP9uIrFtZc/mQXxOMsGBti8qTxFUdOPPwrAo0MDXHP+hWXZR6Bcl2xHJ+QyKIpCOKySz5lVLYBa3xCnmE+RGR57RMUFMqkilmFXPS32s6+/jmRzIy3hMIWdO8k8+tDEDxJCCFFREgCJcZkDXl2L/bkMLfOqk7Y3O99bL3FhXT2/+91vqtKHmeaHP/wudrHIe9acT/zr3yDXcagi+w3XNpKOhjnSc7Ai+ysX17ZI9x2lWBjighe9EFNRWJZI8ov//Bi5XDbw/eWKBobj8OBAP9fOhgAIKAwMUjx6jGjYm/422JfDtquT/lpRoLZWpb/7+FlHUwzDIpMuVjsXAuFwmL995Yv4sV9YtvOb38AamvnZEoUQYi6RAEiMq+1lf8c/HzrAH3t6aK5aALQCgCfVNfDgg39leHioKv2YKYaGBvn+97/D+vpGIopCpKkRJVaBSz5VRW2ZT0fq+Kwd/Rktkxkkk+ol4uZovekmAG6KxfnQu96B4deYCcovc2netHUTNUuWML+xKdC2y8Z1SR86jJsexjIchgcrM8VyLLX1cVwnx0BP34TbZtNFclkTNVTdt7Z1568hctl6DmQzhEyTvZ/+JK5VuTpdQgghzk4CIDGuoaFBOvt6ydgWLW2Lq9KH7OJVAKypraVOgZ///CdV6cdM8YUvfI5Uaphnr/AW0tetW4trlL82S6x5Ab2KQUf3/rLvqxJsx2IoO0ixt5PF123EbWqiJRpjY3c3t77ptRzzsx9O18DAAD/84ffJ2jbP3Xh5IG1WijGcwuzvJz2Uq+r0t8bGKEN9xylOohaY47qkhvIYxerXBnruzc/k7qhK1rIId3Wx447PyHogIYSYISQAEmNyTIN9+/YA0DxvEbF4sir9sJJ15OctAeCKxma+851vBv4J/Wzx2GMP8+Mf/4C6cJiLYt5C+tq1S8q+33BNA/n6evZ17cMwq3chHLSB7CBWOETuqM6qV74ANxRiY2MTTx1O8cIXPofPf/7/0dPTXXL76U2P8+1PfIR8PscFK1Zy5WotwN6XnxIKUTQdeg51Vy2YqK2LEVILdB89PunHmKZNajCPbbtVDYJUVeXvXvdKfmnlcVyX2O7d/OlTH8dxqjOVUAghxEkSAIkzuK5Lx0f+A374QxbE4ixYfF5V+zO83Fs38ayFi+jt7eUnP/lhVftTDb29Pfzrv74H13V5+1OfgeI4JJYtIZQMlXW/ajSO27aQ/cOd9A1N/iJ0NkhlBylGQigo2NYgS176bFBVzOYmCoUCd975JZ797Ou57bbX8/3v/y/t7QewbXtSbRu9vRz5yv/w7IEBLm5o5B9vfi5KlVM0T1VifhuZgkLXnsO4uWzFgwlFgebWOIO9R8lNMQNkPm8yPJjHsd2qJkWIRMI89/V/zz2qw650ig/94Lu8/vWvYseO7VXrkxBCCKhsZUsxKxTaD2Ac7aQGGLZMLlyyqqr9GVp9Ma37NxFqbSK0fQtf+MIdXH/9s2hrm1/VflVKKjXMW97yJnp6urnovFWsN01coOmqDThlHJFRo3FCi5ZzIN/PoWN62fZTLensIGm7yLzaBozBHsL1Kkv+/jm8+aJLWLN5N9/+3vdJ7dlD79YtfPLBBwBIJpOcf/6FrF69lqVLl7J48VIWLVpEIpEkkUiQz+dp37Ob8I9/xHzXZW8mzVNueBbnL1hY5b92akKxGKGWNrr2D2Bm87j0EV8QQo3GcZzKTONqaq0BO8Wxw6WlXM9mvP+NhqYEoZBatZGXaDTKU17zMv5031/hcDubNz/Oq//+JTz18iu58YUv4rrrnk4iUZ0RdiGEmKskAPJpmqYCtwOvB5qAB4DbdF0/NxY9TEH/r7waM49l0uRtm0XL1lS1P04swb6/uY1Lz29j3a7tbNu2lfe975186UtfJxKJVrVv5Xbs2FHe8pY30d6+n+bmFj76rvdjfu+7xJcuIdqWxC1TABRK1qHMX8zBwgD6kW04FUqzXUmO63A81c28uiUw2ANAKKGSPbid61bN54Y7PsnOD38Gt3+A47j86dgxHuztZvPmx9m8+fEx25wfi/G289awuqaWjGWRvfxyXqBdCJMcOZoRFIWaZUsZSNv0dXqJB6xsjmJ3D7G2NtR4HMcubxCUrInSUO/Ssf/ApNb+jCebKeI6LvVNCaLRUBUz2SnccN1T2Hjxen795/to1vdzg2Hwo8/8Jx/+tw9w8aUbueSSjaxfv4FVq1bT0tI660YMhRBiNlFkUaZH07TbgduA1wJHgf8EzgPW6bo+1UUn7bbtrBwYCD6lbjis0tRUw+BgFssK/s089chDdH31y6Co/NO2TfTZNu/55I+IRqtfvLGtKUlrPMM7/uGVHB0e4pnPfBYf/einiMVige+r3Md5IrZt86tf/ZxPf/oTZDJp2trm84UvfIW1azWU/uPkD2wFJR/8jlWVWPMCCg0NtKeO0X50N7ZTvot3RYFwJIRl2lTjpSgZr+PJ511BTU8PVmbolPsc02H4sb2kdx04JYNXsa6O3nCYHabJwz3H6e7upt62eV5zK1c0NhFRVYqhEPUvewnNoSjFwVPbrQZVVUgkouTzxoQjODXLlmLUtKI/cZh8+tRzLJxMEJvXilpTg+3gFeAJWDwRYcGiOANd7Rzauy+QNqPREPUNCeLJCIpCWUexVFUhnohSGOdYK66L+qs/E+obAKCrUOD3vV3c29dHxvbOs7q6epYvX8H8+fNpazv51dTURF1dPbW1ddTV1VFXV1+W17/ZoFyv0c3NNYRC6kG8938hxDlKAiBA07Qo0Ae8W9f1L/m3NQLHgNfpuv6DKTY56wIg13VJP/IQ3d/8Oq5l0b54Ge/9xY9YsWY9r3nrJwLbz3QowAXxHM43Psfdx47ynSOHWHn+hfz7v3+U1avXBrqvagRAlmVx6FA7999/Lz/96f9x5EgHAFdftJ73v/E2ll73NGJhF7v7AJlDOyHAKT1KOEK0vhmnvok+ihzoOUDPQDCZ0M663yoHQACrlqxjXc1CzM4DuPaZqYrtoknhcD+59qPkDh9lpKPNNzyLtpe/AsdxMbqOc+gD7wOgZt06Fr/4ReSOdZE73lXRv2U8kwmAFFWlZtkSjJoW2ncdZ7hn7HTnaiRCrLmRcH09biSK67iBPXcNTQmamkMM9XZwSN8b6LQ1RVFI1kSprYsRjYVAUbxjEfCJN1EABIDjEGvvhE3bcbPe+4QDtBtFftXZwUN+DbbJiEaj1NTUEo/HSSQSxONxYrE48XiceDwx6nvsxO+xWJxYLOp/jxGLxYhGYyd+jsfjJJM11NbWUlNTSzQanXEjUhIACSGmQwIgQNO0K4BHAE3X9b2jbn8A2Kbr+m1TbLJsAdCBji6ObN1GIZvHsQxsI0dv5wE6Dh+kWCjQVyjQmctiGAYhF9bG46B4wcPoN/qaZA2x1nmsePKV3HDDTdR3HqHrzq8AEHnSBt5295/pOLyPZz3/9Vx9/QsD/ztKNW/PI8x75PcAFB2HbcNDHMznWLBqNRddcSUXv/DFJGpqADC6u7BTacarjBhfsRIl7M0CNXp7sIdPXvCFQip1dXHS6QK27RBbvhwbhUwmw3DHIbLd3WSzWXK5HLlc9sRXNpuly3Up2ja2bRM3TRKmieN4v9u2jWXbOLaD49gcNYrkbRvTNGFggIWRCBFVpSEcYUldPU9etpy6TAYlFGL1B99PNOmSPbwH15peJjwlFEaNJQjHk5CopRiLMuwUODJ4lO7+I5jTbH/S/ZgBAVAkHGX9ystYQgyz+wiOMf60Qsd0sIYKGL3D1KxeTeMVV0AkjquE6f7Fr2i45BIitTWk9L3ku3tnTNrjswVASjhMrKmR6Lw2MnaUw3uOk+pLTdhmOJkg0lBPOFkD0SiuouC6fjA0hT87FFKpqYvS0BhDVXJ0H2nneEdn2Y5dSFWJJyIkaiJEY2FCIa/Y60jfp7vfSQVAI0yT+NFelN37sI97GQebb3ku6Ysv5tChQwy1H2Dxli0MOw4DxQLpYpFUscBQPk8qn2N/JkNnwRulS4ZCrKmpxXZdRocDI39Pr1Gkz8+gGVNVViZrTm5z2k8Dhkmv/38QURTOq20gEksQjiUJxRKo0RrUaA1Ea0jFGumNt2JHGnAiNSx2TOxwHNV/4VUV7/9cURQy4SR9sSYUBUI4nJfv9u7zt0PxMjMpCuRDcfqSLSgKqK7L8uwxVFXB3ww7GuPFL72B6xaZEgAJIaZMAiBA07QXAj8Bkrqu50fd/iP/tlum2GS7bTsrU6lgpygd60/zypufzucvHL+a/O97uvhaxyEAGsIRvrph47jb3tPXw/8cakdRVNZecTPvjTv0rL+Bv9a08ctPvBI1HOVVX3iURH0zcGoccXpMMfrDQWWc209XahsNh3ew/M/fINl75uLoV2/dTN2SNbQsOo8Xh2wuyg2Mu/+fXv1icmoYo5DligObuGhw/BGPt+t7OJYeAuCVS5bxvAXjF4b95x1bT1yUvHjREl68aPxU1e/btZ0DOS9Q/psFi3jFkmVjbpdecRFHn/4K8vOXn3L72P++Jw/Y6Xe7J777F3u4uHjrYbxP20+/FBrbRK8aU3tZUU7dr3v2T5rL0S9FUVDVMF5OuJH9n7rxGY9VQEHxtnJdXMfBtR1cyzrjIto9/YFT6PiEf9NE97sj/0PKyd0r3mWk43LyywGzcOpF+6SeRlX1Rgf8rxM/n/jkxdvpif9j/2IY1zvvbMfGsW1s26RQKGCZlr9vZdT5qpw4/q7fqDt6G3eM7Tlte/fMx57oL5zo/0gnXf82r30Fd9TjvLbG6tvp+zv5u3dYR7dzarvNuV4u6N3GkabVHGlaA4rC2p6tvP7hj4176H+25iX8af7V2IU0K4YP8N593xx32x+qi/mp0wxmjqV2hk/Hx0/x/vO+Ib539AiYWdqiMT6//pJxt72ru4tvHDkETP49ByCuqnz70ivG3favA33c0e4twVWAH1525Sn3782k+Vx8Ofd+/3OBru2qr09IACTEHCBJEDwjKXhO/+i3ADSX0qCqKjQ11Uy84RTU1MZpWnMlXeYgAA4KrqJAKIobTuCqYYbPv4bQdc/wbnMKHGz/urfNiTde7zGuY9GzeC2Kuxj38P3oj/yG16HAoQxuzw4A3Ce9nO8cmBfo3xCMi+Giz3Je+gDa0G4W92+nYUCnrtCPaZn0HNxJz8GdtC9ZRktj07it/OoL7ybrL06vW7SEluaWcbctFHInfk47CscNExQVlJD/3f9SVZzLb0WN1IMaJmsc5njhoH8hOOpCy/sB+4aPoyYWoqhhBoyj7Bl8HFsJk47W0Rtv41hyMdubL2Yg3gqH8b6EKJtgX7PE5B1Va9g+f4X3iz95YDi8mtST3k1zoZ86M0XSypGw8yStLDG7yKHYcgajSyEKQ0qSg7UrCbk26sgY0KgINrvkZkJLbvJuzh7l2PZPnBhNUXBPjMQoQPyiv+eiC55PPOTQmu5g+C8fR8EB10VxHfC/XNdhwYWX8szLrqWYTaFmhhko5nFdxw9KT+XW1LJs5Wpc1yXiQp9tndzmtI3NWIIFS1ac+L3XOnV6ai4c4U0vfAr19YlSDrcQYo6TESBA07S/BX7M2CNAMV3X/2aKTZZlBAi86SL19QlSqTy27WA7sH9IZVe/StaEoq1QsMAY9YHYmU/xqSMEA0f2sPWX/82hx35z4vampRdw87/+hEgsecq247c5/n3uOD9P2M5k2xz59NV1yQ8cY7BjO9m+TnIDx8gPd2MbBSwjj23kvTdw1QtaFFVFDUUIxZJE4rWEYknC8VqiyQaiyUbi9Y2o0TrCiToiyQYiyXoiiXrU0NifG0xltGsq90809X46M/On03YQ/VJVhUgkjGlap4w8TKtfE+xzOksZqtWvibt89tfxkKoQjUUwiibOaf9M5Tw3J6KOXHSfNjg1+jujbxu1raq44z92gjZHb8cYtymKO26bE+0jFFJIJmPkc0Vc1x11n3tGH8baxxn9OX3/Z2znnrhNVSCk+v3w+xpSvNsjqkskBGEVwv52s9np74VBkREgIeYGGQHyjMylWgQcGHX7ImBrqY2Wc/G8bTsn2l9V77CqfhqNbVgBz/0M+/e/mYcffpCWlhae/vRnEo+reINgs0kL8LRptzL+AlvL/xJB8I5zmMHBYlWy7c0V3nGOMDhoyHEuM+9YxxgctGbmsfbzPszErpVi9HuhEEJMlgRAnq1ACu/K+QCcyAJ3KfD5qvWqwlavXsPq1dWt+SOEEEIIIUQ5SQAE6Lpe1DTt88AnNU3rBQ4Bn8IbGfppNfsmhBBCCCGECI4EQCd9CO943AkkgPuAG0sogiqEEEIIIYSYoSQA8um6bgPv8b+EEEIIIYQQ56BZngdGCCGEEEIIISZPAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnKG4rlvtPpyL8q7rxh2nPMc2FFKxbacsbYuT5DhXhhznypDjXDlyrCujHMdZVRUURSkAiUAbFkLMKBIAlccQEAOOV7kfQgghhJi8hUARaKxyP4QQZSQBkBBCCCGEEGLOkDVAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWeEq90BMTFN0z4APFPX9aeNum0DcAdwGdAPfE7X9U9XpYPniHGO83OBDwEXAH3A/wEf0nU9X5VOngPGOs6n3f9V4AZd11dUsl/nonHO6YXAfwE3AzbwO+Btuq73VaWT54BxjvNlwGeAS4Eh4PvAB3VdL1ajj7OVpmnNwMeAW4B6YBvwXl3XH/Dv34C8FwohpkhGgGY4TdPeDvzHabe1AH8E9uK96N8OfFjTtNdWvIPniHGO87XAz4CfABuANwMvBb5Y4e6dM8Y6zqfd/3zg9ZXqz7lsnHM6hvfacR7wTOA5eBfo3650/84V4xznVrzAcjdwCfAG4DXARyvcvXPBD4ArgZcBlwObgT9omna+vBcKIUolI0AzlKZpi4E7gWsB/bS73wgUgVt1XbeA3ZqmrQHeA3yjoh2d5SY4zm8C7tZ1/RP+7/s1TXs/8A1N094sn+RO3gTHeWSbhcBXgHuBFRXr3DlmgmP9crxju0rX9W5/+7cDX9Q0rV7X9VQFuzqrTXCcnwK0AO/SdT2N99rxHeBG4F8q2tFZTNO01cANwDW6rj/o3/Y2vNHLvwPyyHuhEKIEMgI0c10KDALrgUdOu+9a4D7/BX/E3YCmaVpbhfp3rjjbcf4M8K4xHhMG6srcr3PN2Y4zmqYpwLeA/wX+UtGenXvOdqxvAv48EvwA6Lr+e13XV0nwM2VnO879/vdbNU0LaZq2Ang28HDlundO6MMbpdw0coOu6y6gAM3Ie6EQokQyAjRD6br+K+BXAJqmnX73EmD7abcd878vA3rK2rlzyNmOs67rT4z+XdO0KPBOYLOsl5iaCc5ngHcAC4HnAu+rXM/OPRMc67XAfZqmfRB4NRABfg+8W9f1oQp2c9ab4LXjfk3TPgF8GG/9SggvsP+nyvZydvPPyd+Ovk3TtBcDq/DO248i74VCiBLICNDslMQb9h+t4H+PV7gvc4KmaWG80YkLgduq3J1ziqZp6/Hm7r9CphWWXT1e4HMx3hSiN+JN1/qFPwonAqBpWiNesPkF4ArgxcBq4H+q2K1ZT9O0a4CvA7/wA1B5LxRClERGgGanPBA77baRF/tshftyztM0rQ74EfB04EW6rp8xhUuURtO0OPA94CO6rm+rdn/mAAPIAC/Xdd0E0DTt1cCjeIvIH6ti384lnwQadV3/W//3zZqmDQJ/0jTt/+m6vrWKfZuVNE37G7zXiofx1rKBvBcKIUokI0Cz0xFg0Wm3jfx+tMJ9Oaf5C/PvB64GbvY/dRTBeTKwDvg3TdMymqZlgPcDy/zfX1Hd7p1zOgF9JPjx7fS/r6xCf85VT+HMYHJk/c/aCvdl1tM07S3AT/Gmwz17VBkCeS8UQpREAqDZ6T7gWk3TQqNuux7vwkbmPAdE07QmvAW184Cn6Lp+T5W7dC56FFiDNyVrg//1Jbx5/BuAX1apX+eq+4CLNU1LjLrtSf73/VXoz7nqCF5yhNFGjvO+CvdlVtM07Vbgv4HPAy89bZqsvBcKIUoiU+Bmp68D7wa+pmnaf+LNMX87Xp0aEZzP4tVLuQno1TRtwaj7enVdt6vTrXOH/0nuKRfemqYNAJau63JBHrwvAW8BvucnQmjwb7tH1/XNVe3ZueW/gN9pmvZh4JvAcrz6Yb/VdX1LFfs1q2iathavyOnPgI8DbaMSTuSR90IhRIlkBGgW8j/ZuhHQ8IrC3Y5Xb+JbVe3YOUTTNBWv6GkUbxTo+GlfS6vXOyFK42cvvBYv+9sjeFnMHgVeUM1+nWt0Xf8DcAteDZsteBfqvwVeUsVuzUYvwjtXX8CZr8F3yHuhEKJUiuu61e6DEEIIIYQQQlSEjAAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEmNM0TVOq3QchhBBCVI4EQEKIOUvTtOcB3/J/fpqmaa6maU+rbq+EEEIIUU7handACCGq6J9H/bwZuArYVaW+CCGEEKICJAASQghA1/UU8HC1+yGEEEKI8lJc1612H4QQouI0TfsLcN2om54O3AM8Xdf1v2ia9m/Ay4D3Ah8BVgN7gFsBF7gDWA8cAN6m6/qfR7V9EfAJ4Kn+TX8G3qnrensZ/yQhhBBCTIKsARJCzFW3AU/4X1cB9WNssxT4L+CjwEuAZuDHwPeBr+IFSCrwA03TEgCapq0FHgTagNcA/wCcB/xV07S28v05QgghhJgMCYCEEHOSruu7gBSQ0nX9Yf/n0yWB23Rd/76u678EvggsAj6s6/qduq7/Avgg0Apo/mNuB/LAM3Vd/6mu6/+HN7qUAN5V1j9KCCGEEBOSNUBCCHF2D476ucv/PnqtUL//vdH/fj3eVLqcpmkjr7Ep4H7ghjL1UQghhBCTJAGQEEKchZ8c4XS5szykBXip/3W63kA6JYQQQoiSSQAkhBDBGgL+BHxmjPusynZFCCGEEKeTAEgIMZfZQCjgNu8FLgS26LpuAWiapgDfAfYDWwLenxBCCCGmQAIgIcRcNgRcpWnaM4CGgNr8D+Ah4Neapv0PUADeBDwfeFFA+xBCCCFEiSQLnBBiLvs8YAJ34WVpmzZd17cB1+LVCvpfvLTZC4Hn67r+0yD2IYQQQojSSSFUIYQQQgghxJwhI0BCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ0gAJIQQQgghhJgzJAASQgghhBBCzBkSAAkhhBBCCCHmDAmAhBBCCCGEEHOGBEBCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ/x/1SzVk6S/5a0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
0110.0000010.550009.112041e+033.555077e+038.564681e+03135.98568562.9822240.390152interpeak0.01needs review
1211.7666712.108335.779000e+031.155481e+004.298102e+03137.57142931.2426940.000200interpeak0.01needs review
2319.8250020.000001.177637e+011.000001e+002.048615e-010.4898350.4182260.084916interpeak0.01needs review
0110.5583311.758332.810059e+062.802338e+065.279468e+0819379.71082727242.2449660.997252peak0.01valid
1212.1166719.816671.403344e+071.396639e+073.854511e+0815171.28177425406.6286170.995222peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 10.00000 10.55000 9.112041e+03 3.555077e+03 \n", + "1 2 11.76667 12.10833 5.779000e+03 1.155481e+00 \n", + "2 3 19.82500 20.00000 1.177637e+01 1.000001e+00 \n", + "0 1 10.55833 11.75833 2.810059e+06 2.802338e+06 \n", + "1 2 12.11667 19.81667 1.403344e+07 1.396639e+07 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 8.564681e+03 135.985685 62.982224 0.390152 \n", + "1 4.298102e+03 137.571429 31.242694 0.000200 \n", + "2 2.048615e-01 0.489835 0.418226 0.084916 \n", + "0 5.279468e+08 19379.710827 27242.244966 0.997252 \n", + "1 3.854511e+08 15171.281774 25406.628617 0.995222 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 needs review \n", + "1 interpeak 0.01 needs review \n", + "2 interpeak 0.01 needs review \n", + "0 peak 0.01 valid \n", + "1 peak 0.01 valid " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_peaks` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3139991.62113515061.4147981.807370e+064compound A171.373144µM
017.290.3480011.70371512525.2861051.503034e+066compound B56.928478nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4 \n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.373144 µM \n", + "0 compound B 56.928478 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/M9t1k0yshIQQy9A4igjQFUUTBi2KBaxcsoIiCooIiKhZQ8IpKVxAVVOy9g9hAlJYhgfTey/Yp94/dxRBSNptNsgnf+zx5SGbOnD07GbLzzTnnO4wsyyCEEEIIIYSQcwHb3g0ghBBCCCGEkLZCARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknKFs7wZ0UhUANADy27kdhBBCCPFcDAAbgOB2bgchpBUxsiy3dxs6I4ssy1pJap1zy7IMWqtu8i86z22DznPboPPcduhct43WOM8sy4BhGCsAnU8rJoT4FeoBah35kiQnlpWZfF6xUskiJMSAqiozBEHyef3Eic5z26Dz3DboPLcdOtdto7XOc2ioAQoFQ6M3COnkaA4QIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBSRAIIYQQQvzYgQMHAuFM0U0PrgmpnwQgf+jQodWeFKYAiBBCCCHEDx04cIAF8DDDsHMYhlEBYNq7TYT4KVmWZceBAwfeAPDU0KFDG00PSQEQIYQQQoh/elihUM4zGkPsarXWzDAMLTBFSD1kWWbsdqu+qqp8nigKAPBkY+UpACKEEEII8TMHDhwwMgw7x2gMsQcGhpS2d3sI8Xcajc4CIKyionTOgQMHXmpsOByNJSWEEEII8T/RDMOo1Gqtub0bQkhH4eopVcE5Z65BFAARQgghhPgfFgBDw94I8Zzr/wuDJmIcCoAIIYQQQggh5wwKgAghhBBCCCHnDAqACCGEEELIOWPt2tWxV155Sf/2boenUlKOab/55qug9m5HZ0IBECGkQ8jLy8WaNc/hr78OtndTCCGEkDazZMn9PY8dO2Jo73Z0JhQAEUL8niRJmD9/LrZt24Q77rgROTnZ7d0kQgghpI1QHgxfo3WACCF+788/f8f5VhvOj4vHF0WF2LPnPdx9973t3SxCCGlzkiTBbDa32wNsvV4vsWzzXn706GFDr7rqmvwffvg2zOFwsC+9tD5Fr9dL69atifvnn7+MJpNJERQUJIwff1HpggWLco8fP6a7444b+7zyysbjAwYMMgPAvffemXTkyD/GL7744S+lUglZlnHZZRcN/O9/b8695prrS+q+ZklJsXL16mfjDh78I0gURSY5uVfNwoWLs5OSetjcZV5//ZWoTz7ZE1VdXa3s0aOnacmSxzLc++trc1xcV/trr/0v5scfvwsrLy9XdenSxTp79k15l1xyWQUA7Nr1dtjOnW/G3HTTrbmbNr0eV1lZoerdu2/1I488nrF166boH374JkypVMrTps0onDv37gIAsNlszMsvr4ndu/enkLKyUrVWq5MGDhxUuWTJo1mhoWHilVde0r+kpET97rtvxRw+fChww4Y3+PLyMsXLL7/Y5Y8/fg2urq5WJiYmmW6//c7ckSNH1bjf254974Xu2LEtpri4WBMfH28ZP/7i0k2bXu26d++fB7z5nbAs69X781cUABFC/N4fv+zFxRFR0CoU+K28DCf274Nww3+hDA5p76YRQkibkSQJ1113Va+UlOPtNhyqV68+NW+9tZtvbhD01VefRTz99AupoigwPXsm26677qo+QUHBjlWrXjwRGBgo/vjjd8EbNqzv2qdPP9PkyZdWhIeH2/fv32ccMGCQWRRFHDt2JNBms7F//XXAMHz4eaZDhw7qq6urlBMmXFxR97UEQcCCBfOSAUZevvypk2FhYcK6dWvi7r//nuTduz8+DAAlJSXqI0f+CXz66dWpdruNeeqpxxOfeurxbps2vck31OZ7770z6dSpk/p77rkvKzExyfrFF5+Grly5PIll2bRJk6ZUAkBpaYn6o48+iHzyyWfTzGYT++iji3vedNP1fSdOvLjklVc2Hf/ss4/Ctm/f2mXs2PEVvXv3tb7wwjNxv/22P3jx4qUZXbvG23ie1z3//FPdXnvtf7EPPfRY9saNbx6/+ebr+1xwwdiy22+fly+KIubPn5vscDiYxYsfSY+IiHS8885bkUuWLEx+8cVXUgYNGmL+5psvg1avXpU4Z87NOePGTaz47bdfjBs3vtq1pb8Tb95fsy6SNkQBECHE75X/dQBalQYWjQYTwiMxQWdA6d6fEDX1ivZuGiGEtLGOuS7Q2LETSgcNGmIGAIvFwkyYcHHp5MlTyrt2TbADQLdutxTt2vV2dFraCd3kyZdWDBt2XsXBg38YARQcOnTQoFAo5eTkXjV//PFb4PDh55l+/vnH4J49uZqIiEih7mvt2/eTMTMzQ7dly1tHevZMtgHA0qXLM7Zu3RhdVlaqBACFQiGvWLEqPSgoSASAKVOmFm/fvrVLQ20+cSJF++efvwcvX74y7aKLJlcCwN1335t/6lSafseObTHuAEgURWbhwsWZ7pv//v0HVp04kRLwwAMP5zAMg9tvvyv/3Xd3xqSmntD17t3X2rt3H9P48RPLzz9/dA0AdO2aYP/66y+qMjJO6QAgPDxCYFlW1ul0UkhIqPjdd18b09NP6Tds2HbU/RqPPPJ41okTKYYdO7ZFDxo05NTbb++IHjlyVNmtt84tBIAePXoW5+Rkaz7+eE9US34n3ry/llwzrYkCIEKIX7NYLNCVlQFRMTAOGIia/DwAQPkJHlFNHEsIIZ0Jy7J4663dfEcbAgcAcXFdTw890+l08uzZNxV99tnHIdu3bzPk5eVqMjPT9RUV5SpRlBgAGDNmXOWyZQ9HWCwW5rff9gf27duvukuXrta//z5oBFDwxx+/BV144biy+l4rNfWETq/Xi+7gBwCioqKFxYsfyXH/HBQUJLiDHwAIDDSKdrv9jDdWu808n6IDgGHDzqupXaZ//0HVb7yxKa72th49/n1djUYjRURE2RiGAQBotVoZAGw2GwsA06fPLPv55x8DV69e1SU3N0eTk5Oty8vL1fbq1fuM13FLS0vV6XR6sXZwwTAM+vTpV3Pw4J9GAMjIOKUfPfrC8trHDRw4uKZuANTc34k3789fUQBECPFrp06loachAAAQ1n8gxD9+BQDYc/Pas1mEENIuWJZFQECA1N7taC6NRnu6zWazmb3jjhs5q9XKjhkztnzSpCmlAwcOyrr77tt7ucucf/4F1SqVUvr1132Bf/11wDh+/MSyhIRuto8+ej86OztTnZFxSr98+cpT9b2WQqGU3TfkDWFZtsmetNptbigRgSSJjEKhOGOnSqU642eWbbgtTzzxaPy+fT+Fjhs3sXTkyAsqe/Xqk79jx7bo0tJidX3lZbn+tyZJEpRKpex8PVaW5aY7Cpv7O/Hm/fkrCoAIIX4t7QSPHnrncHdtUg9ouyYA2dlQVVVCliQwXjyJJIQQ0n5+/PE7Y3r6Kf3773/6d2RklAAA5eVlisrKSqU70FCr1fLAgYOrfvrph+DU1BMBS5Y8mhkX19XOMIz8yivrYmNiYq21ExrU1r17ktVkMilOnTqp6d49yQYApaUlymuvndHvySefTfWmzcnJvSwA8OefvwW4h8ABwOHDfwd06dLV4k2dZWWliq+++jxi8eKlpy6/fPrpHpucnCytVqurFXz9G2D06JFsMZvNiuPHj2pr9wIdO3Y0IC4u3goACQndLMeOHQ0AUOTef/To4UbnjXnyO+lM6M6BEOLXCo8dgYpl4WBZqCIjEZXMwSaKUMgyHEVFTVdACCHEr0RFRdsB4KOPPgjLzs5U//bb/oBFi+b3EEWRsdsdp+/2R40aXfH999+GG42BQlJSD5tGo5E5rnfN3r0/ho0cOaqiofrHjBlblZiYZH7iiUcSDxz4w5CScky7fPnSbkFBwY6BAwebvWkzx/W2Dho0pHLt2tXx33zzZVBaWqrm5ZdfjDlw4I/gq6++ttCbOo3GIFGn04t79/4UfOrUSc2xY0d0y5Y9nJCRka53OP49D1qtVszNzdEUFRUqx44dX9m1a4LliSce7f7LLz8HnjiRol2x4rH4nJws3axZ1xUCwHXXzcn/7bdfQjZtei3q1KmTmt273wn79NOPIxtri6e/k86CAiBCiF8rzspCid0Ge1AQGIZBYvckFNqdD/0cpWdlPiWEEOLnhgwZZr755tuzP/rog8g5c2b1W7XqyW79+g2svuCCMWU8/2+Gu/HjL6qUJJHp129glXvb4MFDq2RZxtixEyoaqp9lWTz77Jq0iIgo+5Il9/e85565vRQKhbx69bpUjUbjdXfGM8+sPjVixMiK1auf7XbrrXP6/vbbL8EPP7z85GWXTStv+uizKZVKPPLI46eysjJ1t9xyQ98HH7yvp81mY2+44cbc3NxsnclkYgHgiiuuKjp48I+gBQvuTFYqlVi7dv2Jbt26mx9//JGkuXNv6Z2Rka575pnVJ4YOHWECgPHjL6q6664FmZ988mHEzTdf3/fTTz+MmDx5SrF7iFx9PP2ddBaMJ2MESbOdEkUpsazM5POKlUoWISEGlJebIAgdbghwh0HnuW14cp4vv3wSsrOzsOn1rRg6YiQyMzPw26J7MSgoGJH/vQnBY8a2cas7Hrqe2w6d67bRWuc5NNQAhYJNB9DdZ5V66cCBA71YVvFFZGSXGrVa67fZtIj/2b9/b0B4eKSjdhKI9evXRX/11efhH3zw2ZH2bFtrs9ut2qKi3ABJEi8ZOnRoSkPlaA4QIcRvSZKEgoJ8AEBMnHMJg6ioaPxSVoqTphrcFhLans0jhBBC/M6vv/4S9MMP34U++ODDGQkJ3WzHjh3VffTRB1FTpkwtbu+2+QsKgAghfqu0tAQOhwMsyyIy0pm9U6vV4m9JRHleDmaoVAhv5zYSQggh/uTOOxfkWSwW9plnnkysrq5ShoaG2a+4YkbhbbfNK2jvtvkLCoAIIX4rPzcHa/sNQhUAxm4DlM4/WTExMSgvL0NhYT447qwMnYQQQsg5S6PRyA8/vCwbQHZ7t8VfURIEQojfKj51EtFaLbprNGC1utPboyOjEaXRoDKlweG9hBBCCCH1ogCIEOK3qrIyAQA1SuUZ6/0khYVjXf/BSPrzj/ZqGiGEEEI6KAqACCF+y1bgHK5s1+vP2B4Q5ZwPpJQkSA5Hm7eLEEIIIR0XBUCEEL/FVFY4/w09M9tbUEQkBMmZ+lasrm7rZhFCCCGkA6MAiBDitzRm54Ld2uiYM7aHhUegWhAAAGINBUCEEEII8RwFQIQQvxXo6uUxJnQ7Y3tYWBiqBOfQN+oBIoQQQkhzUABECPFLNTU1KLVaUWa3I7Jn8hn7wsLCUenqARKqqtqjeYQQQjw0evSwobt2vR3mafkffvjWOH36pf3GjRs5ZNWqlXGt2TZPrF27OvbKKy/p78s6m3NOcnKy1B999EGIL1//XNeu6wBxHDcOwPcN7E7neb47x3GDALwEYBiAUgBreZ5/vlYdLIBlAG4FEAJgL4A7eZ5Pq1WmxXUQQtpWQUEenkpNgdEYhJ8Su5+xLzQ0FNWu5AemkiIEtUcDCSGEeOS99z7522gMEj0tv2HD+rioqGjbSy+9ciIgINDj4zqS5pyTxx9/tFtkZKR92rTp5a3drnNFe/cA/QIgps7XJAACgKc4jgsD8DWAE3AGL8sArOA47qZadTwKYC6A2wCcD0AG8DnHcWoA8EUdhJC2l5eXBwCIiYk9a59KpcY/Nit25+XAEkQPxQghxJ9FRUULOp1O9rS8yWRS9OnT1xQf380eGhrWKQOg5p0TmWnd1px72rUHiOd5O4AC988cx6kArAHwHs/zGzmOewiADcA8nucFAMc5jusJYDGALa4A5X4AD/I8/5mrjmsA5AGYAeBtALf7oA5CSBsrKMgHAMTExNS7P12twvcZ6bhYp0VSWzaMEEJIs4wePWzoggWLMmbOnFW6dOkD3SRJYkJCQh3ff/9tmM1mZQcMGFT10EOPZUZFRQujRw8bCgDvvrsz5t13d8a89dbuw127Jtg3bFgf9fnnn0RWVlYoo6NjbDNnXlswffp/ygDgl19+DnzwwfuS58y5Oee9996NCQ+PsD355KpTs2df3e/aa2fnffrpR5FqtUrauvXtYwzDYPXqVXG//74/WBAEJjExyXznnfNzBg0aYna3d+fON8N37Xo7ury8TD1w4ODKyMgoe2Pv77bb5nB9+w6oLi8vU+3b91OoSqWSpk69smjSpCllzzyzotupU2mG6OhY64MPPpwxePBQc+1zcvHFl1TMmXN1327dupvXrn01DQB++umHwKVLH0h+6KHHTn7wwa6o48ePBRw/fizgyisvCdyz54vDV155Sf8JEyaVzp+/MK92GyIjo2wrVz6XUd/5eOONt48XFhao1qx5ruuhQweNCgUrJyf3Mi1YsCg7KamHrTV+7/6svXuA6roLQFcA97l+HgPgJ1fg4vYdAI7juEgAgwAEurYBAHierwBwEMCFPqyDENLGtP/8jZf7D8ZYjbbe/aGhzqHT5eU0IoAQcm4RLRa2oS/JZmPaomxL7N+/L6Sqqkr50kuv8I89tuLk8ePHAl9++cUugHNoWGhoqOPyy6cXvvfeJ3936dLVvmbNs10+/fSjyLvuWpC1adP2Y9On/6fwf/97MeHNN7dG1K73t9/2B7/yysbjS5Y8mqFQsDIA/PDDt6Fr1rzML1/+1MmgoCDx3nvv7JmXl6t58sln0155ZWNKr169Tffee2evw4f/1gHARx99EPLqqy/HT5/+n8ING9442rt3X9Pnn38S2dR72rNnd3RkZJR948Y3j06dekXRzp1vxi5efF/Pa665ruB//9twXK1WSatXr0qoe1xwcLD4wANL0//660DQhx++H1pWVqp49tmViRMnTiq59NLLK5599sW0nj2TTeeff0H5xo1vHm/Oea59PqxWK3vPPXdwkiRizZr/8WvW/I83GoOEO++8pXdeXq6qOfV2Bu3aA1Qbx3FaAEsBvMjzfL5rcxyAw3WKuqPdeNd+AMiup0y8D+sghLS1inJEajSw6w317g4JNCJGo4UtL6eNG0YIIe3r5D3zBje0T5fMVXZ98KHTc5hPLZw/UHY46n3gremWWJPwyDLe/XP64vv7S2ZzvfeG6tgu5m5PrGzWDXiDbdTpxGXLnsxUqVRycnIv6/79+0oPHPgjCHAODWNZVtbpdFJUVLRgMpnYjz/eE7Vo0UPpF100uRIAEhO72/Lz8zTvvfd29OzZNxa7673mmusK3L0ZWVkZagC47LJpxRzX2woAP//8Y2BqKm/Ys+fzv8PDIwQAWLhwce6xY0cD3n57e1T//gMz3n//3ahRo0aXz559UzEA9OjRs+D48aOGjIxTZ67IXUfXrvGWu+5akA8AN910e+HOndtjx4wZVzZp0pRKAJg0aUrphg2vdq3v2DFjxlZPmXJ50auvvtz122+/CjUYDOLixY9kAUBISKioVCpltVotudvsqdrn4513doRXV1cpn3lmdbpKpZIB4Iknns6YMeOy/rt3vxNRuzfpXOA3ARCA2QB0ANbW2qaHc/habVbXv1rXfjRQxr1yoi/q8IpS6fsONoWCPeNf0jroPLeNxs6z0mwBWBb6mJh6/y/11OlwR/9BMB08COWt9HtqDF3PbYfOddug89yxRUVF29w34QBgMASIgiDU28N04kSK1uFwMC+88Ey31atXdXNvF0WJEQQHY7FYTh/XrVviWUO54uMT3Pd8SEk5pgeAa6658oyMboIgMA6HnQGA7Ows3bhxE8tq7+/Tp19NUwFQbGzc6dfR6/USAHTp0uV0e9RqjSQIjgZ70RYufDDn4ME/gg4e/DNo/frNx5ozZ6ohtc/HiRO83mKxKC65ZNyg2mUcDgebnZ1Z/1CLTsyfAqA5cM79Ka21zQJAU6ec+5dkcu2Hq4ylThmTD+toNpZlEBJS/5NrXzAada1WN/kXnee2Ud951osCwKoRnZxU7/+lgPBQoKQUCsHRqv/XOhO6ntsOneu2ca6e56R16/9qaB/DsmfcOHdfvfZvT8smrnqh7oiZBsu2RO3g51/1Vy9JEgMADz+87FT37j2sdfdrNJrTB2q1Wqnufq1We3q/JEmMTqcTX3tt61k9WWq1WgIAhmEg12mKUqls8r0rlYqzyjCM5wF6YWGBqqKiXKVQKOT9+/ca+/cfYGn8iDNfThDEs4Kr2udDkiTExMRan3lm9VkZjg0GQ6dMNNEYvwiAOI6LADAKwFN1dmUDqJsCyv1zLgBVrW0n65Rx/4f3RR3NJkkyqqrMTRdsJoWChdGoQ1WVBaJ41v9z4iN0nttGQ+fZ4XAgmHV+cATEdkV5+dnPIlidM+hROIR695N/0fXcduhct43WOs9Go65D9CopdDqP33RrlW0rPXokWxUKhZyfn6d2D4EDgK1bN0ZmZqZrly1bmeVpXUlJPS0Wi0Vht9uYXr36nA6mHnvsoYQePXqa58y5uTghoZv5yJG/AwAUuffz/PFWfcomSRKeeOKRxISERPOkSZeUrl+/Ln7UqDFV/fr1dwVBzBnRjkKhlGtqTIraxxcVFapjY2PPChDdundPsvz44/dhRqNRdA+lEwQBDz54X/fx4yeUX375uZVi2y8CIDiDHxnAj3W2/wRgLsdxCp7n3dHpRAA8z/NFHMdVAqgCMA6u4IXjuGAAQwC87MM6vCIIrfd3RBSlVq2fONF5bht1z3PuqXToFc4/T8FdE+v9HWiDnSNUVbIMh80BRqE4qww5E13PbYfOddug89z5BQUFiRdffEnxm29u6WIwGMQhQ4bX/Pnn74Fbt26KmzHjPwVN1/Cv8eMnVm7Z0s2ybNnDSffcszArNraLfffutyO+//6b8IsvvuQEAFx77ZyCxx9f2mPDhvVREyZcXLF3749Bv/22PyQ4ONjROu8QeP31V6LT09P1Gze+cax79yTbDz98F/Lkk48lbtv29nGNRiPrdDqpqKhQk5ubo+rSJc7Ru3efmr17fwzdv39feUREpGP79q3RFou50Q/BadNmlO3atTNm8eL7ku68c36O0Rgkbt78esyhQweCbr993jk1/wfwnyxwAwGc4nm+bpfJZgBGAJs4juvDcdyNAO4F8DQA8DxvgzNIWcVx3DSO4wYAeAfOXp/3fVgHIaQNFZ1MBQCYJAlKXf1DXAyh/y6gLZl939tKCCHEPyxZ8mj2FVfMKHzjjS1dbrzx2n47dmyLmTXr+rx77mnexH2FQoG1a1890bNnsmnlymXdb711dp9//jkU+Mgjj58cM2ZsNQBcdNGkygcffPjUV199Hn7LLbP77t37U/C0adMLW+edAYcP/6N7++3tsbNn35jbvXuSDQAeeujRzJKSYs2aNc92AYBp02YUZ2dnaW+++fq+oiji7rvvy01O5mqWLn2w5z333NHLaDQKo0aNabQHJygoSFy37vWUoKBgYcmSRT3nzbuld1FRofqpp55Prd0bdq5g5LoDHdsBx3GvABjM8/z59ewbDmdihMEA8gG8wPP8y7X2K+AcOncTnEkUfgJwF8/zGb6so5lOiaKUWFbm+2E5SiWLkBADystN9NSrFdF5bhsNneevt2+D9ZOPoA4IxOSNW+s99tdff4HutfXQKRTotnIV1FFRbdTqjoeu57ZD57pttNZ5Dg01QKFg0wF091mlXjpw4EAvllV8ERnZpUat1p5zN6iEeMNut2qLinIDJEm8ZOjQoSkNlfOLIXA8z9/ZyL4/AJwVGNXaL8K5qOni1qyDENJ2Mixm/C/lKK64YgYmN1AmKCgI5YIAnUIByUxzgAghhBDiGX8ZAkcIIafl5ztHNURHxzRYxmgMwtfFhfiwqAAKo7GtmkYIIYSQDs4veoAIIaS2/LxcAEBMTN0Ejv8yGoPwQYEzULrHEIBzbhlrQgghhHiFAiBCiN+Zarbi+v6DoWskvW1AQAAUCgVEUURVVSW02nNuHTdCCCGEeIGGwBFC/IosywiCjEiNBmFR0Q2WYxgG0cHBiNFoUenqMSKEEEIIaQr1ABFC/Ep5WRlClc4BbRE9ejRa9j/RsbhAZ4B1/y/AoCFt0TxCCCGEdHDUA0QI8SsFJ1OhZFlIsgx9RGTjhdVqAICjpqYNWkYIIYSQzoACIEKIXynLSAcAVEMGo2h0YWswGue8HwelwSaEEEKIhygAIoT4lcqcHACARdl0XjdWqwMASBZLq7aJEEIIIZ0HzQEihPgVW3ERAEA0GJosy2q1QE0NYLe3drMIIcRvMAwUDMO0y0NsWZYlWYbYHq9NiK9QAERalVBRDmVwSHs3g3QgxTXV4GuqYUhKarKsyqAHSkABECHknMEwUEgME2O2Cu1yD6fXKgUWcr6/BUFr166O/e67r8L27PnicHOPTUtL1dx++419tm7dcTQ+vht9oJwDKAAirSbv3bdR89UXKOzaFWOWrWjv5pAO4sfSYhxLOYo1d9zZZFml3tlLpBCE1m4WIYT4BYZhWLNVUP56JF8yW4WGF0trBXqtkh3ZL0YZqFWysiz7VQDkrWPHjuiWLLm/h91uo2kh5xAKgEirkAUBNV99AQD44pefEXz4H/TvP6CdW0U6gvz8fABATExsk2WZkFB8XpiPkIREjGjthhFCiB8xWwXJZHG0aQDk0mkChVdeWRu9e/fbMV26xFnLykrV7d0e0nY6zUVM/IstOwsAUC048GlhAfbv/7mdW0Q6AovFgoryMgBAbGzTAZA6MhJbsjOxX3S0dtMIIYR4afToYUN37NgWcfPNN3Djx58/ZNas6X2++urzoNplvvnmy6AbbpjZe/z484fMmHFZvxdffD7WZrMx7v0pKce09957Z9LkyeMGjR173pAZMy7rt2XLxgbXSti6dWPkuHEjh3z55WfBDZU5cOD3oAceeDh93rx7cnzyRkmHQQEQaRXmzAwAwCmTMz3xsWNH27E1pKMoyMnCjiEj8MqAITComs4CZzAEAABMJloHiBBC/NmWLRvixo+fWPb669uODht2XuWKFY/1+OOP3wwA8P333xhXrlyeNGXK1JLNm3ccXbDg/qy9e38MXbr0gUQAMJvN7P33z0/WanXSunWvpmzZ8tbR0aMvLN+06dWuhw//o6v7Wtu3b43Ytm1T3COPPHFy8uRLKxpq06ZN2/kpU6Y2uJ90XjQEjrSKiowM578OB3oaAiDl0MMV0rTCtDSEsiwCVarTKa7rYhhApVJAECQEGPQIUqqgMVsgSxIYlp7pEEKIPxo//qKS2bNvKgaARYuW5B458nfgrl07I4cPPy99+/atMRMnTiq5/vr/FgNAYmJ3m1KpzFy8eGFyVlaGWq83SNOmTS+69trZRUajUQKAu+++L+/993dFp6am6Pr3H3B6LYSdO7eHb978etyyZU+mjRs3sap93i3xdxQAkVZhzs2BGkDPwECMDY/AgcpyCIIApZIuOdKwyuwshAIwsQwYhqm3jFLFIsech1h9FAx6AzYMGgoAEE01UAYa27C1hBBCPDVkyLDq2j9zXG/ToUMHjQCQnp6uP3kyzfD999+EuffLsvPftLRU7YQJF1ddd92cok8++TD05MlUfW5ujiYzM10PAKIonf6wKC8vV61fvzZBoVDIcXHxtrZ4X6RjortR0ioc5eVQAyhSqhELIEipQnl5GSIiGhyuSwjMBc4ECHattsEyVsmK4ppSBGuMCDAGoUIUoVUoIFmtAAVAhBDil5RKpVz7Z1mWwbIK2fm9xFx55X8Kpk2bXlr3uKioaEdRUaHy9ttv7B0YaBRGjhxVMXToiKoBAwaarrnmyjOyKzEMiyeeeCp18+bXY1euXJ64adObKSyNDCD1oKuCtIpTAQZ8mJ+HosBgAECoSo2SkuL2bRTxe44y52ef3EAgo1CwMAlm5FUWwuywwGgMhFVyZmIVzeY2aychhJDmOXbsyBmrW6ekHAtISkoyA0BcXLwlOztT2717ks39VViYr1q79oW4mppq9uOP94TV1FQrN2/ennLXXQvyp0y5rKKyssL1EP/fuCo4OMgxduz4qiVLHsk4dSpNv2XLhqg2fIukA6EAiLSKP6xm7MjNQnVEHAAgSKVCSVFhO7eK+Dum2jlCQh0WXu9+hYJBpbUadtGBKls1goKMsIjOAMhcUdFWzSSEENJMH3+8J2rPnvdC09JSNatWrYzLzMzQXXvtnEIAmDXr+oLff/81ZO3a1bFpaamavXt/Cnz22acSTaYaZVRUtBAVFW232WzsJ598GJKTk6X+8cfvjI8//kh3ALDb7Wfdy/bu3dc6ffrMgh07tsWePJmmaev3SvwfDYEjraK42NnbowqNhJRxFAqGQUV+Xju3ivg7tc0GaHUIaGANIBkSKi2VAIAqazWURiWsknMZDEtlRVs1kxBC2p1eq2zzh9gtec1Jk6YU7979dtSLLz6vS0hIMD/99POpffv2swDAZZdNK5dl+dTOnW/GvP/+u9F6vUEcNmxExX33PZjj3p+Scrxgw4b1XdetW82Gh0fYJ0++tGT//n3Bx48fNQA4a4jJvHn35O/b91PIypXLu23c+AZPQ+FIbRQAEZ+TbDYEVFcjTKWG2hAEM8MiADJqCqkHiDRMEAScrKwEKwgY0qNnvWXssgCLwzmv1SrYIUKE3ZUswVJZ2WZtJYSQ9iLLsqTXKoWR/WKUaIeRPHqtUpBludkLsCYmJlkefHBpgylhp069onzq1CvK69vHMAwWLVqSu2jRktza22+55Y7TNxbz5y/Mmz9/4eknrRqNRt616yOP1uAYNWpM9d69fx7wpCzpHCgAIj5ny8nGXcZgFPXqi6M6I8wKFQJEO6w0B4g0oqioEG9kZ0CpVOH3YcPP2s8wgENywCo4AyCbYIcoixBcAZC9uvqsYwghpLORZYgs5PzAdugBcr6+LMkyxPZ4bUJ8hQIg4nMO11yMCocdOoMRfEg0Pj7wI/SBhsYPJOe0vDzng72YmFjUN1SBYRjYJQdsgh0AYBcdcEgOnISMrMICnN9I5jhCCOlMZBmiLMsUhBDiJQqAiM+ZXMkOKh0O6A1GnOjSA19+8S4GV3Rp55YRf5afmwMGQGxs/fN/WJaBzW7/NwASHBAkAcfUahzMzkDvgIA2bC0hhBBP0fAy4m8oACI+Z3YNdTMzgEGpgk4fCACoqqIFmUnD7MePYceQEShQ1Z+wh2EYmO3/proWJAF2yYEAV+BjMtW0STsJIYQQ0rFRSgzic1bXZHSHwhlfByqU4AICEWCxtGeziJ+zlRRDybLQ6HT1F2CAGvuZa/1YHTYEGQwIUqpgLa937iwhhBBCyBmoB4j4nL26CioAoutJflxZPlb06otfK+gGlTRMrnAGzsrQ0Hr3SxBgcyVAcLMKNgwUZcweNBT5fEqrt5EQQgghHR/1ABGfE2pMAABZ45yUzgYYAQBahoHNZmvwOHJuU1qcvTu6qOh694uyBLvgOGObxWGFQucMtGW6tgghhBDiAQqAiM/lBxnxQX4uynXOuRmM3hkABSiVqK6meUDkbKIowuBa0DQ4PqH+MrIIu3hmACRIAhRa55A5RhBat5GEEEII6RQoACI+l67RYGduNioDggAAkk4PAAhQKCkRAqlXcXExwlQqAEBot8Sz9jMMA4cknBUAOUQBCq3aWYYCIEIIIYR4gOYAEZ+rqXEuSKnROdf9EdXOJ/QGpQJVVZXt1i7iv/KysxCicgYy2ojIs/azLCCIAhz19AAp9c7rSyHRkhiEkHMDw0DBMAwthEqIlygAIj6nKi9DlEYDrcbZ8yOpnXOBDAoliikAIvUoyM5Cblkp4sPC0DMw8Kz9DMNAkBxwiGf28giSCKXBeZ0pJLlN2koIIe2JYaDQsY4Y2W5ul3s4Rq0XLJIq39+CoLVrV8d+991XYXv2fHHY02N27doZ9t5770YVFRVpQkJCHJMmXVJy663zChQKRWs2lfgBCoCIT8myjGkVVbiy/2B8qnReXqLG+YSeZRiYysras3nET+WUFGNtehou79cPE9mzH2oyDAOLcHaSA0EUoXD3AMlSq7eTEELaG8MwrGw3K2v43yTJZmnTP3ysRscGcOcpGVUwK8uyXwVAzbVnz3uh//vfSwlz596Tdd5551cfPXpYv3btCwl2u4O555778tu7faR1+UUAxHHcHABLAHQHcBLAcp7nd7n2DQLwEoBhAEoBrOV5/vlax7IAlgG4FUAIgL0A7uR5Pq1WmRbXQTwj26ynJ5a5kx/ICiW+l1hk5JzCELOp/RpH/FZeXi4AIDa2S737GYaBxWE9a7sgCdAGG/FjSTGYgAAMb9VWEkKI/5BsFkm0mtrjyU+nmD/+0UcfRIwdO6F01qzrSwAgMbG7LTMzQ/vll5+FUwDU+bX7Rcxx3A0ANgN4DUA/AG8DeJvjuPM5jgsD8DWAE3AGL8sArOA47qZaVTwKYC6A2wCcD0AG8DnHcWpX/S2ug3hONDtTGQuSBKX+36FMv+uM+LyoABUmCoDI2QpzcsCg4QAIkOsNgERJhDI8FP/LOIn3y0patY2EEEK8M3r0sKE7dmyLuPnmG7jx488fMmvW9D5fffV5UO0y33zzZdANN8zsPX78+UNmzLis34svPh9rs9kY9/6UlGPae++9M2ny5HGDxo49b8iMGZf127Jl49mTRl22bt0YOW7cyCFffvlZcH375869O2f27JsK6m43mWr8onOAtK52/SVzHMcAWAFgDc/zL7k2r+A4bjSAca4vG4B5PM8LAI5zHNcTwGIAW1wByv0AHuR5/jNXndcAyAMwA85g6nYf1EE8JJmcAVCNKEClNZzernHNBzKZatqlXcS/Da+uwbwhI+AoLqp3vyCLZ83/AZxzgNSudYAsrnWECCGE+J8tWzbE/fe/t+Q89NBjGR9++H74ihWP9QgJCU0ZPvw80/fff2NcuXJ50q23zs0eNWpMVVZWhmbdujXxOTlZ2uefX3vKbDaz998/P7l//4HV69a9mqJUquQ9e3aHb9r0atdhw0ZU9+8/wFL7tbZv3xqxbdumuEceeeLkRRdNqnfy8YgRI894IltRUaH4/PNPIgYOHEzpas8B7d0DxAHoBuCt2ht5np/M8/zTAMYA+MkVuLh9B4DjOC4SwCAAga5t7mMrABwEcKFrky/qIB6SrM6/QRZRhMo19wcAwpVKcAEBcFAabFKHJEnQOhxQsiyCIutfBFWCCIfkqHefSq2CmmWhtNshSzQPiBBC/NH48ReVzJ59U3HPnsm2RYuW5CYl9TDt2rUzEgC2b98aM3HipJLrr/9vcWJid9vYsROq7rvvgcxff/0lJCsrQ202m9hp06YXPfzwsszk5F7W7t2TbHfffV8eAKSmpuhqv87OndvDN29+PW7ZsifTGgp+6qqpqWEXLZrfw+Gws/Pn35/t+3dP/E17d/Mlu/41cBz3JYDBANIBPMnz/McA4gDUzeaR5/o33rUfAOperHmu/fBRHV5RKn0fXyoU7Bn/+hvJ5g6AJOh0BrCss/d6gqkUN/Tqh58qK1vlvPiav5/nzkKhYJGfn49QpXMNoIik7vVeHw7GAUkWT19PtSk1SmwbPBwKhoFUVQFNeHirt7ujoeu57dC5bht0njueIUOGVdf+meN6mw4dOmgEgPT0dP3Jk2mG77//Jsy9X3Yl9kxLS9VOmHBx1XXXzSn65JMPQ0+eTNXn5uZoMjPT9QAgitLpD4by8nLV+vVrExQKhRwXF3925px6FBYWKBctmt+zsLBA88wzq09065Zob/m7Jf6uvQMgo+vfNwA8DuewtKsAfMhx3MUA9HAOX6vNPRFA69qPBsqEur73RR3NxrIMQkIMTRf0ktGoa7pQO6iyOwMgqyQiODQESteNraxWAzYT4LC16nnxNX89z53JkSOZCFc7p9tF9kiAvp7ro8zsAKtioNWdPS1Pa9CiUhKhVyihhKNDXV9tja7ntkPnum3Qee44lErlGWsVyLIMllXIzu8l5sor/1Mwbdr00rrHRUVFO4qKCpW3335j78BAozBy5KiKoUNHVA0YMNB0zTVXDqhdlmFYPPHEU6mbN78eu3Ll8sRNm95MYevJLOqWmsprFy1a0FMURebFF1/h+/TpZ2mwMOlU2jsAckfZz/E8v831/SGO44YAWAjAAkBT5xit61+Taz9cZSx1yrjHdvqijmaTJBlVVb6fk6BQsDAadaiqskAU/W+4TzmjxAf5uaiUJIx0yHA4nL9incIZCIkWK8rL/T8Rgr+f585CoWCRnXYSca6U6RalHrY61wfDMDBJVtSYLLAKZz+Ys+tE2CQJegVQlFsIRXhMm7S9I6Hrue3QuW4brXWejUYd9Sq1kmPHjhguvviS00PSUlKOBSQlJZkBIC4u3pKdnant3j3p9MPo/fv3BrzzzltRDz30WOYnn3wYVlNTrdy166MjKpVKdtXnin7/jauCg4McY8eOr4qMjLTPnXtzny1bNkTdcssdhfW1JzMzQ33vvXclBwQEiC+8sO5EXFzX+sdZk06p2QEQx3FKOJMTTASQCCAIQAmATACfA/iF53lPVyTMcf1bd4jaUQBTAWQAiK2zz/1zLgBVrW0n65T52/V9tg/q8IogtN6HnyhKrVq/t6p1euzMzUZIaBhG1FqYUlQ5Y1DG7vDLdjfEX89zZ1KYmoo4ADaWhaRQQapzvhUKFg5RgF1wQKpnsVOHJMDuGitRU15Bv69G0PXcduhct41z+TyzGl2bR2otec2PP94TlZCQaO3Xb4DpvffejcjMzNAtXvxoBgDMmnV9wTPPrOi+du3q2Esvvby0oCBf/cILz3QLDw+3R0VFC1FR0XabzcZ+8smHIcOHj6g5eTJN+8ora7sCgN1uP6tNvXv3tU6fPrNgx45tsePGTaxISupx1nC4J59c1k0QHOyjj65IValUcmFhwel74qio6LOz7pBOxeMAyJUtbR6cGdPiAJTDGfSYAHSFM2B5GEAex3GrALzO83xT4y//AlANYCSca++49QeQBuAXAHM5jlPwPO9ecGsiAJ7n+SKO4yoBVMEZkJ10tTMYwBAAL7vK/+SDOoiHTK4011qt/oztstrZ6aYQ6G8KOVNVjvM5iKCrfygLwziDHEGqf809URLhfmxnq6Esg4SQzk2WZYlR64UA7jwl2iGZFaPWC7LU/JWnJ02aUrx799tRL774vC4hIcH89NPPp/bt6xxydtll08plWT61c+ebMe+//260Xm8Qhw0bUXHffQ/muPenpBwv2LBhfdd161az4eER9smTLy3Zv39f8PHjRw0Aiuu+3rx59+Tv2/dTyMqVy7tt3PgGX3soXH5+nur48aOBADB37k196h67d++fB5r7/kjH4lEAxHHcCADbAIgA1gN4l+f5k/WU6w/gUgDzASzgOG42z/P7G6qX53kLx3HPAniM47hcAL8DmAVgEpxByjEADwLY5Co3AsC9cK7ZA57nbRzHvQxgFcdxxXD2GD0HZ6/P+66X2eyDOoiHrCUliNJoYNSdGQDBlQabFTv0wtGkFWQWFWFfVTX69+lb736GYWCvZ+ibmyhJEBjnHFg7pVknhHRysgzRIqnyGVVwu4zVkyVZkmU0+8M8MTHJ8uCDS3Ma2j916hXlU6deUV7fPoZhsGjRktxFi5bk1t5ee3jb/PkL8+bPX+hOcgWNRiPv2vXR0frqi4mJdVCQc27ztAfoTQBLeJ7/oLFCPM8fhnM42yqO466GM2hKbuKYJzmOMwNYCaALgOMAZvA8/wMAcBw3GcBaONNS5wN4oNZ8IQB4zPU+NgLQwdnjM5nnebur/qKW1kE8p/7rINb1H4wfHHV6erTOp/uqBp7ik3PXLxnp+KyiAu8+80K9+xkGsAoNdyaLkgjxdADk//PLCCGkpWQZoizL9IFKiJc8DYD6NzcY4Hn+XY7j9nhYdjWA1Q3s+wPA+Y0cK8KZPW5xI2VaXAfxjGRzJtiTFKoztlsj4/HO17uQZbHgelkGw5ydzpice6qqqlBRUQEAiIuLa7CcVbA2uE+URWSxDHJLi8Ep2zuvCyGEEEL8nUd3C972hFAPyrlHtjmf1EuqMy8tR0w3vJfv7Lm2WMzQ6ylVMQGys7MQpFRBFRTU4DUhQYJDbHjumChJOKRTY//Bk3giIKC1mkoIIcRLNNyM+BtP5wA91pxKeZ5/wrvmkA7PFQDJqjPXa1GpNGAYFrIswWQyUQBEAADZWZl4qd9AaBQK2AsLoI6KPquMKItNBEAidHrnHDOLhZZwIIQQQkjjPB0vsrzOzzIABs6kCCUAQgCo4VzXpwwABUDnKoczH5ekOnPpJVYS0SMoBILdArOZ5mkQp4KMdMS7hq0pg0PqLSNBgiA1EgDJErRaLZQMA2t1dYPlCCGEEEIAz4fAnc40wnHcRAA7AdwN4D13ammO4y4BsAnONNnkHMW6n9SrzwyA1FVlWNmjJ6ocjtOpsgmpyMwEANhUKrCauusVO0my1GAKbMDZAzTcaseNQ89D1sm0VmknIYQQQjoPb1IovgzgUZ7n3621rg54nv8CwCNwZnMj5yhWcF4S7nV/3CSlMymChmUpACKnWQudGUylwMB69zOMcwic0MgQOEmWwKic15dsp2mHhBBCCGmcNwFQPICsBvYVA4jyvjmko+NVKnxRVACH/swbWsk1J0ijUMBmMbdH04gfkiucSz6oIyLq3c8wjDMAamwInCSC0TivL8bhaLAcIYQQQgjg+Ryg2v4GcA/Hcd/wPH/6boPjOC2cC47+5qvGkY5nPyTszcrArIuCztguKf9NimCtocUqCeBw2KFz9dgExnWttwzDAKIowtHIArqSLIPRuobPCRQAEUI6P4aBgmGY9lkIVfZuIVRC/Ik3AdBDAL4EcJLjuC/wb6/PpQAMAMb6rnmko3EPb1PVGQInK5SQZBksw9BilQQAkJeXi0jXXLGg+Ph6y7h7gMRGeoAAgNW6eoAaCZQIIaQzYBgoZKUYYxYt7bLwmU6pExhBke9vQdDatatjv/vuq7A9e7447Okx27Ztivzoow8iS0tL1VFRUbarrrq64OqrryttzXYS/9Ds/zw8z//IcdwoOAOhywGEwpkJ7hsAT/A8T7OQz1GyJEFrtcCoVEJVJwkCGAYCGGeqQBP1ABEgIyMdf1dVQGkwILGBAAhgYBcFyE3UxWqcc4BYUfJpGwkhxN8wDMOaRYvy95xDksVhbdM/ejqVlh0RN0hpYAJZWZb9KgBqrh07tkVs27a5y333LcoYMGCw6Zdf9hpffvnFboGBQeKUKZdVtHf7SOvy6ukBz/MHAcz0cVtIBydWVeE+gxHSwKH4vk4PEAA4GGeudIHWaiFwBkCfFhaAHTEcVyd2hyCc/TnOMIBNsDVdmSuDnEKmAIgQcm6wOKySyW5pjz967TL0ztdqamoUc+bclHv55dPLASAhoVvJJ5/sifzzz9+MFAB1fl53n3IcNwXAxQBiADwMYDCAAzzPZ/qobaSDkWxWAIBVEqHS6M/a/6dSh6KsVHQZNLCtm0b8UGZmBgAgKSmpwTIMw8DqQQAkBurwR3kZ7AYDLvRVAwkhhPjE6NHDhs6bd0/Wt99+HZqeftIQFRVtvfnm23MnTZpS6S7zzTdfBm3dujE2NzdHFxISar/wwvFl8+bdk6/RaGQASEk5pn311Ze7HD9+LNBqtbBhYeH2yy+fXnTTTbcW1feaW7dujNy6dWPcQw89dmry5Esr6u6/4467CtzfOxwO5tNPPwrJzc3Rzp59U14rnALiZ5odxXMcp+c47isAnwK4GcDVcC6EOg/AAY7j+vq2iaSjkGzOG1WrKEGlOntNl4P6EOzKy0GVRE/pCVCQmY4wtRpJ3bs3UkqGXWg6tbUjMhTPnTyBj6ormyxLCCGk7W3ZsiFu/PiJZa+/vu3osGHnVa5Y8ViPP/74zQAA33//jXHlyuVJU6ZMLdm8ecfRBQvuz9q798fQpUsfSAQAs9nM3n///GStVietW/dqypYtbx0dPfrC8k2bXu16+PA/urqvtX371oht2zbFPfLIEyfrC35q+/XXXwImTBg15Pnnn04cM2ZcaVPlSefgTTfmUwCGApgIIBwA49o+G0AugBW+aRrpaETX0DarJEKhOnsInHtekIWGwBEA4SVlWD9gCGJ//aPBMiJEOBpZBNVNqXZ2ZlutVp+1jxBCiO+MH39RyezZNxX37JlsW7RoSW5SUg/Trl07IwFg+/atMRMnTiq5/vr/FicmdreNHTuh6r77Hsj89ddfQrKyMtRms4mdNm160cMPL8tMTu5l7d49yXb33fflAUBqasoZAdDOndvDN29+PW7ZsifTLrpoUpNPxZKSeljXr998bP78hRn79+8NfeGFZ7q0zhkg/sSbIXDXAHiI5/nvOY5TuDfyPF/AcdyTAP7ns9aRDsVWXQ0AsIoi1JqzHsggSKFEnFYHiZIgnPOqq6sR6FrcNLhbQoPlRFlqMgMcACjVziQIdisF14QQ4o+GDBlWXftnjuttOnTooBEA0tPT9SdPphm+//6bMPd+2ZX9Ji0tVTthwsVV1103p+iTTz4MPXkyVZ+bm6PJzEzXA4AoSu4H8SgvL1etX782QaFQyHFx8R5MIAUiIiKFiIhIoV+//pby8nLVzp3bY+fPvz9PrVY3lX+HdGDeBEDBADIa2FcOIMDbxpCOzVpdBQCwSRKUKvVZ+8dWFWJ2v4HYV1XV1k0jfiYjIx0xGmcvYVAjAZAMCYIHPUAauwNvDRkBlmEgyzIYhmnyGEIIIW1HqVSeEVDIsgyWVcjO7yXmyiv/UzBt2vSzUlBHRUU7iooKlbfffmPvwECjMHLkqIqhQ0dUDRgw0HTNNVcOqF2WYVg88cRTqZs3vx67cuXyxE2b3kxh2foHO3333dfGuLiu9uTkXqeHDiQl9bQIgoMpKytVRkfH0MJynZg3Q+COALi+gX2Xu/aTc5DNtcCpA0B9f3BEpfMpvWynvynnuszMdMRonQGQNiamwXKSLEEQm+4BYvVaKFnWGQAJTZcnhBDSto4dO2Ko/XNKyrGApKQkMwDExcVbsrMztd27J9ncX4WF+aq1a1+Iq6mpZj/+eE9YTU21cvPm7Sl33bUgf8qUyyoqKytcD/H/jauCg4McY8eOr1qy5JGMU6fS9Fu2bIhqqD0bN74at2XLxuja244e/ccQEBAgREZG0Y1KJ+dNAPQkgNkcx30C4FY4r7yxHMetA3AngGd92D7SgdgNBnxZVIBjtvrnYUhKV6+Qg/6unOsy0k8h2tUDpOsSW28ZhgFEWfSoB0ih+zfpho0W2iWEEL/z8cd7ovbseS80LS1Vs2rVyrjMzAzdtdfOKQSAWbOuL/j9919D1q5dHZuWlqrZu/enwGeffSrRZKpRRkVFC1FR0XabzcZ+8smHITk5Weoff/zO+Pjjj3QHALvdfta9bO/efa3Tp88s2LFjW+zJk2lnZ2UCMGvWDfl79/4Y9uabWyNOnTqp2bnzzfA9e96Lvu66OXkN9RqRzsObhVA/5DjuBgDPALjUtfkFAEUA5vI8v9uH7SMdiDkkFJuyMhAd2xUD6tkvu4bFMRQAnfNKTp2CimUhMQw04eGwVJ0dNDMM04wASA1JlsEyDCzVldAFB7dCqwkhxH/oVNo2v0tvyWtOmjSlePfut6NefPF5XUJCgvnpp59P7du3nwUALrtsWrksy6d27nwz5v33343W6w3isGEjKu6778Ec9/6UlOMFGzas77pu3Wo2PDzCPnnypSX79+8LPn78qAFAcd3Xmzfvnvx9+34KWblyebeNG9/g6wY106ZNLxdFIf3tt3fEbNr0Wtfw8HD7HXfcnTVr1vUl3r5H0nF4uxDqWwDe4jiOAxAGoAJACs/zlN/4HGaxOJ+8a7VnJ0AAagVAYodePJr4gK0gFzAYIRmNYBSKesswDCCKEgQPkiAwSgXskgStQnF6KCYhhHRGsixLOqVOGBE3SIl2WJRUp9AJstD8VacTE5MsDz64NKeh/VOnXlE+deoV5fXtYxgGixYtyV20aElu7e233HJHofv7+fMX5s2fv/D0Gj4ajUbeteujo421afr0mWXTp88s8/xdkM6i2QEQx3HfAbiT5/kUnuf5OvsGANjO83x9HQCkk7NUVCBQqYROc3YKbACQXamxFRQAndMkSUJKbi72BFbj6osubqSkqwfIg+tFkiTYZRlaAFYKgAghnZgsQ2QERb6BCWyXcVqyIEuyDPogJx2aRwEQx3Gj8e9ThnFwzvmJrKfoVAANL+tOOjXDoUPYNGgY9kkNZI5UuwIgWgj1nJaXl4v0qkrkWMx4cNa1DZZjGMAhCpDRdCZSUZbgcJWzm8w+ayshhPgjWYYoyzIFIYR4ydMeoFsBzIEz4YEM4BU4F0CtfWfizjv7ls9aRzoUyW53/quo/7KyhMXg44I85AkirmvLhhG/kpaWCgBITEyCUtnwnyCGYWAX7R7VKckS0ux2ZNTUoG/zR2YQQghpRXv3/nmgvdtASG2eBkALAGyBM8j5DsBdAI7VKSPCOReo0fGWpPOSHc6bVbmBAMgaFY83c7LAsiyt1XIOS0s7gd4BgeiTmARZbrh3h2EAm6cBkCThfZsJ6SdP4TW93ldNJYQQQkgn5FEAxPN8JYAfAYDjuPEADgAI4Hm+wLUtBEBXnudpDaBzmSu7m+xa76culWsInCRJsNvt0GjqzUxJOrns1BN4vFdfoLQUksWCxtZOtgkeLeQNSZagda0rZGsgDTshhBBCCOBd9pC/AXwA4Ida284DcIjjuD0cx9Hj13OU3EQApFYoEKZWI1KtgdVqacumET9iysoAAIh6AxSN9NZIkODwYBFUwDkHSKN1BtQWCwVAhBBCCGmYNwHQMwD6Ani41rbvAFwBYBiAJ3zQLtIBudNby6r6AyB9VQnWDxiCZVwfWCwUAJ2LBEGAosyZ5VTdpUujZSVZgujBGkCAs1dxukKD7UNGQMuntLidhBBCCOm8vAmApgFYxPP8++4NPM/beZ7/GM6g6GpfNY50LIzgelqvqn9om6R0rgOkVbDUA3SOys7OQqzaeR0EJnZvtKwEyaNFUAFAhgylgoWaZSHSEDhCCCGENMKbhVADAdS7UBWAQgDh3jeHdGTZKhWO5efCEs/Vu989NE7DKigA8nO5uTl47bX/wWKxYM6cm9G/v2+W9kpLO4GuOuewN02XuEbLOgMgz4bAAYDEKpxH2T1LnEAIIYSQc5M3PUAHAdzSwL6bAPzjfXNIR/a7ksXL6SdhCgiud7+7B0jNsrDQWi1+q7KyAnfccRM++ugDfP31F7jttjn4+++/fFJ3Wloq4nQ6AIDGgyFwnvYAAYCkVDj/tXmWOIEQQggh5yZvAqAnAVzJcdyfHMct5TjuNo7jHuY47jcA/wGw3KctJB2G1eoceqRscAjcv3ODLDU1bdIm0nyvvfYKTIUFuI3rjYXDzoNOFPHII0tg80FgkZlyHMEqNWQA6pjYBssxDCDKIkTR8wBIVrkCIAf1ABFCCPFfo0cPG7pr19thjZU5eTJNM3r0sKHXX/+fPm3VrnNJswMgnue/BnA5nIugPgHgNQAr4BxOdwXP81/4tIWkw5CtFqgYBiqVuv79tdYHcphNbdUs0gxVVZX4/uM9WNGrHy4ODMJIMFjTbxBQXITdu99pcf3HT6Tgf+kn4Rg2HGwjadAZhoEoNa8HSHYtqirbHS1uJyGEENKePvzwvfCYmFhrZmaG7sCB3w3t3Z7OxpseIPA8/znP88MBGADEATDyPD+U5/lPfdo60qHcBQV2DD0PgZJUfwGGgd218KWtproNW0Y89d133+A/4RGI1GigDI+Apms8HNExKLLbsGPHNgiC53Ny6iorK0Nmfh5+LC1G4uz/NlrW3QPUnDlAcPUAMS1oIyGEENLeRFHE999/G3bRRZNKu3SJs77//q6I9m5TZ+NNEgQAAMdxvQFcDCAGwMscxw0G8DfP8826s+U4LgFARj27buN5fiPHcYMAvARniu1SAGt5nn++1vEsgGUAbgUQAmAvgDt5nk+rVabFdZDGybIMFcMAABiNtsFyf0oMykvy0Z1uUv3SwW+/wnWhzjwmsfPugjoqChGiBP2vPyMvLxfff/8NLr74Eq/qTkk5BgBISOgGg6HhxU8BZw+QJIsep8EGAItBiyNVlbAa6EEZIYT4E5PJxL700vNdfvnl5xCLxaLo1q27+a67FmQPGTLMDAB//vm74fXXX+mSnn5Sr1Ao5OHDR1YsXLg4JyQkRASAK6+8pP/06TML//77r8BDhw4aDYYA8frr/5vXo0dPy5o1zybk5+dpEhISLY89tiI9MbG7LSsrQ33ddf/pv2jRQ+nvvPNWdEFBnjY+vpv57rvvzR4+/LzTQ1Dee+/dsN2734kqKMjTBgUFOSZPvqz4jjvuKmBZFu46nn12zYlRo8acvrcdPXrY0AULFmXMnDmrdO3a1bGHDx8KHD58ZMXHH++Jqq6uViYnczUPPPBwZs+eyTYAyM3NUT377Mr4o0cPG/V6g3DrrXNzmjpfP/74nbG8vEw1cuQFVXa7g3n//XdjysvLs93ng7Rcs3uAOI5TcBy3AcARAC8CeBBAFJwBxCGO4xpP7XS2AQCsAGLhDKbcXzs4jgsD8DWAE3AGL8sArOA47qZaxz8KYC6A2wCcD+fQvM85jlO72tviOkjT3IugAgA0DS9u+Q2rxrbsTFAKBP9jt9uhz8gAyzBAYiK0Cd3AanXQGwy46qprAAAf7nm/iVoalpJyDOPDIjC2R0/ITQbADOyiALkZ9RfHhOOJE8fxp8Krjm1CCCGtZMmShd3/+OO34PvvX5KxYcMbx7p0ibMuWbIwubS0RHnw4J/6RYvmc/HxCdaXX3495bHHVpw6cSIlYP78uclSrREl27Zt7jJ8+MjKzZt3HB02bHjF+vVr4194YVXCnXfOz169+mW+oqJctW7dmjOy67z22stdZ826vuC117Yci4uLsy5efF9yZmaGGgC2bNkQuW7dmoRLL51avHHjm0dvvPG23A8+2BX93HNPNes+NjX1hOGffw4FPv30C6nPPruGLy4uUj///FMJgHPtu4UL706uqqpSrV79Mv/YYytOvfPOjpim6vz004/CIyIi7QMHDjZfcsllZQ6Hg/ngg12NzhkizePNncIjAK6Hs7ckGgDj2n4/AAWAlc2srz8Anuf5fJ7nC2p9WQDcDsAGYB7P88d5nt8CYA2AxQDgClDuB7CM5/nPeJ7/G8A1ALoAmOGq3xd1kCbItVIPM2pdg+WUrkxwNlqrxe8cPXoERpaFJMuIGn/RGfsuO38UFiT2QM/sLJSVlXpV/8kjhzEvMQlTK6ubzNTGMIBdbF4yA7XGeW1RinVCCPEfaWmpmr/+OhC0YMH9mePHX1TVvXuSbenS5VkTJlxcUlZWpti5883orl0TLI888ngWx/W2jho1pnrZsidPpaef1P/ww7dGdz2DBg2pvPbaG0q6dUu0z5p1Q5EoiswVV8wouuCCC6sHDRpivuCCC8uyszPPuAH5z39mFVxxxYyy5ORe1uXLn8oMCAgUdu9+O0KWZeza9XbMlClTi2bPvqk4KamH7corryq7/vr/5n322ceRlZWVCk/fnyiKzIoVz6T369ffMmLESNO0aTOKeD4lAAD27v3RmJubo33ssRXpAwYMMg8bNsK0ZMlj6Y3VV15epjhw4I/g0aMvLAOAnj2TbQkJiebPP/+EhsH5kDcB0M0AHnMFEqfvhHie/wfAY3AOi2uOAQCONbBvDICfeJ6v/bj4OwAcx3GRAAbBuS7Rd7XaUQFnqu4LfVgHaYJ77RVBkqBsZAicXqlCiEoFO6XB9juHDh3A65np2G4MQPCIEdCoGCiVzj8RUfoAXBAWjonhkfjukw+9qt+S4fybLxqNUDQxTI1hAJvQvABIoXZmGaTgmhBC/AfPH9cDwODBw04PPdNoNPKSJY/m9OyZbMvMzND17t33jNSwffr0s+j1ejE19cTpISVdu3Y9/eRMp9NJABAX9+82tVotOxz2M+5rhw8/7/TQNZVKJXfvnmTOyEjXlZQUK6uqKpUDBw4643WHDh1RLYoik5Z2ouEbmTqMxiBHSEjo6aFpAQEBoiAIDACkpaXqDAaDmJjY/XQ7+/cfYFGrNQ1MlgY+/PD9MEEQmEmTLi1zbxs7dnxZfn6edu/enwI9bRdpnDdzgKIAHGpgXw6cc2iaoz+AfI7jfgaQDCAVwAqe57+EM8HC4Trl81z/xrv2A0B2PWXiXd/7og6vuG8efUnhGt6j8LNhPoLoHAJnlySo1FqwLFNvuauFGsQOHIqDZaWtcn58xV/Pc2s6dOggAKDP8POg00hw5B6BKiQaioAoKPr1hclohKGqClXffQvlzbc2q+7KykqEWpw9MwE9e57+3Td0nhUKFnbJ3uB1VJ+IKhM2DhyKMonx62urPZyL13N7oXPdNug8dxxKpVIGAIZh6h3VLMsymHr+1MuyfPpYAFAolGcd39RnRO3j3XWyLCvLroRMTJ0XliSRAZzBUu1j3BwOx1kvqFKd3a66r1mXQqFo8Jivv/4iHADuuuvW0+mv3XXs2bM7YvToCymLlA94EwClAbgUwDf17Bvn2u8R1/CzZAAmAA8AqAFwA5zzby4GoIdz+Fpt7se7Wtd+NFAm1PW9L+poNpZlEBLSepOxjcaGh5m1h4piV3Y3SUJAYAB0uvqnT0kKJSA6wEpCq54fX/G389yaeP44AGDU+cPAVORCKs2EJJihDwqB0hiEHjdci/xXXsMgMKgozkVicrLHdR88+Ct6BTpHMsQMH3rW777ueRZEAayCgbaB66g+slYNo0oFi9gxrq32cC5dz+2NznXboPPs/5KSeloA4O+//zKMGTO2GnDOjZkx47L+t946NychoZvl2LEjZ2TGOXLksM5isSi6d09q0ZjmI0f+0ffp088CAHa7nTl16qRh0qQpxRERkYLRaBQOHforYPLkSyvc5Q8c+DNAqVTKCQmJNrPZxAJAdXX16eFw6eknG16/oR4c19tsNpsVKSnHtL169bECziGBFou53iF2hw//o8vMzNBdddU1+Zdc8m8PEAC8/PKLXf/447fgwsICZVRUNGWSaiFvAqAXAbzmCl4+hjNhQE+O48YDWARgoacV8Txv5zguGIDA87w7ADngyjC3CIAFQN2Lzd0taXLth6uMpU4Zd1erL+poNkmSUVXl+2FeCgULo1GHqioLRLHBHtQ2V1Zlwb7SEpglEbESC4ul/uFLOsb5tM5htqC83H/XAvLX89xaysrKMD8kHHJwOKIkCaaCHDgsdsCaBwRGgYlQI3jY+TiO1xCsVGLvqxsQ/Ohyj+vf9/MvuMCd+S2u2+nffYPnWSHBYrXB2sB1VB9J7fxzppTh19dWezjXruf2ROe6bbTWeTYadR2iV4lhoGAYpl0aKsuyJMvwOBtZjx49bSNGjKxYu/aFeIZhsqKjY+zbtm2KFgQHO2rU6OrY2C72hQvv7vXkk8vir7762qLS0hLliy8+n5CQkGgePXpsi3o7tm3b3CU0NFyIj4+3bd68IcZms7IzZ84qYRgG06fPLNix440usbFdbBdcMKbqn38OGXbufCP2oosmFwcFBYlGo1GMiIi07dr1dlRiYnerxWJh161b3VWpVHmcn+eCC8ZUJyX1NK1YsSxx4cIHshQKpfzii8/F1+15cvvoo/fD1WqNdOONtxbWzfh2ww035j/wwALje++9G37nnfMLWnJeiBcBkCs1dQSApQDmwZkEYScAO4BneZ5/tZn11XenchjAJXAOS6u7XLz751wAqlrbTtYp87fre1/U4RVBaL0PP1GUWrX+5rLq9HgpPQ0KhRKPMgpIUv1/H0TW+dBDsjv8qv0N8bfz3FqO/fMPEvUGKBgGBr0alvxyQJIByLAV50IbHANRUsHcpw+Cjx1DUGoqHHYBDOvZ52/eX39Bq1BAUKmgiIw+65yedZ4ZEQ5RaPA6qpfa2VukROv+3+vIzpXr2R/QuW4b5+J5ZhgoNJIjRjSbvV7KpCUUer1gY1X5zQmCli9/Kn316lVdV65c1t1ut7M9eiSbnntu7Ynw8AghPDxCWLFiVermza/H3n77TX10Op04YsTIinvvXZRTeyiaN6ZMmVr86qvrupaVlap69Eg2rVnzCh8dHeMAgNtum1eoUqnkPXt2R23cuL5raGiY/aqrri649dZ5BYBzeNzSpcvT1659If6OO27qExYWbp8z5+a8bds2qRp/1X+xLIs1a15OXbXqyfjFixcmq9VqaebM6/KLiorO6kmy2+3Mzz//EDpmzNiy+tJdn3/+BTVJST1MX331WcTcuXcXsB5+/pL6Nfs/D8dxITzPP81x3P/gTBkdBqACwK88z5c1evDZdQ0A8AuAS3ie31tr1zAAR+GcazSX4zgFz/Pui2EinFnjijiOqwRQBefQu5OuOoMBDAHwsqv8Tz6ogzTBanWOKlRrGu8dlhSuvxu102aTdpdz6CBCGQZWhgFgBWqlHrVXl0FrqYZCF46B189B+uJFCFMqkf7Nl+g+aUqTdQuCAEV+HhDTBcqEbh4FTRKk5i2CCoDVOzt2VQ08WSOEkM6AYRhWNJuVpb/9JglmS5tGf0q9jg077zwlExjMyrLscQBkNBql5ctXZgLIrG//2LHjq8aOHV/V0PF79nxxxlzu+Phu9r17/zxQe9v8+Qvz5s9fmFd725AhQ2vuvvve/IbqvfHGW4tuvPHWoob2Dxs2wvTGG+8cr73tiitmnL7Xre81Z86cVTpz5qzTScJCQ8PEVavWnJH57aabzn5NtVotf/HFD40+eN+27e2UxvYTz3nz9OB3juMe4Xn+HQBftvD1j7i+1nMcNw9ACZxpq88HMBxAIZzrDG3iOO5ZACMA3Avnmj3ged7GcdzLAFZxHFcM54Kqz8HZ6+NesGSzD+ogTbCazVAwDDSNZIADAEnpuuQoAPIrlkznZ5IlwADRfOaIA9lhh1BZBEVABEKiovGeRo3MjHQkpqV6FAClpBzHR7nZyHI4sO7BhzxqjyRLEJqxCCoAsFpnD5CaZVyTaikQIoR0XoLZIgkmU3t0f1HXA+nwvLmIQ+AMVFqM53kJwOUAfgewC8BfAM4DcDHP84d5ni8CMBkAB2da6mUAHuB5flutah4DsAnARgD7AAgAJvM8b3e9RovrIE2z//0Xdg49DwtiG18/THb1ADEiLWbsTxSutX0UkeEQLWePSnVUlYIVnL18EZdOxceF+fj02689qvvXX/dBAhDUtx8MyVyT5RkGEGUJYnMDIFcPkJJh4aBU2IQQQghpgDc9QC8BeI7juPsBHOF5vrglDXAdf0sj+/+As0eoof0inIuaLm7NOkjjBIsVagASy6Kx1cMqjKH4NuUgyoOD2qppxANBNhug1SEwPg6i7ezkHYKpCrCbwKpDMH78RXjyyWU4eTIVaWmp6NGjZ6N1//rrLwCAkSNHedQWhmEgSiKEZgbJrEGLk6Ya2CUJ0SYz1FrKDkUIIeei+obIEVKbNwHQHAAJcKXB5riznujKPM+3y8Q80n4Eq/OmWWQaD4CKIuPxZuYp9FQ33RNA2obJVIMohfO/bGT3OEA+O+uoZLdCMlVAoQuD0WjEqPMvgOPwYZStexGOZU9AFRpWb90Wixl9ioowML4bRnRP8qg9DANIktjsIXCMRoWl/DFIkoRRzTyWEEIIIecObwKV7T5vBenwBKszi7nYxAR3pcqZJMFGQ5T8Rlb6KaSaatBFb0CPcCMclfUvu+CoLIEmvBscACZNvgy2gkIEm0yo+PYbRMy8pt5j/ty3FxeHRUCjUCC6gSDpbIxXQ+BkyNBqtTCbzaeTchBCCGl/o0cPG+r+vm7PzP79+wIefPBe7uef/zi9fe3a1bHvvvtWTH11jRs3sfTJJ1dlNFVHS9u6dOnyk1OmTK2ou//OO2/t+c8/h4wLFizK6NKli/3BB+9LBoDevfvUbNjwBt/S1ydtw5sAKB3AdzzP5/i6MaTjkmyuAEjRWP8PoFIqoWMVYGw0vcpfZOXmYFUajyGDB2MM03DQIVqqwQgWADqMGzce961ehX7GIJT98B1CL5sKhf7sxUfTv/gUIxUKVKlU0DajB8ghCpDRvOynkixBczoAatHaeYQQQnzsllvmZl966dQzsgX/8svPgcuXL02S5TP/3t988+0F11xz3RmZ0t57793w3bvfjpk164ZCT+poCYVCIX///TchdQOgsrJSxbFjRwLdPw8bdl7Ne+998vfzzz8dX1FR7nF6bNL+vEmCsBrONNWEnCbZnQGQzDYeAHUpycO2IcNxY2h4WzSLeCAzMwMA0K1rHER7wz0ngsUE2WaGQsHCYAhAwIBByLKYwdhsKP1oz1nl7XY7Ygqcn1PqwUM8zsrGMAzsYvMDZEmSsLhLPF4fOAS27KxmH08IIaT1BAQEiFFR0QLgXB7hqace7/rQQ4t6RkZG2eopK0VFRQvuL7PZrNi9+52YW265I6dfv/4WT+poiX79BlQdPPhnsMViOeOD68svPwvp0SP5dKYgtVotR0VFC2q1+txajKoT8CYAKgIQ7ON2kA5OtjtvWE+nuW6I2rVWSzOf7pPWk+0KgOLjYk8HsvWRBQdEcyUUCufnwSVTpmJbtjN9dsV338KakXFG+b93v4sErRZWSUKva671uD0MA9i8CYBkGYFKJYJVathr6ltfmRBCOg+lXscqDYa2/dLrfJICu6amRpGaesLw9NPPp15xxVUNrsPj9tJLz8d17drVcu21s08n3mpuHQBw221zuKVLH+jW1LaRIy+olCQZP/zw7RkZm3744dvQceMmNGvNS+KfvBkCtwHA/ziOGw/nGj6FdQvwPP9GSxtGOpZKtRo5FeWoiu2GxvK7MVpXqmLQWi3+YkBhIaYPGgar2QpZaHx9JqGqDOpwAQCD8eMn4LnnVmJ/WSnODw1D/qv/Q/zSx6AIDIRYUwP2+28BAJmhIRgQFNysNtmF5gdAMmS4l04VLDQEjhDSOcmyLCn0eiHsvPOUaIc1eRR6vSDIcot6PIKDg8UtW3akAMCuXW83OkH00KGD+j///D141arVJ9ha84ybU0dzabVaaejQYZW1h8EVFRUqeZ4PWLnyuVOvvvpyvC9fj7Q9bwKgF1z/zm5gvwyAAqBzzKkgIzan8bgoeSC6NlKOVTtTE6tZFna7HRqNpm0aSBqkt9kRoNFAbTx7Dk9dotUERrQB0EKlUmPWrBvw2itrwQUFI7SkGGb+OAKHjUD2118iUJZRZLOi180PNKs9MmQ4RO8WyhVcAbWD5gARQjopWYZoY1X5TGBwuyxIKsiyJMtos1SbO3duj0pK6mm64IILq5su7Tvjx19Utnr1qkSLxcLodDr5iy8+Dendu091eHiE0PTRxN95858nsYmv7j5rHekwLBbn3BGVuvGAhnGtzaJhWcoE5wckSUKIK2gIjm76AZpoNQEOK1jWecx//nMNFHoDVhw/jOw+fRA4bAQA4LVf9+FIVSW+MOjRs0/fZrVJlCUIkncPF0VXuwTKAkcI6cRkGaIkyY72+GrL4MdkMrG//74/ZOrUaS1ac9Ib48dfVAng9DC4H3/8LnTChItp+Fsn0eweIJ7nM93fcxynB2AEUMrzvHePbEmnYHUNOWoyAFI5h8CpWRZWqxVGIy2I2p5KiwoRqnImrgmPjQCExufOSHYbJGsNFLowSJKIoKBgzJ17N5577iksffctGEaNRkZGOj7/8jN8DuCtt3Y3u00SRIiSdw/YJJYFJECkAIgQQjq8H3/8zijLMi6+eEqFr+p0OBxMYz+76XQ6eejQ4RXff/9NyIABg0ynTp00TJo0Jc1X7SDty6vuU47jxnActx9AFYBcAFaO4/a75gWRc9CEggJsHzIC8bbGhx7JKjUAZw+QvZEJ96RtFJxMA8swcMgyVDq1R8eI1WVgmH+TWMyadT3OP/8CWK1WzJ17M555ZgUA4Lbb5qFPn37NbpMMudmLoJ5um6sHSKLeRUII6fD+/vuvwG7dEs3BwcE+63UqLCw8/aRWlmWUlJQ0+OE3fvxF5QcP/hn8yScfhg0cOLgyKCiIVtnuJJodAHEcNwrAN3BmglsB4E4ATwIIBfAlx3Hn+7KBpGNgJQlqlgWrbPwmWlRr8XtVFfaXl9JilX6gIsvZoVsDuckECG6ipQZsrSxtCoUCq1evw7Rp06FUqqDX6zFv3j2YN+8er9okyZLXAVCNSol0swk0A4gQQjq+9PRTuoSERJ/+ST95MtWwadNrURkZ6epnn30qrrH1e8aPv6iSYRh59+63o2n4W+fiTRKEJwH8DGAyz/On71I4jnscwJcAHgcwyTfNIx2Fwj1no4khcJJGh40lxagoK8ZoG/UAtbeqvFxEAbAqlZAcnmVeE61mMIINDKuEe905nU6PJ554Go888jhYloWyqXToDWAYQJRFiF4GQH+GBuDrn3/G3AvHenU8IYQQ/1FRUa7iuF4+Xdegd+8+NXv3/hSyY8e22J49k02DBw+tbKisRqORhw0bUfnbb78GT5w4qcFypOPx5i5lBIBrawc/AMDzvMRx3DpQBrhzkkKWAYYB41rnpzFKlTNIslEA1O6Kq6tRXVmOoMRunvcAWc2QHRawukCI4pnJCtRqz4bRNYRhGFcSBO8CIJXG+SCPri1CCOkYZs6cVTpz5qzS+va9++6HR1taR12RkVG2lSufy2ho/969fx6o/fPTT7+Q3lQZ0vF4MweoGkBD3YVqALSwyzno9MKmHgRAapXamQWOUhW3uyM1VXgmlUd17yTAw8VpZUmEaK4+nQnO10TJ+x4gldr5TMdK1xYhhPiVmpoaRWFhgXfDA/yU3W5nCgsLlHa7vV1SkhPvefML2wfgYY7jAmpv5DguEMBDcA6PI+cYpSvuZTS6Jss+HRmBN4eMgFBa0trNIk0oLHSuYxwRFNBEyTOJNeVgmRatg1cvhmFaNAeIq7bhpX4DwRWctT4zIYSQdrRp06tdr7pq6sD2bocv/fnnbwFXXTV14P79+0Lauy2kebyJxJcAOADgFMdxnwAoABANYCoALYCbfNc80hHIsnz6QvIkAHIA0AFwmOkpfXurdAWh4YH6Zh0n2ixQi3Y03BnsHYYBBEmA5OUi4xqGQYxWB7Pds/lMhBBCWp+/DBnbsOEN3pf1jRo1ptpf3htpHm/WAUpzZXpbBuBSOLO/lQH4HsDjPM8f820Tid8TRRw1m8GIAlht0zfS7hVeBIu5ddtFGiXLMh6OiII6MgbBQvN6XP5NhKCGLHs2dM4TDMPAJnq/pJiscv5JY0TKVEoIIYSQ+nk1FpPn+WMcxy3geb4AADiOCwUQR8HPuYlRKvF8xklYLGYs0jU9lMrBOIfLCZQGu11VV1YiWKkCyzAIDjPi39C0aaLNAtluBas3QhR9GQABDrEFvTeuJAisl0PoCCGEENL5ebMOUDDHcV8D+KHW5hEADnEct4fjuOaNpSEdnizLpyedK5WNp8EGANEVAIkUALWr0sx0sAwDQZaga+YQOEgiREtrJEJgYBW8D4AYtTsA8v38JEIIIYR0Dt4kQXgGQF8AD9fa9h2AKwAMA/CED9pFOhC73X56GJRC1XQaZIFxXnaijQKg9lSemwMAqJFkQPS898dNNFWA9TBznKdkSHC0YAgcTgdAvm0XIYQQQjoPb4bATQOwiOf5990beJ63A/iY47gQOBdKXeSj9pEOoCb9FN4YPBwldhvKFU0HQCKrAEQRko0mqrenmsJCBACwsgwkD9cAqk20mqGW7PByJG29WpIBDgAYjfP6U3qZRIEQQgghnZ83PUCBAMob2FcIINz75pCOyFpTDa1CAY1CAYVC0WT5fJUO+8tKUeXj3gPSPJYSZwY4h0oJWWh+D5BkszgTIfhwFJwECaLU/LacPl6nQYHVijIv3g8hhBBCzg3ePLo9COAWAJ/Xs+8mAP+0qEWkw7GbTM5/PcwGdigwHD+c+hJXDxvams0iTXBUOp9jyFoNPF0EtTbRZoHssIHVBUIUfdPjIqFlPUD2mDDMP3IIkZFRuNInLSKEEP/DMFAwDNMui2/KsizJMijTDOnQvAmAngTwOcdxfwL4AEARgAg45wANhXM9IHIOsZvNYOB5DjGl2jlMyWaztVqbSNOKrDbUVJYjuEukV8fLogDJWgPWEAFfZZ2WIUNsQQCkUDv/pNlofhkhpJNiGChYho2xWwXfjT9uBrVWKUiQ8v0tCFq7dnXsd999FbZnzxeHPT3mttv+m3z8+NHA2tuSk3vVbN683afrBRH/4806QF9zHHc5nMkOngDAwPn4+BCAK3ie/8KnLSR+z242QQNAgGdjoVQqZ6Y4u5UWQm1PBywm7EvlsWLqRK/rEE2VUPho0CvDAKIktqgHSKlyB0AUXBNCOieGYVi7VVAeP5Iv2axCm0541GiVbO9+MUqVVsHKsuxXAZA3srMzdfPm3ZN10UWTT0/tUKvVND7/HODtOkCfw9kLpIVzIdRKnudNPm0Z6TAEiwUa/JveuilDq4rw36Hn4XBVdes2jDSqxDUHKMxo8LoO0WqCSrQDaHruV9MYiHLLAiCVJGFVn/5QMywkSQLLtssIEUIIaXU2qyBZLY72yPjSKf6w5ufnqWpqapQDBgyuiYqKpomj55gWdZ/yPG8FkOejtpAOymFx9uQIHg5HZhTOxTcZocM/POrQKkudAVBoUNOL1zZEtFnASA74IgBiGECUpZYNgdOqkKh3BnQ2kwm6wMAmjiCEENLaRo8eNnTevHuyvv3269D09JOGqKho68033547adKUSneZb775Mmjr1o2xubk5upCQUPuFF44vmzfvnnyNRiMDQErKMe2rr77c5fjxY4FWq4UNCwu3X3759KKbbrq1qL7X3Lp1Y+TWrRvjHnrosVOTJ19aUXd/SsoxHcMw6NkzmcZMn4M6RRRP2pdNweJ4dRVKPVwUU1Y612phfDVxhDSbKIp4Ki4BWwcPQ3ALEhhIdgtkh9UnC6IyjKsHyIs1idwUOu3p72011MNICCH+YsuWDXHjx08se/31bUeHDTuvcsWKx3r88cdvBgD4/vtvjCtXLk+aMmVqyebNO44uWHB/1t69P4YuXfpAIgCYzWb2/vvnJ2u1OmnduldTtmx56+jo0ReWb9r0atfDh//R1X2t7du3RmzbtinukUeeOFlf8AMAaWmpOr3eID7xxKMJl18+acDMmdP6vvji87E2m83XK3wTP9QuE+hI51IaGobl/DEMHjYKV3hQXnYtlspKtFZLeykvKUaA0vnfPyg0CJC9mzMj2W2Q7Raw2lBILVx81D0HSGzBGj6MSgFBlqBkWFgpACKEEL8xfvxFJbNn31QMAIsWLck9cuTvwF27dkYOH35e+vbtW2MmTpxUcv31/y0GgMTE7jalUpm5ePHC5KysDLVeb5CmTZtedO21s4uMRqMEAHfffV/e++/vik5NTdH17z/g9KTinTu3h2/e/HrcsmVPpo0bN7Gqofakp5/SORwOZsCAQTWzZ99YcPz4Uf2GDa92LSwsUD/99PMZrXw6SDujAIi0mNXq7D1WqbVNlHRRO5MgKCgAajel2VlgAIiyDKVGAakFAwBEcyWYoLgWt4lhGNjF5i/IWpskS7BLMpQKwFpD0xIJIcRfDBky7IynUhzX23To0EEjAKSnp+tPnkwzfP/9N2Hu/e6VNdLSUrUTJlxcdd11c4o++eTD0JMnU/W5uTmazMx0PQCIonS6x6a8vFy1fv3aBIVCIcfFxTf6ZG/FimcyampqsoOCgkQA6N27r1WpVMnPPruye1FRYU5kZBTNC+rEKAAiLeYOgNQajWcHuLLAKTxcN4j4XmV+HoIBmGQJaMGcGwAQzTVQ+ygbql20t+h4SZbhcF1XdjMFQIQQ4i+USuUZH/qyLINlFbLze4m58sr/FEybNr207nFRUdGOoqJC5e2339g7MNAojBw5qmLo0BFVAwYMNF1zzZUDapdlGBZPPPFU6ubNr8euXLk8cdOmN1MaSoajUCjgDn7ckpM5CwDk5+epKQDq3LwKgDiOCwfwAICLAcQAmAxgOoBDPM9/6LvmkY6gS+oJvD5wCI55OnfD1VOkpPin3ViKixEMwMKykISW/Y2X7Bawoh2AukX1MAwDm9CyAAgAHK5FXd0L9BJCCGl/x44dMVx88SWnkx6kpBwLSEpKMgNAXFy8JTs7U9u9e9LpXpv9+/cGvPPOW1EPPfRY5ieffBhWU1Ot3LXroyMqlUp21eea+/PvzURwcJBj7NjxVZGRkfa5c2/us2XLhqhbbrmjsL723HzzDVzXrvHWxx9/KtO97fDhfwxKpVJOTEyixAidXLMDII7jEgHsA6AD8DOAga56kgE8ynHcFTzPf+pNYziOSwZwEMDdPM9vdW0bBOAlAMMAlAJYy/P887WOYQEsA3ArgBAAewHcyfN8Wq0yLa6DNIy12RCsUkOl8CwTmGQIwqHKChSJAia3cttI/WzlZQAAh1LR8h4gmwWyYAej0EBuUa+e3OIeIAColCRINisMjpYNpyOEEH+m0SrbPJFVS17z44/3RCUkJFr79Rtgeu+9dyMyMzN0ixc/mgEAs2ZdX/DMMyu6r127OvbSSy8vLSjIV7/wwjPdwsPD7VFR0UJUVLTdZrOxn3zyYcjw4SNqTp5M077yytquAGC3289qU+/efa3Tp88s2LFjW+y4cRMrkpJ6nDUcbvz4iWUbN77adefON03nnz+66vDhQ4bNm1+Lu+KKGYXueUak8/KmB+gFAEUAxgGoAWAHAJ7nr+c4TgfgYQDNDoA4jlMB2AHAUGtbGICvAewBMBfASACvcBxXyvP8FlexR137bgKQC+BZONco6svzvN0XdTT3vZxzXD0IstKzHgBreBesSU2BUqnE3a3ZLtIgR6XzIZyoVrW4LslmBQQrWJURouh9ACRCatEaQG4brNU4dSIN/5t7V4vrIoQQfyPLsqTWKoXe/WKUaIdsvmqtUpDk5k/inTRpSvHu3W9Hvfji87qEhATz008/n9q3bz8LAFx22bRyWZZP7dz5Zsz7778brdcbxGHDRlTcd9+DOe79KSnHCzZsWN913brVbHh4hH3y5EtL9u/fF3z8+FEDgOK6rzdv3j35+/b9FLJy5fJuGze+wdcdCjd79k3FLMvigw92R7322ivxwcHBjmnTZhTeccddBd6dGdKReBMATQRwM8/zFRzH1X3k/xqAd71sy+MA6qZtuh2ADcA8nucFAMc5jusJYDGALRzHqQHcD+BBnuc/AwCO466Bc22iGQDe9lEdpBGMewiV0rObaZXaGSgJggBBEKBU0lS0tlYqCKiuKIchKqnFdcmSCMlqAmtg0JLM5pIsQvBBanSN1jnHzGajEQyEkM5HliFKkPJVWkW7LGUiyZIky82f+JmYmGR58MGlOQ3tnzr1ivKpU68or28fwzBYtGhJ7qJFS3Jrb689vG3+/IV58+cvPL02pUajkXft+uhoY226/vr/Frszz5Fzi7f/eRqaNKBB7cGYHuI47kIAdwD4b51dYwD85Apc3L5zHsJFAhgEINC1DQDA83wFnMPoLvRhHaQR7vV8ZLVnSRCUqn97iugmtX0cERx4Jo2HqWuUT+oTTZVgWrhyggy5RYuguqlcvVru5ByEENLZyDJESZId7fHlTfBDiL/x5tH7zwAe4jjuGwDuOwzZNY9mHpzzgzzGcVwwgDcB3MPzfDbHcbV3xwE4XOcQd3Qf79oPANn1lIn3YR1eUbbC8FyF64GPon0e/NSLdd20Miq1Rwti6gU7tg4eBhYMBMHRKueppfzxPPtSZaXzIVtIoN4ni5jKdguUsgBJ6dk8MLfa51mADAlSi9szUaHBtb37QZOZ4ZfXVnvo7NezP6Fz3TboPBNCWsKbAGgJnEFOGoDv4ezxWQSgD4AecPa4NMd6APt5nn+rnn16OIev1eYOurSu/WigTKgP62g2lmUQEmJouqCXjMazFj5uNwrXAphKnR46XdPzgFjGAL3CeelpVHKrnqeW8qfz7Es1Vc45QOEhRmg9+J01RcEI0KokGAxGr443GnUot9ihUDEtbk8oyyLJEIBCm8Wvr6320FmvZ39E57pt0HnuGPbu/fNAe7eBkNqaHQDxPH+E47hhAJYDmABAhDMd9o8A5vA8X7e3pUEcx82GM2Dq30ARC5zD6mpzr7Zpcu2Hq4ylThl3Dlxf1NFskiSjqsrs7eENUihYGI06VFVZIIr+kaSkWBJhsljgUGlgsTSdM4IR/h0lWZRXhABjeGs2zyv+eJ59aZ5aB+Pg4VBXmWC1BLW4PlashrKmBg6HulmZ4NznubraArNgg9lihdXesrwjIssCEGGrMaO8nFJhA53/evYndK7bRmudZ6NRR71KhJwDvJp9zvN8KoDrffD6NwOIAlB36NurHMc9ACATQGydY9w/5wJQ1dp2sk6Zv13fZ/ugDq8IQut9+Imi1Kr1N8e75hocP34Mc6dcj0DJg5tf5t9hUpaqGr95H/Xxp/PsK7IsQ8ew0CoU0AUaIHnyO2uCZLVCtFkhq2WvzpckyRBEAXZBaHF7JIUzABJttk73u2upzng9+ys6122DzjMhxBveLoTKwJk8wIB6EinwPP+Th1XdAOd6QrWlAngMwDsArgUwl+M4Bc/z7kl3E50vwRdxHFcJoArOlNwnXW0LBjAEwMuu8j/5oA7SCPdkc6XKsyQIYBjYJQlqloXdTE/o25qpphoG15pNxuBAH9UqQzJXgQ2q+6zBc6Is+iQNtnMekgMyrQNECCGEkHp4sxDqCAC78G/yAPeMZdn1vQzAo5nQPM/n1t3m6gkq4nk+k+O4zQAeBLCJ47hnAYwAcC+ca/aA53kbx3EvA1jFcVwxgAwAz8HZ6/O+q0pf1EEa4c7kplR5vqaMXQbUAAVA7aCisBCsK2Wb3qCFJJy1PpxXRHMVVLJ3T2IZhoEoiT7JAie7EzFQAEQIIYSQenjTA7QGgAPAjQByALRa37Orh2YygLVwpqXOB/AAz/PbahV7DM73sRHO3qSfAEx2L2DqizpIw2RZxmMRMbCHRiKvGeOwHa5s6Q6zpYmSxNcqCgugBmCTpH8fX/iAaLdCLTngZccy7GJD2fWbR1a5Xl/wTX2EEEII6Vy8uVMZAmAWz/Mf+roxAMDzPFPn5z8AnN9IeRHORU0XN1KmxXWQBogiQlUqQKVCoVrbdHmXDFFCtqka4XST2uZqiosRCsAKGZKPgg4AkGwWMIINDKtEM/IgAHD2ANlF3zxvkDQqVDkcsDd/oXJCCCGEnAO8SXVShFbs9SEdi2j7d/gUo9U3UvJM7zqAJ0+kwKTzcN4Q8RlzWQkAwM6ygA+GnLmJditkwebVOj4MA9h8FABldQnHrX8fwE8az4dkEkIIIW1l9OhhQ3ftejusvn1ZWRnq0aOHDa39NWHCBYPnzLmm9zfffNXytK0EgHc9QP8DsITjuO94nqcJHOc49xweSZbBqj1fj0HlSphgtfpm/gnxXKXFgsKKchgifZt+XBYckO1WMDpnFrZmHQsZNh/NRVKpnYGPxWJtoiQhhBDin5YuXX5yyJBhNbIsM9XVVYrPP/8kdMWKR5OioqKP9+8/gOYPtJA3AVBPOBc9LeA47iiAuovdyDzPT2xxy0iHYK2uBgDYJQlKtQaeZjBWqZ2LXdpsFAC1tRxJwqY0Htf3T8ZkH9ctmCqgCOna7OMkWfJJBjgAULoCIHdyDkIIIaSjCQoKEqOiogUAiI6OcfTsyeX99NMPoZ999nFY//4Dctq7fR2dNwFQDwCHav1cd7yLD6dVE39nrakB4JxQzzAKeDr54wpGxH2DhiEvM7M1m0fqUVFRDgAICvB8yKKnJKsJSklAc/8MiLJvMsABQIjZhseSe9MilIQQ4idMJhP70kvPd/nll59DLBaLolu37ua77lqQPWTIMDMA/Pnn74bXX3+lS3r6Sb1CoZCHDx9ZsXDh4pyQkBARAK688pL+06fPLPz7778CDx06aDQYAsTrr/9vXo8ePS1r1jybkJ+fp0lISLQ89tiK9MTE7rasrAz1ddf9p/+iRQ+lv/POW9EFBXna+Phu5rvvvjd7+PDzTo9eeu+9d8N2734nqqAgTxsUFOSYPPmy4jvuuKuAZVm463j22TUnRo0aU+0+ZvToYUMXLFiUMXPmrNK1a1fHHj58KHD48JEVH3+8J6q6ulqZnMzVPPDAw5k9eybbACA3N0f17LMr448ePWzU6w3CrbfO9Tp40Wg09MHmI80OgHieH98aDSEdk93kDIAckCE1Y+a7mmURoFRCpqf0ba6ivAwAENwaAZDNClZywJnkvBnHQYIg+iYA0gDoZwxCkY/qI4QQ0jJLlizsnpOTrbv//iUZCQmJtq1bN0YvWbIweefO949kZmaoFy2az1100eSS++9fnFVaWqJ66aUX4ufPn5u8bdvO4yzrnK6+bdvmLrfdNi97/vz7s7dt2xi9fv3a+NjYOOvddy/INhgCxMcffyRp3bo1XVavXnfK/bqvvfZy17lz78nu3buPedu2TdGLF9+XvGXLW0cTErrZt2zZELlt2+a4W265PXvUqDFVhw//bXjllZfiq6oqlYsXP+JxkJKaesKg0WjFp59+IdVsNrFPP/1E4vPPP5Xw2mtbTwiCgIUL707W6w3i6tUv83a7nVmz5tmE5p4/QRDw4Yfvh+Xm5mqXLl2e3tzjydm8y1dLiIvdISDTbEINGDDNyPwlKhSACMh2WqulrY2qrMJ/Bw9HTUWNz+sW7RZAsINRaCA3IyCWZRmC5KOMdBrn/DIlmpmKjhBCiM+lpaVq/vrrQNCTT65KHTduYhUALF26PGvNmmfFsrIyxc6db0Z37ZpgeeSRx7Nch1iDg0NO3X77jX1++OFb44QJF1cBwKBBQyqvvfaGEgCYNeuGoq+//jLiiitmFF1wwYXVAHDBBReW/fbbL8G1X/s//5lVcMUVM8oAYPnypzKvumpq4O7db0csXLg4d9eut2OmTJlaNHv2TcUAkJTUw1ZZWaHcvPn1uLlz78n39P2JosisWPFMekhIqAgA06bNKNq2bWMcAOzd+6MxNzdH++ab7x5JTOxuA4AlSx5Lnzfv5j5N1bt06YM9WZaVAcBut7OyLGPy5EuLe/XqQ/N/fMCjAIjjOBHA+TzP/85xnAQ0emch8zxPgdU5whochAeOHUZ0TBfnyrIekljnJSI7aKmltqYUBGhVagha32fgk2yuTHAqI0TR8wBElEWfzQFidc45QEoajUsIIe2O54/rAWDw4GGnh55pNBp5yZJHcwAgMzNDN2jQ0Krax/Tp08+i1+vF1NQTencA1LVr19OThnU6nQQAcXH/blOr1bLDYT8ju/Hw4eedHrqmUqnk7t2TzBkZ6bqSkmJlVVWlcuDAQWc8CRw6dET1hg3rmbS0E9qIiAiPntAajUEOd/ADAAEBAaIgCAwApKWl6gwGg+gOfgCgf/8BFrW66aFs8+ffnzFw4GATAFgsFvbw4b8Nmza9FieKjzLLl6+k+QMt5Gmg8gSci566v6dHqwTAvxPNNRrP1wACAEnhDoCoB6itqV3r42gMnmft85QsiZCsJrCGSDRnBJovAyDGFdhREmxCCGl/SqVSBgCGqX+ciCzLYOp5XiXL8uljAUChUJ51fFPLLtQ+3l0ny7Kye4QCU+eFJUlkAGewVPsYN4fDcdYLqlRnt6vua9alUCiavI+OiopydO+edDpw6tu3n6W0tET19tvbY++/f0l2YGAgzQdqAY8CIJ7nH6/1/fJWaw3pcNyphpsdACmdt6cMLYTa5rSuP7t6o6FV6hfNlVA0M8O2KEk+S4LAaJzzj1SsN8ucEUII8aWkpJ4WAPj7778MY8aMrQacc1pmzLis/623zs1JSOhmOXbsSEDtY44cOayzWCyK7t2TWjTc68iRf/R9+vSzAIDdbmdOnTppmDRpSnFERKRgNBqFQ4f+Cpg8+dIKd/kDB/4MUCqVckJCos1sNrEAUF1drXDvT08/2ayhExzX22w2mxUpKce0vXr1sQLOIYEWi1nR1LGNkSSJhji0kKdD4C5sTqU8z//kXXNIR6M4wWNN34HIVjVv0rvsCoBAAVCbcjjsMCicgYHB6PskCAAgWs1QSg40Z51lURYhiL65Fhid81pUMgwkQQCrpBG5hJDOhWGgYBimXZ7yyLIsybLni7316NHTNmLEyIq1a1+IZxgmKzo6xr5t26ZoQXCwo0aNro6N7WJfuPDuXk8+uSz+6quvLSotLVG++OLzCQkJiebRo8dWN/0KDdu2bXOX0NBwIT4+3rZ584YYm83Kzpw5q4RhGEyfPrNgx443usTGdrFdcMGYqn/+OWTYufON2IsumlwcFBQkGo1GMSIi0rZr19tRiYndrRaLhV23bnVXpVLl8SioCy4YU52U1NO0YsWyxIULH8hSKJTyiy8+F1+356k+lZWVisLCAiXgnGd06NBBw0cffRA1dOjwiqCgIMry00Ke3hn8gH+HvTX0W5Nd+2QALYpsScch1VSji06HymYeZ9UacKKmGuVGY6u0i9SvsrISAa7hh4bA1ukBkuxWMKIdgOe9goIkQpR905vP6LWwSxLskgSbyQRdEC2cTQjpPBgGCgUjxDhs5nZ5uqPS6AURyvzmBEHLlz+Vvnr1qq4rVy7rbrfb2R49kk3PPbf2RHh4hBAeHiGsWLEqdfPm12Nvv/2mPjqdThwxYmTFvfcuyqk9FM0bU6ZMLX711XVdy8pKVT16JJvWrHmFj46OcQDAbbfNK1SpVPKePbujNm5c3zU0NMx+1VVXF9x667wCwDk8bunS5elr174Qf8cdN/UJCwu3z5lzc962bZs8HmHNsizWrHk5ddWqJ+MXL16YrFarpZkzr8svKipqsidp5crlSe7vFQqFHBIS6hgzZmzp/Pn353pzLsiZGE8yNXEcN7Y5lfI8/6PXLeocTomilFhWZmq6ZDMplSxCQgwoLzdBENp/+OcPq55CbOoJHGEVYGcv9fi4Y4f24d1NKzFo0BBs3fpWK7bQO/52nn3lFJ8C4blnAAAJc2cAnn9+eYzV6BDYZxTsqiBITayM6z7PR/NT8UfWPz55fVmQ8MjV9wIAfvrpNxiNFAB11uvZH9G5bhutdZ5DQw1QKNh0AN19VqmXDhw40ItlFV9ERnapUau1p9eMYFlGJdoqu5w8elCy26xtepGpNVo2qe8QVqEJypUk2W8n8Ta0hg/p/Ox2q7aoKDdAksRLhg4dmtJQOU/nAJ3rAQ1pgGR3zs+TWEUzBjwBKteQOSutA9SmqivKcayiHME6HRJYAK3w0SnZbYBgA6N2dwg3zS767nOUUbBgWRaSJMFqtVIARAjplOw2q2SzmNsjyqYJlqTD86r7lOO4cAAPALgYQAyAyQCmAzjE8/yHvmse8Xey3ZnG2p3VzVMqtXN4lM1KAVBbqrLbsSqNRx8uGRN8lHTgLLIE0VIDNiDa40xwNsHWdCFPMYBao4HVYoHN5sN6CSGEENIpNDsA4jguEcA+ADoAPwMY6KonGcCjHMddwfP8pz5tJfFb7gBIbuZE83BzJV7pPxjllFG9TVVVOZdaMAYENFGyZURzJVQerowrSRJsgm/Xg7q9awKMYGDNywW6xvu0bkIIIf4tPr6bfe/ePw+0dzuI//KmG/MFAEUAEgHMgCspAs/z1wP4CMDDPmsd8XuyK4vb6axuHlIqVQjXaGBsnyQ256yqynIAgDGgdTLAuUlWCxgPh7UJsuCzNYDcknUGDDAGwV7Z3PQchBBCCOnsvLn7nAhgBc/zFTh7gP9rAPq1tFGk47DIEopsVjjUzUqND0bjXIRTSZns25Th1Cm8MXg4Joqte+JFuxWM5FkAJIqiz9YAchNcb89hNvu0XkIIIYR0fN6mUGxowQ4NPJ31TDqF33Q6fHr4EGYOugB9m3Eco3UGQGrqAWpTYk0NtAoFVIrWzVQv2a2QHVawal2TmeBEWYIg+XY9KHcAJFgpACKEkPY2evSwoe7v3UPTrrxySv+SkmL1meXGlj3zzAvpAOBwOJi1a1+I/f77b8PMZrOie/ck84IFi7L69x/Q4OKoP//8Y+DGjeu75ORk64KDQxxXXDGjcM6cm4u9bbc7mxwAvPLKxuMDBgw660Nl5sxpffPz87TPPrvmRG5urvqll57vBgBjx44vXbnyuQxvX5u0Lm8CoJ8BPMRx3DcA3DPYZY7jWADz4JwfRM4RNlcWN5WqeT1ACo1zCJaGZeFwOKBSNW8IHfGObHF+brDa5i1c21yS3QbZYQOrZTwIgESfD4ETXMuVOSwtWkScEEKIj9xyy9zsSy+dWgYA1dXVbGlpiXr58qfS+vcfcHrNEK1Wd/oDY8WKR+P/+OP34PvvX5KRkJBge+WVtV2WLFnY86233jta30KgBw78bnj44UXJF100uXjp0uUZmZkZmhdffD6hpqZGceed8wta0naFQiF//fUXIXUDoCNHDusKCvJPL3o3deoVZRdeOK5yyZKFPVryeqT1efP4fQmA3gDSALwJZ4/PIgAHAIwG4PliMKTDs1icAZBS3bwbalbrDIDULAurhZ7StxXWFbCy2uYFrM0nQzJXgWUbH2rHMM5FUH0dAImu1xUoyyAhhPiFgIAAMSoqWgCAlJRjOlmWMWzYiJqoqGjB/eUObDIzM9TfffdN+P33L8m46KJJlT17ctZly1ZmqFQq+fDhv+udxLp9+7bo7t2TTMuWPZmVnNzLevHFl1TeeuvcnN2734mx2WwtGvfdr9+Aqn37fg6pu/2rrz4L5bjeNe6fdTqdHBUVLSiVShoN5eea3QPE8/wRjuOGAVgOYAKcKyleDOBHAHN4nj/s0xYSvzbJasVlvfuh1Nq8J+2s5t+/XzZTDQJprZY2oXA4AIaFSt/aARAgWqqgkptaooKBKPl+DpDEMoAMiFZKg00I6ZzUGm2bjyH31WueOJGiDw4OdgQHB9f7x3/v3h+D9Hq9OGHCRacz2QQHB4t79nze4D1mXl6udsiQ4WdkvunTp6/Zbrexhw4dNJx33vk1dY+57bY5XI8enKmmplrx66+/hMiyxIwYcX75ww8vywoICDj9ATZu3MTyl156vts//xzS1+4F2rv3p5AZM2YWpqQca93UqsTnvJoDxPN8KoDrfdwW0gGFyUCkIQBVbPPmlMhKFXKsFlhFEQPMNEyprSgFEVCxUBt0rf5aos0KtWQH0PDwRoZxD4Hz7RwgkWUhCjJEh2/TaxNCSHuTZVlSafRCUt8hSrTDoqQqjV4Q5SafbjXq1KmTOo1GKy1ceHcSz6cYjMYgYdKkS0r++99biliWRXZ2liYyMsr2+eefhOzc+WZ0WVmZOjGxu2nBgvtzkpN71du1Hxwc4igpKTpjOEpOTo4GAEpLSxq83/38848jp02bXrh+/abjx48f0b/wwrOJ27ZttN1117357jJdunSxJyX1MNUeBvfXXwf0ZrNJMWrUmKpXX325JaeDtANvF0LtDkDL8/wxjuOCAawE0BXALp7n3/Rh+4ifU8rOXl6mmVngwLJ4JD0dZlMVPmhimBTxHY3rM0vbymmwAWciBEZ0gGFUkBsYDMAwTKsMgfvGqMbyr3/CvWMu9Gm9hBDS3mQZoghlvkIT1C5ZhERZlmQZLfqjnZmZoTObzYoJEy4uu/XWuXkHDvwRsHXrxriqqkrlggWL8sxmk6KwsFCzffu2mLlz78oJDDQK27Ztipk/fy735pvvHo2IiDzrqdkll1xWsnr1qsT333839PLLp5dnZ2epN29+PZZhGNjt9gbPVWxsF+vChYtzAaBHj562b7/9OvTIkcNn9eiMGTOu/LPPPo64//4luQDw1VdfhI4ceUGFUqmg4W4dULP/83AcdwmA4wBudm16FcDtAOIAbOU47hbfNY/4O3cE7U5r3Rwq17whazOHzxHvnTLVIKWmGvqg1u+tF21WyA4bGKbxANchCpAbipC8pHLNcXIn6SCEkM5EliFKkuxoj6+WBj8AsH79phPvvvvh4alTryjv06efZfbsm4qvvvra/I8++iBKkiQolSrZYjErHn985amxYydUDRkyzPzMM6tPAcCePe+F1Vfn9On/Kbvhhv/m/u9/LyVMnHjBkLvvvr3XjBkziwAgICCwwTbHxXU94ybEYDCIgiCc9cF1ySWXlRUXF2n++eeQXpZl7Nv3U8ikSZeUtexMkPbiTQ/QYwC+AvA4x3FBAKYDeJrn+cc4jnsSwAIAm3zYRuLHVK6bW0bT/B4Fd+Y4m43mabQFu92Ol0+mAgC+i72h1V9PFuyQ7RawuoYzwTEMYBN9//tXqZ3D7igAIoQQ/6NSqWSVSnXGB0NSUrLFZrOxFRXlioiISLtCoZBrD3fT6XRyZGSUPT8/r8EhJ3fccXfBbbfdWVBYWKCKjIxypKWd0MqyjG7dEhv8MKjbDif5rAAoLq6ro0ePnqavv/4ixGazMZIkMiNHXlCdk5PVumlVSavwpvt0IIAXeZ6vBjAZziBqt2vf1wB6+qhtpANwB0CsVttEybPdHRmJl/sPgpCT7etmkXpUVTnnhjIMA4O6bdKOi+aqRnuAGIaBTfD9PJ0ku4hFScmIzW9R5lNCCCE+JkkSrrzykv6vvLI2uvb2Y8eOGIzGICE0NEwcMmRYjSiKzKFDB08/XbVYLExhYaGmS5e4ep+avfnmlojHH38knmVZxMTEOhQKBb766ouQiIhIe48ePX3ypO3CC8eX7d+/L+Trr78MHTXqwnKWpbUMOypvfnMW/NtzNAVAIc/z/7h+jgZQ4YN2kQ5AFgQo3QGQuvk9QMFKJSI1WjhqzkrMQlpBVVUVAMAYGACmjdYrFi01YJsYLWEVfN8DFCwBI0JCEWg2NV2YEEJIm2FZFqNGjSn/4INd0Z988mFIevopzc6db4bv2bM7avbsm3IB4Lzzzq/p129A1VNPPZ7466+/BPD8ce0jjzyY+P/27jw+jrp+/PhrZu/NfTS90vuYQqEUCsgpoNyiooKg8kNFEUG+iAcgyqEiCggiCCiCoKgcHogCIij3fbT0bqdt0jZN2uZONnvPzszvj9mU9EiTbPZImvfz8cgj6ezsZz6Z3WbnPZ/P5/12uVT7zDM/0w69AdF2t2k6nzGzZs2OP//8c+MeffTP1Vu2bPY+8sgfq//+98cmXnDB1xqz1fdTTjm9s7l5u+/FF/9bdcopMv1tNMtkCtxrwHc1TasEPgs8CKBp2iLg+vTjYgww4nHaEgm8qooaCA75ktpIf09Jscq86NlUz0MHH0aHZWKb2U060B8rGUM1k8CeZwhYOSiCCmB7nD9tSio/v6cQQojB+/a3r2osLi5J/e53907u7OzwjhtXk7jwwku2fO5z57X17vPzn99Rd/vtt9T+6Ec/mJVIJFVNmxe+/fa79aqq6hTAU0/9s/KOO26d/vDDf1sxder05FFHHdtz2WXf2fToo3+a+Nvf3j1l/PiJie9+9+qNZ5zxyc5s9XvSpMnG3LlauL293bto0eFyh20UyyQA+hbwNPBnYDXwk/T2p4EoTqFUMQYYClyy4n0AbvAXYw4xKWZKcQYgpVhlfkTbO6hyufApQL5GgBJxMJMoqnePmeBSdvZrAEGfAChPgZ4QQojBc7vdXHLJZdsvueSyfucpl5SUWNddd0MD0LCnx88++9z2s88+t73vtrPOOqf9rLPOad/T/nty330P6btuu/HGn2/q/Xnq1OnJ1157b3Hfx3/3uz/t9Jw97SNGviFPgdN1fSMwH5io6/oBuq73vnnPBPbTdb0ui/0TI1g8HbgoioKqDj2WNtMBkClJEPIi3uXcBEsOkJUtm6ykkwmuv3nSFlZORoBIr3FSc9G2EEKIIQuHw67m5u0ZlV8ZLXqn5e0pi5wYWTJavaXruq3revMu294C3Ok02WIM6A2AfD5/v3Ve9iaVvii2ZAQoL5LpJAgpd/4WbdpmCisRRe2n1pNlW5h2DoIUn/MZ67KGVatPCCFElvzud7+Z8pnPnHFQofuRS0899c/Kz3zmjIPWr19XVOi+iL0bciSuado04F7gOPqb2A+u4XRKjA7Rhs3cOO8AOm0LK4MIyFRdYJkyApQnqZ4eACx3fm/AmZEuXHuo2qAozhS4XIwAKekaU2o/6beFEELkz1iZIranaXliZMrkSuh24Cjgt8DROOt+3gROBg4EPj2UxjRNqwFuA04FAsDLwBW6rq9OP74QuAM4FGgH7tR1/dY+z1dxki98FajAScJwia7rG/rsM+w2xO6MUDdziovZbiTpzOBCM+ry0BTpJpHlIphiz6xo1PkhTymwdxw3HsVjGew64KwoCqZlkrJ2K+g9fH7nd3TJe0sIIYQQu8hkLsxxwDW6rn8TJwNcQtf1q3CCi5eBTw6xvX8Bs3BSah+Gk2b7f5qmBTVNq8KpLbQu3f71wA2apn25z/OvBb4OXAgcibO6+xlN07wA2WhD7Fky4lxQGxkmVX67uIpvrVpGXUlxdjsm9iydbU/15/dtbSbjYBp7fsy2cpIEITK+ki8sfptbOlqz3rYQQgghRrdMAqBiYGn659XAQgBd103gbuAjg20oHZxsBC7Udf09XdfXADcAE3ESLXwNSAAX67q+Rtf1B3FGoK5KP98LfAe4Xtf1f+u6vgw4B5jMByNR2WhD7IERcwIgM8NF9Z70NKV4XNJg50N7ymBtuAeKh16zaTisZBxSid3WAX0wApT9AMjt82DY9o51akIIIYQQvTIJgLbhFDwF2ABUapo2Mf3vDmD8YBvSdb1d1/XP6bq+CkDTtPHAd4FGnODqWOAVXdf7zpF5wdlVq8EJvkrS23rb7AKWAB9Ob8pGG2IPzHTgksowAHJ7fABykZonL8djXLd2Fea0CQPvnEVmwgmAFGXXAAiSloGdg5TcLq8zuzeRkPeWEEIIIXaWyRqgp3GmkDXquv6GpmmNOIVRfwhcADRl0hFN036LMwUtAXxC1/WIpmm1wIpddt2a/j4VqE3/vGUP+0xN/5yNNjLizkG2LZdL3el7IfUmLzBVtd8sX3ujJaOcsv8Cujs6c3KuhmMkneds6ekJAVAW9Gf0emXOxoqH8ZRNom8M5HarJGNJABRVySwlZT98Clw6YxYBtweXS9kt+Bpr9sX380gl5zo/5DwLIYYjkwDoOpy1ND8GTgS+D/wBuDz9+Dcy7MsvcbLLXQw8oWnaMUAQJyDqq/eWrj/9OP3sU5n+ORttDJmqKlRU5C4LYmlpIGdtD5Yrva7DcrkIBoa+rqTI7WJqMEi9mcrpuRqOkXCes6U3AKoqL8afwes1HC4jQlGRB0X177TdCjvT33y+7CZmsIoCHFQ1DoCyIg8uny+r7Y9W+9L7eaSTc50fcp6FEJkYcgCk63o78KHeaW+6rv9Z07TNOMkD3tF1/eVMOtIn69vX0m1dipMQYdcrl94rqEj6cdL7xHbZJ5L+ORttDJll2YRC0Uyf3i+XS6W0NEAoFMM0C1vjJBJL4E2lMPwBYuk7+UORShdPVVImnZ0Zn+qcGEnnOVt+PKEWa/wkPLEE8Qxer+GwwmGUUJik/cGfHLdHJZxeR5ZIGNhZTFlt9Bnham5qJVBRkbW2R6N98f08Usm5zo9cnefS0oCMKo1AkUhEffzxv1T9v//35VaAH/zgiuktLc2+++57SM/VMRsbG7xLliwu+sQnPtWZaRt//eujVXfccev0/tKA5+P3OOaYQxd985vf3bQvpOduaNjk/fznzzrwlltuX3fUUcf2DKetjAuC6Lq+TdO0eThpo7fpuv7zobaRXoPzUeAv6SQK6LpuaZq2GicJwRZg0i5P6/13E+Dps61ul32WpX/ORhsZSaVy9+FnmlZO2x+MzdXVfGfpexx/4hkcn8HFq+3urdVS+N+lPyPhPGdDPBqlwuO81YuLg1h5ro+TikexjQSpPhPdbNUmaTpL82zLzmqfFJ8H07ZxKQrhrhCekrKstT2a7Svv59FAznV+yHkeGx544Lfjn3/+2ereAOjKK6/ZYuUggU5fP/rRtdNramqSwwmAxMiV0W0OTdO+kh71WYVTM2edpmmbNE373BCbmgQ8jJNau7dtD3AIThKEV4BjNU3rW1j1o4Cu63oLToASAo7v8/zy9PNfTW/KRhtiD3qTF3i8mU0vUtLTktxSqyXnuluad/wcLM7/lBErEcfeJROcZZuYuagBBLjcbpKWc1GUiIRzcgwhhBD5Ydv2Tgs5y8rKzIqKytxGQNhje/HoPm7II0Capl0K3Ak8AfwAaMHJCvc54E+apqV0Xf/rIJtbBjwL3KNp2oVAZ7rNCpxU1XHgSuB3mqbdAhyOs9bo6wC6ric0TbsLuFnTtFZgE/BznFGfx9PHeCALbYg96E1f7fH6B9izHx7nQtwt8U/O9bS0ABA1TVRFIQeJ1/bKMhLYyRiqv3LHSI+FhWHmJgBSFAXDtgjgIikBkBBCFFR3d7frF7+4ufadd94sT6VSyowZs6KXXHJZ48KFh0QBotGoetNNP57y3nvvlkejUdfkyZPj5533pa2nnXZG1513/mLSX/7y8ERwpnM9/PDfVtx7792TeqeOvfHGqyXf+9535v7sZ7euu+OO26a2tLT4pk+fHr3mmh9vfO65ZyqeeuqJ8aZpKscee3z7D37wwy2KomDbNvff/5vxzz33THVra4vP4/FY8+btH/7ud69umDZtevLCC8/X1qxZXbxmzeriM888teSJJ/6zIplMKnfeedukl156oSoWi7pqa6fGLrjgwq3HHfeRUO/v+cwzT5f/4Q/3T2pu3u6fNWtOZOHCQ0L9nZNepmlx440/nPLSS89Xud1u+6STTm277LLvNLndziX6O++8VfTAA7+dVFe3vsgwDHX8+AmJz3/+/G2f/OSnO3rb+Oc/H6987LE/T9i2bau/vLzCOOOMT7Z85SsXNe96rNbWFvc3vnGhVl5eYfzyl/dsCAaD1ssvv1B6332/ntzU1BioqRmf+MxnPrv9zjt/Mf3hh/+2YurU6ckzzzz1wA996Kiu999fXNrd3e257rof1x1xxNE9f/jD72r+/e8na9ra2rzV1dXJz3zmnO2f+9x5bQBvvPFqyZVXfmtubxuw+/S1H/zgiumWZSkVFZXGiy8+X5VIxNUFCxaGrr76us3jx09IAaxZs8p/++0/n7phw/qiiooK45xzPr9tWG/EPjKZAvdN4C5d1y/bZftDmqbdD/wQGFQApOu6rWnaOcDPgMeAcpxRl2N1XW8A0DTtFJyAawlOCu4rdF3/Q59mrkv/HvcDAZwRn1N0XU+mj9Ey3DbEns3Ytp1r5u5HZzKzVMOKzwmc3Pm+Gh+DIu1tBIC4bUOOpw30x4yGUMtrd/zbsq2c1ADqZaTfVonIyFpfJoQQw2HbEE1lNXHmkATdWENJrGnbNpdffskct9tt/eQnt2woLS01n3zyiarLL79k3q9+de+aAw88KParX/1i0qZNG4M33XTb+rKy8tTf//7YuJtuumHm/PkHrLzggq9tj8Vi6uuvv1x5330Pra6uHrfbnTPLsrjnnjunXHXVDzZ5vX7ruuu+N+sb37hwv4MPXtR9xx2/1t999+3ie+65c9oRRxwVOvHEU7offPC+mr/+9ZGJV1zx/Y3z5u0X27KlwXfbbTdPu/32W6b88pf31N1yyy83fPvbl86prh6XvOqqaxoArr32qukNDQ2Bq6++duOECZOSL730fPl11109+9prb6g78cSTu9999+2in/70h7POPvtz204//ePt7733Tsm99941YDbhdevWFldVVRm/+tW9axsbt/h+8YtbpsfjcfX7379+y9atTZ7vfe/bc0855WOtV175g4ZUylAeeujBCbff/vPpRx55dKimZnzq6af/VXHrrT+bcd55X2o68cRTOlevXhm8/fZbphcVFZvnnvuFtt7jtLe3uS+99GtaVVV18he/uGtDIBCwV6xYHrjuuqtnn3HGJ1uuv/7G+rVrVwXvuuuX03bt47PPPjPuxz/+2frS0lJzv/3mx26++cYpL7/8fNXFF1/WcOCBB0XeeOPV0nvvvWtqMplQv/jFr7QM9r3x5puvVxxzzHEdd9xxj751a5P3Zz+7YeZdd/1y8g033LS5u7vb9Z3v/J82d+688D333LemubnZe/vtN+/Wt0xlEgDVAk/289gjwBeG0piu693AJemvPT3+Lk5ShP6eb+IUNb1qL/sMuw2xu+JYjGmlZSwmw1FiX5D2ZIIuszAX5GNJrLPDCYAKOKBvRntw2c5rrShg2iYpK5XhRNyBGenAOhnNfjISIYQoBNuG8/4TnKd3ugqWOnVehRn+46lRfbBB0GuvvVKyfr1e9MQTzyzrDV6+/e2rmlavXlX86KN/Gn/ggQdt2rZtqy8QCJrTps1IlJWVmd/85nebDj54UU9ZWYVZXFxsBQIBS1VVu3dkYE++/OULmxYtOjwCcNRRx3Q99dQ/a6677obNwWDQmjNHi//pT3+YXFe3PnDiiad0T5kyNfHd71698aSTTu0GmDJlWvLtt9/sfOWVlyoAKioqTbfbbXu9Xqu6elyqvr7O9/rrr1bedddv1/SOWs2aNbu5rm5D4LHH/jThxBNP7v7rXx+pmTtXC1922be3AsyePSdRX18X+Pe//1Wzt/NTVlZu3HDDzRv9fr89b97+8dbW1qZ7771r6uWXX9GUTCaVc889b+tXv/r1ZlVVe3/PbS+99HxVfX2dv6ZmfPhvf3t0/JFHHt1x0UXf2J7uVyIajbj8/sCOxXGhULf70ksvmltdPS5x222/qvP7/TbAI4/8cfyMGTOjV1zx/UaAOXPmJjo6Ojz33ffrKX37ePDBh3R/+MPH9zhthdRnn3163Fe+ctGWM8/8TEf6mK1btzb5Hnvs4Ynnn3/BoAOgQCBgXn/9TzZ7PB577tx58TfffL198eJ3ywCefvqfFclkUv3Rj362qayszJw3b/94LBbd8pOfXD9rsO3vTSYB0Ls4a2j+u4fHDgaWD6tHYtRQe6cveTNLqWxUjufi5e/j8/s5LYv9ErtLdHUBYBQwu5GVjKGaScCLoiikLJOUaeYsALqjq4XGLVu55+t7vLcihBCjUv4nMQ/P2rWrgwDnnHPmgX23p1IpxTCSCsB5531p+zXXXDn7k5885aA5c+ZGDjnksO7TTjujo6ysbNB3SGfMmLVjOorP57fKysqNYDC4Iwjwej1WIpFUAU466dTuxYvfLbrzztsmNTU1+hobtwQaG7f4KyoqjD21vXr1yiDAd77zf1rf7aZpKsFg0ATYvHlT8OCDF3X3ffzAAxeEBwqAZs2aHe0NSAAWLFgYSaVSSl3dBt+BBy6IfeYzn21/6KEHajZv3uhvamryb9pUHwSwLFMBaGjYHPjwhz/S0bfNc875YOQH4I9//P1k00wpux6rvn5DcNdpeoccclgP/HqnPk6eXLvj3G7YsM5vmqZy8MGH7jS/fOHCQ8JPPvnE+NbWlkHHFuPHT0h4PJ4d/SkqKjZTqZTi9K0uOH78xHjf98CiRYdlbU77oDqpadqH+/zzEeB2TdNKgL8A23HW7JwKXAZclK3OiZFNTacetT2ZJUHweJzAKRGP4/w9l/WGudJjGHT3hDAqCpcNzUzEwUyiqE4AZFrOCJAb18BPzuR4Hg8JyyKR3LXElxBCjE6KAn88NaqPpilwlmUpgUDAvPfe36/Z9TGv12sBHHro4ZF//OOZ5a+++lLpu+++Xfrcc89UP/ronyb95Ce3rD/22OMGle7Y49l5RfHeCn7/9rf3jH/kkT9OPuGEE9sWLjyk57Of/VzLSy+9UP7qqy/tsf6jbTvXO7/85T1ri4qKd0o76HK57A/22zlxgtvtGTBYVVV1p316s9v5fF57/Xrdf+mlX5s3ffrM6KJFh3Ufc8zx3ZWVlcb//d9F+/U9/kCvx4EHLgidfvon2m688fpZL774v44TTjgxlH4uljVwsgev17fb77hrgXErnXiob0DTN8eVYaR2O07ffT/Qd9PQz+dgDTZKe2mXHik4BUu/vss2gEcZ5BogMbqp6Te7kuEIkLtP4JRIJPFJscqc2eL1cK++ms9+7CTOKFAfrGQc20igBkpRFEhZKVKWmbMAyONz3pfxuARAQoh9h6JAkYdRk/t71qw5sVgs5komE8q8efvvGEm47rqrp82ePSd6/vkXtN55522TDjrokPDJJ5/WffLJp3Wbprnl3HM/Nf/FF/9Xceyxx/UoipLVUa+//OXhSeeee97W3mljAH/+80MTdk5K+8Ex58zRYgDNzc3eE088aMcoz+233zJZUVT78su/u3XmzFnRNWtWFfdtYc2alQNOVdy0qT5oWRa9U9yWLHmvxOv1WtOmzUjceuvPaktLy4x7731wXe/+//3vf8rAWVsFMHnylLiur9npOD/72Y+nNDdv9/7yl/fUAXz4wyd0nnbax7pefPG/Hbfffsv0RYsOX1laWmpNnz4juutzV6xYutc+z549N+5yuewlS94tPuCAA3fUz1y6dElJWVm5UV5eYXo8TmAbCoV2fMBv3rxxSBd5c+bMjb7wwn+r2tvb3FVV1SmA5cvfz9rUz8HeQTgB+EifrxMG2CbGAFc6ACLDLHAet5sb5s3n5v0PJN4tafZzKRRyRrhLgoWrmm6bKax4BFVVUBSFZGqPMw2y5khfgEumz0Ld0pDT4wghhOjfCSd8tHvatOmx66///qzXXnulpL6+znfLLTfWvvji/6p7p601NTX5fvnLn0997bVXSrZs2ex9+ul/VbS1tfoOPHBBGCAQCFiRSMS1YcN6n2EYw54uUlVVnVyy5N1SXV/jX79+ne/2238+6Z133io3DGPHdXEgELBaWpp9TU2Nnnnz9o8fcsih3Xfeeeu05557pmzTpo3e++//zfjHH//rhMmTJycAPv/5L27fvHlT4Oabb6zdsGG97x//+FvlM888NW6gvrS3t3uvvfaq6WvXrvb/+99Plj/88EOTzjzzrGafz2fX1IxPdnS0e1944b+lW7Zs9j7zzFPld975i2kAyaQzffDzn/9/295447WK3//+/pqNG+t9//rXPyqee+6Zccccc1zXrse68sofbEkmk8qtt/50CjhTDzdurCu69dabJm/YsN73n/88Xf7HP/5+Muw+wtOrrKzMPPHEU9r+/Oc/TH7iib9X1tfX+f74xwfHPfvsv8d96lNnNSuKwrx5+8f8fr/14IP3Tayvr/O9+ebrxb/73b21/bW5J2eccWZHaWlZ6gc/uHLGypUrAm+++Vrx3XffMWXgZw7OoEaAdF1/OVsHFPuO3uxtSoYBkMvjZXZRMS5FId7TQ1nNhGx2T/TR0+MEQKVFwYL2w4x046p2fk6YuR2Zmenysn/1OLZ3jPri10IIMWq5XC7uvPM3626//ZbaG2+8fmYikVAnTZocv+aaH9X1Tm/7wQ9+uPm2226actNNP54RDofd1dXjkl/84lcaP/WpszsATj751M5nn/139Ve/ev782267Ux9un37wgx9u/MUvbp568cVf2c/v91tz5mjhSy65bPOvf/2raQ0Nm7xTp05PfuITn2699dafTr/ggi/M//e/X1h6002/qL/jjlsn33nnbdPC4Yi7pqYm8Y1vXL757LM/1w5w4IELYj/5yS3r7733rtpnnnmqpra2Nnb22Z/b9tBDD9TurS+HHnp4l8vlsr/xjQv38/l81qmnntHyjW98cyvA+edf0NLQsNl/8803zjTNlDJ+/MT4l7701aY//vHBSStXrig64YQTQyeddGp3V1fX5r/85eEJv//9/bVVVdXJCy+8uOGss87Z7cOvunpc6sILL2m8/fZbpn/kI893Hn/8R0PXXvvjDfff/5vap556YvzEiZPip5/+8ZbHHvvzJI/H2++o29VXX9dwzz13pB544LeTQ6Fuz/jxExIXXXRpQ28a7JKSEuuqq66pv//+39RecMEX5k+cOCl+8cWXbbnmmivnDvY1Kioqsu6889f6Lbf8dOo3v/n1eUVFxanzz79g6y9/+fPpg21jbxR7EEUoNU17BbhM1/Wlg21Y07RDgV/qun5M5t0btepN05rR0ZH99Ltut0pFRRGdnZGCV79+/UvnUelysfyo0/DNPTyjNmY8cD0BlwvfpZcxbeEhWe5h5kbSec6GZy66gPJYjMj+Mzn2xEML1g9f9UR8sw/DVr2saFtDfcdm/AEv8VhyR32gbEnc8jAHpKBp9mxO+N41WW17tNnX3s8jmZzr/MjVea6sLMLlUjcCM7PWaIYWL148T1Vd/6mpmRz2ev2Z1ZsQYi/ef39x0O122wceeNCOqWxPPPH3yl/+8tbp//vfq0t6axGNJslk3N/S0lRsWeapixYtWtvffoP9ze4A/qNp2nvAn4B/6bq+W27ZdGKEU3ASIRxMP6mtxb7hh00NtLa28N0zvkimq3cStk0ApFhljvlSKaq8PkxfZuu1ssVKxFFNA0P1YJi5LbNlulRIWVjJfaecl22adP7vOVS/n9KjjkH1eArdJSGEEKPU2rVrgg888NvaK664euP++8+Pbdq0yffHPz446eijj+kYjcHPUAx2CtzfNU17Gadg6P2AW9O01cBGIIJTwHQKcABgpPc5T9f13arQin1HLObcMPD4Ml9XkkyPQCbCEgDlks+ywKXiLynwFLhEDNtIYHt8GDkuyGq7VGDfCoAUl4tUawtdL71IdOUKJl7yf/3O0xZCCCH25txzv9DW3t7m+fWvfzW1s7PDU1pamjr22OM7Lr30W02F7luuDTq803W9DbhM07QfAWfhJDyYCZQBbcAanJGiJ3Vdl0n3Y0A87gRAbk9ma4AAei9NZQQot/zpJI2B4sIGQFYygW3EsJUSUma/9eyycyy3C0iBkdtkC/nkcqlMOO1Uul99hfD7S+h54zVKjz620N0SQggxCimKwqWXXr7t0ksv31bovuTbkMe30sHNvekvMUYlekJcOWM2ScvC7fZkXJXNSF+YJyPZXy8lHLZlUZROr1lSWjzA3jnvDVY0hFVeTcrKdQDkBhL7VAD03DNP8sC993C8v4jjAkE6nnmakiOPRlELV+BWCCGEGG327Ql+ImeiXd0sLCvHtG3qvX6MDNegRlDoMpIYxr4zTWmkiXV3o6anSRWXFzoAAjMexbQMjFyPAHmc8gNKKrfHyYfQW29Q99S/eOiVF1kV6qZOVTn0oENg+3bi+hoC+80vdBeFEEKIUUNuG4qMxNJplROWherKfCH2Y5aLry1bQlvFHosviyzobnbqvCUsk6JAYZMgANimgWk6RVBzafO4Mi5cuphXSwof9A1XxysvU7R9O7OKijntkEOZNXkKb7Q7M4173n2nwL0TQuSIBdi2bctCPyEGKf3/xYa9FwuWAEhkJBHuAcCwLaxBpFLvj8fr5I/rXU8ksi/c08PanhCb4nGwC5+W10qlMK0kRo6nwClBH90pg0git/WGcs1KJomtd4qAb/d6ufzjn+K6cz7Puz1OMfKOt97Etgr/ugohsm67bdtGMhkv7OJNIUaRZDIetG3bAPa6rkmmwImMJCJhVMCwGVb9Fm+6iGpvRjmRfWG3i+v01UytnczJI+FC2TIxUklM2ySXtzXdXmdkMpEY3eUzIvpaXLZNezLBiUcdg0tVqSopZf/5B9LQ0Um3ZaIl4hCQayQh9iWLFi0KLV68+KFQqPNioMrr9UcVRcluwTQh9hG2bSvJZDwYCnV6bdv63aJFi3r2tr8EQCIjiXCEAJBShhcAHaJYfFLbH2VzQ/Y6J3bS3e2MFJSNlKlgikIiGXXSNw9j9HAgpSmLL0+ZRkVsdI8AbXz5RfzA2miUU2d/UET7jMOP4Lzbb8GybY7oaGPy5KmF66QQIld+apopurraz1cUJQg5vW8kxGhm27Zt2Lb1O+CnA+08qABI07Tzh9IDXdcfGsr+YvRJRsNOAISScQY4gDJVYb+SUjZKGuycCYWcAKikqKjAPXGobg+xeJjeSbq54gc+Mn4i3TkMsvIhtHYNfsBVMw5Pn8J0NWXlHDJrNu9tWM+z//k3F3zl64XrpBAiJxYtWmQBP1m8ePEdts1EZOmCEP2xgG0Djfz0GuwI0O+H0AEbkABoH2fE4li2TWqY6Xdtd3pR/j6UqnikCa5cyW8WHELDMOo1ZZXqIpaIotgmdi4/y33OeyvzJO2FZ1sWpdEoqCoTZ87e7fFj9juAxRvWs+rF57HO/wqqJ/OEJEKIkSt9UTeoCzshxMAGGwDNyGkvxKjTUV3NJYvf5tBDj+CMYbRjeZyLVMUY/amKRyo73EOl10urZ2TMeLXdbhLJLrBMyGX9moATDHhG8YyR5s2baIhGmOj3M3fWrN0eP0rbj+kb65nkD9C87H0mHnp4AXophBBCjC6DuiLSdX3zYBvUNG30Xm2IQetNWuD2B4bVju1xssApOa4JM6alXyvFX/gU2ACWy0XSiAMmiiuHffI77y2PomCbJorLlbtj5cji1Su5Zu0q5s+dyx0uz25rpipLSlgLTALWv/yiBEBCCCHEIGR0S1jTtHOB4wAvHyzIU4Ei4EigNiu9EyNWLBYFwOcb3rQqO50G22WOgOxk+yglnQbaHfAVuCcOy+3GSMaxXTh/QXKlT80jK5HAFRx9WdLeffdtAA7df37/CSNKyyCZJFZfl8eeCSGEEKPXkAMgTdOuB64HutPPN9Jf43AWIN2XzQ6KkamksZFvz5xDYpiBi+J1RpBcIyE98z7KlV5f5QkOb7QuK1QVSwEjlcQyLVyBspwdyuX3Ytk2qqJgJxMwCgOgVSuXAzB/6vR+96mcPBk2bqQ0EsG2bSe7nhBCCCH6lckE/C8CfwIqgduBJ3VdHw8cBrQDq7LXPTFS+UMhjqisonq4C8z9AeKmSdIys9MxsRuP6Zxbf1HhAyDV5SFl2xipJHYqiZLDwqxun5d4+nc346OvFlA0GuWKohJunb+A2aWl/e43Y9ZsLNumyu1h86rleeyhEEIIMTplEgBNBv6o67oNLAaOAtB1fTFwI/DV7HVPjFS2kXS+u4aXdaqnahLnv/8ud7S1ZKNbYg986alT/pLCj4AobjcmvQFQCuzcBb4en4crV6/gomWLUcrLc3acXNmw7H3KPV5q/QEqSvofKfMFgrSnA711r72ar+4JIYQQo1YmAVCED8p3rAdmaJrWe2t5KZIxbkywe9NWe4a3iMPrddYQ9SZVENm3LZGgMRalqLTwhVAVl4cUljMFLmVADpNfeLweWpIJOg2DeHL0pVnfsmQxAN2KgjVAlsSEz1nf1anrOe+XEEIIMdplEgC9gzMNDqAOSAEnpv+9HzC6y66LQelNW92bxCBTHl9vABQddp/E7mzb5kf6Kr69ajml1blbbzNYqtuNYaWwLBPbTGHnMAByud071sMkEqNvClx3/QYAkkVBbHPvI2XK+PE81rSFNxob8tE1IYQQYlTLJAvcT4H/aZpWruv6xzVN+xPwB03TXgROAf6R1R6KEUntvSDzDm8EyK+6+N5sDb/LhWUkUYc5oiR2FolEMNOvVUnAh5OnpHAUt4d46oN7JLYR7z+72XCPpSicPGEiE9weYhs3wrianBwnZ9rawOPFV1U14K612n78/V+PoygKkUiYoqLCj/YJIYQQI9WQR4B0XX8FOBR4LL3pUuBvwDzgr8BlWeudGLFcOwKg4aXBdvmDHFJewf4lpcR7wlnomegrFOoGwOv14nMXvg6O6vIQMz4YjbGMBHYOMwAeUV7Jx8ZPJLG1KWfHyAXLsihNOuvsysdPGHD/iuJixldUYNs2a9ZIHhohhBBibzKqA6Tr+nJgefrnOPC1bHZKjHwuywKXC8U3vMxi3kAQw7LwqCrxUBfBysos9VAAhFav5DcLDqExlczpdLPBslwu4vE+I0CpFLaV4oNyYtmVTDebikZy0n6ubNu2lXHp0dCK8eMH9ZyDJ02h1YINSxZz6KEfymX3hBBCiFEt00KoZcBHcAqf7jaKpOv6Q8Pslxjh7u7uoHHTRi456SyGs7JEVV0kegOgnp6s9U84Yu3tVHq9hBRyNtVsKCyXi1Qq+cG/zXQiBMULw02pvgep3gBolCXZqNuwno3hHqaWljHO58ccRBKHj5eUMm6OxmurVuahh0IIIcTolUkh1NNwprr1l1PXBiQA2sdFYzESloXbXzTsthK2TTGQCEsAlG3xzk6KAMOVSb6T7LPcbpJ91wCZKeyUgZKjtV8p1fm9U6OsDtDGTfXcXr+eUz7yUQ4aZFzoLS+HtjaUFkkpL4QQQuxNJiNAPwPWAN8GGin0qmpREL1Z29ye4WWBA0imRyYSYVkDlG3JUAgAawSs/0FVsVQFo88IELaNZSRQvLlZtG+ozhCQNcoCoPr6OgBmTK7FMgaXwrtywkTMtjaqLIuurk7Kyyty2UUhhBBi1MokAJoHfFLXdam4N4Z9qbqGRHklww9/IJm+w52UACjrzIhzTi1PRrNds0p1eTBse+cACCcTnGLn5j6KlR75Gm0BUMPGOhRg+iDX/wAUVVYRAmoDQdav0zns8CNy1j8hhBBiNMvkqmgzUJqtDmiaVomTWvuMdLvLge/puv5a+vGFwB04mefagTt1Xb+1z/NV4Hrgq0AF8Bpwia7rG/rsM+w2xAdShsFR5U6ygnVuL8NdWp9UFJKWRUJqAWWdFXXOqeIrfHpxxe3GZA8BkJlCsVJA9kepLLcbLDATo6s82aJwlO8ccjiu1jYoGdxIjqu4GMu2KXa7WbZ6lQRAu0h1ddL2+N+Ib96Mf+ZMqj91Fu7SrH2UCSGEGEUyWRjwM+B6TdOmZ6kPjwJHAOcChwFLgOc0TZunaVoV8F9gHU7wcj1wg6ZpX+7z/GuBrwMXAkfirEF6RtM0L0A22hA7i4W6dvzs8g9/6tL9MYPzlrxD17hxw25L7ExJj3yo/sK/lVW3hxQWhrFzMGKbKbDMHUVLs2lNwM3lK5eycfq0rLedK93dXZQrCl5VpbS4ZNDPU1wuouk1T53r9Fx1b1RKhUJsuflnhN54nWRTI6FXX6Hxlp9hyqizEEKMSZmMAH0BmAzUaZrWCux6297WdX3WYBrSNG02cBJwtK7rb6S3fRM4Dfg8EAMSwMW6rqeANZqmzQGuAh5MByjfAa7Udf3f6eefA2wFPo0TXH0tC22IPmLdTm0Z07ZRvH4whjd9yZNOpR2JjK5UxaNBt2mixKK4iicWuisoLg9J08DaZbqbbaawTQPF48t6ojqryM/WeJzQINfRjARbtmyhxudMLvUNIQACMAMBiEZJbG3MRddGrfZ/Po7R2kLY5eI9r4ejLGD7Nloe/TMTv3pRobsnhBAizzIZAWoEnsDJ9PYM8PIuX68Moa024GPA4t4Nuq7bOEVBKoFjgVfSgUuvFwBN07QaYCFQkt7W+/wunFGkD6c3ZaMN0Ucs5GRrS1gWdhbqt/j8TgAUHWW1WkaDZ4wE3161HHtS4UfXVPfORVA/YGMn45CDESCv3wkkotHRM72yqbGBGq/Tb8U/tELDnqlTuaN+Pc/W12HlsMDsaPNsPMazLdv50fL3uefVl7j+/XexbZued97GaG0tdPeEEELk2ZBHgHRd//LAew26rS7g3323aZp2NjALeBa4EVixy9O2pr9PBWrTP2/Zwz5T0z/XZqGNjLjd2U897Eov6nYVMK2xEXECoKRtYwOqOrwL10VuF6fP1ijZvCkn5ywTI+E8Z0NPj5MFrqwoMOzXabhUj4dYqnunOKd32ptlJHBjQZb7WOVyc86kWqZs3zZi3lsDad68kRlu50+z6vNim4MPZCbPnsM7oW6MVIrm5q1MmeL8CdtX3s+Z+M9//s0v7r4DgE984kzOnD6V3//+99y1sQ5l6hTuqK7M6ntjLJ/rfJLzLIQYjkzqAO0tKLCAcDqwGTJN044GHgD+qev6k5qm3Y4zfa2v3lvIfj6oRbSnfSrTPwez0MaQqapCRcXwa+T0p7Q0kLO2B+KyklhAEvD53HiGOW1pvMfFovIKGnp6cnrOMlHI85wNvQFQVXkx/kBh1wG5An5SPW24PbsnO1CxcKk2Hm828gp+oNLj5iOTagl1h0bce6s/0W1NACTdbvzeoc9SnjFxEuu2NLBtWwMLFuy302Oj/f08VJ2dndx0008AuOSSS/jud75F44Y1zJpYxtU/uY3I0vf5858f5Fvf+lbWjz3WznWhyHkWQmQikzVAmxigZLumaR3AHbqu/2SwjWqa9kngYeAt4HPpzTHYLdNy75yQSPpx0vvEdtmndz5VNtoYMsuyCYWyP+3G5VIpLQ0QCsUwh3BnOJu6WtopAlJAJJocaPcBpVTnbZiKxensHBnT4EbCeR4uK5HguuoJ9JRX4QPiseG/VsPhsiAej5EyzB3bFEXB5VZJJRKoySSG5cLO4kIgMx1AqKY5Yt5bA+lpbAJUzGCAWAav2VHjxzM7kWTFO4s5/PBjgH3j/ZyJv195NV+vrOadymq+/vVLadnayNaGTVRXVPKlcz7N3Q/8ibvvvpvTTjqd8ZNrB25wEMbquc63XJ3n0tKAjCoJMQZkEgB9Efgt8BLwCLAdqAHOwkllfQNQDFyjaVq7ruu/HqhBTdMuxUlT/Thwnq7rvaMxW4BJu+ze++8mwNNnW90u+yzLYhsZSaVy9+FnmlZO29+brooqLl7yDvvvdwCfsIZ/sWqni6naSaNgv1N/CnmehyvW1k6Fx0Oxy0VRMICVhddqWFSVpJHcJdGB8w8rZWClDGyXP6v97E3/7bbtUfM6NrS28Lbbw8I5czI6F8epHoqmTucZXd/tdx7N7+ehCoVClG9pZGJpOdOPPgbFNmnb2kjKcJaDHrHoYN5+5S1OVFxsvv46Ku/5LYqavQvfsXSuC0nOsxAiE5n8tf8c8Kiu66fpuv6QruvP6br+J13XzwTuAxbpun4FTiB08UCNaZp2MfAr4C7gnD7BDzgJFY7VNK3vnJmPArqu6y04AUoIOL5Pe+XAIcCrWWxD9BGLx4hbFpZvaAu0+2N7nXbU1OjJ1DUa9LQ0O99TKUoKPP1NcbkxFUim+q/HYyVjWU+FrQSd4NqT7fRyOZJMJnmtYTO31a2n6kMfyqgNO+jM6jW2b8tm10adZ//8Byb6fBi2zaFfOI94JERPV+eOxxVF4bQzTkYrKqE4laJ16fsF7K0QQoh8yiQAOh5nqtqePI4TXIBTTHSv6bA1TZuLM/LzD5z6QjWapk1If5XhrAcqBX6nadr+mqZ9Cbg8vS/pYOku4GZN0z6hadoC4DGcUZ/H04fJRhuij95sbf5AcIA9B8dOB1Iu0xxgTzEU4XR2q6hloe591mrOKW4PKXv3GkB92UYSxc7ue0ApctYHuBQFOzXckr2519TUiG3bBAMBSjO8wVBU6SxdDMZiJJOFnfZYKLZt0/TKywDEa2rwFAXoatuOae78Hpg7ZxbrTOfGy8p//C3v/RRCCFEYmQRA7cBB/Tx2EM5oCjjT4AaadH8WzhS0TwHbdvm6Iz1Ccwqg4aSlvh64Qtf1P/Rp4zrgd8D9wOs4S1NO0XU9CZCNNsTOvA0NfH3aTA5Ud1/MnhG/szjdLfPlsyra3g5AXAEKnBJZ9XhJYe99BChlgJXdAEgNfrD8z4rvKQX3yLJlSwMlbjdTamuxMgxeiquqAZjs89PQsDmb3RuWqL6WrhdfyOoar/6sW6czI/2erz3uBMxkjHCfAs69FEXBPdspkuvf0oApN2GEEGJMyGQN0J+BH2uaZgB/A1pw1gB9Gvgh8BtN0ypwRlne2ltDuq7/FPjpAPu8Cxy5l8dNnKKmV+WyDfEBb0cHHxlXw6ostaekAyDVlgAom+JdnXiBZIHTX4NTA8iwUrvdge/LTiXBMlDcHuwsrQNyB3wkLQuvqmIl4riKi7PSbq40NTbwmwWHgKpipAsOD5WrpBSAKYEgG+s3MHv2nGx2MSNut0rXM08TXrkCo62FcWefm9PjvfD0PzkhXUR23BFHkIiFiYV79rjvjKM/RPLhf1Lt9rDihf+y8KRTc9o3IYQQhZfJCNA1wKPAL4AGnHTRDel//xn4PnAacHB6X7GPsRPOXXzb7Rlgz8GJjpvE5xa/zY8aG7LSnnAYIecC2nRnaaRuGBS3h6gR2+s+tmU50+CyuA7IG/Bx7dpVfG/9Gtxl5VlrN1c6t2zBo6q4AFvJbEG+q7gYC5tit5vG9euy28EhsC2LVChEQ8NGvnHx1/j9i88D0Pnsf4isXJ6749o22998A1VRSJaV4a+pJtTZ3m9hWG8wwLZ0HaD1z/0nZ/0SQggxcmRSCDUFXKBp2o3ACUA10Ai8ruv6RgBN054BJu+S0EDsI2zDmZpje7KzsN7nL8a0baKR0ZGmeLQIp1JEY1HipYWvf6O4PMSMPd+B78tKxlCD5Vk7rtfvY2N6zZqlKBQ+FNy7eDpxQdLrzXjaouJyEVNdFFkWofq6gZ+QIz3vvMX23z/AE9u38fImpx8By+Rj4yey7jf3sPDOe7Kada3Xli0NbGlpZrmicvTpH8NKJYn27H00zTVtMmxswt3YRCqVwu3OZHKEEEKI0SLjv/K6rtexc9rovo917mm72EcY6WxtWSpa6fU7C9VjsSi2baFkeOdb7GxdcTH3rVrOuWecXOiuYLvdxKMDr8GxUgYu2ySzwendef0fvEdjsRjFI3wKnNXZAW4vdtHwgtb2iRP5yf/+Q2DK3upW51bHf5+DVIpYIsbMGftx9plfZc2Kt+hpq6ckDm89eD9HfuVrWT/uG2+8xpLuLtQ5c/nsWZ/FSISIRfd+c2XcQfNZsWItb7e3MXXZ+yxadFjW+yWEEGLkGFQApGlaPfApXdeXaZq2kb0XQrV1Xd9r9jcxuqnpOhr4slOB2+f1838zZhNwqYTbOyiprs5Ku2NdVzrlb3lx4UeATLeb5F4ywPWyU0kwU6D6IAuL5d0eN0dVVTPZ5ye0YR3FCw8Zdpu55I5EoMyLp6RkWO1UT5tOXSSCf9PG9NSv/N5USG7fRnLzJkzbZolh8a1v/piiohJmz5zPusd+waJ4iO4XXyD6uS8QDGb3/fnmm68BcNRRx+ByqURjEZLxvU+/VCrLeaWqlJfXrmLiKy9JACSEEPu4wX4qvswH2d1eHuDrlSz3UYwwanohu+LNTh0gt9fH4RUVHFpeSaSjLSttCujsTAdAJYUOgBQs1+ACICuVwjYNspW3QVEUjquu4exJtcQ3bcxOozliGAbF6VTdgYqKYbU1sbwCj9tNPB5n27at2ejekLSlU1Av6+7ilI9/kaKiDwK6Gad/mZRtM9Pv5/Ff35XV4xpGko1Ll1Dm9nDkkUejKDY93R2Deu5B+2kAvPrqS1ntkxBCiJFnUCNAuq5/uc/PX8pZb8So4LZscAFZqgOkKApxy8anQqxLZk9my8e6ujh1/oKsFxcdKsXtJoWFsZcU2DvYNnYyDr4S9j7QPHjJ9K+f7Bl4DVIhtbQ0My49rbSofHgBkGrbnDV9JmoszsaN9Uyblt+pcK2vvkwAWGXDGQs/vNNjrpIKttdM5c1lb/KqvoYzL/pG1qYmLlu2lI9VVHHCnP2o2rQJa75GPBIe1HPnz5vDOJ+fivYOtmxpYEoBpw8KIYTIrYzmRWiaVqJp2uT0z15N067QNO1OTdM+PNBzxeh3T3srFy1bTGRC9i4Q4ukF3/FQaIA9xWBV2jZTA0GKg9kJVDPVWwMoYQyuDo9lxFGzWBDVSA8nGSM8ycb27dtYGupiRTyGa5hT4AA+VV7JJydOYsu6tVno3eAZra0EYjFM22by0aeg7qFeWPFpF/CW6mZ7Tzf//Gf26k0vXvwu89NpwANTp5EyEiRi0UE9twi4+8CFXDF7Lm+88N+s9UkIIcTIM+QASNO0w4HNwP+lN90J3AycB7ygadonstc9MRJ1RsJ0Ggbu4PAv0nr1jg0kQpnVPhE7s02TQDqZREl5YafAqW4vKaxBTYEDsAwDshkAuZzzkIoO7kK4ULZv38Y/tm3lOZ8H1zCTIChuN9H0yF/Xhg3Z6N6g1b/wPwDWR8IcsPC4Pe6jKAonf/RTADz66J/6TVE9VHXvL6bG58dWFIq1uRiJGInBFsANBgi7XaiKwtb33slKf4QQQoxMmYwA3QisBe7VNC2AE/jco+t6JfA74AdZ7J8YgSLpO+meLK0BAkimL9YSI3ya0miRCn8w7ae0LHuBaiYUt4d4Kok9yEK3TiIEAyVLC4FS6TpI1iBHAgqld63OxJoazERy2O0Zfuf/p7E9v2uAXtpYx58bG2iorMbn6T+QW3TAMRwzfiJaLM7SpUuGfVzTNKEhXUtswkRcgQCRnu5Bv+8AUuMqAVAbm5z2hBBC7JMyCYA+BNyQrvnzUSAA/DH92KPAAVnqmxiBUobBF8dP5PzaafjU7NXKSKZHK0b6NKXRoqelGXBqAZWVZCdbX6ZUj5docvDBh1MQNZG1tUu9hWCtwY4EFEh7UxNlbg/jK6uws3Dx7S0tA8ATCmFnIaPeYP3n7Tf45/atVBzx0b3u5+9q5bIp0/hC7VSeeeqfwz5uXd0GZnmd2mTlCxaAbRILD+2GSnDmNABm+Xzo+pph90kIIcTIlEkAZPHBjKXTgS6gd75AKTCyb7OKYYl2d/HRcTWcMWEibm/2LqxT6XUCEgBlR6h5OwAR08TnKnD5T7eHiLH3NMS7shIxlCwlQbC8HueHxMiuy1y+bSv3LVzEoS3ZyYRYNm4cAONUFx0dg8uENlyNjVvYuLEel8vFvNkH73Vfc/xUDK+fIrebza+/RjI5vFGvZcveZ//0+p/i/fbHSiVJDJD+ejeTagCYGSxi8VtvDKs/QgghRq5MAqD3gK9qmnYkcA7wlK7rtqZpNcD30o+LfVQkfSGVsqyspcEGeM5TwucWv83GqsqstTmWhVtbAYgrYKfTlhfKYGsA9WWlkihWdvrdVOTj+2tWsnbKlKy0lyuu9LRFT5YyovnLywGo9Qeor99jzeqsW/LkExxdWcXRCw5GVQYolKyo2NP3B2C+18vbb785rGOvX/wu431+LCA4Zy4pIzFg/Z/dFBcRc7twqypb33t3WP0RQggxcmUSAF2BM/XtdSAF/CS9fSUwB7gmO10TI1Gsq8v5bllYZC+9squoBNO26ZE1QFkRiUXZEovSXdgM2EBvADS06WeWYYCZyso0OLskwIZImFbDGHZbuWLbNoGkEyQOtwZQL1exs/ar0utlk56fTHD20vf55sw5fGzyNFKpgdfeGLVO7Z1F5ZW8OMzMa4tXreDO+vXEDlmEpyhIMhEnOdRRP0XBqHZuwihNjaRShb15IIQQIjeGHADpuv4+MBs4Epip6/r69EMXAwfour44i/0TI0ysuwuABDammZ3MTQD+gLNYuqdH0mBnw/aiIr6zajkv+TLKdJ81ituDqTDoFNi9bDOFnUpkJRGCL+BM1RzJwXVPTw9VLmeqXmmWRkEVj4cXvF4ueP896pu2ZKXNvTFNk4qYM+JSMnfBoJ6TmjgDS3VR4/Ox4c03Ms4G19bWSt2WBl7v7GDO+V9GURRi4RCZ1JLyHTyfu7ds5qmmLWzYsC6j/gghhBjZMro60nW9R9f1t3Vdj/TZ9ndd17dnr2tiJEqkA5QkCpaVvYXV07H5vxmzmNbckrU2x7KudEHZ8pLsTKfKlOr2YtgWyeTQExBYyeysAyrx+zhj/ERmt7UOu61c2b59GzU+Z8qYr7g0a+0WjRtH2EzlZQrc+mXvMyFdyLVy3qGDe5Lbi1U7C4DZisKKFcsyOnZvFrk5c+Y6RVVtk1g0s4BXmVhDz4RxhFIpli59P6M2hBBCjGyFvT0sRp3eNNWGkq0l6o5Kl8KxVeMYFxvZmbpGi670VMXy4pFQBNUa8hQ4AMtIoljDz4YW8Lk5f8o0FsXiec2GNhTNDZsodqezKno8WWt3arWTCCEfAVDdqy8D0K6AoQ5+fWDvNLhaf4AXX3w+o2OvWfwun5gwkePnzQfAMg2Sw8j6N2fmdACWLRt+em4hhBAjjwRAYkh668sYanbfOorfmQLnLvCC/X3FvLo6bp2/gJlKgafAebzEUgmsIdRi6WUbSbCMYa8DcqWDQBWwh5lpLFc6N24EnBSa2YzRagNB/l/tVD6suHbU78qVkK4DkKgaRyI++PVWyWnzWfGh47lz4wZeeeWljI4dWb2a82qncUwkgqIomEaSZCLzAGh+dRWfnjgZO/07CSGE2LdIACSGpLmqiq8vW8ILvuxlgAMg6CzY9mRxWt1YFozHmRoIUuQfIBNXjqluL5Eh1ADqy0oZ2Knk8AOgkgBWOqqwYkPMCpYnzZ0dPLV9G00lRdhZXHgfdKl8fMIkjqsax4YNG7LW7p5409Mug9NmDy2I8/qZddCxuFwu6us30NTUOKTjxuNxStJrE4v32x9VVZwMcMMIgKahcu7kKSxQVZqbmzNuRwghxMgkAZAYknA8ToeRxAj0X+E9E2qxU7Qxy2HVmOVLF9L0l2b3dRoq2+MZUhHUXVmJKIoyvKDYGwwQTZ8Pa6hpkfOkrqOdhxo30zZ9elbb7c0EV+3zsX7lqqy23VdHRzuT0lP4SmfOH/LzFXwcdNAhuBSFV199aUjPXbNmFfOKnLVu4w5ehKoqxKJh7AwTKgC4aycAoBWXsGypTIMTQoh9jQRAYkgiEWcKnM+f3bUlrpJyAAKqOmLXaYwWtm3T++oUlRU2CYLpdpPIIAFCr2ysA/IFfcTSAZAZHZkB0Pbt2wCoKcleAgQA1evdUZl626rcBUBr167m2rWr+H13J2rNtCE/PxmO8JXKau47aBFvvvzikJ678t13mBJw3vHBuRoKdjoDXObsqgoMoMTtof7dt4fVlhBCiJFHAiAxJOVNTfy/2qlMzXK77hKn9onf5SLa053l1scWOxHHm542VlKR3QvqIVEULLd7yCmw+7KMxLDXAfmDASLptWXJ0Mh8b9ntbZS63YwrKcl62wmvF4BQ/cast91r7do1tCWTGNNmkDAz+Fhxe6k0LYrdblLr1xGNDn69UtdyJ3NcNBjEVVKSToAwzEBXVQkXO+nTo+tlHZAQQuxrJAASQ1Id6ubjEyZRk+V21eAHF+rdLSM3XfFoEGtvByBumlSWFy4AUj2+dArszC9G7VQK2xhePSBfwE84va4m2tGecTu5kkql+FJZBfcvPJSqHGRBdKenwdGeu99dTxdanTNbI5nIYA2ToqDOcWoHHVJSxttvvzWop9m2TaDFWaPjnT0HANM0hrX+p5drsjMNrqwnTGyErh0TQgiRGQmAxJCohpPdSfEFstqu4nLxzQ3r+fzit4mSvQKrY1Fno7OIPJRKUeLPXkrloVI9XgysYY0AAViJ4dUDUl0qf2lr4ftrVpKYNHlYfcmF1pZmxqXr55RWZKcIal+l46oBKEkaObuQr968ic9MnMysipqM64MlaucBcEhZOa+/MrhpcI2NW5judt7jk44+FlVVMI0EyUQioz705Z8+BQCtqJjVq1cOuz0hhBAjhwRAYkjUVHo9RpbXAAEYXj8p26anJ5z1tseS7u4uGqJR2iwTZRgLwYdL9XhJWAZGanippy0jgWINLzNaq1thQyS8YyrcSNJcX4dXVbFsG9WX/ax9xVVOAFTl9eakHlA0GmGRy8M5k6cw3pf5mrNE+URMn58it5vm994d1FrAZcve56o1K3jISFB6wIGoqkIyESdlZCHdeU0VFjalbjerF787/PaEEEKMGBIAiSFxpy+o1SxngQPwB52Lp9AIXacxWrT5vHx39XL+mopDVsvVDo3q8RFOZJ4BrpdlJMAc3jqgYJHzfu1JF/IdSTo31gMQAiwj+wGau7yCO7o7uHL1Curqsp8Ke92qlUzyO/kb/ZNnZ96QouLWnGlwmqKi62sGfMqyZe9j2jaVBy1E9flQFIVYJEuvscfDy7Xj+NL777JkTe4SSAghhMg/CYDEkPjSd2XVouyvLTm+pJT/mzELc1N91tseS9rTaz2qCrj+BwCPl3By+MU3bdPENuLDWgc0vbiIj42fgLlm9bD7k23hdN2bmMed1RpAvRSXi+rqcQDU12c/AGpYshhVUYgCSdfwEtlb050U2oeVV/DqILLBLVv2PgAHHXSws8G2SESzN4I8btYMLGD58qWSnVIIIfYhEgCJIfGn78Ir6bo92TTH6+HYqnFYkgRhWNrb24DCB0Cmx0NiGAkQdmorHkUdxtqwWf4AX5wyHf+G9VnpTzYZbc7rZQayu66ur2npaXAbcvD7hzasAyBSXEwiObyU5dGqKfRUVvHE9q28/tore923Y/s2LvH6Ob92GgfNPxAA20xmZf1Pr+lTa3G73bS3t9PYuCVr7QohhCgsd6E7IEYPyzQJulwAKEVlWZ9cZbjdYCZJRWQN0HBMWbOG2+YvoMNVuAQIKAqm2008SwGQZSTBNEDxZDSrzwz4IGphx7OfZW241B6nZo2rOHc1m7RAgCtmzaV9e3PW21ZaWsDjxTVhMiljeGvOUpZK+QWX8cy5p6C0NtPe3kZVOnjb1dqn/sUkfwDPOC9V4yegKAqpVHYywPXyulx8e7/5TLBg5XvvMGVKtgsACCGEKAQZARKDFo1FuWjZYr6zahmukuxnq0p5nOkzZmT406bGMl80wpRAkJLA8KYjDYfq8ZG0LRLJ4a8BAmcdkG0aqBmuA7L8Ti0cNYujA9nyfqibp5u34R03LmfHqAkWcVhFJdNsspoJzjAMKpJOwoHg9LlZadPnLmH//Q/Atm1e28soUCJd/6e9uhpFUVBVhZSRwMjma6yqzAkEqQ0E2L74vey1K4QQoqAkABKDFolE6DQMtiYNVG/2L66tdGptW2puDIsnvZA+UJa7EYWBqF4fBmbWRoCwbaxEJPNECEHn/epKp3EfKWzb5n8Nm/jDls2UTZ2Ws+OU1YwHYFogyMYsrgPaWF/H+HTmuuJp87LSZjSa5Pgjj+aEqnE0vPC/Pe5jhsPUpG+UVBxxFICTAS4ew8xypr9YuVNHyWrYnNV2hRBCFI4EQGLQejNoFRcXk5PsyoH0BXt85N2lH00CtvPiFKcv3ApB9fqJpZJZvRi1EnEUO7P2lBInC5zHHN4alWzr6ekhkr6Qry7KXcDqKi4mZdsE3W4aVq7IWrtr9TVcuHQxv7NNUkXZGRWORZIcVVzGxTNmsaCjc49T2rb8+yk8isKmaIQFJ54EgKJALBLKSh/68k+rBWBcMkkslp0RTSGEEIUlAZAYtPCmjZxfO42PjhuPmYMISAk6i/ZH2l360cS2LIoU5791WWX2E1UMlurxEkpkdy2XZSQglVk6bHeFEwy6ASuZhRoxWbJtYz2zi4qZUlmFN4fHUVSVUDqLXte6tVlrV9fXYgGVc+eRHOb6n16plMX4j36cqGky0edj1RP/2Olx27IIvfISAGuDQcrKygGwzBSJHAQowZnOyNysYBErl76f9faFEELk34hKgqBp2jXAibquH99n20LgDuBQoB24U9f1W/s8rgLXA18FKoDXgEt0Xd+QzTYEGE1NnDFhInWpFIkcZIR1lTgX7B5rZN2lH00irS2oioJl21RVFm4EyPL4iIazm83PTqWcdNieALY5tDegt7wE07ZxKQpWNILqzWW4MXidK5fz0/0OYJuZwkzkNjBLBQIQjZHaujVrba5d66QVnz1LI5HI3mhfNKlSX17GAT1hrBefx/r0Z1A9zmsWevMN/PE44VSKmhNP3PEc2zSymgFuh9JiItgUqSqb336Dw448OvvHEEIIkVcjZgRI07TLgR/vsq0K+C+wDid4uR64QdO0L/fZ7Vrg68CFwJE4OaKe0TTNm602hCOZzlaVVHPztknUzuWrS9/j+2tWYuVkjt2+rzVdVLM7laI44CtYP0yvh3iWEiDs1G48gmoP/b0RKC3ip+vXclvLNtQcTjUbqki6BlDU48HO8fS8QJUzRc2fpWKwtm1zeFc335g+i1nF5VhDDEr3JhZJMvlTZ9ORTFKSSrH9r4/teCw6YQLPtTbz922NHH/iKYCz/ieVSmJkMQPcDopCd3oNWXTduuy3L4QQIu8KHgBpmjZZ07RngJ8A+i4Pfw1IABfrur5G1/UHgduBq9LP9QLfAa7Xdf3fuq4vA84BJgOfzmIbAkiFnSlNhjs36ZUDZVWEUimSqRQ9Pdmfyz8WdLa1sikaoc22oEDrXRS3FwObeCL7AZBlJMAynAUfQxAoDbIi1M3S5u0o7pEz8J1qdUbJzDxk7Bs3uZaEaRKNRolkIdV8Y+MWDiku4bjqcVQUV2Whhx+IRgwOOvQonoo776HwC8+z7b7fYNs2Tzz3DPdv3sjWSZOZMGEiAIqiYBpJksncrB9UJo2nMRZjU1OjFEQVQoh9QMEDIOAQoBNYALy9y2PHAq/out53bsULgKZpWg2wEChJbwNA1/UuYAnw4Sy2IQArfdGU8uQmAHJ7PPgDQQC6ujpycox93VbgytUreNIDGRXMyQKX10cSi1iOAiDbSAw5Hba/2HlfJRIJ4vGRk2XQHXZGY9Si3E9XrJ46hW/Xr+MX9etZl4WRjLqlSyjzeDBtG7N8QhZ6+AHTtIj0JFhw1tk83NgAQGzTRnp6evjLXx4B4Nxzv7Bjf1VViEfD2DkaOS49YhFX6qt4fPNGtmxpyMkxhBBC5E/BAyBd15/Udf3zuq7X7+HhWmDX8tu9E9inph+nn316K9Zlow0BO4pIpjy5m1r1/2qnc9mM2XRmcZ3CWNLcvB2A8dUVBeuD6gsQN5MYqRzcjbfBiodRlKEFd26fhwUVlZwxfiKt6foxI0Ewve4nUFGe82MpqsqsiZMBWLduzbDba16xHIAejwfDzjA9+V70dMf59KfO5m0FfrBmJf+LhPnRj35AZ2cHM2bM5CMfOWnHvopi5yQDXC+P18PMac7HwfLlS3N2HCGEEPkxcuaC7FkQZ/paX72TvP3px+lnn96crNloIyNud/bjS5dL3el7PvUWkbR9AVQ1+xc8AB8qKaZUVWlr3paT8zdYhTzPw9Ha2gzA+MrynL1GA3H5/IQSPYOapdab0c35PrigxjISuC0DWx3KSKTCR8ZP4KjiUqKrV+I+uvAL2W3Loiz9+5dVV+f09epte/aECby1djXr9NXD/v+VTI+EpKqqMZJm1vsfjxl43F5uuOFGLrroq9zz0vMAuN1urr32RwT6rnGzUxiJRE7P4ewZU6mr38i6ZUtwn/mpfvcbrX87Rhs5z0KI4RjpAVAM2HW4oXeyfCT9OOl9YrvsE8liG0OmqgoVFUWZPn1ApaWBnLXdH1fKSU+tFhcTCOQmP0RMUSkFjFBXTs/fYBXiPA/HgoYGDpu/ANvtwZ+j12ggalGQWHcbbo9r0M9xDeVi3E6h2gae4NDeH0mv8+fODodGxHsrtKURt6KQsiwmTZxIwD3485WpQysrOXj+AsIbNw/7HPhD3RAoomTWHFRVwR/I7tRY2wbLtDnttJO5//77+fnPfw7A1VdfzUc+8pGd9o30dKMoZk7f88dWVXHuwkNZv37DoM7daPvbMVrJeRZCZGKkB0BbgEm7bOv9dxPg6bOtbpd9eue5ZKONIbMsm1Ao+2sgXC6V0tIAoVAM08xvprR/mCnWr1rGqYccS0ksNyl7bdUFtknPthY6OzOOP4etkOd5OIriCSYGgnQE/MRz9BrtnYKCQjjSQ8oYOAmDoii43CpmyhrC4nITJdyD6S7CsgY/FS6ZTn0dbeso6Hur1+Yt23mwYROlPh9ftxViOXy9VFXB5/NQU1GFOxCkw0jS0tKFJ8P1fB0dHUxSnY+P8rkH0BLNTe2u1pYwwRIvhx12NH/5ywejdn1fP1VVSETDhENhjBzWeKqcNBF/XROTkiaNjc0U9ZNNcLT+7RhtcnWeS0sDMqokxBgw0gOgV4Cva5rm0nW992rqo4Cu63qLpmndQAg4nnTwomlaOU5ihbuy2EZGUqncffiZppXT9vdka3c3W2Ix3CWVQ7rwHIqE2wtGjGR3V95/vz0pxHkejqBlgwpl1RU5e432RvX6SNo2sXiYwcUzzk62bQ9yf4eZiKGmkliKe9C5HlJBH0RN7HB4RLymTZ2dPNOynelTpnBhMj/Ff2sm19K2dCmVHi/rl7zP3EWHZtTOyqVLiVsmpm1D9VSs1txkX+vpjpNMmHstvOx2qyTjcRLxHKTA7qNoxlSMV96hyutl5SuvsOikU/e6/2j72zFayXkWQmRipN/meAAoBX6nadr+mqZ9Cbgc+BmArusJnCDlZk3TPqFp2gLgMZxRn8ez2IYAuru7APAFc5exKuV1pjNYWUjTO9YkYlFKXM40qqqaYS1fy5jL5yeBSSyR2xEWMxnHTg0tG5xd4kxbUnN8oTxYjY1O3pWJ1ePydkzV46E1nR69acm7Gbej163nO6uW88eqCowc3keLRpIkE6m9ru1RVZVYODu1jfbK7WZb+seWd3ZNWCqEEGI0GdEBkK7rLcApgIaTlvp64Apd1//QZ7frgN8B9wOvAyngFF3Xk9lqQ4CVTHK6P8CnJk7C7wsO/IRMj5MOruxI9qcP7uua6+tRFYWUbVNWUZhin6ovQE8ygmnluAaRbaezwQ3hOaVOAOTN4TSpoYisXc3MYBFTK7NbQ2cgYY8TsEQ2rM+4DV13ssjN1vYnkUgNsHfm4jGDWDS51ylJtmUSj+YhAALCFaUAqA2b83I8IYQQuTGipsDpuv6lPWx7FzhyL88xcYqaXrWXfYbdxlgXa2/jlKpxJC2LdcHSnB1HLamA1s24Rshd+tGkZcN6SoGQZaJYZmGqAHn9dMdb83IoMx7DVZwExTOoaXCuyjJgG17bxjKSqJ7CJInoNXfTZm7a/0BWBvK7iNtVXg6dXXjb2zNuY+1aJwCaM1sjGc9dAATQ1RGjorr/pAOWmSSZyM0UvF35Z0+H91YywTCwDAM1RzXRhBBC5NaIHgESI0f3NqcuTyhl4PbmbgSoZ/ZCLly6mJ+vXysV14eoq2ETADG3G9vM7UVpf0yfj2gsP9MXnaKocVR1cH/GfNVl3LR+Lb+NR1HU3Gdc2xvbNClNT0UrqcrfFDiAqklO6bPxpkXKGPrao1gsysXBYn48bz7TiitIJnM72hcJJ/pNqKEoCmYqSTJPxW0n7DeHnpRBQHWx+a038nJMIYQQ2ScBkBiUcItTXyZs2eRybX2weiLdKYNYIrFjzZEYnPbOTjZFIySK/APvnAOKx0tSgWg8T+u3bBsz1oPK4BZAl1aXs6S7i6Xbt6G4ChsAGa0tuBSFuGlSXV2d12NPnjadTbEob3a0U79m1ZCfv3bZUmYEi5hXXIKvLPfBWzScJBFL7XEanKoqpJIJkon8jBi7PR7eSSX5c2MDKzZvzMsxhRBCZJ8EQGJQoq1tAMSGtOhi6NweD8Ul5QA0Nzfn9Fj7mvd6Qly5egXt2rSCHN/lC5LAJBLPz3oMACsRh1RiR0HVvSkud6Zutre3YWQw8pFNnXUbANgaj1FTnLsppXvidrl4NB7jN5vrWbF+3ZCf3/iukwAgpCgkdiuxln2plEWoO77HRAiqqhCPhrH2kiUu29qmT+af27fy+oqMqyQIIYQoMAmAxKAkujoAiOf4zrlipvjSlGlcNmM2rdu35vRY+5qmJierWO24AmWA8wfpSUYx8zj9zjKSWIkoyl6yhPXylwRZUF7Bx2om0LLs/Tz0rn/t63Tnu2XhG+QUvmzav3YKACtWDP08xDY4wVusspJEPD+BZKgrhmXuaejZJhoO5aUPveZrcwB495238xp4CSGEyB4JgMSgpLqdiwzDnduF47bq4qhAgGOqqulMpwkWg9PY2AjA5KrCBED4/HREu/J+WDMWRrUGvhC3sPjoxMmcP2UaXe8vyUPP+hdLv7ej3sIkYtivdgoq0LpiBfYQL+KDnc7NEP/MOTnNANdXJLzndNi2mb/1P71mTptCZTDAfEWl/tWX8npsIYQQ2TGissCJkctK19lIenM85UVRiKgqZbZFz1YZARqs7u4ufj59FmEzRY3Pw6Crg2aNQsrnI9qZv+lvvaxEzKkJ5Cnaa/HXlGWS8DsBR7y1JV/d2yO7zZlSahX1n90sl+ZNnsKvFxxChddL+7q1VM/bf1DPC/eEqE2PAk9YdBgtOc4A1yseM4iEE1QFi7HSKdYVBcyUQSLPAZDb7eb8ORpHefy0/fc5Zh/3kbweXwghxPDJCJAYlKWVlXxn1TI2l+W+ZknU7QRZhb5IHU2aNqynwutlSiCIvwBJEFSfnwQW4Wh+pyMB2JaFFQ2hKgMHfWaxE3CYnZ257tZeveP384ctm1ArKwpy/LKiIlrTUxUbXnlp0M9b/+YbBF1uEpZF8ZS5ew04s62zPUrfxJCqqmIk4yQLkDLfmDQegKLt27FThcm4KIQQInMSAIlBaYuE2RKLoZTm/oIt4U9fpEoWuEHblq7LErZtIMdFSPfAHSgiahnEEnnKALcLMx6FVHLAZAhqdTkArnBh+tlrcVszTzdvpzLPRVD76vI5gXJs9epBP6e+bj3vdnbQ6PMSieX3wj/Sk8BIpHa8xk4ChEhe15z1Gn/gfoQMAx8QSa/nEkIIMXpIACQGpTcltT9YkvNjWcVlzg89hb1IHU3a6+sASPg82AXIcKb6i+iIdRWsdpNlJLHi4T1mCuvLM8FJ2+w3jILWmdq0aRMAk8rKC9aH0ilOIoTynh6sQRYSfXtjPT+vW8fWRYeRyHMAFI0kiYaTuN29H1s20Z6uvPah1/SptSyPONM9G174b0H6IIQQInMSAIkBWYbBYd0hzpwwiYA/92sWlMoJAHgTCVIyvWRQ4ulCtUpZCflf/wMpv5/uSFfej9uXGetBMZOwlxioaPpEADyAFYnkp2O7aFn8LpplU+XxUltWmClwAPvN1WhJxPEoCi3vvjPg/rZt8/77iwFYcNDCvGWA++D40NEe2fH2ts0kiVg0r33opaoqneXOzaDk6lVStFkIIUYZCYDEgMyuLg5zuTlrUi3+ktxfsLmqnACozO1m69amnB9vX6B2dwMQrMn/lCrV6yehKoRj3Xk/dl9mIoadjKLuJa10+aTxdBlJABIFWmPW9r/nuHzWHE6bMpWAL/d1dPpTUVxCXXq0sPHVlwbcv3Gdjhrqxu32oM2eTzxPCRD66gkldmSDSxmJvCdA6Kts/lySlkUwaZDcsrlg/RBCCDF0EgCJARldzoLxjmSSQHHuA6BI7RyuaWnlR/pqGhrkwmIgsViMMtNZ9zNuyoS8H98VKCJqG0QKkABhJzaYke69psQurS7j7s0b+e6q5YQKlII6lc5umCouLsjx+0qVlwPg3rRpwHTYm//9FL868GC+t2AhtuXCTOW/Bk40nCASTuL1ujAS8bynwO7rgAP2Z0l3J5Zt07K0sHWlhBBCDI0EQGJAkebtAHQaSfzBspwfz/Z48Y+biA1skTurA9q0qZ7GWIymRJzyidV5P74rUEx7tBPLLnxRSDMedUaBXHv+02Zh01FaQkMsSkNTY557B1YigS899c5bWaB6TX1MmjmLJ7Y1cVfTlgEnTlob1gPgmTSZcCj/mdcgPQ2uLYKiqETD3QUtRFpcVMSbqs0ly9/n7WThAjEhhBBDJwGQGFCoyZmG1m1ZeH35SbFcOW4SAA0NDXk53mi2YcN67t1cz8NeFW9l7pNU7EzBCAToCnfk+bh7Ztu2Mwpk73l6VspMMWPWTADq6tbns2sAJJqaUIAuI0nNuJq8H39XB82czT9am3mvsYHVq1f1u58R6mZcOt10zVFHE4vlP9FGr57uOEYiQSxc4BFHYNr8eXQYSZ79z78HzEAohBBi5JAASAwo3tIMQER15e2YR2LznVlziW7amLdjjlarVq0AYL+5s7GSg8vmlS2uQJC4YhMqcAKEvsx4FDsR2WNGOMNKMW/aFM4YPxHPe+/lvW+Jzc77eWM0WtAECL28Hg+Hz50HwIsv9p/NbNOz/8GlKNRHIyz48EeJFzAAiscM4tEoiUThR10OP+QgABYvWUJH87YC90YIIcRgSQAkBmS0tQIQ8eZvwfaUZIwPVVSiSDHUAa1ZvgwFWLCfhmXkNwByB0sJpWJE4z15Pe7e2JaFGU6PAu0SAyVNg2kTxnP+lGnM7cp/2u7uNU7NnfXhHqaPgBEggGP3m8/0QJBxb71F92uv7nGfrrfeAGBraQkuxUM8zymw+woEPUR6wsQLlMWvr5rqKhbMmM73Zs1l2/XXYiWThe6SEEKIQZAASAwsnWEs7g/m7ZBWOhOcLxYjGi38hc5IFY/HOSgc5g8HH8bczvxnYbOLimnuac37cQeSikewE7vXBbJtm+r5GinLwq8oJNry2/doeh1Nl9dDsT8/00kH8qE5GgsrKjkkEGTrv/6xWzKExNYmyrq7sWybiiOPJhxKFDTtcyDoJRzqJh6NowxQ9ykfDjx4AZP8AdyGQfi9gdOJCyGEKDwJgMSA3pw+nStWLaezNH+Ltq0qp17LRJ8fXZdK6/1Zu3Y1U3x+/C4XZeW5r9HUl+rxEXe76O5py+txB8W2SYW7UM3kbmszqqZNZGt6quCW997Na7fenTWL2+rW4a4el9fj7k3A58OeOJGomcLV0UHPW2/u9Pi2F58H4L2uTo4+9XTCPfkdZdyV36/S3dFONGqMiHU3hy9ayP9anWnCLc8+U+DeCCGEGAwJgMSAmtpa2RyL4i/P35SdZDrYmuj3s3Zt/4uzx7oVy5cxPegEPt7K3Gfo68tdXEaPmRhR63/6MuMxrFiIXcsCJawkofToy/blS/Pap2X1dbzd2cH0CRPzetyBnLzocB7f5iQ7af7LI5g9H0xp/G8kzJ3161lbUUbNuInEYoWb5qWqCh6vRbg7RDxqYKasggdBVRXlbKssxbAsrKYmYhvrC9ofIYQQA5MASAyoOb24t6gsf0U2k6XOsSb6/KxNr5sQu1v1zpuUeTzYgLs0z1OqisvYHm7GHgHpr/uT6ulCMaI7TYVLmgbuyU6WweSWLXntz5o1TjA/e4Ss/+mlTa6lIRikMRbDDodpvP1WwkvfJx6P88ijf+a1jnaO+vTZJBMpYtHCJUAIFHmxzAThUA/JZIp4zBgR0+COPOZI3upsB6Dj+f6TSQghhBgZJAASexVZtZKjIzEOL6+gqCSPAVBxBTbgd7loWidT4PYkmUzSsXYtAGplBXY/qZ9zQfX6iXlctHePvPU/fVkpg1S4ExVzR0KEZCpJzaKDAaiIRLDSRWRzbfP99/Ihy6bE7Wb2hEl5OeZQfPkjJ3NbnU5PKkWiYTNbf30Xv7//N3R0tDNx4iROP/0MekKJghRA7RUs8hALd2Gkkw1EI0ks09ot2UW+HXzg/rwRDQPQ9cabJNpHRlp4IYQQeyYBkNir6No1HBUsYkFpOaUVeVy34HKRKColZpp0NzUSjxem8OJI9v77i5nsdgNQOq0WO5W/O/Oekgo6U1F6wp15O2amUpEe7FgIV3qkIJFKst9JJxC3TPyKQv37S3LeBzMcJv7Wm3yudipzJk2mOBDI+TGHav6UqcxfeDBXrV7OG6Eu2hSFpx5+CIDLL78Ct9tNT3dh/x8GAyrdHR8EF4l4ikQ8tceU5/nkcrmYesgC1vaEUCyL7c/8p6D9EUIIsXcSAIm9ijRsBqApHqO0PH8jQACbT7uA72zZxPqeEMvzvFZjNHj99VfQip3Cp74J+UtQgaJglpSxrWsrNoXLBjZoto0R6tgxFS6RSuIO+vi718sX33+XV1cszXkXomvXoAANsSgzp83I+fEydfkZZzJh1mx+uW4tl7z1Go3RKJ/97Oc59dTTMBIm0UjhEiB4fW5UxaCnq2vHNtu2iYST2BYFHwU6+YQP8/fWZu7bvJFVJflNSCKEEGJoJAASe5XY6iyM7nS7cbnceT22WVTKvAMWAfDOO2/l9dgjnWVZ/Pe/z7Is1E184nj8k6rzdmxPcTlh1aKta3vejjlclpEkFWpHtQ0MK0UilWThKadg2DZPP/2vnKd1jqxcDsDKUDcHTZma02MNh9e0+O211/P9q6/hM5/5LDfffDtXX30tLpdKLGYQjRRu/U9xiY9kIkykJ7zT9njMIB4zUHfNdpFnJcVFTFm0gP+2NnP7Xb8q+KiUEEKI/kkAJPplJRKQvtsaLcpvhrFes/dbCEgAtKslS95j27atvBoNc9DVV+Q1AYJaXkVTTzOJZCxvx8yGVDSMGe7EpVj0JMOceurpeDwe6jasZ+WypTk7rp1K0bN4MQCLu7s4cASPAAGYbR2cd+anuO66GzjllNNQFAVFUehqjxa0/k9RsYuutubd+mDbNpGeRHotUGGDjtNOPB6fz8vq1Wv45z/+SqonVND+CCGE2DMJgES/Eg0NKLZNRzKJq3JC3o+vmCmObt7KL+YfxIY1qwiHwwM/aYx4+ul/AXDyyafiVU3MeDQvx3UHSwh7XGxrz2/2tGxJ9XRix7qJGBFKykq4+MMncMcBC3n3d/fm7JhRfS12LEq3YUBV1YgpgNqfRFc3iebteNwfBBMpwyQcKuz0N7fLoKtjz2vO4jGDWNQo+KhLWUkJnzr9ZOYWFVP82N/Yev+9BQ0ahRBC7JkEQKJf8XQ9i7pImPLq/Getsl1ugh0t1AYCzA4EeeWVF/Peh5Goo6ODZ555igWlZZx50smkutshT6moXZU1bI22EY525+V42WZbFsmuNmLhdmwlxbGHfYgJfj9TOzpYsjg3RVF73nsHgHe6Ojh63v45OUZW2TaRhkaIhlEUBbdbJRY1CloAtbTMTyIWIty95xEVGwiHEqSSZsHTYp/+0eMIVpZT5XYTX7WK8DtvDvwkIYQQeSUBkOiX0eHUtdgQDVM1rjBpeyPjnfUS+5eU8p//PF2QPow0jz32Z8xEgqvmzMP/wINEGzbl5bju4nJ6vG62tGzMy/FyxTZT9LQ1kYh3sd9Zn8ZQFKYGgvzzlp8SjUayfrxoIknSsnijo51jR0MABMQ7Okk0bcXrdqa/dbZFMc3CpL9WFCguVmlv3rbX0ZRkMkW4J1HoXAi43W4+c95Z/C1dWLbx9w+S6hr52RKFEGIskQBI9Kvm3M/z7U11/LelhcqCBUDTATiwpIw33nid7u6ugvRjpOjq6uSRR/7EgtJyPIqCp6IcxZeHSz5VRa0aT0No26gd/ekrHO4kHGrFY0epPvVUAE71+bnuim+RTNeYyZZ/RXu4aNliimprGV9ekdW2c8a26dm0Gbunm1TSorszP1Ms96S41I9tReloaRtw30hPgmjEQHUV9qNt/rw5eA5dQF0kjMswWHfrzdip/NXpEkIIsXcSAIl+dXV10tjWSthMUVUzuSB9iEyeBcCc4mJKFHjiib8XpB8jxd1330ko1M3p052F9CXz52Inc1+bxVc5gVYlSUPzhpwfKx9MK0VXpJNEayOTj1uEXVFBldfHouZmLr7oy2xNZz8cro6ODh577BEipsnHFx2WlTbzJdkdwmhvp6crWtDpb+XlXrratpEYRC0wy7YJdcVIJgpfG+jjp53IC16VSCqFe/t2Vt5xm6wHEkKIEUICILFHlpFk/fq1AFSOm4TPHyxIP1LBEmLjagE4vLySP/3p91m/Qz9avPvuW/ztb49S4nZzgM9ZSF88tzbnx3UXlRErLWX99vUkjcJdCGdbR6STlNtFtEln1nmfwna5WFRewYe7Q3z60x/jrrt+SUtLc8bt9yx+j4du+gmxWJT9ps/giNlaFnufe4rLRcKwaNnUXLBgorjEh0uN09y0bdDPMQyTUGcM07QLGgSpqsrnLziPf6ViWLaNb80a/vfzn2FZhZlKKIQQ4gMSAInd2LZNw09+DI89xgSfnwmTZxa0P93TnHUTJ0+cRGtrK3//+2MF7U8htLa28IMfXIVt21z+4Y+gWBaBqbW4gq6cHlf1+rFrJrKhu5G2rsFfhI4GoUgnCY8LBQUz1UntOaeDqmJUVhCPx7n//t9w+ukf5ZJLvsojj/yR+vo6TNMcVNvJ1la2/PbXnN7RwUFl5XzjtI+jFDhF81AFxtcQjitsX7sZOxrJezChKFBZ7aeztYnoEDNAxmIG3Z0xLNMuaFIEj8fNx7/6/3hRtVjdE+K6R//MV796PitXrihYn4QQQkB+K1uKUSFeX0eyqZEioDtlsH/trIL2p2v2QVRvWIyrugLXiqXcffcdfPSjJ1NTM76g/cqXUKibSy+9iJaWZg6YOYsFhoENVBy5ECuHIzKq149r0jTqYu1s2qrn7DiF0hPppMdMMK64jGRnC+5Sldr/9zG+fsDBzFmyhocefoTQ2rW0LlvKzW+8BkAwGGTevP2ZPXsuU6ZMYfLkKUyaNIlAIEggECAWi1G/dg3uv/2F8bbNunAPx5x0MvMmTCzwbzs0Lp8PV1UN2zd0YERi2LThn+BC9fqxrPxM46qoLgIzxNbNmaVcj4Sd/xtlFQFcLrVgIy9er5djvnQu/3vlddhcz5Il7/HF//dZPnzYEZzy6bM47rgTCAQKM8IuhBBjlQRAaZqmqcD1wFeBCuA14BJd1/eNRQ9D0P6kU2Pm3XAPMdNk0tQ5Be2P5Quw/pOXcMi8GuavXsHy5cu4+urv8JvfPIDH4y1o33Jt69YmLr30IurrN1BZWcWNV3wf4+E/459Si7cmiJ2jAMgVLEEZP5mN8Q70Lcux8pRmO58s22JbqJlxJbXQ2QKAK6AS2biC42aN56Q7bmbVDbdht3ewDZv/bd3KG63NLFnyHkuWvLfHNsf7fHxz5hxmFxUTTqWIHHYYn9L2h0GOHI0IikLR1Cl09Ji0NTqJB1KRKInmFnw1Nah+P5aZ2yAoWOSlrNSmYUPdoNb+9CcSTmBbNqUVAbxeVwEz2SmcdNwxLDpoAU89/wqV+gZOSib5y223cMMPr+GgQxZx8MGLWLBgIbNmzaaqqnrUjRgKIcRoosiiTIemadcDlwBfBpqAW4CZwHxd14e66KTeNK0ZHR3ZT6nrdqtUVBTR2Rkhlcr+h3no7TfZft+9oKj83/LFtJkmV938F7zewhdvrKkIUu0P862vnEdTdxcnnngyN974c3w+X9aPlevzPBDTNHnyySe49dabCId7qKkZz913/5a5czWU9m3E6paBEsv+gVUVX+UE4mVl1Ie2Ut+0BtPK3cW7ooDb4yJlmBTiT1HQX8KHZh5OUUsLqXDXTo9ZhkX3u+voWV23UwavREkJrW43Kw2Dt1q20dzcTKlp8onKag4vr8CjqiRcLkrP/SyVLi+Jzp3bLQRVVQgEvMRiyQFHcIqmTiFZVI3+/mZiPTu/x9zBAL5x1ahFRZgWTgGeLPMHPEyY5Kdjez2b1q3PSpter4vSsgD+oAdFIaejWKqq4A94ifdzrhXbRn3yeVxtHQBsj8d5tnU7L7e1ETad91lJSSnTpk1n/Pjx1NR88FVRUUFJSSnFxSWUlJRQUlKak79/o0Gu/kZXVhbhcqkbcT7/hRD7KAmAAE3TvEAbcKWu679JbysHtgIX6Lr+6BCbHHUBkG3b9Lz9Js2/fwA7laJ+8lS+98+/MH3OAr502U1ZO85wKMB+/ijWg3fywtYm/rRlEzPm7c+PfnQjs2fPzeqxChEApVIpNm2q59VXX+bxx//Kli0NABx1wAK+/7VLmHLc8fjcNmZzHeFNqyCLU3oUtwdvaSVWaQVtJKhrqaOlIzuZ0PZ63AIHQACzauczv2giRmMdtrl7qmIzYRDf3E60vono5iZ6O1p50snUfO4LWJZNcvs2Nl1zNQBF8+cz+eyziG7dTnTb9rz+Lv0ZTACkqCpFU2tJFlVRv3ob3S17Tneuejz4Kstxl5Zie7zYlp21166sIkBFpYuu1gY26euyOm1NURSCRV6KS3x4fS5QFOdcZPmNN1AABIBl4atvhMUrsCPO54QF1CcTPNnYwJvpGmyD4fV6KSoqxu/3EwgE8Pv9+Hx+/H4/fn+gz3ffjn/7fH58Pm/6uw+fz4fX69vxs9/vJxgsori4mKKiYrxe74gbkZIASAgxHBIAAZqmHQ68DWi6rq/rs/01YLmu65cMscmcBUB1DdvZsmw58UgMK5XETEZpbayjYfNGEvE4bfE4jdEIyWQSlw1z/X5QnOCh7wd9UbAIX/U4pn/oCE466VRKG7ew/f7fAuA5cCHffOF5Gjav5+Qzv8pRH/101n+PTI1b+zbj3n4WgIRlsby7i42xKBNmzeaAw4/goE+fTaCoCIBk83bMUA/9VUb0T5+B4nZmgSZbWzC7P7jgc7lUSkr89PTEMU0L37RpmCiEw2G6GzYRaW4mEokQjUaJRiM7viKRCNttm4RpYpomfsMgYBhYlvNv0zRJmSaWaWFZJk3JBDHTxDAM6OhgoseDR1Upc3uoLSnlQ1OnURIOo7hczL72+3iDNpHNa7FTw8uEp7jcqL4Abn8QAsUkfF66rThbOptobt+CMcz2B92PERAAedxeFsw4lFp8GM1bsJL9Tyu0DItUV5xkazdFs2dTfvjh4PFjK26a//kkZQcfjKe4iJC+jlhz64hJe7y3AEhxu/FVlOMdV0PY9LJ57TZCbaEB23QHA3jKSnEHi8DrxVYUbDsdDA3h13a5VIpKvJSV+1CVKM1b6tnW0Jizc+dSVfwBD4EiD16fG5fLKfba2/fhHndQAVAvw8Df1IqyZj3mNifjYOUZH6fnoIPYtGkTXfV1TF66lG7LoiMRpyeRIJSI0xWLEYpF2RAO0xh3RumCLhdziooxbZu+4UDv79OaTNCWzqDpU1VmBIs+2GeXnzqSBq3p/wceRWFmcRkeXwC3L4jLF0D1FqF6i8BbRMhXTqu/GtNThuUpYrJlYLr9qOk/vKri/D9XFIWwO0ibrwJFARcWM2PNzmPp/VCczEyKAjGXn7ZgFYoCqm0zLbIVVVVI74bp9XH2OSdx3CRDAiAhxJBJAARomvZp4O9AUNf1WJ/tf0lvO2OITdabpjUjFMruFKWt7T2cd9oJ3LV//9Xkn23Zzu8aNgFQ5vZw38JF/e77YlsLv95Uj6KozD38NL7nt2hZcBKvF9Xwr5vOQ3V7Of/udwiUVgI7xxG7xhR9bw4q/WzfVaZtlG1eybTnHyTYuvvi6C8uW0JJ7RyqJs3kbJfJAdGOfo//+FFnE1XdJOMRDq9bzAGd/Y94XK6vZWtPFwDn1U7lExP6Lwz77ZXLdlyUnD2plrMn9Z+q+urVK6iLOoHyJydM4gu1U/e4X8/0A2g64QvExk/bafue//t+cMJ2fdje8T19sYeNjbMexrnbvuul0J4N9FdjaH9WlJ2Pa+/9TnMu+qUoCqrqxskJ13v8nXfe7bkKKCjOXraNbVnYpoWdSu12EW3v+sQhdHzA32mgx+3e/0PKB4dXnMtIy+aDLwuM+M4X7YN6GVXVGR1If+34ecedF+egO/4fpy+GsZ33nWmZWKaJaRrE43FSRip9bKXP+1XZcf7tdKN2333sPezPLvvbuz93R39hR/97O2mntzntK9h9nue0tae+7Xq8D/7tnNa+7ezcbmW0lf1al7OlYjZbKuaAojC3ZRlffeun/Z76f8z5LP8bfxRmvIfp3XV8b/3v+933MXUyj1uVYESZYoa51d9/ivcn2rp4uGkLGBFqvD7uWnBwv/s+07ydB7dsAgb/mQPgV1UeOuTwfvd9vaONO+qdJbgK8NihR+z0+LpwD3f6p/HyI3dmdW1XaWlAAiAhxgBJguDoTcGz663fOFCZSYOqqlBRUTTwjkNQVOynYs4RbDc6AbBQsBUFXF5sdwBbddM972hcx33E2WbF2Vj/gLPPjg9e5zm2laJl8lwUezL25lfR336aC1BgUxi7ZSUA9oGf409147L6O2THQXDA7czsqUPrWsPk9hWUdeiUxNsxUgYtG1fRsnEV9bVTqSqv6LeVJ+++kkh6cXrJpFqqKqv63Tcej+74ucdS2JY0QFFBcaW/p79UFeuwi1E9paC6iSQ3sy2+MX0h2OdCy/kB86SfoQYmoqhuOpJNrO18D1Nx0+MtodVfw9bgZFZUHkSHvxo243wJkTPZ/ZslBq9JLWLF+OnOP9KTB7rdswkdeCWV8XZKjBDBVJSAGSOYiuAzE2zyTaPTOwW80KUE2Vg8A5dtovaOAfWJYCO1p+GqPdXZHGli64qbdoymKNg7RmIUwH/A/+OA/c7E77Ko7mmg+6WfoWCBbaPYFqS/bNtiwv6HcOKhx5KIhFDD3XQkYti2lQ5Kd2YXFTN1xmxs28ZjQ5uZ+mCfXXY2fAEm1E7f8e/W1M7TU6NuDxd9+hhKSwOZnG4hxBgnI0CApmmfAf7GnkeAfLquf3KITeZkBAic6SKlpQFCoRimaWFasKFLZXW7SsSAhKkQT0Gyzw2x3V/inUcIOrasZdm/fsWmd5/esb1iyn6c9oO/4/EFd9q3/zb7f8zu5+cB2xlsm713X22bWMdWOhtWEGlrJNqxlVh3M2YyTioZw0zGnA9w1QlaFFVFdXlw+YJ4/MW4fEHc/mK8wTK8wXL8peWo3hLcgRI8wTI8wVI8gVJU157vGwxltGsojw809X44M/OH03Y2+qWqCh6PG8NI7TTyMKx+DXDM4SxlKFS/Bu7y3v+Ou1QFr89DMmFg7fKfKZfvzYGovRfduwxO9f1O32199lUVu//nDtBm3/3YwzZFsfttc6BjuFwKwaCPWDSBbdt9HrN368OejrFbf3Y9/m772Tu2qQq41HQ/0n11Kc52j2rjcYFbBXd6v9Fs18/CbJERICHGBhkBcvTOpZoE1PXZPglYlmmjuVw8b5rWjvZnlVrMKh1GYwunw8dvY8OGr/PWW29QVVXFCSeciN+v4gyCjSZVwPHDbqX/Bbap9JfIBuc8u+nsTBQk295Y4ZxnD52dSTnPOeacax+dnamRea7TeR9GYtcy0fezUAghBksCIMcyIIRz5VwHO7LAHQLcVbBe5dns2XOYPbuwNX+EEEIIIYTIJQmAAF3XE5qm3QXcrGlaK7AJ+DnOyNDjheybEEIIIYQQInskAPrAdTjn434gALwCnJJBEVQhhBBCCCHECCUBUJqu6yZwVfpLCCGEEEIIsQ8a5XlghBBCCCGEEGLwJAASQgghhBBCjBkSAAkhhBBCCCHGDAmAhBBCCCGEEGOGBEBCCCGEEEKIMUMCICGEEEIIIcSYIQGQEEIIIYQQYsyQAEgIIYQQQggxZkgAJIQQQgghhBgzJAASQgghhBBCjBmKbduF7sO+KGbbtt+ycnNuXS4V07Ry0rb4gJzn/JDznB9ynvNHznV+5OI8q6qCoihxIJDVhoUQI4oEQLnRBfiAbQXuhxBCCCEGbyKQAMoL3A8hRA5JACSEEEIIIYQYM2QNkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZ7kJ3QAxM07RrgBN1XT++z7aFwB3AoUA7cKeu67cWpIP7iH7O88eB64D9gDbgr8B1uq7HCtLJfcCezvMuj98HnKTrRNUAnwAACAZJREFU+vR89mtf1M97eiLwC+A0wAT+A3xT1/W2gnRyH9DPeT4UuA04BOgCHgGu1XU9UYg+jlaaplUCPwXOAEqB5cD3dF1/Lf34QuSzUAgxRDICNMJpmnY58ONdtlUB/wXW4fzRvx64QdO0L+e9g/uIfs7zscA/gL8DC4GvA+cA9+S5e/uMPZ3nXR4/E/hqvvqzL+vnPe3D+dsxEzgR+BjOBfpD+e7fvqKf81yNE1iuAQ4GLgS+BNyY5+7tCx4FjgDOBQ4DlgDPaZo2Tz4LhRCZkhGgEUrTtMnA/cCxgL7Lw18DEsDFuq6ngDWaps0BrgIezGtHR7kBzvNFwAu6rt+U/vcGTdO+DzyoadrX5U7u4A1wnnv3mQj8FngZmJ63zu1jBjjXn8M5t7N0XW9O7385cI+maaW6rofy2NVRbYDzfAxQBVyh63oPzt+OPwGnAN/Na0dHMU3TZgMnAUfruv5Gets3cUYvPw/EkM9CIUQGZARo5DoE6AQWAG/v8tixwCvpP/i9XgA0TdNq8tS/fcXezvNtwBV7eI4bKMlxv/Y1ezvPaJqmAH8A/gi8lNee7Xv2dq5PBZ7vDX4AdF1/Vtf1WRL8DNneznN7+vvFmqa5NE2bDpwOvJW/7u0T2nBGKRf3btB13QYUoBL5LBRCZEhGgEYoXdefBJ4E0DRt14drgRW7bNua/j4VaMlp5/YhezvPuq6/3/ffmqZ5ge8AS2S9xNAM8H4G+BYwEfg4cHX+erbvGeBczwVe0TTtWuCLgAd4FrhS1/WuPHZz1Bvgb8ermqbdBNyAs37FhRPY/19+ezm6pd+T/+67TdO0s4FZOO/bG5HPQiFEBmQEaHQK4gz79xVPf/fnuS9jgqZpbpzRif2BSwrcnX2KpmkLcObuf0GmFeZcKU7gcxDOFKKv4UzX+md6FE5kgaZp5TjB5t3A4cDZwGzg1wXs1qinadrRwAPAP9MBqHwWCiEyIiNAo1MM8O2yrfePfSTPfdnnaZpWAvwFOAE4S9f13aZwicxomuYHHgZ+ouv68kL3ZwxIAmHgc7quGwCapn0ReAdnEfm7BezbvuRmoFzX9c+k/71E07RO4H+apv1S1/VlBezbqKRp2idx/la8hbOWDeSzUAiRIRkBGp22AJN22db776Y892Wfll6Y/ypwFHBa+q6jyJ4PAfOBH2qaFtY0LQx8H5ia/vcXCtu9fU4joPcGP2mr0t9nFKA/+6pj2D2Y7F3/MzfPfRn1NE27FHgcZzrc6X3KEMhnoRAiIxIAjU6vAMdqmubqs+2jOBc2Muc5SzRNq8BZUDsOOEbX9RcL3KV90TvAHJwpWQvTX7/Bmce/EPhXgfq1r3oFOEjTtECfbQemv28oQH/2VVtwkiP01Xue1+e5L6OapmkXA78C7gLO2WWarHwWCiEyIlPgRqcHgCuB32madgvOHPPLcerUiOy5HadeyqlAq6ZpE/o81qrrulmYbu070ndyd7rw1jStA0jpui4X5Nn3G+BS4OF0IoSy9LYXdV1fUtCe7Vt+AfxH07QbgN8D03Dqh/1b1/WlBezXqKJp2lycIqf/AH4G1PRJOBFDPguFEBmSEaBRKH1n6xRAwykKdz1OvYk/FLRj+xBN01ScoqdenFGgbbt8TSlc74TITDp74bE42d/exsli9g7wqUL2a1+j6/pzwBk4NWyW4lyo/xv4bAG7NRqdhfNe/RS7/w2+Qz4LhRCZUmzbLnQfhBBCCCGEECIvZARICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhxJimaZpS6D4IIYQQIn8kABJCjFmapn0C+EP65+M1TbM1TTu+sL0SQgghRC65C90BIYQooG/3+XkJcCSwukB9EUIIIUQeSAAkhBCArush4K1C90MIIYQQuaXYtl3oPgghRN5pmvYScFyfTScALwIn6Lr+kqZpPwTOBb4H/ASYDawFLgZs4A5gAVAHfFPX9ef7tH0AcBPw4fSm54Hv6Lpen8NfSQghhBCDIGuAhBBj1SXA++mvI4HSPewzBfgFcCPwWaAS+BvwCHAfToCkAo9qmhYA0DRtLvAGUAN8CfgKMBN4XdO0mtz9OkIIIYQYDAmAhBBjkq7rq4EQENJ1/a30z7sKApfouv6Iruv/Au4BJgE36Lp+v67r/wSuBaoBLf2c64EYcKKu64/ruv5XnNGlAHBFTn8pIYQQQgxI1gAJIcTevdHn5+3p733XCrWnv5env38UZypdVNO03r+xIeBV4KQc9VEIIYQQgyQBkBBC7EU6OcKuont5ShVwTvprV61Z6ZQQQgghMiYBkBBCZFcX8D/gtj08lspvV4QQQgixKwmAhBBjmQm4stzmy8D+wFJd11MAmqYpwJ+ADcDSLB9PCCGEEEMgAZAQYizrAo7UNO0jQFmW2vwx8CbwlKZpvwbiwEXAmcBZWTqGEEIIITIkWeCEEGPZXYABPIOTpW3YdF1fDhyLUyvojzhpsycCZ+q6/ng2jiGEEEKIzEkhVCGEEEIIIcSYISNAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWb8fyiEp46iIF+6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Heavily-Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1526.76it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 106.00it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 2.230 - 20.430) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 0.9952 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.6283 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW6UlEQVR4nOzddXRc5drG4d/MxN2TNnXbdcdKkeJ2kMOHy8EdyuHg7hQrUJxSrLh7cYdSSl13m6YWadwzyej3xyQl9WSazETua62sNFvv2bV55jWL1+tFREREREQk2KzBDiAiIiIiIgIqTkREREREpJ1QcSIiIiIiIu2CihMREREREWkXVJyIiIiIiEi7oOJERERERETaBRUnIiIiIiLSLqg4ERERERGRdiEk2AGCoBwIB/KDnENERESarxtQDyQEOYeItCFLF1wh3u71eiM8ntZ/3Varhba4rmxLzzow9JwDQ885MPScA6OtnrPVasFisdQBka1+cRFpN7piy0m+x+PtW1pa06oXDQmxkpgYTWVlLS6Xp1WvLVvSsw4MPefA0HMODD3nwGjL55yUFI3NZlGvB5FOTmNORERERESkXVBxIiIiIiIi7YKKExERERERaRdUnIiIiIiISLvQFQfEi4iIiLSKefPmxeKb5lgf+IpsywPkjxs3rqq5J6g4EREREWmhefPmWYGbLRbr2RaLJRSwBDuTSDvk9Xq9znnz5r0G3D9u3LhdTuOn4kRERESk5W622UIujYtLdISFRdRaLBYtoiOyFa/Xa3E46qIqK8sudbtdAPfu6hwVJyIiIiItMG/evDiLxXp2XFyiIzY2sSTYeUTas/DwSDuQXF5ecva8efOe2FUXL/WPFBEREWmZDIvFEhoWFlEb7CAiHUFD62IovvFZO6XiRERERKRlrIBFXblEmqfh74qFZtQeKk5ERERERKRdUHEiIiIiIiLtgooTEREREWkXpk2b2v34448YEewczbVy5fKI7777Jj7YOToTFSci7cjixQuZOvUh3nvvbRwOR7DjiIiIyE7ceOP/Bi5fvjQ62Dk6E00lLNJOfPHFZ9x22w14PL71ib766nOeffYlwsLCgpxMREREtk9zIrQ2FSci7UBOzkbuued2PB4P++yzL0uWLGLevL957rmnuOqqa4IdT0REmsHj8VBbWxuUXilRUVEeq7Xlt544cfy4E088Jf+nn75Pdjqd1ieeeHZlVFSU58knH+uxePGCuJqaGlt8fLxr0qRDSiZPvjZ3xYrlkRdffM7QZ555ccXIkaNrAa6++rL+S5cujvvqq58WhISE4PV6OfroQ0b95z/n5Z5yyhnFW9+zuLgoZOrUh3rMnz833u12WwYNGlx9zTU3bOzff0B94zEvvPBM+ueff5xeVVUVMmDAwJobb7x9XeP+7WXu0aOn4/nnn+72888/JJeVlYVmZmbWnXXWuXlHHHF0OcB7772d/NZbM7ude+4FuTNmvNCjoqI8dMiQYVW33nrXuldemZHx00/fJYeEhHiPPfbfBZdccsUmgPr6estTTz3W/bfffkksLS0Ji4iI9IwaNbrixhtv25CUlOw+/vgjRhQXF4e9++6b3ZYsWRg7ffprZllZqe2ppx7PnDv3z4SqqqqQvn3711x00WW5e+89obrxtX388QdJb7zxareioqLwXr162SdNOrRkxoznev7229/z/Pk9sVqtfr2+9krFiUg7MGPG89TV2Rk3bg+efno6P/74Hf/731XMnPkyp5xyBunp6cGOKCIiO+HxeDj99BMHr1y5IihdfAYPHlr95pvvm/4UKN9882XqAw88utrtdlkGDhxUf/rpJw6Nj09wPvjg46tiY2PdP//8Q8L06c/2HDp0eM3hhx9VnpKS4pg9+/e4kSNH17rdbpYvXxpbX19vXbBgXvQee+xVs3Dh/KiqqsqQgw46tHzre7lcLiZPvnQQWLx33nn/muTkZNeTTz7W43//u3LQ++9/tgSguLg4bOnSxbEPPDB1tcNRb7n//rv63n//XX1mzJhp7ijz1Vdf1j87e03UlVf+d0Pfvv3rvvrqi6T77ruzv9VqzTrssCMrAEpKisM+/fSjtHvvfSirtrbGetttNww899wzhh188KHFzzwzY8WXX36a/Prrr2QecMCk8iFDhtU9+uiUHnPmzE644YZb1vXs2aveNM3IRx65v8/zzz/d/aabbt/44oszV5x33hlD9933gNKLLro03+12c9VVlwxyOp2WG264dW1qaprznXfeTLvxxmsGPf74MytHjx5b+913X8dPnfpg37PPPi/nwAMPLp8z54+4F198rufu/p748/pa/AclQDTmRCTICgsL+OyzTwC46qprsFqtHHzwYYwdOx6n08kbb7wS3IAiItJMHXPdkwMOOKhk9OixtePG7Vljt9stBx10aMnNN9++fsSIkfY+ffo6/vOf8wsTEhKdWVmrIgHGj9+rfP78uXEACxfOj7bZQryDBg2unjt3TizAr7/+nDBwoFGdmprm2vpev//+S9z69esi77zzvuy9955QPXCgUXfLLXeu22effctKS0tCAGw2m/eeex5cO2zYcPuYMeNqjzzymKK1a9dE7SjzqlUrI/7++6+Eq666ZsOhhx5RMWDAwPorrrg6f4899ip/441XNy/653a7Lddcc8P64cNH2Pfcc++aESNGVYaHh3muu+7mnAEDBtZfdNHl+QCrV/te55AhQ2tuvPHWtRMm7FfVs2dvxyGHHFYxatTYynXrsiMBUlJSXVar1RsZGelJTExy//zzD3Fr12ZH3XHHvdn77rt/1aBBg+tuvfWuDT179rK/8carGQBvv/1Gxt57Tyi94IJLCgYMGFh/xhn/KTriiKMLd/f3xJ/X116p5UQkyGbN+hyXy8moUWMYNWrM5u3/+c95zJ//N5999glXXnkNoaGhQUwpIiI7Y7VaefPN982O1q0LoEePnpu7U0VGRnrPOuvcwi+//Czx9ddfjc7Lyw1fv35tVHl5Wajb7bEA7LffgRV33HFzqt1ut8yZMzt22LDhVZmZPesWLZofB2yaO3dO/P77H1i6vXutXr0qMioqyj1w4KDN90xPz3DdcMOtOY0/x8fHu+Lj492NP8fGxrkdDscWL65pZtNc2Vg0VTc9ZsSI0VWvvTajR9NtAwb8c9/w8HBPamp6vcViASAiIsILUF9fbwU44YSTSn/99efYqVMfzMzNzQnPydkYmZeXGzF48JAt7tMoK2t1ZGRklLtpq4TFYmHo0OHV8+f/HQewbl121MSJ+5c1PW/UqDHVn3328RZdJFr6e+LP62uvVJyIBNlXX30BwNFHH7vF9gkT9iMpKZnS0hL++ONXDjjgoGDEExGRZrJarcTExHiCnaOlwsMjNmeura21XnzxOUZdXZ11v/0OKDvssCNLRo0aveGKKy4a3HjMPvvsWxUaGuL588/fYxcsmBc3adLBpb1796n/9NMPMzZuXB+2bl121J133pe9vXvZbCHexjfLO2K1WnfZAtU0844GpXs8bovNZttiZ2ho6BY/W607znL33bf1+v33X5IOPPDgkr333rdi8OCh+W+88WpGSUnRdmeq8Xq3/9I8Hg8hISFe3/2sXq931w1sLf098ef1tVcqTkSCKCdnIytWLMdms3HIIYdvsS80NJQjjzyGN954lW+//VrFiYiItLnGrkkffvjForS0dBdAWVmpraKiIqSxCAgLC/OOGjWm8pdffkpYvXpVzI033ra+R4+eDovF4n3mmSe7d+vWva7p4Pam+vXrX1dTU2PLzl4T3q9f/3qAkpLikNNO+/fwe+99aLU/mQcNGmwH+PvvOTGHHHJ4ReP2JUsWxWRm9rT7c83S0hLbN9/MSr3hhluy//WvEza3dOTkbIiIiIhsUhj98+Z/wIBB9traWtuKFcsimraeLF++LKZHj151AL1797EvX74sBtjclWvZsiU7HafUnN+TzqRdN+uIdHazZ/8OwKhRY0hKStpm/4EH+gqS33//dfMUwyIiIm0lPT3DAfDppx8lb9y4PmzOnNkx11571QC3221xOJyb34lPmDCx/Mcfv0+Ji4t19e8/oD48PNxrGEOqf/vt5+S9955QvqPr77ffAZV9+/avvfvuW/vOmzc3euXK5RF33nlLn/j4BOeoUWNq/clsGEPqRo8eWzFt2tRe3333dXxW1urwp556vNu8eXMTTj75tAJ/rhkXF++OjIxy//bbLwnZ2WvCly9fGnnHHTf3XrdubZTT+c9ziIiIcOfm5oQXFhaEHHDApIqePXvb7777tn5//PFr7KpVKyPuuef2Xjk5GyJPPfX0AoDTTz87f86cPxJnzHg+PTt7Tfj777+T/MUXn6XtLEtzf086CxUnIkH055++4mSfffbd7v7Ro8cSExNLWVkpy5YtCWQ0ERHpgsaOHV973nkXbfz004/Szj771OEPPnhvn+HDR1Xtu+9+pab5z0xkkyYdUuHxuC3Dh4+qbNw2Zsy4Sq/XywEHHFS+o+tbrVYeeuixrNTUdMeNN/5v4JVXXjLYZrN5p059cnV4eLjfzQBTpkzN3nPPvcunTn2ozwUXnD1szpw/Em6++c41Rx99bNmuz95WSEgIt956V/aGDesjzz//zGHXX//fgfX19dYzzzwnNzd3Y2RNTY0V4LjjTiycP39u/OTJlw0KCQlh2rRnV/Xp06/2rrtu7X/JJecPWbdubeSUKVNXjRu3Zw3ApEmHVF5++eT1n3/+Sep5550x7IsvPkk9/PAjixq7fW1Pc39POgtLc/q9dTLZbrenb2lpTateNCTESmJiNGVlNbhc+oS7LXWWZ+12uznwwH2oqqpk5sx3GDFi1HaPu+66q/n226+46KLLuOyyqwKWr7M85/ZOzzkw9JwDoy2fc1JSNDabdS3Qr1Uv7Id58+YNtlptX6WlZVaHhUW02ylZpf2ZPfu3mJSUNGfTCQGeffbJjG++mZXy0UdfLg1mtrbkcNRFFBbmxng87iPGjRu3cmfHquVEJEhWrlxOVVUlsbFxDB06fIfHTZgwEYC5c+cEKpqIiIi0gT///CP+2muvGvT777/E5uRsCPvmm1nxn376UfqkSYdsd3azrkgD4kWCZMmSRQCMHDkam822w+PGjh0PwNKli6mvryc8PDwg+URERKR1XXbZ5Dy73W6dMuXevlVVlSFJScmO4477d8GFF17arldtDyQVJyJBsmTJYgBGjBi50+N69epNSkoqxcVFLF26mHHj9ghEPBEREWll4eHh3ptvvmMjsDHYWdordesSCZKlSxuLk+2PNWlksVgYM2YcAPPn/93muURERESCRcWJSBBUVlawfv06AIYPH7HL48eO9RUnCxfOb8tYIiIiIkGl4kQkCBpbTXr16k18fMIujx8xYjQAy5cvpQvOsCciIiJdhIoTkSBYtmwZAMOH73y8SaNBgwxCQkIpKysjLy+3LaOJiIiIBI2KE5EgWL3aBGDQoMHNOj4sLIyBAwcCvtYTERERkc5IxYlIEGRlrQZg4MBBzT6ncS2U5cuXtUkmERERkWBTcSISYA6Hg/Xr1wIwYIA/xYlaTkREpHVMnDh+3HvvvZ3c3ON/+un7uBNOOGr4gQfuPfbBB+/r0ZbZmmPatKndjz/+iF3PLNMCLXkmOTkbwj799KPE1rx/V6d1TkQCbO3abNxuN7GxcaSlpTX7vGHDfP/2LlvmGxRvsVjaKqKIiHQRH3zw+aK4uHh3c4+fPv3ZHunpGfVPPPHMqpiY2Gaf15G05JncdddtfdLS0hzHHntCWVvn6irUciISYE27dLWkwOjfvz8hISFUV1exaVN+W8UTEZEuJD09wxUZGdnsaSBrampsQ4cOq+nVq48jKSm5UxYnLXsmXn1S2MrUciISYFlZq4CWdekCCA0No0+fvmRlrWb16lV069a9LeKJiEgXMnHi+HGTJ1+77qSTTi255Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hmjhx/DiAd999q9u7777V7c0331/Ss2dvx/Tpz6bPmvV5WkVFeUhGRrf6k046bdMJJ/xfKcAff/wae/31/x109tnn5XzwwbvdUlJS6++998Hss846efhpp52V98UXn6aFhYV6Xnnl7eUWi4WpUx/s8ddfsxNcLpelb9/+tZdddlXO6NFjaxvzvvXWzJT33ns7o6ysNGzUqDEVaWnpjp29vgsvPNsYNmxkVVlZaejvv/+SFBoa6jnmmOMLDzvsyNIpU+7pk52dFZ2R0b3u+utvXjdmzLjaps/k0EOPKD/77JOH9enTr3batOeyAH755afYW265btBNN92+5qOP3ktfsWJ5zIoVy2OOP/6I2I8//mrJ8ccfMeKggw4rueqqa/KaZkhLS6+/776H123vebz22tsrCgo2hT722MM9Fy6cH2ezWb2DBg2umTz52o39+w+ob4vf9/ZMLSciAbZ6dWNxMrDF5zYWNI0FjoiItC9uu926oy9Pfb0lEMfujtmzf0+srKwMeeKJZ8zbb79nzYoVy2OfeurxTPB1d0pKSnL+618nFHzwweeLMjN7Oh577KHML774NO3yyydvmDHj9eUnnPB/BU8//XjvmTNfSW163TlzZic888yLK2688bZ1NpvVC/DTT98nPfbYU+add96/Jj4+3n311ZcNzMvLDb/33oeynnnmxZWDBw+pufrqywYvWbIoEuDTTz9KfO65p3qdcML/FUyf/tqyIUOG1cya9fku+0d//PH7GWlp6Y4XX5y57Jhjjit8662Z3W+44b8DTznl9E1PPz19RVhYqGfq1Ad7b31eQkKC+7rrblm7YMG8+E8++TCptLTE9tBD9/U9+ODDio866l/lDz30eNbAgYNq9tln37IXX5y5oiXPuenzqKurs1555cWGx+PmsceeNh977GkzLi7eddll5w/Jy8sNbcl1OwO1nIgE2Jo1LZ+pq9HAgYP46qsvWLXKbO1YIiLSCtZceemYHe2LHGRU9Lz+pqzGn7OvuWqU1+nc7gfF4X36Vve+9Y7N/9ivveF/Izy1tdt93xbWPbO2z933tejN8Q4zRka677jj3vWhoaHeQYMG182e/XvJvHlz48HX3clqtXojIyM96ekZrpqaGutnn32cfu21N6095JDDKwD69u1Xn5+fF/7BB29nnHXWOUWN1z3llNM3NbYCbNiwLgzg6KOPLTKMIXUAv/76c+zq1Wb0xx/PWpSSkuoCuOaaG3KXL18W8/bbr6ePGDFq3Ycfvps+YcLEsrPOOrcIYMCAgZtWrFgWvW5ddtTOXlPPnr3sl18+OR/g3HMvKnjrrde777ffgaWHHXZkBcBhhx1ZMn36cz23d+5++x1QdeSR/yp87rmnen7//TdJ0dHR7htuuHUDQGJikjskJMQbFhbmaczcXE2fxzvvvJFSVVUZMmXK1LWhoaFegLvvfmDdv/999Ij3338ntWkrTFeg4kQkgOx2O/n5vn9j+vbt1+LzGwsatZyIiEhbSE/PqG98gwwQHR3jdrlc222ZWbVqZYTT6bQ8+uiUPlOnPtincbvb7bG4XE6L3W7ffF6fPn236Z7Uq1fvusZfr1y5PArglFOO32LmLZfLZXE6HRaAjRs3RB544MGlTfcPHTq8elfFSffuPTbfJyoqygOQmZm5OU9YWLjH5XLusPXpmmuuz5k/f278/Pl/xz/77EvLWzJGZ0eaPo9Vq8wou91uO+KIA0c3PcbpdFo3blwfsbv36mhUnIgEUE7OBgDi4uJJSGj5zIMDBxoArFu3FqfTQWhoWKvmExGR3dP/yWcX7GifxWrd4k1tv6nTFjX32L4PPrqkucfujqaFyT+2f3mPx2MBuPnmO7L79RtQt/X+8PDwzSdGRER4tt4fERGxeb/H47FERka6n3/+lW1agMLCwjwAFosF71ZRQkJCdvnaQ0Js2xxjsTR/ZENBwabQ8vKyUJvN5p09+7e4ESNG2nd+xpa3c7nc2xQ+TZ+Hx+OhW7fudVOmTM3a+rjo6OhOOenAzmjMiUgAbdiwHoBevbbp2tosGRndiImJxeVysW7d2taMJiIircAWGenZ0Ze1yZv1tjw2UAYMGFRns9m8+fl5Yf369a9v/Prllx/jZ858Kd1qbf7bzP79B9rtdrvN4ai3NL3WK6+8mPHDD98mAPTu3ad26dJFMU3PM80V0a37qrbk8Xi4++5b+/bu3bf2ssuu2vDmm69lLl26JPKfIyxb/j7ZQrzV1TW2pucXFhbs9JPEfv3624uLi8Pi4uLcja+7V6/e9U899XjmX3/Njm3t19TeqTgRCaD169cB0Lt3H7/Ot1gsmwfSNw6sFxERCYb4+Hj3oYceUTRz5suZH374btK6dWvD3n//neRXXpnRIzExqUVjMCZNOriid+8+9jvuuLn/b7/9EpudvSb8oYfu6/Hjj9+l9O3bvw7gtNPO3vTXX38mTp/+bPqaNVnhr746I23OnNltugDiCy88k7F27dqoW265c90pp5xRPGTIsKp77729b33DJASRkZGewsKC8NzcnFCAIUOGVv/2289Js2f/HpOVtTr87rtv622319p2do9jj/13aUxMtPuGG/7bf968v6JXrzYjbrvthr4LF86LHzjQ2EUrTeej4kQkgHa35QSgf/8BgG8xRxERkWC68cbbNh533L8LXnvt5cxzzjlt+BtvvNrt1FPPyLvyypYN4rbZbEyb9tyqgQMH1dx33x39LrjgrKGLFy+MvfXWu9bst98BVQCHHHJYxfXX35z9zTezUs4//6xhv/32S8Kxx55Q0DavDJYsWRz59tuvdz/rrHNy+/XrXw9w0023rS8uLgp/7LGHMgGOPfbfRRs3bog477wzhrndbq644r+5gwYZ1bfccv3AK6+8eHBcXJxrwoT9drpAY3x8vPvJJ19YGR+f4LrxxmsHXnrp+UMKCwvC7r//kdWDBw/dprtcZ2fxbt15r/PLdrs9fUtLa1r1oiEhVhIToykrq8Hl2qZbpbSijvyszz33DBYsmMeUKY9yxBFH+3WNmTNf4dFHp3DIIYfzyCNPtHLCf3Tk59yR6DkHhp5zYLTlc05KisZms64FWj6bSCubN2/eYKvV9lVaWmZ1WFhEl3vzKNJSDkddRGFhbozH4z5i3LhxK3d2rFpORAKoNVpOGmf5WrdOLSciIiLSuag4EQmQ6upqSkqKAejVq4/f12ksTtavX4fb3eUm8RAREZFOTMWJSIBs2LAOgOTkFGJiYnZ+8E5kZHQjPDwcp9NJXl5uK6UTERERCT4VJyIB0hpdusA3aLBxti8NihcREZHORMWJSIDs7jTCTfXpo3EnIiIi0vmoOBEJkNzcHAAyM3vu9rX69OkLwNq1WohRREREOo+QYAdoyjCMQcB84ArTNF9p2DYaeAIYD5QA00zTfCRYGUX81Tg+JDMzc7evpRm7REREpDNqNy0nhmGEAm8A0U22JQPfAqvwFSd3APcYhnFuUEKK7IbG4qR7990vThpbTlSciIiISGfSnlpO7gKqttp2EVAPXGqapgtYYRjGQOAG4OUA5xPxm8vloqBgE9A6xUnjuJWysjLKyspITEzc7WuKiIiIBFu7aDkxDGN/4GLgP1vt2g/4paEwafSD7xQjLVD5RHZXQcEm3G43oaGhpKSkbveY+rxc6tata9b1oqKiycjoBsC6dRp3IiLSXlgs2KxWS2igvywWbMF+7SKtIegtJ4ZhJAAzgStN09xoGEbT3T2AJVudktfwvRdQ6O99Q0Jaty6z2axbfJe20xGfdUFBPuBrNQkLC8HjdJL34nQyTj6J0LR06hxuyn/6gYoffyDjjDNJOuTQXV6zd+/ebNqUT17eRvbYY3yrZ+6Iz7kj0nMODD3nwOjqz9liweaxWLrV1rkC/v4qKiLEZcWb7/XS7lbnnTZtavcffvgm+eOPv9r6Pd0uZWWtDr/oonOGvvLKG8t69erjaIt80r4EvTgBngVmm6b55nb2ReHr1tVUXcP3CH9vaLVaSEyM3vWBfoiLi2yT68q2OtKzLi8vAqBPn94kJkaT9cxzVM75E2dxEY7zrqakoo7oslpCvV42vT6TyMgwuh9z1E6vOWBAf+bM+ZOiovw2+/MMHes5d2R6zoGh5xwYXfU5WywWa22dK+TPpfme2jqXJ1D3jYoIse49vFtIbESI1ev1trvixF/Lly+NvPHG/w1wOOq7ZrXbRQW1ODEM4yx8XbdG7OAQOxC+1bbGoqTG3/t6PF4qK2v9PX27bDYrcXGRVFbacbsD9u9Rl9QRn/Xq1b6B62lpGeT8OZ+Cr78Fi4WqvQ4hK6vYd9CoQ0m3hJE4/2fWzngZd2IKMUOH7fCa6em+sSurVmVRVub3X4cd6ojPuSPScw4MPefAaMvnHBcX2WFaZGrrXJ4auzPQf9A6xsNppmeemZbx/vtvd8vM7FFXWloSFuw8EjjBbjk5D0gHtu7O9ZxhGNcB64HuW53T+HPu7tzY1UYfaLjdnja7tmypIz3rnBzfGicZ6d0oeOctAEL22BczPAOPx7v5uPzh+2OrqiBu9ULypr9A77vuxRa1/VaRHj1866WsX7++TZ9DR3rOHZmec2DoOQeGnnPHMXHi+HGXXnrlhu+//zZp7do10enpGXXnnXdR7mGHHVnReMx3330d/8orL3bPzc2JTExMcuy//6TSSy+9Mj88PNwLsHLl8ojnnnsqc8WK5bF1dXZrcnKK41//OqHw3HMv2G73+1deeTHtlVde7HHTTbdnH374UeXbO2bevL/ir7vu5rXx8fHu66//76A2efHSLgW7yj4TGAKMbvIFcDtwFPALsJ9hGE0HeR0MmKZp+j3eRCTQ8vJ8xUnfiAjqsrOxhIaSP3J/3E0KEwAsFnL3PBJXfDKusjJK3nt7h9fs2bMXABs3bmiz3CIi0vm9/PL0HpMmHVz6wguvLhs/fq+Ke+65fcDcuXOiAX788bu4++67s/+RRx5T/NJLbyybPPl/G3777eekW265ri9AbW2t9X//u2pQRESk58knn1v58stvLps4cf+yGTOe67lkyeJt+ve9/vorqa++OqPHrbfevWZHhQnAjBmvm0ceecwO90vnFdSWE9M0t2n9aGhBKTRNc71hGC8B1wMzDMN4CNgTuBq4JJA5RXZXXp5vHoeMXN9366jxFDu3/9fPGxLKxgn/os+sVyn/4w8Sj/03oduZKrix5aSysoKKinLi4xPaJryIiHRqkyYdUnzWWecWAVx77Y25S5cuin3vvbfS9thjr7Wvv/5Kt4MPPqz4jDP+UwTQt2+/+pCQkPU33HDNoA0b1oVFRUV7jj32hMLTTjurMC4uzgNwxRX/zfvww/cyVq9eGTlixEh7433eeuv1lJdeeqHHHXfcm3XggQdXBufVSnsX7G5dO2WaZqFhGIcD0/CtHJ8PXGea5qvBTSbSfE6nk4KCTUTbbIRkrwGgbPAeeHdyjj2tF4V7H0G//fYkKi0Fp3Pb8Y2RkVGkpqZRVFTIhg0bGDEioW1egIiIdGpjx47fYp05wxhSs3Dh/DiAtWvXRq1ZkxX944/fJTfu9zb8B5aVtTrioIMOrTz99LMLP//8k6Q1a1ZH5ebmhK9fvzYKwO32WBrPKSsrC3322Wm9bTabt0ePXltPdiSyWbsrTkzTtGz181xgnyDFEdlthYUFeDwewiMjST7mWKrXb6AwIgl2MVayxNgDqzOC1HoX4TYrXu+25UyvXr0oKipk48b1jBgxsq1egoiIdGIhISFb/Afj9XqxWm1e3689luOP/79Nxx57QsnW56WnZzgLCwtCLrronCGxsXGuvfeeUD5u3J6VI0eOqjnllOO3+E/JYrFy9933r37ppRe633ffnX1nzJi50moN9ugCaY/0p0KkjTWON4lNSyfjxH9Td/zZOJo5iUtxmZ284hrcpUV4Pdue07NnbwA2bFjfeoFFRKRLWb586RYzr6xcuTymf//+tQA9evSyb9y4PqJfv/71jV8FBfmh06Y92qO6usr62WcfJ1dXV4W89NLrKy+/fHL+kUceXV5RUd7w4fc/NU9CQrzzgAMmVd54463rsrOzol5+eXp6AF+idCAqTkTaWON4k27dulPv9FBSYd/FGf/wAmVvvkbW9ddRu2jBNvs1KF5ERHbXZ599nP7xxx8kZWWtDn/wwft6rF+/LvK0084uADj11DM2/fXXn4nTpk3tnpW1Ovy3336Jfeih+/vW1FSHpKdnuNLTMxz19fXWzz//JDEnZ0PYzz//EHfXXbf2A3A4HNu8zxwyZFjdCSectOmNN17tvmZN1tbLRYi0v25dIp1NYWEBPSMj2SM+kcriMsqrWtbVttYSRrTXS8nnnxI1eiwWyz89HxtbTjZuVMuJiEh7ERUREtAPf3f3focddmTR+++/nf74449E9u7du/aBBx5ZPWzYcDvA0UcfW+b1erPfemtmtw8/fDcjKiraPX78nuX//e/1OY37V65csWn69Gd7PvnkVGtKSqrj8MOPKp49+/eEFSuWRQNFW9/v0kuvzP/9918S77vvzj4vvviaqe5d0pRle/3YO7lst9vTt7S0dRetCwmxkpgYTVlZjeZ2b2Md7Vnfc8/tRM+ZwzEZ3bDuMYGlQw9p0fm2uloGfjgNq9NB5uRriG4ytmTlyhWceuoJJCYm8uOPs1s1d0d7zh2VnnNg6DkHRls+56SkaGw261qgX6te2A/z5s0bbLXavkpLy6wOC4uoa9xusWDzWCzdautcAf/wNyoixGX1evO9Xlq0QvzEiePHTZ587bqTTjp1mzElIq3F4aiLKCzMjfF43EeMGzdu5c6OVcuJSBsrKCjg2Lg4AGoy+rb4fHdEFGUDx5K8/E/Kv/9mi+KkZ0/fdMJlZWVUVlYS13AfEREJPK8XtxVvfmyAW0589/Z6WlqYiLRHakcTaWM1RQX0aVjlvSKtt1/XKB2yJ16LhZqlS3Hk/bM8UHR0DMnJKQDk5GjciYhIsHm9uD0erzPQXypMpLNQcSLSxhKqqwHwpKRS4Q316xrOmASqew0GoOL7b7fY1zgoXjN2iYhIS/3229/z1KVL2hMVJyJtyG63k2nx/TXz9uqP2+3/GK+SIXsCULlgAR6nc/P2xpXic3NzdiOpiIiISPBpzIlIGyos3MSA6BgAHBm9dutatWm92HTAvxl+9CTCIsM3DzbNzOwBQE6OihMRERHp2NRyItKGCvLz6dcw3qQmqfvuXcxiobTPcPKqXMA/0wk3FieNiz2KiIiIdFQqTkTaUEFhATcsX8LnFgtVEQmtcs3Ckhoq7Q5wOoB/unXl5GxsleuLiIiIBIuKE5E2tKmggPz6OgpS07A7W2fOf1f2anLvvoNNL00HIDPTV5xs2pSPy+VqlXuIiIiIBIOKE5E2VFi4CYCYuORWu6Y7NBxvfg6V8+fjqqggNTWVsLAw3G43BQWbWu0+IiIiIoGm4kSkDfXMyeFf6d1IioxttWvWJ2VgT80Et5vqOX9gtVrp3j0TUNcuERER6dhUnIi0Ea/Xy2iHk7N69iYuPLpVr102cCwA5T//hNfj2TwoXtMJi4hIINXU1Fhnznw5tfHnW265rs+FF55ttOU9c3I2hH366UeJu3ON9957O3nixPHjdrQ/EK9j4sTx49577+3W61oRRBs2rAubOHH8uD/++HW3P41VcSLSRlylpURYLLg8HrypPVr12hV9huEJC8dRUEBd1qrN407UciIiIoH00ksvpH/wwTsZjT9ff/2tGx966PGstrznXXfd1mfOnD/i2/IeEjwqTkTaSPXabADy6uoIi01p1Wt7Q8Oo6D0MgKo/ficz09etS9MJi4hIIHm9XkvTn+Pj492JiUnuNr6rZdfHSEelRRhF2kjZKhOAXEc9cRGt260LoLz/SBJXz6di7lx6HnssoIUYRUSCyeuFWldwPviNCsFj8eMte0VFhW3q1Ad7/PXX7ASXy2Xp27d/7WWXXZUzevTYWoDa2lrrlCl39/z777kJtbW1tszMzLozzzwn78gjjymfNm1q93fffbMb+Loovfnm+0uef/7p7oWFBeHTp79m/vHHr7E33vi/QQ888MiqJ554tFdhYWF4nz59am+99e6133wzK/Hzzz9Od7vdlv32O7Dkllvu3GixWPB6vbz44nPp33wzK6WoqDA8NDTUM3jw0Oprr71pQ+/efRwXXni2sWLF8pgVK5bHHH/8EbEff/zVEofDYZk27dHuP/30Q7LdXmvr0aOX/bzzLsw74ICDKhtf56xZXyS8+uqL3QsKNkX07z+wZvTosZU7eiaN3G4P9913Z8+ffvo+OSQkxHvooUcUX3XV/3JDQnxvn//668/ol156ofuaNaujnU6nNT09o/7008/OP+64f5c2XuOTTz5MeuedNzLy8/MiEhISncccc1zh+edfXLD1vYqKCkMuv/xCIyEh0fn4489kRUVFeX7++Ye46dOfzczNzYlMS0uvP/HEkzdNmza1z5tvvr+kV68+juOPP2LEXntNKF+wYF5cRUVF6O23371m7733rXr11RlpX375WVpxcXFYSkqK48QTT9l02mlnFgP88cevsddf/99BjdcAX5es00//vxEPPfTYqgkT9qu65Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hAlixYlnEY4893Csra3V0YmKi85RTTs9v+Z++7VNxItJGajesJwwosdqI9+d/jF2wp/Wkcsh4eu+/N964KEBjTkREgsXrhTO/ihpsltla/9OoZhic6K6eeUSt2ZL/brxeL1dffdnAkJAQz733PpQVFxfn/uyzj5OvvvqywU8++fyKESNG2Z98cmr3devWRk2Z8ujq+PgE1wcfvJM6Zco9/YYNG770vPMu2mS3262///5z0vTpry1PSUndZj57j8fDM89M63nDDbesCwuL8Nx++439L7/8wiFjxoyreOKJZ825c+fEPPPMtN577z2h8pBDDq94+eXpae+991a36667ee3gwUPsGzduCH/00Qd7P/bYQz0ff/yZNQ899HjWNddcMTAlJdVxww23bgC47bYb+mzYsCHypptuW5uR0d3x00/fJ9x++00DbrvtnjWHHHJYxdy5c6Lvv//O/ieddFr+UUf9q+Tvv/+Kff75p3rt6vmsWrUyJjk52fnkk8+vzMnZGD516kN96urqrDfffMfGvLzc0BtvvGbQ4YcfXXT99bdscLmcltdeeznjscce7rPPPvtWpqWlu7744tPERx55oO+ZZ56Te8ghh5ctX7406rHHHuoTHR3jPvXUM4ob71NSUhxyxRUXGcnJKY6pU5/KioyM9C5Zsjjy9ttvGnDMMccV3nHHfdkrVy6Leuqpx3tvnfHrr2el3n33A6vj4uLcQ4YMsz/44H09f/75++RLL71qw4gRo2r++OPXuOeff6qXw1Fv/c9/zi9s7p+N2bN/T5w48YDSJ554xszLyw174IF7+j311OOZ99wzZX1FRYXtf/+70hg0aHD1M89MX1FQUBD22GMPbpPNXypORNqIt9D3wUhFRFTb3MBiIWfPo4jPTKFXsu+vcllZKTU11URHx7TNPUVEZIcs4A12hpb47bdfYlevNqM//njWosbC4pprbshdvnxZzNtvv54+YsSodfn5eeGRkVHu3r371sfHx7snT742d8yYcVXx8YnumJgYT2RkpMdqtXobP1HfnnPPvTB33Lg9awAmTJhY/vnnn6Tdfvs966OiojwDBxp1r7/+auaaNasjDznk8IqePXvVX3vtTWsPPfSICoCePXs75syZXfbLLz8lAiQmJrlDQkK8YWFhnpSUVFd29prw33//Nempp15Y0dja07//gII1a7Ii33nn9YxDDjms4r333kobNMiovuqqa/IABgwYWJ+dvSbyyy8/TdvZ84mPT3Dec8+DayMiIryDBw+tKyoqyn3++ad6XX31dbkOh8Ny6qln5l1wwSUFVqu18XXm//TT98nZ2Wsi0tLSq99//+30ffbZt/Tiiy/f1JCrvra2xhYREbl54bPKyoqQK664eFBKSmr9o48+uSYiIsIL8NZbM9P79u1Xe911N+cADBw4qL60tDR0+vRnezbNOGbM2Ir99z+wynetSuvXX3+Rev75F288/vgTSxvuWZSXlxv+zjtvdjv77POaXZxERka677jj3vWhoaHeQYMG182e/XvJvHlz4wG++OKTRIfDYb3rrgfWxcfHuwcPHlpnt9duvPfeO/o39/o7o+JEpA143W5Cq6oAqI3ZrQlFdqmgtIa+3bsRHx9PRUUFubm5DBrUphOMiIjIViwWmHlErdmRunWtXLk8CuCUU44f0XS7y+WyOJ0OC8CZZ56z6dZbrx9w3HGHjxo4cFDN2LF7VBx55DGl8fHxzR5X0rdv/7rGX4eHR3ji4xOcUVFRm9+gh4WFeurrHVaAQw89omLevLnR06Y92j03Nyc8J2djZE7OxojExETn9q69fPnSKID//e/KLf7jc7vdlqioKDfA+vXrosaMGVfRdP+IESOrd1Wc9O8/oLaxWAAYOXJ0jcvlsqxZkxU+YsRI+4knnlzy2msvpa1fvzYiNzc3Yt267CgAj8dtAdiwYX3k/vsfVNr0mqec8k+LCcDMma9kut0uy9b3ys7Oitq669nYsXtUwbNbZMzM7LH52WZlrYpwu92WMWPGVzc9ZvTosdWfffZxelFRYbPf96enZ9SHhoZuzhMdHeN2uVwWX7Y1Uenp3eqa/hkYN26P6u1dxx8qTkTagMVm44v+/fj5k4/of+CxbXqv6px88pf9yjG9+vLGkoXk5uaoOBERCQKLBaJD8ez6yPbB4/FYIiMj3c8//8qKrfeFhYV5AMaP37Pmo49mLf7115/i5s6dE/fNN7NS3n779e733vvQ6v32O6CqOfcJDQ3ZokXJat1xFfXCC8+kv/XWzMxJkw4pHj16bNXJJ59W+NNPPyT8+utPSds73uv1Pe7HH39mZXR0zBbP3mazef85bstB9CEhobts5bJarVsc4/H43ouHh4d5V682I6644qLBffr0qx03bo+KiRMPrEhKSnJeeeXFQ5ref1cF44gRIyuPOurY4vvuu6P/jz9+Vzpp0iGVDefi8ex64H9YWPg2r9Gy1U09Ht9jaVpseJu8MqfTtc19mh77j6abWv48m0uzdYm0kU0lJWyw1xIRndCm94nIzcb+7ZfsH+XrPqbphEVEpDn69x9ot9vtNoej3tKvX//6xq9XXnkx44cfvk0AmDbt0e5//fVn7GGHHVlxyy13bnz//c+WpqWl1//443eJABaLpVW7sr377pvdTz31zLzbb79nw2mnnVU8btyeNbm5ORHeLe7yzz0HDjTsAAUFBWFNX8Mnn3yQ8tFH76cA9OvXv3bFimVb9HdesWLpLscGrVuXHdX4xh5g/vy/Y8PCwjy9e/etf/fdt1Lj4uKdzz//8qqLLrqs4OCDD60oLi4KBd9YHoDMzJ51prlii/s88MDdPa+++rLN3Z/2339S2ZFHHl0+YcLE0scee6hPZWWlFaBPn761W5+7ZMnCnWYeMGBQnc1m886fP3eL17pw4fzY+PgEZ0JCojs01Fd0VlZW2hr3r1+/NnxXz6KpgQMH1ebn54WXlBRvbuRYvHhBq421anFxYhhGiGEYhxiG8YBhGG8bhjHLMIyZhmHcaxjGvoZhaHo3EaCkxNdyGxO33Q97Wk1ln6F4bSEkuj30jYrSdMIiItIskyYdXNG7dx/7HXfc3P+3336Jzc5eE/7QQ/f1+PHH71Iau2Ll5uaGP/74w71+++2X2I0b14d98cWnicXFReEjRoysBoiMjPTU1NTYsrJWhzudzt1+D5icnOKYP39unGmuiFi9elX4Y4893P2vv/5McDqdm9+zRkZGegoLC8Jzc3NCBw8eWjd27PiKadMe6f3NN7Pi161bG/bii8+lf/jhexmZmZn1AKef/p9N69evi3zwwft6ZGWtDv/oo/eTZs36PHXHKXxKSkrCbrvthj4rVy6P+PLLzxLefPO17scf/38F4eHh3rS0dEdpaUnYDz98G7dx4/qwWbM+T5g2bWpvAIfD1yXu9NPPyv/jj98SX3nlxbS1a7PDP/30o8RvvpmVOnHiAeVb3+v662/Z6HA4LI88cn9P8HWnW7t2TfQjj0zJzMpaHf7VV18kzJz5SiZs2zLSKD4+3n3IIYcXv/HGq5kff/xBUnb2mvCZM19O/frrL1NPOOH/CiwWC4MHD7VHRER4Xn55erfs7DXhs2f/HjNjxvM9dnTN7TnmmONL4+LiXbfccn3fpUuXRM6e/VvM008/0XPXZzZPs4sTwzDCDMOYDGQD3wAXAYOAGGAMcDnwK7DRMIwrDcNoURUm0pmUffctB9TVMzgmlpi4th1z4gmLoKrnIAD2T05Vy4mIiDSLzWZj2rTnVg0cOKjmvvvu6HfBBWcNXbx4Yeytt961prHL1i233Ll+5MjRVVOm3N33rLNOGf7aay9l/uc/5+eccMJJpQCHHXZEWUJCovOCC84etnjxwt2eAeaWW+5cW19fb7300vOHTJ58yeB167IjL7vsqvVVVZUhGzasCwM49th/F23cuCHivPPOGOZ2u5kyZWr2PvtMLJs27dHe55xz+vBvvpmVcvnlV68/6aTTSgBGjBhpv/feh1YvWbIw9oILzh72wQfvpJ900mm7nPp2/Pg9y202m/fyyy8c8tRTj/U+4ohjCi+/fHIewNlnn1c4YcJ+pQ8+eF+/c889Y9jrr7/a7ZxzLshNSUl1LF26JBp842euuOK/67/44tPUc889fdirr87IvPDCSzf83/+dUrL1vVJSUl0XXnhZzg8/fJfy00/fxw0ZMqzuttvuzpo798+ECy44a9irr87oftRR/yoECA0N22Fr1U033b7h6KOPLXzppRcyzzvvjGGff/5J2sUXX7HhggsuKQCIjY313HDDrdm5uRsjzzvvjGHTpj3a6+KLr9jYkuIkOjraM23as2ZISIh38uRLBj/wwD19Tz759E3NvsAuWLzeXbfGGYaxJ/Aq4AbeAN41TXPNdo4bARwFXABYgLNM05zdWmFbSbbb7elbWlrTqhcNCbGSmBhNWVkNLleH6W7aIXWEZ53z6MPUrljGM2vXMOLyB0hO7d6m94vZYNLrx3codTh4uLqSDz78fLev2RGec2eg5xwYes6B0ZbPOSkpGpvNuhbo16oX9sO8efMGW622r9LSMqvDwiLqdn2GSMssWDAvKiQkxDtixCh747aPP/4g6fHHH+nz3Xe/zm9ca6WjcDjqIgoLc2M8HvcR48aNW7mzY5v7ymYCN5qm+dHODjJNcwmwBHjQMIyT8RU0g5p5D5FOo77A94FMfn0d+7RxywlATWZ/XKFhJAEx5WV4vd4dNvuKiIhI+7Zy5Yqol156ocd11920dujQYfZ169aFz5z5cvd9951Y2tEKk5Zq7qsbYZqmoyUXNk3zXcMwPm55JJGOzeN04C71zRxY6oHw8Mg2v6fXFkJlr8EkrVnMnjFxlJQUk5Kyy+60IiIi0g6deuoZxSUlxaHPPvtkr7Ky0tC4uDjXfvsdWHrFFf/NDXa2ttas4qSlhcnunifSkTkLiwCodbnwxMQF7L5V/UYQvmoBtR43OTkbVZyIiIh0UBaLhSuuuDr/iiuu3uXYmM6mWcWJYRi3t+Sipmne7V8ckY7PWegbE5ZXX0dMbELA7luT0ZcXah2sztnAsLwcRo8eG7B7i4iIiLSG5nbrunOrn734Bry7gWIgEQgDHEApoOJEuixHQQEAm+rqiE7ICNyNrVaiE32L3ebldfpWXxGRYPIA3q0X9hOR7Wv4u+KFXS9S2qyphE3TtDZ+AYcCJcCpQIRpmt1M04zAN0tXCXCN38lFOgF3RQUABfV1xLbxGidbS0z2FUM1a9bgcapXpYhIG9nk9XqdDkfdbk+dK9IVOBx1UV6v1wnsspuaP8P9nwJuM03z3aYbTdP8yjCMW4H7gLf9uK5Ip5B6ymk8t2wRsxbMZZ9xbT9TV1OJKRncYQxlWFEx9mVLiB49LqD3FxHpCsaNG1c5b9681yoryy4FksPCImpbe6V0kc7A6/VaHI66qMrKsjCv1zNj3LhxVbs6x5/ipBewYQf7ioB0P64p0qnkl5RQ63a3+QKMW0tMzmBNTTXDYuOo+muOihMRkbZzv9vtory85GyLxRKFr7u7iGzJ6/V6nV6vZwZwf3NO8Kc4WQRcaRjGd6ZpOhs3GoYRAVwPzPHjmiKdSnFxMQAxQejW9UFpMcdmdKdqwULS6uxYI9p+KmMRka5m3LhxHuDeefPmPeH10o1mdpUX6WI8QH5zWkwa+VOc3AR8DawxDOMr/mktOQqIBg7w45oinYKrqpKCF1/gUK+XVRDwlpPo2ARyXG7y6ux0B2qXLCZmj70CmkFEpCtpeNPV7DdeIrJzLa7yTdP8GZiAr4XkX8C1wJHAd8A40zQXtmZAkY7EWVREzbKlDGtorQh0cWKxWEhMzuDPMt8ikNXz/w7o/UVERER2hz8tJ5imOR84qZWziHR4robuXIX19VgsVqJj4gOeITGlG39mLebf3TKpWrSItPp6rOHhAc8hIiIi0lJ+FScAhmEciW9a4W7AzcAYYJ5pmutbKZtIh+Ms8RUnRfX1RMfGY7XaAp4hMTmDP5f8SbnVRoLDgX35UqLHaGC8iIiItH8t7tZlGEaUYRjfAF8A5wEn41uE8VJgnmEYw1o3okjH4SwuAqDIUR/wwfCNEpJ9E+Z96fBgPe9K4vcYH5QcIiIiIi3lz8wS9wPjgIOBFP6ZOu8sIBe4p3WiiXQ8zuJ/Wk4CPd6kUWKKbyHGP4sLKE7ogdMdlBgiIiIiLeZPcXIKcJNpmj/iW4YeANM0NwH3AhNbKZtIh9PYravQEcTiJLkbAGXFmyittFNtd2KzaYZLERERaf/8GXOSAKzbwb4yIMbfMCIdmdfrxVvvAHwD4gcHrVtXGgD1dbXYN65j09IfcSREkfx/pwQlj4iIiEhz+fNx6lLgjB3s+1fDfpEux2Kx0P+Rx3gxLpbiILachIVFbB7vYi/Kwfvnz5T99CMep3MXZ4qIiIgElz/Fyb3AWYZhfA5cgK9r1wGGYTwJXAY81Ir5RDoUqxU2lZTgJfBrnDTVOO5kncOJKzoOT10ddSuXBy2PiIiISHP4swjjJ8CZwEjgWXwD4h/Ft+7JJaZpvt+qCUU6EIvFQknDuJNgzdYFvumEAcpKCqjoNRiA6nlzg5ZHREREpDn8GiVrmuabpmn2AobgGwA/HOhumuaM1gwn0pFU/vUnGx59mFEeD9A+Wk7KSjZR1XuIL9/8+XhdrqBlEhEREdmVFg+INwzjB+Ay0zRXmqZpbrVvJPC6aZojWyugSEdRv2ED1UuWkGrzLbwY1OKkyYxdtak9cUXFEFJbjd1cQdSwEUHLJSIiIrIzzSpODMOYyD+tLAfiG2OStp1DjwH6t040kY7FVVYGQKnDQVh4JOHhkUHL0rTlBKuVyp6DSTL/pnreXBUnIiIi0m41t+XkAuBsfIPfvcAz+MaaeJsc07gY45utlk6kA3GVlQJQ4nAEtdUEILFhlfiKskLcbjeVvYeQkJeFLSF442BEREREdqW5xclk4GV8BcgPwOXA1lP/uIFyYFlrhRPpSDYXJ04HMUkZQc0SE5eELSQUt8tJZVkRtow+bDz9GnqN7oHVasHj8e76IiIiIiIB1qzixDTNCuBnAMMwJgHzgJiGVeExDCMR6GmaptY4kS7J6/Vu0a0rNcgtJ1arlcTkDIoLNlJWsonElAxq6lyUV9URHxWLx+MOaj4RERGR7fFntq5FwEfAT0227QUsNAzjY8MwolojmEhH4q6u2jwTVpnTEdRphBttnk64eNPmbZuKKqlauRKvVy0nIiIi0v74U5xMAYYBNzfZ9gNwHDAeuLsVcol0KO6qaqzR0ditVlxeL7FBbjmBpoPi830bPB4inrmfDQ/chyNnYxCTiYiIiGyfP8XJscC1pml+2LjBNE2HaZqf4StYTm6tcCIdRXj37gx++lmebfg52APiYTstJ1Yr9iTfFMO1ixYEK5aIiIjIDvlTnMQCZTvYVwCk+B9HpOOyWCwUlpYAEBPbDoqTptMJN6hsWC2+ct7fQckkIiIisjP+FCfzgfN3sO9cYLH/cUQ6LovFQklxEQAx8e1gzEnKtmNOqnsMxGuxUr9xI87iwmBFExEREdmuFq8QD9wLzDIM4298A+MLgVR8Y07G4VuIUaRLKf74A+rXraUfXhbQPrp1JTR067LXVmGvrSYyKgZ3RBS16b2I3rSO2oULiD/k8CCnFBEREflHi1tOTNP8FvgXvgUY7waeB+7BV+gcZ5rmV62aUKQDqFuzhpqlS4mx2rBYrETHxAc7EuHhkUTHJgBQXlKweXtVL8P3ff78YMQSERER2SF/unVhmuYs0zT3AKKBHkCcaZrjTNP8olXTiXQQzoYFGEudDqJj47FabUFO5JPQsFL8FuNOevrGndSuXoWrsjIouURERES2x6/iBMAwjCHARcCVQIJhGBMNw4httWQiHUjTBRjbQ5euRptn7GpSnLhi4inc+0gS/ncL4YnBb+ERERERadTiMSeGYdiA54DzAAu+7l3vAXcA/QzDOMA0zZxWTSnSjnnq7Hjr6wHfAow92sECjI22NygeoNjYg5SYZDJtVtxurRYvIiIi7YM/A+JvBc4ALgC+ABrf9fwP+BS4D/hPcy9mGEYa8ChwBBAJ/AxcZ5rm8ob9o4En8C3wWAJMM03zET9yi7QJV3mF77vVSp3H085aTnzrmjRtOWlUWmGn3uHxv/lUREREpJX5877kPOB20zRfxlcsAGCa5mLgduDQFl7vU6A/cCSwB2AHvjMMI8owjGTgW2AVvuLkDuAewzDO9SO3SJtwVfqKE7vV99epPaxx0uiflpP8bfbVmyvImf48tUsWBTqWiIiIyHb503KSDizcwb4coNnvzBqKj7XAvaZpLmvYdk/D9YcBhwD1wKWmabqAFYZhDARuAF72I7tIq/PW12ONjqbSbgcgth2scdKoccxJeWkhHo97i4H64etXUbdsNlVWL1EjRgUrooiIiMhm/rScZAFH7WDfgQ37m8U0zRLTNE9rUpikA9fiK3KWA/sBvzQUJo1+8B1qpPmRXaTVRY8YyZBnnuPF2lqgfaxx0iguIRmrLQSP20VleckW+6oaVouvWrgIr8u1vdNFREREAsqflpPHgecNwwgDPsM3IH6gYRiT8BUW1/gTxDCMF4AL8bWUHGuaZo1hGD2AJVsdmtfwvRe+BSD9EhLSuj3tbTbrFt+l7bTHZ22zWSgpKQZ8LSdWqyXIiXys1hASk9MpKcylorSApJT0zfvq03vijowBezXO7FVEDR2+xbnt8Tl3RnrOgaHnHBh6ziKyu1pcnJim+aJhGKnALcCl+GbsegtwAA+Zpvmcn1kex7eg46XAx4ZhTASi8BUrTdU1fI/w8z5YrRYSE6P9PX2n4uIi2+S6sq329KxdLg9lZb6WidS0dCIjw4Kc6B/Jad0pKcylqqJgm1y1fYcQu3wudUsWkbnvXts9vz09585Mzzkw9JwDQ89ZRPzlz1TCiaZpPmAYxtPAPkAyUA78aZpmqb9BmszOdVHDda/ANzg+fKtDG4uSGn/v5fF4qays9ff07bLZrMTFRVJZacft9rTqtWVL7e1Z57/6CvZNm+gTEoIJhITFYLc7gh1rs8ZxJ5tyN2yTq7z7QGKXz6V4zlwSTz4di+WfFp/29pw7Kz3nwNBzDoy2fM5xcZFqkRHpAvzp1vWXYRi3mqb5DvD17ty8YdzIwcC7pmm6AUzT9BiGsRzIBDYC3bc6rfHn3N25t8vVNv85ud2eNru2bKm9POuaVatw5OYQbrUSFh5JaFgEHo832LE2S0zx/ZUpLsjbJld1Rh88IaG4SkupXbuO8F69tzm/vTznzk7POTD0nANDz1lE/OXPRxCJQHEr3b878CZwQOMGwzBCgbH4BsT/AuzXsPBjo4MB0zRNv8ebiLQmV0U54FuAsT0Nhm+UnOorTkqLtq3nvbYQqrv3x5reDepatzVRREREpKX8aTl5AnjYMIz/AUtN0yzajfsvwtf68oxhGBcCZfjGsiQCj+EbX3I9MMMwjIeAPYGrgUt2454ircbrcuGprgag3OkksR2tcdIoKS0TgNLifDweD1brlp9J5O53AqG9U4kelIrLpdXiRUREJHj8KU7OBnoD3wEYhrH1fq9pms26rmmaXsMwTgEeAN4BEoBfgf1M09zQcP3DgWnAfCAf3+rxr/qRW6TVNS7A6LFYqHK56Bnf/oqThKR0rFYbLqeDqooS4hNTt9jvDQmlvKoOu8NNmA287adHmoiIiHQx/hQnr7dmANM0K4DLGr62t38uvgHyIu2Oq9xXnNTZfH+VYuLazwKMjWw2GwnJ6ZQW5VFSmLtNcQJQWV1PZUU1SVYHlna0iKSIiIh0Lf4UJ2uBH0zTzGntMCIdjbthvEk1vuaGmHbYrQsgOTWT0qI8Sovy6GeM3mZ/1NrlFM/8mPohg+k++X+BDygiIiKCfwPipwLjWzuISEfkdTqxRcdQ3rDCemw77NYFkNww7qSkKG+7++sTUrG4nFQvX47bbg9kNBEREZHN/ClOCvGNDRHp8mL33Ishzz7HjFLfEj/tteUkafOMXdsvThzxKTjik8Htpm7FskBGExEREdnMn25d04GnDcOYBCwFCrY+wDTN13Y3mEhH4cVLaalvdfiYdjpeIznNV5yUbGc64UaVPQaRUjGb6oULiB6rxlEREREJPH+Kk0cbvp+1g/1eQMWJdBkOh4vKijKAdrnOCUBSqq9bV1lxPh6PG6vVts0xVT0NUpbNpmrRQtJcLggJC3RMERER6eL8KU76tnoKkQ4q/4VnsZeV0TsigvV1dUTHxAc70nbFJ6ZgCwnB7XJRUVZMYnL6NsfYU3vgjoiCmhrqsrMIHTo0CElFRESkK2txcWKa5vrGXxuGEQXEASWmaTpbM5hIR1C7ysRdXo7NYiE6Nn67LRLtgdVqIzGlG8WbNlJalLvd4gSrlarMgSSsWUTtooXEqjgRERGRAPNnQDyGYexnGMZsoBLIBeoMw5jdMA5FpEvwejy4KysBKHM6222XrkbJDV27Sgq3PygeoHzAaOoPPJr4SQcFKpaIiIjIZi0uTgzDmIBvdfgE4B58iyfeCyQBXxuGoQUTpUtwV1eDxwNAhcvZbmfqarSrGbsAajN6UzR0H1yJqVgsgUomIiIi4uPPmJN7gV+Bw03TdDduNAzjLuBr4C7gsNaJJ9J+uat8rSaOkBDcXm+7namrUXJDcVJSuOMZuwCqah1UVjtIiI4ORCwRERGRzfzp1rUn8ETTwgTANE0P8GTDfpFOr7FLl72hiaGjtJzsbDphABwOin7+mfx33glAKhEREZF/+FOcVAGhO9gXBqgziHQJrobipKqha1d7H3OSktETgLLiTbicO56/wuaoI/TTNyn6/HMcZWWBiiciIiLiV3HyO3CzYRgxTTcahhEL3ISvy5dI5+d2Y4uJoczhACC2nXfrio1LIjwiCq/Xs9PWE1d0HPaU7uD1Uvb3vAAmFBERka7OnzEnNwLzgGzDMD4HNgEZwDFABHBu68UTab/iJuxLyoEHcPnBBwLtv1uXxWIhNaMXOetWUlywkfTufXZ4bFWPQUQW51EyZy7dxmuOCxEREQmMFrecmKaZBewD/AgcBVzb8P1HYG/TNBe3akKRdszr9VJWVgLQ7gfEwz9du4ryN+z0uKqeBgDlixbjqa9v81wiIiIi4Oc6J6ZpLgcmm6aZYZpmGDAUuK9hu0iXUVVTTX2dHWj/Y04AUtMbipOCjTs9rj4xDWdMAl6Hg9oV+mstIiIigeHPOicJhmF8C/zUZPOewELDMD5uWDVepNPLn/4cOQ8/TN+oaELDIggPjwx2pF1qbDkp3rTz4gSLhaqegwCoWjC/rWOJiIiIAP61nEwBhgE3N9n2A3AcMB64uxVyibR79qzVeNZmE2KxtPvB8I1S03sBUFyYg8fj3umx1b18XbscFRVtnktEREQE/CtOjgWuNU3zw8YNpmk6TNP8DF/BcnJrhRNpr7xe7+Z1Tsqd7X91+EYJyWnYQkJxu5yUlxTu9NjajN6UXHQLyZdOxmrVDOEiIiLS9vwpTmKBHS1+UACk+B9HpGPw1tfhbVgrpNLl7BDjTQCsVhspaT0AKCrY+aB4rDaqQ6Ior6rHZvNreJqIiIhIi/jzjmM+cP4O9p0LaLYu6fRcFb5WE5fFQr3H0yFm6mrU7HEnDQpKa3DW2tsykoiIiAjg3zon9wKzDMP4G/gIKARS8Y05GYdvvRORTs1d5StO7FZffd9RunVBkxm7Nu2i5QTA68H6xvOs2riGvvfeT2haehunExERka7Mn3VOvgX+BXjxDX5/HrgHX6FznGmaX7VqQpF2yNUw3qTK7RtUHhvfgYqTbr5B8buaThgAixW3wwkeN7VLFrVxMhEREenq/F3nZJZpmnsA0UAPIM40zXGmaX7RqulE2iuXC1tsLKUOB9CxWk5S0v/p1uX1end5/D9TCi9o01wiIiIi/nTr2sw0zTogr5WyiHQYsXvuRfLEfTl/370AiInrOGNOklMzsVpt1NfVUlleTHxi6k6Pr+5lkP7X19SuMnFXV2OLiQlQUhEREelqNAWPiJ9cbhcVFb6J62I6ULeukNBQUtJ9M3YV5K7d5fHO2ETqE9PA48G+bElbxxMREZEuTMWJiJ9KSkrwejxYLFaiY+KDHadF0jP7AlCQt+viBKCyh69rV/VCrRYvIiIibUfFiYgfNr08g8Jp0xgYHUNUTDxWqy3YkVokvbuvONnUjJYTgKqevtXiqxYvwdOwvouIiIhIa9utMSciXVXdmiwsm/IJs1o71ExdjVraclKX0p3q/iPI3GMUVnY9iF5ERETEH34VJ4ZhpADXAYcC3YDDgROAhaZpftJ68UTap8aphMudzg41U1ejxuKkpCAXp9NBaGjYzk+wWNgw8QTShmYQFh2Jw+EOQEoRERHpalrcrcswjL74VoG/CMgB0vAVOYOADwzDOLpVE4q0M16XC09tDQCVLicxcR2vOImNSyIyOg6v19O8xRgbFJTW4PKo5URERETahj9jTh7Ftyp8X+DfgAXANM0zgE+Bm1stnUg75KqqAsADVLtcHWoa4UYWi4X07n0AKMjNbvZ51fmFFHz1LY58zSAuIiIirc+f4uRg4B7TNMthm87nzwPDdzeUSHvmrvJ16bJbLHihQ7acQJNxJ7nrmn1O9C9fUPb2TKr/+rONUomIiEhX5u9sXa4dbA9n24JFpFNxV1YAUOX2jbuIje94LScAGS0cFA9Q2Thr1/x5bZJJREREujZ/ipNfgZsMw4huss1rGIYVuBT4vVWSibRTXqcLW2wsZQ4HQIccEA9bTifs9TbvM4XqzAF4LVbqc3NxFhW2ZTwRERHpgvwpTm4EhgBZwEx8LSXXAvOAicAtrZZOpB2KGTOWIU8/wwNrVvl+7qDdulK79cZqtWGvqaSirKhZ53jCI6nN6A1A7aIFbRlPREREuqAWFyemaS4FxgM/AJMAN74phbOACaZpLmzNgCLtUU1NDXX2WgBiOmi3rtDQMNK6+wqNvA2rmn1eVU/favFVC7RavIiIiLQuv9Y5MU1zNXBGK2cR6TCKiooBCA2LIDw8Mshp/Ne91yA25WSTt2E1Q0dPbNY5VT0NMv76mtpVq3BXVWGLjW3jlCIiItJV+LsIowUYDUSzndYX0zR/2b1YIu1XwcxXqMjKYkhMLJsiYoIdZ7dk9hrE/D++Inf96maf44xJoD45g/CyIhwb1xM5VBP0iYiISOtocXFiGMaewHtAj4ZNlobv3oZfewFbq6QTaYfqsrOx5eYQYbN12PEmjbr3GghA3sbVeL1eLBbLLs7wydn3eAaN6EvcoO44nVotXkRERFqHPy0njwFO4Bx8K8R7WjOQSHvnaljnpNzpJLYDLsDYVFr33thCQqm311BalEdyWmazzqtPTKOk3oLTrb/+IiIi0nr8KU7GAqeapvlJa4cRae+8Hg/uhhXiK51OUjvoYPhGNlsIGT36kbvOJG/D6mYXJwDlVXXU1LmICbPipXktLiIiIiI7489UwoWotUS6KE9tLTQsvljhchLbwbt1gW/cCUBuC2bsArBkm+Q/cA+FM19ti1giIiLSBflTnDwN3LjVIowiXYK7oUtXHeDyeonp4N264J9xJ7nrW1acgAXPxnVULpiP16PPK0RERGT3+dOtayAwFNhkGMYyoHar/V7TNA/e7WQi7ZCr0lecVDW0nnT0AfEAPfoOBiBvw2pcTichoaHNOq8mozeesAiorKR+bTYR/Qe0ZUwRERHpAvxpORkALAT+Buz4Zuhq+uXPNUU6BK/TiS0ujlJHPUCHHxAPkJyaSVRMPG6Xk7yNzZ9SGKuNqkxfQVKj1eJFRESkFbS45cQ0zUltEUSkI4gePoL+Ux/nxNFDgY67OnxTFouFXv2GsXLxH2zIXkavfkObfW5VT4P4tUupmj+f5H+f1IYpRUREpCtQK4dIC5WWlgBgtdqIio4LcprW0au/ryDZsGZ5i86rzhyA12rDsSkfx6a8togmIiIiXUizWk4Mw3AD+5im+ZdhGB58Cy3uiNc0Tb9WnhfpCIqKCgGIjkvAau0c9X3v/r5V3jdmL8fj8TT7dXnCwqnN6EN03hpqFy0kLKN7W8YUERGRTq65RcTd+BZcbPz1zooTkU6r8O03cS5dzMi4eIo7wXiTRhk9+hEaFo69torighzSuvVq9rnlfYcRGR9NZO/ebZhQREREuoJmFSemad7V5Nd3tlkakXaubt1awjZtItJq6xQzdTWy2ULo0Wcwa1ctYn3WkhYVJxUDRhOauA8DB3drw4QiIiLSFTS3W9f+LbmoaZq/+BdHpH1rXOekwuXsFGucNNVn4EjWrlpEtrmAPfY7ukXnVlTVU213kRQThtutNU9ERETEP83t1vUT/3TlsuzgGG/DPi9g271YIu2Tu2Gdkwqnk/ROVpz0HzyGH7+YydpVi/F43FitzR865nR5KFi9llBPJVGjx7VhShEREenMmvvuQ9MHS5fncTrx2O0AVLqcxMR3nm5d4FspPiIyhjp7NXkbVtOr35BmnxtWXgSvPktuaCj9H38Ka3h4GyYVERGRzqq5Y05+busgIu2du6rK993rpcbt7hQLMDZltdroO2gkKxb9wZqVC1pUnDjiU3DGJhJaVYZ9+VKix6j1RERERFrOr3lQDcNIMQzjQcMw5huGkW8YxkjDMO4wDOO41g4o0l40jjepcrsBOt2YE4B+g8cAkG22cMV3i4XKngYA1fPntXYsERER6SJaXJwYhtEXWAxchG964TR8LTCDgA8Mw2jZSFqRDsLrcGCLi6fUUQ/QqWbratTfGAvAxuwV1NlrWnRuZe/BAFQtXIDX5Wr1bCIiItL5+dNy8ihQCPQF/k3DAHnTNM8APgVubrV0Iu1I5MBBpN11NzcuXwJ0zuIkKbUbyWk98HjcrF42t0Xn2lN74oqKwWO3YzdXtFFCERER6cz8KU4OBu4xTbOcbRdjfB4YvruhRNqr4uIiACKj4wgJCQ1ymrYxZNQ+AKxYNLtlJ1osVPb0tZ7UqGuXiIiI+MGvMSfAjvpshKPV46UTayxOYjthq0mjwSMnALBq2VycTkeLzq3q5StOqpcvw+vVPwUiIiLSMv4UJ78CNxmGEd1km9cwDCtwKfB7qyQTaWeKP/qA0A8+YHxCIjHxnW8wfKPuvQYSm5CMo95O1vL5LTq3JqM3RUecQdpt92Cz+fvZh4iIiHRVzV9l7R834itAsoAf8bWUXAsMBQYA+7XkYoZhJAH3A8cAcfgG299omuZvDftHA08A44ESYJppmo/4kVtkt9StX09UcTExthAcsZ235cRqtTJ4xD7M/fVzlsz7lT6DxrbgZBvF6f2pcnhJsFnxeNxtF1REREQ6nRZ/tGma5lJ8hcIP+BZndAOH4itWJpimubCFl3wb2Bs4FdgDmA98YxjGYMMwkoFvgVUN97wDuMcwjHNbmltkdzVOJVzhchLbiVtOAIaN9X3GsPjvX3A46lp0rhfIL67B7UVdu0RERKRF/Gk5wTTN1cAZu3tzwzAG4Cts9jVN84+GbZOBI4HTATtQD1xqmqYLWGEYxkDgBuDl3b2/SEs0FieVTidpnXCNk6Z69RtGQnI65SUFrFw0m+HjDmzR+a6fviHrlSV0P/9CIvr2a5uQIiIi0un4uwhjP8Mwhjb8OsEwjKcNw/jUMIyzWnipYuBoYPPUPqZpevFNT5yEr4vYLw2FSaMffLc10vzJLuIPr9eLu7JJy0knHhAPvq5do/c8GIAFc75r8fmWTTm4NuVTu7BlY1ZERESka2txy4lhGEcAnwBP4htr8hxwIrAEeMUwjDDTNGc051oN0xF/udX1TwL6A18D9zVct6m8hu+98K234peQkNYdrNs4+FeDgNteMJ61227fvLBgpctFXEIyVqslYPcPhjH7HMJPs94ke+VCKsuLSEhq/ucBVb2HELduOZV/zyX1/07CYuncz2p36N+OwNBzDgw9ZxHZXf5067od+Aa4yzCMeOAE4AHTNG83DONeYDLQrOJka4Zh7Au8BHximuZnhmE8hq9bV1ONHeAj/LkHgNVqITExetcH+iEuLrJNrivbCuSzttf5Wk3sbjcOj4eU9HQiI8MCdv9giOzRmwFDxpC1YgHz//iSo0+6qNnnugcOw/vbJzgKCgivLCG6T+82TNo56N+OwNBzDgw9ZxHxlz/FySjgWNM0qwzDOLnhGu837PsW+J8/QQzDOA54E/gTOK1hsx3f2ilNNRYlNf7cB8Dj8VJZWevv6dtls1mJi4ukstKO2+1p1WvLloLxrOsKyrDFxVFWWABAaFgMdnvL1gDpaKxWCxMP+TdZKxbw509fMPHQUwkLb+5nAhZqMvsRs2EVeT/9RspxKW2atSPTvx2BoeccGG35nOPiItUiI9IF+FOc2JucdyRQYJrm4oafM4Dyll7QMIwr8E0X/CFwpmmaja0lG4HuWx3e+HNuS+/TlMvVNv85ud2eNru2bCmQzzoksycR/7uWq48+jNCwCELDIvF4Ov9MVENG7UVSSjdKi/OZP/tb9tz/mGafW9FzMDEbVlHx91wSjj62DVN2Dvq3IzD0nANDz1lE/OXPRxC/AdcahnEacDK+ggLDMMbhm+r3t5ZczDCMS/GNX3kKOKVJYQLwC7CfYRi2JtsOBkzTNP0ebyLij82rw3fyaYSbslpt7DPpeAB++/bdFq0YX9XTwGuxUr9xI86GFicRERGRnfGnOPkvkAm8AawF7m3Y/gW+Llc3NvdChmEMwtdi8hHwAJBmGEZGw1c8vvEnccAMwzCGGoZxDnB1w7EiAdVYnMR08pm6tjZ23yOIS0ihsryYeb9/uesTGnjCI6nqM4TwvSZ0+skDREREpHX4swjjWmAY0M00zeGmaW5q2HU8MMQ0zTUtuNz/AaH4BtXnb/X1REPryOGAgW9xxjuA60zTfLWluUV2R+mXn5Mw6yv2TUomtpOvcbK10NAw9j/CNwzsl6/fwV5b3exzc/Y/kZrDTiK8W7e2iiciIiKdiL+LMHqBgq22/WkYRrRhGJNM0/yqmde5H7h/F8fMBfbxJ6dIa6nfuIHY8nLiQkJxJyQHO07Ajdn7UP788WOKCzby/Wevcswplzf73JLKOuocbkLUeCIiIiK74M86J72B54EDgB3NpWrbwXaRDslVVQVApctJbHzXK05sthCOPuVyXp12I3///iUj95hEr35Dm3VueaWdkpWrSAizEN5/YBsnFRERkY7MnzEnjwETgBeABcDvwCPAYsCLr4uWSKeyeXV4p5O4LlicAPQdOJLRex0CXi8fvPoQ9tqqZp0Xay6g4tH7KXz3nTZOKCIiIh2dP8XJAcCtpmlOBl4G6k3TvAEYD/wMHNeK+UTaBXeVrzipdLmI7YLduhodceIlJKZ0o6K0kA9fewS3273Lc6p6DMSLBfuaLJwlxQFIKSIiIh2VP8VJDLCw4dfLgdEApmm6gaeBg1ojmEh74fV4cFf7BoH7Wk667oKCEZFRnHTeTdhCQlm9bC6fv/MkXu/O13txR8Zgz/CtEF87f14gYoqIiEgH5U9xko9vsUWALCDJMIzGqXhKgfTWCCbSXrirq6HhDXiVy9ml1jnZnu49B/B/59yAxWJlwexv+Pydp/B4dt6CUtHbNz6lcu6cQEQUERGRDsqf4uQL4B7DMCaYprkRyMG3KGMscB67uXK7SHvjsdshJoZyp4Pw6FhCw8KDHSnohoyawL9OuwosFub9Pou3p9+70ymGK3sPxmuxYM/OxtmwXoyIiIjI1vwpTm4HyoG7G36+GZjcsO0M4NHWCCbSXoSlp1N66mlctGh+lx0Mvz1j9zmMkxu6eK1aOofnHryC9WuWbfdYX9euPgDUzP87gClFRESkI/FnEcYS0zT3As5q+PkN4EB8K8MfZJrmc62aUKQdKCz0LesTo+JkC0NHT+S8qx8mMSWDitJCXn78Oj5543Fqqiq2Oba8oWtXzbLtFzAiIiIifi3CCGCaZr5hGIOBRCDfNM2HWy+WSPvSWJyo5WRbmb0HcfH1T/H1Ry+wYPY3LPjzG1Ys+oMDjzqdPfY7BpvN989MZZ+hRHbvRt/DJwQ5sYiIiLRX/nTrwjCM8w3DWA8sA34DVhmGsc4wjNNaNZ1IO1D23bcMWbiQSSmpXXoa4Z2JiIziuNOv5vxrHiWjRz/q7NV89cELPHP/pZhL5+D1evGER1KYkElVnYuQEL/+6REREZFOrsXvEAzDuAKYDswD/gMcCZwLrABeNwzjpFZNKBJkjrwcUuvqSQoNU8vJLvTsO4SLrnuCf516FdGxCZQU5vLW83cx8+lbKMhbi9vtZVNJzS6nHxYREZGuyZ9uXZOBp0zTvGqr7a8ZhvEicCfw3u4GE2kvXE1Wh09Vy8kuWa02xu17BMPG7s+v37zDnz99RLa5kOemXMm4CYdz4YABrMrNotf1NxCalrHrC4qIiEiX4U/fih7AZzvY9xbQz/84Iu2Pu6oKgApX116AsaUiIqM49LhzufyW5xk6eiJer4e/f5/Fxj9/wF1eRvU8zdolIiIiW/KnOJkLHLyDfWOAxf7HEWl/XJW+macqXS6NOfFDUko3Tj7/Zs6Z/CDdeg7g9+JCAFZ89AFlZWVBTiciIiLtSbO6dRmGsX+TH98CHmtYdPFdYBO+GbuOAK4CLm7tkCLB1Nitq9rjISo6LshpOq4+A0Zw4bWPs+inT3BtWEyKByafeTI3P/oEgwcPDXY8ERERaQea23LyE/Bjw9dTQBhwKfADsBz4Hd/ijAnA260dUiRYPA4H1NcD4I2OxWrVLFO7w2q1MuagEyhP7QHAEK+X8847k99++yXIyURERKQ9aO6A+EltmkKknfLYa3FHRuKsriYkNinYcTqNuiF7wa8fcnD3HryTl8PkyZdyzz1TOOqofwU7moiIiARRs4oT0zR/busgIu1RSHwCi/bdlylT7mXYmInBjtNpVPUchCc0jASng3MPP4qXv/6SW2+9AavVyhFHHB3seCIiIhIkzeqjYhjGL4ZhjG7JhQ3DGG8Yxm9+pRJpRxpXh4/RGietxhsaRtnAMYTtdxBXXH8jJ5zwf3g8Hm655Xp++OHbYMcTERGRIGlut64ngK8Mw/gbeB341DTN2q0Pahgkfzi+QfFjgMtaK6hIsDQWJ1qAsXUV7HE4Ed3i6J+exm233Y3H4+GTTz7kppuu5cUXX2PEiFHBjigiIiIB1txuXR8YhvEzvkHvLwIhhmEsB9YCNfgGwvcEhgPOhmPONE2zoC1CiwRK+S8/cdCmApyp6URrGuFWV1pZR3Wdi+gwG7fddjelpSX8+uvPXHXVpbz22tv07Nkr2BFFREQkgJo99ZBpmsUNq8L3xrdK/Cp8BcleQDKwArgQ6Gma5lUqTKQzcOTl0gMLyWFhWoCxDVRV1VE0fxGVv/5CSEgIDz44lcGDh1JWVsp//3s5drs92BFFREQkgJrbrWsz0zRLgOcbvkQ6NVeFbwHGcqeT/vGarau1RZbkUfflS+SHh9N//J5ERUUzbdqznHbaiWRlrea+++7knnumYLFYgh1VREREAkCLNojsRH1pCeArTuISU4OcpvOxp2TijE3EW19P7eKFAKSlpTNlyqNYrVY+//wTPvro/eCGFBERkYBRcSKyE46yMt/3sHBCQ8OCnKYTslgo7zMMgKo5f27evMcee3HFFVcDMGXKPWRnrwlGOhEREQkwFSciO+GtrvZ9j4kLcpLOq6LfCACqlizG3fC8Ac455wImTJiIw+Hg1ltvwOl0BiuiiIiIBIiKE5Ed8DidWB0OAKyaRrjNOBJSqU/OALebmvl/b95utVq54477iIuLZ/nypcyYoWFuIiIinZ2KE5Ed8NTWUBcaQp3bTViCZupqS+V9hgNQ8cfvW2xPT0/n5ptvB2D69GdZsWJZwLOJiIhI4DRrti7DMM5uyUVN03zNvzgi7UdIfAJvJSQwa9bnHHnihcGO06lV9BtB2vzvcVVV4amzY42I3LzviCOO5ocfvuObb2Zxzz13MHPmO9hstiCmFRERkbbS3KmEX2nBNb2AihPpFAoK8gGIiVO3rrbkiopl3fGXMm7/UYTFROJyebbYf8MNt/DHH7+xfPlS3n33TU477awgJRUREZG21NxuXX1b8NWv9WOKBEd+vq84iUtMC3KSzs8el0J+cQ3e7SxpkpycwuTJ/wPgqacep6BAa7yKiIh0Rs1qOTFNc31zL2gYhlZLk06h9IfvuTQ+kV9dbuITNeYkEIrL7VRX1RHmsGOLi99i34knnsxnn33E4sWLePjh+3nkkSeClFJERETaSotXiAcwDONU4AAgDGgsRqxANLAP0KNV0okEUWV2FoNjYllRXUVMXGKw43QNS+ax8aVZxI8eQ/r5F22xy2q1csstd3H66Sfy3XdfM2fObPbaa58gBRUREZG20OLZugzDuAN4EzgVOBk4HjgaOBs4AfisFfOJBI29uAjwLcBotWoAdiDUxySC3U7lvL9x19Zus98wBnPSSacC8OijU3C73YGOKCIiIm3In6mE/wO8DiQBjwGfmaaZDuwBlACa61M6BWd5OQCeyJjgBulC6lK640hIxetwUDN/7naPueSSK4iNjWPVKpNPPvkwwAlFRESkLflTnGQCM03T9ALzgAkApmnOA+4DLmi9eCLB462p8f0iNiGoOboUi4Wy/iMBqPz99+0ekpCQyEUXXQbA008/QU1N9XaPExERkY7Hn+KkBt90wQCrgb6GYTQuSrAQ34xdIh1eSH0dANYETSMcSBX9RuK1WKhdvQpHwabtHnPqqafTq1dvSkqKmTHjhQAnFBERkbbiT3HyF76uXQBrABdwSMPPQ4D6VsglElSe+npCPb4aPDQxNchpuhZXVCw1mf0BqP7zj+0eExoaxn//ez0Ar7/+Cvn5eQHLJyIiIm3Hn+LkfuAUwzA+M02zHt/4k1cNw/gAeBT4ujUDigSDx15LhcdDrctFRFJGsON0OeX9R/m+//E7Xo9nu8cceOBBjB+/Jw6HgxdeeCaQ8URERKSNtLg4MU3zF2A88E7DpiuA94HBwHvAVa2WTiRIQhISuWFdFucs/JvoeLWcBFpVT4PKcQeSMvlabCHbnynNYrFw5ZX/BeDTTz9i3brsQEYUERGRNuDXOiemaS4GFjf8ug64aOdniHQsdXV1lJaWAhATrzEngea1hZAzfH/Sw+JItlnxeLY/ZfCoUWM44IBJ/Pzzjzz77FM8+ODUACcVERGR1uTvIozxwEH4Fl3cpvXFNM3XdjOXSFAVFOQDEBERSYSmEg6avKJqeqTGbF7pdXsuv/xqfvnlJ77++kvOPfdCBg8eErB8IiIi0rpaXJwYhnEkvu5bUTs4xAuoOJEOreTbb7h78DCW4es+JMFRvXoVG759m/jBg0g47MjtHjNokMERRxzNrFmf8/TTj/Pkk88HOKWIiIi0Fn8GxD8ArAAOAPrjmzq46Ve/VksnEiR1uTkMjoklPSYu2FG6NGtpCfWLF1D2w/c7HBgPcOmlV2Kz2fj1159ZsGB+ABOKiIhIa/KnW9dg4DjTNH9t7TAi7YW7ogIAb0x8kJN0bZW9h9Bt7lc4i4uxr1hO1LDh2z2uV6/eHH/8iXzwwbs899yTPP/8ywFOKiIiIq3Bn5aT9YA+TpZOzdKwOrwlISXISbo2b0go5X0bVoz/9eedHnvBBZcQEhLKnDmz1XoiIiLSQfnbresOwzD6tHIWkXYjwuUEIDQ5PchJpGzQGAAqF8zH1dCitT3dunXn2GOPB2D6dK17IiIi0hH5063rDCATWGMYRhFQu9V+r2ma/Xc7mUiQeD0eohvmhwpL6xHkNFKfmI49rSeRhRup/vN3Eg4/aofHnn/+xXzyyYf88cdvLFmyiBEjRgUwqYiIiOwuf1pOcoCP8c3INQv4eauvX1ornEgwVBduwmax4PF6iUzvFew4ApQO8LWelP30004Hxmdm9uCYY44D0KrxIiIiHVCLW05M0zy3LYKItBeb1q+nqL4ei9VCSEQ0DueO3wxLYFT2GUpK9kISD9wfK168Ozn2/PMv5rPPPubXX39m+fKlDB26/UH0IiIi0v74s87Jzj5K9gDVpmmW+51IJMjy6uxMXrKAgYOGcKZLhUl74A0NY83h5xA/JJ2Q8DCczu2vGA++mbuOOupffP75J7zwwrM8/vjTAUwqIiIiu8Ofbl3rgLU7+FoPlBiGUWQYxq2tFVIkkPLycgFIy+iOd2cf0UvA5RVWU9+MgvGCCy7GYrHw00/fs3LligAkExERkdbgT3HyH8ABfAOcCxzZsO0zfKvD3w28AtxqGMalrRNTJHByc3MASE7JCHIS2VpJcQX5335PxQ/f7vS4Pn36cXjDwHnN3CUiItJx+DNb12nA29sZe/K6YRjPAuNM0zzWMIxy4FLg2d3MKBJQmdnZ3D14GDU2W7CjyFbCc9dS8/1b2COjiJ2wH9aIiB0ee+GFl/L111/y/fffsmZNFv37DwhgUhEREfGHPy0nBwJv7mDfh8DBDb/+DdCUwtLhxNTWMjgmlviI6GBHka1UZw7AGZeEx15L9V+zd3ps//4DmDTpEABefnl6IOKJiIjIbvKnOCkBdrR4wCigsuHXMUCNP6FEginC5QIgLKVbkJPINiwWSozxAJR9/x3eXQwKOu+8iwCYNevzzd31REREpP3ypzh5A7jbMIzJhmFkGoYR2vD9SuBO4A3DMBKBq4E/Wy+qSNurrKwgvqE7V3i6FmBsj8oHjMYTEkp9bi51q8ydHjt8+Aj22msCbreb1157KUAJRURExF/+FCe3Am8DU4ENQF3D96n4Cpeb8Q2SH9NwrEiHsXHdWhJCwwDwxCYHOY1sjycsgor+IwEo/+G7XR5//vm+1pOPP/6AkpLiNs0mIiIiu6fFxYlpmi7TNM8DBgEXA7fgm61rkGmaF5um6cC3cnymaZqLWzWtSBvLXb0KALfXS31oeJDTyI6UDN4TgKr583AUFOz02D322Ivhw0dSX1/PG2+8Foh4IiIi4id/ZusCwDTNNcCaHewr8zuRSBCVrF9HH8Bus7GTdf4kyBwJqVT3GEhiTBhWdr7uicVi4fzzL+a//72cd999k3PPvZDY2NgAJRUREZGWaFZxYhhGNnCCaZqLDMNYi289kx3xmqapWbqkQyrOz6ewvp6Q5GScWh2+Xdt44ElYeybTPzMNj2vnleQBB0yiX78BZGdn8e67b3L++RcHKKWIiIi0RHO7df3MP7Nw/byLr19aOaNIwMwtyOeKJQtYt98hwY4iu+C1hVBQUkN5dT02287/KbNarZx33oUAvPHGa9TV1QUiooiIiLRQs1pOmi64aJrmOW0VxjCMW4FDTNM8sMm20cATwHh80xhPM03zkbbKIF3bxo0bAEhKy6Q2yFlk1+z1LnKycnCtXUjCEUdhbZjMYHsOP/wonnlmGnl5uXz88QeceuoZAUwqIiIizeHPbF0YhhFrGEZmw6/DDMO4zjCMaYZh7O9vEMMwrgbu3mpbMvAtsApfcXIHcI9hGFuvTi+y26qqqigrKwUgPikjyGmkWbxevC9No/iTj6mes/OZy0NDQ/nPf84H4NVXZ+B0OgORUERERFqgxcWJYRh7AuuBKxs2TQMeBM4EfjAM49gWXi/TMIxZwL3A1osWXATUA5eaprnCNM2XgceAG1qaW2RXNm5cz5V9B/DA8FGEb8oLdhxpDouFkkHjACj75iu8np2PEzruuH+TlJRMfn4eX331RSASioiISAv403JyH7ASeN4wjEh8RckzpmkmATPwTS3cEmOBMmAkMGerffsBv5im6Wqy7QfAMAwjzY/sIju0ceMG+kdH0z8iEucuBlhL+1E+cCyesHDq8/KoXbpkp8dGRERw5pn/AeDll6fj2UUxIyIiIoHlz1TCewGnmKa51jCMY4BIYGbDvrfxFSvNZprmZ8BnAIZhbL27B7D1u43Gj7R7AYUtuVdTISF+9WjbocYBubsamCu7r62edc7GDewV5lvbxBkdj9ViadXrdzRWq2WL7+1WRATlg8aStHQ2ZbM+J27MaCw7+b077bQzePnl6WRnr+HXX3/k4IMPDWDYbenfjsDQcw4MPWcR2V3+FCcefF2tAI4CyoG/Gn6Og1YdRxzV5F6NGqfZifD3olarhcTEaL9D7UxcXGSbXFe21drPujRvA2HWhv9Q4xKJdO1sxuyuIzw8NNgRdql23P4krphL7erVWHPWkjByxA6PTUyM5pxzzuHJJ5/k5Zenc+KJx+20mAkU/dsRGHrOgaHnLCL+8qc4+Ru4wDAMO3AK8Llpmt6GblY3NuxvLXZg62W6G4uSGn8v6vF4qaxs3bmYbDYrcXGRVFbacbvVVaQttdWzLlm7HmyhuMLDqaxz4ejiqzBarRbCw0Opr3fi8bTzQs0aQfmgMSSumMv6t97F27PfTg//v/87nRdeeIGFCxfy1VffsffeEwIUdFv6tyMw9JwDoy2fc1xcpFpkRLoAf4qT64CvgFOBInwD2QGW4hvDcnjrRANgI9B9q22NP+fuzoVdbbTAntvtabNry5Za+1nXFxVBRneIT6De4cLbzt+PB4rH423/xQlQNHQC8dlLsHXvgaveAbYd//MWH5/Iv/99Em+99TrPP/8s48fvHcCk26d/OwJDzzkw9JxFxF8t/gjCNM0FwABgH6CfaZqrG3ZdCgw3TXNeK+b7BdjPMAxbk20H+2KYfo83EdlaRUU5YfW+HoShKWkqTDogV0w8WSdfg/eIfxMaseP1ThqdffZ5hISEMHfuHBYtWhCAhCIiIrIrfrWPmqZZZZrmHNM0a5ps+8A0zU2tFw2Al/CNY5lhGMZQwzDOAa4GHmjl+0gXl52djQcocbkgURPBdVQuawjr8yuob8Z4oW7duvOvfx0PwIsvPtfGyURERKQ52nXnzYbWkcMBA5iPbxHG60zTfDWowaTTWbt2Dd8WFfB6TCT2A44OdhzZDYWltWxauIzyZqxjcu65F2K1Wvn1159ZuXJ5ANKJiIjIzvgz5qTNmKZ5zna2zcXXhUykzaxduwaAvn3649AaJx2atbKMqpefpBovEUOHE9Gr9w6P7dWrN4cffhSzZn3Oiy8+xyOPTAtgUhEREdlau245EQmU7OxsAHr36dvlZ+nq6JwxCVT1HQZA6Scf7fL488+/GIDvvvuGrKzVuzhaRERE2pKKExFg3do1PDViNMMWLMBVXR3sOLKbCkcdgNdipXrRQuxrsnZ67IABAzcvxPjSSy8EIp6IiIjsgIoT6fLsdjt1xcWkhUcQUlRIXfvq7Sh+cMQnUzFgFAClH3+wy+MvuOASAL766gs2bFjfptlERERkx1ScSJe3fv06kkJ9q6Bb4xNwqFdXp1A4cn+8Nhs1K1ZQu2Lng92HDBnGxIkH4PF4ePnl6QFKKCIiIltTcSJd3tq1a0gLDwfAmpiES6tHdwqumHjKBo0DoOSj9/HuYvGaCy7wjT357LNPyM/Pa/N8IiIisi0VJ9LlrV2bvbk48SQkBzmNtKaiERNxJaYSPfEALLs4dvToseyxx164XE5efXVGQPKJiIjIllScSJeXnb2G9LAIAJyxiUFOI63JHRnD6mMvoXrIeELDdj2W6MILLwXgww/fo7i4qK3jiYiIyFZUnEiXl5W1anPLiTNGxUln48XCuvwKqutcWHbRfLLHHnsxcuRoHA6HWk9ERESCQMWJdGl2u50NG9ZT7nRiTUjEEZsQ7EjSBkrL7Wz45nvW330H7traHR5nsVi46KLLAHj33bcoKioMVEQRERFBxYl0cWvWZOHxeHi9oow+Dz9GTWrPYEeStuD14vjha+rWr6d81hc7PXTfffdj5MhR1NfXa90TERGRAFNxIl3a6tUmAIMGGThdHq0O31lZreSPPRiA0m+/xlm04/EkFouFyy6bDMD777/Dpk35AYkoIiIiKk6ki1u1asvipF6LnHRa1ZkDqc3sh9flouTD93Z67F577cO4ceNxOp28+OJzAUooIiIiKk6kS1u92mRSciqHZ6+l7IN3tMZJZ2axkD/2ELxYqJz7F3ZzxU4O/af15OOPPyA3NydQKUVERLo0FSfSZXm9XlavNsmIiCC0rg6nvS7YkaSN1SdlUD7YtzBjwesz8bpcOzx23Lg92HvvCbhcLl544ZlARRQREenSVJxIl1VYWEBFRQXpEb41ThyaRrhLKBg9CU9kDI78PGqXL93psZdf7ms9+fzzT1i/fl0A0omIiHRtKk6kyzLNlQD0iI0DwBGTEMQ0Eiie8Ehy9jkazr2S+HHjdnrsiBGj2G+/A3C73Tz//NMBSigiItJ1qTiRLmvFimUApIWGAVAXHR/MOBJA1T0N1oWlUlxRR0jIzv8ZvOyyqwCYNevzzQWtiIiItA0VJ9JlLV++lGibjQivF4Da6ITgBpKAqq1zsSannNpNBdStWb3D44YMGcbhhx+F1+vl8ccfDmBCERGRrkfFiXRJXq+XZcuW0j0iEgBrQiJ13pAgp5JAK1uyjHW33ULec8/sdOX4K6/8LyEhocye/Tt//PFbABOKiIh0LSpOpEsqLCykuLgIq9VKxMBBhPTtrwUYu6CapG64omJxlZVR8sG7OzyuR4+enHrq6QA8/vgjuN36syIiItIWVJxIl7S8YZYmT0YGA267DctJ5wQ3kASFNySUnL2PAaD855+oWb5sh8decMElxMTEsmrVSr744tNARRQREelSVJxIl7Rs2RIAhg4djheorHUGN5AETW1Gb8qH7AFA4Wsv46nb/no3CQmJXHDBJQA8/fQT1O3gOBEREfGfihPpkhpbToYPGYbL5aWuXsVJV5Y/5mDcsQk4i4sp3kn3rtNOO5Nu3bpTULCJN954NYAJRUREugYVJ9Ll+AbDL8ECjPzpR9ZcezWO0rJgx5Ig8oaGkbNPQ/euH3+gdsXy7R4XHh7OFVdcDcCMGc9TWFgQqIgiIiJdgooT6XLWrVtLRUUF3WJisLhcuCoqqLWFBzuWBFlNt36UDp9A6KTDiRs2ZIfHHXnkMYwcOYra2loef/yRACYUERHp/FScSJezYME8APYxfG9AbSmp1Lm8wYwk7cSmsQezbuj+lNs9O1yc0Wq1cuONt2GxWPjyy8+YN29ugFOKiIh0XipOpMtpLE5GZfb0bUjNwO1WcSKAxUJFdT3mhlLq653Ys7a/OOPQocM58cSTAXjwwXtxuVyBTCkiItJpqTiRLmfhwvkA9I6OBsCVnB7MONIO5W0oZM1dd7Lx4SnY12Rt95grrriauLh4Vq0yef/9dwKcUEREpHNScSJdSnFxERs3bsBisRBXVw9AXUJqkFNJe+MOjaA6PBbcbvKffwZXVeU2xyQkJG4eHP/0009QXFwU4JQiIiKdj4oT6VIaW00GDRyEq2ATAPZ4FSeyFYuFnL3/hSsxBVdpKQXTn8Pr8Wxz2IknnszQocOoqqpkypR7gxBURESkc1FxIl3KvHl/AzBmxGji9t6H8AGDqI6MD3IqaY88YeGs3+//8IaGUrN8OaWffLjNMTabjdtvvxebzcZ3333NDz98F4SkIiIinYeKE+lS5syZDcC4vfeh+7nnkzD5OuwODYaX7atPTCNvn38BUPLF51T+9ec2xwwePIT//Od8AB544C4qK7ftAiYiIiLNo+JEuoyCggKys7OwWCzsuefeWK0WqmuduD0qTmTHKvoOp2z4PgAUv/8uHqdjm2MuuugyevXqTVFREU88obVPRERE/KXiRLqMP//8HfBNAxvlcuFxOiivrg9yKukI8sccTOWIfYi57BrCoyK32R8REcHtt98DwAcfvMuff/4R6IgiIiKdgooT6TIa3zDuvfcEcqY+zIqLLqRu9aogp5IOwWolZ+yhrKywUlbtIDTUhte7ZYvb+PF7ctJJpwFw++03UVFRHoSgIiIiHZuKE+kSPB7P5vEme48Zh7OgADweaqKTgpxMOpLSyjqWZRdTNHceedMew+PYsovXNddcR+/efSgsLODee+/cpoARERGRnVNxIl3CqlUrKS0tISIikkFxvtm5bCmpVFvCgpxMOppN+WUUzJhOzZLF5D/3NN4mq8NHRkZx//0PExISwrfffsUXX3waxKQiIiIdj4oT6RJ+/PF7wNely52zEQBLZi8cTncwY0kH5A0NY/0B/4c3JJSaxYsoeGXGFmugDBs2gosvvgKABx64m5yGP28iIiKyaypOpEtoLE4mTTqYuvXrAKhPzQxiIunIatN7s/HA/8NrtVL552wKX391iwLlvPMuZPTosdTU1HDttZOpq6sLYloREZGOQ8WJdHq5uTmsWrUSq9XK/vtPom7tWgDsSd2CnEw6surMgeTtdwJYLFT88jMFr7y0uUCx2Ww8+OBUEhMTWblyOVOm3BPktCIiIh2DihPp9H766QcAxowZR6zFgqu0BCwWKuPTgpxMOrqKPsPI2//fYLVS+cdvVP3x6+Z96ekZTJkyFavVyscff8BHH70fxKQiIiIdg4oT6fS++WYWAJMmHYIlJIS0U08n6sCDqXbbgpxMOoPyPsPIPeBEGLMXsRP3x2q1bN631177cNllVwG+8SeLFy8MUkoREZGOQcWJdGo5ORtZtGgBVquVww8/EltMDGlHHYn70ONxuT27voBIM1T0GsLK0Udg5lTi9gJuF+7qagDOO+8iDjzwIBwOB1dffTm5uTnBDSsiItKOqTiRTu3LLz8DfJ9gp6b6unG5PV5KKzVAWVqXx+PFXFfCsrXF5M6YzsYp9+EsKsJqtXL//Q9jGEMoLS3hyisvobKyMthxRURE2iUVJ9Jpeb3ezetMHH30sbhraqj4/Veq8wqoqnXs4myRlvN6Yb2ZQ9VKE8emfDY8cA+1q0yioqKZNu1ZUlPTyM7O4rrrrsbh0J9BERGRrak4kU5r/vy/Wb9+HRERkUyadDC1K1dQ8PIM8qZNpapGbwylbTijYsk6/Fxcqd1xV1aS8+hDlH3/LWlp6Tz55HNERkYxZ84f3HTT/3A1WcBRREREVJxIJ/bOO28CcNRRxxAdHUPN0sW+Hf0MnC6NN5G244qKZfWhZ2MfOBLcboreeoOCl6YzqG9/pk59ktDQUL7//lvuuONmPB79WRQREWmk4kQ6paKiQn744VsATjnlDLxeLzVLfMVJVY8BwYwmXYQ3NIy1+xxHyd6H+6Yanv0H+c89xT777MvDDz+BzWbjiy8+5Z577lCBIiIi0kDFiXRK7777Fi6XizFjxmEYg3HkbMRdXo4lLIyyxB7BjiddhcVCgbEXGw47E29sPDGHHU1oqJUDDzyI++57CIvFwnvvvcPkyZNxOp3BTisiIhJ0Kk6k06mqquKtt14H4IwzzgagevEiAEIGDqayXp9SS2BVp/dh5XGXs8ydwKayOmyhViampvPwTbcTEhLChx9+yNVXX0FdnWaRExGRrk3FiXQ6b7/9OtXVVfTvP5CDDjoUgKq5fwFg7zsErzeY6aSr8tpCKCyr5e/lmzAXZZM/4wV6//gD08+7iOjISH7++UcuueQ8SktLgh1VREQkaFScSKdSUVHOzJmvAHDBBRdjtVpxlpbi3JQPNhsl3QcFN6B0efZ6F+aGUhzd++B1OomeP5+XDziYPdPSWbhwPmeccRKmuTLYMUVERIJCxYl0Ks899zSVlRUMGDCQww47EoDQpCQGPfEksRdcQblTf+Ql+JzRCaze/xQKJ50I0TFQXMy1vfpy14jR2MrKOOec0/n661nBjikiIhJweqcmnUZW1mrefdc3ffB1192MzWbbvM8aHU1xSm/cHvXpknbCYqG41zBWHXcZ9eMmgtXKkPAIpgwfhcVRzw03/Je77roNu7022ElFREQCRsWJdAou1/+3d+/xUZV3Hsc/Z67J5B4IhgTwQuFBBKQo4r2oqHVRqbZW67avl9rWVnvRXW11Vy22rtvWuuta3fLq1sur2626tbUXu9hqtSoRL1wqRi6PIFeTAAkJCQlJJjPn7B9nEmIkCmSSmYTv+/Wa1zl55smZ3zx5MnN+53nOOQkWLvxnkskkc+eew5w5pwDgdrQTCDi0dSRo2K2dPMk+bjSX7XMuYPOlX6Nr0jQKzjqXz139JRzH4be/fZKvXvkZqlOXwRYRERnpQpkOQCQdHn30Z6xeXU1BQSH/9E/f6SmvefDH0NlJcv5lNLdGMxihyIfrKChl/amXEg7CaXMKmTpjNk/e8z1uLC3jjTtv4/VpM7j85lspKCjIdKgiIiKDRiMnMuwtXVrFokUPAHDLLbdxxBFHANC+fj3t69bSvnUL29szGaHIgetKwta6Fjoj4/nyxVcScBxOLhnFmTU1rPjaV6h68D9ItLVlOkwREZFBoeREhrV3393ArbfehOu6LFhwKfPnXwyA53k0/O43AIRPPIWdbk4mwxQ5aPGuJNuOPZMtl1zH9nHH0Om6VEQijHnzTew3r+etu79LUuejiIjICKPkRIatTZs2cu21V9HS0syMGcdz22134jgOAK3L3qDdroNQiPrpp+PqRHgZptoKy2g85/Os/+w/sKy0nNrODsKOQ+PaNVx17VX85S9/IplM0rFlM25XPNPhioiIDIjOOZFhadmyZVxzzRdpbNzF5MlTeOCBnxKJRABItLSw83/9q3aFPnEedYlIJkMVSYtAXhF5F11LbWszVc89zsaNS6lubODmm2/kyHHj+UHlBILBIPnTppM3fQa5U44lPLqsJ2EXEREZDpScyLCSTCZ5/PH/5r777iUej2PMsSxa9DBFRcUAeMkkdf+1iGRzM6HysWyZdBJeu5vZoEXSKJZfxLRLvspR864g/+WnWb7kjyQa6tldOppRkSitK1fQunIFAKFRo4iZYyk89TRiU47NcOQiIiIfbVgkJ8aYALAQ+BJQAlQB11trN2Q0MBlS1dVvce+932fVqr8BMG/eedx11w/IzY311PFcl0A4jBON0jz/72lWYiIjVH5BMWfP/wKnz7uM6uUvcvdrzxLe+Q4nFpcwvaCQj+UXwK5dtCytoiM/j4nHTcV1Id7QQPNLfyV65FFEK8cRHjMGJ6AZviIikh0cz8v+ufjGmIXA9cDVQA1wD3AMcJy19mAnWW9MJt2jGxvTe7WbUChASUkeTU1tJBLaIU6XZDLJ0qVV/OpXj7FkyUsAxGJ53HHH7cyffwlun6YOBBwSXV2883o11i1iGHTvrBUIOOTmRmhvj+ucnUGUznau376VN19/nrWrXqFt13am5BdwXEEhrzbtoiU3j1knzObcykqOqq7u+R0nFCZcXk60opJIRQUFJ55EpLx8oG8r6+gzemgMZjuXluYRDAY24X//i8gIlfUjJ8aYCHAT8G1r7eJU2eVALXAp8EQGw5NBsHPnDqqrV1FV9TJVVS9RX18PQCAQ4MILF/CNb9zA1KmT/C+/9nZaXllC29o1TPjmDXS5sGF7G+u9YoZD4i2STmXlEzh3wdXMu/gqGnZsY91br1K1ejk18TqSe/fy3LOL2ZKXz1mjyzg6L59xuTEiiS7i720j/t42ABKlJVRUjsXzoGX5Mhp+9xTh0WWEiksIFhURKizyl0VFRCoqCebmZvhdi4jISJL1yQkwEygAXugusNbuNsasBM5Eycmw4Xke7e172bNnDy0tzezZs4f6+nrq6mqpra2hpmYb1q6joaH+fb9XVFTERRd9issuu4LxYytxGxvY+cKL7Fy+kj0rV+K2+zcx2fH6craVHMXWumaNmMhhzXEcysonUFY+gTPOu5yueCfvbbFsWV/N1k1r+MV7G9m7ZRMOUBaJMj43l3G5Mcbl5PLkjV+nJeBQOmo0F48p5+xgiHht7f5f57OXUzDjePLy8uh6q5qWPy0mEIsRjMUIxPII5sUIxGIEIlHyZ59EpGwMAF2NjcS31xGIRglEIjiRKE4kghMK4gRDBKJRnGBwCFtMRESyRdZP6zLGXAr8BohZa9t7lf8qVXbhQW5yYzLpHt3Skt678i1dvYWXfrKI8s5WYF+bOj2rHv8XLqUT/8o5M5OtTHQ7enaiHd7/d1gcLKQtdaXn4912JrsdqXr7ttftGSefllTd47wOpnudfaLbV/dPxGj0/LpT6eTjvH9WXO94n/WibE/VNU4XJzuJ/W4T4Nm4w9Z4F26yi0lOkjOjQfBc8Dw8zwXPxU0mwPN4ekcttrXV325+ARcfMXbf6zv+uwzl5BHNL2Xt1PNwZy8gGI4ydtMbzPnzfR9oq9aCMVRP+SQrKk+l09Xc+XRxHAgGAySTrpK9QZSJdvY8j67WBvZut+zd/g4djdvobNxGR9N7xJu3+/+7QHE4zITcGGWRKMXhMCXhCMXhcM/jng3vsDV1r5WLjhjLF8Yf2e9r3re7nXeSDk4gwOnREFfG+v9ffcTLZ00gB8cJMNPr4NPeHpJAEud9SxeHxYECbNAfvZnodvJJtwUP8FKfFG6v9VfChVgnBw+ocOOck2zBf6d9P1VgRaiA9antlnldnN21e1/79az5n8hvhfKxIf/ctxK3i7O7mj7Y5qnl2mAea0N5ABS4Ceb1qts3hg3BXN4O5QOQ6yU5P97Yb5ttCuayKlU34rlcEN/Vb91tgRxWhgsACHoeF8Yb+q1bG4iyLFzY8/OCzvp+6+4MRHg1XEz52LHcf8s1RMPpPf5ZWJiraV0ih4HhMHLSfbZz3z3uDqD0UDYYCDiUlOQNKKi+7n/kCeZuWcWc0WX91vnpihfZk/B38M+acBSzx/Q/r/vRN6toiPuJw+njJjC7vKLfur+sfp2aDj/ZOqliHCdUjOu37q/XrGDbXv98m4+Xj2XWuD47E72uOvq7dauoad0DwLSyI5h55NH9bveZbevY2bzbrzuqjBOOnthv3aqmJohFIVpIaWkZs0v62UlJtPJyvJyXNvlfuDN2xTgZj7ZQjJrYeNaWTKW69HjWFh+H5wSgpd+XFJG+nNEwdgqMfX9xMBmHlhpoa6ClbSdv763Ha62HvfWwdxd07sFra4XOZgjkQciFRAdVjQ1s3NtGLBgkPxgiLxQiLxgkFgyREwywua6WXZ3+QZb60lFsLa8kEgiQEwwQCQSIOAFCqRPzt69fztaW3QAcM6qMnJ7Pkw9mby3rX2dzk7/TPraklCMnTu73LT9nX2PjLn/nuriomGmTpvRbd/n61bxbvwOAaEEhM83Ufuuu3rKaDdvrAJgYy+OEqdP7rbtp6zo21L4HQGVOLrOnHd9v3e3vWTa8txWA0ZEIJ82Y1W/dptr1bNi6GYCCUIg5M0/st25Hw0Y2bH4XgEggwJxZJ/Vb99XGzWzYuL7n5zknntxv3ZXNTWxYb9kAvHD+mVx53gn91hUR6c9wGDn5NPBr9j9yErXWLjjITQ7KyMnarTt55mc/p7C1Gf8LNLWX7/hH7QDeLK4kEQgCDhPaGhkT95OE7tsQeL0yg7eLK4kHQ+A4VLY1cUTHnp7t7eP/sK64ko5QBByH8r1NlLc3vy82D6fnNdYXV9IejuLgULZ3N+V7ex2167kfgr/cXFxBWyQXx3EoaW9mbOu+I3FO95HG1K/UjBpPe14JwVCYks42ypt3+NMzgkGcgL8MRXIJRXLYM3EW8RI/MYvu3kHR1rf7tOa+N7mnYhLto8cDEOjqJBDvIBErJBwJE+9K6LySQeQ4DpFwSO08yEZCOycTXSTiHSS7Okl0dZKMp5aJuL8e78B1k3iph+u6Peue6+ImU+vJJLgJXM/FTY26hpMJYsk4jusS9FyCnkfAcwm6Lg4eDdE82kP+vYzy4h2M6dyD43ng+Z+oDh6O54+d7IwV0xSK4nlQ0NXBUW27/E+bVLt3j594QE1OEQ3RPPA88hOdTGrbhYfXkx/1/iiuySlgR9QfichLxJnSWt+nzr6/a21OIbU5/khEbrKLaXt27KvnvX9Mpi6ngK25xQBEkwlmttT1+zfYEc1nc6wEgJCb5ITm/U/FA6iP5LExzz+2F/BcZu+u6bduYySX9Xmje36e07St37q7wznYgjLGV1Zw+zUXEUjzPXY0ciJyeBgOIyfdn4QVwLu9yiuAVYe60XRfReTYCWM49cE7dSWYA9adHBbCnFMPsC5AhFAoTklJmKamTrX1IPKvuhNSOw+ykdPO4dQjP9OB7Jeu1jU01M4iMlDDYYL+KvwJO3O7C4wxxcAsYElmQhIRERERkXTL+pETa22nMeZB4IfGmHpgM/Aj/BGVpzIZm4iIiIiIpE/WJycp38GP9SEgF3gZOP8QbsAoIiIiIiJZalgkJ9baJHBL6iEiIiIiIiPQcDjnREREREREDgNKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCo7neZmOYai1e56X47rpf9/BYIBk0k37duWD1NZDQ+08NNTOQ0PtPDQGq50DAQfHcTqA3LRvXESyxuGYnOwGokBdhuMQERGRAzcW6ASKMxyHiAyiwzE5ERERERGRLKRzTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQqhTAcwEhhjAsBC4EtACVAFXG+t3ZDRwEYYY8yRwOb9PPVla+1DQxzOiGSMuR2YZ62d26tsJnA/cCKwC/ixtfbejAQ4QvTTzo8CV/WpWmOtHTeEoQ17xphS4F+BC4FC4C3gVmttVer5mag/D9gBtLP6s4gcEo2cpMcdwFeBLwOnAB7wjDEmktGoRp4ZQAdQAYzt9fhlJoMaKYwxNwLf61M2CngOeAd/Z24hcJcx5uohD3CE2F87p8zA39nr3bc/PnSRjRhPACcDVwCzgZXAs8aYKerPadVvO6eeV38WkUOikZMBSiUgNwHfttYuTpVdDtQCl+J/gEt6TAestbYu04GMJMaYSuAh4AzA9nn6WqATuM5amwDWGmMmAbcAjw5poMPch7WzMSYITAXustZuz0B4I4Ix5mPAucBp1tqlqbIbgAuAK4F21J8H7KPa2RjzXdSfReQQaeRk4GYCBcAL3QXW2t34R5HOzExII9YMYE2mgxiBZgFN+O37ep/nzgBeTu3IdXsBMMaYMUMU30jxYe08CchB/XugGoD5wIruAmutBzhAKerP6fJR7az+LCKHTCMnA9c9f3Zbn/JaYMIQxzLSTQfqjDFLgMnAevwjc3/ObFjDm7X2aeBpAGNM36fHAdV9ympTywnAzkENbgT5iHaejj8d9EZjzAWACywGbrfWNg9lnMNZ6sDQ4t5lxpjLgInAn4G7UX8esANoZ/VnETlkGjkZuFhq2dmnvAP/yJGkQWr63GT8Ey9vB/4OWIZ/bs85mYxthIux/74N6t/pNA1/B24zcBFwM34f/33qghtyCIwxpwGPAL9PJYfqz4NgP+2s/iwih0wjJwPXnlpGe62D/0XXNvThjEzW2rgxphhIWGu7dy5WGGOOxf/iez5jwY1s7fh9u7funTj17/S5E7gvdUQa4G1jTB3wKv7Jxn2ngclHMMYsAB4DXgM+lypWf06zftr5TtSfReQQKTkZuO7pXBXAu73KK4BVQx/OyGWt3d/OQzXwyaGO5TCyDb8v99b9c80QxzJipebr7+5T3D39aBzamTsoxpiv418u+Cng870OaKg/p1F/7az+LCIDoeHVgVsFtABzuwtSR/hnAUsyE9LIY4yZYYxpNcac3uepE4HVmYjpMPEycEbqalLdzsG/aprm56eJMeYxY0zfc6dmp5Y6qfggGGOuAx4AHgQu75WYgPpz2nxYO6s/i8hAaORkgKy1ncaYB4EfGmPq8efY/gj/CN1TmYxthHk79ViU+lJswL/M7Sns+9KT9HsE+DbwsDHmHuAk4Eb8+/pI+jwG/MEYcxv+5ccnA/8JPGatXZvRyIYRY8xk/CP5vwW+D4zpdfGBdtSf0+IA2ln9WUQOmUZO0uM7wMP49zB4BUgA51tr4xmNagSx1rr4J1a+ATwJ/A2YA5xrre179R1Jk9TR5PMBg3957IXAt6y1P89oYCOMtfaPwGXAp/GnvzyMf3Dji5mMaxj6DBAGLgHq+jzuV39Om49qZ/VnETlkjud5mY5BREREREREIyciIiIiIpIdlJyIiIiIiEhWUHIiIiIiIiJZQcmJiIiIiIhkBSUnIiIiIiKSFZSciIiIiIhIVlByIiJZyRjjZDoGERERGVpKTkQk6xhjLgZ+nlqfa4zxjDFzMxuViIiIDLZQpgMQEdmPf+y1vhI4BViToVhERERkiCg5EZGsZq1tAV7LdBwiIiIy+BzP8zIdg4hID2PMi8AnehWdBfwVOMta+6Ix5k7gCuBW4F+AjwHrgOsAD7gfmAG8C9xgrX2+17anAT8AzkwVPQ/cZK3dOIhvSURERA6QzjkRkWxzPfC31OMUoHA/dcYD/w7cDXwWKAV+DTwO/Aw/eQkATxhjcgGMMZOBpcAY4Crgi8AxwCvGmDGD93ZERETkQCk5EZGsYq1dA7QALdba11LrfcWA6621j1tr/wD8BKgA7rLWPmSt/T1wBzAaMKnfWQi0A/OstU9Za5/EH5XJBb41qG9KREREDojOORGR4Wppr/XtqWXvc1N2pZbFqeU5+NPD9hpjuj/7WoAlwLmDFKOIiIgcBCUnIjIspU6U72vvh/zKKODy1KOv+rQEJSIiIgOi5EREDhe7gb8A/7af5xJDG4qIiIjsj5ITEclGSSCY5m2+BEwF3rTWJqDnLvT/A2wA3kzz64mIiMhBUnIiItloN3CKMeZsoChN2/we8CrwR2PMIqAD+ArwKeAzaXoNERERGQBdrUtEstGDQBfwDP7VtAbMWvsWcAb+vVB+gX/p4bHAp6y1T6XjNURERGRgdBNGERERERHJCho5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkK/w/SRWYKRZEJ1kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.22it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.230 - 20.430) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 1.0441 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.0077 & Fano Ratio = 10^-5\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1w0lEQVR4nOzdd3QU5dcH8O9s3/Tee0iGDgI2BAFFigWxIlh+ihVFsCCgICKCCC8CAiK9SFVQEVAsiAooogaRkmRI770nW6e8f2wWAyQk2WySTbifc3LY7LS7D0l27zzlMpIkgRBCCCGEEELam6y9AyCEEEIIIYQQgJITQgghhBBCiIOg5IQQQgghhBDiECg5IYQQQgghhDgESk4IIYQQQgghDoGSE0IIIYQQQohDoOSEEEIIIYQQ4hAoOSGEEEIIIYQ4BEpOCCGEEEIIIQ5B0d4BsCwbDiC9nk3Pchy3gWXZvgA+AjAAQAmAFRzHLWm7CAkhhBBCCCFtod2TEwC9ARgARAGQ6jxfwbKsN4AfAewD8AKAmwCsZlm2hOO4zW0dKCGEEEIIIaT1OEJy0gsAx3Fc3uUbWJZ9BYARwCSO43gACSzLxgCYAcDW5KQcgBrAFdcjhBBCiMMKhOUzgUc7x0EIaUWOkJz0BhDfwLbBAI7WJiZWRwC8ybKsH8dxhTZcTy1JkkYUpUgbjr0qmYyBKEqN70hajNq6bVA7tw1q57ZB7dw2WqudZTIGDMPY/byEEMfiCMlJLwB5LMseAxALIAnAexzHfQ8gBMDZy/bPrf03DIAtyUmeKEqRlZV6W+Otl1wug5ubFjU1BgiCaNdzk0tRW7cNaue2Qe3cNqid20ZrtrObmxZyOUOjHgjp5No1OWFZVgVLQlID4A0A1QAeA3CIZdk7ADjB0oVbl6H2X42t15XJGHh6Ott6+FW5uWlb5bzkStTWbYPauW1QO7cNaue2Qe1MCLFVuyYnHMeZWJb1AMBzHGdNQuJYlu0GYBoAPSzzQ+qyJiU1tl5XFCVUVupsPbxe1rtFlZV6uivXyqit2wa1c9ugdm4b1M5tozXb2dJzQhUQCOns2n1YF8dx9SUZZwGMApAFIOiybdbvc1pyXZ5vnTcnQRBb7dzkUtTWbYPauW1QO7cNaue2Qe1MCLFVu96CYFm2N8uy1SzLDrps0wAA5wEcBTCYZVl5nW23w7K6ly3zTQghhBBCCCEOqr17Ts7Vfn3CsuwkAMUAngNwM4DrARQAmA5gI8uyiwHcAOAVWGqeEEIIIYS0WFxcnCssSxXTuDFC7EsEkNe/f/+qph7Q3nNORJZl7wHwAYA9sKxdfgrAHRzHnQUAlmVHAlhR+3wegDc4jtvaPhETQgghpLOIi4uTAXiLYWRPMAyjBEBrFRNiX5IkSea4uLhPAbzfv3//Rsd7tnfPCTiOKwLw9FW2/wVLTwohhBBCiD29JZcrJrm5eZpUKo2OYRgqhEOIHUmSxJhMBqfKyrJJgsADwPzGjmn35IQQQgghpK3FxcW5MYzsCTc3T5Orq2dJe8dDSGelVmv1ALzLy0ueiIuL+6ixIV40tpIQQggh16IAhmGUKpXGvrUFCCFXqO2ZVMIyt+uqKDkhhBBCyLVIBoChoVyEtL7a3zMGTcg9KDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBiNytWLA0aO3ZUr/aOo6kSE+M1hw//4N7ecRALSk4IIYQQQsg1a+bM12Pi4885t3ccxIKSE0KIw9PzwICdrhiw0xV6vr2jIYQQ0rnQmgiOhOqcEEIIIYTUEkUROp2u3W7eOjk5iTJZ8y4/aNCA/g88MC7vl19+8jabzbKPPvok0cnJSVy5clnImTP/uNXU1Mjd3d35YcOGl0ydOi0nISFe+/zzT3ZfvXpDQu/efXUA8MorL0afO3fG7bvvfvlHoVBAkiTcddfwPv/738ScceMeLb78msXFRYqlSxeHnDr1l7sgCExsbNfq116bkRUd3cVo3WfdutX+Bw/u86+qqlJ06RJTM3PmnHTr9vpiDgkJNa1d+3Hgr78e8S4rK1MGBwcbHn/8qdxRo+4qB4A9e3Z779q1LfCpp57J2bhxXUhFRbmyW7ceVbNnv5u+ZcvGgF9+OeytUCikMWPuL3jhhcn5AGA0GplVq5YFHT9+1LO0tESl0WjFPn36Vsyc+Xaml5e3MHbsqF7FxcWqzz/fGXj27GnX9es/5crKSuWrVi0P/uuvPzyqqqoUkZHRNc8992LOTTcNrLa+tn37vvDasWNrYFFRkTosLEw/bNgdJRs3rgk9fvzvOFv+T2QymU2vrzOi5IQQQgghBJbEZMKEB7omJia02xCfrl27V+/cuZdrboLyww/f+i5c+GGSIPBMTEysccKEB7q7u3uYFy1afsHV1VX49dcjHuvXfxLavXvPmpEj7yz38fExnTjxm1vv3n11giAgPv6cq9FolP3zT5zz9dffWHP69CmnqqpKxW233VF++bV4nsfUqZNiAUaaO/f9FG9vb37lymUhr7/+cuzevQfOAkBxcbHq3LkzrgsXLk0ymYzM+++/G/n+++9GbNy4jWso5ldeeTE6NTXF6eWXX82MjIw2fPfdN14LFsyNlslkySNGjK4AgJKSYtX+/V/5zZ+/OFmnq5G9/faMmKeeerTH7bffUbx69caEb7/d7719+5bgIUOGlXfr1sPw4YcfhJw8ecJjxoxZ6aGhYUaO47RLlrwfsXbtx0Fvvjkna8OGbQkTJz7a/ZZbhpQ+99ykPEEQMGXKC7Fms5mZMWN2mq+vn/mzz3b6zZz5Wuzy5asT+/btpzt8+Hv3pUsXRT7xxMTsoUNvLz958ne3DRvWhLb0/8SW19esH5IOgpITQgghhJCLOmbdkyFDbivp27efDgD0ej1z2213lIwcObosNDTcBAAREU8X7tmzOyA5+YJ25Mg7ywcMuLH81Km/3ADknz59ylkuV0ixsV2r//rrpOv1199Yc+zYrx4xMWy1r6/fFYNpf/vtqFtGRrp28+ad52JiYo0AMGvW3PQtWzYElJaWKABALpdL7723KM3d3V0AgNGj7y7avn1LcEMxX7iQqPn77z895s5dkDx8+MgKAJg8+ZW81NRkpx07tgZakxNBEJjXXpuRYf1g3qtXn8oLFxJd3njjrWyGYfDccy/lff75rsCkpAvabt16GLp1614zbNjtZTffPKgaAEJDw00//vhdZXp6qhYAfHx8eZlMJmm1WtHT00s4cuRHt7S0VKf167eet15j9ux3My9cSHTesWNrQN++/VJ3794RcNNNA0ufeeaFAgDo0iWmKDs7S33gwD7/lvyf2PL6WvIz46goOSGEODwGQL/a90emfUMhhHRiMpkMO3fu5TrasC4ACAkJvTicSqvVSo8//lTht98e8Ny+fatzbm6OOiMjzam8vEwpCCIDAIMHD6145523fPV6PXPy5AnXHj16VgUHhxr+/feUG4D8v/466X7rrUNL67tWUtIFrZOTk2BNTADA3z+AnzFjdrb1e3d3d96amACAq6ubYDKZLnlhdWPmuEQtAAwYcGN13X169epb9emnG0PqPtely3/XVavVoq+vv5FhLO8OGo1GAgCj0SgDgPvue6j02LFfXZcuXRSck5Otzs7O0ubm5mi6du12yXWskpOTtFqtk1D3gz/DMOjevWf1qVN/uwFAenqq06BBt5bVPa5Pn+uqL09Omvt/Ysvr64woOSGEODyNAlg3XN/eYRBCrgEymQwuLi5ie8fRXGq15mLMOp1O9vzzT7IGg0E2ePCQshEjRpf06dM3c/Lk57pa97n55luqlEqF+Mcfv7n+80+c27Bht5eGh0cY9+//MiArK0OVnp7qNHfugtT6riWXKyTrh+WGyGSyRnug6sbc0KR0URQYuVx+yUalUnnJ9zJZw7HMm/d22G+/HfUaOvT2kptuuqWia9fueTt2bA0oKSlS1be/JNX/0kRRhEKhkCzXk0mS1HgHW3P/T2x5fZ0RJSeEEEIIIZ3Ir78ecUtLS3X68stv/vXz8+cBoKysVF5RUaGwJgEqlUrq0+e6yqNHf/FISrrgMnPm2xkhIaEmhmGk1atXBgUGBhnqTm6vKyoq2lBTUyNPTU1RR0VFGwGgpKRYMX78/T3nz1+cZEvMsbFd9QDw998nXazDugDg7Nl/XYKDQ226O1VaWiL/4YdDvjNmzEq95577LvZ0ZGdnajQabZ3E6L8P/126xOp1Op08IeG8pm7vSXz8eZeQkDADAISHR+jj48+7ACi0bj9//uxV5yk15f+EWHTaLiFCCCGEkGuRv3+ACQD27//KOysrQ3Xy5AmXadOmdBEEgTGZzBc/iQ8cOKj8559/8nFzc+Wjo7sY1Wq1xLLdqo8f/9X7ppsGljd0/sGDh1RGRkbr5s2bHRkX95dzYmK8Zu7cWRHu7h7mPn2u09kSM8t2M/Tt269ixYqlYYcPf++enJykXrVqeWBc3F8eDz88vsCWc7q5uQtarZNw/PhRj9TUFHV8/DntO++8FZ6enuZkNv/XDhqNRsjJyVYXFhYohgwZVhEaGq6fN+/tqN9/P+Z64UKi5r335oRlZ2dqH3lkQgEATJjwRN7Jk797bty41j81NUW9d+9n3t98c8DvarE09f+EUM8JIaQD0PPAPV9bbkoduLcGWvrLRQghDerXb4Bu4sTnsvbt+8J/x46twZ6eXqbBg4eW+vj4mjjuv5XIhg0bXrF8+RKmZ88+ldbnrruuf+XZs/+6DRlyW3lD55fJZFi8eFny0qWLQ2fOfD0GAHr06Fm1dOnKJLVabXM3wAcfLE1dvvz/gpcuXRyh0+nkoaGh+rfempsyevRdDcZyNQqFArNnv5u6Zs3KkKeffqyHs7ML37Nn76rHHnsyZ+/e3YE1NTUyZ2dn8d57HyjctGltyNSpL2p37foifsWKTy4sXbo45N13Z0ebzTwTGRml++CDpRf697+hBgCGDRteWVhYkLF7946Abds2B0dGRulGjhxddOjQwQYTlKb+nxCAacqYuU4mVRDEyNLSGrueVKGQwdPTGWVlNeD5DjdUtUOhtm4bjtTOeh4Y/LkrAODYw1WdKjlxpHbuzKid20ZrtrOXlzPkclkagCh7nC8uLq6rTCb/zs8vuFql0nTKVY9I6zhx4riLj4+fue6CAJ98sjLghx8O+Xz11bfn2jM2R2UyGTSFhTkuoiiM6t+/f+LV9u1Eb/GEEEIIIYS0rj/++N39l1+OeE2f/lZ6eHiEMT7+vHb//q/8R4++u6i9Y+sMKDkhhBBCCCGkiV58cWquXq+XffDB/MiqqkqFl5e36d577y949tlJnbZqe1ui5IQQQgghhJAmUqvV0ltvvZMFIKu9Y+mMaLUuQgghhBBCiEOg5IQQQgghhBDiEGhYFyEO5Nz3h5Dz809Q+fnj5udfhMaZVhcELOWxunsJFx8TQgghpHOinhNCHMSvq5ZD8fluRBYXQ336FKZPfg4GA61uCQAaBfDpKB0+HaWDhm6pEEIIIZ0WJSeEOICUkyfgc+oUZAyDVAZYlp2Jo//EYeXKZe0dGiGEEEJIm6HkhBAHkLx5I5QyGdIYBnes2Yip8xYCAHbv3o6MjPT2DY4QQgghpI1QckJIO0v/Jw6RPA9RkhD97POQy+UYNOhWDBl0K4Z6eiPuow/bO8R2Z+CBe752xj1fO8PAt3c0hBDiWAYNGtB/z57d3k3d/5dffnK77747ew4delO/RYsWhLRmbE2xYsXSoLFjR/Wy5zmb0ybZ2Zmq/fu/8rTn9YntaPQ2Ie0s8fPdiAKQIZdh5A03XXz+qTvvgZPBBGN5OSqLi+Dm49t+QbYzCUBejeziY0IIIf/54ouD/7q5uQtN3X/9+k9C/P0DjB99tPqCi4trk4/rSJrTJu+++3aEn5+facyY+8paOy7SOOo5IaQdiaKIPxITkGvQw/nmgZds6z3qLhTwPNQyOeK2f9pOERJCCHF0/v4BvFarbfK9m5qaGnn37j1qwsIiTF5e3p0yOWlem0i0EKQDoZ4TQtpRYmI89qUl4wcnJ/y8Yesl22QyGXRRUUBmJvjz59opQkIIIY5u0KAB/adOnZb+0EOPlMya9UaEKIqMp6eX+eeff/I2Gg2y3r37Vr755pwMf/8AftCgAf0B4PPPdwV+/vmuwJ07954NDQ03rV//if+hQwf9KirKFQEBgcaHHhqff999D5YCwO+/H3OdPv3V2CeemJj9xRefB/r4+Brnz1+U+vjjD/ccP/7x3G++2e+nUinFLVt2xzMMg6VLF4X8+ecJD57nmcjIaN2LL07J7tu3n84a765d23z27NkdUFZWqurT57oKPz9/09Ve37PPPsH26NG7qqysVPnbb0e9lEqlePfdYwtHjBhd+sEH70WkpiY7BwQEGaZPfyv9uuv66+q2yR13jCp/4omHe0REROlWrFiTDABHj/7iOmvWG7Fvvjkn5auv9vgnJMS7JCTEu4wdO8p1377vzo4dO6rXbbeNKJky5bXcujH4+fkbFyz4v/T62uPTT3cnFBTkK5ct+7/Q06dPucnlMik2tmvN1KnTsqKjuxhb4/+9s6KeE0La0dGjvwAAbrrpFqg1miu2x9x5NwAgWBBQWVTUlqERQsg1S9DrZQ19iUYj0xb7tsSJE795VlZWKj76aDU3Z857KQkJ8a6rVi0PBizDnby8vMz33HNfwRdfHPw3ODjUtGzZ4uBvvtnv99JLUzM3btwef999DxZ8/PHy8G3btlwynvjkyRMeq1dvSJg58+10uVwmAcAvv/zktWzZKm7u3PdT3N3dhVdeeTEmNzdHPX/+4uTVqzckdu3areaVV17sevbsv1oA2L//K881a1aF3XffgwXr1396vlu3HjWHDh30a+w17du3N8DPz9+0YcO283fffW/hrl3bgmbMeDVm3LgJ+R9/vD5BpVKKS5cuCr/8OA8PD+GNN2al/fNPnPvXX3/pVVpaIl+8eEHk7bePKL7zznvKFy9enhwTE1tz8823lG3YsC2hOe1ctz0MBoPs5ZefZ0VRwLJlH3PLln3Mubm58y+++HS33NwcZXPOe62jnhNC2lHW8WNQy2S49dah9W6P7H89fuN5+CkUOLP/Kwx6+rm2DZAQQq5BKS9Puq6hbdpYtiJ0+pvJ1u9TX5vSRzKb673Zq46IrA6f/Q5n/T5txuu9RJ2u3s9eqqBgXcS8Bc36cNxgjFqt8M478zOUSqUUG9vVcOLEbyVxcX+5A5bhTjKZTNJqtaK/fwBfU1MjO3Bgn/+0aW+mDR8+sgIAIiOjjHl5ueovvtgd8PjjT168MzZu3IR8ay9AZma6CgDuumtMEct2MwDAsWO/uiYlcc779h3618fHlweA116bkRMff95l9+7t/r169Un/8svP/QcOHFT2+ONPFQFAly4x+QkJ553T01OdrvaaQkPD9C+9NDUPAJ566rmCXbu2Bw0ePLR0xIjRFQAwYsTokvXr14TWd+zgwUOqRo++p3DNmlWhP/30g5ezs7MwY8bsTADw9PQSFAqFpFKpRGvMTVW3PT77bIdPVVWl4oMPlqYplUoJAObNW5h+//139dq79zPfur0w5OooOSGknZTmZOF/Gi3G9x0Av/4D6t2HYRhU+fvDr6QEVf+cauMICSGEdET+/gFG6wdkAHB2dhF4nq+3Z+bChUSN2WxmPvzwg4ilSxdFWJ8XBJHheTOj1+svHhcREXnF8KSwsPCL1YITE+OdAGDcuLGXrLzF8zxjNpsYAMjKytQOHXp7ad3t3bv3rG4sOQkKCrl4HScnJxEAgoODL8ajUqlFnjc32Pv02mvTs0+d+sv91Km/3T/5ZFN8c+boNKRue1y4wDnp9Xr5qFFD+9bdx2w2y7KyMq4cGkEaRMkJIe3kwpGf4AWgTBTRM/SKnuiLfK+/Efy3B1FRWgJJksAw1968PQZAVO2iK9feqyeEtLXolZ/809A2Ria75ENt1NIV/zZ138hFH55t6r4tUTcx+U/9pxdFkQGAt956JzUqqovh8u1qtfrigRqNRrx8u0ajubhdFEVGq9UKa9duuaIHSKVSiYDlppt0WSgKhaLR165QyK/Yh2GaPjuhoCBfWV5eppTL5dKJE8fdevXqrb/6EZdejueFK95+6raHKIoIDAwyfPDB0uTL93N2du6Uiw60FppzQkg7KTt7BgBQ5eF+1f26jxqNZ86exgfxZ5GTk90WoTkcjQL4/C4dPr9LBw3dUiGEtDK5Vis29CWr82G9NfdtK126xBrkcrmUl5erioqKNlq/jh792X3btk3+MlnTPypGR8fo9Xq93GQyMnXPtWXLhoAjR370AIDw8AjduXP/utQ9juMSnO37qi4liiLmzZsdGR4eqXvxxSmZO3d+Gnzu3Fntf3swl/4/yRVSdXWNvO7xhYUFqqtdIyoqWl9cXKxyc3MTrK87LCzcuGrV8uA//zzhau/X1JlRckJIO1EXFwMAnGO7XnU/JxdXxPboCQD4++8/Wz0uQggh1w53d3fhjjtGFW3btjn4yy8/90pPT1Pt3fuZ95YtG0M8Pb2aNQdj2LDbK8LDI/TvvPNW9PHjR11TU1PUixcvCPn558M+kZHRBgAYP/6J/D///MNz/fpP/FNSktVbt270O3nyRKsWQFy3bnVAWlqa06xZc9PHjXu0uFu3HlXz58+JNNYuQqDVasXCwgJ1Tk62EgC6deteffz4r14nTvzmkpycpJ437+1wvV4nv9o1xoy5v9TFxVmYMePV6Li4P52TkjjN22/PiDx9Os49JoZtpJeG1EXJCSHtQFdZiYDa4VlRDUyGr+v6628EAPz95x+tGRYhhJBr0MyZb2fde+/9BZ9+ujn4ySfH99yxY2vgI488mvvyy82bxC2Xy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpgwePKQKAIYPH1ExffpbqT/8cMjn6acf73H8+FGPMWPuK2idVwacPXtGu3v39qDHH38yJyoq2ggAb775dkZxcZF62bLFwQAwZsz9RVlZmZqJEx/tIQgCJk9+NSc2lq2eNWt6zMsvP9/Vzc2NHzhw8FULNLq7uwsrV65LdHf34GfOnBYzadLT3QoLC1Tvv78kqWvX7lcMlyMNY6TLB/51fqmCIEaWltbY9aQKhQyens4oK6sBz18xJJPYUWdo67PffQP13j2o4Hn03/QpGus2P/ntAZRv/xTOKjUGbdneJjE6UjsbeOCJ7y1zJT8d2bmGdjlSO3dm1M5tozXb2cvLGXK5LA1AlD3OFxcX11Umk3/n5xdcrVJp6MMjIa3IZDJoCgtzXERRGNW/f//Eq+1LPSeEtIOCs5Y5kaUqVaOJCQCw/QYg0skZfgoFSnOyWjs8hyMBSK2QI7VC3sCUTkIIIYR0BpScENIO/q0ow4aMNFSEN7xKV10eAYEo5C1Df5OPHW3N0AghhBBC2g0lJ4S0g7+Sk/BDUQF8bh7Y5GOqXCyLm5SeP9daYRFCCCGEtCtKTghpYyaTCcnJSQCArl27N/k4ZXgEAECWn98aYRFCCCGEtDtKTghpYymn/sZgDw909/VDYGBQk48L7NcfAODD8xBFmtBLCCGEkM6HkhNC2lj+yT8wKSIaT4VHNavae5ebBoKXRLjI5ci/wLVihIQQQggh7YOSE0LamKF2tS2zh0ezjlM7O4PjefxWUozUpGsrOWEABDqLCHQW0fR0jhBCCCEdTSeqFkBIxyAvKwcAaIJDmn3s3yEh+Oab/XgpPw+D7ByXI9MogAP32rc2ESGEEEIcD/WcENLG3M1mAIA3yzb7WJbtCgDguAS7xkQIIYQQ4gio54SQNlRVUgRPheXXLrTvdc0+Pja2KxgARUnJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKHMf/6BEkAFzyM2qPnDurqERWDrdddDI5ejqqQIrt6+9g/SARl44LnDTgCAdcN10NBfLkJIK2EYyEWGCdQZ+Hb5S+OkUfAySHmOlqCsWLE06MiRH7z37fvubHOPTU5OUj/33JPdt2zZcT4sLMLUGvGRzoPe4glpQ8WJCQgEUK6Q23S8T1AQUiQJGgBpf55E79F32zU+RyUBiC+VX3xMCCGthWEYmc7AK/44lyfqDHybrtvupFHIbuoZqHDVKGSSJDlUcmKr+Phz2pkzX+9iMhlpKgFpEkpOCGlD5wx6bLyQgFuH3mbzOcpVSniKEorOnweukeSEEELams7AizV6c3sUleo0H+JXr14RsHfv7sDg4BBDaWmJqr3jIR1Dp/kFIKQj4DLTcaayAq49etl8DtHTCwBgysuxV1iEEEI6sEGDBvTfsWOr78SJj7HDht3c75FH7uv+ww+H3Ovuc/jw9+6PPfZQt2HDbu53//139Vy+fEmQ0Wi8uDp7YmK85pVXXoweOXJo3yFDbux3//139dy8eYNfQ9fcsmWD39ChN/X7/vtvPRraJy7uT/c33ngrbdKkl7Pt8kLJNYGSE0LaUFpaGgAgMjLK5nNoQ0MBAMqKSrvERAghpOPbvHl9yLBht5euW7f1/IABN1a8996cLn/9ddIZAH7++bDbggVzo0ePvrt406Yd56dOfT3z+PFfvWbNeiMSAHQ6nez116fEajRaceXKNYmbN+88P2jQrWUbN64JPXv2jPbya23fvsV369aNIbNnz0sZOfLO8oZi2rhxOzd69N0NbiekPjSsi5A2YjIYMFCSkOvlg7CQUJvP48N2B06fhrvA2zE6QgghHdmwYcOLH3/8qSIAmDZtZs65c/+67tmzy+/6629M2759S+Dtt48ofvTR/xUBQGRklFGhUGTMmPFabGZmusrJyVkcM+a+wvHjHy90c3MTAWDy5Fdzv/xyT0BSUqK2V6/eeut1du3a7rNp07qQd96Znzx06O10l4zYHSUnhLSRPC4RDwQEwSSK8PXzt/k84f36Ie+znXCXK1CWmwPPoGA7RkkIIaQj6tdvQFXd71m2W83p06fcACAtLc0pJSXZ+eefD3tbt0u1q4skJydpbrvtjsoJE54oPHjwa6+UlCSnnJxsdUZGmhMACIJ4cehXWVmZ8pNPVoTL5XIpJCTM2Bavi1x7KDkhpI0UcglwB1AqiZArbP/Vc/X2wZc1VcirrMTI9LRrJjnxULfHvFRCCOkYFArFJYsZSpIEmUwuWR6LzNixD+aPGXNfyeXH+fsHmAsLCxTPPfdkN1dXN/6mmwaW9+9/Q2Xv3n1qxo0b27vuvgwjw7x57ydt2rQuaMGCuZEbN25LlMlohgCxL/qJIqSNVGakAwB0KnWLz3XS0xO7c7KQmpfb4nN1BFoFcPiBGhx+oAZauqVCCCFXiI8/51z3+8TEeJfo6GgdAISEhOmzsjI0UVHRRutXQUGecsWKD0Oqq6tkBw7s866urlJs2rQ98aWXpuaNHn1XeUVFee1f2/9yHg8Pd/OQIcMqZ86cnZ6amuy0efN624cBENIASk4IaSOmwkIAgOTh3siejYuKigYApKamtPhchBBCOr4DB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyS2/40ZIHQ51D5Jl2VgApwBM5jhuS+1zfQF8BGAAgBIAKziOW9JeMRJiK3lFBQBA5R/Q4nNFRUbDU6lEdUpSi89FCCHkSk4aRZvfwG3JNUeMGF20d+9u/+XLl2jDw8N1CxcuSerRo6ceAO66a0yZJEmpu3ZtC/zyy88DnJychQEDbih/9dXp2dbtiYkJ+evXfxK6cuVSmY+Pr2nkyDuLT5z4zSMh4bwzgKLLrzdp0st5v/121HPBgrkRGzZ8ytHwLmIvDpOcsCyrBLADgHOd57wB/AhgH4AXANwEYDXLsiUcx21ujzgJsZWT2QTIFXAPj2zxubo4OWNtn/4oM5jsEJnjM/DAlF8sq1muGKqHxmH+chFCOhtJkkQnjYK/qWegAu0wwsRJo+AlSWr2JLvIyGj99OmzGqwncvfd95bdffe9ZfVtYxgG06bNzJk2beYlBbSefvr5AuvjKVNey50y5bWLY4nVarW0Z8/+802JbeDAwVXHj/8d15R9CXGkt/h3AVRd9txzAIwAJnEcxwNIYFk2BsAMAJSckA6DN5vhxVje4/y7dm3x+cL69UPhF3vgqVCgsrgIbj6+LT6nI5MAnCpUXHxMCCGtRZIgyCDlubZDz4nl+pIoSRDa49qEOAKH6INjWfZWAM8D+N9lmwYDOFqbmFgdsRzCNli1lBBHU1CQj9fOn8GilCQExrY8OfHwD0Q5b/m1yPyHbkYRQog9SRIEUZTM7fFFiQm51rV7zwnLsh4AtgF4meO4LJZl624OAXD2skOsXYphAAptva7CzjdE5HLZJf+S1tMR2zovPwf5RgO0QYHQaO0zd7BSIYcHgLKUZChG278tHKmd6y6QqZDL0IKVmB2OI7VzZ0bt3DaondsHDZkinYkjvMV/AuAEx3E769nmBMuwrroMtf9qbL2gTMbA09O58R1t4OambZXzkit1pLYuLs4HAERGRtrtZ090dwcqKmEqyGu1n2fAMdpZbf7vsYenM5yU7RdLa3GEdr4WUDu3DWpnQoit2jU5YVn2cViGbvVqYBc9gMtvM1uTkhpbryuKEiordbYeXi+5XAY3Ny0qK/UQBCoW15o6YltX/nUKDwQGw9/dG2VlV/7oymQMBAkw8yK0KnmTXpfM2weoqIS5oKjec7aUI7Wz3gxY18ooL6uBsRMlJ47Uzp0ZtXPbaM12dnPTUo8MIdeA9u45mQjAH8Dlw7nWsCz7BoAMAEGXHWP9PgctwPOt8+YkCGKrnZtcqiO1tVtePsYFhyJdqbwiZoYBzAKD+PRSlFcZ0T3KG75u6kZfm3NoOJCaCo1e36rt4AjtzAt1H4vgmfaLpbU4QjtfC6id2wa1MyHEVu19C+IxAN0A9K3zBQBzANwJ4CiAwSzLyuscczsAjuM4m+ebENLWVAbLaETnwMtzbUChkCOrsBopWeUoKtOBSy+FwSyCaeQDuH+v3vg6LxcH8nIgSZ1/DSuNXIJG3vlfJyGEEHIta9eeE47jruj9qO1BKeQ4LoNl2U0ApgPYyLLsYgA3AHgFlponhHQYrqIIyGTwCI+45HmGYaAzCsjIq4RYm2AUlNagoEyHCH9XmM0NL9oS2qMHduVlQxRFFBcXwde38y5gp1UAx8dVt3cYhBBCCGll7d1zclW1vSMjAbCwVI5/B8AbHMdtbdfACGkGQ3U13GuXlwq4bBlhhYJBUYUepZX6i89JEpBdUAVTI0MilEoVgoNDAAAZGen2DZoQQgghpB2095yTK3Acx1z2/V8Abm6ncAhpsbwLiQAAgyDAM+jSYV28COQWVePyUVklFXpU6szwclFddVIpGxoOl7Iy5J0/Bwy4we6xE0LItYhhIGcYhoow1rFixdKgI0d+8N6377vLSzw0aM+eXd5ffPG5f2FhodrT09M8YsSo4meemZQvl8sbP5hcsxwuOSGksylJTYEbgHJJgkz233udTMagWm9GWaXhimNMZhEFpTXwcVNDuMpb1G1OzujStQdS4s+3QuSOwygA049ZliZdPFgPNb2vEUJaCcNArpWZAyWTrl0+IzEqJ14vKvMcMUFpjn37vvD6+OOPwl944eXMG2+8uer8+bNOK1Z8GG4ymZmXX341r73jI46LkhNCWllVdjbcAOhVl65/K5fLUF5tRI3eXO9xJRUGmHgRV5sXr/IPAMrLwZSX2y1eRyRKwG+5iouPCSGktTAMI5NMOkU1d1IUjfo2XXJMptbKXNgbFYzSQyZJUodOTvbv/8p3yJDbSh555NFiAIiMjDJmZKRrvv/+Wx9KTsjVUHJCSCtLkDFYfPY0Ro+6CyPrPC9KQEFpw/V2KquNqDHycNMoIDbwidwjIhLgEuFsvLxWKSGEkJYQjXpRMNS0x3rIzR5ONmjQgP6TJr2c+dNPP3qlpaU4+/sHGCZOfC5nxIjRFdZ9Dh/+3n3Llg1BOTnZWk9PL9Ottw4rnTTp5Ty1Wi0BQGJivGbNmlXBCQnxrgaDXubt7WO65577Cp966pl6V0fdsmWD35YtG0LefHNO6siRd5Zfvv2FFyZne3l585c/X1NTTZ89yVU59IR4QjqDnIJ85BkNcI2IuPgcwwAGs4DKGlODx+mNPCqrjVctOhbQvQcAwEsmA2+uvweGEEJI57d58/qQYcNuL123buv5AQNurHjvvTld/vrrpDMA/PzzYbcFC+ZGjx59d/GmTTvOT536eubx4796zZr1RiQA6HQ62euvT4nVaLTiypVrEjdv3nl+0KBbyzZuXBN69uwZ7eXX2r59i+/WrRtDZs+el1JfYgIAN9xwU02XLjEX75yVl5fLDx066Nunz3WVrdQEpJOg5ISQVpaba1kxOygo+OJzMpkMOgOPqqskJwBQWKbH1UYxBbJdYRZFKGUy5CYm2CNcQgghHdCwYcOLH3/8qaKYmFjjtGkzc6Kju9Ts2bPLDwC2b98SePvtI4offfR/RZGRUcYhQ26rfPXVNzL++ON3z8zMdJVOVyMbM+a+wrfeeicjNrarISoq2jh58qu5AJCUlHhJcrJr13afTZvWhbzzzvzk4cNHVNQXy+Wqq6tl06ZN6WI2m2RTpryeZf9XTzoT6lojpJXdqNMjKjAYgR6eF5+TyxmUVRnAX2UlLgCo1plgNAtoaP63XKFAqSTCHzLkJ5xHWK/edoycEEJIR9Gv34Cqut+zbLea06dPuQFAWlqaU0pKsvPPPx/2tm63rhKZnJykue22OyonTHii8ODBr71SUpKccnKy1RkZaU4AIAjixamPZWVlyk8+WREul8ulkJCwJo0nLijIV0ybNiWmoCBf/cEHSy9ERERe/a4cueZRckJIKzLp9Rjq4gqZqxs8/PwvPi+IEkrrWaXrctV6M/RGAW7ahued6NQagOdRmZ5mt7gJIYR0LAqF4pI3CUmSIJPJJctjkRk79sH8MWPuK7n8OH//AHNhYYHiueee7Obq6sbfdNPA8v79b6js3btPzbhxYy+548UwMsyb937Spk3rghYsmBu5ceO2xLqrUF4uKYnTTJs2NUYQBGb58tVc9+499Q3uTEgtGtZFSCsqSE6CjGFgEkV4h4VffN5oFhtcpasug5FHtd581XknRYGBWJeeigsmuhlFCCHXqvj4c851v09MjHeJjo7WAUBISJg+KytDExUVbbR+FRTkKVes+DCkurpKduDAPu/q6irFpk3bE196aWre6NF3lVdUlNfewP4v5/HwcDcPGTKscubM2empqclOmzev90cDMjLSVa+88lKsRqMR16zZlECJCWkqSk4IaUVFKUkAgHJRhLXolEzGwGAWmpScAEBppR7MVdYTVnfvgcPFhUgszG9xvI5KqwD+nlCFvydUQUv9vYQQcoUDB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyer64pk//50InjfL3n77vVSlUikVFOQrrF+t2xKko2v2DwjLsgoAQwHcDiASgDuAYgAZAA4B+J3jOKpEQAiAyqwsuADQKf/7VZPJZNDpzTAYr1hhsV7VOjNMfMO/UiEhoQCA7GyaY0gIIfYiU2vb/AZuS645YsToor17d/svX75EGx4erlu4cElSjx6W3oq77hpTJklS6q5d2wK//PLzACcnZ2HAgBvKX311erZ1e2JiQv769Z+Erly5VObj42saOfLO4hMnfvNISDjvDKDo8utNmvRy3m+/HfVcsGBuxIYNn3J1h3fl5eUqExLOuwLACy881f3yY48f/zvO1tdJOr8mJycsy6oATALwOoAQAGWwJCQ1AEIB3A3gLQC5LMsuArCO4zgqvkCuacZiy99zwcnp4nOMDCitavqvRo3eDBMvQC1nLk5grCs0JBRdXVwRXFMDgechV9BNKUIIsZUkSSKjcuJd2BsVaIcRJozKiZdEqdn1VSIjo/XTp8/Kbmj73XffW3b33feW1XtNhsG0aTNzpk2bmVP3+aeffr7A+njKlNdyp0x5Ldf6vVqtlvbs2X++vvMFBgaZKQEhtmrSpxiWZW8AsBWAAOATAJ9zHJdSz369ANwJYAqAqSzLPs5x3Ak7xktIhyJWlAMAGHePi8/xgoTqRpYQrktnMMNgEqB1VkIQrsxO/P0DMCe2GxQyGQqSLiCo2xU3qTo8owDM+V0DAJg30AB1Q8uXEUJIC0kSBL2ozGOUHu0y9F0SJVGS0KGrwxPSEk29xboNwEyO47662k4cx50FcBbAIpZlH4YloYltWYiEdFxynWX+n9r74uqNMPMidMamF0w085bJ896uagjCle9XSpUKZaIIX5kM+VxCp0xORAn4KUsJAJgrNb7KGSGEtIQkQZAkiRIEQtpBU5OTXhzHNWspII7jPmdZdl/zQyKk8/i0vAQlGRl4e/yjACyT4Y0GHjpD0+abWJVXGRDm79Lg9mqlEr6ShMqM9JaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5FVkI88owF+4ZZlhGUyBnojD2MTJ8Nb1eh58PUM6bISXF0BAIb8zrtiFyGEEEI6v6bOOZnTnJNyHDfPtnAI6Tz0ej0qKioAAH5+AQAsyUlFtQnNXc5OZzTDLIgN/sIqfX2BykqgvNzmeAkhhBBC2ltTh3XNvex7CQADywT5YgCeAFQATABKAVByQq55BckX8Hx4JIoFEa61PRuCBFTpmr+Ind7Iw2QSoNLUXyneJTQMSEmBxkDzMQghhBDScTV1WJfM+gXgDgAlAB4BoOE4LpDjOA0sq3SVAHit1aIlpAMpTUnG7b7+GOrjC6a2iiLPi9A3c74JYKkUbzALkMnqr8bo08Wy7oQHAFFs9gqUhBBCCCEOwZZl8lYBeJvjuM85jru4kgXHcd8BmA1ggb2CI6Qjq8q1LAdvqK07wjCAWRBhMDU/OZEkoEpnupjkXC6kR0+sz0jD0pQLKC+rdxl7QgghhBCHZ0u1tjAAmQ1sKwLgb3s4hHQexqJCAIBZqwVQu1KXnofeaNvqlJXVJstgynpoXV3xLwMUVlYgJzcbXnWWLu4MNHLg2MNVFx8TQgghpHOypefkXwAvsyyrrPsky7IaANMBnLRHYIR0dELtZHjGzc3yL8NAbxJgMtuWnOiNPHi+4SFboaGhAICsrIbuHXRcDANoFZavBjqPCCGEENIJ2JKcvAngNgApLMuuY1l2AcuyGwCkAugD4HV7BkhIRyWrqQEAqGp7MWQyBlXNqAx/OYOJh7meyfBW3QKCcKu3D6rjz9t8DUIIIdeempoa2bZtm32t38+a9UbEs88+wbbmNbOzM1X793/l2ZJz7Nmz23vQoAH9G9reFq9j0KAB/ffs2d0phitkZqarBg0a0P/334+5tmcczU5OOI77FcBAWHpI7gEwDcBoAIcB9Oc47rQ9AySko1KbLImIS0AgAEuV8ypdC5ITIw+TWWxwUnwvlRqTI7vAtRMWYjQJwNwTGsw9oYGJajYTQohdbdq0zv+LLz4LsH4/ffrsrMWLlye35jXfffftiJMnf3dvzWuQjsmWOSfgOO4UgIfsHAshnYpLbTUT95AwAABv42R4K0PtkDBGowDqqZTiHBwMZGVBpdPZfA1HJUjAwTTLSNIZ19NyyYQQYk+SJF1y18vd3b0NbgNJNEiX1Mum5AQAWJYdDcuywoEA3gJwHYA4juMy7BQbIR2WyWTCS/+egpdShR3dugMAzILU7MrwdYmihBoDD193DYR63ja8IqOBP/6AGy0lTAgh15SKigr50qWLQv7884QHz/NMZGS07sUXp2T37dtPBwA6nU72wQfzQv/++y8PnU4nDw4ONjz22JO5o0ffXb5ixdKgzz/fGQhYhijt3Ln37Nq1HwcVFhao16//lPv992OuM2e+Hrtw4ZILH330YVhhYaE6IiJCN3v2vLQffjjkefDgPn9BEJjBg4eWzJo1N4thGEiShA0b1vj/8MMhn6KiQrVSqRS7du1ePW3am5nh4RGmZ599gk1IiHdJSIh3GTt2lOu+fd+dNZlMzIoVHwb98ssRb71eJw8JCdNPnPhs7pAht1VaX+ehQ994bN26IaigIF8THR1T07dvv8qG2sRKEEQsWDA39JdffvJWKBTSHXeMKp4y5fUcRe1Kmn/++Yfzpk3rglJSkpzNZrPM3z/AOGHCE3n33nt/qfUcX3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr7g8msVFRUqXnrpWdbDw9O8fPnqZCcnJ/HXX4+4rV//SXBOTrbWz8/f+MADD+evWLE0YufOvWfDwiJMY8eO6nXjjQPL//knzq2iokI5Z868lJtuuqVq69aNft9+e8CvuLhY5ePjY3rggXH548c/VgwAv/9+zHX69FdjrecALEOyJkx4sNfixcsuDBw4uGrWrDciRFFkPD29zD///JO30WiQ9e7dt/LNN+dk+PsH8ACQkHBes2zZ/4UlJyc5e3p6mseNm5DXoh9EO2n2sC6WZZ1Ylv0BwDcAJgJ4GJYijJMAxLEs28O+IRLS8RQVFcIoiiiRRHj6+EAmY2AyCzC0cExSZY2xwQnhQT16AgDc5QrUlJfWvxMhhJCrkiSgxgxZe31JDU8tbCBeCa+88mJMbm6Oev78xcmrV29I7Nq1W80rr7zY9ezZf7UAsHLl0qD09DSnDz74MGnr1l3n+ve/vuKDD96LysxMV02c+Fz+PffcV+Dl5WX+4ouD/wYHh14x/lgURaxevSJ0xoxZ6StXrk2oqKhQvPTSs90yMzO0H330Cfe//z2d/d133/j99NMP7gCwefN6vz17dgU+99yL2du2fXbu3XffT8nNzdEsW7Y4FAAWL16eHBMTW3PzzbeUbdiwLQEA3n57RkRc3N/ub775dtq6dVvjb711aNmcOW92OXzYcs6//jrp/P77c6MHDhxcvn79p+eHDx9Z8sUXnwU21j4XLiS6lJeXKVeuXJv4+usz0w8f/sFn8eIFoQCQm5ujnDnztdjIyGj92rVbEtat2xIfE8PWLFv2fxGFhQUKAPjmm/2eS5YsjBwy5LbSDRu2nZ848bnsHTu2Bu3evcOn7nVKSooVkyc/x3p7+5g++uiTJCcnJ/Hs2TPaOXPe7NKnz3VV69ZtPf/YY//L3bhxbejlMX7//SHfyZNfzVy0aOmFAQNurF60aEHoZ5/tCHrssSdzN27cdv7ee+8vWLt2VdjWrRv9mvOzceLEb56VlZWKjz5azc2Z815KQkK866pVy4MBS0L7+usvs05OTsLq1esTpkx5PXPnzk+DmnP+1mJLz8n7APoDuB3AMViqwgPA4wC+B/AegPvtEh0hHVRBQT4AwN8/AAzDgGEYmPiWDesCAL2Bh9DApHiPgECkCjxc5ArknD+P2FsGt+hahBByrZEk4LHvnLpyZXLn9oqhq6dQvW2UjmvqyoTHjx91TUrinPftO/Svj48vDwCvvTYjJz7+vMvu3dv9e/Xqk56Xl6vWap2E8PBIo7u7uzB16rSc667rX+Xu7im4uLiIWq1WlMlkkvWOen2eeurZnP79b6gBgIEDB5UfPPi135w572U4OTmJMTGsYfv2rcEpKUna4cNHVoSGhhmnTXsz7Y47RlUAQGhouOnkyRNlR4/+4gkAnp5egkKhkFQqlejj48unpqaof/vtmNeqVesSrL090dFdClJSkrWffbY9YPjwERV79uzyi41lq6dMeS0XALp0iTGmpqZov/12/1U/sLu7e5jfe29Rmkajkbp27W4oKirKWbt2Vdgrr7yRYzKZmEceeSz3mWdeKJDJZNbXmffLLz95p6amaPz8/Kv37t3tf/PNt5Q+//xL+bVxGXW6GrlGo704TKGyskIxefLzsT4+vsYPP1yZotFoJADYtWubf2RklO6NN97KBoCYmFhjaWmpcv36Ty5JUK67rl/FrbcOrbKcq1L2/fff+D799PNZY8c+UFp7zaLc3Bz1Z5/tDHziiYmFTfvJALRarfDOO/MzlEqlFBvb1XDixG8lcXF/uQPAN9987WkymWTvvrsw3d3dXejatbtBr9dlzZ//TnRTz99abElOxgF4k+O4n1mWvVhxgOO4fJZl5wP42G7REdJBVZw7g+fDI2HwsSx+IpMx0OnNaO4dscsZTDx4QWqo3AkqGAYuAIqTkyg5IYQQGzD1TepzYImJ8U4AMG7c2F51n+d5njGbTQwAPPbYk/mzZ0/vcu+9I/vExMTW9Ot3fcXo0XeXNmduSWRk9MUJf2q1RnR39zA7OTld/ICuUilFo9EkA4A77hhVERf3l/OKFR8G5eRkq7Ozs7TZ2VkaT09Pc33njo8/5wQAr7/+8iUrawmCwDg5OQkAkJGR7nTddf0r6m7v1at3dWPJSXR0F501WQCA3r371vA8z6SkJKt79eqtf+CBh0s+/XSTX0ZGmiYnJ0eTnp7qBACiKDAAkJmZob311tsuGY4wbtyjxXW/37ZtS7Ag8Mzl10pNTXa6fOhZv37XVwGfXBJjcHDIxbZNTr6gEQSBue66AdV19+nbt1/1gQP7/IuKCpv82d3fP8CoVCovxuPs7CLwPM9YYktx8vcPNNT9Gejf//rq+s7T1mxJTjwApDewrQyAi63BENJZmDMzcbuvP1LUagCW2hyVLVipy8poEmAWRKjlTL2JjlGjBUwmVGdntfhahBByrWEYYNsoHafjbSq1YBdOCojNqeckiiKj1WqFtWu3JFy+TaVSiQAwYMANNV99dejMsWO/uP3110m3H3445LN79/ag+fMXJw0ePKSqKddRKhWXvOs0tHIkAKxbt9p/165twcOGDS/u27df1cMPjy/85ZcjHseO/eJV3/6SZMlxli9fnejs7HLJxEm5XC79t9+lk+gVCmWjiaRMJrtkH1G0fBZXq1VSUhKnmTz5ua4REVG6/v2vrxg0aGiFl5eX+eWXn+9W9/qN/X/06tW78s47xxQvWPBO9M8/Hy4dNmx4Ze2xEMXGJ/6rVOorXiNz2UXF2vmkdZONup8DzGb+iuvU3fc/dZ9qfnu2BVuSk3MAHgXwQz3b7qndTsg1TSgrszyoLcAoiBL0hpYN6QIAo4mHiRehUSgg1ZOdFIWHY9c3+9ErNAQjWnw1Qgi59jAM4KxEh1lZJDo6Rq/X6+Umk5Hp2rX7xTvwc+a8Gd6lS4zuiScmFq1Y8WFQnz79qkeMGF0xYsToCkEQsh555L4eP/982HPw4CFVDMPY9UPp55/vDHrkkcdyrUOhAGDHjk8DLn3b+u+aMTGsHgAKCgpUw4f3udg7smzZ4mCGkUmvvDItNyoqWpeQcP6SG+AJCecaHX6Xnp7qJIoirMO2Tp3621WlUonh4ZHGJUsWhri5uZvXrt18wbr/jz9+5w7g4ntscHCogeMSLrnOwoXzQgsK8lXLl69OAYBbbx1WNnr0XeU///xj6bJliyP697/hnJubmxgREam7/NizZ09fNeYuXWINcrlcOnXqL5eePXvprc+fPn3K1d3dw+zh4SkolZaks7Ky8uIIpoyMNHVjbVFXTEys7siRH71LSooV3t4+PACcOfNPuw1nrMuWOwPzATzOsuxBAM/AkoINYVl2JYAXASy2Y3yEdEjWAoxKL8tNIl6QYGzhfBMAMJotywk3dMfKrWs3/FtZgeS83BZfy5Fo5MCP91fjx/uroZE3vj8hhFwrhg27vSI8PEL/zjtvRR8/ftQ1NTVFvXjxgpCffz7sYx2KlZOTo16+/P/Cjh8/6pqVlaH65pv9nsXFRepevXpXA4BWqxVramrkyclJarPZ3OIlfr29fUynTv3lxnEJmqSkC+ply/4v6M8///Awm80XP3dqtVqxsLBAnZOTrezatbuhX78BFStWLAn/4YdD7unpaaoNG9b4f/nlnoDg4GAjAEyY8L/8jIx07aJFC0KSk5PUX3211+vQoYO+DUdhUVJSonr77RkRiYnxmm+/PeCxc+enQWPHPligVqslPz9/U2lpierIkR/dsrIyVIcOHfRYsWJpOACYTJYhcRMmPJ73++/HPbds2eCXlpaq3r//K88ffjjkO2jQkPLLrzV9+qwsk8nELFnyfihgGU6XlpbivGTJB8HJyUnq7777xmPbti3BwJU9I1bu7u7C8OEji3fs2Bq8b98XXqmpKept2zb7fv/9t7733fdgAcMw6Nq1u16j0YibN68PTE1NUZ848ZvLxo1rQxo6Z33uvntsqZubOz9r1vTIc+fOak+cOO7y8ccfXTFZvz3YUoTxawCPAegNy6A5BsCHsNQ9eYHjuL12jZCQDkhlMgIAnPwtNa14QYLR3PJl4yUJ0BnMDf5RCw211FTJysps8bUcCcMAnhoJnhqpwdXKCCHkWiSXy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpliHbM2aNTejd+++VR98MC/y8cfH9fz0003B//vf09n33fdQKQCMGDGqzMPD0/zMM0/0OHPmtFNLY5o1a26a0WiUTZr0dLepU1/omp6eqn3xxSkZVVWViszMdBUAjBlzf1FWVqZm4sRHewiCgA8+WJp6882Dylas+DD8yScn9Pzhh0M+L730SsZDD40vAYBevXrr589fnHT27GnXZ555oscXX3zm/9BD4xtd+nbAgBvK5XK59NJLz3ZbtWpZ+KhRdxe+9NLUXAB44omJhQMHDi5dtGhB1FNPPdpj+/atgU8++UyOj4+v6dy5s86AZf7M5MmvZnzzzX7fp56a0GPr1o3Bzz47KfPBB8eVXH4tHx9f/tlnX8w+cuSwzy+//OTWrVsPw9tvz0v+668/PJ555vEeW7duDLrzznsKAUCpVDXYW/Xmm3My77prTOGmTeuCJ058tMfBg1/7Pf/85MxnnnmhAABcXV3FGTNmp+bkZGknTny0x4oVH4Y9//zkrOYkJ87OzuKKFZ9wCoVCmjr1ha4LF74X+fDDE/IbP7L1MfUNDWkqlmVZAN4AygEkchzXEbpBUwVBjCwtrbHrSRUKGTw9nVFWVgOe7wjN0HF1hLb+88nH4KFQwDzhMfQafgeqDDyOn86BvgV1TqzYCC/0ifaGqZ5liQvycjH/0YcRoNHgjS8PQKXR2nydjtDOnQG1c9ugdm4brdnOXl7OkMtlaQCi7HG+uLi4rjKZ/Ds/v+BqlUpD1V2J3f3zT5yTQqGQevXqc3F41r59X3gtX74k4vDhY6estVauBSaTQVNYmOMiisKo/v37J15t32a3CsuyRwC8yHFcIsdx3GXbegPYznFc7+ael5DOgjeZ4Ca3jD3yDgsHwzAw8yKMLaxxYnW15YR9/fzxfEQUVDIZchMTENG3n12u2d5MArDslGU47av9jFDR0C5CCCEOLjExwWnTpnUhb7zxZlr37j306enp6m3bNgfdcsug0mspMWmuJrUMy7KD8N8QsKGwzDGpb+m2uwG0+/rIhLSnkqxMyBgGoiTBJzzCsoywgYfY0nWEaxnNAnix/uWEZXI5yiQR/pCh8ALXaZITQQL2JKkAAFOuM7ZzNIQQQkjjHnnk0eKSkmLlJ5+sDCsrK1W6ubnxgwcPLZ08+dWc9o7NkTU1bXsGwBOwTH6XAKyGZa5J3U9b1s9KO+0WHSEdUInRgKdO/YlIf3/sVirBMEC1vuXLCFsZTTx4XoKygRljOrUa4AVUZqTb7ZqEEEIIaR6GYTB58it5kye/0ujcGPKfpiYnUwFshiUBOQLgJQDxl+0jwDL35Ly9giOkIyouLoJRFMF4eAIAxNpJ7PZiNAsw8wLUGgXEeoZ3iW7uQGkpTIVNLiJLCCGEEOIQmpSccBxXAeBXAGBZdhiAOAAuHMfl1z7nCSCU4ziqcUKueUVFRQAAn9rq8JZlhO0z3wQATCYBJl6sXbHryuRE7R8AlJZCXllx5cGEEEIIIQ7Mljon/wL4CsAvdZ67EcBplmX3sSzb4iXoCOnIZIkJeCE8Cn2dXQEAgijaZRlhK0GUYDBdpdZJeAQAwMlov6FkhBBCCCFtwZbk5AMAPQC8Vee5IwDuBTAAwDw7xEVIh6UpKsJtvn4IVijAMAxMvFjvsr8tUaM3N1jvw79rVwCAp0wG3my/4WSEEEIIIa3NluRkDIBpHMd9aX2C4zgTx3EHYElYHrZXcIR0RDK9ZTlzpZcXZDJYlhG2Y88JANToTWho8a+AGBaLU5LwxvkzKCyieSeEEEII6ThsWWTZFUBZA9sKAPjYHg4hHZ/KZALkcjj5+lt6TswCzHYuRmZdTrg+SrUaRW6uyCsrQU5OFoKCgu167faglgP7x1RffEwIIYSQzsmWnpNTAJ5uYNtTAM7YHg4hHZ9TbZeGW1AQGIZBjR1X6rIymoUGCzECQEhIGAAgMzPT7tduDzIGCHKREOQioYGpNoQQQgjpBGxJTuYDGMuy7N8sy85iWfZZlmXfYln2JIAHAcy1a4SEdCACz1+sDu8VGgaGscwPsTeTydIb09C8k95+fnggMBjmc2ftfm1CCCGkNRw+/L07xyVoWnKOZ599gp01640IO4VkkxUrlgaNHTuqV1P3nzXrjYhnn32Cbc2Y6pIkCXv3fuZdVFSoAIA9e3Z7Dxo0oH9bXb8xzU5OOI77EcA9sKxhOg/AWgDvwTJE7F6O476za4SEdCCl2VmQ11aH9w4Lt6ysZbTvfBMAlqFignU54StFq7UYFxwKj/zOUffJLAAf/aPGR/+oYefpO4QQQhxAVlaGau7cWV1KSoqV7R1LZ/fHH7+5LF/+fxF6vU4GAHfffW/pF18c/Le947KyZc4JOI47BOAQy7IaAF4AKjiOq7FrZIR0QCWZmZABqBIEqDQaCKIEUyt8mjaaBfBXqXXiGhYGJCdBazDa/drtgZeAbQkqAMBzvYygdy5CCOlcpIZWeSF2J0nSJXc2tVqtpNVq+faK53I2JScAwLJsNwB3AAgEsIpl2esA/MtxXJW9giOkoymWMXj91J/oHcPietQWYGyF5ESSAJ2Rh6+7BkI9p/djWZiP/AQPAKIoQiazZQQnIYRcm2rMDY8skTOQNIr/7gpdbV8ZA0lr477NceTIj26bN68PzsnJ1qjVGrFfv/4V06a9leXp6Sn8/vsx1+nTX43duXPv2bCwCBMAZGamqyZMeLDX4sXLLgwcOLgKADZv3uD39ddf+FdUlCtjY7tW9+rVp+rw4e989u377iwApKWlqpcsWRiamBjvqtVqhbFjHyz49tsDvuPHP5730EOPlADAnj27vD//fFdAcXGR2sfH13jnnWOK/ve/iYXW96Avvvjc+/PPdwYUFBSoXVxc+IEDB5e9/vqM7IKCPOWECQ/2AoDp01+NffjhCXlTpryWe+FCouajjz4MSUyMd9VotELPnr2rXnttepa/fwAPAEajkVm6dFHI0aO/ePE8z4wadWeReJX5mAAwaNCA/pMmvZz5008/eqWlpTj7+wcYJk58LmfEiNEXKxcfPvy9+5YtG4JycrK1np5epltvHVY6adLLeWq1WgKAxMR4zZo1q4ITEuJdDQa9zNvbx3TPPfcVPvXUM/Uukbllywa/LVs2hLz55pzUkSPvLG/s/zM7O0u5atXykDNnTrsZDAZZ167dqidPfiW7e/eeeus+X3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr6gsfisPw8AMGHCg72mTp2WDgAffbQk4vjxv+MAoKysVL5q1fLgv/76w6OqqkoRGRld89xzL+bcdNPAasAybO3s2dOu119/U/mBA/v8q6qqFLGxbPUbb7yVERMT2+K7os1OTliWlQNYA2AiAOtt2z0A3gEQxbLsEI7jslsaGCEdUVFRIYyiCJWPLxiGgZkXWqXnBAB0BnODw7qCuvZAmiRBK5ejJDMDvhGRrRIDIYR0RkP2uF7X0LZ+fnzFuuH6ZOv3I7506WMUmHqTju5eQvWno3Sc9fu797n0qjIz9X72inYXdJ/dpUtobqwlJcWKefPmdHn66eezhg4dVpGXl6dcuHBe1LJli0Lmzfsgoynn2LZts++2bZuCX3hhcma/ftdX//DDIc9du7YFe3t7mwBAp9PJXn31xdjAwGDDRx+tSaypqZYvW7Y4rKioUG09x65d23y2bNkQ8uKLUzP79LmuOj7+nNPHH38UVlxcqHrjjbeyz58/p125cmn4G2+8ldanT9+a5OQkzcKF86Lc3d35F16YnLdy5dqEl19+vtusWXNTBg8eWpmXl6ucMuUFdtCgIWVTp76eoNfrZRs2rAl64YWJ3bZv33Pe2dlZXLhwXtjff590nzbtzfTg4GDj5s3rAzkuwSUgIOCqH5A3b14f8r//PZ395ptz0r/++kuf996b08XT0yvx+utvrPn558NuCxbMjX7mmReyBg4cXJmZma5euXJZWHZ2pmbJkhWpOp1O9vrrU2J79epTtXLlmkSFQint27fXZ+PGNaEDBtxQ1atXb33da23fvsV369aNIbNnz0sZPnxERUMxWVVVVclefPGZrv7+/qb58xclqdUaaePGNUGvvPIiu2nT9viQkDDTN9/s91yyZGHkY489mTN8+Miy+PhzTsuWLY5wdnYRxoy5r/Rq8Q0YcGP1rFlzUxYsmBu9cuXahK5du+sPHvzay3p9QRAwZcoLsWazmZkxY3aar6+f+bPPdvrNnPla7PLlqxP79u2nA4CkpAvOarVGWLjwwySdrka2cOG8yCVL3g9fu3bLhab8zF2NLT0nswE8CuAZAN8AyK99/nUA+wEsAPC/lgZGSEdUXFwEAPD19b1Y46S1kpMavbnBbnC1szPKBAHeCgVy489TckIIIZ1Ubm6ukufNTGBgoCk0NNwUGhpuWrhwSRLPC01e2/CLLz4LuOuuMYUPPzyhBAC6dInJT06+4JyamuwEAN9887VnZWWVYvPm/0v19PQSAGDOnPfSnnvuye7Wc+zatS3ooYfG59177/2lABAREWmqqamWr169Ivzll1/LycrKUAMMQkJCjSEhYaaQkDCTh4fnBRcXV0Eul8Pb25sHAHd3d8HFxUXcsGFNgIeHp3n27HcvLju5aNGy1LvvHt7n228PeI4adVfZL7/85D1p0suZt99+RwUAvPvuwvQHHrjbtbHXO2zY8OLHH3+qCACmTZuZc+7cv6579uzyu/76G9O2b98SePvtI4offfR/RQAQGRllVCgUGTNmvBabmZmucnJyFseMua9w/PjHC93c3EQAmDz51dwvv9wTkJSUqK2bnOzatd1n06Z1Ie+8Mz956NDbK5vyf/H11194V1dXKTZt2p7g4+PLA8D77y9JffDBe3rt3r3Dd9q0N3P27t3tf/PNt5Q+//xL+QAQHd3FqNPVyDUarajT1cgai8/d3V0AAG9vb16r1V7yQeLXX4+4paWlOq1fv/V8t249DAAwe/a7mRcuJDrv2LE1oG/ffqkAIAgC8957H6RZfx7GjLm/cOvWDSFNeY2NsSU5mQhgDsdxm2t7UQAAHMedYVl2DiwV5Am5JrkmJ+OF8Ci4qTWtVuPEynSVWicAUK1QwBtAeVpqq1yfEEI6q18fqvqnoW1y5tKhVz/cX93gRGLZZfseHFvd4BKKl+/bVL169dbfcsvg0rlzZ3VZsWKpqU+f6yoHDhxUcccdo8qbcnxpaYm8uLhY1atXn+pLz9unypqccFyiU2BgkMH6QRQAunfvqddqnQQAKC4uUpSWlip37NgavGvXtiDrPpIkwWw2M5mZ6eqhQ2+v+PLLPdUvvfRsN3//AGPfvv0qb711aHmfPtfp6osrOfmCU25ujvb222+5pBfLbDbLMjLSNCkpSRqe55mePftcnPOs0WikiIjIes9XV79+Ay6ZgsCy3WpOnz7lBgBpaWlOKSnJzj//fNj7v9dhjSlJc9ttd1ROmPBE4cGDX3ulpCQ55eRkqzMy0pwAQBDEiwlhWVmZ8pNPVoTL5XIpJCSsyUOdUlNTtAEBgUZrYmJ9XV26xNSkpaU6AUBmZob21ltvK6173LhxjxZbHzclvoYkJydptVonwZqYAADDMOjevWf1qVN/u1mfc3NzN9f9eXBxcRF4nrfLYv+2JCf+AE43sC0bgKfN0RDSwXlUlKOfrx+ylCowDAO9sfXml5lqa500NIDZ7OICVFdDn5fbajEQQkhn5KxEk+8qtda+zbFo0bK0pKQLuceP/+oeF/eX26JF86O++mpv9bp1/w2xqdvRbjb/9yFSLrd8FBTFhj+4yuVySFLD20XR8rKeeeaFrJtvHnRFD0FISKhJpVJJ69ZtuXD27L/a338/5h4X97fb7NkzYoYMua1k/vxF6ZcfI0kS06NHr8o33njrioJd7u7uQlZWpqp2v0u2KRSKRpO8y/eRJAkymVyyPBaZsWMfzB8z5r6Sy4/z9w8wFxYWKJ577slurq5u/E03DSzv3/+Gyt69+9SMGze2d919GUaGefPeT9q0aV3QggVzIzdu3JbYlPmfkiTVO2RbFEVGLrfEKJfLpYZKCTQ1vqtcv94R46IoXtJuSmXj7WwrW2bJJgO4s4FtQ2u3E3JNUpksNU20vr5gGKC6FWqcWJnMInih4VonFV274pVzp3GMb70YCCGEtK+4uD+dFy6cFxoTE2t86qlnC1etWpc8deq09Pj4c65FRYUKpVIlAkBlZeXF0S4ZGWkX54q4u7sLPj4+pnPnzjrXPW9CwvmL33fpEqvLz89Xl5WVXjxHUtIFtV6vkwOAr68f7+bmxufkZKujoqKN1q/z5884ffLJymBJknDkyI9uq1YtD+zVq4/++ecn569bt+XC+PGP5/z++zFPAFd8IA8Pj9Dn5GRpg4NDTNbzeXp68suWLQ5NTIzXxsSwBqVSKf3zz98u1mN4nkd6uqWX4Gri489d8loTE+NdoqOjdQAQEhKmz8rK0NR9HQUFecoVKz4Mqa6ukh04sM867CrxpZem5o0efVd5RUV57c3+/z6ve3i4m4cMGVY5c+bs9NTUZKfNm9f7NxYXAERFddHn5eWqrTVIAMBgMDCpqclOYWERegAIDg41cFzCJa9h4cJ5oa+88mJ0U+JjGKbBxKJLl1i9TqeTJyScv6TeTHz8eZeQkDBDQ8fZky3JyXIAU1mWXQVgOCyvNIZl2dcBTAPwsf3CI6Rjca69e+QaGAhBBAyt3HNi5huudeIXE4tcgwEZ2VmtFkNbUcuBz+6swWd31kAtb3x/Qgi5Vri4uArfffeN75IlC4NTU1PU8fHntEeO/Ojl7x9g9Pb24bt27a7XaDTi5s3rA1NTU9QnTvzmsnHj2pC67x0PPTQ+/9tvD/jt3fuZd2pqinrTpnV+J0785mVZ9wgYM+a+UldXV3727BmR586d1cbF/ek8b97bUYAlqWAYBvff/3D+t98e8Nu6daNfWlqq+vvvv/VYteqjcKVSKarVakkuV+Czz3YEbdq0zi8jI111+vQpp5MnT3jExLA1AODs7CIAQFLSBW1FRYV83LhHC3U6nXzmzNeizp49oz1//pz2rbfeiEpOTnKOje2qd3Z2Fu+8857CHTu2Bh06dNAjKYnTzJs3O7ysrFTVWJsdOLDPf9++L7ySk5PUixYtCMnISNeOH/9EAQA88sij+X/++YfnihVLg5KTk9THjx91Xbz4/ciammqFv38A7+8fYDIajbKDB7/2zM7OVP366xG3d9+dHQUAJpPpis/V3br1MNx330P5O3ZsDUpJSVZfvv1y99wzttTJyVl4661p0adO/e1U+7ojDQaD/KGHHikCgAkTHs/7/ffjnlu2bPBLS0tV79//lecPPxzyHTRoSHlT4nNychYBID7+vFN1dfUlMQ8ZMqwiNDRcP2/e21G//37M9cKFRM17780Jy87O1D7yyISCxuK3h2YP6+I4bgPLsr4AZgGYBMtP7i4AJgCLOY5bY98QCekYRFGEa22XrVdtAcbWmgwP1M45ERqudRIaGg4AyMpq0mItDk3GANEerTN3hxBCOjKW7WZ4++15KVu3bgo6dOign0wmk3r06FW1ZMmKJJlMBldXV3HGjNmpGzasCZk48dEegYFBhkmTpmTNnj091nqORx/9X1FlZaV869aNwatWLVd0796jaujQ24sTEs67AoBarZb+7/+WJ3344QdhL7/8XDdnZxd+3LgJeWvXfhymVColAHjmmRcK1GqNuH//l36bNq0LcXd352+//Y7iqVOn5QDAkCHDKqdMeT19797dAdu3bwlWqVTiddcNqHj99RnZAODl5S0MGza8ePPmDSHZ2VnqWbPmZi1b9nHi6tUrQl55ZVJXmUwuxcayNUuXruR8ff14AHjttRnZKpVKXLVqeZjBoJcPHDi4tH//68sba7MRI0YX7d2723/58iXa8PBw3cKFS5J69LAs03vXXWPKJElK3bVrW+CXX34e4OTkLAwYcEP5q69Oz7ZuT0xMyF+//pPQlSuXynx8fE0jR95ZfOLEbx61vU1Fl19v0qSX83777ajnggVzIzZs+JS72vAuDw8PYcWKNdyKFR+GTJ/+Clv7f1y1YsWaxPBwy1LQd9wxqqK8vDzj8893BmzZsiHE29vH9OyzkzIffHBciSRJaCy+bt166Pv27VfxwQfvRT32WFaOu7vHxTupCoUCK1Z8cmHp0sUh7747O9ps5pnIyCjdBx8svdC//w1tUtOQaW7RG5ZlPTmOK2NZ1g3AzYBlzi2APziOK73qwY4hVRDEyNJS+7avQiGDp6czyspqwLfSBGhi4ahtXZKdhZK5bwMAIlauhlzrjN/P5KKkQt/Ikba7uXcQgr2dwfNXJkE1NdX4vwfGIFCjwbi1G+HhH9iscztqO3c21M5tg9q5bbRmO3t5OUMul6UBiLLH+eLi4rrKZPLv/PyCq1UqTZsMV3FUP/982C0mhtWHhIReHAf8zjtvhefn56rXrt1yITMzXZWWlqoZMuS2i/NJ8vJylQ89NKb3kiUrOGv9i45g0KAB/adOnZZurc1C2obJZNAUFua4iKIwqn///olX29eWCfF/siw7m+O4zwB8b1uIhHQ+JRnpAIAqgYfayQmGVlxG2EpnMKOhGzDOzi64MyAIHgoFcs+da3Zy4kjMArDpvKWnfmIPE5Q0tIsQQuzmu+++9d6wYY32tdemZ/j5+Zv//POk67Fjv3hNmjQlEwCMRqPs7bdnxjzxxMTsO+4YVVZZWSFfu/bjYH//AGP//te3yd10cu2wJTnxBFDc6F6EXGMqcnPgDqAG+K8AYz09Gvak0199TkulXAYPAKWpKcDtd7RqLK2Jl4D15yxDdZ/oboKyneMhhJDOZObM2ZlLliwMffvtN7vodDq5v7+/8dlnJ2VZexdiYljDjBmzU3fu/DRw585Pg5RKldS7d5/Kjz5afcE6rIsQe7ElOfkIwP/VToA/x3HcFWPrCLkW5apUeDHuJG698WYMYxiYhdbvOTGaeQhXqXVicnIG9HrU5GS3ahyEEEI6Lk9PL2HBgv9Lv9o+d901puyuu8aUtVFIreb48b/j2jsGcnW2JCdPAAgHcBgAWJa9fLvEcVyTz8uyrB+ADwGMAqAF8CuANziOi6/d3heWhGgAgBIAKziOW2JD3IS0quLiIpglCU6+fpDJGBiMPJo5pavZLMsJS2ho8Xm5tzeQnQ2xhIbWEkIIIcTx2ZKcbLdzDPsBiABGwzIi5j0Ah1mW7QJLsvIjgH0AXgBwE4DVLMuWcBy32c5xENIiRUWFAABfXz8wDKAztN4ywlYmswBBkhr8RdYGBQPZ2VDpGi2YSwghhBDS7mxJTtIAHOE4rsXjRFiW9a4933yO487XPvceLBXoe8BSR8UIYBLHcTyABJZlYwDMAEDJCXEoodnZmBQRhUCVChKAGkPrFz808QJ4XoRSKb+iSi4AeEfHAH+ehLvYusPLCCGkAxIBSJIkNVj5nBBiH7W/ZxIsv3dXZUsRxqWwDLFqMY7jSjiOG18nMfGHpZBjNoB4AIMBHK1NTKyOWHZl/ewRAyH2EqjTY5iPH7xV6lavcWJlMoswX6VKfHDPHgAAF5kcNeUdYaVvQghpM/mSJJlNJkOjFcUJIS1jMhmcJEkyA8hrbF9bek4KAXjYcNxVsSy7DsCzsPSUjOE4roZl2RAAZy/bNbf237DaWGyiUNiSlzVMLpdd8i9pPY7a1lpRBGQyuAcHQ5IAXhAhk7XuDTlBECEIEpRKOQThypsRPsHBeD49BaklxfistASxPj5NPrcjtbOiTqeQQi6Dwpa/XA7Kkdq5M6N2bhsdqZ379+9fGRcX92llZdkkAN4qlUbHMAytPEWIHUmSxJhMBqfKyjKVJIkb+/fvX9XYMba8xa8H8DHLssMAnANwRSl7juM+teG8ywGshaXq/D6WZQcBcIIlWanLWihJY8M1AAAyGQNPT2dbD78qNzdtq5yXXMmR2rpudfjwHizkSjlkchm0WlWrX5uXrt4W2pBgmIuLUFKSD0/Pfs0+vyO0s5sI7B9neezv44wO8Lmn2Ryhna8F1M5towO18/uCwKO8vOQJhmGcgAbXFyGE2EaSJMksSeJGAO835QBbkpMPa/99vKEgADQ7OamzOtdzsFSenwxAD0B92a7WpMTmoj+iKKGy0r4ThOVyGdzctKis1Nd7B5vYjyO2dVluLlS1yYnWNxA1NSZUVRuh17f+vJOKKgOqqw0wNzCMLDg4DKdPn8b584m4+eYhTT6vo7VzWO1fgsqK9o3D3hytnTsraue20Zrt7OamtXuPTP/+/UUA8+Pi4j6SJATCtuHuhJCGiQDymtJjYmVLchJpwzH1qp03cjuAzzmOEwCA4ziRZdl4AMEAsgAEXXaY9fucllyb51vnzUkQxFY7N7mUI7V1fkoqAKBGEKB2ckZZjRkGIw/xKjVI7KVGZwLPN9wWvby8ERIeBc2/Z2xqL0dq586M2rltUDu3jY7WzrUfnJr84YkQ0nqanZxwHJdhfcyyrBMANwAlHMfZcos4CMBOWIaGHak9pxJAP1iWGC4A8ALLsnJr8gJLMsNxHGfzfBNC7K0iNxtuAKolCQzDgOdFmNvojdnEi+CvkgSFuLmjn68fsio6bpeDWQB2cZa68ONZM5Tydg6IEEIIIa3CpmmlLMsOBrAYwPWoHZ/JsuyfAN7iOO7nZpzqXwDfw1K75FkAZQBmAfAEsAyW+SXTAWxkWXYxgBsAvAJLzRNCHEZNYSHcABgUCjAMA72x9WucWJnMAkSx4UKMPrFdgZN/wEPqOHcxL8dLwIrTlhGdD8WaoWzneAghhBDSOpo9tpJl2YGwVIf3gKVg4osA5gPwAvA9y7I3N/VcHMdJAMbB0mvyGYA/a88zmOO4zNrekZEAWACnALwDS/X4rc2Nm5DWlKpR49G4k/jDzxcMw6CmDQowWpnNwlV7TkL79AEAuMoVKMlucXkiQgghhJBWY0vPyXwAxwCMrDPUCizLvgtLL8i7AEY09WQcx1XAkuC82MD2v2CZIE+IwyoqKoJZkuDq5w9JkqA3tv5EeCtT7XwTlar+QozOHp4o5Xl4KRTIPvMvvENC2iw2QgghhJDmsGVVihsAfFQ3MQEsE9kBrKzdTsg1pbi4CADg4+PbZgUYrUxmAWZBhOwqv81VtYVBypIvtFFUhBBCCCHNZ0vPSRXQ4JBvFWiNcHIN6lVcjOiIKASpVOBFqc0mwwOAuXbyPcMwsKzkfSXezQ2orIQ+t0WL3BFCCCGEtCpbek5+A/AWy7IudZ9kWdYVwJuwDPki5JoSLUoY5uMHL2fnNu85AQCDia9NTuqnDAgAAJjKy9soIkIIIYSQ5rOl52QmgDgAqSzLHgSQDyAAwN2wFEh8yn7hEeL46laH9wwJa9NlhK10hqsnJ0433ozHd29HcEQk7m3DuAghhBBCmsOWOifJtStyvQPgTlhW1yoF8DOAd62V3gm5VlQVF0Ndm5z4RUXCLIht3nOiN5jrnQxvFRETC6MoIjMzEzzPQ6GwaRXxdqOSAWtu1118TAghhJDOyaa3+doEZCrHcQEcx6kAdAewgBITci0qyUgDAOgEAa6enhfngLSlxgoxBgQEQq1Wg+fNyO2A807kMmCAv4AB/gLklJwQQgghnVazb5+yLOsBYA+AUABda5++AcC3LMvuBzCB4zid3SIkxMGV52TDBUBVbXV4g6ntapxYNVaIUSaT4bEYFsEmM3JP/IawsPA2jY8QQgghpClsuQf5AYAeAN6q89wRAPcCGABgnh3iIqTDqM7PBwAYFHIwDANdGxZgtDI30nMCAF1c3dHTzR1VKcltFJX98CLw+QUlPr+gRBt3ShFCCCGkDdmSnIwBMI3juC+tT3AcZ+I47gAsCcvD9gqOkI5AX1oCAODVGksBRkPbFWC0MpkF8IJ41Unx8PICAPCFBW0Ulf2YRWDx3xos/lsDMyUnhBBCSKdlS3LiCqCsgW0FAHxsD4eQjuecWoVH404iOSIcvCjB1A639s28AJ4XcbXcxCkkFACgqqpuo6gIIYQQQprHluTkFICnG9j2FIAztodDSMdTVFQIsyTBIyAQYjvUOAEAs1msrRLfcHbiE2uZIuYutH18hBBCCCFNYct6ovMBHGJZ9m8AXwEoBOALy5yT/rDUOyHkmlFUVAQA8PHxhdDG1eGtJAAGk3DVYV3h112H3F3b4aZQoCQnG97BIW0XICGEEEJIEzS754TjuB8B3APL56F5ANYCeA+WROdejuO+s2uEhDi4YQYjXoyIhp9a0y41Tqx0BvNVh3W5eHmjlLdM1s889XcbRUUIIYQQ0nQ2VWLjOO4QLL0nGliKMFZwHFdj18gI6SB6q9XQaJ2g8vQEL4gw8+2VnDS+SliFSgXGYEBZenrrB0QIIYQQ0kwtKmfGcZyB47hcSkzItaq6tAQamRwA4B8VCZ6XYG6n5aTMZqHR5YS5rl3x/JlTOFVV2UZREUIIIYQ0nU09J4QQi6J0S3V4vSDAzccXZYXVuHp60HpMvAhBaLgQIwBExsQCAFJSktomKDtRyoDlQ3QXHxNCCCGkc6LkhJAWKM/OgjOs1eEBfTsUYLQy8wIESbrqL3WXLjEALMmJVFvRviNQyIBBwbTKGCGEENLZUXJCSAtU5+fDGYBBbhnapTO2Y3JiFsHzEpRKBlID3TfhYRF4M6YrwrRaFGekwTciqm2DJIQQQgi5ChogQUgLGIqLAQBmtRq8IMFkbr/kxMQ3XiXeydkZIc4u8FapkfXPqTaMrmV4ETiQqsCBVAXaYaVmQgghhLQRm3pOWJb1AfAGgDsABAIYCeA+AKc5jvvafuER4tiMlRUAAMnZGaLUfpPhAcBkrpucNDzzpUqthq8goDTpQtsF10JmEXj3Dy0AYHhYFRR0W4UQQgjplJr9Fs+ybCQsVeCfA5ANwA+WJCcWwBcsy95l1wgJcWC/yxg8GncSxWxXCKIEUzstIwwAktR4IUYAEL29AQDm3Ny2CIsQQgghpMlsuf/4ISxV4SMB3A9YFgfiOO5RAPsBvGW36AhxcMXFRTBLEnyCgsAL7dtzAgB6oxmyRn6rncMjAABqWk6YEEIIIQ7GluTkdgDvcRxXjivHjqwF0LOlQRHSURQVFQIAfH19LdXh27HnBGhaIcaAHr0AAF6iBFGkCRyEEEIIcRy2jtxu6BOQGlcb7E5IJzNOpcFLEdHwdXEBz4swt/NsbaNZgNBIIcaIfv3BSyKc5HLkX+DaKDJCCCGEkMbZkpwcA/Amy7LOdZ6TWJaVAZgE4De7REaIg6upqEA/VzcM8fGFr38gjGYBYiOJQWszmwUIjeRHaicn5AgC4qsqkcYltE1ghBBCCCFNYEtyMhNANwDJALbB0lMyDUAcgEEAZtktOkIcWHFtdXijKMDN1wf6dqxxYmXmRQhNGKr1a0gI5nLxOJef1wZREUIIIYQ0TbOTE47jzgEYAOAIgGEABFiWFE4GMJDjuNP2DJAQR1WenQkAqBIlyOUy6Azmdo7IspywIFqq1V8Ny3YDAHBcYhtE1XJKGfDBID0+GKSHkpYRJoQQQjotm+qccByXBOBRO8dCSIdSlZcHLQC9XAZBAoym9p0MD1h6Tsy8CI1CAamhMvEAuna1JCepHWRYl0IGDA9r/54pQgghhLQuW4swMgD6AnBGPb0vHMcdbVlYhDg+a3V4k0oNQWj/yfCAtUq81GghxtioaCzv2QcBag3K8/LgERjYdkESQgghhDSg2ckJy7I3ANgDIKT2KesAEqn2sQRAbpfoCHFg5vIyywNnZ4gS2n0ZYQAQBEshyMaGdbl7+0ClUELGMEg9+Tv6jX2gbQK0ES8Cv2Rb/lwNDeGpQjwhhBDSSdnSc7IMgBnAk7BUiG//28WEtAO+pgYAIHd3By+I7V6A0cpg5ButEg8AlRoNfHgeJfHxgIMnJ2YRmHlcCwA49nAVJSeEEEJIJ2VLctIPwCMcx31t72AI6UgOmox4N+4k5t1zD/jaHgtHoDM0LTmBvz+QkwMhN6f1gyKEEEIIaQJb7j8WgnpLCEFRUSF4SYJPYJClAKMD9ZyIV5kMb+URywIAnGuqWzskQgghhJAmsSU5+RjAzMuKMBJyzSkuLgIA+Pn5wcyL4BurfthGTHzjVeIBIPyGmwAAvjI5dJWVrR0WIYQQQkijbBnWFQOgO4B8lmXPA9Bdtl3iOO72FkdGiAPTV1VhSkAgyrx84OvphTKT4yxzazaLEESp0TsP/tFdkC3wcJcrkHT8GPrceVebxEcIIYQQ0hBbkpMuAE7X+f7ywe1NGOxOSMdWnJGG3m4eMIki3L29kZNR3t4hXWSu7TmRNfKbKJPJkKHRoDg3Fz4ZqejTNuERQgghhDSo2ckJx3HDWiMQQjqSsqxMaABUiSIYhoHe2P7V4a1MtUPMVEr5VQsxAkDl9TdgzYqluCM1BQ+2UXyEEEIIIQ2xqQgjIde6qrw8aADoZDLwouQwk+EBwGQWwPMiGJUcjc2L79WrNwDg3LkzbRCZ7ZQy4J2b9BcfE0IIIaRzalJywrKsAOBmjuP+ZFlWxNVKT1vmnFDSQzo1fe1keLNaBVF0nGWEAVhWDhNEyGQMxEYmxnfv3hMKRgZNRTkKszPhFxLWRlE2j0IG3BPlOPN6CCGEENI6mppEzIOl4KL1ceNLARHSifFllurwkpMzBFGCmXecnhMJgMEkNKnWibOzCxb1uQ6hCiVSjvwEvyeeav0ACSGEEEIa0KTkhOO4d+s8nttq0RDSQUjVVQAs1eHNggiz2XF6TgBAb+DRlDqMAGB09wBqalCRcL5VY2oJXgT+yJMDAG4KFKhCPCGEENJJNXVY163NOSnHcUdtC4eQjkE0GAAAam+f2urwjtNzAgA6Y9OHQGmiooCzZ6EsKmrFiFrGLAKv/OoEADj2cBUlJ4QQQkgn1dRhXb/gv6FcDd2PlWq3SQDkLQuLEMe2uawE6SnJ+Hji0+AFEWYHmnMCACYzD15o2ujLsJtugXj2LPxECSa9DiqtUytHRwghhBBSv6YmJ7R8MCF1FBcXgZck+AUGwmDkG10Vq62ZzSLEJgYVNeB6/LNmFVzlCiT8/DMVYySEEEJIu2nqnJNfWzsQQjoKk8mE8vJyAIC/vx/yKx1vFSkTL0AQm9aFKZPLUaTRwNXMI/+vPyg5IYQQQki7sWnJX5ZlfQC8AeAOAIEARgK4D8BpjuO+tl94hDiewtRkzI7thhKzGe7uHkgtLGnvkK5gNlsKMSoUTJN6dRSRUcCFC5BlZ7V+cIQQQgghDWj2tFKWZSMBnAHwHCzLC/vBkuTEAviCZVm67Uo6tbKMdPR2c0dvdw+IkqXooaMx8QLMgtik5YQBIGzIMHyWk4WtKckwmx2n2j0hhBBCri22rHnzIYBCAJEA7kftBHmO4x4FsB/AW3aLjhAHVJWXBwDQ11aHd6QCjFZmXrRUiW9ictLl+htxWFeNc6XFSEyMb+XoCCGEEELqZ0tycjuA9ziOK8eVxRjXAujZ0qAIcWS62iV3TSoVRNEyhMrRiKIEo1locq0TmUyGfv2uBwCcPHmiFSOzjVIGTB9gwPQBBihpGWFCCCGk07L1bb6hGcBqUPV40smZy0oBAJKTk0MuI2ylN/KQyZqYnQAYeMNNuN7DE8Lvv7ViVLZRyICHY814ONZMNU4IIYSQTsyWt/ljAN5kWda5znMSy7IyAJMAON4nG0LsqbY6vMzdHbwgOlwBRiu9oXlzR27q2RtvdGFxKyNDRWFhK0VFCCGEENIwW5KTmQC6AUgGsA2WnpJpAOIADAIwy27REeKA5HpLdXiNt7el58QBJ8QDgMFkWU64qUJ79UYBz0POMDj3jWMtuieIwN8FcvxdIG/WayKEEEJIx9Ls5ITjuHMABgA4AktxRgGWJYWTAQzkOO60PQMkxNFIZhMAwMXfH0aTCEF0zJGMZl6EKDbvk3yVr6/l39P/tEZINjOJwAs/OeGFn5xgouSEEEII6bRsqnPCcVwSgEftHAshHcIHGWmoLC/DZ9NnQG903GV3TWYBgtS8OxC+N94EfHcI3pWVEAXH7BEihBBCSOdl09RSlmWjWJbtXvvYg2XZj1mW3c+y7OP2DY8Qx2I2m1BWVgpBkhAQFAidwfGqw1uZeQG8IDZ5xS4A6DXqLugFAe5yBc4f+an1giOEEEIIqYctRRhHAUgAMLH2qTWwFGQMAbCFZdmn7RceIY6lpMRSDV6hUMDV3RNGs+MmJyZz82qdAIDGxQV5Wg0AIOP771orNEIIIYSQetnSczIHwA8A3mVZ1h3AfQAWchzXD8BCAFPtGB8hDqXo/DnMie2GZ6JjIYGByQFrnFiZeRFmQWpWcgIArgNuAADUZGdBkhxzPg0hhBBCOidbkpM+AJZzHFcFYCQs81b21m77EUCMnWIjxOFUZmagp5s7YpydITpodXgraw2WZuYm6PvAw5h+IQHvnfsXZ86caZ3gCCGEEELqYUtyosd/E+lHAyjgOM76CSYAQHlzTsayrBfLsmtYls1mWbaSZdnjLMsOqrO9L8uyv7IsW8OybCbLstNsiJkQu9AXFgAAzGp17TLCjttzAlgKMTa358TZ3R0xN94MADhw4EBrhEUIIYQQUi9bkpPjAKaxLDsewMMAvgQAlmX7A3indntz7AZwE4BHAFwP4BSAH1iW7cqyrDcsvTEXYFm++B0A77Es+5QNcRPSYuayMgCA5OICXpActjq8lc7Q/OQEAEaOHA0A+G7fPpiNRnuH1WwKBpjS14ApfQ1QNP/lEEIIIaSDsGUp4VcBfANgB4B4APNrn/8GgA6WIo1NwrJsF1hqpNzCcdzvtc9NhaVHZgIsvTRGAJM4juMBJLAsGwNgBoDNNsROSMtUWarDKzw8wfOiQ885ASw9J6IN80aGDBmG57uwGOzmjr8+340bxrfvQnxKOfBEd8ddtpkQQggh9mFLEcY0AD0ABHIc15PjuPzaTWMBdOM4LqUZpysGcBcs1eWt55cAMAC8AAwGcLQ2MbE6AoBlWdavubET0lJKo6U6vNbPD6bapXodmZkXbCoSqVSqEBkdDZVMhvJff7F/YIQQQggh9bC1CKMEoOCy5/5gWdaZZdlhHMc1aQ1SjuPKAXxb9zmWZR8CEA3gewALAJy97LDc2n/DABQ2P3oLhcKmEi8Nkstll/xLWk97trWWFwCFAu7BwTCYBMhkjj3GiBdESJJtP+/dHhkP48cfI8zMoyD5AoK7dm2FCJtGEIGEUstr6OYlojP9mtHfjrZB7dw2qJ0JIS3V7OSEZdlwAGsBDAGgamA3uS3BsCx7C4BNAL7mOO4Ay7LLYBnWVZeh9l+NLdcAAJmMgaens62HX5Wbm7ZVzkuu1NZtLUkSJFEAoEBot1iUixK02oZ+BRyDTC6HXCmHp1vzf10GjLgNu1d/jFAwOLN5PXquW9MKETaNzgw8tt3yOOFFwEnZbqG0Gvrb0TaondsGtTMhxFa29JwsAzAQwDoAt8Ayz+QEgBEAegG435ZAWJa9F8BOAH8AGF/7tB6A+rJdrZ+yamy5DgCIooTKSp2th9dLLpfBzU2Lyko9BAcf6tPRtVdbV1RUYPKZfyBnGPwVFoXMzGro9aY2u74tGElEjc4EmSg2u2aJXC6D3113Age/hV9uPtITU+Hu799KkV6d3gwAlhsK5WU1MHai5IT+drQNaue20Zrt7OampR4ZQq4BtiQnQwDM5jhuBcuyLwEYy3HcDJZl34KlOOO9APY354Qsy04G8BEsK389xnGctbckC0DQZbtbv8+xIfaLeL513pwEQWy1c5NLtXVb5+XlAQBc3NwgV2lgNJVDtGE+R1symgSYzAJElQyCYMPE+IlPYt/X+xEgV+C3VSsw4p33WiHKxtVdFI0XRPCOPZrOJvS3o21QO7cNamdCiK1suQXhAuB07eN4AH0BgOM4AcDHAG5rzslYlp0EYCWAVQDG1UlMAOAogMEsy9YdJna75XKczfNNCLFFYW2NEz8/fwii5PA1ToDaKvG8aNNywgAgl8uBG28CADilpKC8rNSe4RFCCCGEXMKW5CQPlmKLAJAMwItl2cDa70sBNHncB8uysbD0mHwFYCEAP5ZlA2q/3GGZf+IGYCPLst1Zln0SwCu1+xLSpvT//os5sd0wyssHguDY1eHrsqUQY123Pj8J3xt0mHH+X2zavN6OkRFCCCGEXMqW5OQbWAohDuQ4LgtANixFGV0BTETzhls9CEAJ4D5Ykp66Xx/V9o6MBMDCUpzxHQBvcBy31Ya4CWkRPj8PPd3cEaTRgBdEmMwdIzmxtRCjlUKpxHUvTEaNIGDnzu1ISUm2Y3SEEEIIIf+xZc7JHFiqtc8DMBzAWwC2wtKjAQAvNfVEHMe9D+D9Rvb5C8DNNsRJiF2JFRUAAJmbO8yCZbhUR6A3mps9Gf5yt9wyGLfeOhRHj/6CXfPexsz1W6FQOfZKZYQQQgjpeGwpwljCcdyNAB6v/X4HgKGwVIa/jeO49ltvlJBWJNNZVnhT+3hfnMvREZjMAvgWTtxnGAazZs3FqzFd8bBSjZ/en2en6JpGwQDP9jTi2Z5GKDrhZHhCCCGEWNhUhBEAOI7LY1m2KwBPAHkcx/2f/cIixPFozGZALodLYBD0RnN7h9NkZrMIQZRsGsNZl79/AMKHDAVOn0Z4Vhb++nwXrn94fKPH2YNSDjzf27GXbSaEEEJIy9n0eYVl2adZls0AcB7AcQAXWJZNZ1m2bT6pENIOXGDpffAMDUONnm/naJrOxAsQ7LTk8dDJryDZ2RkyhoHy0LeI//mwXc5LCCGEEALYkJzU1iRZDyAOwP8AjAbwFIAEANtZln3IrhES4gCMNTVwlVs6Gn2iomAwdqDkxCyAb8Fywpe7bcEiZEoSnORyGD/disRfj9jlvFcjSkBKuQwp5TI4eGkZQgghhLSALcO6pgJYxXHclMue/5Rl2Q0A5gLY09LACHEkhZkZKDeboJUr4BYQBFNixymzY+ZFmAURMpkcgh0WGNO4uODGxR/izzdeRahcDsOWzTiRmYmbH3+y5SdvgFEAxn1rqRB/7OEqaG0ekEoIIYQQR2bLsK4QAAca2LYLQJTt4RDimIoNBjz37ym8VZALgIGpAxRgtGppIcb6uHr7oP/CJUhnAAXDYNW61Vi0aD70er3drkEIIYSQa48tyclfsFRpr891AM7YHg4hjqmwMB8A4OPnD16QYO4gBRit9EazXZMTAPDw98fQlWvwe1gYzldVYteu7Xj44Xtx7Mu9EMWOk7wRQgghxHE0aXAEy7K31vl2F4BltUUXPweQD8uKXaMATAHwvL2DJKS9FRYWALCsWGXuQAUYrWr0LSvE2BCVRoNn5s5H9xEj8c47syAUFcLnmwP4+duDCJrwGLrdNtzu1ySEEEJI59XUkdu/AKg7DZUBMAnAC5c9BwC7QXNOSCfjmhCPObHdYNZowPNihxrWBQB6Iw+xhYUYr2bgwMH4+utD+PbDxRDS0hDKMMDO7fhh7+fo9twkhPa9rtWuTQghhJDOo6nJybBWjYIQB6cpr0CUmzsytVqYeAG80LGSEzMvQBBad5krJydnPPj2u8hOOI8zH69ElF6PCJMJNSuX4wcPD/Sb/Ap8IiNbNQZCCCGEdGxNSk44jvu1tQMhxJEpjQaAkcHJzx+6DrSMsJXJLECQWl6IsSlCuvVAyKo1SDz2K5I/3YwuYBBRUYHUubOxf9AgjH/sSWi12jaIhBBCCCEdTZM+q7Ase5Rl2b7NOTHLsgNYlj1uU1SEOBin2p4S9+Bg1Og7TnV4K5NZbPPenq6Dh+DO9VtQcfc9SOd5fFOQhxUff4R77x2FAwf2QWrGMDMFAzzezYTHu5mgsP/UGUIIIYQ4iKYO6/oIwHcsy/4NYDuA/RzH6S7fqXaS/EhYJsVfB+BFewVKSHvhzWa4y+UAAJ+oLsgzdcCeE95SiFGjUUBs4yqG1499AMI9Y2H+9gD+XL0CeXm52L34fSi/OYgbZr8Dr5DQRs+hlANTrzO2QbSEEEIIaU9NHdb1BcuyvwKYA2ADAAXLsvEA0gDUAPAAEAqgJwBz7T6PcRxX0BpBE9KWijPSoWAYCJIE7/AIZKSUt3dIzWYyCzALUu2KXa2fnMjlDORyGRhJACPygEzCA2PvwV1334UtWzYj4qcjCOJ5JM1+E9rxj6L3yNGtHhMhhBBCHF+T6yxzHFcMYArLsu8CeBCWSfJRANwBFANIgKWH5QDHcSWtECsh7aI4NQUqABWCAEap6nDLCAOAIEgwmQW0wmrCl1Ao5FDADBgqIFSVwlxVBpE3AaIIRi6HTKXFcw/dicToMORt3g5fhQLmz3bhaGoKbp00ucHzihKQX2MJPsBZgoyGdhFCCCGdUpOTE6vaxGNt7RchnV5pfj7UJhOqlQrwtR/yOyKdwQyGcWqVc8tkDFQyAVJ1IYyFGTCVF0M0GerfOS8d4b6uCJz5Io4u3YBIAAFxf+O7eXMwas68eg8xCsCY/S4AgGMPV0Hb7L9chBBCCOkI2mLxHkI6tHSIeP7MKRzx9QXfAQswWtUYzK3Sc6JUyqAWqmDOOo9q7m8YCrMbTkwAABL4mkrIqgow7OVHkO7pCgCIyszE97NmUHV5Qggh5BpGyQkhjcjPzwcA+AcGwcyLMPEd88OzwSRAsPNkeLVKBllVPnTJ/0CXkwzR3LxJ65KhBkPGD0dGgBcAoOxCIj75+CO7xkgIIYSQjoMGRxDSiPz8PABAUFAQDCahzVe7sheTWYA9VxPWKAGxJAO6jAQIhhrbTySKuHXsYPz43R/4vy9OQkji4OXjg/HjH7dfsIQQQgjpECg5IaQRQ0pLMSi2G4LUKugMHa/GiZUlOZEgt8O5NEpALE5DTUYCRJN9lvi9Y9RNyFUAq3d/jcWL34e/Wovb7n/QLucmhBBCSMdAyQkhjQhmGLi5uUPm4wudoePVOLEym0WYeREKJYNm1D+8glrJWBKT9IRmD+NqzBO334iS0jK4JGbC58DXSPD2Rrchw+x6DUIIIYQ4riYlJyzLPtGck3Ic96lt4RDiWHSVlXCTW35NfGNikVzecZMTS60TEU4qRbOqs9elVskglWZaekzsnJgAAMMwmHL/HTixfj80jBxlmzeiJCoaToFhdr8WIYQQQhxPU3tOtjTjnBIASk5Ip1CQnAQA0AsCXHz9YSrsuHVFrVXiZTLGpnkzSqUcqMyDLiOhkdW4WkahUKD3I8NxYfv38FOq8Pe7czBo5To8FGMCAMipxgkhhBDSaTU1OYls1SgIcVBlGWlwAVApSRAlpsOu1AUAkgTojTwYRtPsYxUKGeSGMugyEyDoq1shuku5e7rB+44BMB45jUiZDMcWzcOMufNb/bqEEEIIaV9NSk44jsto6glZlqX7mqTTqMzOhgsAvVIJnu+4NU6sLLVOmvcryjCAQjDAkHMB5srSVorsSlFdI3EiNQdBmSUIz8rC2e++Ra9Rd7bZ9QkhhBDS9myaEM+y7CMAhgBQAbB+0pEBcAZwM4AQu0RHSDszFhUCAARnJ5g7cAFGK53B3Oz5JkqZBFNeGgxF2a0UVcNuGn0Ljqz7CtGQI/eLg/DsdwuCfd1bpZgkIYQQQtpfs5MTlmXfAfAOgIra4821X74ARADr7RkgIe2pqroaZSYTZJ4hlgnlHXhYF2CZFM83Y76JJEkQy/Ogz0lBi5b4shHDMLh+3B04uf0w5o7YBhwGjj1cBS2tM0gIIYR0SrZUiP8fgO0AvAAsA3CA4zh/ANcDKAFw3n7hEdK+ftLX4Pkzp2Du179DLyNsZa110hQyGQOhqhSGnKRWWZmrqdw8XOF6x4CL3//558l2i4UQQgghrcuW5CQYwDaO4yQAcQAGAgDHcXEAFgB4xn7hEdK+LlaHDw5Gjd7UztG0nMksgBfEJg2LUoCHMS8F5sqS1g+sEX1i/luT45P/W4Ca8rJ2jIYQQgghrcWW5KQGluWCASAJQCTLstra70+DVvYinYQkScjPzwcA+AcEwmDq2PNNAMBYW4ixsUnxSqUMYlkeTMVtP8+kMVO9fHF0Ia3cRQghhHRGtiQnf8IytAsAUgDwAIbXft8NQPuN/yDEjsrzc7EoOhZzYrvBy9sXxg4+GR7AxXkzV0tOZDIGClMVDHnJkARzG0bXNM5yBSKKi3H+15/bOxRCCCGE2Jktycn7AMaxLHuA4zgjLPNPtrIs+wWADwF8b88ACWkvBReSEKDRIMzJGUq1BqZO0HMiihIMJgEyWcPJiUouwVSY0abLBjdHJiNAzjDI27oJAt/x5wERQggh5D/NTk44jjsKYACAz2qfmgxgL4CuAPYAmGK36AhpR6XpqQCAShkDcyeocWJVozc3OOdEqZRDqiqCoaDJpY3aHDt6IAyCgDCZHMc+WdXe4RBCCCHEjmxakJPjuDMAztQ+NgB4zp5BEeIIanJy4APApNHAzIudYlgXANToTfWuCmwptqiHPi8Foslw1d6VtiaHiNFuyQCAAD9v/ObjgqgyPdxOxaGioADu/v7tHCEhhBBC7MHWIozuAG6DpejiFb0vHMd92sK4CGl3fEmx5YG7B8y82OFrnFgZG6h1olTIIRTnwFha0A5RXZ1KJmJ2wO8Xv7/lvqH4Z+3XCFCq8PuHizB68dL2C44QQgghdmNLEcbRsAzfcmpgFwkAJSekw5NVVQEANP7+qDE43sRwW1lrndS9qyCTMZAbK1Cdlw5Ijp+EqVQqKPtGQzyXiWQuAcnJSejSJaa9wyKEEEJIC9kyIX4hgAQAQwBEw7J0cN2vKLtFR0g7cjJb6pq4hYWhRtfxa5xY1VfrRCWXYCrOBF9d3m5xXY0kAXpRAb2ouDgkrd/gftgu1mBjRhpWrFjSvgESQgghxC5sGdbVFcC9HMcds3cwhDgKSZJQrNdDrVbDLyoapZ1gpS4ro8mynLBGoYAkSVAoZICuGIaCzPYOrUEGSYHhyRMAAIe77ISWsazS9b8HR+K7Mwk4evRX/PnnH7jh/9u77/g47jr/46+ZLepdbrLcHU/i2E7sFJzmJIQQSCCUHJ3fES7hKMcduR/1BxxwwB1HJ5CjJnC5QAgc5I5yCSUJIaQX99geV8lVttXL1im/P3ZlK4qUWNJqZ7V6Px8PPXZ3djTz0Xi8O5/5fr+f7/lrgwxTREREJmg8LSetQHWuAxEpJF1dXfzzjmf5203raVqxqijKCA9KDpvrJIxD8ug+vGQ84MjGbv6sRl532UuYW1rKjm9/U6WFRUREprjxduv6tGVZC3Mci0jBOHQoMzP6jBkzMUORoqnUBZkuUrGkg2ka2dLBx0i2Hwk6rHF751Xr+NzpK1gbjvLYbd8POhwRERGZgPF063obMBfYY1nWcSA27H3ftu0lE45MJECHDx8CYO7c5qKa42RQZq4Tg5ATI97Wgu9M3QH/DfU1bKwvZ2lvitBjj5L8P9dTUj5avQ4REREpZONJTg5mf0SK11NP8M0VZ3O4ti4zx0kRdeuCTHJihgzcjqMkuwqvdPBYXXDtpez+j3tpCId56Ftf58qPfiLokERERGQcxpyc2Lb9zskIRKSQeO3tzC4tJV5VRSKVqW5VTHzfx0j2kTzaCt7U/9vKK8vpa26gpq2H2u3b6e3ooLqhIeiwREREZIzGM8/J/Bd42wP6bdvuHndEIgUgNNAPQOms2QwkiqeM8KDqiijpriOketqDDiVnzr/6IrZ8/1c0hCM8+q2v84rPfD7okERERGSMxtOtq4XMRIujsiyrE7jZtm1dHciUVJF2IBymdsEC+uPFVQGqrCRMbThB/Ehr0KGcMhOPyytbTjwfSSQaIbVkDrS2M6u1la4jh6mb05THKEVERGSixlOt6x1ACvgD8E7gldllvyGTtHwW+A/gk5ZlvTc3YYrkj+s41JqZ/xoNS04jmSyu5GTujAroOUK8u+M5EzEWshLT4/NND/H5pocoMUfvhnbelWvZm0pw9+GD/PS/fprHCEVERCQXxtNy8hbgrhHGnvzYsqzvAOfYtn2tZVndwHuB70wwRpG8OrZ3LxHTxPV9ZixdRuvOjqBDypmKsggzSlN02S00RH0MXqQZdIoJhUOYF6/gN9/eSNlPf8yb33499fUaeyIiIjJVjKfl5DLgzlHeuxu4Ivv8YUAlhWXKObpzOwBdrguhSFFV6mpqLMfsbWOgs4O04zJlmk7GYN3q5ZyxaB7xeJzbb7816HBERERkDMaTnHQAZ43y3llAb/Z5JTAwnqBEgnTsaBs7+/voiEQyZYSLZI6TyvIIM0qSdB9qASCV8pgqqUncC3PRzr/mop1/Tdx74QZfwzB4z7VXcF5tHcuefIoju3blKUoRERGZqPF06/oJ8FnLstLAL4BjwEzg9cBngO9allUH3AQ8npswRfJnx8AAP9zxLG9601u5yHFJFUnLSVNDOUZPC7HuLgAc18Pzi6lT10nnn3kazsJFzAtH2fDdbzHnq98MOiQRERE5BeNpOfkkcBfwNWA/kMg+fo1M4vJxMoPkV2fXFZlSDhzYD8CCBQsZiKeLYkxGVXmUxpIk3YdOVujKJCcBBjWJTNOkes0yAOZ3dXNg+7aAIxIREZFTMebkxLZtx7btvwGWAe8GPkGmWtcy27bfbdt2CrgXmGvb9uacRiuSBwf2Zy7gFyyYT3+sOOY4aWosg+7DxHq6TyxzPQ/P85kyfbvGaOUFqzjkpomaJpu+/+2gwxEREZFTMJ5uXQDYtr0H2DPKe13jjkgkQJ7n8ZHyCvpWnMXcmjo6i6CMcFVFlIZIgu5D+5+z3HF9XM8nbJr4RdE+9FyGYVBzrgUb9rKwp5f9255l/vIzgw5LREREXsApJSeWZe0FXmfb9ibLsvbxwtVHfdu2VaVLpqT21n1UhsKUmyFmLz6Nw/t6X/yXCtzchjLo2Ue8t/s5y13Xw/U8DMOkSIeesPz8FTz2zE7mmmE2ff/bzP/GvwcdkoiIiLyAU205+TMnq3D9meKaGkHkhCPbtlFGpozw4tIykqmp3QhYVRGlfoRWE8j8J06nPSgtttlOTjIMg7rzTodndrOot4+WrVtYuGJl0GGJiIjIKE4pORk64aJt29dPWjQiAevcu5u5QF8kTMrxSKamdreuplFaTQZNlTLJJh4XVBw88XwsTj93Of/75LPcs7eFprvu4HOf/9JkhCgiIiI5MK4xJ5ZlVQHVtm0fsiwrCnwAmAf8wrbth3IZoEg+JY4cAcCtqiKVdqfMxftIqsozY016Dj+/1WSQ43r4U6BPV4np8ZW5D4zrdw3DYMk1F/LM5zew4Z7fcsON72HhwsU5jlBERERyYczVuizLOh9oBf4+u+ibwBeBtwMPWJZ1be7CE8kvIzsHSGTmrEwZ4cK/bh/VnIYy6Gl7ToWu4RyneMsJD3XGwmbWrT4Tz/O4VZW7RERECtZ45jn5F2AH8D3LssrIJCXftm27HriNTGnhcbEs65OWZT04bNnZlmX92bKsAcuy9luW9aHxbl/kxZTGEwBULVgwpcsID85r0nO49QXXc1wPt4jLCQ9146su5zWzm3jVwcPs3rA+6HBERERkBONJTl4CfM627X3AFUAZcEf2vbuAFeMJxLKsm4DPDlvWAPwR2AmcC3wa+JxlWe983gZEJsj3fXb29rB7oJ+Z1unEElN3vMmchjKMniMv2GoC4Lo+nudjFHh2EvfCXLHrLVyx6y3EvfFVQF82v4nLm+dSH42y9dbv5ThCERERyYXxfMt7QDL7/GqgG3gy+7oaiI1lY5ZlzQVuBS4B7GFv/212X++1bdsBtluWdRrwUeBH44hdZFSdnR18e89ODMPg0RVncXhnZ9AhjUtleSQzG/ze0ceaDHI8D9f1MCKFX0444Ucm9PuGYTBz7Qp4fDunxePsfOYplp1zXo6iExERkVwYT8vJ08CNlmVdALwJ+K1t275lWTOBj2XfH4s1QBewCnhi2HuXAA9lE5NBDwBWdn8iOdPa2gLAnDlzMEORKVupq6mhHHrbiHWfWhnkVNrFMAq75SRXlpy9jMO4REyTbT/8QdDhiIiIyDDjaTn5MPA74M3AceDz2eVbySQ7V41lY7Zt/wb4DYBlWcPfbga2DFt2OPs4Hzg2ln0NFQ6PJy8bXShkPudRJs9kHesDe3ZiAosXLyXteqQcF9OcWhftFWURZpSm6Nm3/5QTjqTjYRg87281sq8N0xjXXYxcMod0OzNNY0L/LrMvWgmPbGNZPMGu9U9yxvlrcxHiuOmzIz90nPNDx1lEJmrMyYlt2xssy1oKLAe22rY9kH3rvcAjtm235TC+ck52IRuUyD6WjnejpmlQV1cx7qBeSHV12aRsV54v18e6fP0z3LHmfFrq6/GBUDhM2fiGNwRmwexKQgMtpPt7iYRDp/x7ZihEtGTki4mSkol1p8oF3z35t5SWRiidwIXPmWtX8MCjW5ljmmy77VYuvOqKXIQ4YfrsyA8d5/zQcRaR8RrXpZdt230M64Jl2/YvcxLRc8WBkmHLBpOSAcbJ83x6e8c0NOZFhUIm1dVl9PbGcd2xTRInYzNZx9pv7yRimlTNnEl7d5x4fGpV66ooi1Btxuja30LaOfX5WZJJg2TKwUk/d7lhGpSUREgm0/gB1xtODBkEn0ikMcyJdbmbc/FK+MuzLIknePiPD3LmucGNPdFnR37oOOfHZB7n6uoytciITAOFfl/4ANA0bNng60MT2bDjTM6Xk+t6k7Ztea5cH+vqdBrCYeqWLqO3P4k3xSYAmV1fhtGzn/6ujjH9XtrxcFwPI2QydFT84CWA7/mBH4uh+/c8H4+JxbPgzKX896ObuWPrVpb88Ad88+xzJhrihOmzIz90nPNDx1lExqvQb0E8BFxiWdbQ/ilXALZt2+MebyIyXH9XB/XhTK4+96w1JJJTazB8RVmExpLUi85rMhLH9TLlhAt4eI2Jz+qyNlaXtWFOMDEZdM6162hLJXnooQfZsmVzTrYpIiIiE1PoyckPyZQnvs2yrOWWZV0P3AR8IcigpPjs37gBgF7XoXp2E4nUqXeLKgRNDeWYvW0MdI29/LHn+6TSXkFX7CoxXW6Z9wdumfcHSszc/NvMn9XIKy/KtJjc/t1v5mSbIiIiMjEFnZxkW0euAixgPZlJGD9s2/btgQYmRad9xw4Aus0QybQ7pVpOKsoiNJaOr9VkUDLtFPg0jJPjna9Yx98tWsL18RSbHnow6HBERESmvYIac2Lb9vUjLHsKuCD/0ch0MnAgM2Fhuroqk5xMoTlOMq0m+8fVajIo7Xh4hT4L4yRontXIshmNRD2DzXf8B2etuyzokERERKa1gm45EcmXvX29PNrZgTF/Pv2xdMHPlj4oF60mkCkQUcjj/+NemGv2vJFr9ryRuJfbeyrN684GYLnrseHBB3K6bRERERkbJSciwH0H9/ONvbuou+hiegamTgnhpsbxjzUZynG9TNnPAh530u2W0u2Oe3qjUTWfvpC2EIRNkz0//s+cb19EREROnZITmfbS6RQHst26FixYRDyRfpHfKAyVZRFmlCTpOTSxVhPIdOtyC7xi12SaN9h64nk8ff8fgg1GRERkGlNyItPevu3bqTdDVFVW0TBj9pQZDN/UWA69bQx0T6zVBLIVu5zCrtg1mZqsBbSFM60n++78Mf5U6dcnIiJSZJScyLR35OGHuGXVaj5hnUHK8YhPgeSkqjxKY45aTQYlU9OzYteg+ZeuBmCR4/LEww8FHI2IiMj0pOREpr1YawsAfm0tidTUqNQ1t7EMuo8Q6+7K2TZTaQ93GrcYzDltPk+Xh/iHrRv57m3fU+uJiIhIAJScyLQX6uwAoHzBAvpiqYKv1FVdEaUhkqD7UEtOtzs4U/x0dum163BDJhs3ruexxx4OOhwREZFpR8mJTHt16UxLyYwVK+npTwYczYub21iG132IeG9PTrfrnBgUX3idu0x8Ti9p5/SSdkwmL4FqrK3mussz0yr9z3f/Xa0nIiIieVZQkzCK5Nvxln3UhMN4vs/8Neez9XBhJye1VSXUh+N0HszdWJNBacfDdf3Mp0KBXZOXmC63LbgnL/t62xUXcsb+TqxoKY/9z91c+Lrr8rJfERERUcuJTHOtzzwFQIfrEq2uIZ4s7DLCzQ2leJ0HSPT35XzbPj7JtFuQLSf51FhfQ0V9NQDdv/5vtZ6IiIjkkZITmdY67R0A9JWVkki5xBKFOxi+oaaMWnOAzoP7J20fU6EYQD6c8YoLcDyPpaEwj//szqDDERERmTaUnMi0tq27m7uPHCKxYAGxRJq04wUd0ogMA5oboqSPt5KKDUzaftLpwhwUn/BCXLf39Vy39/UkvNCk769+TiMHKyIAxH9/L67rTvo+RURERMmJTHOPtuzhrkMHqL/wIrr6Cne8yYy6cqr8XroOHZjU/Tiui+v5FNqEJz4GbU4lbU4lfp6CW3X1RSRcl+ZQmCfu+FFe9ikiIjLdKTmRaSsej7Nnz24ATj9jBf2xVMARjSxkGjTXhUm2tZBOJiZ1X2nHw3Gn70zxQ9XNqONgTSkA3oMPkkrEA45IRESk+Ck5kWlr59NPsqKikgUzZ1HXMKNgx5vMbqigIt1F1+GDk74v1/NJOUpOBp1/7aX0OQ7xVJJf3XlH0OGIiIgUPZUSlmnr+CMP84llZ7AvZJJMe8QShVepKxoxmVsDAy17cZ38xJdIOtRURPOyr0JXVV3BoWVz+PTPf0P1wf28/Lo3UlNTG3RYIiIiRUstJzJtpQerXs2ZQyyRJpkqvEHPc2dUEo0fp/vokbztM5V2C3JQfFBe9rK1LJnXRE9vDz/4wXeDDkdERKSoKTmRaauqP1P1qvHMFXQW4GD4irIIs8sdeg/sxffyV0UsnZ0pXjJCpskH3vBKIoZB7IH7aNnwTNAhiYiIFC0lJzIt9R4/zsxwplfjwgsvoW+g8JKTeTPKMXoP09dxPK/7TTtuwQ2KN/BZGO1mYbQbI4Dp689fvpSPr17Nm5uasb/3nbzvX0REZLpQciLT0u5HHgKgw3GontNMLF5Y403qq0tpiMToat2T9327nk8q7VJAuQmlpstPFv6anyz8NaVmMN3vzrjiPFzfZ5HjsP5/fhlIDCIiIsVOyYlMS+2bNwHQU1ZKPOUwUECD4U3DYH5jCc6xVhL9fYHEEE86AbRPFLZF1kL2RjMZW9+v/ptUsvBa20RERKY6JScyPR3MlOWNLFxEfyxNKl04M8PPbiynyuum82BLYDGk0hp3MpJzXnspA67DnFCYB7/+5aDDERERKTpKTmTa8TyP7+/eyXdb9tB86WV09hTO5Hol0RDNNQYDB3fjpIKbFDLluDhu4SQnCS/E21qu5W0t15LwQoHFUddQS1dzAwAzbZsju3YFFouIiEgxUnIi087evbvZ3dnOYwMDLD5vLX0FNDP8/FmVRAfa8lo6eCTptIvjFE5rko9BS6qWllQtPsEOhll7zSUcclKUh0KsV+uJiIhITik5kWlnw4b1AJx11tk4nkF/gQyGr6sqYWY0Tlfr7ryWDh6JT2bcCX7htJ4UilA4xIxLz2Z9Txc3P/0Ejz/+aNAhiYiIFA0lJzLtxB/5C1fNmMXaFSuJJZyCmBk+ZBosmFGKc7yVWE930OEAkEg5BdW1q5CctvI09i1o5FgqyRe+8FkSiUTQIYmIiBQFJScy7Szr7uGGBYs4e9582nviBdE4MHdGJVVOBx379wUdygmptEu6gLp2FZq/vfZlzKirobW1hf/81teCDkdERKQoKDmRaeXAls3Uh8M4vsfSy15KT3/w5WAryiLMrXLpPbALN104418yyYlbUJMxFpLK8lI+8pZX8675i7h4+w6efeC+oEMSERGZ8pScyLSy64+/B+AwEK6sDXwwvGHAolnlGF0H6D12NNBYhvP8zLgT5Saju2T1cpbOaiRsmrTf8R8kY7GgQxIREZnSlJzItJLaZQPgzpvHQDzNQCzY8SZNjRXU0UN7y+5A4xhNIulQCNOdGPjMDvczO9yPUUDTQxqGwarXX06fk5375AufCzokERGRKU3JiUwbTjrNrESmG9e8iy+hvTuOF+CAk4qyCPNqoO/ATtKJwplrZaiU4+G4HgFX76XUdPnl4rv55eK7KTXdYIMZpn5GHQPLmgCYf/gw2/6k7l0iIiLjpeREpo0dDz5ARShEzHU57dKX0t0XXIUl0zBYPLscs2s/PW2HA4vjxQwOijfVt+sFnX/lWvbgEjIM2m//EQPdXUGHJCIiMiUpOZFpY+9TT+J4Hm0lJTiE6R0IbrxJ86xKar0u2vcV9gzjvg8DCQcNPHlhhmGw+q9eSq/jMDsc4cHPfDLokERERKYkJScybfzS3sbfbHya1MUX0RtLMRDQ5Is1lSU0Vzr0tOwgnSz8+TESyTRewANPkl6IG1qv5obWq0l6oUBjGU1dYy3+mqX0Omn+Z+N67rvv90GHJCIiMuUoOZFpoaOjnc2bN5LwPC585TUc7QymqlIkbLJkVgnusb30tR8LJIaxSqZc0q4XaElhD4MdyUZ2JBvxgh4A8wJWXXgWj86u4qnuLj772U9x+PChoEMSERGZUpScyLTw0J/ux/d9li9fQW39THr68j+/iQEsaaqiPN5WsNW5RpJyPJIpF8Ms3KSgkNzw2pexfPF8ent7+PxHbiIxMBB0SCIiIlOGkhOZFsr/8Hv+9YwVvO68l9AfTwcy+WLTjEoaQ720796G5xZWxakX0x9P4wdY2WwqCYdD/Ou738zaWbO4MVzC/R//iI6diIjIKVJyIkWvr6OduY7D0opKzrn4Yo51xTLlcfOorqqE+TUufS3bSQ7053XfuZBIOjiuH3hJ4aliTkMd179iHeWhEKcNDPCnb3wl6JBERESmBCUnUvTW/+ynRE2TY47D/HPX0tGd3zlFykrCLJkVxWvbRe+xtrzuO1eSKZdk2lVJ4TFYfckaWurKAJi9ZQub7vltwBGJiIgUPiUnUvRSG54BYGDBAmJJl648jjcJh0xOm1tBSc8Bjrfuzdt+c83Hpz+WUknhMbr0jVeyB4ewaZL++V20bNwQdEgiIiIFTcmJFLWje3YzL1sGd8Ub38TRzhipdH7GexgGLJ1bRU3yKEd3b8P38tuVLNfiSYe0E9xs8bWhBLWhwi+9PJRpmqx9+ytpc9JUh8Mc+sZXaT+wP+iwRERECpaSEylqm392J6ZhcMDzmH3mKo535a+E8KKmamYYXRzfuQU3FdyEj7mSSLokUy6mmf+PjTLT4X+X/Jz/XfJzykwn7/ufiPLKchZfdxmdTpoZ4TC/+9THiceDKWUtIiJS6JScSNHyXJfynTsBMFeupDeWprMnP3fe58+qoinaT+euzSRjxVFK1senL5ZChafGbsacRmqvPJcHuzr4xsZn+Md/fD/JZP4rxomIiBQ6JSdStJ566glu27ebZ3p7WHvDjRw63p+XKl1NMyqYX5mgd88WYj3dk76/fIol0qQcN9AJGaeqRdZC1rzxCiIlUR5//FE+/KF/IJVQC4qIiMhQSk6kaP3s5z9lfU83LavXYFbU0p6HLl1zGipYVJ2mf98W+jqOT/r+8i2ZdoklnLxPyJj0Qrz/wMt5/4GXk/RCed13Lq1csoCv/cM7KC2JsqSlhT/d9PckY0pQREREBik5kaK0f38rDz54PwBvfevbON4dn/RZ4ZsaK1hcm2agZSs9R6dmyeBT0TeQwnXz27fLw2BDfDYb4rPxpvhkK2uWLeKr17+BK2bMYpHj8se/ew99nZ1BhyUiIlIQlJxIUdr4tS/zhtlNvOyidcxbuISDR/uYzMvp5pmVLKpJM7BvCz1thydxT8GLJdLEUw5mSB8f43XueSvoX7WIlOex2Id7r7+BjoMHgg5LREQkcLq6kKJzaPs2lvb1cV1TM3/z2tfT2ZvgePfkdJ0xDFg4p5qFlXH692yi5+iRSdlPIfF8n57+JJ5Gxk/I6ovPxll7OgOuw1zDZMv/+ygtG9cHHZaIiEiglJxI0dn87W8RNgxa8Vl+1dW0HumdlG5IoZDBac01zCvppXvnBnqPH835PgrVQDxNIuli5nnsSbE5Y80ZlF95Dp1OmpmhMB03f42nfvGzoMMSEREJjJITKSrb/nQfS+JxAJrf+nY6ehO0deS+lG9ZSZgz51czyz/G8e3PMNA1vcYMOK5HT39yUrvKTReLT1/E0rdfyWE3TYUZ4pZvfZ0f/egHeFN80k4REZHxUHIiRcN1HI78+D8B2FNSwhkvezn7DvdkZjXPofqaUs6cV0blQCttz64n2d+X0+1PFX2xFLGkE8ikjMVm1tyZnHvjtfy5zGBTTzc33/xV3ve+Gzl6pLjHL4mIiAynqwopGn/6yheZZ5gkXJc1//hB2jpjHGnvz9n2Q6bBwjnVnN7oYx7ZRtv2zTip6TuRnuN6dPUmcfM09qTUSFNqpPOyryCUlJXwjndcy8ff+QbKSkto3bCevR/7MI/86Af4Gt8jIiLTRDjoAERyYc+unZRtexaiUdpXruT0xafx1LajORtrUlURZdGsMqqdDnp27qC/sz0n253q+mMp+mMRaipL8CZxgssy0+H+0346adsvFIZh8JqL1nDWknmsv+s+GiIReOQRfvf4Y6z8wP+lefmKoEMUERGZVGo5kSmvv7+fD374A3xq+1aeNuCKD32UliO9HM/BpIvhkMnCOdWsmBOiomsXR7c8qcRkCM/36exNkEy7eZ+YsZgtnD2Da95zHXurSnB9nyWuR9dXvsTvPvNJBrq7gg5PRERk0ig5kSktmUzy0Y/+Iy0t+wjX1/Oqr36DY90J9hzsntB2DQNmNVRw1qJK5oWOM7Dzadp2bsNJpXITeBGJJx26ehP4Pkzx+RELSklplMvf9gqMK85mv5umxDRZfPAgz9709/zx618hnda5KCIixUfJiUxZqXicB276O7xt2ygtLeUb3/gW4dIqtrd0kEy549qmYUBjbRmrFtVwWnUM4+AmDm9+kr6O4zmOvrh09yXpGUhhGpPzkZL0TD506KV86NBLSXrT62Nr0bKFXPie13Fk8Sw6nTS14TAP/u63XHPNldx++2309U3PggwiIlKcNOZEpqTOw0e4/33vZ4kP7124mMRfv4Ol1go27W6nsycx5u2FTIOG2jLm1Eao8vtJH9vFscMHSSfHvq3pyPN92rtihEMGVeXRnI8/8TB5bKD5xHOYXmV2Q6EQa1++ltSlKR7//eOs37eTYx2dfP3rX2bjXT/h5ctXsvj1f4V10SVBhyoiIjIhSk5kytl87z103/ljFoTCJFyX5CtewZrLXsa2fR0cPDq2u8jlpWEaa8uYWQllTh/Jowc41naIdEJJyVilXY9jnTEMw6CyLDKpA+Snq2hJlHXXrmPtKy/kvo02P773z7yyspaFPT3wo9v4863fJ71sGdZrr2PeGcuDDldERGTMpkRyYlmWCXwauBGoAx4G3mfb9u5AA5O8at/fwlM3f51F3d00hsJ0Og4N73oX1tp1bN3bQcvhnlPaTmlJmLqqEhoqw1SHk5ixY8RaDnLk+DFcp3hL1eZDMu1ytGMAv74804LieWimxtyLRsJcfd6ZXLXmdDY9uY2WzXtodn3mhEKwZw/xr36JP7susfnzmf3a61ixYgWRSDTosEVERF7UlEhOgH8C3gO8EzgEfAm417KsM23b1qjQIrdnz27u/uXPuWDrFpZES8Aw2FdRxiWf/iyp0lrW28c4+gKzwIdMg8ryKNUVUerKTSpCKUKpHlLHj9Dd2U6899SSGjk1ybTLkfYB0rUeNZUlhEzwPGUokyEUCrHmgpVwwUq6OnvY8shmQgeO0WSEmBMK8cTWzfy/X/2S0tJSzlq1mtc1zaXu9OUseslaZi5aHHT4IiIiz1PwyYllWVHgg8BHbNu+J7vsTcBh4PXAXQGGJ5NgoKuTXQ//hbYnHuPHe3aydfu2zBvN8zl35izqXvMarn7jW9hzoItd29oYiJ9s7TDItIyUlYapKItQVWJQFfWIuAmIHyXZdpye7i4SfT2a2G4SOa7H0Y4Y8YRDXXUpZSVhwMdXkjJp6uprWPfqzJiTrs4+tj+9jeMHfOo7auns7qZ10wYWez4cPEj3fX9gv+vQHY6QqqkhOns2VaefQfPqc5g5c6ZaWUREJDAFn5wAZwNVwAODC2zb7rYsaz2wDiUnU0oqHqOvv5/+2AC9vX30tuwlsWM7qfZ2jN5eKhNxGs0Q5YbBYoCDBwmFQlx66eVc/LrrOHvtOjp6k6zfcYzO7gFKo2FqKksojYQoj/qUh33CpAm5Sbz4cdLtXcT7++js68VJTt/Z3IPg49MzkCSWSFNVUUJNZZSSSAjTNPB9JSqTqa6+igtf/hIuBN7n+7R29PLslt3s3XOI6mSaejNEdShMte9Ddzd0d/Pz+//IL44cAuD0mbN499x5pCMRvNIyqCjHrKgiXF1FSVU1pfPmUdE8n/LycqLhCKXhEKVV1ZSUlmIYqictIiLjNxWSk+bs44Fhyw8D88e70XA4t+VIH322lT9/+zvMTvYz2MneOHHtlXnyv5F6ktmJIM52+1niJU70xzeGdcz/rVlFzAhl1vViWN7JC+vh695DBT1GCB+fVX6SlX7yZAzD4rzHL6ODEOCzghRrSGXXObnNwd+5x43Sll13ueGw1kgP255/ct10iP1pF89Ns9JwuKYsTBifMBAyIIxB1IRSM8S/7drB+p5uAC5vmMF7Fy05uclQ5pTsSDsciFSw+FV/z9JzX0ukqoHfp13ufdwFrwzTKMX3qjB8D9918N00nuPguS6u4+M5Jr5fDVQj42MYYDgmvu8xoUamNJAAs9MgFDKJhE3CIRPTyMyIPngt6w/7/zKU4588824+fi5ho4gSGyNzXFzXY2IH+kWc+XI4M/PUj/cRat1M+dHd1PS2UZXo42hpNWb4OJ6TIhyPMzcUBs+HWCzzc/zk5KM/ObifX7UdBmBReTlfXL4KANf3Sfs+ju+T9sEB/tgf509xBzMUYkY4wjuqoviGgY+RfeTE681GCU8bZRhAJT7XMnDyk2zwPMm+3mWWsMEsB6AMn1e7Q7pnnkiQMo8toVLWR6oxQyam4/Lq1MgTqfrAQbOEpyOZzw3D97l2lHUB2swoT0RqTrx+dbIdc5RBVsfNKI8OWffqZAeRUarOdRkRHorWnnh9VaqDUn/kdXuNMH+K1p14fUWqk0p/5FLqA0aI+6L1J15fluqixndGXDdpmPwu2nDi9cXpbhq8kcfkpTG4p6Qx+8pg9uzZ3PyxGyiJTIVLDBEpNFPhk6M8+zj8tncCqGccTNOgrq5iQkENd/MP7+Ky1k28pHHGqOt875kH6XMyXwSXz1/IeTNnj7ruDzc+THt2wr9LmudzzuymUde9Y+sTHErEAXhJUzOrm5pHXfeu7c9wIJYZn7F69hzOal4w6rq/2L2JQ/2Z6lcrZsxi5YJFo6776/3bOJpNONyGGcwbmnAMUxEKQ0k1lFSzv7yBJ9MRjoWr6Sht5EjNUvbNXUdf3dKTv3A0+yNTn8Pz/yeP0W96luUklGlv9rkw7CPI8H1C8S4OdO/h3zq3UDPQRk2ig2qnj1o3RoWfosx3OBatgwoH0nHKwie/RkKGQWhYy4nR30lPNpGpLivntPpVQ971n/O488guDhzK3IeaVVLCmpWrn79q1rHDe2k50ApAbSTCuWedM+qf2tO2l92tewEoC4U4b/V5o66b7tjH7n2ZWism8JJz14667tPdnezevfPE63PXnE/EHPnG1+beHv5z5/YTr88++1wqwyN/Be/s7+OHO+458fqDq1bTEC0Zcd3W2AA/2HbvidfvX3EWTaVlI67blkjw3a2/O/H6xjNWsrhi5O/CrlSKWx77/YnXf20t5/SqkW/2xFyHbz7+hxOvdwMPvOJS3vry0f9NRERGYxR6v3vLsq4DfgGU27YdH7L850CJbduvGeMm97qut6i3N/7ia47B9v3HuPcHt1PT35P5Dj3x/Xzyi3pjXTOOGQLDYP5AJzOS/c9bh+ydxG21zaRCYTCgaaCLWclMkvDc9pDM3US7tolkOIqBwaxYNzPj3ZxoXxl2B3FP7RwSkRIMw6Ah1sOsWNeJdY0h6/oGHKieTSya+ZKrS/Qxc6BzyF9snIgX4EjNLOKVdYTCUSrdFHWJfoiU4EeimJFS/GgpoYoazNqZmDWNmOHIiS0NvWHuw4vePTYMg3A4hOO4GjcyiQI5zoYx7SaZN4zMwHbXdSe14STnBv+hfB8/MYAX68OP92WeJ/rxEjH8VIJ4tJyBaBm+5xJKxJjZsR9cFzwXPAc8F991MXyP9pJKjpVW4+MTdVJYXYcwBlsM/ExL7eC5eKy0kkMV9eBD2EuzsvNgZjWyn2jZY+nj0x4tp7W8DsMwMF2X1T2HRv2zOiPl7KlsOLHP87sOZv/c5//jdEXK2Fl18obUeV0HMEf5R+yJlLKjauaJ1+d0HSQ8SmtIX7iEbdWzTrxe3X2IqDdya0gsFGFLzZwTr1f1HKHMHbmFIxEKs6nm5I2uFb1tVDgj15RJmSE21M498Xp571GqnJHvLLiGydN1mZtiBjB3zmw+9a7X5rwlsLq6jFDI3AeomoNIEZsKLSeD3bmagD1DljcBm8a7UcfJ7RwMZ8yfyYW3fIauroGcb7v4pLM/4xMOm9TVVdDVldCxnkQ6zvlRHMfZBGqyP4Xp5HHWZ/Rk+Jvso46ziExUbgdeTI5NQC9w2eACy7JqgTXAX4IJSUREREREcq3gW05s205alnUL8EXLso4DLcCXybSo3B1kbCIiIiIikjsFn5xkfYpMrLcCZcBDwFWagFFEREREpHhMieTEtm0X+Gj2R0REREREitBUGHMiIiIiIiLTgJITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERAqC4ft+0DHkW9z3/VLPy/3fHQqZuK6X8+3K8+lY54eOc37oOOeHjnN+TNZxNk0DwzASQFnONy4iBWM6JifdQAlwJOA4RERE5NTNAZJAbcBxiMgkmo7JiYiIiIiIFCCNORERERERkYKg5ERERERERAqCkhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCCEgw6gGFiWZQKfBm4E6oCHgffZtr070MCKjGVZC4CWEd56l23bt+Y5nKJkWdYngZfZtn3ZkGVnAzcD5wIdwDdt2/5KIAEWiVGO84+A64etesi27eY8hjblWZZVD/wr8CqgGtgMfMy27Yez75+NzucJO4XjrPNZRMZFLSe58U/Ae4B3ARcAPnCvZVnRQKMqPquABNAEzBny85MggyoWlmXdBHx22LIG4I/ATjIXc58GPmdZ1jvzHmCRGOk4Z60ic7E39Nxenb/IisZdwFrgzcB5wHrgD5Zlna7zOadGPc7Z93U+i8i4qOVkgrIJyAeBj9i2fU922ZuAw8DryXyAS26sBGzbto8EHUgxsSxrLnArcAlgD3v7b4Ek8F7bth1gu2VZpwEfBX6U10CnuBc6zpZlhYDlwOds224LILyiYFnWUuBK4CLbth/NLvsA8ErgrUAcnc8T9mLH2bKsf0bns4iMk1pOJu5soAp4YHCBbdvdZO4irQsmpKK1CtgWdBBFaA3QReb4PjHsvUuAh7IXcoMeACzLsmbmKb5i8ULH+TSgFJ3fE9UOXAM8M7jAtm0fMIB6dD7nyosdZ53PIjJuajmZuMH+sweGLT8MzM9zLMVuJXDEsqy/AMuAXWTuzP0+2LCmNtu2fwP8BsCyrOFvNwNbhi07nH2cDxyb1OCKyIsc55VkuoPeZFnWKwEPuAf4pG3bPfmMcyrL3hi6Z+gyy7LeACwBfg/8CzqfJ+wUjrPOZxEZN7WcTFx59jE5bHmCzJ0jyYFs97llZAZefhK4GniKzNieK4KMrciVM/K5DTq/c2kFmQu4FuDVwIfInOO/yhbckHGwLOsi4IfAr7LJoc7nSTDCcdb5LCLjppaTiYtnH0uGPIfMF91A/sMpTrZtpyzLqgUc27YHLy6esSzrDDJffPcHFlxxi5M5t4cavIjT+Z07nwG+nr0jDbDVsqwjwGNkBhsP7wYmL8KyrNcAdwKPA2/JLtb5nGOjHOfPoPNZRMZJycnEDXbnagL2DFneBGzKfzjFy7btkS4etgCvyHcs08gBMufyUIOvD+U5lqKV7a/fPWzxYPejZnQxNyaWZb2fTLngu4G3D7mhofM5h0Y7zjqfRWQi1Lw6cZuAXuCywQXZO/xrgL8EE1LxsSxrlWVZ/ZZlXTzsrXOBZ4OIaZp4CLgkW01q0BVkqqapf36OWJZ1p2VZw8dOnZd91KDiMbAs673At4BbgDcNSUxA53POvNBx1vksIhOhlpMJsm07aVnWLcAXLcs6TqaP7ZfJ3KG7O8jYiszW7M93sl+K7WTK3F7AyS89yb0fAh8BbrMs60vA+cBNZOb1kdy5E/i1ZVmfIFN+fBnw78Cdtm1vDzSyKcSyrGVk7uT/N/AFYOaQ4gNxdD7nxCkcZ53PIjJuajnJjU8Bt5GZw+ARwAGusm07FWhURcS2bY/MwMongf8CNgAvAa60bXt49R3Jkezd5KsAi0x57E8DH7Zt+/ZAAysytm3/FngDcB2Z7i+3kbm5cUOQcU1BfwVEgNcBR4b93KzzOWde7DjrfBaRcTN83w86BhEREREREbWciIiIiIhIYVByIiIiIiIiBUHJiYiIiIiIFAQlJyIiIiIiUhCUnIiIiIiISEFQciIiIiIiIgVByYmIFCTLsoygYxAREZH8UnIiIgXHsqxrgduzzy+zLMu3LOuyYKMSERGRyRYOOgARkRH83yHP1wMXANsCikVERETyRMmJiBQ027Z7gceDjkNEREQmn+H7ftAxiIicYFnWg8ClQxZdDvwJuNy27Qcty/oM8GbgY8DngaXADuC9gA/cDKwC9gAfsG37/iHbXgH8G7Auu+h+4IO2be+dxD9JRERETpHGnIhIoXkfsCH7cwFQPcI684CvAf8CvBGoB34B/BT4AZnkxQTusiyrDMCyrGXAo8BM4HrgBmAx8IhlWTMn788RERGRU6XkREQKim3b24BeoNe27cezz4crB95n2/ZPbdv+NfBtoAn4nG3bt9q2/Svgn4BGwMr+zqeBOPAy27bvtm37v8i0ypQBH57UP0pEREROicaciMhU9eiQ523Zx6FjUzqyj7XZxyvIdA+LWZY1+NnXC/wFuHKSYhQREZExUHIiIlNSdqD8cLEX+JUG4E3Zn+GO5yQoERERmRAlJyIyXXQD9wFfHeE9J7+hiIiIyEiUnIhIIXKBUI63+WdgObDRtm0HTsxC/2NgN7Axx/sTERGRMVJyIiKFqBu4wLKslwI1OdrmZ4HHgN9alvUdIAG8G3gt8Fc52oeIiIhMgKp1iUghugVIA/eSqaY1YbZtbwYuITMXyh1kSg/PAV5r2/bdudiHiIiITIwmYRQRERERkYKglhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERArC/wd9d3h/ja1S9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 478.57it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 8.65it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Interpeak Window 2 (t: 16.470 - 79.990) R-Score = 10^-2 & Fano Ratio = 0.0382\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture and has an appreciable Fano \n", + "factor compared to peak region(s). This suggests you have missed a peak in this \n", + "region. Consider adding manual peak positioning by passing `known_peaks` \n", + "to `fit_peaks()`.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI00lEQVR4nOzddZhU1/3H8ff4zvriroEDIQQS4iHubbSWJm3SeBtP07i7/RojaaRxT6PEmjSNu5QYBDi4Lc4arI3c+/tjZmGBXdgdZm3283qefWbn3jPnfs/MMsx3jnlc10VERERERKSteds6ABEREREREVByIiIiIiIi7YSSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C/62DqANlAEhYEkbxyEiIiJN1xuoBQrbOA4RaUGeTrhDfLXrulmOk/52e70eWqLe9iTT26j2dXyZ3sZMbx9kfhvVvtTr9Xg8NUA47ZWLSLvRGXtOljiOO7ikpDKtlfr9XoqKcqioqCIWc9Jad3uR6W1U+zq+TG9jprcPMr+Nal/qunTJwefzaNSDSIbTnBMREREREWkXlJyIiIiIiEi7oORERERERETaBSUnIiIiIiLSLnTGCfEiIiIiaTFp0qQ8Essc6wtfkY05wJJx48atbuoDlJyIiIiINNOkSZO8wGUej/d4j8cTADxtHZNIO+S6rhudNGnSk8BN48aN2+wyfkpORERERJrvMp/Pf3p+flEkGMyq8ng8mbt5jUiKXNf1RCI12RUVpafH4zGAGzb3GCUnIiIiIs0wadKkfI/He3x+flEkL69oVVvHI9KehULhaqBrWdmq4ydNmnT35oZ4tavkxBgzHPgOOMta+3jy2FjgbmAHYBUwwVr797aKUURERDq9Xh6PJxAMZlW1dSAiHUGydzHbdekNbDI5aTeTt4wxAeAZIKfesa7Af4EZJJKTq4HrjTEntkmQIiIiIonPTx4N5RJpmuS/FQ9NyD3aU8/JtWycSZ0G1AKnW2tjwDRjzDDgYuCxVo5PRERERERaULvoOTHG7An8GfjTBqf2AD5JJiZ1Pkg8xPRorfhERERERKTltXlyYowpBJ4CzrbWLtzgdD9gw2OLk7cDWjg0EREREWlFEybc0efIIw8e3dZxNNX06VOz3nvv3YK2jiOTtIdhXfcDX1prn23gXDaJYV311SRvs7bkon5/evMyn8+73m2mqamp4amnnmaPPXbDmG3aOpwWkemvYaa3DzK/jZnePsj8Nqp9Ipnlkkv+NmzffQ9Ytf/+B5a3dSyZok2TE2PMcSSGbjWWIVcDoQ2O1SUllale1+v1UFSUs/mCKcjPD7dIvW3tnnse5fbbb+Ohh/L57rvvyM9vmeevPcjU17BOprcPMr+Nmd4+yPw2qn0imUJrIqRbW/ecnAT0BBYaY+off8AYcyEwH+izwWPq7henelHHcamoSO/qfz6fl/z8MBUV1cTjm938ssN5//0P6ZcVZrA/yNfvfsCYPfdu65DSLtNfw0xvH2R+GzO9fZD5bVT7UpefH273PTKO41BVVdUmQWZnZzteb/MvPX78DuN+/eujl3z00ftdo9Go9+6775+enZ3t3HPPnf1++un7/MrKSl9BQUFsn332X3XuuRcUT5s2NfznP5+w9X33PTxt223HVgGcd94ZQ6dM+Sn/nXc++t7v9+O6Lr/85f5j/vSnk4qPPvoPKze85sqVK/x33HFbv++++7YgHo97hg8fseb88y9eOHToVmtHy/zzn/f1fPPNiT1Xr17t32qrYZWXXHLVvLrzDcXcr1//yIMP/qP3xx9/0LW0tDTQt2/fmuOOO3HxwQf/sgzgxRef7/rcc0/1PvHEU4ofeeSf/crLywIjR45afcUV1857/PFHen300Xtd/X6/e/jhv1r2l7+ctRSgtrbWc++9d/b57LNPikpKVgWzssLOmDFjyy+55MoFXbp0jR955MGjV65cGXzhhWd7T578Q95DDz1pS0tLfPfee1ffb7/9qnD16tX+wYOHVp522hnFu+yy25q6tk2c+HKXZ555oveKFStCAwYMqN5nnwNWPfLIA/0/++x/k1J5Tbxeb0rta6/aOjn5I7Dh1yszgauAfwHHAH8xxvistfHk+f0Aa61dviUXjsVa5j+FeNxpsbrb0i8qqxi1zRgAFn/7LbHd9mzjiFpOpr6GdTK9fZD5bcz09kHmt1HtyzyO43Dssb8eMX36tDYZWjBixNZrnn32JZtKgvLuu//ufvPNt8+Mx2OeYcOG1x577K+3LigojN56610z8vLy4h9//EHhQw/d33/rrbepPOigX5R169Yt8uWXn+dvu+3Yqng8ztSpU/Jqa2u9338/KWfHHXeu/OGH77JXr67w77vvAWUbXisWi3HuuacPB497zTU3ze7atWvsnnvu7Pe3v509/KWX3pgMsHLlyuCUKT/l3XzzHTMjkVrPTTddO/imm64d9MgjT9nGYj7vvDOGzpkzO/vss/+6YPDgoTXvvPNWlxtvvGao1+uddeCBh5QDrFq1Mvj666/2uOGG22ZVVVV6r7zy4mEnnviHUfvtd8DK++57ZNq///1616effrzvXnvtUzZy5Kia22+/pd/XX39ZePHFl8/r339ArbU2/Pe/3zTowQf/0efSS69a+PDDT0076aQ/bL377nuVnHba6Uvi8TjnnPOX4dFo1HPxxVfM7d69R/Rf/3q2xyWXnD/8rrvumz527PZV7733n4I77rh18PHHn7Ro7733K/v66y/yH374gf5b+pqk0r5m/6G0kjZNTqy1G/V+JHtQlltr5xtjHgUuAh4xxtwG7AScB/ylNePs7CrLShmVve69tmbJ4k2UFhER6aw65r4ne+2176qxY7evAqiurvbsu+8Bqw466JDS/v0HRgAGDTp5+YsvPt9r1qwZ4YMO+kXZDjvsXPbdd9/mA0t/+OG7HJ/P7w4fPmLNt99+nbfjjjtXfvrpx4XDhpk13bv3iG14rc8//yR//vx54ccee3bKsGHDawEuv/yaeY8//nCvkpJVfgCfz+def/2tcwsKCuIAhxxy6Iqnn368b2Mxz5gxPet///um8Jprbpy1//4HlQOcddZ5S+bMmZX9zDNP9K5LTuLxuOf88y+eX/fBfPToMRUzZkzPvfDCyxZ5PB5OO+3MJS+88FzvmTNnhEeOHFUzcuTWlfvss1/prruOXwPQv//AyH//+07FvHlzwgDdunWPeb1eNxwOO0VFXeIffPDf/Llz52Q/9NATP9dd44orrl0wY8b0nGeeeaLX2LHbz3n++Wd67bLLbiWnnPKXZQBbbTVsxaJFC0NvvDGx55a8Jqm0b0v+ZlpSW/ecbJK1drkx5iBgAomd45cAF1prn2jbyDqXpdauf2D1moYLioiIdFJer5dnn33JdrRhXQD9+vVfO5wqHA67xx134vJ///uNoqeffiJn8eLi0Pz5c7PLykoD8bjjAdhjj73Lr776su7V1dWer7/+Mm/UqG1W9+3bv+bHH7/LB5Z+++3XBXvuuXdJQ9eaOXNGODs7O16XmAD07NkrdvHFVyyqu19QUBCrS0wA8vLy45FIZL3G1Y/Z2ulhgB122Hm9DyijR49d/eSTj/Srf2yrrdZdNxQKOd2796z1eDwAZGVluQC1tbVegKOO+m3Jp59+nHfHHbf2LS5eFFq0aGF48eLirBEjRjb4QWjWrJnhcDg7Xv+Dv8fjYeutt1nz3Xf/yweYN29O9vjxe5bWf9yYMdut2TA5ae5rkkr72qt2l5xYaz0b3P8W2LWNwhGgZP5c6q+R569tt8m2iIhIm/F6veTm5na48WyhUNbamKuqqrx//vMJpqamxrvHHnuVHnjgIavGjBm74KyzThtRV2bXXXdfHQj4na+++jzv++8n5e+zz34lAwcOqn399Vd6LVw4Pzhv3pzsa665cU5D1/L5/G7dh+XGeL3ezfZA1Y+5sUnpjhP3+Hy+9U4GAoH17nu9jcdy3XVXDvj880+67L33fqt22WX38hEjtl7yzDNP9Fq1akWwofKu23DTHMfB7/e7iet5XdfdfAdbc1+TVNrXXrW75ETan6oVKygAIo5D0OslHItv9jEiIiLS8Xz88Qf5c+fOyX7llbd+7NGjZwygtLTEV15e7q9LAoLBoDtmzHYVn3zyUeHMmTNyL7nkyvn9+vWPeDwe97777unTu3efmvqT2+sbMmRoTWVlpW/OnNmhIUOG1gKsWrXSf8wxv9rmhhtum5lKzMOHj6gG+N//vs6tG9YFMHnyj7l9+/avTqXOkpJVvnfffbv7xRdfPueww45a29OxaNGCrKyscL3EaN2H/622Gl5dVVXlmzbt56z6vSdTp/6c26/fgBqAgQMHVU+d+nMusHbu9M8/T97kPKWmvCaZpF1360j7EClP/Dtf7iT+LeZu5hsPERER6Zh69uwVAXj99Ve7Llw4P/j111/mXnDBOVvF43FPJBJd+wFgt93Gl3344fvd8vPzYkOHblUbCoVcY0au+eyzj7vusstuZY3Vv8cee1UMHjy06rrrrhg8adK3OdOnT8265prLBxUUFEbHjNkupaVUjRlZM3bs9uUTJtwx4L33/lMwa9bM0L333tV70qRvC3/3u2OWpVJnfn5BPBzOjn/22SeFc+bMDk2dOiV89dWXDZw3b252NLruecjKyooXFy8KLV++zL/XXvuU9+8/sPq6664c8sUXn+bNmDE96/rrrxqwaNGC8O9/f+wygGOPPX7J119/UfTIIw/2nDNnduill/7V9a233uixqVia+ppkCvWcyGbFKxNDK9eEsiAeI+zzEa2tIRDaon0wRUREpJ3Zfvsdqk466bSFEye+3POZZ57oW1TUJbLHHnuXdOvWPWLtupXI9tln//K77vq7Z5ttxlTUHdtuu3EVkyf/mL/XXvuWNVa/1+vlttvunHXHHbf1v+SSvw0DGDVqm9V33HHPzFAolHI3wC233DHnrrv+r+8dd9w2qKqqyte/f//qyy67ZvYhh/yy0Vg2xe/3c8UV18554IF7+p188h9H5eTkxrbZZtvVf/zjCcUvvfR878rKSm9OTo5zxBG/Xv7oow/2O/fcM8LPPffy1AkT7p9xxx239bv22iuGRqMxz+DBQ6puueWOGePG7VQJsM8++1csX75s/vPPP9Prqace6zt48JCqgw46ZMXbb7/ZaILS1NckU3iaMu4tw8yJx53BJSUp7+HYIL/fS1FRDqWllRm3fOLrfzuXrUpLmVbUnc9+/IbKWIxbX36Doq7d2jq0tMrk1xAyv32Q+W3M9PZB5rdR7Utdly45+HzeucCQtFacgkmTJo3wen3v9OjRd00wmKWJmNJkX375WW63bj2i9RcEuP/+e3q9++7b3V599d9T2jK2lhSJ1GQtX16c6zjxg8eNGzd9U2U1rEs26zOfl2O/+4Y5/YfyZVUV35SVsrpydVuHJSIiItKhfPXVFwUXXHDO8M8//yRv0aIFwXfffbvg9ddf7bnPPvs3uLpZZ6RhXbJZ5eVlAGTl5pOTk09NVSXl5RWbfpCIiIiIrOeMM85dXF1d7b3llhsGr15d4e/SpWvkiCN+tezUU09v17u2tyYlJ7JZZWVlAIRz8jAFRbixCGuKF8LoMW0bmIiIiEgHEgqF3Msuu3ohsLCtY2mvlJzIZv3KHyA6dDghPByal8tWhfksmzevrcMSERERkQyj5EQ2a0QwRDiczbRgmIjPDzhEKjSsS0RERETSSxPiZZOceJywzweAPzuPmC8AQLwmpT2NREREREQapeRENqkqORkewJuTT9yf6GxzqrVyooiIiIikl5IT2aTK0sTKdo7r4glm4wRCALi1tZt6mIiIiIhIsyk5kU2qKisHoMZxcPDgBhPJCZFIG0YlIiIiIplIyYlsUs3qRHJS67rEHQc3mAWAJxZty7BEREQkDcaP32Hciy8+37Wp5T/66P38o476xTZ7773L9rfeemO/loytKSZMuKPPkUcePDqddTbnOVm0aEHw9ddfLUrn9Ts7rdYlm1Szeg0hxyECuC6Ud+nB/V++R9GQoRzc1sGJiIjIFnn55Td/zM8viDe1/EMP3d+vZ89etXfffd+M3Ny8Jj+uI2nOc3LttVcO6tGjR+Tww48qbem4Ogv1nMgmrS7I59jvvuEf1VUARAu78+GqFdiqyjaOTERERLZUz569YuFw2G1q+crKSt/WW4+qHDBgUKRLl64ZmZw07zlxPS0bTeejnhPZpKqqRFISDGcDEEreVlauabOYREREJD3Gj99h3LnnXjDvt7/9/arLL79wkOM4nqKiLtEPP3y/a21tjXfbbcdWXHrpVfN79uwVGz9+h3EAL7zwXO8XXniu97PPvjS5f/+BkYceur/n22+/2aO8vMzfq1fv2t/+9pilRx31mxKAL774NO+ii/46/PjjT1r08ssv9O7WrXvtDTfcOue44363zTHHHLf4rbde7xEMBpzHH39+qsfj4Y47bu33zTdfFsZiMc/gwUOrzjjjnEVjx25fVRfvc8891e3FF5/vVVpaEhwzZrvyHj16bnIS7KmnHm9Gjdp2dWlpSeDzzz/pEggEnEMPPXL5gQceUnLLLdcPmjNnVk6vXn1qLrrosnnbbTeuqv5zcsABB5cdf/zvRg0aNKRqwoQHZgF88slHeZdffuHwSy+9avarr77Yc9q0qbnTpk3NPfLIg/MmTnxn8pFHHjx6330PXHXOOecvrh9Djx49a2+88f/mNfR8PPnk89OWLVsauPPO/+v/ww/f5ft8Xnf48BGV5557wcKhQ7fqdCsQqedENqmyMtFDkpVMSsJ+P2PyCxjsNPlLFhERkU4jXl3tbezHqa31tEbZLfHll58XVVRU+O+++z571VXXz542bWrevffe1RcSw526dOkSPeywo5a9/PKbP/bt2z9y55239X3rrdd7nHnmuQseeeTpqUcd9Ztl//jHXQOfeurx7vXr/frrLwvvu+/haZdccuU8n8/rAnz00ftd7rzzXnvNNTfNLigoiJ933hnDFi8uDt1ww22z7rvv4ekjRoysPO+8M0ZMnvxjGOD1118teuCBewccddRvlj300JM/jxw5qvLtt9/ssbk2TZz4Uq8ePXpGHn74qZ8PPfSI5c8991Sfiy/+67Cjjz526T/+8dC0YDDg3HHHrQM3fFxhYWH8wgsvn/v995MKXnvtlS4lJat8t9124+D99jtw5S9+cVjZbbfdNWvYsOGVu+66e+nDDz81rTnPc/3no6amxnv22X82jhPnzjv/Ye+88x82P78gdsYZJ49cvLg40Jx6M4F6TmSTsubP48Khw1njTWzEmOu6XD58JFXxjOzJFRER2SKzzz59u8bOhYeb8v4XXTqr7v6c888Z40ajDX5RHBo0eM3AK662dffnXvy30U5VVYOf24J9+lYNuu7GZn04bjTGcDh+9dU3zA8EAu7w4SNqvvzy81WTJn1bAInhTl6v1w2Hw07Pnr1ilZWV3jfemNjzggsunbv//geVAwwePKR2yZLFoZdffr7XccedsKKu3qOPPnZpXS/AggXzggC//OXhK4wZWQPw6acf582caXMmTnz7x27duscAzj//4uKpU3/Off75p3uOHj1m3iuvvNBzt93Glx533IkrALbaatjSadN+zpk3b072ptrUv/+A6jPPPHcJwIknnrbsueee7rPHHnuXHHjgIeUABx54yKqHHnqgf0OP3WOPvVYfcshhyx944N7+77//bpecnJz4xRdfsQCgqKhL3O/3u8Fg0KmLuanqPx//+tcz3VavrvDfcssdcwOBgAtw3XU3z/vVr345+qWX/tW9fi9MZ6DkRDbJX1rKjkVd+NmT+FLGn5sPQJbXi+s6eDzqfBMREckUPXv2qq37gAyQk5Mbj8ViDfbMzJgxPSsajXpuv/2WQXfcceuguuPxuOOJxaKe6urqtY8bNGjwRsOTBgwYuHZH5+nTp2YDHH30keutvBWLxTzRaMQDsHDhgvDee+9XUv/81ltvs2ZzyUmfPv3WXic7O9sB6Nu379p4gsGQE4tFG+19Ov/8ixZ99923Bd9997+C++9/dGpz5ug0pv7zMWOGza6urvYdfPDeY+uXiUaj3oUL52dt6bU6GiUnsklOcrNFxx/ABwRyCwDwejxUlZeTU6jV80REROoMvef+7xs75/F61/tQO+SOCT82tezgW2+f3NSyW6J+YrJOw9U7juMBuOyyq+cMGbJVzYbnQ6HQ2gdmZWU5G57Pyspae95xHE84HI4/+ODjG/UABYNBB8Dj8eBuEIrf799s2/1+30ZlmvPl6rJlSwNlZaUBn8/nfvnlZ/mjR29bvelHrH+5WCy+UeJT//lwHIfevfvU3HLLHbM2LJeTk9Pphqroa2/ZtORmi24gCIA/Ow8n+c5QVVbS6MNEREQ6I1847DT24633Yb0ly7aWrbYaXuPz+dwlSxYHhwwZWlv388knHxY89dSjPb3epn/MHDp0WHV1dbUvEqn11K/r8ccf7vXBB/8tBBg4cFDVlCk/5tZ/nLXTctLbqvU5jsN1110xeODAwVVnnHHOgmeffbLvlCmTw+tKeNZ/nXx+d82aSl/9xy9fviy4qWsMGTK0euXKlcH8/Px4XbsHDBhYe++9d/X95psv89LdpvZOyYlsWjSx2aIbSm6+6PUScRLJfs1qrdglIiLSWRUUFMQPOODgFU899VjfV155ocu8eXODL730r66PP/5Iv6KiLs2ag7HPPvuVDxw4qPrqqy8b+tlnn+TNmTM7dNttN/b78MP3ug0ePLQG4Jhjjl/6zTdfFT300P09Z8+eFXriiUd6fP31ly06hOOf/7yv19y5c7Mvv/yaeUcf/YeVI0eOWn3DDVcNrk0uQhAOh53ly5eFiosXBQBGjtx6zWeffdzlyy8/z501a2bouuuuHFhdXeXb1DUOP/xXJbm5OfGLL/7r0EmTvsmZOdNmXXnlxYN/+GFSwbBhZjO9NJlHyYlskrduJ/jQuiGPkWTPSa2WExYREenULrnkyoVHHPGrZU8++VjfE044Zptnnnmi9+9//4fFZ5/dvEncPp+PCRMemDFs2PDKG2+8esgppxy39U8//ZB3xRXXzt5jj71WA+y//4HlF1102Zx3332728knHzfqs88+KTz88KOWtUzLYPLkn8LPP/90n+OOO6F4yJChtQCXXnrl/JUrV4TuvPO2vgCHH/6rFQsXLsg66aQ/jIrH45x11l+Lhw83ay6//KJhZ5/95xH5+fmx3XbbY5MbNBYUFMTvueef0wsKCmOXXHLBsNNPP3nk8uXLgjfd9PeZI0ZsvdFwuUzncTccvJf55sTjzuCSkvRuIuj3eykqyqG0tJJYbKNhlR3Wf085gYHAT8NGExz/K8LhIDl3X0S3QIDYMcey9X4HtnWIaZOpr2GdTG8fZH4bM719kPltVPtS16VLDj6fdy4wJK0Vp2DSpEkjvF7fOz169F0TDGZ1ug+PIs0VidRkLV9enOs48YPHjRs3fVNlNSFeNsnrOOD1QmBdz8lbq9dQXVHCcaFQG0YmIiIiIplGw7pkkx5cU8Gxk76mrGe/tce+jzl8sHIF1d607fkkIiIiIqLkRDattraGmOviD61bmCIQSPSY1NSoJ1tERERE0kfDumST6hIQv3/dKnh9QyEK8guIlWgpYRERERFJHyUnsknHFBQRy84hK75uRcADswJsPXwkxQsXtmFkIiIiIpJplJzIJu2Qm0fQ62VqvY2U4l4fEMep1bAuEREREUmfNk9OjDE9gNuBg4Ew8DFwobV2avL8Y8AJGzys2FrbD2lRTjxOMJmUeEPZa4/HvT5w4ji1kbYKTUREREQyUHuYEP86MBQ4BNgRqAbeM8bUfRreFrgJ6F3vZ7s2iLPTqalctxeMJ2tdcuL4EjmtE6lt9ZhEREREJHO1ac+JMaYrMBe4wVr7c/LY9cAPwChjzHfA1sD11tqlbRZoJ1W7ZvXa3z3BbOq263R8foiCE4m2TWAiIiIikpHaNDmx1q4Cjqm7b4zpCVwALAKmAsOArOTv0spqVieSk6jj4PH5wUmkJ44/kCgQVXIiIiJSn8eDz+PxtPrIFNd1Hdcl3trXFUm3Np9zUscY80/gVKAWONxaW2mMGQ24wHnGmEMAB/g3cIW1tnxLruf3p/d9w+fzrnebCWI1VQBEXRc84K3bdDGQSE48sWjan8e2lImvYX2Z3j7I/DZmevsg89uo9mU2jwef4/H0rqqJtfrnq+wsf8yLu6Q9JigTJtzR54MP3u06ceI7k5v72FmzZoZOO+2ErR9//JmfBwwYpMmunUC7SU6Au4AHgdOBicaY8cA2JBKSecBhJHpS/g6MNsbsa611UrmQ1+uhqCgnHTFvJD8/vPlCHcQCN9EzEnFdQqEAbnJcV2lBd5746St6bL01x7XQ89iWMuk1bEimtw8yv42Z3j7I/DaqfZnJ4/F4q2pi/q+mLHGqamIpfUZJRXaW37vLNr39eVl+r+u67S45SdXUqVPCl1zyt60ikdrOme12Uu0mOam3OtdpwK7AWcDJwJ3W2rJksSnGmCXAlyQmz3+dyrUcx6WiomqLY67P5/OSnx+moqKaeLzV3o9aVKk/ixO/+4b+vfvyp6oIXq+HUChAWU4Bby1byu5bDaO0tHLzFXUQmfga1pfp7YPMb2Omtw8yv41qX+ry88MdpkemqibmVFZHW/sF7hhPThPdd9+EXi+99Hzvvn371ZSUrApu/hGSKdp6QnwPYD/gBWttHMBa6xhjpgJ9rbUuULbBw+q6BPuRYnICEGuhLzTicafF6m5tlVXVRByHeDCI47hrj9ftFl9dXZ0xba0vk17DhmR6+yDz25jp7YPMb6PaJ+3F+PE7jDv99LMXvP/+f7vMnTs7p2fPXjUnnXRa8YEHHrJ2+Px77/2n4PHHH+5TXLwoXFTUJbLnnvuUnH762UtCoZALMH361KwHHri377RpU/Nqaqq9Xbt2ixx22FHLTzzxlOUNXfPxxx/u8fjjD/e79NKr5hx00C/KGiozadI3BRdeeNncgoKC+EUX/XV4izRe2qW2zrL7AM8Ce9UdMMYEgO2BqcaYZ40x/9ngMTsmbzVJvoXV1CQ2WQwEQ+sdD/u8DMvJpYuWEhYREenwHnvsoX777LNfyT//+cTPO+ywc/n111+11bfffp0D8OGH7+XfeOM1Qw855NCVjz76zM/nnvu3BZ999nGXyy+/cDBAVVWV929/O2d4VlbYueeeB6Y/9tizP48fv2fpI4880H/y5J82Gt/39NOPd3/iiUf6XXHFdbMbS0wAHnnkaXvIIYc2el4yV1sP6/oR+A9wnzHmVKAUuBwoAu4kscfJ68aYy4HngeHAP4BnrbXT2ibkzsNdtIgzBg2lNpy93vGutTXcOHIblsVibRSZiIiIpMs+++y/8rjjTlwBcMEFlxRPmfJj3osvPtdjxx13nvv004/33m+/A1f+4Q9/WgEwePCQWr/fP//ii88fvmDBvGB2do5z+OFHLT/mmOOW5+fnOwBnnfXXxa+88mKvmTOnh0eP3ra67jrPPfd0t0cf/We/q6++Ydbee+9X0TatlfaurZcSdo0xRwM3A/8CCoFPgT2stQuABcaY35JIWC4nMcTrWeCKNgm4syldxd7dujObxBJqdTyhxBchbZ3ZioiIyJbbfvsdVte/b8zIyh9++C4fYO7cudmzZ8/K+fDD97rWna9bIGfWrJlZ++57QMWxxx6//M03X+sye/bM7OLiRaH58+dmA8TjjqfuMaWlpYH7758w0Ofzuf36DdDQC2lUm3++TC4JfEbyp6HzLwMvt2pQAkC8JvHeEfeuP/rPm5VITgKtHpGIiIikm9/vd+vfd10Xr9fnJn53PEce+Zulhx9+1KoNH9ezZ6/o8uXL/KeddsLIvLz82C677FY2btxOFdtuO6by6KOP3LZ+WY/Hy3XX3TTz0Uf/2efGG68Z/MgjT033ett6doG0R/qrkEbFaxPJieP1rXfcG8oCIODxbPQYERER6VimTp2y3r4A06dPzR06dGgVQL9+A6oXLpyfNWTI0Nq6n2XLlgQmTLi935o1q71vvDGx65o1q/2PPvr09DPPPHfJIYf8sqy8vCz55fe6nKewsCC61177VFxyyRXz5syZlf3YYw/1bMUmSgei5EQa5SQnvDu+9ZMTTygxByXg9aD8REREpGN7442JPSdOfLnLrFkzQ7feemO/+fPnhY855vhlAL///R+WfvPNV0UTJtzRZ9asmaHPPvsk77bbbhpcWbnG37Nnr1jPnr0itbW13jfffK1o0aIFwY8//iD/2muvGAIQiUQ2+pw5cuSomqOO+u3SZ555os/s2bNCG54XafNhXdJ+uZHERqyO179eFuutm3Pi8RKtjeAPavlxERGROtlZ/lb98ndLr3fggYeseOml53veddffwwMHDqy6+ea/zxw1aptqgF/+8vBS13XnPPfcU71feeWFXtnZOfEddtip7K9/vWhR3fnp06ctfeih+/vfc88d3m7dukcOOugXK7/88vPCadN+zgFWbHi9008/e8nnn39SdOON1wx6+OEnrYZ3SX1KTqRRbjSxQ7zrX//PxJuVtfb32qpKJSciIiKA67pOdpY/tss2vf208uiU7Cx/zHXdlDaXGTx4aPVFF12+qLHzhx56ROmhhx5R2tA5j8fDBRdcUnzBBZcU1z9+8sl/Xlb3+znnnL/4nHPOX1x3PxQKuS+++PrPTYltt932WP3ZZ/+b1JSykhmUnEjjYnXJyfpT333BMM8XLyTqOPwtWUZERKSzc13iXtwlea3cc5K4tuu4LvHWvq5Iuik5kUZ9lZ3NLZ9+zC9/dxL1t2b1+gO8tnwZ8XiMsx230ceLiIh0Nq5L3HVdJQkiKVJyIo2qikQoj0Uha6MNXvEHgsTjMaJRLVUuIiLSUWnIlLQ3Sk6kUTU1iU1dA8GNF9MYkJ2D4/NQs3pNa4clIiIiIhlKyYk0anRNLcMGDCK/tmajc+f3H0DXQIDo0iUwYus2iE5EREREMo2SE2nU0LhD/x69+CkW2+hc3ZFosndFRERERGRLaWFpaZSvbmfXwMZLBa9NTqqUnIiIiIhIeig5kUZ53U0lJ4mt4WMNDPkSEREREUmFkhNplD+Zm3gCG0+Ij3kSyUm8Vqt1iYiIiEh6KDmRRvmStw0lJ/G1PSdKTkREREQkPZScSKP8ifwDTwNLCcc9iT+deI2GdYmIiHRWlZWV3qeeeqx73f3LL79w0KmnHm9a8pqLFi0Ivv76q0VbUseLLz7fdfz4HcY1dr412jF+/A7jXnzx+a4teY3WsmDBvOD48TuM++KLT/O2tC4lJ9Iof7J3BP/Gc06meny8uHgRq7M33qBRREREOodHH/1nz5df/levuvsXXXTFwttuu2tWS17z2muvHPT1118UtOQ1pO1oKWFp1AXTf8brxDn1t2du9Icy3R/mx8WLGNDA7vEiIiLSObiu66l/v6CgIN4KV/Vsvox0VEpOpEGO47CiugoAf3DjBMQfCABQq9W6REREAHBdqIq1zaiUbD+OJ4WP7OXl5b477ri13zfffFkYi8U8gwcPrTrjjHMWjR27fRVAVVWV95Zbruv/v/99W1hVVeXr27dvzR//eMLiQw45tGzChDv6vPDCs70hMUTp2Wdfmvzgg//os3z5stBDDz1pv/ji07xLLvnb8Jtv/vuMu+++fcDy5ctDgwYNqrriiuvmvvvu20VvvjmxZzwe9+yxx96rLr/8moUejwfXdXn44Qd6vvvu291WrFgeCgQCzogRW6+54IJLFwwcOChy6qnHm2nTpuZOmzY198gjD86bOPGdyZFIxDNhwu19Pvrog67V1VW+fv0GVJ900qmL99pr34q6dr799luFTzzxcJ9ly5ZmDR06rHLs2O0rGntO6sTjDjfeeE3/jz56v6vf73cPOODgleec87divz/x8fmbb77KefTRf/aZPXtmTjQa9fbs2av22GOPX3LEEb8qqavjtdde6fKvfz3Ta8mSxVmFhUXRQw89YvnJJ/952YbXWrFiuf/MM081hYVF0bvuum9Wdna28/HHH+Q/9ND9fYuLF4V79OhZ++tf/27phAl3DHr22ZcmDxgwKHLkkQeP3nnn3cq+/35Sfnl5eeCqq66bvcsuu69+4olHevz732/0WLlyZbBbt26RX//66KXHHPPHlQBffPFp3kUX/XV4XR2QGJJ17LG/GX3bbXfO2G23PVZffvmFgxzH8RQVdYl++OH7XWtra7zbbju24tJLr5rfs2evGMC0aT9n3Xnn/w2YNWtmTlFRUfToo49d0vy/voYpOZEGRSKRtb97fX6cDc7n+f30zQrDmjWtG5iIiEg75Lrwx3eyR9hSX05bXH9EUXzNUwdX2eYkKK7rct55Zwzz+/3ODTfcNis/Pz/+xhsTu5533hkj7rnnwWmjR4+pvueeO/rMmzc3+5Zbbp9ZUFAYe/nlf3W/5Zbrh4watc2Uk046bWl1dbX3888/7vLQQ09O7dat+0a7NjuOw333Teh/8cWXzwsGs5yrrrpk6Jlnnjpyu+3Gld999/3222+/zr3vvgkDd9llt4r99z+o/LHHHurx4ovP9b7wwsvmjhgxsnrhwgWh22+/deCdd97W/6677pt92213zTr//LOGdevWPXLxxVcsALjyyosHLViwIHzppVfO7dWrT+Sjj94vvOqqS7e68srrZ++//4Hl3377dc5NN10z9Le/PWbJL35x2Kr//e+bvAcfvHfA5p6fGTOm53bt2jV6zz0PTl+0aGHojjtuG1RTU+O97LKrFy5eXBy45JLzhx900C9XXHTR5QtisajnyScf63Xnnf83aNddd6/o0aNn7K23Xi/6+99vHvzHP55QvP/+B5VOnTol+847bxuUk5Mb//3v/7Cy7jqrVq30n3XWaaZr126RO+64d1Y4HHYnT/4pfNVVl2516KFHLL/66hvnTJ/+c/a99941cMMY//Oft7tfd93NM/Pz8+MjR46qvvXWG/t//PH7XU8//ZwFo0ePqfzii0/zH3zw3gGRSK33T386eXlT/za+/PLzovHj9yq5++777OLFxcGbb75+yL333tX3+utvmV9eXu7729/ONsOHj1hz330PTVu2bFnwzjtv3Si2VCk5kQbVrK7gT/0HEnUcfD4/zgbZyU6xGs7YZgxzlqQtURYREenQPNTtXtwxfPbZJ3kzZ9qciRPf/rEusTj//IuLp079Off555/uOXr0mHlLliwOhcPZ8YEDB9cWFBTEzz33guLtthu3uqCgKJ6bm+uEw2HH6/W6dd+oN+TEE08tHjdup0qA3XYbX/bmm6/1uOqq6+dnZ2c7w4aZmqeffqLv7Nkzw/vvf1B5//4Dai+44NK5BxxwcDlA//4DI19//WXpJ598VARQVNQl7vf73WAw6HTr1j02Z87s0Oeff9rl3nv/Oa2ut2fo0K2WzZ49K/yvfz3da//9Dyx/8cXnegwfbtacc875iwG22mpY7Zw5s8P//vfrPTb1/BQUFEavv/7WuVlZWe6IEVvXrFixovjBB+8dcN55FxZHIhHP73//x8WnnPKXZV6vt66dSz766P2uc+bMzurRo+eal156vueuu+5e8uc/n7k0GVdtVVWlLysrvPZTVUVFuf+ss/48vFu37rW3337P7KysLBfgueee6jl48JCqCy+8bBHAsGHDa0tKSgIPPXR///oxbrfd9uV77rn36kRdFd7//Oet7ief/OeFRx7565LkNVcsXlwc+te/nu19/PEnNTk5CYfD8auvvmF+IBBwhw8fUfPll5+vmjTp2wKAt956rSgSiXivvfbmeQUFBfERI7auqa6uWnjDDVcPbWr9m6LkRBoUWV3BL3v2xnFdZns27qF2fImFht1oo+9FIiIinYbHA08dXGU70rCu6dOnZgMcffSRo+sfj8Vinmg04gH44x9PWHrFFRdtdcQRB40ZNmx45fbb71h+yCGHljRnbsngwUPXjgEPhbKcgoLCaHZ29toP6MFgwKmtjXgBDjjg4PJJk77NmTDh9j7FxYtCixYtDC9atDCrqKgo2lDdU6dOyQb429/OXm9lrXg87snOzo4DzJ8/L3u77caV1z8/evS2azaXnAwdulVVXbIAsO22YytjsZhn9uxZodGjt63+9a9/t+rJJx/tMX/+3Kzi4uKsefPmZAM4TtwDsGDB/PCee+5bUr/Oo49e12MC8NRTj/eNx2OeDa81Z86s7A2Hnm2//Y6r4f71Yuzbt9/a53bWrBlZ8Xjcs912O6w3rGXs2O3XvPHGxJ4rVixv8uf+nj171QYCgbXx5OTkxmOxmCcR2+zsnj1719T/Gxg3bse0DaVRciINqq1KzDeJug54vLDBwC7Xl5hzQkzJiYiICCQSlJzARiOh2y3HcTzhcDj+4IOPT9vwXDAYdAB22GGnyldfffunTz/9KP/bb7/Of/fdt7s9//zTfW644baZe+yx1+qmXCcQ8K/Xo+T1Np5F/fOf9/V87rmn+u6zz/4rx47dfvXvfnfM8o8++qDw008/6tJQeddNPN133XXf9Jyc3PWee5/P564rt/4ker8/sNleLq/Xu14Zx0l8Fg+Fgu7MmTbrrLNOGzFo0JCqceN2LB8/fu/yLl26RM8++88j619/cwnj6NHbVvziF4evvPHGq4d++OF7Jfvss39F8rE4zuYn/geDoY3a6Nngok5y+Ev9ZMOt17JoNLbRdeqXXaf+oeY/n02lpYSlQdHqagBiLjjOxn9vbnIyGPFWWJRDRERE0m7o0GHV1dXVvkik1jNkyNDaup/HH3+41wcf/LcQYMKE2/t8881XeQceeEj55Zdfs/Cll96Y0qNHz9oPP3yvCMDj8aR1KNsLLzzb5/e//+Piq666fsExxxy3cty4nSqLixdluetdZd01hw0z1QDLli0L1m/Da6+93O3VV1/qBjBkyNCqadN+zq1fw7RpUzY7N2jevDnZTr1x7d9997+8YDDoDBw4uPaFF57rnp9fEH3wwcdmnHbaGcv22++A8pUrVwQgMZcHoG/f/jXWTlvvOjfffF3/8847Y+3wpz333Kf0kEN+WbbbbuNL7rzztkEVFRVegEGDBldt+NjJk3/YZMxbbTW8xufzud999+16bf3hh+/yCgoKo4WFRfFAIJF0VlRU1O21zfz5czfe0G4Thg0bXrVkyeLQqlUr13Zy/PTT92mba9Xs5MQY4zfG7G+MudkY87wx5m1jzFPGmBuMMbsbY7S8WwaIVid6CaOui+M28L6T7DnxKDkRERHpkPbZZ7/ygQMHVV999WVDP/vsk7w5c2aHbrvtxn4ffvhet7qhWMXFxaG77vq/AZ999knewoXzg2+99XrRypUrQqNHb7sGIBwOO5WVlb5Zs2aGotHoFn8G7Nq1W+S7777Nt3Za1syZM0J33vl/fb755qvCaDS69jNrOBx2li9fFiouXhQYMWLrmu2336F8woS/D3z33bcL5s2bG3z44Qd6vvLKi7369u1bC3DssX9aOn/+vPCtt97Yb9asmaFXX32py9tvv9m98SgSVq1aFbzyyosHTZ8+Nevf/36j8Nlnn+xz5JG/WRYKhdwePXpGSkpWBT/44L/5CxfOD7799puFEybcMRAgEkkMiTv22OOWfPHFZ0WPP/5wj7lz54Ref/3Vonfffbv7+PF7lW14rYsuunxhJBLx/P3vN/WHxHC6uXNn5/z977f0nTVrZuidd94qfOqpx/vCxj0jdQoKCuL773/QymeeeaLvxIkvd5kzZ3boqace6/6f//y7+1FH/WaZx+NhxIitq7OyspzHHnuo95w5s0Nffvl57iOPPNivsTobcuihR5bk5xfELr/8osFTpkwOf/nlZ7n/+Mfd/Tf/yKZpcnJijAkaY84F5gDvAqcBw4FcYDvgTOBTYKEx5mxjTLOyMGlfojXJnhPW7/qr4yY3ZvQ4Sk5EREQ6Ip/Px4QJD8wYNmx45Y03Xj3klFOO2/qnn37Iu+KKa2fXDdm6/PJr5m+77djVt9xy3eDjjjt6myeffLTvn/508qKjjvptCcCBBx5cWlhYFD3llONH/fTTD9lbGtPll18zt7a21nv66SePPPfcv4yYN29O+Iwzzpm/enWFf8GCeUGAww//1YqFCxdknXTSH0bF43FuueWOObvuOr50woTbB55wwrHbvPvu293OPPO8+b/97TGrAEaP3rb6hhtumzl58g95p5xy/KiXX/5Xz9/+9pjNruizww47lfl8PvfMM08dee+9dw48+OBDl5955rmLAY4//qTlu+22R8mtt9445MQT/zDq6aef6H3CCacUd+vWPTJlyuQcSMyfOeusv85/663Xu5944rGjnnjikb6nnnr6gt/85uhVG16rW7fusVNPPWPRBx+81+2jj97PHzlyVM2VV14369tvvyo85ZTjRj3xxCN9fvGLw5YDBALBRnurLr30qgW//OXhyx999J99TzrpD6PefPO1Hn/+81kLTjnlL8sA8vLynIsvvmJOcfHC8Ekn/WHUhAm3D/jzn89a2JzkJCcnx5kw4X7r9/vdc8/9y4ibb75+8O9+d+zSJlewGR63oU+eGzDG7AQ8AcSBZ4AXrLWzGyg3GvgFcArgAY6z1n6ZrmDTZE487gwuKalMa6V+v5eiohxKSyuJxTrMcNNG/fDGRLJfm8iyWIxVJ18HJMaIhsNBqqsjlP73BXZdNI35uBzw8BNtHG16ZNpruKFMbx9kfhszvX2Q+W1U+1LXpUsOPp93LjAkrRWnYNKkSSO8Xt87PXr0XRMMZmnDL0m777+flO33+93Ro8dU1x2bOPHlLnfd9fdB77336Xd1e610FJFITdby5cW5jhM/eNy4cdM3VbapLXsKuMRa++qmCllrJwOTgVuNMb8jkdAMb+I1pB2pG9bVWL9IVU4BbyxdjLdbdw5ovbBEREREMt706dOyH330n/0uvPDSuVtvPap63rx5oaeeeqzP7ruPL+loiUlzNbV1o621kc0XW8da+4IxZmLzQ5L2oKpLF66a/AODhg7noAbOVxZ05elFCzA5bbLXlIiIiEjG+v3v/7By1aqVgfvvv2dAaWlJID8/P7bHHnuXnHXWX4vbOraW1qTkpLmJyZY+TtpereOwpLaGro1k5/7knJPaSG1rhiUiIiKS8TweD2eddd6Ss846r9Ptdt2k5MQYc1VzKrXWXpdaONJeRJJJRyAQbPB8wOejayBIrvY5EREREZE0aeqwrms2uO+SmPAeB1YCRUAQiAAlQJOTE2NMD+B24GAgDHwMXGitnZo8Pxa4G9gBWAVMsNb+van1S2p8y5ZxdJ9+BHy+Bs8XRKq5f8z2lCk5ERGRzscB3A039hORhiX/rbhsuKt3A5q0lLC11lv3AxxAIkn4PZBlre1trc0isUrXKuD8Zsb7OjAUOATYEagG3jPGZBtjugL/BWaQSE6uBq43xpzYzGtIMwVXreTXffphGllazhNMrBQdaMbScyIiIhliqeu60UikZouXzhXpDCKRmmzXdaPAZoeppTLd/17gSmvtC/UPWmvfMcZcAdwIPN+UipLJx1zgBmvtz8lj1wM/AKOA/YFa4HRrbQyYZowZBlwMPJZC7NJETjQKgOtpOH/1BsMA+D0ePJ6G90IRERHJROPGjauYNGnSkxUVpacDXYPBrKp075Qukglc1/VEIjXZFRWlQdd1Hhk3btzqzT0mleRkALCgkXMrgJ5Nrchauwo4pu6+MaYncAGwCJgKXAt8kkxM6nwAXGqM6WGtXd7M2KWJ6pITx9dwcuIJJZKTkNeL4zh4GkliREREMtRN8XiMsrJVx3s8nmwSw91FZH2u67pR13UeAW5qygNSSU5+BM42xrxnrY3WHTTGZAEXAV+nUCfGmH8Cp5LoKTncWltpjOlHYt+U+hYnbwcAKScnfn96P0z7kh/ifY18mO9wknNJXK8fnzfxfuutd+vPCq8t6kRqCOXktn6MaZZxr+EGMr19kPltzPT2Qea3Ue3LHOPGjXOAGyZNmnS369KbJg6VF+lkHGBJU3pM6qSSnFwK/AeYbYx5h3W9Jb8AcoC9UqgT4C7gQeB0YKIxZjyQTSJZqa9uJ9asFK+D1+uhqKhl9ufIzw9vvlAH4HOT2y/6/YTD66/YFQoF8BUVrL0f8MRb7PlsC5nyGjYm09sHmd/GTG8fZH4b1b7MkfzQ1eQPXiKyac1OTqy1HxtjdiORpBwGdCGxYtd7wHXW2lmpBFJvda7TgF2Bs0hMjg9tULQuKalM5ToAjuNSUVGV6sMb5PN5yc8PU1FRTTy+2YUI2r1YbWKLGsfro7o68bvX6yEUClBbGyUeW9d7vXJZCd7sggbr6Ugy7TXcUKa3DzK/jZnePsj8Nqp9qcvPD3eKHhmRzi6VnhOstd8Bv93SiyeXEd4PeMFaG0/W7RhjpgJ9gYVAnw0eVnd/i3bIjMVa5j+FeNxpsbpbkxtNDOtyfD4cZ/05fo7j4uLh3ZUriMVjHB2LZUSb62TKa9iYTG8fZH4bM719kPltVPtERBqWUnICYIw5hMSywr2By4DtgEnW2vnNqKYP8CywjMREd4wxAWB7EksMLwP+Yozx1SUvJJIZq8nwLev77DD//PYrxh9+DEMbKfP0sqXUVFfya3/De6GIiIiIiDRHs5MTY0w2MJHEMr8VQB7wfyTmimxnjNmrblngJviRxPyV+4wxpwKlwOUkNnW8k8T8kouAR4wxtwE7AecBf2lu3NI8ZfE4c6sq2SXc+FwSnz8AQCQSbbSMiIiIiEhTpTJ48yZgHIkejG6sWzrvOBJDra5vakXWWhc4mkSvyb+Ab0jMYdnDWrsg2TtyEGCA70hswnihtfaJFOKWZohEEusQ+P3BRsvkB0MUBQJEq9M7f0dEREREOqdUhnUdDVxqrf3QGLN2PI+1dqkx5gbgH82pzFpbDpyR/Gno/LckJshLKxpSXUNBrz7kRzdcLG2dy/v1o0dgMLWLFsE2Y1oxOhERERHJRKkkJ4XAvEbOlQIdf8MLYetYnAH9BvBjpPHkpG4SUKy2ptEyIiIiIiJNlcqwrinAHxo5d1jyvHRwPje5Qleg8WFdseSIvliNkhMRERER2XKp9JzcALxqjOkKvAG4wF7GmBNJTFQ/Jo3xSRvx1iUnyUnvDanrOYlHIi0fkIiIiIhkvGb3nFhrXwP+CGwL3E9iQvztJPY9+Yu19qW0RihtwkciOfEENtwDc524J9FzouRERERERNIh1U0YnwWeNcYYoCtQBky31mrHpQzhS3acbCo5qRvWFa9tfF6KiIiIiEhTpbLPyQfAGdba6dZau8G5bYGnrbXbpitAaRtr/zA2kZw43kTHmxNVz4mIiIiIbLkmJSfGmPGsGwK2N4k5Jj0aKHooNLqhuHQg/uSQLW+o8eRkHj6WrlxCv2Djk+ZFRERERJqqqT0npwDHk5j87gL3kZhr4tYrU7cZ47Npi07azG3zZkM0yq+OLKSxKfHf+bP4cd4c/par1aNFREREZMs1NTk5F3iMRALyAXAmMHWDMnESc09+Tldw0nZseRmO4+DLym60jC+5klc0Gm2tsEREREQkgzUpOUnu4v4xgDFmH2ASkGutXZo8VgT0t9Zqj5MMEIvFcJzE2gbeTSwlHPT5CXt9RKurWys0EREREclgqWzC+CPwKvBRvWM7Az8YYyYaYxr/ql06hNrKNRzaszcHde+Jz+NrtNxe8Rqe2H5HBi5c2IrRiYiIiEimSiU5uQUYBVxW79gHwBHADsB1aYhL2lBNxWqO7z+QkwcOxhtovOfE8SX+fNxYvNEyIiIiIiJNlUpycjhwgbX2lboD1tqItfYNEgnL79IVnLSNSFUVAFHHweNtvOfE9SZHBcZjrRGWiIiIiGS4VJKTPKC0kXPLgG6phyPtQaQmkZzEXBfXbbyc60smLuo5EREREZE0SCU5+Q44uZFzJwI/pR6OtAd1E9yjrovjNJ6duL5Ez4knruRERERERLZcs3eIB24A3jbG/I/ExPjlQHcSc07GkdiIUTqwaE01PhJrQ2+q5wRfcj6Ko+RERERERLZcs3tOrLX/BQ4jsQHjdcCDwPUkEp0jrLXvpDVCaXV1PScxwNlEduImlxn2JJcdFhERERHZEqn0nGCtfZtE70kW0AUot9ZWpjUyaTOx2log0XOyKdVZOXxRsopY164tH5SIiIiIZLxU5pwAYIwZCZwGnA0UGmPGG2Py0haZtJnqvHyut1N5vbZmk+VKCrpz15yZfBqtbaXIRERERCSTNbvnxBjjAx4ATgI8JIZ3vQhcDQwxxuxlrV2U1iilVdV6PExeXUHc1/gywgD+5LCuSCTSGmGJiIiISIZLpefkCuAPwClALxIJCsDfAB9wY3pCk7YSiSR6QvyB4CbL+QPBRHYaibZCVCIiIiKS6VJJTk4CrrLWPgasqjtorf0JuAo4IE2xSRtxV67kgO492Mrf+O7wAN0qy/nXDrtwVm5+K0UmIiIiIpkslQnxPYEfGjm3CChKORppF0LLl3HqwCHMBDbVJ+JJ9qxsevCXiIiIiEjTpNJzMgv4RSPn9k6elw7MSQ7Tcryb/vOoS05SWvJNRERERGQDqXyuvAt40BgTBN4gMSF+mDFmH+AC4Pz0hSdtwYkmk5PNTIj3BEIA+D2eTZYTEREREWmKZicn1tqHjTHdgcuB00lMiH8OiAC3WWsfSG+I0trcaGL1LXczPSfeUBaQSE48ns3sJi8iIiIishmpLCVcZK292RjzD2BXoCtQBnxlrS1Jc3zSBtxYLHHr9bOpPhFPMNFzEvB4cF0XNllaRERERGTTUhnW9Y0x5gpr7b+A/6Q7IGl7dcmJ4/VtcrK7N5joOfF6PERrIwRCoVaITkREREQyVSrJSRGwMt2BSDsST/acbG7OSSjMd2WlRF2XfrXVSk5EREREZIukslrX3cD/GWP2Sc49kQwzIxzm/2ZZFhV02WQ5XyjMLbMst8+eQVQTTkRERERkC6XSc3I8MBB4D8AYs+F511rb5HqNMV2Am4BDgXzgJ+ASa+1nyfOPASds8LBia22/FGKXJlgBfFtWyuCcvE2W83p9eL0+HCdORLvEi4iIiMgWSiU5eTrNMTwP9AB+T+Jz8ZnAu8aY7a2104FtSSQv99R7TDzNMUg9kUhitS5/YNM7xNeVidTGiURqWzosEREREclwqSQnc4EPrLWLtvTixpitgAOA3a21XySPnQscAhxrjLkW2Bq43lq7dEuvJ03To6qa8V26kht3Nlt2wohRFPr9RJYshr79WyE6EREREclUqcw5uQPYIU3XXwn8EphUd8BaW7cmbRdgGJAFTE3T9aQJtq2t5Zwhw+hevWazZb0eT2K1ruqaVohMRERERDJZKj0ny4HCdFzcWlsG/Lv+MWPMb4GhJJYpHk1iB/rzjDGHAE6y/BXW2vItubbfn0pe1jifz7vebUfmS05u9/gDeL3r9i6p+73+sViybDxam/bntLVl0mvYkExvH2R+GzO9fZD5bVT7REQ2LZXk5CHgH8aYfYApwLINC1hrn0wlGGPM7sCjwGvW2jeSw7ocYB5wGImelL8Do40x+1prNz/uqAFer4eiopxUHrpZ+fnhFqm3NXldBzxe/FlZhMPBjc6HQuvmosSSt37iLfactrZMeA03JdPbB5nfxkxvH2R+G9U+EZGGpZKc3J68Pa6R8y7Q7OTEGHME8CzwFXBM8vA1wJ3JHhaAKcaYJcCXwI7A1829DoDjuFRUVKXy0Eb5fF7y88NUVFQTb8JcjfbM67rggbjHR3V1ZN1xr4dQKEBtbRTHSfSY1P0BrSlfQ2lpZRtEmz6Z9Bo2JNPbB5nfxkxvH2R+G9W+1OXnh9UjI9IJpJKcDE53EMaYs0jsn/IK8EdrbS2snX9StkHxycnbfqSYnADEYi3zn0I87rRY3a3FW7dniT+0Ngmpz3HctcdjJIZ4RWtqOny762TCa7gpmd4+yPw2Znr7IPPbqPaJiDSs2cmJtXZ+3e/GmGwSe5OsstamtNGFMeZ0EssETwD+Wn+oljHmWaCrtfageg/ZMXmrSfItxFeXjzRhKeG6NZ3jtVpKWERERES2TCo9Jxhj9gBuI5EoeJLHvgEus9Z+2Ix6hpPoMXkVuBnoUW9Tx2oSw7xeN8ZcTmI/lOHAP4BnrbXTUoldNs+XvPX4Q5stW+xCRXkZPXy+zZYVEREREdmUZg/eNMbsRmJ3+ELgeuAM4AYSS//+xxizazOq+w0QAI4Clmzwc7e19k3gt8CvSQzneoTE0K+Tmxu3NN2zK5YxYc5MYgVFmy37H8fLTTOnU1FQ0AqRiYiIiEgmS6Xn5AbgU+Aga+3andqTK2v9B7gWOLApFVlrbyKx+/umyrwMvJxCnJKiSeWlrFmzhr3CuZst6/Mnhn7V7SovIiIiIpKqVJa92IlEr0a8/sHkXJF7kuelA6tLNLy+zeeu/mRyEo0qORERERGRLZNKz8lqEkOxGhIkOQdFOibHcRiXk0cs28HH5ueRHOyJ87ftdmD57DmtEJ2IiIiIZLJUek4+By4zxqw35scYkwdcSmLIl3RQkepq/jp0GBduZfA3Ic0MeL1k+/y46jkRERERkS2USs/JJcAkYI4x5k1gKdALOBTIAk5MX3jS2iJV6zan9IayNlve8fogDm40ttmyIiIiIiKb0uyeE2vtLGBX4EPgF8AFydsPgV2stT+lNUJpVZHqdclJU5YSdrzJoV9xJSciIiIismVS2ufEWjvVGHOutXYpgDGmC9DPWquNETu4aHV14tZxwOtl3TaLDXOTyYkbU3IiIiIiIlsmlX1OCo0x/wU+qnd4J+AHY8zE5K7x0kHVJod1xVwX13U3UxrcuhW9lJyIiIiIyBZKZUL8LcAo4LJ6xz4AjgB2AK5LQ1zSRqI1iZ6TGC6Os/nya5OT+KZ7WERERERENieV5ORw4AJr7St1B6y1EWvtGyQSlt+lKzhpfbHamsStS5N6TqqDWUxfs5oyj1aQFhEREZEtk0pykgeUNnJuGdAt9XCkrUWywvxj7mzeWF2O04TkZGFhD66a/jNf+VL5UxIRERERWSeVT5TfASc3cu5EQKt1dWARn4+PV61gcjxOE3KTtTvE1+0qLyIiIiKSqlRW67oBeNsY8z/gVWA50J3EnJNxJPY7kQ6qLskIBIJNKu+rS05qa1ssJhERERHpHJqdnFhr/2uMOYzExPfrAA/gAj8AR1hr30lrhNKqYmVlbFdQSJcmbMAI0Kd6NQ9suz0lTehlERERERHZlFT3OXmbRO9JFtAFKLfWVqY1MmkTviWLuXTYCOY5DlWbL47P66VLMEiNVusSERERkS2UUnJSx1pbAyxOUyzSDsSTw7ocb9OmI3mSw798qOtERERERLaMlliS9Th1yUkTlwb2+JPJiXITEREREdlCSk5kPU4kMbG9qT0nBEIA+FoqIBERERHpNJScyHqcaDRx621auuFNJid+7cEoIiIiIltIyYmsx4nFAHCbmJx4gsnkBGUnIiIiIrJlUpoQb4zpBlwIHAD0Bg4CjgJ+sNa+lr7wpLW5a3tOvE1LN0Jh5lVVUuu4jPXQpI0bRUREREQa0uyeE2PMYBK7wJ8GLAJ6kEhyhgMvG2N+mdYIpVUtyc7mkflzWZCT16Tybm4hF02dzJXTp+A4TgtHJyIiIiKZLJVhXbeT2BV+MPArEpswYq39A/A6cFnaopNWt8Lv5z8rlrEyJ79J5et2iAeIRKItFZaIiIiIdAKpJCf7Addba8tgo80tHgS22dKgpO1Eo4mlhP31ko5N8QfWlat7rIiIiIhIKlLdhDHWyPEQGycs0oGEKyvZOi+f3CZOHvF5fdy1zRiCHi+1pSXk5jZtOJiIiIiIyIZS6Tn5FLjUGJNT75hrjPECpwOfpyUyaRNbl5dzjdmaAVWrm1Te4/XSPRiiWyhEpKqqhaMTERERkUyWSs/JJSQSkFnAhyR6Si4Atga2AvZIW3TS6jzxxKR2TxOHdQHEXJcAEKmubqGoRERERKQzaHbPibV2CrAD8AGwDxAnsaTwLGA3a+0P6QxQWpenbsWtZiYnANEa9ZyIiIiISOpSmnNirZ0J/CHNsUg7kEpyUrdGV6ymNv0BiYiIiEinkeomjB5gLJBDA70v1tpPtiwsaSte1wWPJ7Wek9qalgpLRERERDqBZicnxpidgBeBfslDdRuJu8nfXcCXluik1XldBzy+Zs05idfd1ig5EREREZHUpdJzcieJkTwnkNghfou2BTfGdAFuAg4F8knsPn+Jtfaz5PmxwN0k5rmsAiZYa/++JdeUxvnqlhAOhJr8mJVxh3isirwmLj8sIiIiItKQVJKT7YHfW2tfS1MMzwM9gN8DK4AzgXeNMdsn7/8XmAj8BdgFuM8Ys8pa+1iari/1fFxVSay8nBF7FRFu4mMeq6xh0dxp3HXqaS0am4iIiIhktlSSk+VsYW9JHWPMViRW+trdWvtF8ti5wCHAsUA1UAucbq2NAdOMMcOAiwElJy3gy9UVLF66mGG5BU1+TN1u8tFodDMlRUREREQal8omjP8ALtlgE8ZUrQR+CUyqO2CtrZu70oXEnimfJBOTOh8AxhjTIw3Xlw1EoxEAvM2Yc1KXnEQikRaJSUREREQ6h1R6ToaR2HBxqTHmZ2DDzS1ca+1+TanIWlsG/Lv+MWPMb4GhwH+AG4HJGzxscfJ2AIlenJT4/ankZY3z+bzr3XZUfTxe8rJzCHq8eL2e9c7V3d/w+KFZAQaM2hbmz0/789qaMuU1bEymtw8yv42Z3j7I/DaqfSIim5ZKcrIV8EO9+54Nzm94v8mMMbsDjwKvWWvfMMbcSWJYV311S0JlpXodr9dDUVE6On42lp/f1Jka7dMF/QYS8nqZ63XwhoMNlgmF1u9VKfR56RfOZlm0psWe19bU0V/Dzcn09kHmtzHT2weZ30a1T0SkYc1OTqy1+7REIMaYI4Bnga+AY5KHq4ENl42qS0oqU72W47hUVKR3N3Ofz0t+fpiKimri8bRMyWkTAU8it4y6Ppzq9Ydpeb0eQqEAtbVRHGfdylzxZD4aqaqhtDTll6XNZcpr2JhMbx9kfhszvX2Q+W1U+1KXnx9Wj4xIJ5DSJozpZow5i8Rywa8Af7TW1vWWLAT6bFC87n7xllwzFmuZ/xTicafF6m5p0dpavMnkhEBovQSkPsdx109OvD5w4sSj0Q7b9vo68mvYFJnePsj8NmZ6+yDz26j2iYg0rEnJiTEmDuxqrf3GGOOQ2GixMa61tslJjzHmdOAeYALwV2tt/XezT4C/GGN81tq6vf72A6y1NuX5JtKwSPW6Xg9PoOmj5lyvFxxwtVqXiIiIiGyBpiYR15HYcLHu97TstmeMGU6ix+RV4GaghzGm7nQ1ifknFwGPGGNuA3YCziOx54mkWaSqeu3v3mBWkxeMdrw+ANxYbDMlRUREREQa16TkxFp7bb3fr0nj9X8DBICjkj/1PWGtPcEYcxCJXpXvgCXAhdbaJ9IYgyRFqhPzcBzXBX8AIvHNPCLB9SWTk6iSExERERFJXVOHde3ZnEqttZ80sdxNwE2bKfMtsGtzri+piVQnek6irtOsvrFaX5AVtbXUpqdDTUREREQ6qaYO6/qIdR9XG1squG7zRBfwbVlY0hZiPh/PFy8kGAwx2m16ojG1sCd3f/Qmhw8+iiNbLjwRERERyXBNTU5aZPlgaV8iXh+vLCmmS5eubNOMThC/P7EfSm1tzWZKioiIiIg0rqlzTj5u6UCk7UUiiX1NAsFQYt5JE/kDiU0Za2sjmykpIiIiItK4lPY5McZ0Ay4EDgB6AweRmND+g7X2tfSFJ60pWrmGgeFsCrPCuI3scdKQ/jVruHHENlRVpXdjSxERERHpXJq91aoxZjDwE3AaieWFe5BIcoYDLxtjfpnWCKXVOIsW8X+jtuWkwqJmTW0PeWBYbi6FGbjbsYiIiIi0nmYnJ8DtwHJgMPArkhPkrbV/AF4HLktbdNKq4pHaxK2nsTUPGubxhwDwuUpORERERCR1qSQn+wHXW2vL2HjB2QeBbbY0KGkbseSE9uYmJyTnnHibMU9FRERERGRDqSQnAI3tthciTbvHS+uLJye0O83tOQnU9ZykPSQRERER6URSSU4+BS41xuTUO+YaY7zA6cDnaYlMWp0TqUtOmvlnEcwCUlxdQUREREQkKZXPk5eQSEBmAR+S6Cm5ANga2ArYI23RSatyotHErbeZPSfBxD4nSk5EREREZEs0u+fEWjsF2AH4gMTmjHESSwrPAnaz1v6QzgCl9cRT7DnxBMOsjkWpjDc22k9EREREZPNS+rLbWjsT+EOaY5E2Vp4dZuKSYnK2GkHfZjwuVtidk3+YRDAY5JsWi05EREREMl2qmzAOAbKstVONMYXAjUB/4EVr7VNpjE9a0aqsLJ4tXsj+o3doVnLi8ydW60rsMO+SXF1aRERERKRZUtmE8WBgGnBS8tADJDZk7Ac8bow5OX3hSWuKJId1+ZNLAzeV3x/cqA4RERERkeZKZbWuq4B3gWuNMQXAUcDN1trtgZuBc9MYn7QiT1UlPUMhwl5fsx7n9/m4avhIrhsxiuryihaKTkREREQyXSrJyRjgLmvtauAgEkPDXkqe+y8wLE2xSSsbumw594zejm0qVzfrcT5/gG3yCxiRm0e0ak0LRSciIiIimS6V5KSadXNVDgGWWWt/St7vBZSlIS5pC7HEUsKuv3nDujxeLxHHAaC2qjLtYYmIiIhI55DKhPjPgAuMMV2A3wGPARhjxgFXJ89LRxSPJ26bmZwARF2XIBCpqkpvTCIiIiLSaaTSc/JXoC/wDDAXuCF5/C0gi8QmjdIBeeOJ3g+aOSEeEskJQKy2Np0hiYiIiEgn0uyeE2vtXGPMKKCHtXZZvVNHAt9ba/XptIPybEHPSSyZnESrq9MZkoiIiIh0Iqn0nGCtdTdITLDWfgX4k0sNSwfkdet6ToKbLtiAur3hI0pORERERCRFze45McYMBB4E9gIa+xTbvLVopV3wOi54PRAINfuxNS5UxWLEo9rnRERERERSk0rPyZ3AbsA/ge+Bz4G/Az+R2B78qLRFJ63qp0gtby9bSjS3oNmPnVBRyQk//I/Krl1bIDIRERER6QxSSU72Aq6w1p5LYqWuWmvtxcAOwMfAEWmMT1rRx5WreWzhPGoLuzX7sf7kULBaTYgXERERkRSlkpzkAj8kf58KjAWw1saBfwD7piMwaX11iYU/hQnxdY+JRDSsS0RERERSk0pysoTEZosAs4AuxpjeyfslQM90BCatLycep8AfwOdv/vY3+4YCXDZsBMGFC1ogMhERERHpDFJJTt4CrjfG7GatXQgsIrEpYx5wElCczgCl9Vzepz8PjR1Hdm1Nsx/by+dlbEEh3orVLRCZiIiIiHQGqSQnVwFlwHXJ+5cB5yaP/QG4PR2BSevzezwAeANZzX6s4038KTka1iUiIiIiKUplE8ZVwM51Q7mstc8YY+YDuwLfWGs/TnOM0gocxyGYTDA8oVSSEx/EY7ixaLpDExEREZFOovmTC5KstUuMMSOAImCJtfb/0heWtLZIVdXa3z3BVJMTcKNKTkREREQkNSklJ8aYk0kM7+pX79hC4FJr7XOpBmOMuQLY31q7d71jjwEnbFC02FrbD0mbmso1a3/3ZmVDvHmPd7yJfTfdWGwzJUVEREREGtbsOSfGmLOAh4BJwJ+AQ4ATgWnA08aY36YSiDHmPNbNY6lvW+AmoHe9n+1SuYY0LlJZCYDjuni8zV9K2PElkhOiSk5EREREJDWp9JycC9xrrT1ng+NPGmMeBq4BXmxqZcaYvsDDwB6A3eCcD9gauN5auzSFWKWJaqsSyUnUdXCTE+Obw/UFcFwXJ67kRERERERSk8pqXf2ANxo59xwwpJn1bQ+Ukugh+XqDc8OALBKbPUoLirrw7vJlfF5RjuO4zX78lMJe/H7S13yWk90C0YmIiIhIZ5BKz8m3wH7Afxs4tx3wU3Mqs9a+QTLZMcZseHo04ALnGWMOARzg38AV1try5oW9Pr8/lbyscT6fd73bjiaeFeThBXPp1r0H53vA692496TuWEPngqEQAJFIbdqf29bS0V/Dzcn09kHmtzHT2weZ30a1T0Rk05qUnBhj9qx39zngzuSmiy8AS0ms2HUwcA7w5zTGtw2JhGQecBiJnpS/A6ONMftaa51UKvV6PRQV5aQtyPry88MtUm9LCwYTCUcoFCKUFSSwid6TUGjjOSnh7ES7o7FYiz23raWjvoZNlentg8xvY6a3DzK/jWqfiEjDmtpz8hGJHow6HuB04C8bHAN4nmbMOdmMa4A7rbVlyftTjDFLgC+BHdl4GFiTOI5LRUXV5gs2g8/nJT8/TEVFNfF4SjlTm1q1vIRcn5/sQJCqyloaSk28Xg+hUIDa2uhGQ7+K1qzmb0OH4a6pprS0snWCTrOO/hpuTqa3DzK/jZnePsj8Nqp9qcvPD6tHRqQTaGpysk+LRtEIa61LYuf5+iYnb/uRYnICEIu1zH8K8bjTYnW3pNjsOTy63Q4siseo2MycE8dxN0pOsh2HnYu6stDtmO2vr6O+hk2V6e2DzG9jprcPMr+Nap+ISMOalJy01a7vxphnga7W2oPqHd4xeatJ8mkUq60BIO5J8VupQBAAXwqT6UVEREREoImrdRljPjHGjG1OxcaYHYwxn6UU1TrPAgcYYy43xgxNTop/FHjWWjttC+uWeuI1tQA4KSwjDOAJJibE+1wlJyIiIiKSmqYO67obeMcY8z/gaeB1a+1GkzaSk+QPIjEpfjvgjC0Jzlr7ZnJTx8uTP2UkEpYrtqRe2Vi8NpGcxL2p9pwkk5N0BSQiIiIinU5Th3W9bIz5GLiKxIaJfmPMVGAuUAkUAv1JrK4VTZb5o7V2WXOCsdae0NC1gZebU480XzxS13OSWnLiSSYnqaxNLSIiIiICzfgsaa1dCZxjjLkW+A2JSfJDgAJgJTCNRA/LG9baVS0Qq7QgJxJJ3PpS6/vwJod1+VMbFSYiIiIi0vwvupOJx4PJH8kQTjQKgOtNLTnxBLMACKQ4Z0VERERERKNwBICKQIBPV62AwcPpmsLj4/ld+cOkr3E8Hibhsm7bGxERERGRptFuRgLAonCYe+bOZm5BUUqP9weDRF2XuOMQi8XSHJ2IiIiIdAZKTgSA2uQ+Jz5/MKXH++s9LpKcvyIiIiIi0hwa1iUAxKpr8Hs8+P2BlB7v8/k5c9BQAl4vtRXlZGfnpDlCEREREcl0Sk4EgHGrVvK7cTvzU0VpSo/3+nzs1qVrMjlZDb3SHKCIiIiIZLwmJSfGmOObU6m19snUwpG24onHAXBT7DkBiLouAaCmck2aohIRERGRzqSpPSePN6NOF1By0sF44w4AnkBqc04gkZwARKur0hKTiIiIiHQuTU1OBrdoFNLmPE4iOdmynpPEbaRKyYmIiIiINF+TkhNr7fymVmiM0QYXHZDXdcDjxRMIpVxH3QLC6jkRERERkVSkNCHeGPN7YC8gyLrd9rxADrAr0C8t0Umr8bkueMAT2IKek7pb9ZyIiIiISAqanZwYY64GrgbKk4+PJn+6Aw7wUDoDlNbhS84XIZCVch1RTyJPjVZXpyMkEREREelkUtmE8U/A00AX4E7gDWttT2BHYBXwc/rCk9Yyvbqab0tLcHLzU67jqVqH47/7hrLu3dMYmYiIiIh0FqkkJ32Bp6y1LjAJ2A3AWjsJuBE4JX3hSWt5fsUy/m/2DGKFqScW8UCIGsehJrnbvIiIiIhIc6SSnFSSWC4YYCYw2BgTTt7/Aa3s1SHV1CSGYvmDqU+IDwSDybpq0xKTiIiIiHQuqSQn35AY2gUwm8QiTfsn748E9Mm0g3Fdl0hNorfD7099n5MxPg9/GTiE7MXF6QpNRERERDqRVFbrugl4zxhTaK09zBjzNPCEMeZD4CDg1bRGKC0uWl3NM9vtSMxxmOO6a5cEbq5+Hti+ew/mlpWnNT4RERER6Rya3XNirf0E2AH4V/LQWcBLwAjgReCctEUnraJ6zWoA/F4v3lB2yvU4vkSu60YjaYlLRERERDqXlPY5sdb+BPyU/L0GOC2dQUnrqlldAUDcdfEGQhB1UqrHXZucRDdTUkRERERkY6luwlgA7Eti08WNel+stU9uYVzSimrWrAEg4ji4a/fUbD7Xn9zAMZrqwDARERER6cxS2YTxEBLDtxob/+MCSk46kEhlJQBR18Wp24wxBU7dZPq4khMRERERab5Uek5uBqYB5wOLSOwKLx1YbWUlQSAKOE7qyYkbSCQn3lg8PYGJiIiISKeSSnIyAjjCWvtpuoORthGpSiQnMdiinhOSPSdeR/mqiIiIiDRfKvuczAfy0x2ItJ0IHiaVlTLPibMlucnyrn3484+T+FdEO8SLiIiISPOlkpzcDFxtjBmU5likjazJyebWWZb/bGE9nqxsSqNRKpK7zYuIiIiINEcqw7r+APQFZhtjVgBVG5x3rbVDtzgyaTU1yd3hg6GsLaonEAwl66vd4phEREREpPNJJTlZlPyRDLE2OQmEtqieXCfGn/oPJJi1ZUmOiIiIiHROzU5OrLUntkQg0nYKZs7k6e13Yqa7ZatsZXk87NGzN6u1lLCIiIiIpCCVfU4GbOK0A6yx1palHJG0OidSS9Drxev1swXz4fGEElvfBD2pTGUSERERkc4ulWFd82DTn2GNMSXA3dbaG5pTsTHmCmB/a+3e9Y6NBe4GdgBWAROstX9vXsiyKW4kAoDj823B/vDgzUokJyGvF8eJ4/X60hCdiIiIiHQWqXzF/ScgArwLnAgckjz2Bomk5TrgceAKY8zpTa3UGHNe8rH1j3UF/gvMIJGcXA1cb4zR0LI0cqOJ5MT1p5KrruML56z9vWbNmi2qS0REREQ6n1Q+jR4DPN/A3JOnjTH3A+OstYcbY8qA04H7N1WZMaYv8DCwB2A3OH0aUAucbq2NAdOMMcOAi4HHUohdGhKNAuD4Ayllq3V8yZ4TgNo1a8jOL9jCwERERESkM0nls+jewLONnHsF2C/5+2dAU5YU3h4oBbYFvt7g3B7AJ8nEpM4HgDHG9GhqwLIZ0eTTm9zhPVVef4BYcnf42kr1nIiIiIhI86TSc7IKGENiuNWGxgAVyd9zgcrNVWatfYPEkDCMMRue7gdM3uDY4uTtAGB5kyJugN+f3knbPp93vduOxOskV+kKBPF6G591UnduU2VqXRc/EKuuTPtz3NI68mvYFJnePsj8NmZ6+yDz26j2iYhsWirJyTPAdcaYKPASiQShB/Ar4BrgAWNMEXAe8NUWxpdNYlhXfTXJ25Q30/B6PRQV5Wy+YAry88MtUm9LKvFA1eoK4rl5hMOb7z0JhQKNnrtx0UJKy0p4plthiz3HLa0jvobNkentg8xvY6a3DzK/jWqfiEjDUklOriCRjNyR/KnjAI8ClwG/AbYD9t3C+KqBDXcGrEtKNtsr0xjHcamo2HBj+y3j83nJzw9TUVFNPO6kte6W9mE0yjd2Kqcd/FvC1ZFGy3m9HkKhALW1URyn4QXbVrkeSqMRSsrWUFqa8kvUJjrya9gUmd4+yPw2Znr7IPPbqPalLj8/rB4ZkU4glU0YY8BJxpgbgX2AbiR2jP/cWjsXwBjzNtDXWrthr0dzLQT6bHCs7n7xllQci7XMfwrxuNNidbeUmppqALz+YKNJR32O4zZaLhBI9LxUVVV1uOehTkd8DZsj09sHmd/GTG8fZH4b1T4RkYalvHastXY2MLuRc6UpR7S+T4C/GGN81tq67cv3S1zCpjzfRNZXU5MYKRcIbNhJ1Xx75uWT7RtIdPHizRcWEREREamnScmJMWYOcJS19kdjzFw2vQmja61tyipdTfEocBHwiDHmNmAnEnNZ/pKm+gU4I5xL7phxzKtavcV1jcvOYmh+DitWrExDZCIiIiLSmTS15+Rj1q3C9TGb2SE+Xay1y40xBwETgO+AJcCF1tonWuP6nUW2x0O+348vsGVLCQPEPInxwLHq9M7pEREREZHM16TkpP6Gi9baE1oqmIbqttZ+C+zaUtcUCHmSSwSH87Y464x5fYCj5EREREREmi2lOSfGmDwg31pbbIwJAucC/YGXrLWfpDNAaVmO4xDyJno7vOFc4pspvzlxrw9ch3h1zeYLi4iIiIjU0+w1+YwxOwHzgbOThyYAtwJ/BD4wxhyevvCkpdWsWYO3ruckO2+L64v5E/muU6vkRERERESaJ5UFw28EpgMPGmPCJJKS+6y1XYBHgMvTGJ+0sOry8rW/e8Nbvmmi409s0OjWNr5fioiIiIhIQ1JJTnYGrk/uabIfEAaeSp57HtgmTbFJK6gqT6z6XBOPg8e3xfU5/uSk+qiSExERERFpnlSSEweo21zxF0AZ8E3yfj6gmdAdSE1NDVNXVzC3tqZJGzBuzuzCXvx1yg98GQykIToRERER6UxSSU7+B5xijNkVOBp401rrGmN6AJckz0sHUR0Mco2dygNlJWlJTpzsPIpraiiprk5DdCIiIiLSmaSyWteFwDvA74EVwA3J41NIJDsHpSc0aQ1VVYmOrnA4Oy3JSTAUXq9eEREREZGmanbPibX2e2ArEnuPDLHWzkyeOh3Yxlo7KY3xSQurSyKywtlp2Vmz0I3z2z79GBONpaE2EREREelMUtrnxFq7Gvh6g2MvpyUiaVW+mTP455jtWZiG3eEB8lyXA/r0Y3lMyYmIiIiINE8qc04kg8Qr11AYCJLlTc+fQt1yxJoOLyIiIiLNpeSkk4snJ67HfSl1om2kLjkJJTd2FBERERFpKiUnnZxTk9jJ3fGnKznJBSDk9eI4TlrqFBEREZHOQclJJ+fUJrasWbt54hbyZucB4PN4iFRVpqVOEREREekclJx0dsmd3J1AemaJ+LNz1/5eWVaWljpFREREpHNQctLJeeqW/A2E0lKf1x+gJh4HoKaiPC11ioiIiEjnkJ6JBtJhlTkO86oqiYVz0vbHcOvCBZSvqeCuNM1jEREREZHOQT0nndxHToyLpk5mRa/+aatzsethUU01NZFI2uoUERERkcyn5KSTq9shPhjMSludgVCirupqTYgXERERkabTuJtOrro6kZzUJRTpsFNuHlm9+xIpLoYd01atiIiIiGQ4JSed3J/Dufi3GcOq2pq01blLdhbD8/uzfNmytNUpIiIiIplPyUkn183nIzsYpDyUg5umOqNeX+JW+5yIiIiISDNozkkn5jgOWd7En4AvNz9t9cZ9iZw3VlmVtjpFREREJPMpOenEqspK8Xo8AHhzC9NWb8yf2NAxXq3kRERERESaTslJJ7Zm1UoA4q6LN5STtnrj/sSGjm51ddrqFBEREZHMp+SkE6ssKQGg2onj4ElbvU7dssS12udERERERJpOyUknVlVWCkCNC3HHSVu9blYYAG80mrY6RURERCTzKTnpxKqrq5lXVclK18WJp2utLljepQ9XTJvCv6PpW55YRERERDKfkpNOrCw7h4umTuZFSNsywgCe/CJmVK6hePWaNNYqIiIiIplOyUkntmbNagCyc9I3GR4gK5y7Xv0iIiIiIk2hTRg7sbrkISsrvclJtt/PL3r0IicYSmu9IiIiIpLZOkRyYowZCMxr4NSp1tqHWzmcjNF19mzu2mYMi9I4GR4gOxDkhAGDcFyXeCyGz98h/sxEREREpI11lE+N2wI1wBDWnx5R3jbhZAZvZSV9ssKU+HxprdeXV5So3+OhsrSU/O7d01q/iIiIiGSmjpKcjAastXZJWweSUWprAXDr9iVJE39WNlHHIeD1UlmyUsmJiIiIiDRJR5kQvy0wta2DyDR1+5C4ofQmJ3g8VCeHiq1ZtSq9dYuIiIhIxupIPSdLjDGfAsOBmcD11tr/pFqh35/evMzn86532xH4YjEAPOEcvN7N7xBfV6YpZWtcl3ygtqIs7c91S+mIr2FzZHr7IPPbmOntg8xvo9onIrJp7T45McYESSQklcCFwBrgj8DbxpgDrLXvN7dOr9dDUVF6V6iqk58fbpF6W0LQiYPXhz+/iHA42OTHhUKBzZapIZHAuDVVLfZct5SO9BqmItPbB5nfxkxvH2R+G9U+EZGGtfvkxFobMcYUAjFrbW3y8CRjzEjgAqDZyYnjuFRUVKUxysS3RPn5YSoqqonH07v6VUsJOS54wc3Op7o6stnyXq+HUChAbW0Ux9n0to0+TyI5Wb1iJaWllWmJt6V1xNewOTK9fZD5bcz09kHmt1HtS11+flg9MiKdQLtPTgCstQ19up0MHJxqnbFYy/ynEI87LVZ3uq2M1BKPx/HmF2022ajPcdzNlv/YE+KJaT/wu7327DDPR52O9BqmItPbB5nfxkxvH2R+G9U+EZGGtfuvIIwx2xpj1hhjxm9wagfg57aIKRNEIhEunzqZMyZ/j7d737TXX5FbwIzKNayq6hi9JiIiIiLS9jpCz8mU5M/9xpjTgZXAacCuwI5tGVhHVlZWCoDP5yMQDBOrjae1/nBOfvI6ZWmtV0REREQyV7vvObHWOsBhwDfAi8D3wM7AAdbayW0ZW0dWUZHYvzI3L5+WGPbcOxjgkB69KFi6NP2Vi4iIiEhG6gg9J1hrVwAnt3UcmWT19Gnctc0YlgGxFshO+gK/HjCI+as1rEtEREREmqZDJCeSftUrV9AnK0zMcVjTjMnwTeUmh3UF4+kdLiYiIiIimavdD+uSllFblhjWFfH5WqR+b34RACE3/YmPiIiIiGQmJSedVHR1BQCxQNM3X2wOX35XAHK8+hMTERERkabRJ8dOKr5mTeI2GGqR+v2FPQAIeb1UJSffi4iIiIhsipKTzqq6CoB4VnaLVB/IzSfmJCbaVyxd0iLXEBEREZHMouSkk/JV1yR+yStokfo9Xi9r6pKTZVpOWEREREQ2T6t1dVLlkVpWui6e5NyQlvBEWQXLVyzmAk+LXUJEREREMoh6Tjqpfy5eyBk/fU9kkGmxayzNymVm5RpWaJd4EREREWkCJSedUDwep6SkBIDs3MIWu05eQRcAVq5c0WLXEBEREZHMoWFdnVB5eRnxeByPx0MonE9NtGX2IhmYnUufHr3wzpnTIvWLiIiISGZRctIJrZw2jQnbjGVZPIaDF2iZXdyHBvzsMmAQc1ao50RERERENk/Dujqh8uJF9MrKokcoi2isZRITADevEIBAbaTFriEiIiIimUPJSSdUtXwZADU+H27LjOgCwFOU2IgxO7mksIiIiIjIpig56YRqVixP3GaFW/Q6/i69AMj3enGUoIiIiIjIZig56YScslIAYjn5LXqdUPd+AAS8XsqWLG7Ra4mIiIhIx6fkpBPyV1Ylfins1qLX8WVlUR6LAbBspm3Ra4mIiIhIx6fkpBPKTiYM3m69WvxapcnbkrlaTlhERERENk3JSSfjOA7Lq6tYFakl0Kt/i1/vQ38Ol06dzGzNORERERGRzVBy0smsWrWSa+1UzpzyI/4eg1r8elXd+zK7qpKFSzXnREREREQ2TclJJ7Nw4QIAevToRdz1tPj1irr2BmBB8roiIiIiIo3RDvGdzJzZswDoN2Aw0VjLD7XqXtiFQ3r0ondpWYtfS0REREQ6NiUnnUz2N1/zj9HbMaugqFWu17VLTw4YMAjHdaksLyOnoLBVrisiIiIiHY+GdXUygbIyuodC5OR3aZXrZXXrTUUshtfjYf7/vm2Va4qIiIhIx6Sek04mPxoFvx9/74Gtc0GPh2V4yQeW//wTW+93QOtcV6QDcxyHRYsWMm3aVObMmcXy5ctZuXI5tbW1+HweXNdDYWERXbt2Y+DAQQwbNpytthpOXl5eW4cuIiKyRZScdCLL58ymyO/HcV2yho2hppWuW56dD5E11CzQpHiRxixbtpTPP/+UL774lK+//orVqyua9Xiv18vIkaPYaadd2H33Pdhuu3H4fL4WilZERKRlKDnpRGZ/9gldgWXxOPFgLrTChHiASPc+UDyDQElJq1xPpKOorq7ivffeZeLEl5k0af1hj8FgkGHDDMOHG3r16k337j3Izc0hLy9MaelqVq1axYoVK5gzZzazZs1g6dIl/PzzZH7+eTKPPfYQXbt2Y7/9DuSggw5h++13wONp+dX5REREtpSSk06kfNpUugLlObk4rZSYAASHj4PiGfTGw5rSEnKLWme+i0h75LouP/74Pa+99irvvvtvKisrAfB4PIwePYbdd9+D3XYbz4gRWxMIBNZ7rN/vpagoh9LSSmIb/Btetmwp33zzFV9//SUff/whq1at5IUXnuWFF56lf/+BHHnkrzj88KPo3r1Hq7VVRESkuZScdCKhZcvA6yXaeyCtOdgju/9WrIrFKPT5mP7JR+xwxK9a8eoi7cOKFct5883XeO21V5g3b+7a4/37D+Dww3/FYYcdQa9evVOuv2fPXhx22JEcdtiRRKMRvv76K959923ee+8/LFw4n3vuuZP77pvA+PF7cuSRv2H8+D03Sn5ERETampKTTqKkpIRvly0lVlBAzrg9W22+CQAeD68E8vhs0iccPXobdmjNa4u0oWg0wieffMTEiS/zxRefEY/HAcjKCnPAAQdx5JG/bpEhV4FAkPHj92T8+D255JIrePfdd3j11Zf48cfv+fjjD/n44w/p2rUbhx56BEce+WsGDx6S1uuLiIikSslJJ/Hxxx/wbPECvg4P5+SivhBtvWFdAEXb7kb1tx/y9ttvcc45f8Pr1SrWkplc1+Xnn6fwxhuv8s47b1FeXr723Nix23Pkkb/mgAMOIicnt1Xiyc7O4cgjf82RR/6aOXNmM3HiS7zxxmusWrWSJ554hCeeeIQxY7bjqKN+06pxiYiINKRDJCfGGC9wNXAKUAR8BpxhrZ3VpoF1IK+++hIAu+xxAJFWTkwAho3akaxwDsuXLWXSZ5+w4557t3oMIi3FdV1mzZrBhx++zzvvvMWcObPXnuvevQeHHnoERxxxFIMGtW0PxZAhQzn//Is5++zz+fTTj5k48SU+++wTfvzxe3788XtuvfVG9t57X/bb7wB2330PwuHsNo1XREQ6nw6RnABXAn8BTgSKgduAt40xo6y1kTaNrAOY9PqrFBUvIuAPsPX2+xBtgxgCgSD7b78He5YWU/7kYzjj91TviXRoVVWV/PDDd3z11Rd8+OH7LFy4bqnsUCjEPvvsz+GHH8nOO+/W7pb0DQQC7Lvv/uy77/4sX76MN998jYkTX2bBgvm8/fabvP32m4RCIXbbbQ923308O+20K/37D9CKXyIi0uLafXJijAkCfwMustb+O3nsaGAx8Cvg+TYMr90rX76Mmlde5szBW7F7fgFxTw64bpvEsvX4X9L3v08RwMNHd9/Ovn+9sE3iEGmueDzOggXzmT59KtOnT+P77//H1Kk/E4vF1pYJBoPsuuvu7LPP/uy334EdZkPEHj16ctJJp3Hiiafy008/8P77/+X999+luHgRH374Hh9++B4AvXr1ZocddmLkyFGMHLk1xozQEDAREUm7dp+cAGOBPOCDugPW2jJjzHfAnig5aZDjOPz07zepePkFevn9lMRiFB1+IpVtlJgAZPcbyveFvdipYjl9pkzhP1dfzs5nnEVhz9RXKBLZUo7jsHp1BWVlpZSWllJWVsayZUspLl5IcfEiiouLmTdvLjU11Rs9tk+fvuy4487sscde7LbbeLKzc9qgBenh8XgYM2Y7xozZjr/+9UJmzLB89NH7fPPNV/z00w8sXbqEN998jTfffG3tY3r37kP//gPo168//fsPoGfPXnTp0jX504XCwiL8/o7w34yIiLQXHrcNP6w2hTHmV8DLQLa1trre8ReSxw5tZpVz4nFncEXFxh80tsQXP8/n4/vup3ftanABXBIDIBK3rguv+wqIJIdFbB+vZCunFg/rnn8PrO3VmEgOlckatqeWUW7tujJr6wZceMUJUuZ6cV2Xcd4Yu1JDD+LkJz8UlMdivLbjyazov/sWtdHjAZ/PSzzupNz54sZj7PbWBexGFQAx12FpzOUtN4uZwXx8wTC93Si7O2tg7bPjwfUk2u4CP/pzmecLA9A1XsvuscZ30p7iy2F2smxRPMKeG5Vd15DpvjAzA7nE43Hy3Rj71iu74b+Tmd4sfvZlg+uS48Y5IN54DHM8QX70JmLIch0OcRovO98T5DtPoqzfdTlsbdmNn/BF+PnGm5gT4HFdjnJXN1aUJR4fX3qy8Xo9OI7LEU4FjQ2qW4GXTwmvvX8olQQbqtSFErx8WK/sIVSRzcZzmlygwvXyX7LWHjuIanI3qjdxvxIP77jryu5LDUWehsvW4OFNJ7T20D6+KF3d+PolXQfXiRONx3mubA3xSDXxaA375oTp7fc22Jvo4vLIgnlr7x/Yqy/Du/UhlFtEKL8r4cKeBLLW9Rz8tPsJuL7Ev7kB0z+iaHnjU+Km7PpH4oFE+/rN/IyuS6Y3WnbqTr8nmrxO3zlf03PJzzhxF7eB12T6Dr+hNrsQgF7zJtFzwfeN1jtjuyOozusOQI+FP9J77reNlrUj9mPeymJWzPyWrot+ZOSaFcRqqxos+87ypSxKJnLDc3LZq3tPvL4AHp8fb/LH4/WDx8OXjp/FniBen4/+XtjZE8Hj8eLxesBd/0/5O18OC32J56yXE2GX+JrkmXpDzZK//ujLWfse0d2Nsnu0fP1y9Uzx5zDbl/h3VORE2TNa1ujzMN2XjfUnEtB8J8Y+0dJGy870hZnqT7xuOW6c/SPrNqH1eDzrvafM8YWZnCwbcuMcHGl8w9oF3iy+DyR65fyuwy8jqxotW+wN8b9AfuKarsvhkZWNll3qDfJ1oGDt/cNqVzT6HrHSG+DzQOHa+4fUrlzvPWJm76FcfdXZhALpTUzz88P4fN65gJaXE8lgHeErrboZmbUbHK8BUtrNz+v1UFSU3m847370efae/yM7deveaJkHvvuY1clhIPsNGMy4Hj0bLfvQT1+yMpKYTrNXvwGM6dWn4YIeeHTqJIqTHwZ279OPrfr0A/zUxON8QQEvjruM8iIDaxquorVN2vsJJn1/N0es+JgBQR/9AhCZM40FJYn/OLsUFLHjMNPo43+a/SOzViwHIJSXzy5m60bLzpg7hdnLlgAwLCeXXUZu02jZ+QumMXNJMQD9w2F2GTWm0bLLimcwt3ghAD2CIXbddrtGy5Ytm828hfMAKPAH2HXsuEbL1qycx7x5cwDI8nrZdfudGi37eclK5s9JfAD2ALvusEujZSeVlvL8LLv2/k7b70SwkTk/UyrKeWbGtLX3x40dR56/gf0wPDBjzWqenP7z2kNjR29Ht1CowXoXVFfx2NSf1t7fZtQY+obDDZZdVlvDw5M/WXt/65HbMKSRIURl0QgP/vjp2vtbma3ZOi+/gZIequMeHihelwiM6T6CsQWFDdbruPDYsJOgYACeosGMLn6ZnVd+A7EKKKmAkrnrlb+2+8lEfYnn6fTp0xi39OMG6wW4pesfWZPcY+Sk6TPYcfF7jZa9s/A3rMpKlP3DzFnstPDdRsvel3cYi3MSZX8zZy67zmu83keyD2RufqLsYfMWsPucxss+HdqT6UX7wMh9ODD33+w78xESHdob+9bNZtGqpVBVQt+sMAc0+p7o8s2sn1lclvggPqCoK7sNHZbISOIbl540+0fmrEq8RxQVFLLLsBGNxjt59o/MTr5HZOXls/Mm3iPs3MnMqvcesfMm3iPmzf+ZWfXeI3bexHvEkoXTmFXvPWLnTbxHlBTPYFa994idN/EeUbVyFrPqvUfsvJn3iFn13iN23tR7RFkpz9R7jxi3mfeIJ+q9R4zd4D3ivfef5YPDD+HYAxtvh4hIYzpCz8mvgZdouOckZK09oplVtkjPybQFy3n7oSfIX5NYNtT1eNZ+T+fiAY+HH4v6EfMmv1mtKqFbbWJnaDyJ83W9BHg8TC/qR9Tnx+Px0KuylK41FXjw4CbLrv0W0ONhTlFfIv4gHo+HrlVldI1HcPoMwz9qd7zh9I1793g8BAN+ItHYRj0JqYrOm4I7axLL4i4lLsQiNRTUVrLV6hV4kt8Ne9zEt8QeF/DAvOwiloUSH1TzozVsvWZFYxGzILuQJVmJD6q5sVpGrV7WaNnF4QKW5HbBcRzC0QjbVCxpuKQnUXZRdhEAoXiUMWXFjbZxeVY+83O7AhBwYowtXdRIBLAilMe85LfZXsdhXMn8xsKlJJTLnPxkguu67LBybsNlgfJQDrMKe+P1enEch3HL56zXa1ff6kAYW9R37f3tVs7F5zTwadHjoTKQxfQu/dce2nbFPIJObOOyQLU/xNRuA9feH7VyHlnxhpdniPgCTOm+7svREavmkx3d8PuJxD+FqNfH5J7D1pUtXUh2TRX1v3f3eLx4fX4IhLDDdsEfDOEPZjFw8XTyayvxh8J4vRtPWl+022/W/t51+peESxp/nRftchQk6yia+S05Kxp57YDFOx6GE0gkcYWzvyN32ZxGyy4Z9wviocR3NIXzfiJ/6Swcx6WhLrKlYw8klp34e89f8DP5i6ZtVKbOsm33JZqb+H4nb9F0ChZMabTs8lF7ESlI/F3mLplF4dwfGi27cuR4aop64Thx/PMm02X2JOKxKE4suvbWicdwXYc5RX0pDWbjxOMUVpUyqHRxshfLXfseU3c7J7cbK4OJL5UKI1UMX5NIPtZ/GhJ35m7wHjFydWPvEbAgXMiSrMT7ZOI9YnmjZRdl5VMcTvQuZMcjjK5o7P0EFmflsTBcCEAoHmNs3fuJp17PSTL2ZaFc5iXfTwJOnO3LFzda74pgDnNyEq+bz3XYYRPvPauC2czKSbz34LrsXNbwew9AWSALm7sukdypbBGeRt7nK/whpuX1WHt/XFkxftdZ277yoaM4/6xjG+mrSp16TkQ6h46QnOwEfA1sZa2dXe/4Z8CP1tozm1nlnHjcGVxSUpnOMPH7vRQV5VBaWkks1vpL9baGTG+j2tfxZXobM719kPltVPtS16VLjpITkU6gI6zl+iNQAexdd8AYUwhsD3za8ENERERERKSjafdzTqy1tcaYe4FbjTErgHnA/wELgVfaMjYREREREUmfdp+cJF1FItaHgTDwCXCQNmAUEREREckcHSI5sdbGgYuTPyIiIiIikoE6wpwTERERERHpBJSciIiIiIhIu6DkRERERERE2gUlJyIiIiIi0i4oORERERERkXZByYmIiIiIiLQLSk5ERERERKRdUHIiIiIiIiLtgpITERERERFpFzyu67Z1DK2t2nXdLMdJf7t9Pi/xuJP2etuTTG+j2tfxZXobM719kPltVPtS4/V68Hg8NUA47ZWLSLvRGZOTMiAELGnjOERERKTpegO1QGEbxyEiLagzJiciIiIiItIOac6JiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaRf8bR1AJjDGeIGrgVOAIuAz4Axr7aw2DSwNjDFXAPtba/eud2wscDewA7AKmGCt/XubBJgCY0wX4CbgUCAf+Am4xFr7WfL8WDpw+wCMMT2A24GDgTDwMXChtXZq8vxYOngb6xhjhgPfAWdZax9PHhtLB26fMWYgMK+BU6daax/u6O2rY4w5HrgEGALMBq6x1r6YPDeWDtpGY8zewIeNnJ5rrR3SkdsHYIwJANcAx5H4f+8H4GJr7RfJ82PpwO0TkbajnpP0uBL4C3AqsCvgAm8bY4JtGtUWMsacB1y3wbGuwH+BGST+07kauN4Yc2KrB5i654FdgN8DO5L4YPuuMWZEhrQP4HVgKHAIiTZWA+8ZY7IzqI11H5CeAXLqHcuE9m0L1AB9gN71fp7JkPZhjPkj8CjwILANiX+Xzxtjds2ANn7B+q9bb+BAIAbclAHtA7gCOInEl3LbAdNJ/L/XJ0PaJyJtRD0nWyiZgPwNuMha++/ksaOBxcCvSPyH26EYY/oCDwN7AHaD06cBtcDp1toYMM0YMwy4GHisVQNNgTFmK+AAYPd63/CdS+JD/LEkPsR32PbB2g/nc4EbrLU/J49dT+KbzVHA/nTwNtZzLbB6g2Md+m80aTRgrbVLNjyR/NKgQ7fPGOMBrgfutNbenTx8vTFmPLB38qfDttFaGwGW1t1PJtF3Ai8ne74upQO3L+kI4Flr7bsAxpi/kUhUdgWG0/HbJyJtRD0nW24skAd8UHfAWltG4tv4PdsmpC22PVBK4tvbrzc4twfwSfI/nDofACY5lKi9Wwn8EphUd8Ba6wIeoAsdv31Ya1dZa4+pl5j0BC4AFgFTyYA2Ahhj9gT+DPxpg1OZ0L5tSbxWDcmE9hlgEPBs/YPW2oOstTeTGW2s70ygP/DX5P1MaN8q4FBjzCBjjI91Xwr8QGa0T0TaiJKTLdcvebtwg+OLgQGtHEtaWGvfsNYea62d08DpfjTcVugA7bXWlllr/22tra07Zoz5LYkhUP+hg7dvQ8aYf/L/7d1/yJ1lHcfxt1akE0wsVy2CitgXpY0Y/Vq5/LFsIJgz1CVolJK1YQiGUVgrzEUkhZa0oKL5Iy2M0VSSImm11KdfulqKX1KDLEpDkAfnlq1Of1zXmafTk2w9P8593b5fcLhvrvOc89wfnpvz3N9zXfd1lW9wzwIuyMzd9CBjRBwFXA98ODPHszSfj9JzsjgidkTEoxHxs4hYU5/rQ76ldXtERPwgIh6LiJ9HxGm1vQ8ZAYiIw4DLgKtGesL6kO9iyjC1P1CKks8CZ2fmQ/Qjn6QJsTiZvUV1+/ex9r3AYQt8LAthETNnhQbzRsTbKOPet2XmrfQsH3AVZcz3DcD3ImIF/ci4Gbg7M2+c4bmm89WhokspkzV8AjgV+CVlPP9qGs9XHVm311F6T94J/BDY1qOMQ+dRJqX40khbH/IdS+lhX0u5h++bwHURsZx+5JM0Id5zMnt76vaFI/tQPoB3L/zhzLs9lKyjhv9smsobEadTLoymgHNqc2/yAYzMznUhZSz4RTSeMSLOowwbWfY/fqTpfJn5dO0Z2jfSw/friDiWMjyv6XzV03V7ZWZeW/d31uL5EvqRcei9lHtNHh9pazpfnU3uW8DqzNxRm38VEcdR7gNrOp+kybLnZPaGXddLxtqXUMb4980jzJwV4M8LfCz/t4i4CNgKfB84NTOHhWXz+SJicUScU8eBA5CZ/6Lcw/AK2s94PvBS4JGIeDIinqztX42I+2g/H5m5e3ToYbWLZ4bLNJ2PZz4bd4213we8mn5kJCKOAd7Kf0+M0nq+NwEvoPTojZqi9Pq1nk/SBFmczN5vgGnK7DLA/vHwK4AdM7+kaT8FVo1e+AKrKTMLPTahYzooEbEe+DJwDbBu7CKw+XyUi4AbgROGDXW2oBWUAqX1jOdShpS8fuQBsJEyBKrpfBGxvBZdx4899QbKxXvT+ap7KbOsvWWsfRnwIP3ICKUwGVDWGRrVer7hl3LLx9qXAb+n/XySJuiQwWAw6WNoXkRsoswadD5l4bQrKTPRLKtTSjYrIrYArxouwlhnWnmAso7G5ynfoG0GPjQyPKOzoizY9zvgNmDD2NPDoQjN5oP907TeTjkHP0AZF34ZsIZyIb+XxjOOi4gB8P7M3NKDc/RQyjoZRwDrKTPMXUg5X98IPErD+YaiLPD6Ucpn5y8o6w5dTrmIvZ9+ZNwInJuZS8fa+3CObgeOoZyXf6IMX/s4cDzwMA3nkzRZ9pzMjY3ANyhrg9xJmcFkTeuFyUzqt15rKFOB3kNZXOvShv7hnEkZjnAG8Jexx9U9yDecGnkdZerO71Au/I4GVmXmH/uQ8dm0nq8OwTuN8ne7mdLL8GbglMzc1Xq+ocy8grLC+CZKMXIW8O7M3N6XjMDLKFPu/ofW89Vz9HTKZ8wWytTsJ1PuQZlqPZ+kybLnRJIkSVIn2HMiSZIkqRMsTiRJkiR1gsWJJEmSpE6wOJEkSZLUCRYnkiRJkjrB4kSSJElSJ1icSOqkupikJEl6DrE4kdQ5EfEu4Nq6f2JEDCLixMkelSRJmm/Pn/QBSNIMLhnZvwdYSVlFXJIk9ZjFiaROy8xpYGrSxyFJkubfIYPBYNLHIEn7RcR24ISRppOAHwMnZeb2iPg08B7gY8AVwGuBB4D1wAC4GlgOPARcnJl3jLz364DPAW+vTXcAH8nMh+cxkiRJOkDecyKpazYA99bHSuDIGX7mlcAXgU3A2cDRwHeBm4CvUYqXQ4FvR8ThABGxFLgLWAy8D7gAeA1wZ0Qsnr84kiTpQFmcSOqUzLwfmAamM3Oq7o9bBGzIzJsy8xbgK8AS4DOZ+fXM3AZ8EngJEPU1nwL2AO/IzK2ZeTOlV+Zw4NJ5DSVJkg6I95xIatVdI/t/rdvRe1Mer9uj6nY1ZXjYUxEx/OybBnYAp8zTMUqSpINgcSKpSfVG+XFPPctLXgysq49xf5uTg5IkSbNicSLpueIJ4EfAF2Z4bt/CHookSZqJxYmkLvon8Lw5fs+fAMcBOzNzH+xfhf4G4EFg5xz/PkmSdJAsTiR10RPAyog4GXjRHL3n5cDdwG0RsRnYC3wQWAucOUe/Q5IkzYKzdUnqomuAfwC3U2bTmrXM/C2wirIWyvWUqYdfDqzNzK1z8TskSdLsuAijJEmSpE6w50SSJElSJ1icSJIkSeoEixNJkiRJnWBxIkmSJKkTLE4kSZIkdYLFiSRJkqROsDiRJEmS1AkWJ5IkSZI6weJEkiRJUidYnEiSJEnqBIsTSZIkSZ1gcSJJkiSpE/4Nit+4PwOLXecAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.25it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 47.000 - 52.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 16.470 - 46.990) R-Score = 1.0034 & Fano Ratio = 0.0404\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 53.000 - 79.990) R-Score = 1.0034 & Fano Ratio = 0.0398\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACckElEQVR4nOzdd3hT5dsH8O852eketIW2QFmHDQJuEBAXDkR/LtxbUQQHCgouBFFeBAQcbBAQFVDcGxeKC0QZ7aGlAyilpXtk55z3jyRQRmkb0pam3891cTXJOXnO/TSlzZ1n3IKqqiAiIiIiImpqYlMHQEREREREBDA5ISIiIiKi0wSTEyIiIiIiOi0wOSEiIiIiotMCkxMiIiIiIjotMDkhIiIiIqLTApMTIiIiIiI6LTA5ISIiIiKi04K2qQNoAqUADADymjgOIiIiqrvWAOwAIps4DiJqQEILrBBvVVXVqCiB77coCmiIdk8nwd5H9q/5C/Y+Bnv/gODvI/vnf7uCINgAmALeOBGdNlriyEmeoqgpxcVVAW1UqxURFRWC8nILXC4loG2fLoK9j+xf8xfsfQz2/gHB30f2z3/R0SHQaATOeiAKclxzQkREREREpwUmJ0REREREdFpgckJERERERKcFJidERERERHRaaIkL4omIiIgO27JlSxg8WxXzQ1uiwFIA5PXv37+irk9gckJEREQt0pYtW0QAzwiCeLsgCDoAQlPHRBRkVFVVnVu2bHkHwMv9+/evdRs/JidERETUUj2j0WhHh4dHOfR6o0UQhOAtQEPUBFRVFRwOm7m8vGS02+0CgKm1PYfJCREREbU4W7ZsCRcE8fbw8ChHWFhUUVPHQxSsDAaTFUBMaWnR7Vu2bHm9tilenFtJRERELVGCIAg6vd5oaepAiIKdd2RSB8/arpNickJEREQtkQhA4FQuoobn/X8moA65B5MTIiIiIiI6LTA5ISIiIiKi0wKTEyIiIiIKmLlzZ7UZOfKyXk0dR12lpe0yfvfdNxFNHQd5MDkhIiIiohZr4sQnOu/atSOkqeMgDyYnRETNgNUF9H0nBO1eB6zOpo6GiCiYcE+E0wnrnBARERF5KYoCi8XSZB/ems1mRRTrd/mBAwf0/9//bsz78cfvY5xOp/j662+lmc1mZd682Un//fdPeFVVlSYiIsI1dOhFRePGjc9NTd1leuCBO7u/+ebi1N69+1oA4NFHH+q4Y8d/4V999eM/Wq0Wqqriiisu6nPHHXfn3njjLYXHXrOw8JB21qwZSVu3/hXhdruFLl26Vj7++IR9HTt2svvOWbjwzfjPPtsQX1FRoe3UqXPVxInPZfuOnyjmpKRkx4IFb7T+6aeNMSUlJbrExETbbbfddeCyy64oBYC1a9+LWbNmZeu77ro3d8mShUllZaW6bt16VEye/GL28uVLEn788bsYrVarjhhxbf6DD445CAB2u12YP392m02bfo4qLi7SG40mpU+fvmUTJz67Nzo6xj1y5GW9CgsL9R988G7r7du3hS1a9I5cUlKsmT9/TuJff/0eWVFRoU1J6Vh1//0P5Z5zznmVvr5t2LA+evXqFa0PHTpkaNu2rXXo0IuLlix5O3nTpr+3+POaiKLoV/+CEZMTIiIiIngSk5tv/l/XtLTUJpvi07Vr98p3310n1zdB+eabL1pNn/5autvtEjp37mK/+eb/dY+IiHS++uqc3WFhYe6fftoYuWjRW8ndu/esuvTSy0tjY2Mdmzf/Gt67d1+L2+3Grl07wux2u/jPP1tCzjzz7Kpt27aaKyrKtRdeeHHpsddyuVwYN250F0BQX3jh5T0xMTGuefNmJz3xxCNd1q37dDsAFBYW6nfs+C9s+vRZ6Q6HXXj55RdTXn75xfZLlqyUa4r50Ucf6piZucf8yCOP7U1J6Wj76qvPo6dNe6GjKIoZl1wyvAwAiooK9Z988lHc1KkzMiyWKvHZZyd0vuuuW3oMG3Zx4ZtvLkn94otPYlatWp44ePDQ0m7dethee+2VpD/+2Bw5YcKk7OTktnZZlk0zZ77cfsGCN9o8/fRz+xYvXpl69923dD///MHF998/Os/tdmPs2Ae7OJ1OYcKEyVmtWsU533//3biJEx/vMmfOm2l9+/azfPfd1xGzZr2acvvtd+8fMmRY6R9//Ba+ePHbyaf6mvjTv3r9kDQTTE6IiIiIDmuedU8GD76wqG/ffhYAsFqtwoUXXlx06aXDS5KT2zkAoH37ewrWrn0vISNjt+nSSy8vHTDg7NKtW/8KB3Bw27atIRqNVu3SpWvlX3/9EXbmmWdX/fLLT5GdO0uVrVrFuY691q+//hyek5NtWrbs3R2dO3exA8CkSS9kL1++OKG4uEgLABqNRn3ppVezIiIi3AAwfPiVh1atWp5YU8y7d6cZ//77z8gXXpiWcdFFl5YBwJgxj+ZlZmaYV69e0dqXnLjdbuHxxyfk+N6Y9+rVp3z37rTQJ598Zr8gCLj//ofzPvhgTev09N2mbt162Lp16141dOiwknPPHVgJAMnJ7RzffvtVeXZ2pgkAYmNbuURRVE0mkxIVFe3euPHb8KysTPOiRSt2+q4xefKLe3fvTgtZvXpFQt++/TLfe291wjnnnFd8770P5gNAp06dD+3fv8/w6acb4k/lNfGnf6fyM3O6YnJCRNQMCAD6x7uh02ogCE0dDVFwEkUR7767Tm5u07oAICkp+fB0KpPJpN52210FX3zxadSqVStCDhzINeTkZJlLS0t0brciAMCgQUPKnn/+mVZWq1X444/NYT169KxITEy2/fvv1nAAB//664+ICy4YUnyia6Wn7zaZzWa3LzEBgPj4BNeECZP3++5HRES4fIkJAISFhbsdDsdRHasesyynmQBgwICzK6uf06tX34p33lmSVP2xTp2OXNdgMCitWsXbBe8vRqPRqAKA3W4XAeCaa64v/uWXn8JmzXo1MTd3v2H//n2mAwdyjV27djvqOj4ZGekmk8nsrv7GXxAEdO/es3Lr1r/DASA7O9M8cOAFJdWf16fPGZXHJif1fU386V8wYnJCRNQMGLXAkkttiIoKQUkJ4Drus0wiCgRRFBEaGqo0dRz1ZTAYD8dssVjEBx64U7LZbOKgQYNLLrlkeFGfPn33jhlzf1ffOeeee36FTqdVfv/917B//tkSPnTosOJ27drbP/nkw4R9+3L02dmZ5hdemJZ5omtpNFpVqOVTElEUax2Bqh5zTYvSFcUtaDSaow7qdLqj7otizbFMmfJs219//Tl6yJBhReecc35Z167d81avXpFQVHRIf6LzVfXEXVMUBVqtVvVcT1RVtfYBtvq+Jv70LxgxOSEiIiIKIj/9tDE8KyvT/OGHn/8bFxfvAoCSkmJNWVmZ1pcE6PV6tU+fM8p//vnHyPT03aETJz6bk5SU7BAEQX3zzXltWrduY6u+uL26Dh062qqqqjSZmXsMHTp0tANAUVGhdtSoa3tOnToj3Z+Yu3TpagWAv//+I9Q3rQsAtm//NzQxMdnqT5vFxUWab775stWECZMyr7rqmsMjHfv37zUajaZqidGRN/+dOnWxWiwWTWrqTmP10ZNdu3aGJiW1tQFAu3btrbt27QwFUOA7vnPn9pOuU6rLa0IeQTskRERERNQSxccnOADgk08+itm3L0f/xx+bQ8ePH9vJ7XYLDofz8Dvx884bWPrDD9/HhoeHuTp27GQ3GAyqJHWr3LTpp5hzzjmvtKb2Bw0aXJ6S0tEyZcrklC1b/gpJS9tlfOGFSe0jIiKdffqcYfEnZknqZuvbt1/Z3Lmz2n733dcRGRnphvnz57TesuWvyBtuGJXvT5vh4RFuk8ns3rTp58jMzD2GXbt2mJ5//pl22dlZZqfzyPfBaDS6c3P3GwoK8rWDBw8tS05uZ50y5dkOv/32S9ju3WnGl156ru3+/XtNN910cz4A3Hzz7Xl//PFb1JIlC+IzM/cY1q17P+bzzz+NO1ksdX1NiCMnRETNgtUFjFhvhiACn48EdPxTRkQ16NdvgOXuu+/ft2HD+vjVq1ckRkVFOwYNGlIcG9vKIctHdiIbOvSisjlzZgo9e/Yp9z12xhn9y7dv/zd88OALS2tqXxRFzJgxO2PWrBnJEyc+0RkAevToWTFr1rx0g8Hg9zDAK6/Mypwz5/8SZ82a0d5isWiSk5Otzzzzwp7hw6+oMZaT0Wq1mDz5xcy3356XdM89t/YICQl19ezZu+LWW+/MXbfuvdZVVVViSEiIcvXV/ytYunRB0rhxD5nWrFm/a+7ct3bPmjUj6cUXJ3d0Ol1CSkoHyyuvzNrdv/9ZVQAwdOhF5QUF+Tnvvbc6YeXKZYkpKR0sl146/NCXX35WY4JS19eEAKEuc+aCTKbbraQUF1cFtFGtVvTOBa+Cy9XspqrWSbD3kf1r/oK5j1YXMOiDMADA5lFV0AnB1T+fYH4NAfbvVERHh0CjEbMAdAhEe1u2bOkqipqv4uISK/V6Y1DuekQNY/PmTaGxsXHO6hsCvPXWvIRvvvky9qOPvtjRlLGdrhwOm7GgIDdUUdyX9e/fP+1k555WIyeSJHUBsBXAGFmWl3sf6wvgdQADABQBmCvL8symipGIiIiIWq7ff/8t4scfN0Y/9dQz2e3atbfv2rXT9MknH8UPH37loaaOLRicNsmJJEk6AKsBhFR7LAbAtwA2AHgQwDkA3pQkqUiW5WVNEScRERERtVwPPTTugNVqFV95ZWpKRUW5Njo6xnH11dfm33ff6KCt2t6YTpvkBMCLACqOeex+AHYAo2VZdgFIlSSpM4AJAJicEBEREVGjMhgM6jPPPL8PwL6mjiUYnRa7dUmSdAGABwDcccyhQQB+9iYmPhs9T5FOuisCERERERE1L02enEiSFAlgJYBHZFk+NgNNwvFZ6QHv17YNHBoRERERETWi02Fa11sANsuy/O4JjpnhmdZVnW9HDeOpXFSrDWxeptGIR30NNpUlJfhl9mtod/456HX5iKYOp0EE+2sY7P0DgruPOgA9YhVoRBFarQhtkG4lHMyvIcD+ERHVpkmTE0mSboNn6lavGk6xAjAc85gvKfF7L2BRFBAV1TBbSoeHmxqk3ab23bQX0G7vXlizsqAZfhnCoyKaOqQGE6yvoU+w9w8I3j5+cYvvVnD2r7pgfQ192D8iohNr6pGTuwHEA9gnSVL1x9+WJOlJADkA2hzzHN/9XH8vqigqysv9KmBaI41GRHi4CeXlVrjdwbd3vXt3BiCIMGk0+HPDp+g74pqmDinggv01DPb+AcHfx2DvHxD8fWT//BcebuKIDFEL0NTJya04/iPAdADPAXgfwCgAD0qSpJFl2e09PgyALMtywalcuKGKX7ndSlAW1opUFMD7R6FQloOyjz7B+hr6BHv/gODvY7D3Dwj+PrJ/REQn1qQfQciynCvLckb1f95DBbIs5wBYCiAcwBJJkrpLknQngEcBTG+aiFum0oMHEabx5LGTU3fgH5eziSMianlsLmD4ehPOX+qpFk9E5DNw4ID+a9e+F1PX83/88fvwa665vOeQIef0e/XVaUkNGVtdzJ07q83IkZfVNMXfL/X5nuzfv1f/yScfRQXy+uS/ph45OSlZlgskSboUwFx4KsfnAXhSluUVTRtZy3Jg1w5oAZQ4HNhdVYn2h05p0IqI/KACyKsSj9wJ0gXxRFR/69d/9m94eIS79jM9Fi16Kyk+PsH++utv7g4NDavz85qT+nxPXnzx2fZxcXGOESOuKWnouKh2p11yIsuycMz9vwCc20ThEIAijQbP/bsFRlEDACgoONTEEREREZFPfHxCvcZTq6qqNGeffW5p27btHQ0VU1Or3/dE5cc9p5HTLjmh009xaQlKnE7Eh5sxMioa0VZrU4dEREREXgMHDug/btz47Ouvv6lo0qQn2yuKIkRFRTt/+OH7GLvdJvbu3bf86aefy4mPT3ANHDigPwB88MGa1h98sKb1u++u256c3M6xaNFb8V9++VlcWVmpNiGhtf3660cdvOaa64oB4Lfffgl76qnHutx++93716//oHVsbCv71KmvZt522w09R4267cDnn38Sp9frlOXL39slCAJmzXo16c8/N0e6XC4hJaWj5aGHxu7v27ff4Z2I1qxZGbt27XsJJSXF+j59ziiLi4s/aZJ03323Sz169K4oKSnW/frrz9E6nU658sqRBZdcMrz4lVdeap+ZmRGSkNDG9tRTz2SfcUZ/S/XvycUXX1Z6++039GjfvoNl7ty3MwDg559/DJs06ckuTz/93J6PPlobn5q6KzQ1dVfoyJGXhW3Y8NX2kSMv63XhhZcUjR37+IHqMcTFxdunTfu/7BN9P955573U/PyDutmz/y9527at4RqNqHbp0rVq3Ljx+zp27HRsWQw6CW57QbUqLi4GAHRs1wE3J7XFhSFhUBQudCQiouDktlrFmv4pdrvQGOeeis2bf40qLy/Xvv76m/Jzz720JzV1V9j8+XMSAc90p+joaOdVV12Tv379Z/8mJiY7Zs+ekfj555/EPfzwuL1Llqzadc011+W/8cacditXLm9Vvd0//tgc+eabi1MnTnw2W6MRVQD48cfvo2fPni+/8MLLeyIiItyPPvpQ5wMHcg1Tp87IePPNxWldu3arevTRh7pu3/6vCQA++eSjqLffnt/2mmuuy1+06J2d3br1qPryy8/iauvThg3rEuLi4h2LF6/ceeWVVxesWbOyzYQJj3W+8cabD77xxqJUvV6nzJr1artjnxcZGel+8slJWf/8syXi448/jC4uLtLMmDEtZdiwSwovv/yq0hkz5mR07tyl6txzzy9ZvHhlan2+z9W/HzabTXzkkQckRXFj9uw35Nmz35DDwyNcDz10T7cDB3J19Wm3pePICdXKlJ2J25PaQRvXBigrgl4UUVlchPDYVrU/mYiIqJnZ88joM2o6ZuoilSU/9bRvAx9kPj62j+p0nvDDXkP7lMp2k5+XffezJjzRS7FYTvjeS98m0dJ+yrR6vTmuMUaTyf3881NzdDqd2qVLV9vmzb8WbdnyVwTgme4kiqJqMpmU+PgEV1VVlfjppxvix49/Ouuiiy4tA4CUlA72vLwDhvXr30u47bY7D8/lvvHGmw/6RgH27s3WA8AVV4w4JEndbADwyy8/haWnyyEbNnz5b2xsKxcAPP74hNxdu3aGvvfeqvhevfpkf/jhB/HnnTew5Lbb7joEAJ06dT6YmrozJDs703yyPiUnt7U+/PC4PAC4667789esWdVm0KAhxZdcMrwMAC65ZHjRokVvJ5/ouYMGDa4YPvyqgrffnp/8/fffRIeEhLgnTJi8FwCioqLdWq1W1ev1ii/muqr+/Xj//dWxFRXl2ldemZWl0+lUAJgyZXr2tdde0WvduvdbVR+FoZNjckK1iigqRr+E1thuMMKpKNCJIioO5TM5ISIiOg3FxyfYfW+QASAkJNTtcrlOODKze3ea0el0Cq+99kr7WbNebe973O1WBJfLKVit1sPPa98+5bjpSW3btrP5bqel7TIDwI03jjxq5y2XyyU4nQ4BAPbt22saMmRYcfXj3bv3rKwtOWnTJunwdcxmswIAiYmJh+PR6w2Ky+WscfTp8cef2r91618RW7f+HfHWW0t3mUwmtaZz66r692P3btlstVo1l102pG/1c5xOp7hvX47xuCdTjZicUK20ds//PTU0HFWKgkhRRFVhURNHRdSyCAA6RCieInRcuknUoDrOe+ufmo4JonjUm9oOs+b+W9dzU159bXtdzz0V1ROTI07cvKIoAgA888zzmR06dLIde9xgMBx+otFoPG5Ot9FoPHxcURTBZDK5FyxYftwIkF6vVwBAEASox4Si1Wpr7btWqznuHEGo++qE/PyDutLSEp1Go1E3b94U3qtX71oW0B59OZfLfdxv3urfD0VR0Lp1G9srr8zKOPa8kJCQoNwRraFwzQnVSufyjHKKIRGwen+jWIoLmzIkohbHqAU+vNqK724DTPxYiahBaUwmpaZ/YrU36w15bmPp1KmLTaPRqHl5B/QdOnS0+/79/PMPEStXLo0Xxbq/VezYsbPVarVqHA67UL2t5csXJ2zc+G0kALRr196yY8e/odWfJ8upIYHt1dEURcGUKZNT2rVLsTz00Ni97777TuKOHdurFQEXjn6dNFq1srJKU/35BQX5+pNdo0OHjtbCwkJ9eHi429fvtm3b2efPn5P455+bwwLdp2DG5IRqpfMmJII5FDbvpxTWEm4FTkRE1NxFRES4L774skMrVy5L/PDDD6Kzs7P069a9H7N8+ZKkqKjoeq3BGDp0WFm7du2tzz//TMdNm34Oy8zcY5gxY1rSDz98F5uS0tEGAKNG3X7wzz9/j1q06K34PXsyDCtWLIn744/NDVoAceHCNxOysrLMkya9kH3jjbcUduvWo2Lq1OdS7N5NCEwmk1JQkG/Izd2vA4Bu3bpXbtr0U/Tmzb+GZmSkG6ZMebad1WrRnOwaI0ZcWxwaGuKeMOGxjlu2/BmSni4bn312Qsq2bVsiOneWuM1pPTA5oVoZvAOZgjkMDm+tE3t5eRNGRERERIEyceKz+66++tr8d95ZlnjnnaN6rl69ovVNN91y4JFH6reIW6PRYO7ct3d37tylatq05zvce+9t3f/7b1vY5Mkv7hk0aHAFAFx00SVlTz31TOY333wZe889t/XYtOnnyBEjrslvmJ4B27f/Z3rvvVVtbrvtztwOHTraAeDpp5/NKSw8ZJg9e0YiAIwYce2hffv2Gu+++5YebrcbY8Y8ltuli1Q5adJTnR955IGu4eHhrvPOG3TST2UjIiLc8+YtTIuIiHRNnDi+8+jR93QrKMjXv/zyzPSuXbsfN12Oaiaox078C36ZbreSUlxcFdBGtVoRUVEhKCmpgssVXNvs7rj7duhFEWlX3oFfvl6HtG2/YdT9D+Lmux5o6tACKphfQyD4+wcEdx9tLuD2r0Og0Yh457Iq6BBc/fMJ5tcQYP9ORXR0CDQaMQtAh0C0t2XLlq6iqPkqLi6xUq838s0jUQNyOGzGgoLcUEVxX9a/f/+0k53Lmct0Ug5LFfTe+aZiSCSsIRHYZ7WiuCqwyR0RnZwKILNMPHKHi+KJiCgIcVoXnVSl1YYH/92Kx3f8C01oBEwhnjVdZWWc1kVEREREgcXkhE6qylKFYqcDRQIAUYPWgoprWycirphbCRMRERFRYHFaF51UZWUFACAkJAxut4oEtwsDEpORVWlp4siIiIiIKNgwOaGTsuzbh9uT2sEeEgJFVQGjZ1tw0V2v3QWJiIiIiGrF5IROynEwD1cmtMY+txtVAGAwAwC07uDbZYaIiIiImhaTEzopR4VnWpdT46lvIpo9RVy1LW8LaqImJQBoHaJAI4rcqYuIiIIWkxM6KVdVpefr4eQkFACgb7KIiFomoxb48n9Wbw0JwMWZlUREFIS4WxedlMviWfju1uoAABqzZythg8CPbomIiIgosDhyQiel2u0APMmJFoA2JBwAYBRFqKoCQWB+S0REwUUQoBGa6A+cqqqKqsLdFNcmOh0wOaGTUh0Oz1eNd+QkIhrPpu2Eze3GGqsNZrO5KcMjajFsLuD+r43QaoCFF/GXN1FDEQRoFEFobbG5muS/mdmodYlQ8063BGXu3FltNm78JmbDhq+21/e5GRnphvvvv7P78uWrd7Zt297REPFR8ODfNzo5lxMAoOo8q0z0phDsrqqEqqqw2SxMTogaiQpgV5Fn7ZeqgoviiRqIIAiixebS/r4jT7HYXI26NaXZqBXP6dlaG2bUiqqqnlbJib927dphmjjxiU4Oh51TLahOmJzQSf1h0OONPzZj2HV90RGAIAjQG0yw2yyoqqpCdHRsU4dIREQUcBabS6myOpti3/ygeRP/5ptzE9ate691YmKSrbi4iHvpUJ0wOaGTKrHbsd9mheJdCA8AF7aKh9FlhyU/H0hu14TRERER0cCBA/qPHv3I3u+//zY6K2tPSHx8gu3uu+/PveSS4WW+c7777uuI5csXt8nN3W+Kiop2XHDB0OLRox/JMxgMKgCkpe0yvv32/MTU1F1hNptVjImJdVx11TUFd911b8GJrrl8+eK45csXJz399HOZl156eemJztmy5c+IJ598JisiIsL91FOPdWmQzlPQCZrsnBqGzWYDAOh0hsOPXR4djVGJbWE9mNdUYREREVE1y5YtSho6dFjxwoUrdg4YcHbZSy891+mvv/4IAYAffvgufNq0FzoOH35l4dKlq3eOG/fE3k2bfoqeNOnJFACwWCziE0+M7WI0mpR5895OW7bs3Z0DB15QsmTJ28nbt/9nOvZaq1Ytb7VixZKkyZOn7KkpMQGAJUtWycOHX1njcaIT4cgJnVR3ux3JrRMR7j5SVMHhnezuslQ1VVhERERUzdChFxXedttdhwBg/PiJuTt2/Bu2du2auDPPPDtr1arlrYcNu6TwllvuOAQAKSkd7FqtNmfChMe77N2brTebQ5QRI64pGDXqtoLw8HAFAMaMeezAhx+uTUhPTzP16tXb6rvOmjWrYpcuXZj0/PNTM4YMGVbeNL2lYMbkhE7qDEFEQmIy/qtW8c3p+2q1nvhJRERE1Kj69RtQUf2+JHWr2rZtazgAZGVlmffsyQj54YfvYnzHVdXzNSMj3XjhhReX33zz7QWfffZx9J496ebc3P2GnJwsMwC43crh7TdKSkp0b701t51Go1GTktraG6Nf1PIwOaGT0np/eQmGI6O6Lu/W7y4mJ0SNKsqgQhC5TRcRHU+r9f3F9lBVFaKoUT23FWHkyOsOjhhxTdGxz4uPT3AWFORr77//zm5hYeGuc845r7R//7PKe/fuU3XjjSN7Vz9XEERMmfJy+tKlC9tMm/ZCypIlK9NEkSsEKLD4E0UnpfPdMBzZMtjt/UXk9q5HIaKGZ9ICP9xowT/3AyZd7ecTUcuya9eOkOr309J2hXbs2NECAElJba379uUYO3ToaPf9y8/P082d+1pSZWWF+OmnG2IqKyu0S5euSnv44XF5w4dfUVpWVur9APtIzhMZGeEcPHho+cSJk7MzMzPMy5Ytim/ELlILweSETkoveD6l1RiPjJwcTk7sTE6IiIhOB59+uiF+w4b10RkZ6YZXX52WlJOTbRo16vZ8ALjpplsO/vnn71Fz585qk5GRbti06eewGTNeTqmqqtTGxye44uMTHHa7Xfzss4+j9u/fq//pp43hL744uQMAOByO494rduvWw3bNNdcfXL16RZs9ezIMxx4nOhWc1kU1UhQFBm8iIhiPfCDjFrWA4oDbziKvREQUnMxGbaN/gHsq17zkkuGH1q17L37OnJmmdu3aWaZPn5neo0dPKwBcccWIElVVM9esWdn6ww8/SDCbQ9wDBpxV+thjT+33HU9LSz24aNFbyfPmzRJjY1s5Lr308sLNm3+NTE3dGQLg0LHXGz36kbxff/05atq0F9ovXvyOzOldFChMTqhGTqsVonfkRDSFHh7Y/ccYhvVbf8YlvXo0XXBELYzNBYz73gidFpgzmL+8iRqKqqqK2ah1ndOztRZNMMPEbNS6VFWtd/HHlJSO1qeemrS/puNXXnl1yZVXXl1yomOCIGD8+Im548dPzK3++D33PJDvuz127OMHxo59/IDvvsFgUNeu/WRnXWI777xBFZs2/b2lLucS8e8b1chafrh2E0RTCNze2xXGEKRVVuAst/vETySigFMBbMnXeG6rALgunqhBqCrcItS8sCYYOfFcX1VUFfwDSy0WkxOqkU1V8cTOf2HW6nGHVg+4PWMnOr1neqmVu3UREVEQUlW4VVVlgkDUBJicUI1sDjv2Wa0IDdVCqTbAHKequCwuHtElpU0WGxEREXlwyhQFEyYnVCObd6tgo9EEt6JA8K4/SXTbcW3bFGRWsUI8EREREQUOkxOqkS3/IP7XOhHu0FCoKuDNTaDqPNO6RK45ISIiIqIAYnJCNXLm5+PGxGQccLlQWu1xVW8EAIjuem8mQkRERERUIyYnVCOn1QIAcIlHbwskeBfEa+q/0yERnQKjVoXAbbqIiCiIMTmhGrksnt24XMIxuyl6R060inrsU4iogZi0wO83WxAVFYKSEsDlauqIiIiIAo/lPKlGLu9WwW5Rc9TjgsEEgJktEREREQUW319Sjdze3boUzdHJicabnOgaPSIiIqKGJwjQCMKx0wYaB4swUkvH5IRqpDgdnq/HJCeuiBhMT0+DqtNiheCtVk1EDcruBh79yQCdDnjlfEBT+1OIyA+CAI1JdLZWHZYmeY8k6M0uq6LLO90SlLlzZ7XZuPGbmA0bvtpe1+esXbsmZv36D+ILCgoMUVFRzksuuazw3ntHH9Ro+BuMasbkhGqkOrzJiag5agmuxhyGf8pKIYoiVFUFuECXqMEpKrAp1/MrWzkX0PC/HVGDEARBVB0WbaX8h6LYrY2684toMImh0tlaQRcpNvcK9Rs2rI9+443X2z344CN7zz773IqdO7eb5859rZ3D4RQeeeSxvKaOj05fTE6oRpnh4Vj64/c4Y8hwdKv2uM67W5eiKHA6XdDpOMGLiIiCi2K3Km5bVVNsSxkU64E/+eSjVoMHX1h00023FAJASkoHe05OtvHrr7+IZXJCJ8PkhGpUrirYXVWJribzUY/rdHoMiWkFvSjCVlEGXXRsE0VIREREAwcO6D969CN7v//+2+isrD0h8fEJtrvvvj/3kkuGl/nO+e67ryOWL1/cJjd3vykqKtpxwQVDi0ePfiTPYDCoAJCWtsv49tvzE1NTd4XZbFYxJibWcdVV1xTcdde9BSe65vLli+OWL1+c9PTTz2Veeunlpccef/DBMfujo2OO21ewqqqS7z3ppIIiO6eGYbfbARwZKfHRaHV4oH0H3NsuBVVFxU0RGhEREVWzbNmipKFDhxUvXLhi54ABZ5e99NJznf76648QAPjhh+/Cp017oePw4VcWLl26eue4cU/s3bTpp+hJk55MAQCLxSI+8cTYLkajSZk37+20Zcve3Tlw4AUlS5a8nbx9+3+mY6+1atXyVitWLEmaPHnKnhMlJgBw1lnnVHXq1Nnuu19aWqr58svPWvXpc0Z5A30LKEgwe6UatSovx+VxCYg+QUEFh6LApNHA4S3USERERE1n6NCLCm+77a5DADB+/MTcHTv+DVu7dk3cmWeenbVq1fLWw4ZdUnjLLXccAjxTrLRabc6ECY932bs3W282hygjRlxTMGrUbQXh4eEKAIwZ89iBDz9cm5Cenmbq1au31XedNWtWxS5dujDp+eenZgwZMqxOiUZlZaU4fvzYTk6nQxw79ol9DdF/Ch5MTqhGHS0WXNS2Pf6124475vJu0eW0MDkhIiJqav36Daiofl+SulVt27Y1HACysrLMe/ZkhPzww3cxvuO+nTYzMtKNF154cfnNN99e8NlnH0fv2ZNuzs3db8jJyTIDgNutHN5+o6SkRPfWW3PbaTQaNSmprR11kJ9/UDt+/NjO+fkHDa+8Mmt3+/YpjlPvLQUzJidUM7d3HeAJFrw7fMmJzXrcMSIiImpcWq32qI39VVWFKGpUz21FGDnyuoMjRlxTdOzz4uMTnAUF+dr777+zW1hYuOucc84r7d//rPLevftU3XjjyN7VzxUEEVOmvJy+dOnCNtOmvZCyZMnKNFGseYVAerpsHD9+XGe32y3MmfOm3L17T75poFpxzQnVSKN4kxOt/rhjvoleTk7rImoUJi2w7fYq5IwDTNwgj4iOsWvXjpDq99PSdoV27NjRAgBJSW2t+/blGDt06Gj3/cvPz9PNnftaUmVlhfjppxtiKisrtEuXrkp7+OFxecOHX1FaVlbq/QD7SM4TGRnhHDx4aPnEiZOzMzMzzMuWLYqvKZ6cnGz9o48+3MVoNCpvv700lYkJ1VW9R04kSdICGAJgGIAUABEACgHkAPgSwG+yLLMsXxAQFAUQRUB3suTk+ClfREREzZ1oMDX6B7incs1PP90Q365diq1nz95V69d/0ConJ9s0YcKz2QBw0023HHzllZc6zJ07q83ll19VdPBgnv61115pHxsb64iPT3DFxyc47Ha7+NlnH0edeeZZlXv2ZBjffHNuMgA4HI7jYurWrYftmmuuP7h69Yo2Q4YMK+3YsdNxU7ymTn2+vcvlFJ999qV0nU6n5ucfPPyeMz4+4fjFrERedU5OJEnSAxgN4AkASQBK4ElIqgAkA7gSwDMADkiS9CqAhbIs12k+Ip2etL4JqTrDccdc3sKLrhOsRyEiImquVFVVBL3ZFSqdrUUTzDAR9GaXqqj1rq9yySXDD61b9178nDkzTe3atbNMnz4zvUcPz2jFFVeMKFFVNXPNmpWtP/zwgwSzOcQ9YMBZpY899tR+3/G0tNSDixa9lTxv3iwxNraV49JLLy/cvPnXyNTUnSEADh17vdGjH8n79defo6ZNe6H94sXvyNWnd+XlHdClpu4MA4AHH7yr+7HP3bTp7y317R+1HHVKTiRJOgvACgBuAG8B+ECW5T0nOK8XgMsBjAUwTpKk22RZ3hzAeKkRabxDuYL++OTkS7sTZdkZuHXkyEaOiqhlsruBib8aoNcBz58NaJo6IKIgpapwWxVdnqCLbJKp76qiKqqKeleHT0npaH3qqUn7azp+5ZVXl1x55dUlJzomCALGj5+YO378xNzqj99zzwP5vttjxz5+YOzYxw/47hsMBnXt2k92nqi91q3bOJmAkL/qOnKyEsBEWZY/OtlJsixvB7AdwKuSJN0AT0LT5dRCpKbiW1on6I3HHcsRtNhTVor/nWQhHBEFjqIC3+V4fmU/eyagEWp5AhH5TVXhVlW13gkCEZ26ur6z7FVbYnIsWZY/ANCz/iHR6WLxoYOYtjsVzoiY445ptZ4Vub5CjUREREREp6pOIyeyLPu1J7W/z6PTg1xejoqKcgw3hhx3rJ1Oi/iYWIjFhU0QGREREflwChUFk7quOXmuPo3KsjzFv3DodGL3LnbXnGC3rrM0QO+UTsg5mH/cMSIiIiIif9R1zckLx9xXAQjwLJAvBBAFQA/AAaAYAJOTZk5xuzE0IgpOVYFOOH5yu1vUAG4XVIezCaIjIiIiomBU12ldh9emSJI0DMAaAGMArJdl2e19/DIAS+DZapiaOVtVFe5plwIAkEXtcduGKKIGcAOKkzP3iIiIiCgw/NlqaT6AZ2VZ/sCXmACALMtfAZgMYFqggqOm46iqPHxbMJiOO65qvHmti3WUiIiIiCgw6l0hHkBbAHtrOHYIQLz/4dDpwm6pAgC4VRWCRgu41KOOK97kRHUyOSFqDEYNsHlUFSKjQmCrANzc5JSIiIKQPyMn/wJ4RJIkXfUHJUkyAngKwB+BCIyalr3KAgBwKgpU9fg1J0dGTrjmhKgxCAJg0gFmnec2ERFRMPInOXkawIUA9kiStFCSpGmSJC0GkAmgD7jmJCg4LN7kRFWhqOpxx1VvnROBH98SERE1a1VVVeLKlcta+e5PmvRk+/vuu11qyGvu379X/8knH0WdShtr174XM3DggP41HW+MfgwcOKD/2rXvHV8QrhnauzdbP3DggP6//fZLWFPGUe/kRJblnwCcB88IyVUAxgMYDuA7AP1lWd4WyACpaTisnmldLgCqcnxykh8ajdcz0/GPRtPIkRG1TA438Oyvejzxjec2EVGgLF26MH79+vcTfPefemryvhkz5mQ05DVffPHZ9n/88VtEQ16Dmid/1pxAluWtAK4PcCx0GnFabdDCm5yc4LglJBy/FhfhHE7rImoUbhX4dI9nxPKJvoDIqV1EFCDqMfO3IyIiGuEjkBPMGSeCn8kJAEiSNBzAxQBaA3gGwBkAtsiynBOg2KgJ2UNCMCc9DbHxrXH+CY5rvYUZ7XZ74wZGRERERykrK9PMmvVq0p9/bo50uVxCSkpHy0MPjd3ft28/CwBYLBbxlVemJP/991+RFotFk5iYaLv11jsPDB9+ZencubPafPDBu60BzxSld99dt33BgjfaFBTkGxYtekf+7bdfwiZOfKLL9Okzd7/++mttCwoKDO3bt7dMnjwl65tvvoz67LMN8W63Wxg0aEjRpEkv7BMEAaqqYvHit+O/+ebL2EOHCgw6nU7p2rV75fjxT+9t16694777bpdSU3eFpqbuCh058rKwDRu+2u5wOIS5c19r8+OPG2OsVosmKamt9e677zswePCF5b5+fvnl55ErVixuk59/0NixY+eqvn37ldf0PfFxuxVMm/ZC8o8/fh+j1WrViy++rHDs2CdytVrPW+A///w9ZOnShW327EkPcTqdYnx8gv3mm2/Pu/rqa4t9bXz88YfR77+/OiEv74AxMjLKeeWVVxfcc88Dx1WhPnSoQPvww/dJkZFRzjlz3swwm83KTz9tDF+06K3E3Nz9pri4ePv//nfDwblzZ7V/991129u2be8YOfKyXmeffV7pP/9sCS8rK9M999yUPeecc37FihVL4r744tO4wsJCfWxsrON//7vx4KhRtxYCwG+//RL21FOPdfG1AXimZN1883W9ZsyYvfu88wZVTJr0ZHtFUYSoqGjnDz98H2O328TevfuWP/30cznx8QkuAEhN3WmcPfv/2mZkpIdERUU5b7zx5rxT+kEMkHpP65IkySxJ0jcAPgdwN4Ab4CnCOBrAFkmSegQ2RGoKNgH4p6wUOeKJf0TMUHFmZBSSuVsXEREFEVUFqpwQm+rfCZZ51hKvikcffajzgQO5hqlTZ2S8+ebitK5du1U9+uhDXbdv/9cEAPPmzWqTnZ1lfuWV19JXrFizo3//M8teeeWlDnv3Zuvvvvv+g1dddU1+dHS0c/36z/5NTEw+roCZoih48825yRMmTMqeN29BallZmfbhh+/rtndvjun119+S77jjnv1fffV53PfffxMBAMuWLYpbu3ZN6/vvf2j/ypXv73jxxZf3HDiQa5w9e0YyAMyYMSejc+cuVeeee37J4sUrUwHg2WcntN+y5e+Ip59+NmvhwhW7LrhgSMlzzz3d6bvvPG3+9dcfIS+//ELH884bVLpo0Ts7L7ro0qL1699vXdv3Z/futNDS0hLdvHkL0p54YmL2d999EztjxrRkADhwIFc3ceLjXVJSOloXLFieunDh8l2dO0tVs2f/X/uCgnwtAHz++SdRM2dOTxk8+MLixYtX7rz77vv3r169os17762OrX6doqJC7Zgx90sxMbGO119/K91sNivbt/9neu65pzv16XNGxcKFK3beeusdB5YsWZB8bIxff/1lqzFjHtv76quzdg8YcHblq69OS37//dVtbr31zgNLlqzcefXV1+YvWDC/7YoVS+Lq87OxefOvUeXl5drXX39Tfu65l/akpu4Kmz9/TiLgSWifeOIRyWw2u998c1Hq2LFP7H333Xfa1Kf9huLPyMnLAPoDGAbgF3iqwgPAbQC+BvASgGsDEh01Gd+IiM47QnKsaIcNT3aSkOdmckJERMFBVYFbvzJ3lUs0IU0VQ9cod+XKyyxyXXfl27Tp57D0dDlkw4Yv/42NbeUCgMcfn5C7a9fO0PfeWxXfq1ef7Ly8AwaTyexu1y7FHhER4R43bnzuGWf0r4iIiHKHhoYqJpNJEUVR9X2ifiJ33XVfbv/+Z1UBwHnnDSz97LOP45577qUcs9msdO4s2VatWpG4Z0+66aKLLi1LTm5rHz/+6ayLL76sDACSk9s5/vhjc8nPP/8YBQBRUdFurVar6vV6JTa2lSszc4/h119/iZ4/f2Gqb7SnY8dO+Xv2ZJjef39VwkUXXVK2du2auC5dpMqxYx8/AACdOnW2Z2buMX3xxScnfcMeERHpfOmlV7OMRqPatWt326FDh3IXLJjf9tFHn8x1OBzCTTfdeuDeex/MF70fxt511315P/74fUxm5h5jXFx85bp178Wfe+75xQ888PBBb1x2i6VKYzSaFN81ysvLtGPGPNAlNraV/bXX5u0xGo0qAKxZszI+JaWD5cknn9kPAJ07d7EXFxfrFi1666gE5Ywz+pVdcMGQCk9b5eLXX3/e6p57Htg3cuT/ir3XPHTgQK7h/fffbX377XcX1O0nAzCZTO7nn5+ao9Pp1C5duto2b/61aMuWvyIA4PPPP45yOBziiy9Oz46IiHB37drdZrVa9k2d+nzHurbfUPxJTm4E8LQsyz9IknR4NbQsywclSZoK4I2ARUdNRi0qwuCYVojUG054XNB5HtfW8xMeIiKi05lw4qWWp620tF1mALjxxpG9qj/ucrkEp9MhAMCtt955cPLkpzpdffWlfTp37lLVr9+ZZcOHX1lcn7UlKSkdbb7bBoNRiYiIdJrN5sNv0PV6nWK3O0QAuPjiy8q2bPkrZO7c19rk5u437N+/z7R//z5jVFTUCReq7tq1wwwATzzxyFE7a7ndbsFsNrsBICcn23zGGf3Lqh/v1at3ZW3JSceOnSy+ZAEAevfuW+VyuYQ9ezIMvXr1tv7vfzcUvfPO0ricnCxjbm6uMTs70wwAiuIWAGDv3hzTBRdcWFy9zRtvvKWw+v2VK5cnut0u4dhrZWZmmI+detav35kVwFtHxZiYmHT4e5uRsdvodruFM84YUFn9nL59+1V++umG+EOHCur83j0+PsGu0+kOxxMSEup2uVyCJ7Y95vj41rbqPwP9+59ZeaJ2Gps/yUkkgOwajpUACK1PY5IkxQF4DcBlAEwAfgLwpCzLu7zH+wJ4HcAAAEUA5sqyPNOPuKketAfz8HBKR2QIAo4b3wUgGIwAAO7VRUREwUIQgJWXWWSLy69SCwFh1kKpTy0jRVEEk8nkXrBgeeqxx/R6vQIAAwacVfXRR1/+98svP4b/9dcf4d9882Xse++tajN16oz0QYMGV9TlOjrd0R9HiifZlWPhwjfj16xZmTh06EWFffv2q7jhhlEFP/64MfKXX36MPtH5qurJcebMeTMtJCRUqX5Mo9GoR847ehG9VqurNZEURfGocxTF817cYNCr6emyccyY+7u2b9/B0r//mWUDBw4pi46Odj7yyAPdql+/ttejV6/e5ZdfPqJw2rTnO/7ww3fFQ4deVO59LhSl9oX/er3huD4Kx1xUUTzflurJRvUpgE6n67jrVD/3iOoP1f/72Rj8SU52ALgFwDcnOHaV93h9fAJAgWc74ip4poV9J0lSJ3iSlW8BbADwIIBzALwpSVKRLMvL/Iid6khxeFISt3ji9EPwjqjouNcGEREFEUEAQnRQaj/z9NCxY2er1WrVOBx2oWvX7oc/gX/uuafbderU2XL77Xcfmjv3tTZ9+vSrvOSS4WWXXDK8zO1277vppmt6/PDDd1GDBg2uEAQhoG9KP/jg3TY33XTrAd9UKABYvfqdhKPX0xy5ZufOkhUA8vPz9Rdd1Ofw6Mjs2TMSBUFUH310/IEOHTpaUlN3HvUBeGrqjlqn32VnZ5oVRYFv2tbWrX+H6fV6pV27FPvMmdOTwsMjnAsWLNvtO//bb7+KADxreQAgMTHZJsupR11n+vQpyfn5B/Vz5ry5BwAuuGBoyfDhV5T+8MO3xbNnz2jfv/9ZO8LDw5X27VMsxz53+/ZtJ425U6cuNo1Go27d+ldoz569rL7Ht23bGhYREemMjIxy63SepLO8vPzwm7ScnKwTT3WpQefOXSwbN34bU1RUqI2JiXUBwH///dNk0xmr8+eTgakAbpMk6TMA98KTgg2WJGkegIcAzKhrQ5IkxQDIAnCfLMt/y7KcCk9y0hpADwD3A7ADGC3Lcqo3IZkNYIIfcVM9KHZPcqLUkJyIOhMAQAuB1aqJGoFRA2y8oQpb7wOMfu+zSETBZujQYWXt2rW3Pv/8Mx03bfo5LDNzj2HGjGlJP/zwXaxvKlZubq5hzpz/a7tp089h+/bl6D///JOowsJDhl69elcCgMlkUqqqqjQZGekGp9N5yn/VY2JiHVu3/hUuy6nG9PTdhtmz/6/Nn3/+Hul0Og+/7zSZTEpBQb4hN3e/rmvX7rZ+/QaUzZ07s90333wZkZ2dpV+8+O34Dz9cm5CYmGgHgJtvvuNgTk626dVXpyVlZKQbPvpoXfSXX37WquYoPIqKivTPPjuhfVraLuMXX3wa+e6777QZOfK6fIPBoMbFxTuKi4v0Gzd+G75vX47+yy8/i5w7d1Y7AHA4PFPibr75trzfftsUtXz54risrEzDJ598FPXNN1+2GjhwcOmx13rqqUn7HA6HMHPmy8mAZzpdVtaekJkzX0nMyEg3fPXV55ErVy5PBI4fGfGJiIhwX3TRpYWrV69I3LBhfXRm5h7DypXLWn399RetrrnmunxBENC1a3er0WhUli1b1Dozc49h8+ZfQ5csWZBUU5sncuWVI4vDwyNckyY9lbJjx3bT5s2bQt944/XjFus3BX+KMH4M4FYAveGZNCfAMy3regAPyrK8rh5tFcmyPEqW5Z0AIElSPDxFHfcD2AVgEICfZVmuvkBro+dUqV47FlD9qE5vclJDkUXB6JnWpWOxBaJGIQhAtBGIMYMfCBDRYRqNBnPnvr27c+cuVdOmPd/h3ntv6/7ff9vCJk9+cY9vytakSS/k9O7dt+KVV6ak3HbbjT3feWdp4h133LP/mmuuLwaASy65rCQyMsp577239/jvv23mU41p0qQXsux2uzh69D3dxo17sGt2dqbpoYfG5lRUlGv37s3WA8CIEdce2rdvr/Huu2/p4Xa78corszLPPXdgydy5r7W7886be37zzZexDz/8aM71148qAoBevXpbp06dkb59+7awe++9vcf69e/HX3/9qFq3vh0w4KxSjUajPvzwfd3mz5/d7rLLrix4+OFxBwDg9tvvLjjvvEHFr746rcNdd93SY9WqFa3vvPPe3NjYVo4dO7aHAJ71M2PGPJbz+eeftLrrrpt7rFixJPG++0bvve66G4uOvVZsbCvXffc9tH/jxu9if/zx+/Bu3XrYnn12SsZff/0eee+9t/VYsWJJm8svv6oAAHQ6fY2jVU8//dzeK64YUbB06cLEu+++pcdnn30c98ADY/bee++D+QAQFhamTJgwOTM3d5/p7rtv6TF37mttH3hgzL76JCchISHK3LlvyVqtVh037sGu06e/lHLDDTcfrP2ZDU9Q67tnXTWSJEkAYgCUAkiTZdnvYVBJkhYCuA+ekZIRsix/I0nSfwC+lGV5QrXzugPYCeBMWZb/9uNSmW63klJebq39zHrQaESEh5tQXm6F291sRoNr9NlT49GhoAA7QsKgveFxAJ75pQaDDna7E9bCfPT52LOgq8vCRdDWsHC+OQm21/BYwd4/IPj7GOz9A4K/j+yf/8LDTdBoxCwAHQLR3pYtW7qKouaruLjESr3eaKv9GUT1888/W8xarVbt1avP4TedGzasj54zZ2b77777Zauv1kpL4HDYjAUFuaGK4r6sf//+aSc7t97fFUmSNgJ4SJblNFmW5WOO9QawSpbl3vVtF8AcAAvgqZeyQZKkgQDM8CQr1fl+gRj9uAYAz5vsqKiGmVYXHm5qkHYbm8a7YEzQ6mAyHb2dsMGggxAdhQXZmXAoChYZNQiLOC2mKQZEsLyGNQn2/gHB2Ue7C3jpF8/tZweZYAjyv2nB+BpWx/4RBb+0tFTz0qULk5588ums7t17WLOzsw0rVy5rc/75A4tbUmJSX3X6zngTBd8UsCHwrDE50bSqKwH4tT9ytd257gdwLoAxAKwAjv1I3peUVPlzHQBQFBXl5RZ/n35CwfZpmMu75sSt0cBq9dyuPnLiUjT4vtCz1fahonK4lOb/nyzYXsNjBXv/gODuo9UJrPzP8yHAmN5WGMTg6p9PML+GAPt3KrwjJwFtk6gh3XTTLYVFRYW6t96a17akpFgXHh7uGjRoSPGYMY/lNnVsp7O6vqO8F8Dt8Cx+VwG8Cc9ak+pzwnwT3d6t68W9Cc4wAB/IsuwGAFmWFUmSdgFIBLAPwLHVKn33T+mFdbka5o+C2600WNuNKdWgxyfbdqN7SlckK0dP/VMUFYAAjVYHt8sJq9WGsLDm32efYHkNaxLs/QOCs4+uatUIFLcClxJc/TtWML6G1bF/RMFPEASMGfNo3pgxj9a6NoaOqGtyMg7AMngSkI0AHoZnwXp1bnjWnuysx/XbwJPM5HvbhSRJOgD94NliOB/Ag5IkaXzJCzzJjCzLcp0rZFL95asqNpcUo31oRI3n9IqIhMblhK28DIhLaMToiIiIiCgY1Sk5kWW5DJ7iiJAkaSiALQBCZVk+6H0sCkCyLMv1rXHyL4Cv4aldch88RRwnAYiCZ8tgG4CnACyRJGkGgLMAPApPzRNqQHa7Z6mPVquv8ZyHk9shQquFveAQ0Emq8TwiIiIiorrwZ/LmvwA+AvBjtcfOBrBNkqQNkiTVeQs6WZZVADfCM2ryPoA/AUQDGCTL8l7v6MilACQAWwE8D0/1+BV+xE31EGe14uyoaISqNQ/Lu7w7vTltgd35jIiIiIhaJn9WMb8CT4HEMdUe2wjganjqnkyBp1ZJnXhHZR7y/jvR8b/gWSBPjehslxvXdeyCf6017zvgKz7jtAZ2cwEiIiIiapn8GTkZAWC8LMsf+h6QZdkhy/KnAJ4BcEOggqOmI3pHTERdzdO6fMmJy8bt4YmIiIjo1PkzchIGz9qQE8kHEOt/OHS60PiKc56kuKLLu0Gb08ppXUQNzaABPr/WgogIMwwuQHHX/hwiIqLmxp+Rk60A7qnh2F0A/vM/HDpdaLy5iaCrudalS/AkJ4rD0RghEbVoogAkhqpIDvfcJiIiCkb+JCdTAYyUJOlvSZImSZJ0nyRJz0iS9AeA6wC8ENAIqUkcHlLT1Txy4vaOnLi8O3sRERER+eu7776OkOXUmj8VrYP77rtdmjTpyfYBCskvc+fOajNy5GW96nr+pElPtr/vvtsbbdtTVVWxbt37MYcOFWgBYO3a92IGDhzQv7GuX5t6JyeyLH8L4Cp4CjBOAbAAwEvwvJ+9WpblrwIaITUJrfeTWeEk07r+UkUszslCRWhII0VF1HI53cCsv3WY9ovnNhFRMNm3L0f/wguTOhUVFeqaOpZg9/vvv4bOmfN/7a1WiwgAV155dfH69Z/929Rx+fiz5gSyLH8J4EtJkozwbP1bJstyzds6UbOj9Y6KCCcZOcnQ6LHzUD766/l7hKihuVTgnV2eDSrukgAdp3YRURBRfWtdqcGpqnrUXxCTyaSaTCZXTec3Nr+SEwCQJKkbgIsBtAYwX5KkMwD8K8tyRaCCo6azeH8OtIqKQaHhNQ6v+Qo02jmti4iIgkiVs+aZJRoBqlELtS7nigJUk5/n1sfGjd+GL1u2KDE3d7/RYDAq/fr1Lxs//pl9UVFR7t9++yXsqace6/Luu+u2t23b3gEAe/dm62+++bpeM2bM3n3eeYMqAGDZssVxH3+8Pr6srFTXpUvXyl69+lR8991XsRs2fLUdALKyMg0zZ05PTkvbFWYymdwjR16X/8UXn7YaNeq2vOuvv6kIANauXRPzwQdrEgoLDxliY1vZL798xKE77ri7QBQ93V6//oOYDz54NyE/P98QGhrqOu+8QSVPPDFhf35+nu7mm6/rBQBPPfVYlxtuuDlv7NjHD+zenWZ8/fXXktLSdoUZjSZ3z569Kx5//Kl98fEJLgCw2+3CrFmvJv3884/RLpdLuOyyyw8pysm/hQMHDug/evQje7///tvorKw9IfHxCba7774/95JLhpf5zvnuu68jli9f3CY3d78pKiraccEFQ4tHj34kz2AwqACQlrbL+Pbb8xNTU3eF2WxWMSYm1nHVVdcU3HXXvQUnuuby5Yvjli9fnPT0089lXnrp5aW1vZ779+/TzZ8/J+m//7aF22w2sWvXbpVjxjy6v3v3nod3IPr44w+j339/dUJe3gFjZGSU88orry64554H8muLz/fzAAA333xdr3HjxmcDwOuvz2y/adPfWwCgpKRYM3/+nMS//vo9sqKiQpuS0rHq/vsfyj3nnPMqAc+0te3bt4WdeeY5pZ9+uiG+oqJC26WLVPnkk8/kdO7c5ZTfFNY7OZEkSQPgbQB3AxDgmd61Fp4CiR0kSRosy/L+Uw2Mmo6qqvjlkOf/1wXGmmtqxmhF9AgLh1BW3lihERERNbjBa8POqOlYvzhX2cKLrBm++5d8GNrH7hZOmHR0j3ZXvnOZRfbdv3JDaK8Kp3DC914dI9yW96+wpNY31qKiQu2UKc91uueeB/YNGTK0LC8vTzd9+pQOs2e/mjRlyis5dWlj5cplrVauXJr44INj9vbrd2blN998GbVmzcrEmJgYBwBYLBbxscce6tK6daLt9dffTquqqtTMnj2j7aFDBYenV6xZszJ2+fLFSQ89NG5vnz5nVO7atcP8xhuvty0sLNA/+eQz+3fu3GGaN29WuyeffCarT5++VRkZ6cbp06d0iIiIcD344Ji8efMWpD7yyAPdJk16Yc+gQUPK8/IO6MaOfVAaOHBwybhxT6RarVZx8eK32zz44N3dVq1auzMkJESZPn1K27///iNi/PinsxMTE+3Lli1qLcupoQkJCSd9g7xs2aKkO+64Z//TTz+X/fHHH8a+9NJznaKiotPOPPPsqh9++C582rQXOt5774P7zjtvUPnevdmGefNmt92/f69x5sy5mRaLRXziibFdevXqUzFv3ttpWq1O3bBhXeySJW8nDxhwVkWvXr2P2sJ01arlrVasWJI0efKUPRdddElZTTH5VFRUiA89dG/X+Ph4x9Spr6YbDEZ1yZK32zz66EPS0qWrdiUltXV8/vknUTNnTk+59dY7cy+66NKSXbt2mGfPntE+JCTUPWLENcUni2/AgLMrJ016Yc+0aS90nDdvQWrXrt2tn332cbTv+m63G2PHPtjF6XQKEyZMzmrVKs75/vvvxk2c+HiXOXPeTOvbt58FANLTd4cYDEb39OmvpVssVeL06VNSZs58ud2CBct31+Vn7mT8GTmZDOAWAPcC+BzAQe/jTwD4BMA0AHecamDUdBzVdt/SavWoaXr7maoL/aXuyMw7WMMZRERE1JAOHDigc7mcQuvWrR3Jye0cycntHNOnz0x3udx1nvy5fv37CVdcMaLghhtuLgKATp06H8zI2B2SmZlhBoDPP/84qry8Qrts2f9lRkVFuwHguedeyrr//ju7+9pYs2Zlm+uvH5V39dXXFgNA+/YpjqqqSs2bb85t98gjj+fu25djAAQkJSXbk5LaOpKS2joiI6N2h4aGuTUaDWJiYlwAEBER4Q4NDVUWL347ITIyyjl58ot7fdd49dXZmVdeeVGfL774NOqyy64o+fHH72NGj35k77BhF5cBwIsvTs/+3/+uDKutv0OHXlR42213HQKA8eMn5u7Y8W/Y2rVr4s488+ysVauWtx427JLCW2654xAApKR0sGu12pwJEx7vsndvtt5sDlFGjLimYNSo2wrCw8MVABgz5rEDH364NiE9Pc1UPTlZs2ZV7NKlC5Oef35qxpAhw+r0Se7HH6+Pqays0C5duio1NraVCwBefnlm5nXXXdXrvfdWtxo//uncdeveiz/33POLH3jg4YMA0LFjJ7vFUqUxGk2KxVIl1hZfRESEGwBiYmJcJpPpqKGmn37aGJ6VlWletGjFzm7detgAYPLkF/fu3p0Wsnr1ioS+fftlAoDb7RZeeumVLN/Pw4gR1xasWLE4qS59rI0/ycndAJ6TZXmZdxQFACDL8n+SJD0HTwV5asZsVZU4MzIKTkWFKGrhVk58nip6X36Xs/GCIyIiamA/XV/xT03HNMLRU6++ubayxoXE4jHnfjaycntdz62rXr16W88/f1DxCy9M6jR37ixHnz5nlJ933sCyiy++rLQuzy8uLtIUFhbqe/XqU3l0u30qfMmJLKeZW7duY/O9EQWA7t17Wk0msxsACgsPaYuLi3WrV69IXLNmZRvfOaqqwul0Cnv3ZhuGDBlW9uGHaysffvi+bvHxCfa+ffuVX3DBkNI+fc6wnCiujIzd5gMHck3Dhp1/1CiW0+kUc3KyjHv2pBtdLpfQs2efw2uejUaj2r59ygnbq65fvwFHLUGQpG5V27ZtDQeArKws8549GSE//PBdzJF++GJKN1544cXlN998e8Fnn30cvWdPujk3d78hJyfLDABut3I4ISwpKdG99dbcdhqNRk1KalvnqU6ZmXtMCQmt7b7ExNevTp06V2VlZZoBYO/eHNMFF1xYXP15N954S6Hvdl3iq0lGRrrJZDK7fYkJAAiCgO7de1Zu3fp3uO+x8PAIZ/Wfh9DQULfL5QrIakh/kpN4ANtqOLYfQJTf0dBpwVFehic7SVBUFVmiBqhh/qai8SQnquu0WUNFRER0ykJ0qOFjucY7tz5efXV2Vnr67gObNv0UsWXLX+Gvvjq1w0cfratcuPDIFJvq682dziNvIjUaz1tBRan5jatGo4Gq1nxcUTzduvfeB/ede+7A40YIkpKSHXq9Xl24cPnu7dv/Nf322y8RW7b8HT558oTOgwdfWDR16qvZxz5HVVWhR49e5U8++czeY49FRES49+3bq/eed9QxrVZba5J37DmqqkIUPRXeVFURRo687uCIEdcUHfu8+PgEZ0FBvvb+++/sFhYW7jrnnPNK+/c/q7x37z5VN944snf1cwVBxJQpL6cvXbqwzbRpL6QsWbIyzbf25mRUVYUgHP+tVhRF0Gg8MWo0GvUEpwAA6hrfSa5/ostDUZSjvm86Xe3fZ3/5U+ckA8DlNRwb4j1OzZjd4vnQwamqUE88jRYAoGq8u3QxOSEiImoSW7b8GTJ9+pTkzp272O+6676C+fMXZowbNz57164dYYcOFWh1Or0CAOXl5Ydnu+TkZB1eKxIREeGOjY117Nix/ai6AKmpOw/f79Spi+XgwYOGkpLiw22kp+82WK0WDQC0ahXnCg8Pd+Xm7jd06NDR7vu3c+d/5rfempeoqio2bvw2fP78Oa179epjfeCBMQcXLly+e9So23J/++2XKADHvSFv1669NTd3nykxMcnhay8qKso1e/aM5LS0XabOnSWbTqdT//nn71Dfc1wuF7Kzs2peLOu1a9eOo/qalrYrtGPHjhYASEpqa923L8dYvR/5+Xm6uXNfS6qsrBA//XSDb9pV2sMPj8sbPvyK0rKyUu+H/Ufer0dGRjgHDx5aPnHi5OzMzAzzsmWL4muLCwA6dOhkzcs7YPDVIAEAm80mZGZmmNu2bW8FgMTEZJsspx7Vh+nTpyQ/+uhDHesSnyAINSYWnTp1sVosFk1q6s6j6s3s2rUzNCmpra2m5wWSP8nJHADjJEmaD+AieHraWZKkJwCMB/BG4MKjpuC0eqZLulT1pFv7qd5PW+Bm0QWihmbQAOtGWPDtrYDB730WiSjYhIaGub/66vNWM2dOT8zM3GPYtWuHaePGb6Pj4xPsMTGxrq5du1uNRqOybNmi1pmZewybN/8aumTJgqTqycD11486+MUXn8atW/d+TGbmHsPSpQvjNm/+NRresgIjRlxTHBYW5po8eULKjh3bTVu2/BkyZcqzHQBPUiEIAq699oaDX3zxadyKFUvisrIyDV9//UXk/Pmvt9PpdIrBYFA1Gi3ef391m6VLF8bl5GTrt23bav7jj82RnTtLVQAQEhLqBoD09N2msrIyzY033lJgsVg0Eyc+3mH79v9MO3fuMD3zzJMdMjLSQ7p06WoNCQlRLr/8qoLVq1e0+fLLzyLT02XjlCmT25WUFOtr+559+umG+A0b1kdnZKQbXn11WlJOTrZp1Kjb8wHgpptuOfjnn79HzZ07q01GRrph06afw2bMeDmlqqpSGx+f4IqPT3DY7Xbxs88+jtq/f6/+p582hr/44uQOAOBwOI57X92tWw/bNddcf3D16hVt9uzJqLk+g9dVV40sNptD3M88M77j1q1/m739TrHZbJrrr7/pEADcfPNteb/9tilq+fLFcVlZmYZPPvko6ptvvmw1cODg0rrEZzaHKACwa9dOc2Vl5VExDx48tCw5uZ11ypRnO/z22y9hu3enGV966bm2+/fvNd100835tcUfCPX+EyfL8mJJkloBmARgNDw/uWsAOADMkGX57cCGSI2tenJysi35VK1n5ESoaVEKEQWMKACdIlVERQElJWiYuSFE1OxIUjfbs89O2bNixdI2X375WZwoimqPHr0qZs6cmy6KIsLCwpQJEyZnLl78dtLdd9/So3XrNrbRo8fumzz5qS6+Nm655Y5D5eXlmhUrliTOnz9H2717j4ohQ4YVpqbuDAMAg8Gg/t//zUl/7bVX2j7yyP3dQkJCXTfeeHPeggVvtNXpdCoA3Hvvg/kGg1H55JMP45YuXZgUERHhGjbs4sJx48bnAsDgwUPLx459InvduvcSVq1anqjX65UzzhhQ9sQTE/YDQHR0jHvo0IsKly1bnLR//z7DpEkv7Js9+420N9+cm/Too6O7iqJG7dJFqpo1a57cqlWcCwAef3zCfr1er8yfP6etzWbVnHfeoOL+/c8sre17dsklww+tW/de/Jw5M03t2rWzTJ8+M71HD882vVdcMaJEVdXMNWtWtv7www8SzOYQ94ABZ5U+9thT+33H09JSDy5a9FbyvHmzxNjYVo5LL728cPPmXyO9o02Hjr3e6NGP5P36689R06a90H7x4nfkk03vioyMdM+d+7Y8d+5rSU899ajkfY0r5s59O61dO89W0BdffFlZaWlpzgcfvJuwfPnipJiYWMd9943ee911Nxapqora4uvWrYe1b99+Za+88lKHW2/dlxsREXl4CoxWq8XcuW/tnjVrRtKLL07u6HS6hJSUDpZXXpm1u3//sxqlpqFQ36I3kiRFybJcIklSOIBzAcQAKAXwuyzLxSd98ukh0+1WUoqLA/v91WpFREWFoKSkCi5X837bsPO7b6B7710UuVw4dO9LULw/I6IowGTSw2p1QFFUlH29Guce3IMsUcClC5c1cdSnLphewxMJ9v4Bwd/HYO8fEPx9ZP/8Fx0dAo1GzALQIRDtbdmypasoar6Ki0us1OuNjTJd5XT1ww/fhXfuLFmTkpIP73Dz/PPPtDt48IBhwYLlu/fuzdZnZWUaBw++8PB6kry8A7rrrx/Re+bMubKv/kVzMHDggP7jxo3P9tVmocbhcNiMBQW5oYrivqx///5pJzvXn8kBf0qSNFmW5fcBfO1fiHQ6c9qs0AFwA4cTkxMpC43Cyn05CGvbDpc2WnRELZPTDSzaoYPJBNzSyTfZgojo1H311Rcxixe/bXr88ady4uLinX/++UfYL7/8GD169Ni9AGC328Vnn53Y+fbb795/8cWXlZSXl2kWLHgjMT4+wd6//5mN8mk6tRz+JCdRAAprPYuaLZfNs+NdbStJqkIj8Wl+HnonJDR8UEQtnEsFFvznmUp9YwdAx+yEiAJk4sTJe2fOnJ787LNPd7JYLJr4+Hj7ffeN3ucbXejcWbJNmDA5891332n97rvvtNHp9Grv3n3KX3/9zd2+aV1EgeJPcvI6gP/zLoDfIcvycXPrqHmzhZjxXnYmIhNao+dJztPqPG+UHPY6b99NREREp5moqGj3tGn/l32yc664YkTJFVeMKGmkkBrMpk1/b2nqGOjk/ElObgfQDsB3ACBJ0rHHVVmWuZdMM2bVavFdYQF6tkk6aXJiEEV0NIcglrt1EREREVEA+JNErAp4FHRacTg86+G0Ot1Jz4u0WzC9ey8cYp0TIiIiIgoAf5KTLAAbZVneH+hg6PSglJWiV1g4ErQnT04EvWe7bg6TERFRM6QAUFVV5Qouogbm/X+mog474ftThHEWgAF+PI+aCfOBXDwrdcfAWraZFnWe4qFa/lonIqLm56Cqqk6Hw1ZrRXEiOjUOh82sqqoTQF5t5/rzoXcBgEg/nkfNhOJweL6epEgQAAgGT3Ki46amRETUzPTv3798y5Yt75SXl4wGEKPXGy2CIHDnKaIAUlVVcDhs5vLyEr2qKkv69+9fUdtz/ElOFgF4Q5KkoQB2ADiulL0sy+/40S6dJlSnZ82JqtGc9DzRl5yIIlRVhSAwSSFqKHoRWHW5FeFhJug1gBp89fuImsLLbrcLpaVFtwuCYAZLCBEFmqqqqlNVlSUAXq7LE/xJTl7zfr2tpiAAMDlpxhRvcqKImpP+lhb1nuREIwhwOWzQGUyNEB1Ry6QRgZ6xCqKigJISIAiLixM1uv79+ysApm7ZsuV1VUVr+DfdnYhqpgDIq8uIiY8/yUmKH8+hZkT17r6lampLTo4kI7YqC5MTIiJqlrxvnOr85omIGk69kxNZlnN8tyVJMgMIB1Aky7IzkIFRE/IlJ+LJfzxEgwlrD+yHU1HwiJMvP1FDcrqBVWk6mMzAte0494SIiIKTX7vASpI0CMAMAGfC+zdSkqQ/ATwjy/IPgQuPmoQvOdHWsuZEo8GHBflwu5wYDa4hJGpILhWYs1UPABiRDOiYnRARURCq99xKSZLOg6c6fCSAlwA8BGAqgGgAX0uSdG4gA6TGl2XQY8W+bBwKi6z1XK23Fordbm/gqIiIiIgo2PkzcjIVwC8ALpVl2e17UJKkFwF8DeBFAJcEJjxqCnsF4Kv8gxgVFoXWtZybaA6BIgD2qspGiY2IiIiIgpc/u1KcBeD16okJAMiyrACY5z1OzZjD4Vk/oqmlQjwAPJncFjN69IYzr9aaOkREREREJ+VPclIBoKZ3rXpwnWazF2a1onNIKEx1qFvi8n51Wm0NGxQRERERBT1/kpNfATwjSVJo9QclSQoD8DQ8U76oGRvkdGFat56Iryqv9VxfcuKyWxs2KCIiIiIKev6sOZkIYAuATEmSPgNwEEACgCsBGAHcFbjwqCmIigKIIlRN7dO6XN6BMjcXxBMRERHRKfKnzkmGd0eu5wFcDs8uXcUAfgDwoizLuwIbIjU2UfVsCyzoDLWe6/ZO/XLZOK2LqCHpRWDRJVaEhZmg1wAqK8QTEVEQ8qvOiSzLuyRJGifL8kEAkCQpGkASE5PgoIEvOdHXeq7bO3Li4sgJUYPSiMCZCQqiooCSEsDF5ISIiIKQP3VOIiVJ+hbAj9UePgvANkmSNnirxlMzpvHWU6xTciJ4foQUh6MhQyIiIiKiFsCfBfGvAOgB4Jlqj20EcDWAAQCmBCAuakKH68LXYVpXqqDBh3m5qDAZGzQmopbOpQDvpWmx4l/AyVETIiIKUv4kJyMAjJdl+UPfA7IsO2RZ/hSehOWGQAVHTUPn3UFY1NeenOzSGvFe7j6UGpmcEDUkpwK88qcBz/0IuNy1nk5ERNQs+bPmJAxASQ3H8gHE+h8OnQ4+LSyAxuVGN3P4kVGUGmi9U7/sXHNCRERERKfIn5GTrQDuqeHYXQD+8z8cOh18mpeHdXm5EELCaj03VKNBgsEIVFU1QmREREREFMz8GTmZCuBLSZL+BvARgAIAreBZc9Ifnnon1EwpigKXywkA0Gj13n27anaO24aHe/XFngN5DR8cEREREQW1eo+cyLL8LYCrAKjwLH5fAOAleBKdq2VZ/iqgEVKjsttsSDGHINlogqipbVIXoIje/Nab0BARERER+cvfOidfwjN6YoSnCGOZLMuc1xME7OVleLV7LwBAhqiBu5ZdgVSNLznhCl0iIiIiOjV+JSc+sizbABwIUCx0GnBYLAAARVUhiFpAOfnErsPJidvV0KERERERUZA7peSEgo/dm5w4VQUQRAAnHxFRtToAgODmyAlRQ9KJwNwLbQgNNUKnAcBaJ0REFISYnNBRXDYrAMCpekZPauVNTmqd/0VEp0QrAhckuREVBZSUeIoyEhERBRt/thKmIOaweJITl6rWKzkRFb5TIiIiIqJTw+SEjuK02wAALgBqHfKNSnM4vsjPQxrXnBA1KJcCfJyhxdpdnmrxREREwcivaV2SJMUCeBLAxQBaA7gUwDUAtsmy/HHgwqPG5rJZoYdnpYlah5GTyohYvLsvB91CQzG2waMjarmcCvD8bwYAwOZRgE5o4oCIiIgaQL1HTiRJSoGnCvz9APYDiIMnyekCYL0kSVcENEJqVDadHusP7MdfTketBRgBQOud1mV32Bs2MCIiIiIKev5M63oNnqrwKQCuBSAAgCzLtwD4BMAzAYuOGp3dZMT7B/bjzzquIdFptIjU6WBysggjEREREZ0af5KTYQBekmW5FDjuw/UFAHqealDUdOx2BwBApzfU6fxIuwUL+/TH2OhWDRkWEREREbUA/i6Ir2n1swHHJyzUjLirKtHGaESETlen8wVvEqPl/HciIiIiOkX+JCe/AHhakqSQao+pkiSJAEYD+DUgkVGTMObkYE7PvrhcqFu2IeqNAAAtmJ0QERER0anxZ7euifAkIBkAfoBnpGQ8gO4AOgEYFLDoqNEpTs+0LkWsW94qGDzJia6OyQwRERERUU3qPXIiy/IOAAMAbAQwFJ5dZy+GJ1k5T5blbYEMkBqX4vAlJ5o6nS/qTQAArSjC6X0uEQWeTgRmXGDDm5cDurr99yQiImp2/KpzIstyOoBbAhwLnQYUl2c5kVrH5ERjNB6+bbdUQafXN0hcRC2dVgQuae9GVBRQUuIpykhERBRs/C3CKADoCyAEJxh9kWX551MLi5qK6t0SWBHFOq0i8Y2cAIDDUgVERjVQZEREREQU7OqdnEiSdBaAtQCSvA/53sOq3tsqAE46aKZ8yYmqqdsSd1Grww9Fh+Bwu3GDq6ZN3IjoVLkUYGO2BqGFwFnRTR0NERFRw/Bn5GQ2ACeAO+GpEM/JBcGkntO6AGBpXh7sNgtGCv7uTE1EtXEqwFM/e6ZRbh4F6LgHBRERBSF/kpN+AG6SZfnjQAdDTS9Pr0Nafh5CW7dDXcsqanU62G2Aw2Fv0NiIiIiIKLj581F3AThaErSytFqs2JeDQ5ExdX5OiM6AMK0WDqulASMjIiIiomDnT3LyBoCJxxRhpCDh8G4HrNHWrUI8ADyXnIwlfQfAuW9fQ4VFRERERC2AP9O6OsNTcPGgJEk7ARz7cbkqy/KwU46MmoTGZkO0Tg+9pu55q28ZvMtua5igiIiIiKhF8Cc56QRgW7X7xy7L5DLNZmyIxYo7+/TDv+WldX6O2/uSu2xcc0JERERE/qt3ciLL8tCGCIROD6KqABAg1GNal8ubjrpsHDkhIiIiIv/5VYSRgpeoqIAoANq6V3p3eZcuuTmti6jB6ETgxfPsCAkxQKsBtyUhIqKgVKfkRJIkN4BzZVn+U5IkBZ5CizVRZVmuc9IjSVI0gJcBXAkgHMB/ACbKsrzJe7wvgNcBDABQBGCuLMsz69o+1Y9G9by0gt5Q5+e4Bc/QidvOaV1EDUUrAld3ciEqyoCSEk9RRiIiomBT1yRiCjwFF323T5ac1Nd7AOIA3ATgEICHAXwjSVI/7/1vAWwA8CCAcwC8KUlSkSzLywIYA3mJvpe2HiMniigCUOH27vRFREREROSPOiUnsiy/WO32C4G6uCRJnQBcDOB8WZZ/8z42DsBwADcDsAKwAxgty7ILQKokSZ0BTADA5KQBaL25iaCre3KyV9DiUOEBxOt7NVBURORSgN/2axBaCvQOb+poiIiIGkZdp3VdUJ9GZVn+uY6nFgK4AsCWas9VJUkSAEQD6ADgZ29i4rMRwNOSJMXJslxQn7iodod/IPR1T0626UOwNXsPHgm5qkFiIiLAqQBjNxoBAJtHATrui0hEREGortO6fsSRqVw1/UlUvcdUAJq6NCrLcimAL6o/JknS9QA6AvgawDQA24952gHv17bwVKv3i1brT/3Jmmm8dUE09agPcjr6raIMepcLCSHhEMWjX2rf/WMf1+k8O3s5nY6Af18bU7C8hjUJ9v4Bwd1HbbXJtKJGRDP+r3ZSwfwaAuwfEVFt6pqcNMr2wZIknQ9gKYCPZVn+VJKk2fBM66rOtyWU0d/riKKAqKiGKXAfHm5qkHYbywcHD6CqqgpTY+NgMJ149MRgOHqbYaPRCJ0gQFRcDfZ9bUzN/TWsTbD3DwjOPhqcR26Hh5tgrvtu381SML6G1bF/REQnVtc1Jz81dCCSJF0N4F0AvwMY5X3YCuDYbaN8SUmVv9dSFBXl5ccWtj81Go2I8HATysutcLub7zY6du+OW063CsV69AJ3URRgMOhgtzuhKEc+xj3bUo6H+5+NzKy9KCnx+2VpcsHyGtYk2PsHBHcfrU4A8CT/5eVW2MXg6p9PML+GAPt3KsLDTRyRIWoB/KpzIklSLIAn4VnM3hrApQCuAbBNluWP/WhvDDzbBX8I4FZZln2jJfsAtDnmdN/9XD9CP8zVQPtwut1Kg7Xd0FwuF0IgwKnRQBS0RyUg1SmKetQxReP5MVKdrmbb9+qa82tYF8HePyA4++hyH7mtuBW4lODq37GC8TWsjv0jIjqxen8EIUlSCjy1SO6HZ3vhOHiSnC4A1kuSdEU92xsNYB6A+QBurJaYAMDPAAZJklR9DcswADIXwweevbISi/r2x/IzzjxqfnttVG9yArfr5CcSEREREZ2EPyMnr8GzEH0IgEoADgCQZfkWSZJMAJ4B8HldGpIkqQs8IyYfAZgOIE6SJN9hKzzrT54CsESSpBkAzgLwKDw1TyjAHJYjU7IEgwlwn+TkalSNZ/K74K7jE4iIiIiITsCfyZvDALzk3Wnr2M/XFwDoWY+2rgOgg2dKWN4x/173jo5cCkACsBXA8wCelGV5hR9xUy0cVs86HLeqQtTUI2/VMjkhamg6EZh4lh1ThgDaOu2HSERE1Pz4teYEQE3zdwyoR/V4WZZfBvByLef8BeDcuodG/nJYrAAAp6KghuUmJ+ZLToJ8DjxRU9KKwE1dXYiKMqCkxFOUkYiIKNj4M3LyCzxFEKvvGatKkiQCGA3g14BERo3OafMkJy6oUNW6Zyeqt5q8WK+MhoiIiIjoaP6MnEyEJwHJAPADPCMl4wF0B9AJwKCARUeNymGxQgTgUgGlHsmJwxSKP0qKYQsNbbjgiFo4twL8c1BEWBXQmSUkiIgoSNV75ESW5R0ABgDYCE9xRjc8WwpnADhPluVtgQyQGs+RkRPUuI3wiVRExuG1PbvxdVVlA0VGRA4FuO8bE25aDzi4vIuIiIKUX2tOZFlOB3BLgGOhJubUaPBbYQEEcwji6jFDS6vzrDlxOOy1nElEREREVDN/izB2AGCUZXmXJEmRAKYBSAawVpbllQGMjxqRzWzCW9mZ6NS5K26tx/O0Ws+aE6edyQkRERER+c+fIoyXAUgFcLf3obfhKciYBGC5JEn3BC48akwOhxPAkZGQuoqwVeG9/mfjpdZJDREWEREREbUQ/uzW9RyAbwC8KElSBDw1SqbLstwPnkKK4wIYHzUiu9UCgyhC7919q64EvRGiIEArCA0UGRERERG1BP4kJ30AzJFluQKeAolaAOu8x74F0DlAsVEjM2ZlYWW/s3BzPUdORIMBAKBjckJEREREp8Cf5MSKI2tVhgPIl2X5P+/9BAClAYiLmoDbu2ZEqWeSIRo8+5rqRBFOpzPgcRERERFRy+DPgvhNAMZLkhQN4AYAywBAkqT+AJ73HqdmSHE6AABuUVOv54n6I0UXnFYLdLqIgMZFRIBWAB7t54DJrIdWhKfCFBERUZDxZ+TkMQCJAFYDyAIw1fv45wCM8BRppGZIsXuSE0VTv+REMBxJTmxVVQGNiYg8dBrgzp5OPNjfc5uIiCgY1XvkRJblLEmSegCIk2U5v9qhkQD+kWWZ+8k2U6p35ESt58iJRquDoqoQBQEOi6UhQiMiIiKiFsCfkRPIsqwek5hAluXfAWi9Ww1TM6R614vUd+QEgoB/K8rxd2kxnN4Eh4gCy60AOwpF/HvQc5uIiCgY1XvkRJKkdgAWABgMoKY9ZznpoBlSXS7PV039lyLNPXAAVZVlOEdvCHRYRATAoQC3fuGZQrl5FKDj5nhERBSE/FkQPxvAeQAWAjgfgAXAZgCXAOgF4NqARUeNqkgUUVBcBCUuCVH1fK6vcKPDwVl9REREROQff6Z1DQYwWZblcfDs1GWXZXkCgAEAfgJwdQDjo0Yk63WYnZmOvJi4ej9Xq2VyQkRERESnxp/kJBTANu/tXQD6AoAsy24AbwC4MBCBUeNzODzrRTTa+hVhBIAJrVtjdb+z4MrKCnRYRERERNRC+JOc5MFTbBEAMgBES5LU2nu/GEB8IAKjxue0WQEAOl1NS4lqphFE6EQRLrst0GERERERUQvhT3LyOYCXJEk6T5blfQD2w1OUMQzA3QByAxkgNZ7hFis+GHAOksuK6/1ct++rjckJEREREfnHn+TkOQClAKZ47z8DYJz3sVsAvBaIwKjxiYqn5LTgx8iJW/BsHeSycythIiIiIvKPP0UYiwCc7ZvKJcvyakmScgCcC+BPWZZ/CnCM1EhEVQEEDeBHcuISPHmum9O6iBqEVgAe6O2AyaSHVgSgNnVEREREgefPVsIAAFmW8yRJ6gogCkCeLMv/F7iwqCloVe/Iid5Y7+cq3pETxcGRE6KGoNMAo/s6ERWlR0kJ4C1LREREFFT8Sk4kSboHnuldSdUe2wfgaVmW1wQoNmpkGt8nsXo/pnWJGgBuJidERERE5Ld6rzmRJGkMgEUAtgC4A8BwAHcBSAWwSpKk6wMaITUaje+rrv4jJ0WiFjvKy2DR+LOMiYhqo6hARqmA3UWe20RERMHIn5GTcQDmy7I89pjH35EkaTGAFwCsPdXAqPHpvFOz4Me0rj8NYfhr90948EKWuSFqCHY3cN0nZgDA5lGATmjigIiIiBqAP8lJEoBPazi2Bp4du6gZ2l5RDqMgwGgOrfdaW613Eb3dzgrxREREROQff+bg/AVgWA3HzgDwn//hUFNRVRWvZ6Zjenoa1NDIej9fq/NUlXc4mJwQERERkX/qNHIiSdIF1e6uATDbW3TxAwAH4dmx6zIAYwE8EOggqeG5XE4oigIA0Gj1h4sq1lU/exXu7NsfeXkHAx8cEREREbUIdZ3W9SOO3lVfADAawIPHPAYA74FrTpode7XiiRqdHu56blOqE0WEaXUocHJ/UyIiIiLyT12Tk6ENGgU1OVvRIazpfzbsbjcOChoASr2er2o907rqndUQEREREXnVKTlh1ffgZ6usgkYQoBFFqEL9twHyJSeCUr+khoiIiIjIp04L4iVJ+lmSpL71aViSpAGSJG3yKypqdE5rleerqkBV/Sii4EtO3PVdrUJEdaEVgNu7O3B/P0DLckJERBSk6jqt63UAX0mS9DeAVQA+kWXZcuxJ3kXyl8KzKP4MAA8FKlBqWPYqK0QALhXwZ/BD1Xq2EhY5ckLUIHQa4PEBTkRF6VFSArg4g5KIiIJQXad1rZck6ScAzwFYDEArSdIuAFkAqgBEAkgG0BOA03vOrbIs5zdE0BR4TpsFBgBOqH6NnAjeOicaf0ZdiIiIiIhQjyKMsiwXAhgrSdKLAK6DZ5F8BwARAAoBpMIzwvKpLMtFDRArNSCn1QoDADcEKEr9EwyXwYyMqkqUeeudEFFgKSqQWymgUgOY+RkAEREFqXpXiPcmHgu8/yhIuKw2z1cB9a4ODwAV0QmYm7oD7dq1x6jAhkZEAOxu4IoPzQCAzaMAXf33rSAiIjrtcVklAQDsAvBfeSny/Hy+r0K83eGo5UwiIiIiohNjckIAgIrwcEzdnYZvBY1fz9d6F8Q77PZAhkVERERELUi9p3VRcLJ7kwq9Xu/X80MdVrzR6wxwAyEiIiIi8heTEwJwJDnR6vxLTjQ6PVoZDLBzK2EiIiIi8hOTEwIARGXuwbK+A7DH7d/Yh6A3AQB0ggC32w2Nxr/pYURERETUctUpOZEk6fb6NCrL8jv+hUNNxuFAiFYLrejfMiSNwQgAEAUBDqsVptDQQEZHRERERC1AXUdOltejTRUAk5NmRvXusqWKGvizQ6loNB++7bBWMTkhCjCNANwgOWEw6KAR4d+e30RERKe5uiYnKQ0aBTU51eX0fNVq/UpOBO2RtSr2KgvQKkCBEREAQK8BnjnbgagoHUpKABd3nyAioiBUp+REluWcujYoSRJLgzVHLjcAQBX9W4YkiCIcigK9KMJhrQpkZERERETUQvj1TlSSpJsADAagBw5/0C4CCAFwLoCkgERHjefwyInO7yb22W0QFBWSwxmoqIjIS1WBYhugWACBU7qIiChI1Ts5kSTpeQDPAyjzPt/p/dcKgAJgUSADpMYh+EZOTiE5mb4/F+VlRXjfaAxUWETkZXMDF34QAgDYPArQcYyaiIiCkD9bM90BYBWAaACzAXwqy3I8gDMBFAHYGbjwqLEUQ8Xuygo4TebaT66BxlsjxeFglXgiIiIiqj9/kpNEACtlWVYBbAFwHgDIsrwFwDQA9wYuPGosm6BictpOHGrV2u82tN5RF4d35y8iIiIiovrwJzmpwpFNLNMBpEiSZPLe3wbu7NUs2Ww2AIBO7/+UrPtjYzC3Z1+4c7IDFBURERERtST+JCd/wjO1CwD2AHABuMh7vxsAzulphmw2KwBAp/M/OYnUaJBgNMJtsQQqLCIiIiJqQfzZretlAN9JkhQpy/JVkiStArBCkqQfAFwK4KOARkiN4i69ESG9z0CupcLvNlyCZ4Wu2878lIiIiIjqr94jJ7Is/wxgAID3vQ+NAbAOQFcAawGMDVh01GjCICBWbzi8qN0fiuD5cWJyQkRERET+8KvOiSzL/wH4z3vbBuD+QAZFjc+3LaloMJ38xJNwe0dOFC6IJwo4jQBc1dEJg14HjYgjK/+IiIiCiL9FGCMAXAhP0cXjRl9kWX7nFOOiRqb3jnoIBrPf73ncoghAgZtbCRMFnF4DvHS+A1FROpSUAC5XU0dEREQUeP4UYRwOz/StmgpiqACYnDQjiqLAIHqSE9FohtvfdgQNoCpQWSGeiIiIiPzgz8jJdACpAB4HsB+eqvDUjNmrqg7fFk3+JydVGi0OVJbDzvkmRAGnqoDVCRicnttERETByJ/kpCuAq2VZ/iXQwVDTsFWUH74t6kP8Tjc3myIx6/cfcPdZZwUoMiLysbmBQR+EAAA2jzqyToyIiCiY+JOc5AAID3Qg1HRsVisyqiqhFUUIOj1g928yu87gqZHiq5lCRERERFQf/hRhnA7geUmS2gc4FmoiDq0Gz6TuwJScLCiK//NFdDoDAMDCIoxERERE5Ad/Rk5uAZAIYI8kSYcAHPtOVJVlueMpR0aNxmq1AQAMRuMpJSedXTZc2r0XqgqLAhUaEREREbUg/iQn+73/KEj4pmEZDEYop7DS1iSKaG8OQTZ36yIiIiIiP9Q7OZFl+a6GCISajisrE/N7nYFDgnBKIyeqd1qXqPi73xcRERERtWT+1Dlpe5LDCoBKWZZL/Y6IGp2rshJxBgPsbjcqTqEdQe9ZEK9RuLs0EREREdWfP9O6soGTF7KQJKkYwOuyLE/1JyhqXE6rZ1qXS/Rnf4RqvLt1aViEgSjgRAG4qJ0Lep0WoohafgsTERE1T/4kJ3cAWAjgRwBrABwEEAfgOgBXAngJQCiAyZIkFcmy/FZgQqWG4rZ5FsS7TzE5EY1mAICOb5qIAs6gAWYOtiMqSouSEsDl347fREREpzV/kpNRAN47wdqTVZIkvQWgvyzLIyRJKgUwGgCTk9Oc27sgXhE1p9SOYDABYHE4IiIiIvKPPx+VDwHwbg3HPgQwzHt7EwBuKdwMuO0OAICiOcXkxBSKEocDZU7u1kVERERE9efPyEkRgD4Avj3BsT4Ayr23QwFU1adhSZImA7hIluUh1R7rC+B1AAO8154ry/LMekdNNVIcds9XjT8/Dkeoka3wwH9bIQgCtqoqBIFDKESBYnUBg94NAQBsHsURSiIiCk7+vBtdDWCKJElOAOsAFMCz5uRaAC8AeFuSpCgAjwL4va6NSpL0KIApAH6u9lgMPEnQBgAPAjgHwJvetSzL/IidTsCqqthvtcIWHgXjKbSj03u2ElZVFQ6HHQbDqbRGRERERC2NP8nJZHiSkVnefz4KgKUAnoFncfwZAC6srTFJkhIBLAYwCIB8zOH7AdgBjJZl2QUgVZKkzgAmAGByEiBpIWa8v/NfjOzeD31PoR1fcgIAVquVyQkRERER1Ys/RRhdAO6WJGkagKEAYuGpGP+rLMtZACBJ0pcAEmVZttehyX4ASgD0BvAcgPbVjg0C8LP3mj4bATwtSVKcLMsF9Y2fjmfz7tZVPbnwhyhq8JzUHWZRA0tBPiIjowIRHhERERG1EH4vMpBleQ+APTUcK6lHO58C+BQAJEk69nASgO3HPHbA+7UtPFPK/KLVnmJNj2NoNOJRX5sTu92TnOgNRohizRPZfcdOdk5bsxmhGi2cleUB/x43tOb8GtZFsPcPCO4+aqtt0S1qRDSz/151FsyvIcD+ERHVpk7JiSRJmQCukWX5X0mSsnDy8l+qLMuB2qXLDM+0rups3q9+zxkSRQFRUSF+B3Uy4eGmBmm3IZ1XXoGLevRGoa0SJpO+1vMNBl2NxxzenwzR7Wiw73FDa46vYX0Ee/+A4OyjodomeOHhJphr/m8YFILxNayO/SMiOrG6jpz8hCO7cP2ExqtNbAVw7FwjX1JSr53AqlMUFeXlFr+DOhGNRkR4uAnl5Va43UpA225oZqcTbU1mlKkCrFZHjeeJogCDQQe73QlFOfGPgMFbHb70UBFKSvx+iZpEc34N6yLY+wcEdx+tTgDwJPzl5VbYxeDqn08wv4YA+3cqwsNNHJEhagHqlJxUL7goy/KdDRbN8fYBaHPMY777uafSsMvVMH8U3G6lwdpuKKJbAUQRilZfY9JRnaKoNZ7nhGfKl72yqtl9H3ya42tYH8HePyA4+6gowMBEF3Q6LaAGX/+OFYyvYXXsHxHRifm15kSSpDAA4bIs50qSpAcwDkAygHWyLP988mfXy88AHpQkSSPLstv72DAAMhfDB45WVQCIEE3mU27LN/PEaQnsyBRRS2fQAPOH2REVpUVJCeBy1f4cIiKi5qbe46OSJJ0FIAfAI96H5gJ4FcCtADZKkjQicOFhKYBwAEskSeouSdKd8NRPmR7Aa7R4Ou8giGA89TUiLsHzI+W0Wk+5LSIiIiJqWfyZvDkNQBqABZIkmeBJSt6UZTkawBIAkwIVnHd05FIAEoCtAJ4H8KQsyysCdQ0C9N7Nt0TTqScnNlFEmdMJp9NZ+8lERERERNX4M63rbAA3yrKcJUnSlQBMAFZ6j70HT7LilxOtZ5Fl+S8A5/rbJtXO4B3tEE1hONUZwp9ozPhv60aMv/iiUw+MiA6zuoCLPzBDALDxekBX847eREREzZY/yYmCI9v7Xg6gFMCf3vvhALjYoBlxOhwodNhhFDUQzaGnnJzovVXhbTZO6yIKNJuLGQkREQU3f5KTvwHcK0mSFcCNAD6TZVmVJCkOwETvcWombHY7Ht3xLwBgeljUKS+y1ek8Oz9brbZaziQiIiIiOpo/ycmTAL4CcBOAQwCmeh/fAc8alksDExo1Bot3Vy2NRgtB1AJwn/wJteipOnGp1B1K7int9ExERERELVC9F8TLsvwPgE7wrAPpIMtyuvfQaAA9ZVneEsD4qIFZrZ5CiSazGXUocVKrcEFA97BwmLhbFxERERHVk191TmRZrgDwxzGPrQ9IRNSoLDk5mNG9F0qAOhVgrI3qndYlcLcuIiIiIqonv5ITCh720lK0N4fA6HKhRDn1ar6q3rMgXmSFOCIiIiKqJyYnLZyjshIhAJyCADUA07pUgwkAoHGf2toVIjqaAKB/vBs6rQYCN+0iIqIgxeSkhXNUVQIAXKI/9TiPJ3gLOWoDMApDREcYtcCSS22IigpBSQlOeWc9IiKi01Fg3pFSs+Xy7tblDlBy4qsyrwvAKAwRERERtSxMTlo4l3dXLbcmMINogikMDkWBU+G0LiIiIiKqH07rauEUu6dYoqINzI+CO7Y1bt36J7RaHatxEgWQ1QWMWG+GIAKfjwR0XHdCRERBiCMnLZzd5UKxwwGHVh+Q9gxGMwDA5XLC6XQEpE0i8iixCyhmCSEiIgpiTE5auJ0hZjz431bsjEsMSHt6g/Hw7crKqoC0SUREREQtA6d1tXAW74L46knFqRBFDR7vJCFMo0HVwQOIiooKSLtEREREFPyYnLRwVqsnOTEEKDkBgG6hYYjQamEpLgpYm0REREQU/JictHBnl1fgAqk7ymyWgLVp91ZztJWVBaxNIiIiIgp+XHPSwsW63OgaFg6TRhewNu3wbCNkrygPWJtEREREFPw4ctLC6VQFgAjRFBqwNh2CJzlxVFYGrE2ilk4A0D3GDa1GA4HbCBMRUZBictLCGbyV3IWQ8IC16RQ8A3LOKu7WRRQoRi3w7hU2REWFoKQEcLmaOiIiIqLA47SuFs4oen4ExEAmJxoNAMBlCdw6FiIiIiIKfkxOWjCHzQqDNznRhEUErF2XqIVDUeC02wPWJhEREREFPyYnLVhlUeHh29qQwNUj+Sk0Frdu/RNp4WEBa5OopbO5gOHrTTh/KWDllC4iIgpSXHPSglWWlKLE4YBGFAGNFnC7A9KuwWQGAFgsXHNCFCgqgLwq8cgdLoonIqIgxOSkBbNoNXjgv62IiW2FxxU1YO3qDZ7kpIK7dRERERFRPTA5acEqKioAACEhoXC7A5ecJKtuPNmxC4TikoC1SURERETBj2tOWrBK78hGSEgoFDVwyUmYVoszo6KR4HQGrE0iIiIiCn4cOWnB1PTdeFHqjiJzSEDb9dVM0QdwqhgRERERBT+OnLRgSmkJuoWFI04T2BxVDPVsS2zkgl0iIiIiqgeOnLRgbm+RRLdWF9B2NWGebYnNoghFUSCKzIGJTpUAoEOEAo1G5E5dREQUtJictGCKLznR6QM6hKYLjwEAaAURlrIShEbFBLB1opbJqAU+vNqKqKgQlJQALtY6ISKiIMSPtFsybwV3RW8IaLMacyhcqgIAqCgoCGjbRERERBS8mJy0YKLDk5zAFOAF8aIIi1uBU1FQUVwc0LaJiIiIKHgxOWnBNL6tfkNCA9725LyDuGXrn6g06APeNlFLZHMB135swkUrASundBERUZDimpMWzOlywSFqIIZEBrxtrcmT8JSXlwW8baKWSAWQWSYeucNF8UREFIQ4ctKCzcrdh1u3/glbUoeAt200e5KTiorygLdNRERERMGJIyctlKqqKCsrBQAYzeEBb/98sxHXdOwCTUZGwNsmIiIiouDEkZMWymazwuFwAAAMprCAt99ao8WZUdHQFHFBPBERERHVDUdOWqjivXsxReqOUpcLGp0BToc7oO279QbAaoNitQS0XSIiIiIKXkxOWqiKgwfQNSwcpS4XDilqwNt3G8yAtQyC1RbwtomIiIgoOHFaVwtVeagQAGAF4HIrAW9fDfGsY9F4p44R0akRALQOUZAUBu7URUREQYsjJy2UrbQY4QDsogg18AMnQFgUAMDgZkEGokAwaoEv/2dFVFQISkoAF/9rERFREOLISQtlL/XUH3FqGyY/1UTGAgDMDZH4EBEREVFQYnLSQrm89UdcekODtK+LivN8FQS4fJXoiYiIiIhOgtO6Wiil3JucGEOgaYD2tdEJuP2fv2Bzu7GxohzR0TENcBWilsPmAu7/2gitBlh4EX95ExFRcOLISQvlsNngUBSooYEvwAgAGq0WGm+V+OLioga5BlFLogLYVaTBfwVomHViREREpwEmJy3U+qoK3Lr1TxSnSA12jZDQSABASQkLMRIRERFR7TgzoIUqKvJsJWwKb7jpVpdFxyAhxABr6i7gzHMa7DpEREREFByYnLRAqqqisPAQACDEu+VvQ2hvNKKnSY99B/Ma7BpEREREFDyYnLRA5YcO4dmUTih1OmEyhsHeQPPXHToD4LLC6d22mIiIiIjoZLjmpAUq3puNLqFh6BkeAegaZithAHCawwAAajmTEyIiIiKqHZOTFqhk/34AQKWqwulSGuw6inc9i85ma7BrELUkUQYV0aamjoKIiKjhMDlpgSr27wMAVGk0UJSG25NUiPYUYjS73A12DaKWwqQFfrjRgn/uB0y6po6GiIioYTA5aYFsBfkAALuxYT+C1cUlAwAiRZFV4omIiIioVkxOWiCltAQA4AyNaNDr6OOSoagqHKqCIu9oDRERERFRTbhbVwuks1g9NyJjG/Q6Gp0O47KykF9cgFVVlYhv0KsRBTebCxj3vRE6LTBnMH95ExFRcOLISQtktdvgUBRoWrVu8GvpIzyL4g8ePNDg1yIKZiqALfka/J4LqA23VIyIiKhJMTlpYRRFwYupO3Hb1j+hpnRv8OtFxSYAAPZzWhcRERER1YIzA1qYvLwDcLmc0Ol0MIZEwe5s2I9g+0RGY3gnCcZt2xr0OkRERETU/HHkpIXJzNwDAEhKbofG2OE3JiwK/SOjEFFe3vAXIyIiIqJmjclJC2P59Re80q0Xhickwt2ANU58tG1SAABRqmdKGRERERFRTZictDBK3gF0CAlBbGh4o1zP2E6CoqoI0WhQtDe7Ua5JRERERM0Tk5MWxlBRCQBQW7VplOtpjWYUulwAgL1btzTKNYmCiaIoKNybg/TNv0EvuGAQXEj75Sfs27kdVd6aRURERMGCC+JbEIfVgjjvbUPHnnA10nULtAbEQUHRzu3Atdc30lWJmh+3y4W0n37Ajr05+C9jN1JTd6GjpQr3JbWDEcByLDx8rhVALoC1xUXIiY1B9+49cUav3ujdvSeiWjfOhw9ERESBxuSkBcn47VfoRRGVbhd0iZ3hcjTOGpCqqDig9CDU3NxGuR5Rc1JVVop/1r6Him3b0KqqEuEaLX7LysBPRYUAgNDwCCiqikq3Gy6oUABoIcAsitCLIjKLDmFLZjr+/PN37IiMwviOXfCPqsKVkoKOl12ODgPOgiAITdtJIiKiOmJy0oLkbf0byQAKNFrYGykxAQC1rQRbUS6KKiugqirfKFGL53a5sO2zT5D//bdoU1mJOI3GM6qp0cLqdqNHp07oMfxCdGvXBsmxkYgNNUOvFSBAgdGog83qgFsFysssGFN6NrIPlWL7nhxE5ORDFAQkCQKQkwP3grfwy5vzYOvYGb1vuhkJnTo3ddeJiIhOislJC+LckwEAsMTGN+piI1O3s3DPytlwOh04a08GOvENErVQe/Zk4PPPP8bmr77Ei22SEAYAGg2KXC6UxUYirnsHdO3TGV3VYyddumFzipicNwSiRsTUhB+ggxsR4SZEhJvQvW0CLu/fFQCQf7AY6X+nwr0vH0mqgASNFsjOQun0qZijFTFoxDW48MKLYDKZG7v7REREtWJy0kI4nQ7szj+I8LBwaHuehcbc1FdnNKF9595I3/U3fv31JyYn1KIU7s3BtjWrsG/XTrz+79bDj28LD0d4q1i0HtAD/Xp3BNxOz4HjEhMPBSJ+q0ry3E4QAZy4UFF8QjTirzwfAFBWVontm/4DsvOg2h34atd//9/encfHedX3Hv88M6N9l2VZki15ie0TJ97ixHbsxMapSXwJUFMKpOQFhaRsyeW+aEkh9BZCLgHaQlualttAoQEKCaFAbhZILilZ7XhJ4njDjk9iy44t27IsWbL2ZWae+8d5ZE+EJjexZM2S7/v1mtfI5znz6Pys55l5fuecOQ//d+tmCgoK+eTKK1lw5WoWvWs9kZyc8QtYRERkDJScvEVs3ryJuw8e4P9UTuILcy6lbwKndQHMuXgpr+x9gR2P/5aPfORjE/q7RSZaX1cX2352Lz3PbaU+FqXBCzE1ksOP8/NZfNkSrr3iUlaY6UTiQUIynJiMs7KyYq5850oAmk608amd0/n1xudpaW7hklPtFPz6V7zw4AO019Uy5z1/zOxll5+XdoiIiLxRGZGcGGNCwJeBjwEVwEbgZmvt/pQ2LIM88MAvAVi1Zt2EJyYA8xas4PLdz3Bhbj52wzOYVasnvA0i51NfXy/bHnqAzg3PUNfTQ3U47DZ4IY7FosRmTuVnN6yntCAMfhzi5ychSWbalEnccM1KPnr1Cva80sSxZ3dS2ztIZSRCZctJ4v/2HZ68638TnTOHOe98NzMWXTKh7RMREYEMSU6ALwGfAm7ArZ75DeBRY8zF1trBlLYsA7y8aSM92909RhZffnVK2lBSUUWsqAyIc/CnP1FyIhkvHo9z8IXn2WH3smHb82ze/CxXlpTxyRmzIBzmVDTK6epK5ly5hJUNk/GjwVuVP/GdA4k8z2P+3HqYW09//wC7t+yh175KfdxjajgMjY3cfetn2ZWfz+rVV3HFssuZP38BReUVKW23iIi8NaR9cmKMyQVuAT5vrX0kKLsOOAa8F7gvhc1Le72dnRz73ne55YK5vJCTS25xLdFYai6OupetI/7cI8waHGTTj+5m5UduTEk7RM7FqaYjNG7ZzKl9LxE/1sSk3j7KIhFeOHyIp1qaATg6OYfG0kJqFhkWL5qNFyQkZxKTNJOfn8fSNUtgzRJOtXawZ9Nu/KaT7Ojs5HDzcQ4dOsjhXz/MJ2bMpNmHgcmTKZk9h9qFi2lYfAk5eXmpDkFERLJM2icnwGKgBHhiuMBa22GMeRFYjZKTUcXjcfY9+TjH7/kx9eEw3bEoVe/7OL0pSkwASi5ayo6dz7BksIfSp5/iv442seKmT1NcUZmyNon4vk9vRzvtx47S2dxMd2srHUODHOzppqnpCF1Hm7g+DuWRCKVA6fALIxEG43HmNdRzwTuuYtWiC5lZVYo/2O+2p2lCkkxlVTmr/nAVAEv638Xz+4+wccdLNBxrI+KFmOYBbW3Q1kZs6xZsPE6b7/NUWSlF06ZRWzuV+sIiyvPyKKmeTOmUWsqm1BDJzU1tYCIiklEyITmZFjwfGVF+DGg4151GIuO7mO6mPa/y9L/eRe1AF/gAPu5uHu7Z9+GhcBmDXgjwWRLrYXZ8AADPvcDV993PD1BET7CHJQxwsT9wts6ZfQM+3B/PpcMP4fs+S0JRVtJPFTHKIxHqQyF6YzEeWvABjg8uhTFcL3kehMMhYrH4cDPfvLV/i/erv+CScJTpjY0cvuXP+cqpHjpLqokUFHO5N8h0P0o8NPrf55HcSQx5btuiaBczYv1Jf9Vvcivp99y8//nRbi6I9SWt+3hOBd2hHEJhDzPQzdxYT9K6T+VUcDrkTp050R4ujvYmqenzTKSMtpBbCemCaC+L4r2v2Z5oQ6iYEyF3ITcz3s9lr9OGZ0OFHPVc3Yb4ICviyetuCRVyiBw8D+qJckWs+8y2xGMO4DmvgFc8194aP8pav/dMO0fenWYbeezFtaGKGNfSS7IDYwe57CIX3/epIMZ6b/jv9vv1d/sRtvmubilx3hcaSFp3bzzCFt+1t8CPc31kwJ1viecIEAL2Dvk83jtAdLCP/Oggt0+pINfzyPc8IsHxFgHKgW0nW/juq40A5IZC3LxkGXHfpyUaozmcT3tpNafrFzI0ZwVEcgGfX/QDTaOGPy6i/tmIvtVyGZHzveZeNRRcAy3xOL840Uhh41YmnTxI1UAXdSEoCIepBX678Wm6om6FsRvqZ/COKTUMAW3Boy8WY8D3GfLhG6e66QrnEcnNZ1VBDgvCcXw84p6Hj4fvDT9C/DpcRlcoB88LMT/ei/n/nL/D5+SFsV7mRUeeD2f/757OKePU8DkZ62NBrOc1x0riUbYpp4yToVzAY0asj0XRbpLZGimlOexGkqbF+rk02pW07va8Mg57eeD71MYGWBbtTF43UszhcAEA1fFBVgydTlp3d6SIxrBbIroyPsSqoY6kdfeGi3gl4uqWxaOsGWpPWteGC9kXKQKgOB5l7evUPRAppHXabO689UbycjLhEkNE0k0mvHMML8Y/MKK8HzinLvdQyKOiomhMjRrpzrvvY82rO1lWNTlpne+8ePZDfG3DTC6tnpK07vd2baZ10GUSb5vWwKKautErenD33m0c7Xcf3FfUTWN23TTA9eo+Fy/kPxf9Ja1TLoHkn6sTatvae7jqub/h3R0vUBb2ePnQHuLsAWD9zNksnVRFsuuu7zz/BD0xt4TqVdNnsnxy8v/DH2x7mlND7v9w5bTpLK+pTVr33u0bOD7gLpgvqZvG8rppSev+cuezHOpzScb8mjqWTUueIz+8ZysHut1FytzqGpY2zEha97GXXuBgp7vwmFk1mctmXJC07pMvb+dQh7tAmFo5iUtnJV+eedMru3n1lLvbeFV5BUtmm6R1nz/4EodbWwAoKynlEnNR0ro7j7zMkRNuOlN+UTGL5s3//Qwm8NLRRo4cPwpAuKCQhRcvTLrfA82v0nTU9UVE8/JYsCD5F7OPnGzi6JFXASjPyWH+okuT1m3uaqH1kEs48kMhKqe+9lwdjMfpjMXp9D26imrwFizHK28gWtbA/8yPcHzKUgaKRhxvKTqnHu6Y4OW4C+bBxe88++94lMktO6lt2U7P6mvxuo7C6SP00sLxwSglIY/iiOsYKAiHKQhe1nH8AKejbiGA0vrpXDRllHPSd4+7d27ixIB7218+tZ6ltVOTNu9nuzZxODgnF9VOZdnU+qR1H/zdZg70uD/chVNqWF4/I2ndx/ZsZX+XSxxmVFWzfMaspHWf3vc8+4NzsrayiuWzZietu+Xlbew/1QZARXkFy1/nnNy+fzv7W08CUFRaxvK585LW3du4i/3BFENTXMLyCy9OWvfAod+xv/kYADMKCln+Oudk0+G97D/mMu/avHyWL1ictG7rUcsDGx/giXWruf6a5OejiEgynn/OXeATwxjzx8AvgEJrbV9C+X8Cedba9W9yl42xWHxmZ2fyXrhz8dLhFh793o8o6z6N6+D03FADgOfGRnZV1BMNu3ywoecUVQPdwTYv6O31gos7j32V0xiK5OLhUdNzikn9ncH+zu5z+Hc0VkxlMCcPD49Jve1URgfw6+aQe9FKQiXl4xajB4TDYWKx2Ch92G+eH4/Td3gvzW0n6O1oZai/h/qO41T0d+LFRr+Hw7byOmIhd9Ezo+cU1QPJRwx2lNcyGPSmNvS2U9Of/EpyV1kNA+EcPM9jam87dX3JezJ3l9bQG3EjBrV9ndT3j+zJPHuFvq+kmu7coNezv4uG3vazxwWv7aV9pbiaztwCPM+jqr+bhp62YHfembpesO+DJZPpyC0EDyoGepje3RpU9Ubs1+Nw8STa84rxPCgb6md6Z0vS9h4tnsSp/BIAigf7mNn12rp+QtubiypoKygHoGCon1mnm38/OQnqtxSW01pYDnjkRQeZ1XHsNe1NbEtrYSkni1y/Q24syqz2o6PuE6C9oJSW4kkARGIxLmhvwvPODuD4Ca/pLq6kvaqenNx8Irn5TOrtwMsvxissIVw1lVBJ5dn2pOnbohu9DM7BNG0jAB7EBvuJtR3D72jB7+/G7+ultbCMoegQQwN9lJ86RnlvB148BvG4WyjAj+PFY3i+z97SGvo9Dz8eZ2pvB7X9yUci9pROoS8YwarrO83U1zl/Xyqtpivszt+a/i4aejuS1t1XMpnOSD4A1QPdzOw9lbTuy0VVtOe6vrSqgR4u6G1LWvdAcRWtuYXgQ8VgL3N7WpPWbSys5GReMQBlQ31c2H0yad1XCypoDs7fkugAF3WdSFr3SEE5x/LdJMXC6CALupqT1j2aX0pTcK7nx4ZY1Hk8ad3m/BJisy/ito+tTzqSeq5KSwsIh0MHgeRZoohkvEwYORmezlUHHEgorwN2nutOo9HxnRIxr6Gald++nfb2nnHf99gkm3L05kUiISoqimhv7x+/GM0s3sznzEfH57eO6mx86fY3HB/ZHh+MNcbx7bA4H87LOXhe1QSPNy7bj1PFJyLy+sb3ixfnx06gE1gzXGCMKQeWABtS0yQRERERERlvaT9yYq0dMMZ8G/g7Y8xJ4BDwTdyIyv2pbJuIiIiIiIyftE9OArfh2vp9oAB4BlinGzCKiIiIiGSPjEhOrLUx4NbgISIiIiIiWSgTvnMiIiIiIiJvAUpOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLnu/7qW7DROvzfT8/Hh//uMPhELFYfNz3m06yPUbFl/myPcZsjw+yP0bFd25CIQ/P8/qBgnHfuYikjbdictIB5AHHU9wOEREReeNqgQGgPMXtEJHz6K2YnIiIiIiISBrSd05ERERERCQtKDkREREREZG0oORERERERETSgpITERERERFJC0pOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLkVQ3IBsYY0LAl4GPARXARuBma+3+lDZsHBhjvgi83Vq7JqFsMXAncBnQBvyztfbvU9LAc2CMqQS+DrwLKAV2AV+w1m4Mti8mg+MDMMZUA/8A/DegAHga+Jy1dm+wfTEZHuMwY8xc4EXg09baHwZli8ng+Iwx04FDo2z6uLX2+5ke3zBjzJ8CXwBmAQeA2621Pw+2LSZDYzTGrAGeTLL5oLV2VibHB2CMyQFuBz6M+9zbAdxqrd0UbF9MBscnIqmjkZPx8SXgU8DHgRWADzxqjMlNaavGyBjz58BXRpRNAv4LeBn3ofNl4A5jzA0T3sBzdx9wOfAnwFLche1jxpgLsyQ+gIeAC4B34GLsA35rjCnMohiHL5DuAYoSyrIhvoVAP1AH1CY87smS+DDGfAi4G/guMB93Xt5njFmRBTFu4rV/t1rgGiAKfD0L4gP4InAjrlPuEmAf7nOvLkviE5EU0cjJGAUJyC3A5621jwRl1wHHgPfiPnAzijFmKvB9YBVgR2z+BDAA3GStjQIvGWPmALcCP5jQhp4DY8xs4GrgioQevs/gLuKvx13EZ2x8cObi/CDwVWvtnqDsDlzP5sXA28nwGBP8L6BrRFlGH6OBBYC11h4fuSHoNMjo+IwxHnAH8C1r7Z1B8R3GmCuBNcEjY2O01g4CzcP/DpLobwG/DEa+/ooMji+wHrjXWvsYgDHmFlyisgKYS+bHJyIpopGTsVsMlABPDBdYaztwvfGrU9OkMVsCtON6b7eO2LYKeCb4wBn2BGCCqUTprhV4J7BtuMBa6wMeUEnmx4e1ts1a+8GExGQK8JdAE7CXLIgRwBizGvgk8JERm7IhvoW4v9VosiE+A8wA7k0stNaus9b+DdkRY6L/DtQDfxH8OxviawPeZYyZYYwJc7ZTYAfZEZ+IpIiSk7GbFjwfGVF+DGiY4LaMC2vtw9ba6621jaNsnsbosUIGxGut7bDWPmKtHRguM8a8HzcF6jdkeHwjGWP+DdeD+37gz6y1PWRBjMaYcuDHwP+w1o6MJePjw42cVBtjNhhjThhjNhpj1gXbsiG+ucFzkTHmN8aYFmPMVmPMu4PybIgRAGNMPvDXwD8ljIRlQ3yfwU1TO4hLSr4OfMBae4DsiE9EUkTJydgVBs8DI8r7gfwJbstEKGT0WCED4zXGXIGb9/6gtfZhsiw+4J9wc75/AjxgjFlCdsR4F7DZWnvvKNsyOr5gquhc3GINXwSuBZ7HzedfS4bHFygNnv8DN3pyDfAY8GAWxTjsw7hFKf45oSwb4puHG2F/D+47fD8A/sMYs5DsiE9EUkTfORm7vuA5L+FncG/APRPfnPOuDxdrouEPm4yK1xizHndhtAX4YFCcNfEBJKzO9QncXPBPk+ExGmM+jJs2siBJlYyOz1o7GIwMRRNG+LYZY+bhpudldHyBweD5m9baHwU/7wiS58+SHTEO+1Pcd03aEsoyOr5gNbl7gLXW2g1B8QvGmItw3wPL6PhEJLU0cjJ2w0PXdSPK63Bz/LPNEUaPFeDoBLflnBljPg3cDzwCXGutHU4sMz4+Y0y1MeaDwTxwAKy1cdx3GKaS+THeCEwBjhhjuo0x3UH5d4wxe8j8+LDW9iROPQzs5ux0mYyOj7PvjbtHlO8BZpIdMWKMmQys5PcXRsn0+JYBObgRvURbcKN+mR6fiKSQkpOx2wl04laXAc7Mh18CbBj9JRntGWBV4oUvsBa3slBLitr0phhjbgL+Bfg2cN2Ii8CMjw93EXAv8LbhgmC1oCW4BCXTY/wQbkrJ4oQHwG24KVAZHZ8xZmGQdF05YtNluIv3jI4vsB23ytrlI8oXAPvJjhjBJSY+7j5DiTI9vuFOuYUjyhcAr5D58YlICnm+76e6DRnPGPM13KpBN+JunPZN3Eo0C4IlJTOWMeaHwIzhmzAGK63sw91H4xu4HrS7gE8lTM9IW8bdsO93wK+Am0dsHp6KkLHxwZllWh/FHYMfx80L/2tgHe5Cvp8Mj3EkY4wP3GCt/WEWHKMh3H0yioCbcCvMfQJ3vC4FTpDB8Q0z7gavn8e9dz6Hu+/QV3AXsXvJjhhvAz5krZ07ojwbjtGngMm447IJN33tr4ArgUYyOD4RSS2NnIyP24B/x90b5FncCibrMj0xGU3Q67UOtxToi7iba30ugz5w3oebjvBHwPERjzuzIL7hpZGvwy3d+TPchV8lsMpaezgbYnw9mR5fMAXv3bi/289xowzLgauttbszPb5h1tqv4u4w/jVcMvJ+4L3W2qeyJUagBrfk7mtkenzBMboe9x7zQ9zS7H+A+w7KlkyPT0RSSyMnIiIiIiKSFjRyIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhaUnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJScikpaCm0mKiIjIW4iSExFJO8aYPwR+FPy8xhjjG2PWpLZVIiIicr5FUt0AEZFRfDbh5xeBFbi7iIuIiEgWU3IiImnNWtsJbEl1O0REROT883zfT3UbRETOMMY8Bbwtoegq4EngKmvtU8aY24E/Ab4AfBWYDewDbgJ84E5gIXAA+Iy19vGEfc8H/hZYHRQ9DtxirW08jyGJiIjIG6TvnIhIurkZ2B48VgClo9SpB/4R+BrwAaAS+AXwU+B7uOQlBNxnjCkAMMbMBTYB1cBHgT8DZgHPGmOqz184IiIi8kYpORGRtGKt3Qt0Ap3W2i3BzyMVAjdba39qrX0I+FegDrjDWvt9a+2DwJeAKsAEr/ky0Ae83Vp7v7X257hRmQLgc+c1KBEREXlD9J0TEclUmxJ+bg6eE7+b0hY8lwfPa3HTw3qNMcPvfZ3ABuDq89RGEREReROUnIhIRgq+KD9S7+u8ZBJwXfAY6eS4NEpERETGRMmJiLxVdAC/Bf5hlG3RiW2KiIiIjEbJiYikoxgQHud9Pg1cBOyw1kbhzF3ofwLsB3aM8+8TERGRN0nJiYikow5ghTHmD4CycdrnV4DNwK+MMXcB/cAngfcA7xun3yEiIiJjoNW6RCQdfRsYAh7FraY1ZtbaXcAq3L1QfoxbergWeI+19v7x+B0iIiIyNroJo4iIiIiIpAWNnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJSciIiIiIpIWlJyIiIiIiEhaUHIiIiIiIiJpQcmJiIiIiIikBSUnIiIiIiKSFpSciIiIiIhIWlByIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhb+Hxxlzwq+L5mVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50: {'width': 3}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/tutorials/calibration_curve.ipynb.txt b/_sources/tutorials/calibration_curve.ipynb.txt new file mode 100644 index 0000000..1f0d0ad --- /dev/null +++ b/_sources/tutorials/calibration_curve.ipynb.txt @@ -0,0 +1,630 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Absolute Quantitation \n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A common goal in chromatography is to quantify with physically meaningful units\n", + "the concentration of an analyte in a solution. While Chromatography will not\n", + "give that to you directly off the instrument, you can prepare a \"standard\n", + "curve\"--a set of solutions where you *know* the concentration of the analyte of\n", + "interest. With a properly configured machine, one can make a direct linear\n", + "relation between the integrated area of a peak and the concentration of the analyte. \n", + "In this tutorial, we will use `hplc-py` to quantify a standard curve of a lactose \n", + "solution and then use the `.map_peaks` method of the `Chromatogram` object to \n", + "test our calibration curve. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating a Calibration Curve\n", + "Here, we will use `hplc-py` to quantify aqueous solutions of lactose in different \n", + "concentrations. These files have been preprocessed to have the known lactose \n", + "concentration in the file name. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data/calibration/lactose_mM_6.csv\n" + ] + } + ], + "source": [ + "import glob \n", + "\n", + "# Get the list of files\n", + "files = glob.glob('data/calibration/lactose*.csv')\n", + "print(files[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can load this file into memory as a chromatogram using the `load_chromatogram`\n", + "function from the `io` module and instantiate a `Chromatogram` object." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABai0lEQVR4nO3dd5zdVZ3/8de90xMyyaR3EkI4FIFIEVmNgOBiF8v+rGtbVGR1ZS3gKs3eYcG+AoqFRdcKChaWRYqKGIpKOZCEkN4nmZSZSWbm/v743puZDCmTycz93vJ6Ph553Dvfcu7nntyU9z3ne76ZXC6HJEmSJFWDbNoFSJIkSVKxGIAkSZIkVQ0DkCRJkqSqYQCSJEmSVDUMQJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVWjNu0CKtQmoAFYlXIdkiRp4KYAncCYlOuQNIwyuVwu7RoqUXsul2vs6Rmevs1mMwxX2+plPxeH/Vwc9nPx2NfFMRz9nM1myGQyHUDTkDYsqaQ4AjQ8VvX05GZv3LhtyBuurc3S0jKStrbtdHX1DHn7StjPxWE/F4f9XDz2dXEMVz+PHTuSmpqMszekCuc1QJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVXDRRAkSZKq1IIFC0aRLP/tl+IqZz3AqhNPPHHLQA42AEmSJFWZBQsWZIGPZDLZN2cymTogk3ZN0kHI5XK5nQsWLPgu8OkTTzxxn8tDGoAkSZKqz0dqamrf3dzcsqO+vnF7JpPx5lUqW7lcLrNjR8eItrbWd3d3dwF8cl/HG4AkSZKqyIIFC5ozmeybm5tbdowa1bIh7XqkodDQ0NQOjNu0acObFyxYcNW+psM531OSJKm6TM5kMnX19Y3b0y5EGkr50cw6kuva9soAJEmSVF2yQMZpb6o0+c90hv1kHAOQJEmSpKphAJIkSZJUNQxAkiRJ0hC4+uorpp5zzguPTbuOgXrssUcab7vtt6PTrqPYDECSnuaBBxbw5S9fye2330Yu5xRxSZIq0Yc//IG5jzzy95Fp11FsLoMtaTc33fQzLr30P3b9/Na3nssFF3wwxYokSdLwqM4vOQ1AknZZs2Y1n/70xwCYM2cuixY9wXe+cw3z55/GiSeenHJ1kqTh1NPTw/bt21ObHTRixIiebPbAXv65zz3pxFe/+rWr7rjjf8ft3Lkze9VVX39sxIgRPV/+8pXT//rXB5q3bdtWM3r06K4zzjhrw/ve98EVjz76SNO73vXWo7/2tWsePe64edsBLrjg/Dl///tfm3/96zseqK2tJZfL8ZKXnHX8W97y9hWvfe0b1/d/zfXr19VeccXnp99//32ju7u7M0ccceTW97//omVz5hzeWTjmv/7ra5N++cufT9qyZUvt4YfP3fbhD1+6pLB/TzVPnz5jxze/+dUpv//97eNaW1vrpk2b1vHP//y2lS984Us2AfzP/9w47r//+3tT3va2c1dce+1/Td+8eVPdUUcds+Xiiz+25DvfuXbyHXfcNq62tjb38pe/as15571nNUBnZ2fmK1+5curdd9/ZsnHjhvrGxqae44+ft/nDH75k6dix47rPOeeFx65fv77+Rz+6Ycrf/vbgqG9967uxtXVjzVe+8p/T7rvvT2O2bNlSO3v2nG3vfOf5K5797H/YWnhvP//5T8b+4AfXT1m3bl3DzJkz28844wUbrr32GzPuvvsvCwbze5LNZgf1/g6GAUjSLtdc8w06OjqYN+8Errvu+3zqU5fzk5/8iC9/+Uq+850b0i5PkjRMenp6eMMbXn3kY489mtp0qCOPPHrrDTf8OB5oCPrtb2+Z8JnPfOmJ7u6uzNy5R3S+4Q2vPnr06DE7P/e5/3x81KhR3b///e1jvvWtr884+uhnbDv77BdvGj9+/I4//vGe5uOOm7e9u7ubRx75+6jOzs7sAw8sGHnyyadse/DB+0ds2dJW+/znv2BT/9fq6urife979xGQyV1++acXjRs3ruvLX75y+gc+8N4jfvzjm/8GsH79+vq///2voz7zmSue2LGjM/PpT39s9qc//bFZ1177vbi3mi+44Pw5ixcvGvHe9/770tmz53T8+te/GvupT10+J5vNLvzHf3zRZoANG9bX33TTzyZ+8pOfX7h9+7bsJZdcNPdtb3vjMWee+YL1X/vatY/ecstN477//e9MO+20MzYdddQxHV/60men33vvH8dcdNFHl8yYMbMzxtj0xS9+etY3v/nVqf/xH5cuu+aa7z369re/8ejnPOe0je9857tXdXd382//dt4RO3fuzFx00cVPTpgwcecPf3jDxA9/+P1H/Od/fu2xefNO2H7bbb8ZfcUVn5v95je/ffnpp5+56d57/9B8zTXfmHGwvyeDeX8H9CHpxwAkCYDt27fxq1/dBMC//uu/kc1mOe+89/CLX/yMBx+8nxgfI4QjU65SkjR8yvO+QKed9vwN8+adsB2gvb098/znv2DD2We/qHXGjEN3AMya9S9r/+d/bpy8cOHjTWef/eJNJ510yqb777+vGVj94IP3j6ypqc0dccSRW++7795RJ598yra77vr9mLlzw9YJEyZ29X+te+65s/mpp5Y0ffvbN/x97twjOgE++tHLl3znO9dM3rhxQy1ATU1N7hOf+NyTo0eP7gZ40Yteuu773//OtL3V/PjjjzX+5S9/HnP55Z9aeNZZZ28GeM97Lli1ePHCET/4wfVTCgGou7s78/73X/RU4T//xx57fNvjjz92yIc+9JHlmUyGd77zX1f96Ef/PeWJJx5vOuqoYzqOOurobWeccWbrqac+dyvAjBmH7vjd737dtmTJ4iaA8eMndGWz2VxTU1NPS8vY7ttv/13zk08uHvGtb13/cOE1Lr74Y0sff/yxkT/4wfWT5807YfGNN/5g8rOf/Q8bzz33vDUAhx8+d93y5csabr7555MO5vdkMO/vYD4zBiBJANx222/Zvn07M2ceykknnQLAhAkTOf3053Pbbb/h5z//MRdddHHKVUqShkM2m+WGG34cy20KHMD06TN2TT1ramrK/fM/v23tLbfc3PL9718/cuXKFQ1PPfXkiE2bWuu6u3syAPPnn775sss+MqG9vT1z771/HHXMMc/YMm3ajI6HHrq/GVh93333jn7e807fuKfXeuKJx5tGjBjRXQg/AJMmTe666KKLlxd+Hj16dFch/ACMGtXcvWPHjt3eWN+aY3ysCeCkk07Z2veYY4+dt+W73712et9thx/e+7oNDQ09EyZM6sxkMgA0NjbmADo7O7MAr3zlP228667fj7riis9NW7FiecPy5cuaVq5c0XjkkUft9joFCxc+0dTUNKK7b7jIZDIcffQztt5//1+aAZYsWTziuc99Xmvf844//plb+wegA/09Gcz7OxgGIEkA/N///S8AL37xyyj8ZQPw8pefw223/Ybbb7+NCy/86G77JEmVI5vNcsghh/SkXceBamho3FXz9u3bs+9611tDR0dHdv7801r/8R9ftOH44+ctfc973rlrCsOppz5nS11dbc+f/nTPqAceWNB8xhlnbjz00FmdN93008nLlj1Vv2TJ4hGXX/6pxXt6rZqa2tz+/h3MZrP7HUnrW/PeFiLo6enO1NTU7Lazrq5ut5+z2b3X8vGPXzLznnvuHHv66WduePazn7P5yCOPXvWDH1w/ecOGdfV7Oj6X2/Nb6+npoba2Npe8XjY3kNVhD/T3ZDDv72AYgCTR2dnJH/94DwCnnXbGbvue9axTaWxsYs2a1Tz22CMcddQxaZQoSdJ+/f73tzc/+eTiET/96a8emjhxUhdAa+vGms2bN9cWgkZ9fX3u+OOf2XbnnXeMeeKJxw/58IcveWr69Bk7MplM7mtf+/LUKVOmdvRd0KCvww6b07Ft27aaxYsXNRx22JxOgA0b1te+/vWvesYnP/n5JwZT8xFHHNkO8Je/3HtIYQocwN/+9tAh06bNaB9Mmxs3bqj57W9vnXDRRR9d/LKXvXLXiM3y5UsbGxub+oSv3oBx+OFHtG/fvr3m0Ucfbuw7CvTIIw8fMn36zA6AQw+d1f7IIw8fAqwt7H/44b/t87qxgfyeFFtJBaAQwsXAWTHG0/tsmwJcAbwI6AZ+Dbwvxrg+vz8LXAacC7QAdwPnxxgX9mljHnAVcBKwAbg6xvjFPvv324ZUyR588H46OtqZMGEiRx559G77Ghsb+Yd/eC633/477r77TgOQJKlkTZo0eQfATTf9bNzZZ7+odeXKlfX/9V9fndbd3Z3ZsWPnrv/t/8M/PHfT1VdfOau5eVRXIeyEcNTWu+/+/bhXvvI1e11lbP7809pmz56z/eMfv3j2e9/7/mUjR47s/upXr5o+evSYnccf/8ztf/rTHw74pqIhHNUxb94Jm6+++oqZwNJZsw7r+PWvfzV2wYL7xnz4w5fscSRqf5qbR3c3NY3ovvvuO8ccc8xx2zs62rM//OENE5cseXLEnDlztxWOa2xs7F6xYnnD2rVrak877YzNM2Yc2v7xj19y2Hvf++/Lxo+fsPOHP7xh4vLlS5ve//4PLQV4wxvevOqyyz4y99prvznpjDPO2nT//X855Fe/unnivmoZ6O9JMZXMjVBDCBcAH++3rQH4HXAYcBbwEuAE4Lt9DrsEOA94B3AqSZS8NYRQn29jXL6Nx0kC0GXAJ0IIbxtoG1KlW7DgPgBOPvmUPU5xO+WUUwG47757i1qXJEkH4oQTTtr+9re/c9lNN/1s4pvf/LpnfO5zn5z1jGccv+U5z5m/McbeFe7OOOOszT093ZlnPOP4tsK2Zz7zxLZcLsdppz1/097az2azfP7zVy6cMGHSjg9/+ANz3/ve846sqanJXXHFl59oaGgY9HDGZz97xeJnPevZm6644vOzzj33zcfce+8fxnzkI5cveslLXt66/7Ofrra2losv/tjipUufavqXf3nTMRde+O9zOzs7s29601tXrFixrGnbtm1ZgFe84tVr77//vtHve9/5R9TW1nL11V9/fNasw7Z/7GMXzznvvH85asmSJ5s++9krHj/xxGdtAzjjjLPa/vVf3/fUL3/5iwlvf/sbj/nVr34x4eyzX7SuMEVuTwb6e1JMmbTv8h5CmAZcA8wHlgFrCiNAIYS3Al8B5sQY1+S3nQ18DXgm0AGsBy6MMX4jv38MsBJ4e4zxxhDCfwD/CsyKMXblj/k08KoY45H5kLPPNgbxthZ3d/fM3rhx2/6PPEC1tVlaWkbS2rqNrq6ym6ZbNqqtn//lX97EggV/4ZJLPs6rX/3/nrb/yScX88pXvpj6+nruuus+GhoahuR1q62f02I/F499XRzD1c9jx46kpib7JMkXrxVrwYIFR2azNb+eOHHa1vr6xoNaTUvV5Y9/vPuQ8eMn7uy7CMTXv/7lyb/97a3jf/azW/6eZm0AO3Z0NK5du+KQnp7uF5544omP7e24UhgBOgFoBY4D+n+9/ELgfwvhByDG+JsY45wYYxswDxgF3N5n/ybgfuB5+U3zgTsL4SfvdiCEECYOsA2pYnV1dfH3v/8NgBNOOGmPx8yaNZtx48azY8cOHnnk4WKWJ0mSSsSf/vSH0R/84L8dcc89d45avnxp/W9/e+vom2762aQzzjhrj6vmlarUrwGKMd4M3AwQQui/+wjgzhDCJcBbgDrgNySjNZuAwtKAy/qdtxKYmX8+HfjbHvaTP2YgbQxKbe3Q58uamuxujxoe1dTPixc/SWdnJyNHjmTOnMPY2xKkxx57HHfccTuPPfZ3Tj55z0HpQFVTP6fJfi4e+7o47GcpHeef/76V7e3t2c9+9pOzt2xpqx07dtyOV7ziVWve8Y537/W6qVKUegDaj2aS4PO/wBtIFii4EvhFCOF0YET+uP4rdXQAY/PPR+xlP0DjANs4YNlshpaW4ZvW2NzcNGxtq1c19PPSpYsAOPbYYxk3btRejzvppBO4447beeKJx4b8s10N/VwK7Ofisa+Lw36WiquhoSH3kY9ctoynDxyUlVIPQDuArcDrY4w7AUIIbwH+TLKgQWFpwIY+zyEJNoULcNrz++m3n/wxA2njgPX05Ghr2z7Y0/eqpiZLc3MTbW3tdHc7v3y4VFM//+UvDwAwd+6RtLbu/SM/Z04yQnv//Q/s87gDUU39nCb7uXjs6+IYrn5ubm5yVEmqAqUegJYD2UL4yStcgDAbWJJ/PhVY1OeYqcBD+efL8j/Tbz/ACpJpdftrY1CG8wLY7u4eL7Atgmro58I1PUccceQ+3+uRRz4DgCVLnmTjxk00NzcPWQ3V0M+lwH4uHvu6OOznQesBSHkdLGnI9flM7/MvhlL/muNO4PgQQt8x7mPzjwtJAkobcHphZ34FtxOAu/q0MT+EUNOnjTOBGGNcO8A2pIrU09NDjI8CcNRRR+/z2JaWFqZOnQbAo4+6EIIklbENkOvq6eku9S/CpQPS09NVC7kukhWe96rUA9A3SG5+ekMI4RkhhOeQLJn9fzHG+2OMnSTLZH8uhPDyEMJxwA9JRn1+mm/jOpJria4NIRydX1r7AuAzAANsQ6pIy5YtZdu2bTQ0NDBr1v5XfT366GQU6JFHUl/pUpI0eK25XG51e/u2vV/4KZWh9vbto3K53Gpg076OK+nkH2NcH0KYT7Lwwb0kCxX8DHh/n8MuJXkf1wBNJCM+Z8cYd+TbWJu/d9DVJEtbrwI+FGO8fqBtSJXqsceS0Z+5cwO1tfv/6+CYY47lttt+41LYklTGTjzxxJ4FCxZ8sb19y5fb2urGNTQ0bdvDPbClspHLQWdn+8j29i09uVzuCyeeeOI+p8CVVACKMb51D9ueAF66j3O6gYvyv/Z2zH3AqQfThlSJFi58HIAjjnjaEvR7NHfuEQAsWrRw2GqSJBXFTd3d3cds3rzh9ZlM5pC0i5EOVi6X25rL9fw3+dvr7EtJBSBJxbVkyZMAzJ49sJuez5lzOABLly5h584d1NXVD1ttkqThk/+G/FMLFiz4ci7HZEr/sghpX3qA1SeeeGLbQA42AElV7KmnkgB06KGzB3T85MlTGDFiBNu3b2fp0qW7ApEkqTzl/8M4oP80SpXCtC9VqZ6eHpYufQqAQw+dNaBzMpkMhx2WhJ7Fi50GJ0mSyo8BSKpSq1evoqOjg9raOqZNmz7g8wqjPl4HJEmSypEBSKpShet/ZsyYMaAV4AoOO2wOAIsXL9rPkZIkSaXHACRVqQO9/qdgzpy5gCNAkiSpPBmApCr11FNLAJg168ACUGEE6KmnlrBz586hLkuSJGlYGYCkKlWYAnegAWjKlKmMGDGCrq6dLF++bDhKkyRJGjYGIKlKFUaABroCXEEmk2HmzOScpUuXDGlNkiRJw80AJFWhHTt2sHr1KgBmzjz0gM+fMWMmAEuXLh3SuiRJkoabAUiqQqtXryKXy9HY2MjYseMO+PxCAFq2zAAkSZLKiwFIqkIrViwHYOrUaWQymQM+vzBqtGzZU0NalyRJ0nAzAElVaOXKFQBMnTrwG6D21RuAHAGSJEnlxQAkVaHeADRtUOcXpsCtXLmCnTt3DFldkiRJw80AJFWhgw1A48dPoLGxiZ6enl1tSZIklQMDkFSF+l4DNBjJUtiuBCdJksqPAUiqQqtWJaM206YNLgBB35XgXAhBkiSVDwOQVGU6OztZt24dMPhFEABmzEgWQli61AAkSZLKhwFIqjKF0Z+mphGMGTNm0O30jgAtG4qyJEmSisIAJFWZwqIF06YN7h5ABYXrh1atWjkkdUmSJBWDAUiqMge7AlxB4fyVK1eQy+UOui5JkqRiMABJVWb16tUATJ489aDamTIlOb+jo53W1taDrkuSJKkYDEBSlVmzphCAJh9UO/X19UyYMBHAewFJkqSyYQCSqszatWsAmDTp4AIQ7D4NTpIkqRwYgKQqUxgBmjhx0kG3ZQCSJEnlxgAkVZFcLseaNY4ASZKk6mUAkqrIli1baG/fDjgCJEmSqpMBSKoia9cm09/GjBlDY2PjQbdnAJIkSeXGACRVkcL0t4kTD376G3gvIEmSVH4MQFIVKSyAMGnSwU9/A+8FJEmSyk9t2gX0FUK4GDgrxnj6XvZ/C3hBjHFWn21Z4DLgXKAFuBs4P8a4sM8x84CrgJOADcDVMcYvHkgbUiXoDUBDMwKU3AtoAuvWrWPVqhWMHTt2SNqVJEkaLiUzAhRCuAD4+D72n0MSUPq7BDgPeAdwKpADbg0h1OfPGwf8DnicJABdBnwihPC2gbYhVYqhvAdQwaRJU4DecCVJklTKUg9AIYRpIYRbgU8CcS/HTAH+C/h9v+31wAeAy2KMt8QYHwJeC0wDXpU/7J1AJ/DuGOOjMcZvA1cCFx1AG1JFGMp7ABVMnjx5t7YlSZJKWeoBCDgBaAWOA+7tvzOEkAGuB74H3NFv9zxgFHB7YUOMcRNwP/C8/Kb5wJ0xxq4+592eNB0mDrANqSIM5T2ACgoLKqxebQCSJEmlL/VrgGKMNwM3A4QQ9nTIvwNTgJcB/9Fv3/T847J+21cCM/sc87c97Cd/zEDakCqCI0CSJKnapR6A9iWEcBzJNTvzY4ydewhII/KPnf22dwBj+xyzp/0AjQNsY1Bqa4d+gK2mJrvbo4ZHJfZzR0cHW7duAWDKlMlD9vmcMiW5Bmjt2tUH3GYl9nMpsp+Lx74uDvtZ0sEo2QAUQmgEbgA+GWP8614Oa88/NvR5Dkmw2dbnmIZ+5xXuALltgG0csGw2Q0vLyMGevl/NzU3D1rZ6VVI/L126AYDGxkZmzJhEJpMZknbnzp0NJAssDPYzX0n9XMrs5+Kxr4vDfpY0GCUbgIBTgGOAy0MIl+W31QO1IYStwLuAJ/LbpwKL+pw7FXgo/3xZ/mf67QdYAdQNoI0D1tOTo61t+2BP36uamizNzU20tbXT3d0z5O0rUYn9vGjRUgDGjx/Ppk1D99kcObIFSK4B2rBhC9nswL+RrcR+LkX2c/HY18UxXP3c3NzkqJJUBUo5AP0ZmNtv27+RrMx2OrAG2AG05X9eBBBCGEOysMJX8ufcCZwXQqiJMXbnt50JxBjj2hDC5gG0MShdXcP3j193d8+wtq9EJfVzYQGEsWPHD+l7amkZRzabpaurizVr1jJhwsQDbqOS+rmU2c/FY18Xh/0saTBKNgDFGNuB3W5EGkLYCHT1u8npV4DPhRDWAUuAL5CM+vw0f8h1wIXAtSGEzwPPAi4gue8P+WuL9teGVPbWr18PwPjxE4a03draWsaPn8DatWtYs2bNoAKQJElSsVTCOO+lwLXANcA9QBdwdoxxB0CMcS1wNhBIlra+DPhQjPH6gbYhVYING4YnAEHfleBWDXnbkiRJQ6mkRoBijG/dz/7Lgcv7besmuanpRfs47z7g1H3s328bUrlbt24dkFwDNNSSewE95FLYkiSp5FXCCJCkAdiwIQlA48YNfQAqjAB5M1RJklTqDEBSlShcAzRhwtBPgZs0yZuhSpKk8mAAkqrE+vXDNwI0aVJyM1QDkCRJKnUGIKkK9PT0sHFjciPU4V0EwQAkSZJKmwFIqgKbN2+mq6sLgLFjxw55+4UpcOvWraW7u3s/R0uSJKXHACRVgfXr1wLQ0tJCXV39kLc/fvwEampq6Orq2rXctiRJUikyAElVoLAAwnBc/wNQU1Oza2rdmjVrhuU1JEmShoIBSKoChVGZceOG/vqfgt6V4LwZqiRJKl0GIKkKDOdNUAsmT05WgvNeQJIkqZQZgKQqULgJ6nCsAFcwYcJEoHe5bUmSpFJkAJKqQOEaoOEcASoEoHXr1g7ba0iSJB0sA5BUBYbzJqgFBiBJklQODEBSFSgsgjBhwvBNgZs4MWnbACRJkkqZAUiqAoVFEIZzFThHgCRJUjkwAEkVrqOjg61btwDFuQZo69atbN++bdheR5Ik6WAYgKQKV5j+Vl9fz6hRzcP2OiNHHsKIESOA3hEnSZKkUmMAkipc701Qx5PJZIb1tZwGJ0mSSp0BSKpwGzduBKClZeywv5YBSJIklToDkFThWluTADR27Lhhfy0DkCRJKnUGIKnCbdy4AYCxYx0BkiRJMgBJFc4pcJIkSb0MQFKF650CN/wBaOJEA5AkSSptBiCpwvVOgSveNUBr17oMtiRJKk0GIKnCpTUFLpfLDfvrSZIkHSgDkFThijkFbvz4CQB0dLSzdevWYX89SZKkA2UAkipYLpejtbUVKM4IUFNTE6NGNQNeByRJkkqTAUiqYFu2bKGraydQnAAErgQnSZJKmwFIqmCtrckCCCNHjqSxsbEor2kAkiRJpcwAJFWwYi6AUDBhQnIdkAFIkiSVIgOQVMGKuQBCQeFeQGvXGoAkSVLpMQBJFayY9wAqcAqcJEkqZbVpF9BXCOFi4KwY4+l9tr0MuBQ4ClgP/A9waYyxPb8/C1wGnAu0AHcD58cYF/ZpYx5wFXASsAG4Osb4xT7799uGVI6KuQJcgQFIkiSVspIZAQohXAB8vN+2+cDPgJ8A84DzgNcCX+tz2CX57e8ATgVywK0hhPp8G+OA3wGPkwSgy4BPhBDeNtA2pHJVGAEyAEmSJCVSHwEKIUwDrgHmA7Hf7ncBt8cYP5v/eWEI4SPAt0MI55EElQ8AF8YYb8m391pgJfAq4EbgnUAn8O4YYxfwaAhhLnBRvp36AbQhlaXCIghpTYHL5XJkMpmivbYkSdL+lMII0AlAK3AccG+/fV8CPrSHc2qBUSSjQqOA2ws7YoybgPuB5+U3zQfuzIefgtuBEEKYOMA2pLJUWAShmCNA48cnq8Dt3LmTzZs3Fe11JUmSBiL1EaAY483AzQAhhP77Huj7c5/RmvtjjOtDCIWAsqxfsyuBmfnn04G/7WE/+WOmD6CNQamtHfp8WVOT3e1Rw6NS+rkQgCZMGD8sn8c9qa1tZMyYMWzatImNG9czfvzeR58qpZ9Lnf1cPPZ1cdjPkg5G6gFooEIItcD3gKPpHZkZkX/s7Hd4BzC2zzF72g/QOMA2Dlg2m6GlZeRgT9+v5uamYWtbvcq9nwsB6NBDpw7r57G/KVOmsGnTJtrb2wb0uuXez+XCfi4e+7o47GdJg1EWASiEMAr4EXAG8JoYY2GqXHv+saHPc0iCzbY+xzT0a7Ix/7htgG0csJ6eHG1t2wd7+l7V1GRpbm6ira2d7u6eIW9fiUro556enl3XANXVjaC1ddAf5wM2dux4ABYteorjj9/761ZCP5cD+7l47OviGK5+bm5uclRJqgIlH4BCCFOAW4HZwItijP/XZ3dh2tpUYFGf7VOBh/ocM7Vfs4WfVwB1A2hjULq6hu8fv+7unmFtX4ly7ufW1lZ6epLaR40aXdT3UbgOaM2atQN63XLu53JiPxePfV0c9rOkwSjprzlCCC0kixNMAJ7bL/xAElDagNP7nDOGZGGFu/Kb7gTmhxBq+px3JhBjjGsH2IZUdgrT30aNaqaurrgruhcC0Pr1LoUtSZJKS6mPAF0JHAa8EFgXQpjcZ9+6GGNnCOErwOdCCOuAJcAXSEZ9fpo/7jrgQuDaEMLngWcBF5Dc94cBtiGVncI9gMaOLd4KcAUTJhQC0Lqiv7YkSdK+lGwACiFkSW56Wk+fJar7mE0SVi4leR/XAE0kIz5nxxh3AMQY14YQzgauJlnaehXwoRjj9X3a2mcbUjlK4x5ABd4MVZIklaqSCkAxxrf2ed5DEkb2d043yU1NL9rHMfcBpx5MG1K5SeMeQAWFKXDr1jkCJEmSSktJXwMkafB6A1BL0V+79xqgdeRyuaK/viRJ0t4YgKQKtWlTKwBjxqQXgHbu3Elb2+aiv74kSdLeGICkCpVmAGpoaGD06NGA1wFJkqTSYgCSKlRr6yYgnSlwAOPHFxZC8DogSZJUOgxAUoVKcwQIdr8OSJIkqVQYgKQKlXYA8l5AkiSpFBmApApVCEBpTYEr3Ato7VqvAZIkSaXDACRVoPb2djo7OwEYM2ZMKjU4BU6SJJUiA5BUgQqjP3V1dYwYMTKVGgxAkiSpFBmApArU9/qfTCaTSg1eAyRJkkqRAUiqQK2t6V7/A73XAK1bt5ZcLpdaHZIkSX0ZgKQKlPYKcNA7Ba6jo4OtW7emVockSVJfBiCpApVCAGpqauKQQw4BnAYnSZJKhwFIqkCbNm0C0g1A0HchBJfCliRJpcEAJFWgwjVAaS2BXdB7LyBHgCRJUmkwAEkVKO2boBY4AiRJkkqNAUiqQIUANHr0mFTrcClsSZJUagxAUgUqhUUQoHcEaN06A5AkSSoNBiCpApXKFLi+9wKSJEkqBQYgqcLkcjlaWzcBpTMC5BQ4SZJUKgxAUoXZtm0bXV07gfQDkNcASZKkUmMAkipMYfpbY2MjTU1NqdZSmAK3bds2tm/flmotkiRJYACSKk6p3AQVYOTIQ2hqGgG4EIIkSSoNBiCpwpTKCnAFXgckSZJKiQFIqjC9AWhMuoXkeR2QJEkqJQYgqcK0tpbWCFDvUtgGIEmSlD4DkFRhSuUeQAW9N0P1XkCSJCl9BiCpwngNkCRJ0t4ZgKQKU2oByGuAJElSKTEASRWm9AKQ1wBJkqTSUZt2AX2FEC4Gzooxnt5n2zzgKuAkYANwdYzxi332Z4HLgHOBFuBu4PwY48KhbEMqF62tmwCvAZIkSdqTkhkBCiFcAHy837ZxwO+Ax0nCy2XAJ0IIb+tz2CXAecA7gFOBHHBrCKF+qNqQyklhBGj06DHpFpJXmAK3ZUsbHR0dKVcjSZKqXeojQCGEacA1wHwg9tv9TqATeHeMsQt4NIQwF7gI+HY+oHwAuDDGeEu+vdcCK4FXATcOURtSWejp6WHz5k1A6UyBGzWqmfr6enbs2MGGDeuZNm162iVJkqQqVgojQCcArcBxwL399s0H7swHl4LbgRBCmAjMA0bltwEQY9wE3A88bwjbkMrC1q1b6O7uBkrnRqiZTKbPdUBOg5MkSelKfQQoxngzcDNACKH/7unA3/ptW5l/nJnfD7BsD8fMHMI2BqW2dujzZU1NdrdHDY9y7ectWzYDMGLESEaObEq5ml4TJkxkxYrlbNy4frc/F+Xaz+XGfi4e+7o47GdJByP1ALQfI0imr/VVuIigMb+fvRwzdgjbOGDZbIaWlpGDPX2/mptL5z+3lazc+nnRonYAxo0bO6yfvwM1depkHnwQtm3bvMe6yq2fy5X9XDz2dXHYz5IGo9QDUDvQ0G9bY/5xW34/+WPa+x2zbQjbOGA9PTna2rYP9vS9qqnJ0tzcRFtbO93dPUPevhLl2s/Llq0GoLl5NK2tg/74DrkxY5LvEp56avludZVrP5cb+7l47OviGK5+bm5uclRJqgKlHoCWAVP7bSv8vAKo67NtUb9jHhrCNgalq2v4/vHr7u4Z1vaVKLd+3rBhA5AsgFBKdY8bl6wEt3bt2j3WVW79XK7s5+Kxr4vDfpY0GKX+NcedwPwQQk2fbWcCMca4liSgtAGnF3aGEMaQLKxw1xC2IZWFUrsJakHhXkDr13szVEmSlK5SHwG6DrgQuDaE8HngWcAFJPfsIcbYGUL4CvC5EMI6YAnwBZJRn58OYRtSWdi0aRNQegGocC8gV4GTJElpK+kAFGNcG0I4G7iaZFnqVcCHYozX9znsUpL3cQ3QRDLic3aMccdQtSGVi9IdAUqWwXYESJIkpa2kAlCM8a172HYfcOo+zukmuanpRfs45qDbkMpBa2sSgFpaxqRbSD+F+wC1trayc+cO6urqU65IkiRVq1K/BkjSASjVEaAxY8ZQW5usN1JYqEGSJCkNBiCpgpRqAMpkMowfPx7wOiBJkpQuA5BUQUo1AEHvSnDr1nkdkCRJSo8BSKoQ3d3dbN68GYCWltILQIXrgFwIQZIkpWlAiyCEEN58II3GGL87uHIkDVZbWxu5XA6A5ubRKVfzdN4LSJIklYKBrgL3nQNoMwcYgKQiK0x/O+SQUdTV1aVczdN5LyBJklQKBhqAZg9rFZIOWu/1P2PSLWQvvAZIkiSVggEFoBjjUwNtMISQGXw5kgar9x5AY1OuZM+8BkiSJJWCQd0INYTwOuA0oB4oBJ4sMJLkhqPTh6Q6SQO2efMmoHRHgApT4AxAkiQpTQccgEIIlwGXAZvz5+/M/5oA9ADfGsoCJQ1MKS+BDb1T4DZsWE9XVxe1tYP6/kWSJOmgDGYZ7LcA3wfGAlcCN8cYJwEnAxuAh4euPEkD1TsFrjQDUEvLWLLZLLlcjo0bN6RdjiRJqlKDCUDTgO/FGHPAAuAfAGKMC4BPAecOXXmSBqrUR4BqamoYN2484DQ4SZKUnsEEoG0kS10DPAHMDiE05X9+EFeMk1JR6gEIvA5IkiSlbzAB6M8k0+AAFgFdwFn5n48COoegLkkHqNSXwYbe64DWrvVeQJIkKR2DCUCfBl4bQrg5xthJcj3Q9SGEnwBfAn4zlAVKGpjW1k1AqY8AuRS2JElK1wEHoBjjncBJwA/zm94D/Bg4Evgf4N+GrDpJA1YOU+AKI0AGIEmSlJZBrUMbY/wr8Nf88w7gnUNZlKQD09XVxZYtbUBpByCvAZIkSWkb7I1QRwPPJ7nx6dNGkWKM3z3IuiQdgLa2zQBkMhmam5tTrmbvxo9PpsB5DZAkSUrLYG6E+iKSqW4j9nJIDjAASUVUuAdQc3NzSd9g1BEgSZKUtsH8T+kzwKPA+4HlQM+QViTpgJXD9T/QOwK0ceMGenp6GNw6LJIkSYM3mAB0JPCKGONdQ12MpMEpBKDRo8ekW8h+jBs3jkwmQ1dXF5s2tTJx4oS0S5IkSVVmMF+/PgWU7kUGUhUqTIFraSntEaDa2lpaWsYCXgckSZLSMZgA9BngshDCrCGuRdIglcsUOPBeQJIkKV2DmQL3RmAasCiEsA7Y3m9/LsY456ArkzRgmzdvAsojAI0fP4EYHzUASZKkVAwmAC3P/5JUIgpT4MohABVWglu3zgAkSZKK74ADUIzxbcNRiKTB27RpE1D61wBBMgIEsG6d1wBJkqTiG8x9gGbuY3cPsDXGuGnQFUk6YF4DJEmSNDCDmQK3hORmp3sVQtgIXBVj/ORgipJ0YHoD0Jh0CxmA3puhOgIkSZKKbzCrwL0F2AH8Fngb8KL8tptJgtHHge8AF4cQ3j00ZUral3IKQL1T4BwBkiRJxTeYEaDXAzfu4Vqg74cQvg6cGGN8eQhhE/Bu4OsHWaOkfdi5cwdbt24FymMKXCEArV+/jlxun4PJkiRJQ24wI0CnAzfsZd9PgTPzz+8GXA5bGmaFBRCy2SyjRpX+PYoLAWjnzp27lu+WJEkqlsGMAG0Ajgd+t4d9xwNt+eeHANsGWdduQgh1wOXAPwMtwIPARTHGP+T3zwOuAk7K13d1jPGLfc7PApcB5+bPvxs4P8a4sM8x+2xDKlWFEDF69GhqamrSLWYA6uvrGTNmDJs2bWLdunXMnj097ZIkSVIVGUwA+gHw8RDCTuDHwFpgIvAqkpDyjRBCC3AB8KehKZOLgbeTXGu0GLgIuDWEcBTQSRLGfg6cBzwb+FoIYUOM8dv58y/J73sbsAL4fP78Y2KMO0II4wbQhlSSyukeQAXjx0/YFYAkSZKKaTAB6GKSwHNF/ldBD3Ad8BHgNcAzgecfbIF5rwBuiDH+FiCE8AGS0ZxTgSNIQtC7Y4xdwKMhhLkkIenbIYR64APAhTHGW/LnvxZYSRLabgTeua82hug9SMOinJbALhg/fgILFz7BunVr0i5FkiRVmQO+BijG2BVjfDtJ8HgX8FGSkZkjYozvijHuAG4FpsUY/zpEdW4AXhpCmBVCqKE3sDwIzAfuzAeXgtuBEEKYCMwDRuW3Fd7DJuB+4Hn5TftrQypZhWuAyikAFe4F5AiQJEkqtsGMAAEQY1wELNrLvtZBV7Rn7wN+CDwJdJOMNr0mxrgohDAd+Fu/41fmH2cChQsMlu3hmMJNXffXxqBuWFJbO5g1Jvatpia726OGRzn1c1vbJgDGjm0Zls/ccJg4MQlAGzasB8qjn8tZOX2ey519XRz2s6SDMaAAFEJYDLwyxvhQCOFJ9n0j1FyMcahXfzsKaAXOIbmG5x3Ad0MIzwNGkIwG9dWRf2zM72cvx4zNP99fGwcsm83Q0jJyMKcOSHNz07C1rV7l0M/bt28BYPLkicP6mRtKhx6afC+xcWMSgMqhnyuB/Vw89nVx2M+SBmOgI0C/p3d1t9+z7wA0pEIIh5IsvHBmjPGu/Oa/hBCOBj4GtAMN/U4rhJZt+f3kj2nvd0xhlbr9tXHAenpytLVtH8yp+1RTk6W5uYm2tna6u3uGvH0lyqmfV69OppE1Nh5Ca+uQLLw47EaNSqbrrViRDLSWQz+Xs3L6PJc7+7o4hqufm5ubHFWSqsCAAlDfm57GGN8aQhgFNMcYV4QQGkimqE0HfhJj/P0Q1/gsoA64r9/2PwEvBp4CpvbbV/h5Rf7cwrZF/Y55KP982X7aGJSuruH7x6+7u2dY21eiHPq5tXUjAM3No0u+1oLx4ycBsHr1aqA8+rkS2M/FY18Xh/0saTAO+GuOEMKzSELHe/ObrgI+A7wJ+N8QwsuHrjyg99qd4/ptPxZ4ArgTmJ9fHKHgTCDGGNeShJw2khu4Ft7DGOAEoDCitL82pJJVWAShpaV8FkGYNCkJQOvWraW7uzvlaiRJUjUZzCIInwIeA74ZQmgiCT5fjzG+J4TwTZJV4W4awhr/TBJUrg8hnA8sB94MnAU8l+S+QBcC14YQPk8yYnQByf18iDF2hhC+AnwuhLAOWAJ8gSRY/TT/Gtftqw2plJXjMtjjxo2ntraWrq4u1q5dS2Njc9olSZKkKjGYia6nAJ+IMT5JMkrSBHwvv+9G4BlDVBsAMcYekvsA3Q58B1hAcn+hM2OMf8qP0JwNBJKlrS8DPhRjvL5PM5cC1wLXAPcAXcDZ+SW7GWAbUkkqxwBUU1OzaynsVatWpVyNJEmqJoMZAeqhd8W0FwObSEZpAJqBIb/yP7+s9r/mf+1p/30kN0Xd2/ndJDc1vWgfx+yzDakUdXZ2sn178keunAIQwMSJk1i1aiUrV65k9uyQdjmSJKlKDGYE6C/AuSGEU4HXAr+MMebyNwz9cH6/pCIoXP9TU1PDqFGj0i3mAE2ePAVwBEiSJBXXYEaAPgT8GngdsA74ZH7730kC1dlDU5qk/SlMfxs9egyZTCblag5MYSGElStX7udISZKkoXPAI0AxxgeAw0mmix0WY3wiv+vdwDNijAuGsD5J+1CO1/8UTJrkCJAkSSq+wYwAEWPcAtzbb9tPhqQiSQNWCEAtLWPSLWQQCiNABiBJklRM3u5YKmOFa4DKcwRoMuAUOEmSVFwGIKmMlfcUuCQArVmzxpuhSpKkojEASWWsnANQ4Wao3d3drF+/Lu1yJElSlTAASWWstbV8A1Dfm6GuWbMm5WokSVK1MABJZax3BGhMuoUMUu80uNUpVyJJkqqFAUgqY+W8CAL0rgS3erUrwUmSpOIwAEllrJyvAQKYPDm5F9Dq1Y4ASZKk4jAASWWs3KfATZ6cTIFzBEiSJBWLAUgqU+3t2+no6ABg7NixKVczOIURIBdBkCRJxWIAksrUxo0bAaivr2fEiJEpVzM4LoIgSZKKzQAklalCAGppGUsmk0m5msEpTIFbu9aboUqSpOIwAEllqrU1CUDlOv0Nkpuh1tTU0N3dzYYN69MuR5IkVQEDkFSmCgGopaV8A1BNTc2upbCdBidJkorBACSVqcIUuLFjx6VcycGZOnUqYACSJEnFYQCSylTvCFB53gOoYMoUV4KTJEnFYwCSytTGjRuAShoB8l5AkiRp+BmApDLV2prcBLWcrwGC3hGg1audAidJkoafAUgqU5UyBW7atGkArF69MuVKJElSNTAASWWqdxns8p4CN336dABWrTIASZKk4WcAkspQLperiGWwoTcArVu3js7OzpSrkSRJlc4AJJWh9vbtdHR0AOV9I1RIpvA1NY0AnAYnSZKGnwFIKkOFBRAaGhp2hYdylclkdl0HtHKlAUiSJA0vA5BUhvreBDWTyaRczcGbMiVZCnvlyhUpVyJJkiqdAUgqQ62tyT2Ayn0FuILCCJALIUiSpOFmAJLKUGEEqKWlvFeAK5g6NVkIwREgSZI03AxAUhmqlHsAFUyd6hQ4SZJUHLVpFzBQIYQ3Ax8GDgMWAZfHGP8nv28ecBVwErABuDrG+MU+52aBy4BzgRbgbuD8GOPCPsfssw2plPTeA6i8V4ArcAqcJEkqlrIYAQohvAm4Dvgm8AzgRuDGEMKpIYRxwO+Ax0nCy2XAJ0IIb+vTxCXAecA7gFOBHHBrCKE+3/5A2pBKRqVNgZsyJQlAa9euYefOHSlXI0mSKlnJjwCFEDLAJ4ArY4xX5Td/IoTwXOD0/K9O4N0xxi7g0RDCXOAi4Nv5kPMB4MIY4y35Nl8LrAReRRKm3rmvNoryRqUDUGlT4MaNG0dDQwOdnZ2sXr2aGTNmpl2SJEmqUOUwAhSAWcANfTfGGM+OMX4GmA/cmQ8uBbcDIYQwEZgHjMpvK5y7CbgfeF5+0/7akEpK7xS4yhgBymQyu5bCdhqcJEkaTiU/AgQckX8cGUL4DfBM4EngkzHGm4HpwN/6nVP4H9TM/H6AZXs4pvA18/7aWDuYwmtrhz5f1tRkd3vU8Cj1fi5MgZswYdywfM6KpW8/T5s2nSVLnmT16pVl/Z5KUal/niuJfV0c9rOkg1EOAag5//hd4GMk09JeDfwihPACYATJ9LW+OvKPjfn97OWYwhXk+2vjgGWzGVpaRg7m1AFpbm4atrbVqxT7OZfLsWlTKwCzZ88Y1s9ZsTQ3NzFr1kzuuQdaW9dVxHsqRaX4ea5U9nVx2M+SBqMcAlDhiugvxBivzz9/MIRwAvB+oB1o6HdOIbRsy+8nf0x7v2O25Z/vr40D1tOTo61t+2BO3aeamizNzU20tbXT3d0z5O0rUcr9vG3bVjo6knyezTbS2jqoj2hJ6NvP48dPAmDRoifL+j2VolL+PFca+7o4hqufm5ubHFWSqkA5BKDl+cf+U9QeBl4KLAGm9ttX+HkFUNdn26J+xzyUf75sP20MSlfX8P3j193dM6ztK1GK/bxu3QYAGhsbqa9vLLn6BqO7u4fJk5M/citWLK+I91SKSvHzXKns6+KwnyUNRjl8zfEAsAV4dr/txwILgTuB+SGEmj77zgRijHEtSchpI1ktDoAQwhjgBOCu/Kb9tSGVjN4V4CrjHkAFhUUQVq50EQRJkjR8Sn4EKMbYHkL4PHBpCGEF8GfgdcA/koSUR4ALgWvzxz0LuIDkvj/EGDtDCF8BPhdCWEcyYvQFklGfn+Zf5rp9tSGVkg0bkhGgcePGp1zJ0Jo6NbkX0Jo1q9m5cwd1dfUpVyRJkipRyQcggBjjJ0MI24FPAdOAR4FXxRjvAAghnA1cTbK09SrgQ32uFwK4lOS9XgM0kYz4nB1j3JFvf+0A2pBKwvr164Dk3jmVZMKEiTQ2NtLR0cHKlSs59NBZaZckSZIqUFkEIIAY4xXAFXvZdx9w6j7O7SZZPe6ifRyzzzakUrFhw3qg8kaAMpkM06fPYOHCJ1i+fJkBSJIkDYtyuAZIUh/r1ycBaPz4CSlXMvSmT09uzbVs2VMpVyJJkiqVAUgqMxs3VuYIEMDMmYUA1P++xZIkSUPDACSVmcIIUKVdAwSOAEmSpOFnAJLKTO81QJU3BW7GjCQALV/uCJAkSRoeBiCpzBSWwR4/vvKmwPUNQD093txQkiQNPQOQVEa2b99Ge/t2oDKnwE2ePIXa2lp27NjB2rVr0i5HkiRVIAOQVEYK1/80NY1gxIiRKVcz9Gpra5kyJbkh6rJlS1OuRpIkVSIDkFRGCtf/VOL0t4IZM2YABiBJkjQ8DEBSGanUm6D21XsdkAFIkiQNPQOQVEYqeQnsgsJS2EuXGoAkSdLQMwBJZaSSl8AuKNwM1aWwJUnScDAASWWkMAJUydcAFUaAli9fSi6XS7kaSZJUaQxAUhnZuDEJQGPHVvIUuBlkMhm2bt1Ka2tr2uVIkqQKYwCSykjvCFDlToFraGhg4sRJACxduiTdYiRJUsUxAEllpBpWgQOYNeswAJYseTLlSiRJUqUxAEllIpfL9QlAlTsFDmD27NmAAUiSJA09A5BUJrZsaWPnzp1ANY0ALU65EkmSVGkMQFKZKFz/M2pUMw0NDSlXM7xmz04C0JNPGoAkSdLQMgBJZWLDhnVAZS+BXVAYAVq+fBk7d+5IuRpJklRJDEBSmdiwYQNQ2UtgF0ycOJGRI0fS3d3N0qVL0y5HkiRVEAOQVCaqYQnsgkwm43VAkiRpWBiApDKxfn0yBa7SF0Ao8DogSZI0HAxAUplYu3YNwK6bhFa6WbNcCluSJA09A5BUJnoD0MSUKykOR4AkSdJwMABJZWLdurUATJhQHQGo7zVAuVwu5WokSVKlMABJZSCXy7F2bRKAqmUK3MyZM6mpqWHbtm27wp8kSdLBMgBJZWDr1q20t28HqicA1dXVM336DMDrgCRJ0tAxAElloHD9z6hRzTQ1NaVcTfEUrgNavHhRypVIkqRKYQCSykC1Xf9TcNhhcwBYtOiJlCuRJEmVwgAklYFqWwGu4PDDjwDgiSceT7kSSZJUKWrTLuBAhBCOAO4H3hNj/E5+2zzgKuAkYANwdYzxi33OyQKXAecCLcDdwPkxxoV9jtlnG1Laqu0eQAVz5yYBaOHCx8nlcmQymZQrkiRJ5a5sRoBCCHXAD4CRfbaNA34HPE4SXi4DPhFCeFufUy8BzgPeAZwK5IBbQwj1B9CGlKpqnQI3a9Zsamtr2bp1K6tWrUy7HEmSVAHKJgABHwO29Nv2TqATeHeM8dEY47eBK4GLAPIh5wPAZTHGW2KMDwGvBaYBrxpIG1IpqLYlsAvq6uqZNWs2kIwCSZIkHayyCEAhhOcB7wLe0m/XfODOGGNXn223J6eEicA8YFR+GwAxxk0k0+ieN8A2pNRV6xQ4gLlzA+B1QJIkaWiU/DVAIYQxwPeA98YYl4UQ+u6eDvyt3ymFeTIz8/sBlu3hmJkDbGPQd2CsrR36fFlTk93tUcOj1Pp53bokAE2ZMnlYPldpGUg/hxC49dZfsmjRExX13oup1D7Plcy+Lg77WdLBKPkABHwd+GOM8YY97BtBMn2tr478Y2N+P3s5ZuwA2xiUbDZDS8vI/R84SM3N1XMvmDSVQj93dXWxfv16AObOnTWsn6u07Kufn/nM4wBYvHhhRb73YiqFz3O1sK+Lw36WNBglHYBCCP9MMkXt2L0c0g409NtWCC3b8vvJH9Pe75htA2xjUHp6crS1bR/s6XtVU5OlubmJtrZ2urt7hrx9JUqpn1etWkVPTw+1tXXU1Y2ktXXQH8uSM5B+njp1FgALFy5k9eqNNDT0/+Oq/Smlz3Ols6+LY7j6ubm5yVElqQqUdAAC3g5MAvpPfftGCOFDwFPA1H7nFH5eAdT12bao3zEP5Z8v208bg9bVNXz/+HV39wxr+0qUQj8vX558DCdNmkRPD/T0VN7v+776efz4ibS0tNDa2sojjzzKscceV+TqKkcpfJ6rhX1dHPazpMEo9a853gQcRbKYQeEXwKXAi4E7gfkhhJo+55wJxBjjWpKQ0wacXtiZv6boBOCu/Kb9tSGlavXq5JK0yZOnpFxJOjKZDEcddQwAjz76cMrVSJKkclfSI0AxxqeNwORHgtbGGJ8KIVwHXAhcG0L4PPAs4AKS+/4QY+wMIXwF+FwIYR2wBPgCyajPT/NN7rMNKW2rV68CYMqU/gOV1ePoo5/BH/5wN4888ve0S5EkSWWu1EeA9ik/QnM2EEiWtr4M+FCM8fo+h10KXAtcA9wDdAFnxxh3HEAbUmpWrUoCULWOAAEcfXQyAvTII44ASZKkg1PSI0B7EmPM9Pv5PuDUfRzfTXJT073e2HR/bUhpqvYpcJCMAAEsWvQEHR0dNDYOeoFGSZJU5cp6BEiqBk6Bg0mTJtPSMpbu7m6eeCKmXY4kSSpjBiCpxDkFLlkIoTAK9PDDXgckSZIGzwAklbCtW7eyZUsbAJMnT065mnQVrgNyJThJknQwDEBSCStMf2tuHs3IkYekXE26CkthuxKcJEk6GAYgqYQVAlA1T38rOOaYZArc4sWLaG9vT7kaSZJUrgxAUgkrrAA3ZYoBaOLESYwbN57u7m5ifDTtciRJUpkyAEklbOXK5F7AjgAlCyEce+xxADz00AMpVyNJksqVAUgqYcuXLwdg+vQZKVdSGo4//gQAHnzQACRJkgbHACSVsOXLlwEwbZoBCGDevCQAPfTQA+RyuZSrkSRJ5cgAJJWwQgByBChx9NHHUFdXx8aNG1i2bGna5UiSpDJkAJJKVFvbZtraNgMwffr0lKspDQ0NDbtuiPrgg/enXI0kSSpHBiCpRK1YkVz/M3bsOEaMGJlyNaWjMA3OACRJkgbDACSVKKe/7dkzn3kiAPff/5eUK5EkSeXIACSVKAPQnp1wwklks1mWLHmSNWvWpF2OJEkqMwYgqUQZgPasubmZo446BoD77vtTytVIkqRyYwCSSpT3ANq7Zz3r2QD8+c8GIEmSdGAMQFKJWr48WebZAPR0J598CpAEIO8HJEmSDoQBSCpBO3fuZPXqVYA3Qd2TZz7zBGpr61i9ehVLlz6VdjmSJKmMGICkErR8+TK6u7tpahrBxIkT0y6n5DQ1jeD44+cB8Ic/3JVuMZIkqawYgKQS9OSTiwGYPXs2mUwm5WpK03OfexoAd999Z8qVSJKkcmIAkkrQkiVJAJo167CUKyld8+cnAei+++6lvb095WokSVK5MABJJah3BMgAtDdz5hzOlClT2bFjh8thS5KkATMASSVoyZInAZg1a3bKlZSuTCazaxrcXXf9PuVqJElSuTAASSUml8s5AjRAhWlwd9xxOz09PSlXI0mSyoEBSCoxGzasZ+vWLWSzWWbMODTtckras5/9DxxyyCGsW7eWv/71wbTLkSRJZcAAJJWYwujPtGnTaWhoSLma0lZfX89ppz0fgN/97jcpVyNJksqBAUgqMU895fU/B+Kss84G4LbbfuM0OEmStF8GIKnELFz4BACzZ89JuZLycOqpz2HEiBGsWbPaaXCSJGm/DEBSiYnxMQBCODLlSspDY2Mjz3/+CwD45S9/kXI1kiSp1BmApBLS09PD448bgA7Uy152DgC//vUtdHZ2pluMJEkqaQYgqYSsXLmCbdu2UVdXx6GHeg3QQJ188ilMnjyFrVu3cMcd/5t2OZIkqYTVpl3A/oQQxgKfBl4KNAN/BT4cY7w7v38ecBVwErABuDrG+MU+52eBy4BzgRbgbuD8GOPCPsfssw2pWGJ8FIDDD59LXV1dytWUj2w2y0tf+gquueYb/PznP+Hss1+cdkmSJKlElcMI0I3As4HXAScD9wO/DSEcGUIYB/wOeJwkvFwGfCKE8LY+518CnAe8AzgVyAG3hhDqAQbYhlQUhet/jjjC6W8H6pxzXk0mk+GPf7xn10p6kiRJ/ZV0AAohHA68gGTE5u4YYwTeB6wA3gC8E+gE3h1jfDTG+G3gSuCi/Pn1wAeAy2KMt8QYHwJeC0wDXpV/mX22IRWT1/8M3vTpM5g//zQAfvSjG1OuRpIklaqSDkDAeuAlwILChhhjDsgAY4H5wJ0xxq4+59wOhBDCRGAeMCq/rXD+JpJRpOflN+2vDaloHAE6OK973RsB+MUvfsL27dtSrkaSJJWikr4GKB9Wbum7LYTwT8Ac4DfAp4C/9TttZf5xJjA9/3zZHo6ZmX8+fT9trB1E6QDU1g59vqypye72qOGRRj9v3LiRVauSj97RRx89LJ+fUjPU/fzc585n1qzZLFnyJD//+Y9585udyQr+vVFM9nVx2M+SDkZJB6D+QgjPAa4DfhFjvDmEcCXJ9LW+OvKPjcCI/PM9HTM2/3zEftoYlGw2Q0vLyMGevl/NzU3D1rZ6FbOf77vvHgDmzp3LoYdOKdrrloKh7Of3vOdf+eAHP8j111/Hu951Lo2Ng/5jXHH8e6N47OvisJ8lDUbZBKAQwiuAG4A/Aa/Pb24HGvodWvjfzrb8fvLHtPc7pjA/Zn9tDEpPT462tu2DPX2vamqyNDc30dbWTnd3z5C3r0Qa/Xz33X8A4Nhjj6e1tTqmbw1HP5955guZPPlLrF69iuuuu57Xv/5NQ9JuOfPvjeKxr4tjuPq5ubnJUSWpCpRFAAohvIdkmeqfAm+KMRZGbJYBU/sdXvh5BVDXZ9uifsc8NMA2Bq2ra/j+8evu7hnW9pUoZj8/8MADABx33DOr7vd2KPs5k6nlrW89l89+9hN885tf5yUveQUjRgzfaGw58e+N4rGvi8N+ljQYJf81Rwjh3cCXga8Ar+0TfgDuBOaHEGr6bDsTiDHGtSQhpw04vU97Y4ATgLsG2IY07Hbu3MnDDyeXoh1//DNTrqb8vfrV/8SMGYeyfv06rrvuW2mXI0mSSkhJB6AQwhEkIz8/Az4DTAwhTM7/Gk1yPVAzcG0I4egQwluBC/LHkg9LXwE+F0J4eQjhOOCHJKM+P82/zD7bkIohxsfo7Oxk9OjRHHrorLTLKXt1dfX8+79/CIDvfvc6Vq48qMFcSZJUQUo6AAGvIZnG9kpgVb9fV+VHaM4GAsnS1pcBH4oxXt+njUuBa4FrgHuALuDsGOMOgAG2IQ2rBx+8H4Bjj51HNlvqfyzLwxlnnMnJJ5/Cjh07uOqqL6VdjiRJKhElfQ1QjPHTwKf3c8x9wKn72N9NclPTvd7YdH9tSMPt3nuTBRBOPPGklCupHJlMhg9+8D94/etfxW9+cwtnn/1inv/8s9IuS5IkpcyvmqWU7dixg/vu+zMAp5763JSrqSwhHMlb3vIvAHziE5ewYcP6lCuSJElpMwBJKXvwwfvp6Ghn/PgJhHBk2uVUnHe/+70cccSRtLa2cvnlHyWXy6VdkiRJSpEBSErZPfckCxI++9n/QCaTSbmaylNfX8+nP/156urquOuu33PNNd9MuyRJkpQiA5CUsj/+8W4AnvOc+SlXUrkOP/wILrroowB89av/ya9//auUK5IkSWkxAEkpWrZsKY8/Hslmszz72c9Ju5yK9prXvI43vektAFx66X9w3333plyRJElKgwFIStGtt/4SgGc969m0tLSkXE3l+/d/v5DTTz+THTt28N73vos//OGu/Z8kSZIqigFISkkul+OWW24G4MUvflnK1VSHmpoaPvvZL/Hc555GR0cH73vf+dx222/SLkuSJBWRAUhKyWOPPcKSJU/S0NDA85//grTLqRqNjY1ceeWXOfPMF7Bz504++MH38eUvX0l3d3fapUmSpCIwAEkp+elPfwzA8553BoccckjK1VSXurp6Pve5K3nDG94MwLXXfpPzzns7y5cvS7kySZI03AxAUgo2btzITTf9FID/9/9el3I11am2tpYLL/wIn/nMF2lsbOK+++7lNa95Gd/5zrXs2LEj7fIkSdIwMQBJKbjxxu/T2dnJ0Uc/g5NOOiXtcqrai170Un70o59z8smn0NHRwX/+5xc455wXcdNNP6Orqyvt8iRJ0hAzAElFtnnzJn74wx8A8Na3nuvNT0vAzJmH8l//9R0uv/xTTJgwgZUrV3Dppf/BS15yFt/61jfYuHFD2iVKkqQhYgCSiuzLX76SzZs3M2fOXM4808UPSkUmk+Gcc17NTTf9lve974O0tIxlzZrVfPWr/8nZZ5/OBReczy233My2bVvTLlWSJB2E2rQLkKrJX//6ID/5yY8A+MhHLqWmpiblitRfU1MTb3vbubzxjW/mt7+9lRtv/AF///tfueOO27njjttpaGhg3rwTOOmkU3jWs07h6KOfQV1dXdplS5KkATIASUWyfv06PvShC8jlcrz0pa/gxBNPTrsk7UN9fT0vfekreOlLX8ETT0R++9tf85vf3MLSpU9x771/5N57/8hXv5osqz1nzlyOOCJwxBGBuXOTx+bm0Wm/BUmStAcGIKkINm/exAUX/Ctr1qxm1qzZXHjhR9MuSQdg7twk2Jx//r+xePEi7rvvXv7yl3v5y1/+zKZNm3j44b/x8MN/2+2cyZOnMHv2YUyZMpUpU6YyefIUJk+ewoQJExg3bgKHHHKI139JkpQCA5A0zBYtWsgHPvBelix5kubm0Vx11ddobm5OuywNQiaTYc6cw5kz53Be97o30tPTw7JlT/H445HHH4888UQkxsdYtWolq1evYvXqVXttq6GhgXHjxjNmzBhGjBjJyJEjd3s85JBDnra9/zEjR46kvr7eICVJ0gEwAEnDZNWqlfz3f3+PG274Pl1dO5k8eQpf+co3OfTQ2WmXpiGSzWY59NDZHHrobF7wghfu2r5lyxaeeCKydOlTu4LQqlWrWL16JRs2bGDr1i10dnaycuUKVq5ccVA11NbW7haKGhrqqa2tpa6ujtraeurq6qivr2PkyCZ6ejK79hV+1dbu/tj3V01NDTU1tdTUZMlma6ipyVJTU0s2m83vS37V1tb2eSw8r6G2ti5/7NPb6P05+WWIkyQViwFIOgi5XI4tW9rYuHEDGzduZOnSp1i8eBEPPLCAhx/+Gz09PQA873mnc/HFH2PixEkpV6xiGDVqFCeccBInnHDSHvd3dHSwYcN61q9fx+bNm9m+fRvbtm172uO2bVv7/Lx9t30dHe0AdHV10da2mba2zcV8i0Mum00CUW1tEogKz7PZGrLZTP4xu+tXJpPJB6csNTVZMpnefcn5u/+c7M/kz82SybDreXJcBsjsel7Ynslk9thW72tmyGQy+TYz1NZmaWpqoLOzCyjs620jeY3dz8lk2HUcJEGwEAh7H9n1c29Y3Nuxu5/T97i9HbvryL221ffx6TXtuc09v8ZQqK+v5YUvPAsXs5U0GAagMtLT08N1113HmjUr6OjYQXd3D7lcjp6e3se+z3O5wvMcuVxPfn+OXC4HJI/Jc/LPC6/Ud1vv897HwnOetq//8cnr7P243V/r6cf1trH7tsJ76u7u3vW++77/wusWXqv/e+67b0/bC3UV2kteNrdbe7317d3JJ5/CP//z25g//zS/4dYujY2NTJs2nWnTpg+6je7ubrZv394nLCXhaOfOnf1+7SCX66auLsvmzVvp7NzBzp076erq2uOxXV1ddHXt3HVMd3d3/s9ZN93dPX1+7qG7u4vu7h66unbu2t7d3UVXV3f+3C66urryx3bv889M4c9vV9fOQfeJqss//dM/cdlln0q7DEllyABURpYtW8oVV3w+7TK0ByNHjqSlZSzTps3gsMMO48gjj+aUU05l8uQpaZemClVTU8OoUaMYNWrUfo+trc3S0jKS1tZtdHX1FKG6PcvlcnsIVEmISn7u7hOYunYFriQcde/2xUehreTnvl+CJMcV2is8L3xp0feLkr5fFiXH9QC5Pl8W9eS/aOptv++XLkkbvV8s5XI9ZDJQV1dDe/uOPjXldmu393kPfb/cKYwYP/0LInbbvqcviXbf3nv83o/Z+zkHcvz+j9v/F0WDUVdXyznnnDMsbUuqfAagMjJz5qF85jNfYOPGtXR0dAF9p3D0TqnYfZpHZtd0jsI0jN7zMk+bTrGnKQ17ms6w76kPT9/W//jC1JC9HbfnNnY/bvcpMTV93ndmV/t9p5fsvu3p2/u+Tm1tljFjRtLW1k53d2636Sl9p6tkMhkOOWQUDQ0NB/4bKlWZ5M9WLbW1lftPT6mEzUrXt58l6UBV7r9CFSiTyfCyl73Cf1yLwP/ESJIkVSavHpQkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoaBiBJkiRJVcMAJEmSJKlqGIAkSZIkVQ3vA5QXQsgClwHnAi3A3cD5McaFqRYmSZIkacg4AtTrEuA84B3AqUAOuDWEUJ9qVZIkSZKGjAEIyIecDwCXxRhviTE+BLwWmAa8KtXiJEmSJA0ZA1BiHjAKuL2wIca4CbgfeF46JUmSJEkaal4DlJief1zWb/tKYOZgG62tHfp8WVOT3e1Rw8N+Lg77uTjs5+Kxr4vDfpZ0MAxAiRH5x85+2zuAsYNpMJvN0NIy8qCK2pfm5qZha1u97OfisJ+Lw34uHvu6OOxnSYNhAEq05x8b+jwHaAS2DaK9KQDd3T0HWdbTZTKQzWbp6ekhlxvy5pVnPxeH/Vwc9nPx2NfFMVz9nM1myGQyU4auRUmlyACUKEx9mwos6rN9KvDQINrrzGQy1NRkVh10ZXuRzTrsXwz2c3HYz8VhPxePfV0cw9DPU3j6bBBJFcYAlHgIaANOJx+AQghjgBOArwyivTFDVJckSZKkIZTJOUYPQAjhU8C7gLcDS4AvALOAY2OMO9KrTJIkSdJQcQSo16Uk/XEN0ATcCZxt+JEkSZIqhyNAkiRJkqqGV2lKkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoatWkXoP0LIVwMnBVjPL3PtpcBlwJHAeuB/wEujTG2p1JkBdhLP78O+AgwF1gJ/Bfw+RhjLpUiK8Ce+rnf/m8BL4gxzipmXZVoL5/pbwNv7Xfoihjj9CKWVlH20s9TgCuAFwHdwK+B98UY16dSZAXo388hhDuA0/Zy+FtijN8tUmmSyowjQCUuhHAB8PF+2+YDPwN+AswDzgNeC3ytyOVVjL3084uA7wHfAI4GPgRcDFxQ5PIqxp76ud/+c4Bzi1VPJdtHXx8HfBqY0ufXM4tXWWXZy98dDcDvgMOAs4CXACcA/od8kPbyeX4Vu3+OpwC/Ah4j+TdSkvbIEaASFUKYBlwDzAdiv93vAm6PMX42//PCEMJHgG+HEM6LMXYWsdSytp9+ngJ8NsZYCJZPhhD+meQ/NFcWr8ryt59+LhwzhWSE7ffArKIVV2H21dchhBqSMP+JGOPqFMqrGPv5TL+e5DM8J8a4Jn/8BcDXQgjNMca2IpZa1vbVzzHGjf2OfT1wNnBCjHFL0YqUVHYcASpdJwCtJN/W3ttv35dIRiP6qwVGDXNdlWav/RxjvC7GeAkk/3EMIbwQOB34bbGLrAD7+jwTQsgA15OMuN1R1Moqz776ei7QCDxS7KIq0L76+YXA/xbCD0CM8TcxxjmGnwO2z787CkIII4EvAFfGGP9WpNoklSlHgEpUjPFm4GaAEEL/fQ/0/TmEUA98ALjf+eUHZl/9XBBCmAksBmqA3wBfL1Z9lWIA/fzvJCNuLwP+o3iVVZ799PWxQA64ID/Fswe4Bbg4xri5mHWWu/308xHAnSGES4C3AHUkf3dcGGPcVMQyy95A/o7OO4/kC8BPFaEsSWXOEaAyF0KoJfnW/Gjg/JTLqVSbgJOBfwKOJ+lvDZEQwnHAZcAbnb457J5BEnqWkITNDwIvBn4RQvDfg6HTTBJ8jgfeALwTeC5JP2fSLKwS5ad2/hvwNYO8pIFwBKiMhRBGAT8CzgBeE2Pc6/QADV5+ysoDwAP5f2hvDCFcGGN8KuXSyl4IoRG4AfhkjPGvaddTBS4nmSK0Kf/z30MIq4A/koR8/w4ZGjuArcDrY4w7AUIIbwH+DJwE3JdibZXodGAm8K2U65BUJgxAZSp/wfitwGzgRTHG/0u5pIqTX22vPcb4lz6b/55/nAoYgA7eKcAxwOUhhMvy2+qB2hDCVuBdMcYfpFZdhckv376p3+bC9RLTMQANleVAthB+8h7OP87GADTUzgH+HGNcnHYhksqDUx7KUAihBbgdmAA81/AzbD7A01d7OwXoAh4vfjkV6c8kF+YfT7Kk+zySZcdX5p/flFJdFSmEcEMI4Tf9Np+cf3RhhKFzJ3B8CKGpz7Zj848LU6in0j2X5N9ESRoQR4DK05Uk95d4IbAuhDC5z751McbudMqqOF8E7gghfIzkup8TgM8DV8UYN6RaWYXI37h3t/8QhhA2Al0xRv+jOPRuAG4KIXwUuJHkYv2vAjfEGB9NtbLK8g3gPcAN+YUQRue3/V+M8f5UK6sw+WnJx5CsACdJA+IIUJnJX6j8WpJpQrcDq/r9mpFedZUlxng3yQ0MXwz8leQf2C8BF6ZZlzRYMcZfkizm8WqSqW/XAj8F/iXNuipNfjXO+SSrv91LsorZn4FXpllXhRpH0s9+KSVpwDK5XC7tGiRJkiSpKBwBkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRVtRBCJu0aJElS8RiAJFWtEMLLgevzz08PIeRCCKenW5UkSRpOtWkXIEkpen+f5/cDpwKPpFSLJEkqAgOQJAExxjbgT2nXIUmShlcml8ulXYMkFV0I4Q7gtD6bzgD+DzgjxnhHCOFy4HXAh4FPAocDjwHvBnLAVcBxwCLgfTHG/+3T9jOAzwLPy2/6X+ADMcbFw/iWJEnSAHgNkKRqdT7wQP7XqUDzHo6ZAVwBfAr4f8BY4MfAfwPfIglIWeDGEEITQAjhCOAPwETgrcC/AIcB94QQJg7f25EkSQNhAJJUlWKMjwBtQFuM8U/55/2NAM6PMf53jPEm4GvAVOATMcZrYoy/AC4BxgMhf85lQDtwVozxpzHG/yEZXWoCPjSsb0qSJO2X1wBJ0r79oc/z1fnHvtcKbcg/jsk/nkkylW57CKHwd2wbcBfwgmGqUZIkDZABSJL2Ib84Qn/b93HKOOC1+V/9rRuSoiRJ0qAZgCRpaG0CbgO+tId9XcUtRZIk9WcAklTNuoGaIW7z98DRwIMxxi6AEEIG+D6wEHhwiF9PkiQdAAOQpGq2CTg1hPB8YPQQtflx4I/AL0MIXwc6gHcB5wCvGaLXkCRJg+QqcJKq2VeAncCtJKu0HbQY41+B+ST3CvoeybLZU4BzYow/HYrXkCRJg+eNUCVJkiRVDUeAJEmSJFUNA5AkSZKkqmEAkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqrG/wegqbbjWm7bmwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.io import load_chromatogram\n", + "from hplc.quant import Chromatogram \n", + "\n", + "# Load and display the first file. \n", + "df = load_chromatogram(files[0], cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a reminder, we can quickly quantify this single peak by calling the `.fit_peaks`\n", + "method. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
013.560.2812411.6547278004.452381960534.2857111
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 13.56 0.281241 1.654727 8004.452381 960534.285711 1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW9klEQVR4nOzdd3zbxf3H8ZeGZctDHnHs7J1cQggJhLZAmWUXymr7o0ChQIGyoaUQdphllBnCKntT9mhZpYywScMmyWUnju3Eew9Z4/eHZDDGiW1Ftjzez8fDD8nfu+99P7o4tj66+945wuEwIiIiIiIig4Ez0QGIiIiIiIj0FiVAIiIiIiIyaCgBEhERERGRQUMJkIiIiIiIDBpKgEREREREZNBQAiQiIiIiIoOGEiARERERERk0lACJiIiIiMig4U50AANUFZAMFCc4DhEREem64UAzkJXgOESkBznC4XCiYxiIGsPhcEoo1DN963Q66Km25Xvq596hfu4d6ufeo77uHT3Rz06nA4fD0QR449qwiPQpGgHqGcWhUHh8RUV93Bt2u51kZ6dRU9NAIBCKe/sSoX7uHern3qF+7j3q697RU/2ck5OGy+XQ7A2RAU73AImIiIiIyKChBEhERERERAYNJUAiIiIiIjJoKAESEREREZFBQ4sgiIiIiPRhixYtyiCyRLc+uBbpWAgonj17dm1XKisBEhEREemDFi1a5AQudDicxzgcjiTAkeiYRPqocDgcblm0aNHDwN9mz5692eUhlQCJiIiI9E0XulzuU3y+bL/Hk9LgcDi0wZRIB8LhsMPvb0qtqak8JRgMAFy1ufpKgERERET6mEWLFvkcDucxPl+2PyMjuzzR8Yj0dcnJ3kZgSFVV+TGLFi26dXPT4TSXVERERKTvGeZwOJI8npSGRAci0l9ER0qTiNwzt0l9agTIGHMxsJe1dvc2x4YDNwH7A0HgNeAsa21ZtNwJzAVOALKB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyIiIiK9yAk4NO1NpOui/18cdDLI02dGgIwxZwNXtDuWDPwHmADsBRwAbAc83KbaJcDJwInAjkAYeNUY44m2MSTaxjIiCdBc4EpjzHFdbUNERERERAaGhI8AGWNGAvcCuwC2XfERwDhgorV2Y7T+2cAdxhgf0AScA5xnrX0lWn44UAQcBjwJnAQ0A6dYawPAEmPMZGAO8EA0yemsDRERERERGQD6wgjQdkAlsA3wSbuy/YD/tiY/ANba1621E621NcAsIAN4q015FfAZsGv00C7Agmjy0+otwBhj8rrYhoiIiIgMAPPm3TTikEP2m5HoOLpq6dLFKW+++UZmouMYSBI+AmStfRl4GcAY0754CrDAGHMJ8AcgCXidyGhNFTAqWq+g3XlFwJjo81HA1x2UE63TlTZi4nbHP790uZw/eJSeMZj7ORwKUfnWWzQXF5G5406kTprUY9cazP3cm9TPvUd93TvUzzKYnH/+OZN/8Yu9y/faa5/qRMcyUCQ8AeqEj0ji81/gSCILFNwMvGiM2R1IjdZrbndeE5ATfZ66iXKAlC620W1Op4Ps7LRYT++Uz+ftsbble4Oxn+2Nt1C24D0Aqt55m2kXX0D2dtv26DUHYz8ngvq596ive4f6WQYHrYMRb309AfIDdcAR1toWAGPMH4BPiSxo0Bitl9zmOUQSm/ro88ZoOe3KidbpShvdFgqFqamJ/8qVLpcTn89LTU0jweBmN7mVLTBY+7n2iy8iyY/TCUOGgr+Z+rpGqIz5v8JmDdZ+7m3q596jvu4dPdXPPp+3z48qhUIhGhoaEhZkampqyOns3uV33nn72b/+9eHF77zz3yEtLS3OW2+9c2lqamrotttuHvXVV5/76uvrXZmZmYE99tir/Kyz/lq4ZMli75/+dOxWd9xx75JttpnVAHD22adO/Oabr3yvvfbO5263m3A4zAEH7DXzD384vvDww48qa3/NsrJS9003XT/qs88WZgaDQceUKVPr/vKXOQUTJ0767gPvf/zjjvx//euF/NraWvekSZPrzz//0jWt5R3FPGrUaP/dd98+/N133xpSWVmZNHLkyKajjz6uaL/9DqgCePrpJ4c88cQjw4877oTC++77x6jq6qqkadOm11588eVrHnzwvmHvvPPmELfbHT7ooMM2nnzy6RsAmpubHfPn3zzi/fcXZFdUlHtSUryhmTNnVZ9//iXrcnKGBA85ZL8ZZWVlnqeeenz4119/kXHPPQ/bysoK1/z5t4xcuPDjrNraWvf48RPrTzrp1MIddtiprvW1vfDCszmPPfbQ8NLS0uQxY8Y07rHH3uX33XfX6Pff/9+iWP5NnE5nTK+vr+rrCdB6wNma/ER9G30cD6yJPh8BrGxTZwTwZfR5QfR72pUDFBKZVtdZGzEJBHruj18wGOrR9iVisPVz6b9ejjxOmMyDqwoZM2Ycp4+eRGo4TDDYc59ADbZ+ThT1c+9RX/eOwdbPoVCII4/89dSlS5f03BSTTkydulXd448/Y7ubBL3xxitDr7nmxuXBYMAxefKU5iOP/PVWmZlZLdddd8uyjIyM4LvvvpV1zz13jt5qq63r9933l1W5ubn+jz76wLfNNrMagsEgixd/k9Hc3Oz8/PNFaT/5yc/qv/jis9Ta2hr3L36xd1X7awUCAc4665Qp4AhfdtnfVg4ZMiRw2203jzrnnDOmPPPMy18DlJWVeb755quMa665abnf3+z4298uH/+3v10+7r77HrGbivnss0+duGrVytQzzvjzuvHjJza99tq/c66++rKJTqdzxT777F8NUF5e5nnppefzrrrq+hUNDfXOSy6ZM/m4446avueee5fdccd9S1555aUhjz764Mjddtujatq06U033njtqE8++ShrzpyL1owePabZWuu94Ya/jbv77ttHXHDBpQX33vvIkuOPP2qrn/98t4qTTjqlOBgMcuaZJ09paWlxzJlz8eqhQ/Na/vnPx/POP/8vU2655Y6ls2Zt1/Dmm69n3nTTdeOPOeb49bvvvmfVJ5986Lv33rtGb+m/SSyvr1s/JL2orydAC4CzjDFea23r6EzrTWsriCRDNcDuRJMXY0wWkYUV5rdp42RjjMtaG4we2xOw1toSY0x1F9oQGfCaCwtpWrGcsMPBRc8+TlVLCws/hTXrLA/ce0+iwxMREQD6575Au+32i/JZs7ZrAGhsbHT84hd7l++77/6Vo0eP9QOMG/fHkqeffnLYihXLvPvu+8uq7bf/WdVnny30ARu++OKzNJfLHZ4yZWrdwoWfZPzkJz+rf++9d7MmTzZ1Q4fmBdpf64MPFvjWrl3jfeCBx7+ZPHlKM8BFF1225sEH7x1WUVHuBnC5XOErr7xudWZmZhBg//0PLH300QdHbirmZcuWpvzvf59mXXbZ1Sv22mvfaoDTTz+7eNWqFamPPfbQ8NYEKBgMOv7ylzlrW9/8z5gxs2bZsqXp55574XqHw8FJJ51W/NRTTwxfvnyZd9q06U3Tpm1Vv8cee1buuOPOdQCjR4/1/+c/r9WsWbPKC5CbOzTgdDrDXq83lJ2dE3zrrf/4Vq9elXrPPQ9923qNiy++fN2yZUvTHnvsoWGzZm236sknHxu2ww47VZxwwskbASZNmly6fn1B8ssvv5C/Jf8msby+LfmZ6Ul9PQG6CzgdeDy6EEJm9Njb1trPAIwx84HrjDGlREaE/k5k1Oe5aBv3A+cB9xljrgd+CpxNZN8frLXNXWhDZMDzbyjGkZrKZxuKqWppYfyUWRSsXsw3//uA12+bxx6/OwL3kKGJDlNEZNByOp08/vgztr9NgQMYNWr0d1PPvF5v+Oijjyt55ZWXsx999KG0oqLC5LVrV6dWVVUmBYMhB8Auu+xePXfuhUMbGxsdn3zyUcb06VvXjhw5uunLLz/zARsWLvwkc9ddd6/o6FrLly/zpqamBluTH4D8/GGBOXMuXt/6fWZmZqA1+QHIyPAF/X7/D15Y25itXeoF2H77n9W1rTNjxqzahx++b1TbY5MmfX/d5OTk0NCh+c0OhwOAlJSUMEBzc7MT4NBDf1vx3nvvZtx003UjCwvXJ69fX+AtKipMmTp12g+u02rFiuVerzc12Da5cDgcbLXV1nWfffY/H8CaNatSd95518q2582cuW1d+wSou/8msby+vqpPJ0DW2jJjzC5EFj74hMhCBc8Df2lT7VIir+NewEtkxGdfa60/2kaJMWZfYB6Rpa2LgXOttQ91tQ2RwSBj9vbc+d/XePnDBYwaP41jTr+aj95+nplfLWDs559RPXYsQw48ONFhiogMak6nk/T09H437y85OeW7mBsaGpx/+tOxpqmpybnLLrtV7rPP/uUzZ85ad/rpJ01trbPjjj+vTUpyhz7++IOMzz9f5Ntjjz0rxo4d1/zSS88NKyhY61mzZlXqZZddvaqja7lc7nDrG/JNcTqdnY6ktY15UwsRhEJBh8vl+kFhUlLSD753OjcdyxVXXDLmgw8W5Oy++57lO+zw8+qpU7cqfuyxh4aVl5d6OqofDnf80kKhEG63Oxy5njMcDnc+UNjdf5NYXl9f1acSIGvtsR0cWw4cuJlzgkQ2NZ2zmToLgR23pA2Rga6pqYmXXnqRukCAg/c/CofDwU92OZDPFv6HnwDF77+nBEhERLbYu+++5Vu9elXqc8/9+8u8vPwAQGVlhau6utrdmmh4PJ7wzJnb1ixY8E7W8uXL0s8//5K1o0aN9jscjvAdd9w2YvjwEU1tFzRoa8KEiU319fWuVatWJk+YMLEZoLy8zH3EEYdtfdVV1y+PJeYpU6Y2Avzvf5+kt06BA/j66y/TR44c3bjpMzetoqLc9cYbrw6dM+eiVb/61aHfjdisX78uJSXF2yb5+j7BmDRpSmNDQ4NryZJvU9qOAi1e/G36qFFjmgDGjh3XuHjxt+lASWv5t99+vdn7xrrybzKQ9OnhKRHpHaGWFt5b8BZ1dbVk5eQxwcwCICnJQ3By5Lm7rIxgQ/xXNhQRkcElP3+YH+Cll54fUlCw1vPJJx+l//WvZ04KBoMOv7/lu3f7O+20c9Xbb/831+fLCEycOKk5OTk5bMy0uvfff3fIDjvsVLWp9nfZZbea8eMnNlxxxcXjFy1amLZ06eKUyy67aFxmZlbLzJnbxvSHzJhpTbNmbVc9b95NY9588/XMFSuWJ8+ff8vwRYsWZv3f/x2xMZY2fb7MoNebGnz//QVZq1atTF68+Bvv3LkXjl2zZnVqS8v3/ZCSkhIsLFyfXFKy0b3bbntUjx49tvGKKy6Z8OGH72UsW7Y05corLx2zfv067+9+d+RGgCOPPKb4k08+zL7vvrvzV61amfzMM/8c8u9/v5y3uVi6+m8yUCgBEhHKnv4nuc88w25DhjJ9u91oO7974g77UNTUiBOoWdx+T2EREZHu2W677RuOP/6kgpdeej7vmGN+t/V11101buutZ9b+/Oe7VFj7/Qp3e+yxV3UoFHRsvfXMmtZj2247uyYcDrPbbr+o2lT7TqeT66+/ecXQofn+888/Z/IZZ5w81eVyhW+66bblycnJMQ9nXHvtTat++tMdqm666fpxJ5xwzPRPPvkw68ILL1t5wAEHVXZ+9o+53W4uvvjyVevWrfX+8Y+/n37eeX+e3Nzc7Pz9748tLCws8NbX1zsBDj741yWffbYw86yzTp3idruZN+/OZePGTWi4/PKLJ5588h+nrVmz2nvttTctmz37p/UAe+yxV81pp5219l//enHo8ccfNf3f/35x6L777l/aOkWuI139NxkoHF2ZIyjdtioYDI2vqIj/3ilut5Ps7DQqK+sH1dKfvW2w9fOayy/FX7COm1cuY9qxFzJmwlbflYXDYcpvP49dMzKo22oa2/0lfjNFB1s/J4r6ufeor3tHT/VzTk4aLpdzNTAhbo3GaNGiRVOdTtdreXkj6zyelD67mpb0PR999H56bm5eS9tFIO6887Zhb7zxau7zz7/yTSJj62l+f1NKSUlheigU3G/27NlLN1VPI0Aig1w4EKC5MLIwzvqQg1HjzA/KHQ4HjbmRlUHrV3V4v6mIiIj0ER9//GHmX/965pQPPliQsX79Os8bb7ya+dJLz+fvscdeHa6aNxj1qUUQRKT3+YuLcIRC1AUC+CYYnE7Xj+okTZwBiz8gs6GRcCiEI4YlUEVERKTnnXrqWUWNjY3Oa6+9anxtbY07J2eI/+CDD9t44omnbEh0bH2FEiCRQa65oACAtY0NjN56dod1srb6Gbe/8jDL62q5b2Mxw4eP7LCeiIiIJFZycnL4wgvnFhDZ01I6oI9xRQa5poK1AKxtqGfsxK07rJOSls7y1GyKmpr4+usvezM8ERERkbhSAiQyyNWsWAFAQXMzeSPGbrLeyLFTAPj2W60EJyIiIv2XpsCJDHIVyclsqKulzpeDy7XpXwkTRo4jL38Ymd8M6AVkREREZIDTCJDIIPexJ4lLl34LI8Zvtt6o/DH8YfQ4fhp20NLc4ebbIiIiIn2eEiCRQW7p0sUA5I/c/LYXaeOn0hwK4XE6WfPlZ70RmoiIiEjcKQESGcQCdXWsaE2ARk3cbF2ny01pKLJxcsHnSoBERESkf1ICJDKIFTz+CPPGT+bQESPJGz6u0/q13nQAqlau6OHIRERkoNh55+1nP/30k0O6Wv+dd/7rO/TQX269++47bHfddVeP6snYumLevJtGHHLIfjPi2WZ3+mT9+nWel156Pjue1x/stAiCyCBWu24tKQ4HjvQskpI8ndZvyRkGG1cTLi3thehERGQgePbZf33p82UGu1r/nnvuHJWfP6z51lvvWJaentHl8/qT7vTJ5ZdfMi4vL89/0EGHVvZ0XIOFEiCRwawy8rs0NCSvS9Udw8fBxtVktrQQDodxOBw9GJyIiAwE+fnDAt2pX19f7/rZz3asGjNmnL+nYkq07vVJWH9s40xT4EQGqVBLC8nR1dwcQ0d26ZykMZG9gPKTPBQXFfZYbCIiMnC0ne510UXnjrvggnPGX3/91aP23/8XM3/xi522PfvsUydu3LjB3Vq3rKzU89RTTwzfeeftZ69bt8YTDof5xz/uyD/00F/O+MUvdtr2yCN/vdXzzz+T09r+hx++l7HzztvP/sc/7sjfd9/dZx111G+nrV69Knnnnbefffvttw7/5S/3nHnIIfvNqKqqclVXV7vmzr1w7P777zFz7713mXXSScdO+eKLz1LbxvvEE4/kHnbYAVvvsceO25199qkT6+pqXZt7fSeeeIy55ZYbRsyde+HYvfbaedv9999j5u233zp8+fJlyX/849Fmjz123O6II3691eefL/ruOq19UlVV5TrooH22OfPMkye1li1Y8E7GLrv8ZPYrr7ycdeKJx5glSxanv/vu20Nap+Edcsh+M+bNu2lE+xguuujccZvqj2AwSFFRYdK55549Ye+9d5213367zzzzzJMnrVy5Ijnmf9h+TAmQyCDVUlqKA2gMBknJG9Olc0KZQ7m2pJQTvlzE6jWrejZAERHpULCx0bmpr1Bzs6M36m6Jjz76ILumpsZ966132EsvvXLlkiWLM+bPv2UkRKaG5eTktPzqV4dufPbZf305cuRo/803Xz/y3/9+Ke+0085ad999jy4+9NDfbLz99lvGPvLIg0PbtvvJJx9l3XHHvUvOP/+SNS6XMwzwzjv/zbn55vn2ssv+tjIzMzN49tmnTi4qKky+6qrrV9xxx71Lp06dVn/22adO/frrL70AL730fPZdd80fc+ihv9l4zz0Pfztt2vT6V1/9V6fTJF544ZlheXn5/nvvfeTbAw88uOSJJx4ZMWfOnycffviRG26//Z4lHk9S6KabrvvRbuNZWVnBc8+9aPXnny/KfPHF53IqKspd119/9fg999yn7Je//FXV9dffsmLy5Cn1O+7488p7731kSXf6uW1/NDU1Oc84408mFApy882325tvvt36fJmBU0/947SiosKk7rQ7EGgKnMgg5S/ZCEBxUxOZuV0bAcLppHnIcJrXrWTVqpX8/Oe79mCEIiLSkZVnnLLtpsq8U0z16PMu+G6lmlV/OXNmuKWlww+8k8eNrxt78Vzb+v3qOefMCDU0dPje0DNiZMO4K67u1hvwTcbo9Qbnzr1qbVJSUnjKlKlNH330QfmiRQszITI1zOl0hr1ebyg/f1igvr7e+fLLL+T/9a8XrN5rr32rAcaPn9BcXFyU/OyzTw47+uhjv7sp9fDDj9wwceKkZoB169Z4AA444KBSY6Y1Abz33rsZy5fbtBdeePXL3NyhAYC//GVO4eLF36Y/+eSj+TNmzFzz3HNP5e+0086VRx99XCnApEmTNyxZ8m3amjWrUtmM0aPHNJ522lnFAMcdd9LGJ554dMQuu+xesc8++1cD7LPP/uX33HPX6I7O3WWX3Wr33/9XJXfdNX/0f//7Rk5aWlpwzpyL1wFkZ+cE3W532OPxhFpj7qq2/fHPfz6WW1tb47722ptWJyUlhQGuuOKaNYcddsCMZ57559Azz/xLUXfa7u+UAIkMUjVrVgOwsbmJIUNHdFL7e0OHjQXeZ+XK5T0UmYiIDGT5+cOaW9+EA6SlpQcDgUCHI0zLli1NaWlpcdx447XjbrrpunGtx4PBkCMQaHE0NjZ+d964ceN/tEv3mDFjm1qfL126OBXg8MMP+cGKboFAwNHS4ncAFBSs8+6++54Vbcu32mrrus4SoBEjRn13ndTU1BDAyJEjv4vH40kOBQItmxxF+8tfzlv/2WcLMz/77H+Zd955/2Kv1xveVN2uatsfy5bZ1MbGRtd+++0+q22dlpYWZ0HB2pQtvVZ/owRIZJAqI8zHZSUUOVxs6+n6FGDjy2LSmPGwZk3PBSciIps08bY7P99UmcPp/MEb5wk3zfuyq3XHX3fj112tuyXaJj/f67j5UCjkALjwwrmrJkyY1NS+PDk5+bsTU1JSQu3LU1JSvisPhUIOr9cbvPvuB380kuXxeEIADoeDcLtQ3G53p6/d7Xb9qI7D0fU7TTZu3JBUVVWZ5HK5wh999L5vxoxtGjd/xg8vFwgEf5Rcte2PUCjE8OEjmq699qYf7WORlpY2IFfa2xzdAyQySK0MhbhzzSpW+rq3tcCI1DT2yctndLOfcPu/EiIi0uNcXm9oU1/ONglBT9btLZMmTWlyuVzh4uIiz4QJE5tbvxYseDvzkUfuz3c6u/5WduLEyY2NjY0uv7/Z0batBx+8d9hbb/0nC2Ds2HEN33zzZXrb86xdkhbfV/VDoVCIK664ePzYseMbTj31zHWPP/7wyG+++dr7fQ3HD/+dXO5wXV29q+35JSUbN7uXxYQJExvLyso8Pp8v2Pq6x4wZ2zx//i0jP/30o4x4v6a+TgmQyCC1JrqIQe6wDqckb1LSyAlAdCW44kE1ZVhERHpZZmZmcO+99yt95JEHRj733FM5a9as9jzzzD+HPPjgfaOys3O6dU/MHnvsWT127LjGuXMvnPj++wsyVq1amXz99VePevvtN3PHj5/YBHDEEcds+PTTj7PvuefO/JUrVyQ/9NB9eZ988lGPbkL6j3/cMWz16tWpF1102ZrDDz+qbNq06bVXXXXp+ObowhNerzdUUrIxubBwfRLAtGlb1b3//rs5H330QfqKFcuTr7jikrGNjQ2bXanuoIMOq0hPTwvOmfPniYsWfZq2fLlNueSSOeO/+GJR5uTJppPRpoFHCZDIIBQOhahctZIkh4PcvC4ugBAVyIosupPj8bBmue2ktoiIyJY5//xLCg4++LCNDz/8wMhjjz1i68cee2j47353VNEZZ3Tvxn2Xy8W8eXctmzx5Sv3VV8+dcMIJR2/11VdfZFx88eUrd9llt1qAvfbap/q88y5c9cYbr+b+8Y9HT3///QVZBx106MaeeWXw9ddfeZ988tERRx99bOGECRObAS644JK1ZWWlyTfffP1IgIMOOqy0oGBdyvHHHzU9GAxy+ul/LpwyxdRddNF5k884409TfT5fYKeddtnsJqmZmZnB2277x9LMzKzA+ef/dfIpp/xxWknJRs/f/nbD8qlTt/rR1MKBzqEpLD1iVTAYGl9RUR/3ht1uJ9nZaVRW1hMI/Giqq8TJQO/nlspKVp/7ZwKhEG/vdhgjJ2zTrfPHP3gFXgcs2WEHDj7h5JjjGOj93Feon3uP+rp39FQ/5+Sk4XI5VwMT4tZojBYtWjTV6XS9lpc3ss7jSRl0b1BFYuH3N6WUlBSmh0LB/WbPnr10U/U0AiQyCPnLIquGVra0kJEzrNvnV7sjWwbUrlsb17hEREREepoSIJFBqCK6BHZZi5+0jCHdPr/BG7lfsqW0JK5xiYiIiPQ0JUAig1D1unUA1DmcuFybvW+yQ4HMXACC1TVxjUtERESkpykBEhmE6jcUA9CUHNveZ1UzduYPny/krmVLCAS6tQiPiIiISEIpARIZhIKVkU2uW9J8MZ2fOnQEAaeLQCCgpbBFRESkX1ECJDIIOevrAAhn5sR2vtPJkLwRABQUaCEEERER6T/ciQ6gLWPMxcBe1trdN1F+D7C3tXZcm2NOYC5wApANvA+caq1d0abOLOBWYHugHJhnrb2hO22IDCRftbQQLiuF6TvE3MYRecPwpqawYZmFnXaJY3QiIiIiPafPjAAZY84GrthM+SFEEpT2LgFOBk4EdgTCwKvGGE/0vCHAf4BlRBKgucCVxpjjutqGyEDzQtF67lyzCvfwsTG3MSXJzazMLGrWrolfYCIiIiI9LOEjQMaYkcC9wC5Ah9vKG2OGA/8A3gXGtTnuAc4BzrPWvhI9djhQBBwGPAmcBDQDp1hrA8ASY8xkYA7wQBfbEBkwAoEAGzduACAjMy/mdpqSU6GxhsZoWyIiIiL9QV8YAdoOqAS2AT5pX2iMcQAPAY8A77QrngVkAG+1HrDWVgGfAbtGD+0CLIgmP63eijRt8rrYhsiAsWH1Koa6k0j1eEhOy4y5nZaM7MiT6uo4RSYiIl3hcOByOh1JifhyOOj+3gkifUzCR4CstS8DLwMYYzqq8mdgOPAr4IJ2ZaOijwXtjhcBY9rU+bqDcqJ1utJGTNzu+OeXLpfzB4/SMwZyP1d88iHzZszi26ammPYA+k52HpSsJbmpGZfLgcPh6HYTA7mf+xL1c+9RX/eOwdzPDgeukMMxvKEpkJD3cKkp7oCTcHE4TDAR19+UefNuGvHWW28MeeGF19q/5+vUihXLk0866ditHnzwsW/HjBnn74n4pG9JeAK0OcaYbYjcs7OLtba5gwQpNfrY3O54E5DTpk5H5QApXWyj25xOB9nZabGe3imfz9tjbcv3BmI/N5eXkgL4k1PI8cZ+m1vKyDFgF5LjdhMKNZGbmxtzWwOxn/si9XPvUV/3jsHYzw6Hw9nQFHB//E1xqKEpEOrNa6emuJ07bD3cnZHidobD4T6VAMVq8eJvvOeff84kv7958GXTg1ifTYCMMSnA48BV1tqvNlGtMfqY3OY5RBKb+jZ1ktud17r7Y30X2+i2UChMTU1DrKdvksvlxOfzUlPTSDDYq7/3BpWB3M8NG0vJBFq8qTQ2xv5BV9gbmT431JPM4sXLmDGj+29EBnI/9yXq596jvu4dPdXPPp+334wqNTQFQvWNLYn4IesfHdQFd9wxb9gzzzw5fOTIUU0VFeVa+GoQ6bMJEPAzYDpwmTFmbvSYB3AbY+qAPwHLo8dHACvbnDsC+DL6vCD6Pe3KAQqBpC60EZNAD34wEwyGerR9iRiI/RyqrYk8pvkIhcIxt+NPjSRAHqeTdWvXMm3ajJjbGoj93Bepn3uP+rp3qJ/7h5133n72Kaecse6///1PzurVK9Py84c1HX/8SYX77LP/dzeRvvnm65kPPnjviMLC9d7s7Bz/rrvuUXHKKWcUJycnhwGWLl2cctdd80cuWbI4o6mp0TlkSK7/V786tOS4404o6eiaDz54b96DD9476oILLl21776/rOqozqJFn2aee+6FqzMzM4PnnffnKT3y4qVP6stZ/KfAZGAmkYUKZgF3Ebk3ZxbwEpEEpQbYvfUkY0wWkYUV3oseWgDsYoxpe7PDnoC11pZ0sQ2RASOpKTrbM3PIFrUT8KZzgzOVE79cRPGG4jhEJiIiA9UDD9wzao899qz4xz8e+nb77X9WfeWVl05auPCTNIC3337Td/XVl03cf/8Dy+6//7FvzzrrnHXvv/9uzkUXnTseoKGhwXnOOWdOSUnxhm677a6lDzzw+Lc777xr5X333TX666+/+tH0g0cffXDoQw/dN+rii69YuankB+C++x61++9/4CbLZeDqsyNA1tpG4AcbkRpjKoBAu01O5wPXGWNKgTXA34mM+jwXrXI/cB5wnzHmeuCnwNlE9v0hem9RZ22IDBjeYBCcTtzZsS+BDYDDQUpOpI2ioqJOKouIyGC2xx57lR199HGlAH/96/mF33zzZcbTTz+R95Of/Gz1o48+OHzPPfcpO+qoP5QCjB8/odntdq+dM+cvU9atW+NJTU0LHXTQoSVHHHF0ic/nCwGcfvqfi5577ulhy5cv9c6Ysc13tzA88cSjufff/49Rc+detWL33fesScyrlb6uzyZA3XApkddxL+AlMuKzr7XWD2CtLTHG7AvMI7K0dTFwrrX2oa62ITJQhAMB0qKrtblyh29xe1k5+QAUFRVucVsiIjJwbbfd9rVtvzdmWv0XX3zmA1i9enXqypUr0t5++83vpiaEozO0V6xYnvKLX+xdc+SRx5T8618v5qxcuTy1sHB98tq1q1MBgsHQd0uQVlZWJt1557yxLpcrPGrUmPaLW4l8p08lQNbaYzspvwy4rN2xIJFNTeds5ryFwI6bKe+0DZGBoKG+nueKC8lO8jA8d1TnJ3RietDP9MlTWV1WFofoRERkoHK73T+46TQcDuN0usKR5yHHIYf8ZsNBBx1a3v68/PxhLSUlG90nnXTstIwMX2CHHXaqmj37pzXbbDOz/vDDD9mmbV2Hw8kVV/xt+f33/2PE1VdfNv6++x5Z6nT25bs9JFH0UyEyiJRVVfBU0XoeLt2AMyml8xM6keNysm1mFkP8LYTDsS+oICIiA9vixd/8YG+QpUsXp0+cOLEBYNSoMY0FBWtTJkyY2Nz6tXFjcdK8eTeOqqurdb788gtD6upq3fff/+jS0047q3j//Q+oqq6uin6I//3fnqyszJbddtuj5vzzL16zatWK1AceuCe/F1+i9CNKgEQGkY0bNwIwdOgwtmABuO84hkSm0eW43ZSXaxRIREQ69vLLL+S/8MKzOStWLE++7rqrR61du8Z7xBHHbAT43e+O2vDppx9nz5t304gVK5Ynv//+gozrr//b+Pr6Ond+/rBAfv4wf3Nzs/Nf/3oxe/36dZ53333Ld/nlF08A8Pv9P3ovO23a9KZDD/3thscee2jEypUr2m+FItK3psCJSM8qW7OaYckp5OUOjUt7oehKckM9yRQWric3Tu2KiMjmpaa4e/1D7C255j777F/6zDNP5t9yyw3esWPHNlxzzQ3Lp0/fuhHggAMOqgyHw6ueeOKR4c8999Sw1NS04Pbb/7Tqz38+b31r+dKlSzbcc8+do2+77SZnbu5Q/777/rLso48+yFqy5Ns0oLT99U455YziDz5YkH311ZeNu/feh62mwklbDk1b6RGrgsHQ+IqKmPdR3SS320l2dhqVlfXa+6AHDdR+fvPSCxlTVMTXnhRcR5y3xe2566qZ8uytBEIhCv7vd+y73y+7d/4A7ee+Rv3ce9TXvaOn+jknJw2Xy7kamBC3RmO0aNGiqU6n67W8vJF1Hk9KU+txhwNXyOEY3tAUSMiH2Kkp7oAzHC4Ohwl29Zydd95+9lln/XXNb3/7ux/d4yMST35/U0pJSWF6KBTcb/bs2Us3VU8jQCKDSLAmsiJoMC0dVyd1uyKQmkEIcDudVK5fF4cWRURkc8Jhgk7CxRkJGAGKXD8c6k7yI9IXKQESGURcDQ2RJ76c+DTodFLrdJEZCtKgpbBFRHpFOEwwHA4rCRGJkRIgkUHE09ICLhfOrNy4tdmYlIKrvpraCs1sEBGRH3v//f8tSnQMIm3pjjCRQSQtulyoKyd+K4N+aH7G8V/8j/9pFTgRERHpB5QAiQwS/qYm0pyRO388Q4bFrd2MIXkAbNiwIW5tioiIiPQUJUAig0R5QQFOh4NQOIzTF7/lqjOzIm2VlZXS0uKPW7siIiIiPUH3AIkMEpU1VbxQtJ6stAzG4ATis3Rsjr+RC6dMo7alhZKSEkaOHBWXdkVERER6gkaARAaJsvo6nipazztOB4Fg/PbNcBJmli+TrTIyKCnZGLd2RURERHqCEiCRQaK0NLJRdlZO/FaAAwik+gDITvKwsVhLYYuIiEjfpgRIZJCoLS5ieHIKOb7MuLYb8KYTBJwOBxUFBXFtW0RERCTelACJDBJDVq3i1hmz2DEQ573zHA7qo6vL1RcXxbdtEREZ9Orr652PPPLAd6v3XHTRueNOPPEY05PXXL9+neell57P3pI2nn76ySE777z97E2V98br2Hnn7Wc//fSTQ3ryGr1l3bo1np133n72hx++l7GlbSkBEhkkHI0NAITTtvj3xo80JqUA0FyuzVBFRCS+7r//H/nPPvvP7/ZvOO+8iwuuv/6WFT15zcsvv2TcJ598GN8pE9JnaBU4kUHC3dwMThdkZMW9bX9qBjTXE66ujnvbIiIyuIXDYUfb7zMzM+M8laHDqzo6ryP9lRIgkUEiJRgEpwtXZi7x/ssRysimrnQ99XW1cW5ZRETaCoehIZC4GTypbkKObqYG1dXVrptuum7Up59+lBUIBBzjx09sOPXUM9fPmrVdA0BDQ4Pz2muvGP2//y3MamhocI0cObLp978/tmj//Q+smjfvphFPPfX4cIhM53r88We+vvvu20eUlGxMvueeh+2HH76Xcf7550y55poblt16641jSkpKkseNG9dw8cVXrH7jjVez//WvF/KDwaBjl112L7/oossKHA4H4XCYe++9K/+NN17NLS0tSU5KSgpNnbpV3V//esG6sWPH+U888RizZMni9CVLFqcfcsh+GS+88NrXfr/fMW/ejSPeeeetIY2NDa5Ro8Y0Hn/8iUW77faLmtbX+eqr/8566KF7R2zcuCFl4sTJ9bNmbVezqT5pFQyGuPrqy0a/885/h7jd7vDee+9XduaZ5xS63ZG36J9++nHa/ff/Y8TKlcvTWlpanPn5w5qPPPKY4oMPPqyitY0XX3wu55//fGxYcXFRSlZWdsuBBx5c8sc//ulHy7KWlpa4TzvtRJOVld1yyy13rEhNTQ29++5bvnvuuXNkYeF6b15efvOvf/1/G+bNu2nc448/8/WYMeP8hxyy34yf/Wynqs8/X+Srrq5OuvTSK1busMPPax966L68V155Oa+srMyTm5vr//WvD99wxBG/LwP48MP3Ms47789TWtuAyPS1I4/8zYzrr7952U477VJ70UXnjguFQo7s7JyWt9/+75Dm5ibnNtvMqrnggkvX5ucPCwAsWfJtys03/33MihXL07Kzs1sOP/zI4u795G2aEiCRQSAcDpNK5C+WK3to3BOgku335tznHgDgL34/Ho8nzlcQEZFwGH7/WupUW+lKS1QMU7ODdY/s12C7mgSFw2HOPvvUyW63O3TVVdev8Pl8wZdffmHI2WefOvW22+5eMmPGzMbbbrtpxJo1q1OvvfbG5ZmZWYFnn/3n0GuvvXLC9Olbf3P88SdtaGxsdH7wwbs599zz8OLc3KGB9tcIhULccce80XPmXLTG40kJXXrp+RNPO+3EadtuO7v61lvvtAsXfpJ+xx3zxu6ww041e+21b/UDD9yT9/TTTww/99wLV0+dOq2xoGBd8o03Xjf25puvH33LLXesvP76W1b85S+nT87NHeqfM+fidQCXXDJn3Lp167wXXHDJ6mHDRvjfeee/WZdeesGkSy65cuVee+1TvXDhJ2l/+9tlE3/72yOKf/nLX5X/73+fZtx99/wxnfXPsmVL04cMGdJy2213L12/viD5ppuuH9fU1OS88MK5BUVFhUnnn/+XKfvue0DpeeddtC4QaHE8/PADw26++e/jdtzx5zV5efmBf//7pewbbrhm/O9/f2zhXnvtW7l48TepN998/bi0tPTg7353VFnrdcrLy9ynn36SGTIk13/TTfNXeL3e8Ndff+W99NILJh144MElc+devWrp0m9T58+/ZWz7GF9//dWhV1xxzXKfzxecNm1643XXXT363Xf/O+SUU85cN2PGzPoPP3zPd/fd88f4/c3OP/zhjyVd+8mAjz76IHvnnXeruPXWO2xRUaHnmmuunDB//i0jr7zy2rXV1dWuc845w0yZMrXujjvuWbJx40bPzTdf96PYYqUESGQQqKmuxhf9NCkpZxj+OLefmp5JUpKHlhY/GzduYPToTn/ni4hIDBwQTnQM3fH++wsyli+3aS+88OqXrcnLX/4yp3Dx4m/Tn3zy0fwZM2auKS4uSvZ6U4Njx45vzszMDJ511l8Lt912dm1mZnYwPT095PV6Q06nM9w6MtCR4447sXD27J/WA+y0085V//rXi3mXXnrl2tTU1NDkyabp0UcfGrly5XLvXnvtWz169Jjmv/71gtV7771fNcDo0WP9n3zyUeWCBe9kA2Rn5wTdbnfY4/GEcnOHBlatWpn8wQfv5cyf/48lraNWEydO2rhy5QrvP//56LC99tqn+umnn8ibMsXUnXnmX4oAJk2a3Lxq1UrvK6+8lLe5/snMzGq58srrVqekpISnTt2qqbS0tPDuu+ePOfvscwv9fr/jd7/7fdEJJ5y80el0tr7O4nfe+e+QVatWpuTl5dc988yT+Tvu+POKP/3ptA3RuJobGupdKSne7zb8q6mpdp9++p+m5OYObb7xxttWpqSkhAGeeOKR/PHjJzSce+6F6wEmT57SXFFRkXTPPXeObhvjtttuV73rrrvXRtqqcb7++r+H/vGPfyo45JBfV0SvWVpUVJj8z38+PvyYY47vcgLk9XqDc+detTYpKSk8ZcrUpo8++qB80aKFmQD//veL2X6/33n55desyczMDE6dulVTY2NDwVVXzZ3Y1fY3RwmQyCBQVrAOp8NBKBwmmJYJLfH9++lwOMgakkfphvVKgEREeojDAY/s12D70xS4pUsXpwIcfvghM9oeDwQCjpYWvwPg978/dsPFF5836eCD9505efKU+u22+0n1/vsfWNGde33Gj5/Y1Po8OTkllJmZ1ZKamvpdEuDxJIWam/1OgL333q960aKFafPm3TiisHB98vr1Bd716wtSsrOzWzpqe/Hib1IBzjnnjB+s2BYMBh2pqalBgLVr16Ruu+3sH9wIO2PGNnWdJUATJ05qaE1IALbZZlZ9IBBwrFy5InnGjG0af/3r/yt/+OH789auXZ1SWFiYsmbNqlSAUCjoAFi3bq13111/UdG2zcMP/37kB+CRRx4cGQwGHO2vtWrVitT20/S22+4ntXDnD2IcOXLUd327YsWylGAw6Nh22+3r2taZNWu7updffiG/tLSky7lFfv6w5qSkpO/iSUtLDwYCAUcktpWp+fnDm9r+DMye/ZO6jtqJhRIgkUGgsqqC14vWk5eVzfCQg3h/gOj0N3PWsBF4crLZuCFuU3RFRKQdhwPSkgh1XrNvCIVCDq/XG7z77geXtC/zeDwhgO23/2n988+/+tV7773jW7jwE98bb7ya++STj4646qrrl++yy25durk0Kcn9gz9sTuems7R//OOO/CeeeGTkHnvsVTZr1na1//d/R5S8885bWe+9905OR/XD4Uh333LLHUvT0tJ/0Pculyv8fb0fLpzgdid1+sfW6XT+oE4oFHm/n5zsCS9fblNOP/2kqePGTWiYPfsn1TvvvHt1Tk5Oyxln/Gla2+t3lpDOmLFNzS9/eVDZ1VfPnfj2229W7LHHXjXRcwmFOl/sweNJ/tFrdLS7aCgU6Za2CU24zStraQn86Dpt636v7aHu92dXaRlskUGgpLaWp4vW835yCoFg/P9uhtxJTHI7GZeaRuV6bYYqIiIREydObmxsbHT5/c2OCRMmNrd+PfjgvcPeeus/WQDz5t044tNPP87YZ5/9qy+66LKCZ555+Zu8vPzmt99+MxvA4XDE9VO7p556fMTvfvf7oksvvXLdEUccXTZ79k/rCwvXp4R/cJXvrzl5smkE2Lhxo6fta3jxxWdzn3/+mVyACRMmNixZ8m162xaWLPmm03u11qxZldqaPAB89tn/MjweT2js2PHNTz31xFCfL7Pl7rsfWHbSSadu3HPPvavLykqTIHJvFcDIkaObrF3yg+tcc80Vo88++9Tvportuuselfvvf0DVTjvtXHHzzdePq6mpcQKMGze+of25X3/9xWZjnjRpSpPL5Qp/9tnCH7zWL774LCMzM6slKys7mJQUSWxrampcreVr165O7qwv2po8eUpDcXFRcnl52XeDNV999Xnc7n3rdgJkjHEbY/YyxlxjjHnSGPOqMeYRY8xVxpifG2O0bKBIH1NeHhkNz8ruob3QnM7vNkNt2LihZ64hIiL9zh577Fk9duy4xrlzL5z4/vsLMlatWpl8/fVXj3r77TdzW6etFRYWJt9yy9/HvP/+goyCgrWef//7peyystLkGTO2qQPwer2h+vp614oVy5NbWlq2+H3mkCG5/s8+W+izdknK8uXLkm+++e8jPv3046yWlpbv3hd7vd5QScnG5MLC9UlTp27VtN1221fPm3fD2DfeeDVzzZrVnnvvvSv/ueeeHjZy5MhmgCOP/MOGtWvXeK+77upRK1YsT37++WdyXn31X0M3HUVEeXm555JL5oxbunRxyiuvvJz1+OMPjzjkkN9sTE5ODufl5fsrKso9b731H19BwVrPq6/+K2vevJvGAvj9kemDRx55dPGHH76f/eCD9+atXr0q+aWXns9+441Xh+68825V7a913nkXFfj9fscNN/xtNESmHq5evTLthhuuHblixfLk1177d9Yjjzw4En48wtMqMzMzuNde+5Y99thDI1944dmcVatWJj/yyANDX3/9laGHHvqbjQ6Hg6lTt2pMSUkJPfDAPcNXrVqZ/NFHH6Tfd9/dozbVZkcOPPCQCp8vM3DRReeN/+abr70fffR++u233zq68zO7pssJkDHGY4w5C1gFvAGcBEwB0oFtgdOA94ACY8wZxphuZXoi0nNqi4oYnpxCTg/sAdSqdTNUf3lZJzVFRGSwcLlczJt317LJk6fUX3313AknnHD0Vl999UXGxRdfvrJ1ettFF122dpttZtVee+0V448++vCtH374/pF/+MMf1x966G8rAPbZZ7/KrKzslhNOOGb6V199kbqlMV100WWrm5ubnaec8sdpZ5118tQ1a1Z5Tz31zLW1tTXudevWeAAOOuiw0oKCdSnHH3/U9GAwyLXX3rRqxx13rpw378axxx575NZvvPFq7mmnnb32t789ohxgxoxtGq+66vrlX3/9RcYJJxwz/dln/5n/298e0emc8O23/2mVy+UKn3baidPmz7957H77HVhy2mlnFQEcc8zxJTvttEvFddddPeG4446a/uijDw0/9tgTCnNzh/q/+ebrNIjcz3T66X9e++9/vzT0uOOOnP7QQ/eNPPHEU9b95jeH/2hn8tzcoYETTzx1/VtvvZn7zjv/9U2bNr3pkkuuWLFw4cdZJ5xw9PSHHrpvxC9/+asSgKQkzyZH3S644NJ1BxxwUMn99/9j5PHHHzX9X/96Me9Pfzp93QknnLwRICMjIzRnzsWrCgsLvMcff9T0efNuHPOnP51e0J0EKC0tLTRv3p3W7XaHzzrr5KnXXHPl+P/7vyPj9gmrIxzufFTRGPNT4CEgCDwGPGWtXdlBvRnAL4ETAAdwtLX2o3gF24+sCgZD4ysq6uPesNvtJDs7jcrKegKBfjMFuN8ZaP387JmnMqOhgRVD8vAfeHKPXCPjxbsZXbWR1wN+znjw8S6dM9D6ua9SP/ce9XXv6Kl+zslJw+VyrgYmxK3RGC1atGiq0+l6LS9vZJ3Hk9LU+Rki3fP554tS3W53eMaMmY2tx1544dmcW265Ydybb773WeteRP2J39+UUlJSmB4KBfebPXv20k3V6+orewQ431r7/OYqWWu/Br4GrjPG/B+RpGlKV4MWkZ7haGwAIJzm67FrBNMyoWoj7sbGziuLiIhIQi1duiT1/vv/Merccy9YvdVW0xvXrFmT/MgjD4z4+c93ruiPyU93dPXVzbDWdmvrEGvtU8aYF7ofkojEW1KzHzwenBnZPXeRzFwoXEZKS4BQKETrngUiIiLS9/zud0eVlZeXJd15521jKisrknw+X2CXXXavOP30PxcmOrae1qUEqLvJz5aeJyLxlRJdYcbZU4sgAM7sodQFAvhDQaqqKsnJ6blriYiIyJZxOBycfvrZxaeffvag27+iSwmQMebS7jRqrb0itnBEJN78fj8Z0dGYpOx8emqCWt3Ebbjiob9TU1XBbiUblQCJiIhIn9TVKXCXtfs+TGSRgyBQBmQDHsAPVAAxJUDGmIuBvay1u7c59ivgUmBa9FpPA5daaxuj5U5gLpGFF7KB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyL9VVlpCb7oXF5nVm7PXcjhwJc5hJqqCkpKSpg6daueu5aIyMAXAsLtN9cUkU2L/n8Jw+Y3C+7SJH1rrbP1C9ibSBLxOyDFWjvcWptCZPW3cuAvsQRsjDmbdomTMWYX4HngWWAWcDJwOHBHm2qXRI+fCOxI5EW/aozxRNsYAvwHWEYkAZoLXGmMOa6rbYj0Z5XFRbijI0D+5LjtIdahjMzIqE9ZWWmPXkdEZBDYEA6HW/z+pi1e9llksPD7m1LD4XALsNlpfbEs8TAfuMRa+1Tbg9ba16IjOFcDT3a1MWPMSOBeYBfAtiv+E/CWtfba6PcrjDEXAg8YY04mkqicA5xnrX0l2t7hQBFwWDSOk4Bm4BRrbQBYYoyZDMyJtuPpQhsi/VZldRULitYzLHcow3ARGbjtGUemJOHdahuKCtb12DVERAaD2bNn1yxatOjhmprKU4AhHk9Kg8Ph6HzvEpFBKBwOO/z+ptSamkpPOBy6b/bs2bWbqx9LAjQG2NS7m1Igv5vtbQdUAtsQmeo2rk3ZjXQ8hOUGMois058BvNVaYK2tMsZ8BuxKJHnZBVgQTX5avQVcYIzJi16vszZE+q3yujqeKlrPT0aN4Vc9vC/JUAfkpKayqmRjj15HRGSQ+FswGKCqqvwYh8ORSuT2AxH5sXA4HG4Jh0P3AX/rrHIsCdCXwBnGmDettS2tB40xKcB5wCfdacxa+zLwcrSN9mWft/2+zWjNZ9baMmPMrtGignbNFhFJ1ABGEdmbqH050TqjutBGTNzu+C8D7HI5f/AoPWMg9XN1dSUAmVnZ4ABnN3Zi7q7mZC80tBCorOzSz/9A6ue+TP3ce9TXvWOw9PPs2bNDwFWLFi26NRxmOF28dUFkEAoBxZ2N/LSKJQG6AHgdWGmMeY3vR31+CaQBu8XQZqeMMW4iG7JuRWRkBqB1Xmxzu+pNQE6bOh2VA6R0sY1uczodZGf33P0WPp+3x9qW7w2Efm6prmB4cgq5viy83p69rS2U7oOGGhz1dd36+R8I/dwfqJ97j/q6dwyWfo6+qevSGzsR6Vy3EyBr7bvGmJ2IJEK/IpIklAFvAlf0xMppxpgM4ClgD+A31trWUabWFX2T2zyHSGJT36ZOcrsmU6KP9V1so9tCoTA1NQ2xnr5JLpcTn89LTU0jwWDPTmcazAZSP6evWsutM2axrrqKhsae3ZrLm5oJrMfZ2EhlZef/fQZSP/dl6ufeo77uHT3Vzz6fd8CPKolIbCNAWGs/A34b51g6ZIwZDrwKjAf2t9a+3aa4ddraCGBlm+MjiEzVa60zol2zrd8XAkldaCMmgR683yIYDPVo+xIxEPo51BBJxEPeNEKhnr1/NpwZWWY7NRiisbGZpKSkTs6IGAj93B+on3uP+rp3qJ9FJBYxJUAAxpj9iSyJPRy4ENgWWGStXRun2DDGZBNZnMAH7GytbX8vz5dADbA70eTFGJNFZGGF+dE6C4CTjTEua23r8ld7AtZaW2KMqe5CGyL9lrOpCZI8kJbR89fKGgpAdlIS5eVlDBs2vMevKSIiItId3U6AjDGpwAvAXkQShwzg78ApwLbGmN2std/GKb6biaz0th9QaowZ1qas1FrbbIyZD1xnjCkF1kRjKQCei9a7n8jiDPcZY64HfgqcTWTfH7rYhki/5QkEIMmDMz2rx68VTPNRFwzSEAxSWlqiBEhERET6nFgmuv4NmE1kFCWX75dkPJrIlLIr4xGYMcZJZNNTD5FRoOJ2X6OjVS8F7iOyl9AHQADY11rrB7DWlgD7Agb4jMhGqOdaax9qc7nNtiHSX4XDYZLDkWlvLl/Ma3p0WePQUVxeXcvfli+ltLSkx68nIiIi0l2xTIE7HLjAWvu2McbVetBau8EYcxVwe6zBWGuPbfM8BHS6vEt0Wtuc6Nem6iwEdtySNkT6o/r6etKdkf+mrqzcXrlmRvQ6ZWWlvXI9ERERke6IZQQoi8g0sY5UAumxBiMi8VVRUY7PHfmcw5Ge2SvXTM+IjDRpBEhERET6olgSoG+AozZR9qtouYj0ARXlZfy7ZAPv1dfRnNxz+1K1tW/Yzw3Tt8G5bl2vXE9ERESkO2KZAncV8LwxZgjwMhAGdjPGHEdkYYEj4hifiGyByqoqni5az7TsbI52eiAY7PykLZTlcDDSm8qyqsoev5aIiIhId3V7BMha+yLwe2Ab4E4iiyDcSGRfoJOttc/ENUIRiVlFRTkAWVk5BHppU8ZAanS57bqY9xEWERER6TGxboT6OPC4McYAQ4AqYGl04QIR6SOqS0oYkZLCUF9mj2+C2iqckQ2l60hqbu6V64mIiIh0Ryz7AL0FnGqtXWqtte3KtgEetdZuE68ARSR2nsL13LL1LErr6uitNdkc2ZHNUNOBpqYmUlJSeunKIiIiIp3rUgJkjNmZ76fL7U7knp+8DqoeCEyMT2gisqUCtTUABJN7MQnJjCyDnZ3kobS0hNGjx/TetUVEREQ60dURoBOAY4gseBAG7iBy70/bOTWtG6I+HrfoRGSLhBsaAAilpPbaNYPRe4ByPElKgERERKTP6WoCdBbwAJEk5y3gNGBxuzpBIvcCfRuv4ERkyziamiA5BdIyeu2aLak+6kNhqlpaCJds7LXrioiIiHRFlxIga2018C6AMWYPYBGQbq3dED2WDYy21moPIJE+JKmlBZJTem0TVICgN42bnSl8tfgTzi0v67XrioiIiHRFLBuhfgk8D7zT5tjPgC+MMS8YY3pvro2IbFIoFCI5FFmY0eXL6dVrp0evV6IRIBEREeljYkmArgWmAxe2OfYWcDCwPXBFHOISkS1UU1NNuisyyOvK7N0EKC2aAJWV9dbacyIiIiJdE0sCdBDwV2vtc60HrLV+a+3LRJKi/4tXcCISu4qKChaUl/LfygoCWR0t2thzdmiu5cbp25BfogRIRERE+pZYEqAMoHITZRuB3NjDEZF4qago55WSDbza4qc5I7tXr53hcjHam4qnvr5XrysiIiLSmVgSoM+AP26i7Djgq9jDEZF4qaioACArO4dAMNxJ7fgKZUSmwHla/L16XREREZHOdHUZ7LauAl41xvyPyGIIJcBQIvcAzSayGaqIJFhVWSkjU1LIz8wiEAj16rWd2ZEpdz6Hg8bGBrxerY0iIiIifUO3R4Cstf8BfkVkE9QrgLuBK4kkUwdba1+La4QiEpOWDcXcvPUsjmpqIhjs3QSI6CII2UkeSkt1H5CIiIj0HbGMAGGtfZXIKFAKkANUW2s12V+kD/FXRW7V8ycl0bsT4CCQ5gMiCVBZWSljxozt5QhEREREOhbLPUAAGGOmAScBZwBZxpidjTG9t928iGxWS00tAEFPSq9fO5Aa+VWQ7nZTVlzU69cXERER2ZRujwAZY1zAXcDxgIPIVLingbnABGPMbtba9XGNUkS6LdwQGZQNpnh7/dqhpGSqwlDVWE/Vxg29fn0RERGRTYllBOhi4CjgBGAYkSQI4BzABVwdn9BEZEs4mpoACHvTE3BxBw/4hnHe4q8prq3p/euLiIiIbEIsCdDxwKXW2geA8taD1tqvgEuBveMUm4hsAbc/ugR1WmJmpqb5InsPlZaWJOT6IiIiIh2JJQHKB77YRNl6oHd3XBSRHwmHw3iCAQCcGZkJiSEjcwiAVoETERGRPiWWVeBWAL8E3uygbPdouYgkUFNTIwsryilvamb7EeMTEsP0xhp2nr4Ny+rqEnJ9ERERkY7EkgDdAtxtjPEALxNZBGGyMWYP4K/AX+IXnojEorKyknfLy/iwppptR0+GmqZejyHVk8xobypFNdW9fm0RERGRTel2AmStvdcYMxS4CDiFyCIITwB+4Hpr7V3xDVFEuqsqugdQVlY2wVBv7wIU4czOAyDD4aCpqYmUlN5fjltERESkvW7fA2SMybbWXgOMIDIV7vfAgcAIa+2lcY5PRGJQVVnByJQURmTnEAgEExKDIzMXgJzoZqgiIiIifUEsU+A+NcZcbK39J/B6vAMSkS1XXVLKzVvPAmCV388W7Hkcs0CaD4DspCRKSzYyatToXo9BREREpL1Y3hVlA2XxDkRE4qc+OuLSArQ4XAmJIRDdfyjZ5aK8uCghMYiIiIi0F0sCdCvwd2PMHtF7gUSkj2mqrACg2eUiGEzMPUBhdxKN0UvXFBUmJAYRERGR9mKZAncMMJboMtjGmPblYWttLO1ijLkY2Mtau3ubY7OIJF3bE9l4dZ619oY25U5gLnACkdGp94FTrbUr4tmGSH/ir64CIJDkSWgcZa4kgnVVVFeUd15ZREREpBfEkqg8GvcoAGPM2cAVwII2x4YA/wFeAE4GdgDuMMaUW2sfiFa7JFp2HFAIXA+8aoyZbq31x6ONnni9Ij0pUFMbeUxO7Mprrw6bxJsvPcCvJk5IaBwiIiIirWJJgFYDb1lr18cjAGPMSOBeYBfAtis+CWgGTrHWBoAlxpjJwBzggeheROcA51lrX4m2dzhQBBwGPBmnNkT6lXBjPeAklOJNaBzpvhwArQInIiIifUYs9wDdRGQqWbxsB1QC2wCftCvbBVgQTVxavQUYY0weMAvIiB4DwFpbBXwG7BrHNkT6FUdTMwDh1PSExpGRGUmASkuVAImIiEjfEMsIUAmQFa8ArLUvAy9Dh/cTjQK+bnesdTmpMdFygIIO6oyJYxsxcbvjv/Swy+X8waP0jP7ez4urKml0VLH1zvvgdDoSFscEfz03TZ/JupbmDv8/9Pd+7i/Uz71Hfd071M8isiViSYDuAW43xuwBfANsbF/BWvvwlgYWlUpk+lpbTdHHlGg5m6iTE8c2us3pdJCdnRbr6Z3y+RI7tWmw6I/9HA6Hea+4kHeCQW7ZejZeZ+IWQnBmZTHK66UhGMDrdZGS0vE9Sf2xn/sj9XPvUV/3DvWziMQilgToxujj0ZsoDwPxSoAageR2x1rfQdVHy4nWaWxXpz6ObXRbKBSmpqYh1tM3yeVy4vN5qalpJBgMxb19iejP/VxTU0MwGATAleSlpi5x63gkp2YDkJPkYfnyNT/aDLU/93N/on7uPerr3tFT/ezzeTWqJDIIxJIAjY97FJtWAIxod6z1+0Igqc2xle3qfBnHNmISCPTcH79gMNSj7UtEf+znsrJy8pOTweMBXIRCgU7P6Skt3gwAspKS2FC8gWHDRnZYrz/2c3+kfu496uveoX4WkVh0+2MOa+3a1i+glMjUsaJ2x+NlAbCLMabtVvZ7RsKwJUQSlBpg99ZCY0wWkYUV3otjGyL9RlVVJVdP3ZrbzHQo/dEM1V4V8KYRCodxO51UFLa/zU5ERESk98U0zmuM2cUY8xGRxKEQaDLGfBS9Lyie7gd8wH3GmK2MMccCZwPXAFhrm4H5wHXGmIOMMdsA/yQy6vNcHNsQ6TeqKspJd0cGd/2eBM+Pd7qoJ7IIQ21RUSeVRURERHpetxMgY8xOwJtEVoK7EjgVuIrIggGvG2N2jFdw0RGafQFDZFnqucC51tqH2lS7FLiPyF5CHwABYN/WDUzj0YZIf1JTUoLTEUk6/Entb3/rfQ2uSDLWWFqS4EhEREREYrsH6CoiU8P2tdYGWw8aYy4HXgcuB/aJJRhr7bEdHFsIbDKpisYwJ/q1qTpb3IZIf1FfXgZAk8NBIOQgsi5J4lQnp9JQXkx1TXVC4xARERGB2KbA/RS4tW3yA2CtDQG3RctFJEGaKysBaHG7CYYSm/wA/G/s1sxZ/DVf1dUmOhQRERGRmBKgWr5fOa09D5C4XRdFBH91FQCBpMTt/9NWui+ynVZJiabAiYiISOLFkgB9AFxojElve9AYkwFcgFZOE0moYF1d5DG5401He1tGZiQBKi0tTXAkIiIiIrHdA3Q+sAhYZYz5F7ABGAYcSGTz0OPiF56IdNe6+jpeLS/HTJuZ6FAAGBZo5qbpM6kJtOD3+/F4+sbIlIiIiAxOsewDtILIggJvA78E/hp9fBvYwVr7VVwjFJFu+aayggcK1lIzZZtEhwKAJ83HKK+XESkplJVpFEhEREQSK6Z9gKy1i4GzrLXDrLUeYCvg6uhxEUmgqqrIIgip6RkJjiQikOYDICvJQ+mG4gRHIyIiIoNdLPsAZRlj/gO80+bwT4EvjDEvGGNS4xWciHRPIBAgqbGJTHcSXm/fSICCyakEwpHV6CrXr09wNCIiIjLYxTICdC0wHbiwzbG3gIOB7YEr4hCXiMSgpqaGP0+YzD2zZpOxoY8kGw4HddHFIWuLCxMcjIiIiAx2sSRABwF/tdY+13rAWuu31r5MJCn6v3gFJyLdU1VVSYY7srZJqI+MAAHUuyIxNekeIBEREUmwWBKgDKByE2UbgdzYwxGRLVFVVYkvmgC1eLwJjuZ7TUmRJblbKjf1q0NERESkd8SSAH0G/HETZccBWgVOJEGqystIjSZA/qS+sQ8QQEN6Jqsb6qmM7lEkIiIikiix7AN0FfCqMeZ/wPNACTCUyD1As4nsByQiCVBbUgJACPC7PdASTmxAUasnzuLR15/FmKmcluhgREREZFCLZR+g/wC/AsJEFjy4G7iSSDJ1sLX2tbhGKCJdVl9eBkCz00kglOBg2kj35QBQUrIxwZGIiIjIYBfLCBDW2leJjAKlADlAtbW2Pq6RiUi3NUfvsWlxuwkG+8boD0BGZiQBqqyspKXFT1KSJ8ERiYiIyGAVUwLUylrbBBTFKRYR2UJljQ28srGYydv+JNGh/ICPMDdvPZNkp5OysjKGDx+R6JBERERkkIplEQQR6aPW1NbyYMFaNkyeluhQfiDs8TIyxUuuJ5myYn1mIiIiIomjBEhkAKmqikyB86b6EhzJD4WSPDSHI1PyKgvWJTgaERERGcyUAIkMIMGaajLdSaSkpCc6lB9yOKjDAUDdhuIEByMiIiKDmRIgkQHklymp3DNrNsMKViU6lB+pd0VuOWwqK01wJCIiIjKYxbQIgjEmFzgX2BsYDuwLHAp8Ya19MX7hiUhX+f1+vNHnruiy031Jk8cLTbW0RFeqExEREUmEbo8AGWPGA18BJwHrgTwiidQU4FljzAFxjVBEuqSqqpIMdxIAzoysxAbTgYA3Oi2vti6xgYiIiMigFssUuBuBEmA8cBhEJvZba48CXgIujFt0ItJlVVVV+NyRQd1ASlqCo/mxZt8QVtXXU9KgBEhEREQSJ5YEaE/gSmttFdB+p8W7ga23NCgR6b7ICFAkAWrxeDup3fsqJ83i/CVf83zh+kSHIiIiIoNYrIsgBDZxPJkfJ0Ui0guqSktJdrkA8PfBBCg9M3JfUkVFOS0tLQmORkRERAarWBKg94ALjDFt59iEjTFO4BTgg7hEJiLdUldaAkQ+nWhxxLS+SY9KTfPhjCZoFRXlCY5GREREBqtY3iWdTyTJWQG8TWTE56/AVsAkYJe4RSciXVZdV8u/NxYzccJkHKG+NxDrBG6ePpMsl4vSggLy84clOiQREREZhLo9AmSt/QbYHngL2AMIElkOewWwk7X2i3gGKCJdU1Jfx0MFa7FjxhEM9r0ECKcTn9uN1+WiunBdoqMRERGRQSqmeTLW2uXAUXGORUS2QGV0f500X2aCI9m0OpykAXXFxYkORURERAapWDdCdQCzgDQ6GEWy1i7YsrBEpLsaKyrIdCeR1rrfTh9U706CUAuNZaWJDkVEREQGqW4nQMaYnwJPA6OihxzRx3D0eRhwxSU6Eemy6Y2NnDZrNiWrV1I29meJDqdDzZ4UaGohWFWV6FBERERkkIplBOhmoAU4FlgPhOIZUEeMMUnAZcDRQDbwBTDHWvthtHwWcCuRe5PKgXnW2hvanO8E5gInRM9/HzjVWruiTZ3NtiHS17la/JCcgiMtI9GhbFJLagY01UJdbaJDERERkUEqlgRoO+B31toX4x3MZlwMHA/8AVgFzAFeNcZMA5qB/wAvACcDOwB3GGPKrbUPRM+/JFp2HFAIXB89f7q11m+MGdKFNkT6rHA4THIwCIAjIyuxwWxGKCMbKopIampOdCgiIiIySMWSAJXQC6M+7RwMPG6tfQPAGHMOkdGcHYEpRJKgU6y1AWCJMWYykSTpAWOMBzgHOM9a+0r0/MOBIuAw4EngpM210XsvUyQ2TU2NpDoit+O5oxuO9kWh7GGsWvwphQFthCoiIiKJEctGqLcD57fbCLWnlQMHGmPGGWNcfJ+wfEFk36EF0cSl1VuAMcbkEVmsISN6DABrbRXwGbBr9FBnbYj0aZWVlfjcSZFv0rMSGsvmBMZvxflLvuYfKyyBQKDzE0RERETiLJYRoMlENj3dYIz5FmhoVx621u65xZH90FnAP4HVRPYdCgG/sdauNMaMAr5uV78o+jiG7xdrKOigzpjo887aKIklaLc7lvxy81wu5w8epWf0t36ura3GlxT57xxKScXpdHRyRmKk+7JwOp2EQiGqqytISxsB9J9+7q/6289zf6a+7h3qZxHZErEkQJOIjLy0av9OqyfeeU0DKoFDiNzDcyLwsDFmVyCVyGhQW03Rx5RoOZuo0zpXqLM2us3pdJCd3XODZD6ft8falu/1l34OtDSQER0BcmRk4nV5EhzRpvkyc6iqLKOpqfa7/u0v/dzfqZ97j/q6d6ifRSQW3U6ArLV79EQgm2KMGQs8BuxprX0vevh/xpitgMuBRiC53WmtSUt9tJxoncZ2deqjzztro9tCoTA1Ne0Hx7acy+XE5/NSU9NIMNjbt2INHv2tnwvWFrKkZAPj8ofjw01joz/RIW3Sn0ePYfy48RR+vJAJE0y/6uf+qr/9PPdn6uve0VP97PN5NaokMgjEtBFqL/spkAQsbHf8Y+CXwFpgRLuy1u8Lo+e2HlvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpLP5dXVfNQwVp+Yaaxd9BBKNR3Y05xe0hxQmlR8XdvXPpLP/d36ufeo77uHepnEYlFlxIgY0wQ2NFa+6kxJkRks9NNCVtr45lYtd67sw3waZvjM4DlRBKhk40xLmttMFq2J2CttSXGmGqgBtidaAJkjMkispz3/Gj9BZtrI46vRaRHVFVVApCZmUWgj3/q3OD2QMhPS3l5okMRERGRQairicoVRDY9bX2+uQQo3j4F3gMeMsacGo3jGGAvYGci+wKdB9xnjLmeyIjR2UT288Fa22yMmQ9cZ4wpBdYAfyeSWD0Xvcb9m2tDpK+rqygnOykJX7qPYKg3/3t2X3NKGjT4CVVXJzoUERERGYS6lABZay9v8/yyHoum42uHjDEHA1cBDwLZRFZs29Na+zGAMWZfYB6Rpa2LgXOttQ+1aeZSIq/1XsBLZMRnX2utP3qNki60IdJn5ZSUcvfM2ZQVrY9tycJeFEjzQUMlzoaYbq8TERER2SJdnQK3a+e1vmetXRBbOJtsrxI4LfrVUflCIpuibur8IJFNTedsps5m2xDp0xrrASchb29uzxWbkC8HSteS7NdmqCIiItL7ujoF7h2+n/a2qWWuw9GyMODasrBEpDucTc2Q4oXU9ESH0ilHzjBYCRm9OpNWREREJKKrCVCvLn0tIt3jCQQAcKT5EhxJ55KGjmBVfR3lLS1s36JRIBEREeldXb0H6N2eDkREYhMOh0mOLnvtzMxOcDSdSx4yjAuWLiYcDnFAdRVD87ISHZKIiIgMIjEtV22MyQXOBfYGhgP7AocCX1hrX4xfeCLSmbq6OtJdkVmnLt+QBEfTOafTRbovi9rqCsrKSpk8eVyiQxIREZFBpNvbHRtjxgNfAScRWZI6j0giNQV41hhzQFwjFJHNqqqqxOeO7veblpnYYLoo3ZcDQMmGDQmORERERAabbidAwI1ACTAeOIzoogjW2qOAl4AL4xadiHSqqqqSDyrKWNhQT3NqRqLD6ZLfDhnCw9v+hNAnHyc6FBERERlkYkmA9gSutNZW8eMNUe8Gtt7SoESk6yorK3misICXwyH83v6RALmSvaS4XLRUViY6FBERERlkYkmAAAKbOJ7Mj5MiEelBVVWRJCIzM5tAMJTgaLrG37pfUW1tYgMRERGRQSeWBOg94AJjTNsdF8PGGCdwCvBBXCITkS6pLi8jOymJLJ+PQKB/JEDBjMhqdUmNTQmORERERAabWFaBO59IkrMCeJvIiM9fga2AScAucYtORDrlKirk7pmzqaqro7ifjACRNRSKV+ANbmowWURERKRndHsEyFr7DbA98BaRDVKDRJbDXgHsZK39Ip4BisjmtVTXABDwJBPuJxNQ3bkjAEjDQUiboYqIiEgvimkfIGvtcuCoOMciIjEI1dcBEEzxJjiSrvMOHUlLKESS00ndxo2Q1vc3cBUREZGBIdaNUCcAKdbaxcaYLOBqYDTwtLX2kTjGJyKdaWwEpwu8aZ3X7SNS0zP5sraGcCjEsI0l5ExQAiQiIiK9I5aNUPcDlgDHRw/dRWRT1FHAg8aYP8YvPBHpjNvvByCc5ktwJF3ncDi4t6qGv69cRmmLP9HhiIiIyCASyypwlwJvAJcbYzKBQ4FrrLXbAdcAZ8UxPhHphCcQWUjAkZGZ4Ei6x5eVC0BRUVGCIxEREZHBJJYEaCZwi7W2FtiXyDS6Z6Jl/wEmxyk2EelEMBgkJbrygcuXk+BouiczeygARevWJTgSERERGUxiSYAa+f7eof2Bjdbar6LfDwOq4hCXiHRBTU0Ni6orWVBeiiN/dKLD6ZbZqV4e3vYnDP/f54kORURERAaRWBKg94G/GmOOAP4PeA7AGDMbmBstF5FeUFVVyUsbinmwrITA0BGJDqdb3OlZpLhcuBsaEh2KiIiIDCKxJEB/BkYCjwGrgauix/8NpBDZKFVEekFVVSUAWZnZBAL9ZBPUKEdOPgCpgWCCIxEREZHBpNvLYFtrVxtjpgN51tqNbYoOAT631jbHKzgR2bzK8nKyk5LIycoiEOxfCZB76CgAUh0OQk2N4E5OcEQiIiIyGMQyAoS1Ntwu+cFa+zHgji6TLSK9oLFwPXfPnM1fU1L7XQKUNnQEddEV7Bo2bEhwNCIiIjJYdHsEyBgzFrgb2A3wbKKaa0uCEpGuaawoB6DZ5ep3U+C8qemUtfhJd7spW7mCUaPGJjokERERGQS6nQABNwM7Af8Afg40AB8B+wAzgMPiFp2IbJa/ugqAlqQkgqFwYoPpJofDQVU05Kp16xiV2HBERERkkIhlCtxuwMXW2rOAB4Bma+0cYHvgXeDgOMYnIpsRqKmNPHpSEhxJbAqdSSysrKAy0JLoUERERGSQiCUBSge+iD5fDMwCsNYGgduBX8QjMBHpXLihHoCQNzXBkcTmq/Qc/r5yGaucMd2OKCIiItJtsbzrKCay4SnACiDHGDM8+n0FkB+PwESkc86myKKL4dT0BEcSG19WLgBFRUUJjkREREQGi1gSoH8DVxpjdrLWFgDriWyMmgEcDxTGM0AR2bSkFn/kSZovsYHEKDM7kgBVFCsBEhERkd4RyyIIlxK53+cKYC/gQuAh4Oxo+WlxiUxEOvV1VSW19fVMyO+fSwgMSc/k4W1/gqe+kXAggMMdy68kERERka6LZSPUcuBnrdPerLWPGWPWAjsCn1pr341zjCLSAb/fz78LCwC4ceJ06IdbEKfmDscBOB0OglUVuHPzEh2SiIiIDHAxf9xqrS02xkwFsoFia+3f4xeWiHSmsrICAJfbTVJyKjT3vwzIl5NHqd/PKK+XhuIN+JQAiYiISA+LKQEyxvyRyFS4UW2OFQAXWGufiFNs7a95DHA+MAFYCVxmrX06WjYLuJXI1LxyYJ619oY25zqBucAJRBK294FTrbUr2tTZbBsifU1FeRk5SR48mZkE+9ceqN9J8aZREWhhFF4q1q7CN2ObRIckIiIiA1y3F0EwxpwO3AMsAv4A7A8cBywBHjXG/DauEUau+XvgfuBuYGvgSeBJY8yOxpghwH+AZUSSl7lEFmk4rk0TlwAnAycSmaoXBl41xnii7XelDZE+pWrjBu6auR3zxk0k0A9HfyCyGWqN0wVA7fr1CY5GREREBoNYRoDOAuZba89sd/xhY8y9wGXA01saWCtjjAO4ErjZWntr9PCVxpidgd2jX83AKdbaALDEGDMZmAM8EE1yzgHOs9a+Em3zcKAIOIxIMnXS5tqI12sRiaeaDRsYQuQHN4ALCCY4otg0RDdxbS4tSXAkIiIiMhjEsgz2KODlTZQ9QWSKWjwZYBzweNuD1tp9rbXXALsAC6KJS6u3AGOMySOyUWtG9FjruVXAZ8Cu0UOdtSHS5zSWlUYenU5a+uscOMCfmgFAqLIqsYGIiIjIoBDLCNBCYE8iU8ba2xb4aosi+rEp0cc0Y8zr0WusBq6y1r5MJCH7ut05rZuKjOH7+5QKOqgzJvq8szZi+mja7Y7/7vYul/MHj9Iz+kM/+6sqAWhJ8gDgdDoSGU5MnE4HzVlDWLhsPSlZWezUA/9npH/8PA8U6uveoX4WkS3RpQTIGLNrm2+fAG6Obnz6FLCByMIC+wFnAn+Kc4ytOzw+DFxOZFrar4EXjTF7A6n8eAHgpuhjSrScTdTJiT7vrI1uczodZGenxXJql/h83h5rW77Xp/u5vg6AoNeL1+tJcDCxC+aP5u+vPs1uo0Zycg/+n5E+/vM8wKive4f6WURi0dURoHeILBzQygGcQmRhgbbHIHJPTdzuAQKiW93zd2vtQ9HnXxhjtgP+AjQCye3OaU1a6qPlROs0tqtTH33eWRvdFgqFqalpiOXUzXK5nPh8XmpqGgn242lPfV1/6OeW6hoAgimpNDb6O6ndNzmdDrJyIrNM169fT1VVPeFwJydJt/WHn+eBQn3dO3qqn30+r0aVRAaBriZAe/RoFJvXujRU+ylq3wIHAmuAEe3KWr8vBJLaHFvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpyPzsbG8GdRCgtg1Co/2YN2UOGAVBbspGWhkZIav9ZhMRLX/55HmjU171D/SwisehSAmStfbenA9mMz4FaYAci+/e0mgGsAD4ETjbGuKy1rctg7QlYa22JMaYaqCGyWtxKAGNMFrAdMD9af8Hm2uipFyayJZbW1VIXCDJ6xz0THcoWyR6Sx0WTpzIzM4vSjz5k6K6J/LxFREREBrqu3gO0ADjTWvtFVxs2xmwP3GKt3TnG2ACw1jYaY64HLjXGFAKfAr8D9iGSpCwGzgPui9b7KXA20el51tpmY8x84DpjTCmREaO/Exn1eS56mfs314ZIX/RG4XoaGxu4etL0RIeyRZI8ydRHZ9BWrV3D0ATHIyIiIgNbV6fA3Qq8Zoz5H/Ao8JK19kc3uEQXRtiXyEII2wKnxiNIa+1VxpgG4GpgJJFNVw+z1r4Tve6+wDwiS1sXA+e2uV8I4FIir/VewEtkxGdfa60/2n5JF9oQ6TMaGxtpbIz8F0xJzaSlqZMT+ri66Ep29cVFndQUERER2TJdnQL3rDHmXSKJxL2A2xizmMhy1PVAFjAa2Bpoidb5vbV2Y7wCtdbeBNy0ibKFwI6bOTdIZPW4OZups9k2RPqSysoKhiR5aHSA25MCTe0XMexfGr3pQJCW0rJEhyIiIiIDXJf3AbLWlgFnGmMuB35DZGGECUAmUEZkVOZW4GVrbXkPxCoiURUbN3LnzO0AKGxsJLY9jfuOlowcqCvFVVeX6FBERERkgOv2RqjR5Obu6JeIJEB1cRFDgZZwGL8jCQh2dkrfNmQY1JXibWkhHAzicLkSHZGIiIgMUP37Y2ORQaquZAMAjQ4HgX68BHYrT94o/KEQLiBYVZnocERERGQAUwIk0g81lVdEHt1uWgbAHhjZucN4t6yU/1SU43R3e2BaREREpMv0TkOkH2qJjpK0eAbGpqGZOXnctm41AMclJZGa4HhERERk4NIIkEg/FKqtBSCY4k1wJPHh8aSQlpEFQHHx+sQGIyIiIgOaEiCR/qghsgdQ0Jue4EDiJzM7j3SXmw1LlyY6FBERERnAujQFzhhzTHcatdY+HFs4ItIVKxvrqaqtI3/mDokOJW5+OiSXI/NyqH/zTTjg4ESHIyIiIgNUV+8BerAbbYYBJUAiPWhBWSnFxUVcOHEankQHEyfBzFyoKyGpvj7RoYiIiMgA1tUEaHyPRiEiXRYOh6moiOw17E3N7O87AH3HMWQ41JXgCYUINdTjTE1LdEgiIiIyAHUpAbLWru1qg8YYR+zhiEhnGhsbSA+FCTkcpKRlUN+U6IjiI33oCCqXLyTb4yFQVopnjBIgERERib+YlsE2xvwO2A3wAK0JjxNIA3YERsUlOhH5kfLSUu6cuR0ARf4AkJTYgOIkKyePjf7maAJUhmfMuESHJCIiIgNQtxMgY8xcYC5QHT2/Jfo1FAgB98QzQBH5oYr1BXiBYDhMc1IyNPf/jVABsnLyKWluYmp6BjUFBaRut32iQxIREZEBKJZlsP8APArkADcDL1tr84GfAOXAt/ELT0TaqykuBKABCAyUG4AAT3IKldEB5Zp1axIbjIiIiAxYsSRAI4FHrLVhYBGwE4C1dhFwNXBC/MITkfbqN24EoMHloiUwMEZ/WhUnpfLqxmJK0nT/j4iIiPSMWBKgeiJLXQMsB8YbY1q3o/8CrRgn0qOayiMrwPmTBsoC2N8rz8rjgYK1LAkNrMRORERE+o5YEqBPiUyDA1gJBIC9ot9PA5rjEJeIbEKouhqAFm9qgiOJv5yhwwFYu7bLC0+KiIiIdEssCdDfgMONMS9ba5uJ3A/0kDHmWeBG4PV4BigiP+SIbhQaSk1PcCTxlzN0BKkuFy0F6wg3NiQ6HBERERmAup0AWWsXANsD/4weOh14BpgKPA2cGbfoRORHljc28HZZCU25IxIdStzl5A7n4inT+KM7iQa7NNHhiIiIyAAU0z5A1tqvgK+iz5uAk+IZlIhs2tslGyguLuL88VNJSXQwcZYzdDjFTY1MSkunYX0BabO2S3RIIiIiMsDEuhFqJvALIhuf/mgUyVr78BbGJSIdCIfDlJeXAZCakcVAWyrAm5rB2mBkjZWq1asYmuB4REREZOCJZSPU/YlMddvUHdhhQAmQSA+oqa4mEwdVDgepqZnUNYc7P6mfqU2O/GppKipKcCQiIiIyEMUyAnQNsAT4C7AeBtyH0CJ9VnnBOm7fZltC4TAFOPh+RfqBw+/LBlpwVFUlOhQREREZgGJJgKYCB1tr34t3MCKyeZUF68gA6kIhAiFHosPpEaEhI6BiLZ6WFkKNDTgH4HLfIiIikjixLIO9FvDFOxAR6Vzdxg0ANDid+APBBEfTMzLyRlLp9wPQUlKS4GhERERkoIklAboGmGuMGRfnWESkE02lpZFHdxLhgTf7DYisBPfyxmKeq6rEk5OV6HBERERkgIllCtxRwEhgpTGmFGi/W2HYWjtxiyMTkR8JVFUC4E/xJjiSnpOTO4L7NxbjKNnAnPSBt9mriIiIJFYsCdD66JeI9LJwXS0AQW9agiPpOWkZWXiSvfibGyksXM+oUeMSHZKIiIgMIN1OgKy1x/VEICLSOVdjEwCh9EwG5hII4HA4yBs6HHf5Bgre/4BRvxuX6JBERERkAIllH6AxmykOAXXW2qqYIxKRTfq2oZ519XXk/GR3khIdTA+alDeCU4flEXj7LcKHH4nDMVDTPREREeltsUyBW0Mnm48YYyqAW621V8US1GbanQJ8BpxurX0wemwWcCuwPVAOzLPW3tDmHCcwFzgByAbeB0611q5oU2ezbYj0Fa9tLKasrJQLRg3s2+wceaMJla7CHQwSqq7GlZWV6JBERERkgIhlFbg/AH7gDeA4YP/osZeJJEZXAA8CFxtjTolPmGCMSQIeA9LaHBsC/AdYRiR5mQtcaYxpO03vEuBk4ERgx2iMrxpjPN1oQyThgsEgFRXlAKSkZSY4mp41ZNgYNjRHpvu1bCxOcDQiIiIykMQyAnQE8GQH9wI9aoy5E5htrT3IGFMFnALcuYUxtrocqG137CSgGTjFWhsAlhhjJgNzgAeiSc45wHnW2lcAjDGHA0XAYcCTnbURp9hFtlhlWSm57iSqAi0ke300+UOJDqnH5OaPprCxkREpXvxFhaSYaYkOSURERAaIWEaAdgce30TZc8Ce0efvA3GZp2OM2RX4E5GRprZ2ARZEE5dWb0VOMXnALCAjegyA6P1JnwG7drENkT6h3C5l/jbbcvs22xEcuLkPAEPyRlLQ1AhAzepVCY5GREREBpJYRoDKgZlEpo21NxOoiT5PB+pjjOs7xpgs4BHgDGttgTGmbfEo4Ot2pxRFH8dEywEKOqjTuphDZ23EvBW92x1Lfrl5LpfzB4/SM/piP9dtLCYDqANCoTBOZ/9fGKD1NbR/LckpKVS6PADUrlnTI/+XBpO++PM8UKmve4f6WUS2RCwJ0GPAFcaYFuAZIglCHpEpZZcBdxljsoGzgY/jEOOdwEfW2o5GnVKJTF9rqyn6mBItZxN1crrYRkycTgfZ2T23V4vPN3A3wuxL+lI/B6oi9/80ud2keD0Jjia+kpN/vKZdc3YuAOHSUrKyUrUSXBz0pZ/ngU593TvUzyISi1gSoIuJJDw3Rb9ahYD7gQuB3wDbAr/YkuCMMUcTmaI2YxNVGoHkdsdak5b6aDnROo3t6rSOTnXWRkxCoTA1NQ2xnr5JLpcTn89LTU0jwYE+DyqB+mI/1xZtIBto8iTjavQnOpy4cDodJCcn0dzcQij0w8UlgzkjeHTJx0z46Y5sU1kHDn3SG6u++PM8UKmve0dP9bPP59WoksggEMtGqAHgeGPM1cAeQC6wHvjAWrsawBjzKjDSWtt+ZKW7jgfygfZT3+4yxpwLrAVGtDun9ftC+G6rlBHAynZ1vow+L+ikjZgFAj33xy8YDPVo+xLRl/o5VFUFQEtqBo7QZlei73dCofCPEqCs/NG89Pbz/LRkI3/EQbCP/Dv0Z33p53mgU1/3DvWziMQilhEgAKy1K/lhUtG2rDLmiH7o90D78e3lwKXAP4msSHeyMcZlrQ1Gy/eMhGBLjDHVRO5J2r011ug9RdsB86P1F2yujTi9DpEt5mqIDGKGfFmJDaSX5A4bDcCa1aui098GVtInIiIiidGlBMgYswo41Fr7pTFmNZt/JxK21sZl9Tdr7Y9GYKIjQSXW2rXGmPuB84D7jDHXAz8lcu/RydHzm40x84HrjDGlRDZx/TuRUZ/nok1utg2RviKlpQWcThyZQxMdSq/IzR9FVlIS4/3NVCxciG/b2YkOSURERAaAro4Avcv3q7u9Sx/5KDY6yrMvMI/I0tbFwLnW2ofaVLuUyOu8l8ho0gJgX2utvxttiCTch9VV+IIBsvNGJjqUXpGWnsn2Q4dx0oiRbHj5RSVAIiIiEhddSoDabnpqrT22x6LpAmuto933C4EdN1M/SGRT0zmbqbPZNkQSLRAI8MTqFYRCIS4dOqrzEwaI+rQsAAIbNyY2EBERERkwYroHyBiTAfistYXGGA9wFjAaeMZauyCeAYoIlJeXEwqFcLlcJKf5aAl0fs5AEModAS3VuJubCdbV4krPSHRIIiIi0s91e61HY8xPiay+dkb00DzgOiILFrxljDkofuGJCEDJ2jXkJyczNCeXQLDz+gNF9oixlDRHtuUKbCjqpLaIiIhI52JZ7P5qYClwtzHGSyTxucNamwPcB1wUx/hEBGj4/H/cNmNbTh05mnCfuAOvd+QNH8e6xsh+Ws3rt2hVehEREREgtgToZ8CV0T1/9iSysMAj0bInga3jFJuIRDWXlgGRTVAHk/wR41nbEEmA6lZ1uOq+iIiISLfEkgCFgNYNTn8JVAGfRr/3AQ1bHpaItBWsimyt1exNS3AkvSstI5MN0V9TNStXJDgaERERGQhiSYD+B5xgjNkROBz4l7U2bIzJA86PlotIHLka6gEIZWQlNpAEqMzM5aaVy7BmaqJDERERkQEglgToXCJT3z4AAsBV0ePfAJOBi+MTmoi0Sva3RJ5kDklsIAmQPmI8H1dW8PX6ApxOR+cniIiIiGxGtxMga+3nwCQi++ZMsNYujxadAmxtrV0Ux/hEBr1wKERGdOUDR86wBEfT+/KGjwNg+fJlSoBERERki8W0D5C1thb4pN2xZ+MSkYj8QKCqCrfDQTAcxpk7ItHh9Lr8keMYleLFVJRT/dGHpP1kh0SHJCIiIv1YLFPgRKQX1TU28HTRel4r2UBaZl6iw+l1Q/PHYDJ8/GZoPhv/+2aiwxEREZF+TgmQSB9XUlfH00XrebG2BocrKdHh9Dp3UhI1aZkANBcUEB5MGyGJiIhI3CkBEunjiouLABgydPDd/9PKMWwcwXAYV3MzoeqqRIcjIiIi/ZgSIJE+rmrlcvKTk8nNGZroUBImb+wUipoaAfCvX5/gaERERKQ/UwIk0sflffUVt83Ylu3SMhIdSsKMGDOZNQ2RPZab1q1NcDQiIiLSnykBEunjPI2RkY9wVm6CI0mcvOHjWBsdAapcujjB0YiIiEh/pgRIpA8LB4OkBYMAOIYMT3A0ieNOSqLcGxkBa1yrESARERGJnRIgkT4sUFWJy+EgEArhHoR7ALXVMmwccxZ/zRtjxuLQfqgiIiISIyVAIn1Y44ZiAEr9zaRmDt4pcAD5Y6ewuqGeb5YsxunUry4RERGJjd5FiPRhFatXA1DW0kKy15fgaBJrxJjJACxd8o1GgERERCRmSoBE+rCatWsij07XoB/1yBs+lpFp6fw+dyjLbpuX6HBERESkn3InOgAR2bSStFQ+LVpP89DhZCc6mARzudwMGzaaPbMz8X/5BeFQCMcgTwpFRESk+/TuQaQPW9HUxFNF6ykbxJugtuUZPYXGYBBnIEBLcXGiwxEREZF+SAmQSB+2fn0BADm5g3cJ7LZGT5zOyvo6AJrXrEpwNCIiItIfKQES6aNCTY24C9cz1JNMZs6wRIfTJ4yesBUroglQjV2a4GhERESkP1ICJNJHNa1bx5GuJOaaaWRk5SU6nD4hw5fDBlcSANVLFic4GhEREemPlACJ9FH169cDUNzUREa2RoBaNeaPA8BdWUmwri6xwYiIiEi/owRIpI+qXLUCgLJQiNS0jARH03cMmTid9Y0NlIfDhKqrEh2OiIiI9DNaBlukj2osLMQL1HtSEh1KnzJ24tZc8NTthFxuPh6Wn+hwREREpJ/RCJBIHxWqKAegOSMrsYH0Mbn5o/BkZNPS4ufzLz5LdDgiIiLSzygBEumDwqEQyQ0NAARztABCWw6Hg/FTZgLw4fvvEw4EEhyRiIiI9Cf9YgqcMSYH+BtwIOADvgLOt9a+Hy2fBdwKbA+UA/OstTe0Od8JzAVOALKB94FTrbUr2tTZbBsivamlrAx3OIw/FMI1dFSiw+lzJphZ7Fiyml2++orGJd+SOmNmokMSERGRfqK/jAA9CewA/A74CfAZ8IYxZqoxZgjwH2AZkeRlLnClMea4NudfApwMnAjsCISBV40xHoAutiHSa1xpaTxZW80ThetIz9Z9Lu1FRoAceBwOqr/9OtHhiIiISD/S50eAjDGTgL2Bn1trP4weOwvYHzgSaASagVOstQFgiTFmMjAHeCCa5JwDnGetfSV6/uFAEXAYkeTqpM210WsvViQq5PHw0soVBAItnD1ES2C3l5k9lKWOyOc35Z9/zvDf/T7BEYmIiEh/0R9GgMqAA4BFrQestWHAAeQAuwALoolLq7cAY4zJA2YBGdFjredXERlF2jV6qLM2RHpVUdF6AoEWkpNT8GUNTXQ4fZJ/1BQA3OXlBKP3S4mIiIh0ps+PAEWTlVfaHjPG/BaYCLwOXA20nwNTFH0cA7TeQFHQQZ0x0eejOmmjJIbQcbvjn1+6XM4fPErPSHQ/b3znLaZn+GjMHYbb7UpIDL3B6XT84LE7RmyzI0ULnmFEihf/8iVkzP5JvMMbMBL98zyYqK97h/pZRLZEn0+A2jPG/By4H3jRWvuyMeZmItPX2mqKPqYAqdHnHdXJiT5P7aSNbnM6HWRnp8Vyapf4fN4ea1u+l4h+DgeD+D74gLlmK+7zpOH1eno9ht6WnJzU7XOmzdyeL//9ICNSvGz46APG7LV7/AMbYPR7o/eor3uH+llEYtGvEiBjzMHA48DHwBHRw41AcruqrUlLfbScaJ3GdnXqu9hGt4VCYWpq4j8tx+Vy4vN5qalpJBgMxb19iUhkP/tLNuIMhfCHQjiHjqKx0d+r1+9NTqeD5OQkmptbCIXC3T5/Y2YuAHVffUNFRR0OR/dHkgYD/d7oPerr3tFT/ezzeTWqJDII9JsEyBhzOpFlqp8Dfm+tbR2xKQBGtKve+n0hkNTm2Mp2db7sYhsxCQR67o9fMBjq0fYlIhH93LBuPQBFTY1k5I6MKTHob0KhcEyv021m88UXb1GalsYMfwu4+s2vtITQ743eo77uHepnEYlFv/iYwxhzCnAbMB84vE3yA7AA2MUY0/ZGiT0Ba60tIZLk1AC7t2kvC9gOeK+LbYj0mub1kdvVChobGJKnPYA2Z9LMHblmheWeLxZRVlmR6HBERESkH+jzCZAxZgqRkZ/ngWuAPGPMsOhXJpH7gXzAfcaYrYwxxwJnR+sSTZbmA9cZYw4yxmwD/JPIqM9z0ctstg2R3lSzfBkAqxsbyRnafmBS2vJlDmH0+K0AePPN1xMcjYiIiPQHfT4BAn5DZBrboUBxu69boyM0+wKGyNLWc4FzrbUPtWnjUuA+4F7gAyAA7Gut9QN0sQ2RXtG8bi0AFZ4UkpIG/gIIW2qrbX9OhttNweuvazlsERER6VSfnzBvrf0b8LdO6iwEdtxMeZDIpqZzYm1DpDcE6+pw1tYC0JSt/X+6YtrMndl76ceMdrnZ8NH7jNxzn0SHJCIiIn1YfxgBEhk0nCkp/Hf4MOavXoFv+LhEh9MvZGbnsjz6q6zgzf8kOBoRERHp65QAifQhDrebj9auZkF5GbnDxyc6nH6jcdK2AKSXlBBsauqktoiIiAxmSoBE+pBgMMiyZRaAYaMmJDia/mPYjvtR0tyMx+Fg+RuvJjocERER6cOUAIn0IasfeZAd0zPI9KaRkzs80eH0G960DFZ4UgEofOu/CY5GRERE+jIlQCJ9RKC2htD773HKuIkMHzkWp9PV+UnyncD0HQDIq6mhrqI8wdGIiIhIX6UESKSPaFqxAohsgOrT/T/dlrPd7mxsacHtcPDB008mOhwRERHpo5QAifQRjSuWA7C0rpa8EUqAusvpcvHxqGmc/OVn3POf1wiHw4kOSURERPogJUAifUTjimUA2Lpa8kdqAYRYjN7tYJpcLlasWM4nn3yU6HBERESkD1ICJNIHhPx+mlavAWB5Q4NWgItRijeNbXeMbIT6yL13JzgaERER6YuUAIn0AU1rVkMoSKXfT9LwsSQleRIdUr+12477cqnZiqP9LXy28JNEhyMiIiJ9jBIgkT7AX1wMRO7/GTl2aoKj6d+8+WMY78skx+PhrX/cqXuBRERE5AeUAIn0AVm77c7faqt4vHAdoydMS3Q4/ZvLRcWkbQGYVFPDu+++neCAREREpC9RAiTSB9TW1vLlMsvG5mZGj98q0eH0e40zdyUEbJXh4+l5N9HS4k90SCIiItJHKAESSbBwOMzixV8RDofJzh1GRmZOokPq9wJpPqrGTwdgB4eDJ554NMERiYiISF+hBEgkwUoef4TwE0+wdYaP0eM1/S1eKrbZFYCfZOXw0oP3smFDcYIjEhERkb5ACZBIAoVDIeq/+JycujpcDgcTp26X6JAGDH/WUGpHG5wOB7ukZXDJJecTCoUSHZaIiIgkmBIgkQRqWrmSQGUlDcEAi2trmDhtdqJDGlBKtt2DjT/7BU+VlrBw4Sc89thDiQ5JREREEkwJkEgC1Ub3qVlYWcnQURNJz8hKbEADTHN2HtXTd+WPp50DwLx5N7F48TcJjkpEREQSSQmQSIKEQyFqFy0E4MPKciZupdGfnhAIhpg2ey/22G0P8l1uzjzzFIqLixIdlsigFg5//xWKfgVDka9AB18twciXP/rVEkz0KxCR/syd6ACke9bVOPisCurqXAQCDsJAGAeEoXW7xzDRPyyt34c3fbz9OR0+b9N+27LNicfWk51dpyvXaPs6Ntd+uN2j0+nA64XGRjfBYPjH9X5wruPH1+jguu3PzSz4lm2qq6kLBvmqppqZo/fiveq879rroLnNHOtaDO3rd63tH8Yd07mbeE0OwO12EQgEf/Dz2JVzN32sTXzRg0PWFnMkaQSnzeCsL//H//3xFHY+52mSvL5Nt9eu/8IdlHV0/c39XLX9ZnPt/uA1d+FnqbM4cDhISgJ/S8r3G8N2sd32l+js9YXDHfx7xeE1dKcvY42/K7F/d/pmf39AKOTt8Gd6S/ui435wdFh3c3Fv7vpb+v9hc78n4+lPs+GU6XFvVkQGASVA/UiNHw57yUsgBJCS6HAGieQea/m0b98F4OOKMoKpQ/kya18cNa4eu95g5gmncXDQSZ7LyVHjDPevWsKrNx6L6zeP4kjJTHR4vUg/X71HEyx6mkaBRCRWSoD6kfQkOGB8gDV1SQQCkd/8jtav6IdrDke44+O0ln9fRtvnbcp+9Py7uuEfnt+ZTip1pY3O6ji60EhHVdr3S9vnDgc4HA48HjctLQFCofCPyjs6p+Nrhzd5Dq6fsuI/H/NGyUbyZ/2aMRlV39Xf5GvoqJ0OrtfhuZs81mbspIPKmz8/lni/P8fpcLQZAQq3P6XNuR28ri7HGjl30ezfsv8Ht7NfTiZf1o1gUdFn5Lz4G35z4YOk+YZssv1N/Yxs6tpd/fnYbP0OKn73s9RJjB2VuVwOUtNSaKhvIhQM97v4uxRP+991HZS1b2ez5/3gdXX8O6CjuN1uJ74ML7W1jQSDoc3W31zfdaXPO+obHB3086bO6+L1NxV3V/5tutTXHcS9+dcIHreTkXlpVFYiItJtjnBHY+6ypVYFg6HxFRX1cW/Y7XaSnZ1GZWU9gYCW9O0pvdHPjY0N7Lbbjvj9zZx03jxGjJ7UI9fpyyJTDT00Nvq/SzR70oiFr5G1+FNIS2PO4q9ZXVrC6NFjuOGGeRgztcevnyj6vdF71Ne9o6f6OScnDZfLuRqYELdGRaTP0Ri9SIK8/sYr+P3N5OaPZvioiYkOZ1Ao3nZPWobkQ309f995N0aPGElBwTqOOeZwXnjhWfSBkIiIyMCnBEikl1W++QblLz7H4w8+AMC2O+6Doytz+WSLhd1JrNn1t4STUwgVFHDXMcfx85/vSnNzM5dddhGnn34ShYXrEx2miIiI9CAlQCK9KFhXR/mLz1P+8ksMra4iOSWV2Tvtn+iwBpUWXw7rdvk1oXGTGHbwYcyffzdnnPFnkpKS+OCD9/j1r3/F/Pm3UFNTk+hQRUREpAcoARLpRWXPPU2osZENoRAfVpSz/c4HkOJNTXRYg079yIks2/1IVlUGcLpdnHDCyTz1z+eZPXt7mpoauffeuzjwwL2ZP/8WNmwoTnS4IiIiEkdKgER6Sf3XX1G94F0A7ly2BLcnmR12PzjBUQ1eoTAsXVPOivVVlL/2Cp6XXuTuW+/kppvmM2HCJGpqqrn33rs44IC9OOecM3j33bfw+/2JDltE/r+9O49vo7zzOP4ZHZblK4ljx7FzEMjxcEMuILuEhKsBeiy0tJSy20JLC0v7orBsobvblpae0KW0r6W0u2XL9uBoaaFQyhVCaEs5Eki44QkhOAe5bMeOb1nSzP4xY8UxVi4cKZa+71eU0Yx+mvn5sTzSb56ZRyIi75GGwRbJgWRLM5tvuxWAx9q28XpnB6d96CIqR1XnObPilk572FcamfqHe3GSfay77lrmffZSFtx9H0uXPsZvfnMHy5c/y5Ili1myZDEVFRUsXHgqJ554EnPmHEdNTW2+fwQRERHZSxoGe//QMNgj3HC2c7qri/XXf4e+je/Q5Dhc+fyzjBo3kUuu+S8ikegwZTwy5XoY7GxKt21iypP3EmptBsdh1IKTqfmHcwhXVrJ69Zvcc8/dLF78ME1NW3d63iGHTGX27LkYcxjGHMq0adOJH4CnNGq/kTtq69zQMNgi8l6oAAoYY0LAtcDFwBjgSeAya+3qfVidCqARbjjbuW/LZtZ/91t09vRw5YrltAMXXXEDEybPGJ5kR7ADpQACCCUTHLRyMfHXV/jzZWWMOX0RY05/H6HSOK7r8uKLK1my5FGWL1/GqlVvvGvYbMdxmDRpMjNmHMqMGYZDDplKfX0D9fUNjBlTnbfR/rTfyB21dW6oABKR90KnwO3wVeBS4CLgHeAG4CFjzBHWWp34L3vF8zzwPJxQiEhtDfdFoyx95m9sS/Zx7oXXqPg5ALnRGG8f9wGqDj6ahuceha0baV38CGMXnQFAKBRi5szZzJw5G4Dt29t4/vnlvPDCSt5807JqlaWlpZl169aybt1aHnvskZ3WH4vFqKsbT23tOGpraxk7tpaamhrGjKmmvLyc8vJyysrKqaiooKxsx3w0Wty9hCIiIsNNBRBgjCkBrgKuttY+GCw7D9gIfBi4K4/pyQjipVJ0vfwS2x76E5UnzOPlSIjrb/gu72xYjxMK8cHzL+fI2QvynabsQnvtZNoXfZrajW9QXQLtbphR4RBhB9Zc9w0i1WMpO+ww4tNncPKCUzjllNMzz21paWbVKsuqVW+wapVl3bq1bN68kaamJhKJRKY42huxWOxdhdGuCqZYLEY0WkI0Gs3cSktjjB1bRW9vGscJZ5aXlOwcF4lE9Z1UIiJS8FQA+Y4FKoHH+xdYa9uMMSuAk1ABJFkkt20juXULiXc20P7qK/Susji9vQCstW9w+YvPA1A5aixn/+OVTD10Vj7TlT0VCtE08XCagLUvbaRmdJy67q30rnkL1rxF53PLAHCiUUoaJlDS0EDFzNmMnTWbefNqOGHu8aS2txEuL8eJlZJMJtm6dQubNr1Dc3Mzzc3NtLQ009zcRFtbG93dXXR2dtLd3UVXVxddXZ2ZEecSiQSJRILW1m05+dEHF0ThcHjQLUI4HAqm/rJoNJKJjUT8+5FIZMB8hFAoNOC5YUKhMJGIP+2PG7iNSCSc2UYoFAqe338/TDjsTwc/NnDav51wOITjhDJT/zlOsCyM4ziZ9TiOEyzzY4baXiQSUaEoIjKCqQDyTQym6wct3whM3teVRiLDP8r43b+8jfIVz+O63o7rD7zMf2wtjbG2zL8IO5x2mdm2PYjZca2CA3h4NJWU8FZZ3F/muhy/fdAXP3o77jRHo7wRL/XnXJf5HZ1ZYqElEubl0liwWY+TuroJB/ednVdLazjEilg0k+KC3gTRIFcnk7Y/v92BpyLhTOzCZIr4UNewedABLA352/Q8j1OBSpxMm2Xy8KDL83jITfmt4nmcGo5Q7YSC7Xt4gONB1IE+z+PORE9mPZ+Pl1MX3vFn5ABtyT7+3NzMA1s2ES+rYM6J7+ekRR8jVnrgXRyfb6GQs9P0QNSXTLOxqZON6RjV51xM1da1lG5YA5vW4/X1kVjbSGJtI/Hx4yktPQHP8+ht3sLbX77GX0E4TDgexykpoTYaZVw0ypgFC6m+6NOAX0Rv+uUv/A/UIQcc/0O4i0c67cLUqSSnT6erq4vulmaiTz1FKpUimUqSSqVIJVMkk0lS6RTrXJdXPJdkMgnJJKfg4LouruvieS7pdDozv6qzg8e2bMbzPMKOw2cmT8naBm93d7F408bM/GcnHwxOcsjYDT09PLR1c2b+wkkHEXWG3hduSvTywJYd37N0wYTJxMPhIWOb+xL8YfOOHM5rmEhllkFEtqeS3L1xQ2b+I/UTGBMtGTK2K53iznd27Po/NL6ecSWlQ8Ym3DS/2rAO8K/3en9dPQ2lcXDAwcFxHBwHHCeEC/ymZWum4FpQNYqGkpJM3MDn4MD93V04QQE2pyTGhHAkEwP+evu3u9hNkQ6ee3QoxAQntFNs8A8ch7+FQySDgm96ymWC5wXbJci3PweHleVl9AXtP7m3j4b+Yd+dAZMgkVerKukJhwGHhp5eJvT27hwXxDqAHVVFV9D+43q6mdDVDcG+dbA3qyrpCE77rE0kmNzVvfM6g3vdJVHmXHYJM2YcMeTvSkRkV1QA+fo/mSYGLe8F9mmc4lDIYcyY8veU1GCtra3c8sMf8OOjZ2aNWb3mLe5Z1whAVSTCR4+dkzV2/bq13N+4BoBYKMQFs47LGtu0cSMPrnkzM3/RnBOyxrZvbeXR1TYz/8mZc4ll+VDzyrbtPL7q9cz8BcfMpirLNQ+ruzp58vVXMvOfOGomtbHYkLHre7pZ9upLO2KPOJqJ8bLMm3eGA1sTvbz48guZRR8/7EimlVcMud6OVJLXX38tM984dTpuvIxNiV5sRwcbwmH6xtUxYc48Lj1mDjPnzCNWGh9yXTIS1QP+35/jeZR0tuJu2oDb3ET3pOlsau0hGgmRbuuESARSKUinSXcOOmCQ6CVeHsNxHHpbXTpfWJl9i5MamDJ3JjiQ2NrEil//Omvs/DPex9RLPwdAsr2D5Z+8KGvsuWefw/9deTnpdJrezk5e+OSns8aGDzuUL5x7Dq7rkkqlcK+/ESdLbE99HSf93Ql+cZZKcejDjxFOp4eMbS0vo+bMRaTTadLpNIveaqQ0PfQF7VtDDi3Tp5JOp/0DFUmX0VmyaEqneC4WzeQ7v6aOhiwFUEuyj3tbmvA8D9d1OX7MWKbv4u+/vwDyPI9ZVaM4smrUkLF9rstPB+wHp42uZnZF1ZCxAD985aVMQXDWIdM4rroma+yPXlxBr+u307wphzCzZtzOAf0r8jxuXrGM7Sm/WJ02aQpH1Y3Put6bn32arX3+2+AnJkzi5PoJWWP/e9nTrO/pAfwCc+GESVljf77sGd7s8v8GPlBXz4JJB2WNveP55bza4R+MO712HKccNPRYBKs6O7jpppu4/fbbs65LRCQbjQIHGGM+AvwOKLPW9gxY/lsgZq3d22+rXJNOuwe3t/fsPnIvLX34TySfeRrX8/w3ucwRN/9OV2UFbdV+zRZ2XcZveCfzoX/g0TuAnopy2mv9N9mQ5zFu3XoGHmcb+Lze8jI66uoy87WNjXiZre683mRZnI76+sx8deNanKD3Z3BsqixOZ0NDZtGoxrU4aXfgIcTgMQe3tJTuyZMyp55UNDbipNI7HRklOCrqlkTpPfjgTGzp242EksmdTlvpP/LpRaP0TZuaWRZtbCTc10c4HMJNBz1AjgORCF4sRvqggzJHT6ORCBWVo6isrKS6upqyMvXy7I1QyKGsLEZ3dyLvo8DtF8k+Ul1duN3deMkkbjKJ25ekpLaG0vH+B9FUZydty5aD5/o9i64/gIbnueB6xA+eQuVhh/mxXV00P7o46+biU6YwauaxALiJBFsefBDwX6uRcIhU2s30XsYnTWL0HP8AiZdKsfn++7Out7RhAmNOOD4zv+n392SNjdXVUX3i32fmN993P14qNUSkR8nYGsYu3HFN3JYHHsBNDD4O5YuOHk3Nqadm5rc+9DDp7qFH2oxUVFK76H2Z+abFi0m1tw8ZG47HGXfWWZn55seXkmzdhj+Oif978IsjDycapuq00zM9aZ3PPEOypSX4fQWDn+ARCjmkPI/o/JNwXT82+dLLeC0tmV5p/1ftFzGe55GaOxcv6IUOvbkaZ9u2zO9q4NTzPHqOPgrCYVzXJbp2HZFdxLbPmIEXDeO6HqUbNxFrbR2Qgxf0DvrPaZ48iXQ0iud5lDe3UNHWNqCXxssUVh4eTRMaSAZFZUVrK5Wtbf1R74rfUldLXyyG50FlRwdj2rb3vyHtVMJ6QPO4cSTipYBHeUcHo7e17rTdfqnSUk743MXU1U30e0qHSVVVXKPAiRQBFUCAMeY44FlgmrX2rQHLnwRetNZ+fi9XqWGwRzi1c26onXND7Zw7auvc0DDYIvJeDP9FKiPTi0A7sLB/gTFmNDAL+Gt+UhIRERERkeGma4AAa23CGHMzcL0xpgloBL6PPyhC9nM9RERERERkRFEBtMPX8NvjViAO/AVYpC9BFREREREpHCqAAtbaNHBNcBMRERERkQKka4BERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGg4nuflO4dC1ON5Xqnr7p+2DYdDpNPuflm37KB2zg21c26onXNHbZ0b+6OdQyEHx3F6gfiwrlhEDigqgPaPNiAGbMpzHiIiIrLn6oEEMDrPeYjIfqQCSEREREREioauARIRERERkaKhAkhERERERIqGCiARERERESkaKoBERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGhE8p2A7J4x5ivAadbahQOWfRD4GnAY0AzcDXzNWtuTlyQLQJZ2/jjw78B0YCPwP8AN1lovL0kWgKHaedDjPwNOt9ZOyWVehSjLa/o24MJBoe9YayfmMLWCkqWd64EfAGcCaeBh4IvW2ua8JFkABrezMeYJYEGW8E9Za3+Zo9REZIRRD9ABzhhzBXDdoGXzgXuB3wPHApcC5wG35Di9gpGlnc8EfgX8FDgc+BLwFeCKHKdXMIZq50GPnw1cnKt8Ctku2vpo4DtA/YDbzNxlVliy7DtiwGLgEOA04P3ALEAfyPdRltfzh9n5dVwP/Al4A/89UkRkSOoBOkAZYyYAtwLzATvo4UuAx6213wvmVxtj/h24zRhzqbU2kcNUR7TdtHM98D1rbX9h+bYx5p/wP9DclLssR77dtHN/TD1+D9ufgSk5S67A7KqtjTFh/GL+m9bazXlIr2Ds5jV9Pv5reKq1dksQfwVwizGmylrbnsNUR7RdtbO1dtug2POBRcAsa21HzpIUkRFHPUAHrllAK/7R2mcHPXYjfm/EYBGgcj/nVWiytrO19ufW2q+C/8HRGHMGsBB4NNdJFoBdvZ4xxjjAL/B73J7IaWaFZ1dtPR0oBV7LdVIFaFftfAawpL/4AbDWPmKtnariZ6/tct/RzxhTDnwfuMla+3KOchOREUo9QAcoa+0fgT8CGGMGP7Zy4LwxpgS4Clih88v3zq7auZ8xZjKwBggDjwA/yVV+hWIP2vlK/B63DwL/lrvMCs9u2voowAOuCE7xdIEHga9Ya7fnMs+RbjftPAP4izHmq8CngCj+vuNqa21bDtMc8fZkHx24FP8A4LdzkJaIjHDqARrhjDER/KPmhwOX5TmdQtUGzAU+ChyD394yTIwxRwPXAhfo9M397kj8oqcRv9j8V+As4D5jjN4Phk8VfuFzDPAJ4HPAifjt7OQzsUIUnNp5OXCLCnkR2RPqARrBjDGVwG+Bk4FzrbVZTw+QfRecsrISWBm80d5ljLnaWrs2z6mNeMaYUuAO4FvW2pfynU8R+Dr+KUJtwfwrxphNwNP4Rb72IcOjD+gEzrfWJgGMMZ8ClgFzgOV5zK0QLQQmAz/Lcx4iMkKoABqhggvGHwIOBs601i7Nc0oFJxhtr8da+9yAxa8E0wZABdB7dzxwBPB1Y8y1wbISIGKM6QQusdbenrfsCkwwfHvboMX910tMRAXQcNkAhPqLn8CrwfRgVAANt7OBZdbaNflORERGBp3yMAIZY8YAjwO1wIkqfvabq3j3aG/HAylgVe7TKUjL8C/MPwZ/SPdj8Ycd3xjcvz9PeRUkY8wdxphHBi2eG0w1MMLw+QtwjDEmPmDZUcF0dR7yKXQn4r8niojsEfUAjUw34X+/xBlAkzFm/IDHmqy16fykVXD+E3jCGPMN/Ot+ZgE3AD+y1rbkNbMCEXxx704fCI0x24CUtVYfFIffHcD9xpj/AO7Cv1j/x8Ad1trX85pZYfkp8AXgjmAghFHBsqXW2hV5zazABKclH4E/ApyIyB5RD9AIE1yofB7+aUKPA5sG3SblL7vCYq19Ev8LDM8CXsJ/g70RuDqfeYnsK2vtA/iDeXwE/9S3/wXuAT6Tz7wKTTAa53z80d+exR/FbBlwTj7zKlBj8dtZB6VEZI85nuflOwcREREREZGcUA+QiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjRUAIlIUTPGOPnOQURERHJHBZCIFC1jzIeAXwT3FxpjPGPMwvxmJSIiIvtTJN8JiIjk0b8MuL8CmAe8lqdcREREJAdUAImIANbaduCZfOchIiIi+5fjeV6+cxARyTljzBPAggGLTgaWAidba58wxnwd+DjwZeBbwDTgDeCfAQ/4EXA08BbwRWvtkgHrPhL4HnBSsGgJcJW1ds1+/JFERERkD+gaIBEpVpcBK4PbPKBqiJhJwA+AbwMfA6qB3wF3Aj/DL5BCwF3GmDiAMWYG8BQwDrgQ+AxwCPA3Y8y4/ffjiIiIyJ5QASQiRcla+xrQDrRba58J7g9WBlxmrb3TWns/cAvQAHzTWnurtfY+4KtADWCC51wL9ACnWWvvsdbejd+7FAe+tF9/KBEREdktXQMkIrJrTw24vzmYDrxWqCWYjg6mp+KfStdtjOnfx7YDfwVO3085ioiIyB5SASQisgvB4AiDde/iKWOB84LbYE3DkpSIiIjsMxVAIiLDqw14DLhxiMdSuU1FREREBlMBJCLFLA2Eh3mdfwYOB16w1qYAjDEO8GtgNfDCMG9PRERE9oIKIBEpZm3APGPMKcCoYVrndcDTwAPGmJ8AvcAlwNnAucO0DREREdlHGgVORIrZzUASeAh/lLb3zFr7EjAf/7uCfoU/bHY9cLa19p7h2IaIiIjsO30RqoiIiIiIFA31AImIiIiISNFQASQiIiIiIkVDBZCIiIiIiBQNFUAiIiIiIlI0VACJiIiIiEjRUAEkIiIiIiJFQwWQiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjT+H4Xi/Ik+Sr6LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Quantify the peak\n", + "peaks = chrom.fit_peaks(verbose=False)\n", + "chrom.show()\n", + "peaks.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While it's useful to know the various parameters returned by the fitting, we are\n", + "fundamen We are interested in the integrated area of the peak (integrated over\n", + "the entire duration of the chromatogram). Using a for loop and getting the concentration \n", + "of lactose from each file name, we can generate a new Pandas DataFrame which \n", + "will hold the calibration information." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idconc_mM
013.560.2812411.6547278004.452381960534.28571116.0
013.560.2789641.628399747.23161589667.79380910.5
013.560.2789281.6305031540.484760184858.17114311.0
013.560.2803721.6444003896.669057467600.28684413.0
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... area peak_id conc_mM\n", + "0 13.56 0.281241 1.654727 ... 960534.285711 1 6.0\n", + "0 13.56 0.278964 1.628399 ... 89667.793809 1 0.5\n", + "0 13.56 0.278928 1.630503 ... 184858.171143 1 1.0\n", + "0 13.56 0.280372 1.644400 ... 467600.286844 1 3.0\n", + "\n", + "[4 rows x 7 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "# Set up a blank dataframe for the calibration curve. \n", + "cal_curve = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and perform the quantitation \n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Get the concentration of lactose from the file name \n", + " conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add the concentration to the peak table and add it \n", + " # to the instantiated calibration dataframe\n", + " peaks['conc_mM'] = conc\n", + " cal_curve = pd.concat([cal_curve, peaks])\n", + "\n", + "cal_curve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now plot the peak area as a function of time, which we expect to appear linear. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'integrated peak area [a.u.]')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG1CAYAAADz8VB4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUb0lEQVR4nO3deVxU9f4/8NcZBhhWRUTwiiuKiCCoYKSS5NqVrC/hkvfivouaS7jfxHK71wXF3FJQU8slyMq0e9Esy2sKlFuAu+QCYoiMsg3MnN8f/pg7IyQzeJiBfD0fDx4y53zOhzdvKF+e8zlnBFEURRARERERAEBm7gKIiIiIahOGIyIiIiIdDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIB8MRERERkQ65uQuoq0RRhEbzYj5cXCYTXtjvXUrsozTYR2mwj9JgH6VRU32UyQQIglDlOIajatJoRDx4UGDuMkxOLpfByckOSmUhyso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKg6HPGyGhEREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBW/mJiIioVhBFEY8KVVCJAkqKVFBYWhj0XCKpMRwRERGRWRUWl+LkhWwcTb2N+w+LtNtd6tugd2d3dPN1g63C0mT1MBwRERGR2Vy8nosNn19ESakaT58j+v1hET49dgWJJ64jMswHPq2cTVIT1xwRERGRWVy8nou1B85BVaoGADz9hiHlr1Wlaqw9cA4Xr+eapC6zh6PS0lLExMQgJCQEHTt2xN/+9jf8/PPP2v3p6emIiIiAv78/QkJCEBcXp3e8RqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBERkWkVFpdiw+cXIYoVQ9HTRACiCGz4/CIKi0trvDazh6NNmzYhISEBS5YswcGDB9GqVSuMGzcO9+7dQ15eHkaNGoUWLVogISEBU6dOxbp165CQkKA9fuPGjdi7dy+WLFmCffv2QRAEjBs3DiqVCgAMmoOIiIhM6+SFbJSUqqsMRuVEACWlapy8mF2TZQGoBWuOjh07htdffx3du3cHAMydOxcHDhzA2bNncfPmTVhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0xJFEUdTbxt9nADgaMpt9O7sXqN3sZn9zFH9+vVx/Phx3L59G2q1Gvv27YOVlRXatWuHlJQUBAYGQi7/X4YLCgrCjRs3kJubi4yMDBQUFCAoKEi739HREd7e3khOTgaAKucgIiIi03pcVKp3V5qhRAD3HxahoLhM+qJ0mP3M0YIFCzBjxgz06tULFhYWkMlkWLduHZo1a4bs7Gx4enrqjW/UqBEA4O7du8jOfnJqrXHjxhXGZGVlAUCVczg7V3/lu1xu9mxpchYWMr0/qXrYR2mwj9JgH6XBPhquTGPoxbTKlao1Nfp3sNnD0bVr1+Do6IgNGzbA1dUVBw4cwJw5c7B7924UFxfDyspKb7y1tTUAoKSkBEVFT1JnZWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32sWoyy+eLH26NHOFoZ1X1wGoyazi6c+cOoqKisGPHDgQEBAAAfH19cfXqVaxfvx4KhUK7sLpceaCxtbWFQqEAAKhUKu3n5WNsbJ78clY1R3VpNCKUysJqH19XWVjI4OhoA6WyCGq1xtzl1FnsozTYR2mwj9JgHw0niiIaOdngfl6RwQuygSdrjlycbFBWokKeyvi71hwdbQw6s2fWcHT+/HmUlpbC19dXb7ufnx9OnDiBv/zlL8jJydHbV/7a1dUVZWVl2m3NmjXTG+Pl5QUAcHNze+Ycz6Os7MX95VerNS/09y8V9lEa7KM02EdpsI+G6dXJHZ8eu2LUMSKAXp3doVaLqPoBANVn1guj5WuFLl26pLf98uXLaN68OQIDA5Gamgq1Wq3dd+rUKbRs2RLOzs7w8vKCvb09Tp8+rd2vVCqRlpamPRNV1RxERERket183WBtaVHhqdh/RBAAa0sLdPNxq9G6ADOHow4dOiAgIABz5szBTz/9hJs3b2Lt2rU4deoUxo8fj/DwcDx+/BgLFizA1atXkZiYiJ07d2LChAkAnqw1ioiIwKpVq3Ds2DFkZGRgxowZcHNzQ58+fQCgyjmIiIjI9GwVlogM84EgoMqAJPz/j8i3fEzyHmuCKIo1d17KAPn5+Vi7di2+++475Ofnw9PTEzNnzkSXLl0APLn0tnTpUqSlpcHFxQWjR49GRESE9ni1Wo01a9YgMTERxcXFCAwMxHvvvQd3d3ftmKrmqA61WoMHDwqea466SC6XwcnJDnl5BTxt/BzYR2mwj9JgH6XBPlbP0++tphtKyl9bW1og8i0f+LR8vis+DRrYGbTmyOzhqK5iOOJ//M+DfZQG+ygN9lEa7GP1FRaX4uTFbBxNua33/COX+jboHeCObj6NYat4/mXShoYjs9/KT0RERC82W4Ul+gQ0Re/O7iguVcPaxholRSVQWFrU6JOw/wifVEVERES1giAIcLC1gmsDWzjYWpklGAEMR0RERER6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh1mDUenT59G27ZtK/3o1asXACA9PR0RERHw9/dHSEgI4uLi9ObQaDSIjY1FcHAw/Pz8MHr0aGRmZuqNqWoOIiIionJmDUcdO3bEjz/+qPcRHx8PuVyOiRMnIi8vD6NGjUKLFi2QkJCAqVOnYt26dUhISNDOsXHjRuzduxdLlizBvn37IAgCxo0bB5VKBQAGzUFERERUTm7OL25lZQUXFxft69LSUixfvhx9+/bFoEGDsGXLFlhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0lWr1hzt2bMHWVlZmDdvHgAgJSUFgYGBkMv/l+GCgoJw48YN5ObmIiMjAwUFBQgKCtLud3R0hLe3N5KTkw2ag4iIiEiXWc8c6SopKcHmzZsxYsQINGrUCACQnZ0NT09PvXHl++7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcsl9eqbGkSFhYyvT+pethHabCP0mAfpcE+SqM29LHWhKMvvvgCJSUlGDZsmHZbcXExrKys9MZZW1sDeBKmioqKAKDSMfn5+QbNUV0ymQAnJ7tqH1/XOTramLuEPwX2URrsozTYR2mwj9IwZx9rTTg6ePAg+vbtCycnJ+02hUKhXVhdrjzQ2NraQqFQAABUKpX28/IxNjY2Bs1RXRqNCKWysNrH11UWFjI4OtpAqSyCWq0xdzl1FvsoDfZRGuyjNNhHadRkHx0dbQw6I1UrwtGDBw/wyy+/YMKECXrb3dzckJOTo7et/LWrqyvKysq025o1a6Y3xsvLy6A5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+1ooLoz///DMEQUCXLl30tgcGBiI1NRVqtVq77dSpU2jZsiWcnZ3h5eUFe3t7nD59WrtfqVQiLS0NAQEBBs1BREREpKtWhKOMjAw0bdpUeymsXHh4OB4/fowFCxbg6tWrSExMxM6dO7VnmKysrBAREYFVq1bh2LFjyMjIwIwZM+Dm5oY+ffoYNAcRERGRrlpxWe33339H/fr1K2x3dnbGtm3bsHTpUoSFhcHFxQWzZ89GWFiYdsy0adNQVlaGhQsXori4GIGBgYiLi9MuwjZkDiIiIqJygiiKormLqIvUag0ePCgwdxkmJ5fL4ORkh7y8Al5Tfw7sozTYR2mwj9JgH6VRk31s0MDOoAXZteKyGhEREVFtwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEiH3JBBw4cPr9bkgiBg586d1TqWiIiIyBwMOnN05swZPH78GKIoGvzx+PFjnDlzpqbrJyIiIpKUQWeOACA6OhodOnQweOKzZ8/i7bffrlZRREREROZi0JmjiRMnwtXV1aiJGzdujIkTJ1arKCIiIiJzMejM0fTp042e2NXVtVrHEREREZmTpHer3bp1C/PmzZNySiIiIiKTkjQcPXjwAJ9//rmUUxIRERGZlKThyM/PDxkZGVJOSURERGRSfAgkERERkQ6Db+Uvl5ycXOWYwMDAahVDREREZG5Gh6Nhw4ZBEIRnjklPT692QURERETmZHQ4+vjjjytsKywsRGpqKr744gvExsZKUhgRERGRORgdjrp06VLp9pCQENja2mLTpk3YsmXLcxdGREREZA6SLsju3LkzTp8+LeWURERERCYlaTg6evQo7O3tpZySiIiIyKSMvqw2fPjwCts0Gg2ysrJw9+5djBs3zugiDh48iI8++gi3bt1Cs2bNMGXKFPz1r38F8GRx99KlS3Hx4kXUr18fw4YNw5gxY/S+9ocffogDBw5AqVSic+fOWLRoEZo3b64dU9UcREREROWMPnMkimKFD5lMhrZt2+L99983+v3UvvjiC8yfPx9DhgzBoUOH0L9/f8ycORO//PIL8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO3xGzduxN69e7FkyRLs27cPgiBg3LhxUKlUAGDQHERERETljD5ztGvXLsm+uCiKWLduHUaMGIERI0YAACIjI/Hzzz/jzJkzOHPmDKysrBAdHQ25XA4PDw9kZmZi69atCA8Ph0qlQnx8PKKiotCjRw8AQExMDIKDg5GUlITQ0FDs37//mXMQERER6TLrE7KvX7+OO3fuYMCAAXrb4+LiMGHCBKSkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vbWPqyyqjmIiIiIdBl95uhZbt26hY0bN2L58uUGjb958yaAJ89JGjNmDNLS0uDu7o5JkyahZ8+eyM7Ohqenp94xjRo1AgDcvXsX2dnZAIDGjRtXGJOVlQUAVc7h7Oxs3DepQy5/8d59xcJCpvcnVQ/7KA32URrsozTYR2nUhj5KGo4ePHiAzz//3OBw9PjxYwDAnDlzMGXKFLz77rv497//jcmTJ2P79u0oLi6GlZWV3jHW1tYAgJKSEhQVFQFApWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32URrm7KOk4cjPzw8ZGRkGj7e0tAQAjBkzBmFhYQCAdu3aIS0tDdu3b4dCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbmydNrWqO6tJoRCiVhdU+vq6ysJDB0dEGSmUR1GqNucups9hHabCP0mAfpcE+SqMm++joaGPQGSlJw5Gx3NzcAKDCZa/WrVvju+++Q5MmTZCTk6O3r/y1q6srysrKtNuaNWumN8bLy0v7NZ41x/MoK3txf/nVas0L/f1LhX2UBvsoDfZRGuyjNMzZx2qFo+zsbPz88896Z2Q0Gg2KioqQkpKCmJgYg+bx9vaGnZ0dzp07h4CAAO32y5cvo1mzZujUqRP27t0LtVoNCwsLAMCpU6fQsmVLODs7w8HBAfb29jh9+rQ2HCmVSqSlpSEiIgIAEBgY+Mw5iIiIiHQZHY6OHDmCqKgolJWVQRAEAE9uyS//vFWrVgbPpVAoMHbsWGzYsAGurq7o0KEDvv76a5w8eRI7duxA69atsW3bNixYsABjx47F+fPnsXPnTixevBjAk7VGERERWLVqFRo0aIAmTZpg5cqVcHNzQ58+fQAA4eHhz5yDiIiISJfR4WjLli3w9vZGdHQ09uzZg7KyMowfPx7ff/89YmJiMH/+fKPmmzx5MmxsbBATE4N79+7Bw8MD69evx0svvQQA2LZtG5YuXYqwsDC4uLhg9uzZ2vVJADBt2jSUlZVh4cKFKC4uRmBgIOLi4rSLsJ2dnaucg4iIiKicIIqiaMwBfn5+WLVqFfr06YNDhw5h27ZtOHjwIABg5cqVOH/+vKQPiqyt1GoNHjwoMHcZJieXy+DkZIe8vAJeU38O7KM02EdpsI/SYB+lUZN9bNDAzqAF2UY/REAmk6F+/foAgBYtWuD69evQaJ4UHxwcjKtXrxo7JREREVGtYXQ4atWqFVJTUwE8CUelpaVIT08H8GQx9NO3zRMRERHVJUavOXr77bexaNEiFBYWYubMmXjppZcwf/58DBw4ELt370b79u1rok4iIiIikzD6zNGgQYOwYMEClJaWAgA++OADlJSUYOnSpSgrK8OCBQskL5KIiIjIVAw6c6TRaCCT/S9H/f3vf9d+3rRpUxw5cgR5eXlo0KDBM48jIiIiqu0MSi7t27fH+fPn/3C/IAgVgtG5c+d4iY2IiIjqHIPOHImiiLS0NKPeqPXKlSvVLoqIiIjIXAxekG3sE6V1n5pNREREVFcYFI4+/vjjmq6DiIiIqFYwKBx16dKlpusgIiIiqhV4KxkRERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdEgejq5duyb1lEREREQmY/Qbz+bn52P16tVITk5GaWkpRFEE8OS5RoWFhcjPz0d6errkhRIRERGZgtFnjpYtW4aEhAS0aNECFhYWcHBwgK+vL0pLS6FUKvH+++/XRJ1EREREJmF0OPrhhx8wZcoUbNq0CW+//Tbc3Nywdu1afPPNN2jbti2uXr1aE3USERERmYTR4UipVKJz584AgDZt2uDixYsAADs7O4wePRrfffedpAUSERERmZLR4cjJyQmPHj0CADRv3hy5ubnIy8sDALi6uuLevXvSVkhERERkQkaHo5dffhmbN2/G7du34e7ujvr16yMxMREAcPz4cTg5OUleJBEREZGpGB2O3nnnHeTm5mLu3LkQBAHjx4/HypUr0aVLF+zYsQPh4eE1UScRERGRSRh9K3+TJk1w+PBh3Lx5EwAwatQoNGzYED///DM6dOiAsLAwqWskIiIiMhmjwxEAKBQKeHl5AQBKSkrw+uuvY8CAAZIWRkRERGQO1XpC9vXr1zF9+nR06dIFHTt2RFpaGqKjo7Fr1y6p6yMiIiIyKaPDUXp6OgYOHIhff/0VAwYM0D4h29LSEsuWLcPnn38ueZFEREREpmL0ZbV//vOf8PHxQXx8PABgz549AIAFCxaguLgYH3/8MdcdERERUZ1l9Jmjs2fPYuTIkZDL5RAEQW9f//79tQu1iYiIiOoio8ORtbU1iouLK9338OFDWFlZPXdRREREROZidDjq1q0bYmNjkZ2drd0mCAIKCgoQHx+Prl27SlogERERkSkZveYoKioKQ4YMwWuvvQYvLy8IgoAVK1bgxo0bEEURa9asqYk6iYiIiEzC6DNHjRs3xhdffIERI0ZAFEU0a9YMhYWFeP3115GYmIimTZvWRJ1EREREJmH0maPNmzejV69emDFjRk3UQ0RERGRWRp852rZtG7KysmqiFiIiIiKzMzoctWjRAleuXJGsgDt37qBt27YVPg4cOADgyUMnIyIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETljL6sFhISgpiYGBw/fhxt2rSBs7Oz3n5BEBAZGWnwfJcuXYK1tTWOHj2q99wkBwcH5OXlYdSoUejduzcWL16Ms2fPYvHixahfvz7Cw8MBABs3bsTevXuxfPlyuLq6YuXKlRg3bhwOHToEKysrg+YgIiIiKmd0OPrwww8BACkpKUhJSamw39hwdPnyZbRs2RKNGjWqsG/nzp2wsrJCdHQ05HI5PDw8kJmZia1btyI8PBwqlQrx8fGIiopCjx49AAAxMTEIDg5GUlISQkNDsX///mfOQURERKTL6HCUkZEhaQGXLl1C69atK92XkpKCwMBAyOX/KzMoKAhbtmxBbm4u7ty5g4KCAgQFBWn3Ozo6wtvbG8nJyQgNDa1yjqfPfBEREdGLzehwVJVHjx7BwcHB4PGXL1+Gi4sL/va3v+HmzZto3rw5Jk+ejODgYGRnZ8PT01NvfPkZprt372ofRNm4ceMKY8oXjVc1x/OEI7nc6CVbdZ6FhUzvT6oe9lEa7KM02EdpsI/SqA19NDocqVQq7NixA2fOnEFpaSlEUQQAiKKIwsJCXL16FefOnTN4rps3b8LGxgazZ8+Gra0tvvzyS4wbNw7bt29HcXFxhbcjsba2BgCUlJSgqKgIACodk5+fDwBVzlFdMpkAJye7ah9f1zk62pi7hD8F9lEa7KM02EdpsI/SMGcfjQ5H//rXv7B79254enriwYMHsLa2RoMGDXD58mWUlpZiypQpBs9lZWWF5ORkyOVybYDx8fHBtWvXEBcXB4VCAZVKpXdMeaCxtbWFQqEA8CRklX9ePsbG5klTq5qjujQaEUplYbWPr6ssLGRwdLSBUlkEtVpj7nLqLPZRGuyjNNhHabCP0qjJPjo62hh0RsrocPSf//wHI0eOxNy5c7FlyxakpaVh3bp1uHfvHiIiIqDRGPeNVBZQPD098eOPP8LNzQ05OTl6+8pfu7q6oqysTLutWbNmemO8vLwAoMo5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+Gn1B78GDB9o7w9q2bYsLFy4AeBI0xo8fj8OHDxs8V0ZGBjp27FjhrreLFy+idevWCAwMRGpqKtRqtXbfqVOn0LJlSzg7O8PLywv29vY4ffq0dr9SqURaWhoCAgIAoMo5iIiIiHQZHY4cHBy0l6latGiBrKwsPH78WO+1oTw9PdGmTRssXrwYKSkpuHbtGpYvX46zZ89i4sSJCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyWW5iIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1QICArBr1y4EBgbC3d0dNjY2SEpKQlhYGH755RfY29sbPJdMJsPmzZuxatUqTJ8+HUqlEt7e3ti+fTvatm0L4MnblSxduhRhYWFwcXHB7NmzERYWpp1j2rRpKCsrw8KFC1FcXIzAwEDExcVp1zA5OztXOQcRERFROUEsv93MQJcuXcLf//53tGvXDrt27cKqVauwc+dOtGnTBpcuXcLQoUOxcOHCmqq31lCrNXjwoMDcZZicXC6Dk5Md8vIKeE39ObCP0mAfpcE+SoN9lEZN9rFBA7uaWZDdtm1bHDlyBJcvXwYAzJo1C/b29vj555/Rs2dPjB8/3vhqiYiIiGqJaj0E0sXFBS4uLgCevF3IxIkTJS2KiIiIyFz4GE8iIiIiHQxHRERERDoYjoiIiIh0MBwRERER6TA6HKWnp//hPqVSiXnz5j1XQURERETmZHQ4GjlyZKUB6ciRI+jfvz+++uorSQojIiIiMgejw1H79u0xcuRI/PrrrwCAe/fuYfLkyZgxYwbc3d3x2WefSV4kERERkakY/ZyjzZs3Y8aMGRg1ahSGDRuGnTt3wsLCAosXL8aQIUNqokYiIiIikzH6zJGVlRViY2PxyiuvYMOGDWjfvj2OHDnCYERERER/CgadOUpOTq6wbdCgQbh58yYuXryI06dPo2HDhtp9gYGB0lVIREREZEIGhaNhw4ZBEATta1EUIQgCyt+zdsaMGdrXgiA88442IiIiotrMoHD08ccf13QdRERERLWCQeGoS5cuNV0HERERUa1g9N1qAHD27FmcOXMGpaWl2ktroiiisLAQqamp2L9/v6RFEhEREZmK0eFoz549WLJkiTYU6ZLJZOjevbskhRERERGZg9G38u/evRvdu3fH6dOnMWbMGAwePBhnz57FunXrYG1tjTfeeKMm6iQiIiIyCaPD0e3btxEREYF69erB19cXqampUCgU6NevHyZMmMDF20RERFSnGR2OLC0toVAoAAAtWrRAZmYmSktLAQCdOnXCzZs3JS2QiIiIyJSMDkft2rXD8ePHAQDNmzeHRqPB2bNnAQDZ2dmSFkdERERkakYvyB41ahSmTJmC/Px8LF++HL169cLs2bPRr18/fPXVV+jcuXNN1ElERERkEkafOerduzc2b96M1q1bAwDef/99tGzZEnv37kWrVq3w3nvvSV4kERERkalU6zlHISEhCAkJAQA4OTkhPj5eypqIiIiIzKZa4QgAvv/+e/z3v/9FTk4OZs6cifT0dLRv3x5NmjSRsj4iIiIikzI6HBUVFSEyMhL//e9/YW9vj4KCAowdOxaffvop0tLSsHv3brRp06YmaiUiIiKqcUavOVqzZg1+/fVX7NixAz/99JP2Sdn/+te/4OrqinXr1kleJBEREZGpGB2Ojhw5gpkzZyIoKAiCIGi3u7i4YNKkSUhNTZW0QCIiIiJTMjocKZXKP1xXVK9ePRQWFj53UURERETmYnQ4atOmDb766qtK93377bdcb0RERER1mtELsidNmoQpU6bg4cOHePXVVyEIApKTk5GYmIi9e/di9erVNVEnERERkUkIYvmKaiN89dVXWL16td7bhTg7O2P69OkYNGiQpAXWVmq1Bg8eFJi7DJOTy2VwcrJDXl4Byso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKj6olm1nnM0YMAADBgwANevX8fDhw/h6OiIVq1aQSYz+iodERERUa1S7YdAXrt2DSkpKcjPz4ezszNsbGz4AEgiIiKq84wORyUlJYiKikJSUhJ0r8jJZDIMGTIE7733nt4t/kRERER1idHXwVauXInvv/8ec+fOxXfffYfz58/j+PHjiIqKQmJiIj766KNqF3Pjxg107NgRiYmJ2m3p6emIiIiAv78/QkJCEBcXp3eMRqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBEREZWr1kMgZ8yYgREjRsDNzQ1WVlZo3LgxRo0ahalTp2Lfvn3VKqS0tBTvvvuu3nOS8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO2YjRs3Yu/evViyZAn27dsHQRAwbtw4qFQqg+cgIiIiKmf0ZbXCwkK0atWq0n1eXl7Iy8urViHr16+HnZ2d3rb9+/fDysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0NrXIOIqqbRFHEo0IVVKKAkiIVFJYWvKRPRJIwOhz169cPu3fvRvfu3SvcnfbFF1/g1VdfNbqI5ORk7Nu3DwcPHkRISIh2e0pKCgIDAyGX/6/MoKAgbNmyBbm5ubhz5w4KCgoQFBSk3e/o6Ahvb28kJycjNDS0yjmcnZ2NrpeIzKewuBQnL2TjaOpt3H9YpN3uUt8GvTu7o5uvG2wVlmaskIjqOqPDka+vL9atW4fQ0FCEhoaiUaNGePjwIb799lucP38eI0aMwIcffggAEAQBkZGRz5xPqVRi9uzZWLhwIRo3bqy3Lzs7G56ennrbGjVqBAC4e/eu9jlLTx/XqFEjZGVlGTTH84QjufzFe3RB+fMhDHlOBP0x9rF6zl/LxfrPzqOkVI2nzxH9/rAInx67gsQT1zF1YAd08OA/fAzF30dpsI/SqA19NDocffDBBwCehJryEKRr+/bt2s8NCUfR0dHw9/fHgAEDKuwrLi6GlZWV3jZra2sAT+6aKyp68q/Gysbk5+cbNEd1yWQCnJzsqh74J+XoaGPuEv4U2EfD/ZyRgzV7z0LEk7tkn356bflrVZkaa/aexaKxQejk1cikNdZ1/H2UBvsoDXP20ehwlJGRIdkXP3jwIFJSUv7wvdoUCoV2YXW58kBja2sLhUIBAFCpVNrPy8fY2NgYNEd1aTQilMoX7012LSxkcHS0gVJZBLWaT4CtLvbROAXFpVi24wxEUawQip725AkjIpbtOIO173SHHS+xVYm/j9JgH6VRk310dLSpuSdkSyUhIQG5ubl664wAYNGiRYiLi8Nf/vIX5OTk6O0rf+3q6oqysjLttmbNmumN8fLyAgC4ubk9c47n8SI/Hl6t1rzQ379U2EfDnPjlLkpK1QaPFwGUlKpx4uxd9AloWnOF/cnw91Ea7KM0zNlHs4ajVatWobi4WG9b3759MW3aNPTv3x9ff/019u7dC7VaDQsLCwDAqVOn0LJlSzg7O8PBwQH29vY4ffq0NhwplUqkpaUhIiICABAYGPjMOYiodhNFEUdTbxt9nADgaMpt9O7szrvYiMgoZl015urqiubNm+t9AE/exLZJkyYIDw/H48ePsWDBAly9ehWJiYnYuXMnJkyYAODJWqOIiAisWrUKx44dQ0ZGBmbMmAE3Nzf06dMHAKqcg4hqt8dFpXp3pRlKBHD/YREKisukL4qI/tTMeuaoKs7Ozti2bRuWLl2KsLAwuLi4YPbs2QgLC9OOmTZtGsrKyrBw4UIUFxcjMDAQcXFx2kXYhsxBRLVXicrwy2mVKS4pg70N1x0RkeEEUfcN0shgarUGDx4UmLsMk5PLZXByskNeXgGvqT8H9tFwjwpVeCf2x2ofH/tOMMNRFfj7KA32URo12ccGDewMWpDNhzEQUa1mb2MJl/o2FZ5rVBUBTx4Maaeo1SfIiagWMuj/Gl5eXkYtaExPT692QUREugRBQO/O7vj02BWjjhMB9A7gYmwiMp5B4SgyMlL7P5iSkhJs374dLVq0QL9+/eDi4qJ9Qvbly5cxadKkGi2YiF483XzdkHjiOlSl6iqfcwQAggBYyS3Qzcetxmsjoj8fg8LR1KlTtZ/Pnz8fISEhWL9+vd6/yCZOnIioqCj8+uuv0ldJRC80W4UlIsN8sPbAOUCs+HRsXcL//4h8y4fvsUZE1WL0mqMjR45gyJAhlZ6qfvPNN/HDDz9IUhgRkS6fVs6YPsgPVpZPnlf29P+Byl9bWVpg+mA/+LTkc8yIqHqMXqloZ2eHmzdvIjg4uMK+tLQ01KtXT5LCiIie5tPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJ6DkY/X+Q0NBQrFmzBnK5HD179kSDBg2Qm5uLb775Bhs2bMC4ceNqok4iIgBPLrH1CWiK3p3dUVyqhrWNNUqKSqCwtODiayKShNHhaNasWcjKysLixYvx/vvva7eLoojBgwcjMjJS0gKJiCojCAIcbK3g5GSLvDyRz5UhIskYHY6srKwQGxuLK1euICUlBUqlEk5OTggKCtJ781ciIiKiuqjaF+bbtGmjfcf7pk2bat/UlYiIiKguq9YTsk+fPo1BgwahS5cuGDBgAK5cuYJZs2ZhxYoVUtdHREREZFJGh6NTp05hzJgxUCgUePfdd1H+1mze3t74+OOPsX37dsmLJCIiIjIVo8PR2rVr0atXL+zatQsjRozQhqPx48dj7NixOHDggORFEhEREZmK0eEoPT0d4eHhAFDhttlu3brhzp070lRGREREZAZGhyMHBwfcv3+/0n1ZWVlwcHB47qKIiIiIzMXocNSrVy/ExMTgwoUL2m2CICA7OxubN29GSEiIlPURERERmVS1HgJ57tw5DB48GA0bNgQAzJw5E9nZ2WjcuDFmzpwpeZFEREREpmJ0OKpXrx4OHDiAgwcP4qeffsLDhw/h4OCAYcOG4a233oKNjU1N1ElERERkEkaHo+TkZHh7e2Pw4MEYPHiw3j6lUolvv/0WoaGhkhVIREREZEpGrzkaPnw4rl27Vum+tLQ0zJs377mLIiIiIjIXg84czZkzB1lZWQCevMFsdHQ07O3tK4y7efOmdh0SERERUV1k0Jmjfv36QRRF7QMfAWhfl3/IZDL4+/tj+fLlNVYsERERUU0z6MxRz5490bNnTwDAsGHDEB0dDQ8PjxotjIiIiMgcjF5ztGvXrmcGoz9aj0RERERUFxh9t1p+fj5Wr16N5ORklJaWai+1iaKIwsJC5OfnIz09XfJCiYiIiEzB6DNHy5YtQ0JCAlq0aAELCws4ODjA19cXpaWlUCqVeP/992uiTiIiIiKTMDoc/fDDD5gyZQo2bdqEt99+G25ubli7di2++eYbtG3bFlevXq2JOomIiIhMwuhwpFQq0blzZwBAmzZtcPHiRQCAnZ0dRo8eje+++07SAomIiIhMyehw5OTkhEePHgEAmjdvjtzcXOTl5QEAXF1dce/ePWkrJCIiIjIho8PRyy+/jM2bN+P27dtwd3dH/fr1kZiYCAA4fvw4nJycJC+SiIiIyFSMDkfvvPMOcnNzMXfuXAiCgPHjx2PlypXo0qULduzYgfDw8Jqok4iIiMgkjL6Vv0mTJjh8+DBu3rwJABg1ahQaNmyIn3/+GR06dEBYWJjUNRIRERGZjNHhaOLEiRg+fDi6du2q3TZgwAAMGDBA0sKIiIiIzMHoy2rJycmwsLCoiVqIiIiIzM7ocNStWzccOHAAJSUlkhSQm5uLqKgoBAUFoWPHjhg/frzes5LS09MREREBf39/hISEIC4uTu94jUaD2NhYBAcHw8/PD6NHj0ZmZqbemKrmICIiIipn9GU1a2trHDlyBElJSXB3d4ezs7PefkEQsHPnToPnmzRpEmQyGbZu3QpbW1usW7cOI0eORFJSEoqLizFq1Cj07t0bixcvxtmzZ7F48WLUr19fu/B748aN2Lt3L5YvXw5XV1esXLkS48aNw6FDh2BlZYW8vLwq5yAiIiIqZ3Q4ys7ORseOHbWvy99b7Y9eP0teXh7c3d0xadIktGnTBgAwefJkvPnmm7hy5QpOnToFKysrREdHQy6Xw8PDA5mZmdi6dSvCw8OhUqkQHx+PqKgo9OjRAwAQExOD4OBgJCUlITQ0FPv373/mHERERES6jA5Hu3btkuyLOzk5Yc2aNdrXv//+O+Li4uDm5obWrVtj/fr1CAwMhFz+vzKDgoKwZcsW5Obm4s6dOygoKEBQUJB2v6OjI7y9vZGcnIzQ0FCkpKQ8c46nz3wRERHRi83ocFRT/vGPf2jP8mzatAm2trbIzs6Gp6en3rhGjRoBAO7evYvs7GwAQOPGjSuMycrKAoAq53iecCSXG71kq86zsJDp/UnVwz5Kg32UBvsoDfZRGrWhj0aHIy8vLwiCUOk+QRBga2uLZs2aYcSIEXjzzTcNnnfEiBEYMmQIPv30U0RGRuKTTz5BcXExrKys9MZZW1sDAEpKSlBUVAQAlY7Jz88HgCrnqC6ZTICTk121j6/rHB1tzF3CnwL7KA32URrsozTYR2mYs49Gh6O5c+dizZo1aNasGV577TW4uLjg999/x9GjR3Hp0iW8+eabuH//PubNmwdLS0v079/foHlbt24NAPjggw9w9uxZ7N69GwqFAiqVSm9ceaCxtbWFQqEAAKhUKu3n5WNsbJ40tao5qkujEaFUFlb7+LrKwkIGR0cbKJVFUKs15i6nzmIfpcE+SoN9lAb7KI2a7KOjo41BZ6SMDkfnz59H165dsWnTJr0zSJGRkXjnnXfw6NEjxMbG4p///Ce2b9/+zHCUm5uLU6dO4a9//av22UkymQweHh7IycmBm5sbcnJy9I4pf+3q6oqysjLttmbNmumN8fLyAoAq53geZWUv7i+/Wq15ob9/qbCP0mAfpcE+SoN9lIY5+2j0Bb3jx49j6NChlV5aGzhwII4ePQoAeOWVV/SeV1SZnJwczJo1C2fOnNFuKy0tRVpaGjw8PBAYGIjU1FSo1Wrt/lOnTqFly5ZwdnaGl5cX7O3tcfr0ae1+pVKJtLQ0BAQEAECVcxARERHpMjoc2djYaBdCP+3u3buwtLQE8OThjOWf/xEvLy90794dixcvRkpKCi5fvow5c+ZAqVRi5MiRCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyVqjiIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1Xr37o01a9bA2dkZvXv31m7/9ttvERMTg169ekGlUuGzzz5Du3btnjmXIAhYu3YtVq9ejenTp+PRo0cICAjAnj178Je//AUAsG3bNixduhRhYWFwcXHB7Nmz9d7cdtq0aSgrK8PChQtRXFyMwMBAxMXFaRdhOzs7VzkHERERUTlBNOapjQAKCgowefJknD59GpaWlqhfvz7y8vKgVqvRtWtXxMTE4Mcff8TcuXOxbds2dOnSpaZqNyu1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLCrmQXZdnZ22LlzJ06dOoWffvoJeXl5cHNzQ5cuXbTrfPz9/fGf//wHbm5uxldOREREZEbVfgjkyy+/DB8fH+Tk5KBp06bau80AaC+JEREREdU11Xr85OnTpzFo0CB06dIFAwYMwJUrVzBr1iysWLFC6vqIiIiITMrocHTq1CmMGTMGCoUC7777rvaNZr29vfHxxx9j+/btkhdJREREZCpGh6O1a9eiV69e2LVrF0aMGKENR+PHj8fYsWNx4MAByYskIiIiMhWjw1F6ejrCw8MBoMKDILt164Y7d+5IUxkRERGRGRgdjhwcHHD//v1K92VlZcHBweG5iyIiIiIyF6PDUa9evRATE4MLFy5otwmCgOzsbGzevBkhISFS1kdERERkUkbfyj9r1iycO3cOgwcPRsOGDQEAM2fORHZ2Nho3boyZM2dKXiQRERGRqRgdjurVq4cDBw7g4MGD+Omnn/Dw4UM4ODhg2LBheOutt2BjY1MTdRIRERGZhNHhKDk5Gd7e3hg8eDAGDx6st0+pVOLbb79FaGioZAUSERERmZLRa46GDx+Oa9euVbovLS0N8+bNe+6iiIiIiMzFoDNHc+bMQVZWFgBAFEVER0fD3t6+wribN29q1yERERER1UUGnTnq168fRFHUPvARgPZ1+YdMJoO/vz+WL19eY8USERER1TSDzhz17NkTPXv2BAAMGzYM0dHR8PDwqNHCiIiIiMzB6AXZu3btqok6iIiIiGoFo8NRUVERNm/ejOPHj6OoqAgajUZvvyAIOHr0qGQFEhEREZmS0eFo6dKlSEhIQJcuXdCuXTvIZEbf8EZERERUaxkdjv7zn/9gxowZGD9+fE3UQ0RERGRWRp/2KSsrQ4cOHWqiFiIiIiKzMzocde/eHSdOnKiJWoiIiIjMzujLav3798eiRYvw4MED+Pn5Vfpeav/3f/8nRW1EREREJieIuk92NICXl9ezJxQEpKenP1dRdYFarcGDBwXmLsPk5HIZnJzskJdXgLIyTdUHUKXYR2mwj9JgH6XBPkqjJvvYoIEdLCyqvmhm9JmjY8eOVasgIiIiorrA6HDUpEmTmqiDiIiIqFYwKBzNmzcPkydPRtOmTTFv3rxnjhUEAcuWLZOkOCIiIiJTMygcnT59GiNGjNB+/iyCIDx/VURERERmYlA4+vbbbyv9nIiIiOjPhu/9QURERKSD4YiIiIhIB8MRERERkQ6GIyIiIiIdDEdEREREOhiOiIiIiHSYPRw9fPgQ7733Hl555RV06tQJQ4cORUpKinZ/eno6IiIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETlzB6OZs6ciXPnzmHNmjX47LPP0L59e4wZMwbXrl1DXl4eRo0ahRYtWiAhIQFTp07FunXrkJCQoD1+48aN2Lt3L5YsWYJ9+/ZBEASMGzcOKpUKAAyag4iIiKic0e+tJqXMzEycPHkSn376KTp16gQAWLBgAU6cOIFDhw5BoVDAysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0Nxf79+585BxEREZEus545cnJywkcffQQfHx/tNkEQIIoi8vPzkZKSgsDAQMjl/8twQUFBuHHjBnJzc5GRkYGCggIEBQVp9zs6OsLb2xvJyckAUOUcRERERLrMeubI0dFRe8an3JEjR/Dbb7+he/fuiImJgaenp97+Ro0aAQDu3r2L7OxsAEDjxo0rjMnKygIAZGdnP3MOZ2fnatcvl5v9qqTJWVjI9P6k6mEfpcE+SoN9lAb7KI3a0EezhqOnpaamYv78+ejVqxd69uyJ5cuXw8rKSm+MtbU1AKCkpARFRUUAUOmY/Px8AEBxcfEz56gumUyAk5NdtY+v6xwdbcxdwp8C+ygN9lEa7KM02EdpmLOPtSYcHT16FO+++y78/PywZs0aAIBCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbGxuD5qgujUaEUllY7ePrKgsLGRwdbaBUFkGt1pi7nDqLfZQG+ygN9lEa7KM0arKPjo42Bp2RqhXhaPfu3Vi6dCn69OmDVatWac/0uLm5IScnR29s+WtXV1eUlZVptzVr1kxvjJeXl0FzPI+yshf3l1+t1rzQ379U2EdpsI/SYB+lwT5Kw5x9NPuF0U8++QQffPAB/v73v2Pt2rV6l8ACAwORmpoKtVqt3Xbq1Cm0bNkSzs7O8PLygr29PU6fPq3dr1QqkZaWhoCAAIPmICIiItJl1nB048YNLFu2DH369MGECROQm5uL+/fv4/79+3j06BHCw8Px+PFjLFiwAFevXkViYiJ27tyJCRMmAHiy1igiIgKrVq3CsWPHkJGRgRkzZsDNzQ19+vQBgCrnICIiItJl1stq//73v1FaWoqkpCQkJSXp7QsLC8OKFSuwbds2LF26FGFhYXBxccHs2bMRFhamHTdt2jSUlZVh4cKFKC4uRmBgIOLi4rRnoJydnaucg4iIiKicIIqiaO4i6iK1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLAzaEG22dccEREREdUmDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIR614bzWqG0RRxKNCFVSigJIiFRSWFhAEwdxlERERSYrhiKpUWFyKkxeycTT1Nu4/LNJud6lvg96d3dHN1w22CkszVkhERCQdhiN6povXc7Hh84soKVXj6XNEvz8swqfHriDxxHVEhvnApxXfyJeIiOo+rjmiP3Txei7WHjgHVakaAPD0+8yUv1aVqrH2wDlcvJ5r0vqIiIhqAsMRVaqwuBQbPr8IUawYip4mAhBFYMPnF1FYXGqK8oiIiGoMwxFV6uSFbJSUqqsMRuVEACWlapy8mF2TZREREdU4hiOqQBRFHE29bfRxAoCjKbchioZGKiIiotqH4YgqeFxUqndXmqFEAPcfFqGguEz6ooiIiEyE4YgqKFGpn+v44hKGIyIiqrsYjqgCayuL5zpeYc0nRBARUd3FcEQV2NtYwqW+TYXnGlVFwJMHQ9opGI6IiKjuYjiiCgRBQO/O7gbfqVZOBNA7wJ1vKUJERHUawxFVqpuvG6wtLQw+eyQIgLWlBbr5uNVoXURERDWN4YgqZauwRGSYDwQBVQYk4f9/RL7lw/dYIyKiOo/hiP6QTytnTB/kByvLJwu0nw5J5a+tLC0wfbAffFryvdWIiKju48pZeiafVs5YHdkVJy9m42jKbb3nHzWsb4PeAe7o5tMYtlyETUREfxL8G42qZKuwRJ+Apujd2R3FpWpY21ijpKgECksLLr4mIqI/HV5WI4MJggAHWyu4NrCFg60VgxEREf0pMRwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItJRq8LRxo0bMWzYML1t6enpiIiIgL+/P0JCQhAXF6e3X6PRIDY2FsHBwfDz88Po0aORmZlp1BxERERE5WpNONqxYwdiY2P1tuXl5WHUqFFo0aIFEhISMHXqVKxbtw4JCQnaMRs3bsTevXuxZMkS7Nu3D4IgYNy4cVCpVAbPQURERFRObu4C7t27hwULFiA1NRUtW7bU27d//35YWVkhOjoacrkcHh4eyMzMxNatWxEeHg6VSoX4+HhERUWhR48eAICYmBgEBwcjKSkJoaGhVc5BREREpMvsZ45+/fVX1KtXD19++SX8/Pz09qWkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vZGcnKyQXMQERER6TL7maOePXuiZ8+ele7Lzs6Gp6en3rZGjRoBAO7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcul5s9W5qchYVM70+qHvZRGuyjNNhHabCP0qgNfTR7OHqW4uJiWFlZ6W2ztrYGAJSUlKCoqAgAKh2Tn59v0BzVJZMJcHKyq/bxdZ2jo425S/hTYB+lwT5Kg32UBvsoDXP2sVaHI4VCoV1YXa480Nja2kKhUAAAVCqV9vPyMTY2NgbNUV0ajQilsrDax9dVFhYyODraQKksglqtMXc5dRb7KA32URrsozTYR2nUZB8dHW0MOiNVq8ORm5sbcnJy9LaVv3Z1dUVZWZl2W7NmzfTGeHl5GTTH8ygre3F/+dVqzQv9/UuFfZQG+ygN9lEa7KM0zNnHWn1hNDAwEKmpqVCr1dptp06dQsuWLeHs7AwvLy/Y29vj9OnT2v1KpRJpaWkICAgwaI7aQhRFPCpU4feHRXhUqIIoiuYuiYiI6IVUq88chYeHY9u2bViwYAHGjh2L8+fPY+fOnVi8eDGAJ2uNIiIisGrVKjRo0ABNmjTBypUr4ebmhj59+hg0h7kVFpfi5IVsHE29jfsPi7TbXerboHdnd3TzdYOtwtKMFRIREb1YanU4cnZ2xrZt27B06VKEhYXBxcUFs2fPRlhYmHbMtGnTUFZWhoULF6K4uBiBgYGIi4vTLsI2ZA5zuXg9Fxs+v4iSUjWEp/b9/rAInx67gsQT1xEZ5gOfVrXnLBcREdGfmSDy+k21qNUaPHhQUO3jL17PxdoD5yCKwLN+AAIAQQCmD/KrFQFJLpfByckOeXkFvKb+HNhHabCP0mAfpcE+SqMm+9iggZ1BC7Jr9ZqjP6vC4lJs+PxilcEIeLJfFIENn19EYXGpKcojIiJ6oTEcmcHJC9koKVVXGYzKiQBKStU4eTG7JssiIiIiMByZnCiKOJp62+jjBABHU27zLjYiIqIaxnBkYo+LSvXuSjOUCOD+wyIUFJdJXxQRERFpMRyZWIlKXfWgZyguYTgiIiKqSQxHJmZtZfFcxyusa/XTF4iIiOo8hiMTs7exhEt9mwrPNaqKgCcPhrRTMBwRERHVJIYjExMEAb07uxt8p1o5EUDvAHcIgrGxioiIiIzBcGQG3XzdYG1pYfDZI0EArC0t0M3HrUbrIiIiIoYjs7BVWCIyzAeCgCoDkvD/PyLf8uF7rBEREZkAw5GZ+LRyxvRBfrCyfLJA++mQVP7aytIC0wf7wael+d86hIiI6EXA1b1m5NPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJiIhMhn/rmpmtwhJ9Apqid2d3FBSXobikDAprOewUci6+JiIiMgOGo1pCEATY21jC3obrioiIiMyJa46IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDkEURWPfA5UAiKIIjebFbJ2FhQxqtcbcZdR57KM02EdpsI/SYB+lUVN9lMkEg54hyHBEREREpIOX1YiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEVXLxo0bMWzYMHOXUSc9fPgQ7733Hl555RV06tQJQ4cORUpKirnLqnNyc3MRFRWFoKAgdOzYEePHj8fVq1fNXVaddePGDXTs2BGJiYnmLqVOunPnDtq2bVvh48CBA+Yurc45ePAg+vfvD19fX4SGhuLIkSMmr0Fu8q9Idd6OHTsQGxuLwMBAc5dSJ82cORO5ublYs2YNGjRogE8++QRjxoxBYmIiPDw8zF1enTFp0iTIZDJs3boVtra2WLduHUaOHImkpCTY2NiYu7w6pbS0FO+++y4KCwvNXUqddenSJVhbW+Po0aMQBEG73cHBwYxV1T1ffPEF5s+fjzlz5iAkJASHDh3CzJkz4ebmho4dO5qsDp45IoPdu3cPY8eOxbp169CyZUtzl1MnZWZm4uTJk1i0aBECAgLQqlUrLFiwAK6urjh06JC5y6sz8vLy4O7ujg8++AC+vr7w8PDA5MmTcf/+fVy5csXc5dU569evh52dnbnLqNMuX76Mli1bolGjRnBxcdF+KBQKc5dWZ4iiiHXr1mHEiBEYMWIEmjdvjsjISHTt2hVnzpwxaS08c0QG+/XXX1GvXj18+eWX2LBhA+7cuWPukuocJycnfPTRR/Dx8dFuEwQBoigiPz/fjJXVLU5OTlizZo329e+//464uDi4ubmhdevWZqys7klOTsa+fftw8OBBhISEmLucOuvSpUv83XtO169fx507dzBgwAC97XFxcSavheGIDNazZ0/07NnT3GXUaY6OjujRo4fetiNHjuC3335D9+7dzVRV3faPf/wD+/fvh5WVFTZt2gRbW1tzl1RnKJVKzJ49GwsXLkTjxo3NXU6ddvnyZbi4uOBvf/sbbt68iebNm2Py5MkIDg42d2l1xs2bNwEAhYWFGDNmDNLS0uDu7o5JkyaZ/O8eXlYjMqPU1FTMnz8fvXr1YvCsphEjRiAhIQFvvPEGIiMj8euvv5q7pDojOjoa/v7+Ff6lTsZRqVS4efMmHj9+jOnTp+Ojjz6Cr68vxo0bh1OnTpm7vDrj8ePHAIA5c+bg9ddfR3x8PLp164bJkyebvI88c0RkJkePHsW7774LPz8/vUtEZJzySxkffPABzp49i927d2P58uVmrqr2O3jwIFJSUvDVV1+Zu5Q6z8rKCsnJyZDL5bCysgIA+Pj44Nq1a4iLi8PLL79s5grrBktLSwDAmDFjEBYWBgBo164d0tLSsH37dpP2kWeOiMxg9+7dmDp1Kl555RVs3bqVizaNlJubi0OHDkGtVmu3yWQyeHh4ICcnx4yV1R0JCQnIzc1FSEgIOnbsqL0TaNGiRQgNDTVzdXWPra2tNhiV8/T0xL1798xUUd3j5uYG4EnfdLVu3Rq3b982aS08c0RkYp988gk++OADDBs2DPPnz4dMxn+jGCsnJwezZs2Cs7Oz9l+TpaWlSEtL4+VJA61atQrFxcV62/r27Ytp06ahf//+ZqqqbsrIyMDQoUOxdetWBAQEaLdfvHiRi7SN4O3tDTs7O5w7d06vj5cvX0azZs1MWgvDEZEJ3bhxA8uWLUOfPn0wYcIE5ObmavcpFAo+E8VAXl5e6N69OxYvXowlS5bA0dERmzdvhlKpxMiRI81dXp3g6upa6XZnZ2c0adLExNXUbZ6enmjTpg0WL16MRYsWwcnJCfv378fZs2fx2Wefmbu8OkOhUGDs2LHYsGEDXF1d0aFDB3z99dc4efIkduzYYdJaGI6ITOjf//43SktLkZSUhKSkJL19YWFhWLFihZkqq1sEQcDatWuxevVqTJ8+HY8ePUJAQAD27NmDv/zlL+Yuj14wMpkMmzdvxqpVqzB9+nQolUp4e3tj+/btaNu2rbnLq1MmT54MGxsbxMTE4N69e/Dw8MD69evx0ksvmbQOQRRF0aRfkYiIiKgW42IHIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiOhPjk/rMA0p+8yfGZF5MRwR1RI9e/bE3LlzJZ3z6tWrGDp0qKRzUkWbNm1CXFycJHNV9jNr27Yt1q9fL8n8z3L79m20bdtW+5GZmVntuRITE7Xz3Lhxo9IxJ06c0I4BgAMHDmhf821gyJwYjoj+xI4cOYJffvnF3GX86a1duxZFRUWSzFXZz2zfvn0YNGiQJPMbYtKkSdi3bx8aN2783HPJZDIcOXKk0n2HDx/We92rVy/s27cPPXr0eO6vS/Q8GI6IiGo5f39/7TuWm0KzZs3g7+9f4V3mq6NTp06VhiOVSoWjR4+iXbt22m0NGjSAv78/GjRo8Nxfl+h5MBwR1VK3b9/G7Nmz0b17d7Rv3x4vv/wyZs+ejby8PO0YURSxZ88ehIaGokOHDujTpw+2bt0KURSxfv16fPjhhwD0L8uUlJRgw4YNeO211+Dr64u+ffvio48+gkaj0c5769YtTJo0CS+99BL8/PwwZMgQfP/993r1Xb58GRMmTECnTp3QqVMnREZG4tatW1V+XydPnsTf//53dOzYEd27d8d7772H/Px87f6bN29i2rRp6NatG/z9/TFs2DCkpqbq9aVt27Y4cuQIpk2bho4dOyIwMBALFixAQUGBQb0pl5KSgoiICPj5+aFLly6YM2cOHjx4oN2fmJgIb29vnDt3DkOGDIGvry9CQkKwdetW7ZjyS0Iffvih9vP169ejT58++PDDD/HSSy+hd+/eyMvLQ3FxMVavXo2+ffvCx8cHnTp1wqhRo5Cenq49rrKf2dOX1XJycjBv3jz06NEDHTp0wMCBA3Hs2DG9Prdt2xZ79uzBggUL0KVLF3Ts2BHTpk3D77//XuXPSNf69evx2muv4ejRo3j99dfh6+uLN998E7/88gvOnj2LQYMGoUOHDnj99ddx6tSpCsf3798fly9fxrVr1/S2nzhxAoIg4JVXXjGqHiJTYDgiqoWKioowfPhwXLt2DYsWLUJcXBwiIiJw6NAhrFmzRjtuzZo1WLp0KXr06IFNmzZh0KBBiImJwcaNGzFo0CAMHDgQwP8uy4iiiIkTJ2Lbtm0YOHAgNm/ejNdeew1r167FokWLAAAajQYTJkxAYWEh/vWvf2Hjxo2oX78+Jk+erF2DcuPGDbz99tvIzc3FihUrsHTpUty6dQtDhw5Fbm7uH35f33//PcaOHYv69esjJiYGUVFR+PbbbzFt2jQAT9bbvPXWW7h16xYWLlyIVatWQRAEjBgxAmfOnNGba9GiRWjSpAk2btyIsWPHIiEhAZs3bzaoNwCQnJyMkSNHQqFQYO3atZg/fz7OnDmD4cOHo7i4WDuPRqPB9OnT0b9/f3z00Ufo3LkzVq1ahR9++EHbWwAYOHCg9nMAuHv3LpKSkrBmzRpMnz4dTk5OmD17Nj777DOMHz8e8fHxmDt3Li5fvowZM2ZAFMVKf2ZP+/333zFw4ECcOXMGM2bMwPr169GkSRNERkbiyy+/1BsbExMDjUaDNWvWYPbs2fjuu++wbNmyP/z5/JHs7GwsX74cEydOxNq1a5Gfn49p06Zh5syZGDx4MNasWQONRoMZM2bo9Q4AunXrhnr16lU4e3T48GH06dMHlpaWRtdDVONEIqoVXn31VXHOnDmiKIpiWlqaOHToUDEzM1NvzIQJE8S+ffuKoiiK+fn5Yvv27cVly5bpjVm+fLk4atQoURRFMTY2VvT09NTu++6770RPT0/xiy++0Dtmw4YNoqenp3jlyhUxJyenwhilUikuW7ZMvHTpkiiKojhz5kzx5ZdfFh89eqQdk5eXJ3bu3FlcsWLFH36Pb731lvh///d/etu++eYbsW/fvmJ2drb4zjvviF26dBGVSqV2f2lpqdivXz9x4MCBoiiK4q1bt0RPT0/x3Xff1Ztn2LBh4uuvv25wb4YMGSK+/vrrYllZmXb/9evXxXbt2om7d+8WRVEUExISRE9PT3H//v3aMSUlJaKvr6/4/vvva7d5enqKsbGx2tflfT958qTecaNHjxa//vprvZri4+NFT09P8d69e3rH6tKd/1//+pfYvn178bffftMbM2LECLFbt26iWq3WHjN06FC9MXPnzhX9/f3FP1Le24SEhArfy/fff6/dtmXLFtHT01M8cOCAdts333wjenp6imlpaXq9u3Xrljhv3jztz0YURbGwsFD09/cXT548Wen3O2fOHPHVV1/9wzqJahrPHBHVQu3atcMnn3wCd3d33Lp1Cz/88APi4+Nx/fp1lJaWAgDOnj2L0tJS9OnTR+/YuXPnIj4+vtJ5z5w5AwsLC/Tv319v+xtvvAEAOH36NBo2bIjWrVvjH//4B+bOnYvDhw9DFEXMmzcPnp6eAICffvoJL730EhQKBcrKylBWVgZ7e3sEBATgv//9b6Vfu7i4GL/++it69+6tt71fv37497//DVdXV5w5cwavvvoqHBwctPvlcjlCQ0Nx4cIFvctm/v7+evO4ubmhsLDQoN4UFRXh3Llz6NGjB0RR1H4PTZs2hYeHB06ePKl3XMeOHbWfW1lZoUGDBtqv9Szl/So/Li4uDv3790dOTg6Sk5Oxb98+HD9+HAC0P9eqnDlzBh07dkTTpk31tr/xxhu4f/8+rl+/rt1WWY+qu3C8U6dO2s8bNmxYYf769esDAJRKZYVjn760dvz4cdja2uKll16qVi1ENU1u7gKIqHLbt2/Hli1bkJeXh4YNG6J9+/awsbHBo0ePAAAPHz4EAKMWr+bn58PJyQlyuf5/+i4uLgCAR48eQRAExMfHY9OmTUhKSsLnn38OS0tL9O7dG9HR0ahfvz4ePnyIw4cPV7jb6Fn15OfnQxRFODs7P7O+8r94dTVs2BCiKOLx48fabTY2NnpjZDKZdj1RVb1RKpXQaDTYunWr3vqhctbW1nqvFQrFH36tZ3n6e/nhhx+wbNkyXL9+HXZ2dmjbti3s7OwAGP5so/z8fLi7u//h19INJ8/qkbHs7e0rbHu6L38kKCgITk5OOHLkCKZMmYLDhw/jtddeg4WFRbVqIappDEdEtdBXX32FFStWYNasWRg4cKD2L/l33nkHFy5cAAA4OjoCAB48eIBWrVppj83KykJmZiY6d+5cYd569eohLy8PZWVlegEpJycHAODk5AQAcHV1RXR0NBYtWoSMjAx888032Lp1K+rVq4fFixfDwcEBXbt2xahRoyp8jaeDVzl7e3sIgqC34Bl4ctfSqVOn0KFDB9SrV6/SBcP379/X1lde67NU1RsfHx8IgoCRI0ciNDS0wvFPhwop/Pbbb4iMjESvXr2wZcsWNGvWDACwZ88e7folQxjSo9pGLpejb9+++OabbzBy5EicOHECO3bsMHdZRH+Il9WIaqHU1FQ4ODhg/Pjx2mBUUFCA1NRU7V1lHTp0gKWlZYW7lHbu3Il33nkHgiBAJtP/T7xLly5Qq9UVzviUL+Tt3LkzfvnlF3Tt2hXnz5+HIAho164dZsyYAU9PT2RnZ2vnuXr1Ktq1awdfX1/4+vrCx8cHO3bsQFJSUqXfk52dHdq1a1eh3h9//BHjx49HdnY2AgMDcfz4ce3ZMQBQq9X4+uuv4evra/Ct5VX1RqFQwNvbG9evX9fW7+vrizZt2uDDDz/E6dOnDfo65Z7uc2UuXryIkpISTJgwQRuMAGiDUfkZnarmCgwMxC+//FLhzsAvv/wSLi4uaN68uVG1m0r//v1x5coVbNu2DQ0bNtS7VElU2/DMEVEt1KFDB3z66adYsWIFXn31VeTk5CAuLg6///476tWrB+DJJaPhw4dj586dsLKyQlBQEC5cuIDdu3dj5syZkMvl2jMohw4dgp+fH1555RW89NJLWLRoEXJycuDt7Y0zZ85g69atCAsLQ+vWrVFSUgKFQoHZs2dj6tSpaNiwIf773/8iPT0dw4cPBwBMnjwZb7/9NiZMmIChQ4fC2toa+/btw9GjRxEbG/uH39e0adMwadIkTJ8+HW+99RYePHiA1atX49VXX0W7du0wZcoUnDhxAsOHD8f48eNhZWWF3bt349atW9i2bZvB/TOkNzNnzsT48eMxa9YsvPHGG1Cr1YiPj8e5c+cwadIko35ejo6O+OWXX5CcnIyAgIBKx7Rv3x5yuRwrV67E6NGjoVKpkJiYiO+++w4AtGuYnv6ZPb22aNSoUfjyyy8xatQoTJkyBU5OTjh48CB++uknLFu2zKCgZg5dunSBi4sLtm3bhpEjR0IQBHOXRPSHaud/RUQvuLCwMERGRuLIkSMYN24cYmNjERAQgPfffx8PHz7E1atXAQBRUVGYNWsWDh8+jPHjx+Pzzz/H/PnzMXr0aABA37594evri7lz5yIuLg6CIGDLli14++238fHHH2P8+PH45ptvMGPGDCxduhTAk/U28fHxaNOmDZYuXYoxY8bg2LFjeP/99/HWW28BALy8vLBnzx4IgoDZs2dj2rRpuH//PjZs2IC+ffv+4ff16quvYsuWLbh9+zYiIyOxZs0a/PWvf8Xq1asBAG3atMEnn3yChg0bYv78+YiKioIoivj444/RtWtXo3pYVW+6d++OuLg4ZGdnY9q0aZg9ezYsLCywffv2CguZqzJx4kRcuHAB48aNQ1ZWVqVjmjdvjtWrV+PevXuYNGkS3nvvPQDArl27IAgCUlJSAFT8mT3NxcUFn376KXx8fLB06VK88847yMrKwsaNGxEeHm5U3aYkk8nQr18/lJaWVnopk6g2EcTqrs4jIqI/ldu3b6NXr15Yvny5Ngibw9y5c3HmzBl8++23ZquBXmw8c0RERHp+++03nD17FiqVyqRf98GDBzh79myFRftEpsZwREREejZt2oQhQ4b84SXCmnLs2LFK36qGyNR4WY2IiIhIB88cEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREen4f227+pq/cmwKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot the calibration curve. \n", + "plt.plot(cal_curve['conc_mM'], cal_curve['amplitude'], 'o', markersize=10)\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can perform a simple regression on these data to get a calibration curve. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHECAYAAADf+usKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8AElEQVR4nO3dd1gUZ9fH8e/SQUBAUYzYYxd7L7FHHzUxMZaY2HtXVIoVRQXFghU1Khq7MbbEqE9sacYeSwwae6eoIEhfduf9w9d9QrCwuLCwns91kcDszPA7u8ge5r5nRqUoioIQQgghhIkyM3YAIYQQQojsJM2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs3OK4SEhNCzZ0+9t9u9ezft2rXDw8OD9u3bs3///mxIJ4QQQojMkmbnJdatW8fixYv13m7Pnj1MnDiRbt26sXfvXtq1a8fYsWM5d+5cNqQUQgghRGZYGDtAbhIZGcmkSZM4e/YspUqV0mtbRVFYtGgRvXv3pnfv3gAMHz6cP/74g1OnTlGjRo3siCyEEEKIN5AjO//w119/kT9/fr777juqVauW4fGjR4/SqVMnqlatSuvWrVm4cCGpqakA3Lx5kwcPHvDRRx+l22bNmjUMHjw4R/ILIYQQIiM5svMPLVq0oEWLFi997JdffmH06NFMmDCBRo0acffuXWbMmMGtW7dYtGgRt2/fBiAxMZH+/fsTFhaGu7s7Q4cOfeU+hRBCCJH95MhOJq1YsYLOnTvTvXt3ihcvTuPGjZk+fToHDhzg/v37xMfHA+Dj40OHDh0IDQ2lUaNGDBs2jOPHjxs5vRBCCPHukiM7mRQWFsbFixfZtWuXbpmiKADcuHEDS0tLAPr378+nn34KQMWKFQkLC2Pt2rU0aNAg50MLIYQQQpqdzNJqtQwYMEDXyPyTq6srV65cAaBcuXLpHnv//ff56aefciKiEEIIIV5ChrEyqWzZsty8eZMSJUroPiIjIwkKCiIhIYFKlSqRL18+Lly4kG67q1evUrx4cSOlFkIIIYQc2cmkgQMHMmbMGJYsWUKHDh2IiIhg8uTJvPfee7i6ugIwYMAAli1bRuHChalatSo//PADx44dY926dcYNL4QQQrzDpNnJpLZt2xIcHMzKlStZuXIl+fPnp3nz5nh5eenWGTZsGLa2tgQHBxMZGUmZMmVYsmQJ9erVM2JyIYQQ4t2mUl7MshVCCCGEMEEyZ0cIIYQQJk2aHSGEEEKYNGl2hBBCCGHSZIIyzy8OqNVmz9QlMzNVtu07N5D68j5Tr1Hqy/tMvUZTrw+yp0YzMxUqlSpT60qzA2i1CtHRCQbfr4WFGc7O+YiLSyQtTWvw/Rub1Jf3mXqNUl/eZ+o1mnp9kH01urjkw9w8c82ODGMJIYQQwqRJsyOEEEIIkybNjhBCCCFMmjQ7QgghhDBpMkFZD1qtFo0mTY/1VSQnm5OamoJGY3oz7aU+/ZibW2BmJn9fCCFETpNmJxMURSEuLpqkpHi9t3382Ayt1jRn2IPUpy9bW3scHV0yfbqkEEKItyfNTia8aHTs7Z2xsrLW643K3Fxlkkc9XpD6MkdRFFJTU4iPjwEgf/4Cb71PIYQQmSPNzhtotRpdo2Nv76j39hYWZiZ77QSQ+vRhZWUNQHx8DA4OzjKkJYQQOUR+276BRqMB/vdGJcTbePFzpM/cLyGEEG9HjuxkkqHmWCiKQnySmpRUDdZW5tjbWsr8jXeIvNZCCJHzpNnJIYnJao79GcGhs/d59DRJt9zVyZZWtdxp5OGGnY2lERMKIYQQpkmanRxw6eYTlu26RIpaw7//rn/8NIkth6+x85ebDP+0ClVKy8RVIYQQwpBkzk42u3jjCQu3XyBV/Xzuz7/P63nxdapaw8LtF7h080mO5hOGpSgK+/fvJSYm2thRhBBC/D9pdrJRYrKaJd9eRFEyNjn/pgCKAst2XSIxWZ0T8UQ2OH/+D2bNmkZycrKxowghhNFduRJGQIA/t27dMmoOaXay0bE/I0hRa97Y6LygAClqDccuRWRnLJGNFMV0rzkkhBCZpSgKW7duomfPbmzevJH9+/cbNY80O9lEURQOnb2v93Yq4NCZ+9nyptm4cW0OHjzAqFFDaNGiEd26fcJvv/3Cb7/9QvfunWjVqjHjxo3i6dOnum1u377F+PGjaN26CR07tmH69Mk8efJY9/izZ8+YNy+QTp3a07RpPT7+uA3z5gWSkvK/IxubN2+ga9eONG/egC5dPmbdutW6+tasWUnnzh+ly7lv3/c0blxb93Xnzh+xePF8evToQrt2LfnjjzMoisKmTV/TpUtHWrZsRJ8+X/Djj//7x/THH2do2rQef/xxhh49utCiRUMGD+7L3bt3+PrrNXz00Yf85z8tCA4OSvdcHzv2K/369dA9PytXhpCampruOfzuu12MGTOMFi0a8ckn/2HDhrW67zlq1BAAunT5mH37vn+bl0sIIfKkuLg4vLxGM3v2DNRqNc2bt6Rnz55GzSTNTjaJT1KnO+sqsxTg0dMkEpKz5zosixbNo1OnLmzYsI1SpUozffpkvv56DVOnziAoaCFhYZfYuHEdAI8fP2L48AG8915RVq1az5w5C0lIiGfIkP4kJT2vzd9/KmFhl5gxYw5bt+5i5EhP9u37nj17dgHw22+/sH59KF5eE9iyZRdDhozg66/XpGtMMmP37h2MHj2eBQuWUKVKVb76KoSdO7czZsx41q/fRpcunzNv3mx27tyu20aj0bBkyQJ8faeycuVaYmKiGTKkH3fu3Gbp0q8YPHg4O3Z8w++//wbAiRO/M2WKLx9//AkbNmxj3DhfDh8+yIwZU9NlCQlZxH/+04F16zbTvv3HrFy5jAsXzuHhUY1Zs4IAWLXqa1q2bJ2l10gIIfKqS5f+pHv3Thw69CMWFpaMHz+BxYtDcHBwMGouORsrm6Skat5q++SUNOxtDX8qetu2HWjWrCUAHTt24rfffmHQoGFUrFgZgLp163Hz5g0Adu36lgIFCjJ2rI9ue3//2bRv35KjRw/Rrt1H1K1bjypVqlO2bDkAihR5j507v+HGjWsAPHx4H2trK4oUKYqbmxtubm4ULFiIwoXd9Mpdv34j6tSpB0BSUhLbtm1mypTpNGrUBICiRd2JiAhn8+b1dOrURbfdgAFDqVLFA4BmzVrwzTdb8PaehI2NDSVKlCQ09Ctu3rxBo0ZNWL8+lA4dPuaTTzrr9unjM5HhwwcTHv6QIkXeA+A///mINm3aATBw4FB27tzOxYvnqVatBg4Oz6+y7eTkjLW1jV41CiFEXvX8aPt6Fi6cR1qamvfeK0pQ0EKqVPHIFdcXk2Ynm1hbmb/V9jbW2fPSFC9eQvf5izfj994rqltmZWVNaurzM8KuXr3CnTu3ad26Sbp9pKamcvv288lmn33WlZ9++okff9zP/fv3uHnzOg8fPsDdvTgAH37Yjh9++I7PP/+UMmXKUqdOPZo2bY6bm37Njrt7Md3nt2/fJDU1hZkz/QgImK5brtFoSE1NTTeE9u96XVwKYGPzvybEysqK1NQUXb2XL//F/v17dY+/GOK6ffuWrtkpUaJkumz58uVDrZZJ5UKId1Ns7FP8/Cbx00+HAWjZsjV+frNwdNT/FkvZRZqdbGJva4mrky2PnyZleoIyPJ+zU9DJlnw22fPSWFhk3O+r7tGk1SrUrFmbceN8Mzxmb++AoiiMH+/J9evXaN26Lc2bt2Tw4OEEBc3Srefk5MTatZu5dOkip0+f5OTJ42zdupH+/QfTt+9AIOOk3rS0jEN41tb/u12HVvt8fX//2RkaDwBLS6tX1vu6+1FptQpffNGL//yng27ZixuBFihQULfMysoqw7YyMVkI8S66ePE8Pj5jCQ9/iKWlJePG+dKt2xe54mjOP8mcnWyiUqloVctdr0YHns/ZaVXbPVf8oJQuXYY7d25TqFBh3N2L4e5eDEdHRxYvns/Nm9e5evVvfv/9N2bMmMPQoSP58MP/4O5ejAcP7une/P/7333s2vUtVatWp3//wXz11To++ugTDh/+EQBLS0sSEhLSNQv37997ba4SJUpibm5ORES4Lpe7ezGOHz/Gli0bsnyDzRf1/nOfjx49YtmyRSQmJmRqH7nhdRNCiOym1Wr5+us19OvXg/DwhxQrVpz167fy+edf5srfg9LsZKNGHm5YW5pnuGryq6hUYG1pTqMq+g3xZJdPP+1MfHw806ZN4tq1v7l+/RrTpk0iLOwvSpUqTYECBTA3t+DIkYM8fPiAK1fCmDLFlydPnqBWPz+DKSUlhWXLFnHgwA+Ehz/kwoVznDt3lipVqgLg4VGN+PhnbNy4jvDwh/z444E3nsVkb2/PJ598xqpVyzlw4AcePLjP/v17Wb58MS4uWb8C9Zdf9uLnn4+wZs1K7t69w9mzp5k5cxrPnsWlO7LzOra2dgBcu3aVxMTELGcRQojcKiYmhtGjhxIcPJe0tDTatGnHli07dXM/cyMZxspGdjaWjOxclQVbz8EbLiyo+v+P4Z2q5Jp7ZL33XlGWLl3JihVLGTZsAObm5lSuXJXFi5fj7OwCwNSp01m1agW7dm3HxaUADRs2plu3L/j1159RFIWPP/6UZ8/iWLduNVFRkTg4ONCsWUuGDh0FQI0atRg0aBg7dnzD2rWrqV69BiNGjGHmTL/XZhs5cizOzi6sWbOSx48f4epaiL59B9KjR58s19u8eSumT4cNG0LZuHEdDg6ONG78AUOGjMz0PsqUeZ8GDRrh5zeBQYOG0717jyznEUKI3ObcubP4+IwlKioSKysrvL0n8dlnXXPl0Zx/Uiky2QCNRkt09MuHKdTqVJ48CadAgSLp5oJkloWFGeevPkp3b6x/PuEvvra2NGd4pypUKZW37o1lYWFGWprW2DGyjaHre9ufJ0OzsDDD2TkfMTEJJvk6Sn15n6nXmFfq02q1hIZ+xfLlS9BoNJQsWYqgoIWUK1f+jdtmV40uLvkwN8/cAJUc2ckBVUoXYP7whhy7FMGhM+nvel7QyZZWtd1pVKUIdtk0KVkIIYTIqujoJ0yc6MWJE78D0L79x0ya5IedXT4jJ8s8eXfNIXY2lrSuXYxWtdxJSE4jOSUNG2sL8tlY5PrDf0IIId5Np0+fZOLE8Tx69AgbGxt8fafQsWOnPPe+Jc1ODlOpVNjbWmbLBQOFEEIIQ9BoNKxevYKVK5eh1WopXfp9goIW8P775YwdLUuk2RFCCCGEzuPHj5g40YtTp04Az6+27+s7WXe2aV6Uq049DwkJeePNwq5du8agQYOoV68eDRo0YNSoUTx8+DCHEgohhBCm68SJ3+na9RNOnTqBra0dM2fOYfr0gDzd6EAuanbWrVvH4sWLX7tOTEwMffv2JV++fGzcuJFVq1YRExPDgAEDSElJyaGkQgghhGlJS0tj6dKFDB3an+joJ5QtW47Nm7+lQ4eOxo5mEEYfxoqMjGTSpEmcPXuWUqVKvXbdQ4cOkZSUxOzZs3W3D5g7dy5Nmzbljz/+oEGDBjkRWQghhDAZkZGRTJw4jrNnzwDQuXM3xo+fkO4+gnmd0Zudv/76i/z58/Pdd9+xbNkyHjx48Mp1GzRowLJly9LdJ+mF2NjYt8phYfGq+0Nlfcb5i8nqKhWY4tWMpL6sMzdXvfJnLie9uEZFZq9VkddIfXmfqddo7Pp+/fVnJk70JiYmhnz58uHnN4N27Tq8eUM9GLtGyAXNTosWLWjRokWm1nV3d8fd3T3dspUrV2JtbU2dOnWynMHMTIWz88uvF5CcbM7jx2Zv9eZkqv9IX5D6Mk+rVWFmZkb+/Ha56q8mR0dbY0fIVlJf3mfqNeZ0fWq1mqCgIEJCQgCoUqUKy5cvp3Tp0tn2PY35Ghq92Xkb69evZ/PmzUyYMIECBbJ+5WGtViEu7uX3MUpNTUGr1aLRKHpf+VGlev5GqdFoTfbIh9SnH41GQavVEhubSFKSxjA7fQvm5mY4OtoSF5eERpN7r96aVVJf3mfqNRqjvvDwh3h5jeX8+T8A6N79S8aP98Xa2pqYmMzd9Fgf2VWjo6OtaV9BWVEUFi1axPLlyxk8eDB9+vR5632+qpHRaLL+LvfiDTK3NAJ//32FmTOncv/+PRo3bkpMTDRLl34FwMWL51EUqFateqb3l9vqM7TsrC8rzXN20mi0uSqPoUl9eZ+p15hT9f300xGmTp1AXFws9vYOTJs2k1at2gCvfh80FGO+hnmu2VGr1UyYMIG9e/fi7e1N//79jR0pz1i3bjUqlYr167dhaWmJnd3/TiUcNmwAEyf66dXsCCGEyBvU6lQWLZrPxo1fA1C5sgdz5izA3b2YkZPljDzX7Hh7e3Pw4EHmz59P+/btjR0nT4mPf0a5chUoVqy4saMIIYTIIQ8e3MfHZyyXLl0E4MsvezNmzLhccTPinJKrmx2NRkN0dDQODg7Y2Niwc+dO9u3bh7e3N3Xr1uXRo0e6dV+sk1MURSE5OemN672Y82FINja2et+XpHPnj4iICAfgwIEfcHMrgptbEZYu/YrGjWsDEBAwnXPnzjJp0jSD5hVCCGEchw//iJ/fJOLjn+Hg4Ii/fyDNm7c0dqwcl6ubnfDwcFq2bElgYCCdOnVi7969AAQFBREUFJRu3Rfr5ARFUejT5wsuXDiXI9/v36pXr8natZv0anhWrVrPhAnjKFSoMKNHj2PJkmAeP37eLO7Zc4COHdsyatQ42rX7KLtiCyGEyCGpqaksWDCHrVs3AVC1ajVmz17Ae+8VNXIy48hVzc7s2bPTfe3u7s7ff/+t+zo0NDSnI71SXrvjq7OzMxYWFlhbW1OgQEEsLf93I9ICBQoCYG9vj729vbEiCiGEMIC7d+/g4+PJ5cthAPTpM4Dhw0en+73/rslVzU5eoVKpWLt2U54axhJCCGH6/vvf/fj7TyYhIQEnJydmzJhDkyZNjR3L6KTZySKVSpWpG6NZWJiZ9OmSQgghjC85OZl58wL59tttANSoUYvZs+dTuLCbkZPlDtLsCCGEEHnY7ds38fb25OrVv1GpVPTvP5ghQ0ZgYSFv8S/IMyEAsLW14/btW8TGPiV/fidjxxFCCJEJP/zwPTNn+pGUlIizswsBAXNp0KCRsWPlOtLsCAA+//xLNm9ez927t5k9e4Gx4wghhHiNpKQkgoJmsWvXtwDUqVOPgIC5uLoWMnKy3EmlKKZ6sf/M02i0REe//H4ganUqT56EU6BAkSxdgMnU5+xIffp5258nQ7OwMMPZOR8xMQkm+TpKfXmfqdeYlfpu3LiOt7cnN25cQ6VSMWjQMAYNGoa5uXk2p82a7HoNXVzymfa9sYQQQoh30Z49OwkMnEFychIFC7oSGDiXOnXqGztWrifNjhBCCJHLJSYmEBDgz969ewCoX78hs2YF6a6TJl5Pmh0hhBAiF7t27W+8vT25desmZmZmDB06iv79B2FmlrkhHCHNjhBCCJErKYrCzp3bCQqaRUpKCq6uhZg9ez61atUxdrQ8R5qdTJJ53MIQ5OdICJEZCQnxzJjhx4EDPwDQqFETZsyYg4uLi5GT5U3S7LzBi9ntqakpWFlZGzmNyOtSU1MAMDeXf3pCiJe7ciUMLy9P7t27g7m5OSNGjKF37/4ybPUW5DfuG5iZmWNra098fAwAVlbWet2XSqtVodGY7l/zUl/mKIpCamoK8fEx2Nrayy8tIUQGiqLwzTdbmDcvELVajZtbEWbPnk/16jWNHS3Pk2YnExwdnx82fNHw6MPMzAyt1vSuDfGC1KcfW1t73c+TEEK88OzZM6ZMmcihQ/8FoGnT5kyfHoCTk7ORk5kGaXYyQaVSkT9/ARwcnNFo0jK9nbm5ivz57YiNTTTJox9Sn777s5AjOkKIDC5cuMCgQYO4f/8+FhYWjB49jh49+ug1iiBeT5odPZiZmWFmlvmr3lpYmGFjY0NSksZkr/wp9QkhRNYoisKGDV+zYEEQarWaIkXeIygoGA+PasaOZnKk2RFCCCFyWFxcLH5+kzh69BAALVu2xs9vFo6OjkZOZpqk2RFCCCFy0J9/XsDb25Pw8IdYWlri5+dHx45dTHI6QG4hzY4QQgiRA7RaLRs3rmPx4gWkpaVRrFhx5s1bSOPG9YiJSQCk2cku0uwIIYQQ2ezp0ximTPHl119/BuDDD//DlCn+ODvnN3Kyd4M0O0IIIUQ2OnfuLL6+44iMjMDKygovr4l07txNzrbKQdLsCCGEENlAq9Wydu0qQkIWo9FoKFGiJEFBCylfvoKxo71zpNkRQgghDCw6+gmTJnlz/PgxANq1+4hJk/zIl8/eyMneTdLsCCGEEAZ0+vRJJk4cz6NHj7CxscHXdwodO3aSYSsjkmZHCCGEMACNRsPq1StYuXIZWq2W0qXLEBQUzPvvlzN2tHeeNDtCCCHEW3r8+BETJ3px6tQJADp27ISv72Rsbe2MnEyANDtCCCHEWzlx4ncmTfLmyZPH2NraMXHiVD766BNjxxL/IM2OEEIIkQVpaWmsXLmM1atXoCgKZcuWIyhoIaVKlTZ2NPEv0uwIIYQQeoqMjGTixHGcPXsGgE6duuDtPQkbGxsjJxMvI82OEEIIoYdjx35l8mRvYmJisLOzY8oUf/7znw7GjiVeQ5odIYQQIhPUajUhIYtZu3YVAOXLVyQoKJgSJUoaN5h4I2l2hBBCiDeIiAjHx2csFy6cA6Br1y8YN84Ha2trIycTmSHNjhBCCPEaP/98hKlTJxAbG4u9vT1+fjNp3bqtsWMJPUizI4QQQryEWp3K4sUL2LBhHQCVKlUhKCgYd/dixg0m9CbNjhBCCPEvDx7cx8dnLJcuXQTgiy96MWbMeKysrIycTGSFNDtCCCHEPxw5chA/v0k8exaHg4Mj06cH0KJFK2PHEm9Bmh0hhBACSE1NJTg4iC1bNgLg4VGN2bPnU7Sou5GTibclzY4QQoh33r17d/Hx8SQs7C8AevXqx8iRnlhaWho5mTAEaXaEEEK803788QD+/pOJj48nf/78zJgxhw8+aGbsWMKApNkRQgjxTkpJSWHevNls374FgOrVazJ79nzc3IoYOZkwNGl2hBBCvHPu3LmFl5cnV69eAaBfv0EMGzYKCwt5WzRFZsYO8E8hISH07NnztevExMQwbtw46tSpQ506dZgyZQqJiYk5lFAIIURet3//Xrp3/4yrV6/g7OxCSMgqRo0aK42OCcs1zc66detYvHjxG9cbNWoU9+7d061/7Ngxpk+fngMJhRBC5GVJSUlMnz6FCRPGk5iYSO3addm2bRcNGzYxdjSRzYzexkZGRjJp0iTOnj1LqVKlXrvuuXPnOHXqFPv27aNMmTIA+Pv7M2DAAMaOHUvhwoVzIrIQQog85ubNG3h7j+H69WuoVCoGDRrGoEHDMDc3N3Y0kQOMfmTnr7/+In/+/Hz33XdUq1btteueOXMGV1dXXaMDULduXVQqFWfPns3uqEIIIfKg777bxRdfdOb69WsULOjKypVrGTp0pDQ67xCjH9lp0aIFLVq0yNS6kZGRFCmSfpa8lZUVTk5OhIeHv1UOCwvD933m5mbp/m9qpL68z9RrlPryvrepMTExkZkzp/Hdd7sBqF+/IbNnz6NgwYKGjPhW5DXMGUZvdvSRlJT00vuSWFtbk5KSkuX9mpmpcHbO9zbRXsvR0Tbb9p0bSH15n6nXKPXlffrWePnyZYYMGcL169cxMzNj3LhxjByZe4/myGuYvTLV7PTq1StLO1epVHz99ddZ2vZlbGxsSE1NzbA8JSUFOzu7LO9Xq1WIizP8GV3m5mY4OtoSF5eERqM1+P6NTerL+0y9Rqkv79O3RkVR2LFjO4GBM0hJSaFQoUIEBQVTu3Yd4uKScyCxfuQ1zDpHR9tMHy3KVLNz6tQpKlWqRL58mT/6kZCQwOXLlzO9fma4ublx6NChdMtSU1N5+vTpW09OTkvLvh8yjUabrfs3Nqkv7zP1GqW+vC8zNSYkxDNz5jT2798LQKNGTZgxYw4uLi65/vmR1zB7ZXoYa9q0aVStWjXTOz5//jyff/55lkK9Sp06dZg3bx537tyhRIkSAJw8eRKAmjVrGvR7CSGEMC5FUXiWmEqqoiIlKRUbS3NUKtVL171y5TLe3mO4e/cO5ubmjBgxht69+2NmZrpzYUTmZarZGTJkiN5HTooUKcKQIUOyFOoFjUZDdHQ0Dg4O2NjYUK1aNWrWrImnpyfTpk0jMTERPz8/PvnkEzntXAghTERisppjf0Zw6Ox9Hj1N0i13dbKlVS13Gnm4YWfz/AadiqKwfftW5s0LJDU1lcKF3Zg9ewE1asgfwOJ/MtXsjBkzRu8dFy5cOEvb/VN4eDgtW7YkMDCQTp06oVKpWLp0KdOnT6d3795YW1vTtm1bJkyY8FbfRwghRO5w6eYTlu26RIpaw7+P4Tx+msSWw9fY+ctNhn9ahRKuVsyYMZUff9wPwAcfNMPfPxAnJ+ecDy5yNZWiKIqhdnbv3j1CQkIIDAw01C5zhEajJTo6weD7tbAww9k5HzExCSY5Fiv15X2mXqPUl7dcuvmEhdsvoCjwujcmFZAYfYcnFzYQFfkQCwsLRo8eR48efV45zJVbmdpr+DLZVaOLS75MT1A26GBmdHQ0u3btMuQuhRBCvAMSk9Us23XpjY2OoihEXj3KlUPziIp8iJvbe6xdu4mePfvmuUZH5ByDXmenWrVqXLlyxZC7FEII8Q449mcEKWrNa9dJS03kzskNxD64AED+otUY6u2Hh0elnIgo8rA8dVFBIYQQpkdRFA6dvf/adRKe3OLWsTWkJkajMrOgaPVPKVS2Gb9fjuXjDxQ5qiNeS+9m5/Tp029cp06dOlkKI4QQ4t0Tn6ROd9bVPymKQtTfh3lwYTcoWqzyFaR0owHYuRQH4NHTJBKS07C3tczBxCKv0bvZ6dmz5xs7aENfTFAIIYTpSkl9+fBVWko8t0+uJ+7hJQCcitWkRJ0vMbdKf9uB5BRpdsTr6d3srF+/PsOyxMREzp49y549e1i8eLFBggkhhHg3WFtlvF9V/KMb3Pp9Deqkp6jMLHCv2ZmCZZq89I9tG2uZkSFeT++fkLp16750ebNmzbCzs2P58uWsXLnyrYMJIYR4N9jbWuLqZMvjp0loFS2Rlw/y8M/vQdFi7VCIUg37Y+dcLMN2KqCgky35bKTZEa9n0FPPa9Wqpbt9gxBCCJEZKpWKVrXcSU1+xo1fQnh4cQ8oWpyL16bCh74vbXTg+SnqrWq7y+Rk8UYGbYcPHTqEvb29IXcphBDiHWCnvseV/wY+H7Yyt6RYza4UKN3wlY2MSgVWFuY0quKWw0lFXqR3s9OrV68My7RaLeHh4Tx8+JCBAwcaJJgQQgjTp9FoWLNmJStWLEWr1WLjWJjSDQdi4/TeK7dR/f/H8E5VdPfIEuJ19G52XnZ3CTMzM8qXL8+QIUP47LPPDBJMCCGEaXv8+BGTJnlz8uRxAD766BM6dh/Bmv03dPfG+uc7zouvrSzNGd6pClVKFTBCapEX6d3sbNiwITtyCCGEeIecPHmciRO9ePLkMTY2tkycOJWPP/4UgEqlC3PsUgSHzqS/63lBJ1ta1XanUZUi2MmkZKEH+WkRQgiRY9LS0vjqqxBWrVqOoii8/35ZgoIWUrp0Gd06djaWtK5djFa13ElWa7C2tSYlKQUbS3OZjCyyxKBnY927d48JEyYYcpdCCCFMRFRUJIMH9+Grr0JQFIVPP+3Chg3fpGt0/kmlUuFgZ0VhFzsc7Kyk0RFZJnc9F0IIke2OHfuVbt0+4ezZM9jZ2REQMBc/vxnY2tq+eWMh3pLc9VwIIUS2SUtLIyRkEaGhqwAoV64Cc+cGU6JEKSMnE+8SmbMjhBAiW0REhOPrO47z5/8AoGvXLxg3zgdra2sjJxPvmiw1OxEREfzxxx+kpqbqlmm1WpKSkjhz5gzBwcEGCyiEECLv+eWXn5gyxYfY2Fjs7e2ZOnUmH37Y1tixxDtK72Zn//79eHl5kZaWppsspiiK7vPSpUsbNqEQQog8Q61Ws2TJAtavXwtApUqVmTMnmGLFihs5mXiX6T1BeeXKlVSqVImdO3fSqVMnPv74Y3744Qe8vLywsLBg4sSJ2ZFTCCFELvfgwX369euha3S++KIX69ZtkUZHGJ3eR3Zu3brFvHnzqFSpEg0aNGD16tWUKVOGMmXK8OTJE1asWEGjRo2yI6sQQohc6siRQ/j5TeTZszgcHByZPj2AFi1aGTuWEEAWjuyYmZnh5OQEQMmSJbl58yZarRaAJk2acP36dYMGFEIIkXulpqYyZ84sxo4dwbNncXh4VGPr1p3S6IhcRe9mp3Tp0pw9exZ43uyo1WouX74MQFxcXLpJy0IIIUzXvXt36dOnO1u2PL+NUK9efQkN3UDRou5GTiZEenoPY33++ef4+fmRmJjI2LFjqVevHhMnTqRz585s3LiRypUrZ0dOIYQQuciPPx7A338y8fHx5M+fnxkzZvPBB82NHUuIl9K72enSpQupqancv38fgBkzZjBw4EBmzZpF0aJFmTRpksFDCiGEyB1SUlKYN28227dvAaB69ZrMnj0fN7ciRk4mxKtlqtnRarWYmf1vxOvLL7/UfV6sWDH2799PTEwMLi4ur91OCCFE3nXnzi28vDy5evX5lfL79RvE0KEjsbS0NHIyIV4vU51I5cqVuXjx4isfV6lUGRqdCxcuyJCWEEKYiH37vqd798+4evUKzs4uhISsYtSosdLoiDwhU0d2FEUhLCyMlJSUTO/42rVrWQ4lhBAid0hKSiIoKIBdu7YDUKtWHQID51GoUGEjJxMi8zI9Z2f69Ol67fifV1UWQgiR99y8eQNv7zFcv34NlUrFwIFDGTRoGBYWcltFkbdk6id2/fr12Z1DCCFELvLdd7sICPAnOTmJAgUKEhAwl3r1Ghg7lhBZkqlmp27dutmdQwghRC6QlJRIQIA/33+/G4B69Rowa1YQBQu6GjeYEG9BjkUKIYQA4Pr1q3h5jeHWrZuYmZkxZMgI+vcfjLm5ubGjCfFWpNkRQoh3nKIo7Nr1LXPmzCQlJQVX10IEBs6jdm05qi9MgzQ7QgjxDktIiGfmzGns378XgIYNGzNzZlCGy4kIkZdJsyOEEO+oK1cu4+PjyZ07tzE3N2f48NH06TNALgYrTI7Bf6Jv3Lhh6F0KIYQwIEVR2L59K716dePOndsULuzG6tUb6NdvkDQ6wiTpfWQnNjaW+fPnc/r0adRqNYqiAM//8SQmJhIbG6u7C7oQQojc5dmzZ8yYMZUff9wPwAcfNMPfPxAnJ2cjJxMi++jdwgcEBLBjxw5KliyJubk5Dg4OeHh4oFariYuLw9/fPztyCiGEeEthYZfo3r0TP/64HwsLC8aN82HRouXS6AiTp3ez8+uvvzJixAiWL1/O559/jpubGwsXLuTAgQOUL1+e69evZ0dOIYQQWaQoClu2bKB37+7cv3+PIkXeY+3aTfTs2VeudC/eCXo3O3FxcdSqVQuAsmXLcunSJQDy5ctHv379+OmnnwwaUAghRNbFxcUybtwo5syZhVqtpnnzVmzbtgsPj2rGjiZEjtF7zo6zszPPnj0DoESJEjx58oSYmBicnZ0pXLgwkZGRBg8phBBCf3/+eQEfn7E8fPgACwtLxo71onv3nnI0R7xz9D6y06BBA1asWMH9+/dxd3fHycmJnTt3AnD06FGcnWXsVwghjElRFDZsWEvfvl/y8OED3N2L8fXXm/nii17S6Ih3kt7NzujRo3ny5Am+vr6oVCoGDRrE3LlzqVu3LuvWreOzzz7Ta39arZbFixfTpEkTqlWrRr9+/bhz584r13/06BFjx46lXr161KtXj9GjRxMREaFvGUIIYZKePo1h9OihzJ8/h7S0NFq3bsuWLTupXNnD2NGEMBq9h7GKFi3Kvn37uH37NgB9+/alYMGC/PHHH1StWpVPP/1Ur/2FhISwdetWAgMDKVy4MHPnzmXgwIHs3bsXKyurDOt7enqi0WhYu3YtANOnT2fYsGG6o0tCCPGuOn/+D3x9xxEREY6VlRXjx0+gS5fP5WiOeOdl6QrKNjY2VKhQAYCUlBQ6dOjARx99pPd+UlNTCQ0NxcvLi6ZNmwIQHBxMkyZNOHjwIO3bt0+3flxcHKdPn2b58uVUqlQJgEGDBjFs2DDdvCEhhHjXaLVa1q5dxdKlC9FoNBQvXoKgoIVUqFDR2NGEyBWydKnMmzdvMmbMGOrWrUuNGjUICwtj2rRpbNiwQa/9XLlyhYSEBOrXr69b5ujoSKVKlTh9+nSG9a2trbGzs2P37t3Ex8cTHx/Pnj17KFmyJPnz589KKUIIkac9efKE4cMHsWjRfDQaDW3btmfLlh3S6AjxD3of2bl8+TJffvklBQoU4KOPPmLz5s0AWFpaEhAQgL29faaHsl7MtSlSpEi65YUKFSI8PDzD+tbW1syaNQt/f39q166NSqXC1dWVjRs3vvUlzi0sDH+JdHNzs3T/NzVSX95n6jWaen1//HEGb++xREREYG1tzcSJU+nUqbNJDVuZ+mto6vVB7qhR72Znzpw5VKlShdDQUAA2bdoEwKRJk0hOTmb9+vWZbnaSkpIAMszNsba2JjY2NsP6iqLw999/U6NGDQYMGIBGoyE4OJjhw4ezZcsW7O3t9S0HADMzFc7O+bK0bWY4Otpm275zA6kv7zP1Gk2tPo1Gw5IlS5g/fz5arZb333+flStX6qYXmCJTew3/zdTrA+PWqHezc/78eRYsWICFhQUajSbdY+3atWPv3r2Z3peNjQ3wfO7Oi8/h+TwgW9uMT8oPP/zA5s2bOXr0qK6xWbFiBc2bN2fHjh307t1b33IA0GoV4uISs7Tt65ibm+HoaEtcXBIajdbg+zc2qS/vM/UaTbG+x48f4+s7jhMnjgPQpUsXfH2nYG1tQ0xMgpHTGZ4pvob/ZOr1QfbV6Ohom+mjRXo3O9bW1iQnJ7/0sadPn770DKpXeTF8FRUVRfHixXXLo6KiXvoXytmzZylVqlS6Izj58+enVKlSurPDsiotLft+yDQabbbu39ikvrzP1Gs0lfpOnjzOxIlePHnyGBsbW6ZM8aNPn57ExCSYRH2vYyqv4auYen1g3Br1HkBr1KgRixcvTndtG5VKRUJCAqGhoTRs2DDT+6pQoQL29vacPHlStywuLo6wsDBq166dYf0iRYpw584dUlJSdMuSkpK4f/8+JUqU0LcUIYTIEzQaDSEhixkypB9Pnjzm/ffLsnnzt3Ts2MnY0YTIE/Rudry8vEhMTKRt27Z8+eWXqFQqZs+eTdu2bQkPD2fs2LGZ3peVlRU9evRg3rx5HD58mCtXruDp6YmbmxutW7dGo9Hw6NEj3ZGkTz75BIAxY8Zw5coV3fpWVlZ06iT/6IUQpicqKpJBg/rw1VchKIrCp592YcOGbyhduoyxowmRZ+jd7BQpUoQ9e/bQu3dvFEWhePHiJCYm0qFDB3bu3EmxYsX02t+oUaPo3LkzkydPpnv37pibm7NmzRqsrKwIDw+ncePG7Nu3D3h+ltbmzZtRFIXevXvTt29fLC0t2bJlC46OjvqWIoQQudrvv/9Kt26fcvbsaezs7AgImIuf34yXzmkUQryaSlEURZ8NVqxYQcuWLSlbtmx2ZcpxGo2W6GjDT+yzsDDD2TmfyY6nS315n6nXmFfrS0tLIyRkMaGhXwFQrlwF5s4NpkSJUunWy6v16cPUazT1+iD7anRxyZfpCcp6H9lZvXr1S6+BI4QQ4u1FRkYwcGBvXaPTpUt3NmzYlqHREUJknt7NTsmSJbl27Vp2ZBFCiHfar7/+TLdun3Du3Fns7e2ZMyeYSZP8sLa2NnY0IfI0vU89b9asGcHBwRw9epSyZctSoECBdI+rVCqGDx9usIBCCGHq1Go1S5cu5Ouv1wBQqVJl5swJplix4m/YUgiRGXo3O0uXLgXgzJkznDlzJsPj0uwIIUTmPXz4AF/fsVy8eAGA7t174unppdc1y4QQr6d3s3PlypXsyCGEEO+cI0cO4ec3kWfP4rC3d8DfP4AWLVobO5YQJkfvZudNnj17hoODg6F3K4QQJiM1NZWFC+exefN6AKpUqcqcOQsoWtTdyMmEME16NzupqamsW7eOU6dOoVareXHmuqIoJCYmcv36dS5cuGDwoEIIYQru37+Ht/cYwsL+AqBXr76MHOmJpaUMWwmRXfRudoKCgti4cSPlypUjOjoaa2trXFxcuHr1Kmq1mhEjRmRHTiGEyPMOHjzA9OmTiY+PJ3/+/Pj7B9K0aQtjxxLC5Ol96vmPP/5Inz59+O677+jZsydVqlRh+/bt/PjjjxQtWhSt1jQviiSEEFmVkpJCQIA/Xl5jiI+Pp1q1GmzduksaHSFyiN7NTnR0NE2bNgWgfPny/PnnnwAULlyYQYMG6W7tIIQQAu7cuU3v3t355pvNAPTrN5DVq9dTpMh7Rk4mxLtD72EsBwcHUlNTgecXGAwPDyc+Ph57e3vd10IIIeDAgR/w959CYmIizs7OzJwZRKNGTYwdS4h3jt5HdmrXrs2GDRtITEzE3d0dW1tbDh48CMC5c+ewt7c3eEghhMhLkpOT8fefgq/vOBITE6lVqzZbt+6WRkcII9G72RkxYgTnz59n8ODBWFhY8MUXXzB16lQ6derEokWLaNOmTXbkFEKIPOHWrZv07NmVnTu3o1KpGDhwKCtXrqNw4cLGjibEO0vvYazy5cuzf/9+rl69CsC4ceOwt7fnjz/+oEWLFgwaNMjgIYUQIi/4/vvdzJo1neTkJAoUKMisWUHUr9/Q2LGEeOdl6aKCrq6uuLq6As9vDzFkyBCDhhJCiLwkKSmR2bNnsmfPTgDq1q1PQMBcChZ0NXIyIQRkwxWUhRDiXXL9+jW8vT25efM6ZmZmDBkygv79B2Nubm7saEKI/yfNjhBCZIGiKOzevYM5c2aSnJyMq6srAQHzqFOnnrGjCSH+RZodIYTQU0JCPAEB/vzww3cANGjQiFmzgnBxKWDkZEKIl5FmRwgh9PD331fw9h7DnTu3MTc3Z9iwUfTtOxAzM71PbhVC5BC9/3Vevnz5lY/FxcUxYcKEtwokhBC5kaIobN++lZ49u3Lnzm0KFSrM6tXr6d9/sDQ6QuRyev8L7dOnz0sbnv3799OuXTu+//57gwQTQojcIj4+Hl/fccyaNY3U1FSaNGnKtm27qVGjlrGjCSEyQe9mp3LlyvTp04e//voLgMjISIYNG4anpyfu7u58++23Bg8phBDGEhZ2ie7dO/Hf/+7DwsICT08vFi1ajrOzs7GjCSEySe85OytWrMDT05O+ffvSs2dPvv76a8zNzZk+fTrdunXLjoxCCJHjFEVh69aNLFgQhFqtpkiR95gzZwFVq1Y3djQhhJ70PrJjZWXF4sWL+eCDD1i2bBmVK1dm//790ugIIUxGXFwc48ePYs6cWajVapo1a8m2bbuk0REij8rUkZ3Tp09nWNalSxdu377NpUuXOHnyJAULFtQ9VqdOHcMlFEKIHPTnnxfx8fHk4cMHWFhY4unpxRdf9ESlUhk7mhAiizLV7PTsmf4fuqIoqFQqFEUBwNPTU/e1SqV67RlbQgiRGymKwsaNX7No0XzS0tQULerOnDnBVKniYexoQoi3lKlmZ/369dmdQwghjCY29ilTp07g55+PAtCq1YdMnToTR0dHIycTQhhCppqdunXrZncOIYQwigsXzuHjM5aIiHAsLS0ZN86Xbt2+kGErIUxIlq6gfP78eU6dOoVardYNZSmKQmJiImfPnuWbb74xaEghhDA0rVbL11+HsnRpMBqNhmLFSjB3bjAVKlQydjQhhIHp3exs2rSJmTNn6pqcfzIzM6Nx48YGCSaEENklOjqaKVN8OXbsFwDatm3H5Mn+2NvbGzmZECI76H3q+caNG2ncuDEnT56kf//+dO3alfPnz7No0SKsra35+OOPsyOnEEIYxB9/nKFbt084duwXrK2tmTLFn8DA+dLoCGHC9G527t+/T48ePcifPz8eHh6cPXsWGxsb2rRpw+DBg2UysxAiV9JqtaxatYIBA3rx6FEUJUuWYsOGb/jss64yP0cIE6d3s2NpaYmNjQ0AJUuW5M6dO6jVagBq1qzJ7du3DRpQCCHe1uPHjxk2bADLli1Eq9XSoUNHNm/+lnLlyhs7mhAiB+jd7FSsWJGjR5+fnlmiRAm0Wi3nz58HICIiwqDhhBDibf3222907tyREyd+x8bGlunTA5g5cw52dvmMHU0IkUP0nqDct29fRowYQWxsLIGBgbRs2RJvb2/atGnD999/T61achdgIYTxaTQaVqxYwsqVISiKQpkyZQkKCqZMmfeNHU0IkcP0PrLTqlUrVqxYwfvvP/+F4e/vT6lSpdi6dSulS5dm6tSpBg8phBD6iIqKZPDgvqxYsQxFUejUqTMbN34jjY4Q76gsXWenWbNmNGvWDABnZ2dCQ0MNmUkIIbLs999/Y9Ikb2JiorG1tSMoaA7Nm7chLU1r7GhCCCPJUrMD8PPPP/P7778TFRXF2LFjuXz5MpUrV6Zo0aKGzCeEEJmSlpbG8uVLCA39CkVRKFeuAgsWLKJGjSrExCQYO54Qwoj0bnaSkpIYPnw4v//+O/b29iQkJDBgwAC2bNlCWFgYGzdupGzZstmRVQghXioyMgJf33GcO3cWgC5dPmf8+Anky2dr5GRCiNxA7zk7CxYs4K+//mLdunWcOHFCdyXloKAgChcuzKJFiwweUgghXuWXX36iW7dPOHfuLPny5WPOnGAmTZqGtbW1saMJIXIJvZud/fv3M3bsWOrXr5/uQlyurq4MHTqUs2fPGjSgEEK8jFqtZsGCIEaNGsLTp0+pWLESW7fuok2b/xg7mhAil9G72YmLi3vlvJz8+fOTmJio1/60Wi2LFy+mSZMmVKtWjX79+nHnzp1Xrq9Wq5k/fz5NmjShevXq9OjRg8uXL+v1PYUQedvDhw/o378H69c/Pzmie/cefP31VooVK27kZEKI3EjvZqds2bJ8//33L33syJEjes/XCQkJYevWrcycOZNt27ahUqkYOHAgqampL11/2rRpfPvtt8yYMYMdO3bg5OTEwIEDefbsmb6lCCHyoKNHD/P55524ePECDg6OLFiwBB+fyVhZWRk7mhAil9K72Rk6dCh79uxh8ODBbN++HZVKxenTp5kxYwZbtmxhwIABmd5XamoqoaGhjBw5kqZNm1KhQgWCg4OJjIzk4MGDGda/d+8e3377LYGBgTRr1owyZcoQEBCAlZUVly5d0rcUIUQeolanEhQUgKfncOLiYqlSpSpbt+6kRYvWxo4mhMjl9D4bq1WrVsydO5f58+fz888/AzB79mwKFCjAtGnTaNu2bab3deXKFRISEqhfv75umaOjI5UqVeL06dO0b98+3fq//fYbjo6OfPDBB+nWP3LkiL5lCCHykPv37+Ht7UlY2PM/anr27MOoUWOxtJSjOUKIN8vSdXY++ugjPvroI27evMnTp09xdHSkdOnSmJnpd6Doxb20ihQpkm55oUKFCA8Pz7D+7du3KVasGD/++CNfffUVkZGRVKpUCV9fX8qUKZOVUnQsLPQ+yPVG5uZm6f5vaqS+vC8v1Hjw4H+ZMmUC8fHx5M/vxKxZs2nWrEWmts0L9b0NU68PTL9GU68PckeNWb6o4I0bNzhz5gyxsbEUKFAAW1tbvS8omJSUBJBhrN3a2prY2NgM68fHx3P37l1CQkLw9vbG0dGR5cuX88UXX7Bv3z4KFCiQpVrMzFQ4O2ffTQEdHU37Wh9SX96XG2tMTk5mxowZrFu3DoDatWsTEhKSpQuX5sb6DMnU6wPTr9HU6wPj1qh3s5OSkoKXlxcHDx7UXWMHwMzMjG7dujF16tR0p6S/jo2NDfB87s6Lz198D1vbjE+KpaUlz549Izg4WHckJzg4mKZNm7Jr1y695gv9k1arEBen31lkmWFuboajoy1xcUloNKZ3qXqpL+/LrTXeuXOb8ePHcPlyGAD9+w9kxIgxWFpa6nU15Nxan6GYen1g+jWaen2QfTU6Otpm+miR3s3O3Llz+fnnn/H19aVNmza4uLjw5MkTDhw4wMKFC3Fzc2Pw4MGZ2teL4auoqCiKF//fKaNRUVFUqFAhw/pubm5YWFikG7KysbGhWLFi3L9/X99S0snO++ZoNFqTvi+P1Jf35aYaDxz4gRkzppKQkICzszMzZsyhcePn8/SymjE31ZcdTL0+MP0aTb0+MG6NWbqooKenJ71798bNzQ0rKyuKFClC3759GTlyJNu2bcv0vipUqIC9vT0nT57ULYuLiyMsLIzatWtnWL927dqkpaXx559/6pYlJydz7949SpQooW8pQohc5Pmw1VR8fceRkJBAzZq12bp1t67REUKIrNL7yE5iYiKlS5d+6WMVKlQgJiYm0/uysrKiR48ezJs3DxcXF4oWLcrcuXNxc3OjdevWaDQaoqOjcXBwwMbGhtq1a9OwYUN8fHzw9/fHycmJxYsXY25uTseOHfUtRQiRS9y6dRNv7zFcu3YVlUrFgAFDGDx4OBYWWZ5WKIQQOnof2WnTpg0bN25Eq814KGrPnj00b95cr/2NGjWKzp07M3nyZLp37465uTlr1qzBysqK8PBwGjduzL59+3TrL1myhLp16zJixAg6d+5MfHw869evx8XFRd9ShBC5wN69e/jii85cu3YVF5cChISsZvjw0dLoCCEMRqX8c5ZxJmzatIlFixZRoEAB2rdvT6FChXj69ClHjhzh4sWL9O7dm3z5np/ZpFKpGD58eLYENySNRkt0dOYnPWaWhYUZzs75iIlJMMmxWKkv7zNmjUlJicyZM4vdu3cAUKdOPQIC5uLqWshg38PUX0NTrw9Mv0ZTrw+yr0YXl3yZnqCsd7PzsonDr9y5SpUn7lslzU7WSH15n7FqvH79Gt7enty8eR0zMzMGDx7OgAFDMDc3N+j3MfXX0NTrA9Ov0dTrg9zR7Oh9nPjKlSt6BxJCCABFUdizZyezZ88gOTmZggVdCQycR5069YwdTQhhwmRQXAiRIxITEwgI8Gfv3j0ANGjQiFmzgnBxydrFQIUQIrOk2RFCZLurV//G23sMt2/fwtzcnKFDR9Kv3yC9bzEjhBBZIc2OECLbKIrCjh3fEBQ0i9TUVAoVKsycOQuoUaOWsaMJId4h0uwIIbJFfHw8M2dO5cCB55eOaNKkKf7+s3F2djZyMiHEu0aaHSGEwV25EoaXlyf37t3BwsKCkSM96dmzrwxbCSGMQpodIYTBKIrCtm2bmT9/Nmq1miJF3mPOnAVUrVrd2NGEEO+wTDU7FSpUyPSdzIE8cW0dIYRhxcXF4e8/mUOHfgSgWbMWTJ8eQP78TsYNJoR452Wq2Rk+fLiu2UlJSWHt2rWULFmSNm3a4OrqqruC8tWrVxk6dGi2BhZC5D6XLv2Jj48nDx7cx8LCEk9PL774oqdefyQJIUR2yVSzM3LkSN3nEydOpFmzZixZsiTdL7IhQ4bg5eXFX3/9ZfiUQohcSVEUNm78mkWL5pOWpqZoUXfmzAmmShUPY0cTQggdvWcL7t+/n27dur30L7aOHTvy66+/GiSYECJ3i419iqfncObPn01amppWrdqwdesuaXSEELmO3s1Ovnz5uH379ksfCwsLI3/+/G+bSQiRy124cI7PP+/ETz8dwdLSkgkTpjJ37kIcHByMHU0IITLQ+2ys9u3bs2DBAiwsLGjRogUuLi48efKEAwcOsGzZMgYOHJgdOYUQuYBWq+Xrr0NZujQYjUZDsWIlmDs3mAoVKhk7mhBCvJLezc64ceMIDw9n+vTp+Pv765YrikLXrl0ZPny4QQMKIXKHmJgYJk/24dixXwBo27Y9U6ZMJ18+eyMnE0KI19O72bGysmLx4sVcu3aNM2fOEBcXh7OzM/Xr16d48eLZkVEIYWR//HEGX99xREVFYm1tjbf3JDp16iJnWwkh8oQsX1SwbNmyuLm5ERUVRbFixTA3NzdkLiFELqDValmz5iuWL1+MVqulZMlSzJ27kLJlyxs7mhBCZFqWmp2TJ08yb948Ll26hEqlYvv27axatQo3Nzd8fX0NnVEIYQRPnjxm0iRvTpz4HYAOHToyceJU7OzyGTmZEELoR++zsY4fP07//v2xsbFh/PjxKIoCQKVKlVi/fj1r1641eEghRM46ffoE3bp9yokTv2NjY8P06QHMnDlHGh0hRJ6kd7OzcOFCWrZsyYYNG+jdu7eu2Rk0aBADBgxg+/btBg8phMgZGo2GFSuWMnhwPx4/fkTp0u+zadO3dOzYydjRhBAiy/Rudi5fvsxnn30GkGFyYqNGjXjw4IFhkgkhctSjR1EMGdKPFSuWotVq+eSTz9i0aTtlyrxv7GhCCPFW9J6z4+DgwKNHj176WHh4uFxUTIg8QlEUniWmkqqo+PWnn5juN4Ho6CfY2toxefI02rf/2NgRhRDCIPRudlq2bElwcDDlypWjUqXnFxJTqVRERESwYsUKmjVrZuiMQggDSkxWc+zPCA6dvU9UdDzhl34gIuy/gEIR99LMnxdMpQpytpUQwnRk6aKCFy5coGvXrhQsWBCAsWPHEhERQZEiRRg7dqzBQwohDOPSzScs23WJFLUGdeJTbh0PJf7RdQAKlmlM4RqdWfJDBMOtClKldAEjpxVCCMPQu9nJnz8/27dvZ/fu3Zw4cYKnT5/i4OBAz5496dSpE7a2ttmRUwjxli7dfMLC7RdQFIh9+Be3T6xDk5qAmYUNxet+gUvx2gCkqjUs3H6BMV2qScMjhDAJejc7p0+fplKlSnTt2pWuXbumeywuLo4jR47Qvn17gwUUQry9xGQ1y3ZdQqvR8ODid0ReOQiArXMxSjXsj41DId26yv//Z9muS8wf3hA7G0vjhBZCCAPR+2ysXr16cePGjZc+FhYWxoQJE946lBDCsI79GcGzp4/4+/ACXaPjWrYp5VuNT9fovKAAKWoNxy5F5HBSIYQwvEwd2fHx8SE8PBx4fgbHtGnTsLfPePO/27dv6+bxCCFyB0VR2Lzjey4fWY0mNRFzS1uK1+2Bc7Ear91OBRw6c59WtdzlHlhCiDwtU0d22rRpg6IougsIArqvX3yYmZlRvXp1AgMDsy2sEEI/anUqgbMDOHdgMZrUROxcSlChzYQ3Njrw/OjOo6dJJCSnZX9QIYTIRpk6stOiRQtatGgBQM+ePZk2bRplypTJ1mBCiLfz4MF9fHzGcunSRQAKlW/Be1U/wcxcv6l6ySlp2NvKvB0hRN6l9wTlDRs2vPbxGzduSCMkhJEdPvwjfn6TiI9/hoODI67Vv8CpaNUs7cvGOkv3CxZCiFxD799isbGxzJ8/n9OnT6NWq3VDW4qikJiYSGxsLJcvXzZ4UCHEm6WmprJgwRy2bt0EQNWq1QkMnMfi7+/x+GkSyhu2/ycVUNDJlnw20uwIIfI2vc/GCggIYMeOHZQsWRJzc3McHBzw8PBArVYTFxeHv79/duQUQrzB3bt36N37c12j06fPANas2UDRou60quWuV6MDz+fstKotk5OFEHmf3s3Or7/+yogRI1i+fDmff/45bm5uLFy4kAMHDlC+fHmuX7+eHTmFEK/x3//up3v3Tly+HIaTkxNLlqxkzJjxWFo+n2vTyMMNa0tzMtu2qFRgbWlOoypu2RdaCCFyiN7NTlxcHLVq1QKgbNmyXLp0CYB8+fLRr18/fvrpJ4MGFEK8WnJyMrNmTcPHx5OEhARq1qzNtm27adKkabr17GwsGf5pFVQq3tjwqP7/Y3inKnJBQSGESdC72XF2dubZs2cAlChRgidPnhATEwNA4cKFiYyMNGxCIcRL3b59k169urF9+1ZUKhUDBgzhq6/WUbjwy4/GVCldgDFdqmFlaQ5kbHpefG1lac6YrtWoUkpuFSGEMA16NzsNGjRgxYoV3L9/H3d3d5ycnNi5cycAR48exdnZ2eAhhRDp/fDD93Tv3pmrV//GxaUAISGrGTFiDBYWr59MXKV0AeYPb0j3VmUp6JT+PnYFnWzp3qos84c3kkZHCGFS9D7NYvTo0fTs2RNfX182btzIoEGDmDNnDitXruTZs2cMHz48O3IKIYCkpCSCgmaxa9e3ANSpU4+AgLm4uma85cOr2NlY0rp2MVrVcidZrcHa1pqUpBRsLM1lMrIQwiTp3ewULVqUffv2cfv2bQD69u1LwYIF+eOPP6hatSqffvqpoTMKIYAbN67j7e3JjRvXUKlUDB48nIEDh2Jubp6l/alUKhzsrHB2tiMmRiEtTWvgxEIIkTvo3ewMGTKEXr160bBhQ92yjz76iI8++sigwYQQ/7Nnz04CA/1JTk6mYEFXAgPnUqdOfWPHEkKIPEHvOTunT5/O8l+SQgj9JCYmMHmyD35+E0lOTqZ+/YZ8881uaXSEEEIPejc7jRo1Yvv27aSkpGRHHiHE/7t27W++/LILe/fuwczMjBEjxhASshoXF5k8LIQQ+tB7GMva2pr9+/dz8OBB3N3dKVAg/S9elUrF119/nen9abVali5dyvbt23XX8PHz86NEiRJv3Pb7779n/PjxHD58GHd3d31LESJXUhSFnTu3ExQ0i5SUFAoVKszs2fOpWbO2saMJIUSepPeRnYiICGrUqEHVqlVxcXFBUZR0H1qtfpMcQ0JC2Lp1KzNnzmTbtm2oVCoGDhxIamrqa7d78OAB06dP1ze+ELlafHw8EyaMY8aMqaSkpNCo0Qds27ZbGh0hhHgLBr/ruT5SU1MJDQ3Fy8uLpk2fX/E1ODiYJk2acPDgQdq3b//S7bRaLV5eXlSuXJkTJ04YLI8QxnTlShje3p7cvXsHc3NzRo4cS69efTEz0/tvEiGEEP9g1N+iV65cISEhgfr1/zfZ0tHRkUqVKnH69OlXbrdixQrUajWDBw/OiZhCZCtFUdi2bTM9e3bj7t07uLkVYc2aDfTp018aHSGEMAC9j+xUqFDhlRceU6lU2NnZUbx4cXr37k3Hjh1fu6+IiAgAihQpkm55oUKFCA8Pf+k2Fy9eJDQ0lG+//dagt6awsDD8m4q5uVm6/5saqe/tPXv2DD+/Sfz44wEAmjdvycyZgeTP75Rt3/Of5DXM20y9PjD9Gk29PsgdNerd7Pj6+rJgwQKKFy9O27ZtcXV15fHjxxw6dIi///6bjh078ujRIyZMmIClpSXt2rV75b6SkpIAsLKySrfc2tqa2NjYDOsnJiYyfvx4xo8fT8mSJQ3W7JiZqXB2zmeQfb2Mo6Ptm1fKw6S+rDl//jxDhw7l7t27WFpaMnHiRAYOHGiUqxjLa5i3mXp9YPo1mnp9YNwa9W52Ll68SMOGDVm+fHm6X8rDhw9n9OjRPHv2jMWLFzNnzhzWrl372mbHxsYGeD5358XnACkpKdjaZnxSZs6cScmSJfn888/1jf1aWq1CXFyiQfcJz7tYR0db4uKS0GhM7+q0Ul/WKIrCxo3rmT8/iLQ0NUWLujNvXjAeHtV4+tTwP4evI69h3mbq9YHp12jq9UH21ejoaJvpo0V6NztHjx5l4cKFL/3rs3PnzowePRqADz74gK1bt752Xy+Gr6KioihevLhueVRUFBUqVMiw/o4dO7CysqJGjRoAaDQaADp06MDHH3+Mv7+/vuXoZOel8jUarUlfil/qy7zY2Kf4+U3ip58OA9CyZWv8/Gbh6Oho1OdQXsO8zdTrA9Ov0dTrA+PWqHezY2trq5tr828PHz7E0tISeH7G1IvPX6VChQrY29tz8uRJXbMTFxdHWFgYPXr0yLD+jz/+mO7rCxcu4OXlxVdffUWZMmX0LUWIHHXx4nl8fMYSHv7838m4cT506/al3HxTCCGymd7NTqtWrViwYAEFChSgVatWuuVHjhwhODiYli1bkpqayrfffkvFihVfuy8rKyt69OjBvHnzcHFxoWjRosydOxc3Nzdat26NRqMhOjoaBwcHbGxsMlxo8EXT9d5772W4uKEQuYVWq2XDhrUsWRJMWloaxYoVJygomIoVKxs7mhBCvBP0bnZ8fHy4c+cOI0aMwNLSEicnJ2JiYtBoNDRs2BBfX18OHTrE4cOHWb169Rv3N2rUKNLS0pg8eTLJycnUqVOHNWvWYGVlxf3792nZsiWBgYF06tQpSwUKYUwxMTFMnerLr7/+DECbNu2YMsUfe3t7IycTQoh3h0pRFCUrGx4/fpwTJ04QExODm5sbdevWpXbt51d5ffjwIWZmZri5uRk0bHbRaLRERycYfL8WFmY4O+cjJibBJMdipb7XO3fuLL6+44iMjMDKygpv70l89lnXXDVsJa9h3mbq9YHp12jq9UH21ejiki/7Jii/0KBBA6pUqUJUVBTFihVLdyf09957L6u7FSLP02q1rF27ipCQxWg0GkqWLEVQ0ELKlStv7GhCCPFOylKzc/LkSebNm8elS5dQqVRs376dVatW4ebmhq+vr6EzCpFnREc/YdIkb44fPwZA+/YfM2mSH3Z22XcdJyGEEK+n9+UMjx8/Tv/+/bGxsWH8+PG8GAWrVKkS69evZ+3atQYPKURecPr0Sbp1+4Tjx49hY2PDtGmzmDlzjjQ6QghhZHo3OwsXLqRly5Zs2LCB3r1765qdQYMGMWDAALZv327wkELkZhqNhpUrlzF4cF8ePXpE6dLvs3Hjdj755LNcNT9HCCHeVXo3O5cvX+azzz4DyPCLvFGjRjx48MAwyYTIAx4/fsTQof1ZvnwJWq2WTz75jE2btvP++2WNHU0IIcT/03vOjoODA48ePXrpY+Hh4Tg4OLx1KCHyghMnfmfiRC+io59ga2vHpEl+dOjw+pvfCiGEyHl6NzstW7YkODiYcuXKUalSJeD5EZ6IiAhWrFhBs2bNDJ1RiFwlLS2NFSuWsmbNShRFoWzZcgQFLaRUqdLGjiaEEOIl9G52xo0bx4ULF+jatSsFCxYEYOzYsURERFCkSBHGjh1r8JBC5BaRkZFMnDiOs2fPANC5czfGj5+Q7ka2Qgghche9m538+fOzfft2du/ezYkTJ3j69CkODg707NmTTp06vfRu5UKYgt9++4UpU3yIiYnBzs6OqVNn0LZte2PHEkII8QZ6NzunT5+mUqVKdO3ala5du6Z7LC4ujiNHjtC+vbwBCNOhVqtZtCiYdeue3/6kQoVKzJmzgBIlSho3mBBCiEzR+2ysXr16cePGjZc+FhYWxoQJE946lBC5xYMHD+jTp4eu0enW7Qu+/nqLNDpCCJGHZOrIjo+PD+Hh4QAoisK0adNeeiPD27dv6+bxCJHXHT16mClTJvD06VPs7e3x85tJ69ZtjR1LCCGEnjJ1ZKdNmzYoisI/7xn64usXH2ZmZlSvXp3AwMBsCytETlCrU5k3L5CRI4fy9OlTKleuwtatu6TREUKIPCpTR3ZatGhBixYtAOjZsyfTpk2jTJky2RpMCGN48OA+Pj5juXTpIgADBgxg+PAxqFRZvmeuEEIII9P7N/iGDRuyI4cQRnf48I/4+U0iPv4ZDg6OzJo1m88+60hMTAJpaVpjxxNCCJFFejc7SUlJrFixgqNHj5KUlIRWm/5NQKVScejQIYMFFCK7paamsmDBHLZu3QRA1arVmD17AcWLFzNyMiGEEIagd7Mza9YsduzYQd26dalYsSJmZnqf0CVErnH37h18fDy5fDkMgN69+zNixBgsLS2NnEwIIYSh6N3s/Pjjj3h6ejJo0KDsyCNEjvnvf/fj7z+ZhIQEnJyc8PefzQcfNDN2LCGEEAamd7OTlpZG1apVsyOLEDkiOTmZ+fNns337VgBq1KjF7NnzKVzYzcjJhBBCZAe9x6AaN27ML7/8kh1ZhMh2t2/fpFevbmzfvhWVSkX//oNZtepraXSEEMKE6X1kp127dvj5+REdHU21atVeei+sTz75xBDZhDCoH374npkz/UhKSsTZ2YVZs4Jo2LCxsWMJIYTIZno3O2PGjAFg9+7d7N69O8PjKpVKmh2RqyQlJREUNItdu74FoE6degQEzMXVtZCRkwkhhMgJejc7hw8fzo4cQmSLGzeu4+3tyY0b11CpVAwaNIxBg4Zhbm5u7GhCCCFyiN7NTtGiRbMjhxAGt2fPTgIDZ5CcnETBgq4EBMylbt36xo4lhBAih2Wq2ZkwYQLDhg2jWLFib7yruUqlIiAgwCDhhMiKxMQEAgL82bt3DwD16jUkICCIAgXkJrVCCPEuylSzc/LkSXr37q37/HVUKtXbpxIii65d+xtvb09u3bqJmZkZQ4eOon//QXLxSyGEeIdlqtk5cuTISz8XIrdQFIWdO7cTFDSLlJQUXF0LMXv2fGrVqmPsaEIIIYxMbuUs8rz4+HhmzpzKgQP7AGjUqAkzZszBxcXFyMmEEELkBtLsiDztypUwvLw8uXfvDubm5owY4Unv3v1k2EoIIYSONDsiT1IUhW++2cK8eYGo1Wrc3Iowe/Z8qlevaexoQgghchlpdkSe8+zZM6ZPn8yhQ/8FoGnT5kyfHoCTk7ORkwkhhMiNpNkRecpff/2Jt7cnDx7cx8LCktGjx9GjR285C1AIIcQrSbMj8gRFUdi8eQPBwXNJS1Pz3ntFmTMnGA+PqsaOJoQQIpeTZkfkerGxT/Hzm8RPPz2/VUmLFq2ZNm0Wjo6ORk4mhBAiL5BmR+RqFy+ex8dnLOHhD7G0tGTcOB+6dftShq2EEEJkmjQ7IlfSarWsX7+WpUuDSUtLo1ix4syZs4BKlaoYO5oQQog8RpodkevExMQwdaovv/76MwAffvgfpk6dgb29vZGTCSGEyIuk2RG5yrlzZ/HxGUtUVCRWVlZ4e0/ks8+6ybCVEEKILJNmR+QKWq2WtWtXERKyGI1GQ4kSJQkKWkj58hWMHU0IIUQeJ82OMLro6CdMmuTN8ePHAGjf/mMmTfLDzi6fkZMJIYQwBdLsCKM6ffokEyeO59GjR9jY2ODrO4WOHTvJsJUQQgiDkWZHGIVGo2H16hWsXLkMrVZL6dLvExQUzPvvlzV2NCGEECbG6LeG1mq1LF68mCZNmlCtWjX69evHnTt3Xrn+tWvXGDRoEPXq1aNBgwaMGjWKhw8f5mBi8bYeP37E0KH9Wb58CVqtlo4dO7Fp0zfS6AghhMgWRm92QkJC2Lp1KzNnzmTbtm2oVCoGDhxIampqhnVjYmLo27cv+fLlY+PGjaxatYqYmBgGDBhASkqKEdK/uxRF4VliKpHRiTxLTEVRlExtd+LE73Tr9imnTp3A1taOmTPnMH16ALa2dtmcWAghxLvKqMNYqamphIaG4uXlRdOmTQEIDg6mSZMmHDx4kPbt26db/9ChQyQlJTF79mysra0BmDt3Lk2bNuWPP/6gQYMGOV7DuyYxWc2xPyM4dPY+j54m6Za7OtnSqpY7jTzcsLOxzLBdWloaK1cuY/XqFSiKQtmy5QgKWkipUqVzMr4QQoh3kFGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/O0Ow0aNCAZcuW6Rqdf4qNjc32vO+6SzefsGzXJVLUGv49ffjx0yS2HL7Gzl9uMvzTKlQpXUD3WGRkJBMnjuPs2TMAfPZZV7y8JmJjY5OD6YUQQryrjNrsREREAFCkSJF0ywsVKkR4eHiG9d3d3XF3d0+3bOXKlVhbW1OnTp23ymJhYfgRPXNzs3T/z8su3njCwu0XeDFa9e9Bqxdfp6o1LNx+gbGf16BqmQL89tsvTJjgRUxMDHZ2+Zg2bQbt2nXIyehZZkqv36uYeo1SX95n6jWaen2QO2o0arOTlPR8GMTKyirdcmtr60wdqVm/fj2bN29mwoQJFChQ4I3rv4qZmQpn5+y7poujo2227TsnxCepWbrjIgoZm5x/e/H44u3n8LC7yKqvVgBQuXJlVqxYQenSeW/YKq+/fplh6jVKfXmfqddo6vWBcWs0arPzYhgjNTU13ZBGSkoKtravflIURWHRokUsX76cwYMH06dPn7fKodUqxMUlvtU+Xsbc3AxHR1vi4pLQaLQG339O+e+puySnajK9fkp8NFeOh3Li8U0Aunf/kvHjfbG2tiYmJiG7Yhqcqbx+r2PqNUp9eZ+p12jq9UH21ejoaJvpo0VGbXZeDF9FRUVRvHhx3fKoqCgqVHj5bQLUajUTJkxg7969eHt7079/f4NkSUvLvh8yjUabrfvPToqi8OOpe5le/+mDi9w5uQFNagIWVrYEzAzkww/bAtn7HGenvPz6ZZap1yj15X2mXqOp1wfGrdGozU6FChWwt7fn5MmTumYnLi6OsLAwevTo8dJtvL29OXjwIPPnz88wgVkYXnySOt1ZV6+i1aTx8OIeov4+DICdS3FKNRxAwyYtszuiEEII8VpGbXasrKzo0aMH8+bNw8XFhaJFizJ37lzc3Nxo3bo1Go2G6OhoHBwcsLGxYefOnezbtw9vb2/q1q3Lo0ePdPt6sY4wrJRMDF+lxD/m1u+hJEbfBqBQuRa8V60jZuaWJKekYW+b8VR0IYQQIqcY/XYRo0aNIi0tjcmTJ5OcnEydOnVYs2YNVlZW3L9/n5YtWxIYGEinTp3Yu3cvAEFBQQQFBaXbz4t1hGFZW5m/9vGn988/H7ZSJ2FuaUuJer1wcq+me9zG2ug/YkIIId5xRn8nMjc3x8vLCy8vrwyPubu78/fff+u+Dg0NzcloArC3tcTVyZbHT5PSnYml1ah5cH4Xj679BEC+AqUo2bAf1vmenxWnAgo62ZLPxug/YkIIId5x8k4kXkulUtGqljtbDl/TLUt59ohbv68hMeYuAIUqtKJo1Y6ozP53FEgBWtV2l7uXCyGEMDppdsQbNfJwY+cvN0lVa4i+e5Y7pzahTUvG3CofJev3Iv97HunWV6nAysKcRlXcjJRYCCGE+B/TvWSjMBg7G0sGti/L3TNbuPX7GrRpyeQrWIaKbSdmbHT+/2N4pyovvUeWEEIIkdPkyI54ozt3bjF7qiePrl8BoHDFNhT16AD/GLZS8XzoysrSnOGdqlClVNavaC2EEEIYkjQ74rX27fuemTP9SExMxNnZhSl+AWjsy3DoTPq7nhd0sqVVbXcaVSmCnUxKFkIIkYvIu5J4qaSkJIKCZrFr17cA1KpVh8DAeRQqVBiAVrXcSVZrsLa1JiUpBRtLc5mMLIQQIleSZkdkcPPmDby9x3D9+jVUKhUDBw5l8ODhmJv/Y9hKpcLBzgpnZztiYhSTv8y5EEKIvEuaHZHOd9/tIiDAn+TkJAoUKEhAwFzq1Wtg7FhCCCFElkmzIwBISkokIMCf77/fDUC9eg0JCAiiQIGCxg0mhBBCvCVpdgTXrv2Nt7cnt27dxMzMjKFDR9Kv36B0w1ZCCCFEXiXNzjtMURR27fqWOXNmkpKSgqtrIQID51G7dl1jRxNCCCEMRpqdd1RCQjwzZ05j//7nN1dt1KgJM2bMwcXFxcjJhBBCCMOSZucddOXKZby9x3D37h3Mzc0ZMWIMvXv3x8xMLqgthBDC9Eiz8w5RFIXt27cyb14gqampFC7sxuzZC6hRo6axowkhhBDZRpodE6EoCvFJalJSNVhbmWNva5nuIn/Pnj3D338KBw8eAOCDD5rh7x+Ik5OzsSILIYQQOUKanTwuMVnNsT8jOHQ2/e0bXJ1saVXLnUYebty++Tc+PmO5d+8uFhYWjBo1lp49+8oVj4UQQrwTpNnJwy7dfMKyXZdIUWv4d9vy+GkSmw9dZdlXq7l/bidpaWqKFHmPoKBgPDyqGSWvEEIIYQzS7ORRl24+YeH2CyjK86+Vfz2uTk3kzqkNxN6/AEDteh+wYO5cHB3z52xQIYQQwsik2cmDEpPVLNt1CUXJ2OQAJDy5xa1ja0hNjEZlZoF79U5YlG2BhZVdjmcVQgghjE2anTzo2J8RpKg1GZYrikLU34d5cGE3KFqs7V0p1bA/di7FSU3TcuxSBK1rF8v5wEIIIYQRSbOTxyiKwqGz9zMsT0uJ5/bJ9cQ9vASAU7GalKj7JeaWtgCogENn7tOqlrtMTBZCCPFOkWYnj4lPUqc76wog/tENbh0PRZ0Y83zYqmZnCpZpkq6pUYBHT5NISE7D3tYyh1MLIYQQxiPNTh6Tkvq/4StF0RJ5+SAP//z++bCVQ6Hnw1bOrx6qSk6RZkcIIcS7RZqdPMba6vmdyNXJz7hz4mviIsIAcC5Rh+K1u2NuafPa7W2s5SUXQgjxbpF3vjzG3tYS88Q7/PnjCtTJsajMLSlWsysFSjd87VwcFVDQyZZ8NvKSCyGEeLfIO18eotFoWL16BWe+X4aiaLFxdKNUwwHYOr33xm0VoFVtmZwshBDi3SPNTh7x+PEjJk3y5uTJ4wC4lmlA0RpdMbOwfuO2KhVYWZjTqIpbdscUQgghch0zYwcQb3by5HG6dfuUkyePY2Njy8yZcwieOw8LS+sMt4n4N9X/fwzvVAU7G5mYLIQQ4t0jzU4uptFoCAlZzJAh/Xjy5DHvv1+WLVt20KFDR6qULsCYLtWwsnw+YfnfTc+Lr60szRnTtRpVShXI0exCCCFEbiHDWLlUVFQkEyaM5+zZ0wB8+mkXvL0nYmtrq1unSukCzB/ekGOXIjh0Jv1dzws62dKqtjuNqhTBTiYlCyGEeIfJu2Au9PvvvzJpkg8xMdHY2dkxefJ02rX76KXr2tlY0rp2MVrVcichOY3klDRsrC3IZ2Mhk5GFEEIIpNnJVdLS0ggJWUxo6FcAlCtXgblzgylRotQbt1WpVNjbWsoFA4UQQoh/kWYnl4iICMfXdxznz/8BQJcu3Rk/3hdr6zefbSWEEEKIV5NmJxf45ZefmDLFh9jYWOzt7Zk6dSYfftjW2LGEEEIIkyDNjhGp1WqWLFnA+vVrAahUqTJz5gRTrFhxIycTQgghTIc0O0by4MF9fH3H8eefFwDo3r0nnp5eWFlZGTmZEEIIYVqk2TGCI0cO4ec3kWfP4nBwcGT69ABatGhl7FhCCCGESZJmJwelpqaycOE8Nm9eD4CHRzVmz55P0aLuRk4mhBBCmC5pdnLIvXt38fEZS1jYJQB69erLyJGeWFrKsJUQQgiRnaTZyQH//e9+/PwmER8fT/78+ZkxYzYffNDc2LGEEEKId4I0O9koJSWFCRNmsn7982Gr6tVrMnv2fNzcihg5mRBCCPHuMPqNQLVaLYsXL6ZJkyZUq1aNfv36cefOnVeuHxMTw7hx46hTpw516tRhypQpJCYm5mDizImLi+XLL7vqGp1+/QaxatXX0ugIIYQQOczozU5ISAhbt25l5syZbNu2DZVKxcCBA0lNTX3p+qNGjeLevXusW7eOxYsXc+zYMaZPn57Dqd/szJlTXLlyGRcXF1auXMOoUWOxtJRbOQghhBA5zajNTmpqKqGhoYwcOZKmTZtSoUIFgoODiYyM5ODBgxnWP3fuHKdOnSIwMJDKlSvToEED/P392bNnD5GRkUao4NU++KA5S5eu4MiRIzRq1MTYcYQQQoh3llGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/OsP6ZM2dwdXWlTJkyumV169ZFpVJx9uzZHMmcWRYWFjRr1gJXV1djRxFCCCHeaUadoBwREQFAkSLp57EUKlSI8PDwDOtHRkZmWNfKygonJ6eXrq8PCwvD933m5mbp/m9qpL68z9RrlPryPlOv0dTrg9xRo1GbnaSkJIAMt0iwtrYmNjb2peu/7HYK1tbWpKSkZDmHmZkKZ+d8Wd7+TRwdbbNt37mB1Jf3mXqNUl/eZ+o1mnp9YNwajdrs2NjYAM/n7rz4HJ6fsm1rm/FJsbGxeenE5ZSUFOzs7LKcQ6tViIsz/Bld5uZmODraEheXhEajNfj+jU3qy/tMvUapL+8z9RpNvT7IvhodHW0zfbTIqM3OiyGpqKgoihf/352+o6KiqFChQob13dzcOHToULplqampPH36lMKFC79VlrS07Psh02i02bp/Y5P68j5Tr1Hqy/tMvUZTrw+MW6NRBwkrVKiAvb09J0+e1C2Li4sjLCyM2rVrZ1i/Tp06REREpLsOz4tta9asmf2BhRBCCJHnGPXIjpWVFT169GDevHm4uLhQtGhR5s6di5ubG61bt0aj0RAdHY2DgwM2NjZUq1aNmjVr4unpybRp00hMTMTPz49PPvnkrY/sCCGEEMI0GX3696hRo+jcuTOTJ0+me/fumJubs2bNGqysrAgPD6dx48bs27cPAJVKxdKlS3F3d6d3796MGTOGDz74gGnTphm3CCGEEELkWipFURRjhzA2jUZLdHSCwfdrYWGGs3M+YmISTHIsVurL+0y9Rqkv7zP1Gk29Psi+Gl1c8mV6grLRj+wIIYQQQmQnaXaEEEIIYdKk2RFCCCGESZNmRwghhBAmTZodIYQQQpg0ORsLUBQFrTZ7ngZzczOTvQQ4SH2mwNRrlPryPlOv0dTrg+yp0cxMhUqlytS60uwIIYQQwqTJMJYQQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O9lAq9WyePFimjRpQrVq1ejXrx937twxdqxsERISQs+ePY0dw+CePn3K1KlT+eCDD6hZsybdu3fnzJkzxo5lME+ePMHLy4v69etTo0YNBg0axPXr140dK1vcunWLGjVqsHPnTmNHMagHDx5Qvnz5DB/bt283djSD2b17N+3atcPDw4P27duzf/9+Y0cymJMnT7709StfvjwtW7Y0djyDUKvVBAcH06xZM2rUqMEXX3zBH3/8YZQs0uxkg5CQELZu3crMmTPZtm0bKpWKgQMHkpqaauxoBrVu3ToWL15s7BjZYuzYsVy4cIEFCxbw7bffUrlyZfr378+NGzeMHc0ghg4dyr1791i1ahXffvstNjY29OnTh6SkJGNHMyi1Ws348eNJTEw0dhSD+/vvv7G2tubXX3/lt99+03189NFHxo5mEHv27GHixIl069aNvXv30q5dO8aOHcu5c+eMHc0gatSoke51++233wgNDcXCwoIhQ4YYO55BLF++nB07djBz5kx2795N6dKlGThwIJGRkTmeRZodA0tNTSU0NJSRI0fStGlTKlSoQHBwMJGRkRw8eNDY8QwiMjKSAQMGsGjRIkqVKmXsOAZ3584djh07hp+fH7Vr16Z06dJMmjSJwoULs3fvXmPHe2sxMTG4u7szY8YMPDw8KFOmDMOGDePRo0dcu3bN2PEMasmSJeTLl8/YMbLF1atXKVWqFIUKFcLV1VX3YWNjY+xob01RFBYtWkTv3r3p3bs3JUqUYPjw4TRs2JBTp04ZO55BWFlZpXvdnJycCAwM5MMPP6RLly7GjmcQhw8fpkOHDjRu3JgSJUrg6+tLfHw858+fz/Es0uwY2JUrV0hISKB+/fq6ZY6OjlSqVInTp08bMZnh/PXXX+TPn5/vvvuOatWqGTuOwTk7O/PVV19RpUoV3TKVSoWiKMTGxhoxmWE4OzuzYMECypYtC8Djx49Zs2YNbm5uvP/++0ZOZzinT59m27ZtzJkzx9hRssXff/9tUq/XP928eZMHDx5kOEq1Zs0aBg8ebKRU2WvTpk2Eh4czYcIEY0cxGCcnJ44ePcr9+/fRaDRs27YNKysrKlasmONZLHL8O5q4iIgIAIoUKZJueaFChQgPDzdGJINr0aIFLVq0MHaMbOPo6EjTpk3TLdu/fz93796lcePGRkqVPaZMmcI333yDlZUVy5cvx87OztiRDCIuLg5vb28mT56c4d+iqbh69Squrq588cUX3L59mxIlSjBs2DCaNGli7Ghv7fbt2wAkJibSv39/wsLCcHd3Z+jQoSb5uyclJYUVK1bQu3dvChUqZOw4BjNp0iQ8PT1p2bIl5ubmmJmZsWjRIooXL57jWeTIjoG9mPNgZWWVbrm1tTUpKSnGiCTe0tmzZ5k4cSItW7Y0uV+0vXv3ZseOHXz88ccMHz6cv/76y9iRDGLatGlUr17dZOav/Ftqaiq3b98mPj6eMWPG8NVXX+Hh4cHAgQM5fvy4seO9tfj4eAB8fHzo0KEDoaGhNGrUiGHDhplEff+2Z88eUlJSTO5kjxs3buDo6MiyZcvYtm0bnTp1wsfHhytXruR4FjmyY2AvxstTU1PTjZ2npKRga2trrFgiiw4dOsT48eOpVq0aCxYsMHYcg3sxDDJjxgzOnz/Pxo0bCQwMNHKqt7N7927OnDnD999/b+wo2cbKyorTp09jYWGh+8OqSpUq3LhxgzVr1tCgQQMjJ3w7lpaWAPTv359PP/0UgIoVKxIWFsbatWvzfH3/tnv3bj788EOcnZ2NHcVgHjx4gJeXF+vWraN27doAeHh4cP36dZYsWcKyZctyNI8c2TGwF4fMo6Ki0i2PiorCzc3NGJFEFm3cuJGRI0fywQcfsGrVKpOY+AnPTzvfu3cvGo1Gt8zMzIwyZcpk+LnNi3bs2MGTJ090p7vWqFEDAD8/P9q3b2/kdIZjZ2eX4QhyuXLljHKmi6G9+F1Zrly5dMvff/997t+/b4xI2SY6Oppz587Rrl07Y0cxqIsXL6JWq/Hw8Ei3vFq1arphypwkzY6BVahQAXt7e06ePKlbFhcXR1hYmK67Fbnf5s2bmTFjBl9++SULFy7M8KaSl0VFRTFu3Lh0Z7Wo1WrCwsIoU6aMEZMZxrx589i3bx+7d+/WfQCMGjWKr776yrjhDOTKlSvUqFEjw7WfLl26ZBKTlitVqkS+fPm4cOFCuuVXr141ynyP7PTHH3+gUqmoW7eusaMY1Is//P/+++90y69evUqJEiVyPI8MYxmYlZUVPXr0YN68ebi4uFC0aFHmzp2Lm5sbrVu3NnY8kQm3bt0iICCA1q1bM3jwYJ48eaJ7zMbGBgcHByOme3sVKlSgcePGTJ8+nZkzZ+Lo6MiKFSuIi4ujT58+xo731goXLvzS5QUKFKBo0aI5nCZ7lCtXjrJlyzJ9+nT8/Pxwdnbmm2++4fz583z77bfGjvfWbGxsGDBgAMuWLaNw4cJUrVqVH374gWPHjrFu3TpjxzOoK1euUKxYMZOb5lC1alVq166Nj48Pfn5+uLm5sXv3bo4fP87mzZtzPI80O9lg1KhRpKWlMXnyZJKTk6lTpw5r1qwxqaMDpuy///0varWagwcPZrg20qeffsrs2bONlMwwVCoVCxcuZP78+YwZM4Znz55Ru3ZtNm3axHvvvWfseCITzMzMWLFiBfPmzWPMmDHExcVRqVIl1q5dS/ny5Y0dzyCGDRuGra2t7jplZcqUYcmSJdSrV8/Y0Qzq8ePHODk5GTuGwZmZmRESEsLChQuZMGECsbGxlCtXjnXr1lG9evUcz6NSFEXJ8e8qhBBCCJFDZM6OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI0QeI5fGyhmGfJ7lNRPCuKTZESKbtGjRAl9fX4Pu8/r163Tv3t2g+xQZLV++nDVr1hhkXy97zcqXL8+SJUsMsv/XuX//PuXLl9d93LlzJ8v72rlzp24/t27deuk6v/zyi24dgO3bt+u+btGiRZa/txBvS5odIfKQ/fv3c+7cOWPHMHkLFy4kKSnJIPt62Wu2bds2unTpYpD9Z8bQoUPZtm2b7uaMb8PMzIz9+/e/9LF9+/al+7ply5Zs27aNpk2bvvX3FeJtSLMjhBA5rHr16ri5ueXY9ytevDjVq1c3yP35atas+dJmJzU1lUOHDlGxYkXdMhcXF6pXr46Li8tbf18h3oY0O0LkkPv37+Pt7U3jxo2pXLkyDRo0wNvbm5iYGN06iqKwadMm2rdvT9WqVWndujWrVq1CURSWLFnC0qVLgfTDICkpKSxbtoy2bdvi4eHBhx9+yFdffYVWq9Xt9969ewwdOpR69epRrVo1unXrxs8//5wu39WrVxk8eDA1a9akZs2aDB8+nHv37r2xrmPHjvHll19So0YNGjduzNSpU4mNjdU9fvv2bUaNGkWjRo2oXr06PXv25OzZs+mel/Lly7N//35GjRpFjRo1qFOnDpMmTSIhISFTz80LZ86coUePHlSrVo26devi4+NDdHS07vGdO3dSqVIlLly4QLdu3fDw8KBZs2asWrVKt86LIZilS5fqPl+yZAmtW7dm6dKl1KtXj1atWhETE0NycjLz58/nww8/pEqVKtSsWZO+ffty+fJl3XYve83+PYwVFRXFhAkTaNq0KVWrVqVz584cPnw43fNcvnx5Nm3axKRJk6hbty41atRg1KhRPH78+I2v0T8tWbKEtm3bcujQITp06ICHhwcdO3bk3LlznD9/ni5dulC1alU6dOjA8ePHM2zfrl07rl69yo0bN9It/+WXX1CpVHzwwQd65REiJ0izI0QOSEpKolevXty4cQM/Pz/WrFlDjx492Lt3LwsWLNCtt2DBAmbNmkXTpk1Zvnw5Xbp0ITg4mJCQELp06ULnzp2B/w2DKIrCkCFDWL16NZ07d2bFihW0bduWhQsX4ufnB4BWq2Xw4MEkJiYSFBRESEgITk5ODBs2TDeH49atW3z++ec8efKE2bNnM2vWLO7du0f37t158uTJK+v6+eefGTBgAE5OTgQHB+Pl5cWRI0cYNWoU8Hy+SqdOnbh37x6TJ09m3rx5qFQqevfuzalTp9Lty8/Pj6JFixISEsKAAQPYsWMHK1asyNRzA3D69Gn69OmDjY0NCxcuZOLEiZw6dYpevXqRnJys249Wq2XMmDG0a9eOr776ilq1ajFv3jx+/fVX3XML0LlzZ93nAA8fPuTgwYMsWLCAMWPG4OzsjLe3N99++y2DBg0iNDQUX19frl69iqenJ4qivPQ1+7fHjx/TuXNnTp06haenJ0uWLKFo0aIMHz6c7777Lt26wcHBaLVaFixYgLe3Nz/99BMBAQGvfH1eJSIigsDAQIYMGcLChQuJjY1l1KhRjB07lq5du7JgwQK0Wi2enp7pnjuARo0akT9//gxHd/bt20fr1q2xtLTUO48Q2U4RQmSL5s2bKz4+PoqiKEpYWJjSvXt35c6dO+nWGTx4sPLhhx8qiqIosbGxSuXKlZWAgIB06wQGBip9+/ZVFEVRFi9erJQrV0732E8//aSUK1dO2bNnT7ptli1bppQrV065du2aEhUVlWGduLg4JSAgQPn7778VRVGUsWPHKg0aNFCePXumWycmJkapVauWMnv27FfW2KlTJ+WTTz5Jt+zAgQPKhx9+qERERCijR49W6tatq8TFxekeV6vVSps2bZTOnTsriqIo9+7dU8qVK6eMHz8+3X569uypdOjQIdPPTbdu3ZQOHTooaWlpusdv3rypVKxYUdm4caOiKIqyY8cOpVy5cso333yjWyclJUXx8PBQ/P39dcvKlSunLF68WPf1i+f92LFj6bbr16+f8sMPP6TLFBoaqpQrV06JjIxMt+0//XP/QUFBSuXKlZW7d++mW6d3795Ko0aNFI1Go9ume/fu6dbx9fVVqlevrrzKi+d2x44dGWr5+eefdctWrlyplCtXTtm+fbtu2YEDB5Ry5copYWFh6Z67e/fuKRMmTNC9NoqiKImJiUr16tWVY8eOvbReHx8fpXnz5q/MKUR2kyM7QuSAihUrsnnzZtzd3bl37x6//voroaGh3Lx5E7VaDcD58+dRq9W0bt063ba+vr6Ehoa+dL+nTp3C3Nycdu3apVv+8ccfA3Dy5EkKFizI+++/z5QpU/D19WXfvn0oisKECRMoV64cACdOnKBevXrY2NiQlpZGWloa9vb21K5dm99///2l3zs5OZm//vqLVq1apVvepk0b/vvf/1K4cGFOnTpF8+bNcXBw0D1uYWFB+/bt+fPPP9MNU1WvXj3dftzc3EhMTMzUc5OUlMSFCxdo2rQpiqLoaihWrBhlypTh2LFj6barUaOG7nMrKytcXFx03+t1XjxfL7Zbs2YN7dq1IyoqitOnT7Nt2zaOHj0KoHtd3+TUqVPUqFGDYsWKpVv+8ccf8+jRI27evKlb9rLnKKsTqWvWrKn7vGDBghn27+TkBEBcXFyGbf89lHX06FHs7OyoV69elrIIkd0sjB1AiHfF2rVrWblyJTExMRQsWJDKlStja2vLs2fPAHj69CmAXpM5Y2NjcXZ2xsIi/T9lV1dXAJ49e4ZKpSI0NJTly5dz8OBBdu3ahaWlJa1atWLatGk4OTnx9OlT9u3bl+FsmtfliY2NRVEUChQo8Np8L95I/6lgwYIoikJ8fLxuma2tbbp1zMzMdPNx3vTcxMXFodVqWbVqVbr5Ny9YW1un+9rGxuaV3+t1/l3Lr7/+SkBAADdv3iRfvnyUL1+efPnyAZm/tk5sbCzu7u6v/F7/bDZe9xzpy97ePsOyfz8vr1K/fn2cnZ3Zv38/I0aMYN++fbRt2xZzc/MsZREiu0mzI0QO+P7775k9ezbjxo2jc+fOujft0aNH8+effwLg6OgIQHR0NKVLl9ZtGx4ezp07d6hVq1aG/ebPn5+YmBjS0tLSNTxRUVEAODs7A1C4cGGmTZuGn58fV65c4cCBA6xatYr8+fMzffp0HBwcaNiwIX379s3wPf7dSL1gb2+PSqVKNwEYnp+Vc/z4capWrUr+/PlfOoH20aNHunwvsr7Om56bKlWqoFKp6NOnD+3bt8+w/b+bBEO4e/cuw4cPp2XLlqxcuZLixYsDsGnTJt38n8zIzHOU21hYWPDhhx9y4MAB+vTpwy+//MK6deuMHUuIV5JhLCFywNmzZ3FwcGDQoEG6RichIYGzZ8/qzpqqWrUqlpaWGc7C+frrrxk9ejQqlQozs/T/ZOvWrYtGo8lwRObFxNZatWpx7tw5GjZsyMWLF1GpVFSsWBFPT0/KlStHRESEbj/Xr1+nYsWKeHh44OHhQZUqVVi3bh0HDx58aU358uWjYsWKGfL+9ttvDBo0iIiICOrUqcPRo0d1R68ANBoNP/zwAx4eHpk+FfpNz42NjQ2VKlXi5s2buvweHh6ULVuWpUuXcvLkyUx9nxf+/Ty/zKVLl0hJSWHw4MG6RgfQNTovjri8aV916tTh3LlzGc58++6773B1daVEiRJ6Zc8p7dq149q1a6xevZqCBQumGxoUIreRIztC5ICqVauyZcsWZs+eTfPmzYmKimLNmjU8fvyY/PnzA8+HaHr16sXXX3+NlZUV9evX588//2Tjxo2MHTsWCwsL3RGOvXv3Uq1aNT744APq1auHn58fUVFRVKpUiVOnTrFq1So+/fRT3n//fVJSUrCxscHb25uRI0dSsGBBfv/9dy5fvkyvXr0AGDZsGJ9//jmDBw+me/fuWFtbs23bNg4dOsTixYtfWdeoUaMYOnQoY8aMoVOnTkRHRzN//nyaN29OxYoVGTFiBL/88gu9evVi0KBBWFlZsXHjRu7du8fq1asz/fxl5rkZO3YsgwYNYty4cXz88cdoNBpCQ0O5cOECQ4cO1ev1cnR05Ny5c5w+fZratWu/dJ3KlStjYWHB3Llz6devH6mpqezcuZOffvoJQDcH6N+v2b/n5vTt25fvvvuOvn37MmLECJydndm9ezcnTpwgICAgU42XMdStWxdXV1dWr15Nnz59UKlUxo4kxCvlzn9FQpiYTz/9lOHDh7N//34GDhzI4sWLqV27Nv7+/jx9+pTr168D4OXlxbhx49i3bx+DBg1i165dTJw4kX79+gHw4Ycf4uHhga+vL2vWrEGlUrFy5Uo+//xz1q9fz6BBgzhw4ACenp7MmjULeD5fJTQ0lLJlyzJr1iz69+/P4cOH8ff3p1OnTgBUqFCBTZs2oVKp8Pb2ZtSoUTx69Ihly5bx4YcfvrKu5s2bs3LlSu7fv8/w4cNZsGAB//nPf5g/fz4AZcuWZfPmzRQsWJCJEyfi5eWFoiisX7+ehg0b6vUcvum5ady4MWvWrCEiIoJRo0bh7e2Nubk5a9euzTCx902GDBnCn3/+ycCBAwkPD3/pOiVKlGD+/PlERkYydOhQpk6dCsCGDRtQqVScOXMGyPia/ZurqytbtmyhSpUqzJo1i9GjRxMeHk5ISAifffaZXrlzkpmZGW3atEGtVr906FCI3ESlZHV2mxBCiFzt/v37tGzZksDAQF1jawy+vr6cOnWKI0eOGC2DeLfJkR0hhDBxd+/e5fz586Smpubo942Ojub8+fMZJrELkdOk2RFCCBO3fPlyunXr9sohuexy+PDhl96aRIicJsNYQgghhDBpcmRHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJk2ZHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJ+z90dTHceAKPZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from scipy.stats import linregress\n", + "\n", + "# Compute the best fit calibration curve\n", + "fit_params = linregress(cal_curve['conc_mM'], cal_curve['area'])\n", + "slope = fit_params[0]\n", + "intercept = fit_params[1]\n", + "\n", + "# Plot the fit over the data\n", + "conc_range = np.linspace(0, 8, 100)\n", + "cal = intercept + slope * conc_range\n", + "plt.plot(cal_curve['conc_mM'], cal_curve['area'], 'o', markersize=10, label='measurement')\n", + "plt.plot(conc_range, cal, '-', color='k', label='fit')\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the Calibration\n", + "We also have a set of lactose solutions with known concentrations that we did not use when fitting the \n", + "calibration curve. We can use the `.map_peaks` method when quantifying these test \n", + "data to see if we get the same concentrations out that we know the peaks represent. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunittrue_conc_mM
013.560.2814491.66446010715.6473021.285878e+061lactose8.118521mM8.0
013.560.2805901.6492935316.6756686.380011e+051lactose3.981028mM4.0
013.560.2799681.6392232600.4008963.120481e+051lactose1.899415mM2.0
013.560.2795441.6362992154.1437642.584973e+051lactose1.557426mM1.5
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... concentration unit true_conc_mM\n", + "0 13.56 0.281449 1.664460 ... 8.118521 mM 8.0\n", + "0 13.56 0.280590 1.649293 ... 3.981028 mM 4.0\n", + "0 13.56 0.279968 1.639223 ... 1.899415 mM 2.0\n", + "0 13.56 0.279544 1.636299 ... 1.557426 mM 1.5\n", + "\n", + "[4 rows x 10 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the test data \n", + "files = glob.glob('data/test/lactose*.csv')\n", + "\n", + "# Instantiate a dataframe to store the results\n", + "test_data = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and quantify the peaks\n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Now, use the map_peaks method to quantify the signal based off our \n", + " # calibration curve\n", + " mapping = {'lactose': {'retention_time': 13.56,\n", + " 'slope': slope,\n", + " 'intercept': intercept,\n", + " 'unit': 'mM'}}\n", + " measured_conc = chrom.map_peaks(params=mapping)\n", + "\n", + " # Parse the known concentration from the file name\n", + " known_conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add it to the dataframe and concatenate\n", + " measured_conc['true_conc_mM'] = known_conc\n", + " test_data = pd.concat([test_data, measured_conc])\n", + "test_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like it's in good agreement! We can confirm this by plotting the measured \n", + "value versus the true value. If in agreement, everything should fall on the identity line. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6t0lEQVR4nO3dd1xT1//H8VcSpiAyHKi4rRNxrzrrnq2z7j2r1i1QFy5wb9yz7j1q1Q53a93bqnXg3gKCyApJfn/wNb8iWgkmBMLn+Xj023Lvzck7J/mSD+eee65Cp9PpEEIIIYSwAEpzBxBCCCGEMBYpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwrcwcwB51Oh1Zr/AWXlUqFSdoViUlfpwzp55Qh/ZwypJ9Thqn6WalUoFAoPnlcuixstFodISFvjdqmlZUSFxcHwsMjiYvTGrVtkZD0dcqQfk4Z0s8pQ/o5ZZiyn11dHVCpPl3YyKkoIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWI11OHk6K+CuntGi1miQdr9UqiI5WERsbg0Yjs+5NyVL6WqWyQqmUvy2EEMKYpLB5j06nIyoqgoiIsCQXNe+8eqVEq5XZ9inBUvra3t4RJyfXJF3CKIQQ4tOksHlPeHgIUVER2Nk5YGeXAaVSleQvHZVKkaZHENKStN7XOp2O2NgYIiJCAciUyc3MiYQQwjJIYfMvWq2GqKi3ODo64+iYyeDHW1kpZX2EFGIJfW1jYwtAREQoGTO6yGkpIYQwAvlN+i8ajQbQYWtrZ+4oIp14V9xoNHFmTiKEEJYhVRU2CxcupFOnTgm2Xb9+nY4dO1KqVClq1qzJihUrUiCJ8eY76HQ63kTG8up1FG8iY9Hp0u7pE2F8MrdGCCGMK9Wcilq9ejXz5s2jfPny+m2hoaF069aNOnXqMH78eC5evMj48eNxdnamZcuWZkz7aZHRao5fecaBc494+TpKvz2Lsz11ynpQpYQ7GeyszZhQCCGEsDxmL2yeP3/OqFGjOHfuHPny5Uuwb8uWLdjY2DBu3DisrKwoUKAA9+/fZ9myZam6sLkaFMyCnVeJUWsSjf28eh3FxoO32HEsiP7NPfHML5NGhRBCCGMx+6mov//+m0yZMvHTTz9RsmTJBPvOnj1L+fLlsbL6//qrUqVK3L17l+Dg4JSOmiRXg4KZs/USser4S8XfP/H07udYtYY5Wy9xNSh1vg7xaTqdjv37fyY0NMTcUYQQQvyP2UdsatWqRa1atT6479mzZxQqVCjBtqxZswLw5MkT3NySP9phZZW4ptNqkz/fQaGAt9FqFuy8ik6XuKB5n+5//7Ng51Vm9v9STksZ4N20FIUCzDll6eLF8/j7j2Pr1p8+uy2VSvHBz6Q5qVTKBP8WpiH9nDKkn1NGauhnsxc2/yU6OhobG5sE22xt468iiYmJSXa7SqUCFxeHDzyfilevlMn+kvnz3CNi1Elf1E9H/MjNyWvPqVcht8HPl96Z+xeUUqnQ50huUaLVKlAqlWTKlAE7u9R5NZ6Tk725I6QL0s8pQ/o5ZZizn1N1YWNnZ0dsbGyCbe8KmgwZMiS7Xa1WR3h4ZKLtsbExaLVaNBpdMtZI0fH7mYfJyvPr6Yd8VTqnUa+QqVq1HH5+k9izZxdXr14hS5YsfP/9UAAWLJjDy5cvKFmyDGPGTMDZ2RmAe/fuEhg4m0uXLpAhQwbKlCnPgAGDcXPLDMCbN29YsiSQv/76k+DgV2TK5Ez16jX5/vsh+kvkN2xYy65d23j58gWZM2ehceOv6dKlBwqFghUrlrB//89s27ZHn3Pfvj0EBIznzz/PAtCqVVOqV6/J6dMnCQkJYdKkqZQuXZYNG9awa9cOQkJekStXHjp27Ezdug3Q6eD8+bMMGdKf2bMXMGvWVJ48ecwXXxRm1KhxHD58gG3bNhMXF0e9eg0YPHiEvp+PH/+DFSuWcO/eXbJkyUKdOvXp0qWHvpiuWrUc3t6jOHTody5fvoSTkxMtW35Lp07dOH/+LAMH9gWgRYsmjBzpR/36jViyZAEHDvxKaGgI2bPn4Ntv29GsWauPvk8aTfytO8LCIomKMmyla1NTqZQ4OdkTHh6FRpO21wxKzaSfU4b0s+kEBd1h+vQpTJ48DTc3N5P1s5OTfZL+oE3VhY27uzsvXrxIsO3dz9myZfustj9UuHzOSrZvItW8CI369IHv0QEvX0fxNjoOR3vjno6aO3cGw4f/gI/PaObPn8X48aPJmzcfY8dOJCoqilGjvFm3bjUDBgzm1auX9O/fk9q16zFgwBCio6NZuXIJffv2YM2aTdjb2+Pv78eLF8+ZOHEqrq6uXL16mcmTJ5A7d16+/bYdf/55jDVrVjJx4mRy5crL339fZtIkP7Jnz0H9+o2SnHvXru1MnTqbjBkzkj9/QZYuXchvv+1n6FAf8ubNx8WL55k2bTLh4W9o0aI1EL8G0fz5s/D1HYutrQ2jRnnTt293KlX6ksDApVy4cI4ZMyZToUJlqlSpxsmTfzFmjC8DBw6hfPlKPH78iNmzp/HgwX0mTpyiz7Jw4VyGDPFm6FAffv11H0uWLMDLqxQlSpTE338ao0Z5s2zZj+TPX4CdO7dy+PBBxo8PIEuWrBw/fowZM6aQL19BSpYs9Z+vOXnFdMrQaLSpNpslkX5OGdLPxrVnzy78/ccTHR3F1KmTmTx5GmDefk7VhU358uXZtGkTGo0GlUoFwIkTJ8iXL99nza8xhZjYz/trOzrG+IVNgwZNqFmzNgDffNOCP/88Ru/e/ShatDgAFSpUJCjoDgA7d27DzS0zQ4f66B8/YcIUGjeuzeHDB2jUqCnly1fEy6s0X3wRP+8pe/Yc7NixhTt3bgHw5MkjbG1tyJ49J+7u7ri7u5M5c1ayZXM3KHelSlUoX74iAFFRUWzevIExY8ZTpUo1AHLm9ODFi6ds2LBGX9gA9Oz5HZ6eJQCoWbMWW7ZsxNt7FHZ2duTJk5eVK5cSFHSHKlWqsWbNSpo0+Vo/mpIzpwcjRoxk4MC+PH36hOzZcwDQsGFTfVHWq9d37NixlcuXL1KyZGkyZnQCwNnZBVtbOx4/foy9vR05cuTEzS0zLVu2IXfuvOTOLacZhRCWJSoqksmTJ/LTTzsBqFixMoMGDTNzqnipurBp2bIly5cvZ9SoUfTs2ZPLly/z448/Mn78eHNHS8TWRvVZj7ezNf5bkTt3Hv1/vztVlCNHTv02GxtbYmPjr8q6efMG9+/fo27dagnaiI2N5d69uwA0b96aP/88xm+/7efRo4cEBd3myZPHeHjEf3HXq9eIvXt/om3b5hQo8AXly1ekRo2vcHc3rLDx8Mil/+9794KIjY1h0iQ/AgL+/33XaDTExsYSExP90dfr6uqWYN6KjY0NsbEx+td7/frf7N//s37/u8UT7927qy9s8uTJmyCbg4MDarX6g7lbtGjNsWOHad68EYULF6VChUrUqlUXFxdXg16/EEKkZrdv38LbewhBQbdRKpX07TuAHj366AcgzC1VFzZubm4sX74cf39/mjdvTpYsWfD29qZ58+bmjpaIo701WV3seRka9ckrov5NAWR2tsfBzvhvxb8vk3/nY/cj0mp1lClTjmHDfBPtc3TMiE6nw8dnCHfu3KZu3QZ89VVt+vTpz7Rp/vrjnJ2dWbVqA1evXubMmVOcOnWCTZvW0aNHH7p16wWQaOXluLjEtxJ4N0H8XS6IHz36d5Hx7iaY1tb/P7n8/df7X/de0mp1tG/fmYYNmyTa925OEZBo8vqHXsM7uXLlZvPmXVy4cJYzZ07xxx9HWLNmJSNH+n3weYQQIq05efIvBg/uR3R0NFmyZGXy5BmUK1fB3LESSFWFzZQpUxJt8/LyYvPmzWZIYxiFQkHd8rlY/9tNgx6nA+qU8zD70vr58xfg4MHfyJo1m/7LPDw8jEmT/GjbtiMODo6cOHGcJUtWU7y4JxBflDx+/FA/CvTrr/uIiIigZctv8fIqRY8efZg6dRIHD/5Gt269sLa25u3bt+h0Ov3rffTovydc58mTF5VKxbNnT/WnogC2b99MUNAdRowYmezXe//+vQSjQxcunGPLlo0MH+6Lvf2nZ/S//55t3boJFxcX6tSpT/nylejXbxCDB/fj4MHfpLARQliEYsU8cXV1I1++/Pr5lqmNXNBvRFW9smNrrUrynaYUCrC1VlHF07BTNabQvHkrIiIiGDduFLdu/cPt27cYN24U1679Tb58+XFzc0OlUnHo0O88efKYGzeuMWaML8HBwajV8VeuxcTEsGDBXH75ZS9Pnz7h0qULXLhwDk9PLwBKlChJRMQb1q1bzdOnT/jtt1/Yt2/Pf8XC0dGRZs1asmzZIn75ZS+PHz9i//6fWbBgLq6uyZ9n1aFDZ44ePcSKFUt48OA+586dISBgAm/ehCcYsfkv9vbxV+bdunWTyMhIQkKCmT17Gn/+eZRnz55y8uRf3Lr1j/71CyFEWvT48SP9SLWTkxOrVq1n/vwlqbKogVQ2YpPWOdhZ07+5J3O2XoJPLNKn+N8//Vt4porF+XLkyElg4BIWLw6kX7+eqFQqihf3Yt68Rfo5IqNGjWflyiXs3LkVV1c3vvyyKm3atOePP46i0+n4+uvmvHkTzurVy3nx4jkZM2akZs3afPfdQABKly5L79792L59C6tWLadUqdIMGDCYSZP8/jPb998PxcXFlRUrlvDq1UuyZMlKjx69ad++S7Jf71df1WH8eFi7diXr1q0mY0YnqlSpps+aFAUKFKRy5Sr4+f1A79796dGjDxqNhlmzphEaGoKrqxvNm7emU6duyc4phBDmotPp2LZtM9OnB+DtPZJWrdoCGHxBSEpT6NLh7aY1Gi0hIW8TbVerYwkOfoqbW/YEczeSyspKSVycNtG9ov7dwe9+trVW0b+FJ575UtfVXWnFu75O6z73M2dKVlZKXFwcCA19axF9nVpJP6cM6WfDREREMGHCGH77bT8AderUZ/r0OZ+cNmHKfnZ1dUj769ikVZ753ZjZ/0uOX33GgbMJ7+6d2dmeOuU8qOKZnQwmmDAshBBCfI5r167i4zOUhw8fYGVlxcCBQ+nUqZvZ54ImlXyzmkgGO2vqlstFnbIevI2OIzomDjtbKxzsrNLMh0MIIUT6odPp2LRpHbNmTUOtVpM9ew6mTp2Fl1cpc0cziBQ2JqZQKHC0tzb64ntCCCGEMd2+fZPp0yej1Wr/Nw/RHyenTOaOZTApbIQQQgjBF18U/t+9/2xp165Tmj27IIWNEEIIkQ7pdDo2bFhLlSpVyZs3P4B+MdW0TAobIYQQIp0JC3vN2LE/cPToYXbvLsy6dVs/uNJ6WiSFjRBCCJGOXLx4Hl/fYTx79hQbGxtat26HtbXlzAOVwkYIIYRIB7RaLT/+uILAwDloNBpy587DtGlzKFKkqLmjGZUUNkIIIYSFe/PmDb6+wzh+/BgADRs2YfTocTg4OJo5mfHJvaJEsu3bt4eqVcsZrb1WrZqyYsUSo7UnhBAinp2dHRERb7C1tcXPbxIBAdMtsqgBGbERn6F27bpUrFjZ3DGEEEJ8gEajQavVYm1tjbW1NVOmzCQi4g1ffFHY3NFMSkZsRLLZ2tol+U7YQgghUk5w8Cv69evFvHkz9duyZ89h8UUNSGFj0SIiIpg61Z8mTepQv34NBg7sy40b1/T79+zZRdu2zalduwrDhw9kw4a1tGrVVL+/atVy7Nu3J0Gb/z5d9O9TUf7+4+jVK+Hdtl+8eE716hU4e/Y0AHv3/kS3bu2pVasKdepUZcCA3vzzz42P5r9y5RL9+/eiVq0qtGjRmJkzp/L2bUSCLOvWrWbUqBHUrVuNxo1rM2/eTOLi4vTH3LhxncGD+1G3bjWaNq3HtGn+REXF37tLp9Oxfv2PtG79DbVrV6Fr1/b6G74JIURadfr0Sdq0ac6pU3+xbdsWXrx4bu5IKUoKGwNERUV+9J+YmJgkHxsdHZ3sY5NKp9MxYsRAHj16wNSpc1i69EeKFy/Bd9/14ObNG/z22y/MmDGZVq3asGrVBjw9vVi+fHGy+6ZhwyZcv/43jx491G/77bf9ZM6chTJlynH06GFmzJjMt9+2Z8OGbcydu5iYmBimTJnwwfZu377FoEH9KF++Ij/+uBE/P3/++ec6Q4YM4N83pF+5cimlSpVl5cr1dO/em61bN3HgwK8APH36hO+/742LiytLlqwiIGA658+fY/r0AACWLl3Ijh1bGTx4OGvWbKZ167bMmDGFHTu2JrsfhBDCXDQaDQsXzqNPn268evWSAgW+YN26LWTNms3c0VKUzLExQOXKZT66r2rVGixevEz/81dfVSE6OuqDx5YtW54VK9bqf27UqDahoaEfPLZYMU82bNhmcNZz585w5cpl9uz5HRcXFwD69OnPlSuX2Lp1E/fuBVG7dj1atWoLQNeuPfnnn+vcunXT4OcCKF26LDly5OS33/bTvXtvIL6wadCgMUqlkkyZMuHjM5oGDRoD4O6enaZNmzFjxuQPtrdx4xrKlStP1649AciVKzfjxvnz7bffcOHCOSpUqABAxYqVad26rf6Yn3/ezeXLF2nQoDE//bSTjBmdGDVqHFZW8R91X9/RXLx4nqioKDZv3sCYMeOpUqUaADlzevDs2VM2bFhDixatk9UPQghhDi9ePGfkyBH6EfLmzVvj7T0Se3t7MydLeVLYWKibN+NP8Xz77dcJtsfGxhITE8Pdu0HUq9cowb7Spcsmu7BRKBQ0aNCY3377he7de3Pr1j8EBd1h0qRpAJQqVYZ79+6yevVyHj16yIMH97l9+yZarfaD7f3zzz88evSAunWrJdp3//49fWGTJ0++BPscHBz1p6Lu3LlF4cJF9UXNuxylSpXh+vW/iY2NYdIkPwICxuv3azSa//VRNLa2dsnqCyGESElxcXH06NGZhw/vkyFDBkaPHk+jRk0//UALJYWNAU6cOP/RfUqlKsHPhw8f/+ixCkXCM4D79h1M8rFJpdVqcXBwYMWKdYn2WVtb06FDqwSndOK3J15O+/1j/j1/5X2NGjVl1aplXL/+NwcP/k6JEl7kzp0HgAMHfmXixLHUrduAokWL06TJNwQF3WHWrKkfbEun01KvXkM6d+6eaJ+zs0uC1/KxzCqV1Udv4qbVxh8zYcIU8uTJm2j/h/pCCCFSIysrKwYMGMSKFUuZPn12oj/40hspbAxgb5/B7McmVf78BXn79i2xsbHkz19Av33q1EkULPgFhQoV4fLli3z7bTv9vuvX/07QhpWVVYLJum/fRhAaGvLR53R3z07p0mU5fPgAhw79TpcuPfT71q5dRdOmzRg+/Af9tj/+OArEFyLvFyD58hXg7t07eHjk0m978OAegYFz6du3P87OTp/sg7x58/H777+g0WhQqeILz6NHDzNnznTWrt2CSqXi2bOn+lNRgP403YgRIz/ZvhBCmMvz58948eI5JUqUBKB+/UbUrl0vwQh1eiWThy1UxYqV+eKLQowd+wPnzp3h0aOHLFgwl717fyJPnnx06tSVY8cOs379jzx8+IAdO7by66/7ErRRokRJdu/ewT//3CAo6DaTJvl98v80jRo1ZdeuHbx+/Zratevpt2fNmo0rVy7xzz83ePz4EZs3r2fHji1A/Omx97Vt25GbN/9h+vQA7t4N4u+/rzJu3GgePLiPh0fuJPVBy5bfEhYWxowZk7l37y6XLl1g0aL5lC9fEUdHR5o1a8myZYv45Ze9PH78iP37f2bRonm4urolqX0hhDCHP/44Sps2zRg8uD+vXr3Ub5eiJp70goVSqVTMnr2QhQvn4uf3A1FRUeTJkw9//2mUKxc/P2XChMksW7aI5csXU7JkaZo0+YZTp07o2xg+/AdmzpzCd991x9nZhbZtOxAZ+eEJ0e/UrFmbWbOmUa1aDRwd/39VyyFDvJk2zZ8BA3pjY2NNwYKFGD16PH5+I7l27SqlS5dN0I6nZwlmzQpk+fJF9OjRCXt7O8qUKU///oOTfAfazJmzMHt2IIsWzad7945kzOhI7dr16NOnPwDffz8UFxdXVqxYwqtXL8mSJSvduvWiY8euSWpfCCFSklqtJjBwDj/+uAKAYsWKJ7oiV4BC9/4kinRAo9ESEvI20Xa1Opbg4Ke4uWVP1hwLKyslcXEfngybFqxYsYT9+39m27Y9nz7YzNJ6X7/zuZ85U7KyUuLi4kBo6FuL6OvUSvo5ZaT1fn7y5DG+vkO5fPkSAO3adWLIkBFJ/kMvpZiyn11dHVCpPn2iSUZshBBCiFTs8OGD+PmNJDw8jIwZnRg/3p9ateqaO1aqlaTCpnbt2slqXKFQcODAgWQ9VgghhBDxV5WGh4fh6enF1KmzyJnTw9yRUrUkFTaPHz+mRo0auLq6JrnhkJAQjh07luxgIuX16NGHHj36mDuGEEKIfxk1yo/8+QvQuXO3VHfKOjVK8qmo/v374+XlleSGL168yNGjR5MVSgghhEivDhz4lcOHDzJp0lQUCgUZMjjIH50GSFJhM3HiRHLlyvXpA/8ld+7cTJw4MVmhhBBCiPQmJiaGWbOmsnnzBgC+/LIqjRt//YlHifclqbBp3drw++a4urom63GpQ7q7UEyYSTq8KFEI8QH379/Dx2coN25cA6B7917Uq9fQzKnSpiQVNkWLFk1ygwqFgmvXriU7kDnFr06rICYmGmtrW3PHEelAbGz8GhQqlVygKER69csve5k4cSxv377FxcWFSZOmJVgRXRgmSb9N3/1VWaxYMapVq/bB+/NYAqVShb29AxERr4mLU2NnlwGlUvXR+w29T6tVoNHIX+ApIa33tU6nIzY2hoiIUOztHVEqZRFwIdKjRYvms2TJAgDKli1HQMBMsmXLZuZUaVuSCptly5axb98+Dhw4wKZNm6hbty6NGzemUqVKSf7STyucnFyxtrYlIuI10dGJF/H7L0ql8qN3qxbGZSl9bW/viJNT0q82FEJYlqpVq7Nq1TK6du1J79795LYIRmDQysOxsbEcO3aM/fv3c+jQIRwcHGjQoAFNmzalZMmSpsxpVB9befjfdDodWq0WrVaTpDZVKgWZMmUgLCwyTY8kpAWW0tcqlVWqHqlJ6yu1phXSzykjNfXzgwf3yZ07j/7n58+fW8woTZpbedjGxoY6depQp04doqOjOXToEPv376dz585kzpyZxo0b06hRI4oUKZLs4KmFQqFApVLp7wr9KVZWSuzs7IiK0pj9/zSWTvpaCJEWRUVFMnnyRH79dR9r126hUKHCABZT1KQWyf5z0c7OjkaNGjF//nz++usvvv76a1auXEnz5s2NmU8IIYRI827fvkWHDt/y0087UavVXL58wdyRLNZnncwLCgpi//79/PLLL9y6dYvMmTPToEEDY2UTQggh0jSdTseuXduZOnUS0dHRZMmShYCAGZQvX9Hc0SyWwYXN3bt3ExQzzs7O1KtXj9GjR1OhQgWLm0wshBBCJEdk5FsmTRrHvn17AKhcuQr+/tNwdXUzczLLlqTC5v79++zfv5/9+/dz8+ZNnJycqFOnDj4+PlSqVCnJ81CEEEKI9GLXru3s27cHlUpF//6D6Nq1Z6q+YMBSJKmwqV+/PiqVijJlyjBmzBiqVq2qvyTt+fPniY7PkSOHcVMKIYQQaUybNh24du1vWrb8ltKly5o7TrqR5FNRGo2GM2fOcPbs2U8ee/369c8KJYQQQqQ1ERERrFixhD59+mNnZ4dKpWLSpKnmjpXuJKmwmTx5sqlzCCGEEGnW9et/4+09hIcPHxAREcGoUX7mjpRuJamwkUu4hRBCiMR0Oh2bN69n5sypqNVqsmfPQdOm35g7VrqWrMu9Y2NjCQoK4s2bNx/cX758+c8KJYQQQqR24eHhjB8/ioMHfwegZs3ajB/vT6ZMzuYNls4ZXNicOHGCYcOGERoaCvz/DTIVCgU6nQ6FQiFzbIQQQli0f/65wdChA3j8+BFWVtYMGTKC9u07yZInqYDBhU1AQAAuLi6MGzcOZ2dnE0QSQgghUjcnJyfevHmDh0cupk6dRfHiJcwdSfyPwYXNgwcPmD17NrVq1TJFHiGEECJViomJwdbWFoDs2XOwYMFS8ubNT8aMGc2cTPybwSsFFS5cWH8aSgghhEgPLl48T7NmDTl27LB+W4kSJaWoSYUMHrEZOXIkw4cPR6lU4uXlhb29faJjZIE+IYQQlkCr1fLjjysJDJyNRqNh+fLFVKtWU+bSpGLJvipq5MiRH90vk4eFEEKkFjqdjjeRscTqFMRExWJnrUpSYRISEsKYMb4cP34MgAYNGjNmzHgpalI5gwubcePGoVKpGDJkCFmyZDFFJiGEEOKzRUarOX7lGQfOPeLl6yj99izO9tQp60GVEu5ksLP+4GPPnz+Lj89QXr58ga2tLd7eo2jRorUUNWmAwYVNUFAQc+fO5auvvjJFHiGEEOKzXQ0KZsHOq8SoNbxfirx6HcXGg7fYcSyI/s098cyf8G7bQUF36NmzM1qtlrx58zFt2hwKFSqccuHFZzF48nCePHmIior69IFCCCGEGVwNCmbO1kvEqjUA6N7b/+7nWLWGOVsvcTUoOMH+/PkL0Lx5K5o0+YYNG7ZJUZPGGDxiM2jQIKZOnUqmTJkoVaoUDg4OpsglhBBCGCwyWs2CnVfR6RIXNO/T/e9/Fuy8SvtKVhQrUhg3t8wA/PDDWKyskjUNVZiZwe/azJkzefXqFT179vzgfoVCwbVr1z47mBBCCGGo41eeEfO/kZqk0Gq13D3/MwPX7adChcosWrQcpVIpRU0aZvA717hxY1PkEEIIIT6LTqfjwLlHST4+Nuo1906sIuLFLQCyZ89OXFwcNjY2poooUkCSCpuHDx/i7u6OtbU1AwYMSFLDsbGxPH/+nFy5cn1WQAC1Wk1gYCC7d+8mLCyMokWLMnz4cMqUKfPZbQshhLAMEVHqBFc//Zfwp9e4d3I1cTERKK1syV2uHcN9hmFj8+GrpETakaTJw/Xq1TN4bZrr169Tr169ZIV636JFi9i+fTuTJk1i165d5M+fn169evH8+XOjtC+EECLti4n99CkonVbD40u7uX00kLiYCOydPShSzxfXvBWIjolLgZTC1JI0YqPT6Th69ChBQUFJbvj+/fvJDvW+gwcP0qRJE6pWrQqAr68vW7du5eLFi9SvX99ozyOEECLtsrVRffIYrUbN60cXAMhcsBoepVqitIo/9WRnK/NqLEGS38UFCxYY3LixFjJydnbm8OHDdOzYkezZs7N582ZsbGwoWrSoUdoXQgiR9jnaW5PF2Z5Xr6M+ekWUytqOfF/2JPrNM1xzlwNAAWR2tsfBTgobS5Ckd/HgwYOmzvGfRo0axZAhQ6hduzYqlQqlUsncuXPJnTt3stu0sjJ4CZ//pFIpE/xbmI70dcqQfk4Z0s/GVa9CLtb/dlP/s06r4fHl3djYO5O1cC0AMrh4kMHFI8Hj6lfIhbX1p0d8xH9LDZ/nJBU2OXPmNHWO/3Tnzh2cnJxYsGAB2bJlY+vWrfj4+LBu3TqKFClicHtKpQIXF9Osv+PklPimoMI0pK9ThvRzypB+No4m1Quy/cgdYtQaoiOCuffXSt4G30WhVOHsUQobB9cExysUYGutonH1gjjay8RhYzHn51mh0+k+tYaRWT1+/Jj69euzevVqypUrp9/evn17XFxcknWKTKPREh5u3NWTVSolTk72hIdHodFojdq2SEj6OmVIP6cM6Wfju3wnmDEzVnPv1Fo0sZGorO3JXaEjLrlKJzhOQXxhM6xtaUoUcPtwY8Igpvw8OznZJ2kkKNWfULx8+TJqtZoSJUok2F6yZEmOHTuW7Hbj4kzzC0Sj0ZqsbZGQ9HXKkH5OGdLPxqFWx/Lz5kXc+WMNABlc85D/yx7YOGbWH6MgftVhG2sV/Vt4UjSPi/S9kZnz85zqC5vs2bMD8M8//+Dl5aXffvPmTfLkyWOuWEIIIVIZjUZDz55duHQp/qqntu06U7JGW45cfJ5gfZvMzvbUKedBFc/sZJAJwxYn1b+jXl5elCtXDh8fH/z8/HB3d2fXrl2cOHGCDRs2mDueEEKIVEKlUlGrVh3u3g1i4sTJ1KgRP1m4QcV8RKs12NrbEhMVg521ymhX7YrUJ9XPsQEICwtjzpw5HDlyhLCwMAoVKsTQoUOpUKFCstrTaLSEhLw1akYrKyUuLg6Ehr6VIU0Tk75OGdLPKUP6+fPExMQQHPyKHDniL3LRarWEhASTOXOWBMdJP6cMU/azq6tDkubYGFzYhISE4O/vz5EjR4iKiuL9h6eFm2BKYZO2SV+nDOnnlCH9nHwPHtzH23sIMTHRrF+/lQwZPn61q/RzykgNhY3Bp6LGjRvH0aNHady4Me7u7iiVsvaCEEKIlPXLL3uZOHEsb9++xcXFhfv371G0aHFzxxKpgMGFzR9//MHIkSNp06aNKfIIIYQQHxUdHc306QFs374FgDJlyjF58kyyZctm5mQitTC4sLGxsTHKHbuFEEIIQ9y9G4S392Bu3bqJQqGgZ8++9OnTHyurVH8djEhBBp9Hqlu3Lj///LMpsgghhBAfNWfOdG7duomrqxsLFy6nf/9BUtSIRAz+RBQrVow5c+bw8OFDSpYsiZ2dXYL9CoWC/v37Gy2gEEIIATB69Hhsbe0YMeIHsmTJau44IpUy+KqoT92bSaFQcP369c8KZWpyVVTaJn2dMqSfU4b088fdvn2LY8cO0717789uS/o5ZaTJq6Ju3LiRrEBCCCFEUuh0Onbv3sGUKROJjo4md+481KlT39yxRBrxWScn79y5w5s3b3B1dSV37tzGyiSEECKdiox8i7//ePbu/QmASpW+pEyZcp94lBD/L1mFzc8//8zUqVN59eqVflvmzJkZNmwYzZo1M1Y2IYQQ6cjNm/8wYsQg7t+/h1KppF+/gXTv3lvWSxMGMbiwOXToECNGjKBSpUoMHTqUzJkz8+LFC3766Sd++OEHnJ2dqVmzpgmiCiGEsFQ//bSTSZP8iI2NJWvWbEyZMlNGakSyGFzYLFq0iAYNGjB79uwE21u2bMmQIUNYsmSJFDZCCCEMkjGjE7GxsVStWoOJE6fg4uJi7kgijTJ4fO/mzZs0b978g/uaN28uk4uFEEIkSXR0tP6/v/qqNkuXrmbevEVS1IjPYnBh4+LiwuvXrz+4LzQ0FBsbm8/NJIQQwoLpdDo2bVpH06b1eP78mX57hQqVZD6N+GwGf4IqV67M/PnzefLkSYLtjx8/ZsGCBVSpUsVo4YQQQliW8PBwhg8fyJQpk3j58oX+nk9CGIvBc2yGDh1Ky5YtadCgAaVKlSJLliy8fPmSixcvkilTJoYNG2aKnEIIIdK4K1cu4+MzhCdPHmNlZc3gwcPp0KGzuWMJC2PwiE2WLFnYuXMnnTp1Ijo6mqtXrxIdHU2nTp3YuXMnOXPmNEVOIYQQaZROp2Pt2tV069aBJ08ekzOnB6tXb6Bjxy4oFApzxxMWJlnr2Li5uTFixAhjZxFCCGGBtmzZyMyZUwCoU6ceY8dOwsnJycyphKVKUmETGBhI69atyZYtG4GBgf95rNwEUwghxL99/XVzdu/ewddfN6dNm/YySiNMKsmFTfXq1aWwEUII8UlarZbffttPvXoNUSqV2Nvbs3btZlQqlbmjiXQgSYXNv9emkXVqhBBCfExoaCijR/tw/PgxHj9+RI8efQCkqBEpxuDJw4GBgTx//vyD+x49esSECRM+O5QQQoi05/z5s7Rp04zjx49ha2uLi4uruSOJdMjgwmbBggUfLWwuXbrE1q1bPzuUEEKItEOr1bJs2WJ69uzMixfPyZs3H2vXbqFFi9bmjibSoSSdimrbti2XLl0C4i/ba9OmzUePLVGihHGSCSGESPWCg18xapQ3J0/+BUCTJt8wcuRYMmRwMHMykV4lqbDx9/dn//796HQ6FixYQMuWLXF3d09wjFKpxMnJiXr16pkkqBBCiNTn5csXnDt3Bjs7O3x9x/DNNy3kqidhVkkqbAoUKMCAAQOA+Kue3l36LYQQIn0rUqQYkyZNpUCBLyhY8AtzxxHC8AX63hU4r169Qq1Wo9PpgPhzrFFRUZw9e5Z27doZN6UQQohU4eXLF4wbN4p+/QZSvHj81IP69RuZOZUQ/8/gwubGjRsMHTqUu3fvfnC/QqGQwkYIISzQiRPHGTXKm5CQYF6+fMGmTTvlbtwi1TG4sJk2bRrh4eH4+Phw+PBhbGxs+Oqrrzh27BjHjh1jzZo1psgphBDCTOLi4li8OJAVK5ag0+n44otCTJ06W4oakSoZ/Km8dOkSgwYNomvXrjRu3JjIyEjat2/P4sWLqVOnDmvXrjVFTiGEEGbw/PkzevfuyvLli9HpdLRq1Ya1a7eQL19+c0cT4oMMHrGJjY0lX758AOTPn59//vlHv69Fixb4+fkZL50QQgizefjwAZ06fcvr169xcHBgzJgJNGjQ2NyxhPhPBo/Y5MiRg4cPHwKQJ08eIiIiePToEQA2NjaEhYUZN6EQQgizyJnTA0/PkhQpUowNG7ZLUSPSBINHbOrVq8eMGTOwt7enQYMG5M+fn9mzZ9O7d29WrlxJrly5TJFTCCFECnj27CmZMmXC3j4DSqWSgIDp2NraYmtra+5oQiSJwSM2AwYMoGzZsmzfvh2AH374gQMHDtCsWTNOnjzJ999/b/SQQgghTO/IkUN8+20zJk+eqN/m5OQkRY1IUwwesYmOjmbevHmo1WoAqlWrxs8//8zVq1cpXrw4uXPnNnpIIYQQpqNWxzJ37kzWrfsRgDt3bhMZ+VZuiyDSJINHbFq3bs2+ffuwtrbWb8uVKxcNGzaUokYIIdKYx48f0bVrB31R07FjF1avXi9FjUizDB6xCQsLw8XFxRRZhBBCpKCDB3/Dz28UERFvcHLKxIQJk6lZs5a5YwnxWQwesencuTPTpk3j5MmThISEmCKTEEIIE3v7NgJ///FERLzBy6sUmzbtkKJGWASDR2x2797NkydP6Nat2wf3KxQKrl279tnBhBBCmI6DgyOTJk3l9OmT9O8/KMH0AiHSMoMLm6ZNm8ot6YUQIg369df4+ZG1atUF4Msvq/Lll1XNnEoI4zK4sPnU5dzPnj1LdhghhBDGFx0dzYwZk9m2bTOOjo4ULVqc7NlzmDuWECZh8BybokWLcvny5Q/uO3v2LA0bNvzsUEIIIYzj3r0gOnduw7Ztm1EoFLRt25EsWbKaO5YQJpOkEZuVK1cSGRkJgE6nY+vWrRw7dizRcRcuXMDGxsa4CYUQQiTL3r0/MWnSOKKiInFxcSUgYDqVK1cxdywhTCpJhU1sbCyBgYFA/OTgrVu3JjpGqVSSMWNGvvvuO+MmFEIIYRCtVsvEiWPZuXMbAOXLVyQgYLqM1Ih0IUmFTd++fenbty8ARYoUYcuWLXh5eZk0mBBCiORRKpXY2dmjUCjo06c/vXp9h0qlMncsIVKEwZOHb9y4YYocQgghPoNOpyM6Ohp7e3sAhgwZQf36DSlVqoyZkwmRsgwubACOHz/O4cOHiYqKQqvVJtinUCgICAgwSjghhBCfFhn5loCACTx58pilS1djZWWFjY2NFDUiXTK4sFm+fDkzZszA1tYWV1fXRGvayBo3QgiRcm7e/Adv78Hcu3cXpVLJhQvnKF++orljCWE2Bhc269evp2nTpvj7+8sVUEIIYSY6nY7t27cwfXoAMTExZMmSlSlTZlK2bHlzRxPCrAwubIKDg2nVqpUUNUIIYSYRERFMmjSWX37ZB0CVKtWZOHEKrq6uZk4mhPkZvEBfsWLFuHXrlimyCCGESILRo3345Zd9qFQqBg0azvz5i6WoEeJ/DB6xGTlyJIMHDyZDhgyULFlSPwP/33LkkKW6hRDCVL7/fgj379/Fz2+STBAW4j0KnU6nM+QBxYsXR6vVotPpPjpR+Pr160YJZyoajZaQkLdGbdPKSomLiwOhoW+Ji9N++gEi2aSvU4b0c8pISj+Hh4dz9uxpatWqo9+m1WpRKg0edE+35POcMkzZz66uDqhUn/7MGzxiM2nSpGQFEkIIYbirV6/g4zOEZ8+esnz5GkqXLgsgRY0QH2FwYdO8eXNT5BBCCPEvOp2O9evXMGfODOLi1OTIkVMu2hAiCZK1QF9sbCzbtm3jr7/+4uXLlwQEBHD69GmKFy8ut1oQQojPFBb2Gj+/kRw5cgiA2rXr4ufnj5OTk5mTCZH6GTyWGRISQsuWLfH39+f+/ftcvnyZ6Ohojh49SqdOnbhw4YIpcrJr1y4aNWpEiRIlaNy4Mfv37zfJ8wghhDldunSBtm1bcOTIIaytrfH1HcOMGfOkqBEiiQwubKZNm8bbt2/Zt28fO3fu5N3c47lz51KiRAnmzZtn9JC7d+9m5MiRtGnThp9//plGjRoxdOhQkxVRQghhLtev/83Tp0/IlSs3a9Zsom3bDrKiuxAGMPhU1OHDhxk5ciR58uRBo9Hot9va2tK9e3d8fX2NGlCn0zF37ly6dOlCly5dAOjfvz/nz5/n9OnTlC5d2qjPJ4QQ5tSmTQc0Gi3ffNMCR0dHc8cRIs0xeMQmJiYGZ2fnD+5TqVSo1erPzZRAUFAQjx8/pmnTpgm2r1ixgj59+hj1uYQQIqWdP3+WVq1a8ebNGyD+fnsdOnSWokaIZDJ4xKZEiRJs2LCBGjVqJNq3Z88ePD09jRLsnXv37gEQGRlJjx49uHbtGh4eHnz33XfUqlUr2e1aWRn3Usl319Yn5Rp78Xmkr1OG9LNpabVali9fwoIF89BoNCxeHMiIET+YO5bFks9zykgN/WzwAn1nz56la9euFChQgBo1arBs2TK6du3K3bt3+fPPP1m+fDmVKlUyWsDdu3fj7e2Nh4cHAwYMoEiRIvz6668sXryYVatWUblyZYPb/K/FBYUQwtRevXrFwIEDOXr0KAAtWrRgypQpODg4mDmZEGmfwYUNwJkzZ5g5cyaXL19Gq9WiUCgoVqwYQ4cOpUqVKkYNuG/fPoYMGYKfnx/t27fXb+/duzcAS5cuNbhNjUZLeHiU0TJCfHXq5GRPeHgUGo2samlK0tcpQ/rZNE6fPoWPzzBevnyBnZ0do0f70bVrJ968iZZ+NiH5PKcMU/azk5O9aVYeBihfvjybNm0iOjqasLAwHB0dsbe3N8lKmO7u7gAUKlQowfaCBQty5MiRZLdrqiW1NRqtLNedQqSvU4b0s/H88steRo4cgVarJX/+AkybNociRQqjUCikn1OI9HPKMGc/J6sSWbRoET169MDOzo5s2bJx9epVqlSpwurVq40cL/5u4g4ODly6dCnB9ps3b5I7d26jP58QQphKhQqVcXPLzDfftGD9+q0ULPiFuSMJYXEMHrFZvnw5gYGBdO7cWb8tT548fPPNN8ycORN7e3vatGljtIB2dnb07NmTBQsWkC1bNry8vNi7dy/Hjx83SSElhBDGdPv2LX0B4+rqyubNO3F1dTNzKiEsl8GFzZYtWxgyZAg9e/bUb3N3d8fX1xdXV1fWrFlj1MIGoF+/ftjb2zN79myeP39OgQIFmD9/PhUrVjTq8wghhLHExcWxZMkCli9fzMSJU2jS5BsAKWqEMDGDC5vnz59TvHjxD+4rUaIECxYs+OxQH9KtWze6detmkraFEMKYnj9/zsiRwzh37iwAN25c0xc2QgjTMniOTa5cufjrr78+uO/UqVP6yb5CCJEe/fnnMdq2bca5c2fJkCEDU6bMZPhwWZ9GiJRi8IhNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRAiVVOr1SxYMJfVq5cDUKRIMaZOnUWePHnNG0yIdMbgwqZDhw48e/aMVatWJZi8q1Kp6NKlC127djViPCGESBuuXr2sL2ratGnP0KE+2NramjmVEOlPshboA3jz5g0XLlwgLCwMJycnvLy8cHFxMXY+k9BotISEvDVqm1ZWSlxcHAgNfStrJJiY9HXKkH423LJli8mbNy916zZI8mOkn1OG9HPKMGU/u7o6mG6BPoCMGTNSvXr15D5cCCHSNLU6lkWLAmnZ8lty5vQAoFevvmZOJYQwuLCJiopi8eLFHD58mKioKLTahBWZQqHgwIEDRgsohBCpzePHj/DxGcrVq5c5ffoka9ZsMsnK60IIwxlc2Pj7+7N9+3YqVKhA0aJF5f/MQoh05eDB3/DzG0VExBsyZnSiR48+8ntQiFTE4MLmt99+Y8iQIfqbUAohRHoQGxvLrFlT2bRpPQBeXiWZMmUWOXLkNHMyIcS/GVzYxMXF4eXlZYosQgiRKr18+YJBg77j2rW/AejSpQcDBgzG2trazMmEEO8zePy0atWqHDt2zBRZhBAiVcqUyRmdToezszPz5i1myJARUtQIkUoZPGLTqFEj/Pz8CAkJoWTJktjb2yc6plmzZsbIJoQQZhMTE4NKpcLKygobGxtmzJiHlZUV2bLJ6upCpGYGr2NTpEiR/25QoeD69eufFcrUZB2btE36OmWk536+dy8Ib+8h1KxZm379Bpr0udJzP6ck6eeUkSbXsTl48GCyAgkhRFqwd+8eJk3yIyoqkpCQEDp16kbGjBnNHUsIkUQGFzY5c/7/FQBRUVFERETg7Ows55uFEGlaVFQU06b5s3PnNgDKlatAQMB0KWqESGOStfLw2bNnmT59OleuXOHdmSwvLy+GDBlCpUqVjBpQCCFM7c6d23h7D+HOnVsoFAp69fqOPn36o1KpzB1NCGEggwub8+fP07VrV3LlykW/fv3InDkzL168YO/evfTs2ZO1a9dSunRpU2QVQgiji4qKpGfPToSGhpI5cxYCAqZToYL8gSZEWmXw5OHOnTujVCpZsWJFgr9mtFotPXr0QKFQsHLlSqMHNSaZPJy2SV+njPTUz7t2bWf//r0EBEzDzS1zij53eupnc5J+ThmpYfKwwevYXLlyhc6dOycaolUqlXTs2JHLly8b2qQQQqSoW7f+4cqV//9d9c03LVi0aHmKFzVCCOMzuLBxcHAgLi7ug/vUajUGDgAJIUSK0el07NixlY4dv2X48IG8fh0KxC9TIfd7EsIyGPz/5DJlyrB48WLevk14KiciIoKlS5dSrlw5o4UTQghjefs2gh9+GM6ECWOIiYmhYMEvkL/DhLA8Bk8eHjZsGC1atKBOnTrUrFmTLFmy8PLlS44cOUJMTAwBAQGmyCmEEMl248Z1vL0H8+DBfVQqFQMGDKZLlx4ySiOEBTK4sMmTJw+bN28mMDCQY8eOERYWRqZMmahYsSIDBgygYMGCpsgphBAG0+l0bN26iRkzJhMbG4u7e3amTJlJqVJlzB1NCGEiyVrHpmDBgowaNYosWbIA8Pr1a549eyZFjRAi1Tl16i9iY2OpUeMrxo8PwNnZxdyRhBAmZPA4bHh4ON26daNTp076bZcvX6ZZs2b069ePqKgoowYUQghDvbuIQaFQ4Ofnz+jR45gzZ6EUNUKkAwYXNjNmzODWrVsMHTpUv61SpUosXLiQq1evMm/ePKMGFEKIpNLpdKxfv4YxY3z1xY2TkxOtWrVFoVCYOZ0QIiUYXNgcOnQIHx8f6tWrp99mY2NDrVq1GDp0KPv37zdqQCGESIrw8DCGDv2e6dMD+Pnn3Rw//oe5IwkhzMDgOTZv377Fycnpg/vc3NwIDQ397FBCCGGIy5cv4uMzlKdPn2Btbc3Qod5UqVLN3LGEEGZg8IhN8eLF2b59+wf37dixg8KFC392KCGESAqtVsuPP66ge/eOPH36BA+PXPz440bateskp56ESKcMHrH57rvv6NWrFy1atKBu3bq4ubkREhLCwYMH+fvvv1m8eLEpcgohRCITJ/qxc+dWAOrVa8iYMRPImDGjmVMJIczJ4MKmSpUqLFq0iHnz5jFv3jx0Oh0KhYKiRYuycOFCqlevboqcQgiRSOPGTdm//2eGDfOhVas2MkojhEjeOjY1atSgRo0axMTE8Pr1azJmzEiGDBmMnU0IIRLQarUEBd2mYMFCAJQrV4H9+w/h4iKXcQsh4n3WeuK2trZky5ZNihohhMmFhAQzYEBvOnVqy717QfrtUtQIIf5NbpQihEj1zp49TZs2zfjrrz/R6bQEBd0xdyQhRCqVrFNRQgiREjQaDcuXL2bJkgVotVry5y/AtGmz9aeihBDifVLYCCFSpVevXjJy5AhOnz4JwNdfN+eHH8Zgby+nvoUQHyeFjRAiVdq+fQunT5/Ezs6eUaP8aNq0mbkjCSHSgGQVNiEhIaxYsYK//vqLly9fsnz5cg4cOECRIkWoU6eOsTMKIdKh7t178+zZUzp16kb+/AXMHUcIkUYYPHn44cOHfP3112zZsoVs2bIRHByMRqPh7t27DBw4kCNHjpggphDC0j1//pypUyehVscCYG1tjZ/fJClqhBAGMXjEZurUqbi5ubF27VoyZMiAp6cnADNnziQmJobFixdTs2ZNY+cUQliw48f/YPRob0JDQ7Gzs2fQoGHmjiSESKMMHrE5ceIE/fr1w8nJKdEqn23atOHWrVtGCyeEsGxqtZp582bSv38vQkNDKVy4KM2atTB3LCFEGpasOTYqleqD22NjY2VJcyFEkjx79hQfn6FcunQBgG+/bc+wYT7Y2tqaOZkQIi0zeMSmXLlyLF26lMjISP02hUKBVqtl48aNlClTxqgBhRCW58yZU7Rp04xLly7g6OjItGlzGDlyrBQ1QojPZvCIzbBhw2jXrh316tWjYsWKKBQKVqxYwZ07d7h//z4bNmwwRU4hhAXJls2duLg4ihXzZNq02Xh45DJ3JCGEhTB4xKZQoUJs376dihUrcurUKVQqFX/99Re5c+dm06ZNFC1a1BQ5hRBp3Nu3Efr/zp07D0uXrmb16g1S1AghjCpZc2zy5s3LzJkzjZ1FCGGhDh06wIQJo5k6dTYVK1YGoHjxEmZOJYSwRMkqbB4+fEhMTAwFCxYkPDyc2bNn8/TpUxo0aECzZs2MHFEIkVbFxsYye/Z0Nm5cC8DGjev0hY0QQpiCwaeijh07RsOGDdm+fTsAfn5+bNmyhefPn/PDDz+wdetWo4cUQqQ9Dx8+oGvXdvqipnPn7kyfPse8oYQQFs/gwmbhwoVUrVqV/v378+bNG37//Xd69+7Nzp076d27N2vWrDFFTiFEGvLbb7/Qrl0Lrl37m0yZMjFv3mKGDvXG2tra3NGEEBbO4MLmxo0bdOnSBUdHR/744w80Gg3169cHoEqVKty/f9/oIYUQacfFi+fx9h5MREQEpUqVYfPmXVSvXtPcsYQQ6YTBc2xsbW2Ji4sD4I8//sDNzY0iRYoA8OrVK5ycnIybUAiRppQsWZomTb4ha9Zs9Os3ECurZE3lE0KIZDH4N07ZsmVZuXIlYWFh7N+/nxYt4pc/v3r1KoGBgbJAnxDp0G+//ULFipXIlMkZhULBhAmTUSoNHhAWQojPZvBvnh9++IHnz58zfPhwPDw8+O677wDo06cPsbGxDB8+3OghhRCpU1RUFOPHj8HbezB+fiPR6XQAUtQIIczG4BGbXLlysXfvXoKDg8mcObN++4IFCyhWrBg2NjZGDSiESJ2Cgu7g7T2Y27dvoVAoKFSoCFqt9qP3khNCiJSQrJPfCoWCsLAwfv/9d968eYOLiwtlypSRokYIC6HT6XgTGUusTkFMVCx21qoEN7j96aedBARMIDo6Cje3zPj7T6NSpS/NmFgIIeIZXNjodDr8/PzYunWrftgZ4oud5s2b4+/vL3f4FiKNioxWc/zKMw6ce8TL11H67Vmc7alT1oMyBZ2YM2sye/bsAqBixcr4+08jc+YsZkoshBAJGVzYLF++nO3btzNw4EC+/vprsmTJwosXL9i9ezeLFi3iiy++oFu3bqbIyt27d2nRogVjxozRT1oWQhjH1aBgFuy8Soxaw/t/mrx6HcXGg7fY8ns0d0+eRKlU8t1339O9e2859SSESFUMLmy2bdtGz5499ZOGATw8POjfvz9qtZqtW7eapLBRq9UMHz6cyMhIo7ctRHp3NSiYOVsv8W4QVvevfTqdDh3xo7JapR2ZS3emT7XctG5axxxRhRDiPxl86cLTp0+pVKnSB/dVrFiRR48efXaoD5k/fz4ODg4maVuI9CwyWs2CnVfR6RIWNAAadTT3Tq4mOOg4EL/fwTUvh25aExmtTvGsQgjxKQYXNjlz5uTGjRsf3Hft2jVcXV0/O9T7zpw5w+bNm5k6darR2xYivTt+5Rkxak2ioiYy9CE3fptC6P0zPLqwnbiYt0B8cROj1nD86rMUzyqEEJ9i8KmoJk2aMH/+fLJmzUrDhg1RKpVotVr27dvHggULaNu2rVEDhoeH4+3tzejRo8mePbvR2rWyMu46GyqVMsG/helIXxuPTqfj4PlHiba9uv0Hjy5sQ6eNw9remXxf9sDK9v9HTBXAwXOPaFAxt1ws8Jnk85wypJ9TRmroZ4MLm169enH27FmGDRuGj48Pzs7OvH79Go1GQ4UKFRg0aJBRA44bN45SpUrRtGlTo7WpVCpwcTHNaS0nJ3uTtCsSk77+fGERMbwI/f+rnzSxUdw/s57XD88D4JTDk7wVO2Nl65jgcTrgRWgUVrY2ODnIMg/GIJ/nlCH9nDLM2c8GFzY2NjasWrWKo0ePcubMGcLCwsiUKRPly5enRo0aRg23a9cuzp49y549e4zarlarIzzcuJOQVSolTk72hIdHodFojdq2SEj62nj+fUm3VqPmxu9TiXnzAhRKcpZsTtbCtf5zRObZi3A0zvJF8Tnk85wypJ9Thin72cnJPkkjQQYXNoGBgbRu3ZoaNWokKmQePXrEypUrGTt2rKHNftD27dsJDg6mZs2aCbb7+fmxYsUK9u7dm+y24+JM88HWaLQma1skJH39+ayU/1+0KFXWuOapQHDQX+Sr0gMHt3yffLy1SinvgZHI5zllSD+nDHP2s8GFzYIFC6hevTrZsmVLtO/SpUts3brVaIXNjBkziI6OTrCtXr16DBw4kEaNGhnlOYRIz7TqSByVb3mrdUAHuBdrQJZCNbGyyfCfj1MAmZ3tcbCTO3cLIVKXJP1Watu2LZcuXQLiJxa2adPmo8eWKFHCOMngg8UTgJubGzlz5jTa8wiRHl25cglv7yGgsiNb5UEoVdYolMpPFjUQP8emTjkPmTgshEh1klTY+Pv7s3//fnQ6HQsWLKBly5a4u7snOEapVOLk5ES9evVMElQIYRw6nY61a1cxb94s4uLiyJHTA4X6DQqVa6JLvj9EoQAbKxVVPN0/fbAQQqSwJBU2BQoUYMCAAUD86qOtW7dOMJoSFxeHUqlEqTT95V3//POPyZ9DCEv1+nUoY8f+wLFjRwCoV68hY8ZM4P7LWOZsvQQfWKTv3xT/+6d/C08y2FmnQGIhhDCMwZXIgAED2LFjBz169NBvO3fuHFWqVGH16tXGzCaEMKILF87Tpk1zjh07go2NDaNGjWPq1FlkzJgRz/xuDG5dEhvr+Ps+vX+C6d3PNtYqBn9bEs98bimaXQghkipZN8EMDAykc+fO+m158uThm2++YebMmdjb2//nHBwhRMrT6XTMnz+L58+fkTt3HqZNm0ORIkUTHOOZ342Z/b/k+NVnHDib8O7emZ3tqVPOgyqe2ckgE4aFEKmYQqfTJeW0ul69evX49ttv6dmzZ6J9S5cuZffu3Z91GXZK0Gi0hIS8NWqbVlZKXFwcCA19K5cSmpj0dfI8efKYFSuWMHSoNw4Ojv95rE6nI1qtwdbelpioGOysVTJR2ETk85wypJ9Thin72dXVIUnr2Bh8Kur58+cUL178g/tKlChhsptgCiEMc/bsaVauXKr/OUeOnIwZM+GTRQ3Ez6XLmMGGbK4ZyJjBRooaIUSaYfCYcq5cufjrr7+oXLlyon2nTp1KdLWUECJlaTQaVqxYwuLFgWi1WooWLU7lylXMHUsIIVKEwYVNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRBJ8OrVS0aN8ubUqRMANG3ajFKlSps5lRBCpByDC5sOHTrw7NkzVq1aleAqKJVKRZcuXejatasR4wkhkurUqROMHDmC4OBX2NnZM3LkWL7+urm5YwkhRIpK1uUNw4YNo3fv3ly4cIGwsDCcnJzw8vLCxcXF2PmEEEmwatUy5s2bhU6no2DBL5g2bQ758xcwdywhhEhxyb5uM2PGjFSvXj3R9jt37lCggPxCFSIlubtnR6fT0bx5a7y9R2JvL3fcFkKkTwYXNmFhYcycOZMzZ86gVqt5d7W4TqcjMjKSsLAwrl+/bvSgQoiEIiIicHSMv8KpYcMmeHjkokSJkmZOJYQQ5mXw5d4BAQFs376dvHnzolKpyJgxIyVKlECtVhMeHs6ECRNMkVMI8T9xcXHMmzeL5s0bERz8Sr9dihohhEhGYfPHH38wYMAAFi1aRNu2bXF3d2fOnDn88ssvFC5cmNu3b5sipxACePbsKT17dmblyqW8fPmCgwd/N3ckIYRIVQwubMLDwylbtiwAX3zxBVevXgXAwcGB7t27c+TIEaMGFELEO3bsCG3aNOPixfM4Ojoybdocvv22nbljCSFEqmLwHBsXFxfevHkDxN8jKjg4mNDQUFxcXMiWLRvPnz83ekgh0jO1Ws38+bNYs2YVAMWKFWfq1NnkypXbzMmEECL1MXjEpnLlyixevJhHjx7h4eGBs7MzO3bsAODw4cNyybcQRrZixRJ9UdO+fWdWr94oRY0QQnyEwYXNoEGDCA4OxtfXF4VCQe/evZk+fToVKlRg9erVtGzZ0hQ5hUi3OnXqSokSJZk1KxBv75HY2NiYO5IQQqRaBp+KypkzJ/v27ePevXsAdOvWjcyZM3P+/Hm8vLxo3lxWOhXic8TGxvLzz7tp3rwVCoUCBwdH1qzZJDeiFEKIJEjWAn12dnYUKVJE/3PTpk1p2rSp0UIJkV49evQQb+/BXLv2N5GRkXTs2AVAihohhEiiJBU2P/zwQ5IbVCgUBAQEJDuQEOnV77//wvjxo4mIiCBTpkzkzi3zaIQQwlBJKmxOnTqV5AblL0shDBMTE8PMmVPZsmUDAKVKlWHKlJm4u2c3czIhhEh7klTYHDp0yNQ5hEiX7t+/h7f3EP75J/42JN2796Zfv4FYWSX7Nm5CCJGuyW9PIcwoLOw1d+7cwsXFFX//qXz5ZTVzRxJCiDRNChshUphOp9OfsvXyKoW//3RKly5D1qzZzJxMCCHSPoPXsRFCJF9Q0B06dWrDrVv/6LfVr99QihohhDASKWyESCF79uyifftWXL16malT/c0dRwghLJKcihLCxKKiIpk8eSI//bQTgIoVK+PvP83MqYQQwjIlqbB58uSJQY3myJEjWWGEsDS3b9/E23sIQUF3UCqV9O07gB49+qBSqcwdTQghLFKSCptatWoZtD7N9evXkx1ICEtx/frfdOvWgejoaLJkycrkyTMoV66CuWMJIYRFS1JhExAQoC9swsLCmDFjBpUrV6Zhw4ZkyZKF169fc+jQIY4cOYKvr69JAwuRVhQqVIQSJUpibW3NpEnTcHV1NXckIYSweAqdTqcz5AH9+/fH1dWViRMnJtrn7+/PrVu3WL16tbHymYRGoyUk5K1R27SyUuLi4kBo6Fvi4rRGbVsklJr7+vbtW+TKlRtbW1sA3rx5g4ODA0pl2punn5r72ZJIP6cM6eeUYcp+dnV1QKX69O9Sg3/bHj9+nAYNGnxwX82aNblw4YKhTQqR5ul0OrZt20T79i2ZOXOqfnvGjBnTZFEjhBBplcG/cV1cXLh48eIH9508eZJs2WQ9DpG+RERE4OMzlEmTxhEbG8uzZ09Qq9XmjiWEEOmSwZd7t27dmoULFxIVFUWtWrVwdXXl1atX/PLLL2zcuJGRI0eaIqcQqdL163/j7T2Ehw8fYGVlxcCBQ+nUqZvcDFYIIczE4MLmu+++482bN6xevZoVK1YA8cPwdnZ2DBo0iA4dOhg9pBCpjU6nY/Pm9cycORW1Wk327DmYOnUWXl6lzB1NCCHSNYMLG4VCgY+PD/369ePixYuEhYXh4uJC6dKlyZAhgykyCpHqhIQEs2DBPNRqNV99VYfx4/1xcspk7lhCCJHuJXvlYQcHB7JkyYJOp6NkyZLExsZKYSPSDTe3zEyYMJmnTx/Trl0nOfUkhBCpRLIKm927dzNz5kxevnyJQqFg69atzJ8/H2tra2bOnImNjY2xcwphVjqdjnXrVpM3b36qVasBwFdf1TZzKiGEEO8z+Kqoffv24ePjQ6VKlZg1axZabfx16vXq1ePYsWMsXLjQ6CGFMKewsNcMHtyPmTOnMmaMDyEhIeaOJIQQ4iMMHrFZvHgxbdu2Zdy4cWg0Gv32Fi1aEBwczJYtWxg8eLAxMwphNhcvnsfXdxjPnj3FxsaGfv0G4eLiYu5YQgghPsLgEZu7d+9St27dD+4rWbIkz58//+xQQpibVqtl1apl9OjRiWfPnpI7dx7WrNnMt9+2k/k0QgiRihlc2Li5uXHnzp0P7rtz5w5ubm6fHUoIc1KrY/n++77MnTsTjUZDw4ZN2LhxO0WKFDV3NCGEEJ9g8KmoRo0aMW/ePLJmzUqNGvGTKBUKBVevXmXhwoU0adLE6CGFSEnW1jZkzZoNW1tbfHxG07x5KxmlEUKINMLgm2DGxsbSr18//vzzT5RKJVqtFgcHByIjIylXrhzLli3Dzs7OVHmNQm6CmbaZoq+1Wi2RkZE4OjoCEB0dzaNHDylY8AujtJ8WyWc6ZUg/pwzp55SRGm6CafCIjY2NDcuXL+f48eOcPHmS169fkzFjRipUqECNGjXkL1uR5gQHv2LUKG8UCgULFixDqVRiZ2eXrosaIYRIqwwubPr27Uvnzp2pUqUKVapUMUUmIVLM6dMnGTlyBK9evcTOzp7bt29RqFBhc8cSQgiRTAZPHj5z5gwqlcoUWYRIMRqNhoUL59GnTzdevXpJwYJfsH79VilqhBAijTO4sKlSpQpbt24lJibGFHmEMLkXL57Tp083li5diE6no3nz1qxdu4UCBQqaO5oQQojPZPCpKFtbW/bv38/vv/+Oh4dHosu7FQoFP/74o9ECCmFMOp0Ob+8hXLx4ngwZMjB69HgaNWpq7lhCCCGMxOARm2fPnlG6dGm8vLxwdXVFp9Ml+OfdLRaESI0UCgW+vqMpUaIkGzdul6JGCCEsjMEjNmvXrjVFDiFM5vnzZ1y5cok6deoDUKRIMdas2SRX8AkhhAUyeMRGiLTkjz+O0qZNM3x9h/P331f026WoEUIIy2TwiE2tWrU++aVw8ODBZAcSwhjUajWBgXP48ccVABQrVhwnp0xmTiWEEMLUDC5sKlSokKiwefv2LVeuXCEmJoYuXboYLZwQyfHkyWN8fYdy+fIlANq168SQISOwsbExczIhhBCmZnBhM2XKlA9uV6vVDBgwgKioqM8OJURyHTlyiLFjfyA8PIyMGZ0YP96fWrU+fDd6IYQQlsdoc2ysra3p1KkT27ZtM1aTQhjs7t0gwsPD8PT0YtOmHVLUCCFEOmPwiM1/CQ0N5e1b495cEuD169fMmjWLI0eOEBERQeHChRk2bBjlypUz+nOJtEen0+lPj3bp0h0nJye+/roZ1tZy6kkIIdIbgwubXbt2Jdqm0Wh4+vQp69atM0mxMXToUIKDg5k1axaurq5s2LCBHj16sGPHDgoUKGD05xOpl06n401kLLE6BTFRsfx59CBr165iyZKV2NtnQKlU0rLlt+aOKYQQwkwMLmx8fX0/uq906dKMGTPmswK97/79+xw/fpyNGzdSpkwZAEaNGsWxY8f4+eefGTRokFGfT6ROkdFqjl95xoFzj3j5OgqtRs3jizt4eesoAKt/XM13ffuZOaUQQghzM7iw+dCl3AqFAkdHR5ycnIwS6t9cXFxYunQpnp6eCZ5Pp9MRFhZm9OcTqc/VoGAW7LxKjFqDAoh+84K7f60gKvQhANmK1uPimyJcDQrGM7/bfzcmhBDCohlc2OTMmTPRtri4OCIiIowS6H1OTk7UqFEjwbb9+/fz4MEDqlatmux2rayMuzahSqVM8G9hHJfvBDNn6yV0uvifg++f5cGZDWjjorGydSRPpS5kyl6cOA3M2XqJoW1L41VAihtjkM90ypB+ThnSzykjNfSzQqd795WRNHFxcSxevJjcuXPz9ddfc+LECQYNGsSbN2+oUKEC8+bNI1Mm0y2Edu7cOXr27EnlypVZuHBhstr492RTkXpFRKnpNuFXYtQadDp4cfMwj85vBcAxS0HyVu6OTQZn/fEKBdhaq1g1tj6O9tZmSi2EEMKcDB6xmT9/PsuXL2fkyJEABAQE4OLiwoABA1i1ahUzZ85kwoQJRg8KcODAAYYPH07JkiWZNWtWstvRanWEh0caMVl8derkZE94eBQajdwI1Bh+Pf2A6FiN/mfnXKV5du1XMuevQnbPRiiUqgTH63QQE6th77Hb1KuQO6XjWhz5TKcM6eeUIf2cMkzZz05O9kkaCTK4sPn5558ZOnQoHTp0ICgoiFu3bjFlyhSaNWuGs7Mz06ZNM0lhs27dOvz9/albty4zZsz47FVk4+JM88HWaLQmazs90el0/Hb6IW+D7+HglhcAG3tnijfyQ2Vj/5+P/fX0Q74qnVNG5YxEPtMpQ/o5ZUg/pwxz9rPBJ8FevHhByZIlATh27BhKpZLq1asD4O7uzps3b4ybENiwYQMTJ06kQ4cOzJkzR5bGTwdehoRx9tel/PP7NEIfntdv/1RRowNevo7ibXSciRMKIYRIjQwubLJmzcqjR48A+P333ylatCiurq4AXLhwAXd3d6MGvHv3LgEBAdStW5c+ffoQHBzMy5cvefnypUmKKGF+t2/foleP9gTfPQEKBbFvgw1uIzpGChshhEiPDD4V9fXXXzN58mT27NnDuXPnGDt2LAD+/v5s3LiRvn37GjXgr7/+ilqt5vfff+f3339PsK958+YfvXeVSHt0Oh27d+9gypSJREdHY22XibyVu5ExWyGD27KzNeqi2kIIIdIIg3/7Dxw4EDs7O86cOcOwYcNo3749AFeuXKF79+589913Rg3Yt29foxdLIvWJjHyLv/949u79CYDKlatgW+hb3sRYY8hlewogs7M9DnZS2AghRHpk8G9/hUJBnz596NOnT4LtmzZtMlookbbpdDoiotTExGqwtVHhaG/9yYm858+fY+/en1CpVPTvP4iuXXty8NxjNh68ZdhzA3XKecjEYSGESKeS9Wfts2fPOH/+PLGxsfptWq2WqKgozp49y+zZs40WUKQd79/24J0szvbUKetBlRLuZLD78PoyVatWp3//QZQrV4HSpcsCUKWEOzuOBRGr1iRp1EahABsrFVU8jTvPSwghRNphcGGzf/9+RowYQVxcnP6v4n8veJc/f37jJhRpwvu3Pfi3V6+j2HjwFjuOBdG/uSee+d2IiIhg1qyp9OkzgGzZsgHQq1fC05gZ7Kzp39yTOVsvgY7/LG4U//unfwvPjxZPQgghLJ/BV0UtWbKEYsWKsWPHDlq0aMHXX3/N3r17GTFiBFZWVvqF+0T6cTUo/rYHser4xfTeL0De/Ryr1jBn6yX2/H6cdu1asGPHVsaM8eG/Fr/2zO/G4NYlsbGOX4zv/aLp3c821ioGf1sSz3xyOwUhhEjPDB6xuXv3LjNmzKBYsWJUrlyZ5cuXU6BAAQoUKEBwcDCLFy+mSpUqpsgqUqHIaDULdl5F94kRFQCtTserm0cZu3kHOm0c2bPnYMCAwZ+cD+OZ342Z/b/k+NVnHDib8DRXZmd76pTzoIpndjLIhGEhhEj3DP4mUCqVODs7A5A3b16CgoLQarUolUqqVavGjh07jJ1RpGLHrzwjRq355HFxsZE8OL2O148uAlC81JcsmjcbJ6ek3Vcsg501dcvlok5ZD6LVGmztbYmJisHOWiUThYUQQugZfCoqf/78nDt3DogvbNRqNdevXwcgPDw8wYRiYdl0Oh0Hzj365HHR4c+58etkXj+6iEKpwqN0K3JW7EnGjE4GP6dCoSBjBhuyuWYgYwYbKWqEEEIkYPCITdu2bfHz8yMyMpKhQ4dSsWJFRo4cSatWrVi3bh3Fixc3RU6RCkVEqROcFvoYmwwuKK1ssHFwI9+XPXBwy8ursGjeRsfJXbiFEEIYlcGFTevWrYmNjdXfVmHChAn07t0bf39/cubMyahRo4weUqROMbEfPwUVFxuJytoOhUKJ0sqGAtW+Q2WTASubDPpjomOksBFCCGFcyZpt2aFDB/1/586dm/379xMaGqq/Z5RIH2xtVB/cHvHqDnf/WkmWgtVxL1Y//ljHzImOk9seCCGEMLZkf7PcuXOH48eP8+LFCzp16sTDhw+xsbHB0dHRmPlEKuZob00WZ3tevY5CB+h0Wp7fOMCTyz+BTkvIvVNkLVwLpSrhqIzc9kAIIYSpGPzNotFo8PPzY/v27fqF+Ro2bMiCBQt48OAB69evN/odvkXqpFAoqFPWg40Hb6GOfsP9U2sIf/o3AC65y5G7fPtERQ3IbQ+EEEKYjsFXRS1atIg9e/YwadIkjh8/rl9czccnfqE1uZ1C+lKlhDsxIUHc+DWA8Kd/o1BZk7t8e/JW7obK2i7R8QoF2FrLbQ+EEEKYhsGFzfbt2xk4cCAtW7bUr2cDUKRIEQYOHMjx48eNmU+kcjFREdw+Gog6Kgw7p2wUqetN5gJVPzgaI7c9EEIIYWoGn4p69eoVRYsW/eC+bNmyER4e/tmhRNrh4uLCkCHD+fPkWWLdGxKHNQoSrkL87mcbaxX9W3jKbQ+EEEKYjMGFTZ48eTh69Chffvllon2nT58mT548RgkmUq/Tp0+SMWNGihaNX7OoTZsOtG3bMf7u3nLbAyGEEGZk8LdMly5dGDt2LGq1mq+++gqFQsH9+/c5deoUK1euxNfX1xQ5RSqg0WhYsmQBy5YtImdODzZu3EHGjBn1p53+fduDt9FxRMfEYWdrhYOdlUwUFkIIkSKStUBfSEgIixcvZuPGjeh0OoYOHYq1tTU9e/akXbt2psgpzOzlyxf88MNwzp49DUD58hWxsvrwx0ehUOBoby2L7wkhhEhxyTov0KdPHzp06MD58+cJCwvDycmJkiVLJphMLCzHiRPHGTXKm5CQYOztMzB69HgaN25q7lhCCCFEIsme8ODo6Ej16tWNmUWkMhqNhkWL5rNixRJ0Oh2FChVh+vTZ5MmTz9zRhBBCiA8yuLAJCwtj3rx5nD9//oNXQCkUCg4cOGCUcMK8FAoF16//jU6no3Xrtgwb5oudXeK1aYQQQojUwuDCZsyYMRw8eJBq1apRpEgRU2QSZvZuRWmlUsnEiVM5f/4MderUN3csIYQQ4pMMLmz++usvvL296dKliynyCDNSq9UEBs4hLOw148b5A+Dq6ipFjRBCiDTD4MLGwcGBfPlkjoWlefr0CT4+Q7l8+SIArVq1xdOzhHlDCSGEEAYy+JYKHTp0YNWqVbx9+9YUeYQZHDlyiDZtmnP58kUcHTMyc+Y8KWqEEEKkSQaP2HTs2JGdO3dSo0YN8ufPn2gyqUKh4McffzRaQGE6anUsc+bMZP36+PerePESTJs2m5w5PcycTAghhEgegwubsWPHcvfuXfLly4etra3+7t7vvP+zSL2GDv2eP/44CkCnTl0ZOHAo1tY2Zk4lhBBCJJ/Bhc2hQ4cYOnQovXv3NkUekYLatu3IlSuXGD8+gBo1apk7jhBCCPHZDC5sbGxsKFFC5l+kRTExMQQF3dbfvLJKlWrs3XsABwdHMycTQgghjMPgycPNmjVj48aNaLVaU+QRJnL//j26dGlHr15defz4kX67FDVCCCEsicEjNo6Ojvz111/UqlULLy8vHBwcEuxXKBQEBAQYLaD4fL/8speJE8fy9u1bXFxceP78mUwQFkIIYZEMLmx27NiBk5MTAFevXk20X6FQfH4qYRTR0dFMnx7A9u1bAChTphyTJ88kW7ZsZk4mhBBCmEayJg+L1O/u3SC8vQdz69ZNFAoFPXv2pU+f/lhZJfu+p0IIIUSqJ99yFmrHji3cunUTV1c3/P2nUblyFXNHEkIIIUxOChsL9f33Q1Gr1fTo0YcsWbKaO44QQgiRIgy+KkqkTrdv32LChDHExcUB8Zfl+/qOkaJGCCFEuiIjNmmcTqdj9+4dTJkykejoaHLm9KBHjz7mjiWEEEKYhRQ2aVhk5FsmTRrHvn17AKhcuQrNm7cycyohhBDCfKSwSaP++ecG3t6DuX//Hkqlkn79BtK9e2+USjm7KIQQIv2SwiYN+u23Xxg92pvY2FiyZs3GlCkzKVOmnLljCSGEEGYnf96nQfnzF0CpVFK1ag02b94lRY0QQgjxPzJik0a8fh2Ks7MLAAULfsHatZspUOALOfUkhBBC/It8K6ZyOp2OTZvW0bBhbS5ePK/f/sUXhaWoEUIIId4jIzapWHh4OOPHj+Lgwd8B2Lt3D6VKlTFzKiGEECL1ksImlbpy5TI+PkN48uQxVlbWDBkygvbtO5k7lhBCCJGqSWGTyuh0Otat+5G5c2cSF6cmZ04Ppk6djadnCXNHE0IIIVI9maSRyhw5coiZM6cQF6emTp16bNy4Q4oaIYQQIolkxCaVqVmzFg0aNKJUqbK0adMehUJh7khCCCFEmiGFjZlptVq2bdtMo0ZNcXR0RKFQMHnyTClohBBCiGSQwsaMQkNDGT3ah+PHj3Hu3BmmTIkvaKSoEUIIIZJHChszOX/+LL6+w3jx4jm2traUL1/R3JGEEEKINE8KmxSm1WpZsWIpixbNQ6vVkjdvPqZNm0OhQoXNHU0IIYRI86SwSUEhISGMHDmckyf/AqBJk28YOXIsGTI4mDmZEEIIYRmksElROu7cuYWdnR2+vmP45psWMp9GCCGEMCIpbExMq9Xq7+nk6urGjBnzcHBwpGDBL8ycTAghhLA8aWKBPq1Wy7x586hWrRolS5ake/fu3L9/39yxPunlyxf06dONvXt/0m8rWbK0FDVCCCGEiaSJwmbhwoVs2rSJSZMmsXnzZhQKBb169SI2Ntbc0T7qxInjtGnTnDNnTjF79nSio6PNHUkIIYSweKm+sImNjWXlypV8//331KhRgyJFijB79myeP3/O77//bu54icTFxREYOId+/XoSEhJMoUKFWbbsR+zs7MwdTQghhLB4qb6wuXHjBm/fvqVSpUr6bU5OThQrVowzZ86YMVliT548oUePzixfvhidTkerVm1Ys2Yz+fLlN3c0IYQQIl1I9ZOHnz17BkD27NkTbM+aNStPnz5NdrtWVsat6SIi3tC4cQOCg4NxcHDAz28ijRo1MepziHgqlTLBv4VpSD+nDOnnlCH9nDJSQz+n+sImKioKABsbmwTbbW1tCQsLS1abSqUCFxfjrh3j4uJAmzZtOHbsGIsXLyZfvnxGbV8k5uRkb+4I6YL0c8qQfk4Z0s8pw5z9nOoLm3dzU2JjYxPMU4mJicHePnkdp9XqCA+PNEq+d1QqJd7e3vTu3R8rK2tCQ98atX3x/1QqJU5O9oSHR6HRaM0dx2JJP6cM6eeUIf2cMkzZz05O9kkaCUr1hc27U1AvXrwgd+7c+u0vXrygSJEiyW43Ls74H2xra2usrKxN0rZITKPRSl+nAOnnlCH9nDKkn1OGOfs51Z9sLFKkCI6Ojpw6dUq/LTw8nGvXrlGuXDkzJhNCCCFEapPqR2xsbGzo2LEjM2bMwNXVlZw5czJ9+nTc3d2pW7euueMJIYQQIhVJ9YUNwMCBA4mLi2P06NFER0dTvnx5VqxYkWhCsRBCCCHStzRR2KhUKkaMGMGIESPMHUUIIYQQqViqn2MjhBBCCJFUUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYCp1OpzN3iJSm0+nQao3/slUqpdFv0y4+TPo6ZUg/pwzp55Qh/ZwyTNXPSqUChULxyePSZWEjhBBCCMskp6KEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksDECrVbLvHnzqFatGiVLlqR79+7cv3/f3LEszuvXrxk7dizVq1enTJkytGvXjrNnz5o7lkW7e/cupUuXZseOHeaOYpF27dpFo0aNKFGiBI0bN2b//v3mjmRx1Go1s2fPpmbNmpQuXZr27dtz/vx5c8eyKAsXLqRTp04Jtl2/fp2OHTtSqlQpatasyYoVK1IsjxQ2RrBw4UI2bdrEpEmT2Lx5MwqFgl69ehEbG2vuaBZl6NChXLp0iVmzZrFt2zaKFy9Ojx49uHPnjrmjWSS1Ws3w4cOJjIw0dxSLtHv3bkaOHEmbNm34+eefadSoEUOHDuXChQvmjmZRFi1axPbt25k0aRK7du0if/789OrVi+fPn5s7mkVYvXo18+bNS7AtNDSUbt26kTdvXrZv387333/P3Llz2b59e4pkksLmM8XGxrJy5Uq+//57atSoQZEiRZg9ezbPnz/n999/N3c8i3H//n2OHz+On58f5cqVI3/+/IwaNYps2bLx888/mzueRZo/fz4ODg7mjmGRdDodc+fOpUuXLnTp0oU8efLQv39/vvzyS06fPm3ueBbl4MGDNGnShKpVq5InTx58fX2JiIjg4sWL5o6Wpj1//pyePXsyd+5c8uXLl2Dfli1bsLGxYdy4cRQoUICWLVvStWtXli1bliLZpLD5TDdu3ODt27dUqlRJv83JyYlixYpx5swZMyazLC4uLixduhRPT0/9NoVCgU6nIywszIzJLNOZM2fYvHkzU6dONXcUixQUFMTjx49p2rRpgu0rVqygT58+ZkplmZydnTl8+DCPHj1Co9GwefNmbGxsKFq0qLmjpWl///03mTJl4qeffqJkyZIJ9p09e5by5ctjZWWl31apUiXu3r1LcHCwybNZffoQ8V+ePXsGQPbs2RNsz5o1K0+fPjVHJIvk5OREjRo1Emzbv38/Dx48oGrVqmZKZZnCw8Px9vZm9OjRiT7Xwjju3bsHQGRkJD169ODatWt4eHjw3XffUatWLfOGszCjRo1iyJAh1K5dG5VKhVKpZO7cueTOndvc0dK0WrVqffSz+uzZMwoVKpRgW9asWQF48uQJbm5uJs0mIzafKSoqCgAbG5sE221tbYmJiTFHpHTh3LlzjBw5ktq1a8sXgZGNGzeOUqVKJRpNEMYTEREBgI+PD02aNGHlypVUqVKFfv36ceLECTOnsyx37tzBycmJBQsWsHnzZlq0aIGPjw83btwwdzSLFR0d/cHvRCBFvhdlxOYz2dnZAfFzbd79N8S/efb29uaKZdEOHDjA8OHDKVmyJLNmzTJ3HIuya9cuzp49y549e8wdxaJZW1sD0KNHD5o3bw5A0aJFuXbtGqtWraJy5crmjGcxHj9+zIgRI1i9ejXlypUDoESJEty+fZv58+ezYMECMye0THZ2dokunnlX0GTIkMHkzy8jNp/p3VD9ixcvEmx/8eIF7u7u5ohk0datW8f3339P9erVWbZsWYJiUny+7du3ExwcrL80tnTp0gD4+fnRuHFjM6ezHO9+N7w/XF+wYEEePXpkjkgW6fLly6jVakqUKJFge8mSJfWnA4Xxubu7f/A7ESBbtmwmf34ZsflMRYoUwdHRkVOnTunP2YaHh3Pt2jU6duxo5nSWZcOGDUycOJFOnToxcuRIlEqpy41txowZREdHJ9hWr149Bg4cSKNGjcyUyvIUK1YMBwcHLl26pB9JALh586bM/TCid394/vPPP3h5eem337x5kzx58pgrlsUrX748mzZtQqPRoFKpADhx4gT58uUz+fwakMLms9nY2NCxY0dmzJiBq6srOXPmZPr06bi7u1O3bl1zx7MYd+/eJSAggLp169KnT58EM+vt7OzImDGjGdNZjo/9NeXm5kbOnDlTOI3lsrOzo2fPnixYsIBs2bLh5eXF3r17OX78OKtXrzZ3PIvh5eVFuXLl8PHxwc/PD3d3d3bt2sWJEyfYsGGDueNZrJYtW7J8+XJGjRpFz549uXz5Mj/++CPjx49PkeeXwsYIBg4cSFxcHKNHjyY6Opry5cuzYsWKRJOnRPL9+uuvqNVqfv/990TrAzVv3pwpU6aYKZkQydOvXz/s7e31614VKFCA+fPnU7FiRXNHsxhKpZKFCxcyZ84cfvjhB8LCwihUqBCrV6+mVKlS5o5nsdzc3Fi+fDn+/v40b96cLFmy4O3trZ9PZmoKnU6nS5FnEkIIIYQwMZmkIIQQQgiLIYWNEEIIISyGFDZCCCGEsBhS2AghhBDCYkhhI4QQQgiLIYWNEEIIISyGFDZC/I8lr3xgya8ttTB2H8t7JkTySGEjBHDw4EF8fHzMmmHHjh0ULlzY6PcKWrRoEStWrDBqmyKh27dv065dO6O19/57Nn/+fAoXLmy09v+Lr68vhQsXpnDhwgwfPvyz2qpVqxaFCxdm2LBhHz3m22+/pXDhwsyfPx+A6tWr659/x44dn/X8In2SwkYIYPXq1Tx9+tTcMUxizpw5REVFmTuGRdu/fz8XLlwwWnvvv2etW7dm8+bNRmv/U7JkycLmzZsZOHDgZ7elVCo5dOiQ/u7O//bo0SMuXbqUYNvixYsJDAz87OcV6ZcUNkIIkcq5u7un6C0AbGxsKFWqlFFuyFmmTBkiIyM5evRoon379u2jaNGiCbYVK1Ys0TYhDCGFjUj3OnXqxOnTpzl9+jSFCxfm1KlTnDp1isKFC7Np0ya++uorvvzyS/788098fX2pVatWgsc/evQo0bD569evGTt2LF9++SUlSpTg22+/5cSJEwZn27p1Ky1atKBUqVJ4eXnxzTffsG/fvgTHPHjwgIEDB1KhQgXKly9Pr169uHXrFoD+9EVgYGCCUxlXrlyhR48eVKxYkTJlytC3b1/9Y95Zu3YtDRo0oESJElSrVo1x48YRERGh36/Valm6dCl169bF09OT+vXrs3bt2k++prdv3zJ58mSqV69OqVKlaNGiBYcOHdLv12g0rF+/nqZNm+Ll5UXNmjWZMWNGgr/4fX196dq1K9u3b6d+/fp4enry9ddfJ/ry/K++AYiJiWHatGnUqFEDT09PmjZtmqh/a9Wqxbx585g6dSpffvklXl5e9OjRg7t37wLxp4nejTD8+5RK4cKFCQwMpGXLlpQtW5aFCxcCcObMGXr06EH58uXx9PSkVq1azJ8/H61W+9H37EOnovbt20eLFi0oXbo0VapUYezYsYSFhen3z58/n7p163LkyBGaNm2qf4927tz5yffofYULF2bjxo34+vpStmxZKlSowKRJk4iOjmbq1KlUqlSJihUrMmrUqEQjM7ly5cLT05P9+/cnanffvn00btzY4DxC/BcpbES65+fnR7FixShWrBibN2+mePHi+n2zZ8/Gx8cHHx+fJP/FHBMTQ5cuXTh48CBDhgwhMDAQd3d3evbsaVBxs379esaOHUvt2rVZsmQJ06dPx9ramhEjRvDkyRMAXrx4QevWrQkKCsLPz48ZM2YQFhZG165dCQkJ0Z++aNWqlf6/T548Sbt27dBqtfj7+zNp0iSePn1K27ZtuXPnDgB79+5l6tSpdOjQgRUrVtC/f392797NpEmT9PnGjRvHvHnz+Prrr1m8eDENGjQgICCABQsWfPQ1abVaevbsyc6dO+nduzeLFi2iUKFCDBgwgFOnTgEwduxYAgICqFWrFosWLaJDhw6sW7eOfv36JZhQe/XqVVasWMHAgQNZsGABVlZWDBw4UP/l/qm+0el09O/fn02bNtGtWzcWLVpE6dKlGTJkCLt27UqQe82aNQQFBTF58mQmTZrE1atX8fX1BeJPE7Vq1QqAzZs307p1a/3jFi1aRP369Zk1axa1a9fmxo0bdO3aFWdnZ2bPns2iRYsoU6YMgYGB7N27V9/G++/Z+xYuXMiQIUMoWbIk8+bNo3///vz666906tSJ6Oho/XEvX75kwoQJdO7cmaVLl+Lh4YGvr6/+fTbEjBkzsLGxITAwkG+++Ya1a9fSrFkznj59yvTp02nbti3btm37YHHbqFEjjhw5kiBbUFAQN27coFGjRgZnEeK/yN29RbpXsGBBHB0dARIVL23btqVBgwYGtbd7925u3LjBli1bKFmyJBA/IbJTp07MmDGD7du3J6mdhw8f0r17d/r376/f5uHhQYsWLTh//jw5cuRg1apVREdHs2rVKrJkyQJA0aJFadOmDRcvXtSPLv37VMbMmTPJlSsXy5cvR6VSAVC1alXq1q3L/PnzmTNnDqdOnSJnzpx06NABpVJJhQoVyJAhA6GhoQDcvXuXLVu2MHToUHr37q1vQ6FQsGTJEtq3b4+Li0ui13Ts2DHOnz/PwoULqV27NgCVKlXi/v37nDx5Ejc3N7Zt28bgwYP57rvvAKhSpQpZs2bF29ubY8eOUaNGDQDevHnDjh079KdLMmTIQMeOHTl58iT169f/ZN/Y2tryxx9/MHv2bP2Xa7Vq1YiKimLGjBk0adIEK6v4X5FOTk4sXLhQ318PHjxg/vz5hIaG4u7ujru7O5D48+Pl5aXvH4Bdu3bx5ZdfMn36dJRKpf71HTlyhDNnztC0aVN9Gx87/RQWFsaiRYto3bo1fn5++u2FChWiQ4cO7Nixg/bt2wMQFRWFv78/lStXBiBv3rx89dVXHD16lAIFCiRq+78UKFCACRMmAFC+fHm2bduGWq1mxowZWFlZUa1aNQ4dOsT58+cTPbZhw4ZMnz6do0ePUr9+fSB+tKZ06dLkzJnToBxCfIqM2AjxH5JzJcqJEyfIkiULxYsXJy4ujri4ODQaDV999RVXr15NcLrgv/j6+jJixAjevHnDlStX2LNnD+vXrwdArVYDcO7cOUqVKqX/4gbImjUrhw8fTnTKDCAyMpIrV67QqFEj/Zc0xH9xf/XVV/pRk0qVKnHv3j1atGjBwoULuXbtGk2bNqVLly5A/KiPTqejVq1a+tcYFxdHrVq1iImJ4dy5cx98TWfPnsXa2pqvvvpKv02hULBx40YGDRrE6dOnAWjatGmCxzVu3BiVSqXPB+Dq6ppgDsi74uLdpNtP9c2JEydQKBTUqFEj0Wt4+fJlglNWJUqUSNBf7z/XxxQqVCjBz82aNWPZsmWo1Wpu3brFgQMHmD9/PhqNRv+efsrFixeJjY1N1EflypUjZ86cCfoIEhZb73JHRkYm6bn+rXTp0vr/trKywsXFBU9PT33xB+Ds7MybN28SPTZHjhyUKlUqwemoffv20aRJE4NzCPEpMmIjxH9wc3Mz+DGvX7/m5cuXCU5p/dvLly/JlCnTJ9t58OABY8eO5eTJk1hZWZE/f359ofXulMzr16/x8PBIcrY3b96g0+nInDlzon2ZM2fWfyk1atQIrVbLhg0bCAwMZO7cueTMmZNhw4bRuHFjXr9+DfDR+RHPnz//4PbXr1/j7OysH61437ui79/FCPz/F+m/vzTt7e0THKNQKAD0c1U+1TevX79Gp9NRpkyZD+5/8eKFfhLr+8/1Lv+75/qY9/s5OjqaiRMnsnv3buLi4vDw8KB06dJYWVkled2ad330qffwnX9nf5c7OWvkvBvV/Fjbn9KwYUP91V7379/n3r17Bo+GCpEUUtgIYQCFQoFGo0mw7f2/fjNmzEjevHmZMWPGB9tISiGi1Wrp3bs31tbWbNmyhWLFimFlZcXt27f56aefEjxXSEhIosefOHECDw8PcuXKlSibQqHg1atXiR7z8uVLnJ2d9T83adKEJk2a8ObNG/7880+WLVvGiBEjKFeuHE5OTgD8+OOPODg4JGorR44cH3xdGTNm5PXr12i12gTFzfXr14mLi9MXfC9fvkzQT2q1mtDQ0A+e3vqYT/VNxowZyZAhA2vWrPng4/PkyZPk50oqf39/fv31V+bMmcOXX35JhgwZAPSnipLiXR+9evUq0emkly9fJnrPU4sGDRowZcoUjh49yvXr16lUqVKy/nAQ4lPkVJQQ8NERhPc5ODgQGhqa4MqP9+cUVKhQgadPn+Lm5kaJEiX0/5w4cSLBvJb/Ehoayt27d2nVqhVeXl764f5jx44B/z9SUK5cOS5evEhwcLD+sSEhIfTq1YuDBw8mem0ZMmTA09OTffv2JSjQ3rx5w5EjRyhbtiwAgwcPZsCAAUB8gdCwYUP69euHRqPhxYsXlC9fXp/z36/x9evXzJkzRz+i875y5cqhVqsTXL2k0+kYNWoUixYtokKFCgDs2bMnweP27t2LRqPR50uKT/VNhQoViIyMRKfTJXgNt27dYsGCBcTFxSX5uZL6+Tl37hwVK1akTp06+qLm6tWrhISEJBj9+a/2SpYsiY2NTaI+Onv2LE+ePPnoCJS5ZcuWjbJly/Lbb7+xf/9+uRpKmIyM2AhB/ByTCxcucOLECYoVK/bR47766ivWrl3LyJEjad26Nbdu3WLlypUJipUWLVqwbt06unXrRt++fcmePTt//fUXy5Yto2PHjlhbW38yj5ubGzlz5mT9+vW4u7vj5OTEn3/+yY8//gj8/9yOrl27smvXLnr06EHfvn2xtbVlyZIlZM2alWbNmiV4bWfOnKFcuXIMGzaMHj160LNnTzp27IharWbp0qXExsbqi5lKlSrh5+fH1KlTqV69OuHh4QQGBpI3b16KFCmCtbU1X3/9NWPGjOHx48d4enpy9+5dZs+ejYeHB3nz5v3g66pZsyalS5fmhx9+YNCgQeTJk4c9e/Zw8+ZNxowZQ8GCBWnevDmBgYFER0dTsWJFrl+/TmBgIBUrVqRatWpJeTuT1DdOTk6UL1+efv360a9fPwoUKMDly5eZP38+VatWxdXVNcnP9W4E6+eff6ZkyZIfHTXx8vJi//79bNy4kQIFCnDjxg0WLVqEQqFIMF/n/ffs35ydnenduzeBgYFYW1tTu3ZtHj16xNy5cylYsCAtWrRIcu6U1rBhQyZPnoxCoaBu3brmjiMslBQ2QgAdOnTg6tWr9OrVi8mTJ5M1a9YPHlelShV8fHxYu3Ytv/32G8WLFycwMJC2bdvqj8mQIQPr169n5syZTJ8+nTdv3ujnp3Tv3j3JmRYuXIi/vz++vr7Y2NhQsGBBFi1aREBAAGfPnqVTp05kz56dDRs2MH36dH744QdsbGyoUKEC06dP159W6tu3LwsXLqRXr17s27ePypUrs2rVKubNm8fQoUOxsbGhXLlyTJ06lS+++AKIvxpMrVazadMmNmzYgJ2dHZUrV2bEiBH6wmzy5MksWbKETZs28ezZM9zc3GjUqBGDBw/+6KiUSqVi2bJlzJw5k/nz5xMZGUmRIkVYvny5fnKqv78/efLkYfv27axYsYKsWbPSqVMn+vfvn+SRESBJfbN06VLmzp3LkiVLCA4OJlu2bHTt2jXBlWhJUa9ePXbv3o2vry+tWrVi3LhxHzzO19cXtVrNnDlziI2NxcPDg++++47bt29z6NAhNBoNKpUq0Xv2vu+//57MmTOzbt06tm7dirOzMw0aNGDw4MEGzXtJaQ0aNMDf35+aNWvqi0EhjE2hkzutCSGE+B9fX19Onz6dYNHElPbo0SNq167N5MmTU/UIlEidZI6NEEKIBGJjY7l48SIPHjxI8ee+du0a169fT/HnFZZDTkUJIYRI4OXLl7Rp04amTZt+9Oo+U+nbt+9HlwsQIinkVJQQQgghLIacihJCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExfg/dvjTanouEpsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the measured versus known value of the test set\n", + "plt.plot(test_data['true_conc_mM'], test_data['concentration'], 'o', \n", + " markersize=10, label='measurements')\n", + "plt.plot([0, 10], [0, 10], 'k--', label='equivalence')\n", + "plt.xlabel('true lactose concentration [mM]')\n", + "plt.ylabel('measured lactose concentration [mM]')\n", + "plt.legend()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_sources/tutorials/quickstart.ipynb.txt b/_sources/tutorials/quickstart.ipynb.txt new file mode 100644 index 0000000..daeb5dd --- /dev/null +++ b/_sources/tutorials/quickstart.ipynb.txt @@ -0,0 +1,1262 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', \n", + " cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3464.65it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 6.73it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587620.69180023380.4619342.805655e+061
013.170.5947503.90567743165.7895205.179895e+062
014.450.349607-2.99570434697.4716864.163697e+063
015.530.3140091.62120815061.8358181.807420e+064
016.520.3473761.99120510939.0679601.312688e+065
017.290.3481231.70557112525.9916561.503119e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158762 0.691800 23380.461934 2.805655e+06 1\n", + "0 13.17 0.594750 3.905677 43165.789520 5.179895e+06 2\n", + "0 14.45 0.349607 -2.995704 34697.471686 4.163697e+06 3\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4\n", + "0 16.52 0.347376 1.991205 10939.067960 1.312688e+06 5\n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks(buffer=0)\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHLUlEQVR4nOzdd3wb9f3H8ZeWbXlvO3H2uiQkISRAGWHvUUYXBQotFChQCrRl77LhV1agUPZeBcouGwKETULIvizbSbz3XpLu94fsYEKc2Irtk+T38/Hww7budPf+Wralj+47HJZlISIiIiIiYjen3QFERERERERAxYmIiIiIiIQJFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWHDbHcAGtUAsUGJzDhEREem9YUAbkGpzDhEZQI4huEJ8i2VZcYFA/7fb6XQwEMcNJ9HexmhvH0R/G9W+yBftbYz29sHAtNHpdOBwOFoBb78eWETCylC8clISCFhjq6ub+vWgbreTtLQE6uub8fkC/XrscBHtbYz29kH0t1Hti3zR3sZobx8MXBvT0xNwuRzq9SAS5TTmREREREREwoKKExERERERCQsqTkREREREJCyoOBERERERkbAwFAfEi4iIiPSLBQsWJBGc5lhv+Ir8VAAomT17dkNv76DiRERERKSPFixY4AQuczicJzscDg/gsDuTSBiyLMvqWLBgwRPAjbNnz97mFH4qTkRERET67jKXy31WcnJae0xMXLPD4YjuxWtEQmBZlqO9vTW+vr7mLL/fB3D9tu6j4kRERESkDxYsWJDscDhPTk5Oa09KSquyO49IOIuN9bYAGbW1VScvWLDgrm118VL/SBEREZG+yXU4HJ6YmLhmu4OIRILOq4seguOztkrFiYiIiEjfOAGHunKJ9E7n34qDXtQeKk5ERERERCQsqDgREREREZGwoOJERERERMLC3Lm3Dz/mmEOn252jt1auXB73/vvvptidI5qoOBGRqLJi3sf875KLeOuqy9i4Yb3dcUREJIpdcsnfJy5fvjTB7hzRRMWJiESNz+69h8rb72JMaSlt5kp+9euj+OyzT+2OJSIiUUtzIvQ3rXMiIlFh1Yfvk/LVVzgdDlZbAT53eWhtbeXCC8/nuef+y6hRo+2OKCJRLhAI0NzcbMsbv/Hx8QGns++nnjNn59m//OVxJfPmfZDR0dHhvOuu+1bGx8cH7r77jhGLF3+X3NTU5EpJSfHtt9+BVeedd0HRihXLvX/60x+m3nvvQytmzJjZDHD++WePX7p0cfLbb8/7zu12Y1kWRxxx4I6///2pRccdd2Ll5uesrKxw3377rSMWLvwmxe/3OyZNmtz4t79dvGH8+AltXfs88MC9OW+88UpOQ0ODe8KEiU2XXHJVQdf2LWUeMWJk+/33/2vYxx9/mFFTU+PJy8trPemkU4oPPfSIWoAXXngu49lnnxx2yimnFT388AMj6upqPVOm7NBwxRX/KHjssYdz5817P8PtdltHHfWLsjPPPKcUoK2tzXHPPXcMnz//k7Tq6qqYuDhvYMcdZ9ZdcsmV69PTM/zHHHPo9MrKypj//OeZYUuWLEp68MEnzJqaatc999yZ9803X6Y2NDS4x44d33TGGWcX7bbbHo1dbXvllZfSn3768WEVFRWxo0aNatlvv4OqHn743yPnz/92QSiPidPpDKl94UrFiYhEvIDPR9XTT5LhcLDM4SD2j9fwszYfa++7grXmYh78vxu57u777Y4pIlEsEAhwwgm/nLxy5QpbuvhMnjy18ZlnXjRDKVDeffd/WTfddNtqv9/nmDhxUtsJJ/xyakpKasctt9y5Kikpyf/xxx+mPvjgfSOnTp3WdMghh9dmZma2f/HFZ8kzZsxs9vv9LF++NKmtrc353XcLEnbZ5WdNixYtjG9oqHfvv/9BtZufy+fzcd55Z00Ch3XNNTeuzcjI8N199x0j/v73v0x68cXXlwBUVlbGLF26OOmmm25f3d7e5rjxxn+MvfHGf4x5+OEnzZ4yn3/+2ePXrVsb/5e//HX92LHjW99++830G264ZrzT6Vxz8MGH1QFUVVXGvPbay9nXX3/rmubmJueVV1488ZRTTtzhgAMOqrz33odX/O9/r2U89dRjefvss1/tlCk7tN52280jvvrqi9SLL768YOTIUW2maXr/+c8bx9x//7+GX3rpVRseeujJFaeeeuLUPffcp/qMM84q8fv9nHvumZM6OjocF198RX5WVnbH888/k33JJX+bdOed966cOXNW8/vvv5Ny++23jD355FM37rvvAbVfffV58kMP/Xvk9j4mobSvz78og0TFiYhEvAWPP0KGw0GDz0fCKX+jNeDA5XJz2K/OxvXsbeze3Mp377/LTgcebHdUEYlqkbnuyT777F81c+asZoCWlhbH/vsfVHXIIYfVjBw5uh1gzJg/lr/wwnO5a9as8h5yyOG1O+/8s9qFC79JBkoXLVqY4HK5rUmTJjd+881XSbvs8rOmTz/9OHXiRKMxKyvbt/m5Pvvsk+TCwgLvo48+s3TixEltAJdffk3BY489lFtdXeUGcLlc1nXX3ZKfkpLiBzjssCMrnnrqsbyeMq9atTLu22+/Tr3mmhvWHHjgIXUA55xzfsm6dWvin3768WFdxYnf73f87W8XF3a9MJ8+fcf6VatWJl544WUbHQ4HZ5zx55L//OfZYatXr/JOmbJD65QpU5v22++Amt13n9MIMHLk6Pb33nu7vqBgnRcgMzPL53Q6La/XG0hLS/d/+OF7yfn56+IffPDxZV3nuOKKf6xftWplwtNPP547c+asdc8993TubrvtUX3aaWeWAUyYMLFi48YNsa+//krO9jwmobRve35nBpKKExGJaJZl0fHF5wCszswhIykHWtoByMwdhSczB2fAR+F/X1BxIiIDxul08swzL5qR1q0LYMSIkZu6U3m9Xuukk04p/9//Xk976qnHE4qLi2ILC/Pja2trPH5/wAGw11771l199WVZLS0tjq+++iJphx2mNeTljWz9/vuFyUDpN998lbL33vtWb+lcq1ev8sbHx/u7ChOAnJxc38UXX7Gx6/uUlBRfV2ECkJSU7G9vb/9R47pnNs2VXoCdd/5ZY/d9pk+f2fDEEw+P6H7bhAk/nDc2NjaQlZXT5nA4AIiLi7MA2tranADHHvvr6k8//Tjp9ttvySsq2hi7ceMGb3FxUdzkyVN+dJ4ua9as9nq98f7uL/wdDgdTp05rXLjw22SAgoJ18XPm7F3T/X477rhT4+bFSV8fk1DaF65UnIhIRFtfsI4PijYwJz0T7y9/+ZPtTbMOgG/fYXxrKyUF+QwbM9aGlCIyFDidThITEwN25+ir2Ni4TZmbm5udf/rTH4zW1lbnXnvtU3PwwYdV7bjjzPXnnHPG5K59dt99zwaPxx348svPkr77bkHyfvsdUD169Ji21177b+6GDYUxBQXr4q+55oZ1WzqXy+W2ul4s98TpdG7zClT3zD0NSg8E/A6Xy/WjjR6P50ffO509Z7n22itHffbZJ+n77ntA1W677Vk3efLUkqeffjy3qqoiZkv7W9aWmxYIBHC73VbwfE7LsrZ9ga2vj0ko7QtXKk5EJKK9+vorvFRSRMGI0RyTPOwn22Om7kr5V2+R7XLx3QvPMezCS21IKSISGT7++MPk/Px18f/975vfZ2fn+ABqaqpddXV17q4iICYmxtpxx53qP/lkXurq1asSL7nkysIRI0a2OxwO69577x4+bNjw1u6D27sbN258a1NTk2vdurWx48aNbwOoqqp0H3/8L6Zdf/2tq0PJPGnS5BaAb7/9KrGrWxfAkiXfJ+bljWwJ5ZjV1VWud999K+viiy9f9/OfH7vpSsfGjevj4uK83QqjH178T5gwqaW5udm1YsWyuO5XT5YvX5Y4YsSoVoDRo8e0LF++LBEo79q+bNmSrY5T6s1jEk3C+rKOiMjWWJbFe++9C8DsPQ/e8r9oh4PizGBXZWv5ssELJyISgXJyctsBXnvt5YwNGwpjvvrqi8QLLjh3gt/vd7S3d2x6Jb7HHnNqP/rog8zk5CTf+PET2mJjYy3DmNI4f/7HGbvttkdtT8ffa6996seOHd987bVXjF2w4JuElSuXx11zzeVjUlJSO3bccafmUDIbxpTWmTNn1c2de/uo999/J2XNmtWx99xz57AFC75J/c1vji8L5ZjJySl+rzfeP3/+J6nr1q2NXb58qffqqy8bXVCQH9/R8cPPIS4uzl9UtDG2vLzMvc8++9WNHDm65dprrxz3+eefJq1atTLuuuuuGrVx43rvb397QhnACSecXPLVV5+nPfzw/Tnr1q2NffHF5zPefPP17K1l6e1jEi1UnIhIxFr9xWdk19eTEBvLyPE79bifc+cDARjrcLJhldnjfiIiQ92sWTs3n3rqGRtee+3l7JNP/u20W265fsy0aTs27LnnXtWm+cNMZPvtd2BdIOB3TJu2Y33XbTvtNLvesiz22Wf/2p6O73Q6ufXWO9ZkZeW0X3LJ3yf+5S9nTna5XNbtt9+9OjY2NuTLADfffPu6XXfdrfb2228dc9ppJ+/w1Vefp1522TVrjzjiqJpt3/un3G43V1zxj3Xr1xd6//jH3+1w0UV/ndjW1ub83e/+UFRUtMHb1NTkBDj66F+WL1z4Tcp55509ye12M3fufavGjBnX/I9/XDH+zDP/OKWgIN978823r5o9e9cmgP32O7D+z38+r/CNN17NOvXUE3d4881Xsw455LCKrm5fW9LbxyRaOHrT7y3KrPP7A2Orq5v69aBut5O0tARqaprw+SKuu2mvRHsbo719EH1t/OCyixhZXs73Tieek67A6XTg9cbQ0tJOIPDj/21pj1zDMJeTNZMnc/gFl9iUePtE2+O3JdHexmhvHwxcG9PTE3C5nPnAuH47aIgWLFgw2el0vZ2dndcYExMXtrMeSfj54ov5iZmZ2R3dJwS47767c999963Ml1/+31I7sw2k9vbWuPLyosRAwH/o7NmzV25tX405EZGIZFkWyaWl4HTSPn4HPNvYf2X2aF7+dh4uj5PDByWhiIjIj3355ecp8+Z9mH7RRZcVjB49pm358mXe1157Oeeww46ssDtbuFBxIiIRqWbdWlKcTjoCAeJn7rPN/R2zD2DeOy8Qs6COlpYWvF7vIKQUERH5wdlnn1fc0tLivPnm68c2NNS709Mz2o8++hdlp59+Vliv2j6YVJyISERa/f67pAGFPh/OhHS21UM1K3ckKWlZ1NVUsGjRAnbffc6g5BQREekSGxtrXXbZ1RuADXZnCVcaEC8iEalpxXIA6tIytlmYQHAhrJ2NGRyenUt+5wxfIiIiEl505UREIo5lWaTU14PTiTVuh17fb9f0LHbyjWFlQf4AphMREZFQ6cqJiEScihUrSHI6afP7SZi2e6/v55qwIwDDAwFaWkJal0tEREQGkIoTEYk4KytK+evSRTzZ2ACxSb2+n3vsDrQHAiS7Paz8fP4AJhQREZFQqDgRkYizeMliilpbaRs9vlfjTTZxuyl2BP/tlXz95cCEExERkZCpOBGRiLNkyWIARoyZ3Of71qZkA9BRqHEnIiIi4UbFiYhEFF9zE3tWV3NYdi7DRkzo8/2t0cGCJqWpBatPl11ERKLPnDk7z37hhecyerv/vHkfJB977OHT9t13t1m33HLDiIHM1htz594+/JhjDp3en8fsy89k48b1Ma+99nJaf55/qNNsXSISUQq+/ILdUlIZ742nKnMUgT7WF7ETdoQln5Dt8VBUkM+IseMGJqiISAR46aU3vk9OTvH3dv8HH7xvRE5Obttdd927KjExqdf3iyR9+Zn84x9XjsnOzm4/6qhjawY611ChKyciElFKFy4AoNzlImA5+n6A5DTuqKrllEXfYq5b08/pREQiS05Ors/r9fb6bZ6mpibX1Kk7NI0aNaY9PT0jKouTvv1MQnkikq1RcSIiEaV9fSEAzelZIR+jbdgY2gIBVqxY1l+xREQiUvcuTJdffuGYSy/9+9hbb71hxGGH7b/j/vvvsdP55589vqys1N21b2VlRcx//vPssDlzdp69fn1BjGVZPPDAvTnHHnv49P3332OnE0745dSXX34xvev4n3/+adKcOTvPfuCBe3MOOWTfmSee+Osp+fnrYufM2Xn2v/5117DDDz9gx2OOOXR6bW2tq66uznX11ZeNPuyw/XY86KC9Zp5xxh8mLVq0ML573meffTLzF784Ytp+++0+6/zzzx7f2Njg2lr7Tj/9ZOPOO/85/OqrLxt94IFzdjrssP12/Ne/7hq2evWq2D/+8SRjv/12n3X88b+c+t13Czadp+tnUltb6zrqqINnnHvumZv6EH/yybykvfbaZfb//vd66umnn2ysWLE88eOPP8ro6lp2zDGHTp879/bhm2e4/PILx/T08/D7/RQXF3kuvPD8cQcdtPfMQw/dd8dzzz1zwtq1a2JDfmAjmIoTEYko8U2NADjyxoZ8jOEjg88zy5cv7ZdMIiJd/C0tzp4+Am1tjsHYd3t88cVnafX19e677rrXvOqq69auWLE86Z577syDYHen9PT0jp///Niyl1564/u8vJHtd9xxa96bb76W/ec/n7f+4YefWn7ssb8q+9e/7hz95JOP/egdpK+++iL13nsfWnHJJVcWuFxOC2DevA/S77jjHvOaa25cm5KS4j///LMnFhcXxV5//a1r7r33oZWTJ09pOv/8sycvWfK9F+C1115O+/e/7xl17LG/KnvwwSeWTZmyQ9Nbb72Rva02vfLKi7nZ2TntDz305LIjjzy6/Nlnnxx+8cV/nXjccSeU/utfD66IifEEbr/9ltGb3y81NdV/4YWX53/33YKUV1/9b3p1dZXr1ltvGHvAAQdXHn74z2tvvfXONRMnTmraffc9ax566MkVffk5d/95tLa2Ov/ylz8ZgYCfO+74l3nHHf8yk5NTfGef/ccpxcVFnr4cNxpozImIRAxfUxPpnVMBe8ZMDfk4Y3LyOGXkGDKqarAsC4dDV+VFpH+s/ctZO/W0zTvJqBt50aWb+pOu+9u5O1odHVt8ozh2zNjG0VdcbXZ9n3/x36cHmpu3+LotZnhe85hrb+jTi+MeM3q9/quvvr7Q4/FYkyZNbv3ii8+qFiz4JgWC3Z2cTqfl9XoDOTm5vqamJufrr7+Sc8EFl+YfeOAhdQBjx45rKykpjn3ppedyTzrpDxVdxz3uuBNKx4+f0Aawfn1BDMARRxxVYRhTWgE+/fTjpNWrzYRXXnnr+8zMLB/A3/52cdHy5csSn3vuqZzp03cs+O9//5Ozxx5zak466ZQKgAkTJpauWLEsoaBgXTxbMXLkqJY///m8EoBTTjmj7Nlnnxq+1177Vh988GF1AAcffFjVgw/+e+SW7rvXXvs0HHbYz8v//e97Rn7wwbvpCQkJ/osvvmI9QFpaut/tdlsxMTGBrsy91f3n8fzzT2c2NNS7b7759nyPx2MBXHvtTQW/+MUR01988fmsc8/9W3Ffjh3pVJyISMTY8F1wvEl1Rzux2WP6PBi+S0buaPbOySVgWRQXrCNv7Ph+TCkiErlycnLbul4gAyQkJPp9Pt8W38FZtWplXEdHh+O2224ec/vtt4zput3vDzh8vg5HS0vLpvuNGTO2bfP7jxo1urXr65Url8cDHHfcMT+aecvn8zk6OtodABs2rPfuu+8B1d23T506rXFbxcnw4SM2nSc+Pj4AkJeXtylPTExswOfr6PFdqr/97aKNCxd+k7Jw4bcp9933yPK+jNHpSfefx6pVZnxLS4vr0EP3ndl9n46ODueGDYVx23uuSKPiREQiRsmK5aRbFuUOR2iD4Ts5klKp8/tJcbko+PYbFSci0m/G333fdz1tczidP3pRO+72ud/3dt+xt9y2pLf7bo/uhckPtnz4QCDgALjssqvXjRs3oXXz7bGxsZvuGBcXF9h8e1xc3KbtgUDA4fV6/fff/9hPrgDFxMQEABwOx08W3nW73dtsu9vt+sk+DkfvRzaUlZV6amtrPC6Xy/rii/nJ06fPaNn6PX58Op/P/5MnrO4/j0AgwLBhw1tvvvn2n8zSkpCQEJWTDmyNxpyISMT4rr2Nk7/7hq8ycrb7WJWuGABqVpnb2FNEpPdcXm+gpw9ntxfrA7nvYJkwYVKry+WySkqKY8aNG9/W9fHJJx+lPPnkIzlOZ+9fZo4fP7GlpaXF1d7e5uh+rMceeyj3ww/fSwUYPXpM89Kl3yd2v59prkjo31b9WCAQ4Nprrxg7evTY5rPPPnf9M888kbd06RLvD3s4fvw4udxWY2OTq/v9y8vLYrZ2jnHjxrdUVlbGJCcn+7vaPWrU6LZ77rkz7+uvv0jq7zaFOxUnIhIxVq1aSXsgQNLIidt9rKbEVAA6SoZUV14RkX6TkpLiP+igQyuefPLRvP/+9z/pBQX5MS+++HzGY489PCItLb1PYzD22++AutGjx7RcffVl4+fP/yRp3bq1sbfeesOIjz56P3Ps2PGtAMcff3Lp119/mfbgg/flrF27Jvbxxx/O/uqrLwZ0AcQHHrg3Nz8/P/7yy68pOO64EyunTNmh4frrrxrb1jkJgdfrDZSXl8UWFW30AEyZMrVx/vyP07/44rPENWtWx1577ZWjW1qatzqj2FFH/aI6MTHBf/HFfx2/YMHXCatXm3FXXnnx2EWLFqRMnGhs4ypN9FFxIiIRY1XnVY7s4WO2+1i+rDwAvA0N230sEZGh6pJLrtxw9NG/KHviiUfz/vCH46c9/fTjw3772xOL//KXvg3idrlczJ3771UTJ05quuGGq8eddtpJUxcvXpR0xRX/WLvXXvs0ABx44MF1F1102bp3330r849/PGmH+fM/ST3qqGPLBqZlsGTJYu9zzz01/KST/lA0btz4NoBLL72ysLKyIvaOO27NAzjqqF9UbNiwPu7UU0/cwe/3c845fy2aNMlovPzyiyb+5S9/mpycnOzbY4+9trpAY0pKiv/uux9YmZKS6rvkkgsmnnXWH6eUl5fF3HjjP1dPnjz1J93lop3D2rzzXvRb5/cHxlZXN/XrQd1uJ2lpCdTUNOHz/aRbZVSI9jZGe/sgsttYtWY1n19xCasaGxh/4Z3g/OkYQafTgdcbQ0tLO4FtjJb3Faxgxscv0ODzMe3+h4mNDf/p5CP58eutaG9jtLcPBq6N6ekJuFzOfGBcvx00RAsWLJjsdLrezs7Oa4yJiRtyLx5F+qq9vTWuvLwoMRDwHzp79uyVW9tXV05EJCJsXLgAIzGJ6WkZOFzbP3mJe8QE/JZFe8BPodkvM3CKiIjIdlJxIiIRoW5dcBKThtjYn8zWEhK3h2tqmzhr8Xes2bihHw4oIiIi20vFiYhEhI6yYLfitqT+G/uYPDy4IPCaNav67ZgiIiISOhUnIhIRYjsHrgeyhvfbMbsG1q9ereJEREQkHGgRRhEJe1YgQGogAE4nruFj++2445NSuWLSZKje6kQqIiIiMkh05UREwl79hvXEOJ20BwLEjZzUb8dNzcxlRnIq4z0xNDc399txRUREJDQqTkQk7G1ctYrKtjbKOjpwxiZu+w695ModTcCySHC72bBieb8dV0REREKj4kREwt661mbOXvIdjzuc/TNTVyfL5aa6cz2UspXL+u/AIiIiEhIVJyIS9vLz1wKQNXxUvx+71h0DQH1+fr8fW0RERPpGA+JFJOytW7cOgKzc/i9OmhKSobEaX1lpvx9bRIYehwOXw+EY9Dd/LcsKWBb+wT6vSH9TcSIiYc2yLH5VW8fek6bQmJrZ78f3pedCYzUxDY39fmwRGVocDlwBh2NYc6tv0F9fxce5fU6sknAsUObOvX34hx++m/HKK28v6et916xZHXvGGX+Y+thjTy8bNWpM+0Dkk/Ci4kREwlprVSXZbjeZSckszx3T78d3DR9L/drvqWpuIhAI4HSqt6uIhMbhcDibW33uL5eWBJpbfYHBOm98nNu527Rh7qQ4t9OyrLArTkK1fPlS7yWX/H1Ce3ub/jEPISpORCSslSwPDlSv6ujAk5SJP9CPI+IB1/gZnHHfNQT8fg4qLyU3t/8WeRSRoam51RdoaukYtOKkU1S9gL/33rm5L7743LC8vBGt1dVVMXbnkcETVr/IhmFMMgyj0TCMP3S7baZhGB8bhtFkGMZ6wzAusDGiiAyyqjWrAah1OPq9MAFwuT1kdK46X1hY0O/HFxEJZ3Pm7Dz76acfzzr11N8Z++23+6zf/vbYqe+++1ZK933ef/+dlN/97tdT9ttv91m/+MUR0+6885/D29raHF3bV65cHnf++WePP+SQfWfus8/PZv3iF0dMe/TRh7J7Oudjjz2Uve++u816553/pfa0z4IFX6dceOFl+Wed9ZeN/dJQiRhhU5wYhuEBngYSut2WAbwHrAJ2Bq4GrjMM4xRbQorIoGsqCj4vNcd6B+wc6Vl5ABQUrBuwc4iIhKtHH31wxH77HVD9wAOPL9t555/VXXfdVRO++earBICPPno/+YYbrhl/2GFHVj7yyNPLzjvv7+vnz/84/fLLLxwL0Nzc7Pz738+dFBfnDdx9979XPvroM8vmzNm75uGH/z1yyZLFP/nH/dRTj2U9/vjDI6644tq1hxxyeG1PmR5++CnzsMOO7HG7RK+wKU6AfwANm912BtAGnGWa5grTNB8F7gAuHuxwImIPf2UlAG1JKdvYM3QHpaQyd9pMYhYuHLBziIiEq/32O7DypJNOqZg4cVLbBRdcUjR+/ISmF154NhvgqaceG3bAAQdXnnji7yvGjh3Xts8++9f/9a8XFn755edp69cXxDQ3NzmPOurY8ssuu7pw0qTJrePGjW8755y/FgOsXr3yR8XJs88+lfnIIw+MuPrq69cceODBdXa0VcJfWIw5MQxjb+BPwExgfbdNewGfmKbp63bbh8ClhmFkm6ZZPngpRcQOMc1NwS8ycgbsHEkJSeS21lJdUzNg5xARCVezZu38ozeHDWNK06JFC5MB8vPz49euXZPw0UfvZ3Rt71oMd82a1XH7739Q/QknnFz+xhuvpq9duzq+qGhjbGFhfjyA3x/Y1PWrpqbGc999c0e7XC5rxIhRbYPRLolMthcnhmGkAk8CfzFNc4NhGN03jwA2n3auuPPzKCDk4sTt7t+LRi6X80efo1G0tzHa2weR2caq1lY8Dieu3NE4nY6t7tu1fVv7bc6ROQyqNuBtbe33/w39KRIfv76K9jZGe/tgaLQx2rjd7h8N6LMsC6fTZQW/DjiOOeZXpUcddWzV5vfLycntKC8vc59xxh+mJCUl+3bbbY/a2bN3rZ8xY8em4447Zkb3fR0OJ9dee+PqRx55YPgNN1wz9uGHn1yp2RFlS2wvToD7gC9M03xmC9viCXbr6q6183NcqCd0Oh2kpSVse8cQJCcPXL/4cBHtbYz29kHktLGjo4Prli/B7/dz/emXEevt3YQtsbGePp3HNWYCmF+T7nCSmBiDx9O3+w+2SHn8tke0tzHa2wdDo43RYvnypQkHHXTopm5WK1cuTxw/fnwzwIgRo1o2bCiMGzdu/KbXY198MT/x+eefybn00qsK33jj1YzGxgb3Cy+8ttTj8Vidx+t88H+oeVJTUzr22We/+uzs7PYzzzx16qOPPpjzxz/+qWyQmigRxNbixDCMkwh23Zrewy4tQOxmt3UVJU2hnjcQsKivbw717lvkcjlJTvZSX9+C3z/YswcOjmhvY7S3DyKvjYWFBfj9fmJj47Cc8bS0bH39LafTQWysh7a2DgJ9mNnLkTECgBSPh2ULlzB6krGNe9gj0h6/UER7G6O9fTBwbUxO9upqzAB5/fVXckaPHts6bdqMppde+k9WYWGB9+KLrywA+O1vTyy9+ebrxs2de/vwww//eVVpaUnMbbfdPCYzM7M9JyfXl5OT297W1uZ8441X03bZZdfGtWvXxN1779yRAO3t7T95wKZM2aH12GN/Xfr0048P33ffA2rHj5+gLl7yI3ZfOTkVyAE27871b8MwLgQKgc0XHej6vmh7TuwboLWR/P7AgB07XER7G6O9fRA5bcxflw/AsLyRBF/j9K7gCASsPhUneOJo8PtJcrkoWraUvHET+x52EEXK47c9or2N0d4+GBpt7El83OD2D93e8x188GEVL774XM6dd/7TO3r06Oabbvrn6h12mNYCcMQRR9VYlrXu2WefHPbf//4nNz4+wb/zzrvW/vWvF23s2r5y5YrSBx+8b+Tdd9/uzMzMaj/kkMMrv/jis9QVK5YlABWbn++ss/5S8tlnn6TdcMM1Yx566AlT3bukO7uLk98Bm1/3XQ1cBTwPHA+caRiGyzTNrhVPDwBMDYYXiX6+jz/iX9N3Ykn8wHTD7K7G4SIJqMnPH/BziUh0siwrEB/n9u02bZibQZ4RNT7O7bMsK6RqcOzY8S0XXXR5j+uJHHnk0TVHHnn0FmcMcTgcXHDBJUUXXHDJj9407t5l69xz/1Z87rl/6xozTGxsrPXCC68t6022PfbYq2H+/G8X9GZfiQ62Fiemaf7k6kfnFZRy0zQLDcN4BLgIeNgwjFuBXYHzgTMHM6eI2CNQWUlWbCyJCckDfq7quARaq0upq/nJmE8RkV6xLPxOrJKkQb5yEjy3FbAs/NveUyS82X3lZKtM0yw3DOMQYC6wECgBLjRN83F7k4nIYPA0BYeWWQM4jXCXxSOn8MbnH7BPbjYnDvjZRCRaWRZ+y7JUJIiEKOyKE9M0HZt9/w2wu01xRMQmlmWR4veD04krZ9SAny8tcxgA6wsLB/xcIiLhQl2mJNxoBJKIhKW26mrinE4ClkVM3rgBP196VnCujaKNG/D79aaniIiIHcLuyomICEDpyuUAVHd0EJOURV8m3wpFamIyd02bSWZMDOVFGxg2aszAnlBERER+QldORCQsVa1dDUAtDHhhAuCI9ZLsicHjdFK8vFeTyIiIiEg/U3EiImGpsr6BlY0NVMduvg7rwKkhOOStNn/doJ1TREREfqDiRETC0gpfB1etXMb32XmDds7GmDgAmoq2a41XERERCZGKExEJS0VFwfXA0jJyB+2cbQkpAPi11omIiIgtVJyISFgqKQ5evUhNH/g1TroEUjMB8DS3DNo5RURE5AcqTkQk7Fg+H5fGebln+k6kdV7NGAyOzOB0wkk+TSUsItIbTU1NzieffDSr6/vLL79wzOmnn2wM5Dk3blwf89prL6dtzzFeeOG5jDlzdp7d0/bBaMecOTvPfuGF5zIG8hyDZf36gpg5c3ae/fnnnyZt77FUnIhI2GkoLsLjcJLq8eDNHLwxJ57h41jT1IjZUE9DQ8OgnVdEJFI98sgDOS+99Pym/rcXXXTFhltvvXPNQJ7zH/+4csxXX30+eO9cyaDSOiciEnZKzZUAVHV04PB4sQZhKmEAR0YuN2zcQFNDHfuVFpOUNKBvmomIRDzLshzdv09JSRmES88/PqdEFxUnIhJ2agsLSAXqnc5BK0y6pKbn0NRQR1HRRiZOVHEiIr1nWdDss6dXSrybgCOEl+x1dXWu22+/ZcTXX3+R6vP5HGPHjm8+++xzN86cOasZoLm52XnzzdeO/Pbbb1Kbm5tdeXl5rb/73R+KDzvsyNq5c28f/p//PDMMgl2UnnnmxSX33/+v4eXlZbEPPviE+fnnnyZdcsnfJ9100z9X3XXXbaPKy8tjx4wZ03zFFdfmv/vuW2lvvPFKjt/vd+y1175Vl19+zQaHw4FlWTz00L9z3n33rcyKivJYj8cTmDx5auMFF1y6fvToMe2nn36ysWLF8sQVK5YnHnPMoUmvvPL2kvb2dsfcubcNnzfvw4yWlmbXiBGjWk499fTiffbZv76rnW+99Wbq448/NLysrDRu/PiJTTNnzqrv6WfSxe8PcMMN14ycN++DDLfbbR100KGV55779yK3O/jy+euvv0x45JEHhq9duzqho6PDmZOT23bCCSeXHH30L6q7jvHqq/9Nf/75p3NLSorjUlPTOo488ujyP/7xT2Wbn6uiotz95z+fbqSmpnXceee9a+Lj4wMff/xh8oMP3pdXVLTRm52d0/bLX/6mdO7c28c888yLS0aNGtN+zDGHTv/Zz/ao/e67Bcl1dXWeq666du1uu+3Z8PjjD2f/73+vZ1dWVsZkZma2//KXx5Uef/zvKgE+//zTpIsu+uukrmNAsEvWCSf8avqtt96xao899mq4/PILxwQCAUdaWnrHRx99kNHW1uqcMWNm/aWXXlWYk5PrA1ixYlncHXf836g1a1YnpKWldRx33Aklff/t2zIVJyISdppLikkFWmK9xAzyuVPTcyguXEXJhvWDfGYRiWSWBb97O36yWeNKsOP8k9P8jU8e2mz2pUCxLIvzzz97otvtDlx//a1rkpOT/a+//krG+eefPfnuu+9fMX36ji1333378IKC/Pibb75tdUpKqu+ll57Puvnm68btsMO0paeeekZpS0uL87PPPk5/8MEnlmdmZvk2P0cgEODee+eOvPjiywtiYuICV111yfg///n0KTvtNLvurrvuM7/55qvEe++dO3q33faoP/DAQ+oeffTB7BdeeHbYhRdelj958pSWDRvWx9522y2j77jj1pF33nnv2ltvvXPN3/52zsTMzKz2iy++Yj3AlVdePGb9+vXeSy+9Mj83d3j7vHkfpF511aUTrrzyurUHHnhw3TfffJVw443XjP/1r48vOfzwn1d9++3XSffff8+obf18Vq1amZiRkdFx9933r9y4cUPs7bffOqa1tdV52WVXbyguLvJccsnfJh1yyBEVF110+Xqfr8PxxBOP5t5xx/+N2X33Peuzs3N8b775Wto//3nT2N/97g9FBx54SM3y5Uvj77jj1jEJCYn+3/72xMqu81RVVbrPOecMIyMjs/322+9Z4/V6rSVLFnuvuurSCUceeXT51VffsG7lymXx99xz5+jNM77zzltZ11570+rk5GT/lCk7tNxyyw0jP/74g4yzzjp3/fTpOzZ9/vmnyffff8+o9vY25+9//8fy3v5ufPHFZ2lz5uxTfddd95rFxUUxN9103bh77rkz77rrbi6sq6tz/f3vfzEmTZrceO+9D64oKyuLueOOW36SLVQqTkQk7Pirg286tScmDXpxckR8HJfP2pXVy5YO8plFJNI5YJCv9W6f+fM/SVq92kx45ZW3vu8qLP72t4uLli9flvjcc0/lTJ++Y0FJSXGs1xvvHz16bFtKSor/vPMuKNppp9kNKSlp/sTExIDX6w04nU6r6x31LTnllNOLZs/etQlgjz3m1L7xxqvZV111XWF8fHxg4kSj9amnHs9bu3a198ADD6kbOXJU2wUXXJp/0EGH1gGMHDm6/auvvqj55JN5aQBpael+t9ttxcTEBDIzs3zr1q2N/eyzT9PvueeBFV1Xe8aPn1C2du0a7/PPP5V74IEH173wwrPZkyYZjeee+7digAkTJratW7fW+7//vZa9tZ9PSkpqx3XX3ZIfFxdnTZ48tbWioqLo/vvvGXX++RcWtbe3O377298Vn3bamWVOp7OrnSXz5n2QsW7d2rjs7JzGF198Lmf33fes/tOf/lzamautubnJFRfnDXSdo76+zn3OOX+alJmZ1XbbbXevjYuLswCeffbJnLFjxzVfeOFlGwEmTpzUVl1d7XnwwftGds+4006z6vbee9+G4LHqne+882bWH//4pw3HHPPL6s5zVhQXF8U+//wzw04++dReFyder9d/9dXXF3o8HmvSpMmtX3zxWdWCBd+kALz55qtp7e3tzn/846aClJQU/+TJU1tbWpo3XH/91eN7e/ytUXEiImHH09QEgNU5te9gcscn4m5rwKqrHfRzi0jkcjjgyUObzUjq1rVy5fJ4gOOOO2Z699t9Pp+jo6PdAfC73/2h9IorLppw9NGH7Dhx4qSmWbN2qTvssCOr+zK2ZOzY8a1dX8fGxgVSUlI74uPjN71Aj4nxBNra2p0ABx10aN2CBd8kzJ172/Cioo2xGzdu8G7cuCEuLS2tY0vHXr58aTzA3//+lx/1w/X7/Y74+Hg/QGFhQfxOO82u6759+vQZjdsqTsaPn9DcVSwAzJgxs8nn8znWrl0TO336jJZf/vI3VU888Uh2YWF+XFFRUVxBwbp4gEDA7wBYv77Qu/fe+1d3P+Zxx/1wxQTgyScfy/P7fY7Nz7Vu3Zr4zbuezZq1SwPc96OMeXkjNv1s16xZFef3+x077bRzY/d9Zs6c1fj666/kVFSU9/p1f05ObpvH49mUJyEh0e/z+RzBbGvjc3KGtXb/HZg9e5fGLR0nFCpORCTs5Le0UNvRDlmDN1NXFys1G2pKiGlu3fbOIiLdOByQ4CGw7T3DQyAQcHi9Xv/99z+2YvNtMTExAYCdd9616eWX31r86afzkr/55qvkd999K/O5554afv31t67ea699ejWtocfj/tEVJaez5yrqgQfuzXn22Sfz9tvvwMqZM2c1/OY3x5fPm/dh6qefzkvf0v6WFfxx33nnvSsTEhJ/9LN3uVzWD/v9eBC92+3Z5lUup9P5o30CgeBr8djYGGv1ajPunHPOmDxmzLjm2bN3qZszZ9+69PT0jr/85U9Tup9/WwXj9Okz6g8//KjKG264evxHH71fvd9+B9Z33pdAYNsD/2NiYn/SRsdmJw0Egj+W7sVG9/GcHR2+n5yn+74/6H5T33+evaWphEUkrFiWxYP5q7lq5TJcIyYO+vmdnQVRshXAGuzR+CIig2j8+IktLS0trvb2Nse4cePbuj4ee+yh3A8/fC8VYO7c24Z//fWXSQcffFjd5Zdfs+HFF19fmp2d0/bRR++nATgcjn79R/mf/zwz/Le//V3xVVddt/7440+qnD1716aioo1xP/53/MM5J040WgDKyspiurfh1Vdfynz55RczAcaNG9+8YsWyxO5HWLFi6TbHBhUUrIvvemEPsHDht0kxMTGB0aPHtv3nP89mJSendNx//6Orzjjj7LIDDjiorrKywgNseu7IyxvZaporfnSem266duT555+9qfvT3nvvV3PYYUfU7rHHnOo77rh1TH19vRNgzJixzZvfd8mSRVvNPGHCpFaXy2UtXPjNj9q6aNHCpJSU1I7U1DS/xxMsOuvr611d2wsL82O39bPobuLESc0lJcWxVVWVmy5yLF78Xb+NtepzcWIYhtswjAMNw7jJMIznDMN4yzCMJw3DuN4wjD0Nw9D0biISsvr6Ohobg1eHE1IGv1uXZ9gYANLdHmprqre+s4hIBNtvvwPqRo8e03L11ZeNnz//k6R169bG3nrrDSM++uj9zK6uWEVFRbF33vl/o+bP/yRpw4bCmDfffC2tsrIidvr0GY0AXq830NTU5FqzZnVsR0fHdr8GzMjIbF+48Jtk01wRt3r1qtg77vi/4V9//WVqR0fHptesXq83UF5eFltUtNEzefLU1lmzdq6bO/efo999962UgoL8mIce+nfOf//7Qm5eXl4bwAkn/L60sLDAe8stN4xYs2Z17Msvv5j+1ltvZPWcIqiqqirmyisvHrNy5fK4//3v9dRnnnli+DHH/KosNjbWys7Oaa+uror58MP3kjdsKIx56603UufOvX00QHt7sEvcCSecVPL55/PTHnvsoez8/HWxr732ctq7776VNWfOPrWbn+uiiy7f0N7e7vjnP28cCcHudPn5axP++c+b89asWR379ttvpj755GN58NMrI11SUlL8Bx54SOXTTz+e98orL6WvW7c29sknH816553/ZR177K/KHA4HkydPbYmLiws8+uiDw9atWxv7xRefJT788P0jejrmlhx55DHVyckpvssvv2js0qVLvF98MT/xX/+6a+S279k7vS5ODMOIMQzjPGAd8C5wBjAJSAR2Av4MfApsMAzjL4Zh9KkKExEBKF5fiBNIS88Ah2fwAySn47Ms3E4npatXDv75RUQGicvlYu7cf6+aOHFS0w03XD3utNNOmrp48aKkK674x9quLluXX35N4YwZMxtuvvnasSeddNy0J554JO/3v//jxmOP/XU1wMEHH1qTmprWcdppJ++wePGi+O3NdPnl1+S3tbU5zzrrj1POO+/MyQUF67xnn31uYUNDvXv9+oIYgKOO+kXFhg3r40499cQd/H4/N998+7rdd59TM3fubaP/8IcTpr377luZf/7z+YW//vXxVQDTp89ouf76W1cvWbIo6bTTTt7hpZeez/n1r4/f5tS3O++8a63L5bL+/OfTp9xzzx2jDz30yPI///m8YoCTTz61fI899qq+5ZYbxp1yyok7PPXU48P+8IfTijIzs9qXLl2SAMHxM+ec89fCN998LeuUU07Y4fHHH847/fSz1v/qV8dVbX6uzMws3+mnn73xww/fz5w374PkKVN2aL3yymvXfPPNl6mnnXbSDo8//vDwww//eTmAxxPT49WqSy+9av0RRxxV/sgjD+SdeuqJO7zxxqvZf/rTOetPO+3MMoCkpKTAxRdfsa6oaIP31FNP3GHu3NtG/elP52zoS3GSkJAQmDv3PtPtdlvnnXfm5Jtuum7sb35zQmmvD7ANjt50WzAMY1fgccAPPA38xzTNtVvYbzpwOHAa4ABOMk3zi/4K20/W+f2BsdXVTf16ULfbSVpaAjU1Tfh8EdPdtE+ivY3R3j6IjDZ+ed/dpHz7Ld/5fMSfdl2f7ut0OvB6Y2hpaScQCL2nQfYj15DpclK2/wHsdcJJIR+nv0XC47e9or2N0d4+GLg2pqcn4HI584Fx/XbQEC1YsGCy0+l6Ozs7rzEmJk4D1KTffffdgni3221Nn75jS9dtr7zyUvqdd/5zzPvvf7qwa62VSNHe3hpXXl6UGAj4D509e/ZW3/nrbcueBC4xTfPlre1kmuYSYAlwi2EYvyFY0Ezq5TlERGgtLSXd4cDltWWpAADWuTysqi4nqeYnb26JiIgMuJUrV8Q/8sgDIy688NL8qVN3aCkoKIh98slHh++555zqSCtM+qq3rZtummZ7Xw5smuZ/DMN4pe+RRGQoC9TWAtCRlIJdfUO/zhjJJ99+xm933cWmBCIiMpT99rcnVlZVVXruu+/uUTU11Z7k5GTfXnvtW33OOX8tsjvbQOtVcdLXwmR77yciQ5enuTn4Rdo2xyoOmNSMHAA2btxoWwYRERm6HA4H55xzfsk555y/zbEx0aZXxYlhGFf15aCmaV4bWhwRGeri/X5wOnFm5NqWITU9BwdQXaTiREREZDD1tlvXNZt9bxEc8O4HKoE0IAZoB6oBFSci0meBjnaSnMFJBF1ZI2zLMcLt5qlZu1Lv82FZVo/TNorIkBUArM0X9hORLev8W7Fg24uU9moqYdM0nV0fwEFAFfBbIM40zWGmacYRnKWrCvhbyMlFZEir2xC8UtHq9xOXMdy2HLE5I/A4naR5PFSW99vsiCISPUoty+pob2/d7qlzRYaC9vbWeMuyOoBtdlMLZbj/PcCVpmn+p/uNpmm+bRjGFcANwHMhHFdEhrjKqgrmV1Xi8XhIdsUE32OxgZWQQkcggMfppHTNarJyhtkTRETC0uzZs+sXLFjwRH19zVlARkxMXHN/r5QuEg0sy3K0t7fG19fXxFhW4OHZs2c3bOs+oRQno4D1PWyrAHJCOKaICKWtrczNX8O4CQYn2/k073BQa0EWUFOQD3vubWMYEQlTN/r9Pmprq052OBzxBLu7i8iPWZZldVhW4GHgxt7cIZTi5HvgL4ZhvG+aZkfXjYZhxAEXAV+FcEwREcrKgld70zOybU4CDS43WQRoLC62O4qIhKHZs2cHgOsXLFhwl2UxjF52lRcZYgJASW+umHQJpTi5FHgHWGsYxtv8cLXkcCAB2CeEY4qIULFxI04gJd2+aYS7tMR4ob2J9spKu6OISBjrfNHV6xdeIrJ1fa7yTdP8GNiD4BWSnwMXAIcB7wOzTdNc1J8BRWTomLxqFU/P/hnTXfavftuRkBL8or7W1hwiIiJDSUivAEzTXAj8up+ziMgQF9vehsvhwJWSYXcUWjOG8cXaJZTFe+2OIiIiMmSE/PakYRiHEZxWeBhwGbATsMA0zcJ+yiYiQ4hlWSQGLHA6cGXYPztW67hp3Pvcv0hOTuEiu8OIiIgMEX3u1mUYRrxhGO8CbwKnAr8huAjjWcACwzB26N+IIjIU+JqaiAuDBRi7pKQFx73U19fR1NRocxoREZGhIZSZJW4EZgMHAJn8MHXeSUARcF3/RBORoaSqYB0A9b4OYlPsHxAfGxdPfHwSaR4PpcVFdscREREZEkIpTo4DLjVN8yO6LZFmmmYpcD0wp5+yicgQUpWfD0BdIAAOl81pgm43JnP/jrOpXLHc7igiIiJDQijFSSpQ0MO2GiAx1DAiMnQ1FG0AoNEZHoUJQFNnkVS/oad1Z0VERKQ/hVKcLAVO7GHbzzu3i4j0SUVbO/OrKimNjbc7yibNnlgAWsrLbU4iIiIyNIQyW9f1wMuGYWQArxPs2rWPYRinAGcCx/djPhEZIsyONp7KX8Oh03Ymx+4wnVq9idDYRqCm2u4oIiIiQ0IoizC+CvwOmAHcR3BA/G0E1z050zTNF/s1oYgMCaWlpQAkp9k/GL6LPykNAFdTk81JREREhoZQF2F8BnjGMAwDyABqgZWmaQb6MZuIDCFNZaU4gaSUTLuj/CAtB0rW4O3osDuJiIjIkNDn4sQwjA+Bs03TXGmaprnZthnAU6ZpzuivgCIS/axAgL/ExHHu7J/xXRiNOXFn58FySHE48fl8uN0hr1srIiIivdCrZ1rDMObwQxewfQmOMcnewq5HAuP7J5qIDBWt1ZW4HQ4CloU7M8/uOJu4c0bxZU015W2tjCgvZdhw+xeHFBERiWa9fRvwNOBkgoPfLeBegmNNrG77dC3G+Ey/pRORIaFi7VoAajo6iIlPsTlNN3HxPFbXQHVlCQeWl6k4ERERGWC9LU7OAx4lWIB8CPwZ2HxVMj/BsSfL+iuciAwNNYUFeIE6LHA4trn/YEpOy6K6soSyslK7o4iIiES9XhUnpmnWAR8DGIaxH7AASOxcFR7DMNKAkaZpao0TEemzxuJivECz2xPS4ksDKSU1izSPh4r1hXZHERERiXqhvA74HngZmNfttp8BiwzDeMUwjPAZzSoiEaG9qhKAtlivzUl+6qhYJ/fvOJukVavsjiIiIhL1QilObgZ2AC7rdtuHwNHAzsC1/ZBLRIYQq64OAF9iss1JfsqXGBwD46ivtzmJiIhI9AulODkKuMA0zf923WCaZrtpmq8TLFh+01/hRGRoWNPRzvyqStrTc+2O8hNW57orntY2m5OIiIhEv1CKkySgpodtZUAYraAmIpHgvcpy5uavoS1vnN1RfsKZORyAJCuAZVnb2FtERES2RyjFyULgjz1sOwVYHHocERmKSkuDM2ElhtPq8J1ickYDkO72UN/Z/UxEREQGRijLHV8PvGUYxrcEB8aXA1kEx5zMJrgQo4hIrzTWVBPT2ooTSEjKsDvOT6Vk4Lcs3E4nZevWkDJrZ7sTiYiIRK0+XzkxTfM94OcEF2C8FrgfuI5goXO0aZpv92tCEYlqpd8t5L4dZ3H79J1weeLsjvNTTid1gQAA1QXrbA4jIiIS3UK5coJpmm8RvHoSB6QDdaZpNvVrMhEZEuo2rCcJaAqzxRe7W4yL+tJiJtarW5eIiMhACnm9M8MwpgBnAH8BUg3DmGMYRlK/JRORIaGpc7xJc0yszUl6tjAll6c2rqdAY05EREQGVJ+vnBiG4QL+DZwKOAh273oBuBoYZxjGPqZpbuzXlCIStXw11QB0xMXjsTlLT1LSsgAoLS2xOYmIiEh0C+XKyRXAicBpQC7BAgXg74ALuKF/oonIUOBoCC5u6EtKtTfIVqSkZZLq8dBWouJERERkIIVSnJwKXGWa5qNAVdeNpmkuBq4CDuqnbCIyBMS2tQe/SA2/aYS7jA/4eGDH2RwR0DonIiIiAymU4iQHWNTDto1AWshpRGTISeicCcuZEX6rw3dxZ48AIMXppKOjw+Y0IiIi0SuU4mQNcHgP2/bt3C4isk0Bn48PqiqYX1WJO3uk3XF65MrKAyDZ7aGiWEPqREREBkooUwnfCdxvGEYM8DrBAfETDcPYD7gA+Fv/xRORaFZbX88Thfk4HA6uTMm2O07P4uJpCQTwOp2Ur13D8NFj7U4kIiISlfpcnJim+ZBhGFnA5cBZBAfEPwu0A7eapvnvvhzPMIxs4DbgUMALfAxcaJrm8s7tM4G7gJ0JjnGZa5rmP/uaW0TCT2lpMQBp6Zk4nSEtuzRoaq3gP6ja9YV2RxEREYlafe7WZRhGmmmaNwHDCXbv+h1wJDDcNM2rQsjwGjAeOAzYBWgB3jcMI94wjAzgPWAVweLkauA6wzBOCeE8IhJmyvPzyfDEkJUZxldNOjW5ghMdN2vGLhERkQETyluVXxuGcYVpms8D72zPyTuLj3zgetM0l3Xedh3BAfc7AAcCbcBZpmn6gBWGYUwELgYe3Z5zi0gYWPgt9+04i0VOl91JtqklLh5aG+iortr2ziIiIhKSUAbEpwGV/XFy0zSrTNM8vlthkkNw3MpGYDmwF/BJZ2HS5cPgrkb4v9UqIlvlr60FoD0+yd4gvVCVlsPrpcWsam6yO4qIiEjUCuXKyV3A/xmG8XdgqWmaFf0RxDCMB4DTCV4pOco0zSbDMEYASzbbtbjz8yigPNTzud2h1GU9c7mcP/ocjaK9jdHePgi/Nrqagi/0reQ0nE7HNvbetq5j9MexNtc4ejJPvv4Uk+K9/f7/o7fC7fEbCNHexmhvHwyNNorIwAmlODkZGA28D2AYxubbLdM0Q54FjOAg+1cMw5gDxBMsVrpr7fwcF8I5gOALl7S0hFDvvlXJyd4BOW44ifY2Rnv7IHza6O3oAIcDd1YuXm9Mvx03NtbTb8fqkjMsOJ1wSUnxgP3/6K1wefwGUrS3MdrbB0OjjSLS/0IpIp7q9xRAt9m5zgB2B84hODg+drNdu4qSkPtWBAIW9fXNod59i1wuJ8nJXurrW/D7A/167HAR7W2M9vZBeLXRCgRI7PomNZeWlvbtPqbT6SA21kNbWweBfl7NPTYuhVSPh8yARWFBMckpKf16/N4Ip8dvoER7G6O9fTBwbUxO9upqjMgQEEpxkg98aJrmdq9E1jlu5ADgP6Zp+gFM0wwYhrEcyAM2EJwVrLuu74u259w+38A8Kfj9gQE7driI9jZGe/sgPNrYWlWFx+EgYFm4svL6tZgIBKx+L07cbg//njELp8NB0erVxM+c1a/H74twePwGWrS3MdrbB0OjjSLS/0J5C+J2gtP69ofhwDPAPl03GIbhAWYRHBD/CbCXYRjdp/I5ADBN0wx5vImI2K9i3RoAajs68MSn2humN5wu6gPBF1rVBfk2hxEREYlOoVw5KQdS++n83xOcjvhewzBOB2oILu6YBtxBcHzJRcDDhmHcCuwKnA+c2U/nFxGbVDU18V5JMbGJiYxyREZXjTqHi1Sgvmi7LxyLiIjIFoRSnDwI/MswjP2ApUDZ5juYpvlEbw5kmqZlGMZxwE3A8wSLnk+BvUzTXA9gGMYhwFxgIVBCcPX4x0PILSJhpKSlmaeL1rPD9FmMsjtMLzV7YsHfRmv5T/7tiYiISD8IpTi5rfPzST1st4BeFScApmnWAWd3fmxp+zcEB8iLSBQpLQ2utJ6aETlLFrV7E6GxDX9Njd1RREREolIoxcnYfk8hIkNO4/pCMmJiSEvNtDtKr/mT0qCxCldz/872JyIiIkF9Lk5M0yzs+towjHggGagyTbOjP4OJSHTbsaiIQ2bM4iuXa9s7h4v0HChZg7dd/+5EREQGQkijUA3D2MswjC+AeoJT+rYahvFF5zgUEZFtivf5AXCk59icpPccw8byWmkxb5UW4ff77Y4jIiISdfpcnBiGsQfB1eFTgesIjhW5HkgH3jEMQ+NDRGSrLJ+PRIcDAFdWns1pes8zbDTPlBTxQXkZlZWVdscRERGJOqGMObme4Ixah3QtnAhgGMY/CE4L/A/g4P6JJyLRqLG0BKfDQXsgQGzmCLvj9JrT6SIlNZOaqjLKykrIyYmcqz4iIiKRIJRuXbsCd3UvTCC4sjtwd+d2EZEela8NLsBY4+vAFeO1OU3fDE/PZkJCIhWFWohRRESkv4VSnDQAnh62xQCO0OOIyFBQu349AA04sCybw/TRiSlJ3DhlGu0rVtgdRUREJOqEUpx8BlxmGEZi9xsNw0gCLiXY5UtEpEfNZcE1TlpiYmxO0netnVd62qs05kRERKS/hTLm5BJgAbDOMIw3gFIgFzgSiANO6b94IhKNNgYCfFFShHfCFEbaHaaPOhJToLoJ6uvtjiIiIhJ1+nzlxDTNNQRXbP8IOBy4oPPzR8Bupmku7teEIhJ1zOYmninaQFXuKLuj9FkgObhoZExrq81JREREok9I65yYprkcOM80zVzTNGOAqcANnbeLiGxVSUmwW1dyBK0O38WZkQtAgtY5ERER6XehrHOSahjGe8C8bjfvCiwyDOOVzlXjRUR6FFtVSYYnJiKLE09O8GpPuttDc3OTzWlERESiSyhXTm4GdgAu63bbh8DRwM7Atf2QS0SilL+lmXNS07lvx1kkeZPtjtNnrvRsApZFjNNJ6bp1dscRERGJKqEUJ0cBF5im+d+uG0zTbDdN83WCBctv+iuciESfmsJCAJp8PuI6u0hFEsvl5p3GJh5Zn09FtWbsEhER6U+hzNaVBNT0sK0MiLx+GiIyaCrz1+EEavx+QvsXZL/P3F5WlZexW3WV3VFERESiSihXThYCf+xh2ymAZusSkR7Vb9wAQJPLSYStv7hJcloWAKWlJTYnERERiS6hvG15PfCWYRjfAi8D5UAWwTEnswmudyIiskUt5WWkAi0xcUTeEoxBWSnpTEhIpGV9od1RREREokoo65y8B/wcsAgOfr8fuI5goXO0aZpv92tCEYkq/ppgr9CO+ESbk4RuRwLcOGUaE8o15kRERKQ/hdTh2zTNtwhePYkD0oE60zQ1p6aIbJOzqRGAQFKazUm2Q1oWlK3D29FudxIREZGosl2jUU3TbAWK+ymLiAwBX7e2QnkZmTvuaXeUkLmy8mAlJOMgEAjgdIa0nq2IiIhsRs+oIjKoPiot5pmiDbiGjbE7Ssi6FmJM9Xiorii3OY2IiEj0UHEiIoPG7/dTXl4GQEJKBM86Hp9EWyAAQNma1TaHERERiR4qTkRk0JSvL2CC10tmnJfY+MhbHX4Th4M6KzgRck1hgb1ZREREokhkroAmIhGpcuFCrps8jYL2NpoDDrvjbJcGp5tsLBqLi+yOIiIiEjVCKk4Mw8gELgQOAoYBhwDHAotM03y1/+KJSDRpLCkiFmhyuYns0gRWxqfyifkdY8aNtTuKiIhI1Ohzty7DMMYSXAX+DGAjkE2wyJkEvGQYxhH9mlBEokZrRQUAbbFem5Nsv/KcMbxVXsqamiq7o4iIiESNUMac3EZwVfixwC8g+AaoaZonAq8Bl/VbOhGJKlZdHQC+hAgeb9IpJT0LgNLSUpuTiIiIRI9QipMDgOtM06wluEp8d/cD07Y3lIhEJ3dzMwBWarrNSbZfWnI6ExISSauptTuKiIhI1Ah1QLyvh9tj+WnBIiICQLzPB04nzvQcu6Nst8zYOG6cMo1Wv5/W1lbi4uLsjiQiIhLxQrly8ilwqWEYCd1uswzDcAJnAZ/1SzIRiSqWz0eiIzgM3p01wuY028+VkQtAnMtFWUG+zWlERESiQyhXTi4hWICsAT4ieKXkAmAqMAHYq9/SiUjUaGlu5tH1BaTHxGBkR35xgieGer+fZJeLynVrGT15it2JREREIl6fr5yYprkU2Bn4ENgP8BOcUngNsIdpmov6M6CIRIfy6kreqSjj1ZpqnJ7In60LoL5zQuS6jettTiIiIhIdQhpzYprmauDEfs4iIlGspKQEgKzsHAIBm8P0k0Z3DFg+WsrK7I4iIiISFUJdhNEBzAQS2MLVF9M0P9m+WCISbWrWrMZITCQzM/IHw3dp8yZAcx2+mmq7o4iIiESFPhcnhmHsCrwAdHUa71ro2er82gJc/ZJORKJG3LKlXDd5Ggu88XZH6Te+xDRorsPZ2Gh3FBERkagQypWTO4AO4A8EV4iPkg4aIjKQHA0NAPiTUu0N0o+acsfwyLcf0Z6ays/tDiMiIhIFQilOZgG/NU3z1f4OIyLRK6atDQBHWqbNSfqPc8RE3i4vI66hHsuycDgc276TiIiI9CiUdU7K0dUSEemjxM5R8M7M4TYn6T/JqcFCq7Wlhbq6WnvDiIiIRIFQipN/AZdstgijiEiPfE1NeJ3BfzcxUbAAYxe3x8O0rFx2S0unVAsxioiIbLdQunVNJLjgYqlhGMuA5s22W6ZpHrDdyUQkalQXFgDQ4OsgNjUbn2Vvnv501oiRZLlcVK1aCTNn2R1HREQkooVSnEwAFnX7fvNO1up0LSI/UpW/FhdQ6w8QwE1wUr/o0OB0kQU0FBXZHUVERCTi9bk4MU1zv4EIIiLRqzzg583CfNJzhzPZip7CBKDZ4wVfC20VFXZHERERiXihjDkREemTooYG3q0oY31qht1R+l17fBIAVn2dzUlEREQiX6+unBiG4Qd2N03za8MwAmy9T4ZlmmZIK8+LSHQqLS0BICUty+Yk/S+QnAH15bibNx9+JyIiIn3V2yLiWoILLnZ9HV39MkRkQDnWr8dITCQ9Jd3uKP3OkZEDG1cQ7/fbHUVERCTi9ao4MU3zH92+vmbA0ohIVNqjoYEjJk/jW0+M3VH6nSd7JABpThft7e3ExERfG0VERAZLb7t17d2Xg5qm+UlocUQk2liBAEmdk/i5o2iNky7urDweL1pPeUsLV5eVMmLkKLsjiYiIRKzeduuaxw9duXqaKtjq3GYBru2LJSLRorWqErfDgd+y8GRHX3GCJ4av/FBZW0N5RbmKExERke3Q2+JE0weLSEgq1q4FoKajA483GZ8/+oasJadlU1leTGlpsd1RREREIlpvx5x8PNBBRCQ6VRfkEw/UQ1QWJgBjUtLJSUunYc0au6OIiIhEtJCm/DUMIxO4EDgIGAYcAhwLLDJN89X+iycika6ppJh4oNnjidqFlXaPcbPj+EmsLCywO4qIiEhE6/NrBcMwxgKLgTMITi+cTbDImQS8ZBjGEf2aUEQiWltlJQDtcfE2Jxk4vsRUAByNjfYGERERiXChvJF5G1AOjAV+QecAedM0TwReAy7rt3QiEvFWOOGhwnwqMnLsjjJgrNRMAGLb2mxOIiIiEtlCKU4OAK4zTbOWny7GeD8wbXtDiUj0WF5dzbsVZXTkRu8sVq7M4QAkWdE5pkZERGSwhNoF3NfD7bFo9XgR6aa0tASApNQsm5MMHE9n4ZXm9lBfW2tvGBERkQgWSnHyKXCpYRgJ3W6zDMNwAmcBn/VLMhGJeIGODkY3N2EkJpKUnGF3nAHjTM7AZ1k4HQ7K1q6yO46IiEjECmW2rksIFiBrgI8IXim5AJgKTAD26rd0IhLR6tav58y8UbT6/RQkpxOwO9BAcTio9QfIdLuoLiiA2bvanUhERCQi9fnKiWmaS4GdgQ8JLs7oJzil8BpgD9M0F/VnQBGJXBVrVwNQ5fOBM9bmNAPrfcvFrWtMitta7Y4iIiISsUJa58Q0zdXAif2cRUSiTO36AlKBBqeTQJQPFt+Yms2333/JzOoqu6OIiIhErFAXYRwHxJmmudwwjFTgBmAk8IJpmk/2Yz4RiWAtpaWkAq2xXmLsDjPAUtKCA/5LSoptTiIiIhK5+lycGIZxKPAqcDfBsSb/Bn4JLAEeMwwjxjTNh/twvHTgRuBIIJngAo+XmKY5v3P7TOAugl3JqoC5pmn+s6+5RWTw+aurAehITIr64iQ7MYXd0tJJKim1O4qIiEjECmW2rquAd4F/GIaRAhwL3GSa5izgJuC8Ph7vOWA34LfALsBC4F3DMCYbhpEBvAesIlicXA1cZxjGKSHkFpFB5m4KrpjetUhhNBvhdvG38ZPYze+3O4qIiEjECqVb147AUaZpNhiG8ZvOY7zYue094O+9PZBhGBMIDqbf0zTNzztvOw84DDgBaAHagLNM0/QBKwzDmAhcDDwaQnYRGUTeDh84nTgycu2OMuDc2SMASHE48fv9uFwumxOJiIhEnlCunLTwQ1FzGFBmmubizu9zgdo+HKsSOAJY0HWDaZoW4ADSCU5L/ElnYdLlQ8AwDCM7hOwiMogeLy3i4cJ83MPG2B1lwHmyRwKQ4HZTWbTB5jQiIiKRKZQrJ/OBCzrHivyGzisYhmHMJtjtan5vD2SaZi3wv+63GYbxa2A88A7BgfZLNrtb12jTUUB53+MHud2h1GU9c7mcP/ocjaK9jdHePhjcNjY1NTK/uAiAOVl5WE7HgJ/T2XkO5yCc6ye8Xhr9fhJdLirWriFv3Lh+P4V+RyNftLcPhkYbRWTghFKc/BV4E3gaWA5c33n7m0AzwUUaQ2IYxp7AI8Crpmm+bhjGHQS7dXXXtYhAXKjncTodpKUlbHvHECQnewfkuOEk2tsY7e2DwWljWVnw6kFySgoJScn4A4M3lXBsrGfQztVdPQ4SgcaSDQP2Pwb0OxoNor19MDTaKCL9r8/FiWma+YZh7ABkm6ZZ1m3TMcB3pmluXkz0imEYRwPPAF8Cx3fe3AJsvnJbV1HSFMp5AAIBi/r65lDvvkUul5PkZC/19S34/dG5Dna0tzHa2weD28bVn33NnukZWNm5NDaF9G+hz5xOB7GxHtraOggMYjHUpc0dA5aP6oL11NSE/C+qR/odjXzR3j4YuDYmJ3t1NUZkCAh1EUYLKNvsti8Nw0gwDGM/0zTf7svxDMM4h+B0wf8FftetwNkADN9s967vi/qe/Ac+38A8Kfj9gQE7driI9jZGe/tgcNrYtmQx542byCKna9ALhUDAsqU46YhLgJY62ioqBvTnq9/RyBft7YOh0UYR6X+hrHMyGrgf2Ad6XLqg19PUGIZxFsE1U+YCfzVNs/t/sk+AMw3DcJmm2TU/5wGAaZpmyONNRGTgbVrjJCE56tc46VKUO5a333uelImTONbuMCIiIhEolCsndwB7AA8AexIcZ/IFcDAwHfhFbw9kGMYkgldMXia4Rkq2YRhdm1sIjj+5CHjYMIxbgV2B84EzQ8gtIoPI1di1xkmGzUkG0YgJfFNbw/CijXYnERERiUihdN7cB7jCNM3zCM7U1Waa5sUEF0n8GDi6D8f6FeAhuJBjyWYfd3VeHTkEMAguzng1cKFpmo+HkFtEBlF8RwcAziGwxkmXtM62lpaW0NHZfhEREem9UK6cJAKLOr9eDlwDYJqm3zCMfwG39fZApmneCNy4jX2+AXYPIaeI2MTy+UhyBKfzdeeMsDnN4ElMSmXPzGzSXS7KijYwYkz/TycsIiISzUK5clJCcLFFgDVAumEYwzq/rwZy+iOYiESuhuIinA4H7YEAsVmj7I4zaBwOB2eMGsNJI0dTapp2xxEREYk4oRQnbwLXGYaxh2maG4CNBBdlTAJOZTtn0RKRyFe2ahUA1b4OXDHxNqcZRA4HtQSvGNUWrLM5jIiISOQJpTi5CqgFru38/jLgvM7bTqQP3bpEJDqVWQFuXr2Sd9s78EXpWg49aXAHl2ZqLimxOYmIiEjkCWURxirgZ11duUzTfNowjEKC40K+Nk3z437OKCIRpqi6ioV1tXh2mGl3lEHXGp8EjVX4q6vsjiIiIhJxQlqEEcA0zRLDMCYDaUCJaZr/13+xRCSSFRcHe3emZQy9IWj+lAxorMLdOZWyiIiI9F4o3bowDOOPnVdLlgHzgVWGYRQYhnF8v6YTkYgUn5/PnukZZCen2R1l8GUOByChw2dzEBERkcjT5+LEMIxzgAeBBcDvgcOAU4AVwFOGYfy6XxOKSMTZqbGR88ZNJCfOa3eUQefJHQ1AuttFc3OTzWlEREQiSyjdus4D7jFN89zNbn/CMIyHCK578sL2BhORyGT5/T+scZI9dKYR7uLKyuOu9YVsbKjjtuIiJkyYZHckERGRiBFKt64RwOs9bHsW0KpjIkNYY0kJLoeDjkCA2JyhV5xYLjfrYuMpbGmmpKTY7jgiIiIRJZTi5BvggB627QQsDj2OiES60pUrAKjs6MDlGUJrnHSTmh6cCKC4eKPNSURERCJLr7p1GYaxd7dvnwXu6Fx08T9AKcEZuw4FzgX+1N8hRSRy1BSsJRWodzrxByy749jCSE1nQs4w2rVKvIiISJ/0dszJPKD7qwwHcBZw5ma3ATyHxpyIDFktxSWkAs1xXmLtDmOTqR43M0eOZkVJqd1RREREIkpvi5P9BjSFiESNrsUHfYkpQ7Y48admQ20pMS3NdkcRERGJKL0qTrTqu4j01gcd7ZSuXsnso04gwe4wNnFl50HBYpICFpZl4XA4tn0nERER6d2AeMMwPjEMY2ZfDmwYxs6GYcwPKZWIRKwVJUUsqKslJm/oTtznGTYWgAyPh7qaapvTiIiIRI7eduu6C3jbMIxvgaeA10zT/El/hc5B8ocQHBS/E3B2fwUVkfAXCATYuHEDACmp2TansY8jJYOOQACP00mxuYLU3efYHUlERCQi9LZb10uGYXwMXAU8BLgNw1gO5ANNQCowEpgGdHTu8zvTNMsGIrSIhKeyVSaHp2dS1NaKNzkDn9/uRDZxOKixIBuoXLMaVJyIiIj0Sq9XiDdNsxI41zCMfwC/IjhIfhyQAlQCKwheYXndNM2qAcgqImGufPEiThgxivz2NloDQ3ucRYPbQ7blp37DBrujiIiIRIxeFyddOguP+zs/REQ2qd+wHi/Q6InBNTSXONlkYfoI7v/kdXYensORdocRERGJEH0uTkREetJRUQFAe3wiXpuz2M0aPpaClmZS1+vKiYiISG/1arYuEZHecNTVAeBPzbA5if3Ss4YDsH59oc1JREREIoeunIhIv4lvbwOHE0fGMLuj2C4zNZMjcnLJiomloaGBpKQkuyOJiIiEPV05EZF+Yfl8JBMcBO8eNtrmNPaLjU/kpBGjOTxnGEWrTLvjiIiIRAQVJyLSL+qLNuJyOGgPBIjLGWN3HNtZLje1geCsAOWrVticRkREJDL0qluXYRgn9+Wgpmk+EVocEYlUZc3N/H3p9wxPTeVIjxd/YIhP1wXUutykE6Be405ERER6pbdjTh7rwzEtQMWJyBCzsaSIDa0txKWMVWHSqcWbCC31dJRpPVoREZHe6G1xMnZAU4hIxNu4MThlblZOns1Jwkd7cia01OPsnMVMREREtq5XxYlpmr3uk2AYxtBeFlpkiIpZtoyjc4cTn5Jud5TwkZUHZetIaO+wO4mIiEhECGkqYcMwfgvsA8QAXcWIE0gAdgdG9Es6EYkYI6uqmDViFF8nJtsdJWzE5I2FpZ+S6XbR3NxEfHyC3ZFERETCWp+LE8MwrgauBuo679/R+ZEFBIAH+zOgiIQ/KxAgxQqAw4krR9MId3Fkj+Sa/LXk11bzRNFGJk407I4kIiIS1kKZSvj3wFNAOnAH8LppmjnALkAVsKz/4olIJGguLyPG4cQXCBCbN8HuOOHD6aI+KZ0Wv5+NG9fbnUZERCTshVKc5AFPmqZpAQuAPQBM01wA3ACc1n/xRCQSFC9dAkBFRwee+BSb04SXtMxhAGzYoOJERERkW0IpTpoIThcMsBoYaxiGt/P7RWhmL5Ehp3rtGgDqXE5NI7yZ6SlpnDJyDI7luqgsIiKyLaEUJ18T7NoFsBbwAQd2fj8FaOuHXCISQZqLNgLQ4tWA782NiovjsJxcUiqr7I4iIiIS9kIpTm4EjjMM43XTNNsIjj953DCMl4DbgHf6M6CIhD+ruhqAjuQ0m5OEoczgui8J7e02BxEREQl/fS5OTNP8BNgZeL7zpnOAF4HJwAvAuf2WTkQiwn9aGrlg2WKaRk+yO0rYickbD0CWy01jY4PNaURERMJbSOucmKa5GFjc+XUrcEZ/hhKRyLJ2fSEVLc3EDxtjd5Sw48weQcCyiHO52LBiOVN2+ZndkURERMJWqIswpgD7E1x08SdXX0zTfGI7c4lIhGhubqKiogKA5PRhaDj8ZlwuqgMWmS4HpSuWqTgRERHZilAWYTyMYPet+B52sQAVJyJDxPqvvuT00WPZEAjg9Hjx+1WebK7WE0tmoIOGgny7o4iIiIS1UK6c3ASsAP4GbCS4KryIDFE1y5ZyUFYOK/w+FSY9aElIgYZK2srL7Y4iIiIS1kIpTiYDR5um+Wl/hxGRyNNSUhL87E0kzuYs4WrjuBnc8dit5I4bx6/tDiMiIhLGQplKuBBI7u8gIhKZHDXBaYR9qRk2JwlfySMm0Oj3UViQj9/vtzuOiIhI2AqlOLkJuNowjDH9nEVEIlB8WysAzqw8m5OEr5T0LDyeGDo6OiguLrI7joiISNgKpVvXiUAesNYwjAqgebPtlmma47c7mYiEPX9bGyk4AHCN0J99T5xOFyeOm8SwgI+NixYycuQouyOJiIiEpVCKk42dHyIyxFWuWonT4aDB10F8zhjUYalnOyQmMdphsXa1aXcUERGRsNXn4sQ0zVMGIoiIRJ7iFctJACr8AQJOD1rkpGeN3kRobaCtqNjuKCIiImErlHVOttYfIQA0mqZZG3IiEYkYqyyLOxZ+zZ677MFeKky2qi0lC1obcNbW2B1FREQkbIXSrauAbbw/ahhGNXCXaZrXhxJKRCJDfv5aWgMB4oaNtjtK2HPkjoKydSR1dNgdRUREJGyFMlvX74F24F3gFOCwztteJ1i0XAs8BlxhGMZZ/RNTRMJRfv46ALJyR9qcJPzFjJwIQLbbQ011lc1pREREwlMoV06OB57bwtiTpwzDuA+YbZrmUYZh1AJnAfdtZ0YRCUOW38/hjU1MGzWGtPRcu+OEPUd6Lu2BADFOJxuXLiZt7/3sjiQiIhJ2Qrlysi/wTA/b/gsc0Pn1fEBzi4pEqdqCAqZ449knI4vkHHXr2iaHg0oLGn0+itestjuNiIhIWAqlOKkCduxh245AfefXiUBTKKFEJPwVLV4EQLnPh8MdZ2+YCPFSSi6nLvqWJerWJSIiskWhdOt6GrjWMIwO4EWgHMgGfgFcA/zbMIw04Hzgy/6JKSLhpmbtanKA+pgYnAFN1dUbacPHAbBGV05ERES2KJTi5AqCxcjtnR9dAsAjwGXAr4CdgP23N6CIhKeOkhIAWhNTiLc5S6TIGT4GgNWrV9kbREREJEyFsgijDzjVMIwbgP2ATIIrxn9mmmY+gGEYbwF5pmm29WdYEQkfnoZgD85A5jCbk0SOnIwcLpwwiWGxXqoqKsjIyrI7koiISFgJ5coJAKZprgXW9rBNq4yJRDHLskjx+cHpxNV5NUC2zZ2QzKTkVOKcTgq/+5aMgw+zO5KIiEhY6VVxYhjGOuBY0zS/Nwwjn60vwmiZpqlZukSiWEt1NS1+H27cxI007I4TORwOKnAyEihfsRxUnIiIiPxIb6+cfMwPs3B9zDZWiBeR6La+oow/fb+Q3NQ0zo5PRePhe6/emwhtjbSuX293FBERkbDTq+Kk+4KLpmn+YcDSiEhEWLXKBCBrzHgVJn3Unp4DJY24aqrtjiIiIhJ2QhpzYhhGEpBsmmaRYRgxwHnASOBF0zQ/CTWMYRhXAAeaprlvt9tmAncBOxNcY2WuaZr/DPUcIrL9Vq8OFifDR4y1OUnkcQwfDyVrSfX5sCwLh8NhdyQREZGw0edFGA3D2BUoBP7SedNc4Bbgd8CHhmEcFUoQwzDOB67d7LYM4D1gFcHi5GrgOsMwTvnJAURk0ExfuZJLJ05mXHqO3VEiTszYKQBkeWIoLiywN4yIiEiYCWWF+BuAlcD9hmF4CRYl95qmmQ48DFzel4MZhpHXOfXw9YC52eYzgDbgLNM0V5im+ShwB3BxCLlFpB9YPh8jAxY7paSSmjvK7jiRJyGFSp+Pdc1NFKxYancaERGRsBJKcfIz4LrONU0OALzAk53bngOm9fF4s4AaYAbw1Wbb9gI+6VxbpcuHgGEYRnZfg4vI9qswV+JyOGjy+UgYOcnuOBHpXlc8l61YyuqyUrujiIiIhJVQipMAwasZAIcDtcDXnd8nA819OZhpmq+bpnmCaZrrtrB5BLBhs9uKOz/rLVsRGxQtWghAWcCP3xFjc5rIlDM8OFana2IBERERCQplQPy3wGmGYbQAxwFvmKZpdV7JuKRze3+J54dCqEtr5+e47Tmw2x1KXdYzl8v5o8/RKNrbGO3tg/5pY/3aNSQADd4EYh0Owmk8t9Pp+NHncDVsZHApKHPF8j79L9LvaOSL9vbB0GijiAycUIqTC4G3gd8CFQTHigAsJXgl5pD+iQZACxC72W1dRUlTqAd1Oh2kpSWEHGprkpO9A3LccBLtbYz29sF2trGiHABfZjap3vC8chIb67E7wlZNyhvB/02dTponBo/HIjExsU/31+9o5Iv29sHQaKOI9L8+FyemaX5nGMYEYCqw1DTNriLhLOAz0zT7sxP1BmD4Zrd1fV8U6kEDAYv6+j71Ptsml8tJcrKX+voW/P5Avx47XER7G6O9fdA/bYxvaganE3JH09LS3s8Jt4/T6SA21kNbWweBcF6AJTmb4V4vHoeTr9/7iJ323b9Xd9PvaOSL9vbBwLUxOdmrqzEiQ0BI65yYptnAZoPXTdN8qV8S/dgnwJmGYbhM0/R33nZA8HRm+fYc2OcbmCcFvz8wYMcOF9HexmhvH4Texo6WFkpbmnHFxuEZMzVsC4BAwArbbEFOyiwHIxxQvHAh0+fs26d763c08kV7+2BotFFE+l+4vwXxCMFB9g8bhjHVMIw/AOcDN9kZSmSo2lBSzJUrlnL2ymXEpufZHSei1XmTAGjO39JcICIiIkNTWBcnnVdHDgEMYCHBRRgvNE3zcVuDiQxRK1YsA2DcBIMo7ZEyaNqyRgAQU1NjcxIREZHwEVK3roFimuYftnDbN8Dug59GRDa3Yllw0cCRYybanCTyuUZPgY0rybagra2N2NjN5/4QEREZesL6yomIhJc9TZM7p+2IkZlrd5SI5xlt4LcsUjwe8hd/Z3ccERGRsKDiRER6paOxkQyHg+FxXhJHTbY7TuTzxLDSF+DTqgrWrV5ldxoREZGwoOJERHpl/bdfA1DZ3k587lib00SH9zJHcXf+Wr4vLLA7ioiISFhQcSIivVK6KNj1qMLlxOffxs7SK8NGTgBg6dIlNicREREJDypORKRX2tYXANCckm5vkCgyYsxkHEBjYT4tLS12xxEREbFdWM3WJSLhy1tXDw4HgWFj7I4SNVJTM3lo5s4kud2s/uYrZuy9r92RREREbKUrJyKyTb7mZtI6v44ZP83WLNHE4XJR63QBUNQ5pkdERGQoU3EiItu0Yd0aPqosZ2ljA95hE+yOE1VqE4NlX5tWihcREVFxIiLbtnjtGu4vzOdFtwefVobvVx3DxwEQX1dncxIRERH7qTgRkW1avHgRAGMnTLU3SBSKmTQLgDy3h8qyUpvTiIiI2EvFiYhslWVZVC5dgsvhYMTYKXbHiTrOzGE0+P14nE5Wffqx3XFERERspeJERLaqfkMhf05K4aEdZzMsb7zdcaKPw0GpOxaAyiWLbQ4jIiJiLxUnIrJVaz/9BIByvx+XN20be0soSrNH80LxRr4q2mB3FBEREVupOBGRrapdvgyAusQk/AHL5jTRKTBzb14o3sh7ixfR3t5udxwRERHbqDgRka3ylJcD0JE7yuYk0SszZwSJyam0t7ezbJm6domIyNCl4kREeuRrbiYjEJw72DNxR5vTRC+Hw4Exfgd2Tk1j9cfz7I4jIiJiG7fdAUQkfK2b/zFuh4OK9nbix0zF57c7UfQ6JD2TmS6DFZ3d6ERERIYiXTkRkR6VfP0VAKUxMfj8DpvTRLnx0wHIbm3TuBMRERmyVJyISI/mV5bz7Mb11IwcZ3eUqOeZNAufZZERE4P59Zd2xxEREbGFihMR2aJAIMD733/Hy6XFxM7Y0+44Uc8RG0exFbw6tfHz+TanERERsYeKExHZonXr1lBTU0NcnJeMnLF2xxkSalIyAWhbu8bmJCIiIvZQcSIiW7T6rTfZPS2DWdN2pF0D4QeFNSE4I1puayttbW02pxERERl8Kk5EZIsSli7lr+MnsmfOCLujDBkxU3ahPRAg3RPDko8/sjuOiIjIoFNxIiI/0d5QT5bPB4B76i42pxlCPDG84vJyzuLv+HylphQWEZGhR8WJiPyE+e47uBwOStrbSBw73e44Q0pg6q6Ut7fx2Wef2h1FRERk0Kk4EZGfqOicyrYsIYkOjTcZVOONWQCY5koqKytsTiMiIjK4VJyIyI9YlkViRfBFsW/sZJvTDD0JSSkcOXEqF46fxPevv2p3HBERkUGl4kREfqRi5UpSnU7aAwESdtrH7jhD0uzs4eySlk79gm/sjiIiIjKoVJyIyI+Y894HoNDvxxGfbnOaoal94k4A5DY00NraanMaERGRwaPiRER+5M3CAs78fiErR40nELDsjjMkxUzfg9ZAgAxPDIve/p/dcURERAaNihMR2aS9vZ1PP51HdUc7ObPUpcsujphYCt1xAJR+Os/WLCIiIoNJxYmIbPLVl5/T1NRERmYWqTnj7I4zpDWNnQpAakUFfr+mTBMRkaFBxYmIbNL+wvNcOnEyh87eHZ9fXbrsFLvTvvgsi+ExsSz9ZJ7dcURERAaFihMRAaC9sZHcpiZ2SklltLGT3XGGPEdCMoUON0vr6/jik4/sjiMiIjIoVJyICADLX38Fj9NJWXs7CcaudscRYPnOB3PtqhU8P+8DOjo67I4jIiIy4FSciAgANZ/NB6AoOZWOgMPmNAIwZvIsEpPTqKmp4csvP7M7joiIyIBTcSIiNFWUk9vSAoBjl33tDSObuFwups3amxS3h4Wvvmx3HBERkQHntjuAiNhv8fPPkOFwUNjeRuLEXejQYPiwseekGZzXUEpTZSWN9XWkpSXYHUlERGTA6MqJiOD7/nsAKoePUmESZhKn7kJTIECy28P8xx6xO46IiMiAUnEiMsRVVJTzWmE+yxrq8e5xmN1xZDMOl5t1abkAtH/9NZal4lFERKKXihORIe7ll1/kvfJSXnB7cGaMtjuObIFrzlEELIsJbg/fvPOu3XFEREQGjIoTkSGso6ODF154DoA5BxxNIKB35cORKyuPdU4PAEueetrmNCIiIgNHxYnIEPb1E4+ys8PJ8IwsxkzW2ibhrH7aHgCMrK2jpCDf5jQiIiIDQ8WJyBBlBQI4P/+MU0aN4aRd9qDdr38H4Sxup30o8wdw4+CtRx+2O46IiMiA0KsRkSFq8YvPk+Fw0Ojzkbj/L+2OI9vicLBixl6cveQ77nvrDWpra+xOJCIi0u9UnIgMQZZl0fDeOwCsSknD7820OZH0Rs4uB5CSN5aW5maee05jT0REJPqoOBEZgpa++grZFrT6/SQc8lu740gvORwO9j38eAC+fek/VJUU25xIRESkf6k4ERliAj4f1a/8F4AVCYkEkofZnEj6YvrsvThvh5lcNHocn95+q91xRERE+pWKE5EhZt6/7iMLBw0+Hwk//z1a0y+yOJ1O4mfuDcD4qiryFy+yN5CIiEg/UnEiMoS0t7fzr1de5quaalZnD8MXn213JAmBd/dDWR+wiHW6WHL3nVo1XkREooaKE5Eh5KGH7ufLVSaP1FSR9PNT7Y4joXI4qNrrWPyWxWQLPnzgXrsTiYiI9AsVJyJDxNplS3nwwX8DcOKp59NBrM2JZHvETpjB0uTgLGtJX3xOaaEWZhQRkcin4kRkCGipqaHytls4LW8kc3afw/AJu9gdSfqB64g/Uu7zk+r28M211+Dz+eyOJCIisl1UnIhEOcuy+OKaK0hzupiWksoxJ5yDz68xCtHAGRvHxr2OpaK9nWfM5dx771y7I4mIiGwXFSciUe7TW25kRFMTvkCA8r0Ow0rIsjuS9KO4STP5ZPZBrGhs4JFHHuD111+xO5KIiEjIVJyIRLFvHn+E3DWrAfh+2Ag8O+xlcyIZCFNm7cPeB/8agMduuYEvX3ze5kQiIiKhcdsdQEQGxrdPPEbiJx+Dw8H3cV5SjjwDX0DduaLVvkf8nsS6Sn7T3oDjzTf4vL2DPU74nd2xRERE+kRXTkSi0Huv/peYjz7A5XCw1OEk4YS/0+4L2B1LBpDT6WTnX59DqdON1+Ui9f13eX/u7XbHEhER6RMVJyJRxOfzcccd/8eFV1/GbWtX8b0nhvhTr6Ddrz/1ocAZ66X5hIsxnW7cTiejFi/m9XPPprm+zu5oIiIivaJXLCJRwvzgff7xhxN4/PGHARh/6DEk/P5SWjW77JDijInFd8LFLErOAMBobmbhuWfz9QsahyIiIuEvIsacGIbhBK4GTgPSgPnA2aZprrE1mEgYKFqymOUP3MfolhaOcnn4NjWNX5/xd7LGzKa9Q2NMhiKHy0XMsX/m22/eY8LiT8l2e3jh0Qd5fN77nHnmOUyfvqPdEUVERLYoIooT4ErgTOAUoAi4FXjLMIwdTNNstzWZiA38HR0sfu1lKt9/j5Ht7Yx2OAhYFhu9Xs678h5aY9Lway2TIS9+l4MonLwLa95+jNfKSmkr3shnn33Kr3aazZ6zdmGX351EYlqG3TFFREQ2CfvixDCMGODvwEWmaf6v87bjgGLgF8BzNsYTGRSWZVFWVsqSJd9T8MF7zC4rJ9HlIgHA4WC1ZeHb/yg8Y2fT6tfAd/mBJykVz6/P5+z9j+OreS/x5afvMKu1jbzvF1H43UKKXE4c4yYwbOddmLjHHGITEuyOLCIiQ1jYFyfATCAJ+LDrBtM0aw3DWAjsjYoTiQKBQIDGqipqi4uoLyuhsbyMpo0b6agox13fwLyKMt4oWAdAXpyXfabtSIPPx/qUVDx7HoZj5A5YvgA+FSbSg5SMYRz8y3OYc9DxNM57kYqKIrLcbsZYwNo1sHYNa599mpUBP1/n5jBy5GhGjBjJMJ+f5MwMUoblkTFiBDHxKl5ERGTgREJxMqLz84bNbi8GRoV6ULe7f+cC+HxZIR/fex+5bY1AsDuNY9NXQf/zpNPuCJ53pq+Rsf6WHo/3tjuVZocLgOn+JiYFtrBv58HfcafQ0LnvVH8zO2xp304fuJKoIrjv5EArM7rt69hs3w+diVQ4gr8iEwNtzLaacTgcWNZPuwt97Iin2OEBYFygjd2sH467+d7zHV7Wd/7qjbY6mEPPGT4jjnUEj5uHj/2t7vv++MhfEYuJB8uyyMXPoY7Wblt/vO+3gRiWdmbIxM/PnW3BXTofNKvb/b6z3CyyghlSCfALZ1uPeRcHXHwd8AAWSVgc5/5hX6cFHiuAmwAey+KrpmZer6rG19FKRqCDu6ZOAyAGSO/86DLG4cDhdJGcNxnPmFk8PnIKtZMOxueMCe5QQa84HOByOfH7A2zhYYx4al9vjIC9dsQKBEguXsCIVe8zqraQ0bST5HbTUlfL24sWbNr7yZ12wely0QA0AO2BAG2WRbtlsbLNx5PNflwxXpwuN6fHWbgdDgIOB5bDQYCur52UOTzMcydvOu5RvjpiCRbTVve/JAfUOT2870qm6y/s0I4a4uleeAdvtxzQgIsPYtI6fz4O9m+vIcna8iwQzQ4X78X88Je1d3staVbHFvdtx8lbsT90eduzo5bMwJb3DeDg9djMTd/v1lFHTqCnHscOXo/PJuC3AIudO+rJC7T1sC+8EZOJ3xFs704dDYwKtPa471sxGZueY2Zs4znm3Zh0WjqfN3bwNTHB39zjvh960mhwBv9fGr4mJm9l3489qbhzR/L4TX/B5dKcOyLSd5FQnMR3ft78v3crP3791mtOp4O0tP599++uR55j38Lv+VlmVo/7PPDtRzT4gk+a+44aw67ZuT3u+9h3n1DZHnxy22PEKHbJHd7jvs8s/Jyi1uCT0M7DR7Dz8BE97vvS0q8oaG4CYEbuMHYeMbrHfV9b9i0FjQ0AGFk5zBo99qeVRqd3Vi2isK4WgLEZWew0dnyPx523Zgnra6oByEtLZ6fxk3rc97P85WyoqgQgMyWVmRMn97jvN4Wr2FBRBkBKUjIzjKk97vt98Vo2lpUAEJuQwPQp03+oNDarOFYWFVBUUhTcFOdl+rSeBxOvLd9A8cb1AGTFxDJtxk5b2Cv4hL28vZnmmmCGWlfwRUKL309DwKI+4KDC6aUkJp2y+DwKR83AecwBNHm8NAEbAXp+fSDSO6mHwq6HAmAFAmRVfE9M1QqcI+uxagtw1xZQ4m8lOeAj2e3E7XAS43TSWRIT19hAdaG56XDGTrsQ2/m7/CMWLKsvJ998b9NN03ecTbLHs8VYa+obWbdi6abvp07fiezY2C3uu6GlmQeWvb3p+7N2mMFIb/wW9y1va+O+JT/se+qUaUxISNzivvUdHdz95Tubvj/RmMoOSclb3LfN7+eOL9/d9P2vJhjMSk3b4r4At334w74/HzeRn6X3PO7nnq8/oC0QLMwOHjN+q88xD377EfWdzzH7jBrDz7byHPPEwk+oaA8+rf5sxCh+tpXnmOcXzWdj53PMTsNH8LOtPMe8suRz1jY18drh+3LCwbN73E9EpCeOLb0LHk4Mw/gl8CIQb5pmS7fb/wPEmqZ5dB8Puc7vD4ytr+/5HaVQrFhfzlsPPk5yYx0/ft8dHJ2vdhemDMfnDD5xj2muIau9adN+m78D/33KcNpdwSfuEc015LY19LAnLEsdRqsr+HJhWEstw1rqt5jRAaxMyaXZHXySz2mpZ3hLz+sfrEnOodETBw4Hma0NjGiuweFgi+/YrkvKpiEm+IIgvbWREU1Vm8X9Iff6pCzqYoPFYUpbE6MaK3vMsDExk9q44IuHpI4WRtWXb9amH45bkpBOtTcZHA4SOloYXVfWbccf/9zK4tOojk8FIK6jjbF1JTgc4HA6sQLWD4+gw0FlfCqVnfvG+NoZW1v8k5yOzuNXe5OpSAjWzJ6Aj7E1Rd32cmLFxEFMHFZsPK1JGbSmD8cdE0dMrJf4hGRc8SkAWD1VgdvJ4XAQ43HT3uHb4hWwSKf2DaCAhb+2BH9dJY6WBqzmRtoCfqpjvHS0tWD5/YwpX4vD78MR8IPfH/xsBcDvo9HlYXVSTufBLGbUbMRtBX70D6XramiLJ5ZliTl0/S+dXltEbMDfedfuV6YtWl0eFifnbvq3O6O+FK+/h6shThffpfzwInxaQxkJvi1f4fA5nSxIydv0/dSGcpJ8W77CEXA4+Cb1hxfsRmMFqR09XOFwwDcZowkEAmDBxKZK0tt7fj76JjWPQOfVkHFN1T963tjcgs2eY3LaGnvcd1HyMNpcwfcnR7XUMqy1ocd9Fyfn0NL5HJPXUseI1i0/xwAsTcomZeQo/vm342ltacffj11Nk5O9uFzOfGBcvx1URMJOJBQnuwJfARNM01zb7fb5wPemaf65j4dc5/cHxlZX9/wPPhRut5O0tARqaprwRelK3NHexmhvH0R/G9W+yBftbYz29sHAtTE9PUHFicgQEAkdQr8H6oF9u24wDCMVmAV8ak8kERERERHpb2E/5sQ0zTbDMO4BbjEMowIoAP6P4AD5/9qZTURERERE+k/YFyedriKY9SHAC3wCHKIFGEVEREREokdEFCemafqBizs/REREREQkCkXCmBMRERERERkCVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhYclmXZnWGwtViWFRcI9H+7XS4nfn+g348bTqK9jdHePoj+Nqp9kS/a2xjt7YOBaaPT6cDhcLQC3n49sIiElaFYnNQCsUCJzTlERESk94YBbUCqzTlEZAANxeJERERERETCkMaciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhZUnIiIiIiISFhQcSIiIiIiImFBxYmIiIiIiIQFFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFtx2B4gUhmE4gauB04A0YD5wtmmaa3rYPwOYCxzeedMLwF9N02wahLghMQwjHbgROBJIBhYDl5imOb+H/X8PPLaFTRN7+rnYyTCM0UDBFjadbprmQ1vYP6IeQ8Mw9gU+6mFzvmma47Zwn4h5DA3DuAI40DTNfbvdNhO4C9gZqALmmqb5z20c59fAP4BxwCrgItM03x6g2L3WQ/t+DlwFTAEqCf4OXmWaZstWjpMPjNns5qdN0/xdf2fuqx7a+Cjwh812LTJNc8RWjhMRj6FhGPOAfXrY/femaT7Rw3HC5jHc1vNCNP0Nikh40JWT3rsSOBM4HdgdsIC3DMOI6WH/F4HxwAHAL4GDgXsHIef2eA7YDfgtsAuwEHjXMIzJPew/A5gHDNvsI3/Ak4ZmBtAKDOfHeZ/uYf9Ieww/56ePxcGAj+CLiy2JiMfQMIzzgWs3uy0DeI/gi5udCb55cJ1hGKds5Tj7EXy87wVmAu8ArxiGMWVAgvdSD+3bC3gZeIlg1jOB49jK76BhGEnAaIIvJLs/nn8egNh9sqU2dppB8Peze96dtnKciHkMgV/w07+tN4GVBB/bLR0n3B7DHp8XoulvUETCh66c9EJnAfJ3gu/u/K/ztuOAYoJPPs9ttv/uwL7AFNM0V3bedgbwtmEYl5qmWTyI8XvFMIwJwEHAnqZpft5523nAYcAJBN+93dx04HvTNEsHLej2mQ6YpmmWbGvHSHwMTdNsBzY9FoZheIA7gJe2dGWoU1g/hoZh5AEPAXsB5mabzwDagLNM0/QBKwzDmAhcDDzawyEvAf5rmuY9nd9faBjGnsB5BF/8D6pttO9PwIemad7c+f0awzAuAx41DONM0zTbtnDI6YAD+Mw0zdoBit0nW2ujYRguYCpwXR9+ByPmMTRNs3qzfY8HDgFmmabZ0MMhw+Yx7MXzQgsR/jcoIuFHV056ZyaQBHzYdUPnk8ZCYO8t7L8XUNL1orbTPIJXW+YMVMjtVAkcASzousE0TYvgk2R6D/eZASwf+Gj9pi95I/Ex3NyfgZHAX7eyT7g/hrOAGoI5v9ps217AJ50virp8CBiGYWRvfqDOrpl70u3vuNt9tvR3PBi21r7bgAu3cB83wf9HWzKD4O9tbX8F7Adba+NEII5e/g5G4GO4iWEYCcD/AXeYprlkK8cLp8dwW88L0fA3KCJhRldOeqer7/OGzW4vBkb1sP+P9jVNs90wjKoe9rdd5xPh/7rf1tkveDzBy+5sti0LyAH2NgzjXIJPVF8BF5umuWrAA4dmOlBiGManwCRgNcF3bH/SPiLwMezOMIw44HLgzp6uFEXCY2ia5uvA6wCGYWy+eQSw+Yu8ritao4DyzbalAgn0/u94wG2tfaZpftf9+25XcBeaplnZwyGnA02GYbwE7EHwZ/AowXEAgf5N3zvbeAynEyz4zzcM4zAgQPD/0BWmadZt4XCpRNBjuJkzCRaVN2zjkGHzGPbieeEGIvxvUETCj66c9E585+fNu1G0EnzXb0v7b6nLRU/7h53Oy+yPAK92PvlublrnZz9wMsH+yInAfMMwcgYnZe91vrCbRHBA5xUEB7l/Q3Dc0AFbuEukP4YnAV6CA/p7ElGP4RZs6TFq7fzc098lPdwnrB9TwzDcwJMEu0CdvZVdpwEpBLuaHgw8AFwPXDPAEUM1jWBBUgD8HLiA4N/mq53vsm8uIh/Dzu5r5wL39lB0dRe2j+EWnheGzN+giAweXTnpna6ZcWK7fQ3Bf6ZbmrmppXPfzfW0f1gxDONo4BngS+D4Le1jmuZHhmGkm6ZZ0+1+xwDrCc68c8vAJ+29zqseqYCvW1/9BZ2DMC8APtjsLhH9GBIsNl4yTbOqpx0i7THcgi09Rl0vcHr6u6SH+4TtY9o5QPo/wH7Ar0zT7LHrEHAgENdtPMOSzvv/f3v3H2pnXQdw/D0rYREzXRs6Wn+E+AEVA3HFRMu5xJKKJdr8s/QPmQQLQymsHFZoRsZoZWAKWcyBcSMZCtLwV5vmH82c/fhEjaDC4lqsi85E7fTH93vWs3PPvTvz3nPOc67vFxzOOc/5nnO+z/3e5zzP5/vzSxGxbVytJ/PYRunmdKg+fy4ingeepAy+7t3XiSxDyvi19wB3DZC2lWU4x3nhTXEMShotW04G022CXtOzfQ3w1znSH5W21tyvnCN9a0TEZ4EpSlP+ZfNNWdq8qK3PXwIO8v9ucK2SmS/1GUR8gP75neQyXEXpDrLrWGknrQx7zCqjxvO/9Un/L8oF0KDH8dhFxGnAE5Ty/OgcrZhHZOarfQZaH6B0pTl5OLl84zKz02dsRbebUL//wYkrw2oT8HRmHjxWwjaW4TznhSV/DEoaPYOTwfwamKHUfgFQa+HPpVw49HoceHed6aRrQ73fN5wsLlxEbAG+A+wANs8xG9CRtBHxQkQsb2xbQek69ZuhZ/Y4RcQ5EfFiRPQOZj+P/vmdyDKszqf0439svkSTVoZ9PA5cWLvMdG2kzMjW29e9O5D3FzSO4+pi+h/HYxURJ1MGCq8CLsjMudaw6aY/ISL+HBE39by0DvjHfK1o4xIROyOid8zXuno/a5D8pJVhwwXMHgQ+SxvL8BjnhSV9DEoaD7t1DSAzX4mIHcA3ImKa0j/6m5Rao6n6w7wK+HetUfolsBfYVX/Y3wF8H7g3M/vVJo1dRJxBWUjrp8CtwOrG4M6XgRc5eh93UwZD3hsR2yjjG24FpoEfjjTzg3mu3u6sZfICZSra9cC6pVCGDe8DDmbm4ebGPvs4aWXY6x7gRuDuiLgdeD/wORrTkUbEScCJmTldN90BPBgR+ym1wFdTZuO7enTZHti3KYvUfQSYjohTG69NZ+brzf3LzP9GxP3AjRHxB8psghspf6Oto878gHYCD9SL8V2UwPi7wM7M/B1MfBl2j7uzKOeMfq+3tgwHOC8s9WNQ0hjYcjK4rwB3U+az30tZ2O7SurbEWuB5ygJp3dqhyykL2T1C6S/+ELBl9Nke2BXA24BPUvaledvO7H38C6W2awXl77EHOARsmK8r2LjUftofB56mrLK9H/gAcEmd1nMplGHXqZSVmntNdBn2qjWzlwJBuYi7GbghM5uB1XbKxAfd9zwMfIZSjvspF34f65kyeuzqYPDNwImUGvfeY3JtTXrU/gFfBG4HbqO0PFwPbM3MQcY6jFxm7gaupCxyeoDyGzsFXNNINpFl2LCS8ts6V6tHm8tw3vPCUj4GJY3Psk6nM+48SJIkSZItJ5IkSZLaweBEkiRJUisYnEiSJElqBYMTSZIkSa1gcCJJkiSpFQxOJEmSJLWCwYmkVoqIZePOgyRJGi2DE0mtExGfoK5SHxEXRUQnIi4ab64kSdKwvXXcGZCkPq5vPP4VsJ6yWrYkSVrCDE4ktVpmzgBPjTsfkiRp+JZ1Op1x50GSjoiIR4EPNTZtAB4BNmTmoxGxDbgK+ALwNeB04PfAFqADbAfOAf4EbM3MPY3PPhu4Dfhg3bQH+HxmHhziLkmSpAE55kRS21wH7K+39cCKPmnWAncAXwc+BZwC/AS4D7iLErycAOyKiOUAEXEGsA9YDXwauAZ4L7A3IlYPb3ckSdKgDE4ktUpm/haYAWYy86n6uNfbgesy877MfAD4HrAG+Gpm/iAzfwZ8GXgXEPU9NwMvAx/OzKnMvJ/SKrMcuGGoOyVJkgbimBNJk2pf4/Hf631zbMo/6/076/1GSvewwxHR/e2bAZ4ALhlSHiVJ0nEwOJE0kepA+V6H53nLSmBzvfWaXpRMSZKkBTE4kfRmcQj4OfCtPq+9NtqsSJKkfgxOJLXR68BbFvkzHwPOBJ7JzNfgyCr0Pwb+CDyzyN8nSZKOk8GJpDY6BKyPiIuBkxbpM28BngR2R8SdwH+Aa4FNwBWL9B2SJGkBnK1LUhvtAF4FHqLMprVgmfkscCFlLZQfUaYePg3YlJlTi/EdkiRpYVyEUZIkSVIr2HIiSZIkqRUMTiRJkiS1gsGJJEmSpFYwOJEkSZLUCgYnkiRJklrB4ESSJElSKxicSJIkSWoFgxNJkiRJrWBwIkmSJKkVDE4kSZIktYLBiSRJkqRWMDiRJEmS1Ar/A3gNjU+ZY86KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.470 - 19.990) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
010.002.901.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
1217.4719.991.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
012.9117.4612001.012001.463355204.398068.241758e+0024.8002981.000039peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 0.00 2.90 1.0 1.000000 \n", + "1 2 17.47 19.99 1.0 1.000000 \n", + "0 1 2.91 17.46 12001.0 12001.463355 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 0.00000 1.000000e-09 0.000000 1.000000 \n", + "1 0.00000 1.000000e-09 0.000000 1.000000 \n", + "0 204.39806 8.241758e+00 24.800298 1.000039 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 valid \n", + "1 interpeak 0.01 valid \n", + "0 peak 0.01 valid " + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_compounds` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3140091.62120815061.8358181.807420e+064compound A171.377934µM
017.290.3481231.70557112525.9916561.503119e+066compound B56.931685nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4 \n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.377934 µM \n", + "0 compound B 56.931685 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/MbN9k0yuBkAQydJAmIkhTEEUUvVyxwLULFlBEQVFBERULKNjpCqKCiopdsaHYQJSWIYEkpPe6fcr9Y3cxhNTNJtmE732ePCQzZ86enQzZ+eac8x1GURQQQgghhBBCyNmAbe8GEEIIIYQQQkhboQCIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctZQtXcDOqlyAFoAee3cDkIIIYQ0XQwAO4Dgdm4HIaQVMYqitHcbOiOroig6WW6dc8uyDFqrbvIvOs9tg85z26Dz3HboXLeN1jjPLMuAYRgbAL1PKyaE+BXqAWodebKsJJSWmn1esUrFIiTEiMpKC0RR9nn9xIXOc9ug89w26Dy3HTrXbaO1znNoqBEcx9DoDUI6OZoDRAghhBBCCDlrUABECCGEEEIIOWtQAEQIIYQQQgg5a1AARAghhBBCCDlrUBIEQgghhBA/tm/fvkC4UnTTg2tC6iYDyBsyZEhVUwpTAEQIIYQQ4of27dvHAniIYdhZDMOoATDt3SZC/JSiKIpz3759bwJ4csiQIQ2mh6QAiBBCCCHEPz3Ecao5JlOIQ6PRWRiGoQWmCKmDoiiMw2EzVFaWzZEkEQCeaKg8BUCEEEIIIX5m3759JoZhZ5lMIY7AwJCS9m4PIf5Oq9VbAYSVl5fM2rdv34sNDYejsaSEEEIIIf4nmmEYtUajs7R3QwjpKNw9pWq45szViwIgQgghhBD/wwJgaNgbIU3n/v/CoJEYhwIgQgghhBBCyFmDAiBCCCGEEELIWYMCIEIIIYQQctZYvXpl7BVXXNy/vdvRVCkpR3TffPNVUHu3ozOhAIgQ0iHk5uZg1apn8ddf+9u7KYQQQkibWbTovp5Hjhwytnc7OhMKgAghfk+WZcydOxubN6/H7bffgOzsrPZuEiGEENJGKA+Gr9E6QIQQv/fnn7/jPJsdI+Pi8XlhPnbufB933XVPezeLEELanCzLsFgs7fYA22AwyCzbvJcfNWrokKuuujrv+++/DXM6neyLL76aYjAY5DVrVsX9889fJrPZzAUFBYnjxl1YMm/egpyjR4/ob7/9hj6vvLLu6IABgywAcM89dyQdOvSP6Ysvvv9LpVJBURRceumFA//3v5tyrr76uuLar1lcXKRaufKZuP37/wiSJIlJTu5VPX/+wqykpB52T5k33nglateunVFVVVWqHj16mhctejTDs7+uNsfFdXW8/vrLMT/8sDusrKxM3aVLF9vMmTfmXnzxpeUAsH37O2Hbtr0Vc+ONt+SsX/9GXEVFubp3775VDz/8WMamTeujv//+mzCVSqVMnXplwezZd+UDgN1uZ156aVXsnj0/hpSWlmh0Or08cOCgikWLHjkZGhomXXHFxf2Li4s17733dszBgwcC1659UygrK+VeeumFLn/88WtwVVWVKiEhyXzbbXfkjBgxstrz3nbufD9069bNMUVFRdpu3bpZx427qGT9+te67tnz5z5vficsy3r1/vwVBUCEEL/3xy97cFFEFHQch1/LSnBs788Qr/8fVMEh7d00QghpM7Is49prr+qVknK03YZD9erVp/rtt3cIzQ2Cvvrqs4innno+VZJEpmfPZPu1117VJygo2LlixQvHAgMDpR9+2B28du2rXfv06WeeNOmS8vDwcMfevT+bBgwYZJEkCUeOHAq02+3sX3/tMw4bdq75wIH9hqqqStX48ReV134tURQxb96cZIBRli598nhYWJi4Zs2quPvuuzt5x45PDgJAcXGx5tChfwKfemplqsNhZ5588rGEJ598rPv69W8J9bX5nnvuSDpx4rjh7rvvPZmQkGT74otPQ5cvX5rEsmzaxImTKwCgpKRY8/HHH0Y+8cQzaRaLmX3kkYU9b7zxur4TJlxU/Mor649+9tnHYVu2bOoyZsy48t69+9qef/7puN9+2xu8cOHijK5du9kFQdA/99yT3V9//eXYBx98NGvdureO3nTTdX3OP39M6W23zcmTJAlz585OdjqdzMKFD6dHREQ633337chFi+Ynv/DCKymDBg22fPPNl0ErV65ImDXrpuyxYyeU//bbL6Z1617r2tLfiTfvr1kXSRuiAIgQ4vfK/toHnVoLq1aL8eGRGK83omTPj4iacnl7N40QQtpYx1wXaMyY8SWDBg22AIDVamXGj7+oZNKkyWVdu8Y7AKB795sLt29/Jzot7Zh+0qRLyocOPbd8//4/TADyDxzYb+Q4lZKc3Kv6jz9+Cxw27FzzTz/9ENyzJ18dEREp1n6tn3/+0ZSZmaHfuPHtQz17JtsBYPHipRmbNq2LLi0tUQEAx3HKsmUr0oOCgiQAmDx5StGWLZu61NfmY8dSdH/++Xvw0qXL0y68cFIFANx11z15J06kGbZu3RzjCYAkSWLmz1+Y6bn5799/YOWxYykB99//UDbDMLjttjvz3ntvW0xq6jF97959bb179zGPGzeh7LzzRlUDQNeu8Y6vv/6iMiPjhB4AwsMjRJZlFb1eL4eEhEq7d39tSk8/YVi7dvNhz2s8/PBjJ48dSzFu3bo5etCgwSfeeWdr9IgRI0tvuWV2AQD06NGzKDs7S/vJJzujWvI78eb9teSaaU0UABFC/JrVaoW+tBSIioFpwEBU5+UCAMqOCYhq5FhCCOlMWJbF22/vEDraEDgAiIvremromV6vV2bOvLHws88+CdmyZbMxNzdHm5mZbigvL1NLkswAwOjRYyuWLHkowmq1Mr/9tjewb99+VV26dLX9/fd+E4D8P/74LeiCC8aW1vVaqanH9AaDQfIEPwAQFRUtLlz4cLbn56CgINET/ABAYKBJcjgcp72xmm0WhBQ9AAwdem51zTL9+w+qevPN9XE1t/Xo8e/rarVaOSIiys4wDABAp9MpAGC321kAmDZteulPP/0QuHLlii45Odna7OwsfW5ujq5Xr96nvY5HWlqqXq83SDWDC4Zh0KdPv+r9+/80AUBGxgnDqFEXlNU8buDAc6prB0DN/Z148/78FQVAhBC/duJEGnoaAwAAYf0HQvrjVwCAIye3PZtFCCHtgmVZBAQEyO3djubSanWn2myxWNjbb7+Bt9ls7OjRY8omTpxcMnDgoJN33XVbL0+Z8847v0qtVsm//vpz4F9/7TONGzehND6+u/3jjz+IzsrK1GRknDAsXbr8RF2vxXEqxXNDXh+WZRvtSavZ5voSEciyxHAcd9pOtVp92s8sW39bHn/8kW4///xj6NixE0pGjDi/olevPnlbt26OLikp0tRVXlHqfmuyLEOlUimu12MVRWm8o7C5vxNv3p+/ogCIEOLX0o4J6GFwDXfXJfWArms8kJUFdWUFFFkG48WTSEIIIe3nhx92m9LTTxg++ODTvyMjo0QAKCsr5SoqKlSeQEOj0SgDB55T+eOP3wenph4LWLTokcy4uK4OhmGUV15ZExsTE2urmdCgpsTEJJvZbOZOnDiuTUxMsgNASUmx6pprruz3xBPPpHrT5uTkXlYA+PPP3wI8Q+AA4ODBvwO6dOlq9abO0tIS7quvPo9YuHDxicsum3aqxyY7+6ROp9PXCL7+DTB69Ei2WiwW7ujRw7qavUBHjhwOiIvrZgOA+Pju1iNHDgcAKPTsP3z4YIPzxpryO+lM6M6BEOLXCo4cgppl4WBZqCMjEZXMwy5J4BQFzsLCxisghBDiV6Kioh0A8PHHH4ZlZWVqfvttb8CCBXN7SJLEOBzOU3f7I0eOKv/uu2/DTaZAMSmph12r1So837t6z54fwkaMGFleX/2jR4+pTEhIsjz++MMJ+/b9YUxJOaJbunRx96CgYOfAgedYvGkzz/e2DRo0uGL16pXdvvnmy6C0tFTtSy+9ELNv3x/B//3vNQXe1GkyBUl6vUHas+fH4BMnjmuPHDmkX7LkofiMjHSD0/nvedDpdFJOTra2sLBANWbMuIquXeOtjz/+SOIvv/wUeOxYim7Zske7ZWef1M+YcW0BAFx77ay83377JWT9+tejTpw4rt2x492wTz/9JLKhtjT1d9JZUABECPFrRSdPothuhzMoCAzDICExCQUO10M/Z8kZmU8JIYT4ucGDh1puuum2rI8//jBy1qwZ/VaseKJ7v34Dq84/f3SpIPyb4W7cuAsrZFli+vUbWOnZds45QyoVRcGYMePL66ufZVk888yqtIiIKMeiRff1vPvu2b04jlNWrlyTqtVqve7OePrplSeGDx9RvnLlM91vuWVW399++yX4oYeWHr/00qlljR99JpVKhYcffuzEyZOZ+ptvvr7vAw/c29Nut7PXX39DTk5Olt5sNrMAcPnlVxXu3/9H0Lx5dySrVCqsXv3qse7dEy2PPfZw0uzZN/fOyEjXP/30ymNDhgw3A8C4cRdW3nnnvMxduz6KuOmm6/p++ulHEZMmTS7yDJGrS1N/J50F05QxgqTZTkiSnFBaavZ5xSoVi5AQI8rKzBDFDjcEuMOg89w2mnKeL7tsIrKyTmL9G5swZPgIZGZm4NcF9+CcoGBE/u9GBI8e08at7njoem47dK7bRmud59BQIziOTQeQ6LNKvbRv375eLMt9ERnZpVqj0fltNi3if/bu3RMQHh7prJkE4tVX10R/9dXn4R9++Nmh9mxba3M4bLrCwpwAWZYuHjJkSEp95WgOECHEb8myjPz8PABATJxrCYOoqGjsLS1BusWMW0JoHSBCCCGkpl9//SXo++93hz7wwEMZ8fHd7UeOHNZ//PGHUZMnTylq77b5CwqACCF+q6SkGE6nEyzLIjLSlb1Tp9Phb1nC9zlZmKbWILyd20gIIYT4kzvumJdrtVrZp59+IqGqqlIVGhrmuPzyKwtuvXVOfnu3zV9QAEQI8Vt5OdlY038QKgEwdjugcv3JiomJQVlZKfLzc8HzZ2ToJIQQQs5aWq1WeeihJVkAstq7Lf6KkiAQQvxW0YnjiNLqkKDRgtXrT22PjoxGpEaLSkFox9YRQgghpCOiAIgQ4rcqMzMBANUq1Wnr/SSFheOlAecg6c8/2qtphBBCCOmgKAAihPgte4FruLLDYDhte0CUaz6QSpYhO51t3i5CCCGEdFwUABFC/BZTXu76NyT0tO1BEZEQZVfqW6mqqq2bRQghhJAOjAIgQojf0lpdC3brYmJO2x4WHoEqUQQASNUUABFCCCGk6SgAIoT4rUB3L48pvvtp28PCwlApuoa+UQ8QIYQQQpqDAiBCiF+qrq5Gsc2GUocDkT2TT9sXFhaOCncPkFhZ2R7NI4QQ0kSjRg0dsn37O2FNLf/999+apk27pN/YsSMGr1ixPK4129YUq1evjL3iiov7+7LO5pyT7OyTmo8//pBW/vahdl0HiOf5sQC+q2d3uiAIiTzPDwLwIoChAEoArBYE4bkadbAAlgC4BUAIgD0A7hAEIa1GmRbXQQhpW/n5uXgqNQUmUxB+TEg8bV9oaCiq3MkPzMWFCGqPBhJCCGmS99/f9bfJFCQ1tfzata/GRUVF21988ZVjAQGBTT6uI2nOOXnssUe6R0ZGOqZOnVbW2u06W7R3D9AvAGJqfU0EIAJ4kuf5MABfAzgGV/CyBMAynudvrFHHIwBmA7gVwHkAFACf8zyvAQBf1EEIaXu5ubkAgJiY2DP2qdUaHLTb8H5uNqxBwW3cMkIIIc0RFRUt6vV6panlzWYz16dPX3O3bt0doaFhnTIAat45UZjWbc3Zp117gARBcADI9/zM87wawCoA7wuCsI7n+QcB2AHMEQRBBHCU5/meABYC2OgOUO4D8IAgCJ+567gaQC6AKwG8A+A2H9RBCGlj+fl5AICYWgkQPE5o1NidkY4L9XoktWXDCCGENMuoUUOHzJu3IGP69Bklixff312WZSYkJNT53XffhtntNnbAgEGVDz74aGZUVLQ4atTQIQDw3nvbYt57b1vM22/vONi1a7xj7dpXoz7/fFdkRUW5Kjo6xj59+jX506b9pxQAfvnlp8AHHrg3edasm7Lff/+9mPDwCPsTT6w4MXPmf/tdc83M3E8//ThSo1HLmza9c4RhGKxcuSLu99/3BouiyCQkJFnuuGNu9qBBgy2e9m7b9lb49u3vRJeVlWoGDjynIjIyytHQ+7v11ll8374DqsrKStU///xjqFqtlqdMuaJw4sTJpU8/vaz7iRNpxujoWNsDDzyUcc45Qyw1z8lFF11cPmvWf/t2755oWb36tTQA+PHH7wMXL74/+cEHHz3+4Yfbo44ePRJw9OiRgCuuuDhw584vDl5xxcX9x4+fWDJ37vzcmm2IjIyyL1/+bEZd5+PNN985WlCQr1616tmuBw7sN3EcqyQn9zLPm7cgKymph701fu/+rL17gGq7E0BXAPe6fx4N4Ed34OKxGwDP83wkgEEAAt3bAACCIJQD2A/gAh/WQQhpY7p//sbL/c/BGK2uzv2hoa6h02VlNCKAEHJ2kaxWtr4v2W5n2qJsS+zd+3NIZWWl6sUXXxEefXTZ8aNHjwS+9NILXQDX0LDQ0FDnZZdNK3j//V1/d+nS1bFq1TNdPv3048g775x3cv36LUemTftPwcsvvxD/1lubImrW+9tve4NfeWXd0UWLHsngOFYBgO+//zZ01aqXhKVLnzweFBQk3XPPHT1zc3O0TzzxTNorr6xL6dWrt/mee+7odfDg33oA+PjjD0Nee+2lbtOm/adg7do3D/fu3df8+ee7Iht7Tzt37oiOjIxyrFv31uEpUy4v3LbtrdiFC+/tefXV1+a//PLaoxqNWl65ckV87eOCg4Ol++9fnP7XX/uCPvrog9DS0hLumWeWJ0yYMLH4kksuK3/mmRfSevZMNp933vll69a9dbQ557nm+bDZbOzdd9/Oy7KEVateFlatelkwmYLEO+64uXdubo66OfV2Bu3aA1QTz/M6AIsBvCAIQp57cxyAg7WKeqLdbu79AJBVR5luPqyDENLWyssQodXCbjDWuTsk0IQYrQ723Ow2bhghhLSv43fPOae+ffpkvqLrAw+emsN8Yv7cgYrTWecDb233hOr4h5cInp/TF97XX7ZY6rw31MR2sXR/fHmzbsDrbaNeLy1Z8kSmWq1WkpN72fbu/blk374/ggDX0DCWZRW9Xi9HRUWLZrOZ/eSTnVELFjyYfuGFkyoAICEh0Z6Xl6t9//13omfOvKHIU+/VV1+b7+nNOHkyQwMAl146tYjne9sA4KeffghMTRWMO3d+/nd4eIQIAPPnL8w5cuRwwDvvbInq339gxgcfvBc1cuSospkzbywCgB49euYfPXrYmJFx4vQVuWvp2rWb9c475+UBwI033lawbduW2NGjx5ZOnDi5AgAmTpxcsnbta13rOnb06DFVkydfVvjaay91/fbbr0KNRqO0cOHDJwEgJCRUUqlUikajkT1tbqqa5+Pdd7eGV1VVqp5+emW6Wq1WAODxx5/KuPLKS/vv2PFuRM3epLOB3wRAAGYC0ANYXWObAa7hazXZ3P/q3PtRTxnPyom+qMMrKpXvO9g4jj3tX9I66Dy3jYbOs8piBVgWhpiYOv8v9dTrcXv/QTDv3w/VLfR7aghdz22HznXboPPcsUVFRds9N+EAYDQGSKIo1tnDdOxYis7pdDLPP/9095UrV3T3bJckmRFFJ2O1Wk8d1717whlDubp1i/fc8yEl5YgBAK6++orTMrqJosg4nQ4GALKyTurHjp1QWnN/nz79qhsLgGJj4069jsFgkAGgS5cup9qj0WhlUXTW24s2f/4D2fv3/xG0f/+fQa++uuFIc+ZM1afm+Th2TDBYrVbu4ovHDqpZxul0sllZmXUPtejE/CkAmgXX3J+SGtusALS1ynl+SWb3frjLWGuVMfuwjmZjWQYhIXU/ufYFk0nfanWTf9F5bht1nWeDJAKsBtHJSXX+XwoIDwWKS8CJzlb9v9aZ0PXcduhct42z9TwnrXn1r/r2MSx72o1z4srVfze1bMKK52uPmKm3bEvUDH7+VXf1siwzAPDQQ0tOJCb2sNXer9VqTx2o0+nk2vt1Ot2p/bIsM3q9Xnr99U1n9GRpNBoZABiGgVKrKSqVqtH3rlJxZ5RhmKYH6AUF+ery8jI1x3HK3r17TP37D7A2fMTpLyeK0hnBVc3zIcsyYmJibU8/vfKMDMdGo7FTJppoiF8EQDzPRwAYCeDJWruyANROAeX5OQeAusa247XKeP7D+6KOZpNlBZWVlsYLNhPHsTCZ9KistEKSzvh/TnyEznPbqO88O51OBLOuD46A2K4oKzvzWQSrdwU9nFOscz/5F13PbYfOddtorfNsMuk7RK8Sp9c3+U23Vtm20qNHso3jOCUvL1fjGQIHAJs2rYvMzEzXLVmy/GRT60pK6mm1Wq2cw2FnevXqcyqYevTRB+N79OhpmTXrpqL4+O6WQ4f+DgBQ6NkvCEdb9SmbLMt4/PGHE+LjEywTJ15c8uqra7qNHDm6sl+//u4giDkt2uE4lVJdbeZqHl9YWKCJjY09I0D0SExMsv7ww3dhJpNJ8gylE0URDzxwb+K4cePLLrvs7Eqx7RcBEFzBjwLgh1rbfwQwm+d5ThAET3Q6AYAgCEIhz/MVACoBjIU7eOF5PhjAYAAv+bAOr4hi6/0dkSS5VesnLnSe20bt85xzIh0GzvXnKbhrQp2/A12wa4SqWlHgtDvBcNwZZcjp6HpuO3Su2wad584vKChIuuiii4veemtjF6PRKA0ePKz6zz9/D9y0aX3clVf+J7/xGv41btyEio0bu1uXLHko6e6755+Mje3i2LHjnYjvvvsm/KKLLj4GANdcMyv/sccW91i79tWo8eMvKt+z54eg337bGxIcHOxsnXcIvPHGK9Hp6emGdevePJKYmGT//vvdIU888WjC5s3vHNVqtYper5cLCwu0OTnZ6i5d4py9e/ep3rPnh9C9e38ui4iIdG7ZsinaarU0+CE4deqVpdu3b4tZuPDepDvumJttMgVJGza8EXPgwL6g226bc1bN/wH8JwvcQAAnBEGo3WWyAYAJwHqe5/vwPH8DgHsAPAUAgiDY4QpSVvA8P5Xn+QEA3oWr1+cDH9ZBCGlDhcdTAQBmWYZKX/cQF2Povwtoy9ZGRgoQQgjpsBYteiTr8suvLHjzzY1dbrjhmn5bt26OmTHjuty7727exH2O47B69WvHevZMNi9fviTxlltm9vnnnwOBDz/82PHRo8dUAcCFF06seOCBh0589dXn4TffPLPvnj0/Bk+dOq2gdd4ZcPDgP/p33tkSO3PmDTmJiUl2AHjwwUcyi4uLtKtWPdMFAKZOvbIoK+uk7qabrusrSRLuuuvenORkvnrx4gd63n337b1MJpM4cuToBntwgoKCpDVr3kgJCgoWFy1a0HPOnJt7FxYWaJ588rnUmr1hZwtGqT3QsR3wPP8KgHMEQTivjn3D4EqMcA6APADPC4LwUo39HFxD526EK4nCjwDuFAQhw5d1NNMJSZITSkt9PyxHpWIREmJEWZmZnnq1IjrPbaO+8/z1ls2w7voY2oBATFq3qc5jf/31F+hffxV6jkP35SugiYpqo1Z3PHQ9tx06122jtc5zaKgRHMemA0j0WaVe2rdvXy+W5b6IjOxSrdHozrobVEK84XDYdIWFOQGyLF08ZMiQlPrK+cUQOEEQ7mhg3x8AzgiMauyX4FrUdGFr1kEIaTsZVgteTjmMyy+/EpPqKRMUFIQyUYSe4yBbaA4QIYQQQprGX4bAEULIKXl5rlEN0dEx9ZYxmYLwdXEBPirMB2cytVXTCCGEENLB+UUPECGE1JSXmwMAiImpncDxXyZTED50B0p3GwNw1i1jTQghhBCvUABECPE7Uyw2XN//HOgaSG8bEBAAjuMgSRIqKyug051167gRQgghxAs0BI4Q4lcURUEQFERotQiLiq63HMMwiA4ORoxWh4q8nDZsISGEEEI6MuoBIoT4lbLSUoSqXAPaInr0aLDsf6Jjcb7eCNsvvwADB7dF8wghhBDSwVEPECHEr+QfT4WKZSErCgwRkQ0X1mgAAM7q6jZoGSGEEEI6AwqACCF+pTQjHQBQBQUM1+DC1mC0rnk/TkqDTQghhJAmogCIEOJXKrKzAQBWVeN53VidHgAgW62t2iZCCCGEdB40B4gQ4lfsRYUAAMlobLQsq9MB1dWAw9HazSKEEL/BMOAYhmmXh9iKosiKAqk9XpsQX6EAiLQqsbwMquCQ9m4G6UCKqquQUl2FgKSkRsuqjQagGBQAEULOGgwDTmaYGItNbJd7OINOJbJQ8vwtCFq9emXs7t1fhe3c+cXB5h6blpaqve22G/ps2rT1cLdu3ekD5SxAARBpNbnvvYPqr75AQdeuGL1kWXs3h3QQP5QU4UjKYay6/Y5Gy6oMrl4iThRbu1mEEOIXGIZhLTZR9euhPNliE+tfLK0VGHQqdkS/GFWgTsUqiuJXAZC3jhw5pF+06L4eDoedpoWcRSgAIq1CEUVUf/UFAODLX/Yg+OA/6N9/QDu3inQEeXl5AICYmNhGyzIhofi8IB8h8d0xvLUbRgghfsRiE2Wz1dmmAZBbpwkUXnlldfSOHe/EdOkSZystLdG0d3tI2+k0FzHxL/askwCAKtGJXQV52Lv3p3ZuEekIrFYrystKAQCxsY0HQJrISGzMysBeydnaTSOEEOKlUaOGDtm6dXPETTddz48bd97gGTOm9fnqq8+Dapb55psvg66/fnrvcePOG3zllZf2e+GF52Ltdjvj2Z+SckR3zz13JE2aNHbQmDHnDr7yykv7bdy4rt61EjZtWhc5duyIwV9++VlwfWX27fs96P77H0qfM+fubJ+8UdJhUABEWoUlMwMAcMLsSk985MjhdmwN6Sjys09i6+DheGXAYBjVjWeBMxoDAABmM60DRAgh/mzjxrVx48ZNKH3jjc2Hhw49t2LZskd7/PHHb0YA+O67b0zLly9Nmjx5SvGGDVsPz5t338k9e34IXbz4/gQAsFgs7H33zU3W6fTymjWvpWzc+PbhUaMuKFu//rWuBw/+o6/9Wlu2bIrYvHl93MMPP3580qRLyutr0/r1W4TJk6fUu590XjQEjrSK8owMAECZ04mexgDI2fRwhTSuIC0NoSyLQLX6VIrr2hgGUKs5iKKMAKMBQSo1tBYrFFkGw9IzHUII8Ufjxl1YPHPmjUUAsGDBopxDh/4O3L59W+SwYeemb9myKWbChInF1133vyIASEhItKtUqsyFC+cnnzyZoTEYjPLUqdMKr7lmZqHJZJIB4K677s394IPt0ampKfr+/QecWgth27Yt4Rs2vBG3ZMkTaWPHTqhsn3dL/B0FQKRVWHKyoQHQMyAQY8MjsK+iDKIoQqWiS47UryLrJEIBmFkGDMPUWUalZpFtyUWMIQpGgxFrBw0BAEjmaqgCTW3YWkIIIU01ePDQqpo/83xv84ED+00AkJ6ebjh+PM343XffhHn2K4rr37S0VN348RdVXnvtrMJduz4KPX481ZCTk63NzEw3AIAkyac+LMrKytSvvro6nuM4JS6um70t3hfpmOhulLQKZ3kZNACK1Bp0ARCkUqOsrBQREfUO1yUE5nxXAgSHTldvGZtsQ1F1CYK1JgSYTCiXJOg4DrLNBlAARAghfkmlUik1f1YUBSzLKa7vZeaKK/6TP3XqtJLax0VFRTsLCwtUt912Q+/AQJM4YsTI8iFDhlcOGDDQfPXVV5yWXYlhWDz++JOpGza8Ebt8+dKE9evfSmFpZACpA10VpFWcMBqxMy8HhYHBAIBQtQbFxUXt2yji98RS12efUk8gw3EszKIFuRUFsDitMJlMsMmuTKySxdJm7SSEENI8R44cOm1165SUIwFJSUkWAIiL62bNysrUJSYm2T1fBQV56tWrn4+rrq5iP/lkZ1h1dZVqw4YtKXfeOS9v8uRLyysqyt0P8f+Nq4KDg5xjxoyrXLTo4YwTJ9IMGzeujWrDt0g6EAqASKv4w2bB2zlZqIqIAwAEqdUoLixo51YRf8dUuUZIaMLC69zPcQwqbVVwSE5U2qsQFGSCVXIFQJaKijZrJyGEkOb55JOdUTt3vh+alpaqXbFieVxmZob+mmtmFQDAjBnX5f/++68hq1evjE1LS9Xu2fNj4DPPPJlgNleroqKixaioaIfdbmd37fooJDv7pOaHH3abHnvs4UQAcDgcZ9zL9u7d1zZt2vT8rVs3xx4/nqZt6/dK/B8NgSOtoqjI1dujComAnKGAYxiUu4c3EVIfjd0O6PQIqGcNIBkyym2uOa2VtiqoTCrYZNcyGNbysjZrJyGEtDeDTtXmD7Fb8poTJ04u2rHjnagXXnhOHx8fb3nqqedS+/btZwWASy+dWqYoyolt296K+eCD96INBqM0dOjw8nvvfSDbsz8l5Wj+2rWvdl2zZiUbHh7hmDTpkuK9e38OPnr0sBHAGUNM5sy5O+/nn38MWb58afd1694UaCgcqYkCIOJzst2OwKoqhGk00AYEw8KwCICC6vz89m4a8WOiKCKtohyMKGJIj551lnEqIqwOGwDALjogQYLDnSzBSj1AhJCzgKIoskGnEkf0i1GhHUbyGHQqUVGUZi/AmpCQZH3ggcX1poSdMuXysilTLq/zSRbDMFiwYFHOggWLcmpuv/nm208NLZk7d37u3Lnzcz0/a7VaZfv2j5u0BsfIkaOr9uz5c19TypLOgQIg4nP27CzcYQpGId8Hh/UmWDg1AiQHbDQHiDSgsLAAb2VlQqVS4/ehw87YzzCAU3bCJroS+9hEByRFgugOgBxVVWccQwghnY2iQGKh5AW2Qw+Q6/UVWVEgtcdrE+IrFAARn3OWlwMAyp1O6I0mHAuJxq79P0AfaGz4QHJWy811PdiLiYlFXUMVGIaBQ3bCLjoAAA7JCafsxHEoyCrMx4gGMscRQkhnoiiQFEWhIIQQL1EARHzO7E52UOF0wmA04ViXHvjii/dwTpcu7dwy4s/ycrLBAIiNrXv+D8sysDsccHgCINEJURZxRKPB/pMZ6BUQ0IatJYQQ0lQ0vIz4GwqAiM9Z3EPdLAxgVKmhNwQCACoraUFmUj/H0SN4e8i5yFPXnbCHYRhYHNZTCU9FWYRDdiLAHfiYzdVt1FJCCCGEdGSUEoP4nM09Gd3JueLrQE4FPiAAAVZrezaL+Dl7cRE4hoFWr6+7AAOYHebTNtmcdpiMRphUKtjKKAscIYQQQhpHPUDE5xxVlVADkNxP8uNK87CsVz/8SmmKSQOUclfgrAoNrXO/DPFUAgQPm2jHIEnBrEFDkSektHobCSGEENLxUQ8Q8Tmx2vWUXtG6JqWzASYAgI5hYLfb6z2OnN1UVgsAQB8VXed+SZHhEJ2nbbM6beD0rkBboWuLEEIIIU1AARDxubwgEz7My0GZ3jU3gzG4AqAAlQpVVTQPiJxJkiQY3QuaBneLr7uMIsEhnR4AibIITucaMseIYus2khBCCCGdAgVAxOfStVpsy8lCRUAQAEDWGQAAAZyKEiGQOhUVFSFMrQYAhHZPOGM/wzBwyuIZAZBTEsHpNK4yFAARQgghpAloDhDxuepq14KUWr1r3R9J63pCb1RxqKysaLd2Ef+Vm3USIWpXIKOLiDxjP8sCoiTCWUcPkMrgur5YmZbEIIScHRgGHMMwtBAqIV6iAIj4nLqsFFFaLXRaV8+PrHHNBTJyKhRRAETqkJedhZzSEsSHhaFnYOAZ+xmGgSg74ZRO7+URZQkqo+s6U8nKGccRQkhnwzDg9KwzRnFY2uUejtEYRKuszvO3IGj16pWxu3d/FbZz5xcHm3rM9u3bwt5//72owsJCbUhIiHPixIuLb7llTj7Hca3ZVOIHKAAiPqUoCqaWV+KK/ufgU5Xr8vL0ALEMAzOlKiZ1yCkqxOr0NFzWrx8msGc+1GQYBlbxzCQHoiSBc/cAcYrc6u0khJD2xjAMqzgsqmrhN1m2W9v0Dx+r1bMB/LkqRh3MKoriVwFQc+3c+X7oyy+/GD979t0nzz33vKrDhw8aVq9+Pt7hcDJ3331vXnu3j7QuvwiAeJ6fBWARgEQAxwEsFQRhu3vfIAAvAhgKoATAakEQnqtxLAtgCYBbAIQA2APgDkEQ0mqUaXEdpGlkm+3UxDJP8gOFU+E7mUVG9gkMpsUqSR1yc3MAALGxXerczzAMrE7bGdtFWYQu2IQfiovABARgWKu2khBC/Idst8qSzdweT346xfzxjz/+MGLMmPElM2ZcVwwACQmJ9szMDN2XX34WTgFQ59fuFzHP89cD2ADgdQD9ALwD4B2e58/jeT4MwNcAjsEVvCwBsIzn+RtrVPEIgNkAbgVwHgAFwOc8z2vc9be4DtJ0ssWVytgpy1AZ/h3K9LvehM8L81FuNtd3KDmLFWRng0H9ARCgwFZHACTJElThoXg54zg+KC1u1TYSQgjxzqhRQ4ds3bo54qabrufHjTtv8IwZ0/p89dXnQTXLfPPNl0HXXz+997hx5w2+8spL+73wwnOxdrud8exPSTmiu+eeO5ImTRo7aMyYcwdfeeWl/TZuXHfmpFG3TZvWRY4dO2Lwl19+FlzX/tmz78qeOfPG/NrbzeZqv+gcIK2rXX/JPM8zAJYBWCUIwovuzct4nh8FYKz7yw5gjiAIIoCjPM/3BLAQwEZ3gHIfgAcEQfjMXefVAHIBXAlXMHWbD+ogTeQJgMySCLXOeGq71j0fyEw9QKQOw6qqcceQc+EoKqxzv6hIcEhnZnkTZQka9zpAVvc6QoQQQvzPxo1r4/73v5uzH3zw0YyPPvogfNmyR3uEhISmDBt2rvm7774xLV++NOmWW2ZnjRw5uvLkyQztmjWrumVnn9Q999zqExaLhb3vvrnJ/fsPrFqz5rUUlUqt7Ny5I3z9+te6Dh06vKp//wHWmq+1ZcumiM2b18c9/PDjxy+8cGKdk4+HDx9x2hPZ8vJy7vPPd0UMHHgOpas9C7R3DxAPoDuAt2tuFARhkiAITwEYDeBHd+DisRsAz/N8JIBBAALd2zzHlgPYD+AC9yZf1EGaSLa5/gZZJQlq99wfAAhXqZBsDICT0mCTWmRZhs7pBMcwCIqsexFUGRJEue4012qNGmqGAedwQJFpHhAhhPijceMuLJ4588ainj2T7QsWLMpJSuph3r59WyQAbNmyKWbChInF1133v6KEhET7mDHjK++99/7MX3/9JeTkyQyNxWJmp06dVvjQQ0syk5N72RITk+x33XVvLgCkpqboa77Otm1bwjdseCNuyZIn0uoLfmqrrq5mFyyY28PpdLBz596X5ft3T/xNe3fzJbv/NfI8/yWAcwCkA3hCEIRPAMQBqJ3NI9f9bzf3fgCofbHmuvfDR3V4RaXyfXzJcexp//ob2e4JgGTo9UawrKv3eoK5BNf37ocfKypa5bz4mr+f586C41jk5eUhVOVaAygiKbHO68PJOCEp4qnrqSaVVoU3Bw8HxzCQK8uhDQ9v9XZ3NHQ9tx06122DznPHM3jw0KqaP/N8b/OBA/tNAJCenm44fjzN+N1334R59ivuxJ5paam68eMvqrz22lmFu3Z9FHr8eKohJydbm5mZbgAASZJPfTCUlZWpX311dTzHcUpcXLczM+fUoaAgX7VgwdyeBQX52qefXnmse/cER8vfLfF37R0Amdz/vgngMbiGpV0F4COe5y8CYIBr+FpNnokAOvd+1FMm1P29L+poNpZlEBJibLygl0wmfeOF2kGlwxUA2WQJwaEhULlvbGWNBrCbAae9Vc+Lr/nree5MDh3KRLjGNd0uskc8DHVcH6UWJ1g1A53+zGl5OqMOFbIEA6eCCo4OdX21Nbqe2w6d67ZB57njUKlUp61VoCgKWJZTXN/LzBVX/Cd/6tRpJbWPi4qKdhYWFqhuu+2G3oGBJnHEiJHlQ4YMrxwwYKD56quvGFCzLMOwePzxJ1M3bHgjdvnypQnr17+VwtaRWdQjNVXQLVgwr6ckScwLL7wi9OnTz1pvYdKptHcA5ImynxUEYbP7+wM8zw8GMB+AFYC21jE6979m9364y1hrlfGM7fRFHc0mywoqK30/J4HjWJhMelRWWiFJ/jfcp4xR4cO8HFTIMkY4FTidrl+xnnMFQpLVhrIy/0+E4O/nubPgOBZZaccR506ZblUZYK91fTAMA7NsQ7XZCpt45oM5h16CXZZh4IDC7AJw4bFt0vaOhK7ntkPnum201nk2mfTUq9RKjhw5ZLzoootPDUlLSTkSkJSUZAGAuLhu1qysTF1iYtKph9F79+4JePfdt6MefPDRzF27Pgqrrq5Sbd/+8SG1Wq2463NHv//GVcHBQc4xY8ZVRkZGOmbPvqnPxo1ro26++faCutqTmZmhueeeO5MDAgKk559fcywurquzrnKkc2p2AMTzvAqu5AQTACQACAJQDCATwOcAfhEEoakrEma7/609RO0wgCkAMgDUvpvx/JwDQF1j2/FaZf52f5/lgzq8Ioqt9+EnSXKr1u+tKr0B23KyEBIahuE1FqaUVa4YlHE4/bLd9fHX89yZFKSmIg6AnWUhc2rItc43x7FwSiIcohNyHYudOmURDvdYieryCvp9NYCu57ZD57ptnM3nmdXq2zxSa8lrfvLJzqj4+ARbv34DzO+//15EZmaGfuHCRzIAYMaM6/KffnpZ4urVK2MvueSykvz8PM3zzz/dPTw83BEVFS1GRUU77HY7u2vXRyHDhg2vPn48TffKK6u7AoDD4TijTb1797VNmzY9f+vWzbFjx04oT0rqccZwuCeeWNJdFJ3sI48sS1Wr1UpBQf6pe+KoqOi6J52STqPJAZA7W9ocuDKmxQEogyvoMQPoClfA8hCAXJ7nVwB4QxCExsZf/gWgCsAIuNbe8egPIA3ALwBm8zzPCYLgWXBrAgBBEIRCnucrAFTCFZAdd7czGMBgAC+5y//ogzpIE5ndaa51OsNp22Wtq9ONFelvCjldZbbrOYior3soC8O4ghxRrnvNPUmW4HlsZ6+mLIOEkM5NURSZ0RjEAP5cFdohmRWjMYiK3PyVpydOnFy0Y8c7US+88Jw+Pj7e8tRTz6X27esacnbppVPLFEU5sW3bWzEffPBetMFglIYOHV5+770PZHv2p6QczV+79tWua9asZMPDIxyTJl1SvHfvz8FHjx42Aiiq/Xpz5tyd9/PPP4YsX760+7p1bwo1h8Ll5eWqjx49HAgAs2ff2Kf2sXv2/Lmvue+PdCxNCoB4nh8OYDMACcCrAN4TBOF4HeX6A7gEwFwA83ienykIwt766hUEwcrz/DMAHuV5PgfA7wBmAJgIV5ByBMADANa7yw0HcA9ca/ZAEAQ7z/MvAVjB83wRXD1Gz8LV6/OB+2U2+KAO0kS24mJEabUw6U8PgOBOg81JHXrhaNIKMgoL8HNFNfr36VvnfoZh4Khj6JuHJMsQGdccWAelWSeEdHKKAskqq/MYdXC7jNVTZEVWFDT7wzwhIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3F5zeNvcufNz586d70lyBa1Wq2zf/vHhuuqLiYl1UpBzdmtqD9BbABYJgvBhQ4UEQTgI13C2FTzP/xeuoCm5kWOe4HneAmA5gC4AjgK4UhCE7wGA5/lJAFbDlZY6D8D9NeYLAcCj7vexDoAerh6fSYIgONz1F7a0DtJ0mr/2Y03/c/C9s1ZPj871dF9FARCpZW9GBj4vL8d7K56vcz/DADax/s5kSZYgnQqA/H9+GSGEtJSiQFIUhT5QCfFSUwOg/s0NBgRBeI/n+Z1NLLsSwMp69v0B4LwGjpXgyh63sIEyLa6DNI1sdyXYkzn1adttkd3w7tfbcdJqxfWKAoY5M50xOftUVlaivLwcABAXF1dvuQYDIEXCSZZBbkkRklXtndeFEEIIIf6uSXcL3vaEUA/K2Uexu25UZfXpl5Yzpjvez3P1XFutFhgMlKqYAFlZJxGsVkNlCqr3mpAhwynVn5xHkmUc0Guwd/9xPB4Q0FpNJYQQ4iUabkb8TVPnAD3anEoFQXjcu+aQDs8dACnq09drUau1YBgWiiLDbDZTAEQAAFknM/FC34HQchwcBfnQREWfUUZSJDil+pNnSLIEvcE1x8xqpSUcCCGEENKwpo4XWVrrZwUAA1dShGIAIQA0cK3rUwqAAqCzldP1pF5Wn770EitLSAoKhmi3wWKheRrEJT8jHd3cw9ZUwSF1lpEhQ5QbCIAUGTqdDiqGgZWywBFCCCGkEU0dAncq0wjP8xMAbANwF4D3PamleZ6/GMB6uNJkk7MU63lSrzk9ANJUluLJHsmodDpPpcompDwzEwBgV6vBamuvV+wiK3K9KbABVw/QMJsDNww5FyfTUlulnYQQQgjpPLxJofgSgEcEQXivxro6EAThCwAPw5XNjZylWNF1SSga3WnbZZUrKYKWZSkAIqfYClwZTOXAwDr3M4xrCJzYwBA4WZHBqN1JNxw07ZAQQgghDfMmAOoG4GQ9+4oARHnfHNLRCWo1vijMh9Nw+g2t7J4TpOU42K2W9mga8UNKuWvJB01ERJ37GYZxBUANDYGTJTBa95wzZ/3JEgghhBBCgKbPAarpbwB38zz/jSAIp+42eJ7XwbXg6G++ahzpePZCxp6TGZhxYdBp22XVv0kRbDRPgwBwOh3Qu3tsAuO61lmGYQBJkuBsYP0oWVHA6NzD50QKgAghnR/DgGMYpn0WQlW8WwiVEH/iTQD0IIAvARznef4L/NvrcwkAI4Axvmse6Wg8w9vUtYbAKZwKsqKAZRharJIAAHJzcxDpnisW1C2+zjKeHiCpgR4gAGB1rgCboYV2CSGdHMOAU1RSjEWytsvCZ3qVXmRELs/fgqDVq1fG7t79VdjOnV8cbOoxmzevj/z44w8jS0pKNFFRUfarrvpv/n//e21Ja7aT+Idm/+cRBOEHnudHwhUIXQYgFK5McN8AeFwQhDTfNpF0FIosQ2ezwqRSQV0rCQIYBiIYV6pAM/UAESAjIx0HKsqhMhqREN+tnlIMHJIIpZG6WK1rDhAryT5tIyGE+BuGYViLZFX9nn1AtjptbfpHT6/WscPjBqmMTCCrKIpfBUDNtXXr5ojNmzd0uffeBRkDBpxj/uWXPaaXXnqhe2BgkDR58qXl7d0+0rq8enogCMJ+ANN93BbSwUmVlbjXaII8cAi+q9UDBABOxpUrXaS1WghcAdBnhfngzh2G/3ZPgCie+TnOMIBdtDdemTuDHKdQAEQIOTtYnTbZ7LC2xx+9dhl652vV1dXcrFk35lx22bQyAIiP7168a9fOyD///M1EAVDn53X3Kc/zkwFcBCAGwEMAzgGwTxCETB+1jXQwst0GALDJEtRawxn796n0KDiZii6DBrZ104gfyszMAAAkJSXVW4ZhGNiaEABJgXr8UVYKh9GIC3zVQEIIIT4xatTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltffffvud+Z7vnU4n8+mnH4fk5GTrZs68MbcVTgHxM82O4nmeN/A8/xWATwHcBOC/cC2EOgfAPp7n+/q2iaSjkO2uG1WbJEOtPnNNl32GEGzPzUalTE/pCZCfmY5wjQZJiYkNlFLgEBtPbe2MDMWzx4/h46qKRssSQghpexs3ro0bN25C6RtvbD48dOi5FcuWPdrjjz9+MwLAd999Y1q+fGnS5MlTijds2Hp43rz7Tu7Z80Po4sX3JwCAxWJh77tvbrJOp5fXrHktZePGtw+PGnVB2fr1r3U9ePAffe3X2rJlU8TmzevjHn748eN1BT81/frrLwHjx48c/NxzTyWMHj22pLHypHPwphvzSQBDAEwAEA6AcW+fCSAHwDLfNI10NJJ7aJtNlsCpzxwC55kXZKUhcARAeHEpXhkwGLG//lFvGUmR4GxgEVQPlcbVmW2z2XzWPkIIIb4zbtyFxTNn3ljUs2eyfcGCRTlJST3M27dviwSALVs2xUyYMLH4uuv+V5SQkGgfM2Z85b333p/566+/hJw8maGxWMzs1KnTCh96aElmcnIvW2Jikv2uu+7NBYDU1JTTAqBt27aEb9jwRtySJU+kXXjhxEafiiUl9bC9+uqGI3Pnzs/Yu3dP6PPPP92ldc4A8SfeDIG7GsCDgiB8x/M859koCEI+z/NPAHjZZ60jHYq9qgoAYJMkaLRnPJBBEKdCF50eMiVBOOtVVVUh0L24aXD3ujPAAYAEudEMcACg0riSINhtFFwTQog/Gjx4aFXNn3m+t/nAgf0mAEhPTzccP55m/O67b8I8+xV39pu0tFTd+PEXVV577azCXbs+Cj1+PNWQk5OtzcxMNwCAJMmeB/EoKytTv/rq6niO45S4uG5NmEAKREREihERkWK/fv2tZWVl6m3btsTOnXtfrkajaSz/DunAvAmAggFk1LOvDECAt40hHZut0vWgxSbLUKk1Z+wfU1mAmf0G4ufKyrZuGvEzGRnpiNW6egmDGgiAFMgQm9ADpHU48fbg4WAZBoqigGGYRo8hhBDSdlQq1WkBhaIoYFlOcX0vM1dc8Z/8qVOnnZGCOioq2llYWKC67bYbegcGmsQRI0aWDxkyvHLAgIHmq6++YkDNsgzD4vHHn0zdsOGN2OXLlyasX/9WCsvWPdhp9+6vTXFxXR3Jyb1ODR1ISuppFUUnU1paooqOjqGF5Toxb4bAHQJwXT37LnPvJ2chu3t9HxFAXX9wJJXrKb3ioL8pZ7vMzHRE61wBkC4mpt5ysiJDlBrvAWINOqhY1hUAiY2XJ4QQ0raOHDlkrPlzSsqRgKSkJAsAxMV1s2ZlZeoSE5Psnq+Cgjz16tXPx1VXV7GffLIzrLq6SrVhw5aUO++clzd58qXlFRXl7of4/8ZVwcFBzjFjxlUuWvRwxokTaYaNG9dG1deedetei9u4cV10zW2HD/9jDAgIECMjo+hGpZPzJgB6AsBMnud3AbgFritvDM/zawDcAeAZH7aPdCAOoxFfFubjiL3ueRiyOwCCk/6unO0y0k8g2t0DpO8SW2cZhnHNAWpKDxCn/zfphr2ahlgSQoi/+eSTnVE7d74fmpaWql2xYnlcZmaG/pprZhUAwIwZ1+X//vuvIatXr4xNS0vV7tnzY+AzzzyZYDZXq6KiosWoqGiH3W5nd+36KCQ7+6Tmhx92mx577OFEAHA4HGfcy/bu3dc2bdr0/K1bN8ceP552ZlYmADNmXJ+3Z88PYW+9tSnixInj2m3b3grfufP96GuvnZVbX68R6Ty8WQj1I57nrwfwNIBL3JufB1AIYLYgCDt82D7SgVhCQrH+ZAaiY7tiQB37FZVrWBxDAdBZr/jECahZFjLDQBseDmvlmUEzwzDNCIA0kBUFLMPAWl0JfUhIazSbEEL8hl6ta/O79Ja85sSJk4t27Hgn6oUXntPHx8dbnnrqudS+fftZAeDSS6eWKYpyYtu2t2I++OC9aIPBKA0dOrz83nsfyPbsT0k5mr927atd16xZyYaHRzgmTbqkeO/en4OPHj1sBFBU+/XmzLk77+effwxZvnxp93Xr3hRqBzVTp04rkyQx/Z13tsasX/961/DwcMftt991csaM64q9fY+k4/B2IdS3AbzN8zwPIAxAOYAUQRAov/FZzGp1DYHT6c5MgAAAijsLHCN16MWjiQ/Y83MAowmyyQSG4+otJ8kyxCYkQWBUHByyDB3HwVZFPUCEkM5LURRZr9KLw+MGqdAOi5LqOb2oiM1fdTohIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3H7zzbcXeL6fO3d+7ty580+t4aPVapXt2z8+3FCbpk2bXjpt2vTSpr8L0lk0OwDieX43gDsEQUgRBEGotW8AgC2CINTVAUA6OWt5OQJVKhi0Z6bABgDFnRqbowDorCbLMlJysvFhYBCuvuiiess1pwdIlmU4FAU6AHbKMkgI6cQUBRIjcnlGJrBdxmkpoiIrCuiDnHRoTQqAeJ4fhX+fMoyFa85PZB1FpwCof1l30qkZDxzA+kFD8bNcT+ZIdw8QRwuhntVyc3OQXlmJbKsVC6++pt5yDAM4JRGK0ngmUkmR4XRPhHW4k3EQQkhnpSiQFEWhIIQQLzW1B+gWALPgSnigAHgFrgVQa96ZePLOvu2z1pEORXY4XP9ydV9W1tAY7MrPQ44k4tq2bBjxK2lpqQCAhIQkqFT1/wliGAYOydGkOmVFRprDgYzqavRt/sgMQgghrWjPnj/3tXcbCKmpqQHQPAAb4QpydgO4E8CRWmUkuOYCNTjeknReitN1s6rUEwDZouPxZnYmWJaltVrOYmlpx9An0ITeCYkN9u4wDGBvagAky/jAbkb68RN43WBs/ABCCCGEnLWaFAAJglAB4AcA4Hl+HIB9AAIEQch3bwsB0FUQBFoD6Gzmzu6meNJd16J2D4GTZRkOhwNabZ2ZKUknl5V6DEv5PkBJKWSrFQ2tnWwXm7SQN2RFhs69rpC9njTshBBCCCGAd9lD/gbwIYDva2w7F8ABnud38jxv8EXDSMejNBYAqVQIU2sQodHCZrO2ZdOIHzGfzAAASAYjOEP9fy5kyHA2YRFUwDUHSKtzBdRWKwVAhBBCCKmfNwHQ0wD6AnioxrbdAC4HMBTA4z5oF+mAPOmtFXXdAZCxvBivDhyMpXwfWK0UAJ2NRFEEW+rKcqrp0qXBsrIiQ2pCBjjA1as4jdNiy+Dh0AkpLW4nIYQQQjovbwKgqQAWCILwgWeDIAgOQRA+gSso+q+vGkc6FkZ0P61X1z20TVa7FkLVsiz1AJ2lsrJOoovGdR0EJiQ2WFaG3KQU2ACgQIGKY6FhWUg0BI4QQgghDfBmIdRAAHUuVAWgAEC4980hHVmWWo0jeTmwduPr3O8ZGqfjOAqA/FxOTjZef/1lWK1WzJp1E/r3983SXmlpx9BV7xr2pu0S12BZVwDUtCFwACCznOsoR9MSJxBCCCHk7ORND9B+ADfXs+9GAP943xzSkf2uYvFS+nGYA4Lr3C+rXE/+NSwLq9nShi0jzVFRUY7bb78RH3/8Ib7++gvceussHDiw3yd1p6WlIk6vBwBomzAErqk9QAAgqzjXv/amJU4ghBBCyNnJmwDoCQBX8Dz/J8/zi3mev5Xn+Yd4nv8NwH8ALPVpC0mHYbO5hh6p6hsCVyM5grW6uk3aRJrv9ddfgbkgH7fyvTF/6LnQSxIeeeRB2H0QWGSmHEWwWgMFgCYmtt5yDANIigRJasY6f2p3AOSkHiBCCCH+a9SooUO2b38nrKEyx4+naUeNGjrkuuv+06et2nU2aXYAJAjC1wAug2sR1McBvA5gGVzD6S4XBOELn7aQdBiKzQo1w0Dtnutzxv4a6wM5Lea2ahZphsrKCnz3yU4s69UPFwUGYQQYrOo3CCgqxI4d77a4/qPHUvByehqcQ4eBbSANOsMwkOTm9gC5ri/F4WxxOwkhhJD29NFH74fHxMTaMjMz9Pv2/U4L3PmYNz1AEAThc0EQhgEwAogDYBIEYYggCJ/6tHWkQ7kTHLYOOReBslx3AYaB073wpb26qg1bRppq9+5v8J/wCERqtVCFR0DbtRuc0dEodNixdetmiGLT5+TUVlpaisy8XPxQUoyEmf9rsKynB6g5AZCnB4hpQRsJIYSQ9iZJEr777tuwCy+cWNKlS5ztgw+2R7R3mzobb5IgAAB4nu8N4CIAMQBe4nn+HAB/C4LQrDtbnufjAWTUsetWQRDW8Tw/CMCLcKXYLgGwWhCE52oczwJYAuAWACEA9gC4QxCEtBplWlwHaZiiKFAzDACA0erqLfenzKC0OA+JdJPql/Z/+xWuDXXlMYmdcyc0UVGIkGQYft2D3NwcfPfdN7jooou9qjsl5QgAID6+O4zG+hc/BVw9QLIiQWpGEgSrUYfDVZWwGulBGSGE+BOz2cy++OJzXX755acQq9XKde+eaLnzznlZgwcPtQDAn3/+bnzjjVe6pKcfN3AcpwwbNqJ8/vyF2SEhIRIAXHHFxf2nTZte8PfffwUeOLDfZDQGSNdd97/cHj16WleteiY+Ly9XGx+fYH300WXpCQmJ9pMnMzTXXvuf/gsWPJj+7rtvR+fn5+q6detuueuue7KGDTv31BCU999/L2zHjnej8vNzdUFBQc5Jky4tuv32O/NZloWnjmeeWXVs5MjRp+5tR40aOmTevAUZ06fPKFm9emXswYMHAocNG1H+ySc7o6qqqlTJyXz1/fc/lNmzZ7IdAHJystXPPLO82+HDB00Gg1G85ZbZ2Y2drx9+2G0qKytVjxhxfqXD4WQ++OC9mLKysizP+SAt1+weIJ7nOZ7n1wI4BOAFAA8AiIIrgDjA83zDqZ3ONACADUAsXMGU52srz/NhAL4GcAyu4GUJgGU8z99Y4/hHAMwGcCuA8+Aamvc5z/Mad3tbXAdpnGcRVACAtv7FLb9mNdiclQlKgeB/HA4HDBkZYBkGSEiALr47WJ0eBqMRV111NQDgo50fNFJL/VJSjmBceATG9OgJpdEAmIFDEqE0o/6imHA8JhzBn5xXHduEEEJayaJF8xP/+OO34PvuW5Sxdu2bR7p0ibMtWjQ/uaSkWLV//5+GBQvm8t26xdteeumNlEcfXXbi2LGUgLlzZyfLNUaUbN68ocuwYSMqNmzYenjo0GHlr766utvzz6+Iv+OOuVkrV74klJeXqdesWXVadp3XX3+p64wZ1+W//vrGI3FxcbaFC+9NzszM0ADAxo1rI9esWRV/ySVTitate+vwDTfcmvPhh9ujn332yWbdx6amHjP+88+BwKeeej71mWdWCUVFhZrnnnsyHnCtfTd//l3JlZWV6pUrXxIefXTZiXff3RrTWJ2ffvpxeEREpGPgwHMsF198aanT6WQ+/HB7g3OGSPN4c6fwMIDr4OotiQbAuLffB4ADsLyZ9fUHIAiCkCcIQn6NLyuA2wDYAcwRBOGoIAgbAawCsBAA3AHKfQCWCILwmSAIfwO4GkAXAFe66/dFHaQRSo3Uw4xGX285lTsTnJ3WavE7hw8fgollISsKosZdeNq+S88biXkJPdAj6yRKS0u8qv/4oYOY0z0JUyqqGs3UxjCAQ2peMgON1nVtUYp1QgjxH2lpqdq//toXNG/efZnjxl1YmZiYZF+8eOnJ8eMvKi4tLeW2bXsrumvXeOvDDz92kud720aOHF21ZMkTJ9LTjxu+//5bk6eeQYMGV1xzzfXF3bsnOGbMuL5QkiTm8suvLDz//AuqBg0abDn//AtKs7IyT7sB+c9/ZuRffvmVpcnJvWxLlz6ZGRAQKO7Y8U6EoijYvv2dmMmTpxTOnHljUVJSD/sVV1xVet11/8v97LNPIisqKrimvj9Jkphly55O79evv3X48BHmqVOvLBSElAAA2LPnB1NOTrbu0UeXpQ8YMMgydOhw86JFj6Y3VF9ZWSm3b98fwaNGXVAKAD17Jtvj4xMsn3++i4bB+ZA3AdBNAB51BxKn7oQEQfgHwKNwDYtrjgEAjtSzbzSAHwVBqPm4eDcAnuf5SACD4FqXaHeNdpTDlar7Ah/WQRrhWXtFlGWoGhgCZ1CpEaJWw0FpsP3OgQP78EZmOraYAhA8fDi0agYqletPRJQhAOeHhePC8Ejs3vWRV/VbM1x/8yWTCVwjw9QYBrCLzQuAOI0ryyAF14QQ4j8E4agBAM45Z+ipoWdarVZZtOiR7J49k+2ZmRn63r37npYatk+fflaDwSClph47NaSka9eup56c6fV6GQDi4v7dptFoFKfTcdp97bBh554auqZWq5XExCRLRka6vri4SFVZWaEaOHDQaa87ZMjwKkmSmLS0Y/XfyNRiMgU5Q0JCTw1NCwgIkERRZAAgLS1VbzQapYSExFPt7N9/gFWj0dYzWRr46KMPwkRRZCZOvKTUs23MmHGleXm5uj17fgxsartIw7yZAxQF4EA9+7LhmkPTHP0B5PE8/xOAZACpAJYJgvAlXAkWDtYqn+v+t5t7PwBk1VGmm/t7X9ThFc/Noy9x7uE9nJ8N8xEl1xA4hyxDrdGBZZk6y/1XrEbswCHYX1rSKufHV/z1PLcmz1o/fYadC71WhjPnENQh0eACosD16wuzyQRjZSUqd38L1U23NKvuiooKhFpdPTMBPXue+t3Xd545joVTdtZ7HdUlvNKMtQOHoExm/Praag9n4/XcXuhctw06zx2HSqVSAIBhmDpHNSuKAqaOP/WKopw6FgA4TnXG8Y19RtQ83lMny7KK4k7IxNR6YVmWGMAVLNU8xsPpdJ7xgmr1me2q/Zq1cRxX7zFff/1FOADceectp9Jfe+rYuXNHxKhRF1AWKR/wJgBKA3AJgG/q2DfWvb9J3MPPkgGYAdwPoBrA9XDNv7kIgAGu4Ws1eR7v6tz7UU+ZUPf3vqij2ViWQUhI603GNpnqH2bWHsqL3NndZBkBgQHQ6xtIhS05wcpiq54fX/G389yaBOEoAGDkeUPBlOdALsmELFpgCAqByhSEHtdfg7xXXscgMCgvykFCcnKT696//1f0CnSNZIgZNuSM333t8yxKIhgO0NVzHdVF0WkQpFbDJnWMa6s9nE3Xc3ujc9026Dz7v6SknlYA+Pvvv4yjR4+pAlxzY6688tL+t9wyOzs+vrv1yJFDp2XGOXTooN5qtXKJiUktGtN86NA/hj59+lkBwOFwMCdOHDdOnDi5KCIiUjSZTOKBA38FTJp0Sbmn/L59fwaoVColPj7BbrGYWQCoqqo6NRwuPf14/es31IHne1ssFguXknJE16tXHxvgGhJotVrqHGJ38OA/+szMDP1VV12dd/HF//YAAcBLL73Q9Y8/fgsuKMhXRUVFUyapFvImAHoBwOvu4OUTuBIG9OR5fhyABQDmN7UiQRAcPM8HAxAFQfAEIPvcGeYWALACqH2xebolze79cJex1irj6Wr1RR3NJssKKit9P8yL41iYTHpUVlohSfX2oLa50kor9pQUwypLiJVZWK11D1/SM66ndU6LFWVl/rsWkL+e59ZSWlqKuSHhQEg4omQZ1flZEK0OwJYLBEaBidAgeOh5OIrXEaxSYc9raxH8yNIm1//zT7/gfE/mt7jup3739Z5nlQyrzQ5bPddRXWSN68+ZSoFfX1vt4Wy7ntsTneu20Vrn2WTSd4heJYYBxzBMuzRUURRZUdDkbGQ9evS0Dx8+onz16ue7MQxzMjo6xrF58/poUXSyI0eOqoqN7eKYP/+uXk88saTbf/97TWFJSbHqhReei4+PT7CMGjWmRb0dmzdv6BIaGi5269bNvmHD2hi73cZOnz6jmGEYTJs2PX/r1je7xMZ2sZ9//ujKf/45YNy27c3YCy+cVBQUFCSZTCYpIiLSvn37O1EJCYk2q9XKrlmzsqtKpW5yfp7zzx9dlZTU07xs2ZKE+fPvP8lxKuWFF57tVrvnyePjjz8I12i08g033FJQO+Pb9dffkHf//fNM77//Xvgdd8zNb8l5IV4EQO7U1BEAFgOYA1cShG0AHACeEQThtWbWV9edykEAF8M1LK32cvGen3MAqGtsO16rzN/u731Rh1dEsfU+/CRJbtX6m8umN2B1eho4ToVHGA6yXPffB4l1PfSQHU6/an99/O08t5Yj//yDBIMRHMPAaNDAmlcOyAoABfaiHOiCYyDJalj69EHwkSMISk2F0yGCYZv2+Zv711/QcRxEtRpcZPQZ5/SM88xIcEpivddRnTSu3iIVWvf/Xkd2tlzP/oDOdds4G88zw4DTys4YyWLxeimTluAMBtHOqvOaEwQtXfpk+sqVK7ouX74k0eFwsD16JJuffXb1sfDwCDE8PEJctmxF6oYNb8TedtuNffR6vTR8+Ijye+5ZkF1zKJo3Jk+eUvTaa2u6lpaWqHv0SDavWvWKEB0d4wSAW2+dU6BWq5WdO3dErVv3atfQ0DDHVVf9N/+WW+bkA67hcYsXL01fvfr5brfffmOfsLBwx6xZN+Vu3rxe3fCr/otlWaxa9VLqihVPdFu4cH6yRqORp0+/Nq+wsPCMniSHw8H89NP3oaNHjymtK931eeedX52U1MP81VefRcyefVc+28TPX1K3Zv/n4Xk+RBCEp3iefxmulNFhAMoB/CoIQmmDB59Z1wAAvwC4WBCEPTV2DQVwGK65RrN5nucEQfBcDBPgyhpXyPN8BYBKuIbeHXfXGQxgMICX3OV/9EEdpBE2m2tUoUbbcO+wzLn/btRMm03aXfaB/QhlGNgYBoANqJF61FFVCp21Cpw+HAOvm4X0hQsQplIh/esvkThpcqN1i6IINi8XiOkCVXz3JgVNMmSIzVgDCABYg6tjV13PkzVCCOkMGIZhJYtFVfLbb7JosbZp9Kcy6Nmwc89VMYHBrKIoTQ6ATCaTvHTp8kwAmXXtHzNmXOWYMeMq6zt+584vTpvL3a1bd8eePX/uq7lt7tz5uXPnzs+tuW3w4CHVd911T1599d5wwy2FN9xwS2F9+4cOHW5+8813j9bcdvnlV566163rNadPn1EyffqMU0nCQkPDpBUrVp2W+e3GG898TY1Go3zxxfcNPnjfvPmdlIb2k6bz5unB7zzPPywIwrsAvmzh6x9yf73K8/wcAMVwpa0+D8AwAAVwrTO0nuf5ZwAMB3APXGv2QBAEO8/zLwFYwfN8EVwLqj4LV6+PZ8GSDT6ogzTCZrGAYxhoG8gABwCyyn3JUQDkV6yZrs8ka4ARkuX0EQeK0wGxohBcQARCoqLxvlaDzIx0JBxPRSIaD4BSUo7ik5wsnHQ68NLCh5rUHlmRIcnNW++N1bl6gDQs455US4EQIaTzEi1WWTSb26P7i7oeSIfnzUUcAleg0mKCIMgALgPwO4DtAP4CcC6AiwRBOCgIQiGASQB4uNJSLwFwvyAIm2tU8yiA9QDWAfgZgAhgkiAIDvdrtLgO0jjH339h25BzMS+24fXDFE8PkESLGfsTzr22DxcZDsl65qhUZ2UJWNHVyxdxyRR8UpCHT7/9ukl1//rrz5ABBPftD2PPxhMnMAwgKTLE5gZA7h4gFcPCSamwCSGEEFIPb3qAXgTwLM/z9wE4JAhCUUsa4D7+5gb2/wFXj1B9+yW4FjVd2Jp1kIaJVhs0AGSWRUOrh5WbQrE7ZT9Kg4PaqmmkCYLsdkCnhyk+DpL9zOQdorkScJjBakIwbtyFeOKJJTh+PBVpaano0aNng3X/+usvAIARI0Y2qS0Mw0CSJYjNDJJZow4nzNWwyzKizRZodJQdihBCzkZ1DZEjpCZvAqBZAOLhToPN83zt/YogCO0yMY+0H9HmummWmIYDoMLIbngr8wR6as64bkg7MZurEcm5/stGJsYByplZR2WHDbK5HJw+DCaTCSPPOx+OgwdRuuYFOJc8DnVoWJ11W60W9CksxMBu3TE8MalJ7WEYQJalZvcAMVo1HhKOQJZljGzmsYQQQgg5e3gTqGzxeStIhyfaXFnMpUYmuKvUriQJdhqi5DdOpp9AmrkaXQxG9AgzwVlR97ILzopiaMO7wwlg4qRLYc8vQLDZjPJvv0HE9KvrPObPn/fgorAIaDkO0fUESWdiIHkxB0iBAp1OB4vFciopByGEkPY3atTQIZ7va/fM7N37c8ADD9zD//TTH6e2r169Mva9996OqauusWMnlDzxxIqMxupoaVsXL156fPLkKeW1999xxy09//nngGnevAUZXbp0cTzwwL3JANC7d5/qtWvfFFr6+qRteBMApQPYLQhCtq8bQzou2e4OgLiG+n8AtUoFHcuCsdP0Kn9xMicbK9IEDD7nHIxm6g86JGsVGNEKQI+xY8fh3pUr0M8UhNLvdyP0kingjGcuPpr+xacYwXGoVKuha0YPkFMSoaB52U9lRYb2VADUorXzCCGE+NjNN8/OuuSSKadlC/7ll58Cly5dnKQop/+9v+mm2/Kvvvra0zKlvf/+e+E7drwTM2PG9QVNqaMlOI5Tvvvum5DaAVBpaQl35MihQM/PQ4eeW/3++7v+fu65p7qVl5c1OT02aX/eJEFYCVeaakJOkR2uAEhhGw6AuhTn4s3Bw3FDaHhbNIs0QWZmBgCge9c4SI76e05EqxmK3QKOY2E0BiBgwCCctFrA2O0o+WTnGeUdDgdi8l2fU5pzBjc5KxvDMHBIzQ+QZVnGwi7d8PqAwbBnnWz28YQQQlpPQECAFBUVLQKu5RGefPKxrg8+uKBnZGSUvY6yclRUtOj5slgs3I4d78bcfPPt2f369bc2pY6W6NdvQOX+/X8GW63W0z64vvzys5AePZJPZQrSaDRKVFS0qNFozq7FqDoBbwKgQgDBPm4H6eAUh+uG9VSa6/po3Gu1NPPpPmk92e4AqFtc7KlAti6K6IRkrgDHuT4PLp48BZuzXOmzy3d/C1vGacsc4O8d7yFep4NNltHr6mua3B6GAezeBECKgkCVCiEaDRzVda2vTAghnYfKoGdVRmPbfhn0PkmBXV1dzaWmHjM+9dRzqZdfflW96/B4vPjic3Fdu3a1XnPNzFOJt5pbBwDceussfvHi+7s3tm3EiPMrZFnB999/e1rGpu+//zZ07NjxzVrzkvgnb4bArQXwMs/z4+Baw6egdgFBEN5sacNIx1Kh0SC7vAyVsd3RUH43xr1OkAq0Vou/6F9QgGmDhsJmtkERG16fSawqhSZCBMBg3LjxePbZ5dhbWoLzQsOQ+9rLiF+8BFxgIKTqarDffQsAyAwNwYCg4Ga1ySE2PwBSoMCzdKpopSFwhJDOSVEUmTMYxLBzz1WhHdbk4QwGUVSUFvV4BAcHSxs3bk0BgO3b32lwguiBA/sNf/75e/CKFSuPsTXmGTenjubS6XTykCFDK2oOgyssLFAJghCwfPmzJ1577aVuvnw90va8CYCed/87s579CgAKgM4yJ4JM2JAm4MLkgejaQDlW60pNrGFZOBwOaLXatmkgqZfR7oBRq4U66Mw5PLVJNjMYyQ5AB7Vagxkzrsfrr6wGHxSM0OJiWFKOInDYcGR9/SUCFQWFdht63XR/s9qjQIFTFhsvWFf73AG1k+YAEUI6KUWBZGfVeUxgcLssSCoqiqwoaLNUm9u2bYlKSuppPv/8C6oaL+0748ZdWLpy5YoEq9XK6PV65YsvPg3p3btPVXh4hHcfUMSvePOfJ6GRr0SftY50GFara+6IWtNwQMO412bRsixlgvMDsiwj2B00BEc3/gBNspkBpw0s6zrmP/+5GpzBiGVHDyK7Tx8EDhsOAHj9159xsLICXxgN6Nmnb7PaJClys9cA8hDd7RIpCxwhpBNTFEiyrDjb46stgx+z2cz+/vvekClTprZozUlvjBt3YQWAU8Pgfvhhd+j48RfR8LdOotk9QIIgZHq+53neAMAEoEQQhIbHzpBOzeYectRoAKR2DYHTsCxsNhtMJloQtT2VFBYgVO1KXBMeGwGIDc+dkR12yLZqcPowyLKEoKBgzJ59F5599kk89N7beGHkKGRkpOPzLz/D5wDefntHs9skQ4LkZQ+QzLKADEgUABFCSIf3ww+7TYqi4KKLJpf7qk6n08k09LOHXq9XhgwZVv7dd9+EDBgwyHzixHHjxImT03zVDtK+vOo+5Xl+NM/zewFUAsgBYON5fq97XhA5C43Pz8eWwcPRzd7w0CNFrQHg6gFyNDDhnrSN/ONpYBkGTkWGWq9p0jFSVSkY5t8kFjNmXIfzzjsfNpsNs2ffhKefXgYAuPXWOejTp1+z26RAafYiqKfa5u4Bkql3kRBCOry///4rsHv3BEtwcLDPep0KCgpOPalVFAXFxcX1fviNG3dh2f79fwbv2vVR2MCB51QEBQXRKtudRLMDIJ7nRwL4Bq5McMsA3AHgCQChAL7kef48XzaQdAysLEPDsmBVDd9ESxodfq+sxN6yElqs0g+Un3R16FYDjSZA8JCs1WBrZGnjOA4rV67B1KnToFKpYTAYMGfO3Zgz526v2iQrstcBULVahQyLGTZKMkgIIR1eevoJfXx8gk8ndR4/nmpcv/71qIyMdM0zzzwZ19D6PePGXVjBMIyyY8c70TT8rXPxJgnCEwB+AjBJEIRTdyk8zz8G4EsAjwGY6JvmkY6Ck90JYRoZAidr9VhXXITy0iKMslMPUHurzM1BFACbSgXZ2bTMa5LNAka0g2FV8Kw7p9cb8PjjT+Hhhx8Dy7JQNZYOvR4MA0iKBMnLAOjP0AB8/dNPmH3BGK+OJ4QQ4j/Ky8vUPN/Lp+sa9O7dp3rPnh9Dtm7dHNuzZ7L5nHOGVNRXVqvVKkOHDq/47bdfgydMmFhvOdLxeHOXMhzANTWDHwAQBEHmeX4NKAPcWYlTFIBhwLjX+WmISu0KkuwUALW7oqoqVFWUISihe9N7gGwWKE4rWH0gJOn0TKgaTdOG0dWHYRhXEgQvAyC11vUgj3oXCSGkY5g+fUbJ9OkzSura9957Hx1uaR21RUZG2Zcvfzajvv179vy5r+bPTz31fHpjZUjH480coCoA9XUXagDQwi5noVMLmzYhANKoNa4scJSquN0dqq7E06kCqnonAU1cnFaRJUiWqlOZ4HxNkr3vAVJrXM90KMMgIYT4l+rqaq6gIN+74QF+yuFwMAUF+SqHw9EuKcmJ97z5hf0M4CGe5wNqbuR5PhDAg3ANjyNnGZU77mXc6/w05KnICLw1eDjEkuLWbhZpREGBax3jiKCARkqeTqouA8u0aB28OjEM06I5QHyVHS/2Gwg+/4z1mQkhhLSj9etf63rVVVMGtnc7fOnPP38LuOqqKQP37v05pL3bQprHm0h8EYB9AE7wPL8LQD6AaABTAOgA3Oi75pGOQFGUUxdSUwIgT4Jjp4V6gNpbebFraYXwQEOzjpPsVmgkB+rvDPYOwwCiLEL2cpFxLcMgRqeHxdG0+UyEEEJan78MGVu79k3Bl/WNHDm6yl/eG2keb9YBSnNnelsC4BK4sr+VAvgOwGOCIBzxbROJ35MkHLZYwEgiWF3jN9KemSai1dK67SINUhQFiyOjoY2KRbDYvB6XfxMhaKAovku5xjAMHJL3S4opatefNMbLhVQJIYQQ0vl5NRZTEIQjPM/PEwQhHwB4ng8FEEfBz9mJUanwXMZxWK0WLNA3PpRKZFzD5USaqN6uqioqEKxSg2UYBIeZ8G/fXOMkuxWKwwbWYIIk+TIAAhxSC3pv3EkQWC+H0BFCCCGk8/NmHaBgnue/BvB9jc3DARzgeX4nz/PNG0tDOjxFUWBzJzRQqRpOgw38GwBJFAC1q5LMdLAMA1GRoW/mEDjIEiRrayRCYGATvQ+AGI0nAPL9/CRCCCGEdA7eJEF4GkBfAA/V2LYbwOUAhgJ43AftIh2Iw+E4NQyKUzeeBllkXJedRJm62lVZTjYAoFpWAKnpvT8ekrkcLOPbFUcVyHC2YAgcTgVAtBIqIYQQQurmzRC4qQAWCILwgWeDIAgOAJ/wPB8C10KpC3zUPtIBVKefwJvnDEOxw44yrvEASGI5QJIg22mienuqLihAAAAby0Bu4hpANUk2izsRgu+ymrYkAxwAMFrX9afyMokCIYQQQjo/b3qAAgGU1bOvAEC4980hHZGtugo6joOG5cBxXKPl89Q6/FpagqomrjtDWoe12JWG3KlWQRGb3wMk262uRAg+HAUnQ4YkN78tp47Xa5Fvs6HUi/dDCCGEkLODN49u9wO4GcDndey7EcA/LWoR6XAcZjMAwNnEgOZAYAS+P/EV/jt0SGs2izTCWeF6jqHotGjqIqg1SXYrFKcdrD4QkuSbHhcZLesBcsSEYe6hA4iMjMIVPmkRIYT4H4YBxzBMuyy+qSiKrCigTDOkQ/MmAHoCwOc8z/8J4EMAhQAi4JoDNASu9YDIWcRhsYBB03OIqTSuYUp2u73V2kQaV2izo7q8DMFdIr06XpFEyLZqsMYI+CrrtAIFUgsCIE7j+pNmp/llhJBOimHAsQwb47CJvht/3AwanUqUIef5WxC0evXK2N27vwrbufOLg0095tZb/5d89OjhwJrbkpN7VW/YsMWn6wUR/+PNOkBf8zx/GVzJDh4HwMD1+PgAgMsFQfjCpy0kfs9hMUMLQETTxkKp1a5McQ4bLYTanvZZzfg5TcCyyyZ4XYdkrgDno0GvDANIstSiHiCV2hMAUXBNCOmcGIZhHTZRdfRQnmy3iW064VGrU7G9+8Wo1DqOVRTFrwIgb2RlZernzLn75IUXTjo1tUOj0dD4/LOAt+sAfQ5XL5AOroVQKwRBMPu0ZaTDEK1WaAFITZwMMqSyEP8bci4OVla1bsNIg4rdc4DCTEav65BsZqglB4DG5341joHUwiQIalnG0737Q8OykGUZLNsuI0QIIaTV2W2ibLM62yPjS6f4w5qXl6uurq5WDRhwTnVUVDRNHD3LtKj7VBAEG4BcH7WFdFBOq6snR2zicGSGU4FlGDBih3941KFVlJYAAEKDGl+8tj6S3QpGdsIXARDDAJIitWwInE6NRKMroLObzdAHBjZyBCGEkNY2atTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltfenpBzRMwyDnj2Tacz0WahTRPGkfdk5FkerKlHSxEUxFZVrDhDjq4kjpNkkScKTXbph8znDENyCBAaywwrFafPJgqgMw0BSJIherEnkwel1p763V1MPIyGE+IuNG9fGjRs3ofSNNzYfHjr03Iplyx7t8ccfvxkB4LvvvjEtX740afLkKcUbNmw9PG/efSf37PkhdPHi+xMAwGKxsPfdNzdZp9PLa9a8lrJx49uHR426oGz9+te6Hjz4j772a23Zsili8+b1cQ8//PjxuoIfAEhLS9UbDEbp8ccfib/ssokDpk+f2veFF56Ltdvtvl7hm/ihdplARzqXktAwLBWO4JyhI3F5E8or7sVSWZnWamkvZcVFCFC5/vsHhQYBindzZmSHHYrDClYXCrmFi4965gBJLVjDh1FzEBUZKoaFjQIgQgjxG+PGXVg8c+aNRQCwYMGinEOH/g7cvn1b5LBh56Zv2bIpZsKEicXXXfe/IgBISEi0q1SqzIUL5yefPJmhMRiM8tSp0wqvuWZmoclkkgHgrrvuzf3gg+3Rqakp+v79B5yaVLxt25bwDRveiFuy5Im0sWMnVNbXnvT0E3qn08kMGDCoeubMG/KPHj1sWLv2ta4FBfmap556LqOVTwdpZxQAkRaz2Vy9x2qNrpGSbhpXEgSOAqB2U5J1EgwASVGg0nKQWzAAQLJUgAmKa3GbGIaBQ2r+gqw1yYoMh6xAxQG2apqWSAgh/mLw4KGnPZXi+d7mAwf2mwAgPT3dcPx4mvG7774J8+xX3M/U0tJSdePHX1R57bWzCnft+ij0+PFUQ05OtjYzM90AAJIkn+qxKSsrU7/66up4juOUuLhuDT7ZW7bs6Yzq6uqsoKAgCQB69+5rU6nUyjPPLE8sLCzIjoyMonlBnRgFQKTFPAGQRqtt2gHuLHCcQolW2ktFXi6CAZgVGWjBnBsAkCzV0PgoG6pDcrToeFlR4HRfVw4LBUCEEOIvVCrVaR/6iqKAZTnF9b3MXHHFf/KnTp1WUvu4qKhoZ2Fhgeq2227oHRhoEkeMGFk+ZMjwygEDBpqvvvqKATXLMgyLxx9/MnXDhjdily9fmrB+/Vsp9SXD4TgOnuDHIzmZtwJAXl6uhgKgzs2rAIjn+XAA9wO4CEAMgEkApgE4IAjCR75rHukIuqQewxsDB+NwU+duuHuKVBT/tBtrURGCAVhZFrLYsr/xst0KVnIA0LSoHoZhYBdbFgAB/y7I67BYWlwXIYQQ3zhy5JDxoosuPpX0ICXlSEBSUpIFAOLiulmzsjJ1iYlJp3pt9u7dE/Duu29HPfjgo5m7dn0UVl1dpdq+/eNDarVacdfnnvvz781EcHCQc8yYcZWRkZGO2bNv6rNx49qom2++vaCu9tx00/V8167dbI899mSmZ9vBg/8YVSqVkpCQRIkROrlmB0A8zycA+BmAHsBPAAa660kG8AjP85cLgvCpN43heT4ZwH4AdwmCsMm9bRCAFwEMBVACYLUgCM/VOIYFsATALQBCAOwBcIcgCGk1yrS4DlI/1m5HsFoDDde0TGCyMQgHKspRJImY1MptI3Wzl5UCAJwqruU9QA4rFNEBhtNCaVGvntLiHiAAqJBlyHY7jI6W10UIIf5Kq1O1eSKrlrzmJ5/sjIqPT7D16zfA/P7770VkZmboFy58JAMAZsy4Lv/pp5clrl69MvaSSy4ryc/P0zz//NPdw8PDHVFR0WJUVLTDbrezu3Z9FDJs2PDq48fTdK+8srorADgcjjPa1Lt3X9u0adPzt27dHDt27ITypKQeZwyHGzduQum6da913bbtLfN5542qPHjwgHHDhtfjLr/8ygLPPCPSeXnTA/Q8gEIAYwFUA3AAgCAI1/E8rwfwEIBmB0A8z6sBbAVgrLEtDMDXAHYCmA1gBIBXeJ4vEQRho7vYI+59NwLIAfAMXGsU9RUEweGLOpr7Xs467h4ET3a3xtjCu2BVagpUKhXubM12kXo5K1wP4SSNusV1yXYbINrAqk2QJO8DIAktWwPIY62tCieOpeHl2Xe0uC5CCPE3iqLIGp1K7N0vRoV2yOar0alEWWn+JN6JEycX7djxTtQLLzynj4+Ptzz11HOpffv2swLApZdOLVMU5cS2bW/FfPDBe9EGg1EaOnR4+b33PpDt2Z+ScjR/7dpXu65Zs5IND49wTJp0SfHevT8HHz162AigqPbrzZlzd97PP/8Ysnz50u7r1r0p1B4KN3PmjUUsy+LDD3dEvf76K92Cg4OdU6deWXD77Xfme3dmSEfiTQA0AcBNgiCU8zxf+5H/6wDe87ItjwGonbbpNgB2AHMEQRABHOV5vieAhQA28jyvAXAfgAcEQfgMAHievxqutYmuBPCOj+ogDWA8Q6hUTbuZVmtcgZIoihBFESoVTUVrayWiiKryMhijklpclyJLkG1msEYGLclsLisSRB+kRtfqXHPM7HYawUAI6XwUBZIMOU+t49plKRNZkWVFaf7Ez4SEJOsDDyzOrm//lCmXl02ZcnlZXfsYhsGCBYtyFixYlFNze83hbXPnzs+dO3f+qbUptVqtsn37x4cbatN11/2vyJN5jpxdvP3PU9+kAS1qDsZsIp7nLwBwO4D/1do1GsCP7sDFY7frED4SwCAAge5tAABBEMrhGkZ3gQ/rIA3wrOejqJuWBEGl/reniG5S28ch0Ymn0wSYu0b5pD7RXA6mhSsnKFBatAiqh9rdq+VJzkEIIZ2NokCSZcXZHl/eBD+E+BtvHr3/BOBBnue/AeC5w1Dc82jmwDU/qMl4ng8G8BaAuwVByOJ5vubuOAAHax3iie67ufcDQFYdZbr5sA6vqFpheC7nfuDDtc+Dnzqx7ptWRqNp0oKYBtGBTYOGgmUYiKKzVc5TS/njefaligrXQ7aQQINPFjGFwwaVIkJWNW0emEfN8yxCgQy5xe2ZwGkxo3c/6DIz/PLaag+d/Xr2J3Su2wadZ0JIS3gTAC2CK8hJA/AdXD0+CwD0AdADrh6X5ngVwF5BEN6uY58BruFrNXmCLp17P+opE+rDOpqNZRmEhBgbL+glk+mMhY/bDedeAJPTG6DXNz4PiGWMMLiHvWnVSquep5byp/PsS9WVrjlA4SEm6JrwO2sMx4jQqWUYjSavjjeZ9CizOsCpmRa3J5Rl0cMYgAK71a+vrfbQWa9nf0Tnum3Qee4Y9uz5c197t4GQmpodAAmCcIjn+aEAlgIYD0CCKx32DwBmCYJQu7elXjzPz4QrYOpfTxErXMPqavKstml274e7jLVWGc8iIL6oo9lkWUFlpe/T8HIcC5NJj8pKKyTJP5KUFMkSzFYrRLUWVmvjOSMY8d9RkoW5hQgwhbdm87zij+fZl+Zo9DCdMwyaSgtsTfidNYaVqqCqrobTqWlWJjjPea6qssIi2mGx2mBrYfY2iWUBSLBXW1BWRmsBAZ3/evYndK7bRmudZ5NJT71KhJwFvJp9LghCKoDrfPD6NwGIAlB76NtrPM/fDyATQGytYzw/5wBQ19h2vFaZv93fZ/mgDq+IYut9+EmS3Kr1N8d7lmocPXoEsydfh0C5CTe/zL/DpKyV1X7zPuriT+fZVxRFgZ5hoeM46AMNkJvyO2uEbLNBstugaBSvzpcsKxAlEQ5RbHF7ZM4VAEl2e6f73bVUZ7ye/RWd67ZB55kQ4g1vF0Jl4EoeYEQdiRQEQfixiVVdD9d6QjWlAngUwLsArgEwm+d5ThAEz6S7Ca6XEAp5nq8AUAlXSu7j7rYFAxgM4CV3+R99UAdpgGeyuaqJSRDAMHDIMjQsC4eFntC3NXN1FYzuNZtMwYE+qlWBbKkEG1T7WUPTSYrskyQIrnlITihOZ4vrIoQQQkjn481CqMMBbMe/yQM8M5YV9/cKgCbNhBYEIaf2NndPUKEgCJk8z28A8ACA9TzPPwNgOIB74FqzB4Ig2HmefwnACp7niwBkAHgWrl6fD9xV+qIO0gBPJjdO3fQ1ZRwKoAEoAGoH5QUFYN0p2wxGHWTxjPXhvCJZKqFWvHsSyzAMJFn0yTpAiicRAwVAhBBCCKmDNz1AqwA4AdwAIBtAq/U9u3toJgFYDVda6jwA9wuCsLlGsUfheh/r4OpN+hHAJM8Cpr6og9RPURQ8GhEDR2gkcpsxDtvpzpbutFgbKUl8rbwgHxoAdln+9/GFD0gOGzSyA/+OKm0eh1Rfdv3mUdTuP2uib+ojhBBCSOfiTQA0GMAMQRA+8nVjAEAQBKbWz38AOK+B8hJci5oubKBMi+sg9ZAkhKrVgFqNAo2u8fJumZKMLHM1wukpfZurLipCKAAbFMg+CjoAQLZbwYgOMKwazciDAMDVA+SQfPO8QdaqUSU64Wj+QuWEEEIIOQt4k+qkEK3Y60M6Fsn+7/ApRmdooOTp3nUCTxw7CrOh6UET8Q1LaTEAwMGygA+GnHlIDhsU0e7VOj4MA9h9FACd7BKOmw/sw49a73qiCCGEkNY0atTQIdu3vxNW176TJzM0o0YNHVLza/z488+ZNevq3t9881VQW7e1s/KmB+hlAIt4nt8tCAJN4DjLeebwyIoCVtP09RjU7oQJNptv5p+QpquwWlFQXgZjpG/TjyuiE4rdCkbvysLWrGOhwC76JgBSa1yBj9Vqa6QkIYQQ4p8WL156fPDgodWKojBVVZXc55/vCl227JGkqKjoo/37D6D5Ay3kTQDUE65FT/N5nj8MoPZiN4ogCBNa3DLSIdiqqgAADlmGSqNFUzMYqzWuxS7tdgqA2lq2LGN9moDr+idjko/rFi0V4LxYPlhWZIiyb4bjqdwBkCc5ByGEENLRBAUFSVFR0SIAREfHOHv25HN//PH70M8++ySsf/8B2e3dvo7OmwCoB4ADNX6uPd7Fh9Oqib+zVVcDcE2oZxgOTZ38cTkj4d5BQ5GbmdmazSN1KC8vAwAEBTR9yGJTyTYzVLKI5v4ZkBTJJymwASDEYsejyb1pEUpCCPETZrOZffHF57r88stPIVarlevePdFy553zsgYPHmoBgD///N34xhuvdElPP27gOE4ZNmxE+fz5C7NDQkIkALjiiov7T5s2veDvv/8KPHBgv8loDJCuu+5/uT169LSuWvVMfF5erjY+PsH66KPL0hMSEu0nT2Zorr32P/0XLHgw/d13347Oz8/VdevW3XLXXfdkDRt27qnRS++//17Yjh3vRuXn5+qCgoKckyZdWnT77XfmsywLTx3PPLPq2MiRo6s8x4waNXTIvHkLMqZPn1GyevXK2IMHDwQOGzai/JNPdkZVVVWpkpP56vvvfyizZ89kOwDk5GSrn3lmebfDhw+aDAajeMsts70OXrRaLX2w+UizAyBBEMa1RkNIx+QwuwIgJ5RmLWCpYVkEqFRQ6Cl9mysvKwUABLdGAGS3gZWdcCU5b8ZxkCFKvgmAtAD6mYJQ6KP6CCGEtMyiRfMTs7Oz9PfdtygjPj7BvmnTuuhFi+Ynb9v2waHMzAzNggVz+QsvnFR8330LT5aUFKtffPH5bnPnzk7evHnbUZZ1TVffvHlDl1tvnZM1d+59WZs3r4t+9dXV3WJj42x33TUvy2gMkB577OGkNWtWdVm5cs0Jz+u+/vpLXWfPvjurd+8+ls2b10cvXHhv8saNbx+Oj+/u2LhxbeTmzRvibr75tqyRI0dXHjz4t/GVV17sVllZoVq48OEmBympqceMWq1Oeuqp51MtFjP71FOPJzz33JPxr7++6Zgoipg//65kg8EorVz5kuBwOJhVq56Jb+75E0URH330QVhOTo5u8eKl6c09npzJq4VQCfFwOEVkWsyoBtOsZ/4SxwESoDgoC1xbG1lRif+dMwzV5dU+r1tyWKGIDjCcFkozUsEpiuKzIXDQuoIvFZqZio4QQojPpaWlav/6a1/QE0+sSB07dkIlACxevPTkqlXPSKWlpdy2bW9Fd+0ab3344cdOug+xBQeHnLjtthv6fP/9t6bx4y+qBIBBgwZXXHPN9cUAMGPG9YVff/1lxOWXX1l4/vkXVAHA+edfUPrbb78E13zt//xnRv7ll19ZCgBLlz6ZedVVUwJ37HgnYv78hTnbt78TM3nylMKZM28sAoCkpB72iopy1YYNb8TNnn13XlPfnyRJzLJlT6eHhIRKADB16pWFmzeviwOAPXt+MOXkZOveeuu9QwkJiXYAWLTo0fQ5c27q01i9ixc/0JNlWQUAHA4HqygKJk26pKhXrz40/8cHmhQA8TwvAThPEITfeZ6XgQbvLBRBECiwOkvYgoNw/5GDiI7p4lpZtolk1nWJKE5aaqmtqUQROrUGok7r87pluw0Q7WDVJkhS0wMQSZF8sggqALB6TwBEo3EJIaS9CcJRAwCcc87QU0PPtFqtsmjRI9kAkJmZoR80aEhlzWP69OlnNRgMUmrqMYMnAOrateupScN6vV4GgLi4f7dpNBrF6XSclt142LBzTw1dU6vVSmJikiUjI11fXFykqqysUA0cOOi0J4FDhgyvWrv2VSYt7ZguIiKiSU9oTaYgpyf4AYCAgABJFEUGANLSUvVGo1HyBD8A0L//AKtG0/hQtrlz78sYOPAcMwBYrVb24MG/jevXvx4nSY8wS5cup/kDLdTUQOVxuBY99XxPj1YJgH8nmmu1zUtnLXOeAIh6gNqaxr0+jtbY9Kx9TaXIEmSbGawxEs0ZgebLAIhxB3aUBJsQQtqfSqVSAIBhmDrvHRVFAVPH8ypFUU4dCwAcpzrj+MaWXah5vKdOlmUVzwgFptYLy7LEAK5gqeYxHk6n84wXVKvPbFft16yN47hG76OjoqKciYlJpwKnvn37WUtKitXvvLMl9r77FmUFBgbSfKAWaFIAJAjCYzW+X9pqrSEdjifVcLMDIJXr9pQRfbcQJ2kanfvPrsFkbJX6JXMFuGZm2JZk2WdJEBj3EDg1680yZ4QQQnwpKamnFQD+/vsv4+jRY6oA15yWK6+8tP8tt8zOjo/vbj1y5FBAzWMOHTqot1qtXGJiUouGex069I+hT59+VgBwOBzMiRPHjRMnTi6KiIgUTSaTeODAXwGTJl1S7im/b9+fASqVSomPT7BbLGYWAKqqqjjP/vT0480aOsHzvS0Wi4VLSTmi69Wrjw1wDQm0Wi1cY8c2RJZlGuLQQk0dAndBcyoVBOFH75pDOhrumIBVfQciS928Se+KOwACBUBtyul0wMi5AgOjyfdJEABAslugkp1ozjrLkiJBlHxzLTCeIXAMA1kUwapoRC4hpHNhGHAMw7TLUx5FUWRFafpibz169LQPHz6ifPXq57sxDHMyOjrGsXnz+mhRdLIjR46qio3t4pg//65eTzyxpNt//3tNYUlJseqFF56Lj49PsIwaNaaq8Veo3+bNG7qEhoaL3bp1s2/YsDbGbrex06fPKGYYBtOmTc/fuvXNLrGxXeznnz+68p9/Dhi3bXsz9sILJxUFBQVJJpNJioiItG/f/k5UQkKizWq1smvWrOyqUqmbPArq/PNHVyUl9TQvW7YkYf78+09ynEp54YVnu9XueapLRUUFV1CQrwJc84wOHNhv/PjjD6OGDBlWHhQURFl+Wqipdwbf499hb/X91hT3PgVAiyJb0nHI1VXootejopnH2XVGpFZXo8wU2CrtInWrqKhAgHv4oTGwdXqAZIcNjOQA0PReQVGWICm+6c1nDDo4ZRkOWYbdbIY+iBbOJoR0HgwDjmPEGKfd0i5Pd9RagyhBldecIGjp0ifTV65c0XX58iWJDoeD7dEj2fzss6uPhYdHiOHhEeKyZStSN2x4I/a2227so9frpeHDR5Tfc8+C7JpD0bwxefKUotdeW9O1tLRE3aNHsnnVqleE6OgYJwDceuucArVarezcuSNq3bpXu4aGhjmuuuq/+bfcMicfcA2PW7x4afrq1c93u/32G/uEhYU7Zs26KXfz5vVNHmHNsixWrXopdcWKJ7otXDg/WaPRyNOnX5tXWFjYaE/S8uVLkzzfcxynhISEOkePHlMyd+59Od6cC3I6pimZmnieH9OcSgVB+MHrFnUOJyRJTigtNTdesplUKhYhIUaUlZkhiu0//PP7FU8iNvUYDrEc2JmLm3zckQM/4731yzFo0GBs2vR2K7bQO/52nn3lhJAC8dmnAQDxs68Emv751WSsVo/APiPhUAc1mhrdc54P56Xij5P/+OT1FVHGw/+9BwDw44+/wWSiAKizXs/+iM5122it8xwaagTHsekAEn1WqZf27dvXi2W5LyIju1RrNLpTa0awLKOW7BVdjh/eLzvstja9yDRaHZvUdzDLaYNyZFnx20m89a3hQzo/h8OmKyzMCZBl6eIhQ4ak1FeuqXOAzvaAhtRDdrjm58ks14wBT4DaPWTORusAtamq8jIcKS9DsF6PeBZAK3x0yg47INrBaDwdwo1zSL77HGU4FizLQpZl2Gw2CoAIIZ2Sw26T7VZLe0TZNMGSdHhedZ/yPB8O4H4AFwGIATAJwDQABwRB+Mh3zSP+TnG40lh7sro1lVrjGh5lt1EA1JYqHQ6sSBPQh0/GeB8lHTiDIkOyVoENiG5yJji7aG+8UFMxgEarhc1qhd3uw3oJIYQQ0ik0OwDieT4BwM8A9AB+AjDQXU8ygEd4nr9cEIRPfdpK4rc8AZDSzInm4ZYKvNz/HJRRRvU2VVnpWmrBFBDQSMmWkcyVUEc27XcryzLsom/Xg7qtazxMAGy5OUDXbj6tmxBCiH/r1q27Y8+eP/e1dzuI//KmG/N5AIUAEgBcCXdSBEEQrgPwMYCHfNY64vcUdxa3U1ndmkilUiFCq4WpfZLYnLUqK8oAAKaA1skA5yHbrWCaOKxN9OEaQB7JeiMGmILhqGhueg5CCCGEdHbe3H1OALBMEIRynDnA/3UA/VraKNJxWBUZhXYbnJpmpcYHo3XdgKspk32bMp44gTfPGYYJUuueeMlhAyM3LQCSJNFnawB5iO6357RYfFovIYQQQjo+b1Mo1rdghxZNnfVMOoXf9Hp8evAApg86H32bcRyr1QMANNQD1Kak6mroOA5qrnUz1csOGxSnDaxG32gmOEmRIcq+XQ/KU5toowCIEELa26hRQ4d4vvcMTbviisn9i4uLNKeXG1P69NPPpwOA0+lkVq9+Pva7774Ns1gsXGJikmXevAUn+/cfUO/iqD/99EPgunWvdsnOztIHB4c4L7/8yoJZs24q8rbdnmxyAPDKK+uODhgw6IwPlenTp/bNy8vVPfPMqmM5OTmaF198rjsAjBkzrmT58mczvH1t0rq8CYB+AvAgz/PfAPDMYFd4nmcBzIFrfhA5S9jdWdzU6ub1ALE6TwDEwOl0Qq1u3hA64h3F6vrcYHXNW7i2uWSHHYrTDlbHNCEA8v0QONG9yJzT2qJFxAkhhPjIzTfPzrrkkimlAFBVVcWWlBRrli59Mq1//wGn1gzR6fSnPjCWLXuk2x9//B58332LMuLj4+2vvLK6y6JF83u+/fb7h+taCHTfvt+NDz20IPnCCycVLV68NCMzM0P7wgvPxVdXV3N33DE3vyVt5zhO+frrL0JqB0CHDh3U5+fnnVr0bsqUy0svuGBsxaJF83u05PVI6/Pm8fsiAL0BpAF4C64enwUA9gEYBaDpi8GQDs9qdQVAKk3zbqhZnWsRTi3HwWajm9S2wroDVlbXvIC1+RTIlkqwbMND7RjGtQiqrwMgyf26ImUZJIQQvxAQECBFRUWLAJCSckSvKAqGDh1eHRUVLXq+PIFNZmaGZvfub8Lvu29RxoUXTqzo2ZO3LVmyPEOtVisHD/5d5yTWLVs2RycmJpmXLHniZHJyL9tFF11cccsts7N37Hg3xm63t2jcd79+Ayp//vmnkNrbv/rqs1Ce713t+Vmv1ytRUdGiSqWi0VB+rtk9QIIgHOJ5fiiApQDGw7WS4kUAfgAwSxCEgz5tIfFrE202TOndD0XNDGI8Q+AAwG6uRmCgyddNI3XgnE6AYaE2tHYABEjWSqiVxpaoYCDJks/nAEksAyiAZKM02ISQzkmj1bX5GHJfveaxYymG4OBgZ3BwcJ1//Pfs+SHIYDBI48dfeCqTTXBwsLRz5+f13mPm5uboBg8edlrmmz59+locDjt74MB+47nnnldd+5hbb53F9+jBm6urq7hff/0lRFFkZvjw88oeemjJyYCAgFMfYGPHTih78cXnuv/zzwFDzV6gPXt+DLnyyukFKSlHWje1KvE5r+YACYKQCuA6H7eFdEBhChBpDEAF27w5JYpKgxybDVZJxAAzzdNoK2pRAtQsNEZ944VbSLLboJGdaOjPDMN4hsD5dg6QxLKQRQWS07fptQkhpL0piiKrtQYxqe9gFdphUVK11iBKSqNPtxp04sRxvVark+fPvytJEFKMJlOQOHHixcX/+9/NhSzLIivrpDYyMsr++ee7QrZteyu6tLRUk5CQaJ43777s5ORedXbtBweHOIuLC08bjpKdna0FgJKS4no/iD7//JPIqVOnFbz66vqjR48eMjz//DMJmzevs9955z15njJdunRxJCX1MNccBvfXX/sMFouZGzlydOVrr73UktNB2oG3C6EmAtAJgnCE5/lgAMsBdAWwXRCEt3zYPuLnVIqrl5dpZhY4sCwWp5+AxVyJDxsZJkV8R+P+zNK1chpswJUIgZEcYBgVlHoGAzAM0ypD4HabNHjs6x9xz+gLfFovIYS0N0WBJEGVx2mD2iWLkKQosqKgRX+0MzMz9BaLhRs//qLSW26Znbtv3x8Bmzati6usrFDNm7cg12IxcwUFBdotWzbHzJ59Z3ZgoEncvHl9zNy5s/m33nrvcERE5BlPzS6++NLilStXJHzwwXuhl102rSwr66Rmw4Y3YhmGgcPhqPdcxcZ2sc2fvzAHAHr06Gn/9tuvQw8dOnhGj87o0WPLPvvsk4j77luUAwBfffVF6IgR55erVBwNd+uAmv2fh+f5iwEcBXCTe9NrAG4DEAdgE8/zN/uuecTfeSJoRtv8HgW1e94QzQFqO8fN1UipqoQhqPV76yW7DYrTDoZpOMB1SiKU+iIkL6ncc5w8SToIIaQzURRIsqw42+OrpcEPALz66vpj77330cEpUy4v69Onn3XmzBuL/vvfa/I+/vjDKFmWoVKpFavVwj322PITY8aMrxw8eKjl6adXngCAnTvfD6urzmnT/lN6/fX/y3n55RfjJ0w4f/Bdd93W68orpxcCQEBAYL1tjovretpNiNFolERRPOOD6+KLLy0tKirU/vPPAYOiKPj55x9DJk68uLRlZ4K0F296gB4F8BWAx3ieDwIwDcBTgiA8yvP8EwDmAVjvwzYSP6Z239x61vVp1rFqz00qzdNoCw6HAy8fTwUA7I6d2eqvp4gOKA4rWH39meAYBrBLvv/9qzWurIIUABFCiP9Rq9WKWq0+7YMhKSnZarfb2fLyMi4iItLBcZxSc7ibXq9XIiOjHHl5ufUOObn99rvyb731jvyCgnx1ZGSUMy3tmE5RFHTvnlDvh0HtdrgoZwRAcXFdnT169DR//fUXIXa7nZFliRkx4vyq7OyTrZtWlbQKb7pPBwJ4QRCEKgCT4Aqidrj3fQ2gp4/aRjoATwDE6nSNlDzTXZGReKn/IIjZWb5uFqlDZaVrbijDMDBq2ibtuGSpbLAHiGEY2EXfz9NJckhYkJSM2LwWZT4lhBDiY7Is44orLu7/yiuro2tuP3LkkNFkChJDQ8OkwYOHVkuSxBw4sP/U01Wr1coUFBRou3SJq/Op2VtvbYx47LGHu7Esi5iYWCfHcfjqqy9CIiIiHT169PTJk7YLLhhXunfvzyFff/1l6MiRF5SxLK1l2FF585uz4t+eo8kACgRB+Mf9czSAch+0i3QAiihC5QmANM3vAQpWqRCp1cFZfUZiFtIKKipcAZApMABMG61XLFmrwSoNJziwib7vAQqWgeEhoQi0mBsvTAghpM2wLIuRI0eXffjh9uhduz4KSU8/od227a3wnTt3RM2ceWMOAJx77nnV/foNqHzyyccSfv31lwBBOKp7+OEHEjiOVa644qoSwBMQ5askyTW6LSmph+3b/7d333FyVeXjxz/3Tp/tJZveyw0thIQiTXoVFQti4WdBEUFUvipYARVRQbpYaDZUwIKiCAJK75CQQspN2SSbzSbbd2enzy2/P+5ssinbZu/M7CbP+/VadjNz55wzd4bd+8w553n+99S4hx76Y+3WrVv8Dz74QO3f/vbwxIsv/nyjW2M/66xzO5ubdwSeffbpmrPOkuVvY1kuS+BeAr6uaVo18BHgNwCapi0GrsveLw4AmWSStlQKv6qihsLDvqTOZL8bUqyyIKKbN/HAEUfRbpnYprtJB/pjpROoVgbY9wqBfBRBBbB9zq82xSjM8xRCCDF0X/3qNxpLS8uM+++/e3JnZ4d/3Li61CWXXL71Yx+7qK33mJ/+9I6Nt91205Tvf/87s1OptKpp86O33fZzvaam1gB47LFHq++44+YZf/rTX1dOmzYjfdxxJ/Z8+ctf2/zQQ3+YeM89P586fvzE1Ne//q1N5533/k63xj1p0uTMvHlatL293b948dHyCdsYlksA9H/Av4E/AquBH2Zv/zcQxymUKg4AGQUuX/k2ANcHSjCHGQEZijMBKcUqCyPe0UGNx0NAAQo1A5RKgplGUQP7THRg2u7XAII+AVCBAj0hhBBD5/V6ufzyL++4/PIv97tOuayszLr22usbgIZ93X/BBR9tv+CCj7b3ve3DH76w/cMfvrB9X8fvy733/l7f87Ybbvjp5t6fp02bkX7ppbeW9L3//vv/sNtj9nWMGP2GvQRO1/VNwCHARF3XD9V1vffNez5wkK7rG10cnxjFktnARVEUVM/w95SY2QDIlCQIBZHscj4ESw+Slc1NVtrJBKf2k+rcwsrLDBDZPU5qPtoWQggxbNFo1NPcvCOn8itjRe+yvH1lkROjS067t3Rdt3Vdb97jttcAbzZNtjgA9AZAgUCw3zovAzGymwctmQEqiHQ2CYLhLdymTds0sFLx/gMg28K08xCkBJy/sR5rRLX6hBBCuOT++3819UMfOu/wYo8jnx577NHqD33ovMPXr19XUuyxiIENOxLXNG06cDdwEv0t7AfPSAYlxoZ4wxZumH8onbaFlUMEZKoesEyZASoQo6cHAMtb2A/gzFgXnn1UbVAUMPK0B0jJ1phS+0m/LYQQonAOlCVi+1qWJ0anXK6EbgOOA+4BjsfZ9/MqcCZwGPDB4TSmaVodcAtwNhACngeu0nV9dfb+hcAdwJFAO3Cnrus393m8ipN84XNAFU4Shst1Xd/Q55gRtyH2lol0M7e0lO2ZNF05XGjGPT62xbpJuVwEU+ybFY87PxQoBXYvMxnHZ2XYc8JZURRMy8KwBs4Sl5Og8xy9BdrrJIQQQoixI5e1MCcB39V1/Ss4GeBSuq5/Aye4eB54/zDb+ycwGyel9lE4abb/q2laWNO0GpzaQuuy7V8HXK9p2mf6PP4a4AvAJcCxOLu7n9A0zQ/gRhti39Ix54LayDGp8uulNfzfquVsLCt1d2Bi37LZ9tRgYd/WVjoJZmaf9+UrCUKsrppPLHmdG9tbXW9bCCGEEGNbLgFQKbAs+/NqYCGArusm8HPg1KE2lA1ONgGX6Lr+lq7ra4DrgYk4iRY+D6SAy3RdX6Pr+m9wZqC+kX28H/gacJ2u64/rur4cuBCYzK6ZKDfaEPuQSTgBkJnjpnpfdplSMilpsAuh3ciwticCpcOv2TQSVjoJxt6JEJwZoPwsgfMGfWRse+c+NSGEEEKIXrkEQNtxCp4CbACqNU2bmP13BzB+qA3put6u6/rHdF1fBaBp2njg60AjTnB1IvCCrut918g84xyq1eEEX2XZ23rb7AKWAu/O3uRGG2IfzGzgYuQYAHl9AQC5SC2Q55MJrtVXY06fMPjBLjJTTgCkKHsGQJC2Mth5WKbm8Ture1MpeW8JIYQQYne57AH6N84SskZd11/RNK0RpzDq94CLgW25DETTtHtwlqClgPfpuh7TNG0KsHKPQ5uy36cBU7I/b93HMdOyP7vRRk68eci25fGou30vpt7kBaaq9pvlayBaOs6ZBx9GpLMzL+dqJEbTeXZLJJsFriIczOn1yp2NlYziq5hE3xjI61XJJJylcYqq5JaSsh8BBb44YzYhnw+PR9kr+DrQ7I/v59FKznVhyHkWQoxELgHQtTh7aX4AnA58G/gdcGX2/i/mOJbbcbLLXQb8Q9O0E4AwTkDUV+9HusHs/fRzTHX2ZzfaGDZVVaiqyl8WxPLyUN7aHipPdl+H5fEQDg1/X0mJ18P0cAn1hpHXczUSo+E8uyUadbLA1VSWEszh9RoJTyZGSYkPRQ3udrsZdSZmAwF3EzNYJSEOrx0HQEWJD08g4Gr7Y9X+9H4e7eRcF4acZyFELoYdAOm63g4c07vsTdf1P2qatgUnecAbuq4/n8tA+mR9+3y2rStwEiLseeXSewUVy95P9pjEHsfEsj+70cawWZZNJBLP9eH98nhUystDRCIJTLO4NU5iiRR+wyATDJFIpIf9eEN13n6KYdLZmfOpzovRdJ7d8oMJU7DHT8aXSJHM4fUaCSsaRYlESdu7fuV4fSrR7D6yVCqD7WLK6kyfGa7mba2Eqqpca3ss2h/fz6OVnOvCyNd5Li8PyazSKBSLxdRHHvlzzf/7f59pBfjOd66a0dLSHLj33t/r+eqzsbHBv3TpkpL3ve8Dnbm28Ze/PFRzxx03z+gvDXghnscJJxy5+Ctf+frm/SE9d0PDZv/HP/7hw2666bZ1xx13Ys9I2sq5IIiu69s1TZuPkzZ6u67rPx1uG9k9OKcBf84mUUDXdUvTtNU4SQi2ApP2eFjvv7cBvj63bdzjmOXZn91oIyeGkb8/fqZp5bX9odhSW8vXlr3Fyaefx8k5XLza3t5aLcV/Lv0ZDefZDcl4nCqf81YvLQ1jFbg+jpGMY2dSGH0WutmqTcZ0ZoBsy3Z1TErAh2nbeBSFaFcEX1mFa22PZfvL+3kskHNdGHKeDwy//vU94//3vydrewOgq6/+7lYrDwl0+vr+96+ZUVdXlx5JACRGr5w+5tA07bPZWZ9VODVz1mmatlnTtI8Ns6lJwJ9wUmv3tu0DFuEkQXgBOFHTtL6FVU8DdF3XW3AClAhwcp/HV2Yf/2L2JjfaEPvQm7zA589teZGSXZbklTpAedfd0rzz53Bp4ZeMWKkk9h6Z4CzbzE8NIMDj9ZK2nIuiVCyalz6EEEIUhm3bu23krKioMKuqqvMbAWEf2JtH93PDngHSNO0K4E7gH8B3gBacrHAfA/6gaZqh6/pfhtjccuBJ4Beapl0CdGbbrMJJVZ0Ergbu1zTtJuBonL1GXwDQdT2ladpdwI2aprUCm4Gf4sz6PJLt49cutCH2oTd9tc8fHOTIfvicC3GvxD9519PSAkDcNFEVhULXB7UyKex0AjVYvXOmx8IiY+bn75eiKGRsixAe0hIACSFEUXV3d3tuvfXGKW+88WqlYRjKzJmz45df/uXGhQsXxQHi8bj6k5/8YOpbb71ZGY/HPZMnT05edNGnm84557yuO++8ddKf//ynieAs5/rTn/668u67fz6pd+nYK6+8WPbNb35t3o9/fPO6O+64ZVpLS0tgxowZ8e9+9webnnrqiarHHvvHeNM0lRNPPLn9O9/53lZFUbBtm/vu+9X4p556ora1tSXg8/ms+fMPjn79699qmD59RvqSSz6prVmzunTNmtWl559/dtk//vGflel0WrnzzlsmPffcMzWJRNwzZcq0xMUXX9J00kmnRnqf5xNP/Lvyd7+7b1Jz847g7NlzYwsXLor0d056mabFDTd8b+pzz/2vxuv12meccXbbl7/8tW1er3OJ/sYbr5X8+tf3TNq4cX1JJpNRx4+fkPr4xz+5/f3v/2BHbxuPPvpI9cMP/3HC9u1NwcrKqsx5572/5bOfvbR5z75aW1u8X/ziJVplZVXm9tt/sSEcDlvPP/9M+b33/nLytm2Nobq68akPfegjO+6889YZf/rTX1dOmzYjff75Zx92zDHHdb399pLy7u5u37XX/mDju951fM/vfnd/3eOP/6uura3NX1tbm/7Qhy7c8bGPXdQG8MorL5ZdffX/zettA/Zevvad71w1w7IspaqqOvPss/+rSaWS6oIFCyPf+ta1W8aPn2AArFmzKnjbbT+dtmHD+pKqqqrMhRd+fPuI3oh95LIE7ivAXbquf3mP23+vadp9wPeAIQVAuq7bmqZdCPwYeBioxJl1OVHX9QYATdPOwgm4luKk4L5K1/Xf9Wnm2uzzuA8I4cz4nKXrejrbR8tI2xD7NnP7Dr477yA607mlGlYCTuDkLfTV+AEo1t5GCEjaNuR52UB/zHgEtXIq4MzMWLaVtxkggEz2bZWKja79ZUIIMRK2DXHD1cSZwxL2Yg0nsaZt21x55eVzvV6v9cMf3rShvLzc/Ne//lFz5ZWXz//Zz+5ec9hhhyd+9rNbJ23evCn8k5/csr6iotL4298eHveTn1w/65BDDn3n4os/vyORSKgvv/x89b33/n51be24vf5wWJbFL35x59RvfOM7m/3+oHXttd+c/cUvXnLQEUcs7r7jjl/qb775eukvfnHn9He967jI6aef1f2b39xb95e/PDjxqqu+vWn+/IMSW7c2BG655cbpt91209Tbb//Fxptuun3DV796xdza2nHpb3zjuw0A11zzjRkNDQ2hb33rmk0TJkxKP/fc/yqvvfZbc6655vqNp59+Zvebb75e8qMffW/2BRd8bPu55763/a233ii7++67Bs0mvG7d2tKamprMz35299rGxq2BW2+9aUYymVS//e3rtjY1bfN985tfnXfWWe9pvfrq7zQYRkb5/e9/M+G2234649hjj4/U1Y03/v3vf1bdfPOPZ1500ae3nX76WZ2rV78Tvu22m2aUlJSaH/3oJ9p6+2lvb/NeccXntZqa2vStt961IRQK2StXrghde+235px33vtbrrvuhvq1a1eF77rr9ul7jvHJJ58Y94Mf/Hh9eXm5edBBhyRuvPGGqc8//7+ayy77csNhhx0ee+WVF8vvvvuuael0Sv3Upz7bMtT3xquvvlx1wgknddxxxy/0pqZt/h//+PpZd911++Trr//Jlu7ubs/XvvYlbd68+dFf/OLeNc3Nzf7bbrtxr7HlKpcAaArwr37uexD4xHAa03W9G7g8+7Wv+9/ESYrQ3+NNnKKm3xjgmBG3IfZWmkgwvbyCJeQ4SxwI05FO052nWQCxS6Kz3QmAijihb8Z78NjO3y1FAbN3CVye/oxnsoF1Ou5+MhIhhCgG24aL/hOer3d6ipY6dX6VGX3g7Lg+1CDopZdeKFu/Xi/5xz+eWN4bvHz1q9/Ytnr1qtKHHvrD+MMOO3zz9u1NgVAobE6fPjNVUVFhfuUrX992xBGLeyoqqszS0lIrFApZqqravTMD+/KZz1yybfHio2MAxx13Qtdjjz1ad+21128Jh8PW3Lla8g9/+N3kjRvXh04//azuqVOnpb7+9W9tOuOMs7sBpk6dnn799Vc7X3jhuSqAqqpq0+v12n6/36qtHWfU128MvPzyi9V33XXPmt5Zq9mz5zRv3Lgh9PDDf5hw+ulndv/lLw/WzZunRb/85a82AcyZMzdVX78x9Pjj/6wb6PxUVFRmrr/+xk3BYNCeP//gZGtr67a7775r2pVXXrUtnU4rH/3oRU2f+9wXmlVV7X2e25977n819fUbg3V146N//etD44899viOSy/94o7suFLxeMwTDIZ2bo6LRLq9V1xx6bza2nGpW2752cZgMGgDPPjgA+NnzpwVv+qqbzcCzJ07L9XR0eG7995fTu07xiOOWNT97nef3OO0FVGffPLf4z772Uu3nn/+hzqyfbY2NW0LPPzwnyZ+8pMXDzkACoVC5nXX/XCLz+ez582bn3z11Zfblyx5swLg3/9+tCqdTqvf//6PN1dUVJjz5x+cTCTiW3/4w+tmD7X9geQSAL2Js4fm6X3cdwSwYkQjEmOGmt3Ajj+3lMqZ6vF8YcVSAsEgZ7s4LrG3VJdTAyhTxOxGVjqBaqYBP4qiYFgmhmnmLQC6o6uFxq1N/OIL+/xsRQghxqTCL2IembVrV4cBLrzw/MP63m4YhpLJpBWAiy769I7vfvfqOe9//1mHz507L7Zo0VHd55xzXkdFRcWQPyGdOXP2zuUogUDQqqiozITD4Z1BgN/vs1KptApwxhlndy9Z8mbJnXfeMmnbtsZAY+PWUGPj1mBVVVVmX22vXv1OGOBrX/uS1vd20zSVcDhsAmzZsjl8xBGLu/vef9hhC6KDBUCzZ8+J9wYkAAsWLIwZhqFs3LghcNhhCxIf+tBH2n//+1/XbdmyKbht27bg5s31YQDLMhWAhoYtoXe/+9SOvm1eeOGumR+ABx747WTTNJQ9+6qv3xDec5neokVH9cAvdxvj5MlTdp7bDRvWBU3TVI444sjd1pcvXLgo+q9//WN8a2vLkGOL8eMnpHw+387xlJSUmoZhKM7YNobHj5+Y7PseWLz4KNfWtA9pkJqmvbvPPx8EbtM0rQz4M7ADZ8/O2cCXgUvdGpwY3dRs6lHbl1sSBJ/PCZxSySTO73PZb5gvPZkM3T0RMlXFy4ZmppJgplFUJwAyLWcGyItn8Afn0p/PR8qySKX3LPElhBBjk6LAA2fH9bG0BM6yLCUUCpl33/3bNXve5/f7LYAjjzw69ve/P7HixRefK3/zzdfLn3rqidqHHvrDpB/+8Kb1J5540pDSHft8u+8oHqjg9z33/GL8gw8+MPmUU05vW7hwUc9HPvKxlueee6byxRef22f9R9t2rnduv/0Xa0tKSndLO+jxeOxdx+2eOMHr9Q0arKqqutsxvdntAgG/vX69Hrziis/PnzFjVnzx4qO6Tzjh5O7q6urMl7506UF9+x/s9TjssAWRc899X9sNN1w3+9ln/9txyimnR7KPxbIGT/bg9wf2eo57Fhi3somH+gY0fXNcZTLGXv30PXaXvjcN/3wO1VCjtOf2GJGCU7D0C3vcBvAQQ9wDJMY2NftmV3KcAfL2CZxSqTQBKVaZN1v9Pu7WV/OR95zBeUUag5VOYmdSqKFyFAUMy8CwzLwFQL6A875MJiUAEkLsPxQFSnyMmdzfs2fPTSQSCU86nVLmzz9450zCtdd+a/qcOXPjn/zkxa133nnLpMMPXxQ988xzus8885xu0zS3fvSjHzjk2Wf/W3XiiSf1KIri6qzXn//8p0kf/ehFTb3LxgD++MffT9g9Ke2uPufO1RIAzc3N/tNPP3znLM9tt900WVFU+8orv940a9bs+Jo1q0r7trBmzTuDLlXcvLk+bFkWvUvcli59q8zv91vTp89M3Xzzj6eUl1dk7r77N+t6j3/66f9UgLO3CmDy5KlJXV+zWz8//vEPpjY37/DffvsvNgK8+92ndJ5zznu6nn326Y7bbrtpxuLFR79TXl5uzZgxM77nY1euXDbgmOfMmZf0eDz20qVvlh566GE762cuW7a0rKKiMlNZWWX6fE5gG4lEdv6B37Jl07Au8ubOnRd/5pmna9rb27w1NbUGwIoVb7u29HOonyCcApza5+uUQW4TBwBPNgAixyxwPq+XH8w/hBsPPoxkt6TZz6dIxJnhLgsXr2q6bRpYyRiqqqAoCmljnysNXHNsIMRlM2ahbm3Iaz9CCCH6d8opp3VPnz4jcd1135790ksvlNXXbwzcdNMNU5599r+1vcvWtm3bFrj99p9Oe+mlF8q2bt3i//e//1nV1tYaOOywBVGAUChkxWIxz4YN6wOZTGbEy0VqamrTS5e+Wa7ra4Lr168L3HbbTye98cZrlZlMZud1cSgUslpamgPbtjX65s8/OLlo0ZHdd9558/SnnnqiYvPmTf777vvV+Ece+cuEyZMnpwA+/vFP7diyZXPoxhtvmLJhw/rA3//+1+onnnhs3GBjaW9v919zzTdmrF27Ovj44/+q/NOffj/p/PM/3BwIBOy6uvHpjo52/zPPPF2+desW/xNPPFZ55523TgdIp53lgx//+P/b/sorL1X99rf31W3aVB/45z//XvXUU0+MO+GEk7r27Ovqq7+zNZ1OKzff/KOp4Cw93LRpY8nNN/9k8oYN6wP/+c+/Kx944LeTYe8Znl4VFRXm6aef1fbHP/5u8j/+8bfq+vqNgQce+M24J598fNwHPvDhZkVRmD//4EQwGLR+85t7J9bXbwy8+urLpffff/eU/trcl/POO7+jvLzC+M53rp75zjsrQ6+++lLpz39+x9TBHzk0Q5oB0nX9ebc6FPuP3uxtSo4BkMfrY25JKR5FIdnTQ0XdBDeHJ/ro6XECoPKScFHHYca68dQ6P6fM/M7MzPL4Obi2jh0dY774tRBCjFkej4c77/zVuttuu2nKDTdcNyuVSqmTJk1Ofve739/Yu7ztO9/53pZbbvnJ1J/85Aczo9Got7Z2XPpTn/ps4wc+cEEHwJlnnt355JOP137uc5885JZb7tRHOqbvfOd7m2699cZpl1322YOCwaA1d64WvfzyL2/55S9/Nr2hYbN/2rQZ6fe974OtN9/8oxkXX/yJQx5//JllP/nJrfV33HHz5DvvvGV6NBrz1tXVpb74xSu3XHDBx9oBDjtsQeKHP7xp/d133zXliSceq5syZUriggs+tv33v//1lIHGcuSRR3d5PB77i1+85KBAIGCdffZ5LV/84leaAD75yYtbGhq2BG+88YZZpmko48dPTH7605/b9sADv5n0zjsrS0455fTIGWec3d3V1bXlz3/+04Tf/va+KTU1telLLrms4cMfvnCvP361teOMSy65vPG2226aceqp/+s8+eTTItdc84MN9933qymPPfaP8RMnTkqee+57Wx5++I+TfD5/v7Nu3/rWtQ2/+MUdxq9/fc/kSKTbN378hNSll17R0JsGu6yszPrGN75bf999v5py8cWfOGTixEnJyy778tbvfvfqeUN9jUpKSqw77/ylftNNP5r2la98YX5JSanxyU9e3HT77T+dMdQ2BqLYQyhCqWnaC8CXdV1fNtSGNU07Erhd1/UTch/emFVvmtbMjg730+96vSpVVSV0dsaKXv365U9fRLXHw4rjzyEw9+ic2pj56+sIeTwEvvRlph++yOUR5m40nWc3PHHpxVQlkkQPnsmJpx9ZtHEEaicSnHMUlupnZdsa6ju2EAz5SSbSO+sDuSV105841IBtc+Zwyje/62rbY83+9n4ezeRcF0a+znN1dQkej7oJmOVaozlasmTJfFX1/KeubnLU7w/mVm9CiAG8/faSsNfrtQ877PCdS9n+8Y+/Vd9++80z/vvfF5f21iIaS9LpZLClZVupZZlnL168eG1/xw31md0B/EfTtLeAPwD/1HV9r9yy2cQIZ+EkQjiCflJbi/3D97Y10NrawtfP+xS57t5J2zYhIB2VYpX5FMgYVPv9GIHc9mu5xUolUcwMluojY+a3zJbpUcGwsNL7Tzkv2zTp/O9TqMEg5cedgOrzFXtIQgghxqi1a9eEf/3re6ZcddW3Nh188CGJzZs3Bx544DeTjj/+hI6xGPwMx1CXwP1N07TncQqG3gd4NU1bDWwCYjgFTKcChwKZ7DEX6bq+VxVasf9IJJwPDHyB3PeVpLIzkCkJgPIqYFuASrCsyEvgUgnsTArbFyCT54KstkcF9q8ASPF4MNpa6Xr2GeLvrGTi5V/qd522EEIIMZCPfvQTbe3tbb5f/vJn0zo7O3zl5eXGiSee3HHFFf+3rdhjy7chh3e6rrcBX9Y07fvAh3ESHswCKoA2YA3OTNG/dF2XRfcHgGTSCYC8vtz2AAH0XpqmYxIA5VMwm6QxVFrcAMhKp7AzCWylDMPst56dO315PYABmfwmWygkj0dlwtln0f3iC0TfXkrPKy9RfvyJxR6WEEKIMUhRFK644srtV1xx5fZij6XQhj2/lQ1u7s5+iQNUqifC1TPnkLYsvF5fzlXZMtkL83TM/f1SwmFbFiXZ9Jpl5aWDHJ330WDFI1iVtRhWvgMgL5DarwKgp574F/f/6hecEirhpFCYjif+Tdmxx6OoxStwK4QQQow1+/cCP5E38a5uFlZUYto29f4gmRz3oMZR6MqkyWT2n2VKo02iuxs1u0yqtLLYARCYyRimlSGT7xkgn1N+QDHy208hRF57hY3/epQHXnye1ZEu6lWVIw9fBDt2kNTXEDrokGIPUQghhBgz5GNDkZNENq1yyrJQPblvxH7I8vD55Utpq9pn8WXhgu5mp85byjIpCRU3CQI49YBMM4OR5z1AW8ZV8PnlS3iptPhB30h1vPA8Jc3NzCwJc86iI5k9eSqvtDsrjXvefKPIoxNC5IkF2LZty0Y/IYYo+/+LDQMXC5YASOQkFe0BIGNbWENIpd4fn9/JH9e7n0i4L9rTw9qeCJuTSbCLn5bXMgxnBijPAZASDtCVyRBN57feUL5Z6TSJ9U4R8GZ/gCvf+wGuu/ATvNnjFCPveO1VbKv4r6sQwnU7bNvOpNPJ4m7eFGIMSaeTYdu2M8CA+5pkCZzISSoWRQUyNiOq3+LPFlHtzSgn3Bf1erhWX820KZM5czRcKFsmGSONZed3aZrX78xMplJju3xGTF+Lx7ZpT6c4/bgT8Kgq1WVlHHzIYTR0dhKxTLRUEkJyjSTE/mTx4sWRJUuW/D4S6bwMqPH7g3FFUdwtmCbEfsK2bSWdToYjkU6/bVv3L168uGeg4yUAEjlJRWOEAEMZWQC0SLF4v3YwypYG9wYndtPd7cwUVJSNkqVgikIqHQdFgRHMHg6m3LD4zNTpVCbG9gzQpuefJQisjcc5e86uItrnHf0uLrrtJizb5piONiZPnla8QQoh8uVHpmnQ1dX+SUVRwoAshxNi32zbtjO2bd0P/Giwg4cUAGma9snhjEDX9d8P53gx9qTjUScAQsk5AxxAhapwUFk5myQNdt5EIk4AVD5K9sKoXh+JZJTeRbr5EgROHT+R7jwGWYUQWbuGIOCpG4evT2G6uopKFs+ey5sb1vHkfx7n4s9+oXiDFELkxeLFiy3gh0uWLLnDtpmIbF0Qoj8WsH2wmZ9eQ50B+u0wBmADEgDt5zKJJJZtY4ww/a7tzW7K349SFY824Xfe4VcLFtHgDRR7KA7VQyIVR7FN7Hz+LQ84763ck7QXn21ZlMfjoKpMnDVnr/tPOOgQ3tqwjnee/R/WJz+L6ss9IYkQYvTKXtQN6cJOCDG4oQZAM/M6CjHmdNTWcvmS1znyyHdx3gjasXzORaqSGfupikcrO9pDtd9Pq290rHi1vV5SmW6wTMhn/ZqQEwz4xvCKkebNm9gSjzEpGESbvXcAdKx2ENM31TMpGKJ5+dtMPPLoIoxSCCGEGFuGdEWk6/qWoTaoadrYvdoQQ9abtMAbDI2oHdvnzEooea4Jc0DLvlZqsPgpsAEsj4d0LAGYKJ48jinovLd8ioJtmigeT/76ypMla1ZxzdpVHDJvHnd4vHvtmaouK2MtMAlY//yzEgAJIYQQQ5DTR8Kapn0UOAnws2tDngqUAMcCU1wZnRi1Eok4AIFAcETt2Nk02Ko5CrKT7aeUlJMEwBMaHUvgLI+HTDqJ7cH5DZIvfWoeWakUnvDYy5L25puvA3DkwYf0nzCivALSaRL1Gws4MiGEEGLsGnYApGnadcB1QHf28Zns1zicDUj3ujlAMTqVNTby1VlzSY0wcFH8zgySdzSkZ95PebL7q3zhkc3WuUJVsVTFSYNtWnhCFXnryhP0Y9k2qqJgp1MwBgOgVe+sAOCQaTP6PaZ68mTYtInyWAzbtlEUmYQXQgghBpLLAvxPAX8AqoHbgH/puj4eOApoB1a5NzwxWgUjEd5VXUPtSDeYB4IkTZOMBEB54zOdgqPBkuIHQKrHh2HbZIw0tpFGyWNhVm/ATzL73M3k2KsFFI/HuaqknFsPWcCc8vJ+j5s5ey6WbVPj9bFl1YoCjlAIIYQYm3IJgCYDD+i6bgNLgOMAdF1fAtwAfM694YnRys6kne+ekWWd6qmdzCfffpPb25rdGJbYh0B26VSwrPgzIIrXi0lvAGSAbeatL1/AxzfWrOTS5UtQKivz1k++bFj+NpU+H5OCIarK+p8pC4RCtGcDvXUvvVio4QkhhBBjVi4BUIxd5TvWAzM1Tev9aHkZkjHugGD3pq32jWwTh9/v7CHqTaog3NeUSrI1EaekvPh1gBSPDwPLWQJnZCCPyS98fh/NqRSdmQzJ9NhLs7516RIAuhUFa5AsiamAs7+rU9fzPi4hhBBirMslAHoDZxkcwEbAAE7P/vsgYGyXXRdD0pu2ujeJQa58gd4AKD7iMYm92bbND/TVfG3VCspr87ffZqhUr5eMZWBZJrZpYOcxAPJ4vTv3w6RSY28JXHf9BgDSJWFsc+CZMmX8eP68bSuvNDYUYmhCCCHEmJZLFrgfAf/VNK1S1/X3apr2B+B3mqY9C5wF/N3VEYpRSc1ekNn+kc0ABVUP35yjEfB4sDJp1BHOKIndxWIxzOxrVRYK4OQpKR7F6yNp7PqMxMok+89uNtK+FIUzJ0xkgtdHYtMmGFeXl37ypq0NfH4CNTWDHjpFO4i//vMRFEUhFotSUlL82T4hhBBitBr2DJCu6y8ARwIPZ2+6AvgrMB/4C/Bl10YnRi1P9qJa8Y8sDbYnGGZRZRWHlJWT7Im6MTTRRyTSDYDf7yfgLX4dHMXjI5HZNRtjZ1LYeUyA8a7Kat4zfiKppm156yMfTNOkLO3ss6scP2HQ46tKSxlfVYVt26xZI3lohBBCiIHkVAdI1/UVwIrsz0ng824OSox+HssCjwclMLLMYv5QmIxl4VNVkpEuwtXVLo1QAERWv8OvFiyi0UjndbnZUNkeD8nkrhkg28hgWwa7yom5K51t1ojH8tJ+vmzf3kRddja0avz4IT3miElTabVsNix9iyOPPCafwxNCCCHGtFwLoVYAp+IUPt1rFknX9d+PcFxilPt5dweNmzdx+RkXMJKdJarqIdUbAPX0uDY+4Ui0t1Pt9xNRyNtSs+GwPB4MI73r36bhJEJQ/DDSlOr7YPQGQGMsyUb9xg3UR3uYVl7OuEAQcwhJHN5bVs64ufN5eZXMAAkhhBADyaUQ6jk4S936y6lrAxIA7efiiQQpy8IbHHlq5ZRtUwqkohIAuS3Z2UkJYHhyyXfiPsvrJd1nD5BtGthGBiVPe78M1XnexhirA7Rpcz2316/nrFNPY+EQ40J/ZaWzb6ilJa9jE0IIIca6XGaAfgysAb4KNFLsXdWiKHqztnl9I8sCB5DOzkykorIHyG3pSAQAcxTs/0FRsVSFTJ8ZIGwbK5NE8edn035GdaaArDEWANXXbwRg5uQpWJmhpfCunjAJs62NGsuiq6uTysqqfA5RCCGEGLNyCYDmA+/XdV0q7h3APl1bR6qyGr8Lq5bS2TbSEgC5zow559Ty5bTa1VWq10fGtncPgHASISh2fj5HsbIzX2MtANq6aSMKMGOI+38ASmqqiQBTQmHWr9M56uh35W18QgghxFiWy1XRFqDcrQFomlaNk1r7vGy7K4Bv6rr+Uvb+hcAdOJnn2oE7dV2/uc/jVeA64HNAFfAScLmu6xv6HDPiNsQuRibDcZVOsoJ1Pj8j3VqfURTSlkVKagG5zoo751QJFD+9uOL1YrKPAMg0UCwDcH+WyvJ6wQIzNbbKky2KxvnqoqPxtLZB2dBmcjwlpVi2TanXy/LVqyQA2kOms5P2R/5KcssmgrNmU/uBD+OtKH5tLCGEEIWXy8aAHwPXaZo2w6UxPAS8C/gocBSwFHhK07T5mqbVAE8D63CCl+uA6zVN+0yfx18DfAG4BDgWZw/SE5qm+QHcaEPsLhHp2vmzJzjypUv3JjJctPQNusaNG3FbYndKduZDDRb/rax6fRhYZDK7ByO2aYBl7Cxa6qY1IS9XvrOMTTOmu952vnR3d1GpKPhVlfLSsiE/TvF4iGf3PHWuW5uv4Y1JRnc3jTf9iMirL5NuaiLy0ots/emPMWXWWQghDki5zAB9ApgMbNQ0rRXY82N7W9f12UNpSNO0OcAZwPG6rr+Sve0rwDnAx4EEkAIu03XdANZomjYX+Abwm2yA8jXgal3XH88+/kKgCfggTnD1eRfaEH0kup3aMqZtO3WAMiNbvuTLptKOxcZWquKxoNs0URJxPKUTiz0UFI+PtJnB2mO5m5MIwUDxu5+ozioJ0pRMEhniPprRYOvWrdQFnL11gbKhB0AARigE8fiYq3uUb+2PPkKmtZUej4c3fT5OANixg5YH/8DES75Q7OEJIYQosFxmgBqBf+BkensCeH6PrxeG0VYb8B5gSe8Nuq7bOEVBqoETgReygUuvZwBN07Q6YCFQlr2t9/FdOLNI787e5EYboo9ExMnWlrQsbBfqtwSCTgAUH2O1WsaCJzIpvrpqBfak4s+uqd7di6DuYmNnkpCHGSB/0Akk4vGxs7yycesW6vzOuJXA8AoN+6dN48769TxZvxErjwVmx5r/JOI83drM9Sve5lcvPce1S9/Esm163nqTTFtrsYcnhBCiwIY9A6Tr+mcGP2rIbXUBj/e9TdO0C4DZwJPADcDKPR7WlP0+DZiS/XnrPo6Zlv15igtt5MTrdT/1sCe7qdtTxLTGmZgTAGVsGxtQ1ZFduC72ejh3jkbZli15OWe5GA3n2Q09PU4WuIqS0Ihfp5FSfT6SZvducU7vsjcrk8KLBS6Pscbj5cJJU5i6Y/uoeW8NpqVhM7O8zq9mNeDHNoceyEyeM5fXI91kDIPm5iamTnV+he0v7+dcPP74Y9z2y58BcP75H+D86dP4zW9/y531G1CnTeVnNdWuvjcO5HNdSHKehRAjkUsdoIGCAguIZgObYdM07Xjg18Cjuq7/S9O023CWr/XV+xFykF21iPZ1THX257ALbQybqipUVZXk+vBBlZeH8tb2YDxWGgtIYxMIePGNcNnSeJ+HxZVVNPRE8nrOclHM8+yG3gCoprKUYKi4+4A8oSCZnja8vr2THahYeFQbn3/kadX7qvZ5OXXSFCLdo++91Z/4dmf5WtrrJegf/irlmRMnsW5rA9u3N7BgwUG73TfW38/D1dHRwY033gDAFVdcwVf/7ys0bljDrAnlfPuHtxJdvow//vE3/N///Z/rfR9o57pY5DwLIXKRyx6gzQxSsl3TtA7gDl3XfzjURjVNez/wJ+A14GPZmxPAnldEvWtCYtn7yR6T2OOY3vVUbrQxbJZlE4m4v+zG41EpLw8RiSQwh/HJsJu6WtopATIoxOLpQY8fjKk6b0MjkaSzc3QsgxsN53mkrFSKa2sn0FNZQwBIJkb+Wo2Ex4JkMoGRMXfepigKHq+KkUqhptNkLA+2ixuBzGwAoZrmqHlvDaancRugYobDJHJ4zY4bP57ZqTQr31jC0UefAOwf7+dc/O3qb3Np9Tjeqq3j85+/nJambTQ1bKa2qppPf/SD3HX/A9x1112cfdrZTJg6ogn/nQ7Uc11o+TrP5eUhmVUS4gCQSwD0KeAe4DngQWAHUAd8GCeV9fVAKfBdTdPadV3/5WANapp2BU6a6keAi3Rd752N2QpM2uPw3n9vA3x9btu4xzHLXWwjJ4aRvz9+pmnltf2BdFXVcNnSNzj4oEN5nzXyi1UrW0zVTmeK9pz6U8zzPFKJtnaqfD5KPR5KwiEsF16rEVFV0pn0HokOnH9YRgbLyGB7gq6Oszf9t9e2x8zruLmlhVe9PhbNnZvTuThJ9VEybQaP6/pez3ksv5+Hq7u7m6rGRiZWVDL7hBNRbJO2pq0YGWc76DGLFvLGC69ypuJl6/euo+aX96Ko7l34HkjnupjkPAshcpHLb/uPAQ/pun6Oruu/13X9KV3X/6Dr+vnAvcBiXdevwgmELhusMU3TLgN+BtwFXNgn+AEnocKJmqb1XTNzGqDrut6CE6BEgJP7tFcJLAJedLEN0UcimSBpWVjD3KDdHzu77Ek1xk6mrrGgp6XZ+W4YlBV5+Zvi8WIqkDb6r8djpROup8JWS5z3qM/t9HJ5kkqleGXrFm6rX0/NMcfk1IYddlb1Gju2uzm0MefJP/6OiYEAGdtm8cc/QTIWoaerc+f9iqJw9nvOZFa4lBLTpOXtpUUcrRBCiELKJQA6GWep2r48ghNcgFNMdMB02JqmzcOZ+fk7Tn2hOk3TJmS/KnD2A5UD92uadrCmaZ8GrsweSzZYugu4UdO092matgB4GGfW55FsN260IfrozdYWDIUHOXJo7GwabI9pDnKkGI5oq5PdKm5ZqAOvWs07xevDsPeuAdSXnUmj2C6/B8JOAORRFGxjpCV786+paRu2bRMOhSjP8QOGkmpn62I4kSCdLu6yx2KxbZumF58HIFlXh68kRFf7Dkxz9/fA3LmzWW86H7ys+sffCj5OIYQQxZFLANQOHN7PfYfjzKaAswxusEX3H8ZZgvYBYPseX3dkZ2jOAjSctNTXAVfpuv67Pm1cC9wP3Ae8DBjAWbqupwHcaEPszt/QwBemz+Iwde/N7DkJOpvTvbJe3lXx9nYAkgpQ5JTIqtePgT3wDJCRBsvdAEgN79r+ZyX3lYJ7dNm6tYFyr5dpU6Zg5Ri8lNbUAjA5EKShYYubwxuR+No1dD37P1f3ePVH19cyM7t8cMpJp2CmE0S7u/Y6TlEUvHNmABDc2oApH8IIIcQBIZc9QH8EfqBpWgb4K9CCswfog8D3gF9pmlaFM8vy2kAN6br+I+BHgxzzJnDsAPebOEVNv5HPNsQu/o4OTh1XxyqX2lOyAZBnjCxTGiuSXZ34gXSR01+DkwI7Yxl7fQLfl21kwMqgeH3YLu0D8oYCpC0Lv6pipZJ4SktdaTdftjU28MsFi1BUlUxXF+RQZ8tTVg7A1FCYTfUbmDNnrruDzIHXq9L1n8eJvrOSTGsr4z7y0bz298y//8mppU4R2XHvehepRJREtGefx848/mhSf3qUWq+PFf97iiPOPCevYxNCCFF8ucwAfRd4CLgVaMBJF92Q/fcfgW8D5wBHZI8V+xk75XyKb3t9gxw5NPFxk/jYktf5XuPo+bR6f5CJdANgel2aqRsBxesjnkkMeIxtWc4yOBf3AflDAa5Zu4pvrl+Dt6LStXbzpXPrVnyqigrYOc6wekpLsbAp9XppXL/O3QEOg21ZGJEIDQ2buPwLn+e3z/4XgM6n/kN0xYjyywzcr22z49WXURWFdEUFwbpaIp3t/RaG9YdDbM/WAdrw9JN5G5cQQojRI5dCqAZwsaZpNwCnALVAI/CyruubADRNewKYvEdCA7GfsDPO0hzb587G+kCwFNO2icfGRprisSJqGMQTcZLlxa9/o3h8JDL7/gS+LyudQA1XutavPxhgU3bPmqUoFD8UHFgym7gg7ffnvGxR8XhIqB5KLItI/cbBH5AnPW+8xo7f/pq/72jihc31AIQsi/eMn8j6e37Bwjt+geJx/xVpaNjCttYWVnq8HH/OuVhGmnhP94CP8UyfApsa8W3bhmEYeL25LI4QQggxVuT8W17X9Y3snja6732d+7pd7Ccy2WxtLhWt9AedJAiJRBzbtlAUqcHghnWlpdy7agUfPe/MYg8F2+slGR98D45lZPDYJrlNTu/NH9z1Hk0kEpSO8iVwVmcHeP3YJSMLWtsnTuSG/z5JaOpUl0Y2fB1PPwWGQTKVZNbMg7jg/EtY+85rRFo2Ug689tv7OPazl7re76uvvsSS7i7UeRoXXHAhmVSERHzgD1fqFh7C2ytW83p7K1OXv83ixUe5Pi4hhBCjx5ACIE3T6oEP6Lq+XNO0TQxcCNXWdX3A7G9ibFOzdTQIuFOBO+AP8qWZswl5PETbOyirrXWl3QNdVzblb2Vp8WeATK+X9AAZ4HrZRhpMA9QAuLAnzOvzclxNLZMDQSIb1lG6cNGI28wnTzQGlX58ZWUjaqd2+gw2xKIEN2/KLv0q7IcK6R3bSW/ZjGnbvJ2xuPLKH1ASLmPOrINZ//CtLE5G6H72WeIfu4hw2N3356uvvgzAsccej8ejEk/ESCcHXn6pVFXw6rgKntNXM/WF5yQAEkKI/dxQ/yo+z67sbs8P8vWCy2MUo4ya3ciuuFQHyOsPcExVDUdWVhPraHelTQGdndkAqKzYAZCC5fEOmAGul2UY2GYGt/I2KIrCSbV1XDBpCsnNm9xpNE8ymQxl2f+3QlVVI2prYmUVPq+XZDLJ9u1NbgxvWNpecFJQL+/u4sz3foqS8K6Abua5n8GwbWYFgzzyy7tc7TeTSVO/bCkVXh/HHXcCimIT7e4Y0mMXHKQB8OKLz7k6JiGEEKPPkGaAdF3/TJ+fP5230YgxwWvZ4AGC7tQBUhSFRDZTV6JraBcrYnDv6eri7EMWuF5cdLgUrxeDgWsA7WTb2OkkBMoYeKJ56NLZp5/uGXwPUjG1tDQzLrustKRyZAGQatt8aPosPMkkmzbVM336NDeGOGStLz5PCFhlw3kL373bfZ6yKrbXTeO15a/yor6G8y/9omtLE5cte5vzqmo4Ze5B1GzahHXwvEGXv/U6ZN4cJoZC1HZ0sHVrA1OnFvacCSGEKJyc1kVomlamadrk7M9+TdOu0jTtTk3T3j3YY8XY9/P2Vi5dvoTYBPcuEJLZDd/JSGSQI8VQVVs200JhSsPuBKq56q0BlMoMrQ6PlUmiulgQNZOdTsqM8iQbO3Zs5+3uLlYkE3hGuAQO4INV1bx/4iS26mtcGN3QZVpbCSUSmLbN5OPPQt1HNruycy7mNY+XHT3dPPqoe/Wmlyx5k4OzacBD06ZjZFKkhhgAlagqdxxyOF+dPY9XnnnatTEJIYQYfYYdAGmadjSwBfhS9qY7gRuBi4BnNE17n3vDE6NRVyxKZyaDNzzyi7RevXMDqR4JgNxgmyYh1fnfu6yyuEvgVJ9/6DNAgJXJgJsBkMc5D0Y87lqb+bBjx3b+saOJpwM+PCNMgqB4vcSzM39dGze4Mbwh2/g/J3hYH4ty6MKT9nmMoiicddoHAHjooT/0m6J6uOqXLWV8IIitKJTMm0smlSQ11AK4oSBRnwdVUWh68w1XxiOEEGJ0ymUG6AZgLXC3pmkhnMDnF7quVwP3A99xcXxiFIplP0n3+d3ZAwSQzl6spWQGyBVGLLrz5/IK9wLVXCheH0kjjWUP7SLXSYSQQXFpI5CRrYNkJUZ3ANS7V2diXR1mKj3i9jJB5//PTDa1dqE8t7mePzY20FBdS8DXfyC36JATePeEScxPpnj77SUj7tc0TeyGbC2xCRPwhsPEo93YQ3zfARjjagBQt23DNN0LwoUQQowuuQRAxwDXZ2v+nAaEgAey9z0EHOrS2MQoZGQyfHr8RD41dToB1b1aGels6uvRvkxprOhpbgGcWkAVZe5k68uV6vMTTw89+HAKoqZc27vUWwjWGupMQJG0b9tGpc/H+OoabBcuvv3lFQD4IhFsFzLqDdWTr7/CozuaqH7X6QMeF+xu44op0/j45Kk88dijI+53w4b1zMnuoapasBBsk3h0eB+ohGc5y3pnBwLoBV46KIQQonByCYAsdq1YOhfoAnrXC5QDo/tjVjEi8a4uTh1Xx3vGT8TjUhpsACO7T0ACIHdEmncAEDNNAnkoNjksXh+xzMBpiPdkpRIoLiVBsPw+AOzU6K7LXLG9iXsOX8yRLW3utDduHADjVA8dHYVJLtLYuJVNm+rxer3Mn3vEgMeadVPJ+IOUeL00vPwSqRG+PsuXv81Bpc7+n5KDDsIy06QSw3vfMWk8ALPCJSx57ZURjUcIIcTolUsA9BbwOU3TjgUuBB7Tdd3WNK0O+Gb2frGfimUvpDKWhep3LwB6ylfGx5e8zqaaatfaPJBF25wZoKQCdja1crEMtQZQX5aRRrHcGfe2kgDfWfMOehGLgg6FN+osW/S5lBEtWFkJwJRgiPr6fdasdt3Sf/2D46trOH7BESj4Bz5YUbFnHAzAIYEgr7/+6oj6XrfkTSYEg1hAeO48jHRq0Po/eyktIe714FVVtsk+ICGE2G/lEgBdhbP07WXAAH6Yvf0dYC7wXXeGJkajRLdTWyZpWVgurqrxlJRh2DY9ozxV8VgRTcRpSMTpLm4GbKA3ABre8jMrk3H2AbmwDM4uC7E+FqU1kxlxW/li2zahtBMkhrKBy0h5Sp29X9V+P5v1ta60ORh72dt8ZdZczp00DcMYfO9NZopTe2dxZRXPPfvfEfW9dNVKfla/geSixfhKwqTTSdI5zCoZ45wPYdSmbRhGcT88EEIIkR/DDoB0XX8bmAMcC8zSdX199q7LgEN1XR/5blYxaiW6ugFIYWOa7mRuAgiGnM3SPZIFzhXN4RK+vmoFzwVyynTvGsXrw1QYcgrsXrZpYBtpVxIhBELOTOVoDq57enqo8Th76spra1xpU/H5eMbv57PL3mJjY4MrbQ7ENE2qskvOyuYtGNJjjIkzsVQPdYEAG159JedscK2tLdQ3buXlrg7mfPIzqKpKIhohl1pSgSMO5c6GzfyzcSsbNqzLaTxCCCFGt5yujnRd79F1/XVd12N9bvubrus73BuaGI1S2U3FaRQsF6eAZmBzxczZTMtu3hcj09XlzNRVlrmznCpXqtdPxrZIp4efgMBKu7MPqCwY4D3jJzCnrXXEbeXLjh3bqQs4WdsC2X0sbigZN44ew2DTpnrX2uzP+uVvMyGbhKB6/pFDe5DXjzV1DgBzFIWVK5fn1Pfy5W87bcyZR2lpKbZlkIzlFvAqE8YRnziOqGmwbNnbObUhhBBidCvux8NizEllP0VPK25tUXdUexTeXTOOulGeqWus6OrqAqCytMhFULM1gIa7BA7ASqdQrJFnQwsFvHxq6gwWJ5IFzYY2HM0Nmyn1ZrMq+nyutTut1kmEUIg9QBteeB6AdgUy6tBT5KcnO8vgJgdDPPvs/3Lqe/Vbb/De8RM5eb6zp8gyM0Ov/7MP82bPBGD58qU5tyGEEGL0kgBIDIuR3aidUd196yhBZwmcV9bcu2L+xo3cfMgCZilFXgLn85MwUkOuAdSXbWTAGvk+IE82CFQBOz3y+jr50LlpE+Ck0HQzRpsaLuH/TZnGuxXPzvpd+dKzTgcgVTOOVHLo+60y0w9m5TGn8LNNG3jhhedy6ju2Zg3/b+p0TojFUBQFM5Mmnco9ADqkupoLJk1B1fWc2xBCCDF6SQAkhqW5poYvLF/KswH3iqACEHY2bPvczKxwAAsnk0wLhSkNBoo6DtXrJzaMGkB9WUbG2Qc00gCoLISVjSqs4aZFLpDmzg7+taOJxrJSbBc/BAipCu+dMImTasaxYcMG19rdF3922WV4+tzhBXH+ILMXHI/H46G+fgPbtjUOq99kMkl5dxcApQcdjKoqGJnUiAKgaaqHCyZN4VDVQ3Nzc87tCCGEGJ0kABLDEk0m6cikyYT6r/CeC7XUKdroclh1wApkC2kGytx9nYbL9vmGVQR1T1YqjqKMLCj2h0PEs+fDGm5a5ALZ2NHOA40NtM+Y7mq7vZngagMB1r+zytW2+2pvb2NSdglf+ayDh/14RQly+OGL8CgKL7743LAeu2bNKrQSZ6/buCMWo6oKyXgUO8eECgDeyRMB0ErLWL5MlsEJIcT+RgIgMSyxmLMELhB0d2+Jp6wSgJCqjtp9GmOFbdv0vjollcVNgmB6vaRySIDQy8qkR7wPKBAOkMgGQGZ8dAZAO3ZsB6CuzL0ECACq37+zMvX2VfkLgHR9DdesXcVvuztR64YfxKWjMT5XVcu9hy/m1eefHdZj33nzDaaFnHd8eJ6Ggk08OrJsknZNJRmg1Otl4xuvjagtIYQQo48EQGJYKrdt4/9NmcY0l9v1llUBEPR4iPd0u9z6gcVOpfBnl42VVZYVbyCKguX1DjsFdl9WJjXifUDBcIhYthhsOjI631t2exsVXh/jytx/vVJ+pyBppH6T6233Wrt2DW3pNMaMWaTMHP6seP1UWTalXi/G+nXE40Pfr9S5YhkA8XAYT1kZlpkZ0fI3AFSVaHbvWFJSYQshxH5HAiAxLLWRbt47YRJ1Lrerhnd98t3dMnrTFY8FiY52AJKmSXVVRdHGofp6U2DnPutiGwZ2JjWiekCBUJBodl9NPHtuRhPDMPh0RRX3LlxMTcL9LIje7DI42vP33PVsodU5s+eRTuWwh0lRULO1gxaXVfD660ObdbFtm1B2j45/zlwAdwIgwDN5PACVPVESo3TvmBBCiNxIACSGRc1kszsFQ662q3g8fGXDej6+5HXiuFdg9UDU2bgVgIhhUBZ0L6XycKm+ABmsEc0AQXYf0AiSrqselT+3tfCdNe+QmjR5RGPJh9aWZsZl6+eUV1W73n75uFoAytKZvF3I127ZzIcmTmZ2VV3O9cFSk5x02IsqKnlpiMvgtm5tYKbPmeGadPyJuxIguJBOPzhjKgDzSkpZtWrliNsTQggxekgAJIZFNZy9FErA/foyGX8Qw7bp6Ym63vaBpLuri4Z4nDbLRMkh/bRbVJ+flJUhY4ws9bSzD2hkmdFavQrrY9GdS+FGk+b6jfhVFdO2UQPuZ+0rrXECoBq/Py/1gOLxGIs9Pi6cPJUJ/tyTbqSqJmIGQ4S9XlqXvDGkvYArVizjm2tW8gcjTfmhh6GqCulUEiPjQrrzuhosbMIeD6uXvDny9oQQQowaEgCJYfFmMyupLmeBAwiGnQ37kVG6T2OsaAv4+frqFfzFSLpbVGaYVF+AaCr3DHC9rEwKzMyIlsGFS5z3a0+2kO9o0rmpHoAewMq4H6B5K6u4s7uDq1evZONG91Nh6++8w6Sgk78xMGVu7g0pKl7NWQY3T/Gwdu3qQR+yfPnbGLZN5YKFqIEAqqqSjLn0Gvt8PDuljouXvcXSNflLICGEEKLwJAASwxLIXlCrJe5mqwI4qaycK2bOxtxc73rbB5L27F6Pmkr3X6Nh8fmJpUdefNM2TexMckSJEGaUlvCe8RMwh3BRXWjRbN2bhM/rag2gXorHQ23tOADq690PgLa+vQRVUYgDac/IEtlb050U2kdXVfHSEIqiLsumqF648AgAbMsgGXdvBnn87BnYODNNkp1SCCH2HxIAiWEJZi9ClTwEQPP8Pt5dMw5LkiCMSHt7GwA1lcVLgABg+nwkR5AAYbe2knHUEewNmx0M8ampMwiuX+/KeNyUaXNeLzPk7r66vqZll8Ft2OD+849ks6TFS0tJpUeWsjxeM5We6hr+vr2Jl158fsBjO3Zs5zJ/kIumTGPBIYcBvQkQUiMaQ18zpk3B6/XS0dFBY3ZvnRBCiLHPW+wBiLHDMgzCHg8ASlnVCLal71vG6wUzjRGTPUAjMXXNGm45ZAEdniL+760omF6vawFQ7zI4FB+5vPHMUADiFrYLm+PdpvY4NWs8pfmr2aSFQlw1ex7tO5pdb1tpaQGfH3XCZIzMyPacGZZK1We/zBMXnoXS2kx7exs12eBtT2se+ydTQmGC/gA1deNRFDANdzLA9fJ7PFx18KFMtOCdt95g6lS3CwAIIYQoBpkBEkMWTya4dPkSvrZqOZ4y97NVGT5n+YwZG/myqQNZIB5jaihMWXBky5FGQvUFSNsWqfTI9wCBkwjBNjOoOS6Ds4JOpjDVxdkBtyyNdPPYju34x7mdXH6XunAJR1VVM93G1UxwmUyGqrSTcKBkxjxX2vR5Sjnk4EOxbZuXXnqh3+NSK5YD0F5bi6IoqKqKmUmRcfM1VlVmBUNMCAbZIYkQhBBivyEBkBiyWCxGZyZDUzqD6nM/W5UVcJYA2VJzY0R82Y30oYr8zSgMRvUHyGC6NgOEbWMlY7nvAwo7waCnN437KGHbNv9r2MzvG7dQMS1/swsVdU5Nm+mhMJtc3Ae0qX4j47OZ60qmzXelzUQ8w0nHHs+pteNoeObpfR5jxmKMz35QUnnscQCoqkIqmcB0OdNfIltM2GpocLVdIYQQxSMBkBiy3gxapaWlWPnIrhzKXrAnR9+n9GNJKJv6urSqrGhjUH0BEkba1YtRK51EsXNrTylzssD5zJHtUXFbT08PseyFfG1J/gJWT2kphm0T9nppeMe9mjZr9TVcsmwJ99smRqk7s8KJWJrjSiv4wozZHN7Rtc8lbQ3//hc+RWFzPM6C084AQFEgEYu4Moa+gtOdekDj0mkSCXdmNIUQQhSXBEBiyKKbN/HJKdM5bdx4zDxEQErYSaww2j6lH0tsy6JEcf63rqguXhIE1R8gknJ3L5eVSYGRyWkWyJsNBr2AlXahRoxLtm+qZ25JKdOqa/HnsR9FVenJphHvWrfWtXbXrl2DBVTPm096hPt/ehmGxfhT30fcNJkQCPDO3/+22/22ZdGTzRCnh0NUVFQCYJkGqTwEKOHZzszc7HAJ7yx72/X2hRBCFN6oSoKgadp3gdN1XT+5z20LgTuAI4F24E5d12/uc78KXAd8DqgCXgIu13V9g5ttCMhs28Z5Eyay0TBI5SEjrKfMuWD3WaPrU/qxJNbagqooWLZNTXXxZoAsX4B41N1sfrZhOOmwfSFsc3hvQH9lGaZt41EUrHgM1Z/PcGPoOlYu54aDDmW7aWCm8huYGaEQxBMYTU2utanrawCYO3s+qZR7s33xtEJ9ZSWH9vRgP/cs1ocuQPU5r1nPa68STCaJGgbjzzhj52Nsy90McDuVlRLDpkRV2fL6Kxx17PHu9yGEEKKgRs0MkKZpVwI/2OO2GuBpYB1O8HIdcL2maZ/pc9g1wBeAS4BjcXJEPaFpmt+tNoQjnc1WlVbz87ZJTZnHJcuW8J0172DlZY3d/q81W1Sz2zAoDbm/T2uoTL+PpEsJEHZrNxlDtYf/3giVl/Dj9Wu5tWU7ah6Xmg1XvGmb893nw87z8rxgtbNELehSMVjbtjm6q5svzpjNrNIKrGEGpQOJx9NM/sCH6UinKTMMtv/54Z33xerG89/WZh7Zvo2TTj8LcPb/GJk0GRczwO2kKHRn95DF161zv30hhBAFV/QASNO0yZqmPQH8END3uPvzQAq4TNf1Nbqu/wa4DfhG9rF+4GvAdbquP67r+nLgQmAy8EEX2xCAEXWWNGW8vry0H6qoodvIkDIMenrcX8t/IOhsa2VzPEabbUGR9rsoXj8ZbJIp9wMgK50EK+Ns+BiGUHmYFZFu3m7egeIdPRPfRqszS2aG8p+xb9yUyaRMk3g8TsyFVPONjVtZVFrGSbXjqCqtcWGEuyRiaQ4/8jgeSzrvodiz/2P7Pb/Ctm3+/tTj3LNlE02TJzN+/AQAFEXBzKRJp/Ozf1CZPIHN8RgbtzVKQVQhhNgPFD0AAhYBncAC4PU97jsReEHX9b5rK54BNE3T6oCFQFn2NgB0Xe8ClgLvdrENAVjZiybDl58AyOvzEQyFAejq6shLH/u7JuDq1Sv5lw9yKpjjAo8/QBqLRD4CICONnUkNOx12sNR5X6VSKZLJ0ZNl0Bt1ZmPUkvwvV6ydNo2v1q/j1vr1rHNhJmPDsqVU+HxYto1ZNcGFEe5imjbRSIoFH76APzU62dcSDZvp6Ynwl788CMCFF35i5/GqqpBMRLHzNHNcfswivr1uDY9u2cTWrZINTgghxrqiB0C6rv9L1/WP67pev4+7pwB7lt/uXcA+LXs//RzTm1PWjTYE7CwiaeQhBXav/zdlBl+aOYdOF/cpHEiam3cAML62qmhjUAMhkmaajJGHT+NtsJJRFGV4wZ034GNBVTXvGT+B1hUr3B9XjsLZfT+hqsq896WoKrMnTgZg3bo1I26vZaVzHnt8PjJWjunJBxCNJPnQBz/C6wp8Z807PBWJ8L3vfZfOzk5mzZrNqaeevvNYRbFJRPM3a+zz+5g9YzoAK1Ysy1s/QgghCmP0rAXZtzDO8rW+ehd5B7P3088xvTlZ3WgjJ16v+/Glx6Pu9r2QeotI2oEQqur+BQ/AMWWllKsqbc3b83L+hqqY53kkWlubARhfXZm312gwnkCQSCo6pFVqvRndnO9DC2qsTAqvlcFWhzMTqXDq+AkcV1pOfPVKvMcfN4zH5odtWVRkn39FbW1eX6/etudOmMBra1ezTl894v+/UtmZkExNLZm06fr4k4kMHo+P66+/gUsv/RzrX3Am6b1eH9dc831Cffe42SaZdCqv53DOzGls3FjP+mVL8J7/gX6PG6u/O8YaOc9CiJEY7QFQAthzuqF3sXwsez/ZYxJ7HBNzsY1hU1WFqqqSXB8+qPLyUN7a7o/HcNJTq2VlhEL5yQ+RUFTKgUykK6/nb6iKcZ5HYkFDA0cdsgDb6yOYp9doMEpJmER3G16fZ8iP8QznYtzKoNoZfOHhvT9SfufXnR2NjIr3VmRrI15FwbAsJk2cSMg79POVq0XV1Rx+yAJim7aM+ByEIt0QKqFs9lxUVSEYcndprGWBZdqcc86Z3Hfffdx8880oisI3v/lNTjnllN2Ojfd0o2Dm9T1/YlUVHzviKNZt2DikczfWfneMVXKehRC5GO0B0FZg0h639f57G+Drc9vGPY5Z7mIbw2ZZNpGI+3sgPB6V8vIQkUgC0yxsprS/mwbr31nO2YveTVkiPyl7bdUDtklkRwudnTnHnyNWzPM8EiXJFBNDYTpCQZJ5eo0GpqCgEI31YGQGT8KgKAoer4ppWMPaXK5EezC9JVjW0B+Tzqa+jrd1FPW91WtLYzO/bthEuT/AZbZCIo+vl6oqBAI+xlfX4A2F6cikaWnpwpfjfr6Ojg4mqc6fj8p5h9ISz0/trraWKCVlfo466ngefnhX+um+r5+qKqTjMaKRKJk81niqmjIZf30TkwyDxsZmSvrJJjhWf3eMNfk6z+XlIZlVEuIAMNoDoBeAL2ia5tF1vfdq6jRA13W9RdO0biACnEw2eNE0rRInscJdLraRE8PI3x8/07Ty2v6+NHV3szWZwFtWNawLz+FIef2QSZDu6i7489uXYpznkQhbNqhQUZu/12ggqj9A2rZJJKMMLZ5xDrJte4jHO8xUAtVIYyneIed6MMMBiJvY0eioeE23dXTwn5ZmZkydyufThSn+WzdpCm1vL6Pa52f90reZt/jInNp5Z9kykpaJadtQOxWrNT+BR093knTKwBzgvez1qqSSCVLJPKTA7qNkxlQyz79Otd/POy+8wOIzzh7w+LH2u2OskvMshMjFaP+Y49dAOXC/pmkHa5r2aeBK4McAuq6ncIKUGzVNe5+maQuAh3FmfR5xsQ0BdHd3ARAI5y9jleF3ljPYMXdqlRxIUok4ZR5nGVVN3Yi2r+XMEwiSwiSRyu8Mi5lOYhvDywZnlznLltQ8XygPVWOjk3dlYu24gvWp+ny0ZtOjb1vyRs7t6BvX87VVK3igpooM+ckKCRCPpUmnBt5fpKoqiUL8vvB6acpG2y1vvJb//oQQQuTNqA6AdF1vAc4CNJy01NcBV+m6/rs+h10L3A/cB7wMGMBZuq6n3WpDgJVOc24wxAcmTiIYCA/+gFz7yQZXdsz95YP7u+b6elRFwbBtKqqKU+xTDYToSccwrTzXILLtbDa4YTym3AmA/HlcJjUc8bWrmR0uYVq1uzV0BhP1ORP/sY0bcm5D150scnO0g0mljEGOzl0ykSERSw+4JMm2DJIu1DUailh1BQBqg6TCFkKIsWxULYHTdf3T+7jtTeDYAR5j4hQ1/cYAx4y4jQNdor2Ns2rGkbYs1oXL89aPWlYFrVtGzaf0Y0nLhvWUAxHLRLHM4lQB8gfpTrYWpCszmcBTmgbFN6RlcJ7qCmA7ftvGyqRRfcVJEtFr7uYt/Pjgw3gnVNhN3J7KSujswt/ennMba9c6AdDcORrpZP4CIIDOzgRV4/pPOmCbGdKpwvy+CM6eAW+9w8SMgZXJoOapJpoQQoj8GtUzQGL06N7u1OWJGBm8/vzNAPXMWcgly5Zwy/q1UnF9mLoaNgOQ8HqxzfxelPbHDASIJwrzabyVSWJnkqjq0H6NBWoruHH9Wu5JxlHU/GdcG4htmpRll6KV1RRuCRxAzSSn9Nl408LIDH/vUSIR57JwKT+YfwjTS6tIp/M72xePpjD66UNRFAwjXbAAaMJBc+nOZAiqKltee7kgfQohhHCfBEBiSKItTn2ZqGWTz7314dqJdBsZ4qnUzj1HYmjaOzvZHI+RKgkOfnAeKD4/aQXiycIEQNhgxntQGdoG6PLaSpZ0d7Fsx3YUT3EDoHRLM15FIWma1NbWFrTvydNnsDkR57XOdurXrBr249cuX8bMcAnzS8sIVOQ/eItH06SSxj6XwamqgpFOkS7QjLHX5+MNM83vt25hRcOWgvQphBDCfRIAiSGJt7YBkBjWpovh8/p8lJZVAtDc3JzXvvY3b/VEuHr1Stq16UXp3xMIk8IsXAAEWOkEGKmdBVUHUlrpLN1sb28jk8PMh5u66p2M+03JJHWl+VtSui9ej4eHkgl+ubmelevXDfvxjW86yRMiikJqrxJr7jMMi+7uJB7P3q+xqiokE1GsfO8566Nz5hQea97OKyuWFaxPIYQQ7pIASAxJqqsDgGSePzlXTINPT53Ol2fOoXVHU1772t9s2+ZkFZsyrkgZ4IJhetJxDLNwwYWVyWCl4igDZAnrFSwLs6CyivfUTaBl+dsFGF3/2tfpznfLJDDEJXxuOnjKVABWrhz+eUhsWO98r67OawKEvnq6EpjG3lPPCjbxnkhBxtDr4HlzAHjjjdewLEm/LIQQY5EEQGJIjG7nIiPjze+mX1v1cFwoxAk1tXRm0wSLoWlsbARgck1xAiACQTrjXQXv1kxEUa3Bgy4Li9MmTuaTU6fT9fbSAoysf4nsezvuL04ihoOmTEUBWleuxB7mRXy40/kwJDhrLqlkYYLdWDRNOmXslQ7bMtOkk4mCjKHXrOlTqQ2HOVz1Uv/CswXtWwghhDtGVRY4MXpZUafORtqf5/0likJMVamwLXqaZAZoqLq7u/jpjNlETYO6gI8hVwd1jYIRCBDrLHz9JiuVcGoC+UoGLP5qWCapoBNwJFtbCjW8fbLbnCWlVkn/2c3yaf7kqfxywSKq/X7a9bXUHnTwkB4X7YkwJTsLPGHxUbTkOQNcr2QiQyyaoiZcunO5m6KAaWRIFTgA8nq9XDR3Hsf5grT99ynmnHxaQfsXQggxcjIDJIZkWU01X3tnOVsq8l+zJO519hUU+yJ1LNm2YT1Vfj9TQ2GCRUiCoAaCpLCIJQq7HAnAtiyseARVGTzoM0udgMPs7Mz3sAb0RijIbxs2o1ZXFaX/ipIS2rKZAhtefG7Ij1v/6iuEPV5SlkXptHkDBpxu62yP0zcxpKqqGOlkwTLA9ZWeNB6Akh3N2EZxMi4KIYTInQRAYkjaolG2JhMo5fm/YEsFsxepkgVuyLZn67JEbRso3IbwXt5QCXErU9AECH2ZyfiQkiGotZUAeKLFGWevJa3NPN6yg+oCF0HtqyvgBMqJ1UPPBFe/cT1vdnbQGPATixf2wj/WkyKdMna+xk4ChBhmEQKQCYcdRHcmQwCIZYvCCiGEGDskABJD0puSOhguy3tfVqlTbZ2e4l6kjiXt2axiqYAPuwgZztRgCR2JrqLVbrIyaaxkbK89InvyTnTSNgczmaLWmdq8eTMAkyoqizaG8qlOIoTKnihWKjWkx7y+qZ6fblxH0+KjSCUKG3jEY2kS0TRer/NnS8EmHukq6Bh6zZg2hRUxZ7lnwzP/LcoYhBBC5E4CIDEoK5Pm6O4IH5gwiVAw/3sWlOoJAPhTKQxZXjIkyWyhWqWijMLv/wEjGKQ71lXwfvsyEz0oZhoGiIFKp08EwAdYsVhhBraHlrfeZL5tU+P3M6WiOEvgAA6ap9GSSuJTFFqyqa0HYts2b7+9BIAFhy8sWAKEXf1DR3uM3nVwlpkmWeD9P71UVaWz0vkwKLN6tRRtFkKIMUYCIDEoo6uLIz1ePjRpCqGy/GcY89Q4AVCF10tT07a897c/ULu7AQjXFX5JleoPkFIVoonugvfdl5lKYKfjqAOkla6aPIGuTBqAVJH2mLX97ym+Mmsu50ydRiiQ/zo6/akqLWNjdraw8cXnBj2+cZ2OGunG6/WhzTmEZIESIPTV050inTKdAqiZNKlEvOBj6FV5yDxSpkkokyHdsLlo4xBCCDF8EgCJQRnZDeMd6TTB0sq89xebMpdrWlr5vr6aBqm2PqhEIkGF6ez7GTd1QsH794RKidsZYvHCJ0DYjQ1mrHvAlNhlNeX8fMsmrlq1gkiRUlAb2eyGRklpUfrvy6isBMC7efOg6bC3PP4YPzvsCL65YCG25cE0Cl8DJx5LEYum8Ps9TgKEIs0AARx66MEs6e7Csm1aV64o2jiEEEIMnwRAYlCxlmYAOjNpguGKvPdn+/wExk3EBrZulQBoMJs319OYiNOYSlI5sbbg/XtCpbTHO7Hs4heFNJNxZxbIs+9fbRY2HeVlbEnEadjWWODRgZVKEcguvfNXF6leUx+TZs3m0e1N/Hzb1kEXTprZAqi+SZOJ9hQ+8xpkl8G1xlEUhXi0u6iFSEtLSnjNY3Pp8qW8lizOckohhBC5kQBIDCqyzVmG1m1Z+AOFSbFcPW4SAA0NDQXpbyzbsGE9d2/ZxIN+FX91/pNU7E4hEwrRFe0ocL/7Ztu2Mwtk73t5lmEazJw9C4ANG9YVcmgApLZtQwG6MmnqxtUVvP89HT5rDo+07uDNxgZWD5ANLhPppi7pBD11xx1PIl74RBu9It0JMqk08Z4izzgCMw6dT7eR4cn/PD5oBkIhhBCjhwRAYlDJ7AxQTPUUrM9jsfna7LnEN28qWJ9j1apVKwE4aN4crPTQsnm5xRMKk1RsIkVOgNCXmYxjp/adES5jGcyfPpXzxk/Et2RJwceW2uK8nzfF40ytLF4ChF5+n4+j580H4Nlnn+73uM1P/QePorApHmfBu08jmSheAJRKGiRicdKp4i1/63XMooUAvLVkCe3bCz+jKIQQIjcSAIlBZdpaAYj7C7dhe2o6wTFVNShSDHVQa1YsRwEWHKRhZQobAHnD5USMBPFkT0H7HYhtWZjR7CzQHjFQ2swwfcIEPjl1OlpX4dN2d69xasasj/Ywvbb4M0AAJx50CDNCYca99hpdL72wz2O6Xn0FgKbyUjyKj1QREiD0CoV9xKNREkXK4tfXuJpqFsycwTVz57Pje9cNOZ24EEKI4pIASAwum2EsEQwXrEsrmwkukEgQjxf/Qme0SiaTHB6N8rsjjmJeZ+GzsNklpTT3tBa838EYyRh2KrrXLJBt29QeqmFYFkFFIdVW2LHHs8vuuvw+SoOFWU46mGPmaiysqmZRKMz2R/++VzKEVNM2Krq7sWybqmOPJxpJYVnFS/scCvuJRrpJxhMog9R9KoTDjljAuEAAr2EQfWvwdOJCCCGKTwIgMahXZszgqlUr6Cwv3KZtq8ap1zIxEETX9YL1O9asXbuaacEgQY+Hisr812jqS/UFSHo9dPe0FbTfIbFtjGgXqpnea29GzbQJbMt+Ur91CPVv3PTmnDn8dIOOt3ZcQfsdSCgQwJ44kbhp4OnspOe1V3e7f/uz/wPgra5Ojjv7XKLR4s5yBIMq3R3txOOZUbHv5ujFC/lvdqa65T9PSE0gIYQYAyQAEoNqamtlSyJOsLJwS3bS2WBrQiDI2rX9b84+0K1csZzpISfw8VfnP0NfX97SCnrM1Kja/9OXmUxgJSLsWRYoZaXpCTmzLztWLi/omJZv3MCbXZ3MmDCxoP0O5szFR/PIdifZSfOfH8Ts2bWk8elYlDvq17O2qpK6uokk4uliDRNVVfD5LWKRHpLxDKZhFT0IqqmqZEd1BWnLwtreRHJTfVHHI4QQYnASAIlBNTdvB6CkonBFNtPlTl+TgkHWrlldsH7HmlVvvEqFz4cNeMsLvKSqtIId0WbsUZD+uj9GTxdKJr7bUri0mcEzebLz89atBR3PmjVOMD9nFGSA60ubPIWGcJjGRAI7GqXxtpuJLnubZDLJgw/9kZc72jnugxeQThpFzQAXKvFjmSmikQjptEEykdlnsotCO/aEd/FqRzsA7f/rP5mEEEKI0UECIDGg2Kp3OD6W4OjKKkrKChgAlVZhA0GPh23rZAncvqRSKTrWrgVAra7C7if1cz6o/iBJn4f27tG3/6cvy8hg9HSiYu5MiJA20oxfvBCA6ngMK1tENt+23PMrjrFtyrxe5kyYVJA+h+Mzp57JLRt1ooZBqmELTb+8i9/e+0s6OtqZNGky5577HnoiqaIUQO0VDvtIRrtJp5xZqHg0jWlaeyW7KLQjDjuYVxNRALpffY1UW3txBySEEGJAEgCJAcXXruG4cAkLyispryrgvgWPh1RJOQnTpGtbI8lkcQovjmZvv72EyV4vAOXTp2Abhftk3ldWRYcRpyfaWbA+c2XEe7ATETzZmYKUkeag008maZkEUKh/O//psM1olOQbr/GxydOYO2kypaFQ3vscrkOmTuOQhUdw9eoVvBLpok1ReOzBBwD4yle+jtfrpae7uP8fhsMq3Z27gotU0iCVNFD3XOdYYB6PhxlHLmR1TwTFstjxnyeLOh4hhBADkwBIDCjWsAWAbckE5ZWFmwEC2HLOxXxt62Y29ERYsWJZQfseC1555UW0UqfwaWBC4RJUoCiYZRVs72rCZgxs+LZtMpGOnUvhUkYab0mQv/n9fHrZW7xYgH1A8bVrUICGRJxZ02fmvb9cXXne+UyYPYfb163l8tdeojEe5yMf+Thnn30OmZRJPFa8BAj+gBdVyRDpk+3QxiYWTWOZdtFngc48+QQeadnBrzZvZFV5aXEHI4QQYkASAIkBpZqcjdEdXi8ej7egfZsl5cw/dDEAb7zxWkH7Hu0sy+Lpp59keaSb5MTxBCcVLjj1lVYSVS3aunYUrM+RsjJpjEg7qp0hYxmkjDQLzzqLtGXx73//M++Zu2LvrADgnUg3h0+dlte+RsJvWtzz3ev49re+y4c+9BFuvPE2vvWta/B4VBKJDPFY8fb/lJYFSKeixHp2rzmVTGRIJTNFnwUqLSlh2lELeaatldt/dueo2JskhBBi3yQAEv2yUino7AIgXlLYDGO95hy0EJAAaE9Ll77F9u1NvBiPcvi3rsJbXrglVWplDdt6mkmlEwXr0w1GPIoZ7cSjWPSko5x99rn4/X42bljPO8uX5a1f2zDoWeIss1vS3cVho3gGCMBs7+Ci8z/Atddez1lnnYOiKCiKQld7vKgpnktKPXS3t+w1Btu2ifaksEwLipwR7pzTTiIQ8LNq9RoefeTPGN2Fr80lhBBicBIAiX6lGhpQsOlIp/HWFD5tr2IaHN/SxK2HLGDDmlVEo9GCj2G0+ve//wnAmWeejV81MZPxgvTrDZcR9XnY3l7Y7GluMXo6sRPdxDIxyirKuPTEk7n90MN58/6789ZnXF+LnYjTnclATc2oKYDan1RnF6nmHfi8u4IJI2MSjRR3+ZvXk6GrvWOf96cSGRKx4meEqygr44PnnolWWkb5X/5G032/krpAQggxCkkAJPrVW89iYyxKZRECINvjJdzewpRQmDmhMC+88GzBxzAadXR08MQTj3F4eQXnn3EmRnc7FCgVtae6jqZ4G9H42Pxk27Ys0l1tJKLt2IrBu486honBENM6Oli65M289NnzllNs9Y2uDo6ff3Be+nBbrKER4lEURcHrVUnEM0R7ihcAlVcESSV66OmO7PN+G4j2JDHSJkqRg6BzTjuJYGU5lR4vyTVr6Hn15aKORwghxN4kABL9ymTrWmyIR6kZV5y0vbHxzn6Jg8vK+c9//l2UMYw2Dz/8R8xUiqvnzif4698Qb9hckH69pZX0+L1sbdlUkP7yxTYNetq2kUp2cdCHP0hGUZgWCvPoTT8iHo+53l88nSFlmbzc0c6JYyQASnZ0ktrWhN+roCoKnW1xJ910ESgKlJSqtDdvH3A2JZ02iUaKny3S6/XykU99hL9mC8tue+B3ZDpHf7ZEIYQ4kEgAJPpV99GP89XNG3m6pYXquslFGUN8/HQADi0r55VXXqa7u6so4xgturo6efDBP7CgvBKfouCrqkQJFOATb1VFrRlPQ2T7mJ396Ssa7SQaacVnxak9+2wAzg4Eufaq/yOdTrva1z9jEb6wfCmlU6YwvrLK1bbzxrbp2bwFu6ebTNqiu7MwSyz3pbQ8CFaCjpbBa07FomlnKZynuH/aDpo3h8DRh7MhFsWTybD+5p9gZYqXQEIIIcTuJAAS/erq6qSxrZWoaRRtBig6aTYA80rLKFPgH//4W1HGMVr8/Od3Eol0c+4MZyN92SHzsNP5/9Q7UD2BViVNQ/PGvPdVCKZl0BXrJNXWyOSTF2NXVVHjD7C4uZnLLv0MTdnshyPV0dHOww8/SMw0ee/io1xps1DS3REy7e30dMWLuvytsjJAV9t2UkOoBWbZNpGuBOmUUfT9QOeddRrPBj1EDQNvczOrbr9Z9gMJIcQoIQGQ2Ccrk2b9+rUAVI+bRCAYLso4jJJyEuOmAHB0ZTV/+MNvXf+Efqx4883X+OtfH6LM6+XQgLORvnTelLz36y2pIFFezvod60lnir/EyC0dsU4Mr4d4o87siz6A7fGwuLKKk7ojfPCD7+FnP7uN5ubmnNvvWfImv/vxD0kk4hw0YybvmqO5OPr8UzweUhmLls3NRQsmSssCeNQkLU1NQ35MJmMS6UxgGnZRgyBVVfn4pz/Bv4wklm0T0HWevulHWFZxlhIKIYTYRQIgsRfbtmn44Q/g4YeZEAgyYcqsoo6ne7qzb+LMiZNobW3lb397uKjjKYbW1ha+/e2rsW2bK999KoplEZo2BU/Yk9d+VX8Qu24SG7obaevante+Ci0S6yTl86CgYBqdTLnwXPB4SFdXkUwmuf/+uzn33FO57LLP8uCDD1BfvxHTNIfUdrq1la33/Ir3dHZyeEUlXzznvShFTtE8XKHxdcSSCjvWbsGOxwoeTCgKVNcG6WzdRqxneBkgE4kM3V0JTNMualIEn8/Ley/5fzyr2qyIdHPNw3/k4osvYmUBiu8KIYToX2ErW4oxIVm/kfS2RkqAbiPDwZNnF3U8XXMOp3b9Ejy1VXhWLuPnP7+D0047k7q68UUdV6F0d3dxxRWX0trawqGzZrMgk8EGqo5diJXJ39Ik1R/EM2k6GxNtbG7S89ZPsfTEOukxU4wrrSDd2YK3XGXKRefyhUOPYO7SNTzw4EN0r1lD24rl3JjN5BUOh5k//2DmzJnH1KlTmTx5KpMmTSIUChMKhUgk4tSvXYP3r39hvG2zLtrDCWecyfwJhc+iOBKeQABPTR3bN3SQiSWwaSM4wYPqD2JZhVnGVVVTAmaEpi0NOT0+FnX+36ioCuHxqk6doCLw+3yc8OkLeealV1G3bmbZsqV85pMf5cQjj+GMD3yIk046hZKS0qKMTQghDlQSAGVpmqYC1wGfA6qAl4DLdV3fUNSBFUH7v5waM29Ge0iYJpOmzS3qeKxAiPXnX86i+XUcsmYlK1Ys51vf+hq/+tWv8fn8RR1bvjU1beOKKz5Pff1GqqtruOGqb5P50x8JTp2Cvy6MnacAyBMuQxk/mU3JDvStK7AKlGa7kCzbYnukmXFlU6CzBQBPSCW2aSUnzR7PGbf/hFU/vBW7rZ0d2Dzd1MQrrc0sXfoWS5e+tc82xwcCfGXWXOaUlBI1DGJHHcUHtINhiDNHo4KiUDJtKh09Jm2NbQAYsTip5hYCdXWowSCWmd8gKFzip6ICtm6oH9Len/7Eoiksy6aiMoQ/4CliJjuF0048jkULDuWxZ15k3NoNnJox+PPtN/PDH1zDYYcv4ogjFnH44Ucwe/Ycxo2rG3MzhkIIMZYosinToWnadcDlwGeAbcBNwCzgEF3Xh7vppN40rZkdHe6n1PV6VaqqSujsjGEY7v8xj7z+KjvuvRsUlS+tWEKbafKNG/+M31/84o111WFqA1Gu/OxFNHV3cfrpZ3LDDT8lEAi43le+z/NgTNPkn//8O7fcciPRaA91deP5+c/vYd48DaV9O4mNy0FJuN+xqhKonkCyooL6SBP129ZgWvm7eFcU8Po8GBmTYvwqCgfLOGbW0ZS0tGBEu3a7z8pYdL+1np5VG7ANY+ftqbIyWr1eVhkZXm3eQUtLM6WGwfurazm6sgqfqpLyeKj46IVUeXykOndvtxhUVSEU8pNIpAedwSmZOoV02Tj0pVtI9Oz+HvOGQwTG1aKWlGBaOAV4XBYM+ZgwKURn80Y26etdadPv91BWESIU9qEo5HUWS1UVgiE/yX7OtWLbqP96Bk+bU2agOZXkyZZmnssmnAEoLS1l2rTp1NWNZ9y48dTV1TFuXB3V1TWUlZVTVlZGWVk55eVlBIOhAzJYytfv6OrqEjwedRPO338hxH5KAiBA0zQ/0AZcrev6r7K3VQJNwMW6rj80zCbHXABk2zY9r79K829/jW0Y1E+exjcf/TMz5i7g01/+iWv9jIQCHBSMY/3mTp5p2sYftm5m5vyD+f73b2DOnHmu9lWMAMgwDDZt2shLL73AI4/8ha1bnaU/xx96ON/6/GVMPelkAl4bs3kj0c2rwMXN1IrXh7+8Gqu8ijZSbGzZSEuHO5nQBuy3yAEQwOwph3BIyUQyjRuxTWOv+81UhuSWduL124hv2UbvQKvPOIO6j12EZdmkm3ew+TvfBKDkkEOYfMGHiTftIL59R0GfS3+GEgApquoEP6U11K/eTnfLvtOdqz4fgepKvOXl2D4/tmW79tpVVIWoqvbS3bqFTfo6VxMGKIpCuMRPaVkAX8CDoijOuXD5jTdYAASAZeHf1IiyZCV21Pk7YQGb0mn+2djAqx1tQ+7P4/EQDpcQDAYIBILZL3/2eyD7te+f/f4Afr8fv9+Pz+fL3ubH5/PvvH3XMT58Pv/OY/x+p41iBV8SAAkhRkICIEDTtKOB1wFN1/V1fW5/CVih6/rlw2wybwFQ/dZmGlesxEwlUWyLeHc7m9a9w47tTSQTSTqNNNtTKWeztmEwx+/HtGws08S2TBQUQqEQoWCQwLg6Ji86kve8572UNmxhx333AOA7bCFfeeZ/NGxZz5kf+BzHnfpB159HrsatfZ1xrz8JQMqyWNHdxaZEnAmz53Do0e/i8A9eQKikBIB08w7MSI8TOe1DcMZMFK+zCjTd2oLZveuCz+NRKSsL0tOTxDQtAtOnY6LQ09NDZOsWojuaicdjO79isRjxeJxYLEYzNinTwDBMgpkMoUwGy7KwLBPTNDBMC8u0ME2TpkyKhGmSyWSgo4OJPh8+VaXC62NKWTnHTJtOWTSK4vEw55pv4w/bxLasxTZGlglP8XhRAyG8wTCESkgFAnRbSbZ2bqO5fSuZEbY/5HGMggDI5/WzYOaRTCFApnkrVrr/ZYVWxsLoSpJu7aZkzhwqjz4afEFs1Ufzo/+iYuFCfKUlRPR1JJpbR03a44ECIMXrJVBViX9cHVHTz5a124m0RQZt0xsO4asoxxsuAb8fW1Gw7WwwNIyn7fEolJQFqKjwo6oJWho30bRla97OnXMufIRK/PgDXjwexXkjZsc+0n6HFAD1yhgEtzWjrNmImQ2Wa97/fqILDmfLls10baxn4ttLiVgWnek03ckEkVSK7mScSCKBHomwLenM0oU9HuaWlGLaNn3Dgd7n05JO0Z7NoBlQVWaGS3Yds8dP7ek0bdljfYrCjD7H7v5cPSR8ASK+IP5QGcFQGTOCYVR/GCUQRvGFwRfC9oaxfWEiwRpawhPJWCqGaTEjsQNFAQWF3lwVavbliHtDtAerUFUF1baZFmvK3qegAKY/wAUXnsFJkzISAAkhhk0CIEDTtA8CfwPCuq4n+tz+5+xt5w2zyXrTtGZGIu4uUWpq7+Gic07hroP7ryb/ZMsO7m/YDECF18e9Cxf3e+yzbS38cnM9iqIy/5hzuDpo0X74GbwcHsfff/z/8Hj9fPaXbxCuqAZ2xRG9H/gpfW5Dod9j9nX7SJRufocpT/+GUOvWve771PKllE+ZS83kWXxYNTk03tFvO48c92Hiqo90MsbRG5dwaGf/Mx5X6mto6nECpE9Mmcb7J/RfF+mr7yynMXtR8uGJk/nI5Kn9HvutNSvZGHMC5fdPmMQnpkzb53GR6YfSeMoniNVN3+f9e1zS9ttf73G2beNcp2a/2xaWZWX/NTDbHtqLOJTfLDbOaAc61s1fUf01paDgUb2oKCg7z1//He+8R1HInkBsy3K+DAN7wAvf3c/fUM/ToMcMcJDz/52y+7gVBdsGq/fLgkzSuWgf1ilXVWcWIPu182eU3X5BKH1+GfRexFq2hZ39YMAyDZLJBEbGyJ5SZa/nbvd5DjbKbs/ZZtfxdp9zbGf/s+djndOgOFfc9I67d4C7n6+9++rTn713fzZKts9dX71P3rbZZ7uV8Tbmtb7D1uo5bK+eg43KnB3LuOiV/mfg/659nP+OPw4rFWVm53quXnd/v8c+5JvNP9SJ2EaSGUYHNyr1/R77SCTDQx0xMFNMVC3umNl/Eo9/N2/nd1u3AFDl83H34f3/zflvazP3bNkEOAHbb4/ovzbWi+1t/GyTswXXoyg8uPiY3e5fF+3hzuB0nn/wTlf3dpWXhyQAEuIAIEkQHL1Fbvb86DcJVOfSoKoqVFXt+1OzXJWUBqmaeww7Mp2911zYipr9hC2ErXjoPuhEPO8+EVQftp1m06bfYfde7KDuvNi1bZOWKRqKNRG74WXWvPZvLkaBTVHslncAsA77OL9eP87V5+COw+HQ25jVsxGtaw2T21dS0aFTlmwnY2Ro3rSK5k2rqJ8yjZrKqn5beezn39y55r5s0hRqqmv6PTaV3BXMRm2V7ekMKCoonuz37JeqYh19Gaq3AlQvsfQWtifrd11YAX2vBM0zfoInOBFULx3pRtZ2voWpeOnxl9EarKMpPJmV1YfTEayFBpwvIfLG3d9ZYjgqeL02m3Gzy/m2Q51H82HfoCbZRlkmQshMEDbihIw4ATNFvX8qnd6J4IUuy8Om0pl4bBO1dw6oT9AWnXo66uQzAbBiW2laedPO+5Q9oufE3DMpnfk+/B6oSjbT9voPdn2opWRDQ9tGsS0qTzid46cdiZrqoSTaQtfqx8G2wLawbWvXhwO2hVpRzeTpHhQFgqpCW5/kIDb2buM1giEmTp2JbduoQKux+/LUuNfHpR88gfLyUM5nXAhx4JIZIEDTtA8Bf2XfM0ABXdffP8wm8zIDBM7SrPLyEJFIAtO0iGfgrWYP7QmFuAHxjEI8A6bd59PL7A+7PnXc/fbOxrWs+OfPaHjr3zv7qZx6EGd+6294/LsXQO372D3b2dcxe/aby9ttKLNGCs6sRqKzic4tK4m3NZLobCLR1YyZTmKmE5jpBGCjqE7QoqgqqseHNxDGGyzFGwjjC5XiC1cQKKkkWFaJJ1CGN1SOP1yOL1yBL1SG6vEOMMeSn+dW6Lbc6Gso/SmKQiDgJZ0eeNbEzW0Gbp2nIR3j0nlyDP4/T3/9qYqCP+AjncoMeYmXm89vKO30nS3ebZa57337+HmfM9OKvVs7e7Y14H0DPIZ++lcUe+fxqqoSDjtL4GzL2vmYPWfO93yOOx+vgLMqz0bNTlCpilO0T1Wd78rOY0DtPQ52O363YwCPYqMoDKnNsWDPv4VukRkgIQ4MMgPk6F1LNQnY2Of2ScDyXBvN5+Z507QwDAu/AsdNGGE/i2bA+25hw4Yv8Nprr1BTU8Mpp5xOMKjiTIKNJTXAySNupf8Ntkb2S7jBOc9eOjtTRcm2d6BwzrOPzs60nOc8c861n85Od/em5E2fT6jGULL2nXr/FgohxHBIAORYDkRwrpw3ws4scIuAu4o2qgKbM2cuc+YUt+aPEEIIIYQQ+SQBEKDrekrTtLuAGzVNawU2Az/FmRl6pJhjE0IIIYQQQrhHAqBdrsU5H/cBIeAF4KwciqAKIYQQQgghRikJgLJ0XTeBb2S/hBBCCCGEEPshtdgDEEIIIYQQQohCkQBICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAUGzbLvYY9kcJ27aDlpWfc+vxqJimlZe2xS5yngtDznNhyHkuHDnXhZGP86yqCoqiJIGQqw0LIUYVCYDyowsIANuLPA4hhBBCDN1EIAVUFnkcQog8kgBICCGEEEIIccCQPUBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGt9gDEIPTNO27wOm6rp/c57aFwB3AkUA7cKeu6zcXZYD7iX7O83uBa4GDgDbgL8C1uq4nijLI/cC+zvMe998LnKHr+oxCjmt/1M97eiJwK3AOYAL/Ab6i63pbUQa5H+jnNApjxgAAB+1JREFUPB8J3AIsArqAB4FrdF1PFWOMY5WmadXAj4DzgHJgBfBNXddfyt6/EPlbKIQYJpkBGuU0TbsS+MEet9UATwPrcH7pXwdcr2naZwo+wP1EP+f5RODvwN+AhcAXgAuBXxR4ePuNfZ3nPe4/H/hcocazP+vnPR3A+d0xCzgdeA/OBfrvCz2+/UU/57kWJ7BcAxwBXAJ8GrihwMPbHzwEvAv4KHAUsBR4StO0+fK3UAiRK5kBGqU0TZsM3AecCOh73P15IAVcpuu6AazRNG0u8A3gNwUd6Bg3yHm+FHhG1/WfZP+9QdO0bwO/0TTtC/JJ7tANcp57j5kI3AM8D8wo2OD2M4Oc64/hnNvZuq43Z4+/EviFpmnluq5HCjjUMW2Q83wCUANcpet6D87vjj8AZwFfL+hAxzBN0+YAZwDH67r+Sva2r+DMXn4cSCB/C4UQOZAZoNFrEdAJLABe3+O+E4EXsr/wez0DaJqm1RVofPuLgc7zLcBV+3iMFyjL87j2NwOdZzRNU4DfAQ8AzxV0ZPufgc712cD/eoMfAF3Xn9R1fbYEP8M20Hluz36/TNM0j6ZpM4BzgdcKN7z9QhvOLOWS3ht0XbcBBahG/hYKIXIkM0CjlK7r/wL+BaBp2p53TwFW7nFbU/b7NKAlr4Pbjwx0nnVdf7vvvzVN8wNfA5bKfonhGeT9DPB/wETgvcC3Cjey/c8g53oe8IKmadcAnwJ8wJPA1bqudxVwmGPeIL87XtQ07SfA9Tj7Vzw4gf2XCjvKsS37nny8722apl0AzMZ5396A/C0UQuRAZoDGpjDOtH9fyez3YIHHckDQNM2LMztxMHB5kYezX9E0bQHO2v1PyLLCvCvHCXwOx1lC9Hmc5VqPZmfhhAs0TavECTZ/DhwNXADMAX5ZxGGNeZqmHQ/8Gng0G4DK30IhRE5kBmhsSgCBPW7r/WUfK/BY9nuappUBfwZOAT6s6/peS7hEbjRNCwJ/An6o6/qKYo/nAJAGosDHdF3PAGia9ingDZxN5G8WcWz7kxuBSl3XP5T991JN0zqB/2qadruu68uLOLYxSdO09+P8rngNZy8byN9CIUSOZAZobNoKTNrjtt5/byvwWPZr2Y35LwLHAedkP3UU7jkGOAT4nqZpUU3TosC3gWnZf3+iuMPb7zQCem/wk7Uq+31mEcazvzqBvYPJ3v0/8wo8ljFP07QrgEdwlsOd26cMgfwtFELkRAKgsekF4ERN0zx9bjsN58JG1jy7RNO0KpwNteOAE3Rdf7bIQ9ofvQHMxVmStTD79SucdfwLgX8WaVz7qxeAwzVNC/W57bDs9w1FGM/+aitOcoS+es/z+gKPZUzTNO0y4GfAXcCFeyyTlb+FQoicyBK4senXwNXA/Zqm3YSzxvxKnDo1wj234dRLORto1TRtQp/7WnVdN4szrP1H9pPc3S68NU3rAAxd1+WC3H2/Aq4A/pRNhFCRve1ZXdeXFnVk+5dbgf9omnY98FtgOk79sMd1XV9WxHGNKZqmzcMpcvp34MdAXZ+EEwnkb6EQIkcyAzQGZT/ZOgvQcIrCXYdTb+J3RR3YfkTTNBWn6KkfZxZo+x5fU4s3OiFyk81eeCJO9rfXcbKYvQF8oJjj2t/ouv4UcB5ODZtlOBfqjwMfKeKwxqIP47xXP8Dev4PvkL+FQohcKbZtF3sMQgghhBBCCFEQMgMkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhDigaZqmFHsMQgghhCgcCYCEEAcsTdPeB/wu+/PJmqbZmqadXNxRCSGEECKfvMUegBBCFNFX+/y8FDgWWF2ksQghhBCiACQAEkIIQNf1CPBascchhBBCiPxSbNsu9hiEEKLgNE17Djipz02nAM8Cp+i6/pymad8DPgp8E/ghMAdYC1wG2MAdwAJgI/AVXdf/16ftQ4GfAO/O3vQ/4Gu6rtfn8SkJIYQQYghkD5AQ4kB1OfB29utYoHwfx0wFbgVuAD4CVAN/BR4E7sUJkFTgIU3TQgCaps0DXgHqgE8DnwVmAS9rmlaXv6cjhBBCiKGQAEgIcUDSdX01EAEiuq6/lv15T2Hgcl3XH9R1/Z/AL4BJwPW6rt+n6/qjwDVALaBlH3MdkABO13X9EV3X/4IzuxQCrsrrkxJCCCHEoGQPkBBCDOyVPj/vyH7vu1eoPfu9Mvv9NJyldHFN03p/x0aAF4Ez8jRGIYQQQgyRBEBCCDGAbHKEPcUHeEgNcGH2a0+trgxKCCGEEDmTAEgIIdzVBfwXuGUf9xmFHYoQQggh9iQBkBDiQGYCHpfbfB44GFim67oBoGmaAvwB2AAsc7k/IYQQQgyDBEBCiANZF3CspmmnAhUutfkD4FXgMU3TfgkkgUuB84EPu9SHEEIIIXIkWeCEEAeyu4AM8AROlrYR03V9BXAiTq2gB3DSZk8Eztd1/RE3+hBCCCFE7qQQqhBCCCGEEOKAITNAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDxv8HECmnYWz7MCkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1499.35it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 99.62it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 1.810 - 21.090) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 0.9963 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.2596 & Fano Ratio = 0\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW80lEQVR4nOzddXgU59rH8e/uxt0TCC4ZXAo1KpSWttTb07fufqr09NTdS3uq1F2ou1B3pZTiOhCSAAkh7tlk9f1jE4qTLMlu5Pe5rlwhM8/M3Ptge+8jt8Xr9SIiIiIiIhJs1mAHICIiIiIiAkpORERERESkg1ByIiIiIiIiHYKSExERERER6RCUnIiIiIiISIeg5ERERERERDoEJSciIiIiItIhKDkREREREZEOISTYAQRBJRAOFAY5DhEREWm5HkAjkBDkOESkHVm6YYV4u9frjfB42v51W60W2uO+sjX1dWConwND/RwY6ufAaK9+tlotWCyWBiCyzW8uIh1Gdxw5KfR4vP3Ly+va9KYhIVYSE6Oprq7H5fK06b1lc+rrwFA/B4b6OTDUz4HRnv2clBSNzWbRrAeRLk5rTkREREREpENQciIiIiIiIh2CkhMREREREekQlJyIiIiIiEiH0B0XxIuIiIi0iblz58bi2+ZYH/iKbM0DFI4bN66mpRcoORERERFppblz51qBGy0W65kWiyUUsAQ7JpEOyOv1ep1z5859Dbh33LhxO93GT8mJiIiISOvdaLOFXBwXl+gIC4uot1gsKqIjsgWv12txOBqiqqsrLna7XQB37+waJSciIiIirTB37tw4i8V6ZlxcoiM2NrEs2PGIdGTh4ZF2ILmysuzMuXPnPrazKV6aHykiIiLSOhkWiyU0LCyiPtiBiHQGTaOLofjWZ+2QkhMRERGR1rECFk3lEmmZpr8rFlqQeyg5ERERERGRDkHJiYiIiIiIdAhKTkRERESkQ5g+/eGexx47ZWSw42ipFSuWRXz33TfxwY6jK1FyItKBLFq0gIcffoD33nsbh8MR7HBERERkB66//r+Dly1bEh3sOLoSbSUs0kF8/vln3HLLdXg8vvpEX301k6effomwsLAgRyYiIiLbpj0R2pqSE5EOID9/HXfddSsej4e9996HxYsXMnfu3zzzzBNcccVVwQ5PRERawOPxUF9fH5RZKVFRUR6rtfWP3nff8eOOP/6kwp9++j7Z6XRaH3vs6RVRUVGexx9/pNeiRfPj6urqbPHx8a5JkyaXTZ16dcHy5csiL7ro7GFPPfXC8lGjxtQDXHnlJQOXLFkU99VXP80PCQnB6/VyxBGTR5911rkFJ510WumWzywtLQl5+OEHes2bNyfe7XZbsrKG1F511XXrBg4c1Njc5rnnnkqfOfPj9JqampBBgwbXXX/9rXnN57cVc69evR3PPvtkj59//iG5oqIiNDMzs+GMM85ZP2XKEZUA7733dvJbb83occ455xe8+OJzvaqqKkOHDh1ec/PNd+S98sqLGT/99F1ySEiI9+ij/1X0739ftgGgsbHR8sQTj/T87bdfEsvLy8IiIiI9o0ePqbr++lvWJiUlu489dsrI0tLSsHfffbPH4sULYp9//jWzoqLc9sQTj2bOmfNnQk1NTUj//gPrLrzwkoK99ppQ2/zaPv74g6Q33ni1R0lJSXifPn3skyYdXPbii8/0/u23v+f683titVr9en0dlZITkQ7gxRefpaHBzrhxu/Pkk8/z44/f8d//XsGMGS9z0kmnkZ6eHuwQRURkBzweD6eeevyQFSuWB2WKz5Ahw2rffPN9058E5Ztvvki9776HVrndLsvgwVmNp556/LD4+ATn/fc/ujI2Ntb9888/JDz//NO9hw0bUXfooYdXpqSkOGbN+j1u1Kgx9W63m2XLlsQ2NjZa58+fG7377nvWLVgwL6qmpjrkwAMPrtzyWS6Xi6lTL84Ci/f22+9dnZyc7Hr88Ud6/fe/l2e9//5niwFKS0vDlixZFHvffQ+vcjgaLffee0f/e++9o9+LL84wtxfzlVdeMjAnZ3XU5Zf/Z23//gMbvvrq86R77rl9oNVqzT7kkMOqAMrKSsM+/fSjtLvvfiC7vr7Oesst1w0+55zThh900MGlTz314vIvvvg0+fXXX8mcOHFS5dChwxseemhar9mzZyVcd91Neb1792k0TTPywQfv7ffss0/2vOGGW9e98MKM5eeee9qwffaZWH7hhRcXut1urrji31lOp9Ny3XU356ampjnfeefNtOuvvyrr0UefWjFmzG713333dfzDD9/f/8wzz80/4ICDKmfP/iPuhRee6b2rvyf+vL5W/0EJEK05EQmy4uIiPvvsEwCuuOIqrFYrBx10CLvtNh6n08kbb7wS3ABFRKSFOmfdk4kTDywbM2a3+nHj9qiz2+2WAw88uOzGG29dM3LkKHu/fv0dZ511XnFCQqIzO3tlJMD48XtWzps3Jw5gwYJ50TZbiDcra0jtnDmzYwF+/fXnhMGDjdrU1DTXls/6/fdf4tasyYu8/fZ7cvbaa0Lt4MFGw0033Z639977VJSXl4UA2Gw271133Z87fPgI+9ix4+oPO+zIktzc1VHbi3nlyhURf//9V8IVV1y19uCDp1QNGjS48bLLrizcffc9K99449WNRf/cbrflqquuWzNixEj7HnvsVTdy5Ojq8PAwzzXX3Jg/aNDgxgsvvLQQYNUq3+scOnRY3fXX35w7YcJ+Nb1793VMnnxI1ejRu1Xn5eVEAqSkpLqsVqs3MjLSk5iY5P755x/icnNzom677e6cffbZvyYra0jDzTffsbZ37z72N954NQPg7bffyNhrrwnl55//76JBgwY3nnbaWSVTphxRvKu/J/68vo5KIyciQfbllzNxuZyMHj2W0aPHbjx+1lnnMm/e33z22SdcfvlVhIaGBjFKERHZEavVyptvvm92tmldAL169d44nSoyMtJ7xhnnFH/xxWeJr7/+avT69QXha9bkRlVWVoS63R4LwH77HVB12203ptrtdsvs2bNihw8fUZOZ2bth4cJ5ccCGOXNmx++//wHl23rWqlUrI6OiotyDB2dtfGZ6eobruutuzm/+OT4+3hUfH+9u/jk2Ns7tcDg2e3GbxmyaK5qTptpN24wcOabmtdde7LXpsUGD/nlueHi4JzU1vdFisQAQERHhBWhsbLQCHHfcCeW//vpz7MMP359ZUJAfnp+/LnL9+oKIIUOGbvacZtnZqyIjI6Pcm45KWCwWhg0bUTtv3t9xAHl5OVH77rt/xabXjR49tvazzz7ebIpEa39P/Hl9HZWSE5Eg++qrzwE44oijNzs+YcJ+JCUlU15exh9//MrEiQcGIzwREWkhq9VKTEyMJ9hxtFZ4eMTGmOvr660XXXS20dDQYN1vv4kVhxxyWNno0WPWXnbZhUOa2+y99z41oaEhnj///D12/vy5cZMmHVTet2+/xk8//TBj3bo1YXl5OVG3335PzraeZbOFeJvfLG+P1Wrd6QjUpjFvb1G6x+O22Gy2zU6GhoZu9rPVuv1Y7rzzlj6///5L0gEHHFS21177VA0ZMqzwjTdezSgrK9nmTjVe77ZfmsfjISQkxOt7ntXr9e58gK21vyf+vL6OSsmJSBDl569j+fJl2Gw2Jk8+dLNzoaGhHHbYkbzxxqt8++3XSk5ERKTdNU9N+vDDzxempaW7ACoqym1VVVUhzUlAWFiYd/TosdW//PJTwqpVK2Ouv/6WNb169XZYLBbvU0893rNHj54Nmy5u39SAAQMb6urqbDk5q8MHDBjYCFBWVhpyyin/GnH33Q+s8ifmrKwhdoC//54dM3nyoVXNxxcvXhiTmdnb7s89y8vLbN9882XqddfdlHPUUcdtHOnIz18bERERuUli9M+b/0GDsuz19fW25cuXRmw6erJs2dKYXr36NAD07dvPvmzZ0hhg41SupUsX73CdUkt+T7qSDj2sI9LVzZr1OwCjR48lKSlpq/MHHOBLSH7//deNWwyLiIi0l/T0DAfAp59+lLxu3Zqw2bNnxVx99RWD3G63xeFwbnwnPmHCvpU//vh9SlxcrGvgwEGN4eHhXsMYWvvbbz8n77XXhMrt3X+//SZW9+8/sP7OO2/uP3funOgVK5ZF3H77Tf3i4xOco0ePrfcnZsMY2jBmzG5V06c/3Oe7776Oz85eFf7EE4/2mDt3TsKJJ55S5M894+Li3ZGRUe7ffvslISdndfiyZUsib7vtxr55eblRTuc//RAREeEuKMgPLy4uCpk4cVJV79597XfeecuAP/74NXblyhURd911a5/8/LWRJ598ahHAqaeeWTh79h+JL774bHpOzurw999/J/nzzz9L21EsLf096SqUnIgE0Z9/+pKTvffeZ5vnx4zZjZiYWCoqylm6dHEgQxMRkW5ot93G15977oXrPv30o7Qzzzx5xP33391vxIjRNfvss1+5af6zE9mkSZOrPB63ZcSI0dXNx8aOHVft9XqZOPHAyu3d32q18sADj2SnpqY7rr/+v4Mvv/zfQ2w2m/fhhx9fFR4e7vcwwLRpD+fsscdelQ8//EC/888/c/js2X8k3Hjj7auPOOLoip1fvbWQkBBuvvmOnLVr10Sed97pw6+99j+DGxsbraeffnZBQcG6yLq6OivAMcccXzxv3pz4qVMvyQoJCWH69KdX9us3oP6OO24e+O9/nzc0Ly83ctq0h1eOG7dHHcCkSZOrL7106pqZMz9JPffc04Z//vknqYceelhJ87SvbWnp70lXYWnJvLcuJsft9vQvL69r05uGhFhJTIymoqIOl0ufcLenrtLXbrebAw7Ym5qaambMeIeRI0dvs90111zJt99+xYUXXsIll1wRsPi6Sj93dOrnwFA/B0Z79nNSUjQ2mzUXGNCmN/bD3Llzh1ittq/S0jJrw8IiOuyWrNLxzJr1W0xKSppz0w0Bnn768Yxvvvky5aOPvlgSzNjak8PREFFcXBDj8binjBs3bsWO2mrkRCRIVqxYRk1NNbGxcQwbNmK77SZM2BeAOXNmByo0ERERaQd//vlH/NVXX5H1+++/xObnrw375psv4z/99KP0SZMmb3N3s+5IC+JFgmTx4oUAjBo1BpvNtt12u+02HoAlSxbR2NhIeHh4QOITERGRtnXJJVPX2+1267Rpd/evqakOSUpKdhxzzL+KLrjg4g5dtT2QlJyIBMnixYsAGDly1A7b9enTl5SUVEpLS1iyZBHjxu0eiPBERESkjYWHh3tvvPG2dcC6YMfSUWlal0iQLFnSnJxse61JM4vFwtix4wCYN29uu8clIiIiEixKTkSCoLq6ijVr8gAYMWLkTtvvtpsvOVmwQMmJiIiIdF1KTkSCoHnUpE+fvsTHJ+y0/ciRYwBYtmwJ3XCHPREREekmlJyIBMHSpUsBGDFix+tNmmVlGYSEhFJRUUFh4fr2DE1EREQkaJSciATBqlUmAFlZQ1rUPiwsjMGDBwOoGKOIiIh0WUpORIIgO3sVAIMHZ7X4muZaKMuWLW2XmERERESCTcmJSIA5HA7WrMkFYNAgf5KTLltAVkREAmzffcePe++9t5Nb2v6nn76PO+64w0cccMBeu91//z292jO2lpg+/eGexx47Zec7y7RCa/okP39t2KeffpTYls/v7lTnRCTAcnNzcLvdxMbGkZaW1uLrhg/3/du7dKlvUbzFYmmvEEVEpJv44IOZC+Pi4t0tbf/880/3Sk/PaHzssadWxsTEtvi6zqQ1fXLHHbf0S0tLcxx99HEV7R1Xd6GRE5EA23RKV2sSjIEDBxISEkJtbQ0bNhS2V3giItKNpKdnuCIjI1u8DWRdXZ1t2LDhdX369HMkJSV3yeSkdX3i1SeFbUwjJyIBlp29EmjdlC6A0NAw+vXrT3b2KlatWkmPHj3bIzwREelG9t13/LipU6/OO+GEk8tuuumafh6Px5KYmOT88cfvkxsbG6yjRo2pvuGGW9ekp2e49t13/DiAd999q8e7777V480331/cu3dfx/PPP53+5Zcz06qqKkMyMno0nnDCKRuOO+7/ygH++OPX2Guv/U/WmWeem//BB+/2SElJbbz77vtzzjjjxBGnnHLG+s8//zQtLCzU88orby+zWCw8/PD9vf76a1aCy+Wy9O8/sP6SS67IHzNmt/rmeN96a0bKe++9nVFRUR42evTYqrS0dMeOXt8FF5xpDB8+qqaiojz0999/SQoNDfUceeSxxYccclj5tGl39cvJyY7OyOjZcO21N+aNHTuuftM+OfjgKZVnnnni8H79BtRPn/5MNsAvv/wUe9NN12TdcMOtqz/66L305cuXxSxfvizm2GOnxH788VeLjz12ysgDDzyk7Iorrlq/aQxpaemN99zzv7xt9cdrr729vKhoQ+gjj/yv94IF8+JsNqs3K2tI3dSpV68bOHBQY3v8vndkGjkRCbBVq5qTk8GtvrY5oWlOcEREpGNx2+3W7X15GhstgWi7K2bN+j2xuro65LHHnjJvvfWu1cuXL4t94olHM8E33SkpKcl51FHHFX3wwcyFmZm9HY888kDm559/mnbppVPXvvji68uOO+7/ip588tG+M2a8krrpfWfPnpXw1FMvLL/++lvybDarF+Cnn75PeuSRJ8zbb793dXx8vPvKKy8ZvH59Qfjddz+Q/dRTL6wYMmRo3ZVXXjJk8eKFkQCffvpR4jPPPNHnuOP+r+j5519bOnTo8Lovv5y50/nRH3/8fkZaWrrjhRdmLD3yyGOK33prRs/rrvvP4JNOOnXDk08+vzwsLNTz8MP3993yuoSEBPc119yUO3/+3PhPPvkwqby8zPbAA/f0P+igQ0oPP/yoygceeDR78OCsur333qfihRdmLG9NP2/aHw0NDdbLL7/I8HjcPPLIk+YjjzxpxsXFuy655Lyh69cXhLbmvl2BRk5EAmz16tbv1NVs8OAsvvrqc1auNNs6LBERaQOrL7947PbORWYZVb2vvSG7+eecq64Y7XU6t/lBcXi//rV9b75t4z/2udf9d6Snvn6b79vCembW97vznla9Od5ujJGR7ttuu3tNaGioNytrSMOsWb+XzZ07Jx58052sVqs3MjLSk56e4aqrq7N+9tnH6VdffUPu5MmHVgH07z+gsbBwffgHH7ydccYZZ5c03/ekk07d0DwKsHZtXhjAEUccXWIYQxsAfv3159hVq8zojz/+cmFKSqoL4KqrritYtmxpzNtvv54+cuTovA8/fDd9woR9K84445wSgEGDBm9YvnxpdF5eTtSOXlPv3n3sl146tRDgnHMuLHrrrdd77rffAeWHHHJYFcAhhxxW9vzzz/Te1rX77Tex5rDDjip+5pknen///TdJ0dHR7uuuu3ktQGJikjskJMQbFhbmaY65pTbtj3feeSOlpqY6ZNq0h3NDQ0O9AHfeeV/ev/51xMj3338nddNRmO5AyYlIANnt9o1FFPv3H9Dq65sTGo2ciIhIe0hPz2hsfoMMEB0d43a5XNscmVm5ckWE0+m0PPTQtH4PP3x/v+bjbrfH4nI5LXa7feN1/fr132p6Up8+fRuaf71ixbIogJNOOnaznbdcLpfF6XRYANatWxt5wAEHlW96ftiwEbU7S0569uy18TlRUVEegMzMzI3xhIWFe1wu53ZHn6666tr8efPmxM+b93f800+/tKw1a3S2Z9P+WLnSjLLb7bYpUw4Ys2kbp9NpXbduTcSuPquzUXIiEkD5+WsBiIuLJyGh9TsPDh5sAJCXl4vT6SA0NKxN4xMRkV0z8PGn52/vnMVq3exN7YCHpy9sadv+9z+03Qq8W7bdFZsmJv/Y9u09Ho8F4MYbb8sZMGBQw5bnw8PDN14YERHh2fJ8RETExvMej8cSGRnpfvbZV7YaAQoLC/MAWCwWvFuEEhISstPXHhJi26qNxdLylQ1FRRtCKysrQm02m3fWrN/iRo4cZd/xFZs/zuVyb5X4bNofHo+HHj16Nkyb9nD2lu2io6O75KYDO6I1JyIBtHbtGgD69NlqamuLZGT0ICYmFpfLRV5ebluGJiIibcAWGenZ3pd1kzfr7dk2UAYNymqw2WzewsL1YQMGDGxs/vrllx/jZ8x4Kd1qbfnbzIEDB9vtdrvN4Wi0bHqvV155IeOHH75NAOjbt1/9kiULYza9zjSXR7ftq9qcx+Phzjtv7t+3b//6Sy65Yu2bb76WuWTJ4sh/Wlg2/32yhXhra+tsm15fXFy0w08SBwwYaC8tLQ2Li4tzN7/uPn36Nj7xxKOZf/01K7atX1NHp+REJIDWrMkDoG/ffn5db7FYNi6kb15YLyIiEgzx8fHugw+eUjJjxsuZH374blJeXm7Y+++/k/zKKy/2SkxMatUajEmTDqrq27ef/bbbbhz422+/xObkrA5/4IF7ev3443cp/fsPbAA45ZQzN/z115+Jzz//dPrq1dnhr776Ytrs2bPatQDic889lZGbmxt1002355100mmlQ4cOr7n77lv7NzZtQhAZGekpLi4KLyjIDwUYOnRY7W+//Zw0a9bvMdnZq8LvvPOWvnZ7vW1Hzzj66H+Vx8REu6+77j8D5879K3rVKjPilluu679gwdz4wYONnYzSdD1KTkQCaFdHTgAGDhwE+Io5ioiIBNP119+y7phj/lX02msvZ5599ikj3njj1R4nn3za+ssvb90ibpvNxvTpz6wcPDir7p57bhtw/vlnDFu0aEHszTffsXq//SbWAEyefEjVtdfemPPNN1+mnHfeGcN/++2XhKOPPq6ofV4ZLF68KPLtt1/vecYZZxcMGDCwEeCGG25ZU1paEv7IIw9kAhx99L9K1q1bG3HuuacNd7vdXHbZfwqysozam266dvDll180JC4uzjVhwn47LNAYHx/vfvzx51bExye4rr/+6sEXX3ze0OLiorB7731w1ZAhw7aaLtfVWbxbTt7r+nLcbk//8vK6Nr1pSIiVxMRoKirqcLm2mlYpbagz9/U555zG/PlzmTbtIaZMOcKve8yY8QoPPTSNyZMP5cEHH2vjCP/Rmfu5M1E/B4b6OTDas5+TkqKx2ay5QOt3E2ljc+fOHWK12r5KS8usDQuL6HZvHkVay+FoiCguLojxeNxTxo0bt2JHbTVyIhJAbTFy0rzLV16eRk5ERESka1FyIhIgtbW1lJWVAtCnTz+/79OcnKxZk4fb3e028RAREZEuTMmJSICsXZsHQHJyCjExMTtuvAMZGT0IDw/H6XSyfn1BG0UnIiIiEnxKTkQCpC2mdIFv0WDzbl9aFC8iIiJdiZITkQDZ1W2EN9Wvn9adiIiISNej5EQkQAoK8gHIzOy9y/fq168/ALm5KsQoIiIiXUdIsAPYlGEYWcA84DLTNF9pOjYGeAwYD5QB003TfDBYMYr4q3l9SGZm5i7fSzt2iYiISFfUYUZODMMIBd4Aojc5lgx8C6zEl5zcBtxlGMY5QQlSZBc0Jyc9e+56ctI8cqLkRERERLqSjjRycgdQs8WxC4FG4GLTNF3AcsMwBgPXAS8HOD4Rv7lcLoqKNgBtk5w0r1upqKigoqKCxMTEXb6niIiISLB1iJETwzD2By4Cztri1H7AL02JSbMffJcYaYGKT2RXFRVtwO12ExoaSkpK6jbbNK5fT0NeXovuFxUVTUZGDwDy8rTuRESko7BYsFmtltBAf1ks2IL92kXaQtBHTgzDSABmAJebprnOMIxNT/cCFm9xyfqm732AYn+fGxLStnmZzWbd7Lu0n87Y10VFhYBv1CQsLASP08n6F54n44QTCE1Pp8HhpvKnH6j68XsyTjudpMkH7/Seffv2ZcOGQtavX8fuu49v85g7Yz93RurnwFA/B0Z372eLBZvHYulR3+AK+PurqIgQlxVvoddLh6vOO336wz1/+OGb5I8//mrL93Q7lZ29KvzCC88e9sorbyzt06efoz3ik44l6MkJ8DQwyzTNN7dxLgrftK5NNTR9j/D3gVarhcTE6J039ENcXGS73Fe21pn6urKyBIB+/fqSmBhN9lPPUj37T5wlxTjO+w9lVQ1EV9YT6vWy4fUZREaG0fPIw3d4z0GDBjJ79p+UlBS2259n6Fz93JmpnwND/RwY3bWfLRaLtb7BFfLnkkJPfYPLE6jnRkWEWPca0SMkNiLE6vV6O1xy4q9ly5ZEXn/9fwc5HI3dM9vtpoKanBiGcQa+qVsjt9PEDoRvcaw5Kanz97kej5fq6np/L98mm81KXFwk1dV23O6A/XvULXXGvl61yrdwPS0tg/w/51H09TdgsVCz18FkZ5f6Go2aTDqhJM77mdwXX8admELMsOHbvWd6um/tysqV2VRU+P3XYbs6Yz93RurnwFA/B0Z79nNcXGSnGZGpb3B56uzOQP9B6xyd00JPPTU94/333+6Rmdmroby8LCzY8UjgBHvk5FwgHdhyOtczhmFcA6wBem5xTfPPBbvyYFc7faDhdnva7d6yuc7U1/n5vhonGek9KHrnLQBC9tgHMzwDj8e7sV3hiP2x1VQRt2oB659/jr533I0tatujIr16+eqlrFmzpl37oTP1c2emfg4M9XNgqJ87j333HT/u4osvX/v9998m5eaujk5Pz2g499wLCw455LCq5jbfffd1/CuvvNCzoCA/MjExybH//pPKL7748sLw8HAvwIoVyyKeeeaJzOXLl8U2NNityckpjqOOOq74nHPO3+b0+1deeSHtlVde6HXDDbfmHHro4ZXbajN37l/x11xzY258fLz72mv/k9UuL146pGBn2acDQ4Exm3wB3AocDvwC7GcYxqaLvA4CTNM0/V5vIhJo69f7kpP+ERE05ORgCQ2lcOT+uDdJTACwWCjY4zBc8cm4Kiooe+/t7d6zd+8+AKxbt7bd4hYRka7v5Zef7zVp0kHlzz336tLx4/esuuuuWwfNmTM7GuDHH7+Lu+ee2wcedtiRpS+99MbSqVP/u/a3335Ouumma/oD1NfXW//73yuyIiIiPY8//syKl19+c+m+++5f8eKLz/RevHjRVvP7Xn/9ldRXX32x180337l6e4kJwIsvvm4edtiR2z0vXVdQR05M09xq9KNpBKXYNM01hmG8BFwLvGgYxgPAHsCVwL8DGafIrlq/3rePQ0aB77t19HhKt7Ne0hsSyroJR9Hvy1ep/OMPEo86jtCkpK3aNY+cVFdXUVVVSXx8QvsELyIiXdqkSZNLzzjjnBKAq6++vmDJkoWx7733Vtruu++Z+/rrr/Q46KBDSk877awSgP79BzSGhISsue66q7LWrs0Li4qK9hx99HHFp5xyRnFcXJwH4LLL/rP+ww/fy1i1akXkyJGj7M3Peeut11Neeum5Xrfddnf2AQccVB2cVysdXbCnde2QaZrFhmEcCkzHVzm+ELjGNM1XgxuZSMs5nU6KijYQbbMRkrMagIohu+P1bv8ae1ofivc6lAH77UlUeipO59brGyMjo0hNTaOkpJi1a9cycmRCO70CERHpynbbbfxmdeYMY2jdggXz4gByc3OjVq/Ojv7xx++Sm883//+Vnb0q4sADD64+9dQzi2fO/CRp9epVUQUF+eFr1uRGAbjdHkvzNRUVFaFPPz29r81m8/bq1WfLzY5ENupwyYlpmpYtfp4D7B2kcER2WXFxER6Ph7DISJKPOpraNesojkiCnayVLDP2wOqMILXRRbjNincb2UyfPn0oKSlm3bo1jBw5qr1egoiIdGEhISGb/Qfj9XqxWm1e3689lmOP/b8NRx99XNmW16WnZziLi4tCLrzw7KGxsXGuvfaaUDlu3B7Vo0aNrjvppGM3+0/JYrFy5533rnrpped63nPP7f1ffHHGCqs12KsLpCPSnwqRdta83iQuLZ2Mf/2LhmPOwNHCTVxKK+ysL63DXVaC17P1Nb179wVg7do1bRewiIh0K8uWLdls55UVK5bFDBw4sB6gV68+9nXr1kQMGDCwsfmrqKgwdPr0h3rV1tZYP/vs4+Ta2pqQl156fcWll04tPOywIyqrqiqbPvz+J+dJSIh3Tpw4qfr662/Oy8nJjnr55efTA/gSpRNRciLSzprXm/To0ZNGh4eyKvtOrviHF6h48zWyr7uG+oXztzqvRfEiIrKrPvvs4/SPP/4gKTt7Vfj999/Ta82avMhTTjmzCODkk0/b8NdffyZOn/5wz+zsVeG//fZL7AMP3Nu/rq42JD09w5WenuFobGy0zpz5SWJ+/tqwn3/+Ie6OO24eAOBwOLZ6nzl06PCG4447YcMbb7zac/Xq7C3LRYh0vGldIl1NcXERvSMj2T0+keqyCqpqWjfVtt4SRrTXS9nMT4kasxsWyz8zH5tHTtat08iJiEhHERUREtAPf3f1eYcccljJ+++/nf7oow9G9u3bt/6++x5cNXz4CDvAEUccXeH1enPeemtGjw8/fDcjKiraPX78HpX/+c+1+c3nV6xYvuH555/u/fjjD1tTUlIdhx56eOmsWb8nLF++NBoo2fJ5F198eeHvv/+SeM89t/d74YXXTE3vkk1ZtjWPvYvLcbs9/cvL27ZoXUiIlcTEaCoq6rS3ezvrbH191123Ej17Nkdm9MC6+wSWDJvcquttDfUM/nA6VqeDzKlXEb3J2pIVK5Zz8snHkZiYyI8/zmrTuDtbP3dW6ufAUD8HRnv2c1JSNDabNRcY0KY39sPcuXOHWK22r9LSMmvDwiIamo9bLNg8FkuP+obtbMfYjqIiQlxWr7fQ66VVFeL33Xf8uKlTr8474YSTt1pTItJWHI6GiOLighiPxz1l3LhxK3bUViMnIu2sqKiIo+PiAKjL6N/q690RUVQM3o3kZX9S+f03myUnvXv7thOuqKigurqauKbniIhI4Hm9uK14C2MDPHLie7bX09rERKQj0jiaSDurLSmiX1OV96rUPn7do3zoHngtFuqWLMGx/p/yQNHRMSQnpwCQn691JyIiweb14vZ4vM5Afykxka5CyYlIO0usrQXAk5JKFWF+3cMZk0BNnyEAVH3/7WbnmhfFa8cuERFprd9++3uupnRJR6LkRKQd2e12Mi2+v2bePgNxu/1f41U2dE8AqufPw+N0bjzeXCm+oCB/FyIVERERCT6tORFpR8XFGxgUHQOAM8O/KV3N7Gm9KZr4L4YffgBhkeEbF5tmZvYCID9fyYmIiIh0bho5EWlHRYWFDGhab1Kb1HPXbmaxUNZvBOtr3cA/2wk3JyfNxR5FREREOislJyLtqKi4iGuXLWamxUJNREKb3LO4rI5quwOcDuCfaV35+eva5P4iIiIiwaLkRKQdbSgqYkNjA0WpadidbbPnvytnFQV33c6Gl14AIDPTl5xs2FCIy+Vqk2eIiIiIBIOSE5F2VFy8AYCYuOQ2u6c7NBzv+nVUz5uLq6qK1NRUwsLCcLvdFBVtaLPniIiIiASakhORdtQ7P5+j0nuQFBnTZvdsTMrAnpoJbje1s//AarXSs2cmoKldIiIi0rkpORFpJ16vlzEOJ2f07kt8eHSb3rti8G4AVP78E16PZ+OieG0nLCIigVRXV2edMePl1Oafb7rpmn4XXHCm0Z7PzM9fG/bppx8l7so93nvv7eR99x0/bnvnA/E69t13/Lj33nu77aZWBNHatXlh++47ftwff/wau6v3UnIi0k5c5eVEWCy4PB48qb3b9N5V/YbjCQvHUVREQ/bKjetONHIiIiKB9NJLz6V/8ME7Gc0/X3vtzeseeODR7PZ85h133NJv9uw/4tvzGRI8Sk5E2kltbg4A6xsaCItNadN7e0PDqOo7HICaWX/Qq5e2ExYRkcDzer2WTX+Oj493JyYmudv5qZadt5HOSkUYRdpJxSoTgAJHI3ERbTutC6By4CgSV82j6q+/6HX00YAKMYqIBJPXC/Wu4HzwGxWCx+LHW/aqqirbww/f3+uvv2YluFwuS//+A+svueSK/DFjdqsHqK+vt06bdmfvv/+ek1BfX2/LzMxsOP30s9cfdtiRldOnP9zz3Xff7AG+KUpvvvn+4meffbJncXFR+PPPv2b+8cevsddf/9+s++57cOVjjz3Up7i4OLxfv371N998Z+4333yZOHPmx+lut9uy334HlN100+3rLBYLXq+XF154Jv2bb75MKSkpDg8NDfUMGTKs9uqrb1jbt28/xwUXnGksX74sZvnyZTHHHjsl9uOPv1rscDgs06c/1POnn35Ittvrbb169bGfe+4F6ydOPLC6+XV++eXnCa+++kLPoqINEQMHDq4bM2a36u31STO328M999ze+6efvk8OCQnxHnzwlNIrrvhvQUiI7+3zX3/9Gf3SS8/1XL16VbTT6bSmp2c0nnrqmYXHHPOv8uZ7fPLJh0nvvPNGRmHh+oiEhETnkUceU3zeeRcVbfmskpLikEsvvcBISEh0PvroU9lRUVGen3/+Ie7555/OLCjIj0xLS288/vgTN0yf/nC/N998f3GfPv0cxx47ZeSee06onD9/blxVVVXorbfeuXqvvfapefXVF9O++OKztNLS0rCUlBTH8ceftOGUU04vBfjjj19jr732P1nN9wDflKxTT/2/kQ888MjKCRP2q7nppmv6eTweS2JikvPHH79PbmxssI4aNab6hhtuXZOenuECWL58acQjj/yvT3b2qujExETnSSedWtj6P33bpuREpJ3Ur1lDGFBmtRHvz/8YO2FP60310PH03W8vvHGRgNaciIgEi9cLp38VNcSssLX9p1EtMCTRXTtjSr3Zmv9uvF4vV155yeCQkBDP3Xc/kB0XF+f+7LOPk6+88pIhjz/+7PKRI0fbH3/84Z55eblR06Y9tCo+PsH1wQfvpE6bdteA4cNHLDn33As32O126++//5z0/POvLUtJSd1qP3uPx8NTT03vfd11N+WFhUV4br31+oGXXnrB0LFjx1U99tjT5pw5s2Oeemp63732mlA9efKhVS+//Hzae++91eOaa27MHTJkqH3durXhDz10f99HHnmg96OPPrX6gQcezb7qqssGp6SkOq677ua1ALfccl2/tWvXRt5wwy25GRk9HT/99H3CrbfeMOiWW+5aPXnyIVVz5syOvvfe2weecMIphYcfflTZ33//Ffvss0/02Vn/rFy5IiY5Odn5+OPPrsjPXxf+8MMP9GtoaLDeeONt69avLwi9/vqrsg499IiSa6+9aa3L5bS89trLGY888r9+e++9T3VaWrrr888/TXzwwfv6n3762QWTJx9asWzZkqhHHnmgX3R0jPvkk08rbX5OWVlpyGWXXWgkJ6c4Hn74iezIyEjv4sWLIm+99YZBRx55TPFtt92Ts2LF0qgnnni075Yxfv31l6l33nnfqri4OPfQocPt999/T++ff/4++eKLr1g7cuTouj/++DXu2Wef6ONwNFrPOuu84pb+2Zg16/fEffedWP7YY0+Z69cXhN13310Dnnji0cy77pq2pqqqyvbf/15uZGUNqX3qqeeXFxUVhT3yyP1bxeYvJSci7cRT7Ps3oCoiqn0eYLGQv8fhxPdKoU+y769yRUU5dXW1REe33e5gIiLSMhbwBjuG1vjtt19iV60yoz/++MuFzYnFVVddV7Bs2dKYt99+PX3kyNF5hYXrwyMjo9x9+/ZvjI+Pd0+denXB2LHjauLjE90xMTGeyMhIj9Vq9TZ/or4t55xzQcG4cXvUAUyYsG/lzJmfpN16611roqKiPIMHGw2vv/5q5urVqyInTz60qnfvPo1XX31D7sEHT6kC6N27r2P27FkVv/zyUyJAYmKSOyQkxBsWFuZJSUl15eSsDv/991+TnnjiueXNoz0DBw4qWr06O/Kdd17PmDz5kKr33nsrLSvLqL3iiqvWAwwaNLgxJ2d15BdffJq2o/6Jj09w3nXX/bkRERHeIUOGNZSUlBQ8++wTfa688poCh8NhOfnk09eff/6/i6xWa/PrLPzpp++Tc3JWR6Slpde+//7b6XvvvU/5RRdduqEprsb6+jpbRETkxsJn1dVVIZdddlFWSkpq40MPPb46IiLCC/DWWzPS+/cfUH/NNTfmAwwenNVYXl4e+vzzT2+2iHXs2N2q9t//gBrfvaqtX3/9eep551207thjjy9vembJ+vUF4e+882aPM888t8XJSWRkpPu22+5eExoa6s3KGtIwa9bvZXPnzokH+PzzTxIdDof1jjvuy4uPj3cPGTKswW6vX3f33bcNbOn9d0TJiUg78Ho8hNX4RozrY3ZpQ5GdKiqvo3/PHsTHx1NVVUVBQQFZWe26wYiIiGzBYoEZU+rNzjSta8WKZVEAJ5107MhNj7tcLovT6bAAnH762RtuvvnaQcccc+jowYOz6nbbbfeqww47sjw+Pr7F60r69x/Y0Pzr8PAIT3x8gjMqKmrjG/SwsFBPY6PDCnDwwVOq5s6dEz19+kM9Cwryw/Pz10Xm56+LSExMdG7r3suWLYkC+O9/L9/sPz63222JiopyA6xZkxc1duy4qk3Pjxw5qnZnycnAgYPqm5MFgFGjxtS5XC7L6tXZ4SNHjrIff/yJZa+99lLamjW5EQUFBRF5eTlRAB6P2wKwdu2ayP33P7B803uedNI/IyYAM2a8kul2uyxbPisnJztqy6lnu+22ew08vVmMmZm9NvZtdvbKCLfbbRk7dnztpm3GjNmt9rPPPk4vKSlu8fv+9PSMxtDQ0I3xREfHuF0ul8UX2+qo9PQeDZv+GRg3bvfabd3HH0pORNqBxWrl84ED+PmTjxh4wNHt+qza/EIKl/3GkX3688biBRQU5Cs5EREJAosFokPx7Lxlx+DxeCyRkZHuZ599ZfmW58LCwjwA48fvUffRR18u+vXXn+LmzJkd9803X6a8/fbrPe+++4FV++03saYlzwkNDdlsRMlq3X4W9dxzT6W/9daMzEmTJpeOGbNbzYknnlL8008/JPz6609J22rv9fq6+9FHn1oRHR2zWd/bbDbvP+02X0QfEhK601Euq9W6WRuPx/dePDw8zLtqlRlx2WUXDunXb0D9uHG7V+277wFVSUlJzssvv2jops/fWcI4cuSo6sMPP7r0nntuG/jjj9+VT5o0ubrpWjyenS/8DwsL3+o1WrZ4qMfj65ZNkw3vJq/M6XRt9ZxN2/5j00Ot78+W0m5dIu1kQ1kZa+31REQntOtzIgpysH/zOftH+aaPaTthERFpiYEDB9vtdrvN4Wi0DBgwsLH565VXXsj44YdvEwCmT3+o519//Rl7yCGHVd100+3r3n//syVpaemNP/74XSKAxWJp06ls7777Zs+TTz59/a233rX2lFPOKB03bo+6goL8CO9mT/nnmYMHG3aAoqKisE1fwyeffJDy0UfvpwAMGDCwfvnypZvNd16+fMlO1wbl5eVENb+xB5g37+/YsLAwT9++/Rvfffet1Li4eOezz7688sILLyk66KCDq0pLS0LBt5YHIDOzd4NpLt/sOffdd2fvK6+8ZOP0p/33n1Rx2GFHVE6YsG/5I4880K+6utoK0K9f//otr128eMEOYx40KKvBZrN5582bs9lrXbBgXmx8fIIzISHRHRrqSzqrq6ttzefXrMkN31lfbGrw4Kz6wsL14WVlpRsHORYtmt9ma61anZwYhhFiGMZkwzDuMwzjbcMwvjQMY4ZhGHcbhrGPYRja3k0EKCvzjdzGxG3zw542U91vGF5bCIluD/2jorWdsIiItMikSQdV9e3bz37bbTcO/O23X2JzclaHP/DAPb1+/PG7lOapWAUFBeGPPvq/Pr/99kvsunVrwj7//NPE0tKS8JEjR9UCREZGeurq6mzZ2avCnU7nLr8HTE5OccybNyfONJdHrFq1MvyRR/7X86+//kxwOp0b37NGRkZ6iouLwgsK8kOHDBnWsNtu46umT3+w7zfffBmfl5cb9sILz6R/+OF7GZmZmY0Ap5561oY1a/Ii77//nl7Z2avCP/ro/aQvv5yZuv0ofMrKysJuueW6fitWLIv44ovPEt5887Wexx77f0Xh4eHetLR0R3l5WdgPP3wbt27dmrAvv5yZMH36w30BHA7flLhTTz2j8I8/fkt85ZUX0nJzc8I//fSjxG+++TJ1330nVm75rGuvvWmdw+GwPPjgvb3BN50uN3d19IMPTsvMzl4V/tVXnyfMmPFKJmw9MtIsPj7ePXnyoaVvvPFq5scff5CUk7M6fMaMl1O//vqL1OOO+78ii8XCkCHD7BEREZ6XX36+R07O6vBZs36PefHFZ3tt757bcuSRx5bHxcW7brrp2v5LliyOnDXrt5gnn3yszQq6tTg5MQwjzDCMqUAO8A1wIZAFxABjgUuBX4F1hmFcbhhGq7Iwka6k4rtvmdjQyNCYWGLi2nfNiScsgurevmlc+yenaORERERaxGazMX36MysHD86qu+ee2wacf/4ZwxYtWhB78813rG6esnXTTbevGTVqTM20aXf2P+OMk0a89tpLmWeddV7+ccedUA5wyCFTKhISEp3nn3/m8EWLFuzyDjA33XR7bmNjo/Xii88bOnXqv4fk5eVEXnLJFWtqaqpD1q7NCwM4+uh/laxbtzbi3HNPG+52u5k27eGcvffet2L69If6nn32qSO++ebLlEsvvXLNCSecUgYwcuQo+913P7Bq8eIFseeff+bwDz54J/2EE07Z6da348fvUWmz2byXXnrB0CeeeKTvlClHFl966dT1AGeeeW7xhAn7ld9//z0DzjnntOGvv/5qj7PPPr8gJSXVsWTJ4mjwrZ+57LL/rPn8809Tzznn1OGvvvpi5gUXXLz2//7vpLItn5WSkuq64IJL8n/44buUn376Pm7o0OENt9xyZ/acOX8mnH/+GcNfffXFnocfflQxQGho2HZHq2644da1RxxxdPFLLz2Xee65pw2fOfOTtIsuumzt+ef/uwggNjbWc911N+cUFKyLPPfc04ZPn/5Qn4suumxda5KT6Ohoz/TpT5shISHeqVP/PeS+++7qf+KJp25o8Q12wuL17nw0zjCMPYBXATfwBvCuaZqrt9FuJHA4cD5gAc4wTXNWWwXbRnLcbk//8vK6Nr1pSIiVxMRoKirqcLk6zXTTTqkz9HX+w/+jftlSnspdzchL7yM5tWe7Pi9mrUmfH9+h3OHgf7XVfPDhzF2+Z2fo565A/RwY6ufAaM9+TkqKxmaz5gID2vTGfpg7d+4Qq9X2VVpaZm1YWETDzq8QaZ358+dGhYSEeEeOHG1vPvbxxx8kPfrog/2+++7Xec21VjoLh6Mhori4IMbjcU8ZN27cih21bekrmwFcb5rmRztqZJrmYmAxcL9hGCfiS2iyWvgMkS6jcYPvA5nCxgb2bueRE4C6zIG4QsNIAmIqK/B6vdsd9hUREZGObcWK5VEvvfRcr2uuuSF32LDh9ry8vPAZM17uuc8++5Z3tsSktVr66kaapulozY1N03zXMIyPWx+SSOfmcTpwl/t2Diz3QHh4ZLs/02sLobrPEJJWL2L3mDjKykpJSdnpdFoRERHpgE4++bTSsrLS0KeffrxPRUV5aFxcnGu//Q4ov+yy/xQEO7b21qLkpLWJya5eJ9KZOUtKAKh3ufDExAXsuTUDRhK+cj52j5v8/HVKTkRERDopi8XCZZddWXjZZVfudG1MV9Oi5MQwjFtbc1PTNO/0LxyRzs9Z5FsTtr6xgZjYhIA9ty6jP8/VO1iVv5bh6/MZM2a3gD1bREREpC20dFrX7Vv87MW34N0NlAKJQBjgAMoBJSfSbTmKigDY0NBAdEJG4B5stRKTmA7A+vVdftRXRCSYPIB3y8J+IrJtTX9XvLDzIqUt2krYNE1r8xdwMFAGnAxEmKbZwzTNCHy7dJUBV/kduUgX4K6qAqCosYHYdq5xsqWEZF9yUrd6NR6HZlWKiLSTDV6v1+lwNOzy1rki3YHD0RDl9XqdwE6nqfmz3P8J4BbTNN/d9KBpml8ZhnEzcA/wth/3FekSUk86hWeWLuTL+XPYe1z779S1qcSUDG7NGsqIklLsSxcTPXZcQJ8vItIdjBs3rnru3LmvVVdXXAwkh4VF1Ld1pXSRrsDr9Vocjoao6uqKMK/X8+K4ceNqdnaNP8lJH2Dtds6VAOl+3FOkSyksK6Pe7W73AoxbSkzOYHV9HSPi4qmZM1vJiYhI+7nX7XZRWVl2psViicI33V1ENuf1er1Or9fzInBvSy7wJzlZCFxuGMZ3pmk6mw8ahhEBXAvM9uOeIl1KaWkpADEBntaVmJzBB+WlHJPRk5r580lrsGONaP+tjEVEuptx48Z5gLvnzp37mNdLD1o4VV6km/EAhS0ZMWnmT3JyA/A1sNowjK/4Z7TkcCAamOjHPUW6BFdNNRteeJaDvV5WQsBHTqJjE8h3uVnfYKcnUL9oITF77BXQGEREupOmN10tfuMlIjvW6izfNM2fgQn4RkiOAq4GDgO+A8aZprmgLQMU6UycJSXUL13K8KbRikAnJxaLhcTkDGaVlwFQM+/vgD5fREREZFf4M3KCaZrzgBPaOBaRTs/VNJ2ruLERi8VKdEx8wGNITOnB7OxFHN+zF7ULF+JpaMAaERHwOERERERay6/kBMAwjMPwbSvcA7gRGAvMNU1zTRvFJtLpOMt8yUlJYyPRsfFYrbaAx5CYnMGfi/+kymoj3unEvmwJ0buND3gcIiIiIq3V6mldhmFEGYbxDfA5cC5wIr4ijBcDcw3DGN62IYp0Hs7SEgBKHI0BXwzfLDHFV/jxC4cH6zmXEb+7EhMRERHpHPzZWeJeYBxwEJDCP1vnnQEUAHe1TWginY+z9J+Rk0CvN2nWXIhxVmkRpYm9cXq0u6WIiIh0Dv4kJycBN5im+SO+MvQAmKa5Abgb2LeNYhPpdJqndRU7gpecJCb3AKCidAPl1XZq7U5sNu1wKSIiIh2fP2tOEoC87ZyrAGL8DUakM/N6vXgdDsA3cmIEaVpXQnIaAI0N9djz17Bh6U844iNJ/r+TghKPiIiISEv583HqEuC07Zw7qum8SLdjsVgY+L9HeCEutmnNSXBGTsLCIjaud7EXr8M76ycqfvoRj9MRlHhEREREWsqf5ORu4AzDMGYC5+Ob2jXRMIzHgUuAB9owPpFOxWqFDWVleAl8jZNNNS+Kz3M4cUXH4WlooGHFsqDFIyIiItIS/hRh/AQ4HRgFPI1vQfxD+Oqe/Ns0zffbNEKRTsRisVDatGNXsHbrAt92wgAVZUVU9RkCQO1cFWQUERGRjs2vVbKmab5pmmYfYCi+BfAjgJ6mab7YlsGJdCbVf/3J2of+xxivb5+IjjByUlG2gZq+Q33xzZuH1+UKWkwiIiIiO9PqBfGGYfwAXGKa5grTNM0tzo0CXjdNc1RbBSjSWTSuXUvt4sWk2nyFF4OanGyyY1d9am9cUTGE1NdiN5cTNXxk0OISERER2ZEWJSeGYezLP6MsB+BbY5K2jaZHAgPbJjSRzsVVUQFAucNBWHgk4eGRQYtl05ETrFaqew8hyfyb2rlzlJyIiIhIh9XSkZPzgTPxLX73Ak/hW2vi3aRNc6W3N9ssOpFOxFVRDkCZwxHUURP4JzmpqijG7XZR3XcoCeuzsSUEbx2MiIiIyM60NDmZCryMLwH5AbgU2HLrHzdQCSxtq+BEOpPmkZMyp4OYpIygxhITm0hIaBgup4OqihJsGf1Yd+pV9BnTC6vVgsfj3flNRERERAKsRcmJaZpVwM8AhmFMAuYCMU1V4TEMIxHobZqmapxIt+T1ejeOnJQ7HKQGeeTEarWSkJROadE6KsuKSErpQV2Di4qaBuKjYvF43EGNT0RERGRb/NmtayHwEfDTJsf2BBYYhvGxYRhRbRGYSGfiqa3duBNWudMR1G2Em23cTrh0w8ZjRSXV1KxYgderkRMRERHpePxJTqYBw4EbNzn2A3AMMB64sw3iEulU3LU12KKjsVutuL1eYoM8cgKbLoov9B3weIh4+j7W3ncPjvx1QYxMREREZNv8SU6OBq42TfPD5gOmaTpM0/wMX8JyYlsFJ9JZhPXoifHk0zzd9HOwF8TDNkZOrFbsib5j9QvnByssERERke3yJzmJBSq2c64ISPE/HJHOy2KxUFxeBvgWpAfbZtsJN6nu66sWX61q8SIiItIB+ZOczAPO2865c4BF/ocj0nlZLBbKSksAiInvAGtOUrZec1LTKwuvxUrjunU4S4uDFZqIiIjINrW6QjxwN/ClYRh/41sYXwyk4ltzMg5fIUaRbqX04w9ozM1lAF7m0zGmdSU0Teuy19dgr68lMioGT3gk9Rl9iS7MpX7BfOInHxrkKEVERET+0eqRE9M0vwWOwleA8U7gWeAufInOMaZpftWmEYp0Ag2rV1O3dAkxVhsWi5XomPhgh0R4eCTRsQkAVJYVbTxe3dsAoGbevGCEJSIiIrJd/kzrwjTNL03T3B2IBnoBcaZpjjNN8/M2jU6kk3A21zhxOoiOjcdqtQU5Ip+Ni+Kbd+wCavr4kpP6VStxVVcHJS4RERGRbfErOQEwDGMocCFwOZBgGMa+hmHEtllkIp2Iq6IS8BVg7AhTupr9syj+n5ETV3Q8RXtNIeGqGwhPDP4Ij4iIiEizVq85MQzDBjwDnAtY8E3veg+4DRhgGMZE0zTz2zRKkQ7M09CAt7EBgAqng14doABjs4TkdGDzRfEAZcYelMckkWmz4narWryIiIh0DP4siL8ZOA04H/gcaH7X81/gU+Ae4KyW3swwjDTgIWAKEAn8DFxjmuaypvNjgMfwFXgsA6abpvmgH3GLtAtXVaXvu9VKg8fTsUZOknsAm28n3Ky8uoFGp8f/4VMRERGRNubP+5JzgVtN03wZX7IAgGmai4BbgYNbeb9PgYHAYcDugB34zjCMKMMwkoFvgZX4kpPbgLsMwzjHj7hF2oWrqgoAu9X316kj1Dhp9s92woVbnWs0V1Dw3LPUL9Hu3yIiItIx+DNykg4s2M65fKDF78yako9c4G7TNJc2Hbur6f7DgclAI3CxaZouYLlhGIOB64CX/YhdpM15GxuxRcdQba8HILYD1Dhp1rwgvrK8GI/HvdlC/fA1Jvals6ixeokaMSpYIYqIiIhs5M/ISTZw+HbOHdB0vkVM0ywzTfOUTRKTdOBqfEnOMmA/4JemxKTZD76mRpofsYu0ueiRoxjy1NO8UO9LTjrStK64hGSsthA8bhfVlWWbnavp46sWX7NgIV6Xa1uXi4iIiASUPyMnjwLPGoYRBnyGb0H8YMMwJuFLLK7yJxDDMJ4DLsA3UnK0aZp1hmH0AhZv0XR90/c++ApA+iUkpG1n2tts1s2+S/vpiH1ts1koKysFIC4+CavVEuSIfKzWEBKT0ykrLqCyfANJKekbzzWm98YdGQP2WhyrVxI9fMRm13bEfu6K1M+BoX4ODPWziOyqVicnpmm+YBhGKnATcDG+HbveAhzAA6ZpPuNnLI/iK+h4MfCxYRj7AlH4kpVNNTR9j/DzOVitFhITo/29fIfi4iLb5b6ytY7U1y6Xh4oK38hESlo6kZFhQY7oH8lpPSkrLqC2qniruOr7DyV22Rwalyyk1757bvP6jtTPXZn6OTDUz4GhfhYRf/mzlXCiaZr3GYbxJLA3kAxUAn+aplnubyCb7M51YdN9L8O3OD58i6bNSUmdv8/yeLxUV9f7e/k22WxW4uIiqa6243Z72vTesrmO1teFr7yMfcMG+oWEYAIhYTHY7Y5gh7VR87qTDQVrt4qrsudgYpfNoXT2HBJPPBWL5Z8Rn47Wz12V+jkw1M+B0Z79HBcXqREZkW7An2ldfxmGcbNpmu8AX+/Kw5vWjRwEvGuaphvANE2PYRjLgExgHdBzi8uafy7YlWe7XO3zn5Pb7Wm3e8vmOkpf161ahaMgn3CrlbDwSELDIvB4vMEOa6PEFN9fmdKi9VvFVZvRD09IGK7ycupz8wjv03er6ztKP3d16ufAUD8HhvpZRPzlz0cQiUBpGz2/J/AmMLH5gGEYocBu+BbE/wLs11T4sdlBgGmapt/rTUTaUnOdkwpnx6oO3yw51ZeclJdsnc97bSHU9hyANT0D7H4PRoqIiIi0CX9GTh4D/mcYxn+BJaZpluzC8xfiG315yjCMC4AKfGtZEoFH8K0vuRZ40TCMB4A9gCuBf+/CM0XajNflwlNbC0Cl00liB6px0iwpLROA8tJCPB4PVuvmn0kU7HccoX1Tic5KxeVStXgREREJHn+SkzOBvsB3AIZhbHnea5pmi+5rmqbXMIyTgPuAd4AE4FdgP9M01zbd/1BgOjAPKMRXPf5VP+IWaXOual8BRo/FQq3LRe/4jpecJCSlY7XacDkd1FSVEZ+Yutl5b0golTUN2B1uwmzg7Tgz0kRERKSb8Sc5eb0tAzBNswq4pOlrW+fn4FsgL9LhuCp9yUmjzYYXiInrOAUYm9lsNhJTMigrLqCsuGCr5ASguraRqqpakq0OLB2oiKSIiIh0L/4kJ7nAD6Zp5rd1MCKdjbtpvUlt088xHXBaF0BSqm874fKS9Qwwxmx1Pip3OWWv30ejYZB55X8DH6CIiIgI/i2IfxgY39aBiHRGXqcTW0wMFU0V1mM74LQugORU37qTspL12zzfmJCCxemgbvky3HZ7IEMTERER2cif5KQY39oQkW4vdo89GfrUM7xY7ivx05FHTgDKt5OcOOJTcMQng9tNw7IlgQxNREREZCN/pnU9DzxpGMYkYAlQtGUD0zRf29XARDoLL17Ky327a8d00PUayWm+5KRsG9sJN6vulUVK1SxqF84netzugQpNREREZCN/kpOHmr6fsZ3zXkDJiXQbDoeL6qa1Jx2xzglAUtO0rorSQjweN1arbas2Nb0NUpbOombBAtJcLggJC3SYIiIi0s35k5z0b/MoRDqpwueexl5RTt+ICNY0NBAdEx/skLYpPjEFW0gIbpeLqopSEpPTt2pjT+2FOyIK6utpyMkmdNiwIEQqIiIi3VmrkxPTNNc0/9owjCggDigzTdPZloGJdAb2VStxVVRgs1iIjo3f5ohER2C12khM6UHphnWUFRdsMznBaqUmczAJqxdSt2A+sUpOREREJMD8WRCPYRj7GYYxC6gGCoAGwzBmNa1DEekWvB4PrupqACqczg47patZ845d5TtYd1I5aDSNBxxOwoEHBSosERERkY1anZwYhjEBX3X4BOAufMUT7waSgK8Nw1DBROkW3LW14HYDUOVydtidupo179i1ve2EAeoz+lEybAKuxFQslkBFJiIiIuLjz5qTu4FfgUNN03Q3HzQM4w7ga+AO4JC2CU+k43LX+EZNHCEhuL3eDrtTV7Pk5u2Ei7efnADU1DuornWQEB0diLBERERENvJnWtcewGObJiYApml6gMebzot0ee6mKV32piGGzjNysv1pXQA4HBT//DOF77wTgKhERERE/uFPclIDhG7nXBigySDSLTSvN6lxewCI7eAjJykZvQGoKN2Ay7n9/StszkbCPn2TkpkzcVRUBCo8EREREb+Sk9+BGw3DiNn0oGEYscAN+KZ8iXR9bje2mBgqnA6g49Y4aRYbl0R4ZDRer4eykvzttnNFxWJP6QleLxV/zw1ghCIiItLd+bPm5HpgLpBjGMZMYAOQARwJRADntF14Ih1X3IR9SDlgIpcedADQ8ad1WSwWUtN7k5+3gpIN60jvuf2SRTW9sogsXU/Z7Dn0GK89LkRERCQwWj1yYppmNrA38CNwOHB10/cfgb1M01zUphGKdGBer5eKijKADr8gHv6Z2lW6Yd0O29X0NgCoXLAQT2Nju8clIiIiAn7WOTFNcxkw1TTNDNM0w4BhwD1Nx0W6jZq6Whob7EDHn9YFkJruS05KinacnDQmpuGMScDrdFK/XH+tRUREJDD8qXOSYBjGt8BPmxzeA1hgGMbHTVXjRbq8wuefIf9//6N/VDShYRGEh0cGO6SdaunICRYLNb2zAKiZP6+9wxIREREB/Bs5mQYMB27c5NgPwDHAeODONohLpMOzZ6/Ck5tDiMXS4Xfqapaa3geA0uJ8PB73DtvW9vFN7XJUVbV7XCIiIiLgX3JyNHC1aZofNh8wTdNhmuZn+BKWE9sqOJGOyuv1bqxzUuns+NXhmyUkp2ELCcXtclJZVrzDtvUZfSm78CaSL56K1aodwkVERKT9+ZOcxALbK35QBKT4H45I5+BtbMDbVCuk2uXsFOtNAKxWGylpvQAoKVq7k8Y2akOiqKxpxGbza3maiIiISKv4845jHnDeds6dA2i3LunyXFW+UROXxUKjx9Mpdupq1rzupGTDTpKTJkXldTjr7e0ZkoiIiAjgX52Tu4EvDcP4G/gIKAZS8a05GYev3olIl+au8SUndqsvv+8s07oAUjOa1p3sbFE8gNeD9Y1nWZm/mv533UtoWno7RyciIiLdmT91Tr4FjgK8+Ba/PwvchS/ROcY0za/aNEKRDsjVtN6kxu1bVB4b35mSk5ZtJwyAxYrL6QS3m/pFC9o3MBEREen2/K1z8qVpmrsD0UAvIM40zXGmaX7eptGJdFQuF7bYWModDqBzjZykpP+znbDX691p+9qmgow1C+a3a1wiIiIi/kzr2sg0zQZgfRvFItJpxO6xJ8n77sN5++wJQExc51lzkpyaidVqo7GhnurKUuITU3fYvrZ3Fumzv6J+5UrctbXYYmICFKmIiIh0N9qCR8RPLreLqirfxnUxnWhaV0hoKCnpvh27igpyd9reGZtIY2IaeDzYly5u7/BERESkG1NyIuKnsrIyvB4PFouV6Jj4YIfTKumZ/QHY0ILkBKC6l69afO0CVYsXERGR9qPkRMQPG15+keLp0xkcHUNUTDxWqy3YIbVKc3JStL5lyUlNU7X4mkWL8TTVdxERERFpa7u05kSku2pYnY1lQyFhVmun2qmrWXrP1iUnDck9qR04kszxo7Cy80X0IiIiIv7wKzkxDCMFuAY4GOgBHAocBywwTfOTtgtPpGNq3kq40unsVDt1NWseOSkrKsDpdBAaGrbjCywW1u57HKlDMwiLjsThcAcgShEREeluWj2tyzCM/viqwF8I5ANp+JKcLOADwzCOaNMIRToYr8uFp74OgGqXs1NVh28WG5dEZHQcXq+HksI1Lb6uuKIOl0cjJyIiItI+/Flz8hC+qvD9gX8BFgDTNE8DPgVubLPoRDogV00NAB6g1uXqlCMnFouF9J79gJZP7QKoKSyh6JtvcRRqB3ERERFpe/4kJwcBd5mmWQlbTT5/Fhixq0GJdGTuGt+ULrvFgheIiet8yQlARuYAAIoK8lp8TcwvM6l4cwa1s2e1U1QiIiLSnfm7W5drO8fD2TphEelS3NVVANS4fesuYjvhtC6A9Mx+QOtGTqqbq8XP05bCIiIi0vb8SU5+BW4wDCN6k2NewzCswMXA720SmUgH5XW6sMXFUeFwAHTKaV3wz45dGwpy8Xpb9plCba/BeK1WGtcX4Cwuas/wREREpBvyJzm5HhgKZAMz8I2UXA3MBfYFbmqz6EQ6oJixuzH0iSe5L9v0/dxJp3Wl9uiL1WrDXldNVUVJi67xhEVQn94XgPqFC9oxOhEREemOWp2cmKa5BBgP/ABMAtz4thTOBiaYprmgLQMU6Yjq6upoaLADdMrdugBCQ8NIa1oUv37tyhZft3Fql6rFi4iISBvzq86JaZqrgNPaOBaRTqOkpBSA0LAIwsMjgxyN/3r2GcyG/NUUrFnFsDH7tuia2t5Z8NdX1K9cibumBltsbDtHKSIiIt2Fv0UYLcAYIJptjL6YpvnLroUl0nEVzXiFquxshsbEsiEiJtjh7JLMPlnM++Mr1q9d1eJrnDEJNCZnEF5RgmNtHpHDR7ZjhCIiItKdtDo5MQxjD+A9oFfTIUvTd2/Tr72ArU2iE+mAGnJysBXkE2Gzddr1Js169hkMwPp1q/B4PFitLZvpmb/PMWSNHEBcVk+cTlWLFxERkbbhz8jJI4ATOBtfhXhPWwYk0tG5muqcVDqdxMZ1zvUmzdJ69sUWEkqjvY6K0kKS0zJbdF1jYjpljRacbv31FxERkbbjT3KyG3CyaZqftHUwIh2d1+PB3VQhvtrpJLWTLoZvZrOFkNFrAAV5JgVrV7Y4OQGorGmgrsFFTJgV78YBVBERERH/+bOVcDEaLZFuylNfD03FF6tcTmI7+bQu8K07AVq17gTAkmNSOO1uime82h5hiYiISDfkT3LyJHD9FkUYRboFd9OUrgbA5fUS08mndQH0bEpOCta0fDthHwuetblUz5uL16PPK0RERGTX+TOtazAwDNhgGMZSoH6L817TNA/a5chEOiBXtS85qWkaPYnt5NO6AHr199UtWb92FS6nk5DQ0BZdV5fRF09YBNTU0JCzmshBg9szTBEREekG/Bk5GQQsAP4G7Ph26Nr0y597inQKXqcTW1wcZY2NAMTEdv5pXcmpmUTFxON2OVm/rhVTu6w2anoNAqB+0fx2ik5ERES6k1aPnJimOak9AhHpDKJHjGTgw49y/JhhQOetDr8pi8VCnwHDWbHoD9bmLKXPgGEtvramt0F8zhJq5s0j+V8ntmOUIiIi0h1olEOklcrLywCwWm1ERccFOZq20WegLyFZu3pZq66r7TkIr9WGY8MGHBvWt0doIiIi0o20aOTEMAw3sLdpmn8ZhuHBV2hxe7ymafpVeV6kMygpKQYgOi6hxUULO7q+A0cAsDZnaauKMXrCwqnv0Y/ogtXUL5hP2JSe7RmmiIiIdHEtTSLuxFdwsfnXO0pORLqs4rffwLFkMaPi4intAjt1NcvoNYDQsHAa6mspLVpHWo++Lb62st9wImOjiejbr/0CFBERkW6hRcmJaZp3bPLr29stGpEOriEvj/ANG4i02rrENsLNbLYQevUbQu7KhazJXtKq5KRq0BhCd9+bwUN7tGOEIiIi0h20dFrX/q25qWmav/gXjkjH1lznpMrlJKYLFGDcVL/Bo8hduZAccz6773dEq66tqmmk1u4iKSYMt1s1T0RERMQ/LZ3W9RP/TOWybKeNt+mcF7DtWlgiHZO7qc5JldNJehcaOQEYOGQsP34+g9yVi/B43FitLV865nR5KFqVR5inmsgxu7VjlCIiItKVtfTdh7YPlm7P43TisdsBqHY5iYnvWiMnPfsMJiIyhgZ7LevXrqLPgKEtvjasqhRefYr8kFAGPvo41oiIdoxUREREuqqWrjn5ub0DEeno3DU1vu9eL3VuN7FdbOTEarXRP2sUyxf+weoV81uVnDjiknHGJhJaU4F9+RKix45vx0hFRESkq/JrH1TDMFIMw7jfMIx5hmEUGoYxyjCM2wzDOKatAxTpKJrXm9S43QBdakF8swFDxgKwesW81l1osVDd2wCgdl4rrxURERFp0urkxDCM/sAi4EJ82wun4RuByQI+MAyjdStpRToJr8OBLS6eckcjQJdbEA8wcIhvvUh+7goa7HWtura6r2+kpWbBfDxOZ5vHJiIiIl2fPyMnDwHFQH/gXzQtkDdN8zTgU+DGNotOpAOJHJxF2h13cv2yxUDXTE6SUnqQkt4bj8fNyqVzWnWtPbUXrqhYPHY7DebydopQREREujJ/kpODgLtM06xk62KMzwIjdjUokY6qtLQEgMjoOEJCQoMcTfsYMmovAFYsnNW6Czed2jVfU7tERESk9fxacwK4tnM8HFWPly6sOTmJ7YKjJs2GjJoAwMqlc3A6Ha26tqbvEADqli7B69U/BSIiItI6/iQnvwI3GIYRvckxr2EYVuBi4Pc2iUykgyn98H1CP/iA3RMSiYnveovhm/XsM5jYhGQcjXayl7VuBKQuvS8lU04j7da7sdn8/exDREREuquWV1n7x/X4EpBs4Ed8IyVXA8OAQcB+rbmZYRhJwL3AkUAcvsX215um+VvT+THAY8B4oAyYbprmg37ELbJLGtauJaq0lGhbCI4uuFNXM6vVypCRezPn15ksnvsr/bJaUVTRaqMkfSDVDi8JNisej7v9AhUREZEup9UfbZqmuQRfovADvuKMbuBgfMnKBNM0F7Tylm8DewEnA7sD84BvDMMYYhhGMvAtsLLpmbcBdxmGcU5r4xbZVc1bCVe5nF1yMfymhu/m+4xh0d+/4HA0tPr6DaV1eLxoapeIiIi0ij8jJ5imuQo4bVcfbhjGIHyJzT6maf7RdGwqcBhwKmAHGoGLTdN0AcsNwxgMXAe8vKvPF2mN5uSk2ukkrQuPnAD0GTCcxOQMKso2sGLhLEaMO6BV17t++obsV5fQ49zzieg/oH2CFBERkS7H3yKMAwzDGNb06wTDMJ40DONTwzDOaOWtSoEjgLnNB0zT9OLbnjgJ3xSxX5oSk2Y/+B5rpPkTu4g/vF4v7up/Rk668oJ48E3tGr3HgQDMn/1d62+woQBn4Xrq5s/deVsRERGRJq0eOTEMYwrwCfA4vrUmzwDHA4uBVwzDCDNN88WW3KtpO+Ivtrj/CcBA4Gvgnqb7bmp90/c++Oqt+CUkpG0X6zYv/tUi4PYXjL522+14Xb4cudrlIi4hGavVErDnB8PYvSfz05dvkrNiAdWVJSQktfzzgNp+Q4nPW0rN3L9JO+FELJau3Ve7Qv92BIb6OTDUzyKyq/yZ1nUr8A1wh2EY8cBxwH2mad5qGMbdwFSgRcnJlgzD2Ad4CfjENM3PDMN4BN+0rk01T4CP8OcZAFarhcTE6J039ENcXGS73Fe2Fsi+tjf4Rk3sbjcOj4eU9HQiI8MC9vxgiOzVl0FDx5K9fD7z/viCI064sMXXugcPw/trCI6iIsKry4ju17cdI+0a9G9HYKifA0P9LCL+8ic5GQ0cbZpmjWEYJzbd4/2mc98C//UnEMMwjgHeBP4ETmk6bMdXO2VTzUlJnT/PAfB4vFRX1/t7+TbZbFbi4iKprrbjdnva9N6yuWD0dUNRBba4OCqKiwAIDYvBbm9dDZDOxmq1sN/B/yJ7+Xz+/Olz9j34ZMLCW/qZgIW6zIHErDVZ/9OvpByT0q6xdmb6tyMw1M+B0Z79HBcXqREZkW7An+TEvsl1hwFFpmkuavo5A6hs7Q0Nw7gM33bBHwKnm6bZPFqyDui5RfPmnwta+5xNuVzt85+T2+1pt3vL5gLZ1yGZvYn479VcecQhhIZFEBoWicfT9XeiGjJqL5JSelBeWsi8Wd+wx/5Htfjaqt5DiFlrUjXnbxKOOKYdo+wa9G9HYKifA0P9LCL+8ucjiN+Aqw3DOAU4EV9CgWEY4/Bt9ftba25mGMbF+NavPAGctEliAvALsJ9hGLZNjh0EmKZp+r3eRMQfG6vDd+ECjFuyWq3sPelYAH779r1WVYyv6Z2F12qlMX8dzuIN7RShiIiIdCX+JCf/ATKBN4Bc4O6m45/jm3J1fUtvZBhGFr4Rk4+A+4A0wzAymr7i8a0/iQNeNAxjmGEYZwNXNrUVCajm5KSr1zjZ0m77TCEuIYXqylLm/v7Fzi9o4gmPpKbvUML3mIDVqqkYIiIisnP+FGHMBYYDPUzTHGGaZvNHoscCQ03TXN2K2/0fEIpvUX3hFl+PNY2OHAoY+Ioz3gZcY5rmq62NW2RXlH8xk4Qvv2KfpGRiu3iNky2FhoYxccqpAPzy9TvY62tafG3+/sdTd+gJhPfo0V7hiYiISBfibxFGL1C0xbE/DcOINgxjkmmaX7XwPvcC9+6kzRxgb3/iFGkrjevWEltZSVxIKO6E5GCHE3Bj9prMrB8/orRoHd9/9ipHnnRZi68tq26gweEmRLsJi4iIyE74U+ekL/AsMBHY3l6qtu0cF+mUXDW+0YJql5O4+O6385TNFsIRJ13Kq9Ov5+/fv2TU7pPoM2B4i66trLZTbq4iPhTCBw5u50hFRESkM/NnIvgjwATgOWA+8DvwILAI8OKboiXSpWysDu90dqsF8ZvqP3gUY/acDF4vH7zyAPV1LZveFWvOp/LBeyh+9+12jlBEREQ6O3+Sk4nAzaZpTgVeBhpN07wOGA/8DGjPUOly3DW+5KTa5SK2G07rajbl+H+TlNqTqooSPprxIG63e6fX1PQajBcL9tWrcTZtKiAiIiKyLf4kJzHAgqZfLwPGAJim6QaeBA5si8BEOgqvx4O7thbwjZx0x2ldzSIiozjhnBuwhYSyaukcZr7zOF7vjuu9uCNjsGf4KsTXzZ8biDBFRESkk/InOSnEV2wRIBtIMgyjeSueciC9LQIT6SjctbXQ9Aa8xtV9p3U169F7IP939nVYLFbmz/qGme88sdMRlKq+wwCo+euvQIQoIiIinZQ/ycnnwF2GYUwwTXMdkI+vKGMscC67WLldpKPx2O0QE0Ol00F4dCyhYeHBDinoho6ewNGnXgEWC3N//5J3XrgLe33tdttX9x2C12LBnpuDs0RTu0RERGTb/ElObgUqgTubfr4RmNp07DTgobYITKSjCEtPp/zkU7hw4Tzi4rvvepMtjd3rEE4890ZCQsNYueQvnrn/MtasXrrNtu7IGOoz+gFQN//vAEYpIiIinYk/RRjLTNPcEzij6ec3gAPwVYY/0DTNZ9o0QpEOoLjYV9YnVsnJZoaN2Ydzpj5AYkoPqsqLefnRa/jkjUepq6naqm1VP9/UrrqlSwIdpoiIiHQSfhVhBDBNs9AwjCFAIlBomub/2i4skY5Fycn2ZfbN4qJrH+frj55j/qxvmP/nNyxf+AcTDzuV3fc7gpCQUACq+w4jMiOD/odOCHLEIiIi0lH5M60LwzDOMwxjDbAU+A1YaRhGnmEYp7RpdCIdQMV33zJ0wQImpaR2622EdyQiMopjTr2S8656iIxeA2mw1/L1h8/x1L0XYy6ejdfrxRMeSXFiL2oa3YSE+PVPj4iIiHRxrX6HYBjGZcDzwFzgLOAw4BxgOfC6YRgntGmEIkHmWJ9PakMjSaFhWnOyE737D+XCax7lqFOuIDo2gfKS9bz13B289sRNbCjIxe32sqG0jh1vPiwiIiLdlT/TuqYCT5imecUWx18zDOMF4HbgvV0NTKSjcG1SHT5VIyc7ZbXaGDdhCsPH7s9v377DrB8/InflAp69/3J22/sQLszKYmX+Kvpccx2h6Rk7v6GIiIh0G/7MregFfLadc28BA/wPR6TjcdfUAFDl6t4FGFsrIjKKyUefw2U3Pcewsfvi9XqY+8dXrJv1Pe7KCmrnzgl2iCIiItLB+JOczAEO2s65scAi/8MR6Xhc1b6dp6pdLq058UNiSgYnnnsj50x9gB69B/F7aTEAyz/+kIqKiiBHJyIiIh1Ji6Z1GYax/yY/vgU80lR08V1gA74du6YAVwAXtXWQIsHUPK2r1uMhKjouyNF0Xn0HjeCCqx9l0c+f4MpbSApWrjjtBG56eDpDhgwLdngiIiLSAbR05OQn4MemryeAMOBi4AdgGfA7vuKMCcDbbR2kSLB4HA5obATAGx2H1apdpnaF1WplzKTjqEzrDcAw4JxzTufXX38ObmAiIiLSIbR0Qfykdo1CpIPy2OtxRUbiqq0lJDYx2OF0GQ1D94RfP+Sgnr14Z30+U6dezF133c8RRxwV7NBEREQkiFqUnJimqY81pVsKiU9g0T77MG3a3Qwfu2+ww+kyanpn4QkNI8Hp4NwpR/DSV59zyy3XYbVaOOywI4MdnoiIiARJi+aoGIbxi2EYY1pzY8MwxhuG8ZtfUYl0IM3V4WNU46TNeEPDqBg8lrD9DuTSa67juONOwOPxcNNN1/L9998EOzwREREJkpZO63oM+MowjL+B14FPTdOs37JR0yL5Q/Etih8LXNJWgYoES3NyogKMbato90OJ6BHHwPQ0brnlDrxeDx9//AE33ngNzz2XyujRY4MdooiIiARYS6d1fWAYxs/4Fr2/AIQYhrEMyAXq8C2E7w2MAJxNbU43TbOoPYIWCZTKX37iwA1FOFPTidY2wm2uvKqB2gYX0WE2brnlTsrLy/jll5+48spLeO21d+jdu0+wQxQREZEAavHWQ6ZpljZVhe+Lr0r8SnwJyZ5AMrAcuADobZrmFUpMpCtwrC+gFxaSw8JUgLEd1NQ2UDJvIdW//4LNZmPatIcYOnQYFRUVXHnlpdjtWw3QioiISBfW0mldG5mmWQY82/Ql0qW5qnwFGCudTgZq5KTNRZatp+GLlygMD2fgbnsQFRXNY489zamn/h+rV6/innvu4K67pmGxWIIdqoiIiASAijaI7EBjeRngS07iEjRy0tbsKZk44xLxNjZSv2gBAGlp6Uyb9hBWq5WZMz/hww/fC26QIiIiEjBKTkR2wFFR4fseFk5oaFiQo+mCLBYq+40AoHr2rI2Hx4/fg8sv/w8A999/N6tXZwclPBEREQksJSciO+CtrfV9j4kLciRdV1V/X3JSu3gx7qb+BjjrrPPYZ5/9cDgc3HLLdTidzmCFKCIiIgGi5ERkOzxOJ1aHAwCrthFuN46EVBqSe4DbTd28vzcet1qt3Hbb3cTFxbNs2VJefFHL3ERERLo6JSci2+Gpr6MhNIQGt5swrTdpV5VNoydVf/y+2fG0tHRuuuk2AJ5//mmWLVsS8NhEREQkcFq0W5dhGGe25qamab7mXzgiHUdIfAJvJSTw5ZczOez4C4IdTpdW3X8E6XO/x1VdjafBjjUicuO5Qw89nB9++I6vv/6Cu+++jRkz3sVmswUxWhEREWkvLd1K+JVW3NMLKDmRLqGoqBCAmDhN62pPrqhY8o65iHETxxAWE4nL5dns/LXX3sgff/zGsmVLeeedNzj11FZ9XiIiIiKdREundfVvxdeAtg9TJDgKC33JSVxiWpAj6frs8akUltbh3UZJk+TkFKZOvQqAJ598jKIi1XgVERHpilo0cmKa5pqW3tAwDFVLky6h/IfvuDg+kd9cbuITteYkEEor66mtaSDM0YAtbvMd0v71rxP59NOPWLRoIf/73z08+OD0IEUpIiIi7aXVFeIBDMM4GZgIhAHNyYgViAb2Bnq1SXQiQVS9ejVDYmJZXltDTFxisMPpFryL57PupS+IHzOG9PMu2uyc1Wrl5pvv5JRT/sV3333D7Nmz2HPPvYMUqYiIiLSHVu/WZRjGbcCbwMnAicCxwBHAmcBxwGdtGJ9I0NjLSgBfAUarVQuwA8ERmwB2O9V//427vn6r81lZBieeeAoADz00DbfbHeAIRUREpD35s5XwWcDrQBLwCPCZaZrpwO5AGbC07cITCR5nZSUAnsiY4AbSjTQk98SRmIrX6aRu3pxttrnookuJi4tn5UqTjz/+IMARioiISHvyJznJBGaYpukF5gITAEzTnAvcA5zfduGJBI+3rs73i9iEoMbRrVgsVAwYDUDVb79ts0lCQiIXXngJ4FscX7tJVXkRERHp3PxJTurwbRcMsArobxhGc1GCBfh27BLp9EIaGwCwJmgb4UCqGjASr8WCPXsVjqIN22xz0kmn0KdPX8rLy3jpJVWOFxER6Sr8SU7+wje1C2A14AImN/08FGhsg7hEgsrT2Eiox5eDh2gb4YByRcVSlzkIgNo//9hmm9DQMK666joAXn/9VQoL1wcsPhEREWk//iQn9wInGYbxmWmajfjWn7xqGMYHwEPA120ZoEgweOz1VHo81LlcRCalBzucbqdioG9qV+Xvv+P1eLbZZuLESey++544HA6ee+6pQIYnIiIi7aTVyYlpmr8A44F3mg5dBrwPDAHeA65os+hEgiQkIZHr87I5Z8HfRMenBjucbqe2dxbV4yaSMvVqbCHb3inNYrFw+eX/AeDTTz8iLy8nkCGKiIhIO/CrzolpmouARU2/bgAubMugRIKtoaGB8vJyAGLiteYk0Ly2EPJHTCQtPI5kmxWPZ9tbBo8aNYYDDjiQn376gaeffoL77384wJGKiIhIW/K3CGM8cCC+ootbjb6YpvnaLsYlElRFRYUAREREEqGthIOmsKSW3qkxGyu9bssll0zl559/5Ouvv+Cccy5gyJChAYtPRERE2larkxPDMA7DN30rajtNvICSE+nUyr79hjuHDGcpvulDEhy1q1ax9rt3iDcGk3DIYdtsk5VlMGXKEXz55UyeeOJRnnhCu3eJiIh0Vv4siL8PWA5MBAbi2zp4068BbRadSJA0FOQzJCaW9Ji4YIfSrVnLS2lcOI+KH77f7sJ4gIsvvhybzcZvv/3M/PlzAxihiIiItCV/pnUNAY4xTfPXtg5GpKNwV1UB4I2JD3Ik3Vt136H0mPMVztJS7MuXETV8xDbb9enTl2OPPZ4PPniXp59+nOeeeyWwgYqIiEib8GfkZA2gj5OlS7M0VYe3JKQEOZLuzRsSSuWAUQBU//rzDtuef/6/CQkJ5a+//tToiYiISCfl77Su2wzD6NfGsYh0GBEuJwChyapxEmwVg3cDoHr+PFxVldtt16NHT4455jgA1T0RERHppPyZ1nUakAmsNgyjBKjf4rzXNM2BuxyZSJB4PR6im/aHCkvrFeRopDExDXtabyKL11E763cSphyx3bbnnnshn3zyIbNm/c6iRQsYNWpM4AIVERGRXebPyEk+8DG+Hbm+BH7e4uuXtgpOJBhqizdgs1jweL1EpvcNdjgClA8eC0DFzz/vcGF8ZmYvjjzyGACee+7pgMQmIiIibafVIyemaZ7THoGIdBQb1qyhuLERq9VCSEQUDuf23wxLYFT3G05q9nwSD9gfK168O2h73nkX8dlnH/Pbbz+zdOlihg8fGbA4RUREZNf4U+ekzw5Oe4Ba0zQr/Y5IJMjWN9iZung+g7OGcrpLiUlH4A0JJXvKOcQNTSckPAync9sV4wF69+7DYYcdycyZn/D880/z6KNafyIiItJZ+DOtKw/I3c7XGqDMMIwSwzBubqsgRQJp/foCANIyeuLd0Uf0EnDri2tpbEHCeP75F2G1Wvnppx9YsWJZACITERGRtuBPcnIW4AC+Ac4BDms69hm+6vB3Aq8ANxuGcXHbhCkSOAUF+QAkp2inro6mrLSawm+/p+qHb3fYrl+/ARx66OGA1p6IiIh0Jv7s1nUK8PY21p68bhjG08A40zSPNgyjErgY0DsD6VQyc3K4a8hw6mz+/PWQ9hS2Ppe6797EHhlJ7IT9sEZEbLft+ef/m6+++pwffviW1auzGThwUAAjFREREX/4M3JyAPDmds59CBzU9OvfAG0pLJ1OTH09RkwscRHRwQ5FtlDXcyDO+GQ8dju1f83aYduBAwdx4IGTAXj55ecDEZ6IiIjsIn+SkzJg9HbOjQaqm34dA9T5E5RIMEW4XACEpfQIciSyFYuFsqzxAFR8/x3enSwKOvfcCwH48suZG6friYiISMflT3LyBnCnYRhTDcPINAwjtOn75cDtwBuGYSQCVwJ/tl2oIu2vurqKeJsNgPB0FWDsiCoHjcYTGkZjQQENK80dth0+fCR77jkBt9vNa6+9FKAIRURExF/+JCc3A28DDwNrgYam7w/jS1xuxLdIfmxTW5FOY11eLgmhYQB4YpODHI1siycsgqoBvtolld/veGE8wPnn+0ZPPv74A8rKSts1NhEREdk1rU5OTNN0maZ5LpAFXATchG+3rizTNC8yTdOBr3J8pmmai9o0WpF2VrBqJQBur5fG0PAgRyPbUzZkDwBq5s/DUbRhh23Hj9+TkSNH09jYyBtvvBqI8ERERMRPfm9HZJrmamD1ds5V+B2RSBCVrcmjH2C32dhBnT8JMkdCKrW9B5MYFYrVu+O6JxaLhXPPvZD//OdS3n33Lc4550JiY2MDFKmIiIi0RouSE8MwcoDjTNNcaBhGLr56JtvjNU1Tu3RJp1S6oZDixgZCklNxqjp8h7Zu4glYeiUxMDMNj3vHv1cTJ05iwIBB5ORk8+67b3LeeRcFKEoRERFpjZZO6/qZf3bh+nknX7+0cYwiATNnQyGXLV5A3v6Tgx2K7ITXFkJxeT2VdQ5sth3/U2a1WjnvPN/ak9dffxW73R6IEEVERKSVWjRysmnBRdM0z26vYAzDuBmYbJrmAZscGwM8BozHt43xdNM0H2yvGKR7W7duLQBJqT2pD3IssnP2Rhf5qwtw5SwgYcphWJs2M9iWQw89nCeffIz16wv45JMPOPnk0wMYqYiIiLSEP7t1YRhGrGEYmU2/DjMM4xrDMKYbhrG/v4EYhnElcOcWx5KBb4GV+JKT24C7DMPYsjq9yC6rqamhoqIcgPikjCBHIy3i9eJ9aTqln3xE7ewdF2UMCQnhrLPOA+DVV1/C6XQGIkIRERFphVYnJ4Zh7AGsAS5vOjQduB84HfjBMIyjW3m/TMMwvgTuBrYsWnAh0AhcbJrmctM0XwYeAa5rbdwiO7Nu3Rqu6D+IaSPGEL5hfbDDkZawWCgbvBsA5V9/jdez47UnxxzzL5KTUygsXM9XX30eiAhFRESkFfwZObkHWAE8axhGJL6k5CnTNJOAF/FtLdwauwEVwChg9hbn9gN+MU3TtcmxHwDDMIw0P2IX2a5169YyIDqaAREROF3aqquzqBy8G56wcByF66lfvOPdyyMiIjj99LMAePnl5/HsJJkRERGRwPJnK+E9gZNM08w1DONIIBKY0XTubXzJSouZpvkZ8BmAYRhbnu4FLN7iWPNH2n2A4tY8a1MhIX7NaNuu5gW5O1uYK7uuvfo6f90a9gzz1TZxRsdjtVja9P6djdVq2ex7hxURQWXWOJKW/EHFlzOJ220slh383p1yymm89NJz5OSs5pdffmDy5EMCGOzW9G9HYKifA0P9LCK7yp/kxINvqhXA4UAl8FfTz3HQpuuIozZ5VrOGpu8R/t7UarWQmBjtd1A7EhcX2S73la21dV+Xr19HmLXpP9S4RCJdO9oxu/sIDw8Ndgg7VTd+fxKX/0V9djbW/FwSRo3cbtvExGjOPvtsHn/8cV555QX+7/+O3WEyEyj6tyMw1M+BoX4WEX/5k5z8DZxvGIYdOAmYaZqmt2ma1fVN59uKHdiyTHdzUlLn7009Hi/V1W27F5PNZiUuLpLqajvundRckF3TXn1dlrsGbKG4wsOpbnDh6OZVGK1WC+HhoTQ2OvF4OniiZgmnMmssicvnkPfWu/TtPWCHzf/v/07l+eefZ8GCBXz11XfstdeEAAW6Nf3bERjq58Boz36Oi4vUiIxIN+BPcnIN8BVwMlCCbyE7wBJ8a1gObZvQAFgH9NziWPPPBbtyY1c7Fdhzuz3tdm/ZXFv3dUNxMfTIhLgEGh0uvB38/XigeDzejp+cACXDJxCfs5iQnpm4Gh1g2/4/b/HxiRx33P/x1luv8+yzTzN+/F4BjHTb9G9HYKifA0P9LCL+avVHEKZpzgcGAXsDA0zTXNV06mJghGmac9swvl+A/QzDsG1y7CBfGKbf601EtlRZWUG4wwFAaGqaEpNOyBUdT/YJ/8E75XhCI7Zf76TZWWedR0hIKHPmzGbBgnkBiFBERER2xq/xUdM0a0zTnG2aZt0mxz4wTXND24UGwEv41rG8aBjGMMMwzgauBO5r4+dIN5ebm4sHKHO5IFEbwXVWLlsoawqraGzBeqGMjB4cddQxALzwwrPtHZqIiIi0QIeevNk0OnIoYADz8BVhvMY0zVeDGph0Obm5q/m2pIjXYyKxTzwi2OHILigur6dw4VIqW1DH5JxzLsBqtfLbbz+zfPnSAEQnIiIiO+LPmpN2Y5rm2ds4NgffFDKRdpObuxqA/v0G4lCNk07NWl1B7cuPU4eXiGEjiOjTd7tt+/Tpy5QpR/DFF5/xwgvP8NBDjwcwUhEREdlShx45EQmUnJwcAPr1H9Dtd+nq7JwxCdT0Hw5A+Scf7rT9eeddBMD3339LdvaqnbQWERGR9qTkRATIy13NEyPHMmzePFy1tcEOR3ZR8eiJeC1WahcuxL6ThGPgwEEbCzG+9NJzgQhPREREtkPJiXR7drudhtJS0sLDCSkppqFjzXYUPzjik6kaNBqAso8/xLuT7dfOP//fAHz11eesXbum3eMTERGRbVNyIt3emjW5JIf6qqBb4xNwaFZXl1A8an+8Nhv1K5ZjX7Fsh22HDBnGvvtOxOPx8PLLzwcoQhEREdmSkhPp9nJzc0gNDwfAmpSMS9WjuwRXTDwVWeMAKPvog52OnlxwgW/05LPPPqawcH27xyciIiJbU3Ii3V5ubg5pTcmJJz4pyNFIWyoZuS+uxFSi99kfy07ajh49lj322AuXy8Urr7wQkPhERERkc0pOpNvLyVlNelgEAM7YxCBHI23JHRnDqqP/Te2w3QkN2/laoua1Jx999D4lJcXtHZ6IiIhsQcmJdHvZ2Ss3jpw4Y5ScdDVeLOQVVlHb4MKyk+GT3Xffk1GjxuBwOHjttZcCE6CIiIhspOREujW73c7atWuocDqxJibiiE0IdkjSDsor7az99gfW3Hk77vq67bazWCxceOElALz77lsaPREREQkwJSfSra1enY3H4+GNqgr6PfAIdam9gx2StAevF8f3X9GwJo+KLz/fYdN99tmPUaPG0NjYqLonIiIiAabkRLq1VatMALKyDJwuj6rDd1VWK4W7TQag4ttvcJaUbLepxWLh0kunAvD++++wYUNhQEIUERERJSfSza1cuXly0qgiJ11WbeYg6jMH4HW5KPvwvR223WOPvRg3bnecTicvvPBMgCIUERERJSfSra1aZTIpJZUpOblUfPCOapx0ZRYLhbsdjNdioXrOX9TvoDDjpqMnH3/8AQUF+YGKUkREpFtTciLdltfrZeVKk4zwCEIaGnDaG4IdkrSzxqR0Ko3xABS/8Tpel2u7bXfbbTx77TUBl8vFs88+GagQRUREujUlJ9JtFRcXUV1dRXqEr8aJQ9sIdwtFYyfhjozBUbie+qWLd9i2efRk5sxPWLMmNxDhiYiIdGtKTqTbMs0VAPSKjQPAEZMQxGgkUDxhERTsfQScfRnx48fvsO3IkaPZf/8D8Hg8PPOMRk9ERETam5IT6baWL18KQFpoGAAN0fHBDEcCqLa3QV54GqVVDYSE7PifwUsuuQKAr776nBUrlgciPBERkW5LyYl0W8uWLSHaZiPC6wWgPkrTurqT+gYXq/Mrqd9QTMPqVdttN2TIMKZMORyv18ujj/4vgBGKiIh0P0pOpFvyer0sXbqEnhGRAFgTEmnAFuSoJNAqliwj79YbWf/MU7jr67fb7vLLryIkJJQ///yDP/74LYARioiIdC9KTqRbKi4uprS0BKvVSsTgLEL6D1QBxm6oLjEDV2QsrooKyt5/Z7vtMjN7cfLJpwLw6KP/w+3WnxUREZH2oOREuqWlTbs0eTIyGHTLLVhOODu4AUlQeENCyd/7SAAqf/mZuqVLttv2ggsuJjY2jpUrTWbO/CRQIYqIiHQrSk6kW1q2zPcmdPjwkXiB6npncAOSoKlP70vF0D0AKJ7xCp4G+zbbxccncP75FwHw5JOP0dCgujgiIiJtTcmJdEsbk5Mhw3C5vDQ0KjnpzjaMPRB3bALO0lJK3393u+1OPvl0evToSXFxEW+88WoAIxQREekelJxIt+NbDL8YCzDqpx9ZffWVOMorgh2WBJE3NOyf6V0//Uj98mXbbBceHs5ll/0HgBdffJaioqKAxSgiItIdKDmRbicvL5eqqip6xMRgcblwVVVRbwsPdlgSZHU9BlA+cgKhkw4lbvjQ7bY77LAjGDVqDPX19dpaWEREpI0pOZFuZ/78uQDsbfjegNpSUmlweYMZknQQG8YeRN6w/ai0e7ZbnNFqtXLDDbdgsVj48suZzJ07J8BRioiIdF1KTqTbaU5ORmf29h1IzcDtVnIigMVCVa0Dc205jY1O7NnbLs44dOhwjj/+RADuv/9uXC5XIKMUERHpspScSLezYME8APpGRwPgSkoPZjjSAa1fW8LqO+9g3f+mYV+dvc02l112JfHx8axcafL++28HOEIREZGuScmJdCulpSWsW7cWi8VCXEMjAA2JaUGOSjoad2g4tWEx4HZT+MyTuGqqt2qTkJDIpZdeCcATTzxGSUlxgKMUERHpepScSLfSPGqSNTgLV9EGAOzxKcEMSToii4X8vY/ClZiCq6KCouefwevxbNXs+ONPZNiwEdTW1nD//XcHIVAREZGuRcmJdCtz5/4NwNiRY4jba2/CB2VRGxkf5KikI/KEhpO3/wl4Q8OoW7aM8k8+3KqNzWbjttvuxmaz8d133/DDD98GIVIREZGuQ8mJdCuzZ88CYNxee9PznPNImHoNdocWw8u2ORJSKZhwFABln8+k+q8/t2pjGEM466zzALjvvjuprt56CpiIiIi0jJIT6TaKijaQk5ONxWJhjz32wmq1UFvvxO1RciLbV91vOBUj9gag9L138DgcW7W56KJL6du3HyUlJap9IiIisguUnEi38eeffwAwbNgIopxOPE4HFTWNQY5KOoPCsQdRPWIvYi65ivDoyK3Oh4eHc+utdwHw4YfvMWvW74EOUUREpEtQciLdRnNystdeE8h/+EGWX3A+jdkrgxyVdApWK/njDmFFtY2KWgehoTa83s1H3MaN250TTzwVgFtvvYGqqsogBCoiItK5KTmRbsHj8Wxcb7LX2HE4i4vA66U2OinIkUlnUl7dwNKcUkr+nsf66Y9sNcXrP/+5hn79+lNSUsxdd922VQIjIiIiO6bkRLqFlStXUF5eRkREJFlxcQDYUlKps4QFOTLpbDYUVlD0wnPULV5E4TNP4t2kOnxkZCT33PMAISEhfPfd18yc+UkQIxUREel8lJxIt/Djj98DsPfe++DOzwfAktkHh9MdzLCkE/KGhpE38QS8IaHULVpI0csvbFYDZfjwkfz735cBMG3aXaxbtzZYoYqIiHQ6Sk6kW2hOTiZNOoiGvFwAGlMzgxmSdGL29D6sO+D/8FqtVM/+k+IZr2yWoJxzzgWMHTuOuro6rr56Kg0NDUGMVkREpPNQciJdXkFBPitXrsBqtbLffgfQkJcHQH1yj+AGJp1abeZg1u//L7BYqPr1F4peeXFjgmKz2Zg27SESE5MwzeVMm3ZXkKMVERHpHJScSJfXPGoyduw4Yi3gKi8Di4WauLQgRyadXVXfYb4ExWql+o/fqfn9143n0tMzmDbtIaxWKx9//AEffvheECMVERHpHJScSJf3zTdfAjBp0mQsIaGknXwqUQdMptZtC3Jk0hVU9htOwcT/gzF7ELvf/litlo3n9txzby69dCrgW3+ycOH8YIUpIiLSKSg5kS5t3bq1LFq0AKvVyqGHHoYtJoa0ww/DdfAxuNyend9ApAWq+gxhxdjDMPOrcXvB4nHjrq0FfOtPDjjgIBwOB1deeSkFBflBjlZERKTjUnIiXdoXX3wG+D7BTk31TeNye7yUV2uBsrQtj8eLmVfG0txSCl58gXXT7sFZUoLVauXeex9gyJBhVFSUc/nlF1FdXR3scEVERDokJSfSZXm9Xj7//FMAjjjiaNx1dVT9/iu16zdQW+/YydUiref1whozn+rly3FsKGTtfXdRv9IkKiqaxx57mrS0dHJyVnPNNVNxOPRnUEREZEtKTqTLmjt3DmvXriEiIpIDD5xM/YrlFL38IuunP0JNnd4YSvtwRsWSfeg5uFJ74q6uJv+hB6j47lvS0tKYPv0ZIiOjmD17Ftdf/19cmxRwFBERESUn0oW9886bABxxxFFERUVTt2QRAN6BQ3C6tN5E2o8rKpZVB59J/eBR4HZT8vYbFL30PFn9B/DII08QGhrKDz98y6233oDHoz+LIiIizZScSJdUXFzEjz9+B8BJJ52G1+ulbrEvOanNHBTM0KSb8IaGkbf3MZTtNcW31fCsPyh8+gn22msCDz74GCEhIXzxxWfcccctSlBERESaKDmRLum9997G5XIxduw4srIMHPnrcFdWYgkLoyJJleElQCwWiow9WHvI6Xhj44k55HBCQ61MnHgg99zzABaLhQ8+eI8rrrgCp9MZ7GhFRESCTsmJdDk1NTW89dbrAJx22pkA1C5cAEDI4CFUN+hTagms2vR+rDjmUpZ6EtlQ0YAt1Mo+qen878bbCAkJ4aOPPmLq1EtpaNAuciIi0r0pOZEu5+23X6e2toaBAwdz4IEHA1Dz9xwA7P2G4vUGMzrprry2EIor6vl72QbMhTkUvvAsfX/4nufPvZDoyEh++eUnLrroHMrLy4IdqoiISNAoOZEupaqqkhkzXgHg/PMvwmq14iwvx7mhEGw2yjKzghugdHv2RhfmmgocPfvhdTqJnjePlycexB7pGSxcOJ/TTjsB01wR7DBFRESCQsmJdCnPPPME1dVVDBo0mEMOOQyA0KQksh57nNgLLqPSqT/yEnzOmHhW7X8SxZOOh+gYKC3l6t79uGPkGGwVFZx11il8/fUXwQ5TREQk4PROTbqM7OxVvPvuWwBcc82N2Gy2jeesMdGUJvfF7dGcLukgLBZK+wz///buPD6q8t7j+OfMlmWSkACBEIJLFR5AQFxxqRYXqq1rXXu1r/tS2+rV9ta2XkttvWrtauu91urVLlZfvtpau2hra/W2Vq/K4gqKIPCwyZ5AQkhCwiSznHP/OJMQIqNAJpnJ8H2/XvOamWeeOfM7T56cOb/zPOcMKy64ga5jToFAgElFxdw15UgCiTizZ3+VO+74JrHYzlxHKiIiMmiUnEhBSCaT3HbbLaRSKWbOPIMZM04EwO2MEQg4dMSSNLVoJ0/yj1tUQsOMs1l70RdIjJ9CdOYsrrzmWhzH4c9/foLrrriExenLYIuIiBS6UK4DEMmGhx/+OUuXLqG8vIJbbrmtp3zT/T+Bri5S51xKa3tRDiMU+WCd5cNZedJFhINwYnUFk6Ydy+/u+hZfGV7N63fcymtHTOHym2+hvLw816GKiIgMGI2cyJA3f/4cfvrT+wGYPfubjB49GoDYyhXEli8jtn4dDTEnlyGK7LVECtY3tNEZruPa868g4DicUDWcUzdvZsEXrmPOfT8m0d6e6zBFREQGhJITGdJWr17F7Nk34bouF154Meeccz4AnufR9OcnAQgfdyJbXY2ayNAST6TYMOlU1n3qehrGHUaX61IbiTB60dusuPELvPOdb5HcqamKIiJSWJScyJC1Zs1qrr32KnbsaGPatCP5xjdux3H8EZL2N14nZpdDKETjlI/i6kR4GaI6KqppPv1KVl72Fd4YMYbNXZ2EHYeW5cu46tqreO65Z0kmk3SuX4ebiOc6XBERkX7ROScyJL3xxhtcc801NDc3M2HCRO6772dEIhEAkm1tbP3dYwCEPvZx6pORXIYqkhWB6DCi536eze1tzH3ut6xdM48lzU3cfPNXOGhsHXfVHUwwGKRsylSiU6dRMnES4ZHVPQm7iIjIUKDkRIaUVCrFY489yj333E0ikWDixMk88MBDDBtWCYCXSlH/8wdJtbYSqhnDuvHH48Xc3AYtkkWlZRVM+dR1HHLm5URffpo35j5NoqmJ7SOqGRkpon3hAtoXLgAgNGIEpWYSFSedTOnESTmOXERE5MMNieTEGBMAbgc+B1QBc4EbrLWrchqYDKrFixdx990/YNGitwCYNess7rzz+5SUlPbU8dwUgVAIp6iI1nOupFWJiRSosvJKTjvnM5w86xIWv/ki33v1OcJbLMdWDmdKeQXjy8ph2zba5s8lFi3h8CMm47oQ37aN1hdfoOjgQygaW0d41CicgGb4iohIfnA8L//n4htjbgduAK4GNgE/BD4CHGGt3ddJ1mtSKffQ5uaOrMYYCgWoqoqyfXsHyaR2iLMlmUwyb97L/P73jzNv3ssARKNRbrvtNj75yQtJpXbvv4GAQzKRYMVrS7BuBUOge+etQMChpCRCLBbXOTsDKJvt3NiwgUWv/5Nli+bT3lTPxLJyjiiv4JXt22griXLU0ccyq66OQxcv7nmPEwoTrqmhqHYskdpayo89nkhNTX9XK+9oGz04BrKdhw+PEgwG3sP//heRApX3IyfGmAhwE/A1a+0z6bLLgc3ARcDjOQxPsszzPBobt/L2228xf/4c5s59maamRgCCwSDnnnsBX/zijUyefDjbt3fgdnXSNm8OO5ctY9yXvkTChVUNHaz0hjEUEm+RbKquGceZ51/NmedfTWPDBpa/8wpzl77Bpng9qZ07+edzz7IuWsbpI0dxaDRKXUkpkWSC+MYNxDduACBZVUnt2DF4HrQteJOmPz1BeGQ1ocoqgsOGEaoY5t8PG0akdizBkpIcr7WIiBSSvE9OgOlAOfBCd4G1tsUYsxA4FSUnQ4bneXR2xmhr28GOHW20tbXS0FBPQ0M99fX1bNq0geXLl9HcvG2391VVVXHeeRdy8cWXM25MLW5zE1tfeJGtby5kx8KFuLEYAFtee5MNlYewvqFVIyZywKuuGUd1zThO+fhlJOJdbFq3grWrFrNhzVJ+vWkNHevW4AAjI0WMKymhrqSEuuJSnvjqv9OCw/ARIzl/1GjOCIWJb968x89wLr2MsmlHEo1GSS5ZQuszfyMYjRIsLSVQGiUYLSVQWkogUkTZsccTGTUKgERzM/GGegJFRQQiEZxIEU4kghMK4gRDBIqKcILBQWwtERHJF3k/rcsYcxHwBFBqrY31Kv99uuzcfVzkmlTKPbStLfbhNffB/HfX8dIDD1LT1Q7salPHo+f506Eq4o4/t3t6qp3D3M6enWiH3f8OfwuUs9Pxv5yPdGNMcDvT9XYtr9uzRGlzgnh4TPG6mOp1pV95/9/2f70SmgkCHpOJcxTx3ap2x+EB/3AjbEnXNU6SE5yk/5rnsdsFgDyPf8QDrE8kcFMJxjspTi0KgueC5+F5LngubioJnsdft2zGpn9EzpSVc/7oMbvay/GjCBWXUVw+nKWTZuEefyHBUIQx773OjL/f8762ai8fxeKJZ7Ng7El0uZo7ny2OA8FggFTKVbI3gHLVzvEdTexssOzcsoKu5g10Nm+gq3kDXa0N/v8uMCwU5uDSUqojRVSGw1SGw1SFIz2Pf7RqBeti/m+tnDt6DP867uCMn/fjlhjLU+AEAny0KMSVpZmTj0e8Mt4NFOM4AY70urjEayMFpHB2u3dxeCZYgQ0UA3CY28XZbhse4KW3FG6vx/PCFVinGA+odeOckWrDX9NeW5X0tm1BsJyVIf98tmo3zumJlp74PHa/Ato7oTJsKApAlZvg9MT2961T9/KXB0tZGioDoNxNcmai+X11uq0KlrIkXbfES3FWvJlM3gsWsyhUDkDEc/lEfFvGuhsCRSwMVwAQ8DzOizdlrFsfiPB6eFjP8wu6GjPW3RoI80qkipqaGu6dfQ1F4ewe/6yoKNG0LpEDwFAYOek+27mrT3knMHx/FhgIOFRVRfsVVF/3Pvw4M9ctYsbI6ox1frbgRXYk/R380w46hONGZZ7X/cjbc2mK+4nDR+sO4ria2ox1f7PkNTZ1+snWjNo6jqmty1j3j8sWsGGnf77NUTVjOLouvTOxh6uNPrViEZvadwAwpXo00w8+NONyn924lK2tLX7dEdUcc+hhGevObW6GkjAUDWP4yBqOq8xQMbGDl+I1vLTG/1tN21bKCXh0hKJsKq1jWdVk3hk+neWVk/GcALRl/EgR6csZAWMMjNm9OJiKQ9tm2NnIjo5GlnQ04nU0Qkcj7NwG8R14He3Q1QaBMgh7kIgxr7mJNTs7iAaDlAVDREMhosEgpcEQxcEAaxs209zpH2TZWjWC9WPGEgkEKA4GiAQCRJwAofSJ+Q2r3mR9entyyIhqinu2J+/P3tpWvMba7f6O+Oiq4Rx82ISMq/y8fZU12/yd68phlUwZPzFj3TfXvMvqxi0ARMrKmT7xiIx1l65byqoGf3TpI6VRjpk8NWPdteuXsWrzRgDGFhdz3JTpGetu2WhZtXE9ACMiEY6fdnTGuq2bV7Jq/XsAlAVDzDjq2Ix1O5saWbV2NQBhx2HGMTMy1n1t+zZWrV7Z8/y4Y2YQyHB56rdbW/jVyuWsAl4461Su+PgxGZcrIpLJUBg5uRj4I3seOSmy1l6wj4sckJGTZeu38uwvHqWivRX/CzS98Xb8o2wO8FblWJIBPx88qKOZUXE/SejezncfjXOAxZVjiYfCANR1bGdU547dEgin50ifw/LKWjrD/i+gj4m1MHpnC71r7nqfw8rKWjrD/lHG6lgrNR3NuwLoHpdJP19XWUtHxJ9PXhVrZUz7tvSadK8XPc83jhhHZ7SKYChMZVc7Na1b/OkZgSBOMEggGCIUKSEUKWbHYUcTr/ITs6KWLQxbv6RPa+5a0R2144mNHAdAINFFINFFsqSccCRMPJHUeSUDyHEcIuGQ2nmAFUI7p5IJUokukokuUvH0fe/n8U5cN4WXvrmu2/PYc930LYWbSuG4SVzPJeV5eK5L2E1Smuwi4HkEPZeA6xLwXIKei+N5bCuKEgsV4eERTXQxqrMNx/PHShwAz8PxIIDH1tJhNIf87V9ZPMYhHc3+ltTr3pruav+NxRU0FfmjFmWJTsZ3+AmQ11N3l03F5Wwp8kctSpNxJrU39qmza7n1xRVsKvZHLYpTCabu2LKrXq+/vwPUF5ezvqQSgIib5KjW+ox/g61FUd4r9Y/XhdwUx7TueSoeQFOklNXREf7neB7Ht2zMWLc5UsLK6Mie5zO2b8hYtzVczPLyasaNreXWa87LmMTsL42ciBwYhsLISfeWsBZY3au8Fli0vwvN9lVEJh00ipPuv+MDr1ByVVY/cajrTg4rYMZJe1kXIEwoFKeqKsz27V266s4A8q+6E1I7D7DCaedQ+pbdUels0dW6BofaWUT6ayhM0F+EP2FnZneBMaYSOBqYk5uQREREREQk2/J+5MRa22WMuR+4yxjTCKwFfoQ/ovJkLmMTEREREZHsyfvkJO02/FgfAkqAl4Gz9uMHGEVEREREJE8NieTEWpsCZqdvIiIiIiJSgIbCOSciIiIiInIAUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5wPM/LdQyDLeZ5XrHrZn+9g8EAqZSb9eXK+6mtB4faeXConQeH2nlwDFQ7BwIOjuN0AiVZX7iI5I0DMTlpAYqA+hzHISIiIntvDNAFVOY4DhEZQAdiciIiIiIiInlI55yIiIiIiEheUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5QciIiIiIiInlByYmIiIiIiOQFJSciIiIiIpIXQrkOoBAYYwLA7cDngCpgLnCDtXZVTgMrMMaYg4G1e3jp89bahwY5nIJkjLkVONNaO7NX2XTgXuBYYBvwE2vt3TkJsEBkaOdHgKv6VN1kra0bxNCGPGPMcOB7wLlABfAO8HVr7dz069NRf+63vWhn9WcR2S8aOcmO/wT+Dfg8cCLgAc8aYyI5jarwTAM6gVpgTK/bb3IZVKEwxnwZuLNP2QjgOWAF/s7c7cC3jTFXD3qABWJP7Zw2DX9nr3ffPmrwIisYjwMnAJ8GjgMWAv8wxkxUf86qjO2cfl39WUT2i0ZO+imdgNwEfM1a+0y67HJgM3AR/gZcsmMqYK219bkOpJAYY8YCDwGnALbPy9cCXcD11toksMwYMx6YDTwyqIEOcR/UzsaYIDAZ+La1tiEH4RUEY8zhwCzgZGvt/HTZjcAngCuAGOrP/fZh7WyM+RbqzyKynzRy0n/TgXLghe4Ca20L/lGkU3MTUsGaBizNdRAF6GhgO377vtbntVOAl9M7ct1eAIwxZtQgxVcoPqidxwPFqH/3VxNwDrCgu8Ba6wEOMBz152z5sHZWfxaR/aaRk/7rnj+7oU/5ZuCgQY6l0E0F6o0xc4AJwEr8I3N/z21YQ5u19q/AXwGMMX1frgMW9ynbnL4/CNg6oMEVkA9p56n400G/bIz5BOACzwC3WmtbBzPOoSx9YOiZ3mXGmEuBw4C/A99F/bnf9qKd1Z9FZL9p5KT/StP3XX3KO/GPHEkWpKfPTcA/8fJW4JPAG/jn9pyRy9gKXCl77tug/p1NU/B34NYC5wH/gd/Hn0pfcEP2gzHmZOBh4Kl0cqj+PAD20M7qzyKy3zRy0n+x9H1Rr8fgf9F1DH44hclaGzfGVAJJa233zsUCY8wk/C++53MWXGGL4fft3rp34tS/s+cO4J70EWmAJcaYeuAV/JON+04Dkw9hjLkAeAx4FfiXdLH6c5ZlaOc7UH8Wkf2k5KT/uqdz1QKre5XXAosGP5zCZa3d087DYuDswY7lALIBvy/31v180yDHUrDS8/Vb+hR3Tz+qQztz+8QY80X8ywU/CXym1wEN9ecsytTO6s8i0h8aXu2/RUAbMLO7IH2E/2hgTm5CKjzGmGnGmHZjzEf7vHQs8G4uYjpAvAyckr6aVLcz8K+apvn5WWKMecwY0/fcqePS9zqpeB8YY64H7gPuBy7vlZiA+nPWfFA7qz+LSH9o5KSfrLVdxpj7gbuMMY34c2x/hH+E7slcxlZglqRvD6a/FJvwL3N7Iru+9CT7Hga+BvzSGPND4Hjgy/i/6yPZ8xjwF2PMN/EvPz4B+B/gMWvtspxGNoQYYybgH8n/E/B9YFSviw/EUH/Oir1oZ/VnEdlvGjnJjtuAX+L/hsE8IAmcZa2N5zSqAmKtdfFPrHwd+APwFjADmGWt7Xv1HcmS9NHkswCDf3ns24GbrbWP5jSwAmOtfRq4FLgYf/rLL/EPbnw2l3ENQZcAYeBTQH2f273qz1nzYe2s/iwi+83xPC/XMYiIiIiIiGjkRERERERE8oOSExERERERyQtKTkREREREJC8oORERERERkbyg5ERERERERPKCkhMREREREckLSk5EJC8ZY5xcxyAiIiKDS8mJiOQdY8z5wKPpxzONMZ4xZmZuoxIREZGBFsp1ACIie/DVXo8XAicCS3MUi4iIiAwSJSciktestW3Aq7mOQ0RERAae43lermMQEelhjHkR+FivotOA/wNOs9a+aIy5A/g08HXgO8DhwHLgesAD7gWmAauBG621z/da9hTgB8Cp6aLngZustWsGcJVERERkL+mcExHJNzcAb6VvJwIVe6gzDvhv4LvAZcBw4I/Ab4Ff4CcvAeBxY0wJgDFmAjAfGAVcBXwW+AgwzxgzauBWR0RERPaWkhMRySvW2qVAG9BmrX01/bivUuAGa+1vrbV/AR4AaoFvW2sfstY+BfwnMBIw6ffcDsSAM621T1pr/4A/KlMC3DygKyUiIiJ7ReeciMhQNb/X44b0fe9zU7al7yvT92fgTw/baYzp3va1AXOAWQMUo4iIiOwDJSciMiSlT5Tva+cHvGUEcHn61ldjVoISERGRflFyIiIHihbgn8B/7eG15OCGIiIiInui5ERE8lEKCGZ5mS8Bk4G3rbVJ6PkV+l8Dq4C3s/x5IiIiso+UnIhIPmoBTjTGnA4My9Iy7wReAZ42xjwIdALXARcCl2TpM0RERKQfdLUuEclH9wMJ4Fn8q2n1m7X2HeAU/N9C+RX+pYfHABdaa5/MxmeIiIhI/+hHGEVEREREJC9o5ERERERERPKCkhMREREREckLSk5ERERERCQvKDkREREREZG8oORERERERETygpITERERERHJC0pOREREREQkLyg5ERERERGRvKDkRERERERE8oKSExERERERyQtKTkREREREJC8oORERERERkbzw/4B5neh6ONIZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 1.810 - 21.090) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 1.0145 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.0019 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1kElEQVR4nOzdd3gU5RYH4N9s3/TeeyBDBwEbFwQEKRZEr4pi76IIFgQEpAlSLgIGVHoREBQLgooFUQFFRBApSYb03nuydcr9Y7MYIHWzSTbhvM+Th81OO/uRZPfMVw4jSRIIIYQQQgghpL3J2jsAQgghhBBCCAEoOSGEEEIIIYQ4CEpOCCGEEEIIIQ6BkhNCCCGEEEKIQ6DkhBBCCCGEEOIQKDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBCiEOg5IQQQgghhBDiEBTtHQDLsuEA0urY9CzHcZtYlu0H4D0AAwEUA4jlOG5F20VICCGEEEIIaQvtnpwA6APAACAKgFTr+XKWZb0B/AhgH4AXANwE4AOWZYs5jtva1oESQgghhBBCWo8jJCe9AXAcx+VeuYFl2VcAGAFM4jiOBxDPsmxXADMA2JqclAFQA7jqeoQQQghxWIGwfCbwaOc4CCGtyBGSkz4A4urZNgTAkZrExOowgDdZlvXjOK7AhuupJUnSiKIUacOxDZLJGIii1PiOpMWordsGtXPboHZuG9TObaO12lkmY8AwjN3PSwhxLI6QnPQGkMuy7FEAMQASAbzNcdz3AEIAnLti/5yaf8MA2JKc5IqiFFlRobc13jrJ5TK4uWlRXW2AIIh2PTe5HLV126B2bhvUzm2D2rlttGY7u7lpIZczNOqBkE6uXZMTlmVVsCQk1QDeAFAF4BEAB1mWvQ2AEyxduLUZav7V2HpdmYyBp6ezrYc3yM1N2yrnJVejtm4b1M5tg9q5bVA7tw1qZ0KIrdo1OeE4zsSyrAcAnuM4axJyimXZ7gCmAdDDMj+kNmtSUm3rdUVRQkWFztbD62S9W1RRoae7cq2M2rptUDu3DWrntkHt3DZas50tPSdUAYGQzq7dh3VxHFdXknEOwBgAmQCCrthm/T67Jdfl+dZ5cxIEsdXOTS5Hbd02qJ3bBrVz26B2bhvUzoQQW7XrLQiWZfuwLFvFsuzgKzYNBHABwBEAQ1iWldfaNgKW1b1smW9CCCGEEEIIcVDt3XNyvubrQ5ZlJwEoAvAcgJsBXA8gH8B0AJtZll0O4AYAr8BS84QQQgghpMVOnTrlCstSxTRujBD7EgHkDhgwoLKpB7T3nBORZdm7ACwFsBeWtctPA7iN47hzAMCy7GgAsTXP5wJ4g+O47e0TMSGEEEI6i1OnTskAzGIY2WMMwygB0FrFhNiXJEmS+dSpUx8BeGfAgAGNjvds754TcBxXCODpBrafhKUnhRBCCCHEnmbJ5YpJbm6eJpVKo2MYhgrhEGJHkiQxJpPBqaKidJIg8ACwqLFj2j05IYQQQghpa6dOnXJjGNljbm6eJldXz+L2joeQzkqt1uoBeJeVFT926tSp9xob4kVjKwkhhBByLQpgGEapUmnsW1uAEHKVmp5JJSxzuxpEyQkhhBBCrkUyAAwN5SKk9dX8njFoQu5ByQkhhBBCCCHEIVByQgghhBBCCHEIlJwQQgghhBC7iY1dGTR+/Jje7R1HUyUkxGkOHfrBvb3jIBaUnBBCCCGEkGvWzJmvd42LO+/c3nEQC0pOCCEOT88DAz92xcCPXaHn2zsaQgghnQutieBIqM4JIYQQQkgNURSh0+na7eatk5OTKJM17/KDBw8c8N//Tsj95ZefvM1ms+y99z5McHJyEtesWRVy9uzfbtXV1XJ3d3d++PCRxVOnTsuOj4/TPv/8Ez0++GBTfJ8+/XQA8MorL0afP3/W7bvvfvlboVBAkiTcccfIvo8//lT2hAkPF115zaKiQsXKlctDTp8+6S4IAhMT063qtddmZEZHdzFa99mw4QP/r7/e519ZWano0qVr9cyZc9Os2+uKOSQk1LR+/fuBv/562Lu0tFQZHBxsePTRJ3PGjLmjDAD27t3jvXv3jsAnn3wme/PmDSHl5WXK7t17Vs6ZsyBt27bNAb/8cshboVBI48bdm//CC5PzAMBoNDJr164KOnbsiGdJSbFKo9GKffv2K585860MLy9vYfz4Mb2LiopUn376ceC5c2dcN278iCstLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqrK+tn37PvfatWt7YGFhoTosLEw/fPhtxZs3rws9duyvU7b8n8hkMpteX2dEyQkhhBBCCCyJycSJ/+2WkBDfbkN8unXrUfXxx59xzU1QfvjhW98lS95NFASe6do1xjhx4n97uLt7mJctW33R1dVV+PXXwx4bN34Y2qNHr+rRo28v8/HxMR0//ptbnz79dIIgIC7uvKvRaJT9/fcp5+uvv7H6zJnTTpWVFYpbb72t7Mpr8TyPqVMnxQCMNH/+O8ne3t78mjWrQl5//eWYzz47cA4AioqKVOfPn3VdsmRloslkZN55Z0HkO+8siNi8eQdXX8yvvPJidEpKstPLL7+aERkZbfjuu2+8Fi+eHy2TyZJGjRpbDgDFxUWq/fu/9Fu0aHmSTlcte+utGV2ffPLhniNG3Fb0wQeb47/9dr/3zp3bgocOHV7WvXtPw7vvLg05ceK4x4wZs9NCQ8OMHMdpV6x4J2L9+veD3nxzbuamTTvin3rq4R7/+c/Qkueem5QrCAKmTHkhxmw2MzNmzEn19fUzf/LJx34zZ74Ws3r1Bwn9+vXXHTr0vfvKlcsiH3vsqaxhw0aUnTjxu9umTetCW/p/Ysvra9YPSQdByQkhhBBCyCUds+7J0KG3Fvfr118HAHq9nrn11tuKR48eWxoaGm4CgIiIpwv27t0TkJR0UTt69O1lAwfeWHb69Ek3AHlnzpx2lssVUkxMt6qTJ0+4Xn/9jdVHj/7q0bUrW+Xr63fVYNrffjvilp6ept269ePzXbvGGAFg9uz5adu2bQooKSlWAIBcLpfefntZqru7uwAAY8feWbhz57bg+mK+eDFB89dff3rMn784aeTI0eUAMHnyK7kpKUlOu3ZtD7QmJ4IgMK+9NiPd+sG8d+++FRcvJri88casLIZh8NxzL+V++unuwMTEi9ru3XsaunfvUT18+IjSm28eXAUAoaHhph9//K4iLS1FCwA+Pr68TCaTtFqt6OnpJRw+/KNbamqK08aN2y9YrzFnzoKMixcTnHft2h7Qr1//lD17dgXcdNOgkmeeeSEfALp06VqYlZWpPnBgn39L/k9seX0t+ZlxVJScEEIcHgOgf837I9O+oRBCOjGZTIaPP/6M62jDugAgJCT00nAqrVYrPfrokwXffnvAc+fO7c45Odnq9PRUp7KyUqUgiAwADBkyrHzevFm+er2eOXHiuGvPnr0qg4NDDf/8c9oNQN7Jkyfcb7llWEld10pMvKh1cnISrIkJAPj7B/AzZszJsn7v7u7OWxMTAHB1dRNMJtNlL6x2zByXoAWAgQNvrKq9T+/e/So/+mhzSO3nunT597pqtVr09fU3Mozl3UGj0UgAYDQaZQBwzz33lxw9+qvrypXLgrOzs9RZWZnanJxsTbdu3S+7jlVSUqJWq3USan/wZxgGPXr0qjp9+i83AEhLS3EaPPiW0trH9e17XdWVyUlz/09seX2dESUnhBCHp1EAG0bq2zsMQsg1QCaTwcXFRWzvOJpLrdZcilmn08mef/4J1mAwyIYMGVo6atTY4r59+2VMnvxcN+s+N9/8n0qlUiH+8cdvrn//fcpt+PARJeHhEcb9+78IyMxMV6WlpTjNn784pa5ryeUKyfphuT4ymazRHqjaMdc3KV0UBUYul1+2UalUXva9TFZ/LAsXvhX2229HvIYNG1F8003/Ke/WrUfurl3bA4qLC1V17S9Jdb80URShUCgky/VkkiQ13sHW3P8TW15fZ0TJCSGEEEJIJ/Lrr4fdUlNTnL744pt//Pz8eQAoLS2Rl5eXK6xJgEqlkvr2va7iyJFfPBITL7rMnPlWekhIqIlhGOmDD9YEBQYGGWpPbq8tKiraUF1dLU9JSVZHRUUbAaC4uEjx0EP39lq0aHmiLTHHxHTTA8Bff51wsQ7rAoBz5/5xCQ4OtenuVElJsfyHHw76zpgxO+Wuu+651NORlZWh0Wi0tRKjfz/8d+kSo9fpdPL4+Aua2r0ncXEXXEJCwgwAEB4eoY+Lu+ACoMC6/cKFcw3OU2rK/wmx6LRdQoQQQggh1yJ//wATAOzf/6V3Zma66sSJ4y7Tpk3pIggCYzKZL30SHzRocNnPP//k4+bmykdHdzGq1WqJZbtXHTv2q/dNNw0qq+/8Q4YMrYiMjNYtXDgn8tSpk84JCXGa+fNnR7i7e5j79r1OZ0vMLNvd0K9f//LY2JVhhw59756UlKheu3Z14KlTJz0eeOChfFvO6ebmLmi1TsKxY0c8UlKS1XFx57Xz5s0KT0tLdTKb/20HjUYjZGdnqQsK8hVDhw4vDw0N1y9c+FbU778fdb14MUHz9ttzw7KyMrQPPjgxHwAmTnws98SJ3z03b17vn5KSrP7ss0+8v/nmgF9DsTT1/4RQzwkhpAPQ88BdX1luSh24uxpa+stFCCH16t9/oO6pp57L3Lfvc/9du7YHe3p6mYYMGVbi4+Nr4rh/VyIbPnxk+erVK5hevfpWWJ+77roBFefO/eM2dOitZfWdXyaTYfnyVUkrVy4PnTnz9a4A0LNnr8qVK9ckqtVqm7sBli5dmbJ69f+CV65cHqHT6eShoaH6WbPmJ48de0e9sTREoVBgzpwFKevWrQl5+ulHejo7u/C9evWpfOSRJ7I/+2xPYHV1tczZ2Vm8++7/FmzZsj5k6tQXtbt3fx4XG/vhxZUrl4csWDAn2mzmmcjIKN3SpSsvDhhwQzUADB8+sqKgID99z55dATt2bA2OjIzSjR49tvDgwa/rTVCa+n9CAKYpY+Y6mRRBECNLSqrtelKFQgZPT2eUllaD5zvcUNUOhdq6bThSO+t5YMinrgCAow9UdqrkxJHauTOjdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaTrnqEWkdx48fc/Hx8TPXXhDgww/XBPzww0GfL7/89nx7xuaoTCaDpqAg20UUhTEDBgxIaGjfTvQWTwghhBBCSOv644/f3X/55bDX9Omz0sLDI4xxcRe0+/d/6T927J2F7R1bZ0DJCSGEEEIIIU304otTc/R6vWzp0kWRlZUVCi8vb9Pdd9+b/+yzkzpt1fa2RMkJIYQQQgghTaRWq6VZs+ZlAshs71g6I1qtixBCCCGEEOIQKDkhhBBCCCGEOAQa1kWIAzn//UFk//wTVH5+uPn5l6BxptUFAUt5rB5ewqXHhBBCCOmcqOeEEAfx65rVUHy6B5FFRVCf+RtvvPQsDAZa3RIANArgozE6fDRGBw3dUiGEEEI6LUpOCHEAySeOw+fv05AxDFIYBquyMnD0zGnExq5s79AIIYQQQtoMJSeEOICkrZuhlMmQKmNw27pNmLpwCQBgz56dSE9Pa9/gCCGEEELaCCUnhLSztL9PIZLnIUoSop95HnK5HIMH34Khg2/BcC8fnFr9bnuH2O4MPHDXV8646ytnGPj2joYQQhzL4MEDB+zdu8e7qfv/8stPbvfcc3uvYcNu6r9s2eKQ1oytKWJjVwaNHz+mtz3P2Zw2ycrKUO3f/6WnPa9PbEejtwlpZwmf7kEUgHS5DKNvuOnS80+OvQtOBhOM5WWoKCqEm49v+wXZziQAudWyS48JIYT86/PPv/7Hzc1daOr+Gzd+GOLvH2B8770PLrq4uDb5uI6kOW2yYMFbEX5+fqZx4+4pbe24SOOo54SQdiSKIv5IiEe2Xg+Xm/9z2bY+Y+9APs9DLZPjrx3b2ylCQgghjs7fP4DXarVNvndTXV0t79GjZ3VYWITJy8u7UyYnzWsTiRaCdCDUc0JIO0pIiMO+1CT84OSEnx+6PAGRyWTQRUUBGRkQ4i60U4SEEEIc3eDBAwdMnTot7f77HyyePfuNCFEUGU9PL/PPP//kbTQaZH369Kt488256f7+AfzgwQMHAMCnn+4O/PTT3YEff/zZudDQcNPGjR/6Hzz4tV95eZkiICDQeP/9D+Xdc899JQDw++9HXadPfzXmsceeyvr8808DfXx8jYsWLUt59NEHej300KM533yz30+lUorbtu2JYxgGK1cuC/nzz+MePM8zkZHRuhdfnJLVr19/nTXe3bt3+OzduyegtLRE1bfvdeV+fv6mhl7fs88+xvbs2aeytLRE+dtvR7yUSqV4553jC0aNGluydOnbESkpSc4BAUGG6dNnpV133QBd7Ta57bYxZY899kDPiIgoXWzsuiQAOHLkF9fZs9+IefPNuclffrnXPz4+ziU+Ps5l/Pgxrvv2fXdu/PgxvW+9dVTxlCmv5dSOwc/P37h48f/S6mqPjz7aE5+fn6dctep/oWfOnHaTy2VSTEy36qlTp2VGR3cxtsb/e2dFPSeEtKMjR34BANx883+g1miu2t719jsBAMGCgIqiwrYMjRBCrlmCXi+r70s0Gpm22Lcljh//zbOiokLx3nsfcHPnvp0cHx/nunbt6mDAMtzJy8vLfNdd9+R//vnX/wQHh5pWrVoe/M03+/1eemlqxubNO+Puuee+/PffXx2+Y8e2y8YTnzhx3OODDzbFz5z5VppcLpMA4JdffvJatWotN3/+O8nu7u7CK6+82DUnJ1u9aNHypA8+2JTQrVv36ldeebHbuXP/aAFg//4vPdetWxt2zz335W/c+NGF7t17Vh88+LVfY69p377PAvz8/E2bNu24cOeddxfs3r0jaMaMV7tOmDAx7/33N8arVEpx5cpl4Vce5+HhIbzxxuzUv/8+5f7VV194lZQUy5cvXxw5YsSoottvv6ts+fLVSV27xlTffPN/Sjdt2hHfnHau3R4Gg0H28svPs6IoYNWq97lVq97n3Nzc+RdffLp7Tk62sjnnvdZRzwkh7Sjz2FGoZTIMGTKszu1RA2/AMT4WfgoFzn71JQY//VzbBkgIIdeg5JcnXVffNm0MWx46/c0k6/cpr03pK5nNdd7sVUdEVoXPmcdZv0+d8XpvUaer87OXKihYF7FwcbM+HNcbo1YrzJu3KF2pVEoxMd0Mx4//Vnzq1El3wDLcSSaTSVqtVvT3D+Crq6tlBw7s85827c3UkSNHlwNAZGSUMTc3R/3553sCHn30iUt3xiZMmJhn7QXIyEhTAcAdd4wrZNnuBgA4evRX18REznnfvoP/+Pj48gDw2mszsuPiLrjs2bPTv3fvvmlffPGp/6BBg0sfffTJQgDo0qVrXnz8Bee0tBSnhl5TaGiY/qWXpuYCwJNPPpe/e/fOoCFDhpWMGjW2HABGjRpbvHHjutC6jh0yZGjl2LF3Faxbtzb0p59+8HJ2dhZmzJiTAQCenl6CQqGQVCqVaI25qWq3xyef7PKprKxQLF26MlWpVEoAsHDhkrR7772j92effeJbuxeGNIySE0LaSUl2Jh7XaPFQv4HwG3h9vftV+vvDr7gYlX+fbsPoCCGEdFT+/gFG6wdkAHB2dhF4nq+zZ+bixQSN2Wxm3n13acTKlcsirM8LgsjwvJnR6/WXjouIiLxqeFJYWPilasEJCXFOADBhwvjLVt7ieZ4xm00MAGRmZmiHDRtRUnt7jx69qhpLToKCQi5dx8nJSQSA4ODgS/GoVGqR58319j699tr0rNOnT7qfPv2X+4cfbolrzhyd+tRuj4sXOSe9Xi8fM2ZYv9r7mM1mWWZm+tVDI0i9KDkhpJ1cPPwTvACUiiJ6hYTVu5/v9TeC//ZrlJcUQ5IkMMy1N2+PARBVs+jKtffqCSFtLXrNh3/Xt42RyS77UBu1Mvafpu4buezdc03dtyVqJyb/qvv0oigyADBr1ryUqKguhiu3q9XqSwdqNBrxyu0ajebSdlEUGa1WK6xfv+2qHiCVSiUCAMMwkK4IRaFQNPraFQr5VfswTNNnJ+Tn5ynLykqVcrlcOn78mFvv3n30DR9x+eV4Xrjq7ad2e4iiiMDAIMPSpSuTrtzP2dm5Uy460Fpozgkh7aT03FkAQKWHe4P79RgzFs+e/wdL484hOzurLUJzOBoF8OkdOnx6hw4auqVCCGllcq1WrO9LVuvDemvu21a6dIkxyOVyKTc3RxUVFW20fh058rP7jh1b/GWypn9UjI7uqtfr9XKTycjUPte2bZsCDh/+0QMAwsMjdOfP/+NS+ziOi3e276u6nCiKWLhwTmR4eKTuxRenZHz88UfB58+f0/67B3P5/5NcIVVVVctrH19QkK9q6BpRUdH6oqIilZubm2B93WFh4ca1a1cH//nncVd7v6bOjJITQtqJpqgIAOAc063B/ZxcXNG1R08AwF9//dnqcRFCCLl2uLu7C7fdNqZwx46twV988alXWlqq6rPPPvHetm1ziKenV7PmYAwfPqI8PDxCP2/erOhjx464pqQkq5cvXxzy88+HfCIjow0A8NBDj+X9+ecfnhs3fuifnJyk3r59s9+JE8dbtQDihg0fBKSmpjrNnj0/bcKEh4u6d+9ZuWjR3EhjzSIEWq1WLCjIV2dnZykBoHv3HlXHjv3qdfz4by5JSYnqhQvfCtfrdfKGrjFu3L0lLi7OwowZr0afOvWnc2Iip3nrrRmRZ86ccu/alW2kl4bURskJIe1AV1EB/5rhWVG3DGt0/+uvvxEA8Neff7RmWIQQQq5BM2e+lXn33ffmf/TR1uAnnnio165d2wMffPDhnJdfbt4kbrlcjtjYdRe7do2pXrx4XtQzzzza4+zZM65z5ixIHjJkaCUAjBw5qnz69FkpP/xw0Ofppx/teezYEY9x4+7Jb51XBpw7d1a7Z8/OoEcffSI7KiraCABvvvlWelFRoXrVquXBADBu3L2FmZkZmqeeerinIAiYPPnV7JgYtmr27OldX375+W5ubm78oEFDGizQ6O7uLqxZsyHB3d2DnzlzWtdJk57uXlCQr3rnnRWJ3br1uGq4HKkfI1058K/zSxEEMbKkpNquJ1UoZPD0dEZpaTV4/qohmcSOOkNbn/vuG6g/24tynseALR+hsW7zE98eQNnOj+CsUmPwtp1tEqMjtbOBBx773jJX8qPRnWtolyO1c2dG7dw2WrOdvbycIZfLUgFE2eN8p06d6iaTyb/z8wuuUqk09OGRkFZkMhk0BQXZLqIojBkwYEBCQ/tSzwkh7SD/nGVOZIlK1WhiAgBs/4GIdHKGn0KBkuzM1g7P4UgAUsrlSCmX1zOlkxBCCCGdASUnhLSDf8rLsDE9FeXhV9WLqpNHQCAKeMvQ36SjR1ozNEIIIYSQdkPJCSHt4GTSRfxYmA+fmwc1+ZhKF8viJiUXzrdWWIQQQggh7YqSE0LamMlkQlJSIgCgW7ceTT5OGR4BAJDl5bVGWIQQQggh7Y6SE0LaWPLpvzDEwwM9fP0QGBjU5OMC+w8AAPjwZogiTeglhBBCSOdDyQkhbSzvxB+YFBGNJ8OjmlXtvctNg8BLIlzkCuRd5FoxQkIIIYSQ9kHJCSFtzFCz2pbZw6NZx6mdnXGR5/FbcRFSEq+t5IQBEOgsItBZRNPTOUIIIYR0NJ2oWgAhHYO8tAwAoAkOafaxJ0NC8M03+/FSXi4G2zkuR6ZRAAfutm9tIkIIIYQ4Huo5IaSNuZvNAABvlm32sSzbDQDAcfF2jYkQQgghxBFQzwkhbaiyuBCeCsuvXWi//s0+PiamGxgAhYmJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKGMv/+GEkAZzyMmKLjZx3cJi8C2666HVi5HZXEhXL197R+kAzLwwHOHnAAAG0bqoKG/XISQVsIwkIsME6gz8O3yl8ZJo+BlkHIdLUGJjV0ZdPjwD9779n13rrnHJiUlqp977oke27btuhAWFmFqjfhI50Fv8YS0oaKEeAQCKFfIbTreJygIyZIELYCUEyfQ9/Y77Rqfo5IAxJXILz0mhJDWwjCMTGfgFX+czxV1Br5N12130ihkN/UKVLhqFDJJkhwqObFVXNx57cyZr3cxmYw0lYA0CSUnhLSh8wY9Nl2Mxy3DbrX5HGUqJTxFCUVxF4BrJDkhhJC2pjPwYrXe3B5FpTrNh/gPPogN+OyzPYHBwSGGkpJiVXvHQzqGTvMLQEhHwGWk4VxFOdx69rb5HKKnFwDAlJttr7AIIYR0YIMHDxywa9d236eeeoQdPvzm/g8+eE+PH3446F57n0OHvnd/5JH7uw8ffnP/e++9o9fq1SuCjEbjpdXZExLiNK+88mL06NHD+g0demP/e++9o9fWrZv86rvmtm2b/IYNu6n/999/61HfPqdO/en+xhuzUidNejnLLi+UXBMoOSGkDaWmpgIAIiOjbD6HNjQUAKAsr7BLTIQQQjq+rVs3hgwfPqJkw4btFwYOvLH87bfndjl58oQzAPz88yG3xYvnR48de2fRli27Lkyd+nrGsWO/es2e/UYkAOh0Otnrr0+J0Wi04po16xK2bv34wuDBt5Ru3rwu9Ny5s9orr7Vz5zbf7ds3h8yZszB59Ojby+qLafPmndzYsXfWu52QutCwLkLaiMlgwCBJQo6XD8JCQm0+jw/bAzhzBu4Cb8foCCGEdGTDh48sevTRJwsBYNq0mdnnz//junfvbr/rr78xdefObYEjRowqevjhxwsBIDIyyqhQKNJnzHgtJiMjTeXk5CyOG3dPwUMPPVrg5uYmAsDkya/mfPHF3oDExARt79599Nbr7N6902fLlg0h8+YtSho2bATdJSN2R8kJIW0kl0vAfwOCYBJF+Pr523ye8P79kfvJx3CXK1Cakw1PG1b9IoQQ0rn07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bpZrVRZKSEjW33npbxcSJjxV8/fVXXsnJiU7Z2Vnq9PRUJwAQBPHS0K/S0lLlhx/GhsvlcikkJMzYFq+LXHsoOSGkjRRw8XAHUCKJkCts/9Vz9fbBF9WVyK2owOi01GsmOfFQt8e8VEII6RgUCsVlixlKkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBjfp/a+DCPDwoXvJG7ZsiFo8eL5kZs370iQyWiGALEv+okipI1UpKcBAHQqdYvPdcLTE3uyM5GSm9Pic3UEWgVw6L/VOPTfamjplgohhFwlLu68c+3vExLiXKKjo3UAEBISps/MTNdERUUbrV/5+bnK2Nh3Q6qqKmUHDuzzrqqqVGzZsjPhpZem5o4de0dZeXlZzV/bf3MeDw9389ChwytmzpyTlpKS5LR160bbhwEQUg9KTghpI6aCAgCA5OHeyJ6Ni4qKBgCkpCS3+FyEEEI6vgMH9vnv2/e5V1JSonrZssUh6elp2oceeiwfAB588OG8P//8wzM2dmVQUlKi+tixI67Ll78TWV1dpfD3D+D9/QNMRqNR9vXXX3lmZWWofv31sNuCBXOiAMBkMl31WbF7956Ge+65P2/Xru1ByclJLb/jRkgtDnUPkmXZGACnAUzmOG5bzXP9ALwHYCCAYgCxHMetaK8YCbGVvLwcAKDyD2jxuaIio+GpVKIqObHF5yKEEHI1J42izW/gtuSao0aNLfzssz3+q1ev0IaHh+uWLFmR2LNnLz0A3HHHuFJJklJ2794R+MUXnwY4OTkLAwfeUPbqq9OzrNsTEuLzNm78MHTNmpUyHx9f0+jRtxcdP/6bR3z8BWcAhVdeb9Kkl3N/++2I5+LF8yM2bfqIo+FdxF4cJjlhWVYJYBcA51rPeQP4EcA+AC8AuAnAByzLFnMct7U94iTEVk5mEyBXwD08ssXn6uLkjPV9B6DUYLJDZI7PwANTfrGsZhk7TA+Nw/zlIoR0NpIkiU4aBX9Tr0AF2mGEiZNGwUuS1OxJdpGR0frp02fXW0/kzjvvLr3zzrtL69rGMAymTZuZPW3azMsKaD399PP51sdTpryWM2XKa5fGEqvVamnv3v0XmhLboEFDKo8d++tUU/YlxJHe4hcAqLziuecAGAFM4jiOBxDPsmxXADMAUHJCOgzebIYXY3mP8+/WrcXnC+vfHwWf74WnQoGKokK4+fi2+JyOTAJwukBx6TEhhLQWSYIgg5Tr2g49J5brS6IkQWiPaxPiCByiD45l2VsAPA/g8Ss2DQFwpCYxsTpsOYStt2opIY4mvyAfr174B0uTExEY0/LkxMM/EGW85dci42+6GUUIIfYkSRBEUTK3xxclJuRa1+49JyzLegDYAeBljuMyWZatvTkEwLkrDrF2KYYBKLD1ugo73xCRy2WX/UtaT0ds69zcLOQbjXAKCoJGa5+5gxUKOTwAlCYnQTHW/m3hSO1ce4FMhVyGFqzE7HAcqZ07M2rntkHt3D5oyBTpTBzhLf5DAMc5jvu4jm1OsAzrqs1Q86/G1gvKZAw8PZ0b39EGbm7aVjkvuVpHauuiojwAQGRkpN1+9kR3d6C8Aqb83Fb7eQYco53V5n8fe3g6w0nZfrG0Fkdo52sBtXPboHYmhNiqXZMTlmUfhWXoVu96dtEDuPI2szUpqbb1uqIooaJCZ+vhdZLLZXBz06KiQg9BoGJxrakjtnXFydO4LzAYfu7eKC29+kdXJmMgSIBZEKFVySHwjb8umbcPUF4Bc35hnedsKUdqZ70ZsK6VUVZaDWMnSk4cqZ07M2rnttGa7ezmpqUeGUKuAe3dc/IUAH8AVw7nWsey7BsA0gEEXXGM9ftstADfhA9/thAEsdXOTS7XkdraLTcPDwSHIk2pvCpmhgHMIoO41BKUVxrRI8obPm7qRl+bc2g4kJICjV7fqu3gCO3MC7Ufi+CZ9oultThCO18LqJ3bBrUzIcRW7X0L4hEA3QH0q/UFAHMB3A7gCIAhLMvKax0zAgDHcZzN800IaWsqg2U0onPglbk2oFDIkZlfheTMMhSU6pCQVgIDL4Jp5AO4f+8++Co3BwdysyFJnX8NK41cgkbe+V8nIYQQci1r154TjuOu6v2o6UEp4DgunWXZLQCmA9jMsuxyADcAeAWWmieEdBiuogjIZPAIj7jseYZhoDMKSM+tgFiTYOSXVCO/RIcIf1eYzfUv2hLasyd252ZBFEUUFRXC17fzLmCnVQDHJlS1dxiEEEIIaWXt3XPSoJrekdEAWFgqx88D8AbHcdvbNTBCmsFQVQX3muWlAq5YRlihkKGoXI+SCv2l5yQJyMqvhKmRIRFKpQrBwSEAgPT0NPsGTQghhBDSDtp7zslVOI5jrvj+JICb2ykcQlos92ICAMAgCPAMunxYFy9KyC6swpWjsorLDajUmeHpompwUmlMaDhcSkuRe+E8MPAGu8dOCCHXIoaBnGEYKsJYS2zsyqDDh3/w3rfvuytLPNRr797d3p9//ql/QUGB2tPT0zxq1JiiZ56ZlCeXyxs/mFyzHC45IaSzKU5JhhuAMkmCTPbve51MxqDKwKO0wnDVMSazgLySani7qSE08BY1wskZXbr1RHLchVaI3HEYBWD6UcvSpMuH6KGm9zVCSCthGMi1MnOgZNK1y2ckRuXE60VlriMmKM2xb9/nXu+//174Cy+8nHHjjTdXXrhwzik29t1wk8nMvPzyq7ntHR9xXJScENLKKrOy4AZAr7p8/Vu5XIayympU6811HldSboCJF9HQvHi1vz9QVgamrMxu8ToiUQJ+y1FcekwIIa2FYRiZZNIpqrgTomjUt+mSYzK1VubC3qhglB4ySZI6dHKyf/+XvkOH3lr84IMPFwFAZGSUMT09TfP999/6UHJCGkLJCSGtLF7GYPm5Mxg75g6MrvW8KAH5JfXX2ymvMqLayMNNo4BYzydy94gogOPgbLyyVikhhJCWEI16UTBUt8d6yM0eTjZ48MABkya9nPHTTz96paYmO/v7Bxieeuq57FGjxpZb9zl06Hv3bds2BWVnZ2k9Pb1Mt9wyvGTSpJdz1Wq1BAAJCXGadevWBsfHx7kaDHqZt7eP6a677il48sln6lwdddu2TX7btm0KefPNuSmjR99eduX2F16YnOXl5c1f+Xx1dRV99iQNcugJ8YR0Btn5ecg1GuAaEXHZ8wazgIpqU73H6Y08KqqMDRYdC+jREwDgJZOBN9fdA0MIIaTz27p1Y8jw4SNKNmzYfmHgwBvL3357bpeTJ084A8DPPx9yW7x4fvTYsXcWbdmy68LUqa9nHDv2q9fs2W9EAoBOp5O9/vqUGI1GK65Zsy5h69aPLwwefEvp5s3rQs+dO6u98lo7d27z3b59c8icOQuT60pMAOCGG26q7tKl66U7Z2VlZfKDB7/27dv3uopWagLSSVByQkgry8mxrJgdFBR86Tm5XAadgUdlA8kJABSU6tHQKKZAthvMogilTIachHh7hEsIIaQDGj58ZNGjjz5Z2LVrjHHatJnZ0dFdqvfu3e0HADt3bgscMWJU0cMPP14YGRllHDr01opXX30j/Y8/fvfMyEhT6XTVsnHj7imYNWteekxMN0NUVLRx8uRXcwAgMTHhsuRk9+6dPlu2bAiZN29R0siRo8rriuVKVVVVsmnTpnQxm02yKVNez7T/qyedCXWtEdLKbtTpERUYjEAPz0vPyeUMSisN4BtYiQsAqnQmGM0C6pv/LVcoUCKJ8IcMefEXENa7jx0jJ4QQ0lH07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bratEJiUlam699baKiRMfK/j666+8kpMTnbKzs9Tp6alOACAI4qWpj6WlpcoPP4wNl8vlUkhIWJPGE+fn5ymmTZvSNT8/T7106cqLERGRDd+VI9c8Sk4IaUUmvR7DXFwhc3WDh5//pecFUUJJHat0XalKb4beJDQ470Sn1gA8j4q0VLvFTQghpGNRKBSXvUlIkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBh/2R0vhpFh4cJ3Erds2RC0ePH8yM2bdyTUXoXySomJnGbatKldBUFgVq/+gOvRo5e+3p0JqUHDughpRflJiZAxDEyiCO+w8EvPG81ivat01WYw8qjSmRucd1IYGIgNaSm4aKKbUYQQcq2KizvvXPv7hIQ4l+joaB0AhISE6TMz0zVRUdFG61d+fq4yNvbdkKqqStmBA/u8q6oqFVu27Ex46aWpuWPH3lFWXl5WcwP735zHw8PdPHTo8IqZM+ekpaQkOW3dutEf9UhPT1O98spLMRqNRly3bks8JSakqSg5IaQVFSYnAgDKRBHWolMyGQODWWhScgIAJRV6MA2sJ6zu0ROHigqQUJDX4ngdlVYB/DWxEn9NrISW+nsJIeQqBw7s89+373OvpKRE9bJli0PS09O0Dz30WD4APPjgw3l//vmHZ2zsyqCkpET1sWNHXJcvfyeyurpK4e8fwPv7B5iMRqPs66+/8szKylD9+uthtwUL5kQBgMlkuuqzYvfuPQ333HN/3q5d24OSk5PUdcWzaNG8CJ43y9566+0UpVIp5efnKaxfrdsSpKNr9g8Iy7IKAMMAjAAQCcAdQBGAdAAHAfzOcRxVIiAEQEVmJlwA6JT//qrJZDLo9GYYjFetsFinKp0ZJr7+X6mQkFAAQFYWzTEkhBB7kam1bX4DtyXXHDVqbOFnn+3xX716hTY8PFy3ZMmKxJ49Lb0Vd9wxrlSSpJTdu3cEfvHFpwFOTs7CwIE3lL366vQs6/aEhPi8jRs/DF2zZqXMx8fXNHr07UXHj//mER9/wRlA4ZXXmzTp5dzffjviuXjx/IhNmz7iag/vys3NUcbHX3AFgBdeeLLHlcceO/bXKVtfJ+n8mpycsCyrAjAJwOsAQgCUwpKQVAMIBXAngFkAcliWXQZgA8dxVHyBXNOMRZa/54KT06XnGBlQUtn0X41qvRkmXoBazlyawFhbaEgoWBdXhFRXQ+B5yBV0U4oQQmwlSZLIqJx4F/ZGBdphhAmjcuIlUWp2fZXIyGj99Omzs+rbfuedd5feeefdpXVek2EwbdrM7GnTZmbXfv7pp5/Ptz6eMuW1nClTXsuxfq9Wq6W9e/dfqOt8gYFBZkpAiK2a9CmGZdkbAGwHIAD4EMCnHMcl17FfbwC3A5gCYCrLso9yHHfcjvES0qGI5WUAAMbd49JzvCChqpElhGvTGcwwmARonZUQhKuzE3//AMyL6Q6FTIb8xIsI6n7VTaoOzygAc3/XAAAWDjJAXd/yZYQQ0kKSBEEvKnMZpUe7DH2XREmUJHTo6vCEtERTb7HuADCT47gvG9qJ47hzAM4BWMay7AOwJDQxLQuRkI5LrrPM/1N7+1x6zsyL0BmbXjDRzFsmz3u7qiEIV79fKVUqlIoifGUy5HHxnTI5ESXgp0wlAGC+1PgqZ4QQ0hKSBEGSJEoQCGkHTU1OenMc16ylgDiO+5Rl2X3ND4mQzmN7WTFK0tMxd+LDACyT4Y0GHnpD0+abWJVVGhDm71Lv9iqlEr6ShIr0tJaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5GVn4dcowG+YREAalbqMgpNngxvVa3nwdcxpMtKcHUFABjyOu+KXYQQQgjp/Jo652Ruc07KcdxC28IhpPPQ6/UoLy8HYJkXAliSk7IqI5q7nJ3OaIZZEOv9hVX6+gIVFUBZmc3xEkIIIYS0t6YO65p/xfcSAAaWCfJFADwBqACYAJQAoOSEXPPyky7i+fAoFIsCXFwsQ7IECajUNX8RO72Rh8kkQFVPpXiX0DAgORkaA83HIIQQQkjH1dRhXTLrF4DbABQDeBCAhuO4QI7jNLCs0lUM4LVWi5aQDqQkOQkjfP0w1NsXTE0VRZ4Xmz3fBLBUijeYBchkdVdj9OnSFQDgAUAUm70CJSGEEEKIQ7Blmby1AN7iOO5TjuMurWTBcdx3AOYAWGyv4AjpyCpzLMvBG2rqjjAMYBZEGEzNT04kCajUmS4lOVcK6dkbG9NTsTL5IspK61zGnhBCCCHE4dlSrS0MQEY92woB+NseDiGdh7GwAABg1moB1Fqpy2jb6pQVVSbLYMo6aF1d8Q8DFFSUIzsnC17e3jZdw1Fp5MDRByovPSaEEEJI52RLz8k/AF5mWVZZ+0mWZTUApgM4YY/ACOnohJrJ8Iybm+VfxrJSl8lsW3KiNza8YldoaCgAIDOzvnsHHRfDAFqF5aueziNCCCGEdAK2JCdvArgVQDLLshtYll3MsuwmACkA+gJ43Z4BEtJRyaqrAQCqml4MmYxBRTMqw1/JYOJhFuqfT9I9IAhDvHxQGXfB5msQQgi59lRXV8t27Njqa/1+9uw3Ip599jG2Na+ZlZWh2r//S8+WnGPv3j3egwcPHFDf9rZ4HYMHDxywd++eTjFcISMjTTV48MABv/9+1LU942h2csJx3K8ABsHSQ3IXgGkAxgI4BGAAx3Fn7BkgIR2V2mRJRFwCAgFYqpxX6lqQnBh5mMxivZPie6vUeDmqC9zS0my+hqMyCcD84xrMP66BiWo2E0KIXW3ZssH/888/CbB+P336nMzly1cnteY1Fyx4K+LEid/dW/MapGOyZc4JOI47DeB+O8dCSKfiUlPNxD0kDADA2zgZ3spgsgwJYzQKoI5KKc7BwUBmJlR6nc3XcFSCBHydahlJOuN6Wi6ZEELsSZKky+56ubu7t8FtIIkG6ZI62ZScAADLsmNhWVY4EMAsANcBOMVxXLqdYiOkwzKZTHjpn9PwUqqwq3sPAIBZkGBsZmX42kRRQrWBh6+7BkIdbxtekdHAH3/ArYGhX4QQQjqf8vJy+cqVy0L+/PO4B8/zTGRktO7FF6dk9evXXwcAOp1OtnTpwtC//jrpodPp5MHBwYZHHnkiZ+zYO8tiY1cGffrpx4GAZYjSxx9/dm79+veDCgry1Rs3fsT9/vtR15kzX49ZsmTFxffeezesoKBAHRERoZszZ2HqDz8c9Pz6633+giAwQ4YMK549e34mwzCQJAmbNq3z/+GHgz6FhQVqpVIpduvWo2ratDczwsMjTM8++xgbHx/nEh8f5zJ+/BjXffu+O2cymZjY2HeDfvnlsLder5OHhITpn3rq2ZyhQ2+tsL7Ogwe/8di+fVNQfn6eJjq6a3W/fv0r6msTK0EQsXjx/NBffvnJW6FQSLfdNqZoypTXsxU1K2n++ecfzlu2bAhKTk50NpvNMn//AOPEiY/l3n33vSXWc3z11Rden3yyKyA3N0fj4eFpvvPOuwuefvr5/CuvVVhYoHjppWdZDw9P8+rVHyQ5OTmJv/562G3jxg+Ds7OztH5+/sb//veBvNjYlREff/zZubCwCNP48WN633jjoLK//z7lVl5erpw7d2HyTTf9p3L79s1+3357wK+oqEjl4+Nj+u9/J+Q99NAjRQDw++9HXadPfzXGeg7AMiRr4sT7ei9fvurioEFDKmfPfiNCFEXG09PL/PPPP3kbjQZZnz79Kt58c266v38ADwDx8Rc0q1b9LywpKdHZ09PTPGHCxNwW/SDaSbOHdbEs68Sy7A8AvgHwFIAHYCnCOAnAKZZle9o3REI6nsLCAhhFEcWSCE8fH8hkDMxmAYYWjkmqqDbWOyE8qGcvAIC7QoHqspK6dyKEENIgSQKqzZC115dU/7on9cQr4ZVXXuyak5OtXrRoedIHH2xK6Nate/Urr7zY7dy5f7QAsGbNyqC0tFSnpUvfTdy+fff5AQOuL1+69O2ojIw01VNPPZd311335Ht5eZk///zrf4KDQ68afyyKIj74IDZ0xozZaWvWrI8vLy9XvPTSs90zMtK17733Iff4409nfffdN34//fSDOwBs3brRb+/e3YHPPfdi1o4dn5xfsOCd5JycbM2qVctDAWD58tVJXbvGVN98839KN23aEQ8Ab701I+LUqb/c33zzrdQNG7bH3XLLsNK5c9/scuiQ5ZwnT55wfued+dGDBg0p27jxowsjR44u/vzzTwIba5+LFxNcyspKlWvWrE94/fWZaYcO/eCzfPniUADIyclWzpz5WkxkZLR+/fpt8Rs2bIvr2pWtXrXqfxEFBfkKAPjmm/2eK1YsiRw69NaSTZt2XHjqqeeydu3aHrRnzy6f2tcpLi5STJ78HOvt7WN6770PE52cnMRz585q5859s0vfvtdVbtiw/cIjjzyes3nz+tArY/z++4O+kye/mrFs2cqLAwfeWLVs2eLQTz7ZFfTII0/kbN6848Ldd9+bv3792rDt2zf7Nedn4/jx3zwrKioU7733ATd37tvJ8fFxrmvXrg4GLAnt66+/zDo5OQkffLAxfsqU1zM+/vijoOacv7XY0nPyDoABAEYAOApLVXgAeBTA9wDeBnCvXaIjpIPKz88DAPj7B4BhGDAMAyMvwtjC5ERv4CHUUSEeADwCApEi8HCRK5B9/gJiBg9p0bUIIeRaI0nAI985deNK5c7tFUM3T6Fqxxgd19SVCY8dO+KamMg579t38B8fH18eAF57bUZ2XNwFlz17dvr37t03LTc3R63VOgnh4ZFGd3d3YerUadnXXTeg0t3dU3BxcRG1Wq0ok8kk6x31ujz55LPZAwbcUA0AgwYNLvv666/85s59O93JyUns2pU17Ny5PTg5OVE7cuTo8tDQMOO0aW+m3nbbmHIACA0NN504cbz0yJFfPAHA09NLUCgUkkqlEn18fPmUlGT1b78d9Vq7dkO8tbcnOrpLfnJykvaTT3YGjBw5qnzv3t1+MTFs1ZQpr+UAQJcuXY0pKcnab7/d3+AHdnd3D/Pbby9L1Wg0UrduPQyFhYXZ69evDXvllTeyTSYT8+CDj+Q888wL+TKZzPo6c3/55SfvlJRkjZ+ff9Vnn+3xv/nm/5Q8//xLeTVxGXW6arlGo700TKGiolwxefLzMT4+vsZ3312TrNFoJADYvXuHf2RklO6NN2ZlAUDXrjHGkpIS5caNH16WoFx3Xf/yW24ZVmk5V4Xs+++/8X366eczx4//b0nNNQtzcrLVn3zyceBjjz1V0LSfDECr1Qrz5i1KVyqVUkxMN8Px478Vnzp10h0AvvnmK0+TySRbsGBJmru7u9CtWw+DXq/LXLRoXnRTz99abElOJgB4k+O4n1mWvVRxgOO4PJZlFwF4327REdJBlZ87i+fDo2DwsdxYkckY6PRmiM29JXYFg8mynHB971nlDAMXAEXJiZScEEKIDZi6JvU5sISEOCcAmDBhfO/az/M8z5jNJgYAHnnkibw5c6Z3ufvu0X27do2p7t//+vKxY+8sac7cksjI6EsT/tRqjeju7mF2cnK69AFdpVKKRqNJBgC33Tam/NSpk86xse8GZWdnqbOyMrVZWZkaT09Pc13njos77wQAr7/+8mUrawmCwDg5OQkAkJ6e5nTddQPKa2/v3btPVWPJSXR0F501WQCAPn36VfM8zyQnJ6l79+6j/+9/Hyj+6KMtfunpqZrs7GxNWlqKEwCIosAAQEZGuvaWW269bDjChAkPF9X+fseObcGCwDNXXislJcnpyqFn/ftfXwl8eFmMwcEhl9o2KemiRhAE5rrrBlbV3qdfv/5VBw7s8y8sLGjyZ3d//wCjUqm8FI+zs4vA8zxjiS3Zyd8/0FD7Z2DAgOur6jpPW7MlOfEAkFbPtlIALrYGQ0hnYc7MwAhfPySr1QAstTkqWrBSl5XRJMAsiFDLGdSV5xg1WsBkQlVWZouvRQgh1xqGAXaM0XE63qZSC3bhpIDYnHpOoigyWq1WWL9+W/yV21QqlQgAAwfeUP3llwfPHj36i9vJkyfcfvjhoM+ePTuDFi1anjhkyNDKplxHqVRc9q5T38qRALBhwwf+u3fvCB4+fGRRv379Kx944KGCX3457HH06C9ede0vSZYcZ/XqDxKcnV0umzgpl8ulf/e7fBK9QqFsNJGUyWSX7SOKls/iarVKSkzkNJMnP9ctIiJKN2DA9eWDBw8r9/LyMr/88vPda1+/sf+P3r37VNx++7iixYvnRf/886GS4cNHVtQcC1FsfOK/SqW+6jUyV1xUFC3NUjvZqP05wGzmr7pO7X3/Vfup5rdnW7AlOTkP4GEAP9Sx7a6a7YRc04TSUsuDmgKMgihBb7B9MryV0cTDxIvQKBSQ6shOCsPDsfub/egdGoJRLb4aIYRcexgGcFaiw6wsEh3dVa/X6+Umk5Hp1q3HpTvwc+e+Gd6lS1fdY489VRgb+25Q3779q0aNGls+atTYckEQMh988J6eP/98yHPIkKGVDMPY9UPpp59+HPTgg4/kWIdCAcCuXR8FXP629e81u3Zl9QCQn5+vGjmy76XekVWrlgczjEx65ZVpOVFR0br4+AuX3QCPjz/f6PC7tLQUJ1EUYR22dfr0X64qlUoMD480rlixJMTNzd28fv3Wi9b9f/zxO3cAl95jg4NDDRwXf9l1lixZGJqfn6davfqDZAC45ZbhpWPH3lH2888/lqxatTxiwIAbzru5uYkREZG6K489d+5MgzF36RJjkMvl0unTJ1169eqttz5/5sxpV3d3D7OHh6egVFqSzoqKiksjmNLTU9WNtUVtXbvG6A4f/tG7uLhI4e3twwPA2bN/t9twxtpsuTOwCMCjLMt+DeAZWFKwoSzLrgHwIoDldoyPkA7JWoBR6WW5ScQLEowtWEbYymi2LCdc3x0rt27d8U9FORJzclp8LUeikQM/3luFH++tgkbe+P6EEHKtGD58RHl4eIR+3rxZ0ceOHXFNSUlWL1++OOTnnw/5WIdiZWdnq1ev/l/YsWNHXDMz01XffLPfs6ioUN27d58qANBqtWJ1dbU8KSlRbTabW7zEr7e3j+n06ZNuHBevSUy8qF616n9Bf/75h4fZbL70uVOr1YoFBfnq7OwsZbduPQz9+w8sj41dEf7DDwfd09JSVZs2rfP/4ou9AcHBwUYAmDjx8bz09DTtsmWLQ5KSEtVffvmZ18GDX/vWH4VFcXGx6q23ZkQkJMRpvv32gMfHH38UNH78fflqtVry8/M3lZQUqw4f/tEtMzNddfDg1x6xsSvDAcBksgyJmzjx0dzffz/muW3bJr/U1BT1/v1fev7ww0HfwYOHll15renTZ2eaTCZmxYp3QgHLcLrU1GTnFSuWBiclJaq/++4bjx07tgUDV/eMWLm7uwsjR44u2rVre/C+fZ97paQkq3fs2Or7/fff+t5zz335DMOgW7ceeo1GI27dujEwJSVZffz4by6bN68Pqe+cdbnzzvElbm7u/OzZ0yPPnz+nPX78mMv777931WT99mBLEcavADwCoA8sg+YYAO/CUvfkBY7jPrNrhIR0QCqTEQDg5G+pacULEozmli8bL0mAzsDX+0ctNNRSUyUrK6PF13IkDAN4aiR4aqR6VysjhJBrkVwuR2zsuotdu8ZUL148L+qZZx7tcfbsGdc5cxYkW4dszZ49P71Pn36VS5cujHz00Qm9PvpoS/Djjz+ddc8995cAwKhRY0o9PDzNzzzzWM+zZ884tTSm2bPnpxqNRtmkSU93nzr1hW5paSnaF1+ckl5ZWaHIyEhTAcC4cfcWZmZmaJ566uGegiBg6dKVKTffPLg0Nvbd8CeemNjrhx8O+rz00ivp99//UDEA9O7dR79o0fLEc+fOuD7zzGM9P//8E//773+o0aVvBw68oUwul0svvfRs97VrV4WPGXNnwUsvTc0BgMcee6pg0KAhJcuWLY568smHe+7cuT3wiSeeyfbx8TWdP3/OGbDMn5k8+dX0b77Z7/vkkxN7bt++OfjZZydl3HffhOIrr+Xj48s/++yLWYcPH/L55Zef3Lp372l4662FSSdP/uHxzDOP9ty+fXPQ7bffVQAASqWq3t6qN9+cm3HHHeMKtmzZEPzUUw/3/Prrr/yef35yxjPPvJAPAK6uruKMGXNSsrMztU899XDP2Nh3w55/fnJmc5ITZ2dnMTb2Q06hUEhTp77QbcmStyMfeGBiXuNHtj6mrqEhTcWyLAvAG0AZgASO4zpCN2iKIIiRJSXVdj2pQiGDp6czSkurwfMdoRk6ro7Q1n8+8Qg8FAqYJz6C3iNvQ6WBx7Ez2dC3oM6JFRvhhb7R3jDVsfJXfm4OFj38AAI0GrzxxX6oNLa/x3SEdu4MqJ3bBrVz22jNdvbycoZcLksFEGWP8506daqbTCb/zs8vuEql0lB1V2J3f/99ykmhUEi9e/e9NDxr377PvVavXhFx6NDR09ZaK9cCk8mgKSjIdhFFYcyAAQMSGtq32a3CsuxhAC9yHJfAcRx3xbY+AHZyHNenueclpLMwG41wk1vGHvmER4BhGJjtsIywVUPLCfv6+eP5iCioZDLkxMcj4roBdrlmezMJwKrTluG0r/Y3QkVDuwghhDi4hIR4py1bNoS88cabqT169NSnpaWpd+zYGvSf/wwuuZYSk+ZqUsuwLDsY/w4BGwbLHJO6lm67E0C7r49MSHsqzsyAjGEgShK8w8Itywgb+BYvI2xlNAvgxbqXE5bJ5SiVRPhDhoLEi50mOREkYG+iCgAw5TpjO0dDCCGENO7BBx8uKi4uUn744Zqw0tISpZubGz9kyLCSyZNfzW7v2BxZU9O2ZwA8BsvkdwnAB7DMNan9acv6Welju0VHSAdUYjLiydN/ItLfH3uUSjAMgyp9y5cRtjLV1DpR1jO0VKdWA7yAivQ0u12TEEIIIc3DMAwmT34ld/LkVxqdG0P+1dTkZCqArbAkIIcBvAQg7op9BFjmnlywV3CEdERFRYUwiiIYD08AgChJ0NlhGWErg1mA2SxArVFArGN4l+jmDpSUwFTQ5CKyhBBCCCEOoUnJCcdx5QB+BQCWZYcDOAXAheO4vJrnPAGEchxHNU7INa+gJinw9bWMfLTXMsJWpppCjJZVOa5OTtT+AUBJCeQV5VcfTAghhBDiwGypc/IPgC8B/FLruRsBnGFZdh/Lsi1ego6QjkzOJeCF8Cj0dbLUihJE0S7LCFsJogS9Uah3OWG38AgAgJPRfkPJCCGEEELagi3JyVIAPQHMqvXcYQB3AxgIYKEd4iKkw1IXFuJWXz8E18w3MfFincv+tkS13gxZPb+9/mw3AICnTAbebLbrdQkhhBBCWpMtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOmI5HodAEDl6QmZDJZlhO3YcwIA1XoT6lv8K5DthuXJiXjjwlkUFNK8E0IIIYR0HLYssuwKoLSebfkAfGwPh5COT2UyA3I5nPz8LT0nZgFmOxcjsy4nXBeFSoVCN1fklhYjOzsTQUHBdr12e1DLgf3jqi49JoQQQkjnZEvPyWkAT9ez7UkAZ20Ph5COz6mmS8MtMAgMw9h1pS4ro1motxAjAISEhAEAMjIy7H7t9iBjgCAXCUEuEmT1LKFMCCGEkI7PluRkEYDxLMv+xbLsbJZln2VZdhbLsicA3Adgvl0jJKQD4c3mS9XhvcLCwTCwa40TK5PJ0htTz5x49PHzw72BwTCfP2f3axNCCCGt4dCh7905Ll7TknM8++xj7OzZb0TYKSSbxMauDBo/fkzvpu4/e/YbEc8++xjbmjHVJkkSPvvsE+/CwgIFAOzdu8d78OCBDlO1udnJCcdxPwK4C5Y1TBcCWA/gbViGiN3Ncdx3do2QkA6kJCsT8lrV4QVRgsFo3/kmACxDxS4tJ3y1aI0WDwaHwiOvc9R9MgvAe3+r8d7fath5+g4hhBAHkJmZrpo/f3aX4uIiZXvH0tn98cdvLqtX/y9Cr9fJAODOO+8u+fzzr/9p77isbJlzAo7jDgI4yLKsBoAXgHKO46rtGhkhHVBxZjrkACpFAUq1GoIowdQKn6aNZgE8X3+tE9fQMCAxEVqD0e7Xbg+8BOyIVwEAnuttBL1zEUJI5yLVt8oLsTtJki67s6nVaiWtVmv/Meg2sik5AQCWZbsDuA1AIIC1LMteB+AfjuMq7RUcIR1NIRhMO/0n+rHdcT1qCjC2QnIiSYDeyEPmroFQx+n9WBbmwz/BA4AoipDVt+4wIYSQq1Sb6x9ZImcgaRT/3hVqaF8ZA0lr477Ncfjwj25bt24Mzs7O0qjVGrF//wHl06bNyvT09BR+//2o6/Tpr8Z8/PFn58LCIkwAkJGRppo48b7ey5evujho0JBKANi6dZPfV1997l9eXqaMielW1bt338pDh77z2bfvu3MAkJqaol6xYkloQkKcq1arFcaPvy//228P+D700KO599//YDEA7N272/vTT3cHFBUVqn18fI233z6u8PHHnyqwvgd9/vmn3p9++nFAfn6+2sXFhR80aEjp66/PyMrPz1VOnHhfbwCYPv3VmAcemJg7ZcprORcvJmjee+/dkISEOFeNRiv06tWn8rXXpmf6+wfwAGA0GpmVK5eFHDnyixfP88yYMbcXig3MxwSAwYMHDpg06eWMn3760Ss1NdnZ3z/A8NRTz2WPGjX2UuXiQ4e+d9+2bVNQdnaW1tPTy3TLLcNLJk16OVetVksAkJAQp1m3bm1wfHycq8Ggl3l7+5juuuuegieffKbOJTK3bdvkt23bppA335ybMnr07WWN/X9mZWUq165dHXL27Bk3g8Eg69ate9Xkya9k9ejRS2/d56uvvvD65JNdAbm5ORoPD0/znXfeXfD008/nNxaf9ecBACZOvK/31KnT0gDgvfdWRBw79tcpACgtLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqgIsw9bOnTvjev31N5UdOLDPv7KyUhETw1a98cas9K5dY1p8V7TZyQnLsnIA6wA8BcB623YvgHkAoliWHcpxXFZLAyOkIyoqKoRJFKH28QHDMDDzQqv0nABAtcFc77CuoG49kSpJ0MrlKM5Ih29EZKvEQAghndHQva7X1betvx9fvmGkPsn6/agvXPoaBabOpKOHl1D10RgdZ/3+zn0uvSvNTJ2fvaLdBd0nd+jimxtrcXGRYuHCuV2efvr5zGHDhpfn5uYqlyxZGLVq1bKQhQuXpjflHDt2bPXdsWNL8AsvTM7o3//6qh9+OOi5e/eOYG9vbxMA6HQ62auvvhgTGBhseO+9dQnV1VXyVauWhxUWFqit59i9e4fPtm2bQl58cWpG377XVcXFnXd6//33woqKClRvvDEr68KF89o1a1aGv/HGrNS+fftVJyUlapYsWRjl7u7Ov/DC5Nw1a9bHv/zy891nz56fPGTIsIrc3BzllCkvsIMHDy2dOvX1eL1eL9u0aV3QCy881X3nzr0XnJ2dxSVLFob99dcJ92nT3kwLDg42bt26MZDj4l0CAgIa/IC8devGkMcffzrrzTfnpn311Rc+b789t4unp1fC9dffWP3zz4fcFi+eH/3MMy9kDho0pCIjI029Zs2qsKysDM2KFbEpOp1O9vrrU2J69+5buWbNugSFQint2/eZz+bN60IHDryhsnfvPvra19q5c5vv9u2bQ+bMWZg8cuSo8vpisqqsrJS9+OIz3fz9/U2LFi1LVKs10ubN64JeeeVFdsuWnXEhIWGmb77Z77lixZLIRx55InvkyNGlcXHnnVatWh7h7OwijBt3T0lD8Q0ceGPV7Nnzkxcvnh+9Zs36+G7deui//vorL+v1BUHAlCkvxJjNZmbGjDmpvr5+5k8++dhv5szXYlav/iChX7/+OgBITLzorFZrhCVL3k3U6aplS5YsjFyx4p3w9eu3XWzKz1xDbOk5mQPgYQDPAPgGQF7N868D2A9gMYDHWxoYIR1RYU1dER8fv0s1TlorOdHpzfV2g6udnVEqCPBWKJATd4GSE0II6aRycnKUPG9mAgMDTaGh4abQ0HDTkiUrEnleaPLahp9//knAHXeMK3jggYnFANClS9e8pKSLzikpSU4A8M03X3lWVFQqtm79X4qnp5cAAHPnvp363HNP9LCeY/fuHUH33/9Q7t1331sCABERkabq6ir5Bx/Ehr/88mvZmZnpaoBBSEioMSQkzBQSEmby8PC86OLiKsjlcnh7e/MA4O7uLri4uIibNq0L8PDwNM+Zs+DSspPLlq1KufPOkX2//faA55gxd5T+8stP3pMmvZwxYsRt5QCwYMGStP/+907Xxl7v8OEjix599MlCAJg2bWb2+fP/uO7du9vv+utvTN25c1vgiBGjih5++PFCAIiMjDIqFIr0GTNei8nISFM5OTmL48bdU/DQQ48WuLm5iQAwefKrOV98sTcgMTFBWzs52b17p8+WLRtC5s1blDRs2IiKpvxffPXV595VVZWKLVt2xvv4+PIA8M47K1Luu++u3nv27PKdNu3N7M8+2+N/883/KXn++ZfyACA6uotRp6uWazRaUaerljUWn7u7uwAA3t7evFarveyDxK+/HnZLTU1x2rhx+4Xu3XsaAGDOnAUZFy8mOO/atT2gX7/+KQAgCALz9ttLU60/D+PG3VuwffumkKa8xsbYkpw8BWAux3Fba3pRAAAcx51lWXYuLBXkCbkmuackY1JEFNzVakvPiVm0e40Tq4ZqnQBAlUIBbwBlqSmtcn1CCOmsfr2/8u/6tsmZy4de/XBvVb0TiWVX7Pv1+Kp6l1C8ct+m6t27j/4//xlSMn/+7C6xsStNffteVzFo0ODy224bU9aU40tKiuVFRUWq3r37Vl1+3r6V1uSE4xKcAgODDNYPogDQo0cvvVbrJABAUVGhoqSkRLlr1/bg3bt3BFn3kSQJZrOZychIUw8bNqL8iy/2Vr300rPd/f0DjP369a+45ZZhZX37XqerK66kpItOOTnZ2hEj/nNZL5bZbJalp6dqkpMTNTzPM7169b0051mj0UgREZF1nq+2/v0HXjYFgWW7V585c9oNAFJTU52Sk5Ocf/75kPe/r8MaU6Lm1ltvq5g48bGCr7/+yis5OdEpOztLnZ6e6gQAgiBeSghLS0uVH34YGy6Xy6WQkLAmD3VKSUnWBgQEGq2JifV1denStTo1NcUJADIy0rW33HJrSe3jJkx4uMj6uCnx1ScpKVGr1ToJ1sQEABiGQY8evapOn/7Lzfqcm5u7ufbPg4uLi8DzvF0W+7clOfEHcKaebVkAPG2OhpAOzqOsHP19/JClVFlqnBjNrXYtk1mEIEr1DmA2u7gAVVXQ5+a0WgyEENIZOSvR5LtKrbVvcyxbtio1MfFizrFjv7qfOnXSbdmyRVFffvlZ1YYN/w6xqd3Rbjb/+yFSLrd8FBTF+j+4yuVySFL920XR8rKeeeaFzJtvHnxVD0FISKhJpVJJGzZsu3ju3D/a338/6n7q1F9uc+bM6Dp06K3FixYtS7vyGEmSmJ49e1e88casqwp2ubu7C5mZGaqa/S7bplAoGk3yrtxHkiTIZHLJ8lhkxo+/L2/cuHuKrzzO3z/AXFCQr3juuSe6u7q68TfdNKhswIAbKvr06Vs9YcL4PrX3ZRgZFi58J3HLlg1BixfPj9y8eUdCU+Z/SpJU55BtURQZudwSo1wul+orJdDU+Bq4fp0jxkVRvKzdlMrG29lWtsySTQJwez3bhtVsJ+SapDJbappofX1rapy0ZnIigBfqr3VS3q0bXjl/BkfM9q+zQgghxDGcOvWn85IlC0O7do0xPvnkswVr125Imjp1Wlpc3HnXwsIChVKpEgGgoqLi0miX9PTUS3NF3N3dBR8fH9P58+eca583Pv7Cpe+7dInR5eXlqUtLSy6dIzHxolqv18kBwNfXj3dzc+Ozs7PUUVHRRuvXhQtnnT78cE2wJEk4fPhHt7VrVwf27t1X//zzk/M2bNh28aGHHs3+/fejngCu+kAeHh6hz87O1AYHh5is5/P09ORXrVoempAQp+3alTUolUrp77//crEew/M80tIsvQQNiYs7f9lrTUiIc4mOjtYBQEhImD4zM11T+3Xk5+cqY2PfDamqqpQdOLDPOuwq4aWXpuaOHXtHWXl5Wc3N/n8/r3t4uJuHDh1eMXPmnLSUlCSnrVs3+jcWFwBERXXR5+bmqK01SADAYDAwKSlJTmFhEXoACA4ONXBc/GWvYcmShaGvvPJidFPiYxim3sSiS5cYvU6nk8fHX7is3kxc3AWXkJAwQ33H2ZMtyclqAFNZll0LYCQsr7Qry7KvA5gG4H37hUdIx+IkWqvDB0OQAIOx9VbmM5mthRjrzk78usYgx2BARnbHX59CLQc+ub0an9xeDbW88f0JIeRa4eLiKnz33Te+K1YsCU5JSVbHxZ3XHj78o5e/f4DR29uH79ath16j0Yhbt24MTElJVh8//pvL5s3rQ2q/d9x//0N53357wO+zzz7xTklJVm/ZssHv+PHfvCzrHgHjxt1T4urqys+ZMyPy/Plz2lOn/nReuPCtKMCSVDAMg3vvfSDv228P+G3fvtkvNTVF/f3333qsXfteuFKpFNVqtSSXK/DJJ7uCtmzZ4JeenqY6c+a004kTxz26dmWrAcDZ2UUAgMTEi9ry8nL5hAkPF+h0OvnMma9FnTt3VnvhwnntrFlvRCUlJTrHxHTTOzs7i7ffflfBrl3bgw4e/NojMZHTLFw4J7y0tETVWJsdOLDPf9++z72SkhLVy5YtDklPT9M+9NBj+QDw4IMP5/355x+esbErg5KSEtXHjh1xXb78ncjq6iqFv38A7+8fYDIajbKvv/7KMysrQ/Xrr4fdFiyYEwUAJpPpqs/V3bv3NNxzz/15u3ZtD0pOTlJfuf1Kd901vsTJyVmYNWta9OnTfznVvO5Ig8Egv//+BwsBYOLER3N///2Y57Ztm/xSU1PU+/d/6fnDDwd9Bw8eWtaU+JycnEUAiIu74FRVVXVZzEOHDi8PDQ3XL1z4VtTvvx91vXgxQfP223PDsrIytA8+ODG/sfjtodnDujiO28SyrC+A2QAmwfKTuxuACcByjuPW2TdEQjoGgefhJrf8jnuFhUEQWqfGidW/PSd11zoJDQ0HAGRmNmmxFocmY4Boj9aZu0MIIR0Zy3Y3vPXWwuTt27cEHTz4tZ9MJpN69uxduWJFbKJMJoOrq6s4Y8aclE2b1oU89dTDPQMDgwyTJk3JnDNneoz1HA8//HhhRUWFfPv2zcFr165W9OjRs3LYsBFF8fEXXAFArVZL//vf6sR3310a9vLLz3V3dnbhJ0yYmLt+/fthSqVSAoBnnnkhX63WiPv3f+G3ZcuGEHd3d37EiNuKpk6dlg0AQ4cOr5gy5fW0zz7bE7Bz57ZglUolXnfdwPLXX5+RBQBeXt7C8OEji7Zu3RSSlZWpnj17fuaqVe8nfPBBbMgrr0zqJpPJpZgYtnrlyjWcr68fDwCvvTYjS6VSiWvXrg4zGPTyQYOGlAwYcH1ZY202atTYws8+2+O/evUKbXh4uG7JkhWJPXtalum9445xpZIkpezevSPwiy8+DXBychYGDryh7NVXp2dZtyckxOdt3Phh6Jo1K2U+Pr6m0aNvLzp+/DePmt6mwiuvN2nSy7m//XbEc/Hi+RGbNn3ENTS8y8PDQ4iNXcfFxr4bMn36K2zN/3FlbOy6hPBwy1LQt902prysrCz9008/Dti2bVOIt7eP6dlnJ2Xcd9+EYkmS0Fh83bv31Pfr17986dK3ox55JDPb3d3j0p1UhUKB2NgPL65cuTxkwYI50WYzz0RGRumWLl15ccCAG9qkpiHT3KI3LMt6chxXyrKsG4CbAcucWwB/cBxX0uDBjiFFEMTIkhL7tq9CIYOnpzNKS6vBt9IEaGLhqG1dmJ6G0rfnAwAi1nwIudYJv5/NQXG5vuEDW+DmPkEI9nYGz1+dBOl01Vh+710I1GgwYf1mePgHNuvcjtrOnQ21c9ugdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaNhmu4qh+/vmQW9eurD4kJPTSWOR582aF5+XlqNev33YxIyNNlZqaohk69NZL80lyc3OU998/rs+KFbGctf5FRzB48MABU6dOS7PWZiFtw2QyaAoKsl1EURgzYMCAhIb2tWVC/J8sy87hOO4TAN/bFiIhnU9xRjpkACoFHmonLQy8CFMdSYM96Qw86rsB4+TkjNsDguChUCDn/PlmJyeOxCwAWy5Yeuqf6mmCkoZ2EUKI3Xz33bfemzat07722vR0Pz9/859/nnA9evQXr0mTpmQAgNFolL311syujz32VNZtt40pragol69f/36wv3+AccCA69vkbjq5dtiSnHgCKGp0L0KuMeU5OfAEUA2m1QswWukamXBfIZfBA0BxchIw4rZWjaU18RKw8bxlqO5jPUxQtnM8hBDSmcycOSdjxYoloW+99WYXnU4n9/f3Nz777KRMa+9C166sYcaMOSkff/xR4McffxSkVKqkPn36Vrz33gcXrcO6CLEXW5KT9wD8r2YC/HmO464aW0fItShHpcTkUycw7ObBGM4wMAutV4DRymjmITRQ68Tk5Azo9dDlZLdqHIQQQjouT08vYfHi/6U1tM8dd4wrveOOcaVtFFKrOXbsr1PtHQNpmC3JyWMAwgEcAgCWZa/cLnEc1+TzsizrB+BdAGMAaAH8CuANjuPiarb3gyUhGgigGEAsx3ErbIibkFZVWFgAsyTBxd8fMhkDg5FHM6d0NZu11kl95N7eQFYWxGIaWksIIYQQx2dLcrLTzjHsByACGAugGsDbAA6xLNsFlmTlRwD7ALwA4CYAH7AsW8xx3FY7x0FIixQWWjoRfXwsNU50htZbRtjKVFMlvr5fZKfgECArCyodDQkmhBBCiOOzJTlJBXCY47gWF09gWda75nyLOI67UPPc27BUoO8JSx0VI4BJHMfxAOJZlu0KYAYASk6IQwnLzsakiCgEK1WQAFQbWq8Ao5WJF8DzIpRK+VVVcgHAK6oLcOIPuIu0OhEhhFxBBCBJklRv5XNCiH3U/J5JsPzeNciWIowrYRli1WIcxxVzHPdQrcTEH5ZCjlkA4gAMAXCkJjGxOmzZlfWzRwyE2EuQQY/hPn7wVqkhiK1b48TKZBZhbqBKfHCvngAAF5kc1WUdYaVvQghpM3mSJJlNJkOjFcUJIS1jMhmcJEkyA8htbF9bek4KAHjYcFyDWJbdAOBZWHpKxnEcV82ybAiAc1fsmlPzb1hNLDZRKGzJy+onrym+Z/2XtB5HbWsnUQJkgHtIMCQJ4AURMlnr3pATBBGCIEGplEMQrr4Z4RMcjOfTkpFSXIRPSooR4+PT5HM7UjsranUKKeQyKGz5y+WgHKmdOzNq57bRkdp5wIABFadOnfqooqJ0EgBvlUqjYxiGVp4ixI4kSWJMJoNTRUWpSpLEzQMGDKhs7Bhb3uI3AnifZdnhAM4DuKqUPcdxH9lw3tUA1sNSdX4fy7KDATjBkqzUZi2UpLHhGgAAmYyBp6ezrYc3yM1N2yrnJVdzpLYWBAFuNQVHwnvGQK6UQyaXQatVtfq1eanhttCGBMNcVIji4jx4evZv9vkdoZ3dRGD/BMtjfx9ndIDPPc3mCO18LaB2bhsdqJ3fEQQeZWXFjzEM4wSAhngRYl+SJElmSRI3A3inKQfYkpy8W/Pvo/UFAaDZyUmt1bmeg6Xy/GQAegDqK3a1JiU2z/AVRQkVFTpbD6+TXC6Dm5sWFRX6Ou9gE/txxLYuysyEsiY50XgHoLrahMoqI/SN1CGxh/JKA6qqDDDXM4wsODgMZ86cwYULCbj55qFNPq+jtXNYzV+CivL2jcPeHK2dOytq57bRmu3s5qa1e4/MgAEDRACLTp069Z4kIRC2DXcnhNRPBJDblB4TK1uSk0gbjqlTzbyREQA+5ThOAACO40SWZeMABAPIBBB0xWHW71tUuIHnW+fNSRDEVjs3uZwjtXV+SgoYAFWCAJXWCdXVZhiMPMQGlvm1l2qdGXwDbdHbyxsh4VHQ/HPWpvZypHbuzKid2wa1c9voaO1c88GpyR+eCCGtp9nJCcdx6dbHLMs6AXADUMxxnC23iIMAfAzL0LDDNedUAugPyxLD+QBeYFlWbk1eYElmOI7jbJ5vQoi9ledkwwOW7jyGYcDzIsxt9MZs4gXwQv1JUIi7B/r7+iGzvON2OZgFYDdnqQv/EGuGUt7OARFCCCGkVdg0rZRl2SEAlgO4HjXjM1mW/RPALI7jfm7Gqf4B8D0stUueBVAKYDYATwCrYJlfMh3AZpZllwO4AcArsNQ8IcRhVBXkwwOAQaEAwzDQG1u/xomVySxAFKV6B0r7xnQD/jgOD6nj3MW8Ei8BsWcsIzrvjzFD2c7xEEIIIaR1NHtsJcuyg2CpDu8BS8HEFwEsAuAF4HuWZW9u6rk4jpMATICl1+QTAH/WnGcIx3EZNb0jowGwAE4DmAdL9fjtzY2bkNaUrFLj4VMncNLfDwzDoLoNCjBamWsKMdYnpE8fAICrXIHirBaXJyKEEEIIaTW29JwsAnAUwOhaQ63AsuwCWHpBFgAY1dSTcRxXDkuC82I920/CMkGeEIdVWFgAsyTBLSAQkiRBb2z9ifBWJl4EL4hQ1VOI0dnDEyU8Dy+FAlln/4F3SEibxUYIIYQQ0hy2rEpxA4D3aicmgGUiO4A1NdsJuaYUFRUCAHx8fNusAKOVyWypEi9r4Le5sqYwSGnSxTaKihBCCCGk+WzpOakE6h3yrQKtEU6uQX1LS8BGRCFIpQIvSm02GR4AzDWT7xmGgWUl7zr2cXMDKiqgz2nRIneEEEIIIa3Klp6T3wDMYlnWpfaTLMu6AngTliFfhFxTukjAcB8/eDo5tXnPCQDoTXxNclI3VUAAAMBUVtZGERFCCCGENJ8tPSczAZwCkMKy7NcA8gAEALgTlgKJT9ovPEIcnyiKcJNZ1rb1Doto02WErXSGhpMT5xtvwqN7diIoPAJ3t2FchBBCCCHNYUudk6SaFbnmAbgdltW1SgD8DGCBtdI7IdeK0rw8qGsmfPhFRUAniG3fc2Iw1zkZ3iq8KwujKCIzMxM8z0OhsGkV8XajkgHrRuguPSaEEEJI52TT23xNAjKV47gAjuNUAHoAWEyJCbkWFaenAgB0ggCNi+ulOSBtycSLDS4nHBAQCI1GA543I6cDzjuRy4CB/gIG+guQU3JCCCGEdFrNvn3KsqwHgL0AQgF0q3n6BgDfsiy7H8BEjuN0douQEAdXnp0FdwBVsFSHN5jarsaJVWOFGGUyGR7pEoMgkxk5x39DWFh4m8ZHCCGEENIUttyDXAqgJ4BZtZ47DOBuAAMBLLRDXIR0GFX5+QAAg0IOhmGga8MCjFbmRnpOACDa1R293NxRmZzURlHZDy8Cn15U4tOLSrRxpxQhhBBC2pAtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOkI9CXFAABerbEUYDS0XQFGK5NZAC+IDU6Kh5cXAIAvyG+jqOzHLALL/9Jg+V8amCk5IYQQQjotW5ITVwCl9WzLB+BjeziEdDxnlQo8fOoEUqKiwIsSTO1wa9/MWwoxNpSbOIWEAgBUlVVtFBUhhBBCSPPYkpycBvB0PdueBHDW9nAI6XiKigphliR4BgZCbIcaJwBgNoswCyJksvqzE58YyxQxd7Ht4yOEEEIIaQpb1hNdBOAgy7J/AfgSQAEAX1jmnAyApd4JIdeMwsJCAICPjy+ENq4ObyUBMJiEBod1hV93HXJ274SbXIHirCx4h4S0XYCEEEIIIU3Q7J4TjuN+BHAXLJ+HFgJYD+BtWBKduzmO+86uERLi4EaaebwYEQ0/tRrmdqhxYqUzmBsc1uXi5Y0S3jJZP+P0X20UFSGEEEJI09lUiY3juIOw9J5oYCnCWM5xXLVdIyOkA5AkCX3VGmicnOHk6QleEGHm2ys5aXyVsHKVCozBgNL0tNYPiBBCCCGkmVpUzozjOAPHcTmUmJBrVXlhATRyOQDALzIKPC/B3E7LSZnNAnih4eWEuW7d8PzZ0zhdWdFGURFCCCGENJ1NPSeEEIuitDQAgEEU4OzpiaKCKjScHrQeMy9CaKAQIwBExbAAgOTki20TlJ0oZcDqobpLjwkhhBDSOVFyQkgLlGdnwRVApSSBYQB9OxRgtDLxAkRJgryBfaKjuwAAkpOTIElSw3VRHIhCBgwOplXGCCGEkM6OkhNCWqAqPw+uAAxyy6+Szth+yYllOWEJCgUDqZ7um/CwCMzsyiJM64Si9FT4RkS1bZCEEEIIIQ2gARKEtIChuAgAYFarwQsSTOb27TmxFGKsvzfEydkZoc6u8FGpkfn36TaMrmV4ETiQosCBFAXaYaVmQgghhLQRm3pOWJb1AfAGgNsABAIYDeAeAGc4jvvKfuER4thMFTUTy52dIUrtNxkeAExmAbxgTU7qn/lSqVbDVxBQkthx5p2YRWDBH1oAwMiwSijotgohhBDSKTX7LZ5l2UhYqsA/ByALgB8sSU4MgM9Zlr3DrhES4sCOQcLDp06guHsPCKIEUzstIwwAktR4IUYAEL29AQDmnJy2CIsQQgghpMlsuf/4LixV4SMB3AtYFgfiOO5hAPsBzLJbdIQ4uKKiApglCd6BgeCF9u05AQC90QxZI7/VLuERAAA1LSdMCCGEEAdjS3IyAsDbHMeV4eqxI+sB9GppUIR0FIWFhQAAPz8/S3X4duw5AZpWiNG/Z28AgJcoQRRpAgchhBBCHIetI7fr+wSkRkOD3QnpZCZqnPBSRDR8nJ3B8yLM7Txb22QWIIgN/wpG9B8AXhLhJJcj7yLXRpERQgghhDTOluTkKIA3WZZ1rvWcxLKsDMAkAL/ZJTJCHFxVWSn6u7ljqI8vfP0DYDQLEBtJDFqbJTlpeB+1kxOyBQFxlRVI5eLbJjBCCCGEkCawJTmZCaA7gCQAO2DpKZkG4BSAwQBm2y06QhxYUWoqAMAoinD18YG+HWucWFmqxDfee/NrSAjmc3E4n5fbBlERQgghhDRNs5MTjuPOAxgI4DCA4QAEWJYUTgIwiOO4M/YMkBBHVZqVAQCoEEXIZAx0BnM7RwSYecuwrsYKv7NsdwBAQkLH6DlRyoClg/VYOlgPJS0jTAghhHRaNtU54TguEcDDdo6FkA6lKi8PzgAMcjkECTCa2ncyPACYzCJ4XoRGoYBUX5l4AN26WZKT1IsJbRVaiyhkwMiw9u+ZIoQQQkjrsrUIIwOgHwBn1NH7wnHckZaFRYjjMxRZVuoyq9UQhPafDA9YqsSbBanRQowxUV2wuldfBKg1KMvNgUdgUNsFSQghhBBSj2YnJyzL3gBgL4CQmqesA0ikmscSALldoiPEgfFlZQAAydkZooR2X0YYAATBUgiysWFd7t7eUCmUkDEMUk4cR//x/22bAG3Ei8AvWZY/V8NCeKoQTwghhHRStvScrAJgBvAELBXi2/92MSHtgNfpAAByd3fwgtjuBRitDEa+0SrxAFCh0cCH51EcFwc4eHJiFoGZx7QAgKMPVFJyQgghhHRStiQn/QE8yHHcV/YOhpCO5GuTAQtOncDCu+4CX9Nj4Qh0hqYlJ4y/P5CdDSEnuw2iIoQQQghpnC33HwtAvSWEoLCwALwkwScwyFKA0YF6TsQGJsNbucewAADn6qrWDokQQgghpElsSU7eBzDziiKMhFxzCgstE+L9/f1h5kXwjVU/bCMmvvEq8QAQfsNNAABfmRy6iorWDosQQgghpFG2DOvqCqAHgDyWZS8A0F2xXeI4bkSLIyPEgekrKzE1MAil3r7w8fBEqclxlrm1FGKUGr3z4B/dBdkCDze5AonHjqLv7Xe0SXyEEEIIIfWxJTnpAuBMre+vHNze+GB3Qjq4ovRU9HHzgEkU4e7tjez0svYO6RKz2dJzImvkN1EmkyFNo0VRTjZ80pLRt23CI4QQQgipV7OTE47jhrdGIIR0JKWZGdDAUh2eYRjoje1fHd7KVDPETKWUN1iIEQAqrr8e62KP4rbUFNzXRvERQgghhNTHpiKMhFzrKvNyoQGgl8nAi5JDFGC0MpkF8LwIRiVHY/Pie/fuAwA4f/5sG0RmO6UMmHeT/tJjQgghhHROTUpOWJYVANzMcdyfLMuKaKj0tGXOCSU9pFMz1EyGN6lUEEUJJrNjLCMMwLJymCBCJmMgNjIxvkePXlAwMmjKy1CQmQ6/0PA2irJ5FDLgrijHmddDCCGEkNbR1CRiISwFF62PG18KiJBOzFxaCsBSHV5wsJ4TCYDBJDSp1omzswuW9b0OoQolkg7/BL/Hn2r9AAkhhBBC6tGk5ITjuAW1Hs9vtWgI6SCkKkttELm7O8yCCLMD9ZwAgN7Aowm5CQDA6O4BVFejIiGuVWNqCV4E/siVAwBuChSoQjwhhBDSSTV1WNctzTkpx3FHbAuHkI5BNBgAAGovr5rq8I7TcwIAOmPTh0BpoqKBc2ehrBmq5ojMIvDKr04AgKMPVFJyQgghhHRSTR3W9Qv+HcpV3/1YqWabBEDesrAIcWzby0uQnHgRa594Erwgwsw7Vs+JycyDF5o2+jLspkEQz52FnyjBpNdBpXVq5egIIYQQQurW1OSElg8mpJbCwkIIkgS/wEAYjHyjq2K1NbNZhNjEoKIGXo+/162Fq1yB+J9/pmKMhBBCCGk3TZ1z8mtrB0JIR2E2m1FaWgIA8PPzQ2G1460iZeIFCGLTujBlcjkKNRq4mnnknfyDkhNCCCGEtBublvxlWdYHwBsAbgMQCGA0gHsAnOE47iv7hUeI4ylMTcacmO4oNpvg6emJ9OKS9g7pKmazpRCjQsE0qVdHERkFXLwIWVZm6wdHCCGEEFKPZk8rZVk2EsBZAM/BsrywHyxJTgyAz1mWpduupFMrSUtDHzd39HH3hATGoWqcWJl4AWZBbNJywgAQNnQ4PsnOxEfJSTCbHafaPSGEEEKuLbasefMugAIAkQDuRc0EeY7jHgawH8Asu0VHiAOqzM0FAOhkDHhRgsnBJsMDgJkXLVXim5icdLn+RhzSVeFcSRESHHhJYUIIIYR0brYkJyMAvM1xXBmuLsa4HkCvlgZFiCPTFxUAAExKFUTRMoTK0YiiBKNZaHKtE5lMhv79rwcAnDhxvBUjs41SBkwfaMD0gQYoaRlhQgghpNOy9W2+vhnAalD1eNLJmUssc0xEJyeHXEbYSm/kIZM1MTsBMOiGm3C9hyeE339rxahso5ABD8SY8UCMmWqcEEIIIZ2YLW/zRwG8ybKsc63nJJZlZQAmAXC8TzaE2NGl6vBubuAF0eEKMFrpDc2bO3JTrz54owuLWxgZyvLzWikqQgghhJD62ZKczATQHUASgB2w9JRMA3AKwGAAs+0WHSEOSK7XAQDUPj6WnhMHnBAPAAaTZTnhpgrt3QcFPA85w+DCtwdaLzAbCCLwV74cf+XLm/WaCCGEENKxNDs54TjuPICBAA7DUpxRgGVJ4SQAgziOO2PPAAlxNILJBABw8feH0SRCEB1zJKOZFyGKzfskX+HrCwCoPPN3a4RkM5MIvPCTE174yQkmSk4IIYSQTsumOiccxyUCeNjOsRDSISxLT0FFWRk+mT4DeqPjLrtrMgsQpObdgfC98Sbgu4PwLq+AKDhmjxAhhBBCOi+bppayLBvFsmyPmsceLMu+z7LsfpZlH7VveIQ4FpPJhNLSUgiShMDgIOgMjlcd3srMC+AFsckrdgFA7zF3QC8IcFcocOHwodYLjhBCCCGkDrYUYRwDIB7AUzVPrYOlIGMIgG0syz5tv/AIcSyFhZZlhJVKJVzdPWE0O25yYuJF8ILU5FonAKBxcUGuVgMASP/++9YKjRBCCCGkTrb0nMwF8AOABSzLugO4B8ASjuP6A1gCYKod4yPEoRTFXcDcmO54JjoGogSYHLDGiZXZLMLcjEKMVq4DbwAAVGdlQpIccz4NIYQQQjonW5KTvgBWcxxXCWA0LPNWPqvZ9iOArnaKjRCHU5GRjl5u7ujq7AzRQavDW1lrsDQzN0G//z6A6RcT8Pb5f3D27NnWCY4QQgghpA62JCd6/DuRfiyAfI7jrJ9gAgCUNedkLMt6sSy7jmXZLJZlK1iWPcay7OBa2/uxLPsry7LVLMtmsCw7zYaYCbELQ82wLpNKXbOMsOP2nACWQozN7TlxdndH1xtvAgAcOOBYSwoTQgghpHOzJTk5BmAay7IPAXgAwBcAwLLsAADzarY3xx4ANwF4EMD1AE4D+IFl2W4sy3rD0htzEZbli+cBeJtl2SdtiJuQFuNLSy0PXFzAC5LDVoe30hman5wAwJgxtwMAvtu3D2aj0d5hNZuCAab0M2BKPwMUzX85hBBCCOkgbFlK+FUA3wDYBSAOwKKa578BoIOlSGOTsCzbBZYaKf/hOO73muemwtIjMxGWXhojgEkcx/EA4lmW7QpgBoCtNsROSMtUVQIAFJ6e4HnRoeecAJaeE9GGeSO33DIML3RlMdjVHSc/3YMbHmrfhfiUcuCxHo67bDMhhBBC7MOWIoypAHoCCOQ4rhfHcXk1m8YD6M5xXHIzTlcE4A5Yqstbzy8BYAB4ARgC4EhNYmJ1GADLsqxfc2MnpKWUBksvgtbXF6aapXodmZkXbCoSqVSqEB7VBSqZDGW//mL/wAghhBBC6mBrEUYJQP4Vz/3Bsqwzy7LDOY77ronnKQPwbe3nWJa9H0A0gO8BLAZw7orDcmr+DQNQ0PzoLRQKm0q81Esul132L2k97dnWWkEAFAq4hwTDYBIgkzn2GCNeECFJtv2893zoIRjWrkWYmUd+0kUEd+vWChE2jSAC8SWW19DdS0Rn+jWjvx1tg9q5bVA7E0JaqtnJCcuy4QDWAxgKQFXPbnJbgmFZ9j8AtgD4iuO4AyzLroJlWFdthpp/NbZcAwBkMgaens62Ht4gNzdtq5yXXK2t21qSJEiiAFGSI7Q7i1JRglZb36+AY5DJ5ZAr5fB0a/6vy4DbhmP3+2sRBgZnt25Erw3rWiHCptGZgUd2Wh7Hvwg4KdstlFZDfzvaBrVz26B2JoTYypaek1UABgHYAOA/sMwzOQ5gFIDeAO61JRCWZe8G8DGAPwA8VPO0HoD6il2tn7KqbbkOAIiihIoKna2H10kul8HNTYuKCj0EBx/q09G1V1uXl5dj8tm/IWcYnAyNRHpGFfR6U5td3xaMJKJaZ4JMFJtds0Qul8H/ztuBA9/CLycPaQkpcPf3b6VIG6Y3A4DlhkJZaTWMnSg5ob8dbYPauW20Zju7uWmpR4aQa4AtyclQAHM4jotlWfYlAOM5jpvBsuwsWIoz3g1gf3NOyLLsZADvwbLy1yMcx1l7SzIBBF2xu/X7bBtiv4TnW+fNSRDEVjs3uVxbt3Vubi4AwNnVDXKVBkZTGUQb5nO0JaNJgMksQFTJIAjNj3Xok0/gyy/3I1ChwLG1sRg97+1WiLJxtRdF4wURvGOPprMJ/e1oG9TObYPamRBiK1tuQbgAOFPzOA5APwDgOE4A8D6AW5tzMpZlJwFYA2AtgAm1EhMAOAJgCMuytYeJjbBcjrN5vgkhtigosEyz8vPzgyBKDl/jBADMvG1V4q3kcjmYmyw1T5yTk1FaUmzP8AghhBBCLmNLcpILS7FFAEgC4MWybGDN9yUAmjzug2XZGFh6TL4EsASAH8uyATVf7rDMP3EDsJll2R4syz4B4JWafQlpU/p//sHcmO4Y4+0LQXDs6vC12VKIsbZbnp+E7w06zLjwD7Zs3WjHyAghhBBCLmdLcvINLIUQB3EclwkgC5aijK4AnkLzhlvdB0AJ4B5Ykp7aX+/V9I6MBsDCUpxxHoA3OI7bbkPchLSIkJeLXm7uCNJowAsiTOaOkZzYWojRSqFUov+kl1EtCNi9exeSkhLtGB0hhBBCyL9smXMyF5Zq7QsBjAQwC8B2WHo0AOClpp6I47h3ALzTyD4nAdxsQ5yE2JVQUQ4AkLm6wSxYhkt1BHqjudmT4a80aNBgDB06HL/++jP2vD0XMzduh0Ll2CuVEUIIIaTjaXZywnFcMYAbrUO5OI7bxbJsOiwJxJ8cx/1q5xgJcQhynWWFN5WPz6W5HB2B2SyCb+HEfYZhMGvWfFyXk4tBSjV+emchRs9fZKcIG6dggGd7GS89JoQQQkjnZFMRRgDgOC6XZdluADwB5HIc9z/7hUWI41GbzIBcDpeAAOiN5vYOp8lMZkuV+JYuwOnv74+IocOBM38jPDMTJz/ZjesnPNT4gXaglAPP93HsZZsJIYQQ0nI2fV5hWfbpmt6SCwCOAbjIsmway7Jt80mFkHbgUvOvZ1gYqvV8u8bSHCbekpzYw7DJU5Hk4gwZw0D53beIO3zILuclhBBCCAFsSE5qapJsBHAKwOMAxgJ4EkA8gJ0sy95v1wgJcQAmnQ6ucsuK1t7hkTAYO1ByYhbAt2A54SuNeOd/yJAkOMnlMO7YjvhffrLLeRsiSkBymQzJZTI4eGkZQgghhLSALT0nUwGs5TjuXo7jdnIc9wPHcR9xHDcWwFYA8+0aISEOoCgrE2VmEwyCAI/gkA6zjDBQU+tEECGzU2FltZMTblz+LjJFAc5yOfiPtuH3j7ba5+T1MArAhG+dMeFbZxg7TtMTQgghpJls+bgSAuBAPdt2A4iyPRxCHFORQY/n/jmNmblZYBgZTB2gAKNVSwsx1sXV2wcDl72LNAaQg8H7Gz/E0qVvQ6/X2+0ahBBCCLn22JKcnISlSntdrgNw1vZwCHFM1urw3r5+4AUJ5g7UcwK0vBBjXdx9/TB87Xr8Hh6OC5UV2LNnF+6/fxyOfv4pRLHjJG+EEEIIcRxNWq2LZdlban27G8CqmqKLnwLIg2XFrjEApgB43t5BEtLe8vLyAAABAQEwd6ACjFbVerPdkxMAUKrVeGbe2+hx22jMnz8bQmEhfL79Bj8f/AaBDz6MHiNH2f2ahBBCCOm8mrqU8C8Aak9DZQBMAvDCFc8BwB4Ae1scGSEOxCXuPObGdIdR6wyeFzvUsC7A0nMitrAQY0MGDRqMffu+xbcr/wc+JQWhjAzY8zF++GIvuj07CWHX9W+1axNCCCGk82hqcjK8VaMgxMGpS8sQ7eaODGcnmHgBvNCxkhOzHZcTro+TkzPumzMfWfFxOPtBLKJ0ekSYzNCtfQ8/uLuj/8uvwicyslVjIIQQQkjH1qTkhKq+k2udymgAZHI4+wdA14GWEbayVyHGpgjp3gMha9Yh4dgRJG3fgi5gEFFRgZQFc/DVoP9g4qNPQqvVtkEkhBBCCOlomvRZhWXZIyzL9mvOiVmWHciy7DGboiLEwWhrJnh7hISgWt9xqsNbmcxim/f2dBt8C27fuA0Vd92NNIHHt3m5WPNBLMaNG439+7+E1IxhZgoGeLS7CY92N0Fh/6kzhBBCCHEQTR3W9R6A71iW/QvATgD7OY7TXblTzST50bBMir8OwIv2CpSQ9mI2meBRU4DRp0sXZJs6YM8JbynEqNEoILZxFcOBd98D4c5xMH/7Nf78MBY5OdnY878lUH37Na6fPQ/eoWGNnkMpB6ZeZ2yDaAkhhBDSnpo6rOtzlmV/BTAXwCYACpZl4wCkAqgG4AEgFEAvAOaafR7hOC6/NYImpC0VpKZAwcggSBK8QyOQmljS3iE1m8kswCxINSt2tX5yIpczkMtlYCQBjMgDMgn/HX8H7rzzDmzdthXhPx1CMC8g6a1ZyH5wIvqMub3VYyKEEEKI42tqzwk4jisCMIVl2QUA7oNlknwUAHcARQDiYelhOcBxXHErxEpIuyhKSYYWQLkgQJIrOtwywgAgCBJMZgGtsJrwZRQKORQwA/pyCFXFMFeWQeRNgCiCkcshU2nx3H1jkBAVipxtO+GnUMD86R4cSUnCLS9Oqfe8ogTkVVuCD3CWIKOhXYQQQkin1OTkxKom8Vhf80VIp1dWkA+9yYRqpRJ8zYf8jkhnNINhnFrl3HI5AyUjQqrKhbEgHaayIogmQ90756Yh3M8VgW++hCMrNyKSBwJOn8bBBXMxdt7COg8xCsC4/S4AgKMPVELb7L9chBBCCOkI2mLxHkI6tFRJwgtnT+MnPx/wHbAAo5WlEKP9z6tUyqHiK2HOPI9K7iQMBVn1JyYAAAl8dQVkFXkY/tIEpHm6AgCiMzPw/ewZVF2eEEIIuYZRckJII/LzcwEAAYFBMPMiTHzH/PBsMNm/1olaxUBWkYPqpNPQZSdBMpuadbxk1GHoQyORHuAFACi7yOGDtavtGiMhhBBCOg4aHEFII/Ly8gAAgYFBMJiENl/tyl4stU7sdz6NEhCL06FLT4BgqLb9RKKIW8YPwaHv/8Dyz05ASEyAl48PJk58zH7BEkIIIaRDoOSEkEYMKy3FkJjuCFKpoDN0vBonVtZCjHI7nEujBMSiVFSnx0M02WeJ35Gjb0KOHHh/z1f43/+WwF+jxYh777fLuQkhhBDSMVByQkgjghkGbm7uYHx8oDN0vBonVmazCLMgQqFg0Iz6h1dRKxlLYpIWD9Fs39ojj464EcUlZXBOSIfvgf2I8/JGj2G32vUahBBCCHFcTUpOWJZt1vgKjuM+si0cQhyLoaoKbnLLr4lPl65Iqei4yYnJLMDMi3BSKppVnb02tVIGqTTD0mNi58QEABiGwcv3jsTxjfuhYeQo3bYFRVHRcA4Kt/u1CCGEEOJ4mtpzsq0Z55QAUHJCOoX8pEQAgF4Q4OYfCFNRx60rauIF8IIImYyxad6MUikHKnOhS49rZDWullEoFOjz4Ehc3Pk9/JQqnFo4F4PXbMT9XS2T7eVU44QQQgjptJqanES2ahSEOKji1BS4AKiQRIgS02FX6gIASQL0Bh6Mu6bZxyoUMsgNpdBlxEPQt2DyexO5e7rB+7aBMB4+g0iZDEeWLsCMBYtb/bqEEEIIaV9NSk44jktv6glZlqX7mqTTqMrJhgsAnUIJnu+4NU6sqg1mMM0sdsIwDBSCDoZsDuaKklaK7GpR3SLxR0o2AjOKEZGVhXMHv0bvsXe22fUJIYQQ0vZsmhDPsuyDAIYCUAGwftKRAXAGcDOAELtER0g7MxQWAAB4Jy3MHbgAo5XOYG72fBOlTIQpNw2GwuxWiqp+N479Dw5v3IdoUYbcL76FR/8hCPFzb5VikoQQQghpf81OTliWnQdgHoDymuPNNV++AEQAG+0ZICHtqbKqEiUmE2RBgZcmlHdkJrMAvhnzTSRJgliWA312Mlq0xJeNGIbB9Q/chj92/ogFo3YAPwFHH6iEltYZJIQQQjolWyrEPw5gJwAvAKsAHOA4zh/A9QCKAVywX3iEtK+fDQa8cPY0jNf179DLCFtZa500hUzGQKgshiE7sVVW5moqNw8XuI+6/tL3J0780W6xEEIIIaR12ZKcBAPYwXGcBOAUgEEAwHHcKQCLATxjv/AIaV85OZahTCGhIajWm9o5mpYzmS0rdjVlWJQCPIy5KW06z6Q+fbpEXHr84f/eQXVZ+8dECCGEEPuzJTmphmW5YABIBBDJsqy25vszoJW9SCchSdKl5CQgMBgGU8eebwIARrMIMy82OileqZRBLM2FsSizjSJrule8fXHknUXtHQYhhBBCWoEtycmfsAztAoBkADyAkTXfdwfQfuM/CLGj4qwsLO/CYm5Md/j4+sPYwSfDA/8WYmwoOZHJGChMlTDkJgGC4w1lc5YrEFFcjAs/H27vUAghhBBiZ7YkJ+8AmMCy7AGO44ywzD/ZzrLs5wDeBfC9PQMkpL3kJ3II0GgQ5uwChUoNUyfoORFFCQaTAJms/uREJZdgKkhziOFcdclgRMgZBnk7tkLgHS95IoQQQojtmp2ccBx3BMBAAJ/UPDUZwGcAugHYC2CK3aIjpB2VpqUBACplDMydoMaJVbXeXO+cE6VSDqmyAIb8jLYNqhm63X4zDIKAUJkcRz9Y097hEEIIIcSObFqQk+O4swDO1jw2AHjOnkER4giqcy3zTUwaLcy82CmGdQFAtd6EutbrYhhAIeihz02BaDI02LvS1uQQMdYtCQDg7+eN331dEFmih9vfp1GWlwePgIB2jpAQQggh9mBrEUZ3ALfCUnTxqt4XjuM+amFchLQ7obgYAMB4uMPMix2+xomV0SyAF65OT5QKOYSibBhL8tshqoapZCLmBPx+6ftB44fh7/VfIUCpwvF3l2Hs/1a1Y3SEEEIIsRdbijCOhWX4llM9u0gAKDkhHZ6sqhIAoPbzR7XB3M7R2I+11kntuwoyGQOZsRzVuWmA5PhJmEqlgvK6aIjnMpB0MQGJiRfRtWtMe4dFCCGEkBayZUL8EgDxAIYCiIZl6eDaX1F2i46QduRksiQkbmFhqNZ1/BonVnXVOlHJJZgLM8BXlbVbXA2RJEAvKqAXFZcK1fcf3B+7JB02p6ciNvbd9g2QEEIIIXZhy7CubgDu5jjuqL2DIcRRSJKEIoMeGrUaAdFdUNQJVuqystY60SgUkCQJCoUM0BXBUOC4k+ANkgIjkyYCAA51+RhaxrJK1+P/HYWD/8Th6NFf8eefx3HDDTe3Z5iEEEIIaSFbek7SAbjZOxBCHElpaQkWJlzA82f/RkCPXp1iGWErk+nyWicKmGHMT4Vo1LdzZM0X6u+De4fdiCCNBvH/b+/O4+So6/yPv6q6e2Z67plMjskkkzsFIQkJN0I4RFFxBRUXz58LHrui68ruev3UXV3R37q6IijKeoAnynqwnqggLCBykwNCQiUkmRxzJJmj5+qzjt8f3ROGIQPJTE9XT8/7+XjMo7ura6o+Xan01Ke+3+/n+/WvqbSwiIjINDfRbl2ftixrcZ5jESka7e3ZSl2zZ8/BDEVKplIXgOf7xFMOpmnkSgcfJtXdGXRYE3bVq8/j2hNWc3akjAe/882gwxEREZFJmEi3rrcDLcAuy7IOA/Ex7/u2bS+bdGQiAeroyCYn8+e3lNQcJyOyc50YhJw4ia42fGf6DvhvbKhj86wqavpThB9+iNQ7r6K8crx6HSIiIlLMJpKcHMj9iJSuxx7hq6vX0V7fkJ3jpIS6dUE2OTFDBm7PQVJ9xVc6+Hidfen57PzuHcwKh7n/a1/hlR/7ZNAhiYiIyAQcd3Ji2/ZVUxGISDHxenqYV1FBvLqGZDpb3aqU+L6PkRokdXAveNP/s0WrogwunEVdZz/127fT391NXVNT0GGJiIjIcZrIPCetL/K2BwzZth2bcEQiRSA8NARAdN5chpOlU0Z4RF11GZm+TtL93UGHkjdnXnIuT37zl8wKR3joxq/w6s98PuiQRERE5DhNpFtXG9mJFsdlWVYvcINt25+bSFAiQat0MhAKU7uwlaFEaVWAilaEqQslSXQWb+ngsUw8LqxuO/L8aMKRMJkV82HPYebt3UdfZzsNzS0FjFJEREQmayLVuv4GSAN3AlcBr8kt+w3ZpOWzwPeAT1mWdXV+whQpHCeTod7I/teYvcIilSqt5KSlqRL6O0nGup83EWMxKzc9Pjf/fj43/37KzfG7oZ120ZnsTif5RccBfvKz2woYoYiIiOTDRFpO3grcdpSxJz+yLOsm4FTbti+1LCsGXA3cNMkYRQrq4K5niZgmru8ze/lK9u7oCTqkvKmKRphdkaHvmTaayn0MXqIZdJoJhUOENqzmN1/fTPQnP+It77iSxsZZQYclIiIix2giLScXAD8e573bgYtyzx8AVFJYpp2D9nYAYp4LoUhJVepqaarEHOhiuK+HtOMybZpOjsOGdatYtWQhiUSC733v20GHIyIiIsdhIslJD3DyOO+dDAzknlcDwxMJSiRIhw4eZMfQID2RsmwZ4RKZ46S6MkJTeYpYexsA6bTHdElNEl6Yc3a8k3N2vJOE9+INvoZh8HeXXcTp9Q1Yjz1O586dBYpSREREJmsi3bpuBT5rWVYG+DlwCJgDvBH4DPBflmU1ANcAD+cnTJHCsRNxvvvM07ztbf+Hlzku6RJpOWlpqsTobyMe6wPAcT08v5Q6dT3njFUrcBYvYWG4jE3/9TWav/zVoEMSERGRYzCRlpNPAbcB1wH7gGTu8TqyicsnyA6SX59bV2Ra2b9/LwCtra0MJzIlMSajprKMWZEksfa9R5Zlk5MAg5pCpmlSd6oFQGtfjP3btwUckYiIiByL405ObNt2bNt+F7AS+Dvgk2Srda20bfvvbNtOA78HWmzbfjKv0YoUwP592RK7ixYtYiheGnOctDRFob+TeH/syDLX8/A8n2nTt+s4rT5rDQfcDGWmyZZvfSPocEREROQYTKRbFwC2be8Cdo3zXt+EIxIJkOd5fKyqmsHVJzO/to6eEigjXFNVRmMkSaz9+fOaOK6P6/mETRO/JNqHns8wDOpPPwE27mJx/wD7nt5K60mrgw5LREREXsQxJSeWZe0G3mDb9hbLsvbw4tVHfdu2VaVLpqWefW1Uh8JUmiHmLllB+56Bl/6lItcyKwqx3SQGYs9b7roerudhGCYlOvSEVaefxIOPP8MCM8KWb91E6w1fDzokEREReRHH2nJyH89V4bqP0poaQeSIjqefJgr0uS5LK6Kk0tO7EfBIq0nH/he85wOZjAcVpTbbyXMMw2DW6avgiZ0sHRykbeuTLF69NuiwREREZBzHlJyMnnDRtu0rpywakYDF9uwmCgyGw6Qdj1R6enfrGq/VZMR0KZNs4nF21YEjz4+HddqJ/PbRrfx+dxvzb/sR137ui1MRooiIiOTBhMacWJZVA9Tatt1uWVYZ8CFgIfBz27bvz2eAIoWU7OwAwKmpJp1xp83F+9G8WKvJCMf18KdBn65y0+M/W+6Z0O8ahsHy157DE5/bxKY7fsu73v0+lixZmucIRUREJB+Ou1qXZVlnAHuBD+YWfRX4D+AdwD2WZV2av/BECiw3B0hkzpxsGeHiv24f1/xZ2Qpd47WaADhO6ZYTHu3ExS2ct/4kPM/jO9/SuBMREZFiNZF5Tj4PPAN807KsKNmk5Bu2bTcCN5MtLTwhlmV9yrKse8csW2dZ1n2WZQ1blrXPsqwPT3T7Ii+lIpEEoHph67QuI1xTWcasshT9HftedD3H9XBLuJzwaO/9qwu5bN58Xtfeyc6NTwQdjoiIiBzFRJKTM4FrbdveA1wERIEf5t67DZhQrU7Lsq4BPjtm2SzgLmAHcBrwaeBay7KuesEGRCbJ933s/hjPDg8xZ9Uq4snpO96keVYUYs+f1+RoXNfH83yMIs9OEl6Yi3a+lYt2vpWEN7EK6CsXtXDhghYay8rYdvO38hyhiIiI5MNE/sp7QCr3/BIgBjyae10LxI9nY5ZltQDfATYA9pi3/za3r6tt23aA7ZZlrQA+Bnx3ArGLjKunp5tv7NqBaZo8uGY9XXZP0CFNSHVlhKbyFP279r7kuo7n4boeRqT4ywkn/ciktzHnrNXw8HZWJBLseOIxVp56eh4iExERkXyZSMvJ48B7LMs6G3gz8Fvbtn3LsuYAH8+9fzxOAfqAtcAjY97bANyfS0xG3ANYuf2J5M2ePbsBWLBgIYYZnraVuubPqnzBbPAvJp1xMYzibjnJl2XrVtKBS9g01XoiIiJShCbScvIR4A/AW4DDwOdyy7eSTXZedTwbs237N8BvACzLGvv2AuCpMcs6co+twKHj2ddo4fBE8rLxhULm8x5l6kzVsT6w+1lMYOnSpWRcj7TjYprT66K9Ohphdnma/t37jznhSDkehsELPquRe22YxoTuYuSTOarbmWkak/p3aT5nDfxlGyuTKXY+8Qgnnnl2PkKcMH13FIaOc2HoOIvIZB13cmLb9ibLspYDq4Cttm0P5966GviLbdtdeYyvkue6kI1I5h4rJrpR0zRoaKiacFAvprY2OiXblRfK97Gu3vQEPzrlDNrq6vGBUDhMdGLDGwKzqLma0PAeMsMDRMKhY/49MxSirPzoFxPl5ZPvTjVZvvvcZ6moiFAxiQufVWet5p6HttKMybZbbuZlr35FPkKcNH13FIaOc2HoOIvIRE3o0su27UHGdMGybfsXeYno+RJA+ZhlI0nJMBPkeT4DA8c1NOYlhUImtbVRBgYSuO7xTRInx2fKjnVPH2HTpHr2XLpjCRKJ6VWtqyoaodaI07d/Lxnn2OdnSaUMUmkHJ/P85YZpUF4eIZXK4Adcbzg5ahB8MpnBMCfX5a75nLXw560sSyR54K57Oem04Mae6LujMHScC2Mqj3NtbVQtMiIzQLHfF94PzB+zbOR1+2Q27DhT88fJdb0p27Y8X76PdW0mA+EwjStXMjCUwptmE4DMa4xC/z6G+o5vIH/G8XBcDyNkMnpU/MglgO/5gR+L0fv3PB+PycWz6KRl/M+DW/jh1q0su+XbfHXdqZMNcdL03VEYOs6FoeMsIhNV7Lcg7gc2WJY1un/KRYBt2/aEx5uIjDUc66MhnM3Vm1efTDI1vQbDV42MNWl/6QpdYzmuly0nXMTDa0x81ke7WB/twpxkYjLi1EvPoyud4v777+Wpp7bkZZsiIiIyOcWenNxCtjzxzZZlrbIs60rgGuDfgwxKSs/+zZsBGHAc6ppbSKaPvVtUMZjfVIkx0MVwrPe4f9fzfdKOV9QVu8pNlxsX3smNC++k3MzPv03r3CYuOec0AL5309fysk0RERGZnKJOTnKtI68CLGAj2UkYP2Lb9vcDDUxKTre9HYBYyCSVcadVy8mRVpOO4281GZFKO0U+DePUuPLVG/jAkuVclUyz5f57gw5HRERkxiuqMSe2bV95lGWPAcHW+pSSN7x/HwDpmppscjKN5jjJtprsY7jv+FtNRmQcD6/YZ2GcAgvmNrFydhNlHjz5w+9x8nkXBB2SiIjIjFbULScihbJ7cIAHe3tgYStD8UzRz5Y+YjJjTUZzHI9iHv+f8MK8dtcVvHbXFSS8/N5TWXj+yQCscj02/u/ded22iIiIHB8lJyLAnfvauH73TmZt2ED/8PQpITyZsSajOa6H6/oU86j4mFtBzJ3w9EbjarEW0xmCsGmy69Yf5H37IiIicuyUnMiMl0ql2Lcv2/KwdOlyEsnMS/xGccjOBp8i1t426W1lHA/X84o5N5lSi85fB8BJns/jd98ZbDAiIiIzmJITmfH2bH+aWaEw9XV11DfOnjaD4ec3VcJAF/FY36S35fk+mSKv2DWVmlcuoitsEDZN2n78I/zp0q9PRESkxCg5kRmv6y8PcOPa9fzfFSeQdjwS0yA5qakso6k8Rf+BtrxtMzlDK3aNWHTBegAWOy6PPHB/wNGIiIjMTEpOZMZL7GsDwK+vJ5meHpW6WpqiEOsg3h/L2zbTGQ93BrcYzFu+kMcrQ/zD1s3c9J3/UuuJiIhIAJScyIwX6s0OJo+2tjIYTxd9pa7aqjJmRZLEJlmha6yRmeJnsgsuOx8vFGLLlk08+OADQYcjIiIy4yg5kRmv0cm2lMw+aTX9Q6mAo3lpLU1RvL52EgP9ed2u43i4nl+U405MfE4o7+aE8m5Mpi6BmlVXw+Uvz06r9Ktvfl2tJyIiIgVWVJMwihRa7/591IbCeL7PglNOZ1tncVfqaqgppzEcpzfPrSaQq9jl+tlvhSK7Ji83XW5edEdB9vX2i16GtbebE8oqeOiXv+Blb3hTQfYrIiIiajmRGa7t8ccA6HYdKuoaSKSKOzlpmVWB23OA5NBg3rft45PKuEXZclJIsxpqqW6sA6D/179U64mIiEgBKTmRGa3P3g7AYHkFybRLPFm8g+Fn1UepN4fpm4JWkxHToRhAIZz46rNxPI9loTAP3XZr0OGIiIjMGEpOZEZ7qreX2zvbSS1ZTDzpkHG8oEM6KsOABY1lZA7tJR2PT9l+Mk5xDopPeiEu3/1GLt/9RpJeaMr319jcxP6qSHbfd/4B13WnfJ8iIiKi5ERmuD/v2slt7fuZfd559A0mgw5nXHMaKqnxB+jt2Del+3EcF9fzKbYJT3wMupxqupxq/AIFd/JrzyXhuiwIhXn4B7cUZJ8iIiIznZITmbESiTh79uwCwDrhJIbi6YAjOrqQabCgIUyyaw9OamqriWUcD8eduTPFj9bQVE97XQUA/n33kU4mAo5IRESk9Ck5kRnLfvRR1lbXsnjuXOobmop2vElzUxWVmT5iHe1Tvi/X80k7Sk5GnHnZ+Qy6Dsl0ml/d+oOgwxERESl5Sk5kxup++C98YuUJXL14WW4wfPFV6iqLhJhfC0Mdu3GdwsSXTDnF1qsrMNU1VbSvbOaj257kxu/fQn9/LOiQRERESpqSE5mxnP37s0/mNRNPZkili2/Qc8vsKsoSh+k/2FmwfaYzuXEnAsArLjqLZa3z6R/o59vfvinocEREREqakhOZsaqHhwBoXLWK3sHimxm+KhphXmWGgf278b3CVRHL5GaKl6yQafIPb3oNEcMgfs/d7Nn4eNAhiYiIlCwlJzIjDfV0MycUBmDRy85lcLj4kpPWOZWY/R0M9hwu6H4zjlt0g+INfBaXxVhcFsMIYPr6M1Yt5xPr1/OW+QvY8S21noiIiEwVJScyI+24/z4AehyHhpZFxBPFNd6ksa6CxnCc3n27C75v1/NJZ1yKKDehwnS5dfGvuXXxr6kwg+l+d+JFp+P6Pkscl43/8/NAYhARESl1Sk5kRjq0ZRMAA5WVJNIOw0U0GN40DVpnleMcaiM5NBhIDImUE0D7RHFbYi1md3k2Yxv89S9JT3FZZxERkZlIyYnMSEauLG9kyRKG4hnSmeKZGX7erEpqvBi9B/YGFkM6o3EnR3PqZRcw7Do0h8L873VfDDocERGRkqPkRGYcz/P41s4d/FfbLhacfwG9/cUzuV55WYgFdQZDB57FSQc3KWTacXHc4klOkl6It7ddytvbLiXphQKLo2FWHX0LmwCYt2MHnTt3BBaLiIhIKVJyIjPO7t272NXXw4NDQyw59QwGi2hm+Na51ZQNddHf1RFoHJmMi+MUT2uSj0Fbup62dD1+wLOwnPXaczngpImGQmz6yn8GGouIiEipUXIiM87mzRsBWLNmLY5nMFQkg+EbaiuYU5agd++z+H6wrRY+2XEnBBxHMQqFQsy5YD1P9Pdx/eOP8OCDDwQdkoiISMlQciIzTuIvD/Cq2XM5e/Ua4kmnKGaGD5kGi2aX4x5uIzEQCzocAJJpp6i6dhWTFauXs3fRbA6lU3zhC9eSTCaDDklERKQkKDmRGcX3fVb09fHuRUtY17qI7v5EUTQOtMyupjrTQ/e+tqBDOSKdcckUUdeuYvPeyy5idkMd+/bt5ftf/XLQ4YiIiJQEJScyo+zdsonGcBjH97FefjH9Q8GXg62ORmipcRnctxM3UzzjX7LJiVtUkzEWk+poBR9/+6W8t3UJG2ybrXffFXRIIiIi056SE5lRdt3zJwA6DQhV1wY+GN4wYPG8Soy+/QwcPhhoLGN5fnbciXKT8Z27bhXL584mbJj0/Oj7pIaHgw5JRERkWlNyIjNKJlf61V2wkOFEhuF4sONN5jdVU+/H6G7bGWgc40mmHIphuhMDn3nhIeaFhzCKbHrIky+/gEEnO/fJvf9+bdDhiIiITGtKTmTGcB2HuclsN66Wc8+lO5bAC3DASVU0wsI6j6F9O8gU6YDqtOPhuB4BV++lwnT5xdLb+cXS26kw3WCDGaOhqYGhlfMBaO3sZJu6d4mIiEyYkhOZMXb++V6qQiHirsuK8y4kNhhcQmAaBkvnVWL27af/YGdgcbyUkUHxpvp2vagzX3kWu3AIGQbdP/weQ7G+oEMSERGZlpScyIyx46EHcTyPzrIIrhFhYDi48SYL5lZT7/XSvac4u3ON8H0YTjpo4MmLMwyD9W+6iAHHYV44wv2f+VTQIYmIiExLSk5kxvjptq28a/PjeBdcyEA8zXBAky/W15SzoDpDf5tNJlWc3blGS6YyeAEPPEl5Id699xLevfcSUl4o0FjG09BUD6cuZ8DJ8D+bN3LXXX8IOiQREZFpR8mJzAiHDx9i69YnSXoe57zmtRzsjQcSRyRssnROOd6h3Qx2HwokhuOVSrtkXC/QksIeBs+kmngm1YQX9ACYF7Hm7JN5qLmWx2J9XHvtv9LR0R50SCIiItOKkhOZEf587z0ArF69luq6RvoHCz+/iQEsm19DZaKLw227Cr7/iUo7Hqm0i2EWb1JQTN512UWctGwRAwMDXPuRD5EYGgo6JBERkWlDyYnMCNV33cn/O3E1l516OkOJTCCTL7bMqaYpNED3s9vw3OKqOPVShhIZ/AArm00n4XCIz//tmzlr7lzeEynnnk9+VMdORETkGCk5kZI30N3NfMdheVU1p55zLof64tnyuAXUUFtBa63LYNs2UsPT7056KuXguH7gJYWni+ZZDVz1mvOpCoVZMRznf7/ypaBDEhERmRaUnEjJ2/jft1Jmmhx2HVpPP4ueWKKg+4+Wh1k2J4LbtZOBQ8U1C/yxSmZcUhlXJYWPw7pz19PWUAnAvK1b2fK73wQckYiISPFTciIlL7N5EwDDixYTT7n0FXC8SThksqKlivL+fRzeu7tg+8033/cZiqdVUvg4nX/FK9iFQ9g0yfzsv2nbvDHokERERIqakhMpaYf37GJhrgzuSX99BQd746QzhRnvYRiwvKWG2lQXB3dux/cK25Us3xIph4wT3Gzx9aEk9aHiL708mmmanP2O19DpZKgNh2m//jq69+0LOiwREZGipeREStrmn9yKaRjs91zmnbSWw32FKyG8dH4ts41eDu/YipsJbsLHfEmmXFJpF9Ms/NdG1HT43bKf8rtlPyVqOgXf/2REqytZ9qYL6HUyzA6H+cOnP0EiEUwpaxERkWKn5ERKlue6VO7YAUBo7ckMxDP09hfmznvrvBqaywbp3fkU6fhwQfY51Xx8BuNpVHjq+M2e10TDxadzX18P129+gmuu+QDJ5PRqBRIRESkEJSdSsh5//FFu3vMsTwz0c9a73kP74aGCVOlqmV1Fa1WS/l1PEe+PTfn+CimezJB23EAnZJyuFq9cxPorXkFZRTmPPPIQH/nwP5BOqgVFRERkNCUnUrJ++rOfsLE/Rtv69RhVdXQXoEtXc1MVi2szDO5+iqGe7infX6GlMi7xpFPwCRlTXoi/338xf7//YlJeqKD7zqc1y1r58gffSUV5Gcv27uXeaz5IKq4ERUREZISSEylJe/fu4e677wLgrW99O4djiSmfFX5+UxVL6zIM73mKgUNdU7qvIA0Op3Hdwvbt8jDYlJjHpsQ8vGk+2copK5fw5auu4BWz57LYcbnrA+9joKc36LBERESKgpITKUlbvvJlrmhu4eIN59O6ZDkHDg4ylZfTC+ZUs6QuzfCep+g/2DmFewpePJkhkXYwQ/r6mKjTTjuJ4ZOXkPY8lvrwh6veTc+B/UGHJSIiEjhdXUjJ6XhmO8sHB7l8/gKuvPQN9A4kORybmq4zhgGLm2tZXJ1g8NktJZ+YAHi+T/9QCk8j4ydl3TnrcM46kSHXocUw2fp/P6Z5UEREZMZTciIlZ/ONNxA2DPbis+pVl7C3c2BKuiGFQgYrFtSxoLyfmL2Jwe5Ded9HsRpOZEimXMwCjz0pNSeecgLVF5+WLTMcCtN7w3U8+rPbgg5LREQkMEpOpKRsv/duludKtLa+4530DCTp6sl/Kd9oeZiTWmuZ6x+ie/tGhmMza8yA43r0D6WmtKvcTLHEWszyd7ySDjdDpRniGzdezy23fAtvmk/aKSIiMhFKTqRkOJkMHT/4PgC7ysuxXv4K9nT0Z2c1z6PGugpWL4xSPbyXrqefIDU0mNftTxeD8TTxlBPIpIylZm7LHE57z6XcV2myuT/GV796HVdf/W4OdnYEHZqIiEhB6apCSsa9X/4iC02ThOtyyj/+M129cTq7h/K2/ZBpsLi5lhObfIyObXRtfxInPf1nfp8ox/WIDaRwCzT2pMLIUGFkCrKvIJRHy/mbd76OT151BdGKcvZu3sSej3+EB27+Fr7G94iIyAwRDjoAkXx4dodNdNtWKCund+1aTly6gse2HczbWJPaqjKWzI1Sm+kmtsNmqLf05jCZiMF4mup4hLrqcrwpnOAyajrcveInU7b9YmEYBpees56Tly/kidvuojESgYce5A+PPMzqf/hHFq5eE3SIIiIiU0otJzLtDQ0N8eGPXsO/bH+axwy48J8+QlvnAIfzMOliOGSyuLmW1c0hKvt20rn1MSUmo3i+T+9AklTGLfjEjKVs0dwm/up9l7O7tgLH91jmefRf9yX++OlPMhTrCzo8ERGRKaPkRKa1VCrFRz96DW1te4g0NnLpdddzuD/FrgOxSW3XMGDurCrWLaliYegwgzseo2vHNtwZ3I1rPImUQ99AEt+HaT4/YlEpKy/jwre9itArTmWvm6HMNFnS3s72az7Indd9iUxG56KIiJQeJScybaUTce655gP427dTURHl+uu/Rqi8hu1tPaTS7oS2aRjQ1BBl7ZI6VtTG4cCTdDz5KEM9ai15MbHBFP3DaUxjar5SUp7Jh9tfzofbX07Km1lfW4tXtHLu1W+kc9k8epwMdeEw9/3xd7z2ta/ke9+7mcHBmVmQQURESpPGnMi01NvRwd3v/yDLfLh68VJSV17Fcms1W57tprc/edzbC5kGTfVRmusjVPtDZA7t5GDHfpxUagqiLz2e79PdFyccMqipLMv7+BMPk4eGFxx5DjOrzK5pmpz1yjPJnHcKD935MJv27OBQTy/XX/8lttx2KxeftIYlr7+cEzacF3SoIiIik6LkRKadJ39/B7Ef/4hFoTBJzyX9mktYf97L2banhwMHj+8uclU0wqy6CuZUQ9QZJNW1j0MHO8gkjz/Bmekyrseh3jiGYVAdjUzpAPmZKlIe4bzXbeCsV5/NnzY9w4/+cD+vrq5nSX8/fP8W7rvl26RXrOSE17+RhatOCjpcERGR4zYtkhPLskzg08B7gAbgAeD9tm0/G2hgUlDd+/by6A3XsTQWoykUptdxmPXe92KddR5bd/fQ1tF/TNupKA/TUFPOrOowteEUZvwgw23tdB4+hOuUbqnaQkhlXA72DOM3VlJdGcH3fDRTY/6VRcJccsZqXn3aKjY/8jRtT+5igevTHArB7l0krvsS97kuwwsX0vyGy1m9eg2RSFnQYYuIiLykaZGcAP8CvA+4CmgHvgj83rKsk2zb1qjQErd79y5++t+3cu727SwvKwfDYE9llPP+7VpS5XVstA9x8EVmgQ+ZBtWVZdRWldFQaVIVShNK95M+3Emst5vEwLElNXJsUhmXzu5hmuqj1FWXEzLB85ShTAXTNDnl7DVw9hr6evt56i9PEtp/iPlGiOZQiEee3sonfn07FRUVnLx2Ha9vbqHhhFUsOfMs5i5dFnT4IiIiL1D0yYllWWXAPwMftW37jtyyNwMdwBuB2wIMT6bAYE83Ox+4n0OPPcr37G08s3MHAKEFrZw2ey6z3vgGLnnTm9m1v4+du7oYTjzX2mGQbRmprIhQGQ1TU25QU+YRcZOQ6CLZdZj+WIzkYL8mtptCjutxsCdOIunQWFdBRVkY8LMtKTIlGhrrOO91GwDo6x1k++PbOLzfp7Gnnt5YjLYtm1jmAe3t9N99F/tdh75whExdLWXzmqk54URa1p3CnDlzKStTK4uIiASj6JMTYB1QA9wzssC27ZhlWRuB81ByMq2kEwkGhwYZGBoiFosxvH8vKdsmdfgQxkA/NakUTWaIasOgGgh3dWGaJueffyEXXPEWVp/2MnoGUmx85hC9sWEqysLUVZdTEQlRWeZTGfYJkyHkJvHiA2QO95EYGqR3aECD2wvMx6d/OEU8maGmqpy66jLKIyFM08D3lahMpYbGGl528Zm8DHi/77Ovd5Cnn9rJrl3t1CUzNJohakNhan0fYv0Q6+dn9/yJn3UcAMCaM4erW1pJhyN40ShUVmJUVxOuqaW8toaKBQupXthKNFpJeSRCeShERU0tFdEohqF60iIiMnHTITlZkHvcP2Z5B9A60Y2Gw/ktR/rg03u57xs3MS81xEgne+PItVf2ye8ijaRyE0Gsc4dY5iWP9Mc3xnTM/61ZQ9wIZdf14ljecxfWY9e9gyr6jRA+Pmv9FGv85Kh1n+8OP0oPIcBnNWlOIZ1bx3/B79zhltGVW3eV4XCWkRmzPT/72offZUz2ZRw8J80aw+WvqiKEgRDZkyxsQJlpUGGG+MLOZ9jYHwPgwlmzuXrJqO4loewp2eM47AtXsux1H2LFGW8kXFnH7zIuv3nYBS+KaVTgezUYvofvOvhuBs9xcF0Hz/HwHBPfrwVqkYkxDDAcE9/3mFQjUwZIgtlrEAqZRMIm4ZCJaWRnRB+5lvXH/H8ZzfGfO/NuOHwaYaOEEhsje1xc12NyB/olrHolrMo+9RNDhPY9SeXBZ6nr76Q2NUhXeQ1muAzPSRNOJJkfCmfjicezP93PldP+8YF9/LKrA4DF0Uq+eNJaAFzfJ+N7OD5kfB8Hgz8NJbgnkcEwQ8yJRLiyphzPMPAx8A1yj9nXTxnlPGZEMYBqfC5leOTb9MgX08jrnUYZm0JVAETxeZ07pnvmkSTJoM0s54lILaGQiem6vC713Gd5/hE3OBAq47Fw9nvD8H0uy/SMe0i7jDIejjz3HXNpunvc+vyHjQh/idQdeX1JuoeycQZk9Rph7o/U5z6GwcXpXqL+0cujDxph7ilrOPL6onQv1eOsGzdC3FXWeOT1+ek+6n3nqOumDJM/lM068vrcTIxZ3tHH5DkY/K68KffKYF5zMzd87F2UR6bDJYaIFJvp8M1RmXsce9s7CTQyAaZp0NBQNamgxrrhltu4YO8WzmyaPe4633ziXgad7B+CC1sXc/qceeOue8vmB+jOTfi3YUErp86bP+66P9z6CO3JBABnzl/A+vkLxl33tu1PsD+eHZ+xfl4zJy9YNO66P392C+1D2epXq2fPZc2iJeOu++vd2ziUSzi8WbNZWD9+f/aqUBjK6yBaz77KRh5NhzlUVkdPdC6dNUvZ07KBwYblz/1Cx7ibkunG4YX/k4/Tb/pX5iWUGW/uqTD3+YsM3yeU7ONA326+0PsUdfEu6pLd1GYGqXfjVPlpor7DobJGqHIgkyAaCR35/ZBhEDJCz9/mcB/9ne0A1EUrWd64dkwgPiMpws7Onexvz96Hmltezilr1j9/tVEOd+2mbf/e7HbDEU5bd+q4H3Wgaze79u4GIGqGOP2U08ddN3O4m127s7VWDODM084ad90nYn3setY+8vrUU86gzDx6evLUQD8/2LH9yOt1606lJhw56ro7hgb57jO/P/L6n9aup6ms/Kjr7ovH+da259b9wEkn0xKNHnXdrmSSm7b+4cjr95y4mqVV1UddN5ZJc+NDfzzy+v9Yqzix5ug3exKuyw0P33nk9bPAPa86j7ddPP6/iYjIeIxi73dvWdblwM+BStu2E6OW/xQot237suPc5G7X9ZYMDCRees3jsH3fIX7/7e9TN9Sf/Rt65Ebvc3d8NzcswDFDYBi0DvcyOzX0gnUwsu0i2+oXkA6FwYD5w33MTWWTBP95bRfZu4l2/XxS4TIMDObGY8xJ9OfW5Xl3DwF21TeTjJRjGAaz4v3Mjfcx0hZjjFrXN2B/7TziZdk/cg3JQeYM9z5/36O231k/j2R1A6FwGdWuQ31qECNSDpFyKItilFVglFdCXRPhhrmYo/4oj75h7sNL3j02DINwOITjuBo3MoUCOc6GMeMmmTcMCIVCuK47pQ0neTfyD+X7+MlhvPggfmIw+zw5hJeM46eTJMoqGS6L4nsuoWScOT37wHXBc8FzwHPxXRfD9+gur+ZQRS0+PmVOGquvHcP3juzHgCPn4uGKag5UNYIPYS/Dmt5slzSf3Dda7lj6+PSUVdJW2YBhGJiey/pY+7gfqzdSya7qWUf2eUbfgRe0Vo+IRaLYNc/dkDq9bz/mOP+IA5EKttfMOfL61L4DhP2jl9seCpfzdO1zmeP6WAdl3tFbOOKhCE/VNR95vba/k6h79BaOZCjMlrrnbnStHuiiyjl6TZmMGWJjfcuR16sGDlLjHP3OgmuYPN6QvSlmAC3zm/nX91yW95bA2toooZC5B1ia1w2LSFGZDi0nI9255gO7Ri2fD2yZ6EYdJ79zMJzYOoeX3fgZ+vqG877t0pPJ/UxMOGzS0FBFX19Sx3oK6TgXRmkcZxOoy/0Up+eOs76jp8K7co86ziIyWfkdeDE1tgADwAUjCyzLqgdOAf4cTEgiIiIiIpJvRd9yYtt2yrKsG4H/sCzrMNAGfIlsi8rtQcYmIiIiIiL5U/TJSc6/ko31O0AUuB94lSZgFBEREREpHdMiObFt2wU+lvsREREREZESNB3GnIiIiIiIyAyg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRomD4vh90DIWW8H2/wvPy/7lDIRPX9fK+XXkhHevC0HEuDB3nwtBxLoypOs6maWAYRhKI5n3jIlI0ZmJyEgPKgc6A4xAREZFj1wykgPqA4xCRKTQTkxMRERERESlCGnMiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRCAcdQCmwLMsEPg28B2gAHgDeb9v2s4EGVmIsy1oEtB3lrffatv2dAodTkizL+hTwCtu2Lxi1bB1wA3Aa0AN81bbt/wwkwBIxznH+LnDlmFXbbdteUMDQpj3LshqB/wf8FVALPAl83LbtB3Lvr0Pn86Qdw3HW+SwiE6KWk/z4F+B9wHuBswEf+L1lWWWBRlV61gJJYD7QPOrn1iCDKhWWZV0DfHbMslnAXcAOshdznwautSzrqoIHWCKOdpxz1pK92Bt9bq8vXGQl4zbgLOAtwOnARuBOy7JO0PmcV+Me59z7Op9FZELUcjJJuQTkn4GP2rZ9R27Zm4EO4I1kv8AlP9YAtm3bnUEHUkosy2oBvgNsAOwxb/8tkAKutm3bAbZblrUC+Bjw3YIGOs292HG2LCsErAKutW27K4DwSoJlWcuBVwLn2Lb9YG7Zh4DXAG8DEuh8nrSXOs6WZf0bOp9FZILUcjJ564Aa4J6RBbZtx8jeRTovmJBK1lpgW9BBlKBTgD6yx/eRMe9tAO7PXciNuAewLMuaU6D4SsWLHecVQAU6vyerG3gt8MTIAtu2fcAAGtH5nC8vdZx1PovIhKnlZPJG+s/uH7O8A2gtcCylbg3QaVnWn4GVwE6yd+b+GGxY05tt278BfgNgWdbYtxcAT41Z1pF7bAUOTWlwJeQljvMast1Br7Es6zWAB9wBfMq27f5Cxjmd5W4M3TF6mWVZfw0sA/4IfB6dz5N2DMdZ57OITJhaTiavMveYGrM8SfbOkeRBrvvcSrIDLz8FXAI8RnZsz0VBxlbiKjn6uQ06v/NpNdkLuDbgdcCHyZ7jv8oV3JAJsCzrHOAW4Fe55FDn8xQ4ynHW+SwiE6aWk8lL5B7LRz2H7B+64cKHU5ps205bllUPOLZtj1xcPGFZ1olk//DdHVhwpS1B9twebeQiTud3/nwG+ErujjTAVsuyOoGHyA42HtsNTF6CZVmXAT8GHgbemlus8znPxjnOn0Hns4hMkJKTyRvpzjUf2DVq+XxgS+HDKV22bR/t4uEp4NWFjmUG2U/2XB5t5HV7gWMpWbn++rExi0e6Hy1AF3PHxbKsvydbLvh24B2jbmjofM6j8Y6zzmcRmQw1r07eFmAAuGBkQe4O/ynAn4MJqfRYlrXWsqwhy7LOHfPWacDTQcQ0Q9wPbMhVkxpxEdmqaeqfnyeWZf3YsqyxY6dOzz1qUPFxsCzrauBrwI3Am0clJqDzOW9e7DjrfBaRyVDLySTZtp2yLOtG4D8syzpMto/tl8jeobs9yNhKzNbcz025P4rdZMvcns1zf/Qk/24BPgrcbFnWF4EzgGvIzusj+fNj4NeWZX2SbPnxlcDXgR/btr090MimEcuyVpK9k/8/wL8Dc0YVH0ig8zkvjuE463wWkQlTy0l+/CtwM9k5DP4COMCrbNtOBxpVCbFt2yM7sPJR4GfAJuBM4JW2bY+tviN5krub/CrAIlse+9PAR2zb/n6ggZUY27Z/C/w1cDnZ7i83k7258e4g45qG3gREgDcAnWN+btD5nDcvdZx1PovIhBm+7wcdg4iIiIiIiFpORERERESkOCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5EREipJlWUbQMYiIiEhhKTkRkaJjWdalwPdzzy+wLMu3LOuCYKMSERGRqRYOOgARkaP4p1HPNwJnA9sCikVEREQKRMmJiBQ127YHgIeDjkNERESmnuH7ftAxiIgcYVnWvcD5oxZdCPwvcKFt2/dalvUZ4C3Ax4HPAcuBZ4CrAR+4AVgL7AI+ZNv23aO2vRr4AnBebtHdwD/btr17Cj+SiIiIHCONORGRYvN+YFPu52yg9ijrLASuAz4PXAE0Aj8HfgJ8m2zyYgK3WZYVBbAsayXwIDAHuBJ4N7AU+ItlWXOm7uOIiIjIsVJyIiJFxbbtbcAAMGDb9sO552NVAu+3bfsntm3/GvgGMB+41rbt79i2/SvgX4AmwMr9zqeBBPAK27Zvt237Z2RbZaLAR6b0Q4mIiMgx0ZgTEZmuHhz1vCv3OHpsSk/usT73eBHZ7mFxy7JGvvsGgD8Dr5yiGEVEROQ4KDkRkWkpN1B+rPiL/Mos4M25n7EO5yUoERERmRQlJyIyU8SAPwFfPsp7TmFDERERkaNRciIixcgFQnne5n3AKmCzbdsOHJmF/kfAs8DmPO9PREREjpOSExEpRjHgbMuyXg7U5WmbnwUeAn5rWdZNQBL4O+D1wJvytA8RERGZBFXrEpFidCOQAX5PtprWpNm2/SSwgexcKD8kW3q4GXi9bdu352MfIiIiMjmahFFERERERIqCWk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkK/x/0hYSRb6pqRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 0%| | 0/249 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 17.89it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.080) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 45.000 - 54.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.090 - 44.990) R-Score = 1.0016 & Fano Ratio = 0.0154\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 55.000 - 79.990) R-Score = 1.0002 & Fano Ratio = 0.0153\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACce0lEQVR4nOzdd3gU5doG8Htm+6YXkkBCCW3oIGBDEBFFsWA5ehR7RVEECwoKNhRRPgQEDkoHAVERxd6xodhApCVDOiSEBNKT7Tvz/bG7EEpIsmwSsrl/15Uruzsz7zzvbso88zZBVVUQERERERE1NbGpAyAiIiIiIgKYnBARERER0RmCyQkREREREZ0RmJwQEREREdEZgckJERERERGdEZicEBERERHRGYHJCRERERERnRGYnBARERER0RlB29QBNIFSAAYA+U0cBxEREdVdawB2AJFNHAcRNSChBa4Qb1VV1agoga+3KApoiHLPJMFeR9av+Qv2OgZ7/YDgryPr53+5giDYAJgCXjgRnTFaYstJvqKoycXFVQEtVKsVERUVgvJyC1wuJaBlnymCvY6sX/MX7HUM9voBwV9H1s9/0dEh0GgE9nogCnIcc0JERERERGcEJidERERERHRGYHJCRERERERnBCYnRERERER0RmiJA+KJiIiIjti6dWsYPFMV86YtUWApAPIHDBhQUdcDmJwQERFRi7R161YRwDOCIN4hCIIOgNDUMREFGVVVVefWrVvfBvDKgAEDap3Gj8kJERERtVTPaDTaseHhUQ693mgRBCF4F6AhagKqqgoOh81cXl4y1u12AcDLtR3D5ISIiIhanK1bt4YLgnhHeHiUIywsqqip4yEKVgaDyQogprS06I6tW7e+UVsXL/atJCIiopYoQRAEnV5vtDR1IETBztsyqYNnbNcpMTkhIiKilkgEILArF1HD8/6eCahD7sHkhIiIiIiIzghMToiIiIiI6IzA5ISIiIiIAmbevNltrr328t5NHUddpabuMX733TcRTR0HeTA5ISIiIqIWa/LkJ7rs2bMrpKnjIA8mJ0REzYDVBfR7OwTt3wCszqaOhogomHBOhDMJ1zkhIiIi8lIUBRaLpclu3prNZkUU63f6wYMHDvjPf27K//HH72OcTqf4xhtvpprNZmX+/DlJO3b8E15VVaWJiIhwDRt2SdGECRPzUlL2mB544K4eCxcuTenTp58FAB599KFOu3btCP/qqx//0Wq1UFUVV155Sd8777wn76abbj18/DkPHz6knT17ZtK2bX9FuN1uoWvXbpWPPz5pf6dOne2+fRYvXhj/2Wcb4ysqKrSdO3epmjz5uWzf9pPFnJTU1rFo0f9a//TTppiSkhJdYmKi7fbb7z5w+eVXlgLA+vXvxqxbt7r13Xffl7ds2eKksrJSXffuPSumTn0xe+XKZQk//vhdjFarVUeNur7gwQfHHQQAu90uLFgwp83mzT9HFRcX6Y1Gk9K3b7+yyZOf3RcdHeO+9trLex8+fFj//vvvtN65c3vYkiVvyyUlxZoFC+Ym/vXX75EVFRXa5OROVWPGPJR33nmDKn1127hxQ/TatataHzp0yNCuXTvrsGGXFi1b9lbbzZv/3urPZyKKol/1C0ZMToiIiIjgSUxuueU/3VJTU5qsi0+3bj0q33nnA7m+Cco333zRasaM19PcbpfQpUtX+y23/KdHRESk87XX5u4NCwtz//TTpsglS95s26NHr6rLLruiNDY21rFly6/hffr0s7jdbuzZsyvMbreL//yzNeTss8+t2r59m7miolx78cWXlh5/LpfLhQkTxnYFBPWFF17JiImJcc2fPyfpiSce6frBB5/uBIDDhw/rd+3aETZjxuw0h8MuvPLKi8mvvPJih2XLVss1xfzoow91yszMMD/yyGP7kpM72b766vPo6dNf6CSKYvqIESPLAKCo6LD+k08+inv55ZnpFkuV+Oyzk7rcffetPYcPv/TwwoXLUr744pOYNWtWJg4dOqy0e/eettdffzXpjz+2RE6aNCW7bdt2dlmWTbNmvdJh0aL/tXn66ef2L126OuWee27tccEFQ4vHjBmb73a7MX78g12dTqcwadLUrFat4pzvvfdO3OTJj3edO3dhar9+/S3fffd1xOzZryXfccc9uRddNLz0jz9+C1+69K22p/uZ+FO/ev2QNBNMToiIiIiOaJ7rngwdenFRv379LQBgtVqFiy++tOiyy0aWtG3b3gEAHTrcW7h+/bsJ6el7TZdddkXpwIHnlm7b9lc4gIPbt28L0Wi0ateu3Sr/+uuPsLPPPrfql19+iuzSRaps1SrOdfy5fv315/CcnGzTihXv7OrSpasdAKZMeSF75cqlCcXFRVoA0Gg06ksvvZYVERHhBoCRI686tGbNysSaYt67N9X4999/Rr7wwvT0Sy65rAwAxo17ND8zM928du2q1r7kxO12C48/PinHd2Heu3ff8r17U0OffPKZXEEQMGbMw/nvv7+udVraXlP37j1t3bv3qBo2bHjJ+ecPrgSAtm3bO7799qvy7OxMEwDExrZyiaKomkwmJSoq2r1p07fhWVmZ5iVLVu32nWPq1Bf37d2bGrJ27aqEfv36Z7777tqE884bVHzffQ8WAEDnzl0O5ebuN3z66cb40/lM/Knf6fzMnKmYnBARNQMCgAHxbui0GghCU0dDFJxEUcQ773wgN7duXQCQlNT2SHcqk8mk3n773YVffPFp1Jo1q0IOHMgz5ORkmUtLS3RutyIAwJAhF5U9//wzraxWq/DHH1vCevbsVZGY2Nb277/bwgEc/OuvPyIuvPCi4pOdKy1tr8lsNrt9iQkAxMcnuCZNmprrex4REeHyJSYAEBYW7nY4HMdUrHrMspxqAoCBA8+trL5P7979Kt5+e1lS9dc6dz56XoPBoLRqFW8XvH8YjUajCgB2u10EgOuuu7H4l19+Cps9+7XEvLxcQ27uftOBA3nGbt26H3Men/T0NJPJZHZXv/AXBAE9evSq3Lbt73AAyM7ONA8efGFJ9eP69j2r8vjkpL6fiT/1C0ZMToiImgGjFlh2mQ1RUSEoKQFcJ9zLJKJAEEURoaGhSlPHUV8Gg/FIzBaLRXzggbskm80mDhkytGTEiJFFffv22zdu3Jhuvn3OP/+CCp1Oq/z++69h//yzNXzYsOHF7dt3sH/yyYcJ+/fn6LOzM80vvDA982Tn0mi0qlDLXRJRFGttgaoec02D0hXFLWg0mmM26nS6Y56LYs2xTJv2bLtff/05+qKLhhedd94FZd269chfu3ZVQlHRIf3J9lfVk1dNURRotVrVcz5RVdXaG9jq+5n4U79gxOSEiIiIKIj89NOm8KysTPOHH37+b1xcvAsASkqKNWVlZVpfEqDX69W+fc8q//nnHyPT0vaGTp78bE5SUluHIAjqwoXz27Ru3cZWfXB7dR07drJVVVVpMjMzDB07drIDQFHRYe3o0df3evnlmWn+xNy1azcrAPz99x+hvm5dALBz57+hiYltrf6UWVxcpPnmmy9bTZo0JfPqq6870tKRm7vPaDSaqiVGRy/+O3fuarVYLJqUlN3G6q0ne/bsDk1KamcDgPbtO1j37NkdCqDQt3337p2nHKdUl8+EPIK2SYiIiIioJYqPT3AAwCeffBSzf3+O/o8/toROnDi+s9vtFhwO55Er8UGDBpf+8MP3seHhYa5OnTrbDQaDKkndKzdv/inmvPMGldZU/pAhQ8uTkztZpk2bmrx1618hqal7jC+8MKVDRESks2/fsyz+xCxJ3W39+vUvmzdvdrvvvvs6Ij09zbBgwdzWW7f+Ffnf/44u8KfM8PAIt8lkdm/e/HNkZmaGYc+eXabnn3+mfXZ2ltnpPPo+GI1Gd15erqGwsEA7dOiwsrZt21unTXu242+//RK2d2+q8aWXnmuXm7vPdPPNtxQAwC233JH/xx+/RS1btig+MzPD8MEH78V8/vmncaeKpa6fCbHlhIioWbC6gFEbzBBE4PNrAR3/lRFRDfr3H2i5554x+zdu3BC/du2qxKioaMeQIRcVx8a2csjy0ZnIhg27pGzu3FlCr159y32vnXXWgPKdO/8NHzr04tKayhdFETNnzkmfPXtm28mTn+gCAD179qqYPXt+msFg8LsZ4NVXZ2fOnft/ibNnz+xgsVg0bdu2tT7zzAsZI0deWWMsp6LVajF16ouZb701P+nee2/rGRIS6urVq0/FbbfdlffBB++2rqqqEkNCQpRrrvlP4fLli5ImTHjItG7dhj3z5r25d/bsmUkvvji1k9PpEpKTO1pefXX23gEDzqkCgGHDLikvLCzIeffdtQmrV69ITE7uaLnsspGHvvzysxoTlLp+JgQIdekzF2Qy3W4lubi4KqCFarWity94FVyuZtdVtU6CvY6sX/MXzHW0uoAh74cBALaMroJOCK76+QTzZwiwfqcjOjoEGo2YBaBjIMrbunVrN1HUfBUXl1ip1xuDctYjahhbtmwOjY2Nc1afEODNN+cnfPPNl7EfffTFrqaM7UzlcNiMhYV5oYrivnzAgAGpp9r3jGo5kSSpK4BtAMbJsrzS+1o/AG8AGAigCMA8WZZnNVWMRERERNRy/f77bxE//rgp+qmnnslu376Dfc+e3aZPPvkofuTIqw41dWzB4IxJTiRJ0gFYCyCk2msxAL4FsBHAgwDOA7BQkqQiWZZXNEWcRERERNRyPfTQhANWq1V89dWXkysqyrXR0TGOa665vuD++8cG7artjemMSU4AvAig4rjXxgCwAxgry7ILQIokSV0ATALA5ISIiIiIGpXBYFCfeeb5/QD2N3UsweiMmK1LkqQLATwA4M7jNg0B8LM3MfHZ5DlEOuWsCERERERE1Lw0eXIiSVIkgNUAHpFl+fgMNAknZqUHvN/bNXBoRERERETUiM6Ebl1vAtgiy/I7J9lmhqdbV3W+GTWMp3NSrTaweZlGIx7zPdhUlZfjm9f/Dx0uOA+9R17d1OE0iGD/DIO9fkBw11EHoGesAo0oQqsVoQ3SqYSD+TMEWD8ioto0aXIiSdLt8HTd6l3DLlYAhuNe8yUlfs8FLIoCoqIaZkrp8HBTg5Tb1L6b/iI65OTAmpkJzWUjEB4V2dQhNZhg/Qx9gr1+QPDW8YtbfY+Cs37VBetn6MP6ERGdXFO3nNwDIB7AfkmSqr/+liRJTwLIAdDmuGN8z/P8PamiqCgv92sB0xppNCLCw00oL7fC7Q6+uevde9MAQYRJo8GfGz9Dv2uua+qQAi7YP8Ngrx8Q/HUM9voBwV9H1s9/4eEmtsgQtQBNnZzchhNvAaYBeA7AewBGA3hQkiSNLMtu7/bhAGRZlgtP58QNtfiV260E5cJaUYoKaDyPD8upQVlHn2D9DH2CvX5A8Ncx2OsHBH8dWT8iopNr0lsQsiznybKcXv3Lu6lQluUcAMsBhANYJklSD0mS7gLwKIAZTRNxy1RaUIBQjSczeTZ1N/5xu2o5gogCzeYCRm4w4YLlntXiiYh8Bg8eOGD9+ndj6rr/jz9+H37ddVf0uuii8/q/9tr0pIaMrS7mzZvd5tprL6+pi79f6vOe5Obu03/yyUdRgTw/+a+pW05OSZblQkmSLgMwD56V4/MBPCnL8qqmjaxlOZCyC1oAZU4n5MoKtDt0Wo1WROQHFUB+lXj0SZAOiCei+tuw4bN/w8Mj3LXv6bFkyZtJ8fEJ9jfeWLg3NDSszsc1J/V5T1588dkOcXFxjlGjritp6LiodmdcciLLsnDc878AnN9E4RCAIkHE8/9ug9Hb1/dQ4aEmjoiIiIh84uMT6tWeWlVVpTn33PNL27Xr4GiomJpa/d4Tlbd7ziBnXHJCZ57i0hIUOx2IM0XgmshoxFitTR0SEREReQ0ePHDAhAkTs2+88eaiKVOe7KAoihAVFe384YfvY+x2m9inT7/yp59+Lic+PsE1ePDAAQDw/vvrWr///rrW77zzwc62bds7lix5M/7LLz+LKysr1SYktLbfeOPog9ddd0MxAPz22y9hTz31WNc77rgnd8OG91vHxrayv/zya5m33/7fXqNH337g888/idPrdcrKle/uEQQBs2e/lvTnn1siXS6XkJzcyfLQQ+Nz+/Xrf2QmonXrVseuX/9uQklJsb5v37PK4uLiT5kk3X//HVLPnn0qSkqKdb/++nO0TqdTrrrq2sIRI0YWv/rqSx0yM9NDEhLa2J566pnss84aYKn+nlx66eWld9zx354dOnS0zJv3VjoA/Pzzj2FTpjzZ9emnn8v46KP18Skpe0JTUvaEXnvt5WEbN36189prL+998cUjisaPf/xA9Rji4uLt06f/X/bJ3o+33343paDgoG7OnP9ru337tnCNRlS7du1WNWHCxP2dOnU+flkMOgVOe0G1Ki4uBgB0at8Rtya1w/CQMCgKBzoSEVFwclutYk1fit0uNMa+p2PLll+jysvLtW+8sVB+7rmXMlJS9oQtWDA3EfB0d4qOjnZeffV1BRs2fPZvYmJbx5w5MxM///yTuIcfnrBv2bI1e6677oaC//1vbvvVq1e2ql7uH39siVy4cGnK5MnPZms0ogoAP/74ffScOQvkF154JSMiIsL96KMPdTlwIM/w8ssz0xcuXJrarVv3qkcffajbzp3/mgDgk08+inrrrQXtrrvuhoIlS97e3b17z6ovv/wsrrY6bdz4QUJcXLxj6dLVu6+66prCdetWt5k06bEuN910y8H//W9Jil6vU2bPfq398cdFRka6n3xyStY//2yN+PjjD6OLi4s0M2dOTx4+fMThK664unTmzLnpXbp0rTr//AtKli5dnVKf97n6+2Gz2cRHHnlAUhQ35sz5nzxnzv/k8PAI10MP3dv9wIE8XX3KbenYckK1MmVn4vakdtDFtQHKiqATRVQWFSG8VavaDyYiImpmMh4Ze1ZN20xdpbK2Tz3tm8AHmY+P76s6nSe92WvokFzZfurzsu951qQneisWy0mvvfRtEi0dpk2v18VxjTGaTO7nn385R6fTqV27drNt2fJr0datf0UAnu5OoiiqJpNJiY9PcFVVVYmffroxfuLEp7MuueSyMgBITu5oz88/YNiw4d2E22+/60hf7ptuuuWgrxVg375sPQBceeWoQ5LU3QYAv/zyU1hamhyyceOX/8bGtnIBwOOPT8rbs2d36Lvvronv3btv9ocfvh8/aNDgkttvv/sQAHTu3OVgSsrukOzsTPOp6tS2bTvrww9PyAeAu+8eU7Bu3Zo2Q4ZcVDxixMgyABgxYmTRkiVvtT3ZsUOGDK0YOfLqwrfeWtD2+++/iQ4JCXFPmjR1HwBERUW7tVqtqtfrFV/MdVX9/XjvvbWxFRXl2ldfnZ2l0+lUAJg2bUb29ddf2fuDD95rVb0Vhk6NyQnVKryoGP0T2mCnwQCHokAviqg4VMDkhIiI6AwUH59g910gA0BISKjb5XKdtGVm795Uo9PpFF5//dUOs2e/1sH3ututCC6XU7BarUeO69Ah+YTuSe3atbf5Hqem7jEDwE03XXvMzFsul0twOh0CAOzfv8900UXDi6tv79GjV2VtyUmbNklHzmM2mxUASExMPBKPXm9QXC5nja1Pjz/+VO62bX9FbNv2d8Sbby7fYzKZ1Jr2ravq78fevbLZarVqLr/8on7V93E6neL+/TnGEw6mGjE5oVpp7N7fvZBwWLzJSVXR4aYNiqiFEQB0jFA8i9Bx6CZRg+o0/81/atomiOIxF7UdZ8/7t677Jr/2+s667ns6qicmR528eEVRBAB45pnnMzt27Gw7frvBYDhyoNFoPKFPt9FoPLJdURTBZDK5Fy1aeUILkF6vVwBAEASox4Wi1WprrbtWqzlhH0Go++iEgoKDutLSEp1Go1G3bNkc3rt3n1oG0B57OpfLfcJf3urvh6IoaN26je3VV2enH79fSEhIUM6I1lA45oRqpXd5WjmF0AhYvX9RLMVFTRkSUYtj1AIfXmPFd7cDJt5WImpQGpNJqelLrHax3pD7NpbOnbvaNBqNmp9/QN+xYye77+vnn3+IWL16ebwo1v1SsVOnLlar1apxOOxC9bJWrlyasGnTt5EA0L59B8uuXf+GVj9OllNCAlurYymKgmnTpia3b59seeih8fveeeftxF27dlZbBFw49nPSaNXKyipN9eMLCwv0pzpHx46drIcPH9aHh4e7ffVu1669fcGCuYl//rklLNB1CmZMTqhWem9CIpjDYPPepbCWcCpwIiKi5i4iIsJ96aWXH1q9ekXihx++H52dnaX/4IP3YlauXJYUFRVdrzEYw4YNL2vfvoP1+eef6bR5889hmZkZhpkzpyf98MN3scnJnWwAMHr0HQf//PP3qCVL3ozPyEg3rFq1LO6PP7Y06AKIixcvTMjKyjJPmfJC9k033Xq4e/eeFS+//Fyy3TsJgclkUgoLCwx5ebk6AOjevUfl5s0/RW/Z8mtoenqaYdq0Z9tbrRbNqc4xatT1xaGhIe5Jkx7rtHXrnyFpabLx2WcnJW/fvjWiSxeJ05zWA5MTqpXB15BpDoNd9Pxu2svKmi4gIiIiCpjJk5/df8011xe8/faKxLvuGt1r7dpVrW+++dYDjzxSv0HcGo0G8+a9tbdLl65V06c/3/G++27vsWPH9rCpU1/MGDJkaAUAXHLJiLKnnnom85tvvoy9997be27e/HPkqFHXFTRMzYCdO3eY3n13TZvbb78rr2PHTnYAePrpZ3MOHz5kmDNnZiIAjBp1/aH9+/cZ77nn1p5utxvjxj2W17WrVDllylNdHnnkgW7h4eGuQYOGnPKubEREhHv+/MWpERGRrsmTJ3YZO/be7oWFBfpXXpmV1q1bjxO6y1HNBPX4jn/BL9PtVpKLi6sCWqhWKyIqKgQlJVVwuYJrmt1d99wBvSgi9ao78cvX6yFv/x03j3kAt9z9QFOHFlDB/BkCwV8/ILjraHMBd3wdAo1GxNuXV0GH4KqfTzB/hgDrdzqio0Og0YhZADoGorytW7d2E0XNV3FxiZV6vZEXj0QNyOGwGQsL80IVxX35gAEDUk+1L3su0yk5rBbovf1NNaGRsIZEYp/VguKqwCZ3RHRqKoDMMvHoEw6KJyKiIMTkhE6p0mLF2B3bYBY1eCgkAqYQz5iuMnbrIiIiIqIA45gTOqUqSxWKHA4cFgCIGrQWVFzXug3iiotrPZaIiIiIqD7YckKnVFlZAQAICQmDW1ERr7hxVWI7ZFVamjgyIiIiIgo2TE7olCy5+3F7Ujs4Q0KhKCpg8EwLrnHXa3ZBIiIiIqJaMTmhU3IcPIirE9og1+1GJQDhSHISfLPMEBEREVHTYnJCp2Sv8HTrcmk865uIZs+irrqWNwU1UZMSALQOUaARRc7URUREQYvJCZ2Sy+KZMtgp+pKTEACAvskiImqZjFrgy/9YvWtIAC72rCQioiDE2brolFze9UzcWk8eqwkJBwAYBAEC794SERERUQCx5YROSbV5Fs116/TQAND6khNRhOJ2Q/C2qBAREQULQYBGEIQmuYGrqqqiqnA3xbmJzgRMTujUHA4AgKLRQQNAEx6N51J3w+p2412bDSZvNy8ialg2FzDmayO0GmDxJfzjTdRQBAEaRRBaW2yuJvk1Mxu1LhFq/pmWoMybN7vNpk3fxGzc+NXO+h6bnp5mGDPmrh4rV67d3a5dB0dDxEfBg//f6NRcTgCAqvOMMtGbzJCrKqGqKqw2K5MTokaiAthT5GmpVFVwUDxRAxEEQbTYXNrfd+UrFpurUaemNBu14nm9WmvDjFpRVdUzKjnx1549u0yTJz/R2eGwcygB1QmTEzqlPwx6LPxjCy7+Tz90AiAIAvQGE+w2CyyWKkRHxzZ1iERERAFnsbmUKquzKebND5qL+IUL5yV88MG7rRMTk2zFxUWcS4fqhMkJnVKJ3Y79NivUkLAjrw1rFQ+T046qgwVAUvsmjI6IiIgGDx44YOzYR/Z9//230VlZGSHx8Qm2e+4ZkzdixMgy3z7fffd1xMqVS9vk5eWaoqKiHRdeOKx47NhH8g0GgwoAqal7jG+9tSAxJWVPmM1mFWNiYh1XX31d4d1331d4snOuXLk0buXKpUlPP/1c5mWXXVF6sn22bv0z4sknn8mKiIhwP/XUY10bpPIUdIImO6eGYfMOiNfqDEdeGxkdjdFJ7WA7mN9UYREREVE1K1YsSRo2bHjx4sWrdg8ceG7ZSy891/mvv/4IAYAffvgufPr0FzqNHHnV4eXL1+6eMOGJfZs3/xQ9ZcqTyQBgsVjEJ54Y39VoNCnz57+VumLFO7sHD76wZNmyt9ru3LnDdPy51qxZ2WrVqmVJU6dOy6gpMQGAZcvWyCNHXlXjdqKTYcsJnVIPux1JrRMR7j66qILT9927BgoRERE1rWHDLjl8++13HwKAiRMn5+3a9W/Y+vXr4s4++9ysNWtWth4+fMThW2+98xAAJCd3tGu12pxJkx7vum9ftt5sDlFGjbqucPTo2wvDw8MVABg37rEDH364PiEtLdXUu3cfq+8869atiV2+fHHS88+/nH7RRcPLm6a2FMyYnNApnSWISEhsix3VVnxzeUfiOq3Wmg4jIiKiRtS//8CK6s8lqXvV9u3bwgEgKyvLnJGRHvLDD9/F+Larqud7enqa8eKLLy2/5ZY7Cj/77OPojIw0c15eriEnJ8sMAG63cmT6jZKSEt2bb85rr9Fo1KSkdvbGqBe1PExO6JS03j9eguFoq67LO/W7i8kJUaOKMqgQRE7TRUQn0mp9/7E9VFWFKGpUz2NFuPbaGw6OGnVd0fHHxccnOAsLC7RjxtzVPSws3HXeeYNKBww4p7xPn75VN910bZ/q+wqCiGnTXklbvnxxm+nTX0hetmx1qihyhAAFFn+i6JR82esxyYn3D5HbxuSEqLGYtMAPN1nwzxjApGvqaIjoTLNnz65j5vZPTd0T2qlTJwsAJCW1s+7fn2Ps2LGT3fdVUJCvmzfv9aTKygrx0083xlRWVmiXL1+T+vDDE/JHjryytKys1HsJcDTniYyMcA4dOqx88uSp2ZmZ6eYVK5bEN2IVqYVgckKnpBc8d2lFo/nIa25fcmJniy4REdGZ4NNPN8Zv3LghOj09zfDaa9OTcnKyTaNH31EAADfffOvBP//8PWrevNlt0tPTDJs3/xw2c+YryVVVldr4+ARXfHyCw263i5999nFUbu4+/U8/bQp/8cWpHQHA4XCccK3YvXtP23XX3Xhw7dpVbTIy0g3Hbyc6HezWRTVSVRV6bxcSwXj0hoxb1AKKA4qNyQkREQUns1Hb6DdwT+ecI0aMPPTBB+/Gz507y9S+fXvLjBmz0nr27GUFgCuvHFWiqmrmunWrW3/44fsJZnOIe+DAc0ofe+ypXN/21NSUg0uWvNl2/vzZYmxsK8dll11xeMuWXyNTUnaHADh0/PnGjn0k/9dff46aPv2FDkuXvi2zexcFCpMTqpHDZoXWO75ENIUcadjdbgzDR9t+xiW9ejZdcEQtjM0FTPjeCJ0WmDuUf7yJGoqqqorZqHWd16u1Fk3Qw8Rs1LpUVa334o/JyZ2sTz01Jbem7VdddU3JVVddU3KybYIgYOLEyXkTJ07Oq/76vfc+UOB7PH784wfGj3/8gO+5wWBQ16//ZHddYhs0aEjF5s1/b63LvkT8/0Y1spYfWbsJojEMbu/jCmMIUiorMFBxn/xAIgo4FcDWAo3nsQqA4+KJGoSqwi1CzQ9rgpYTz/lVRVXBf7DUYjE5oRrZ3Aqe3L0DJp0Od+j0gNtzI0en93QvtXG2LiIiCkKqCreqqkwQiJoAkxOqkc1hR47VglBNGBTl6GwdcaqKy1rFI7qktOmCIyIiIgAAu0xRMGFyQjWy2WwAAKPR5ElOvN1I2rgduL59MrKquEI8EREREQUOkxOqka2gANe1bgOEhkFRVYjeaYVVnR4AILjY4k1EREREgcPkhGrkLCzA6MR2yHe7cMz0HnojAECj1HsyESIiIiKiGjE5oRo5rRYAgEs4bsIS74B4Tf1nOiSi02DUqhA4TRcREQUxJidUI5fFMxuXWzj2YkgweFtOVPWEY4ioYZi0wO+3WBAVFYKSEsDlauqIiIiIAo/LeVKNXN6pgt2i5pjXBb0JAKBjbkJEREREAcSWE6qRyztbl1tzbHIiGjzJiZa9S4iIKAgJAjSCcHyf5sbBRRippWNyQjVSHXYAJ7acuCNiMCMtFapOh1WCd7VqImpQdjfw6E8G6HTAqxcAmtoPISI/CAI0JtHZWnVYmuQaSdCbXVZFl3+mJSjz5s1us2nTNzEbN361s67HrF+/LmbDhvfjCwsLDVFRUc4RIy4/fN99Yw9qNPwLRjVjckI1Uh0OAICi0RwzBFdjDsM/ZaUQRRGqqgIcoEvU4BQV2Jzn+ZOtnA9o+GtH1CAEQRBVh0VbKf+hKHZro878IhpMYqh0rlbQRYrNfYX6jRs3RP/vf2+0f/DBR/ade+75Fbt37zTPm/d6e4fDKTzyyGP5TR0fnbmYnFCNMsPDseKnTeg39HJ0r/a6zjtbl6IocDpd0Ol0TRMgERFRA1HsVsVtq2qKaSmDYjzwJ5981Gro0IuLbr751sMAkJzc0Z6Tk238+usvYpmc0KkwOaEalasK5MoKSCbzMa/rdHoMjWkFvSjCWlEGXXRsE0VIREREgwcPHDB27CP7vv/+2+isrIyQ+PgE2z33jMkbMWJkmW+f7777OmLlyqVt8vJyTVFR0Y4LLxxWPHbsI/kGg0EFgNTUPca33lqQmJKyJ8xms4oxMbGOq6++rvDuu+8rPNk5V65cGrdy5dKkp59+LvOyy64oPX77gw+Oy42OjjlhXsGqqkpee9IpBUV2Tg3DbveMOfG1lPhotDo80D4Z97dPhqWoqClCIyIiompWrFiSNGzY8OLFi1ftHjjw3LKXXnqu819//RECAD/88F349OkvdBo58qrDy5ev3T1hwhP7Nm/+KXrKlCeTAcBisYhPPDG+q9FoUubPfyt1xYp3dg8efGHJsmVvtd25c4fp+HOtWbOy1apVy5KmTp2WcbLEBADOOee8qs6du9h9z0tLSzVffvlZq759zypvoLeAggSzV6pRq/JyjIxLQPRJFlRwqiq0OLpQIxERETWdYcMuOXz77XcfAoCJEyfn7dr1b9j69evizj773Kw1a1a2Hj58xOFbb73zEODpYqXVanMmTXq867592XqzOUQZNeq6wtGjby8MDw9XAGDcuMcOfPjh+oS0tFRT7959rL7zrFu3Jnb58sVJzz//cvpFFw2vU6JRWVkpTpw4vrPT6RDHj39if0PUn4IHkxOqUSeLBZe064B/7bYTtjlUFSYADov1xAOJiIioUfXvP7Ci+nNJ6l61ffu2cADIysoyZ2Skh/zww3cxvu2+mTbT09OMF198afktt9xR+NlnH0dnZKSZ8/JyDTk5WWYAcLuVI9NvlJSU6N58c157jUajJiW1s6MOCgoOaidOHN+loOCg4dVXZ+/t0CHZcfq1pWDG5IRq5vaOAzzJgHeX968aW06IiIianlarPWZif1VVIYoa1fNYEa699oaDo0Zdd0Jf7Pj4BGdhYYF2zJi7uoeFhbvOO29Q6YAB55T36dO36qabru1TfV9BEDFt2itpy5cvbjN9+gvJy5atThXFmkcIpKXJxokTJ3Rxu93C3LkL5R49evGOJtWKY06oRqLiTU60JyYnTt93JidEjcKkBbbfUYWcCYCJE+QR0XH27NkVUv15auqe0E6dOlkAICmpnXX//hxjx46d7L6vgoJ83bx5rydVVlaIn366MaayskK7fPma1IcfnpA/cuSVpWVlpd4b2EdznsjICOfQocPKJ0+emp2ZmW5esWJJfE3x5ORk6x999OGuRqNReeut5SlMTKiu6t1yIkmSFsBFAIYDSAYQAeAwgBwAXwL4TZZlLssXBERFAUQR0BlO2OYbheK0ndjli4iIqLkTDaZGv4F7Ouf89NON8e3bJ9t69epTtWHD+61ycrJNkyY9mw0AN99868FXX32p47x5s9tcccXVRQcP5utff/3VDrGxsY74+ARXfHyCw263i5999nHU2WefU5mRkW5cuHBeWwBwOBwnxNS9e0/bddfdeHDt2lVtLrpoeGmnTp1P6OL18svPd3C5nOKzz76UptPp1IKCg0euOePjE04czErkVefkRJIkPYCxAJ4AkASgBJ6EpApAWwBXAXgGwAFJkl4DsFiW5Tr1R6Qzk8bbdUs4aXLi6YLqYnJCRERBRFVVRdCbXaHSuVo0QQ8TQW92qYpa7/VVRowYeeiDD96Nnzt3lql9+/aWGTNmpfXs6WmtuPLKUSWqqmauW7e69Ycfvp9gNoe4Bw48p/Sxx57K9W1PTU05uGTJm23nz58txsa2clx22RWHt2z5NTIlZXcIgEPHn2/s2Efyf/3156jp01/osHTp23L17l35+Qd0KSm7wwDgwQfv7nH8sZs3/721vvWjlqNOyYkkSecAWAXADeBNAO/Lspxxkv16A7gCwHgAEyRJul2W5S0BjJcakcbblCvoT0xOvrI7UZadgduuvbaRoyJqmexuYPKvBuh1wPPnApqmDogoSKkq3FZFly/oIpuk67uqqIqqot6rwycnd7I+9dSU3Jq2X3XVNSVXXXVNycm2CYKAiRMn502cODmv+uv33vtAge/x+PGPHxg//vEDvucGg0Fdv/6T3Scrr3XrNk4mIOSvuracrAYwWZblj061kyzLOwHsBPCaJEn/hSeh6Xp6IVJT8Q2tO1lykiNokVFWgv+cYiAcEQWOogLf5Xj+ZD97NqARajmAiPymqnCrqlrvBIGITl9dryx715aYHE+W5fcB9Kp/SHSmWHHoIKbvTYEjIuaEbVrvIHnfQo1ERERERKerTi0nsiz7NSe1v8fRmSGlvBwVFeUYaQw9YVt7nRZx0bEQiw43QWRERETkwy5UFEzqOubkufoUKsvyNP/CoTOJ3bv4olanP2Hb2Rqgb8fO2Hew4IRtRERERET+qOuYkxeOe64CEOAZIH8YQBQAPQAHgGIATE6aOUVRcFFEFJyKAq1wYud2RdQAbhcUJxvHiIiIiCgw6tqt68jYFEmShgNYB2AcgA2yLLu9r18OYBk8Uw1TM2evqsJ97ZMBAHs1Ghw/Iblb1ABuQHU6TzyYiIiIiMgP/ky1tADAs7Isv+9LTABAluWvAEwFMD1QwVHTsVdVHnks6E0nbFc1nryWyQkRERERBUq9V4gH0A7Avhq2HQIQ7384dKawV1UBABRVBUQtjp9xXfElJy4u8krUGIwaYMvoKkRGhcBWAbg5ySkREQUhf1pO/gXwiCRJuuovSpJkBPAUgD8CERg1LbvFAgBwqgrUk/yY+FpOBCYnRI1CEACTDjDrPI+JiIiCkT/JydMALgaQIUnSYkmSpkuStBRAJoC+4JiToOCweFpOHKoKVVVP3MG7zglv3xIRETVvVVVV4urVK1r5nk+Z8mSH+++/Q2rIc+bm7tN/8slHUadTxvr178YMHjxwQE3bG6MegwcPHLB+/bsnLgjXDO3bl60fPHjggN9++yWsKeOod3Iiy/JPAAbB00JyNYCJAEYC+A7AAFmWtwcyQGoaDm/LiUsFFOXE5KQgNBpvZKZhu0bT2KERtUgON/Dsr3o88Y3nMRFRoCxfvjh+w4b3EnzPn3pq6v6ZM+emN+Q5X3zx2Q5//PFbREOeg5onf8acQJblbQBuDHAsdAZxWm3QAnDBM2/08Swh4fi1uAjnuTggnqgxuFXg0wxPi+UT/QCRXbuIKEBUVT3mL0pEREQj3AJR+VeMTsqv5AQAJEkaCeBSAK0BPAPgLABbZVnOCVBs1ITsIWa8kZaKmPjWuOAk230LMzrs9sYNjIiIiI5RVlammT37taQ//9wS6XK5hOTkTpaHHhqf269ffwsAWCwW8dVXp7X9+++/Ii0WiyYxMdF22213HRg58qrSefNmt3n//XdaA54uSu+888HORYv+16awsMCwZMnb8m+//RI2efITXWfMmLX3jTdeb1dYWGjo0KGDZerUaVnffPNl1GefbYx3u93CkCEXFU2Z8sJ+QRCgqiqWLn0r/ptvvow9dKjQoNPplG7delROnPj0vvbtOzjuv/8OKSVlT2hKyp7Qa6+9PGzjxq92OhwOYd6819v8+OOmGKvVoklKame95577DwwdenG5r55ffvl55KpVS9sUFBw0durUpapfv/7lNb0nPm63gunTX2j744/fx2i1WvXSSy8/PH78E3larecS+M8/fw9Zvnxxm4yMtBCn0ynGxyfYb7nljvxrrrm+2FfGxx9/GP3ee2sT8vMPGCMjo5xXXXVN4b33PnDCKtSHDhVqH374fikyMso5d+7CdLPZrPz006bwJUveTMzLyzXFxcXb//Of/x6cN292h3fe+WBnu3YdHNdee3nvc88dVPrPP1vDy8rKdM89Ny3jvPMuqFi1alncF198Gnf48GF9bGys4z//ueng6NG3HQaA3377Jeyppx7r6isD8HTJuuWWG3rPnDln76BBQyqmTHmyg6IoQlRUtPOHH76PsdttYp8+/cqffvq5nPj4BBcApKTsNs6Z83/t0tPTQqKiopw33XRL/mn9IAZIvbt1SZJkliTpGwCfA7gHwH/hWYRxLICtkiT1DGyI1BRsArCtrBQ54sl/RMwAzo6MQqKTA+KJiCh4qCpQ5YTYVF8nG+Z56nhVPProQ10OHMgzvPzyzPSFC5emduvWverRRx/qtnPnvyYAmD9/dpvs7Czzq6++nrZq1bpdAwacXfbqqy913LcvW3/PPWMOXn31dQXR0dHODRs++zcxse0JqysrioKFC+e1nTRpSvb8+YtSysrKtA8/fH/3fftyTG+88aZ855335n711edx33//TQQArFixJG79+nWtx4x5KHf16vd2vfjiKxkHDuQZ58yZ2RYAZs6cm96lS9eq88+/oGTp0tUpAPDss5M6bN36d8TTTz+btXjxqj0XXnhRyXPPPd35u+88Zf711x8hr7zyQqdBg4aULlny9u5LLrmsaMOG91rX9v7s3ZsaWlpaops/f1HqE09Mzv7uu29iZ86c3hYADhzI002e/HjX5ORO1kWLVqYsXrxyT5cuUtWcOf/XobCwQAsAn3/+SdSsWTOShw69uHjp0tW777lnTO7atavavPvu2tjq5ykqOqwdN26MFBMT63jjjTfTzGazsnPnDtNzzz3duW/fsyoWL161+7bb7jywbNmitsfH+PXXX7YaN+6xfa+9NnvvwIHnVr722vS27723ts1tt911YNmy1buvueb6gkWLFrRbtWpZXH1+NrZs+TWqvLxc+8YbC+XnnnspIyVlT9iCBXMTAU9C+8QTj0hms9m9cOGSlPHjn9j3zjtvt6lP+Q3Fn5aTVwAMADAcwC/wrAoPALcD+BrASwCuD0h01GTs3hYRnV5/0u3RDiue7CzhoJvJCRERBQdVBW77ytxNLtGENFUM3aLclasvt8h1nZVv8+afw9LS5JCNG7/8Nza2lQsAHn98Ut6ePbtD3313TXzv3n2z8/MPGEwms7t9+2R7RESEe8KEiXlnnTWgIiIiyh0aGqqYTCZFFEXVd0f9ZO6++/68AQPOqQKAQYMGl3722cdxzz33Uo7ZbFa6dJFsa9asSszISDNdcsllZW3btrNPnPh01qWXXl4GAG3btnf88ceWkp9//jEKAKKiot1arVbV6/VKbGwrV2ZmhuHXX3+JXrBgcYqvtadTp84FGRnppvfeW5NwySUjytavXxfXtatUOX784wcAoHPnLvbMzAzTF198csoL9oiISOdLL72WZTQa1W7detgOHTqUt2jRgnaPPvpknsPhEG6++bYD9933YIHovRl799335//44/cxmZkZxri4+MoPPng3/vzzLyh+4IGHD3rjslssVRqj0aT4zlFeXqYdN+6BrrGxreyvvz4/w2g0qgCwbt3q+OTkjpYnn3wmFwC6dOlqLy4u1i1Z8uYxCcpZZ/Uvu/DCiyo8ZZWLX3/9eat7731g/7XX/qfYe85DBw7kGd57753Wd9xxT2HdfjIAk8nkfv75l3N0Op3atWs325YtvxZt3fpXBAB8/vnHUQ6HQ3zxxRnZERER7m7detisVsv+l19+vlNdy28o/iQnNwF4WpblHyRJOjIaWpblg5IkvQzgfwGLjpqMWlyMoTGxiNAbTr6D93VNPe/wEBERncmEkw+1PGOlpu4xA8BNN13bu/rrLpdLcDodAgDcdttdB6dOfarzNddc1rdLl65V/fufXTZy5FXF9RlbkpzcyeZ7bDAYlYiISKfZbD5yga7X6xS73SECwKWXXl62detfIfPmvd4mLy/XkJu735Sbu98YFRV10oGqe/bsMgPAE088cszMWm63WzCbzW4AyMnJNp911oCy6tt79+5TWVty0qlTZ4svWQCAPn36VblcLiEjI93Qu3cf63/+89+it99eHpeTk2XMy8szZmdnmgFAUdwCAOzbl2O68MKLi6uXedNNtx6u/nz16pWJbrdLOP5cmZnp5uO7nvXvf3YF8OYxMSYmJh15b9PT9xrdbrdw1lkDK6vv069f/8pPP90Yf+hQYZ2v3ePjE+w6ne5IPCEhoW6XyyV4Ysswx8e3tlX/GRgw4OzKk5XT2PxJTiIBZNewrQRAaH0KkyQpDsDrAC4HYALwE4AnZVne493eD8AbAAYCKAIwT5blWX7ETfWgzc/Hw8mdkS4IOKF9F4CoN3r2a9ywiIiIGowgAKsvt8gWl19LLQSEWQulPmsZKYoimEwm96JFK1OO36bX6xUAGDjwnKqPPvpyxy+//Bj+119/hH/zzZex7767ps3LL89MGzJkaEVdzqPTaY9J2sRTzMqxePHC+HXrVicOG3bJ4X79+lf897+jC3/8cVPkL7/8GH2y/VXVk+PMnbswNSQkVKm+TaM5ehv0+IH7Wq2u1kRSFMVj9lEUz7W4waBX09Jk47hxY7p16NDRMmDA2WWDB19UFh0d7XzkkQe6Vz9/bZ9H7959yq+4YtTh6dOf7/TDD98VDxt2Sbn3WChK7QP/9XrDCXUUjjuponjelurJRvUugE6n64TzVN/3qOov1f/9bAz+XFvuAnArgG9Osu1q7/b6+ASAAs90xFXwdAv7TpKkzvAkK98C2AjgQQDnAVgoSVKRLMsr/Iid6khxeLp1KeLJpwoWfMkJ59ogIqIgIghAiA5K7XueGTp16mK1Wq0ah8MudOvW48gd+Oeee7p9585dLHfccc+hefNeb9O3b//KESNGlo0YMbLM7Xbvv/nm63r+8MN3UUOGDK0QBCGgF6Xvv/9Om5tvvu2ArysUAKxd+3bCseNpjp6zSxfJCgAFBQX6Sy7pe6R1ZM6cmYmCIKqPPjrxQMeOnSwpKbuPuQGekrKr1u532dmZZkVR4Ou2tW3b32F6vV5p3z7ZPmvWjKTw8AjnokUr9vr2//bbryIAHFnjLTGxrU2WU445z4wZ09oWFBzUz527MAMALrxwWMnIkVeW/vDDt8Vz5szsMGDAObvCw8OVDh2SLccfu3Pn9lPG3LlzV5tGo1G3bfsrtFev3lbf69u3bwuLiIh0RkZGuXU6T9JZXl5+5CItJyerhq4uJ9elS1fLpk3fxhQVHdbGxMS6AGDHjn+arDtjdf7cGXgZwO2SJH0G4D54UrChkiTNB/AQgJl1LUiSpBgAWQDul2X5b1mWU+BJTloD6AlgDAA7gLGyLKd4E5I5ACb5ETfVg2L3tJfUlpzoIHC1aqJGYNQAm/5bhW33A0Y2WRKR17Bhw8vat+9gff75Zzpt3vxzWGZmhmHmzOlJP/zwXayvK1ZeXp5h7tz/a7d5889h+/fn6D///JOow4cPGXr37lMJACaTSamqqtKkp6cZnE7naf9Xj4mJdWzb9le4LKcY09L2GubM+b82f/75e6TT6Txy3WkymZTCwgJDXl6urlu3Hrb+/QeWzZs3q/0333wZkZ2dpV+69K34Dz9cn5CYmGgHgFtuufNgTk626bXXpielp6cZPvrog+gvv/ysVc1ReBQVFemffXZSh9TUPcYvvvg08p133m5z7bU3FBgMBjUuLt5RXFyk37Tp2/D9+3P0X375WeS8ebPbA4DD4ekSd8stt+f/9tvmqJUrl8ZlZWUaPvnko6hvvvmy1eDBQ0uPP9dTT03Z73A4hFmzXmkLeLrTZWVlhMya9Wpienqa4auvPo9cvXplInBiy4hPRESE+5JLLju8du2qxI0bN0RnZmYYVq9e0errr79odd11NxQIgoBu3XpYjUajsmLFktaZmRmGLVt+DV22bFFSTWWezFVXXVscHh7hmjLlqeRdu3aatmzZHPq//71xwmD9puDPIowfA7gNQB94Os0J8HTLuhHAg7Isf1CPsopkWR4ty/JuAJAkKR6eRR1zAewBMATAz7IsVx+gtcmzq1SvGQuofhTv+iVqDYssigYTAEBXw2xeRBRYggBEG4EYM3hDgIiO0Gg0mDfvrb1dunStmj79+Y733Xd7jx07todNnfpihq/L1pQpL+T06dOv4tVXpyXffvtNvd5+e3ninXfem3vddTcWA8CIEZeXREZGOe+7746eO3ZsN59uTFOmvJBlt9vFsWPv7T5hwoPdsrMzTQ89ND6noqJcu29fth4ARo26/tD+/fuM99xza0+3241XX52def75g0vmzXu9/V133dLrm2++jH344UdzbrxxdBEA9O7dx/ryyzPTdu7cHnbffXf03LDhvfgbbxxd69S3AweeU6rRaNSHH76/+4IFc9pffvlVhQ8/POEAANxxxz2FgwYNKX7ttekd77771p5r1qxqfddd9+XFxrZy7Nq1MwTwjJ8ZN+6xnM8//6TV3Xff0nPVqmWJ998/dt8NN9xUdPy5YmNbue6//6HcTZu+i/3xx+/Du3fvaXv22Wnpf/31e+R9993ec9WqZW2uuOLqQgDQ6fQ1tlY9/fRz+668clTh8uWLE++559aen332cdwDD4zbd999DxYAQFhYmDJp0tTMvLz9pnvuubXnvHmvt3vggXH765OchISEKPPmvSlrtVp1woQHu82Y8VLyf/97y8Haj2x4glrfOeuqkSRJAhADoBRAqizLfjeDSpK0GMD98LSUjJJl+RtJknYA+FKW5UnV9usBYDeAs2VZ/tuPU2W63Upyebm19j3rQaMRER5uQnm5FW53s2kNrtFnkyaiY0EhdpvDoLnpcQCe/qUGgw52uxPWokL03bgQANB10WJoDcamDDcggu0zPF6w1w8I/joGe/2A4K8j6+e/8HATNBoxC0DHQJS3devWbqKo+SouLrFSrzfaaj+CqH7++WerWavVqr179z1y0blx44bouXNndfjuu1+2+dZaaQkcDpuxsDAvVFHclw8YMCD1VPvW+12RJGkTgIdkWU6VZVk+blsfAGtkWe5T33IBzAWwCJ71UjZKkjQYnuU0jl/lz/cHxO+rYVEUEBXVMN3qwsNNDVJuYxO9A8ag08FkOnY6YYNBByEqEouyM+FUFSw2aREWcUZ0UwyIYPkMaxLs9QOCs452F/DSL57Hzw4xwRDk/9OC8TOsjvUjCn6pqSnm5csXJz355NNZPXr0tGZnZxtWr17R5oILBhe3pMSkvur0zngTBV//nYvgGWNysm5VVwHwa37karNzjQFwPoBxAKwAjh/g40tKqvw5DwAoiorycou/h59UsN0Nc1cbc2K1eh5XbzlxKRp8f9gz1fahonK4lOb/SxZsn+Hxgr1+QHDX0eoEVu/w3AQY18cKgxhc9fMJ5s8QYP1Oh7flJKBlEjWkm2++9XBR0WHdm2/Ob1dSUqwLDw93DRlyUfG4cY/lNXVsZ7K6XlHeB+AOeAa/qwAWwjPWpHqfMF9Ht3fqenJvgjMcwPuyLLsBQJZlRZKkPQASAewHcPxqlb7np/XBulwN80/B7VYarOzGlKrX49OMNHQf3g1tlWO7/imKCkCARquD2+WE1WpDWFjzr7NPsHyGNQn2+gHBWUdXtdUIFLcClxJc9TteMH6G1bF+RMFPEASMG/do/rhxj9Y6NoaOqmtyMgHACngSkE0AHoZnwHp1bnjGnuyux/nbwJPMFHjLhSRJOgD94ZliuADAg5IkaXzJCzzJjCzLcp1XyKT6O6iq+K2kCO3DImrcp1d4JDRuJ2zlZUBcQiNGR0RERETBqE7JiSzLZfAsjghJkoYB2AogVJblg97XogC0lWW5vmuc/Avga3jWLrkfnkUcpwCIgmfKYBuApwAskyRpJoBzADwKz5on1IDsds9QH61OX+M+D7drj0itFvaCQqCzVON+RERERER14U/nzX8BfATgx2qvnQtguyRJGyVJqvMUdLIsqwBugqfV5D0AfwKIBjBEluV93taRywBIALYBeB6e1eNX+RE31UMrqxXnRkYj9BRdR1zemd6ctsDOfEZERERELZM/o5hfhWeBxHHVXtsE4Bp41j2ZBs9aJXXibZV5yPt1su1/wTNAnhrROS4XbuzcFTstlTXu4/R9tzI5ISIiIqLT50/LySgAE2VZ/tD3gizLDlmWPwXwDID/Bio4ajoa3/o3+uMnSzvKtzKmiy0nRERERBQA/rSchMEzNuRkCgDE+h8OnSl8yYlwijEnbu8EbWw5IWp4Bg3w+fUWRESYYXABirv2Y4iIiJobf1pOtgG4t4ZtdwPY4X84dKbQ+GYP1tW81qXLm5woDkcjRETUsokCkBiqom245zEREVEw8ic5eRnAtZIk/S1J0hRJku6XJOkZSZL+AHADgBcCGiE1CY33+ylbTgTPFZLLO7MXERERkb++++7rCFlOqfmuaB3cf/8d0pQpT3YIUEh+mTdvdptrr728d133nzLlyQ73339Ho017qqoqPvjgvZhDhwq1ALB+/bsxgwcPHNBY569NvZMTWZa/BXA1PAswTgOwCMBL8HQRu0aW5a8CGiE1CV9/P8FQ89+Iv1URy3KyUBEa2jhBEbVgTjcw+28dpv/ieUxEFEz278/Rv/DClM5FRYd1TR1LsPv9919D5879vw5Wq0UEgKuuuqZ4w4bP/m3quHz8GXMCWZa/BPClJElGeKb+LZNluSqgkVGT0nlbRQSdAWoN+6Rr9Nh9qAD9Dfw7QtTQXCrw9h5PS+bdEqBj1y4iCiKqWtPVBgWaqqrH/AcxmUyqyWRy1bR/Y/MrOQEASZK6A7gUQGsACyRJOgvAv7IsVwQqOGo6y3NzoFVVDAkNR03XQFqt50LJzm5dREQURKqcNfcs0QhQjdqj9+1Ota8oQDX5uW99bNr0bfiKFUsS8/JyjQaDUenff0DZxInP7I+KinL/9tsvYU899VjXd975YGe7dh0cALBvX7b+lltu6D1z5py9gwYNqQCAFSuWxn388Yb4srJSXdeu3Sp79+5b8d13X8Vu3PjVTgDIyso0zJo1o21q6p4wk8nkvvbaGwq++OLTVqNH355/4403FwHA+vXrYt5/f13C4cOHDLGxrexXXDHq0J133lMoip5qb9jwfsz777+TUFBQYAgNDXUNGjSk5IknJuUWFOTrbrnlht4A8NRTj3X9739vyR8//vEDe/emGt944/Wk1NQ9YUajyd2rV5+Kxx9/an98fIILAOx2uzB79mtJP//8Y7TL5RIuv/yKQ4py6rdw8OCBA8aOfWTf999/G52VlRESH59gu+eeMXkjRows8+3z3XdfR6xcubRNXl6uKSoq2nHhhcOKx459JN9gMKgAkJq6x/jWWwsSU1L2hNlsVjEmJtZx9dXXFd59932FJzvnypVL41auXJr09NPPZV522RWltX2eubn7dQsWzE3asWN7uM1mE7t16145btyjuT169DoyA9HHH38Y/d57axPy8w8YIyOjnFdddU3hvfc+UFBbfL6fBwC45ZYbek+YMDEbAN54Y1aHzZv/3goAJSXFmgUL5ib+9dfvkRUVFdrk5E5VY8Y8lHfeeYMqAU+3tZ07t4edffZ5pZ9+ujG+oqJC27WrVPnkk8/kdOnS9bQvCuudnEiSpAHwFoB7AAjwdO9aD88CiR0lSRoqy3Lu6QZGTUdVVfx8yPP7daGx5i5bMVoRPcLCIZSVN1ZoREREDW7o+rCzatrWP85VtvgSa7rv+YgPQ/va3cJJk44e0e7Kty+3yL7nV20M7V3hFE567dUpwm1570pLSn1jLSo6rJ027bnO9977wP6LLhpWlp+fr5sxY1rHOXNeS5o27dWcupSxevWKVqtXL0988MFx+/r3P7vym2++jFq3bnViTEyMAwAsFov42GMPdW3dOtH2xhtvpVZVVWrmzJnZ7tChwiPrDaxbtzp25cqlSQ89NGFf375nVe7Zs8v8v/+90e7w4UL9k08+k7t79y7T/Pmz2z/55DNZffv2q0pPTzPOmDGtY0REhOvBB8flz5+/KOWRRx7oPmXKCxlDhlxUnp9/QDd+/IPS4MFDSyZMeCLFarWKS5e+1ebBB+/pvmbN+t0hISHKjBnT2v399x8REyc+nZ2YmGhfsWJJa1lOCU1ISDjlBfKKFUuS7rzz3tynn34u++OPP4x96aXnOkdFRaeeffa5VT/88F349OkvdLrvvgf3Dxo0pHzfvmzD/Plz2uXm7jPOmjUv02KxiE88Mb5r7959K+bPfytVq9WpGzd+ELts2VttBw48p6J37z7HTGG6Zs3KVqtWLUuaOnVaxiWXjCirKSafiooK8aGH7usWHx/vePnl19IMBqO6bNlbbR599CFp+fI1e5KS2jk+//yTqFmzZiTfdttdeZdcclnJnj27zHPmzOwQEhLqHjXquuJTxTdw4LmVU6a8kDF9+gud5s9flNKtWw/rZ599HO07v9vtxvjxD3Z1Op3CpElTs1q1inO+9947cZMnP9517tyFqf369bcAQFra3hCDweieMeP1NIulSpwxY1ryrFmvtF+0aOXeuvzMnYo/LSdTAdwK4D4AnwM46H39CQCfAJgO4M7TDYyajqPa7FsarQ41dW8/W3VhgNQDmfkHa9iDiIiIGtKBAwd0LpdTaN26taNt2/aOtm3bO2bMmJXmcrnr3Plzw4b3Eq68clThf/97SxEAdO7c5WB6+t6QzMx0MwB8/vnHUeXlFdoVK/4vMyoq2g0Azz33UtaYMXf18JWxbt3qNjfeODr/mmuuLwaADh2SHVVVlZqFC+e1f+SRx/P2788xAAKSktrak5LaOZKS2jkiI6P2hoaGuTUaDWJiYlwAEBER4Q4NDVWWLn0rITIyyjl16ov7fOd47bU5mVdddUnfL774NOryy68s+fHH72PGjn1k3/Dhl5YBwIsvzsj+z3+uCqutvsOGXXL49tvvPgQAEydOztu169+w9evXxZ199rlZa9asbD18+IjDt9565yEASE7uaNdqtTmTJj3edd++bL3ZHKKMGnVd4ejRtxeGh4crADBu3GMHPvxwfUJaWqqpenKybt2a2OXLFyc9//zL6RddNLxOd3I//nhDTGVlhXb58jUpsbGtXADwyiuzMm+44ere7767ttXEiU/nffDBu/Hnn39B8QMPPHwQADp16my3WKo0RqNJsViqxNrii4iIcANATEyMy2QyHdPU9NNPm8KzsjLNS5as2t29e08bAEyd+uK+vXtTQ9auXZXQr1//TABwu93CSy+9muX7eRg16vrCVauWJtWljrXxJzm5B8Bzsiyv8LaiAABkWd4hSdJz8KwgT82YraoKAyKi4FIViBot3DVkJ4ro/fhdzpPvQERE1Az9dGPFPzVt0wjHdr365vrKGgcSi8ft+9m1lTvrum9d9e7dx3rBBUOKX3hhSud582Y7+vY9q3zQoMFll156eWldji8uLtIcPnxY37t338pjy+1b4UtOZDnV3Lp1G5vvQhQAevToZTWZzG4AOHz4kLa4uFi3du2qxHXrVrfx7aOqKpxOp7BvX7bhoouGl3344frKhx++v3t8fIK9X7/+5RdeeFFp375nWU4WV3r6XvOBA3mm4cMvOKYVy+l0ijk5WcaMjDSjy+USevXqe2TMs9FoVDt0SD5pedX17z/wmCEIktS9avv2beEAkJWVZc7ISA/54YfvYo7WwxdTmvHiiy8tv+WWOwo/++zj6IyMNHNeXq4hJyfLDABut3IkISwpKdG9+ea89hqNRk1Kalfnrk6ZmRmmhITWdl9i4qtX585dqrKyMs0AsG9fjunCCy8urn7cTTfdetj3uC7x1SQ9Pc1kMpndvsQEAARBQI8evSq3bfs73PdaeHiEs/rPQ2hoqNvlcgVkNKQ/yUk8gO01bMsFEOV3NHRGcJSXYVIXz4x2GYIGqOHvparx/vi4zpgxVERERKctRAelqfetj9dem5OVlrb3wObNP0Vs3fpX+Guvvdzxo48+qFy8+GgXm+rjzZ3OoxeRGu//ckWp+cJVo9FAVWveriieat1334P7zz9/8AktBElJbR16vV5dvHjl3p07/zX99tsvEVu3/h0+deqkLkOHXlz08suvZR9/jKqqQs+evcuffPKZfcdvi4iIcO/fv0/v3e+YbVqtttYk7/h9VFWFKHpWeFNVRbj22hsOjhp1XdHxx8XHJzgLCwu0Y8bc1T0sLNx13nmDSgcMOKe8T5++VTfddG2f6vsKgohp015JW758cZvp019IXrZsdapv7M2pqKoKQTjxrVYURdBoPDFqNBr1JLsAAOoa3ynOf7LTQ1GUY943na7299lf/qxzkg7gihq2XeTdTs2Y3eK56eBQFODk3WgBAIr3D5rK5ISIiKhJbN36Z8iMGdPadunS1X733fcXLliwOH3ChInZe/bsCjt0qFCr0+kVACgvLz/S2yUnJ+vIWJGIiAh3bGysY9eunSHVy01J2X3keefOXS0HDx40lJQUHykjLW2vwWq1aACgVas4V3h4uCsvL9fQsWMnu+9r9+4d5jffnJ+oqio2bfo2fMGCua179+5rfeCBcQcXL165d/To2/N+++2XKAAnXJC3b9/Bmpe335SYmOTwlRcVFeWaM2dm29TUPaYuXSSbTqdT//nn7yODY10uF7KzPa0Ep7Jnz65j6pqauie0U6dOFgBISmpn3b8/x1i9HgUF+bp5815PqqysED/9dKOv21Xqww9PyB858srSsrJS793ao9frkZERzqFDh5VPnjw1OzMz3bxixZL42uICgI4dO1vz8w8YfGuQAIDNZhMyM9PN7dp1sAJAYmJbmyynHFOHGTOmtX300Yc61SU+QRBqTCw6d+5qtVgsmpSU3cesJbFnz+7QpKR2tpqOCyR/kpO5ACZIkrQAwCXw1LSLJElPAJgI4H+BC4+agtPm6S7pUlUop5raT+OZQlioqd8XEQWMQQN8MMqCb28DDH7Ps0hEwSY0NMz91Veft5o1a0ZiZmaGYc+eXaZNm76Njo9PsMfExLq6dethNRqNyooVS1pnZmYYtmz5NXTZskVJ1ZOBG28cffCLLz6N++CD92IyMzMMy5cvjtuy5ddoeOfrHDXquuKwsDDX1KmTknft2mnauvXPkGnTnu0IeJIKQRBw/fX/PfjFF5/GrVq1LC4rK9Pw9ddfRC5Y8EZ7nU6nGAwGVaPR4r331rZZvnxxXE5Otn779m3mP/7YEtmli1QFACEhoW4ASEvbayorK9PcdNOthRaLRTN58uMdd+7cYdq9e5fpmWee7JienhbStWs3a0hIiHLFFVcXrl27qs2XX34WmZYmG6dNm9q+pKS45tWjvT79dGP8xo0botPT0wyvvTY9KScn2zR69B0FAHDzzbce/PPP36PmzZvdJj09zbB5889hM2e+klxVVamNj09wxccnOOx2u/jZZx9H5ebu0//006bwF1+c2hEAHA7HCdfV3bv3tF133Y0H165d1SYjI91w/PbjXX31tcVmc4j7mWcmdtq27W+zt97JNptNc+ONNx8CgFtuuT3/t982R61cuTQuKyvT8MknH0V9882XrQYPHlpal/jM5hAFAPbs2W2urKw8JuahQ4eVtW3b3jpt2rMdf/vtl7C9e1ONL730XLvc3H2mm2++paC2+AOh3v/iZFleKklSKwBTAIyF5yd3HQAHgJmyLL8V2BCpsTmtnuTEWUtyomo9Pz6Cu0FaqYmoGlEAOkeqiIoCSkrQMH1DiKjZkaTutmefnZaxatXyNl9++VmcKIpqz569K2bNmpcmiiLCwsKUSZOmZi5d+lbSPffc2rN16za2sWPH75869amuvjJuvfXOQ+Xl5ZpVq5YlLlgwV9ujR8+Kiy4afjglZXcYABgMBvX//m9u2uuvv9rukUfGdA8JCXXddNMt+YsW/a+dTqdTAeC++x4sMBiMyieffBi3fPnipIiICNfw4ZcenjBhYh4ADB06rHz8+CeyP/jg3YQ1a1Ym6vV65ayzBpY98cSkXACIjo5xDxt2yeEVK5Ym5ebuN0yZ8sL+OXP+l7pw4bykRx8d200UNWrXrlLV7Nnz5Vat4lwA8Pjjk3L1er2yYMHcdjabVTNo0JDiAQPOLq3tPRsxYuShDz54N37u3Fmm9u3bW2bMmJXWs6dnmt4rrxxVoqpq5rp1q1t/+OH7CWZziHvgwHNKH3vsqVzf9tTUlINLlrzZdv782WJsbCvHZZddcXjLll8jva1Nh44/39ixj+T/+uvPUdOnv9Bh6dK35VN174qMjHTPm/eWPG/e60lPPfWo5P2MK+bNeyu1fXvPVNCXXnp5WWlpac7777+TsHLl0qSYmFjH/feP3XfDDTcVqaqK2uLr3r2ntV+//mWvvvpSx9tu258XERF5pAuMVqvFvHlv7p09e2bSiy9O7eR0uoTk5I6WV1+dvXfAgHMaZU1Dob6L3kiSFCXLcokkSeEAzgcQA6AUwO+yLBef8uAzQ6bbrSQXFwf2/dVqRURFhaCkpAouV/O+bNj93bfQvbsWxS4XCu976UiCIooCTCY9rFYHFEVF6dfvYNDBdGSLAkYsXtHEUZ++YPoMTybY6wcEfx2DvX5A8NeR9fNfdHQINBoxC0DHQJS3devWbqKo+SouLrFSrzc2SneVM9UPP3wX3qWLZE1Kantkhpvnn3+m/cGDBwyLFq3cu29ftj4rK9M4dOjFR8aT5Ocf0N1446g+s2bNk33rXzQHgwcPHDBhwsRs39os1DgcDpuxsDAvVFHclw8YMCD1VPv60zngT0mSpsqy/B6Ar/0Lkc5kTpsVOgAu4JQtJ2WhkViTm4OwpPYY0WjREbVMTjewZJcOJhNwa2fUuDgqEVF9ffXVFzFLl75levzxp3Li4uKdf/75R9gvv/wYPXbs+H0AYLfbxWefndzljjvuyb300stLysvLNIsW/S8xPj7BPmDA2Y1yN51aDn+SkygAh2vdi5otl91zA6m2kSSW0Eh8cjAffeITGj4oohbOpQKLdni6Ut/UEdAxOyGiAJk8eeq+WbNmtH322ac7WywWTXx8vP3++8fu97UudOki2SZNmpr5zjtvt37nnbfb6HR6tU+fvuVvvLFwr69bF1Gg+JOcvAHg/7wD4HfJsnxC3zpq3mxmM97LyUJEfAJ6nWI/rc5zoeSw13n6biIiIjrDREVFu6dP/7/sU+1z5ZWjSq68clRJI4XUYDZv/ntrU8dAp+ZPcnIHgPYAvgMASZKO367Kssy5ZJoxq1aLbw8VoFfrxFMmJwZRREdzCGI5WxcRERERBYA/ScSagEdBZxSHwzMeTqvTnXK/SLsVr/bojSKuc0JEREREAeBPcpIFYJMsy7mBDobODEpZKXqFhSNBe+rkRNB7puvWnHIvIiKiM5ICQFVVlSO4iBqY9/dMRR1mwvdnEcbZAAb6cRw1E+YDeXhO6oEhtUwzLeg9i4fqBP5dJyKiZuegqqpOh8NW64riRHR6HA6bWVVVJ4D82vb1p+WkEECkH8dRM6E4Pd26lFMsEgQAojc50TI5ISKiZmbAgAHlW7dufbu8vGQsgBi93mgRBIEzTxEFkKqqgsNhM5eXl+hVVVk2YMCAitqO8Sc5WQLgf5IkDQOwC8AJS9nLsvy2H+XSGeJocnLqDluiwdOtSycIUFUFguBPQxwR1YVeBNZcYUV4mAl6DaAG3/p9RE3hFbfbhdLSojsEQTCDSwgRBZqqqqpTVZVlAF6pywH+JCeve7/fXlMQAJicNGOqw+H5rqklOdGbPN8FAS67DTojW8aJGopGBHrFKoiKAkpKgCBcXJyo0Q0YMEAB8PLWrVvfUFW0hn/d3YmoZgqA/Lq0mPj4k5wk+3EMNSOqd/YtVdSc8haSaDAdeWyrsjA5ISKiZsl74VTniyciajj1Tk5kWc7xPZYkyQwgHECRLMvOQAZGTedIcqKpJTnRG7HhQC4cioJHOJ0wUYNyuoE1qTqYzMD17dn3hIiIgpNfiyVKkjQEwEwAZ8P7P1KSpD8BPCPL8g+BC4+ahNubnGhP/eMhajT4oLAAbpcTD4JjCIkakksF5m7TAwBGtQV0zE6IiCgI1btvpSRJg+BZHT4SwEsAHgLwMoBoAF9LknR+IAOkxpet12P1/hwcCo2sdV+tdy0Uu93ewFERERERUbDzp+XkZQC/ALhMlmW370VJkl4E8DWAFwGMCEx41BT2CcBXBfkYHRGFhFr2bWMOgSIA9kp21SUiIiKi0+PPrBTnAHijemICALIsKwDme7dTM+ZweIYPaTWnXiEeAJ5s2w7/17MPnPm1rqlDRERERHRK/iQnFQBqumrVg+M0m71QqxWdQkJgrMPiir5h8E6brWGDIiIiIqKg509y8iuAZyRJCq3+oiRJYQCehqfLFzVjQ5wuzOjeG/GV5bXu60tOXExOiIiIiOg0+TPmZDKArQAyJUn6DMBBAAkArgJgBHB34MKjpiAqCiCKgK72Hw+Xt6HMbWdyQkRERESnx591TtK9M3I9D+AKeGbpKgbwA4AXZVneE9gQqbGJqmdaYEFrqHVft7frl4uzdRE1KL0ILBlhRViYCXoNoHKFeCIiCkJ+rXMiy/IeSZImyLJ8EAAkSYoGkMTEJDhofGuW6PS17uv2tZywWxdRg9KIwNkJCqKigJISwMXkhIiIgpA/65xESpL0LYAfq718DoDtkiRt9K4aT82YxpubCHVJTgTPj5Db4WjIkIiIiIioBfBnQPyrAHoCeKbaa5sAXANgIIBpAYiLmtCR5jRd7d26UgUNPsrPQ6XJ1KAxEbV0LgV4N1WLVf8CTraaEBFRkPInORkFYKIsyx/6XpBl2SHL8qfwJCz/DVRw1DS03hmERX3tyckerRHr8vajxGRs4KiIWjanArz6pwHP/Qi43LXuTkRE1Cz5M+YkDEBJDdsKAMT6Hw6dCT47XAitW0H3kPBas1ett+uXw8EB8URERER0evxpOdkG4N4att0NYIf/4dCZ4NP8fKw/kAuYw2vdN0SjQbzBALWyqhEiIyIiIqJg5k/LycsAvpQk6W8AHwEoBNAKnjEnA+BZ74SaKUVR4HI5AQAard43b1eNznPbMa73Wcg8cKDhgyMiIiKioFbvlhNZlr8FcDUAFZ7B74sAvARPonONLMtfBTRCalR2mw3J5hAkGU0QNZpa91dE7z4u16l3JCIiIiKqhb/rnHwJT+uJEZ5FGMtkWWa/niBgryjDaz16AwAyBA3ctTSdqFrvjxCTEyIiIiI6TX4lJz6yLNsAsD9PEHFYLAAARVUBra7WOUtVjc7zwM3pg4iIiIjo9JxWckLBx+5NTlyqCnhXfz8VVetJTgQmJ0QNSicC8y62ITTUCJ0GANc6ISKiIMTkhI7hslkBAE5V9bSe1MbbrUtw80qJqCFpReDCJDeiooCSEs+ijERERMHGn6mEKYg5LDYAnpaTuuQmqtazzomg8EqJiIiIiE4PkxM6htPbcuIC6tRyYjGF48uCfKS6OSCeqCG5FODjdC3W76l1KBgREVGz5Ve3LkmSYgE8CeBSAK0BXAbgOgDbZVn+OHDhUWNz2WzQA3ADUJXak5PKiBi8sz8H3UND8UiDR0fUcjkV4PnfDACALaMBXe1DwoiIiJqderecSJKUDM8q8GMA5AKIgyfJ6QpggyRJVwY0QmpUNp0OH+bn4W+no9YFGAFA6x0Qb3fYGzYwIiIiIgp6/nTreh2eVeGTAVwP75ROsizfCuATAM8ELDpqdHaTEe/m7cfvdRxDotNqEaHVweR0NnBkRERERBTs/ElOhgN4SZblUuCEm+uLAPQ63aCo6djtDgCATm+o0/6RdguW9BuACdGtGjIsIiIiImoB/B0QX9PoZwNOTFioGXFXVaK1wYhwna5O+ws6IwBAK7ADPBERERGdHn+Sk18APC1JUki111RJkkQAYwH8GpDIqEkY9+Xgjd79cFUdkw3B4Glh0TE5ISIiIqLT5M9sXZPhSUDSAfwAT0vJRAA9AHQGMCRg0VGjczs8Y0fcQt3yVtFgAuBJTlRVhcAkhYiIiIj8VO+WE1mWdwEYCGATgGHwzDp7KTzJyiBZlrcHMkBqXKrTM+ZE1WjqtL+o9yQnoiDAxRm7iBqMTgRmXmjDwisAXd1+PYmIiJodv9Y5kWU5DcCtAY6FzgCKd9YtVaxry4nxyGN7VRV01Z4TUeBoRWBEBzeiooCSEs+ijERERMHG30UYBQD9AITgJK0vsiz/fHphUVNRvcmJItbt1qzG260LABwWCxAd0yBxEREREVHwq3dyIknSOQDWA0jyvuQbZKB6H6sA2OmgmfIlJ6pGg7qMHhE1Wmw6fAguRcENbnfDBkfUgrkUYFO2BqGHgXOimzoaIiKihuFPy8kcAE4Ad8GzQjw7FwQR1ZtgKKK2zhnmioP5sNssuKaOXcGIqP6cCvDUz55uk1tGAzrOPUFEREHIn+SkP4CbZVn+ONDBUNM7qNNCLshHaOv2qOuyilqdDnYb4OCAeCIiIiI6Df7c6i4EW0uCVpZWi1X7c3Aosu5jR8w6A8K0WjislgaMjIiIiIiCnT/Jyf8ATD5uEUYKEg6HZyphrbZuK8QDwHNt22JZv4Fw7tvXUGERERERUQvgT7euLvAsuHhQkqTdAI6/Xa7Ksjz8tCOjJqGx2RCl00GnqXve6vJ9t9kaJigiIiIiahH8SU46A9he7fnxwzI5TLMZu8hixV19B2BHWWmdj3F5P3KXnWNOiIiIiMh/9U5OZFke1hCB0JlBUBUAAqCre7cu3wTCbDkhIiIiotPh1yKMFLxERQVEAYJWX+djXIKnC5ibs3URNRidCLw4yI6QEAO0GnBaEiIiCkp1Sk4kSXIDOF+W5T8lSVLgWWixJqosy3VOeiRJigbwCoCrAIQD2AFgsizLm73b+wF4A8BAAEUA5smyPKuu5VP9aFTvR6ure3LiFjzdutzs1kXUYLQicE1nF6KiDCgp8SzKSEREFGzqmkRMg2fBRd/jUyUn9fUugDgANwM4BOBhAN9IktTf+/xbABsBPAjgPAALJUkqkmV5RQBjIC9fciLUIzlRBBGACoUtJ0RERER0GuqUnMiy/GK1xy8E6uSSJHUGcCmAC2RZ/s372gQAIwHcAsAKwA5grCzLLgApkiR1ATAJAJOTBnBkVXidoc7H7Be1OHz4ABL0vRskJiLytJT8lqtBaCnQJ7ypoyEiImoYde3WdWF9CpVl+ec67noYwJUAtlY7VpUkSQAQDaAjgJ+9iYnPJgBPS5IUJ8tyYX3iotr5kpP6tJxs14dgW3YGHgm5umGCIiI4FWD8JiMAYMtoQMd5EYmIKAjVtVvXjzjalaumf4mqd5uKajfgT0WW5VIAX1R/TZKkGwF0AvA1gOkAdh532AHv93bwrFbvF63Wn/Una6bxrguiqcf6IGei3yvKoHe5kRAaDlE89qP2PT/+dZ13Zi+n0xHw97UxBctnWJNgrx8Q3HXUVutMK2pENONftVMK5s8QYP2IiGpT1+SkUaYPliTpAgDLAXwsy/KnkiTNgadbV3W++WqN/p5HFAVERTXMAvfh4aYGKbexvH/wAKqqqvBybBwMppO3nhgMx04zbDQaoRMEiIqrwd7XxtTcP8PaBHv9gOCso8F59HF4uAnmus/23SwF42dYHetHRHRydR1z8lNDByJJ0jUA3gHwO4DR3petAI4f/OBLSqr8PZeiqCgvP35h+9Oj0YgIDzehvNwKt7v5TqNj98645XKrUKyOY7aJogCDQQe73QlFOXob9xxLBR4ecC6yMnNQUuL3x9LkguUzrEmw1w8I7jpanQDgSf7Ly62wi8FVP59g/gwB1u90hIeb2CJD1AL4tc6JJEmxAJ6EZzB7awCXAbgOwHZZlj/2o7xx8EwX/CGA22RZ9rWW7AfQ5rjdfc/z/Aj9CFcDzcPpdisNVnZDc7lcMANwajQQBe0xCUh1iqIes03ReHrxqS5Xs617dc35M6yLYK8fEJx1dLmPPlbcClxKcNXveMH4GVbH+hERnVy9b0FIkpQMz1okY+CZXjgOniSnK4ANkiRdWc/yxgKYD2ABgJuqJSYA8DOAIZIkVR/DMhyAzMHwgWevqsLSfgOx6qyzj653Ugeqxtu/pPrVExERERFRPfnTcvI6PAPRLwJQCcABALIs3ypJkgnAMwA+r0tBkiR1hafF5CMAMwDESZLk22yFZ/zJUwCWSZI0E8A5AB6FZ80TCjCHpfLIY9FgAuqYa6haz4+R4GZyQkRERET+86fz5nAAL3ln2jr+9voiAL3qUdYNAHTwdAnLP+7rDW/ryGUAJADbADwP4ElZllf5ETfVwmGxAgAUVYWgqcdoW61nX0FhckLUUHQiMPkcO6ZdBGjrNB8iERFR8+PXmBMArhpeN6Aeq8fLsvwKgFdq2ecvAOfXPTTyl8PqmSTAqaqoR68uQOuZ1UsI8j7wRE1JKwI3d3MhKsqAkhLPooxERETBxp+Wk1/gWQSx+pyxqiRJIoCxAH4NSGTU6JxWzyzNLlWFUp8xJ96WE7GGAfRERERERHXhT8vJZHgSkHQAP8DTUjIRQA8AnQEMCVh01KgcVgtEeFpO6pOcOExh+LOkGPbQ0IYLjqiFcyvAPwdFhFUBXbiEBBERBal6t5zIsrwLwEAAm+BZnNENz5TC6QAGybK8PZABUuNx2jxjTtxAvbp1VUa2wqyMvfiyqrL2nYnILw4FuP8bE27eADg4vIuIiIKUX2NOZFlOA3BrgGOhJuYUNdhy+BAEsxlx9eiipdV5unXZHfZa9iQiIiIiqpm/izB2BGCUZXmPJEmRAKYDaAtgvSzLqwMYHzUim9mEhdkZ6NylG26rx3Fa74B4p53JCRERERH5z59FGC8HkALgHu9Lb8GzIGMSgJWSJN0buPCoMTkcTgBHW0LqKtxuwboB5+KVNkkNERYRERERtRD+zNb1HIBvALwoSVIEPGuUzJBluT88CylOCGB81IjsVgv0ogi9Tl+v4wS9ERpBgFYQGigyIiIiImoJ/ElO+gKYK8tyBTwLJGoBfODd9i2ALgGKjRqZMSsLa/qfg1vq2XIi6o0AAJ3gz48TEREREZGHP1eTVhwdqzISQIEsyzu8zxMAlAYgLmoCbocDAKDUswVENHrmNdUIAsedEBEREZHf/BkQvxnAREmSogH8F8AKAJAkaQCA573bqRlSvLNtKaKmXseJ+qOLLjisFugMhoDGRUSAVgAe7e+AyayHVoRnhSkiIqIg40/LyWMAEgGsBZAF4GXv658DMMKzSCM1Q4rd23JS7+TEeOSxvaoqoDERkYdOA9zVy4kHB3geExERBaN6t5zIspwlSVJPAHGyLBdU23QtgH9kWWa/nmZKcXlm61I19bvy0eh0cCkKtKIIh8XSEKERERERUQvg1whmWZbV4xITyLL8OwCtd6phaoZU35iTeiYnALCjsgJbS0vg9CY4RBRYbgXYdVjEvwc9j4mIiIJRvVtOJElqD2ARgKEAappzlp0OmiHV5fJ812hR30mB5x84gKrKMpxrMNa+MxHVm0MBbvvCM75ry2hAx5m7iYgoCPnTcjIHwCAAiwH8A+BXALMA7IBniOZ1AYuOGlWxKOL34iKUG831Pta3cKPDwV59REREROQff5KToQCmyrI8AZ6ZuuyyLE8CMBDATwCuCWB81IhkvQ6zM9NwICa+3sdqtExOiIiIiOj0+JOchALY7n28B0A/AJBl2Q3gfwAuDkRg1Pgc3jEnWm39FmEEgKdat8aa/ufAlZkZ6LCIiIiIqIXwJznJh2exRQBIBxAtSVJr7/NiAPW/7U5nBIfNCgDQ6msaSlQzrSBCL4pw22yBDouIiIiIWgh/kpPPAbwkSdIgWZb3A8iFZ1HGMAD3AMgLZIDUeEZarHh3wLloV1pc72Ndvu92JidERERE5B9/kpPnAJQCmOZ9/gyACd7XbgXweiACo8anUVSIggBBV/+WE7fgmTrIbeeYEyIiIiLyjz+LMBYBONfXlUuW5bWSJOUAOB/An7Is/xTgGKmRiKoCCBrAr+TEk+cyOSFqGFoBeKCPAyaTHloRnrkRiYiIgky9kxMfWZbzJUnqBiAKQL4sy/8XuLCoKYiq52pH0Bnqfayv5UTxDqonosDSaYCx/ZyIitKjpARwuWo/hoiIqLnxKzmRJOleeLp3JVV7bT+Ap2VZXheg2KiRaX13YvV+JCeiBoAbbiYnREREROSneo85kSRpHIAlALYCuBPASAB3A0gBsEaSpBsDGiE1Gl+mKvqxynuRqMWu8jJYNZrABkVEAABFBdJLBewt8jwmIiIKRv60nEwAsECW5fHHvf62JElLAbwAYP3pBkaNT+fpmQVBZ6x3d/a/DWH4a+9PePBiLnND1BDsbuCGT8wAgC2jj/6+EhERBRN/kpMkAJ/WsG0dPDN2UTO0q6ICRkGAwRxS72O13kH0dg6IJyIiIiI/+TOV8F8Ahtew7SwAO/wPh5qKqqqYm5mGV9JSoYZF1ft4rc6zqrzDweSEiIiIiPxTp5YTSZIurPZ0HYA53kUX3wdwEJ4Zuy4HMB7AA4EOkhqey+WEoigAAI1GD3c9jz/LYcGdfQegIP9g4IMjIiIiohahrt26fsSxs+oLAMYCePC41wDgXXDMSbNjtx+dZUuj08Ndz2lKtaKIcJ0Oh53OAEdGRERERC1FXZOTYQ0aBTU5W/FhvNP/HDhUBQdFDQClfgVoPN264K5vmwsRERERkUedkhOu+h78bJVV0IoiPD276j8NkKr1/CgJ7nomNUREREREXnUaEC9J0s+SJPWrT8GSJA2UJGmzX1FRo3NaqzzfVdW/NRS0ntm6RIUtJ0QNQSsAd/RwYEx/QOvPVCZERETNQF27db0B4CtJkv4GsAbAJ7IsW47fyTtI/jJ4BsWfBeChQAVKDcteZYUIwKWqUPzITtQjyQlXhyNqCDoN8PhAJ6Ki9CgpAVz1HBdGRETUHNS1W9cGSZJ+AvAcgKUAtJIk7QGQBaAKQCSAtgB6AXB697lNluWChgiaAs9ptcAAz4enqvVPMATvVMKiym5dREREROSfOi/CKMvyYQDjJUl6EcAN8AyS7wggAsBhACnwtLB8KstyUQPESg3IafMkJ24Aih/JicsQgvSqSlR4kxQiCixFBfIqBVRqADMbKImIKEjVe4V4b+KxyPtFQcJltXm+CwL8yE1QGR2PZ1J2oX37DrgpwLEREWB3A1d+aAYAbBkN6Oo/bwUREdEZj8MqCQBgF4Ad5WXIh3+3ZH0rxNsdjlr2JCIiIiI6OSYnBACoCAvHy3tT8I2g8et4rXdAvMNuD2RYRERERNSC1LtbFwUnuzep0OsNfh0f4rRjQe+zoLKrCRERERH5ickJATianGj1/g1o1+j0iDMY4FI4WxcRERER+YfJCQEAojIzsLzfQGT6uXiCqDcBALSiCLfLBY2WP1pEREREVD91uoKUJOmO+hQqy/Lb/oVDTcbhQKhWC50g+jUkXjQYjzy2Wywwh4cHLjYiIiIiahHqent7ZT3KVAEwOWlmFO8sW4pGA3+GjYhG85HHTmsVwOSEKKA0AvBfyQmDQQeNCPg5sR4REdEZra7JSXKDRkFNz9udS9Vo/UtOtDq4VRUaQYC9yhLY2IgIeg3wzLkOREXpUFJy5FeWiIgoqNQpOZFlOaeuBUqSxPmamiG1WnLiD0EQ4FQUaDQaOKxVgQyNiIiIiFoIv65EJUm6GcBQAHrgyI12EUAIgPMBJAUkOmo0gssJAFC1/s3WBQC5djs0UNHV4QxUWETkpapAsQ1QLIDALl1ERBSk6p2cSJL0PIDnAZR5j3d6v1oBUAAsCWSA1Ejcbs/300hOXs3LQ3lZEd4zm2vfmYjqxeYGLn4/BACwZTSgYxs1EREFIX9WiL8TwBoA0QDmAPhUluV4AGcDKAKwO3DhUWMpUVXsrayAw+h/YqHReVeJd3CVeCIiIiKqP3+Sk0QAq2VZVgFsBTAIAGRZ3gpgOoD7AhceNZbNUDE1dTcOxbX2uwytt9XF4Z35i4iIiIioPvxJTqpwdBLLNADJkiSZvM+3gzN7NUs2mw0AoNMba9mzZvfFxmBer35QsrMCFRYRERERtSD+JCd/wtO1CwAyALgAXOJ93h0A+/Q0QzabFQCg0/mfnERqNEgwGuGu4mxdRERERFR//szW9QqA7yRJipRl+WpJktYAWCVJ0g8ALgPwUUAjpEZxp86I0N5nIb+qwu8y3IJnhK6b3bqIiIiIyA/1bjmRZflnAAMBvOd9aRyADwB0A7AewPiARUeNJlwQ0MpgODKo3R9uwfPj5LbbAhUWEREREbUgfq1zIsvyDgA7vI9tAMYEMihqfL4JhAWj6ZT7nYqv5URhywlRwGkE4OpOThj0OmhEHB35R0REFET8XYQxAsDF8Cy6eELriyzLb59mXNTIdN7EQjSYoPhZhlsUASjs1kXUAPQa4KULHIiK0qGkBHC5mjoiIiKiwPNnEcaR8HTfqmlBDBUAk5NmRFEUGERPjikYQ/wvR9AAqgLFyRXiiYiIiKj+/Gk5mQEgBcDjAHIBv2+00xnCYbFA9LacaIxmuP0sx6LRIr+yHHaV/U2IAk1VAasTMDg9j4mIiIKRP8lJNwDXyLL8S6CDoaZhrSg78lgwmP1ON383RWLO7z/gnnPOCVBkRORjcwND3ve0bG4ZDeiEJg6IiIioAfiTnOQACA90INR0bFYrMqoqoRNFCDoDYPevM7vO4FkjxbdmChERERFRffizCOMMAM9LktQhwLFQE3FoNHg6ZRdeyMmCqvjfX0SnMwAALBZLoEIjIiIiohbEn5aTWwEkAsiQJOkQgOOvRFVZljuddmTUaKxWz7okBqMRyml0Zu/isuGyHr1RdbgoUKERERERUQviT3KS6/2iIOHrhmU0GKGcRsuJURTRwRyCbAdn6yIiIiKi+qt3ciLL8t0NEQg1HVd2Fhb07odDgnhayQn0nm5douLvfF9ERERE1JL5s85Ju1NsVgBUyrJc6ndE1OiclZWIMxhhd7tRcRrlCHrPgHiNwtmliYiIiKj+/OnWlQ3PQos1kiSpGMAbsiy/7E9Q1LhcVk+3Lrfoz/wI1ehNAAAtF2EgCjhRAC5p74Jep4Uoopa/wkRERM2TP8nJnQAWA/gRwDoABwHEAbgBwFUAXgIQCmCqJElFsiy/GZhQqaG4bIFJTkSjJznR8aKJKOAMGmDWUDuiorQoKQFc/s34TUREdEbzJzkZDeDdk4w9WSNJ0psABsiyPEqSpFIAYwEwOTnDuW2e2brcoua0yhG8yYmWi8MRERERkR/8uVV+EYB3atj2IYDh3sebAXBK4WZAsdk93zWnm5yEotTpQLmTt3SJiIiIqP78aTkpAtAXwLcn2dYXQLn3cSiAqvoULEnSVACXyLJ8UbXX+gF4A8BA77nnybI8q95RU40Uhy858efH4Sg1shXG/LsNgiDgH6gA2IRCFChWFzDknRAAwJbRgI6/XkREFIT8uRpdC2CaJElOAB8AKIRnzMn1AF4A8JYkSVEAHgXwe10LlSTpUQDTAPxc7bUYeJKgjQAeBHAegIXesSwr/IidTsKqqsizWmEPj4LhNMrReacSVlUVdrsdBoMxMAESERERUYvgT3IyFZ5kZLb3y0cBsBzAM/AMjj8LwMW1FSZJUiKApQCGAJCP2zwGgB3AWFmWXQBSJEnqAmASACYnAZIaYsZ7u//FtT36o99plONLTgDAarUyOSEiIiKievFnEUYXgHskSZoOYBiAWHhWjP9VluUsAJAk6UsAibIs2+tQZH8AJQD6AHgOQIdq24YA+Nl7Tp9NAJ6WJClOluXC+sZPJ7J5B8RXTy78IYoaTJV6IFQUYSk4iMjIqECER0REREQthN+DDGRZzgCQUcO2knqU8ymATwFAkqTjNycB2Hncawe839vB06XML1rtaa7pcRyNRjzme3Nit3uSE73BCFGsuSO7b9up9kk2mRGm1cJZWR7w97ihNefPsC6CvX5AcNdRW22KblEjopn9etVZMH+GAOtHRFSbOiUnkiRlArhOluV/JUnKwqmX/1JlWQ7ULF1meLp1VWfzfve7z5AoCoiKCvE7qFMJDzc1SLkN6fzyCgzv0RvFtkqYTPpa9zcYdDVuc3gXYBTdjgZ7jxtac/wM6yPY6wcEZx0NzqOPw8NNMNf8axgUgvEzrI71IyI6ubq2nPyEo7Nw/YTGW5vYCpwwRtuXlNRrJrDqFEVFebnF76BORqMRER5uQnm5FW63EtCyG5rZ6UR7cwjKVQFWq6PG/URRgMGgg93uhKKc/EfAl9qUHipCSYnfH1GTaM6fYV0Ee/2A4K6j1QkAnoS/vNwKuxhc9fMJ5s8QYP1OR3i4iS0yRC1AnZKT6gsuyrJ8V4NFc6L9ANoc95rved7pFOxyNcw/BbdbabCyG4roVgBRhKrT15h0VKcoao37+W7u2iurmt374NMcP8P6CPb6AcFZR0UBBie6oNNpATX46ne8YPwMq2P9iIhOzq8xJ5IkhQEIl2U5T5IkPYAJANoC+ECW5Z9PfXS9/AzgQUmSNLIsu72vDQcgczB84OhUBYAI0Wg+7bKc3rVNnFbraZdFREcZNMCC4XZERWlRUgK4uNYpEREFoXq3j0qSdA6AHACPeF+aB+A1ALcB2CRJ0qjAhYflAMIBLJMkqYckSXfBs37KjACeo8XTeRtBBOPpjxFxCZ4fKaclsN3miIiIiCj4+dN5czqAVACLJEkywZOULJRlORrAMgBTAhWct3XkMgASgG0AngfwpCzLqwJ1Djq60rRgOv3kxCaKKHc64XQ6a9+ZiIiIiKgaf7p1nQvgJlmWsyRJugqACcBq77Z34UlW/HKy8SyyLP8F4Hx/y6TaGbytHRpTGNy17FubTzVm7Ni2CRMvveT0AyOiI6wu4NL3zRAAbLrx6E0FIiKiYOJPcqLg6PS+VwAoBfCn93k4APbnaUacDgeKHHYYRQ0Ec+hpl6f3rgrvW9iRiALH5mJGQkREwc2f5ORvAPdJkmQFcBOAz2RZViVJigMw2budmgmb3Y5Hd/0LAJgRFnXag2x1Os/Mz1YOiCciIiKievInOXkSwFcAbgZwCMDL3td3wTOG5bLAhEaNweIduK7RaCGIWuA0O3b1VF0YIfUA8k5rpmciIiIiaoHqPSBeluV/AHSGZxxIR1mW07ybxgLoJcvy1gDGRw3MavUslGgym6EGYGnNCEFAz7BwmDhbFxERERHVk1/rnMiyXAHgj+Ne2xCQiKhRWfblYGaP3igF4K7DAoy1UXSeNeIFLsJARERERPXkz1TCFETspaXoYA5Ba72hTqvD10rvGRAvOJmcEBEREVH9+NVyQsHDUVmJEABOQYASgH5dqsEEANAopzspMRFVJwAYEO+GTquBwEm7iIgoSDE5aeEcVZ4xJy4xMI1ovoUcdYoSkPKIyMOoBZZdZkNUVAhKSnDaM+sRERGdiditq4VzWTzJiTtAyYnoS04C0EOMiIiIiFoWJictnMviWY/ErQlMI5pgCoNLUeBity4iIiIiqid262rhFLtnJfdAJSfumATcsu1PaLU6rsZJFEBWFzBqgxmCCHx+LaDjuBMiIgpCbDlp4ewuF0qdDri8UwCfLoO3W5fL5YTT6QhImUTkUWIXUGxt6iiIiIgaDpOTFm53iBlj/t2GXfGJASlPbzAeeVxZWRWQMomIiIioZWC3rhbO4l3JXac31rJn3YiiBo92lhAuiqg6eABRUVEBKZeIiIiIgh+TkxbOavUkJwbv+iSB0CM0DJFaLazFRQErk4iIiIiCH5OTFu6c8goMlnqg0pukBILdu5ijtaw0YGUSERERUfDjmJMWLtblRo+wcJi0moCVafd9r6gIWJlEREREFPzYctLC6RQFEEUIptCAlenw5ryOysqAlUnU0gkAesS4odVoIHAaYSIiClJMTlo4g/e7GBIesDKd3tXmnUxOiALGqAXeudKGqKgQlJQALldTR0RERBR47NbVwhm9t2A1gUxONJ4uYm5L4MaxEBEREVHwY3LSgjlsNhi9iYQmNCJg5bpEHVyKAqfdXvvOREREREReTE5asMriw0cei6GBW4/kl9AY3LLtT6REBK41hqils7mAkRtMuGA5YGWXLiIiClIcc9KCVZaUotTpgFYQAa0ecAfmikdvMgMAqixcIZ4oUFQA+VXi0SccFE9EREGIyUkLZtGIGPPvNsTEtsLjbiVg5eoNnuSksoID4omIiIio7pictGAV3nVIQkJC4VbUgJXbVnXjyU5dgZKSgJVJRERERMGPY05asErvVL8hIaFQApichGm1ODsqGq2dzoCVSURERETBjy0nLZianoYXpB4oNocEtmDvtMT6ACY8RERERBT82HLSgiklxegRFo44TWBzVN+0xEYO2CUiIiKiemDLSQvmWyTRrdUFtFxNWDQAwCyKUBQFosgcmOh0CQA6RijQaETO1EVEREGLyUkLplitnu86fUCvdbQRMZ7vgghLaTFCo2MDWDpRy2TUAh9eY0VUVAhKSgAX1zohIqIgxFvaLZnNBgBQ9IaAFqs1hcCpeKYmrjh0KKBlExEREVHwYnLSggkOOwBANZoDW64owqIocCoKKoqKAlo2EREREQUvJictmMY31W9IWMDLfu7gQdy67U9UGgPbKkPUUtlcwPUfm3DJasDKLl1ERBSkOOakBXO6XHCKGoje2bUCSWMMBQCUl5cFvGyilkgFkFkmHn3CQfFERBSE2HLSgs3J249bt/0JW9tOAS/baPYkJxUV5QEvm4iIiIiCE1tOWihVVVFWVgoAMJoD33IyyGzEdZ26QpuWHvCyiYiIiCg4seWkhbLZrHA4HAAAgyk04OW31mhxdlQ0xGIOiCciIiKiumHLSQtVvH8/XpR6oMzlgkZngNPuDmj5br0BsNqgetdSISIiIiKqDZOTFqri4AF0DwtHmcuFQ4oa8PIVQwhgLQOstoCXTURERETBiclJC1V56DDCAVgBuFyBT07UkDCgFNB4u44R0ekRALQOUaARRc7URUREQYvJSQtlKylGOAC7KEJRA5+cICwKAGBwc0EGokAwaoEv/2NFVFQISkoAF3+1iIgoCHFAfAtl987U5dA2TH6qiYwFAIQ0SOlEREREFIyYnLRQrnLP+iMuXcOs4K6NigcA6CDA5VuJnoiIiIjoFNitq4VyV1R4vpvMDZKh6qLjcec/f8HqdmNTRTmio2Ma4CxELYfNBYz52gitBlh8Cf94ExFRcGLLSQvlsFrhVBSooeENUr5Gq4XoXSW+mGudEJ02FcCeIg12FAINMUyMiIjoTMDkpIX6sKoCt277E0XJ3RrsHCGhkQCAkpLiBjsHEREREQUP9gxooYqKDgMATOEN193qsugYtA4xwLZnN3D2eQ12HiIiIiIKDkxOWiBVVXH48CEAQKh3yt+G0MFoRG+THrkHDzbYOYiIiIgoeDA5aYHKDx/C1OTOKHU6YTSGwd5A/dcdOgPgssLpnbaYiIiIiOhUmJy0QMX7siGFhsHiduOgzgA43A1yHpc5DCi3QvFOW0xEREREdCocEN8CleTmAgCqVBVOl9Jg51G841l0VluDnYOoJYkyqIg2NXUUREREDYfJSQtUnrsfAFCl0cCtNNycpEJ0HAAgxN0wLTNELYlJC/xwkwX/jAFMuqaOhoiIqGEwOWmBbIWFnu/Ghr0Fq4tvBwCI0Gi4SjwRERER1YrJSQuklJQAAFwNtACjj75VEtyqCqeioMjbWkNEREREVBMOiG+BdBYLAECNim3Q82h0OjyWnY2DRQVYa6lEfIOejSi42VzAhO+N0GmBuUP5x5uIiIITW05aILvdBpeiQBPbpsHPpQuPBgDk5x9o8HMRBTMVwNYCDX7PA9SGGypGRETUpJictDCKouCFlN24ddufUDt0b/DzRcUmAABy2a2LiIiIiGrBngEtTH7+AbhcTuh0OpjCYmBzNNxUwgDQNzIGIztLMGzf3qDnISIiIqLmjy0nLUxmZgYAIKltBzhdDd83JCYsEgMioxDFhRiJiIiIqBZMTloYy6+/YEb3XrgioU2DrnHio0nsCACIUj1dyoiIiIiIasLkpIVR8g+gU0goYht4GmEfU7uuUFQVZo0GRTmZjXJOIiIiImqemJy0MPqKCgCA2qrhZ+oCAK3RjEMuFwBg37Z/GuWcRMHE5XTiYNpepP78E/RwwSC4sOv7b5G9fRvKvAuqEhERBQsOiG9BHDYL4iEAAPSdesHVSOc9pDUgHgqKd+8E/nNjI52VqPlxOZ1I+f5b/JuTjR0ZaUhJ2YMuNhsebJ+MEAArseLIvg4ABQDmHz6ErJhodOvWAwP69EWf7r0Q265dU1WBiIjotDA5aUHSfvsNelFEldsNXWIXuBp4pi6fyqh4oDQfal5eo5yPqDmpLCnCtnfXwbJzB+KtVoRoNNialYEfig4BACLDwqGoKsrdbrigQgGghQCTIMCk0SCrpBhbszOwdetfSP0sCkldJOx0u+Fo3x4dL7scnc4dBFFkIzkRETUPTE5akPytf6MdgEKNBjZnIw5Oby/BVpSL4qpKqKoKQRAa79xEZyCX04ntGz/EoZ9+QJLFggRf8qDRoMrtQi+pC/p0vQTd2rVBu9hIRIUYoBUAAQqMJj1sVgcUVUBVlR2PlgxC1qES7M7ch5CsfABAokYD5OZCXbYUvy16C1XJyeh102gkduvRhLUmIiKqHZOTFsSVkQYAsMTEQ2jEFaZN3c7GfW/PhsPpwMCMdHTu3KXxTk50BklLk/HZZ5/gt6+/wEuJ7RAuCIAo4pDLiYq4GLTu1RlSr2T0UI7rdKm6YXOLmJo/DKJGxMsJP0AHN0LMOnQ1t0LXxFa4rF9XAEDR4TLIf+2BIycfiYqAOK0W2L8fFf/3GiaJAi64+hpccskImM0hTfAOEBERnRqTkxbC6XRgb8FBRIZFQNPrHDTmpL46owntu/RB2p6/8euvPzE5oRalICMdO957B3mpKZi74+ikENsiIhEVH4fEc3piQI9kCL6E5PjExEuBiN+qkjyPE0QA7pPuFxMbgUEjzwcAVFRYsPPXHXBn5gE2B77eswNf//U7ZsyYhgfOG4xeFwxGv2uuh1anC1yFiYiITgOTkxZiy5bfsDwrAx9Fx2By1wGwNtJ4E58uPc9G2p6/sf3773Dnnfc16rn/v727j5OrqvM8/rlV1c/PnU6nu9N5jjkQ8tAkhJBAYjRoxhEH1lUZXRVl1BHGXddBxXmNoivqzOrOOsz4Gh1xUFSUVYdBZGEHFQiEEAIJIZCHE5POYyedpDvd9PNDVd3949xOKk0XA0mnq27xfb9e9arqc0/dOr/qulX3d8+554pMtN7ODrb8/B4Gtm5hejLJDM9jWl4+NYWFLF62lHdeuZTl86YTSw67J6RJSM5XWVkxK//oCgCOnujg5u2zeGjDsxw72sqlnZ0U/b+H2frgb2ifMoU5117HvJWrLkg7REREXqtQJCfGmAjwZeBjQBWwAbjZWrs3ow0Lkfvv/1cAVr9l3YQnJgAXL1rB5dvXMz+/kD1PrmfeqjdPeBtELqTe3h6e+/W/0ffUBqb29VEXjboFnseRZAJmN3LvjddSVhgB34eRxGSCNNRWccPVV/DhtcvZta+Flg0vUNc7QGUsRmV7O9z1L6y/8/sMzp7NnHdcw+yll+n8MBERmXChSE6ALwGfBD4KtADfBB42xlxirR3KaMtCYM/TT9H7/BYAmq54e0baUFZZQ7K0EkjS/PN7lJxI6CXicZo3b2Lbnt08/uwzbN68iasqKrlp5hyIRmmLx+mur8GsWspVDVX48SAZ8SfwhK8xeJ7H/LmNzJ/byNDgMNuf2UHPrgNMS/jUR6Nw8CA//uKtPJ+fx+rVa1i57AoWLlhI2aSajLZbRETeGLI+OTHG5AO3AJ+31j4UlF0PHAXeDdybweZlvf7ublq+/z1umTOPLXn55JfWMRyf+J4TgN7L15Hc/BCzh4bYePddrLzhxoy0Q+RcnNi/j4PPbqbD7sZvaWHy4ACl0RjbDh/gqeOtABwvKaa5soSGpvksXTAT4u7YyenEJMvkF+Rx2eomWN1Ex6mX2bHxJRJHjrOtp5tDPd389Kd3c+Thh6ieOZvWZJL+mhpKZs+hbvFiZl66lPyi4kyHICIiOSbrkxOgCSgDHh0psNZ2GmO2AqtRcjKmZDLJ7sd+z7F7fsK0aJTeRIJJ77mBvgwlJgBl85fx/AtPsHSol/L1j/PbliOsuOkvKK2alLE2iSSTSXpOtdN59Chdx1vpbTvJqaEhmnu6aWk5QlfLET7iRSmPxagAKkaeGI0xmExgpk1n7jvXsnrxRUyrLMEfHnTL4+Hq1K2qruCqa64E4LLBYbbsO8KG7btpOHySiOfREI1CRwdseQ62PMfe5J20+Ul+V1ZKydRpNDRMZVppKZWxPEpra6mYUkdFXR35hUUZjkxERMIkDMlJY3B/eFT5UeCcL4Mci43vRck27jjI+n/6LvWD3eAD+MG12N2978MD0QqGvAjgsyTRy9yk24nx3BNc/WDIx/2U0BusYQmDXOIPnqlzet2AD/cl8+n0I/i+z5JInJUMUEOCyliMaZEIfYkEDyx8D0eHlrnLSp8jz4NoNEIikTz3kSlr/xYe/AxLo3FmNDdz6LOf4fb2Xl4uqyVWVMoV3hAz/Di+F8EfY7j7w/mTgvcQFsd7mJnoT/tSj+RX0++5cf8L4j3MeZW6j+ZV0R3JIxL1mDfYg0n0pq27Pq+Szoib3WhuvJdLEn2nl509RbPPk7EK2oK6s+N9NCX7zlqeakOklNZIPgAzEwMsS6Zvw0avmCNB3WnJIVYEdcc6Q+AZr4j9Xj6eB40kuCrRfXaFlH/mc14RezzX3il+nKv99G14ngJ24NpQQ4J30Hc6JG9UbNvI5wXfrbeSJNd5/a+If8RLfozn/Hx836eUJO+LDI409BV1d/kxnk7m4fs+Rfj8l9jg6W0kVcT32Tmc4Lc9gySGByiID3B7/WTyPI9CzyMWXGckP7htazvBnQeaAcjzPP7b0uUkfZ/j8QSteUV0lE2ha0YT8Tctx/digM+9vUD6t+u8xVM2iG+fuIzYhZ5zrwby3wptwK9OHqBo7yYmnWimZqCLhohPcTRKHREe27iB7rg7of+GaTN455R6kkBHcOtPJBj0fYZ9+GZ7N93RfKL5hawqymNR1Mf3PJJ4+J6Hj0fSi4Dn8WCknJ5oHngRFiT7uSg5evs98378LlbBy14Mz/MwiT7mJ/rS1n0ir4L2YJuck+hnYeLsbSf1k7Mxr4KTkQIAZib6WRzvSft2bY6Vcyzq6jYmBlga705b9/mCCg55BeD71CcGuTzelbbutlgpB6MuwatNDrFi+OW0dV+KlbAv6nqzqpPDrBruTFt3Z7SEP8Rc3YpknDXDHWnr7okWsyvmpp4u9eOsHUpfd1+smLbGudxx640U5IVhF0NEsk0YvjlGxg0MjiofAKrPZYWRiEdV1fjO8X/HXfey5uALXF4zOW2d721df/pHfO30WSytnZK27p3bn6ZtyGUSb26czuK6hrErenDXzi20DLgf7isbGpnb0AjEGEom2Zws5heLP0vblEsh/e/qhNqy9h7esvlvuKbzOaqiHnsO7iTh7wDgXTPnsOxV3sPvP/fY6fdwzfRZLH+V9/DuretPv4crGqezPN17CNy77UlaBgYAWNzQyPKGxrR1/237Rpr73A7NJXUNLG9MnyP/3x3PsK/H7aTMnTyFZTNmpa37211b2N/VCcCMSZO5bNactHXX79vGgY5TANRXTeKyOemnZ97U/CIH29sAqK6oZMmbLkpbd8uB3Rw6eRyAsrJyLjXpL9r30uE/cPi4u+hfQUkpTRcvGDs7AmxLM0eOtQDgFRaxaMHitOvd33qIIy2HAJicX8DCRZemrdtyooWWQwcAqIjlsaBpadq6xzvaOXVgHwD5kQhV0+rPWj6QSNCd9On2PbpK6vEWr8SrnE6iYjpfKMintW4ZQ0WjvnLS7ydeUL/pnODpuPMMXLwOLnZ/+skkNW0v0XBiC71r/gSvuwVePsyQf4yjQ3HKIh4l0QiR4Cr2I30nna3NvBwMcSufNoP5U+oZM0n14YfbNtE66LbJK6ZOY1n91LTN+8X2jRzsdwnJovoGLp+afpt84KWn2dfrvgxNbR3Lp89MW/eRnZvZ2+X+yTNqalk+c3bauk/sfpa9nW6nva56Estnv8o2uWcLe0+1A1BVWcXyuSZt3W17t7G37QQAxeUVLJ93cdq6u5q3s/eEG2JoSktZftGCtHWbD7zE3tajAMwoKmb5JYvS1m05vIu9Le74YH1BIcsXNqWt29ZiuX/D/Ty6bjUfeHv67VFEJB3Pz/DJmf8RY8x/Bn4FFFtr+1PKfwEUWGuvfZ2rbE4kkrO6utIfRT8Xuw6d4OE776ai5+XgiL/nuhoAPHcceXvVNOJRlw9O7z1FzWBPsMxzvSt4wc6dx+7qRoZj+Xh41PWeYtJAV7C+M+sceY3mqqkM5RXg4TGpr4Pq+CB+w5vIn7+SSFnluMXoAdFolEQikeaY9+vjJ5P0H9xB66kT9HW2MTzQS2PnMaoHut01H8Z4ka2VDcQjrjdkZu8pagfTH6p+oaKewZH3u6+TuoH0RzJfrKhjIJqH53k09HUytf9Vjk6WT6E35o6Q1vd3MX3g7Lop/VrY8il05xUCUDvQzfS+UUccU2ZD+kNpLV0FLhefNNDDjL5To175TN39pTV0FroEu3Kwl1k9bWctT314qKSGjqIyAMrj/czsPPGKJMILClpKqmkvKgfPo2Son9ldx89qo5+y6tbiatqKK8CDouFBZr987Kx1nTnQ73GyuJKTxZV4nkdBfIjZnUfTxnaquIITJS4JyEvGmX3qyJjvl4dHR1E5J0rdsMCon2BO+2E8z8P3/bNjjETpKZtEZ810YvmFxPIKqO7rxCssxiuuIFYzlUhp5Zn6Wfq16Hovg20wS9sIgAfJ4WGSp46R7DyBP9ALAz20FVcyNDxEfGiAyvYWKvo6IJnASyYhmQA/iZdM4pFkZ9kUBrwovp9kal8n9QOjehdS3oAd5XX0x1wvXv1/sP3uKq+lJ9h+pwx0M703fS/A7tLJdI1sv4M9zHrFNnnGnpIaOvKD7Xeol7m97Wnr7iutoS2/GHyoGupjXm9b2rrNxdWcLCgFoGK4n4t6Tqate7CoitZCt62XxQeZ3308bd3DhRUcLXKDFIvjQyzsbk1bt6WwnCNFlQAUJoZZ3HUsbd3WwjISc+dz28euHffJH8rLi4hGI/uB9FmiiIReGHpORoZzNQD7UsobgBfOdaXxcT734uLptaz8zlfo6Ogd93Wfn9HDG85dLBahqqqEjo6B8YvRzAHS9xCM9pHxedUxnYkv2/6H4yPX44PzjXH8tpUL5YJsgxdUTXB77XL9c6r4RERe3fieeHFhvAB0AWtGCowxlcAS4MnMNElERERERMZb1vecWGsHjTHfAf6nMeYkcAD4Fq5H5b5Mtk1ERERERMZP1icngdtwbf0BUAQ8AazTBRhFRERERHJHKJITa20CuDW4iYiIiIhIDgrDOSciIiIiIvIGoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkazg+b6f6TZMtH7f9wuTyfGPOxqNkEgkx3292STXY1R84ZfrMeZ6fJD7MSq+cxOJeHieNwAUjfvKRSRrvBGTk06gADiW4XaIiIjIa1cPDAKVGW6HiFxAb8TkREREREREspDOORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCvEMt2AXGCMiQBfBj4GVAEbgJuttXsz2rBxYIz5InC1tXZNSlkTcAdwGdAO/IO19n9lpIHnwBhTDXwDuAYoB7YDX7DWbgiWNxHi+ACMMbXA3wF/BBQB64HPWWt3BsubCHmMI4wx84CtwKestT8KypoIcXzGmBnAgTEWfdxa+4OwxzfCGPNh4AvAbGAf8BVr7S+DZU2ENEZjzBrgsTSL91trZ4c5PgBjTB7wFeBDuN+9bcCt1tqNwfImQhyfiGSOek7Gx5eATwIfB1YAPvCwMSY/o606T8aY/w58dVTZJOC3wB7cj86XgduNMR+d8Aaeu3uBK4A/BZbhdmwfMcZclCPxATwAzAHegYuxH/idMaY4h2Ic2UG6ByhJKcuF+BYBA0ADUJ9yuydH4sMY80HgLuCfgQW47fJeY8yKHIhxI2f/3+qBtwNx4Bs5EB/AF4EbcQflLgV24373GnIkPhHJEPWcnKcgAbkF+Ly19qGg7HrgKPBu3A9uqBhjpgI/AFYBdtTiTwCDwE3W2jiwyxjzJuBW4IcT2tBzYIyZC7wNuDLlCN+ncTvxH8DtxIc2Pji9c74f+Jq1dkdQdjvuyOYlwNWEPMYU/wPoHlUW6s9oYCFgrbXHRi8IDhqEOj5jjAfcDnzbWntHUHy7MeYqYE1wC22M1tohoHXk7yCJ/jbwr0HP118R4vgC1wI/s9Y+AmCMuQWXqKwA5hH++EQkQ9Rzcv6agDLg0ZECa20n7mj86sw06bwtATpwR2+fGbVsFfBE8IMz4lHABEOJsl0b8E5gy0iBtdYHPKCa8MeHtbbdWvv+lMRkCvBZ4AiwkxyIEcAYsxr4c+CGUYtyIb5FuP/VWHIhPgPMBH6WWmitXWet/RtyI8ZUfwFMAz4T/J0L8bUD1xhjZhpjopw5KLCN3IhPRDJEycn5awzuD48qPwpMn+C2jAtr7W+stR+w1jaPsbiRsWOFEMRrre201j5krR0cKTPGvBc3BOrfCXl8oxljvo87gvte4M+stb3kQIzGmErgJ8B/tdaOjiX08eF6TmqNMU8aY44bYzYYY9YFy3IhvnnBfYkx5t+NMSeMMc8YY94VlOdCjAAYYwqBvwb+PqUnLBfi+zRumNp+XFLyDeB91tp95EZ8IpIhSk7OX3FwPziqfAAonOC2TIRixo4VQhivMeZK3Lj3X1trf0OOxQf8PW7M90+B+40xS8iNGL8LPG2t/dkYy0IdXzBUdB5usoYvAn8MPIsbz7+WkMcXKA/uf4zrPXk78Ajw6xyKccSHcJNS/ENKWS7EdzGuh/063Dl8PwR+bIxZRG7EJyIZonNOzl9/cF+Q8hjcF3DvxDfnguvHxZpq5McmVPEaY67F7RhtAt4fFOdMfAAps3N9AjcW/FOEPEZjzIdww0YWpqkS6vistUNBz1A8pYdvizHmYtzwvFDHFxgK7r9lrb07eLwtSJ7/ktyIccSHceeatKeUhTq+YDa5e4C11tong+LnjDHzceeBhTo+Ecks9Zycv5Gu64ZR5Q24Mf655jBjxwrQMsFtOWfGmE8B9wEPAX9srR1JLEMfnzGm1hjz/mAcOADW2iTuHIaphD/GG4EpwGFjTI8xpico/54xZgfhjw9rbW/q0MPAi5wZLhPq+Djz3fjiqPIdwCxyI0aMMZOBlbxyYpSwx3c5kIfr0Uu1CdfrF/b4RCSDlJycvxeALtzsMsDp8fBLgCfHfkqoPQGsSt3xBdbiZhY6kaE2vS7GmJuAfwS+A1w/aicw9PHhdgJ+Brx5pCCYLWgJLkEJe4wfxA0paUq5AdyGGwIV6viMMYuCpOuqUYsuw+28hzq+wPO4WdauGFW+ENhLbsQILjHxcdcZShX2+EYOyi0aVb4Q+APhj09EMsjzfT/TbQg9Y8zXcbMG3Yi7cNq3cDPRLAymlAwtY8yPgJkjF2EMZlrZjbuOxjdxR9C+C3wyZXhG1jLugn0vAQ8CN49aPDIUIbTxwelpWh/GfQY/jhsX/tfAOtyO/AAhj3E0Y4wPfNRa+6Mc+IxGcNfJKAFuws0w9wnc53UZcJwQxzfCuAu8fh733bkZd92hr+J2YneSGzHeBnzQWjtvVHkufEYfBybjPpdHcMPX/gq4CmgmxPGJSGap52R83Ab8C+7aIE/hZjBZF/bEZCzBUa91uKlAt+IurvW5EP3gvAc3HOE/AcdG3e7IgfhGpka+Hjd15//B7fhVA6ustYdyIcZXE/b4giF478L9336J62VYDrzNWvti2OMbYa39Gu4K41/HJSPvBd5trX08V2IE6nBT7p4l7PEFn9Frcd8xP8JNzf5W3Dkom8Ien4hklnpOREREREQkK6jnREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5EJCsFF5MUERGRNxAlJyKSdYwxfwLcHTxeY4zxjTFrMtsqERERudBimW6AiMgY/jLl8VZgBe4q4iIiIpLDlJyISFaz1nYBmzLdDhEREbnwPN/3M90GEZHTjDGPA29OKXoL8BjwFmvt48aYrwB/CnwB+BowF9gN3AT4wB3AImAf8Glr7e9T1r0A+FtgdVD0e+AWa23zBQxJREREXiOdcyIi2eZm4PngtgIoH6PONOB/A18H3gdUA78Cfg7ciUteIsC9xpgiAGPMPGAjUAt8BPgzYDbwlDGm9sKFIyIiIq+VkhMRySrW2p1AF9Blrd0UPB6tGLjZWvtza+0DwD8BDcDt1tofWGt/DXwJqAFM8JwvA/3A1dba+6y1v8T1yhQBn7ugQYmIiMhronNORCSsNqY8bg3uU89NaQ/uK4P7tbjhYX3GmJHvvi7gSeBtF6iNIiIi8jooORGRUApOlB+t71WeMgm4PriNdnJcGiUiIiLnRcmJiLxRdAK/A/5ujGXxiW2KiIiIjEXJiYhkowQQHed1rgfmA9ustXE4fRX6nwJ7gW3j/HoiIiLyOik5EZFs1AmsMMa8FagYp3V+FXgaeNAY811gAPhz4DrgPeP0GiIiInIeNFuXiGSj7wDDwMO42bTOm7V2O7AKdy2Un+CmHq4HrrPW3jceryEiIiLnRxdhFBERERGRrKCeExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREssL/B8s22P/aS/xIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50 : {'width': 5}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constraining Peaks With Known Parameters\n", + "If you have a chromatogram with two *completely* overlapping peaks, it can be \n", + "very, very difficult to deconvolve the mixture. However, if you happen to know\n", + "the parameters of one of the constituents (say, from characterization of \n", + "an isolated aqueous mixture of that compound), you can apply more stringent \n", + "bounds to that particular peak. Say for example we have a mixture of two compounds \n", + "with retention times of `10` and `10.6` and you know that the first peak has \n", + "an amplitude of `100` units. If you were to only supply the locations of the \n", + "known peaks, you would underestimate the contribution from the first peak." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1365.51it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inferred amplitude for peak 1 is 94.971. Known value is 100.000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9bElEQVR4nOzdd3gUVfcH8O/M9vTeexs6CNh4QUBQwYLltWJ5FSsWREVBQUEUUX4ICIrSQUBUQBF7Q0UUFUEUSDKk996zfcrvj01iEhKyWTZtcz7Pw8Nmp527gd09c+89l5FlGYQQQgghhBDS09ieDoAQQgghhBBCAEpOCCGEEEIIIb0EJSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFeg5IQQQgghhBDSK1ByQgghhBBCCOkVKDkhhBBCCCGE9ArKng6gB1QD0AAo6uE4CCGEEGK/UABmAD49HAchpAsx/XCFeKMsy1pJcn67WZZBV5y3N3H1Nrp6+wDXbyO1r+9z9Ta6evuArmkjyzJgGMYEQOfUExNCepX+2HNSJElybGWl3qknVSpZ+Pq6o7bWAEGQnHru3sLV2+jq7QNcv43Uvr7P1dvo6u0Duq6Nfn7uUCgYGvVAiIujOSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFfo8TknHMdFA8huY9P9PM9v5DhuBIA3AIwGUAFgNc/zy7svQkIIIYQQQkh36PHkBMAwACYAcQCal/ao4TjOH8C3APYBeAjARQDWchxXwfP8lu4OlBBCCCGu5+jRo56wlSqmESWEOJcEoGjUqFF19h7QG5KToQB4nufPqMDBcdxs2Gqaz+R5XgCQwnFcIoC5ACg5IYQQQojDjh49ygJ4jmHYuxiGUQFgejomQlyMLMuy9ejRo+8CeGXUqFEdlvDrDcnJMADJ7WwbB+BgQ2LS6ACAZzmOC+J5vrTLoyOEEEKIq3pOoVDO9PLytajVWgPDMK69AA0h3UyWZcZiMbnV1lbNFEUBAF7u6JjekJwMBVDEcdzPAJIApAF4ief5rwFEADjRav/Chr+jADicnCiVzu25VSjYFn+7Ildvo6u3D3D9NlL7+j5Xb6Ortw/oO208evSoF8Owd3l5+Vo8PX0rejoeQlyVRqMzAvCvrq646+jRo290NMSrR5MTjuPUsCUkegBPA6gHcAeALzmOuwyAG2zDupozNfytdfS6LMvA19fd0cPPysvL9ReudfU2unr7ANdvI7Wv73P1Nrp6+4A+0cYQhmFUarXW0NOBEOLqGnom3WQZoQB6b3LC87yF4zgfAALP841JyFGO4wYCmAPACEDT6rDGpMThJd4lSUZtrXPfixQKFl5eOtTWGiGKrrnqr6u30dXbB7h+G6l9fZ+rt9HV2wd0XRu9vHTO7o1hATA0lIuQrtfw/4yBHUUnenxYF8/zbSUZJwBMAZAHIKzVtsafC87luoLQNR8Koih12bl7C1dvo6u3D3D9NlL7+j5Xb6Ortw/oH20khDhfjw4I5ThuGMdx9RzHjW21aTSAUwAOAhjHcZyi2bZJsFX3osnwhBBCCCGEuJCe7jk52fDnbY7jZgIoB/AAgIsBnA+gBMAzADZxHLcMwAUAZsO25gkhhBBCCOllVq9eEXbgwDf++/Z91bqoUa+Umpqszc/P10yefHlNT8dCerjnhOd5CcA1AP4AsBvAXwAuBHAZz/MnGnpHrgDAATgGYCGAp3me39ZDIRNCCCGEEBcyb95TicnJJ7umUhLptJ7uOQHP82UA7j3L9iOw9aQQQki7jAIw7j3bZ8vh2wCVHUupGQVg3IeeAICfb66DrsffEQkhhHQ/qonQm9BHMSGEEEJIA0mSYDAYemxkiZubm8Synbv82LGjR/33v7cU/fjj9/5Wq5V94423U93c3KQ1a1ZG/PPPX156vV7h7e0tTJw4ueLxx+cUpKQk6x588O5Ba9duTBk2bIQBAGbPfjj+5Ml/vL766se/lEolZFnGVVdNHv6//80ouOWW28tbX7O8vEy5YsWyiGPHjniLosgkJQ2of/LJuXnx8QlNS0CsX782+LPP9gXX1dUpExIS9fPmvZDduL2tmCMiIi3r1r0V+tNPB/yrqqpU4eHhpjvvvKdwypSrqgFg9+73/Xft2h56zz33FWzatD6ipqZaNXDg4LoFC17M3rp1U8iPP37nr1Qq5WnTbih56KFHiwHAbDYzb765MuzQoYO+lZUVaq1WJw0fPqJm3rznc/38/MXrrpsytLy8XP3hh++Fnjhx3HPDhnf5qqpKxZtvrgo/cuQ3n7q6OmVsbLz+gQceLrjoojH1jW3bt2+v386d20LLyso0UVFRxokTL6vYtOmdyEOH/jzqyO+EZVmH2ueKKDkhhBBCCIEtMZk+/b8DUlNTemyIz4ABg+rfe28P39kE5ZtvvghcuvT1NFEUmMTEJPP06f8d5O3tY33ttVWnPT09xZ9+OuCzYcPbkYMGDdFfccWV1QEBAZbDh3/xGjZshEEURSQnn/Q0m83sX38ddT///Av1x48fc6urq1Veeull1a2vJQgCHn98ZhLAyIsWvZLh7+8vrFmzMuKppx5L2rPn0xMAUF5erj558h/PpUtXpFksZuaVV16MfeWVF2M2bdrOtxfz7NkPx2dmZrg99tgTubGx8aavvvrcb8mSRfEsy6ZffvnUGgCoqChX79//cdDLLy9LNxj07PPPz028557bB0+adFn52rWbUr74Yr//jh1bw8ePn1g9cOBg0+uvvxrx+++HfebOnZ8dGRll5nlet3z5KzHr1r0V9uyzL+Rt3Lg9ZcaM2wf95z/jKx94YGaRKIqYNeuhJKvVysyduyArMDDI+sEH7wXNm/dk0qpVa1NHjBhp+O67r71XrHgt9q67ZuRPmDCp+vfff/XauPGdyHP9nTjSvk79I+kjKDkhhBBCCGnSN9c9GT/+0ooRI0YaAMBoNDKXXnpZxRVXTK2KjIy2AEBMzL2lu3e/H5Keflp3xRVXVo8efWH1sWNHvAAUHz9+zF2hUMpJSQPqjxz53fP88y/U//zzTz6JiVx9YGCQ0Ppav/xy0CsnJ1u3Zct7JxMTk8wAMH/+ouytWzeGVFZWKAFAoVDIL730Wpa3t7cIAFOnXl22Y8fW8PZiPn06Vfvnn3/4LFq0JH3y5CtqAODRR2cXZWamu+3cuS20MTkRRZF58sm5OY1fzIcOHV57+nSqx9NPP5fPMAweeOCRog8/3BWalnZaN3DgYNPAgYP0EydOqrr44rH1ABAZGW359tuvarOzM3UAEBAQKLAsK+t0OsnX1088cOBbr6ysTLcNG7adarzGggUv5p4+neq+c+e2kBEjRma+//7OkIsuGlN5330PlQBAQkJiWX5+nubTT/cFn8vvxJH2ncu/md6KkhNCiEtgAIwKFqFSKsDYMd+k8ZiRDZ+7dh5CCHFhLMvivff28H1tWBcARERENg2n0ul08p133lP6xRef+u7Ysc29sLBAk5OT5VZdXaUSRYkBgHHjJtQsXPhcoNFoZH7//bDn4MFD6sLDI01//33MC0DxkSO/e19yyYTKtq6VlnZa5+bmJjYmJgAQHBwizJ27IL/xZ29vb6ExMQEAT08v0WKxtGhY85h5PlUHAKNHX1jffJ+hQ0fUvfvupojmzyUk/HtdjUYjBQYGm5mGN36tVisDgNlsZgHg+utvqvz55588V6x4LbygIF+Tn5+nKyws0A4YMLDFdRqlp6fpdDo3sfkXf4ZhMGjQkPpjx/70AoDs7Ey3sWMvqWp+3PDh59W3Tk46+ztxpH2uiJITQohL0CqBTVeY4OvrjqoqQDjjXl/bx6yfbOz64AghfQbLsvDw8Ohzq0dqNNqmmA0GA/vgg3dzJpOJHTdufNXll0+tGD58RO6jjz4woHGfiy/+T51KpZR+++0Xz7/+Ouo1ceKkyujoGPP+/R+F5OXlqLOzM90WLVqS2da1FAqlzHRwF4hl2Q57oJrH3N6kdEkSGYVC0WKjSqVq8TPLth/L4sXPR/3yy0G/CRMmVVx00X9qBgwYVLRz57aQiooydVv7y3LbTZMkCUqlUrZdj5VlueMOts7+Thxpnyui5IQQQgghxIX89NMBr6ysTLePPvr876CgYAEAqqoqFTU1NcrGJECtVsvDh59Xe/Dgjz5paac95s17PiciItLCMIy8du2asNDQMFPzye3NxcXFm/R6vSIzM0MTFxdvBoCKinLlbbfdMOTll5elORJzUtIAIwD8+efvHo3DugDgxIm/PcLDIx26i1RZWaH45psvA+fOnZ95zTXXN/V05OfnarVaXbPE6N8v/wkJSUaDwaBISTmlbd57kpx8yiMiIsoEANHRMcbk5FMeAJoWBD916sRZ5ynZ8zshNi7bJUQIIYQQ0h8FB4dYAGD//o/98/Jy1L//fthjzpxZCaIoMhaLtemb+JgxY6t/+OH7AC8vTyE+PsGs0WhkjhtYf+jQT/4XXTSmur3zjxs3vjY2Nt6wePGC2KNHj7inpiZrFy2aH+Pt7WMdPvw8gyMxc9xA04gRI2tWr14R9d13X3unp6dp3nxzVejRo0d8br75thJHzunl5S3qdG7ioUMHfTIzMzTJySd1Cxc+F52dneVmtf77Omi1WrGgIF9TWlqiHD9+Yk1kZLRx8eLn43799WfP06dTtS+99EJUfn6u7tZbp5cAwPTpdxX9/vuvvps2rQvOzMzQ7Nnzgf/nn38adLZY7P2dEOo5IYS4CKMATNvrBoYFPr/O/nVOrvnEdrPr02v1tM4JIcQljBw52jBjxgN5+/btDd65c1u4r6+fZdy4CZUBAYEWnv+3EtnEiZNrVq1azgwZMry28bnzzhtVe+LE317jx19a3d75WZbFsmUr01esWBY5b95TiQAwePCQuhUr1qRpNBqHuwFefXVF5qpV/xe+YsWyGIPBoIiMjDQ+99yijKlTr2o3lrNRKpVYsODFzHfeWRNx7713DHZ39xCGDBlWd8cddxfs2fN+qF6vZ93d3aVrr/1v6ebN6yIef/xh3a5de5NXr3779IoVyyJefHFBvNUqMLGxcYZXX11xetSoC/QAMHHi5NrS0pKc99/fGbJ9+5bw2Ng4wxVXTC378svP2k1Q7P2dEICxZ8yci8kURSm2slLv1JMqlWzDWHc9BKHPDVW1i6u30dXbB7h2G5svqHj4Nj1UTMft62uLMLry76+Rq7fR1dsHdF0b/fzcoVCwWQDinHG+o0ePDmBZxVdBQeH1arXWJaseka5x+PAhj4CAIGvzggBvv70m5Jtvvgz4+OMvTvZkbL2VxWLSlpYWeEiSOGXUqFGpZ9u3l38UE0IIIYQQ0nv89tuv3j/+eMDvmWeey46OjjEnJ5/S7d//cfDUqVeX9XRsroCSE0IIIYQQQuz08MOPFxqNRvbVV1+OraurVfr5+VuuvfaGkvvvn+myq7Z3J0pOCCGEEEIIsZNGo5Gfe25hHoC8no7FFVG1LkIIIYQQQkivQMkJIYQQQgghpFegYV2EEJfAABjkL0IWrPht5XKoJSu4626AT0Li2Y/xE5seE0IIIaRnUXJCCHEJWiXwdP1WsJ9/BhVr6xQuXPoyCqdciUE33dLuMe9OcWi9MEIIIYR0ARrWRQhxCfn5eTj6/ntQsSwyLGakmoxQMgyYr75AwZE/ejo8QgghhNiBkhNCSJ8nyzIWLnwWq9JSsUcWMHnjFkxatwknBCsUDIPcDe9AFoSeDpMQQgghHaDkhBDS5/388084+vdJKB/6Hb9esxdQu8Hd3QNDn5yDWsGKytpa/PXLwTOOMwnANZ+445pP3GGi3IUQ0keNHTt61O7d7/vbu/+PP37vdf31Vw6ZMOGika+9tiSiK2Ozx+rVK8Kuu27KUGeeszOvSX5+rnr//o99nXl94jiac0II6fP+3LIRXko1DF4RKDYAkM0AAyQNOw/Lo6Ox45OPMHb3Bxg5/tIWx8kAivRs02NCCOmL9u797G8vL2/R3v03bHg7Ijg4xPzGG2tPe3h42n1cX9KZ1+TFF5+PCQoKskybdn1VV8dFOkY9J4SQPu30rz/jaoUSK4YMa3P7zfc+CJZlcejQT8jNzenm6AghpOsFB4cIOp3O7nsser1eMWjQYH1UVIzFz8/fJZOTzr0mMhVs7EUoOSGE9Gnpe3cDAAo1mja3R0VF46KLxsBNocAvu3Z0Z2iEENItmg9hmj//6Zhnn30qdtmyJRFTp146/NJLx5w3e/bD8SUlxcrGfcvLy9QffrgrdOzY0aNyc7PVsixj/fq1wddff+XQSy8dc9706f8d9PHHe/waz//rrz97jh07etT69WuDr7hiwojbb79pYFZWpmbs2NGj3nrrjdArr5w0/Lrrpgytrq5W1NTUKBYufC566tSJwy+7bNyIBx64O+n48WNuzePdtWt7wA03XDVk4sSLR86e/XB8fX2d4mztu//+u7hVq5aHLVz4XPTkyWPPmzp14vC33nojNC3ttObee+/kJk68eORtt/130F9/HW26TuNrUl1drZg27fJhs2Y9lNC47eDBHz3HjTt/1BdffOpz//13cSkpyR4//fSDf+PQsuuumzJ09eoVYa1jmD//6Zj2Xg9RFFFYWKB6+unZcZdddsmIKVMmDJ8166GEjIz0tj+cSLsoOSGE9FlWiwXBlZUAAL9LJrS73w0TJmH98FEYwvMQDFQ6mBBydqLRyLb3RzKbme7Y91wcPvyLb21trfKNN9byL7zwUkZKSrLnm2+uCgdsw538/Pys11xzfcnevZ/9HR4eaVm5cln455/vD3rkkcdzN23akXz99TeWvPXWqujt27cGNj/v778f9lm7dmPKvHnPZysUrAwAP/74vd/KlW/yixa9kuHt7S3Onv1wYmFhgebll5elr127MXXAgIH62bMfHnDixN86ANi//2Pfd955M+r6628s2bDh3VMDBw7Wf/nlZ0EdtWnfvj0hQUHBlo0bt5+6+uprS3ft2h42d+4TibfcMr34rbc2pKjVKmnFiteiWx/n4+MjPv30/Ky//jrq/cknH/lVVlYoli1bEjtp0uXlV155TfWyZavSExOT9Bdf/J+qjRu3p3TmdW7+ephMJvaxxx7kJEnEypVv8StXvsV7eXkLDz9878DCwgJVZ87b39GcE0JIn/XPF5/BU6FEvShi2NXXAJ+0vd+Yq6/Fsc/2I0itQcoXn2LojW2ve0IIIQCQ8djM89rbpkviaiKfeTa98efMJ2cNl63WNm/2amJi66MXLOQbf86a+9RQyWBo87uXOizcELN4Sae+HLcbo04nLlz4co5KpZKTkgaYDh/+peLo0SPegG24E8uysk6nk4KDQwS9Xs9++um+4Dlzns2aPPmKGgCIjY0zFxUVavbufT/kzjvvLms87y23TC+Oj08wA0BubrYaAK66aloZxw00AcDPP//kmZbGu+/b9+XfAQGBAgA8+eTcguTkUx7vv78jeOjQ4dkfffRh8JgxY6vuvPOeMgBISEgsTkk55Z6dnemGs4iMjDI+8sjjRQBwzz0PlOzatSNs3LgJlZdfPrUGAC6/fGrFhg3vRLZ17Lhx4+umTr2m9J133oz8/vtv/Nzd3cW5cxfkAoCvr5+oVCpltVotNcZsr+avxwcf7Ayoq6tVvvrqiiyVSiUDwOLFS7NvuOGqoXv2fBA4a9aThZ05d39GyQkhpM8qPvgjPAGUenpioEbb7n5ubm4o9fJGkMmE8t9/Ayg5IYS4sODgEHPjF2QAcHf3EAVBaLNn5vTpVK3VamVef/3VmBUrXotpfF4UJUYQrIzRaGw6LiYm1tz6+KioaFPj49TUZDcAuOWW61pU3hIEgbFaLQwA5OXl6iZMmFTZfPugQUPqO0pOwsIimq7j5uYmAUB4eHhTPGq1RhIEa7u9T08++Uz+sWNHvI8d+9P77bc3J3dmjk57mr8ep0/zbkajUTFlyoQRzfexWq1sXl5O+x9Q5AyUnBBC+iRJkuBXWQEoVfC78GIwAOK8JSgULNDGx5Pv+RcAPx+ET0UFZEkCw7INx9jmgtJsSEJIo/g1b//V3jaGZVt8qY1bsfpve/eNfe31E/buey6aJyb/avv0kiQxAPDccwsz4+ISTK23azSapgO1Wq3UertWq23aLkkSo9PpxHXrtp7RA6RWqyUAYBgGcqtQlEplh21XKhVn7MMw9s9OKCkpVlVXV6kUCoV8+PAhr6FDhxnPfkTLywmCeMbHRPPXQ5IkhIaGmV59dUV66/3c3d1dsuhAV6E5J4SQPinjr2PwVShhlSQMnXYdtErgo2uN+O5OQNfGbZfzrrkW9YIAd5ZF3m+/AgC0SuDDqwz48CoDtHSrhhDSQKHTSe39YZt9We/KfbtLQkKSSaFQyEVFheq4uHhz45+DB3/w3r59czDL2v9VMT4+0Wg0GhUWi5lpfq6tWzeGHDjwrQ8AREfHGE6e/Nuj+XE8n+Lu3Fa1JEkSFi9eEBsdHWt4+OFZue+99274yZMndP/uwbT8PSmUcn29XtH8+NLSEvXZrhEXF28sLy9Xe3l5iY3tjoqKNr/55qrwP/447OnsNrkySk4IIX3SET4ZM47/iY9UCug8O37f9/HzR57C9paX/dOPXRwdIYT0Dd7e3uJll00p2759S/hHH33ol52dpd6z5wP/rVs3Rfj6+nVqDsbEiZNqoqNjjAsXPhd/6NBBz8zMDM2yZUsifvjhu4DY2HgTANx2213Ff/zxm++GDW8HZ2Ska7Zt2xT0+++Hu3QBxPXr14ZkZWW5zZ+/KPuWW24vHzhwcN3LL78Qa24oQqDT6aTS0hJNQUG+CgAGDhxUf+jQT36HD//ikZ6eplm8+Ploo9Fw1opi06bdUOnh4S7OnftE/NGjf7inpfHa55+fG3v8+FHvxESug14a0hwlJ4SQPun33w/DIIqIuOg/dh/DRMcAAOTc7K4JihBC+qB5857Pu/baG0refXdL+N133zZk585tobfeenvhY491bhK3QqHA6tXvnE5MTNIvWbIw7r777hz0zz/HPRcseDFj3LjxdQAwefLlNc8881zmN998GXDvvXcOPnTooM+0adeXdE3LgBMn/tG9//6OsDvvvLsgLi7eDADPPvt8Tnl5mWblymXhADBt2g1leXm52hkzbh8siiIeffSJgqQkrn7+/GcSH3vswQFeXl7CmDHjzrpAo7e3t7hmzfpUb28fYd68OYkzZ947sLS0RP3KK8vTBgwYdMZwOdI+Rm498M/1ZYqiFFtZqXfqSZVKFr6+7qiq0kMQzhiS6RJcvY2u3j7AddooCALGj78Qer0eu3btxcCBg2ESgLu+dodCweLdKXqocGb7/vzhe7y3ZBEKlUrs+vIAzCKDu762zcF894reP7TLVX5/Z+PqbXT19gFd10Y/P3coFGwWgDhnnO/o0aMDWFbxVVBQeL1araUvj4R0IYvFpC0tLfCQJHHKqFGjUs+2by//KCaEkDOl/HQAcyNjcNJkAMcNBGCbuphZ09AZLKPNGe5Dx4zFodoaWCwW5ORkITgiDpk1iqZDCCGEENKzaFgXIaTPKfzjdwzw8MT5wWHozGRNjUaDYcNGAAD+/POPLoqOEEIIIY6i5IQQ0ucIuTm2B+HhnT52zPDzMDUoBNaDPzk5KkIIIYScKxrWRQjpU2RZho/BCKhUCGzoBemMoXEJGBsVA1O9HrLkmmP+CSGEkL6Kek4IIX1KUUY6AlUqSLKMxEvGd/p4buwlMIkitCyLcp7vgggJIYQQ4ihKTgghfUr6z7bhWOWyBHc//04f7+XtjULJtlhv7h+HnRobIYQQQs4NJSeEkD6lNjUZAKD39mnxPAMg1F1ChCfarNTVnMHHtt5XfVoaQt0lhLpLHR1CCCGEkG5Ac04IIX1KSWkJQiTALT6hxfNaJfDlf40N6ysAwlnWNXZPSAT+Pg7P8iJ8eq1z1zwihBBCiOOo54QQ0mcIgoD1ySdx399HETH1SofPE3XhRQAAf1mGYDQ6KzxCCCGEnCPqOSGE9Bm5uTkwm83Q6dwQFeP4ItEJ543CX1YrvJRKFJ78B1HnX+jEKAkhfR3DQMEwTI/cwJVlWZJliD1xbUJ6A0pOCCF9Bt8w3yQxMQkKhaLFNpMAPPC1FkoFsH7y2d/cVCoVtlvN+D0lBWFZI+FV4Yb1kw3Q0jsiIf0ew0AhMUyowST0yDuCm1YpsJCLeluCsnr1irADB77x37fvqxOdPTY9PU3zwAN3D9q6deepqKgYS1fER1wHfRQTQvoM6eeDWDv0POSHhJ6xTQaQXGFLWGQZHU6K90/iYEnLQL7gB1TajieEEIZhWINJUP52skgymIRuXQzJTatkLxoSqvTUKllZlntVcuKo5OSTunnznkqwWMw0lYDYhZITQkifwZSXIUCjgSUo6JzPxXEDgM+/cEJUhBBXZDAJkt5o7YmVWl3mS/zatatD9ux5PzQ8PMJUWVmh7ul4SN/gMv8BCCGuTZZl+FisAICAwUPP+XxcbDzuiog+5/MQQkhPGzt29KidO7cFzphxBzdx4sUjb731+kHffPOld/N9vvvua+877rhp4MSJF4+84YarhqxatTzMbDY39TGnpiZrZ89+OP6KKyaMGD/+wpE33HDVkC1bNrZ7J2jr1o1BEyZcNPLrr7/waW+fo0f/8H766eeyZs58LN8pDSX9AiUnhJA+oTQvFwEqFQAg9oJzn8CeMHAwLvELOOfzEEJIb7Bly4aIiRMnVa5fv+3U6NEX1rz00gsJR4787g4AP/zwndeSJYvip069unzz5p2nHn/8qdxDh37ymz//6VgAMBgM7FNPzUrSanXSmjXvpG7Z8t6psWMvqdq06Z3IEyf+0bW+1o4dWwO3bdsUsWDB4owrrriyur2YNm3awU+denW72wlpCw3rIoT0CTlHfocPgCpRRJL/uScVXt7eKJFcYkg3IYRg4sTJ5XfeeU8ZAMyZM6/g5Mm/PXfv3hV0/vkXZu3YsTV00qTLy2+//X9lABAbG2dWKpU5c+c+mZSbm612c3OXpk27vvS22+4s9fLykgDg0UefKPzoo90haWmpuqFDhzXVXN+1a0fA5s3rIxYufDl9woRJtT3TWuLKKDkhhPQJFakp8AFQq9M67Zz1bu5OOxchhPSkkSNH1zX/meMG6o8fP+YFAFlZWW4ZGenuP/zwnX/jdrmhCkh6epr20ksvq50+/a7Szz77xC8jI82toCBfk5OT5QYAoig1Df2qqqpSvf326miFQiFHRESZu6NdpP+h5IQQ0icIhQUAADYouN19fDUyGLaDMl3NKEND4WmpgcQw6LC8FyGE9GJKpbJF0UFZlsGyCtn2WGKuu+7G4mnTrq9ofVxwcIi1tLRE+cADdw/09PQSLrpoTPWoURfUDhs2XH/LLdcNa74vw7BYvPiVtM2b14ctWbIodtOm7aksSzMEiHNRckII6ROyqqshCwKCk7g2t+uUwA+3GODr646qKkAQOj5ncHwU1n0/A1WSBN3/3nVyxIQQ0n2Sk0+6X3bZlJrGn1NTkz3i4+MNABAREWXMy8vRxsXFN/V2HD58yOODD94LfvbZF3I+++wT//r6OuXu3ftPqlQqueF8DXNN/s15fHy8rePHT6wNCgqyPPTQjEFbtmwIvvfeB0u6qYmkn6B0lxDS6wmCgO2nU/ACn4yI8ROddt6woSMAAN4MA9Fkctp5CSGku3366b7gffv2+qWnp2lee21JRE5Otu622+4qAYBbb729+I8/fvNdvXpFWHp6mubQoYOey5a9EqvX1yuDg0OE4OAQi9lsZj/77BPf/Pxc9U8/HfB68cUFcQBgsVjO+K44cOBg0/XX31S8c+e2sIyMdE13t5W4Nuo5IYT0egUF+bBardBqtQgNDXPaeSO5AThutUKQJRSnn0b4kGEdH0QI6RfctMpuv4F7Lte8/PKpZXv2vB+8atVyXXR0tGHp0uVpgwcPMQLAVVdNq5JlOXPXru2hH330YYibm7s4evQF1U888Ux+4/bU1JTiDRvejlyzZgUbEBBoueKKK8sPH/7FJyXllDuAstbXmznzsaJffjnou2TJopiNG9/laXgXcRZKTgghvV7W6VSoGAYxMXFo7wPQJACPf6+FSgmsGm/fm5vIqPDEyMUwGg34v8oahDs3bEJIHyTLsuSmVQoXDQlVogdGmLhplYIsy51e/DE2Nt74zDPz211P5Oqrr626+uprq9raxjAM5syZVzBnzryC5s83H7I1a9aThbNmPVnY+LNGo5F3795/yp7YxowZV3fo0J9H7dmXEEpOCCG9nvGP37F95AVI051Rbr+JDOBoicL2WIZd89tlAKbAEWAAZGW/BVwy1hnhEkL6MFmGyEIu8uyBnhPb9WVJlkF1zkm/RckJIaTXE4qLwTIMdH5+XXaNrKysLjs3IaRvkWWIsixTgkBID6DkhBDS62nq6wCFEh7R0V12jTF5eV12bkII6Uo0ZIq4Epq9RAjp1SRJgm/DamFBAwd32XXCGBaimdYUI4QQQnoSJSeEkF6tKDMD3koVACBi2Iguuw7LMChJPtll5yeEEEJIx3pVcsJxXBLHcfUcx93d7LkRHMf9xHGcnuO4XI7j5vRgiISQbpb/z3EAQJUoQu3h0aXXKjrxT5eenxBCCCFn12uSE47jVAB2AnBv9pw/gG8BnAYwGsBCAC9xHHdPjwRJCOl2VelpAIB6TcfrfGmVMnSdnEmnVchQibYFGGtzsjsbHiGEEEKcqDdNiH8RQF2r5x4AYAYwk+d5AUAKx3GJAOYC2NLN8RFCekB2VRVyy8sQOuK8s+6nUwK/TTfA19cdVVWAIHR8bp0SOHRLPfY//yy0khlSebmToiaEEEKII3pFzwnHcZcAeBDA/1ptGgfgYENi0uiA7RAuqLviI4T0nN+LC7E2OwPKCy/qsmu4R0QCANR6fZddgxBCCCEd6/GeE47jfABsB/AYz/N5HMc13xwB4ESrQxpXJ40CUOrodZVOXltJoWBb/O2KXL2Nrt4+oG+2MTc3BwAQGxvb4f9bR9sXPHAAqn89hEpRdPp7gzP1xd9fZ7l6G129fYBrtJFhoGAYhhZhJKQH9HhyAuBtAId5nn+vjW1usA3ras7U8LfW0QuyLANfX/eOd3SAl1f7K1i7Cldvo6u3D+g7baytroa6vh4KhsHw4YPg5dX+/1uTADz0ue3xO1fpoLXj3a3xGKs8FT+efAIQzbhdy0J3lpXoe4O+8vs7F67eRldvH9B328gwUOhYa6hsMfTIdyRG7SYYJVVRb0tQVq9eEXbgwDf++/Z91fqmcbt2797lv3fvh8GlpaUaX19f6+WXTym/776ZxQqFoitDJX1cjyYnHMfdCdvQraHt7GIE0HoWbGNS4vD4C0mSUVtrcPTwNikULLy8dKitNUIUJaeeu7dw9Ta6evuAvtfG5EO/4Y2hI2CURAgCi6qq9v/bG63AD9m25KW6xggN23H7/j1GDU9vX9RVFuOff1KQlMR1eGxP6Gu/P0e4ehtdvX1A17XRy0vXLb0xDMOwssWgrOd/lySzsVt/SaxGx3pwFyoZlQ/b11eo37dvr99bb70R/dBDj+VeeOHFdadOnXBbvfr1aIvFyjz22BNFPR0f6b16uudkBoBgAK2Hc73DcdzTAHIAhLU6pvHngnO5sCB0zfuNKEpddu7ewtXb6OrtA/pOG4tTUxECoJZhIIoyALndfYVmH+OSKEGQOm5f82OioqJwqrIYmRkZiItLdDzobtBXfn/nwtXb6OrtA/p+GyWzURJN+p5oQN8dD9fM/v0fB44ff2nFrbfeXg4AsbFx5pycbO3XX38RQMkJOZueTk7uANC63zcNwAsAPgBwG4CHOI5T8Dzf+DViEgCe53mH55sQQvqG+rxcAICpG4ZZXeofgJlDR8D880Hgsildfj1CCHGWsWNHj5o587Hc77//1i8rK8M9ODjENGPGAwWXXz61pnGf77772nvr1o1hBQX5Ol9fP8sll0ysnDnzsSKNRiMDQGpqsvadd94MT0lJ9jSZjKy/f4DlmmuuL73nnvva/L61devGoK1bN0Y8++wLmVdccWV16+0PPfRovp+f/xl1E/X6+p7+7kl6uR79B8Lz/Bm9Hw09KKU8z+dwHLcZwDMANnEctwzABQBmA3ioO+MkhPQMoawMAMD4+nf5tXx9/RFUU4n8ioouvxYhhDjbli0bIv73v3vzn332hexPPvko4KWXXkjw9fVLPf/8C/U//PCd15Ili+Lvu++hvDFjxtXm5mZr1qxZGZWfn6tdvnx1psFgYJ96albS0KHD69aseSdVqVTJ+/btCdi06Z3I0aMvqBs6dJix+bV27NgauG3bpogFCxZnTJ58eU1b8VxwwUUtxuFWV1crvvzys8Dhw8+r7crXgfR9vbrrsKF35AoAHIBjsC3C+DTP89t6NDBCSLdQ1dcDAHThrUd3Op9HVJTtWiZTB3sSQkjvM3Hi5PI777ynLDExyTxnzryC+PgE/e7du4IAYMeOraGTJl1efvvt/yuLjY0zjx9/ae0TTzyd89tvv/rm5marDQY9O23a9aXPPbcwJylpgCkuLt786KNPFAJAWlpqi67rXbt2BGzevD5i4cKX09tLTFqrr69n58yZlWC1WthZs57Kc37riSvpdV1rPM8zrX4+AuDiHgqHENKDvEQBYNXwi0vo8msFJXHAwe/hA0AWRTBUTYYQ0oeMHDm6xULWHDdQf/z4MS8AyMrKcsvISHf/4Yfvmrqh5YYpfOnpadpLL72sdvr0u0o/++wTv4yMNLeCgnxNTk6WGwCIotT0vayqqkr19turoxUKhRwREdW6mmqbSkqKlXPmzEosKSnWvPrqitMxMbGWc28tcWW9LjkhhBAAqK2qgr9SBQAIHzKky68XMWAQiiUJapZFVU42/OLiu/yahBDiLEqlskXFEFmWwbIK2fZYYq677sbiadOuP2PcanBwiLW0tET5wAN3D/T09BIuumhM9ahRF9QOGzZcf8st1w1rvi/DsFi8+JW0zZvXhy1Zsih206btqSzb/iCctDReO2fO44miKDKrVq3lBw0aYmx3Z0Ia9OphXYSQ/isvOxO7C/Pxa10tPEPDO9xfpwSO36VHzuOATmXfNXRK4M/pdfhzeh0CfDxQJlgBAEWnTp5L6IQQ0u2Sk0+2WAgqNTXZIz4+3gAAERFRxry8HG1cXLy58U9JSZFq9erXI+rr69hPP93nX19fp9y8eUfqI488XjR16lXVNTXVDTew/815fHy8rePHT6ydN29BdmZmutuWLRuC24snJydbPXv2I0larVZ6553NKZSYEHt1uueE4zglgAmwVc2KBeANoBy2sr9fAviV5/n2630SQogdcouLsLeoAOeFhOBuhun4ACeoV6sBANWZGd1yPUJI78VqdN1+A/dcrvnpp/uCo6NjTUOGDNPv3fthYE5Otm7u3OezAeDWW28vfvXVl+JWr14RduWV11QUFxepX3/91ZiAgABLcHCIEBwcYjGbzexnn33ie/75F9RnZKRr165dHQkAFovljJgGDhxsuv76m4p37twWNmHCpOr4+IQzhni9/PLCGEGwss8//1KaSqWSS0qKm75zBgeHnFHFi5BGdicnHMepAcwE8BSACABVsCUkegCRAK4G8ByAQo7jXgOwnud5u8YjEkJIa7m5OQCAqKjobrumydsHfEE+hFq75ngSQlyQLMsSo3YTPLgLleiBESaM2k2QJbnT66tcfvnUsj173g9etWq5Ljo62rB06fK0wYNtvRVXXTWtSpblzF27tod+9NGHIW5u7uLo0RdUP/HEM/mN21NTU4o3bHg7cs2aFWxAQKDliiuuLD98+BeflJRT7gDKWl9v5szHin755aDvkiWLYjZufJdvPryrqKhQlZJyyhMAHnronkGtjz106M+jnW0f6T/sSk44jrsAwDYAIoC3AXzI8/wZtxY5jhsK4EoAswA8znHcnTzPH3ZivISQfqImMwPBGg0iIyLt2t8sAvN+0UCtAhZeCNgznd0sAi/8qgUALB5jQt3gwVjy/de4Kj4e159D7ISQvkuWIRolVRGj8umRoe+yJEuyjE6vDh8bG2985pn5+e1tv/rqa6uuvvraqra2MQyDOXPmFcyZM6/FEg/33vtgSePjWbOeLJw168nCxp81Go28e/f+U22dLzQ0zEoJCHGUvT0n2wHM43n+47PtxPP8CQAnALzGcdzNsCU0SecWIiGkPxpaVobrhp6HctG+G4iSDHyXY3tLe/58QGHHSDBJBr7Ps01QWSSbEBFhKyec17D4IyGkf5JliLIsdzpBIIScO3vvCgztKDFpjef5DwF0fYkdQohL8hJt3wv84hM73JdhGCial/5VsGAcmKcSEREBACgqyIcs09Q5QgghpLvZ1XPC87xDNakdPY4Q0r/VVlc3lREOG3zGcOUWGAaAgkFaXg0ANwBAekENBkd4QhY7l2CEh0dixeDhCNVqUVdYAK/wCEfCJ4SQbkVDqIgrsXfOyQudOSnP84sdC4cQQoDC1GSwDAOLJMEz5OyrwyuUCmQX14HPrgAQCgA4nV0BLw2DmGBPWK32j8zw9vaGSqGAgmFQnJpCyQkhhBDSzeydc7Ko1c8yAAa2CfLlAHwBqAFYAFQCoOSEEOKwisx0BAKoAcCcZYEvhYJBrcGKtNwqCM16SayChPTcKvh5aeGuVkCS7O9BqVOwCAZQmZkBTLrM8UYQQgghpNPsmnPC8zzb+AfAZQAqANwKQMvzfCjP81rYqnRVAHiyy6IlhPQLdXl5AACTRnPW/RiWRV5JHWrqz6xaXlVnRl5JHRSKzhXcsbrZ1jEzFhV2sCchhBBCnM2RMnlvAnie5/kPeZ5vGi/B8/xXABYAWOKs4Agh/ZOlzFZSX/LyancflmVQZ7CioLSu3X0KSutRZ7SCZe2fHM/4+QEAxIoKu48hhBBCiHN0eoV4AFEA2quzWQYg2PFwCCEEOKmvx4nCfIwefX67+yiULIqL6lCrt9XdUDES5kWegE6nhmCSIctATb0ZJVVGJIR5QZLOnHuiVQA/31zX9BgA3MLCgKIiqA0G5zeMEEIIIWflSM/J3wAe4zhO1fxJjuO0AJ4B8LszAiOE9F9HiguxuzAfPueNbHcfs1VCUXl9088MA6hZGWpWRvMqwkVl9TALba+VwjCATmn703iMb2wcAMBTpCUOCCGEkO7mSHLyLIBLAWRwHLee47glHMdtBJAJYDiAp5wZICGkf5EkCQUFtkWOw9uplqVUsqjRW1BZY+rwfBU1RtTqLXbPPQkdMAhp9fU4XlMNwXLmXBZCCHE1er2e3b59S2Djz/PnPx1z//13cV15zfz8XPX+/R/7nss5du9+33/s2NGj2tveHe0YO3b0qN273/fvymt0l9zcbPXYsaNH/frrz549GUenkxOe538CMAa2HpJrAMwBMBXAdwBG8Tx/3JkBEkL6l7KiQnBaHUJ1bggODmlzH4ZhUFyhh9Bs9XhBZvBJeQR2F4ZCkP/tOrEKEoorDWDamHdiEYFFh7VYdFgLS0NHSXBkFBam83gj4zRKy8ud2zhCCOmFNm9eH7x37wdNb7jPPLMgb9myVeldec0XX3w+5vfff/XuymuQvsmROSfgef4YgJucHAshhKAo+RSeTxoIvSRCpVK1uY/RKqKi2tjiOUlm8LfeNpn9cu+Wd14qqg0wW72hQEuiDHyWZbvG3PNtvTAKhQLh4eHIyclGfn4ewsLCndIuQgjprWRZbnH3xtvbuxvGtcr2Vyoh/YpDyQkAcBw3FbaywqEAngNwHoCjPM/nOCk2Qkg/VJWdCTcAdWzrVMJGoWBRXWdus3xwe6rrzKg3CvDzUEMU255/0lxERCTycrJRmJ0FXHCR3dchhJCeUFNTo1ix4rWIP/447CMIAhMbG294+OFZ+SNGjDQAgMFgYF99dXHkn38e8TEYDIrw8HDTHXfcXTh16tXVq1evCPvww/dCAdsQpffe23Ni3bq3wkpLSzQbNrzL//rrz57z5j2VtHTp8tNvvPF6VGlpqSYmJsawYMHirG+++dL3s8/2BYuiyIwbN6Fi/vxFeQzDQJZlbNz4TvA333wZUFZWqlGpVNKAAYPq58x5Njc6OsZy//13cSkpyR4pKcke1103xXPfvq9OWCwWZvXq18N+/PGAv9FoUERERBlnzLi/cPz4S2sb2/nll5/7bNu2MaykpFgbH5+oHzFiZG17r0kjUZSwZMmiyB9//N5fqVTKl102pXzWrKcKlErbV+A//vjNffPm9WEZGWnuVquVDQ4OMU+fflfRtdfeUNl4jk8++cjvgw92hhQVFWp9fHytV199bem99z5Y0vpaZWWlykceuZ/z8fG1rlq1Nt3NzU366acDXhs2vB1eUJCvCwoKNv/3vzcXr169Iua99/aciIqKsVx33ZShF144pvqvv4561dTUqF54YXHGRRf9p27btk1BX3zxaVB5ebk6ICDA8t//3lJ82213lAPAr7/+7PnMM08kNZ4DsA3Jmj79xqHLlq08PWbMuLr585+OkSSJ8fX1s/7ww/f+ZrOJHTZsRO2zz76QExwcIgBASsop7cqV/xeVnp7m7uvra73llulF5/QP0Uk6PayL4zg3juO+AfA5gBkAboZtEcaZAI5yHDfYuSESQvoTQ0EBAMCi07W5nVUwKKs2wtrOJPe2WAUJ5dUGKBT23aib4OGJHSMvgOefR+y+BiHENcgyoLeC7ak/sv1rxjbEK2P27IcTCwsLNC+/vCx97dqNqQMGDNTPnv3wgBMn/tYBwJo1K8Kys7PcXn319bRt23adHDXq/JpXX30pLjc3Wz1jxgPF11xzfYmfn591797P/g4Pj7S0voYkSVi7dnXk3Lnzs9esWZdSU1OjfOSR+wfm5ubo3njjbf5//7s3/6uvPg/6/vtvvAFgy5YNQbt37wp94IGH87dv/+Dkiy++klFYWKBduXJZJAAsW7YqPTExSX/xxf+p2rhxewoAPP/83JijR//0fvbZ57PWr9+WfMklE6peeOHZhO++s53zyJHf3V95ZVH8mDHjqjdsePfU5MlXVOzd+0FoR6/P6dOpHtXVVao1a9alPvXUvOzvvvsmYNmyJZEAUFhYoJo378mk2Nh447p1W1PWr9+anJjI6Veu/L+Y0tISJQB8/vl+3+XLl8aOH39p5caN20/NmPFA/s6d28Lef39nQPPrVFSUKx999AHO3z/A8sYbb6e5ublJJ078o3vhhWcThg8/r279+m2n7rjjf4WbNq2LbB3j119/Gfjoo0/kvvbaitOjR19Y/9prSyI/+GBn2B133F24adP2U9dee0PJunVvRm3btimoM/82Dh/+xbe2tlb5xhtr+RdeeCkjJSXZ8803V4UDtoT2qace49zc3MS1azekzJr1VO57770b1pnzdxVHek5eATAKwCQAP8O2KjwA3AngawAvAbjBKdERQvodsdJ2s4rx8Wlzu1WQUFljbHPb2VTUmGAR7PvU9wgIgrKiEmxthzflCCEuRJaBO75yG8BXKdx7KoYBvmL99ikGnrFz0NOhQwc909J49337vvw7ICBQAIAnn5xbkJx8yuP993cEDx06PLuoqFCj07mJ0dGxZm9vb/Hxx+cUnHfeqDpvb1/Rw8ND0ul0EsuycuMd9bbcc8/9BaNGXaAHgDFjxlZ/9tknQS+88FKOm5ublJjImXbs2BaekZGmmzz5iprIyCjznDnPZl122ZQaAIiMjLb8/vvhqoMHf/QFAF9fP1GpVMpqtVoKCAgUMjMzNL/88rPfm2+uT2ns7YmPTyjJyEjXffDBjpDJky+v2b17V1BSElc/a9aThQCQkJBozszM0H3xxf6zfmH39vaxvvTSa1larVYeMGCQqaysrGDdujejZs9+usBisTC33npH4X33PVTCsmxjO4t+/PF7/8zMDG1QUHD9nj3vB1988X8qH3zwkeKGuMwGg16h1eqa7pDV1tYoH330waSAgEDz66+vydBqtTIA7Nq1PTg2Ns7w9NPP5QNAYmKSubKyUrVhw9stEpTzzhtZc8klE+ps56plv/7688B7730w77rr/lvZcM2ywsICzQcfvBd6110zSu37lwHodDpx4cKXc1QqlZyUNMB0+PAvFUePHvEGgM8//8TXYrGwL764NNvb21scMGCQyWg05L388sJ4e8/fVRxJTm4B8CzP8z9wHNc07oLn+WKO414G8JbToiOE9DtKfT3AsNCGnHlDjGUZ1JvFprVNOqO23gyjWYC7RgFJOnuS4hUVBfCpcLN0/jqEkL6NATrZd9GzUlOT3QDglluuG9r8eUEQGKvVwgDAHXfcXbxgwTMJ1157xfDExCT9yJHn10ydenVlZ+aWxMbGN5VH1Gi0kre3j9XNza3pC7parZLMZgsLAJddNqXm6NEj7qtXvx5WUJCvyc/P0+Xn52l9fX2tbZ07OfmkGwA89dRjLSpriaLIuLm5iQCQk5Ptdt55o2qabx86dFh9R8lJfHyCoTFZAIBhw0boBUFgMjLSNUOHDjP+9783V7z77uagnJwsbUFBgTY7O9MNACRJZAAgNzdHd8kll1Y2P+ctt9zeolrK9u1bw0VRYFpfKzMz3a310LORI8+vA95uEWN4eETTa5uefloriiJz3nmj65vvM2LEyPpPP90XXFZWavd39+DgELNKpWqKx93dQxQEgbHFluEWHBxqav5vYNSo8+vbOk93cyQ58QGQ3c62KgAejgZDCCHuggCo1PCOjjljm0LBolZvhN7Y5ufbWemNVtQZrPDUqdpckLG5oCQO8rffwIthIIsiGEXb818IIa6FYYDtUwy8QXBoqQWncFNCsrfXBAAkSWJ0Op24bt3WlNbb1Gq1BACjR1+g//jjL//5+ecfvY4c+d3rm2++DHj//R1hL7+8LG3cuPF19lxHpVK2SNrYNiogNlq/fm3wrl3bwydOnFw+YsTIuptvvq30xx8P+Pz8849+be0vy7YcZ9Wqtanu7h4txuwqFAr53/1aTqJXKlUdJpIsy7bYp/H9X6NRy2lpvPbRRx8YEBMTZxg16vyasWMn1Pj5+Vkfe+zBgc2v39HvY+jQYbVXXjmtfMmShfE//PBd5cSJk2sbjoUkdTzxX63WnNFGptVFJcn2sjRPNpoPAbRahTOu03zffzV/qvOvZ3dwJDk5CeB2AN+0se2ahu2EENJpZrMZvg0T4YMTk87YLgMor3Js5XYZQFm1AeEBbh3uG5qQiFxJgpJlUZ2fD9/oaIeuSQjpexgGcFfB/kltPSw+PtFoNBoVFouZGTBgUNMd+BdeeDY6ISHRcNddM8pWr349bPjwkfWXXz615vLLp9aIoph3663XD/7hh+98x40bX8cwjFO/lH744Xtht956R2HjUCgA2Lnz3ZCW82n+vWZiImcEgJKSEvXkycObekdWrlwWzjCsPHv2nMK4uHhDSsqpFjfAU1JOdjj8Ljs7002SJDQO2zp27E9PtVotRUfHmpcvXxrh5eVtXbduy+nG/b/99itvwDaXBwDCwyNNPJ/S4jpLly6OLCkpVq9atTYDAC65ZGLV1KlXVf/ww7eVK1cuixk16oKTXl5eUkxMrKH1sSdOHD9rzAkJSSaFQiEfO3bEY8iQoU1jmI8fP+bp7e1j9fHxFVUqW9JZW1vbdOcsJydL09Fr0VxiYpLhwIFv/SsqypX+/gECAPzzz189NpyxOUfuDLwM4E6O4z4DcB9sn/njOY5bA+BhAMucGB8hpB8pKszH5txs7CstgV/DSu3NWQSp3SFdKkbCUxGnMD8hDap2Pmdr6s0tVovXKoBvb6jHtzfUQ9usc8TD0wsVgm3odVna6danIYSQXmPixEk10dExxoULn4s/dOigZ2ZmhmbZsiURP/zwXUDjUKyCggLNqlX/F3Xo0EHPvLwc9eef7/ctLy/TDB06rB4AdDqdpNfrFenpaRqr1XrOJX79/QMsx44d8eL5FG1a2mnNypX/F/bHH7/5WK3Wpu+dOp1OKi0t0RQU5KsGDBhkGjlydM3q1cujv/nmS+/s7Cz1xo3vBH/00e6Q8PBwMwBMn/6/4pycbN1rry2JSE9P03z88R6/L7/8LLD9KGwqKirUzz8/NyY1NVn7xRef+rz33rth1113Y4lGo5GDgoItlZUV6gMHvvXKy8tRf/nlZz6rV6+IBgCLxTYkbvr0O4t+/fWQ79atG4OysjI1+/d/7PvNN18Gjh07vrr1tZ55Zn6exWJhli9/JRKwDafLyspwX7781fD09DTNV1997rN9+9Zw4MyekUbe3t7i5MlXlO/cuS183769fpmZGZrt27cEfv31F4HXX39jCcMwGDBgkFGr1UpbtmwIzczM0Bw+/IvHpk3rIto7Z1uuvvq6Si8vb2H+/GdiT548oTt8+JDHW2+9ccZk/Z7gyCKMnwC4A8Aw2AbNMQBeh23dk4d4nt/j1AgJIf1GQWEhfqwowxGNCgq1usU2lmVgNAuoM7SdnDAM4K4Q4aEU0d77c73BApNZaBqOwDCAr1aGr1Y+45j6hhXlq3Kyz6lNhBDSlRQKBVavfud0YmKSfsmShXH33XfnoH/+Oe65YMGLGY1DtubPX5QzbNiIuldfXRx75523DHn33c3h//vfvfnXX39TJQBcfvmUKh8fX+t99901+J9/jnfcvdyB+fMXZZnNZnbmzHsHPv74QwOyszN1Dz88K6eurlaZm5utBoBp024oy8vL1c6YcftgURTx6qsrMi++eGzV6tWvR9999/Qh33zzZcAjj8zOuemm2yoAYOjQYcaXX16WduLEcc/77rtr8N69HwTfdNNtHZa+HT36gmqFQiE/8sj9A998c2X0lClXlz7yyOOFAHDXXTNKx4wZV/naa0vi7rnn9sE7dmwLvfvu+woCAgItJ0+ecAds82ceffSJnM8/3x94zz3TB2/btin8/vtn5t544y0Vra8VEBAo3H//w/kHDnwX8OOP33sNHDjY9Pzzi9OPHPnN57777hy8bdumsCuvvKYUAFQqdbu9Vc8++0LuVVdNK928eX34jBm3D/7ss0+CHnzw0dz77nuoBAA8PT2luXMXZBYU5OlmzLh98OrVr0c9+OCjeZ1JTtzd3aXVq9/mlUql/PjjDw1YuvSl2Jtvnl7c8ZFdj5E7W7OuGY7jOAD+AKoBpPI83xe6QTNFUYqtrNQ79aRKJQtfX3dUVekhdKLEaV/i6m109fYBvb+NH364C6+88iImTLgUq1atbbFNpVIgr0yP304Utns8yzLQ6dQwGi3tTnofMywMYf7uEISzzzvZ/uiDEAoLEHDpZFzz6OxOt6Ur9PbfnzO4ehtdvX1A17XRz88dCgWbBeDMblUHHD16dADLKr4KCgqvV6u1po6PIKRz/vrrqJtSqZSHDh3eNDxr3769fqtWLY/57rufjzWutdIfWCwmbWlpgYckiVNGjRqVerZ9HVnn5ADHcQMAgLf5lef5ZJ7nJY7jhnEc94+jgRNC+rfatNMY6umFuOC2S9dXnKWEsCAz+KIiDJ8UB0M4y/zD8hojGoYewyICrx3R4LUjGlha5SplcfF4IzMdqcbOly0mhBBCUlNT3J588jHum2++9M7Pz1UfOnTQc/v2LWH/+c/Yyv6UmHSWXa8Mx3Fj8W8iMwG2OSZtlW67GkCP10cmhPRNQQX5eJ4bhALpzLutFlFC3VlKCEsygz/rbWtiTfDMb/fOS53eAkvD3VxRBnan2YaPzTqv5YrzYWHhAIDCwoLONoMQQgjBrbfeXl5RUa56++01UVVVlSovLy9h3LgJlY8++gR9sJyFvWnbfQDugm3yuwxgLWxzTZqPm2i8Vfme06IjhPQraqMRUCihC2m5SC3DMDBaRNQbz33dkXqjFSarBJ2SxdmWMwgLCwcDoK6o/WFkhBBCSHsYhsGjj84uevTR2R3OjSH/sjc5eRzAFtgSkAMAHgGQ3GofEba5J6ecFRwhpH/xkCRAAfhEtSzdq1AwMNQLMBjbXbzYbnqjFUaTFR7eWsDafnIS6u2NnSMvAENrnRBCCCHdxq7khOf5GgA/AQDHcRMBHAXgwfN8ccNzvgAieZ6nNU4IIQ4x6PXwVdjekoITE1tsYxgG1bVmSOdQwKORJMmoqbcg2Fd31v3C4hOQDUDJMKjKy4VfTOw5X5sQQgghZ+fIOid/A/gYwI/NnrsQwHGO4/ZxHHfOJegIIf1PcUY6VCwLSZbhHdGy1LooAzX1ziumU1VngthONa9G7h6eqKS1TgghhJBu5Uhy8iqAwQCea/bcAQDXAhgNYLET4iKE9DPlmekAgFpZAtuqiolFEKF3wpCuRnqjtWlS/Nk0rnVSnZPjtGsTQgghpH2OJCfTAMzhef6jxid4nrfwPP8pbAnLzc4KjhDSf9Tk5QEADK0SE5ZlYLaIMJisTruWwWSF2SI2LcbYHovONvTLUEyT4gkhhJDu4EiRZU8AVe1sKwEQ4Hg4hJD+KttixhfZGRhxwcUtnmdZBgaTAKP57D0nKkbCrPAUaDVqqAQZZ5ueYjQJMJpFBOpU2D+tHgCgaWO+O+PtA5SVQays7GxzCCGEEOIAR3pOjgG4t51t9wCgRRgJIZ2WVVGOH8rLICUmtXieZRlU1XU834RhAB+lFb5qK5izd4hAhm3eiYJlEOYhI8xDRludKJrgYACAQl9vbzMIIYQQcg4cSU5eBnAdx3F/chw3n+O4+zmOe47juN8B3AhgkVMjJIT0C0UN64mEhbVc40QQ5bMuvuioWr2lw0nxnrHx+KWyHCf0eqdfnxBCSEvfffe1N8+naM/lHPfffxc3f/7TMU4KySGrV68Iu+66KUPt3X/+/Kdj7r//Lq4rY2pOlmXs2fOBf1lZqRIAdu9+33/s2NGjuuv6Hel0csLz/LcAroHt5uNiAOsAvATbELFreZ7/yqkREkL6hcCqKgzx9EJoQGCL5y2CBIOp48nwoszg26pQfFEaCFHuoOsEtnknBouEN/7S4I2/NLCKZ+4TNHgI3shMx4fZmXa3gxBCSOfl5eWoFy2an1BRUa7q6Vhc3W+//eKxatX/xRiNBhYArr762sq9ez/7u6fjauTInBPwPP8lgC85jtMC8ANQw/M83VokhDjEYrFguq8/3AKC4KX9d/0RlmVgNgl2TYYXZQaHa22JzX/cCzt8czOYrNBbJGxPUQMAHhhqRutPxPDwcABAfX0damtr4eXlZXebCCGE2E92wjpWxD6y3PIOnk6nk3U6nfNKYp4jh5ITAOA4biCAywCEAniT47jzAPzN83yds4IjhPQPpbk5cGtYgT0gLr7peZZlYDKLMHUwGd4RRrMAk+Xs59Xp3ODn6wfU16MwKxNew0c4PQ5CSO+jt7Y/skTBQNYqIduzL8tA1jm4b2ccOPCt15YtG8ILCvK1Go1WGjlyVM2cOc/l+fr6ir/++rPnM888kfTee3tOREXFWAAgNzdbPX36jUOXLVt5esyYcXUAsGXLxqBPPtkbXFNTrUpKGlA/dOjwuu+++ypg376vTgBAVlamZvnypZGpqcmeOp1OvO66G0u++OLTwNtuu7PoppturQCA3bt3+X/44a6Q8vIyTUBAoPnKK6eV/e9/M0pZ1tbsvXs/9P/ww/dCSkpKNB4eHsKYMeOqnnpqbn5JSZFq+vQbhwLAM888kXTzzdOLZs16svD06VTtG2+8HpGamuyp1erEIUOG1T355DN5wcEhAgCYzWZmxYrXIg4e/NFPEARmypQry6QOhuuOHTt61MyZj+V+//23fllZGe7BwSGmGTMeKLj88qk1jft8993X3lu3bgwrKMjX+fr6WS65ZGLlzJmPFWk0GhkAUlOTte+882Z4Skqyp8lkZP39AyzXXHN96T333Ffa1jW3bt0YtHXrxohnn30h84orrqzu6PeZn5+nevPNVRH//HPcy2QysQMGDKx/9NHZ+YMGDTE27vPJJx/5ffDBzpCiokKtj4+v9eqrry29994HSzqKr/HfAwBMn37j0Mcfn5MNAG+8sTzm0KE/jwJAVVWl4s03V4UfOfKbT11dnTI2Nl7/wAMPF1x00Zh6wDZs7cSJ457nn39R9aef7guuq6tTJiVx9U8//VxOYmKSuaP2daTTyQnHcQoA7wCYAYCBbXjXbgALAcRxHDee5/n8cw2MENJ/lGWkwR1AnSRCqWvZc1Jdb3bs07oDsmybd9KRp2LikKhQovLI7wAlJ4T0C+N3e57X3raRQULN+snG9MafL//IY7hZZNpMOgb5ifXvTjHwjT9fvc9jaJ2VafO7V7y3aPjgKkNKZ2OtqChXLl78QsK99z6YN2HCxJqioiLV0qWL41aufC1i8eJX7Vqkafv2LYHbt28Of+ihR3NHjjy//ptvvvTdtWt7uL+/vwUADAYD+8QTDyeFhoab3njjnVS9vl6xcuWyqLKyUk3jOXbt2h6wdevGiIcffjx3+PDz6pOTT7q99dYbUeXlpeqnn34u/9Spk7o1a1ZEP/30c1nDh4/Qp6enaZcuXRzn7e0tPPTQo0Vr1qxLeeyxBwfOn78oY9y4CbVFRYWqWbMe4saOHV/1+ONPpRiNRnbjxnfCHnpoxsAdO3afcnd3l5YuXRz155+/e8+Z82x2eHi4ecuWDaE8n+IREhJy1i/IW7ZsiPjf/+7Nf/bZF7I/+eSjgJdeeiHB19cv9fzzL9T/8MN3XkuWLIq/776H8saMGVebm5utWbNmZVR+fq52+fLVmQaDgX3qqVlJQ4cOr1uz5p1UpVIl79u3J2DTpnciR4++oG7o0GHG5tfasWNr4LZtmyIWLFicMXny5TXtxdSorq6Offjh+wYEBwdbXn75tTSNRitv2vRO2OzZD3ObN+9IjoiIsnz++X7f5cuXxt5xx90FkydfUZWcfNJt5cplMe7uHuK0addXni2+0aMvrJ8/f1HGkiWL4tesWZcyYMAg42effeLXeH1RFDFr1kNJVquVmTt3QVZgYJD1gw/eC5o378mkVavWpo4YMdIAAGlpp901Gq24dOnraQaDnl26dHHs8uWvRK9bt/WcVy12pOdkAYDbAdwH4HMAxQ3PPwVgP4AlAP53roERQvqP6twcuAPQsy3r+YqSjFr9Od+EaVdtfcfJiaBzAywWGIuKuiwOQghxVGFhoUoQrExoaKglMjLaEhkZbVm6dHmaIIgdT75rsHfvByFXXTWt9Oabp1cAQEJCYnF6+mn3zMx0NwD4/PNPfGtr65Rbtvxfpq+vnwgAL7zwUtYDD9w9qPEcu3ZtD7vpptuKrr32hkoAiImJtej19Yq1a1dHP/bYkwV5eTkagEFERKQ5IiLKEhERZfHx8T3t4eEpKhQK+Pv7CwDg7e0tenh4SBs3vhPi4+NrXbDgxdzGa7z22srMq6+ePPyLLz71nTLlqqoff/zef+bMx3InTbqsBgBefHFp9n//e7VnR+2dOHFy+Z133lMGAHPmzCs4efJvz927dwWdf/6FWTt2bA2dNOny8ttv/18ZAMTGxpmVSmXO3LlPJuXmZqvd3NyladOuL73ttjtLvby8JAB49NEnCj/6aHdIWlqqrnlysmvXjoDNm9dHLFz4cvqECZNq7fldfPLJXv/6+jrl5s07UgICAgUAeOWV5Zk33njN0Pff3xk4Z86zBXv2vB988cX/qXzwwUeKASA+PsFsMOgVWq1OMhj0bEfxeXt7iwDg7+8v6HS6Fvf/fvrpgFdWVqbbhg3bTg0cONgEAAsWvJh7+nSq+86d20JGjBiZCQCiKDIvvfRqVuO/h2nTbijdtm1jhD1t7IgjyckMAC/wPL+loRcFAMDz/D8cx70A2wryhBBiN2Ox7R6HRduySItVlGG0YzK8w9e1Yy4L4+MDlJZCrKK1TgjpL366qe6v9rYpmJadud/cUN/uRGK21b6fXVd/wt597TV06DDjf/4zrnLRovkJq1evsAwffl7tmDFjay67bEq1PcdXVlYoysvL1UOHDm9RM33o0OF1jckJz6e6hYaGmRq/iALAoEFDjDqdmwgA5eVlysrKStXOndvCd+3a3lRyUZZlWK1WJjc3WzNhwqSajz7aXf/II/cPDA4OMY8YMbL2kksmVA8ffp6hrbjS00+7FRYW6CZN+k+LXiyr1crm5GRpMzLStIIgMEOGDG+a86zVauWYmNg2z9fcyJGjW0xB4LiB+uPHj3kBQFZWlltGRrr7Dz985/9vOxpjStNeeulltdOn31X62Wef+GVkpLkVFORrcnKy3ABAFKWmhLCqqkr19turoxUKhRwREWX3XbbMzAxdSEiouTExaWxXQkKiPisr0w0AcnNzdJdccmmLD6Vbbrm9vPGxPfG1Jz09TafTuYmNiQkAMAyDQYOG1B879mfTxEsvL29r838PHh4eoiAIdifEZ+NIchIM4Hg72/IB+DocDSGkX7I2LnLo7d30HMMwsFjFDhdfPBcdzTkBAG1QMFBaCkU9rXVCSH/hroLU0/t2xmuvrcxKSztdeOjQT95Hjx7xeu21l+M+/nhP/fr1/w6xaT7f3Gr990ukQmH7KihJ7X9xVSgUkOX2t0uSrVn33fdQ3sUXjz2jhyAiItKiVqvl9eu3nj5x4m/dr7/+7H306J9eCxbMTRw//tKKl19+Lbv1MbIsM4MHD619+unncltv8/b2FvPyctUN+7XYplQqO0zyWu8jyzJYViHbHkvMddfdWDxt2vUVrY8LDg6xlpaWKB944O6Bnp5ewkUXjakeNeqC2mHDhutvueW6Yc33ZRgWixe/krZ58/qwJUsWxW7atD21ce7N2ciyDKaNxbokSWIUCluMCoVCbm89L3vjO8v127o8JElq8bqpVB2/zo5yZJ2TdABXtrNtQsN2Qgixm6LedhNL3ayMMMsyMFtFGMwd9244yp4SxV6RUQAAd6HXFDIhhJAmR4/+4b506eLIxMQk8z333F/65pvr0x9/fE52cvJJz7KyUqVKpZYAoLa2tmm0S05OVtNcEW9vbzEgIMBy8uQJ9+bnTUk51fRzQkKSobi4WFNVVdl0jrS00xqj0aAAgMDAIMHLy0soKMjXxMXFmxv/nDr1j9vbb68Jl2UZBw586/Xmm6tChw4dbnzwwUeL16/fevq22+4s+PXXn30BnPGFPDo6xlhQkKcLD4+wNJ7P19dXWLlyWWRqarIuMZEzqVQq+a+//vRoPEYQBGRn23oJziY5+WSLtqamJnvEx8cbACAiIsqYl5ejbd6OkpIi1erVr0fU19exn366r3HYVeojjzxeNHXqVdU1NdUNN/v//b7u4+NtHT9+Yu28eQuyMzPT3bZs2RDcUVwAEBeXYCwqKtQ0rkECACaTicnMTHeLiooxAkB4eKSJ51NatGHp0sWRs2c/HG9PfAzDtJtYJCQkGQ0GgyIl5VSLoQzJyac8IiKiOl4R2QkcSU5WAXic47g3AUyGraWJHMc9BWAOgLecFx4hpD/4qrICb2dnwH3w4KbnWJZBvVGAKNp3c0bFSHgolMfs2Eyo2n/fbYGRRLw5tgJ7pxmhUbS9T0BCAgDAi2EgU4JCCOllPDw8xa+++jxw+fKl4ZmZGZrk5JO6Awe+9QsODjH7+wcIAwYMMmq1WmnLlg2hmZkZmsOHf/HYtGldRPNk4Kabbiv+4otPg/bs+cA/MzNDs3nz+qDDh3/xs9U9AqZNu77S09NTWLBgbuzJkyd0R4/+4b548fNxgC2pYBgGN9xwc/EXX3watG3bpqCsrEzN119/4fPmm29Eq1QqSaPRyAqFEh98sDNs8+b1QTk52erjx4+5/f77YZ/ERE4PAO7uHiIApKWd1tXU1ChuueX2UoPBoJg378m4Eyf+0Z06dVL33HNPx6Wnp7knJQ0wuru7S1deeU3pzp3bwr788jOftDReu3jxguiqqkp1R6/Zp5/uC963b69fenqa5rXXlkTk5GTrbrvtrhIAuPXW24v/+OM339WrV4Slp6dpDh066Lls2Suxen29Mjg4RAgODrGYzWb2s88+8c3Pz1X/9NMBrxdfXBAHABaL5Yzv1QMHDjZdf/1NxTt3bgvLyEjXtN7e2jXXXFfp5uYuPvfcnPhjx/50a2h3rMlkUtx0061lADB9+p1Fv/56yHfr1o1BWVmZmv37P/b95psvA8eOHV9tT3xubu4SACQnn3Krr69vEfP48RNrIiOjjYsXPx/3668/e54+nap96aUXovLzc3W33jq9pKP4naHTw7p4nt/IcVwggPkAZsL2L3cXAAuAZTzPv+PcEAkhrkyWZRzJz4XZbMZTg4Y0Pc8wQHWd/TdpGAYIUpuh08gwGlsOYTjbMd6MAQl+OljbmRsflpCITEmCmmVRlZcDv9j4tnckhJAewHEDTc8/vzhj27bNYV9++VkQy7Ly4MFD65YvX53Gsiw8PT2luXMXZG7c+E7EjBm3Dw4NDTPNnDkrb8GCZ5Iaz3H77f8rq62tVWzbtin8zTdXKQcNGlw3YcKk8pSUU54AoNFo5P/7v1Vpr7/+atRjjz0w0N3dQ7jllulF69a9FaVSqWQAuO++h0o0Gq20f/9HQZs3r4/w9vYWJk26rPzxx+cUAMD48RNrZ816KnvPnvdDduzYGq5Wq6Xzzhtd89RTc/MBwM/PX5w4cXL5li0bI/Lz8zTz5y/KW7nyrdS1a1dHzJ49cwDLKuSkJE6/YsUaPjAwSACAJ5+cm69Wq6U331wVZTIZFWPGjKscNer86o5es8svn1q2Z8/7watWLddFR0cbli5dnjZ4sK1M71VXTauSZTlz167toR999GGIm5u7OHr0BdVPPPFMfuP21NSU4g0b3o5cs2YFGxAQaLniiivLDx/+xaeht6ms9fVmznys6JdfDvouWbIoZuPGd/mzDe/y8fERV69+h1+9+vWIZ56ZzTX8jutWr34nNTraVgr6ssum1FRXV+d8+OF7IVu3bozw9w+w3H//zNwbb7ylQpZldBTfwIGDjSNGjKx59dWX4u64I6/A29un6c6bUqnE6tVvn16xYlnEiy8uiLdaBSY2Ns7w6qsrTo8adUG3rGnIdHbRG47jfHmer+I4zgvAxQD8AVQD+I3n+b4wYzRTFKXYykrnvr5KJQtfX3dUVekhCF0ypLTHuXobXb19QO9sY0VFOSZNGguGYfDHH39DpbLd9GIULP5ILkZBqf1zPViWgU6nhtFoQUe17htFBHvigoHBkMT2X4+3b7wW9UYjrnnxZQwYfYHd8Thbb/z9OZurt9HV2wd0XRv9/NyhULBZAOKccb6jR48OYFnFV0FB4fVqtbZbhqv0Vj/88J1XYiJnjIiIbBpHu3Dhc9HFxYWadeu2ns7NzVZnZWVqx4+/tGk+SVFRoeqmm6YNW758Nd+4/kVfMHbs6FGPPz4nu3FtFtI9LBaTtrS0wEOSxCmjRo1KPdu+jkyI/4PjuAU8z38A4GvHQiSEEJvC9HRM9A+EyU3XlJgAgFWUOjUZXpQZHKwOhqpegYvci2BP4RtRZvBxrjf+NClx72ALVO0M7fpZrUJyOo9RtbUYYHdEhBDSN3z11Rf+Gze+o3vyyWdygoKCrX/88bvnzz//6Ddz5qxcADCbzezzz89LvOuuGfmXXTalqra2RrFu3VvhwcEh5lGjzu+Wu+mk/3AkOfEFUN7hXoQQYocqPgUzY+NRKv97h5VlGVhMQueTkxrbfMPz3YrsenMTZQZfl/oDpcA9Q6xAOwlNWFg4kpNPoqio0O54CCGkr5g3b0Hu8uVLI59//tkEg8GgCA4ONt9//8y8xt6FxETONHfugsz33ns39L333g1TqdTysGHDa994Y+3pxmFdhDiLI8nJGwD+r2EC/Eme588YW0cIIfbSFxYAAMzqf+cJsiwDk1WEqQvLCLfGgEG7yUloKPxUatRkZ3VbPIQQ0l18ff3EJUv+L/ts+1x11bSqq66aVtVNIXWZQ4f+PNrTMZCzcyQ5uQtANIDvAIDjuNbbZZ7nHTkvIaQfslbYOmJlr38X9WUYBnUGq12T2p2FYdtfO2oIq8DVw0eiIPeMcvuEEEIIcSJHkogdTo+CENJvMbW2NU6UfgEtnq+tt3tBXefE0X7HCTzCI4BTp6Czdt2aK4QQQghxLDnJAnCA5/l8ZwdDCOl/NGYToFTBPTSs6TmrKHfpyvBtEUQZynaqOwbEJwD42rbWiSSBsWOVX0JIrycBkGVZbr/blBDiFA3/z2TY/t+dlSOfsCsAjHbgOEIIOYNnw9gt3+iYpueETlbqcgZBav/9MjSRgyBJUDIMahvmyBBC+rxiWZatFoupwxXFCSHnxmIxucmybAVQ1NG+jvSclALwceA4Qghpoa6mBj5KFQAghLOtB8ayDMwmoVsnwwOA2SrBS61oc30UTy8vVAkCAtVqlKadhndEZLfGRghxvlGjRtUePXr03draqpkA/NVqrYFhGKo8RYgTybLMWCwmt9raKrUsS5tGjRpV19ExjiQnGwC8xXHcRAAnAZyxlD3P8+/aezKO44IAvA5gCgAdgJ8APM3zfHLD9hGwVQgbDaACwGqe55c7EDchpJcpKi7EK6dTEOXji5eDQgA0JCdWESZL55ITJSPh3pA0aDQqKGW53fkjrY+ZEXTaNhle8gfDKNHegXUsi0AAVTlUsYsQF/KKKAqorq64i2EYNwA0xIsQ55JlWbbKsrQJwCv2HOBIcvJ6w993thcEALuTEwD7YRt/NhWAHsBLAL7jOC4BtmTlWwD7ADwE4CIAazmOq+B5fkvnQyeE9CbFJcU4UVcLISKiaR4HwzCod6BSF8sA4RojdDoRRiNgzwLxLAOEaYwAAKPJC6yPFqLY9r4WrRYQBBiKOuyRJoT0EaNGjZIAvHz06NE3ZBmhcGy4OyGkfRKAInt6TBo5kpzEOnBMmziO84dtgv3LPM+fanjuJQDHAQwGMBmAGcBMnucFACkcxyUCmAuAkhNC+rjCQtuihiEh/06GBwPU6i3dHkut3gwwnu1vDwzEJ8eOIig6uhujIoR0h4YvTnZ/eSKEdJ1OJyc8z+c0PuY4zg2AF4AKnuc7XWOT5/kKALc1O18wgDkA8gEkA3gRwMGGxKTRAQDPchwXxPN8aWevSQjpPczpaZjoH4gkP/+m5wRRhtHc+ZK9oszgt5pAqAwKjNSVgLFjXJcoM/ijzlbCOMRggiie5RhuAHZ++jEuqx3U6dgIIYQQYh+HFkvkOG4cgGUAzkfD+EyO4/4A8BzP8z84eM71AO6HradkGs/zeo7jIgCcaLVrYcPfUbBNzneIsr2aoQ5SKNgWf7siV2+jq7cP6H1t9CsqxMzYeBQyTNP/Saskw2IVwZ5lUcS2CBKD76pDAQDnRZdCwXR8vCAx+L7G1mszxZIOUZahaue9ISIiHABQVFTg9PcPe/W2319XcPU2unr7gP7RRkJI1+l0csJx3BjYVofPhG1+SDGAMAC3Avia47jxPM8fdiCWVQDWAZgJYB/HcWMBuMGWrDRnavhb68A1ANgm3Pr6ujt6+Fl5eem65Ly9iau30dXbB/SeNqpNJoBh4RMd2fR/sqTSAJlhodOpO3UuhfRvMqLRqKBmO+45aX6MzDAAy8LXt+2qogMGJMBPpYZbVRV8vHU9utZJb/n9dSVXb6Ortw/oH20khDifIz0nLwP4GcAVPM83TR3lOO5FAF/DNhTr8s6etFl1rgcAXAzgUQBGAJpWuzYmJfpOR95AkmTU1hocPbxNCgULLy8damuNEMUO15fpk1y9ja7ePqD3tVEnCIBKDV1wGKqq9GBZBvV6M2pqjRDtmdHejKVZomE2WyF2vM5Ti2Nq64yo15uhYdFmOWEPN2+sHXYeWIZBHp8Fz5CQTsXnDL3t99cVXL2Nrt4+oOva6OWlo94YQvoBR5KTCwDc1jwxAQCe5yWO49agE5W6GsoITwLwYeP5Gs6TDCAcQB5svTLNNf58TiuhCULXfCiIotRl5+4tXL2Nrt4+oHe00WQywZdVAAD8YxMgCBJUKgXqDVZYHYhNapZoSJIMyY45J82PsVhl6I0C/Dw0bb427p4+qBKs8FepUZiaiviAoE7H6Cy94ffX1Vy9ja7ePqB/tJEQ4nyO3IKoA6BqZ5sanasRHgbgPQDjG5/gOE4FYCRsE+IPAhjHcZyi2TGTAPA0GZ6Qvq04Mx0ahQKSLMMvJgYAwDBAjb71SM7uU6s3o72pKgzDoK5hY1UWrXVCCCGEdAVHkpNfADzHcZxH8yc5jvME8CxsQ77s9TdsQ8HWchw3juO4IbD1vPgCWAlgM2zVwDZxHDeI47i7AcwGsNSBuAkhvUhZRjoAoE6WwKps9zsEUYbR1PlKXc6iN1rPOpzMpLGNMtUXnVPHLSGEEELa4ciwrnkAjgLI5DjuM9gmxIcAuBq2+SD32HsinudljuNugS3Z+ACAD2zJzTie53MBgOO4KwCsBnAMQBFsq8dvcyBuQkgvUpuXC28ABsW/b0OCJMNkbmcVxG5gMgsQRLnd7l/Z0wuoroa1orxb4yKEEEL6C0fWOUnnOO5iAAsBXAnAD0AlgB8AvNg4sb0T56sB8HDDn7a2H4FtgjwhxIVkCgK28skYe8lEjIdtSJdVkGCyCB0e2xYlI+Gu4Axo1CooGRl2TDmBkpFwR2B602OTRYRVlKBRMG2uUK8ODASqq8HU0lpthBBCSFdwqOxFQwLyOM/zITzPqwEMArCks4kJIaT/yiktwYm6Wijj4gDY5nRYBBEmi2M9JywDxGj1iHM3wN4lUhqPidHqwTKAySLAYpXAtDPxxCPMttaJ1txz82IIIYQQV9bp5ITjOB+O474F8GOzpy8AcJzjuH0Nq8YTQshZFRcXAQBCQ20F+FiWgckiwmLtuWFdFosI81kWgPRNTMInxYX4uqqimyMjhBBC+gdHek5eBTAYwHPNnjsA4FoAowEsdkJchBAXF1tTgwn+gQj18QNgS07q9BaHzyfKwJE6fxyu8oFo5xIpogz8WeePP+v8ITaMBKs3WNrtOQlLGoCd+bnYn5UBi8XxWAkhhBDSNkcmxE8DMIfn+Y8an+B53gLgU47jfGFbpHGOk+IjhLggURQxxd0Dnt6+8HC3rQwvy7bEwOFzyiy+rLQNuxoUWQalHZNORJnFV9URAIBh7lVQMBJqDdZ2C6L7+vpCq9XCZDKhqKgQ0dExDsdLCCGEkDM50nPiCaCqnW0lAAIcD4cQ0h+UFRbCU2krHxwYnwAAEETJ4fkmzmQyWyG00/XCMAwSwyOQ5O6BkrTT3RwZIYQQ4vocSU6OAbi3nW33APjH8XAIIf1BSRoPADBKElQetiWTBEl2uFKXM5ktIgSx/VWtb/YPxMsDh8B4/K9ujIoQQgjpHxwZ1vUygC85jvsTwMcASgEEwjbnZBRs650QQki7qnKyoQOaVlxnWQZGswhzr+g5EWARJLipFJDbqCcse3oCNbW01gkhhBDSBTrdc8Lz/LcAroFt7uhiAOsAvARbonMtz/NfOTVCQojLMTRU6jJrbSuuN5URNvd8z4nJIsJqldqt2KX0t41cZWpqujMsQgghpF9wpOcEPM9/CVvviRa2RRhreJ7XOzUyQojLspY39Dp4egGw9ZwYTAJEyc4yW11IECUYLQL8GE2b291Dw4DMTGhorRNCCCHE6RxKThrxPG8CUOikWAgh/QRTZ1thXenv3/Rc3TlU6nK2eoMVbGDb23xjYoBfDsGjrSXkCSGEEHJOzik5IYQQR+yvqsDukmI8cuPNAAAJgN5oPadzKhkJtwZmQaNRQsk0LFpixzG3BGQ2PW5UZ7CgvU6ckKQBqAbgxrIw1dRA6+19TnETQggh5F+OVOsihBCHybKMlMJ8nKitQciAAQAAUZTOeTI8ywBJbnUY4KFHO9NF2jwmUVeHRF1di2PMFqHdcsIBoWGoFWyJVGk6lRMmhBBCnIl6Tggh3aqurhZ6vW2KWnBwKADAKvaOMsKNTA3lhJVtJDksy+IHowHllZW4qb4eUd0fHiGEEOKyKDkhhHSroowM3BgajnqlEjqdDizLwGISzrnnRJSBf+p9oTYrwanL2lvk/YxjThp8AQBD3KqgaDjIbLGVE1ZrFJDaGN+V7uOL3/kUjKmuwuhzipoQQgghzTmUnHAcFwDgaQCXAQgFcAWA6wEc53n+E+eFRwhxNRVpPG4Oj0SVZJvjYSsjLJ1zz4kos9hfEQkAmBdZDqUdk05EmcWnlba+j4G6Giga5p2YLSIsVhGMVom2Jq+EhYUDAIqKqB4IIYQQ4kydnnPCcVwsbKvAPwAgH0AQbElOEoC9HMdd5dQICSEupa4gHwBgUKkANJQRNlrRm4pfiZIMg1lod62TyKAgJLl7wJqV1c2REUIIIa7NkQnxr8O2KnwsgBsA2+gJnudvB7AfwHNOi44Q4nLMpaUAAMndHQDAMEBtLyoj3KhObwHTztiwOJUaLw8cguG0SjwhhBDiVI4kJ5MAvMTzfDXOHO+wDsCQcw2KEOK65IaV1Vlf21wPUZJhNPWeyfCNDCYrJKntbT5R0QAAj/Z2IIQQQohDHC0l3N43CQ3sWl2AENJfqUxGAIAuJAQAIPSySl2NzBYRVrHt5CM4iQMAeLAKWBsqjxFCCCHk3DmSnPwM4FmO49ybPSdzHMcCmAngF6dERghxSW6CrSqXd0QUGAawOmGNk65gsggQ2lmJMSgyCnrBllCVpqd1Z1iEEEKIS3MkOZkHYCCAdADbYespmQPgKICxAOY7LTpCiEsxmUzwUygAAAHxCU2Vusy9tOfEYhXbnBSvUChQJdt6VSoyM7o7NEIIIcRldbqUMM/zJzmOGw1gEYBLAYiwlRT+CcBdPM+fcGqEhBCXUVJSjLnJJxDm4YkNsXG2NU6sIszWc+85UTISbgzIgVqthJKR7RpgqmQk3OCf3fS4ObNFhFWQwDAM2jqZsaHaWG1+7rmGTgghhJAGDq1zwvN8GoDbnRwLIcTFFRcXochsgi48HKxKBYZhoHdSGWGWAQa510CnU8NoBNoZkXXmMW41bW6TZBl6k4BAby3ENnInwd0d0Btgaqg+RgghhJBz5+gijAyAEQDc0cbQMJ7nD55bWIQQV9S4aGFISCgAWxnh+l5YRrhRnaH9csKGiEhs+uYrhAcHY3L3hkUIIYS4rE4nJxzHXQBgN4CIhqcaP7rlhscyAIVToiOEuBQTn4obQ8MR6OsHwFapy2B2znwTSQZS9d5QW5WIU1bYf4zRGwAwQFeD1tNLDCYrxHa6YNySOHy9cxsuqig7p7gJIYQQ8i9Hek5WArACuBu2FeKp0D8hxC7awkLcHB6JfMbW4SpIstMqdQkyiz3ltvVH5kVWQmnHpBNBZvFRRQwA4JnwE1C3Me9EkGS01XkSFhYOACgsLDinuAkhhBDyL0eSk5EAbuV5/hNnB0MIcW2KhjVBNIFBYBhAEHtnpa5GZosAQZChaqOuYWhoGBLdPRBmMkE0m6HQaLo/QEIIIcTFOJKclIJ6SwghDtBaLYBKDY/wiIYywiJMvXCNk0ZmiwiLIEKjVUJqNbwrKCgYC5IGQqdQoCwjHSGDBvdQlIQQQojrcGSdk7cAzGu1CCMhhJyVJEnwbhgg5RcT01RG2OKEMsJdxZacNJYTbkmtVqNKssVenpHe3aERQgghLsmRnpNEAIMAFHMcdwqAodV2mef5SeccGSHEpZQXF8GnYW2QoIQkp5YR7iqSLMNgEsC2U07YoLS9hdbk0VonhBBCiDM4kpwkADje7OfWtxTbKbxJCOnPStJPQwPALElQe3uDYWylenu7Or0ZDOPR5jbBzR0wGmEqLenmqAghhBDX5MgK8RO7IhBCiGurzM5GKIA6hgHDMBAkGUYnlRHuSgaz0G45YdbXFzAaIVVVdXNUhBBCiGtyaBFGQgjprGxBwKsnjmPSJRMwBrY1TpxVRhgAFIyEaf55UKuUUDAy7KgkDAUj4Rq/3KbHbTlbOWFtcDBQWAiVofXoVkIIIYQ4wq7khOM4EcDFPM//wXGchLN/7Ms8z1PSQwhpobCkCEVmE9SRUc3KCDszOQFGeFRBp1PDaLQtsGjPMcPdz97rcbZywt6R0cBff8FN6P09QIQQQkhfYG8SsRi2BRcbH/fiKayEkN6ouLgIABAWFtasjHDv/1J/tnLCgdwAvJ2ThWpZxvmy3GZVL0IIIYTYz67khOf5F5s9XtRl0RBCXFZ8RQUCQ8MR7u7ZJWWEJRlIN3hCIyoRydo30V6SgQyTpy0+bR3YNnKLluWEWyYnYbFx+LrMNhm+qqoKfn5+59QGQgghpL+zd1jXJZ05Kc/zBx0LhxDiqs5jFQgOjwSr1XZJGWFBZvF+WSwAYF5kNZR2dPAKMosPyuMAAM+En4C6jXknZysnrFarERgYiLKyMhQVFVByQgghhJwje4d1/Yh/bxm2N25BbtgmA1CcW1iEEFdSW1MDP6VtjZPgpCQwDFDfB8oIN6ozWNDeiK0hoREwCxLKkk8Bg4d2b2CEEEKIi7E3OaHywYQQhxVnpkPFspBkGR7BoRDEvlFGuJHRZG23nPBELy8MiE9EXkpyN0dFCCGEuB5755z81NWBEEJcV0VmBvwB1MoyGKUSoiTD5MRKXV3NbBEhiG2XE2Z9fIDiElrrhBBCCHECh0r+chwXAOBpAJcBCAVwBYDrARznef4T54VHCHEFtfn58AdgVCnBMIDFyWWEu5rJIkAQ2y4nrAkMBopLoNTXd39ghBBCiItp46P27DiOiwXwD4AHYCsvHARbkpMEYC/HcVc5NUJCSJ9nLrVVtLK6uTeUEZZg7gNlhBs1lhNm2yjn5RUZBQDQ0VonhBBCyDnrdHIC4HUApQBiAdyAhgnyPM/fDmA/gOecFh0hxCXI1dUAAIWvb1MZYbMTywh3NbNFhLWpnHBLAfHxAABvhoVECQohhBByThxJTiYBeInn+WqcuRjjOgBDzjUoQohr+aimCo+fOA5m5CgwDAODSXBqGWEAUDASpvoVYFpwMRSMfSdXMBKm+ORjik8+FG2UEW7UVE64jZ6T0IQkCJIEBcOgpiDP4fgJIYQQ4uCcEwDt3R7UgFaPJ4S0kldYgEqzCSEJiWAYoE7v/DLCCgY437MCOp0aRqNtgUV7jhntWWHX+dsrJ+zm7o5KUUAQq0bJ6dPwjY7tZOSEEEIIaeRIz8nPAJ7lOM692XMyx3EsgJkAfnFKZIQQl2A0GlFZaUsAwsIiIEoyjGZrD0fVeQaTFVI7nSs/SBJeS0tFEQ3rIoQQQs6JIz0n82BLQNIB/ABbT8kcAIMAJAAY57ToCCF9XkF6GmbGxKFKluHp6QlB7JoywpIM5JrcoZFUCGbs65mRZCDXbLvPEqXRo41RW03MFhFWUWqznHBNcDCOnjiOiRXlDkROCCGEkEad7jnhef4kgNEADsC2OKMIW0nhdABjeJ4/7swACSF9W1naaUwMCMIk/0AwDANrF5URFmQW75bEY0NeFAT5LFlGq2N2lCVgR1kCBPnsb4dmiwChnbFiYWHhAICiosLOBU0IIYSQFhyac8LzfBqA250cCyHEBdXm5cIfgEGlBMsysFr6VqWuRiarCKtVhEarhNQqSYkKCMQYX3+45WT3THCEEEKIi3B0EcY4AFqe55M5jvMBsARAJIDdPM9vd2J8hJA+zlRSDAAQ3D1sZYT72BonjWxrnTSWE26ZnIRrtZgdn4gKg6FngiOEEEJchCOLME4BkAJgRsNT78C2IGMEgK0cx93rvPAIIX1d4xonrK8fGIaB3mh1ehnh7iBJMgzmtssJB8QnAAC8wEBub9Y8IYQQQjrkSLWuFwB8A+BFjuO8AVwPYCnP8yMBLAXwuBPjI4T0cSqjrTfBLTTUVkbY4Pwywt2lTt92OeHQxCSIsgwVy6KW5p0QQgghDnMkORkOYBXP83UAroBtaNiehm3fAkh0UmyEEBfgKdrml/hGx9jKCJv63pCuRu2VE/bw8kaVYCuPXJLGd3NUhBBCiOtwJDkx4t+5KlMBlPA8/0/DzyEAqp0QFyHEBej19fBV2N4uAhOSGsoI993kxGwRIbQzbKuetb2dVtOkeEIIIcRhjkyIPwRgDsdxfgBuBrAFADiOGwVgYcN2QghBUVEhZhz/EzF+AfgwKqrLyggDgIKRMdmnCCqVAooz56y3e8wk78Kmxx0xWwRYRRmqNoZ2mbVawCpAX1TUycgJIYQQ0siR5OQJAJ8D2AkgGcDLDc9/DsAA2yKNhBCCwsICWGUZyqBAKFRKGExCl5URVjAyxniXQadTw2iU0c6SJGccc7FXmd3XOFs5YXh5AxUVECoqOhk5IYQQQhp1OjnheT6L47jBAIJ4ni9ptuk6AH/xPG/uzPkaemBeAXA1AC8A/wCYx/P8oYbtIwC8AdvCjxUAVvM8v7yzcRNCul9BQT4A2yKFLMvAYhX7ZBnhRmcrJ2yJT8Brv/2KqJGjcFnPhEcIIYT0eY7MOQHP83KrxAQ8z/8GQNlQargz3gdwEYBbAZwP4BiAbziOG8BxnD9sk+xPw5acLATwEsdx9zgSNyGkm6Wk4KHoOJzn6WUrI2wSuqyMsCQDBWYd8oxau3pNGo8pNOtQaNbZdYwkyTCY2i4n7JuQiKM1VThdWtLGkYQQQgixR6d7TjiOiwawDsB4AOp2dlPYea4EAJcB+A/P8782PPc4bBPtp8M2+d4MYCbP8wKAFI7jEgHMRcNcF0JI76UrL8OowCAUqtRdXkZYkFlsKrYVC5wXeQJKOyadCDKLzaVJAIBnwk9AzXS8Rkmdoe1ywmFh4QBsQ9kIIYQQ4hhHek5WAhgDYD2AvwD8AmA5bMOxZNjWPbFXOYCrABxtfILneRkAA8APwDgABxsSk0YHAHAcxwU5EDshpBupDEYAgHtoaJ8vI9yovXLCYWFhuMjXD+M0Guhp3gkhhBDiEEeSk/EAFvA8/zhsvRdmnufnwjbs6icA19p7Ip7nq3me/6L5PBWO424CEA/ga9hWnc9rdVjjCmdRDsROCOlGHpJt8rtPdEyfLyPcyGwRYRXPzE48Pb1wd1Qs7oiIRnFKcg9ERgghhPR9jlTr8gBwvOFxMoBFAMDzvMhx3FsAXnc0GI7j/gNgM4BPeJ7/lOO4lbAN62rO1PC31tHrAIBS6dB0m3YpFGyLv12Rq7fR1dsHdG8ba2tq4K9UAQDCBg6EKMuwClKb8zWcoXmLWJYBi46v0/IY2BWbRRAhyYCmjfeQOoaBH4Dq3CwoleM7DrqT6N9o3+fq7QP6RxsJIV3HkeSkCLbFFgEgHYAfx3GhPM8XAagEEOxIIBzHXQvgPQC/Abit4WkjAE2rXRuTEr0j1wFsX0B8fd0dPfysvLx0XXLe3sTV2+jq7QO6p40F/EmoWRaSLCNqcBJKqs1gWBY6XXtT1c6NQvo3sdBoVFCzHc85aX6MTqe26xiGZYF23kOsOttaJ+ayki57jwHo36grcPX2Af2jjYQQ53MkOfkctopZ+TzP/8pxXD5sizIuAjADQKdng3Ic9yhs5YI/AnBHs2FeeQDCWu3e+LPDs04lSUZtrcHRw9ukULDw8tKhttYIsY0hH67A1dvo6u0DureNmcdPwB9ArSyj3mBFnd6Mmjpjl1XrsjRLNMxmK0R03L7mxxiNFoh2JCdmE4N6vQW1KvaM11D09AQqq2AoLEZVlcP3T9pF/0b7PldvH9B1bfTy0lFvDCH9gCPJyQuwzS9ZDGAygOcAbAMwu2H7I505GcdxMwGsAbAawBM8zzd/JzsI4CGO4xQ8zzeu3DYJAM/zfKkDsTcRhK75UBBFqcvO3Vu4ehtdvX1A97SxKjcP/gAMKhUkSUa9wQJR7KLMBIDULNGQJBmSHdW6Wh4D+46BjHqjFQFemjNeQ5WfP1BZBdTWdunrS/9G+z5Xbx/QP9pICHE+RxZhrABwIcdxoQ0/7+Q4LgfAxQD+4Hn+J3vPxXFcEmw9Jh8DWAogiOO4xs1G2OafPANgE8dxywBcAFsS9FBn4yaEdK9TghWLjv2B/916By5ngPouLCMM2FZ7v8S7BCqlAooz10hs95hxXsVNj+1VpzeDYTzOeN49LBxIT4fW3Km1aAkhhBDSwJGeEwAAz/NFHMcNAOALoIjn+f9z4DQ3AlDBVn64dQnibTzP381x3BWw9aocg22+y9M8z29zNG5CSPcoKMiHRZIQEB0DQZJhMHdtpS4FI2OCTwl0OjWMRtmuRRUVjIzx3p1fNNFgFiC2cQG/2Djg4E/wAiDLcsNK8oQQQgixl0PJCcdx98I2vCui2XN5AJ7leX6Xvefhef4VAK90sM8R2HplCCF9SEGBrQp4WFg4BFGG2Sx2cETfYTYLEET5jHpg4YMG4+l0HsVmEz4wGuDm1nWT4gkhhBBX1OmZZQ2T1zfAtnDi/2Bbzf0eACkAdjSsU0II6cdkWcY1YPFgdBwifX0giFKXr3Eiy0CpRYMSs9ruSfeyDJRZNSizajo1Ud/UzlonPv4BSBVF5BmNKCjIt/+EhBBCCAHgWM/J4wDe5Hl+Vqvn3+U4biNs657sPtfACCF9V0VpCS7w8gbLMAgJi4DFKsFs6dqeE6vM4p0i25y1eZEnoLRj0olVZrGueAAA4JnwE1Az9k3eNVtFWAUJWq0SUqvhXZGRUUhOPom8vDwkJnLtnIEQQgghbXGkJl8EgE/b2bYLQJzj4RBCXEFB8imwDAOzJME9MABmqwiL1YWGdVkEmK1im4s2jggNw7UhYdD//VcPREYIIYT0bY4kJ0dgK+fblvMA/ON4OIQQV1CRmQEAqGUZsCyLeqPFnuJZfYYsA3qjtc0J74Pc3HF7RBS02dndHxghhBDSx9k1rIvjuEua/bgLwEqO4zwBfAigGLaKXVMAzALwoLODJIT0LfqG+RZmnQ4MA9TprT0ckfPVGSw4Y0Y8AF1oGFBUBLXe+YswEkIIIa7O3jknP6LlqgEMgJloud5I48f0+6A5J4T0a0J5ue2Bjy8EUYapi8sI9wSjqe1ywv4JCcCxo/AUXWcYGyGEENJd7E1OJnZpFIQQl6KsrwNYBbQhobB2Q6WunmCyiBBE+YyxsaEDB6MGgIdCAXNtDTRe3j0RHiGEENIn2ZWcdGbVd0IIgdkM6NzgGxsLqyB3eaWunmC2CLaKXUqmRRnioIhI5AlWeClVKExORuxFtEwTIYQQYi+7JsRzHHeQ47gRnTkxx3GjOY475FBUhJA+y2g04PlT/+COY38gYswYWASxW3pOFIyMi73KMM6vAgo7F2ZXMDIu8izFRZ6lUDCdm7JvsoiwCOIZk+IZhkFVw+Py9LROnZMQQgjp7+wd1vUGgK84jvsTwA4A+3meN7TeqWGS/BWwTYo/D8DDzgqUENI35OfbVobXenjCNyAQhZVGWAX71g85FwpGxmW+RdDp1DAaZbQxHaTNYyb7FDl0PYtVhNkignVXn7HWiUmrBQQR9fm5Dp2bEEII6a/sHda1l+O4nwC8AGAjACXHcckAsgDoAfgAiAQwBIC1YZ87eJ4v6YqgCSG9V16eLTmJiIgEyzKo01t6OKKuU2+0gvV3O+P5ouhobNy/D+MTE2nCHiGEENIJdq8Qz/N8OYBZHMe9COBG2CbJxwHwBlAOIAW2HpZPeZ6v6IJYCSF9gP74MTyfNBCGgEBIMlBv7J7kRJaBakEFk0UFjWzfNWUZqBFVAABvhRVtLFtyVnV6S4v5Jo184hORYzQgpzC/cyckhBBC+jm7k5NGDYnHuoY/hBDSglBYiKFe3sjX6rq1jLBVZrG6YCAAYF7kCSjtWPbRKrN4s2gQAOCZ8BNQM50bfmY0C7C2MX4sMjIKAJCXR8O6CCGEkM7odHJCCCFnw9TWAABUgUEQRMklK3U1MltECKJ0xhtpRFg4rgkORZgMCGYzlBpNj8RHCCGE9DV2VesihBB76UxmAIBXVCQsgmuucdLI1FBOuHXFrpCwcPw3LAKT/ANRwqf2UHSEEEJI30PJCSHEaQRBgE/D9/SgpAGwWEWYXLjnxGQRYLFKYNmWyYlKpUKVZBsiVnqakhNCCCHEXpScEEKcpjgvF74qNQAgdOBAGEzCGWV2XYkoyjCahTOSEwAwqG2vQ21uTneHRQghhPRZlJwQQpymKDUFAGCQJKi9PFGrN/dwRF2vVm9us8qX5O0FALCUUEV1QgghxF52TYjnOO6uzpyU5/l3HQuHENKXleflQrZaYFZrIIgyDCbXnW/SSG+0Qmyjd0gVFAxU14CpqemBqAghhJC+yd5qXVs7cU4ZACUnhPRDKfV1ePfvY7j9ltvxH6n7yggDAMvIGO1RDqVSAZYB7KgkDJaRMcqjvOmxI0xmAYIko3XniXdUNHD6NNwsrt97RAghhDiLvclJbJdGQQhxCbkN8yui4uJg7eZKXUpGxpX+hdDp1DAaZdgz1UXJyJjqW3BO1zVZRFgFCRoF02JBxqABgyB+9y18GBaS1QpWpTqn6xBCCCH9gV3JCc/zds/o5Diuk2ssE0JcRW5uNgAgJiYWFsG1K3U1aqzYpVUqITfLTiIHDcL01FPIN+jxSWUlgoODezBKQgghpG9waBFGjuNuBTAegBpoGs3AAnAHcDGACKdERwjpM0RRxH0aN+gTByDa1xcmiwiLtfuSE1kG9KICoqAAa+cILVkGDJICAODGim1ObO+IxSLCbBXBuqtaVCZTqzUw+/rBVF+H3NwsSk4IIYQQO3Q6OeE4biGAhQBqGo63NvwJBCAB2ODMAAkhfUNhdhYS3N0BAKHR0ciosnTr9a0yi9cLBgMA5kWegNKOSSdWmcXKwiEAgGfCT0DNSJ2+rgyg3mBBqJ/ujG0xMTHIy8tBdnY2zj//ok6fmxBCCOlvHCkl/D8AOwD4AVgJ4FOe54MBnA+gAsAp54VHCOkrCk+eAADUSxIUHp6oM3RvctKTavWWNlOhEUHBuDcqBuyxo90eEyGEENIXOZKchAPYzvO8DOAogDEAwPP8UQBLANznvPAIIX1FVVYGAKBOpYIgdm+lrp5mNAuwimemJ9HePrgiKAR+5eU9EBUhhBDS9ziSnOjxb5HONACxHMc1jmc4DqrsRUi/ZCq0Vb0SvbwgiFK/mAzfyGQRIIpnDgnzS0gEAHgK/SdRI4QQQs6FI8nJH7AN7QKADAACgMkNPw8EQEX9CemHmKpqAIA6OBhmq9ivek5MZgFmqwSWbTmjPmLocACAl0IBU011D0RGCCGE9C2OJCevALiF47hPeZ43wzb/ZBvHcXsBvA7ga2cGSAjpG3RmEwDAOzYWFqvYrWuc9LTGymRMq3JfgRGRqLZaAQD5//zTE6ERQgghfUqnkxOe5w8CGA3gg4anHgWwB8AAALsBzHJadISQPsFisaDSaECt1YrQQUNQb7S2WJDQ1UmSDL3RekbPCcMwqG54rvx0ak+ERgghhPQpDq1zwvP8PwD+aXhsAvCAM4MihPQteXm5eDWNh4eHB34bOgR/p1d2ewwsI2O4eyUUCgVYBrCjkjBYRsYwt8qmx+eiRm8GGM8znje7ewAmE/R5ued0fkIIIaQ/cHQRRm8Al8K26OIZvS88z797jnERQvqQnJxsAEBUVAxEmYHBbO32GJSMjGsD8qHTqWE0ypDsyDWUjIxp/nlOub7BJEBso2KXIjAQyMuDubL7EzZCCCGkr3FkEcapsA3fcmtnFxkAJSeE9CONyUl0dAysogSTuf9U6mpkMguwihIUrZ5XjRyFe/Z/hIQhw3Blj0RGCCGE9B2O9JwsBZAC4EkA+bCtCk8I6ce8TvyN1UNGoFar+//27ju+rru+//jr3CVdLWvLQ97ja8cjOyFAaEIgYZRRCL9QoED4FUraXwulTdgz4dcSKCWUH7RAoZQ2pGG1EEYLZJKQ4dhx4tg+XpJl7Xkl3b3O749zbWtdW5Yl3Sv5/Xw8ZEnnfs85n6+P7vic7yKVyhIrQMuJ40Aya+HNWtMe7+I47irxAH4ry4Tx7GclnkiTTGcp83txxgSwcuMmIpkMx461zPzgIiIi54mZJCebgdfZtv3IbAcjIguTf3iYpaWl+Gtq3WmEC7DGScrxcGf7dgA+tPI5fNMYdJJyPNzZ4e5z24rnCFgzv9cSS6ZJpjJUlPjGde9avXoNAKFQiFBoiOrqmhmfQ0REZLGbyVTCx4Cq2Q5ERBauitx0uTXr1xOJpchOZ8DHIpPJOETi6UkzdgWDZbxtg+EjGzdz/PHHChSdiIjIwjCT5ORvgE8aY9bMciwisgANDw3S5PMDsOqSiwmFz991WIfDiSm7hl1QXcNFS6oZ3L9//oMSERFZQGbSreutwArgiDGmD4hOeNyxbXv9OUcmIgtC655nCHo8JLNZypavJHagr9AhFUw0liI9RatRpqYGhoZIdLYXICoREZGFYybJSXvuS0SE3v37WA2EPB7SDsQS58/K8BPFEmlS6ckzdgVXroShIfyh4YLEJSIislCcdXJi2/bNcxGIiCxMkbZjACQrK0mlssST529ykm/GrnqzBZ59lupMGsdxsM5lWjAREZFFbCbrnKw6zcNZIGzbdmjGEYnIgtI5NIg/HKZi82YSqcx533Iy1Yxday69lO5776Hc42W0u4uqZcsLGKWIiEjxmkm3rlY4/RydxphB4C7btu+YSVAisnD89FgLXV2d/OtHPspoNFmwmbo8lsOWshBerwePxRlepcbsEwyd/PlcZbIO4Via+qpSMmNmU66ub2RvOk2j30/b7l1sU3IiIiIypZkkJ+8Avg48CHwP6AYagRuB3wduByqAjxljBmzb/trshCoixSYajdDV1QnAhg3rOdqbLFgsPsvhTQ1tBIMBYjGH6eRIPsvhjfXHZjWO4XAcllZM2j7i9xNMpwgda2HbrJ5RRERk8ZhJcvKHwD1TjD35N2PM14BLbdt+rTEmBNwCKDkRWaRaDh/Ca1ksqamlrLKaaFt3oUMquGgsTTozOTN6fv06PvIfd/P2HRdyXQHiEhERWQhmkpxcA7wuz2M/Av4z9/NvgY/M4PgiskD07HyS7158Oa2WRTqdJX4ejzc5IZpIkUpn8U0Y875mwyYAjhw5XICoREREFoaZLMI4AFyY57ELgZHczxVAZCZBicjCMNrags/jIVheXvDB8Mmsh88c28GHD2wmmZ3ebFjJrIc7jl/IHccvJJmdycvhZCdm7Jq4Uvz69RsAOHpUyYmIiEg+M2k5+XfgM8aYFPADoBd3zMkbgE8B/2iMqQHeDzw+O2GKSDHK9roLLnqbGoknM2o5wZ2xK5FMUxX0jZscYO2atdy6fhMrg2WM9nRT2bS0gFGKiIgUp5ncKvwYcA/wRaANiOe+fxE3cfkI8Erg4lxZEVmkglG3cXTJuvWMRBLTmSBr0XMcGIkmJ7Wc1NTWsbaikqWlpbTt3lWg6ERERIrbTBZhTAPvMsZ8FrgWqMddMf5R27ZbAIwxvwBW2LadmM1gRaR4JJNJ6i33/saybdvpDBdupq5iMxxOTpmohfw+6oEBez+84lXzHZaIiEjRm0m3LgBs2z4CHMnz2NCMIxKRBaH1+b1U+f1kHYdas4Ujh0OFDqloROPuoPiJMtU1EAoRb28vQFQiIiLFb1rJiTHmKPAHtm3vMca0cPrlzRzbttfPSnQiUrQ6ntnFCmAIyHgDxOKpQodUNGJxd1B8idfCGfNqGVy1CkIh/CHdvxEREZnKdFtOHuLULFwPMa21l0VkMWvt6uToQD9N69YXfKauYhNLpEgkMwTL/WTGrHmydPuF8Oyz1GayONkslmd2ZggTERFZLKaVnIxdcNG27XfOWTQismDs7Gjn0ZbDfOKP/ohIbOpuTPPJYzlsCI7g9XjwWEzrForHcthQOnLy59mSTGWJJtLUVpaQyWRObl93+RW0fPc7BD0e+g4fonGTmbVzioiILAYzGnNijKkEqmzb7jDGBID3ASuBH9i2/fBsBigixenQIRuATWYzoXDh577wWQ5vaWwlGAwQizlkp5Fr+CyHNze0zEk8Q6MJVjaUj9tWVlFJeyZNKpqgwT6g5ERERGSCs+5TYIy5AjgG/Hlu05eBzwFvA+43xrx29sITkWI0NDiAd3gYC1i7biORqMabTBSOJkllJmdIv25o4GMHnmdff18BohIRESluM+nw/FngAPBPxpggblLyVdu2a4F/Bj46i/GJSBE6+vRT3LX9Iv754ssJlASJajD8JLF4mlRmcle3TWYLAAcPHpjvkERERIreTJKTK4Hbc2uaXAcEge/mHrsH2DZLsYlIkep9fi8AEb+fZNodX1FoyayHv2nbxifsTSSz1pl3yO3zufZtfK59G8ns7A5OjyZSJJOZSYsxGrMZgCMH7Vk9n4iIyGIwkzEnWeBEB/NXASHgydzvVUB0psEYYz4GvMy27WvGbLsIuAu4DBgAvmzb9hdmeg4ROXextmMAZGpriCbSxIsgOQFIOWefYKQc7xxEAvF4mlgyQ1WZn+yYATCb1q3n77buYFlpKbFQiGB19ZycX0REZCGaya3CncAfG2OuAm4C7rNt2zHGNAIfyj1+1owx7wc+M2FbHfAr4CBucvJJ4HZjzM2TDiAi88Y35K7TUbZ6DcOjhR8MX4wcIDSamNRy0rSimQqfH5/lofWpJwoTnIiISJGaScvJrcAvgTcDfcAdue17cZOdG87mYMaYFcA3gauBif0c3oPbSnOLbdtpYL8xZiPwQeDbM4hdRM5RJpOhJpMBr4+GbdsZiig5yWckkiAzYdowy7IY9Puowe0et+XlZ/WSKSIisqiddcuJbdu7gQ3AVcA627YP5R66Bdhm2/bTZ3nIS3AXmd4BTLyNeDXwcC4xOeF+wORaakRknh0/fIimQAkAS3dcRDReHF26ilE0nppyxq5MbR0A8eNt8x2SiIhIUZvROie2bY8yIZGwbfuHMzzWT4GfAhgzac7/ZuC5Cds6c99XAb0zOSeAzze7g1+9Xs+474vRYq/jYq8fzE4d23Y+wVIg5GRZWV5FPDk6qetSIYytkcdj4eHMMQW8p8qUB31k0ymc2VuLkXgyQzKdpbLUhzPmwJXr18PgICXDobN6LdLf6MK32OsH50cdRWTuzCg5mUdlnBp8f0I89710pgf1eCxqasrPXHAGqqqCc3LcYrLY67jY6wfnVsfW/h4e6Wxn24UXckEW8HgIBgOzF9wMecfM0FVS4ifgmTrLsIDqyhLqK/34SUOru/2iVX58vjKG4h76QnHiycyU+58Nx4JM1qG6umzcdvOSFzHy1FPUZx0qy/34Amf3/6e/0YVvsdcPzo86isjsK/bkJAaUTNh2IimJzPSg2azDyMiMJxWbktfroaoqyMhIjMwUaxssBou9jou9fjA7dXx03z6e6Gxnxy230DMYIRpNznKUM5PKWqwuDeOxPCQTKTJMrl9ZqZ+1TWVUW6OketsJDYbY7AuAA4N7HmVJVTn1DcuoqW+iK1xCe1943ExbM9E7FKW+qoRU6lSy02S20ZVJU+71sefXD7HuqhdO61j6G134Fnv9YO7qWFUVVGuMyHmg2JOT48DyCdtO/N5xLgdOp+fmTSGTyc7ZsYvFYq/jYq8fzLyOjuOwb98+ADZt3srwaOKcP7zPFi8O72g6SjAYIBbLToqroaaMdXUevKGj9LYeJhlzb1Dc6vs+ANkIDEVCDHV1UNXQRPOqjVSsrONQR5jEObSihEbiJFMZMmP+vy2Pj4PA6EAfqw8fZtXlLzirY+pvdOFb7PWD86OOIjL7iv0WxMPA1caYsQsRXAfYtm3PeLyJiMzM8ZYjbPJ4aAiWsXrNOiILZGX4FQ0VbKrNkD7+LF37nz2ZmOQz0tdDz96nWBJtY+vKcspKZ34fJ5JnUHzr5i18peUIuzUoXkRE5KRibzn5FnAb8M/GmDuBK4D3A+8tZFAi56ujv3uMD27czIiTJeN4icaKPzlZ0VDB2qoEo0efZaS3Z9r7pRMJuvc/S9PGNFua17KvPUpsBjOTRWMp4skMFSXeca05W7duA2Dfvr1nfUwREZHFqqhbTnKtIzcABtiFuwjjrbZtf6eggYmcp4YO7AcgXF5ONJ4mViQrwwMksx6+cPwC7ji0gWRucHxjbRlrqlJ5E5OE4+N98Xfzvvi7STiT79VkMxm6D+6jJNTK5hXlBPxnv5p8LJEmFk9PmtFs69btWMBoy1FS8fjUO4uIiJxniqrlxLbtd06x7SncNVVEpMCc7i4A/M3NDI4U3wfqaPbUS9qSigDraiHetu+0LSZhyvI+BuBkM/Qc2seyLX42Na9k37Hhsxpn4zgwOBpnWd34mYtWr17DP+y4hMZAgJYnfsem37t22scUERFZrIq65UREiofjOFTn7vDXbd3BSBGvDB/we9nQVAq9RxjsOH7Ox8um0/Qe2kd1pp/VSyvPev/hcIL0hHEnHo+H0YAfgK7du845RhERkcVAyYmITEtHawvLcivDr7jsiqIeb7JmaQXBSCd9rYdn7ZipeIzQkX0sD8aprzm79RuisRTJKWYtyjY0AhBvbZmVGEVERBY6JSciMi1HHn0Er2Uxks2SraolXMTJSZ01TN+R/WQz576Q4liR0CCJzoOsrfNREpj++JNILEUsmcbrHT/upHKTAaB8ZHhW4xQREVmolJyIyLQM7n0OgNGqKsLRFKkiXr8g0n6YZHTG67Se1mB7GyWjHaxbVjHtfRKpDOFoCo9n/EvuuhddDUC95SEyMDCrcYqIiCxESk5EZFp+1X6cfzh6GM8llzBQhIPhrTGNEsM9XXN2Hiebpb/lIHWeME21px9MP9bA8OT/sxUbN9GXSuGxLA4+eP9shikiIrIgKTkRkTNKJBI8eWAfjwz2s+666wlHk4UOaZKldWVsqoiyzteHxfRm07JwWGP1sMbqmfY+AIlImFjnIVbVeimZ5vTCo9HkpHEnlmUxVO4mOP3PPjPt84uIiCxWRTWVsIgUp337niedTlFXV09twzIOdHUWOqRxSgJe1tfC50Z/Sbivi1Q6gzONXCNgZfh4yT0zOudQZzvLa5tYtXQ5h46fecxIJJoknspQ5vfijA1u8xa+/8ufkwn4efmMIhEREVk81HIiImfU8siDvLppKddu2040kS66mbpWN1UQCHcR6u6Yt3M62SxDxw7RGIhRU1lyxvKReIpofPKg+LXXvZzvd7bzq+f2kM0W7zgeERGR+aDkRETOyDmwn3esXMPV1TUMDMfPogPU3KupKqUhEGPw2OHxLRLzIDocIt13jFUNpXgs67RlHQcGhmOTVorftGkzpaVBRkdHOHr0yFyGKyIiUvSUnIjIaTmOQ+XoKAA1F2xnJFw8iy96LItV9SWk+44RGo5wa/yd/GX4j0g40+uxmnB83Ba/mdviN097n4kGj7dSlQ2xtO7Mg+OHwwlSExZj9Pv9XLFtB5dX13Dwgd/MKAYREZHFQmNOROS0OtuO0ewPALDiqhezp794BsM31ZVRlR2m+3grAANO1VkfY4Cz32esdDJBpOMIzasvpn/YSzKVf22VcDRFPJmh1GeNGxPzimXL2YBFy57d5xSLiIjIQqeWExE5rYMP/gafx8OIk4XaxqJZfNHv89Bc7SHaeYR0srCtOaHuTgLRXpobyk9bLhxNEk2k8XrHv/TWX3gRADWR6Lx3TRMRESkmSk5E5LQG9+wBIFxdw+BIgmy2OD48r2iooCTWx1ARzBzmZLMMHz9CU1mK8qA/b7lM1mFwOI41YXzK5pe+nFQ2S7XXS+fzz811uCIiIkVLyYmInFawvw+Aiq1bCY0Wx+KLZaU+lpWnGWk/ipPN341qPoUH+/EMd7Kq8fRjT4ZG46QnJHhVtbV05qYZOPybX89ZjCIiIsVOyYmI5NXd2cFSj7vI4KqrX8popDjGmzQ3luMZ7WK0v7fQoYwz2HaUWl+MmqrSvGVGI0niyQwTJ/dKLl8BQOKgPZchioiIFDUlJyKS19O7d/Ene57m24konmUrCUcLP95kSUWAen+c0PGWQocySTw8Sqa/jZV1JZOSjxPC0STReGrSuJOlV1wJQF00SjZTHK1BIiIi803JiYjktXPnk6Qch6WXX8FAKE62CAZrN9cHcYbaiQ6HJj223BpghWfwrI633BpguTUwS9HBYPsxqhiloXrq7l2ZrEP/cBxrwnonW6+7nngmQ6XXS+vOp2YtHhERkYVEUwmLSF47dz4JwCWXXlEU403qlgSp8UToz00dPFaJleaO0n/H7/OSSmeYTh5VYqW5veTfZjXGVDxGoqeFFcu2MzBskZliAoGhkTip9PjtpeXl/Mzn5YE9u3nX0cOsu/IFsxqXiIjIQqCWExGZUuexVv68sop3rlyD2biVkQKPN7EsaK4LkOo7RiIaKWgsZzLU2UFFOkRT3dRTC49EEsSS6UmrxTdc+QJ6kwme2vnEfIQpIiJSdJSciMiU9v78PtaUlfPCxiYy/jIiBV7fpLGmjEpnhMGOtoLGMR2ZVJJIVwsrllj4fZNfZiPRFKORFB7P+MeuuMJtLXnyySdIp9PzEquIiEgxUXIiIlMafc5d3yS2tIn+UKygsXg9Fs01PuJdLaQTUy+4mHB8fCz+Vj4U+UMSzvR6rCYcHx9PvI2PJ9427X2ma7i7k9LEAMvqJ7eeOEDvUBQmDJrfunU7L1+xklualrL3lz+b1XhEREQWAiUnIjJJKpWiYTQMQN3lLyAULuwK7EvryilLDRHq6jhtuU6njo5s7Vkdu9Opo9OpO5fwppTNZBjtOMqyiiwlAe+kx0PhOInU+Fm5vF4v16xdz2XVtfQ88vCsxyQiIlLslJyIyCTP/fZhlpaUkHEclr34pYwUMDnx+zwsX2IR6TxKJl34qYzPxkhvD/5IL80Nk1tPRsIJIvH0pCmFKy+6CICK3uJaw0VERGQ+KDkRkUmOPXg/AP2BAKGUh1Q6W7BYljdUUBLrI9TTXbAYZspxHIbbW2gMpigP+sc9lkxl6Q/FJw2K3/6a15POZmnwemnPda0TERE5Xyg5EZFJvMda3e8bNxZ0vEmwxMey8jSjHS042YW5MGF4sB9rpIvmhsnrnvSHoqQy46cUrmlaSnsuXzn4i5/PR4giIiJFQ8mJiIzT0dHO4f5+hlJJmq97BcMF7NLV3FCON9zDSP/C7uIUOt5CvT9GdWXJuO3D4QTRxOQphZ216wDIHjo4bzGKiIgUAyUnIjLO/ff/mn9tP8Y3/X6sFeuJxgszpW1leYCG0gSh40eZ1oqKRSw2Mkx28DjN9cFxE3RFYilCo/FJ4042vfo1ADRnswy1H5/HSEVERApLyYmIjHP//b8C4NqXvZyewWjB4ljZEMQZ6iAaGpr2PnXWCPXWyFmdp44R6ji7fWZi8Pgxqq1R6muC47Z3D0TITEi+1l58KcfTafaNjvD4A7+Z89hERESKhZITETmpr7uL2KGDWMALX3QtodF4QeKoWxKk1hNh6HjLtPcpsdJ8vvRf+PuK71JiTa+1p8RKc2fpt7mz9NvT3memkrEoye5Wmmv9eMd04xoacWftmti1q+Wqq/jMwf3c9/ijcxqXiIhIMVFyIiInPf3jH/CZzVv50iVX4C+vIRyd/6l7PZbFyvoAqd5jJCLheT//XBrsbKMiNcTSulNTC49Gk4RGE5O6dr3shlcC8MQTv2N4ODSfYYqIiBSMkhMROSm662n3h+XL6OqPFCSGpXVlVGZCDHYcK8j551ImlSLceZQVS6DEf2phxq7+8KSuXWvWrGPjxk2UAY/+14/nOVIREZHCUHIiIgB0H29jfdqdrnfZ9a9maGT+u3QF/F5WVHuIdBwhnUye1b5Jx8tn4jfxiciNJJ3JK7Ln2+f2xJu5PfHmae9zroZ7ughEe2lurDi5bXA4Tjg2uWvXWy+5gq9feCmlDz04L7GJiIgUmpITEQHgqe/9G0GvlxAOAXMJkdj8d+la2VhOSbSHUHfnWe/rYNHqNNGSbcLBOvMOY/Zpdaa/z7lysllCbYdpCiaoKg8AEI6l6B+OTeradcUb3wRAs2VxbPeueYlPRESkkJSciAiO4+Ds3QtAYsMmugfnv0tXVXmApmCSUNsRnGzhVqSfD5GhQZzB46xqLMPK5UTd/RGS6fH1Xr7J0JprTTnwg/+Y7zBFRETmnZITEWH/00+y0e8HYM1rb2RweH5XhbcsWNUYxBk8TmRoYF7PXSgDx45SzTBNte7g+IFQjNFYalLrSfkLrgKgprODdGr+W7NERETmk5ITEeGZ79+L17Lo9XkJVzaRTM1vy0VTXTnVjDBw7Oi8nreQUvEYsc4jrKzxEPB7SaQydPaFsSaMO7n8prcSzqSp9vp4+vtqPRERkcVNyYnIeW50dJR/ePgBPrp/L4HrX0XvwPx26SoJeFlV7SHWcZhUfH5bbAptqLOdkmgPq5vcwfE9g1GiiTSWdSpBKa2ooLu+AYDBX/+qIHGKiIjMFyUnIue5++77T2KxKJmmJpa95BWERhPzev7VTRUEwl0MdXXM63mLgZPNMtR6kMaSGDVVpYRG4/SHYvh841+at/7RO8k6Do2pNAefeaYwwYqIiMwDJSci5zHHcfjhf9wNwP9681vp6AvjnGGf2VRfE6QxEGWg9eCsDIKvIEaldXatLxVEqSB6zueeqehwiHRvC2saAng9Htp7w5MGxq/ecSH/HSzllmd38e3/UNcuERFZvJSciJzHnvjZT/lYdR3vWbeBq15yPf1D89etKuD3sqbOT6LrMPHRkXM+XomV5svBb/DVim9RYqWnvc9dpd/grtJvTHufudDf1kJFoo9VTRX0DUUZHE1Maj154TveRTST4d5772VoaLBAkYqIiMwtJSci5ynHcej80fcp8/m4YPUaBkYhnZm/gfBrllZQGu1m4HjbvJ2zWGXTaYZabZYFE1SWBWjrHiEzoQnrssuuYMuWC4jH49z7T18rTKAiIiJzTMmJyHlq1wO/5gLLfQlYcdPb6ZnHgfBNdeU0+sMMHNmPk83M23mLWWRokHTPEdY2BBgYjhEKj289sSyLP3vXu7lj81au2Lef/rZjBYxWRERkbig5ETkPOY5Dy93/jsey6A4GiTauJ5GanyShrNTHmhqLWPsh4uHRWTtu0vHyucQb+Gz09SQd77T3uTPxRu5MvHHa+8yl/rYWgrFumuvLONY1ysR2rJfc8ErKy8oo8Xh46v99uSAxioiIzCUlJyLnocfv+wnbHLffUMONb6WzLzwv5/V6LDYsL8cbamOw8/isHtvBws42cyCzAgfrzDuc2Mdpxnaap73PXMpmMvQf3ke9dwQnm2VwZHzricfjof51rwFgZV8f7c/vLVSoIiIic0LJich5Jp1O03XP9/BYFl2VlcSWGxLJ+Wk1Wbu8iiWpPvqOHABnPucFWzgSkTDhYwdYWp6iZyg2aezJNe+6mWM4BDwenv/KlwoSo4iIyFxRciJynrnnm99klcdD2nFY/o730tk3P2NNlteXszQQZuDw86STyXk550I13NNFtucIlb4U/cNx/P7xrSfr/vg9ZByHtak0O394bwEjFRERmV1KTkTOIz093dzxpS/xgb3P0nbBVvr8dfMyQ1ftklLWVGcJt+4jNjI85+dbDPpaD+MPHSOTShBPZsetGm9efDWt1dUAJH76E8KaWlhERBYJJSci5wnHcbjjjk8zOjpK85YtrLvpPfQNzv3ig5VlATY0+Eh3HmS4p2vOz7dYONksPYf24R1qIxpP4p247skHP8JQOs1oIsE37vpigaIUERGZXUpORM4T//31rzKy62l8Ph/vv/UTtHaNzPlq8OVBP2Z5KZ7+I/S1HZ3jsy0+mWSS3oPPkRloI5FKjxscv6SxCc8fvpWPHtjLd/7zBzz00P0FjFRERGR2KDkROQ8c3PU0tY89xgc3buZTb3k7aX8D0fjcroheVupj8/Ig/qEWeo/Y8zIAPkCKAKk532c+JaNRevbtJt5zjHR2/P/h5Te8kje/5e0AfPSjH6TlkF2IEEVERGaNr9ABiMjc6u1op+1LX2BVoIR+y8K86V3sb5u99UWmUhH0Y1YEKRlqofvgPpzs3I9rKbHS/GPwa/h9XlLpzLRyoRIrzddKvzrnsZ2reHiUzueeJuDzUla6Ydxj73//X/H8889hentp/+zt1Hzu81Q3LStQpCIiIudGLScii1hkdITfffSDrAqUEMlmWfInH6B9cG5nyqquLGHLilICg0dyiYlWgJ8N0ZFh2p55ipG2w5QETg2O9/sDfP4zf8NLG5fS5PPx9IdvY6S/v4CRioiIzJySE5FFanhwkF+978/Y4vOTymbxvOVmOqgmPXHhjFm0tK6cLU1ePN0H6FFiMusiI8O07n6S8PFDlJWAx+MmKQ2rVlP7nvcSzmRY6fHy5G0fINTTXeBoRUREzp6SE5FFqLuri4c+8Odc4PGSymaJvOK19FVvIJ6Ym3EmPq+HDc1L2LAkQaJ1D70th3DmeZHFlOPlS4nX8IXoq0k53unvk3wtX0q+dtr7FFosHOHwzscZbXmeoOfUCvIbX/hiyt5xM9FMhlUeD89+8K9p2/tcgaMVERE5O0pORBaZnTuf5C1vvZHdPV0ks1lir72R4XVXEo7NzaDv6soStq+pZCm9DO7fyVBXx5yc50yyWDybXcuezBqyWGfeIbfPc9m1PJddO+19ikEsmuDgrqcZPPA0gcQQJQEPlgWbr3kpZe/6Y0LpNEt9Pvr+7nM88i/fKnS4IiIi06bkRGSRiIZH+YfPfpp3v/sdDA4OsK+yktjb38vA8ouIzEFiUhLwsqG5iq2NEOg7QPdzO4mNhGb9PDK1ZDLNkedtOvf8Dqf/KEFvCp/Py6arf49VH/04ndkslV4f3/r21/nwh/+a3t6eQocsIiJyRgtiti5jjAf4JPDHQA3wW+BPbds+XNDARIpAMhHngX/6GsGnn2JrOo0PuOE1f8AfvO0v6ByIk5nlrlwlfi9NdWUsq8jij3QxdOAw0dDQrJ5DpieVyXL8WBeR4WGWrVlD+Yr1+MrqaN6yhdqv/CM//uKd7Nn1JLt/cR8PPPAb/uIPbuT6t76d+uaVhQ5dRERkSgsiOQE+DrwXuBnoAO4EfmGM2Wrb9txOPSRSpDoOHWT3v32HJa0trPUHwB8g7PHy2ds+TXDr1Rzvjc3q+arKA9RXl9IYzOCL9RE+2kpfb8+8jy2R8bKOQ/9QhGjsIPV9PdStaKakcTVVVdW87dO3s/X1b+DOO/8vx/c/z7YDB+j6xEd4orKKZS+7nh2veBU+v7/QVRARETmp6JMTY0wA+CvgNtu2f57bdhPQCbwBuKeA4YnMm0gkzPPP7+XQg/fTsH8fqzxeNlkW+APEsll6V6+j4vffRiLuJTp87omJZUFFMMCSyhLqyz2UWzEYPc5oewfhwf55WbtEpi8aT9HeMUBoaITamg6WNDVR2tDMFds3cs/d93D/3XcT+uUvWOrxsjESgf/6MTt/eC8DS6qp2LKFDdddz/ING7GshTP2RkREFp+iT06Ai4BK4P4TG2zbDhljdgEvQcmJLBKJWIzBjnaGuzoZ7elmtKuLeFcnztAQu0KD/OjAPhzHYU2wjDu37gCgG4f4BRdR9pLXEk96iEQdYGYtGQG/h2CJn/Kgn4pSL0tKsgScBFasl3hnNwMD/SSikVmsscy2rOMwEkkSjvZTNjBMVUUbVXV1BGvqePnrrsN502t5+mf/Q/v//Iqlo2FqfX5qIxHYuZO/vfce9qRTbNiwkYtXrmKTP0BpQyNVy5dT07yKysZGKuvqCZSWFrqaIiKyiC2E5KQ59/34hO2dwKqZHvTE9Juz5bHnj/HQV7/G0kSYEx8OLcZ/TPy5v5ak5Z73onSYtZn8d7d/6asmarlTm27PRNiUPVV27H1Nx4H/9i1hNFf2gkyUrdn8x/2Nt5JBy73sJhNjR57jAtzvraAv9yeyMZvgUieKZVlTduN5yCqj03K7h6xzkrzAiZFvie5HrCBtubKrnRQvdqJ5Y3iMUo7ixwFWkOY6xtRtwvGfoAQb97hLyXAD+f8fdmb97M2VrSfDazzxMRGMOa4Dux0fux23bDVZ3nCy7OR4n836eMrx4zgOlWS5yZccU9bB42TxZ7P4cXgqEuNnQ0OkkwnqnDRf2rwZcGepWJL7OqEtGsVxHMpql5NacyH3Na6m94JXMVqz1l23pHPqelrWiS8Lj2Xh8Vh4ox5wnFO/exx8HvAksljxLAymcFIJ0qk0mSRk0mXAutxX8co4p67G91JX45lGkjZ+n5fgtYq7i5plgZX24DjZfE+vU5LACHi6LbweD35fCn9JDG/wOrw3vhIrmyaw8yfUtO5mRbiX/ZEII4kYu3btpLmzgxuaV0Nr68lDDeS+4pkMX+jspgU/Hl+AK8pLubYsQAYPWcsibXnIWh4cLLDg15TR7fFjYbGeFJc7cffK5FpoTpRzsHjcX0W3txSPx2JFKsYl6dG81dvpraTdWwLA8myCK05Tdre3gmNeN6lqzCZ5YXokb9lnveUc9QYBqMumuDo9nLfsPm8ZB71lACzJprk2Hcpb1vaWccBXDlhUWRmujQ+S70bCEW+Qvb4KAIJOhuuTg3mP2+otZY+vEgC/k+VVyYG8ZY97Stnld8t6HIfXJPMv1tnlKeFJf9XJ31+X6MtT0qLX4+d3/uqTW9bXLOHLX7gVr1dz7ojI2VsIyUlZ7ntiwvY4UDuTA3o8FjU15ecU1ER3feserjm2hyvrG/KW+frOBxhNu4OTr1m1hisal+Yt+y+7H6Y/6X6wfWHzKi5fujxv2bt3PUZH3P0gftnyZi5b3py37A/3PkFL7u739qXLuKx5dd6yP9m7k9aw+4ZvGpq4ZPXavDfl//vgMxwbDgGwtq6Bi9euz3vcBw4/R9uQ+2a7oqaWi9dvylv20ZZ9tA24b6D1S6q5cOPmUw9OyAyeOnaQ433ujERVlVXsMBfkPe6ezsO093QBUFJezvYt26cuaMH+jhY6ctPjWqVBtm+7MO9xj/Qep6O9DYCGQAnbdlw8uVDuDdtORogMuMcd8rrJZdZxCGeyjGRhGB89viq6g00c3PY6vK9+BcmKRnqAu08cK//npvPaw5k81/M0Hsme/T4Lwol1MBPAxIav5e+F3EuL89I43sEjOH02fX2P89tkJ7XZGLVWmhqvhxKP+3db6vUSHh1kNPc6Utq0jA1VJ15HnNwJTy2++RP7GdpG3WRgU0Mjl65ed6roBA8c2Mnh3OtIU209V67bkLdav7N3cWTI/SBeV13DlRtM3rK7Dj/DkX73w3VF1RKu3LQlb9l9R5/jSK+7gKW/opIrN2/NW/Zw6/Mc6XbvDKwtK+PKC3bkLdvetp/Dne0ALC8t5cptF+Ut29d+kMPtxwCo8we48sJL8pYd6TzM4bYWAMq9Xq68+PK8ZRMDRznccgQAv2Vx5aVX5i37xNAxDh85ePL3yy+9Ek+eLn/PDIf47qEDJ3/3lFfwk0dewVuuvzTv8UVE8rGKfTCrMeaNwA+AMtu2Y2O23wuU2Lb9urM85NFMJrt2ZGR2Bwvvb+vlF9/4DkvCw+Pfc8e8lu+uXkHa434IXR0ZojERHlNu/Iv+s0uWk/S5d+ubo0M0xfPfFdy3ZDlxXwCAZdEQy2LDk453Ihh7yVKiPvduY2NsmBWx0LgSDpzsc364qomwvxSwqI+P0hwZHNew4IypXEtVA6MlbsJXEw+zMpz/7l1bVSPDubJLEhFWjvbljbejoo5QqXunrzIVZdVI74Qip/brLq9lMFgFWJQlY6wZ6clbtreshoHyagBKUwnWDHe5tbGsSR+a+suq6S+vASCQTrI2NLGZ4tRxh4JL6Ktwc2Z/NsXawQlrfvgDOIEgBILEq+qJ1a3AFyjFHyil0ufDU7sMvLO4GOD4RiAswOfzkk5nFuVAdsuyVL8ZH9z9xxr3+6kfnWScTKiP7HA/I5aHeDJOJp0iONJPVagb0kmsdMr9nklB1u1i2FLZSNhfAo5DXWyE5vAA4Lgtn46DNebnQxX1hAJBLMuiLh5mXST/68jh8joGT7zmJKNsDOdvBWgpr6WvxG2JWJKMYcL5WgHgWFkNPSdfc+JsGe3NW/Z4sJquoNu6UJZOsm2ke8pyjgOdwSrag0uwgGA2zfZQV962ve7SCtrKcq85mTQXDXfljaG3pJzWcvc1x5vNcOmk16dTBkrKOFJeB4DlOFwxNLFDwimDgTIOVdSf/P2KwePutZpCyFeKXdl48vcNdVV8+oM3E48lyWRmb2xaVVUQr9fTQrE344rIOVkILScnXj2XA0fGbF8O7JnpQdPp2R3Mu2VVIy/8yqcYGorkPfY7Z/WM88/n81BTU37aOi5kxVG/iQ2Es+tUHeOL/BqqfnOjLvc1d4rjeTh3Fnv9wK1jwO8lEs4u2jqKyNxZCB1C9wAjwDUnNhhjqoFLgEcKE5KIiIiIiMy2om85sW07YYz5CvA5Y0wf0Ap8HrdF5UeFjE1ERERERGZP0ScnOZ/AjfWbQBB4GLhBCzCKiIiIiCweCyI5sW07A3ww9yUiIiIiIovQQhhzIiIiIiIi5wElJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBctxnELHMN9ijuOUZrOzX2+v10Mmk5314xaTxV7HxV4/WPx1VP0WvsVex8VeP5ibOno8FpZlxYHgrB5YRIrK+ZichIASoKvAcYiIiMj0LQMSQHWB4xCROXQ+JiciIiIiIlKENOZERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGi4Ct0AAuFMcYDfBL4Y6AG+C3wp7ZtH85Tvg74MvCq3KbvA39p23ZkHsKdEWNMLfB/gd8HqoBngQ/Ztv3bPOXfAfzLFA9tzPf/UkjGmNVA6xQPvdu27W9OUX5BXUNjzDXAA3kebrFte90U+yyYa2iM+RjwMtu2rxmz7SLgLuAyYAD4sm3bXzjDcd4EfBpYBxwEbrNt+5dzFPa05anfa4BPAFuAfty/wU/Yth07zXFagDUTNv+7bdtvm+2Yz1aeOn4beOeEoh22bTef5jgL4hoaYx4Efi9P8XfYtv2veY5TNNfwTO8Li+k5KCLFQS0n0/dx4L3Au4GrAAf4hTEmkKf8D4D1wHXAG4Hrga/OQ5zn4h7gBcCbgcuBXcD/GGM25ym/A3gQWDbhq2XOI52ZHUAcWM74eP89T/mFdg0fY/K1uB5I4364mMqCuIbGmPcDn5mwrQ74Fe6Hm8twbx7cboy5+TTHuRb3en8VuAj4b+A/jTFb5iTwacpTv6uBHwM/xI31vcBNnOZv0BhTCazG/SA59nr+2RyEfVamqmPODty/z7HxXnya4yyYawi8gcnPrZ8BB3Cv7VTHKbZrmPd9YTE9B0WkeKjlZBpyCchf4d7d+Xlu201AJ+6bzz0Tyl8FXANssW37QG7be4BfGmM+bNt25zyGPy3GmA3Ay4EX2bb9WG7b+4BXAm/BvXs70XZgj23b3fMW6LnZDti2bXedqeBCvIa2bSeBk9fCGOMH/h744VQtQzlFfQ2NMSuAbwJXA/aEh98DJIBbbNtOA/uNMRuBDwLfznPIDwE/sm37K7nfbzXGvAh4H+6H/3l1hvr9CXC/bdt/m/v9sDHmI8C3jTHvtW07McUhtwMW8Kht26E5CvusnK6OxhgvcAFw+1n8DS6Ya2jb9uCEsn8I3ABcYtv2aJ5DFs01nMb7QowF/hwUkeKjlpPpuQioBO4/sSH3prELeMkU5a8Guk58qM15ELe15cVzFeQ56gdeDTx9YoNt2w7um2Rtnn12APvmPrRZczbxLsRrONGfASuBvzxNmWK/hpcAQ7hxPjHhsauBh3Mfik64HzDGmMaJB8p1zXwRY57HY/aZ6nk8H05Xv78Dbp1iHx/u69FUduD+3YZmK8BZcLo6bgRKmebf4AK8hicZY8qBzwN/b9v2c6c5XjFdwzO9LyyG56CIFBm1nEzPib7Pxyds7wRW5Sk/rqxt20ljzECe8gWXeyP8+dhtuX7B63Gb3ZnwWAPQBLzEGPMXuG9UTwAftG374JwHPDPbgS5jzCPAJuAQ7h3bSfVjAV7DsYwxpcBHgS/laylaCNfQtu2fAj8FMMZMfLgZmPgh70SL1iqgd8Jj1UA5038ez7nT1c+27d1jfx/TgrvLtu3+PIfcDkSMMT8EXoj7f/Bt3HEA2dmNfnrOcA234yb87zfGvBLI4r4Ofcy27eEpDlfNArqGE7wXN6n87BkOWTTXcBrvC59lgT8HRaT4qOVkespy3yd2o4jj3vWbqvxUXS7ylS86uWb2bwH/lXvznWhb7nsGeDtuf+QK4LfGmKb5iXL6ch/sNuEO6PwY7iD3p3DHDV03xS4L/Rr+ERDEHdCfz4K6hlOY6hrFc9/zPS/Js09RX1NjjA/4Lm4XqD89TdFtwBLcrqbXA18H7gA+NcchztQ23ISkFXgN8Ne4z83/yt1ln2hBXsNc97W/AL6aJ+kaq2iv4RTvC+fNc1BE5o9aTqbnxMw4JWN+BvfFdKqZm2K5shPlK19UjDGvA+4GHgf+cKoytm0/YIyptW17aMx+rwfacGfe+dzcRzp9uVaPaiA9pq/+07lBmH8N/GbCLgv6GuImGz+0bXsgX4GFdg2nMNU1OvEBJ9/zkjz7FO01zQ2Qvhe4FrjRtu28XYeAlwGlY8YzPJfb/2PGmE8VqvXkND6F280plPt9rzGmC/gd7uDriXVdkNcQd/zaKuAb0yhblNcwz/vCefEcFJH5pZaT6TnRBL18wvblQHue8uPK5u7c1+UpXzSMMf8H+BFuU/6rTjdl6dgPtbnfI8BRTnWDKyq2bUemGET8HFPHu5CvYQNud5B7zlR2oV3DCSZdozG/d0xRfhD3A9B0n8cFZ4xZBjyCez1fmacV8yTbtlNTDLR+DrcrTc3cRDlztm07U4ytONFNaKq/wQV3DXNeDzxp2/bRMxUsxmt4mveFRf8cFJH5p+RkevYAI7h3vwDI3YW/BPeDw0QPA825mU5OuDb3/bG5CfHcGWNuAf4B+ApwU57ZgE6WNcb0G2OCY7ZV4Xaden7Ogz1LxpgdxpiwMWbiYPbLmDreBXkNc16I24//odMVWmjXcAoPA1fnusyccB3ujGwT+7qfGMj7W8Y8j3NeytTP44IyxtTgDhRuAF5s23a+NWxOlPcYY1qNMR+d8NDlQM/pWtEKxRhztzFm4pivy3PfJw2SX2jXcIwXM3kQ+CTFeA3P8L6wqJ+DIlIY6tY1DbZtJ4wxXwE+Z4zpw+0f/Xncu0Y/yr0wNwDDuTtKTwCPAvfkXtgrgH8E/tW27anuJhWcMWYT7kJaPwb+BmgcM7gzBoQZX8f7cAdD/qsx5lO44xv+BugDvjOvwU/P3tzX13LXpB93KtqrgMsXwzUc40LgqG3b0bEbp6jjQruGE30LuA34Z2PMncAVwPsZMx2pMWYJELBtuy+36YvAz40xu3HvAr8Ldza+d81f2NP297iL1L0C6DPGLB3zWJ9t25mx9bNtO2uM+T5wmzHmIO5sgtfh/h+9b76Dn6a7gZ/kPozfg5sY/z/gbtu298OCv4Ynnndbcd8zpnq8aK/hNN4XFvtzUEQKQC0n0/cJ4J9x57N/FHdhuxtya0usBLpwF0g7cXfoDbgL2T2A21/8F8At8x/2tN0I+IE/wK3L2K+7mFzH47h3u6pw/z9+A4SAa0/XFaxQcv20XwM8ibvK9m7gSuDluWk9F8M1PGEp7krNEy3oazhR7s7sDYDB/RD3SeBW27bHJlZ34U58cGKf/wFuxr2Ou3E/+P3+hCmjCy43GPwmIIB7x33ic3Jlrui4+gEfBu4E/ha35eEDwPts257OWId5Z9v2fcCbcBc5fQ73NfZHwP8eU2xBXsMx6nBfW/O1ehTzNTzt+8Jifg6KSOFYjuMUOgYRERERERG1nIiIiIiISHFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiBQlY4xV6BhERERkfik5EZGiY4x5LblV6o0x1xhjHGPMNYWNSkREROaar9ABiIhM4QNjft4FXIW7WraIiIgsYkpORKSo2bY9Ajxe6DhERERk7lmO4xQ6BhGRk4wxDwK/N2bTtcADwLW2bT9ojPkU8GbgQ8AdwAbgAHAL4AB3ATuAI8D7bNv+zZhjbwP+FnhJbtNvgL+ybfvoHFZJREREpkljTkSk2PwpsDv3dRVQNUWZlcAXgc8C/wuoBX4AfA/4Bm7y4gHuMcYEAYwxm4DHgEbgncD/BtYBjxpjGueuOiIiIjJdSk5EpKjYtr0PGAFGbNt+PPfzRGXAn9q2/T3btn8CfBVYDtxu2/Y3bdv+L+DjQD1gcvt8EogBL7Nt+0e2bX8ft1UmCNw6p5USERGRadGYExFZqB4b83N37vvYsSkDue/Vue/X4XYPixpjTrz2jQCPAC+foxhFRETkLCg5EZEFKTdQfqLoaXapA27KfU3UNytBiYiIyDlRciIi54sQ8Gvg76Z4LD2/oYiIiMhUlJyISDHKAN5ZPuZDwAXAM7Ztp+HkKvT/BhwGnpnl84mIiMhZUnIiIsUoBFxljHkpsGSWjvkZ4HfAfcaYrwFx4E+A1wM3ztI5RERE5Bxoti4RKUZfAVLAL3Bn0zpntm0/C1yNuxbKd3GnHl4GvN627R/NxjlERETk3GgRRhERERERKQpqORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCj8f6xzLlpTy7muAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load a chromatogram that is very heavily overlapping\n", + "df = load_chromatogram('data/bounding_example.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Fit the peaks providing only the known retention times\n", + "peaks = chrom.fit_peaks(known_peaks = [10, 10.6])\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "known_amplitude = 100\n", + "\n", + "# Print a summary statement demonstrating the underestimation \n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can constrain the parameter bounds for the amplitude of peak 1 more narrowly \n", + "than the other peak by passing a dictionary to the `known_peaks` parameter of `fit_peaks()`." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 0%| | 0/2 [00:00,\n", + " ]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9CUlEQVR4nOzdd3hU1dYH4N8509N77+3QQcDGBQFBAQuWq1fFjhVFREVBQEEUUT4EDIrSQUBUQFFRrKiIomIQBZIc0nvvmX7K98ckmEomQ0KSYb3Pk4eZOW3tSZiZNXvvtRlZlkEIIYQQQgghPY3t6QAIIYQQQgghBKDkhBBCCCGEENJLUHJCCCGEEEII6RUoOSGEEEIIIYT0CpScEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBegZITQgghhBBCSK+g7OkAekA1AA2Aoh6OgxBCCCH2CwZgBuDVw3EQQroRcwGuEG+UZVkrSV3fbpZl0B3n7U2cvY3O3j7A+dtI7ev7nL2Nzt4+oHvayLIMGIYxAdB16YkJIb3KhdhzUiRJcnRlpb5LT6pUsvD2dkVtrQGCIHXpuXsLZ2+js7cPcP42Uvv6Pmdvo7O3D+i+Nvr4uEKhYGjUAyFOjuacEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBeocfnnHAcFwkgu41ND/E8v5HjuGEA3gQwEkAFgESe51ecvwgJIYQQQggh50OPJycAhgAwAYgB0LS0Rw3Hcb4AvgWwD8CjAC4DsJbjuAqe57ec70AJIYQQ4nySkpLcYStVTCNKCOlaEoCiESNG1Nl7QG9ITgYD4Hmeb1WBg+O42bDVNJ/B87wAIIXjuHgAcwFQckIIIYQQhyUlJbEA5jMMew/DMCoATE/HRIiTkWVZtiYlJb0H4NURI0Z0WMKvNyQnQwAkt7NtDIBDDYlJo4MAnuc4LoDn+dJuj44QQgghzmq+QqGc4eHhbVGrtQaGYZx7ARpCzjNZlhmLxeRSW1s1QxQFAHilo2N6Q3IyGEARx3E/A0gAkAbgZZ7nvwYQBuBEi/0LG/6NAOBwcqJUdm3PrULBNvvXGTl7G529fYDzt5Ha1/c5exudvX1A32ljUlKSB8Ow93h4eFvc3b0rejoeQpyVRqMzAvCtrq64Jykp6c2Ohnj1aHLCcZwatoRED+BZAPUA7gJwgOO4qwC4wDasqylTw79aR6/Lsgy8vV0dPfysPDycf+FaZ2+js7cPcP42Uvv6Pmdvo7O3D+gTbQxiGEalVmsNPR0IIc6uoWfSRZYRDKD3Jic8z1s4jvMCIPA835iEJHEc1x/AHABGAJoWhzUmJQ4v8S5JMmpru/a1SKFg4eGhQ22tEaLonKv+Onsbnb19gPO3kdrX9zl7G529fUD3tdHDQ9fVvTEsAIaGchHS/Rr+nzGwo+hEjw/r4nm+rSTjBIDJAPIAhLTY1ni/4FyuKwjd86YgilK3nbu3cPY2Onv7AOdvI7Wv73P2Njp7+4ALo42EkK7XowNCOY4bwnFcPcdxo1tsGgngFIBDAMZwHKdosm0CbNW9aDI8IYQQQgghTqSne05ONvy8w3HcDADlAB4GcDmAiwGUAHgOwCaO45YDuATAbNjWPCGEEEIIIb1MYuLKkIMHv/Hdt++rlkWNeqXU1GRtfn6+ZuLEq2t6OhbSwz0nPM9LAK4H8AeA3QD+AnApgKt4nj/R0DsyCQAH4BiARQCe5Xl+Ww+FTAghhBBCnMi8ec/EJyef7J5KSaTTerrnBDzPlwF44Czbj8LWk0IIIe0yCsCY923vLUfuAFR2LKVmFIAxH7kDAH7+Xx10Pf6KSAgh5Pyjmgi9Cb0VE0IIIYQ0kCQJBoOhx0aWuLi4SCzbucuPHj1yxH//e1vRjz9+72u1Wtk333wn1cXFRVqzZlXYP//85aHX6xWenp7C+PETK558ck5BSkqy7pFH7huwdu3GlCFDhhkAYPbsx2JPnvzH46uvfvxLqVRClmVce+3EoffeO73gttvuLG95zfLyMuXKlcvDjh076imKIpOQ0K/+6afn5sXGxp1ZAmL9+rWB+/fvC6yrq1PGxcXr5817Mbtxe1sxh4WFW9atezv4p58O+lZVValCQ0NNd999f+HkyddWA8Du3R/47tq1Pfj++x8s2LRpfVhNTbWqf/+BdQsXvpS9deumoB9//M5XqVTKU6feXPLoozOLAcBsNjNvvbUq5PDhQ96VlRVqrVYnDR06rGbevBdyfXx8xRtvnDy4vLxc/dFH7wefOHHcfcOG9/iqqkrFW2+tDj169Devuro6ZXR0rP7hhx8ruOyyUfWNbdu3b6/Pzp3bgsvKyjQRERHG8eOvqti06d3ww4f/THLkd8KyrEPtc0aUnBBCCCGEwJaYTJv2336pqSk9NsSnX78B9e+/v4fvbILyzTdf+i9b9kaaKApMfHyCedq0/w7w9PSyvv766tPu7u7iTz8d9Nqw4Z3wAQMG6SdNuqbaz8/PcuTILx5DhgwziKKI5OST7mazmf3rryTXiy++VH/8+DGXurpa5ZVXXlXd8lqCIODJJ2ckAIy8ePGrGb6+vsKaNavCnnnmiYQ9ez4/AQDl5eXqkyf/cV+2bGWaxWJmXn31pehXX30patOm7Xx7Mc+e/VhsZmaGyxNPPJUbHR1r+uqrL3yWLl0cy7Js+tVXT6kBgIqKcvVnn30S8Mory9MNBj37wgtz4++//86BEyZcVb527aaUL7/8zHfHjq2hY8eOr+7ff6DpjTdeC/v99yNec+cuyA4PjzDzPK9bseLVqHXr3g55/vkX8zZu3J4yffqdA/7zn7GVDz88o0gURcya9WiC1Wpl5s5dmOXvH2D98MP3A+bNezph9eq1qcOGDTd8993XnitXvh59zz3T88eNm1D9+++/emzc+G74uf5OHGlfp/5I+ghKTgghhBBCzuib656MHXtlxbBhww0AYDQamSuvvKpi0qQpVeHhkRYAiIp6oHT37g+C0tNP6yZNuqZ65MhLq48dO+oBoPj48WOuCoVSTkjoV3/06O/uF198qf7nn3/yio/n6v39A4SW1/rll0MeOTnZui1b3j8ZH59gBoAFCxZnb926MaiyskIJAAqFQn755dezPD09RQCYMuW6sh07toa2F/Pp06naP//8w2vx4qXpEydOqgGAmTNnF2Vmprvs3LktuDE5EUWRefrpuTmNH8wHDx5ae/p0qtuzz87PZxgGDz/8eNFHH+0KTks7revff6Cpf/8B+vHjJ1RdfvnoegAID4+0fPvtV7XZ2Zk6APDz8xdYlpV1Op3k7e0jHjz4rUdWVqbLhg3bTjVeY+HCl3JPn0513blzW9CwYcMzP/hgZ9Bll42qfPDBR0sAIC4uviw/P0/z+ef7As/ld+JI+87lb6a3ouSEEOIUGAAjAkWolAowdsw3aTxmeMP7rp2HEEKcGMuyeP/9PXxfG9YFAGFh4WeGU+l0Ovnuu+8v/fLLz7137NjmWlhYoMnJyXKprq5SiaLEAMCYMeNqFi2a7280Gpnffz/iPnDgoLrQ0HDT338f8wBQfPTo755XXDGusq1rpaWd1rm4uIiNiQkABAYGCXPnLsxvvO/p6Sk0JiYA4O7uIVoslmYNaxozz6fqAGDkyEvrm+4zePCwuvfe2xTW9LG4uH+vq9FoJH//QDPT8MKv1WplADCbzSwA3HTTrZU///yT+8qVr4cWFORr8vPzdIWFBdp+/fo3u06j9PQ0nU7nIjb94M8wDAYMGFR/7NifHgCQnZ3pMnr0FVVNjxs69KL6lslJZ38njrTPGVFyQghxClolsGmSCd7erqiqAoRW3/W1fcz6icbuD44Q0mewLAs3N7c+t3qkRqM9E7PBYGAfeeQ+zmQysWPGjK26+uopFUOHDsudOfPhfo37XH75f+pUKqX022+/uP/1V5LH+PETKiMjo8yfffZxUF5ejjo7O9Nl8eKlmW1dS6FQykwH3wKxLNthD1TTmNublC5JIqNQKJptVKlUze6zbPuxLFnyQsQvvxzyGTduQsVll/2npl+/AUU7d24LqqgoU7e1vyy33TRJkqBUKmXb9VhZljvuYOvs78SR9jkjSk4IIYQQQpzITz8d9MjKynT5+OMv/g4ICBQAoKqqUlFTU6NsTALUarU8dOhFtYcO/eiVlnbabd68F3LCwsItDMPIa9euCQkODjE1ndzeVExMrEmv1ysyMzM0MTGxZgCoqChX3nHHzYNeeWV5miMxJyT0MwLAn3/+7tY4rAsATpz42y00NNyhb5EqKysU33xzwH/u3AWZ119/05mejvz8XK1Wq2uSGP374T8uLsFoMBgUKSmntE17T5KTT7mFhUWYACAyMsqYnHzKDcCZBcFPnTpx1nlK9vxOiI3TdgkRQgghhFyIAgODLADw2Wef+Obl5ah///2I25w5s+JEUWQsFuuZT+KjRo2u/uGH7/08PNyF2Ng4s0ajkTmuf/3hwz/5XnbZqOr2zj9mzNja6OhYw5IlC6OTko66pqYmaxcvXhDl6ellHTr0IoMjMXNcf9OwYcNrEhNXRnz33dee6elpmrfeWh2clHTU63//u6PEkXN6eHiKOp2LePjwIa/MzAxNcvJJ3aJF8yOzs7NcrNZ/nwetVisWFORrSktLlGPHjq8JD480LlnyQsyvv/7sfvp0qvbll1+MyM/P1d1++7QSAJg27Z6i33//1XvTpnWBmZkZmj17PvT94ovPA84Wi72/E0I9J4QQJ2EUgKl7XcCwwBc32r/OyfWf2r7s+vwGPa1zQghxCsOHjzRMn/5w3r59ewN37twW6u3tYxkzZlyln5+/hef/rUQ2fvzEmtWrVzCDBg2tbXzsootG1J448bfH2LFXVrd3fpZlsXz5qvSVK5eHz5v3TDwADBw4qG7lyjVpGo3G4W6A115bmbl69f+Frly5PMpgMCjCw8ON8+cvzpgy5dp2YzkbpVKJhQtfynz33TVhDzxw10BXVzdh0KAhdXfddV/Bnj0fBOv1etbV1VW64Yb/lm7evC7syScf0+3atTc5MfGd0ytXLg976aWFsVarwERHxxhee23l6REjLtEDwPjxE2tLS0tyPvhgZ9D27VtCo6NjDJMmTSk7cGB/uwmKvb8TAjD2jJlzMpmiKEVXVuq79KRKJdsw1l0PQehzQ1Xt4uxtdPb2Ac7dxqYLKh65Qw8V03H7+toijM78+2vk7G109vYB3ddGHx9XKBRsFoCYrjhfUlJSP5ZVfBUQEFqvVmudsuoR6R5Hjhx28/MLsDYtCPDOO2uCvvnmgN8nn3x5sidj660sFpO2tLTATZLEySNGjEg92769/K2YEEIIIYSQ3uO33371/PHHgz7PPTc/OzIyypycfEr32WefBE6Zcl1ZT8fmDCg5IYQQQgghxE6PPfZkodFoZF977ZXourpapY+Pr+WGG24ueeihGU67avv5RMkJIYQQQgghdtJoNPL8+YvyAOT1dCzOiKp1EUIIIYQQQnoFSk4IIYQQQgghvQIN6yKEOAUGwABfERCs+H3VCqhlKxJuuBlecfFnP8ZHPHObEEIIIT2LkhNCiFPQKoFn9VvB7t8PFWvrFC5KfgWFk6ZgwP9ub/eY9yY7tF4YIYQQQroBDesihDiF/Pw8/P3BLqhYFhkWM1JMRigYBszXB1Bw9PeeDo8QQgghdqDkhBDS58myjEWL5mPF6RR8LAuYuHELJry7Ef9YrVAwDPI2rIMsCD0dJiGEEEI6QMkJIaTPO3z4EJL+PgHlo7/j8PV7AbUL3NzcMeSZOai1WlFcU43jvx5udZxJAK7/1BXXf+oKE+UuhJA+avTokSN27/7A1979f/zxe4+bbrpm0Lhxlw1//fWlYd0Zmz0SE1eG3Hjj5MFdec7OPCf5+bnqzz77xLsrr08cR3NOCCF93m+bN8BNqYLJIwzFBgCyGWCAhCEXYXlUJN7/9GOM2b0La64Y1+w4GUCRnj1zmxBC+qK9e/f/7eHhKdq7/4YN74QFBgaZ33xz7Wk3N3e7j+tLOvOcvPTSC1EBAQGWqVNvquruuEjHqOeEENKnnf71MG5QKLFq4NA2t9/+wCNgWRY///wT8vJyz3N0hBDS/QIDgwSdTmf3dyx6vV4xYMBAfURElMXHx9cpk5POPScyFWzsRSg5IYT0ael7PwIAFGs1bW6PiIjEZZeNgptCiV92vnc+QyOEkPOi6RCmBQuejXr++Weily9fGjZlypVDr7xy1EWzZz8WW1JSrGzct7y8TP3RR7uCR48eOSI3N1styzLWr18beNNN1wy+8spRF02b9t8Bn3yyx6fx/L/++rP76NEjR6xfvzZw0qRxw+6889b+WVmZmtGjR454++03g6+5ZsLQG2+cPLi6ulpRU1OjWLRofuSUKeOHXnXVmGEPP3xfwvHjx1yaxrtr13a/m2++dtD48ZcPnz37sdj6+jrF2dr30EP3cKtXrwhZtGh+5MSJoy+aMmX80LfffjM4Le205oEH7ubGj798+B13/HfAX38lnblO43NSXV2tmDr16iGzZj0a17jt0KEf3ceMuXjEl19+7vXQQ/dwKSnJbj/99INv49CyG2+cPDgxcWVIyxgWLHg2qr3nQxRFFBYWqJ59dnbMVVddMWzy5HFDZ816NC4jI73tNyfSLkpOCCF9ltViQUBFJQDAe8y4dve7edwErB86HANPn4ZgoNLBhJCzE41Gtr0fyWxmzse+5+LIkV+8a2trlW++uZZ/8cWXM1JSkt3femt1KGAb7uTj42O9/vqbSvbu3f93aGi4ZdWq5aFffPFZwOOPP5m7adOO5JtuuqXk7bdXR27fvtW/6Xl///2I19q1G1PmzXshW6FgZQD48cfvfVateotfvPjVDE9PT3H27MfiCwsLNK+8sjx97dqNqf369dfPnv1YvxMn/tYBwGeffeL97rtvRdx00y0lGza8d6p//4H6Awf2B3TUpn379gQFBARaNm7cfuq6624o3bVre8jcuU/F33bbtOK3396QolarpJUrX49seZyXl5f47LMLsv76K8nz008/9qmsrFAsX740esKEq8uvueb66uXLV6fHxyfoL7/8P1UbN25P6czz3PT5MJlM7BNPPMJJkohVq97mV616m/fw8BQee+yB/oWFBarOnPdCR3NOCCF91j8H9sNDqYReFDHk+uuBT9veb9R1NyBp/2cIVGuQ8uV+DL7lf+c3UEJIn5LxxIyL2tumS+Bqwp97Pr3xfubTs4bKVmubX/ZqoqLrIxcu4hvvZ819ZrBkMLT52UsdEmqIWrK0Ux+O241RpxMXLXolR6VSyQkJ/UxHjvxSkZR01BOwDXdiWVbW6XRSYGCQoNfr2c8/3xc4Z87zWRMnTqoBgOjoGHNRUaFm794Pgu6++76yxvPedtu04tjYODMA5OZmqwHg2munlnFcfxMA/PzzT+5pabzrvn0H/vbz8xcA4Omn5xYkJ59y++CDHYGDBw/N/vjjjwJHjRpddffd95cBQFxcfHFKyinX7OxMF5xFeHiE8fHHnywCgPvvf7hk164dIWPGjKu8+uopNQBw9dVTKjZseDe8rWPHjBlbN2XK9aXvvvtW+Pfff+Pj6uoqzp27MBcAvL19RKVSKavVaqkxZns1fT4+/HCnX11drfK111ZmqVQqGQCWLFmWffPN1w7es+dD/1mzni7szLkvZJScEEL6rOKffoQ7gBJ3N/TTaNvdz8XFBaWengg0mlD+268AJSeEECcWGBhkbvyADACurm6iIAht9sycPp2qtVqtzBtvvBa1cuXrUY2Pi6LECIKVMRqNZ46Lioo2tzw+IiLS1Hg7NTXZBQBuu+3GZpW3BEFgrFYLAwB5ebm6ceMmVDbdPmDAoPqOkpOQkLAz13FxcZEAIDQ09Ew8arVGEgRru71PTz/9XP6xY0c9jx370/OddzYnd2aOTnuaPh+nT/MuRqNRMXnyuGFN97FarWxeXk77b1CkFUpOCCF9kiRJ8K6sAJQq+Fx6ORgAMZ4SFAoWaOPtyXvkJcDPh+BVWQlZksCwbMMxtrmgNBuSENIods07f7W3jWHZZh9qY1Ym/m3vvtGvv3HC3n3PRdPE5F9tn16SJAYA5s9flBkTE2dquV2j0Zw5UKvVSi23a7XaM9slSWJ0Op24bt3WVj1AarVaAgCGYSC3CEWpVHbYdqVS0WofhrF/dkJJSbGqurpKpVAo5CNHDnsMHjzEePYjml9OEMRWbxNNnw9JkhAcHGJ67bWV6S33c3V1dcqiA92F5pwQQvqkzOPH4KdUQZAkDL7+RmiVwMc3GPHd3YCuja9dhl9/A+oFAa4si7zffgUAaJXAR9ca8NG1BmjpqxpCSAOFTie198M2+bDenfueL3FxCSaFQiEXFRWqY2JizY0/hw794Ll9++ZAlrX/o2JsbLzRaDQqLBYz0/RcW7duDDp48FsvAIiMjDKcPPm3W9PjeD7FtWtb1ZwkSViyZGF0ZGS04bHHZuW+//57oSdPntD9uwfT/PekUMr19XpF0+NLS0vUZ7tGTEyssby8XO3h4SE2tjsiItL81lurQ//444h7V7fJmVFyQgjpk/5ITcYDx//EJ0oFdB4eHe7v5eOLXIXtJS/70I/dHB0hhPQNnp6e4lVXTS7bvn1L6Mcff+STnZ2l3rPnQ9+tWzeFeXv7dGoOxvjxE2oiI6OMixbNjz18+JB7ZmaGZvnypWE//PCdX3R0rAkA7rjjnuI//vjNe8OGdwIzMtI127ZtCvj99yPdugDi+vVrg7KyslwWLFicfdttd5b37z+w7pVXXow2NxQh0Ol0UmlpiaagIF8FAP37D6g/fPgnnyNHfnFLT0/TLFnyQqTRaDhrRbGpU2+udHNzFefOfSo2KekP17Q0XvvCC3Ojjx9P8oyP5zropSFNUXJCCOmTfv/9COoEASGX/8fuY9jIKACAnJ3dPUERQkgfNG/eC3k33HBzyXvvbQm97747Bu3cuS349tvvLHziic5N4lYoFEhMfPd0fHyCfunSRTEPPnj3gH/+Oe6+cOFLGWPGjK0DgIkTr6557rn5md98c8DvgQfuHnj48CGvqVNvKumelgEnTvyj++CDHSF3331fQUxMrBkAnn/+hZzy8jLNqlXLQwFg6tSby/LycrXTp985UBRFzJz5VEFCAle/YMFz8U888Ug/Dw8PYdSoMWddoNHT01Ncs2Z9qqenlzBv3pz4GTMe6F9aWqJ+9dUVaf36DWg1XI60j5FbDvxzfpmiKEVXVuq79KRKJQtvb1dUVekhCK2GZDoFZ2+js7cPcJ42CoKAsWMvhV6vx65de9G//0CYBOCer12hULB4b7IeKrRu358/fI9tLy9CsUqFj746CLPI4J6vbXMw35vU+4d2Ocvv72ycvY3O3j6g+9ro4+MKhYLNAhDTFedLSkrqx7KKrwICQuvVai19eCSkG1ksJm1paYGbJImTR4wYkXq2fXv5WzEhhLSWcugHzAmLxCmTERzXH4Bt6mJmTUNnsIw2Z7gPHjUav9fXwmKxICcnC4FhMcisUZw5hBBCCCE9i4Z1EUL6nMLff8NAdw9cGhSCzkzW1Gg0GDJkGADgzz//6KboCCGEEOIoSk4IIX2OkJsLAGBCQjp97Kghw3B9YDDEn37s4qgIIYQQcq5oWBchpM/xMhgAlQp+Db0gnTE4LgGjwyNh0hsgS8455p8QQgjpq6jnhBDSpxRmpMFfpQIAxF8xttPHc/8ZA6MoQsuyKE8965w8QgghhJxnlJwQQvqUjJ9/BgCUSSJcff06fbyHpycKJdtivblHf+vS2AghhBBybig5IYT0KdUppwAAeg/PZo8zAIJdJYS5o81KXU0ZvWzrfdWnpSHYVUKwq9TRIYQQQgg5D2jOCSGkTykvLUGYDOji4po9rlUCB/5rbFhfARDOsq6xa1w88PdxuJcX4fMbunbNI0IIIYQ4jnpOCCF9hiAIeDf5BKYf/xNhU651+DwRl10OAPCVZQhGY1eFRwghhJBzRD0nhJA+Izc3B2azGTqdCyKiHF8kOm7YcByzWuGuUKDw5AlEXHxJF0ZJCOnrGAYKhmF65AtcWZYlWYbYE9cmpDeg5IQQ0mfwqckAgPj4BCgUimbbTALw8NdaKBXA+olnf3FTqVTYZjXhj+RMhGVdBI8KF6yfaICWXhEJueAxDBQSwwQbTEKPvCK4aJUCC7motyUoiYkrQw4e/MZ3376vTnT22PT0NM3DD983YOvWnaciIqIs3REfcR70VkwI6TOEwz8jcdAwFAW1XnxRBpBcYUtYZBkdTooPSOgHIS0T+YIPUGk7nhBCGIZhDSZB+dvJIslgEs7rYkguWiV72aBgpbtWycqy3KuSE0clJ5/UzZv3TJzFYqapBMQulJwQQvoMtqwUQVotpICAcz4Xx/UDvviyC6IihDgjg0mQ9EZrT6zU6jQf4teuTQzas+eD4NDQMFNlZYW6p+MhfYPT/AcghDg3WZbhZbGNBvAbMOicz8dFx2J6eNQ5n4cQQnra6NEjR+zcuc1/+vS7uPHjLx9+++03DfjmmwPN6q1/993XnnfddWv/8eMvH37zzdcOWr16RYjZbD7Tx5yamqydPfux2EmTxg0bO/bS4TfffO2gLVs2tvtN0NatGwPGjbts+Ndff+nV3j5JSX94Pvvs/KwZM57I75KGkgsCJSeEkD6hLD8P/irbF29Rl1x6zueL6z8Ql3v7nvN5CCGkN9iyZUPY+PETKtev33Zq5MhLa15++cW4o0d/dwWAH374zmPp0sWxU6ZcV755885TTz75TO7hwz/5LFjwbDQAGAwG9plnZiVotTppzZp3U7dsef/U6NFXVG3a9G74iRP/6Fpea8eOrf7btm0KW7hwScakSddUtxfTpk07+ClTrmt3OyFtoWFdhJA+Ievo7/AGUC2KSPDzP+fzeXh6okQ6y2IohBDSh4wfP7H87rvvLwOAOXPmFZw8+bf77t27Ai6++NKsHTu2Bk+YcHX5nXfeWwYA0dExZqVSmTN37tMJubnZahcXV2nq1JtK77jj7lIPDw8JAGbOfKrw4493B6WlpeoGDx5ypub6rl07/DZvXh+2aNEr6ePGTajtmdYSZ0bJCSGkT6hMSYY3gFqttsvOqXdx67JzEUJITxo+fGRd0/sc119//PgxDwDIyspyychId/3hh+/OdBfLDVVA0tPTtFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROjP0q6qqSvXOO4mRCoVCDguLMJ+PdpELDyUnhJA+QSgsBAAwgYHt7uOtkcGwHZTpakIZHAx3Sw0khkGH5b0IIaQXUyqVzYoOyrIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZVmaIUC6FiUnhJA+IbemCgpRgl98QpvbdUrgh9sM8PZ2RVUVINgxYisgJgLrDk5HlSRBd+97XRwxIYScP8nJJ12vumpyTeP91NRkt9jYWAMAhIVFGPPycrQxMbFnejuOHDns9uGH7wc+//yLOfv3f+pbX1+n3L37s5MqlUpuOF/DXJN/cx4vL0/r2LHjawMCAiyPPjp9wJYtGwIfeOCRkvPURHKBoHSXENLrCYKArXwK5qecROi4K7vsvKFDLwIAeLMsRJOpy85LCCHn2+ef7wvct2+vT3p6mub115eG5eRk6+64454SALj99juL//jjN+/ExJUh6elpmsOHD7kvX/5qtF5frwwMDBICA4MsZrOZ3b//U+/8/Fz1Tz8d9HjppYUxAGCxWFp9Vuzff6DppptuLd65c1tIRka65ny3lTg36jkhhPR6BQX5sFqt0Gq1CA5uvQCjo8ITOPxltcIsiXBNT0PooMFddm5CSN/molWe9y9wz+WaV189pWzPng8CV69eoYuMjDQsW7YibeDAQUYAuPbaqVWyLGfu2rU9+OOPPwpycXEVR468pPqpp57Lb9yemppSvGHDO+Fr1qxk/fz8LZMmXVN+5MgvXikpp1wBlLW83owZTxT98ssh76VLF0dt3PgeT8O7SFeh5IQQ0utlnuahYBhERcWgvTdAkwA8+b0WKiWweqx9L24io8LTw5fAaDTg/yprENq1YRNC+iBZliUXrVK4bFCwEj0wwsRFqxRkWe704o/R0bHG555b0O56Itddd0PVddfdUNXWNoZhMGfOvII5c+YVNH286ZCtWbOeLpw16+nCxvsajUbevfuzU/bENmrUmLrDh/9MsmdfQig5IYT0eqY/fsP2iy5GuqtLu/vIAJJKFLbbMuya3y4DMPkPAwMgK/tt4IrRXREuIaQPk2WILOQi9x7oObFdX5ZkGWJPXJuQ3oCSE0JIr2ctKYaSZeHi5dNt18jKyuq2cxNC+hZZhijLMiUIhPQASk4IIb2epq4OUCjhFhnZbdcYk9fuaAhCCOnVaMgUcSY0e4kQ0qtJkgRvyVbK0r//gG67TiDDUMUuQgghpIdRckII6dWKsjLhpVIBAMKGDOu267AMg5Jku+Z2EkIIIaSb9KrkhOO4BI7j6jmOu6/JY8M4jvuJ4zg9x3G5HMfN6cEQCSHnWf7fxwEA1ZIIjbt7t16r6OQ/3Xp+QgghhJxdr0lOOI5TAdgJwLXJY74AvgVwGsBIAIsAvMxx3P09EiQh5LyrSj8NAKhTd7zOl1YpQ9fJmXRahQyVaBvOVZuT3dnwCCGEENKFetOE+JcA1LV47GEAZgAzeJ4XAKRwHBcPYC6ALec5PkJID8ipqkJhRTkChgw96346JfDbNAO8vV1RVQUIQsfn1imBw7fV47MXnodWMkMqL++iqAkhhBDiiF7Rc8Jx3BUAHgFwb4tNYwAcakhMGh20HcIFnK/4CCE957fiQiRmpUNx2eXddg3X8HAAgEav77ZrEEIIIaRjPd5zwnGcF4DtAJ7geT6P47imm8MAnGhxSOPqpBEASh29rrKL11ZSKNhm/zojZ2+js7cP6JttzM3NAQBER0d3+P/W0fYF9uuP8sM/o0QUu/y1oSv1xd9fZzl7G529fYBztJFhoGAYhhZhJKQH9HhyAuAdAEd4nn+/jW0usA3raqqx1qfW0QuyLANvb9eOd3SAh4euW87bmzh7G529fUDfaWNtTQ3YujowAIYOHQAPj/b/35oE4NEvbLffvVYHrR2vbo3HWOXJ+PHUbEA0414tC52udz8/feX3dy6cvY3O3j6g77aRYaDQsdZg2WLokc9IjNpFMEqqot6WoCQmrgw5ePAb3337vmr5pXG7du/e5bt370eBpaWlGm9vb+vVV08uf/DBGcUKhaI7QyV9XI8mJxzH3Q3b0K3B7exiBNByFmxjUuLw+AtJklFba3D08DYpFCw8PHSorTVCFKUuPXdv4extdPb2AX2vjcm//Ia3h1wEgyhCEFhUVbX/395oBX7ItiUv1TVGaNiO2/fvMWq4e3qjrrIY//yTgoQErsNje0Jf+/05wtnb6OztA7qvjR4euvPSG8MwDCtbDMp6/ndJMhvP6y+J1ehYN+5SJaPyYvv6CvX79u31efvtNyMfffSJ3Esvvbzu1KkTLomJb0RaLFbmiSeeKurp+Ejv1dM9J9MBBAJoOZzrXY7jngWQAyCkxTGN9wvO5cKC0D2vN6Ioddu5ewtnb6Oztw/oO20sTk1BEIB6loEoygDk9ndm/v0mThAlqBl0+MFIaPLWHx4ejuTKYmRmZCAmJv7cAu9mfeX3dy6cvY3O3j6g77dRMhsl0aTviQb03fFwTXz22Sf+Y8deWXH77XeWA0B0dIw5Jydb+/XXX/pRckLOpqf/A9wFoD+AYU1+AOBFANcAOARgDMdxTfv/JgDgeZ53eL4JIaRvqMvNAwCYtGcfHqJUKZBXVn/m/qnMSlhECSzL2H2tiX7+eHfIcLCHfnIsWEII6SGjR48csXPnNv/p0+/ixo+/fPjtt9804JtvDng23ee77772vOuuW/uPH3/58JtvvnbQ6tUrQsxm85kXydTUZO3s2Y/FTpo0btjYsZcOv/nmawdt2bKx3eJDW7duDBg37rLhX3/9pVdb2x99dGb+3XffX9zycb2+vqe/GCe9XI/+gfA836r3o6EHpZTn+RyO4zYDeA7AJo7jlgO4BMBsAI+ezzgJIT1DLLN9B8H4+LS7j1LJoqLWhJSsCgC299Gswmq4aRn0j/QBJPtGRnh5+8KnphKGqspzjpsQQs63LVs2hN177wP5zz//Yvann37s9/LLL8Z5e/ukXnzxpfoffvjOY+nSxbEPPvho3qhRY2pzc7M1a9asisjPz9WuWJGYaTAY2GeemZUwePDQujVr3k1VKlXyvn17/DZtejd85MhL6gYPHmJseq0dO7b6b9u2KWzhwiUZEydeXdNWPJdcclmzcbjV1dWKAwf2+w8delFtdz4PpO/r6Z6Ts2roHZkEgANwDLZFGJ/leX5bjwZGCDkvlPW2pY90IS1Hd/5LkGSk51VDb/y34rgMIDO/GhW1Jrurb7lFRNiuZTR1sCchhPQ+48dPLL/77vvL4uMTzHPmzCuIjY3T7969KwAAduzYGjxhwtXld955b1l0dIx57Ngra5966tmc33771Ts3N1ttMOjZqVNvKp0/f1FOQkI/U0xMrHnmzKcKASAtLbVZ1/WuXTv8Nm9eH7Zo0Svp7SUmLdXX17Nz5syKs1ot7KxZz+R1feuJM+l1XWs8zzMt7h8F0H0LHBBCei13QQTUCnjHxrW5XaVSoLDCgKLy1hPlTRYRWYU18Ha3b0mkgAQOOPQ9vADIogiGqskQQvqQ4cNHNlvImuP6648fP+YBAFlZWS4ZGemuP/zwnW/jdrlhCl96epr2yiuvqp027Z7S/fs/9cnISHMpKMjX5ORkuQCAKEpnPpdVVVWp3nknMVKhUMhhYREtq6m2qaSkWDlnzqz4kpJizWuvrTwdFRVtOffWEmfW65ITQggBgNrqavipVACA0IGD2txHkGTkFtdCECW01RFcXKFHTb0F3m7qDifHh/UbgCJRhEahQFV2FnzaSYgIIaQ3UiqVzSqGyLIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZdn2e6fT0njtnDlPxouiyKxevZYfMGCQsd2dCWnQq4d1EUIuXHlZGfi0uBBH6+vgHhzaartCwaJGb0Fpla0suJqV8GLkP1jWLxVq1vYebbaIyC+rA9POxHidEvhzWh3+nFYHPy83lIm2oWFFp052U6sIIaR7JCefbLYQVGpqsltsbKwBAMLCIox5eTnamJhYc+NPSUmRKjHxjbD6+jr288/3+dbX1yk3b96R+vjjTxZNmXJtdU1NdcMX2P/mPF5entaxY8fXzpu3MDszM91ly5YNge3Fk5OTrZ49+/EErVYrvfvu5hRKTIi9Ot1zwnGcEsA42KpmRQPwBFAOW9nfAwB+5Xn+LPU+CSGkY7nFRfigIA8XXTQCd7bxzRzLMigq18NsOfuE97JKAwxhAjQK5swwhvbUq9UAgOqsDIfjJoQ4B1ajO+9f4J7LNT//fF9gZGS0adCgIfq9ez/yz8nJ1s2d+0I2ANx++53Fr732ckxi4sqQa665vqK4uEj9xhuvRfn5+VkCA4OEwMAgi9lsZvfv/9T74osvqc/ISNeuXZsYDgAWi6VVTP37DzTddNOtxTt3bgsZN25CdWxsXKshXq+8sihKEKzsCy+8nKZSqeSSkuIznzkDA4OElvsT0sju5ITjODWAGQCeARAGoAq2hEQPIBzAdQDmAyjkOO51AOt5nrdrPCIhhLSUm5sDAIiIiGxzu9Eioqyq48VUq+vNqKozI8zPFVbr2RMZk5cXkvPyINXVnXU/QojzkmVZYtQught3qRI9MMKEUbsIsiR3en2Vq6+eUrZnzweBq1ev0EVGRhqWLVuRNnCgrbfi2munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794paSccgVQ1vJ6M2Y8UfTLL4e8ly5dHLVx43t80+FdRUWFqpSUU+4A8Oij9w9oeezhw38mdbZ95MJhV3LCcdwlALYBEAG8A+AjnudbfbXIcdxg2NYnmQXgSY7j7uZ5/kgXxksIuUBUZWbAV61GeFh4q21KJYvKGhOq6/79/kOQGXxaFgGFgsVU7xywDUMRZBkoKq9HiK9rq/OYReDFX7UAgCWjTKgfMBCJ332Na+PicHM3tYsQ0rvJMkSjpCpiVF49MvRdlmRJltHp1eGjo2ONzz23IL+97dddd0PVddfdUNXWNoZhMGfOvII5c+Y1W+LhgQceKWm8PWvW04WzZj1d2Hhfo9HIu3d/dqqt8wUHh1gpASGOsrfnZDuAeTzPf3K2nXiePwHgBIDXOY77H2wJTcK5hUgIuRANLSvDzUOGo7yNiewMw6Ck0tAwEd5GkhmkGLwAANd5Nf+6s6rWDINZgFbZfGiXJAPf59km3S+WTQgLs5UTzs+nSpeEXMhkGaIsy51OEAgh587ebwUGd5SYtMTz/EcA2i6xQwghHXAXbJ8LfGJaV80yCxKqauxfj6ROb0GdwQKF4uwveWFhYQCA4oJ8yB1NUCGEEEJIl7Or54TneYdqUjt6HCHkwlZbXQ3fhjLCIQObD1dWKBjU6a2o0ds/pU2SZZRWGhDs43LW/UJDw5E4aBgCNBrUFxXAPSSs88ETQsh5RkOoiDOxd87Ji505Kc/zSxwLhxBCgMLUFCgYBlZJalVGmGVZVNaaO6zS1VJVnRlmQTprd7GnpyfAMmAZBkUpyZScEEIIIeeZvXNOFre4LwNgYJsgXw7AG4AagAVAJQBKTgghDqvITIc/gBoATIsywqIso7ym4ypdLdXpzdCbBHi5KCGK7Q/Zqm9YGb4yM9NWMJ0QQggh541dc054nmcbfwBcBaACwO0AtDzPB/M8r4WtSlcFgKe7LVpCyAWhNi8XAGDUaJo9zjCAySKiTt/5EaMmi4jaejPOtpoxAFhcbFW9jEWFZ92PEEIIIV3PkTJ5bwF4gef5j3iePzOuguf5rwAsBLC0q4IjhFyYrGW2kvqSh0ezx1mWhcEkoM7g2HS2smpjhwsxsj4+tmtXVDh0DUIIIYQ4rtMrxAOIAJDbzrYyAIGOh0MIIcApfT1Sigpw0YgRzR5nWQaVtaY2h2WpGAnzwk9Ap1NDMMltJiF1BgtMgnjmhU+rAH7+X92Z2wDgEhIKFBVBbej80DFCCCGEnBtHek7+BvAEx3Gqpg9yHKcF8ByA37siMELIheuP4kLsKsiD5/CRzR4XJRlVtW2XEGYYQM3KULMyGKbt89YbLDCaRSgUzJljdErbT+Mx3tHRAAB3kZY4IIQQQs43R5KT5wFcCSCD47j1HMct5ThuI4BMAEMBPNOVARJCLiySJKGgwLbIcWho82pZZkFCvdHq8LnNFhF1BstZ550E9xuAlLpaHK2uhGCxv1wxIYT0VXq9nt2+fYt/4/0FC56Neuihe7juvGZ+fq76s88+8T6Xc+ze/YHv6NEjR7S3/Xy0Y/TokSN27/7Atzuvcb7k5marR48eOeLXX39278k4Op2c8Dz/E4BRsPWQXA9gDoApAL4DMILn+eNdGSAh5MJSVlyEWLUGAVodAgL+HSWqULAwmgXUtzPfRJAZfFoeht2FwRDkdrpOAFRUG221BgFYRGDxES0WH9GisTJxYHgEXs5Iw9uZ6SgtL++ydhFCSG+1efP6wL17PwxqvP/ccwvzli9fnd6d13zppReifv/9V8/uvAbpmxyZcwKe548BuLWLYyGEEBQln8JL/QbCIElQq9VnHmdZBjX1FlgFqc3jJJnB33rbZParPdv/5qXeYIHFKtlqocvA/izbCNW5F9uGiykUCoSGhiInJxv5+XkICQlt50yEEOIcZLn5Nzqenp7nYVzrWb5FIhc0h5ITAOA4bgpsZYWDAcwHcBGAJJ7nc7ooNkLIBagqKxMuAGpbDL2SgXbnm3SG3miFySLCRa1oOGtrYWHhKMjNQWFWJnDJZed8TUII6U41NTWKlStfD/vjjyNegiAw0dGxhscem5U/bNhwAwAYDAb2tdeWhP/551Evg8GgCA0NNd11132FU6ZcV52YuDLko4/eDwZsQ5Tef3/PiXXr3g4pLS3RbNjwHv/rrz+7z5v3TMKyZStOv/nmGxGlpaWaqKgow8KFS7K++eaA9/79+wJFUWTGjBlXsWDB4jyGYSDLMjZufDfwm28O+JWVlWpUKpXUr9+A+jlzns+NjIyyPPTQPVxKSrJbSkqy2403Tnbft++rExaLhUlMfCPkxx8P+hqNBkVYWIRx+vSHCseOvbK2sZ0HDnzhtW3bxpCSkmJtbGy8ftiw4bXtPSeNRFHC0qWLw3/88XtfpVIpX3XV5PJZs54pUCptH4H/+OM3182b14dkZKS5Wq1WNjAwyDxt2j1FN9xwc2XjOT799GOfDz/cGVRUVKj18vK2XnfdDaUPPPBISctrlZWVKh9//CHOy8vbunr12nQXFxfpp58OemzY8E5oQUG+LiAg0Pzf//6vODFxZdT77+85ERERZbnxxsmDL710VPVffyV51NTUqF58cUnGZZf9p27btk0BX375eUB5ebnaz8/P8t//3lZ8xx13lQPAr7/+7P7cc08lNJ4DsA3JmjbtlsHLl686PWrUmLoFC56NkiSJ8fb2sf7ww/e+ZrOJHTJkWO3zz7+YExgYJABASsop7apV/xeRnp7m6u3tbb3ttmlF5/SH2EU6PayL4zgXjuO+AfAFgOkA/gfbIowzACRxHDewa0MkhFxI9IUFAACLTtfscYsgod7oWAnhZuc3WWGwCGcmxbdlvJs7dgy/BO5JR8/5eoSQvkWWAb0VbE/9dFTuvHW8MmbPfiy+sLBA88ory9PXrt2Y2q9ff/3s2Y/1O3Hibx0ArFmzMiQ7O8vltdfeSNu2bdfJESMurnnttZdjcnOz1dOnP1x8/fU3lfj4+Fj37t3/d2hoeKsXWkmSsHZtYvjcuQuy16xZl1JTU6N8/PGH+ufm5ujefPMd/t57H8j/6qsvAr7//htPANiyZUPA7t27gh9++LH87ds/PPnSS69mFBYWaFetWh4OAMuXr06Pj0/QX375f6o2btyeAgAvvDA3KinpT8/nn38ha/36bclXXDGu6sUXn4/77jvbOY8e/d311VcXx44aNaZ6w4b3Tk2cOKli794Pgzt6fk6fTnWrrq5SrVmzLvWZZ+Zlf/fdN37Lly8NB4DCwgLVvHlPJ0RHxxrXrduasn791uT4eE6/atX/RZWWligB4IsvPvNesWJZ9NixV1Zu3Lj91PTpD+fv3Lkt5IMPdvo1vU5FRbly5syHOV9fP8ubb76T5uLiIp048Y/uxRefjxs69KK69eu3nbrrrnsLN21aF94yxq+/PuA/c+ZTua+/vvL0yJGX1r/++tLwDz/cGXLXXfcVbtq0/dQNN9xcsm7dWxHbtm0K6MzfxpEjv3jX1tYq33xzLf/iiy9npKQku7/11upQwJbQPvPME5yLi4u4du2GlFmznsl9//33Qjpz/u7iSM/JqwBGwLZ28s+wrQoPAHcD+BrAywBu7pLoCCEXHLFhfRHGy+vMYwzDwGwVoT+HyfCNZBmorjUjyEvX7j6ufv5gKyrB1tad8/UIIX2HLAN3feXSj69SuPZUDP28xfrtkw18e1UHWzp8+JB7Whrvum/fgb/9/PwFAHj66bkFycmn3D74YEfg4MFDs4uKCjU6nYsYGRlt9vT0FJ98ck7BRReNqPP09Bbd3NwknU4nsSwrN36j3pb773+oYMSIS/QAMGrU6Or9+z8NePHFl3NcXFyk+HjOtGPHttCMjDTdxImTasLDI8xz5jyfddVVk2sAIDw80vL770eqDh360RsAvL19RKVSKavVasnPz1/IzMzQ/PLLzz5vvbU+pbG3JzY2riQjI1334Yc7giZOvLpm9+5dAQkJXP2sWU8XAkBcXLw5MzND9+WXn531A7unp5f15Zdfz9JqtXK/fgNMZWVlBevWvRUxe/azBRaLhbn99rsKH3zw0ZLGQin33/9Q0Y8/fu+bmZmhDQgIrN+z54PAyy//T+Ujjzxe3BCX2WDQK7Ra3ZkxxrW1NcqZMx9J8PPzN7/xxpoMrVYrA8CuXdsDo6NjDM8+Oz8fAOLjE8yVlZWqDRveaZagXHTR8JorrhhXZztXLfv111/4P/DAI3k33vjfyoZrlhUWFmg+/PD94HvumV5q318GoNPpxEWLXslRqVRyQkI/05Ejv1QkJR31BIAvvvjU22KxsC+9tCzb09NT7NdvgMloNOS98sqiWHvP310cSU5uA/A8z/M/cBynaHyQ5/lijuNeAfB2l0VHCLngKPX1AMNCG3hmbiYUCgbGegFGU7vvm51SU29GG0ulnOEREQXwPFwt595TQwjpW5j2xnv2UqmpyS4AcNttNw5u+rggCIzVamEA4K677iteuPC5uBtumDQ0Pj5BP3z4xTVTplxX2Zm5JdHRsWfG1Wo0WsnT08vq4uJy5gO6Wq2SzGYLCwBXXTW5JinpqGti4hshBQX5mvz8PF1+fp7W29u7zW+YkpNPugDAM8880ayyliiKjIuLiwgAOTnZLhddNKKm6fbBg4fUd5ScxMbGGRqTBQAYMmSYXhAEJiMjXTN48BDjf//7v4r33tsckJOTpS0oKNBmZ2e6AIAkiQwA5Obm6K644srKpue87bY7m1VL2b59a6goCkzLa2Vmpru0HHo2fPjFdcA7zWIMDQ0789ymp5/WiqLIXHTRyPqm+wwbNrz+88/3BZaVldr92T0wMMisUqnOxOPq6iYKgsDYYstwCQwMNjX9Gxgx4uL6ts5zvjmSnHgByG5nWxUAN0eDIYQQV6sAqNXwjIw68xjLMqiuM0Pq7HiHdhhMVliF9t+T/ePjgW+/hjvDQBZFMApFu/sSQpwHwwDbJxt4g+DQUgtdwkUJyd5eEwCQJInR6XTiunVbU1puU6vVEgCMHHmJ/pNPDvzz888/ehw9+rvHN98c8Pvggx0hr7yyPG3MmLF2dRGrVMpmL8As236Q69evDdy1a3vo+PETy4cNG173v//dUfrjjwe9fv75R5+29pdlW46zevXaVFdXt2ZVTxQKhfzvfs0n0SuVqg7fFFiWbbaPJNle+zUatZyWxmtnzny4X1RUjGHEiItrRo8eV+Pj42N94olH+je9fke/j8GDh9Rec83U8qVLF8X+8MN3lePHT6xtOBaS1PHEf7Va06qNTIuLSpLtaWmabDR9S7RahVbXabrvv5o+1Pnn83xwJDk5CeBOAN+0se36hu2EENJpZrMZPg2JQGDCv1+giZKMmvquW3NEb7JNim+cENlSSHwCciQJKpZFdX4evJskSoQQ58YwgKsKbZcF7IViY+ONRqNRYbGYmX79Bpz5Bv7FF5+PjIuLN9xzz/SyxMQ3QoYOHV5/9dVTaq6+ekqNKIp5t99+08AffvjOe8yYsXUMw3Tph9KPPno/5Pbb7ypsHAoFADt3vhfU/Pulf68ZH88ZAaCkpEQ9ceLQM70jq1YtD2UYVp49e05hTEysISXlVLMvwFNSTnY4/C47O9NFkqQz61sdO/anu1qtliIjo80rViwL8/DwtK5bt+V04/7ffvuVJ2CbywMAoaHhJp5PaXadZcuWhJeUFKtXr16bAQBXXDG+asqUa6t/+OHbylWrlkeNGHHJSQ8PDykqKtrQ8tgTJ46fNea4uASTQqGQjx076jZo0GBj4+PHjx9z9/T0snp5eYsqlS3prK2tPfPNWU5Olqaj56Kp+PgEw8GD3/pWVJQrfX39BAD455+/emw4Y1OOfDPwCoC7OY7bD+BB2FKwsRzHrQHwGIDlXRgfIeQCUlSYj215OdhfVgqf6Jgzj1tFGQbT2eebqBgJz4SdwoK4NKg6eJ81mQSYzCJcVAy+vbke395cD22TzhE3dw9UCrYhZGVpp9s5CyGE9Lzx4yfUREZGGRctmh97+PAh98zMDM3y5UvDfvjhO7/GoVgFBQWa1av/L+Lw4UPueXk56i+++My7vLxMM3jwkHoA0Ol0kl6vV6Snp2msVus5l/j19fWzHDt21IPnU7Rpaac1q1b9X8gff/zmZbVaz3zu1Ol0UmlpiaagIF/Vr98A0/DhI2sSE1dEfvPNAc/s7Cz1xo3vBn788e6g0NBQMwBMm3ZvcU5Otu7115eGpaenaT75ZI/PgQP7/duPwqaiokL9wgtzo1JTk7Vffvm51/vvvxdy4423lGg0GjkgINBSWVmhPnjwW4+8vBz1gQP7vRITV0YCgMViGxI3bdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj22uuW1nntuQZ7FYmFWrHg1HLANp8vKynBdseK10PT0NM1XX33htX371lCgdc9II09PT3HixEnlO3duC923b69PZmaGZvv2Lf5ff/2l/0033VLCMAz69Rtg1Gq10pYtG4IzMzM0R4784rZp07qw9s7Zluuuu7HSw8NTWLDgueiTJ0/ojhw57Pb222+2mqzfExxZhPFTAHcBGALboDkGwBuwrXvyKM/ze7o0QkLIBaOgsBDfl5fiiFoJRcMaJyzLwGwRYehgvgnDAK4KEW5KER29PssAqupNYFkG3loZ3lq51TF1CtvLY1VOtoOtIYSQ7qdQKJCY+O7p+PgE/dKli2IefPDuAf/8c9x94cKXMhqHbC1YsDhnyJBhda+9tiT67rtvG/Tee5tD7733gfybbrq1EgCuvnpylZeXt/XBB+8Z+M8/x13ONaYFCxZnmc1mdsaMB/o/+eSj/bKzM3WPPTYrp66uVpmbm60GgKlTby7Ly8vVTp9+50BRFPHaayszL798dFVi4huR9903bdA33xzwe/zx2Tm33npHBQAMHjzE+Mory9NOnDju/uCD9wzcu/fDwFtvvaPD0rcjR15SrVAo5Mcff6j/W2+tipw8+brSxx9/shAA7rlneumoUWMqX399acz99985cMeObcH33fdggZ+fv+XkyROugG3+zMyZT+V88cVn/vffP23gtm2bQh96aEbuLbfcVtHyWn5+/sJDDz2Wf/Dgd34//vi9R//+A00vvLAk/ejR37wefPDugdu2bQq55prrSwFApVK3+y3a88+/mHvttVNLN29eHzp9+p0D9+//NOCRR2bmPvjgoyUA4O7uLs2duzCzoCBPN336nQMTE9+IeOSRmXmdSU5cXV2lxMR3eKVSKT/55KP9li17Ofp//5tW3PGR3Y+Rz2EMN8dxHABfANUAUnme7wvdoJmiKEVXVuq79KRKJQtvb1dUVekhtLNIXF/n7G109vYBvb+NH320C6+++hLGjbsSq1evBWCLuazGhJ//KuhwzgnLMtDp1DAaLZCks+8bEeyBi/sFQGznedg28xFY8vMRNPEqXD9ztkPt6Wq9/ffXFZy9jc7ePqD72ujj4wqFgs0CENPhznZISkrqx7KKrwICQuvVau25L6JESAt//ZXkolQq5cGDh54ZnrVv316f1atXRH333c/H2hta7IwsFpO2tLTATZLEySNGjEg9276dflY4jjsI4DGe51N5nudbbBsCYAfP80M6e15CCKlJT0N/N3dEB/5bup5lGdTqLR0mJoLM4LuKECiVClzpkQ+2g4I7BpMV9WYJicdsw3SfGm6GusnQroqYWLx3+CfcZRqN6x1vEiGEkAtUamqKy+bN68Oeffb5rAEDBhqzs7M127dvCfnPf0ZXXkiJSWfZ9cxwHDca/w4BGwfbHJO2SrddB6DH6yMTQvqmgPw8vNRvIAqkf79tlWSguq7jyfCSzODPetuaWOPc8zscs2o0CTBaJOxOsw0fm3VR82uEhIQCAAoLCzvRAkIIIcTm9tvvLK+oKFe9886aiKqqSpWHh4cwZsy4ypkznyro6dh6M3vTtgcB3APbUG0ZwFrY5po0/WqycaDb+10WHSHkgqI2GgGFEi5B//acWEUJBnPXrG/SlNEkwGRp/7whIaFQMMyZFesJIYSQzmAYBjNnzi6aOXN2h3NjyL/sTU6eBLAFtgTkIIDHASS32EeEbe7Jqa4KjhByYXETJUABeIZHArBNcjdbJRg7qNTlCEmWUWdsPzkJ9vTEzuGXAABkQQBDXfCEEEJIt7Pr3Zbn+RoAPwEAx3HjASQBcON5vrjhMW8A4TzP0xonhBCHGPR6eDckAAHx8QAAlmVhtlpg7IaeEwCoPcvaKSGxcciSZahZFlV5efCJju6WGAghhBDyL0fWOfkbwCcAfmzy2KUAjnMct4/juHMuQUcIufAUZ2ZAzbKQZBleYbZS6yzLQG+0wtpNVY3OtnaKq5v7v2udpNNaJ4QQQsj54Ehy8hqAgQDmN3nsIIAbAIwEsKQL4iKEXGDKM9MBALWyBFalAmAb1lXdhSvDt3S2OScAUN+w1kk1rXVCCCGEnBeOJCdTAczhef7jxgd4nrfwPP85bAnL/7oqOELIhaMmLxcAYGgyt8MqytAbu36+SSNTBws7WnW2jmBDMc1lJIQQQs4HR2Z4ugOoamdbCQA/x8MhhFyockwmfJOThcEXX3rmMUGU7J5vomIkzApNgVajhkqQYc/6spIgYOuVlfD30kKjaGMHLy+gtBRiZaV9jSCEEELIOXGk5+QYgAfa2XY/gH8cD4cQcqHKrKzAt2UlEOMTANjmm1isEkx2JicMA3gprfBWW8EwHe/feIxWMiLcgwHbxjHaANtyTkp9vX0nJIQQQsg5cSQ5eQXAjRzH/clx3AKO4x7iOG4+x3G/A7gFwOIujZAQckEoKrItdhgSEgLAVh/ebBW7rVJXozqDBZLUdjeLe3Qsfiovw3G9vltjIIQQAnz33deePJ+iPZdzPPTQPdyCBc9GdVFIDklMXBly442TB9u7/4IFz0Y99NA9XHfG1JQsy9iz50PfsrJSJQDs3v2B7+jRI0ecr+t3pNPJCc/z3wK4HrYFGJcAWAfgZdiGiN3A8/xXXRohIeSC4FNVhX5u7gj28wdg6zmpN1rbTRxaEmUG31YF48tSf4iyfV0nosxgV5YXVhxVwiq23h4wcBDezs7A3pwsu9tBCCGk8/LyctSLFy+Iq6goV/V0LM7ut99+cVu9+v+ijEYDCwDXXXdD5d69+//u6bgaObSqGM/zBwAc4DhOC8AHQA3P8/TVIiHEIYIg4G5vH7j4BcBDY/vSjGGAmk5U6hJlBkdqbYnNf1wL7XpxE2UGB8u8gTLg0SFmtHxHbOzFqaurRW1tLTw8POyOhxBCiP1keyYKki4hy82/wdPpdLJOp+veYQqd4PCSxxzH9QdwFYBgAG9xHHcRgL95nq/rquAIIReGktwcuChsL0d+sXEAbJW6jB1U0+pKLMPA1iH8LxcXV/h5e4PVG1CYmQGPYRedt3gIIT1Hb21/ZImCgaxV/vticbZ9WQayzsF9O+PgwW89tmzZEFpQkK/VaLTS8OEjaubMmZ/n7e0t/vrrz+7PPfdUwvvv7zkRERFlAYDc3Gz1tGm3DF6+fNXpUaPG1AHAli0bAz79dG9gTU21KiGhX/3gwUPrvvvuK799+746AQBZWZmaFSuWhaemJrvrdDrxxhtvKfnyy8/977jj7qJbb729AgB2797l+9FHu4LKy8s0fn7+5muumVp2773TS1nW1uy9ez/y/eij94NKSko0bm5uwqhRY6qeeWZufklJkWratFsGA8Bzzz2V8L//TSuaNevpwtOnU7VvvvlGWGpqsrtWqxMHDRpS9/TTz+UFBgYJAGA2m5mVK18PO3ToRx9BEJjJk68p66i3ffTokSNmzHgi9/vvv/XJyspwDQwMMk2f/nDB1VdPqWnc57vvvvbcunVjSEFBvs7b28dyxRXjK2fMeKJIo9HIAJCamqx99923QlNSkt1NJiPr6+tnuf76m0rvv//B0rauuXXrxoCtWzeGPf/8i5mTJl1T3dHvMz8/T/XWW6vD/vnnuIfJZGL79etfP3Pm7PwBAwYZG/f59NOPfT78cGdQUVGh1svL23rddTeUPvDAIyUdxdf49wAA06bdMvjJJ+dkA8Cbb66IOnz4zyQAqKqqVLz11urQo0d/86qrq1NGR8fqH374sYLLLhtVD9iGrZ04cdz94osvq/78832BdXV1yoQErv7ZZ+fnxMcnnHP9/04nJxzHKQC8C2A6gMZ3890AFgGI4ThuLM/z+ecaGCHkwlGafhquAPSSBKVOBwCwdqJSV1dgGBZA67FdT0fFIk6hROXRPwBKTgi5IIzd7d7uf/bhAULN+onG9Mb7V3/sNtQsMm0mHQN8xPr3Jhv4xvvX7XMbXGdl2vzsFespGj681pDS2VgrKsqVS5a8GPfAA4/kjRs3vqaoqEi1bNmSmFWrXg9bsuS1HHvOsX37Fv/t2zeHPvrozNzhwy+u/+abA967dm0P9fX1tQCAwWBgn3rqsYTg4FDTm2++m6rX1ytWrVoeUVZWqmk8x65d2/22bt0Y9thjT+YOHXpRfXLySZe3334zory8VP3ss/PzT506qVuzZmXks8/Ozxo6dJg+PT1Nu2zZkhhPT0/h0UdnFq1Zsy7liSce6b9gweKMMWPG1RYVFapmzXqUGz16bNWTTz6TYjQa2Y0b3w159NHp/Xfs2H3K1dVVWrZsScSff/7uOWfO89mhoaHmLVs2BPN8iltQUNBZPyBv2bIh7N57H8h//vkXsz/99GO/l19+Mc7b2yf14osv1f/ww3ceS5cujn3wwUfzRo0aU5ubm61Zs2ZVRH5+rnbFisRMg8HAPvPMrITBg4fWrVnzbqpSqZL37dvjt2nTu+EjR15SN3jwEGPTa+3YsdV/27ZNYQsXLsmYOPHqmvZialRXV8c+9tiD/QIDAy2vvPJ6mkajlTdtejdk9uzHuM2bdySHhUVYvvjiM+8VK5ZF33XXfQUTJ06qSk4+6bJq1fIoV1c3cerUmyrPFt/IkZfWL1iwOGPp0sWxa9asS+nXb4Bx//5PfRqvL4oiZs16NMFqtTJz5y7M8vcPsH744fsB8+Y9nbB69drUYcOGGwAgLe20q0ajFZcteyPNYNCzy5YtiV6x4tXIdeu2nvOqxY70nCwEcCeABwF8AaC44fFnAHwGYCmAe881MELIhaM6JweuAOoavl1jWQZWs9jhIoldiWGZlh0nABrWOrFYYKS1TgghvVBhYaFKEKxMcHCwJTw80hIeHmlZtmxFmiCIdtYtBPbu/TDo2munlv7vf9MqACAuLr44Pf20a2ZmugsAfPHFp961tXXKLVv+L9Pb20cEgBdffDnr4YfvG9B4jl27tofceusdRTfccHMlAERFRVv0+nrF2rWJkU888XRBXl6OBmAQFhZuDguLsISFRVi8vLxPu7m5iwqFAr6+vgIAeHp6im5ubtLGje8GeXl5WxcufCm38Rqvv74q87rrJg798svPvSdPvrbqxx+/950x44ncCROuqgGAl15alv3f/17n3lF7x4+fWH733feXAcCcOfMKTp7823337l0BF198adaOHVuDJ0y4uvzOO+8tA4Do6BizUqnMmTv36YTc3Gy1i4urNHXqTaV33HF3qYeHhwQAM2c+Vfjxx7uD0tJSdU2Tk127dvht3rw+bNGiV9LHjZtQa8/v4tNP9/rW19cpN2/ekeLn5y8AwKuvrsi85ZbrB3/wwU7/OXOeL9iz54PAyy//T+UjjzxeDACxsXFmg0Gv0Gp1ksGgZzuKz9PTUwQAX19fQafTNXvn++mngx5ZWZkuGzZsO9W//0ATACxc+FLu6dOprjt3bgsaNmx4JgCIosi8/PJrWY1/D1On3ly6bdvGMHva2BFHkpPpAF7keX5LQy8KAIDn+X84jnsRthXkCSHEbo2LHFq0jfNNbJW67C0j3BWkdsY7M2fWOqk4b7EQQnrWT7fW/dXeNgXT/GuMb26ub3ciMdti3/031p+wd197DR48xPif/4ypXLx4QVxi4krL0KEX1Y4aNbrmqqsmV9tzfGVlhaK8vFw9ePDQZjXTBw8eWteYnPB8qktwcIip8YMoAAwYMMio07mIAFBeXqasrKxU7dy5LXTXru0hjfvIsgyr1crk5mZrxo2bUPPxx7vrH3/8of6BgUHmYcOG115xxbjqoUMvMrQVV3r6aZfCwgLdhAn/adaLZbVa2ZycLG1GRppWEARm0KChZ+Y8a7VaOSoqus3zNTV8+MhmUxA4rr/++PFjHgCQlZXlkpGR7vrDD9/5/tuOxpjStFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROpMQVlVVqd55JzFSoVDIYWERdg91yszM0AUFBZsbE5PGdsXFxeuzsjJdACA3N0d3xRVXNluA67bb7ixvvG1PfO1JT0/T6XQuYmNiAtjekwcMGFR/7NifZyZeenh4Wpv+Pbi5uYmCINidEJ+NI8lJIIDj7WzLB+DtcDSEkAuS0LjIYcOEc5ZloDcJEO2s1NUlMUgS1G0MzNAEBgKlpVBSOWFCLhiuKkg9vW9nvP76qqy0tNOFhw//5JmUdNTj9ddfifnkkz3169f/O8Sm6fcvVuu/HyIVDfP9JKn9D64KhQKy3P52SbI168EHH827/PLRrXoIwsLCLWq1Wl6/fuvpEyf+1v3668+eSUl/eixcODd+7NgrK1555fXslsfIsswMHDi49tln5+e23Obp6Snm5eWqG/Zrtk2pVHb4xtFyH1mWwbIK2XZbYm688ZbiqVNvavWNVGBgkLW0tET58MP39Xd39xAuu2xU9YgRl9QOGTJUf9ttNw5pui/DsFiy5NW0zZvXhyxdujh606btqY1zb85GlmUwbSzWJUkSo1DYYlQoFHJ763nZG99Zrt/W5SFJUrPnTaXq+Hl2lCPrnKQDuKadbeMathNCiN3YetuXWGp/W7UtMEBtveksR3Q9qyC1uXijZ3gEAMBF6DWFTAgh5IykpD9cly1bEh4fn2C+//6HSt96a336k0/OyU5OPuleVlaqVKnUEgDU1taeGe2Sk5N1Zq6Ip6en6OfnZzl58oRr0/OmpJw6cz8uLsFQXFysqaqqPHOOtLTTGqPRoAAAf/8AwcPDQygoyNfExMSaG39OnfrH5Z131oTKsoyDB7/1eOut1cGDBw81PvLIzOL167eevuOOuwt+/fVnbwCtPpBHRkYZCwrydKGhYZbG83l7ewurVi0PT01N1sXHcyaVSiX/9defbo3HCIKA7GxbL8HZJCefbNbW1NRkt9jYWAMAhIVFGPPycrRN21FSUqRKTHwjrL6+jv38832Nw65SH3/8yaIpU66trqmpbviy/9/P615entaxY8fXzpu3MDszM91ly5YNgR3FBQAxMXHGoqJCTeMaJABgMpmYzMx0l4iIKCMAhIaGm3g+pVkbli1bEj579mOx9sTHMEy7iUVcXILRYDAoUlJONVtvJjn5lFtYWMR5eWN2JDlZDeBJjuPeAjARtpbGcxz3DIA5AN7uuvAIIReCbysrsCEnC64DBgIAREmGoZOVulSMhEeDecyOzoSq/dfdVsc8EpSKmeFpYCSpzW+r/GLjAQAeDAOZEhRCSC/j5uYufvXVF/4rViwLzczM0CQnn9QdPPitT2BgkNnX10/o12+AUavVSlu2bAjOzMzQHDnyi9umTevCmr7e3XrrHcVffvl5wJ49H/pmZmZoNm9eH3DkyC8+trpHwNSpN1W6u7sLCxfOjT558oQuKekP1yVLXogBbEkFwzC4+eb/FX/55ecB27ZtCsjKytR8/fWXXm+99WakSqWSNBqNrFAo8eGHO0M2b14fkJOTrT5+/JjL778f8YqP5/QA4OrqJgJAWtppXU1NjeK22+4sNRgMinnzno45ceIf3alTJ3Xz5z8bk56e5pqQ0M/o6uoqXXPN9aU7d24LOXBgv1daGq9dsmRhZFVVpbqj5+zzz/cF7tu31yc9PU3z+utLw3JysnV33HFPCQDcfvudxX/88Zt3YuLKkPT0NM3hw4fcly9/NVqvr1cGBgYJgYFBFrPZzO7f/6l3fn6u+qefDnq89NLCGACwWCytPlf37z/QdNNNtxbv3LktJCMjXdNye0vXX39jpYuLqzh//pzYY8f+dGlod7TJZFLceuvtZQAwbdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj222p74XFxcJQBITj7lUl9f3yzmsWPH14SHRxqXLHkh5tdff3Y/fTpV+/LLL0bk5+fqbr99WklH8XeFTg/r4nl+I8dx/gAWAJgB21/uLgAWAMt5nn+3a0MkhDgzWZbxe34uzGYznhxoW1BXEOVOT4ZnGCBAbYZOI8NobD6E4WzH+KtsQ4GtVhEsq2q16GNIfDwyJQlqlkVVXg58omM7FRchhHQnjutveuGFJRnbtm0OOXBgfwDLsvLAgYPrVqxITGNZFu7u7tLcuQszN258N2z69DsHBgeHmGbMmJW3cOFzCY3nuPPOe8tqa2sV27ZtCn3rrdXKAQMG1o0bN6E8JeWUOwBoNBr5//5vddobb7wW8cQTD/d3dXUTbrttWtG6dW9HqFQqGQAefPDREo1GK3322ccBmzevD/P09BQmTLiq/Mkn5xQAwNix42tnzXome8+eD4J27NgaqlarpYsuGlnzzDNz8wHAx8dXHD9+YvmWLRvD8vPzNAsWLM5btert1LVrE8Nmz57Rj2UVckICp1+5cg3v7x8gAMDTT8/NV6vV0ltvrY4wmYyKUaPGVI4YcXF1R8/Z1VdPKduz54PA1atX6CIjIw3Llq1IGzjQVqb32munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794NfQ2lbW83owZTxT98ssh76VLF0dt3Pgef7bhXV5eXmJi4rt8YuIbYc89N5tr+B3XJSa+mxoZaSsFfdVVk2uqq6tzPvro/aCtWzeG+fr6WR56aEbuLbfcViHLMjqKr3//gcZhw4bXvPbayzF33ZVX4OnpdeYNV6lUIjHxndMrVy4Pe+mlhbFWq8BER8cYXntt5ekRIy45L+Obmc4uesNxnDfP81Ucx3kAuByAL4BqAL/xPF951oN7h0xRlKIrK7v2+VUqWXh7u6KqSg9B6JYhpT3O2dvo7O0DemcbKyrKMWHCaDAMgz/++BtqtRpGQcYvxwtQZ7B06lwsy0CnU8NotNi9snyjYQkBSAj3hMXSupzwW7dMRZ3BgJuWLEO/kRd36rxdqTf+/rqas7fR2dsHdF8bfXxcoVCwWQBiuuJ8SUlJ/VhW8VVAQGi9Wq09v+NIe5kffvjOIz6eM4aFhVsbH1u0aH5kcXGhZt26radzc7PVWVmZ2rFjrzwzn6SoqFB1661Th6xYkcg3rn/RF4wePXLEk0/OyW5cm4WcHxaLSVtaWuAmSeLkESNGpJ5tX0cmxP/BcdxCnuc/BPC1YyESQohNYUYGxvj4weziApVKDZZlYLEKne45EWUGh6oDoapX4DLXIthT+EaUGRyuDQAARNSZ2u1t+VWtRnL6aVxaW4N+nYqKEEJ6v6+++tJ348Z3dU8//VxOQECg9Y8/fnf/+ecffWbMmJULAGazmX3hhXnx99wzPf+qqyZX1dbWKNatezs0MDDIPGLExVQthHQpR5ITbwDlHe5FCCF2qEpNwRMxcSiTbd+wMgwLo1mAtZPfuIoyg0M1tvmGF7sU2fXiJsoMfq4NAgDcbM6EILZ9zZCQUCQnn0RRUWGnYiKEkL5g3ryFuStWLAt/4YXn4wwGgyIwMND80EMz8hp7F+LjOdPcuQsz33//veD3338vRKVSy0OGDK198821pxuHdRHSVRxJTt4E8H8NE+BP8jzfamwdIYTYS19UAAAwq23zBFmW6fRwrq5gsgqwSnKbL4qhwcEIUGtQm5V53uMihJDu5u3tIy5d+n/ZZ9vn2munVl177dSq8xRStzl8+M+kno6BnJ0jyck9ACIBfAcAHMe13C7zPO/IeQkhFyBLua0jVnK3LeoryTLqDdazHdItzGYBFqsEtUbRar7KAFaBa4dchIK8vPMeFyGEEHIhcSSJ2NHlURBCLlhMnW1+pcrXthivIErndWX4RmaLCItVBKNVAi3mq7iHhQOnTsHFev6TJkIIIeRC4khykgXgIM/z+V0dDCHkwqMxmQGlEi7BIQAAqyjD3MnJ8F1BlACDSYC/pxZii4JdfjG28sHuDANZFMEoFG2cgRDSx0gAZFmW2135nBDSNRr+n8mw/b87K0cWYVwJYKQDxxFCSCtuku11yjsyqqFSlwhTG+V8z4dag6XNVeKD4zkIkgQlw6C2sOD8B0YI6Q7FsixbLRZThyuKE0LOjcVicpFl2QqgqKN9Hek5KQXg5cBxhBDSTF1tLbyVtpehgLh4MAwDiyB1uoxwVzGYrBDbWB/F3cMDlYKAALUapemn4Rke0QPREUK60ogRI2qTkpLeq62tmgHAV63WGhiGocpThHQhWZYZi8XkUltbpZZladOIESPqOjrGkeRkA4C3OY4bD+AkgFZL2fM8/569J+M4LgDAGwAmA9AB+AnAszzPJzdsHwZbhbCRACoAJPI8v8KBuAkhvUxRUQH+L+M0wj098VJwCFiWgcFotWt195aUjIQHgtKg0aiglOWW00baPWZ6wOkzt81mAYIoo60xHvUsiwAAVdnZnQ+OENJbvSqKAqqrK+5hGMYFaPO/PyHEcbIsy1ZZljYBeNWeAxxJTt5o+Pfu9oIAYHdyAuAz2MafTQGgB/AygO84jouDLVn5FsA+AI8CuAzAWo7jKnie39L50AkhvUlxSTH+qqmGMTgEDMuCYYBavdmhc7EMEKoxQqcTYTQC9iwQzzJAiMZ45r7JIsIqStAomFYJklmrBQQBhqIOe6QJIX3EiBEjJACvJCUlvSnLCIZjw90JIe2TABTZ02PSyJHkJNqBY9rEcZwvbBPsX+F5/lTDYy8DOA5gIICJAMwAZvA8LwBI4TguHsBcAJScENLHFRbaFjUMbpgML4gyDD1QqauRySLAIkjQKpWQW2QntQEB2PvnHwiOjOyh6Agh3aXhg5PdH54IId2n08kJz/M5jbc5jnMB4AGgguf5TtfY5Hm+AsAdTc4XCGAOgHwAyQBeAnCoITFpdBDA8xzHBfA8X9rZaxJCeg9TRjrG+Pgh3tcPACBIMswOToYXZQa/1fhDZVBguK4EjB3jukSZwR91tmtf4l4OS0M5YdZF1WqtEyaBw4effYyramscio8QQgghHXNosUSO48YAWA7gYjSMz+Q47g8A83me/8HBc64H8BBsPSVTeZ7XcxwXBuBEi10LG/6NgG1yvkOUyq7tuVUo2Gb/OiNnb6Oztw/ofW30LizAEzFxKIQMpZKF0SrZkgO288O+BYnBd9XBAICLIkuhaKvsVhvHfF9j67W52KMCDGsrJ6z0bV0qOCwsFIBtnkxXv37Yq7f9/rqDs7fR2dsHXBhtJIR0n04nJxzHjYJtdfhM2OaHFAMIAXA7gK85jhvL8/wRB2JZDWAdgBkA9nEcNxqAC2zJSlOmhn+1DlwDAMCyDLy9XR09/Kw8PHTdct7exNnb6OztA3pPG9UmE8Cw8IoMh7e3K4zl9WAULHQ6dafPpZD+TUY0GhXUbMc9J02P0enUULMyTFYJrq6aVglSPy4WAWoNPKqr4eWpA8P23Aev3vL7607O3kZnbx9wYbSRENL1HOk5eQXAzwAm8Tx/ZvwFx3EvAfgatqFYV3f2pE2qcz0M4HIAMwEYAWha7NqYlOg7HXkDSZJRW2tw9PA2KRQsPDx0qK01QhQ7XF+mT3L2Njp7+4De10YXqwCo1dAFhKC21oi6ejNqa032FNpqxdIk0TCbrRA7Xuep2TFGowUiK6O2zoSaWiNazoh3c/XCm4OHQcEwyOOz4B4U5ECU56a3/f66g7O30dnbB3RfGz08dNQbQ8gFwJHk5BIAdzRNTACA53mJ47g16ESlroYywhMAfNR4vobzJAMIBZAHW69MU433z2klNEHonjcFUZS67dy9hbO30dnbB/SONppMJng3rLTuEx0HSZJRZ7C0uc6IPaQmiYYkyZDsSHGaHwNIkGE02ybFsy2SE1d3L1QJVvip1ChMSUGsX4BDcXaF3vD7627O3kZnbx9wYbSRENL1HPkKog6Aqp1tanSuRngIgPcBjG18gOM4FYDhsE2IPwRgDMdxTQeATwDA02R4Qvq24qwMaBuTk6goMAxQr+90XY0uZ7YIsApSq5XiGYZBXcODVdlZPRAZIYQQ4vwcSU5+ATCf4zi3pg9yHOcO4HnYhnzZ62/YhoKt5ThuDMdxg2DrefEGsArAZtiqgW3iOG4Ax3H3AZgNYJkDcRNCepGyjHQAQK0kQqFWwyrKMPbQyvBNmS0iLIIEpo0J9WaNbZSpvqiw1TZCCCGEnDtHhnXNA5AEIJPjuP2wTYgPAnAdbPNB7rf3RDzPyxzH3QZbsvEhAC/YkpsxPM/nAgDHcZMAJAI4BqAIttXjtzkQNyGkF6nJzYUnAIPC9jIkSjLMvSE5sTaUE3ZtXU5Y9vAAqqphLS/voegIIYQQ5+bIOifpHMddDmARgGsA+ACoBPADgJcaJ7Z34nw1AB5r+Glr+1HYJsgTQpxIltWCnWmpGDX6CoxlAKsgObzGCQAoGQn3BGZAo1ZByciwZ1a9kpFwl3/6mduN6o0WBHm3rjSk9vMHqqrB1tFabYQQQkh3cKjsRUMC8iTP80E8z6sBDACwtLOJCSHkwpVbXoa/aqrBxsSCYRhYBAmmc0hOWAaI0uoR42qAvcukNB4TpdU3O6Zeb2015wQAXENsa51oLC0rnBNCCCGkK3Q6OeE4zovjuG8B/Njk4UsAHOc4bl/DqvGEEHJWRQ3zNoKDQ8CyDCwNw6l6A6NFgFVs3fXik8Bhb2E+vqygYV2EEEJId3Ck5+Q1AAMBzG/y2EEANwAYCWBJF8RFCHFy4dXVGO3ji2BvbzAMg3qj5ZzOJ8rA0TpfHKnyQht5RbvH/Fnniz/rfJsdY7YIbZY0DolPwIeF+fgiOxMWy7nFSwghhJDWHJkQPxXAHJ7nP258gOd5C4DPOY7zhm2RxjldFB8hxAmJoohr3dzh4eUDV62uS8oIizKLA5W2YVcDwsugtGPSiSiz+Ko6DAAwxLUKioZ5J2aLCKsgQatkmq3F6O3tA61WC5PJhOLiIkRERJ5TzIQQQghpzpGeE3cAVe1sKwHg53g4hJALQVlhITyUtuWS/GPje00Z4UaNyUnLcsIMw6BfaDgGuHugmE/toegIIYQQ5+VIcnIMwAPtbLsfwD+Oh0MIuRCUpPMAAJMkQeXu3lBGuHfMNwFs5YTNVhFsGzPr/+vrh8XcAJj+Pn7+AyOEEEKcnCPDul4BcIDjuD8BfAKgFIA/bHNORsC23gkhhLSrKicbOgB1DAOWZWASpF6xxklTepMVDNO6nLDk7gHU1MBSXtYDURFCCCHOrdM9JzzPfwvgethWEVgCYB2Al2FLdG7gef6rLo2QEOJ0DEVFAACzVgOGYWxrnPSSSl2N6vSWNssJq3x9AQBMXe15jogQQghxfo70nIDn+QOw9Z5oYVuEsYbneX2XRkYIcVqWigoAgOzu8W8Z4V40rAsATGYBQhsVu1xDQoHMTGhMtNYJIYQQ0tUcSk4a8TxvAlDYRbEQQi4QTK2t10Hl4wuGYaA3We1Z0P28MltECKLcqnvZOzIKOPwzPGQZsiy3mjRPCCGEEMedU3JCCCGO2F9dgX0lJXjkv7eCYYA6w7mvGaJkJNzunwWNRgklI8OebEfJSLjNL/PM7abMVgGCKEGjaF5OOCiBQzUALcvCXFMDrZfXOcdOCCGEEBtHqnURQojDZFlGckE+/qqpRmC//hBEGUbzuU+GZxkgwaUO/dz0aKPIVrvHxOvqEK+ra3WM2SLC0kY5Yb/gENRYbWuylKafPue4CSGEEPIvSk4IIedVXV0d9HrbFLWgoOBeV0a4kdkqwtJGOWGWZfG9yYB12ZkoNdBUO0IIIaQrUXJCCDmvijIzcGNQCK4Ki4CLiw5WUeqS5ESUgeP13kiq9oRo5wQWUQb+1nvjb713q2NkGTCYhDbnlGR5eeP78lIUVLW3Hi0hhBBCHOHQnBOO4/wAPAvgKgDBACYBuAnAcZ7nP+268AghzqY8jce0sAhUSVJDGWGxS8oIizKLzyrCAQDzwsuhtGPSiSiz+LwyAgDQX1cDRYt5J3WGtssJh4SEAgCKiqgeCCGEENKVOt1zwnFcNGyrwD8MIB9AAGxJTgKAvRzHXdulERJCnEp9QT4AwKhSgWEYWHrhAoyNjGYBYhvlhMMDAtDfzR1iVmYPREUIIYQ4L0eGdb0B26rw0QBuBsAAAM/zdwL4DMD8LouOEOJ0TKWlAADR1RUsy8BgEppVw+pNzBaxzbVOYlRqvNRvIIY0rNdCCCGEkK7hSHIyAcDLPM9Xo3WxznUABp1rUIQQ5yXXVAMAWC/vLisj3F3MFgFCGxNYvCIjAQBuktRqGyGEEEIc5+iE+PbGYGhg1+oChJALldJgBAC4BAVBkgCjydrDEbXPbBVhbaNiV2A8BwBwZRWw6ut7IjRCCCHEKTmSnPwM4HmO41ybPCZzHMcCmAHgly6JjBDilFxF23cbHuHhEKSuqdTVXdpb6yQgPAL1gq0dpelpPREaIYQQ4pQcSU7mAegPIB3Adth6SuYASAIwGsCCLouOEOJUzGYzvFkFAMAvJg5WUe6SSl3dRZJsC0S27DlRKBSolm1DuioyM3oiNEIIIcQpdbqUMM/zJzmOGwlgMYArAYiwlRT+CcA9PM+f6NIICSFOo7i4CC+knkKImzvejY2FsQsrdSkZCbf45UCtVkLJyHYNMFUyEm72zT5zuy31Rmuba50YVCoAQG1+nsMxE0IIIaQ5h9Y54Xk+DcCdXRwLIcTJFRcXIc9khDI4GEqNBtZ6S5cN62IZYIBrDXQ6NYxGoI0iW20f41Jz1n30RiukNsqJia6ugN4Ac0P1MUIIIYScO0cXYWQADAPgijaGhvE8f+jcwiKEOKPGRQuDg0PAsky764j0Ju1V7NKHhWPd1wcQERiICT0QFyGEEOKMOp2ccBx3CYDdAMIaHmoc7yA33JYBKLokOkKIUzGe5nFjUAiCvH3AMEC9sevKCEsykKr3hNqqRIzSvvVHJBlINXoCAPrpasC2sRq82SpClKRWL2quCRy+37kNl1WUnWPkhBBCCGnkSM/JKgBWAPfBtkI8FfonhNhFW1CAaWERyGdYyAD0hq4rIyzILPaU29YfmRdeCaUdk04EmcXHFVEAgOdCT0DdxryTxopdLioF5CbDu0JCQgEAhYUFXRA9IYQQQgDHkpPhAG7nef7Trg6GEOLcFHo9AEDj7w+rIPXqSl2NzBYRVkECq1FCbDK8Kzg4BP3d3BFiNkMwm6HUaHowSkIIIcQ5OJKclIJ6SwghDtBaLIBaDbeQMIiS3KvXOGkkiBJMZhGMW/PHAwICMTe+H1wUCpSnpyFo4KCeCZAQQghxIo6sc/I2gHktFmEkhJCzkiQJHg1zOnyjo2EVZJitXVNGuLvpjZZWa52o1WpUS7bkqjwzvSfCIoQQQpyOIz0n8QAGACjmOO4UAEOL7TLP81S8hhDSTHlJMbyUtrVBAuPjYRTEPtFzAtjWOmlrBotBaXsJrcnLPb8BEUIIIU7KkeQkDsDxJvdb1rdpo94NIeRCV5J2GhqGgUWWoPXxQU21CVahb4wQNVvENssJCy6ugNEIE611QgghhHQJR1aIH98dgRBCnFtlTjaCAdSBgULBQm/sukpd3c1kta3H0nIcLOvtDRiNkKuqeiQuQgghxNk4tAgjIYR0VrbVihUn/8b4MWMxFkBdF5YRBgAFI2Gqbx7UKiUUjAw7KglDwUi43if3zO32WBoqdmmVDJouFq8NDAIKC6E0tBzdSgghhBBH2JWccBwnAric5/k/OI6TcPa3fZnneUp6CCHNFJYUIc9khDI8AlZRhsnStZPhFQwwzK0KOp0aRqNtgUV7jhnq2nGvR2M5YZ1K2WytE8+ICOCvY3AV+8bEfkIIIaS3szeJWALbgouNt+142yeEkH8VFxcBAEJCQvpMGeFGFqsIs1UE66qC1CTr8ef6YU12JqplGSNlGQxDU+4IIYSQc2FXcsLz/EtNbi/utmgIIU4rqqIC3kEhCHNzhyBKsHRxGWFJBtIN7tCISoSzFruPyTC5AwBitXVg28ktZAAGkxUMo2v2eEhUDL4vt02Gr6qqgo+Pj8PxE0IIIcT+YV1XdOakPM8fciwcQoizGsEqEBQWAYVWC4sgdXnPiSCz+KAsGgAwL7waSjs6eAWZxYflMQCA50JPQH2WeSf1Bgtadoyo1Wr4+/ujrKwMRUUFlJwQQggh58jeYV0/4t+hXO2NW5AbtskAFOcWFiHEmdTW1sKnYY2ToIR4mBuGSfUlRrMIsY2JLENCwmCVZJSdOgkMHNwDkRFCCCHOw97khMoHE0IcVpyZDjXLQpJleISGI7fc2KzqVV9gtggQRLnVtzNj3T3QLzoO+akpPRIXIYQQ4kzsnXPyU3cHQghxXuWZGfADUC/LUKiUqDPYNyekNzFbbQsxqlosdsJ6eQHFJRCrKnskLkIIIcSZOFTyl+M4PwDPArgKQDCASQBuAnCc5/lPuy48QogzqMvPgx8Ag1IJUZJhNPe90rtmiwiLIEKjVTar2KUJCASKS6DU63swOkIIIcQ5tFzwuEMcx0UD+AfAw7CVFw6ALclJALCX47hruzRCQkifZyq1VbSyurj0uTLCjcxW21onLcsFe4RFAABchL6XcBFCCCG9TaeTEwBvACgFEA3gZjRMkOd5/k4AnwGY32XREUKcglRtW+iQ9faGVZT73GR4AJAaenzYFvWG/WLjAAAeDAuJEhRCCCHknDiSnEwA8DLP89VovRjjOgCDzjUoQohz+ay6Cs+c/BuKESNhFSSYu3h1eABQMBKm+BRgamAxFIx9s+0VjITJXvmY7JUPxVnKCDeqN1pb9ZwEx8XDKklQMAxq8vMcip0QQgghNg7NOQHQ3icLDWj1eEJICzmFBag0GRGUwMEqiN0yrEvBABe7V0CnU8NotC2waM8xI90r7L6G3miF1KLMmIurKyoFAYFqNUrSTsM7KrqzoRNCCCGkgSM9Jz8DeJ7jONcmj8kcx7EAZgD4pUsiI4Q4BaPRiMpKWwIQHh7e7nohfUFjOeGWvpclLD2dgiKx7w1XI4QQQnoTR3pO5sGWgKQD+AG2npI5AAYAiAMwpsuiI4T0eQUZ6XgoIhrVADw8PFCQW9Ut15FkINfkCo2kQiBjX6liSQZyzbbvWSI0erDtLTHbwGwVIUhSqxfO+sBA/H3iOArKyxyInBBCCCGNOt1zwvP8SQAjARyEbXFGEbaSwukARvE8f7wrAySE9G1laadxVUAgJvn5QwagN1i75TqCzOK9klhsyIuAIHeQZTQ5ZkdZHHaUxUGQO345NFvartgVEhIKACgqKux84IQQQgg5w6E5JzzPpwG4s4tjIYQ4odq8HPgC0CuVEESpT1bqamS2iLBaJbAaJcQmw7sifP1wha8f3HKyey44QgghxAk4ughjDAAtz/PJHMd5AVgKIBzAbp7nt3dhfISQPs5UUgIAEFxd++waJ40EUYLJIqJFxwlCXXSYGR2HCoOxZwIjhBBCnIQjizBOBpACYHrDQ+/CtiBjGICtHMc90HXhEUL6OqnKNsdE6ePTbWWEz6d6o6X1WicxtrVOPBkGstRxSWJCCCGEtM2Ral0vAvgGwEscx3kCuAnAMp7nhwNYBuDJLoyPENLHqYwGAIAuOBgWoW8P6wKAeoO1Vb304PgEiLIMJcOgtpDmnRBCCCGOciQ5GQpgNc/zdQAmwTY0bE/Dtm8BxHdRbIQQJ+DWUF7XJyoaZqttQnlfZra2Lifs5uGJKsE20b8kje+JsAghhBCn4EhyYsS/c1WmACjhef6fhvtBAKq7IC5CiBPQ6+vho7C9XARxHPTG7qnUdT6ZLSIEsXWCVcfaXk6raVI8IYQQ4jBHJsQfBjCH4zgfAP8DsAUAOI4bAWBRw3ZCCEFRUSEe+fsYonx8sScyElmZ1d12LQUjY6JXEVQqBRQM0GrsVTvHTPAsPHPbHmaLCKsoQ6lk0HSxeItWC1gF6KmcMCGEEOIwR5KTpwB8AWAngGQArzQ8/gUAA2yLNBJCCAoLC2CURMh+fhAZBczm7psMr2BkjPIsg06nhtEow55F6BWMjMs9Ordwom1omggXlQpyk+xE9vAEKiogVFR0NnRCCCGENOh0csLzfBbHcQMBBPA8X9Jk040A/uJ53tyZ8zX0wLwK4DoAHgD+ATCP5/nDDduHAXgTtoUfKwAk8jy/orNxE0LOv4KCfABAaGgoBEmG2dq3K3UBgMUqwmKRwLoykJpkQNbYOCw9chjRIy/BVT0YHyGEENKXOTLnBDzPyy0SE/A8/xsAZUOp4c74AMBlAG4HcDGAYwC+4TiuH8dxvrBNsj8NW3KyCMDLHMfd70jchJDzS05NwYMR0Rjm7tlQRrj7KnVJMlBg1iHPqLWr16TxmEKzDoVmnd3HAEC9ydJqlXjvuHj8XVuDtJLiTkRNCCGEkKY63XPCcVwkgHUAxgJQt7Obws5zxQG4CsB/eJ7/teGxJ2GbaD8Ntsn3ZgAzeJ4XAKRwHBcPYC4a5roQQnovXVkZrg4IRJFSaSsj3I3JiSCz2FRsKxY4L/wElHZMOhFkFptLEwAAz4WegJqxr5JYvd7aaiHGkJBQALahbIQQQghxjCM9J6sAjAKwHsBfAH4BsAK24VgybOue2KscwLUAkhof4HleBsAA8AEwBsChhsSk0UEAHMdxAQ7ETgg5j1QG2xonriGhtuFQfXyNk0ZGiwChRVdLSEgI/uPji/FaHfQV5T0UGSGEENK3OZKcjAWwkOf5J2HrvTDzPD8XtmFXPwG4wd4T8TxfzfP8l03nqXAcdyuAWABfw7bqfF6LwxpL4UQ4EDsh5Dxyayi56xMVBb2p9eKFfZWtnHDz1ri7e+Du8CjcHhqO4pTkHoqMEEII6dscqdblBuB4w+1kAIsBgOd5keO4twG84WgwHMf9B8BmAJ/yPP85x3GrYBvW1ZSp4V+to9cBAKXSoek27VIo2Gb/OiNnb6Oztw84v22sra2Fr9L2EhPcvx+yjVawLNPBUY5r2iKWZcCi42s1PwZ2x2cVRIiSDLWq+fNYyzDwAVCdmw2lcpxd5+oM+hvt+5y9fcCF0UZCSPdxJDkpgm2xRQBIB+DDcVwwz/NFACoBBDoSCMdxNwB4H8BvAO5oeNgIQNNi18akRO/IdQDbBxBvb1dHDz8rDw9dt5y3N3H2Njp7+4Dz08aCtFPQKBSQZBl+sTHITLWV+e0uCunfxEKjUUHNdtxP0/QYnU5t1zEAwCoUYFi21euI4KIFLAIspcXd9hoD0N+oM3D29gEXRhsJIV3PkeTkC9gqZuXzPP8rx3H5sC3KuBjAdACdng3KcdxM2MoFfwzgribDvPIAhLTYvfG+w7NOJUlGba3B0cPbpFCw8PDQobbWCLGN1aOdgbO30dnbB5zfNmb+dQK+AOpkGXqziNp6M4xGS7ddz9Ik0TCbrRDRcfuaHmM0WiDamZyYTEC93oxaNdvseRTd3IHKKuiLSlBV5fD3J+2iv9G+z9nbB3RfGz08dNQbQ8gFwJHk5EXY5pcsATARwHwA2wDMbtj+eGdOxnHcDABrACQCeIrn+aavZIcAPMpxnILn+caZtBMA8DzPlzoQ+xmC0D1vCqIoddu5ewtnb6Oztw84P22sysmFLwCjWgWLVYTJLDRbF6SrSU0SDUmSIdkxw6X5MbDrmEZ1Bgv8PbXNnkeVrx9QWQXU1nbr80t/o32fs7cPuDDaSAjpeo4swlgB4FKO44Ib7u/kOC4HwOUA/uB5/id7z8VxXAJsPSafAFgGIIDjuMbNRtjmnzwHYBPHccsBXAJbEvRoZ+MmhJxfpwQrXj52FPfcPg3DBQkmS/cuwKhgZFzhWQKVUgEFA9iTZygYGWM8is/c7ox6g6VVOWHX4BAgLQ1ac6fWoiWEEEJIA0d6TgAAPM8XcRzXD4A3gCKe5//PgdPcAkAFW/nhliWIt/E8fx/HcZNg61U5Btt8l2d5nt/maNyEkPOjoCAfRkmEf0zMeSkjrGBkjPMqgU6nhtEo27WoooKRMdazpOMd22A0C60qdvlExwCHfoIHAFmWWy3USAghhJCzcyg54TjuAdiGd4U1eSwPwPM8z++y9zw8z78K4NUO9jkKW68MIaQPKSiwVQEPDQ2DwSRAdpY6wg1MFlvFrqbpR+iAgXgqLRXFJhP2Gg1wcem+SfGEEEKIM+r0zLKGyesbYFs48V7YVnO/H0AKgB0N65QQQi5gsixjigw8EBGFMC8v1Om7f5iTLAOlFg1KzGq7EyFZBsqsGpRZNZ1OnswWEVZRaja0y8vXD+mShCKzCQUF+Z07ISGEEEIc6jl5EsBbPM/PavH4exzHbYRt3ZPd5xoYIaTvqigrxeWe3lAwDPz9g1BW1b3zTQDAKrN4t8g2Z21e+Ako7Zh0YpVZrCvuBwB4LvQE1Iz9k3fNFgFWQYJWqYTcJLMJD49AcvJJ5OXlIT6eO8sZCCGEENKSIzX5wgB83s62XQBiHA+HEOIMClJOQcEwsMgS1L5+MFm6d75JTzBbRZitYquFGy8KCsF/g0OhP36shyIjhBBC+i5HkpOjsJXzbctFAP5xPBxCiDOoyEgHYFsxXZBtQ6CcjSwDBpPQatJ7f1dX3BYaDm1OTg9FRgghhPRddg3r4jjuiiZ3dwFYxXGcO4CPABTDVrFrMoBZAB7p6iAJIX1Lfb5tvoVZq4NFkGDu5jLCPaVObwbDuDd7TBcSAhQVQa3v+kUYCSGEEGdn75yTH9F81QAGwAw0X2+k8evDD0BzTgi5oInl5QAAxtsblobhT86orXLCvrFxQFIS3CXnbDMhhBDSnexNTsZ3axSEEKeiqK8DWAV0wcEwmKxOV0a4UVvlhIP7D0QNADdWAXNtNTQeXj0UHSGEENL32JWcdGbVd0IIYc0WQKeDd0wM6vSWng6n2zSWE9YomDMJWEBYOHIFKzyVKhQmJyP6slE9GyQhhBDSh9g1IZ7juEMcxw3rzIk5jhvJcdxhh6IihPRZRqMBC0/9jfv+OorgS0fBYD4/800UjIzLPcowxqcCCjsXZlcwMi5zL8Vl7qVQMJ3v3jFbBFgEqdmkeIZhUN1wuyI9rdPnJIQQQi5k9g7rehPAVxzH/QlgB4DPeJ43tNypYZL8JNgmxV8E4LGuCpQQ0jfk59tWhle6usHVxxfmwqLzcl0FI+Mq7yLodGoYjTIkO3INBSNjopfj8ZmtIixWEayLClKTC5q0OkAQUJeX5/C5CSGEkAuRvcO69nIc9xOAFwFsBKDkOC4ZQBYAPQAvAOEABgGwNuxzF8/zJd0RNCGk98pr+EAeHh4OQXTeSl2ArZyw3mgF46Vr9nhhZCTe/XQvroyPpwl7hBBCSCfYvUI8z/PlAGZxHPcSgFtgmyQfA8ATQDmAFNh6WD7neb6iG2IlhPQB9X//hefj+8HsFwCLVTpvCzDKMlAtqGCyqKCR7ZvnIstAjagCAHgqrGDsHA7WVK3eArQ4zjs2DgUmE3IL8zt/QkIIIeQCZndy0qgh8VjX8EMIIc0IBQW4yNMLBRqNbdjTeUpOrDKLxIL+AIB54SegRMfjuqwyi7eKBgAAngs9ATUjdfq6JrMAscUYsvDwCABAXl5up89HCCGEXMg6nZwQQsjZMLU1AAB1QCD0RqsdKULfZrKIEES5WXWRsJBQ3BQcghAwEEwmKLXaHouPEEII6UvsqtZFCCH20ppMAACP8HDbkCcnZ7YIsApSsyFhQSGhuCEoBGN9/FByOrXngiOEEEL6GEpOCCFdRhAEeDVMwPCNS4DJiSfDNzJZRFgEsVk5YZVKhcqGoV6lPN9ToRFCCCF9DiUnhJAuU5yfB1+1GgDgG89dEMmJxSrCbBHBss1nxRsanofavJyeCIsQQgjpkyg5IYR0maLUFACASZIgubjBbD4/k+F7Wr3R2io5kT09AACWEqqoTgghhNjLrgnxHMfd05mT8jz/nmPhEEL6srLcHCgEAUaVClZBuiB6TgCgTm9pNfFfFRAIVNeAranpkZgIIYSQvsjeal1bO3FOGQAlJ4RcgFLr6zD/+J+45467EG8RYRU6X5rXUSwjY6RbOZRKBVgGsKdMGMvIGOFWfua2o4xmAYLY/HjPyCjg9Gm4WMwOn5cQQgi50NibnER3axSEEKeQm2ubXxERG4u681ypS8nIuMa3EDqdGkajDMmOXEPJyJjiXXDO1zZbRFhFqdkLakC//hC//QaeDAPJagWrUp3zdQghhBBnZ1dywvO83TM6OY5zYI1lQogzyM3NBgBEREah3uD8ZYQbmRrKCatUCsiyLSsK7z8A/0s5iQKDHl9UVSIgILCHoySEEEJ6P4cWYeQ47nYAYwGoATQmIywAVwCXAwjrkugIIX2GKIq4V62FIY5DiLsXCs7zfBNZBvSiAqKgAGvnCC1ZBgySAgDgworN1irpDJNFgMUqwU2jhNgwvEut1kD08YVVX4+cnCxKTgghhBA7dDo54ThuEYBFAGoajrc2/PgDkABs6MoACSF9Q2FONvq7uQMAfINDkZFdf16vb5VZvFEwEAAwL/wElHZMOrHKLFYVDgIAPBd6AmrGsTkyoijDaBbAemggNilQFhUVhby8HGRnZ+Piiy9z6NyEEELIhcSRUsL3AtgBwAfAKgCf8zwfCOBiABUATnVdeISQvqLg1AkAgEGSILu4XTCVuhrV6s2tel4u8g/AI5ExUB5L6pmgCCGEkD7GkeQkFMB2nudlAEkARgEAz/NJAJYCeLDrwiOE9BVVGekAgDqV0rYw4QWyxkkjvdEKscUs/Agvb0zwD4BXeXkPRUUIIYT0LY4kJ3r8W6QzDUA0x3G6hvvHQZW9CLkgmQoLAQCChwf0Risk2fHSvH2RySxAaJGceMclAAA8hAurF4kQQghxlCPJyR+wDe0CgAwAAoCJDff7A6Ci/oRciKqqAADqwCDU6i+8lwFTw7ouTYd2hQ8ZAgBwVyhgrK7umcAIIYSQPsSR5ORVALdxHPc5z/Nm2OafbOM4bi+ANwB83ZUBEkL6Bp3ZBABwj4qCwXTh9RQ0VuximmQn/qHhqLJaAQAFJ/7uqdAIIYSQPqPTyQnP84cAjATwYcNDMwHsAdAPwG4As7osOkJIn2CxWFBrNMIgCPDn+l9wk+EB20KMZqsIlv03OWEYBtUN98tPp/ZUaIQQQkif4dA6JzzP/wPgn4bbJgAPd2VQhJC+JS8vF6+mpcLNzQ3f9BsE0z9F5z0GlpEx1LUSCoUCLAPYUUkYLCNjiEvlmdvnqs5gQbCPrtljZlc3wGSCPi/vnM9PCCGEODtHF2H0BHAlbIsutup94Xn+vXOMixDSh+TkZAMAIiOjIIhyj/ScKBkZN/jlQ6dTw2iUIdmRaygZGVN9uy5pqNVb0LIOgNLfH8jLg6myssuuQwghhDgrRxZhnALb8C2XdnaRAVByQsgFpDE5iYqKhtEswCo4tphhX2cyC7CKzbMTxfARuPvTveg3eCiu7aG4/r+9O4+P66rvPv65s0ga7bJsyftuHzuxnT0hlKQJAQK0gbKVtWVvgbYP9GkJAcJSlhZCWcJDgRYKLRQIEFLKltJCQgIhJHGcxI6X402yrM1aR8vsy33+uGNbkjW2JEuaGfn7fr30knTn3Du/o6u5M797NhERkVIxk5aTfwD2A/8XaMdbFV5ELmDVT+/mMxfvIFoRYjiSLEgMrgvJrIM/65zRenG2fVKu1/gbdLJnLKI4XfFEmnQmS2DMcdZs2kwim+XYsZbzO7iIiMgFYCbJyRbgxdbaX892MCJSmoLhMCtDlQzU1TMaLUxyknJ93NG+HYDbVu0hMIVBJynXxx0d3j63rthDmXN+91piyTTJVIayigDZXL+yNWvWAhAOhwmHB6mvbziv5xAREVnIZjKV8DGgdrYDEZHSVZP0psutWbuOeOLCm6nrpHgifcaMXaFQJX+6yfDBzVs5/vBDBYxORESk+M0kOfkH4EPGmLWzHIuIlKCh8CBNAa8RtmnbJRfkNMInuS6MxlLj1joB2FLXwLbaOgYOaDphERGRs5lJt67XAiuAI8aYXiA64XHXWrvhvCMTkZLQuvtJQn4/KdelfOkK4j3dhQ6poIZGk2eMXck0NMDgIMnO9sIEJSIiUiJmkpy0575ERDixbx9rgbDPoSkNiVSm0CEVVCyROmPGrtCqVTA4SCA8VKCoRERESsO0kxNr7RvnIhARKU2RtlYAktU1BZupq5jEcjN2+cdsW7xlK+zeTX0mjeu6Z3T7EhEREc9M1jlZfZaHs8CotTY844hEpKR0DwxQFY0QMoaRaKLQ4RScNyg+S3W5//SMXZddzonv3kWVz89Idxe1y5YXOEoREZHiNJNuXa1w9jk6jTEDwJ3W2o/NJCgRKR0/OtZCV1cnX7v1NmKJwnXp8jkuWyvD+P0+fA7nuEqN2ScUPvXzbIgnMiRSGWoqAqeCaFjSzN50iqZgGW1P7GKbkhMREZFJzSQ5eT3wL8CvgO8A3UAT8HLgD4GPAtXA7caYfmvtl2YnVBEpNtFohK6uTgBWrl7H3mMT58eYPwHH5RVL2giFyojFXLJTyDUCjsvLFh+b1TiyrstoNElTXQWZMbnacLCMQDJJ5Fgr22b1GUVERBaOmSQnrwbummTsyX8YY74EXGGtfZExJgy8HVByIrJAtRw5jAM0LGokVFVLLDFS6JCKwtBoEiYMK3l64wa+fde3+NNLL+WmwoQlIiJS9GaSnNwAvDjPY/cAP8z9/BvgfTM4voiUiO6dj/HNy6/mmM8hFs+QvMBn6jopGj9zxq51GzYBcOTI4UKEJCIiUhJmsghjP3BJnscuAYZzP1cDkZkEJSKlYaTlKGU+H1WVVQxHCjsYPpn18ZFjO3jvgS0ks1ObDSuZ9fGx45fwseOXkMzO5HI4uXgiTTqdHbdtw4aNABw9quREREQkn5m0nHwL+IgxJgXcDfTgjTl5KfBh4MvGmAbgXcDvZidMESlGmd4eAHxNSxiJahrhk2KJNIlUhrKKwKkZu9atXcd7N21hVSjEyIluapqXFjhKERGR4jOTW4W3A3cBnwHagHju+2fwEpf3AS8ALsuVFZEFKhTxGker164nFk8XOJriEU+miacy+HynW3AaFjWysrKKxWXltO3aVcDoREREite0kxNrbdpa+yZgM/DnwPvxZvDabK39c2ttErgXWGGt3T2r0YpI0UgmkzTmFhNs3HIxsYSSk5NcF0YiyXHJCcBQ0Gus7j+4vxBhiYiIFL2ZdOsCwFp7BDiS57HBGUckIiWhdd9eGoJlANSsN8QO9Bc4ouIyNJI4YzrjTH0DhMPE29sLE5SIiEiRm1JyYow5CrzEWvuUMaaFsy9v5lprN8xKdCJStNqf3MVKYNB1qXYCpDPZc+5zIYkl0qTS2XEzCodWr4ZwmGBY929EREQmM9WWkwc4PQvXA0xp7WURWciOdXZwfKCfpnXrqB2JFzqcohNLpEllspT7HdzcFXPp9ktg924WZbK42SyOb/ZmCBMREVkIppScjF1w0Vr7hjmLRkRKxs6Odh46eoj3v/Z1RGKFH2/ic1w2hobx+3z4HKZ0C8XnuGysGD7182yKJVLEkxlCVUEyuTVP1l91NS3f/HdCPh+9hw/RtNnM6nOKiIiUuhmNOTHG1AC11toOY0wZ8E5gFXC3tfbB2QxQRIrToUMWgPUbNhFJpAocDQQcl9c0tRIKlRGLuWeM98i3z6uWtMxJPMlUlmg8TWNNOZmMtzhlZXUNx9IpkokEyw4eUHIiIiIywbT7FBhjrgaOAX+V2/R54JPA64D7jDEvmr3wRKQYDQ7044bDAKxavUHTCOcRHk3gTFgP8v7mZj5s97Gvt7cwQYmIiBSxmXR4/jhwAPhnY0wILyn5orV2EfCveFMLi8gCdnTX4/zTjsv46mVX4QuUE9c0wpMajSZJZ8Y34WzevAWAgwcPFCIkERGRojaT5OQa4KPW2hbgJiAEfDP32F3AtlmKTUSK1ImnvSWMEsEgQ5FUUcyQkcz6+Ie2bXzQbiaZdc69Q26fT7Zv45Pt20hmZ39weiyeJjlhFjNjvOSk5aCd9ecTEREpdTMZc5IFErmfXwiEgUdzv9cC0ZkGY4y5HXiOtfaGMdsuBe4ErgT6gc9ba/9xps8hIucv1tYGQLqhgeFI4hyl50/KnX6CkXL9cxCJJ5pIkUxmKKsIkM0Ngtm8bj13bruE5vIKYuEwofr6OXt+ERGRUjOTW4U7gbcYY64FXgn8xFrrGmOagNtyj0+bMeZdwEcmbGsE/hc4iJecfAj4qDHmjWccQETmjX9wAIDyVas13uQs4ok0sWRm3ErxzStXUeEP4HMcWh97pIDRiYiIFJ+ZJCfvxuvO9RCQBj6W2/40sAm4fToHM8asMMbcmzvOxH4Of4bXSvN2a+1+a+3Xgc8C75lB3CIyCzKZDIvS3uxTDVsuJhov/Exdxcp1YWg0MS45cRyHgaDXaN2zd0+hQhMRESlK005OrLVPABuBa4H11tpDuYfeDmyz1j4+zUNeDgwCO4CJtxGvAx601o69NXsfYHItNSIyz44fPUJTWRkAiy7aQVSD4c9qaDRBZsK8xplFjQAkjh8vREgiIiJFa0brnFhrR5iQSFhrfzDDY/0Y+DGAMWfM+b8SmHhrsTP3fTXQM5PnBAgEZnfwq9/vG/d9IVrodVzo9YPZqWPbY79jqeMw7GYJlVUBkXEtA4UytkY+n4OPc8c0fh/mpB7xZJqMO/6aU7NhAwwMUDYUnta1SP+jpW+h1w8ujDqKyNyZUXIyjyo5Pfj+pHjue8VMD+rzOTQ0VM04qLOprQ3NyXGLyUKv40KvH5xfHVt7u3i4q4OLtm2jOpEhFCqbxchmzj9mhq7y8iBlvnPPITZ2n1CobEr7TFcWBxeHhobKU9vM9b/H8GOPsTjrUlMVJFA2vb+h/kdL30KvH1wYdRSR2VfsyUkMKJ+w7WRSEpnpQbNZl+HhGU8qNim/30dtbYjh4RiZCVOHLhQLvY4LvX4wO3V8aN9+Huk4zofe+ueEh2PEYslZjnJmUlmHNRWj+BwfyUSKDOeuXyrrsKZ8FIB4LElmDpKTRDzF0EicioBz6m/evGU7XZk0Vf4AT/3iAdZf+8wpHUv/o6VvodcP5q6OtbUhtcaIXACKPTk5DiyfsO3k7x3nc+B0em7eFDKZ7Jwdu1gs9Dou9PrBzOvoui779u0DYP3GrfRFU6emyC00Py6vbz5KKFRGLJadUlx+XP6k6cip37NzcNqzuIRHEjTVV5z6mzuOnwPAUG8P6w8fYfVVz5jWMfU/WvoWev3gwqijiMy+Yr8F8SBwnTFm7EIENwHWWjvj8SYiMjPHW4+y3nFoqKhg+ap1mqlrisKj8TMSn7YtW/nysaM8efxYYYISEREpQsXecvI14FbgX40xdwBXA+8C3lbIoEQuVEcffpj3b97KqOsSSWTPmIVKJheJeSvFj70bdPHF2wDYt+/pwgQlIiJShIq65STXOnIzYIBdeIswvtta++8FDUzkAjWwfy8AI5WVhEeKZ2V4gGTWxz8ev4iPHdpIMju1WbeSWR+f6biYz3RcTDI7d5fDaDxFYsJijBdfvB2/4xBrbSEVj59lbxERkQtHUbWcWGvfMMm2x/DWVBGRAnO7uwDwLV9BNFZ8Xbqi2elf0mayz7SfI54imkhTEwqcGguzZs1avrDjMhqDZbQ88jCbf//GOY9DRESk2BV1y4mIFA/XdamLeXf467dcTETjTabMdWFwJI7jnG458fl8hINBALqe2FWo0ERERIqKkhMRmZKOY60sz63H0XjJFRoMP03Dowky7vgxOtklTQDEW1sKEZKIiEjRUXIiIlNy+KFfE/D5GHWzRCrqcDUWflpGYymSqfFTdtVsNgBUDQ8VIiQREZGio+RERKak/+k9AIxU1zAcKY6FF89XVej0eJOtq2u4aE0t65fX0dRQSTAwu5fHSCxFfMKg+PW/dx0Aix0fkf7+WX0+ERGRUqTkRESm5L72Nr7UeoTMJZcSKcLB8NNRW1XG1jV1bF9+egmlUM/TVPXuoTl+GFMX5fK1laxdVktZcHYuk4lkhtFYatwK1ys2baY3lcLnOBx84P5ZeR4REZFSVlSzdYlIcUokEjyyfx/pdIq33fhcjp4ovuTEwWV5WRTH55BvImG/z2H10hqWVSZxBw7T29nFWqcOgMH2ViJOxjuWz0/N4sWsXL6WxWuaONafpncwdt4x9g/FWNVUdTpmx2GwqpIlyRR9Tz0BL335eT+HiIhIKVNyIiLntG/fXtLpFI2Ni6mpayLR3l3okM4Q9Lm8ZdlhQqEyYjH3jBXZQ+UBNq2oojbVS/iAJTLodaP6QPldZxzLzWYY7jnBSF8vi1asZvOKTVSHamntGj6vsTYj0SSp9PjA3C0X8Z2f/RjKgjx35ocWERFZENStS0TO6ehvHuDmJc3cuH0HA8PFtfjiVFSHgly0qpLq0WOceHrnqcTkXNxslv7jrQwdeJyVwTBmVR1+39QWeJxMJOqNOxk7pfD6m57Df3Z38os9T5GdmFGJiIhcYJSciMg5Zffv481r1nFddS0jkdJKTqpDQbasqKCs/wjd+/eQTk5/MH8kPEDvvsdZ4vayeVXtjBOUSMxbjNHvP73/5s1bqKgIMTIyzNGjR2Z0XBERkYVCyYmInJXrulQPDwNQveViRot0MHwq63Bn+xY+eXgDqaz34T9UEcCsCBHsP8KJw/txs5lx+yTcALfG38it8TeScM/eyzURjdCz/0kas71sXFmLM4P8JOu6DAyNX4wxGAxyzbYdPKNhEYfu+8X0DyoiIrKAaMyJiJxV5/E2VpWVA7DkymfQ3lucyYmLw1CmLPczBAM+zIoqysMtdB8+gJuny1Q/tVN+jmQsSp/dTdPWy0ktq+do5/C04wyPJkhnxw9cuXnZcjbi0LL7yWkfT0REZCFRy4mInJX91X2U+XxEXJdI5WJKYe1Fn+OwaWUN1dFOThzalzcxmYlEZJSBw3tYXhFh2eKqc+8wwWg0SSKVGdfy0rjjUgAaIlFcrW4pIiIXMCUnInJWA08+AcBQXV3JLL64qrmGxuwAvYf2kk2nZ/340fAgkWP7WVvvUlddPq19R6JJovE0Pt/py+/Wm55LKpul3u+nc++e2Q5XRESkZCg5EZGzqujtBSBktjIaLc4uXRMtC8UYPLqPZCw6Z88R7u4k23OEjc3llAX9594hJ5NxGRyJj1spvnbRIjpzbVKHf6lxJyIicuFSciIieXV3dbLC733wbnrG9YzGSqPlJNF5ZMrTBZ+PvtbDhCKdrF9WnXfhx8kMDMXJTBh3klq2HID4QTuLEYqIiJQWJSciktfjux7nbbt38Y1EjMSiFee1AOFcGzuGY7CjbV6eM5vJ0Hf0AIv9w9MafzISTRKfMO6k+ZpnALA4GiWbyeTZU0REZGFTciIiee3c+SiJbJZFl19BeLS41zdZsaSK1ZUxVvoHpzWofLnTz3Jn5q0sicgokeOW1fVQFQpOaZ/Jxp1c9OznEs9kqPH7aX1854zjERERKWWaSlhE8tq581EAdlx6FSNFPBi+ujLIhvoMn1nyY2IDvaTSmSm18pQ7aT5a/h/n/fzhrk6W1TWyful69rYOkz3Hk2cyLn1DMZrqKzjZSBKqrubHAT/3PbmLtx49zPqrrznvuEREREqNWk5EZFKdbcd4W1UNr1u1hnXrtxAt0sUXfY7D+qWVMNDGcE93weLoazlEfXaQFU1T6941OBwnlR6fxDRf8wz6U0kee+x3cxGiiIhI0VNyIiKT2nPvT9hUXc0NTUuJZcuLdn2TFU1V1GUG6Ws5VNA4Uok4w20HWVmTpXoK3buGR5PEkulxq8VffbU37uTRRx8hPQdTIIuIiBQ7JSciMqnhp54EYHTJEoYixTnepDoUZGVNluE2SySR4fb4a7kt8moS7tR6rCbcAB9IvI4PJF435X3OZrinGwaPs25p5bjB7pMZjSUZiabw+09fhi++eDvPX7mav1q6nKfv/el5xyMiIlJqlJyIyBlSqRSNwyMA1F1xNcOjxTfexHFgbXMlzuBxhntOANDpNtKRXTSt43S6jXS6jbMWV3/rIercMMvPMXuX60LPYHRcEuP3+7lu7TouravnxG8enLWYRERESoWSExE5w57f/pqVFRVkXZfaK68nkSq+qW2XNVbRwBB9rYcLHco4qXicyPFDrKyDUMXZW2PCI3HiE/62NZdcBkB1T8+cxSgiIlKslJyIyBla7r8PgL6yIIOpqa9+Pl8qygOsqneItB8iFY8VOpwzhE90ERjuYG3z2VtPhkaTROLpcV27tt/yYtJuliV+P+17ds91qCIiIkVFyYmInMHX0uL9sH4jQyPFN95kbXMVgZEOwt2dhQ5lcq5Lf8shGv2jNC2qzFssmcrQF47j853u29WwdBkduZ8P/rfGnYiIyIVFyYmIjNPR0c6xgT6GUymWXHcTo9HiGm+yuCHE4kCEgdbD01pscb4lohHinYdZvchPWTD/pbYvHCWVGV+P7Lr13veDB+c0RhERkWKj5ERExrnvvl/wb8eP8S/BAPEl64tqCuFgwMeaxiCJ7iPER0cKHc45DXS0UxE9werm6rxlhkYTROOpca0nm1/4hwCszGYZ7Gif8zhFRESKhZITERnnvvv+F4DrbryJ8Ei8wNGMt6q5mspYDwPtbZM+3ugMs9gZntYxGxmmkentM1VuNsPgsUM0lydoqCmftEwklmJwJDFu3Mm6y6+kLZ1m9/AQD9//izmJTUREpBgpORGRU3pPdDN60OIAV1zz+wwV0RTCddXlLA0lGTx2iGzmzNnDyp00n6r4Nz5b/U3KnaktYFjupLmj4uvcUfH1Ke8zXdHwIJneFtY0VeD3Tb74SfdAhEx2fBtVyzOfyd8fOsBPH35oTuISEREpRkpOROSUx3/4Az6+dRufu/xqsr5qskUypsPnc1jbVEG2r5XIYH+hw5m2vrZWqlP9rGiavHtXeDhBJJ4e17Xruc97PgCPPPIwQ0Ph+QhTRESk4JSciMgpozsf835oXkp/Ec3StWJJFbXpAfqPHS10KDOSSSUZaTvEiuoM1ZXBMx4fiSYZGImP69q1du16Nm3aTI3j8NAP75nPcEVERApGyYmIANDdfpwNKa9rU+ONNxfNFMJVoSArarIMHz9EOpm/m1nS9fOR+Cv5YOTlJN2prc2SdP18NPEqPpp41ZT3manh3hMweJy1zVXjVoU/qasvQnpC167XXXYV/3zJFZQ/+MCcxiYiIlIslJyICACPfuc/qAoEGMYls2FHUXTpchxY11yJL9zOcE/3Wcu6OLS6zbRkm3GZfGxHvn1a3anvcz76Ww/T4IZZtvjMxRkHh+OMxsbP2nXVy/+YrOuyynE49uSuOY9PRESk0JSciAiu65LJrUYeW7eB/qHiaDVZ1lhFA0P0tRwqdCizIhWPMdp+kFV1EKoIjHssEkvRG47hD5y+LC/fbDiWS1YOfP+78xqriIhIISg5ERH279qJCXhjIZqe92KGI4WfpStUEWBVvUOk/RCpeKzQ4cyacHcX/uEO1i2tOqOtprsvQiKVHbet8pprAWjo6CCdSs1TlCIiIoWh5EREeOL73yXg89Hn9zNUs6zQ4eAA65ZW4R9uZ7C7s9DhzC7Xpf/oQRY5wyyd0L2rfyjGUCRJYEzryVWvei2jmTT1gQCP3/29+Y5WRERkXik5EbnAjYyM8IUH7uNDB/bi3vg8+sKFb6VYtriKRc4w/UcPQhGMfZltyViU6PGDrK53qBzTvSuVztLRMwpj2lQqqqvpblwMwMD//s98hyoiIjKvlJyIXOB+8pMfEotFSTQ1Uf+M55JMnbnA4XyqCgVZXQ+R45ZkLFrQWObSYHcngaHjrF86fvaunoEII/HxA+Mv/tM3kHVdFidTHHzqqQJEKyIiMj+UnIhcwFzX5e7vfhuAl77iNfQMFjYZ8Pkc1i+txDfYRrhr+t25qolR40yv5aeaKNUUoN6uS+/RgzQQZuWYxRmHI0l6BqLjBsav2XEp94YqePvuXXz9rrvmP1YREZF5ouRE5AL2yL0/5X31i3jzuo1c8YxnMzRa2IHwq5prqM8M0NtycNr7ljtpPh/6Cl+s/hrlTnrK+9xZ8RXurPjKlPeZTal4jOHWA6ysyVBXXXZqe3vPKLFEZlyLyrNe/ybi2Szf+973GBwcmPdYRURE5oOSE5ELlOu6HL/7u9QEglyyeg39o4WNp6G2ghWVCcKt+0knimMq4/kw3HsCt7eF9c0VBHOtJf3hGH1DsXED46+88mq2br2IeDzO97/8xUKFKyIiMqeUnIhcoHb96j4uzg28bnjJq+kfKtxA+PIyPxuaykifOMJof1/B4iiU3tbDVMVOsH55DQ6QdV3aukdIpE9PBuA4Dn/xprfyia3buHLffvra2goXsIiIyBxRciJyAXJdlyPf+iYBn48TFRWMLNlYsEmxfI7DxuXVVIy003fs6IyPk3T9fDLxUj4e/SOSrn/K+9yReBl3JF425X3mQjadpu/IPpb4h1m+xBt/cmIgQl94fOvJ9Te/gIpQiAq/n8f+6c5ChSsiIjJnlJyIXIAe/umP2Z7LRmpueQV9g4VrNVmzrIZF2QF6Du/HzWbPvUMeLg42u5IDmRW4ZyxveJZ93JVYd+WU95kridERRlr3s6YuQ0NtBZmMS2vXMMmMe2rsic/no/FFfwjAyt5e2vc9XcCIRUREZp+SE5ELTDqdpuPb38bvOHRXVxNZcRHZAjWbLG2sYkVFlMEjexfUKvAzNdzTTbr7EBubglRWBDjRH+HEQJRA4HSrzg1vfhPHcSn3+djz/z5XuGBFRETmgJITkQvMXV/9Vzb4/WRdl0WvenPBWk0aaspZ1+ASbdtPJKzZp07qO3aUYPgYm5dX4fM5tHQMEU2kcXLNJz6fj7VvfitZ12VDKs3Oe+4ucMQiIiKzR8mJyAXkxIluPva5z/LXe5+ixWyhp2wJhWgzqQ4F2dhcRrb7IINdHQWIoHi52Sw9h/ZTHetk88oaBoZiHO+JjBt7Yq67ntb6egDiP/oho+HBAkUrIiIyu5SciFwgXNflYx/7O0ZGRlixZSvLX/oWhiPzv65JqCKAWREi0H+U3tYj8/78pSCTTtFz8GkWZXrZuLKW1s5BBkYS+P2nL9nX3vo+wpk04XiMf77z0wWMVkREZPYoORG5QPz3V77M4OOPEwgEeMe7bqe9NzLvMYTKA2xZUUl5uJUThw/gFmqKsBKQisfoPfAUS+hn6aJKDreHSaZPTxhQ19yM8+rX8cEDe/nmf97NAw/cV8BoRUREZoeSE5ELwMEnn6DhoV/zvs1b+OCr/oRUoJFUeuYzY81EqCLAlpVVVA63ceLgXtxsZtafo4wUZaTmfJ/5kohG6LNP0ewMUBH00dYzMu68XfW85/Pq174egPe//z20HDxQqFBFRERmRaDQAYjI3Orp7KDl03ewrrycAQc2vPj1HOmZ30Hw1ZVBzPIQ5eEWug/uJZuZ/cSk3Enz5dCXCAb8pNKZKa3bUu6k+VJFca+2Hh8dodc+yRJzCSOpJjp6R2isLiOdS1Le9a6/Yd/ePWzr6+P433+Uhk9+mvrmpQWOWkREZGbUciKygEVGR/jN+25lXXk50WyWijf+FV2js58YnM2i2gouWl5OWf9huu3cJCYLXWJ0hN79u6iNdhKLxBiKpk4NkA8Gy7jj7z7OdUuaWBoIsvO2dzPc31/giEVERGZGyYnIAjU0OMjP/+odbAsESbsumZe9li7/4nlbCd4BVjZVs6UJ6NxP96H9c9KV60KRjEY5sf8JfH2HiY+OkMy4pwbIL1mzjoY3/xmRTIbVfj+/e/dfE+45UeCIRUREpk/JicgC1N3dzf1//Zds8/tJuy5DN72AnsVb5m2cSXnQj1ldx9qqCJEjT9B77AhznRWlXD+fS9zCP0b/gJTrP/cOJ/dJvojPJV805X0KKZ1M0nNgD7GW3cTDfWThVIKy6VnXE/rTNxDLZFjr8/HUrX9D216tIC8iIqVFyYnIArNz56O85jUvY8+JblJulpHnv5ihDdeSSM5Pq0VTQyXb11SyONlB397HGJ6nO/hZHHZn1/FUZi1ZnCnvsye7jj3ZdVPep9DcbJaeo4c4sft3RLtacMhQXu4NH9xy402E3vBmhjJplgUC9HzqEzz4ja8XOGIREZGpU3IiskBEI6N8/uN/x1vf+noGBvrZU1PNyKvfQt/Ky4nPQ2JSU1nGRWvr2NyQgPY9dO7dRSIyOufPe6Ea7j1By86H6LdPkIkMEgoFcBzY/Ps3sOq22+nOZqn2+/nnr3yJ9773b+lRNy8RESkBJTFblzHGB3wIeAvQAPwGeIe19nBBAxMpAslkgvv/5UuUP/oo2zJp/MDNt7yEW179l5wYSODOcVeu6sogyxorWVKegMGj9LUdJRGd/zVULkSpeJzW3U8y0tPN8s1bqGpeSTZQybItW2j4wpf54Wc/xf4nHmPvvT/h/vt/yTtf8nKe+7o3sHjFikKHLiIiMqmSSE6ADwBvA94IdAB3APcaYy621s7/EtciRaDj8CF2/ce/U3v0KOvKyqCsjGg2wMf/9oOUXXQ93f2JOXtun8+hobaCproyGoIJnOE2wkdbiYYH5+w5Jb/+7m6G+npZtmYVi9dsINS4lPKGGl79gQ9z0Ytewqc+9fd0HdjPdmvpvP02fldXy/Ln3MyO57+QQKBU3gZERORCUPTvSsaYMuBvgFuttT/LbXsl0Am8FLirgOGJzJtIZJS9e5/m4AP3s3jvXtb4/RjHgbIy4tksJ1avJfTC15FIBomNzn5iEvD7qK0uo766jMaQS3kmQnqwhfCJLmLDQ7P+fDI96XSG40da6W3voGnFMhatWEVF41KuuWIb3/nO97jvG99g8H9/TrPfz+bRCPzwHh67+7sM1NVTtfUiNj3neSzfsBHHKY2xNyIisjAVfXICXArUAPed3GCtDRtjdgHXo+REFohELMZAZztDnZ2M9JxgpKuLWFcHDAyyKzzAPQf24boua0OV3HHxDgBO4BLbcgkV199CLBUgknCB858Vy3GgojxAZXmQqlCAmgofNcE0wUyczHAn0a5eBgf6yaTUcFls4okUbUfb6G7roH5RHY3NTVQuXsrNf3wL7mtfweM/+hnt//M/LB2N0BgI0hiJwM7H+Mh3v8X+TIaNGzdx+cpVbCorp2JJM7XLl9OwajU1Tc3UNDZSVl5e6CqKiMgCVgrJycrc9+MTtncCq2d60JMLmM2W3+49xgNf/BJLE6Oc/HDoMP5j4s+Ci0g63vNemh5lXSb/Kt3/Hagn6nhTm27PRNicPV127H1N14WfB+oYyZW9KBPl4mz+4/7SX8OA4512k4mxI89xAe7zV9Ob+xfZlE1whRvFcRzcSaaEfcCppNMJArDeTfIMNzbp1LEu8BsnRFuu7Bo3xbPcaN4YfksFRwniAitI82zGxDvh+I9QjsU77lIy3Ez+v8PObJCnc2UXk+EWX3xMBKeP67rwhBvgSdcrW0+Wl54qe2a8u7MBHnODuK5LDVleGUiOKevic7MEs1mCuDwWifHTwUHSyQSNbprPGIPPcfABdbmvk9qiUVzXpXLRclJrL+GnS1bRe9ELCS/aQCbjQnfeqp7mgM+BwIgfN+vV0edzcBy85/U5+H0OAcfF7wMnksU3miGbTpJNJciksqSTDm62EWicwhPOr4x7+mx8J3UdvikkaeP3uR6/M0+LwMyQ44CT9uG62XPPzJwCOsDpBL/PRzAYIViRJlh5E75X/gG+VIKynT+ioXUXK0Z7ORCJMJxMsGvXTtZ3dbFuxSpobQUgCfTnvmKZDJ/o6KLdKcMXKOOZVSGuqwySwUfWcUg7PrKODxcHHPg5lfT6gjg4bCbF5W7cOzO5FpqT5VwcHgrW0esvx+dzWJ2Kckk6/4QKjwRq6PJ5idKqTJwrMvnL7vTX0O73yi7LJrgmPZK37BP+ao75KwBoyiZ5Zno4b9nd/iqO+kMANGZTXJfO34K431/FwUAl4NDgpLk+Pki+GwkH/ZXsD1QBUO2muSmZv7vkEX+IpwPVAFS4GW5ODuQte8xfwZOBGgCCbpYXJvMv1tnuK+fxYC0APtfllmRfnpIOXb4yHg2evmJtqq/hc59+z6lprkVEpqMUkpPK3PeJ/VTiwKKZHNDnc2hoqDqvoCa682t3ccOxp7hm8ZK8Zf5l5/2MpNMA3LB6LVc3Lc1b9t+eeJC+pPfB9pkrV3PV0uV5y35712/piHsfxK9cvpIrl6/MW/YHTz9CS26w8valy7hy5Zq8ZX/09E5aR703cbOkmcvXrMt7U/7nB5/k2FAYgHWNS7hs3Ya8x/3V4T20DXpvoCsaFnHZhs15yz7Uso+2fu9NcXFdPZdu2nL6wQmZwWPHDnK815uRqLamlh3morzHfarzMO0nugAor6pi+9btkxd04EBHCx1dHd6vFSG2b7sk73GP9Byno70NgCVl5WzbcdmZhXJv2DYZIdLvHXfQ78fnOGRdl9FMlmEXhghwwl9Ld6iZQ9tejP8Pnk+yuokTwLdOHku9qSb1YCbP+TyLX2env09JSQIT5ylY/jbIXVrcZ8fxDxzB7bWc6H2Yh5JdLMrGWOSkafD7KPN5/7chv5+R4X5GctecymUr2Fi7KndAF8jkvjx3799FW27Wtm3NS7li1drTRSf4+b5HOTziJQOrFjdxzdr1eavzwIGdHMmNcVq2qJFr1m/KW/Z3B3dxZMD7IL6ovoFrNpq8ZZ88/BRH+noAqKqt45rNW/OW3Xd0D0d6vDsDgepqrtmyLW/Zo617OdzdCcDaUCXX5Fo/J9Nx/ACHO7z7ccvKK7hm+6V5y/Z1HOTw8WMANASDXHPJFXnLjnQd5vCxFgCq/H6uueyqvGWT/S0cbvHmnPE7DtdccU3eso8ODnD4yMFTv1fU1PKjX7+Q1zwvfywiIvk4k90FLybGmJcBdwOV1trYmO3fA8qttS+e5iGPZjLZdcPD+e+qz8T+th7u/cq/Uzc6NP49d8wH6CfqV5D2eS0cayKDNCXG3Omb0M97d91ykgHvbv3K6CDN8fx3+vbVLSceKANgWTTMstjQGcc7GYytW0o04N1BbIoNsSIWHlfChVN9zg/XNjMarAAcFsdHWBkZGNew4I6pXEvtEkbKvYSvIT7KqtH8d+TaapsYypWtS0RYNdI7abwO0F69mHCFd6evJhVl9XDPhEKn9+uuWsRAqBZwqEzGWDt8Im/ZnsoG+qvqAahIJVg71OXVxnHO+NDUV1lPX1UDAGXpJOvCnZPE6h17IFRHb7WXMwezKdYNdIwvGCzDLQtBWYh47WJijSsIlFUQLKugxu/H17gM/HN7zyDg95POZHJ33t3Z6AVWNBzHIRDwk05nJm3hK3VzXj/HOf2qHvOSdAA3GScT7iU71MeQ4yeRjJFJp6gc6qFmqAcnncRJp3DTSXzpFLjeLHFHapuJBMrAdVkcDbMikmsxcN1c66f3M66LrVnCcLACx3FYHBthXTR/K8DB6sWEy7x7V42JCBsi+a85R6oa6T95fUpG2TSarxUAWioX0VvhtUTUpWKYkd68ZY9VNnAid32qTiW4aGTy6ZpdF9pDdXSGanGAqkyKi4e68770OkM1tIfqAajIpNgxlL9ptLuimrbK3PUpm+aySa5PJ/WUV9NS5V2f/NkMV4Y78pbtK6viSLXXQuq4LlcPTuy8cNpgMMTB6tM35jYtquHDt72JeCxJJjN7swXW1obw+30tQP6sVURKXim0nJy8Ii4HjozZvhx4aqYHTc/y9KpbVzfxzC98mMHBSN5jv2FWn3H+BQI+GhqqzlrHUlYc9UvmvubG6TrGF/g5VP3mxtx36SuO1+HcWej1A6+OZUE/kdHsgq2jiMydUugQ+hQwDNxwcoMxph64HPh1YUISEREREZHZVvQtJ9bahDHmC8AnjTG9QCvwKbwWlXsKGZuIiIiIiMyeok9Ocj6IF+tXgRDwIHCzFmAUEREREVk4SiI5sdZmgPfkvkREREREZAEqhTEnIiIiIiJyAVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRcFzXLXQM8y3mum5FNjv79fb7fWQy2Vk/bjFZ6HVc6PWDhV9H1a/0LfQ6LvT6wdzU0edzcBwnDoRm9cAiUlQuxOQkDJQDXQWOQ0RERKZuGZAA6gsch4jMoQsxORERERERkSKkMSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBSFQKEDKBXGGB/wIeAtQAPwG+Ad1trDeco3Ap8HXpjb9H3gr621kXkId0aMMYuAvwf+EKgFdgO3WWt/k6f864F/m+ShTfn+LoVkjFkDtE7y0FuttV+dpHxJnUNjzA3A/XkebrHWrp9kn5I5h8aY24HnWGtvGLPtUuBO4EqgH/i8tfYfz3GcVwB/B6wHDgK3Wmv/e47CnrI89bsF+CCwFejD+x/8oLU2dpbjtABrJ2z+lrX2dbMd83TlqePXgTdMKNphrV15luOUxDk0xvwK+P08xV9vrf1GnuMUzTk81/vCQnoNikhxUMvJ1H0AeBvwVuBawAXuNcaU5Sl/N7ABuAl4GfA84IvzEOf5uAt4BvAq4CpgF/A/xpgtecrvAH4FLJvw1TLnkc7MDiAOLGd8vN/KU77UzuFvOfNcPA9I4324mExJnENjzLuAj0zY1gj8L96Hmyvxbh581BjzxrMc50a88/1F4FLg58APjTFb5yTwKcpTv+uA/wR+gBfr24BXcpb/QWNMDbAG74Pk2PP5F3MQ9rRMVsecHXj/n2PjvewsxymZcwi8lDNfWz8FDuCd28mOU2znMO/7wkJ6DYpI8VDLyRTkEpC/wbu787PctlcCnXhvPndNKH8tcAOw1Vp7ILftz4D/Nsa811rbOY/hT4kxZiPwXOD3rLW/zW17J/AC4DV4d28n2g48Za3tnrdAz892wFpru85VsBTPobU2CZw6F8aYIPBZ4AeTtQzlFPU5NMasAL4KXAfYCQ//GZAA3m6tTQP7jTGbgPcAX89zyNuAe6y1X8j9/m5jzO8B78T78D+vzlG/Pwfus9Z+Ivf7YWPM+4CvG2PeZq1NTHLI7YADPGStDc9R2NNytjoaY/zARcBHp/E/WDLn0Fo7MKHsq4GbgcuttSN5Dlk053AK7wsxSvw1KCLFRy0nU3MpUAPcd3JD7k1jF3D9JOWvA7pOfqjN+RVea8uz5irI89QH/AHw+MkN1loX701yUZ59dgD75j60WTOdeEvxHE70F8Aq4K/PUqbYz+HlwCBenI9MeOw64MHch6KT7gOMMaZp4oFyXTN/jzGv4zH7TPY6ng9nq9+ngXdPsk8A73o0mR14/7fh2QpwFpytjpuACqb4P1iC5/AUY0wV8Cngs9baPWc5XjGdw3O9LyyE16CIFBm1nEzNyb7Pxyds7wRW5yk/rqy1NmmM6c9TvuByb4Q/G7st1y94A16zOxMeWwI0A9cbY/4P3hvVI8B7rLUH5zzgmdkOdBljfg1sBg7h3bE9o36U4DkcyxhTAbwf+Fy+lqJSOIfW2h8DPwYwxkx8eCUw8UPeyRat1UDPhMfqgSqm/jqec2ern7X2ibG/j2nB3WWt7ctzyO1AxBjzA+CZeH+Dr+ONA8jObvRTc45zuB0v4X+XMeYFQBbvOnS7tXZoksPVU0LncIK34SWVHz/HIYvmHE7hfeHjlPhrUESKj1pOpqYy931iN4o43l2/ycpP1uUiX/mik2tm/xrwX7k334m25b5ngD/F649cDfzGGNM8P1FOXe6D3Wa8AZ234w1yfwxv3NBNk+xS6ufwT4AQ3oD+fErqHE5isnMUz33P97okzz5FfU6NMQHgm3hdoN5xlqLbgDq8rqbPA/4F+Bjw4TkOcaa24SUkrcAtwN/ivTb/K3eXfaKSPIe57mv/B/hinqRrrKI9h5O8L1wwr0ERmT9qOZmakzPjlI/5GbyL6WQzN8VyZSfKV76oGGNeDHwb+B3w6snKWGvvN8YsstYOjtnvj4A2vJl3Pjn3kU5drtWjHkiP6av/eG4Q5t8Cv5ywS0mfQ7xk4wfW2v58BUrtHE5isnN08gNOvtclefYp2nOaGyD9PeBG4OXW2rxdh4DnABVjxjPsye1/uzHmw4VqPTmLD+N1cwrnfn/aGNMFPIw3+HpiXUvyHOKNX1sNfGUKZYvyHOZ5X7ggXoMiMr/UcjI1J5ugl0/Yvhxoz1N+XNncnfvGPOWLhjHmL4F78JryX3i2KUvHfqjN/R4BjnK6G1xRsdZGJhlEvIfJ4y3lc7gErzvIXecqW2rncIIzztGY3zsmKT+A9wFoqq/jgjPGLAN+jXc+X5CnFfMUa21qkoHWe/C60jTMTZQzZ611JxlbcbKb0GT/gyV3DnP+CHjUWnv0XAWL8Rye5X1hwb8GRWT+KTmZmqeAYby7XwDk7sJfjvfBYaIHgZW5mU5OujH3/bdzE+L5M8a8Hfh/wBeAV+aZDehUWWNMnzEmNGZbLV7Xqb1zHuw0GWN2GGNGjTETB7NfyeTxluQ5zHkmXj/+B85WqNTO4SQeBK7LdZk56Sa8Gdkm9nU/OZD3N4x5Hec8m8lfxwVljGnAGyi8BHiWtTbfGjYny/uMMa3GmPdPeOgq4MTZWtEKxRjzbWPMxDFfV+W+nzFIvtTO4RjP4sxB4GcoxnN4jveFBf0aFJHCULeuKbDWJowxXwA+aYzpxesf/Sm8u0b35C7MS4Ch3B2lR4CHgLtyF/Zq4MvAN6y1k91NKjhjzGa8hbT+E/gHoGnM4M4YMMr4Ov4EbzDkN4wxH8Yb3/APQC/w7/Ma/NQ8nfv6Uu6c9OFNRXstcNVCOIdjXAIctdZGx26cpI6ldg4n+hpwK/Cvxpg7gKuBdzFmOlJjTB1QZq3tzW36DPAzY8wTeHeB34Q3G9+b5i/sKfss3iJ1zwd6jTFLxzzWa63NjK2ftTZrjPk+cKsx5iDebII34f2N3jnfwU/Rt4Ef5T6M34WXGP8T8G1r7X4o+XN48nV3Md57xmSPF+05nML7wkJ/DYpIAajlZOo+CPwr3nz2D+EtbHdzbm2JVUAX3gJpJ+8OvRRvIbv78fqL3wu8ff7DnrKXA0HgJXh1Gft1J2fW8Tje3a5avL/HL4EwcOPZuoIVSq6f9i3Ao3irbD8BXAM8Nzet50I4hyctxVupeaKSPocT5e7M3gwYvA9xHwLeba0dm1jdiTfxwcl9/gd4I955fALvg98fTpgyuuByg8FfCZTh3XGf+JpclSs6rn7Ae4E7gE/gtTz8X+Cd1tqpjHWYd9banwCvwFvkdA/eNfYe4M1jipXkORyjEe/amq/Vo5jP4VnfFxbya1BECsdxXbfQMYiIiIiIiKjlREREREREioOSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5EpCgZY5xCxyAiIiLzS8mJiBQdY8yLyK1Sb4y5wRjjGmNuKGxUIiIiMtcChQ5ARGQS/3fMz7uAa/FWyxYREZEFTMmJiBQ1a+0w8LtCxyEiIiJzz3Fdt9AxiIicYoz5FfD7YzbdCNwP3Git/ZUx5sPAq4DbgI8BG4EDwNsBF7gT2AEcAd5prf3lmGNvAz4BXJ/b9Evgb6y1R+ewSiIiIjJFGnMiIsXmHcATua9rgdpJyqwCPgN8HPhjYBFwN/Ad4Ct4yYsPuMsYEwIwxmwGfgs0AW8A3gysBx4yxjTNXXVERERkqpSciEhRsdbuA4aBYWvt73I/T1QJvMNa+x1r7Y+ALwLLgY9aa79qrf0v4APAYsDk9vkQEAOeY629x1r7fbxWmRDw7jmtlIiIiEyJxpyISKn67Zifu3Pfx45N6c99r899vwmve1jUGHPy2jcM/Bp47hzFKCIiItOg5ERESlJuoPxE0bPs0gi8Mvc1Ue+sBCUiIiLnRcmJiFwowsAvgE9P8lh6fkMRERGRySg5EZFilAH8s3zMB4CLgCettWk4tQr9fwCHgSdn+flERERkmpSciEgxCgPXGmOeDdTN0jE/AjwM/MQY8yUgDvw58EfAy2fpOUREROQ8aLYuESlGXwBSwL14s2mdN2vtbuA6vLVQvok39fAy4I+stffMxnOIiIjI+dEijCIiIiIiUhTUciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFH4/7k05P7nzyfiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Define more stringent bounds as a dictionary with the retention time as the key\n", + "# and the parameter bounds as a value.\n", + "bounds = {10: {'amplitude':[99, 101]}, # Known parameters for peak 1\n", + " 10.6 : {} # Allow free inference for second peak\n", + " }\n", + "peaks = chrom.fit_peaks(known_peaks=bounds)\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "\n", + "# Print a summary statement demonstrating the improvement.\n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we've only bounded the `amplitude` parameter, but you can also provide \n", + "bounds for `location`, `scale`, and `skew`.\n", + "\n", + "---\n", + "\n", + " © Griffin Chure, 2023. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_static/_sphinx_javascript_frameworks_compat.js b/_static/_sphinx_javascript_frameworks_compat.js new file mode 100644 index 0000000..8141580 --- /dev/null +++ b/_static/_sphinx_javascript_frameworks_compat.js @@ -0,0 +1,123 @@ +/* Compatability shim for jQuery and underscores.js. + * + * Copyright Sphinx contributors + * Released under the two clause BSD licence + */ + +/** + * small helper function to urldecode strings + * + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/decodeURIComponent#Decoding_query_parameters_from_a_URL + */ +jQuery.urldecode = function(x) { + if (!x) { + return x + } + return decodeURIComponent(x.replace(/\+/g, ' ')); +}; + +/** + * small helper function to urlencode strings + */ +jQuery.urlencode = encodeURIComponent; + +/** + * This function returns the parsed url parameters of the + * current request. Multiple values per key are supported, + * it will always return arrays of strings for the value parts. + */ +jQuery.getQueryParameters = function(s) { + if (typeof s === 'undefined') + s = document.location.search; + var parts = s.substr(s.indexOf('?') + 1).split('&'); + var result = {}; + for (var i = 0; i < parts.length; i++) { + var tmp = parts[i].split('=', 2); + var key = jQuery.urldecode(tmp[0]); + var value = jQuery.urldecode(tmp[1]); + if (key in result) + result[key].push(value); + else + result[key] = [value]; + } + return result; +}; + +/** + * highlight a given string on a jquery object by wrapping it in + * span elements with the given class name. + */ +jQuery.fn.highlightText = function(text, className) { + function highlight(node, addItems) { + if (node.nodeType === 3) { + var val = node.nodeValue; + var pos = val.toLowerCase().indexOf(text); + if (pos >= 0 && + !jQuery(node.parentNode).hasClass(className) && + !jQuery(node.parentNode).hasClass("nohighlight")) { + var span; + var isInSVG = jQuery(node).closest("body, svg, foreignObject").is("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.className = className; + } + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + node.parentNode.insertBefore(span, node.parentNode.insertBefore( + document.createTextNode(val.substr(pos + text.length)), + node.nextSibling)); + node.nodeValue = val.substr(0, pos); + if (isInSVG) { + var rect = document.createElementNS("http://www.w3.org/2000/svg", "rect"); + var bbox = node.parentElement.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute('class', className); + addItems.push({ + "parent": node.parentNode, + "target": rect}); + } + } + } + else if (!jQuery(node).is("button, select, textarea")) { + jQuery.each(node.childNodes, function() { + highlight(this, addItems); + }); + } + } + var addItems = []; + var result = this.each(function() { + highlight(this, addItems); + }); + for (var i = 0; i < addItems.length; ++i) { + jQuery(addItems[i].parent).before(addItems[i].target); + } + return result; +}; + +/* + * backward compatibility for jQuery.browser + * This will be supported until firefox bug is fixed. + */ +if (!jQuery.browser) { + jQuery.uaMatch = function(ua) { + ua = ua.toLowerCase(); + + var match = /(chrome)[ \/]([\w.]+)/.exec(ua) || + /(webkit)[ \/]([\w.]+)/.exec(ua) || + /(opera)(?:.*version|)[ \/]([\w.]+)/.exec(ua) || + /(msie) ([\w.]+)/.exec(ua) || + ua.indexOf("compatible") < 0 && /(mozilla)(?:.*? rv:([\w.]+)|)/.exec(ua) || + []; + + return { + browser: match[ 1 ] || "", + version: match[ 2 ] || "0" + }; + }; + jQuery.browser = {}; + jQuery.browser[jQuery.uaMatch(navigator.userAgent).browser] = true; +} diff --git a/_static/algorithm/baseline_correction.ipynb b/_static/algorithm/baseline_correction.ipynb new file mode 100644 index 0000000..7097a74 --- /dev/null +++ b/_static/algorithm/baseline_correction.ipynb @@ -0,0 +1,52 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Baseline Correction" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import pandas as pd \n", + "import matplotlib.pyplot as plt \n", + "import seaborn as sns\n", + "from hplc.quant import Chromatogram\n", + "sns.set()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_static/algorithm/data/mild_baseline_drift.csv b/_static/algorithm/data/mild_baseline_drift.csv new file mode 100644 index 0000000..39eb41a --- /dev/null +++ b/_static/algorithm/data/mild_baseline_drift.csv @@ -0,0 +1,8751 @@ +time,measured_signal,true_signal,true_background +0.0,3.0,0.0,3.0 +0.008,2.9997,0.0,2.9997 +0.016,2.9993,0.0,2.9993 +0.024,2.999,0.0,2.999 +0.032,2.9986,0.0,2.9986 +0.04,2.9983,0.0,2.9983 +0.048,2.9979,0.0,2.9979 +0.056,2.9976,0.0,2.9976 +0.064,2.9973,0.0,2.9973 +0.07200000000000001,2.9969,0.0,2.9969 +0.08,2.9966,0.0,2.9966 +0.088,2.9962,0.0,2.9962 +0.096,2.9959,0.0,2.9959 +0.10400000000000001,2.9955,0.0,2.9955 +0.112,2.9952,0.0,2.9952 +0.12,2.9948,0.0,2.9948 +0.128,2.9945,0.0,2.9945 +0.136,2.9942,0.0,2.9942 +0.14400000000000002,2.9938,0.0,2.9938 +0.152,2.9935,0.0,2.9935 +0.16,2.9931,0.0,2.9931 +0.168,2.9928,0.0,2.9928 +0.176,2.9924,0.0,2.9924 +0.184,2.9921,0.0,2.9921 +0.192,2.9918,0.0,2.9918 +0.2,2.9914,0.0,2.9914 +0.20800000000000002,2.9911,0.0,2.9911 +0.216,2.9907,0.0,2.9907 +0.224,2.9904,0.0,2.9904 +0.232,2.99,0.0,2.99 +0.24,2.9897,0.0,2.9897 +0.248,2.9893,0.0,2.9893 +0.256,2.989,0.0,2.989 +0.264,2.9886,0.0,2.9886 +0.272,2.9883,0.0,2.9883 +0.28,2.988,0.0,2.988 +0.28800000000000003,2.9876,0.0,2.9876 +0.296,2.9873,0.0,2.9873 +0.304,2.9869,0.0,2.9869 +0.312,2.9866,0.0,2.9866 +0.32,2.9862,0.0,2.9862 +0.328,2.9859,0.0,2.9859 +0.336,2.9855,0.0,2.9855 +0.34400000000000003,2.9852,0.0,2.9852 +0.352,2.9848,0.0,2.9848 +0.36,2.9845,0.0,2.9845 +0.368,2.9842,0.0,2.9842 +0.376,2.9838,0.0,2.9838 +0.384,2.9835,0.0,2.9835 +0.392,2.9831,0.0,2.9831 +0.4,2.9828,0.0,2.9828 +0.40800000000000003,2.9824,0.0,2.9824 +0.41600000000000004,2.9821,0.0,2.9821 +0.424,2.9817,0.0,2.9817 +0.432,2.9814,0.0,2.9814 +0.44,2.981,0.0,2.981 +0.448,2.9807,0.0,2.9807 +0.456,2.9803,0.0,2.9803 +0.464,2.98,0.0,2.98 +0.47200000000000003,2.9796,0.0,2.9796 +0.48,2.9793,0.0,2.9793 +0.488,2.979,0.0,2.979 +0.496,2.9786,0.0,2.9786 +0.504,2.9783,0.0,2.9783 +0.512,2.9779,0.0,2.9779 +0.52,2.9776,0.0,2.9776 +0.528,2.9772,0.0,2.9772 +0.536,2.9769,0.0,2.9769 +0.544,2.9765,0.0,2.9765 +0.552,2.9762,0.0,2.9762 +0.56,2.9758,0.0,2.9758 +0.5680000000000001,2.9755,0.0,2.9755 +0.5760000000000001,2.9751,0.0,2.9751 +0.584,2.9748,0.0,2.9748 +0.592,2.9744,0.0,2.9744 +0.6,2.9741,0.0,2.9741 +0.608,2.9737,0.0,2.9737 +0.616,2.9734,0.0,2.9734 +0.624,2.973,0.0,2.973 +0.632,2.9727,0.0,2.9727 +0.64,2.9723,0.0,2.9723 +0.648,2.972,0.0,2.972 +0.656,2.9716,0.0,2.9716 +0.664,2.9713,0.0,2.9713 +0.672,2.9709,0.0,2.9709 +0.68,2.9706,0.0,2.9706 +0.6880000000000001,2.9703,0.0,2.9703 +0.6960000000000001,2.9699,0.0,2.9699 +0.704,2.9696,0.0,2.9696 +0.712,2.9692,0.0,2.9692 +0.72,2.9689,0.0,2.9689 +0.728,2.9685,0.0,2.9685 +0.736,2.9682,0.0,2.9682 +0.744,2.9678,0.0,2.9678 +0.752,2.9675,0.0,2.9675 +0.76,2.9671,0.0,2.9671 +0.768,2.9668,0.0,2.9668 +0.776,2.9664,0.0,2.9664 +0.784,2.9661,0.0,2.9661 +0.792,2.9657,0.0,2.9657 +0.8,2.9654,0.0,2.9654 +0.808,2.965,0.0,2.965 +0.8160000000000001,2.9647,0.0,2.9647 +0.8240000000000001,2.9643,0.0,2.9643 +0.8320000000000001,2.964,0.0,2.964 +0.84,2.9636,0.0,2.9636 +0.848,2.9633,0.0,2.9633 +0.856,2.9629,0.0,2.9629 +0.864,2.9626,0.0,2.9626 +0.872,2.9622,0.0,2.9622 +0.88,2.9619,0.0,2.9619 +0.888,2.9615,0.0,2.9615 +0.896,2.9612,0.0,2.9612 +0.904,2.9608,0.0,2.9608 +0.912,2.9605,0.0,2.9605 +0.92,2.9601,0.0,2.9601 +0.928,2.9598,0.0,2.9598 +0.936,2.9594,0.0,2.9594 +0.9440000000000001,2.959,0.0,2.959 +0.9520000000000001,2.9587,0.0,2.9587 +0.96,2.9583,0.0,2.9583 +0.968,2.958,0.0,2.958 +0.976,2.9576,0.0,2.9576 +0.984,2.9573,0.0,2.9573 +0.992,2.9569,0.0,2.9569 +1.0,2.9566,0.0,2.9566 +1.008,2.9562,0.0,2.9562 +1.016,2.9559,0.0,2.9559 +1.024,2.9555,0.0,2.9555 +1.032,2.9552,0.0,2.9552 +1.04,2.9548,0.0,2.9548 +1.048,2.9545,0.0,2.9545 +1.056,2.9541,0.0,2.9541 +1.064,2.9538,0.0,2.9538 +1.072,2.9534,0.0,2.9534 +1.08,2.9531,0.0,2.9531 +1.088,2.9527,0.0,2.9527 +1.096,2.9524,0.0,2.9524 +1.104,2.952,0.0,2.952 +1.112,2.9517,0.0,2.9517 +1.12,2.9513,0.0,2.9513 +1.1280000000000001,2.951,0.0,2.951 +1.1360000000000001,2.9506,0.0,2.9506 +1.1440000000000001,2.9503,0.0,2.9503 +1.1520000000000001,2.9499,0.0,2.9499 +1.16,2.9495,0.0,2.9495 +1.168,2.9492,0.0,2.9492 +1.176,2.9488,0.0,2.9488 +1.184,2.9485,0.0,2.9485 +1.192,2.9481,0.0,2.9481 +1.2,2.9478,0.0,2.9478 +1.208,2.9474,0.0,2.9474 +1.216,2.9471,0.0,2.9471 +1.224,2.9467,0.0,2.9467 +1.232,2.9464,0.0,2.9464 +1.24,2.946,0.0,2.946 +1.248,2.9457,0.0,2.9457 +1.256,2.9453,0.0,2.9453 +1.264,2.945,0.0,2.945 +1.272,2.9446,0.0,2.9446 +1.28,2.9442,0.0,2.9442 +1.288,2.9439,0.0,2.9439 +1.296,2.9435,0.0,2.9435 +1.304,2.9432,0.0,2.9432 +1.312,2.9428,0.0,2.9428 +1.32,2.9425,0.0,2.9425 +1.328,2.9421,0.0,2.9421 +1.336,2.9418,0.0,2.9418 +1.344,2.9414,0.0,2.9414 +1.352,2.9411,0.0,2.9411 +1.36,2.9407,0.0,2.9407 +1.368,2.9403,0.0,2.9403 +1.3760000000000001,2.94,0.0,2.94 +1.3840000000000001,2.9396,0.0,2.9396 +1.3920000000000001,2.9393,0.0,2.9393 +1.4000000000000001,2.9389,0.0,2.9389 +1.408,2.9386,0.0,2.9386 +1.416,2.9382,0.0,2.9382 +1.424,2.9379,0.0,2.9379 +1.432,2.9375,0.0,2.9375 +1.44,2.9372,0.0,2.9372 +1.448,2.9368,0.0,2.9368 +1.456,2.9364,0.0,2.9364 +1.464,2.9361,0.0,2.9361 +1.472,2.9357,0.0,2.9357 +1.48,2.9354,0.0,2.9354 +1.488,2.935,0.0,2.935 +1.496,2.9347,0.0,2.9347 +1.504,2.9343,0.0,2.9343 +1.512,2.934,0.0,2.934 +1.52,2.9336,0.0,2.9336 +1.528,2.9332,0.0,2.9332 +1.536,2.9329,0.0,2.9329 +1.544,2.9325,0.0,2.9325 +1.552,2.9322,0.0,2.9322 +1.56,2.9318,0.0,2.9318 +1.568,2.9315,0.0,2.9315 +1.576,2.9311,0.0,2.9311 +1.584,2.9307,0.0,2.9307 +1.592,2.9304,0.0,2.9304 +1.6,2.93,0.0,2.93 +1.608,2.9297,0.0,2.9297 +1.616,2.9293,0.0,2.9293 +1.624,2.929,0.0,2.929 +1.6320000000000001,2.9286,0.0,2.9286 +1.6400000000000001,2.9282,0.0,2.9282 +1.6480000000000001,2.9279,0.0,2.9279 +1.6560000000000001,2.9275,0.0,2.9275 +1.6640000000000001,2.9272,0.0,2.9272 +1.672,2.9268,0.0,2.9268 +1.68,2.9265,0.0,2.9265 +1.688,2.9261,0.0,2.9261 +1.696,2.9257,0.0,2.9257 +1.704,2.9254,0.0,2.9254 +1.712,2.925,0.0,2.925 +1.72,2.9247,0.0,2.9247 +1.728,2.9243,0.0,2.9243 +1.736,2.924,0.0,2.924 +1.744,2.9236,0.0,2.9236 +1.752,2.9232,0.0,2.9232 +1.76,2.9229,0.0,2.9229 +1.768,2.9225,0.0,2.9225 +1.776,2.9222,0.0,2.9222 +1.784,2.9218,0.0,2.9218 +1.792,2.9215,0.0,2.9215 +1.8,2.9211,0.0,2.9211 +1.808,2.9207,0.0,2.9207 +1.816,2.9204,0.0,2.9204 +1.824,2.92,0.0,2.92 +1.832,2.9197,0.0,2.9197 +1.84,2.9193,0.0,2.9193 +1.848,2.9189,0.0,2.9189 +1.856,2.9186,0.0,2.9186 +1.864,2.9182,0.0,2.9182 +1.872,2.9179,0.0,2.9179 +1.8800000000000001,2.9175,0.0,2.9175 +1.8880000000000001,2.9172,0.0,2.9172 +1.8960000000000001,2.9168,0.0,2.9168 +1.9040000000000001,2.9164,0.0,2.9164 +1.9120000000000001,2.9161,0.0,2.9161 +1.92,2.9157,0.0,2.9157 +1.928,2.9154,0.0,2.9154 +1.936,2.915,0.0,2.915 +1.944,2.9146,0.0,2.9146 +1.952,2.9143,0.0,2.9143 +1.96,2.9139,0.0,2.9139 +1.968,2.9136,0.0,2.9136 +1.976,2.9132,0.0,2.9132 +1.984,2.9128,0.0,2.9128 +1.992,2.9125,0.0,2.9125 +2.0,2.9121,0.0,2.9121 +2.008,2.9118,0.0,2.9118 +2.016,2.9114,0.0,2.9114 +2.024,2.911,0.0,2.911 +2.032,2.9107,0.0,2.9107 +2.04,2.9103,0.0,2.9103 +2.048,2.91,0.0,2.91 +2.056,2.9096,0.0,2.9096 +2.064,2.9092,0.0,2.9092 +2.072,2.9089,0.0,2.9089 +2.08,2.9085,0.0,2.9085 +2.088,2.9082,0.0,2.9082 +2.096,2.9078,0.0,2.9078 +2.104,2.9074,0.0,2.9074 +2.112,2.9071,0.0,2.9071 +2.12,2.9067,0.0,2.9067 +2.128,2.9064,0.0,2.9064 +2.136,2.906,0.0,2.906 +2.144,2.9056,0.0,2.9056 +2.152,2.9053,0.0,2.9053 +2.16,2.9049,0.0,2.9049 +2.168,2.9045,0.0,2.9045 +2.176,2.9042,0.0,2.9042 +2.184,2.9038,0.0,2.9038 +2.192,2.9035,0.0,2.9035 +2.2,2.9031,0.0,2.9031 +2.208,2.9027,0.0,2.9027 +2.216,2.9024,0.0,2.9024 +2.224,2.902,0.0,2.902 +2.232,2.9017,0.0,2.9017 +2.24,2.9013,0.0,2.9013 +2.248,2.9009,0.0,2.9009 +2.2560000000000002,2.9006,0.0,2.9006 +2.2640000000000002,2.9002,0.0,2.9002 +2.2720000000000002,2.8998,0.0,2.8998 +2.2800000000000002,2.8995,0.0,2.8995 +2.2880000000000003,2.8991,0.0,2.8991 +2.2960000000000003,2.8988,0.0,2.8988 +2.3040000000000003,2.8984,0.0,2.8984 +2.312,2.898,0.0,2.898 +2.32,2.8977,0.0,2.8977 +2.328,2.8973,0.0,2.8973 +2.336,2.8969,0.0,2.8969 +2.344,2.8966,0.0,2.8966 +2.352,2.8962,0.0,2.8962 +2.36,2.8959,0.0,2.8959 +2.368,2.8955,0.0,2.8955 +2.376,2.8951,0.0,2.8951 +2.384,2.8948,0.0,2.8948 +2.392,2.8944,0.0,2.8944 +2.4,2.894,0.0,2.894 +2.408,2.8937,0.0,2.8937 +2.416,2.8933,0.0,2.8933 +2.424,2.893,0.0,2.893 +2.432,2.8926,0.0,2.8926 +2.44,2.8922,0.0,2.8922 +2.448,2.8919,0.0,2.8919 +2.456,2.8915,0.0,2.8915 +2.464,2.8911,0.0,2.8911 +2.472,2.8908,0.0,2.8908 +2.48,2.8904,0.0,2.8904 +2.488,2.89,0.0,2.89 +2.496,2.8897,0.0,2.8897 +2.504,2.8893,0.0,2.8893 +2.512,2.889,0.0,2.889 +2.52,2.8886,0.0,2.8886 +2.528,2.8882,0.0,2.8882 +2.536,2.8879,0.0,2.8879 +2.544,2.8875,0.0,2.8875 +2.552,2.8871,0.0,2.8871 +2.56,2.8868,0.0,2.8868 +2.568,2.8864,0.0,2.8864 +2.576,2.886,0.0,2.886 +2.584,2.8857,0.0,2.8857 +2.592,2.8853,0.0,2.8853 +2.6,2.8849,0.0,2.8849 +2.608,2.8846,0.0,2.8846 +2.616,2.8842,0.0,2.8842 +2.624,2.8839,0.0,2.8839 +2.632,2.8835,0.0,2.8835 +2.64,2.8831,0.0,2.8831 +2.648,2.8828,0.0,2.8828 +2.656,2.8824,0.0,2.8824 +2.664,2.882,0.0,2.882 +2.672,2.8817,0.0,2.8817 +2.68,2.8813,0.0,2.8813 +2.688,2.8809,0.0,2.8809 +2.696,2.8806,0.0,2.8806 +2.704,2.8802,0.0,2.8802 +2.712,2.8798,0.0,2.8798 +2.72,2.8795,0.0,2.8795 +2.728,2.8791,0.0,2.8791 +2.736,2.8787,0.0,2.8787 +2.744,2.8784,0.0,2.8784 +2.7520000000000002,2.878,0.0,2.878 +2.7600000000000002,2.8776,0.0,2.8776 +2.7680000000000002,2.8773,0.0,2.8773 +2.7760000000000002,2.8769,0.0,2.8769 +2.7840000000000003,2.8765,0.0,2.8765 +2.7920000000000003,2.8762,0.0,2.8762 +2.8000000000000003,2.8758,0.0,2.8758 +2.8080000000000003,2.8754,0.0,2.8754 +2.816,2.8751,0.0,2.8751 +2.824,2.8747,0.0,2.8747 +2.832,2.8743,0.0,2.8743 +2.84,2.874,0.0,2.874 +2.848,2.8736,0.0,2.8736 +2.856,2.8732,0.0,2.8732 +2.864,2.8729,0.0,2.8729 +2.872,2.8725,0.0,2.8725 +2.88,2.8721,0.0,2.8721 +2.888,2.8718,0.0,2.8718 +2.896,2.8714,0.0,2.8714 +2.904,2.871,0.0,2.871 +2.912,2.8707,0.0,2.8707 +2.92,2.8703,0.0,2.8703 +2.928,2.8699,0.0,2.8699 +2.936,2.8696,0.0,2.8696 +2.944,2.8692,0.0,2.8692 +2.952,2.8688,0.0,2.8688 +2.96,2.8685,0.0,2.8685 +2.968,2.8681,0.0,2.8681 +2.976,2.8677,0.0,2.8677 +2.984,2.8674,0.0,2.8674 +2.992,2.867,0.0,2.867 +3.0,2.8666,0.0,2.8666 +3.008,2.8663,0.0,2.8663 +3.016,2.8659,0.0,2.8659 +3.024,2.8655,0.0,2.8655 +3.032,2.8652,0.0,2.8652 +3.04,2.8648,0.0,2.8648 +3.048,2.8644,0.0,2.8644 +3.056,2.8641,0.0,2.8641 +3.064,2.8637,0.0,2.8637 +3.072,2.8633,0.0,2.8633 +3.08,2.863,0.0,2.863 +3.088,2.8626,0.0,2.8626 +3.096,2.8622,0.0,2.8622 +3.104,2.8618,0.0,2.8618 +3.112,2.8615,0.0,2.8615 +3.12,2.8611,0.0,2.8611 +3.128,2.8607,0.0,2.8607 +3.136,2.8604,0.0,2.8604 +3.144,2.86,0.0,2.86 +3.152,2.8596,0.0,2.8596 +3.16,2.8593,0.0,2.8593 +3.168,2.8589,0.0,2.8589 +3.176,2.8585,0.0,2.8585 +3.184,2.8582,0.0,2.8582 +3.192,2.8578,0.0,2.8578 +3.2,2.8574,0.0,2.8574 +3.208,2.857,0.0,2.857 +3.216,2.8567,0.0,2.8567 +3.224,2.8563,0.0,2.8563 +3.232,2.8559,0.0,2.8559 +3.24,2.8556,0.0,2.8556 +3.248,2.8552,0.0,2.8552 +3.2560000000000002,2.8548,0.0,2.8548 +3.2640000000000002,2.8545,0.0,2.8545 +3.2720000000000002,2.8541,0.0,2.8541 +3.2800000000000002,2.8537,0.0,2.8537 +3.2880000000000003,2.8534,0.0,2.8534 +3.2960000000000003,2.853,0.0,2.853 +3.3040000000000003,2.8526,0.0,2.8526 +3.3120000000000003,2.8522,0.0,2.8522 +3.3200000000000003,2.8519,0.0,2.8519 +3.3280000000000003,2.8515,0.0,2.8515 +3.336,2.8511,0.0,2.8511 +3.344,2.8508,0.0,2.8508 +3.352,2.8504,0.0,2.8504 +3.36,2.85,0.0,2.85 +3.368,2.8496,0.0,2.8496 +3.376,2.8493,0.0,2.8493 +3.384,2.8489,0.0,2.8489 +3.392,2.8485,0.0,2.8485 +3.4,2.8482,0.0,2.8482 +3.408,2.8478,0.0,2.8478 +3.416,2.8474,0.0,2.8474 +3.424,2.8471,0.0,2.8471 +3.432,2.8467,0.0,2.8467 +3.44,2.8463,0.0,2.8463 +3.448,2.8459,0.0,2.8459 +3.456,2.8456,0.0,2.8456 +3.464,2.8452,0.0,2.8452 +3.472,2.8448,0.0,2.8448 +3.48,2.8445,0.0,2.8445 +3.488,2.8441,0.0,2.8441 +3.496,2.8437,0.0,2.8437 +3.504,2.8433,0.0,2.8433 +3.512,2.843,0.0,2.843 +3.52,2.8426,0.0,2.8426 +3.528,2.8422,0.0,2.8422 +3.536,2.8419,0.0,2.8419 +3.544,2.8415,0.0,2.8415 +3.552,2.8411,0.0,2.8411 +3.56,2.8407,0.0,2.8407 +3.568,2.8404,0.0,2.8404 +3.576,2.84,0.0,2.84 +3.584,2.8396,0.0,2.8396 +3.592,2.8392,0.0,2.8392 +3.6,2.8389,0.0,2.8389 +3.608,2.8385,0.0,2.8385 +3.616,2.8381,0.0,2.8381 +3.624,2.8378,0.0,2.8378 +3.632,2.8374,0.0,2.8374 +3.64,2.837,0.0,2.837 +3.648,2.8366,0.0,2.8366 +3.656,2.8363,0.0,2.8363 +3.664,2.8359,0.0,2.8359 +3.672,2.8355,0.0,2.8355 +3.68,2.8351,0.0,2.8351 +3.688,2.8348,0.0,2.8348 +3.696,2.8344,0.0,2.8344 +3.704,2.834,0.0,2.834 +3.712,2.8337,0.0,2.8337 +3.72,2.8333,0.0,2.8333 +3.728,2.8329,0.0,2.8329 +3.736,2.8325,0.0,2.8325 +3.744,2.8322,0.0,2.8322 +3.7520000000000002,2.8318,0.0,2.8318 +3.7600000000000002,2.8314,0.0,2.8314 +3.7680000000000002,2.831,0.0,2.831 +3.7760000000000002,2.8307,0.0,2.8307 +3.7840000000000003,2.8303,0.0,2.8303 +3.7920000000000003,2.8299,0.0,2.8299 +3.8000000000000003,2.8295,0.0,2.8295 +3.8080000000000003,2.8292,0.0,2.8292 +3.8160000000000003,2.8288,0.0,2.8288 +3.8240000000000003,2.8284,0.0,2.8284 +3.8320000000000003,2.8281,0.0,2.8281 +3.84,2.8277,0.0,2.8277 +3.848,2.8273,0.0,2.8273 +3.856,2.8269,0.0,2.8269 +3.864,2.8266,0.0,2.8266 +3.872,2.8262,0.0,2.8262 +3.88,2.8258,0.0,2.8258 +3.888,2.8254,0.0,2.8254 +3.896,2.8251,0.0,2.8251 +3.904,2.8247,0.0,2.8247 +3.912,2.8243,0.0,2.8243 +3.92,2.8239,0.0,2.8239 +3.928,2.8236,0.0,2.8236 +3.936,2.8232,0.0,2.8232 +3.944,2.8228,0.0,2.8228 +3.952,2.8224,0.0,2.8224 +3.96,2.8221,0.0,2.8221 +3.968,2.8217,0.0,2.8217 +3.976,2.8213,0.0,2.8213 +3.984,2.8209,0.0,2.8209 +3.992,2.8206,0.0,2.8206 +4.0,2.8202,0.0,2.8202 +4.008,2.8198,0.0,2.8198 +4.016,2.8194,0.0,2.8194 +4.024,2.8191,0.0,2.8191 +4.032,2.8187,0.0,2.8187 +4.04,2.8183,0.0,2.8183 +4.048,2.8179,0.0,2.8179 +4.056,2.8176,0.0,2.8176 +4.064,2.8172,0.0,2.8172 +4.072,2.8168,0.0,2.8168 +4.08,2.8164,0.0,2.8164 +4.088,2.8161,0.0,2.8161 +4.096,2.8157,0.0,2.8157 +4.104,2.8153,0.0,2.8153 +4.112,2.8149,0.0,2.8149 +4.12,2.8145,0.0,2.8145 +4.128,2.8142,0.0,2.8142 +4.136,2.8138,0.0,2.8138 +4.144,2.8134,0.0,2.8134 +4.152,2.813,0.0,2.813 +4.16,2.8127,0.0,2.8127 +4.168,2.8123,0.0,2.8123 +4.176,2.8119,0.0,2.8119 +4.184,2.8115,0.0,2.8115 +4.192,2.8112,0.0,2.8112 +4.2,2.8108,0.0,2.8108 +4.208,2.8104,0.0,2.8104 +4.216,2.81,0.0,2.81 +4.224,2.8097,0.0,2.8097 +4.232,2.8093,0.0,2.8093 +4.24,2.8089,0.0,2.8089 +4.248,2.8085,0.0,2.8085 +4.256,2.8081,0.0,2.8081 +4.264,2.8078,0.0,2.8078 +4.272,2.8074,0.0,2.8074 +4.28,2.807,0.0,2.807 +4.288,2.8066,0.0,2.8066 +4.296,2.8063,0.0,2.8063 +4.304,2.8059,0.0,2.8059 +4.312,2.8055,0.0,2.8055 +4.32,2.8051,0.0,2.8051 +4.328,2.8047,0.0,2.8047 +4.336,2.8044,0.0,2.8044 +4.344,2.804,0.0,2.804 +4.352,2.8036,0.0,2.8036 +4.36,2.8032,0.0,2.8032 +4.368,2.8029,0.0,2.8029 +4.376,2.8025,0.0,2.8025 +4.384,2.8021,0.0,2.8021 +4.392,2.8017,0.0,2.8017 +4.4,2.8013,0.0,2.8013 +4.408,2.801,0.0,2.801 +4.416,2.8006,0.0,2.8006 +4.424,2.8002,0.0,2.8002 +4.432,2.7998,0.0,2.7998 +4.44,2.7995,0.0,2.7995 +4.448,2.7991,0.0,2.7991 +4.456,2.7987,0.0,2.7987 +4.464,2.7983,0.0,2.7983 +4.472,2.7979,0.0,2.7979 +4.48,2.7976,0.0,2.7976 +4.488,2.7972,0.0,2.7972 +4.496,2.7968,0.0,2.7968 +4.5040000000000004,2.7964,0.0,2.7964 +4.5120000000000005,2.796,0.0,2.796 +4.5200000000000005,2.7957,0.0,2.7957 +4.5280000000000005,2.7953,0.0,2.7953 +4.5360000000000005,2.7949,0.0,2.7949 +4.5440000000000005,2.7945,0.0,2.7945 +4.5520000000000005,2.7941,0.0,2.7941 +4.5600000000000005,2.7938,0.0,2.7938 +4.5680000000000005,2.7934,0.0,2.7934 +4.5760000000000005,2.793,0.0,2.793 +4.5840000000000005,2.7926,0.0,2.7926 +4.5920000000000005,2.7923,0.0,2.7923 +4.6000000000000005,2.7919,0.0,2.7919 +4.6080000000000005,2.7915,0.0,2.7915 +4.616,2.7911,0.0,2.7911 +4.624,2.7907,0.0,2.7907 +4.632,2.7904,0.0,2.7904 +4.64,2.79,0.0,2.79 +4.648,2.7896,0.0,2.7896 +4.656,2.7892,0.0,2.7892 +4.664,2.7888,0.0,2.7888 +4.672,2.7885,0.0,2.7885 +4.68,2.7881,0.0,2.7881 +4.688,2.7877,0.0,2.7877 +4.696,2.7873,0.0,2.7873 +4.704,2.7869,0.0,2.7869 +4.712,2.7866,0.0,2.7866 +4.72,2.7862,0.0,2.7862 +4.728,2.7858,0.0,2.7858 +4.736,2.7854,0.0,2.7854 +4.744,2.785,0.0,2.785 +4.752,2.7847,0.0,2.7847 +4.76,2.7843,0.0,2.7843 +4.768,2.7839,0.0,2.7839 +4.776,2.7835,0.0,2.7835 +4.784,2.7831,0.0,2.7831 +4.792,2.7827,0.0,2.7827 +4.8,2.7824,0.0,2.7824 +4.808,2.782,0.0,2.782 +4.816,2.7816,0.0,2.7816 +4.824,2.7812,0.0,2.7812 +4.832,2.7808,0.0,2.7808 +4.84,2.7805,0.0,2.7805 +4.848,2.7801,0.0,2.7801 +4.856,2.7797,0.0,2.7797 +4.864,2.7793,0.0,2.7793 +4.872,2.7789,0.0,2.7789 +4.88,2.7786,0.0,2.7786 +4.888,2.7782,0.0,2.7782 +4.896,2.7778,0.0,2.7778 +4.904,2.7774,0.0,2.7774 +4.912,2.777,0.0,2.777 +4.92,2.7766,0.0,2.7766 +4.928,2.7763,0.0,2.7763 +4.936,2.7759,0.0,2.7759 +4.944,2.7755,0.0,2.7755 +4.952,2.7751,0.0,2.7751 +4.96,2.7747,0.0,2.7747 +4.968,2.7744,0.0,2.7744 +4.976,2.774,0.0,2.774 +4.984,2.7736,0.0,2.7736 +4.992,2.7732,0.0,2.7732 +5.0,2.7728,0.0,2.7728 +5.008,2.7724,0.0,2.7724 +5.016,2.7721,0.0,2.7721 +5.024,2.7717,0.0,2.7717 +5.032,2.7713,0.0,2.7713 +5.04,2.7709,0.0,2.7709 +5.048,2.7705,0.0,2.7705 +5.056,2.7701,0.0,2.7701 +5.064,2.7698,0.0,2.7698 +5.072,2.7694,0.0,2.7694 +5.08,2.769,0.0,2.769 +5.088,2.7686,0.0,2.7686 +5.096,2.7682,0.0,2.7682 +5.104,2.7678,0.0,2.7678 +5.112,2.7675,0.0,2.7675 +5.12,2.7671,0.0,2.7671 +5.128,2.7667,0.0,2.7667 +5.136,2.7663,0.0,2.7663 +5.144,2.7659,0.0,2.7659 +5.152,2.7655,0.0,2.7655 +5.16,2.7652,0.0,2.7652 +5.168,2.7648,0.0,2.7648 +5.176,2.7644,0.0,2.7644 +5.184,2.764,0.0,2.764 +5.192,2.7636,0.0,2.7636 +5.2,2.7632,0.0,2.7632 +5.208,2.7629,0.0,2.7629 +5.216,2.7625,0.0,2.7625 +5.224,2.7621,0.0,2.7621 +5.232,2.7617,0.0,2.7617 +5.24,2.7613,0.0,2.7613 +5.248,2.7609,0.0,2.7609 +5.256,2.7606,0.0,2.7606 +5.264,2.7602,0.0,2.7602 +5.272,2.7598,0.0,2.7598 +5.28,2.7594,0.0,2.7594 +5.288,2.759,0.0,2.759 +5.296,2.7586,0.0,2.7586 +5.304,2.7583,0.0,2.7583 +5.312,2.7579,0.0,2.7579 +5.32,2.7575,0.0,2.7575 +5.328,2.7571,0.0,2.7571 +5.336,2.7567,0.0,2.7567 +5.344,2.7563,0.0,2.7563 +5.352,2.7559,0.0,2.7559 +5.36,2.7556,0.0,2.7556 +5.368,2.7552,0.0,2.7552 +5.376,2.7548,0.0,2.7548 +5.384,2.7544,0.0,2.7544 +5.392,2.754,0.0,2.754 +5.4,2.7536,0.0,2.7536 +5.408,2.7533,0.0,2.7533 +5.416,2.7529,0.0,2.7529 +5.424,2.7525,0.0,2.7525 +5.432,2.7521,0.0,2.7521 +5.44,2.7517,0.0,2.7517 +5.448,2.7513,0.0,2.7513 +5.456,2.7509,0.0,2.7509 +5.464,2.7506,0.0,2.7506 +5.472,2.7502,0.0,2.7502 +5.48,2.7498,0.0,2.7498 +5.488,2.7494,0.0,2.7494 +5.496,2.749,0.0,2.749 +5.5040000000000004,2.7486,0.0,2.7486 +5.5120000000000005,2.7482,0.0,2.7482 +5.5200000000000005,2.7479,0.0,2.7479 +5.5280000000000005,2.7475,0.0,2.7475 +5.5360000000000005,2.7471,0.0,2.7471 +5.5440000000000005,2.7467,0.0,2.7467 +5.5520000000000005,2.7463,0.0,2.7463 +5.5600000000000005,2.7459,0.0,2.7459 +5.5680000000000005,2.7455,0.0,2.7455 +5.5760000000000005,2.7451,0.0,2.7451 +5.5840000000000005,2.7448,0.0,2.7448 +5.5920000000000005,2.7444,0.0,2.7444 +5.6000000000000005,2.744,0.0,2.744 +5.6080000000000005,2.7436,0.0,2.7436 +5.6160000000000005,2.7432,0.0,2.7432 +5.6240000000000006,2.7428,0.0,2.7428 +5.632,2.7424,0.0,2.7424 +5.64,2.7421,0.0,2.7421 +5.648,2.7417,0.0,2.7417 +5.656,2.7413,0.0,2.7413 +5.664,2.7409,0.0,2.7409 +5.672,2.7405,0.0,2.7405 +5.68,2.7401,0.0,2.7401 +5.688,2.7397,0.0,2.7397 +5.696,2.7393,0.0,2.7393 +5.704,2.739,0.0,2.739 +5.712,2.7386,0.0,2.7386 +5.72,2.7382,0.0,2.7382 +5.728,2.7378,0.0,2.7378 +5.736,2.7374,0.0,2.7374 +5.744,2.737,0.0,2.737 +5.752,2.7366,0.0,2.7366 +5.76,2.7363,0.0,2.7363 +5.768,2.7359,0.0,2.7359 +5.776,2.7355,0.0,2.7355 +5.784,2.7351,0.0,2.7351 +5.792,2.7347,0.0,2.7347 +5.8,2.7343,0.0,2.7343 +5.808,2.7339,0.0,2.7339 +5.816,2.7335,0.0,2.7335 +5.824,2.7331,0.0,2.7331 +5.832,2.7328,0.0,2.7328 +5.84,2.7324,0.0,2.7324 +5.848,2.732,0.0,2.732 +5.856,2.7316,0.0,2.7316 +5.864,2.7312,0.0,2.7312 +5.872,2.7308,0.0,2.7308 +5.88,2.7304,0.0,2.7304 +5.888,2.73,0.0,2.73 +5.896,2.7297,0.0,2.7297 +5.904,2.7293,0.0,2.7293 +5.912,2.7289,0.0,2.7289 +5.92,2.7285,0.0,2.7285 +5.928,2.7281,0.0,2.7281 +5.936,2.7277,0.0,2.7277 +5.944,2.7273,0.0,2.7273 +5.952,2.7269,0.0,2.7269 +5.96,2.7265,0.0,2.7265 +5.968,2.7262,0.0,2.7262 +5.976,2.7258,0.0,2.7258 +5.984,2.7254,0.0,2.7254 +5.992,2.725,0.0,2.725 +6.0,2.7246,0.0,2.7246 +6.008,2.7242,0.0,2.7242 +6.016,2.7238,0.0,2.7238 +6.024,2.7234,0.0,2.7234 +6.032,2.723,0.0,2.723 +6.04,2.7227,0.0,2.7227 +6.048,2.7223,0.0,2.7223 +6.056,2.7219,0.0,2.7219 +6.064,2.7215,0.0,2.7215 +6.072,2.7211,0.0,2.7211 +6.08,2.7207,0.0,2.7207 +6.088,2.7203,0.0,2.7203 +6.096,2.7199,0.0,2.7199 +6.104,2.7195,0.0,2.7195 +6.112,2.7192,0.0,2.7192 +6.12,2.7188,0.0,2.7188 +6.128,2.7184,0.0,2.7184 +6.136,2.718,0.0,2.718 +6.144,2.7176,0.0,2.7176 +6.152,2.7172,0.0,2.7172 +6.16,2.7168,0.0,2.7168 +6.168,2.7164,0.0,2.7164 +6.176,2.716,0.0,2.716 +6.184,2.7156,0.0,2.7156 +6.192,2.7153,0.0,2.7153 +6.2,2.7149,0.0,2.7149 +6.208,2.7145,0.0,2.7145 +6.216,2.7141,0.0,2.7141 +6.224,2.7137,0.0,2.7137 +6.232,2.7133,0.0,2.7133 +6.24,2.7129,0.0,2.7129 +6.248,2.7125,0.0,2.7125 +6.256,2.7121,0.0,2.7121 +6.264,2.7117,0.0,2.7117 +6.272,2.7113,0.0,2.7113 +6.28,2.711,0.0,2.711 +6.288,2.7106,0.0,2.7106 +6.296,2.7102,0.0,2.7102 +6.304,2.7098,0.0,2.7098 +6.312,2.7094,0.0,2.7094 +6.32,2.709,0.0,2.709 +6.328,2.7086,0.0,2.7086 +6.336,2.7082,0.0,2.7082 +6.344,2.7078,0.0,2.7078 +6.352,2.7074,0.0,2.7074 +6.36,2.707,0.0,2.707 +6.368,2.7067,0.0,2.7067 +6.376,2.7063,0.0,2.7063 +6.384,2.7059,0.0,2.7059 +6.392,2.7055,0.0,2.7055 +6.4,2.7051,0.0,2.7051 +6.408,2.7047,0.0,2.7047 +6.416,2.7043,0.0,2.7043 +6.424,2.7039,0.0,2.7039 +6.432,2.7035,0.0,2.7035 +6.44,2.7031,0.0,2.7031 +6.448,2.7027,0.0,2.7027 +6.456,2.7023,0.0,2.7023 +6.464,2.702,0.0,2.702 +6.472,2.7016,0.0,2.7016 +6.48,2.7012,0.0,2.7012 +6.488,2.7008,0.0,2.7008 +6.496,2.7004,0.0,2.7004 +6.5040000000000004,2.7,0.0,2.7 +6.5120000000000005,2.6996,0.0,2.6996 +6.5200000000000005,2.6992,0.0,2.6992 +6.5280000000000005,2.6988,0.0,2.6988 +6.5360000000000005,2.6984,0.0,2.6984 +6.5440000000000005,2.698,0.0,2.698 +6.5520000000000005,2.6976,0.0,2.6976 +6.5600000000000005,2.6972,0.0,2.6972 +6.5680000000000005,2.6969,0.0,2.6969 +6.5760000000000005,2.6965,0.0,2.6965 +6.5840000000000005,2.6961,0.0,2.6961 +6.5920000000000005,2.6957,0.0,2.6957 +6.6000000000000005,2.6953,0.0,2.6953 +6.6080000000000005,2.6949,0.0,2.6949 +6.6160000000000005,2.6945,0.0,2.6945 +6.6240000000000006,2.6941,0.0,2.6941 +6.632000000000001,2.6937,0.0,2.6937 +6.640000000000001,2.6933,0.0,2.6933 +6.648000000000001,2.6929,0.0,2.6929 +6.656000000000001,2.6925,0.0,2.6925 +6.664,2.6921,0.0,2.6921 +6.672,2.6917,0.0,2.6917 +6.68,2.6913,0.0,2.6913 +6.688,2.691,0.0,2.691 +6.696,2.6906,0.0,2.6906 +6.704,2.6902,0.0,2.6902 +6.712,2.6898,0.0,2.6898 +6.72,2.6894,0.0,2.6894 +6.728,2.689,0.0,2.689 +6.736,2.6886,0.0,2.6886 +6.744,2.6882,0.0,2.6882 +6.752,2.6878,0.0,2.6878 +6.76,2.6874,0.0,2.6874 +6.768,2.687,0.0,2.687 +6.776,2.6866,0.0,2.6866 +6.784,2.6862,0.0,2.6862 +6.792,2.6858,0.0,2.6858 +6.8,2.6854,0.0,2.6854 +6.808,2.6851,0.0,2.6851 +6.816,2.6847,0.0,2.6847 +6.824,2.6843,0.0,2.6843 +6.832,2.6839,0.0,2.6839 +6.84,2.6835,0.0,2.6835 +6.848,2.6831,0.0,2.6831 +6.856,2.6827,0.0,2.6827 +6.864,2.6823,0.0,2.6823 +6.872,2.6819,0.0,2.6819 +6.88,2.6815,0.0,2.6815 +6.888,2.6811,0.0,2.6811 +6.896,2.6807,0.0,2.6807 +6.904,2.6803,0.0,2.6803 +6.912,2.6799,0.0,2.6799 +6.92,2.6795,0.0,2.6795 +6.928,2.6791,0.0,2.6791 +6.936,2.6787,0.0,2.6787 +6.944,2.6783,0.0,2.6783 +6.952,2.6779,0.0,2.6779 +6.96,2.6776,0.0,2.6776 +6.968,2.6772,0.0,2.6772 +6.976,2.6768,0.0,2.6768 +6.984,2.6764,0.0,2.6764 +6.992,2.676,0.0,2.676 +7.0,2.6756,0.0,2.6756 +7.008,2.6752,0.0,2.6752 +7.016,2.6748,0.0,2.6748 +7.024,2.6744,0.0,2.6744 +7.032,2.674,0.0,2.674 +7.04,2.6736,0.0,2.6736 +7.048,2.6732,0.0,2.6732 +7.056,2.6728,0.0,2.6728 +7.064,2.6724,0.0,2.6724 +7.072,2.672,0.0,2.672 +7.08,2.6716,0.0,2.6716 +7.088,2.6712,0.0,2.6712 +7.096,2.6708,0.0,2.6708 +7.104,2.6704,0.0,2.6704 +7.112,2.67,0.0,2.67 +7.12,2.6696,0.0,2.6696 +7.128,2.6692,0.0,2.6692 +7.136,2.6689,0.0,2.6689 +7.144,2.6685,0.0,2.6685 +7.152,2.6681,0.0,2.6681 +7.16,2.6677,0.0,2.6677 +7.168,2.6673,0.0,2.6673 +7.176,2.6669,0.0,2.6669 +7.184,2.6665,0.0,2.6665 +7.192,2.6661,0.0,2.6661 +7.2,2.6657,0.0,2.6657 +7.208,2.6653,0.0,2.6653 +7.216,2.6649,0.0,2.6649 +7.224,2.6645,0.0,2.6645 +7.232,2.6641,0.0,2.6641 +7.24,2.6637,0.0,2.6637 +7.248,2.6633,0.0,2.6633 +7.256,2.6629,0.0,2.6629 +7.264,2.6625,0.0,2.6625 +7.272,2.6621,0.0,2.6621 +7.28,2.6617,0.0,2.6617 +7.288,2.6613,0.0,2.6613 +7.296,2.6609,0.0,2.6609 +7.304,2.6605,0.0,2.6605 +7.312,2.6601,0.0,2.6601 +7.32,2.6597,0.0,2.6597 +7.328,2.6593,0.0,2.6593 +7.336,2.6589,0.0,2.6589 +7.344,2.6585,0.0,2.6585 +7.352,2.6581,0.0,2.6581 +7.36,2.6577,0.0,2.6577 +7.368,2.6573,0.0,2.6573 +7.376,2.6569,0.0,2.6569 +7.384,2.6565,0.0,2.6565 +7.392,2.6562,0.0,2.6562 +7.4,2.6558,0.0,2.6558 +7.408,2.6554,0.0,2.6554 +7.416,2.655,0.0,2.655 +7.424,2.6546,0.0,2.6546 +7.432,2.6542,0.0,2.6542 +7.44,2.6538,0.0,2.6538 +7.448,2.6534,0.0,2.6534 +7.456,2.653,0.0,2.653 +7.464,2.6526,0.0,2.6526 +7.472,2.6522,0.0,2.6522 +7.48,2.6518,0.0,2.6518 +7.488,2.6514,0.0,2.6514 +7.496,2.651,0.0,2.651 +7.5040000000000004,2.6507,0.0001,2.6506 +7.5120000000000005,2.6503,0.0001,2.6502 +7.5200000000000005,2.6499,0.0001,2.6498 +7.5280000000000005,2.6495,0.0001,2.6494 +7.5360000000000005,2.6491000000000002,0.0001,2.649 +7.5440000000000005,2.6487000000000003,0.0001,2.6486 +7.5520000000000005,2.6483000000000003,0.0001,2.6482 +7.5600000000000005,2.6479000000000004,0.0001,2.6478 +7.5680000000000005,2.6475000000000004,0.0001,2.6474 +7.5760000000000005,2.6471,0.0001,2.647 +7.5840000000000005,2.6467,0.0001,2.6466 +7.5920000000000005,2.6463,0.0001,2.6462 +7.6000000000000005,2.6459,0.0001,2.6458 +7.6080000000000005,2.6455,0.0001,2.6454 +7.6160000000000005,2.6451000000000002,0.0001,2.645 +7.6240000000000006,2.6447000000000003,0.0001,2.6446 +7.632000000000001,2.6443000000000003,0.0001,2.6442 +7.640000000000001,2.6439000000000004,0.0001,2.6438 +7.648000000000001,2.6435000000000004,0.0001,2.6434 +7.656000000000001,2.6431,0.0001,2.643 +7.664000000000001,2.6427,0.0001,2.6426 +7.672000000000001,2.6423,0.0001,2.6422 +7.68,2.6419,0.0001,2.6418 +7.688,2.6415,0.0001,2.6414 +7.696,2.6411000000000002,0.0001,2.641 +7.704,2.6407000000000003,0.0001,2.6406 +7.712,2.6403000000000003,0.0001,2.6402 +7.72,2.6399000000000004,0.0001,2.6398 +7.728,2.6395000000000004,0.0001,2.6394 +7.736,2.6391,0.0001,2.639 +7.744,2.6387,0.0001,2.6386 +7.752,2.6383,0.0001,2.6382 +7.76,2.6379,0.0001,2.6378 +7.768,2.6375,0.0001,2.6374 +7.776,2.6371,0.0001,2.637 +7.784,2.6367000000000003,0.0001,2.6366 +7.792,2.6363000000000003,0.0001,2.6362 +7.8,2.6359000000000004,0.0001,2.6358 +7.808,2.6355000000000004,0.0001,2.6354 +7.816,2.6351,0.0001,2.635 +7.824,2.6347,0.0001,2.6346 +7.832,2.6343,0.0001,2.6342 +7.84,2.6339,0.0001,2.6338 +7.848,2.6335,0.0001,2.6334 +7.856,2.6331,0.0001,2.633 +7.864,2.6327000000000003,0.0001,2.6326 +7.872,2.6323000000000003,0.0001,2.6322 +7.88,2.6319000000000004,0.0001,2.6318 +7.888,2.6315000000000004,0.0001,2.6314 +7.896,2.6311,0.0001,2.631 +7.904,2.6307,0.0001,2.6306 +7.912,2.6303,0.0001,2.6302 +7.92,2.6299,0.0001,2.6298 +7.928,2.6295,0.0001,2.6294 +7.936,2.6291,0.0001,2.629 +7.944,2.6287000000000003,0.0001,2.6286 +7.952,2.6283000000000003,0.0001,2.6282 +7.96,2.6279000000000003,0.0001,2.6278 +7.968,2.6275000000000004,0.0001,2.6274 +7.976,2.6271,0.0001,2.627 +7.984,2.6268,0.0002,2.6266 +7.992,2.6264,0.0002,2.6262 +8.0,2.626,0.0002,2.6258 +8.008000000000001,2.6256,0.0002,2.6254 +8.016,2.6252,0.0002,2.625 +8.024000000000001,2.6248,0.0002,2.6246 +8.032,2.6244,0.0002,2.6242 +8.040000000000001,2.624,0.0002,2.6238 +8.048,2.6236,0.0002,2.6234 +8.056000000000001,2.6232,0.0002,2.623 +8.064,2.6228,0.0002,2.6226 +8.072000000000001,2.6224,0.0002,2.6222 +8.08,2.622,0.0002,2.6218 +8.088000000000001,2.6216,0.0002,2.6214 +8.096,2.6212,0.0002,2.621 +8.104000000000001,2.6208,0.0002,2.6206 +8.112,2.6204,0.0002,2.6202 +8.120000000000001,2.62,0.0002,2.6198 +8.128,2.6196,0.0002,2.6194 +8.136000000000001,2.6192,0.0002,2.619 +8.144,2.6188,0.0002,2.6186 +8.152000000000001,2.6184,0.0002,2.6182 +8.16,2.618,0.0002,2.6178 +8.168000000000001,2.6176,0.0002,2.6174 +8.176,2.6172,0.0002,2.617 +8.184000000000001,2.6168,0.0002,2.6166 +8.192,2.6164,0.0002,2.6162 +8.2,2.616,0.0002,2.6158 +8.208,2.6157000000000004,0.0003,2.6154 +8.216,2.6153000000000004,0.0003,2.615 +8.224,2.6149,0.0003,2.6146 +8.232,2.6144000000000003,0.0003,2.6141 +8.24,2.6140000000000003,0.0003,2.6137 +8.248,2.6136000000000004,0.0003,2.6133 +8.256,2.6132,0.0003,2.6129 +8.264,2.6128,0.0003,2.6125 +8.272,2.6124,0.0003,2.6121 +8.28,2.612,0.0003,2.6117 +8.288,2.6116,0.0003,2.6113 +8.296,2.6112,0.0003,2.6109 +8.304,2.6108000000000002,0.0003,2.6105 +8.312,2.6104000000000003,0.0003,2.6101 +8.32,2.6100000000000003,0.0003,2.6097 +8.328,2.6096000000000004,0.0003,2.6093 +8.336,2.6092000000000004,0.0003,2.6089 +8.344,2.6088,0.0003,2.6085 +8.352,2.6084,0.0003,2.6081 +8.36,2.608,0.0003,2.6077 +8.368,2.6077,0.0004,2.6073 +8.376,2.6073,0.0004,2.6069 +8.384,2.6069,0.0004,2.6065 +8.392,2.6065,0.0004,2.6061 +8.4,2.6061,0.0004,2.6057 +8.408,2.6057,0.0004,2.6053 +8.416,2.6053,0.0004,2.6049 +8.424,2.6048999999999998,0.0004,2.6045 +8.432,2.6045,0.0004,2.6041 +8.44,2.6041,0.0004,2.6037 +8.448,2.6037,0.0004,2.6033 +8.456,2.6033,0.0004,2.6029 +8.464,2.6029,0.0004,2.6025 +8.472,2.6025,0.0004,2.6021 +8.48,2.6021,0.0004,2.6017 +8.488,2.6017,0.0005,2.6012 +8.496,2.6013,0.0005,2.6008 +8.504,2.6009,0.0005,2.6004 +8.512,2.6005000000000003,0.0005,2.6 +8.52,2.6001000000000003,0.0005,2.5996 +8.528,2.5997000000000003,0.0005,2.5992 +8.536,2.5993000000000004,0.0005,2.5988 +8.544,2.5989,0.0005,2.5984 +8.552,2.5985,0.0005,2.598 +8.56,2.5981,0.0005,2.5976 +8.568,2.5977,0.0005,2.5972 +8.576,2.5974,0.0006,2.5968 +8.584,2.597,0.0006,2.5964 +8.592,2.5966,0.0006,2.596 +8.6,2.5962,0.0006,2.5956 +8.608,2.5958,0.0006,2.5952 +8.616,2.5954,0.0006,2.5948 +8.624,2.5949999999999998,0.0006,2.5944 +8.632,2.5946,0.0006,2.594 +8.64,2.5942,0.0006,2.5936 +8.648,2.5938,0.0006,2.5932 +8.656,2.5935,0.0007,2.5928 +8.664,2.5931,0.0007,2.5924 +8.672,2.5927000000000002,0.0007,2.592 +8.68,2.5922,0.0007,2.5915 +8.688,2.5918,0.0007,2.5911 +8.696,2.5914,0.0007,2.5907 +8.704,2.591,0.0007,2.5903 +8.712,2.5906000000000002,0.0007,2.5899 +8.72,2.5902000000000003,0.0007,2.5895 +8.728,2.5899,0.0008,2.5891 +8.736,2.5894999999999997,0.0008,2.5887 +8.744,2.5890999999999997,0.0008,2.5883 +8.752,2.5887,0.0008,2.5879 +8.76,2.5883,0.0008,2.5875 +8.768,2.5879,0.0008,2.5871 +8.776,2.5875,0.0008,2.5867 +8.784,2.5871,0.0008,2.5863 +8.792,2.5868,0.0009,2.5859 +8.8,2.5864000000000003,0.0009,2.5855 +8.808,2.5860000000000003,0.0009,2.5851 +8.816,2.5856000000000003,0.0009,2.5847 +8.824,2.5852,0.0009,2.5843 +8.832,2.5847,0.0009,2.5838 +8.84,2.5843000000000003,0.0009,2.5834 +8.848,2.584,0.001,2.583 +8.856,2.5835999999999997,0.001,2.5826 +8.864,2.5831999999999997,0.001,2.5822 +8.872,2.5827999999999998,0.001,2.5818 +8.88,2.5824,0.001,2.5814 +8.888,2.582,0.001,2.581 +8.896,2.5817,0.0011,2.5806 +8.904,2.5813,0.0011,2.5802 +8.912,2.5809,0.0011,2.5798 +8.92,2.5805000000000002,0.0011,2.5794 +8.928,2.5801000000000003,0.0011,2.579 +8.936,2.5797999999999996,0.0012,2.5786 +8.944,2.5793999999999997,0.0012,2.5782 +8.952,2.5789999999999997,0.0012,2.5778 +8.96,2.5786,0.0012,2.5774 +8.968,2.5781,0.0012,2.5769 +8.976,2.5776999999999997,0.0012,2.5765 +8.984,2.5774,0.0013,2.5761 +8.992,2.577,0.0013,2.5757 +9.0,2.5766,0.0013,2.5753 +9.008000000000001,2.5762,0.0013,2.5749 +9.016,2.5759,0.0014,2.5745 +9.024000000000001,2.5755,0.0014,2.5741 +9.032,2.5751,0.0014,2.5737 +9.040000000000001,2.5747,0.0014,2.5733 +9.048,2.5743,0.0014,2.5729 +9.056000000000001,2.574,0.0015,2.5725 +9.064,2.5736,0.0015,2.5721 +9.072000000000001,2.5732,0.0015,2.5717 +9.08,2.5728,0.0015,2.5713 +9.088000000000001,2.5724,0.0016,2.5708 +9.096,2.5719999999999996,0.0016,2.5704 +9.104000000000001,2.5715999999999997,0.0016,2.57 +9.112,2.5711999999999997,0.0016,2.5696 +9.120000000000001,2.5709,0.0017,2.5692 +9.128,2.5705,0.0017,2.5688 +9.136000000000001,2.5701,0.0017,2.5684 +9.144,2.5697,0.0017,2.568 +9.152000000000001,2.5694,0.0018,2.5676 +9.16,2.569,0.0018,2.5672 +9.168000000000001,2.5686,0.0018,2.5668 +9.176,2.5681999999999996,0.0018,2.5664 +9.184000000000001,2.5679,0.0019,2.566 +9.192,2.5675,0.0019,2.5656 +9.200000000000001,2.567,0.0019,2.5651 +9.208,2.5667,0.002,2.5647 +9.216000000000001,2.5662999999999996,0.002,2.5643 +9.224,2.5658999999999996,0.002,2.5639 +9.232,2.5656,0.0021,2.5635 +9.24,2.5652,0.0021,2.5631 +9.248,2.5648,0.0021,2.5627 +9.256,2.5645000000000002,0.0022,2.5623 +9.264,2.5641000000000003,0.0022,2.5619 +9.272,2.5637000000000003,0.0022,2.5615 +9.28,2.5634,0.0023,2.5611 +9.288,2.563,0.0023,2.5607 +9.296,2.5625999999999998,0.0023,2.5603 +9.304,2.5622000000000003,0.0024,2.5598 +9.312,2.5618000000000003,0.0024,2.5594 +9.32,2.5614000000000003,0.0024,2.559 +9.328,2.5611,0.0025,2.5586 +9.336,2.5606999999999998,0.0025,2.5582 +9.344,2.5604,0.0026,2.5578 +9.352,2.56,0.0026,2.5574 +9.36,2.5596,0.0026,2.557 +9.368,2.5593,0.0027,2.5566 +9.376,2.5589,0.0027,2.5562 +9.384,2.5586,0.0028,2.5558 +9.392,2.5582000000000003,0.0028,2.5554 +9.4,2.5577,0.0028,2.5549 +9.408,2.5574,0.0029,2.5545 +9.416,2.557,0.0029,2.5541 +9.424,2.5567,0.003,2.5537 +9.432,2.5563000000000002,0.003,2.5533 +9.44,2.556,0.0031,2.5529 +9.448,2.5556,0.0031,2.5525 +9.456,2.5551999999999997,0.0031,2.5521 +9.464,2.5549,0.0032,2.5517 +9.472,2.5545,0.0032,2.5513 +9.48,2.5542,0.0033,2.5509 +9.488,2.5538,0.0033,2.5505 +9.496,2.5534,0.0034,2.55 +9.504,2.553,0.0034,2.5496 +9.512,2.5526999999999997,0.0035,2.5492 +9.52,2.5523,0.0035,2.5488 +9.528,2.552,0.0036,2.5484 +9.536,2.5517,0.0037,2.548 +9.544,2.5513,0.0037,2.5476 +9.552,2.551,0.0038,2.5472 +9.56,2.5506,0.0038,2.5468 +9.568,2.5503,0.0039,2.5464 +9.576,2.5498999999999996,0.0039,2.546 +9.584,2.5495,0.004,2.5455 +9.592,2.5492000000000004,0.0041,2.5451 +9.6,2.5488000000000004,0.0041,2.5447 +9.608,2.5484999999999998,0.0042,2.5443 +9.616,2.5481,0.0042,2.5439 +9.624,2.5478,0.0043,2.5435 +9.632,2.5475,0.0044,2.5431 +9.64,2.5471,0.0044,2.5427 +9.648,2.5468,0.0045,2.5423 +9.656,2.5465,0.0046,2.5419 +9.664,2.546,0.0046,2.5414 +9.672,2.5457,0.0047,2.541 +9.68,2.5454,0.0048,2.5406 +9.688,2.545,0.0048,2.5402 +9.696,2.5447,0.0049,2.5398 +9.704,2.5444,0.005,2.5394 +9.712,2.544,0.005,2.539 +9.72,2.5437000000000003,0.0051,2.5386 +9.728,2.5433999999999997,0.0052,2.5382 +9.736,2.5431,0.0053,2.5378 +9.744,2.5426,0.0053,2.5373 +9.752,2.5423,0.0054,2.5369 +9.76,2.5420000000000003,0.0055,2.5365 +9.768,2.5416999999999996,0.0056,2.5361 +9.776,2.5414,0.0057,2.5357 +9.784,2.541,0.0057,2.5353 +9.792,2.5406999999999997,0.0058,2.5349 +9.8,2.5404,0.0059,2.5345 +9.808,2.5401,0.006,2.5341 +9.816,2.5398,0.0061,2.5337 +9.824,2.5394,0.0062,2.5332 +9.832,2.539,0.0062,2.5328 +9.84,2.5387,0.0063,2.5324 +9.848,2.5384,0.0064,2.532 +9.856,2.5381,0.0065,2.5316 +9.864,2.5378000000000003,0.0066,2.5312 +9.872,2.5375,0.0067,2.5308 +9.88,2.5372000000000003,0.0068,2.5304 +9.888,2.5368999999999997,0.0069,2.53 +9.896,2.5365,0.007,2.5295 +9.904,2.5362,0.0071,2.5291 +9.912,2.5359000000000003,0.0072,2.5287 +9.92,2.5356,0.0073,2.5283 +9.928,2.5353,0.0074,2.5279 +9.936,2.5349999999999997,0.0075,2.5275 +9.944,2.5347,0.0076,2.5271 +9.952,2.5343999999999998,0.0077,2.5267 +9.96,2.5341,0.0078,2.5263 +9.968,2.5336999999999996,0.0079,2.5258 +9.976,2.5334,0.008,2.5254 +9.984,2.5331,0.0081,2.525 +9.992,2.5329,0.0083,2.5246 +10.0,2.5326,0.0084,2.5242 +10.008000000000001,2.5323,0.0085,2.5238 +10.016,2.532,0.0086,2.5234 +10.024000000000001,2.5317000000000003,0.0087,2.523 +10.032,2.5315000000000003,0.0089,2.5226 +10.040000000000001,2.5311,0.009,2.5221 +10.048,2.5308,0.0091,2.5217 +10.056000000000001,2.5305,0.0092,2.5213 +10.064,2.5303,0.0094,2.5209 +10.072000000000001,2.5300000000000002,0.0095,2.5205 +10.08,2.5296999999999996,0.0096,2.5201 +10.088000000000001,2.5294,0.0097,2.5197 +10.096,2.5292,0.0099,2.5193 +10.104000000000001,2.5288,0.01,2.5188 +10.112,2.5285,0.0101,2.5184 +10.120000000000001,2.5282999999999998,0.0103,2.518 +10.128,2.528,0.0104,2.5176 +10.136000000000001,2.5278,0.0106,2.5172 +10.144,2.5275,0.0107,2.5168 +10.152000000000001,2.5273,0.0109,2.5164 +10.16,2.527,0.011,2.516 +10.168000000000001,2.5268,0.0112,2.5156 +10.176,2.5263999999999998,0.0113,2.5151 +10.184000000000001,2.5262,0.0115,2.5147 +10.192,2.5259,0.0116,2.5143 +10.200000000000001,2.5257,0.0118,2.5139 +10.208,2.5254,0.0119,2.5135 +10.216000000000001,2.5252,0.0121,2.5131 +10.224,2.5250000000000004,0.0123,2.5127 +10.232000000000001,2.5247,0.0124,2.5123 +10.24,2.5244,0.0126,2.5118 +10.248,2.5242,0.0128,2.5114 +10.256,2.5239000000000003,0.0129,2.511 +10.264,2.5237000000000003,0.0131,2.5106 +10.272,2.5235000000000003,0.0133,2.5102 +10.28,2.5233,0.0135,2.5098 +10.288,2.5229999999999997,0.0136,2.5094 +10.296,2.5227999999999997,0.0138,2.509 +10.304,2.5225,0.014,2.5085 +10.312,2.5223000000000004,0.0142,2.5081 +10.32,2.5221,0.0144,2.5077 +10.328,2.5219,0.0146,2.5073 +10.336,2.5217,0.0148,2.5069 +10.344,2.5214,0.0149,2.5065 +10.352,2.5212,0.0151,2.5061 +10.36,2.521,0.0153,2.5057 +10.368,2.5206999999999997,0.0155,2.5052 +10.376,2.5204999999999997,0.0157,2.5048 +10.384,2.5204,0.016,2.5044 +10.392,2.5202,0.0162,2.504 +10.4,2.52,0.0164,2.5036 +10.408,2.5198,0.0166,2.5032 +10.416,2.5196,0.0168,2.5028 +10.424,2.5193,0.017,2.5023 +10.432,2.5191,0.0172,2.5019 +10.44,2.519,0.0175,2.5015 +10.448,2.5188,0.0177,2.5011 +10.456,2.5186,0.0179,2.5007 +10.464,2.5185000000000004,0.0182,2.5003 +10.472,2.5183,0.0184,2.4999 +10.48,2.5181,0.0186,2.4995 +10.488,2.5179,0.0189,2.499 +10.496,2.5177,0.0191,2.4986 +10.504,2.5176000000000003,0.0194,2.4982 +10.512,2.5174,0.0196,2.4978 +10.52,2.5172999999999996,0.0199,2.4974 +10.528,2.5170999999999997,0.0201,2.497 +10.536,2.517,0.0204,2.4966 +10.544,2.5167,0.0206,2.4961 +10.552,2.5166,0.0209,2.4957 +10.56,2.5164999999999997,0.0212,2.4953 +10.568,2.5162999999999998,0.0214,2.4949 +10.576,2.5162,0.0217,2.4945 +10.584,2.5161,0.022,2.4941 +10.592,2.516,0.0223,2.4937 +10.6,2.5157,0.0225,2.4932 +10.608,2.5156,0.0228,2.4928 +10.616,2.5155,0.0231,2.4924 +10.624,2.5154,0.0234,2.492 +10.632,2.5153,0.0237,2.4916 +10.64,2.5152,0.024,2.4912 +10.648,2.5151000000000003,0.0243,2.4908 +10.656,2.5149,0.0246,2.4903 +10.664,2.5148,0.0249,2.4899 +10.672,2.5147,0.0252,2.4895 +10.68,2.5146,0.0255,2.4891 +10.688,2.5145,0.0258,2.4887 +10.696,2.5145,0.0262,2.4883 +10.704,2.5143999999999997,0.0265,2.4879 +10.712,2.5142,0.0268,2.4874 +10.72,2.5142,0.0272,2.487 +10.728,2.5141,0.0275,2.4866 +10.736,2.5140000000000002,0.0278,2.4862 +10.744,2.514,0.0282,2.4858 +10.752,2.5139,0.0285,2.4854 +10.76,2.5139,0.0289,2.485 +10.768,2.5137,0.0292,2.4845 +10.776,2.5137,0.0296,2.4841 +10.784,2.5136999999999996,0.03,2.4837 +10.792,2.5136,0.0303,2.4833 +10.8,2.5136,0.0307,2.4829 +10.808,2.5136,0.0311,2.4825 +10.816,2.5134000000000003,0.0314,2.482 +10.824,2.5134,0.0318,2.4816 +10.832,2.5134,0.0322,2.4812 +10.84,2.5134,0.0326,2.4808 +10.848,2.5134,0.033,2.4804 +10.856,2.5134,0.0334,2.48 +10.864,2.5134,0.0338,2.4796 +10.872,2.5132999999999996,0.0342,2.4791 +10.88,2.5133,0.0346,2.4787 +10.888,2.5133,0.035,2.4783 +10.896,2.5134,0.0355,2.4779 +10.904,2.5134,0.0359,2.4775 +10.912,2.5134,0.0363,2.4771 +10.92,2.5134,0.0368,2.4766 +10.928,2.5134,0.0372,2.4762 +10.936,2.5134,0.0376,2.4758 +10.944,2.5135,0.0381,2.4754 +10.952,2.5135,0.0385,2.475 +10.96,2.5136000000000003,0.039,2.4746 +10.968,2.5137,0.0395,2.4742 +10.976,2.5136,0.0399,2.4737 +10.984,2.5137,0.0404,2.4733 +10.992,2.5138000000000003,0.0409,2.4729 +11.0,2.5139,0.0414,2.4725 +11.008000000000001,2.5139,0.0418,2.4721 +11.016,2.514,0.0423,2.4717 +11.024000000000001,2.5140000000000002,0.0428,2.4712 +11.032,2.5141,0.0433,2.4708 +11.040000000000001,2.5142,0.0438,2.4704 +11.048,2.5144,0.0444,2.47 +11.056000000000001,2.5145,0.0449,2.4696 +11.064,2.5145999999999997,0.0454,2.4692 +11.072000000000001,2.5146,0.0459,2.4687 +11.08,2.5148,0.0465,2.4683 +11.088000000000001,2.5149000000000004,0.047,2.4679 +11.096,2.5149999999999997,0.0475,2.4675 +11.104000000000001,2.5151999999999997,0.0481,2.4671 +11.112,2.5154,0.0487,2.4667 +11.120000000000001,2.5155,0.0492,2.4663 +11.128,2.5156,0.0498,2.4658 +11.136000000000001,2.5157999999999996,0.0504,2.4654 +11.144,2.5159,0.0509,2.465 +11.152000000000001,2.5161,0.0515,2.4646 +11.16,2.5162999999999998,0.0521,2.4642 +11.168000000000001,2.5165,0.0527,2.4638 +11.176,2.5166,0.0533,2.4633 +11.184000000000001,2.5168,0.0539,2.4629 +11.192,2.517,0.0545,2.4625 +11.200000000000001,2.5172,0.0551,2.4621 +11.208,2.5175,0.0558,2.4617 +11.216000000000001,2.5177,0.0564,2.4613 +11.224,2.5178,0.057,2.4608 +11.232000000000001,2.5181,0.0577,2.4604 +11.24,2.5183,0.0583,2.46 +11.248000000000001,2.5186,0.059,2.4596 +11.256,2.5189,0.0597,2.4592 +11.264,2.5189999999999997,0.0603,2.4587 +11.272,2.5193,0.061,2.4583 +11.28,2.5196,0.0617,2.4579 +11.288,2.5199,0.0624,2.4575 +11.296,2.5202,0.0631,2.4571 +11.304,2.5205,0.0638,2.4567 +11.312,2.5206999999999997,0.0645,2.4562 +11.32,2.521,0.0652,2.4558 +11.328,2.5213,0.0659,2.4554 +11.336,2.5217,0.0667,2.455 +11.344,2.5220000000000002,0.0674,2.4546 +11.352,2.5223,0.0681,2.4542 +11.36,2.5226,0.0689,2.4537 +11.368,2.523,0.0697,2.4533 +11.376,2.5233,0.0704,2.4529 +11.384,2.5237000000000003,0.0712,2.4525 +11.392,2.5241000000000002,0.072,2.4521 +11.4,2.5245,0.0728,2.4517 +11.408,2.5248,0.0736,2.4512 +11.416,2.5252,0.0744,2.4508 +11.424,2.5256000000000003,0.0752,2.4504 +11.432,2.5260000000000002,0.076,2.45 +11.44,2.5264,0.0768,2.4496 +11.448,2.5267999999999997,0.0776,2.4492 +11.456,2.5272,0.0785,2.4487 +11.464,2.5276,0.0793,2.4483 +11.472,2.5281000000000002,0.0802,2.4479 +11.48,2.5286,0.0811,2.4475 +11.488,2.529,0.0819,2.4471 +11.496,2.5294000000000003,0.0828,2.4466 +11.504,2.5299,0.0837,2.4462 +11.512,2.5304,0.0846,2.4458 +11.52,2.5309,0.0855,2.4454 +11.528,2.5313999999999997,0.0864,2.445 +11.536,2.5319,0.0873,2.4446 +11.544,2.5324,0.0883,2.4441 +11.552,2.5329,0.0892,2.4437 +11.56,2.5334,0.0901,2.4433 +11.568,2.534,0.0911,2.4429 +11.576,2.5345,0.092,2.4425 +11.584,2.535,0.093,2.442 +11.592,2.5356,0.094,2.4416 +11.6,2.5362,0.095,2.4412 +11.608,2.5368,0.096,2.4408 +11.616,2.5374,0.097,2.4404 +11.624,2.538,0.098,2.44 +11.632,2.5385,0.099,2.4395 +11.64,2.5391999999999997,0.1001,2.4391 +11.648,2.5398,0.1011,2.4387 +11.656,2.5404999999999998,0.1022,2.4383 +11.664,2.5411,0.1032,2.4379 +11.672,2.5416999999999996,0.1043,2.4374 +11.68,2.5423999999999998,0.1054,2.437 +11.688,2.5429999999999997,0.1064,2.4366 +11.696,2.5437,0.1075,2.4362 +11.704,2.5444,0.1086,2.4358 +11.712,2.5450999999999997,0.1098,2.4353 +11.72,2.5458,0.1109,2.4349 +11.728,2.5465,0.112,2.4345 +11.736,2.5473,0.1132,2.4341 +11.744,2.548,0.1143,2.4337 +11.752,2.5488,0.1155,2.4333 +11.76,2.5494999999999997,0.1167,2.4328 +11.768,2.5502,0.1178,2.4324 +11.776,2.551,0.119,2.432 +11.784,2.5518,0.1202,2.4316 +11.792,2.5527,0.1215,2.4312 +11.8,2.5534,0.1227,2.4307 +11.808,2.5542,0.1239,2.4303 +11.816,2.5551,0.1252,2.4299 +11.824,2.5559,0.1264,2.4295 +11.832,2.5568,0.1277,2.4291 +11.84,2.5576,0.129,2.4286 +11.848,2.5584,0.1302,2.4282 +11.856,2.5593,0.1315,2.4278 +11.864,2.5602,0.1328,2.4274 +11.872,2.5612,0.1342,2.427 +11.88,2.562,0.1355,2.4265 +11.888,2.5629,0.1368,2.4261 +11.896,2.5639,0.1382,2.4257 +11.904,2.5648,0.1395,2.4253 +11.912,2.5658,0.1409,2.4249 +11.92,2.5667,0.1423,2.4244 +11.928,2.5677,0.1437,2.424 +11.936,2.5686999999999998,0.1451,2.4236 +11.944,2.5697,0.1465,2.4232 +11.952,2.5708,0.148,2.4228 +11.96,2.5717,0.1494,2.4223 +11.968,2.5726999999999998,0.1508,2.4219 +11.976,2.5738,0.1523,2.4215 +11.984,2.5749,0.1538,2.4211 +11.992,2.576,0.1553,2.4207 +12.0,2.5771,0.1568,2.4203 +12.008000000000001,2.5781,0.1583,2.4198 +12.016,2.5792,0.1598,2.4194 +12.024000000000001,2.5803000000000003,0.1613,2.419 +12.032,2.5815,0.1629,2.4186 +12.040000000000001,2.5826000000000002,0.1644,2.4182 +12.048,2.5837,0.166,2.4177 +12.056000000000001,2.5849,0.1676,2.4173 +12.064,2.5861,0.1692,2.4169 +12.072000000000001,2.5873,0.1708,2.4165 +12.08,2.5884,0.1724,2.416 +12.088000000000001,2.5896,0.174,2.4156 +12.096,2.5909,0.1757,2.4152 +12.104000000000001,2.5921000000000003,0.1773,2.4148 +12.112,2.5934,0.179,2.4144 +12.120000000000001,2.5946,0.1807,2.4139 +12.128,2.5959,0.1824,2.4135 +12.136000000000001,2.5972,0.1841,2.4131 +12.144,2.5985,0.1858,2.4127 +12.152000000000001,2.5998,0.1875,2.4123 +12.16,2.6010999999999997,0.1893,2.4118 +12.168000000000001,2.6024,0.191,2.4114 +12.176,2.6038,0.1928,2.411 +12.184000000000001,2.6052,0.1946,2.4106 +12.192,2.6066000000000003,0.1964,2.4102 +12.200000000000001,2.6079,0.1982,2.4097 +12.208,2.6093,0.2,2.4093 +12.216000000000001,2.6107,0.2018,2.4089 +12.224,2.6122,0.2037,2.4085 +12.232000000000001,2.6136,0.2055,2.4081 +12.24,2.6149999999999998,0.2074,2.4076 +12.248000000000001,2.6165,0.2093,2.4072 +12.256,2.618,0.2112,2.4068 +12.264000000000001,2.6195,0.2131,2.4064 +12.272,2.6211,0.2151,2.406 +12.280000000000001,2.6225,0.217,2.4055 +12.288,2.6241,0.219,2.4051 +12.296,2.6256,0.2209,2.4047 +12.304,2.6272,0.2229,2.4043 +12.312,2.6288,0.2249,2.4039 +12.32,2.6303,0.2269,2.4034 +12.328,2.632,0.229,2.403 +12.336,2.6336,0.231,2.4026 +12.344,2.6353,0.2331,2.4022 +12.352,2.6368,0.2351,2.4017 +12.36,2.6385,0.2372,2.4013 +12.368,2.6402,0.2393,2.4009 +12.376,2.6419,0.2414,2.4005 +12.384,2.6436,0.2435,2.4001 +12.392,2.6452999999999998,0.2457,2.3996 +12.4,2.647,0.2478,2.3992 +12.408,2.6488,0.25,2.3988 +12.416,2.6506,0.2522,2.3984 +12.424,2.6524,0.2544,2.398 +12.432,2.6541,0.2566,2.3975 +12.44,2.6559,0.2588,2.3971 +12.448,2.6578,0.2611,2.3967 +12.456,2.6596,0.2633,2.3963 +12.464,2.6614,0.2656,2.3958 +12.472,2.6633,0.2679,2.3954 +12.48,2.6652,0.2702,2.395 +12.488,2.6671,0.2725,2.3946 +12.496,2.6691000000000003,0.2749,2.3942 +12.504,2.6709,0.2772,2.3937 +12.512,2.6729,0.2796,2.3933 +12.52,2.6749,0.282,2.3929 +12.528,2.6769,0.2844,2.3925 +12.536,2.6788,0.2868,2.392 +12.544,2.6808,0.2892,2.3916 +12.552,2.6828,0.2916,2.3912 +12.56,2.6849,0.2941,2.3908 +12.568,2.6870000000000003,0.2966,2.3904 +12.576,2.689,0.2991,2.3899 +12.584,2.6911,0.3016,2.3895 +12.592,2.6932,0.3041,2.3891 +12.6,2.6953,0.3066,2.3887 +12.608,2.6975000000000002,0.3092,2.3883 +12.616,2.6995,0.3117,2.3878 +12.624,2.7016999999999998,0.3143,2.3874 +12.632,2.7039,0.3169,2.387 +12.64,2.7061,0.3195,2.3866 +12.648,2.7083,0.3222,2.3861 +12.656,2.7104999999999997,0.3248,2.3857 +12.664,2.7128,0.3275,2.3853 +12.672,2.7151,0.3302,2.3849 +12.68,2.7174,0.3329,2.3845 +12.688,2.7196,0.3356,2.384 +12.696,2.7218999999999998,0.3383,2.3836 +12.704,2.7242,0.341,2.3832 +12.712,2.7266,0.3438,2.3828 +12.72,2.7289,0.3466,2.3823 +12.728,2.7313,0.3494,2.3819 +12.736,2.7337,0.3522,2.3815 +12.744,2.7361,0.355,2.3811 +12.752,2.7384,0.3578,2.3806 +12.76,2.7409,0.3607,2.3802 +12.768,2.7434,0.3636,2.3798 +12.776,2.7459,0.3665,2.3794 +12.784,2.7484,0.3694,2.379 +12.792,2.7508,0.3723,2.3785 +12.8,2.7533,0.3752,2.3781 +12.808,2.7559,0.3782,2.3777 +12.816,2.7584999999999997,0.3812,2.3773 +12.824,2.7609999999999997,0.3842,2.3768 +12.832,2.7636,0.3872,2.3764 +12.84,2.7662,0.3902,2.376 +12.848,2.7687999999999997,0.3932,2.3756 +12.856,2.7715,0.3963,2.3752 +12.864,2.7741,0.3994,2.3747 +12.872,2.7767999999999997,0.4025,2.3743 +12.88,2.7795,0.4056,2.3739 +12.888,2.7822,0.4087,2.3735 +12.896,2.7848,0.4118,2.373 +12.904,2.7876,0.415,2.3726 +12.912,2.7904,0.4182,2.3722 +12.92,2.7931999999999997,0.4214,2.3718 +12.928,2.7959,0.4246,2.3713 +12.936,2.7986999999999997,0.4278,2.3709 +12.944,2.8015999999999996,0.4311,2.3705 +12.952,2.8044,0.4343,2.3701 +12.96,2.8072,0.4376,2.3696 +12.968,2.8101000000000003,0.4409,2.3692 +12.976,2.8129999999999997,0.4442,2.3688 +12.984,2.8159,0.4475,2.3684 +12.992,2.8188999999999997,0.4509,2.368 +13.0,2.8218,0.4543,2.3675 +13.008000000000001,2.8247,0.4576,2.3671 +13.016,2.8276999999999997,0.461,2.3667 +13.024000000000001,2.8306999999999998,0.4644,2.3663 +13.032,2.8337000000000003,0.4679,2.3658 +13.040000000000001,2.8367,0.4713,2.3654 +13.048,2.8398000000000003,0.4748,2.365 +13.056000000000001,2.8428999999999998,0.4783,2.3646 +13.064,2.8459000000000003,0.4818,2.3641 +13.072000000000001,2.849,0.4853,2.3637 +13.08,2.8521,0.4888,2.3633 +13.088000000000001,2.8552999999999997,0.4924,2.3629 +13.096,2.8584,0.496,2.3624 +13.104000000000001,2.8615,0.4995,2.362 +13.112,2.8647,0.5031,2.3616 +13.120000000000001,2.8680000000000003,0.5068,2.3612 +13.128,2.8712,0.5104,2.3608 +13.136000000000001,2.8744,0.5141,2.3603 +13.144,2.8776,0.5177,2.3599 +13.152000000000001,2.8809,0.5214,2.3595 +13.16,2.8842000000000003,0.5251,2.3591 +13.168000000000001,2.8875,0.5289,2.3586 +13.176,2.8908,0.5326,2.3582 +13.184000000000001,2.8942,0.5364,2.3578 +13.192,2.8975,0.5401,2.3574 +13.200000000000001,2.9008000000000003,0.5439,2.3569 +13.208,2.9042,0.5477,2.3565 +13.216000000000001,2.9077,0.5516,2.3561 +13.224,2.9111000000000002,0.5554,2.3557 +13.232000000000001,2.9145,0.5593,2.3552 +13.24,2.9179,0.5631,2.3548 +13.248000000000001,2.9214,0.567,2.3544 +13.256,2.9249,0.5709,2.354 +13.264000000000001,2.9284,0.5749,2.3535 +13.272,2.9318999999999997,0.5788,2.3531 +13.280000000000001,2.9355,0.5828,2.3527 +13.288,2.939,0.5867,2.3523 +13.296000000000001,2.9425,0.5907,2.3518 +13.304,2.9462,0.5948,2.3514 +13.312000000000001,2.9497999999999998,0.5988,2.351 +13.32,2.9534000000000002,0.6028,2.3506 +13.328,2.957,0.6069,2.3501 +13.336,2.9607,0.611,2.3497 +13.344,2.9644,0.6151,2.3493 +13.352,2.9680999999999997,0.6192,2.3489 +13.36,2.9717,0.6233,2.3484 +13.368,2.9753999999999996,0.6274,2.348 +13.376,2.9792,0.6316,2.3476 +13.384,2.983,0.6358,2.3472 +13.392,2.9867,0.64,2.3467 +13.4,2.9905,0.6442,2.3463 +13.408,2.9943,0.6484,2.3459 +13.416,2.9981999999999998,0.6527,2.3455 +13.424,3.0019,0.6569,2.345 +13.432,3.0058,0.6612,2.3446 +13.44,3.0096999999999996,0.6655,2.3442 +13.448,3.0136,0.6698,2.3438 +13.456,3.0174000000000003,0.6741,2.3433 +13.464,3.0213,0.6784,2.3429 +13.472,3.0252999999999997,0.6828,2.3425 +13.48,3.0293,0.6872,2.3421 +13.488,3.0332,0.6916,2.3416 +13.496,3.0372000000000003,0.696,2.3412 +13.504,3.0412000000000003,0.7004,2.3408 +13.512,3.0452,0.7048,2.3404 +13.52,3.0492,0.7093,2.3399 +13.528,3.0532000000000004,0.7137,2.3395 +13.536,3.0573,0.7182,2.3391 +13.544,3.0614,0.7227,2.3387 +13.552,3.0654,0.7272,2.3382 +13.56,3.0695,0.7317,2.3378 +13.568,3.0737,0.7363,2.3374 +13.576,3.0778000000000003,0.7408,2.337 +13.584,3.0819,0.7454,2.3365 +13.592,3.0861,0.75,2.3361 +13.6,3.0903,0.7546,2.3357 +13.608,3.0945,0.7592,2.3353 +13.616,3.0986000000000002,0.7638,2.3348 +13.624,3.1029,0.7685,2.3344 +13.632,3.1071,0.7731,2.334 +13.64,3.1114,0.7778,2.3336 +13.648,3.1155999999999997,0.7825,2.3331 +13.656,3.1199,0.7872,2.3327 +13.664,3.1242,0.7919,2.3323 +13.672,3.1286,0.7967,2.3319 +13.68,3.1328,0.8014,2.3314 +13.688,3.1372,0.8062,2.331 +13.696,3.1414999999999997,0.8109,2.3306 +13.704,3.1459,0.8157,2.3302 +13.712,3.1502,0.8205,2.3297 +13.72,3.1546,0.8253,2.3293 +13.728,3.1591,0.8302,2.3289 +13.736,3.1635,0.835,2.3285 +13.744,3.1679,0.8399,2.328 +13.752,3.1723,0.8447,2.3276 +13.76,3.1768,0.8496,2.3272 +13.768,3.1813000000000002,0.8545,2.3268 +13.776,3.1856999999999998,0.8594,2.3263 +13.784,3.1902,0.8643,2.3259 +13.792,3.1948,0.8693,2.3255 +13.8,3.1993,0.8742,2.3251 +13.808,3.2038,0.8792,2.3246 +13.816,3.2083,0.8841,2.3242 +13.824,3.2129,0.8891,2.3238 +13.832,3.2174,0.8941,2.3233 +13.84,3.2220000000000004,0.8991,2.3229 +13.848,3.2266999999999997,0.9042,2.3225 +13.856,3.2313,0.9092,2.3221 +13.864,3.2358000000000002,0.9142,2.3216 +13.872,3.2405,0.9193,2.3212 +13.88,3.2452,0.9244,2.3208 +13.888,3.2497999999999996,0.9294,2.3204 +13.896,3.2544,0.9345,2.3199 +13.904,3.2591,0.9396,2.3195 +13.912,3.2638000000000003,0.9447,2.3191 +13.92,3.2686,0.9499,2.3187 +13.928,3.2732,0.955,2.3182 +13.936,3.2779,0.9601,2.3178 +13.944,3.2827,0.9653,2.3174 +13.952,3.2875,0.9705,2.317 +13.96,3.2921,0.9756,2.3165 +13.968,3.2969,0.9808,2.3161 +13.976,3.3017000000000003,0.986,2.3157 +13.984,3.3064,0.9912,2.3152 +13.992,3.3112,0.9964,2.3148 +14.0,3.3161,1.0017,2.3144 +14.008000000000001,3.3209,1.0069,2.314 +14.016,3.3255999999999997,1.0121,2.3135 +14.024000000000001,3.3305,1.0174,2.3131 +14.032,3.3353,1.0226,2.3127 +14.040000000000001,3.3402000000000003,1.0279,2.3123 +14.048,3.3449999999999998,1.0332,2.3118 +14.056000000000001,3.3499,1.0385,2.3114 +14.064,3.3548,1.0438,2.311 +14.072000000000001,3.3597,1.0491,2.3106 +14.08,3.3644999999999996,1.0544,2.3101 +14.088000000000001,3.3693999999999997,1.0597,2.3097 +14.096,3.3743999999999996,1.0651,2.3093 +14.104000000000001,3.3792,1.0704,2.3088 +14.112,3.3841,1.0757,2.3084 +14.120000000000001,3.3891,1.0811,2.308 +14.128,3.3941,1.0865,2.3076 +14.136000000000001,3.3989000000000003,1.0918,2.3071 +14.144,3.4039,1.0972,2.3067 +14.152000000000001,3.4089,1.1026,2.3063 +14.16,3.4139,1.108,2.3059 +14.168000000000001,3.4188,1.1134,2.3054 +14.176,3.4238,1.1188,2.305 +14.184000000000001,3.4288000000000003,1.1242,2.3046 +14.192,3.4337,1.1296,2.3041 +14.200000000000001,3.4387,1.135,2.3037 +14.208,3.4437,1.1404,2.3033 +14.216000000000001,3.4487,1.1458,2.3029 +14.224,3.4537,1.1513,2.3024 +14.232000000000001,3.4587000000000003,1.1567,2.302 +14.24,3.4638,1.1622,2.3016 +14.248000000000001,3.4688,1.1676,2.3012 +14.256,3.4737999999999998,1.1731,2.3007 +14.264000000000001,3.4788,1.1785,2.3003 +14.272,3.4839,1.184,2.2999 +14.280000000000001,3.4889,1.1895,2.2994 +14.288,3.4939,1.1949,2.299 +14.296000000000001,3.4989999999999997,1.2004,2.2986 +14.304,3.5041,1.2059,2.2982 +14.312000000000001,3.5091,1.2114,2.2977 +14.32,3.5141,1.2168,2.2973 +14.328000000000001,3.5191999999999997,1.2223,2.2969 +14.336,3.5243,1.2278,2.2965 +14.344,3.5293,1.2333,2.296 +14.352,3.5343999999999998,1.2388,2.2956 +14.36,3.5395,1.2443,2.2952 +14.368,3.5445,1.2498,2.2947 +14.376,3.5496,1.2553,2.2943 +14.384,3.5546999999999995,1.2608,2.2939 +14.392,3.5598,1.2663,2.2935 +14.4,3.5648,1.2718,2.293 +14.408,3.5699000000000005,1.2773,2.2926 +14.416,3.5749999999999997,1.2828,2.2922 +14.424,3.58,1.2883,2.2917 +14.432,3.5852000000000004,1.2939,2.2913 +14.44,3.5903,1.2994,2.2909 +14.448,3.5954,1.3049,2.2905 +14.456,3.6004,1.3104,2.29 +14.464,3.6055,1.3159,2.2896 +14.472,3.6106,1.3214,2.2892 +14.48,3.6157000000000004,1.3269,2.2888 +14.488,3.6207000000000003,1.3324,2.2883 +14.496,3.6258,1.3379,2.2879 +14.504,3.6309,1.3434,2.2875 +14.512,3.6359,1.3489,2.287 +14.52,3.641,1.3544,2.2866 +14.528,3.6461,1.3599,2.2862 +14.536,3.6512000000000002,1.3654,2.2858 +14.544,3.6562,1.3709,2.2853 +14.552,3.6612999999999998,1.3764,2.2849 +14.56,3.6664,1.3819,2.2845 +14.568,3.6713999999999998,1.3874,2.284 +14.576,3.6765,1.3929,2.2836 +14.584,3.6816,1.3984,2.2832 +14.592,3.6866,1.4038,2.2828 +14.6,3.6916,1.4093,2.2823 +14.608,3.6967,1.4148,2.2819 +14.616,3.7016999999999998,1.4202,2.2815 +14.624,3.7067,1.4257,2.281 +14.632,3.7118,1.4312,2.2806 +14.64,3.7168,1.4366,2.2802 +14.648,3.7218,1.442,2.2798 +14.656,3.7268,1.4475,2.2793 +14.664,3.7318000000000002,1.4529,2.2789 +14.672,3.7368,1.4583,2.2785 +14.68,3.7418,1.4638,2.278 +14.688,3.7468000000000004,1.4692,2.2776 +14.696,3.7518000000000002,1.4746,2.2772 +14.704,3.7568,1.48,2.2768 +14.712,3.7617000000000003,1.4854,2.2763 +14.72,3.7667,1.4908,2.2759 +14.728,3.7717,1.4962,2.2755 +14.736,3.7765,1.5015,2.275 +14.744,3.7815,1.5069,2.2746 +14.752,3.7865,1.5123,2.2742 +14.76,3.7914000000000003,1.5176,2.2738 +14.768,3.7962999999999996,1.523,2.2733 +14.776,3.8011999999999997,1.5283,2.2729 +14.784,3.8061,1.5336,2.2725 +14.792,3.8108999999999997,1.5389,2.272 +14.8,3.8158,1.5442,2.2716 +14.808,3.8207,1.5495,2.2712 +14.816,3.8255999999999997,1.5548,2.2708 +14.824,3.8304,1.5601,2.2703 +14.832,3.8352999999999997,1.5654,2.2699 +14.84,3.8400999999999996,1.5706,2.2695 +14.848,3.8449,1.5759,2.269 +14.856,3.8497000000000003,1.5811,2.2686 +14.864,3.8545000000000003,1.5863,2.2682 +14.872,3.8592999999999997,1.5915,2.2678 +14.88,3.864,1.5967,2.2673 +14.888,3.8688000000000002,1.6019,2.2669 +14.896,3.8736,1.6071,2.2665 +14.904,3.8782,1.6122,2.266 +14.912,3.883,1.6174,2.2656 +14.92,3.8877,1.6225,2.2652 +14.928,3.8925,1.6277,2.2648 +14.936,3.8971,1.6328,2.2643 +14.944,3.9017999999999997,1.6379,2.2639 +14.952,3.9065000000000003,1.643,2.2635 +14.96,3.9109999999999996,1.648,2.263 +14.968,3.9157,1.6531,2.2626 +14.976,3.9203,1.6581,2.2622 +14.984,3.9248,1.6631,2.2617 +14.992,3.9295,1.6682,2.2613 +15.0,3.9341,1.6732,2.2609 +15.008000000000001,3.9386,1.6781,2.2605 +15.016,3.9431,1.6831,2.26 +15.024000000000001,3.9476999999999998,1.6881,2.2596 +15.032,3.9522,1.693,2.2592 +15.040000000000001,3.9566,1.6979,2.2587 +15.048,3.9611,1.7028,2.2583 +15.056000000000001,3.9656,1.7077,2.2579 +15.064,3.9700999999999995,1.7126,2.2575 +15.072000000000001,3.9744,1.7174,2.257 +15.08,3.9788,1.7222,2.2566 +15.088000000000001,3.9833000000000003,1.7271,2.2562 +15.096,3.9876,1.7319,2.2557 +15.104000000000001,3.9919000000000002,1.7366,2.2553 +15.112,3.9963,1.7414,2.2549 +15.120000000000001,4.0005,1.7461,2.2544 +15.128,4.0049,1.7509,2.254 +15.136000000000001,4.0092,1.7556,2.2536 +15.144,4.0135000000000005,1.7603,2.2532 +15.152000000000001,4.0176,1.7649,2.2527 +15.16,4.0219000000000005,1.7696,2.2523 +15.168000000000001,4.0261,1.7742,2.2519 +15.176,4.0302,1.7788,2.2514 +15.184000000000001,4.0344,1.7834,2.251 +15.192,4.0386,1.788,2.2506 +15.200000000000001,4.0426,1.7925,2.2501 +15.208,4.0466999999999995,1.797,2.2497 +15.216000000000001,4.0508,1.8015,2.2493 +15.224,4.0549,1.806,2.2489 +15.232000000000001,4.0589,1.8105,2.2484 +15.24,4.0629,1.8149,2.248 +15.248000000000001,4.0668999999999995,1.8193,2.2476 +15.256,4.0708,1.8237,2.2471 +15.264000000000001,4.0748,1.8281,2.2467 +15.272,4.0788,1.8325,2.2463 +15.280000000000001,4.0826,1.8368,2.2458 +15.288,4.0865,1.8411,2.2454 +15.296000000000001,4.0904,1.8454,2.245 +15.304,4.0942,1.8496,2.2446 +15.312000000000001,4.098,1.8539,2.2441 +15.32,4.1018,1.8581,2.2437 +15.328000000000001,4.1055,1.8622,2.2433 +15.336,4.1091999999999995,1.8664,2.2428 +15.344000000000001,4.1129,1.8705,2.2424 +15.352,4.1167,1.8747,2.242 +15.36,4.1202,1.8787,2.2415 +15.368,4.1239,1.8828,2.2411 +15.376,4.1274999999999995,1.8868,2.2407 +15.384,4.1311,1.8908,2.2403 +15.392,4.1346,1.8948,2.2398 +15.4,4.138199999999999,1.8988,2.2394 +15.408,4.1417,1.9027,2.239 +15.416,4.1451,1.9066,2.2385 +15.424,4.1486,1.9105,2.2381 +15.432,4.1521,1.9144,2.2377 +15.44,4.1554,1.9182,2.2372 +15.448,4.1588,1.922,2.2368 +15.456,4.162100000000001,1.9257,2.2364 +15.464,4.1655,1.9295,2.236 +15.472,4.1687,1.9332,2.2355 +15.48,4.172000000000001,1.9369,2.2351 +15.488,4.1752,1.9405,2.2347 +15.496,4.1784,1.9442,2.2342 +15.504,4.1815999999999995,1.9478,2.2338 +15.512,4.1847,1.9513,2.2334 +15.52,4.1878,1.9549,2.2329 +15.528,4.1909,1.9584,2.2325 +15.536,4.194,1.9619,2.2321 +15.544,4.196899999999999,1.9653,2.2316 +15.552,4.2,1.9688,2.2312 +15.56,4.202999999999999,1.9722,2.2308 +15.568,4.2059,1.9755,2.2304 +15.576,4.2088,1.9789,2.2299 +15.584,4.2116999999999996,1.9822,2.2295 +15.592,4.2145,1.9854,2.2291 +15.6,4.2173,1.9887,2.2286 +15.608,4.2201,1.9919,2.2282 +15.616,4.2229,1.9951,2.2278 +15.624,4.2255,1.9982,2.2273 +15.632,4.2283,2.0014,2.2269 +15.64,4.2309,2.0044,2.2265 +15.648,4.233499999999999,2.0075,2.226 +15.656,4.2361,2.0105,2.2256 +15.664,4.2387,2.0135,2.2252 +15.672,4.241300000000001,2.0165,2.2248 +15.68,4.2437000000000005,2.0194,2.2243 +15.688,4.2462,2.0223,2.2239 +15.696,4.2486999999999995,2.0252,2.2235 +15.704,4.2509999999999994,2.028,2.223 +15.712,4.2534,2.0308,2.2226 +15.72,4.2558,2.0336,2.2222 +15.728,4.258,2.0363,2.2217 +15.736,4.2603,2.039,2.2213 +15.744,4.2626,2.0417,2.2209 +15.752,4.2646999999999995,2.0443,2.2204 +15.76,4.2669,2.0469,2.22 +15.768,4.269,2.0494,2.2196 +15.776,4.2712,2.052,2.2192 +15.784,4.2732,2.0545,2.2187 +15.792,4.2752,2.0569,2.2183 +15.8,4.277200000000001,2.0593,2.2179 +15.808,4.2791,2.0617,2.2174 +15.816,4.2811,2.0641,2.217 +15.824,4.2829999999999995,2.0664,2.2166 +15.832,4.284800000000001,2.0687,2.2161 +15.84,4.2867,2.071,2.2157 +15.848,4.2885,2.0732,2.2153 +15.856,4.2902000000000005,2.0754,2.2148 +15.864,4.2919,2.0775,2.2144 +15.872,4.2936,2.0796,2.214 +15.88,4.2951999999999995,2.0817,2.2135 +15.888,4.296799999999999,2.0837,2.2131 +15.896,4.2984,2.0857,2.2127 +15.904,4.3,2.0877,2.2123 +15.912,4.3014,2.0896,2.2118 +15.92,4.302899999999999,2.0915,2.2114 +15.928,4.304399999999999,2.0934,2.211 +15.936,4.3057,2.0952,2.2105 +15.944,4.3071,2.097,2.2101 +15.952,4.308400000000001,2.0987,2.2097 +15.96,4.3096,2.1004,2.2092 +15.968,4.3109,2.1021,2.2088 +15.976,4.3121,2.1037,2.2084 +15.984,4.3132,2.1053,2.2079 +15.992,4.3144,2.1069,2.2075 +16.0,4.3155,2.1084,2.2071 +16.008,4.3165,2.1099,2.2066 +16.016000000000002,4.3176000000000005,2.1114,2.2062 +16.024,4.3186,2.1128,2.2058 +16.032,4.3195,2.1142,2.2053 +16.04,4.320399999999999,2.1155,2.2049 +16.048000000000002,4.3213,2.1168,2.2045 +16.056,4.3222000000000005,2.1181,2.2041 +16.064,4.3229,2.1193,2.2036 +16.072,4.3237,2.1205,2.2032 +16.080000000000002,4.3244,2.1216,2.2028 +16.088,4.3251,2.1228,2.2023 +16.096,4.3257,2.1238,2.2019 +16.104,4.3264,2.1249,2.2015 +16.112000000000002,4.3269,2.1259,2.201 +16.12,4.3274,2.1268,2.2006 +16.128,4.328,2.1278,2.2002 +16.136,4.3283000000000005,2.1286,2.1997 +16.144000000000002,4.3288,2.1295,2.1993 +16.152,4.3292,2.1303,2.1989 +16.16,4.3294999999999995,2.1311,2.1984 +16.168,4.3298000000000005,2.1318,2.198 +16.176000000000002,4.3301,2.1325,2.1976 +16.184,4.330299999999999,2.1332,2.1971 +16.192,4.3305,2.1338,2.1967 +16.2,4.3307,2.1344,2.1963 +16.208000000000002,4.3307,2.1349,2.1958 +16.216,4.3308,2.1354,2.1954 +16.224,4.3309,2.1359,2.195 +16.232,4.3308,2.1363,2.1945 +16.240000000000002,4.3308,2.1367,2.1941 +16.248,4.3307,2.137,2.1937 +16.256,4.3306000000000004,2.1373,2.1933 +16.264,4.3304,2.1376,2.1928 +16.272000000000002,4.3302,2.1378,2.1924 +16.28,4.33,2.138,2.192 +16.288,4.3297,2.1382,2.1915 +16.296,4.3294,2.1383,2.1911 +16.304000000000002,4.3291,2.1384,2.1907 +16.312,4.3286,2.1384,2.1902 +16.32,4.3282,2.1384,2.1898 +16.328,4.3278,2.1384,2.1894 +16.336000000000002,4.3271999999999995,2.1383,2.1889 +16.344,4.3267,2.1382,2.1885 +16.352,4.3261,2.138,2.1881 +16.36,4.3255,2.1379,2.1876 +16.368000000000002,4.3248,2.1376,2.1872 +16.376,4.324199999999999,2.1374,2.1868 +16.384,4.3234,2.1371,2.1863 +16.392,4.3225999999999996,2.1367,2.1859 +16.4,4.3218,2.1363,2.1855 +16.408,4.3209,2.1359,2.185 +16.416,4.3201,2.1355,2.1846 +16.424,4.3192,2.135,2.1842 +16.432,4.318099999999999,2.1344,2.1837 +16.44,4.3172,2.1339,2.1833 +16.448,4.3162,2.1333,2.1829 +16.456,4.3149999999999995,2.1326,2.1824 +16.464,4.3139,2.1319,2.182 +16.472,4.3128,2.1312,2.1816 +16.48,4.3115,2.1304,2.1811 +16.488,4.3103,2.1296,2.1807 +16.496,4.3091,2.1288,2.1803 +16.504,4.3078,2.1279,2.1799 +16.512,4.3064,2.127,2.1794 +16.52,4.3050999999999995,2.1261,2.179 +16.528,4.3037,2.1251,2.1786 +16.536,4.3022,2.1241,2.1781 +16.544,4.300700000000001,2.123,2.1777 +16.552,4.2992,2.1219,2.1773 +16.56,4.2976,2.1208,2.1768 +16.568,4.296,2.1196,2.1764 +16.576,4.2943999999999996,2.1184,2.176 +16.584,4.2927,2.1172,2.1755 +16.592,4.291,2.1159,2.1751 +16.6,4.2893,2.1146,2.1747 +16.608,4.2874,2.1132,2.1742 +16.616,4.2856000000000005,2.1118,2.1738 +16.624,4.283799999999999,2.1104,2.1734 +16.632,4.2818000000000005,2.1089,2.1729 +16.64,4.279999999999999,2.1075,2.1725 +16.648,4.2780000000000005,2.1059,2.1721 +16.656,4.276,2.1044,2.1716 +16.664,4.273999999999999,2.1028,2.1712 +16.672,4.2719000000000005,2.1011,2.1708 +16.68,4.2697,2.0994,2.1703 +16.688,4.2676,2.0977,2.1699 +16.696,4.2655,2.096,2.1695 +16.704,4.263199999999999,2.0942,2.169 +16.712,4.261,2.0924,2.1686 +16.72,4.2588,2.0906,2.1682 +16.728,4.256399999999999,2.0887,2.1677 +16.736,4.2541,2.0868,2.1673 +16.744,4.2517,2.0848,2.1669 +16.752,4.2492,2.0828,2.1664 +16.76,4.2468,2.0808,2.166 +16.768,4.244400000000001,2.0788,2.1656 +16.776,4.2418,2.0767,2.1651 +16.784,4.2393,2.0746,2.1647 +16.792,4.2367,2.0724,2.1643 +16.8,4.234,2.0702,2.1638 +16.808,4.231400000000001,2.068,2.1634 +16.816,4.2288,2.0658,2.163 +16.824,4.226,2.0635,2.1625 +16.832,4.2233,2.0612,2.1621 +16.84,4.2205,2.0588,2.1617 +16.848,4.217700000000001,2.0565,2.1612 +16.856,4.2149,2.0541,2.1608 +16.864,4.212,2.0516,2.1604 +16.872,4.209099999999999,2.0492,2.1599 +16.88,4.2062,2.0467,2.1595 +16.888,4.2032,2.0441,2.1591 +16.896,4.2002,2.0416,2.1586 +16.904,4.1972000000000005,2.039,2.1582 +16.912,4.1942,2.0364,2.1578 +16.92,4.191000000000001,2.0337,2.1573 +16.928,4.1879,2.031,2.1569 +16.936,4.1848,2.0283,2.1565 +16.944,4.1815999999999995,2.0256,2.156 +16.952,4.1784,2.0228,2.1556 +16.96,4.1752,2.02,2.1552 +16.968,4.1719,2.0172,2.1547 +16.976,4.1686,2.0143,2.1543 +16.984,4.1653,2.0114,2.1539 +16.992,4.1619,2.0085,2.1534 +17.0,4.1586,2.0056,2.153 +17.008,4.155200000000001,2.0026,2.1526 +17.016000000000002,4.1517,1.9996,2.1521 +17.024,4.1483,1.9966,2.1517 +17.032,4.1449,1.9936,2.1513 +17.04,4.141299999999999,1.9905,2.1508 +17.048000000000002,4.1378,1.9874,2.1504 +17.056,4.1343,1.9843,2.15 +17.064,4.1306,1.9811,2.1495 +17.072,4.1270999999999995,1.978,2.1491 +17.080000000000002,4.1235,1.9748,2.1487 +17.088,4.1197,1.9715,2.1482 +17.096,4.1161,1.9683,2.1478 +17.104,4.1124,1.965,2.1474 +17.112000000000002,4.1086,1.9617,2.1469 +17.12,4.1049,1.9584,2.1465 +17.128,4.1012,1.9551,2.1461 +17.136,4.0973,1.9517,2.1456 +17.144000000000002,4.0935,1.9483,2.1452 +17.152,4.089700000000001,1.9449,2.1448 +17.16,4.0858,1.9415,2.1443 +17.168,4.0819,1.938,2.1439 +17.176000000000002,4.078,1.9345,2.1435 +17.184,4.074,1.931,2.143 +17.192,4.0701,1.9275,2.1426 +17.2,4.0662,1.924,2.1422 +17.208000000000002,4.0621,1.9204,2.1417 +17.216,4.0581000000000005,1.9168,2.1413 +17.224,4.0541,1.9132,2.1409 +17.232,4.05,1.9096,2.1404 +17.240000000000002,4.046,1.906,2.14 +17.248,4.0419,1.9023,2.1396 +17.256,4.0378,1.8987,2.1391 +17.264,4.0337,1.895,2.1387 +17.272000000000002,4.0296,1.8913,2.1383 +17.28,4.0253,1.8875,2.1378 +17.288,4.0212,1.8838,2.1374 +17.296,4.0169999999999995,1.88,2.137 +17.304000000000002,4.0128,1.8763,2.1365 +17.312,4.0085999999999995,1.8725,2.1361 +17.32,4.0044,1.8687,2.1357 +17.328,4.0,1.8648,2.1352 +17.336000000000002,3.9958,1.861,2.1348 +17.344,3.9916,1.8572,2.1344 +17.352,3.9872,1.8533,2.1339 +17.36,3.9829,1.8494,2.1335 +17.368000000000002,3.9786,1.8455,2.1331 +17.376,3.9741999999999997,1.8416,2.1326 +17.384,3.9699,1.8377,2.1322 +17.392,3.9656000000000002,1.8338,2.1318 +17.400000000000002,3.9611,1.8298,2.1313 +17.408,3.9568000000000003,1.8259,2.1309 +17.416,3.9524,1.8219,2.1305 +17.424,3.948,1.818,2.13 +17.432,3.9436,1.814,2.1296 +17.44,3.9391000000000003,1.81,2.1291 +17.448,3.9347,1.806,2.1287 +17.456,3.9303,1.802,2.1283 +17.464,3.9258,1.798,2.1278 +17.472,3.9214,1.794,2.1274 +17.48,3.9169,1.7899,2.127 +17.488,3.9124,1.7859,2.1265 +17.496,3.9079,1.7818,2.1261 +17.504,3.9035,1.7778,2.1257 +17.512,3.8989000000000003,1.7737,2.1252 +17.52,3.8945,1.7697,2.1248 +17.528,3.89,1.7656,2.1244 +17.536,3.8853999999999997,1.7615,2.1239 +17.544,3.8810000000000002,1.7575,2.1235 +17.552,3.8765,1.7534,2.1231 +17.56,3.8719,1.7493,2.1226 +17.568,3.8674,1.7452,2.1222 +17.576,3.8629,1.7411,2.1218 +17.584,3.8584000000000005,1.7371,2.1213 +17.592,3.8539,1.733,2.1209 +17.6,3.8494,1.7289,2.1205 +17.608,3.8448,1.7248,2.12 +17.616,3.8403,1.7207,2.1196 +17.624,3.8358,1.7166,2.1192 +17.632,3.8312,1.7125,2.1187 +17.64,3.8268,1.7085,2.1183 +17.648,3.8223000000000003,1.7044,2.1179 +17.656,3.8177,1.7003,2.1174 +17.664,3.8132,1.6962,2.117 +17.672,3.8087999999999997,1.6922,2.1166 +17.68,3.8042,1.6881,2.1161 +17.688,3.7996999999999996,1.684,2.1157 +17.696,3.7953,1.68,2.1153 +17.704,3.7906999999999997,1.6759,2.1148 +17.712,3.7862999999999998,1.6719,2.1144 +17.72,3.7818,1.6679,2.1139 +17.728,3.7773000000000003,1.6638,2.1135 +17.736,3.7729,1.6598,2.1131 +17.744,3.7683999999999997,1.6558,2.1126 +17.752,3.7640000000000002,1.6518,2.1122 +17.76,3.7596,1.6478,2.1118 +17.768,3.7550999999999997,1.6438,2.1113 +17.776,3.7508,1.6399,2.1109 +17.784,3.7464,1.6359,2.1105 +17.792,3.742,1.632,2.11 +17.8,3.7375999999999996,1.628,2.1096 +17.808,3.7333,1.6241,2.1092 +17.816,3.7289,1.6202,2.1087 +17.824,3.7245999999999997,1.6163,2.1083 +17.832,3.7203,1.6124,2.1079 +17.84,3.716,1.6086,2.1074 +17.848,3.7117000000000004,1.6047,2.107 +17.856,3.7074999999999996,1.6009,2.1066 +17.864,3.7032,1.5971,2.1061 +17.872,3.699,1.5933,2.1057 +17.88,3.6948,1.5895,2.1053 +17.888,3.6906,1.5858,2.1048 +17.896,3.6865,1.5821,2.1044 +17.904,3.6823,1.5783,2.104 +17.912,3.6782,1.5747,2.1035 +17.92,3.6741,1.571,2.1031 +17.928,3.67,1.5673,2.1027 +17.936,3.6658999999999997,1.5637,2.1022 +17.944,3.6619,1.5601,2.1018 +17.952,3.6578,1.5565,2.1013 +17.96,3.6539,1.553,2.1009 +17.968,3.65,1.5495,2.1005 +17.976,3.646,1.546,2.1 +17.984,3.6421,1.5425,2.0996 +17.992,3.6383,1.5391,2.0992 +18.0,3.6343,1.5356,2.0987 +18.008,3.6306000000000003,1.5323,2.0983 +18.016000000000002,3.6268000000000002,1.5289,2.0979 +18.024,3.623,1.5256,2.0974 +18.032,3.6193,1.5223,2.097 +18.04,3.6155999999999997,1.519,2.0966 +18.048000000000002,3.6119,1.5158,2.0961 +18.056,3.6083,1.5126,2.0957 +18.064,3.6047000000000002,1.5094,2.0953 +18.072,3.6011,1.5063,2.0948 +18.080000000000002,3.5976,1.5032,2.0944 +18.088,3.5942,1.5002,2.094 +18.096,3.5907,1.4972,2.0935 +18.104,3.5873,1.4942,2.0931 +18.112000000000002,3.5838,1.4912,2.0926 +18.12,3.5805,1.4883,2.0922 +18.128,3.5773,1.4855,2.0918 +18.136,3.5739,1.4826,2.0913 +18.144000000000002,3.5708,1.4799,2.0909 +18.152,3.5676,1.4771,2.0905 +18.16,3.5644,1.4744,2.09 +18.168,3.5614,1.4718,2.0896 +18.176000000000002,3.5584,1.4692,2.0892 +18.184,3.5553,1.4666,2.0887 +18.192,3.5523999999999996,1.4641,2.0883 +18.2,3.5495,1.4616,2.0879 +18.208000000000002,3.5466,1.4592,2.0874 +18.216,3.5438,1.4568,2.087 +18.224,3.5410999999999997,1.4545,2.0866 +18.232,3.5384,1.4523,2.0861 +18.240000000000002,3.5357000000000003,1.45,2.0857 +18.248,3.5332,1.4479,2.0853 +18.256,3.5305999999999997,1.4458,2.0848 +18.264,3.5281000000000002,1.4437,2.0844 +18.272000000000002,3.5257,1.4417,2.084 +18.28,3.5232,1.4397,2.0835 +18.288,3.5209,1.4378,2.0831 +18.296,3.5185999999999997,1.436,2.0826 +18.304000000000002,3.5164,1.4342,2.0822 +18.312,3.5143,1.4325,2.0818 +18.32,3.5121,1.4308,2.0813 +18.328,3.5101000000000004,1.4292,2.0809 +18.336000000000002,3.5081999999999995,1.4277,2.0805 +18.344,3.5061999999999998,1.4262,2.08 +18.352,3.5044000000000004,1.4248,2.0796 +18.36,3.5026,1.4234,2.0792 +18.368000000000002,3.5008999999999997,1.4222,2.0787 +18.376,3.4992,1.4209,2.0783 +18.384,3.4977,1.4198,2.0779 +18.392,3.4961,1.4187,2.0774 +18.400000000000002,3.4947,1.4177,2.077 +18.408,3.4933,1.4167,2.0766 +18.416,3.492,1.4159,2.0761 +18.424,3.4907,1.415,2.0757 +18.432000000000002,3.4895,1.4143,2.0752 +18.44,3.4885,1.4137,2.0748 +18.448,3.4875,1.4131,2.0744 +18.456,3.4865000000000004,1.4126,2.0739 +18.464,3.4856,1.4121,2.0735 +18.472,3.4849,1.4118,2.0731 +18.48,3.4840999999999998,1.4115,2.0726 +18.488,3.4835000000000003,1.4113,2.0722 +18.496,3.483,1.4112,2.0718 +18.504,3.4824,1.4111,2.0713 +18.512,3.4821,1.4112,2.0709 +18.52,3.4818,1.4113,2.0705 +18.528,3.4814999999999996,1.4115,2.07 +18.536,3.4814,1.4118,2.0696 +18.544,3.4814,1.4122,2.0692 +18.552,3.4813,1.4126,2.0687 +18.56,3.4814999999999996,1.4132,2.0683 +18.568,3.4817,1.4139,2.0678 +18.576,3.482,1.4146,2.0674 +18.584,3.4824,1.4154,2.067 +18.592,3.4828,1.4163,2.0665 +18.6,3.4834,1.4173,2.0661 +18.608,3.4842000000000004,1.4185,2.0657 +18.616,3.4848999999999997,1.4197,2.0652 +18.624,3.4858000000000002,1.421,2.0648 +18.632,3.4868,1.4224,2.0644 +18.64,3.4878,1.4239,2.0639 +18.648,3.4889,1.4254,2.0635 +18.656,3.4901999999999997,1.4271,2.0631 +18.664,3.4915000000000003,1.4289,2.0626 +18.672,3.493,1.4308,2.0622 +18.68,3.4947,1.4329,2.0618 +18.688,3.4963,1.435,2.0613 +18.696,3.4981,1.4372,2.0609 +18.704,3.4999000000000002,1.4395,2.0604 +18.712,3.5019,1.4419,2.06 +18.72,3.5041,1.4445,2.0596 +18.728,3.5061999999999998,1.4471,2.0591 +18.736,3.5086,1.4499,2.0587 +18.744,3.5111,1.4528,2.0583 +18.752,3.5136,1.4558,2.0578 +18.76,3.5163,1.4589,2.0574 +18.768,3.5191,1.4621,2.057 +18.776,3.5220000000000002,1.4655,2.0565 +18.784,3.525,1.4689,2.0561 +18.792,3.5282,1.4725,2.0557 +18.8,3.5314,1.4762,2.0552 +18.808,3.5348,1.48,2.0548 +18.816,3.5383,1.484,2.0543 +18.824,3.542,1.4881,2.0539 +18.832,3.5458,1.4923,2.0535 +18.84,3.5496,1.4966,2.053 +18.848,3.5537,1.5011,2.0526 +18.856,3.5579,1.5057,2.0522 +18.864,3.5621,1.5104,2.0517 +18.872,3.5665,1.5152,2.0513 +18.88,3.5711,1.5202,2.0509 +18.888,3.5757,1.5253,2.0504 +18.896,3.5805999999999996,1.5306,2.05 +18.904,3.5856,1.536,2.0496 +18.912,3.5906000000000002,1.5415,2.0491 +18.92,3.5959000000000003,1.5472,2.0487 +18.928,3.6012,1.553,2.0482 +18.936,3.6068,1.559,2.0478 +18.944,3.6124,1.565,2.0474 +18.952,3.6182,1.5713,2.0469 +18.96,3.6242,1.5777,2.0465 +18.968,3.6303,1.5842,2.0461 +18.976,3.6365,1.5909,2.0456 +18.984,3.6429,1.5977,2.0452 +18.992,3.6494999999999997,1.6047,2.0448 +19.0,3.6560999999999995,1.6118,2.0443 +19.008,3.663,1.6191,2.0439 +19.016000000000002,3.6700999999999997,1.6266,2.0435 +19.024,3.6772,1.6342,2.043 +19.032,3.6845,1.6419,2.0426 +19.04,3.6919,1.6498,2.0421 +19.048000000000002,3.6996,1.6579,2.0417 +19.056,3.7075,1.6662,2.0413 +19.064,3.7154,1.6746,2.0408 +19.072,3.7235,1.6831,2.0404 +19.080000000000002,3.7318,1.6918,2.04 +19.088,3.7401999999999997,1.7007,2.0395 +19.096,3.7489,1.7098,2.0391 +19.104,3.7577,1.719,2.0387 +19.112000000000002,3.7665999999999995,1.7284,2.0382 +19.12,3.7758,1.738,2.0378 +19.128,3.7851,1.7477,2.0374 +19.136,3.7946,1.7577,2.0369 +19.144000000000002,3.8043000000000005,1.7678,2.0365 +19.152,3.814,1.778,2.036 +19.16,3.8241,1.7885,2.0356 +19.168,3.8343,1.7991,2.0352 +19.176000000000002,3.8446,1.8099,2.0347 +19.184,3.8552,1.8209,2.0343 +19.192,3.866,1.8321,2.0339 +19.2,3.8768,1.8434,2.0334 +19.208000000000002,3.888,1.855,2.033 +19.216,3.8993,1.8667,2.0326 +19.224,3.9108,1.8787,2.0321 +19.232,3.9225,1.8908,2.0317 +19.240000000000002,3.9344,1.9031,2.0313 +19.248,3.9464,1.9156,2.0308 +19.256,3.9587000000000003,1.9283,2.0304 +19.264,3.971,1.9411,2.0299 +19.272000000000002,3.9837,1.9542,2.0295 +19.28,3.9966,1.9675,2.0291 +19.288,4.0096,1.981,2.0286 +19.296,4.0229,1.9947,2.0282 +19.304000000000002,4.0364,2.0086,2.0278 +19.312,4.0499,2.0226,2.0273 +19.32,4.0638000000000005,2.0369,2.0269 +19.328,4.0779,2.0514,2.0265 +19.336000000000002,4.0921,2.0661,2.026 +19.344,4.1067,2.0811,2.0256 +19.352,4.1213999999999995,2.0962,2.0252 +19.36,4.1362000000000005,2.1115,2.0247 +19.368000000000002,4.151400000000001,2.1271,2.0243 +19.376,4.1666,2.1428,2.0238 +19.384,4.1822,2.1588,2.0234 +19.392,4.198,2.175,2.023 +19.400000000000002,4.2139,2.1914,2.0225 +19.408,4.2301,2.208,2.0221 +19.416,4.2466,2.2249,2.0217 +19.424,4.263199999999999,2.242,2.0212 +19.432000000000002,4.2801,2.2593,2.0208 +19.44,4.2972,2.2768,2.0204 +19.448,4.3144,2.2945,2.0199 +19.456,4.332,2.3125,2.0195 +19.464,4.3497,2.3307,2.019 +19.472,4.367800000000001,2.3492,2.0186 +19.48,4.386,2.3678,2.0182 +19.488,4.4044,2.3867,2.0177 +19.496,4.4232,2.4059,2.0173 +19.504,4.4421,2.4252,2.0169 +19.512,4.4612,2.4448,2.0164 +19.52,4.480700000000001,2.4647,2.016 +19.528,4.5003,2.4847,2.0156 +19.536,4.520099999999999,2.505,2.0151 +19.544,4.5403,2.5256,2.0147 +19.552,4.560700000000001,2.5464,2.0143 +19.56,4.5812,2.5674,2.0138 +19.568,4.6021,2.5887,2.0134 +19.576,4.623200000000001,2.6103,2.0129 +19.584,4.6446000000000005,2.6321,2.0125 +19.592,4.6662,2.6541,2.0121 +19.6,4.688000000000001,2.6764,2.0116 +19.608,4.710100000000001,2.6989,2.0112 +19.616,4.7325,2.7217,2.0108 +19.624,4.755,2.7447,2.0103 +19.632,4.7779,2.768,2.0099 +19.64,4.801,2.7915,2.0095 +19.648,4.8243,2.8153,2.009 +19.656,4.848,2.8394,2.0086 +19.664,4.8718,2.8637,2.0081 +19.672,4.896,2.8883,2.0077 +19.68,4.9204,2.9131,2.0073 +19.688,4.945,2.9382,2.0068 +19.696,4.970000000000001,2.9636,2.0064 +19.704,4.9952,2.9892,2.006 +19.712,5.0206,3.0151,2.0055 +19.72,5.0464,3.0413,2.0051 +19.728,5.0724,3.0677,2.0047 +19.736,5.098599999999999,3.0944,2.0042 +19.744,5.1251999999999995,3.1214,2.0038 +19.752,5.1518999999999995,3.1486,2.0033 +19.76,5.179,3.1761,2.0029 +19.768,5.2064,3.2039,2.0025 +19.776,5.234,3.232,2.002 +19.784,5.2619,3.2603,2.0016 +19.792,5.2901,3.2889,2.0012 +19.8,5.3185,3.3178,2.0007 +19.808,5.347300000000001,3.347,2.0003 +19.816,5.3763,3.3764,1.9999 +19.824,5.4055,3.4061,1.9994 +19.832,5.4351,3.4361,1.999 +19.84,5.465,3.4664,1.9986 +19.848,5.4951,3.497,1.9981 +19.856,5.5255,3.5278,1.9977 +19.864,5.5562000000000005,3.559,1.9972 +19.872,5.587199999999999,3.5904,1.9968 +19.88,5.6185,3.6221,1.9964 +19.888,5.65,3.6541,1.9959 +19.896,5.6819,3.6864,1.9955 +19.904,5.714,3.7189,1.9951 +19.912,5.7463999999999995,3.7518,1.9946 +19.92,5.7791,3.7849,1.9942 +19.928,5.8122,3.8184,1.9938 +19.936,5.8454,3.8521,1.9933 +19.944,5.879,3.8861,1.9929 +19.952,5.9128,3.9204,1.9924 +19.96,5.947,3.955,1.992 +19.968,5.9815000000000005,3.9899,1.9916 +19.976,6.0162,4.0251,1.9911 +19.984,6.0512999999999995,4.0606,1.9907 +19.992,6.0867,4.0964,1.9903 +20.0,6.1223,4.1325,1.9898 +20.008,6.1583,4.1689,1.9894 +20.016000000000002,6.194599999999999,4.2056,1.989 +20.024,6.2311000000000005,4.2426,1.9885 +20.032,6.2679,4.2798,1.9881 +20.04,6.305,4.3174,1.9876 +20.048000000000002,6.342499999999999,4.3553,1.9872 +20.056,6.3803,4.3935,1.9868 +20.064,6.4183,4.432,1.9863 +20.072,6.4566,4.4707,1.9859 +20.080000000000002,6.4953,4.5098,1.9855 +20.088,6.5342,4.5492,1.985 +20.096,6.573499999999999,4.5889,1.9846 +20.104,6.613099999999999,4.6289,1.9842 +20.112000000000002,6.6529,4.6692,1.9837 +20.12,6.6931,4.7098,1.9833 +20.128,6.7335,4.7507,1.9828 +20.136,6.7743,4.7919,1.9824 +20.144000000000002,6.8154,4.8334,1.982 +20.152,6.8567,4.8752,1.9815 +20.16,6.8985,4.9174,1.9811 +20.168,6.9405,4.9598,1.9807 +20.176000000000002,6.9827,5.0025,1.9802 +20.184,7.0254,5.0456,1.9798 +20.192,7.0683,5.0889,1.9794 +20.2,7.1115,5.1326,1.9789 +20.208000000000002,7.154999999999999,5.1765,1.9785 +20.216,7.1989,5.2208,1.9781 +20.224,7.242999999999999,5.2654,1.9776 +20.232,7.2874,5.3102,1.9772 +20.240000000000002,7.3321000000000005,5.3554,1.9767 +20.248,7.3772,5.4009,1.9763 +20.256,7.4226,5.4467,1.9759 +20.264,7.4681999999999995,5.4928,1.9754 +20.272000000000002,7.514200000000001,5.5392,1.975 +20.28,7.560499999999999,5.5859,1.9746 +20.288,7.607,5.6329,1.9741 +20.296,7.654,5.6803,1.9737 +20.304000000000002,7.7012,5.7279,1.9733 +20.312,7.748600000000001,5.7758,1.9728 +20.32,7.7965,5.8241,1.9724 +20.328,7.8445,5.8726,1.9719 +20.336000000000002,7.893,5.9215,1.9715 +20.344,7.9417,5.9706,1.9711 +20.352,7.9907,6.0201,1.9706 +20.36,8.04,6.0698,1.9702 +20.368000000000002,8.0897,6.1199,1.9698 +20.376,8.1396,6.1703,1.9693 +20.384,8.1898,6.2209,1.9689 +20.392,8.2404,6.2719,1.9685 +20.400000000000002,8.2912,6.3232,1.968 +20.408,8.3423,6.3747,1.9676 +20.416,8.393699999999999,6.4266,1.9671 +20.424,8.4455,6.4788,1.9667 +20.432000000000002,8.4976,6.5313,1.9663 +20.44,8.5498,6.584,1.9658 +20.448,8.602500000000001,6.6371,1.9654 +20.456,8.6554,6.6904,1.965 +20.464000000000002,8.7086,6.7441,1.9645 +20.472,8.7622,6.7981,1.9641 +20.48,8.815999999999999,6.8523,1.9637 +20.488,8.87,6.9068,1.9632 +20.496,8.9245,6.9617,1.9628 +20.504,8.979099999999999,7.0168,1.9623 +20.512,9.034099999999999,7.0722,1.9619 +20.52,9.089400000000001,7.1279,1.9615 +20.528,9.1449,7.1839,1.961 +20.536,9.2008,7.2402,1.9606 +20.544,9.257,7.2968,1.9602 +20.552,9.3133,7.3536,1.9597 +20.56,9.3701,7.4108,1.9593 +20.568,9.427100000000001,7.4682,1.9589 +20.576,9.4843,7.5259,1.9584 +20.584,9.5419,7.5839,1.958 +20.592,9.5997,7.6422,1.9575 +20.6,9.6578,7.7007,1.9571 +20.608,9.7163,7.7596,1.9567 +20.616,9.774899999999999,7.8187,1.9562 +20.624,9.8338,7.878,1.9558 +20.632,9.8931,7.9377,1.9554 +20.64,9.9525,7.9976,1.9549 +20.648,10.0123,8.0578,1.9545 +20.656,10.0724,8.1183,1.9541 +20.664,10.1326,8.179,1.9536 +20.672,10.193200000000001,8.24,1.9532 +20.68,10.254,8.3013,1.9527 +20.688,10.3151,8.3628,1.9523 +20.696,10.3765,8.4246,1.9519 +20.704,10.4381,8.4867,1.9514 +20.712,10.5,8.549,1.951 +20.72,10.562199999999999,8.6116,1.9506 +20.728,10.624500000000001,8.6744,1.9501 +20.736,10.6872,8.7375,1.9497 +20.744,10.7501,8.8008,1.9493 +20.752,10.8132,8.8644,1.9488 +20.76,10.8766,8.9282,1.9484 +20.768,10.9402,8.9923,1.9479 +20.776,11.0041,9.0566,1.9475 +20.784,11.0683,9.1212,1.9471 +20.792,11.1326,9.186,1.9466 +20.8,11.197199999999999,9.251,1.9462 +20.808,11.2621,9.3163,1.9458 +20.816,11.3271,9.3818,1.9453 +20.824,11.3925,9.4476,1.9449 +20.832,11.458,9.5135,1.9445 +20.84,11.523800000000001,9.5798,1.944 +20.848,11.5898,9.6462,1.9436 +20.856,11.655899999999999,9.7128,1.9431 +20.864,11.7224,9.7797,1.9427 +20.872,11.7891,9.8468,1.9423 +20.88,11.8559,9.9141,1.9418 +20.888,11.9231,9.9817,1.9414 +20.896,11.990400000000001,10.0494,1.941 +20.904,12.0578,10.1173,1.9405 +20.912,12.125599999999999,10.1855,1.9401 +20.92,12.1936,10.2539,1.9397 +20.928,12.2616,10.3224,1.9392 +20.936,12.33,10.3912,1.9388 +20.944,12.3985,10.4602,1.9383 +20.952,12.467199999999998,10.5293,1.9379 +20.96,12.5362,10.5987,1.9375 +20.968,12.6052,10.6682,1.937 +20.976,12.6745,10.7379,1.9366 +20.984,12.744,10.8078,1.9362 +20.992,12.813600000000001,10.8779,1.9357 +21.0,12.8835,10.9482,1.9353 +21.008,12.9535,11.0186,1.9349 +21.016000000000002,13.0237,11.0893,1.9344 +21.024,13.0941,11.1601,1.934 +21.032,13.1645,11.231,1.9335 +21.04,13.235199999999999,11.3021,1.9331 +21.048000000000002,13.3061,11.3734,1.9327 +21.056,13.3771,11.4449,1.9322 +21.064,13.4483,11.5165,1.9318 +21.072,13.5196,11.5882,1.9314 +21.080000000000002,13.591,11.6601,1.9309 +21.088,13.662600000000001,11.7321,1.9305 +21.096,13.734399999999999,11.8043,1.9301 +21.104,13.8063,11.8767,1.9296 +21.112000000000002,13.8783,11.9491,1.9292 +21.12,13.9505,12.0217,1.9288 +21.128,14.0228,12.0945,1.9283 +21.136,14.095199999999998,12.1673,1.9279 +21.144000000000002,14.1677,12.2403,1.9274 +21.152,14.2404,12.3134,1.927 +21.16,14.3132,12.3866,1.9266 +21.168,14.3861,12.46,1.9261 +21.176000000000002,14.4591,12.5334,1.9257 +21.184,14.5323,12.607,1.9253 +21.192,14.6054,12.6806,1.9248 +21.2,14.6788,12.7544,1.9244 +21.208000000000002,14.7522,12.8282,1.924 +21.216,14.825700000000001,12.9022,1.9235 +21.224,14.8993,12.9762,1.9231 +21.232,14.972999999999999,13.0504,1.9226 +21.240000000000002,15.0468,13.1246,1.9222 +21.248,15.1207,13.1989,1.9218 +21.256,15.1945,13.2732,1.9213 +21.264,15.2686,13.3477,1.9209 +21.272000000000002,15.3427,13.4222,1.9205 +21.28,15.4167,13.4967,1.92 +21.288,15.491,13.5714,1.9196 +21.296,15.5653,13.6461,1.9192 +21.304000000000002,15.6395,13.7208,1.9187 +21.312,15.7139,13.7956,1.9183 +21.32,15.7882,13.8704,1.9178 +21.328,15.8627,13.9453,1.9174 +21.336000000000002,15.9372,14.0202,1.917 +21.344,16.0117,14.0952,1.9165 +21.352,16.086299999999998,14.1702,1.9161 +21.36,16.1609,14.2452,1.9157 +21.368000000000002,16.2354,14.3202,1.9152 +21.376,16.310100000000002,14.3953,1.9148 +21.384,16.3847,14.4703,1.9144 +21.392,16.4593,14.5454,1.9139 +21.400000000000002,16.534,14.6205,1.9135 +21.408,16.6086,14.6956,1.913 +21.416,16.6833,14.7707,1.9126 +21.424,16.758,14.8458,1.9122 +21.432000000000002,16.8326,14.9209,1.9117 +21.44,16.9072,14.9959,1.9113 +21.448,16.9819,15.071,1.9109 +21.456,17.0564,15.146,1.9104 +21.464000000000002,17.131,15.221,1.91 +21.472,17.2056,15.296,1.9096 +21.48,17.28,15.3709,1.9091 +21.488,17.3545,15.4458,1.9087 +21.496000000000002,17.4289,15.5207,1.9082 +21.504,17.5033,15.5955,1.9078 +21.512,17.5777,15.6703,1.9074 +21.52,17.651899999999998,15.745,1.9069 +21.528,17.7261,15.8196,1.9065 +21.536,17.8003,15.8942,1.9061 +21.544,17.8743,15.9687,1.9056 +21.552,17.9484,16.0432,1.9052 +21.56,18.0224,16.1176,1.9048 +21.568,18.0962,16.1919,1.9043 +21.576,18.17,16.2661,1.9039 +21.584,18.2437,16.3402,1.9035 +21.592,18.3172,16.4142,1.903 +21.6,18.3908,16.4882,1.9026 +21.608,18.464100000000002,16.562,1.9021 +21.616,18.537399999999998,16.6357,1.9017 +21.624,18.610699999999998,16.7094,1.9013 +21.632,18.6837,16.7829,1.9008 +21.64,18.756600000000002,16.8562,1.9004 +21.648,18.8295,16.9295,1.9 +21.656,18.9021,17.0026,1.8995 +21.664,18.974800000000002,17.0757,1.8991 +21.672,19.0472,17.1485,1.8987 +21.68,19.1195,17.2213,1.8982 +21.688,19.1916,17.2938,1.8978 +21.696,19.2636,17.3663,1.8973 +21.704,19.3355,17.4386,1.8969 +21.712,19.4072,17.5107,1.8965 +21.72,19.4786,17.5826,1.896 +21.728,19.549999999999997,17.6544,1.8956 +21.736,19.621299999999998,17.7261,1.8952 +21.744,19.6922,17.7975,1.8947 +21.752,19.7631,17.8688,1.8943 +21.76,19.8338,17.9399,1.8939 +21.768,19.9042,18.0108,1.8934 +21.776,19.9745,18.0815,1.893 +21.784,20.044600000000003,18.152,1.8926 +21.792,20.1144,18.2223,1.8921 +21.8,20.1841,18.2924,1.8917 +21.808,20.253500000000003,18.3623,1.8912 +21.816,20.322799999999997,18.432,1.8908 +21.824,20.3919,18.5015,1.8904 +21.832,20.4606,18.5707,1.8899 +21.84,20.529200000000003,18.6397,1.8895 +21.848,20.5976,18.7085,1.8891 +21.856,20.6656,18.777,1.8886 +21.864,20.733500000000003,18.8453,1.8882 +21.872,20.801199999999998,18.9134,1.8878 +21.88,20.8685,18.9812,1.8873 +21.888,20.9357,19.0488,1.8869 +21.896,21.002499999999998,19.1161,1.8864 +21.904,21.0691,19.1831,1.886 +21.912,21.1355,19.2499,1.8856 +21.92,21.201500000000003,19.3164,1.8851 +21.928,21.2673,19.3826,1.8847 +21.936,21.3329,19.4486,1.8843 +21.944,21.398,19.5142,1.8838 +21.952,21.463,19.5796,1.8834 +21.96,21.5277,19.6447,1.883 +21.968,21.592,19.7095,1.8825 +21.976,21.656100000000002,19.774,1.8821 +21.984,21.7199,19.8382,1.8817 +21.992,21.7833,19.9021,1.8812 +22.0,21.8464,19.9656,1.8808 +22.008,21.9092,20.0289,1.8803 +22.016000000000002,21.9717,20.0918,1.8799 +22.024,22.0339,20.1544,1.8795 +22.032,22.0957,20.2167,1.879 +22.04,22.1573,20.2787,1.8786 +22.048000000000002,22.2185,20.3403,1.8782 +22.056,22.2792,20.4015,1.8777 +22.064,22.339799999999997,20.4625,1.8773 +22.072,22.3999,20.523,1.8769 +22.080000000000002,22.4597,20.5833,1.8764 +22.088,22.5191,20.6431,1.876 +22.096,22.5782,20.7027,1.8755 +22.104,22.6369,20.7618,1.8751 +22.112000000000002,22.6953,20.8206,1.8747 +22.12,22.7532,20.879,1.8742 +22.128,22.8108,20.937,1.8738 +22.136,22.868100000000002,20.9947,1.8734 +22.144000000000002,22.9248,21.0519,1.8729 +22.152,22.981299999999997,21.1088,1.8725 +22.16,23.037399999999998,21.1653,1.8721 +22.168,23.093,21.2214,1.8716 +22.176000000000002,23.1483,21.2771,1.8712 +22.184,23.2032,21.3324,1.8708 +22.192,23.2576,21.3873,1.8703 +22.2,23.311700000000002,21.4418,1.8699 +22.208000000000002,23.365199999999998,21.4958,1.8694 +22.216,23.418499999999998,21.5495,1.869 +22.224,23.4713,21.6027,1.8686 +22.232,23.523600000000002,21.6555,1.8681 +22.240000000000002,23.575599999999998,21.7079,1.8677 +22.248,23.6271,21.7598,1.8673 +22.256,23.6782,21.8114,1.8668 +22.264,23.7288,21.8624,1.8664 +22.272000000000002,23.7791,21.9131,1.866 +22.28,23.8288,21.9633,1.8655 +22.288,23.878100000000003,22.013,1.8651 +22.296,23.927,22.0623,1.8647 +22.304000000000002,23.9754,22.1112,1.8642 +22.312,24.023300000000003,22.1595,1.8638 +22.32,24.0708,22.2075,1.8633 +22.328,24.1178,22.2549,1.8629 +22.336000000000002,24.1644,22.3019,1.8625 +22.344,24.210500000000003,22.3485,1.862 +22.352,24.2561,22.3945,1.8616 +22.36,24.3013,22.4401,1.8612 +22.368000000000002,24.3459,22.4852,1.8607 +22.376,24.3901,22.5298,1.8603 +22.384,24.433799999999998,22.5739,1.8599 +22.392,24.477,22.6176,1.8594 +22.400000000000002,24.519799999999996,22.6608,1.859 +22.408,24.561999999999998,22.7034,1.8586 +22.416,24.6037,22.7456,1.8581 +22.424,24.645,22.7873,1.8577 +22.432000000000002,24.685599999999997,22.8284,1.8572 +22.44,24.7259,22.8691,1.8568 +22.448,24.7656,22.9092,1.8564 +22.456,24.8048,22.9489,1.8559 +22.464000000000002,24.8435,22.988,1.8555 +22.472,24.881800000000002,23.0267,1.8551 +22.48,24.919400000000003,23.0648,1.8546 +22.488,24.956599999999998,23.1024,1.8542 +22.496000000000002,24.993199999999998,23.1394,1.8538 +22.504,25.0293,23.176,1.8533 +22.512,25.0649,23.212,1.8529 +22.52,25.099999999999998,23.2475,1.8525 +22.528,25.1344,23.2824,1.852 +22.536,25.168400000000002,23.3168,1.8516 +22.544,25.2019,23.3507,1.8512 +22.552,25.2348,23.3841,1.8507 +22.56,25.2672,23.4169,1.8503 +22.568,25.299,23.4492,1.8498 +22.576,25.330299999999998,23.4809,1.8494 +22.584,25.3611,23.5121,1.849 +22.592,25.3912,23.5427,1.8485 +22.6,25.4209,23.5728,1.8481 +22.608,25.45,23.6023,1.8477 +22.616,25.4785,23.6313,1.8472 +22.624,25.506500000000003,23.6597,1.8468 +22.632,25.534,23.6876,1.8464 +22.64,25.5608,23.7149,1.8459 +22.648,25.5871,23.7416,1.8455 +22.656,25.6129,23.7678,1.8451 +22.664,25.6381,23.7935,1.8446 +22.672,25.6627,23.8185,1.8442 +22.68,25.6867,23.843,1.8437 +22.688,25.7102,23.8669,1.8433 +22.696,25.7332,23.8903,1.8429 +22.704,25.7555,23.9131,1.8424 +22.712,25.7773,23.9353,1.842 +22.72,25.7985,23.9569,1.8416 +22.728,25.819100000000002,23.978,1.8411 +22.736,25.839199999999998,23.9985,1.8407 +22.744,25.8587,24.0184,1.8403 +22.752,25.8775,24.0377,1.8398 +22.76,25.8959,24.0565,1.8394 +22.768,25.9137,24.0747,1.839 +22.776,25.9308,24.0923,1.8385 +22.784,25.947400000000002,24.1093,1.8381 +22.792,25.9634,24.1257,1.8377 +22.8,25.9788,24.1416,1.8372 +22.808,25.9937,24.1569,1.8368 +22.816,26.007900000000003,24.1716,1.8363 +22.824,26.0216,24.1857,1.8359 +22.832,26.0347,24.1992,1.8355 +22.84,26.0471,24.2121,1.835 +22.848,26.058999999999997,24.2244,1.8346 +22.856,26.0704,24.2362,1.8342 +22.864,26.0811,24.2474,1.8337 +22.872,26.0912,24.2579,1.8333 +22.88,26.1008,24.2679,1.8329 +22.888,26.1097,24.2773,1.8324 +22.896,26.118100000000002,24.2861,1.832 +22.904,26.125999999999998,24.2944,1.8316 +22.912,26.1331,24.302,1.8311 +22.92,26.1397,24.309,1.8307 +22.928,26.1458,24.3155,1.8303 +22.936,26.1511,24.3213,1.8298 +22.944,26.156,24.3266,1.8294 +22.952,26.1602,24.3313,1.8289 +22.96,26.163899999999998,24.3354,1.8285 +22.968,26.166999999999998,24.3389,1.8281 +22.976,26.1694,24.3418,1.8276 +22.984,26.171300000000002,24.3441,1.8272 +22.992,26.1726,24.3458,1.8268 +23.0,26.1733,24.347,1.8263 +23.008,26.1734,24.3475,1.8259 +23.016000000000002,26.173000000000002,24.3475,1.8255 +23.024,26.1718,24.3468,1.825 +23.032,26.1702,24.3456,1.8246 +23.04,26.168000000000003,24.3438,1.8242 +23.048000000000002,26.1651,24.3414,1.8237 +23.056,26.1618,24.3385,1.8233 +23.064,26.1578,24.3349,1.8229 +23.072,26.1532,24.3308,1.8224 +23.080000000000002,26.148,24.326,1.822 +23.088,26.1423,24.3207,1.8216 +23.096,26.135900000000003,24.3148,1.8211 +23.104,26.129099999999998,24.3084,1.8207 +23.112000000000002,26.1215,24.3013,1.8202 +23.12,26.113500000000002,24.2937,1.8198 +23.128,26.1049,24.2855,1.8194 +23.136,26.0956,24.2767,1.8189 +23.144000000000002,26.0858,24.2673,1.8185 +23.152,26.075400000000002,24.2573,1.8181 +23.16,26.0644,24.2468,1.8176 +23.168,26.0529,24.2357,1.8172 +23.176000000000002,26.0409,24.2241,1.8168 +23.184,26.028100000000002,24.2118,1.8163 +23.192,26.0149,24.199,1.8159 +23.2,26.0012,24.1857,1.8155 +23.208000000000002,25.986700000000003,24.1717,1.815 +23.216,25.971799999999998,24.1572,1.8146 +23.224,25.9563,24.1421,1.8142 +23.232,25.9402,24.1265,1.8137 +23.240000000000002,25.9236,24.1103,1.8133 +23.248,25.906499999999998,24.0936,1.8129 +23.256,25.8886,24.0762,1.8124 +23.264,25.8704,24.0584,1.812 +23.272000000000002,25.851399999999998,24.0399,1.8115 +23.28,25.8321,24.021,1.8111 +23.288,25.8121,24.0014,1.8107 +23.296,25.791600000000003,23.9814,1.8102 +23.304000000000002,25.7705,23.9607,1.8098 +23.312,25.749,23.9396,1.8094 +23.32,25.7268,23.9179,1.8089 +23.328,25.7041,23.8956,1.8085 +23.336000000000002,25.6809,23.8728,1.8081 +23.344,25.6571,23.8495,1.8076 +23.352,25.632800000000003,23.8256,1.8072 +23.36,25.608,23.8012,1.8068 +23.368000000000002,25.5826,23.7763,1.8063 +23.376,25.556700000000003,23.7508,1.8059 +23.384,25.530299999999997,23.7248,1.8055 +23.392,25.5033,23.6983,1.805 +23.400000000000002,25.4759,23.6713,1.8046 +23.408,25.4479,23.6437,1.8042 +23.416,25.4194,23.6157,1.8037 +23.424,25.3904,23.5871,1.8033 +23.432000000000002,25.3609,23.558,1.8029 +23.44,25.3307,23.5283,1.8024 +23.448,25.3002,23.4982,1.802 +23.456,25.2691,23.4676,1.8015 +23.464000000000002,25.2376,23.4365,1.8011 +23.472,25.2055,23.4048,1.8007 +23.48,25.1729,23.3727,1.8002 +23.488,25.1399,23.3401,1.7998 +23.496000000000002,25.106299999999997,23.3069,1.7994 +23.504,25.0722,23.2733,1.7989 +23.512,25.0377,23.2392,1.7985 +23.52,25.0028,23.2047,1.7981 +23.528000000000002,24.9672,23.1696,1.7976 +23.536,24.9312,23.134,1.7972 +23.544,24.8948,23.098,1.7968 +23.552,24.857799999999997,23.0615,1.7963 +23.56,24.8204,23.0245,1.7959 +23.568,24.782600000000002,22.9871,1.7955 +23.576,24.7442,22.9492,1.795 +23.584,24.705399999999997,22.9108,1.7946 +23.592,24.6662,22.872,1.7942 +23.6,24.6264,22.8327,1.7937 +23.608,24.586299999999998,22.793,1.7933 +23.616,24.5457,22.7528,1.7929 +23.624,24.5046,22.7122,1.7924 +23.632,24.4631,22.6711,1.792 +23.64,24.4212,22.6296,1.7916 +23.648,24.3787,22.5876,1.7911 +23.656,24.335900000000002,22.5452,1.7907 +23.664,24.2927,22.5024,1.7903 +23.672,24.249,22.4592,1.7898 +23.68,24.204900000000002,22.4155,1.7894 +23.688,24.1603,22.3714,1.7889 +23.696,24.115399999999998,22.3269,1.7885 +23.704,24.07,22.2819,1.7881 +23.712,24.0242,22.2366,1.7876 +23.72,23.977999999999998,22.1908,1.7872 +23.728,23.9315,22.1447,1.7868 +23.736,23.8844,22.0981,1.7863 +23.744,23.837000000000003,22.0511,1.7859 +23.752,23.789299999999997,22.0038,1.7855 +23.76,23.741,21.956,1.785 +23.768,23.692500000000003,21.9079,1.7846 +23.776,23.6436,21.8594,1.7842 +23.784,23.5942,21.8105,1.7837 +23.792,23.5445,21.7612,1.7833 +23.8,23.494400000000002,21.7115,1.7829 +23.808,23.4439,21.6615,1.7824 +23.816,23.3931,21.6111,1.782 +23.824,23.341900000000003,21.5603,1.7816 +23.832,23.2903,21.5092,1.7811 +23.84,23.2384,21.4577,1.7807 +23.848,23.1861,21.4058,1.7803 +23.856,23.1335,21.3537,1.7798 +23.864,23.0805,21.3011,1.7794 +23.872,23.0272,21.2482,1.779 +23.88,22.9735,21.195,1.7785 +23.888,22.9196,21.1415,1.7781 +23.896,22.865299999999998,21.0876,1.7777 +23.904,22.8106,21.0334,1.7772 +23.912,22.7556,20.9788,1.7768 +23.92,22.7004,20.924,1.7764 +23.928,22.6447,20.8688,1.7759 +23.936,22.588800000000003,20.8133,1.7755 +23.944,22.5326,20.7575,1.7751 +23.952,22.476,20.7014,1.7746 +23.96,22.4191,20.6449,1.7742 +23.968,22.362000000000002,20.5882,1.7738 +23.976,22.304499999999997,20.5312,1.7733 +23.984,22.2468,20.4739,1.7729 +23.992,22.1887,20.4163,1.7724 +24.0,22.130399999999998,20.3584,1.772 +24.008,22.0719,20.3003,1.7716 +24.016000000000002,22.012900000000002,20.2418,1.7711 +24.024,21.9538,20.1831,1.7707 +24.032,21.894399999999997,20.1241,1.7703 +24.04,21.8347,20.0649,1.7698 +24.048000000000002,21.774800000000003,20.0054,1.7694 +24.056,21.714599999999997,19.9456,1.769 +24.064,21.6541,19.8856,1.7685 +24.072,21.5934,19.8253,1.7681 +24.080000000000002,21.532500000000002,19.7648,1.7677 +24.088,21.4713,19.7041,1.7672 +24.096,21.4099,19.6431,1.7668 +24.104,21.348200000000002,19.5818,1.7664 +24.112000000000002,21.286199999999997,19.5203,1.7659 +24.12,21.2241,19.4586,1.7655 +24.128,21.1618,19.3967,1.7651 +24.136,21.0992,19.3346,1.7646 +24.144000000000002,21.0364,19.2722,1.7642 +24.152,20.973399999999998,19.2096,1.7638 +24.16,20.9102,19.1469,1.7633 +24.168,20.846799999999998,19.0839,1.7629 +24.176000000000002,20.7832,19.0207,1.7625 +24.184,20.7193,18.9573,1.762 +24.192,20.6553,18.8937,1.7616 +24.2,20.591099999999997,18.8299,1.7612 +24.208000000000002,20.526699999999998,18.766,1.7607 +24.216,20.4621,18.7018,1.7603 +24.224,20.397399999999998,18.6375,1.7599 +24.232,20.3324,18.573,1.7594 +24.240000000000002,20.2673,18.5083,1.759 +24.248,20.2021,18.4435,1.7586 +24.256,20.136599999999998,18.3785,1.7581 +24.264,20.071,18.3133,1.7577 +24.272000000000002,20.005300000000002,18.248,1.7573 +24.28,19.9393,18.1825,1.7568 +24.288,19.8732,18.1168,1.7564 +24.296,19.807100000000002,18.0511,1.756 +24.304000000000002,19.7406,17.9851,1.7555 +24.312,19.6742,17.9191,1.7551 +24.32,19.6076,17.8529,1.7547 +24.328,19.5408,17.7866,1.7542 +24.336000000000002,19.4739,17.7201,1.7538 +24.344,19.4069,17.6535,1.7534 +24.352,19.3397,17.5868,1.7529 +24.36,19.2725,17.52,1.7525 +24.368000000000002,19.205199999999998,17.4531,1.7521 +24.376,19.1376,17.386,1.7516 +24.384,19.0701,17.3189,1.7512 +24.392,19.0024,17.2516,1.7508 +24.400000000000002,18.9345,17.1842,1.7503 +24.408,18.8667,17.1168,1.7499 +24.416,18.7988,17.0493,1.7495 +24.424,18.7306,16.9816,1.749 +24.432000000000002,18.6625,16.9139,1.7486 +24.44,18.5943,16.8461,1.7482 +24.448,18.5259,16.7782,1.7477 +24.456,18.4576,16.7103,1.7473 +24.464000000000002,18.3891,16.6422,1.7469 +24.472,18.320600000000002,16.5742,1.7464 +24.48,18.252,16.506,1.746 +24.488,18.1834,16.4378,1.7456 +24.496000000000002,18.1146,16.3695,1.7451 +24.504,18.045900000000003,16.3012,1.7447 +24.512,17.9771,16.2328,1.7443 +24.52,17.9081,16.1643,1.7438 +24.528000000000002,17.8393,16.0959,1.7434 +24.536,17.7703,16.0273,1.743 +24.544,17.7013,15.9588,1.7425 +24.552,17.6323,15.8902,1.7421 +24.560000000000002,17.5633,15.8216,1.7417 +24.568,17.4941,15.7529,1.7412 +24.576,17.425,15.6842,1.7408 +24.584,17.355900000000002,15.6155,1.7404 +24.592,17.2867,15.5468,1.7399 +24.6,17.2176,15.4781,1.7395 +24.608,17.1484,15.4093,1.7391 +24.616,17.0792,15.3406,1.7386 +24.624,17.01,15.2718,1.7382 +24.632,16.9409,15.2031,1.7378 +24.64,16.8716,15.1343,1.7373 +24.648,16.8024,15.0655,1.7369 +24.656,16.7333,14.9968,1.7365 +24.664,16.664,14.928,1.736 +24.672,16.5949,14.8593,1.7356 +24.68,16.5258,14.7906,1.7352 +24.688,16.456599999999998,14.7219,1.7347 +24.696,16.3875,14.6532,1.7343 +24.704,16.3185,14.5846,1.7339 +24.712,16.2493,14.5159,1.7334 +24.72,16.1803,14.4473,1.733 +24.728,16.1114,14.3788,1.7326 +24.736,16.0423,14.3102,1.7321 +24.744,15.9735,14.2418,1.7317 +24.752,15.904599999999999,14.1733,1.7313 +24.76,15.835700000000001,14.1049,1.7308 +24.768,15.7669,14.0365,1.7304 +24.776,15.6982,13.9682,1.73 +24.784,15.6295,13.9,1.7295 +24.792,15.5609,13.8318,1.7291 +24.8,15.4923,13.7636,1.7287 +24.808,15.4239,13.6956,1.7283 +24.816,15.3554,13.6276,1.7278 +24.824,15.286999999999999,13.5596,1.7274 +24.832,15.2187,13.4917,1.727 +24.84,15.1504,13.4239,1.7265 +24.848,15.0823,13.3562,1.7261 +24.856,15.0142,13.2885,1.7257 +24.864,14.946100000000001,13.2209,1.7252 +24.872,14.8782,13.1534,1.7248 +24.88,14.8104,13.086,1.7244 +24.888,14.742600000000001,13.0187,1.7239 +24.896,14.674999999999999,12.9515,1.7235 +24.904,14.6074,12.8843,1.7231 +24.912,14.5399,12.8173,1.7226 +24.92,14.4725,12.7503,1.7222 +24.928,14.4052,12.6834,1.7218 +24.936,14.338,12.6167,1.7213 +24.944,14.270900000000001,12.55,1.7209 +24.952,14.203999999999999,12.4835,1.7205 +24.96,14.137,12.417,1.72 +24.968,14.0703,12.3507,1.7196 +24.976,14.0037,12.2845,1.7192 +24.984,13.937100000000001,12.2184,1.7187 +24.992,13.8707,12.1524,1.7183 +25.0,13.8044,12.0865,1.7179 +25.008,13.738199999999999,12.0208,1.7174 +25.016000000000002,13.6721,11.9551,1.717 +25.024,13.6062,11.8896,1.7166 +25.032,13.540399999999998,11.8243,1.7161 +25.04,13.4747,11.759,1.7157 +25.048000000000002,13.409199999999998,11.6939,1.7153 +25.056,13.3437,11.6289,1.7148 +25.064,13.2785,11.5641,1.7144 +25.072,13.2134,11.4994,1.714 +25.080000000000002,13.148299999999999,11.4348,1.7135 +25.088,13.0835,11.3704,1.7131 +25.096,13.0188,11.3061,1.7127 +25.104,12.9543,11.242,1.7123 +25.112000000000002,12.889800000000001,11.178,1.7118 +25.12,12.8255,11.1141,1.7114 +25.128,12.7614,11.0504,1.711 +25.136,12.6974,10.9869,1.7105 +25.144000000000002,12.633600000000001,10.9235,1.7101 +25.152,12.57,10.8603,1.7097 +25.16,12.5064,10.7972,1.7092 +25.168,12.4431,10.7343,1.7088 +25.176000000000002,12.3799,10.6715,1.7084 +25.184,12.3169,10.609,1.7079 +25.192,12.254,10.5465,1.7075 +25.2,12.1914,10.4843,1.7071 +25.208000000000002,12.1288,10.4222,1.7066 +25.216,12.066400000000002,10.3602,1.7062 +25.224,12.0043,10.2985,1.7058 +25.232,11.9422,10.2369,1.7053 +25.240000000000002,11.8804,10.1755,1.7049 +25.248,11.8188,10.1143,1.7045 +25.256,11.757200000000001,10.0532,1.704 +25.264,11.6959,9.9923,1.7036 +25.272000000000002,11.6348,9.9316,1.7032 +25.28,11.5738,9.8711,1.7027 +25.288,11.5131,9.8108,1.7023 +25.296,11.4525,9.7506,1.7019 +25.304000000000002,11.3921,9.6906,1.7015 +25.312,11.331800000000001,9.6308,1.701 +25.32,11.271799999999999,9.5712,1.7006 +25.328,11.212,9.5118,1.7002 +25.336000000000002,11.1523,9.4526,1.6997 +25.344,11.0929,9.3936,1.6993 +25.352,11.0336,9.3347,1.6989 +25.36,10.974499999999999,9.2761,1.6984 +25.368000000000002,10.9156,9.2176,1.698 +25.376,10.857,9.1594,1.6976 +25.384,10.7984,9.1013,1.6971 +25.392,10.7401,9.0434,1.6967 +25.400000000000002,10.682099999999998,8.9858,1.6963 +25.408,10.6241,8.9283,1.6958 +25.416,10.5665,8.8711,1.6954 +25.424,10.509,8.814,1.695 +25.432000000000002,10.4516,8.7571,1.6945 +25.44,10.3946,8.7005,1.6941 +25.448,10.3377,8.644,1.6937 +25.456,10.2811,8.5878,1.6933 +25.464000000000002,10.2245,8.5317,1.6928 +25.472,10.168299999999999,8.4759,1.6924 +25.48,10.1123,8.4203,1.692 +25.488,10.0564,8.3649,1.6915 +25.496000000000002,10.0007,8.3096,1.6911 +25.504,9.9453,8.2546,1.6907 +25.512,9.8901,8.1999,1.6902 +25.52,9.8351,8.1453,1.6898 +25.528000000000002,9.7803,8.0909,1.6894 +25.536,9.7257,8.0368,1.6889 +25.544,9.6713,7.9828,1.6885 +25.552,9.6172,7.9291,1.6881 +25.560000000000002,9.5632,7.8756,1.6876 +25.568,9.509500000000001,7.8223,1.6872 +25.576,9.456100000000001,7.7693,1.6868 +25.584,9.4027,7.7164,1.6863 +25.592000000000002,9.3497,7.6638,1.6859 +25.6,9.296899999999999,7.6114,1.6855 +25.608,9.244299999999999,7.5592,1.6851 +25.616,9.1918,7.5072,1.6846 +25.624,9.1396,7.4554,1.6842 +25.632,9.0877,7.4039,1.6838 +25.64,9.0359,7.3526,1.6833 +25.648,8.9844,7.3015,1.6829 +25.656,8.9331,7.2506,1.6825 +25.664,8.8819,7.1999,1.682 +25.672,8.8311,7.1495,1.6816 +25.68,8.7805,7.0993,1.6812 +25.688,8.73,7.0493,1.6807 +25.696,8.6799,6.9996,1.6803 +25.704,8.6299,6.95,1.6799 +25.712,8.5802,6.9007,1.6795 +25.72,8.5306,6.8516,1.679 +25.728,8.4814,6.8028,1.6786 +25.736,8.4323,6.7541,1.6782 +25.744,8.3834,6.7057,1.6777 +25.752,8.3348,6.6575,1.6773 +25.76,8.2865,6.6096,1.6769 +25.768,8.238199999999999,6.5618,1.6764 +25.776,8.1903,6.5143,1.676 +25.784,8.1426,6.467,1.6756 +25.792,8.0951,6.42,1.6751 +25.8,8.0479,6.3732,1.6747 +25.808,8.0009,6.3266,1.6743 +25.816,7.9540999999999995,6.2802,1.6739 +25.824,7.9074,6.234,1.6734 +25.832,7.8611,6.1881,1.673 +25.84,7.815,6.1424,1.6726 +25.848,7.7691,6.097,1.6721 +25.856,7.7234,6.0517,1.6717 +25.864,7.678000000000001,6.0067,1.6713 +25.872,7.6327,5.9619,1.6708 +25.88,7.5878,5.9174,1.6704 +25.888,7.543,5.873,1.67 +25.896,7.4984,5.8289,1.6695 +25.904,7.4542,5.7851,1.6691 +25.912,7.4101,5.7414,1.6687 +25.92,7.366300000000001,5.698,1.6683 +25.928,7.3225999999999996,5.6548,1.6678 +25.936,7.2791999999999994,5.6118,1.6674 +25.944,7.2360999999999995,5.5691,1.667 +25.952,7.1931,5.5266,1.6665 +25.96,7.1504,5.4843,1.6661 +25.968,7.1079,5.4422,1.6657 +25.976,7.0656,5.4004,1.6652 +25.984,7.0236,5.3588,1.6648 +25.992,6.9818,5.3174,1.6644 +26.0,6.9402,5.2763,1.6639 +26.008,6.8988,5.2353,1.6635 +26.016000000000002,6.8577,5.1946,1.6631 +26.024,6.8168,5.1541,1.6627 +26.032,6.7761,5.1139,1.6622 +26.04,6.7357,5.0739,1.6618 +26.048000000000002,6.695399999999999,5.034,1.6614 +26.056,6.6554,4.9945,1.6609 +26.064,6.6156,4.9551,1.6605 +26.072,6.5761,4.916,1.6601 +26.080000000000002,6.5366,4.877,1.6596 +26.088,6.4976,4.8384,1.6592 +26.096,6.4587,4.7999,1.6588 +26.104,6.42,4.7616,1.6584 +26.112000000000002,6.3815,4.7236,1.6579 +26.12,6.3433,4.6858,1.6575 +26.128,6.3053,4.6482,1.6571 +26.136,6.2674,4.6108,1.6566 +26.144000000000002,6.2299,4.5737,1.6562 +26.152,6.1926000000000005,4.5368,1.6558 +26.16,6.1554,4.5001,1.6553 +26.168,6.118499999999999,4.4636,1.6549 +26.176000000000002,6.081799999999999,4.4273,1.6545 +26.184,6.0453,4.3912,1.6541 +26.192,6.009,4.3554,1.6536 +26.2,5.973,4.3198,1.6532 +26.208000000000002,5.9372,4.2844,1.6528 +26.216,5.9015,4.2492,1.6523 +26.224,5.866099999999999,4.2142,1.6519 +26.232,5.8309999999999995,4.1795,1.6515 +26.240000000000002,5.7959,4.1449,1.651 +26.248,5.7612,4.1106,1.6506 +26.256,5.7267,4.0765,1.6502 +26.264,5.6924,4.0426,1.6498 +26.272000000000002,5.6582,4.0089,1.6493 +26.28,5.6243,3.9754,1.6489 +26.288,5.5906,3.9421,1.6485 +26.296,5.5571,3.9091,1.648 +26.304000000000002,5.5238,3.8762,1.6476 +26.312,5.4908,3.8436,1.6472 +26.32,5.457800000000001,3.8111,1.6467 +26.328,5.4252,3.7789,1.6463 +26.336000000000002,5.3928,3.7469,1.6459 +26.344,5.3606,3.7151,1.6455 +26.352,5.3285,3.6835,1.645 +26.36,5.2966999999999995,3.6521,1.6446 +26.368000000000002,5.2651,3.6209,1.6442 +26.376,5.2336,3.5899,1.6437 +26.384,5.2024,3.5591,1.6433 +26.392,5.1714,3.5285,1.6429 +26.400000000000002,5.1406,3.4981,1.6425 +26.408,5.109999999999999,3.468,1.642 +26.416,5.0796,3.438,1.6416 +26.424,5.0494,3.4082,1.6412 +26.432000000000002,5.0193,3.3786,1.6407 +26.44,4.9895000000000005,3.3492,1.6403 +26.448,4.96,3.3201,1.6399 +26.456,4.9305,3.2911,1.6394 +26.464000000000002,4.9013,3.2623,1.639 +26.472,4.8723,3.2337,1.6386 +26.48,4.8435,3.2053,1.6382 +26.488,4.8148,3.1771,1.6377 +26.496000000000002,4.7863999999999995,3.1491,1.6373 +26.504,4.7582,3.1213,1.6369 +26.512,4.7301,3.0937,1.6364 +26.52,4.7021999999999995,3.0662,1.636 +26.528000000000002,4.6746,3.039,1.6356 +26.536,4.6471,3.0119,1.6352 +26.544,4.6198,2.9851,1.6347 +26.552,4.592700000000001,2.9584,1.6343 +26.560000000000002,4.5658,2.9319,1.6339 +26.568,4.539,2.9056,1.6334 +26.576,4.5125,2.8795,1.633 +26.584,4.4862,2.8536,1.6326 +26.592000000000002,4.460100000000001,2.8279,1.6322 +26.6,4.433999999999999,2.8023,1.6317 +26.608,4.4083000000000006,2.777,1.6313 +26.616,4.3827,2.7518,1.6309 +26.624000000000002,4.3572,2.7268,1.6304 +26.632,4.3319,2.7019,1.63 +26.64,4.3069,2.6773,1.6296 +26.648,4.282,2.6528,1.6292 +26.656,4.2573,2.6286,1.6287 +26.664,4.2327,2.6044,1.6283 +26.672,4.208399999999999,2.5805,1.6279 +26.68,4.1842,2.5568,1.6274 +26.688,4.1602,2.5332,1.627 +26.696,4.1364,2.5098,1.6266 +26.704,4.1128,2.4866,1.6262 +26.712,4.0892,2.4635,1.6257 +26.72,4.0659,2.4406,1.6253 +26.728,4.0428,2.4179,1.6249 +26.736,4.0198,2.3954,1.6244 +26.744,3.9970000000000003,2.373,1.624 +26.752,3.9744,2.3508,1.6236 +26.76,3.9519,2.3288,1.6231 +26.768,3.9296,2.3069,1.6227 +26.776,3.9075,2.2852,1.6223 +26.784,3.8856,2.2637,1.6219 +26.792,3.8637,2.2423,1.6214 +26.8,3.8421,2.2211,1.621 +26.808,3.8207,2.2001,1.6206 +26.816,3.7994,2.1792,1.6202 +26.824,3.7782,2.1585,1.6197 +26.832,3.7572,2.1379,1.6193 +26.84,3.7364,2.1175,1.6189 +26.848,3.7157,2.0973,1.6184 +26.856,3.6952,2.0772,1.618 +26.864,3.6749,2.0573,1.6176 +26.872,3.6547,2.0375,1.6172 +26.88,3.6346,2.0179,1.6167 +26.888,3.6148,1.9985,1.6163 +26.896,3.5951,1.9792,1.6159 +26.904,3.5754,1.96,1.6154 +26.912,3.556,1.941,1.615 +26.92,3.5368,1.9222,1.6146 +26.928,3.5177,1.9035,1.6142 +26.936,3.4987,1.885,1.6137 +26.944,3.4798999999999998,1.8666,1.6133 +26.952,3.4612,1.8483,1.6129 +26.96,3.4426,1.8302,1.6124 +26.968,3.4243,1.8123,1.612 +26.976,3.4061,1.7945,1.6116 +26.984,3.388,1.7768,1.6112 +26.992,3.37,1.7593,1.6107 +27.0,3.3522,1.7419,1.6103 +27.008,3.3346,1.7247,1.6099 +27.016000000000002,3.317,1.7076,1.6094 +27.024,3.2997,1.6907,1.609 +27.032,3.2824999999999998,1.6739,1.6086 +27.04,3.2654,1.6572,1.6082 +27.048000000000002,3.2484,1.6407,1.6077 +27.056,3.2316000000000003,1.6243,1.6073 +27.064,3.215,1.6081,1.6069 +27.072,3.1985,1.592,1.6065 +27.080000000000002,3.1820000000000004,1.576,1.606 +27.088,3.1657,1.5601,1.6056 +27.096,3.1496,1.5444,1.6052 +27.104,3.1334999999999997,1.5288,1.6047 +27.112000000000002,3.1177,1.5134,1.6043 +27.12,3.1020000000000003,1.4981,1.6039 +27.128,3.0864000000000003,1.4829,1.6035 +27.136,3.0708,1.4678,1.603 +27.144000000000002,3.0555000000000003,1.4529,1.6026 +27.152,3.0403000000000002,1.4381,1.6022 +27.16,3.0251,1.4234,1.6017 +27.168,3.0102,1.4089,1.6013 +27.176000000000002,2.9954,1.3945,1.6009 +27.184,2.9807,1.3802,1.6005 +27.192,2.966,1.366,1.6 +27.2,2.9516,1.352,1.5996 +27.208000000000002,2.9372,1.338,1.5992 +27.216,2.923,1.3242,1.5988 +27.224,2.9089,1.3106,1.5983 +27.232,2.8949,1.297,1.5979 +27.240000000000002,2.8810000000000002,1.2835,1.5975 +27.248,2.8672,1.2702,1.597 +27.256,2.8536,1.257,1.5966 +27.264,2.8401,1.2439,1.5962 +27.272000000000002,2.8267,1.2309,1.5958 +27.28,2.8133999999999997,1.2181,1.5953 +27.288,2.8002000000000002,1.2053,1.5949 +27.296,2.7872000000000003,1.1927,1.5945 +27.304000000000002,2.7743,1.1802,1.5941 +27.312,2.7614,1.1678,1.5936 +27.32,2.7487,1.1555,1.5932 +27.328,2.7361,1.1433,1.5928 +27.336000000000002,2.7235,1.1312,1.5923 +27.344,2.7112,1.1193,1.5919 +27.352,2.6989,1.1074,1.5915 +27.36,2.6867,1.0956,1.5911 +27.368000000000002,2.6746,1.084,1.5906 +27.376,2.6627,1.0725,1.5902 +27.384,2.6508000000000003,1.061,1.5898 +27.392,2.6391,1.0497,1.5894 +27.400000000000002,2.6273999999999997,1.0385,1.5889 +27.408,2.6159,1.0274,1.5885 +27.416,2.6044,1.0163,1.5881 +27.424,2.593,1.0054,1.5876 +27.432000000000002,2.5818,0.9946,1.5872 +27.44,2.5707,0.9839,1.5868 +27.448,2.5597000000000003,0.9733,1.5864 +27.456,2.5487,0.9628,1.5859 +27.464000000000002,2.5378,0.9523,1.5855 +27.472,2.5271,0.942,1.5851 +27.48,2.5164999999999997,0.9318,1.5847 +27.488,2.5059,0.9217,1.5842 +27.496000000000002,2.4954,0.9116,1.5838 +27.504,2.4851,0.9017,1.5834 +27.512,2.4748,0.8918,1.583 +27.52,2.4646,0.8821,1.5825 +27.528000000000002,2.4545,0.8724,1.5821 +27.536,2.4446000000000003,0.8629,1.5817 +27.544,2.4346,0.8534,1.5812 +27.552,2.4248,0.844,1.5808 +27.560000000000002,2.4151,0.8347,1.5804 +27.568,2.4055,0.8255,1.58 +27.576,2.3959,0.8164,1.5795 +27.584,2.3864,0.8073,1.5791 +27.592000000000002,2.3771,0.7984,1.5787 +27.6,2.3678,0.7895,1.5783 +27.608,2.3585000000000003,0.7807,1.5778 +27.616,2.3495,0.7721,1.5774 +27.624000000000002,2.3405,0.7635,1.577 +27.632,2.3315,0.7549,1.5766 +27.64,2.3226,0.7465,1.5761 +27.648,2.3138,0.7381,1.5757 +27.656,2.3052,0.7299,1.5753 +27.664,2.2965999999999998,0.7217,1.5749 +27.672,2.2879,0.7135,1.5744 +27.68,2.2795,0.7055,1.574 +27.688,2.2712000000000003,0.6976,1.5736 +27.696,2.2629,0.6897,1.5732 +27.704,2.2546,0.6819,1.5727 +27.712,2.2465,0.6742,1.5723 +27.72,2.2384,0.6665,1.5719 +27.728,2.2302999999999997,0.6589,1.5714 +27.736,2.2225,0.6515,1.571 +27.744,2.2146,0.644,1.5706 +27.752,2.2069,0.6367,1.5702 +27.76,2.1991,0.6294,1.5697 +27.768,2.1915,0.6222,1.5693 +27.776,2.184,0.6151,1.5689 +27.784,2.1765,0.608,1.5685 +27.792,2.1691000000000003,0.6011,1.568 +27.8,2.1617,0.5941,1.5676 +27.808,2.1545,0.5873,1.5672 +27.816,2.1473,0.5805,1.5668 +27.824,2.1401,0.5738,1.5663 +27.832,2.1331,0.5672,1.5659 +27.84,2.1261,0.5606,1.5655 +27.848,2.1192,0.5541,1.5651 +27.856,2.1123,0.5477,1.5646 +27.864,2.1055,0.5413,1.5642 +27.872,2.0988,0.535,1.5638 +27.88,2.0922,0.5288,1.5634 +27.888,2.0854999999999997,0.5226,1.5629 +27.896,2.0789999999999997,0.5165,1.5625 +27.904,2.0725,0.5104,1.5621 +27.912,2.0661,0.5044,1.5617 +27.92,2.0597,0.4985,1.5612 +27.928,2.0535,0.4927,1.5608 +27.936,2.0473,0.4869,1.5604 +27.944,2.0411,0.4811,1.56 +27.952,2.0349,0.4754,1.5595 +27.96,2.0289,0.4698,1.5591 +27.968,2.023,0.4643,1.5587 +27.976,2.0171,0.4588,1.5583 +27.984,2.0111,0.4533,1.5578 +27.992,2.0053,0.4479,1.5574 +28.0,1.9996,0.4426,1.557 +28.008,1.9939,0.4373,1.5566 +28.016000000000002,1.9882,0.4321,1.5561 +28.024,1.9826000000000001,0.4269,1.5557 +28.032,1.9770999999999999,0.4218,1.5553 +28.04,1.9717,0.4168,1.5549 +28.048000000000002,1.9662,0.4118,1.5544 +28.056,1.9608,0.4068,1.554 +28.064,1.9555,0.4019,1.5536 +28.072,1.9503,0.3971,1.5532 +28.080000000000002,1.9449999999999998,0.3923,1.5527 +28.088,1.9399,0.3876,1.5523 +28.096,1.9348,0.3829,1.5519 +28.104,1.9297,0.3782,1.5515 +28.112000000000002,1.9245999999999999,0.3736,1.551 +28.12,1.9197,0.3691,1.5506 +28.128,1.9148,0.3646,1.5502 +28.136,1.9100000000000001,0.3602,1.5498 +28.144000000000002,1.9051,0.3558,1.5493 +28.152,1.9002999999999999,0.3514,1.5489 +28.16,1.8956,0.3471,1.5485 +28.168,1.891,0.3429,1.5481 +28.176000000000002,1.8863,0.3387,1.5476 +28.184,1.8817,0.3345,1.5472 +28.192,1.8772,0.3304,1.5468 +28.2,1.8728,0.3264,1.5464 +28.208000000000002,1.8682,0.3223,1.5459 +28.216,1.8639000000000001,0.3184,1.5455 +28.224,1.8595,0.3144,1.5451 +28.232,1.8552,0.3105,1.5447 +28.240000000000002,1.8509,0.3067,1.5442 +28.248,1.8467,0.3029,1.5438 +28.256,1.8425,0.2991,1.5434 +28.264,1.8384,0.2954,1.543 +28.272000000000002,1.8342,0.2917,1.5425 +28.28,1.8302,0.2881,1.5421 +28.288,1.8262,0.2845,1.5417 +28.296,1.8222999999999998,0.281,1.5413 +28.304000000000002,1.8182,0.2774,1.5408 +28.312,1.8144,0.274,1.5404 +28.32,1.8105,0.2705,1.54 +28.328,1.8067000000000002,0.2671,1.5396 +28.336000000000002,1.8029,0.2638,1.5391 +28.344,1.7992,0.2605,1.5387 +28.352,1.7955,0.2572,1.5383 +28.36,1.7918,0.2539,1.5379 +28.368000000000002,1.7881,0.2507,1.5374 +28.376,1.7845,0.2475,1.537 +28.384,1.781,0.2444,1.5366 +28.392,1.7775,0.2413,1.5362 +28.400000000000002,1.7739,0.2382,1.5357 +28.408,1.7705000000000002,0.2352,1.5353 +28.416,1.7671,0.2322,1.5349 +28.424,1.7638,0.2293,1.5345 +28.432000000000002,1.7604,0.2263,1.5341 +28.44,1.7570000000000001,0.2234,1.5336 +28.448,1.7537999999999998,0.2206,1.5332 +28.456,1.7506,0.2178,1.5328 +28.464000000000002,1.7474,0.215,1.5324 +28.472,1.7441,0.2122,1.5319 +28.48,1.741,0.2095,1.5315 +28.488,1.7379,0.2068,1.5311 +28.496000000000002,1.7348,0.2041,1.5307 +28.504,1.7317,0.2015,1.5302 +28.512,1.7287000000000001,0.1989,1.5298 +28.52,1.7257,0.1963,1.5294 +28.528000000000002,1.7227999999999999,0.1938,1.529 +28.536,1.7197,0.1912,1.5285 +28.544,1.7169,0.1888,1.5281 +28.552,1.714,0.1863,1.5277 +28.560000000000002,1.7112,0.1839,1.5273 +28.568,1.7083,0.1815,1.5268 +28.576,1.7055,0.1791,1.5264 +28.584,1.7028,0.1768,1.526 +28.592000000000002,1.7001,0.1745,1.5256 +28.6,1.6973999999999998,0.1722,1.5252 +28.608,1.6945999999999999,0.1699,1.5247 +28.616,1.692,0.1677,1.5243 +28.624000000000002,1.6894,0.1655,1.5239 +28.632,1.6868,0.1633,1.5235 +28.64,1.6842,0.1612,1.523 +28.648,1.6816,0.159,1.5226 +28.656000000000002,1.6791,0.1569,1.5222 +28.664,1.6766,0.1548,1.5218 +28.672,1.6741000000000001,0.1528,1.5213 +28.68,1.6717,0.1508,1.5209 +28.688,1.6693,0.1488,1.5205 +28.696,1.6669,0.1468,1.5201 +28.704,1.6645,0.1448,1.5197 +28.712,1.6621000000000001,0.1429,1.5192 +28.72,1.6598,0.141,1.5188 +28.728,1.6575,0.1391,1.5184 +28.736,1.6553,0.1373,1.518 +28.744,1.6529,0.1354,1.5175 +28.752,1.6506999999999998,0.1336,1.5171 +28.76,1.6484999999999999,0.1318,1.5167 +28.768,1.6463,0.13,1.5163 +28.776,1.6441000000000001,0.1283,1.5158 +28.784,1.6420000000000001,0.1266,1.5154 +28.792,1.6399,0.1249,1.515 +28.8,1.6378,0.1232,1.5146 +28.808,1.6357,0.1215,1.5142 +28.816,1.6336,0.1199,1.5137 +28.824,1.6315000000000002,0.1182,1.5133 +28.832,1.6295,0.1166,1.5129 +28.84,1.6276,0.1151,1.5125 +28.848,1.6255,0.1135,1.512 +28.856,1.6236000000000002,0.112,1.5116 +28.864,1.6216000000000002,0.1104,1.5112 +28.872,1.6197,0.1089,1.5108 +28.88,1.6178,0.1074,1.5104 +28.888,1.6159000000000001,0.106,1.5099 +28.896,1.614,0.1045,1.5095 +28.904,1.6122,0.1031,1.5091 +28.912,1.6103999999999998,0.1017,1.5087 +28.92,1.6085,0.1003,1.5082 +28.928,1.6067,0.0989,1.5078 +28.936,1.6049,0.0975,1.5074 +28.944,1.6032,0.0962,1.507 +28.952,1.6015,0.0949,1.5066 +28.96,1.5997,0.0936,1.5061 +28.968,1.598,0.0923,1.5057 +28.976,1.5963,0.091,1.5053 +28.984,1.5945999999999998,0.0897,1.5049 +28.992,1.5929,0.0885,1.5044 +29.0,1.5912,0.0872,1.504 +29.008,1.5896000000000001,0.086,1.5036 +29.016000000000002,1.588,0.0848,1.5032 +29.024,1.5865,0.0837,1.5028 +29.032,1.5848,0.0825,1.5023 +29.04,1.5832,0.0813,1.5019 +29.048000000000002,1.5817,0.0802,1.5015 +29.056,1.5802,0.0791,1.5011 +29.064,1.5786,0.078,1.5006 +29.072,1.5771,0.0769,1.5002 +29.080000000000002,1.5756000000000001,0.0758,1.4998 +29.088,1.5741,0.0747,1.4994 +29.096,1.5727000000000002,0.0737,1.499 +29.104,1.5711,0.0726,1.4985 +29.112000000000002,1.5697,0.0716,1.4981 +29.12,1.5683,0.0706,1.4977 +29.128,1.5669,0.0696,1.4973 +29.136,1.5654,0.0686,1.4968 +29.144000000000002,1.564,0.0676,1.4964 +29.152,1.5627,0.0667,1.496 +29.16,1.5613000000000001,0.0657,1.4956 +29.168,1.56,0.0648,1.4952 +29.176000000000002,1.5586,0.0639,1.4947 +29.184,1.5573,0.063,1.4943 +29.192,1.556,0.0621,1.4939 +29.2,1.5547,0.0612,1.4935 +29.208000000000002,1.5534000000000001,0.0603,1.4931 +29.216,1.5519999999999998,0.0594,1.4926 +29.224,1.5508,0.0586,1.4922 +29.232,1.5495,0.0577,1.4918 +29.240000000000002,1.5483,0.0569,1.4914 +29.248,1.547,0.0561,1.4909 +29.256,1.5457999999999998,0.0553,1.4905 +29.264,1.5446,0.0545,1.4901 +29.272000000000002,1.5434,0.0537,1.4897 +29.28,1.5422,0.0529,1.4893 +29.288,1.541,0.0522,1.4888 +29.296,1.5398,0.0514,1.4884 +29.304000000000002,1.5387,0.0507,1.488 +29.312,1.5375,0.0499,1.4876 +29.32,1.5364,0.0492,1.4872 +29.328,1.5352,0.0485,1.4867 +29.336000000000002,1.5341,0.0478,1.4863 +29.344,1.533,0.0471,1.4859 +29.352,1.5319,0.0464,1.4855 +29.36,1.5308000000000002,0.0457,1.4851 +29.368000000000002,1.5296999999999998,0.0451,1.4846 +29.376,1.5286,0.0444,1.4842 +29.384,1.5275,0.0437,1.4838 +29.392,1.5265,0.0431,1.4834 +29.400000000000002,1.5255,0.0425,1.483 +29.408,1.5243,0.0418,1.4825 +29.416,1.5232999999999999,0.0412,1.4821 +29.424,1.5223,0.0406,1.4817 +29.432000000000002,1.5213,0.04,1.4813 +29.44,1.5202,0.0394,1.4808 +29.448,1.5192999999999999,0.0389,1.4804 +29.456,1.5183,0.0383,1.48 +29.464000000000002,1.5173,0.0377,1.4796 +29.472,1.5164,0.0372,1.4792 +29.48,1.5152999999999999,0.0366,1.4787 +29.488,1.5144,0.0361,1.4783 +29.496000000000002,1.5134,0.0355,1.4779 +29.504,1.5125,0.035,1.4775 +29.512,1.5116,0.0345,1.4771 +29.52,1.5106,0.034,1.4766 +29.528000000000002,1.5097,0.0335,1.4762 +29.536,1.5088,0.033,1.4758 +29.544,1.5079,0.0325,1.4754 +29.552,1.5070000000000001,0.032,1.475 +29.560000000000002,1.506,0.0315,1.4745 +29.568,1.5050999999999999,0.031,1.4741 +29.576,1.5043,0.0306,1.4737 +29.584,1.5034,0.0301,1.4733 +29.592000000000002,1.5025000000000002,0.0296,1.4729 +29.6,1.5015999999999998,0.0292,1.4724 +29.608,1.5008,0.0288,1.472 +29.616,1.4999,0.0283,1.4716 +29.624000000000002,1.4991,0.0279,1.4712 +29.632,1.4983000000000002,0.0275,1.4708 +29.64,1.4973999999999998,0.0271,1.4703 +29.648,1.4965,0.0266,1.4699 +29.656000000000002,1.4957,0.0262,1.4695 +29.664,1.4949000000000001,0.0258,1.4691 +29.672,1.4941,0.0254,1.4687 +29.68,1.4932999999999998,0.0251,1.4682 +29.688000000000002,1.4925,0.0247,1.4678 +29.696,1.4917,0.0243,1.4674 +29.704,1.4909000000000001,0.0239,1.467 +29.712,1.4902,0.0236,1.4666 +29.72,1.4893,0.0232,1.4661 +29.728,1.4885,0.0228,1.4657 +29.736,1.4878,0.0225,1.4653 +29.744,1.487,0.0221,1.4649 +29.752,1.4863,0.0218,1.4645 +29.76,1.4855,0.0215,1.464 +29.768,1.4847,0.0211,1.4636 +29.776,1.484,0.0208,1.4632 +29.784,1.4833,0.0205,1.4628 +29.792,1.4826,0.0202,1.4624 +29.8,1.4819,0.0199,1.462 +29.808,1.4811,0.0196,1.4615 +29.816,1.4804000000000002,0.0193,1.4611 +29.824,1.4797,0.019,1.4607 +29.832,1.4789999999999999,0.0187,1.4603 +29.84,1.4783,0.0184,1.4599 +29.848,1.4775,0.0181,1.4594 +29.856,1.4768000000000001,0.0178,1.459 +29.864,1.4761,0.0175,1.4586 +29.872,1.4755,0.0173,1.4582 +29.88,1.4747999999999999,0.017,1.4578 +29.888,1.474,0.0167,1.4573 +29.896,1.4734,0.0165,1.4569 +29.904,1.4727,0.0162,1.4565 +29.912,1.472,0.0159,1.4561 +29.92,1.4714,0.0157,1.4557 +29.928,1.4706000000000001,0.0154,1.4552 +29.936,1.4700000000000002,0.0152,1.4548 +29.944,1.4693999999999998,0.015,1.4544 +29.952,1.4687,0.0147,1.454 +29.96,1.4681,0.0145,1.4536 +29.968,1.4675,0.0143,1.4532 +29.976,1.4667000000000001,0.014,1.4527 +29.984,1.4661,0.0138,1.4523 +29.992,1.4655,0.0136,1.4519 +30.0,1.4649,0.0134,1.4515 +30.008,1.4643000000000002,0.0132,1.4511 +30.016000000000002,1.4635999999999998,0.013,1.4506 +30.024,1.4629999999999999,0.0128,1.4502 +30.032,1.4624,0.0126,1.4498 +30.04,1.4618,0.0124,1.4494 +30.048000000000002,1.4612,0.0122,1.449 +30.056,1.4605,0.012,1.4485 +30.064,1.4599,0.0118,1.4481 +30.072,1.4593,0.0116,1.4477 +30.080000000000002,1.4587,0.0114,1.4473 +30.088,1.4581000000000002,0.0112,1.4469 +30.096,1.4574999999999998,0.011,1.4465 +30.104,1.4568999999999999,0.0109,1.446 +30.112000000000002,1.4563,0.0107,1.4456 +30.12,1.4557,0.0105,1.4452 +30.128,1.4551,0.0103,1.4448 +30.136,1.4546,0.0102,1.4444 +30.144000000000002,1.4539,0.01,1.4439 +30.152,1.4533,0.0098,1.4435 +30.16,1.4528,0.0097,1.4431 +30.168,1.4522000000000002,0.0095,1.4427 +30.176000000000002,1.4517,0.0094,1.4423 +30.184,1.4511,0.0092,1.4419 +30.192,1.4505000000000001,0.0091,1.4414 +30.2,1.4499,0.0089,1.441 +30.208000000000002,1.4494,0.0088,1.4406 +30.216,1.4487999999999999,0.0086,1.4402 +30.224,1.4483,0.0085,1.4398 +30.232,1.4478,0.0084,1.4394 +30.240000000000002,1.4471,0.0082,1.4389 +30.248,1.4465999999999999,0.0081,1.4385 +30.256,1.4461,0.008,1.4381 +30.264,1.4455,0.0078,1.4377 +30.272000000000002,1.445,0.0077,1.4373 +30.28,1.4444000000000001,0.0076,1.4368 +30.288,1.4438,0.0074,1.4364 +30.296,1.4433,0.0073,1.436 +30.304000000000002,1.4428,0.0072,1.4356 +30.312,1.4423000000000001,0.0071,1.4352 +30.32,1.4418,0.007,1.4348 +30.328,1.4411999999999998,0.0069,1.4343 +30.336000000000002,1.4405999999999999,0.0067,1.4339 +30.344,1.4401,0.0066,1.4335 +30.352,1.4396,0.0065,1.4331 +30.36,1.4391,0.0064,1.4327 +30.368000000000002,1.4385999999999999,0.0063,1.4323 +30.376,1.438,0.0062,1.4318 +30.384,1.4375,0.0061,1.4314 +30.392,1.437,0.006,1.431 +30.400000000000002,1.4365,0.0059,1.4306 +30.408,1.436,0.0058,1.4302 +30.416,1.4355,0.0057,1.4298 +30.424,1.4349,0.0056,1.4293 +30.432000000000002,1.4344000000000001,0.0055,1.4289 +30.44,1.4339000000000002,0.0054,1.4285 +30.448,1.4334,0.0053,1.4281 +30.456,1.4329,0.0052,1.4277 +30.464000000000002,1.4325,0.0052,1.4273 +30.472,1.4319000000000002,0.0051,1.4268 +30.48,1.4313999999999998,0.005,1.4264 +30.488,1.4308999999999998,0.0049,1.426 +30.496000000000002,1.4304,0.0048,1.4256 +30.504,1.4299,0.0047,1.4252 +30.512,1.4294,0.0047,1.4247 +30.52,1.4288999999999998,0.0046,1.4243 +30.528000000000002,1.4284,0.0045,1.4239 +30.536,1.4279,0.0044,1.4235 +30.544,1.4274,0.0043,1.4231 +30.552,1.427,0.0043,1.4227 +30.560000000000002,1.4264999999999999,0.0042,1.4223 +30.568,1.4259,0.0041,1.4218 +30.576,1.4255,0.0041,1.4214 +30.584,1.425,0.004,1.421 +30.592000000000002,1.4245,0.0039,1.4206 +30.6,1.4241,0.0039,1.4202 +30.608,1.4236,0.0038,1.4198 +30.616,1.423,0.0037,1.4193 +30.624000000000002,1.4226,0.0037,1.4189 +30.632,1.4221000000000001,0.0036,1.4185 +30.64,1.4216,0.0035,1.4181 +30.648,1.4212,0.0035,1.4177 +30.656000000000002,1.4207,0.0034,1.4173 +30.664,1.4202000000000001,0.0034,1.4168 +30.672,1.4197000000000002,0.0033,1.4164 +30.68,1.4192,0.0032,1.416 +30.688000000000002,1.4188,0.0032,1.4156 +30.696,1.4183000000000001,0.0031,1.4152 +30.704,1.4179000000000002,0.0031,1.4148 +30.712,1.4172999999999998,0.003,1.4143 +30.72,1.4168999999999998,0.003,1.4139 +30.728,1.4163999999999999,0.0029,1.4135 +30.736,1.416,0.0029,1.4131 +30.744,1.4155,0.0028,1.4127 +30.752,1.4151,0.0028,1.4123 +30.76,1.4144999999999999,0.0027,1.4118 +30.768,1.4141,0.0027,1.4114 +30.776,1.4136,0.0026,1.411 +30.784,1.4132,0.0026,1.4106 +30.792,1.4126999999999998,0.0025,1.4102 +30.8,1.4122999999999999,0.0025,1.4098 +30.808,1.4119,0.0025,1.4094 +30.816,1.4113,0.0024,1.4089 +30.824,1.4109,0.0024,1.4085 +30.832,1.4103999999999999,0.0023,1.4081 +30.84,1.41,0.0023,1.4077 +30.848,1.4095,0.0022,1.4073 +30.856,1.4091,0.0022,1.4069 +30.864,1.4086,0.0022,1.4064 +30.872,1.4081,0.0021,1.406 +30.88,1.4077,0.0021,1.4056 +30.888,1.4073,0.0021,1.4052 +30.896,1.4068,0.002,1.4048 +30.904,1.4064,0.002,1.4044 +30.912,1.4059,0.0019,1.404 +30.92,1.4054,0.0019,1.4035 +30.928,1.405,0.0019,1.4031 +30.936,1.4045,0.0018,1.4027 +30.944,1.4041000000000001,0.0018,1.4023 +30.952,1.4037,0.0018,1.4019 +30.96,1.4032,0.0017,1.4015 +30.968,1.4028,0.0017,1.4011 +30.976,1.4023,0.0017,1.4006 +30.984,1.4019,0.0017,1.4002 +30.992,1.4014,0.0016,1.3998 +31.0,1.401,0.0016,1.3994 +31.008,1.4006,0.0016,1.399 +31.016000000000002,1.4001000000000001,0.0015,1.3986 +31.024,1.3996,0.0015,1.3981 +31.032,1.3992,0.0015,1.3977 +31.04,1.3988,0.0015,1.3973 +31.048000000000002,1.3983,0.0014,1.3969 +31.056,1.3979000000000001,0.0014,1.3965 +31.064,1.3975,0.0014,1.3961 +31.072,1.3971,0.0014,1.3957 +31.080000000000002,1.3965,0.0013,1.3952 +31.088,1.3961000000000001,0.0013,1.3948 +31.096,1.3957000000000002,0.0013,1.3944 +31.104,1.3953,0.0013,1.394 +31.112000000000002,1.3948,0.0012,1.3936 +31.12,1.3944,0.0012,1.3932 +31.128,1.3940000000000001,0.0012,1.3928 +31.136,1.3935000000000002,0.0012,1.3923 +31.144000000000002,1.3931,0.0012,1.3919 +31.152,1.3926,0.0011,1.3915 +31.16,1.3922,0.0011,1.3911 +31.168,1.3918000000000001,0.0011,1.3907 +31.176000000000002,1.3914000000000002,0.0011,1.3903 +31.184,1.391,0.0011,1.3899 +31.192,1.3903999999999999,0.001,1.3894 +31.2,1.39,0.001,1.389 +31.208000000000002,1.3896,0.001,1.3886 +31.216,1.3892,0.001,1.3882 +31.224,1.3887999999999998,0.001,1.3878 +31.232,1.3882999999999999,0.0009,1.3874 +31.240000000000002,1.3879,0.0009,1.387 +31.248,1.3875,0.0009,1.3866 +31.256,1.387,0.0009,1.3861 +31.264,1.3865999999999998,0.0009,1.3857 +31.272000000000002,1.3861999999999999,0.0009,1.3853 +31.28,1.3857,0.0008,1.3849 +31.288,1.3853,0.0008,1.3845 +31.296,1.3849,0.0008,1.3841 +31.304000000000002,1.3844999999999998,0.0008,1.3837 +31.312,1.384,0.0008,1.3832 +31.32,1.3836,0.0008,1.3828 +31.328,1.3832,0.0008,1.3824 +31.336000000000002,1.3826999999999998,0.0007,1.382 +31.344,1.3822999999999999,0.0007,1.3816 +31.352,1.3819,0.0007,1.3812 +31.36,1.3815,0.0007,1.3808 +31.368000000000002,1.381,0.0007,1.3803 +31.376,1.3805999999999998,0.0007,1.3799 +31.384,1.3801999999999999,0.0007,1.3795 +31.392,1.3797,0.0006,1.3791 +31.400000000000002,1.3793,0.0006,1.3787 +31.408,1.3789,0.0006,1.3783 +31.416,1.3784999999999998,0.0006,1.3779 +31.424,1.3780999999999999,0.0006,1.3775 +31.432000000000002,1.3776,0.0006,1.377 +31.44,1.3772,0.0006,1.3766 +31.448,1.3768,0.0006,1.3762 +31.456,1.3763999999999998,0.0006,1.3758 +31.464000000000002,1.3759,0.0005,1.3754 +31.472,1.3755,0.0005,1.375 +31.48,1.3751,0.0005,1.3746 +31.488,1.3747,0.0005,1.3742 +31.496000000000002,1.3741999999999999,0.0005,1.3737 +31.504,1.3738,0.0005,1.3733 +31.512,1.3734,0.0005,1.3729 +31.52,1.373,0.0005,1.3725 +31.528000000000002,1.3726,0.0005,1.3721 +31.536,1.3721999999999999,0.0005,1.3717 +31.544,1.3718,0.0005,1.3713 +31.552,1.3713,0.0004,1.3709 +31.560000000000002,1.3708,0.0004,1.3704 +31.568,1.3704,0.0004,1.37 +31.576,1.3699999999999999,0.0004,1.3696 +31.584,1.3696,0.0004,1.3692 +31.592000000000002,1.3692,0.0004,1.3688 +31.6,1.3688,0.0004,1.3684 +31.608,1.3684,0.0004,1.368 +31.616,1.3679999999999999,0.0004,1.3676 +31.624000000000002,1.3675,0.0004,1.3671 +31.632,1.3671,0.0004,1.3667 +31.64,1.3667,0.0004,1.3663 +31.648,1.3662999999999998,0.0004,1.3659 +31.656000000000002,1.3658,0.0003,1.3655 +31.664,1.3654,0.0003,1.3651 +31.672,1.365,0.0003,1.3647 +31.68,1.3646,0.0003,1.3643 +31.688000000000002,1.3640999999999999,0.0003,1.3638 +31.696,1.3637,0.0003,1.3634 +31.704,1.3633,0.0003,1.363 +31.712,1.3629,0.0003,1.3626 +31.720000000000002,1.3625,0.0003,1.3622 +31.728,1.3620999999999999,0.0003,1.3618 +31.736,1.3617,0.0003,1.3614 +31.744,1.3613,0.0003,1.361 +31.752,1.3609,0.0003,1.3606 +31.76,1.3604,0.0003,1.3601 +31.768,1.3599999999999999,0.0003,1.3597 +31.776,1.3596,0.0003,1.3593 +31.784,1.3592,0.0003,1.3589 +31.792,1.3587,0.0002,1.3585 +31.8,1.3583,0.0002,1.3581 +31.808,1.3578999999999999,0.0002,1.3577 +31.816,1.3575,0.0002,1.3573 +31.824,1.357,0.0002,1.3568 +31.832,1.3566,0.0002,1.3564 +31.84,1.3562,0.0002,1.356 +31.848,1.3558,0.0002,1.3556 +31.856,1.3554,0.0002,1.3552 +31.864,1.355,0.0002,1.3548 +31.872,1.3546,0.0002,1.3544 +31.88,1.3542,0.0002,1.354 +31.888,1.3538,0.0002,1.3536 +31.896,1.3533,0.0002,1.3531 +31.904,1.3529,0.0002,1.3527 +31.912,1.3525,0.0002,1.3523 +31.92,1.3521,0.0002,1.3519 +31.928,1.3517,0.0002,1.3515 +31.936,1.3513,0.0002,1.3511 +31.944,1.3509,0.0002,1.3507 +31.952,1.3505,0.0002,1.3503 +31.96,1.3501,0.0002,1.3499 +31.968,1.3497,0.0002,1.3495 +31.976,1.3492,0.0002,1.349 +31.984,1.3488,0.0002,1.3486 +31.992,1.3484,0.0002,1.3482 +32.0,1.3479,0.0001,1.3478 +32.008,1.3475,0.0001,1.3474 +32.016,1.3471,0.0001,1.347 +32.024,1.3467,0.0001,1.3466 +32.032000000000004,1.3463,0.0001,1.3462 +32.04,1.3459,0.0001,1.3458 +32.048,1.3454,0.0001,1.3453 +32.056,1.345,0.0001,1.3449 +32.064,1.3446,0.0001,1.3445 +32.072,1.3442,0.0001,1.3441 +32.08,1.3437999999999999,0.0001,1.3437 +32.088,1.3434,0.0001,1.3433 +32.096000000000004,1.343,0.0001,1.3429 +32.104,1.3426,0.0001,1.3425 +32.112,1.3422,0.0001,1.3421 +32.12,1.3417999999999999,0.0001,1.3417 +32.128,1.3413,0.0001,1.3412 +32.136,1.3409,0.0001,1.3408 +32.144,1.3405,0.0001,1.3404 +32.152,1.3401,0.0001,1.34 +32.160000000000004,1.3397,0.0001,1.3396 +32.168,1.3393,0.0001,1.3392 +32.176,1.3389,0.0001,1.3388 +32.184,1.3385,0.0001,1.3384 +32.192,1.3381,0.0001,1.338 +32.2,1.3377,0.0001,1.3376 +32.208,1.3372,0.0001,1.3371 +32.216,1.3368,0.0001,1.3367 +32.224000000000004,1.3364,0.0001,1.3363 +32.232,1.336,0.0001,1.3359 +32.24,1.3356,0.0001,1.3355 +32.248,1.3352,0.0001,1.3351 +32.256,1.3348,0.0001,1.3347 +32.264,1.3344,0.0001,1.3343 +32.272,1.334,0.0001,1.3339 +32.28,1.3336,0.0001,1.3335 +32.288000000000004,1.3332,0.0001,1.3331 +32.296,1.3327,0.0001,1.3326 +32.304,1.3323,0.0001,1.3322 +32.312,1.3319,0.0001,1.3318 +32.32,1.3315,0.0001,1.3314 +32.328,1.3311,0.0001,1.331 +32.336,1.3307,0.0001,1.3306 +32.344,1.3303,0.0001,1.3302 +32.352000000000004,1.3299,0.0001,1.3298 +32.36,1.3295,0.0001,1.3294 +32.368,1.3291,0.0001,1.329 +32.376,1.3287,0.0001,1.3286 +32.384,1.3282,0.0001,1.3281 +32.392,1.3278,0.0001,1.3277 +32.4,1.3274,0.0001,1.3273 +32.408,1.327,0.0001,1.3269 +32.416000000000004,1.3266,0.0001,1.3265 +32.424,1.3262,0.0001,1.3261 +32.432,1.3257,0.0,1.3257 +32.44,1.3253,0.0,1.3253 +32.448,1.3249,0.0,1.3249 +32.456,1.3245,0.0,1.3245 +32.464,1.3241,0.0,1.3241 +32.472,1.3236,0.0,1.3236 +32.480000000000004,1.3232,0.0,1.3232 +32.488,1.3228,0.0,1.3228 +32.496,1.3224,0.0,1.3224 +32.504,1.322,0.0,1.322 +32.512,1.3216,0.0,1.3216 +32.52,1.3212,0.0,1.3212 +32.528,1.3208,0.0,1.3208 +32.536,1.3204,0.0,1.3204 +32.544000000000004,1.32,0.0,1.32 +32.552,1.3196,0.0,1.3196 +32.56,1.3192,0.0,1.3192 +32.568,1.3187,0.0,1.3187 +32.576,1.3183,0.0,1.3183 +32.584,1.3179,0.0,1.3179 +32.592,1.3175,0.0,1.3175 +32.6,1.3171,0.0,1.3171 +32.608000000000004,1.3167,0.0,1.3167 +32.616,1.3163,0.0,1.3163 +32.624,1.3159,0.0,1.3159 +32.632,1.3155,0.0,1.3155 +32.64,1.3151,0.0,1.3151 +32.648,1.3147,0.0,1.3147 +32.656,1.3143,0.0,1.3143 +32.664,1.3139,0.0,1.3139 +32.672000000000004,1.3134,0.0,1.3134 +32.68,1.313,0.0,1.313 +32.688,1.3126,0.0,1.3126 +32.696,1.3122,0.0,1.3122 +32.704,1.3118,0.0,1.3118 +32.712,1.3114,0.0,1.3114 +32.72,1.311,0.0,1.311 +32.728,1.3106,0.0,1.3106 +32.736000000000004,1.3102,0.0,1.3102 +32.744,1.3098,0.0,1.3098 +32.752,1.3094,0.0,1.3094 +32.76,1.309,0.0,1.309 +32.768,1.3086,0.0,1.3086 +32.776,1.3082,0.0,1.3082 +32.784,1.3077,0.0,1.3077 +32.792,1.3073,0.0,1.3073 +32.8,1.3069,0.0,1.3069 +32.808,1.3065,0.0,1.3065 +32.816,1.3061,0.0,1.3061 +32.824,1.3057,0.0,1.3057 +32.832,1.3053,0.0,1.3053 +32.84,1.3049,0.0,1.3049 +32.848,1.3045,0.0,1.3045 +32.856,1.3041,0.0,1.3041 +32.864,1.3037,0.0,1.3037 +32.872,1.3033,0.0,1.3033 +32.88,1.3029,0.0,1.3029 +32.888,1.3025,0.0,1.3025 +32.896,1.3021,0.0,1.3021 +32.904,1.3016,0.0,1.3016 +32.912,1.3012,0.0,1.3012 +32.92,1.3008,0.0,1.3008 +32.928,1.3004,0.0,1.3004 +32.936,1.3,0.0,1.3 +32.944,1.2996,0.0,1.2996 +32.952,1.2992,0.0,1.2992 +32.96,1.2988,0.0,1.2988 +32.968,1.2984,0.0,1.2984 +32.976,1.298,0.0,1.298 +32.984,1.2976,0.0,1.2976 +32.992,1.2972,0.0,1.2972 +33.0,1.2968,0.0,1.2968 +33.008,1.2964,0.0,1.2964 +33.016,1.296,0.0,1.296 +33.024,1.2956,0.0,1.2956 +33.032000000000004,1.2951,0.0,1.2951 +33.04,1.2947,0.0,1.2947 +33.048,1.2943,0.0,1.2943 +33.056,1.2939,0.0,1.2939 +33.064,1.2935,0.0,1.2935 +33.072,1.2931,0.0,1.2931 +33.08,1.2927,0.0,1.2927 +33.088,1.2923,0.0,1.2923 +33.096000000000004,1.2919,0.0,1.2919 +33.104,1.2915,0.0,1.2915 +33.112,1.2911,0.0,1.2911 +33.12,1.2907,0.0,1.2907 +33.128,1.2903,0.0,1.2903 +33.136,1.2899,0.0,1.2899 +33.144,1.2895,0.0,1.2895 +33.152,1.2891,0.0,1.2891 +33.160000000000004,1.2887,0.0,1.2887 +33.168,1.2882,0.0,1.2882 +33.176,1.2878,0.0,1.2878 +33.184,1.2874,0.0,1.2874 +33.192,1.287,0.0,1.287 +33.2,1.2866,0.0,1.2866 +33.208,1.2862,0.0,1.2862 +33.216,1.2858,0.0,1.2858 +33.224000000000004,1.2854,0.0,1.2854 +33.232,1.285,0.0,1.285 +33.24,1.2846,0.0,1.2846 +33.248,1.2842,0.0,1.2842 +33.256,1.2838,0.0,1.2838 +33.264,1.2834,0.0,1.2834 +33.272,1.283,0.0,1.283 +33.28,1.2826,0.0,1.2826 +33.288000000000004,1.2822,0.0,1.2822 +33.296,1.2818,0.0,1.2818 +33.304,1.2814,0.0,1.2814 +33.312,1.281,0.0,1.281 +33.32,1.2806,0.0,1.2806 +33.328,1.2802,0.0,1.2802 +33.336,1.2797,0.0,1.2797 +33.344,1.2793,0.0,1.2793 +33.352000000000004,1.2789,0.0,1.2789 +33.36,1.2785,0.0,1.2785 +33.368,1.2781,0.0,1.2781 +33.376,1.2777,0.0,1.2777 +33.384,1.2773,0.0,1.2773 +33.392,1.2769,0.0,1.2769 +33.4,1.2765,0.0,1.2765 +33.408,1.2761,0.0,1.2761 +33.416000000000004,1.2757,0.0,1.2757 +33.424,1.2753,0.0,1.2753 +33.432,1.2749,0.0,1.2749 +33.44,1.2745,0.0,1.2745 +33.448,1.2741,0.0,1.2741 +33.456,1.2737,0.0,1.2737 +33.464,1.2733,0.0,1.2733 +33.472,1.2729,0.0,1.2729 +33.480000000000004,1.2725,0.0,1.2725 +33.488,1.2721,0.0,1.2721 +33.496,1.2717,0.0,1.2717 +33.504,1.2713,0.0,1.2713 +33.512,1.2709,0.0,1.2709 +33.52,1.2705,0.0,1.2705 +33.528,1.2701,0.0,1.2701 +33.536,1.2696,0.0,1.2696 +33.544000000000004,1.2692,0.0,1.2692 +33.552,1.2688,0.0,1.2688 +33.56,1.2684,0.0,1.2684 +33.568,1.268,0.0,1.268 +33.576,1.2676,0.0,1.2676 +33.584,1.2672,0.0,1.2672 +33.592,1.2668,0.0,1.2668 +33.6,1.2664,0.0,1.2664 +33.608000000000004,1.266,0.0,1.266 +33.616,1.2656,0.0,1.2656 +33.624,1.2652,0.0,1.2652 +33.632,1.2648,0.0,1.2648 +33.64,1.2644,0.0,1.2644 +33.648,1.264,0.0,1.264 +33.656,1.2636,0.0,1.2636 +33.664,1.2632,0.0,1.2632 +33.672000000000004,1.2628,0.0,1.2628 +33.68,1.2624,0.0,1.2624 +33.688,1.262,0.0,1.262 +33.696,1.2616,0.0,1.2616 +33.704,1.2612,0.0,1.2612 +33.712,1.2608,0.0,1.2608 +33.72,1.2604,0.0,1.2604 +33.728,1.26,0.0,1.26 +33.736000000000004,1.2596,0.0,1.2596 +33.744,1.2592,0.0,1.2592 +33.752,1.2588,0.0,1.2588 +33.76,1.2584,0.0,1.2584 +33.768,1.258,0.0,1.258 +33.776,1.2576,0.0,1.2576 +33.784,1.2572,0.0,1.2572 +33.792,1.2568,0.0,1.2568 +33.8,1.2564,0.0,1.2564 +33.808,1.256,0.0,1.256 +33.816,1.2555,0.0,1.2555 +33.824,1.2551,0.0,1.2551 +33.832,1.2547,0.0,1.2547 +33.84,1.2543,0.0,1.2543 +33.848,1.2539,0.0,1.2539 +33.856,1.2535,0.0,1.2535 +33.864,1.2531,0.0,1.2531 +33.872,1.2527,0.0,1.2527 +33.88,1.2523,0.0,1.2523 +33.888,1.2519,0.0,1.2519 +33.896,1.2515,0.0,1.2515 +33.904,1.2511,0.0,1.2511 +33.912,1.2507,0.0,1.2507 +33.92,1.2503,0.0,1.2503 +33.928,1.2499,0.0,1.2499 +33.936,1.2495,0.0,1.2495 +33.944,1.2491,0.0,1.2491 +33.952,1.2487,0.0,1.2487 +33.96,1.2483,0.0,1.2483 +33.968,1.2479,0.0,1.2479 +33.976,1.2475,0.0,1.2475 +33.984,1.2471,0.0,1.2471 +33.992,1.2467,0.0,1.2467 +34.0,1.2463,0.0,1.2463 +34.008,1.2459,0.0,1.2459 +34.016,1.2455,0.0,1.2455 +34.024,1.2451,0.0,1.2451 +34.032000000000004,1.2447,0.0,1.2447 +34.04,1.2443,0.0,1.2443 +34.048,1.2439,0.0,1.2439 +34.056,1.2435,0.0,1.2435 +34.064,1.2431,0.0,1.2431 +34.072,1.2427,0.0,1.2427 +34.08,1.2423,0.0,1.2423 +34.088,1.2419,0.0,1.2419 +34.096000000000004,1.2415,0.0,1.2415 +34.104,1.2411,0.0,1.2411 +34.112,1.2407,0.0,1.2407 +34.12,1.2403,0.0,1.2403 +34.128,1.2399,0.0,1.2399 +34.136,1.2395,0.0,1.2395 +34.144,1.2391,0.0,1.2391 +34.152,1.2387,0.0,1.2387 +34.160000000000004,1.2383,0.0,1.2383 +34.168,1.2379,0.0,1.2379 +34.176,1.2375,0.0,1.2375 +34.184,1.2371,0.0,1.2371 +34.192,1.2367,0.0,1.2367 +34.2,1.2363,0.0,1.2363 +34.208,1.2359,0.0,1.2359 +34.216,1.2355,0.0,1.2355 +34.224000000000004,1.2351,0.0,1.2351 +34.232,1.2347,0.0,1.2347 +34.24,1.2343,0.0,1.2343 +34.248,1.2339,0.0,1.2339 +34.256,1.2335,0.0,1.2335 +34.264,1.2331,0.0,1.2331 +34.272,1.2327,0.0,1.2327 +34.28,1.2323,0.0,1.2323 +34.288000000000004,1.2319,0.0,1.2319 +34.296,1.2315,0.0,1.2315 +34.304,1.2311,0.0,1.2311 +34.312,1.2307,0.0,1.2307 +34.32,1.2303,0.0,1.2303 +34.328,1.2299,0.0,1.2299 +34.336,1.2295,0.0,1.2295 +34.344,1.2291,0.0,1.2291 +34.352000000000004,1.2287,0.0,1.2287 +34.36,1.2283,0.0,1.2283 +34.368,1.2279,0.0,1.2279 +34.376,1.2275,0.0,1.2275 +34.384,1.2271,0.0,1.2271 +34.392,1.2267,0.0,1.2267 +34.4,1.2263,0.0,1.2263 +34.408,1.2259,0.0,1.2259 +34.416000000000004,1.2255,0.0,1.2255 +34.424,1.2251,0.0,1.2251 +34.432,1.2247,0.0,1.2247 +34.44,1.2243,0.0,1.2243 +34.448,1.2239,0.0,1.2239 +34.456,1.2235,0.0,1.2235 +34.464,1.2231,0.0,1.2231 +34.472,1.2227,0.0,1.2227 +34.480000000000004,1.2223,0.0,1.2223 +34.488,1.2219,0.0,1.2219 +34.496,1.2215,0.0,1.2215 +34.504,1.2211,0.0,1.2211 +34.512,1.2207,0.0,1.2207 +34.52,1.2203,0.0,1.2203 +34.528,1.2199,0.0,1.2199 +34.536,1.2195,0.0,1.2195 +34.544000000000004,1.2191,0.0,1.2191 +34.552,1.2187,0.0,1.2187 +34.56,1.2183,0.0,1.2183 +34.568,1.2179,0.0,1.2179 +34.576,1.2175,0.0,1.2175 +34.584,1.2171,0.0,1.2171 +34.592,1.2167,0.0,1.2167 +34.6,1.2163,0.0,1.2163 +34.608000000000004,1.2159,0.0,1.2159 +34.616,1.2155,0.0,1.2155 +34.624,1.2151,0.0,1.2151 +34.632,1.2147,0.0,1.2147 +34.64,1.2143,0.0,1.2143 +34.648,1.2139,0.0,1.2139 +34.656,1.2135,0.0,1.2135 +34.664,1.2131,0.0,1.2131 +34.672000000000004,1.2127,0.0,1.2127 +34.68,1.2124,0.0,1.2124 +34.688,1.212,0.0,1.212 +34.696,1.2116,0.0,1.2116 +34.704,1.2112,0.0,1.2112 +34.712,1.2108,0.0,1.2108 +34.72,1.2104,0.0,1.2104 +34.728,1.21,0.0,1.21 +34.736000000000004,1.2096,0.0,1.2096 +34.744,1.2092,0.0,1.2092 +34.752,1.2088,0.0,1.2088 +34.76,1.2084,0.0,1.2084 +34.768,1.208,0.0,1.208 +34.776,1.2076,0.0,1.2076 +34.784,1.2072,0.0,1.2072 +34.792,1.2068,0.0,1.2068 +34.800000000000004,1.2064,0.0,1.2064 +34.808,1.206,0.0,1.206 +34.816,1.2056,0.0,1.2056 +34.824,1.2052,0.0,1.2052 +34.832,1.2048,0.0,1.2048 +34.84,1.2044,0.0,1.2044 +34.848,1.204,0.0,1.204 +34.856,1.2036,0.0,1.2036 +34.864,1.2032,0.0,1.2032 +34.872,1.2028,0.0,1.2028 +34.88,1.2024,0.0,1.2024 +34.888,1.202,0.0,1.202 +34.896,1.2016,0.0,1.2016 +34.904,1.2012,0.0,1.2012 +34.912,1.2008,0.0,1.2008 +34.92,1.2004,0.0,1.2004 +34.928,1.2,0.0,1.2 +34.936,1.1996,0.0,1.1996 +34.944,1.1992,0.0,1.1992 +34.952,1.1989,0.0,1.1989 +34.96,1.1985,0.0,1.1985 +34.968,1.1981,0.0,1.1981 +34.976,1.1977,0.0,1.1977 +34.984,1.1973,0.0,1.1973 +34.992,1.1969,0.0,1.1969 +35.0,1.1965,0.0,1.1965 +35.008,1.1961,0.0,1.1961 +35.016,1.1957,0.0,1.1957 +35.024,1.1953,0.0,1.1953 +35.032000000000004,1.1949,0.0,1.1949 +35.04,1.1945,0.0,1.1945 +35.048,1.1941,0.0,1.1941 +35.056,1.1937,0.0,1.1937 +35.064,1.1933,0.0,1.1933 +35.072,1.1929,0.0,1.1929 +35.08,1.1925,0.0,1.1925 +35.088,1.1921,0.0,1.1921 +35.096000000000004,1.1917,0.0,1.1917 +35.104,1.1913,0.0,1.1913 +35.112,1.1909,0.0,1.1909 +35.12,1.1905,0.0,1.1905 +35.128,1.1901,0.0,1.1901 +35.136,1.1897,0.0,1.1897 +35.144,1.1893,0.0,1.1893 +35.152,1.189,0.0,1.189 +35.160000000000004,1.1886,0.0,1.1886 +35.168,1.1882,0.0,1.1882 +35.176,1.1878,0.0,1.1878 +35.184,1.1874,0.0,1.1874 +35.192,1.187,0.0,1.187 +35.2,1.1866,0.0,1.1866 +35.208,1.1862,0.0,1.1862 +35.216,1.1858,0.0,1.1858 +35.224000000000004,1.1854,0.0,1.1854 +35.232,1.185,0.0,1.185 +35.24,1.1846,0.0,1.1846 +35.248,1.1842,0.0,1.1842 +35.256,1.1838,0.0,1.1838 +35.264,1.1834,0.0,1.1834 +35.272,1.183,0.0,1.183 +35.28,1.1826,0.0,1.1826 +35.288000000000004,1.1822,0.0,1.1822 +35.296,1.1818,0.0,1.1818 +35.304,1.1815,0.0,1.1815 +35.312,1.1811,0.0,1.1811 +35.32,1.1807,0.0,1.1807 +35.328,1.1803,0.0,1.1803 +35.336,1.1799,0.0,1.1799 +35.344,1.1795,0.0,1.1795 +35.352000000000004,1.1791,0.0,1.1791 +35.36,1.1787,0.0,1.1787 +35.368,1.1783,0.0,1.1783 +35.376,1.1779,0.0,1.1779 +35.384,1.1775,0.0,1.1775 +35.392,1.1771,0.0,1.1771 +35.4,1.1767,0.0,1.1767 +35.408,1.1763,0.0,1.1763 +35.416000000000004,1.1759,0.0,1.1759 +35.424,1.1755,0.0,1.1755 +35.432,1.1752,0.0001,1.1751 +35.44,1.1749,0.0001,1.1748 +35.448,1.1745,0.0001,1.1744 +35.456,1.1741,0.0001,1.174 +35.464,1.1737,0.0001,1.1736 +35.472,1.1733,0.0001,1.1732 +35.480000000000004,1.1729,0.0001,1.1728 +35.488,1.1725,0.0001,1.1724 +35.496,1.1721,0.0001,1.172 +35.504,1.1717,0.0001,1.1716 +35.512,1.1713,0.0001,1.1712 +35.52,1.1709,0.0001,1.1708 +35.528,1.1705,0.0001,1.1704 +35.536,1.1701,0.0001,1.17 +35.544000000000004,1.1697,0.0001,1.1696 +35.552,1.1693,0.0001,1.1692 +35.56,1.1689,0.0001,1.1688 +35.568,1.1686,0.0001,1.1685 +35.576,1.1682,0.0001,1.1681 +35.584,1.1678,0.0001,1.1677 +35.592,1.1674,0.0001,1.1673 +35.6,1.167,0.0001,1.1669 +35.608000000000004,1.1666,0.0001,1.1665 +35.616,1.1662,0.0001,1.1661 +35.624,1.1658,0.0001,1.1657 +35.632,1.1654,0.0001,1.1653 +35.64,1.165,0.0001,1.1649 +35.648,1.1646,0.0001,1.1645 +35.656,1.1642,0.0001,1.1641 +35.664,1.1638,0.0001,1.1637 +35.672000000000004,1.1634,0.0001,1.1633 +35.68,1.1631,0.0001,1.163 +35.688,1.1627,0.0001,1.1626 +35.696,1.1622999999999999,0.0001,1.1622 +35.704,1.1619,0.0001,1.1618 +35.712,1.1615,0.0001,1.1614 +35.72,1.1611,0.0001,1.161 +35.728,1.1607,0.0001,1.1606 +35.736000000000004,1.1602999999999999,0.0001,1.1602 +35.744,1.1599,0.0001,1.1598 +35.752,1.1595,0.0001,1.1594 +35.76,1.1591,0.0001,1.159 +35.768,1.1587,0.0001,1.1586 +35.776,1.1582999999999999,0.0001,1.1582 +35.784,1.158,0.0001,1.1579 +35.792,1.1576,0.0001,1.1575 +35.800000000000004,1.1572,0.0001,1.1571 +35.808,1.1568,0.0001,1.1567 +35.816,1.1564,0.0001,1.1563 +35.824,1.156,0.0001,1.1559 +35.832,1.1556,0.0001,1.1555 +35.84,1.1552,0.0001,1.1551 +35.848,1.1548,0.0001,1.1547 +35.856,1.1544,0.0001,1.1543 +35.864,1.154,0.0001,1.1539 +35.872,1.1536,0.0001,1.1535 +35.88,1.1533,0.0001,1.1532 +35.888,1.1529,0.0001,1.1528 +35.896,1.1525,0.0001,1.1524 +35.904,1.1521,0.0001,1.152 +35.912,1.1517,0.0001,1.1516 +35.92,1.1513,0.0001,1.1512 +35.928,1.1509,0.0001,1.1508 +35.936,1.1505,0.0001,1.1504 +35.944,1.1501,0.0001,1.15 +35.952,1.1497,0.0001,1.1496 +35.96,1.1493,0.0001,1.1492 +35.968,1.149,0.0001,1.1489 +35.976,1.1486,0.0001,1.1485 +35.984,1.1481999999999999,0.0001,1.1481 +35.992,1.1478,0.0001,1.1477 +36.0,1.1474,0.0001,1.1473 +36.008,1.147,0.0001,1.1469 +36.016,1.1466,0.0001,1.1465 +36.024,1.1461999999999999,0.0001,1.1461 +36.032000000000004,1.1458,0.0001,1.1457 +36.04,1.1454,0.0001,1.1453 +36.048,1.145,0.0001,1.1449 +36.056,1.1447,0.0001,1.1446 +36.064,1.1443,0.0001,1.1442 +36.072,1.1439,0.0001,1.1438 +36.08,1.1435,0.0001,1.1434 +36.088,1.1431,0.0001,1.143 +36.096000000000004,1.1427,0.0001,1.1426 +36.104,1.1423,0.0001,1.1422 +36.112,1.1419,0.0001,1.1418 +36.12,1.1415,0.0001,1.1414 +36.128,1.1412,0.0002,1.141 +36.136,1.1409,0.0002,1.1407 +36.144,1.1405,0.0002,1.1403 +36.152,1.1401,0.0002,1.1399 +36.160000000000004,1.1397,0.0002,1.1395 +36.168,1.1393,0.0002,1.1391 +36.176,1.1389,0.0002,1.1387 +36.184,1.1385,0.0002,1.1383 +36.192,1.1381,0.0002,1.1379 +36.2,1.1377,0.0002,1.1375 +36.208,1.1373,0.0002,1.1371 +36.216,1.137,0.0002,1.1368 +36.224000000000004,1.1366,0.0002,1.1364 +36.232,1.1361999999999999,0.0002,1.136 +36.24,1.1358,0.0002,1.1356 +36.248,1.1354,0.0002,1.1352 +36.256,1.135,0.0002,1.1348 +36.264,1.1346,0.0002,1.1344 +36.272,1.1341999999999999,0.0002,1.134 +36.28,1.1338,0.0002,1.1336 +36.288000000000004,1.1335,0.0002,1.1333 +36.296,1.1331,0.0002,1.1329 +36.304,1.1327,0.0002,1.1325 +36.312,1.1323,0.0002,1.1321 +36.32,1.1319,0.0002,1.1317 +36.328,1.1315,0.0002,1.1313 +36.336,1.1311,0.0002,1.1309 +36.344,1.1307,0.0002,1.1305 +36.352000000000004,1.1303,0.0002,1.1301 +36.36,1.13,0.0002,1.1298 +36.368,1.1296,0.0002,1.1294 +36.376,1.1292,0.0002,1.129 +36.384,1.1288,0.0002,1.1286 +36.392,1.1284,0.0002,1.1282 +36.4,1.128,0.0002,1.1278 +36.408,1.1276,0.0002,1.1274 +36.416000000000004,1.1272,0.0002,1.127 +36.424,1.1268,0.0002,1.1266 +36.432,1.1265,0.0002,1.1263 +36.44,1.1260999999999999,0.0002,1.1259 +36.448,1.1257,0.0002,1.1255 +36.456,1.1253,0.0002,1.1251 +36.464,1.125,0.0003,1.1247 +36.472,1.1246,0.0003,1.1243 +36.480000000000004,1.1241999999999999,0.0003,1.1239 +36.488,1.1238,0.0003,1.1235 +36.496,1.1235,0.0003,1.1232 +36.504,1.1231,0.0003,1.1228 +36.512,1.1227,0.0003,1.1224 +36.52,1.1223,0.0003,1.122 +36.528,1.1219,0.0003,1.1216 +36.536,1.1215,0.0003,1.1212 +36.544000000000004,1.1211,0.0003,1.1208 +36.552,1.1207,0.0003,1.1204 +36.56,1.1204,0.0003,1.1201 +36.568,1.1199999999999999,0.0003,1.1197 +36.576,1.1196,0.0003,1.1193 +36.584,1.1192,0.0003,1.1189 +36.592,1.1188,0.0003,1.1185 +36.6,1.1184,0.0003,1.1181 +36.608000000000004,1.1179999999999999,0.0003,1.1177 +36.616,1.1176,0.0003,1.1173 +36.624,1.1173,0.0003,1.117 +36.632,1.1169,0.0003,1.1166 +36.64,1.1165,0.0003,1.1162 +36.648,1.1160999999999999,0.0003,1.1158 +36.656,1.1157,0.0003,1.1154 +36.664,1.1153,0.0003,1.115 +36.672000000000004,1.1149,0.0003,1.1146 +36.68,1.1145,0.0003,1.1142 +36.688,1.1142999999999998,0.0004,1.1139 +36.696,1.1139,0.0004,1.1135 +36.704,1.1135,0.0004,1.1131 +36.712,1.1131,0.0004,1.1127 +36.72,1.1127,0.0004,1.1123 +36.728,1.1123,0.0004,1.1119 +36.736000000000004,1.1118999999999999,0.0004,1.1115 +36.744,1.1115,0.0004,1.1111 +36.752,1.1112,0.0004,1.1108 +36.76,1.1108,0.0004,1.1104 +36.768,1.1104,0.0004,1.11 +36.776,1.1099999999999999,0.0004,1.1096 +36.784,1.1096,0.0004,1.1092 +36.792,1.1092,0.0004,1.1088 +36.800000000000004,1.1088,0.0004,1.1084 +36.808,1.1085,0.0004,1.1081 +36.816,1.1080999999999999,0.0004,1.1077 +36.824,1.1077,0.0004,1.1073 +36.832,1.1073,0.0004,1.1069 +36.84,1.1069,0.0004,1.1065 +36.848,1.1065,0.0004,1.1061 +36.856,1.1061999999999999,0.0005,1.1057 +36.864000000000004,1.1058999999999999,0.0005,1.1054 +36.872,1.1055,0.0005,1.105 +36.88,1.1051,0.0005,1.1046 +36.888,1.1047,0.0005,1.1042 +36.896,1.1042999999999998,0.0005,1.1038 +36.904,1.1038999999999999,0.0005,1.1034 +36.912,1.1035,0.0005,1.103 +36.92,1.1032,0.0005,1.1027 +36.928,1.1028,0.0005,1.1023 +36.936,1.1024,0.0005,1.1019 +36.944,1.1019999999999999,0.0005,1.1015 +36.952,1.1016,0.0005,1.1011 +36.96,1.1012,0.0005,1.1007 +36.968,1.1008,0.0005,1.1003 +36.976,1.1005,0.0005,1.1 +36.984,1.1000999999999999,0.0005,1.0996 +36.992,1.0997,0.0005,1.0992 +37.0,1.0994,0.0006,1.0988 +37.008,1.099,0.0006,1.0984 +37.016,1.0986,0.0006,1.098 +37.024,1.0981999999999998,0.0006,1.0976 +37.032000000000004,1.0978999999999999,0.0006,1.0973 +37.04,1.0975,0.0006,1.0969 +37.048,1.0971,0.0006,1.0965 +37.056,1.0967,0.0006,1.0961 +37.064,1.0962999999999998,0.0006,1.0957 +37.072,1.0958999999999999,0.0006,1.0953 +37.08,1.0956,0.0006,1.095 +37.088,1.0952,0.0006,1.0946 +37.096000000000004,1.0948,0.0006,1.0942 +37.104,1.0944,0.0006,1.0938 +37.112,1.0940999999999999,0.0007,1.0934 +37.12,1.0937,0.0007,1.093 +37.128,1.0933,0.0007,1.0926 +37.136,1.093,0.0007,1.0923 +37.144,1.0926,0.0007,1.0919 +37.152,1.0921999999999998,0.0007,1.0915 +37.160000000000004,1.0917999999999999,0.0007,1.0911 +37.168,1.0914,0.0007,1.0907 +37.176,1.091,0.0007,1.0903 +37.184,1.0907,0.0007,1.09 +37.192,1.0902999999999998,0.0007,1.0896 +37.2,1.0898999999999999,0.0007,1.0892 +37.208,1.0895,0.0007,1.0888 +37.216,1.0892,0.0008,1.0884 +37.224000000000004,1.0888,0.0008,1.088 +37.232,1.0884999999999998,0.0008,1.0877 +37.24,1.0880999999999998,0.0008,1.0873 +37.248,1.0877,0.0008,1.0869 +37.256,1.0873,0.0008,1.0865 +37.264,1.0869,0.0008,1.0861 +37.272,1.0865,0.0008,1.0857 +37.28,1.0861999999999998,0.0008,1.0854 +37.288000000000004,1.0857999999999999,0.0008,1.085 +37.296,1.0854,0.0008,1.0846 +37.304,1.0851,0.0009,1.0842 +37.312,1.0847,0.0009,1.0838 +37.32,1.0842999999999998,0.0009,1.0834 +37.328,1.0839999999999999,0.0009,1.0831 +37.336,1.0836,0.0009,1.0827 +37.344,1.0832,0.0009,1.0823 +37.352000000000004,1.0828,0.0009,1.0819 +37.36,1.0823999999999998,0.0009,1.0815 +37.368,1.0819999999999999,0.0009,1.0811 +37.376,1.0816999999999999,0.0009,1.0808 +37.384,1.0814,0.001,1.0804 +37.392,1.081,0.001,1.08 +37.4,1.0805999999999998,0.001,1.0796 +37.408,1.0801999999999998,0.001,1.0792 +37.416000000000004,1.0797999999999999,0.001,1.0788 +37.424,1.0795,0.001,1.0785 +37.432,1.0791,0.001,1.0781 +37.44,1.0787,0.001,1.0777 +37.448,1.0784,0.0011,1.0773 +37.456,1.078,0.0011,1.0769 +37.464,1.0776000000000001,0.0011,1.0765 +37.472,1.0773000000000001,0.0011,1.0762 +37.480000000000004,1.0769000000000002,0.0011,1.0758 +37.488,1.0765,0.0011,1.0754 +37.496,1.0761,0.0011,1.075 +37.504,1.0757,0.0011,1.0746 +37.512,1.0754000000000001,0.0011,1.0743 +37.52,1.0751000000000002,0.0012,1.0739 +37.528,1.0747,0.0012,1.0735 +37.536,1.0743,0.0012,1.0731 +37.544000000000004,1.0739,0.0012,1.0727 +37.552,1.0735000000000001,0.0012,1.0723 +37.56,1.0732000000000002,0.0012,1.072 +37.568,1.0728000000000002,0.0012,1.0716 +37.576,1.0725,0.0013,1.0712 +37.584,1.0721,0.0013,1.0708 +37.592,1.0717,0.0013,1.0704 +37.6,1.0714000000000001,0.0013,1.0701 +37.608000000000004,1.0710000000000002,0.0013,1.0697 +37.616,1.0706,0.0013,1.0693 +37.624,1.0702,0.0013,1.0689 +37.632,1.0699,0.0014,1.0685 +37.64,1.0695000000000001,0.0014,1.0681 +37.648,1.0692000000000002,0.0014,1.0678 +37.656,1.0688,0.0014,1.0674 +37.664,1.0684,0.0014,1.067 +37.672000000000004,1.068,0.0014,1.0666 +37.68,1.0676,0.0014,1.0662 +37.688,1.0674000000000001,0.0015,1.0659 +37.696,1.067,0.0015,1.0655 +37.704,1.0666,0.0015,1.0651 +37.712,1.0662,0.0015,1.0647 +37.72,1.0658,0.0015,1.0643 +37.728,1.0655000000000001,0.0015,1.064 +37.736000000000004,1.0652000000000001,0.0016,1.0636 +37.744,1.0648,0.0016,1.0632 +37.752,1.0644,0.0016,1.0628 +37.76,1.064,0.0016,1.0624 +37.768,1.0637,0.0016,1.0621 +37.776,1.0633000000000001,0.0016,1.0617 +37.784,1.063,0.0017,1.0613 +37.792,1.0626,0.0017,1.0609 +37.800000000000004,1.0622,0.0017,1.0605 +37.808,1.0619,0.0017,1.0602 +37.816,1.0615,0.0017,1.0598 +37.824,1.0612,0.0018,1.0594 +37.832,1.0608,0.0018,1.059 +37.84,1.0604,0.0018,1.0586 +37.848,1.0601,0.0018,1.0583 +37.856,1.0597,0.0018,1.0579 +37.864000000000004,1.0594000000000001,0.0019,1.0575 +37.872,1.059,0.0019,1.0571 +37.88,1.0586,0.0019,1.0567 +37.888,1.0583,0.0019,1.0564 +37.896,1.0579,0.0019,1.056 +37.904,1.0576,0.002,1.0556 +37.912,1.0572,0.002,1.0552 +37.92,1.0568,0.002,1.0548 +37.928,1.0565,0.002,1.0545 +37.936,1.0561,0.002,1.0541 +37.944,1.0558,0.0021,1.0537 +37.952,1.0554,0.0021,1.0533 +37.96,1.055,0.0021,1.0529 +37.968,1.0547,0.0021,1.0526 +37.976,1.0544,0.0022,1.0522 +37.984,1.054,0.0022,1.0518 +37.992,1.0535999999999999,0.0022,1.0514 +38.0,1.0532,0.0022,1.051 +38.008,1.053,0.0023,1.0507 +38.016,1.0526,0.0023,1.0503 +38.024,1.0522,0.0023,1.0499 +38.032000000000004,1.0518,0.0023,1.0495 +38.04,1.0514999999999999,0.0024,1.0491 +38.048,1.0512,0.0024,1.0488 +38.056,1.0508,0.0024,1.0484 +38.064,1.0504,0.0024,1.048 +38.072,1.0501,0.0025,1.0476 +38.08,1.0497999999999998,0.0025,1.0473 +38.088,1.0493999999999999,0.0025,1.0469 +38.096000000000004,1.049,0.0025,1.0465 +38.104,1.0487,0.0026,1.0461 +38.112,1.0483,0.0026,1.0457 +38.12,1.048,0.0026,1.0454 +38.128,1.0475999999999999,0.0026,1.045 +38.136,1.0473,0.0027,1.0446 +38.144,1.0469,0.0027,1.0442 +38.152,1.0465,0.0027,1.0438 +38.160000000000004,1.0463,0.0028,1.0435 +38.168,1.0458999999999998,0.0028,1.0431 +38.176,1.0454999999999999,0.0028,1.0427 +38.184,1.0451,0.0028,1.0423 +38.192,1.0449,0.0029,1.042 +38.2,1.0445,0.0029,1.0416 +38.208,1.0440999999999998,0.0029,1.0412 +38.216,1.0437999999999998,0.003,1.0408 +38.224000000000004,1.0433999999999999,0.003,1.0404 +38.232,1.0431,0.003,1.0401 +38.24,1.0428000000000002,0.0031,1.0397 +38.248,1.0424,0.0031,1.0393 +38.256,1.042,0.0031,1.0389 +38.264,1.0418,0.0032,1.0386 +38.272,1.0414,0.0032,1.0382 +38.28,1.0410000000000001,0.0032,1.0378 +38.288000000000004,1.0407000000000002,0.0033,1.0374 +38.296,1.0403,0.0033,1.037 +38.304,1.04,0.0033,1.0367 +38.312,1.0397,0.0034,1.0363 +38.32,1.0393000000000001,0.0034,1.0359 +38.328,1.0389000000000002,0.0034,1.0355 +38.336,1.0387,0.0035,1.0352 +38.344,1.0383,0.0035,1.0348 +38.352000000000004,1.0379,0.0035,1.0344 +38.36,1.0376,0.0036,1.034 +38.368,1.0373,0.0036,1.0337 +38.376,1.0370000000000001,0.0037,1.0333 +38.384,1.0366,0.0037,1.0329 +38.392,1.0362,0.0037,1.0325 +38.4,1.0359,0.0038,1.0321 +38.408,1.0356,0.0038,1.0318 +38.416000000000004,1.0352000000000001,0.0038,1.0314 +38.424,1.0349,0.0039,1.031 +38.432,1.0345,0.0039,1.0306 +38.44,1.0343,0.004,1.0303 +38.448,1.0339,0.004,1.0299 +38.456,1.0335,0.004,1.0295 +38.464,1.0332,0.0041,1.0291 +38.472,1.0329,0.0041,1.0288 +38.480000000000004,1.0326,0.0042,1.0284 +38.488,1.0322,0.0042,1.028 +38.496,1.0319,0.0043,1.0276 +38.504,1.0316,0.0043,1.0273 +38.512,1.0312999999999999,0.0044,1.0269 +38.52,1.0309,0.0044,1.0265 +38.528,1.0305,0.0044,1.0261 +38.536,1.0302,0.0045,1.0257 +38.544000000000004,1.0299,0.0045,1.0254 +38.552,1.0295999999999998,0.0046,1.025 +38.56,1.0292,0.0046,1.0246 +38.568,1.0289,0.0047,1.0242 +38.576,1.0286,0.0047,1.0239 +38.584,1.0283,0.0048,1.0235 +38.592,1.0278999999999998,0.0048,1.0231 +38.6,1.0275999999999998,0.0049,1.0227 +38.608000000000004,1.0272999999999999,0.0049,1.0224 +38.616,1.027,0.005,1.022 +38.624,1.0266,0.005,1.0216 +38.632,1.0263000000000002,0.0051,1.0212 +38.64,1.026,0.0051,1.0209 +38.648,1.0257,0.0052,1.0205 +38.656,1.0253,0.0052,1.0201 +38.664,1.0250000000000001,0.0053,1.0197 +38.672000000000004,1.0247000000000002,0.0053,1.0194 +38.68,1.0244,0.0054,1.019 +38.688,1.024,0.0054,1.0186 +38.696,1.0237,0.0055,1.0182 +38.704,1.0234,0.0055,1.0179 +38.712,1.0231000000000001,0.0056,1.0175 +38.72,1.0228,0.0057,1.0171 +38.728,1.0224,0.0057,1.0167 +38.736000000000004,1.0222,0.0058,1.0164 +38.744,1.0218,0.0058,1.016 +38.752,1.0215,0.0059,1.0156 +38.76,1.0212,0.006,1.0152 +38.768,1.0209,0.006,1.0149 +38.776,1.0206,0.0061,1.0145 +38.784,1.0202,0.0061,1.0141 +38.792,1.0199,0.0062,1.0137 +38.800000000000004,1.0197,0.0063,1.0134 +38.808,1.0192999999999999,0.0063,1.013 +38.816,1.019,0.0064,1.0126 +38.824,1.0187,0.0064,1.0123 +38.832,1.0184,0.0065,1.0119 +38.84,1.0181,0.0066,1.0115 +38.848,1.0177,0.0066,1.0111 +38.856,1.0174999999999998,0.0067,1.0108 +38.864000000000004,1.0171999999999999,0.0068,1.0104 +38.872,1.0168,0.0068,1.01 +38.88,1.0165,0.0069,1.0096 +38.888,1.0163,0.007,1.0093 +38.896,1.0158999999999998,0.007,1.0089 +38.904,1.0156,0.0071,1.0085 +38.912,1.0153,0.0072,1.0081 +38.92,1.0151000000000001,0.0073,1.0078 +38.928,1.0147000000000002,0.0073,1.0074 +38.936,1.0144,0.0074,1.007 +38.944,1.0141,0.0075,1.0066 +38.952,1.0138,0.0075,1.0063 +38.96,1.0135,0.0076,1.0059 +38.968,1.0132,0.0077,1.0055 +38.976,1.0130000000000001,0.0078,1.0052 +38.984,1.0126,0.0078,1.0048 +38.992,1.0123,0.0079,1.0044 +39.0,1.012,0.008,1.004 +39.008,1.0118,0.0081,1.0037 +39.016,1.0115,0.0082,1.0033 +39.024,1.0110999999999999,0.0082,1.0029 +39.032000000000004,1.0108,0.0083,1.0025 +39.04,1.0106,0.0084,1.0022 +39.048,1.0103,0.0085,1.0018 +39.056,1.01,0.0086,1.0014 +39.064,1.0098,0.0087,1.0011 +39.072,1.0093999999999999,0.0087,1.0007 +39.08,1.0090999999999999,0.0088,1.0003 +39.088,1.0088,0.0089,0.9999 +39.096000000000004,1.0086,0.009,0.9996 +39.104,1.0083,0.0091,0.9992 +39.112,1.008,0.0092,0.9988 +39.12,1.0077,0.0093,0.9984 +39.128,1.0075,0.0094,0.9981 +39.136,1.0071,0.0094,0.9977 +39.144,1.0068,0.0095,0.9973 +39.152,1.0066,0.0096,0.997 +39.160000000000004,1.0063,0.0097,0.9966 +39.168,1.006,0.0098,0.9962 +39.176,1.0057,0.0099,0.9958 +39.184,1.0055,0.01,0.9955 +39.192,1.0052,0.0101,0.9951 +39.2,1.0049000000000001,0.0102,0.9947 +39.208,1.0047,0.0103,0.9944 +39.216,1.0044,0.0104,0.994 +39.224000000000004,1.0041,0.0105,0.9936 +39.232,1.0038,0.0106,0.9932 +39.24,1.0036,0.0107,0.9929 +39.248,1.0033,0.0108,0.9925 +39.256,1.003,0.0109,0.9921 +39.264,1.0028,0.011,0.9918 +39.272,1.0025,0.0111,0.9914 +39.28,1.0022,0.0112,0.991 +39.288000000000004,1.0019,0.0113,0.9906 +39.296,1.0017,0.0114,0.9903 +39.304,1.0014,0.0115,0.9899 +39.312,1.0012,0.0117,0.9895 +39.32,1.001,0.0118,0.9892 +39.328,1.0007,0.0119,0.9888 +39.336,1.0004,0.012,0.9884 +39.344,1.0001,0.0121,0.988 +39.352000000000004,0.9999,0.0122,0.9877 +39.36,0.9995999999999999,0.0123,0.9873 +39.368,0.9994,0.0125,0.9869 +39.376,0.9992000000000001,0.0126,0.9866 +39.384,0.9989,0.0127,0.9862 +39.392,0.9986,0.0128,0.9858 +39.4,0.9983000000000001,0.0129,0.9854 +39.408,0.9982,0.0131,0.9851 +39.416000000000004,0.9979,0.0132,0.9847 +39.424,0.9975999999999999,0.0133,0.9843 +39.432,0.9974,0.0134,0.984 +39.44,0.9972,0.0136,0.9836 +39.448,0.9969,0.0137,0.9832 +39.456,0.9967,0.0138,0.9829 +39.464,0.9964000000000001,0.0139,0.9825 +39.472,0.9962,0.0141,0.9821 +39.480000000000004,0.9959,0.0142,0.9817 +39.488,0.9957,0.0143,0.9814 +39.496,0.9954999999999999,0.0145,0.981 +39.504,0.9952,0.0146,0.9806 +39.512,0.995,0.0147,0.9803 +39.52,0.9948,0.0149,0.9799 +39.528,0.9945,0.015,0.9795 +39.536,0.9944,0.0152,0.9792 +39.544000000000004,0.9941,0.0153,0.9788 +39.552,0.9939,0.0155,0.9784 +39.56,0.9936999999999999,0.0156,0.9781 +39.568,0.9934000000000001,0.0157,0.9777 +39.576,0.9932,0.0159,0.9773 +39.584,0.9929,0.016,0.9769 +39.592,0.9928,0.0162,0.9766 +39.6,0.9924999999999999,0.0163,0.9762 +39.608000000000004,0.9923,0.0165,0.9758 +39.616,0.9921,0.0166,0.9755 +39.624,0.9919,0.0168,0.9751 +39.632,0.9916,0.0169,0.9747 +39.64,0.9915,0.0171,0.9744 +39.648,0.9913,0.0173,0.974 +39.656,0.991,0.0174,0.9736 +39.664,0.9909,0.0176,0.9733 +39.672000000000004,0.9906,0.0177,0.9729 +39.68,0.9904000000000001,0.0179,0.9725 +39.688,0.9902,0.0181,0.9721 +39.696,0.99,0.0182,0.9718 +39.704,0.9898,0.0184,0.9714 +39.712,0.9895999999999999,0.0186,0.971 +39.72,0.9895,0.0188,0.9707 +39.728,0.9892000000000001,0.0189,0.9703 +39.736000000000004,0.989,0.0191,0.9699 +39.744,0.9889,0.0193,0.9696 +39.752,0.9885999999999999,0.0194,0.9692 +39.76,0.9884,0.0196,0.9688 +39.768,0.9883000000000001,0.0198,0.9685 +39.776,0.9881,0.02,0.9681 +39.784,0.9879,0.0202,0.9677 +39.792,0.9878,0.0204,0.9674 +39.800000000000004,0.9874999999999999,0.0205,0.967 +39.808,0.9873000000000001,0.0207,0.9666 +39.816,0.9872000000000001,0.0209,0.9663 +39.824,0.987,0.0211,0.9659 +39.832,0.9868,0.0213,0.9655 +39.84,0.9866999999999999,0.0215,0.9652 +39.848,0.9865,0.0217,0.9648 +39.856,0.9863000000000001,0.0219,0.9644 +39.864000000000004,0.9862,0.0221,0.9641 +39.872,0.986,0.0223,0.9637 +39.88,0.9858,0.0225,0.9633 +39.888,0.9856,0.0227,0.9629 +39.896,0.9855,0.0229,0.9626 +39.904,0.9853000000000001,0.0231,0.9622 +39.912,0.9851,0.0233,0.9618 +39.92,0.985,0.0235,0.9615 +39.928000000000004,0.9847999999999999,0.0237,0.9611 +39.936,0.9846,0.0239,0.9607 +39.944,0.9845,0.0241,0.9604 +39.952,0.9843999999999999,0.0244,0.96 +39.96,0.9842,0.0246,0.9596 +39.968,0.9841000000000001,0.0248,0.9593 +39.976,0.9839,0.025,0.9589 +39.984,0.9838,0.0253,0.9585 +39.992,0.9837,0.0255,0.9582 +40.0,0.9835,0.0257,0.9578 +40.008,0.9833000000000001,0.0259,0.9574 +40.016,0.9833,0.0262,0.9571 +40.024,0.9831,0.0264,0.9567 +40.032000000000004,0.9829,0.0266,0.9563 +40.04,0.9829,0.0269,0.956 +40.048,0.9827,0.0271,0.9556 +40.056,0.9826,0.0274,0.9552 +40.064,0.9824999999999999,0.0276,0.9549 +40.072,0.9823000000000001,0.0278,0.9545 +40.08,0.9823000000000001,0.0281,0.9542 +40.088,0.9821,0.0283,0.9538 +40.096000000000004,0.982,0.0286,0.9534 +40.104,0.9819,0.0288,0.9531 +40.112,0.9818,0.0291,0.9527 +40.12,0.9816,0.0293,0.9523 +40.128,0.9815999999999999,0.0296,0.952 +40.136,0.9815,0.0299,0.9516 +40.144,0.9813000000000001,0.0301,0.9512 +40.152,0.9813,0.0304,0.9509 +40.160000000000004,0.9812,0.0307,0.9505 +40.168,0.981,0.0309,0.9501 +40.176,0.981,0.0312,0.9498 +40.184,0.9809,0.0315,0.9494 +40.192,0.9808,0.0318,0.949 +40.2,0.9807,0.032,0.9487 +40.208,0.9806,0.0323,0.9483 +40.216,0.9804999999999999,0.0326,0.9479 +40.224000000000004,0.9805,0.0329,0.9476 +40.232,0.9804,0.0332,0.9472 +40.24,0.9803,0.0335,0.9468 +40.248,0.9802,0.0337,0.9465 +40.256,0.9801000000000001,0.034,0.9461 +40.264,0.98,0.0343,0.9457 +40.272,0.98,0.0346,0.9454 +40.28,0.9799,0.0349,0.945 +40.288000000000004,0.9799,0.0352,0.9447 +40.296,0.9798,0.0355,0.9443 +40.304,0.9797,0.0358,0.9439 +40.312,0.9798,0.0362,0.9436 +40.32,0.9797,0.0365,0.9432 +40.328,0.9796,0.0368,0.9428 +40.336,0.9796,0.0371,0.9425 +40.344,0.9795,0.0374,0.9421 +40.352000000000004,0.9793999999999999,0.0377,0.9417 +40.36,0.9795,0.0381,0.9414 +40.368,0.9793999999999999,0.0384,0.941 +40.376,0.9793,0.0387,0.9406 +40.384,0.9794,0.0391,0.9403 +40.392,0.9793,0.0394,0.9399 +40.4,0.9793,0.0397,0.9396 +40.408,0.9793000000000001,0.0401,0.9392 +40.416000000000004,0.9792,0.0404,0.9388 +40.424,0.9793000000000001,0.0408,0.9385 +40.432,0.9792000000000001,0.0411,0.9381 +40.44,0.9792,0.0415,0.9377 +40.448,0.9792,0.0418,0.9374 +40.456,0.9792000000000001,0.0422,0.937 +40.464,0.9791,0.0425,0.9366 +40.472,0.9792000000000001,0.0429,0.9363 +40.480000000000004,0.9792,0.0433,0.9359 +40.488,0.9792,0.0436,0.9356 +40.496,0.9792000000000001,0.044,0.9352 +40.504,0.9792,0.0444,0.9348 +40.512,0.9792,0.0447,0.9345 +40.52,0.9792000000000001,0.0451,0.9341 +40.528,0.9792,0.0455,0.9337 +40.536,0.9793000000000001,0.0459,0.9334 +40.544000000000004,0.9793000000000001,0.0463,0.933 +40.552,0.9793,0.0467,0.9326 +40.56,0.9794,0.0471,0.9323 +40.568,0.9793999999999999,0.0475,0.9319 +40.576,0.9795,0.0479,0.9316 +40.584,0.9795,0.0483,0.9312 +40.592,0.9794999999999999,0.0487,0.9308 +40.6,0.9796,0.0491,0.9305 +40.608000000000004,0.9796,0.0495,0.9301 +40.616,0.9796,0.0499,0.9297 +40.624,0.9797,0.0503,0.9294 +40.632,0.9797,0.0507,0.929 +40.64,0.9799,0.0512,0.9287 +40.648,0.9799,0.0516,0.9283 +40.656,0.9799,0.052,0.9279 +40.664,0.9801,0.0525,0.9276 +40.672000000000004,0.9801,0.0529,0.9272 +40.68,0.9801,0.0533,0.9268 +40.688,0.9803,0.0538,0.9265 +40.696,0.9803000000000001,0.0542,0.9261 +40.704,0.9804999999999999,0.0547,0.9258 +40.712,0.9805,0.0551,0.9254 +40.72,0.9806,0.0556,0.925 +40.728,0.9807,0.056,0.9247 +40.736000000000004,0.9808,0.0565,0.9243 +40.744,0.9810000000000001,0.057,0.924 +40.752,0.981,0.0574,0.9236 +40.76,0.9811,0.0579,0.9232 +40.768,0.9813000000000001,0.0584,0.9229 +40.776,0.9813999999999999,0.0589,0.9225 +40.784,0.9815,0.0594,0.9221 +40.792,0.9815999999999999,0.0598,0.9218 +40.800000000000004,0.9817,0.0603,0.9214 +40.808,0.9819,0.0608,0.9211 +40.816,0.982,0.0613,0.9207 +40.824,0.9821,0.0618,0.9203 +40.832,0.9823000000000001,0.0623,0.92 +40.84,0.9824999999999999,0.0629,0.9196 +40.848,0.9827,0.0634,0.9193 +40.856,0.9828,0.0639,0.9189 +40.864000000000004,0.9829,0.0644,0.9185 +40.872,0.9831,0.0649,0.9182 +40.88,0.9833,0.0655,0.9178 +40.888,0.9835,0.066,0.9175 +40.896,0.9836,0.0665,0.9171 +40.904,0.9838,0.0671,0.9167 +40.912,0.984,0.0676,0.9164 +40.92,0.9842000000000001,0.0682,0.916 +40.928000000000004,0.9843,0.0687,0.9156 +40.936,0.9846,0.0693,0.9153 +40.944,0.9847,0.0698,0.9149 +40.952,0.985,0.0704,0.9146 +40.96,0.9852,0.071,0.9142 +40.968,0.9853,0.0715,0.9138 +40.976,0.9856,0.0721,0.9135 +40.984,0.9858,0.0727,0.9131 +40.992,0.9861,0.0733,0.9128 +41.0,0.9863,0.0739,0.9124 +41.008,0.9865,0.0745,0.912 +41.016,0.9867999999999999,0.0751,0.9117 +41.024,0.987,0.0757,0.9113 +41.032000000000004,0.9873000000000001,0.0763,0.911 +41.04,0.9874999999999999,0.0769,0.9106 +41.048,0.9877,0.0775,0.9102 +41.056,0.988,0.0781,0.9099 +41.064,0.9882,0.0787,0.9095 +41.072,0.9886,0.0794,0.9092 +41.08,0.9888,0.08,0.9088 +41.088,0.989,0.0806,0.9084 +41.096000000000004,0.9894000000000001,0.0813,0.9081 +41.104,0.9895999999999999,0.0819,0.9077 +41.112,0.99,0.0826,0.9074 +41.12,0.9902,0.0832,0.907 +41.128,0.9905999999999999,0.0839,0.9067 +41.136,0.9908,0.0845,0.9063 +41.144,0.9911000000000001,0.0852,0.9059 +41.152,0.9914999999999999,0.0859,0.9056 +41.160000000000004,0.9918,0.0866,0.9052 +41.168,0.9921,0.0872,0.9049 +41.176,0.9924,0.0879,0.9045 +41.184,0.9927,0.0886,0.9041 +41.192,0.9931000000000001,0.0893,0.9038 +41.2,0.9934,0.09,0.9034 +41.208,0.9938,0.0907,0.9031 +41.216,0.9941,0.0914,0.9027 +41.224000000000004,0.9944999999999999,0.0922,0.9023 +41.232,0.9949,0.0929,0.902 +41.24,0.9952,0.0936,0.9016 +41.248,0.9956,0.0943,0.9013 +41.256,0.996,0.0951,0.9009 +41.264,0.9964,0.0958,0.9006 +41.272,0.9968,0.0966,0.9002 +41.28,0.9971000000000001,0.0973,0.8998 +41.288000000000004,0.9975999999999999,0.0981,0.8995 +41.296,0.9979,0.0988,0.8991 +41.304,0.9984000000000001,0.0996,0.8988 +41.312,0.9988,0.1004,0.8984 +41.32,0.9992,0.1011,0.8981 +41.328,0.9996,0.1019,0.8977 +41.336,1.0,0.1027,0.8973 +41.344,1.0005,0.1035,0.897 +41.352000000000004,1.0009,0.1043,0.8966 +41.36,1.0014,0.1051,0.8963 +41.368,1.0018,0.1059,0.8959 +41.376,1.0022,0.1067,0.8955 +41.384,1.0028,0.1076,0.8952 +41.392,1.0032,0.1084,0.8948 +41.4,1.0037,0.1092,0.8945 +41.408,1.0042,0.1101,0.8941 +41.416000000000004,1.0047000000000001,0.1109,0.8938 +41.424,1.0050999999999999,0.1117,0.8934 +41.432,1.0056,0.1126,0.893 +41.44,1.0062,0.1135,0.8927 +41.448,1.0066,0.1143,0.8923 +41.456,1.0072,0.1152,0.892 +41.464,1.0077,0.1161,0.8916 +41.472,1.0083,0.117,0.8913 +41.480000000000004,1.0088,0.1179,0.8909 +41.488,1.0092999999999999,0.1187,0.8906 +41.496,1.0098,0.1196,0.8902 +41.504,1.0104,0.1206,0.8898 +41.512,1.011,0.1215,0.8895 +41.52,1.0115,0.1224,0.8891 +41.528,1.0121,0.1233,0.8888 +41.536,1.0126,0.1242,0.8884 +41.544000000000004,1.0133,0.1252,0.8881 +41.552,1.0138,0.1261,0.8877 +41.56,1.0144,0.1271,0.8873 +41.568,1.0150000000000001,0.128,0.887 +41.576,1.0156,0.129,0.8866 +41.584,1.0163,0.13,0.8863 +41.592,1.0168,0.1309,0.8859 +41.6,1.0175,0.1319,0.8856 +41.608000000000004,1.0181,0.1329,0.8852 +41.616,1.0188,0.1339,0.8849 +41.624,1.0193999999999999,0.1349,0.8845 +41.632,1.02,0.1359,0.8841 +41.64,1.0207,0.1369,0.8838 +41.648,1.0213999999999999,0.138,0.8834 +41.656,1.0221,0.139,0.8831 +41.664,1.0227,0.14,0.8827 +41.672000000000004,1.0234999999999999,0.1411,0.8824 +41.68,1.0241,0.1421,0.882 +41.688,1.0249000000000001,0.1432,0.8817 +41.696,1.0255,0.1442,0.8813 +41.704,1.0262,0.1453,0.8809 +41.712,1.0270000000000001,0.1464,0.8806 +41.72,1.0276,0.1474,0.8802 +41.728,1.0284,0.1485,0.8799 +41.736000000000004,1.0291,0.1496,0.8795 +41.744,1.0299,0.1507,0.8792 +41.752,1.0306,0.1518,0.8788 +41.76,1.0314999999999999,0.153,0.8785 +41.768,1.0322,0.1541,0.8781 +41.776,1.0329000000000002,0.1552,0.8777 +41.784,1.0337,0.1563,0.8774 +41.792,1.0345,0.1575,0.877 +41.800000000000004,1.0353,0.1586,0.8767 +41.808,1.0361,0.1598,0.8763 +41.816,1.037,0.161,0.876 +41.824,1.0377,0.1621,0.8756 +41.832,1.0386,0.1633,0.8753 +41.84,1.0394,0.1645,0.8749 +41.848,1.0403,0.1657,0.8746 +41.856,1.0411,0.1669,0.8742 +41.864000000000004,1.0419,0.1681,0.8738 +41.872,1.0429,0.1694,0.8735 +41.88,1.0437,0.1706,0.8731 +41.888,1.0446,0.1718,0.8728 +41.896,1.0454999999999999,0.1731,0.8724 +41.904,1.0464,0.1743,0.8721 +41.912,1.0473000000000001,0.1756,0.8717 +41.92,1.0482,0.1768,0.8714 +41.928000000000004,1.0491,0.1781,0.871 +41.936,1.0501,0.1794,0.8707 +41.944,1.051,0.1807,0.8703 +41.952,1.052,0.182,0.87 +41.96,1.0529,0.1833,0.8696 +41.968,1.0539,0.1846,0.8693 +41.976,1.0548,0.1859,0.8689 +41.984,1.0557,0.1872,0.8685 +41.992,1.0568,0.1886,0.8682 +42.0,1.0577,0.1899,0.8678 +42.008,1.0588,0.1913,0.8675 +42.016,1.0598,0.1927,0.8671 +42.024,1.0608,0.194,0.8668 +42.032000000000004,1.0617999999999999,0.1954,0.8664 +42.04,1.0629,0.1968,0.8661 +42.048,1.0639,0.1982,0.8657 +42.056,1.065,0.1996,0.8654 +42.064,1.066,0.201,0.865 +42.072,1.0671,0.2024,0.8647 +42.08,1.0682,0.2039,0.8643 +42.088,1.0693,0.2053,0.864 +42.096000000000004,1.0703,0.2067,0.8636 +42.104,1.0715,0.2082,0.8633 +42.112,1.0726,0.2097,0.8629 +42.12,1.0736,0.2111,0.8625 +42.128,1.0748,0.2126,0.8622 +42.136,1.0759,0.2141,0.8618 +42.144,1.0771000000000002,0.2156,0.8615 +42.152,1.0782,0.2171,0.8611 +42.160000000000004,1.0794,0.2186,0.8608 +42.168,1.0806,0.2202,0.8604 +42.176,1.0817999999999999,0.2217,0.8601 +42.184,1.083,0.2233,0.8597 +42.192,1.0842,0.2248,0.8594 +42.2,1.0854,0.2264,0.859 +42.208,1.0867,0.228,0.8587 +42.216,1.0877999999999999,0.2295,0.8583 +42.224000000000004,1.0891,0.2311,0.858 +42.232,1.0903,0.2327,0.8576 +42.24,1.0916,0.2343,0.8573 +42.248,1.0929,0.236,0.8569 +42.256,1.0942,0.2376,0.8566 +42.264,1.0954,0.2392,0.8562 +42.272,1.0968,0.2409,0.8559 +42.28,1.098,0.2425,0.8555 +42.288000000000004,1.0994,0.2442,0.8552 +42.296,1.1007,0.2459,0.8548 +42.304,1.1021,0.2476,0.8545 +42.312,1.1034,0.2493,0.8541 +42.32,1.1048,0.251,0.8538 +42.328,1.1061,0.2527,0.8534 +42.336,1.1075,0.2544,0.8531 +42.344,1.1089,0.2562,0.8527 +42.352000000000004,1.1103,0.2579,0.8524 +42.36,1.1117,0.2597,0.852 +42.368,1.1132,0.2615,0.8517 +42.376,1.1145,0.2632,0.8513 +42.384,1.116,0.265,0.851 +42.392,1.1174,0.2668,0.8506 +42.4,1.1189,0.2686,0.8503 +42.408,1.1204,0.2705,0.8499 +42.416000000000004,1.1219000000000001,0.2723,0.8496 +42.424,1.1233,0.2741,0.8492 +42.432,1.1249,0.276,0.8489 +42.44,1.1263,0.2778,0.8485 +42.448,1.1279,0.2797,0.8482 +42.456,1.1294,0.2816,0.8478 +42.464,1.131,0.2835,0.8475 +42.472,1.1324999999999998,0.2854,0.8471 +42.480000000000004,1.1341,0.2873,0.8468 +42.488,1.1356000000000002,0.2892,0.8464 +42.496,1.1373,0.2912,0.8461 +42.504,1.1388,0.2931,0.8457 +42.512,1.1405,0.2951,0.8454 +42.52,1.142,0.297,0.845 +42.528,1.1437,0.299,0.8447 +42.536,1.1453,0.301,0.8443 +42.544000000000004,1.147,0.303,0.844 +42.552,1.1486,0.305,0.8436 +42.56,1.1504,0.3071,0.8433 +42.568,1.152,0.3091,0.8429 +42.576,1.1537,0.3111,0.8426 +42.584,1.1554,0.3132,0.8422 +42.592,1.1572,0.3153,0.8419 +42.6,1.1588,0.3173,0.8415 +42.608000000000004,1.1606,0.3194,0.8412 +42.616,1.1623,0.3215,0.8408 +42.624,1.1642000000000001,0.3237,0.8405 +42.632,1.1659,0.3258,0.8401 +42.64,1.1677,0.3279,0.8398 +42.648,1.1695,0.3301,0.8394 +42.656,1.1713,0.3322,0.8391 +42.664,1.1731,0.3344,0.8387 +42.672000000000004,1.175,0.3366,0.8384 +42.68,1.1768,0.3388,0.838 +42.688,1.1787,0.341,0.8377 +42.696,1.1805,0.3432,0.8373 +42.704,1.1824999999999999,0.3455,0.837 +42.712,1.1843,0.3477,0.8366 +42.72,1.1863000000000001,0.35,0.8363 +42.728,1.1881,0.3522,0.8359 +42.736000000000004,1.1901,0.3545,0.8356 +42.744,1.1920000000000002,0.3568,0.8352 +42.752,1.194,0.3591,0.8349 +42.76,1.196,0.3615,0.8345 +42.768,1.198,0.3638,0.8342 +42.776,1.1999,0.3661,0.8338 +42.784,1.202,0.3685,0.8335 +42.792,1.2041,0.3709,0.8332 +42.800000000000004,1.206,0.3732,0.8328 +42.808,1.2081,0.3756,0.8325 +42.816,1.2101,0.378,0.8321 +42.824,1.2123,0.3805,0.8318 +42.832,1.2143000000000002,0.3829,0.8314 +42.84,1.2164,0.3853,0.8311 +42.848,1.2185,0.3878,0.8307 +42.856,1.2207,0.3903,0.8304 +42.864000000000004,1.2227999999999999,0.3928,0.83 +42.872,1.225,0.3953,0.8297 +42.88,1.2271,0.3978,0.8293 +42.888,1.2292999999999998,0.4003,0.829 +42.896,1.2314,0.4028,0.8286 +42.904,1.2337,0.4054,0.8283 +42.912,1.2358,0.4079,0.8279 +42.92,1.2381,0.4105,0.8276 +42.928000000000004,1.2404000000000002,0.4131,0.8273 +42.936,1.2426,0.4157,0.8269 +42.944,1.2449,0.4183,0.8266 +42.952,1.2472,0.421,0.8262 +42.96,1.2494999999999998,0.4236,0.8259 +42.968,1.2518,0.4263,0.8255 +42.976,1.2541,0.4289,0.8252 +42.984,1.2564,0.4316,0.8248 +42.992000000000004,1.2588,0.4343,0.8245 +43.0,1.2611,0.437,0.8241 +43.008,1.2636,0.4398,0.8238 +43.016,1.2659,0.4425,0.8234 +43.024,1.2684,0.4453,0.8231 +43.032000000000004,1.2707,0.448,0.8227 +43.04,1.2732,0.4508,0.8224 +43.048,1.2757,0.4536,0.8221 +43.056,1.2781,0.4564,0.8217 +43.064,1.2806,0.4592,0.8214 +43.072,1.2831,0.4621,0.821 +43.08,1.2856,0.4649,0.8207 +43.088,1.2881,0.4678,0.8203 +43.096000000000004,1.2907,0.4707,0.82 +43.104,1.2932000000000001,0.4736,0.8196 +43.112,1.2958,0.4765,0.8193 +43.12,1.2983,0.4794,0.8189 +43.128,1.3009,0.4823,0.8186 +43.136,1.3036,0.4853,0.8183 +43.144,1.3062,0.4883,0.8179 +43.152,1.3088,0.4912,0.8176 +43.160000000000004,1.3114,0.4942,0.8172 +43.168,1.3142,0.4973,0.8169 +43.176,1.3168,0.5003,0.8165 +43.184,1.3195000000000001,0.5033,0.8162 +43.192,1.3222,0.5064,0.8158 +43.2,1.325,0.5095,0.8155 +43.208,1.3277,0.5125,0.8152 +43.216,1.3304,0.5156,0.8148 +43.224000000000004,1.3333,0.5188,0.8145 +43.232,1.336,0.5219,0.8141 +43.24,1.3388,0.525,0.8138 +43.248,1.3416000000000001,0.5282,0.8134 +43.256,1.3445,0.5314,0.8131 +43.264,1.3473,0.5346,0.8127 +43.272,1.3502,0.5378,0.8124 +43.28,1.3531,0.541,0.8121 +43.288000000000004,1.3559,0.5442,0.8117 +43.296,1.3589,0.5475,0.8114 +43.304,1.3618000000000001,0.5508,0.811 +43.312,1.3648,0.5541,0.8107 +43.32,1.3677000000000001,0.5574,0.8103 +43.328,1.3707,0.5607,0.81 +43.336,1.3736,0.564,0.8096 +43.344,1.3767,0.5674,0.8093 +43.352000000000004,1.3797000000000001,0.5707,0.809 +43.36,1.3827,0.5741,0.8086 +43.368,1.3858000000000001,0.5775,0.8083 +43.376,1.3887999999999998,0.5809,0.8079 +43.384,1.3919000000000001,0.5843,0.8076 +43.392,1.395,0.5878,0.8072 +43.4,1.3981,0.5912,0.8069 +43.408,1.4013,0.5947,0.8066 +43.416000000000004,1.4043999999999999,0.5982,0.8062 +43.424,1.4076,0.6017,0.8059 +43.432,1.4106999999999998,0.6052,0.8055 +43.44,1.4140000000000001,0.6088,0.8052 +43.448,1.4171,0.6123,0.8048 +43.456,1.4203999999999999,0.6159,0.8045 +43.464,1.4237000000000002,0.6195,0.8042 +43.472,1.4268999999999998,0.6231,0.8038 +43.480000000000004,1.4302000000000001,0.6267,0.8035 +43.488,1.4335,0.6304,0.8031 +43.496,1.4367999999999999,0.634,0.8028 +43.504,1.4401000000000002,0.6377,0.8024 +43.512,1.4435,0.6414,0.8021 +43.52,1.4468999999999999,0.6451,0.8018 +43.528,1.4502000000000002,0.6488,0.8014 +43.536,1.4537,0.6526,0.8011 +43.544000000000004,1.4569999999999999,0.6563,0.8007 +43.552,1.4605000000000001,0.6601,0.8004 +43.56,1.4639000000000002,0.6639,0.8 +43.568,1.4674,0.6677,0.7997 +43.576,1.4708999999999999,0.6715,0.7994 +43.584,1.4744000000000002,0.6754,0.799 +43.592,1.4779,0.6792,0.7987 +43.6,1.4814,0.6831,0.7983 +43.608000000000004,1.485,0.687,0.798 +43.616,1.4885,0.6909,0.7976 +43.624,1.4922,0.6949,0.7973 +43.632,1.4958,0.6988,0.797 +43.64,1.4994,0.7028,0.7966 +43.648,1.5030999999999999,0.7068,0.7963 +43.656,1.5066000000000002,0.7107,0.7959 +43.664,1.5104,0.7148,0.7956 +43.672000000000004,1.5141,0.7188,0.7953 +43.68,1.5178,0.7229,0.7949 +43.688,1.5215,0.7269,0.7946 +43.696,1.5252,0.731,0.7942 +43.704,1.529,0.7351,0.7939 +43.712,1.5328,0.7392,0.7936 +43.72,1.5366,0.7434,0.7932 +43.728,1.5404,0.7475,0.7929 +43.736000000000004,1.5442,0.7517,0.7925 +43.744,1.5481,0.7559,0.7922 +43.752,1.5518999999999998,0.7601,0.7918 +43.76,1.5558999999999998,0.7644,0.7915 +43.768,1.5598,0.7686,0.7912 +43.776,1.5636999999999999,0.7729,0.7908 +43.784,1.5676999999999999,0.7772,0.7905 +43.792,1.5716,0.7815,0.7901 +43.800000000000004,1.5756000000000001,0.7858,0.7898 +43.808,1.5796000000000001,0.7901,0.7895 +43.816,1.5836000000000001,0.7945,0.7891 +43.824,1.5877,0.7989,0.7888 +43.832,1.5916000000000001,0.8032,0.7884 +43.84,1.5958,0.8077,0.7881 +43.848,1.5998999999999999,0.8121,0.7878 +43.856,1.6038999999999999,0.8165,0.7874 +43.864000000000004,1.6080999999999999,0.821,0.7871 +43.872,1.6122,0.8255,0.7867 +43.88,1.6164,0.83,0.7864 +43.888,1.6206,0.8345,0.7861 +43.896,1.6248,0.8391,0.7857 +43.904,1.629,0.8436,0.7854 +43.912,1.6332,0.8482,0.785 +43.92,1.6375,0.8528,0.7847 +43.928000000000004,1.6418,0.8574,0.7844 +43.936,1.6461000000000001,0.8621,0.784 +43.944,1.6503999999999999,0.8667,0.7837 +43.952,1.6547,0.8714,0.7833 +43.96,1.6591,0.8761,0.783 +43.968,1.6635,0.8808,0.7827 +43.976,1.6678,0.8855,0.7823 +43.984,1.6723,0.8903,0.782 +43.992000000000004,1.6768,0.8951,0.7817 +44.0,1.6811,0.8998,0.7813 +44.008,1.6857,0.9047,0.781 +44.016,1.6901,0.9095,0.7806 +44.024,1.6945999999999999,0.9143,0.7803 +44.032000000000004,1.6992,0.9192,0.78 +44.04,1.7037,0.9241,0.7796 +44.048,1.7083,0.929,0.7793 +44.056,1.7128,0.9339,0.7789 +44.064,1.7174999999999998,0.9389,0.7786 +44.072,1.7221,0.9438,0.7783 +44.08,1.7267000000000001,0.9488,0.7779 +44.088,1.7313999999999998,0.9538,0.7776 +44.096000000000004,1.736,0.9588,0.7772 +44.104,1.7408000000000001,0.9639,0.7769 +44.112,1.7454999999999998,0.9689,0.7766 +44.12,1.7502,0.974,0.7762 +44.128,1.755,0.9791,0.7759 +44.136,1.7597999999999998,0.9842,0.7756 +44.144,1.7646,0.9894,0.7752 +44.152,1.7694,0.9945,0.7749 +44.160000000000004,1.7742,0.9997,0.7745 +44.168,1.7791,1.0049,0.7742 +44.176,1.784,1.0101,0.7739 +44.184,1.7889,1.0154,0.7735 +44.192,1.7938,1.0206,0.7732 +44.2,1.7988,1.0259,0.7729 +44.208,1.8036999999999999,1.0312,0.7725 +44.216,1.8087,1.0365,0.7722 +44.224000000000004,1.8137,1.0419,0.7718 +44.232,1.8186999999999998,1.0472,0.7715 +44.24,1.8237999999999999,1.0526,0.7712 +44.248,1.8288000000000002,1.058,0.7708 +44.256,1.8338999999999999,1.0634,0.7705 +44.264,1.8391,1.0689,0.7702 +44.272,1.8441,1.0743,0.7698 +44.28,1.8493,1.0798,0.7695 +44.288000000000004,1.8544,1.0853,0.7691 +44.296,1.8596,1.0908,0.7688 +44.304,1.8649,1.0964,0.7685 +44.312,1.87,1.1019,0.7681 +44.32,1.8753,1.1075,0.7678 +44.328,1.8805999999999998,1.1131,0.7675 +44.336,1.8858000000000001,1.1187,0.7671 +44.344,1.8912,1.1244,0.7668 +44.352000000000004,1.8964999999999999,1.13,0.7665 +44.36,1.9018,1.1357,0.7661 +44.368,1.9072,1.1414,0.7658 +44.376,1.9125999999999999,1.1472,0.7654 +44.384,1.9180000000000001,1.1529,0.7651 +44.392,1.9235000000000002,1.1587,0.7648 +44.4,1.9289,1.1645,0.7644 +44.408,1.9344,1.1703,0.7641 +44.416000000000004,1.9399,1.1761,0.7638 +44.424,1.9453,1.1819,0.7634 +44.432,1.9508999999999999,1.1878,0.7631 +44.44,1.9565000000000001,1.1937,0.7628 +44.448,1.962,1.1996,0.7624 +44.456,1.9676,1.2055,0.7621 +44.464,1.9733,1.2115,0.7618 +44.472,1.9788999999999999,1.2175,0.7614 +44.480000000000004,1.9845000000000002,1.2234,0.7611 +44.488,1.9902000000000002,1.2295,0.7607 +44.496,1.9959,1.2355,0.7604 +44.504,2.0016,1.2415,0.7601 +44.512,2.0073,1.2476,0.7597 +44.52,2.0131,1.2537,0.7594 +44.528,2.0189,1.2598,0.7591 +44.536,2.0247,1.266,0.7587 +44.544000000000004,2.0305,1.2721,0.7584 +44.552,2.0364,1.2783,0.7581 +44.56,2.0422000000000002,1.2845,0.7577 +44.568,2.0481,1.2907,0.7574 +44.576,2.0541,1.297,0.7571 +44.584,2.0599,1.3032,0.7567 +44.592,2.0659,1.3095,0.7564 +44.6,2.0719000000000003,1.3158,0.7561 +44.608000000000004,2.0779,1.3222,0.7557 +44.616,2.0839,1.3285,0.7554 +44.624,2.09,1.3349,0.7551 +44.632,2.096,1.3413,0.7547 +44.64,2.1021,1.3477,0.7544 +44.648,2.1081000000000003,1.3541,0.754 +44.656,2.1143,1.3606,0.7537 +44.664,2.1204,1.367,0.7534 +44.672000000000004,2.1265,1.3735,0.753 +44.68,2.1327,1.38,0.7527 +44.688,2.1390000000000002,1.3866,0.7524 +44.696,2.1451000000000002,1.3931,0.752 +44.704,2.1513999999999998,1.3997,0.7517 +44.712,2.1577,1.4063,0.7514 +44.72,2.1639,1.4129,0.751 +44.728,2.1703,1.4196,0.7507 +44.736000000000004,2.1765999999999996,1.4262,0.7504 +44.744,2.1829,1.4329,0.75 +44.752,2.1893000000000002,1.4396,0.7497 +44.76,2.1957999999999998,1.4464,0.7494 +44.768,2.2021,1.4531,0.749 +44.776,2.2086,1.4599,0.7487 +44.784,2.2150999999999996,1.4667,0.7484 +44.792,2.2215,1.4735,0.748 +44.800000000000004,2.2279999999999998,1.4803,0.7477 +44.808,2.2346,1.4872,0.7474 +44.816,2.241,1.494,0.747 +44.824,2.2476,1.5009,0.7467 +44.832,2.2542,1.5078,0.7464 +44.84,2.2607999999999997,1.5148,0.746 +44.848,2.2674000000000003,1.5217,0.7457 +44.856,2.2741,1.5287,0.7454 +44.864000000000004,2.2807,1.5357,0.745 +44.872,2.2874,1.5427,0.7447 +44.88,2.2942,1.5498,0.7444 +44.888,2.3007999999999997,1.5568,0.744 +44.896,2.3076,1.5639,0.7437 +44.904,2.3144,1.571,0.7434 +44.912,2.3212,1.5782,0.743 +44.92,2.328,1.5853,0.7427 +44.928000000000004,2.3349,1.5925,0.7424 +44.936,2.3418,1.5997,0.7421 +44.944,2.3486000000000002,1.6069,0.7417 +44.952,2.3555,1.6141,0.7414 +44.96,2.3625,1.6214,0.7411 +44.968,2.3693,1.6286,0.7407 +44.976,2.3762999999999996,1.6359,0.7404 +44.984,2.3834,1.6433,0.7401 +44.992000000000004,2.3903,1.6506,0.7397 +45.0,2.3973999999999998,1.658,0.7394 +45.008,2.4044,1.6653,0.7391 +45.016,2.4114,1.6727,0.7387 +45.024,2.4185999999999996,1.6802,0.7384 +45.032000000000004,2.4257,1.6876,0.7381 +45.04,2.4328000000000003,1.6951,0.7377 +45.048,2.4398999999999997,1.7025,0.7374 +45.056,2.4471,1.71,0.7371 +45.064,2.4543,1.7176,0.7367 +45.072,2.4615,1.7251,0.7364 +45.08,2.4688,1.7327,0.7361 +45.088,2.4760999999999997,1.7403,0.7358 +45.096000000000004,2.4833,1.7479,0.7354 +45.104,2.4906,1.7555,0.7351 +45.112,2.498,1.7632,0.7348 +45.12,2.5052,1.7708,0.7344 +45.128,2.5126,1.7785,0.7341 +45.136,2.52,1.7862,0.7338 +45.144,2.5274,1.794,0.7334 +45.152,2.5348,1.8017,0.7331 +45.160000000000004,2.5423,1.8095,0.7328 +45.168,2.5497,1.8173,0.7324 +45.176,2.5572,1.8251,0.7321 +45.184,2.5647,1.8329,0.7318 +45.192,2.5723000000000003,1.8408,0.7315 +45.2,2.5798,1.8487,0.7311 +45.208,2.5874,1.8566,0.7308 +45.216,2.595,1.8645,0.7305 +45.224000000000004,2.6025,1.8724,0.7301 +45.232,2.6102,1.8804,0.7298 +45.24,2.6179,1.8884,0.7295 +45.248,2.6255,1.8964,0.7291 +45.256,2.6332,1.9044,0.7288 +45.264,2.6409000000000002,1.9124,0.7285 +45.272,2.6487,1.9205,0.7282 +45.28,2.6564,1.9286,0.7278 +45.288000000000004,2.6642,1.9367,0.7275 +45.296,2.672,1.9448,0.7272 +45.304,2.6797,1.9529,0.7268 +45.312,2.6876,1.9611,0.7265 +45.32,2.6955,1.9693,0.7262 +45.328,2.7033,1.9775,0.7258 +45.336,2.7112,1.9857,0.7255 +45.344,2.7192,1.994,0.7252 +45.352000000000004,2.7271,2.0022,0.7249 +45.36,2.735,2.0105,0.7245 +45.368,2.7430000000000003,2.0188,0.7242 +45.376,2.751,2.0271,0.7239 +45.384,2.759,2.0355,0.7235 +45.392,2.767,2.0438,0.7232 +45.4,2.7751,2.0522,0.7229 +45.408,2.7832,2.0606,0.7226 +45.416000000000004,2.7912,2.069,0.7222 +45.424,2.7994000000000003,2.0775,0.7219 +45.432,2.8075,2.0859,0.7216 +45.44,2.8156,2.0944,0.7212 +45.448,2.8238,2.1029,0.7209 +45.456,2.8320000000000003,2.1114,0.7206 +45.464,2.8403,2.12,0.7203 +45.472,2.8484,2.1285,0.7199 +45.480000000000004,2.8567,2.1371,0.7196 +45.488,2.865,2.1457,0.7193 +45.496,2.8732,2.1543,0.7189 +45.504,2.8815,2.1629,0.7186 +45.512,2.8899000000000004,2.1716,0.7183 +45.52,2.8983,2.1803,0.718 +45.528,2.9066,2.189,0.7176 +45.536,2.915,2.1977,0.7173 +45.544000000000004,2.9234,2.2064,0.717 +45.552,2.9318999999999997,2.2152,0.7167 +45.56,2.9402,2.2239,0.7163 +45.568,2.9486999999999997,2.2327,0.716 +45.576,2.9572,2.2415,0.7157 +45.584,2.9656000000000002,2.2503,0.7153 +45.592,2.9741999999999997,2.2592,0.715 +45.6,2.9827,2.268,0.7147 +45.608000000000004,2.9913,2.2769,0.7144 +45.616,2.9998,2.2858,0.714 +45.624,3.0084,2.2947,0.7137 +45.632,3.0171,2.3037,0.7134 +45.64,3.0257,2.3126,0.7131 +45.648,3.0343,2.3216,0.7127 +45.656,3.043,2.3306,0.7124 +45.664,3.0517,2.3396,0.7121 +45.672000000000004,3.0603,2.3486,0.7117 +45.68,3.0690999999999997,2.3577,0.7114 +45.688,3.0778,2.3667,0.7111 +45.696,3.0866,2.3758,0.7108 +45.704,3.0953,2.3849,0.7104 +45.712,3.1041,2.394,0.7101 +45.72,3.113,2.4032,0.7098 +45.728,3.1218000000000004,2.4123,0.7095 +45.736000000000004,3.1306,2.4215,0.7091 +45.744,3.1395,2.4307,0.7088 +45.752,3.1484,2.4399,0.7085 +45.76,3.1573,2.4491,0.7082 +45.768,3.1661,2.4583,0.7078 +45.776,3.1751,2.4676,0.7075 +45.784,3.1841,2.4769,0.7072 +45.792,3.193,2.4861,0.7069 +45.800000000000004,3.202,2.4955,0.7065 +45.808,3.211,2.5048,0.7062 +45.816,3.2199999999999998,2.5141,0.7059 +45.824,3.2291,2.5235,0.7056 +45.832,3.2381,2.5329,0.7052 +45.84,3.2472,2.5423,0.7049 +45.848,3.2563,2.5517,0.7046 +45.856,3.2653000000000003,2.5611,0.7042 +45.864000000000004,3.2744,2.5705,0.7039 +45.872,3.2836,2.58,0.7036 +45.88,3.2928,2.5895,0.7033 +45.888,3.3019000000000003,2.599,0.7029 +45.896,3.3110999999999997,2.6085,0.7026 +45.904,3.3203,2.618,0.7023 +45.912,3.3295,2.6275,0.702 +45.92,3.3387000000000002,2.6371,0.7016 +45.928000000000004,3.348,2.6467,0.7013 +45.936,3.3572,2.6562,0.701 +45.944,3.3665,2.6658,0.7007 +45.952,3.3758,2.6755,0.7003 +45.96,3.3850999999999996,2.6851,0.7 +45.968,3.3944,2.6947,0.6997 +45.976,3.4038000000000004,2.7044,0.6994 +45.984,3.4132000000000002,2.7141,0.6991 +45.992000000000004,3.4225000000000003,2.7238,0.6987 +46.0,3.4318999999999997,2.7335,0.6984 +46.008,3.4413,2.7432,0.6981 +46.016,3.4508,2.753,0.6978 +46.024,3.4601,2.7627,0.6974 +46.032000000000004,3.4696,2.7725,0.6971 +46.04,3.4791000000000003,2.7823,0.6968 +46.048,3.4886,2.7921,0.6965 +46.056000000000004,3.4979999999999998,2.8019,0.6961 +46.064,3.5075000000000003,2.8117,0.6958 +46.072,3.5171,2.8216,0.6955 +46.08,3.5266,2.8314,0.6952 +46.088,3.5361,2.8413,0.6948 +46.096000000000004,3.5457,2.8512,0.6945 +46.104,3.5553,2.8611,0.6942 +46.112,3.5648999999999997,2.871,0.6939 +46.12,3.5744,2.8809,0.6935 +46.128,3.5841,2.8909,0.6932 +46.136,3.5936999999999997,2.9008,0.6929 +46.144,3.6034,2.9108,0.6926 +46.152,3.6130999999999998,2.9208,0.6923 +46.160000000000004,3.6227,2.9308,0.6919 +46.168,3.6323999999999996,2.9408,0.6916 +46.176,3.6421,2.9508,0.6913 +46.184,3.6519,2.9609,0.691 +46.192,3.6614999999999998,2.9709,0.6906 +46.2,3.6713,2.981,0.6903 +46.208,3.681,2.991,0.69 +46.216,3.6908000000000003,3.0011,0.6897 +46.224000000000004,3.7005,3.0112,0.6893 +46.232,3.7104,3.0214,0.689 +46.24,3.7201999999999997,3.0315,0.6887 +46.248,3.73,3.0416,0.6884 +46.256,3.7399,3.0518,0.6881 +46.264,3.7496,3.0619,0.6877 +46.272,3.7595,3.0721,0.6874 +46.28,3.7694,3.0823,0.6871 +46.288000000000004,3.7792999999999997,3.0925,0.6868 +46.296,3.7891,3.1027,0.6864 +46.304,3.799,3.1129,0.6861 +46.312,3.8089,3.1231,0.6858 +46.32,3.8189,3.1334,0.6855 +46.328,3.8288,3.1436,0.6852 +46.336,3.8387000000000002,3.1539,0.6848 +46.344,3.8487,3.1642,0.6845 +46.352000000000004,3.8587000000000002,3.1745,0.6842 +46.36,3.8687,3.1848,0.6839 +46.368,3.8787000000000003,3.1951,0.6836 +46.376,3.8886000000000003,3.2054,0.6832 +46.384,3.8986,3.2157,0.6829 +46.392,3.9087,3.2261,0.6826 +46.4,3.9187000000000003,3.2364,0.6823 +46.408,3.9287,3.2468,0.6819 +46.416000000000004,3.9388,3.2572,0.6816 +46.424,3.9488000000000003,3.2675,0.6813 +46.432,3.9589,3.2779,0.681 +46.44,3.969,3.2883,0.6807 +46.448,3.9791,3.2988,0.6803 +46.456,3.9892000000000003,3.3092,0.68 +46.464,3.9993,3.3196,0.6797 +46.472,4.0094,3.33,0.6794 +46.480000000000004,4.0196000000000005,3.3405,0.6791 +46.488,4.0296,3.3509,0.6787 +46.496,4.0398000000000005,3.3614,0.6784 +46.504,4.05,3.3719,0.6781 +46.512,4.0602,3.3824,0.6778 +46.52,4.0704,3.3929,0.6775 +46.528,4.0805,3.4034,0.6771 +46.536,4.0907,3.4139,0.6768 +46.544000000000004,4.1009,3.4244,0.6765 +46.552,4.1110999999999995,3.4349,0.6762 +46.56,4.1213,3.4454,0.6759 +46.568,4.1315,3.456,0.6755 +46.576,4.1417,3.4665,0.6752 +46.584,4.152,3.4771,0.6749 +46.592,4.1622,3.4876,0.6746 +46.6,4.1725,3.4982,0.6743 +46.608000000000004,4.1827,3.5088,0.6739 +46.616,4.193,3.5194,0.6736 +46.624,4.2033,3.53,0.6733 +46.632,4.2135,3.5405,0.673 +46.64,4.2239,3.5512,0.6727 +46.648,4.2341,3.5618,0.6723 +46.656,4.2444,3.5724,0.672 +46.664,4.2547,3.583,0.6717 +46.672000000000004,4.265,3.5936,0.6714 +46.68,4.275399999999999,3.6043,0.6711 +46.688,4.2856,3.6149,0.6707 +46.696,4.2959000000000005,3.6255,0.6704 +46.704,4.3063,3.6362,0.6701 +46.712,4.3167,3.6469,0.6698 +46.72,4.327,3.6575,0.6695 +46.728,4.3373,3.6682,0.6691 +46.736000000000004,4.3476,3.6788,0.6688 +46.744,4.358,3.6895,0.6685 +46.752,4.3684,3.7002,0.6682 +46.76,4.3788,3.7109,0.6679 +46.768,4.3892,3.7216,0.6676 +46.776,4.3995,3.7323,0.6672 +46.784,4.4099,3.743,0.6669 +46.792,4.4203,3.7537,0.6666 +46.800000000000004,4.4307,3.7644,0.6663 +46.808,4.4411000000000005,3.7751,0.666 +46.816,4.4514,3.7858,0.6656 +46.824,4.4618,3.7965,0.6653 +46.832,4.4722,3.8072,0.665 +46.84,4.4827,3.818,0.6647 +46.848,4.4931,3.8287,0.6644 +46.856,4.5035,3.8394,0.6641 +46.864000000000004,4.5138,3.8501,0.6637 +46.872,4.5243,3.8609,0.6634 +46.88,4.5347,3.8716,0.6631 +46.888,4.5452,3.8824,0.6628 +46.896,4.5556,3.8931,0.6625 +46.904,4.566,3.9038,0.6622 +46.912,4.5764000000000005,3.9146,0.6618 +46.92,4.5868,3.9253,0.6615 +46.928000000000004,4.597300000000001,3.9361,0.6612 +46.936,4.6077,3.9468,0.6609 +46.944,4.6182,3.9576,0.6606 +46.952,4.6285,3.9683,0.6602 +46.96,4.639,3.9791,0.6599 +46.968,4.6494,3.9898,0.6596 +46.976,4.6599,4.0006,0.6593 +46.984,4.6703,4.0113,0.659 +46.992000000000004,4.6808,4.0221,0.6587 +47.0,4.6911,4.0328,0.6583 +47.008,4.7016,4.0436,0.658 +47.016,4.7121,4.0544,0.6577 +47.024,4.7225,4.0651,0.6574 +47.032000000000004,4.733,4.0759,0.6571 +47.04,4.743399999999999,4.0866,0.6568 +47.048,4.7538,4.0974,0.6564 +47.056000000000004,4.764200000000001,4.1081,0.6561 +47.064,4.7747,4.1189,0.6558 +47.072,4.7851,4.1296,0.6555 +47.08,4.795599999999999,4.1404,0.6552 +47.088,4.805999999999999,4.1511,0.6549 +47.096000000000004,4.8165000000000004,4.1619,0.6546 +47.104,4.8268,4.1726,0.6542 +47.112,4.8372,4.1833,0.6539 +47.12,4.8477,4.1941,0.6536 +47.128,4.858099999999999,4.2048,0.6533 +47.136,4.868499999999999,4.2155,0.653 +47.144,4.8790000000000004,4.2263,0.6527 +47.152,4.8893,4.237,0.6523 +47.160000000000004,4.8997,4.2477,0.652 +47.168,4.9101,4.2584,0.6517 +47.176,4.920599999999999,4.2692,0.6514 +47.184,4.930999999999999,4.2799,0.6511 +47.192,4.941400000000001,4.2906,0.6508 +47.2,4.951700000000001,4.3013,0.6504 +47.208,4.9621,4.312,0.6501 +47.216,4.9725,4.3227,0.6498 +47.224000000000004,4.9829,4.3334,0.6495 +47.232,4.9933,4.3441,0.6492 +47.24,5.0037,4.3548,0.6489 +47.248,5.0141,4.3655,0.6486 +47.256,5.0243,4.3761,0.6482 +47.264,5.0347,4.3868,0.6479 +47.272,5.0451,4.3975,0.6476 +47.28,5.055400000000001,4.4081,0.6473 +47.288000000000004,5.0658,4.4188,0.647 +47.296,5.0761,4.4294,0.6467 +47.304,5.0865,4.4401,0.6464 +47.312,5.0967,4.4507,0.646 +47.32,5.106999999999999,4.4613,0.6457 +47.328,5.1174,4.472,0.6454 +47.336,5.1277,4.4826,0.6451 +47.344,5.138,4.4932,0.6448 +47.352000000000004,5.1483,4.5038,0.6445 +47.36,5.1586,4.5144,0.6442 +47.368,5.1688,4.525,0.6438 +47.376,5.1791,4.5356,0.6435 +47.384,5.1893,4.5461,0.6432 +47.392,5.1996,4.5567,0.6429 +47.4,5.2099,4.5673,0.6426 +47.408,5.2200999999999995,4.5778,0.6423 +47.416000000000004,5.2304,4.5884,0.642 +47.424,5.240500000000001,4.5989,0.6416 +47.432,5.2507,4.6094,0.6413 +47.44,5.2609,4.6199,0.641 +47.448,5.271199999999999,4.6305,0.6407 +47.456,5.2814,4.641,0.6404 +47.464,5.2915,4.6514,0.6401 +47.472,5.3017,4.6619,0.6398 +47.480000000000004,5.3119,4.6724,0.6395 +47.488,5.322,4.6829,0.6391 +47.496,5.3321,4.6933,0.6388 +47.504,5.3423,4.7038,0.6385 +47.512,5.3524,4.7142,0.6382 +47.52,5.3625,4.7246,0.6379 +47.528,5.3726,4.735,0.6376 +47.536,5.3827,4.7454,0.6373 +47.544000000000004,5.392799999999999,4.7558,0.637 +47.552,5.402800000000001,4.7662,0.6366 +47.56,5.412800000000001,4.7765,0.6363 +47.568,5.4229,4.7869,0.636 +47.576,5.4329,4.7972,0.6357 +47.584,5.443,4.8076,0.6354 +47.592,5.452999999999999,4.8179,0.6351 +47.6,5.463,4.8282,0.6348 +47.608000000000004,5.473,4.8385,0.6345 +47.616,5.4829,4.8488,0.6341 +47.624,5.4928,4.859,0.6338 +47.632,5.5028,4.8693,0.6335 +47.64,5.512700000000001,4.8795,0.6332 +47.648,5.5227,4.8898,0.6329 +47.656,5.5326,4.9,0.6326 +47.664,5.5424999999999995,4.9102,0.6323 +47.672000000000004,5.5524,4.9204,0.632 +47.68,5.5621,4.9305,0.6316 +47.688,5.571999999999999,4.9407,0.6313 +47.696,5.5819,4.9509,0.631 +47.704,5.5917,4.961,0.6307 +47.712,5.6015,4.9711,0.6304 +47.72,5.6113,4.9812,0.6301 +47.728,5.6211,4.9913,0.6298 +47.736000000000004,5.6309000000000005,5.0014,0.6295 +47.744,5.6406,5.0114,0.6292 +47.752,5.6503,5.0215,0.6288 +47.76,5.66,5.0315,0.6285 +47.768,5.6697,5.0415,0.6282 +47.776,5.6794,5.0515,0.6279 +47.784,5.6891,5.0615,0.6276 +47.792,5.6987,5.0714,0.6273 +47.800000000000004,5.7084,5.0814,0.627 +47.808,5.718,5.0913,0.6267 +47.816,5.727600000000001,5.1012,0.6264 +47.824,5.7372000000000005,5.1111,0.6261 +47.832,5.746700000000001,5.121,0.6257 +47.84,5.7562999999999995,5.1309,0.6254 +47.848,5.7658,5.1407,0.6251 +47.856,5.7753,5.1505,0.6248 +47.864000000000004,5.784800000000001,5.1603,0.6245 +47.872,5.7943,5.1701,0.6242 +47.88,5.8038,5.1799,0.6239 +47.888,5.8132,5.1896,0.6236 +47.896,5.822699999999999,5.1994,0.6233 +47.904,5.8321000000000005,5.2091,0.623 +47.912,5.8414,5.2188,0.6226 +47.92,5.8508000000000004,5.2285,0.6223 +47.928000000000004,5.8601,5.2381,0.622 +47.936,5.8694999999999995,5.2478,0.6217 +47.944,5.8788,5.2574,0.6214 +47.952,5.8881000000000006,5.267,0.6211 +47.96,5.8973,5.2765,0.6208 +47.968,5.9066,5.2861,0.6205 +47.976,5.9158,5.2956,0.6202 +47.984,5.9251000000000005,5.3052,0.6199 +47.992000000000004,5.934200000000001,5.3147,0.6195 +48.0,5.9433,5.3241,0.6192 +48.008,5.9525,5.3336,0.6189 +48.016,5.9616,5.343,0.6186 +48.024,5.9707,5.3524,0.6183 +48.032000000000004,5.9798,5.3618,0.618 +48.04,5.9889,5.3712,0.6177 +48.048,5.9979,5.3805,0.6174 +48.056000000000004,6.007,5.3899,0.6171 +48.064,6.016,5.3992,0.6168 +48.072,6.024900000000001,5.4084,0.6165 +48.08,6.0339,5.4177,0.6162 +48.088,6.0427,5.4269,0.6158 +48.096000000000004,6.0517,5.4362,0.6155 +48.104,6.060499999999999,5.4453,0.6152 +48.112,6.0694,5.4545,0.6149 +48.120000000000005,6.0782,5.4636,0.6146 +48.128,6.0871,5.4728,0.6143 +48.136,6.0959,5.4819,0.614 +48.144,6.1046,5.4909,0.6137 +48.152,6.1134,5.5,0.6134 +48.160000000000004,6.1221000000000005,5.509,0.6131 +48.168,6.1308,5.518,0.6128 +48.176,6.1395,5.527,0.6125 +48.184,6.148,5.5359,0.6121 +48.192,6.1566,5.5448,0.6118 +48.2,6.1652000000000005,5.5537,0.6115 +48.208,6.1738,5.5626,0.6112 +48.216,6.1824,5.5715,0.6109 +48.224000000000004,6.1909,5.5803,0.6106 +48.232,6.1994,5.5891,0.6103 +48.24,6.2079,5.5979,0.61 +48.248,6.2163,5.6066,0.6097 +48.256,6.2247,5.6153,0.6094 +48.264,6.233099999999999,5.624,0.6091 +48.272,6.2415,5.6327,0.6088 +48.28,6.2498000000000005,5.6413,0.6085 +48.288000000000004,6.2581,5.6499,0.6082 +48.296,6.2663,5.6585,0.6078 +48.304,6.2745999999999995,5.6671,0.6075 +48.312,6.2828,5.6756,0.6072 +48.32,6.291,5.6841,0.6069 +48.328,6.2992,5.6926,0.6066 +48.336,6.3073,5.701,0.6063 +48.344,6.3153999999999995,5.7094,0.606 +48.352000000000004,6.3235,5.7178,0.6057 +48.36,6.331600000000001,5.7262,0.6054 +48.368,6.3396,5.7345,0.6051 +48.376,6.3476,5.7428,0.6048 +48.384,6.3556,5.7511,0.6045 +48.392,6.363499999999999,5.7593,0.6042 +48.4,6.3715,5.7676,0.6039 +48.408,6.3794,5.7758,0.6036 +48.416000000000004,6.3872,5.7839,0.6033 +48.424,6.3949,5.792,0.6029 +48.432,6.402699999999999,5.8001,0.6026 +48.44,6.4105,5.8082,0.6023 +48.448,6.418200000000001,5.8162,0.602 +48.456,6.426,5.8243,0.6017 +48.464,6.4336,5.8322,0.6014 +48.472,6.4413,5.8402,0.6011 +48.480000000000004,6.4489,5.8481,0.6008 +48.488,6.4565,5.856,0.6005 +48.496,6.464,5.8638,0.6002 +48.504,6.4716,5.8717,0.5999 +48.512,6.4791,5.8795,0.5996 +48.52,6.4865,5.8872,0.5993 +48.528,6.4939,5.8949,0.599 +48.536,6.5013,5.9026,0.5987 +48.544000000000004,6.5087,5.9103,0.5984 +48.552,6.516,5.9179,0.5981 +48.56,6.523300000000001,5.9255,0.5978 +48.568,6.5306,5.9331,0.5975 +48.576,6.5378,5.9406,0.5972 +48.584,6.5449,5.9481,0.5968 +48.592,6.552099999999999,5.9556,0.5965 +48.6,6.5592999999999995,5.9631,0.5962 +48.608000000000004,6.566400000000001,5.9705,0.5959 +48.616,6.5734,5.9778,0.5956 +48.624,6.5805,5.9852,0.5953 +48.632,6.5874999999999995,5.9925,0.595 +48.64,6.5944,5.9997,0.5947 +48.648,6.6014,6.007,0.5944 +48.656,6.6083,6.0142,0.5941 +48.664,6.6151,6.0213,0.5938 +48.672000000000004,6.622,6.0285,0.5935 +48.68,6.6288,6.0356,0.5932 +48.688,6.6355,6.0426,0.5929 +48.696,6.6423,6.0497,0.5926 +48.704,6.649,6.0567,0.5923 +48.712,6.6556,6.0636,0.592 +48.72,6.6623,6.0706,0.5917 +48.728,6.6688,6.0774,0.5914 +48.736000000000004,6.6754,6.0843,0.5911 +48.744,6.6819,6.0911,0.5908 +48.752,6.6884,6.0979,0.5905 +48.76,6.6948,6.1046,0.5902 +48.768,6.7013,6.1114,0.5899 +48.776,6.7076,6.118,0.5896 +48.784,6.7139999999999995,6.1247,0.5893 +48.792,6.7203,6.1313,0.589 +48.800000000000004,6.7264,6.1378,0.5886 +48.808,6.7327,6.1444,0.5883 +48.816,6.7389,6.1509,0.588 +48.824,6.745,6.1573,0.5877 +48.832,6.7511,6.1637,0.5874 +48.84,6.757199999999999,6.1701,0.5871 +48.848,6.7633,6.1765,0.5868 +48.856,6.7693,6.1828,0.5865 +48.864000000000004,6.7752,6.189,0.5862 +48.872,6.781199999999999,6.1953,0.5859 +48.88,6.787100000000001,6.2015,0.5856 +48.888,6.7929,6.2076,0.5853 +48.896,6.7987,6.2137,0.585 +48.904,6.8045,6.2198,0.5847 +48.912,6.8102,6.2258,0.5844 +48.92,6.8159,6.2318,0.5841 +48.928000000000004,6.8216,6.2378,0.5838 +48.936,6.8271999999999995,6.2437,0.5835 +48.944,6.8328,6.2496,0.5832 +48.952,6.8384,6.2555,0.5829 +48.96,6.8439000000000005,6.2613,0.5826 +48.968,6.8493,6.267,0.5823 +48.976,6.8548,6.2728,0.582 +48.984,6.8602,6.2785,0.5817 +48.992000000000004,6.8655,6.2841,0.5814 +49.0,6.8708,6.2897,0.5811 +49.008,6.8761,6.2953,0.5808 +49.016,6.8812999999999995,6.3008,0.5805 +49.024,6.8865,6.3063,0.5802 +49.032000000000004,6.8917,6.3118,0.5799 +49.04,6.8968,6.3172,0.5796 +49.048,6.9018,6.3225,0.5793 +49.056000000000004,6.906899999999999,6.3279,0.579 +49.064,6.911899999999999,6.3332,0.5787 +49.072,6.9168,6.3384,0.5784 +49.08,6.9217,6.3436,0.5781 +49.088,6.9266,6.3488,0.5778 +49.096000000000004,6.9314,6.3539,0.5775 +49.104,6.9362,6.359,0.5772 +49.112,6.9409,6.364,0.5769 +49.120000000000005,6.9456,6.369,0.5766 +49.128,6.9502999999999995,6.374,0.5763 +49.136,6.954899999999999,6.3789,0.576 +49.144,6.9595,6.3838,0.5757 +49.152,6.964,6.3886,0.5754 +49.160000000000004,6.9685,6.3934,0.5751 +49.168,6.973,6.3982,0.5748 +49.176,6.977399999999999,6.4029,0.5745 +49.184,6.981800000000001,6.4076,0.5742 +49.192,6.9861,6.4122,0.5739 +49.2,6.9904,6.4168,0.5736 +49.208,6.994599999999999,6.4213,0.5733 +49.216,6.998799999999999,6.4258,0.573 +49.224000000000004,7.003,6.4303,0.5727 +49.232,7.0071,6.4347,0.5724 +49.24,7.0112,6.4391,0.5721 +49.248,7.015199999999999,6.4434,0.5718 +49.256,7.0192000000000005,6.4477,0.5715 +49.264,7.0231,6.4519,0.5712 +49.272,7.027,6.4561,0.5709 +49.28,7.0309,6.4603,0.5706 +49.288000000000004,7.034700000000001,6.4644,0.5703 +49.296,7.0385,6.4685,0.57 +49.304,7.0422,6.4725,0.5697 +49.312,7.0459,6.4765,0.5694 +49.32,7.0495,6.4804,0.5691 +49.328,7.053100000000001,6.4843,0.5688 +49.336,7.0567,6.4882,0.5685 +49.344,7.0602,6.492,0.5682 +49.352000000000004,7.0636,6.4957,0.5679 +49.36,7.066999999999999,6.4994,0.5676 +49.368,7.0704,6.5031,0.5673 +49.376,7.0738,6.5068,0.567 +49.384,7.077,6.5103,0.5667 +49.392,7.080299999999999,6.5139,0.5664 +49.4,7.083500000000001,6.5174,0.5661 +49.408,7.086600000000001,6.5208,0.5658 +49.416000000000004,7.089700000000001,6.5242,0.5655 +49.424,7.0927999999999995,6.5276,0.5652 +49.432,7.0958,6.5309,0.5649 +49.44,7.098800000000001,6.5342,0.5646 +49.448,7.1017,6.5374,0.5643 +49.456,7.1046000000000005,6.5406,0.564 +49.464,7.1075,6.5438,0.5637 +49.472,7.1103,6.5469,0.5634 +49.480000000000004,7.113,6.5499,0.5631 +49.488,7.1157,6.5529,0.5628 +49.496,7.1184,6.5559,0.5625 +49.504,7.1209999999999996,6.5588,0.5622 +49.512,7.1235,6.5616,0.5619 +49.52,7.1261,6.5645,0.5616 +49.528,7.1286000000000005,6.5673,0.5613 +49.536,7.1311,6.57,0.5611 +49.544000000000004,7.1335,6.5727,0.5608 +49.552,7.135800000000001,6.5753,0.5605 +49.56,7.1381,6.5779,0.5602 +49.568,7.1404,6.5805,0.5599 +49.576,7.1426,6.583,0.5596 +49.584,7.1447,6.5854,0.5593 +49.592,7.1468,6.5878,0.559 +49.6,7.1489,6.5902,0.5587 +49.608000000000004,7.1509,6.5925,0.5584 +49.616,7.152900000000001,6.5948,0.5581 +49.624,7.154800000000001,6.597,0.5578 +49.632,7.1567,6.5992,0.5575 +49.64,7.1585,6.6013,0.5572 +49.648,7.160299999999999,6.6034,0.5569 +49.656,7.162100000000001,6.6055,0.5566 +49.664,7.1638,6.6075,0.5563 +49.672000000000004,7.1654,6.6094,0.556 +49.68,7.167,6.6113,0.5557 +49.688,7.1686,6.6132,0.5554 +49.696,7.170100000000001,6.615,0.5551 +49.704,7.1716,6.6168,0.5548 +49.712,7.173,6.6185,0.5545 +49.72,7.1743,6.6201,0.5542 +49.728,7.1757,6.6218,0.5539 +49.736000000000004,7.176900000000001,6.6233,0.5536 +49.744,7.1782,6.6249,0.5533 +49.752,7.1795,6.6264,0.5531 +49.76,7.1806,6.6278,0.5528 +49.768,7.1817,6.6292,0.5525 +49.776,7.1827,6.6305,0.5522 +49.784,7.1837,6.6318,0.5519 +49.792,7.184699999999999,6.6331,0.5516 +49.800000000000004,7.1856,6.6343,0.5513 +49.808,7.1864,6.6354,0.551 +49.816,7.1872,6.6365,0.5507 +49.824,7.188,6.6376,0.5504 +49.832,7.188700000000001,6.6386,0.5501 +49.84,7.1894,6.6396,0.5498 +49.848,7.19,6.6405,0.5495 +49.856,7.1906,6.6414,0.5492 +49.864000000000004,7.1911,6.6422,0.5489 +49.872,7.191599999999999,6.643,0.5486 +49.88,7.192,6.6437,0.5483 +49.888,7.1924,6.6444,0.548 +49.896,7.192699999999999,6.645,0.5477 +49.904,7.193,6.6456,0.5474 +49.912,7.1934000000000005,6.6462,0.5472 +49.92,7.1936,6.6467,0.5469 +49.928000000000004,7.1937,6.6471,0.5466 +49.936,7.1937999999999995,6.6475,0.5463 +49.944,7.1939,6.6479,0.546 +49.952,7.1939,6.6482,0.5457 +49.96,7.1937999999999995,6.6484,0.5454 +49.968,7.1937999999999995,6.6487,0.5451 +49.976,7.1936,6.6488,0.5448 +49.984,7.1934000000000005,6.6489,0.5445 +49.992000000000004,7.1932,6.649,0.5442 +50.0,7.1929,6.649,0.5439 +50.008,7.1926,6.649,0.5436 +50.016,7.192200000000001,6.6489,0.5433 +50.024,7.1918,6.6488,0.543 +50.032000000000004,7.1915,6.6487,0.5428 +50.04,7.190899999999999,6.6484,0.5425 +50.048,7.1904,6.6482,0.5422 +50.056000000000004,7.1898,6.6479,0.5419 +50.064,7.1891,6.6475,0.5416 +50.072,7.1884,6.6471,0.5413 +50.08,7.1877,6.6467,0.541 +50.088,7.1869000000000005,6.6462,0.5407 +50.096000000000004,7.186,6.6456,0.5404 +50.104,7.185099999999999,6.645,0.5401 +50.112,7.1842,6.6444,0.5398 +50.120000000000005,7.1832,6.6437,0.5395 +50.128,7.1822,6.643,0.5392 +50.136,7.1811,6.6422,0.5389 +50.144,7.1800999999999995,6.6414,0.5387 +50.152,7.1789000000000005,6.6405,0.5384 +50.160000000000004,7.1777,6.6396,0.5381 +50.168,7.1764,6.6386,0.5378 +50.176,7.1751,6.6376,0.5375 +50.184,7.1737,6.6365,0.5372 +50.192,7.1723,6.6354,0.5369 +50.2,7.1709,6.6343,0.5366 +50.208,7.1693999999999996,6.6331,0.5363 +50.216,7.1678,6.6318,0.536 +50.224000000000004,7.1662,6.6305,0.5357 +50.232,7.1646,6.6292,0.5354 +50.24,7.1629,6.6278,0.5351 +50.248,7.161300000000001,6.6264,0.5349 +50.256,7.1595,6.6249,0.5346 +50.264,7.1576,6.6233,0.5343 +50.272,7.1558,6.6218,0.534 +50.28,7.1537999999999995,6.6201,0.5337 +50.288000000000004,7.1519,6.6185,0.5334 +50.296,7.1499,6.6168,0.5331 +50.304,7.1478,6.615,0.5328 +50.312,7.1457,6.6132,0.5325 +50.32,7.1434999999999995,6.6113,0.5322 +50.328,7.1413,6.6094,0.5319 +50.336,7.1392,6.6075,0.5317 +50.344,7.1369,6.6055,0.5314 +50.352000000000004,7.1345,6.6034,0.5311 +50.36,7.1321,6.6013,0.5308 +50.368,7.1297,6.5992,0.5305 +50.376,7.1272,6.597,0.5302 +50.384,7.124700000000001,6.5948,0.5299 +50.392,7.1221000000000005,6.5925,0.5296 +50.4,7.1195,6.5902,0.5293 +50.408,7.1168,6.5878,0.529 +50.416000000000004,7.1141,6.5854,0.5287 +50.424,7.1115,6.583,0.5285 +50.432,7.1087,6.5805,0.5282 +50.44,7.1057999999999995,6.5779,0.5279 +50.448,7.1029,6.5753,0.5276 +50.456,7.1000000000000005,6.5727,0.5273 +50.464,7.097,6.57,0.527 +50.472,7.094,6.5673,0.5267 +50.480000000000004,7.0908999999999995,6.5645,0.5264 +50.488,7.0877,6.5616,0.5261 +50.496,7.0846,6.5588,0.5258 +50.504,7.0815,6.5559,0.5256 +50.512,7.0782,6.5529,0.5253 +50.52,7.0749,6.5499,0.525 +50.528,7.0716,6.5469,0.5247 +50.536,7.0682,6.5438,0.5244 +50.544000000000004,7.0647,6.5406,0.5241 +50.552,7.0611999999999995,6.5374,0.5238 +50.56,7.0577000000000005,6.5342,0.5235 +50.568,7.0541,6.5309,0.5232 +50.576,7.050599999999999,6.5276,0.523 +50.584,7.046900000000001,6.5242,0.5227 +50.592,7.043200000000001,6.5208,0.5224 +50.6,7.0395,6.5174,0.5221 +50.608000000000004,7.035699999999999,6.5139,0.5218 +50.616,7.0318,6.5103,0.5215 +50.624,7.0280000000000005,6.5068,0.5212 +50.632,7.024,6.5031,0.5209 +50.64,7.02,6.4994,0.5206 +50.648,7.0161,6.4957,0.5204 +50.656,7.0121,6.492,0.5201 +50.664,7.008,6.4882,0.5198 +50.672000000000004,7.0038,6.4843,0.5195 +50.68,6.9996,6.4804,0.5192 +50.688,6.9954,6.4765,0.5189 +50.696,6.9911,6.4725,0.5186 +50.704,6.9868,6.4685,0.5183 +50.712,6.9825,6.4644,0.5181 +50.72,6.9781,6.4603,0.5178 +50.728,6.9736,6.4561,0.5175 +50.736000000000004,6.9691,6.4519,0.5172 +50.744,6.9646,6.4477,0.5169 +50.752,6.959999999999999,6.4434,0.5166 +50.76,6.9554,6.4391,0.5163 +50.768,6.9507,6.4347,0.516 +50.776,6.9460999999999995,6.4303,0.5158 +50.784,6.9413,6.4258,0.5155 +50.792,6.9365,6.4213,0.5152 +50.800000000000004,6.9317,6.4168,0.5149 +50.808,6.9268,6.4122,0.5146 +50.816,6.921900000000001,6.4076,0.5143 +50.824,6.9169,6.4029,0.514 +50.832,6.9119,6.3982,0.5137 +50.84,6.906899999999999,6.3934,0.5135 +50.848,6.901800000000001,6.3886,0.5132 +50.856,6.8967,6.3838,0.5129 +50.864000000000004,6.8915,6.3789,0.5126 +50.872,6.886299999999999,6.374,0.5123 +50.88,6.881,6.369,0.512 +50.888,6.8757,6.364,0.5117 +50.896,6.8704,6.359,0.5114 +50.904,6.8651,6.3539,0.5112 +50.912,6.8597,6.3488,0.5109 +50.92,6.8542000000000005,6.3436,0.5106 +50.928000000000004,6.8487,6.3384,0.5103 +50.936,6.8431999999999995,6.3332,0.51 +50.944,6.8376,6.3279,0.5097 +50.952,6.8319,6.3225,0.5094 +50.96,6.8264,6.3172,0.5092 +50.968,6.8206999999999995,6.3118,0.5089 +50.976,6.814900000000001,6.3063,0.5086 +50.984,6.8091,6.3008,0.5083 +50.992000000000004,6.8033,6.2953,0.508 +51.0,6.7974,6.2897,0.5077 +51.008,6.791499999999999,6.2841,0.5074 +51.016,6.7857,6.2785,0.5072 +51.024,6.7797,6.2728,0.5069 +51.032000000000004,6.7736,6.267,0.5066 +51.04,6.7676,6.2613,0.5063 +51.048,6.7615,6.2555,0.506 +51.056000000000004,6.7553,6.2496,0.5057 +51.064,6.749099999999999,6.2437,0.5054 +51.072,6.743,6.2378,0.5052 +51.08,6.7367,6.2318,0.5049 +51.088,6.7303999999999995,6.2258,0.5046 +51.096000000000004,6.7241,6.2198,0.5043 +51.104,6.717700000000001,6.2137,0.504 +51.112,6.7113000000000005,6.2076,0.5037 +51.120000000000005,6.705,6.2015,0.5035 +51.128,6.698499999999999,6.1953,0.5032 +51.136,6.6919,6.189,0.5029 +51.144,6.6854000000000005,6.1828,0.5026 +51.152,6.6788,6.1765,0.5023 +51.160000000000004,6.6720999999999995,6.1701,0.502 +51.168,6.6654,6.1637,0.5017 +51.176,6.6588,6.1573,0.5015 +51.184000000000005,6.6521,6.1509,0.5012 +51.192,6.6453,6.1444,0.5009 +51.2,6.638400000000001,6.1378,0.5006 +51.208,6.631600000000001,6.1313,0.5003 +51.216,6.6247,6.1247,0.5 +51.224000000000004,6.617800000000001,6.118,0.4998 +51.232,6.6109,6.1114,0.4995 +51.24,6.6038,6.1046,0.4992 +51.248,6.5968,6.0979,0.4989 +51.256,6.5897,6.0911,0.4986 +51.264,6.5826,6.0843,0.4983 +51.272,6.5755,6.0774,0.4981 +51.28,6.5684,6.0706,0.4978 +51.288000000000004,6.5611,6.0636,0.4975 +51.296,6.5539000000000005,6.0567,0.4972 +51.304,6.5466,6.0497,0.4969 +51.312,6.5392,6.0426,0.4966 +51.32,6.532,6.0356,0.4964 +51.328,6.5246,6.0285,0.4961 +51.336,6.5171,6.0213,0.4958 +51.344,6.5097,6.0142,0.4955 +51.352000000000004,6.502199999999999,6.007,0.4952 +51.36,6.4946,5.9997,0.4949 +51.368,6.4872,5.9925,0.4947 +51.376,6.4796,5.9852,0.4944 +51.384,6.4719,5.9778,0.4941 +51.392,6.464300000000001,5.9705,0.4938 +51.4,6.4566,5.9631,0.4935 +51.408,6.448799999999999,5.9556,0.4932 +51.416000000000004,6.4411000000000005,5.9481,0.493 +51.424,6.4333,5.9406,0.4927 +51.432,6.4254999999999995,5.9331,0.4924 +51.44,6.4176,5.9255,0.4921 +51.448,6.409700000000001,5.9179,0.4918 +51.456,6.4019,5.9103,0.4916 +51.464,6.3938999999999995,5.9026,0.4913 +51.472,6.3858999999999995,5.8949,0.491 +51.480000000000004,6.3779,5.8872,0.4907 +51.488,6.3699,5.8795,0.4904 +51.496,6.3618,5.8717,0.4901 +51.504,6.3537,5.8638,0.4899 +51.512,6.3456,5.856,0.4896 +51.52,6.3374,5.8481,0.4893 +51.528,6.3292,5.8402,0.489 +51.536,6.3209,5.8322,0.4887 +51.544000000000004,6.3128,5.8243,0.4885 +51.552,6.3044,5.8162,0.4882 +51.56,6.2961,5.8082,0.4879 +51.568,6.287699999999999,5.8001,0.4876 +51.576,6.2793,5.792,0.4873 +51.584,6.2709,5.7839,0.487 +51.592,6.2626,5.7758,0.4868 +51.6,6.2541,5.7676,0.4865 +51.608000000000004,6.2455,5.7593,0.4862 +51.616,6.237,5.7511,0.4859 +51.624,6.2284,5.7428,0.4856 +51.632,6.2199,5.7345,0.4854 +51.64,6.2113000000000005,5.7262,0.4851 +51.648,6.2026,5.7178,0.4848 +51.656,6.193899999999999,5.7094,0.4845 +51.664,6.1852,5.701,0.4842 +51.672000000000004,6.1766,5.6926,0.484 +51.68,6.1678,5.6841,0.4837 +51.688,6.159,5.6756,0.4834 +51.696,6.1502,5.6671,0.4831 +51.704,6.1413,5.6585,0.4828 +51.712,6.132499999999999,5.6499,0.4826 +51.72,6.123600000000001,5.6413,0.4823 +51.728,6.1147,5.6327,0.482 +51.736000000000004,6.1057,5.624,0.4817 +51.744,6.0967,5.6153,0.4814 +51.752,6.0878000000000005,5.6066,0.4812 +51.76,6.0788,5.5979,0.4809 +51.768,6.0697,5.5891,0.4806 +51.776,6.0606,5.5803,0.4803 +51.784,6.051500000000001,5.5715,0.48 +51.792,6.0424,5.5626,0.4798 +51.800000000000004,6.0332,5.5537,0.4795 +51.808,6.024,5.5448,0.4792 +51.816,6.0148,5.5359,0.4789 +51.824,6.0056,5.527,0.4786 +51.832,5.9963999999999995,5.518,0.4784 +51.84,5.987100000000001,5.509,0.4781 +51.848,5.9778,5.5,0.4778 +51.856,5.9684,5.4909,0.4775 +51.864000000000004,5.9591,5.4819,0.4772 +51.872,5.949800000000001,5.4728,0.477 +51.88,5.9403,5.4636,0.4767 +51.888,5.9309,5.4545,0.4764 +51.896,5.921399999999999,5.4453,0.4761 +51.904,5.912100000000001,5.4362,0.4759 +51.912,5.9025,5.4269,0.4756 +51.92,5.893,5.4177,0.4753 +51.928000000000004,5.8834,5.4084,0.475 +51.936,5.873900000000001,5.3992,0.4747 +51.944,5.8644,5.3899,0.4745 +51.952,5.854699999999999,5.3805,0.4742 +51.96,5.8451,5.3712,0.4739 +51.968,5.8354,5.3618,0.4736 +51.976,5.8258,5.3524,0.4734 +51.984,5.8161,5.343,0.4731 +51.992000000000004,5.8064,5.3336,0.4728 +52.0,5.7966,5.3241,0.4725 +52.008,5.7869,5.3147,0.4722 +52.016,5.777200000000001,5.3052,0.472 +52.024,5.7673000000000005,5.2956,0.4717 +52.032000000000004,5.7575,5.2861,0.4714 +52.04,5.7476,5.2765,0.4711 +52.048,5.737900000000001,5.267,0.4709 +52.056000000000004,5.728,5.2574,0.4706 +52.064,5.7181,5.2478,0.4703 +52.072,5.7081,5.2381,0.47 +52.08,5.6982,5.2285,0.4697 +52.088,5.6883,5.2188,0.4695 +52.096000000000004,5.6783,5.2091,0.4692 +52.104,5.6682999999999995,5.1994,0.4689 +52.112,5.658200000000001,5.1896,0.4686 +52.120000000000005,5.6483,5.1799,0.4684 +52.128,5.638199999999999,5.1701,0.4681 +52.136,5.6281,5.1603,0.4678 +52.144,5.618,5.1505,0.4675 +52.152,5.608,5.1407,0.4673 +52.160000000000004,5.597899999999999,5.1309,0.467 +52.168,5.587700000000001,5.121,0.4667 +52.176,5.577500000000001,5.1111,0.4664 +52.184000000000005,5.5673,5.1012,0.4661 +52.192,5.5572,5.0913,0.4659 +52.2,5.547000000000001,5.0814,0.4656 +52.208,5.5367,5.0714,0.4653 +52.216,5.5264999999999995,5.0615,0.465 +52.224000000000004,5.5163,5.0515,0.4648 +52.232,5.506,5.0415,0.4645 +52.24,5.4957,5.0315,0.4642 +52.248,5.485399999999999,5.0215,0.4639 +52.256,5.4751,5.0114,0.4637 +52.264,5.4648,5.0014,0.4634 +52.272,5.4544,4.9913,0.4631 +52.28,5.444,4.9812,0.4628 +52.288000000000004,5.4337,4.9711,0.4626 +52.296,5.4233,4.961,0.4623 +52.304,5.4129,4.9509,0.462 +52.312,5.4024,4.9407,0.4617 +52.32,5.392,4.9305,0.4615 +52.328,5.3816,4.9204,0.4612 +52.336,5.371099999999999,4.9102,0.4609 +52.344,5.360600000000001,4.9,0.4606 +52.352000000000004,5.3502,4.8898,0.4604 +52.36,5.3396,4.8795,0.4601 +52.368,5.3291,4.8693,0.4598 +52.376,5.3185,4.859,0.4595 +52.384,5.3081,4.8488,0.4593 +52.392,5.297499999999999,4.8385,0.459 +52.4,5.2869,4.8282,0.4587 +52.408,5.2763,4.8179,0.4584 +52.416000000000004,5.2658,4.8076,0.4582 +52.424,5.2551000000000005,4.7972,0.4579 +52.432,5.2445,4.7869,0.4576 +52.44,5.2338000000000005,4.7765,0.4573 +52.448,5.2233,4.7662,0.4571 +52.456,5.2126,4.7558,0.4568 +52.464,5.2019,4.7454,0.4565 +52.472,5.1912,4.735,0.4562 +52.480000000000004,5.1806,4.7246,0.456 +52.488,5.1699,4.7142,0.4557 +52.496,5.1592,4.7038,0.4554 +52.504,5.1484,4.6933,0.4551 +52.512,5.1378,4.6829,0.4549 +52.52,5.127,4.6724,0.4546 +52.528,5.1162,4.6619,0.4543 +52.536,5.1055,4.6514,0.4541 +52.544000000000004,5.0948,4.641,0.4538 +52.552,5.084,4.6305,0.4535 +52.56,5.0731,4.6199,0.4532 +52.568,5.0624,4.6094,0.453 +52.576,5.0516000000000005,4.5989,0.4527 +52.584,5.0408,4.5884,0.4524 +52.592,5.0299,4.5778,0.4521 +52.6,5.0192000000000005,4.5673,0.4519 +52.608000000000004,5.0083,4.5567,0.4516 +52.616,4.9974,4.5461,0.4513 +52.624,4.986599999999999,4.5356,0.451 +52.632,4.9758000000000004,4.525,0.4508 +52.64,4.9649,4.5144,0.4505 +52.648,4.954,4.5038,0.4502 +52.656,4.9432,4.4932,0.45 +52.664,4.9323,4.4826,0.4497 +52.672000000000004,4.9214,4.472,0.4494 +52.68,4.910399999999999,4.4613,0.4491 +52.688,4.8996,4.4507,0.4489 +52.696,4.8887,4.4401,0.4486 +52.704,4.8777,4.4294,0.4483 +52.712,4.8668000000000005,4.4188,0.448 +52.72,4.8559,4.4081,0.4478 +52.728,4.845,4.3975,0.4475 +52.736000000000004,4.834,4.3868,0.4472 +52.744,4.8231,4.3761,0.447 +52.752,4.8122,4.3655,0.4467 +52.76,4.8012,4.3548,0.4464 +52.768,4.7902000000000005,4.3441,0.4461 +52.776,4.7793,4.3334,0.4459 +52.784,4.7683,4.3227,0.4456 +52.792,4.7573,4.312,0.4453 +52.800000000000004,4.7464,4.3013,0.4451 +52.808,4.7354,4.2906,0.4448 +52.816,4.724399999999999,4.2799,0.4445 +52.824,4.7134,4.2692,0.4442 +52.832,4.7024,4.2584,0.444 +52.84,4.6914,4.2477,0.4437 +52.848,4.680400000000001,4.237,0.4434 +52.856,4.6695,4.2263,0.4432 +52.864000000000004,4.658399999999999,4.2155,0.4429 +52.872,4.647399999999999,4.2048,0.4426 +52.88,4.6364,4.1941,0.4423 +52.888,4.6254,4.1833,0.4421 +52.896,4.6144,4.1726,0.4418 +52.904,4.603400000000001,4.1619,0.4415 +52.912,4.5924,4.1511,0.4413 +52.92,4.5813999999999995,4.1404,0.441 +52.928000000000004,4.5703,4.1296,0.4407 +52.936,4.5594,4.1189,0.4405 +52.944,4.5483,4.1081,0.4402 +52.952,4.5373,4.0974,0.4399 +52.96,4.526199999999999,4.0866,0.4396 +52.968,4.5153,4.0759,0.4394 +52.976,4.5042,4.0651,0.4391 +52.984,4.4932,4.0544,0.4388 +52.992000000000004,4.4822,4.0436,0.4386 +53.0,4.4711,4.0328,0.4383 +53.008,4.4601,4.0221,0.438 +53.016,4.4491000000000005,4.0113,0.4378 +53.024,4.4381,4.0006,0.4375 +53.032000000000004,4.427,3.9898,0.4372 +53.04,4.4159999999999995,3.9791,0.4369 +53.048,4.405,3.9683,0.4367 +53.056000000000004,4.394,3.9576,0.4364 +53.064,4.3829,3.9468,0.4361 +53.072,4.372,3.9361,0.4359 +53.08,4.3609,3.9253,0.4356 +53.088,4.3499,3.9146,0.4353 +53.096000000000004,4.3389,3.9038,0.4351 +53.104,4.3279,3.8931,0.4348 +53.112,4.3169,3.8824,0.4345 +53.120000000000005,4.3059,3.8716,0.4343 +53.128,4.2949,3.8609,0.434 +53.136,4.283799999999999,3.8501,0.4337 +53.144,4.2728,3.8394,0.4334 +53.152,4.2619,3.8287,0.4332 +53.160000000000004,4.2509,3.818,0.4329 +53.168,4.2398,3.8072,0.4326 +53.176,4.2289,3.7965,0.4324 +53.184000000000005,4.2179,3.7858,0.4321 +53.192,4.2069,3.7751,0.4318 +53.2,4.196,3.7644,0.4316 +53.208,4.185,3.7537,0.4313 +53.216,4.1739999999999995,3.743,0.431 +53.224000000000004,4.1631,3.7323,0.4308 +53.232,4.1521,3.7216,0.4305 +53.24,4.1411,3.7109,0.4302 +53.248000000000005,4.1302,3.7002,0.43 +53.256,4.1192,3.6895,0.4297 +53.264,4.1082,3.6788,0.4294 +53.272,4.0974,3.6682,0.4292 +53.28,4.0864,3.6575,0.4289 +53.288000000000004,4.0755,3.6469,0.4286 +53.296,4.0646,3.6362,0.4284 +53.304,4.0536,3.6255,0.4281 +53.312,4.0427,3.6149,0.4278 +53.32,4.0318,3.6043,0.4275 +53.328,4.0209,3.5936,0.4273 +53.336,4.01,3.583,0.427 +53.344,3.9991,3.5724,0.4267 +53.352000000000004,3.9882999999999997,3.5618,0.4265 +53.36,3.9774000000000003,3.5512,0.4262 +53.368,3.9664,3.5405,0.4259 +53.376,3.9556999999999998,3.53,0.4257 +53.384,3.9448,3.5194,0.4254 +53.392,3.9339,3.5088,0.4251 +53.4,3.9231000000000003,3.4982,0.4249 +53.408,3.9122,3.4876,0.4246 +53.416000000000004,3.9014,3.4771,0.4243 +53.424,3.8906,3.4665,0.4241 +53.432,3.8798,3.456,0.4238 +53.44,3.8689,3.4454,0.4235 +53.448,3.8582,3.4349,0.4233 +53.456,3.8474,3.4244,0.423 +53.464,3.8366,3.4139,0.4227 +53.472,3.8259,3.4034,0.4225 +53.480000000000004,3.8151,3.3929,0.4222 +53.488,3.8043,3.3824,0.4219 +53.496,3.7936,3.3719,0.4217 +53.504,3.7828,3.3614,0.4214 +53.512,3.7721,3.3509,0.4212 +53.52,3.7614,3.3405,0.4209 +53.528,3.7506,3.33,0.4206 +53.536,3.7399999999999998,3.3196,0.4204 +53.544000000000004,3.7293000000000003,3.3092,0.4201 +53.552,3.7186,3.2988,0.4198 +53.56,3.7079,3.2883,0.4196 +53.568,3.6971999999999996,3.2779,0.4193 +53.576,3.6865,3.2675,0.419 +53.584,3.676,3.2572,0.4188 +53.592,3.6653,3.2468,0.4185 +53.6,3.6546000000000003,3.2364,0.4182 +53.608000000000004,3.6441000000000003,3.2261,0.418 +53.616,3.6334,3.2157,0.4177 +53.624,3.6228,3.2054,0.4174 +53.632,3.6123000000000003,3.1951,0.4172 +53.64,3.6017,3.1848,0.4169 +53.648,3.5911,3.1745,0.4166 +53.656,3.5806,3.1642,0.4164 +53.664,3.5700000000000003,3.1539,0.4161 +53.672000000000004,3.5594,3.1436,0.4158 +53.68,3.549,3.1334,0.4156 +53.688,3.5384,3.1231,0.4153 +53.696,3.5279999999999996,3.1129,0.4151 +53.704,3.5175,3.1027,0.4148 +53.712,3.5069999999999997,3.0925,0.4145 +53.72,3.4966,3.0823,0.4143 +53.728,3.4861,3.0721,0.414 +53.736000000000004,3.4756,3.0619,0.4137 +53.744,3.4653,3.0518,0.4135 +53.752,3.4547999999999996,3.0416,0.4132 +53.76,3.4444,3.0315,0.4129 +53.768,3.4341,3.0214,0.4127 +53.776,3.4236,3.0112,0.4124 +53.784,3.4133,3.0011,0.4122 +53.792,3.4029000000000003,2.991,0.4119 +53.800000000000004,3.3926,2.981,0.4116 +53.808,3.3823,2.9709,0.4114 +53.816,3.372,2.9609,0.4111 +53.824,3.3616,2.9508,0.4108 +53.832,3.3514,2.9408,0.4106 +53.84,3.3411,2.9308,0.4103 +53.848,3.3308,2.9208,0.41 +53.856,3.3206,2.9108,0.4098 +53.864000000000004,3.3103,2.9008,0.4095 +53.872,3.3002,2.8909,0.4093 +53.88,3.2899,2.8809,0.409 +53.888,3.2797,2.871,0.4087 +53.896,3.2696,2.8611,0.4085 +53.904,3.2594,2.8512,0.4082 +53.912,3.2492,2.8413,0.4079 +53.92,3.2391,2.8314,0.4077 +53.928000000000004,3.229,2.8216,0.4074 +53.936,3.2189,2.8117,0.4072 +53.944,3.2087999999999997,2.8019,0.4069 +53.952,3.1987,2.7921,0.4066 +53.96,3.1887000000000003,2.7823,0.4064 +53.968,3.1786,2.7725,0.4061 +53.976,3.1685000000000003,2.7627,0.4058 +53.984,3.1586000000000003,2.753,0.4056 +53.992000000000004,3.1485,2.7432,0.4053 +54.0,3.1386,2.7335,0.4051 +54.008,3.1286,2.7238,0.4048 +54.016,3.1186000000000003,2.7141,0.4045 +54.024,3.1087000000000002,2.7044,0.4043 +54.032000000000004,3.0987,2.6947,0.404 +54.04,3.0888,2.6851,0.4037 +54.048,3.079,2.6755,0.4035 +54.056000000000004,3.069,2.6658,0.4032 +54.064,3.0592,2.6562,0.403 +54.072,3.0494,2.6467,0.4027 +54.08,3.0395000000000003,2.6371,0.4024 +54.088,3.0297,2.6275,0.4022 +54.096000000000004,3.0199,2.618,0.4019 +54.104,3.0101999999999998,2.6085,0.4017 +54.112,3.0004,2.599,0.4014 +54.120000000000005,2.9906,2.5895,0.4011 +54.128,2.9809,2.58,0.4009 +54.136,2.9711,2.5705,0.4006 +54.144,2.9614000000000003,2.5611,0.4003 +54.152,2.9518,2.5517,0.4001 +54.160000000000004,2.9421,2.5423,0.3998 +54.168,2.9325,2.5329,0.3996 +54.176,2.9227999999999996,2.5235,0.3993 +54.184000000000005,2.9131,2.5141,0.399 +54.192,2.9036,2.5048,0.3988 +54.2,2.8939999999999997,2.4955,0.3985 +54.208,2.8844,2.4861,0.3983 +54.216,2.8749000000000002,2.4769,0.398 +54.224000000000004,2.8653,2.4676,0.3977 +54.232,2.8558,2.4583,0.3975 +54.24,2.8463000000000003,2.4491,0.3972 +54.248000000000005,2.8369,2.4399,0.397 +54.256,2.8274,2.4307,0.3967 +54.264,2.8179,2.4215,0.3964 +54.272,2.8085,2.4123,0.3962 +54.28,2.7991,2.4032,0.3959 +54.288000000000004,2.7897000000000003,2.394,0.3957 +54.296,2.7803,2.3849,0.3954 +54.304,2.7709,2.3758,0.3951 +54.312,2.7615999999999996,2.3667,0.3949 +54.32,2.7523,2.3577,0.3946 +54.328,2.743,2.3486,0.3944 +54.336,2.7337,2.3396,0.3941 +54.344,2.7244,2.3306,0.3938 +54.352000000000004,2.7152000000000003,2.3216,0.3936 +54.36,2.7059,2.3126,0.3933 +54.368,2.6968,2.3037,0.3931 +54.376,2.6875,2.2947,0.3928 +54.384,2.6784,2.2858,0.3926 +54.392,2.6692,2.2769,0.3923 +54.4,2.6599999999999997,2.268,0.392 +54.408,2.651,2.2592,0.3918 +54.416000000000004,2.6418000000000004,2.2503,0.3915 +54.424,2.6327999999999996,2.2415,0.3913 +54.432,2.6237,2.2327,0.391 +54.44,2.6146,2.2239,0.3907 +54.448,2.6056999999999997,2.2152,0.3905 +54.456,2.5966,2.2064,0.3902 +54.464,2.5877000000000003,2.1977,0.39 +54.472,2.5787,2.189,0.3897 +54.480000000000004,2.5698,2.1803,0.3895 +54.488,2.5608000000000004,2.1716,0.3892 +54.496,2.5518,2.1629,0.3889 +54.504,2.543,2.1543,0.3887 +54.512,2.5341,2.1457,0.3884 +54.52,2.5253,2.1371,0.3882 +54.528,2.5164,2.1285,0.3879 +54.536,2.5076,2.12,0.3876 +54.544000000000004,2.4988,2.1114,0.3874 +54.552,2.49,2.1029,0.3871 +54.56,2.4813,2.0944,0.3869 +54.568,2.4725,2.0859,0.3866 +54.576,2.4639,2.0775,0.3864 +54.584,2.4551,2.069,0.3861 +54.592,2.4464,2.0606,0.3858 +54.6,2.4378,2.0522,0.3856 +54.608000000000004,2.4291,2.0438,0.3853 +54.616,2.4206,2.0355,0.3851 +54.624,2.4118999999999997,2.0271,0.3848 +54.632,2.4034,2.0188,0.3846 +54.64,2.3948,2.0105,0.3843 +54.648,2.3862,2.0022,0.384 +54.656,2.3778,1.994,0.3838 +54.664,2.3692,1.9857,0.3835 +54.672000000000004,2.3608000000000002,1.9775,0.3833 +54.68,2.3523,1.9693,0.383 +54.688,2.3439,1.9611,0.3828 +54.696,2.3354,1.9529,0.3825 +54.704,2.327,1.9448,0.3822 +54.712,2.3187,1.9367,0.382 +54.72,2.3103000000000002,1.9286,0.3817 +54.728,2.302,1.9205,0.3815 +54.736000000000004,2.2936,1.9124,0.3812 +54.744,2.2854,1.9044,0.381 +54.752,2.2771,1.8964,0.3807 +54.76,2.2689,1.8884,0.3805 +54.768,2.2606,1.8804,0.3802 +54.776,2.2523,1.8724,0.3799 +54.784,2.2442,1.8645,0.3797 +54.792,2.236,1.8566,0.3794 +54.800000000000004,2.2279,1.8487,0.3792 +54.808,2.2197,1.8408,0.3789 +54.816,2.2116,1.8329,0.3787 +54.824,2.2035,1.8251,0.3784 +54.832,2.1955,1.8173,0.3782 +54.84,2.1874000000000002,1.8095,0.3779 +54.848,2.1793,1.8017,0.3776 +54.856,2.1714,1.794,0.3774 +54.864000000000004,2.1633,1.7862,0.3771 +54.872,2.1554,1.7785,0.3769 +54.88,2.1473999999999998,1.7708,0.3766 +54.888,2.1396,1.7632,0.3764 +54.896,2.1316,1.7555,0.3761 +54.904,2.1238,1.7479,0.3759 +54.912,2.1159,1.7403,0.3756 +54.92,2.108,1.7327,0.3753 +54.928000000000004,2.1002,1.7251,0.3751 +54.936,2.0924,1.7176,0.3748 +54.944,2.0846,1.71,0.3746 +54.952,2.0768,1.7025,0.3743 +54.96,2.0692,1.6951,0.3741 +54.968,2.0614,1.6876,0.3738 +54.976,2.0538,1.6802,0.3736 +54.984,2.0460000000000003,1.6727,0.3733 +54.992000000000004,2.0384,1.6653,0.3731 +55.0,2.0308,1.658,0.3728 +55.008,2.0231,1.6506,0.3725 +55.016,2.0156,1.6433,0.3723 +55.024,2.0079,1.6359,0.372 +55.032000000000004,2.0004,1.6286,0.3718 +55.04,1.9929,1.6214,0.3715 +55.048,1.9854,1.6141,0.3713 +55.056000000000004,1.9779,1.6069,0.371 +55.064,1.9705,1.5997,0.3708 +55.072,1.963,1.5925,0.3705 +55.08,1.9556,1.5853,0.3703 +55.088,1.9482,1.5782,0.37 +55.096000000000004,1.9407999999999999,1.571,0.3698 +55.104,1.9334,1.5639,0.3695 +55.112,1.9261,1.5568,0.3693 +55.120000000000005,1.9188,1.5498,0.369 +55.128,1.9114,1.5427,0.3687 +55.136,1.9042000000000001,1.5357,0.3685 +55.144,1.8969,1.5287,0.3682 +55.152,1.8897,1.5217,0.368 +55.160000000000004,1.8824999999999998,1.5148,0.3677 +55.168,1.8753,1.5078,0.3675 +55.176,1.8680999999999999,1.5009,0.3672 +55.184000000000005,1.861,1.494,0.367 +55.192,1.8539,1.4872,0.3667 +55.2,1.8468,1.4803,0.3665 +55.208,1.8397000000000001,1.4735,0.3662 +55.216,1.8327,1.4667,0.366 +55.224000000000004,1.8256000000000001,1.4599,0.3657 +55.232,1.8186,1.4531,0.3655 +55.24,1.8115999999999999,1.4464,0.3652 +55.248000000000005,1.8046,1.4396,0.365 +55.256,1.7976,1.4329,0.3647 +55.264,1.7907,1.4262,0.3645 +55.272,1.7838,1.4196,0.3642 +55.28,1.7768000000000002,1.4129,0.3639 +55.288000000000004,1.77,1.4063,0.3637 +55.296,1.7631,1.3997,0.3634 +55.304,1.7563,1.3931,0.3632 +55.312,1.7495,1.3866,0.3629 +55.32,1.7427,1.38,0.3627 +55.328,1.7359,1.3735,0.3624 +55.336,1.7292,1.367,0.3622 +55.344,1.7225000000000001,1.3606,0.3619 +55.352000000000004,1.7158000000000002,1.3541,0.3617 +55.36,1.7090999999999998,1.3477,0.3614 +55.368,1.7025,1.3413,0.3612 +55.376,1.6958,1.3349,0.3609 +55.384,1.6892,1.3285,0.3607 +55.392,1.6826,1.3222,0.3604 +55.4,1.6760000000000002,1.3158,0.3602 +55.408,1.6694,1.3095,0.3599 +55.416000000000004,1.6629,1.3032,0.3597 +55.424,1.6563999999999999,1.297,0.3594 +55.432,1.6499,1.2907,0.3592 +55.44,1.6434,1.2845,0.3589 +55.448,1.637,1.2783,0.3587 +55.456,1.6305,1.2721,0.3584 +55.464,1.6242,1.266,0.3582 +55.472,1.6177000000000001,1.2598,0.3579 +55.480000000000004,1.6114000000000002,1.2537,0.3577 +55.488,1.605,1.2476,0.3574 +55.496,1.5987,1.2415,0.3572 +55.504,1.5924,1.2355,0.3569 +55.512,1.5862,1.2295,0.3567 +55.52,1.5798,1.2234,0.3564 +55.528,1.5737,1.2175,0.3562 +55.536,1.5674000000000001,1.2115,0.3559 +55.544000000000004,1.5612,1.2055,0.3557 +55.552,1.555,1.1996,0.3554 +55.56,1.5489,1.1937,0.3552 +55.568,1.5427,1.1878,0.3549 +55.576,1.5366,1.1819,0.3547 +55.584,1.5305,1.1761,0.3544 +55.592,1.5245,1.1703,0.3542 +55.6,1.5184000000000002,1.1645,0.3539 +55.608000000000004,1.5124,1.1587,0.3537 +55.616,1.5063,1.1529,0.3534 +55.624,1.5004,1.1472,0.3532 +55.632,1.4943,1.1414,0.3529 +55.64,1.4884,1.1357,0.3527 +55.648,1.4824,1.13,0.3524 +55.656,1.4766000000000001,1.1244,0.3522 +55.664,1.4706000000000001,1.1187,0.3519 +55.672000000000004,1.4647999999999999,1.1131,0.3517 +55.68,1.4588999999999999,1.1075,0.3514 +55.688,1.4531,1.1019,0.3512 +55.696,1.4473,1.0964,0.3509 +55.704,1.4415,1.0908,0.3507 +55.712,1.4357,1.0853,0.3504 +55.72,1.4300000000000002,1.0798,0.3502 +55.728,1.4242,1.0743,0.3499 +55.736000000000004,1.4186,1.0689,0.3497 +55.744,1.4127999999999998,1.0634,0.3494 +55.752,1.4072,1.058,0.3492 +55.76,1.4015,1.0526,0.3489 +55.768,1.3959,1.0472,0.3487 +55.776,1.3903,1.0419,0.3484 +55.784,1.3847,1.0365,0.3482 +55.792,1.3792,1.0312,0.348 +55.800000000000004,1.3736000000000002,1.0259,0.3477 +55.808,1.3680999999999999,1.0206,0.3475 +55.816,1.3626,1.0154,0.3472 +55.824,1.3571,1.0101,0.347 +55.832,1.3516,1.0049,0.3467 +55.84,1.3462,0.9997,0.3465 +55.848,1.3407,0.9945,0.3462 +55.856,1.3354,0.9894,0.346 +55.864000000000004,1.3298999999999999,0.9842,0.3457 +55.872,1.3246,0.9791,0.3455 +55.88,1.3192,0.974,0.3452 +55.888,1.3138999999999998,0.9689,0.345 +55.896,1.3086,0.9639,0.3447 +55.904,1.3033,0.9588,0.3445 +55.912,1.298,0.9538,0.3442 +55.92,1.2928,0.9488,0.344 +55.928000000000004,1.2875,0.9438,0.3437 +55.936,1.2824,0.9389,0.3435 +55.944,1.2772,0.9339,0.3433 +55.952,1.272,0.929,0.343 +55.96,1.2669000000000001,0.9241,0.3428 +55.968,1.2617,0.9192,0.3425 +55.976,1.2566,0.9143,0.3423 +55.984,1.2515,0.9095,0.342 +55.992000000000004,1.2465,0.9047,0.3418 +56.0,1.2413,0.8998,0.3415 +56.008,1.2364,0.8951,0.3413 +56.016,1.2313,0.8903,0.341 +56.024,1.2263,0.8855,0.3408 +56.032000000000004,1.2213,0.8808,0.3405 +56.04,1.2164,0.8761,0.3403 +56.048,1.2115,0.8714,0.3401 +56.056000000000004,1.2065000000000001,0.8667,0.3398 +56.064,1.2017,0.8621,0.3396 +56.072,1.1967,0.8574,0.3393 +56.08,1.1919,0.8528,0.3391 +56.088,1.1869999999999998,0.8482,0.3388 +56.096000000000004,1.1822,0.8436,0.3386 +56.104,1.1774,0.8391,0.3383 +56.112,1.1726,0.8345,0.3381 +56.120000000000005,1.1678,0.83,0.3378 +56.128,1.1631,0.8255,0.3376 +56.136,1.1583999999999999,0.821,0.3374 +56.144,1.1536,0.8165,0.3371 +56.152,1.149,0.8121,0.3369 +56.160000000000004,1.1442999999999999,0.8077,0.3366 +56.168,1.1396,0.8032,0.3364 +56.176,1.135,0.7989,0.3361 +56.184000000000005,1.1303999999999998,0.7945,0.3359 +56.192,1.1257000000000001,0.7901,0.3356 +56.2,1.1212,0.7858,0.3354 +56.208,1.1166,0.7815,0.3351 +56.216,1.1120999999999999,0.7772,0.3349 +56.224000000000004,1.1076000000000001,0.7729,0.3347 +56.232,1.103,0.7686,0.3344 +56.24,1.0986,0.7644,0.3342 +56.248000000000005,1.0939999999999999,0.7601,0.3339 +56.256,1.0896,0.7559,0.3337 +56.264,1.0851,0.7517,0.3334 +56.272,1.0807,0.7475,0.3332 +56.28,1.0762999999999998,0.7434,0.3329 +56.288000000000004,1.0718999999999999,0.7392,0.3327 +56.296,1.0676,0.7351,0.3325 +56.304,1.0632,0.731,0.3322 +56.312000000000005,1.0589,0.7269,0.332 +56.32,1.0546,0.7229,0.3317 +56.328,1.0503,0.7188,0.3315 +56.336,1.046,0.7148,0.3312 +56.344,1.0417,0.7107,0.331 +56.352000000000004,1.0375999999999999,0.7068,0.3308 +56.36,1.0333,0.7028,0.3305 +56.368,1.0291,0.6988,0.3303 +56.376,1.0249,0.6949,0.33 +56.384,1.0207,0.6909,0.3298 +56.392,1.0165000000000002,0.687,0.3295 +56.4,1.0124,0.6831,0.3293 +56.408,1.0083,0.6792,0.3291 +56.416000000000004,1.0042,0.6754,0.3288 +56.424,1.0001,0.6715,0.3286 +56.432,0.996,0.6677,0.3283 +56.44,0.992,0.6639,0.3281 +56.448,0.9879,0.6601,0.3278 +56.456,0.9839,0.6563,0.3276 +56.464,0.98,0.6526,0.3274 +56.472,0.9759,0.6488,0.3271 +56.480000000000004,0.972,0.6451,0.3269 +56.488,0.968,0.6414,0.3266 +56.496,0.9641000000000001,0.6377,0.3264 +56.504,0.9601,0.634,0.3261 +56.512,0.9562999999999999,0.6304,0.3259 +56.52,0.9524,0.6267,0.3257 +56.528,0.9485,0.6231,0.3254 +56.536,0.9447000000000001,0.6195,0.3252 +56.544000000000004,0.9408000000000001,0.6159,0.3249 +56.552,0.9369999999999999,0.6123,0.3247 +56.56,0.9332,0.6088,0.3244 +56.568,0.9294,0.6052,0.3242 +56.576,0.9257,0.6017,0.324 +56.584,0.9218999999999999,0.5982,0.3237 +56.592,0.9182,0.5947,0.3235 +56.6,0.9143999999999999,0.5912,0.3232 +56.608000000000004,0.9108,0.5878,0.323 +56.616,0.9071,0.5843,0.3228 +56.624,0.9034,0.5809,0.3225 +56.632,0.8997999999999999,0.5775,0.3223 +56.64,0.8961000000000001,0.5741,0.322 +56.648,0.8925,0.5707,0.3218 +56.656,0.8889,0.5674,0.3215 +56.664,0.8853,0.564,0.3213 +56.672000000000004,0.8817999999999999,0.5607,0.3211 +56.68,0.8782,0.5574,0.3208 +56.688,0.8747,0.5541,0.3206 +56.696,0.8711,0.5508,0.3203 +56.704,0.8675999999999999,0.5475,0.3201 +56.712,0.8641000000000001,0.5442,0.3199 +56.72,0.8606,0.541,0.3196 +56.728,0.8572,0.5378,0.3194 +56.736000000000004,0.8536999999999999,0.5346,0.3191 +56.744,0.8503000000000001,0.5314,0.3189 +56.752,0.8469,0.5282,0.3187 +56.76,0.8434,0.525,0.3184 +56.768,0.8401000000000001,0.5219,0.3182 +56.776,0.8367,0.5188,0.3179 +56.784,0.8332999999999999,0.5156,0.3177 +56.792,0.83,0.5125,0.3175 +56.800000000000004,0.8267,0.5095,0.3172 +56.808,0.8233999999999999,0.5064,0.317 +56.816,0.82,0.5033,0.3167 +56.824,0.8168,0.5003,0.3165 +56.832,0.8136000000000001,0.4973,0.3163 +56.84,0.8102,0.4942,0.316 +56.848,0.807,0.4912,0.3158 +56.856,0.8038000000000001,0.4883,0.3155 +56.864000000000004,0.8006,0.4853,0.3153 +56.872,0.7974,0.4823,0.3151 +56.88,0.7942,0.4794,0.3148 +56.888,0.7910999999999999,0.4765,0.3146 +56.896,0.7879,0.4736,0.3143 +56.904,0.7847999999999999,0.4707,0.3141 +56.912,0.7817000000000001,0.4678,0.3139 +56.92,0.7785,0.4649,0.3136 +56.928000000000004,0.7755000000000001,0.4621,0.3134 +56.936,0.7723,0.4592,0.3131 +56.944,0.7693,0.4564,0.3129 +56.952,0.7663,0.4536,0.3127 +56.96,0.7632,0.4508,0.3124 +56.968,0.7602,0.448,0.3122 +56.976,0.7572,0.4453,0.3119 +56.984,0.7542,0.4425,0.3117 +56.992000000000004,0.7513000000000001,0.4398,0.3115 +57.0,0.7482,0.437,0.3112 +57.008,0.7453000000000001,0.4343,0.311 +57.016,0.7424,0.4316,0.3108 +57.024,0.7394000000000001,0.4289,0.3105 +57.032000000000004,0.7366,0.4263,0.3103 +57.04,0.7336,0.4236,0.31 +57.048,0.7308,0.421,0.3098 +57.056000000000004,0.7279,0.4183,0.3096 +57.064,0.7250000000000001,0.4157,0.3093 +57.072,0.7222,0.4131,0.3091 +57.08,0.7194,0.4105,0.3089 +57.088,0.7164999999999999,0.4079,0.3086 +57.096000000000004,0.7138,0.4054,0.3084 +57.104,0.7109,0.4028,0.3081 +57.112,0.7081999999999999,0.4003,0.3079 +57.120000000000005,0.7055,0.3978,0.3077 +57.128,0.7027,0.3953,0.3074 +57.136,0.7,0.3928,0.3072 +57.144,0.6973,0.3903,0.307 +57.152,0.6944999999999999,0.3878,0.3067 +57.160000000000004,0.6918,0.3853,0.3065 +57.168,0.6891,0.3829,0.3062 +57.176,0.6865,0.3805,0.306 +57.184000000000005,0.6838,0.378,0.3058 +57.192,0.6811,0.3756,0.3055 +57.2,0.6785,0.3732,0.3053 +57.208,0.6759999999999999,0.3709,0.3051 +57.216,0.6733,0.3685,0.3048 +57.224000000000004,0.6707,0.3661,0.3046 +57.232,0.6681,0.3638,0.3043 +57.24,0.6656,0.3615,0.3041 +57.248000000000005,0.663,0.3591,0.3039 +57.256,0.6604,0.3568,0.3036 +57.264,0.6578999999999999,0.3545,0.3034 +57.272,0.6554,0.3522,0.3032 +57.28,0.6529,0.35,0.3029 +57.288000000000004,0.6504000000000001,0.3477,0.3027 +57.296,0.6479999999999999,0.3455,0.3025 +57.304,0.6454,0.3432,0.3022 +57.312000000000005,0.643,0.341,0.302 +57.32,0.6405000000000001,0.3388,0.3017 +57.328,0.6381,0.3366,0.3015 +57.336,0.6356999999999999,0.3344,0.3013 +57.344,0.6332,0.3322,0.301 +57.352000000000004,0.6309,0.3301,0.3008 +57.36,0.6285000000000001,0.3279,0.3006 +57.368,0.6261,0.3258,0.3003 +57.376,0.6237999999999999,0.3237,0.3001 +57.384,0.6214,0.3215,0.2999 +57.392,0.619,0.3194,0.2996 +57.4,0.6167,0.3173,0.2994 +57.408,0.6145,0.3153,0.2992 +57.416000000000004,0.6121,0.3132,0.2989 +57.424,0.6098,0.3111,0.2987 +57.432,0.6074999999999999,0.3091,0.2984 +57.44,0.6053,0.3071,0.2982 +57.448,0.603,0.305,0.298 +57.456,0.6007,0.303,0.2977 +57.464,0.5985,0.301,0.2975 +57.472,0.5963,0.299,0.2973 +57.480000000000004,0.594,0.297,0.297 +57.488,0.5919,0.2951,0.2968 +57.496,0.5897,0.2931,0.2966 +57.504,0.5875,0.2912,0.2963 +57.512,0.5852999999999999,0.2892,0.2961 +57.52,0.5831999999999999,0.2873,0.2959 +57.528,0.581,0.2854,0.2956 +57.536,0.5789,0.2835,0.2954 +57.544000000000004,0.5768,0.2816,0.2952 +57.552,0.5746,0.2797,0.2949 +57.56,0.5725,0.2778,0.2947 +57.568,0.5705,0.276,0.2945 +57.576,0.5683,0.2741,0.2942 +57.584,0.5663,0.2723,0.294 +57.592,0.5643,0.2705,0.2938 +57.6,0.5621,0.2686,0.2935 +57.608000000000004,0.5601,0.2668,0.2933 +57.616,0.5581,0.265,0.2931 +57.624,0.556,0.2632,0.2928 +57.632,0.5541,0.2615,0.2926 +57.64,0.5521,0.2597,0.2924 +57.648,0.55,0.2579,0.2921 +57.656,0.5481,0.2562,0.2919 +57.664,0.5461,0.2544,0.2917 +57.672000000000004,0.5441,0.2527,0.2914 +57.68,0.5422,0.251,0.2912 +57.688,0.5403,0.2493,0.291 +57.696,0.5383,0.2476,0.2907 +57.704,0.5364,0.2459,0.2905 +57.712,0.5345,0.2442,0.2903 +57.72,0.5325,0.2425,0.29 +57.728,0.5307,0.2409,0.2898 +57.736000000000004,0.5288,0.2392,0.2896 +57.744,0.5269,0.2376,0.2893 +57.752,0.5251,0.236,0.2891 +57.76,0.5232,0.2343,0.2889 +57.768,0.5213,0.2327,0.2886 +57.776,0.5195,0.2311,0.2884 +57.784,0.5177,0.2295,0.2882 +57.792,0.5159,0.228,0.2879 +57.800000000000004,0.5141,0.2264,0.2877 +57.808,0.5123,0.2248,0.2875 +57.816,0.5105,0.2233,0.2872 +57.824,0.5086999999999999,0.2217,0.287 +57.832,0.507,0.2202,0.2868 +57.84,0.5051,0.2186,0.2865 +57.848,0.5034,0.2171,0.2863 +57.856,0.5017,0.2156,0.2861 +57.864000000000004,0.4999,0.2141,0.2858 +57.872,0.49820000000000003,0.2126,0.2856 +57.88,0.4965,0.2111,0.2854 +57.888,0.4948,0.2097,0.2851 +57.896,0.4931,0.2082,0.2849 +57.904,0.4914,0.2067,0.2847 +57.912,0.4897,0.2053,0.2844 +57.92,0.4881,0.2039,0.2842 +57.928000000000004,0.48639999999999994,0.2024,0.284 +57.936,0.4848,0.201,0.2838 +57.944,0.4831,0.1996,0.2835 +57.952,0.4815,0.1982,0.2833 +57.96,0.4799,0.1968,0.2831 +57.968,0.47819999999999996,0.1954,0.2828 +57.976,0.4766,0.194,0.2826 +57.984,0.47509999999999997,0.1927,0.2824 +57.992000000000004,0.47340000000000004,0.1913,0.2821 +58.0,0.4718,0.1899,0.2819 +58.008,0.4703,0.1886,0.2817 +58.016,0.4686,0.1872,0.2814 +58.024,0.4671,0.1859,0.2812 +58.032000000000004,0.4656,0.1846,0.281 +58.04,0.46409999999999996,0.1833,0.2808 +58.048,0.4625,0.182,0.2805 +58.056000000000004,0.46099999999999997,0.1807,0.2803 +58.064,0.4595,0.1794,0.2801 +58.072,0.4579,0.1781,0.2798 +58.08,0.45640000000000003,0.1768,0.2796 +58.088,0.45499999999999996,0.1756,0.2794 +58.096000000000004,0.4534,0.1743,0.2791 +58.104,0.45199999999999996,0.1731,0.2789 +58.112,0.4505,0.1718,0.2787 +58.120000000000005,0.44899999999999995,0.1706,0.2784 +58.128,0.4476,0.1694,0.2782 +58.136,0.44610000000000005,0.1681,0.278 +58.144,0.4447,0.1669,0.2778 +58.152,0.44320000000000004,0.1657,0.2775 +58.160000000000004,0.44179999999999997,0.1645,0.2773 +58.168,0.4404,0.1633,0.2771 +58.176,0.43889999999999996,0.1621,0.2768 +58.184000000000005,0.4376,0.161,0.2766 +58.192,0.4362,0.1598,0.2764 +58.2,0.43479999999999996,0.1586,0.2762 +58.208,0.4334,0.1575,0.2759 +58.216,0.432,0.1563,0.2757 +58.224000000000004,0.4307,0.1552,0.2755 +58.232,0.4293,0.1541,0.2752 +58.24,0.42800000000000005,0.153,0.275 +58.248000000000005,0.4266,0.1518,0.2748 +58.256,0.4253,0.1507,0.2746 +58.264,0.4239,0.1496,0.2743 +58.272,0.4226,0.1485,0.2741 +58.28,0.4213,0.1474,0.2739 +58.288000000000004,0.42000000000000004,0.1464,0.2736 +58.296,0.41869999999999996,0.1453,0.2734 +58.304,0.4174,0.1442,0.2732 +58.312000000000005,0.4162,0.1432,0.273 +58.32,0.4148,0.1421,0.2727 +58.328,0.4136,0.1411,0.2725 +58.336,0.4123,0.14,0.2723 +58.344,0.41100000000000003,0.139,0.272 +58.352000000000004,0.4098,0.138,0.2718 +58.36,0.4085,0.1369,0.2716 +58.368,0.4073,0.1359,0.2714 +58.376,0.406,0.1349,0.2711 +58.384,0.40479999999999994,0.1339,0.2709 +58.392,0.40359999999999996,0.1329,0.2707 +58.4,0.4023,0.1319,0.2704 +58.408,0.4011,0.1309,0.2702 +58.416000000000004,0.4,0.13,0.27 +58.424,0.3988,0.129,0.2698 +58.432,0.3975,0.128,0.2695 +58.44,0.3964,0.1271,0.2693 +58.448,0.3952,0.1261,0.2691 +58.456,0.394,0.1252,0.2688 +58.464,0.39280000000000004,0.1242,0.2686 +58.472,0.39170000000000005,0.1233,0.2684 +58.480000000000004,0.3906,0.1224,0.2682 +58.488,0.3894,0.1215,0.2679 +58.496,0.3883,0.1206,0.2677 +58.504,0.3871,0.1196,0.2675 +58.512,0.386,0.1187,0.2673 +58.52,0.3849,0.1179,0.267 +58.528,0.3838,0.117,0.2668 +58.536,0.3827,0.1161,0.2666 +58.544000000000004,0.38160000000000005,0.1152,0.2664 +58.552,0.3804,0.1143,0.2661 +58.56,0.3794,0.1135,0.2659 +58.568,0.37829999999999997,0.1126,0.2657 +58.576,0.3771,0.1117,0.2654 +58.584,0.3761,0.1109,0.2652 +58.592,0.3751,0.1101,0.265 +58.6,0.374,0.1092,0.2648 +58.608000000000004,0.3729,0.1084,0.2645 +58.616,0.3719,0.1076,0.2643 +58.624,0.3708,0.1067,0.2641 +58.632,0.3698,0.1059,0.2639 +58.64,0.3687,0.1051,0.2636 +58.648,0.3677,0.1043,0.2634 +58.656,0.36669999999999997,0.1035,0.2632 +58.664,0.3657,0.1027,0.263 +58.672000000000004,0.3646,0.1019,0.2627 +58.68,0.36360000000000003,0.1011,0.2625 +58.688,0.36269999999999997,0.1004,0.2623 +58.696,0.3617,0.0996,0.2621 +58.704,0.3606,0.0988,0.2618 +58.712,0.3597,0.0981,0.2616 +58.72,0.3587,0.0973,0.2614 +58.728,0.3578,0.0966,0.2612 +58.736000000000004,0.3567,0.0958,0.2609 +58.744,0.3558,0.0951,0.2607 +58.752,0.3548,0.0943,0.2605 +58.76,0.3539,0.0936,0.2603 +58.768,0.3529,0.0929,0.26 +58.776,0.352,0.0922,0.2598 +58.784,0.351,0.0914,0.2596 +58.792,0.3501,0.0907,0.2594 +58.800000000000004,0.34909999999999997,0.09,0.2591 +58.808,0.3482,0.0893,0.2589 +58.816,0.3473,0.0886,0.2587 +58.824,0.34640000000000004,0.0879,0.2585 +58.832,0.3454,0.0872,0.2582 +58.84,0.3446,0.0866,0.258 +58.848,0.3437,0.0859,0.2578 +58.856,0.3428,0.0852,0.2576 +58.864000000000004,0.3418,0.0845,0.2573 +58.872,0.34099999999999997,0.0839,0.2571 +58.88,0.3401,0.0832,0.2569 +58.888,0.3393,0.0826,0.2567 +58.896,0.33830000000000005,0.0819,0.2564 +58.904,0.33749999999999997,0.0813,0.2562 +58.912,0.3366,0.0806,0.256 +58.92,0.33580000000000004,0.08,0.2558 +58.928000000000004,0.3349,0.0794,0.2555 +58.936,0.334,0.0787,0.2553 +58.944,0.3332,0.0781,0.2551 +58.952,0.33240000000000003,0.0775,0.2549 +58.96,0.3316,0.0769,0.2547 +58.968,0.3307,0.0763,0.2544 +58.976,0.32989999999999997,0.0757,0.2542 +58.984,0.3291,0.0751,0.254 +58.992000000000004,0.32830000000000004,0.0745,0.2538 +59.0,0.3274,0.0739,0.2535 +59.008,0.3266,0.0733,0.2533 +59.016,0.3258,0.0727,0.2531 +59.024,0.325,0.0721,0.2529 +59.032000000000004,0.3241,0.0715,0.2526 +59.04,0.3234,0.071,0.2524 +59.048,0.3226,0.0704,0.2522 +59.056000000000004,0.3218,0.0698,0.252 +59.064,0.32110000000000005,0.0693,0.2518 +59.072,0.3202,0.0687,0.2515 +59.08,0.3195,0.0682,0.2513 +59.088,0.3187,0.0676,0.2511 +59.096000000000004,0.318,0.0671,0.2509 +59.104,0.3171,0.0665,0.2506 +59.112,0.3164,0.066,0.2504 +59.120000000000005,0.3157,0.0655,0.2502 +59.128,0.3149,0.0649,0.25 +59.136,0.3141,0.0644,0.2497 +59.144,0.3134,0.0639,0.2495 +59.152,0.3127,0.0634,0.2493 +59.160000000000004,0.312,0.0629,0.2491 +59.168,0.31120000000000003,0.0623,0.2489 +59.176,0.3104,0.0618,0.2486 +59.184000000000005,0.30970000000000003,0.0613,0.2484 +59.192,0.309,0.0608,0.2482 +59.2,0.3083,0.0603,0.248 +59.208,0.3076,0.0598,0.2478 +59.216,0.3069,0.0594,0.2475 +59.224000000000004,0.30619999999999997,0.0589,0.2473 +59.232,0.3055,0.0584,0.2471 +59.24,0.3048,0.0579,0.2469 +59.248000000000005,0.304,0.0574,0.2466 +59.256,0.3034,0.057,0.2464 +59.264,0.3027,0.0565,0.2462 +59.272,0.302,0.056,0.246 +59.28,0.3014,0.0556,0.2458 +59.288000000000004,0.3006,0.0551,0.2455 +59.296,0.3,0.0547,0.2453 +59.304,0.2993,0.0542,0.2451 +59.312000000000005,0.2987,0.0538,0.2449 +59.32,0.298,0.0533,0.2447 +59.328,0.2973,0.0529,0.2444 +59.336,0.2967,0.0525,0.2442 +59.344,0.296,0.052,0.244 +59.352000000000004,0.2954,0.0516,0.2438 +59.36,0.2948,0.0512,0.2436 +59.368,0.294,0.0507,0.2433 +59.376000000000005,0.2934,0.0503,0.2431 +59.384,0.2928,0.0499,0.2429 +59.392,0.2922,0.0495,0.2427 +59.4,0.29159999999999997,0.0491,0.2425 +59.408,0.2909,0.0487,0.2422 +59.416000000000004,0.2903,0.0483,0.242 +59.424,0.28969999999999996,0.0479,0.2418 +59.432,0.2891,0.0475,0.2416 +59.44,0.2885,0.0471,0.2414 +59.448,0.2878,0.0467,0.2411 +59.456,0.2872,0.0463,0.2409 +59.464,0.2866,0.0459,0.2407 +59.472,0.286,0.0455,0.2405 +59.480000000000004,0.2854,0.0451,0.2403 +59.488,0.2847,0.0447,0.24 +59.496,0.2842,0.0444,0.2398 +59.504,0.2836,0.044,0.2396 +59.512,0.28300000000000003,0.0436,0.2394 +59.52,0.2825,0.0433,0.2392 +59.528,0.2818,0.0429,0.2389 +59.536,0.2812,0.0425,0.2387 +59.544000000000004,0.2807,0.0422,0.2385 +59.552,0.2801,0.0418,0.2383 +59.56,0.2796,0.0415,0.2381 +59.568,0.27890000000000004,0.0411,0.2378 +59.576,0.2784,0.0408,0.2376 +59.584,0.2778,0.0404,0.2374 +59.592,0.2773,0.0401,0.2372 +59.6,0.2767,0.0397,0.237 +59.608000000000004,0.2761,0.0394,0.2367 +59.616,0.2756,0.0391,0.2365 +59.624,0.275,0.0387,0.2363 +59.632,0.2745,0.0384,0.2361 +59.64,0.274,0.0381,0.2359 +59.648,0.2734,0.0377,0.2357 +59.656,0.2728,0.0374,0.2354 +59.664,0.2723,0.0371,0.2352 +59.672000000000004,0.2718,0.0368,0.235 +59.68,0.2713,0.0365,0.2348 +59.688,0.2708,0.0362,0.2346 +59.696,0.2701,0.0358,0.2343 +59.704,0.2696,0.0355,0.2341 +59.712,0.2691,0.0352,0.2339 +59.72,0.2686,0.0349,0.2337 +59.728,0.2681,0.0346,0.2335 +59.736000000000004,0.2676,0.0343,0.2333 +59.744,0.267,0.034,0.233 +59.752,0.2665,0.0337,0.2328 +59.76,0.2661,0.0335,0.2326 +59.768,0.2656,0.0332,0.2324 +59.776,0.2651,0.0329,0.2322 +59.784,0.2646,0.0326,0.232 +59.792,0.264,0.0323,0.2317 +59.800000000000004,0.2635,0.032,0.2315 +59.808,0.2631,0.0318,0.2313 +59.816,0.2626,0.0315,0.2311 +59.824,0.2621,0.0312,0.2309 +59.832,0.2616,0.0309,0.2307 +59.84,0.2611,0.0307,0.2304 +59.848,0.2606,0.0304,0.2302 +59.856,0.2601,0.0301,0.23 +59.864000000000004,0.2597,0.0299,0.2298 +59.872,0.2592,0.0296,0.2296 +59.88,0.2587,0.0293,0.2294 +59.888,0.2582,0.0291,0.2291 +59.896,0.2577,0.0288,0.2289 +59.904,0.2573,0.0286,0.2287 +59.912,0.25680000000000003,0.0283,0.2285 +59.92,0.2564,0.0281,0.2283 +59.928000000000004,0.2559,0.0278,0.2281 +59.936,0.2554,0.0276,0.2278 +59.944,0.255,0.0274,0.2276 +59.952,0.2545,0.0271,0.2274 +59.96,0.2541,0.0269,0.2272 +59.968,0.2536,0.0266,0.227 +59.976,0.2532,0.0264,0.2268 +59.984,0.25270000000000004,0.0262,0.2265 +59.992000000000004,0.2522,0.0259,0.2263 +60.0,0.2518,0.0257,0.2261 +60.008,0.2514,0.0255,0.2259 +60.016,0.251,0.0253,0.2257 +60.024,0.2505,0.025,0.2255 +60.032000000000004,0.25,0.0248,0.2252 +60.04,0.24960000000000002,0.0246,0.225 +60.048,0.2492,0.0244,0.2248 +60.056000000000004,0.2487,0.0241,0.2246 +60.064,0.2483,0.0239,0.2244 +60.072,0.2479,0.0237,0.2242 +60.08,0.2475,0.0235,0.224 +60.088,0.247,0.0233,0.2237 +60.096000000000004,0.2466,0.0231,0.2235 +60.104,0.2462,0.0229,0.2233 +60.112,0.2458,0.0227,0.2231 +60.120000000000005,0.24539999999999998,0.0225,0.2229 +60.128,0.245,0.0223,0.2227 +60.136,0.2446,0.0221,0.2225 +60.144,0.2441,0.0219,0.2222 +60.152,0.2437,0.0217,0.222 +60.160000000000004,0.2433,0.0215,0.2218 +60.168,0.2429,0.0213,0.2216 +60.176,0.24250000000000002,0.0211,0.2214 +60.184000000000005,0.2421,0.0209,0.2212 +60.192,0.2417,0.0207,0.221 +60.2,0.2412,0.0205,0.2207 +60.208,0.2409,0.0204,0.2205 +60.216,0.2405,0.0202,0.2203 +60.224000000000004,0.24009999999999998,0.02,0.2201 +60.232,0.23970000000000002,0.0198,0.2199 +60.24,0.2393,0.0196,0.2197 +60.248000000000005,0.2389,0.0194,0.2195 +60.256,0.23850000000000002,0.0193,0.2192 +60.264,0.2381,0.0191,0.219 +60.272,0.2377,0.0189,0.2188 +60.28,0.2374,0.0188,0.2186 +60.288000000000004,0.23700000000000002,0.0186,0.2184 +60.296,0.2366,0.0184,0.2182 +60.304,0.2362,0.0182,0.218 +60.312000000000005,0.2358,0.0181,0.2177 +60.32,0.2354,0.0179,0.2175 +60.328,0.235,0.0177,0.2173 +60.336,0.2347,0.0176,0.2171 +60.344,0.2343,0.0174,0.2169 +60.352000000000004,0.234,0.0173,0.2167 +60.36,0.2336,0.0171,0.2165 +60.368,0.2332,0.0169,0.2163 +60.376000000000005,0.2328,0.0168,0.216 +60.384,0.2324,0.0166,0.2158 +60.392,0.23210000000000003,0.0165,0.2156 +60.4,0.23170000000000002,0.0163,0.2154 +60.408,0.2314,0.0162,0.2152 +60.416000000000004,0.23099999999999998,0.016,0.215 +60.424,0.2307,0.0159,0.2148 +60.432,0.2303,0.0157,0.2146 +60.44,0.2299,0.0156,0.2143 +60.448,0.22960000000000003,0.0155,0.2141 +60.456,0.22920000000000001,0.0153,0.2139 +60.464,0.2289,0.0152,0.2137 +60.472,0.22849999999999998,0.015,0.2135 +60.480000000000004,0.2282,0.0149,0.2133 +60.488,0.2278,0.0147,0.2131 +60.496,0.2275,0.0146,0.2129 +60.504,0.22710000000000002,0.0145,0.2126 +60.512,0.2267,0.0143,0.2124 +60.52,0.2264,0.0142,0.2122 +60.528,0.2261,0.0141,0.212 +60.536,0.22569999999999998,0.0139,0.2118 +60.544000000000004,0.22540000000000002,0.0138,0.2116 +60.552,0.2251,0.0137,0.2114 +60.56,0.2248,0.0136,0.2112 +60.568,0.2243,0.0134,0.2109 +60.576,0.224,0.0133,0.2107 +60.584,0.22369999999999998,0.0132,0.2105 +60.592,0.2234,0.0131,0.2103 +60.6,0.223,0.0129,0.2101 +60.608000000000004,0.2227,0.0128,0.2099 +60.616,0.2224,0.0127,0.2097 +60.624,0.2221,0.0126,0.2095 +60.632,0.22180000000000002,0.0125,0.2093 +60.64,0.2213,0.0123,0.209 +60.648,0.221,0.0122,0.2088 +60.656,0.2207,0.0121,0.2086 +60.664,0.2204,0.012,0.2084 +60.672000000000004,0.2201,0.0119,0.2082 +60.68,0.2198,0.0118,0.208 +60.688,0.2195,0.0117,0.2078 +60.696,0.21910000000000002,0.0115,0.2076 +60.704,0.2188,0.0114,0.2074 +60.712,0.2185,0.0113,0.2072 +60.72,0.2181,0.0112,0.2069 +60.728,0.2178,0.0111,0.2067 +60.736000000000004,0.2175,0.011,0.2065 +60.744,0.2172,0.0109,0.2063 +60.752,0.2169,0.0108,0.2061 +60.76,0.2166,0.0107,0.2059 +60.768,0.2163,0.0106,0.2057 +60.776,0.216,0.0105,0.2055 +60.784,0.2157,0.0104,0.2053 +60.792,0.2154,0.0103,0.2051 +60.800000000000004,0.21500000000000002,0.0102,0.2048 +60.808,0.2147,0.0101,0.2046 +60.816,0.2144,0.01,0.2044 +60.824,0.21409999999999998,0.0099,0.2042 +60.832,0.2138,0.0098,0.204 +60.84,0.21350000000000002,0.0097,0.2038 +60.848,0.2132,0.0096,0.2036 +60.856,0.2129,0.0095,0.2034 +60.864000000000004,0.21259999999999998,0.0094,0.2032 +60.872,0.2124,0.0094,0.203 +60.88,0.212,0.0093,0.2027 +60.888,0.2117,0.0092,0.2025 +60.896,0.2114,0.0091,0.2023 +60.904,0.2111,0.009,0.2021 +60.912,0.2108,0.0089,0.2019 +60.92,0.2105,0.0088,0.2017 +60.928000000000004,0.2102,0.0087,0.2015 +60.936,0.21000000000000002,0.0087,0.2013 +60.944,0.2097,0.0086,0.2011 +60.952,0.2094,0.0085,0.2009 +60.96,0.20909999999999998,0.0084,0.2007 +60.968,0.2088,0.0083,0.2005 +60.976,0.2084,0.0082,0.2002 +60.984,0.20820000000000002,0.0082,0.2 +60.992000000000004,0.2079,0.0081,0.1998 +61.0,0.2076,0.008,0.1996 +61.008,0.20729999999999998,0.0079,0.1994 +61.016,0.207,0.0078,0.1992 +61.024,0.2068,0.0078,0.199 +61.032000000000004,0.20650000000000002,0.0077,0.1988 +61.04,0.2062,0.0076,0.1986 +61.048,0.2059,0.0075,0.1984 +61.056000000000004,0.2057,0.0075,0.1982 +61.064,0.2054,0.0074,0.198 +61.072,0.205,0.0073,0.1977 +61.08,0.2048,0.0073,0.1975 +61.088,0.20450000000000002,0.0072,0.1973 +61.096000000000004,0.2042,0.0071,0.1971 +61.104,0.2039,0.007,0.1969 +61.112,0.20370000000000002,0.007,0.1967 +61.120000000000005,0.2034,0.0069,0.1965 +61.128,0.2031,0.0068,0.1963 +61.136,0.2029,0.0068,0.1961 +61.144,0.2026,0.0067,0.1959 +61.152,0.2023,0.0066,0.1957 +61.160000000000004,0.2021,0.0066,0.1955 +61.168,0.2018,0.0065,0.1953 +61.176,0.2014,0.0064,0.195 +61.184000000000005,0.2012,0.0064,0.1948 +61.192,0.2009,0.0063,0.1946 +61.2,0.2007,0.0063,0.1944 +61.208,0.20040000000000002,0.0062,0.1942 +61.216,0.2001,0.0061,0.194 +61.224000000000004,0.1999,0.0061,0.1938 +61.232,0.1996,0.006,0.1936 +61.24,0.1994,0.006,0.1934 +61.248000000000005,0.1991,0.0059,0.1932 +61.256,0.1988,0.0058,0.193 +61.264,0.1986,0.0058,0.1928 +61.272,0.1983,0.0057,0.1926 +61.28,0.1981,0.0057,0.1924 +61.288000000000004,0.1978,0.0056,0.1922 +61.296,0.1975,0.0055,0.192 +61.304,0.19720000000000001,0.0055,0.1917 +61.312000000000005,0.1969,0.0054,0.1915 +61.32,0.19669999999999999,0.0054,0.1913 +61.328,0.1964,0.0053,0.1911 +61.336,0.19619999999999999,0.0053,0.1909 +61.344,0.19590000000000002,0.0052,0.1907 +61.352000000000004,0.1957,0.0052,0.1905 +61.36,0.1954,0.0051,0.1903 +61.368,0.19519999999999998,0.0051,0.1901 +61.376000000000005,0.19490000000000002,0.005,0.1899 +61.384,0.1947,0.005,0.1897 +61.392,0.1944,0.0049,0.1895 +61.4,0.19419999999999998,0.0049,0.1893 +61.408,0.1939,0.0048,0.1891 +61.416000000000004,0.1937,0.0048,0.1889 +61.424,0.19340000000000002,0.0047,0.1887 +61.432,0.1932,0.0047,0.1885 +61.44,0.1929,0.0046,0.1883 +61.448,0.1926,0.0046,0.188 +61.456,0.1923,0.0045,0.1878 +61.464,0.1921,0.0045,0.1876 +61.472,0.1918,0.0044,0.1874 +61.480000000000004,0.1916,0.0044,0.1872 +61.488,0.1914,0.0044,0.187 +61.496,0.1911,0.0043,0.1868 +61.504,0.1909,0.0043,0.1866 +61.512,0.19060000000000002,0.0042,0.1864 +61.52,0.1904,0.0042,0.1862 +61.528,0.1901,0.0041,0.186 +61.536,0.18989999999999999,0.0041,0.1858 +61.544000000000004,0.1896,0.004,0.1856 +61.552,0.1894,0.004,0.1854 +61.56,0.1892,0.004,0.1852 +61.568,0.18889999999999998,0.0039,0.185 +61.576,0.18869999999999998,0.0039,0.1848 +61.584,0.18839999999999998,0.0038,0.1846 +61.592,0.1882,0.0038,0.1844 +61.6,0.188,0.0038,0.1842 +61.608000000000004,0.1877,0.0037,0.184 +61.616,0.1875,0.0037,0.1838 +61.624,0.18730000000000002,0.0037,0.1836 +61.632,0.18689999999999998,0.0036,0.1833 +61.64,0.1867,0.0036,0.1831 +61.648,0.1864,0.0035,0.1829 +61.656,0.1862,0.0035,0.1827 +61.664,0.186,0.0035,0.1825 +61.672000000000004,0.18569999999999998,0.0034,0.1823 +61.68,0.1855,0.0034,0.1821 +61.688,0.1853,0.0034,0.1819 +61.696,0.185,0.0033,0.1817 +61.704,0.1848,0.0033,0.1815 +61.712,0.1846,0.0033,0.1813 +61.72,0.18430000000000002,0.0032,0.1811 +61.728,0.1841,0.0032,0.1809 +61.736000000000004,0.1839,0.0032,0.1807 +61.744,0.18359999999999999,0.0031,0.1805 +61.752,0.18339999999999998,0.0031,0.1803 +61.76,0.1832,0.0031,0.1801 +61.768,0.1829,0.003,0.1799 +61.776,0.1827,0.003,0.1797 +61.784,0.1825,0.003,0.1795 +61.792,0.18219999999999997,0.0029,0.1793 +61.800000000000004,0.182,0.0029,0.1791 +61.808,0.18180000000000002,0.0029,0.1789 +61.816,0.1815,0.0028,0.1787 +61.824,0.1813,0.0028,0.1785 +61.832,0.18109999999999998,0.0028,0.1783 +61.84,0.1809,0.0028,0.1781 +61.848,0.1806,0.0027,0.1779 +61.856,0.1804,0.0027,0.1777 +61.864000000000004,0.1802,0.0027,0.1775 +61.872,0.1799,0.0026,0.1773 +61.88,0.1797,0.0026,0.1771 +61.888,0.1795,0.0026,0.1769 +61.896,0.1793,0.0026,0.1767 +61.904,0.179,0.0025,0.1765 +61.912,0.17880000000000001,0.0025,0.1763 +61.92,0.1786,0.0025,0.1761 +61.928000000000004,0.1784,0.0025,0.1759 +61.936,0.1781,0.0024,0.1757 +61.944,0.1778,0.0024,0.1754 +61.952,0.1776,0.0024,0.1752 +61.96,0.1774,0.0024,0.175 +61.968,0.1771,0.0023,0.1748 +61.976,0.1769,0.0023,0.1746 +61.984,0.1767,0.0023,0.1744 +61.992000000000004,0.1765,0.0023,0.1742 +62.0,0.1762,0.0022,0.174 +62.008,0.17600000000000002,0.0022,0.1738 +62.016,0.1758,0.0022,0.1736 +62.024,0.1756,0.0022,0.1734 +62.032000000000004,0.17529999999999998,0.0021,0.1732 +62.04,0.17509999999999998,0.0021,0.173 +62.048,0.1749,0.0021,0.1728 +62.056000000000004,0.1747,0.0021,0.1726 +62.064,0.1744,0.002,0.1724 +62.072,0.1742,0.002,0.1722 +62.08,0.174,0.002,0.172 +62.088,0.1738,0.002,0.1718 +62.096000000000004,0.1736,0.002,0.1716 +62.104,0.1733,0.0019,0.1714 +62.112,0.1731,0.0019,0.1712 +62.120000000000005,0.17290000000000003,0.0019,0.171 +62.128,0.17270000000000002,0.0019,0.1708 +62.136,0.17250000000000001,0.0019,0.1706 +62.144,0.1722,0.0018,0.1704 +62.152,0.172,0.0018,0.1702 +62.160000000000004,0.1718,0.0018,0.17 +62.168,0.1716,0.0018,0.1698 +62.176,0.1714,0.0018,0.1696 +62.184000000000005,0.1711,0.0017,0.1694 +62.192,0.1709,0.0017,0.1692 +62.2,0.17070000000000002,0.0017,0.169 +62.208,0.1705,0.0017,0.1688 +62.216,0.1703,0.0017,0.1686 +62.224000000000004,0.16999999999999998,0.0016,0.1684 +62.232,0.16979999999999998,0.0016,0.1682 +62.24,0.1696,0.0016,0.168 +62.248000000000005,0.1694,0.0016,0.1678 +62.256,0.1692,0.0016,0.1676 +62.264,0.16899999999999998,0.0016,0.1674 +62.272,0.1687,0.0015,0.1672 +62.28,0.1685,0.0015,0.167 +62.288000000000004,0.1683,0.0015,0.1668 +62.296,0.1681,0.0015,0.1666 +62.304,0.1679,0.0015,0.1664 +62.312000000000005,0.1677,0.0015,0.1662 +62.32,0.16740000000000002,0.0014,0.166 +62.328,0.16720000000000002,0.0014,0.1658 +62.336,0.167,0.0014,0.1656 +62.344,0.16690000000000002,0.0014,0.1655 +62.352000000000004,0.16670000000000001,0.0014,0.1653 +62.36,0.1665,0.0014,0.1651 +62.368,0.1663,0.0014,0.1649 +62.376000000000005,0.166,0.0013,0.1647 +62.384,0.1658,0.0013,0.1645 +62.392,0.1656,0.0013,0.1643 +62.4,0.1654,0.0013,0.1641 +62.408,0.16519999999999999,0.0013,0.1639 +62.416000000000004,0.165,0.0013,0.1637 +62.424,0.1648,0.0013,0.1635 +62.432,0.1645,0.0012,0.1633 +62.440000000000005,0.1643,0.0012,0.1631 +62.448,0.1641,0.0012,0.1629 +62.456,0.16390000000000002,0.0012,0.1627 +62.464,0.1637,0.0012,0.1625 +62.472,0.1635,0.0012,0.1623 +62.480000000000004,0.1633,0.0012,0.1621 +62.488,0.16299999999999998,0.0011,0.1619 +62.496,0.1628,0.0011,0.1617 +62.504,0.1626,0.0011,0.1615 +62.512,0.1624,0.0011,0.1613 +62.52,0.16219999999999998,0.0011,0.1611 +62.528,0.16199999999999998,0.0011,0.1609 +62.536,0.1618,0.0011,0.1607 +62.544000000000004,0.1616,0.0011,0.1605 +62.552,0.1614,0.0011,0.1603 +62.56,0.1611,0.001,0.1601 +62.568,0.1609,0.001,0.1599 +62.576,0.1607,0.001,0.1597 +62.584,0.1605,0.001,0.1595 +62.592,0.1603,0.001,0.1593 +62.6,0.1601,0.001,0.1591 +62.608000000000004,0.15990000000000001,0.001,0.1589 +62.616,0.1597,0.001,0.1587 +62.624,0.15940000000000001,0.0009,0.1585 +62.632,0.1592,0.0009,0.1583 +62.64,0.159,0.0009,0.1581 +62.648,0.15880000000000002,0.0009,0.1579 +62.656,0.1587,0.0009,0.1578 +62.664,0.1585,0.0009,0.1576 +62.672000000000004,0.15830000000000002,0.0009,0.1574 +62.68,0.15810000000000002,0.0009,0.1572 +62.688,0.1579,0.0009,0.157 +62.696,0.1577,0.0009,0.1568 +62.704,0.15739999999999998,0.0008,0.1566 +62.712,0.1572,0.0008,0.1564 +62.72,0.157,0.0008,0.1562 +62.728,0.1568,0.0008,0.156 +62.736000000000004,0.1566,0.0008,0.1558 +62.744,0.15639999999999998,0.0008,0.1556 +62.752,0.1562,0.0008,0.1554 +62.76,0.156,0.0008,0.1552 +62.768,0.1558,0.0008,0.155 +62.776,0.1556,0.0008,0.1548 +62.784,0.15539999999999998,0.0008,0.1546 +62.792,0.15510000000000002,0.0007,0.1544 +62.800000000000004,0.1549,0.0007,0.1542 +62.808,0.1547,0.0007,0.154 +62.816,0.1545,0.0007,0.1538 +62.824,0.1543,0.0007,0.1536 +62.832,0.15410000000000001,0.0007,0.1534 +62.84,0.154,0.0007,0.1533 +62.848,0.15380000000000002,0.0007,0.1531 +62.856,0.15360000000000001,0.0007,0.1529 +62.864000000000004,0.1534,0.0007,0.1527 +62.872,0.1532,0.0007,0.1525 +62.88,0.153,0.0007,0.1523 +62.888,0.15280000000000002,0.0007,0.1521 +62.896,0.1525,0.0006,0.1519 +62.904,0.1523,0.0006,0.1517 +62.912,0.15209999999999999,0.0006,0.1515 +62.92,0.15189999999999998,0.0006,0.1513 +62.928000000000004,0.1517,0.0006,0.1511 +62.936,0.1515,0.0006,0.1509 +62.944,0.1513,0.0006,0.1507 +62.952,0.15109999999999998,0.0006,0.1505 +62.96,0.15089999999999998,0.0006,0.1503 +62.968,0.1507,0.0006,0.1501 +62.976,0.1505,0.0006,0.1499 +62.984,0.1503,0.0006,0.1497 +62.992000000000004,0.1502,0.0006,0.1496 +63.0,0.15,0.0006,0.1494 +63.008,0.1497,0.0005,0.1492 +63.016,0.1495,0.0005,0.149 +63.024,0.1493,0.0005,0.1488 +63.032000000000004,0.1491,0.0005,0.1486 +63.04,0.1489,0.0005,0.1484 +63.048,0.1487,0.0005,0.1482 +63.056000000000004,0.1485,0.0005,0.148 +63.064,0.1483,0.0005,0.1478 +63.072,0.1481,0.0005,0.1476 +63.08,0.1479,0.0005,0.1474 +63.088,0.1477,0.0005,0.1472 +63.096000000000004,0.1475,0.0005,0.147 +63.104,0.14730000000000001,0.0005,0.1468 +63.112,0.1472,0.0005,0.1467 +63.120000000000005,0.147,0.0005,0.1465 +63.128,0.1468,0.0005,0.1463 +63.136,0.1466,0.0005,0.1461 +63.144,0.1464,0.0005,0.1459 +63.152,0.1461,0.0004,0.1457 +63.160000000000004,0.1459,0.0004,0.1455 +63.168,0.14570000000000002,0.0004,0.1453 +63.176,0.14550000000000002,0.0004,0.1451 +63.184000000000005,0.1453,0.0004,0.1449 +63.192,0.1451,0.0004,0.1447 +63.2,0.1449,0.0004,0.1445 +63.208,0.14470000000000002,0.0004,0.1443 +63.216,0.14450000000000002,0.0004,0.1441 +63.224000000000004,0.1444,0.0004,0.144 +63.232,0.14420000000000002,0.0004,0.1438 +63.24,0.14400000000000002,0.0004,0.1436 +63.248000000000005,0.1438,0.0004,0.1434 +63.256,0.1436,0.0004,0.1432 +63.264,0.1434,0.0004,0.143 +63.272,0.14320000000000002,0.0004,0.1428 +63.28,0.14300000000000002,0.0004,0.1426 +63.288000000000004,0.1428,0.0004,0.1424 +63.296,0.1426,0.0004,0.1422 +63.304,0.1424,0.0004,0.142 +63.312000000000005,0.14220000000000002,0.0004,0.1418 +63.32,0.142,0.0003,0.1417 +63.328,0.14179999999999998,0.0003,0.1415 +63.336,0.1416,0.0003,0.1413 +63.344,0.1414,0.0003,0.1411 +63.352000000000004,0.1412,0.0003,0.1409 +63.36,0.141,0.0003,0.1407 +63.368,0.1408,0.0003,0.1405 +63.376000000000005,0.1406,0.0003,0.1403 +63.384,0.1404,0.0003,0.1401 +63.392,0.1402,0.0003,0.1399 +63.4,0.13999999999999999,0.0003,0.1397 +63.408,0.1398,0.0003,0.1395 +63.416000000000004,0.1397,0.0003,0.1394 +63.424,0.13949999999999999,0.0003,0.1392 +63.432,0.1393,0.0003,0.139 +63.440000000000005,0.1391,0.0003,0.1388 +63.448,0.1389,0.0003,0.1386 +63.456,0.1387,0.0003,0.1384 +63.464,0.13849999999999998,0.0003,0.1382 +63.472,0.1383,0.0003,0.138 +63.480000000000004,0.1381,0.0003,0.1378 +63.488,0.1379,0.0003,0.1376 +63.496,0.1377,0.0003,0.1374 +63.504,0.1376,0.0003,0.1373 +63.512,0.1374,0.0003,0.1371 +63.52,0.1372,0.0003,0.1369 +63.528,0.13699999999999998,0.0003,0.1367 +63.536,0.1368,0.0003,0.1365 +63.544000000000004,0.1365,0.0002,0.1363 +63.552,0.1363,0.0002,0.1361 +63.56,0.1361,0.0002,0.1359 +63.568,0.1359,0.0002,0.1357 +63.576,0.13570000000000002,0.0002,0.1355 +63.584,0.1356,0.0002,0.1354 +63.592,0.1354,0.0002,0.1352 +63.6,0.13520000000000001,0.0002,0.135 +63.608000000000004,0.135,0.0002,0.1348 +63.616,0.1348,0.0002,0.1346 +63.624,0.1346,0.0002,0.1344 +63.632,0.13440000000000002,0.0002,0.1342 +63.64,0.1342,0.0002,0.134 +63.648,0.134,0.0002,0.1338 +63.656,0.13390000000000002,0.0002,0.1337 +63.664,0.1337,0.0002,0.1335 +63.672000000000004,0.1335,0.0002,0.1333 +63.68,0.1333,0.0002,0.1331 +63.688,0.1331,0.0002,0.1329 +63.696,0.13290000000000002,0.0002,0.1327 +63.704,0.1327,0.0002,0.1325 +63.712,0.1325,0.0002,0.1323 +63.72,0.1323,0.0002,0.1321 +63.728,0.1321,0.0002,0.1319 +63.736000000000004,0.132,0.0002,0.1318 +63.744,0.1318,0.0002,0.1316 +63.752,0.1316,0.0002,0.1314 +63.76,0.13140000000000002,0.0002,0.1312 +63.768,0.1312,0.0002,0.131 +63.776,0.131,0.0002,0.1308 +63.784,0.1308,0.0002,0.1306 +63.792,0.1306,0.0002,0.1304 +63.800000000000004,0.1305,0.0002,0.1303 +63.808,0.1303,0.0002,0.1301 +63.816,0.1301,0.0002,0.1299 +63.824,0.12990000000000002,0.0002,0.1297 +63.832,0.1297,0.0002,0.1295 +63.84,0.1295,0.0002,0.1293 +63.848,0.1293,0.0002,0.1291 +63.856,0.1291,0.0002,0.1289 +63.864000000000004,0.12890000000000001,0.0002,0.1287 +63.872,0.1288,0.0002,0.1286 +63.88,0.12849999999999998,0.0001,0.1284 +63.888,0.1283,0.0001,0.1282 +63.896,0.1281,0.0001,0.128 +63.904,0.12789999999999999,0.0001,0.1278 +63.912,0.12769999999999998,0.0001,0.1276 +63.92,0.1275,0.0001,0.1274 +63.928000000000004,0.1273,0.0001,0.1272 +63.936,0.12719999999999998,0.0001,0.1271 +63.944,0.127,0.0001,0.1269 +63.952,0.1268,0.0001,0.1267 +63.96,0.1266,0.0001,0.1265 +63.968,0.12639999999999998,0.0001,0.1263 +63.976,0.12619999999999998,0.0001,0.1261 +63.984,0.126,0.0001,0.1259 +63.992000000000004,0.1258,0.0001,0.1257 +64.0,0.12569999999999998,0.0001,0.1256 +64.008,0.1255,0.0001,0.1254 +64.016,0.1253,0.0001,0.1252 +64.024,0.1251,0.0001,0.125 +64.032,0.1249,0.0001,0.1248 +64.04,0.1247,0.0001,0.1246 +64.048,0.1245,0.0001,0.1244 +64.056,0.1244,0.0001,0.1243 +64.06400000000001,0.1242,0.0001,0.1241 +64.072,0.124,0.0001,0.1239 +64.08,0.12380000000000001,0.0001,0.1237 +64.08800000000001,0.1236,0.0001,0.1235 +64.096,0.12340000000000001,0.0001,0.1233 +64.104,0.1232,0.0001,0.1231 +64.112,0.123,0.0001,0.1229 +64.12,0.12290000000000001,0.0001,0.1228 +64.128,0.1227,0.0001,0.1226 +64.136,0.1225,0.0001,0.1224 +64.144,0.1223,0.0001,0.1222 +64.152,0.1221,0.0001,0.122 +64.16,0.12190000000000001,0.0001,0.1218 +64.168,0.1217,0.0001,0.1216 +64.176,0.1216,0.0001,0.1215 +64.184,0.12140000000000001,0.0001,0.1213 +64.19200000000001,0.1212,0.0001,0.1211 +64.2,0.121,0.0001,0.1209 +64.208,0.1208,0.0001,0.1207 +64.21600000000001,0.1206,0.0001,0.1205 +64.224,0.12040000000000001,0.0001,0.1203 +64.232,0.1203,0.0001,0.1202 +64.24,0.1201,0.0001,0.12 +64.248,0.1199,0.0001,0.1198 +64.256,0.1197,0.0001,0.1196 +64.264,0.11950000000000001,0.0001,0.1194 +64.272,0.1193,0.0001,0.1192 +64.28,0.1192,0.0001,0.1191 +64.288,0.11900000000000001,0.0001,0.1189 +64.296,0.1188,0.0001,0.1187 +64.304,0.1186,0.0001,0.1185 +64.312,0.1184,0.0001,0.1183 +64.32000000000001,0.1182,0.0001,0.1181 +64.328,0.11800000000000001,0.0001,0.1179 +64.336,0.1179,0.0001,0.1178 +64.34400000000001,0.1177,0.0001,0.1176 +64.352,0.11750000000000001,0.0001,0.1174 +64.36,0.1173,0.0001,0.1172 +64.368,0.11710000000000001,0.0001,0.117 +64.376,0.1169,0.0001,0.1168 +64.384,0.1168,0.0001,0.1167 +64.392,0.11660000000000001,0.0001,0.1165 +64.4,0.1164,0.0001,0.1163 +64.408,0.1162,0.0001,0.1161 +64.416,0.116,0.0001,0.1159 +64.424,0.1158,0.0001,0.1157 +64.432,0.11560000000000001,0.0001,0.1155 +64.44,0.1155,0.0001,0.1154 +64.44800000000001,0.1153,0.0001,0.1152 +64.456,0.11510000000000001,0.0001,0.115 +64.464,0.1149,0.0001,0.1148 +64.47200000000001,0.1147,0.0001,0.1146 +64.48,0.1145,0.0001,0.1144 +64.488,0.1144,0.0001,0.1143 +64.496,0.1142,0.0001,0.1141 +64.504,0.114,0.0001,0.1139 +64.512,0.1138,0.0001,0.1137 +64.52,0.1136,0.0001,0.1135 +64.528,0.1134,0.0001,0.1133 +64.536,0.1133,0.0001,0.1132 +64.544,0.1131,0.0001,0.113 +64.552,0.1129,0.0001,0.1128 +64.56,0.11270000000000001,0.0001,0.1126 +64.568,0.1125,0.0001,0.1124 +64.57600000000001,0.1122,0.0,0.1122 +64.584,0.1121,0.0,0.1121 +64.592,0.1119,0.0,0.1119 +64.6,0.1117,0.0,0.1117 +64.608,0.1115,0.0,0.1115 +64.616,0.1113,0.0,0.1113 +64.624,0.1111,0.0,0.1111 +64.632,0.111,0.0,0.111 +64.64,0.1108,0.0,0.1108 +64.648,0.1106,0.0,0.1106 +64.656,0.1104,0.0,0.1104 +64.664,0.1102,0.0,0.1102 +64.672,0.11,0.0,0.11 +64.68,0.1099,0.0,0.1099 +64.688,0.1097,0.0,0.1097 +64.696,0.1095,0.0,0.1095 +64.70400000000001,0.1093,0.0,0.1093 +64.712,0.1091,0.0,0.1091 +64.72,0.109,0.0,0.109 +64.728,0.1088,0.0,0.1088 +64.736,0.1086,0.0,0.1086 +64.744,0.1084,0.0,0.1084 +64.752,0.1082,0.0,0.1082 +64.76,0.108,0.0,0.108 +64.768,0.1079,0.0,0.1079 +64.776,0.1077,0.0,0.1077 +64.784,0.1075,0.0,0.1075 +64.792,0.1073,0.0,0.1073 +64.8,0.1071,0.0,0.1071 +64.808,0.107,0.0,0.107 +64.816,0.1068,0.0,0.1068 +64.824,0.1066,0.0,0.1066 +64.83200000000001,0.1064,0.0,0.1064 +64.84,0.1062,0.0,0.1062 +64.848,0.106,0.0,0.106 +64.856,0.1059,0.0,0.1059 +64.864,0.1057,0.0,0.1057 +64.872,0.1055,0.0,0.1055 +64.88,0.1053,0.0,0.1053 +64.888,0.1051,0.0,0.1051 +64.896,0.105,0.0,0.105 +64.904,0.1048,0.0,0.1048 +64.912,0.1046,0.0,0.1046 +64.92,0.1044,0.0,0.1044 +64.928,0.1042,0.0,0.1042 +64.936,0.1041,0.0,0.1041 +64.944,0.1039,0.0,0.1039 +64.952,0.1037,0.0,0.1037 +64.96000000000001,0.1035,0.0,0.1035 +64.968,0.1033,0.0,0.1033 +64.976,0.1032,0.0,0.1032 +64.984,0.103,0.0,0.103 +64.992,0.1028,0.0,0.1028 +65.0,0.1026,0.0,0.1026 +65.008,0.1024,0.0,0.1024 +65.016,0.1023,0.0,0.1023 +65.024,0.1021,0.0,0.1021 +65.032,0.1019,0.0,0.1019 +65.04,0.1017,0.0,0.1017 +65.048,0.1015,0.0,0.1015 +65.056,0.1014,0.0,0.1014 +65.06400000000001,0.1012,0.0,0.1012 +65.072,0.101,0.0,0.101 +65.08,0.1008,0.0,0.1008 +65.08800000000001,0.1006,0.0,0.1006 +65.096,0.1005,0.0,0.1005 +65.104,0.1003,0.0,0.1003 +65.112,0.1001,0.0,0.1001 +65.12,0.0999,0.0,0.0999 +65.128,0.0997,0.0,0.0997 +65.136,0.0996,0.0,0.0996 +65.144,0.0994,0.0,0.0994 +65.152,0.0992,0.0,0.0992 +65.16,0.099,0.0,0.099 +65.168,0.0988,0.0,0.0988 +65.176,0.0987,0.0,0.0987 +65.184,0.0985,0.0,0.0985 +65.19200000000001,0.0983,0.0,0.0983 +65.2,0.0981,0.0,0.0981 +65.208,0.0979,0.0,0.0979 +65.21600000000001,0.0978,0.0,0.0978 +65.224,0.0976,0.0,0.0976 +65.232,0.0974,0.0,0.0974 +65.24,0.0972,0.0,0.0972 +65.248,0.0971,0.0,0.0971 +65.256,0.0969,0.0,0.0969 +65.264,0.0967,0.0,0.0967 +65.272,0.0965,0.0,0.0965 +65.28,0.0963,0.0,0.0963 +65.288,0.0962,0.0,0.0962 +65.296,0.096,0.0,0.096 +65.304,0.0958,0.0,0.0958 +65.312,0.0956,0.0,0.0956 +65.32000000000001,0.0955,0.0,0.0955 +65.328,0.0953,0.0,0.0953 +65.336,0.0951,0.0,0.0951 +65.34400000000001,0.0949,0.0,0.0949 +65.352,0.0947,0.0,0.0947 +65.36,0.0946,0.0,0.0946 +65.368,0.0944,0.0,0.0944 +65.376,0.0942,0.0,0.0942 +65.384,0.094,0.0,0.094 +65.392,0.0939,0.0,0.0939 +65.4,0.0937,0.0,0.0937 +65.408,0.0935,0.0,0.0935 +65.416,0.0933,0.0,0.0933 +65.424,0.0931,0.0,0.0931 +65.432,0.093,0.0,0.093 +65.44,0.0928,0.0,0.0928 +65.44800000000001,0.0926,0.0,0.0926 +65.456,0.0924,0.0,0.0924 +65.464,0.0923,0.0,0.0923 +65.47200000000001,0.0921,0.0,0.0921 +65.48,0.0919,0.0,0.0919 +65.488,0.0917,0.0,0.0917 +65.496,0.0915,0.0,0.0915 +65.504,0.0914,0.0,0.0914 +65.512,0.0912,0.0,0.0912 +65.52,0.091,0.0,0.091 +65.528,0.0908,0.0,0.0908 +65.536,0.0907,0.0,0.0907 +65.544,0.0905,0.0,0.0905 +65.552,0.0903,0.0,0.0903 +65.56,0.0901,0.0,0.0901 +65.568,0.09,0.0,0.09 +65.57600000000001,0.0898,0.0,0.0898 +65.584,0.0896,0.0,0.0896 +65.592,0.0894,0.0,0.0894 +65.6,0.0893,0.0,0.0893 +65.608,0.0891,0.0,0.0891 +65.616,0.0889,0.0,0.0889 +65.624,0.0887,0.0,0.0887 +65.632,0.0885,0.0,0.0885 +65.64,0.0884,0.0,0.0884 +65.648,0.0882,0.0,0.0882 +65.656,0.088,0.0,0.088 +65.664,0.0878,0.0,0.0878 +65.672,0.0877,0.0,0.0877 +65.68,0.0875,0.0,0.0875 +65.688,0.0873,0.0,0.0873 +65.696,0.0871,0.0,0.0871 +65.70400000000001,0.087,0.0,0.087 +65.712,0.0868,0.0,0.0868 +65.72,0.0866,0.0,0.0866 +65.728,0.0864,0.0,0.0864 +65.736,0.0863,0.0,0.0863 +65.744,0.0861,0.0,0.0861 +65.752,0.0859,0.0,0.0859 +65.76,0.0857,0.0,0.0857 +65.768,0.0856,0.0,0.0856 +65.776,0.0854,0.0,0.0854 +65.784,0.0852,0.0,0.0852 +65.792,0.085,0.0,0.085 +65.8,0.0849,0.0,0.0849 +65.808,0.0847,0.0,0.0847 +65.816,0.0845,0.0,0.0845 +65.824,0.0843,0.0,0.0843 +65.83200000000001,0.0842,0.0,0.0842 +65.84,0.084,0.0,0.084 +65.848,0.0838,0.0,0.0838 +65.856,0.0836,0.0,0.0836 +65.864,0.0835,0.0,0.0835 +65.872,0.0833,0.0,0.0833 +65.88,0.0831,0.0,0.0831 +65.888,0.0829,0.0,0.0829 +65.896,0.0828,0.0,0.0828 +65.904,0.0826,0.0,0.0826 +65.912,0.0824,0.0,0.0824 +65.92,0.0822,0.0,0.0822 +65.928,0.0821,0.0,0.0821 +65.936,0.0819,0.0,0.0819 +65.944,0.0817,0.0,0.0817 +65.952,0.0815,0.0,0.0815 +65.96000000000001,0.0814,0.0,0.0814 +65.968,0.0812,0.0,0.0812 +65.976,0.081,0.0,0.081 +65.984,0.0809,0.0,0.0809 +65.992,0.0807,0.0,0.0807 +66.0,0.0805,0.0,0.0805 +66.008,0.0803,0.0,0.0803 +66.016,0.0802,0.0,0.0802 +66.024,0.08,0.0,0.08 +66.032,0.0798,0.0,0.0798 +66.04,0.0796,0.0,0.0796 +66.048,0.0795,0.0,0.0795 +66.056,0.0793,0.0,0.0793 +66.06400000000001,0.0791,0.0,0.0791 +66.072,0.0789,0.0,0.0789 +66.08,0.0788,0.0,0.0788 +66.08800000000001,0.0786,0.0,0.0786 +66.096,0.0784,0.0,0.0784 +66.104,0.0783,0.0,0.0783 +66.112,0.0781,0.0,0.0781 +66.12,0.0779,0.0,0.0779 +66.128,0.0777,0.0,0.0777 +66.136,0.0776,0.0,0.0776 +66.144,0.0774,0.0,0.0774 +66.152,0.0772,0.0,0.0772 +66.16,0.077,0.0,0.077 +66.168,0.0769,0.0,0.0769 +66.176,0.0767,0.0,0.0767 +66.184,0.0765,0.0,0.0765 +66.19200000000001,0.0764,0.0,0.0764 +66.2,0.0762,0.0,0.0762 +66.208,0.076,0.0,0.076 +66.21600000000001,0.0758,0.0,0.0758 +66.224,0.0757,0.0,0.0757 +66.232,0.0755,0.0,0.0755 +66.24,0.0753,0.0,0.0753 +66.248,0.0751,0.0,0.0751 +66.256,0.075,0.0,0.075 +66.264,0.0748,0.0,0.0748 +66.272,0.0746,0.0,0.0746 +66.28,0.0745,0.0,0.0745 +66.288,0.0743,0.0,0.0743 +66.296,0.0741,0.0,0.0741 +66.304,0.0739,0.0,0.0739 +66.312,0.0738,0.0,0.0738 +66.32000000000001,0.0736,0.0,0.0736 +66.328,0.0734,0.0,0.0734 +66.336,0.0733,0.0,0.0733 +66.34400000000001,0.0731,0.0,0.0731 +66.352,0.0729,0.0,0.0729 +66.36,0.0727,0.0,0.0727 +66.368,0.0726,0.0,0.0726 +66.376,0.0724,0.0,0.0724 +66.384,0.0722,0.0,0.0722 +66.392,0.0721,0.0,0.0721 +66.4,0.0719,0.0,0.0719 +66.408,0.0717,0.0,0.0717 +66.416,0.0715,0.0,0.0715 +66.424,0.0714,0.0,0.0714 +66.432,0.0712,0.0,0.0712 +66.44,0.071,0.0,0.071 +66.44800000000001,0.0709,0.0,0.0709 +66.456,0.0707,0.0,0.0707 +66.464,0.0705,0.0,0.0705 +66.47200000000001,0.0704,0.0,0.0704 +66.48,0.0702,0.0,0.0702 +66.488,0.07,0.0,0.07 +66.496,0.0698,0.0,0.0698 +66.504,0.0697,0.0,0.0697 +66.512,0.0695,0.0,0.0695 +66.52,0.0693,0.0,0.0693 +66.528,0.0692,0.0,0.0692 +66.536,0.069,0.0,0.069 +66.544,0.0688,0.0,0.0688 +66.552,0.0686,0.0,0.0686 +66.56,0.0685,0.0,0.0685 +66.568,0.0683,0.0,0.0683 +66.57600000000001,0.0681,0.0,0.0681 +66.584,0.068,0.0,0.068 +66.592,0.0678,0.0,0.0678 +66.6,0.0676,0.0,0.0676 +66.608,0.0675,0.0,0.0675 +66.616,0.0673,0.0,0.0673 +66.624,0.0671,0.0,0.0671 +66.632,0.0669,0.0,0.0669 +66.64,0.0668,0.0,0.0668 +66.648,0.0666,0.0,0.0666 +66.656,0.0664,0.0,0.0664 +66.664,0.0663,0.0,0.0663 +66.672,0.0661,0.0,0.0661 +66.68,0.0659,0.0,0.0659 +66.688,0.0658,0.0,0.0658 +66.696,0.0656,0.0,0.0656 +66.70400000000001,0.0654,0.0,0.0654 +66.712,0.0653,0.0,0.0653 +66.72,0.0651,0.0,0.0651 +66.728,0.0649,0.0,0.0649 +66.736,0.0647,0.0,0.0647 +66.744,0.0646,0.0,0.0646 +66.752,0.0644,0.0,0.0644 +66.76,0.0642,0.0,0.0642 +66.768,0.0641,0.0,0.0641 +66.776,0.0639,0.0,0.0639 +66.784,0.0637,0.0,0.0637 +66.792,0.0636,0.0,0.0636 +66.8,0.0634,0.0,0.0634 +66.808,0.0632,0.0,0.0632 +66.816,0.0631,0.0,0.0631 +66.824,0.0629,0.0,0.0629 +66.83200000000001,0.0627,0.0,0.0627 +66.84,0.0626,0.0,0.0626 +66.848,0.0624,0.0,0.0624 +66.856,0.0622,0.0,0.0622 +66.864,0.0621,0.0,0.0621 +66.872,0.0619,0.0,0.0619 +66.88,0.0617,0.0,0.0617 +66.888,0.0615,0.0,0.0615 +66.896,0.0614,0.0,0.0614 +66.904,0.0612,0.0,0.0612 +66.912,0.061,0.0,0.061 +66.92,0.0609,0.0,0.0609 +66.928,0.0607,0.0,0.0607 +66.936,0.0605,0.0,0.0605 +66.944,0.0604,0.0,0.0604 +66.952,0.0602,0.0,0.0602 +66.96000000000001,0.06,0.0,0.06 +66.968,0.0599,0.0,0.0599 +66.976,0.0597,0.0,0.0597 +66.984,0.0595,0.0,0.0595 +66.992,0.0594,0.0,0.0594 +67.0,0.0592,0.0,0.0592 +67.008,0.059,0.0,0.059 +67.016,0.0589,0.0,0.0589 +67.024,0.0587,0.0,0.0587 +67.032,0.0585,0.0,0.0585 +67.04,0.0584,0.0,0.0584 +67.048,0.0582,0.0,0.0582 +67.056,0.058,0.0,0.058 +67.06400000000001,0.0579,0.0,0.0579 +67.072,0.0577,0.0,0.0577 +67.08,0.0575,0.0,0.0575 +67.08800000000001,0.0574,0.0,0.0574 +67.096,0.0572,0.0,0.0572 +67.104,0.057,0.0,0.057 +67.112,0.0569,0.0,0.0569 +67.12,0.0567,0.0,0.0567 +67.128,0.0565,0.0,0.0565 +67.136,0.0564,0.0,0.0564 +67.144,0.0562,0.0,0.0562 +67.152,0.056,0.0,0.056 +67.16,0.0559,0.0,0.0559 +67.168,0.0557,0.0,0.0557 +67.176,0.0555,0.0,0.0555 +67.184,0.0554,0.0,0.0554 +67.19200000000001,0.0552,0.0,0.0552 +67.2,0.055,0.0,0.055 +67.208,0.0549,0.0,0.0549 +67.21600000000001,0.0547,0.0,0.0547 +67.224,0.0545,0.0,0.0545 +67.232,0.0544,0.0,0.0544 +67.24,0.0542,0.0,0.0542 +67.248,0.054,0.0,0.054 +67.256,0.0539,0.0,0.0539 +67.264,0.0537,0.0,0.0537 +67.272,0.0535,0.0,0.0535 +67.28,0.0534,0.0,0.0534 +67.288,0.0532,0.0,0.0532 +67.296,0.053,0.0,0.053 +67.304,0.0529,0.0,0.0529 +67.312,0.0527,0.0,0.0527 +67.32000000000001,0.0525,0.0,0.0525 +67.328,0.0524,0.0,0.0524 +67.336,0.0522,0.0,0.0522 +67.34400000000001,0.0521,0.0,0.0521 +67.352,0.0519,0.0,0.0519 +67.36,0.0517,0.0,0.0517 +67.368,0.0516,0.0,0.0516 +67.376,0.0514,0.0,0.0514 +67.384,0.0512,0.0,0.0512 +67.392,0.0511,0.0,0.0511 +67.4,0.0509,0.0,0.0509 +67.408,0.0507,0.0,0.0507 +67.416,0.0506,0.0,0.0506 +67.424,0.0504,0.0,0.0504 +67.432,0.0502,0.0,0.0502 +67.44,0.0501,0.0,0.0501 +67.44800000000001,0.0499,0.0,0.0499 +67.456,0.0497,0.0,0.0497 +67.464,0.0496,0.0,0.0496 +67.47200000000001,0.0494,0.0,0.0494 +67.48,0.0493,0.0,0.0493 +67.488,0.0491,0.0,0.0491 +67.496,0.0489,0.0,0.0489 +67.504,0.0488,0.0,0.0488 +67.512,0.0486,0.0,0.0486 +67.52,0.0484,0.0,0.0484 +67.528,0.0483,0.0,0.0483 +67.536,0.0481,0.0,0.0481 +67.544,0.0479,0.0,0.0479 +67.552,0.0478,0.0,0.0478 +67.56,0.0476,0.0,0.0476 +67.568,0.0474,0.0,0.0474 +67.57600000000001,0.0473,0.0,0.0473 +67.584,0.0471,0.0,0.0471 +67.592,0.047,0.0,0.047 +67.6,0.0468,0.0,0.0468 +67.608,0.0466,0.0,0.0466 +67.616,0.0465,0.0,0.0465 +67.624,0.0463,0.0,0.0463 +67.632,0.0461,0.0,0.0461 +67.64,0.046,0.0,0.046 +67.648,0.0458,0.0,0.0458 +67.656,0.0457,0.0,0.0457 +67.664,0.0455,0.0,0.0455 +67.672,0.0453,0.0,0.0453 +67.68,0.0452,0.0,0.0452 +67.688,0.045,0.0,0.045 +67.696,0.0448,0.0,0.0448 +67.70400000000001,0.0447,0.0,0.0447 +67.712,0.0445,0.0,0.0445 +67.72,0.0443,0.0,0.0443 +67.728,0.0442,0.0,0.0442 +67.736,0.044,0.0,0.044 +67.744,0.0439,0.0,0.0439 +67.752,0.0437,0.0,0.0437 +67.76,0.0435,0.0,0.0435 +67.768,0.0434,0.0,0.0434 +67.776,0.0432,0.0,0.0432 +67.784,0.043,0.0,0.043 +67.792,0.0429,0.0,0.0429 +67.8,0.0427,0.0,0.0427 +67.808,0.0426,0.0,0.0426 +67.816,0.0424,0.0,0.0424 +67.824,0.0422,0.0,0.0422 +67.83200000000001,0.0421,0.0,0.0421 +67.84,0.0419,0.0,0.0419 +67.848,0.0417,0.0,0.0417 +67.856,0.0416,0.0,0.0416 +67.864,0.0414,0.0,0.0414 +67.872,0.0413,0.0,0.0413 +67.88,0.0411,0.0,0.0411 +67.888,0.0409,0.0,0.0409 +67.896,0.0408,0.0,0.0408 +67.904,0.0406,0.0,0.0406 +67.912,0.0405,0.0,0.0405 +67.92,0.0403,0.0,0.0403 +67.928,0.0401,0.0,0.0401 +67.936,0.04,0.0,0.04 +67.944,0.0398,0.0,0.0398 +67.952,0.0396,0.0,0.0396 +67.96000000000001,0.0395,0.0,0.0395 +67.968,0.0393,0.0,0.0393 +67.976,0.0392,0.0,0.0392 +67.984,0.039,0.0,0.039 +67.992,0.0388,0.0,0.0388 +68.0,0.0387,0.0,0.0387 +68.008,0.0385,0.0,0.0385 +68.016,0.0384,0.0,0.0384 +68.024,0.0382,0.0,0.0382 +68.032,0.038,0.0,0.038 +68.04,0.0379,0.0,0.0379 +68.048,0.0377,0.0,0.0377 +68.056,0.0375,0.0,0.0375 +68.06400000000001,0.0374,0.0,0.0374 +68.072,0.0372,0.0,0.0372 +68.08,0.0371,0.0,0.0371 +68.08800000000001,0.0369,0.0,0.0369 +68.096,0.0367,0.0,0.0367 +68.104,0.0366,0.0,0.0366 +68.112,0.0364,0.0,0.0364 +68.12,0.0363,0.0,0.0363 +68.128,0.0361,0.0,0.0361 +68.136,0.0359,0.0,0.0359 +68.144,0.0358,0.0,0.0358 +68.152,0.0356,0.0,0.0356 +68.16,0.0355,0.0,0.0355 +68.168,0.0353,0.0,0.0353 +68.176,0.0351,0.0,0.0351 +68.184,0.035,0.0,0.035 +68.19200000000001,0.0348,0.0,0.0348 +68.2,0.0347,0.0,0.0347 +68.208,0.0345,0.0,0.0345 +68.21600000000001,0.0343,0.0,0.0343 +68.224,0.0342,0.0,0.0342 +68.232,0.034,0.0,0.034 +68.24,0.0339,0.0,0.0339 +68.248,0.0337,0.0,0.0337 +68.256,0.0335,0.0,0.0335 +68.264,0.0334,0.0,0.0334 +68.272,0.0332,0.0,0.0332 +68.28,0.0331,0.0,0.0331 +68.288,0.0329,0.0,0.0329 +68.296,0.0327,0.0,0.0327 +68.304,0.0326,0.0,0.0326 +68.312,0.0324,0.0,0.0324 +68.32000000000001,0.0323,0.0,0.0323 +68.328,0.0321,0.0,0.0321 +68.336,0.032,0.0,0.032 +68.34400000000001,0.0318,0.0,0.0318 +68.352,0.0316,0.0,0.0316 +68.36,0.0315,0.0,0.0315 +68.368,0.0313,0.0,0.0313 +68.376,0.0312,0.0,0.0312 +68.384,0.031,0.0,0.031 +68.392,0.0308,0.0,0.0308 +68.4,0.0307,0.0,0.0307 +68.408,0.0305,0.0,0.0305 +68.416,0.0304,0.0,0.0304 +68.424,0.0302,0.0,0.0302 +68.432,0.03,0.0,0.03 +68.44,0.0299,0.0,0.0299 +68.44800000000001,0.0297,0.0,0.0297 +68.456,0.0296,0.0,0.0296 +68.464,0.0294,0.0,0.0294 +68.47200000000001,0.0293,0.0,0.0293 +68.48,0.0291,0.0,0.0291 +68.488,0.0289,0.0,0.0289 +68.496,0.0288,0.0,0.0288 +68.504,0.0286,0.0,0.0286 +68.512,0.0285,0.0,0.0285 +68.52,0.0283,0.0,0.0283 +68.528,0.0281,0.0,0.0281 +68.536,0.028,0.0,0.028 +68.544,0.0278,0.0,0.0278 +68.552,0.0277,0.0,0.0277 +68.56,0.0275,0.0,0.0275 +68.568,0.0274,0.0,0.0274 +68.57600000000001,0.0272,0.0,0.0272 +68.584,0.027,0.0,0.027 +68.592,0.0269,0.0,0.0269 +68.60000000000001,0.0267,0.0,0.0267 +68.608,0.0266,0.0,0.0266 +68.616,0.0264,0.0,0.0264 +68.624,0.0263,0.0,0.0263 +68.632,0.0261,0.0,0.0261 +68.64,0.0259,0.0,0.0259 +68.648,0.0258,0.0,0.0258 +68.656,0.0256,0.0,0.0256 +68.664,0.0255,0.0,0.0255 +68.672,0.0253,0.0,0.0253 +68.68,0.0252,0.0,0.0252 +68.688,0.025,0.0,0.025 +68.696,0.0248,0.0,0.0248 +68.70400000000001,0.0247,0.0,0.0247 +68.712,0.0245,0.0,0.0245 +68.72,0.0244,0.0,0.0244 +68.728,0.0242,0.0,0.0242 +68.736,0.0241,0.0,0.0241 +68.744,0.0239,0.0,0.0239 +68.752,0.0237,0.0,0.0237 +68.76,0.0236,0.0,0.0236 +68.768,0.0234,0.0,0.0234 +68.776,0.0233,0.0,0.0233 +68.784,0.0231,0.0,0.0231 +68.792,0.023,0.0,0.023 +68.8,0.0228,0.0,0.0228 +68.808,0.0226,0.0,0.0226 +68.816,0.0225,0.0,0.0225 +68.824,0.0223,0.0,0.0223 +68.83200000000001,0.0222,0.0,0.0222 +68.84,0.022,0.0,0.022 +68.848,0.0219,0.0,0.0219 +68.856,0.0217,0.0,0.0217 +68.864,0.0215,0.0,0.0215 +68.872,0.0214,0.0,0.0214 +68.88,0.0212,0.0,0.0212 +68.888,0.0211,0.0,0.0211 +68.896,0.0209,0.0,0.0209 +68.904,0.0208,0.0,0.0208 +68.912,0.0206,0.0,0.0206 +68.92,0.0205,0.0,0.0205 +68.928,0.0203,0.0,0.0203 +68.936,0.0201,0.0,0.0201 +68.944,0.02,0.0,0.02 +68.952,0.0198,0.0,0.0198 +68.96000000000001,0.0197,0.0,0.0197 +68.968,0.0195,0.0,0.0195 +68.976,0.0194,0.0,0.0194 +68.984,0.0192,0.0,0.0192 +68.992,0.0191,0.0,0.0191 +69.0,0.0189,0.0,0.0189 +69.008,0.0187,0.0,0.0187 +69.016,0.0186,0.0,0.0186 +69.024,0.0184,0.0,0.0184 +69.032,0.0183,0.0,0.0183 +69.04,0.0181,0.0,0.0181 +69.048,0.018,0.0,0.018 +69.056,0.0178,0.0,0.0178 +69.06400000000001,0.0177,0.0,0.0177 +69.072,0.0175,0.0,0.0175 +69.08,0.0174,0.0,0.0174 +69.08800000000001,0.0172,0.0,0.0172 +69.096,0.017,0.0,0.017 +69.104,0.0169,0.0,0.0169 +69.112,0.0167,0.0,0.0167 +69.12,0.0166,0.0,0.0166 +69.128,0.0164,0.0,0.0164 +69.136,0.0163,0.0,0.0163 +69.144,0.0161,0.0,0.0161 +69.152,0.016,0.0,0.016 +69.16,0.0158,0.0,0.0158 +69.168,0.0157,0.0,0.0157 +69.176,0.0155,0.0,0.0155 +69.184,0.0153,0.0,0.0153 +69.19200000000001,0.0152,0.0,0.0152 +69.2,0.015,0.0,0.015 +69.208,0.0149,0.0,0.0149 +69.21600000000001,0.0147,0.0,0.0147 +69.224,0.0146,0.0,0.0146 +69.232,0.0144,0.0,0.0144 +69.24,0.0143,0.0,0.0143 +69.248,0.0141,0.0,0.0141 +69.256,0.014,0.0,0.014 +69.264,0.0138,0.0,0.0138 +69.272,0.0137,0.0,0.0137 +69.28,0.0135,0.0,0.0135 +69.288,0.0133,0.0,0.0133 +69.296,0.0132,0.0,0.0132 +69.304,0.013,0.0,0.013 +69.312,0.0129,0.0,0.0129 +69.32000000000001,0.0127,0.0,0.0127 +69.328,0.0126,0.0,0.0126 +69.336,0.0124,0.0,0.0124 +69.34400000000001,0.0123,0.0,0.0123 +69.352,0.0121,0.0,0.0121 +69.36,0.012,0.0,0.012 +69.368,0.0118,0.0,0.0118 +69.376,0.0117,0.0,0.0117 +69.384,0.0115,0.0,0.0115 +69.392,0.0114,0.0,0.0114 +69.4,0.0112,0.0,0.0112 +69.408,0.011,0.0,0.011 +69.416,0.0109,0.0,0.0109 +69.424,0.0107,0.0,0.0107 +69.432,0.0106,0.0,0.0106 +69.44,0.0104,0.0,0.0104 +69.44800000000001,0.0103,0.0,0.0103 +69.456,0.0101,0.0,0.0101 +69.464,0.01,0.0,0.01 +69.47200000000001,0.0098,0.0,0.0098 +69.48,0.0097,0.0,0.0097 +69.488,0.0095,0.0,0.0095 +69.496,0.0094,0.0,0.0094 +69.504,0.0092,0.0,0.0092 +69.512,0.0091,0.0,0.0091 +69.52,0.0089,0.0,0.0089 +69.528,0.0088,0.0,0.0088 +69.536,0.0086,0.0,0.0086 +69.544,0.0085,0.0,0.0085 +69.552,0.0083,0.0,0.0083 +69.56,0.0081,0.0,0.0081 +69.568,0.008,0.0,0.008 +69.57600000000001,0.0078,0.0,0.0078 +69.584,0.0077,0.0,0.0077 +69.592,0.0075,0.0,0.0075 +69.60000000000001,0.0074,0.0,0.0074 +69.608,0.0072,0.0,0.0072 +69.616,0.0071,0.0,0.0071 +69.624,0.0069,0.0,0.0069 +69.632,0.0068,0.0,0.0068 +69.64,0.0066,0.0,0.0066 +69.648,0.0065,0.0,0.0065 +69.656,0.0063,0.0,0.0063 +69.664,0.0062,0.0,0.0062 +69.672,0.006,0.0,0.006 +69.68,0.0059,0.0,0.0059 +69.688,0.0057,0.0,0.0057 +69.696,0.0056,0.0,0.0056 +69.70400000000001,0.0054,0.0,0.0054 +69.712,0.0053,0.0,0.0053 +69.72,0.0051,0.0,0.0051 +69.728,0.005,0.0,0.005 +69.736,0.0048,0.0,0.0048 +69.744,0.0047,0.0,0.0047 +69.752,0.0045,0.0,0.0045 +69.76,0.0044,0.0,0.0044 +69.768,0.0042,0.0,0.0042 +69.776,0.0041,0.0,0.0041 +69.784,0.0039,0.0,0.0039 +69.792,0.0038,0.0,0.0038 +69.8,0.0036,0.0,0.0036 +69.808,0.0035,0.0,0.0035 +69.816,0.0033,0.0,0.0033 +69.824,0.0032,0.0,0.0032 +69.83200000000001,0.003,0.0,0.003 +69.84,0.0029,0.0,0.0029 +69.848,0.0027,0.0,0.0027 +69.856,0.0026,0.0,0.0026 +69.864,0.0024,0.0,0.0024 +69.872,0.0022,0.0,0.0022 +69.88,0.0021,0.0,0.0021 +69.888,0.0019,0.0,0.0019 +69.896,0.0018,0.0,0.0018 +69.904,0.0016,0.0,0.0016 +69.912,0.0015,0.0,0.0015 +69.92,0.0013,0.0,0.0013 +69.928,0.0012,0.0,0.0012 +69.936,0.001,0.0,0.001 +69.944,0.0009,0.0,0.0009 +69.952,0.0007,0.0,0.0007 +69.96000000000001,0.0006,0.0,0.0006 +69.968,0.0004,0.0,0.0004 +69.976,0.0003,0.0,0.0003 +69.984,0.0001,0.0,0.0001 +69.992,0.0,0.0,0.0 diff --git a/_static/algorithm/data/sample_chromatogram.txt b/_static/algorithm/data/sample_chromatogram.txt new file mode 100644 index 0000000..80e15f0 --- /dev/null +++ b/_static/algorithm/data/sample_chromatogram.txt @@ -0,0 +1,4802 @@ +,time_min,intensity_mV +0,0.0,3 +1,0.00833,3 +2,0.01667,3 +3,0.025,3 +4,0.03333,2 +5,0.04167,2 +6,0.05,3 +7,0.05833,3 +8,0.06667,3 +9,0.075,3 +10,0.08333,3 +11,0.09167,3 +12,0.1,4 +13,0.10833,4 +14,0.11667,4 +15,0.125,4 +16,0.13333,4 +17,0.14167,4 +18,0.15,4 +19,0.15833,3 +20,0.16667,3 +21,0.175,3 +22,0.18333,3 +23,0.19167,3 +24,0.2,3 +25,0.20833,3 +26,0.21667,2 +27,0.225,2 +28,0.23333,2 +29,0.24167,2 +30,0.25,2 +31,0.25833,3 +32,0.26667,3 +33,0.275,3 +34,0.28333,3 +35,0.29167,3 +36,0.3,3 +37,0.30833,3 +38,0.31667,3 +39,0.325,3 +40,0.33333,3 +41,0.34167,3 +42,0.35,3 +43,0.35833,3 +44,0.36667,3 +45,0.375,3 +46,0.38333,3 +47,0.39167,3 +48,0.4,2 +49,0.40833,2 +50,0.41667,2 +51,0.425,2 +52,0.43333,2 +53,0.44167,2 +54,0.45,2 +55,0.45833,2 +56,0.46667,2 +57,0.475,2 +58,0.48333,3 +59,0.49167,2 +60,0.5,2 +61,0.50833,2 +62,0.51667,2 +63,0.525,2 +64,0.53333,2 +65,0.54167,3 +66,0.55,3 +67,0.55833,2 +68,0.56667,2 +69,0.575,2 +70,0.58333,2 +71,0.59167,2 +72,0.6,2 +73,0.60833,2 +74,0.61667,3 +75,0.625,3 +76,0.63333,3 +77,0.64167,3 +78,0.65,3 +79,0.65833,3 +80,0.66667,3 +81,0.675,3 +82,0.68333,3 +83,0.69167,3 +84,0.7,2 +85,0.70833,2 +86,0.71667,2 +87,0.725,2 +88,0.73333,2 +89,0.74167,2 +90,0.75,2 +91,0.75833,2 +92,0.76667,2 +93,0.775,2 +94,0.78333,2 +95,0.79167,2 +96,0.8,2 +97,0.80833,3 +98,0.81667,2 +99,0.825,2 +100,0.83333,2 +101,0.84167,2 +102,0.85,2 +103,0.85833,2 +104,0.86667,3 +105,0.875,3 +106,0.88333,2 +107,0.89167,2 +108,0.9,2 +109,0.90833,3 +110,0.91667,2 +111,0.925,2 +112,0.93333,2 +113,0.94167,2 +114,0.95,2 +115,0.95833,2 +116,0.96667,2 +117,0.975,2 +118,0.98333,2 +119,0.99167,2 +120,1.0,2 +121,1.00833,2 +122,1.01667,2 +123,1.025,2 +124,1.03333,2 +125,1.04167,3 +126,1.05,3 +127,1.05833,3 +128,1.06667,3 +129,1.075,3 +130,1.08333,2 +131,1.09167,2 +132,1.1,3 +133,1.10833,3 +134,1.11667,3 +135,1.125,3 +136,1.13333,3 +137,1.14167,3 +138,1.15,3 +139,1.15833,3 +140,1.16667,3 +141,1.175,3 +142,1.18333,3 +143,1.19167,3 +144,1.2,3 +145,1.20833,3 +146,1.21667,3 +147,1.225,3 +148,1.23333,3 +149,1.24167,3 +150,1.25,2 +151,1.25833,2 +152,1.26667,3 +153,1.275,2 +154,1.28333,2 +155,1.29167,2 +156,1.3,2 +157,1.30833,2 +158,1.31667,2 +159,1.325,2 +160,1.33333,3 +161,1.34167,3 +162,1.35,3 +163,1.35833,3 +164,1.36667,3 +165,1.375,3 +166,1.38333,2 +167,1.39167,2 +168,1.4,2 +169,1.40833,2 +170,1.41667,2 +171,1.425,2 +172,1.43333,2 +173,1.44167,2 +174,1.45,2 +175,1.45833,2 +176,1.46667,3 +177,1.475,3 +178,1.48333,3 +179,1.49167,3 +180,1.5,2 +181,1.50833,2 +182,1.51667,2 +183,1.525,3 +184,1.53333,2 +185,1.54167,3 +186,1.55,3 +187,1.55833,3 +188,1.56667,3 +189,1.575,3 +190,1.58333,3 +191,1.59167,3 +192,1.6,3 +193,1.60833,3 +194,1.61667,2 +195,1.625,2 +196,1.63333,3 +197,1.64167,3 +198,1.65,3 +199,1.65833,4 +200,1.66667,3 +201,1.675,3 +202,1.68333,3 +203,1.69167,3 +204,1.7,3 +205,1.70833,3 +206,1.71667,3 +207,1.725,3 +208,1.73333,3 +209,1.74167,2 +210,1.75,2 +211,1.75833,2 +212,1.76667,2 +213,1.775,2 +214,1.78333,2 +215,1.79167,2 +216,1.8,2 +217,1.80833,2 +218,1.81667,1 +219,1.825,1 +220,1.83333,1 +221,1.84167,1 +222,1.85,1 +223,1.85833,1 +224,1.86667,1 +225,1.875,1 +226,1.88333,2 +227,1.89167,2 +228,1.9,3 +229,1.90833,3 +230,1.91667,2 +231,1.925,3 +232,1.93333,3 +233,1.94167,3 +234,1.95,2 +235,1.95833,2 +236,1.96667,2 +237,1.975,2 +238,1.98333,2 +239,1.99167,2 +240,2.0,2 +241,2.00833,1 +242,2.01667,1 +243,2.025,1 +244,2.03333,2 +245,2.04167,2 +246,2.05,2 +247,2.05833,2 +248,2.06667,2 +249,2.075,2 +250,2.08333,3 +251,2.09167,2 +252,2.1,2 +253,2.10833,2 +254,2.11667,2 +255,2.125,2 +256,2.13333,2 +257,2.14167,2 +258,2.15,2 +259,2.15833,2 +260,2.16667,2 +261,2.175,2 +262,2.18333,2 +263,2.19167,2 +264,2.2,2 +265,2.20833,2 +266,2.21667,3 +267,2.225,3 +268,2.23333,3 +269,2.24167,3 +270,2.25,3 +271,2.25833,3 +272,2.26667,3 +273,2.275,3 +274,2.28333,3 +275,2.29167,3 +276,2.3,3 +277,2.30833,3 +278,2.31667,3 +279,2.325,3 +280,2.33333,2 +281,2.34167,3 +282,2.35,3 +283,2.35833,3 +284,2.36667,3 +285,2.375,3 +286,2.38333,3 +287,2.39167,3 +288,2.4,3 +289,2.40833,3 +290,2.41667,2 +291,2.425,2 +292,2.43333,3 +293,2.44167,3 +294,2.45,3 +295,2.45833,4 +296,2.46667,3 +297,2.475,3 +298,2.48333,3 +299,2.49167,4 +300,2.5,4 +301,2.50833,4 +302,2.51667,4 +303,2.525,3 +304,2.53333,3 +305,2.54167,3 +306,2.55,3 +307,2.55833,2 +308,2.56667,2 +309,2.575,2 +310,2.58333,2 +311,2.59167,2 +312,2.6,2 +313,2.60833,3 +314,2.61667,3 +315,2.625,3 +316,2.63333,3 +317,2.64167,3 +318,2.65,2 +319,2.65833,2 +320,2.66667,3 +321,2.675,3 +322,2.68333,3 +323,2.69167,3 +324,2.7,3 +325,2.70833,3 +326,2.71667,3 +327,2.725,3 +328,2.73333,3 +329,2.74167,3 +330,2.75,3 +331,2.75833,3 +332,2.76667,3 +333,2.775,3 +334,2.78333,2 +335,2.79167,2 +336,2.8,2 +337,2.80833,2 +338,2.81667,2 +339,2.825,2 +340,2.83333,2 +341,2.84167,2 +342,2.85,2 +343,2.85833,2 +344,2.86667,2 +345,2.875,2 +346,2.88333,2 +347,2.89167,2 +348,2.9,2 +349,2.90833,2 +350,2.91667,2 +351,2.925,3 +352,2.93333,3 +353,2.94167,2 +354,2.95,2 +355,2.95833,2 +356,2.96667,2 +357,2.975,2 +358,2.98333,2 +359,2.99167,2 +360,3.0,3 +361,3.00833,3 +362,3.01667,2 +363,3.025,2 +364,3.03333,2 +365,3.04167,2 +366,3.05,2 +367,3.05833,2 +368,3.06667,2 +369,3.075,2 +370,3.08333,3 +371,3.09167,3 +372,3.1,2 +373,3.10833,3 +374,3.11667,3 +375,3.125,2 +376,3.13333,2 +377,3.14167,2 +378,3.15,2 +379,3.15833,3 +380,3.16667,3 +381,3.175,3 +382,3.18333,2 +383,3.19167,2 +384,3.2,3 +385,3.20833,2 +386,3.21667,2 +387,3.225,2 +388,3.23333,2 +389,3.24167,2 +390,3.25,2 +391,3.25833,2 +392,3.26667,2 +393,3.275,2 +394,3.28333,2 +395,3.29167,2 +396,3.3,2 +397,3.30833,2 +398,3.31667,2 +399,3.325,2 +400,3.33333,2 +401,3.34167,2 +402,3.35,2 +403,3.35833,2 +404,3.36667,2 +405,3.375,2 +406,3.38333,3 +407,3.39167,3 +408,3.4,3 +409,3.40833,3 +410,3.41667,3 +411,3.425,3 +412,3.43333,3 +413,3.44167,3 +414,3.45,3 +415,3.45833,3 +416,3.46667,3 +417,3.475,3 +418,3.48333,2 +419,3.49167,2 +420,3.5,2 +421,3.50833,2 +422,3.51667,2 +423,3.525,2 +424,3.53333,2 +425,3.54167,2 +426,3.55,2 +427,3.55833,2 +428,3.56667,2 +429,3.575,2 +430,3.58333,2 +431,3.59167,1 +432,3.6,1 +433,3.60833,1 +434,3.61667,1 +435,3.625,1 +436,3.63333,1 +437,3.64167,1 +438,3.65,1 +439,3.65833,1 +440,3.66667,1 +441,3.675,2 +442,3.68333,2 +443,3.69167,1 +444,3.7,1 +445,3.70833,1 +446,3.71667,1 +447,3.725,1 +448,3.73333,1 +449,3.74167,1 +450,3.75,1 +451,3.75833,1 +452,3.76667,1 +453,3.775,1 +454,3.78333,1 +455,3.79167,1 +456,3.8,1 +457,3.80833,2 +458,3.81667,2 +459,3.825,2 +460,3.83333,2 +461,3.84167,2 +462,3.85,2 +463,3.85833,2 +464,3.86667,2 +465,3.875,2 +466,3.88333,2 +467,3.89167,2 +468,3.9,2 +469,3.90833,2 +470,3.91667,2 +471,3.925,1 +472,3.93333,1 +473,3.94167,2 +474,3.95,1 +475,3.95833,1 +476,3.96667,1 +477,3.975,1 +478,3.98333,1 +479,3.99167,1 +480,4.0,1 +481,4.00833,1 +482,4.01667,1 +483,4.025,1 +484,4.03333,2 +485,4.04167,2 +486,4.05,2 +487,4.05833,3 +488,4.06667,3 +489,4.075,3 +490,4.08333,3 +491,4.09167,2 +492,4.1,2 +493,4.10833,1 +494,4.11667,1 +495,4.125,1 +496,4.13333,1 +497,4.14167,1 +498,4.15,1 +499,4.15833,1 +500,4.16667,1 +501,4.175,1 +502,4.18333,1 +503,4.19167,1 +504,4.2,1 +505,4.20833,1 +506,4.21667,1 +507,4.225,1 +508,4.23333,2 +509,4.24167,2 +510,4.25,2 +511,4.25833,2 +512,4.26667,3 +513,4.275,3 +514,4.28333,3 +515,4.29167,3 +516,4.3,2 +517,4.30833,2 +518,4.31667,2 +519,4.325,2 +520,4.33333,2 +521,4.34167,2 +522,4.35,2 +523,4.35833,2 +524,4.36667,2 +525,4.375,2 +526,4.38333,2 +527,4.39167,2 +528,4.4,2 +529,4.40833,2 +530,4.41667,2 +531,4.425,2 +532,4.43333,2 +533,4.44167,2 +534,4.45,2 +535,4.45833,2 +536,4.46667,2 +537,4.475,2 +538,4.48333,2 +539,4.49167,2 +540,4.5,2 +541,4.50833,2 +542,4.51667,3 +543,4.525,3 +544,4.53333,3 +545,4.54167,2 +546,4.55,2 +547,4.55833,2 +548,4.56667,2 +549,4.575,2 +550,4.58333,2 +551,4.59167,2 +552,4.6,2 +553,4.60833,3 +554,4.61667,3 +555,4.625,3 +556,4.63333,3 +557,4.64167,3 +558,4.65,3 +559,4.65833,3 +560,4.66667,3 +561,4.675,3 +562,4.68333,3 +563,4.69167,3 +564,4.7,2 +565,4.70833,2 +566,4.71667,2 +567,4.725,1 +568,4.73333,1 +569,4.74167,2 +570,4.75,1 +571,4.75833,2 +572,4.76667,2 +573,4.775,2 +574,4.78333,2 +575,4.79167,2 +576,4.8,2 +577,4.80833,2 +578,4.81667,2 +579,4.825,3 +580,4.83333,3 +581,4.84167,3 +582,4.85,3 +583,4.85833,3 +584,4.86667,3 +585,4.875,3 +586,4.88333,3 +587,4.89167,3 +588,4.9,3 +589,4.90833,3 +590,4.91667,3 +591,4.925,3 +592,4.93333,2 +593,4.94167,2 +594,4.95,2 +595,4.95833,3 +596,4.96667,3 +597,4.975,3 +598,4.98333,3 +599,4.99167,3 +600,5.0,3 +601,5.00833,3 +602,5.01667,2 +603,5.025,2 +604,5.03333,2 +605,5.04167,2 +606,5.05,2 +607,5.05833,2 +608,5.06667,2 +609,5.075,2 +610,5.08333,2 +611,5.09167,2 +612,5.1,2 +613,5.10833,2 +614,5.11667,2 +615,5.125,2 +616,5.13333,2 +617,5.14167,2 +618,5.15,2 +619,5.15833,2 +620,5.16667,2 +621,5.175,1 +622,5.18333,1 +623,5.19167,1 +624,5.2,1 +625,5.20833,1 +626,5.21667,1 +627,5.225,1 +628,5.23333,2 +629,5.24167,1 +630,5.25,1 +631,5.25833,1 +632,5.26667,2 +633,5.275,2 +634,5.28333,2 +635,5.29167,2 +636,5.3,3 +637,5.30833,3 +638,5.31667,3 +639,5.325,2 +640,5.33333,2 +641,5.34167,2 +642,5.35,2 +643,5.35833,2 +644,5.36667,1 +645,5.375,1 +646,5.38333,1 +647,5.39167,1 +648,5.4,1 +649,5.40833,1 +650,5.41667,1 +651,5.425,1 +652,5.43333,2 +653,5.44167,2 +654,5.45,2 +655,5.45833,2 +656,5.46667,1 +657,5.475,1 +658,5.48333,1 +659,5.49167,1 +660,5.5,2 +661,5.50833,2 +662,5.51667,2 +663,5.525,1 +664,5.53333,1 +665,5.54167,1 +666,5.55,1 +667,5.55833,1 +668,5.56667,1 +669,5.575,2 +670,5.58333,2 +671,5.59167,2 +672,5.6,2 +673,5.60833,2 +674,5.61667,2 +675,5.625,2 +676,5.63333,2 +677,5.64167,2 +678,5.65,2 +679,5.65833,1 +680,5.66667,1 +681,5.675,1 +682,5.68333,1 +683,5.69167,1 +684,5.7,1 +685,5.70833,1 +686,5.71667,1 +687,5.725,1 +688,5.73333,1 +689,5.74167,1 +690,5.75,2 +691,5.75833,2 +692,5.76667,2 +693,5.775,2 +694,5.78333,2 +695,5.79167,2 +696,5.8,2 +697,5.80833,2 +698,5.81667,2 +699,5.825,2 +700,5.83333,3 +701,5.84167,2 +702,5.85,2 +703,5.85833,2 +704,5.86667,2 +705,5.875,2 +706,5.88333,2 +707,5.89167,2 +708,5.9,2 +709,5.90833,2 +710,5.91667,2 +711,5.925,2 +712,5.93333,2 +713,5.94167,1 +714,5.95,1 +715,5.95833,1 +716,5.96667,1 +717,5.975,1 +718,5.98333,1 +719,5.99167,1 +720,6.0,1 +721,6.00833,2 +722,6.01667,2 +723,6.025,1 +724,6.03333,1 +725,6.04167,2 +726,6.05,2 +727,6.05833,2 +728,6.06667,2 +729,6.075,2 +730,6.08333,2 +731,6.09167,2 +732,6.1,2 +733,6.10833,2 +734,6.11667,2 +735,6.125,2 +736,6.13333,3 +737,6.14167,3 +738,6.15,3 +739,6.15833,3 +740,6.16667,2 +741,6.175,2 +742,6.18333,2 +743,6.19167,2 +744,6.2,2 +745,6.20833,2 +746,6.21667,2 +747,6.225,2 +748,6.23333,1 +749,6.24167,1 +750,6.25,1 +751,6.25833,1 +752,6.26667,1 +753,6.275,1 +754,6.28333,1 +755,6.29167,1 +756,6.3,1 +757,6.30833,1 +758,6.31667,1 +759,6.325,2 +760,6.33333,2 +761,6.34167,2 +762,6.35,2 +763,6.35833,2 +764,6.36667,2 +765,6.375,2 +766,6.38333,2 +767,6.39167,1 +768,6.4,1 +769,6.40833,2 +770,6.41667,2 +771,6.425,2 +772,6.43333,2 +773,6.44167,2 +774,6.45,2 +775,6.45833,2 +776,6.46667,2 +777,6.475,2 +778,6.48333,2 +779,6.49167,2 +780,6.5,2 +781,6.50833,2 +782,6.51667,2 +783,6.525,2 +784,6.53333,2 +785,6.54167,2 +786,6.55,2 +787,6.55833,2 +788,6.56667,1 +789,6.575,1 +790,6.58333,1 +791,6.59167,1 +792,6.6,1 +793,6.60833,1 +794,6.61667,1 +795,6.625,1 +796,6.63333,2 +797,6.64167,2 +798,6.65,1 +799,6.65833,1 +800,6.66667,1 +801,6.675,1 +802,6.68333,1 +803,6.69167,1 +804,6.7,1 +805,6.70833,1 +806,6.71667,1 +807,6.725,1 +808,6.73333,1 +809,6.74167,1 +810,6.75,2 +811,6.75833,2 +812,6.76667,2 +813,6.775,2 +814,6.78333,1 +815,6.79167,1 +816,6.8,1 +817,6.80833,1 +818,6.81667,1 +819,6.825,1 +820,6.83333,2 +821,6.84167,2 +822,6.85,2 +823,6.85833,2 +824,6.86667,2 +825,6.875,2 +826,6.88333,2 +827,6.89167,1 +828,6.9,1 +829,6.90833,1 +830,6.91667,1 +831,6.925,1 +832,6.93333,1 +833,6.94167,1 +834,6.95,1 +835,6.95833,1 +836,6.96667,1 +837,6.975,1 +838,6.98333,2 +839,6.99167,2 +840,7.0,2 +841,7.00833,2 +842,7.01667,2 +843,7.025,2 +844,7.03333,2 +845,7.04167,2 +846,7.05,2 +847,7.05833,2 +848,7.06667,2 +849,7.075,1 +850,7.08333,1 +851,7.09167,1 +852,7.1,1 +853,7.10833,2 +854,7.11667,2 +855,7.125,2 +856,7.13333,2 +857,7.14167,2 +858,7.15,3 +859,7.15833,3 +860,7.16667,3 +861,7.175,3 +862,7.18333,3 +863,7.19167,3 +864,7.2,2 +865,7.20833,2 +866,7.21667,2 +867,7.225,2 +868,7.23333,2 +869,7.24167,2 +870,7.25,1 +871,7.25833,1 +872,7.26667,1 +873,7.275,1 +874,7.28333,2 +875,7.29167,2 +876,7.3,2 +877,7.30833,2 +878,7.31667,2 +879,7.325,2 +880,7.33333,2 +881,7.34167,2 +882,7.35,2 +883,7.35833,2 +884,7.36667,2 +885,7.375,2 +886,7.38333,2 +887,7.39167,1 +888,7.4,1 +889,7.40833,1 +890,7.41667,1 +891,7.425,1 +892,7.43333,1 +893,7.44167,2 +894,7.45,2 +895,7.45833,2 +896,7.46667,3 +897,7.475,3 +898,7.48333,3 +899,7.49167,3 +900,7.5,3 +901,7.50833,3 +902,7.51667,3 +903,7.525,3 +904,7.53333,3 +905,7.54167,3 +906,7.55,3 +907,7.55833,3 +908,7.56667,3 +909,7.575,3 +910,7.58333,3 +911,7.59167,3 +912,7.6,2 +913,7.60833,2 +914,7.61667,2 +915,7.625,2 +916,7.63333,2 +917,7.64167,2 +918,7.65,2 +919,7.65833,2 +920,7.66667,2 +921,7.675,2 +922,7.68333,2 +923,7.69167,2 +924,7.7,2 +925,7.70833,2 +926,7.71667,2 +927,7.725,2 +928,7.73333,2 +929,7.74167,2 +930,7.75,2 +931,7.75833,2 +932,7.76667,2 +933,7.775,1 +934,7.78333,1 +935,7.79167,2 +936,7.8,2 +937,7.80833,2 +938,7.81667,2 +939,7.825,2 +940,7.83333,2 +941,7.84167,2 +942,7.85,2 +943,7.85833,2 +944,7.86667,2 +945,7.875,2 +946,7.88333,2 +947,7.89167,2 +948,7.9,2 +949,7.90833,2 +950,7.91667,2 +951,7.925,2 +952,7.93333,2 +953,7.94167,2 +954,7.95,2 +955,7.95833,2 +956,7.96667,2 +957,7.975,2 +958,7.98333,2 +959,7.99167,2 +960,8.0,2 +961,8.00833,2 +962,8.01667,2 +963,8.025,2 +964,8.03333,2 +965,8.04167,2 +966,8.05,2 +967,8.05833,2 +968,8.06667,2 +969,8.075,2 +970,8.08333,2 +971,8.09167,2 +972,8.1,2 +973,8.10833,2 +974,8.11667,2 +975,8.125,2 +976,8.13333,2 +977,8.14167,2 +978,8.15,2 +979,8.15833,2 +980,8.16667,2 +981,8.175,2 +982,8.18333,2 +983,8.19167,2 +984,8.2,2 +985,8.20833,2 +986,8.21667,2 +987,8.225,2 +988,8.23333,2 +989,8.24167,2 +990,8.25,2 +991,8.25833,2 +992,8.26667,3 +993,8.275,3 +994,8.28333,3 +995,8.29167,3 +996,8.3,3 +997,8.30833,3 +998,8.31667,2 +999,8.325,3 +1000,8.33333,3 +1001,8.34167,2 +1002,8.35,2 +1003,8.35833,2 +1004,8.36667,2 +1005,8.375,2 +1006,8.38333,2 +1007,8.39167,2 +1008,8.4,2 +1009,8.40833,2 +1010,8.41667,2 +1011,8.425,3 +1012,8.43333,3 +1013,8.44167,3 +1014,8.45,3 +1015,8.45833,3 +1016,8.46667,3 +1017,8.475,3 +1018,8.48333,3 +1019,8.49167,3 +1020,8.5,3 +1021,8.50833,3 +1022,8.51667,3 +1023,8.525,3 +1024,8.53333,4 +1025,8.54167,4 +1026,8.55,4 +1027,8.55833,4 +1028,8.56667,4 +1029,8.575,3 +1030,8.58333,3 +1031,8.59167,3 +1032,8.6,3 +1033,8.60833,3 +1034,8.61667,2 +1035,8.625,2 +1036,8.63333,3 +1037,8.64167,3 +1038,8.65,3 +1039,8.65833,3 +1040,8.66667,3 +1041,8.675,3 +1042,8.68333,2 +1043,8.69167,2 +1044,8.7,1 +1045,8.70833,1 +1046,8.71667,1 +1047,8.725,1 +1048,8.73333,1 +1049,8.74167,1 +1050,8.75,2 +1051,8.75833,2 +1052,8.76667,2 +1053,8.775,2 +1054,8.78333,2 +1055,8.79167,2 +1056,8.8,2 +1057,8.80833,2 +1058,8.81667,2 +1059,8.825,2 +1060,8.83333,2 +1061,8.84167,2 +1062,8.85,2 +1063,8.85833,2 +1064,8.86667,2 +1065,8.875,2 +1066,8.88333,2 +1067,8.89167,2 +1068,8.9,3 +1069,8.90833,3 +1070,8.91667,3 +1071,8.925,3 +1072,8.93333,3 +1073,8.94167,3 +1074,8.95,3 +1075,8.95833,3 +1076,8.96667,3 +1077,8.975,3 +1078,8.98333,3 +1079,8.99167,3 +1080,9.0,3 +1081,9.00833,3 +1082,9.01667,3 +1083,9.025,3 +1084,9.03333,3 +1085,9.04167,3 +1086,9.05,2 +1087,9.05833,2 +1088,9.06667,2 +1089,9.075,2 +1090,9.08333,2 +1091,9.09167,3 +1092,9.1,3 +1093,9.10833,3 +1094,9.11667,3 +1095,9.125,3 +1096,9.13333,3 +1097,9.14167,3 +1098,9.15,3 +1099,9.15833,3 +1100,9.16667,3 +1101,9.175,3 +1102,9.18333,3 +1103,9.19167,3 +1104,9.2,3 +1105,9.20833,3 +1106,9.21667,3 +1107,9.225,3 +1108,9.23333,4 +1109,9.24167,4 +1110,9.25,4 +1111,9.25833,4 +1112,9.26667,4 +1113,9.275,4 +1114,9.28333,3 +1115,9.29167,3 +1116,9.3,3 +1117,9.30833,3 +1118,9.31667,3 +1119,9.325,4 +1120,9.33333,4 +1121,9.34167,4 +1122,9.35,4 +1123,9.35833,4 +1124,9.36667,3 +1125,9.375,3 +1126,9.38333,3 +1127,9.39167,3 +1128,9.4,3 +1129,9.40833,4 +1130,9.41667,4 +1131,9.425,3 +1132,9.43333,3 +1133,9.44167,3 +1134,9.45,3 +1135,9.45833,3 +1136,9.46667,3 +1137,9.475,3 +1138,9.48333,3 +1139,9.49167,3 +1140,9.5,3 +1141,9.50833,3 +1142,9.51667,3 +1143,9.525,3 +1144,9.53333,3 +1145,9.54167,3 +1146,9.55,3 +1147,9.55833,4 +1148,9.56667,4 +1149,9.575,4 +1150,9.58333,4 +1151,9.59167,3 +1152,9.6,4 +1153,9.60833,4 +1154,9.61667,3 +1155,9.625,3 +1156,9.63333,3 +1157,9.64167,3 +1158,9.65,3 +1159,9.65833,3 +1160,9.66667,4 +1161,9.675,4 +1162,9.68333,4 +1163,9.69167,4 +1164,9.7,4 +1165,9.70833,4 +1166,9.71667,4 +1167,9.725,4 +1168,9.73333,4 +1169,9.74167,4 +1170,9.75,5 +1171,9.75833,5 +1172,9.76667,5 +1173,9.775,5 +1174,9.78333,4 +1175,9.79167,4 +1176,9.8,3 +1177,9.80833,3 +1178,9.81667,3 +1179,9.825,3 +1180,9.83333,4 +1181,9.84167,4 +1182,9.85,4 +1183,9.85833,3 +1184,9.86667,3 +1185,9.875,3 +1186,9.88333,3 +1187,9.89167,3 +1188,9.9,3 +1189,9.90833,3 +1190,9.91667,3 +1191,9.925,3 +1192,9.93333,3 +1193,9.94167,3 +1194,9.95,4 +1195,9.95833,4 +1196,9.96667,4 +1197,9.975,4 +1198,9.98333,3 +1199,9.99167,3 +1200,10.0,3 +1201,10.00833,2 +1202,10.01667,3 +1203,10.025,3 +1204,10.03333,3 +1205,10.04167,3 +1206,10.05,3 +1207,10.05833,3 +1208,10.06667,4 +1209,10.075,4 +1210,10.08333,4 +1211,10.09167,5 +1212,10.1,5 +1213,10.10833,5 +1214,10.11667,5 +1215,10.125,4 +1216,10.13333,4 +1217,10.14167,4 +1218,10.15,4 +1219,10.15833,4 +1220,10.16667,5 +1221,10.175,5 +1222,10.18333,5 +1223,10.19167,4 +1224,10.2,4 +1225,10.20833,4 +1226,10.21667,5 +1227,10.225,4 +1228,10.23333,5 +1229,10.24167,5 +1230,10.25,5 +1231,10.25833,5 +1232,10.26667,6 +1233,10.275,6 +1234,10.28333,6 +1235,10.29167,6 +1236,10.3,5 +1237,10.30833,5 +1238,10.31667,5 +1239,10.325,5 +1240,10.33333,4 +1241,10.34167,3 +1242,10.35,1 +1243,10.35833,-1 +1244,10.36667,-4 +1245,10.375,-9 +1246,10.38333,-15 +1247,10.39167,-23 +1248,10.4,-34 +1249,10.40833,-48 +1250,10.41667,-66 +1251,10.425,-87 +1252,10.43333,-112 +1253,10.44167,-143 +1254,10.45,-178 +1255,10.45833,-217 +1256,10.46667,-260 +1257,10.475,-306 +1258,10.48333,-354 +1259,10.49167,-401 +1260,10.5,-445 +1261,10.50833,-485 +1262,10.51667,-516 +1263,10.525,-536 +1264,10.53333,-541 +1265,10.54167,-525 +1266,10.55,-485 +1267,10.55833,-415 +1268,10.56667,-311 +1269,10.575,-168 +1270,10.58333,20 +1271,10.59167,256 +1272,10.6,547 +1273,10.60833,898 +1274,10.61667,1312 +1275,10.625,1795 +1276,10.63333,2350 +1277,10.64167,2981 +1278,10.65,3692 +1279,10.65833,4485 +1280,10.66667,5364 +1281,10.675,6331 +1282,10.68333,7387 +1283,10.69167,8535 +1284,10.7,9774 +1285,10.70833,11106 +1286,10.71667,12530 +1287,10.725,14047 +1288,10.73333,15653 +1289,10.74167,17349 +1290,10.75,19130 +1291,10.75833,20995 +1292,10.76667,22938 +1293,10.775,24956 +1294,10.78333,27042 +1295,10.79167,29188 +1296,10.8,31388 +1297,10.80833,33632 +1298,10.81667,35909 +1299,10.825,38209 +1300,10.83333,40517 +1301,10.84167,42820 +1302,10.85,45103 +1303,10.85833,47350 +1304,10.86667,49544 +1305,10.875,51667 +1306,10.88333,53701 +1307,10.89167,55629 +1308,10.9,57432 +1309,10.90833,59096 +1310,10.91667,60604 +1311,10.925,61942 +1312,10.93333,63097 +1313,10.94167,64059 +1314,10.95,64819 +1315,10.95833,65370 +1316,10.96667,65705 +1317,10.975,65821 +1318,10.98333,65716 +1319,10.99167,65388 +1320,11.0,64837 +1321,11.00833,64066 +1322,11.01667,63078 +1323,11.025,61879 +1324,11.03333,60478 +1325,11.04167,58884 +1326,11.05,57112 +1327,11.05833,55177 +1328,11.06667,53096 +1329,11.075,50890 +1330,11.08333,48582 +1331,11.09167,46194 +1332,11.1,43752 +1333,11.10833,41280 +1334,11.11667,38801 +1335,11.125,36339 +1336,11.13333,33915 +1337,11.14167,31546 +1338,11.15,29250 +1339,11.15833,27040 +1340,11.16667,24927 +1341,11.175,22919 +1342,11.18333,21022 +1343,11.19167,19239 +1344,11.2,17572 +1345,11.20833,16019 +1346,11.21667,14579 +1347,11.225,13248 +1348,11.23333,12023 +1349,11.24167,10896 +1350,11.25,9864 +1351,11.25833,8920 +1352,11.26667,8058 +1353,11.275,7273 +1354,11.28333,6559 +1355,11.29167,5910 +1356,11.3,5321 +1357,11.30833,4785 +1358,11.31667,4299 +1359,11.325,3859 +1360,11.33333,3460 +1361,11.34167,3098 +1362,11.35,2770 +1363,11.35833,2473 +1364,11.36667,2204 +1365,11.375,1960 +1366,11.38333,1739 +1367,11.39167,1538 +1368,11.4,1356 +1369,11.40833,1192 +1370,11.41667,1042 +1371,11.425,906 +1372,11.43333,782 +1373,11.44167,670 +1374,11.45,570 +1375,11.45833,478 +1376,11.46667,394 +1377,11.475,318 +1378,11.48333,249 +1379,11.49167,186 +1380,11.5,129 +1381,11.50833,78 +1382,11.51667,31 +1383,11.525,-12 +1384,11.53333,-50 +1385,11.54167,-85 +1386,11.55,-117 +1387,11.55833,-146 +1388,11.56667,-172 +1389,11.575,-196 +1390,11.58333,-218 +1391,11.59167,-237 +1392,11.6,-255 +1393,11.60833,-270 +1394,11.61667,-284 +1395,11.625,-297 +1396,11.63333,-309 +1397,11.64167,-320 +1398,11.65,-330 +1399,11.65833,-338 +1400,11.66667,-346 +1401,11.675,-352 +1402,11.68333,-358 +1403,11.69167,-363 +1404,11.7,-368 +1405,11.70833,-371 +1406,11.71667,-374 +1407,11.725,-377 +1408,11.73333,-379 +1409,11.74167,-381 +1410,11.75,-382 +1411,11.75833,-383 +1412,11.76667,-384 +1413,11.775,-384 +1414,11.78333,-383 +1415,11.79167,-383 +1416,11.8,-382 +1417,11.80833,-381 +1418,11.81667,-380 +1419,11.825,-378 +1420,11.83333,-376 +1421,11.84167,-374 +1422,11.85,-371 +1423,11.85833,-369 +1424,11.86667,-365 +1425,11.875,-362 +1426,11.88333,-358 +1427,11.89167,-354 +1428,11.9,-350 +1429,11.90833,-345 +1430,11.91667,-340 +1431,11.925,-334 +1432,11.93333,-329 +1433,11.94167,-323 +1434,11.95,-318 +1435,11.95833,-311 +1436,11.96667,-305 +1437,11.975,-298 +1438,11.98333,-291 +1439,11.99167,-284 +1440,12.0,-277 +1441,12.00833,-270 +1442,12.01667,-262 +1443,12.025,-255 +1444,12.03333,-247 +1445,12.04167,-239 +1446,12.05,-231 +1447,12.05833,-223 +1448,12.06667,-216 +1449,12.075,-208 +1450,12.08333,-201 +1451,12.09167,-194 +1452,12.1,-187 +1453,12.10833,-180 +1454,12.11667,-173 +1455,12.125,-166 +1456,12.13333,-160 +1457,12.14167,-154 +1458,12.15,-148 +1459,12.15833,-142 +1460,12.16667,-136 +1461,12.175,-131 +1462,12.18333,-126 +1463,12.19167,-121 +1464,12.2,-117 +1465,12.20833,-113 +1466,12.21667,-109 +1467,12.225,-105 +1468,12.23333,-102 +1469,12.24167,-99 +1470,12.25,-96 +1471,12.25833,-93 +1472,12.26667,-90 +1473,12.275,-88 +1474,12.28333,-86 +1475,12.29167,-84 +1476,12.3,-83 +1477,12.30833,-81 +1478,12.31667,-80 +1479,12.325,-80 +1480,12.33333,-79 +1481,12.34167,-79 +1482,12.35,-78 +1483,12.35833,-78 +1484,12.36667,-77 +1485,12.375,-77 +1486,12.38333,-76 +1487,12.39167,-76 +1488,12.4,-75 +1489,12.40833,-75 +1490,12.41667,-74 +1491,12.425,-75 +1492,12.43333,-75 +1493,12.44167,-75 +1494,12.45,-76 +1495,12.45833,-76 +1496,12.46667,-76 +1497,12.475,-76 +1498,12.48333,-76 +1499,12.49167,-75 +1500,12.5,-75 +1501,12.50833,-74 +1502,12.51667,-74 +1503,12.525,-73 +1504,12.53333,-72 +1505,12.54167,-71 +1506,12.55,-69 +1507,12.55833,-67 +1508,12.56667,-63 +1509,12.575,-60 +1510,12.58333,-55 +1511,12.59167,-50 +1512,12.6,-44 +1513,12.60833,-36 +1514,12.61667,-27 +1515,12.625,-16 +1516,12.63333,-4 +1517,12.64167,10 +1518,12.65,26 +1519,12.65833,46 +1520,12.66667,67 +1521,12.675,92 +1522,12.68333,119 +1523,12.69167,150 +1524,12.7,184 +1525,12.70833,221 +1526,12.71667,262 +1527,12.725,307 +1528,12.73333,357 +1529,12.74167,410 +1530,12.75,469 +1531,12.75833,531 +1532,12.76667,599 +1533,12.775,671 +1534,12.78333,749 +1535,12.79167,833 +1536,12.8,922 +1537,12.80833,1018 +1538,12.81667,1121 +1539,12.825,1231 +1540,12.83333,1348 +1541,12.84167,1474 +1542,12.85,1610 +1543,12.85833,1755 +1544,12.86667,1912 +1545,12.875,2082 +1546,12.88333,2266 +1547,12.89167,2466 +1548,12.9,2682 +1549,12.90833,2917 +1550,12.91667,3172 +1551,12.925,3451 +1552,12.93333,3754 +1553,12.94167,4085 +1554,12.95,4445 +1555,12.95833,4837 +1556,12.96667,5264 +1557,12.975,5729 +1558,12.98333,6233 +1559,12.99167,6778 +1560,13.0,7366 +1561,13.00833,8000 +1562,13.01667,8681 +1563,13.025,9410 +1564,13.03333,10188 +1565,13.04167,11015 +1566,13.05,11892 +1567,13.05833,12818 +1568,13.06667,13792 +1569,13.075,14813 +1570,13.08333,15878 +1571,13.09167,16985 +1572,13.1,18132 +1573,13.10833,19314 +1574,13.11667,20528 +1575,13.125,21770 +1576,13.13333,23035 +1577,13.14167,24318 +1578,13.15,25615 +1579,13.15833,26919 +1580,13.16667,28226 +1581,13.175,29531 +1582,13.18333,30827 +1583,13.19167,32111 +1584,13.2,33376 +1585,13.20833,34619 +1586,13.21667,35835 +1587,13.225,37020 +1588,13.23333,38170 +1589,13.24167,39282 +1590,13.25,40353 +1591,13.25833,41380 +1592,13.26667,42361 +1593,13.275,43295 +1594,13.28333,44179 +1595,13.29167,45013 +1596,13.3,45797 +1597,13.30833,46529 +1598,13.31667,47210 +1599,13.325,47840 +1600,13.33333,48419 +1601,13.34167,48948 +1602,13.35,49428 +1603,13.35833,49859 +1604,13.36667,50242 +1605,13.375,50579 +1606,13.38333,50871 +1607,13.39167,51120 +1608,13.4,51327 +1609,13.40833,51492 +1610,13.41667,51618 +1611,13.425,51706 +1612,13.43333,51759 +1613,13.44167,51778 +1614,13.45,51763 +1615,13.45833,51718 +1616,13.46667,51643 +1617,13.475,51542 +1618,13.48333,51416 +1619,13.49167,51267 +1620,13.5,51097 +1621,13.50833,50907 +1622,13.51667,50701 +1623,13.525,50480 +1624,13.53333,50247 +1625,13.54167,50003 +1626,13.55,49752 +1627,13.55833,49494 +1628,13.56667,49232 +1629,13.575,48969 +1630,13.58333,48706 +1631,13.59167,48445 +1632,13.6,48189 +1633,13.60833,47939 +1634,13.61667,47698 +1635,13.625,47467 +1636,13.63333,47247 +1637,13.64167,47041 +1638,13.65,46849 +1639,13.65833,46672 +1640,13.66667,46513 +1641,13.675,46372 +1642,13.68333,46249 +1643,13.69167,46147 +1644,13.7,46066 +1645,13.70833,46006 +1646,13.71667,45968 +1647,13.725,45952 +1648,13.73333,45959 +1649,13.74167,45989 +1650,13.75,46042 +1651,13.75833,46117 +1652,13.76667,46216 +1653,13.775,46338 +1654,13.78333,46483 +1655,13.79167,46651 +1656,13.8,46842 +1657,13.80833,47054 +1658,13.81667,47288 +1659,13.825,47544 +1660,13.83333,47820 +1661,13.84167,48116 +1662,13.85,48433 +1663,13.85833,48769 +1664,13.86667,49124 +1665,13.875,49497 +1666,13.88333,49889 +1667,13.89167,50299 +1668,13.9,50725 +1669,13.90833,51169 +1670,13.91667,51628 +1671,13.925,52103 +1672,13.93333,52594 +1673,13.94167,53099 +1674,13.95,53618 +1675,13.95833,54151 +1676,13.96667,54698 +1677,13.975,55258 +1678,13.98333,55831 +1679,13.99167,56416 +1680,14.0,57013 +1681,14.00833,57622 +1682,14.01667,58242 +1683,14.025,58874 +1684,14.03333,59517 +1685,14.04167,60171 +1686,14.05,60835 +1687,14.05833,61510 +1688,14.06667,62196 +1689,14.075,62891 +1690,14.08333,63595 +1691,14.09167,64310 +1692,14.1,65034 +1693,14.10833,65766 +1694,14.11667,66506 +1695,14.125,67253 +1696,14.13333,68003 +1697,14.14167,68755 +1698,14.15,69505 +1699,14.15833,70248 +1700,14.16667,70976 +1701,14.175,71682 +1702,14.18333,72358 +1703,14.19167,72995 +1704,14.2,73581 +1705,14.20833,74108 +1706,14.21667,74565 +1707,14.225,74941 +1708,14.23333,75229 +1709,14.24167,75421 +1710,14.25,75511 +1711,14.25833,75494 +1712,14.26667,75367 +1713,14.275,75129 +1714,14.28333,74778 +1715,14.29167,74315 +1716,14.3,73741 +1717,14.30833,73057 +1718,14.31667,72266 +1719,14.325,71369 +1720,14.33333,70365 +1721,14.34167,69256 +1722,14.35,68041 +1723,14.35833,66718 +1724,14.36667,65287 +1725,14.375,63746 +1726,14.38333,62095 +1727,14.39167,60331 +1728,14.4,58455 +1729,14.40833,56469 +1730,14.41667,54377 +1731,14.425,52185 +1732,14.43333,49901 +1733,14.44167,47537 +1734,14.45,45107 +1735,14.45833,42627 +1736,14.46667,40115 +1737,14.475,37592 +1738,14.48333,35078 +1739,14.49167,32594 +1740,14.5,30161 +1741,14.50833,27798 +1742,14.51667,25521 +1743,14.525,23346 +1744,14.53333,21284 +1745,14.54167,19345 +1746,14.55,17534 +1747,14.55833,15856 +1748,14.56667,14310 +1749,14.575,12896 +1750,14.58333,11608 +1751,14.59167,10443 +1752,14.6,9393 +1753,14.60833,8451 +1754,14.61667,7609 +1755,14.625,6859 +1756,14.63333,6193 +1757,14.64167,5602 +1758,14.65,5079 +1759,14.65833,4617 +1760,14.66667,4209 +1761,14.675,3850 +1762,14.68333,3532 +1763,14.69167,3252 +1764,14.7,3005 +1765,14.70833,2787 +1766,14.71667,2594 +1767,14.725,2423 +1768,14.73333,2271 +1769,14.74167,2136 +1770,14.75,2016 +1771,14.75833,1908 +1772,14.76667,1811 +1773,14.775,1724 +1774,14.78333,1645 +1775,14.79167,1574 +1776,14.8,1509 +1777,14.80833,1450 +1778,14.81667,1397 +1779,14.825,1347 +1780,14.83333,1302 +1781,14.84167,1261 +1782,14.85,1223 +1783,14.85833,1187 +1784,14.86667,1153 +1785,14.875,1122 +1786,14.88333,1093 +1787,14.89167,1066 +1788,14.9,1040 +1789,14.90833,1016 +1790,14.91667,994 +1791,14.925,972 +1792,14.93333,952 +1793,14.94167,933 +1794,14.95,914 +1795,14.95833,897 +1796,14.96667,880 +1797,14.975,864 +1798,14.98333,849 +1799,14.99167,835 +1800,15.0,821 +1801,15.00833,807 +1802,15.01667,794 +1803,15.025,782 +1804,15.03333,771 +1805,15.04167,760 +1806,15.05,750 +1807,15.05833,741 +1808,15.06667,732 +1809,15.075,725 +1810,15.08333,719 +1811,15.09167,713 +1812,15.1,709 +1813,15.10833,707 +1814,15.11667,706 +1815,15.125,708 +1816,15.13333,713 +1817,15.14167,720 +1818,15.15,731 +1819,15.15833,746 +1820,15.16667,767 +1821,15.175,794 +1822,15.18333,827 +1823,15.19167,868 +1824,15.2,918 +1825,15.20833,978 +1826,15.21667,1050 +1827,15.225,1135 +1828,15.23333,1234 +1829,15.24167,1350 +1830,15.25,1483 +1831,15.25833,1636 +1832,15.26667,1810 +1833,15.275,2006 +1834,15.28333,2227 +1835,15.29167,2473 +1836,15.3,2747 +1837,15.30833,3050 +1838,15.31667,3383 +1839,15.325,3746 +1840,15.33333,4141 +1841,15.34167,4568 +1842,15.35,5027 +1843,15.35833,5518 +1844,15.36667,6040 +1845,15.375,6594 +1846,15.38333,7177 +1847,15.39167,7788 +1848,15.4,8425 +1849,15.40833,9086 +1850,15.41667,9768 +1851,15.425,10469 +1852,15.43333,11186 +1853,15.44167,11914 +1854,15.45,12652 +1855,15.45833,13396 +1856,15.46667,14142 +1857,15.475,14887 +1858,15.48333,15626 +1859,15.49167,16357 +1860,15.5,17076 +1861,15.50833,17779 +1862,15.51667,18464 +1863,15.525,19129 +1864,15.53333,19770 +1865,15.54167,20385 +1866,15.55,20972 +1867,15.55833,21530 +1868,15.56667,22056 +1869,15.575,22551 +1870,15.58333,23013 +1871,15.59167,23441 +1872,15.6,23835 +1873,15.60833,24196 +1874,15.61667,24522 +1875,15.625,24815 +1876,15.63333,25075 +1877,15.64167,25301 +1878,15.65,25496 +1879,15.65833,25658 +1880,15.66667,25788 +1881,15.675,25888 +1882,15.68333,25958 +1883,15.69167,25998 +1884,15.7,26009 +1885,15.70833,25992 +1886,15.71667,25947 +1887,15.725,25875 +1888,15.73333,25776 +1889,15.74167,25650 +1890,15.75,25499 +1891,15.75833,25321 +1892,15.76667,25119 +1893,15.775,24892 +1894,15.78333,24641 +1895,15.79167,24366 +1896,15.8,24069 +1897,15.80833,23748 +1898,15.81667,23405 +1899,15.825,23041 +1900,15.83333,22657 +1901,15.84167,22255 +1902,15.85,21834 +1903,15.85833,21395 +1904,15.86667,20940 +1905,15.875,20471 +1906,15.88333,19987 +1907,15.89167,19492 +1908,15.9,18986 +1909,15.90833,18471 +1910,15.91667,17948 +1911,15.925,17419 +1912,15.93333,16885 +1913,15.94167,16347 +1914,15.95,15809 +1915,15.95833,15270 +1916,15.96667,14731 +1917,15.975,14196 +1918,15.98333,13664 +1919,15.99167,13138 +1920,16.0,12618 +1921,16.00833,12105 +1922,16.01667,11601 +1923,16.025,11106 +1924,16.03333,10622 +1925,16.04167,10149 +1926,16.05,9688 +1927,16.05833,9241 +1928,16.06667,8806 +1929,16.075,8386 +1930,16.08333,7979 +1931,16.09167,7587 +1932,16.1,7210 +1933,16.10833,6849 +1934,16.11667,6503 +1935,16.125,6173 +1936,16.13333,5860 +1937,16.14167,5563 +1938,16.15,5283 +1939,16.15833,5019 +1940,16.16667,4773 +1941,16.175,4544 +1942,16.18333,4332 +1943,16.19167,4139 +1944,16.2,3964 +1945,16.20833,3808 +1946,16.21667,3671 +1947,16.225,3554 +1948,16.23333,3458 +1949,16.24167,3382 +1950,16.25,3328 +1951,16.25833,3296 +1952,16.26667,3287 +1953,16.275,3302 +1954,16.28333,3341 +1955,16.29167,3404 +1956,16.3,3492 +1957,16.30833,3606 +1958,16.31667,3746 +1959,16.325,3911 +1960,16.33333,4103 +1961,16.34167,4320 +1962,16.35,4563 +1963,16.35833,4831 +1964,16.36667,5124 +1965,16.375,5441 +1966,16.38333,5780 +1967,16.39167,6141 +1968,16.4,6522 +1969,16.40833,6921 +1970,16.41667,7337 +1971,16.425,7767 +1972,16.43333,8210 +1973,16.44167,8664 +1974,16.45,9125 +1975,16.45833,9592 +1976,16.46667,10063 +1977,16.475,10535 +1978,16.48333,11005 +1979,16.49167,11472 +1980,16.5,11933 +1981,16.50833,12386 +1982,16.51667,12828 +1983,16.525,13259 +1984,16.53333,13677 +1985,16.54167,14080 +1986,16.55,14466 +1987,16.55833,14835 +1988,16.56667,15186 +1989,16.575,15518 +1990,16.58333,15830 +1991,16.59167,16122 +1992,16.6,16393 +1993,16.60833,16643 +1994,16.61667,16873 +1995,16.625,17083 +1996,16.63333,17273 +1997,16.64167,17443 +1998,16.65,17592 +1999,16.65833,17723 +2000,16.66667,17834 +2001,16.675,17927 +2002,16.68333,18002 +2003,16.69167,18059 +2004,16.7,18098 +2005,16.70833,18120 +2006,16.71667,18125 +2007,16.725,18114 +2008,16.73333,18087 +2009,16.74167,18043 +2010,16.75,17983 +2011,16.75833,17907 +2012,16.76667,17815 +2013,16.775,17708 +2014,16.78333,17585 +2015,16.79167,17446 +2016,16.8,17293 +2017,16.80833,17125 +2018,16.81667,16943 +2019,16.825,16746 +2020,16.83333,16536 +2021,16.84167,16312 +2022,16.85,16076 +2023,16.85833,15828 +2024,16.86667,15569 +2025,16.875,15299 +2026,16.88333,15020 +2027,16.89167,14733 +2028,16.9,14440 +2029,16.90833,14141 +2030,16.91667,13839 +2031,16.925,13534 +2032,16.93333,13229 +2033,16.94167,12924 +2034,16.95,12623 +2035,16.95833,12326 +2036,16.96667,12037 +2037,16.975,11756 +2038,16.98333,11487 +2039,16.99167,11230 +2040,17.0,10989 +2041,17.00833,10765 +2042,17.01667,10560 +2043,17.025,10376 +2044,17.03333,10215 +2045,17.04167,10080 +2046,17.05,9970 +2047,17.05833,9887 +2048,17.06667,9833 +2049,17.075,9809 +2050,17.08333,9816 +2051,17.09167,9853 +2052,17.1,9921 +2053,17.10833,10020 +2054,17.11667,10149 +2055,17.125,10309 +2056,17.13333,10498 +2057,17.14167,10715 +2058,17.15,10958 +2059,17.15833,11226 +2060,17.16667,11517 +2061,17.175,11829 +2062,17.18333,12160 +2063,17.19167,12507 +2064,17.2,12867 +2065,17.20833,13238 +2066,17.21667,13618 +2067,17.225,14003 +2068,17.23333,14391 +2069,17.24167,14780 +2070,17.25,15167 +2071,17.25833,15550 +2072,17.26667,15926 +2073,17.275,16294 +2074,17.28333,16651 +2075,17.29167,16996 +2076,17.3,17327 +2077,17.30833,17643 +2078,17.31667,17943 +2079,17.325,18227 +2080,17.33333,18493 +2081,17.34167,18741 +2082,17.35,18971 +2083,17.35833,19183 +2084,17.36667,19376 +2085,17.375,19551 +2086,17.38333,19707 +2087,17.39167,19846 +2088,17.4,19967 +2089,17.40833,20071 +2090,17.41667,20158 +2091,17.425,20229 +2092,17.43333,20283 +2093,17.44167,20322 +2094,17.45,20345 +2095,17.45833,20353 +2096,17.46667,20345 +2097,17.475,20323 +2098,17.48333,20285 +2099,17.49167,20234 +2100,17.5,20168 +2101,17.50833,20088 +2102,17.51667,19993 +2103,17.525,19883 +2104,17.53333,19759 +2105,17.54167,19621 +2106,17.55,19468 +2107,17.55833,19300 +2108,17.56667,19118 +2109,17.575,18921 +2110,17.58333,18710 +2111,17.59167,18484 +2112,17.6,18245 +2113,17.60833,17991 +2114,17.61667,17724 +2115,17.625,17444 +2116,17.63333,17151 +2117,17.64167,16845 +2118,17.65,16528 +2119,17.65833,16200 +2120,17.66667,15862 +2121,17.675,15515 +2122,17.68333,15158 +2123,17.69167,14794 +2124,17.7,14423 +2125,17.70833,14046 +2126,17.71667,13663 +2127,17.725,13277 +2128,17.73333,12888 +2129,17.74167,12497 +2130,17.75,12104 +2131,17.75833,11712 +2132,17.76667,11321 +2133,17.775,10931 +2134,17.78333,10544 +2135,17.79167,10160 +2136,17.8,9780 +2137,17.80833,9406 +2138,17.81667,9037 +2139,17.825,8674 +2140,17.83333,8319 +2141,17.84167,7970 +2142,17.85,7630 +2143,17.85833,7299 +2144,17.86667,6976 +2145,17.875,6663 +2146,17.88333,6358 +2147,17.89167,6063 +2148,17.9,5779 +2149,17.90833,5504 +2150,17.91667,5240 +2151,17.925,4985 +2152,17.93333,4740 +2153,17.94167,4505 +2154,17.95,4280 +2155,17.95833,4065 +2156,17.96667,3859 +2157,17.975,3663 +2158,17.98333,3476 +2159,17.99167,3299 +2160,18.0,3130 +2161,18.00833,2969 +2162,18.01667,2816 +2163,18.025,2672 +2164,18.03333,2535 +2165,18.04167,2405 +2166,18.05,2283 +2167,18.05833,2167 +2168,18.06667,2058 +2169,18.075,1956 +2170,18.08333,1859 +2171,18.09167,1767 +2172,18.1,1681 +2173,18.10833,1601 +2174,18.11667,1525 +2175,18.125,1454 +2176,18.13333,1387 +2177,18.14167,1324 +2178,18.15,1265 +2179,18.15833,1210 +2180,18.16667,1158 +2181,18.175,1109 +2182,18.18333,1063 +2183,18.19167,1020 +2184,18.2,980 +2185,18.20833,942 +2186,18.21667,906 +2187,18.225,873 +2188,18.23333,843 +2189,18.24167,813 +2190,18.25,786 +2191,18.25833,759 +2192,18.26667,734 +2193,18.275,711 +2194,18.28333,689 +2195,18.29167,668 +2196,18.3,649 +2197,18.30833,631 +2198,18.31667,613 +2199,18.325,597 +2200,18.33333,581 +2201,18.34167,566 +2202,18.35,552 +2203,18.35833,539 +2204,18.36667,526 +2205,18.375,515 +2206,18.38333,504 +2207,18.39167,493 +2208,18.4,483 +2209,18.40833,473 +2210,18.41667,463 +2211,18.425,454 +2212,18.43333,445 +2213,18.44167,437 +2214,18.45,429 +2215,18.45833,421 +2216,18.46667,414 +2217,18.475,407 +2218,18.48333,401 +2219,18.49167,394 +2220,18.5,388 +2221,18.50833,382 +2222,18.51667,376 +2223,18.525,371 +2224,18.53333,366 +2225,18.54167,360 +2226,18.55,355 +2227,18.55833,350 +2228,18.56667,345 +2229,18.575,340 +2230,18.58333,336 +2231,18.59167,332 +2232,18.6,328 +2233,18.60833,324 +2234,18.61667,320 +2235,18.625,317 +2236,18.63333,314 +2237,18.64167,311 +2238,18.65,308 +2239,18.65833,305 +2240,18.66667,301 +2241,18.675,298 +2242,18.68333,295 +2243,18.69167,292 +2244,18.7,289 +2245,18.70833,286 +2246,18.71667,284 +2247,18.725,281 +2248,18.73333,279 +2249,18.74167,277 +2250,18.75,274 +2251,18.75833,272 +2252,18.76667,269 +2253,18.775,267 +2254,18.78333,265 +2255,18.79167,263 +2256,18.8,262 +2257,18.80833,260 +2258,18.81667,259 +2259,18.825,257 +2260,18.83333,256 +2261,18.84167,254 +2262,18.85,253 +2263,18.85833,251 +2264,18.86667,250 +2265,18.875,248 +2266,18.88333,247 +2267,18.89167,245 +2268,18.9,244 +2269,18.90833,243 +2270,18.91667,242 +2271,18.925,241 +2272,18.93333,240 +2273,18.94167,239 +2274,18.95,238 +2275,18.95833,238 +2276,18.96667,237 +2277,18.975,236 +2278,18.98333,235 +2279,18.99167,234 +2280,19.0,232 +2281,19.00833,231 +2282,19.01667,230 +2283,19.025,230 +2284,19.03333,229 +2285,19.04167,228 +2286,19.05,227 +2287,19.05833,226 +2288,19.06667,225 +2289,19.075,224 +2290,19.08333,223 +2291,19.09167,223 +2292,19.1,222 +2293,19.10833,221 +2294,19.11667,220 +2295,19.125,220 +2296,19.13333,219 +2297,19.14167,218 +2298,19.15,217 +2299,19.15833,216 +2300,19.16667,215 +2301,19.175,214 +2302,19.18333,214 +2303,19.19167,213 +2304,19.2,212 +2305,19.20833,212 +2306,19.21667,211 +2307,19.225,211 +2308,19.23333,210 +2309,19.24167,209 +2310,19.25,208 +2311,19.25833,207 +2312,19.26667,206 +2313,19.275,205 +2314,19.28333,204 +2315,19.29167,203 +2316,19.3,202 +2317,19.30833,201 +2318,19.31667,200 +2319,19.325,198 +2320,19.33333,198 +2321,19.34167,197 +2322,19.35,196 +2323,19.35833,195 +2324,19.36667,194 +2325,19.375,194 +2326,19.38333,193 +2327,19.39167,192 +2328,19.4,191 +2329,19.40833,190 +2330,19.41667,190 +2331,19.425,189 +2332,19.43333,187 +2333,19.44167,186 +2334,19.45,185 +2335,19.45833,184 +2336,19.46667,182 +2337,19.475,181 +2338,19.48333,180 +2339,19.49167,179 +2340,19.5,178 +2341,19.50833,177 +2342,19.51667,176 +2343,19.525,175 +2344,19.53333,175 +2345,19.54167,174 +2346,19.55,173 +2347,19.55833,171 +2348,19.56667,170 +2349,19.575,169 +2350,19.58333,168 +2351,19.59167,167 +2352,19.6,166 +2353,19.60833,165 +2354,19.61667,164 +2355,19.625,163 +2356,19.63333,162 +2357,19.64167,161 +2358,19.65,160 +2359,19.65833,159 +2360,19.66667,158 +2361,19.675,157 +2362,19.68333,156 +2363,19.69167,155 +2364,19.7,154 +2365,19.70833,153 +2366,19.71667,152 +2367,19.725,151 +2368,19.73333,150 +2369,19.74167,149 +2370,19.75,148 +2371,19.75833,147 +2372,19.76667,146 +2373,19.775,145 +2374,19.78333,144 +2375,19.79167,143 +2376,19.8,142 +2377,19.80833,141 +2378,19.81667,140 +2379,19.825,139 +2380,19.83333,139 +2381,19.84167,138 +2382,19.85,137 +2383,19.85833,136 +2384,19.86667,135 +2385,19.875,135 +2386,19.88333,135 +2387,19.89167,134 +2388,19.9,133 +2389,19.90833,133 +2390,19.91667,132 +2391,19.925,131 +2392,19.93333,130 +2393,19.94167,129 +2394,19.95,128 +2395,19.95833,128 +2396,19.96667,127 +2397,19.975,126 +2398,19.98333,125 +2399,19.99167,125 +2400,20.0,124 +2401,20.00833,124 +2402,20.01667,123 +2403,20.025,123 +2404,20.03333,122 +2405,20.04167,121 +2406,20.05,120 +2407,20.05833,119 +2408,20.06667,119 +2409,20.075,118 +2410,20.08333,117 +2411,20.09167,116 +2412,20.1,115 +2413,20.10833,114 +2414,20.11667,113 +2415,20.125,112 +2416,20.13333,111 +2417,20.14167,111 +2418,20.15,110 +2419,20.15833,110 +2420,20.16667,109 +2421,20.175,108 +2422,20.18333,108 +2423,20.19167,107 +2424,20.2,106 +2425,20.20833,106 +2426,20.21667,105 +2427,20.225,104 +2428,20.23333,104 +2429,20.24167,103 +2430,20.25,103 +2431,20.25833,102 +2432,20.26667,102 +2433,20.275,101 +2434,20.28333,100 +2435,20.29167,100 +2436,20.3,99 +2437,20.30833,99 +2438,20.31667,98 +2439,20.325,98 +2440,20.33333,97 +2441,20.34167,96 +2442,20.35,95 +2443,20.35833,95 +2444,20.36667,94 +2445,20.375,93 +2446,20.38333,93 +2447,20.39167,93 +2448,20.4,92 +2449,20.40833,92 +2450,20.41667,91 +2451,20.425,90 +2452,20.43333,90 +2453,20.44167,89 +2454,20.45,89 +2455,20.45833,89 +2456,20.46667,88 +2457,20.475,88 +2458,20.48333,87 +2459,20.49167,87 +2460,20.5,86 +2461,20.50833,86 +2462,20.51667,86 +2463,20.525,86 +2464,20.53333,85 +2465,20.54167,84 +2466,20.55,83 +2467,20.55833,83 +2468,20.56667,82 +2469,20.575,81 +2470,20.58333,81 +2471,20.59167,80 +2472,20.6,80 +2473,20.60833,80 +2474,20.61667,79 +2475,20.625,79 +2476,20.63333,79 +2477,20.64167,79 +2478,20.65,78 +2479,20.65833,78 +2480,20.66667,78 +2481,20.675,77 +2482,20.68333,77 +2483,20.69167,77 +2484,20.7,77 +2485,20.70833,76 +2486,20.71667,76 +2487,20.725,75 +2488,20.73333,74 +2489,20.74167,74 +2490,20.75,74 +2491,20.75833,74 +2492,20.76667,73 +2493,20.775,73 +2494,20.78333,73 +2495,20.79167,72 +2496,20.8,72 +2497,20.80833,72 +2498,20.81667,72 +2499,20.825,71 +2500,20.83333,71 +2501,20.84167,70 +2502,20.85,70 +2503,20.85833,69 +2504,20.86667,69 +2505,20.875,69 +2506,20.88333,68 +2507,20.89167,68 +2508,20.9,67 +2509,20.90833,67 +2510,20.91667,67 +2511,20.925,67 +2512,20.93333,67 +2513,20.94167,66 +2514,20.95,66 +2515,20.95833,65 +2516,20.96667,65 +2517,20.975,64 +2518,20.98333,64 +2519,20.99167,63 +2520,21.0,63 +2521,21.00833,62 +2522,21.01667,62 +2523,21.025,62 +2524,21.03333,62 +2525,21.04167,62 +2526,21.05,62 +2527,21.05833,62 +2528,21.06667,62 +2529,21.075,62 +2530,21.08333,61 +2531,21.09167,61 +2532,21.1,61 +2533,21.10833,60 +2534,21.11667,60 +2535,21.125,60 +2536,21.13333,59 +2537,21.14167,59 +2538,21.15,58 +2539,21.15833,58 +2540,21.16667,57 +2541,21.175,57 +2542,21.18333,56 +2543,21.19167,56 +2544,21.2,56 +2545,21.20833,56 +2546,21.21667,56 +2547,21.225,56 +2548,21.23333,56 +2549,21.24167,56 +2550,21.25,56 +2551,21.25833,55 +2552,21.26667,55 +2553,21.275,55 +2554,21.28333,54 +2555,21.29167,54 +2556,21.3,54 +2557,21.30833,54 +2558,21.31667,54 +2559,21.325,54 +2560,21.33333,54 +2561,21.34167,54 +2562,21.35,54 +2563,21.35833,54 +2564,21.36667,54 +2565,21.375,54 +2566,21.38333,54 +2567,21.39167,53 +2568,21.4,53 +2569,21.40833,54 +2570,21.41667,54 +2571,21.425,54 +2572,21.43333,54 +2573,21.44167,54 +2574,21.45,54 +2575,21.45833,54 +2576,21.46667,54 +2577,21.475,54 +2578,21.48333,54 +2579,21.49167,54 +2580,21.5,54 +2581,21.50833,53 +2582,21.51667,53 +2583,21.525,53 +2584,21.53333,53 +2585,21.54167,53 +2586,21.55,53 +2587,21.55833,53 +2588,21.56667,53 +2589,21.575,52 +2590,21.58333,52 +2591,21.59167,52 +2592,21.6,52 +2593,21.60833,52 +2594,21.61667,52 +2595,21.625,52 +2596,21.63333,52 +2597,21.64167,52 +2598,21.65,52 +2599,21.65833,52 +2600,21.66667,52 +2601,21.675,51 +2602,21.68333,51 +2603,21.69167,51 +2604,21.7,51 +2605,21.70833,51 +2606,21.71667,51 +2607,21.725,52 +2608,21.73333,52 +2609,21.74167,52 +2610,21.75,51 +2611,21.75833,51 +2612,21.76667,51 +2613,21.775,51 +2614,21.78333,51 +2615,21.79167,51 +2616,21.8,51 +2617,21.80833,51 +2618,21.81667,51 +2619,21.825,50 +2620,21.83333,50 +2621,21.84167,49 +2622,21.85,49 +2623,21.85833,49 +2624,21.86667,49 +2625,21.875,49 +2626,21.88333,49 +2627,21.89167,49 +2628,21.9,48 +2629,21.90833,48 +2630,21.91667,48 +2631,21.925,48 +2632,21.93333,47 +2633,21.94167,47 +2634,21.95,47 +2635,21.95833,47 +2636,21.96667,46 +2637,21.975,47 +2638,21.98333,47 +2639,21.99167,47 +2640,22.0,47 +2641,22.00833,46 +2642,22.01667,46 +2643,22.025,46 +2644,22.03333,45 +2645,22.04167,45 +2646,22.05,45 +2647,22.05833,44 +2648,22.06667,44 +2649,22.075,44 +2650,22.08333,45 +2651,22.09167,44 +2652,22.1,44 +2653,22.10833,44 +2654,22.11667,43 +2655,22.125,42 +2656,22.13333,43 +2657,22.14167,43 +2658,22.15,43 +2659,22.15833,43 +2660,22.16667,42 +2661,22.175,42 +2662,22.18333,42 +2663,22.19167,42 +2664,22.2,42 +2665,22.20833,42 +2666,22.21667,42 +2667,22.225,42 +2668,22.23333,42 +2669,22.24167,42 +2670,22.25,41 +2671,22.25833,41 +2672,22.26667,41 +2673,22.275,41 +2674,22.28333,41 +2675,22.29167,41 +2676,22.3,41 +2677,22.30833,41 +2678,22.31667,40 +2679,22.325,40 +2680,22.33333,40 +2681,22.34167,40 +2682,22.35,40 +2683,22.35833,40 +2684,22.36667,40 +2685,22.375,40 +2686,22.38333,40 +2687,22.39167,40 +2688,22.4,40 +2689,22.40833,40 +2690,22.41667,40 +2691,22.425,40 +2692,22.43333,41 +2693,22.44167,40 +2694,22.45,40 +2695,22.45833,40 +2696,22.46667,39 +2697,22.475,39 +2698,22.48333,39 +2699,22.49167,39 +2700,22.5,39 +2701,22.50833,39 +2702,22.51667,39 +2703,22.525,39 +2704,22.53333,39 +2705,22.54167,39 +2706,22.55,39 +2707,22.55833,39 +2708,22.56667,39 +2709,22.575,39 +2710,22.58333,40 +2711,22.59167,39 +2712,22.6,39 +2713,22.60833,40 +2714,22.61667,40 +2715,22.625,40 +2716,22.63333,40 +2717,22.64167,40 +2718,22.65,40 +2719,22.65833,40 +2720,22.66667,40 +2721,22.675,41 +2722,22.68333,41 +2723,22.69167,41 +2724,22.7,41 +2725,22.70833,41 +2726,22.71667,41 +2727,22.725,41 +2728,22.73333,40 +2729,22.74167,40 +2730,22.75,40 +2731,22.75833,41 +2732,22.76667,41 +2733,22.775,41 +2734,22.78333,41 +2735,22.79167,41 +2736,22.8,41 +2737,22.80833,41 +2738,22.81667,42 +2739,22.825,42 +2740,22.83333,42 +2741,22.84167,42 +2742,22.85,42 +2743,22.85833,42 +2744,22.86667,42 +2745,22.875,42 +2746,22.88333,42 +2747,22.89167,42 +2748,22.9,42 +2749,22.90833,41 +2750,22.91667,42 +2751,22.925,42 +2752,22.93333,42 +2753,22.94167,42 +2754,22.95,42 +2755,22.95833,42 +2756,22.96667,42 +2757,22.975,42 +2758,22.98333,42 +2759,22.99167,42 +2760,23.0,41 +2761,23.00833,41 +2762,23.01667,41 +2763,23.025,41 +2764,23.03333,41 +2765,23.04167,41 +2766,23.05,42 +2767,23.05833,42 +2768,23.06667,42 +2769,23.075,42 +2770,23.08333,42 +2771,23.09167,42 +2772,23.1,42 +2773,23.10833,42 +2774,23.11667,42 +2775,23.125,42 +2776,23.13333,42 +2777,23.14167,42 +2778,23.15,41 +2779,23.15833,41 +2780,23.16667,41 +2781,23.175,40 +2782,23.18333,40 +2783,23.19167,40 +2784,23.2,40 +2785,23.20833,40 +2786,23.21667,40 +2787,23.225,40 +2788,23.23333,39 +2789,23.24167,39 +2790,23.25,39 +2791,23.25833,39 +2792,23.26667,39 +2793,23.275,39 +2794,23.28333,39 +2795,23.29167,38 +2796,23.3,38 +2797,23.30833,38 +2798,23.31667,38 +2799,23.325,38 +2800,23.33333,38 +2801,23.34167,38 +2802,23.35,38 +2803,23.35833,37 +2804,23.36667,37 +2805,23.375,37 +2806,23.38333,37 +2807,23.39167,36 +2808,23.4,36 +2809,23.40833,36 +2810,23.41667,36 +2811,23.425,36 +2812,23.43333,36 +2813,23.44167,36 +2814,23.45,37 +2815,23.45833,37 +2816,23.46667,37 +2817,23.475,36 +2818,23.48333,36 +2819,23.49167,36 +2820,23.5,36 +2821,23.50833,35 +2822,23.51667,35 +2823,23.525,35 +2824,23.53333,35 +2825,23.54167,35 +2826,23.55,35 +2827,23.55833,35 +2828,23.56667,35 +2829,23.575,35 +2830,23.58333,35 +2831,23.59167,36 +2832,23.6,36 +2833,23.60833,36 +2834,23.61667,35 +2835,23.625,35 +2836,23.63333,35 +2837,23.64167,35 +2838,23.65,35 +2839,23.65833,34 +2840,23.66667,34 +2841,23.675,34 +2842,23.68333,34 +2843,23.69167,34 +2844,23.7,34 +2845,23.70833,34 +2846,23.71667,34 +2847,23.725,33 +2848,23.73333,33 +2849,23.74167,33 +2850,23.75,34 +2851,23.75833,34 +2852,23.76667,34 +2853,23.775,34 +2854,23.78333,34 +2855,23.79167,33 +2856,23.8,33 +2857,23.80833,33 +2858,23.81667,33 +2859,23.825,33 +2860,23.83333,33 +2861,23.84167,33 +2862,23.85,33 +2863,23.85833,33 +2864,23.86667,33 +2865,23.875,32 +2866,23.88333,32 +2867,23.89167,32 +2868,23.9,32 +2869,23.90833,32 +2870,23.91667,33 +2871,23.925,33 +2872,23.93333,33 +2873,23.94167,33 +2874,23.95,33 +2875,23.95833,34 +2876,23.96667,34 +2877,23.975,34 +2878,23.98333,34 +2879,23.99167,33 +2880,24.0,33 +2881,24.00833,33 +2882,24.01667,33 +2883,24.025,33 +2884,24.03333,32 +2885,24.04167,32 +2886,24.05,32 +2887,24.05833,32 +2888,24.06667,32 +2889,24.075,32 +2890,24.08333,31 +2891,24.09167,31 +2892,24.1,31 +2893,24.10833,31 +2894,24.11667,31 +2895,24.125,31 +2896,24.13333,31 +2897,24.14167,31 +2898,24.15,31 +2899,24.15833,31 +2900,24.16667,31 +2901,24.175,31 +2902,24.18333,31 +2903,24.19167,31 +2904,24.2,31 +2905,24.20833,31 +2906,24.21667,31 +2907,24.225,31 +2908,24.23333,32 +2909,24.24167,32 +2910,24.25,32 +2911,24.25833,31 +2912,24.26667,31 +2913,24.275,31 +2914,24.28333,31 +2915,24.29167,31 +2916,24.3,31 +2917,24.30833,31 +2918,24.31667,31 +2919,24.325,31 +2920,24.33333,30 +2921,24.34167,30 +2922,24.35,30 +2923,24.35833,30 +2924,24.36667,30 +2925,24.375,30 +2926,24.38333,30 +2927,24.39167,30 +2928,24.4,30 +2929,24.40833,31 +2930,24.41667,31 +2931,24.425,31 +2932,24.43333,31 +2933,24.44167,32 +2934,24.45,32 +2935,24.45833,32 +2936,24.46667,32 +2937,24.475,32 +2938,24.48333,32 +2939,24.49167,31 +2940,24.5,31 +2941,24.50833,31 +2942,24.51667,32 +2943,24.525,32 +2944,24.53333,32 +2945,24.54167,32 +2946,24.55,32 +2947,24.55833,32 +2948,24.56667,32 +2949,24.575,31 +2950,24.58333,31 +2951,24.59167,32 +2952,24.6,31 +2953,24.60833,31 +2954,24.61667,31 +2955,24.625,31 +2956,24.63333,31 +2957,24.64167,31 +2958,24.65,31 +2959,24.65833,31 +2960,24.66667,31 +2961,24.675,31 +2962,24.68333,31 +2963,24.69167,31 +2964,24.7,31 +2965,24.70833,31 +2966,24.71667,31 +2967,24.725,31 +2968,24.73333,31 +2969,24.74167,31 +2970,24.75,31 +2971,24.75833,31 +2972,24.76667,31 +2973,24.775,31 +2974,24.78333,31 +2975,24.79167,31 +2976,24.8,30 +2977,24.80833,30 +2978,24.81667,30 +2979,24.825,31 +2980,24.83333,31 +2981,24.84167,31 +2982,24.85,31 +2983,24.85833,31 +2984,24.86667,31 +2985,24.875,31 +2986,24.88333,32 +2987,24.89167,32 +2988,24.9,31 +2989,24.90833,31 +2990,24.91667,32 +2991,24.925,32 +2992,24.93333,32 +2993,24.94167,32 +2994,24.95,32 +2995,24.95833,32 +2996,24.96667,31 +2997,24.975,31 +2998,24.98333,31 +2999,24.99167,31 +3000,25.0,31 +3001,25.00833,31 +3002,25.01667,30 +3003,25.025,30 +3004,25.03333,30 +3005,25.04167,30 +3006,25.05,30 +3007,25.05833,30 +3008,25.06667,30 +3009,25.075,31 +3010,25.08333,31 +3011,25.09167,31 +3012,25.1,31 +3013,25.10833,31 +3014,25.11667,31 +3015,25.125,30 +3016,25.13333,30 +3017,25.14167,30 +3018,25.15,30 +3019,25.15833,30 +3020,25.16667,30 +3021,25.175,30 +3022,25.18333,30 +3023,25.19167,30 +3024,25.2,29 +3025,25.20833,29 +3026,25.21667,29 +3027,25.225,29 +3028,25.23333,29 +3029,25.24167,29 +3030,25.25,29 +3031,25.25833,29 +3032,25.26667,29 +3033,25.275,29 +3034,25.28333,29 +3035,25.29167,29 +3036,25.3,29 +3037,25.30833,28 +3038,25.31667,28 +3039,25.325,28 +3040,25.33333,28 +3041,25.34167,28 +3042,25.35,28 +3043,25.35833,29 +3044,25.36667,29 +3045,25.375,29 +3046,25.38333,29 +3047,25.39167,29 +3048,25.4,28 +3049,25.40833,28 +3050,25.41667,28 +3051,25.425,28 +3052,25.43333,29 +3053,25.44167,29 +3054,25.45,29 +3055,25.45833,30 +3056,25.46667,30 +3057,25.475,30 +3058,25.48333,30 +3059,25.49167,30 +3060,25.5,30 +3061,25.50833,30 +3062,25.51667,30 +3063,25.525,29 +3064,25.53333,29 +3065,25.54167,29 +3066,25.55,29 +3067,25.55833,29 +3068,25.56667,29 +3069,25.575,29 +3070,25.58333,29 +3071,25.59167,29 +3072,25.6,29 +3073,25.60833,29 +3074,25.61667,29 +3075,25.625,29 +3076,25.63333,29 +3077,25.64167,29 +3078,25.65,29 +3079,25.65833,29 +3080,25.66667,29 +3081,25.675,29 +3082,25.68333,29 +3083,25.69167,29 +3084,25.7,29 +3085,25.70833,29 +3086,25.71667,29 +3087,25.725,29 +3088,25.73333,29 +3089,25.74167,29 +3090,25.75,29 +3091,25.75833,29 +3092,25.76667,29 +3093,25.775,29 +3094,25.78333,29 +3095,25.79167,29 +3096,25.8,29 +3097,25.80833,29 +3098,25.81667,29 +3099,25.825,29 +3100,25.83333,29 +3101,25.84167,29 +3102,25.85,29 +3103,25.85833,29 +3104,25.86667,30 +3105,25.875,30 +3106,25.88333,30 +3107,25.89167,30 +3108,25.9,30 +3109,25.90833,30 +3110,25.91667,30 +3111,25.925,30 +3112,25.93333,30 +3113,25.94167,30 +3114,25.95,30 +3115,25.95833,29 +3116,25.96667,30 +3117,25.975,30 +3118,25.98333,30 +3119,25.99167,30 +3120,26.0,30 +3121,26.00833,29 +3122,26.01667,29 +3123,26.025,29 +3124,26.03333,29 +3125,26.04167,29 +3126,26.05,29 +3127,26.05833,29 +3128,26.06667,30 +3129,26.075,30 +3130,26.08333,30 +3131,26.09167,30 +3132,26.1,30 +3133,26.10833,30 +3134,26.11667,30 +3135,26.125,30 +3136,26.13333,30 +3137,26.14167,30 +3138,26.15,30 +3139,26.15833,30 +3140,26.16667,31 +3141,26.175,30 +3142,26.18333,30 +3143,26.19167,30 +3144,26.2,30 +3145,26.20833,30 +3146,26.21667,30 +3147,26.225,30 +3148,26.23333,30 +3149,26.24167,30 +3150,26.25,30 +3151,26.25833,30 +3152,26.26667,30 +3153,26.275,30 +3154,26.28333,30 +3155,26.29167,30 +3156,26.3,30 +3157,26.30833,31 +3158,26.31667,31 +3159,26.325,31 +3160,26.33333,31 +3161,26.34167,31 +3162,26.35,31 +3163,26.35833,31 +3164,26.36667,31 +3165,26.375,31 +3166,26.38333,31 +3167,26.39167,31 +3168,26.4,31 +3169,26.40833,31 +3170,26.41667,31 +3171,26.425,31 +3172,26.43333,31 +3173,26.44167,31 +3174,26.45,31 +3175,26.45833,31 +3176,26.46667,30 +3177,26.475,30 +3178,26.48333,30 +3179,26.49167,30 +3180,26.5,30 +3181,26.50833,30 +3182,26.51667,30 +3183,26.525,30 +3184,26.53333,30 +3185,26.54167,30 +3186,26.55,30 +3187,26.55833,30 +3188,26.56667,30 +3189,26.575,30 +3190,26.58333,30 +3191,26.59167,30 +3192,26.6,31 +3193,26.60833,31 +3194,26.61667,31 +3195,26.625,31 +3196,26.63333,31 +3197,26.64167,31 +3198,26.65,31 +3199,26.65833,31 +3200,26.66667,31 +3201,26.675,30 +3202,26.68333,30 +3203,26.69167,30 +3204,26.7,30 +3205,26.70833,30 +3206,26.71667,30 +3207,26.725,30 +3208,26.73333,29 +3209,26.74167,29 +3210,26.75,29 +3211,26.75833,28 +3212,26.76667,28 +3213,26.775,28 +3214,26.78333,28 +3215,26.79167,28 +3216,26.8,28 +3217,26.80833,27 +3218,26.81667,27 +3219,26.825,26 +3220,26.83333,25 +3221,26.84167,25 +3222,26.85,24 +3223,26.85833,23 +3224,26.86667,23 +3225,26.875,22 +3226,26.88333,21 +3227,26.89167,20 +3228,26.9,19 +3229,26.90833,18 +3230,26.91667,17 +3231,26.925,17 +3232,26.93333,16 +3233,26.94167,15 +3234,26.95,14 +3235,26.95833,12 +3236,26.96667,11 +3237,26.975,10 +3238,26.98333,8 +3239,26.99167,7 +3240,27.0,6 +3241,27.00833,4 +3242,27.01667,3 +3243,27.025,2 +3244,27.03333,0 +3245,27.04167,-2 +3246,27.05,-3 +3247,27.05833,-5 +3248,27.06667,-6 +3249,27.075,-8 +3250,27.08333,-10 +3251,27.09167,-12 +3252,27.1,-14 +3253,27.10833,-16 +3254,27.11667,-18 +3255,27.125,-20 +3256,27.13333,-22 +3257,27.14167,-24 +3258,27.15,-26 +3259,27.15833,-28 +3260,27.16667,-30 +3261,27.175,-32 +3262,27.18333,-35 +3263,27.19167,-37 +3264,27.2,-39 +3265,27.20833,-41 +3266,27.21667,-43 +3267,27.225,-46 +3268,27.23333,-48 +3269,27.24167,-50 +3270,27.25,-52 +3271,27.25833,-54 +3272,27.26667,-56 +3273,27.275,-58 +3274,27.28333,-60 +3275,27.29167,-62 +3276,27.3,-64 +3277,27.30833,-66 +3278,27.31667,-68 +3279,27.325,-69 +3280,27.33333,-71 +3281,27.34167,-73 +3282,27.35,-75 +3283,27.35833,-76 +3284,27.36667,-78 +3285,27.375,-79 +3286,27.38333,-81 +3287,27.39167,-83 +3288,27.4,-85 +3289,27.40833,-87 +3290,27.41667,-88 +3291,27.425,-90 +3292,27.43333,-91 +3293,27.44167,-92 +3294,27.45,-93 +3295,27.45833,-94 +3296,27.46667,-95 +3297,27.475,-96 +3298,27.48333,-97 +3299,27.49167,-98 +3300,27.5,-99 +3301,27.50833,-100 +3302,27.51667,-100 +3303,27.525,-101 +3304,27.53333,-101 +3305,27.54167,-102 +3306,27.55,-102 +3307,27.55833,-103 +3308,27.56667,-103 +3309,27.575,-104 +3310,27.58333,-104 +3311,27.59167,-104 +3312,27.6,-105 +3313,27.60833,-105 +3314,27.61667,-105 +3315,27.625,-104 +3316,27.63333,-104 +3317,27.64167,-103 +3318,27.65,-103 +3319,27.65833,-102 +3320,27.66667,-102 +3321,27.675,-101 +3322,27.68333,-101 +3323,27.69167,-100 +3324,27.7,-99 +3325,27.70833,-98 +3326,27.71667,-97 +3327,27.725,-96 +3328,27.73333,-95 +3329,27.74167,-94 +3330,27.75,-92 +3331,27.75833,-91 +3332,27.76667,-90 +3333,27.775,-88 +3334,27.78333,-87 +3335,27.79167,-85 +3336,27.8,-84 +3337,27.80833,-82 +3338,27.81667,-81 +3339,27.825,-79 +3340,27.83333,-77 +3341,27.84167,-75 +3342,27.85,-74 +3343,27.85833,-72 +3344,27.86667,-70 +3345,27.875,-69 +3346,27.88333,-67 +3347,27.89167,-65 +3348,27.9,-63 +3349,27.90833,-61 +3350,27.91667,-59 +3351,27.925,-57 +3352,27.93333,-56 +3353,27.94167,-54 +3354,27.95,-52 +3355,27.95833,-50 +3356,27.96667,-49 +3357,27.975,-46 +3358,27.98333,-44 +3359,27.99167,-42 +3360,28.0,-40 +3361,28.00833,-38 +3362,28.01667,-36 +3363,28.025,-34 +3364,28.03333,-33 +3365,28.04167,-31 +3366,28.05,-29 +3367,28.05833,-28 +3368,28.06667,-26 +3369,28.075,-24 +3370,28.08333,-23 +3371,28.09167,-21 +3372,28.1,-20 +3373,28.10833,-19 +3374,28.11667,-17 +3375,28.125,-16 +3376,28.13333,-15 +3377,28.14167,-13 +3378,28.15,-12 +3379,28.15833,-10 +3380,28.16667,-9 +3381,28.175,-8 +3382,28.18333,-7 +3383,28.19167,-6 +3384,28.2,-4 +3385,28.20833,-4 +3386,28.21667,-3 +3387,28.225,-2 +3388,28.23333,-1 +3389,28.24167,1 +3390,28.25,2 +3391,28.25833,3 +3392,28.26667,3 +3393,28.275,4 +3394,28.28333,4 +3395,28.29167,4 +3396,28.3,5 +3397,28.30833,5 +3398,28.31667,5 +3399,28.325,6 +3400,28.33333,7 +3401,28.34167,8 +3402,28.35,8 +3403,28.35833,9 +3404,28.36667,9 +3405,28.375,10 +3406,28.38333,11 +3407,28.39167,11 +3408,28.4,12 +3409,28.40833,12 +3410,28.41667,13 +3411,28.425,13 +3412,28.43333,14 +3413,28.44167,14 +3414,28.45,14 +3415,28.45833,14 +3416,28.46667,14 +3417,28.475,14 +3418,28.48333,15 +3419,28.49167,15 +3420,28.5,15 +3421,28.50833,15 +3422,28.51667,15 +3423,28.525,15 +3424,28.53333,14 +3425,28.54167,14 +3426,28.55,14 +3427,28.55833,14 +3428,28.56667,13 +3429,28.575,13 +3430,28.58333,13 +3431,28.59167,13 +3432,28.6,13 +3433,28.60833,12 +3434,28.61667,12 +3435,28.625,11 +3436,28.63333,11 +3437,28.64167,11 +3438,28.65,11 +3439,28.65833,11 +3440,28.66667,11 +3441,28.675,10 +3442,28.68333,10 +3443,28.69167,10 +3444,28.7,9 +3445,28.70833,8 +3446,28.71667,8 +3447,28.725,7 +3448,28.73333,7 +3449,28.74167,7 +3450,28.75,6 +3451,28.75833,5 +3452,28.76667,5 +3453,28.775,4 +3454,28.78333,4 +3455,28.79167,3 +3456,28.8,2 +3457,28.80833,1 +3458,28.81667,1 +3459,28.825,0 +3460,28.83333,-1 +3461,28.84167,-1 +3462,28.85,-2 +3463,28.85833,-2 +3464,28.86667,-3 +3465,28.875,-4 +3466,28.88333,-4 +3467,28.89167,-5 +3468,28.9,-5 +3469,28.90833,-6 +3470,28.91667,-7 +3471,28.925,-8 +3472,28.93333,-9 +3473,28.94167,-9 +3474,28.95,-10 +3475,28.95833,-12 +3476,28.96667,-13 +3477,28.975,-13 +3478,28.98333,-14 +3479,28.99167,-15 +3480,29.0,-16 +3481,29.00833,-16 +3482,29.01667,-17 +3483,29.025,-17 +3484,29.03333,-18 +3485,29.04167,-18 +3486,29.05,-19 +3487,29.05833,-20 +3488,29.06667,-20 +3489,29.075,-21 +3490,29.08333,-22 +3491,29.09167,-22 +3492,29.1,-23 +3493,29.10833,-23 +3494,29.11667,-24 +3495,29.125,-25 +3496,29.13333,-26 +3497,29.14167,-27 +3498,29.15,-27 +3499,29.15833,-27 +3500,29.16667,-27 +3501,29.175,-27 +3502,29.18333,-28 +3503,29.19167,-28 +3504,29.2,-29 +3505,29.20833,-29 +3506,29.21667,-29 +3507,29.225,-29 +3508,29.23333,-30 +3509,29.24167,-30 +3510,29.25,-30 +3511,29.25833,-30 +3512,29.26667,-31 +3513,29.275,-31 +3514,29.28333,-31 +3515,29.29167,-31 +3516,29.3,-31 +3517,29.30833,-31 +3518,29.31667,-31 +3519,29.325,-30 +3520,29.33333,-30 +3521,29.34167,-30 +3522,29.35,-30 +3523,29.35833,-30 +3524,29.36667,-29 +3525,29.375,-29 +3526,29.38333,-29 +3527,29.39167,-29 +3528,29.4,-28 +3529,29.40833,-28 +3530,29.41667,-27 +3531,29.425,-27 +3532,29.43333,-26 +3533,29.44167,-26 +3534,29.45,-26 +3535,29.45833,-25 +3536,29.46667,-24 +3537,29.475,-24 +3538,29.48333,-23 +3539,29.49167,-23 +3540,29.5,-23 +3541,29.50833,-22 +3542,29.51667,-22 +3543,29.525,-21 +3544,29.53333,-21 +3545,29.54167,-20 +3546,29.55,-19 +3547,29.55833,-18 +3548,29.56667,-17 +3549,29.575,-17 +3550,29.58333,-16 +3551,29.59167,-15 +3552,29.6,-15 +3553,29.60833,-14 +3554,29.61667,-13 +3555,29.625,-12 +3556,29.63333,-11 +3557,29.64167,-11 +3558,29.65,-11 +3559,29.65833,-10 +3560,29.66667,-9 +3561,29.675,-9 +3562,29.68333,-8 +3563,29.69167,-7 +3564,29.7,-6 +3565,29.70833,-5 +3566,29.71667,-4 +3567,29.725,-4 +3568,29.73333,-3 +3569,29.74167,-2 +3570,29.75,-2 +3571,29.75833,-1 +3572,29.76667,0 +3573,29.775,0 +3574,29.78333,1 +3575,29.79167,1 +3576,29.8,2 +3577,29.80833,3 +3578,29.81667,3 +3579,29.825,3 +3580,29.83333,4 +3581,29.84167,5 +3582,29.85,5 +3583,29.85833,6 +3584,29.86667,6 +3585,29.875,7 +3586,29.88333,8 +3587,29.89167,8 +3588,29.9,8 +3589,29.90833,8 +3590,29.91667,9 +3591,29.925,9 +3592,29.93333,9 +3593,29.94167,9 +3594,29.95,10 +3595,29.95833,10 +3596,29.96667,11 +3597,29.975,12 +3598,29.98333,12 +3599,29.99167,12 +3600,30.0,12 +3601,30.00833,12 +3602,30.01667,13 +3603,30.025,13 +3604,30.03333,13 +3605,30.04167,13 +3606,30.05,13 +3607,30.05833,13 +3608,30.06667,14 +3609,30.075,14 +3610,30.08333,15 +3611,30.09167,15 +3612,30.1,15 +3613,30.10833,16 +3614,30.11667,16 +3615,30.125,16 +3616,30.13333,16 +3617,30.14167,16 +3618,30.15,16 +3619,30.15833,16 +3620,30.16667,16 +3621,30.175,16 +3622,30.18333,17 +3623,30.19167,17 +3624,30.2,17 +3625,30.20833,17 +3626,30.21667,17 +3627,30.225,18 +3628,30.23333,17 +3629,30.24167,17 +3630,30.25,17 +3631,30.25833,17 +3632,30.26667,18 +3633,30.275,18 +3634,30.28333,18 +3635,30.29167,18 +3636,30.3,18 +3637,30.30833,19 +3638,30.31667,19 +3639,30.325,19 +3640,30.33333,19 +3641,30.34167,19 +3642,30.35,20 +3643,30.35833,19 +3644,30.36667,19 +3645,30.375,20 +3646,30.38333,20 +3647,30.39167,20 +3648,30.4,20 +3649,30.40833,20 +3650,30.41667,20 +3651,30.425,20 +3652,30.43333,20 +3653,30.44167,19 +3654,30.45,19 +3655,30.45833,19 +3656,30.46667,20 +3657,30.475,20 +3658,30.48333,20 +3659,30.49167,20 +3660,30.5,20 +3661,30.50833,21 +3662,30.51667,21 +3663,30.525,21 +3664,30.53333,21 +3665,30.54167,21 +3666,30.55,21 +3667,30.55833,21 +3668,30.56667,21 +3669,30.575,22 +3670,30.58333,22 +3671,30.59167,22 +3672,30.6,22 +3673,30.60833,23 +3674,30.61667,23 +3675,30.625,23 +3676,30.63333,23 +3677,30.64167,23 +3678,30.65,23 +3679,30.65833,23 +3680,30.66667,24 +3681,30.675,23 +3682,30.68333,23 +3683,30.69167,23 +3684,30.7,23 +3685,30.70833,23 +3686,30.71667,23 +3687,30.725,23 +3688,30.73333,23 +3689,30.74167,23 +3690,30.75,23 +3691,30.75833,23 +3692,30.76667,23 +3693,30.775,23 +3694,30.78333,23 +3695,30.79167,23 +3696,30.8,23 +3697,30.80833,24 +3698,30.81667,24 +3699,30.825,24 +3700,30.83333,24 +3701,30.84167,24 +3702,30.85,25 +3703,30.85833,25 +3704,30.86667,25 +3705,30.875,25 +3706,30.88333,25 +3707,30.89167,25 +3708,30.9,26 +3709,30.90833,25 +3710,30.91667,25 +3711,30.925,25 +3712,30.93333,24 +3713,30.94167,24 +3714,30.95,25 +3715,30.95833,25 +3716,30.96667,25 +3717,30.975,25 +3718,30.98333,25 +3719,30.99167,26 +3720,31.0,26 +3721,31.00833,26 +3722,31.01667,26 +3723,31.025,26 +3724,31.03333,26 +3725,31.04167,26 +3726,31.05,26 +3727,31.05833,26 +3728,31.06667,26 +3729,31.075,26 +3730,31.08333,26 +3731,31.09167,26 +3732,31.1,26 +3733,31.10833,27 +3734,31.11667,27 +3735,31.125,27 +3736,31.13333,27 +3737,31.14167,26 +3738,31.15,26 +3739,31.15833,27 +3740,31.16667,26 +3741,31.175,26 +3742,31.18333,26 +3743,31.19167,26 +3744,31.2,26 +3745,31.20833,27 +3746,31.21667,27 +3747,31.225,27 +3748,31.23333,27 +3749,31.24167,28 +3750,31.25,28 +3751,31.25833,27 +3752,31.26667,27 +3753,31.275,27 +3754,31.28333,27 +3755,31.29167,28 +3756,31.3,28 +3757,31.30833,28 +3758,31.31667,28 +3759,31.325,28 +3760,31.33333,28 +3761,31.34167,28 +3762,31.35,28 +3763,31.35833,28 +3764,31.36667,29 +3765,31.375,29 +3766,31.38333,30 +3767,31.39167,30 +3768,31.4,30 +3769,31.40833,30 +3770,31.41667,30 +3771,31.425,30 +3772,31.43333,30 +3773,31.44167,30 +3774,31.45,30 +3775,31.45833,30 +3776,31.46667,30 +3777,31.475,31 +3778,31.48333,31 +3779,31.49167,31 +3780,31.5,32 +3781,31.50833,32 +3782,31.51667,32 +3783,31.525,32 +3784,31.53333,32 +3785,31.54167,32 +3786,31.55,32 +3787,31.55833,32 +3788,31.56667,32 +3789,31.575,32 +3790,31.58333,31 +3791,31.59167,31 +3792,31.6,31 +3793,31.60833,31 +3794,31.61667,31 +3795,31.625,32 +3796,31.63333,32 +3797,31.64167,32 +3798,31.65,32 +3799,31.65833,32 +3800,31.66667,32 +3801,31.675,32 +3802,31.68333,32 +3803,31.69167,32 +3804,31.7,33 +3805,31.70833,33 +3806,31.71667,33 +3807,31.725,33 +3808,31.73333,33 +3809,31.74167,33 +3810,31.75,32 +3811,31.75833,32 +3812,31.76667,32 +3813,31.775,32 +3814,31.78333,32 +3815,31.79167,32 +3816,31.8,32 +3817,31.80833,32 +3818,31.81667,32 +3819,31.825,32 +3820,31.83333,32 +3821,31.84167,32 +3822,31.85,32 +3823,31.85833,32 +3824,31.86667,32 +3825,31.875,32 +3826,31.88333,32 +3827,31.89167,33 +3828,31.9,33 +3829,31.90833,33 +3830,31.91667,33 +3831,31.925,32 +3832,31.93333,32 +3833,31.94167,32 +3834,31.95,32 +3835,31.95833,32 +3836,31.96667,32 +3837,31.975,32 +3838,31.98333,33 +3839,31.99167,33 +3840,32.0,33 +3841,32.00833,33 +3842,32.01667,33 +3843,32.025,33 +3844,32.03333,33 +3845,32.04167,33 +3846,32.05,32 +3847,32.05833,32 +3848,32.06667,32 +3849,32.075,32 +3850,32.08333,33 +3851,32.09167,33 +3852,32.1,33 +3853,32.10833,33 +3854,32.11667,33 +3855,32.125,32 +3856,32.13333,32 +3857,32.14167,32 +3858,32.15,32 +3859,32.15833,32 +3860,32.16667,32 +3861,32.175,32 +3862,32.18333,31 +3863,32.19167,31 +3864,32.2,31 +3865,32.20833,31 +3866,32.21667,31 +3867,32.225,32 +3868,32.23333,32 +3869,32.24167,32 +3870,32.25,32 +3871,32.25833,31 +3872,32.26667,31 +3873,32.275,31 +3874,32.28333,31 +3875,32.29167,31 +3876,32.3,31 +3877,32.30833,31 +3878,32.31667,31 +3879,32.325,31 +3880,32.33333,31 +3881,32.34167,31 +3882,32.35,31 +3883,32.35833,31 +3884,32.36667,31 +3885,32.375,31 +3886,32.38333,31 +3887,32.39167,30 +3888,32.4,30 +3889,32.40833,30 +3890,32.41667,30 +3891,32.425,30 +3892,32.43333,30 +3893,32.44167,30 +3894,32.45,30 +3895,32.45833,30 +3896,32.46667,30 +3897,32.475,29 +3898,32.48333,29 +3899,32.49167,29 +3900,32.5,29 +3901,32.50833,29 +3902,32.51667,29 +3903,32.525,29 +3904,32.53333,29 +3905,32.54167,29 +3906,32.55,29 +3907,32.55833,29 +3908,32.56667,29 +3909,32.575,29 +3910,32.58333,28 +3911,32.59167,28 +3912,32.6,28 +3913,32.60833,28 +3914,32.61667,28 +3915,32.625,28 +3916,32.63333,28 +3917,32.64167,28 +3918,32.65,28 +3919,32.65833,28 +3920,32.66667,28 +3921,32.675,28 +3922,32.68333,28 +3923,32.69167,28 +3924,32.7,28 +3925,32.70833,28 +3926,32.71667,28 +3927,32.725,27 +3928,32.73333,27 +3929,32.74167,27 +3930,32.75,27 +3931,32.75833,27 +3932,32.76667,27 +3933,32.775,27 +3934,32.78333,26 +3935,32.79167,26 +3936,32.8,26 +3937,32.80833,27 +3938,32.81667,27 +3939,32.825,27 +3940,32.83333,27 +3941,32.84167,27 +3942,32.85,26 +3943,32.85833,26 +3944,32.86667,26 +3945,32.875,26 +3946,32.88333,26 +3947,32.89167,25 +3948,32.9,25 +3949,32.90833,25 +3950,32.91667,25 +3951,32.925,25 +3952,32.93333,25 +3953,32.94167,25 +3954,32.95,25 +3955,32.95833,25 +3956,32.96667,24 +3957,32.975,24 +3958,32.98333,24 +3959,32.99167,24 +3960,33.0,24 +3961,33.00833,24 +3962,33.01667,24 +3963,33.025,24 +3964,33.03333,24 +3965,33.04167,24 +3966,33.05,24 +3967,33.05833,24 +3968,33.06667,25 +3969,33.075,25 +3970,33.08333,25 +3971,33.09167,25 +3972,33.1,25 +3973,33.10833,25 +3974,33.11667,24 +3975,33.125,25 +3976,33.13333,25 +3977,33.14167,25 +3978,33.15,25 +3979,33.15833,25 +3980,33.16667,25 +3981,33.175,25 +3982,33.18333,24 +3983,33.19167,24 +3984,33.2,24 +3985,33.20833,24 +3986,33.21667,23 +3987,33.225,23 +3988,33.23333,23 +3989,33.24167,24 +3990,33.25,24 +3991,33.25833,24 +3992,33.26667,24 +3993,33.275,24 +3994,33.28333,24 +3995,33.29167,24 +3996,33.3,25 +3997,33.30833,25 +3998,33.31667,24 +3999,33.325,24 +4000,33.33333,24 +4001,33.34167,24 +4002,33.35,24 +4003,33.35833,24 +4004,33.36667,24 +4005,33.375,24 +4006,33.38333,24 +4007,33.39167,24 +4008,33.4,24 +4009,33.40833,25 +4010,33.41667,25 +4011,33.425,25 +4012,33.43333,25 +4013,33.44167,24 +4014,33.45,24 +4015,33.45833,24 +4016,33.46667,24 +4017,33.475,24 +4018,33.48333,24 +4019,33.49167,24 +4020,33.5,24 +4021,33.50833,24 +4022,33.51667,24 +4023,33.525,24 +4024,33.53333,24 +4025,33.54167,24 +4026,33.55,24 +4027,33.55833,24 +4028,33.56667,24 +4029,33.575,24 +4030,33.58333,24 +4031,33.59167,24 +4032,33.6,25 +4033,33.60833,25 +4034,33.61667,25 +4035,33.625,25 +4036,33.63333,25 +4037,33.64167,25 +4038,33.65,25 +4039,33.65833,26 +4040,33.66667,25 +4041,33.675,25 +4042,33.68333,25 +4043,33.69167,25 +4044,33.7,25 +4045,33.70833,25 +4046,33.71667,25 +4047,33.725,26 +4048,33.73333,26 +4049,33.74167,26 +4050,33.75,26 +4051,33.75833,25 +4052,33.76667,25 +4053,33.775,25 +4054,33.78333,25 +4055,33.79167,25 +4056,33.8,25 +4057,33.80833,25 +4058,33.81667,25 +4059,33.825,25 +4060,33.83333,25 +4061,33.84167,25 +4062,33.85,25 +4063,33.85833,25 +4064,33.86667,25 +4065,33.875,25 +4066,33.88333,25 +4067,33.89167,26 +4068,33.9,26 +4069,33.90833,26 +4070,33.91667,26 +4071,33.925,27 +4072,33.93333,27 +4073,33.94167,27 +4074,33.95,26 +4075,33.95833,26 +4076,33.96667,26 +4077,33.975,26 +4078,33.98333,26 +4079,33.99167,26 +4080,34.0,26 +4081,34.00833,26 +4082,34.01667,26 +4083,34.025,26 +4084,34.03333,25 +4085,34.04167,25 +4086,34.05,25 +4087,34.05833,25 +4088,34.06667,26 +4089,34.075,26 +4090,34.08333,26 +4091,34.09167,26 +4092,34.1,26 +4093,34.10833,26 +4094,34.11667,26 +4095,34.125,26 +4096,34.13333,26 +4097,34.14167,26 +4098,34.15,26 +4099,34.15833,26 +4100,34.16667,26 +4101,34.175,26 +4102,34.18333,26 +4103,34.19167,26 +4104,34.2,26 +4105,34.20833,25 +4106,34.21667,26 +4107,34.225,26 +4108,34.23333,26 +4109,34.24167,26 +4110,34.25,26 +4111,34.25833,26 +4112,34.26667,26 +4113,34.275,26 +4114,34.28333,25 +4115,34.29167,25 +4116,34.3,25 +4117,34.30833,26 +4118,34.31667,26 +4119,34.325,26 +4120,34.33333,26 +4121,34.34167,26 +4122,34.35,27 +4123,34.35833,27 +4124,34.36667,26 +4125,34.375,26 +4126,34.38333,26 +4127,34.39167,26 +4128,34.4,26 +4129,34.40833,26 +4130,34.41667,26 +4131,34.425,26 +4132,34.43333,25 +4133,34.44167,25 +4134,34.45,25 +4135,34.45833,25 +4136,34.46667,25 +4137,34.475,25 +4138,34.48333,25 +4139,34.49167,26 +4140,34.5,26 +4141,34.50833,26 +4142,34.51667,26 +4143,34.525,26 +4144,34.53333,25 +4145,34.54167,25 +4146,34.55,25 +4147,34.55833,25 +4148,34.56667,25 +4149,34.575,25 +4150,34.58333,25 +4151,34.59167,25 +4152,34.6,25 +4153,34.60833,25 +4154,34.61667,26 +4155,34.625,26 +4156,34.63333,26 +4157,34.64167,25 +4158,34.65,25 +4159,34.65833,25 +4160,34.66667,25 +4161,34.675,25 +4162,34.68333,26 +4163,34.69167,26 +4164,34.7,26 +4165,34.70833,26 +4166,34.71667,25 +4167,34.725,25 +4168,34.73333,25 +4169,34.74167,25 +4170,34.75,25 +4171,34.75833,25 +4172,34.76667,25 +4173,34.775,25 +4174,34.78333,25 +4175,34.79167,25 +4176,34.8,25 +4177,34.80833,25 +4178,34.81667,25 +4179,34.825,25 +4180,34.83333,26 +4181,34.84167,26 +4182,34.85,25 +4183,34.85833,25 +4184,34.86667,25 +4185,34.875,25 +4186,34.88333,24 +4187,34.89167,25 +4188,34.9,25 +4189,34.90833,25 +4190,34.91667,25 +4191,34.925,25 +4192,34.93333,25 +4193,34.94167,25 +4194,34.95,25 +4195,34.95833,26 +4196,34.96667,26 +4197,34.975,25 +4198,34.98333,25 +4199,34.99167,25 +4200,35.0,25 +4201,35.00833,25 +4202,35.01667,25 +4203,35.025,24 +4204,35.03333,24 +4205,35.04167,24 +4206,35.05,24 +4207,35.05833,24 +4208,35.06667,25 +4209,35.075,25 +4210,35.08333,25 +4211,35.09167,25 +4212,35.1,25 +4213,35.10833,25 +4214,35.11667,26 +4215,35.125,26 +4216,35.13333,26 +4217,35.14167,26 +4218,35.15,25 +4219,35.15833,25 +4220,35.16667,25 +4221,35.175,25 +4222,35.18333,25 +4223,35.19167,25 +4224,35.2,25 +4225,35.20833,25 +4226,35.21667,25 +4227,35.225,25 +4228,35.23333,25 +4229,35.24167,26 +4230,35.25,26 +4231,35.25833,26 +4232,35.26667,26 +4233,35.275,26 +4234,35.28333,26 +4235,35.29167,26 +4236,35.3,26 +4237,35.30833,26 +4238,35.31667,26 +4239,35.325,26 +4240,35.33333,26 +4241,35.34167,26 +4242,35.35,26 +4243,35.35833,26 +4244,35.36667,26 +4245,35.375,26 +4246,35.38333,25 +4247,35.39167,26 +4248,35.4,26 +4249,35.40833,26 +4250,35.41667,26 +4251,35.425,26 +4252,35.43333,26 +4253,35.44167,25 +4254,35.45,24 +4255,35.45833,24 +4256,35.46667,25 +4257,35.475,25 +4258,35.48333,25 +4259,35.49167,25 +4260,35.5,25 +4261,35.50833,25 +4262,35.51667,25 +4263,35.525,26 +4264,35.53333,26 +4265,35.54167,26 +4266,35.55,26 +4267,35.55833,26 +4268,35.56667,26 +4269,35.575,26 +4270,35.58333,26 +4271,35.59167,26 +4272,35.6,25 +4273,35.60833,25 +4274,35.61667,25 +4275,35.625,25 +4276,35.63333,25 +4277,35.64167,25 +4278,35.65,26 +4279,35.65833,26 +4280,35.66667,25 +4281,35.675,25 +4282,35.68333,25 +4283,35.69167,24 +4284,35.7,24 +4285,35.70833,24 +4286,35.71667,24 +4287,35.725,24 +4288,35.73333,24 +4289,35.74167,25 +4290,35.75,25 +4291,35.75833,25 +4292,35.76667,25 +4293,35.775,25 +4294,35.78333,25 +4295,35.79167,26 +4296,35.8,26 +4297,35.80833,26 +4298,35.81667,26 +4299,35.825,26 +4300,35.83333,25 +4301,35.84167,25 +4302,35.85,25 +4303,35.85833,24 +4304,35.86667,24 +4305,35.875,25 +4306,35.88333,25 +4307,35.89167,25 +4308,35.9,25 +4309,35.90833,25 +4310,35.91667,25 +4311,35.925,25 +4312,35.93333,25 +4313,35.94167,25 +4314,35.95,25 +4315,35.95833,25 +4316,35.96667,25 +4317,35.975,25 +4318,35.98333,25 +4319,35.99167,24 +4320,36.0,24 +4321,36.00833,24 +4322,36.01667,25 +4323,36.025,25 +4324,36.03333,24 +4325,36.04167,24 +4326,36.05,24 +4327,36.05833,24 +4328,36.06667,24 +4329,36.075,24 +4330,36.08333,25 +4331,36.09167,25 +4332,36.1,24 +4333,36.10833,24 +4334,36.11667,24 +4335,36.125,24 +4336,36.13333,24 +4337,36.14167,24 +4338,36.15,25 +4339,36.15833,25 +4340,36.16667,25 +4341,36.175,25 +4342,36.18333,25 +4343,36.19167,25 +4344,36.2,25 +4345,36.20833,25 +4346,36.21667,25 +4347,36.225,25 +4348,36.23333,25 +4349,36.24167,26 +4350,36.25,25 +4351,36.25833,25 +4352,36.26667,25 +4353,36.275,25 +4354,36.28333,25 +4355,36.29167,25 +4356,36.3,25 +4357,36.30833,25 +4358,36.31667,25 +4359,36.325,25 +4360,36.33333,25 +4361,36.34167,25 +4362,36.35,24 +4363,36.35833,24 +4364,36.36667,24 +4365,36.375,24 +4366,36.38333,24 +4367,36.39167,24 +4368,36.4,24 +4369,36.40833,24 +4370,36.41667,24 +4371,36.425,24 +4372,36.43333,24 +4373,36.44167,25 +4374,36.45,25 +4375,36.45833,25 +4376,36.46667,24 +4377,36.475,24 +4378,36.48333,24 +4379,36.49167,25 +4380,36.5,25 +4381,36.50833,26 +4382,36.51667,26 +4383,36.525,25 +4384,36.53333,26 +4385,36.54167,26 +4386,36.55,26 +4387,36.55833,26 +4388,36.56667,25 +4389,36.575,25 +4390,36.58333,25 +4391,36.59167,25 +4392,36.6,25 +4393,36.60833,25 +4394,36.61667,25 +4395,36.625,25 +4396,36.63333,25 +4397,36.64167,26 +4398,36.65,26 +4399,36.65833,26 +4400,36.66667,26 +4401,36.675,26 +4402,36.68333,26 +4403,36.69167,26 +4404,36.7,26 +4405,36.70833,26 +4406,36.71667,26 +4407,36.725,26 +4408,36.73333,26 +4409,36.74167,26 +4410,36.75,26 +4411,36.75833,26 +4412,36.76667,26 +4413,36.775,26 +4414,36.78333,26 +4415,36.79167,26 +4416,36.8,26 +4417,36.80833,26 +4418,36.81667,26 +4419,36.825,26 +4420,36.83333,26 +4421,36.84167,26 +4422,36.85,26 +4423,36.85833,26 +4424,36.86667,26 +4425,36.875,26 +4426,36.88333,26 +4427,36.89167,26 +4428,36.9,26 +4429,36.90833,26 +4430,36.91667,26 +4431,36.925,26 +4432,36.93333,26 +4433,36.94167,26 +4434,36.95,26 +4435,36.95833,26 +4436,36.96667,26 +4437,36.975,26 +4438,36.98333,25 +4439,36.99167,26 +4440,37.0,26 +4441,37.00833,26 +4442,37.01667,26 +4443,37.025,26 +4444,37.03333,26 +4445,37.04167,26 +4446,37.05,26 +4447,37.05833,26 +4448,37.06667,27 +4449,37.075,27 +4450,37.08333,27 +4451,37.09167,27 +4452,37.1,27 +4453,37.10833,27 +4454,37.11667,27 +4455,37.125,27 +4456,37.13333,27 +4457,37.14167,27 +4458,37.15,27 +4459,37.15833,27 +4460,37.16667,27 +4461,37.175,27 +4462,37.18333,27 +4463,37.19167,27 +4464,37.2,27 +4465,37.20833,27 +4466,37.21667,28 +4467,37.225,28 +4468,37.23333,27 +4469,37.24167,27 +4470,37.25,27 +4471,37.25833,26 +4472,37.26667,27 +4473,37.275,27 +4474,37.28333,27 +4475,37.29167,27 +4476,37.3,27 +4477,37.30833,27 +4478,37.31667,27 +4479,37.325,26 +4480,37.33333,26 +4481,37.34167,26 +4482,37.35,26 +4483,37.35833,26 +4484,37.36667,26 +4485,37.375,26 +4486,37.38333,26 +4487,37.39167,26 +4488,37.4,26 +4489,37.40833,26 +4490,37.41667,26 +4491,37.425,26 +4492,37.43333,26 +4493,37.44167,26 +4494,37.45,26 +4495,37.45833,26 +4496,37.46667,26 +4497,37.475,26 +4498,37.48333,26 +4499,37.49167,26 +4500,37.5,26 +4501,37.50833,26 +4502,37.51667,26 +4503,37.525,26 +4504,37.53333,26 +4505,37.54167,26 +4506,37.55,26 +4507,37.55833,26 +4508,37.56667,27 +4509,37.575,26 +4510,37.58333,26 +4511,37.59167,26 +4512,37.6,26 +4513,37.60833,26 +4514,37.61667,26 +4515,37.625,27 +4516,37.63333,27 +4517,37.64167,27 +4518,37.65,27 +4519,37.65833,27 +4520,37.66667,27 +4521,37.675,26 +4522,37.68333,26 +4523,37.69167,26 +4524,37.7,26 +4525,37.70833,25 +4526,37.71667,25 +4527,37.725,25 +4528,37.73333,25 +4529,37.74167,25 +4530,37.75,25 +4531,37.75833,26 +4532,37.76667,26 +4533,37.775,26 +4534,37.78333,26 +4535,37.79167,26 +4536,37.8,26 +4537,37.80833,26 +4538,37.81667,26 +4539,37.825,26 +4540,37.83333,26 +4541,37.84167,26 +4542,37.85,26 +4543,37.85833,26 +4544,37.86667,25 +4545,37.875,26 +4546,37.88333,26 +4547,37.89167,26 +4548,37.9,26 +4549,37.90833,26 +4550,37.91667,25 +4551,37.925,25 +4552,37.93333,25 +4553,37.94167,25 +4554,37.95,26 +4555,37.95833,26 +4556,37.96667,26 +4557,37.975,26 +4558,37.98333,26 +4559,37.99167,26 +4560,38.0,25 +4561,38.00833,25 +4562,38.01667,25 +4563,38.025,25 +4564,38.03333,25 +4565,38.04167,25 +4566,38.05,25 +4567,38.05833,25 +4568,38.06667,25 +4569,38.075,25 +4570,38.08333,26 +4571,38.09167,26 +4572,38.1,25 +4573,38.10833,25 +4574,38.11667,25 +4575,38.125,25 +4576,38.13333,25 +4577,38.14167,25 +4578,38.15,26 +4579,38.15833,26 +4580,38.16667,26 +4581,38.175,26 +4582,38.18333,26 +4583,38.19167,26 +4584,38.2,26 +4585,38.20833,26 +4586,38.21667,26 +4587,38.225,26 +4588,38.23333,26 +4589,38.24167,25 +4590,38.25,25 +4591,38.25833,25 +4592,38.26667,25 +4593,38.275,24 +4594,38.28333,24 +4595,38.29167,24 +4596,38.3,24 +4597,38.30833,24 +4598,38.31667,24 +4599,38.325,24 +4600,38.33333,25 +4601,38.34167,24 +4602,38.35,24 +4603,38.35833,24 +4604,38.36667,24 +4605,38.375,24 +4606,38.38333,24 +4607,38.39167,24 +4608,38.4,24 +4609,38.40833,24 +4610,38.41667,24 +4611,38.425,24 +4612,38.43333,24 +4613,38.44167,24 +4614,38.45,24 +4615,38.45833,24 +4616,38.46667,24 +4617,38.475,24 +4618,38.48333,25 +4619,38.49167,25 +4620,38.5,25 +4621,38.50833,25 +4622,38.51667,25 +4623,38.525,25 +4624,38.53333,25 +4625,38.54167,25 +4626,38.55,25 +4627,38.55833,25 +4628,38.56667,25 +4629,38.575,25 +4630,38.58333,26 +4631,38.59167,25 +4632,38.6,25 +4633,38.60833,25 +4634,38.61667,24 +4635,38.625,24 +4636,38.63333,24 +4637,38.64167,24 +4638,38.65,24 +4639,38.65833,23 +4640,38.66667,23 +4641,38.675,23 +4642,38.68333,23 +4643,38.69167,23 +4644,38.7,23 +4645,38.70833,23 +4646,38.71667,23 +4647,38.725,23 +4648,38.73333,23 +4649,38.74167,23 +4650,38.75,23 +4651,38.75833,23 +4652,38.76667,23 +4653,38.775,23 +4654,38.78333,23 +4655,38.79167,23 +4656,38.8,23 +4657,38.80833,24 +4658,38.81667,24 +4659,38.825,24 +4660,38.83333,23 +4661,38.84167,23 +4662,38.85,23 +4663,38.85833,23 +4664,38.86667,23 +4665,38.875,23 +4666,38.88333,23 +4667,38.89167,23 +4668,38.9,23 +4669,38.90833,23 +4670,38.91667,23 +4671,38.925,22 +4672,38.93333,22 +4673,38.94167,22 +4674,38.95,22 +4675,38.95833,22 +4676,38.96667,22 +4677,38.975,22 +4678,38.98333,22 +4679,38.99167,22 +4680,39.0,22 +4681,39.00833,22 +4682,39.01667,22 +4683,39.025,22 +4684,39.03333,23 +4685,39.04167,23 +4686,39.05,22 +4687,39.05833,22 +4688,39.06667,22 +4689,39.075,22 +4690,39.08333,22 +4691,39.09167,22 +4692,39.1,22 +4693,39.10833,22 +4694,39.11667,23 +4695,39.125,23 +4696,39.13333,23 +4697,39.14167,23 +4698,39.15,23 +4699,39.15833,23 +4700,39.16667,23 +4701,39.175,23 +4702,39.18333,23 +4703,39.19167,23 +4704,39.2,23 +4705,39.20833,23 +4706,39.21667,23 +4707,39.225,23 +4708,39.23333,23 +4709,39.24167,23 +4710,39.25,22 +4711,39.25833,22 +4712,39.26667,22 +4713,39.275,22 +4714,39.28333,22 +4715,39.29167,22 +4716,39.3,22 +4717,39.30833,22 +4718,39.31667,22 +4719,39.325,22 +4720,39.33333,22 +4721,39.34167,22 +4722,39.35,22 +4723,39.35833,22 +4724,39.36667,22 +4725,39.375,22 +4726,39.38333,22 +4727,39.39167,22 +4728,39.4,22 +4729,39.40833,22 +4730,39.41667,22 +4731,39.425,22 +4732,39.43333,22 +4733,39.44167,22 +4734,39.45,22 +4735,39.45833,22 +4736,39.46667,22 +4737,39.475,21 +4738,39.48333,21 +4739,39.49167,21 +4740,39.5,22 +4741,39.50833,22 +4742,39.51667,22 +4743,39.525,22 +4744,39.53333,22 +4745,39.54167,22 +4746,39.55,22 +4747,39.55833,22 +4748,39.56667,22 +4749,39.575,22 +4750,39.58333,23 +4751,39.59167,22 +4752,39.6,22 +4753,39.60833,22 +4754,39.61667,22 +4755,39.625,22 +4756,39.63333,22 +4757,39.64167,22 +4758,39.65,22 +4759,39.65833,22 +4760,39.66667,22 +4761,39.675,22 +4762,39.68333,22 +4763,39.69167,22 +4764,39.7,21 +4765,39.70833,22 +4766,39.71667,22 +4767,39.725,21 +4768,39.73333,22 +4769,39.74167,21 +4770,39.75,21 +4771,39.75833,21 +4772,39.76667,21 +4773,39.775,22 +4774,39.78333,22 +4775,39.79167,22 +4776,39.8,22 +4777,39.80833,22 +4778,39.81667,21 +4779,39.825,21 +4780,39.83333,21 +4781,39.84167,21 +4782,39.85,21 +4783,39.85833,21 +4784,39.86667,21 +4785,39.875,21 +4786,39.88333,22 +4787,39.89167,22 +4788,39.9,21 +4789,39.90833,21 +4790,39.91667,21 +4791,39.925,21 +4792,39.93333,21 +4793,39.94167,21 +4794,39.95,21 +4795,39.95833,21 +4796,39.96667,22 +4797,39.975,22 +4798,39.98333,22 +4799,39.99167,22 +4800,40.0,22 diff --git a/_static/algorithm/data/strong_baseline_drift.csv b/_static/algorithm/data/strong_baseline_drift.csv new file mode 100644 index 0000000..5b6a0a1 --- /dev/null +++ b/_static/algorithm/data/strong_baseline_drift.csv @@ -0,0 +1,8751 @@ +time,measured_signal,true_signal,true_background +0.0,30.0,0.0,30.0 +0.008,29.9997,0.0,29.9997 +0.016,29.9993,0.0,29.9993 +0.024,29.999,0.0,29.999 +0.032,29.9986,0.0,29.9986 +0.04,29.9983,0.0,29.9983 +0.048,29.9979,0.0,29.9979 +0.056,29.9976,0.0,29.9976 +0.064,29.9972,0.0,29.9972 +0.07200000000000001,29.9968,0.0,29.9968 +0.08,29.9965,0.0,29.9965 +0.088,29.9961,0.0,29.9961 +0.096,29.9958,0.0,29.9958 +0.10400000000000001,29.9954,0.0,29.9954 +0.112,29.995,0.0,29.995 +0.12,29.9947,0.0,29.9947 +0.128,29.9943,0.0,29.9943 +0.136,29.9939,0.0,29.9939 +0.14400000000000002,29.9936,0.0,29.9936 +0.152,29.9932,0.0,29.9932 +0.16,29.9928,0.0,29.9928 +0.168,29.9924,0.0,29.9924 +0.176,29.9921,0.0,29.9921 +0.184,29.9917,0.0,29.9917 +0.192,29.9913,0.0,29.9913 +0.2,29.9909,0.0,29.9909 +0.20800000000000002,29.9905,0.0,29.9905 +0.216,29.9902,0.0,29.9902 +0.224,29.9898,0.0,29.9898 +0.232,29.9894,0.0,29.9894 +0.24,29.989,0.0,29.989 +0.248,29.9886,0.0,29.9886 +0.256,29.9882,0.0,29.9882 +0.264,29.9878,0.0,29.9878 +0.272,29.9874,0.0,29.9874 +0.28,29.987,0.0,29.987 +0.28800000000000003,29.9866,0.0,29.9866 +0.296,29.9862,0.0,29.9862 +0.304,29.9858,0.0,29.9858 +0.312,29.9854,0.0,29.9854 +0.32,29.985,0.0,29.985 +0.328,29.9846,0.0,29.9846 +0.336,29.9842,0.0,29.9842 +0.34400000000000003,29.9838,0.0,29.9838 +0.352,29.9834,0.0,29.9834 +0.36,29.983,0.0,29.983 +0.368,29.9825,0.0,29.9825 +0.376,29.9821,0.0,29.9821 +0.384,29.9817,0.0,29.9817 +0.392,29.9813,0.0,29.9813 +0.4,29.9809,0.0,29.9809 +0.40800000000000003,29.9804,0.0,29.9804 +0.41600000000000004,29.98,0.0,29.98 +0.424,29.9796,0.0,29.9796 +0.432,29.9792,0.0,29.9792 +0.44,29.9787,0.0,29.9787 +0.448,29.9783,0.0,29.9783 +0.456,29.9779,0.0,29.9779 +0.464,29.9774,0.0,29.9774 +0.47200000000000003,29.977,0.0,29.977 +0.48,29.9765,0.0,29.9765 +0.488,29.9761,0.0,29.9761 +0.496,29.9757,0.0,29.9757 +0.504,29.9752,0.0,29.9752 +0.512,29.9748,0.0,29.9748 +0.52,29.9743,0.0,29.9743 +0.528,29.9739,0.0,29.9739 +0.536,29.9734,0.0,29.9734 +0.544,29.973,0.0,29.973 +0.552,29.9725,0.0,29.9725 +0.56,29.9721,0.0,29.9721 +0.5680000000000001,29.9716,0.0,29.9716 +0.5760000000000001,29.9712,0.0,29.9712 +0.584,29.9707,0.0,29.9707 +0.592,29.9702,0.0,29.9702 +0.6,29.9698,0.0,29.9698 +0.608,29.9693,0.0,29.9693 +0.616,29.9689,0.0,29.9689 +0.624,29.9684,0.0,29.9684 +0.632,29.9679,0.0,29.9679 +0.64,29.9675,0.0,29.9675 +0.648,29.967,0.0,29.967 +0.656,29.9665,0.0,29.9665 +0.664,29.966,0.0,29.966 +0.672,29.9656,0.0,29.9656 +0.68,29.9651,0.0,29.9651 +0.6880000000000001,29.9646,0.0,29.9646 +0.6960000000000001,29.9641,0.0,29.9641 +0.704,29.9636,0.0,29.9636 +0.712,29.9632,0.0,29.9632 +0.72,29.9627,0.0,29.9627 +0.728,29.9622,0.0,29.9622 +0.736,29.9617,0.0,29.9617 +0.744,29.9612,0.0,29.9612 +0.752,29.9607,0.0,29.9607 +0.76,29.9602,0.0,29.9602 +0.768,29.9597,0.0,29.9597 +0.776,29.9592,0.0,29.9592 +0.784,29.9587,0.0,29.9587 +0.792,29.9582,0.0,29.9582 +0.8,29.9577,0.0,29.9577 +0.808,29.9572,0.0,29.9572 +0.8160000000000001,29.9567,0.0,29.9567 +0.8240000000000001,29.9562,0.0,29.9562 +0.8320000000000001,29.9557,0.0,29.9557 +0.84,29.9552,0.0,29.9552 +0.848,29.9547,0.0,29.9547 +0.856,29.9542,0.0,29.9542 +0.864,29.9536,0.0,29.9536 +0.872,29.9531,0.0,29.9531 +0.88,29.9526,0.0,29.9526 +0.888,29.9521,0.0,29.9521 +0.896,29.9516,0.0,29.9516 +0.904,29.9511,0.0,29.9511 +0.912,29.9505,0.0,29.9505 +0.92,29.95,0.0,29.95 +0.928,29.9495,0.0,29.9495 +0.936,29.9489,0.0,29.9489 +0.9440000000000001,29.9484,0.0,29.9484 +0.9520000000000001,29.9479,0.0,29.9479 +0.96,29.9474,0.0,29.9474 +0.968,29.9468,0.0,29.9468 +0.976,29.9463,0.0,29.9463 +0.984,29.9457,0.0,29.9457 +0.992,29.9452,0.0,29.9452 +1.0,29.9447,0.0,29.9447 +1.008,29.9441,0.0,29.9441 +1.016,29.9436,0.0,29.9436 +1.024,29.943,0.0,29.943 +1.032,29.9425,0.0,29.9425 +1.04,29.9419,0.0,29.9419 +1.048,29.9414,0.0,29.9414 +1.056,29.9408,0.0,29.9408 +1.064,29.9403,0.0,29.9403 +1.072,29.9397,0.0,29.9397 +1.08,29.9392,0.0,29.9392 +1.088,29.9386,0.0,29.9386 +1.096,29.938,0.0,29.938 +1.104,29.9375,0.0,29.9375 +1.112,29.9369,0.0,29.9369 +1.12,29.9363,0.0,29.9363 +1.1280000000000001,29.9358,0.0,29.9358 +1.1360000000000001,29.9352,0.0,29.9352 +1.1440000000000001,29.9346,0.0,29.9346 +1.1520000000000001,29.9341,0.0,29.9341 +1.16,29.9335,0.0,29.9335 +1.168,29.9329,0.0,29.9329 +1.176,29.9323,0.0,29.9323 +1.184,29.9318,0.0,29.9318 +1.192,29.9312,0.0,29.9312 +1.2,29.9306,0.0,29.9306 +1.208,29.93,0.0,29.93 +1.216,29.9294,0.0,29.9294 +1.224,29.9288,0.0,29.9288 +1.232,29.9283,0.0,29.9283 +1.24,29.9277,0.0,29.9277 +1.248,29.9271,0.0,29.9271 +1.256,29.9265,0.0,29.9265 +1.264,29.9259,0.0,29.9259 +1.272,29.9253,0.0,29.9253 +1.28,29.9247,0.0,29.9247 +1.288,29.9241,0.0,29.9241 +1.296,29.9235,0.0,29.9235 +1.304,29.9229,0.0,29.9229 +1.312,29.9223,0.0,29.9223 +1.32,29.9217,0.0,29.9217 +1.328,29.9211,0.0,29.9211 +1.336,29.9205,0.0,29.9205 +1.344,29.9199,0.0,29.9199 +1.352,29.9193,0.0,29.9193 +1.36,29.9186,0.0,29.9186 +1.368,29.918,0.0,29.918 +1.3760000000000001,29.9174,0.0,29.9174 +1.3840000000000001,29.9168,0.0,29.9168 +1.3920000000000001,29.9162,0.0,29.9162 +1.4000000000000001,29.9156,0.0,29.9156 +1.408,29.9149,0.0,29.9149 +1.416,29.9143,0.0,29.9143 +1.424,29.9137,0.0,29.9137 +1.432,29.9131,0.0,29.9131 +1.44,29.9124,0.0,29.9124 +1.448,29.9118,0.0,29.9118 +1.456,29.9112,0.0,29.9112 +1.464,29.9105,0.0,29.9105 +1.472,29.9099,0.0,29.9099 +1.48,29.9093,0.0,29.9093 +1.488,29.9086,0.0,29.9086 +1.496,29.908,0.0,29.908 +1.504,29.9073,0.0,29.9073 +1.512,29.9067,0.0,29.9067 +1.52,29.906,0.0,29.906 +1.528,29.9054,0.0,29.9054 +1.536,29.9048,0.0,29.9048 +1.544,29.9041,0.0,29.9041 +1.552,29.9035,0.0,29.9035 +1.56,29.9028,0.0,29.9028 +1.568,29.9021,0.0,29.9021 +1.576,29.9015,0.0,29.9015 +1.584,29.9008,0.0,29.9008 +1.592,29.9002,0.0,29.9002 +1.6,29.8995,0.0,29.8995 +1.608,29.8988,0.0,29.8988 +1.616,29.8982,0.0,29.8982 +1.624,29.8975,0.0,29.8975 +1.6320000000000001,29.8969,0.0,29.8969 +1.6400000000000001,29.8962,0.0,29.8962 +1.6480000000000001,29.8955,0.0,29.8955 +1.6560000000000001,29.8948,0.0,29.8948 +1.6640000000000001,29.8942,0.0,29.8942 +1.672,29.8935,0.0,29.8935 +1.68,29.8928,0.0,29.8928 +1.688,29.8921,0.0,29.8921 +1.696,29.8915,0.0,29.8915 +1.704,29.8908,0.0,29.8908 +1.712,29.8901,0.0,29.8901 +1.72,29.8894,0.0,29.8894 +1.728,29.8887,0.0,29.8887 +1.736,29.888,0.0,29.888 +1.744,29.8873,0.0,29.8873 +1.752,29.8867,0.0,29.8867 +1.76,29.886,0.0,29.886 +1.768,29.8853,0.0,29.8853 +1.776,29.8846,0.0,29.8846 +1.784,29.8839,0.0,29.8839 +1.792,29.8832,0.0,29.8832 +1.8,29.8825,0.0,29.8825 +1.808,29.8818,0.0,29.8818 +1.816,29.8811,0.0,29.8811 +1.824,29.8804,0.0,29.8804 +1.832,29.8797,0.0,29.8797 +1.84,29.879,0.0,29.879 +1.848,29.8782,0.0,29.8782 +1.856,29.8775,0.0,29.8775 +1.864,29.8768,0.0,29.8768 +1.872,29.8761,0.0,29.8761 +1.8800000000000001,29.8754,0.0,29.8754 +1.8880000000000001,29.8747,0.0,29.8747 +1.8960000000000001,29.874,0.0,29.874 +1.9040000000000001,29.8732,0.0,29.8732 +1.9120000000000001,29.8725,0.0,29.8725 +1.92,29.8718,0.0,29.8718 +1.928,29.8711,0.0,29.8711 +1.936,29.8703,0.0,29.8703 +1.944,29.8696,0.0,29.8696 +1.952,29.8689,0.0,29.8689 +1.96,29.8681,0.0,29.8681 +1.968,29.8674,0.0,29.8674 +1.976,29.8667,0.0,29.8667 +1.984,29.8659,0.0,29.8659 +1.992,29.8652,0.0,29.8652 +2.0,29.8645,0.0,29.8645 +2.008,29.8637,0.0,29.8637 +2.016,29.863,0.0,29.863 +2.024,29.8622,0.0,29.8622 +2.032,29.8615,0.0,29.8615 +2.04,29.8607,0.0,29.8607 +2.048,29.86,0.0,29.86 +2.056,29.8592,0.0,29.8592 +2.064,29.8585,0.0,29.8585 +2.072,29.8577,0.0,29.8577 +2.08,29.857,0.0,29.857 +2.088,29.8562,0.0,29.8562 +2.096,29.8555,0.0,29.8555 +2.104,29.8547,0.0,29.8547 +2.112,29.8539,0.0,29.8539 +2.12,29.8532,0.0,29.8532 +2.128,29.8524,0.0,29.8524 +2.136,29.8516,0.0,29.8516 +2.144,29.8509,0.0,29.8509 +2.152,29.8501,0.0,29.8501 +2.16,29.8493,0.0,29.8493 +2.168,29.8486,0.0,29.8486 +2.176,29.8478,0.0,29.8478 +2.184,29.847,0.0,29.847 +2.192,29.8462,0.0,29.8462 +2.2,29.8455,0.0,29.8455 +2.208,29.8447,0.0,29.8447 +2.216,29.8439,0.0,29.8439 +2.224,29.8431,0.0,29.8431 +2.232,29.8423,0.0,29.8423 +2.24,29.8415,0.0,29.8415 +2.248,29.8407,0.0,29.8407 +2.2560000000000002,29.84,0.0,29.84 +2.2640000000000002,29.8392,0.0,29.8392 +2.2720000000000002,29.8384,0.0,29.8384 +2.2800000000000002,29.8376,0.0,29.8376 +2.2880000000000003,29.8368,0.0,29.8368 +2.2960000000000003,29.836,0.0,29.836 +2.3040000000000003,29.8352,0.0,29.8352 +2.312,29.8344,0.0,29.8344 +2.32,29.8336,0.0,29.8336 +2.328,29.8328,0.0,29.8328 +2.336,29.832,0.0,29.832 +2.344,29.8312,0.0,29.8312 +2.352,29.8304,0.0,29.8304 +2.36,29.8295,0.0,29.8295 +2.368,29.8287,0.0,29.8287 +2.376,29.8279,0.0,29.8279 +2.384,29.8271,0.0,29.8271 +2.392,29.8263,0.0,29.8263 +2.4,29.8255,0.0,29.8255 +2.408,29.8246,0.0,29.8246 +2.416,29.8238,0.0,29.8238 +2.424,29.823,0.0,29.823 +2.432,29.8222,0.0,29.8222 +2.44,29.8213,0.0,29.8213 +2.448,29.8205,0.0,29.8205 +2.456,29.8197,0.0,29.8197 +2.464,29.8189,0.0,29.8189 +2.472,29.818,0.0,29.818 +2.48,29.8172,0.0,29.8172 +2.488,29.8164,0.0,29.8164 +2.496,29.8155,0.0,29.8155 +2.504,29.8147,0.0,29.8147 +2.512,29.8138,0.0,29.8138 +2.52,29.813,0.0,29.813 +2.528,29.8122,0.0,29.8122 +2.536,29.8113,0.0,29.8113 +2.544,29.8105,0.0,29.8105 +2.552,29.8096,0.0,29.8096 +2.56,29.8088,0.0,29.8088 +2.568,29.8079,0.0,29.8079 +2.576,29.8071,0.0,29.8071 +2.584,29.8062,0.0,29.8062 +2.592,29.8053,0.0,29.8053 +2.6,29.8045,0.0,29.8045 +2.608,29.8036,0.0,29.8036 +2.616,29.8028,0.0,29.8028 +2.624,29.8019,0.0,29.8019 +2.632,29.801,0.0,29.801 +2.64,29.8002,0.0,29.8002 +2.648,29.7993,0.0,29.7993 +2.656,29.7984,0.0,29.7984 +2.664,29.7976,0.0,29.7976 +2.672,29.7967,0.0,29.7967 +2.68,29.7958,0.0,29.7958 +2.688,29.795,0.0,29.795 +2.696,29.7941,0.0,29.7941 +2.704,29.7932,0.0,29.7932 +2.712,29.7923,0.0,29.7923 +2.72,29.7914,0.0,29.7914 +2.728,29.7906,0.0,29.7906 +2.736,29.7897,0.0,29.7897 +2.744,29.7888,0.0,29.7888 +2.7520000000000002,29.7879,0.0,29.7879 +2.7600000000000002,29.787,0.0,29.787 +2.7680000000000002,29.7861,0.0,29.7861 +2.7760000000000002,29.7852,0.0,29.7852 +2.7840000000000003,29.7843,0.0,29.7843 +2.7920000000000003,29.7834,0.0,29.7834 +2.8000000000000003,29.7825,0.0,29.7825 +2.8080000000000003,29.7816,0.0,29.7816 +2.816,29.7807,0.0,29.7807 +2.824,29.7798,0.0,29.7798 +2.832,29.7789,0.0,29.7789 +2.84,29.778,0.0,29.778 +2.848,29.7771,0.0,29.7771 +2.856,29.7762,0.0,29.7762 +2.864,29.7753,0.0,29.7753 +2.872,29.7744,0.0,29.7744 +2.88,29.7735,0.0,29.7735 +2.888,29.7726,0.0,29.7726 +2.896,29.7717,0.0,29.7717 +2.904,29.7707,0.0,29.7707 +2.912,29.7698,0.0,29.7698 +2.92,29.7689,0.0,29.7689 +2.928,29.768,0.0,29.768 +2.936,29.7671,0.0,29.7671 +2.944,29.7661,0.0,29.7661 +2.952,29.7652,0.0,29.7652 +2.96,29.7643,0.0,29.7643 +2.968,29.7633,0.0,29.7633 +2.976,29.7624,0.0,29.7624 +2.984,29.7615,0.0,29.7615 +2.992,29.7605,0.0,29.7605 +3.0,29.7596,0.0,29.7596 +3.008,29.7587,0.0,29.7587 +3.016,29.7577,0.0,29.7577 +3.024,29.7568,0.0,29.7568 +3.032,29.7558,0.0,29.7558 +3.04,29.7549,0.0,29.7549 +3.048,29.754,0.0,29.754 +3.056,29.753,0.0,29.753 +3.064,29.7521,0.0,29.7521 +3.072,29.7511,0.0,29.7511 +3.08,29.7502,0.0,29.7502 +3.088,29.7492,0.0,29.7492 +3.096,29.7483,0.0,29.7483 +3.104,29.7473,0.0,29.7473 +3.112,29.7463,0.0,29.7463 +3.12,29.7454,0.0,29.7454 +3.128,29.7444,0.0,29.7444 +3.136,29.7435,0.0,29.7435 +3.144,29.7425,0.0,29.7425 +3.152,29.7415,0.0,29.7415 +3.16,29.7406,0.0,29.7406 +3.168,29.7396,0.0,29.7396 +3.176,29.7386,0.0,29.7386 +3.184,29.7376,0.0,29.7376 +3.192,29.7367,0.0,29.7367 +3.2,29.7357,0.0,29.7357 +3.208,29.7347,0.0,29.7347 +3.216,29.7337,0.0,29.7337 +3.224,29.7328,0.0,29.7328 +3.232,29.7318,0.0,29.7318 +3.24,29.7308,0.0,29.7308 +3.248,29.7298,0.0,29.7298 +3.2560000000000002,29.7288,0.0,29.7288 +3.2640000000000002,29.7278,0.0,29.7278 +3.2720000000000002,29.7269,0.0,29.7269 +3.2800000000000002,29.7259,0.0,29.7259 +3.2880000000000003,29.7249,0.0,29.7249 +3.2960000000000003,29.7239,0.0,29.7239 +3.3040000000000003,29.7229,0.0,29.7229 +3.3120000000000003,29.7219,0.0,29.7219 +3.3200000000000003,29.7209,0.0,29.7209 +3.3280000000000003,29.7199,0.0,29.7199 +3.336,29.7189,0.0,29.7189 +3.344,29.7179,0.0,29.7179 +3.352,29.7169,0.0,29.7169 +3.36,29.7159,0.0,29.7159 +3.368,29.7149,0.0,29.7149 +3.376,29.7139,0.0,29.7139 +3.384,29.7128,0.0,29.7128 +3.392,29.7118,0.0,29.7118 +3.4,29.7108,0.0,29.7108 +3.408,29.7098,0.0,29.7098 +3.416,29.7088,0.0,29.7088 +3.424,29.7078,0.0,29.7078 +3.432,29.7067,0.0,29.7067 +3.44,29.7057,0.0,29.7057 +3.448,29.7047,0.0,29.7047 +3.456,29.7037,0.0,29.7037 +3.464,29.7026,0.0,29.7026 +3.472,29.7016,0.0,29.7016 +3.48,29.7006,0.0,29.7006 +3.488,29.6996,0.0,29.6996 +3.496,29.6985,0.0,29.6985 +3.504,29.6975,0.0,29.6975 +3.512,29.6965,0.0,29.6965 +3.52,29.6954,0.0,29.6954 +3.528,29.6944,0.0,29.6944 +3.536,29.6933,0.0,29.6933 +3.544,29.6923,0.0,29.6923 +3.552,29.6913,0.0,29.6913 +3.56,29.6902,0.0,29.6902 +3.568,29.6892,0.0,29.6892 +3.576,29.6881,0.0,29.6881 +3.584,29.6871,0.0,29.6871 +3.592,29.686,0.0,29.686 +3.6,29.685,0.0,29.685 +3.608,29.6839,0.0,29.6839 +3.616,29.6829,0.0,29.6829 +3.624,29.6818,0.0,29.6818 +3.632,29.6807,0.0,29.6807 +3.64,29.6797,0.0,29.6797 +3.648,29.6786,0.0,29.6786 +3.656,29.6776,0.0,29.6776 +3.664,29.6765,0.0,29.6765 +3.672,29.6754,0.0,29.6754 +3.68,29.6744,0.0,29.6744 +3.688,29.6733,0.0,29.6733 +3.696,29.6722,0.0,29.6722 +3.704,29.6711,0.0,29.6711 +3.712,29.6701,0.0,29.6701 +3.72,29.669,0.0,29.669 +3.728,29.6679,0.0,29.6679 +3.736,29.6668,0.0,29.6668 +3.744,29.6658,0.0,29.6658 +3.7520000000000002,29.6647,0.0,29.6647 +3.7600000000000002,29.6636,0.0,29.6636 +3.7680000000000002,29.6625,0.0,29.6625 +3.7760000000000002,29.6614,0.0,29.6614 +3.7840000000000003,29.6603,0.0,29.6603 +3.7920000000000003,29.6592,0.0,29.6592 +3.8000000000000003,29.6581,0.0,29.6581 +3.8080000000000003,29.6571,0.0,29.6571 +3.8160000000000003,29.656,0.0,29.656 +3.8240000000000003,29.6549,0.0,29.6549 +3.8320000000000003,29.6538,0.0,29.6538 +3.84,29.6527,0.0,29.6527 +3.848,29.6516,0.0,29.6516 +3.856,29.6505,0.0,29.6505 +3.864,29.6494,0.0,29.6494 +3.872,29.6483,0.0,29.6483 +3.88,29.6471,0.0,29.6471 +3.888,29.646,0.0,29.646 +3.896,29.6449,0.0,29.6449 +3.904,29.6438,0.0,29.6438 +3.912,29.6427,0.0,29.6427 +3.92,29.6416,0.0,29.6416 +3.928,29.6405,0.0,29.6405 +3.936,29.6394,0.0,29.6394 +3.944,29.6382,0.0,29.6382 +3.952,29.6371,0.0,29.6371 +3.96,29.636,0.0,29.636 +3.968,29.6349,0.0,29.6349 +3.976,29.6337,0.0,29.6337 +3.984,29.6326,0.0,29.6326 +3.992,29.6315,0.0,29.6315 +4.0,29.6304,0.0,29.6304 +4.008,29.6292,0.0,29.6292 +4.016,29.6281,0.0,29.6281 +4.024,29.627,0.0,29.627 +4.032,29.6258,0.0,29.6258 +4.04,29.6247,0.0,29.6247 +4.048,29.6235,0.0,29.6235 +4.056,29.6224,0.0,29.6224 +4.064,29.6213,0.0,29.6213 +4.072,29.6201,0.0,29.6201 +4.08,29.619,0.0,29.619 +4.088,29.6178,0.0,29.6178 +4.096,29.6167,0.0,29.6167 +4.104,29.6155,0.0,29.6155 +4.112,29.6144,0.0,29.6144 +4.12,29.6132,0.0,29.6132 +4.128,29.6121,0.0,29.6121 +4.136,29.6109,0.0,29.6109 +4.144,29.6098,0.0,29.6098 +4.152,29.6086,0.0,29.6086 +4.16,29.6074,0.0,29.6074 +4.168,29.6063,0.0,29.6063 +4.176,29.6051,0.0,29.6051 +4.184,29.6039,0.0,29.6039 +4.192,29.6028,0.0,29.6028 +4.2,29.6016,0.0,29.6016 +4.208,29.6004,0.0,29.6004 +4.216,29.5993,0.0,29.5993 +4.224,29.5981,0.0,29.5981 +4.232,29.5969,0.0,29.5969 +4.24,29.5957,0.0,29.5957 +4.248,29.5946,0.0,29.5946 +4.256,29.5934,0.0,29.5934 +4.264,29.5922,0.0,29.5922 +4.272,29.591,0.0,29.591 +4.28,29.5898,0.0,29.5898 +4.288,29.5887,0.0,29.5887 +4.296,29.5875,0.0,29.5875 +4.304,29.5863,0.0,29.5863 +4.312,29.5851,0.0,29.5851 +4.32,29.5839,0.0,29.5839 +4.328,29.5827,0.0,29.5827 +4.336,29.5815,0.0,29.5815 +4.344,29.5803,0.0,29.5803 +4.352,29.5791,0.0,29.5791 +4.36,29.5779,0.0,29.5779 +4.368,29.5767,0.0,29.5767 +4.376,29.5755,0.0,29.5755 +4.384,29.5743,0.0,29.5743 +4.392,29.5731,0.0,29.5731 +4.4,29.5719,0.0,29.5719 +4.408,29.5707,0.0,29.5707 +4.416,29.5695,0.0,29.5695 +4.424,29.5683,0.0,29.5683 +4.432,29.5671,0.0,29.5671 +4.44,29.5658,0.0,29.5658 +4.448,29.5646,0.0,29.5646 +4.456,29.5634,0.0,29.5634 +4.464,29.5622,0.0,29.5622 +4.472,29.561,0.0,29.561 +4.48,29.5597,0.0,29.5597 +4.488,29.5585,0.0,29.5585 +4.496,29.5573,0.0,29.5573 +4.5040000000000004,29.5561,0.0,29.5561 +4.5120000000000005,29.5548,0.0,29.5548 +4.5200000000000005,29.5536,0.0,29.5536 +4.5280000000000005,29.5524,0.0,29.5524 +4.5360000000000005,29.5511,0.0,29.5511 +4.5440000000000005,29.5499,0.0,29.5499 +4.5520000000000005,29.5487,0.0,29.5487 +4.5600000000000005,29.5474,0.0,29.5474 +4.5680000000000005,29.5462,0.0,29.5462 +4.5760000000000005,29.545,0.0,29.545 +4.5840000000000005,29.5437,0.0,29.5437 +4.5920000000000005,29.5425,0.0,29.5425 +4.6000000000000005,29.5412,0.0,29.5412 +4.6080000000000005,29.54,0.0,29.54 +4.616,29.5387,0.0,29.5387 +4.624,29.5375,0.0,29.5375 +4.632,29.5362,0.0,29.5362 +4.64,29.535,0.0,29.535 +4.648,29.5337,0.0,29.5337 +4.656,29.5325,0.0,29.5325 +4.664,29.5312,0.0,29.5312 +4.672,29.53,0.0,29.53 +4.68,29.5287,0.0,29.5287 +4.688,29.5274,0.0,29.5274 +4.696,29.5262,0.0,29.5262 +4.704,29.5249,0.0,29.5249 +4.712,29.5236,0.0,29.5236 +4.72,29.5224,0.0,29.5224 +4.728,29.5211,0.0,29.5211 +4.736,29.5198,0.0,29.5198 +4.744,29.5186,0.0,29.5186 +4.752,29.5173,0.0,29.5173 +4.76,29.516,0.0,29.516 +4.768,29.5147,0.0,29.5147 +4.776,29.5135,0.0,29.5135 +4.784,29.5122,0.0,29.5122 +4.792,29.5109,0.0,29.5109 +4.8,29.5096,0.0,29.5096 +4.808,29.5083,0.0,29.5083 +4.816,29.507,0.0,29.507 +4.824,29.5057,0.0,29.5057 +4.832,29.5045,0.0,29.5045 +4.84,29.5032,0.0,29.5032 +4.848,29.5019,0.0,29.5019 +4.856,29.5006,0.0,29.5006 +4.864,29.4993,0.0,29.4993 +4.872,29.498,0.0,29.498 +4.88,29.4967,0.0,29.4967 +4.888,29.4954,0.0,29.4954 +4.896,29.4941,0.0,29.4941 +4.904,29.4928,0.0,29.4928 +4.912,29.4915,0.0,29.4915 +4.92,29.4902,0.0,29.4902 +4.928,29.4889,0.0,29.4889 +4.936,29.4876,0.0,29.4876 +4.944,29.4863,0.0,29.4863 +4.952,29.4849,0.0,29.4849 +4.96,29.4836,0.0,29.4836 +4.968,29.4823,0.0,29.4823 +4.976,29.481,0.0,29.481 +4.984,29.4797,0.0,29.4797 +4.992,29.4784,0.0,29.4784 +5.0,29.477,0.0,29.477 +5.008,29.4757,0.0,29.4757 +5.016,29.4744,0.0,29.4744 +5.024,29.4731,0.0,29.4731 +5.032,29.4717,0.0,29.4717 +5.04,29.4704,0.0,29.4704 +5.048,29.4691,0.0,29.4691 +5.056,29.4677,0.0,29.4677 +5.064,29.4664,0.0,29.4664 +5.072,29.4651,0.0,29.4651 +5.08,29.4637,0.0,29.4637 +5.088,29.4624,0.0,29.4624 +5.096,29.4611,0.0,29.4611 +5.104,29.4597,0.0,29.4597 +5.112,29.4584,0.0,29.4584 +5.12,29.457,0.0,29.457 +5.128,29.4557,0.0,29.4557 +5.136,29.4543,0.0,29.4543 +5.144,29.453,0.0,29.453 +5.152,29.4516,0.0,29.4516 +5.16,29.4503,0.0,29.4503 +5.168,29.4489,0.0,29.4489 +5.176,29.4476,0.0,29.4476 +5.184,29.4462,0.0,29.4462 +5.192,29.4449,0.0,29.4449 +5.2,29.4435,0.0,29.4435 +5.208,29.4422,0.0,29.4422 +5.216,29.4408,0.0,29.4408 +5.224,29.4394,0.0,29.4394 +5.232,29.4381,0.0,29.4381 +5.24,29.4367,0.0,29.4367 +5.248,29.4353,0.0,29.4353 +5.256,29.434,0.0,29.434 +5.264,29.4326,0.0,29.4326 +5.272,29.4312,0.0,29.4312 +5.28,29.4298,0.0,29.4298 +5.288,29.4285,0.0,29.4285 +5.296,29.4271,0.0,29.4271 +5.304,29.4257,0.0,29.4257 +5.312,29.4243,0.0,29.4243 +5.32,29.4229,0.0,29.4229 +5.328,29.4216,0.0,29.4216 +5.336,29.4202,0.0,29.4202 +5.344,29.4188,0.0,29.4188 +5.352,29.4174,0.0,29.4174 +5.36,29.416,0.0,29.416 +5.368,29.4146,0.0,29.4146 +5.376,29.4132,0.0,29.4132 +5.384,29.4118,0.0,29.4118 +5.392,29.4104,0.0,29.4104 +5.4,29.409,0.0,29.409 +5.408,29.4077,0.0,29.4077 +5.416,29.4063,0.0,29.4063 +5.424,29.4048,0.0,29.4048 +5.432,29.4034,0.0,29.4034 +5.44,29.402,0.0,29.402 +5.448,29.4006,0.0,29.4006 +5.456,29.3992,0.0,29.3992 +5.464,29.3978,0.0,29.3978 +5.472,29.3964,0.0,29.3964 +5.48,29.395,0.0,29.395 +5.488,29.3936,0.0,29.3936 +5.496,29.3922,0.0,29.3922 +5.5040000000000004,29.3908,0.0,29.3908 +5.5120000000000005,29.3893,0.0,29.3893 +5.5200000000000005,29.3879,0.0,29.3879 +5.5280000000000005,29.3865,0.0,29.3865 +5.5360000000000005,29.3851,0.0,29.3851 +5.5440000000000005,29.3837,0.0,29.3837 +5.5520000000000005,29.3822,0.0,29.3822 +5.5600000000000005,29.3808,0.0,29.3808 +5.5680000000000005,29.3794,0.0,29.3794 +5.5760000000000005,29.3779,0.0,29.3779 +5.5840000000000005,29.3765,0.0,29.3765 +5.5920000000000005,29.3751,0.0,29.3751 +5.6000000000000005,29.3736,0.0,29.3736 +5.6080000000000005,29.3722,0.0,29.3722 +5.6160000000000005,29.3708,0.0,29.3708 +5.6240000000000006,29.3693,0.0,29.3693 +5.632,29.3679,0.0,29.3679 +5.64,29.3664,0.0,29.3664 +5.648,29.365,0.0,29.365 +5.656,29.3636,0.0,29.3636 +5.664,29.3621,0.0,29.3621 +5.672,29.3607,0.0,29.3607 +5.68,29.3592,0.0,29.3592 +5.688,29.3578,0.0,29.3578 +5.696,29.3563,0.0,29.3563 +5.704,29.3549,0.0,29.3549 +5.712,29.3534,0.0,29.3534 +5.72,29.3519,0.0,29.3519 +5.728,29.3505,0.0,29.3505 +5.736,29.349,0.0,29.349 +5.744,29.3476,0.0,29.3476 +5.752,29.3461,0.0,29.3461 +5.76,29.3446,0.0,29.3446 +5.768,29.3432,0.0,29.3432 +5.776,29.3417,0.0,29.3417 +5.784,29.3402,0.0,29.3402 +5.792,29.3388,0.0,29.3388 +5.8,29.3373,0.0,29.3373 +5.808,29.3358,0.0,29.3358 +5.816,29.3344,0.0,29.3344 +5.824,29.3329,0.0,29.3329 +5.832,29.3314,0.0,29.3314 +5.84,29.3299,0.0,29.3299 +5.848,29.3284,0.0,29.3284 +5.856,29.327,0.0,29.327 +5.864,29.3255,0.0,29.3255 +5.872,29.324,0.0,29.324 +5.88,29.3225,0.0,29.3225 +5.888,29.321,0.0,29.321 +5.896,29.3195,0.0,29.3195 +5.904,29.318,0.0,29.318 +5.912,29.3165,0.0,29.3165 +5.92,29.315,0.0,29.315 +5.928,29.3135,0.0,29.3135 +5.936,29.3121,0.0,29.3121 +5.944,29.3106,0.0,29.3106 +5.952,29.3091,0.0,29.3091 +5.96,29.3076,0.0,29.3076 +5.968,29.306,0.0,29.306 +5.976,29.3045,0.0,29.3045 +5.984,29.303,0.0,29.303 +5.992,29.3015,0.0,29.3015 +6.0,29.3,0.0,29.3 +6.008,29.2985,0.0,29.2985 +6.016,29.297,0.0,29.297 +6.024,29.2955,0.0,29.2955 +6.032,29.294,0.0,29.294 +6.04,29.2925,0.0,29.2925 +6.048,29.2909,0.0,29.2909 +6.056,29.2894,0.0,29.2894 +6.064,29.2879,0.0,29.2879 +6.072,29.2864,0.0,29.2864 +6.08,29.2848,0.0,29.2848 +6.088,29.2833,0.0,29.2833 +6.096,29.2818,0.0,29.2818 +6.104,29.2803,0.0,29.2803 +6.112,29.2787,0.0,29.2787 +6.12,29.2772,0.0,29.2772 +6.128,29.2757,0.0,29.2757 +6.136,29.2741,0.0,29.2741 +6.144,29.2726,0.0,29.2726 +6.152,29.2711,0.0,29.2711 +6.16,29.2695,0.0,29.2695 +6.168,29.268,0.0,29.268 +6.176,29.2664,0.0,29.2664 +6.184,29.2649,0.0,29.2649 +6.192,29.2634,0.0,29.2634 +6.2,29.2618,0.0,29.2618 +6.208,29.2603,0.0,29.2603 +6.216,29.2587,0.0,29.2587 +6.224,29.2572,0.0,29.2572 +6.232,29.2556,0.0,29.2556 +6.24,29.2541,0.0,29.2541 +6.248,29.2525,0.0,29.2525 +6.256,29.2509,0.0,29.2509 +6.264,29.2494,0.0,29.2494 +6.272,29.2478,0.0,29.2478 +6.28,29.2463,0.0,29.2463 +6.288,29.2447,0.0,29.2447 +6.296,29.2431,0.0,29.2431 +6.304,29.2416,0.0,29.2416 +6.312,29.24,0.0,29.24 +6.32,29.2384,0.0,29.2384 +6.328,29.2369,0.0,29.2369 +6.336,29.2353,0.0,29.2353 +6.344,29.2337,0.0,29.2337 +6.352,29.2322,0.0,29.2322 +6.36,29.2306,0.0,29.2306 +6.368,29.229,0.0,29.229 +6.376,29.2274,0.0,29.2274 +6.384,29.2258,0.0,29.2258 +6.392,29.2243,0.0,29.2243 +6.4,29.2227,0.0,29.2227 +6.408,29.2211,0.0,29.2211 +6.416,29.2195,0.0,29.2195 +6.424,29.2179,0.0,29.2179 +6.432,29.2163,0.0,29.2163 +6.44,29.2147,0.0,29.2147 +6.448,29.2131,0.0,29.2131 +6.456,29.2116,0.0,29.2116 +6.464,29.21,0.0,29.21 +6.472,29.2084,0.0,29.2084 +6.48,29.2068,0.0,29.2068 +6.488,29.2052,0.0,29.2052 +6.496,29.2036,0.0,29.2036 +6.5040000000000004,29.202,0.0,29.202 +6.5120000000000005,29.2004,0.0,29.2004 +6.5200000000000005,29.1988,0.0,29.1988 +6.5280000000000005,29.1971,0.0,29.1971 +6.5360000000000005,29.1955,0.0,29.1955 +6.5440000000000005,29.1939,0.0,29.1939 +6.5520000000000005,29.1923,0.0,29.1923 +6.5600000000000005,29.1907,0.0,29.1907 +6.5680000000000005,29.1891,0.0,29.1891 +6.5760000000000005,29.1875,0.0,29.1875 +6.5840000000000005,29.1859,0.0,29.1859 +6.5920000000000005,29.1842,0.0,29.1842 +6.6000000000000005,29.1826,0.0,29.1826 +6.6080000000000005,29.181,0.0,29.181 +6.6160000000000005,29.1794,0.0,29.1794 +6.6240000000000006,29.1778,0.0,29.1778 +6.632000000000001,29.1761,0.0,29.1761 +6.640000000000001,29.1745,0.0,29.1745 +6.648000000000001,29.1729,0.0,29.1729 +6.656000000000001,29.1712,0.0,29.1712 +6.664,29.1696,0.0,29.1696 +6.672,29.168,0.0,29.168 +6.68,29.1663,0.0,29.1663 +6.688,29.1647,0.0,29.1647 +6.696,29.1631,0.0,29.1631 +6.704,29.1614,0.0,29.1614 +6.712,29.1598,0.0,29.1598 +6.72,29.1581,0.0,29.1581 +6.728,29.1565,0.0,29.1565 +6.736,29.1549,0.0,29.1549 +6.744,29.1532,0.0,29.1532 +6.752,29.1516,0.0,29.1516 +6.76,29.1499,0.0,29.1499 +6.768,29.1483,0.0,29.1483 +6.776,29.1466,0.0,29.1466 +6.784,29.145,0.0,29.145 +6.792,29.1433,0.0,29.1433 +6.8,29.1416,0.0,29.1416 +6.808,29.14,0.0,29.14 +6.816,29.1383,0.0,29.1383 +6.824,29.1367,0.0,29.1367 +6.832,29.135,0.0,29.135 +6.84,29.1333,0.0,29.1333 +6.848,29.1317,0.0,29.1317 +6.856,29.13,0.0,29.13 +6.864,29.1283,0.0,29.1283 +6.872,29.1267,0.0,29.1267 +6.88,29.125,0.0,29.125 +6.888,29.1233,0.0,29.1233 +6.896,29.1217,0.0,29.1217 +6.904,29.12,0.0,29.12 +6.912,29.1183,0.0,29.1183 +6.92,29.1166,0.0,29.1166 +6.928,29.1149,0.0,29.1149 +6.936,29.1133,0.0,29.1133 +6.944,29.1116,0.0,29.1116 +6.952,29.1099,0.0,29.1099 +6.96,29.1082,0.0,29.1082 +6.968,29.1065,0.0,29.1065 +6.976,29.1048,0.0,29.1048 +6.984,29.1031,0.0,29.1031 +6.992,29.1014,0.0,29.1014 +7.0,29.0998,0.0,29.0998 +7.008,29.0981,0.0,29.0981 +7.016,29.0964,0.0,29.0964 +7.024,29.0947,0.0,29.0947 +7.032,29.093,0.0,29.093 +7.04,29.0913,0.0,29.0913 +7.048,29.0896,0.0,29.0896 +7.056,29.0879,0.0,29.0879 +7.064,29.0862,0.0,29.0862 +7.072,29.0845,0.0,29.0845 +7.08,29.0827,0.0,29.0827 +7.088,29.081,0.0,29.081 +7.096,29.0793,0.0,29.0793 +7.104,29.0776,0.0,29.0776 +7.112,29.0759,0.0,29.0759 +7.12,29.0742,0.0,29.0742 +7.128,29.0725,0.0,29.0725 +7.136,29.0708,0.0,29.0708 +7.144,29.069,0.0,29.069 +7.152,29.0673,0.0,29.0673 +7.16,29.0656,0.0,29.0656 +7.168,29.0639,0.0,29.0639 +7.176,29.0621,0.0,29.0621 +7.184,29.0604,0.0,29.0604 +7.192,29.0587,0.0,29.0587 +7.2,29.057,0.0,29.057 +7.208,29.0552,0.0,29.0552 +7.216,29.0535,0.0,29.0535 +7.224,29.0518,0.0,29.0518 +7.232,29.05,0.0,29.05 +7.24,29.0483,0.0,29.0483 +7.248,29.0465,0.0,29.0465 +7.256,29.0448,0.0,29.0448 +7.264,29.0431,0.0,29.0431 +7.272,29.0413,0.0,29.0413 +7.28,29.0396,0.0,29.0396 +7.288,29.0378,0.0,29.0378 +7.296,29.0361,0.0,29.0361 +7.304,29.0343,0.0,29.0343 +7.312,29.0326,0.0,29.0326 +7.32,29.0308,0.0,29.0308 +7.328,29.0291,0.0,29.0291 +7.336,29.0273,0.0,29.0273 +7.344,29.0256,0.0,29.0256 +7.352,29.0238,0.0,29.0238 +7.36,29.0221,0.0,29.0221 +7.368,29.0203,0.0,29.0203 +7.376,29.0185,0.0,29.0185 +7.384,29.0168,0.0,29.0168 +7.392,29.015,0.0,29.015 +7.4,29.0132,0.0,29.0132 +7.408,29.0115,0.0,29.0115 +7.416,29.0097,0.0,29.0097 +7.424,29.0079,0.0,29.0079 +7.432,29.0062,0.0,29.0062 +7.44,29.0044,0.0,29.0044 +7.448,29.0026,0.0,29.0026 +7.456,29.0008,0.0,29.0008 +7.464,28.9991,0.0,28.9991 +7.472,28.9973,0.0,28.9973 +7.48,28.9955,0.0,28.9955 +7.488,28.9937,0.0,28.9937 +7.496,28.9919,0.0,28.9919 +7.5040000000000004,28.9903,0.0001,28.9902 +7.5120000000000005,28.9885,0.0001,28.9884 +7.5200000000000005,28.9867,0.0001,28.9866 +7.5280000000000005,28.9849,0.0001,28.9848 +7.5360000000000005,28.9831,0.0001,28.983 +7.5440000000000005,28.9813,0.0001,28.9812 +7.5520000000000005,28.979499999999998,0.0001,28.9794 +7.5600000000000005,28.9777,0.0001,28.9776 +7.5680000000000005,28.9759,0.0001,28.9758 +7.5760000000000005,28.9741,0.0001,28.974 +7.5840000000000005,28.9723,0.0001,28.9722 +7.5920000000000005,28.9705,0.0001,28.9704 +7.6000000000000005,28.9687,0.0001,28.9686 +7.6080000000000005,28.9669,0.0001,28.9668 +7.6160000000000005,28.9651,0.0001,28.965 +7.6240000000000006,28.9633,0.0001,28.9632 +7.632000000000001,28.9615,0.0001,28.9614 +7.640000000000001,28.959699999999998,0.0001,28.9596 +7.648000000000001,28.9579,0.0001,28.9578 +7.656000000000001,28.9561,0.0001,28.956 +7.664000000000001,28.9543,0.0001,28.9542 +7.672000000000001,28.9525,0.0001,28.9524 +7.68,28.9506,0.0001,28.9505 +7.688,28.9488,0.0001,28.9487 +7.696,28.947,0.0001,28.9469 +7.704,28.9452,0.0001,28.9451 +7.712,28.9434,0.0001,28.9433 +7.72,28.9415,0.0001,28.9414 +7.728,28.9397,0.0001,28.9396 +7.736,28.9379,0.0001,28.9378 +7.744,28.9361,0.0001,28.936 +7.752,28.9342,0.0001,28.9341 +7.76,28.9324,0.0001,28.9323 +7.768,28.9306,0.0001,28.9305 +7.776,28.9287,0.0001,28.9286 +7.784,28.9269,0.0001,28.9268 +7.792,28.9251,0.0001,28.925 +7.8,28.9232,0.0001,28.9231 +7.808,28.9214,0.0001,28.9213 +7.816,28.9196,0.0001,28.9195 +7.824,28.9177,0.0001,28.9176 +7.832,28.9159,0.0001,28.9158 +7.84,28.914,0.0001,28.9139 +7.848,28.9122,0.0001,28.9121 +7.856,28.9103,0.0001,28.9102 +7.864,28.9085,0.0001,28.9084 +7.872,28.9066,0.0001,28.9065 +7.88,28.904799999999998,0.0001,28.9047 +7.888,28.9029,0.0001,28.9028 +7.896,28.9011,0.0001,28.901 +7.904,28.8992,0.0001,28.8991 +7.912,28.8974,0.0001,28.8973 +7.92,28.8955,0.0001,28.8954 +7.928,28.8936,0.0001,28.8935 +7.936,28.8918,0.0001,28.8917 +7.944,28.8899,0.0001,28.8898 +7.952,28.8881,0.0001,28.888 +7.96,28.8862,0.0001,28.8861 +7.968,28.8843,0.0001,28.8842 +7.976,28.8825,0.0001,28.8824 +7.984,28.8807,0.0002,28.8805 +7.992,28.8788,0.0002,28.8786 +8.0,28.8769,0.0002,28.8767 +8.008000000000001,28.8751,0.0002,28.8749 +8.016,28.8732,0.0002,28.873 +8.024000000000001,28.871299999999998,0.0002,28.8711 +8.032,28.8694,0.0002,28.8692 +8.040000000000001,28.8675,0.0002,28.8673 +8.048,28.8657,0.0002,28.8655 +8.056000000000001,28.8638,0.0002,28.8636 +8.064,28.8619,0.0002,28.8617 +8.072000000000001,28.86,0.0002,28.8598 +8.08,28.8581,0.0002,28.8579 +8.088000000000001,28.8562,0.0002,28.856 +8.096,28.8543,0.0002,28.8541 +8.104000000000001,28.8525,0.0002,28.8523 +8.112,28.8506,0.0002,28.8504 +8.120000000000001,28.8487,0.0002,28.8485 +8.128,28.846799999999998,0.0002,28.8466 +8.136000000000001,28.8449,0.0002,28.8447 +8.144,28.843,0.0002,28.8428 +8.152000000000001,28.8411,0.0002,28.8409 +8.16,28.839199999999998,0.0002,28.839 +8.168000000000001,28.8373,0.0002,28.8371 +8.176,28.8354,0.0002,28.8352 +8.184000000000001,28.8335,0.0002,28.8333 +8.192,28.831599999999998,0.0002,28.8314 +8.2,28.8296,0.0002,28.8294 +8.208,28.8278,0.0003,28.8275 +8.216,28.8259,0.0003,28.8256 +8.224,28.823999999999998,0.0003,28.8237 +8.232,28.8221,0.0003,28.8218 +8.24,28.8202,0.0003,28.8199 +8.248,28.8183,0.0003,28.818 +8.256,28.816399999999998,0.0003,28.8161 +8.264,28.8144,0.0003,28.8141 +8.272,28.8125,0.0003,28.8122 +8.28,28.8106,0.0003,28.8103 +8.288,28.808699999999998,0.0003,28.8084 +8.296,28.8067,0.0003,28.8064 +8.304,28.8048,0.0003,28.8045 +8.312,28.8029,0.0003,28.8026 +8.32,28.801,0.0003,28.8007 +8.328,28.799,0.0003,28.7987 +8.336,28.7971,0.0003,28.7968 +8.344,28.795199999999998,0.0003,28.7949 +8.352,28.7932,0.0003,28.7929 +8.36,28.7913,0.0003,28.791 +8.368,28.7894,0.0004,28.789 +8.376,28.787499999999998,0.0004,28.7871 +8.384,28.7856,0.0004,28.7852 +8.392,28.7836,0.0004,28.7832 +8.4,28.7817,0.0004,28.7813 +8.408,28.7797,0.0004,28.7793 +8.416,28.7778,0.0004,28.7774 +8.424,28.7758,0.0004,28.7754 +8.432,28.773899999999998,0.0004,28.7735 +8.44,28.7719,0.0004,28.7715 +8.448,28.77,0.0004,28.7696 +8.456,28.768,0.0004,28.7676 +8.464,28.766099999999998,0.0004,28.7657 +8.472,28.7641,0.0004,28.7637 +8.48,28.7622,0.0004,28.7618 +8.488,28.760299999999997,0.0005,28.7598 +8.496,28.7583,0.0005,28.7578 +8.504,28.7564,0.0005,28.7559 +8.512,28.7544,0.0005,28.7539 +8.52,28.752499999999998,0.0005,28.752 +8.528,28.7505,0.0005,28.75 +8.536,28.7485,0.0005,28.748 +8.544,28.746599999999997,0.0005,28.7461 +8.552,28.7446,0.0005,28.7441 +8.56,28.7426,0.0005,28.7421 +8.568,28.7406,0.0005,28.7401 +8.576,28.738799999999998,0.0006,28.7382 +8.584,28.7368,0.0006,28.7362 +8.592,28.7348,0.0006,28.7342 +8.6,28.732799999999997,0.0006,28.7322 +8.608,28.7308,0.0006,28.7302 +8.616,28.7289,0.0006,28.7283 +8.624,28.726899999999997,0.0006,28.7263 +8.632,28.724899999999998,0.0006,28.7243 +8.64,28.7229,0.0006,28.7223 +8.648,28.7209,0.0006,28.7203 +8.656,28.718999999999998,0.0007,28.7183 +8.664,28.717,0.0007,28.7163 +8.672,28.7151,0.0007,28.7144 +8.68,28.713099999999997,0.0007,28.7124 +8.688,28.7111,0.0007,28.7104 +8.696,28.7091,0.0007,28.7084 +8.704,28.707099999999997,0.0007,28.7064 +8.712,28.705099999999998,0.0007,28.7044 +8.72,28.7031,0.0007,28.7024 +8.728,28.7012,0.0008,28.7004 +8.736,28.6992,0.0008,28.6984 +8.744,28.697200000000002,0.0008,28.6964 +8.752,28.695200000000003,0.0008,28.6944 +8.76,28.6932,0.0008,28.6924 +8.768,28.691200000000002,0.0008,28.6904 +8.776,28.689100000000003,0.0008,28.6883 +8.784,28.6871,0.0008,28.6863 +8.792,28.685200000000002,0.0009,28.6843 +8.8,28.683200000000003,0.0009,28.6823 +8.808,28.6812,0.0009,28.6803 +8.816,28.6792,0.0009,28.6783 +8.824,28.677200000000003,0.0009,28.6763 +8.832,28.6751,0.0009,28.6742 +8.84,28.6731,0.0009,28.6722 +8.848,28.671200000000002,0.001,28.6702 +8.856,28.6692,0.001,28.6682 +8.864,28.6671,0.001,28.6661 +8.872,28.665100000000002,0.001,28.6641 +8.88,28.6631,0.001,28.6621 +8.888,28.6611,0.001,28.6601 +8.896,28.659100000000002,0.0011,28.658 +8.904,28.6571,0.0011,28.656 +8.912,28.6551,0.0011,28.654 +8.92,28.653000000000002,0.0011,28.6519 +8.928,28.651,0.0011,28.6499 +8.936,28.6491,0.0012,28.6479 +8.944,28.647000000000002,0.0012,28.6458 +8.952,28.645,0.0012,28.6438 +8.96,28.6429,0.0012,28.6417 +8.968,28.640900000000002,0.0012,28.6397 +8.976,28.6389,0.0012,28.6377 +8.984,28.6369,0.0013,28.6356 +8.992,28.634900000000002,0.0013,28.6336 +9.0,28.6328,0.0013,28.6315 +9.008000000000001,28.6308,0.0013,28.6295 +9.016,28.628800000000002,0.0014,28.6274 +9.024000000000001,28.6268,0.0014,28.6254 +9.032,28.6247,0.0014,28.6233 +9.040000000000001,28.622700000000002,0.0014,28.6213 +9.048,28.6206,0.0014,28.6192 +9.056000000000001,28.6186,0.0015,28.6171 +9.064,28.616600000000002,0.0015,28.6151 +9.072000000000001,28.6145,0.0015,28.613 +9.08,28.6125,0.0015,28.611 +9.088000000000001,28.6105,0.0016,28.6089 +9.096,28.6084,0.0016,28.6068 +9.104000000000001,28.6064,0.0016,28.6048 +9.112,28.6043,0.0016,28.6027 +9.120000000000001,28.6023,0.0017,28.6006 +9.128,28.6003,0.0017,28.5986 +9.136000000000001,28.5982,0.0017,28.5965 +9.144,28.5961,0.0017,28.5944 +9.152000000000001,28.5941,0.0018,28.5923 +9.16,28.5921,0.0018,28.5903 +9.168000000000001,28.59,0.0018,28.5882 +9.176,28.587899999999998,0.0018,28.5861 +9.184000000000001,28.5859,0.0019,28.584 +9.192,28.5838,0.0019,28.5819 +9.200000000000001,28.581799999999998,0.0019,28.5799 +9.208,28.5798,0.002,28.5778 +9.216000000000001,28.5777,0.002,28.5757 +9.224,28.575599999999998,0.002,28.5736 +9.232,28.5736,0.0021,28.5715 +9.24,28.5715,0.0021,28.5694 +9.248,28.569399999999998,0.0021,28.5673 +9.256,28.5674,0.0022,28.5652 +9.264,28.565299999999997,0.0022,28.5631 +9.272,28.563299999999998,0.0022,28.5611 +9.28,28.561300000000003,0.0023,28.559 +9.288,28.5592,0.0023,28.5569 +9.296,28.557100000000002,0.0023,28.5548 +9.304,28.555100000000003,0.0024,28.5527 +9.312,28.553,0.0024,28.5506 +9.32,28.550900000000002,0.0024,28.5485 +9.328,28.5488,0.0025,28.5463 +9.336,28.5467,0.0025,28.5442 +9.344,28.544700000000002,0.0026,28.5421 +9.352,28.5426,0.0026,28.54 +9.36,28.5405,0.0026,28.5379 +9.368,28.5385,0.0027,28.5358 +9.376,28.5364,0.0027,28.5337 +9.384,28.5344,0.0028,28.5316 +9.392,28.5323,0.0028,28.5295 +9.4,28.5301,0.0028,28.5273 +9.408,28.528100000000002,0.0029,28.5252 +9.416,28.526,0.0029,28.5231 +9.424,28.524,0.003,28.521 +9.432,28.5219,0.003,28.5189 +9.44,28.5198,0.0031,28.5167 +9.448,28.5177,0.0031,28.5146 +9.456,28.5156,0.0031,28.5125 +9.464,28.5136,0.0032,28.5104 +9.472,28.5114,0.0032,28.5082 +9.48,28.5094,0.0033,28.5061 +9.488,28.5073,0.0033,28.504 +9.496,28.5052,0.0034,28.5018 +9.504,28.5031,0.0034,28.4997 +9.512,28.501099999999997,0.0035,28.4976 +9.52,28.4989,0.0035,28.4954 +9.528,28.4969,0.0036,28.4933 +9.536,28.494799999999998,0.0037,28.4911 +9.544,28.4927,0.0037,28.489 +9.552,28.490699999999997,0.0038,28.4869 +9.56,28.4885,0.0038,28.4847 +9.568,28.486500000000003,0.0039,28.4826 +9.576,28.4843,0.0039,28.4804 +9.584,28.482300000000002,0.004,28.4783 +9.592,28.4802,0.0041,28.4761 +9.6,28.4781,0.0041,28.474 +9.608,28.476000000000003,0.0042,28.4718 +9.616,28.4739,0.0042,28.4697 +9.624,28.4718,0.0043,28.4675 +9.632,28.4698,0.0044,28.4654 +9.64,28.4676,0.0044,28.4632 +9.648,28.4655,0.0045,28.461 +9.656,28.4635,0.0046,28.4589 +9.664,28.4613,0.0046,28.4567 +9.672,28.4593,0.0047,28.4546 +9.68,28.4572,0.0048,28.4524 +9.688,28.455,0.0048,28.4502 +9.696,28.453,0.0049,28.4481 +9.704,28.4509,0.005,28.4459 +9.712,28.4487,0.005,28.4437 +9.72,28.4466,0.0051,28.4415 +9.728,28.444599999999998,0.0052,28.4394 +9.736,28.4425,0.0053,28.4372 +9.744,28.440299999999997,0.0053,28.435 +9.752,28.438200000000002,0.0054,28.4328 +9.76,28.436200000000003,0.0055,28.4307 +9.768,28.4341,0.0056,28.4285 +9.776,28.432000000000002,0.0057,28.4263 +9.784,28.4298,0.0057,28.4241 +9.792,28.4277,0.0058,28.4219 +9.8,28.4257,0.0059,28.4198 +9.808,28.4236,0.006,28.4176 +9.816,28.4215,0.0061,28.4154 +9.824,28.4194,0.0062,28.4132 +9.832,28.4172,0.0062,28.411 +9.84,28.4151,0.0063,28.4088 +9.848,28.413,0.0064,28.4066 +9.856,28.410899999999998,0.0065,28.4044 +9.864,28.4088,0.0066,28.4022 +9.872,28.406699999999997,0.0067,28.4 +9.88,28.4046,0.0068,28.3978 +9.888,28.402500000000003,0.0069,28.3956 +9.896,28.4004,0.007,28.3934 +9.904,28.398300000000003,0.0071,28.3912 +9.912,28.3962,0.0072,28.389 +9.92,28.3941,0.0073,28.3868 +9.928,28.392,0.0074,28.3846 +9.936,28.3899,0.0075,28.3824 +9.944,28.3878,0.0076,28.3802 +9.952,28.3857,0.0077,28.378 +9.96,28.3836,0.0078,28.3758 +9.968,28.3815,0.0079,28.3736 +9.976,28.3793,0.008,28.3713 +9.984,28.3772,0.0081,28.3691 +9.992,28.3752,0.0083,28.3669 +10.0,28.3731,0.0084,28.3647 +10.008000000000001,28.371000000000002,0.0085,28.3625 +10.016,28.3689,0.0086,28.3603 +10.024000000000001,28.3667,0.0087,28.358 +10.032,28.3647,0.0089,28.3558 +10.040000000000001,28.3626,0.009,28.3536 +10.048,28.360500000000002,0.0091,28.3514 +10.056000000000001,28.3583,0.0092,28.3491 +10.064,28.3563,0.0094,28.3469 +10.072000000000001,28.3542,0.0095,28.3447 +10.08,28.352,0.0096,28.3424 +10.088000000000001,28.349899999999998,0.0097,28.3402 +10.096,28.3479,0.0099,28.338 +10.104000000000001,28.3457,0.01,28.3357 +10.112,28.343600000000002,0.0101,28.3335 +10.120000000000001,28.3416,0.0103,28.3313 +10.128,28.3394,0.0104,28.329 +10.136000000000001,28.3374,0.0106,28.3268 +10.144,28.3352,0.0107,28.3245 +10.152000000000001,28.333199999999998,0.0109,28.3223 +10.16,28.331,0.011,28.32 +10.168000000000001,28.328999999999997,0.0112,28.3178 +10.176,28.3268,0.0113,28.3155 +10.184000000000001,28.324800000000003,0.0115,28.3133 +10.192,28.3226,0.0116,28.311 +10.200000000000001,28.320600000000002,0.0118,28.3088 +10.208,28.3184,0.0119,28.3065 +10.216000000000001,28.3164,0.0121,28.3043 +10.224,28.3143,0.0123,28.302 +10.232000000000001,28.3122,0.0124,28.2998 +10.24,28.3101,0.0126,28.2975 +10.248,28.3081,0.0128,28.2953 +10.256,28.305899999999998,0.0129,28.293 +10.264,28.303800000000003,0.0131,28.2907 +10.272,28.3018,0.0133,28.2885 +10.28,28.2997,0.0135,28.2862 +10.288,28.2975,0.0136,28.2839 +10.296,28.2955,0.0138,28.2817 +10.304,28.2934,0.014,28.2794 +10.312,28.2913,0.0142,28.2771 +10.32,28.289299999999997,0.0144,28.2749 +10.328,28.287200000000002,0.0146,28.2726 +10.336,28.2851,0.0148,28.2703 +10.344,28.2829,0.0149,28.268 +10.352,28.2809,0.0151,28.2658 +10.36,28.2788,0.0153,28.2635 +10.368,28.276699999999998,0.0155,28.2612 +10.376,28.2746,0.0157,28.2589 +10.384,28.272599999999997,0.016,28.2566 +10.392,28.2706,0.0162,28.2544 +10.4,28.2685,0.0164,28.2521 +10.408,28.2664,0.0166,28.2498 +10.416,28.2643,0.0168,28.2475 +10.424,28.2622,0.017,28.2452 +10.432,28.260099999999998,0.0172,28.2429 +10.44,28.2581,0.0175,28.2406 +10.448,28.256,0.0177,28.2383 +10.456,28.2539,0.0179,28.236 +10.464,28.2519,0.0182,28.2337 +10.472,28.2498,0.0184,28.2314 +10.48,28.2477,0.0186,28.2291 +10.488,28.2457,0.0189,28.2268 +10.496,28.2436,0.0191,28.2245 +10.504,28.241600000000002,0.0194,28.2222 +10.512,28.2395,0.0196,28.2199 +10.52,28.2375,0.0199,28.2176 +10.528,28.2354,0.0201,28.2153 +10.536,28.2334,0.0204,28.213 +10.544,28.2313,0.0206,28.2107 +10.552,28.229300000000002,0.0209,28.2084 +10.56,28.2273,0.0212,28.2061 +10.568,28.2252,0.0214,28.2038 +10.576,28.2232,0.0217,28.2015 +10.584,28.2211,0.022,28.1991 +10.592,28.2191,0.0223,28.1968 +10.6,28.217000000000002,0.0225,28.1945 +10.608,28.215,0.0228,28.1922 +10.616,28.213,0.0231,28.1899 +10.624,28.2109,0.0234,28.1875 +10.632,28.2089,0.0237,28.1852 +10.64,28.2069,0.024,28.1829 +10.648,28.2049,0.0243,28.1806 +10.656,28.2028,0.0246,28.1782 +10.664,28.200799999999997,0.0249,28.1759 +10.672,28.198800000000002,0.0252,28.1736 +10.68,28.1968,0.0255,28.1713 +10.688,28.1947,0.0258,28.1689 +10.696,28.1928,0.0262,28.1666 +10.704,28.1908,0.0265,28.1643 +10.712,28.1887,0.0268,28.1619 +10.72,28.1868,0.0272,28.1596 +10.728,28.1847,0.0275,28.1572 +10.736,28.1827,0.0278,28.1549 +10.744,28.180799999999998,0.0282,28.1526 +10.752,28.178700000000003,0.0285,28.1502 +10.76,28.1768,0.0289,28.1479 +10.768,28.174699999999998,0.0292,28.1455 +10.776,28.1728,0.0296,28.1432 +10.784,28.1708,0.03,28.1408 +10.792,28.1688,0.0303,28.1385 +10.8,28.1668,0.0307,28.1361 +10.808,28.1649,0.0311,28.1338 +10.816,28.1628,0.0314,28.1314 +10.824,28.1609,0.0318,28.1291 +10.832,28.1589,0.0322,28.1267 +10.84,28.157,0.0326,28.1244 +10.848,28.155,0.033,28.122 +10.856,28.153,0.0334,28.1196 +10.864,28.1511,0.0338,28.1173 +10.872,28.149099999999997,0.0342,28.1149 +10.88,28.1472,0.0346,28.1126 +10.888,28.1452,0.035,28.1102 +10.896,28.1433,0.0355,28.1078 +10.904,28.1414,0.0359,28.1055 +10.912,28.139400000000002,0.0363,28.1031 +10.92,28.1375,0.0368,28.1007 +10.928,28.135499999999997,0.0372,28.0983 +10.936,28.1336,0.0376,28.096 +10.944,28.1317,0.0381,28.0936 +10.952,28.1297,0.0385,28.0912 +10.96,28.1278,0.039,28.0888 +10.968,28.126,0.0395,28.0865 +10.976,28.124,0.0399,28.0841 +10.984,28.122100000000003,0.0404,28.0817 +10.992,28.1202,0.0409,28.0793 +11.0,28.118299999999998,0.0414,28.0769 +11.008000000000001,28.1164,0.0418,28.0746 +11.016,28.1145,0.0423,28.0722 +11.024000000000001,28.1126,0.0428,28.0698 +11.032,28.110699999999998,0.0433,28.0674 +11.040000000000001,28.108800000000002,0.0438,28.065 +11.048,28.107,0.0444,28.0626 +11.056000000000001,28.105099999999997,0.0449,28.0602 +11.064,28.1032,0.0454,28.0578 +11.072000000000001,28.1013,0.0459,28.0554 +11.08,28.099500000000003,0.0465,28.053 +11.088000000000001,28.0976,0.047,28.0506 +11.096,28.0957,0.0475,28.0482 +11.104000000000001,28.0939,0.0481,28.0458 +11.112,28.0921,0.0487,28.0434 +11.120000000000001,28.0902,0.0492,28.041 +11.128,28.0884,0.0498,28.0386 +11.136000000000001,28.0866,0.0504,28.0362 +11.144,28.084699999999998,0.0509,28.0338 +11.152000000000001,28.082900000000002,0.0515,28.0314 +11.16,28.0811,0.0521,28.029 +11.168000000000001,28.0793,0.0527,28.0266 +11.176,28.0775,0.0533,28.0242 +11.184000000000001,28.075699999999998,0.0539,28.0218 +11.192,28.073900000000002,0.0545,28.0194 +11.200000000000001,28.072,0.0551,28.0169 +11.208,28.070300000000003,0.0558,28.0145 +11.216000000000001,28.0685,0.0564,28.0121 +11.224,28.066699999999997,0.057,28.0097 +11.232000000000001,28.065,0.0577,28.0073 +11.24,28.0631,0.0583,28.0048 +11.248000000000001,28.061400000000003,0.059,28.0024 +11.256,28.0597,0.0597,28.0 +11.264,28.0579,0.0603,27.9976 +11.272,28.0561,0.061,27.9951 +11.28,28.054399999999998,0.0617,27.9927 +11.288,28.0527,0.0624,27.9903 +11.296,28.051,0.0631,27.9879 +11.304,28.0492,0.0638,27.9854 +11.312,28.0475,0.0645,27.983 +11.32,28.0458,0.0652,27.9806 +11.328,28.044,0.0659,27.9781 +11.336,28.0424,0.0667,27.9757 +11.344,28.040599999999998,0.0674,27.9732 +11.352,28.0389,0.0681,27.9708 +11.36,28.0373,0.0689,27.9684 +11.368,28.035600000000002,0.0697,27.9659 +11.376,28.0339,0.0704,27.9635 +11.384,28.0322,0.0712,27.961 +11.392,28.0306,0.072,27.9586 +11.4,28.0289,0.0728,27.9561 +11.408,28.0273,0.0736,27.9537 +11.416,28.0256,0.0744,27.9512 +11.424,28.023999999999997,0.0752,27.9488 +11.432,28.0223,0.076,27.9463 +11.44,28.020699999999998,0.0768,27.9439 +11.448,28.019000000000002,0.0776,27.9414 +11.456,28.0175,0.0785,27.939 +11.464,28.0158,0.0793,27.9365 +11.472,28.014200000000002,0.0802,27.934 +11.48,28.0127,0.0811,27.9316 +11.488,28.011,0.0819,27.9291 +11.496,28.0095,0.0828,27.9267 +11.504,28.0079,0.0837,27.9242 +11.512,28.0063,0.0846,27.9217 +11.52,28.0048,0.0855,27.9193 +11.528,28.0032,0.0864,27.9168 +11.536,28.0016,0.0873,27.9143 +11.544,28.0002,0.0883,27.9119 +11.552,27.998600000000003,0.0892,27.9094 +11.56,27.997,0.0901,27.9069 +11.568,27.9955,0.0911,27.9044 +11.576,27.994,0.092,27.902 +11.584,27.9925,0.093,27.8995 +11.592,27.991,0.094,27.897 +11.6,27.9895,0.095,27.8945 +11.608,27.988,0.096,27.892 +11.616,27.986600000000003,0.097,27.8896 +11.624,27.9851,0.098,27.8871 +11.632,27.9836,0.099,27.8846 +11.64,27.982200000000002,0.1001,27.8821 +11.648,27.9807,0.1011,27.8796 +11.656,27.9793,0.1022,27.8771 +11.664,27.9779,0.1032,27.8747 +11.672,27.976499999999998,0.1043,27.8722 +11.68,27.9751,0.1054,27.8697 +11.688,27.9736,0.1064,27.8672 +11.696,27.9722,0.1075,27.8647 +11.704,27.9708,0.1086,27.8622 +11.712,27.9695,0.1098,27.8597 +11.72,27.9681,0.1109,27.8572 +11.728,27.9667,0.112,27.8547 +11.736,27.9654,0.1132,27.8522 +11.744,27.964,0.1143,27.8497 +11.752,27.9627,0.1155,27.8472 +11.76,27.9614,0.1167,27.8447 +11.768,27.959999999999997,0.1178,27.8422 +11.776,27.9587,0.119,27.8397 +11.784,27.9574,0.1202,27.8372 +11.792,27.9561,0.1215,27.8346 +11.8,27.9548,0.1227,27.8321 +11.808,27.9535,0.1239,27.8296 +11.816,27.9523,0.1252,27.8271 +11.824,27.951,0.1264,27.8246 +11.832,27.9498,0.1277,27.8221 +11.84,27.948600000000003,0.129,27.8196 +11.848,27.9472,0.1302,27.817 +11.856,27.945999999999998,0.1315,27.8145 +11.864,27.9448,0.1328,27.812 +11.872,27.9437,0.1342,27.8095 +11.88,27.9425,0.1355,27.807 +11.888,27.941200000000002,0.1368,27.8044 +11.896,27.9401,0.1382,27.8019 +11.904,27.9389,0.1395,27.7994 +11.912,27.9378,0.1409,27.7969 +11.92,27.9366,0.1423,27.7943 +11.928,27.935499999999998,0.1437,27.7918 +11.936,27.9344,0.1451,27.7893 +11.944,27.9332,0.1465,27.7867 +11.952,27.932199999999998,0.148,27.7842 +11.96,27.9311,0.1494,27.7817 +11.968,27.9299,0.1508,27.7791 +11.976,27.9289,0.1523,27.7766 +11.984,27.9278,0.1538,27.774 +11.992,27.9268,0.1553,27.7715 +12.0,27.9258,0.1568,27.769 +12.008000000000001,27.9247,0.1583,27.7664 +12.016,27.9237,0.1598,27.7639 +12.024000000000001,27.9226,0.1613,27.7613 +12.032,27.9217,0.1629,27.7588 +12.040000000000001,27.9206,0.1644,27.7562 +12.048,27.9197,0.166,27.7537 +12.056000000000001,27.9187,0.1676,27.7511 +12.064,27.9178,0.1692,27.7486 +12.072000000000001,27.9168,0.1708,27.746 +12.08,27.9159,0.1724,27.7435 +12.088000000000001,27.9149,0.174,27.7409 +12.096,27.914099999999998,0.1757,27.7384 +12.104000000000001,27.9131,0.1773,27.7358 +12.112,27.9122,0.179,27.7332 +12.120000000000001,27.9114,0.1807,27.7307 +12.128,27.910500000000003,0.1824,27.7281 +12.136000000000001,27.9097,0.1841,27.7256 +12.144,27.9088,0.1858,27.723 +12.152000000000001,27.9079,0.1875,27.7204 +12.16,27.9072,0.1893,27.7179 +12.168000000000001,27.906299999999998,0.191,27.7153 +12.176,27.9055,0.1928,27.7127 +12.184000000000001,27.904700000000002,0.1946,27.7101 +12.192,27.904,0.1964,27.7076 +12.200000000000001,27.9032,0.1982,27.705 +12.208,27.9024,0.2,27.7024 +12.216000000000001,27.9016,0.2018,27.6998 +12.224,27.901,0.2037,27.6973 +12.232000000000001,27.9002,0.2055,27.6947 +12.24,27.8995,0.2074,27.6921 +12.248000000000001,27.898799999999998,0.2093,27.6895 +12.256,27.898200000000003,0.2112,27.687 +12.264000000000001,27.8975,0.2131,27.6844 +12.272,27.8969,0.2151,27.6818 +12.280000000000001,27.8962,0.217,27.6792 +12.288,27.8956,0.219,27.6766 +12.296,27.8949,0.2209,27.674 +12.304,27.894299999999998,0.2229,27.6714 +12.312,27.893700000000003,0.2249,27.6688 +12.32,27.8932,0.2269,27.6663 +12.328,27.892699999999998,0.229,27.6637 +12.336,27.892100000000003,0.231,27.6611 +12.344,27.8916,0.2331,27.6585 +12.352,27.891,0.2351,27.6559 +12.36,27.890500000000003,0.2372,27.6533 +12.368,27.89,0.2393,27.6507 +12.376,27.889499999999998,0.2414,27.6481 +12.384,27.889,0.2435,27.6455 +12.392,27.8886,0.2457,27.6429 +12.4,27.8881,0.2478,27.6403 +12.408,27.8877,0.25,27.6377 +12.416,27.8873,0.2522,27.6351 +12.424,27.8868,0.2544,27.6324 +12.432,27.8864,0.2566,27.6298 +12.44,27.886,0.2588,27.6272 +12.448,27.8857,0.2611,27.6246 +12.456,27.8853,0.2633,27.622 +12.464,27.884999999999998,0.2656,27.6194 +12.472,27.884700000000002,0.2679,27.6168 +12.48,27.8844,0.2702,27.6142 +12.488,27.884,0.2725,27.6115 +12.496,27.883799999999997,0.2749,27.6089 +12.504,27.8835,0.2772,27.6063 +12.512,27.8833,0.2796,27.6037 +12.52,27.8831,0.282,27.6011 +12.528,27.882800000000003,0.2844,27.5984 +12.536,27.8826,0.2868,27.5958 +12.544,27.8824,0.2892,27.5932 +12.552,27.882199999999997,0.2916,27.5906 +12.56,27.882,0.2941,27.5879 +12.568,27.8819,0.2966,27.5853 +12.576,27.8818,0.2991,27.5827 +12.584,27.8816,0.3016,27.58 +12.592,27.8815,0.3041,27.5774 +12.6,27.8814,0.3066,27.5748 +12.608,27.8813,0.3092,27.5721 +12.616,27.8812,0.3117,27.5695 +12.624,27.8812,0.3143,27.5669 +12.632,27.8811,0.3169,27.5642 +12.64,27.8811,0.3195,27.5616 +12.648,27.8811,0.3222,27.5589 +12.656,27.8811,0.3248,27.5563 +12.664,27.8812,0.3275,27.5537 +12.672,27.8812,0.3302,27.551 +12.68,27.8813,0.3329,27.5484 +12.688,27.8813,0.3356,27.5457 +12.696,27.8814,0.3383,27.5431 +12.704,27.881400000000003,0.341,27.5404 +12.712,27.881600000000002,0.3438,27.5378 +12.72,27.8817,0.3466,27.5351 +12.728,27.881899999999998,0.3494,27.5325 +12.736,27.882,0.3522,27.5298 +12.744,27.8821,0.355,27.5271 +12.752,27.8823,0.3578,27.5245 +12.76,27.8825,0.3607,27.5218 +12.768,27.882800000000003,0.3636,27.5192 +12.776,27.883,0.3665,27.5165 +12.784,27.8832,0.3694,27.5138 +12.792,27.883499999999998,0.3723,27.5112 +12.8,27.8837,0.3752,27.5085 +12.808,27.884,0.3782,27.5058 +12.816,27.8844,0.3812,27.5032 +12.824,27.8847,0.3842,27.5005 +12.832,27.885,0.3872,27.4978 +12.84,27.8854,0.3902,27.4952 +12.848,27.8857,0.3932,27.4925 +12.856,27.8861,0.3963,27.4898 +12.864,27.8866,0.3994,27.4872 +12.872,27.887,0.4025,27.4845 +12.88,27.8874,0.4056,27.4818 +12.888,27.8878,0.4087,27.4791 +12.896,27.8882,0.4118,27.4764 +12.904,27.8888,0.415,27.4738 +12.912,27.8893,0.4182,27.4711 +12.92,27.889799999999997,0.4214,27.4684 +12.928,27.8903,0.4246,27.4657 +12.936,27.890800000000002,0.4278,27.463 +12.944,27.8914,0.4311,27.4603 +12.952,27.892,0.4343,27.4577 +12.96,27.892599999999998,0.4376,27.455 +12.968,27.8932,0.4409,27.4523 +12.976,27.8938,0.4442,27.4496 +12.984,27.8944,0.4475,27.4469 +12.992,27.8951,0.4509,27.4442 +13.0,27.8958,0.4543,27.4415 +13.008000000000001,27.8964,0.4576,27.4388 +13.016,27.8971,0.461,27.4361 +13.024000000000001,27.8978,0.4644,27.4334 +13.032,27.898600000000002,0.4679,27.4307 +13.040000000000001,27.8993,0.4713,27.428 +13.048,27.9001,0.4748,27.4253 +13.056000000000001,27.9009,0.4783,27.4226 +13.064,27.901699999999998,0.4818,27.4199 +13.072000000000001,27.9025,0.4853,27.4172 +13.08,27.9033,0.4888,27.4145 +13.088000000000001,27.9042,0.4924,27.4118 +13.096,27.905099999999997,0.496,27.4091 +13.104000000000001,27.905900000000003,0.4995,27.4064 +13.112,27.9068,0.5031,27.4037 +13.120000000000001,27.9077,0.5068,27.4009 +13.128,27.9086,0.5104,27.3982 +13.136000000000001,27.909599999999998,0.5141,27.3955 +13.144,27.910500000000003,0.5177,27.3928 +13.152000000000001,27.9115,0.5214,27.3901 +13.16,27.912499999999998,0.5251,27.3874 +13.168000000000001,27.9135,0.5289,27.3846 +13.176,27.9145,0.5326,27.3819 +13.184000000000001,27.9156,0.5364,27.3792 +13.192,27.9166,0.5401,27.3765 +13.200000000000001,27.9176,0.5439,27.3737 +13.208,27.918699999999998,0.5477,27.371 +13.216000000000001,27.919900000000002,0.5516,27.3683 +13.224,27.921,0.5554,27.3656 +13.232000000000001,27.9221,0.5593,27.3628 +13.24,27.923199999999998,0.5631,27.3601 +13.248000000000001,27.9244,0.567,27.3574 +13.256,27.9255,0.5709,27.3546 +13.264000000000001,27.9268,0.5749,27.3519 +13.272,27.928,0.5788,27.3492 +13.280000000000001,27.929199999999998,0.5828,27.3464 +13.288,27.9304,0.5867,27.3437 +13.296000000000001,27.9317,0.5907,27.341 +13.304,27.933,0.5948,27.3382 +13.312000000000001,27.9343,0.5988,27.3355 +13.32,27.935499999999998,0.6028,27.3327 +13.328,27.936899999999998,0.6069,27.33 +13.336,27.9383,0.611,27.3273 +13.344,27.9396,0.6151,27.3245 +13.352,27.941,0.6192,27.3218 +13.36,27.9423,0.6233,27.319 +13.368,27.9437,0.6274,27.3163 +13.376,27.9451,0.6316,27.3135 +13.384,27.9466,0.6358,27.3108 +13.392,27.948,0.64,27.308 +13.4,27.9495,0.6442,27.3053 +13.408,27.950899999999997,0.6484,27.3025 +13.416,27.9524,0.6527,27.2997 +13.424,27.9539,0.6569,27.297 +13.432,27.9554,0.6612,27.2942 +13.44,27.957,0.6655,27.2915 +13.448,27.958499999999997,0.6698,27.2887 +13.456,27.96,0.6741,27.2859 +13.464,27.9616,0.6784,27.2832 +13.472,27.9632,0.6828,27.2804 +13.48,27.9648,0.6872,27.2776 +13.488,27.9665,0.6916,27.2749 +13.496,27.9681,0.696,27.2721 +13.504,27.9697,0.7004,27.2693 +13.512,27.9714,0.7048,27.2666 +13.52,27.9731,0.7093,27.2638 +13.528,27.9747,0.7137,27.261 +13.536,27.976499999999998,0.7182,27.2583 +13.544,27.9782,0.7227,27.2555 +13.552,27.9799,0.7272,27.2527 +13.56,27.9816,0.7317,27.2499 +13.568,27.9834,0.7363,27.2471 +13.576,27.9852,0.7408,27.2444 +13.584,27.987,0.7454,27.2416 +13.592,27.9888,0.75,27.2388 +13.6,27.9906,0.7546,27.236 +13.608,27.9924,0.7592,27.2332 +13.616,27.9943,0.7638,27.2305 +13.624,27.996199999999998,0.7685,27.2277 +13.632,27.998,0.7731,27.2249 +13.64,27.9999,0.7778,27.2221 +13.648,28.0018,0.7825,27.2193 +13.656,28.0037,0.7872,27.2165 +13.664,28.0056,0.7919,27.2137 +13.672,28.0076,0.7967,27.2109 +13.68,28.009500000000003,0.8014,27.2081 +13.688,28.0115,0.8062,27.2053 +13.696,28.0134,0.8109,27.2025 +13.704,28.0154,0.8157,27.1997 +13.712,28.0174,0.8205,27.1969 +13.72,28.019399999999997,0.8253,27.1941 +13.728,28.0215,0.8302,27.1913 +13.736,28.023500000000002,0.835,27.1885 +13.744,28.0256,0.8399,27.1857 +13.752,28.0276,0.8447,27.1829 +13.76,28.0297,0.8496,27.1801 +13.768,28.0318,0.8545,27.1773 +13.776,28.0339,0.8594,27.1745 +13.784,28.036,0.8643,27.1717 +13.792,28.0382,0.8693,27.1689 +13.8,28.0403,0.8742,27.1661 +13.808,28.0425,0.8792,27.1633 +13.816,28.0445,0.8841,27.1604 +13.824,28.046699999999998,0.8891,27.1576 +13.832,28.048900000000003,0.8941,27.1548 +13.84,28.0511,0.8991,27.152 +13.848,28.0534,0.9042,27.1492 +13.856,28.0555,0.9092,27.1463 +13.864,28.0577,0.9142,27.1435 +13.872,28.06,0.9193,27.1407 +13.88,28.062299999999997,0.9244,27.1379 +13.888,28.064500000000002,0.9294,27.1351 +13.896,28.0667,0.9345,27.1322 +13.904,28.069,0.9396,27.1294 +13.912,28.0713,0.9447,27.1266 +13.92,28.0736,0.9499,27.1237 +13.928,28.075899999999997,0.955,27.1209 +13.936,28.0782,0.9601,27.1181 +13.944,28.0806,0.9653,27.1153 +13.952,28.082900000000002,0.9705,27.1124 +13.96,28.0852,0.9756,27.1096 +13.968,28.0875,0.9808,27.1067 +13.976,28.0899,0.986,27.1039 +13.984,28.092299999999998,0.9912,27.1011 +13.992,28.0946,0.9964,27.0982 +14.0,28.0971,1.0017,27.0954 +14.008000000000001,28.099400000000003,1.0069,27.0925 +14.016,28.1018,1.0121,27.0897 +14.024000000000001,28.1043,1.0174,27.0869 +14.032,28.1066,1.0226,27.084 +14.040000000000001,28.109099999999998,1.0279,27.0812 +14.048,28.1115,1.0332,27.0783 +14.056000000000001,28.114,1.0385,27.0755 +14.064,28.116400000000002,1.0438,27.0726 +14.072000000000001,28.1189,1.0491,27.0698 +14.08,28.1213,1.0544,27.0669 +14.088000000000001,28.1238,1.0597,27.0641 +14.096,28.1263,1.0651,27.0612 +14.104000000000001,28.1288,1.0704,27.0584 +14.112,28.1312,1.0757,27.0555 +14.120000000000001,28.1337,1.0811,27.0526 +14.128,28.136300000000002,1.0865,27.0498 +14.136000000000001,28.1387,1.0918,27.0469 +14.144,28.1413,1.0972,27.0441 +14.152000000000001,28.1438,1.1026,27.0412 +14.16,28.1463,1.108,27.0383 +14.168000000000001,28.148899999999998,1.1134,27.0355 +14.176,28.1514,1.1188,27.0326 +14.184000000000001,28.1539,1.1242,27.0297 +14.192,28.1565,1.1296,27.0269 +14.200000000000001,28.159000000000002,1.135,27.024 +14.208,28.1615,1.1404,27.0211 +14.216000000000001,28.1641,1.1458,27.0183 +14.224,28.1667,1.1513,27.0154 +14.232000000000001,28.1692,1.1567,27.0125 +14.24,28.171799999999998,1.1622,27.0096 +14.248000000000001,28.1744,1.1676,27.0068 +14.256,28.177000000000003,1.1731,27.0039 +14.264000000000001,28.1795,1.1785,27.001 +14.272,28.182100000000002,1.184,26.9981 +14.280000000000001,28.1847,1.1895,26.9952 +14.288,28.1873,1.1949,26.9924 +14.296000000000001,28.189899999999998,1.2004,26.9895 +14.304,28.1925,1.2059,26.9866 +14.312000000000001,28.1951,1.2114,26.9837 +14.32,28.197599999999998,1.2168,26.9808 +14.328000000000001,28.200200000000002,1.2223,26.9779 +14.336,28.2029,1.2278,26.9751 +14.344,28.2055,1.2333,26.9722 +14.352,28.2081,1.2388,26.9693 +14.36,28.2107,1.2443,26.9664 +14.368,28.2133,1.2498,26.9635 +14.376,28.215899999999998,1.2553,26.9606 +14.384,28.2185,1.2608,26.9577 +14.392,28.2211,1.2663,26.9548 +14.4,28.223699999999997,1.2718,26.9519 +14.408,28.226300000000002,1.2773,26.949 +14.416,28.228900000000003,1.2828,26.9461 +14.424,28.2315,1.2883,26.9432 +14.432,28.2342,1.2939,26.9403 +14.44,28.2368,1.2994,26.9374 +14.448,28.2394,1.3049,26.9345 +14.456,28.242,1.3104,26.9316 +14.464,28.2446,1.3159,26.9287 +14.472,28.2472,1.3214,26.9258 +14.48,28.249799999999997,1.3269,26.9229 +14.488,28.2524,1.3324,26.92 +14.496,28.255000000000003,1.3379,26.9171 +14.504,28.2575,1.3434,26.9141 +14.512,28.2601,1.3489,26.9112 +14.52,28.262700000000002,1.3544,26.9083 +14.528,28.2653,1.3599,26.9054 +14.536,28.2679,1.3654,26.9025 +14.544,28.2705,1.3709,26.8996 +14.552,28.273,1.3764,26.8966 +14.56,28.275599999999997,1.3819,26.8937 +14.568,28.2782,1.3874,26.8908 +14.576,28.2808,1.3929,26.8879 +14.584,28.2834,1.3984,26.885 +14.592,28.285800000000002,1.4038,26.882 +14.6,28.288400000000003,1.4093,26.8791 +14.608,28.291,1.4148,26.8762 +14.616,28.2935,1.4202,26.8733 +14.624,28.296,1.4257,26.8703 +14.632,28.2986,1.4312,26.8674 +14.64,28.301099999999998,1.4366,26.8645 +14.648,28.3035,1.442,26.8615 +14.656,28.3061,1.4475,26.8586 +14.664,28.3086,1.4529,26.8557 +14.672,28.311,1.4583,26.8527 +14.68,28.313599999999997,1.4638,26.8498 +14.688,28.316100000000002,1.4692,26.8469 +14.696,28.3185,1.4746,26.8439 +14.704,28.321,1.48,26.841 +14.712,28.3234,1.4854,26.838 +14.72,28.3259,1.4908,26.8351 +14.728,28.328400000000002,1.4962,26.8322 +14.736,28.3307,1.5015,26.8292 +14.744,28.333199999999998,1.5069,26.8263 +14.752,28.3356,1.5123,26.8233 +14.76,28.338,1.5176,26.8204 +14.768,28.3404,1.523,26.8174 +14.776,28.3428,1.5283,26.8145 +14.784,28.3451,1.5336,26.8115 +14.792,28.347499999999997,1.5389,26.8086 +14.8,28.3498,1.5442,26.8056 +14.808,28.352200000000003,1.5495,26.8027 +14.816,28.3545,1.5548,26.7997 +14.824,28.3569,1.5601,26.7968 +14.832,28.3592,1.5654,26.7938 +14.84,28.3614,1.5706,26.7908 +14.848,28.3638,1.5759,26.7879 +14.856,28.366,1.5811,26.7849 +14.864,28.3683,1.5863,26.782 +14.872,28.3705,1.5915,26.779 +14.88,28.3727,1.5967,26.776 +14.888,28.375,1.6019,26.7731 +14.896,28.3772,1.6071,26.7701 +14.904,28.3793,1.6122,26.7671 +14.912,28.3816,1.6174,26.7642 +14.92,28.383699999999997,1.6225,26.7612 +14.928,28.3859,1.6277,26.7582 +14.936,28.388099999999998,1.6328,26.7553 +14.944,28.3902,1.6379,26.7523 +14.952,28.392300000000002,1.643,26.7493 +14.96,28.3943,1.648,26.7463 +14.968,28.3965,1.6531,26.7434 +14.976,28.398500000000002,1.6581,26.7404 +14.984,28.4005,1.6631,26.7374 +14.992,28.4026,1.6682,26.7344 +15.0,28.404700000000002,1.6732,26.7315 +15.008000000000001,28.4066,1.6781,26.7285 +15.016,28.4086,1.6831,26.7255 +15.024000000000001,28.4106,1.6881,26.7225 +15.032,28.4125,1.693,26.7195 +15.040000000000001,28.4144,1.6979,26.7165 +15.048,28.4164,1.7028,26.7136 +15.056000000000001,28.4183,1.7077,26.7106 +15.064,28.420199999999998,1.7126,26.7076 +15.072000000000001,28.422,1.7174,26.7046 +15.08,28.4238,1.7222,26.7016 +15.088000000000001,28.4257,1.7271,26.6986 +15.096,28.4275,1.7319,26.6956 +15.104000000000001,28.429199999999998,1.7366,26.6926 +15.112,28.430999999999997,1.7414,26.6896 +15.120000000000001,28.432699999999997,1.7461,26.6866 +15.128,28.4345,1.7509,26.6836 +15.136000000000001,28.4362,1.7556,26.6806 +15.144,28.437900000000003,1.7603,26.6776 +15.152000000000001,28.439500000000002,1.7649,26.6746 +15.16,28.441200000000002,1.7696,26.6716 +15.168000000000001,28.442800000000002,1.7742,26.6686 +15.176,28.4444,1.7788,26.6656 +15.184000000000001,28.446,1.7834,26.6626 +15.192,28.4476,1.788,26.6596 +15.200000000000001,28.4491,1.7925,26.6566 +15.208,28.4506,1.797,26.6536 +15.216000000000001,28.4521,1.8015,26.6506 +15.224,28.4536,1.806,26.6476 +15.232000000000001,28.4551,1.8105,26.6446 +15.24,28.456500000000002,1.8149,26.6416 +15.248000000000001,28.4579,1.8193,26.6386 +15.256,28.4592,1.8237,26.6355 +15.264000000000001,28.4606,1.8281,26.6325 +15.272,28.462,1.8325,26.6295 +15.280000000000001,28.4633,1.8368,26.6265 +15.288,28.4646,1.8411,26.6235 +15.296000000000001,28.4658,1.8454,26.6204 +15.304,28.467,1.8496,26.6174 +15.312000000000001,28.4683,1.8539,26.6144 +15.32,28.4695,1.8581,26.6114 +15.328000000000001,28.4706,1.8622,26.6084 +15.336,28.4717,1.8664,26.6053 +15.344000000000001,28.4728,1.8705,26.6023 +15.352,28.474,1.8747,26.5993 +15.36,28.474999999999998,1.8787,26.5963 +15.368,28.476,1.8828,26.5932 +15.376,28.477,1.8868,26.5902 +15.384,28.477999999999998,1.8908,26.5872 +15.392,28.4789,1.8948,26.5841 +15.4,28.4799,1.8988,26.5811 +15.408,28.4808,1.9027,26.5781 +15.416,28.4816,1.9066,26.575 +15.424,28.482499999999998,1.9105,26.572 +15.432,28.4834,1.9144,26.569 +15.44,28.484099999999998,1.9182,26.5659 +15.448,28.4849,1.922,26.5629 +15.456,28.4855,1.9257,26.5598 +15.464,28.4863,1.9295,26.5568 +15.472,28.4869,1.9332,26.5537 +15.48,28.4876,1.9369,26.5507 +15.488,28.4882,1.9405,26.5477 +15.496,28.488799999999998,1.9442,26.5446 +15.504,28.4894,1.9478,26.5416 +15.512,28.4898,1.9513,26.5385 +15.52,28.490399999999998,1.9549,26.5355 +15.528,28.4908,1.9584,26.5324 +15.536,28.4913,1.9619,26.5294 +15.544,28.4916,1.9653,26.5263 +15.552,28.4921,1.9688,26.5233 +15.56,28.4924,1.9722,26.5202 +15.568,28.4927,1.9755,26.5172 +15.576,28.493,1.9789,26.5141 +15.584,28.493199999999998,1.9822,26.511 +15.592,28.493399999999998,1.9854,26.508 +15.6,28.4936,1.9887,26.5049 +15.608,28.4938,1.9919,26.5019 +15.616,28.4939,1.9951,26.4988 +15.624,28.4939,1.9982,26.4957 +15.632,28.4941,2.0014,26.4927 +15.64,28.494,2.0044,26.4896 +15.648,28.494,2.0075,26.4865 +15.656,28.494,2.0105,26.4835 +15.664,28.4939,2.0135,26.4804 +15.672,28.4938,2.0165,26.4773 +15.68,28.4937,2.0194,26.4743 +15.688,28.4935,2.0223,26.4712 +15.696,28.493299999999998,2.0252,26.4681 +15.704,28.493,2.028,26.465 +15.712,28.4928,2.0308,26.462 +15.72,28.4925,2.0336,26.4589 +15.728,28.4921,2.0363,26.4558 +15.736,28.4917,2.039,26.4527 +15.744,28.4914,2.0417,26.4497 +15.752,28.4909,2.0443,26.4466 +15.76,28.4904,2.0469,26.4435 +15.768,28.4898,2.0494,26.4404 +15.776,28.4893,2.052,26.4373 +15.784,28.4888,2.0545,26.4343 +15.792,28.4881,2.0569,26.4312 +15.8,28.4874,2.0593,26.4281 +15.808,28.4867,2.0617,26.425 +15.816,28.486,2.0641,26.4219 +15.824,28.4852,2.0664,26.4188 +15.832,28.4844,2.0687,26.4157 +15.84,28.483600000000003,2.071,26.4126 +15.848,28.4828,2.0732,26.4096 +15.856,28.481900000000003,2.0754,26.4065 +15.864,28.480900000000002,2.0775,26.4034 +15.872,28.4799,2.0796,26.4003 +15.88,28.478900000000003,2.0817,26.3972 +15.888,28.477800000000002,2.0837,26.3941 +15.896,28.476699999999997,2.0857,26.391 +15.904,28.4756,2.0877,26.3879 +15.912,28.4744,2.0896,26.3848 +15.92,28.4732,2.0915,26.3817 +15.928,28.471999999999998,2.0934,26.3786 +15.936,28.4707,2.0952,26.3755 +15.944,28.4694,2.097,26.3724 +15.952,28.468,2.0987,26.3693 +15.96,28.4666,2.1004,26.3662 +15.968,28.4651,2.1021,26.363 +15.976,28.4636,2.1037,26.3599 +15.984,28.4621,2.1053,26.3568 +15.992,28.4606,2.1069,26.3537 +16.0,28.459,2.1084,26.3506 +16.008,28.4574,2.1099,26.3475 +16.016000000000002,28.4558,2.1114,26.3444 +16.024,28.4541,2.1128,26.3413 +16.032,28.4524,2.1142,26.3382 +16.04,28.4505,2.1155,26.335 +16.048000000000002,28.448700000000002,2.1168,26.3319 +16.056,28.4469,2.1181,26.3288 +16.064,28.445,2.1193,26.3257 +16.072,28.4431,2.1205,26.3226 +16.080000000000002,28.441000000000003,2.1216,26.3194 +16.088,28.439099999999996,2.1228,26.3163 +16.096,28.436999999999998,2.1238,26.3132 +16.104,28.435,2.1249,26.3101 +16.112000000000002,28.4328,2.1259,26.3069 +16.12,28.4306,2.1268,26.3038 +16.128,28.4285,2.1278,26.3007 +16.136,28.426199999999998,2.1286,26.2976 +16.144000000000002,28.4239,2.1295,26.2944 +16.152,28.421599999999998,2.1303,26.2913 +16.16,28.4193,2.1311,26.2882 +16.168,28.416800000000002,2.1318,26.285 +16.176000000000002,28.4144,2.1325,26.2819 +16.184,28.412,2.1332,26.2788 +16.192,28.4094,2.1338,26.2756 +16.2,28.4069,2.1344,26.2725 +16.208000000000002,28.404200000000003,2.1349,26.2693 +16.216,28.401600000000002,2.1354,26.2662 +16.224,28.399,2.1359,26.2631 +16.232,28.396199999999997,2.1363,26.2599 +16.240000000000002,28.3935,2.1367,26.2568 +16.248,28.3906,2.137,26.2536 +16.256,28.3878,2.1373,26.2505 +16.264,28.384999999999998,2.1376,26.2474 +16.272000000000002,28.381999999999998,2.1378,26.2442 +16.28,28.3791,2.138,26.2411 +16.288,28.3761,2.1382,26.2379 +16.296,28.3731,2.1383,26.2348 +16.304000000000002,28.37,2.1384,26.2316 +16.312,28.3669,2.1384,26.2285 +16.32,28.3637,2.1384,26.2253 +16.328,28.3606,2.1384,26.2222 +16.336000000000002,28.357300000000002,2.1383,26.219 +16.344,28.354000000000003,2.1382,26.2158 +16.352,28.350700000000003,2.138,26.2127 +16.36,28.3474,2.1379,26.2095 +16.368000000000002,28.343999999999998,2.1376,26.2064 +16.376,28.3406,2.1374,26.2032 +16.384,28.3372,2.1371,26.2001 +16.392,28.3336,2.1367,26.1969 +16.4,28.33,2.1363,26.1937 +16.408,28.3265,2.1359,26.1906 +16.416,28.3229,2.1355,26.1874 +16.424,28.319200000000002,2.135,26.1842 +16.432,28.3155,2.1344,26.1811 +16.44,28.3118,2.1339,26.1779 +16.448,28.308,2.1333,26.1747 +16.456,28.3042,2.1326,26.1716 +16.464,28.3003,2.1319,26.1684 +16.472,28.2964,2.1312,26.1652 +16.48,28.292499999999997,2.1304,26.1621 +16.488,28.2885,2.1296,26.1589 +16.496,28.2845,2.1288,26.1557 +16.504,28.2804,2.1279,26.1525 +16.512,28.2764,2.127,26.1494 +16.52,28.2723,2.1261,26.1462 +16.528,28.2681,2.1251,26.143 +16.536,28.2639,2.1241,26.1398 +16.544,28.259600000000002,2.123,26.1366 +16.552,28.2554,2.1219,26.1335 +16.56,28.251099999999997,2.1208,26.1303 +16.568,28.246699999999997,2.1196,26.1271 +16.576,28.2423,2.1184,26.1239 +16.584,28.2379,2.1172,26.1207 +16.592,28.2334,2.1159,26.1175 +16.6,28.229,2.1146,26.1144 +16.608,28.2244,2.1132,26.1112 +16.616,28.2198,2.1118,26.108 +16.624,28.2152,2.1104,26.1048 +16.632,28.210500000000003,2.1089,26.1016 +16.64,28.2059,2.1075,26.0984 +16.648,28.201099999999997,2.1059,26.0952 +16.656,28.196399999999997,2.1044,26.092 +16.664,28.191599999999998,2.1028,26.0888 +16.672,28.1867,2.1011,26.0856 +16.68,28.1818,2.0994,26.0824 +16.688,28.1769,2.0977,26.0792 +16.696,28.172,2.096,26.076 +16.704,28.167,2.0942,26.0728 +16.712,28.162000000000003,2.0924,26.0696 +16.72,28.157,2.0906,26.0664 +16.728,28.151899999999998,2.0887,26.0632 +16.736,28.1468,2.0868,26.06 +16.744,28.1416,2.0848,26.0568 +16.752,28.1364,2.0828,26.0536 +16.76,28.1312,2.0808,26.0504 +16.768,28.126,2.0788,26.0472 +16.776,28.1207,2.0767,26.044 +16.784,28.1154,2.0746,26.0408 +16.792,28.11,2.0724,26.0376 +16.8,28.1046,2.0702,26.0344 +16.808,28.0992,2.068,26.0312 +16.816,28.0937,2.0658,26.0279 +16.824,28.0882,2.0635,26.0247 +16.832,28.0827,2.0612,26.0215 +16.84,28.0771,2.0588,26.0183 +16.848,28.0716,2.0565,26.0151 +16.856,28.066000000000003,2.0541,26.0119 +16.864,28.060200000000002,2.0516,26.0086 +16.872,28.0546,2.0492,26.0054 +16.88,28.0489,2.0467,26.0022 +16.888,28.0431,2.0441,25.999 +16.896,28.037399999999998,2.0416,25.9958 +16.904,28.0315,2.039,25.9925 +16.912,28.0257,2.0364,25.9893 +16.92,28.0198,2.0337,25.9861 +16.928,28.0138,2.031,25.9828 +16.936,28.007900000000003,2.0283,25.9796 +16.944,28.002000000000002,2.0256,25.9764 +16.952,27.996,2.0228,25.9732 +16.96,27.9899,2.02,25.9699 +16.968,27.9839,2.0172,25.9667 +16.976,27.9778,2.0143,25.9635 +16.984,27.971600000000002,2.0114,25.9602 +16.992,27.965500000000002,2.0085,25.957 +17.0,27.959400000000002,2.0056,25.9538 +17.008,27.953100000000003,2.0026,25.9505 +17.016000000000002,27.9469,1.9996,25.9473 +17.024,27.9406,1.9966,25.944 +17.032,27.9344,1.9936,25.9408 +17.04,27.9281,1.9905,25.9376 +17.048000000000002,27.9217,1.9874,25.9343 +17.056,27.9154,1.9843,25.9311 +17.064,27.908900000000003,1.9811,25.9278 +17.072,27.902600000000003,1.978,25.9246 +17.080000000000002,27.8962,1.9748,25.9214 +17.088,27.889599999999998,1.9715,25.9181 +17.096,27.8832,1.9683,25.9149 +17.104,27.8766,1.965,25.9116 +17.112000000000002,27.8701,1.9617,25.9084 +17.12,27.863500000000002,1.9584,25.9051 +17.128,27.857000000000003,1.9551,25.9019 +17.136,27.850299999999997,1.9517,25.8986 +17.144000000000002,27.8437,1.9483,25.8954 +17.152,27.837,1.9449,25.8921 +17.16,27.8303,1.9415,25.8888 +17.168,27.8236,1.938,25.8856 +17.176000000000002,27.8168,1.9345,25.8823 +17.184,27.810100000000002,1.931,25.8791 +17.192,27.8033,1.9275,25.8758 +17.2,27.796599999999998,1.924,25.8726 +17.208000000000002,27.7897,1.9204,25.8693 +17.216,27.782799999999998,1.9168,25.866 +17.224,27.776,1.9132,25.8628 +17.232,27.7691,1.9096,25.8595 +17.240000000000002,27.7622,1.906,25.8562 +17.248,27.755300000000002,1.9023,25.853 +17.256,27.7484,1.8987,25.8497 +17.264,27.7414,1.895,25.8464 +17.272000000000002,27.7345,1.8913,25.8432 +17.28,27.7274,1.8875,25.8399 +17.288,27.7204,1.8838,25.8366 +17.296,27.7134,1.88,25.8334 +17.304000000000002,27.706400000000002,1.8763,25.8301 +17.312,27.699299999999997,1.8725,25.8268 +17.32,27.6923,1.8687,25.8236 +17.328,27.6851,1.8648,25.8203 +17.336000000000002,27.678,1.861,25.817 +17.344,27.6709,1.8572,25.8137 +17.352,27.663700000000002,1.8533,25.8104 +17.36,27.6566,1.8494,25.8072 +17.368000000000002,27.6494,1.8455,25.8039 +17.376,27.6422,1.8416,25.8006 +17.384,27.634999999999998,1.8377,25.7973 +17.392,27.6278,1.8338,25.794 +17.400000000000002,27.6206,1.8298,25.7908 +17.408,27.613400000000002,1.8259,25.7875 +17.416,27.606099999999998,1.8219,25.7842 +17.424,27.5989,1.818,25.7809 +17.432,27.5916,1.814,25.7776 +17.44,27.5843,1.81,25.7743 +17.448,27.577,1.806,25.771 +17.456,27.5698,1.802,25.7678 +17.464,27.5625,1.798,25.7645 +17.472,27.5552,1.794,25.7612 +17.48,27.5478,1.7899,25.7579 +17.488,27.5405,1.7859,25.7546 +17.496,27.5331,1.7818,25.7513 +17.504,27.5258,1.7778,25.748 +17.512,27.518400000000003,1.7737,25.7447 +17.52,27.5111,1.7697,25.7414 +17.528,27.5037,1.7656,25.7381 +17.536,27.4963,1.7615,25.7348 +17.544,27.489,1.7575,25.7315 +17.552,27.4816,1.7534,25.7282 +17.56,27.474200000000003,1.7493,25.7249 +17.568,27.4668,1.7452,25.7216 +17.576,27.4594,1.7411,25.7183 +17.584,27.4521,1.7371,25.715 +17.592,27.4447,1.733,25.7117 +17.6,27.4373,1.7289,25.7084 +17.608,27.429900000000004,1.7248,25.7051 +17.616,27.4225,1.7207,25.7018 +17.624,27.4151,1.7166,25.6985 +17.632,27.4076,1.7125,25.6951 +17.64,27.4003,1.7085,25.6918 +17.648,27.3929,1.7044,25.6885 +17.656,27.385499999999997,1.7003,25.6852 +17.664,27.3781,1.6962,25.6819 +17.672,27.3708,1.6922,25.6786 +17.68,27.3634,1.6881,25.6753 +17.688,27.355900000000002,1.684,25.6719 +17.696,27.3486,1.68,25.6686 +17.704,27.341199999999997,1.6759,25.6653 +17.712,27.3339,1.6719,25.662 +17.72,27.3266,1.6679,25.6587 +17.728,27.3192,1.6638,25.6554 +17.736,27.3118,1.6598,25.652 +17.744,27.3045,1.6558,25.6487 +17.752,27.2972,1.6518,25.6454 +17.76,27.2899,1.6478,25.6421 +17.768,27.2825,1.6438,25.6387 +17.776,27.2753,1.6399,25.6354 +17.784,27.268,1.6359,25.6321 +17.792,27.2608,1.632,25.6288 +17.8,27.2534,1.628,25.6254 +17.808,27.246199999999998,1.6241,25.6221 +17.816,27.239,1.6202,25.6188 +17.824,27.2317,1.6163,25.6154 +17.832,27.224500000000003,1.6124,25.6121 +17.84,27.217399999999998,1.6086,25.6088 +17.848,27.2101,1.6047,25.6054 +17.856,27.203,1.6009,25.6021 +17.864,27.1959,1.5971,25.5988 +17.872,27.1887,1.5933,25.5954 +17.88,27.1816,1.5895,25.5921 +17.888,27.1745,1.5858,25.5887 +17.896,27.1675,1.5821,25.5854 +17.904,27.1604,1.5783,25.5821 +17.912,27.1534,1.5747,25.5787 +17.92,27.1464,1.571,25.5754 +17.928,27.1393,1.5673,25.572 +17.936,27.1324,1.5637,25.5687 +17.944,27.1254,1.5601,25.5653 +17.952,27.1185,1.5565,25.562 +17.96,27.1116,1.553,25.5586 +17.968,27.104799999999997,1.5495,25.5553 +17.976,27.0979,1.546,25.5519 +17.984,27.0911,1.5425,25.5486 +17.992,27.084300000000002,1.5391,25.5452 +18.0,27.077499999999997,1.5356,25.5419 +18.008,27.0708,1.5323,25.5385 +18.016000000000002,27.0641,1.5289,25.5352 +18.024,27.0574,1.5256,25.5318 +18.032,27.050800000000002,1.5223,25.5285 +18.04,27.044099999999997,1.519,25.5251 +18.048000000000002,27.037599999999998,1.5158,25.5218 +18.056,27.031,1.5126,25.5184 +18.064,27.0244,1.5094,25.515 +18.072,27.018,1.5063,25.5117 +18.080000000000002,27.011499999999998,1.5032,25.5083 +18.088,27.0052,1.5002,25.505 +18.096,26.9988,1.4972,25.5016 +18.104,26.9924,1.4942,25.4982 +18.112000000000002,26.9861,1.4912,25.4949 +18.12,26.979799999999997,1.4883,25.4915 +18.128,26.973599999999998,1.4855,25.4881 +18.136,26.9674,1.4826,25.4848 +18.144000000000002,26.9613,1.4799,25.4814 +18.152,26.9551,1.4771,25.478 +18.16,26.949099999999998,1.4744,25.4747 +18.168,26.9431,1.4718,25.4713 +18.176000000000002,26.9371,1.4692,25.4679 +18.184,26.9312,1.4666,25.4646 +18.192,26.9253,1.4641,25.4612 +18.2,26.9194,1.4616,25.4578 +18.208000000000002,26.9136,1.4592,25.4544 +18.216,26.9079,1.4568,25.4511 +18.224,26.9022,1.4545,25.4477 +18.232,26.8966,1.4523,25.4443 +18.240000000000002,26.8909,1.45,25.4409 +18.248,26.8854,1.4479,25.4375 +18.256,26.88,1.4458,25.4342 +18.264,26.8745,1.4437,25.4308 +18.272000000000002,26.8691,1.4417,25.4274 +18.28,26.863699999999998,1.4397,25.424 +18.288,26.8584,1.4378,25.4206 +18.296,26.8532,1.436,25.4172 +18.304000000000002,26.848100000000002,1.4342,25.4139 +18.312,26.843,1.4325,25.4105 +18.32,26.8379,1.4308,25.4071 +18.328,26.832900000000002,1.4292,25.4037 +18.336000000000002,26.828000000000003,1.4277,25.4003 +18.344,26.8231,1.4262,25.3969 +18.352,26.8183,1.4248,25.3935 +18.36,26.8135,1.4234,25.3901 +18.368000000000002,26.8089,1.4222,25.3867 +18.376,26.8043,1.4209,25.3834 +18.384,26.799799999999998,1.4198,25.38 +18.392,26.7953,1.4187,25.3766 +18.400000000000002,26.7909,1.4177,25.3732 +18.408,26.7865,1.4167,25.3698 +18.416,26.7823,1.4159,25.3664 +18.424,26.778,1.415,25.363 +18.432000000000002,26.7739,1.4143,25.3596 +18.44,26.7699,1.4137,25.3562 +18.448,26.7659,1.4131,25.3528 +18.456,26.762,1.4126,25.3494 +18.464,26.7581,1.4121,25.346 +18.472,26.7544,1.4118,25.3426 +18.48,26.750700000000002,1.4115,25.3392 +18.488,26.747,1.4113,25.3357 +18.496,26.7435,1.4112,25.3323 +18.504,26.740000000000002,1.4111,25.3289 +18.512,26.736700000000003,1.4112,25.3255 +18.52,26.7334,1.4113,25.3221 +18.528,26.7302,1.4115,25.3187 +18.536,26.7271,1.4118,25.3153 +18.544,26.7241,1.4122,25.3119 +18.552,26.7211,1.4126,25.3085 +18.56,26.7183,1.4132,25.3051 +18.568,26.7155,1.4139,25.3016 +18.576,26.7128,1.4146,25.2982 +18.584,26.7102,1.4154,25.2948 +18.592,26.7077,1.4163,25.2914 +18.6,26.7053,1.4173,25.288 +18.608,26.703100000000003,1.4185,25.2846 +18.616,26.700799999999997,1.4197,25.2811 +18.624,26.6987,1.421,25.2777 +18.632,26.6967,1.4224,25.2743 +18.64,26.6948,1.4239,25.2709 +18.648,26.692899999999998,1.4254,25.2675 +18.656,26.6911,1.4271,25.264 +18.664,26.6895,1.4289,25.2606 +18.672,26.688000000000002,1.4308,25.2572 +18.68,26.6867,1.4329,25.2538 +18.688,26.685299999999998,1.435,25.2503 +18.696,26.6841,1.4372,25.2469 +18.704,26.683,1.4395,25.2435 +18.712,26.6819,1.4419,25.24 +18.72,26.6811,1.4445,25.2366 +18.728,26.6803,1.4471,25.2332 +18.736,26.6796,1.4499,25.2297 +18.744,26.6791,1.4528,25.2263 +18.752,26.6787,1.4558,25.2229 +18.76,26.6783,1.4589,25.2194 +18.768,26.6781,1.4621,25.216 +18.776,26.678099999999997,1.4655,25.2126 +18.784,26.678,1.4689,25.2091 +18.792,26.6782,1.4725,25.2057 +18.8,26.6785,1.4762,25.2023 +18.808,26.6788,1.48,25.1988 +18.816,26.6794,1.484,25.1954 +18.824,26.68,1.4881,25.1919 +18.832,26.6808,1.4923,25.1885 +18.84,26.6816,1.4966,25.185 +18.848,26.6827,1.5011,25.1816 +18.856,26.6839,1.5057,25.1782 +18.864,26.685100000000002,1.5104,25.1747 +18.872,26.6865,1.5152,25.1713 +18.88,26.688,1.5202,25.1678 +18.888,26.689700000000002,1.5253,25.1644 +18.896,26.6915,1.5306,25.1609 +18.904,26.6935,1.536,25.1575 +18.912,26.6955,1.5415,25.154 +18.92,26.6978,1.5472,25.1506 +18.928,26.7001,1.553,25.1471 +18.936,26.7027,1.559,25.1437 +18.944,26.7052,1.565,25.1402 +18.952,26.7081,1.5713,25.1368 +18.96,26.711,1.5777,25.1333 +18.968,26.714,1.5842,25.1298 +18.976,26.7173,1.5909,25.1264 +18.984,26.7206,1.5977,25.1229 +18.992,26.7242,1.6047,25.1195 +19.0,26.7278,1.6118,25.116 +19.008,26.7316,1.6191,25.1125 +19.016000000000002,26.7357,1.6266,25.1091 +19.024,26.7398,1.6342,25.1056 +19.032,26.7441,1.6419,25.1022 +19.04,26.7485,1.6498,25.0987 +19.048000000000002,26.7531,1.6579,25.0952 +19.056,26.758,1.6662,25.0918 +19.064,26.762900000000002,1.6746,25.0883 +19.072,26.7679,1.6831,25.0848 +19.080000000000002,26.7732,1.6918,25.0814 +19.088,26.7786,1.7007,25.0779 +19.096,26.784200000000002,1.7098,25.0744 +19.104,26.790000000000003,1.719,25.071 +19.112000000000002,26.7959,1.7284,25.0675 +19.12,26.802,1.738,25.064 +19.128,26.8082,1.7477,25.0605 +19.136,26.814799999999998,1.7577,25.0571 +19.144000000000002,26.8214,1.7678,25.0536 +19.152,26.8281,1.778,25.0501 +19.16,26.8351,1.7885,25.0466 +19.168,26.842299999999998,1.7991,25.0432 +19.176000000000002,26.8496,1.8099,25.0397 +19.184,26.857100000000003,1.8209,25.0362 +19.192,26.8648,1.8321,25.0327 +19.2,26.8726,1.8434,25.0292 +19.208000000000002,26.8808,1.855,25.0258 +19.216,26.889000000000003,1.8667,25.0223 +19.224,26.897499999999997,1.8787,25.0188 +19.232,26.9061,1.8908,25.0153 +19.240000000000002,26.9149,1.9031,25.0118 +19.248,26.9239,1.9156,25.0083 +19.256,26.9332,1.9283,25.0049 +19.264,26.9425,1.9411,25.0014 +19.272000000000002,26.9521,1.9542,24.9979 +19.28,26.9619,1.9675,24.9944 +19.288,26.9719,1.981,24.9909 +19.296,26.982100000000003,1.9947,24.9874 +19.304000000000002,26.9925,2.0086,24.9839 +19.312,27.003,2.0226,24.9804 +19.32,27.0138,2.0369,24.9769 +19.328,27.024800000000003,2.0514,24.9734 +19.336000000000002,27.035999999999998,2.0661,24.9699 +19.344,27.0475,2.0811,24.9664 +19.352,27.0592,2.0962,24.963 +19.36,27.070999999999998,2.1115,24.9595 +19.368000000000002,27.083099999999998,2.1271,24.956 +19.376,27.0953,2.1428,24.9525 +19.384,27.1078,2.1588,24.949 +19.392,27.1205,2.175,24.9455 +19.400000000000002,27.1334,2.1914,24.942 +19.408,27.146500000000003,2.208,24.9385 +19.416,27.1599,2.2249,24.935 +19.424,27.1735,2.242,24.9315 +19.432000000000002,27.1872,2.2593,24.9279 +19.44,27.2012,2.2768,24.9244 +19.448,27.2154,2.2945,24.9209 +19.456,27.2299,2.3125,24.9174 +19.464,27.244600000000002,2.3307,24.9139 +19.472,27.2596,2.3492,24.9104 +19.48,27.2747,2.3678,24.9069 +19.488,27.290100000000002,2.3867,24.9034 +19.496,27.305799999999998,2.4059,24.8999 +19.504,27.3216,2.4252,24.8964 +19.512,27.3377,2.4448,24.8929 +19.52,27.354,2.4647,24.8893 +19.528,27.3705,2.4847,24.8858 +19.536,27.3873,2.505,24.8823 +19.544,27.4044,2.5256,24.8788 +19.552,27.4217,2.5464,24.8753 +19.56,27.4392,2.5674,24.8718 +19.568,27.457,2.5887,24.8683 +19.576,27.474999999999998,2.6103,24.8647 +19.584,27.4933,2.6321,24.8612 +19.592,27.5118,2.6541,24.8577 +19.6,27.5306,2.6764,24.8542 +19.608,27.549599999999998,2.6989,24.8507 +19.616,27.5688,2.7217,24.8471 +19.624,27.588299999999997,2.7447,24.8436 +19.632,27.6081,2.768,24.8401 +19.64,27.6281,2.7915,24.8366 +19.648,27.6483,2.8153,24.833 +19.656,27.6689,2.8394,24.8295 +19.664,27.689700000000002,2.8637,24.826 +19.672,27.710800000000003,2.8883,24.8225 +19.68,27.732,2.9131,24.8189 +19.688,27.7536,2.9382,24.8154 +19.696,27.7755,2.9636,24.8119 +19.704,27.7975,2.9892,24.8083 +19.712,27.8199,3.0151,24.8048 +19.72,27.8426,3.0413,24.8013 +19.728,27.865399999999998,3.0677,24.7977 +19.736,27.8886,3.0944,24.7942 +19.744,27.912100000000002,3.1214,24.7907 +19.752,27.935699999999997,3.1486,24.7871 +19.76,27.959699999999998,3.1761,24.7836 +19.768,27.984,3.2039,24.7801 +19.776,28.008499999999998,3.232,24.7765 +19.784,28.0333,3.2603,24.773 +19.792,28.058300000000003,3.2889,24.7694 +19.8,28.0837,3.3178,24.7659 +19.808,28.1094,3.347,24.7624 +19.816,28.1352,3.3764,24.7588 +19.824,28.161399999999997,3.4061,24.7553 +19.832,28.1878,3.4361,24.7517 +19.84,28.2146,3.4664,24.7482 +19.848,28.2416,3.497,24.7446 +19.856,28.2689,3.5278,24.7411 +19.864,28.2965,3.559,24.7375 +19.872,28.3244,3.5904,24.734 +19.88,28.3526,3.6221,24.7305 +19.888,28.381,3.6541,24.7269 +19.896,28.4098,3.6864,24.7234 +19.904,28.4387,3.7189,24.7198 +19.912,28.4681,3.7518,24.7163 +19.92,28.497600000000002,3.7849,24.7127 +19.928,28.5275,3.8184,24.7091 +19.936,28.5577,3.8521,24.7056 +19.944,28.5881,3.8861,24.702 +19.952,28.6189,3.9204,24.6985 +19.96,28.649900000000002,3.955,24.6949 +19.968,28.6813,3.9899,24.6914 +19.976,28.712899999999998,4.0251,24.6878 +19.984,28.7449,4.0606,24.6843 +19.992,28.7771,4.0964,24.6807 +20.0,28.8096,4.1325,24.6771 +20.008,28.8425,4.1689,24.6736 +20.016000000000002,28.875600000000002,4.2056,24.67 +20.024,28.9091,4.2426,24.6665 +20.032,28.942700000000002,4.2798,24.6629 +20.04,28.9767,4.3174,24.6593 +20.048000000000002,29.0111,4.3553,24.6558 +20.056,29.0457,4.3935,24.6522 +20.064,29.080599999999997,4.432,24.6486 +20.072,29.1158,4.4707,24.6451 +20.080000000000002,29.1513,4.5098,24.6415 +20.088,29.187099999999997,4.5492,24.6379 +20.096,29.2233,4.5889,24.6344 +20.104,29.259700000000002,4.6289,24.6308 +20.112000000000002,29.2964,4.6692,24.6272 +20.12,29.3335,4.7098,24.6237 +20.128,29.370800000000003,4.7507,24.6201 +20.136,29.4084,4.7919,24.6165 +20.144000000000002,29.4463,4.8334,24.6129 +20.152,29.4846,4.8752,24.6094 +20.16,29.5232,4.9174,24.6058 +20.168,29.562,4.9598,24.6022 +20.176000000000002,29.601100000000002,5.0025,24.5986 +20.184,29.6407,5.0456,24.5951 +20.192,29.6804,5.0889,24.5915 +20.2,29.7205,5.1326,24.5879 +20.208000000000002,29.7608,5.1765,24.5843 +20.216,29.8015,5.2208,24.5807 +20.224,29.8426,5.2654,24.5772 +20.232,29.8838,5.3102,24.5736 +20.240000000000002,29.9254,5.3554,24.57 +20.248,29.9673,5.4009,24.5664 +20.256,30.0095,5.4467,24.5628 +20.264,30.052,5.4928,24.5592 +20.272000000000002,30.094900000000003,5.5392,24.5557 +20.28,30.137999999999998,5.5859,24.5521 +20.288,30.1814,5.6329,24.5485 +20.296,30.225199999999997,5.6803,24.5449 +20.304000000000002,30.269199999999998,5.7279,24.5413 +20.312,30.3135,5.7758,24.5377 +20.32,30.358199999999997,5.8241,24.5341 +20.328,30.403100000000002,5.8726,24.5305 +20.336000000000002,30.448500000000003,5.9215,24.527 +20.344,30.494,5.9706,24.5234 +20.352,30.5399,6.0201,24.5198 +20.36,30.586000000000002,6.0698,24.5162 +20.368000000000002,30.6325,6.1199,24.5126 +20.376,30.6793,6.1703,24.509 +20.384,30.726300000000002,6.2209,24.5054 +20.392,30.773699999999998,6.2719,24.5018 +20.400000000000002,30.8214,6.3232,24.4982 +20.408,30.8693,6.3747,24.4946 +20.416,30.9176,6.4266,24.491 +20.424,30.9662,6.4788,24.4874 +20.432000000000002,31.015099999999997,6.5313,24.4838 +20.44,31.0642,6.584,24.4802 +20.448,31.1137,6.6371,24.4766 +20.456,31.1634,6.6904,24.473 +20.464000000000002,31.2135,6.7441,24.4694 +20.472,31.2639,6.7981,24.4658 +20.48,31.3145,6.8523,24.4622 +20.488,31.3654,6.9068,24.4586 +20.496,31.4167,6.9617,24.455 +20.504,31.4682,7.0168,24.4514 +20.512,31.52,7.0722,24.4478 +20.52,31.572,7.1279,24.4441 +20.528,31.6244,7.1839,24.4405 +20.536,31.677100000000003,7.2402,24.4369 +20.544,31.7301,7.2968,24.4333 +20.552,31.7833,7.3536,24.4297 +20.56,31.8369,7.4108,24.4261 +20.568,31.8907,7.4682,24.4225 +20.576,31.9448,7.5259,24.4189 +20.584,31.9992,7.5839,24.4153 +20.592,32.0538,7.6422,24.4116 +20.6,32.1087,7.7007,24.408 +20.608,32.164,7.7596,24.4044 +20.616,32.2195,7.8187,24.4008 +20.624,32.2752,7.878,24.3972 +20.632,32.3313,7.9377,24.3936 +20.64,32.3875,7.9976,24.3899 +20.648,32.4441,8.0578,24.3863 +20.656,32.501,8.1183,24.3827 +20.664,32.5581,8.179,24.3791 +20.672,32.6155,8.24,24.3755 +20.68,32.6731,8.3013,24.3718 +20.688,32.731,8.3628,24.3682 +20.696,32.7892,8.4246,24.3646 +20.704,32.8477,8.4867,24.361 +20.712,32.9063,8.549,24.3573 +20.72,32.9653,8.6116,24.3537 +20.728,33.0245,8.6744,24.3501 +20.736,33.084,8.7375,24.3465 +20.744,33.1436,8.8008,24.3428 +20.752,33.2036,8.8644,24.3392 +20.76,33.2638,8.9282,24.3356 +20.768,33.324200000000005,8.9923,24.3319 +20.776,33.3849,9.0566,24.3283 +20.784,33.4459,9.1212,24.3247 +20.792,33.507000000000005,9.186,24.321 +20.8,33.5684,9.251,24.3174 +20.808,33.6301,9.3163,24.3138 +20.816,33.6919,9.3818,24.3101 +20.824,33.7541,9.4476,24.3065 +20.832,33.8164,9.5135,24.3029 +20.84,33.879,9.5798,24.2992 +20.848,33.9418,9.6462,24.2956 +20.856,34.0048,9.7128,24.292 +20.864,34.068,9.7797,24.2883 +20.872,34.1315,9.8468,24.2847 +20.88,34.1951,9.9141,24.281 +20.888,34.259100000000004,9.9817,24.2774 +20.896,34.3232,10.0494,24.2738 +20.904,34.3874,10.1173,24.2701 +20.912,34.452,10.1855,24.2665 +20.92,34.5167,10.2539,24.2628 +20.928,34.5816,10.3224,24.2592 +20.936,34.6467,10.3912,24.2555 +20.944,34.7121,10.4602,24.2519 +20.952,34.7775,10.5293,24.2482 +20.96,34.8433,10.5987,24.2446 +20.968,34.9092,10.6682,24.241 +20.976,34.9752,10.7379,24.2373 +20.984,35.0415,10.8078,24.2337 +20.992,35.1079,10.8779,24.23 +21.0,35.1746,10.9482,24.2264 +21.008,35.241299999999995,11.0186,24.2227 +21.016000000000002,35.3084,11.0893,24.2191 +21.024,35.3755,11.1601,24.2154 +21.032,35.4427,11.231,24.2117 +21.04,35.5102,11.3021,24.2081 +21.048000000000002,35.577799999999996,11.3734,24.2044 +21.056,35.645700000000005,11.4449,24.2008 +21.064,35.7136,11.5165,24.1971 +21.072,35.7817,11.5882,24.1935 +21.080000000000002,35.849900000000005,11.6601,24.1898 +21.088,35.9183,11.7321,24.1862 +21.096,35.9868,11.8043,24.1825 +21.104,36.055499999999995,11.8767,24.1788 +21.112000000000002,36.1243,11.9491,24.1752 +21.12,36.193200000000004,12.0217,24.1715 +21.128,36.262299999999996,12.0945,24.1678 +21.136,36.3315,12.1673,24.1642 +21.144000000000002,36.4008,12.2403,24.1605 +21.152,36.4703,12.3134,24.1569 +21.16,36.5398,12.3866,24.1532 +21.168,36.6095,12.46,24.1495 +21.176000000000002,36.6793,12.5334,24.1459 +21.184,36.7492,12.607,24.1422 +21.192,36.8191,12.6806,24.1385 +21.2,36.8893,12.7544,24.1349 +21.208000000000002,36.9594,12.8282,24.1312 +21.216,37.029700000000005,12.9022,24.1275 +21.224,37.1001,12.9762,24.1239 +21.232,37.1706,13.0504,24.1202 +21.240000000000002,37.241099999999996,13.1246,24.1165 +21.248,37.3117,13.1989,24.1128 +21.256,37.382400000000004,13.2732,24.1092 +21.264,37.453199999999995,13.3477,24.1055 +21.272000000000002,37.524,13.4222,24.1018 +21.28,37.5948,13.4967,24.0981 +21.288,37.6659,13.5714,24.0945 +21.296,37.736900000000006,13.6461,24.0908 +21.304000000000002,37.807900000000004,13.7208,24.0871 +21.312,37.879000000000005,13.7956,24.0834 +21.32,37.950199999999995,13.8704,24.0798 +21.328,38.0214,13.9453,24.0761 +21.336000000000002,38.0926,14.0202,24.0724 +21.344,38.1639,14.0952,24.0687 +21.352,38.2352,14.1702,24.065 +21.36,38.3066,14.2452,24.0614 +21.368000000000002,38.3779,14.3202,24.0577 +21.376,38.4493,14.3953,24.054 +21.384,38.5206,14.4703,24.0503 +21.392,38.592,14.5454,24.0466 +21.400000000000002,38.663399999999996,14.6205,24.0429 +21.408,38.7349,14.6956,24.0393 +21.416,38.8063,14.7707,24.0356 +21.424,38.877700000000004,14.8458,24.0319 +21.432000000000002,38.9491,14.9209,24.0282 +21.44,39.0204,14.9959,24.0245 +21.448,39.0918,15.071,24.0208 +21.456,39.1631,15.146,24.0171 +21.464000000000002,39.2344,15.221,24.0134 +21.472,39.3058,15.296,24.0098 +21.48,39.377,15.3709,24.0061 +21.488,39.4482,15.4458,24.0024 +21.496000000000002,39.5194,15.5207,23.9987 +21.504,39.5905,15.5955,23.995 +21.512,39.6616,15.6703,23.9913 +21.52,39.7326,15.745,23.9876 +21.528,39.8035,15.8196,23.9839 +21.536,39.8744,15.8942,23.9802 +21.544,39.9452,15.9687,23.9765 +21.552,40.016,16.0432,23.9728 +21.56,40.0867,16.1176,23.9691 +21.568,40.1573,16.1919,23.9654 +21.576,40.2278,16.2661,23.9617 +21.584,40.298199999999994,16.3402,23.958 +21.592,40.3685,16.4142,23.9543 +21.6,40.4388,16.4882,23.9506 +21.608,40.5089,16.562,23.9469 +21.616,40.578900000000004,16.6357,23.9432 +21.624,40.6489,16.7094,23.9395 +21.632,40.7187,16.7829,23.9358 +21.64,40.7883,16.8562,23.9321 +21.648,40.8579,16.9295,23.9284 +21.656,40.9273,17.0026,23.9247 +21.664,40.996700000000004,17.0757,23.921 +21.672,41.065799999999996,17.1485,23.9173 +21.68,41.1349,17.2213,23.9136 +21.688,41.2037,17.2938,23.9099 +21.696,41.272499999999994,17.3663,23.9062 +21.704,41.341,17.4386,23.9024 +21.712,41.409400000000005,17.5107,23.8987 +21.72,41.477599999999995,17.5826,23.895 +21.728,41.5457,17.6544,23.8913 +21.736,41.613699999999994,17.7261,23.8876 +21.744,41.6814,17.7975,23.8839 +21.752,41.748999999999995,17.8688,23.8802 +21.76,41.8164,17.9399,23.8765 +21.768,41.8835,18.0108,23.8727 +21.776,41.9505,18.0815,23.869 +21.784,42.017300000000006,18.152,23.8653 +21.792,42.0839,18.2223,23.8616 +21.8,42.1503,18.2924,23.8579 +21.808,42.216499999999996,18.3623,23.8542 +21.816,42.282399999999996,18.432,23.8504 +21.824,42.3482,18.5015,23.8467 +21.832,42.4137,18.5707,23.843 +21.84,42.479,18.6397,23.8393 +21.848,42.5441,18.7085,23.8356 +21.856,42.6088,18.777,23.8318 +21.864,42.6734,18.8453,23.8281 +21.872,42.7378,18.9134,23.8244 +21.88,42.8019,18.9812,23.8207 +21.888,42.865700000000004,19.0488,23.8169 +21.896,42.9293,19.1161,23.8132 +21.904,42.992599999999996,19.1831,23.8095 +21.912,43.0557,19.2499,23.8058 +21.92,43.1184,19.3164,23.802 +21.928,43.1809,19.3826,23.7983 +21.936,43.2432,19.4486,23.7946 +21.944,43.305099999999996,19.5142,23.7909 +21.952,43.366699999999994,19.5796,23.7871 +21.96,43.4281,19.6447,23.7834 +21.968,43.4892,19.7095,23.7797 +21.976,43.5499,19.774,23.7759 +21.984,43.6104,19.8382,23.7722 +21.992,43.6706,19.9021,23.7685 +22.0,43.7303,19.9656,23.7647 +22.008,43.7899,20.0289,23.761 +22.016000000000002,43.8491,20.0918,23.7573 +22.024,43.9079,20.1544,23.7535 +22.032,43.966499999999996,20.2167,23.7498 +22.04,44.0248,20.2787,23.7461 +22.048000000000002,44.0826,20.3403,23.7423 +22.056,44.140100000000004,20.4015,23.7386 +22.064,44.1974,20.4625,23.7349 +22.072,44.2541,20.523,23.7311 +22.080000000000002,44.3107,20.5833,23.7274 +22.088,44.3667,20.6431,23.7236 +22.096,44.4226,20.7027,23.7199 +22.104,44.478,20.7618,23.7162 +22.112000000000002,44.533,20.8206,23.7124 +22.12,44.5877,20.879,23.7087 +22.128,44.6419,20.937,23.7049 +22.136,44.6959,20.9947,23.7012 +22.144000000000002,44.7493,21.0519,23.6974 +22.152,44.802499999999995,21.1088,23.6937 +22.16,44.8553,21.1653,23.69 +22.168,44.9076,21.2214,23.6862 +22.176000000000002,44.9596,21.2771,23.6825 +22.184,45.0111,21.3324,23.6787 +22.192,45.0623,21.3873,23.675 +22.2,45.113,21.4418,23.6712 +22.208000000000002,45.1633,21.4958,23.6675 +22.216,45.2132,21.5495,23.6637 +22.224,45.262699999999995,21.6027,23.66 +22.232,45.3117,21.6555,23.6562 +22.240000000000002,45.3604,21.7079,23.6525 +22.248,45.408500000000004,21.7598,23.6487 +22.256,45.4564,21.8114,23.645 +22.264,45.503600000000006,21.8624,23.6412 +22.272000000000002,45.5506,21.9131,23.6375 +22.28,45.597,21.9633,23.6337 +22.288,45.6429,22.013,23.6299 +22.296,45.688500000000005,22.0623,23.6262 +22.304000000000002,45.733599999999996,22.1112,23.6224 +22.312,45.7782,22.1595,23.6187 +22.32,45.8224,22.2075,23.6149 +22.328,45.8661,22.2549,23.6112 +22.336000000000002,45.9093,22.3019,23.6074 +22.344,45.9521,22.3485,23.6036 +22.352,45.9944,22.3945,23.5999 +22.36,46.0362,22.4401,23.5961 +22.368000000000002,46.077600000000004,22.4852,23.5924 +22.376,46.1184,22.5298,23.5886 +22.384,46.158699999999996,22.5739,23.5848 +22.392,46.1987,22.6176,23.5811 +22.400000000000002,46.2381,22.6608,23.5773 +22.408,46.277,22.7034,23.5736 +22.416,46.3154,22.7456,23.5698 +22.424,46.3533,22.7873,23.566 +22.432000000000002,46.390699999999995,22.8284,23.5623 +22.44,46.4276,22.8691,23.5585 +22.448,46.463899999999995,22.9092,23.5547 +22.456,46.4999,22.9489,23.551 +22.464000000000002,46.5352,22.988,23.5472 +22.472,46.5701,23.0267,23.5434 +22.48,46.6045,23.0648,23.5397 +22.488,46.6383,23.1024,23.5359 +22.496000000000002,46.671499999999995,23.1394,23.5321 +22.504,46.7043,23.176,23.5283 +22.512,46.736599999999996,23.212,23.5246 +22.52,46.768299999999996,23.2475,23.5208 +22.528,46.7994,23.2824,23.517 +22.536,46.8301,23.3168,23.5133 +22.544,46.8602,23.3507,23.5095 +22.552,46.8898,23.3841,23.5057 +22.56,46.9188,23.4169,23.5019 +22.568,46.9474,23.4492,23.4982 +22.576,46.9753,23.4809,23.4944 +22.584,47.002700000000004,23.5121,23.4906 +22.592,47.0295,23.5427,23.4868 +22.6,47.055800000000005,23.5728,23.483 +22.608,47.081599999999995,23.6023,23.4793 +22.616,47.1068,23.6313,23.4755 +22.624,47.1314,23.6597,23.4717 +22.632,47.1555,23.6876,23.4679 +22.64,47.179,23.7149,23.4641 +22.648,47.202,23.7416,23.4604 +22.656,47.2244,23.7678,23.4566 +22.664,47.246300000000005,23.7935,23.4528 +22.672,47.2675,23.8185,23.449 +22.68,47.2882,23.843,23.4452 +22.688,47.3083,23.8669,23.4414 +22.696,47.328,23.8903,23.4377 +22.704,47.347,23.9131,23.4339 +22.712,47.3654,23.9353,23.4301 +22.72,47.3832,23.9569,23.4263 +22.728,47.4005,23.978,23.4225 +22.736,47.4172,23.9985,23.4187 +22.744,47.4333,24.0184,23.4149 +22.752,47.4489,24.0377,23.4112 +22.76,47.463899999999995,24.0565,23.4074 +22.768,47.478300000000004,24.0747,23.4036 +22.776,47.4921,24.0923,23.3998 +22.784,47.505300000000005,24.1093,23.396 +22.792,47.5179,24.1257,23.3922 +22.8,47.53,24.1416,23.3884 +22.808,47.5415,24.1569,23.3846 +22.816,47.552400000000006,24.1716,23.3808 +22.824,47.5627,24.1857,23.377 +22.832,47.5724,24.1992,23.3732 +22.84,47.5815,24.2121,23.3694 +22.848,47.59,24.2244,23.3656 +22.856,47.598,24.2362,23.3618 +22.864,47.6055,24.2474,23.3581 +22.872,47.6122,24.2579,23.3543 +22.88,47.6184,24.2679,23.3505 +22.888,47.623999999999995,24.2773,23.3467 +22.896,47.629000000000005,24.2861,23.3429 +22.904,47.6335,24.2944,23.3391 +22.912,47.637299999999996,24.302,23.3353 +22.92,47.6405,24.309,23.3315 +22.928,47.6432,24.3155,23.3277 +22.936,47.6452,24.3213,23.3239 +22.944,47.646699999999996,24.3266,23.3201 +22.952,47.6476,24.3313,23.3163 +22.96,47.647800000000004,24.3354,23.3124 +22.968,47.647499999999994,24.3389,23.3086 +22.976,47.6466,24.3418,23.3048 +22.984,47.6451,24.3441,23.301 +22.992,47.643,24.3458,23.2972 +23.0,47.6404,24.347,23.2934 +23.008,47.637100000000004,24.3475,23.2896 +23.016000000000002,47.6333,24.3475,23.2858 +23.024,47.6288,24.3468,23.282 +23.032,47.6238,24.3456,23.2782 +23.04,47.6182,24.3438,23.2744 +23.048000000000002,47.612,24.3414,23.2706 +23.056,47.6053,24.3385,23.2668 +23.064,47.5979,24.3349,23.263 +23.072,47.5899,24.3308,23.2591 +23.080000000000002,47.5813,24.326,23.2553 +23.088,47.572199999999995,24.3207,23.2515 +23.096,47.5625,24.3148,23.2477 +23.104,47.5523,24.3084,23.2439 +23.112000000000002,47.5414,24.3013,23.2401 +23.12,47.53,24.2937,23.2363 +23.128,47.518,24.2855,23.2325 +23.136,47.505300000000005,24.2767,23.2286 +23.144000000000002,47.49209999999999,24.2673,23.2248 +23.152,47.478300000000004,24.2573,23.221 +23.16,47.464,24.2468,23.2172 +23.168,47.4491,24.2357,23.2134 +23.176000000000002,47.4337,24.2241,23.2096 +23.184,47.417500000000004,24.2118,23.2057 +23.192,47.4009,24.199,23.2019 +23.2,47.3838,24.1857,23.1981 +23.208000000000002,47.366,24.1717,23.1943 +23.216,47.3477,24.1572,23.1905 +23.224,47.3287,24.1421,23.1866 +23.232,47.3093,24.1265,23.1828 +23.240000000000002,47.2893,24.1103,23.179 +23.248,47.2688,24.0936,23.1752 +23.256,47.2475,24.0762,23.1713 +23.264,47.225899999999996,24.0584,23.1675 +23.272000000000002,47.203599999999994,24.0399,23.1637 +23.28,47.1809,24.021,23.1599 +23.288,47.157399999999996,24.0014,23.156 +23.296,47.1336,23.9814,23.1522 +23.304000000000002,47.1091,23.9607,23.1484 +23.312,47.084199999999996,23.9396,23.1446 +23.32,47.0586,23.9179,23.1407 +23.328,47.0325,23.8956,23.1369 +23.336000000000002,47.0059,23.8728,23.1331 +23.344,46.9788,23.8495,23.1293 +23.352,46.951,23.8256,23.1254 +23.36,46.9228,23.8012,23.1216 +23.368000000000002,46.894099999999995,23.7763,23.1178 +23.376,46.8647,23.7508,23.1139 +23.384,46.8349,23.7248,23.1101 +23.392,46.8046,23.6983,23.1063 +23.400000000000002,46.7737,23.6713,23.1024 +23.408,46.7423,23.6437,23.0986 +23.416,46.710499999999996,23.6157,23.0948 +23.424,46.678,23.5871,23.0909 +23.432000000000002,46.6451,23.558,23.0871 +23.44,46.6116,23.5283,23.0833 +23.448,46.577600000000004,23.4982,23.0794 +23.456,46.5432,23.4676,23.0756 +23.464000000000002,46.5083,23.4365,23.0718 +23.472,46.4727,23.4048,23.0679 +23.48,46.4368,23.3727,23.0641 +23.488,46.4003,23.3401,23.0602 +23.496000000000002,46.363299999999995,23.3069,23.0564 +23.504,46.325900000000004,23.2733,23.0526 +23.512,46.2879,23.2392,23.0487 +23.52,46.2496,23.2047,23.0449 +23.528000000000002,46.2106,23.1696,23.041 +23.536,46.1712,23.134,23.0372 +23.544,46.1314,23.098,23.0334 +23.552,46.090999999999994,23.0615,23.0295 +23.56,46.050200000000004,23.0245,23.0257 +23.568,46.0089,22.9871,23.0218 +23.576,45.967200000000005,22.9492,23.018 +23.584,45.924899999999994,22.9108,23.0141 +23.592,45.8823,22.872,23.0103 +23.6,45.8391,22.8327,23.0064 +23.608,45.7956,22.793,23.0026 +23.616,45.751599999999996,22.7528,22.9988 +23.624,45.7071,22.7122,22.9949 +23.632,45.6622,22.6711,22.9911 +23.64,45.6168,22.6296,22.9872 +23.648,45.571,22.5876,22.9834 +23.656,45.5247,22.5452,22.9795 +23.664,45.4781,22.5024,22.9757 +23.672,45.431,22.4592,22.9718 +23.68,45.3835,22.4155,22.968 +23.688,45.335499999999996,22.3714,22.9641 +23.696,45.2872,22.3269,22.9603 +23.704,45.238299999999995,22.2819,22.9564 +23.712,45.1892,22.2366,22.9526 +23.72,45.1395,22.1908,22.9487 +23.728,45.0895,22.1447,22.9448 +23.736,45.0391,22.0981,22.941 +23.744,44.988200000000006,22.0511,22.9371 +23.752,44.9371,22.0038,22.9333 +23.76,44.885400000000004,21.956,22.9294 +23.768,44.8335,21.9079,22.9256 +23.776,44.7811,21.8594,22.9217 +23.784,44.7284,21.8105,22.9179 +23.792,44.675200000000004,21.7612,22.914 +23.8,44.6216,21.7115,22.9101 +23.808,44.567800000000005,21.6615,22.9063 +23.816,44.5135,21.6111,22.9024 +23.824,44.4589,21.5603,22.8986 +23.832,44.4039,21.5092,22.8947 +23.84,44.3485,21.4577,22.8908 +23.848,44.2928,21.4058,22.887 +23.856,44.2368,21.3537,22.8831 +23.864,44.180400000000006,21.3011,22.8793 +23.872,44.123599999999996,21.2482,22.8754 +23.88,44.066500000000005,21.195,22.8715 +23.888,44.0092,21.1415,22.8677 +23.896,43.9514,21.0876,22.8638 +23.904,43.893299999999996,21.0334,22.8599 +23.912,43.834900000000005,20.9788,22.8561 +23.92,43.7762,20.924,22.8522 +23.928,43.7171,20.8688,22.8483 +23.936,43.6578,20.8133,22.8445 +23.944,43.5981,20.7575,22.8406 +23.952,43.5381,20.7014,22.8367 +23.96,43.4778,20.6449,22.8329 +23.968,43.4172,20.5882,22.829 +23.976,43.3563,20.5312,22.8251 +23.984,43.2952,20.4739,22.8213 +23.992,43.2337,20.4163,22.8174 +24.0,43.1719,20.3584,22.8135 +24.008,43.11,20.3003,22.8097 +24.016000000000002,43.0476,20.2418,22.8058 +24.024,42.985,20.1831,22.8019 +24.032,42.9221,20.1241,22.798 +24.04,42.8591,20.0649,22.7942 +24.048000000000002,42.7957,20.0054,22.7903 +24.056,42.732,19.9456,22.7864 +24.064,42.6682,19.8856,22.7826 +24.072,42.604,19.8253,22.7787 +24.080000000000002,42.5396,19.7648,22.7748 +24.088,42.475,19.7041,22.7709 +24.096,42.4102,19.6431,22.7671 +24.104,42.345,19.5818,22.7632 +24.112000000000002,42.2796,19.5203,22.7593 +24.12,42.214,19.4586,22.7554 +24.128,42.1482,19.3967,22.7515 +24.136,42.0823,19.3346,22.7477 +24.144000000000002,42.016000000000005,19.2722,22.7438 +24.152,41.9495,19.2096,22.7399 +24.16,41.8829,19.1469,22.736 +24.168,41.8161,19.0839,22.7322 +24.176000000000002,41.749,19.0207,22.7283 +24.184,41.6817,18.9573,22.7244 +24.192,41.6142,18.8937,22.7205 +24.2,41.546499999999995,18.8299,22.7166 +24.208000000000002,41.4787,18.766,22.7127 +24.216,41.4107,18.7018,22.7089 +24.224,41.3425,18.6375,22.705 +24.232,41.274100000000004,18.573,22.7011 +24.240000000000002,41.2055,18.5083,22.6972 +24.248,41.1368,18.4435,22.6933 +24.256,41.067899999999995,18.3785,22.6894 +24.264,40.998900000000006,18.3133,22.6856 +24.272000000000002,40.9297,18.248,22.6817 +24.28,40.8603,18.1825,22.6778 +24.288,40.7907,18.1168,22.6739 +24.296,40.72110000000001,18.0511,22.67 +24.304000000000002,40.6512,17.9851,22.6661 +24.312,40.5813,17.9191,22.6622 +24.32,40.5112,17.8529,22.6583 +24.328,40.4411,17.7866,22.6545 +24.336000000000002,40.3707,17.7201,22.6506 +24.344,40.300200000000004,17.6535,22.6467 +24.352,40.229600000000005,17.5868,22.6428 +24.36,40.1589,17.52,22.6389 +24.368000000000002,40.0881,17.4531,22.635 +24.376,40.0171,17.386,22.6311 +24.384,39.9461,17.3189,22.6272 +24.392,39.8749,17.2516,22.6233 +24.400000000000002,39.8036,17.1842,22.6194 +24.408,39.7323,17.1168,22.6155 +24.416,39.6609,17.0493,22.6116 +24.424,39.5894,16.9816,22.6078 +24.432000000000002,39.5178,16.9139,22.6039 +24.44,39.4461,16.8461,22.6 +24.448,39.3743,16.7782,22.5961 +24.456,39.302499999999995,16.7103,22.5922 +24.464000000000002,39.2305,16.6422,22.5883 +24.472,39.1586,16.5742,22.5844 +24.48,39.0865,16.506,22.5805 +24.488,39.014399999999995,16.4378,22.5766 +24.496000000000002,38.9422,16.3695,22.5727 +24.504,38.870000000000005,16.3012,22.5688 +24.512,38.797700000000006,16.2328,22.5649 +24.52,38.725300000000004,16.1643,22.561 +24.528000000000002,38.653,16.0959,22.5571 +24.536,38.5805,16.0273,22.5532 +24.544,38.5081,15.9588,22.5493 +24.552,38.4356,15.8902,22.5454 +24.560000000000002,38.3631,15.8216,22.5415 +24.568,38.2905,15.7529,22.5376 +24.576,38.2179,15.6842,22.5337 +24.584,38.145300000000006,15.6155,22.5298 +24.592,38.0727,15.5468,22.5259 +24.6,38.000099999999996,15.4781,22.522 +24.608,37.9274,15.4093,22.5181 +24.616,37.8548,15.3406,22.5142 +24.624,37.7821,15.2718,22.5103 +24.632,37.7094,15.2031,22.5063 +24.64,37.636700000000005,15.1343,22.5024 +24.648,37.564,15.0655,22.4985 +24.656,37.4914,14.9968,22.4946 +24.664,37.4187,14.928,22.4907 +24.672,37.3461,14.8593,22.4868 +24.68,37.2735,14.7906,22.4829 +24.688,37.2009,14.7219,22.479 +24.696,37.1283,14.6532,22.4751 +24.704,37.0558,14.5846,22.4712 +24.712,36.983200000000004,14.5159,22.4673 +24.72,36.9107,14.4473,22.4634 +24.728,36.8382,14.3788,22.4594 +24.736,36.7657,14.3102,22.4555 +24.744,36.6934,14.2418,22.4516 +24.752,36.621,14.1733,22.4477 +24.76,36.5487,14.1049,22.4438 +24.768,36.4764,14.0365,22.4399 +24.776,36.4042,13.9682,22.436 +24.784,36.3321,13.9,22.4321 +24.792,36.2599,13.8318,22.4281 +24.8,36.187799999999996,13.7636,22.4242 +24.808,36.1159,13.6956,22.4203 +24.816,36.044,13.6276,22.4164 +24.824,35.9721,13.5596,22.4125 +24.832,35.9003,13.4917,22.4086 +24.84,35.8285,13.4239,22.4046 +24.848,35.7569,13.3562,22.4007 +24.856,35.6853,13.2885,22.3968 +24.864,35.6138,13.2209,22.3929 +24.872,35.5424,13.1534,22.389 +24.88,35.4711,13.086,22.3851 +24.888,35.3998,13.0187,22.3811 +24.896,35.3287,12.9515,22.3772 +24.904,35.2576,12.8843,22.3733 +24.912,35.1867,12.8173,22.3694 +24.92,35.1158,12.7503,22.3655 +24.928,35.0449,12.6834,22.3615 +24.936,34.9743,12.6167,22.3576 +24.944,34.9037,12.55,22.3537 +24.952,34.833299999999994,12.4835,22.3498 +24.96,34.7628,12.417,22.3458 +24.968,34.6926,12.3507,22.3419 +24.976,34.6225,12.2845,22.338 +24.984,34.5525,12.2184,22.3341 +24.992,34.482600000000005,12.1524,22.3302 +25.0,34.4127,12.0865,22.3262 +25.008,34.3431,12.0208,22.3223 +25.016000000000002,34.2735,11.9551,22.3184 +25.024,34.2041,11.8896,22.3145 +25.032,34.1348,11.8243,22.3105 +25.04,34.0656,11.759,22.3066 +25.048000000000002,33.9966,11.6939,22.3027 +25.056,33.9276,11.6289,22.2987 +25.064,33.8589,11.5641,22.2948 +25.072,33.7903,11.4994,22.2909 +25.080000000000002,33.7218,11.4348,22.287 +25.088,33.653400000000005,11.3704,22.283 +25.096,33.5852,11.3061,22.2791 +25.104,33.5172,11.242,22.2752 +25.112000000000002,33.449200000000005,11.178,22.2712 +25.12,33.3814,11.1141,22.2673 +25.128,33.3138,11.0504,22.2634 +25.136,33.2463,10.9869,22.2594 +25.144000000000002,33.179,10.9235,22.2555 +25.152,33.1119,10.8603,22.2516 +25.16,33.044799999999995,10.7972,22.2476 +25.168,32.978,10.7343,22.2437 +25.176000000000002,32.9113,10.6715,22.2398 +25.184,32.8448,10.609,22.2358 +25.192,32.7784,10.5465,22.2319 +25.2,32.7123,10.4843,22.228 +25.208000000000002,32.6462,10.4222,22.224 +25.216,32.5803,10.3602,22.2201 +25.224,32.514700000000005,10.2985,22.2162 +25.232,32.4491,10.2369,22.2122 +25.240000000000002,32.3838,10.1755,22.2083 +25.248,32.3187,10.1143,22.2044 +25.256,32.2536,10.0532,22.2004 +25.264,32.1888,9.9923,22.1965 +25.272000000000002,32.1242,9.9316,22.1926 +25.28,32.0597,9.8711,22.1886 +25.288,31.9955,9.8108,22.1847 +25.296,31.9313,9.7506,22.1807 +25.304000000000002,31.8674,9.6906,22.1768 +25.312,31.8037,9.6308,22.1729 +25.32,31.740099999999998,9.5712,22.1689 +25.328,31.6768,9.5118,22.165 +25.336000000000002,31.6136,9.4526,22.161 +25.344,31.5507,9.3936,22.1571 +25.352,31.487899999999996,9.3347,22.1532 +25.36,31.4253,9.2761,22.1492 +25.368000000000002,31.362899999999996,9.2176,22.1453 +25.376,31.3007,9.1594,22.1413 +25.384,31.2387,9.1013,22.1374 +25.392,31.1768,9.0434,22.1334 +25.400000000000002,31.115299999999998,8.9858,22.1295 +25.408,31.0538,8.9283,22.1255 +25.416,30.9927,8.8711,22.1216 +25.424,30.9317,8.814,22.1177 +25.432000000000002,30.870800000000003,8.7571,22.1137 +25.44,30.810299999999998,8.7005,22.1098 +25.448,30.7498,8.644,22.1058 +25.456,30.689700000000002,8.5878,22.1019 +25.464000000000002,30.6296,8.5317,22.0979 +25.472,30.5699,8.4759,22.094 +25.48,30.5103,8.4203,22.09 +25.488,30.451,8.3649,22.0861 +25.496000000000002,30.3917,8.3096,22.0821 +25.504,30.3328,8.2546,22.0782 +25.512,30.2741,8.1999,22.0742 +25.52,30.215600000000002,8.1453,22.0703 +25.528000000000002,30.157199999999996,8.0909,22.0663 +25.536,30.0992,8.0368,22.0624 +25.544,30.0412,7.9828,22.0584 +25.552,29.983600000000003,7.9291,22.0545 +25.560000000000002,29.926099999999998,7.8756,22.0505 +25.568,29.868900000000004,7.8223,22.0466 +25.576,29.8119,7.7693,22.0426 +25.584,29.7551,7.7164,22.0387 +25.592000000000002,29.698500000000003,7.6638,22.0347 +25.6,29.6422,7.6114,22.0308 +25.608,29.586000000000002,7.5592,22.0268 +25.616,29.5301,7.5072,22.0229 +25.624,29.4743,7.4554,22.0189 +25.632,29.4189,7.4039,22.015 +25.64,29.363599999999998,7.3526,22.011 +25.648,29.308500000000002,7.3015,22.007 +25.656,29.253700000000002,7.2506,22.0031 +25.664,29.198999999999998,7.1999,21.9991 +25.672,29.1447,7.1495,21.9952 +25.68,29.0905,7.0993,21.9912 +25.688,29.0366,7.0493,21.9873 +25.696,28.9829,6.9996,21.9833 +25.704,28.929299999999998,6.95,21.9793 +25.712,28.8761,6.9007,21.9754 +25.72,28.823,6.8516,21.9714 +25.728,28.770300000000002,6.8028,21.9675 +25.736,28.7176,6.7541,21.9635 +25.744,28.6653,6.7057,21.9596 +25.752,28.6131,6.6575,21.9556 +25.76,28.5612,6.6096,21.9516 +25.768,28.509500000000003,6.5618,21.9477 +25.776,28.458,6.5143,21.9437 +25.784,28.4068,6.467,21.9398 +25.792,28.355800000000002,6.42,21.9358 +25.8,28.305,6.3732,21.9318 +25.808,28.2545,6.3266,21.9279 +25.816,28.2041,6.2802,21.9239 +25.824,28.1539,6.234,21.9199 +25.832,28.104100000000003,6.1881,21.916 +25.84,28.0544,6.1424,21.912 +25.848,28.005100000000002,6.097,21.9081 +25.856,27.9558,6.0517,21.9041 +25.864,27.906799999999997,6.0067,21.9001 +25.872,27.8581,5.9619,21.8962 +25.88,27.8096,5.9174,21.8922 +25.888,27.761200000000002,5.873,21.8882 +25.896,27.7132,5.8289,21.8843 +25.904,27.665399999999998,5.7851,21.8803 +25.912,27.6177,5.7414,21.8763 +25.92,27.5704,5.698,21.8724 +25.928,27.523200000000003,5.6548,21.8684 +25.936,27.4762,5.6118,21.8644 +25.944,27.429599999999997,5.5691,21.8605 +25.952,27.3831,5.5266,21.8565 +25.96,27.3368,5.4843,21.8525 +25.968,27.2908,5.4422,21.8486 +25.976,27.245,5.4004,21.8446 +25.984,27.199399999999997,5.3588,21.8406 +25.992,27.154,5.3174,21.8366 +26.0,27.108999999999998,5.2763,21.8327 +26.008,27.064,5.2353,21.8287 +26.016000000000002,27.0193,5.1946,21.8247 +26.024,26.974899999999998,5.1541,21.8208 +26.032,26.9307,5.1139,21.8168 +26.04,26.886699999999998,5.0739,21.8128 +26.048000000000002,26.8429,5.034,21.8089 +26.056,26.7994,4.9945,21.8049 +26.064,26.756,4.9551,21.8009 +26.072,26.7129,4.916,21.7969 +26.080000000000002,26.669999999999998,4.877,21.793 +26.088,26.6274,4.8384,21.789 +26.096,26.5849,4.7999,21.785 +26.104,26.5426,4.7616,21.781 +26.112000000000002,26.500700000000002,4.7236,21.7771 +26.12,26.4589,4.6858,21.7731 +26.128,26.4173,4.6482,21.7691 +26.136,26.3759,4.6108,21.7651 +26.144000000000002,26.334899999999998,4.5737,21.7612 +26.152,26.294,4.5368,21.7572 +26.16,26.2533,4.5001,21.7532 +26.168,26.212799999999998,4.4636,21.7492 +26.176000000000002,26.1726,4.4273,21.7453 +26.184,26.1325,4.3912,21.7413 +26.192,26.0927,4.3554,21.7373 +26.2,26.0531,4.3198,21.7333 +26.208000000000002,26.0137,4.2844,21.7293 +26.216,25.974600000000002,4.2492,21.7254 +26.224,25.9356,4.2142,21.7214 +26.232,25.896900000000002,4.1795,21.7174 +26.240000000000002,25.8583,4.1449,21.7134 +26.248,25.82,4.1106,21.7094 +26.256,25.782,4.0765,21.7055 +26.264,25.7441,4.0426,21.7015 +26.272000000000002,25.706400000000002,4.0089,21.6975 +26.28,25.6689,3.9754,21.6935 +26.288,25.6316,3.9421,21.6895 +26.296,25.5947,3.9091,21.6856 +26.304000000000002,25.5578,3.8762,21.6816 +26.312,25.5212,3.8436,21.6776 +26.32,25.4847,3.8111,21.6736 +26.328,25.4485,3.7789,21.6696 +26.336000000000002,25.4126,3.7469,21.6657 +26.344,25.3768,3.7151,21.6617 +26.352,25.341199999999997,3.6835,21.6577 +26.36,25.3058,3.6521,21.6537 +26.368000000000002,25.270599999999998,3.6209,21.6497 +26.376,25.2356,3.5899,21.6457 +26.384,25.2008,3.5591,21.6417 +26.392,25.1663,3.5285,21.6378 +26.400000000000002,25.1319,3.4981,21.6338 +26.408,25.0978,3.468,21.6298 +26.416,25.0638,3.438,21.6258 +26.424,25.03,3.4082,21.6218 +26.432000000000002,24.996399999999998,3.3786,21.6178 +26.44,24.963,3.3492,21.6138 +26.448,24.93,3.3201,21.6099 +26.456,24.897,3.2911,21.6059 +26.464000000000002,24.8642,3.2623,21.6019 +26.472,24.831599999999998,3.2337,21.5979 +26.48,24.799200000000003,3.2053,21.5939 +26.488,24.767,3.1771,21.5899 +26.496000000000002,24.735,3.1491,21.5859 +26.504,24.703200000000002,3.1213,21.5819 +26.512,24.671599999999998,3.0937,21.5779 +26.52,24.6402,3.0662,21.574 +26.528000000000002,24.609,3.039,21.57 +26.536,24.5779,3.0119,21.566 +26.544,24.5471,2.9851,21.562 +26.552,24.5164,2.9584,21.558 +26.560000000000002,24.485899999999997,2.9319,21.554 +26.568,24.4556,2.9056,21.55 +26.576,24.4255,2.8795,21.546 +26.584,24.3956,2.8536,21.542 +26.592000000000002,24.3659,2.8279,21.538 +26.6,24.336299999999998,2.8023,21.534 +26.608,24.307000000000002,2.777,21.53 +26.616,24.2779,2.7518,21.5261 +26.624000000000002,24.2489,2.7268,21.5221 +26.632,24.22,2.7019,21.5181 +26.64,24.191399999999998,2.6773,21.5141 +26.648,24.1629,2.6528,21.5101 +26.656,24.1347,2.6286,21.5061 +26.664,24.106499999999997,2.6044,21.5021 +26.672,24.0786,2.5805,21.4981 +26.68,24.0509,2.5568,21.4941 +26.688,24.023300000000003,2.5332,21.4901 +26.696,23.9959,2.5098,21.4861 +26.704,23.9687,2.4866,21.4821 +26.712,23.9416,2.4635,21.4781 +26.72,23.9147,2.4406,21.4741 +26.728,23.887999999999998,2.4179,21.4701 +26.736,23.8615,2.3954,21.4661 +26.744,23.8351,2.373,21.4621 +26.752,23.8089,2.3508,21.4581 +26.76,23.7829,2.3288,21.4541 +26.768,23.756999999999998,2.3069,21.4501 +26.776,23.7313,2.2852,21.4461 +26.784,23.7058,2.2637,21.4421 +26.792,23.6804,2.2423,21.4381 +26.8,23.6552,2.2211,21.4341 +26.808,23.6302,2.2001,21.4301 +26.816,23.6053,2.1792,21.4261 +26.824,23.5806,2.1585,21.4221 +26.832,23.555999999999997,2.1379,21.4181 +26.84,23.5316,2.1175,21.4141 +26.848,23.5074,2.0973,21.4101 +26.856,23.4833,2.0772,21.4061 +26.864,23.459400000000002,2.0573,21.4021 +26.872,23.4356,2.0375,21.3981 +26.88,23.412000000000003,2.0179,21.3941 +26.888,23.3886,1.9985,21.3901 +26.896,23.365299999999998,1.9792,21.3861 +26.904,23.342100000000002,1.96,21.3821 +26.912,23.3191,1.941,21.3781 +26.92,23.2963,1.9222,21.3741 +26.928,23.273600000000002,1.9035,21.3701 +26.936,23.2511,1.885,21.3661 +26.944,23.228700000000003,1.8666,21.3621 +26.952,23.206400000000002,1.8483,21.3581 +26.96,23.1843,1.8302,21.3541 +26.968,23.1624,1.8123,21.3501 +26.976,23.1406,1.7945,21.3461 +26.984,23.1189,1.7768,21.3421 +26.992,23.0974,1.7593,21.3381 +27.0,23.076,1.7419,21.3341 +27.008,23.0548,1.7247,21.3301 +27.016000000000002,23.0337,1.7076,21.3261 +27.024,23.0127,1.6907,21.322 +27.032,22.9919,1.6739,21.318 +27.04,22.9712,1.6572,21.314 +27.048000000000002,22.950699999999998,1.6407,21.31 +27.056,22.930300000000003,1.6243,21.306 +27.064,22.9101,1.6081,21.302 +27.072,22.889999999999997,1.592,21.298 +27.080000000000002,22.87,1.576,21.294 +27.088,22.850099999999998,1.5601,21.29 +27.096,22.8304,1.5444,21.286 +27.104,22.8108,1.5288,21.282 +27.112000000000002,22.7914,1.5134,21.278 +27.12,22.772000000000002,1.4981,21.2739 +27.128,22.7528,1.4829,21.2699 +27.136,22.7337,1.4678,21.2659 +27.144000000000002,22.7148,1.4529,21.2619 +27.152,22.695999999999998,1.4381,21.2579 +27.16,22.677300000000002,1.4234,21.2539 +27.168,22.6588,1.4089,21.2499 +27.176000000000002,22.6404,1.3945,21.2459 +27.184,22.6221,1.3802,21.2419 +27.192,22.6039,1.366,21.2379 +27.2,22.5858,1.352,21.2338 +27.208000000000002,22.567800000000002,1.338,21.2298 +27.216,22.55,1.3242,21.2258 +27.224,22.532400000000003,1.3106,21.2218 +27.232,22.5148,1.297,21.2178 +27.240000000000002,22.4973,1.2835,21.2138 +27.248,22.48,1.2702,21.2098 +27.256,22.4628,1.257,21.2058 +27.264,22.4456,1.2439,21.2017 +27.272000000000002,22.428600000000003,1.2309,21.1977 +27.28,22.4118,1.2181,21.1937 +27.288,22.395,1.2053,21.1897 +27.296,22.3784,1.1927,21.1857 +27.304000000000002,22.3619,1.1802,21.1817 +27.312,22.3455,1.1678,21.1777 +27.32,22.3291,1.1555,21.1736 +27.328,22.3129,1.1433,21.1696 +27.336000000000002,22.2968,1.1312,21.1656 +27.344,22.2809,1.1193,21.1616 +27.352,22.264999999999997,1.1074,21.1576 +27.36,22.249200000000002,1.0956,21.1536 +27.368000000000002,22.2335,1.084,21.1495 +27.376,22.218,1.0725,21.1455 +27.384,22.2025,1.061,21.1415 +27.392,22.1872,1.0497,21.1375 +27.400000000000002,22.172,1.0385,21.1335 +27.408,22.1569,1.0274,21.1295 +27.416,22.1417,1.0163,21.1254 +27.424,22.126800000000003,1.0054,21.1214 +27.432000000000002,22.112,0.9946,21.1174 +27.44,22.097299999999997,0.9839,21.1134 +27.448,22.082700000000003,0.9733,21.1094 +27.456,22.0681,0.9628,21.1053 +27.464000000000002,22.0536,0.9523,21.1013 +27.472,22.0393,0.942,21.0973 +27.48,22.0251,0.9318,21.0933 +27.488,22.011000000000003,0.9217,21.0893 +27.496000000000002,21.9968,0.9116,21.0852 +27.504,21.9829,0.9017,21.0812 +27.512,21.969,0.8918,21.0772 +27.52,21.9553,0.8821,21.0732 +27.528000000000002,21.941599999999998,0.8724,21.0692 +27.536,21.928,0.8629,21.0651 +27.544,21.9145,0.8534,21.0611 +27.552,21.9011,0.844,21.0571 +27.560000000000002,21.887800000000002,0.8347,21.0531 +27.568,21.8746,0.8255,21.0491 +27.576,21.861400000000003,0.8164,21.045 +27.584,21.848300000000002,0.8073,21.041 +27.592000000000002,21.8354,0.7984,21.037 +27.6,21.8225,0.7895,21.033 +27.608,21.8096,0.7807,21.0289 +27.616,21.796999999999997,0.7721,21.0249 +27.624000000000002,21.7844,0.7635,21.0209 +27.632,21.7718,0.7549,21.0169 +27.64,21.7593,0.7465,21.0128 +27.648,21.7469,0.7381,21.0088 +27.656,21.7347,0.7299,21.0048 +27.664,21.7225,0.7217,21.0008 +27.672,21.7103,0.7135,20.9968 +27.68,21.6982,0.7055,20.9927 +27.688,21.686300000000003,0.6976,20.9887 +27.696,21.6744,0.6897,20.9847 +27.704,21.662599999999998,0.6819,20.9807 +27.712,21.6508,0.6742,20.9766 +27.72,21.6391,0.6665,20.9726 +27.728,21.627499999999998,0.6589,20.9686 +27.736,21.616,0.6515,20.9645 +27.744,21.604499999999998,0.644,20.9605 +27.752,21.5932,0.6367,20.9565 +27.76,21.5819,0.6294,20.9525 +27.768,21.5706,0.6222,20.9484 +27.776,21.5595,0.6151,20.9444 +27.784,21.5484,0.608,20.9404 +27.792,21.537499999999998,0.6011,20.9364 +27.8,21.526400000000002,0.5941,20.9323 +27.808,21.5156,0.5873,20.9283 +27.816,21.5048,0.5805,20.9243 +27.824,21.494,0.5738,20.9202 +27.832,21.4834,0.5672,20.9162 +27.84,21.4728,0.5606,20.9122 +27.848,21.4623,0.5541,20.9082 +27.856,21.4518,0.5477,20.9041 +27.864,21.441399999999998,0.5413,20.9001 +27.872,21.4311,0.535,20.8961 +27.88,21.4208,0.5288,20.892 +27.888,21.410600000000002,0.5226,20.888 +27.896,21.4005,0.5165,20.884 +27.904,21.3904,0.5104,20.88 +27.912,21.380300000000002,0.5044,20.8759 +27.92,21.3704,0.4985,20.8719 +27.928,21.360599999999998,0.4927,20.8679 +27.936,21.3507,0.4869,20.8638 +27.944,21.3409,0.4811,20.8598 +27.952,21.3312,0.4754,20.8558 +27.96,21.3215,0.4698,20.8517 +27.968,21.312,0.4643,20.8477 +27.976,21.3025,0.4588,20.8437 +27.984,21.2929,0.4533,20.8396 +27.992,21.2835,0.4479,20.8356 +28.0,21.2742,0.4426,20.8316 +28.008,21.2649,0.4373,20.8276 +28.016000000000002,21.255599999999998,0.4321,20.8235 +28.024,21.2464,0.4269,20.8195 +28.032,21.2373,0.4218,20.8155 +28.04,21.228199999999998,0.4168,20.8114 +28.048000000000002,21.2192,0.4118,20.8074 +28.056,21.2102,0.4068,20.8034 +28.064,21.2012,0.4019,20.7993 +28.072,21.1924,0.3971,20.7953 +28.080000000000002,21.1836,0.3923,20.7913 +28.088,21.174799999999998,0.3876,20.7872 +28.096,21.1661,0.3829,20.7832 +28.104,21.1574,0.3782,20.7792 +28.112000000000002,21.148699999999998,0.3736,20.7751 +28.12,21.1402,0.3691,20.7711 +28.128,21.1316,0.3646,20.767 +28.136,21.1232,0.3602,20.763 +28.144000000000002,21.1148,0.3558,20.759 +28.152,21.1063,0.3514,20.7549 +28.16,21.098000000000003,0.3471,20.7509 +28.168,21.0898,0.3429,20.7469 +28.176000000000002,21.0815,0.3387,20.7428 +28.184,21.0733,0.3345,20.7388 +28.192,21.0652,0.3304,20.7348 +28.2,21.0571,0.3264,20.7307 +28.208000000000002,21.049,0.3223,20.7267 +28.216,21.0411,0.3184,20.7227 +28.224,21.032999999999998,0.3144,20.7186 +28.232,21.025100000000002,0.3105,20.7146 +28.240000000000002,21.0172,0.3067,20.7105 +28.248,21.0094,0.3029,20.7065 +28.256,21.0016,0.2991,20.7025 +28.264,20.9938,0.2954,20.6984 +28.272000000000002,20.9861,0.2917,20.6944 +28.28,20.9785,0.2881,20.6904 +28.288,20.9708,0.2845,20.6863 +28.296,20.9633,0.281,20.6823 +28.304000000000002,20.9556,0.2774,20.6782 +28.312,20.9482,0.274,20.6742 +28.32,20.9407,0.2705,20.6702 +28.328,20.9332,0.2671,20.6661 +28.336000000000002,20.9259,0.2638,20.6621 +28.344,20.9186,0.2605,20.6581 +28.352,20.9112,0.2572,20.654 +28.36,20.9039,0.2539,20.65 +28.368000000000002,20.8966,0.2507,20.6459 +28.376,20.8894,0.2475,20.6419 +28.384,20.882299999999997,0.2444,20.6379 +28.392,20.8751,0.2413,20.6338 +28.400000000000002,20.868,0.2382,20.6298 +28.408,20.860899999999997,0.2352,20.6257 +28.416,20.8539,0.2322,20.6217 +28.424,20.846999999999998,0.2293,20.6177 +28.432000000000002,20.8399,0.2263,20.6136 +28.44,20.833000000000002,0.2234,20.6096 +28.448,20.8261,0.2206,20.6055 +28.456,20.819300000000002,0.2178,20.6015 +28.464000000000002,20.8125,0.215,20.5975 +28.472,20.8056,0.2122,20.5934 +28.48,20.7989,0.2095,20.5894 +28.488,20.7921,0.2068,20.5853 +28.496000000000002,20.7854,0.2041,20.5813 +28.504,20.7787,0.2015,20.5772 +28.512,20.7721,0.1989,20.5732 +28.52,20.7655,0.1963,20.5692 +28.528000000000002,20.7589,0.1938,20.5651 +28.536,20.752299999999998,0.1912,20.5611 +28.544,20.7458,0.1888,20.557 +28.552,20.7393,0.1863,20.553 +28.560000000000002,20.7329,0.1839,20.549 +28.568,20.726399999999998,0.1815,20.5449 +28.576,20.72,0.1791,20.5409 +28.584,20.7136,0.1768,20.5368 +28.592000000000002,20.7073,0.1745,20.5328 +28.6,20.7009,0.1722,20.5287 +28.608,20.694599999999998,0.1699,20.5247 +28.616,20.6884,0.1677,20.5207 +28.624000000000002,20.682100000000002,0.1655,20.5166 +28.632,20.6759,0.1633,20.5126 +28.64,20.669700000000002,0.1612,20.5085 +28.648,20.6635,0.159,20.5045 +28.656000000000002,20.6573,0.1569,20.5004 +28.664,20.651200000000003,0.1548,20.4964 +28.672,20.6451,0.1528,20.4923 +28.68,20.6391,0.1508,20.4883 +28.688,20.633100000000002,0.1488,20.4843 +28.696,20.627,0.1468,20.4802 +28.704,20.621,0.1448,20.4762 +28.712,20.615000000000002,0.1429,20.4721 +28.72,20.609099999999998,0.141,20.4681 +28.728,20.603099999999998,0.1391,20.464 +28.736,20.5973,0.1373,20.46 +28.744,20.5913,0.1354,20.4559 +28.752,20.5855,0.1336,20.4519 +28.76,20.5796,0.1318,20.4478 +28.768,20.5738,0.13,20.4438 +28.776,20.5681,0.1283,20.4398 +28.784,20.5623,0.1266,20.4357 +28.792,20.5566,0.1249,20.4317 +28.8,20.550800000000002,0.1232,20.4276 +28.808,20.5451,0.1215,20.4236 +28.816,20.5394,0.1199,20.4195 +28.824,20.533700000000003,0.1182,20.4155 +28.832,20.528,0.1166,20.4114 +28.84,20.5225,0.1151,20.4074 +28.848,20.5168,0.1135,20.4033 +28.856,20.5113,0.112,20.3993 +28.864,20.505599999999998,0.1104,20.3952 +28.872,20.5001,0.1089,20.3912 +28.88,20.4946,0.1074,20.3872 +28.888,20.4891,0.106,20.3831 +28.896,20.483600000000003,0.1045,20.3791 +28.904,20.4781,0.1031,20.375 +28.912,20.4727,0.1017,20.371 +28.92,20.467200000000002,0.1003,20.3669 +28.928,20.4618,0.0989,20.3629 +28.936,20.4563,0.0975,20.3588 +28.944,20.451,0.0962,20.3548 +28.952,20.4456,0.0949,20.3507 +28.96,20.440299999999997,0.0936,20.3467 +28.968,20.434900000000003,0.0923,20.3426 +28.976,20.4296,0.091,20.3386 +28.984,20.4242,0.0897,20.3345 +28.992,20.419,0.0885,20.3305 +29.0,20.4136,0.0872,20.3264 +29.008,20.408399999999997,0.086,20.3224 +29.016000000000002,20.403100000000002,0.0848,20.3183 +29.024,20.398,0.0837,20.3143 +29.032,20.392699999999998,0.0825,20.3102 +29.04,20.3875,0.0813,20.3062 +29.048000000000002,20.3823,0.0802,20.3021 +29.056,20.377200000000002,0.0791,20.2981 +29.064,20.372,0.078,20.294 +29.072,20.366899999999998,0.0769,20.29 +29.080000000000002,20.361700000000003,0.0758,20.2859 +29.088,20.3566,0.0747,20.2819 +29.096,20.351499999999998,0.0737,20.2778 +29.104,20.346400000000003,0.0726,20.2738 +29.112000000000002,20.3413,0.0716,20.2697 +29.12,20.336299999999998,0.0706,20.2657 +29.128,20.331200000000003,0.0696,20.2616 +29.136,20.3262,0.0686,20.2576 +29.144000000000002,20.321099999999998,0.0676,20.2535 +29.152,20.316200000000002,0.0667,20.2495 +29.16,20.3111,0.0657,20.2454 +29.168,20.3062,0.0648,20.2414 +29.176000000000002,20.3012,0.0639,20.2373 +29.184,20.2963,0.063,20.2333 +29.192,20.2913,0.0621,20.2292 +29.2,20.2864,0.0612,20.2252 +29.208000000000002,20.2814,0.0603,20.2211 +29.216,20.2765,0.0594,20.2171 +29.224,20.2716,0.0586,20.213 +29.232,20.2667,0.0577,20.209 +29.240000000000002,20.261799999999997,0.0569,20.2049 +29.248,20.257,0.0561,20.2009 +29.256,20.2521,0.0553,20.1968 +29.264,20.2473,0.0545,20.1928 +29.272000000000002,20.2424,0.0537,20.1887 +29.28,20.2376,0.0529,20.1847 +29.288,20.232799999999997,0.0522,20.1806 +29.296,20.228,0.0514,20.1766 +29.304000000000002,20.2232,0.0507,20.1725 +29.312,20.218400000000003,0.0499,20.1685 +29.32,20.2136,0.0492,20.1644 +29.328,20.2089,0.0485,20.1604 +29.336000000000002,20.2041,0.0478,20.1563 +29.344,20.1994,0.0471,20.1523 +29.352,20.194599999999998,0.0464,20.1482 +29.36,20.1899,0.0457,20.1442 +29.368000000000002,20.185200000000002,0.0451,20.1401 +29.376,20.1805,0.0444,20.1361 +29.384,20.175700000000003,0.0437,20.132 +29.392,20.171,0.0431,20.1279 +29.400000000000002,20.1664,0.0425,20.1239 +29.408,20.1616,0.0418,20.1198 +29.416,20.157,0.0412,20.1158 +29.424,20.1523,0.0406,20.1117 +29.432000000000002,20.1477,0.04,20.1077 +29.44,20.143,0.0394,20.1036 +29.448,20.1385,0.0389,20.0996 +29.456,20.1338,0.0383,20.0955 +29.464000000000002,20.1292,0.0377,20.0915 +29.472,20.124599999999997,0.0372,20.0874 +29.48,20.12,0.0366,20.0834 +29.488,20.1154,0.0361,20.0793 +29.496000000000002,20.110799999999998,0.0355,20.0753 +29.504,20.1062,0.035,20.0712 +29.512,20.1017,0.0345,20.0672 +29.52,20.097099999999998,0.034,20.0631 +29.528000000000002,20.0925,0.0335,20.059 +29.536,20.088,0.033,20.055 +29.544,20.083399999999997,0.0325,20.0509 +29.552,20.0789,0.032,20.0469 +29.560000000000002,20.0743,0.0315,20.0428 +29.568,20.069799999999997,0.031,20.0388 +29.576,20.0653,0.0306,20.0347 +29.584,20.0608,0.0301,20.0307 +29.592000000000002,20.056199999999997,0.0296,20.0266 +29.6,20.0518,0.0292,20.0226 +29.608,20.0473,0.0288,20.0185 +29.616,20.042800000000003,0.0283,20.0145 +29.624000000000002,20.0383,0.0279,20.0104 +29.632,20.0338,0.0275,20.0063 +29.64,20.029400000000003,0.0271,20.0023 +29.648,20.0248,0.0266,19.9982 +29.656000000000002,20.0204,0.0262,19.9942 +29.664,20.015900000000002,0.0258,19.9901 +29.672,20.0115,0.0254,19.9861 +29.68,20.007099999999998,0.0251,19.982 +29.688000000000002,20.0027,0.0247,19.978 +29.696,19.9982,0.0243,19.9739 +29.704,19.9938,0.0239,19.9699 +29.712,19.9894,0.0236,19.9658 +29.72,19.9849,0.0232,19.9617 +29.728,19.9805,0.0228,19.9577 +29.736,19.976100000000002,0.0225,19.9536 +29.744,19.9717,0.0221,19.9496 +29.752,19.967299999999998,0.0218,19.9455 +29.76,19.963,0.0215,19.9415 +29.768,19.9585,0.0211,19.9374 +29.776,19.9542,0.0208,19.9334 +29.784,19.9498,0.0205,19.9293 +29.792,19.9455,0.0202,19.9253 +29.8,19.9411,0.0199,19.9212 +29.808,19.936700000000002,0.0196,19.9171 +29.816,19.9324,0.0193,19.9131 +29.824,19.927999999999997,0.019,19.909 +29.832,19.9237,0.0187,19.905 +29.84,19.9193,0.0184,19.9009 +29.848,19.915,0.0181,19.8969 +29.856,19.910600000000002,0.0178,19.8928 +29.864,19.906299999999998,0.0175,19.8888 +29.872,19.901999999999997,0.0173,19.8847 +29.88,19.8976,0.017,19.8806 +29.888,19.8933,0.0167,19.8766 +29.896,19.889,0.0165,19.8725 +29.904,19.884700000000002,0.0162,19.8685 +29.912,19.8803,0.0159,19.8644 +29.92,19.876099999999997,0.0157,19.8604 +29.928,19.8717,0.0154,19.8563 +29.936,19.8675,0.0152,19.8523 +29.944,19.8632,0.015,19.8482 +29.952,19.858800000000002,0.0147,19.8441 +29.96,19.8546,0.0145,19.8401 +29.968,19.850299999999997,0.0143,19.836 +29.976,19.846,0.014,19.832 +29.984,19.8417,0.0138,19.8279 +29.992,19.8375,0.0136,19.8239 +30.0,19.8332,0.0134,19.8198 +30.008,19.829,0.0132,19.8158 +30.016000000000002,19.8247,0.013,19.8117 +30.024,19.8204,0.0128,19.8076 +30.032,19.8162,0.0126,19.8036 +30.04,19.811899999999998,0.0124,19.7995 +30.048000000000002,19.8077,0.0122,19.7955 +30.056,19.8034,0.012,19.7914 +30.064,19.799200000000003,0.0118,19.7874 +30.072,19.794900000000002,0.0116,19.7833 +30.080000000000002,19.790699999999998,0.0114,19.7793 +30.088,19.7864,0.0112,19.7752 +30.096,19.7821,0.011,19.7711 +30.104,19.778,0.0109,19.7671 +30.112000000000002,19.7737,0.0107,19.763 +30.12,19.7695,0.0105,19.759 +30.128,19.7652,0.0103,19.7549 +30.136,19.761100000000003,0.0102,19.7509 +30.144000000000002,19.756800000000002,0.01,19.7468 +30.152,19.752599999999997,0.0098,19.7428 +30.16,19.7484,0.0097,19.7387 +30.168,19.7441,0.0095,19.7346 +30.176000000000002,19.74,0.0094,19.7306 +30.184,19.7357,0.0092,19.7265 +30.192,19.7316,0.0091,19.7225 +30.2,19.7273,0.0089,19.7184 +30.208000000000002,19.723200000000002,0.0088,19.7144 +30.216,19.7189,0.0086,19.7103 +30.224,19.7147,0.0085,19.7062 +30.232,19.710600000000003,0.0084,19.7022 +30.240000000000002,19.7063,0.0082,19.6981 +30.248,19.702199999999998,0.0081,19.6941 +30.256,19.698,0.008,19.69 +30.264,19.6938,0.0078,19.686 +30.272000000000002,19.6896,0.0077,19.6819 +30.28,19.6855,0.0076,19.6779 +30.288,19.6812,0.0074,19.6738 +30.296,19.677,0.0073,19.6697 +30.304000000000002,19.672900000000002,0.0072,19.6657 +30.312,19.6687,0.0071,19.6616 +30.32,19.6646,0.007,19.6576 +30.328,19.660400000000003,0.0069,19.6535 +30.336000000000002,19.6562,0.0067,19.6495 +30.344,19.651999999999997,0.0066,19.6454 +30.352,19.6479,0.0065,19.6414 +30.36,19.6437,0.0064,19.6373 +30.368000000000002,19.639499999999998,0.0063,19.6332 +30.376,19.6354,0.0062,19.6292 +30.384,19.6312,0.0061,19.6251 +30.392,19.6271,0.006,19.6211 +30.400000000000002,19.6229,0.0059,19.617 +30.408,19.6188,0.0058,19.613 +30.416,19.6146,0.0057,19.6089 +30.424,19.610500000000002,0.0056,19.6049 +30.432000000000002,19.6063,0.0055,19.6008 +30.44,19.6021,0.0054,19.5967 +30.448,19.598,0.0053,19.5927 +30.456,19.593799999999998,0.0052,19.5886 +30.464000000000002,19.589799999999997,0.0052,19.5846 +30.472,19.5856,0.0051,19.5805 +30.48,19.5815,0.005,19.5765 +30.488,19.577299999999997,0.0049,19.5724 +30.496000000000002,19.5732,0.0048,19.5684 +30.504,19.569,0.0047,19.5643 +30.512,19.564899999999998,0.0047,19.5602 +30.52,19.5608,0.0046,19.5562 +30.528000000000002,19.5566,0.0045,19.5521 +30.536,19.552500000000002,0.0044,19.5481 +30.544,19.5483,0.0043,19.544 +30.552,19.5443,0.0043,19.54 +30.560000000000002,19.540100000000002,0.0042,19.5359 +30.568,19.536,0.0041,19.5319 +30.576,19.5319,0.0041,19.5278 +30.584,19.527700000000003,0.004,19.5237 +30.592000000000002,19.523600000000002,0.0039,19.5197 +30.6,19.5195,0.0039,19.5156 +30.608,19.5154,0.0038,19.5116 +30.616,19.5112,0.0037,19.5075 +30.624000000000002,19.507199999999997,0.0037,19.5035 +30.632,19.503,0.0036,19.4994 +30.64,19.4989,0.0035,19.4954 +30.648,19.494799999999998,0.0035,19.4913 +30.656000000000002,19.4906,0.0034,19.4872 +30.664,19.4866,0.0034,19.4832 +30.672,19.4824,0.0033,19.4791 +30.68,19.4783,0.0032,19.4751 +30.688000000000002,19.4742,0.0032,19.471 +30.696,19.4701,0.0031,19.467 +30.704,19.466,0.0031,19.4629 +30.712,19.4619,0.003,19.4589 +30.72,19.4578,0.003,19.4548 +30.728,19.4537,0.0029,19.4508 +30.736,19.4496,0.0029,19.4467 +30.744,19.4454,0.0028,19.4426 +30.752,19.4414,0.0028,19.4386 +30.76,19.4372,0.0027,19.4345 +30.768,19.4332,0.0027,19.4305 +30.776,19.429000000000002,0.0026,19.4264 +30.784,19.425,0.0026,19.4224 +30.792,19.4208,0.0025,19.4183 +30.8,19.416800000000002,0.0025,19.4143 +30.808,19.4127,0.0025,19.4102 +30.816,19.4086,0.0024,19.4062 +30.824,19.404500000000002,0.0024,19.4021 +30.832,19.4003,0.0023,19.398 +30.84,19.3963,0.0023,19.394 +30.848,19.3921,0.0022,19.3899 +30.856,19.388099999999998,0.0022,19.3859 +30.864,19.383999999999997,0.0022,19.3818 +30.872,19.3799,0.0021,19.3778 +30.88,19.375799999999998,0.0021,19.3737 +30.888,19.3718,0.0021,19.3697 +30.896,19.3676,0.002,19.3656 +30.904,19.363599999999998,0.002,19.3616 +30.912,19.3594,0.0019,19.3575 +30.92,19.3554,0.0019,19.3535 +30.928,19.3513,0.0019,19.3494 +30.936,19.3471,0.0018,19.3453 +30.944,19.3431,0.0018,19.3413 +30.952,19.339,0.0018,19.3372 +30.96,19.3349,0.0017,19.3332 +30.968,19.3308,0.0017,19.3291 +30.976,19.3268,0.0017,19.3251 +30.984,19.3227,0.0017,19.321 +30.992,19.3186,0.0016,19.317 +31.0,19.3145,0.0016,19.3129 +31.008,19.3105,0.0016,19.3089 +31.016000000000002,19.3063,0.0015,19.3048 +31.024,19.3023,0.0015,19.3008 +31.032,19.2982,0.0015,19.2967 +31.04,19.2942,0.0015,19.2927 +31.048000000000002,19.29,0.0014,19.2886 +31.056,19.286,0.0014,19.2846 +31.064,19.2819,0.0014,19.2805 +31.072,19.2778,0.0014,19.2764 +31.080000000000002,19.2737,0.0013,19.2724 +31.088,19.2696,0.0013,19.2683 +31.096,19.2656,0.0013,19.2643 +31.104,19.2615,0.0013,19.2602 +31.112000000000002,19.2574,0.0012,19.2562 +31.12,19.2533,0.0012,19.2521 +31.128,19.2493,0.0012,19.2481 +31.136,19.2452,0.0012,19.244 +31.144000000000002,19.2412,0.0012,19.24 +31.152,19.237000000000002,0.0011,19.2359 +31.16,19.233,0.0011,19.2319 +31.168,19.2289,0.0011,19.2278 +31.176000000000002,19.2249,0.0011,19.2238 +31.184,19.2208,0.0011,19.2197 +31.192,19.2167,0.001,19.2157 +31.2,19.212600000000002,0.001,19.2116 +31.208000000000002,19.2086,0.001,19.2076 +31.216,19.2045,0.001,19.2035 +31.224,19.2005,0.001,19.1995 +31.232,19.1963,0.0009,19.1954 +31.240000000000002,19.192300000000003,0.0009,19.1914 +31.248,19.188200000000002,0.0009,19.1873 +31.256,19.1842,0.0009,19.1833 +31.264,19.180100000000003,0.0009,19.1792 +31.272000000000002,19.1761,0.0009,19.1752 +31.28,19.1719,0.0008,19.1711 +31.288,19.167900000000003,0.0008,19.1671 +31.296,19.163800000000002,0.0008,19.163 +31.304000000000002,19.1598,0.0008,19.159 +31.312,19.155700000000003,0.0008,19.1549 +31.32,19.1517,0.0008,19.1509 +31.328,19.1476,0.0008,19.1468 +31.336000000000002,19.1435,0.0007,19.1428 +31.344,19.1394,0.0007,19.1387 +31.352,19.135399999999997,0.0007,19.1347 +31.36,19.1313,0.0007,19.1306 +31.368000000000002,19.127299999999998,0.0007,19.1266 +31.376,19.123199999999997,0.0007,19.1225 +31.384,19.1192,0.0007,19.1185 +31.392,19.115,0.0006,19.1144 +31.400000000000002,19.110999999999997,0.0006,19.1104 +31.408,19.1069,0.0006,19.1063 +31.416,19.102899999999998,0.0006,19.1023 +31.424,19.098799999999997,0.0006,19.0982 +31.432000000000002,19.0948,0.0006,19.0942 +31.44,19.0907,0.0006,19.0901 +31.448,19.086699999999997,0.0006,19.0861 +31.456,19.0826,0.0006,19.082 +31.464000000000002,19.0785,0.0005,19.078 +31.472,19.074399999999997,0.0005,19.0739 +31.48,19.0704,0.0005,19.0699 +31.488,19.0663,0.0005,19.0658 +31.496000000000002,19.0623,0.0005,19.0618 +31.504,19.0582,0.0005,19.0577 +31.512,19.054199999999998,0.0005,19.0537 +31.52,19.0501,0.0005,19.0496 +31.528000000000002,19.0461,0.0005,19.0456 +31.536,19.041999999999998,0.0005,19.0415 +31.544,19.038,0.0005,19.0375 +31.552,19.0338,0.0004,19.0334 +31.560000000000002,19.029799999999998,0.0004,19.0294 +31.568,19.0257,0.0004,19.0253 +31.576,19.0217,0.0004,19.0213 +31.584,19.017699999999998,0.0004,19.0173 +31.592000000000002,19.0136,0.0004,19.0132 +31.6,19.0096,0.0004,19.0092 +31.608,19.005499999999998,0.0004,19.0051 +31.616,19.0015,0.0004,19.0011 +31.624000000000002,18.9974,0.0004,18.997 +31.632,18.993399999999998,0.0004,18.993 +31.64,18.9893,0.0004,18.9889 +31.648,18.9853,0.0004,18.9849 +31.656000000000002,18.981099999999998,0.0003,18.9808 +31.664,18.9771,0.0003,18.9768 +31.672,18.973,0.0003,18.9727 +31.68,18.968999999999998,0.0003,18.9687 +31.688000000000002,18.965,0.0003,18.9647 +31.696,18.9609,0.0003,18.9606 +31.704,18.9569,0.0003,18.9566 +31.712,18.9528,0.0003,18.9525 +31.720000000000002,18.9488,0.0003,18.9485 +31.728,18.9447,0.0003,18.9444 +31.736,18.9407,0.0003,18.9404 +31.744,18.9366,0.0003,18.9363 +31.752,18.9326,0.0003,18.9323 +31.76,18.9285,0.0003,18.9282 +31.768,18.9245,0.0003,18.9242 +31.776,18.9205,0.0003,18.9202 +31.784,18.9164,0.0003,18.9161 +31.792,18.9123,0.0002,18.9121 +31.8,18.9082,0.0002,18.908 +31.808,18.9042,0.0002,18.904 +31.816,18.9001,0.0002,18.8999 +31.824,18.8961,0.0002,18.8959 +31.832,18.892,0.0002,18.8918 +31.84,18.887999999999998,0.0002,18.8878 +31.848,18.884,0.0002,18.8838 +31.856,18.8799,0.0002,18.8797 +31.864,18.875899999999998,0.0002,18.8757 +31.872,18.8718,0.0002,18.8716 +31.88,18.8678,0.0002,18.8676 +31.888,18.863699999999998,0.0002,18.8635 +31.896,18.8597,0.0002,18.8595 +31.904,18.8557,0.0002,18.8555 +31.912,18.8516,0.0002,18.8514 +31.92,18.8476,0.0002,18.8474 +31.928,18.8435,0.0002,18.8433 +31.936,18.8395,0.0002,18.8393 +31.944,18.8355,0.0002,18.8353 +31.952,18.8314,0.0002,18.8312 +31.96,18.8274,0.0002,18.8272 +31.968,18.8233,0.0002,18.8231 +31.976,18.8193,0.0002,18.8191 +31.984,18.8152,0.0002,18.815 +31.992,18.8112,0.0002,18.811 +32.0,18.8071,0.0001,18.807 +32.008,18.803,0.0001,18.8029 +32.016,18.799,0.0001,18.7989 +32.024,18.7949,0.0001,18.7948 +32.032000000000004,18.7909,0.0001,18.7908 +32.04,18.7869,0.0001,18.7868 +32.048,18.782799999999998,0.0001,18.7827 +32.056,18.7788,0.0001,18.7787 +32.064,18.7747,0.0001,18.7746 +32.072,18.7707,0.0001,18.7706 +32.08,18.7667,0.0001,18.7666 +32.088,18.7626,0.0001,18.7625 +32.096000000000004,18.7586,0.0001,18.7585 +32.104,18.7545,0.0001,18.7544 +32.112,18.7505,0.0001,18.7504 +32.12,18.7465,0.0001,18.7464 +32.128,18.7424,0.0001,18.7423 +32.136,18.7384,0.0001,18.7383 +32.144,18.7344,0.0001,18.7343 +32.152,18.7303,0.0001,18.7302 +32.160000000000004,18.7263,0.0001,18.7262 +32.168,18.7222,0.0001,18.7221 +32.176,18.7182,0.0001,18.7181 +32.184,18.714199999999998,0.0001,18.7141 +32.192,18.7101,0.0001,18.71 +32.2,18.7061,0.0001,18.706 +32.208,18.7021,0.0001,18.702 +32.216,18.698,0.0001,18.6979 +32.224000000000004,18.694,0.0001,18.6939 +32.232,18.6899,0.0001,18.6898 +32.24,18.6859,0.0001,18.6858 +32.248,18.6819,0.0001,18.6818 +32.256,18.6778,0.0001,18.6777 +32.264,18.6738,0.0001,18.6737 +32.272,18.6698,0.0001,18.6697 +32.28,18.6657,0.0001,18.6656 +32.288000000000004,18.6617,0.0001,18.6616 +32.296,18.6577,0.0001,18.6576 +32.304,18.6536,0.0001,18.6535 +32.312,18.6496,0.0001,18.6495 +32.32,18.6455,0.0001,18.6454 +32.328,18.6415,0.0001,18.6414 +32.336,18.6375,0.0001,18.6374 +32.344,18.633399999999998,0.0001,18.6333 +32.352000000000004,18.6294,0.0001,18.6293 +32.36,18.6254,0.0001,18.6253 +32.368,18.6213,0.0001,18.6212 +32.376,18.6173,0.0001,18.6172 +32.384,18.6133,0.0001,18.6132 +32.392,18.6092,0.0001,18.6091 +32.4,18.6052,0.0001,18.6051 +32.408,18.6012,0.0001,18.6011 +32.416000000000004,18.5971,0.0001,18.597 +32.424,18.5931,0.0001,18.593 +32.432,18.589,0.0,18.589 +32.44,18.5849,0.0,18.5849 +32.448,18.5809,0.0,18.5809 +32.456,18.5769,0.0,18.5769 +32.464,18.5728,0.0,18.5728 +32.472,18.5688,0.0,18.5688 +32.480000000000004,18.5648,0.0,18.5648 +32.488,18.5608,0.0,18.5608 +32.496,18.5567,0.0,18.5567 +32.504,18.5527,0.0,18.5527 +32.512,18.5487,0.0,18.5487 +32.52,18.5446,0.0,18.5446 +32.528,18.5406,0.0,18.5406 +32.536,18.5366,0.0,18.5366 +32.544000000000004,18.5325,0.0,18.5325 +32.552,18.5285,0.0,18.5285 +32.56,18.5245,0.0,18.5245 +32.568,18.5204,0.0,18.5204 +32.576,18.5164,0.0,18.5164 +32.584,18.5124,0.0,18.5124 +32.592,18.5084,0.0,18.5084 +32.6,18.5043,0.0,18.5043 +32.608000000000004,18.5003,0.0,18.5003 +32.616,18.4963,0.0,18.4963 +32.624,18.4922,0.0,18.4922 +32.632,18.4882,0.0,18.4882 +32.64,18.4842,0.0,18.4842 +32.648,18.4802,0.0,18.4802 +32.656,18.4761,0.0,18.4761 +32.664,18.4721,0.0,18.4721 +32.672000000000004,18.4681,0.0,18.4681 +32.68,18.4641,0.0,18.4641 +32.688,18.46,0.0,18.46 +32.696,18.456,0.0,18.456 +32.704,18.452,0.0,18.452 +32.712,18.4479,0.0,18.4479 +32.72,18.4439,0.0,18.4439 +32.728,18.4399,0.0,18.4399 +32.736000000000004,18.4359,0.0,18.4359 +32.744,18.4318,0.0,18.4318 +32.752,18.4278,0.0,18.4278 +32.76,18.4238,0.0,18.4238 +32.768,18.4198,0.0,18.4198 +32.776,18.4157,0.0,18.4157 +32.784,18.4117,0.0,18.4117 +32.792,18.4077,0.0,18.4077 +32.8,18.4037,0.0,18.4037 +32.808,18.3996,0.0,18.3996 +32.816,18.3956,0.0,18.3956 +32.824,18.3916,0.0,18.3916 +32.832,18.3876,0.0,18.3876 +32.84,18.3836,0.0,18.3836 +32.848,18.3795,0.0,18.3795 +32.856,18.3755,0.0,18.3755 +32.864,18.3715,0.0,18.3715 +32.872,18.3675,0.0,18.3675 +32.88,18.3634,0.0,18.3634 +32.888,18.3594,0.0,18.3594 +32.896,18.3554,0.0,18.3554 +32.904,18.3514,0.0,18.3514 +32.912,18.3474,0.0,18.3474 +32.92,18.3433,0.0,18.3433 +32.928,18.3393,0.0,18.3393 +32.936,18.3353,0.0,18.3353 +32.944,18.3313,0.0,18.3313 +32.952,18.3272,0.0,18.3272 +32.96,18.3232,0.0,18.3232 +32.968,18.3192,0.0,18.3192 +32.976,18.3152,0.0,18.3152 +32.984,18.3112,0.0,18.3112 +32.992,18.3071,0.0,18.3071 +33.0,18.3031,0.0,18.3031 +33.008,18.2991,0.0,18.2991 +33.016,18.2951,0.0,18.2951 +33.024,18.2911,0.0,18.2911 +33.032000000000004,18.2871,0.0,18.2871 +33.04,18.283,0.0,18.283 +33.048,18.279,0.0,18.279 +33.056,18.275,0.0,18.275 +33.064,18.271,0.0,18.271 +33.072,18.267,0.0,18.267 +33.08,18.263,0.0,18.263 +33.088,18.2589,0.0,18.2589 +33.096000000000004,18.2549,0.0,18.2549 +33.104,18.2509,0.0,18.2509 +33.112,18.2469,0.0,18.2469 +33.12,18.2429,0.0,18.2429 +33.128,18.2389,0.0,18.2389 +33.136,18.2348,0.0,18.2348 +33.144,18.2308,0.0,18.2308 +33.152,18.2268,0.0,18.2268 +33.160000000000004,18.2228,0.0,18.2228 +33.168,18.2188,0.0,18.2188 +33.176,18.2148,0.0,18.2148 +33.184,18.2108,0.0,18.2108 +33.192,18.2067,0.0,18.2067 +33.2,18.2027,0.0,18.2027 +33.208,18.1987,0.0,18.1987 +33.216,18.1947,0.0,18.1947 +33.224000000000004,18.1907,0.0,18.1907 +33.232,18.1867,0.0,18.1867 +33.24,18.1827,0.0,18.1827 +33.248,18.1786,0.0,18.1786 +33.256,18.1746,0.0,18.1746 +33.264,18.1706,0.0,18.1706 +33.272,18.1666,0.0,18.1666 +33.28,18.1626,0.0,18.1626 +33.288000000000004,18.1586,0.0,18.1586 +33.296,18.1546,0.0,18.1546 +33.304,18.1506,0.0,18.1506 +33.312,18.1466,0.0,18.1466 +33.32,18.1425,0.0,18.1425 +33.328,18.1385,0.0,18.1385 +33.336,18.1345,0.0,18.1345 +33.344,18.1305,0.0,18.1305 +33.352000000000004,18.1265,0.0,18.1265 +33.36,18.1225,0.0,18.1225 +33.368,18.1185,0.0,18.1185 +33.376,18.1145,0.0,18.1145 +33.384,18.1105,0.0,18.1105 +33.392,18.1065,0.0,18.1065 +33.4,18.1025,0.0,18.1025 +33.408,18.0984,0.0,18.0984 +33.416000000000004,18.0944,0.0,18.0944 +33.424,18.0904,0.0,18.0904 +33.432,18.0864,0.0,18.0864 +33.44,18.0824,0.0,18.0824 +33.448,18.0784,0.0,18.0784 +33.456,18.0744,0.0,18.0744 +33.464,18.0704,0.0,18.0704 +33.472,18.0664,0.0,18.0664 +33.480000000000004,18.0624,0.0,18.0624 +33.488,18.0584,0.0,18.0584 +33.496,18.0544,0.0,18.0544 +33.504,18.0504,0.0,18.0504 +33.512,18.0464,0.0,18.0464 +33.52,18.0424,0.0,18.0424 +33.528,18.0384,0.0,18.0384 +33.536,18.0344,0.0,18.0344 +33.544000000000004,18.0304,0.0,18.0304 +33.552,18.0264,0.0,18.0264 +33.56,18.0224,0.0,18.0224 +33.568,18.0184,0.0,18.0184 +33.576,18.0143,0.0,18.0143 +33.584,18.0103,0.0,18.0103 +33.592,18.0063,0.0,18.0063 +33.6,18.0023,0.0,18.0023 +33.608000000000004,17.9983,0.0,17.9983 +33.616,17.9943,0.0,17.9943 +33.624,17.9903,0.0,17.9903 +33.632,17.9863,0.0,17.9863 +33.64,17.9823,0.0,17.9823 +33.648,17.9783,0.0,17.9783 +33.656,17.9743,0.0,17.9743 +33.664,17.9703,0.0,17.9703 +33.672000000000004,17.9663,0.0,17.9663 +33.68,17.9623,0.0,17.9623 +33.688,17.9583,0.0,17.9583 +33.696,17.9543,0.0,17.9543 +33.704,17.9503,0.0,17.9503 +33.712,17.9463,0.0,17.9463 +33.72,17.9424,0.0,17.9424 +33.728,17.9384,0.0,17.9384 +33.736000000000004,17.9344,0.0,17.9344 +33.744,17.9304,0.0,17.9304 +33.752,17.9264,0.0,17.9264 +33.76,17.9224,0.0,17.9224 +33.768,17.9184,0.0,17.9184 +33.776,17.9144,0.0,17.9144 +33.784,17.9104,0.0,17.9104 +33.792,17.9064,0.0,17.9064 +33.8,17.9024,0.0,17.9024 +33.808,17.8984,0.0,17.8984 +33.816,17.8944,0.0,17.8944 +33.824,17.8904,0.0,17.8904 +33.832,17.8864,0.0,17.8864 +33.84,17.8824,0.0,17.8824 +33.848,17.8784,0.0,17.8784 +33.856,17.8744,0.0,17.8744 +33.864,17.8704,0.0,17.8704 +33.872,17.8664,0.0,17.8664 +33.88,17.8625,0.0,17.8625 +33.888,17.8585,0.0,17.8585 +33.896,17.8545,0.0,17.8545 +33.904,17.8505,0.0,17.8505 +33.912,17.8465,0.0,17.8465 +33.92,17.8425,0.0,17.8425 +33.928,17.8385,0.0,17.8385 +33.936,17.8345,0.0,17.8345 +33.944,17.8305,0.0,17.8305 +33.952,17.8265,0.0,17.8265 +33.96,17.8225,0.0,17.8225 +33.968,17.8186,0.0,17.8186 +33.976,17.8146,0.0,17.8146 +33.984,17.8106,0.0,17.8106 +33.992,17.8066,0.0,17.8066 +34.0,17.8026,0.0,17.8026 +34.008,17.7986,0.0,17.7986 +34.016,17.7946,0.0,17.7946 +34.024,17.7906,0.0,17.7906 +34.032000000000004,17.7867,0.0,17.7867 +34.04,17.7827,0.0,17.7827 +34.048,17.7787,0.0,17.7787 +34.056,17.7747,0.0,17.7747 +34.064,17.7707,0.0,17.7707 +34.072,17.7667,0.0,17.7667 +34.08,17.7627,0.0,17.7627 +34.088,17.7588,0.0,17.7588 +34.096000000000004,17.7548,0.0,17.7548 +34.104,17.7508,0.0,17.7508 +34.112,17.7468,0.0,17.7468 +34.12,17.7428,0.0,17.7428 +34.128,17.7388,0.0,17.7388 +34.136,17.7349,0.0,17.7349 +34.144,17.7309,0.0,17.7309 +34.152,17.7269,0.0,17.7269 +34.160000000000004,17.7229,0.0,17.7229 +34.168,17.7189,0.0,17.7189 +34.176,17.7149,0.0,17.7149 +34.184,17.711,0.0,17.711 +34.192,17.707,0.0,17.707 +34.2,17.703,0.0,17.703 +34.208,17.699,0.0,17.699 +34.216,17.695,0.0,17.695 +34.224000000000004,17.6911,0.0,17.6911 +34.232,17.6871,0.0,17.6871 +34.24,17.6831,0.0,17.6831 +34.248,17.6791,0.0,17.6791 +34.256,17.6751,0.0,17.6751 +34.264,17.6712,0.0,17.6712 +34.272,17.6672,0.0,17.6672 +34.28,17.6632,0.0,17.6632 +34.288000000000004,17.6592,0.0,17.6592 +34.296,17.6553,0.0,17.6553 +34.304,17.6513,0.0,17.6513 +34.312,17.6473,0.0,17.6473 +34.32,17.6433,0.0,17.6433 +34.328,17.6394,0.0,17.6394 +34.336,17.6354,0.0,17.6354 +34.344,17.6314,0.0,17.6314 +34.352000000000004,17.6274,0.0,17.6274 +34.36,17.6235,0.0,17.6235 +34.368,17.6195,0.0,17.6195 +34.376,17.6155,0.0,17.6155 +34.384,17.6115,0.0,17.6115 +34.392,17.6076,0.0,17.6076 +34.4,17.6036,0.0,17.6036 +34.408,17.5996,0.0,17.5996 +34.416000000000004,17.5956,0.0,17.5956 +34.424,17.5917,0.0,17.5917 +34.432,17.5877,0.0,17.5877 +34.44,17.5837,0.0,17.5837 +34.448,17.5798,0.0,17.5798 +34.456,17.5758,0.0,17.5758 +34.464,17.5718,0.0,17.5718 +34.472,17.5678,0.0,17.5678 +34.480000000000004,17.5639,0.0,17.5639 +34.488,17.5599,0.0,17.5599 +34.496,17.5559,0.0,17.5559 +34.504,17.552,0.0,17.552 +34.512,17.548,0.0,17.548 +34.52,17.544,0.0,17.544 +34.528,17.5401,0.0,17.5401 +34.536,17.5361,0.0,17.5361 +34.544000000000004,17.5321,0.0,17.5321 +34.552,17.5282,0.0,17.5282 +34.56,17.5242,0.0,17.5242 +34.568,17.5202,0.0,17.5202 +34.576,17.5163,0.0,17.5163 +34.584,17.5123,0.0,17.5123 +34.592,17.5083,0.0,17.5083 +34.6,17.5044,0.0,17.5044 +34.608000000000004,17.5004,0.0,17.5004 +34.616,17.4964,0.0,17.4964 +34.624,17.4925,0.0,17.4925 +34.632,17.4885,0.0,17.4885 +34.64,17.4845,0.0,17.4845 +34.648,17.4806,0.0,17.4806 +34.656,17.4766,0.0,17.4766 +34.664,17.4727,0.0,17.4727 +34.672000000000004,17.4687,0.0,17.4687 +34.68,17.4647,0.0,17.4647 +34.688,17.4608,0.0,17.4608 +34.696,17.4568,0.0,17.4568 +34.704,17.4529,0.0,17.4529 +34.712,17.4489,0.0,17.4489 +34.72,17.4449,0.0,17.4449 +34.728,17.441,0.0,17.441 +34.736000000000004,17.437,0.0,17.437 +34.744,17.4331,0.0,17.4331 +34.752,17.4291,0.0,17.4291 +34.76,17.4251,0.0,17.4251 +34.768,17.4212,0.0,17.4212 +34.776,17.4172,0.0,17.4172 +34.784,17.4133,0.0,17.4133 +34.792,17.4093,0.0,17.4093 +34.800000000000004,17.4054,0.0,17.4054 +34.808,17.4014,0.0,17.4014 +34.816,17.3974,0.0,17.3974 +34.824,17.3935,0.0,17.3935 +34.832,17.3895,0.0,17.3895 +34.84,17.3856,0.0,17.3856 +34.848,17.3816,0.0,17.3816 +34.856,17.3777,0.0,17.3777 +34.864,17.3737,0.0,17.3737 +34.872,17.3698,0.0,17.3698 +34.88,17.3658,0.0,17.3658 +34.888,17.3619,0.0,17.3619 +34.896,17.3579,0.0,17.3579 +34.904,17.354,0.0,17.354 +34.912,17.35,0.0,17.35 +34.92,17.346,0.0,17.346 +34.928,17.3421,0.0,17.3421 +34.936,17.3381,0.0,17.3381 +34.944,17.3342,0.0,17.3342 +34.952,17.3302,0.0,17.3302 +34.96,17.3263,0.0,17.3263 +34.968,17.3224,0.0,17.3224 +34.976,17.3184,0.0,17.3184 +34.984,17.3145,0.0,17.3145 +34.992,17.3105,0.0,17.3105 +35.0,17.3066,0.0,17.3066 +35.008,17.3026,0.0,17.3026 +35.016,17.2987,0.0,17.2987 +35.024,17.2947,0.0,17.2947 +35.032000000000004,17.2908,0.0,17.2908 +35.04,17.2868,0.0,17.2868 +35.048,17.2829,0.0,17.2829 +35.056,17.2789,0.0,17.2789 +35.064,17.275,0.0,17.275 +35.072,17.271,0.0,17.271 +35.08,17.2671,0.0,17.2671 +35.088,17.2632,0.0,17.2632 +35.096000000000004,17.2592,0.0,17.2592 +35.104,17.2553,0.0,17.2553 +35.112,17.2513,0.0,17.2513 +35.12,17.2474,0.0,17.2474 +35.128,17.2434,0.0,17.2434 +35.136,17.2395,0.0,17.2395 +35.144,17.2356,0.0,17.2356 +35.152,17.2316,0.0,17.2316 +35.160000000000004,17.2277,0.0,17.2277 +35.168,17.2237,0.0,17.2237 +35.176,17.2198,0.0,17.2198 +35.184,17.2159,0.0,17.2159 +35.192,17.2119,0.0,17.2119 +35.2,17.208,0.0,17.208 +35.208,17.2041,0.0,17.2041 +35.216,17.2001,0.0,17.2001 +35.224000000000004,17.1962,0.0,17.1962 +35.232,17.1922,0.0,17.1922 +35.24,17.1883,0.0,17.1883 +35.248,17.1844,0.0,17.1844 +35.256,17.1804,0.0,17.1804 +35.264,17.1765,0.0,17.1765 +35.272,17.1726,0.0,17.1726 +35.28,17.1686,0.0,17.1686 +35.288000000000004,17.1647,0.0,17.1647 +35.296,17.1608,0.0,17.1608 +35.304,17.1568,0.0,17.1568 +35.312,17.1529,0.0,17.1529 +35.32,17.149,0.0,17.149 +35.328,17.145,0.0,17.145 +35.336,17.1411,0.0,17.1411 +35.344,17.1372,0.0,17.1372 +35.352000000000004,17.1332,0.0,17.1332 +35.36,17.1293,0.0,17.1293 +35.368,17.1254,0.0,17.1254 +35.376,17.1214,0.0,17.1214 +35.384,17.1175,0.0,17.1175 +35.392,17.1136,0.0,17.1136 +35.4,17.1097,0.0,17.1097 +35.408,17.1057,0.0,17.1057 +35.416000000000004,17.1018,0.0,17.1018 +35.424,17.0979,0.0,17.0979 +35.432,17.094,0.0001,17.0939 +35.44,17.0901,0.0001,17.09 +35.448,17.086199999999998,0.0001,17.0861 +35.456,17.0823,0.0001,17.0822 +35.464,17.0783,0.0001,17.0782 +35.472,17.0744,0.0001,17.0743 +35.480000000000004,17.0705,0.0001,17.0704 +35.488,17.0666,0.0001,17.0665 +35.496,17.0626,0.0001,17.0625 +35.504,17.058699999999998,0.0001,17.0586 +35.512,17.0548,0.0001,17.0547 +35.52,17.0509,0.0001,17.0508 +35.528,17.0469,0.0001,17.0468 +35.536,17.043,0.0001,17.0429 +35.544000000000004,17.0391,0.0001,17.039 +35.552,17.0352,0.0001,17.0351 +35.56,17.031299999999998,0.0001,17.0312 +35.568,17.0273,0.0001,17.0272 +35.576,17.0234,0.0001,17.0233 +35.584,17.0195,0.0001,17.0194 +35.592,17.0156,0.0001,17.0155 +35.6,17.0117,0.0001,17.0116 +35.608000000000004,17.0077,0.0001,17.0076 +35.616,17.0038,0.0001,17.0037 +35.624,16.9999,0.0001,16.9998 +35.632,16.996,0.0001,16.9959 +35.64,16.9921,0.0001,16.992 +35.648,16.9882,0.0001,16.9881 +35.656,16.9842,0.0001,16.9841 +35.664,16.9803,0.0001,16.9802 +35.672000000000004,16.976399999999998,0.0001,16.9763 +35.68,16.9725,0.0001,16.9724 +35.688,16.9686,0.0001,16.9685 +35.696,16.9647,0.0001,16.9646 +35.704,16.9608,0.0001,16.9607 +35.712,16.9568,0.0001,16.9567 +35.72,16.9529,0.0001,16.9528 +35.728,16.948999999999998,0.0001,16.9489 +35.736000000000004,16.9451,0.0001,16.945 +35.744,16.9412,0.0001,16.9411 +35.752,16.9373,0.0001,16.9372 +35.76,16.9334,0.0001,16.9333 +35.768,16.9295,0.0001,16.9294 +35.776,16.9256,0.0001,16.9255 +35.784,16.9216,0.0001,16.9215 +35.792,16.9177,0.0001,16.9176 +35.800000000000004,16.9138,0.0001,16.9137 +35.808,16.9099,0.0001,16.9098 +35.816,16.906,0.0001,16.9059 +35.824,16.9021,0.0001,16.902 +35.832,16.8982,0.0001,16.8981 +35.84,16.8943,0.0001,16.8942 +35.848,16.8904,0.0001,16.8903 +35.856,16.886499999999998,0.0001,16.8864 +35.864,16.8826,0.0001,16.8825 +35.872,16.8787,0.0001,16.8786 +35.88,16.8748,0.0001,16.8747 +35.888,16.8709,0.0001,16.8708 +35.896,16.867,0.0001,16.8669 +35.904,16.8631,0.0001,16.863 +35.912,16.8592,0.0001,16.8591 +35.92,16.8552,0.0001,16.8551 +35.928,16.8513,0.0001,16.8512 +35.936,16.8474,0.0001,16.8473 +35.944,16.8435,0.0001,16.8434 +35.952,16.8396,0.0001,16.8395 +35.96,16.8357,0.0001,16.8356 +35.968,16.8318,0.0001,16.8317 +35.976,16.8279,0.0001,16.8278 +35.984,16.823999999999998,0.0001,16.8239 +35.992,16.8201,0.0001,16.82 +36.0,16.8163,0.0001,16.8162 +36.008,16.8124,0.0001,16.8123 +36.016,16.8085,0.0001,16.8084 +36.024,16.8046,0.0001,16.8045 +36.032000000000004,16.8007,0.0001,16.8006 +36.04,16.7968,0.0001,16.7967 +36.048,16.7929,0.0001,16.7928 +36.056,16.789,0.0001,16.7889 +36.064,16.7851,0.0001,16.785 +36.072,16.7812,0.0001,16.7811 +36.08,16.7773,0.0001,16.7772 +36.088,16.7734,0.0001,16.7733 +36.096000000000004,16.7695,0.0001,16.7694 +36.104,16.7656,0.0001,16.7655 +36.112,16.7617,0.0001,16.7616 +36.12,16.7578,0.0001,16.7577 +36.128,16.753999999999998,0.0002,16.7538 +36.136,16.7502,0.0002,16.75 +36.144,16.746299999999998,0.0002,16.7461 +36.152,16.7424,0.0002,16.7422 +36.160000000000004,16.7385,0.0002,16.7383 +36.168,16.7346,0.0002,16.7344 +36.176,16.7307,0.0002,16.7305 +36.184,16.7268,0.0002,16.7266 +36.192,16.7229,0.0002,16.7227 +36.2,16.719,0.0002,16.7188 +36.208,16.7152,0.0002,16.715 +36.216,16.711299999999998,0.0002,16.7111 +36.224000000000004,16.7074,0.0002,16.7072 +36.232,16.7035,0.0002,16.7033 +36.24,16.6996,0.0002,16.6994 +36.248,16.6957,0.0002,16.6955 +36.256,16.6919,0.0002,16.6917 +36.264,16.688,0.0002,16.6878 +36.272,16.6841,0.0002,16.6839 +36.28,16.6802,0.0002,16.68 +36.288000000000004,16.6763,0.0002,16.6761 +36.296,16.6724,0.0002,16.6722 +36.304,16.668599999999998,0.0002,16.6684 +36.312,16.6647,0.0002,16.6645 +36.32,16.6608,0.0002,16.6606 +36.328,16.6569,0.0002,16.6567 +36.336,16.653,0.0002,16.6528 +36.344,16.6492,0.0002,16.649 +36.352000000000004,16.6453,0.0002,16.6451 +36.36,16.6414,0.0002,16.6412 +36.368,16.6375,0.0002,16.6373 +36.376,16.6336,0.0002,16.6334 +36.384,16.6298,0.0002,16.6296 +36.392,16.625899999999998,0.0002,16.6257 +36.4,16.622,0.0002,16.6218 +36.408,16.6181,0.0002,16.6179 +36.416000000000004,16.6143,0.0002,16.6141 +36.424,16.6104,0.0002,16.6102 +36.432,16.6065,0.0002,16.6063 +36.44,16.6027,0.0002,16.6025 +36.448,16.5988,0.0002,16.5986 +36.456,16.5949,0.0002,16.5947 +36.464,16.5911,0.0003,16.5908 +36.472,16.5873,0.0003,16.587 +36.480000000000004,16.5834,0.0003,16.5831 +36.488,16.5795,0.0003,16.5792 +36.496,16.575699999999998,0.0003,16.5754 +36.504,16.5718,0.0003,16.5715 +36.512,16.567899999999998,0.0003,16.5676 +36.52,16.564,0.0003,16.5637 +36.528,16.5602,0.0003,16.5599 +36.536,16.5563,0.0003,16.556 +36.544000000000004,16.5524,0.0003,16.5521 +36.552,16.5486,0.0003,16.5483 +36.56,16.5447,0.0003,16.5444 +36.568,16.5408,0.0003,16.5405 +36.576,16.537,0.0003,16.5367 +36.584,16.5331,0.0003,16.5328 +36.592,16.5293,0.0003,16.529 +36.6,16.525399999999998,0.0003,16.5251 +36.608000000000004,16.5215,0.0003,16.5212 +36.616,16.517699999999998,0.0003,16.5174 +36.624,16.5138,0.0003,16.5135 +36.632,16.5099,0.0003,16.5096 +36.64,16.5061,0.0003,16.5058 +36.648,16.5022,0.0003,16.5019 +36.656,16.4984,0.0003,16.4981 +36.664,16.4945,0.0003,16.4942 +36.672000000000004,16.4906,0.0003,16.4903 +36.68,16.4868,0.0003,16.4865 +36.688,16.483,0.0004,16.4826 +36.696,16.4792,0.0004,16.4788 +36.704,16.4753,0.0004,16.4749 +36.712,16.4714,0.0004,16.471 +36.72,16.467599999999997,0.0004,16.4672 +36.728,16.4637,0.0004,16.4633 +36.736000000000004,16.459899999999998,0.0004,16.4595 +36.744,16.456,0.0004,16.4556 +36.752,16.452199999999998,0.0004,16.4518 +36.76,16.4483,0.0004,16.4479 +36.768,16.444499999999998,0.0004,16.4441 +36.776,16.4406,0.0004,16.4402 +36.784,16.436799999999998,0.0004,16.4364 +36.792,16.4329,0.0004,16.4325 +36.800000000000004,16.429,0.0004,16.4286 +36.808,16.4252,0.0004,16.4248 +36.816,16.4213,0.0004,16.4209 +36.824,16.4175,0.0004,16.4171 +36.832,16.4136,0.0004,16.4132 +36.84,16.4098,0.0004,16.4094 +36.848,16.4059,0.0004,16.4055 +36.856,16.4022,0.0005,16.4017 +36.864000000000004,16.3984,0.0005,16.3979 +36.872,16.394499999999997,0.0005,16.394 +36.88,16.3907,0.0005,16.3902 +36.888,16.386799999999997,0.0005,16.3863 +36.896,16.383,0.0005,16.3825 +36.904,16.379099999999998,0.0005,16.3786 +36.912,16.3753,0.0005,16.3748 +36.92,16.371399999999998,0.0005,16.3709 +36.928,16.3676,0.0005,16.3671 +36.936,16.363699999999998,0.0005,16.3632 +36.944,16.3599,0.0005,16.3594 +36.952,16.356099999999998,0.0005,16.3556 +36.96,16.3522,0.0005,16.3517 +36.968,16.348399999999998,0.0005,16.3479 +36.976,16.3445,0.0005,16.344 +36.984,16.3407,0.0005,16.3402 +36.992,16.3369,0.0005,16.3364 +37.0,16.333099999999998,0.0006,16.3325 +37.008,16.3293,0.0006,16.3287 +37.016,16.3254,0.0006,16.3248 +37.024,16.3216,0.0006,16.321 +37.032000000000004,16.3178,0.0006,16.3172 +37.04,16.3139,0.0006,16.3133 +37.048,16.3101,0.0006,16.3095 +37.056,16.3063,0.0006,16.3057 +37.064,16.3024,0.0006,16.3018 +37.072,16.298599999999997,0.0006,16.298 +37.08,16.2948,0.0006,16.2942 +37.088,16.290899999999997,0.0006,16.2903 +37.096000000000004,16.2871,0.0006,16.2865 +37.104,16.283299999999997,0.0006,16.2827 +37.112,16.2795,0.0007,16.2788 +37.12,16.275699999999997,0.0007,16.275 +37.128,16.2719,0.0007,16.2712 +37.136,16.267999999999997,0.0007,16.2673 +37.144,16.2642,0.0007,16.2635 +37.152,16.260399999999997,0.0007,16.2597 +37.160000000000004,16.2565,0.0007,16.2558 +37.168,16.252699999999997,0.0007,16.252 +37.176,16.2489,0.0007,16.2482 +37.184,16.245099999999997,0.0007,16.2444 +37.192,16.2412,0.0007,16.2405 +37.2,16.237399999999997,0.0007,16.2367 +37.208,16.2336,0.0007,16.2329 +37.216,16.2299,0.0008,16.2291 +37.224000000000004,16.226000000000003,0.0008,16.2252 +37.232,16.2222,0.0008,16.2214 +37.24,16.218400000000003,0.0008,16.2176 +37.248,16.2146,0.0008,16.2138 +37.256,16.210700000000003,0.0008,16.2099 +37.264,16.2069,0.0008,16.2061 +37.272,16.203100000000003,0.0008,16.2023 +37.28,16.1993,0.0008,16.1985 +37.288000000000004,16.195400000000003,0.0008,16.1946 +37.296,16.1916,0.0008,16.1908 +37.304,16.187900000000003,0.0009,16.187 +37.312,16.1841,0.0009,16.1832 +37.32,16.180300000000003,0.0009,16.1794 +37.328,16.1765,0.0009,16.1756 +37.336,16.172600000000003,0.0009,16.1717 +37.344,16.1688,0.0009,16.1679 +37.352000000000004,16.165000000000003,0.0009,16.1641 +37.36,16.1612,0.0009,16.1603 +37.368,16.157400000000003,0.0009,16.1565 +37.376,16.1536,0.0009,16.1527 +37.384,16.149800000000003,0.001,16.1488 +37.392,16.146,0.001,16.145 +37.4,16.142200000000003,0.001,16.1412 +37.408,16.1384,0.001,16.1374 +37.416000000000004,16.134600000000002,0.001,16.1336 +37.424,16.1308,0.001,16.1298 +37.432,16.127000000000002,0.001,16.126 +37.44,16.1232,0.001,16.1222 +37.448,16.119400000000002,0.0011,16.1183 +37.456,16.1156,0.0011,16.1145 +37.464,16.111800000000002,0.0011,16.1107 +37.472,16.108,0.0011,16.1069 +37.480000000000004,16.104200000000002,0.0011,16.1031 +37.488,16.1004,0.0011,16.0993 +37.496,16.096600000000002,0.0011,16.0955 +37.504,16.0928,0.0011,16.0917 +37.512,16.089000000000002,0.0011,16.0879 +37.52,16.0853,0.0012,16.0841 +37.528,16.081500000000002,0.0012,16.0803 +37.536,16.0777,0.0012,16.0765 +37.544000000000004,16.073900000000002,0.0012,16.0727 +37.552,16.0701,0.0012,16.0689 +37.56,16.066300000000002,0.0012,16.0651 +37.568,16.0625,0.0012,16.0613 +37.576,16.0588,0.0013,16.0575 +37.584,16.055,0.0013,16.0537 +37.592,16.0512,0.0013,16.0499 +37.6,16.0474,0.0013,16.0461 +37.608000000000004,16.0436,0.0013,16.0423 +37.616,16.0398,0.0013,16.0385 +37.624,16.036,0.0013,16.0347 +37.632,16.0323,0.0014,16.0309 +37.64,16.0285,0.0014,16.0271 +37.648,16.0247,0.0014,16.0233 +37.656,16.0209,0.0014,16.0195 +37.664,16.0171,0.0014,16.0157 +37.672000000000004,16.0133,0.0014,16.0119 +37.68,16.0095,0.0014,16.0081 +37.688,16.0058,0.0015,16.0043 +37.696,16.002,0.0015,16.0005 +37.704,15.9982,0.0015,15.9967 +37.712,15.9944,0.0015,15.9929 +37.72,15.9906,0.0015,15.9891 +37.728,15.9868,0.0015,15.9853 +37.736000000000004,15.9832,0.0016,15.9816 +37.744,15.9794,0.0016,15.9778 +37.752,15.9756,0.0016,15.974 +37.76,15.9718,0.0016,15.9702 +37.768,15.968,0.0016,15.9664 +37.776,15.9642,0.0016,15.9626 +37.784,15.9605,0.0017,15.9588 +37.792,15.9567,0.0017,15.955 +37.800000000000004,15.9529,0.0017,15.9512 +37.808,15.9492,0.0017,15.9475 +37.816,15.9454,0.0017,15.9437 +37.824,15.941699999999999,0.0018,15.9399 +37.832,15.937899999999999,0.0018,15.9361 +37.84,15.934099999999999,0.0018,15.9323 +37.848,15.930299999999999,0.0018,15.9285 +37.856,15.926599999999999,0.0018,15.9248 +37.864000000000004,15.922899999999998,0.0019,15.921 +37.872,15.919099999999998,0.0019,15.9172 +37.88,15.915299999999998,0.0019,15.9134 +37.888,15.911499999999998,0.0019,15.9096 +37.896,15.9078,0.0019,15.9059 +37.904,15.904100000000001,0.002,15.9021 +37.912,15.900300000000001,0.002,15.8983 +37.92,15.896500000000001,0.002,15.8945 +37.928,15.892800000000001,0.002,15.8908 +37.936,15.889000000000001,0.002,15.887 +37.944,15.8853,0.0021,15.8832 +37.952,15.8815,0.0021,15.8794 +37.96,15.8777,0.0021,15.8756 +37.968,15.874,0.0021,15.8719 +37.976,15.8703,0.0022,15.8681 +37.984,15.8665,0.0022,15.8643 +37.992,15.8628,0.0022,15.8606 +38.0,15.859,0.0022,15.8568 +38.008,15.8553,0.0023,15.853 +38.016,15.8515,0.0023,15.8492 +38.024,15.8478,0.0023,15.8455 +38.032000000000004,15.844,0.0023,15.8417 +38.04,15.8403,0.0024,15.8379 +38.048,15.836599999999999,0.0024,15.8342 +38.056,15.832799999999999,0.0024,15.8304 +38.064,15.828999999999999,0.0024,15.8266 +38.072,15.8254,0.0025,15.8229 +38.08,15.8216,0.0025,15.8191 +38.088,15.8178,0.0025,15.8153 +38.096000000000004,15.8141,0.0025,15.8116 +38.104,15.8104,0.0026,15.8078 +38.112,15.8066,0.0026,15.804 +38.12,15.8029,0.0026,15.8003 +38.128,15.7991,0.0026,15.7965 +38.136,15.7955,0.0027,15.7928 +38.144,15.7917,0.0027,15.789 +38.152,15.7879,0.0027,15.7852 +38.160000000000004,15.7843,0.0028,15.7815 +38.168,15.7805,0.0028,15.7777 +38.176,15.7768,0.0028,15.774 +38.184,15.773000000000001,0.0028,15.7702 +38.192,15.769300000000001,0.0029,15.7664 +38.2,15.765600000000001,0.0029,15.7627 +38.208,15.761800000000001,0.0029,15.7589 +38.216,15.7582,0.003,15.7552 +38.224000000000004,15.7544,0.003,15.7514 +38.232,15.7507,0.003,15.7477 +38.24,15.747,0.0031,15.7439 +38.248,15.7433,0.0031,15.7402 +38.256,15.7395,0.0031,15.7364 +38.264,15.7358,0.0032,15.7326 +38.272,15.732099999999999,0.0032,15.7289 +38.28,15.728299999999999,0.0032,15.7251 +38.288000000000004,15.724699999999999,0.0033,15.7214 +38.296,15.720899999999999,0.0033,15.7176 +38.304,15.7172,0.0033,15.7139 +38.312,15.7135,0.0034,15.7101 +38.32,15.7098,0.0034,15.7064 +38.328,15.7061,0.0034,15.7027 +38.336,15.7024,0.0035,15.6989 +38.344,15.6987,0.0035,15.6952 +38.352000000000004,15.6949,0.0035,15.6914 +38.36,15.6913,0.0036,15.6877 +38.368,15.6875,0.0036,15.6839 +38.376,15.6839,0.0037,15.6802 +38.384,15.6801,0.0037,15.6764 +38.392,15.676400000000001,0.0037,15.6727 +38.4,15.6728,0.0038,15.669 +38.408,15.669,0.0038,15.6652 +38.416000000000004,15.6653,0.0038,15.6615 +38.424,15.6616,0.0039,15.6577 +38.432,15.6579,0.0039,15.654 +38.44,15.6542,0.004,15.6502 +38.448,15.6505,0.004,15.6465 +38.456,15.646799999999999,0.004,15.6428 +38.464,15.643099999999999,0.0041,15.639 +38.472,15.6394,0.0041,15.6353 +38.480000000000004,15.635800000000001,0.0042,15.6316 +38.488,15.632000000000001,0.0042,15.6278 +38.496,15.628400000000001,0.0043,15.6241 +38.504,15.6247,0.0043,15.6204 +38.512,15.621,0.0044,15.6166 +38.52,15.6173,0.0044,15.6129 +38.528,15.6136,0.0044,15.6092 +38.536,15.6099,0.0045,15.6054 +38.544000000000004,15.6062,0.0045,15.6017 +38.552,15.6026,0.0046,15.598 +38.56,15.5988,0.0046,15.5942 +38.568,15.5952,0.0047,15.5905 +38.576,15.5915,0.0047,15.5868 +38.584,15.5878,0.0048,15.583 +38.592,15.5841,0.0048,15.5793 +38.6,15.580499999999999,0.0049,15.5756 +38.608000000000004,15.576799999999999,0.0049,15.5719 +38.616,15.5731,0.005,15.5681 +38.624,15.5694,0.005,15.5644 +38.632,15.565800000000001,0.0051,15.5607 +38.64,15.562100000000001,0.0051,15.557 +38.648,15.5584,0.0052,15.5532 +38.656,15.5547,0.0052,15.5495 +38.664,15.5511,0.0053,15.5458 +38.672000000000004,15.5474,0.0053,15.5421 +38.68,15.5438,0.0054,15.5384 +38.688,15.54,0.0054,15.5346 +38.696,15.5364,0.0055,15.5309 +38.704,15.5327,0.0055,15.5272 +38.712,15.5291,0.0056,15.5235 +38.72,15.5255,0.0057,15.5198 +38.728,15.5217,0.0057,15.516 +38.736000000000004,15.5181,0.0058,15.5123 +38.744,15.5144,0.0058,15.5086 +38.752,15.5108,0.0059,15.5049 +38.76,15.507200000000001,0.006,15.5012 +38.768,15.5035,0.006,15.4975 +38.776,15.4999,0.0061,15.4938 +38.784,15.4961,0.0061,15.49 +38.792,15.4925,0.0062,15.4863 +38.800000000000004,15.4889,0.0063,15.4826 +38.808,15.485199999999999,0.0063,15.4789 +38.816,15.481599999999998,0.0064,15.4752 +38.824,15.4779,0.0064,15.4715 +38.832,15.474300000000001,0.0065,15.4678 +38.84,15.4707,0.0066,15.4641 +38.848,15.467,0.0066,15.4604 +38.856,15.4634,0.0067,15.4567 +38.864000000000004,15.4598,0.0068,15.453 +38.872,15.456,0.0068,15.4492 +38.88,15.452399999999999,0.0069,15.4455 +38.888,15.4488,0.007,15.4418 +38.896,15.4451,0.007,15.4381 +38.904,15.4415,0.0071,15.4344 +38.912,15.437899999999999,0.0072,15.4307 +38.92,15.4343,0.0073,15.427 +38.928,15.4306,0.0073,15.4233 +38.936,15.427000000000001,0.0074,15.4196 +38.944,15.4234,0.0075,15.4159 +38.952,15.4197,0.0075,15.4122 +38.96,15.4161,0.0076,15.4085 +38.968,15.4125,0.0077,15.4048 +38.976,15.4089,0.0078,15.4011 +38.984,15.405199999999999,0.0078,15.3974 +38.992,15.4016,0.0079,15.3937 +39.0,15.398,0.008,15.39 +39.008,15.3945,0.0081,15.3864 +39.016,15.3909,0.0082,15.3827 +39.024,15.3872,0.0082,15.379 +39.032000000000004,15.3836,0.0083,15.3753 +39.04,15.38,0.0084,15.3716 +39.048,15.3764,0.0085,15.3679 +39.056,15.3728,0.0086,15.3642 +39.064,15.3692,0.0087,15.3605 +39.072,15.365499999999999,0.0087,15.3568 +39.08,15.3619,0.0088,15.3531 +39.088,15.3583,0.0089,15.3494 +39.096000000000004,15.354800000000001,0.009,15.3458 +39.104,15.3512,0.0091,15.3421 +39.112,15.3476,0.0092,15.3384 +39.12,15.344,0.0093,15.3347 +39.128,15.340399999999999,0.0094,15.331 +39.136,15.336699999999999,0.0094,15.3273 +39.144,15.3331,0.0095,15.3236 +39.152,15.329600000000001,0.0096,15.32 +39.160000000000004,15.326,0.0097,15.3163 +39.168,15.3224,0.0098,15.3126 +39.176,15.3188,0.0099,15.3089 +39.184,15.315199999999999,0.01,15.3052 +39.192,15.3117,0.0101,15.3016 +39.2,15.3081,0.0102,15.2979 +39.208,15.3045,0.0103,15.2942 +39.216,15.3009,0.0104,15.2905 +39.224000000000004,15.2973,0.0105,15.2868 +39.232,15.293800000000001,0.0106,15.2832 +39.24,15.2902,0.0107,15.2795 +39.248,15.2866,0.0108,15.2758 +39.256,15.283,0.0109,15.2721 +39.264,15.279499999999999,0.011,15.2685 +39.272,15.2759,0.0111,15.2648 +39.28,15.272300000000001,0.0112,15.2611 +39.288000000000004,15.2687,0.0113,15.2574 +39.296,15.2652,0.0114,15.2538 +39.304,15.2616,0.0115,15.2501 +39.312,15.258099999999999,0.0117,15.2464 +39.32,15.2546,0.0118,15.2428 +39.328,15.251000000000001,0.0119,15.2391 +39.336,15.2474,0.012,15.2354 +39.344,15.2439,0.0121,15.2318 +39.352000000000004,15.2403,0.0122,15.2281 +39.36,15.236699999999999,0.0123,15.2244 +39.368,15.2333,0.0125,15.2208 +39.376,15.229700000000001,0.0126,15.2171 +39.384,15.2261,0.0127,15.2134 +39.392,15.2226,0.0128,15.2098 +39.4,15.219,0.0129,15.2061 +39.408,15.2155,0.0131,15.2024 +39.416000000000004,15.212,0.0132,15.1988 +39.424,15.2084,0.0133,15.1951 +39.432,15.2049,0.0134,15.1915 +39.44,15.2014,0.0136,15.1878 +39.448,15.1978,0.0137,15.1841 +39.456,15.1943,0.0138,15.1805 +39.464,15.1907,0.0139,15.1768 +39.472,15.187299999999999,0.0141,15.1732 +39.480000000000004,15.1837,0.0142,15.1695 +39.488,15.180200000000001,0.0143,15.1659 +39.496,15.1767,0.0145,15.1622 +39.504,15.1732,0.0146,15.1586 +39.512,15.169599999999999,0.0147,15.1549 +39.52,15.166200000000002,0.0149,15.1513 +39.528,15.162600000000001,0.015,15.1476 +39.536,15.1591,0.0152,15.1439 +39.544000000000004,15.1556,0.0153,15.1403 +39.552,15.152099999999999,0.0155,15.1366 +39.56,15.148599999999998,0.0156,15.133 +39.568,15.145100000000001,0.0157,15.1294 +39.576,15.1416,0.0159,15.1257 +39.584,15.1381,0.016,15.1221 +39.592,15.134599999999999,0.0162,15.1184 +39.6,15.1311,0.0163,15.1148 +39.608000000000004,15.127600000000001,0.0165,15.1111 +39.616,15.1241,0.0166,15.1075 +39.624,15.1206,0.0168,15.1038 +39.632,15.117099999999999,0.0169,15.1002 +39.64,15.1136,0.0171,15.0965 +39.648,15.1102,0.0173,15.0929 +39.656,15.1067,0.0174,15.0893 +39.664,15.1032,0.0176,15.0856 +39.672000000000004,15.0997,0.0177,15.082 +39.68,15.0962,0.0179,15.0783 +39.688,15.0928,0.0181,15.0747 +39.696,15.0893,0.0182,15.0711 +39.704,15.085799999999999,0.0184,15.0674 +39.712,15.0824,0.0186,15.0638 +39.72,15.079,0.0188,15.0602 +39.728,15.0754,0.0189,15.0565 +39.736000000000004,15.072,0.0191,15.0529 +39.744,15.0686,0.0193,15.0493 +39.752,15.065,0.0194,15.0456 +39.76,15.0616,0.0196,15.042 +39.768,15.0582,0.0198,15.0384 +39.776,15.0547,0.02,15.0347 +39.784,15.051300000000001,0.0202,15.0311 +39.792,15.0479,0.0204,15.0275 +39.800000000000004,15.0443,0.0205,15.0238 +39.808,15.0409,0.0207,15.0202 +39.816,15.0375,0.0209,15.0166 +39.824,15.0341,0.0211,15.013 +39.832,15.0306,0.0213,15.0093 +39.84,15.027199999999999,0.0215,15.0057 +39.848,15.0238,0.0217,15.0021 +39.856,15.0204,0.0219,14.9985 +39.864000000000004,15.0169,0.0221,14.9948 +39.872,15.013499999999999,0.0223,14.9912 +39.88,15.010100000000001,0.0225,14.9876 +39.888,15.0067,0.0227,14.984 +39.896,15.0033,0.0229,14.9804 +39.904,14.999799999999999,0.0231,14.9767 +39.912,14.996400000000001,0.0233,14.9731 +39.92,14.993,0.0235,14.9695 +39.928000000000004,14.9896,0.0237,14.9659 +39.936,14.9862,0.0239,14.9623 +39.944,14.982800000000001,0.0241,14.9587 +39.952,14.9794,0.0244,14.955 +39.96,14.975999999999999,0.0246,14.9514 +39.968,14.972600000000002,0.0248,14.9478 +39.976,14.9692,0.025,14.9442 +39.984,14.9659,0.0253,14.9406 +39.992,14.962499999999999,0.0255,14.937 +40.0,14.959100000000001,0.0257,14.9334 +40.008,14.9557,0.0259,14.9298 +40.016,14.9523,0.0262,14.9261 +40.024,14.9489,0.0264,14.9225 +40.032000000000004,14.945500000000001,0.0266,14.9189 +40.04,14.9422,0.0269,14.9153 +40.048,14.9388,0.0271,14.9117 +40.056,14.9355,0.0274,14.9081 +40.064,14.9321,0.0276,14.9045 +40.072,14.9287,0.0278,14.9009 +40.08,14.9254,0.0281,14.8973 +40.088,14.922,0.0283,14.8937 +40.096000000000004,14.918700000000001,0.0286,14.8901 +40.104,14.9153,0.0288,14.8865 +40.112,14.911999999999999,0.0291,14.8829 +40.12,14.9086,0.0293,14.8793 +40.128,14.9053,0.0296,14.8757 +40.136,14.902,0.0299,14.8721 +40.144,14.898599999999998,0.0301,14.8685 +40.152,14.8953,0.0304,14.8649 +40.160000000000004,14.892,0.0307,14.8613 +40.168,14.8886,0.0309,14.8577 +40.176,14.8853,0.0312,14.8541 +40.184,14.882,0.0315,14.8505 +40.192,14.8787,0.0318,14.8469 +40.2,14.8753,0.032,14.8433 +40.208,14.872,0.0323,14.8397 +40.216,14.8688,0.0326,14.8362 +40.224000000000004,14.865499999999999,0.0329,14.8326 +40.232,14.862200000000001,0.0332,14.829 +40.24,14.8589,0.0335,14.8254 +40.248,14.8555,0.0337,14.8218 +40.256,14.8522,0.034,14.8182 +40.264,14.8489,0.0343,14.8146 +40.272,14.8456,0.0346,14.811 +40.28,14.8423,0.0349,14.8074 +40.288000000000004,14.8391,0.0352,14.8039 +40.296,14.8358,0.0355,14.8003 +40.304,14.8325,0.0358,14.7967 +40.312,14.8293,0.0362,14.7931 +40.32,14.826,0.0365,14.7895 +40.328,14.8227,0.0368,14.7859 +40.336,14.819500000000001,0.0371,14.7824 +40.344,14.8162,0.0374,14.7788 +40.352000000000004,14.812899999999999,0.0377,14.7752 +40.36,14.8097,0.0381,14.7716 +40.368,14.8065,0.0384,14.7681 +40.376,14.8032,0.0387,14.7645 +40.384,14.799999999999999,0.0391,14.7609 +40.392,14.796700000000001,0.0394,14.7573 +40.4,14.7935,0.0397,14.7538 +40.408,14.7903,0.0401,14.7502 +40.416000000000004,14.787,0.0404,14.7466 +40.424,14.783800000000001,0.0408,14.743 +40.432,14.7806,0.0411,14.7395 +40.44,14.7774,0.0415,14.7359 +40.448,14.7741,0.0418,14.7323 +40.456,14.7709,0.0422,14.7287 +40.464,14.7677,0.0425,14.7252 +40.472,14.7645,0.0429,14.7216 +40.480000000000004,14.7613,0.0433,14.718 +40.488,14.758099999999999,0.0436,14.7145 +40.496,14.754900000000001,0.044,14.7109 +40.504,14.7517,0.0444,14.7073 +40.512,14.7485,0.0447,14.7038 +40.52,14.7453,0.0451,14.7002 +40.528,14.7422,0.0455,14.6967 +40.536,14.738999999999999,0.0459,14.6931 +40.544000000000004,14.735800000000001,0.0463,14.6895 +40.552,14.7327,0.0467,14.686 +40.56,14.7295,0.0471,14.6824 +40.568,14.7264,0.0475,14.6789 +40.576,14.7232,0.0479,14.6753 +40.584,14.719999999999999,0.0483,14.6717 +40.592,14.7169,0.0487,14.6682 +40.6,14.7137,0.0491,14.6646 +40.608000000000004,14.7106,0.0495,14.6611 +40.616,14.7074,0.0499,14.6575 +40.624,14.7043,0.0503,14.654 +40.632,14.7011,0.0507,14.6504 +40.64,14.6981,0.0512,14.6469 +40.648,14.6949,0.0516,14.6433 +40.656,14.691799999999999,0.052,14.6398 +40.664,14.6887,0.0525,14.6362 +40.672000000000004,14.685599999999999,0.0529,14.6327 +40.68,14.6824,0.0533,14.6291 +40.688,14.679400000000001,0.0538,14.6256 +40.696,14.6762,0.0542,14.622 +40.704,14.6732,0.0547,14.6185 +40.712,14.67,0.0551,14.6149 +40.72,14.667,0.0556,14.6114 +40.728,14.663799999999998,0.056,14.6078 +40.736000000000004,14.6608,0.0565,14.6043 +40.744,14.6578,0.057,14.6008 +40.752,14.6546,0.0574,14.5972 +40.76,14.6516,0.0579,14.5937 +40.768,14.6485,0.0584,14.5901 +40.776,14.6455,0.0589,14.5866 +40.784,14.6424,0.0594,14.583 +40.792,14.639299999999999,0.0598,14.5795 +40.800000000000004,14.6363,0.0603,14.576 +40.808,14.6332,0.0608,14.5724 +40.816,14.630199999999999,0.0613,14.5689 +40.824,14.6272,0.0618,14.5654 +40.832,14.6241,0.0623,14.5618 +40.84,14.6212,0.0629,14.5583 +40.848,14.6182,0.0634,14.5548 +40.856,14.6151,0.0639,14.5512 +40.864000000000004,14.6121,0.0644,14.5477 +40.872,14.6091,0.0649,14.5442 +40.88,14.6061,0.0655,14.5406 +40.888,14.603100000000001,0.066,14.5371 +40.896,14.6001,0.0665,14.5336 +40.904,14.597199999999999,0.0671,14.5301 +40.912,14.594100000000001,0.0676,14.5265 +40.92,14.591199999999999,0.0682,14.523 +40.928000000000004,14.5882,0.0687,14.5195 +40.936,14.5853,0.0693,14.516 +40.944,14.5822,0.0698,14.5124 +40.952,14.5793,0.0704,14.5089 +40.96,14.5764,0.071,14.5054 +40.968,14.5734,0.0715,14.5019 +40.976,14.570500000000001,0.0721,14.4984 +40.984,14.567499999999999,0.0727,14.4948 +40.992,14.5646,0.0733,14.4913 +41.0,14.5617,0.0739,14.4878 +41.008,14.5588,0.0745,14.4843 +41.016,14.555900000000001,0.0751,14.4808 +41.024,14.5529,0.0757,14.4772 +41.032000000000004,14.549999999999999,0.0763,14.4737 +41.04,14.5471,0.0769,14.4702 +41.048,14.5442,0.0775,14.4667 +41.056,14.5413,0.0781,14.4632 +41.064,14.5384,0.0787,14.4597 +41.072,14.5356,0.0794,14.4562 +41.08,14.5327,0.08,14.4527 +41.088,14.5298,0.0806,14.4492 +41.096000000000004,14.526900000000001,0.0813,14.4456 +41.104,14.524,0.0819,14.4421 +41.112,14.521199999999999,0.0826,14.4386 +41.12,14.5183,0.0832,14.4351 +41.128,14.5155,0.0839,14.4316 +41.136,14.5126,0.0845,14.4281 +41.144,14.5098,0.0852,14.4246 +41.152,14.507,0.0859,14.4211 +41.160000000000004,14.5042,0.0866,14.4176 +41.168,14.501299999999999,0.0872,14.4141 +41.176,14.4985,0.0879,14.4106 +41.184,14.4957,0.0886,14.4071 +41.192,14.4929,0.0893,14.4036 +41.2,14.4901,0.09,14.4001 +41.208,14.4873,0.0907,14.3966 +41.216,14.4845,0.0914,14.3931 +41.224000000000004,14.4818,0.0922,14.3896 +41.232,14.479000000000001,0.0929,14.3861 +41.24,14.4762,0.0936,14.3826 +41.248,14.4734,0.0943,14.3791 +41.256,14.4707,0.0951,14.3756 +41.264,14.4679,0.0958,14.3721 +41.272,14.465300000000001,0.0966,14.3687 +41.28,14.4625,0.0973,14.3652 +41.288000000000004,14.459800000000001,0.0981,14.3617 +41.296,14.457,0.0988,14.3582 +41.304,14.4543,0.0996,14.3547 +41.312,14.451600000000001,0.1004,14.3512 +41.32,14.4488,0.1011,14.3477 +41.328,14.446100000000001,0.1019,14.3442 +41.336,14.4435,0.1027,14.3408 +41.344,14.440800000000001,0.1035,14.3373 +41.352000000000004,14.4381,0.1043,14.3338 +41.36,14.4354,0.1051,14.3303 +41.368,14.4327,0.1059,14.3268 +41.376,14.43,0.1067,14.3233 +41.384,14.4275,0.1076,14.3199 +41.392,14.4248,0.1084,14.3164 +41.4,14.4221,0.1092,14.3129 +41.408,14.4195,0.1101,14.3094 +41.416000000000004,14.416899999999998,0.1109,14.306 +41.424,14.414200000000001,0.1117,14.3025 +41.432,14.4116,0.1126,14.299 +41.44,14.409,0.1135,14.2955 +41.448,14.4064,0.1143,14.2921 +41.456,14.4038,0.1152,14.2886 +41.464,14.4012,0.1161,14.2851 +41.472,14.3986,0.117,14.2816 +41.480000000000004,14.3961,0.1179,14.2782 +41.488,14.3934,0.1187,14.2747 +41.496,14.3908,0.1196,14.2712 +41.504,14.388399999999999,0.1206,14.2678 +41.512,14.3858,0.1215,14.2643 +41.52,14.3832,0.1224,14.2608 +41.528,14.380700000000001,0.1233,14.2574 +41.536,14.3781,0.1242,14.2539 +41.544000000000004,14.3756,0.1252,14.2504 +41.552,14.373099999999999,0.1261,14.247 +41.56,14.3706,0.1271,14.2435 +41.568,14.368,0.128,14.24 +41.576,14.365599999999999,0.129,14.2366 +41.584,14.363100000000001,0.13,14.2331 +41.592,14.3606,0.1309,14.2297 +41.6,14.3581,0.1319,14.2262 +41.608000000000004,14.355699999999999,0.1329,14.2228 +41.616,14.353200000000001,0.1339,14.2193 +41.624,14.3507,0.1349,14.2158 +41.632,14.3483,0.1359,14.2124 +41.64,14.3458,0.1369,14.2089 +41.648,14.3435,0.138,14.2055 +41.656,14.341,0.139,14.202 +41.664,14.338600000000001,0.14,14.1986 +41.672000000000004,14.3362,0.1411,14.1951 +41.68,14.3338,0.1421,14.1917 +41.688,14.3314,0.1432,14.1882 +41.696,14.328999999999999,0.1442,14.1848 +41.704,14.326600000000001,0.1453,14.1813 +41.712,14.3243,0.1464,14.1779 +41.72,14.3218,0.1474,14.1744 +41.728,14.3195,0.1485,14.171 +41.736000000000004,14.3171,0.1496,14.1675 +41.744,14.3148,0.1507,14.1641 +41.752,14.3125,0.1518,14.1607 +41.76,14.3102,0.153,14.1572 +41.768,14.3079,0.1541,14.1538 +41.776,14.3055,0.1552,14.1503 +41.784,14.3032,0.1563,14.1469 +41.792,14.301,0.1575,14.1435 +41.800000000000004,14.2986,0.1586,14.14 +41.808,14.2964,0.1598,14.1366 +41.816,14.2941,0.161,14.1331 +41.824,14.2918,0.1621,14.1297 +41.832,14.2896,0.1633,14.1263 +41.84,14.2873,0.1645,14.1228 +41.848,14.2851,0.1657,14.1194 +41.856,14.2829,0.1669,14.116 +41.864000000000004,14.280600000000002,0.1681,14.1125 +41.872,14.2785,0.1694,14.1091 +41.88,14.2763,0.1706,14.1057 +41.888,14.274099999999999,0.1718,14.1023 +41.896,14.2719,0.1731,14.0988 +41.904,14.2697,0.1743,14.0954 +41.912,14.2676,0.1756,14.092 +41.92,14.2654,0.1768,14.0886 +41.928000000000004,14.263200000000001,0.1781,14.0851 +41.936,14.261099999999999,0.1794,14.0817 +41.944,14.259,0.1807,14.0783 +41.952,14.2569,0.182,14.0749 +41.96,14.2547,0.1833,14.0714 +41.968,14.2526,0.1846,14.068 +41.976,14.2505,0.1859,14.0646 +41.984,14.2484,0.1872,14.0612 +41.992,14.2464,0.1886,14.0578 +42.0,14.2442,0.1899,14.0543 +42.008,14.2422,0.1913,14.0509 +42.016,14.2402,0.1927,14.0475 +42.024,14.238100000000001,0.194,14.0441 +42.032000000000004,14.236099999999999,0.1954,14.0407 +42.04,14.2341,0.1968,14.0373 +42.048,14.232099999999999,0.1982,14.0339 +42.056,14.23,0.1996,14.0304 +42.064,14.228,0.201,14.027 +42.072,14.226,0.2024,14.0236 +42.08,14.224100000000002,0.2039,14.0202 +42.088,14.2221,0.2053,14.0168 +42.096000000000004,14.2201,0.2067,14.0134 +42.104,14.2182,0.2082,14.01 +42.112,14.2163,0.2097,14.0066 +42.12,14.2143,0.2111,14.0032 +42.128,14.2124,0.2126,13.9998 +42.136,14.2105,0.2141,13.9964 +42.144,14.2086,0.2156,13.993 +42.152,14.2067,0.2171,13.9896 +42.160000000000004,14.2048,0.2186,13.9862 +42.168,14.203,0.2202,13.9828 +42.176,14.2011,0.2217,13.9794 +42.184,14.199300000000001,0.2233,13.976 +42.192,14.1974,0.2248,13.9726 +42.2,14.1956,0.2264,13.9692 +42.208,14.1938,0.228,13.9658 +42.216,14.1919,0.2295,13.9624 +42.224000000000004,14.1901,0.2311,13.959 +42.232,14.1883,0.2327,13.9556 +42.24,14.186499999999999,0.2343,13.9522 +42.248,14.184800000000001,0.236,13.9488 +42.256,14.183,0.2376,13.9454 +42.264,14.1813,0.2392,13.9421 +42.272,14.1796,0.2409,13.9387 +42.28,14.1778,0.2425,13.9353 +42.288000000000004,14.1761,0.2442,13.9319 +42.296,14.1744,0.2459,13.9285 +42.304,14.1727,0.2476,13.9251 +42.312,14.171,0.2493,13.9217 +42.32,14.1694,0.251,13.9184 +42.328,14.1677,0.2527,13.915 +42.336,14.166,0.2544,13.9116 +42.344,14.1644,0.2562,13.9082 +42.352000000000004,14.1627,0.2579,13.9048 +42.36,14.161200000000001,0.2597,13.9015 +42.368,14.1596,0.2615,13.8981 +42.376,14.1579,0.2632,13.8947 +42.384,14.1563,0.265,13.8913 +42.392,14.1547,0.2668,13.8879 +42.4,14.1532,0.2686,13.8846 +42.408,14.1517,0.2705,13.8812 +42.416000000000004,14.1501,0.2723,13.8778 +42.424,14.1486,0.2741,13.8745 +42.432,14.1471,0.276,13.8711 +42.44,14.145499999999998,0.2778,13.8677 +42.448,14.144,0.2797,13.8643 +42.456,14.1426,0.2816,13.861 +42.464,14.1411,0.2835,13.8576 +42.472,14.1396,0.2854,13.8542 +42.480000000000004,14.1382,0.2873,13.8509 +42.488,14.1367,0.2892,13.8475 +42.496,14.135299999999999,0.2912,13.8441 +42.504,14.1339,0.2931,13.8408 +42.512,14.1325,0.2951,13.8374 +42.52,14.1311,0.297,13.8341 +42.528,14.1297,0.299,13.8307 +42.536,14.1283,0.301,13.8273 +42.544000000000004,14.127,0.303,13.824 +42.552,14.1256,0.305,13.8206 +42.56,14.1244,0.3071,13.8173 +42.568,14.123000000000001,0.3091,13.8139 +42.576,14.1217,0.3111,13.8106 +42.584,14.1204,0.3132,13.8072 +42.592,14.119100000000001,0.3153,13.8038 +42.6,14.117799999999999,0.3173,13.8005 +42.608000000000004,14.1165,0.3194,13.7971 +42.616,14.1153,0.3215,13.7938 +42.624,14.1141,0.3237,13.7904 +42.632,14.1129,0.3258,13.7871 +42.64,14.1116,0.3279,13.7837 +42.648,14.1105,0.3301,13.7804 +42.656,14.109300000000001,0.3322,13.7771 +42.664,14.1081,0.3344,13.7737 +42.672000000000004,14.107000000000001,0.3366,13.7704 +42.68,14.105799999999999,0.3388,13.767 +42.688,14.1047,0.341,13.7637 +42.696,14.1035,0.3432,13.7603 +42.704,14.1025,0.3455,13.757 +42.712,14.1013,0.3477,13.7536 +42.72,14.100299999999999,0.35,13.7503 +42.728,14.0992,0.3522,13.747 +42.736000000000004,14.0981,0.3545,13.7436 +42.744,14.0971,0.3568,13.7403 +42.752,14.0961,0.3591,13.737 +42.76,14.095099999999999,0.3615,13.7336 +42.768,14.0941,0.3638,13.7303 +42.776,14.0931,0.3661,13.727 +42.784,14.092099999999999,0.3685,13.7236 +42.792,14.0912,0.3709,13.7203 +42.800000000000004,14.090200000000001,0.3732,13.717 +42.808,14.0892,0.3756,13.7136 +42.816,14.0883,0.378,13.7103 +42.824,14.0875,0.3805,13.707 +42.832,14.0865,0.3829,13.7036 +42.84,14.0856,0.3853,13.7003 +42.848,14.0848,0.3878,13.697 +42.856,14.084,0.3903,13.6937 +42.864000000000004,14.0831,0.3928,13.6903 +42.872,14.0823,0.3953,13.687 +42.88,14.0815,0.3978,13.6837 +42.888,14.0807,0.4003,13.6804 +42.896,14.079899999999999,0.4028,13.6771 +42.904,14.0791,0.4054,13.6737 +42.912,14.0783,0.4079,13.6704 +42.92,14.0776,0.4105,13.6671 +42.928000000000004,14.0769,0.4131,13.6638 +42.936,14.0762,0.4157,13.6605 +42.944,14.0755,0.4183,13.6572 +42.952,14.0748,0.421,13.6538 +42.96,14.0741,0.4236,13.6505 +42.968,14.0735,0.4263,13.6472 +42.976,14.0728,0.4289,13.6439 +42.984,14.072199999999999,0.4316,13.6406 +42.992000000000004,14.0716,0.4343,13.6373 +43.0,14.071,0.437,13.634 +43.008,14.0705,0.4398,13.6307 +43.016,14.0699,0.4425,13.6274 +43.024,14.0694,0.4453,13.6241 +43.032000000000004,14.0688,0.448,13.6208 +43.04,14.068299999999999,0.4508,13.6175 +43.048,14.0678,0.4536,13.6142 +43.056,14.067300000000001,0.4564,13.6109 +43.064,14.066699999999999,0.4592,13.6075 +43.072,14.0663,0.4621,13.6042 +43.08,14.0658,0.4649,13.6009 +43.088,14.0655,0.4678,13.5977 +43.096000000000004,14.065100000000001,0.4707,13.5944 +43.104,14.0647,0.4736,13.5911 +43.112,14.0643,0.4765,13.5878 +43.12,14.0639,0.4794,13.5845 +43.128,14.063500000000001,0.4823,13.5812 +43.136,14.0632,0.4853,13.5779 +43.144,14.0629,0.4883,13.5746 +43.152,14.0625,0.4912,13.5713 +43.160000000000004,14.062199999999999,0.4942,13.568 +43.168,14.062,0.4973,13.5647 +43.176,14.0617,0.5003,13.5614 +43.184,14.061399999999999,0.5033,13.5581 +43.192,14.0613,0.5064,13.5549 +43.2,14.0611,0.5095,13.5516 +43.208,14.060799999999999,0.5125,13.5483 +43.216,14.060599999999999,0.5156,13.545 +43.224000000000004,14.060500000000001,0.5188,13.5417 +43.232,14.0603,0.5219,13.5384 +43.24,14.0602,0.525,13.5352 +43.248,14.0601,0.5282,13.5319 +43.256,14.06,0.5314,13.5286 +43.264,14.059899999999999,0.5346,13.5253 +43.272,14.059800000000001,0.5378,13.522 +43.28,14.059800000000001,0.541,13.5188 +43.288000000000004,14.0597,0.5442,13.5155 +43.296,14.0597,0.5475,13.5122 +43.304,14.059700000000001,0.5508,13.5089 +43.312,14.0598,0.5541,13.5057 +43.32,14.0598,0.5574,13.5024 +43.328,14.059800000000001,0.5607,13.4991 +43.336,14.0598,0.564,13.4958 +43.344,14.059999999999999,0.5674,13.4926 +43.352000000000004,14.06,0.5707,13.4893 +43.36,14.0601,0.5741,13.486 +43.368,14.0603,0.5775,13.4828 +43.376,14.0604,0.5809,13.4795 +43.384,14.060500000000001,0.5843,13.4762 +43.392,14.0608,0.5878,13.473 +43.4,14.0609,0.5912,13.4697 +43.408,14.0612,0.5947,13.4665 +43.416000000000004,14.0614,0.5982,13.4632 +43.424,14.061599999999999,0.6017,13.4599 +43.432,14.0619,0.6052,13.4567 +43.44,14.0622,0.6088,13.4534 +43.448,14.0625,0.6123,13.4502 +43.456,14.0628,0.6159,13.4469 +43.464,14.0631,0.6195,13.4436 +43.472,14.063500000000001,0.6231,13.4404 +43.480000000000004,14.063799999999999,0.6267,13.4371 +43.488,14.0643,0.6304,13.4339 +43.496,14.0646,0.634,13.4306 +43.504,14.065100000000001,0.6377,13.4274 +43.512,14.0655,0.6414,13.4241 +43.52,14.065999999999999,0.6451,13.4209 +43.528,14.0664,0.6488,13.4176 +43.536,14.067,0.6526,13.4144 +43.544000000000004,14.0674,0.6563,13.4111 +43.552,14.068,0.6601,13.4079 +43.56,14.0686,0.6639,13.4047 +43.568,14.0691,0.6677,13.4014 +43.576,14.0697,0.6715,13.3982 +43.584,14.0703,0.6754,13.3949 +43.592,14.0709,0.6792,13.3917 +43.6,14.0715,0.6831,13.3884 +43.608000000000004,14.072199999999999,0.687,13.3852 +43.616,14.072899999999999,0.6909,13.382 +43.624,14.0736,0.6949,13.3787 +43.632,14.074300000000001,0.6988,13.3755 +43.64,14.075099999999999,0.7028,13.3723 +43.648,14.0758,0.7068,13.369 +43.656,14.0765,0.7107,13.3658 +43.664,14.0774,0.7148,13.3626 +43.672000000000004,14.0781,0.7188,13.3593 +43.68,14.078999999999999,0.7229,13.3561 +43.688,14.0798,0.7269,13.3529 +43.696,14.0806,0.731,13.3496 +43.704,14.081499999999998,0.7351,13.3464 +43.712,14.0824,0.7392,13.3432 +43.72,14.0834,0.7434,13.34 +43.728,14.084200000000001,0.7475,13.3367 +43.736000000000004,14.0852,0.7517,13.3335 +43.744,14.0862,0.7559,13.3303 +43.752,14.0872,0.7601,13.3271 +43.76,14.0882,0.7644,13.3238 +43.768,14.0892,0.7686,13.3206 +43.776,14.0903,0.7729,13.3174 +43.784,14.0914,0.7772,13.3142 +43.792,14.0925,0.7815,13.311 +43.800000000000004,14.0936,0.7858,13.3078 +43.808,14.094600000000002,0.7901,13.3045 +43.816,14.095799999999999,0.7945,13.3013 +43.824,14.097,0.7989,13.2981 +43.832,14.0981,0.8032,13.2949 +43.84,14.099400000000001,0.8077,13.2917 +43.848,14.1006,0.8121,13.2885 +43.856,14.101799999999999,0.8165,13.2853 +43.864000000000004,14.1031,0.821,13.2821 +43.872,14.1044,0.8255,13.2789 +43.88,14.1056,0.83,13.2756 +43.888,14.1069,0.8345,13.2724 +43.896,14.1083,0.8391,13.2692 +43.904,14.1096,0.8436,13.266 +43.912,14.111,0.8482,13.2628 +43.92,14.112400000000001,0.8528,13.2596 +43.928000000000004,14.1138,0.8574,13.2564 +43.936,14.1153,0.8621,13.2532 +43.944,14.1167,0.8667,13.25 +43.952,14.1182,0.8714,13.2468 +43.96,14.1197,0.8761,13.2436 +43.968,14.1212,0.8808,13.2404 +43.976,14.1227,0.8855,13.2372 +43.984,14.1243,0.8903,13.234 +43.992000000000004,14.126,0.8951,13.2309 +44.0,14.127500000000001,0.8998,13.2277 +44.008,14.1292,0.9047,13.2245 +44.016,14.130799999999999,0.9095,13.2213 +44.024,14.1324,0.9143,13.2181 +44.032000000000004,14.1341,0.9192,13.2149 +44.04,14.1358,0.9241,13.2117 +44.048,14.137500000000001,0.929,13.2085 +44.056,14.139199999999999,0.9339,13.2053 +44.064,14.1411,0.9389,13.2022 +44.072,14.1428,0.9438,13.199 +44.08,14.1446,0.9488,13.1958 +44.088,14.1464,0.9538,13.1926 +44.096000000000004,14.1482,0.9588,13.1894 +44.104,14.1501,0.9639,13.1862 +44.112,14.152,0.9689,13.1831 +44.12,14.1539,0.974,13.1799 +44.128,14.155800000000001,0.9791,13.1767 +44.136,14.1577,0.9842,13.1735 +44.144,14.1598,0.9894,13.1704 +44.152,14.1617,0.9945,13.1672 +44.160000000000004,14.1637,0.9997,13.164 +44.168,14.1657,1.0049,13.1608 +44.176,14.1678,1.0101,13.1577 +44.184,14.1699,1.0154,13.1545 +44.192,14.1719,1.0206,13.1513 +44.2,14.1741,1.0259,13.1482 +44.208,14.1762,1.0312,13.145 +44.216,14.1783,1.0365,13.1418 +44.224000000000004,14.1806,1.0419,13.1387 +44.232,14.1827,1.0472,13.1355 +44.24,14.1849,1.0526,13.1323 +44.248,14.1872,1.058,13.1292 +44.256,14.1894,1.0634,13.126 +44.264,14.191699999999999,1.0689,13.1228 +44.272,14.193999999999999,1.0743,13.1197 +44.28,14.1963,1.0798,13.1165 +44.288000000000004,14.1987,1.0853,13.1134 +44.296,14.201,1.0908,13.1102 +44.304,14.203500000000002,1.0964,13.1071 +44.312,14.2058,1.1019,13.1039 +44.32,14.2082,1.1075,13.1007 +44.328,14.2107,1.1131,13.0976 +44.336,14.2131,1.1187,13.0944 +44.344,14.2157,1.1244,13.0913 +44.352000000000004,14.2181,1.13,13.0881 +44.36,14.2207,1.1357,13.085 +44.368,14.223199999999999,1.1414,13.0818 +44.376,14.2259,1.1472,13.0787 +44.384,14.2285,1.1529,13.0756 +44.392,14.2311,1.1587,13.0724 +44.4,14.2338,1.1645,13.0693 +44.408,14.2364,1.1703,13.0661 +44.416000000000004,14.2391,1.1761,13.063 +44.424,14.2417,1.1819,13.0598 +44.432,14.244499999999999,1.1878,13.0567 +44.44,14.2473,1.1937,13.0536 +44.448,14.25,1.1996,13.0504 +44.456,14.2528,1.2055,13.0473 +44.464,14.255600000000001,1.2115,13.0441 +44.472,14.2585,1.2175,13.041 +44.480000000000004,14.2613,1.2234,13.0379 +44.488,14.2642,1.2295,13.0347 +44.496,14.2671,1.2355,13.0316 +44.504,14.27,1.2415,13.0285 +44.512,14.2729,1.2476,13.0253 +44.52,14.2759,1.2537,13.0222 +44.528,14.2789,1.2598,13.0191 +44.536,14.282,1.266,13.016 +44.544000000000004,14.2849,1.2721,13.0128 +44.552,14.288,1.2783,13.0097 +44.56,14.2911,1.2845,13.0066 +44.568,14.2942,1.2907,13.0035 +44.576,14.2973,1.297,13.0003 +44.584,14.3004,1.3032,12.9972 +44.592,14.3036,1.3095,12.9941 +44.6,14.306799999999999,1.3158,12.991 +44.608000000000004,14.3101,1.3222,12.9879 +44.616,14.3132,1.3285,12.9847 +44.624,14.3165,1.3349,12.9816 +44.632,14.3198,1.3413,12.9785 +44.64,14.3231,1.3477,12.9754 +44.648,14.326400000000001,1.3541,12.9723 +44.656,14.3298,1.3606,12.9692 +44.664,14.333100000000002,1.367,12.9661 +44.672000000000004,14.3364,1.3735,12.9629 +44.68,14.3398,1.38,12.9598 +44.688,14.3433,1.3866,12.9567 +44.696,14.3467,1.3931,12.9536 +44.704,14.3502,1.3997,12.9505 +44.712,14.3537,1.4063,12.9474 +44.72,14.3572,1.4129,12.9443 +44.728,14.360800000000001,1.4196,12.9412 +44.736000000000004,14.3643,1.4262,12.9381 +44.744,14.3679,1.4329,12.935 +44.752,14.371500000000001,1.4396,12.9319 +44.76,14.375200000000001,1.4464,12.9288 +44.768,14.378800000000002,1.4531,12.9257 +44.776,14.382499999999999,1.4599,12.9226 +44.784,14.386199999999999,1.4667,12.9195 +44.792,14.389899999999999,1.4735,12.9164 +44.800000000000004,14.3936,1.4803,12.9133 +44.808,14.3974,1.4872,12.9102 +44.816,14.4011,1.494,12.9071 +44.824,14.4049,1.5009,12.904 +44.832,14.4087,1.5078,12.9009 +44.84,14.4127,1.5148,12.8979 +44.848,14.4165,1.5217,12.8948 +44.856,14.4204,1.5287,12.8917 +44.864000000000004,14.4243,1.5357,12.8886 +44.872,14.4282,1.5427,12.8855 +44.88,14.4322,1.5498,12.8824 +44.888,14.4361,1.5568,12.8793 +44.896,14.4402,1.5639,12.8763 +44.904,14.4442,1.571,12.8732 +44.912,14.448300000000001,1.5782,12.8701 +44.92,14.452300000000001,1.5853,12.867 +44.928000000000004,14.456399999999999,1.5925,12.8639 +44.936,14.460600000000001,1.5997,12.8609 +44.944,14.464699999999999,1.6069,12.8578 +44.952,14.4688,1.6141,12.8547 +44.96,14.472999999999999,1.6214,12.8516 +44.968,14.4772,1.6286,12.8486 +44.976,14.481399999999999,1.6359,12.8455 +44.984,14.4857,1.6433,12.8424 +44.992000000000004,14.4899,1.6506,12.8393 +45.0,14.494299999999999,1.658,12.8363 +45.008,14.4985,1.6653,12.8332 +45.016,14.5028,1.6727,12.8301 +45.024,14.507299999999999,1.6802,12.8271 +45.032000000000004,14.5116,1.6876,12.824 +45.04,14.516,1.6951,12.8209 +45.048,14.5204,1.7025,12.8179 +45.056,14.524799999999999,1.71,12.8148 +45.064,14.529399999999999,1.7176,12.8118 +45.072,14.5338,1.7251,12.8087 +45.08,14.5383,1.7327,12.8056 +45.088,14.5429,1.7403,12.8026 +45.096000000000004,14.5474,1.7479,12.7995 +45.104,14.552,1.7555,12.7965 +45.112,14.5566,1.7632,12.7934 +45.12,14.5612,1.7708,12.7904 +45.128,14.5658,1.7785,12.7873 +45.136,14.5704,1.7862,12.7842 +45.144,14.5752,1.794,12.7812 +45.152,14.5798,1.8017,12.7781 +45.160000000000004,14.5846,1.8095,12.7751 +45.168,14.5893,1.8173,12.772 +45.176,14.594100000000001,1.8251,12.769 +45.184,14.5989,1.8329,12.766 +45.192,14.6037,1.8408,12.7629 +45.2,14.6086,1.8487,12.7599 +45.208,14.6134,1.8566,12.7568 +45.216,14.6183,1.8645,12.7538 +45.224000000000004,14.6231,1.8724,12.7507 +45.232,14.6281,1.8804,12.7477 +45.24,14.6331,1.8884,12.7447 +45.248,14.638,1.8964,12.7416 +45.256,14.643,1.9044,12.7386 +45.264,14.648,1.9124,12.7356 +45.272,14.653,1.9205,12.7325 +45.28,14.6581,1.9286,12.7295 +45.288000000000004,14.6631,1.9367,12.7264 +45.296,14.6682,1.9448,12.7234 +45.304,14.6733,1.9529,12.7204 +45.312,14.6785,1.9611,12.7174 +45.32,14.6836,1.9693,12.7143 +45.328,14.6888,1.9775,12.7113 +45.336,14.693999999999999,1.9857,12.7083 +45.344,14.6992,1.994,12.7052 +45.352000000000004,14.7044,2.0022,12.7022 +45.36,14.7097,2.0105,12.6992 +45.368,14.715,2.0188,12.6962 +45.376,14.720299999999998,2.0271,12.6932 +45.384,14.7256,2.0355,12.6901 +45.392,14.730899999999998,2.0438,12.6871 +45.4,14.7363,2.0522,12.6841 +45.408,14.741700000000002,2.0606,12.6811 +45.416000000000004,14.7471,2.069,12.6781 +45.424,14.752500000000001,2.0775,12.675 +45.432,14.757900000000001,2.0859,12.672 +45.44,14.7634,2.0944,12.669 +45.448,14.7689,2.1029,12.666 +45.456,14.7744,2.1114,12.663 +45.464,14.780000000000001,2.12,12.66 +45.472,14.785499999999999,2.1285,12.657 +45.480000000000004,14.7911,2.1371,12.654 +45.488,14.7967,2.1457,12.651 +45.496,14.802299999999999,2.1543,12.648 +45.504,14.8079,2.1629,12.645 +45.512,14.8135,2.1716,12.6419 +45.52,14.819199999999999,2.1803,12.6389 +45.528,14.8249,2.189,12.6359 +45.536,14.8306,2.1977,12.6329 +45.544000000000004,14.8363,2.2064,12.6299 +45.552,14.842099999999999,2.2152,12.6269 +45.56,14.847800000000001,2.2239,12.6239 +45.568,14.8537,2.2327,12.621 +45.576,14.8595,2.2415,12.618 +45.584,14.865300000000001,2.2503,12.615 +45.592,14.8712,2.2592,12.612 +45.6,14.876999999999999,2.268,12.609 +45.608000000000004,14.8829,2.2769,12.606 +45.616,14.8888,2.2858,12.603 +45.624,14.8947,2.2947,12.6 +45.632,14.9007,2.3037,12.597 +45.64,14.9066,2.3126,12.594 +45.648,14.9126,2.3216,12.591 +45.656,14.918700000000001,2.3306,12.5881 +45.664,14.924700000000001,2.3396,12.5851 +45.672000000000004,14.9307,2.3486,12.5821 +45.68,14.9368,2.3577,12.5791 +45.688,14.9428,2.3667,12.5761 +45.696,14.9489,2.3758,12.5731 +45.704,14.9551,2.3849,12.5702 +45.712,14.9612,2.394,12.5672 +45.72,14.9674,2.4032,12.5642 +45.728,14.9735,2.4123,12.5612 +45.736000000000004,14.9798,2.4215,12.5583 +45.744,14.986,2.4307,12.5553 +45.752,14.9922,2.4399,12.5523 +45.76,14.9984,2.4491,12.5493 +45.768,15.0047,2.4583,12.5464 +45.776,15.011,2.4676,12.5434 +45.784,15.0173,2.4769,12.5404 +45.792,15.0236,2.4861,12.5375 +45.800000000000004,15.03,2.4955,12.5345 +45.808,15.036299999999999,2.5048,12.5315 +45.816,15.0427,2.5141,12.5286 +45.824,15.049100000000001,2.5235,12.5256 +45.832,15.0556,2.5329,12.5227 +45.84,15.062000000000001,2.5423,12.5197 +45.848,15.0684,2.5517,12.5167 +45.856,15.0749,2.5611,12.5138 +45.864000000000004,15.081299999999999,2.5705,12.5108 +45.872,15.0879,2.58,12.5079 +45.88,15.0944,2.5895,12.5049 +45.888,15.1009,2.599,12.5019 +45.896,15.1075,2.6085,12.499 +45.904,15.114,2.618,12.496 +45.912,15.1206,2.6275,12.4931 +45.92,15.1272,2.6371,12.4901 +45.928000000000004,15.1339,2.6467,12.4872 +45.936,15.1404,2.6562,12.4842 +45.944,15.147099999999998,2.6658,12.4813 +45.952,15.1538,2.6755,12.4783 +45.96,15.1605,2.6851,12.4754 +45.968,15.167200000000001,2.6947,12.4725 +45.976,15.1739,2.7044,12.4695 +45.984,15.1807,2.7141,12.4666 +45.992000000000004,15.1874,2.7238,12.4636 +46.0,15.194199999999999,2.7335,12.4607 +46.008,15.201,2.7432,12.4578 +46.016,15.2078,2.753,12.4548 +46.024,15.2146,2.7627,12.4519 +46.032000000000004,15.2214,2.7725,12.4489 +46.04,15.2283,2.7823,12.446 +46.048,15.235199999999999,2.7921,12.4431 +46.056000000000004,15.241999999999999,2.8019,12.4401 +46.064,15.2489,2.8117,12.4372 +46.072,15.2559,2.8216,12.4343 +46.08,15.2628,2.8314,12.4314 +46.088,15.2697,2.8413,12.4284 +46.096000000000004,15.2767,2.8512,12.4255 +46.104,15.2837,2.8611,12.4226 +46.112,15.290600000000001,2.871,12.4196 +46.12,15.297600000000001,2.8809,12.4167 +46.128,15.3047,2.8909,12.4138 +46.136,15.3117,2.9008,12.4109 +46.144,15.3188,2.9108,12.408 +46.152,15.3258,2.9208,12.405 +46.160000000000004,15.3329,2.9308,12.4021 +46.168,15.34,2.9408,12.3992 +46.176,15.347100000000001,2.9508,12.3963 +46.184,15.3543,2.9609,12.3934 +46.192,15.3614,2.9709,12.3905 +46.2,15.3685,2.981,12.3875 +46.208,15.3756,2.991,12.3846 +46.216,15.3828,3.0011,12.3817 +46.224000000000004,15.39,3.0112,12.3788 +46.232,15.3973,3.0214,12.3759 +46.24,15.404499999999999,3.0315,12.373 +46.248,15.4117,3.0416,12.3701 +46.256,15.419,3.0518,12.3672 +46.264,15.4262,3.0619,12.3643 +46.272,15.433499999999999,3.0721,12.3614 +46.28,15.4408,3.0823,12.3585 +46.288000000000004,15.4481,3.0925,12.3556 +46.296,15.455400000000001,3.1027,12.3527 +46.304,15.4627,3.1129,12.3498 +46.312,15.469999999999999,3.1231,12.3469 +46.32,15.4774,3.1334,12.344 +46.328,15.4847,3.1436,12.3411 +46.336,15.4921,3.1539,12.3382 +46.344,15.499500000000001,3.1642,12.3353 +46.352000000000004,15.5069,3.1745,12.3324 +46.36,15.514299999999999,3.1848,12.3295 +46.368,15.5217,3.1951,12.3266 +46.376,15.5291,3.2054,12.3237 +46.384,15.5365,3.2157,12.3208 +46.392,15.5441,3.2261,12.318 +46.4,15.551499999999999,3.2364,12.3151 +46.408,15.559000000000001,3.2468,12.3122 +46.416000000000004,15.566500000000001,3.2572,12.3093 +46.424,15.5739,3.2675,12.3064 +46.432,15.581399999999999,3.2779,12.3035 +46.44,15.589,3.2883,12.3007 +46.448,15.5966,3.2988,12.2978 +46.456,15.6041,3.3092,12.2949 +46.464,15.6116,3.3196,12.292 +46.472,15.6191,3.33,12.2891 +46.480000000000004,15.626800000000001,3.3405,12.2863 +46.488,15.6343,3.3509,12.2834 +46.496,15.6419,3.3614,12.2805 +46.504,15.6495,3.3719,12.2776 +46.512,15.657200000000001,3.3824,12.2748 +46.52,15.6648,3.3929,12.2719 +46.528,15.6724,3.4034,12.269 +46.536,15.6801,3.4139,12.2662 +46.544000000000004,15.6877,3.4244,12.2633 +46.552,15.6953,3.4349,12.2604 +46.56,15.703,3.4454,12.2576 +46.568,15.7107,3.456,12.2547 +46.576,15.718399999999999,3.4665,12.2519 +46.584,15.7261,3.4771,12.249 +46.592,15.7337,3.4876,12.2461 +46.6,15.7415,3.4982,12.2433 +46.608000000000004,15.749199999999998,3.5088,12.2404 +46.616,15.757000000000001,3.5194,12.2376 +46.624,15.7647,3.53,12.2347 +46.632,15.7723,3.5405,12.2318 +46.64,15.780199999999999,3.5512,12.229 +46.648,15.7879,3.5618,12.2261 +46.656,15.7957,3.5724,12.2233 +46.664,15.8034,3.583,12.2204 +46.672000000000004,15.8112,3.5936,12.2176 +46.68,15.819,3.6043,12.2147 +46.688,15.8268,3.6149,12.2119 +46.696,15.8346,3.6255,12.2091 +46.704,15.842400000000001,3.6362,12.2062 +46.712,15.8503,3.6469,12.2034 +46.72,15.858,3.6575,12.2005 +46.728,15.8659,3.6682,12.1977 +46.736000000000004,15.8736,3.6788,12.1948 +46.744,15.881499999999999,3.6895,12.192 +46.752,15.8894,3.7002,12.1892 +46.76,15.8972,3.7109,12.1863 +46.768,15.905100000000001,3.7216,12.1835 +46.776,15.913,3.7323,12.1807 +46.784,15.9208,3.743,12.1778 +46.792,15.928700000000001,3.7537,12.175 +46.800000000000004,15.9366,3.7644,12.1722 +46.808,15.9444,3.7751,12.1693 +46.816,15.9523,3.7858,12.1665 +46.824,15.9602,3.7965,12.1637 +46.832,15.968,3.8072,12.1608 +46.84,15.975999999999999,3.818,12.158 +46.848,15.9839,3.8287,12.1552 +46.856,15.9918,3.8394,12.1524 +46.864000000000004,15.9996,3.8501,12.1495 +46.872,16.0076,3.8609,12.1467 +46.88,16.0155,3.8716,12.1439 +46.888,16.0235,3.8824,12.1411 +46.896,16.031399999999998,3.8931,12.1383 +46.904,16.0393,3.9038,12.1355 +46.912,16.0472,3.9146,12.1326 +46.92,16.0551,3.9253,12.1298 +46.928000000000004,16.063100000000002,3.9361,12.127 +46.936,16.071,3.9468,12.1242 +46.944,16.079,3.9576,12.1214 +46.952,16.0869,3.9683,12.1186 +46.96,16.0949,3.9791,12.1158 +46.968,16.1028,3.9898,12.113 +46.976,16.1107,4.0006,12.1101 +46.984,16.1186,4.0113,12.1073 +46.992000000000004,16.1266,4.0221,12.1045 +47.0,16.1345,4.0328,12.1017 +47.008,16.1425,4.0436,12.0989 +47.016,16.1505,4.0544,12.0961 +47.024,16.1584,4.0651,12.0933 +47.032000000000004,16.1664,4.0759,12.0905 +47.04,16.1743,4.0866,12.0877 +47.048,16.182299999999998,4.0974,12.0849 +47.056000000000004,16.1902,4.1081,12.0821 +47.064,16.1982,4.1189,12.0793 +47.072,16.2062,4.1296,12.0766 +47.08,16.214199999999998,4.1404,12.0738 +47.088,16.222099999999998,4.1511,12.071 +47.096000000000004,16.2301,4.1619,12.0682 +47.104,16.238,4.1726,12.0654 +47.112,16.2459,4.1833,12.0626 +47.12,16.253899999999998,4.1941,12.0598 +47.128,16.2618,4.2048,12.057 +47.136,16.2697,4.2155,12.0542 +47.144,16.2778,4.2263,12.0515 +47.152,16.2857,4.237,12.0487 +47.160000000000004,16.293599999999998,4.2477,12.0459 +47.168,16.3015,4.2584,12.0431 +47.176,16.3095,4.2692,12.0403 +47.184,16.3175,4.2799,12.0376 +47.192,16.325400000000002,4.2906,12.0348 +47.2,16.3333,4.3013,12.032 +47.208,16.3412,4.312,12.0292 +47.216,16.3492,4.3227,12.0265 +47.224000000000004,16.3571,4.3334,12.0237 +47.232,16.365,4.3441,12.0209 +47.24,16.3729,4.3548,12.0181 +47.248,16.3809,4.3655,12.0154 +47.256,16.3887,4.3761,12.0126 +47.264,16.3966,4.3868,12.0098 +47.272,16.4046,4.3975,12.0071 +47.28,16.4124,4.4081,12.0043 +47.288000000000004,16.4203,4.4188,12.0015 +47.296,16.4282,4.4294,11.9988 +47.304,16.4361,4.4401,11.996 +47.312,16.444,4.4507,11.9933 +47.32,16.4518,4.4613,11.9905 +47.328,16.4597,4.472,11.9877 +47.336,16.467599999999997,4.4826,11.985 +47.344,16.4754,4.4932,11.9822 +47.352000000000004,16.4833,4.5038,11.9795 +47.36,16.4911,4.5144,11.9767 +47.368,16.499000000000002,4.525,11.974 +47.376,16.5068,4.5356,11.9712 +47.384,16.5146,4.5461,11.9685 +47.392,16.5224,4.5567,11.9657 +47.4,16.5303,4.5673,11.963 +47.408,16.538,4.5778,11.9602 +47.416000000000004,16.5459,4.5884,11.9575 +47.424,16.553600000000003,4.5989,11.9547 +47.432,16.5614,4.6094,11.952 +47.44,16.5692,4.6199,11.9493 +47.448,16.576999999999998,4.6305,11.9465 +47.456,16.5848,4.641,11.9438 +47.464,16.5924,4.6514,11.941 +47.472,16.6002,4.6619,11.9383 +47.480000000000004,16.608,4.6724,11.9356 +47.488,16.6157,4.6829,11.9328 +47.496,16.6234,4.6933,11.9301 +47.504,16.6312,4.7038,11.9274 +47.512,16.6388,4.7142,11.9246 +47.52,16.6465,4.7246,11.9219 +47.528,16.6542,4.735,11.9192 +47.536,16.6618,4.7454,11.9164 +47.544000000000004,16.6695,4.7558,11.9137 +47.552,16.6772,4.7662,11.911 +47.56,16.684800000000003,4.7765,11.9083 +47.568,16.6924,4.7869,11.9055 +47.576,16.7,4.7972,11.9028 +47.584,16.7077,4.8076,11.9001 +47.592,16.7153,4.8179,11.8974 +47.6,16.7229,4.8282,11.8947 +47.608000000000004,16.7304,4.8385,11.8919 +47.616,16.738,4.8488,11.8892 +47.624,16.7455,4.859,11.8865 +47.632,16.7531,4.8693,11.8838 +47.64,16.7606,4.8795,11.8811 +47.648,16.7682,4.8898,11.8784 +47.656,16.7757,4.9,11.8757 +47.664,16.7832,4.9102,11.873 +47.672000000000004,16.7906,4.9204,11.8702 +47.68,16.798000000000002,4.9305,11.8675 +47.688,16.805500000000002,4.9407,11.8648 +47.696,16.813,4.9509,11.8621 +47.704,16.8204,4.961,11.8594 +47.712,16.8278,4.9711,11.8567 +47.72,16.8352,4.9812,11.854 +47.728,16.8426,4.9913,11.8513 +47.736000000000004,16.85,5.0014,11.8486 +47.744,16.857300000000002,5.0114,11.8459 +47.752,16.8647,5.0215,11.8432 +47.76,16.872,5.0315,11.8405 +47.768,16.8793,5.0415,11.8378 +47.776,16.8866,5.0515,11.8351 +47.784,16.8939,5.0615,11.8324 +47.792,16.9012,5.0714,11.8298 +47.800000000000004,16.9085,5.0814,11.8271 +47.808,16.9157,5.0913,11.8244 +47.816,16.9229,5.1012,11.8217 +47.824,16.930100000000003,5.1111,11.819 +47.832,16.9373,5.121,11.8163 +47.84,16.944499999999998,5.1309,11.8136 +47.848,16.9516,5.1407,11.8109 +47.856,16.9588,5.1505,11.8083 +47.864000000000004,16.9659,5.1603,11.8056 +47.872,16.973,5.1701,11.8029 +47.88,16.9801,5.1799,11.8002 +47.888,16.987099999999998,5.1896,11.7975 +47.896,16.9943,5.1994,11.7949 +47.904,17.0013,5.2091,11.7922 +47.912,17.0083,5.2188,11.7895 +47.92,17.0153,5.2285,11.7868 +47.928000000000004,17.0223,5.2381,11.7842 +47.936,17.0293,5.2478,11.7815 +47.944,17.0362,5.2574,11.7788 +47.952,17.0432,5.267,11.7762 +47.96,17.05,5.2765,11.7735 +47.968,17.0569,5.2861,11.7708 +47.976,17.0638,5.2956,11.7682 +47.984,17.0707,5.3052,11.7655 +47.992000000000004,17.0775,5.3147,11.7628 +48.0,17.0843,5.3241,11.7602 +48.008,17.0911,5.3336,11.7575 +48.016,17.0979,5.343,11.7549 +48.024,17.1046,5.3524,11.7522 +48.032000000000004,17.1113,5.3618,11.7495 +48.04,17.1181,5.3712,11.7469 +48.048,17.124699999999997,5.3805,11.7442 +48.056000000000004,17.1315,5.3899,11.7416 +48.064,17.1381,5.3992,11.7389 +48.072,17.1447,5.4084,11.7363 +48.08,17.1513,5.4177,11.7336 +48.088,17.157899999999998,5.4269,11.731 +48.096000000000004,17.1645,5.4362,11.7283 +48.104,17.171,5.4453,11.7257 +48.112,17.177500000000002,5.4545,11.723 +48.120000000000005,17.183999999999997,5.4636,11.7204 +48.128,17.1906,5.4728,11.7178 +48.136,17.197,5.4819,11.7151 +48.144,17.203400000000002,5.4909,11.7125 +48.152,17.2098,5.5,11.7098 +48.160000000000004,17.2162,5.509,11.7072 +48.168,17.2226,5.518,11.7046 +48.176,17.2289,5.527,11.7019 +48.184,17.2352,5.5359,11.6993 +48.192,17.241500000000002,5.5448,11.6967 +48.2,17.247700000000002,5.5537,11.694 +48.208,17.253999999999998,5.5626,11.6914 +48.216,17.2603,5.5715,11.6888 +48.224000000000004,17.2664,5.5803,11.6861 +48.232,17.2726,5.5891,11.6835 +48.24,17.2788,5.5979,11.6809 +48.248,17.2848,5.6066,11.6782 +48.256,17.2909,5.6153,11.6756 +48.264,17.297,5.624,11.673 +48.272,17.3031,5.6327,11.6704 +48.28,17.3091,5.6413,11.6678 +48.288000000000004,17.315,5.6499,11.6651 +48.296,17.320999999999998,5.6585,11.6625 +48.304,17.326999999999998,5.6671,11.6599 +48.312,17.3329,5.6756,11.6573 +48.32,17.3388,5.6841,11.6547 +48.328,17.3447,5.6926,11.6521 +48.336,17.3504,5.701,11.6494 +48.344,17.3562,5.7094,11.6468 +48.352000000000004,17.362000000000002,5.7178,11.6442 +48.36,17.367800000000003,5.7262,11.6416 +48.368,17.3735,5.7345,11.639 +48.376,17.3792,5.7428,11.6364 +48.384,17.384900000000002,5.7511,11.6338 +48.392,17.3905,5.7593,11.6312 +48.4,17.3962,5.7676,11.6286 +48.408,17.4018,5.7758,11.626 +48.416000000000004,17.4073,5.7839,11.6234 +48.424,17.412799999999997,5.792,11.6208 +48.432,17.4183,5.8001,11.6182 +48.44,17.4238,5.8082,11.6156 +48.448,17.4292,5.8162,11.613 +48.456,17.4347,5.8243,11.6104 +48.464,17.439999999999998,5.8322,11.6078 +48.472,17.4454,5.8402,11.6052 +48.480000000000004,17.4507,5.8481,11.6026 +48.488,17.456,5.856,11.6 +48.496,17.4612,5.8638,11.5974 +48.504,17.4666,5.8717,11.5949 +48.512,17.4718,5.8795,11.5923 +48.52,17.4769,5.8872,11.5897 +48.528,17.482,5.8949,11.5871 +48.536,17.487099999999998,5.9026,11.5845 +48.544000000000004,17.4922,5.9103,11.5819 +48.552,17.4973,5.9179,11.5794 +48.56,17.5023,5.9255,11.5768 +48.568,17.5073,5.9331,11.5742 +48.576,17.5122,5.9406,11.5716 +48.584,17.5171,5.9481,11.569 +48.592,17.5221,5.9556,11.5665 +48.6,17.527,5.9631,11.5639 +48.608000000000004,17.5318,5.9705,11.5613 +48.616,17.5366,5.9778,11.5588 +48.624,17.5414,5.9852,11.5562 +48.632,17.5461,5.9925,11.5536 +48.64,17.5508,5.9997,11.5511 +48.648,17.555500000000002,6.007,11.5485 +48.656,17.5601,6.0142,11.5459 +48.664,17.564700000000002,6.0213,11.5434 +48.672000000000004,17.569300000000002,6.0285,11.5408 +48.68,17.5738,6.0356,11.5382 +48.688,17.5783,6.0426,11.5357 +48.696,17.5828,6.0497,11.5331 +48.704,17.5873,6.0567,11.5306 +48.712,17.5916,6.0636,11.528 +48.72,17.596,6.0706,11.5254 +48.728,17.6003,6.0774,11.5229 +48.736000000000004,17.6046,6.0843,11.5203 +48.744,17.6089,6.0911,11.5178 +48.752,17.6131,6.0979,11.5152 +48.76,17.6173,6.1046,11.5127 +48.768,17.621499999999997,6.1114,11.5101 +48.776,17.6256,6.118,11.5076 +48.784,17.6297,6.1247,11.505 +48.792,17.6338,6.1313,11.5025 +48.800000000000004,17.6378,6.1378,11.5 +48.808,17.6418,6.1444,11.4974 +48.816,17.6458,6.1509,11.4949 +48.824,17.6496,6.1573,11.4923 +48.832,17.6535,6.1637,11.4898 +48.84,17.6574,6.1701,11.4873 +48.848,17.6612,6.1765,11.4847 +48.856,17.665,6.1828,11.4822 +48.864000000000004,17.668599999999998,6.189,11.4796 +48.872,17.6724,6.1953,11.4771 +48.88,17.6761,6.2015,11.4746 +48.888,17.6797,6.2076,11.4721 +48.896,17.6832,6.2137,11.4695 +48.904,17.6868,6.2198,11.467 +48.912,17.6903,6.2258,11.4645 +48.92,17.6937,6.2318,11.4619 +48.928000000000004,17.697200000000002,6.2378,11.4594 +48.936,17.700599999999998,6.2437,11.4569 +48.944,17.704,6.2496,11.4544 +48.952,17.7074,6.2555,11.4519 +48.96,17.7106,6.2613,11.4493 +48.968,17.7138,6.267,11.4468 +48.976,17.717100000000002,6.2728,11.4443 +48.984,17.7203,6.2785,11.4418 +48.992000000000004,17.723399999999998,6.2841,11.4393 +49.0,17.7265,6.2897,11.4368 +49.008,17.7295,6.2953,11.4342 +49.016,17.732499999999998,6.3008,11.4317 +49.024,17.735500000000002,6.3063,11.4292 +49.032000000000004,17.738500000000002,6.3118,11.4267 +49.04,17.7414,6.3172,11.4242 +49.048,17.7442,6.3225,11.4217 +49.056000000000004,17.7471,6.3279,11.4192 +49.064,17.7499,6.3332,11.4167 +49.072,17.7526,6.3384,11.4142 +49.08,17.7553,6.3436,11.4117 +49.088,17.758,6.3488,11.4092 +49.096000000000004,17.7606,6.3539,11.4067 +49.104,17.763199999999998,6.359,11.4042 +49.112,17.7657,6.364,11.4017 +49.120000000000005,17.7682,6.369,11.3992 +49.128,17.770699999999998,6.374,11.3967 +49.136,17.7731,6.3789,11.3942 +49.144,17.7755,6.3838,11.3917 +49.152,17.7778,6.3886,11.3892 +49.160000000000004,17.780099999999997,6.3934,11.3867 +49.168,17.7824,6.3982,11.3842 +49.176,17.7847,6.4029,11.3818 +49.184,17.786900000000003,6.4076,11.3793 +49.192,17.789,6.4122,11.3768 +49.2,17.7911,6.4168,11.3743 +49.208,17.7931,6.4213,11.3718 +49.216,17.7951,6.4258,11.3693 +49.224000000000004,17.7972,6.4303,11.3669 +49.232,17.7991,6.4347,11.3644 +49.24,17.801000000000002,6.4391,11.3619 +49.248,17.8028,6.4434,11.3594 +49.256,17.8047,6.4477,11.357 +49.264,17.8064,6.4519,11.3545 +49.272,17.8081,6.4561,11.352 +49.28,17.809800000000003,6.4603,11.3495 +49.288000000000004,17.8115,6.4644,11.3471 +49.296,17.8131,6.4685,11.3446 +49.304,17.8146,6.4725,11.3421 +49.312,17.816200000000002,6.4765,11.3397 +49.32,17.8176,6.4804,11.3372 +49.328,17.819,6.4843,11.3347 +49.336,17.8205,6.4882,11.3323 +49.344,17.8218,6.492,11.3298 +49.352000000000004,17.823,6.4957,11.3273 +49.36,17.8243,6.4994,11.3249 +49.368,17.825499999999998,6.5031,11.3224 +49.376,17.8268,6.5068,11.32 +49.384,17.8278,6.5103,11.3175 +49.392,17.829,6.5139,11.3151 +49.4,17.83,6.5174,11.3126 +49.408,17.831,6.5208,11.3102 +49.416000000000004,17.8319,6.5242,11.3077 +49.424,17.832900000000002,6.5276,11.3053 +49.432,17.8337,6.5309,11.3028 +49.44,17.834600000000002,6.5342,11.3004 +49.448,17.8353,6.5374,11.2979 +49.456,17.836100000000002,6.5406,11.2955 +49.464,17.8368,6.5438,11.293 +49.472,17.8375,6.5469,11.2906 +49.480000000000004,17.838,6.5499,11.2881 +49.488,17.8386,6.5529,11.2857 +49.496,17.8392,6.5559,11.2833 +49.504,17.839599999999997,6.5588,11.2808 +49.512,17.84,6.5616,11.2784 +49.52,17.8405,6.5645,11.276 +49.528,17.8408,6.5673,11.2735 +49.536,17.8411,6.57,11.2711 +49.544000000000004,17.8414,6.5727,11.2687 +49.552,17.8415,6.5753,11.2662 +49.56,17.8417,6.5779,11.2638 +49.568,17.8419,6.5805,11.2614 +49.576,17.842,6.583,11.259 +49.584,17.841900000000003,6.5854,11.2565 +49.592,17.8419,6.5878,11.2541 +49.6,17.8419,6.5902,11.2517 +49.608000000000004,17.8418,6.5925,11.2493 +49.616,17.8416,6.5948,11.2468 +49.624,17.8414,6.597,11.2444 +49.632,17.8412,6.5992,11.242 +49.64,17.840899999999998,6.6013,11.2396 +49.648,17.8406,6.6034,11.2372 +49.656,17.8403,6.6055,11.2348 +49.664,17.8399,6.6075,11.2324 +49.672000000000004,17.8393,6.6094,11.2299 +49.68,17.8388,6.6113,11.2275 +49.688,17.8383,6.6132,11.2251 +49.696,17.837699999999998,6.615,11.2227 +49.704,17.8371,6.6168,11.2203 +49.712,17.8364,6.6185,11.2179 +49.72,17.8356,6.6201,11.2155 +49.728,17.8349,6.6218,11.2131 +49.736000000000004,17.834,6.6233,11.2107 +49.744,17.833199999999998,6.6249,11.2083 +49.752,17.8323,6.6264,11.2059 +49.76,17.8313,6.6278,11.2035 +49.768,17.8303,6.6292,11.2011 +49.776,17.8292,6.6305,11.1987 +49.784,17.8281,6.6318,11.1963 +49.792,17.826999999999998,6.6331,11.1939 +49.800000000000004,17.8258,6.6343,11.1915 +49.808,17.8245,6.6354,11.1891 +49.816,17.8232,6.6365,11.1867 +49.824,17.822,6.6376,11.1844 +49.832,17.8206,6.6386,11.182 +49.84,17.819200000000002,6.6396,11.1796 +49.848,17.8177,6.6405,11.1772 +49.856,17.8162,6.6414,11.1748 +49.864000000000004,17.8146,6.6422,11.1724 +49.872,17.8131,6.643,11.1701 +49.88,17.8114,6.6437,11.1677 +49.888,17.8097,6.6444,11.1653 +49.896,17.8079,6.645,11.1629 +49.904,17.8061,6.6456,11.1605 +49.912,17.8044,6.6462,11.1582 +49.92,17.8025,6.6467,11.1558 +49.928000000000004,17.8005,6.6471,11.1534 +49.936,17.7986,6.6475,11.1511 +49.944,17.796599999999998,6.6479,11.1487 +49.952,17.7945,6.6482,11.1463 +49.96,17.7924,6.6484,11.144 +49.968,17.790300000000002,6.6487,11.1416 +49.976,17.788,6.6488,11.1392 +49.984,17.785800000000002,6.6489,11.1369 +49.992000000000004,17.7835,6.649,11.1345 +50.0,17.7811,6.649,11.1321 +50.008,17.7788,6.649,11.1298 +50.016,17.7763,6.6489,11.1274 +50.024,17.773899999999998,6.6488,11.1251 +50.032000000000004,17.7714,6.6487,11.1227 +50.04,17.7688,6.6484,11.1204 +50.048,17.7662,6.6482,11.118 +50.056000000000004,17.7636,6.6479,11.1157 +50.064,17.7608,6.6475,11.1133 +50.072,17.7581,6.6471,11.111 +50.08,17.7553,6.6467,11.1086 +50.088,17.752499999999998,6.6462,11.1063 +50.096000000000004,17.749499999999998,6.6456,11.1039 +50.104,17.7466,6.645,11.1016 +50.112,17.7436,6.6444,11.0992 +50.120000000000005,17.7406,6.6437,11.0969 +50.128,17.7375,6.643,11.0945 +50.136,17.7344,6.6422,11.0922 +50.144,17.7313,6.6414,11.0899 +50.152,17.728,6.6405,11.0875 +50.160000000000004,17.724800000000002,6.6396,11.0852 +50.168,17.7215,6.6386,11.0829 +50.176,17.7181,6.6376,11.0805 +50.184,17.7147,6.6365,11.0782 +50.192,17.7113,6.6354,11.0759 +50.2,17.7078,6.6343,11.0735 +50.208,17.7043,6.6331,11.0712 +50.216,17.700699999999998,6.6318,11.0689 +50.224000000000004,17.6971,6.6305,11.0666 +50.232,17.6934,6.6292,11.0642 +50.24,17.6897,6.6278,11.0619 +50.248,17.686,6.6264,11.0596 +50.256,17.6822,6.6249,11.0573 +50.264,17.6782,6.6233,11.0549 +50.272,17.6744,6.6218,11.0526 +50.28,17.6704,6.6201,11.0503 +50.288000000000004,17.6665,6.6185,11.048 +50.296,17.6625,6.6168,11.0457 +50.304,17.6584,6.615,11.0434 +50.312,17.6543,6.6132,11.0411 +50.32,17.65,6.6113,11.0387 +50.328,17.6458,6.6094,11.0364 +50.336,17.6416,6.6075,11.0341 +50.344,17.6373,6.6055,11.0318 +50.352000000000004,17.6329,6.6034,11.0295 +50.36,17.628500000000003,6.6013,11.0272 +50.368,17.6241,6.5992,11.0249 +50.376,17.619600000000002,6.597,11.0226 +50.384,17.6151,6.5948,11.0203 +50.392,17.610500000000002,6.5925,11.018 +50.4,17.605900000000002,6.5902,11.0157 +50.408,17.6012,6.5878,11.0134 +50.416000000000004,17.5965,6.5854,11.0111 +50.424,17.5918,6.583,11.0088 +50.432,17.587,6.5805,11.0065 +50.44,17.5821,6.5779,11.0042 +50.448,17.577199999999998,6.5753,11.0019 +50.456,17.572400000000002,6.5727,10.9997 +50.464,17.5674,6.57,10.9974 +50.472,17.5624,6.5673,10.9951 +50.480000000000004,17.5573,6.5645,10.9928 +50.488,17.552100000000003,6.5616,10.9905 +50.496,17.547,6.5588,10.9882 +50.504,17.541800000000002,6.5559,10.9859 +50.512,17.5366,6.5529,10.9837 +50.52,17.5313,6.5499,10.9814 +50.528,17.526,6.5469,10.9791 +50.536,17.5206,6.5438,10.9768 +50.544000000000004,17.5152,6.5406,10.9746 +50.552,17.509700000000002,6.5374,10.9723 +50.56,17.5042,6.5342,10.97 +50.568,17.4986,6.5309,10.9677 +50.576,17.4931,6.5276,10.9655 +50.584,17.4874,6.5242,10.9632 +50.592,17.4817,6.5208,10.9609 +50.6,17.476100000000002,6.5174,10.9587 +50.608000000000004,17.4703,6.5139,10.9564 +50.616,17.4644,6.5103,10.9541 +50.624,17.4587,6.5068,10.9519 +50.632,17.4527,6.5031,10.9496 +50.64,17.4468,6.4994,10.9474 +50.648,17.4408,6.4957,10.9451 +50.656,17.4348,6.492,10.9428 +50.664,17.4288,6.4882,10.9406 +50.672000000000004,17.4226,6.4843,10.9383 +50.68,17.4165,6.4804,10.9361 +50.688,17.4103,6.4765,10.9338 +50.696,17.4041,6.4725,10.9316 +50.704,17.3978,6.4685,10.9293 +50.712,17.3915,6.4644,10.9271 +50.72,17.3851,6.4603,10.9248 +50.728,17.3787,6.4561,10.9226 +50.736000000000004,17.3722,6.4519,10.9203 +50.744,17.3658,6.4477,10.9181 +50.752,17.3593,6.4434,10.9159 +50.76,17.3527,6.4391,10.9136 +50.768,17.3461,6.4347,10.9114 +50.776,17.3394,6.4303,10.9091 +50.784,17.3327,6.4258,10.9069 +50.792,17.326,6.4213,10.9047 +50.800000000000004,17.319200000000002,6.4168,10.9024 +50.808,17.3124,6.4122,10.9002 +50.816,17.3056,6.4076,10.898 +50.824,17.2986,6.4029,10.8957 +50.832,17.2917,6.3982,10.8935 +50.84,17.2847,6.3934,10.8913 +50.848,17.2776,6.3886,10.889 +50.856,17.270599999999998,6.3838,10.8868 +50.864000000000004,17.2635,6.3789,10.8846 +50.872,17.2564,6.374,10.8824 +50.88,17.249200000000002,6.369,10.8802 +50.888,17.2419,6.364,10.8779 +50.896,17.2347,6.359,10.8757 +50.904,17.2274,6.3539,10.8735 +50.912,17.2201,6.3488,10.8713 +50.92,17.212699999999998,6.3436,10.8691 +50.928000000000004,17.205199999999998,6.3384,10.8668 +50.936,17.1978,6.3332,10.8646 +50.944,17.1903,6.3279,10.8624 +50.952,17.1827,6.3225,10.8602 +50.96,17.1752,6.3172,10.858 +50.968,17.1676,6.3118,10.8558 +50.976,17.1599,6.3063,10.8536 +50.984,17.1522,6.3008,10.8514 +50.992000000000004,17.1445,6.2953,10.8492 +51.0,17.136699999999998,6.2897,10.847 +51.008,17.128899999999998,6.2841,10.8448 +51.016,17.1211,6.2785,10.8426 +51.024,17.1132,6.2728,10.8404 +51.032000000000004,17.1052,6.267,10.8382 +51.04,17.0973,6.2613,10.836 +51.048,17.0893,6.2555,10.8338 +51.056000000000004,17.0812,6.2496,10.8316 +51.064,17.0731,6.2437,10.8294 +51.072,17.064999999999998,6.2378,10.8272 +51.08,17.0568,6.2318,10.825 +51.088,17.0486,6.2258,10.8228 +51.096000000000004,17.0404,6.2198,10.8206 +51.104,17.0322,6.2137,10.8185 +51.112,17.0239,6.2076,10.8163 +51.120000000000005,17.0156,6.2015,10.8141 +51.128,17.007199999999997,6.1953,10.8119 +51.136,16.9987,6.189,10.8097 +51.144,16.9904,6.1828,10.8076 +51.152,16.9819,6.1765,10.8054 +51.160000000000004,16.973300000000002,6.1701,10.8032 +51.168,16.9647,6.1637,10.801 +51.176,16.9561,6.1573,10.7988 +51.184000000000005,16.9476,6.1509,10.7967 +51.192,16.9389,6.1444,10.7945 +51.2,16.9301,6.1378,10.7923 +51.208,16.9215,6.1313,10.7902 +51.216,16.9127,6.1247,10.788 +51.224000000000004,16.9038,6.118,10.7858 +51.232,16.8951,6.1114,10.7837 +51.24,16.8861,6.1046,10.7815 +51.248,16.8772,6.0979,10.7793 +51.256,16.8683,6.0911,10.7772 +51.264,16.8593,6.0843,10.775 +51.272,16.8503,6.0774,10.7729 +51.28,16.8413,6.0706,10.7707 +51.288000000000004,16.8321,6.0636,10.7685 +51.296,16.8231,6.0567,10.7664 +51.304,16.8139,6.0497,10.7642 +51.312,16.8047,6.0426,10.7621 +51.32,16.7955,6.0356,10.7599 +51.328,16.7863,6.0285,10.7578 +51.336,16.776899999999998,6.0213,10.7556 +51.344,16.7677,6.0142,10.7535 +51.352000000000004,16.7583,6.007,10.7513 +51.36,16.7489,5.9997,10.7492 +51.368,16.7396,5.9925,10.7471 +51.376,16.7301,5.9852,10.7449 +51.384,16.7206,5.9778,10.7428 +51.392,16.711100000000002,5.9705,10.7406 +51.4,16.7016,5.9631,10.7385 +51.408,16.692,5.9556,10.7364 +51.416000000000004,16.682299999999998,5.9481,10.7342 +51.424,16.6727,5.9406,10.7321 +51.432,16.6631,5.9331,10.73 +51.44,16.6533,5.9255,10.7278 +51.448,16.6436,5.9179,10.7257 +51.456,16.6339,5.9103,10.7236 +51.464,16.624,5.9026,10.7214 +51.472,16.6142,5.8949,10.7193 +51.480000000000004,16.6044,5.8872,10.7172 +51.488,16.5946,5.8795,10.7151 +51.496,16.5846,5.8717,10.7129 +51.504,16.5746,5.8638,10.7108 +51.512,16.564700000000002,5.856,10.7087 +51.52,16.5547,5.8481,10.7066 +51.528,16.5447,5.8402,10.7045 +51.536,16.5345,5.8322,10.7023 +51.544000000000004,16.5245,5.8243,10.7002 +51.552,16.5143,5.8162,10.6981 +51.56,16.5042,5.8082,10.696 +51.568,16.494,5.8001,10.6939 +51.576,16.483800000000002,5.792,10.6918 +51.584,16.4736,5.7839,10.6897 +51.592,16.4634,5.7758,10.6876 +51.6,16.4531,5.7676,10.6855 +51.608000000000004,16.442700000000002,5.7593,10.6834 +51.616,16.4324,5.7511,10.6813 +51.624,16.422,5.7428,10.6792 +51.632,16.4116,5.7345,10.6771 +51.64,16.401200000000003,5.7262,10.675 +51.648,16.390700000000002,5.7178,10.6729 +51.656,16.3802,5.7094,10.6708 +51.664,16.369699999999998,5.701,10.6687 +51.672000000000004,16.3592,5.6926,10.6666 +51.68,16.3486,5.6841,10.6645 +51.688,16.338,5.6756,10.6624 +51.696,16.327399999999997,5.6671,10.6603 +51.704,16.3167,5.6585,10.6582 +51.712,16.306,5.6499,10.6561 +51.72,16.2953,5.6413,10.654 +51.728,16.284599999999998,5.6327,10.6519 +51.736000000000004,16.2739,5.624,10.6499 +51.744,16.2631,5.6153,10.6478 +51.752,16.252299999999998,5.6066,10.6457 +51.76,16.2415,5.5979,10.6436 +51.768,16.230600000000003,5.5891,10.6415 +51.776,16.2198,5.5803,10.6395 +51.784,16.2089,5.5715,10.6374 +51.792,16.1979,5.5626,10.6353 +51.800000000000004,16.1869,5.5537,10.6332 +51.808,16.176000000000002,5.5448,10.6312 +51.816,16.165,5.5359,10.6291 +51.824,16.154,5.527,10.627 +51.832,16.143,5.518,10.625 +51.84,16.1319,5.509,10.6229 +51.848,16.1208,5.5,10.6208 +51.856,16.1097,5.4909,10.6188 +51.864000000000004,16.0986,5.4819,10.6167 +51.872,16.0874,5.4728,10.6146 +51.88,16.0762,5.4636,10.6126 +51.888,16.065,5.4545,10.6105 +51.896,16.0538,5.4453,10.6085 +51.904,16.0426,5.4362,10.6064 +51.912,16.0313,5.4269,10.6044 +51.92,16.02,5.4177,10.6023 +51.928000000000004,16.0087,5.4084,10.6003 +51.936,15.9974,5.3992,10.5982 +51.944,15.9861,5.3899,10.5962 +51.952,15.974599999999999,5.3805,10.5941 +51.96,15.9633,5.3712,10.5921 +51.968,15.951799999999999,5.3618,10.59 +51.976,15.9404,5.3524,10.588 +51.984,15.9289,5.343,10.5859 +51.992000000000004,15.9175,5.3336,10.5839 +52.0,15.905899999999999,5.3241,10.5818 +52.008,15.8945,5.3147,10.5798 +52.016,15.883,5.3052,10.5778 +52.024,15.8713,5.2956,10.5757 +52.032000000000004,15.8598,5.2861,10.5737 +52.04,15.8482,5.2765,10.5717 +52.048,15.8366,5.267,10.5696 +52.056000000000004,15.825,5.2574,10.5676 +52.064,15.8134,5.2478,10.5656 +52.072,15.8016,5.2381,10.5635 +52.08,15.790000000000001,5.2285,10.5615 +52.088,15.7783,5.2188,10.5595 +52.096000000000004,15.7666,5.2091,10.5575 +52.104,15.7548,5.1994,10.5554 +52.112,15.743,5.1896,10.5534 +52.120000000000005,15.7313,5.1799,10.5514 +52.128,15.7195,5.1701,10.5494 +52.136,15.707699999999999,5.1603,10.5474 +52.144,15.695900000000002,5.1505,10.5454 +52.152,15.684000000000001,5.1407,10.5433 +52.160000000000004,15.6722,5.1309,10.5413 +52.168,15.660300000000001,5.121,10.5393 +52.176,15.6484,5.1111,10.5373 +52.184000000000005,15.6365,5.1012,10.5353 +52.192,15.624600000000001,5.0913,10.5333 +52.2,15.6127,5.0814,10.5313 +52.208,15.6007,5.0714,10.5293 +52.216,15.588799999999999,5.0615,10.5273 +52.224000000000004,15.576799999999999,5.0515,10.5253 +52.232,15.564800000000002,5.0415,10.5233 +52.24,15.552800000000001,5.0315,10.5213 +52.248,15.540799999999999,5.0215,10.5193 +52.256,15.5287,5.0114,10.5173 +52.264,15.5167,5.0014,10.5153 +52.272,15.5046,4.9913,10.5133 +52.28,15.4925,4.9812,10.5113 +52.288000000000004,15.4804,4.9711,10.5093 +52.296,15.468300000000001,4.961,10.5073 +52.304,15.456199999999999,4.9509,10.5053 +52.312,15.443999999999999,4.9407,10.5033 +52.32,15.4318,4.9305,10.5013 +52.328,15.419699999999999,4.9204,10.4993 +52.336,15.4076,4.9102,10.4974 +52.344,15.3954,4.9,10.4954 +52.352000000000004,15.383199999999999,4.8898,10.4934 +52.36,15.3709,4.8795,10.4914 +52.368,15.358699999999999,4.8693,10.4894 +52.376,15.3465,4.859,10.4875 +52.384,15.334299999999999,4.8488,10.4855 +52.392,15.322,4.8385,10.4835 +52.4,15.3097,4.8282,10.4815 +52.408,15.2975,4.8179,10.4796 +52.416000000000004,15.2852,4.8076,10.4776 +52.424,15.2728,4.7972,10.4756 +52.432,15.2605,4.7869,10.4736 +52.44,15.2482,4.7765,10.4717 +52.448,15.2359,4.7662,10.4697 +52.456,15.223500000000001,4.7558,10.4677 +52.464,15.2112,4.7454,10.4658 +52.472,15.198800000000002,4.735,10.4638 +52.480000000000004,15.186499999999999,4.7246,10.4619 +52.488,15.1741,4.7142,10.4599 +52.496,15.1617,4.7038,10.4579 +52.504,15.1493,4.6933,10.456 +52.512,15.1369,4.6829,10.454 +52.52,15.1245,4.6724,10.4521 +52.528,15.112000000000002,4.6619,10.4501 +52.536,15.099599999999999,4.6514,10.4482 +52.544000000000004,15.0872,4.641,10.4462 +52.552,15.0748,4.6305,10.4443 +52.56,15.0622,4.6199,10.4423 +52.568,15.049800000000001,4.6094,10.4404 +52.576,15.0373,4.5989,10.4384 +52.584,15.0249,4.5884,10.4365 +52.592,15.0123,4.5778,10.4345 +52.6,14.9999,4.5673,10.4326 +52.608000000000004,14.987400000000001,4.5567,10.4307 +52.616,14.974799999999998,4.5461,10.4287 +52.624,14.962399999999999,4.5356,10.4268 +52.632,14.9499,4.525,10.4249 +52.64,14.9373,4.5144,10.4229 +52.648,14.9248,4.5038,10.421 +52.656,14.9123,4.4932,10.4191 +52.664,14.8997,4.4826,10.4171 +52.672000000000004,14.8872,4.472,10.4152 +52.68,14.8746,4.4613,10.4133 +52.688,14.862000000000002,4.4507,10.4113 +52.696,14.849499999999999,4.4401,10.4094 +52.704,14.8369,4.4294,10.4075 +52.712,14.8244,4.4188,10.4056 +52.72,14.811800000000002,4.4081,10.4037 +52.728,14.799199999999999,4.3975,10.4017 +52.736000000000004,14.7866,4.3868,10.3998 +52.744,14.774000000000001,4.3761,10.3979 +52.752,14.761500000000002,4.3655,10.396 +52.76,14.748899999999999,4.3548,10.3941 +52.768,14.7363,4.3441,10.3922 +52.776,14.723600000000001,4.3334,10.3902 +52.784,14.710999999999999,4.3227,10.3883 +52.792,14.6984,4.312,10.3864 +52.800000000000004,14.6858,4.3013,10.3845 +52.808,14.673200000000001,4.2906,10.3826 +52.816,14.660599999999999,4.2799,10.3807 +52.824,14.648,4.2692,10.3788 +52.832,14.635299999999999,4.2584,10.3769 +52.84,14.6227,4.2477,10.375 +52.848,14.610100000000001,4.237,10.3731 +52.856,14.5975,4.2263,10.3712 +52.864000000000004,14.584800000000001,4.2155,10.3693 +52.872,14.572199999999999,4.2048,10.3674 +52.88,14.5596,4.1941,10.3655 +52.888,14.5469,4.1833,10.3636 +52.896,14.534300000000002,4.1726,10.3617 +52.904,14.521799999999999,4.1619,10.3599 +52.912,14.5091,4.1511,10.358 +52.92,14.4965,4.1404,10.3561 +52.928000000000004,14.4838,4.1296,10.3542 +52.936,14.4712,4.1189,10.3523 +52.944,14.4585,4.1081,10.3504 +52.952,14.4459,4.0974,10.3485 +52.96,14.4333,4.0866,10.3467 +52.968,14.4207,4.0759,10.3448 +52.976,14.408000000000001,4.0651,10.3429 +52.984,14.395399999999999,4.0544,10.341 +52.992000000000004,14.3828,4.0436,10.3392 +53.0,14.3701,4.0328,10.3373 +53.008,14.3575,4.0221,10.3354 +53.016,14.344800000000001,4.0113,10.3335 +53.024,14.3323,4.0006,10.3317 +53.032000000000004,14.319600000000001,3.9898,10.3298 +53.04,14.306999999999999,3.9791,10.3279 +53.048,14.2944,3.9683,10.3261 +53.056000000000004,14.281799999999999,3.9576,10.3242 +53.064,14.2691,3.9468,10.3223 +53.072,14.256599999999999,3.9361,10.3205 +53.08,14.2439,3.9253,10.3186 +53.088,14.2314,3.9146,10.3168 +53.096000000000004,14.2187,3.9038,10.3149 +53.104,14.206100000000001,3.8931,10.313 +53.112,14.1936,3.8824,10.3112 +53.120000000000005,14.180900000000001,3.8716,10.3093 +53.128,14.168399999999998,3.8609,10.3075 +53.136,14.1557,3.8501,10.3056 +53.144,14.1432,3.8394,10.3038 +53.152,14.1306,3.8287,10.3019 +53.160000000000004,14.1181,3.818,10.3001 +53.168,14.1054,3.8072,10.2982 +53.176,14.0929,3.7965,10.2964 +53.184000000000005,14.080400000000001,3.7858,10.2946 +53.192,14.0678,3.7751,10.2927 +53.2,14.0553,3.7644,10.2909 +53.208,14.0427,3.7537,10.289 +53.216,14.0302,3.743,10.2872 +53.224000000000004,14.0177,3.7323,10.2854 +53.232,14.0051,3.7216,10.2835 +53.24,13.992600000000001,3.7109,10.2817 +53.248000000000005,13.9801,3.7002,10.2799 +53.256,13.967500000000001,3.6895,10.278 +53.264,13.954999999999998,3.6788,10.2762 +53.272,13.9426,3.6682,10.2744 +53.28,13.930100000000001,3.6575,10.2726 +53.288000000000004,13.9176,3.6469,10.2707 +53.296,13.905100000000001,3.6362,10.2689 +53.304,13.8926,3.6255,10.2671 +53.312,13.8802,3.6149,10.2653 +53.32,13.867700000000001,3.6043,10.2634 +53.328,13.8552,3.5936,10.2616 +53.336,13.8428,3.583,10.2598 +53.344,13.8304,3.5724,10.258 +53.352000000000004,13.818,3.5618,10.2562 +53.36,13.8056,3.5512,10.2544 +53.368,13.793099999999999,3.5405,10.2526 +53.376,13.7807,3.53,10.2507 +53.384,13.7683,3.5194,10.2489 +53.392,13.7559,3.5088,10.2471 +53.4,13.743500000000001,3.4982,10.2453 +53.408,13.7311,3.4876,10.2435 +53.416000000000004,13.7188,3.4771,10.2417 +53.424,13.7064,3.4665,10.2399 +53.432,13.694099999999999,3.456,10.2381 +53.44,13.6817,3.4454,10.2363 +53.448,13.6694,3.4349,10.2345 +53.456,13.6571,3.4244,10.2327 +53.464,13.6448,3.4139,10.2309 +53.472,13.6325,3.4034,10.2291 +53.480000000000004,13.6202,3.3929,10.2273 +53.488,13.6079,3.3824,10.2255 +53.496,13.5957,3.3719,10.2238 +53.504,13.5834,3.3614,10.222 +53.512,13.571100000000001,3.3509,10.2202 +53.52,13.558900000000001,3.3405,10.2184 +53.528,13.5466,3.33,10.2166 +53.536,13.5344,3.3196,10.2148 +53.544000000000004,13.5222,3.3092,10.213 +53.552,13.5101,3.2988,10.2113 +53.56,13.4978,3.2883,10.2095 +53.568,13.485600000000002,3.2779,10.2077 +53.576,13.4734,3.2675,10.2059 +53.584,13.461400000000001,3.2572,10.2042 +53.592,13.449200000000001,3.2468,10.2024 +53.6,13.437,3.2364,10.2006 +53.608000000000004,13.424900000000001,3.2261,10.1988 +53.616,13.4128,3.2157,10.1971 +53.624,13.4007,3.2054,10.1953 +53.632,13.3886,3.1951,10.1935 +53.64,13.3766,3.1848,10.1918 +53.648,13.3645,3.1745,10.19 +53.656,13.3524,3.1642,10.1882 +53.664,13.3404,3.1539,10.1865 +53.672000000000004,13.328299999999999,3.1436,10.1847 +53.68,13.3164,3.1334,10.183 +53.688,13.304300000000001,3.1231,10.1812 +53.696,13.2924,3.1129,10.1795 +53.704,13.2804,3.1027,10.1777 +53.712,13.2684,3.0925,10.1759 +53.72,13.2565,3.0823,10.1742 +53.728,13.244499999999999,3.0721,10.1724 +53.736000000000004,13.2326,3.0619,10.1707 +53.744,13.2207,3.0518,10.1689 +53.752,13.2088,3.0416,10.1672 +53.76,13.197,3.0315,10.1655 +53.768,13.1851,3.0214,10.1637 +53.776,13.173200000000001,3.0112,10.162 +53.784,13.1613,3.0011,10.1602 +53.792,13.1495,2.991,10.1585 +53.800000000000004,13.1378,2.981,10.1568 +53.808,13.1259,2.9709,10.155 +53.816,13.1142,2.9609,10.1533 +53.824,13.1023,2.9508,10.1515 +53.832,13.0906,2.9408,10.1498 +53.84,13.078899999999999,2.9308,10.1481 +53.848,13.0672,2.9208,10.1464 +53.856,13.0554,2.9108,10.1446 +53.864000000000004,13.0437,2.9008,10.1429 +53.872,13.0321,2.8909,10.1412 +53.88,13.0203,2.8809,10.1394 +53.888,13.008700000000001,2.871,10.1377 +53.896,12.9971,2.8611,10.136 +53.904,12.9855,2.8512,10.1343 +53.912,12.9739,2.8413,10.1326 +53.92,12.962200000000001,2.8314,10.1308 +53.928000000000004,12.9507,2.8216,10.1291 +53.936,12.9391,2.8117,10.1274 +53.944,12.9276,2.8019,10.1257 +53.952,12.9161,2.7921,10.124 +53.96,12.904599999999999,2.7823,10.1223 +53.968,12.8931,2.7725,10.1206 +53.976,12.8816,2.7627,10.1189 +53.984,12.8702,2.753,10.1172 +53.992000000000004,12.8587,2.7432,10.1155 +54.0,12.847299999999999,2.7335,10.1138 +54.008,12.8358,2.7238,10.112 +54.016,12.8244,2.7141,10.1103 +54.024,12.812999999999999,2.7044,10.1086 +54.032000000000004,12.8017,2.6947,10.107 +54.04,12.7904,2.6851,10.1053 +54.048,12.7791,2.6755,10.1036 +54.056000000000004,12.767700000000001,2.6658,10.1019 +54.064,12.7564,2.6562,10.1002 +54.072,12.7452,2.6467,10.0985 +54.08,12.7339,2.6371,10.0968 +54.088,12.7226,2.6275,10.0951 +54.096000000000004,12.711400000000001,2.618,10.0934 +54.104,12.700199999999999,2.6085,10.0917 +54.112,12.689,2.599,10.09 +54.120000000000005,12.677900000000001,2.5895,10.0884 +54.128,12.6667,2.58,10.0867 +54.136,12.6555,2.5705,10.085 +54.144,12.6444,2.5611,10.0833 +54.152,12.6333,2.5517,10.0816 +54.160000000000004,12.6223,2.5423,10.08 +54.168,12.6112,2.5329,10.0783 +54.176,12.6001,2.5235,10.0766 +54.184000000000005,12.588999999999999,2.5141,10.0749 +54.192,12.5781,2.5048,10.0733 +54.2,12.5671,2.4955,10.0716 +54.208,12.556000000000001,2.4861,10.0699 +54.216,12.545200000000001,2.4769,10.0683 +54.224000000000004,12.534199999999998,2.4676,10.0666 +54.232,12.5232,2.4583,10.0649 +54.24,12.5124,2.4491,10.0633 +54.248000000000005,12.5015,2.4399,10.0616 +54.256,12.4907,2.4307,10.06 +54.264,12.4798,2.4215,10.0583 +54.272,12.4689,2.4123,10.0566 +54.28,12.4582,2.4032,10.055 +54.288000000000004,12.4473,2.394,10.0533 +54.296,12.4366,2.3849,10.0517 +54.304,12.4258,2.3758,10.05 +54.312,12.4151,2.3667,10.0484 +54.32,12.404399999999999,2.3577,10.0467 +54.328,12.393699999999999,2.3486,10.0451 +54.336,12.383,2.3396,10.0434 +54.344,12.3724,2.3306,10.0418 +54.352000000000004,12.3618,2.3216,10.0402 +54.36,12.3511,2.3126,10.0385 +54.368,12.340599999999998,2.3037,10.0369 +54.376,12.3299,2.2947,10.0352 +54.384,12.3194,2.2858,10.0336 +54.392,12.3089,2.2769,10.032 +54.4,12.298300000000001,2.268,10.0303 +54.408,12.2879,2.2592,10.0287 +54.416000000000004,12.2774,2.2503,10.0271 +54.424,12.2669,2.2415,10.0254 +54.432,12.256499999999999,2.2327,10.0238 +54.44,12.2461,2.2239,10.0222 +54.448,12.2358,2.2152,10.0206 +54.456,12.2253,2.2064,10.0189 +54.464,12.215,2.1977,10.0173 +54.472,12.2047,2.189,10.0157 +54.480000000000004,12.194399999999998,2.1803,10.0141 +54.488,12.184,2.1716,10.0124 +54.496,12.1737,2.1629,10.0108 +54.504,12.163499999999999,2.1543,10.0092 +54.512,12.1533,2.1457,10.0076 +54.52,12.1431,2.1371,10.006 +54.528,12.1329,2.1285,10.0044 +54.536,12.122800000000002,2.12,10.0028 +54.544000000000004,12.112499999999999,2.1114,10.0011 +54.552,12.1024,2.1029,9.9995 +54.56,12.0923,2.0944,9.9979 +54.568,12.0822,2.0859,9.9963 +54.576,12.0722,2.0775,9.9947 +54.584,12.062100000000001,2.069,9.9931 +54.592,12.0521,2.0606,9.9915 +54.6,12.042100000000001,2.0522,9.9899 +54.608000000000004,12.0321,2.0438,9.9883 +54.616,12.022200000000002,2.0355,9.9867 +54.624,12.0122,2.0271,9.9851 +54.632,12.0023,2.0188,9.9835 +54.64,11.9924,2.0105,9.9819 +54.648,11.9825,2.0022,9.9803 +54.656,11.9728,1.994,9.9788 +54.664,11.9629,1.9857,9.9772 +54.672000000000004,11.9531,1.9775,9.9756 +54.68,11.9433,1.9693,9.974 +54.688,11.9335,1.9611,9.9724 +54.696,11.9237,1.9529,9.9708 +54.704,11.914000000000001,1.9448,9.9692 +54.712,11.9044,1.9367,9.9677 +54.72,11.8947,1.9286,9.9661 +54.728,11.885,1.9205,9.9645 +54.736000000000004,11.8753,1.9124,9.9629 +54.744,11.8658,1.9044,9.9614 +54.752,11.8562,1.8964,9.9598 +54.76,11.8466,1.8884,9.9582 +54.768,11.837,1.8804,9.9566 +54.776,11.8275,1.8724,9.9551 +54.784,11.818,1.8645,9.9535 +54.792,11.8085,1.8566,9.9519 +54.800000000000004,11.7991,1.8487,9.9504 +54.808,11.7896,1.8408,9.9488 +54.816,11.780100000000001,1.8329,9.9472 +54.824,11.770800000000001,1.8251,9.9457 +54.832,11.7614,1.8173,9.9441 +54.84,11.7521,1.8095,9.9426 +54.848,11.742700000000001,1.8017,9.941 +54.856,11.7334,1.794,9.9394 +54.864000000000004,11.7241,1.7862,9.9379 +54.872,11.714799999999999,1.7785,9.9363 +54.88,11.705599999999999,1.7708,9.9348 +54.888,11.696399999999999,1.7632,9.9332 +54.896,11.687199999999999,1.7555,9.9317 +54.904,11.677999999999999,1.7479,9.9301 +54.912,11.668899999999999,1.7403,9.9286 +54.92,11.659799999999999,1.7327,9.9271 +54.928000000000004,11.650599999999999,1.7251,9.9255 +54.936,11.6416,1.7176,9.924 +54.944,11.6324,1.71,9.9224 +54.952,11.6234,1.7025,9.9209 +54.96,11.6145,1.6951,9.9194 +54.968,11.6054,1.6876,9.9178 +54.976,11.596499999999999,1.6802,9.9163 +54.984,11.5875,1.6727,9.9148 +54.992000000000004,11.5785,1.6653,9.9132 +55.0,11.5697,1.658,9.9117 +55.008,11.5608,1.6506,9.9102 +55.016,11.5519,1.6433,9.9086 +55.024,11.543,1.6359,9.9071 +55.032000000000004,11.5342,1.6286,9.9056 +55.04,11.5255,1.6214,9.9041 +55.048,11.5166,1.6141,9.9025 +55.056000000000004,11.5079,1.6069,9.901 +55.064,11.4992,1.5997,9.8995 +55.072,11.490499999999999,1.5925,9.898 +55.08,11.4818,1.5853,9.8965 +55.088,11.4731,1.5782,9.8949 +55.096000000000004,11.4644,1.571,9.8934 +55.104,11.4558,1.5639,9.8919 +55.112,11.447199999999999,1.5568,9.8904 +55.120000000000005,11.438699999999999,1.5498,9.8889 +55.128,11.4301,1.5427,9.8874 +55.136,11.4216,1.5357,9.8859 +55.144,11.4131,1.5287,9.8844 +55.152,11.404599999999999,1.5217,9.8829 +55.160000000000004,11.396199999999999,1.5148,9.8814 +55.168,11.387699999999999,1.5078,9.8799 +55.176,11.379299999999999,1.5009,9.8784 +55.184000000000005,11.370899999999999,1.494,9.8769 +55.192,11.3626,1.4872,9.8754 +55.2,11.3542,1.4803,9.8739 +55.208,11.3459,1.4735,9.8724 +55.216,11.3376,1.4667,9.8709 +55.224000000000004,11.3293,1.4599,9.8694 +55.232,11.321000000000002,1.4531,9.8679 +55.24,11.312800000000001,1.4464,9.8664 +55.248000000000005,11.3045,1.4396,9.8649 +55.256,11.2964,1.4329,9.8635 +55.264,11.2882,1.4262,9.862 +55.272,11.280100000000001,1.4196,9.8605 +55.28,11.2719,1.4129,9.859 +55.288000000000004,11.2638,1.4063,9.8575 +55.296,11.255799999999999,1.3997,9.8561 +55.304,11.2477,1.3931,9.8546 +55.312,11.2397,1.3866,9.8531 +55.32,11.2316,1.38,9.8516 +55.328,11.2237,1.3735,9.8502 +55.336,11.215699999999998,1.367,9.8487 +55.344,11.2078,1.3606,9.8472 +55.352000000000004,11.199800000000002,1.3541,9.8457 +55.36,11.192,1.3477,9.8443 +55.368,11.1841,1.3413,9.8428 +55.376,11.1762,1.3349,9.8413 +55.384,11.1684,1.3285,9.8399 +55.392,11.1606,1.3222,9.8384 +55.4,11.1528,1.3158,9.837 +55.408,11.145,1.3095,9.8355 +55.416000000000004,11.1372,1.3032,9.834 +55.424,11.1296,1.297,9.8326 +55.432,11.121799999999999,1.2907,9.8311 +55.44,11.1142,1.2845,9.8297 +55.448,11.1065,1.2783,9.8282 +55.456,11.0989,1.2721,9.8268 +55.464,11.0913,1.266,9.8253 +55.472,11.0837,1.2598,9.8239 +55.480000000000004,11.0761,1.2537,9.8224 +55.488,11.0686,1.2476,9.821 +55.496,11.061,1.2415,9.8195 +55.504,11.0536,1.2355,9.8181 +55.512,11.0462,1.2295,9.8167 +55.52,11.0386,1.2234,9.8152 +55.528,11.0313,1.2175,9.8138 +55.536,11.023800000000001,1.2115,9.8123 +55.544000000000004,11.0164,1.2055,9.8109 +55.552,11.0091,1.1996,9.8095 +55.56,11.0017,1.1937,9.808 +55.568,10.994399999999999,1.1878,9.8066 +55.576,10.9871,1.1819,9.8052 +55.584,10.9799,1.1761,9.8038 +55.592,10.9726,1.1703,9.8023 +55.6,10.9654,1.1645,9.8009 +55.608000000000004,10.9582,1.1587,9.7995 +55.616,10.951,1.1529,9.7981 +55.624,10.9438,1.1472,9.7966 +55.632,10.936599999999999,1.1414,9.7952 +55.64,10.929499999999999,1.1357,9.7938 +55.648,10.9224,1.13,9.7924 +55.656,10.9154,1.1244,9.791 +55.664,10.9083,1.1187,9.7896 +55.672000000000004,10.9012,1.1131,9.7881 +55.68,10.8942,1.1075,9.7867 +55.688,10.8872,1.1019,9.7853 +55.696,10.880299999999998,1.0964,9.7839 +55.704,10.8733,1.0908,9.7825 +55.712,10.8664,1.0853,9.7811 +55.72,10.8595,1.0798,9.7797 +55.728,10.852599999999999,1.0743,9.7783 +55.736000000000004,10.845799999999999,1.0689,9.7769 +55.744,10.838899999999999,1.0634,9.7755 +55.752,10.8321,1.058,9.7741 +55.76,10.8253,1.0526,9.7727 +55.768,10.8185,1.0472,9.7713 +55.776,10.8118,1.0419,9.7699 +55.784,10.805,1.0365,9.7685 +55.792,10.7983,1.0312,9.7671 +55.800000000000004,10.7916,1.0259,9.7657 +55.808,10.785,1.0206,9.7644 +55.816,10.7784,1.0154,9.763 +55.824,10.7717,1.0101,9.7616 +55.832,10.765099999999999,1.0049,9.7602 +55.84,10.758500000000002,0.9997,9.7588 +55.848,10.751900000000001,0.9945,9.7574 +55.856,10.7455,0.9894,9.7561 +55.864000000000004,10.7389,0.9842,9.7547 +55.872,10.7324,0.9791,9.7533 +55.88,10.7259,0.974,9.7519 +55.888,10.7194,0.9689,9.7505 +55.896,10.7131,0.9639,9.7492 +55.904,10.7066,0.9588,9.7478 +55.912,10.700199999999999,0.9538,9.7464 +55.92,10.693900000000001,0.9488,9.7451 +55.928000000000004,10.6875,0.9438,9.7437 +55.936,10.6812,0.9389,9.7423 +55.944,10.6749,0.9339,9.741 +55.952,10.6686,0.929,9.7396 +55.96,10.6623,0.9241,9.7382 +55.968,10.6561,0.9192,9.7369 +55.976,10.6498,0.9143,9.7355 +55.984,10.643699999999999,0.9095,9.7342 +55.992000000000004,10.6375,0.9047,9.7328 +56.0,10.631300000000001,0.8998,9.7315 +56.008,10.6252,0.8951,9.7301 +56.016,10.6191,0.8903,9.7288 +56.024,10.6129,0.8855,9.7274 +56.032000000000004,10.606900000000001,0.8808,9.7261 +56.04,10.6008,0.8761,9.7247 +56.048,10.5948,0.8714,9.7234 +56.056000000000004,10.5887,0.8667,9.722 +56.064,10.5828,0.8621,9.7207 +56.072,10.5767,0.8574,9.7193 +56.08,10.5708,0.8528,9.718 +56.088,10.5649,0.8482,9.7167 +56.096000000000004,10.5589,0.8436,9.7153 +56.104,10.5531,0.8391,9.714 +56.112,10.5471,0.8345,9.7126 +56.120000000000005,10.5413,0.83,9.7113 +56.128,10.5355,0.8255,9.71 +56.136,10.5297,0.821,9.7087 +56.144,10.5238,0.8165,9.7073 +56.152,10.5181,0.8121,9.706 +56.160000000000004,10.512400000000001,0.8077,9.7047 +56.168,10.5065,0.8032,9.7033 +56.176,10.5009,0.7989,9.702 +56.184000000000005,10.495199999999999,0.7945,9.7007 +56.192,10.489500000000001,0.7901,9.6994 +56.2,10.4839,0.7858,9.6981 +56.208,10.4782,0.7815,9.6967 +56.216,10.4726,0.7772,9.6954 +56.224000000000004,10.467,0.7729,9.6941 +56.232,10.4614,0.7686,9.6928 +56.24,10.4559,0.7644,9.6915 +56.248000000000005,10.4503,0.7601,9.6902 +56.256,10.4448,0.7559,9.6889 +56.264,10.4393,0.7517,9.6876 +56.272,10.4338,0.7475,9.6863 +56.28,10.4283,0.7434,9.6849 +56.288000000000004,10.4228,0.7392,9.6836 +56.296,10.417399999999999,0.7351,9.6823 +56.304,10.411999999999999,0.731,9.681 +56.312000000000005,10.406600000000001,0.7269,9.6797 +56.32,10.401299999999999,0.7229,9.6784 +56.328,10.395999999999999,0.7188,9.6772 +56.336,10.3907,0.7148,9.6759 +56.344,10.385299999999999,0.7107,9.6746 +56.352000000000004,10.380099999999999,0.7068,9.6733 +56.36,10.3748,0.7028,9.672 +56.368,10.3695,0.6988,9.6707 +56.376,10.3643,0.6949,9.6694 +56.384,10.359,0.6909,9.6681 +56.392,10.3538,0.687,9.6668 +56.4,10.3487,0.6831,9.6656 +56.408,10.3435,0.6792,9.6643 +56.416000000000004,10.3384,0.6754,9.663 +56.424,10.3332,0.6715,9.6617 +56.432,10.3281,0.6677,9.6604 +56.44,10.3231,0.6639,9.6592 +56.448,10.318,0.6601,9.6579 +56.456,10.312899999999999,0.6563,9.6566 +56.464,10.3079,0.6526,9.6553 +56.472,10.3029,0.6488,9.6541 +56.480000000000004,10.297899999999998,0.6451,9.6528 +56.488,10.2929,0.6414,9.6515 +56.496,10.288,0.6377,9.6503 +56.504,10.283,0.634,9.649 +56.512,10.2781,0.6304,9.6477 +56.52,10.2732,0.6267,9.6465 +56.528,10.2683,0.6231,9.6452 +56.536,10.2635,0.6195,9.644 +56.544000000000004,10.2586,0.6159,9.6427 +56.552,10.2537,0.6123,9.6414 +56.56,10.249,0.6088,9.6402 +56.568,10.2441,0.6052,9.6389 +56.576,10.2394,0.6017,9.6377 +56.584,10.2346,0.5982,9.6364 +56.592,10.229899999999999,0.5947,9.6352 +56.6,10.225100000000001,0.5912,9.6339 +56.608000000000004,10.2205,0.5878,9.6327 +56.616,10.2157,0.5843,9.6314 +56.624,10.2111,0.5809,9.6302 +56.632,10.2065,0.5775,9.629 +56.64,10.2018,0.5741,9.6277 +56.648,10.1972,0.5707,9.6265 +56.656,10.192599999999999,0.5674,9.6252 +56.664,10.188,0.564,9.624 +56.672000000000004,10.1835,0.5607,9.6228 +56.68,10.178899999999999,0.5574,9.6215 +56.688,10.1744,0.5541,9.6203 +56.696,10.1699,0.5508,9.6191 +56.704,10.1653,0.5475,9.6178 +56.712,10.1608,0.5442,9.6166 +56.72,10.1564,0.541,9.6154 +56.728,10.152000000000001,0.5378,9.6142 +56.736000000000004,10.147499999999999,0.5346,9.6129 +56.744,10.1431,0.5314,9.6117 +56.752,10.1387,0.5282,9.6105 +56.76,10.1343,0.525,9.6093 +56.768,10.13,0.5219,9.6081 +56.776,10.1256,0.5188,9.6068 +56.784,10.1212,0.5156,9.6056 +56.792,10.1169,0.5125,9.6044 +56.800000000000004,10.112699999999998,0.5095,9.6032 +56.808,10.1084,0.5064,9.602 +56.816,10.104099999999999,0.5033,9.6008 +56.824,10.0999,0.5003,9.5996 +56.832,10.095699999999999,0.4973,9.5984 +56.84,10.0914,0.4942,9.5972 +56.848,10.0872,0.4912,9.596 +56.856,10.0831,0.4883,9.5948 +56.864000000000004,10.0789,0.4853,9.5936 +56.872,10.0747,0.4823,9.5924 +56.88,10.0706,0.4794,9.5912 +56.888,10.0665,0.4765,9.59 +56.896,10.0624,0.4736,9.5888 +56.904,10.058300000000001,0.4707,9.5876 +56.912,10.0542,0.4678,9.5864 +56.92,10.0501,0.4649,9.5852 +56.928000000000004,10.0461,0.4621,9.584 +56.936,10.042,0.4592,9.5828 +56.944,10.038,0.4564,9.5816 +56.952,10.033999999999999,0.4536,9.5804 +56.96,10.0301,0.4508,9.5793 +56.968,10.0261,0.448,9.5781 +56.976,10.0222,0.4453,9.5769 +56.984,10.0182,0.4425,9.5757 +56.992000000000004,10.0143,0.4398,9.5745 +57.0,10.010399999999999,0.437,9.5734 +57.008,10.0065,0.4343,9.5722 +57.016,10.0026,0.4316,9.571 +57.024,9.998800000000001,0.4289,9.5699 +57.032000000000004,9.995,0.4263,9.5687 +57.04,9.991100000000001,0.4236,9.5675 +57.048,9.9873,0.421,9.5663 +57.056000000000004,9.983500000000001,0.4183,9.5652 +57.064,9.9797,0.4157,9.564 +57.072,9.976,0.4131,9.5629 +57.08,9.9722,0.4105,9.5617 +57.088,9.968399999999999,0.4079,9.5605 +57.096000000000004,9.9648,0.4054,9.5594 +57.104,9.960999999999999,0.4028,9.5582 +57.112,9.9574,0.4003,9.5571 +57.120000000000005,9.9537,0.3978,9.5559 +57.128,9.950000000000001,0.3953,9.5547 +57.136,9.946399999999999,0.3928,9.5536 +57.144,9.9427,0.3903,9.5524 +57.152,9.9391,0.3878,9.5513 +57.160000000000004,9.935500000000001,0.3853,9.5502 +57.168,9.931899999999999,0.3829,9.549 +57.176,9.9284,0.3805,9.5479 +57.184000000000005,9.9247,0.378,9.5467 +57.192,9.9212,0.3756,9.5456 +57.2,9.9176,0.3732,9.5444 +57.208,9.914200000000001,0.3709,9.5433 +57.216,9.910699999999999,0.3685,9.5422 +57.224000000000004,9.9071,0.3661,9.541 +57.232,9.903699999999999,0.3638,9.5399 +57.24,9.9003,0.3615,9.5388 +57.248000000000005,9.8967,0.3591,9.5376 +57.256,9.8933,0.3568,9.5365 +57.264,9.889899999999999,0.3545,9.5354 +57.272,9.8864,0.3522,9.5342 +57.28,9.883099999999999,0.35,9.5331 +57.288000000000004,9.8797,0.3477,9.532 +57.296,9.8764,0.3455,9.5309 +57.304,9.8729,0.3432,9.5297 +57.312000000000005,9.8696,0.341,9.5286 +57.32,9.866299999999999,0.3388,9.5275 +57.328,9.863000000000001,0.3366,9.5264 +57.336,9.8597,0.3344,9.5253 +57.344,9.8564,0.3322,9.5242 +57.352000000000004,9.8531,0.3301,9.523 +57.36,9.8498,0.3279,9.5219 +57.368,9.846599999999999,0.3258,9.5208 +57.376,9.8434,0.3237,9.5197 +57.384,9.8401,0.3215,9.5186 +57.392,9.8369,0.3194,9.5175 +57.4,9.8337,0.3173,9.5164 +57.408,9.8306,0.3153,9.5153 +57.416000000000004,9.8274,0.3132,9.5142 +57.424,9.8242,0.3111,9.5131 +57.432,9.821100000000001,0.3091,9.512 +57.44,9.818,0.3071,9.5109 +57.448,9.8148,0.305,9.5098 +57.456,9.8117,0.303,9.5087 +57.464,9.8086,0.301,9.5076 +57.472,9.8055,0.299,9.5065 +57.480000000000004,9.8024,0.297,9.5054 +57.488,9.7994,0.2951,9.5043 +57.496,9.7964,0.2931,9.5033 +57.504,9.7934,0.2912,9.5022 +57.512,9.790299999999998,0.2892,9.5011 +57.52,9.7873,0.2873,9.5 +57.528,9.7843,0.2854,9.4989 +57.536,9.7813,0.2835,9.4978 +57.544000000000004,9.7784,0.2816,9.4968 +57.552,9.7754,0.2797,9.4957 +57.56,9.7724,0.2778,9.4946 +57.568,9.769499999999999,0.276,9.4935 +57.576,9.7666,0.2741,9.4925 +57.584,9.7637,0.2723,9.4914 +57.592,9.7608,0.2705,9.4903 +57.6,9.7579,0.2686,9.4893 +57.608000000000004,9.755,0.2668,9.4882 +57.616,9.7521,0.265,9.4871 +57.624,9.7493,0.2632,9.4861 +57.632,9.7465,0.2615,9.485 +57.64,9.7436,0.2597,9.4839 +57.648,9.7408,0.2579,9.4829 +57.656,9.738,0.2562,9.4818 +57.664,9.7352,0.2544,9.4808 +57.672000000000004,9.7324,0.2527,9.4797 +57.68,9.7297,0.251,9.4787 +57.688,9.7269,0.2493,9.4776 +57.696,9.7242,0.2476,9.4766 +57.704,9.721400000000001,0.2459,9.4755 +57.712,9.7187,0.2442,9.4745 +57.72,9.7159,0.2425,9.4734 +57.728,9.7133,0.2409,9.4724 +57.736000000000004,9.7105,0.2392,9.4713 +57.744,9.7079,0.2376,9.4703 +57.752,9.705200000000001,0.236,9.4692 +57.76,9.702499999999999,0.2343,9.4682 +57.768,9.6999,0.2327,9.4672 +57.776,9.6972,0.2311,9.4661 +57.784,9.6946,0.2295,9.4651 +57.792,9.6921,0.228,9.4641 +57.800000000000004,9.6894,0.2264,9.463 +57.808,9.6868,0.2248,9.462 +57.816,9.6843,0.2233,9.461 +57.824,9.6816,0.2217,9.4599 +57.832,9.6791,0.2202,9.4589 +57.84,9.6765,0.2186,9.4579 +57.848,9.674,0.2171,9.4569 +57.856,9.6714,0.2156,9.4558 +57.864000000000004,9.6689,0.2141,9.4548 +57.872,9.6664,0.2126,9.4538 +57.88,9.6639,0.2111,9.4528 +57.888,9.6615,0.2097,9.4518 +57.896,9.6589,0.2082,9.4507 +57.904,9.6564,0.2067,9.4497 +57.912,9.654,0.2053,9.4487 +57.92,9.6516,0.2039,9.4477 +57.928000000000004,9.6491,0.2024,9.4467 +57.936,9.646700000000001,0.201,9.4457 +57.944,9.6443,0.1996,9.4447 +57.952,9.6419,0.1982,9.4437 +57.96,9.6395,0.1968,9.4427 +57.968,9.6371,0.1954,9.4417 +57.976,9.6347,0.194,9.4407 +57.984,9.6324,0.1927,9.4397 +57.992000000000004,9.63,0.1913,9.4387 +58.0,9.6276,0.1899,9.4377 +58.008,9.6253,0.1886,9.4367 +58.016,9.622900000000001,0.1872,9.4357 +58.024,9.6206,0.1859,9.4347 +58.032000000000004,9.6183,0.1846,9.4337 +58.04,9.616,0.1833,9.4327 +58.048,9.6137,0.182,9.4317 +58.056000000000004,9.6115,0.1807,9.4308 +58.064,9.6092,0.1794,9.4298 +58.072,9.606900000000001,0.1781,9.4288 +58.08,9.6046,0.1768,9.4278 +58.088,9.6024,0.1756,9.4268 +58.096000000000004,9.600100000000001,0.1743,9.4258 +58.104,9.597999999999999,0.1731,9.4249 +58.112,9.595699999999999,0.1718,9.4239 +58.120000000000005,9.5935,0.1706,9.4229 +58.128,9.5913,0.1694,9.4219 +58.136,9.5891,0.1681,9.421 +58.144,9.5869,0.1669,9.42 +58.152,9.5847,0.1657,9.419 +58.160000000000004,9.582600000000001,0.1645,9.4181 +58.168,9.5804,0.1633,9.4171 +58.176,9.5782,0.1621,9.4161 +58.184000000000005,9.5762,0.161,9.4152 +58.192,9.574,0.1598,9.4142 +58.2,9.5719,0.1586,9.4133 +58.208,9.5698,0.1575,9.4123 +58.216,9.5676,0.1563,9.4113 +58.224000000000004,9.5656,0.1552,9.4104 +58.232,9.5635,0.1541,9.4094 +58.24,9.5615,0.153,9.4085 +58.248000000000005,9.5593,0.1518,9.4075 +58.256,9.5573,0.1507,9.4066 +58.264,9.5552,0.1496,9.4056 +58.272,9.5532,0.1485,9.4047 +58.28,9.5511,0.1474,9.4037 +58.288000000000004,9.549199999999999,0.1464,9.4028 +58.296,9.5472,0.1453,9.4019 +58.304,9.5451,0.1442,9.4009 +58.312000000000005,9.5432,0.1432,9.4 +58.32,9.541099999999998,0.1421,9.399 +58.328,9.5392,0.1411,9.3981 +58.336,9.5372,0.14,9.3972 +58.344,9.5352,0.139,9.3962 +58.352000000000004,9.5333,0.138,9.3953 +58.36,9.5313,0.1369,9.3944 +58.368,9.5293,0.1359,9.3934 +58.376,9.5274,0.1349,9.3925 +58.384,9.525500000000001,0.1339,9.3916 +58.392,9.5236,0.1329,9.3907 +58.4,9.5216,0.1319,9.3897 +58.408,9.5197,0.1309,9.3888 +58.416000000000004,9.517900000000001,0.13,9.3879 +58.424,9.516,0.129,9.387 +58.432,9.514100000000001,0.128,9.3861 +58.44,9.5122,0.1271,9.3851 +58.448,9.510299999999999,0.1261,9.3842 +58.456,9.5085,0.1252,9.3833 +58.464,9.5066,0.1242,9.3824 +58.472,9.504800000000001,0.1233,9.3815 +58.480000000000004,9.503,0.1224,9.3806 +58.488,9.501199999999999,0.1215,9.3797 +58.496,9.4994,0.1206,9.3788 +58.504,9.4975,0.1196,9.3779 +58.512,9.495700000000001,0.1187,9.377 +58.52,9.494,0.1179,9.3761 +58.528,9.4922,0.117,9.3752 +58.536,9.4904,0.1161,9.3743 +58.544000000000004,9.4886,0.1152,9.3734 +58.552,9.4868,0.1143,9.3725 +58.56,9.485100000000001,0.1135,9.3716 +58.568,9.4833,0.1126,9.3707 +58.576,9.4815,0.1117,9.3698 +58.584,9.479800000000001,0.1109,9.3689 +58.592,9.4781,0.1101,9.368 +58.6,9.4763,0.1092,9.3671 +58.608000000000004,9.474599999999999,0.1084,9.3662 +58.616,9.4729,0.1076,9.3653 +58.624,9.4712,0.1067,9.3645 +58.632,9.4695,0.1059,9.3636 +58.64,9.4678,0.1051,9.3627 +58.648,9.4661,0.1043,9.3618 +58.656,9.464400000000001,0.1035,9.3609 +58.664,9.4628,0.1027,9.3601 +58.672000000000004,9.4611,0.1019,9.3592 +58.68,9.4594,0.1011,9.3583 +58.688,9.4578,0.1004,9.3574 +58.696,9.4562,0.0996,9.3566 +58.704,9.454500000000001,0.0988,9.3557 +58.712,9.4529,0.0981,9.3548 +58.72,9.4513,0.0973,9.354 +58.728,9.4497,0.0966,9.3531 +58.736000000000004,9.4481,0.0958,9.3523 +58.744,9.4465,0.0951,9.3514 +58.752,9.4448,0.0943,9.3505 +58.76,9.4433,0.0936,9.3497 +58.768,9.4417,0.0929,9.3488 +58.776,9.4402,0.0922,9.348 +58.784,9.4385,0.0914,9.3471 +58.792,9.437,0.0907,9.3463 +58.800000000000004,9.4354,0.09,9.3454 +58.808,9.4339,0.0893,9.3446 +58.816,9.4323,0.0886,9.3437 +58.824,9.4308,0.0879,9.3429 +58.832,9.4292,0.0872,9.342 +58.84,9.427800000000001,0.0866,9.3412 +58.848,9.4262,0.0859,9.3403 +58.856,9.4247,0.0852,9.3395 +58.864000000000004,9.4231,0.0845,9.3386 +58.872,9.4217,0.0839,9.3378 +58.88,9.4202,0.0832,9.337 +58.888,9.4187,0.0826,9.3361 +58.896,9.4172,0.0819,9.3353 +58.904,9.4158,0.0813,9.3345 +58.912,9.414200000000001,0.0806,9.3336 +58.92,9.4128,0.08,9.3328 +58.928000000000004,9.4114,0.0794,9.332 +58.936,9.4099,0.0787,9.3312 +58.944,9.408399999999999,0.0781,9.3303 +58.952,9.407,0.0775,9.3295 +58.96,9.4056,0.0769,9.3287 +58.968,9.4042,0.0763,9.3279 +58.976,9.4027,0.0757,9.327 +58.984,9.4013,0.0751,9.3262 +58.992000000000004,9.3999,0.0745,9.3254 +59.0,9.3985,0.0739,9.3246 +59.008,9.3971,0.0733,9.3238 +59.016,9.3957,0.0727,9.323 +59.024,9.394300000000001,0.0721,9.3222 +59.032000000000004,9.392900000000001,0.0715,9.3214 +59.04,9.391499999999999,0.071,9.3205 +59.048,9.390099999999999,0.0704,9.3197 +59.056000000000004,9.3887,0.0698,9.3189 +59.064,9.3874,0.0693,9.3181 +59.072,9.386,0.0687,9.3173 +59.08,9.384699999999999,0.0682,9.3165 +59.088,9.3833,0.0676,9.3157 +59.096000000000004,9.382,0.0671,9.3149 +59.104,9.3806,0.0665,9.3141 +59.112,9.3793,0.066,9.3133 +59.120000000000005,9.3781,0.0655,9.3126 +59.128,9.3767,0.0649,9.3118 +59.136,9.375399999999999,0.0644,9.311 +59.144,9.3741,0.0639,9.3102 +59.152,9.3728,0.0634,9.3094 +59.160000000000004,9.371500000000001,0.0629,9.3086 +59.168,9.3701,0.0623,9.3078 +59.176,9.3688,0.0618,9.307 +59.184000000000005,9.3676,0.0613,9.3063 +59.192,9.3663,0.0608,9.3055 +59.2,9.365,0.0603,9.3047 +59.208,9.3637,0.0598,9.3039 +59.216,9.3626,0.0594,9.3032 +59.224000000000004,9.3613,0.0589,9.3024 +59.232,9.360000000000001,0.0584,9.3016 +59.24,9.3587,0.0579,9.3008 +59.248000000000005,9.3575,0.0574,9.3001 +59.256,9.356300000000001,0.057,9.2993 +59.264,9.355,0.0565,9.2985 +59.272,9.3538,0.056,9.2978 +59.28,9.3526,0.0556,9.297 +59.288000000000004,9.3513,0.0551,9.2962 +59.296,9.350200000000001,0.0547,9.2955 +59.304,9.3489,0.0542,9.2947 +59.312000000000005,9.347800000000001,0.0538,9.294 +59.32,9.3465,0.0533,9.2932 +59.328,9.3454,0.0529,9.2925 +59.336,9.3442,0.0525,9.2917 +59.344,9.343,0.052,9.291 +59.352000000000004,9.341800000000001,0.0516,9.2902 +59.36,9.3407,0.0512,9.2895 +59.368,9.339400000000001,0.0507,9.2887 +59.376000000000005,9.3383,0.0503,9.288 +59.384,9.3371,0.0499,9.2872 +59.392,9.336,0.0495,9.2865 +59.4,9.3348,0.0491,9.2857 +59.408,9.3337,0.0487,9.285 +59.416000000000004,9.3325,0.0483,9.2842 +59.424,9.3314,0.0479,9.2835 +59.432,9.3303,0.0475,9.2828 +59.44,9.3291,0.0471,9.282 +59.448,9.328,0.0467,9.2813 +59.456,9.3269,0.0463,9.2806 +59.464,9.3257,0.0459,9.2798 +59.472,9.3246,0.0455,9.2791 +59.480000000000004,9.3235,0.0451,9.2784 +59.488,9.3224,0.0447,9.2777 +59.496,9.321299999999999,0.0444,9.2769 +59.504,9.3202,0.044,9.2762 +59.512,9.319099999999999,0.0436,9.2755 +59.52,9.318100000000001,0.0433,9.2748 +59.528,9.317,0.0429,9.2741 +59.536,9.315800000000001,0.0425,9.2733 +59.544000000000004,9.3148,0.0422,9.2726 +59.552,9.3137,0.0418,9.2719 +59.56,9.3127,0.0415,9.2712 +59.568,9.3116,0.0411,9.2705 +59.576,9.3106,0.0408,9.2698 +59.584,9.3095,0.0404,9.2691 +59.592,9.3085,0.0401,9.2684 +59.6,9.3074,0.0397,9.2677 +59.608000000000004,9.3064,0.0394,9.267 +59.616,9.305399999999999,0.0391,9.2663 +59.624,9.3043,0.0387,9.2656 +59.632,9.3033,0.0384,9.2649 +59.64,9.3023,0.0381,9.2642 +59.648,9.3012,0.0377,9.2635 +59.656,9.3002,0.0374,9.2628 +59.664,9.2992,0.0371,9.2621 +59.672000000000004,9.2982,0.0368,9.2614 +59.68,9.2972,0.0365,9.2607 +59.688,9.296199999999999,0.0362,9.26 +59.696,9.2951,0.0358,9.2593 +59.704,9.2941,0.0355,9.2586 +59.712,9.293099999999999,0.0352,9.2579 +59.72,9.292200000000001,0.0349,9.2573 +59.728,9.2912,0.0346,9.2566 +59.736000000000004,9.2902,0.0343,9.2559 +59.744,9.289200000000001,0.034,9.2552 +59.752,9.2882,0.0337,9.2545 +59.76,9.2874,0.0335,9.2539 +59.768,9.2864,0.0332,9.2532 +59.776,9.2854,0.0329,9.2525 +59.784,9.2844,0.0326,9.2518 +59.792,9.2835,0.0323,9.2512 +59.800000000000004,9.2825,0.032,9.2505 +59.808,9.281600000000001,0.0318,9.2498 +59.816,9.2807,0.0315,9.2492 +59.824,9.2797,0.0312,9.2485 +59.832,9.2787,0.0309,9.2478 +59.84,9.277899999999999,0.0307,9.2472 +59.848,9.2769,0.0304,9.2465 +59.856,9.276,0.0301,9.2459 +59.864000000000004,9.2751,0.0299,9.2452 +59.872,9.2741,0.0296,9.2445 +59.88,9.2732,0.0293,9.2439 +59.888,9.2723,0.0291,9.2432 +59.896,9.2714,0.0288,9.2426 +59.904,9.2705,0.0286,9.2419 +59.912,9.2696,0.0283,9.2413 +59.92,9.2687,0.0281,9.2406 +59.928000000000004,9.2678,0.0278,9.24 +59.936,9.267,0.0276,9.2394 +59.944,9.2661,0.0274,9.2387 +59.952,9.2652,0.0271,9.2381 +59.96,9.264299999999999,0.0269,9.2374 +59.968,9.2634,0.0266,9.2368 +59.976,9.2626,0.0264,9.2362 +59.984,9.2617,0.0262,9.2355 +59.992000000000004,9.2608,0.0259,9.2349 +60.0,9.26,0.0257,9.2343 +60.008,9.259099999999998,0.0255,9.2336 +60.016,9.2583,0.0253,9.233 +60.024,9.2574,0.025,9.2324 +60.032000000000004,9.2565,0.0248,9.2317 +60.04,9.2557,0.0246,9.2311 +60.048,9.2549,0.0244,9.2305 +60.056000000000004,9.254000000000001,0.0241,9.2299 +60.064,9.2531,0.0239,9.2292 +60.072,9.2523,0.0237,9.2286 +60.08,9.2515,0.0235,9.228 +60.088,9.2507,0.0233,9.2274 +60.096000000000004,9.2499,0.0231,9.2268 +60.104,9.2491,0.0229,9.2262 +60.112,9.2483,0.0227,9.2256 +60.120000000000005,9.2474,0.0225,9.2249 +60.128,9.246599999999999,0.0223,9.2243 +60.136,9.2458,0.0221,9.2237 +60.144,9.245000000000001,0.0219,9.2231 +60.152,9.2442,0.0217,9.2225 +60.160000000000004,9.2434,0.0215,9.2219 +60.168,9.2426,0.0213,9.2213 +60.176,9.241800000000001,0.0211,9.2207 +60.184000000000005,9.241,0.0209,9.2201 +60.192,9.2402,0.0207,9.2195 +60.2,9.2394,0.0205,9.2189 +60.208,9.2387,0.0204,9.2183 +60.216,9.237900000000002,0.0202,9.2177 +60.224000000000004,9.2371,0.02,9.2171 +60.232,9.2364,0.0198,9.2166 +60.24,9.2356,0.0196,9.216 +60.248000000000005,9.2348,0.0194,9.2154 +60.256,9.2341,0.0193,9.2148 +60.264,9.2333,0.0191,9.2142 +60.272,9.2325,0.0189,9.2136 +60.28,9.2318,0.0188,9.213 +60.288000000000004,9.2311,0.0186,9.2125 +60.296,9.2303,0.0184,9.2119 +60.304,9.2295,0.0182,9.2113 +60.312000000000005,9.2288,0.0181,9.2107 +60.32,9.2281,0.0179,9.2102 +60.328,9.2273,0.0177,9.2096 +60.336,9.2266,0.0176,9.209 +60.344,9.225900000000001,0.0174,9.2085 +60.352000000000004,9.225200000000001,0.0173,9.2079 +60.36,9.2244,0.0171,9.2073 +60.368,9.2237,0.0169,9.2068 +60.376000000000005,9.223,0.0168,9.2062 +60.384,9.2222,0.0166,9.2056 +60.392,9.2216,0.0165,9.2051 +60.4,9.220799999999999,0.0163,9.2045 +60.408,9.2201,0.0162,9.2039 +60.416000000000004,9.2194,0.016,9.2034 +60.424,9.2187,0.0159,9.2028 +60.432,9.218,0.0157,9.2023 +60.44,9.2173,0.0156,9.2017 +60.448,9.2167,0.0155,9.2012 +60.456,9.2159,0.0153,9.2006 +60.464,9.215300000000001,0.0152,9.2001 +60.472,9.214500000000001,0.015,9.1995 +60.480000000000004,9.2139,0.0149,9.199 +60.488,9.213199999999999,0.0147,9.1985 +60.496,9.2125,0.0146,9.1979 +60.504,9.2119,0.0145,9.1974 +60.512,9.2111,0.0143,9.1968 +60.52,9.210500000000001,0.0142,9.1963 +60.528,9.2099,0.0141,9.1958 +60.536,9.2091,0.0139,9.1952 +60.544000000000004,9.208499999999999,0.0138,9.1947 +60.552,9.2079,0.0137,9.1942 +60.56,9.2072,0.0136,9.1936 +60.568,9.2065,0.0134,9.1931 +60.576,9.2059,0.0133,9.1926 +60.584,9.2052,0.0132,9.192 +60.592,9.2046,0.0131,9.1915 +60.6,9.2039,0.0129,9.191 +60.608000000000004,9.2033,0.0128,9.1905 +60.616,9.2027,0.0127,9.19 +60.624,9.202,0.0126,9.1894 +60.632,9.2014,0.0125,9.1889 +60.64,9.2007,0.0123,9.1884 +60.648,9.2001,0.0122,9.1879 +60.656,9.1995,0.0121,9.1874 +60.664,9.1989,0.012,9.1869 +60.672000000000004,9.198300000000001,0.0119,9.1864 +60.68,9.1977,0.0118,9.1859 +60.688,9.197,0.0117,9.1853 +60.696,9.196299999999999,0.0115,9.1848 +60.704,9.1957,0.0114,9.1843 +60.712,9.1951,0.0113,9.1838 +60.72,9.1945,0.0112,9.1833 +60.728,9.193900000000001,0.0111,9.1828 +60.736000000000004,9.193299999999999,0.011,9.1823 +60.744,9.1927,0.0109,9.1818 +60.752,9.1921,0.0108,9.1813 +60.76,9.1916,0.0107,9.1809 +60.768,9.191,0.0106,9.1804 +60.776,9.1904,0.0105,9.1799 +60.784,9.1898,0.0104,9.1794 +60.792,9.189200000000001,0.0103,9.1789 +60.800000000000004,9.1886,0.0102,9.1784 +60.808,9.187999999999999,0.0101,9.1779 +60.816,9.1874,0.01,9.1774 +60.824,9.1869,0.0099,9.177 +60.832,9.186300000000001,0.0098,9.1765 +60.84,9.1857,0.0097,9.176 +60.848,9.1851,0.0096,9.1755 +60.856,9.1845,0.0095,9.175 +60.864000000000004,9.184,0.0094,9.1746 +60.872,9.183499999999999,0.0094,9.1741 +60.88,9.1829,0.0093,9.1736 +60.888,9.1824,0.0092,9.1732 +60.896,9.1818,0.0091,9.1727 +60.904,9.1812,0.009,9.1722 +60.912,9.1807,0.0089,9.1718 +60.92,9.180100000000001,0.0088,9.1713 +60.928000000000004,9.179499999999999,0.0087,9.1708 +60.936,9.1791,0.0087,9.1704 +60.944,9.1785,0.0086,9.1699 +60.952,9.177999999999999,0.0085,9.1695 +60.96,9.1774,0.0084,9.169 +60.968,9.1768,0.0083,9.1685 +60.976,9.176300000000001,0.0082,9.1681 +60.984,9.1758,0.0082,9.1676 +60.992000000000004,9.1753,0.0081,9.1672 +61.0,9.1747,0.008,9.1667 +61.008,9.174199999999999,0.0079,9.1663 +61.016,9.1736,0.0078,9.1658 +61.024,9.1732,0.0078,9.1654 +61.032000000000004,9.172699999999999,0.0077,9.165 +61.04,9.1721,0.0076,9.1645 +61.048,9.1716,0.0075,9.1641 +61.056000000000004,9.171100000000001,0.0075,9.1636 +61.064,9.1706,0.0074,9.1632 +61.072,9.170100000000001,0.0073,9.1628 +61.08,9.1696,0.0073,9.1623 +61.088,9.169099999999998,0.0072,9.1619 +61.096000000000004,9.1686,0.0071,9.1615 +61.104,9.168,0.007,9.161 +61.112,9.1676,0.007,9.1606 +61.120000000000005,9.1671,0.0069,9.1602 +61.128,9.166500000000001,0.0068,9.1597 +61.136,9.1661,0.0068,9.1593 +61.144,9.1656,0.0067,9.1589 +61.152,9.1651,0.0066,9.1585 +61.160000000000004,9.1647,0.0066,9.1581 +61.168,9.164100000000001,0.0065,9.1576 +61.176,9.163599999999999,0.0064,9.1572 +61.184000000000005,9.1632,0.0064,9.1568 +61.192,9.1627,0.0063,9.1564 +61.2,9.1623,0.0063,9.156 +61.208,9.1618,0.0062,9.1556 +61.216,9.1613,0.0061,9.1552 +61.224000000000004,9.1608,0.0061,9.1547 +61.232,9.1603,0.006,9.1543 +61.24,9.1599,0.006,9.1539 +61.248000000000005,9.1594,0.0059,9.1535 +61.256,9.158900000000001,0.0058,9.1531 +61.264,9.1585,0.0058,9.1527 +61.272,9.158,0.0057,9.1523 +61.28,9.157599999999999,0.0057,9.1519 +61.288000000000004,9.1571,0.0056,9.1515 +61.296,9.1566,0.0055,9.1511 +61.304,9.1562,0.0055,9.1507 +61.312000000000005,9.1557,0.0054,9.1503 +61.32,9.1554,0.0054,9.15 +61.328,9.1549,0.0053,9.1496 +61.336,9.1545,0.0053,9.1492 +61.344,9.154,0.0052,9.1488 +61.352000000000004,9.1536,0.0052,9.1484 +61.36,9.1531,0.0051,9.148 +61.368,9.152700000000001,0.0051,9.1476 +61.376000000000005,9.1523,0.005,9.1473 +61.384,9.151900000000001,0.005,9.1469 +61.392,9.151399999999999,0.0049,9.1465 +61.4,9.151,0.0049,9.1461 +61.408,9.150599999999999,0.0048,9.1458 +61.416000000000004,9.1502,0.0048,9.1454 +61.424,9.1497,0.0047,9.145 +61.432,9.1493,0.0047,9.1446 +61.44,9.1489,0.0046,9.1443 +61.448,9.1485,0.0046,9.1439 +61.456,9.148,0.0045,9.1435 +61.464,9.1477,0.0045,9.1432 +61.472,9.1472,0.0044,9.1428 +61.480000000000004,9.1468,0.0044,9.1424 +61.488,9.1465,0.0044,9.1421 +61.496,9.146,0.0043,9.1417 +61.504,9.145700000000001,0.0043,9.1414 +61.512,9.1452,0.0042,9.141 +61.52,9.144900000000002,0.0042,9.1407 +61.528,9.1444,0.0041,9.1403 +61.536,9.1441,0.0041,9.14 +61.544000000000004,9.1436,0.004,9.1396 +61.552,9.1433,0.004,9.1393 +61.56,9.1429,0.004,9.1389 +61.568,9.1425,0.0039,9.1386 +61.576,9.1421,0.0039,9.1382 +61.584,9.1417,0.0038,9.1379 +61.592,9.1413,0.0038,9.1375 +61.6,9.141,0.0038,9.1372 +61.608000000000004,9.140600000000001,0.0037,9.1369 +61.616,9.1402,0.0037,9.1365 +61.624,9.1399,0.0037,9.1362 +61.632,9.1394,0.0036,9.1358 +61.64,9.139100000000001,0.0036,9.1355 +61.648,9.1387,0.0035,9.1352 +61.656,9.1384,0.0035,9.1349 +61.664,9.138,0.0035,9.1345 +61.672000000000004,9.137599999999999,0.0034,9.1342 +61.68,9.1373,0.0034,9.1339 +61.688,9.136999999999999,0.0034,9.1336 +61.696,9.1365,0.0033,9.1332 +61.704,9.136199999999999,0.0033,9.1329 +61.712,9.1359,0.0033,9.1326 +61.72,9.1355,0.0032,9.1323 +61.728,9.1352,0.0032,9.132 +61.736000000000004,9.1348,0.0032,9.1316 +61.744,9.1344,0.0031,9.1313 +61.752,9.1341,0.0031,9.131 +61.76,9.133799999999999,0.0031,9.1307 +61.768,9.1334,0.003,9.1304 +61.776,9.1331,0.003,9.1301 +61.784,9.1328,0.003,9.1298 +61.792,9.1324,0.0029,9.1295 +61.800000000000004,9.132100000000001,0.0029,9.1292 +61.808,9.1318,0.0029,9.1289 +61.816,9.131400000000001,0.0028,9.1286 +61.824,9.1311,0.0028,9.1283 +61.832,9.1308,0.0028,9.128 +61.84,9.130500000000001,0.0028,9.1277 +61.848,9.1301,0.0027,9.1274 +61.856,9.129800000000001,0.0027,9.1271 +61.864000000000004,9.1295,0.0027,9.1268 +61.872,9.1291,0.0026,9.1265 +61.88,9.1288,0.0026,9.1262 +61.888,9.128499999999999,0.0026,9.1259 +61.896,9.1282,0.0026,9.1256 +61.904,9.1279,0.0025,9.1254 +61.912,9.1276,0.0025,9.1251 +61.92,9.1273,0.0025,9.1248 +61.928000000000004,9.126999999999999,0.0025,9.1245 +61.936,9.1266,0.0024,9.1242 +61.944,9.1264,0.0024,9.124 +61.952,9.1261,0.0024,9.1237 +61.96,9.1258,0.0024,9.1234 +61.968,9.1254,0.0023,9.1231 +61.976,9.1252,0.0023,9.1229 +61.984,9.1249,0.0023,9.1226 +61.992000000000004,9.1246,0.0023,9.1223 +62.0,9.1243,0.0022,9.1221 +62.008,9.124,0.0022,9.1218 +62.016,9.1237,0.0022,9.1215 +62.024,9.1235,0.0022,9.1213 +62.032000000000004,9.1231,0.0021,9.121 +62.04,9.1229,0.0021,9.1208 +62.048,9.1226,0.0021,9.1205 +62.056000000000004,9.122300000000001,0.0021,9.1202 +62.064,9.122,0.002,9.12 +62.072,9.1217,0.002,9.1197 +62.08,9.121500000000001,0.002,9.1195 +62.088,9.1212,0.002,9.1192 +62.096000000000004,9.121,0.002,9.119 +62.104,9.1206,0.0019,9.1187 +62.112,9.120399999999998,0.0019,9.1185 +62.120000000000005,9.120099999999999,0.0019,9.1182 +62.128,9.1199,0.0019,9.118 +62.136,9.1197,0.0019,9.1178 +62.144,9.119299999999999,0.0018,9.1175 +62.152,9.1191,0.0018,9.1173 +62.160000000000004,9.1188,0.0018,9.117 +62.168,9.118599999999999,0.0018,9.1168 +62.176,9.1184,0.0018,9.1166 +62.184000000000005,9.118,0.0017,9.1163 +62.192,9.117799999999999,0.0017,9.1161 +62.2,9.1176,0.0017,9.1159 +62.208,9.1173,0.0017,9.1156 +62.216,9.117099999999999,0.0017,9.1154 +62.224000000000004,9.1168,0.0016,9.1152 +62.232,9.1166,0.0016,9.115 +62.24,9.116299999999999,0.0016,9.1147 +62.248000000000005,9.1161,0.0016,9.1145 +62.256,9.1159,0.0016,9.1143 +62.264,9.1157,0.0016,9.1141 +62.272,9.1154,0.0015,9.1139 +62.28,9.1152,0.0015,9.1137 +62.288000000000004,9.1149,0.0015,9.1134 +62.296,9.114700000000001,0.0015,9.1132 +62.304,9.1145,0.0015,9.113 +62.312000000000005,9.1143,0.0015,9.1128 +62.32,9.114,0.0014,9.1126 +62.328,9.1138,0.0014,9.1124 +62.336,9.1136,0.0014,9.1122 +62.344,9.1134,0.0014,9.112 +62.352000000000004,9.1132,0.0014,9.1118 +62.36,9.113,0.0014,9.1116 +62.368,9.1128,0.0014,9.1114 +62.376000000000005,9.1125,0.0013,9.1112 +62.384,9.112300000000001,0.0013,9.111 +62.392,9.1121,0.0013,9.1108 +62.4,9.1119,0.0013,9.1106 +62.408,9.1117,0.0013,9.1104 +62.416000000000004,9.111500000000001,0.0013,9.1102 +62.424,9.1113,0.0013,9.11 +62.432,9.111,0.0012,9.1098 +62.440000000000005,9.110800000000001,0.0012,9.1096 +62.448,9.110700000000001,0.0012,9.1095 +62.456,9.1105,0.0012,9.1093 +62.464,9.1103,0.0012,9.1091 +62.472,9.110100000000001,0.0012,9.1089 +62.480000000000004,9.109900000000001,0.0012,9.1087 +62.488,9.109699999999998,0.0011,9.1086 +62.496,9.109499999999999,0.0011,9.1084 +62.504,9.1093,0.0011,9.1082 +62.512,9.1091,0.0011,9.108 +62.52,9.109,0.0011,9.1079 +62.528,9.108799999999999,0.0011,9.1077 +62.536,9.1086,0.0011,9.1075 +62.544000000000004,9.1085,0.0011,9.1074 +62.552,9.1083,0.0011,9.1072 +62.56,9.107999999999999,0.001,9.107 +62.568,9.107899999999999,0.001,9.1069 +62.576,9.1077,0.001,9.1067 +62.584,9.1075,0.001,9.1065 +62.592,9.1074,0.001,9.1064 +62.6,9.107199999999999,0.001,9.1062 +62.608000000000004,9.107099999999999,0.001,9.1061 +62.616,9.1069,0.001,9.1059 +62.624,9.1067,0.0009,9.1058 +62.632,9.1065,0.0009,9.1056 +62.64,9.106399999999999,0.0009,9.1055 +62.648,9.1062,0.0009,9.1053 +62.656,9.1061,0.0009,9.1052 +62.664,9.1059,0.0009,9.105 +62.672000000000004,9.1058,0.0009,9.1049 +62.68,9.105599999999999,0.0009,9.1047 +62.688,9.1055,0.0009,9.1046 +62.696,9.1054,0.0009,9.1045 +62.704,9.1051,0.0008,9.1043 +62.712,9.105,0.0008,9.1042 +62.72,9.1048,0.0008,9.104 +62.728,9.1047,0.0008,9.1039 +62.736000000000004,9.1046,0.0008,9.1038 +62.744,9.1044,0.0008,9.1036 +62.752,9.1043,0.0008,9.1035 +62.76,9.1042,0.0008,9.1034 +62.768,9.1041,0.0008,9.1033 +62.776,9.1039,0.0008,9.1031 +62.784,9.1038,0.0008,9.103 +62.792,9.1036,0.0007,9.1029 +62.800000000000004,9.1035,0.0007,9.1028 +62.808,9.1033,0.0007,9.1026 +62.816,9.1032,0.0007,9.1025 +62.824,9.1031,0.0007,9.1024 +62.832,9.103,0.0007,9.1023 +62.84,9.1029,0.0007,9.1022 +62.848,9.1028,0.0007,9.1021 +62.856,9.1027,0.0007,9.102 +62.864000000000004,9.1026,0.0007,9.1019 +62.872,9.1024,0.0007,9.1017 +62.88,9.1023,0.0007,9.1016 +62.888,9.1022,0.0007,9.1015 +62.896,9.102,0.0006,9.1014 +62.904,9.1019,0.0006,9.1013 +62.912,9.1018,0.0006,9.1012 +62.92,9.101700000000001,0.0006,9.1011 +62.928000000000004,9.101600000000001,0.0006,9.101 +62.936,9.1015,0.0006,9.1009 +62.944,9.1014,0.0006,9.1008 +62.952,9.1013,0.0006,9.1007 +62.96,9.1013,0.0006,9.1007 +62.968,9.1012,0.0006,9.1006 +62.976,9.1011,0.0006,9.1005 +62.984,9.101,0.0006,9.1004 +62.992000000000004,9.100900000000001,0.0006,9.1003 +63.0,9.1008,0.0006,9.1002 +63.008,9.1006,0.0005,9.1001 +63.016,9.1006,0.0005,9.1001 +63.024,9.1005,0.0005,9.1 +63.032000000000004,9.1004,0.0005,9.0999 +63.04,9.1003,0.0005,9.0998 +63.048,9.100200000000001,0.0005,9.0997 +63.056000000000004,9.100200000000001,0.0005,9.0997 +63.064,9.100100000000001,0.0005,9.0996 +63.072,9.100000000000001,0.0005,9.0995 +63.08,9.100000000000001,0.0005,9.0995 +63.088,9.0999,0.0005,9.0994 +63.096000000000004,9.0998,0.0005,9.0993 +63.104,9.0998,0.0005,9.0993 +63.112,9.0997,0.0005,9.0992 +63.120000000000005,9.0996,0.0005,9.0991 +63.128,9.0996,0.0005,9.0991 +63.136,9.0995,0.0005,9.099 +63.144,9.099400000000001,0.0005,9.0989 +63.152,9.099300000000001,0.0004,9.0989 +63.160000000000004,9.099200000000002,0.0004,9.0988 +63.168,9.099200000000002,0.0004,9.0988 +63.176,9.0991,0.0004,9.0987 +63.184000000000005,9.0991,0.0004,9.0987 +63.192,9.099,0.0004,9.0986 +63.2,9.099,0.0004,9.0986 +63.208,9.0989,0.0004,9.0985 +63.216,9.0989,0.0004,9.0985 +63.224000000000004,9.0988,0.0004,9.0984 +63.232,9.0988,0.0004,9.0984 +63.24,9.0988,0.0004,9.0984 +63.248000000000005,9.098700000000001,0.0004,9.0983 +63.256,9.098700000000001,0.0004,9.0983 +63.264,9.098600000000001,0.0004,9.0982 +63.272,9.098600000000001,0.0004,9.0982 +63.28,9.098600000000001,0.0004,9.0982 +63.288000000000004,9.098500000000001,0.0004,9.0981 +63.296,9.098500000000001,0.0004,9.0981 +63.304,9.098500000000001,0.0004,9.0981 +63.312000000000005,9.098500000000001,0.0004,9.0981 +63.32,9.0983,0.0003,9.098 +63.328,9.0983,0.0003,9.098 +63.336,9.0983,0.0003,9.098 +63.344,9.0983,0.0003,9.098 +63.352000000000004,9.098199999999999,0.0003,9.0979 +63.36,9.098199999999999,0.0003,9.0979 +63.368,9.098199999999999,0.0003,9.0979 +63.376000000000005,9.098199999999999,0.0003,9.0979 +63.384,9.098199999999999,0.0003,9.0979 +63.392,9.098199999999999,0.0003,9.0979 +63.4,9.098199999999999,0.0003,9.0979 +63.408,9.098099999999999,0.0003,9.0978 +63.416000000000004,9.098099999999999,0.0003,9.0978 +63.424,9.098099999999999,0.0003,9.0978 +63.432,9.098099999999999,0.0003,9.0978 +63.440000000000005,9.098099999999999,0.0003,9.0978 +63.448,9.098099999999999,0.0003,9.0978 +63.456,9.098099999999999,0.0003,9.0978 +63.464,9.098099999999999,0.0003,9.0978 +63.472,9.098099999999999,0.0003,9.0978 +63.480000000000004,9.098099999999999,0.0003,9.0978 +63.488,9.098099999999999,0.0003,9.0978 +63.496,9.098099999999999,0.0003,9.0978 +63.504,9.098099999999999,0.0003,9.0978 +63.512,9.098099999999999,0.0003,9.0978 +63.52,9.098099999999999,0.0003,9.0978 +63.528,9.098199999999999,0.0003,9.0979 +63.536,9.098199999999999,0.0003,9.0979 +63.544000000000004,9.098099999999999,0.0002,9.0979 +63.552,9.098099999999999,0.0002,9.0979 +63.56,9.098099999999999,0.0002,9.0979 +63.568,9.098099999999999,0.0002,9.0979 +63.576,9.0982,0.0002,9.098 +63.584,9.0982,0.0002,9.098 +63.592,9.0982,0.0002,9.098 +63.6,9.0982,0.0002,9.098 +63.608000000000004,9.0983,0.0002,9.0981 +63.616,9.0983,0.0002,9.0981 +63.624,9.0983,0.0002,9.0981 +63.632,9.0983,0.0002,9.0981 +63.64,9.0984,0.0002,9.0982 +63.648,9.0984,0.0002,9.0982 +63.656,9.0984,0.0002,9.0982 +63.664,9.0985,0.0002,9.0983 +63.672000000000004,9.0985,0.0002,9.0983 +63.68,9.0986,0.0002,9.0984 +63.688,9.0986,0.0002,9.0984 +63.696,9.0986,0.0002,9.0984 +63.704,9.0987,0.0002,9.0985 +63.712,9.0987,0.0002,9.0985 +63.72,9.098799999999999,0.0002,9.0986 +63.728,9.098799999999999,0.0002,9.0986 +63.736000000000004,9.098899999999999,0.0002,9.0987 +63.744,9.098899999999999,0.0002,9.0987 +63.752,9.099,0.0002,9.0988 +63.76,9.099,0.0002,9.0988 +63.768,9.0991,0.0002,9.0989 +63.776,9.0991,0.0002,9.0989 +63.784,9.0992,0.0002,9.099 +63.792,9.0993,0.0002,9.0991 +63.800000000000004,9.0993,0.0002,9.0991 +63.808,9.0994,0.0002,9.0992 +63.816,9.0994,0.0002,9.0992 +63.824,9.099499999999999,0.0002,9.0993 +63.832,9.099599999999999,0.0002,9.0994 +63.84,9.099599999999999,0.0002,9.0994 +63.848,9.0997,0.0002,9.0995 +63.856,9.0998,0.0002,9.0996 +63.864000000000004,9.0999,0.0002,9.0997 +63.872,9.0999,0.0002,9.0997 +63.88,9.0999,0.0001,9.0998 +63.888,9.1,0.0001,9.0999 +63.896,9.1001,0.0001,9.1 +63.904,9.1001,0.0001,9.1 +63.912,9.1002,0.0001,9.1001 +63.92,9.100299999999999,0.0001,9.1002 +63.928000000000004,9.1004,0.0001,9.1003 +63.936,9.1005,0.0001,9.1004 +63.944,9.1006,0.0001,9.1005 +63.952,9.1006,0.0001,9.1005 +63.96,9.1007,0.0001,9.1006 +63.968,9.1008,0.0001,9.1007 +63.976,9.1009,0.0001,9.1008 +63.984,9.100999999999999,0.0001,9.1009 +63.992000000000004,9.1011,0.0001,9.101 +64.0,9.1012,0.0001,9.1011 +64.008,9.1013,0.0001,9.1012 +64.016,9.1014,0.0001,9.1013 +64.024,9.1015,0.0001,9.1014 +64.032,9.1016,0.0001,9.1015 +64.04,9.1017,0.0001,9.1016 +64.048,9.101799999999999,0.0001,9.1017 +64.056,9.1019,0.0001,9.1018 +64.06400000000001,9.102,0.0001,9.1019 +64.072,9.1021,0.0001,9.102 +64.08,9.1023,0.0001,9.1022 +64.08800000000001,9.1024,0.0001,9.1023 +64.096,9.1025,0.0001,9.1024 +64.104,9.102599999999999,0.0001,9.1025 +64.112,9.1027,0.0001,9.1026 +64.12,9.1028,0.0001,9.1027 +64.128,9.103,0.0001,9.1029 +64.136,9.1031,0.0001,9.103 +64.144,9.1032,0.0001,9.1031 +64.152,9.103299999999999,0.0001,9.1032 +64.16,9.1034,0.0001,9.1033 +64.168,9.1036,0.0001,9.1035 +64.176,9.1037,0.0001,9.1036 +64.184,9.1038,0.0001,9.1037 +64.19200000000001,9.104,0.0001,9.1039 +64.2,9.104099999999999,0.0001,9.104 +64.208,9.1042,0.0001,9.1041 +64.21600000000001,9.1044,0.0001,9.1043 +64.224,9.1045,0.0001,9.1044 +64.232,9.1046,0.0001,9.1045 +64.24,9.1048,0.0001,9.1047 +64.248,9.104899999999999,0.0001,9.1048 +64.256,9.1051,0.0001,9.105 +64.264,9.1052,0.0001,9.1051 +64.272,9.1054,0.0001,9.1053 +64.28,9.1055,0.0001,9.1054 +64.288,9.1057,0.0001,9.1056 +64.296,9.1058,0.0001,9.1057 +64.304,9.106,0.0001,9.1059 +64.312,9.1061,0.0001,9.106 +64.32000000000001,9.1063,0.0001,9.1062 +64.328,9.106399999999999,0.0001,9.1063 +64.336,9.1066,0.0001,9.1065 +64.34400000000001,9.1067,0.0001,9.1066 +64.352,9.1069,0.0001,9.1068 +64.36,9.107099999999999,0.0001,9.107 +64.368,9.1072,0.0001,9.1071 +64.376,9.1074,0.0001,9.1073 +64.384,9.1076,0.0001,9.1075 +64.392,9.1077,0.0001,9.1076 +64.4,9.107899999999999,0.0001,9.1078 +64.408,9.1081,0.0001,9.108 +64.416,9.1082,0.0001,9.1081 +64.424,9.1084,0.0001,9.1083 +64.432,9.1086,0.0001,9.1085 +64.44,9.1088,0.0001,9.1087 +64.44800000000001,9.1089,0.0001,9.1088 +64.456,9.1091,0.0001,9.109 +64.464,9.1093,0.0001,9.1092 +64.47200000000001,9.1095,0.0001,9.1094 +64.48,9.1097,0.0001,9.1096 +64.488,9.1098,0.0001,9.1097 +64.496,9.11,0.0001,9.1099 +64.504,9.110199999999999,0.0001,9.1101 +64.512,9.1104,0.0001,9.1103 +64.52,9.1106,0.0001,9.1105 +64.528,9.1108,0.0001,9.1107 +64.536,9.111,0.0001,9.1109 +64.544,9.1112,0.0001,9.1111 +64.552,9.1114,0.0001,9.1113 +64.56,9.1116,0.0001,9.1115 +64.568,9.1118,0.0001,9.1117 +64.57600000000001,9.1119,0.0,9.1119 +64.584,9.1121,0.0,9.1121 +64.592,9.1123,0.0,9.1123 +64.6,9.1125,0.0,9.1125 +64.608,9.1127,0.0,9.1127 +64.616,9.1129,0.0,9.1129 +64.624,9.1131,0.0,9.1131 +64.632,9.1133,0.0,9.1133 +64.64,9.1135,0.0,9.1135 +64.648,9.1137,0.0,9.1137 +64.656,9.114,0.0,9.114 +64.664,9.1142,0.0,9.1142 +64.672,9.1144,0.0,9.1144 +64.68,9.1146,0.0,9.1146 +64.688,9.1148,0.0,9.1148 +64.696,9.1151,0.0,9.1151 +64.70400000000001,9.1153,0.0,9.1153 +64.712,9.1155,0.0,9.1155 +64.72,9.1157,0.0,9.1157 +64.728,9.116,0.0,9.116 +64.736,9.1162,0.0,9.1162 +64.744,9.1164,0.0,9.1164 +64.752,9.1167,0.0,9.1167 +64.76,9.1169,0.0,9.1169 +64.768,9.1171,0.0,9.1171 +64.776,9.1174,0.0,9.1174 +64.784,9.1176,0.0,9.1176 +64.792,9.1178,0.0,9.1178 +64.8,9.1181,0.0,9.1181 +64.808,9.1183,0.0,9.1183 +64.816,9.1186,0.0,9.1186 +64.824,9.1188,0.0,9.1188 +64.83200000000001,9.1191,0.0,9.1191 +64.84,9.1193,0.0,9.1193 +64.848,9.1196,0.0,9.1196 +64.856,9.1198,0.0,9.1198 +64.864,9.1201,0.0,9.1201 +64.872,9.1203,0.0,9.1203 +64.88,9.1206,0.0,9.1206 +64.888,9.1208,0.0,9.1208 +64.896,9.1211,0.0,9.1211 +64.904,9.1213,0.0,9.1213 +64.912,9.1216,0.0,9.1216 +64.92,9.1219,0.0,9.1219 +64.928,9.1221,0.0,9.1221 +64.936,9.1224,0.0,9.1224 +64.944,9.1227,0.0,9.1227 +64.952,9.1229,0.0,9.1229 +64.96000000000001,9.1232,0.0,9.1232 +64.968,9.1235,0.0,9.1235 +64.976,9.1237,0.0,9.1237 +64.984,9.124,0.0,9.124 +64.992,9.1243,0.0,9.1243 +65.0,9.1246,0.0,9.1246 +65.008,9.1249,0.0,9.1249 +65.016,9.1251,0.0,9.1251 +65.024,9.1254,0.0,9.1254 +65.032,9.1257,0.0,9.1257 +65.04,9.126,0.0,9.126 +65.048,9.1263,0.0,9.1263 +65.056,9.1266,0.0,9.1266 +65.06400000000001,9.1268,0.0,9.1268 +65.072,9.1271,0.0,9.1271 +65.08,9.1274,0.0,9.1274 +65.08800000000001,9.1277,0.0,9.1277 +65.096,9.128,0.0,9.128 +65.104,9.1283,0.0,9.1283 +65.112,9.1286,0.0,9.1286 +65.12,9.1289,0.0,9.1289 +65.128,9.1292,0.0,9.1292 +65.136,9.1295,0.0,9.1295 +65.144,9.1298,0.0,9.1298 +65.152,9.1301,0.0,9.1301 +65.16,9.1304,0.0,9.1304 +65.168,9.1307,0.0,9.1307 +65.176,9.131,0.0,9.131 +65.184,9.1313,0.0,9.1313 +65.19200000000001,9.1316,0.0,9.1316 +65.2,9.132,0.0,9.132 +65.208,9.1323,0.0,9.1323 +65.21600000000001,9.1326,0.0,9.1326 +65.224,9.1329,0.0,9.1329 +65.232,9.1332,0.0,9.1332 +65.24,9.1335,0.0,9.1335 +65.248,9.1339,0.0,9.1339 +65.256,9.1342,0.0,9.1342 +65.264,9.1345,0.0,9.1345 +65.272,9.1348,0.0,9.1348 +65.28,9.1352,0.0,9.1352 +65.288,9.1355,0.0,9.1355 +65.296,9.1358,0.0,9.1358 +65.304,9.1362,0.0,9.1362 +65.312,9.1365,0.0,9.1365 +65.32000000000001,9.1368,0.0,9.1368 +65.328,9.1372,0.0,9.1372 +65.336,9.1375,0.0,9.1375 +65.34400000000001,9.1378,0.0,9.1378 +65.352,9.1382,0.0,9.1382 +65.36,9.1385,0.0,9.1385 +65.368,9.1389,0.0,9.1389 +65.376,9.1392,0.0,9.1392 +65.384,9.1395,0.0,9.1395 +65.392,9.1399,0.0,9.1399 +65.4,9.1402,0.0,9.1402 +65.408,9.1406,0.0,9.1406 +65.416,9.1409,0.0,9.1409 +65.424,9.1413,0.0,9.1413 +65.432,9.1417,0.0,9.1417 +65.44,9.142,0.0,9.142 +65.44800000000001,9.1424,0.0,9.1424 +65.456,9.1427,0.0,9.1427 +65.464,9.1431,0.0,9.1431 +65.47200000000001,9.1434,0.0,9.1434 +65.48,9.1438,0.0,9.1438 +65.488,9.1442,0.0,9.1442 +65.496,9.1445,0.0,9.1445 +65.504,9.1449,0.0,9.1449 +65.512,9.1453,0.0,9.1453 +65.52,9.1456,0.0,9.1456 +65.528,9.146,0.0,9.146 +65.536,9.1464,0.0,9.1464 +65.544,9.1468,0.0,9.1468 +65.552,9.1471,0.0,9.1471 +65.56,9.1475,0.0,9.1475 +65.568,9.1479,0.0,9.1479 +65.57600000000001,9.1483,0.0,9.1483 +65.584,9.1487,0.0,9.1487 +65.592,9.149,0.0,9.149 +65.6,9.1494,0.0,9.1494 +65.608,9.1498,0.0,9.1498 +65.616,9.1502,0.0,9.1502 +65.624,9.1506,0.0,9.1506 +65.632,9.151,0.0,9.151 +65.64,9.1514,0.0,9.1514 +65.648,9.1518,0.0,9.1518 +65.656,9.1521,0.0,9.1521 +65.664,9.1525,0.0,9.1525 +65.672,9.1529,0.0,9.1529 +65.68,9.1533,0.0,9.1533 +65.688,9.1537,0.0,9.1537 +65.696,9.1541,0.0,9.1541 +65.70400000000001,9.1545,0.0,9.1545 +65.712,9.1549,0.0,9.1549 +65.72,9.1553,0.0,9.1553 +65.728,9.1558,0.0,9.1558 +65.736,9.1562,0.0,9.1562 +65.744,9.1566,0.0,9.1566 +65.752,9.157,0.0,9.157 +65.76,9.1574,0.0,9.1574 +65.768,9.1578,0.0,9.1578 +65.776,9.1582,0.0,9.1582 +65.784,9.1586,0.0,9.1586 +65.792,9.1591,0.0,9.1591 +65.8,9.1595,0.0,9.1595 +65.808,9.1599,0.0,9.1599 +65.816,9.1603,0.0,9.1603 +65.824,9.1607,0.0,9.1607 +65.83200000000001,9.1612,0.0,9.1612 +65.84,9.1616,0.0,9.1616 +65.848,9.162,0.0,9.162 +65.856,9.1625,0.0,9.1625 +65.864,9.1629,0.0,9.1629 +65.872,9.1633,0.0,9.1633 +65.88,9.1638,0.0,9.1638 +65.888,9.1642,0.0,9.1642 +65.896,9.1646,0.0,9.1646 +65.904,9.1651,0.0,9.1651 +65.912,9.1655,0.0,9.1655 +65.92,9.1659,0.0,9.1659 +65.928,9.1664,0.0,9.1664 +65.936,9.1668,0.0,9.1668 +65.944,9.1673,0.0,9.1673 +65.952,9.1677,0.0,9.1677 +65.96000000000001,9.1682,0.0,9.1682 +65.968,9.1686,0.0,9.1686 +65.976,9.1691,0.0,9.1691 +65.984,9.1695,0.0,9.1695 +65.992,9.17,0.0,9.17 +66.0,9.1704,0.0,9.1704 +66.008,9.1709,0.0,9.1709 +66.016,9.1713,0.0,9.1713 +66.024,9.1718,0.0,9.1718 +66.032,9.1723,0.0,9.1723 +66.04,9.1727,0.0,9.1727 +66.048,9.1732,0.0,9.1732 +66.056,9.1737,0.0,9.1737 +66.06400000000001,9.1741,0.0,9.1741 +66.072,9.1746,0.0,9.1746 +66.08,9.1751,0.0,9.1751 +66.08800000000001,9.1755,0.0,9.1755 +66.096,9.176,0.0,9.176 +66.104,9.1765,0.0,9.1765 +66.112,9.177,0.0,9.177 +66.12,9.1774,0.0,9.1774 +66.128,9.1779,0.0,9.1779 +66.136,9.1784,0.0,9.1784 +66.144,9.1789,0.0,9.1789 +66.152,9.1793,0.0,9.1793 +66.16,9.1798,0.0,9.1798 +66.168,9.1803,0.0,9.1803 +66.176,9.1808,0.0,9.1808 +66.184,9.1813,0.0,9.1813 +66.19200000000001,9.1818,0.0,9.1818 +66.2,9.1823,0.0,9.1823 +66.208,9.1828,0.0,9.1828 +66.21600000000001,9.1833,0.0,9.1833 +66.224,9.1837,0.0,9.1837 +66.232,9.1842,0.0,9.1842 +66.24,9.1847,0.0,9.1847 +66.248,9.1852,0.0,9.1852 +66.256,9.1857,0.0,9.1857 +66.264,9.1862,0.0,9.1862 +66.272,9.1867,0.0,9.1867 +66.28,9.1872,0.0,9.1872 +66.288,9.1878,0.0,9.1878 +66.296,9.1883,0.0,9.1883 +66.304,9.1888,0.0,9.1888 +66.312,9.1893,0.0,9.1893 +66.32000000000001,9.1898,0.0,9.1898 +66.328,9.1903,0.0,9.1903 +66.336,9.1908,0.0,9.1908 +66.34400000000001,9.1913,0.0,9.1913 +66.352,9.1919,0.0,9.1919 +66.36,9.1924,0.0,9.1924 +66.368,9.1929,0.0,9.1929 +66.376,9.1934,0.0,9.1934 +66.384,9.1939,0.0,9.1939 +66.392,9.1945,0.0,9.1945 +66.4,9.195,0.0,9.195 +66.408,9.1955,0.0,9.1955 +66.416,9.196,0.0,9.196 +66.424,9.1966,0.0,9.1966 +66.432,9.1971,0.0,9.1971 +66.44,9.1976,0.0,9.1976 +66.44800000000001,9.1982,0.0,9.1982 +66.456,9.1987,0.0,9.1987 +66.464,9.1992,0.0,9.1992 +66.47200000000001,9.1998,0.0,9.1998 +66.48,9.2003,0.0,9.2003 +66.488,9.2009,0.0,9.2009 +66.496,9.2014,0.0,9.2014 +66.504,9.2019,0.0,9.2019 +66.512,9.2025,0.0,9.2025 +66.52,9.203,0.0,9.203 +66.528,9.2036,0.0,9.2036 +66.536,9.2041,0.0,9.2041 +66.544,9.2047,0.0,9.2047 +66.552,9.2052,0.0,9.2052 +66.56,9.2058,0.0,9.2058 +66.568,9.2064,0.0,9.2064 +66.57600000000001,9.2069,0.0,9.2069 +66.584,9.2075,0.0,9.2075 +66.592,9.208,0.0,9.208 +66.6,9.2086,0.0,9.2086 +66.608,9.2091,0.0,9.2091 +66.616,9.2097,0.0,9.2097 +66.624,9.2103,0.0,9.2103 +66.632,9.2108,0.0,9.2108 +66.64,9.2114,0.0,9.2114 +66.648,9.212,0.0,9.212 +66.656,9.2126,0.0,9.2126 +66.664,9.2131,0.0,9.2131 +66.672,9.2137,0.0,9.2137 +66.68,9.2143,0.0,9.2143 +66.688,9.2148,0.0,9.2148 +66.696,9.2154,0.0,9.2154 +66.70400000000001,9.216,0.0,9.216 +66.712,9.2166,0.0,9.2166 +66.72,9.2172,0.0,9.2172 +66.728,9.2178,0.0,9.2178 +66.736,9.2183,0.0,9.2183 +66.744,9.2189,0.0,9.2189 +66.752,9.2195,0.0,9.2195 +66.76,9.2201,0.0,9.2201 +66.768,9.2207,0.0,9.2207 +66.776,9.2213,0.0,9.2213 +66.784,9.2219,0.0,9.2219 +66.792,9.2225,0.0,9.2225 +66.8,9.2231,0.0,9.2231 +66.808,9.2237,0.0,9.2237 +66.816,9.2243,0.0,9.2243 +66.824,9.2249,0.0,9.2249 +66.83200000000001,9.2255,0.0,9.2255 +66.84,9.2261,0.0,9.2261 +66.848,9.2267,0.0,9.2267 +66.856,9.2273,0.0,9.2273 +66.864,9.2279,0.0,9.2279 +66.872,9.2285,0.0,9.2285 +66.88,9.2291,0.0,9.2291 +66.888,9.2297,0.0,9.2297 +66.896,9.2303,0.0,9.2303 +66.904,9.2309,0.0,9.2309 +66.912,9.2316,0.0,9.2316 +66.92,9.2322,0.0,9.2322 +66.928,9.2328,0.0,9.2328 +66.936,9.2334,0.0,9.2334 +66.944,9.234,0.0,9.234 +66.952,9.2347,0.0,9.2347 +66.96000000000001,9.2353,0.0,9.2353 +66.968,9.2359,0.0,9.2359 +66.976,9.2365,0.0,9.2365 +66.984,9.2372,0.0,9.2372 +66.992,9.2378,0.0,9.2378 +67.0,9.2384,0.0,9.2384 +67.008,9.239,0.0,9.239 +67.016,9.2397,0.0,9.2397 +67.024,9.2403,0.0,9.2403 +67.032,9.241,0.0,9.241 +67.04,9.2416,0.0,9.2416 +67.048,9.2422,0.0,9.2422 +67.056,9.2429,0.0,9.2429 +67.06400000000001,9.2435,0.0,9.2435 +67.072,9.2442,0.0,9.2442 +67.08,9.2448,0.0,9.2448 +67.08800000000001,9.2454,0.0,9.2454 +67.096,9.2461,0.0,9.2461 +67.104,9.2467,0.0,9.2467 +67.112,9.2474,0.0,9.2474 +67.12,9.248,0.0,9.248 +67.128,9.2487,0.0,9.2487 +67.136,9.2494,0.0,9.2494 +67.144,9.25,0.0,9.25 +67.152,9.2507,0.0,9.2507 +67.16,9.2513,0.0,9.2513 +67.168,9.252,0.0,9.252 +67.176,9.2527,0.0,9.2527 +67.184,9.2533,0.0,9.2533 +67.19200000000001,9.254,0.0,9.254 +67.2,9.2546,0.0,9.2546 +67.208,9.2553,0.0,9.2553 +67.21600000000001,9.256,0.0,9.256 +67.224,9.2566,0.0,9.2566 +67.232,9.2573,0.0,9.2573 +67.24,9.258,0.0,9.258 +67.248,9.2587,0.0,9.2587 +67.256,9.2593,0.0,9.2593 +67.264,9.26,0.0,9.26 +67.272,9.2607,0.0,9.2607 +67.28,9.2614,0.0,9.2614 +67.288,9.2621,0.0,9.2621 +67.296,9.2627,0.0,9.2627 +67.304,9.2634,0.0,9.2634 +67.312,9.2641,0.0,9.2641 +67.32000000000001,9.2648,0.0,9.2648 +67.328,9.2655,0.0,9.2655 +67.336,9.2662,0.0,9.2662 +67.34400000000001,9.2669,0.0,9.2669 +67.352,9.2676,0.0,9.2676 +67.36,9.2683,0.0,9.2683 +67.368,9.2689,0.0,9.2689 +67.376,9.2696,0.0,9.2696 +67.384,9.2703,0.0,9.2703 +67.392,9.271,0.0,9.271 +67.4,9.2717,0.0,9.2717 +67.408,9.2724,0.0,9.2724 +67.416,9.2731,0.0,9.2731 +67.424,9.2739,0.0,9.2739 +67.432,9.2746,0.0,9.2746 +67.44,9.2753,0.0,9.2753 +67.44800000000001,9.276,0.0,9.276 +67.456,9.2767,0.0,9.2767 +67.464,9.2774,0.0,9.2774 +67.47200000000001,9.2781,0.0,9.2781 +67.48,9.2788,0.0,9.2788 +67.488,9.2795,0.0,9.2795 +67.496,9.2803,0.0,9.2803 +67.504,9.281,0.0,9.281 +67.512,9.2817,0.0,9.2817 +67.52,9.2824,0.0,9.2824 +67.528,9.2831,0.0,9.2831 +67.536,9.2839,0.0,9.2839 +67.544,9.2846,0.0,9.2846 +67.552,9.2853,0.0,9.2853 +67.56,9.286,0.0,9.286 +67.568,9.2868,0.0,9.2868 +67.57600000000001,9.2875,0.0,9.2875 +67.584,9.2882,0.0,9.2882 +67.592,9.289,0.0,9.289 +67.6,9.2897,0.0,9.2897 +67.608,9.2904,0.0,9.2904 +67.616,9.2912,0.0,9.2912 +67.624,9.2919,0.0,9.2919 +67.632,9.2927,0.0,9.2927 +67.64,9.2934,0.0,9.2934 +67.648,9.2941,0.0,9.2941 +67.656,9.2949,0.0,9.2949 +67.664,9.2956,0.0,9.2956 +67.672,9.2964,0.0,9.2964 +67.68,9.2971,0.0,9.2971 +67.688,9.2979,0.0,9.2979 +67.696,9.2986,0.0,9.2986 +67.70400000000001,9.2994,0.0,9.2994 +67.712,9.3001,0.0,9.3001 +67.72,9.3009,0.0,9.3009 +67.728,9.3017,0.0,9.3017 +67.736,9.3024,0.0,9.3024 +67.744,9.3032,0.0,9.3032 +67.752,9.3039,0.0,9.3039 +67.76,9.3047,0.0,9.3047 +67.768,9.3055,0.0,9.3055 +67.776,9.3062,0.0,9.3062 +67.784,9.307,0.0,9.307 +67.792,9.3078,0.0,9.3078 +67.8,9.3085,0.0,9.3085 +67.808,9.3093,0.0,9.3093 +67.816,9.3101,0.0,9.3101 +67.824,9.3108,0.0,9.3108 +67.83200000000001,9.3116,0.0,9.3116 +67.84,9.3124,0.0,9.3124 +67.848,9.3132,0.0,9.3132 +67.856,9.314,0.0,9.314 +67.864,9.3147,0.0,9.3147 +67.872,9.3155,0.0,9.3155 +67.88,9.3163,0.0,9.3163 +67.888,9.3171,0.0,9.3171 +67.896,9.3179,0.0,9.3179 +67.904,9.3187,0.0,9.3187 +67.912,9.3195,0.0,9.3195 +67.92,9.3202,0.0,9.3202 +67.928,9.321,0.0,9.321 +67.936,9.3218,0.0,9.3218 +67.944,9.3226,0.0,9.3226 +67.952,9.3234,0.0,9.3234 +67.96000000000001,9.3242,0.0,9.3242 +67.968,9.325,0.0,9.325 +67.976,9.3258,0.0,9.3258 +67.984,9.3266,0.0,9.3266 +67.992,9.3274,0.0,9.3274 +68.0,9.3282,0.0,9.3282 +68.008,9.329,0.0,9.329 +68.016,9.3298,0.0,9.3298 +68.024,9.3306,0.0,9.3306 +68.032,9.3315,0.0,9.3315 +68.04,9.3323,0.0,9.3323 +68.048,9.3331,0.0,9.3331 +68.056,9.3339,0.0,9.3339 +68.06400000000001,9.3347,0.0,9.3347 +68.072,9.3355,0.0,9.3355 +68.08,9.3363,0.0,9.3363 +68.08800000000001,9.3372,0.0,9.3372 +68.096,9.338,0.0,9.338 +68.104,9.3388,0.0,9.3388 +68.112,9.3396,0.0,9.3396 +68.12,9.3404,0.0,9.3404 +68.128,9.3413,0.0,9.3413 +68.136,9.3421,0.0,9.3421 +68.144,9.3429,0.0,9.3429 +68.152,9.3438,0.0,9.3438 +68.16,9.3446,0.0,9.3446 +68.168,9.3454,0.0,9.3454 +68.176,9.3463,0.0,9.3463 +68.184,9.3471,0.0,9.3471 +68.19200000000001,9.3479,0.0,9.3479 +68.2,9.3488,0.0,9.3488 +68.208,9.3496,0.0,9.3496 +68.21600000000001,9.3505,0.0,9.3505 +68.224,9.3513,0.0,9.3513 +68.232,9.3521,0.0,9.3521 +68.24,9.353,0.0,9.353 +68.248,9.3538,0.0,9.3538 +68.256,9.3547,0.0,9.3547 +68.264,9.3555,0.0,9.3555 +68.272,9.3564,0.0,9.3564 +68.28,9.3572,0.0,9.3572 +68.288,9.3581,0.0,9.3581 +68.296,9.3589,0.0,9.3589 +68.304,9.3598,0.0,9.3598 +68.312,9.3606,0.0,9.3606 +68.32000000000001,9.3615,0.0,9.3615 +68.328,9.3624,0.0,9.3624 +68.336,9.3632,0.0,9.3632 +68.34400000000001,9.3641,0.0,9.3641 +68.352,9.365,0.0,9.365 +68.36,9.3658,0.0,9.3658 +68.368,9.3667,0.0,9.3667 +68.376,9.3676,0.0,9.3676 +68.384,9.3684,0.0,9.3684 +68.392,9.3693,0.0,9.3693 +68.4,9.3702,0.0,9.3702 +68.408,9.371,0.0,9.371 +68.416,9.3719,0.0,9.3719 +68.424,9.3728,0.0,9.3728 +68.432,9.3737,0.0,9.3737 +68.44,9.3746,0.0,9.3746 +68.44800000000001,9.3754,0.0,9.3754 +68.456,9.3763,0.0,9.3763 +68.464,9.3772,0.0,9.3772 +68.47200000000001,9.3781,0.0,9.3781 +68.48,9.379,0.0,9.379 +68.488,9.3799,0.0,9.3799 +68.496,9.3807,0.0,9.3807 +68.504,9.3816,0.0,9.3816 +68.512,9.3825,0.0,9.3825 +68.52,9.3834,0.0,9.3834 +68.528,9.3843,0.0,9.3843 +68.536,9.3852,0.0,9.3852 +68.544,9.3861,0.0,9.3861 +68.552,9.387,0.0,9.387 +68.56,9.3879,0.0,9.3879 +68.568,9.3888,0.0,9.3888 +68.57600000000001,9.3897,0.0,9.3897 +68.584,9.3906,0.0,9.3906 +68.592,9.3915,0.0,9.3915 +68.60000000000001,9.3924,0.0,9.3924 +68.608,9.3933,0.0,9.3933 +68.616,9.3942,0.0,9.3942 +68.624,9.3952,0.0,9.3952 +68.632,9.3961,0.0,9.3961 +68.64,9.397,0.0,9.397 +68.648,9.3979,0.0,9.3979 +68.656,9.3988,0.0,9.3988 +68.664,9.3997,0.0,9.3997 +68.672,9.4006,0.0,9.4006 +68.68,9.4016,0.0,9.4016 +68.688,9.4025,0.0,9.4025 +68.696,9.4034,0.0,9.4034 +68.70400000000001,9.4043,0.0,9.4043 +68.712,9.4053,0.0,9.4053 +68.72,9.4062,0.0,9.4062 +68.728,9.4071,0.0,9.4071 +68.736,9.408,0.0,9.408 +68.744,9.409,0.0,9.409 +68.752,9.4099,0.0,9.4099 +68.76,9.4108,0.0,9.4108 +68.768,9.4118,0.0,9.4118 +68.776,9.4127,0.0,9.4127 +68.784,9.4137,0.0,9.4137 +68.792,9.4146,0.0,9.4146 +68.8,9.4155,0.0,9.4155 +68.808,9.4165,0.0,9.4165 +68.816,9.4174,0.0,9.4174 +68.824,9.4184,0.0,9.4184 +68.83200000000001,9.4193,0.0,9.4193 +68.84,9.4203,0.0,9.4203 +68.848,9.4212,0.0,9.4212 +68.856,9.4222,0.0,9.4222 +68.864,9.4231,0.0,9.4231 +68.872,9.4241,0.0,9.4241 +68.88,9.425,0.0,9.425 +68.888,9.426,0.0,9.426 +68.896,9.4269,0.0,9.4269 +68.904,9.4279,0.0,9.4279 +68.912,9.4288,0.0,9.4288 +68.92,9.4298,0.0,9.4298 +68.928,9.4308,0.0,9.4308 +68.936,9.4317,0.0,9.4317 +68.944,9.4327,0.0,9.4327 +68.952,9.4337,0.0,9.4337 +68.96000000000001,9.4346,0.0,9.4346 +68.968,9.4356,0.0,9.4356 +68.976,9.4366,0.0,9.4366 +68.984,9.4375,0.0,9.4375 +68.992,9.4385,0.0,9.4385 +69.0,9.4395,0.0,9.4395 +69.008,9.4405,0.0,9.4405 +69.016,9.4414,0.0,9.4414 +69.024,9.4424,0.0,9.4424 +69.032,9.4434,0.0,9.4434 +69.04,9.4444,0.0,9.4444 +69.048,9.4454,0.0,9.4454 +69.056,9.4463,0.0,9.4463 +69.06400000000001,9.4473,0.0,9.4473 +69.072,9.4483,0.0,9.4483 +69.08,9.4493,0.0,9.4493 +69.08800000000001,9.4503,0.0,9.4503 +69.096,9.4513,0.0,9.4513 +69.104,9.4523,0.0,9.4523 +69.112,9.4533,0.0,9.4533 +69.12,9.4543,0.0,9.4543 +69.128,9.4552,0.0,9.4552 +69.136,9.4562,0.0,9.4562 +69.144,9.4572,0.0,9.4572 +69.152,9.4582,0.0,9.4582 +69.16,9.4592,0.0,9.4592 +69.168,9.4602,0.0,9.4602 +69.176,9.4612,0.0,9.4612 +69.184,9.4623,0.0,9.4623 +69.19200000000001,9.4633,0.0,9.4633 +69.2,9.4643,0.0,9.4643 +69.208,9.4653,0.0,9.4653 +69.21600000000001,9.4663,0.0,9.4663 +69.224,9.4673,0.0,9.4673 +69.232,9.4683,0.0,9.4683 +69.24,9.4693,0.0,9.4693 +69.248,9.4703,0.0,9.4703 +69.256,9.4714,0.0,9.4714 +69.264,9.4724,0.0,9.4724 +69.272,9.4734,0.0,9.4734 +69.28,9.4744,0.0,9.4744 +69.288,9.4754,0.0,9.4754 +69.296,9.4765,0.0,9.4765 +69.304,9.4775,0.0,9.4775 +69.312,9.4785,0.0,9.4785 +69.32000000000001,9.4795,0.0,9.4795 +69.328,9.4806,0.0,9.4806 +69.336,9.4816,0.0,9.4816 +69.34400000000001,9.4826,0.0,9.4826 +69.352,9.4837,0.0,9.4837 +69.36,9.4847,0.0,9.4847 +69.368,9.4857,0.0,9.4857 +69.376,9.4868,0.0,9.4868 +69.384,9.4878,0.0,9.4878 +69.392,9.4889,0.0,9.4889 +69.4,9.4899,0.0,9.4899 +69.408,9.4909,0.0,9.4909 +69.416,9.492,0.0,9.492 +69.424,9.493,0.0,9.493 +69.432,9.4941,0.0,9.4941 +69.44,9.4951,0.0,9.4951 +69.44800000000001,9.4962,0.0,9.4962 +69.456,9.4972,0.0,9.4972 +69.464,9.4983,0.0,9.4983 +69.47200000000001,9.4993,0.0,9.4993 +69.48,9.5004,0.0,9.5004 +69.488,9.5014,0.0,9.5014 +69.496,9.5025,0.0,9.5025 +69.504,9.5036,0.0,9.5036 +69.512,9.5046,0.0,9.5046 +69.52,9.5057,0.0,9.5057 +69.528,9.5067,0.0,9.5067 +69.536,9.5078,0.0,9.5078 +69.544,9.5089,0.0,9.5089 +69.552,9.5099,0.0,9.5099 +69.56,9.511,0.0,9.511 +69.568,9.5121,0.0,9.5121 +69.57600000000001,9.5131,0.0,9.5131 +69.584,9.5142,0.0,9.5142 +69.592,9.5153,0.0,9.5153 +69.60000000000001,9.5164,0.0,9.5164 +69.608,9.5174,0.0,9.5174 +69.616,9.5185,0.0,9.5185 +69.624,9.5196,0.0,9.5196 +69.632,9.5207,0.0,9.5207 +69.64,9.5217,0.0,9.5217 +69.648,9.5228,0.0,9.5228 +69.656,9.5239,0.0,9.5239 +69.664,9.525,0.0,9.525 +69.672,9.5261,0.0,9.5261 +69.68,9.5272,0.0,9.5272 +69.688,9.5283,0.0,9.5283 +69.696,9.5294,0.0,9.5294 +69.70400000000001,9.5304,0.0,9.5304 +69.712,9.5315,0.0,9.5315 +69.72,9.5326,0.0,9.5326 +69.728,9.5337,0.0,9.5337 +69.736,9.5348,0.0,9.5348 +69.744,9.5359,0.0,9.5359 +69.752,9.537,0.0,9.537 +69.76,9.5381,0.0,9.5381 +69.768,9.5392,0.0,9.5392 +69.776,9.5403,0.0,9.5403 +69.784,9.5414,0.0,9.5414 +69.792,9.5425,0.0,9.5425 +69.8,9.5436,0.0,9.5436 +69.808,9.5448,0.0,9.5448 +69.816,9.5459,0.0,9.5459 +69.824,9.547,0.0,9.547 +69.83200000000001,9.5481,0.0,9.5481 +69.84,9.5492,0.0,9.5492 +69.848,9.5503,0.0,9.5503 +69.856,9.5514,0.0,9.5514 +69.864,9.5526,0.0,9.5526 +69.872,9.5537,0.0,9.5537 +69.88,9.5548,0.0,9.5548 +69.888,9.5559,0.0,9.5559 +69.896,9.557,0.0,9.557 +69.904,9.5582,0.0,9.5582 +69.912,9.5593,0.0,9.5593 +69.92,9.5604,0.0,9.5604 +69.928,9.5616,0.0,9.5616 +69.936,9.5627,0.0,9.5627 +69.944,9.5638,0.0,9.5638 +69.952,9.5649,0.0,9.5649 +69.96000000000001,9.5661,0.0,9.5661 +69.968,9.5672,0.0,9.5672 +69.976,9.5684,0.0,9.5684 +69.984,9.5695,0.0,9.5695 +69.992,9.5706,0.0,9.5706 diff --git a/_static/algorithm/example_code/simulate_drifting_baseline.py b/_static/algorithm/example_code/simulate_drifting_baseline.py new file mode 100644 index 0000000..52ee700 --- /dev/null +++ b/_static/algorithm/example_code/simulate_drifting_baseline.py @@ -0,0 +1,47 @@ +# %% + +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +import scipy.stats +from hplc.quant import Chromatogram + +locs = [17, 22, 50] +scales = [2, 2, 3] +skews = [-0.5, 1, 0] +amps = [10, 100, 50] +dt = 0.008 +x = np.arange(0, 70, dt) +signal = np.zeros_like(x) +for i in range(len(locs)): + signal += amps[i] * \ + scipy.stats.skewnorm(skews[i], loc=locs[i], scale=scales[i]).pdf(x) + + +# Generate a background signal +bg = 10 - (1/x.max()) * x +bg *= np.cos(x/20) + 2 +bg = np.round(bg, decimals=4) +signal = np.round(signal, decimals=4) +df = pd.DataFrame(np.array([x, signal + bg, signal, bg]).T, + columns=['time', 'measured_signal', 'true_signal', 'true_background']) +df.to_csv('../data/strong_baseline_drift.csv', index=False) + +bg = 1 - (1/x.max()) * x +bg *= np.cos(x/30) + 2 +bg = np.round(bg, decimals=4) +signal = np.round(signal, decimals=4) +df = pd.DataFrame(np.array([x, signal + bg, signal, bg]).T, + columns=['time', 'measured_signal', 'true_signal', 'true_background']) +df.to_csv('../data/mild_baseline_drift.csv', index=False) +plt.plot(df['measured_signal']) +# %% +windows = np.arange(0.5, 10.5, 1) +fig, ax = plt.subplots(1, 1) +for w in windows: + chrom = Chromatogram( + df, cols={'time': 'time', 'signal': 'measured_signal'}) + df_sub = chrom.correct_baseline(window=w, return_df=True, verbose=False) + plt.plot(df_sub['time'], df_sub['estimated_background'], label=w) +plt.plot(df['time'], df['true_background'], 'r--', label='true background') +plt.legend() diff --git a/_static/algorithm/problem.ipynb b/_static/algorithm/problem.ipynb new file mode 100644 index 0000000..85a43fd --- /dev/null +++ b/_static/algorithm/problem.ipynb @@ -0,0 +1,210 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methodology\n", + "\n", + "## The Problem\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. The resulting data is a chromatogram, which may look something like \n", + "this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9FUlEQVR4nO3dd3xT9frA8U+adO+W0rLKpuxRKEMFEZDrAIWLOEEF9aJ45bpQ3JOrXnBcRS/yQwUHggjiFsUJyirDVcreUEo3HWmzfn/Ek7ZAoWlOek6S5/168YImJ9986Umap8/3Oc/X4HA4HAghhBBCCNUEaT0BIYQQQgh/IwGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUZtJ6Av7K4XBgt0uTfL0ICjLI+dAJORf6IedCP+Rc6ENQkAGDwaDKWBJgeYnBYKCkpByr1a71VAKeyRREfHyknA8dkHOhH3Iu9EPOhX4kJERiNKoTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhG59+ukKnnzyEQ4c2K/1VIQQwi0mrScghBCns2HDOh55ZAYAGzeuZ/nyzwkODtZ4VkIIUT+SwRJC6NK77y5w/fvgwQOsWfOTdpMRQgg3SYAlhNCdyspKNmxYD0D//gMB+Omn77WckhBCuEUCLCGE7mzZsgmzuYKkpKZcf/1kADIzN2g8KyGEqD8JsIQQurNhw1oAzjnnPLp37wE4lwnLykq1nJYQQtSbBFhCCN3Zti0LgB49ehEXF0/TpskA7Nq1U8tpCSFEvUmAJYTQFYfDQXb2NgDS0roA0LFjGgA7dmzXbF5CCOEOCbCEELpy/HguhYUFGI1GOnbsBECnThJgCSF8iwRYQghd2b49G4A2bdoRFhYGQPv2HQDYt2+PZvMSQgh3SIAlhNAVpWt727btXLe1aNEKgCNHDmsyJyGEcJcEWEIIXTl06CAArVqlum5r3rwFADk5R7FarZrMSwgh3CEBlhBCVw4fdgZYLVq0cN2WlJREcHAwNpuN3NxjWk1NCCHqTQIsIYSuHD7sXAZUlgUBgoKCaNas+V/3H9JkXkII4Q4JsIQQuuFwOFwBVIsWLWvdpywTSh2WEMIXSIAlhNCNgoJ8zOaKvzJWzWrdpwRcksESQvgCCbCEELqhFLgnJ6cQHBxS6z6lm/vx48cbfV5CCOEuCbCEELpx6NDplwcBmjRJAiAvL7dR5ySEEA0hAZYQQjeOHHEGWC1btjrlvqSkpgDk5UkGSwihfxJgCSF0Q1kiPF0GKynJmcGSJUIhhC+QAEsIoRt1XUEI1UuEBQX52Gy2Rp2XEEK4S9MAa/369aSlpZ32z/DhwwFnTcaUKVNIT0/nvPPO46WXXjrlh+t7773H8OHD6dmzJ9deey1ZWVm17ldjDCGE950pwEpISCQoKAi73U5BQX5jT00IIdyiaYDVp08f1qxZU+vPnDlzMBgMTJ06FYvFwk033QTA4sWLefzxx3n//fd59dVXXWN89NFH/Oc//+Ff//oXy5cvp2XLlkyaNImCggIAVcYQQnifxVJFTs5R4PQ1WEajkYSERACOH5dCdyGEvmkaYIWEhJCUlOT6ExkZyTPPPMPYsWMZN24cK1eu5MiRI/znP/+hU6dOjBgxgrvvvpuFCxdSVVUFwNy5c5kwYQKXXXYZHTp04N///jfh4eEsXboUQJUxhBDed/ToURwOB2Fh4a5A6mTVVxJKHZYQQt90VYM1d+5cKioquP/++wHIzMykW7duxMbGuo4ZOHAgpaWlbNu2jfz8fPbt28egQYNc95tMJvr168fGjRtVG0MI4X01C9wNBsNpj0lMbAJAfr4sEQoh9M2k9QQUBQUFLFiwgHvuuYe4uDgAcnJySElJqXVc06bOS7WPHj2KyeSc/skdn5s2bUp2drZqYzSU0air+DVgKedBzof2znQucnKOANCyZUtMptOfq8TEBABKSorqPEbUj7wv9EPOhX7U8btdg+gmwFq0aBHR0dFcddVVrtvMZjMxMTG1jgsNDQWgsrKSiooKwLnUePIxlZWVqo3RUDEx4R49XqhLzod+nO5c5OXlANChQzvi4yNP+7hmzZzd3MvLT9R5jHCPvC/0Q86Ff9FNgLVixQrGjBlDWFiY67awsDBXnZRCCXoiIiJcx57umPDwcNXGaKiSkgpsNrtHYwjPGY1BxMSEy/nQgTOdi1279gDQpEkKhYVlp318eHgUAEePHqvzGFE/8r7QDzkX+hEbG05QkDqZRF0EWNnZ2Rw8eJDRo0fXuj0lJYUdO3bUui0313n1UHJysmtZLzc3l/bt29c6Jjk5WbUxGspms2O1yptFL+R86MfpzoVSg9WsWYs6z1NsbDwABQWFci5VIu8L/ZBzoT2HQ72xdLHgm5mZSWJiIp07d651e0ZGBllZWZSWlrpuW7duHZGRkXTu3JnExETatm3L+vXrXfdbrVYyMzPJyMhQbQwhhPcp+xC2bHlqDyxFfLyzBquwUFqoCCH0TRcBVlZWFmlpaafcPmLECJKSkrjzzjvJzs5m1apVvPDCC0yePNlVMzV58mTeeustPvroI3bt2sWDDz6I2WzmiiuuUG0MIYR3lZSUUFJSDEDz5i3qPE65AEYCLCGE3uliifD48eOuH5w1hYaGMn/+fJ544gmuvPJKYmNjufbaa5k6darrmCuvvJITJ07w0ksvUVRURPfu3XnrrbdISEhQbQwhhHcpmzwnJCQSEVF38bqSwSoqKmyUeQkhREMZHA41VxxFTYWFZbKergMmUxDx8ZFyPnSgrnOxatVK7r33X/To0Yt33llS5+NLSkoYMqQ/AOvX/+q6Ili4T94X+iHnQj8SEiJVa5ehiyVCIURgO9MehDVFR0e7etdJFksIoWcSYAkhNFdd4H7qHoQ1GQwG4uKcVxIWFkqAJYTQLwmwhBCaU2qwzpbBAlyNg0+cKPbqnIQQwhMSYAkhNKf0wDpTiwZFVFQ04KzHEkIIvZIASwihKbvdzpEjhwFo3rw+GSznxu0nTpzw6ryEEMITEmAJITR1/HguFosFk8lEcnLKWY9XlgiVvllCCKFHEmAJITSlLA+mpDRzXSF4JtUBliwRCiH0SwIsIYSmqls0nPkKQkV0tFLkLgGWEEK/JMASQmjKnQJ3kAyWEMI3SIAlhNBUfZuMKpQMlgRYQgg9kwBLnOLw4UNMnXoz7767UOupiADg7hJhdR8sCbCEEPqli82ehb7MmvUMv/yyhl9+WcOAAQPp2DFN6ykJP3b4sHOJ0N0MlgRYQgg9kwyWqKWqqop1635xff3TTz9oNxnh98xmM8ePHwfcqcFy9sGSJUIhhJ5JgCVq2blzO2Zzhevr33//TcPZCH+nNBiNjIwkNjauXo+p2QfL4XB4a2pCCOERCbBELbt27az19e7duzSaiQgEyhWELVq0wmAw1OsxyhKhxWKhsrLSa3MTQghPSIAlatmzZzcAI0deDMChQwfkQ0x4jTubPCsiIyMxGo2AdHMXQuiXBFiilmPHjgLQvXsPwsLCcDgc5OQc1XhWwl+52wMLwGAwEB0tGz4LIfRNAixRy7FjxwBITm5Gs2bNATh69IiWUxJ+7PBhZw2WOxksqHkloWz4LITQJwmwRC3HjuUAkJycLAGW8LpDhw4A0LJlqluPqw6wZIlQCKFPEmAJF7vdTm5uLgBNmybTtGkyAHl5eVpOS/gph8PBoUPOGix3lghBtssRQuifBFjCpbCwAKvVgsFgICkpiYSEBAAKCvI1npnwRwUF+VRUlGMwGGjevKFLhBJgCSH0SQIs4ZKb66y/SkxsQnBwCPHxiQAUFkqAJdR38KBzeTAlpRkhISFuPTYqKgqAsrIy1eclhBBqkABLuCgF7srSYEKCM8AqKCjQbE7Cf1X3wHIvewXOVg0gAZYQQr8kwBIueXnO+qukpCQAWSIUXqVksFq1cq/AHSAiQgIsIYS+SYAlXIqKigCIi4sHJIMlvOvwYaXAvZXbj61eIixVdU5CCKEWCbCES1FRIYBrTzglg1VUVIjdbtdqWsJPKRksd1s0QM0MlgRYQgh9kgBLuFRnsOL++tuZybLb7RQXS78hoa6GdHFXSJG7EELvJMASLsXFRUB1YBUcHExsbCwgdVhCXeXlZeTnO/ureVaDJRksIYQ+SYAlXKoDrDjXbfHxUugu1Kc0GI2JiSUmJtbtx0sGSwihdxJgCRdliVCpwQJcH36y55tQU3X9lfvLgwCRkRJgCSH0TQIs4XK6AEs6Zgtv8KTAHar7YJWWyhKhEEKfJMASANhsNlcQVXOJMDo6GpAMllDXwYNKgbv7LRqgOoNlNldgs9lUm5cQQqhFFwHWihUruOSSS+jRoweXXnopX375peu+Q4cOMWXKFNLT0znvvPN46aWXTvmB+t577zF8+HB69uzJtddeS1ZWVq371RjD35WUlOBwOADJYAnvU64gbEiBO1RnsECWCYUQ+qR5gPXxxx/z0EMPcd111/H5558zatQo7r77brZs2YLFYuGmm24CYPHixTz++OO8//77vPrqq67Hf/TRR/znP//hX//6F8uXL6dly5ZMmjTJ1RxTjTECQXGxswdWVFQUwcHBrtslgyW8wdMarJCQENfrtLxcAiwhhP5oGmA5HA7++9//cv3113PdddeRmprKbbfdxjnnnMOGDRtYuXIlR44c4T//+Q+dOnVixIgR3H333SxcuJCqqioA5s6dy4QJE7jsssvo0KED//73vwkPD2fp0qUAqowRCJQ+Vydf0SUZLKE2q9XKkSOHgYbXYIHUYQkh9E3TAGvv3r0cPnyY0aNH17r9jTfeYMqUKWRmZtKtWzdXLyaAgQMHUlpayrZt28jPz2ffvn0MGjTIdb/JZKJfv35s3LgRQJUxAoHyIRUVFV3r9uhoZ62LZLCEWo4ePYrVaiU4ONi1sXhDVF9JKAGWEEJ/TFo++d69ewEoLy/npptuIisri5YtW3LbbbcxbNgwcnJySElJqfWYpk2bAs4f0iaTc/rNmjU75Zjs7GwAVcZoKKNR8xXYeisvd35IxcREYzJVz1sJTEtLT9S63Zco58GXzoe/MhqDXO/7li1bEhoafJZH1E3phWU2V/jsa1NL8r7QDzkX+mEwqDeWpgGWkjW5//77+ec//8m9997LypUrmTp1Km+99RZms5mYmJhajwkNDQWgsrKSiooKwFmPcfIxlZWVAKqM0VAxMeEePb4x2e3O5dKEhHji46sLiJs3dwaj5eWltW73Rb50PvzZnj17AOjQoYNHr6nYWOV9bfH516aW5H2hH3Iu/IumAZZSpHrTTTcxduxYALp06UJWVhZvvfUWYWFhrjophRL0REREEBYWBnDaY8LDnS9UNcZoqJKSCmw239gk+dgxZ6f20NBwCguri4YNBmfgWVRUXOt2X2I0BhETE+5T58NfGY1BrgCrefNWHr2mQkOd78/c3AKffW1qSd4X+iHnQj9iY8MJClInk6hpgJWc7Ky/6NSpU63bO3TowA8//ED//v3ZsWNHrftyc3Ndj1WW9XJzc2nfvn2tY5SxU1JSPB6joWw2O1arb7xZSkqcReyRkVG15qzs+VZSUuIz/5e6+NL58GfKEmGrVq09Oh/Vr80Tcl49IO8L/ZBzob2/uhWpQtMF327duhEZGcmvv/5a6/YdO3aQmppKRkYGWVlZta4SWrduHZGRkXTu3JnExETatm3L+vXrXfdbrVYyMzPJyMgAUGWMQFBa6ixiP7XI3bkMU1ZWit0ub3zhOSWD1bp1G4/GUa4ilCJ3IYQeaRpghYWFcfPNN/Pqq6/y2WefceDAAf73v//x888/M2nSJEaMGEFSUhJ33nkn2dnZrFq1ihdeeIHJkye7aqYmT57MW2+9xUcffcSuXbt48MEHMZvNXHHFFQCqjBEI6r6K0BlgORwOVxAmRENZLFUcOODsgaVegCXLg0II/dF0iRBg6tSphIeH8+KLL3Ls2DHat2/PK6+8woABAwCYP38+TzzxBFdeeSWxsbFce+21TJ061fX4K6+8khMnTvDSSy9RVFRE9+7deeutt0hISACcxeqejhEIqjNYUbVuVxo6WiwWysrKTumTJYQ7Dh48iN1uJzw8gqSkph6NJW0ahBB6pnmABTBp0iQmTZp02vtat27Nm2++ecbH33TTTa5u7d4aw98pfa6Uzu01RUREUFxcTHl5eWNPS/iZ/fv3AdCmTRsMHl4PLY1GhRB6Jk03BFD9IXX6AMv5QSZbkghP7du3D/B8eRAgPDwCcPbBEkIIvZEASwDVW+GcXIMFNQMsyWAJzxw4sA+ANm3aejxWRIQzwJLXpRBCjyTAEkDdRe4AkZHyQSbU4Y0MltIsWAgh9EQCLIHD4XAVCp9c5A4QHi5LhEId+/c7e2C1adPG47EkgyWE0DMJsARmsxmbzQacPsBSionlg0x4ory8zNXkNzW1jcfjKTstVFTI61IIoT8SYIlaSyxhYaduD6RkCqTfkPDEgQP7AUhMTHRtIu4J5XUpS4RCCD2SAEu4MgBhYWGn3YNJqXWRJULhib17nR3c27Vrp8p41TVYksESQuiPBFjClQGoa3Pr6iVCCbBEw+3Zsxs4de/Rhqpu01C9xC2EEHohAZZwBVinWx4EKSYW6tizZxcAHTt2VGW8mr8QSC8sIYTeSIAlXEssSkbgZNIHS6hB7QxWWFiYqxu81GEJIfRGAixRI8A6WwZLlghFw1gsVRw86NzkWa0MlsFgcL1mJfgXQuiNBFjCjRos+RATDXPgwAGsViuRkZE0a9ZMtXGl2agQQq8kwBJnDbDkKkLhKaX+qn37Dh5v8lyT1AcKIfRKAixx1hosyWAJTyn1V+3adVB1XGk2KoTQKwmwxFkzWNJoVHiqOsBqr+q41a0aZIlQCKEvEmCJegdYkiUQDVW9RKh2gCVF7kIIfZIAS9QIsM7epsHhcDTavIR/sFqt7N+/D3DWYKlJeW1KkbsQQm8kwBKuzJSSqTqZcrvdbsdsNjfavIR/OHz4EFVVVYSFhdG8eQtVx67OYMnytRBCXyTAEmft5F4zsyXLhMJdu3c7lwfbtGl32r0uPSEbPgsh9EoCLHHWGqygoCBXkCWF7sJdO3duB6BDB3UajNYkNVhCCL2SAEuctQYLpFWDaLgdO7IBSEvrrPrYStZVMlhCCL2RAEucdasc533SbFQ0zI4dzgxWp07qB1jVRe4S+Ash9EUCLOHqIXSmAEs6ZouGKC8vq7EHYZrq40ujUSGEXkmAJc5agwXVS4RSgyXcsXPnDgCSkpJISEhQfXwpchdC6JUEWKJeNVhhYWEAVFZKmwZRf95cHgQpchdC6JcEWKJeNVhSTCwaQilw91aAJRksIYReSYAV4BwOR72WCJX7ZM834Y7t25UAS/36K6h58YVksIQQ+iIBVoCrqqrCbrcD9VsilE7uor7sdju7djlrsLxR4A41A38JsIQQ+iIBVoCrefVVfZYIJYPlP7Zt+5Np027lppsm8s03X6k+/r59eykvLycsLIw2bdqqPj7UvIpQAn8hhL6YtJ6A0JayPBgSEoLRaKzzOCWDJbUu/mHfvj1MnjzRFWBv2rSRBx54lKuuula15/jzz98B6Ny5KyaTd37UVAf+EmAJIfRFMlgBrj71VzXvlw8y3+dwOHjqqUepqCgnPb0f48dfA8CsWc+4rvpTgxJgde/eQ7UxT6YE/larBYvF4rXnEUIId0mAFeCqryCsu/4K5CpCf7J16xY2bcokLCyMp59+jgcffJShQ4dhtVr4z39m4nA4VHmeP//8A4Bu3bwZYFX/YlBZWem15xFCCHdpHmAdO3aMtLS0U/4sX74cgG3btjFhwgR69+7NsGHDePvtt2s93m638/LLLzN48GB69+7NLbfcwsGDB2sdo8YY/qq+GSwpcvcfS5e+D8BFF11K8+YtMBgM3H//wwQHB5OZuYENG9Z5/BwWSxXbt28DvBtghYSEYDAYAKkPFELoi+YBVnZ2NqGhoaxevZo1a9a4/lxyySUUFhYyadIkUlNTWbZsGbfffjuzZ89m2bJlrse/9tprLFq0iKeeeorFixdjt9u5+eabqaqqAlBlDH/m7hKhZLB8W2VlJd9//y0A48Zd6bq9WbPm/P3v4wF4990FHj/Prl07qaqqIiYmllatUj0ery4Gg0HqsIQQuqR5gLVjxw7atGlD06ZNSUpKcv0JCwvjgw8+IDg4mCeffJL27dszbtw4brzxRubNmwc4Wwy8+eabTJs2jaFDh9K5c2defPFFcnJy+PrrrwFUGcOfuV+DJQGWL9u0aQMVFeUkJTWle/eete679tqJAKxZ85Nr/8CGUuqvunbt5soweUt1dlVem0II/dA8wNq+fTvt27c/7X2ZmZn079+/1hVIAwcOZN++feTl5ZGdnU1ZWRmDBg1y3R8TE0PXrl3ZuHGjamP4M6UGKyzsbDVYskToD3766QcABg8+/5TAp3Xrtpx77mAcDgcffLDIo+f54w9ngOXN5UFF9RWu8toUQuiH5m0aduzYQXx8PNdddx179+6ldevW3HbbbQwZMoScnBw6depU6/imTZsCcPToUXJycgBo1qzZKcco96kxRkMZjZrHr2dVVeX8UIqMjMBkqnu+kZHOAKyy0nzG4/RIOQ++cD68bdOmTAAGDx5y2vN4zTXX8fPPq/n880+55577GtxeYevWzQD06ZNe63m8cS6U7KrFUulzr00tyftCP+Rc6IeaCXdNAyyr1cqePXvo0KEDM2bMICoqis8//5x//OMfvPXWW5jNZkJCQmo9JjQ0FHDWktTs4XTyMcXFxQCqjNFQMTFnXnbTBxsAsbHRxMdH1nlU06YJgHMZ5kzH6ZlvnA/vKS4udnVWv+CCwac9j6NGXcRjjyWSn5/Pb79lMnz4cLef5/jx4+zbtxeDwcAFF5xHXNypz6PmuYiKco5vMjl89rWppUB/X+iJnAv/ommAZTKZWL9+PUaj0ZXm7969Ozt37uSNN94gLCzslEJz5VLsiIgI12Oqqqpc/1aOUX6rVWOMhiopqcBms3s0hrfl5xcBYDQGU1hYVudxSouh8vKKMx6nR0ZjEDEx4T5xPrxpzZpfcDgctGqViskUUed5vPjiUbz77kIWLVpMevpAt5/nu+9+AqBjx044HLVfV944F8HBzl+O8vKKfO61qSV5X+iHnAv9iI0NJyhInUyi5kuEkZGn/sbZsWNH1qxZQ0pKCrm5ubXuU75OTk7GarW6bktNTa11TFqac+8zNcZoKJvNjtWq7zeLskluaGj4GecaHOzM+pnNFbr/P9XFF86HN23e7Fy269Wrzxm/D5dcMpp3313I999/S2FhMdHR0W49j1K72KdP3zqfR81zERrq/MWorKw8oM9vQwX6+0JP5FxoT6U2gIDGRe47d+4kPT2d9evX17r9jz/+oEOHDmRkZLBp0yZsNpvrvnXr1tG2bVsSExPp3LkzUVFRtR5fUlJCVlYWGRkZAKqM4c/q3wfLeX9VVVWt76XwHTt2ZAPQrVv3Mx7XpUs32rXrQGVlJatWrXT7ebZs2QRAeno/9yfZANKmQQihR5oGWO3bt6ddu3Y8+eSTZGZmsnv3bp555hm2bt3Kbbfdxrhx4ygtLeWhhx5i165dLF++nAULFjBlyhTAWTc1YcIEZs+ezbfffkt2djZ33XUXKSkpjBw5EkCVMfyZu41GQS6H91XbtzsDrE6dOp/xOIPBwOjRlwPw2Wcr3HqOgoJ8srOzAOjbt3F+QZE2DUIIPdJ0iTAoKIi5c+fy/PPPc+edd1JSUkLXrl156623XFf+zZ8/n5kzZzJ27FiSkpK47777GDt2rGuMadOmYbVaefjhhzGbzWRkZPDGG28QHBwMQGJiosdj+LP6b5VTM8AyExkZ5dV5CXWVlBRz9OgR4OwBFjiXCV9++QU2bcrk8OFDtGjRsl7Ps3btL67naNIkqeETdoO0EBFC6JHmNVhNmjThmWeeqfP+nj17smTJkjrvNxqNTJ8+nenTp3t1DH9V3wyW0jHbbK6QDzIfpGSvmjdvUa+aquTkFPr3H8T69b/w+eef8I9/TK3X86xduwaAc845r+GTdZPskymE0CNpuhHg6htgOY9RGjrKB5mv2bNnNwAdOnSs92OUZcJPP/24XhtA2+121q79GYBzz23MAEsyWEII/ZEAK8BVB1hnXiIEKSb2ZQcO7AegTZu29X7MsGEjCA+P4ODB/fz665azHv/nn7+Tn59HeHgEvXunN3iu7lJeu1KDJYTQEwmwAlx5ubNvUP0yWMpSTLlX5yTUt3//PgBSU9vU+zEREZEMH34hAJ9+uuKsx69c+QUA559/gas3VWOQDJYQQo8kwApw7iwRygeZ71ICrNat27j1uMsuc14M8uWXn1FaWlrncXa7nW++cbZ0GDny4gbNsaGUpWt5XQoh9EQCrADnXoClLBHKUowvsViqOHLkEOB+gJWRMYB27dpTXl7Op59+VOdxv/66hWPHcoiKiuLccwd7Ml23VRe5S2ZVCKEfEmAFOCVYql8NlmQKfNHhw4ew2WyEh0eQlNTUrccaDAauvnoCAO+//26dTWY//NB5le6wYRe69vpsLPK6FELokQRYAcxiqXJtFeReDZZksHxJzeVBQwO2ih816jJiYmI5cGA/X3752Sn35+Ud5+uvvwTgyiuv9WiuDSGZVSGEHkmAFcBqBkqyROi/Glp/pYiIiGTSpJsBeO21l0/ZPP2NN+ZhsVjo2bM33bv38GSqDSIZLCGEHkmAFcCUAMtkMtXrqi/5IPNNBw8eACA1tXWDx7j66gkkJSVx5Mhh/ve/V1y3Z2dnsXTpYgCmTp3m2UQbSNqHCCH0qF6d3FesWNHgJxgzZkyDHyu8SykKVj6gzkYyWL7pyBHnFjnNm7do8Bjh4eHMmPEI99wzjbfe+j+io6Pp0aMnjz76IFarhWHDLmTAgEFqTdktshehEEKP6hVgzZgxA4PBUK9uzjUZDAYJsHTMnSsIax4nNVi+RdmDsFmz5h6NM3z4SG644SYWLnyDl19+wXV7q1ateeSRJxtU36WG6telZLCEEPpR770IX3nlFbp06VLvgbOyspg2TZslA1E/7gZYskToexwOR40Aq5nH49155720aNGSBQvmU1xcxODBQ5k+/QHi4+M9HruhamawHA6HZoGeEELUVK8AKzk5mZYtW9KiRf2XGEpKSmja1L1LwkXjcmebHJBNdX1RSUmxayk4JcWzDBY4s9JXXnkNV155jcdjqUUJsAAqKytrfS2EEFqpV5H7v/71L9q0aePWwF26dOHHH39syJxEI1E+eCWD5b+U7FViYpNG70/VWEJDqwMqqcMSQuhFvQKsBx98kPPOO49HH32U3377zdtzEo3E/RqsiFqPE/qnFLinpHi+PKhXzqtggwEJ/oUQ+lGvAOvDDz9kzJgxfPPNN1x11VWMHj2at99+m6KiIi9PT3iTu0uE1Xu+SYDlK3Jy1Clw1zu5wlUIoTf1CrC6d+/Oww8/zOrVq3nllVdo3bo1s2bNYsiQIdx111388ssv3p6n8AJZIvR/aha465m8NoUQelPvqwjBmYofMWIEI0aMoKioiM8++4yPP/6YyZMn07x5c/7+978zbtw4v/9h7i/cv4pQsgS+Rq0WDXpXfQGGBFhCCH1ocCf3uLg4JkyYwNKlS/niiy8YN24cH3/8MSNGjFBzfsKLpA+W/zt69CigzhWEeibL10IIvfF4q5yCggLWrl3L+vXrOXLkCCkpKWrMSzSChrZpkGUY35GbewxwtlrxZ7JEKITQG7eWCBUVFRWsWrWKTz/9lF9++QWj0ciIESOYP38+gwZps12GcF9Da7CUxwl9s9lsFBTkA5CU5N896WT5WgihN/UOsOx2O6tXr+bTTz/l22+/paKigq5du/LAAw9w2WWXER0d7c15Ci9oaA2WxWLBZrNhNBq9NjfhucLCAmw2G0FBQSQkJGo9Ha+SDJYQQm/qFWA99dRTfPnllxQWFhITE8O4ceO44oor6Ny5s7fnJ7xICbDqv9lzzY7ZZiIiIr0yL6GO48dzAUhISMRkalCy2mdIBksIoTf1+qn7/vvvM2jQIK644gqGDx9OSEiIt+clGoHZrCwR1q8Gq2YncLNZAiy9O378OABJSUkaz8T7JIMlhNCbegVY3333nRSv+yElgxURUb8AKygoiLCwMMxms1xJ6AOUDJa/11+B7JMphNCfegVYJwdXv//+O1u2bKGkpOSUYw0GA7fffrs6sxNe5W4NFuAKsCRToH9KgNWkSSBlsCTAEkLog9uFGQsXLuTZZ5/F4XCc9n4JsHxHwwKscKBIPsh8QF6eskQYCBksJcCq1HgmQgjh5HaA9dZbb3HhhRfy5JNPEhcX54UpicZS3aahfkuEILUuviSQlgiVXxIk8BdC6IXbjUaLi4u57rrrJLjyAw3PYEmA5QuqA6xAWiKU16UQQh/cDrDOO+88NmzY4I25iEZks9moqqoC3AuwJFPgO6qvIvT/DJa0aRBC6I3bS4SPPvoo119/PUeOHKFHjx6nvQJtzJgxasxNeFHNq61kidD/2Gw28vPzgMAIsJQWIpWVUoMlhNAHtwOsH374gQMHDrB3714++uijU+43GAwSYPkApf4qKCjIrb5mcjm8bygqKsRut2MwGIiPT9B6Ol4nr0shhN64vUT42muvMXDgQD744AO+/fbbU/6sWrWqwZPZu3cvffr0Yfny5a7btm3bxoQJE+jduzfDhg3j7bffrvUYu93Oyy+/zODBg+nduze33HILBw8erHWMGmP4m5r1VwaDod6PkwyWb1D2IIyLi/f7Lu4gr0shhP64HWAVFBRwyy230LNnT1q0aHHaPw1hsVi49957KS+v3ki4sLCQSZMmkZqayrJly7j99tuZPXs2y5Ytcx3z2muvsWjRIp566ikWL16M3W7n5ptvdtUXqTGGP6oOsOq/PAhS6+IrCgoKAPx+D0KF1AYKIfTG7QCrV69ebN++XfWJvPLKK0RFRdW67YMPPiA4OJgnn3yS9u3bM27cOG688UbmzZsHQFVVFW+++SbTpk1j6NChdO7cmRdffJGcnBy+/vpr1cbwR9UtGupf4A6SKfAVSgYrPj5e45k0DnldCiH0xu21g9tuu417772XgoICevfufUpQBJCRkeHWmBs3bmTJkiWsWLGCoUOHum7PzMykf//+tZY4Bg4cyOuvv05eXh5HjhyhrKyMQYMGue6PiYmha9eubNy4kVGjRqkyhj9qSIsG5/HSMdsXBFoGKzTU+bqsrJQASwihD24HWJMmTQLg9ddfB6hVv+NwODAYDGzbtq3e45WUlHDffffx8MMP06xZs1r35eTk0KlTp1q3NW3qvCLq6NGj5OTkAJzyuKZNm7ruU2OMhjIa3U4QNpqqKucHUXh4BCZT/eepXDVaWVnp1uO0pJwHPZ8PtRUVOQOsJk0SdXWevHUuoqKcr0uz2ayr/6+eBeL7Qq/kXOiHGyXJZ+V2gHVygbinHn/8cfr06cPo0aNPuc9sNp9yhVvNy7GVLMzpjikuLlZtjIaKiXEvO9SYgoLsAMTERBEfH1nvx8XHxwBgt1vcepwe6Pl8qK2szLlPaPPmKbo8T2qfC7vdmamrrKwkNjacoCD5oKqvQHpf6J2cC/9SrwDrww8/ZPjw4cTHx9O/f/96DVxQUMB3333HFVdcUecxK1asIDMzk08//fS094eFhZ1SaK70uYmIiHDVXVRVVbn+rRyjLH2pMUZDlZRUYLPZPRrDW/LyCgEIDg6hsLCs3o9zOIwAlJSUuvU4LRmNQcTEhOv6fKjt6NFjAERExOjqPHnrXJjN1WMdPZp/2v58orZAfF/olZwL/VDzF7R6BViPPPIInTp1cqtg9uDBgzzyyCNnDLCWLVtGfn5+rborgMcee4wvvviClJQUcnNza92nfJ2cnIzVanXdlpqaWuuYtLQ0AFXGaCibzY7Vqs83S2mps8g9NDTcrTmGhDizf+Xl5br9v9VFz+dDbUqT0bi4eF3+n9U+FyZTdQa6tLSckJCwMxwtagqk94XeybnQnsOh3lj1CrAcDgevvfaaWwFWYWHhWY+ZPXv2KVf9jBw5kmnTpnHZZZfx8ccfs3jxYmw2G0ajM3Oybt062rZtS2JiItHR0URFRbF+/XpXcFRSUkJWVhYTJkwAnAX3no7hjxp+FaFcDu8LlCL3+PjAKHJXGuZWVVVJobsQQhfqFWA1b96cHTt2uD34yYXjJ0tOTj7t7YmJiSQnJzNu3Djmz5/PQw89xM0338xvv/3GggULeOKJJwBn3dSECROYPXs2CQkJtGjRglmzZpGSksLIkSMBVBnDHzW8D1bYX4+XDzE9KyxUriL0/y7uirCwcKqqqqRVgxBCF+oVYH333XfensdpJSYmMn/+fGbOnMnYsWNJSkrivvvuY+zYsa5jpk2bhtVq5eGHH8ZsNpORkcEbb7xBcHCwamP4o4ZmsKrbNMiHmF6ZzWbKypx1V4HSpgGcwX9JSbFkV4UQuqC7PTRObmLas2dPlixZUufxRqOR6dOnM3369DqPUWMMf9PQPliyRKh/SvYqODj4tH3q/JU0GxVC6IlcyxygGh5gyYeY3ild3BMSEt3aZ9LXyYbPQgg9kQArQFUvEcpehP6muot74NRfAYSFVfe3E0IIrUmAFaDUyGA51LyeVaimZgYrkEjwL4TQEwmwApSnNVh2ux2LxaL6vITnqls0BFoGS5avhRD6Ua8i940bN7o1qLubPYvG52mbBnBmCk7eYkhor7BQyWAFWoAlGSwhhH7UK8CaOHFivYplG7LZs9BGQ9s0BAcHYzKZsFqtVFSYiYmJ9cb0hAcCrcmoQtlj1GyWGiwhhPbqFWCpvcGz0J7yW35D9lsMCwujtLRUMgU6pdRgubPzgj+QDJYQQk/qFWDVd4NnQAqffURDlwjB+UHmDLCk1kWPioqKgMALsKQJrhBCTxrUaPSLL75gw4YNVFVVuQIqh8NBeXk5W7du5aefflJ1kkJddrvd9SHU0AwWSKZAr4qLiwCIjY3TdB6NTTJYQgg9cTvAmjNnDnPmzCE6Ohqr1eqqySkoKCAoKIjx48d7Y55CRTU/gDwLsCRToEfFxcVAIAZY8roUQuiH220aPvroI8aMGcOGDRu48cYbueCCC/jll1/48MMPiYuLo2PHjt6Yp1BRzU7XoaFhZzjy9CRToF9Wq5XS0hNA4AVYymu5slICLCGE9twOsI4dO8bo0aMxGAx06dKFLVu2ANC9e3duvfVWli5dqvokhbqUACssLJygIPdboUmmQL9KSopd/46JidFwJo1PXpdCCD1x+9M1IiLC1bKhdevWHDp0yPUDrUuXLhw6dEjdGQrVNbRFg0L2fNMvpcA9OjoGk0l3e7l7VfXrUgIsIYT23A6wevTowYoVKwBo27YtRqORtWvXArB7925pPOkDGtrFXaE8TjIF+qMUuMfFxWk6Dy1UX0Uogb8QQntu/4p76623MmnSJEpKSpg7dy6XXXYZ999/PwMGDGDNmjWMGDHCG/MUKvKkRQPIUoyeKRmsQKu/AnldCiH0xe0AKyMjgw8//JDt27cD8OijjxIUFMTmzZu56KKLmDFjhuqTFOryNIMlRe76FagtGkCK3IUQ+tKgIo3OnTvTuXNnwLk9xVNPPaXqpIR3eVqDJQ0d9as6wAq8LYwkgyWE0JMGBVgnTpxg3bp1lJeXn7Zz+5gxYzydl/AiyWD5r0DOYMnrUgihJ24HWKtXr2batGl1XkFmMBgkwNI5qcHyX0oNViAWucvrUgihJ24HWM8//zzt2rXjgQceIDk5uUF9lIS2PG/TIFdr6VUgZ7BqXt3qcDhc7WSEEEILbgdYu3fv5rXXXqNfv37emI9oBOotEUqmQG8COYMVGhrq+ndlZaXrFwEhhNCC2+mn5s2bU1pa6o25iEbieYAV9tc4EmDpTSBnsGpu+yTZVSGE1twOsKZMmcKrr74qHdt9mOc1WFJMrFeB3GjUZDIRHBwMSHZVCKE9t5cIP/30U44dO8aFF15IQkLCKWl4g8HAqlWrVJugUJ9Sg6UESu6SYmJ9cjgcFBc79yKMiQm8Ng3gfE1bLBYJ/oUQmnM7wEpJSSElJcUbcxGNRPnw8XyrHPkQ0xOzuYKqqiogMDNY4Az+T5wokeBfCKE5twOsZ555xhvzEI1I2jT4J6XA3WQKJiIiUtvJaERem0IIvXA7wDpy5Eid9wUFBREREUFMTIxHkxLe5XmbBslg6VHN+qtAbVEgAZYQQi/cDrCGDRt21h/esbGxXH/99UydOrXBExPeo9ZVhPIhpi+BvNGzQlqICCH0wu0A69lnn+XRRx+lf//+jBo1isTERPLz8/n666/54YcfmDp1KmVlZcydO5e4uDiuvfZab8xbeECtPliVlZXY7XZpNqsT1RmswCxwB2mCK4TQD7cDrM8//5xLL730lFqsMWPG8Nhjj/HHH3+4gqv3339fAiwdUqsGC6Cy0tzgcYS6lCsIY2PjNZ6JdpReWJLBEkJoze3Uw4YNGxg1atRp7xs5ciTr1q0DoE+fPhw8eNCz2Qmv8LQGq2bHbGk2qh/VTUYlgyUBlhBCa24HWHFxcWRnZ5/2vuzsbKKiogAoLy9v8Ae48B6Hw+HKYEVENCzzFBQUJEsxOiQ1WBJgCSH0w+0Aa/To0bz88sssXLiQY8eOYbFYyMnJ4Z133mHOnDmMHj2a4uJiFi5cSK9evc46Xn5+PtOnT2fgwIH06dOHf/zjH+zevdt1/7Zt25gwYQK9e/dm2LBhvP3227Ueb7fbefnllxk8eDC9e/fmlltuOSVzpsYY/qKyshKHwwE0PIMF8kGmR4G8TY5CerQJIfTC7QDrzjvv5JJLLuHZZ59l6NCh9OzZkwsuuIBnn32W0aNHc9ddd/HTTz+RlZXFnXfeedbxbr/9dvbv38+8efP48MMPCQsL48Ybb6SiooLCwkImTZpEamoqy5Yt4/bbb2f27NksW7bM9fjXXnuNRYsW8dRTT7F48WLsdjs333yzq+GiGmP4k/Lycte/G9rJveZj5YNMPwJ5o2eFBP5CCL1wu8jdZDLxzDPPcNttt7F+/XoKCwtJTk4mPT2dVq1aATBkyBBWr15NSEjIGccqLi6mRYsWTJkyhU6dOgEwdepULr/8cnbu3MnatWsJDg7mySefxGQy0b59e1cwNm7cOKqqqnjzzTe59957GTp0KAAvvvgigwcP5uuvv2bUqFF88MEHHo/hT5T6q9DQUIxGY4PHkQ8y/ZEMVnWRe2WlvC6FENpq8PX1qampjB8/nn/84x9cfvnlruAKnEW2ZwuulOOef/55V3BVUFDAggULSElJoUOHDmRmZtK/f39Mpuo4cODAgezbt4+8vDyys7MpKytj0KBBrvtjYmLo2rUrGzduBFBlDH/iaYsGhWSw9EcyWBL4CyH0o14ZrOHDh/Pqq6/SuXPnszYabehmz4888ggffPABISEh/O9//yMiIoKcnBxX8KVo2rQpAEePHiUnJweAZs2anXKMcp8aYzSU0ai//lAWi/ODJzw8ApOp4fMLD3d+kFVVVXo0TmNQzoMez4eaSkqcbRoSExN0e068fS4iI50XblRWmnX7PdCLQHlf+AI5F/qh5iYY9Qqw+vfvT2RkpOvf3tiG44YbbuCqq67ivffe4/bbb2fRokWYzeZTMmFKi4DKykpXNuZ0xyg9gdQYo6FiYvR3FaXR6Cxwj4qKJD6+4fvVRUdHucbzZJzGpMfzoRabzeYKsFJTm+n+nHjrXCQkOFtU2GwW3X8P9MKf3xe+Rs6Ff6lXgFWzqeizzz7rlYl06NABgJkzZ/Lrr7/y7rvvEhYWdkqheWVlJeBsMaAsB1RVVZ3U/LLStQSmxhgNVVJSgc1m92gMteXmFgIQEhJKYWFZg8cxmYIByMsr9GicxmA0BhETE67L86GWoqJC19WhEKzbc+Ltc2G3OzMAJSWluv0e6EUgvC98hZwL/YiNDVdtdxK3i9wBSktLKSsrIzk5GYvFwjvvvMORI0f429/+RkZGRr3HKSgoYO3atfztb39z1UgFBQXRoUMHcnNzSUlJITc3t9ZjlK+Tk5OxWq2u21JTU2sdk5aWBqDKGA1ls9mxWvX1Zikrc37ohIWFezS3kJCwv8ar0N3/sS56PB9qyc8vACAyMhKDwaT7/6e3zkVwsDMTbTabdf890At/fl/4GjkX2nP9nqoCt8O0X3/9lQsuuIB3330XgKeffpr//Oc/fPLJJ9xwww18++239R4rLy+Pu+++m7Vr17pus1gsZGVl0b59ezIyMti0aRM2m811/7p162jbti2JiYl07tyZqKgo1q9f77q/pKSErKwsV6Cnxhj+xNNtchTSb0hfpMmok1x8IYTQC7cDrJdeeon27dtz5ZVXUlFRwccff8y1117Lhg0buOKKK5g7d269x+rUqRNDhgzh6aefZuPGjezYsYMZM2ZQUlLCjTfeyLhx4ygtLeWhhx5i165dLF++nAULFjBlyhTAWTc1YcIEZs+ezbfffkt2djZ33XUXKSkpjBw5EkCVMfyJp9vkKKo/yORqLT2o3ug5TtN5aE2uIhRC6IXbS4S//vorL774Iq1atWLVqlVUVlZy+eWXA3DJJZfwySefuDXeCy+8wPPPP89dd93FiRMn6NevH++99x7NmzcHYP78+cycOZOxY8eSlJTEfffdx9ixY12PnzZtGlarlYcffhiz2UxGRgZvvPEGwcHOGqHExESPx/Annm6To1CuIpRMgT5IBstJAn8hhF64HWAFBQW5rsJbvXo1MTEx9OzZE3DWZtUsFK+P6OhoHn/8cR5//PHT3t+zZ0+WLFlS5+ONRiPTp09n+vTpdR6jxhj+Qunk7mmAJR9k+qJc8SoBlgT+Qgh9cDvA6t69O0uXLiUsLIyvvvqKoUOHYjAYyM/P5//+7//o3r27N+YpVKIEWJ4vEcpSjJ5Ud3GP1XYiGqt+XVZqPBMhRKBzuwZr+vTp/PLLL1x99dUYjUZuu+02AEaNGsW+ffvqtf+g0E51kbtnPYKkmFhfZJscp5oZLIealwMJIYSb3M5gdevWjW+++Ybdu3fTsWNH11LT448/Tnp6OklJSapPUqinosLZpsHzJcKwv8aTDJYeyDY5Tkrg73A4qKqqcpUzCCFEY2tQH6yoqCh69epV67a//e1vqkxIeJf6NViSwdKD6gxWvLYT0VjNgMpsrpAASwihGdn4KMBIDZZ/kgyWU3BwsKtpsbw2hRBakgArwKjfpkE+xPRAarCqSfAvhNADCbACTHWjUXWWCJXxhLaUNg2BnsECaSEihNAHCbACTPUSoacZLOfjlYyY0E5lZaWrFi4mJrDbNID0whJC6IMEWAFGyTh5ukSoPF4yWNpT6q+MRiPR0dHaTkYHZIlQCKEHEmAFGLWuIlQyWGazudZG2qLxKfVXMTGxGAwGbSejA6GhzgCrslICLCGEdiTACiAWiwWLxQKol8ECWSbUWnFxISD1V4pA6dH20UcfcvHFw7jwwsG89dZ8+UVHCJ1pUB8s4ZtqBkKetmkICQnBaDRis9koLy8jKirK0+mJBpKNnmsLhB5tS5Ys4plnnnR9/d//ziY//zj33vuAhrMSQtQkGawAotRLmUzBBAeHeDSWwWCoUegudVhakisIa/P3FiKHDx/ixRdnATB58i3cd9+DALz77kLWrv1Zy6kJIWqQACuAqFV/pVDGUcYV2pAeWLVVtxDxzwzWm2/Ow2yuoG/fDO64426uvfZ6rrlmAgDPP/8sdrtd4xkKIUACrIBS3QPLs+VBhQRY+lAdYEmLBsCvM6uFhYV89tnHANx++79cFzXceus/iYqKZteunfz882otpyiE+IsEWAFEMlj+SWqwalN+gfDHAOvrr7+ksrKSzp270qdPX9ftsbFx/P3vVwCwaNHbWk1PCFGDBFgBRK0mowppNqoPskRYW3WPNv97XX799RcAXHrp6FNaclx55bUArF+/lry8440+NyFEbRJgBRC19iFUVGewylQZTzSMbPRcm79mVgsKCti8eRMAI0b87ZT7W7ZsRY8evbDb7axatbKxpyeEOIkEWAFE/RqsyFrjCm1IBqs2JbPqbwHWxo3rcDgcdOqURrNmzU97zN/+dgkAK1d+2ZhTE0KchgRYAUTJNCmBkaf8NVPga5QASzJYTv66jdOGDesA6N9/YJ3HXHjhRRgMBrZs2cTx47mNNTUhxGlIgBVA1C5y99dMgS+x2+01+mDFazwbffDX12V9Aqzk5GS6dOkGwLp1vzTKvIQQpycBVgBRarCUPkGeUpYa/e2DzJecOFHi6nskGSwnf7yK8MiRwxw8eACj0Uh6esYZjx006FwAaToqhMYkwAog3mrT4E8fZL5GKXCPiIjwuDu/v/DHqwi3bHEWt3ft2v2s21IpAda6db9I01EhNCQBVgBRAiHpg+U/quuvZHlQ4Y9LhH/++QcA3bv3POuxvXr1Jjw8goKCfHbs2O7tqQkh6iABVgBRu02DP36Q+ZqiokJAlgdr8sfAPyvLGWB169b9rMcGB4fQt69zGTEzc4NX5yWEqJsEWAFEuYpQrUaj1W0apA+WVqp7YEkGS6EEWGZzhV8skVmtVrKztwHOJcL66NMnHYCtWzd7bV5CiDOTACuAqN3J3R8zBb5GemCdqmafN7PZ9+uw9u3bg9lcQUREBK1bt6nXY5RtdLZu3YzD4fDi7IQQdZEAK4B4r5O7BFhaKSyUJcKThYaGubaR8YfXplJ/1aVLV4xGY70e07Vrd0ymYPLyjnPo0EFvTk8IUQcJsAKI+p3cJcDSmhS5nyooKKhGqwbfz2BlZ2cBuPpb1UdYWBhduzqPl2VCIbQhAVYA8VajUWnToB1ZIjw9f7oAY9eunQB06NDJrcf17u2sw/r11y2qz0kIcXYSYAUQby4RSp2HNpQlwvh4yWDV5E/Z1d27dwHQvn1Htx6ntHRQrkAUQjQuCbACSHWRu7p7EdrtdiorK1UZU7hHMlin5y/Z1cLCQgoK8gFo3769W49VWjrs2LGDqqoq1ecmhDgzCbAChMVShdVqAdSrwaq55Y4/ZAp8UXWbhjhN56E3/rJdzu7dzuXBZs2au71Je/PmLYiNjcVqtbBzpzQcFaKxaR5gFRUV8eijjzJkyBDS09O55ppryMzMdN2/du1a/v73v9OrVy8uuugiPv/881qPr6ys5IknnmDQoEH06dOHe+65h4KCglrHqDGGr6sZAKkVYBmNRleQVVZWqsqYov4cDof0waqDvywRNnR5EMBgMLj6Zm3b9qeq8xJCnJ3mAdbdd9/Nli1beOGFF1i2bBldunThpptuYs+ePezevZspU6YwePBgli9fzvjx47nvvvtYu3at6/GPP/44a9as4ZVXXmHhwoXs2bOHadOmue5XYwx/UFrqDIDCwsIIDg5WbdzoaOe+aGVl0my0sZWXl7mykrJEWJu/7EdYHWB1aNDjlSsP//xTAiwhGptJyyffv38/P//8M4sWLaJvX2djvEceeYTVq1fz6aefkp+fT1paGnfddRfgrEHIyspi/vz5DBo0iGPHjrFixQrmzp1Lv379AHjhhRe46KKL2LJlC3369GHhwoUej+EPlC7u7i4znE1kZBTHjx+ntPSEquOKs1OyV6GhoaplJf2Fv1xFuGePZwGWUoclhe71Z7FUsXDhm3z88UcUFubTuXNXJk/+B+ecc57WUxM+RtMMVnx8PPPmzaNHjx6u2wwGAwaDgZKSEjIzMxk0aFCtxwwcOJBNmzbhcDjYtGmT6zZF27ZtSU5OZuPGjQCqjOEPSkudAVZkpPoBFsgSoRaq9yGU5cGT+UuR+8GDBwBo06Ztgx6vLBHu3r0Ts9ms2rz8VXl5GVOmTGbOnJc4eHA/paWlZGZuYOrUm5k7d45cLS3comkGKyYmhvPPP7/WbStXrmT//v08+OCDfPTRR6SkpNS6v2nTplRUVFBYWMixY8eIj48nNDT0lGNycnIAyMnJ8XiMhjIaNV+BdamsdH7QREVFYTKpN6/o6GjA+YNJzXHVpJwHPZ0PNZSWlgDOAne9fu9P1ljnIirK+YuE2VzhM9+bk1VWVpKbewyANm3aNOj/0bJlCxISEigoKGDPnp307NnLdZ+/vi8ayuFw8OijD7B5cybR0dHcf/9DdOnSlWXLPmDRoneZO3cOTZokcvXV16n+3HIu9OOvTSBUoWmAdbLNmzfzwAMPMHLkSIYOHYrZbCYkJKTWMcrXVVVVVFRUnHI/OJdMlLYBaozRUDEx+lm2cTiUWp0Y4uPVy2IlJMQBYLdXqTquN+jpfKihqsoZNCclNdH99/5k3j4XCQmxANhs+n9d1mXXrqM4HA4iIiJo166la/sfd3Xv3p2ffvqJQ4f2cv7555xyv7+9Lxpq6dKlrFr1NcHBwbz77ruukpGBA/vSqlULnnvuOZ577t9ccMEQOnfu7JU5yLnwL7oJsFatWsW9995Leno6s2fPBpxBzsn9W5Svw8PDCQsLO21/l8rKSldNihpjNFRJSQU2m92jMdSSm+u8KjI0NJzCQvUK0kNCwgA4frxA1XHVZDQGERMTrqvzoYbDh53ZjcjIaN1+70/WWOfCYHD+aCsqKvGZ783JsrJ2ANCiRSuKihq+1NmuXUd++ukntm79jUsuGeO63V/fFw1RXl7OzJn/BmDq1Dto375LrdfNhAmTWb9+Iz/88B333DOdd955v8EB7+nIudCP2NhwgoLUySTqIsB69913mTlzJhdddBHPPfecK6PUrFkzcnNzax2bm5tLREQE0dHRpKSkUFRURFVVVa0sVG5uLsnJyaqN0VA2mx2rVR9vlhMnnDVS4eERqs4pIsJZg1VSUqKb/2td9HQ+1KC0EomJifO5/5e3z4XSPqS0tMznvjeK/fud9VctWrT06P+gbLGTnZ192nH87X3REEuXfsDx47m0aNGS66678bTfjwceeIx169aydetmvv/+O4YMuUD1eci50J6aZXaaL/guWrSIp556iuuuu44XXnihVpDTr18/NmzYUOv4devWkZ6eTlBQEH379sVut7sK1QH27t3LsWPHyMjIUG0Mf6AUoUdFRak6rjKeUkQvGo9yFaFsk3Mq5eIL5epZX3T48EEAWrZs6dE4HTumAbBjx3Yp0j4Nm83GokVvA3DjjTeftmQEIDk52VV/9dprr2C3SyAkzkzTAGvv3r38+9//5sILL2TKlCnk5eVx/Phxjh8/zokTJ5g4cSK//fYbs2fPZvfu3bz55pt89dVX3HzzzYDzBX/ppZfy8MMPs379en777Tfuvvtu+vfvT+/evQFUGcMfKH2q1G7ToARYchVh45NtcuqmBFi+3D7k8OHDALRs2cqjcdq1a4fJZKK09AQ5OUfVmJpf+fHH7zh8+BCxsbGMGnX5GY+94YabiIiIIDs7iw0b1jXSDIWv0jTAWrlyJRaLhW+++Ybzzjuv1p+ZM2fSsWNHXnvtNX788UfGjBnD0qVLmTVrVq22C0899RSDBg3in//8JzfddBPt2rXj5Zdfdt2vxhj+QAmAvNWmwZc/yHyVtGmoW3Vm1XcD/0OHnBmsFi08C7CCg0No27YdADt2ZHs8L3+zYsUyAP7+9yvPWncbHx/PZZeNBWDJkkVen5vwbZrWYN16663ceuutZzxmyJAhDBkypM77IyIiePrpp3n66ae9OoavUzJYSkCkFn/4IPNVsg9h3aKinO1DfHWHAYfD4VoibNHCsyVCgE6dOrNz5w527NjB+ecP83g8tVksVRQWFhIfn6DqThNnU1RUyC+/rAFg9Ogx9XrM+PHXsHjxe/z443fk5BwlJaWZF2cofJnmNViicXgrg+XrH2S+TJYI66a8zn116bqoqMj1nmrevIXH4yl1WHrb9NliqeKVV15k6NBBjBx5PiNGnMebb87DZrM1yvOvWrUSq9VKWloX2rVrX6/HtG/fgX79+mO32/n00xXenaDwaRJgBQil2FftDJbyQSZLhI3L4XBQWOi8ilCK3E+lZFbNZjMWi0Xj2bhPWR5MSmpKWFiYx+N16uS8klBPS4RWq5Xp0+/kjTdedwWTxcXFvPzyCzzwwL2NEmStXPklABdfPMqtxynZri+//EwuHBB1kgArQHhrq5zqDJZvZgp8VXl5masRbkJCosaz0Z+aF3P44mvzyJFDgOcF7opOnZyNMQ8c2K+bDbDnzXuNH374jtDQUJ577gU2bvydxx+fickUzNdff8lrr3m3DrakpITNmzMBGD78QrceO2zYhYSEhLBnz2527NBXVlDohwRYAaI6g+WdqwilBqtxKT2wIiIiZKPn0wgODnb1wvLF5evqAnfP668AEhObEB+fgN1uZ/fuXaqM6Yndu3fxxhuvA/D44zP5298uITg4mDFjxvHkk86Gn2++OY/ff//Na3NYu3YNNpuNdu3a06pVqluPjY6OZvBg5zZvX331uTemJ/yABFgBQgmAvHUVocVi8XhrIVF/BQX5gGSvzkQJ/k+c8L3l60OHnBkstQIsg8FAp076qcN69dX/YrPZGDp0+CnLc5dcMppLLhmNw+Hg+eef9doS3E8//QDA4MFDG/T4kSMvBuCHH75VaUbC30iAFSCUDJbafbBqBmy+uBTjq/LzlQArQeOZ6JcvF7pXNxlVZ4kQcAVYWi9p7du3h++++waDwcAdd9x12mP+9a97CQsL+6tr+irV52C32/n5558AGDJkaIPGOOecwZhMJvbu3cOBA/tVnJ3wFxJgBYCa2SW1O7kHBQXVKHT3vQ8yXyUZrLPz5fpAZYlQzQCruqO7toXuH364BHAGNu3bdzjtMcnJyUyYcCMAb7wxT/Us1o4d2ykqKiIiIoKePXs3aIzo6GjS050bQv/44/cqzk74CwmwAkDN7ULUzmCBNBvVQvUVhBJg1cVX6wMtFgvHjuUA6i0RQnUGa9euHZpd+WY2m/nkkxUAXHHF1Wc89tprJxISEsKff/7O1q1bVJ1HZqZz+7Q+ffp61HdL2Y/wp58kwBKnkgArACgfMKGhoV5p4ufLmQJfVZ3BkiXCulQH/r71ujx2LAebzUZoaChNmiSpNm7btu0xGo0UFxeTm5ur2rju+OGHbykpKaZZs+acc855Zzw2ISGRSy91bl3z3nsLVJ3Hpk0bAejXr79H45x/vjPA2rJlEyUlJR7PS/gXCbACgLfqrxRRUcoSoe9dreWrlKsIZYmwbr5ag6UsDzZv3oKgIPV+RIeGhtK6dRvAmcXSwrfffgM4+04ZjcazHn/ttRMA+OGH71yveU/Z7XbVAqxWrVJp1649VquV9et/UWN6wo9IgBUAlMBH7forRXR0DAAlJcVeGV+cSjJYZ6dkVn0tg6XWHoSnU12H1fiF7mazmTVrnIXl9e071bFjGl27dsNqtfLll5+pMo+dO3dQUlJMREQEnTt39Xi8gQPPBZDNn8UpJMAKAN7OYMXExAJIirwRSQbr7JRfKHwtg3X4sNJkVL36K0WHDs6O7lpksNat+4WKinJSUprRtWv3ej/ussv+DsDHHy9XZR5q1V8pBgwYCMC6dWs9Hkv4FwmwAoBSfO6tDFZsrBJgSQarsUgG6+x8tQbLmxksZcscLXphKYXgF1wwAoPBUO/HXXzxpZhMwezYkc2ePbs9nocSYPXtm+HxWM5x+mM0Gjl4cD9HjhxWZUzhHyTACgAnTjgzS8pSntqUDFZxsQRYjcFms1FUVAhIButMfPUqwuoMlvoBlpLB2rNnT6Pv0agsoZ2tuP1ksbFxDBx4DgDffPOVR3Ow2+1s3qxO/ZUiKiqKbt16ALJMKGqTACsAKJ2so6OjvTJ+bGwcACUlRV4ZX9RWXFyEw+HAYDC4vvfiVL67RKj0wFJ/ibB58xZERkZitVrYt2+v6uPX5fDhQxw6dBCTyUR6el+3H3/hhX8DPA+wdu3aSXFxMeHhEXTp0s2jsWoaMGAQAOvXyzKhqCYBVgDwdgZLWSKUDFbjUJYH4+LiMJlMGs9Gv5QlQl8KsEpKSlzvIzV7YCkMBoMri9WYhe4bN64HoFu3Hq7z4o4LLhiOyRTMrl072bt3T4PnkZnpnEefPumqtqzp399Zh7VhwzrNeowJ/ZEAKwCcOOH8gPFWDZYsETYupcBdmoyeWfVehL4TYB054lwejI9P8NpFKVpsmaNkdpRMj7tiYmJdj121amWD55GZqe7yoKJXrz6EhYWRn5/H7t07VR1b+C4JsAJAY2WwpMi9cUiBe/1U12D5zg4D3tgi52SN3arB4XC4MlgZGQMaPI6yTLhq1dcNenzN+iu1CtwVISEh9OnjXPpU/q9CSIAVALxfgyUZrMZUvdGzZLDORMmsnjhR4jPLNkqBuzeWBxUdOypXEjZOq4a9e/eQl3ecsLAwevXq0+Bxzj9/GEajke3bt7kCUXfs3r2ToqIiwsLC3WoTUV/p6c6gbfPmTaqPLXyTBFgBQMlgxcR46yrCONfz2Gw2rzyHqCYZrPpRAiyr1VprP049O3TIe1cQKpQarJycoxQVFXnteRS///4rAN26dSckJKTB48THx7syT999943bj6/uf6Vu/ZWib1/nxs+bN2f6TEAvvEsCrACgLJF4K4NVM3BTgjnhPfn5eQAkJjbReCb6Fh4eTmhoKECjBBJqUK4g9GYGKzo6mmbNmgOwfbv3lwn//PMPAFcrA08MG+bsAK9sueMOJcBSu/5K0a1bD0JCQsjPz+PAgf1eeQ7hWyTACgDKEqGydYjaTCaTq95Flgm97/hx50a9SUlNNZ6J/lVfgFGk7UTqqboGy3sBFlQvE27bts2rzwPw55+/A+oEWBdcMAKAX3/d4nof1Ifdbvd6gBUaGkr37j0BZxZLCAmwAkB1DZZ3lgih5nY5EmB5mwRY9RcXFwf4RuBvs9k4cuQI4J0u7jUpy4RZWVlefR6LpYodO7IBdQKs5ORkevbsBcD3339b78ft2LGd4mLn/oPeqL9SpKc7lwmVzaRFYJMAy89ZLFWYzRWA95YIQQrdG9Px48cBCbDqw5cyWLm5x7BaLZhMJpKTU7z6XEqrhuzsbK8+z44d27FYLMTFxam27Dls2EjAvWXCjRudHdbT0zO8Un+lUAIsyWAJkADL79XsAdSQBn/1pRS6S4DlXRZLFYWFzj5YEmCdnS9lsJQrCJs1a4HRaPTqcymtGrKzs7Hb7V57HqX+qmvX7m7tP3gmw4Y5lwkzM9fXO3BWtrDp37/hbSLqo1ev3hiNRo4cOUxOzlGvPpfQPwmw/JxS4B4ZGenVrt9Kobtsl+NdeXnOAneTKdgVPIi6VQf+RZrOoz4aq/4KIDW1NcHBwZSVlXl1g2I1668Uqamt6dQpDZvNxo8/fn/W461Wqyuj5EkfrvqIjIwiLa0LIFksIQGW3/N2k1FFdbNRuYrQm6rrr5JUywj4M1/MYHnzCkJFcHAw7dt3ALzbcNQbARbUvJrw7E1Ht237k7KyMmJiYunUqbOq8zidmu0aRGCTAMvPVV9B6L3lQaiudfGVy+F9lRS4u0fZDNuXMljeLnBXeLvhaHl5GXv27AacPbDUNGKEsw5r7dqfz7rX5M8/rwacVw96e+kVajYclQAr0EmA5ecaK4MVH+9sellYmO/V5wl0SoDVtKkEWPWhZFZ9IfBXemA1xhIh4MrmeCuDtW1bFna7naZNk1X/haB9+46kpramqqqKNWtWn/HYn35yLiMOGTJU1TnUpU+fdAD27Nnt2jdUBCYJsPyct7fJUSQmOrdtUbZxEd6RmysZLHcoGSxfqA08fNhZC+XNLu41derkzGApbRTU5q3lQQCDwcDw4c4s1pm6uufmHiMr608MBgODB5+v+jxOJy4unvbtOwKwdatsmxPIJMDyc9Vd3L2bwVK6ikuA5V1KBqtJkySNZ+IbfCWDVVFR7urQ31hLhEqrhv3792M2m1Ufv7qDu3f6Til1WKtX/0BlZeVpj/nppx8A6N69Z6PufFDdD0uWCQOZBFh+rrFqsJQMVkFBnlefJ9Dl5UkPLHdUZ7D0XeSuFLhHR8d4bc/QkzVpkkRCQgJ2u53du3eqPr43M1jOcbuTktKM8vLyOrNYq1atBGDIkAu8Moe6VBe6S8PRQKarAOv1119n4sSJtW7btm0bEyZMoHfv3gwbNoy333671v12u52XX36ZwYMH07t3b2655RYOHjyo+hi+SvnNXfmg8ZbExCTX81ksFq8+VyA7duwYIAFWfdW8utWb/Z48Vb3Jc+PUX4Fzma1bt24AZGeru2VOUVGhq2jfWxmsoKAgxowZB8CSJYtOuf/YsWOsX78WgIsvvtQrc6hLnz7OAGv79mzXL7ki8OgmwHrvvfd46aWXat1WWFjIpEmTSE1NZdmyZdx+++3Mnj2bZcuWuY557bXXWLRoEU899RSLFy/Gbrdz8803U1VVpdoYvky5esrbAVZsbKzrCh2lEaZQl8Ph4OhR51YqzZs313g2vkF53dvtdtdyuR419hWEil69nNvOZGX9oeq4ynitWrV2XWHsDePGXYnJZGLr1s1kZ9fe9ueTT5bjcDjo06dvo9W1KZKTk2nVqjV2u52tWzc36nML/dA8wDp27Bi33nors2fPpk2bNrXu++CDDwgODubJJ5+kffv2jBs3jhtvvJF58+YBUFVVxZtvvsm0adMYOnQonTt35sUXXyQnJ4evv/5atTF8mRJgxcXFe/V5goKCSEhwXkmo1JIIdRUXF1FRUQ5AcnIzjWfjG0JCQggPjwD0XYelXEHYGD2waurZ07k5sdoBllJ/1b27d5YHFUlJTV3F7vPm/c91u9ls5v333wXgiiuu9uoc6qJsKr1x43pNnl9oT/MA688//yQ4OJhPPvnE9duUIjMzk/79+9fqQD5w4ED27dtHXl4e2dnZlJWVMWjQINf9MTExdO3alY0bN6o2hi9TPlQao+t3QoIUunuTsvVGQkIiYWFhGs/GdyiBf0GBfl+XSklCq1apjfq8ys/cnTt31Fko3hDerr+q6R//mEpQUBDfffeNq+fVG2+8TkFBPs2aNWfkyIu8PofTUQKszMwNmjy/0J739k6pp2HDhjFs2LDT3peTk+O6lFih9P85evQoOTk5ADRr1uyUY5T71BijoYxGzeNXiooKAUhIiMdk8u58mjRpwvbtUFRU4PXncodyHvRwPjxx7JgzwGrevLmuvr/u0OJcNGmSxOHDhygszNft9+3QoQMAtG3bptHmaDQG0aJFC+Lj4yksLGTPnh306NHr7A+sByWD1bNnT6//f9LSOnH11dexaNE7zJhxN5deOpoPPlgMwPTpMwgPD/Xq89dlwADntjzZ2VlUVJSdsVWOv/yM8gdqbpCheYB1JmazmZCQkFq3hYY63yyVlZVUVFQAnPYYZWsMNcZoqJiYcI8erwZlibBNmxbEx0d69bmaNUsGoLy8xOvP1RB6OB+eKCpyLr22bp2qy++vOxrzXDRvnsKvv+r3dWmz2VxXEXbv3rnR59i7d2++//579uzZwZAh53g83tGjRzl+PBej0cg552QQHu79c/3UU4+zc2c2GzduZPFiZ8H7xIkTueqqcV5/7rrEx7enTZs27Nu3jx07/mDEiBFnfYyv/4wStek6wAoLCzul0FxJY0dERLiWSaqqqmotmVRWVrre1GqM0VAlJRXYbNpduVRRUeHqb2MwhFJYWObV54uOjgPg0KEjXn8udxiNQcTEhGt+Pjy1e/deAJo0SdbV99cdWpyL2Fhn/eHBg/p6XSoOHz6ExWIhODiYsLCYRpujci7S0rry/fffs3HjZi6/fLzH4/78s7PmqH37DpjNdszmxvn/zJv3Fm+/vYCsrD8ZNOhcxo0br/n57ts3g3379vH99z/Rt++gOo/zl59R/iA2NpygIHUyiboOsFJSUlydqxXK18nJyVitVtdtqamptY5JS0tTbYyGstnsWK3avVny851X85lMJkJDw70+l4QEZy+s48fzNP1/10Xr8+EppdN3Skozn/5/QOOeC6U28NixXF1+3/bu3Qc4O7g7HIZGn6PSRuHPP39X5bl/++23v8bt0aj/F4PBxA033Oz62mZzAI5Ge/7T6du3P8uWLWXDhvX1+l74+s8of+BQ8SWj6wXfjIwMNm3ahM1mc922bt062rZtS2JiIp07dyYqKor166uv0igpKSErK4uMjAzVxvBV1QXu8RjUXFiuQ3WRu1xF6A1Ki4aUFGnR4I7qXQaOazyT0zt40Fl/1dgF7golwNq9e5erZMIT1QXu3ul/5Uv69nUWumdnZ0k/rACk6wBr3LhxlJaW8tBDD7Fr1y6WL1/OggULmDJlCuCsm5owYQKzZ8/m22+/JTs7m7vuuouUlBRGjhyp2hi+qrF6YCmaNHF+kOXlSYDlDUePOovcmzWTAMsden9dKgFWy5baBFjOzZiTsNvtHjccdTgcNbbI8f4VhHqXnJxMaqqzH9aWLbJtTqDR9RJhYmIi8+fPZ+bMmYwdO5akpCTuu+8+xo4d6zpm2rRpWK1WHn74YcxmMxkZGbzxxhsEBwerNoavUq4gjIvzXqO/mpKTnUXuOTlHcDgcjZI1CxQVFeWuBq7SZNQ9yi4Des2sKgFWzRKFxtatWw9++OE7fv99K336pDd4nAMH9nPiRAkhISF06NBRxRn6rn79+nPgwH4yMzc0+pY9Qlu6CrCeffbZU27r2bMnS5YsqfMxRqOR6dOnM3369DqPUWMMX1RzibAxKEtX5eXlnDhR4tUOzoHmwAHnh3BsbKx8X92kZLDy8/Ow2+2qFbCq5eDB/YCz67lWevfuyw8/fMeWLZu5/vrJDR7njz+c9VedO3chODjkLEcHhn79+rN8+VJpOBqA9PWTRqiqsZcIw8LCiI93NnVUlrOEOg4c2AdA69ZtNJ2HL2rSJImgoCCsVqvuslgOh8O1TY5WNViAK2u1desmHB5U+SoBVvfu6vTT8gcZGUo/rG0UFhZqPBvRmCTA8mPKm7kxurgrlIatOTlHGu05A8H+/fsASE1to+k8fJHJZKJpU2X5Wl+B//HjuZjNZoxGo6a1dV26dCM0NJTCwkL279/b4HF+/90ZYPXo0VOtqfm8pKSmdOqUhsPhYN26n7WejmhEEmD5scbah7Am5UNCueJNqEMJsFq3bqvtRHxUSooz8NdbZvXAAefyYLNmzTWt+QwJCXHtG7hlS8M2J66qqmL7dmeRvFod4f3FOecMBnBt5SMCgwRYfqyxlwihug5Lbx9kvq46g6VdnY4vUwIsvWVW9+3bA0CbNu00nomzDgtgy5ZNDXr89u3bsFgsxMfHN/qm1Xp37rnnAfDLL2uw26XPVaCQAMuPKVedxcc3XgarOlOgrw8yX6cUQksNVsNUZ1b1Ffjv3r0bgHbttA+w+vTxLMD6/fdfAejevadcQXyS3r3TiYiIoKAg35XlE/5PAiw/lp+fD1Q3WmwMSgsBvWUKfFlxcZGrnk7LS/l9WXUGS18B1t69zgCrbdv2Gs8EevXqg9Fo5ODBAxw5ctjtx1fXX8ny4MmCg0Po39+5Vc6aNbJMGCgkwPJTDodDkwBLr7Uuvkyp02naNJmICP1tVuwLlIsvGhI4eNPevc4lwrZttc9gRUdH0727szj9l1/WuP34X3/dAkiAVZdzz3XWYf3yiwRYgUICLD9VUlKM1WoBqvcIbAzNmrUAIC/v+CmbbIuG2bVrJ6CPD2FfpXRJP3hwv0dtCNRUVlbKsWM5ALRrp30GC+Ccc5y1QmvXuhdgHT16hCNHDmM0GunZUwKs01G+t7/9ttXVBFr4Nwmw/JSyLUhsbCwhIY3X8C8+Pp6IiIha/X2EZ3bsyAagUyfPNh8PZK1atSIoKIjy8nLy8vSxJ+Hevc52CImJTXTTPFYJAtavX4fVaq334zZt2gg42z1ERkZ5ZW6+rkWLlnTqlIbNZuOHH77TejqiEUiA5aeUhoqNuTwIYDAYXFdEKVdICc9s3+4MsNLSumg8E98VHBziurJNuSJTa3v27AL0lZns2rU7sbGxlJaecNVU1YcSYPXtm+GtqfmF4cOd+9t+++3XGs9ENAYJsPyUVgEWVH9g7Nmzu9Gf2984HI4aGazOGs/GtylNWvUSYClLv+3addB4JtWMRiMDBpwDuLdMmJkpAVZ9KAHWunW/UFpaqvFshLdJgOWnlCVCLQOsffsa3hFaOB05cpjS0lKCg4Np21aajHpCaXGhlwCrOjOpr8BZKcb+7rtv6nX80aNHOHhwP0FBQa5WD+L02rfvQOvWbbBYLKxe/YPGsxHeJgGWn5IMln9QPoTbtesgm+d6SHld7t69U+OZODOT27dnAc6NkfXkgguGYzIFs2vXTtdVjmeyevWPgLPNQ3R0tLen59MMBoMri/X1119pPBvhbRJg+SmlkLdJEy0CLOcVUfv27dHNFVu+Kjvb+SEsBe6eU76HStCqpWPHcigqKsJoNNKhQyetp1NLTEwsAwc6lwm/+ebsQcBPP/0AwJAhQ704K/9xySWjAGdgKps/+zcJsPyU0lAxOTml0Z+7VatWGI1GysvLyc091ujP70+kt5B6OnVKw2AwkJd3XPMrCZVu3u3atSc0NFTTuZzOhRf+DYCvvvr8jL8kVVSUs2HDWgAGDx7aGFPzeR06dKJLl65YrRa++uozracjvEgCLD917JgzsFEafzam4OAQWrVy9h3avXtXoz+/v7BYLPz661YA0tOltsVT4eERtGnjrGPTOouVne0MsPR6ZeiwYRcSFhbOnj272bq17s2f1679maqqKpo1a0779vop1te7yy4bC8Ann3yk8UyEN0mA5YccDge5uc4GhlpksKD6irdt2/7U5Pn9QXb2NszmCmJiYnV1pZkvUwKarKw/NJ3Htm1K/VVXTedRl+joaC6++FIAPvjg/TqP++yzTwC48MKLZP9BN1x00ShMpmC2bcvSPNgX3iMBlh8qLCyksrISgKZNm2oyh+7dewDwxx+/a/L8/mDLlkwA+vRJJyhI3qpq6N27DwCbN2dqNgeHw+Fa+lXeJ3o0fvzVAKxatdKVEa+poKDAVX81evTljTk1nxcfH8/QocMAWLz4XY1nI7xFfmr7ISV7lZjYRLMrz5Q9zf74o/7NCkVtShDQp08/jWfiP9LTnX2atm7d4lancjXt37+XwsICQkND6dq1uyZzqI+uXbuTnt4Pi8XC66/POeX+xYvfxWq10K1bDzp2lIsw3HXddTcA8Pnnn7j2jRX+RQIsP5STo+3yIECXLl0xGo0cP5572t9+xZlVVlayfv06APr3H6DxbPxHhw4diYmJpaKiXLPl682bNwHO7FVjbmPVEHfccTcAH3+8nF27drhuLygoYPHi9wC4/vrJmszN1/Xu3Yfu3XtSVVXFkiWLtJ6O8AIJsPyQllcQKsLDI2jfviMAf/4pWSx3rV+/loqKcpKTU+jSpZvW0/EbQUFBroBV6d/U2HwpM9mnTzoXXDACm83GjBn3UFJSgt1u59//foKSkmI6dUpj+PALtZ6mTzIYDEyceCMA77//rnR290MSYPmhQ4cOANCyZUtN56HUl2zdukXTefiiH374FoDzzx8mxcMqu+CCEQB8//0qTZ5/yxZnBstXrgx96KHHSExswq5dO7nqqjFMmHAlq1atxGQy8fDDT2AymbSeos8aPnwkrVq1prCwkHnz5mk9HaEyCbD80MGDzgCrVavWms6jX7/+gHt7mgmw2Wyu4mGlEFaoZ/Dg8zGZTOzcuaPRdxvYv38fhw8fwmQy0bNnn0Z97oZq0iSJ//3vDZKSmnL06BGysv4gODiYp556lp49e2s9PZ9mMpm44467AJg7d65rizPhHyTA8kPVAVaqpvMYNOg8DAYDO3fu4NixHE3n4kt+/nk1eXnHiYuLIyOjv9bT8TsxMbGcd975ACxb9kGjPreyLJme3o+oqKhGfW5PdOqUxscff8njj8/k/vsfYsWKL7n44lFaT8svXHjh3+jevQdlZWW88sqLWk9HqEgCLD9jt9s5dOggoH2AFR8f77qa8OefV2s6F1+yfLnzQ3/06DGy/6CXXHHFVYCzeLukpKTRnvenn74HfLPreUREJGPGjOOaaybSooW25Qf+xGAwMH36DACWLVvKunW/aDwjoRYJsPxMbu4xqqqqMJlMmnRxP9m55w4GYM2anzSeiW84dizHtTw4dux4bSfjxwYNOpd27TpQWnqCd955q1GeMzf3GBs3rgdg2LARjfKcwjf07ZvBjTfeCMATTzwsBe9+QgIsP7N//z4AmjVroYvi0/PPvwCANWt+pKSkWOPZ6N+bb87DbrfTr19/2rVrr/V0/JbRaGTq1DsAWLjwDfbu3eP15/zyy89wOBz07p0uGSBxigcffJAWLVpy9OgRZsy4B5vNpvWUhIckwPIzO3c6e9V06NBR45k4de7clU6d0qiqquLLLz/Xejq6lpNzlOXLlwIwZcpUjWfj/4YPH8m55w6mqqqKe+65w6u/ANhsNteWM6NGSddzcarIyEief/6/hIWFsWbNj8ye/ewZN9oW+icBlp/ZuXM7AB07dtJ4Jk4Gg4HLLx8HwIoVH8oPjDN48cVZWCwW+vXrT0bGQK2n4/cMBgOPPfY0TZsms2fPbv75z39QUFDgledatWolhw8fIi4ujksvvcwrzyF8X/fuPXjiiWcAeP/9d3juuaex2+0az0o0lARYfkYJsNLSOms8k2qXXDKakJAQtm3LYsOGdVpPR5d+/PE7Vq78AqPRyD333K/1dAJG06bJvPLK60RFRfPbb79y7bXjWL36R1V/EaisrOTll18A4OqrJxAeHq7a2ML//O1vF/PQQ49jMBhYvPg97rlnmpRX+CgJsPyIzWZj9+5dALraGyw+Pp5x464E4NVX/ytZrJMcPXqExx9/CIAJE26Uzu2NLC2tM++8s4RWrVqTk3OUO+6Ywg03XMPKlV9QUVHu8fizZz/L4cOHSEpqyvXXT1JhxsLfjR9/NU8//RzBwcF8//0qrrxyDN9885X87PQxEmD5kZ07t1NZWUlkZCQtW7bSejq1TJ78D0JDQ/ntt6189ZXUYilKSkq4887bKSwspEuXrtx22x1aTykgtW3bjiVLlnP99ZMICQnht9+2cv/9d3PBBedy55238847b/H7779hNpvrPabVauXFF2exdKmz9urxx2cSERHprf+C8DOXXnoZCxe+T6tWqeTkHGX69DuZOPEqvvrqcywWi9bTE/VgcEhIDDj7R82ZM4elS5dy4sQJMjIyePTRR2nVquGBSmFhGVZr462fv/fe28ya9W/OPXcIr76qv20X5s6dw9y5c4iJiWXp0k9ITk5ulOc1mYKIj49s9PNxNgUFBfzrX7fx+++/Eh+fwHvvLaV58xZaT8ur9HouasrLO86SJYv48svPXD3lFEFBQbRs2Yp27TrQvHkLmjVrRkpKM6KiogkLC8NkCqaoqJDs7G188cUnrqsT77nnfiZO1Ff2yhfORaA407moqCjnrbfms3DhG1RWVgIQFxfHeeedz/nnX0Dv3ukkJTXVYtp+KSEhEqNRndyTBFh/mTNnDu+++y7PPvssKSkpzJo1i0OHDvHpp582eMf7xv7Bdffdd/Ddd98wbdrdTJ78j0Z73vqyWCxcf/1VbNuWRefOXfm//1tIdHS0159Xjx8kWVl/cM890zh69AixsbH83/+9TadO+lnW9RY9nou6OBwOtm37k/Xr17FlSya//baVoqIit8aIiYnlgQce0WXXc186F/6uPuciL+84H364hKVLF5OfX3tLnaZNk+natRupqW1ITU2lZctUkpKakpCQSGxsLEFBslhVXxJgqayqqoqBAwdy7733cu211wLOpZvBgwczc+ZMRo1q2A/HxvzBZbFUMXz4YEpKilm48H169dLnPmcHDuznxhuvpaAgn65du/Hii6+SnJzi1efU0wfJ8eO5vPnmPJYsWYTdbqdVq9a89NKrtG/fQdN5NRY9nQt3ORwOCgry2bVrJ3v37uHo0SPk5BwlJ+co5eVlmM2VWCxVxMXF06JFCwYNOpeLLhql2y1xfPlc+Bt3zoXVamXr1s38+ON3rF37M3v27D7jlYZBQUHExycQHx9PbGws4eGRREZGEhERQURE9d9hYaEEBwdjMgUTHBxCcHAwISHOv5U/zvuUf5swGo0YDIa//g7CaAwiKKjmHyNBQYa/7qt5rEG3m9irGWBp34lSB7KzsykrK2PQoEGu22JiYujatSsbN25sUIBls9koLi7CZnMABtcLymCgxour+vagIMNJxxncehH+/PMaSkqKSUpKcm1Po0epqa157bX/49ZbJ5OV9Sfjx1/OtGl3cdllf29wplDPLJYqDhw4wO+//8rq1T/w44/fY7VaARg58mIefvgJYmJiNJ2jqB+DwUBiYhMSE5swYMCgsz9ACC8wmUz069effv2c+5SWl5exbVsWO3Zkc/DgQQ4e3M/hw4fIz8+juLgYu91Ofn7eKVkvrdUOxKr/KIHa6YKykwO52see6bFBBAUZXAFfzXFOfszMmU/SpEkTVf6PEmABOTnOjYibNau9tUzTpk1d97nr0KFDnHvuOR7PDcBkCqZ58+Z07NiJ884bzCWXjCIysvZvxR9/vAyAiy++lNDQYFWe11u6d+/OkiXLueuuO8jK+pOnn36c//1vDqNHX875519A9+49VL2UXfltxGgMwuFwYDabKS09wYkTJygtLf3r7xOcOFHCiROlNe5z/qmqqsJqtWGz2bDZrNhsNqxW619f1/539R8rVquNsrLSUzoy9+6dzu2338GgQeeq9n/0FTXPhdCWnAv98ORcxMREM2DAAAYMGHDKfRaLhaKiQvLz88nPz+fEiRLKy8spKyujvLyc8vIyysvLKCsro7KyEovF4vpjtVpqfV39p8r1b7vdgd1uw2631/pTH+4c25gefPB+CbDUVFFRAXBKBiU0NJTiYu37j1itFg4c2M+BA/v59ttveOGFWVxzzTVMmTKFlJQU1q5dy/fff0tQUBCTJt1AfLz+r1SKj0/jyy+/YMGCBfzvf/8jJyeHBQveYMGCNwgKCqJt27a0atWKlJQUkpKSiIyMJCwsjPDwcIKDg7Hb7a5gxuFwUFVVRVlZGRUVFZSVOX9gnDhxgpKSEkpKSlz/PnHihCuD1FiioqJIS0tj8ODBXHzxxXTv3r1Rn1+PYmKkF5ReyLnQD2+ci6ZN44C2qo9bF4fDgcPhwGarHXid7eu6jqk51tm+duf56nquuLg41b4XEmABYWFhgLMWS/k3OBsENjSTkpqaym+/bfvrpFW/6JQ/oPybOm6vvq+y0syhQwfZsmULn332MXv37mHevHm89dZb9OrVm+zsbQCMGzeepKQWFBaWefotaTTjxl3DZZddwffff8t3361i7dpfyM/PY/fu3ezevdtrzxsUFERUVBRRUdFERUURHR3917+jiYlx/q3cFhoa6qo3MBqNNf5twmRy/u28vea/nX9HRkbSpElSraVeXzo/ajMag4iJCaekpAKbTX+/vQYSORf6ERjnwggYMRjAaHT+0aPoaPWCXAmwqF4azM3NJTU11XV7bm4uaWkNu7LLWVdlxG531l15qmnTZqSn92fSpFv45Zc1vPnmPDZvziQzcyPgXHa6887pPlmsajAYGTZsJMOGjQScheA7d+4gN/cYx4/nkpd3HLPZTGWlGbO5EqvV6lozV9btTSYTERERhIdH/FW0GeEKnmJjY2jevCkOh4mIiCiioqKIiIhstCJLZx1ewF9LUovNZvfJ16o/knOhH3IutKfmZX8SYAGdO3cmKiqK9evXuwKskpISsrKymDBhgsazqy0oKIjzzhvCeecNYefO7WzblkWTJk3o338QJpN/nM6kpKaq9nWRq6WEEEI0Nv/4RPZQSEgIEyZMYPbs2SQkJNCiRQtmzZpFSkoKI0eO1Hp6derYMU1XW+IIIYQQwkkCrL9MmzYNq9XKww8/jNlsJiMjgzfeeIPgYH1fkSeEEEII/ZFGo14kS1L6IEuE+iHnQj/kXOiHnAv9ULPRqDRAEUIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlshehF9lssqeUXhiNQXI+dELOhX7IudAPORf6EBRkwGAwqDKWBFhCCCGEECqTJUIhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYKnr99deZOHFirdu2bdvGhAkT6N27N8OGDePtt9/WaHaB5XTn4rvvvmPcuHH06dOHYcOG8dxzz2E2mzWaYeA43bmo6eGHH2bYsGGNOKPAdbpzkZuby913302/fv0YMGAA99xzDwUFBRrNMHCc7lz8+eefTJw4kT59+jB06FBmz55NVVWVRjP0b0VFRTz66KMMGTKE9PR0rrnmGjIzM133r127lr///e/06tWLiy66iM8//9zt55AASyXvvfceL730Uq3bCgsLmTRpEqmpqSxbtozbb7+d2bNns2zZMm0mGSBOdy4yMzP55z//yYUXXshHH33EY489xhdffMETTzyhzSQDxOnORU2rVq1i6dKljTehAHa6c1FVVcXkyZM5cuQIb7/9NvPmzSM7O5v7779fm0kGiLo+LyZPnky7du1YsWIFTz31FMuXLz/j+0c03N13382WLVt44YUXWLZsGV26dOGmm25iz5497N69mylTpjB48GCWL1/O+PHjue+++1i7dq1bz2Hy0twDxrFjx3jsscdYv349bdq0qXXfBx98QHBwME8++SQmk4n27duzf/9+5s2bx7hx47SZsB8707lYvHgxAwYM4NZbbwWgTZs23HXXXTz88MM88cQThISEaDBj/3Wmc6HIzc3lkUceoX///hw+fLhxJxhAznQuPvvsMw4fPsw333xDkyZNAJgxYwZPPPEEpaWlREVFaTBj/3Wmc7Fp0yaKioqYPn06UVFRtG7dmtGjR7N69Wruu+8+bSbsp/bv38/PP//MokWL6Nu3LwCPPPIIq1ev5tNPPyU/P5+0tDTuuusuANq3b09WVhbz589n0KBB9X4eyWB56M8//yQ4OJhPPvmEXr161bovMzOT/v37YzJVx7EDBw5k37595OXlNfZU/d6ZzsXkyZNP+a08KCgIi8VCaWlpY04zIJzpXAA4HA5mzJjB5ZdfTv/+/TWYYeA407lYs2YNAwcOdAVXAIMHD2bVqlUSXHnBmc5FQkICAO+//z42m41Dhw7x448/nvb9IzwTHx/PvHnz6NGjh+s2g8GAwWCgpKSEzMzMUwKpgQMHsmnTJhwOR72fRzJYHho2bFid9SM5OTl06tSp1m1NmzYF4OjRo7V+qAnPnelcdO3atdbXFouFBQsW0L17d9cPNqGeM50LgAULFnD8+HHmzp3L66+/3ogzCzxnOhd79+6lX79+vPrqq6xYsQKr1cp5553H9OnTiYmJaeSZ+r8znYv09HRuu+02/vvf//Liiy9is9kYOHAgjz76aCPP0v/FxMRw/vnn17pt5cqV7N+/nwcffJCPPvqIlJSUWvc3bdqUiooKCgsL6/2ZIRksLzKbzacsPYWGhgJQWVmpxZQEYLVaue+++9i5cyePPfaY1tMJONnZ2cyZM4dZs2bJ0qzGSktLWbFiBdu3b+f555/nySefZNOmTUydOtWt39SF50pLS9mzZw/XXXcdS5cu5b///S/79u3jkUce0Xpqfm/z5s088MADjBw5kqFDh572s1v52p2LDiSD5UVhYWGnnAwlsIqIiNBiSgGvtLSUO++8kw0bNjBnzhx69uyp9ZQCSmVlJffeey+33XYbnTt31no6Ac9kMhEREcHzzz9PcHAwALGxsYwfP57ff/9d3h+NaNasWRQXF/Pyyy8D0K1bN2JjY7nxxhu58cYb6dKli8Yz9E+rVq3i3nvvJT09ndmzZwPORMjJn93K1+Hh4fUeWzJYXpSSkkJubm6t25Svk5OTtZhSQMvNzeW6665j69atvPHGG6ekiIX3/frrr+zcuZM5c+bQp08f+vTpw+uvv86RI0fo06dPrcukhfelpKTQtm1bV3AF0LFjRwAOHTqk1bQC0qZNm2rVBAGu+qt9+/ZpMCP/9+6773LHHXdwwQUXMHfuXNcKU7NmzU772R0REUF0dHS9x5cMlhdlZGSwePFibDYbRqMRgHXr1tG2bVsSExM1nl1gKS4u5oYbbqC0tJT33nuPtLQ0racUkHr27MnXX39d67Z33nmHr7/+mnfeeUd+8WhkGRkZvP3225jNZsLCwgDYsWMHAK1bt9ZyagEnOTmZ7du317pN+bpt27ZaTMmvLVq0iKeeeoqJEyfy0EMPYTAYXPf169ePDRs21Dp+3bp1pKenExRU/7yUZLC8aNy4cZSWlvLQQw+xa9culi9fzoIFC5gyZYrWUws4zzzzDAcPHmTWrFkkJCRw/Phx1x+bzab19AJGWFgYrVu3rvUnNjYWk8lE69atXR/yonFcffXVGI1G7rnnHnbu3MmmTZt4+OGHGTBgAN26ddN6egHlxhtvZPXq1bz00kscOHCAtWvX8sADDzB06FBZTlfZ3r17+fe//82FF17IlClTyMvLc30enDhxgokTJ/Lbb78xe/Zsdu/ezZtvvslXX33FzTff7NbzSAbLixITE5k/fz4zZ85k7NixJCUlcd999zF27FitpxZQbDYbX3zxBRaLhRtuuOGU+7/99ltatmypwcyE0FZCQgLvvfcezzzzDOPHjyckJIQRI0YwY8YMracWcAYPHszrr7/Oq6++ysKFC4mPj+fCCy/kX//6l9ZT8zsrV67EYrHwzTff8M0339S6b+zYsTz77LO89tprzJo1i4ULF9KyZUtmzZrlVg8sAINDLhURQgghhFCVLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgifIV1lhBC+QgIsIYRP+Pbbb7n//vtdX69fv560tDTWr1+vyXxmzJhBWloaaWlp3HvvvR6NlZaWxiuvvFLv46+55hrXc7vzOCFE45FO7kIIn7BgwYJaX3fr1o0lS5bQoUMHbSYEJCUlMWfOHBISEjwaZ8mSJaSkpNT7+KeeeorS0lKuuuoqj55XCOE9EmAJIXxSVFQUvXv31nQOISEhqszB3TG0DCqFEPUjS4RCCN2bOHEiGzZsYMOGDa5lwZOXCF955RUuuugivvnmG0aNGkWPHj24/PLL2bJlC1u3bmX8+PH07NmTUaNGsXbt2lrj79ixgylTppCenk56ejq33347Bw8edHueaWlpvP/++8yYMYO+ffvSv39/nn76acxmM8899xwDBw5kwIABPPTQQ1RWVtZ6nLLUp/y/1q5dy+TJk+nVqxfnnnsus2bNko3JhfAhEmAJIXTvscceo2vXrnTt2pUlS5bQrVu30x6Xk5PDs88+y6233sp///tfSkpKmDZtGnfffTfjx4/n1VdfxeFwcNddd2E2mwHYu3cvV199Nfn5+Tz33HPMnDmTgwcPcs0115Cfn+/2XGfNmkVISAhz5sxhzJgxvPPOO4wZM4ajR48ye/ZsJk6cyIcffsg777xzxnHuvfde+vbty9y5cxk1ahTz589n6dKlbs9HCKENWSIUQuhehw4diIqKAs68nFZRUcFjjz3GkCFDANi1axfPP/88M2fO5IorrgCgvLycadOmsXfvXrp06cKcOXMIDw9nwYIFrucYNGgQI0aMYP78+bUK6+s71yeffBKA/v37s3TpUiwWC7Nnz8ZkMnHeeeexcuVKNm/efMZxxo8fz+233+6az6pVq/jhhx+4+uqr3ZqPEEIbEmAJIfxKenq6699NmjQBoFevXq7b4uLiACgpKQFg3bp19O/fn7CwMKxWK+Cs7+rXrx+//PKL28/fp08f17+NRiPx8fF069YNk6n6x21cXBwnTpyo9zgAKSkplJeXuz0fIYQ2JMASQvgVJQtVU3h4eJ3HFxUV8cUXX/DFF1+ccl9Drg483fNHRES4PU5YWFitr4OCgqQPmBA+RAIsIURAi46O5pxzzmHSpEmn3Fcz6ySEEO6Qnx5CCJ8QFBSE3W5Xfdz+/fuza9cuunTp4gqoHA4H9957L61bt6ZLly6qP6cQwv/JVYRCCJ8QExPD3r17Wbt2LcXFxaqNO3XqVA4cOMCUKVNYtWoVq1ev5o477uDzzz+nc+fOqj2PECKwSIAlhPAJ1113HcHBwdxyyy389NNPqo3buXNn3nvvPQwGA/fddx/Tpk3j+PHjvPrqq4wcOVK15xFCBBaDQ6omhRDCbTNmzGDDhg189913ms0hLS2Nf/7zn9xxxx2azUEIcXpSgyWEEA1UVVXF1q1bSUhIIDU1tdGed9euXZSWljba8wkh3CdLhEII0UDHjx/nqquu4uWXX27U533kkUdko2chdE6WCIUQQgghVCYZLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlf0/AC0dwgJAf1MAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the \n", + "chromatogram that contain either singular or highly overlapping peaks, allowing \n", + "one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/gchure/Dropbox/git/postdoc_projects/hplc-py/hplc/quant.py:785: UserWarning: \n", + "\u001b[30m\u001b[43m\u001b[1m\n", + "Chromatogram many negative points larger than -0.01, suggesting that the baseline is \n", + "consistently negative. I'll try to correct this, but proceed with cauchin and visually\n", + "check if the subtraction is acceptable!\n", + "\u001b[0m\n", + " warnings.warn(\"\"\"\n", + "Performing baseline correction: 100%|██████████| 298/298 [00:00<00:00, 399.16it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 4.94it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 9.725 - 11.383) R-Score = 0.9983\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 11.392 - 28.425) R-Score = 0.9852\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 0.000 - 9.717) R-Score = 10^-4 & Fano Ratio = 0.0002\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 28.433 - 40.000) R-Score = 10^-4 & Fano Ratio = 0.0003\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0EAAAG1CAYAAAA/Yf//AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8pXeV/AAAACXBIWXMAAA9hAAAPYQGoP6dpAAD9W0lEQVR4nOzdd3wUVdcH8N/M9k3vnTRg6EgTURREFBREULGgggVFLKAIgg0BpaiAEHlsIF3xEXhAsb/Yu4ColGRISO+9bN8p7x+7gRASkmw2ySacr598THbu3L1hkuyeufeew8iyDEIIIYQQQgi5WLAdPQBCCCGEEEIIaU8UBBFCCCGEEEIuKhQEEUIIIYQQQi4qFAQRQgghhBBCLioUBBFCCCGEEEIuKhQEEUIIIYQQQi4qFAQRQgghhBBCLirKjh5AF1YJQAOgoIPHQQghhJDmiwBgBeDfweMghLQhhoqlthmzLMtaSaJ/X0/AsgzoWngGuhaeg66F56Br4TlYlgHDMBYAuo4eCyGk7dBMUNspYBgmvrraBEGQOnosFzWlkkVAgBfoWnQ8uhaeg66F56Br4VkCA72gUDC0ioOQLo72BBFCCCGEEEIuKhQEEUIIIYQQQi4qFAQRQgghhBBCLioUBBFCCCGEEEIuKhQEEUIIIYQQQi4qlB2OEEIIIcTDHTlyxAeOGkZ0A5uQ80kACoYMGVLT3BMoCCKEEEII8VBHjhxhATzLMOx0hmFUAJiOHhMhHkiWZdl+5MiR7QBWDBkypMl6Ax4RBHEcpwSwGMAMAIEAjgJ4muf5353HLwGwHsBQACUA1vI8n1TnfBbAiwBmwlHh+QcAj/I8n1GnTav7IIQQQghpZ88qFMrZvr4BNrVaa2IYhqrqElKPLMuMzWbRV1dXzBZFAQBebuocjwiCADwP4EE4gqB0AAsBfMlxXG8ANgD/B+ATAA8DuAzAmxzH1fA8v8V5/gsAHgFwL4BcAK8C+IrjuH48z9s4jgtqbR9t+c0TQgghhNR35MgRX4Zhp/v6Bth8fALKOno8hHgyjUZnBhBUWVk2/ciRI+ubWhrnKUHQZAAf8Dz/NQBwHPcUHDMyIwBwcARCs3ieFwAkcxzXA8AiAFs4jlMDeArAQp7nP3OefzuAfAC3ANgF4CE39EEIIYQQ0p7CGYZRqdVaU0cPhJDOwDlbqpdlRAC4YBDkKZvrigFM5DgujuM4BRxBixXAPwCuBPCDM3ip9S2AnhzHhQG4BIAPgG9qD/I8XwngLwBXOR9yRx+EEEIIIe2JBcDQEjhCmsf5u8KgGTGOp8wEzQWwG0AGANH5cQvP86c5josGcKxe+3zn/2MARDs/z2mgTYzzc3f04RKFwlPizItX7TWga9Hx6Fp4DroWnoOuhWdhKO0AIRcFTwmC+gCohGNZXB4c+4Pe5zhuFAA9HLNCdVmc/9c6j6ORNoHOz93Rh0t8fXWtOZ24EV0Lz0HXwnPQtfAcdC0IIaT9dHgQxHFcDIAPAIzlef4n58OHOY7rA2AJADMATb3TtM7/G53H4WxjrtfG6PzcHX24pLraDFFsMksfaUMKBQtfXx1dCw9A18Jz0LXwHHQtPIufnw4sS7NyXV1S0trIb7/9Omj//i/rrxTySH/++buXLMvM8OEjDB09lq6iw4MgAMMBqAEcqvf47wBuAJAFILLesdqv8wCo6jx2ul6bf52f57ihD5eIogRBoBc1T0DXwnPQtfAcdC08B10LzyDT7hvigebNe6zX3LnzMykIch9PuNWR6/z/gHqPDwBwCsCPAK50JkyoNQYAz/N8MRzJE6oBjK49yHGcP4DBznPhpj4IIYQQQgghXYAnzAT9CeBnANs4jnsEjqBoOoBrAFwBR7KEpwG8x3HcqwAuBfAkHPV+wPO8leO4DQBe4TiuBEAmgNfgmP3Z63yOzW7ogxBCCCGkw0mSBJPJ1GE3svV6vdTSJYMjRw4dctttdxZ8883/BQmCwCQlvc1rNGp5/fq10ceP/+tjMhkVvr5+wqhRV5fNm7cwLyXlpO6hh+7t8+abm5IHDLjEBABPPPFI4okTx3y+/PL7vxUKBSRJwoQJ1wx86KFHcqZMmVpe/zmLi4uUr7/+WvTRo4f9RFFkevXqY3jyyadzEhISz+wBf+ed/4R/+unHoQZDjbJ7956GRYteyEpM7G5tbMyRkVG2d975T8QPP3wbVFFRoYqMjLTcffe9+TfccGMlAOze/WHQrl07Im699fbCDz98P8JgqFFecsmQqgULnslZv35N9KFDv/vr9V7iPffcm3fbbdPKAKCiokLx+uuvRv/112G/mppqpV7vJQ4bNrxy0aIXcvR6vTRy5NAhALB+/eq4v/8+4rN8+WuZubk5qg0b1kX/++/fvhaLheW4XobHHnsyt2/ffme2dWzZsjH044//F1ZVVaniuN41/foNMBw8+GXw/v1fHsvOzlRPm3Zr/7vvvjfvk0/2hWk0Gmnbtg9P5OXlqN98Myma55O9rVYrGxgYZJ8wYVLxzJkPFwGOZYQnThzz7t9/YM3nn38SarPZ2JEjR5XPnPlw/iuvvBx74sQxH3//APsjj8zNGTv2uqqW/my1pw4PgnielziOmwRHZdetAALgyOR2Dc/zfwAAx3HjACTBkbK6AMACnue31elmMRzfyyYAOjhmb8bxPG93Pkdxa/sghBBCCOlokiRh2rRbeqWkJHt11Bh69epj+OCDPXxLA6Evvvg0ZOXKNamiKDCJid2t06bd0icgIND+2mvrT3l7e4vffXfQ/7333onp12+Acfz4CZXBwSG23377xXfAgEtMoijixInjPhaLRfHvv3/rBw0aYjp69LCXyWRSjB499rw324IgYO7cR3oqlQp52bJVaf7+/uL69Wui58+f02P37k+OA0Bpaan6xIlj3qtWrU212azMihVL41esWBr33ns7+MbG/MQTjySmp5/Wz5nzVHZcXLzl888PBK1cuSyRZdnT48dPqASAsrJS9Q8/fBf4yitrUwsK8tVLlz7f/d577/S97bZpBQ88MCt/x44t4W++mRQ7duy4ysDAIHHJkmfjysvL1EuXrjgdEhJiP3LksPf69avj4uMTzPfd92Dx3r2f/nPLLRMHPvDAwzk33zy1rKamhn3kkZm9wsLCbC+//EqqWq2RN216K/KJJx7hNm/ecTImJta2Y8eWkB07tkQ9/PBj2YMHDzN8/fUXAbt27YgKCgqy1f13+uabr4Nef30DbzabWaVSifnz5/YcOHBQ9YYN76YoFEp5377dwVu3booePvzy6v79B5gBICXlpLe/v789KemdlKNHD3uvX78m7s8/f/efOXNWzuOPP5m7YcO66DVrVsZdc821/zAenG6xw4MgAOB5vgLAo86Pho4fgqNwamPniwAWOj8aa9PqPgghhBBCOl7nrBs0atSYsksuGWwCALPZzIwZc23Z+PETyqOjY+wAcN99Dxbv3v1hxOnTqToAlcOGDa/8669DvgAKjx494qVUKuXu3XsaDx36w2fQoCGmn3760Y/jehsCAgLE+s/1888/+ObkZOm2bt11vHv3HlYAeP75pVnbt28Jq6goVwKAQqGQX3751XRfX18JAK6/fmLJzp1boxob86lTKdrDh//0X7JkeVrtLMecOfPy09PTdB98sD2iNggSRZF56qmF2T179rL07t3XsmXLJrNSqZQfeGBWEQDcffeMom+//b/g9PTT2sDAIOOQIcOqhw691NCnj2MWp1u3uPL9+/eGpqef1gFAWFi4AADe3t6in5+fuHPn1hCDoUa5efPO5ODgEAEAVq5ckz516o39P/zw/dAFC57N3bv3v+ETJkwqrp1t6t69R2FqKu+VkXFaX/f7mzBhUgnH9bYAQGlpiXLSpCnFd901o9jb21sCgMceezJ///694ampKbraIEiWZeb555dl+fj4SN2797Bu3vxudP/+A6tvvvm2cgCYPPmW4sWLn+lRVFSoCg+P8NjJBI8IggghhBBCSNNYlsUHH+zhO9tyOACIjo45swxNp9PJ99xzX/Hnnx8I2LbtPa/8/DxNdnaWvrq6SimKEgMAI0eOqnrxxa9CzGYz8/vvv/r26zegJiws3Pr333/5Aig6dOgPv7Fjx5U19Fxpaak6Ly8vsTYAAoCIiEj7woXP1e5Fh5+fn1AbAAGAj4+vaLPZzvnG6o6Z51N0ADB06PBzkhMMHDioZvv2zdF1H4uPP7vkTqvVSMHBoXW+1koAYLNZWQC4++57S77++gv/Awf2B+Xl5WpzcrK1paUlmujoaAsakJ5+WhceHmGtDYBq/z27d+9pzMzM0JWXlylKS0vV/fsPPGecAwZcUlM/COrWLfbMcwQHhwjTpk0vPnBgX+CpU7y+oCBfk5WVqQeA2msCAL6+fnYfH58z/24ajUaKjIys+/3Jzu/Pc6eBQEEQIYQQQkinwrIsau/UdyYajfbMmI1GIztr1r2cY0/JVRXjx08oGzjwkuzHHnuoV22byy8fWaNSKaXff//F5+jRI75jx44ri4yMsn3xxYHQnJwsdXZ2pv6aa8aebui5FAplk7NlLMs22abumIGGm0uSxCgUinMOqlSqc75m2YbjAUmS8Pjjs7rn5GTrrrrq6vKrrx5b3rdvP9Mrr7wc29iY5EZSGNaOQ6FQnvm6sT5q1QYsAFBUVKicNeve3r6+fsLw4ZdXXnrpiOoBAwYab7998jnJy5RKxXkDYBhPyLXWMhQEEUIIIYSQdvXjj9/5ZmZm6P/3v8/+CQ0NEwCgoqJcUVVVpawNNlQqlTxw4KDqH3/83v/06VSvF15YlhEWFm4XRYl5++0NkdHR3czdusXZGuo/ISHRYjQaFenppzW1iRBKS0uUd989te/y5a+muTJmjuttBoDDh//wHjt23Jl9SMeO/eMdFRVjbvzMxh0//q/+n3+O+q1f/1bKkCHDjABgt9uZwsJCTVhYhLWhcxITu5t/+OHboJKSYmVISKgAABaLhUlPT9OPHj22zM/PTwwODrYdP37Mq3aJHgCcPHnc+0Jj+fTTj4MMBoNy9+4Dx2uDuJMnjzurOHfKFZgX1PnCNkIIIYQQ0qmFhYXbAOCTT/YF5eRkqf/44zfv+fPndBdFkbHZ7GdmMK644srK7777JtjfP8AeFxdv0+l0cs+enOHHH78PuuyyEZWN9X/llaOq4+MTTS+99EL8X38d1qeknNS++OKzcT4+vsKAAYNMroy5Z89elsGDh1YlJa3tdvDg135paamaDRvWRRw5csj/ttvuLHKlz5CQULtCoZAPHvwqICsrU/3333/pFyyYm1BVVamy2+1n3qdrtVopKytDW15eprjxxinl3t7e4rPPzk88evSI/sSJ47pnn52fYLFYFFOn3lECAFOn3ln4+ecHQnfv/jAoPf20ZtOmt8N+//3XAKDxyaGwsHCb1WplP/vsk4Dc3Gz1Dz9867t06fMJAFB/mWBXQDNBhBBCCCGkXQ0ePNR0//0P5ezfvzfs/fe3RQUEBNquvHJ0eXBwiC01NeVM5rvRo6+pev3115j+/QdW1z42aNCQ6pMnj/uMHn1NZWP9syyLV199PW3t2ldiFi58sifAoF+//jVr176RWn+pWkusXLkmff361VFr174SZzKZFDEx3czPPrvk9PXXn51xaYmIiEj7k08+nbljx5bIL774LNTf388+dOjwqokTbyr688/f/WvbTZp0c9H+/XvCsrOzdElJb6clJb2Tsm7dazELFszlAIDjetckJb2dEhvrmBm7664ZJdXV1Yrt2zdH/ec/65V9+vStGT36mtLk5BM+jY1lwoRJFSkpyYXvvvtmTFKSmQ0ODrGNG3dD6W+//eKfkpKsb+y8zoppbF0habV0APEVFUaqAN7BlEoWAQFeoGvR8ehaeA66Fp6DroVnCQz0gkLBZgBI6OixHDlypBfLKr4MDY0yqNXaBjfJE9KQ77476NujR09LdHS3M8sFX3zx2djCwnzNO+9sPdWRY2tLNptFW1yc5y1J4vghQ4akXKhtl5vaIoQQQggh5GL25ZefBS1cOK/7kSN/euXkZKn37v0o6Kefvg8cO3Z8g9n0Lka0HI4QQgghhJAuZNGiF7JXr14Z88ILz3Q3mUyKsLAw64MPzs6ZOvUOCoKcKAgihBBCCCGkCwkICBSXL38ts6PH4cloORwhhBBCCCHkokJBECHEY/195BC2znscv761AbIodvRwCCGEENJFUBBECPFIFRUV2PDMfAyqqETwkcNI3vRORw+JEEIIIV0EBUGEEI/0ySf/w+HiIrySxgMApMOHIFkoQywhhBBCWo+CIEKIR/rxx+8BANGXXY4iqwVqWYbhxPGOHRQhhBBCugQKggghHqe6uhqpx/4BADz62FwcNxoBAAV//NaRwyKEEEJIF0FBECHE4/x9+A+83e8SvDloKKKDQmAOCAAAmLMyO3ZghBBCXDJy5NAhu3d/GNTc9t98839+kyeP7z969IjBW7duCm3LsTXHc88tiHvwwemcu/r79deffEaOHDokOztT3Zz2f/75u9cff/zm7a7nJxQEEUI8UP7hQ1CyLHQqNVgvL+jj4gEAyooKyLLcwaMjhBDSUnv3fvrPxIk3lTe3/ebN70ZGRERZtm/fdfzmm28rbcuxdYShQ4cb9u799J+oqBhbc9rPm/dYr+zsLE1bj+tiQkEQIcTj2DLSAQCW4GAwDIPIvv1QZrMiXxIpOQIhhHRCYWHhgk6na/ZdLKPRoOzdu4+xW7c4m6+vr9SWY+sIarVaDgsLFxQKRUcP5aKl7OgBEEJIfV5VVYDeC95cLwAA17c/bl/2Anx8fHGtVtvBoyOEkI4nms2N3shmWFZmNRq5rdu2xMiRQ4fMnTs/c+rUO8qee25BHAD4+voL33//TZDVamH79u1f8+yzL2ZFRETaR44cOgQAPvpoV8RHH+2K+Pnnw0dsNhuTlLQm8vvvvw0ym02K6Ohu5vvvfzB/1Kgx1QCwe/eHQbt27YgYOvTSqu++OxjUt2//mttuu7N40aKnet5114y8//1vd3hoaKh127YPkwsLC1Svv/5azN9//+XLsiw4rpdh7tz5OYmJ3a0AIMsy3nwzKeLLLz8LMRqNissvv6LCZrNfcOJg8uTx/a+//saSY8f+8T558riPr6+v8PDDj+cwDIONG9+KLi8vV/Xq1duwdOmKjJCQUOHXX3/yefrpJ3t+8MGeYyUlJaonn3y01/Tp9+fOnPlwEQCsXftK1BdffBqyadOOk3fddWt/AFi/fnXc338f8Zk169H8adNu7f/qq6+fuvzyK2sAIDs7U133seeeWxBnsVhYk8mkSE3lvW+7bVr+Qw89UnTw4Fd+W7duiszLy9UFBATarrrq6vLZsx8v0Lh4XTszCoIIIR6loqICEQrHn6bowUMAALGxcQCAmppqVFZWIsC5R4gQQi5Wpx+fPaixY7qeXFXM08+k1X6dPm/OQNne8Jt4TVy8Ifb5F/narzMWPtVfMpkafH+ojowyxS1bntyacdf65ZefAkeOHFWelPQWX1paonz55SUJ//nP+qiXX34lc+/eT/958MHpfa64YlT5vfc+UAgAL7ywMC43N0f37LOLM8LCImzff/+N/+LFz3R/4YWXTo8de10VABQXF2nKykpVGzduP2mxmNny8jKVJEn488/f/d58c1OyyWRizWYz+/jjs7iEhO6m11//D69QsPL7728Pf+SRB3pv2fLBicjIKPs77/wnfN++3eGPPz4vq0+ffsa9e/8b8v33H4f17t3HcKHv6b///SDi0UfnZj/11KKc9etXR69evTI+MjLK8txzS9JNJqNi2bIXEjdvfjd84cLnc+ueN2TIMOMtt9xW8MEHOyKvuea6yuLiItW+fXvC589/JiM2Ns62d++n/9xyy8SBDzzwcM7NN08tq6qqaNb00R9//BYwY8YDuU89tShbq9VK33130HfFiqUJM2c+nDNixMia7OxMzRtvvN4tNzdbu3p1Urqr17KzoiCIEOJRclJ5BGscy559E3sAALRaLUJCQlFSUoy83BwKggghpJPT6fTiiy++nKVSqeQePTiMHHlVxZEjh/wAx9I5lmVlnU4nhYWFC+nppzW//PJT4FtvbT7Zv/8AMwAkJnYvOn06Tfff/+4Mrw2CAOD++2cVxMXF2wDg119/UgHA7bdPK6yd5fnvf98PNpmMipUrV6crlY63wcuWrcy8+eYJ/ffs+W/I448/mf/pp/tDJ06cXHTTTTeXA8CiRS/kHjv2j29T39OQIUOrbrnltjIAmDhxcunhw3/6P/DAw3mDBg0xAcCAAZdUZ2Zm6Bo699FHn8g/fPiQ38qVy2KLi4s0o0ZdXVb7/GFh4QIAeHt7i35+fmJzgyAvLy/xwQdnF9V+/eKLzySMHTu+dNq06aUAEB+fYFUqlVkLF87rmZ2dqe7WLa5Z+5O6CgqCCCEepTT5JKIBVMoyFHr9mcfHRHfD6Igo2Hf/F+g/oOMGSAghHiDxjbeONnaMYdlzljYlrE36p7lt419Zc6y5bVsjLCzMqlKpzvTn5eUtCoLANNT25MnjegB44onZveo+Looio9frxbqPJSQknrdxNC4u3lr7+alTvN5gMCjHjRt1zkya3W5nc3KytOXlZcrKykpVnz59jXWPc1xvQ05OVoMBTK3IyKgzz6PX6yQAiI2NOzMetVotCYJd1dC5SqUSixe/lD5z5j19/fz8hGeeeTH7Qs/VHOHhEef8W2RkZOhPn07z+uabr4JrH6vNNZSWlqqlIIgQQjpQfnkZkouLEJmYeM7j/sHBCKqohKGyooNGRgghnkOh0zU7WUBbtW2NugHQWQ3HWLLsGNK6dW+meHl5nzM+hUJxzkkNJV/QarVnzpEkCRERkZZVq9am1W/n5eUlMgwjO9udE5AplcomA0CF4vw2LNtgXNegU6dS9LIsM5WVlark5BO6oUMvNTZ9loMgiOc9kVqtPmc8siwxkyffWjhp0pSy+m3DwsLtzR5oF0HZ4QghHiWlrBQbszNQ1rffOY97R0YBANRmc0cMixBCSAfp0YMzA0BxcbE6ISHRWvvx8cd7g/fv3xPc1Pl1JSQkmktLS9V+fn5ibT8xMd1sGzasi/rzz999AgODxMDAINu///59Tk2e1NRTXu78nuorLCxQJSWtjb311tsLrrjiqrKVK5fFG43GBt+nq1SO4MZgMJw5npmZ3mT67Ojobubc3Gxt3X/DwsJ8dVLSmmiDoeaiiwkuum+YEOLZcnNzAAAxMd3OeTwwPgEAoJZliCZTu4+LEEJIx+jVq49l8OChVevXr+72f//3pV9mZob63XffDPvf/3aHR0XFWJvu4axJk24u9/b2EhcunJd45Mghr9RUXvv880/H/f33X34c18sMAFOn3ln4xRefhv73v+8Hp6WlatatWx15+nRqmwZBL720OC4wMND28MOPFzz99LM5ZrNZ8dprK2Jqj2u1WikrK0NbXl6mCA+PsAcHh9j27PlvWGoqr/3zz9+9Nm9+N4phLjzrdMcddxX+8cdvARs2rItIS0vV/PTTDz6vvro8zmQyKWr3HV1MaDkcIcRjyLIMqagIGpZFdHTMOcfCY7qh2m6Hr0oFoazsnP1ChBBCurZVq9amr1+/Omr9+tWxBoNRGRYWZp0zZ17mrbfeft7Srgvx8/MT33jj3ZT161fHLFr0VA9Zlpi4uATTK6+sPdWzZy8LANxzz70lkiQyu3btjHj77Q3dBg4cVHXNNdeW5ObmXHBPkKt27NgScuzYP75JSW8nq9VqWa0OFB99dG72ypXLEkaOHFU5dux1VZMm3Vy0f/+esOzsLF1S0ttpzzyzOOONN9bGPPjgjD5hYeHWRx6Zk/PCC4t6XOh5JkyYVCHLcvquXTsi9uz5MMLLy1sYNmx41RNPLMi90HldFUPV19tMOoD4igojBKHL1fjqVJRKFgEBXqBr0fGauhaG4iLkP7sQkiwj4rW18AsMOnMsOzsLKYvmI07vhci58+BNyRFahX4vPAddC88SGOgFhYLNAJDQ0WM5cuRIL5ZVfBkaGmVQq7VUKZqQJthsFm1xcZ63JInjhwwZknKhtrQcjhDiMfJPHgcAVAjCOQEQAISEhKLS7ti3aSwubvexEUIIIaTroCCIEOIxyk47arVVN5BNR6fTIV8QcLKmGjW2Fi0BJ4QQQgg5BwVBhBCPYcpzJEWw6Rvef/ojAyzhT6KUiqUSQgghpBU6PDECx3GjAXzXyOEMnucTOI6LA7ABwFUAjAA2AVjC8/yZAlkcxz0K4CkAEQAOA5jD8/zROsdb3QchpG2J5Y79rUwjQU5oaCjS09NQUkLL4QghhBDiOk+YCfoVjqCj7sfNcFTMeonjOBWAr5xtLwcwG8AjABbXdsBx3AwArwF4AcAQABkA/o/juGDn8Vb3QQhpeyqDoy6cPjKyweMhIaEAgOKiwnYbEyGEEEK6ng4Pgniet/E8X1j7AaAGwOsAtvE8vwXArQBiAdzD8/xxnuf3A3gGwBMcx9UWhnoWwBs8z7/P8/xJAPcDMAF40HncHX0QQtqYj+iYmA2IT2zweHe9F94eMBj9/vqrPYdFCCGEkC6mw4OgBjwHQA/HsjQAuBLAXzzPV9Rp8y0AXwCXcBwXCqAngG9qD/I8LwD4EY6lb+7qgxDShmw2Gz4tzMfBkiJE9O7bYBu/oCAEqtXQOrPEEUIIIYS4osP3BNXFcVwIgCcBLOJ5vtz5cDSAnHpN853/jwFQ+26ooTaXuLEPlygUnhhnXlxqrwFdi453oWuRn1+M/QV50Gg0eCwhDix7fhufiAgAgFaWoGBkMApF2w64C6PfC89B18KzMOcnpySEdEEeFQTBsVenCsC7dR7TA6is1662YJjWeRwA6ufMtTiPu6sPl/j6tklxYeICuhaeo6Fr8e+/jmQHsbGxCAryafC86O5xAAAGDLyVMtT+DWeRI81Hvxeeg64FIYS0H08LgmbAsRfIXOcxMwBNvXa1gYnReRyNtDG6sQ+XVFebIYpUAbwjKRQsfH11dC08wIWuRdrhvxGj1aFbRBQqKhr+tVNrfVAhCPBWKlGeVwyN7Gl/wjoP+r3wHHQtPIufn67BmWhPwzBQMAzTIQOVZVmSZYhNtyTEc3nMOwiO4wYASADwfr1DOQD613usNnVUHs4uYYsEkFyvTZ4b+3CJKEoQBHpR8wR0LTxHQ9dCe+wY1vQbiFMaXaPXyc8vADnOIMhSWQVFaHh7DLdLo98Lz0HXwjPIckePoGkMA4XEMBEmi9Ah7+P0WqXAQi7wtEAoKWlt5Lfffh20f/+Xx1p6bnr6ac3MmdP7bN36/olu3eJsbTE+4lk8JgiCIwFBMc/z/9Z7/EcAMziO8+V5vtr52Bg4ssj9zfO8jeM4HsBoOBMbcByndPb3phv7IIS0Ibba8aupCQtrtI2fnz8MogAAqC4ugldPrl3GRgghnoRhGNZkEZS/Hy+QTJb2jZz1WiV7Wb8IpY9Wycqy7FFBkKtOnUrRLlw4r4fNZvX8KUDiNp4UBA0CUD8AAoD9AF4G8F+O4xYCiAewEsAanudrI/U1ANZzHJcG4BCARQB0cBREdVcfhJA2pLfZAIUCvt3iGm2jUCiQJwiw1VSjr8XSaDtCCLkYmCyCZDTbO2L6sMsEC2+/vSF89+5dEZGRUZaSkmJ1R4+HtB9P+iGOAFBW/0Ge5y0AxgNQAPgDjpmZ/wB4qU6bjXAUPn0ZwGEAcQCu5Xm+1F19EELajiSK8HemZArjLjy784UoYAl/EhW+vu0xNEIIIW4wcuTQITt2bAmZMePOXqNHjxh8xx1T+nz99Rd+ddscPPiV3913T+199dUjBt9884R+69atjrRarWfy9SUnn9A+/vis7tddd9Ulo0YNHzxlyg39N216u9HlA1u2bAwdPXrE4IMHv/JrrM1vv/3sP2/ewszZsx/Pdc93SjoLj5kJ4nn+hgscSwNwXRPnrwawui37IIS0jeLTqVCyLOyShDiu1wXbBgQEAAAqKsov2I4QQohn2bbtvegZMx7IveyyKzI+/vh/wS+9tLh7QEBgyrBhw43ffXfQd8WKpQkzZz6cM2LEyJrs7EzNG2+83i03N1u7enVSuslkYufPn9tz4MBB1Rs2vJuiUCjlfft2B2/duil6+PDLq/v3H1A3qRZ27NgSsn375ujFi5eljRlzbXXjY/owBQB+/fWnhtOSki7LpSCI4zg9HAVI4wH4ASgFkAXgJ57n66eZJoSQCypKSYEOQLkoQq25cFb6wMAgAEB5+XkTx4QQQjzY6NHXlN5zz30lADB//qK8Y8f+8dm9e1fosGHDM3bu3Boxduz40mnTppcCQHx8glWpVGYtXDivZ3Z2plqv95ImTZpSfNddM4q9vb0lAHjssSfz9+/fG56amqKrGwTt2rUzeMuWjdFLlixPGzVqTKMBELm4tSgI4jjuEgDPALgJQEPrJo0cx30KYGUDCQ4IIaRBlZkZ0AEwqlRNth2gUGLqwMGwHD0K3HlP2w+OEEKIWwwZMqym7te9e/cxHD16xA8AMjIy9KdPp3l9881XwbXHazP1paWlaseMubZ62rTpxQcO7As8dYrXFxTka7KyMvUAIIrSmSVzFRUVqrfeSopVKpVSVFQM3ZgnjWpWEMRxnC+ANwDcCeBbAI/CkTwgE446OgEAouGYHRoP4AjHcf8F8BjP85VuHzUhpEvJslnxXW424gde0mRbnV4Pf5UaxWZzk20JIYR4DqVSeU4CckmSGJZVyAAgyxIzefKthZMmTTlvmj8sLNxeVFSonDXr3t6+vn7C8OGXV1566YjqAQMGGm+/ffKAum0ZhsWyZStSN29+J3LFiqVxmzZt5ztD3SfS/po7E/Q3HBnWYnieL2rgeKnz428Ab3AcFwtgPoCjcCyZI4SQRiWXleKLwnzMvX1ak21VPo5l2wq7va2HRQghxI1Onjzude2146tqv05OPumdmJhoAoDo6G7m3NxsbUJC4pnZm19//cnno492hT7zzOKsTz/9OMhgMCh37z5wXKVSyc7+dI6WZ2Mrf38/+6hRV1eHhITYZ89+oPe2be+F3nffg8Xt9C2STqS5QdB4nudPNbdTnuezADzOcdwG14ZFCLmY5OY66hXHxMQ02Vbr70iMoHLWCyKEkIuVXqts9ymO1jzngQP7w2Jj4y39+g0w7t37UUh2dqZu0aIXMgHgjjvuKly16qWEDRvWRYwfP6G8oCBfvWbNyrjQ0HBrWFi4EBYWbrNarexnn30SMHToMMPp02naN99MigEAm8123pj69Olnnjz5lqIdO7ZGjR59TVV8fAItjSPnaFYQ1JIAqN55vCvnEUIuHrIsw7+8DFFaHaIjo5tsr/P3BwCopE5Q1p0QQtqALMuSXqsULusXoUQHlDvRa5WCLMstrk80btwNJXv3fhS2bt1qXWxsrGnlytWpffv2MwPAhAmTKmRZTt+1a0fEnj0fRnh5eQvDhg2veuKJBbm1x1NSkgvffffNmKQkMxscHGIbN+6G0t9++8U/JSVZ39DzzZ49J/+XX34KWL58SdzGjdt4hmEaakYuUowsN/1GguO46S3plOf57S6PqOtIBxBfUWGE0L7FnEk9SiWLgAAv0LXoeA1di6qCAhS98AwAIPK1tfAOCLxgH0d++A4+O7ZBkmVwm7aCXtRcQ78XnoOuhWcJDPSCQsFmAEjo6LEcOXKkF8sqvgwNjTKo1dpzKkQzDBQMw3TIZhdZliVZhtiSc0aOHDpk7tz5mVOn3kGpPUmbsdks2uLiPG9JEscPGTIk5UJtm7scbmu9r2sjJ6aBxwCAgiBCSLPkJx+HAkCFIKBnEwEQAPgEORIHsQwD2WoBo9W18QgJIcTzyDJEWZZbFIgQQs5q7h2E+DofUwCY4EiVnQBAB0dmuEfhSI5wo/uHSQjpqspPnwYA1LDNm9HxCQpCutGIZEMNJDvtCyKEEEJIyzV3T1BW7eccx+0F8BLP86/WaZIP4G2O4zQAXgXwuVtHSdqVKIp47723YRfsmPXQY1AqXaqpS0izmPLzAABWfYNLus/j7++PRcnHAADXKRWuVXwmhBDSrn7++fCRjh4DIXW58v6hDxyprxuSAkqJ3ekde34R7CeOY3dBLoICQ3DHHXd19JBIFyaWOZaHs81YCgcAWq0OSqUKgmBHVVUVdLrmBU+EEEIIIbVc2VB3CkBj74pnATjm+nBIR5OsVmhLSnBtaBhUDIs/v/m6o4dEujiVyQgA0EVGNtpGqWKgVDmWyzEMAz8/PwBAdXV12w+QEEIIIV2OKzNBywDs5jiuJ4ADcOwDCgNwCxyzRNe7b3ikvVlyss9Exqv7DkCN1QZJkkDVlklb8RFFQKFEQFxig8eVShZltjIwYBCoCoQgSHgwMhoJ0d1gPPoX0JNr5xETQgghpLNr8Ttbnuf/B2AyABWAlwG8A2AJgBoA1/A8/60bx0faWVmqoyRUlskInUKBYJUaOZkZHTwq0lXZbDZszcrArrxsRPTr12AbmZWQU5WPvOoCgHUkofRWqeCvUsNWVdmOoyWEEEJIV+HSnmKe5w8AOMBxnBZAAIBynuepEm8XUH46DToA2ZKMMEmGlmWQ/e8/iE1o+C49Ia2Rn5+LX8vLoNPpsTg65rzjDANYJAsqzdVQskrYJBtYqCCpVIAowUrL4QghhBDiApcTK3Ec1xvAtQAiAGzgOC4ewD88z9e4a3Ck/dlLiqADYFDrUMmyCIeMKpoJIm0kJycHABAdHd1g0VOWZWG2W2CwmqBWqGARrfBm1YBGA5jMEIyG9h4yIYR4hM5WLJUQT9PiIIjjOBaOJXD3w1EsVQawG8BiAIkcx43ieT7XraMk7UZy3lm36nxgUciAzQxjcVEHj4p0VWXJJzDIzx9RkdENHlcoGFQZayBKIiySCItoga/aF4xGC5jMEE2mdh4xIYR0PIaBQsfaI2SbqUOqBDBqvWCWVAUUCJHOzJVfnhfgyA43E8BnAAqdjz8NYD+A5QBmuGNwpP3ZbDYIkgQEBECQbIDNDHtlRUcPi3RRGp7HMz164bRW1+BxCRKqzFUAHHdbaiwGhGvDoNDrgYoKyFZLO46WEEI8A8MwrGwzKQ38H5JkNUvt+dysRsd6c8OVjMqflWXZo4KgpKS1kd9++3XQ/v1fNjtT8e7du4L27v0orLi4WBMQEGC/7rrxpTNnzi5UKBRtOVTiAVwJgu4HsJjn+S0cx535CeF5/m+O4xYDWOW20ZF294Es4re//sSkaZdDqCkGqkrA0t120kYUNY6ZR014eIPHBdkOs/3sdsMamxEyZCi9vR0PWG1tPkZCCPFUktUsiRZjuwZBTl0iZey+fXsCN2xYF/vww49lX3bZFTXHj/+rT0paE2u3C8xjjz1R0NHjI23LlSAoDMDfjRzLhSNRAumkCgsLIAPwCwyFWaXArycOIZs9f68GIe6gt9kBpRL+cefXWGYYwCrZYbafne2xCjYIsgBVQAAyTUZU1AZDhBBCSAsdOLA/ZNSoMWV33nlPKQDExydYs7MztV999UUwBUFdnyuRfBqAGxo5Ntp5nHRCsiyjoMCxutE3IBjGuD5Yl56Kz3KyIMtyB4+OdDV2mw0BzvpT4b36nHecZRnYRBsswtmZIJtghygLQGIPPH3yGD6z0CwlIYR0BiNHDh2yY8eWkBkz7uw1evSIwXfcMaXP119/4Ve3zcGDX/ndfffU3ldfPWLwzTdP6Ldu3epIq9V65k5scvIJ7eOPz+p+3XVXXTJq1PDBU6bc0H/TprfDGnvOLVs2ho4ePWLwwYNf+TV0/OGHH8udPv3+wrqPMQwrm0zGDtlrRdqXKxd5HYB3OI5Tw1EsVQbQg+O4qwHMBzDPfcMj7an85Ak8ExuPDKMBvv7BjisLwGq1wmg0wpvuuhM3KjjFQ8WyEGQZYT16nnecYRhYBBvsonDmMZtoh10W4e3tBQAwGIztNl5CCCGts23be9EzZjyQe9llV2R8/PH/gl96aXH3gIDAlGHDhhu/++6g74oVSxNmznw4Z8SIkTXZ2ZmaN954vVtubrZ29eqkdJPJxM6fP7fnwIGDqjdseDdFoVDK+/btDt66dVP08OGXV/fvP8Bc97l27NgSsn375ujFi5eljRlzbYP1FC699LJzXkSqqqoUX3zxaejAgYOq2vLfgXiGFgdBPM9v4jguBMDzAGbDkSFuFwAbgFd5nn/bvUMk7aUqOxO9vH3AMCxEtRYAoNXqoBEElJYWUxBE3KqIPwk/AJWSBIXy/D9FLMvAYDs3BbZNsEGQ7PDx8QEAGClFNiGEdBqjR19Tes8995UAwPz5i/KOHfvHZ/fuXaHDhg3P2Llza8TYseNLp02bfmZpmlKpzFq4cF7P7OxMtV7vJU2aNKX4rrtmFHt7e0sA8NhjT+bv3783PDU1RVc3CNq1a2fwli0bo5csWZ42atSYZhWUMxgM7Pz5j3e32Wzs3LlPUZbji4CrxVJXchz3HwAjAAQBqATwO8/z5W4cG2lnxqJiaAAYAOgAQJKwue8AKBkGFXl5iItL6NgBki6lMjMTfgBManWDx2XIMNjOXe5mFwUIkgAvMFjXbyDUlL2HEEI6jSFDhp1TS7J37z6Go0eP+AFARkaG/vTpNK9vvvkquPZ47Ur8tLRU7Zgx11ZPmza9+MCBfYGnTvH6goJ8TVZWph4ARFE6s2SuoqJC9dZbSbFKpVKKioqxohmKigqV8+fP6VFcXKR55ZXXT3XrFkdZdy4CrtQJ2gzgJZ7nMwB8Ve8YB2A1z/M3uml8pB3ZKsuhAWBWKB1BEMvCKgNKBqguKmzibEJahrdasT89FZeNGtPgcUEWYBPOfR2SIcMi2ODt749IZ1ptwWqFUqNp8/ESQghpHaVSec4GY0mSGJZVyAAgyxIzefKthZMmTSmrf15YWLi9qKhQOWvWvb19ff2E4cMvr7z00hHVAwYMNN5+++QBddsyDItly1akbt78TuSKFUvjNm3azrNs41vgU1N57fz5c3vIssSsX/9WSq9efaj2wkWiWUEQx3Hd6nw5A8B+juMayg1/A4Cx7hgYaX/2GscNGrvy7J15C8vAC4ChpKSDRkW6qlOF+filvAyj+/Rt8LgoC7AK9vMeN9stCAmJRJEsg2UYGMvL4BcR2dbDJYQQ0konTx73uvba8Wf22yQnn/ROTEw0AUB0dDdzbm62NiEh8czsza+//uTz0Ue7Qp95ZnHWp59+HGQwGJS7dx84rlKpZGd/ziJzZ2Mrf38/+6hRV1eHhITYZ89+oPe2be+F3nffg8UNjScrK1P9xBOP9vTy8hLXrt1wKjo65vwXHdJlNXcm6E0A19f5el8j7RgA/9eqEZEOIxkd+wMF1dm76naFEhAFmMrPuzFDSKtkZ2cBALp1iz3vGMMAdlmETTx/RYJZsEDjp4VVkqBTKGCsKKcgiBByUWI1unav19Oa5zxwYH9YbGy8pV+/Aca9ez8Kyc7O1C1a9EImANxxx12Fq1a9lLBhw7qI8eMnlBcU5KvXrFkZFxoabg0LCxfCwsJtVquV/eyzTwKGDh1mOH06Tfvmm0kxAGCz2c4bU58+/cyTJ99StGPH1qjRo6+pio9POG9p3MsvL44XBDu7ePHLqSqVSi4qKjzzvjgsLFyo3550Lc0NgmbBMcPDANgM4GUAp+u1EeHYG/SduwZH2pdsduwpFDX6M4/ZlWpAFCDUNGtfISHNIooiepot8Pf1R3QDAQzDMLCLdtgamAmyC3ZIkGCVJeiggKmysh1GTAghnkOWZYlR6wVvbrgSHVC4lFHrBVmSW1ykddy4G0r27v0obN261brY2FjTypWrU/v27WcGgAkTJlXIspy+a9eOiD17Pozw8vIWhg0bXvXEEwtya4+npCQXvvvumzFJSWY2ODjENm7cDaW//faLf0pKsr6h55s9e07+L7/8FLB8+ZK4jRu38Qxztu5hQUG+Kjn5pDcAPPzwfefVafj558NHWvr9kc6lWUEQz/N5ALYBAMdxMoBPAVTyPC86H9MBUPM8TykFOzG7IMAmSZB1Z7PA2VVqwGqCZKJ6LMR9CjLSMTPGMQMUGhxy3nGWZWAX7LCJ5wdBgiRAhITaOSJzFf3ZIYRcXGQZollSFTAq/3YPgABAlmRJltHQtogLiotLMC9Y8GyjmdcmTrypYuLEmyoaOsYwDObPX5Q3f/6ivLqPP/DArKLaz+fMmZc/Z868/NqvtVqtvGfPgeMN9RcREWmnQOfi5sovzwdwzAT9XuexKwAUcxy3muO4DvmFJK23T8ng7r/+RGlQxJnHBGeqbFhonyBxn/yTJwAA1ZIIlf78G3gMw8Bsb/hnzi4KkCFBcN7Rs1RTEEQIufjIMkRJku0d8eFKAESIp3ElRfZSAPcAWFznsb8ALAKwBEApgFUt6ZDjuOnO8xPgWGa3hOf53c5jcQA2ALgKgBHAJudxsc75jwJ4CkAEgMMA5vA8f7TO8Vb3cTGoqHDcfNF7ny2sXO0bjF9Sj6PEv8Fiy4S4pDw9Hd4ADEpVg8cZBjDazQ0eEyQBoiyikmVhNxmhsVEmU0IIIYS0jCuzNncBeIrn+bW1D/A8X87z/OsAngPwQEs64zjubgDvwRGk9IVjpulDjuNGcBynwtk03JfDUZz1EdQJwDiOmwHgNQAvABgCIAPA/3EcF+w83uo+LhYNBUElUd2xPiMNv1dVdtCoSFdkynesZhAbKcArQYKlkZkgQRQhyiK+9dJjwcljKKMivoQQ4vF+/vnwkalT76AsS8RjuDITFAwgvZFjKQCim9sRx3EMgJcArON5/k3nw8s5jrsKwGgAcQBiAVzG83wFgOMcx4UCeI3juBU8z1sBPAvgDZ7n33f2eb9zfA8CWAngVjf00eWJJiNm+fijKlELk/7sm0q1xgsAUF1NiRGI+8jljoBbGRLa4HFBFmFvYD8QAAiSCFGS4O0MfgwGQ9sMkhBCCCFdliszQSkAbmnk2CQAqS3oqyccgc4HdR/keX4cz/MrAVwJ4C9n8FLrWwC+AC5xBjM9AXxT51wBwI9wLH2Dm/ro8uzV1eip16O/rx+0ep8zj2v13mABiM702YS4g9aZidA7JqbB4xLEBpMiAGeXw3l7O35OjUYKggghhBDSMq7MBK0DsM25VGwfgGIAIQBuBHAbgHtb0Bfn/L8Xx3FfARgEx1K0l3mePwDHrFJOvXNqs37EAKh9l9RQm0ucn7ujD5cpFJ0jT4Sl0hEjGgQBei9vsKxj03mw1YAPh16GYqsVomiHRqO5UDceqfYadJZr0ZUpFCxEUYS/s7BdeK9eUCrPvy4WiBAk8czPYV2S879+ZgtG9B2I6uysBvsgF0a/F56DroVnYc7/s0MI6YJaHATxPL+D4zhfOPbP3FznUCmAx3ie39GC7nyd/98OR8KFhXDMMn3Mcdy1APRw1B6qq3ajgNZ5HADqF8CyOI/DTX24zNdX19ou2kWZpQYAYJRE+Ph6ozaXPhvkSF/srVSAYewICAjssDG2Vme5Fl1dZmYmVqedQoyPDzZfNQIqL6/z2hQZzGBVgJZVN9wJK8FXrUSkTgeL1YqAgPP7IM1Dvxeeg64FIYS0H1dmgsDz/H84jnsTjmVkQXAEGSk8z7e0cFbtLMxrPM9vc37+N8dxgwHMA2AGUH/qoTYwMTqPo5E2teu33NGHy6qrzRDFFtcTa3fFOY7JMbMMwHJ2GZLC+SOiVyiRnV0AtbrzbUJXKFj4+uo6zbXoyhQKFqdPn0aq0QAmKgoGGwDbub9mLMvAZLfAYDRBbKQWn8FiBqNx/BqLFgsqKmi5ZkvR74XnoGvhWfz8dGBZmpUjpKtzKQhy8odjOVskgD0AenAcd4rnebkFfdQWzDpW7/ETACYC+B5A/3rHasvL5+HsErZIAMn12tQW08pxQx8uE0UJguD5L2rmyipoAdgYBkrp7CWUlWfvxFcWF0OIS+yA0blHZ7kWXV1aWhoAIDY2vsHroVSysAo22MXGy1BY7FYo9Y7ZH8Zmp+vaCvR74TnoWngGuSXvYjoQw0DBMEzHFEuVXSuWSogncSkI4jjuOTgyqukAyAD+hKOAajDHcdfxPF/ZzK7+AlAD4DIAP9d5vD+ANDiSE8zgOM6X5/na9GRjnOf8zfO8jeM4Ho5Mct84x6aEI6FBbbY5d/TR5dkMNdACsLPsOT8UMquAIMtQMgwMZeUdNTzShVT9ewzXhYShX1h4g8cdhVLrr049l1W0nVlGx4qC28dICCGejGGgkJVihEk0t+Zmtst0Sp3ACIoCTwuEkpLWRn777ddB+/d/Wf/meqO2bXsv9JNP9oWWlZWpw8LCrLfeenvh1Kl3Uirvi0CLf3k4jnsMjv07KwAcAPCH89AbAHbCkfL68eb0xfO8meO4VwEs5jguD45g6g4A1wG4BsDvcARX/+U4biGAeDhSVq/heb62QuIaAOs5jksDcAiOoqs6OAqiAsB+N/TR5VktFtgkCQJb70eCYWCF4wfFXFnR0KmEtIhvXgFmxsajDA3vPmYYwNRIodRaoihC4+0IghS0fIgQcpFhGIY1iWbln7l/S2a7pV3/COpUWvbS6EuUXowPK8uyRwVBLbVr147gbdvei5oz56msQYOGGH799WffN954Pc7X108cN+6Gyo4eH2lbrkyjPg5gJc/zi+GYyQEA8Dz/BRzFUie1pDOe518GsATAcgAnAUwFcDPP89/zPG8BMB6AAo5g600A/4Ej0Ko9fyMchU9fBnAYjpTb1/I8X+o83uo+LgY5ERG4+68/8bXy/FwQNmeSBGtNTXsPi3RBGmd6bP/4+AaPS5BhEy48EyRIItQ+jhTZqs6ydoUQQtzMbLdIRpu5XT/aO+hqSwaDQTF9+v15kyffUh4bG2e78867S2Niupn//PN336bPJp2dK9OosQB+aORYCoCwlnbI8/xaAGsbOZYGx8zQhc5fDWD1BY63uo+uzmBwBDga3fmJDzIVapwszofO3nDdFkKaq6qqCsGsAgAQ3rtPg21EWYCtiSVuoiRCG+iPPKsV5XbbBdsSQgjpeCNHDh0ya9aj2QcPfh2UlZWpDw8Pt9x//0N51113fVVtm4MHv/LbunVTZF5eri4gINB21VVXl8+e/XiBRqORASA5+YT2zTeTonk+2dtqtbKBgUH2CRMmFc+c+XBRQ8+5ZcvG0G3bNkc///yS02PHjquqf/zBB2efOc9utzNffvmpf15envaee+7Lr9+WdD2uBEE5AEYAONjAsaE4v94O6QRqnLM8Gu35qYZ/9gnET3/8iAdxbXsPi3QxmamnEKh2JNvw7RbXYBsJEgTpwkGQIInQ90jAY8eOgmVZ3CzLZ9K6E0II8Uzbtr0XPWPGA7mXXXZFxscf/y/4pZcWdw8ICEwZNmy48bvvDvquWLE0YebMh3NGjBhZk52dqXnjjde75eZma1evTko3mUzs/Plzew4cOKh6w4Z3UxQKpbxv3+7grVs3RQ8ffnl1//4DzllHvWPHlpDt2zdHL168LG3MmGurGxsTAPz++6/eCxbM5WRZxtVXjy2lpXAXB1eWw70H4DmO4+YD6OF8zJvjuFvgSJaw1U1jI+0oITsbC7tziGugOKVa46hdYTRSGmLSOnknjgNwFOFSeDecbl2URdjFC886ipIIrc7xcylJEqzWCy+fI4QQ0vFGj76m9J577ivp0aOndf78RXkJCd2Nu3fvCgWAnTu3RowdO7502rTppfHxCdZRo8ZUP/nkgqzff/81IDs7U20yGdlJk6YUP/vsi9k9e/ayJCZ2tz722JP5AJCamnJOka1du3YGb9myMXrJkuVNBkAAkJjY3fLWW5tPPv74k1m//fZz4Jo1q6La5l+AeBJXZoJegSO5wCvODwD4zvn/9+FIOkA6mQCTGb39A1ClPP9HQq3RgQFgMRraf2CkS6lIP404ACZN/bJcDgzDQJDEC6bHBhxBkEZ7tg+TyQStttW1jQkhhLShIUOGnbO5uHfvPoajR4/4AUBGRob+9Ok0r2+++Sq49njtls+0tFTtmDHXVk+bNr34wIF9gadO8fqCgnxNVlamHgBEUTpzB7eiokL11ltJsUqlUoqKimnWHbKQkFAhJCRU6Nevv7miokL54YfvR86Z81S+Wq2mTaddmKvFUmdxHLcajlTTtcVSf+R5/rgbx0bakaL2TWcDy+FGVJXgvqGX4Ug5pcgmrWMtLHR8EhDQ4HGGaeZMkCxBlkSs7NMfGoaBqbICgYGB7h4uIYQQN1IqlecEFZIkMSyrkAFAliVm8uRbCydNmnJeeuqwsHB7UVGhctase3v7+voJw4dfXnnppSOqBwwYaLz99skD6rZlGBbLlq1I3bz5ncgVK5bGbdq0nW+s+O133x30jYyMsnFcb0vtY9279zQLgp0pLy9ThodH0GboLsyVIOgYx3GLeJ7/FECquwdEOoZKlgCGBaPTn3+wtmCqjTagk9b5siAPnxUX4embb2nwOMMwEEQB9ib2BImSCIkF4nR6KJxBECGEEM928uRxr2uvHX8mQUFy8knvxMREEwBER3cz5+ZmaxMSEs/M3vz6608+H320K/SZZxZnffrpx0EGg0G5e/eB4yqVSnb251wGdza28vf3s48adXV1SEiIffbsB3pv2/Ze6H33PVjc0Hg2b343KiIi0vLqq+syah87ceJfL29vbyE0NIwCoC7OlT1BMQBoc0gXUzvhyzQwEySqHcuMWMoOR1rBbrfjVHYWeIMB3YYNa7ANwzCwiXbITaS9FiXRkUrb2c5S3eSSb0IIIR3swIH9Yfv37w1MS0vVvPLK8ujs7EzdnXdOLwKAO+64q/CPP34L2LBhXURaWqrmp59+8Hn11eVxJpNJERYWLoSFhdusViv72WefBOTmZqt/+OFb36VLn08AAJvNdt772T59+pknT76laMeOrVEZGekNrsG+7bY7C3/77ZfA7ds3h6Snn9bs2rUzeP/+veHTpk3Pb2z2iHQdrswEvQ9gHsdxKTzPF7h7QKT9ybIMjTOzFqM7PwiSnUGQool9GoRcSFZWJgRBgJeXF8LDIyCK5wc6DANYBEsDZ59LlERIsggbHFWNLVTDihByEdKptO3+Tr01zzlu3A0le/d+FLZu3WpdbGysaeXK1al9+/YzA8CECZMqZFlO37VrR8SePR9GeHl5C8OGDa964okFubXHU1KSC999982YpCQzGxwcYhs37obS3377xT8lJbmBZSzA7Nlz8n/55aeA5cuXxG3cuI2vn0X0xhunVAiCkPHhh+9HbN68MSY4ONg2a9Zj2XfccddFUyfyYuZKENQTwFUAcjmOKwNQf7e8zPN8YqtHRtqNbLdD4fzDwOp9zj+ucfxtUUkUBBHXZSQfx/ToWChCQxptwzAMzPam97HKcKTJtjtfz2wGStpBCLl4yLIs6ZQ64dLoS5RwbVVPq+gUOkEW5BYXTY2LSzAvWPBsbmPHJ068qWLixJsaXN/MMAzmz1+UN3/+ory6jz/wwKwztX7mzJmXP2fOvDM1frRarbxnz4EL7lefMmVq+ZQpU2nT80XI1TpB77t7IKTjSFYLbJIENcuC1Z0fBME5O6TqMjWiSUcoSU7GxPAImJRKZ02f82eCJEiwCc1Ld20XBQgsC8iA3URBECHk4iHLEBlBUeDF+HTImi1ZkCVZBt0ZJZ2aK0HQTgC/8jxvbrIl6RQYvRfu/utPKBkGT94y97zjrDMIajipMSHNY8zOAgBIAf6NthFlEfZmzjjaJTskhQIQRAhGkzuGSAghnYYsQ5RlmQIRQlzkShC0F8CjoNmgLsNiccSzgixDrT6/1orsG4S/qipQZLHiKrsdKpWqvYdIuoLyMkDvDX1MdKNNJEgQxAtnhqtlFwVYVSqUGk2w2KhYKiGEeLKffz58pKPHQEhdrkyjVgKgWaAuxGx2XE6GYaFUqc87LodGY1Uqjy05mTCZKDEgaTmLxQJfuyO4Ce/Tp9F2kiw2mR67lk204WhUJB45dhS5Xucn9CCEEEIIaYwrM0ErACRxHMcB+AfnJ0YAz/M/tnZgpP0YeB5Pd++JHJsd9TOnAIBCoYRKpYbdboPRaISfn3/7D5J0apmZ6YjUOmYZQ3r3amA3UN1Cqc0LggRJhE7vSNphNtNyOEIIIYQ0nytB0NvO/y93/r/u+5na3c6K1gyKtC9LcRGG+gdCb2r8jaRWp4dgt8FopA3opOVO8ylIVDt2lemjo2FsIApiGAaCJDZ7OZwoSdDpHHXyTBf42SWEEEIIqc+VIOhqt4+CdCi7wQANABuA8xfDAZBlbOjeEzqWhamkBOjBte8ASadXmHwSPRgGNpaFys8XqDw/aGEYBqIkQmjmcjhJFhFbWYnlvfqhspRKOhBCCCGk+VocBPE8/0NbDIR0HMHoDIIYtuEgiGHOTPdZKivbbVyk6/g7Lwfb/z6Cp2c/1uCSS8CxHM4uCRCamR1OlCToJAnh3t44YaHECIQQQghpPldmgsBxXE8AywCMBuAPoBTATwCW8Tyf7K7BkfYhOBMj2NnG82TYAOgBWGuq22dQpEtJS0tFlWBH1JChjbZhGAZWwdbsPkVJhNK5HI5p5hI6QgghhBDAhSCI47g+AH4FIAA4AKAQQASAiQAmcBw3nAKhzkVyBkEC2/iPg915995qoD1BpGUMBgMKChwFvLt3795oO4YBLIKl2f1KsnQ2CBKoVAYh5OLCMFAwDNMxxVJlKpZKOj9XZoJWAcgAMJrn+araBzmO8wPwLRwJE252z/BIe5CsjjeegqLxfBYCwwKQYacU2aSFTp1KwWPxibCoVPBWXvhPjkVo/rI2UZKg9nJknFM0cwkdIYR0BQwDhUayR4gmk0srelpLodcLVlZV4GmBUFLS2shvv/06aP/+L4+19FxZlvHIIzN7CIKd3bhxO98W4yOexZVfnlEAHqgbAAEAz/NVHMetBPCOW0ZG2o1scyxBkhSNF0EVWAUgCbAbKQgiLZN67B9cFRQCAGAUjf/JaUmhVAAQZQkqvaM+ECtJrRskIYR0IgzDsKLJpCz74w9JMJnb9Q+gUq9jg4YPVzI+/qwsyx4VBLXGli0bQ48d+8e3d+8+tOTlIuFKEGQH0NiaFSsAjevDIR3hWGw3bPzyUwy54npENdJGUDiCIMFCdXJJy5ScPAEAMKvVUDiXrzWkJTWCAMeeIJWXo06QqqHCQ4QQ0sUJJrMkGI0dcReoQ5bhtZWTJ4/rPvxwZ2T37j3oTu9FxJUf4kMAHuE47pwUT86vHwVw2B0DI+3HZDZDkGUoNI2/QS1X6/F3VSWqae8FaSFbbq7jk5DQC7aTIDU7PTbg2BOk9vGGQRBgEuytGSIhhJA2NnLk0CE7dmwJmTHjzl6jR48YfMcdU/p8/fUXfnXbHDz4ld/dd0/tffXVIwbffPOEfuvWrY60Wq1n3m8mJ5/QPv74rO7XXXfVJaNGDR88ZcoN/TdtejussefcsmVj6OjRIwYfPPiVX2NtLBYLs2zZC/F33TUjPyoquvkbU0mn58pM0AsAfgHwL8dxH8GRGCEcwG0AOABj3Tc80h7MzsQIarW20TbHgiPx+Q9fYFLvXu01LNIF2Gw26E1GQKeH7wWSIgCOoKZlM0ESdL2745a/HfddbrDboVI1vqSTEEJIx9q27b3oGTMeyL3ssisyPv74f8EvvbS4e0BAYMqwYcON33130HfFiqUJM2c+nDNixMia7OxMzRtvvN4tNzdbu3p1UrrJZGLnz5/bc+DAQdUbNrybolAo5X37dgdv3bopevjwy6v79x9wzlKVHTu2hGzfvjl68eJlaWPGXNtoats1a1ZFBwQE2qdPv7/4+eefjmvzfwTiMVypE3SY47jxcCRIWAKAASDDMQM0nuf5H906QtLm+hYV4fH4RBSxDddvAQCVM0CyWOgmCWm+9PQ0xDhnGIO43o22YxhAkJtfKBVwFEtV684G7mazmYIgQgjxYKNHX1N6zz33lQDA/PmL8o4d+8dn9+5docOGDc/YuXNrxNix40unTZteCgDx8QlWpVKZtXDhvJ7Z2Zlqvd5LmjRpSvFdd80o9vb2lgDgsceezN+/f294amqKrm4QtGvXzuAtWzZGL1myPG3UqDGNBkDffXfQ96efvg/csuWDk43VsCNdl0tZRXie/47juMvh2P/jD6ASgKp+sgTSOUSZzegdFILPlY1nh1OqHFu9ameNCGmOlJMn0F3v2Lej7dat0XYMw0CURAhi85dbSrIMhVIBpVIFQbDDbDbB19e31WMmhBDSNoYMGVZT9+vevfsYjh494gcAGRkZ+tOn07y++ear4NrjsnO/Z1paqnbMmGurp02bXnzgwL7AU6d4fUFBviYrK1MPAKIonYlgKioqVG+9lRSrVCqlqKiYRlOOlpaWKFevXhX32GNPZkdERNKa6ouQK3WCVACSAAzleX4YABPHcWMBfMZx3BsAnuZ5nlI1dSIKyfFXhrnAniCusgTbBg1DqplmgkjzZZ84hlhJAqNUQhXa6LJtZxAktGgmCADsJiOe78FBIcsw1NQgLCy8tUMmhBDSRpRK5TlpbCRJYlhWIQOALEvM5Mm3Fk6aNKWs/nlhYeH2oqJC5axZ9/b29fUThg+/vPLSS0dUDxgw0Hj77ZMH1G3LMCyWLVuRunnzO5ErViyN27RpO882UAz++++/9auqqlS9/vqrca+//mocAAiCwEiSxFxzzRWDtm3bdSI6ulvzK3iTTseVmaClAO4B8GKdx/4CsAiO5XGlcCyVI52EUpYBhgGj0TfaRqFQQKdQQNGCPRvE82VkpOPUKR6DBg1G6AWCFFcdTuWx5d9/sPL5ZejbwItQLYYB7JIIoYX1fgTI6OPlDQCw1jS64oEQQogHOHnyuNe1144/s2ooOfmkd2JiogkAoqO7mXNzs7UJCYlnZm9+/fUnn48+2hX6zDOLsz799OMgg8Gg3L37wHGVypET9OTJ4867t2djK39/P/uoUVdXh4SE2GfPfqD3tm3vhd5334PF9ccybtwNFYMHDz0nHfaGDa9Hl5WVql58cXlGeHgkBUBdnCtB0F0AnuJ5/kw9IJ7nywG8znGcHcBcUBDUaciyjNpdFKy28SBIUtUWpaRJvq5ix46tWLfuNYiiCK1Wi5Ur1+Dqq69xW/82mw0pKcmQAfS5dPgF2zIMA5vQ8tcbgXUsi2MZBlYDlXYghFxclHpdu6eqbs1zHjiwPyw2Nt7Sr98A4969H4VkZ2fqFi16IRMA7rjjrsJVq15K2LBhXcT48RPKCwry1WvWrIwLDQ23hoWFC2Fh4Tar1cp+9tknAUOHDjOcPp2mffPNpBgAsNls542pT59+5smTbynasWNr1OjR11TFxyecszTOx8dH8vHxOecxnU4nqtVqZd1AjHRdrgRBwQDSGzmWAiDa9eGQ9iYLdrDOzYCs1qvxhs6lckoKgrqEI0cOYd3aV3BVYDCi/APwQ34OFix4Atu370KfPv3c8hw8nwKbzQZ/f3/ExDS+HwhwzARZhJa/5giyCDscmxMtFAQRQi4SsixLCr1eCBo+XIkOqNmj0OsFQZZb/IZg3LgbSvbu/Shs3brVutjYWNPKlatT+/btZwaACRMmVciynL5r146IPXs+jPDy8haGDRte9cQTC3Jrj6ekJBe+++6bMUlJZjY4OMQ2btwNpb/99ot/Skpyg3dxZ8+ek//LLz8FLF++JG7jxm08JT8gdbkSBKUAuAXA/zVwbBKA1FaNiLQr2Xr27rtC591ou9r9QlSUsvOTZRnrV6/Ecz16oZ+vo3TCjQGB2JGThRdeeAb//e8+KJUu5Uw5x4l/j+L1vgNh9PKCbLWC0Taegh0ArC4EQXZRgABHEGQ3UhBECLk4yDJEK6sqYHz8O6RoqSDLkiyjxYUD4+ISzAsWPJvb2PGJE2+qmDjxpoqGjjEMg/nzF+XNn78or+7jDzwwq6j28zlz5uXPmTMvv/ZrrVYr79lz4Hhzx7d8+WuZzW1LOj9X3umsA7CN47hgAPsAFAMIAXAjHLWC7nXX4Ejbk2yON552SYLqAsvhGOcxFd1E6fT+/vsv9K2uQb+IKDAaDXQJiTAln8T0mFi8kZ6GTz7Zh5tvntrq5yk4+hcG63SwsSwYjeaCbSVIsIktT84jSAIE5509m4kKfRNCLh6yDFGWZapgToiLXKkTtIPjOF84iqbeXOdQKYDHeJ7f0dI+OY6LAtDQnYH7eJ7fynHcJQDWAxgKoATAWp7nk+qcz8KRqGEmHCm7fwDwKM/zGXXatLqPrkjhH4C7//oTaobFw7c0fqe+dr+QmmEgSRIayrRCOof9+/fiu6ICDEzsgZEzZ8F7wECU/m8Pyj//FA/GxuPVre/hpptuhkLReMr05pBzcgAfX8hRUWhqCYIkSy1OinDmPJYFJAmCyeTqUAkhhBBykXHpnSzP8/8BEAGgN4CRAPoBCOd5/i0XxzEAgAVApLPf2o//chwXBMfSuzQ4ApilAF7hOO6+Oue/AOARAA8BuByAAsBXHMepAcAdfXRVVqsVNkmCQRSg0lxguZK3H1IMNUgzGGC1UprszkoQBPzww7eoFgQE3TMd3gMGAgCCJt8MdUIiTllMyC/Ixw8/fNuq5ykvL0eEs+ZP8CWDm2wvQoLgQuZBSZYgKFiYBAE2K+1jJYQQT/Xzz4ePTJ16x3nprwnpKC4v/Od5XgbAu2kc/QGc4nm+oP4BjuOeAGADMIvneQFAMsdxPeBIyb3FGaQ8BWAhz/OfOc+5HUA+HHuXdsER2LS2jy7JbD5791ylanzJkhwQhsUpJwAAE80W6HSNL50jnuuff46isrISvr5+GDRo6JnHGZZFzJPz8cm7b6I8+QR27tyGMWOudfl5jh/7B5y3DwAgoF//JtvLkFpcIwgAREnC91ER2LtnNx694ooWn08IIYSQi1Prdz+7xwAAyY0cuxLAD87gpda3AJ7hOC4MQCwAHwDf1B7keb6S47i/AFwFRwDjjj5colB49rIxc2Y6Ho1LRKFgh1LZ+PInllVApVbDbrPBbrdAqfTs76uu2mvg6deiPSR//w0ejUuEmJgIX70CECyQ1N4QBAlKHy/cfc90bNu+GX/9dRhZWelITOzu0vOk/f4rRiqVsDMMvBLiwdS7BvWvhQUiRFkEy7Zs05kMCVqdYwbTYjF3qp/Ljka/F56DroVnoQRihFwcPCUI6g+glOO4HwFwcGSYe5nn+S/hSLl9rF772swfMTibkjungTYxzs/d0YdLfH11rTm9zWVXlWNUcAhOmU3Q6C688k+r1cFus0GlAgICLpBO20N5+rVoD2JKCkYFh8Do7QWUpEGoKYM2moN3cAwYhkFAQAJuvPpqhJw6jUMf7sTQ1a+59Dwm/iTAqiCFhSIw2Pe84/WvRbHBDIWahZZt2epTpVoBH5/an0WxU/5cdjT6vfAcdC0IIaT9dHgQxHGcEkAvACcBzANQDeBOAJ9zHHctAD2A+ov9azelaJ3H0UibQOfn7ujDJdXVZoii59bWqSwphxKAAAaS+cLFKl+J7w49w6AoNROhoZ2nHJRCwcLXV+fx16Kt2Ww2hBiNgN4Lgf17ozorFbJgg90mQcfqYVfoIMvApOg4eFcakHs8GUWF5VA3kdmtPoPBgNM5OcgICUOfwUNQUXE2a1tD14JlGZgEK4xGM+wtXBJnYayIKSnHsz16wZybf85zkQuj3wvPQdfCs/j56Sj5DyEXgQ4PgnieF5yJC0Se583Oh49wHNcXwHwAZjjKgNRVu4Pf6DwOZxtzvTa174jc0YdLRFGCIHjui5rVaIQSgJ1hoJIuXARIp1BAz7Koqar26O+pMZ5+Ldrasb/+QpzWcac5qlc3iBZHKQZLRTFUFflAcCIEQUKfe2eCn/c4ojUa/LlzJy6bcd+Fuj3P4cOH8V1JMVI1GhyYMrXBf/O610KhYCGIAmyCHS0tQyWIInzsdvTw88ffJstFfX1ddbH/XngSuhaeQaZ6eIRcFFwKgjiO0wC4H8C1cGRxuw/AaAB/8Tz/Z0v743m+oSqHxwGMh2OJWmS9Y7Vf5wFQ1XnsdL02/zo/d0cfXVJtWmGBYc/8IzTGJgNeAKwGKkrZGeUc+gM9WRYGADJTpyaPLMNakgd9QCTs0EDr74+c0DD0LC2F/MuPkO+ZAaYFd0UPHfoDADB06KVNpsYGHAXwbKLQ4gAIcCRGYNTOJXRCy+sMEUJIZ8UwUDAM0yFTVrKLxVIJ8SQt/uVxFkk9BCAJQHcAl8KxnGwigO85jhvRwv76chxXzXHc6HqHhgE4AeBHAFdyHFd31/4YADzP88UA/oFjCd2Z8zmO8wcw2Hku3NRHlyQ6010LbNM1YezO97N2Iy056oxMqamO//t6QTKfew3t1eWQjJVnEgv0unsGjIKAIElG/vctS5ed+fuv0LAshg27rFntGQawCK6lt5ZkCazWMcnLCC3PLkcIIZ0Rw0DBMmyE3SJGdcQHy7ARDIPWFZMjpIO5MhO0GoAvHDWCMuFIPQ0AtwL4CsAyOGaImisZQAqA/3Ac9zAchUwfAnAZHDV9igE8DeA9juNehSPoehLAwwDA87yV47gNcNT9KXGO6TU4Zn/2Op9jsxv66JJEs2P1n9icIAiOKEgwU1HKzkhdXgYoVdBEBAP15l1kSYS9PB8q3zAIALr364+NkDEKQMn+/yFy9JhmzQYV5OdhmkaHmZcMQXhsbLPGxTBMq4IgxhkEsQLdlCSEXBwYhmFtFkGZfLxAslradw2lRqtke/eLUKq0ClaWZY/6w5uUtDby22+/Dtq//8v6ybAa9fDD9/c4fvzfczL49O7dx7Bx43Z3lYEhHsqVIOhGAHN5nk+rO7PC87yF47jVALa1pDOe5yWO424EsBLARwD8AfwF4Fqe548DAMdx4+CYefoLQAGABTzP132exc7vZRMAHRyzN+N4nrc7n6O4tX10VZKzwKSkaPpHQWBZAPKZJXSk87DbbZDNZsBHhdD4qIbbVFdAYzOCYb0gy0Dw+Btg+PILeJtMqPnzD/he1vQk798H9iNRrYZZlhHcq0+zxiZDgs3FIEiUJCi0ju19CsmjXosJIaTNWS2CZDHbO2IjWZfJHJGdnamfPfvx7LFjx1XUPqZWq2ln2EXAlSBIC6C8kWMCgJbluAXA83wRHHuMGjt+CECj78B4nhcBLHR+tFkfXREfGYnnPv8E/YaPxXVNtBVYFpBECBZzEy2Jp8nJycFS/iSCfLzx+SO3AA1kYRNM1ZDM1VD4+kIQRFw78Sas3rENesgYBxkDm/E8lqN/AQAqQ8PAKJv350WCCMHFAEaSJSj0tUEQvWYRQghpvpKSYmV1dbVywIBLDGFh4bSm+iLjSiR/CMAjjRy7C8Bh14dD2pvJZkW1IEBWN12fokKhxilDDcwyZS/qbDIz0wEAkdFRDQZAAABZhr2iCArGcX29vb0hDh6MD/JysP+rz5t8jqqSYiRYHatjI8Zc0+yxibIEQXTttUeSJSh0OkiyDJlmggghxGONHDl0yI4dW0JmzLiz1+jRIwbfcceUPl9//YVf3TYHD37ld/fdU3tfffWIwTffPKHfunWrI61W65kMO8nJJ7SPPz6r+3XXXXXJqFHDB0+ZckP/TZveDmvsObds2Rg6evSIwQcPfuXX0PHk5JM6hmGQmNjDteUIpFNzJQh6AcC1HMf9DeAlODYX3Mlx3AEAtwFY6r7hkbZmMjk2yKs1TQdBf/gE4fmUE8jRaptsSzxLRoYjCIqNbPS1AgAgGKvACGeXO06ZcisA4KuvPkdNdTUke+O1pP7ZuQ06hQLFooDu1zR/W6AMCXaXZ4JksP043HHkD7yaleFSH4QQQtrHtm3vRY8de13Zxo3bTgwdOrzqpZcWdz906A8vAPjuu4O+K1YsTbjhhhtLNm9+/8TcuU9l//zzD4HPPbcgHgBMJhM7f/7cnj4+vsKGDe+mbN78/okrrriyfOvWTdHHjv173puYHTu2hGzfvjl68eJlaWPHjqtqaDxpaad0Op1OXLFiSbcbb7xuwNSpk/rWD7xI19XiIIjn+Z/gSHxghCPZAANHkdNwABN4nv/OrSMkbSq+uAT3d4tDGNv0UiKV2hH8mM20HK6z8Tn2Lxb37I0hXt4XbCcYqwGrEQqF40/DoEFDkJCQiCBJxqklz6Pkw10NnidZrfA6cQIAUJnYvUWFBkVZgtDCIql1qZyJESwWSxMtCSGEdKTRo68pveee+0p69OhpnT9/UV5CQnfj7t27QgFg586tEWPHji+dNm16aXx8gnXUqDHVTz65IOv3338NyM7OVJtMRnbSpCnFzz77YnbPnr0siYndrY899mQ+AKSmppwTBO3atTN4y5aN0UuWLE8bM+ba6sbGk5GRrrPb7Wzv3n2Nr776+qlp0+4p+PrrL0KWLHmueZl9SKfmUp0gnud/BHAFx3E6AAEAqhup9UM8XJTRhEGh4TjYjHouKrXjzSYFQZ2Pd3U1uvv6oczrwjN+sihAqC6DwjsMoujI3HbXXTPwv3Wr4VNdjaofvoO+Tx/4DBl2znm5R/+CWhJRbBdwyT33NntcDMNAlEQIoutL2VRqR4UrQbDDbrdDpWqq4hUhhJCOMGTIsJq6X/fu3cdw9OgRPwDIyMjQnz6d5vXNN18F1x6vLVyblpaqHTPm2upp06YXHziwL/DUKV5fUJCvycrK1AOAKEpn3sRUVFSo3norKVapVEpRUTEXXOb24osvZ9XU1OQGBASIjvH0tSiVSvmVV5YnFBcX5YaGhtE+oS7MpSAIADiOC4CjdiYLIJDjuMDaYzzPZ7thbKQdKCTH/g+mGXuCepuqceOAQSgsbywvBvFEsizDVxABtQIBEcFNthdqKqCVbICzBMSECZOwYcPr+LggHzdFRKJw8yYofHyh78mdOWfPrz/i/04cw8iBl2BkbFyzx8YwgCCLrZoJUlgtmJfQAzIcs0EUBBFCiGdSKpXnLDuRJIlhWYUMALIsMZMn31o4adKUsvrnhYWF24uKCpWzZt3b29fXTxg+/PLKSy8dUT1gwEDj7bdPHlC3LcOwWLZsRermze9ErlixNG7Tpu18Y6sTlEolagOgWj16cGYAKCjIV1MQ1LW5Uiy1O8dxvwAoBZAFIKOBD9JJKGuDIE3T+3xUCgWC1Rqo7fQ3oTMpLSpEsDMwCI8OabK9YK4BYzODcc4OarVaTJ9+Pz7Mz0GKxQzZakXumldRtHM7av78A+Xl5di79yMUWC248u57WzS2szNBrfiZkmVcFhiEof4BMFMNK0II8VgnTx73qvt1cvJJ78TERBMAREd3M+fmZmsTEhKttR+FhfnqpKQ10QZDDfvppx8HGQwG5Xvv7Ux59NG5BddfP6GyqqrSeTP/bGzl7+9nHzXq6uqFC5/POn061WvbtvdCGxvPgw9O555/fmFc3ceOHfvXS6lUyvHxibTGuotzZSboDQA9ASwBkAuAUoV1YgrIABhAo2+yraRyFqVsxdIl0v6y//0HPgwDiyRB69P0dRbNRkhWAxQ+vhAExwvLnXfeg48+2oWXTx7DmjHXIayyElXff4uqn37AV2GhMBqN6NOnL0aOvKpFY2MYQJAEiK3IOCiqHfdyVCwLszPRByGEXAw0WmW71+tpzXMeOLA/LDY23tKv3wDj3r0fhWRnZ+oWLXohEwDuuOOuwlWrXkrYsGFdxPjxE8oLCvLVa9asjAsNDbeGhYULYWHhNqvVyn722ScBQ4cOM5w+naZ9882kGACw2WznjalPn37myZNvKdqxY2vU6NHXVMXHJ5y3NO7KK0eXb9r0drf3399mvOKKq6qOHfvba/Pmd6JvuunmIl9fX3p/28W5EgSNAvAAz/MN75AmnUptUSdW1/SbY6gcs0W1s0ekc6hIPw0fANUMzszuXJAsO/YF+Z4tqqrVavHkk0/j6aefwNxvv8Yb855Gd7DIzkjHL199BgB48smnW5QQAXCMxyo2nnGuOUQle2ZK21Ld6P5XQgjpMmRZltRapdC7X4QSHVC4VK1VCpLc8jcD48bdULJ370dh69at1sXGxppWrlyd2rdvPzMATJgwqUKW5fRdu3ZE7NnzYYSXl7cwbNjwqieeWJBbezwlJbnw3XffjElKMrPBwSG2ceNuKP3tt1/8U1KSG3wTM3v2nPxffvkpYPnyJXEbN27j678GTp9+fwnDsPj44/+Fbtz4doy/v7990qSbi2bNerTQhX8W0sm4EgRVo/FiqaQTkSUJasbxt1Oh9WqiNQDnkjkF1QnqVCwF+Y7/a5r/6y4aq6CSrKj7J+K668bjt9+mYt++3Xh09Sp06xaL7OwsAMD06fdj2LDhLR4bwwAWoXXlGUQWgCyDZRhYDJSfhRDS9ckyRAlSgUqraPcACAAkWZJkGS1eFhIXl2BesODZ3MaOT5x4U8XEiTdVNHSMYRjMn78ob/78RXl1H3/ggVlFtZ/PmTMvf86cefm1X2u1WnnPngPHLzSme+65t+See+4taf53QboKV4Kg7QAe5Tjua57nqUR7Jybb7Wc+Z3UXTp0M4MySORVd9U6luroK5TYbEBjYdGMnwWwE7BYwCh/I8tkL/txzL0KtVuGjj3YhOzsLDMNg2rTpmDv3KZfHZ21lECQBEAFoAVhrappoTQghXYMsQ5RlmdanE+IiV4IgE4ArAaRxHHfI+XVdMs/zD7R6ZKTtKZWYfexvKCHjrpseabI5q3UEQeom2hHP8k11FV799y8sv3J6s88RLUbINiMU3mf3BQGOTDrPPLMYd901AxkZp9G9e09ERUW7PDYJEuytSYoAQJSkMxsTbbQniBBCCCHN4EoQNANAJRxrUBta/0LzBJ2EXRBQZnUkP1E3IzEC9D7INptQJVB2uM4kL8+x8iA8wK/5J8kyhJoyKHwjGzzcrVssunVrfS05qZWFUs/04VzmbTNSEEQIIZ7o558PH+noMRBSV4uDIJ7n49tiIKT91U0nrNZommwvBoRi/ol/AQBTJKnFm+BJ+7PbbSgudiyXjgjwadG5orEaqjr1gtqCCKlVhVIBRxD0oV6D7378EYsnTHTTyAghhBDSlblcLJV0foa8XNwXE4tKUQLLNv1GV60+W0vIYjFDr29GMgXSoQpPn8b6vgNQarMhwKdl10s0G8EIVjCMHnIbze/KcM9MkFKvgwxQnSBCCCGENEuzgiCO49IBTOF5/h+O4zJw4SVvMs/ziW4ZHWlTlqIiXB8WgTyrFVXNaK9Und0NZLFYKAjqBIrTTiFMo4VGqWzxzJ1oMUG2mcHqvCGK7s8IyDCAKImwt3YmSJKg1eoAOH4uCSGEEEKa0tyZoB/gSI1d+znt++kCrAYDVADsTbZ0YFkWa/oOhI5lYSwuRmBgUFsOj7hBZXY2fACY2GbUB6pHFgWIxioovEPRFvVxGYaBIItumQnqZ7UhIaEHtEVFTZ9ACCGEkItes4Ignufvq/P5vW02GtKubMaWBUEAEKxWQ6dQwFLdnLkj0tHMRY56b3a1yqXzBUM51KFtl4FVlNwRBMkIsdkRFRiE4wZKkU0IIYSQpjV3OVy3lnTK83y2a8Mh7clucuyfEJjmL5OyyTJ0cMwiEc8nVVYCABivphNfNEQ0m8CKVgCunX8hDMNAlMVWJ0YQZQlQOYI82Wpzx9AIIcTjMQwUDNOCF3A3kmXZpWKphHiS5i6Hy0TLlsC1XTop4jaCcxO5wLLNvmC1bzFtRrrj3hkonYGuwrsZKdAb4KgXZAGr1kKS3LsKlmEY2EQ75FaurpVkCXDOdNUtAEwIIV0Vw0ChYIQIu9XUIQmuVBq9IEJZ4GmBUFLS2shvv/06aP/+L48195y0tFTNunWvxSQnn/DRaLTS5ZePrJg3b2GuXq93/2ZY4lGa+8tzP2gfUJcjOjeRi6yi2UFQ7VtMqsfSOejsdkCphN7ftSQWks0C2WYCqw1ogyAIsArWVvcjSRIUamfSDjvNBBFCuj6GYVi71aQ8feIvyWa1tOubdbVGyyb2HaxUaPxYWZY9KghqqfLyMsWcOQ/36tmTM7z55qbkoqIi1auvLo9fvXolFi9+iVY1dXHN3RO0tY3HQTqA4AyCBFYBdRNta9kZxwZ7u8ncRqMi7lRhtUAjqRAQ5O9yH0JNORT+0e4blBPDMLC4IwiSJSi1jp9gRujUr8eEENIiNqtFsppNHTFj0SUKBe7cuS1MqVTIq1atTddqtTLH9bbk5+flf/rp/hBZlsEwLU8qRDoPl6ZROY4LBrAAwLUAIgCMAzAFwN88z3/svuGRtpQZHIxXD+wHN+QqjG7mObX7hwSqx+LxLBYLliUfBwAcnHmjy/2IphqoxLYomirDKrR+5kaSJSicxX4ZsXVJFgghhLSNkSOHDpk169Hsgwe/DsrKytSHh4db7r//obzrrrv+TKalgwe/8tu6dVNkXl6uLiAg0HbVVVeXz579eIFGo5EBIDn5hPbNN5OieT7Z22q1soGBQfYJEyYVz5z5cIOpQbds2Ri6bdvm6OefX3J67Nhx52V0+uuvQ76XXXZFhVarPbPU4Y477iq94467Stvi34B4lhZH8hzHxQP4F8BDAHIBhMIRTHEA9nIcN8GtIyRtxmC3ocBqgU3T/P0i1awCuWYTrHTH3eOVlBQDAHQaDbx12iZaN060msCIVrj7hpiI1meGAxxBEKt1fH+KtsjlTQghxC22bXsveuzY68o2btx2YujQ4VUvvbS4+6FDf3gBwHffHfRdsWJpwg033FiyefP7J+bOfSr7559/CHzuuQXxAGAymdj58+f29PHxFTZseDdl8+b3T1xxxZXlW7duij527F9d/efasWNLyPbtm6MXL16W1lAABAAFBfnaoKBg+6pVL0VPmjSu/803T+j32msroi0WC00BXQRcmc5cA6AYQDyAmwEwAMDz/DQAnwB41m2jI23KbHYsaVNpmv8G+f/UXph34l8U+vm11bCImxQXO26MhQQFtGpKX7SYINstLS622hRJliBIrQ9aJFmGtW8PzPjrELZXVbhhZIQQQtrC6NHXlN5zz30lPXr0tM6fvygvIaG7cffuXaEAsHPn1oixY8eXTps2vTQ+PsE6atSY6iefXJD1+++/BmRnZ6pNJiM7adKU4meffTG7Z89elsTE7tbHHnsyHwBSU1POCYJ27doZvGXLxuglS5anjRlzbXVDYwEAs9ms2Lv3v+E2m4196aVVpx98cHbuDz98F7h06XNxbfoPQTyCK8vhrgFwP8/zlRzH1V8f8w6Aj1o/LNIewkpKcHtkNFqS80KtdgRMFgsth/N0hr+PIqnfJShQtu6GlizYIZlrwOpD3Fo0VYIEu5uWr6m8vGCWRJic+9wIIYR4niFDhp2TWrZ37z6Go0eP+AFARkaG/vTpNK9vvvkquPa47Hx7kpaWqh0z5trqadOmFx84sC/w1CleX1CQr8nKytQDgChKZ17oKioqVG+9lRSrVCqlqKiYC248VSgUckRElKU2CcLAgYNMoigyq1a9lFBSUpwTEhJKa6y7MFdTKzaWh1YDyiLXaUQbDBgRGY2fWnDJlGrH3gsLvdn0eJbiIsRrtbCwrf+VFGoqoApy76+2KLtnORwAqJwpsi0WSthBCCGeSqlUnvNCIkkSw7IKGQBkWWImT761cNKkKWX1zwsLC7cXFRUqZ826t7evr58wfPjllZdeOqJ6wICBxttvnzygbluGYbFs2YrUzZvfiVyxYmncpk3b+cZWMgQGBtliY2PPeeHo0aOnGQBycrLVFAR1ba6sb/kJwLMcx9XNuStzHMcCmA3gF7eMjLQ51nlbX1Y1vxDmAMGK1X0HIC4vr62GRdzEXulYGiZrm5v7r3GixQhGcl/6aYYBRKn1hVJrqcxGPBybgCl+gW7pjxBCiPudPHn8nHoNycknvRMTE00AEB3dzZybm61NSEi01n4UFuark5LWRBsMNeynn34cZDAYlO+9tzPl0UfnFlx//YTKqqpK5838s7GVv7+ffdSoq6sXLnw+6/TpVK9t294LbWw8ffv2q0lNPeUly2fPP3UqRceyLLp1i6WaC12cK0HQIgC9AaQC2AHHT958AEcAjATwnNtGR9qUQnJm1VQ3f0+QnmHQTaeHxtr61MakjdUYAAAKvetJEWqJVhMYweK2dKEMw7h1JkgpiBgTEoqhvr6o+2JGCCHEcxw4sD9s//69gWlpqZpXXlkenZ2dqbvzzulFAHDHHXcV/vHHbwEbNqyLSEtL1fz00w8+r766PM5kMinCwsKFsLBwm9VqZT/77JOA3Nxs9Q8/fOu7dOnzCQBgs9nOez/bp08/8+TJtxTt2LE1KiMjvcG7vffcc39hUVGRZtmy57ulpaVqvv/+G9+NG9+Kueqqq8uCg0NoFqiLa/FyOJ7nj3McNxTAEgBjAIhwpMr+AcB0nuebXaWXdCylJAMsA0Z7XlKVRonK2nos9LfB0ymtFoBhofFp/vVtjGgxQ7ZZwOp9IYruCTIEWYTgpj1BtYGellXAYrFAp2v990wIIZ5OrdG2e72e1jznuHE3lOzd+1HYunWrdbGxsaaVK1en9u3bzwwAEyZMqpBlOX3Xrh0Re/Z8GOHl5S0MGza86oknFuTWHk9JSS589903Y5KSzGxwcIht3LgbSn/77Rf/lJTkBtPczp49J/+XX34KWL58SdzGjdv4+jfyevToaV2zJon/z3/Wxzz44PS+Op1eHD16TNncufNpuctFwKU9QTzPpwK4y81jIe1M6bxjzrYgRbascgRBLKXI9nhaQQRULPS+Xk03bookQjRVg/UOc0tyBIZhIEgiRNk9Nf5YL0cQpGFZCoIIIV2eLMuSSqMXEvsOVqIDCpeqNHpBlFv+BzwuLsG8YMGzuY0dnzjxpoqJE29qMM0nwzCYP39R3vz5i84JUB54YNaZGkFz5szLnzNnXn7t11qtVt6z58DxC41p0KAhpk2btvPN/y5IV+FqsdQEABqe55M5jvMD8DKAWAC7eZ7f4epgOI7rCeAvAI/xPL/V+dglANYDGAqgBMBanueT6pzDAngRwEwA/nDMSD3K83xGnTat7qMrUjn/z2ibHwRJzv1DCjekNiZty8d5x8sn0Nct/YmGCqhC3RO0MAzcUii1lqxx/ClTsSzMRgMCAgLc1jchhHgaWYYoQlmg0Pi1ewAEAKIsS7IMeiNAOjVXiqVeDyAFwAPOh94B8DCAaABbOY57oLFzm+hXBeB9AF51HgsC8H8A0uAIYJYCeIXjuPvqnPoCgEfgKN56ORxl7b/iOE7trj66KrXzTTKrbcFMgdpxh/3MfiLikcwmEwosZpRarQgIcU+yANFqAiu6Zy8YwzCwCu7bVyYpz2brtxgMbuuXEEI8lSxDlCTZ3hEfFACRrsCVmaAXAHwFYCnHcf4ApgBYyfP8Yo7jXgYwF8B7LvS7FED9glYPAbABmMXzvAAgmeO4HnAkZ9jiDFKeArCQ5/nPAIDjuNsB5AO4BcAuN/XRJT3Dn4RCljFl4qxmn8M4kygoafO5RyuvKMfzKSegVqnwY8BUt/QpWsyQBSsYhcYtyQcsbgyCRAULSZbBMgyshkbr4hFCCOkgP/98+EhHj4GQulyZRh0IYB3P8zUArocjkNrjPPZ/AHq0tEOO464CMAvAvfUOXQngB2fwUutbAD05jgsDcAkAHwDf1B7keb4SjiV1V7mxjy7Hbrch22hAhskIla4Fe4J0XiizWVFNiRE8Wnm5o8xCkL+v2zK6iVZHcgSFovX9ibIEu9hYubGWkyHD5gzMLDU0E0QIIYSQC3NlJshc57xxAIp4nv/X+XU4gMqWdOacTdoB4HGe53M4jqt7OBpA/WxztRveYpzHASCngTYxbuzDZQpFhyzXbZLRePYuvEarA8s2742tLTgCs/89iqCgIExSeub3Vl/tNfDUa9EWKivLAQCB/r7NvrZNkyGbq6D0j3S5h9prIDMSRFl029hkyHjDYsBJnsfamTOh7CQ/mx3pYvy98FR0LTyLm+4bEUI8nCtB0C8A5nMcFwDgVgBbAYDjuCFwJBf4uYX9vQXgV57nP2jgmB5A/TUzFuf/tc7jaKRN7UYId/ThMl9fz8xSZSjJw22R0TDJMnx8mr8nyMfXBwBgsVgQEOCGrGPtyFOvRVtQnDiGN/pfgjyNAlqd+7a2sXYjvHQKsMrW1R5SqhmwSsZtY1OqFRB1WhhFEQolOt3PZke6mH4vPB1dC0IIaT+uBEFPAvgMwAcATsKRGQ7Ox0xw7LVpFo7j7oFjuVr/RpqYAdQvcFX77svoPA5nG3O9NkY39uGy6mozRNHzkggUpmXh1shoVAkCCszNz9IlSY47lSaTCeXlBrcttWpLCgULX1+dx16LtmAqKEI3jRZVKsDSguvbFLGmBmxNDWzn/Uo1T+21MFtsMJktbhubhbVCrXaMqbS0EhUVrf7V7fIuxt8LT0XXwrP4+enAsjQrR0hX50qx1HSO4/oACOV5vqjOockAjvI835LdzvcDCANQfxnc287kBDkA6q+9qf06D2ezPEcCOF2vTe0SPXf04TJRlCAInveiZqqqhhKATZYhSc3f5K5glXi5V19oWBaGsgro/P3bbIzu5qnXoi2INTUAAEarbtH1bYpgNkGyWSApW9evIAmwCXa3jU0QJVzKKjEgNh5iXv5Fc53d4WL6vfB0dC08A+X9IeTi4NKtDp7n5XoBEHie/x2AkuO48S3o6m4AveFITlD7AQCL4ajZ8yOAKzmOU9Q5Z4zj6fhiAP/AkVFudO1B5x6jwc5z4aY+uhyrM41wS7emqzQ6dPfyRqzeC+bqKvcPjLgFYzYBAJT61i1bq8+RHMHc6r08giRCkNyXXEOSJSRIMsaGhIGprHRbv4QQQgjpmlo8E8RxXCwc+3hG4/xlZrUUjTx+Dp7n8+o/5pwRKuZ5Po/juM0AngbwHsdxrwK4FI7leA87z7dyHLcBjro/JQAyAbwGx+zPXmeX7uijy7EZjfACYEfL3swqlEpYJAl6hQLmakpF7KmUNjvAMNB4uTcIgixBMlaB9Y1oVTeiJMIuuq/MhCRLkBUKwC5AslqaPoEQQgghFzVXZoJeB3AFgI0AjsKRKGE1HEvHZDjqBrmFc6ZmHAAOjpTVLwJYwPP8tjrNFsNRl2iTcywCgHE8z9vd1UdXZDc5ZgoEF/b02GTHcg2rocatYyLuo5EcAYbe1/0JAgRTFRi5dQGMIIsQ3TwTVFswVbS6r/4QIYQQz2A0GtkdO7aE1H793HML4h58cDp3oXNaKyXlpPbgwa/9WtNHUtLayMmTxze29x0PPjide+65BXGteY4Lyc7OVI8cOXTIr7/+5NNWz9Gedu/+MGjkyKFD3NGXK4kRRgF4juf5DRzHPQZgEs/zCzmOexbA1wBuAvCJqwPieZ6p9/UhACMu0F4EsND50VibVvfR1QjO5VKCC5s/rc4F0xQEea7aHFM+/u7/mydZzGBFGwDXM7vZBBvcuexekmXIKsefM5mCIEII6XI2b3437Jtvvgq+5577SgDg6aefz5Ek960oaMiiRU/1GDPm2rKxY6+j9f9dkCszQd44mzAgBcAg4Ewg8SYc+22IhxMsjkR4ItuslYvnsDvfvdqNJncOibiJ1WpFgdmCYqsFAcH+bu9ftJohC9ZWZQa0iO4NVCRJAlSOoEy2uy8bHiGEEM8gy/I5Lzp+fn5iQEBg20ZBbr1dRzyNKzNBBXBkdAOAVACBHMeF8zxfCKCszjHiwfL9fPFW8jF0HzCi8SmyRtidb35tRoP7B0ZaraKiHM+lHIdSocBPgVPd3n9tcgSFtx8EwbUXCIvdzUGQLIFVOxM92rvsKlZCCAHgyGBnElxLbuUOeiWklt4Hq6qqUqxd+0r0n3/+5i8IAhMfn2h65JE5uZdcMtgEACaTiV21alnM4cOH/E0mkyIqKspy99335l9//cTKpKS1kR999EEEAIwcOXTIBx/sOfbOO/+JLC4u0mzcuJ3/9deffBYteqrnM8+8ePq9996OLisrVffowRkWL34pY9u298K///7bIKVSKd944+SiRx6ZUwgAVquVWb9+ddSvv/4cUFFRrtJqtVL//gOrFy16ITs4OESYPHl8/9LSUvVHH30QcezY3z4bN27nm/oeAGDXrh3Bu3d/GF5RUa7u339gdVhYeJMveGazWbFw4ZPxhw794a/X68Xrrru+9LHHnsyvTdX+5Zef+e/atSM8JydHJ0kSEx0dbZ458+G80aOvqQYAWZaxdet7oZ999nFoWVmpOjQ0zDpt2vSCm266ubz+c6Wm8tq5cx/hBg4cVPXyy69kKhQK7N+/N/D997dFlJSUaGJjY01XXz22fNOmt2N+/vnwkdp/89tuu7Pgm2/+L0gQBCYp6W0+MjLK9s47/4n44YdvgyoqKlSRkZGWu+++N/+GG26sBBzL1tavXx1X20dDj02ePL7/xImTi0+ePO79zz9HfZVKlXzVVaPLFi58PkepdIQoX3zxmf+2bZsiCwsLtYmJicZLLhnitg3prgRBnwF4meO4XJ7nf+M4LheO4qlL4Uh5fV6yA+J5agQBp41GhOtavmfECAblNhskgd5seqKyslIAQICfb9vUupAlSKZql5MjiJIIm+je2RpJlsBqHDNBjOC+vUaEEOJpZBm4+0t9L75C0WFVoXsFiIYd4018cwMhWZbxxBOP9FCr1dLLL7+a5uvrKx44sD/oiSce6fXGG+8k9+8/0PzGG2sjMzMz9KtWrUn18/MX9u79b8iqVS8l9O3b7/j99z9UaDab2V9++SFw48btJ4ODQ877Qy9JEj74YFvE888vTRcEgXnuuQU9Hnjg7r7XXHNd6VtvvZf82WcfB33wwfao0aPHVPXp08+8Zs2q6EOH/vBfuPC5jOjoGFtKSrJu9epV8e+++1bEs88uztm0aUfy/fff1eeKK0aVP/TQ7ILmfA8ff/y/wLff3tBt5szZOSNGXFH9zTdfB+zcuTUqKCjogi96f/75u//1108sfuedLcnHjx/Tb9jweqy3t49w//0PFf/zz1H98uVLEu+//6GcMWOurayurla8/fYb0a+8sjz+8suv/FetVssbN74V9uGH70fOmvVIzqWXjqj58cfv/NasWRUfHBxsj4npdiYIS08/rXnyycd6Dh48tGrZspWZLMvi4MGv/NaufSV++vT7c0ePvqbyjz9+9d206e2Y+mP84otPQ1auXJMqigKTmNjd+sQTjySmp5/Wz5nzVHZcXLzl888PBK1cuSyRZdnT48dPqGzeTwbw/vvbombMeCB3zpyncg4d+t0nKWltXK9efUy33HJb2aFDf3itWLEk8bbbpuVff/3E8sOH//R5550N3Zrbd1NcCYIWAxgK4CUAYwE8C2AbHBnXAOBR9wyNtCWTMzGCSt3y7GEfiUDK8b+w/PY73D0s4gZlZWUAgCC/ttsDKRiroHYxOYIgChDcmBkOcARBFd3jsGLfPvQbMgyT3do7IYR4FqaTrdP6+ecffdLSTnl98slXf9cuYZs3b2HeyZMnvD/8cGdY//4DMwsK8jU6nU7s1i3O6u/vL86dOz9v8OChNX5+AaK3t7ek0+kklmXlsLDwRu903Xffg3m1szL9+g2oTk3lvRcseDaXYRg89NCjBbt3fxiRmnpK16dPP3Pv3n2MY8ZcW3HZZZcbACAmJtb29ddfVmdlpesAIDg4RGBZVtbpdFJAQKD4008/NPk97Nu3O/Tyy0dW3HPPvSUA0L17j8Lk5BNemZnp+gv9+8TGxpuee25JDgD06MFZMjPTdfv27Qm///6HillWIc+a9Wj23Xc7+gSAW2+9veiFFxb1KC4uUkZFRds/+eR/YRMnTiq+/fa7SgEgPj6h2Gq1MoIgnAlT8/Jy1atWvRQ/ePDQqqVLV2TVLmn/8MP3wy+77PLymTMfLnKOuSQnJ1vz6acfn7Oya9SoMWW1/7anTqVoDx/+03/JkuVptful5syZl5+enqb74IPtES0JggYOHFR1770ziwEgLi6+bP/+vWHHjv3jfcstt5Xt3r0rtGdPzvD4408WOMdmTU8/rfv8809Cm9v/hbhSLLUMwHCO4yKcX7/PcVwWHIkH/uR5/gd3DIy0rYDyctwYFgFvF/6OqtSOzOhms9ndwyJuYEs+gTf6X4JiVdutlJCsJpeTIwiye2sEAY7ECEo/H5TZbKihxAiEkC6MYYAd4018Z1oOl5JyUi/LMm699cYBdR8XBIGx220MANx9972Fzz//dPebbho3MDGxh3Hw4KHVN9xwY7mfn1+z75rFxsafeQHQarVSSEiYtfbNvk6nkwHAZnM835QpU8t//PF7n9WrV0Xl5eVo8/JytQUF+dpevXo3uNa/Od9DTk62bvToa85ZgtanTz9DU0FQnz59z3nOvn37G/bu/Si8srJS0b//AHNAgL/4zjv/Cc/OztQWFBRosrIy9AAgSSJTXl6mrKysVPXrN+CcPh566JEiwJEdDgD+85+kWFEUmLCwMFvdPb2Zmen6kSOvqqh77iWXDDbUD4Kio2PO/NvyfIoOAIYOHX7Ocw4cOKhm+/bN0Rf6XuuLiel2Tl0LvV4vCoKdAYCsrEz9oEFDzklK0b//AEOHBUG1eJ4v4DiuF4AAAAU8z7/mjgGR9hFVXY2rYmJxSGz5krba2SMKgjyTvawM3TRaWNm2u1EoWpzJERQayC0sry62QRAEAGrncjiLhX4uCSFdG8MAXipIHT2O5pIkidHpdOI772xNrn9MrVZLADB06KXGffu++Penn773PXToD99vvvk6aPfuXREvv/xq6pVXjmpWOlqVSnnOC9KFCnsvXfpct19//SXw6quvKb388isre/XqY3r//W3hZWUlDd7da873wDDMea+JSqWyyRfJ+kvXRVFiGIaBWq2Wf/vtZ+9nnlnQc/DgIVX9+g2oue66G8otFjP70kuLEx39q5r1Ijx69JiyhIRE0+bN78aMGXNtRe/efS3O55ab8zqu0Wjr/Lw13F6SJEahUDTamSiK510QlUp9Xvva8TAMI0vSuQkxmvv9NodLdxE4jnuc47gCACcA/AzgFMdxmRzH3emugZG2xQiOGyuSqrF6t40bwshY1qsvgjIz3D0s4gaCwXFjRla7fI+jSaLNDNluueALTGMEUYRddH8QpDOacE90NwxrYQFgQgghbSsxsYfZbDYr7HYbk5CQaK392Lp1U/i33/6fPwAkJa2J/PPP332uu+76queeW5KzZ8+B46GhYdbvvjsYADjeELtrPOXlZYr/+7+vQh57bG7WokUv5E6dekdZ//4DzLm52dpz44GzryfN+R5iY+NMx4//6123B55PaXLvVlpa6jkzRf/+e9Q7ODjEqtfrpV27dob37duvZu3aDafvv/+h4lGjrq4uLCxQA479YX5+fqK/f4D95MkT5zzPU089nrBq1UtnZmWuu258+d1331sSH59gWrFiWbzoXJYeGxtnPnnyxDljPn783wuOmeN6mwHg8OE/zjnv2LF/vKOiYswAoFI5gpXq6uozsUZubnaL3nTGxyeYU1LOHVtKygm37YVrcRDkrA20HsBvAGYAuB7AfQCSAezkOM796aiI2zHOH37ZhSDIj2XRy9sHagNlh/NEssno+ESjarsnkSRIxmooFC0LOBiGcS6Hc39WU43VhhvDIzFA6Xr9IkIIIe539dXXVMXGxplffPHZhF9++dEnPf20ZtWql6K///6b4ISE7hYAKCjI16xb91q3n3/+0ScnJ0v9+ecHAkpLSzT9+zuWeel0OsloNCrS0lI1dru9VXe7fHx8JZ1OL/7884/+6emnNSdPHte9+OKzsZmZGfq6fWu1WjEvL1dTXFykbM73cOed0wv//PP3gI0b3wo7fTpNs23be6F//PFrQFPjOXUqxXv16pVRqam89sMP3w/+8svPQqdNm14AACEhobasrEzdH3/85p2dnanevXtX0M6d2yIBwGazsgAwdeodhZ9+uj9s377dgRkZ6ZqtWzeFHj78p/+oUVdX1n0elmWxcOHzmdnZmbqNG98KB4Bp06YX/P77LwHvvfdO2OnTaZrdu3cFff75gQsuN+vZs5dl8OChVUlJa7sdPPi1X1paqmbDhnURR44c8r/ttjuLAMeSOoZh8Oab6yOzszPVn376ccC33/5fcEuu07RpMwqzsjJ1r7yyPDotLVWzb9+ewM8/PxDS9JnN48qt4rkANvA8P6fe49s5jtsEYAmA3a0dGGlbCkkEWAUYFxIjiEoVYAWlIvZQrMWxvFahbdtgQDRWQiW3bDUGwwCCJEBog5kghd4R0Cs7135hQgjp8hQKBZKS3j71+uuvRr/88osJVquVjYqKtrzwwrK0kSOvqgGAZ555MWvNmlUxq1YtizcYDMrg4BDbjBkP5E6ZMrUcAK67bnzFV199Hjxz5vS+a9Yk8a0Zj0qlkp9/fmn622+/Ef3AA3f39fLyFvr1G1Bz99335u3Z82GEyWRi9Xq9dNNNtxRv3vxO9Ny5j+h27dp7sqnvYezY66rMZmP69u1bIt9/f3tUjx49DZMmTSn68cfvAi80nrFjryvJzc3RPvTQvX18fHzt06c/kDt16h1lAPDoo3PzKirKVc8/v7A7AERHR1vmzXs687XXVsQf+//27js+krs+/P9rZvuuejvpep8713PDNi64YFzomBoSJwQIwRTT2ze0mACBHxADiQOEYghgCC0xuGHjerbP5Xqb60V30qlr++603x+zupN1TVrNFknv5+Ohk2535jNvaVarec/n83l/Nm2ILlumZW+55e97crmcctddP5pzxx3fDHR0dGQ/9anP7rn00suTI3OCRqxYcUb2DW94U/fdd/989tVXXzt09dUvj7///Uf23333z9t/9rMfz1m0aHH6+utv6r3vvj+eMhH6yle+seeOO/6/Od/85r8uTKfTvnnz5mc+85kv7L7xRrcowsKFi/K33vrB/b/61c877r//3jZNW5F85zv/sfNb3/rawvGep7PPPifzpS99bef3vvfduffd98e2uXPnZt70prd1TXTe0ckoEx3Pr2laBni1rusPneC5a4E/6roeOX7PGWcPsGhwMIVpVt+w3Uf/7q+Z7fezZsUl1F78igntO/iH/+Sy4R4ORCO8/Nt3lihC7/j9Ko2NMar1XHjtvr+/hSWqSs+iNi66fqKrQI1fsKGV6PKLydjj73EKhfwMOQM8tmMNlu1tstLamabhp3+gP5/n0p/+wtO2p6OZ9ntRzeRcVJemphg+n7oXWFzpWF544YUVquq7v61tTjIYDGdPv4cQE/P000/WtLS0GcuWLT9a+ODOO7/T/uCD97X8/vf3bq5kbMXI57Phnp5DNbZt3XDBBRdsP9W2xcwJeg649iTPnQdsLKJNUWYjd8uV0CkLlpyQ7Zf1WKpZqDDULFI78XM7EVYuA2YOZYIr5uVNoyR9NWqhJyhwgompQgghhDje00+vrv/Yxz64fPXqx2s7Ow8EH3zwvvr/+7/fz7r66pcft9DqdDOu4XCapl056r+/BL6laVoU+DXQDTQBrwQ+CLzL6yCF90bu3auRiV8oO373YlP1eK0X4Y2+bJZAwKKlhOsEAVi5tFscIVCHZY0v6VAUhZxZmhLWasztgA77fORyOcLhiQ/1FEIIIWaS973vQ4ez2az61a9+aVEiEfc3NTXnX/vaNxx597vf213p2EptvHOCHuXF9fAU4APA+8c8Bu58IN+kIxMl9a19u/FbNq+48R0T3tcprBPks2XYRrWxLIuv6FtxHId7/+6m0h7MtrHScdSaWYw3H1YUyJQoCfJH3aQnqKqkUylJgoQQQojTCIVCzmc+8/mDwMFKx1Ju402Cri5pFKKsLMti+9AQADdG6ybeQChCxrIwiiiPLEorHo8fHQpWHyvtcDgoFEdQxp8M29jki1ibalxGFYLIJuLQ3Fya4wghhBBiyhtXEqTr+mOlDkSUz+hFToOhidewGG5q52/XPceKFStPOjlMVMbQkLvoc200it9f+g5ZK5chaOU5NsDyNNuXaKFUANun8tl9uxmIx/me9FIKIaYHG3Acx5G7jkKMQ+F3xYHTLyY8rsIImqY9pmnauRMJQtO0CzVNe3Ii+4jySA0P8apZHVzXNgu/b+JV0gOFstrZrBSqqTbxnTv4ztmr+MiiJWU5npVLo5g5xlsbwXbs0iVBwKBPpTefI5eT16YQYlrodhzHyOezpe/aF2IayOezUcdxDKDrdNuO9wr428ADmqatAX6OWwY7PXYjTdNqgRuA9wCrgFvHG7Qon8zgALfMW4DlOOgTrOwFECjMCcpkjnsJiApL9fYwKxTGLtWQszHsbAbHyKFG6rCs0/e+WCVaKBXcBGtkHtDo3k4hhJiqLrjggvgLL7zw03h88L1AczAYTiuKIuUvhRjDcRwln89G4/HBoOPYP7zgggsSp9tnvMPhfqtp2uPAZ4EfAX5N07YCe4EU0ADMA84CDOC/gLfrun6kuG9FlFI2EUcFcrbNuG/hjxJRfXx62QpigSCOZaH4pA5GtcgOuBUtyzVfy7EtrEwcNdZ22uIIigJmiZOgq+vqMefOJ9/bU5JjCCFEBXzZskyGhvpvURQlyrFCVEKIYxzHcQzHsX8IfHk8O4x7LJSu673ABzVN+2fgZtxiCYuBeqAP2AbcAdyj63r/RCMX5ZNLJIngZqvF8IfCnFffAICdz+OLyNq41cIYHgLAKmNiaiWHCLSc/sakoihYdgnnBNk2LwmGaW2fTe+AvAUJIaaHCy64wAa+9MILL9zhOHRQ3BqPQkx3NtA1nh6gEROeEKLreh/wvcKHmIKyycklQb5wDNtxUBUFI52SJKiKWMkkAHZw4nO9ij5mNk3QznO6txNFAbOUSZBjYynutYGRkuFwQojppXBxN+4LPCHEqcndhBnISLkXysUmQYFQmGxhSFM2HvcoKuEFpzBPSw2Nr1qbF+xcZlzFERRFwbTNEg6Hc7B8bhBmVpIgIYQQQpycJEEzUD6dAsBUijv9fn/AnU9EYT0WUTV8WXchUt+oNXNKzcplcIwsqnrq15OiKOSsfMnisB376DBAUwojCCGEEOIUJAmagcy0e4Fonuai9WQURSFvu3NAsgnpma8mw0ae7myWYG35qqk6lomdTaKephiDokDWLF0SZDk2TiEJsqVEthBCCCFOQZKgGagnGuX2HdtYHSz+QjmPmwTlC0PrRHX45UAfH9y8nuD8trIe10wOoY6jamvWKF0PjePY2H53XpKdy5XsOEIIIYSY+sa7WOqiUgciyidumWyKD9MfjhXdRt6BrGWRz8gd92oyODgIQH2svOvq2dkUymmGutnY5Eu4fpFl2xBwkyAnX7oeJyGEEEJMfePtCdqladqfNU17q6Zp5ZtsIEpiZJHTYLD4qm7fHhrilnXPke7o8CosMUmWZRGPDwNQX1PeJMgaR3EEd6HU0lSGA3dO0P657Xxsy0a2RsIlO44QQgghpr7xJkGfANqAXwBdmqbdoWnaOaULS5RSdGCQa1vaaJ/EotPBoHuROZJQicob6uriO2et4ssrz6IuWt6y5W5xhNwpiyPY2BhWKZMgB+rrOJBJEzdK1+MkhBBCiKlvXEmQruvf0HX9XOAC4GfAW4B1mqY9r2naezRNqytlkMJbs+PDvGfhYhYbxQ9lCxSSoGxWhsNVi+GuQ7SFQnSEwwQC5VsnCMAxDexs4pTFEWzHLll57JH2Q+EQAFkpkS2EEEKIU5hQYQRd19fpuv4hYA7wOmAf8G+4vUM/1TTtSo/jEyWgGO7deNtf/MjGS8IhPrVUI7hzh1dhiUlK9BwBIF0oX15uZnII5SS9iyNrBBklnBMEUJfNc3PHHBakpIdSCCGEECdXVHU4XdctXdfv0XX9jcBs4KO4idFDmqbpXgYovKcUhiQ5gVDRbczy+zi/oRFfYSK+qLx0fz8A2dMsWloqdjaFepLiCIoCpmNhWqXrCQKoTad5y5x5LJPhcEIIIYQ4hUmPmdF1fVDTtMdx5wwtAJZMtA1N09qAbwA3ABHgMeCjuq5vLzy/CrgDuBDoBb6p6/q3R+2vAp8H3gU0FPZ/n67re0dtM+k2pgvVskD14QSLT4Is1Q92HkdKEVeN3OAAAIavMpXvrVwGxcqjKH6cMR1CiqJgWiaGbRKc/NvOSamF4XC+CvWGCSGEEGJqKPpqSdO0uZqmfVzTtPXAJuCdwC+BZUU094fCfjcBFwEZ4GFN06KapjUDfwZ24SYwXwT+VdO0d4za/7PArcA/AC8FfMADI5XsvGhjOvEXLhCdQPGT5y1/wG1D7rhXDWPYrQxn+SuXBDlG9oTFERQFDMvEdkqbnKiRQhI0NgsTQgghhBhlQrdkNU2rB94EvB24AjCB/wM+CTyo6/qErzw0TWvEnVv0ZV3XNxceux1YD5wJvBzIA+/Rdd0Etmmatgz4FPDjQpLyUeCTuq7/qbD/W4DDwM24idk/eNDGtOEvXCAqoeKTINvnJkFIElQ1rKS7cK0TCFTk+I5pYGeSqNFWxo56UxSFrFn6XkMl7N6zCEgOJIQQQohTGFcSpGnazbiJz41ACNgIfAT4b13XByYTgK7rg8BfjTpWK/BhoBPYittr81gheRnxF+DTmqbNwh2CVws8PKrNIU3T1gJX4iYwV3jQxrThL1wgquHi15IZ6QlSTUmCqkXKMOjOZqGxsWIxmKlB/C0Lj3tcURQyZukrCSqF9YHKWxtPCCGEEFPNeK8V/gcYBn4E/EjX9RdKEYymad8H3g3kgNfoup7SNG0u7nC70Q4XPs8D5ha+PniCbeYVvvaijaL4KjQ/41R+fOgAQcviylfcQuQUJY1PqTCfSDEt/BUafjVeI+egGs+Fl57E4pHN6/n0+a8/ZanqUnJyafyOge1/cW+U4nMwrDxKIS5FVYofi3sK/pj7ugwqStW/LittpvxeTAVyLqrLqRZ9FkJMH+NNgv4a+J2u66W+lftvwPeA9wN/0DTtciCKmxSNNhJHuPA8J9mmqfC1F20Upa6uvItWno5t26zv7wPgxrY2IpHipjypYff7UhybxsaYZ/GVUrWdC6/F4+6coLbmesJFntfJUjEJ+WxitS9+TeSMHIofQiE3ORr57LVgQ43bvqLQ0BBFkauZ05ruvxdTiZwLIYQon3ElQbqu/2L0/zVNCwEabhW1E23/eDHB6Lq+tdD+O4GLcZOhDO4QvNHChc+pwvMUtsmM2SZV+NqLNooSj2ewrOqpVJVOH/t2LNtHJnPiksan013Twluf/xmXX3kVVw1O6kdUcj6fSl1dpOrOhdf6+92RqdFgkGyR53WylHwcfzKBZYex7WMTcyyfQSqTIZczCIUC5HIGju39xJ2aulo+u30zWcvmt90DhMPh0+80Q82U34upQM5Fdamvj5ywwIsQYnqZ8NB5TdOuwZ0j03KCpxXAwa2sNt72WnCLH/xmZM6Oruu2pmlbcNceOoi7FtFoI/8/BARGPbZ7zDYbC1970UZRLMvGNKvnj1p8OMHVLa3kbRtVUV90oToRajCEDWQy6ar6/k6l2s6F1z5c10B65VnUqf6iz+uk2XmsdBIn0vqin7WFRd40jyY+ju2UJEY1GkQvFIhIJlP4J7Eg8Ewx3X8vphI5F9VBiksKMTMUc6vjDtx1dt4EXDPm4+rC54lox02qrh15QNO0AHA+bmGEx4ErNE0bnVhdA+i6rvcAG4A4cNWo/RsK+4/0SHnRxrSQHhrivQuXcNviZfgmMVQoGHTvsGcypZ/sLk7PyKTpCIZYEquhrr6morGYyUEU5dhVhKKA5VgYlnmKvbyhqAqBQnW8TCZzmq2FEEIIMVMVU0RpCfBaXdf/7EUAuq5v1jTtPuA7mqa9CxgAPgM0At/CnZfzCeCHmqZ9DXgJbvW4fyzsn9M07bu46/704pbb/jpu789vC4f5kQdtTAuZ+DAKYDsOjjruDrvjRBWF2xYvpX4SbQjvDHd1A2DaNvX1tRWNxc6mUK08I28viqJg2iaGVfpKgpZjc1P7bFTTIDM4CB1jO4CFEEIIIYpLgjYyyYppJ/A24CvA3bjzjJ4ArtB1/QCApmnXA98G1gJdwMd1Xb9r1P6fw/1e/guI4PbeXK/rugGg63rPZNuYLjLxhFslwnEmVQInEAxxWZM7ItKxbRQZP11R8e4uABKWRSBQ2QLRVi6DYuZQVD/uy0zBtCxMy3QHzJaQ4zi8tqWNGp+P3EBfaQ8mhBBCiCmrmKulDwE/1zTNAp7lBIUDRpKX8dJ1fRi4tfBxouefAy49xf4W7oKtnzzFNpNuYzrIJYaJAvlJjnkevcaQncvhi0hVo0pK9h4hDGScys8nsLJpHCOLGqnFsmwUBQzbwHJs1BJXa7NsGwf3xZ1PVnfBDiGEEEJUTrG3jEO4Q8xORsZIValcYdK4MclrUX84hu04qIqCk8uBJEEVlerrJwzkqqAitGOZ2NkkaqwNy3J7grLm2OrzpWE7NlahuymXSpblmEIIIYSYeopJgu4ETODTwBFvwxGllk+5d8fNSd6RD4TCZG2LqM+Plc3gP3G1dFEm+eFBAIwqWWzRTAwSaHF7ZBRFIWOUp4CG7dhYhQVZzXS6LMcUQgghxNRTTBK0Anijrut/8joYUXpmxr0wNJXJXSwHQmFylk3U5/YujV2ESZRXOpelO5slF6uOktBWNkWwUBzBwS5vT1AhwTfSUh1OCCGEECdWzJXwLiB22q1EVeoLBPjG7h2sCUVPv/EpBAJBcrY7/yQbj3sRmpiE7eEwH9y8nt0N1bE4qFscIYuigFmm8tgAtm1j+tzRuFZGeoKEEEIIcWLFJEGfBb6sadp1mqZVdkESMWGDpsmawQG6onWTakdVfeQKk/Bl7kXlDQ8PA1Afm1xy6xV7pDiCquJglaU8Nrglsu3CkEA7K2tYCSGEEOLEihkO9xXcBU7vB9A0bezzjq7rla3RK04qXZgnEQxNvpDBVw7sZzgZ59ef/qdJtyUmZ2jInRNUH6uOAhWObWGlE6ixWeQdu3w9QY7NlsY67nrsCW48//yyHFMIIYQQU08xycrdnkchyiY0PMSljU20edJYGCsxfDSxEpVzQzzJ9SvPIlRFi9dayUGCbTamZbprBJWBbdtk6mJsTya43K58ufBS8/lUfD4VM5cjn0zhr51cD68QQggxU0w4CdJ1/Yvj2U7TNAV36Nz3dV3vnuhxRGnMjce5aclytmWTTHKpoKO9SRmZe1FxrTjUxmoYrpKeIHDXC1JtE9OxyJdpOJztOIRC7ryobHb6Fkaw83n8fhU1kyZzuIu+P/+Z/HCcuR//lCxcLIQQQoxDKYetqcDngT8CkgRVC8O9GLUDQSa7pMzldXXMDi7F2r4dXnLJ5GMTRXFsm2ih2l9NQ22FoznGyqXBzmPaJoZdnp4gB4dm2+bGtnYaBwbKcsxKGH7kIRJrnuHwnNns37eP83r7wDQZfvxRGq66ptLhCSGEEFWv1HN3qmDpRjGaYpqgqDiB8KRPzsJgiJfEovT39ngSmyhOPhHHVygLXddQPcOhrGwGTJO8ncdxJtvvOH4t2RxXzF/I/uHpWbXQNgwGHnwAa3iYXz72CI/19/Lq9tn8zdz5DD5wH/VXvAzFVz3DIoUQQohqJOMmZhjVsgBwApMvpWz73BzamsbDjqaC4S63ozVlmjTUVVHBRsfGyafJWuVZI+iosLtqlVqmeUjlltq0EWt4mIF8nqeGBljYNosHerpJmAZGby+pjRsqHaIQQghR9SQJmmF8I5PFQ5Nf3tQsJEF2rswXueJFEj1uEpS0Lfz+6uoBsPNZMvnyzhlTwu6Csb5Cwj/d9D7+CACrB/r48Gtezw9uvY0rzjqHR/p6ARh+enUlwxNCCCGmBEmCZhj/SBIUnPx6MpY/AIAj67FUVKrXvfjNlHHI2XgZtolhljdJViJuL6ffrr6fx2TZhkF2yxYA+iMRrjv3fBRF4QM3vYb1hSqNifXrsDLSOyuEEEKciiRBM4y/cF2ohmOTbssKuHfcFSM/6bZE8ZKpJF3ZDAml+i76TcfCMLMoSvmmB6pRNwkKVGFSOFlDmzfidxwG83muvvTyoz/XmkiEyy98CYezGVTbJrVlc4UjFUIIIaqbJEEziG3b/LJzP3fu3U2+pWPy7fkLQ+qM8pQ/Fid2pLaW2zZv4BFftc2BUbAch3wuQxlzIJQaNwkKlu+QZbPjwQcA2J3PsWrxkhc9d9OFL+GB/l5+dGAvO5PTsyiEEEII4RVJgmaQXC7LuuEhHunvRWlonXR7dtBdk8ZnTs+5F1PF8PAgAPWxyQ9x9JLi92MqNrlsoqw9Qb6o+3MIljPzKpNn9+1m7fAgakvLcT/TaCgEHXO4v+cI9z7xaEXiE0IIIaYKSYJmkHRhzoCiKASCky+M0NfQyt+ve57fBEtdaV2cyuCgmwTVVdFCqQCqP+D2BGVTKE75EmW1oZav7NzO1/ftKWtp7lLLZNL87Pln+epOnWXnnnfCba49ZxUADz54PzkpWCKEEEKc1ISTIE3THtA07S2app3yKlrXdQtYBGwqNjjhrVQqxcWNTVzU0ooyUiBhEvzhKEnLJCmTsCtqxd69fHXl2SxWA5UO5UUUfwATm1w2CXb5kqBQbZR1w0Os7++dVknQc889i2EYtDc3M7+17YTbnLNgIVpLKxeFwjz/m1+VOUIhhBBi6ijmFr4P+DkQ1zTtbuDHuq4/d6INdV3fP5nghLfS8TgfXbIcgO2WgT3JBRWDIbfnIZ1OTTo2UbyabJZZsRh7wpPv3fOS6g+Qt0zMfBafbaD4y5Ok+cPHZgNlsxmi0ckXAakGGx99mOZAkIuXrzjp8EJVVXnjkmWca9kcfOZpePstZY5SCCGEmBom3BOk6/rLgYXA/wdcA6zRNG2Lpmkf1zSt3eP4hIcy8eGjX9v+yU8bjwQCvGv+Il6t+nE86FkSxQkV1sOJ1FbXcDjFHyRjZHFsG8fIl21ekD/g56VNzVzfOotkT09ZjlkOs/fs4c5zz+ea+sZTbtcydx4ADckktvxeCiGEECdU1JwgXdc7dV3/sq7rK4DLgAeA9wAHNE27R9O0V3kZpPBGtpAE5R0H1MlPBwuEIryibRbnh8I4eZl/UCnhwoivaH1tZQMZQ/H5SZvuUEk7n0GhPEPTHBzePncB71ywiPThw2U5ZqmlUkk6CgnNrDlzT7ntcm0Fedum1udj15pnyhGeEEIIMeV4URhBKbQTKHzdAfxe07RNmqad5UH7wiO5RAIAr1b1CURqsApzLqyMLJhaCbaRJ1xIaOsaqysJsgMBsoabHNumUbbiCLZjky8kXNnE9CgVvXnNMzQHQ9iOQ/PsOafcNhQK01P4vdz16MPlCE8IIYSYcopKgjRNW6xp2uc1TdsJPAG8EvgesEDX9Qtxh8vZwC+9ClRM3rEkyJthScFwlExhKJYtxREqIleoDGfaNg2NdRWO5sVsnx+jkAQ5Zh4sE49eeqdkOTZGYejdyGt+qtv/3BoA4oqC4j/9VE6n3n0t5PbuKWlcQgghxFRVTHW41cBO4BPA08A1uq4vKwyPOwyg6/oh4HfAPC+DFZNjFgoYGB7NzQiGI2QLSVBmePg0W4tSGO7uAiBhmdRW1TpBCrbPR/5oT5CJYxllmRdk2zam6h7HSCVLfrxyiO/eBYAZHd85buxwe4vq0xlMs9oW0RVCCCEqr5ieoABwK9Ch6/otuq4/dpLt/gBcX2xgwntmYZ0gQ51cVbgRgUCIdKH0cTY+5EmbYmISQ0N0ZTP0mwY+D+Z5eUXx+zGxyZuFYZKOg5PPlqMjCMuxMQuvcSM19SsXOo5DYGgIgGhz87j2mT1/gfs5FGLbxg2lCk0IIYSYsoq5avou8Btd148bbK9pWrumaZ8A0HV9g67rayYboPBOr6ryn/t2synqzbApVVXJFeYeZOPTY+7FVDMUCXPb5g18f6i30qG8iOoPYuJgGMdmoNlGFsUpfbUy27ax/W4SNJL4T2Xd3V3MLgyBa2qdNa59/NEovzPzvGv9C6zdtL6E0QkhhBBTUzFJ0I+BxSd5bhXwz0VHI0qq37L4S18vnbWnLrE7EblCwS9JgipjcHAIgMbamsoGMoYacBdKzRvHCmY4pgF26Ydm2Y6NXUgarOzUn6um69v5fddhHk8nCTc3jXu/pgULSFoma9c+X8LohBBCiKlpXIulapr2J2Bl4b8K8AdN005UE3kWsNuj2ITHRhY1DQbDnrX5s6Fh+nZu49v/eKtnbYrxGx52CyM01FTTfCB3jaCcmcce1fNjG4ZbHKHEbMdmT30Nf1z9NNesWlXy45Xajh3beWqwn/oVK1DD418L6szZbint9evX4ThO2dZpEkIIIaaCcSVBwL8A7y58vRBYB4wdf2MBQ7g9RaIKhRMJzq2rp0H17mIoHwiSME1SWSmRXQmNmzby1ZVn0x2qriRI9QdIGy/uhXFsC9ss/XpSlm2Tqa9l7fAQq6bBYqG6vg2AJbNnT2i/hbX1/PW8BTT6/XR2HmTevPmlCE8IIYSYksaVBOm6/hTwFICmaQC367outVenmGWpFDcvX8nWpHeV3EIh9850JjP1515MRf54nPmxGOlgoNKhvJg/QNo4foiknctAiRMTB4dwdPq8LtN79nBmbR1LG8Y/FA4gEAzymlkdAGx94TlJgoQQQohRxtsTdJSu6+/wOghN05qALwOvAuqAjcCndF1/svD8NcDXgDOAA8AXdF2/e9T+YeAbwJuACHAP8EFd1/tGbTPpNqY61TRBUbEDIU9WyQVYGYlw9fyFBPTtcN0NHrUqxsuXc3tWApFQhSN5MSsQIJc+vtfHMQ0cy6DUCwbVKwpXNrfQMDBQ0uOUWiqV5ELgCu0M1PTE5jepgQAJVaHWduhavw5ed3Npgpymcp0HSTz/HIrfT92llxEYZ2U+IYQQU8N45wRZwKW6rj+raZoNheXYT8zRdX2iydXdQDvwNuAI8EHgQU3TzsO9WvoTboLy17iJ0s80TevVdX1kOfQ7gSuAm4Ec8J/Ab4GXFeJfMdk2pgPVNCEQxAmNf17B6cwNBrm2rZ2+7m7P2hTjFzDcOTbBWu/OqRfcNYKOHyJpm3kcywQlyKnfRianJW/w/kVL6Zri61ft3buX9sLva7S+fsL7W7EaSCTI7t/rdWjT2tAjD9Pzi/+GQvXLgT/dw4LPfZFgx8SGJAohhKhe401W/hnoHPW1Z1cvmqYtBa4DLtd1fXXhsQ8ANwBvxy22sFHX9X8q7LJd07TzcRdrfVjTtDnALcCrdF1/orD/WwFd07RLdV1/GviwB21Mef7CMCTHw/kjlj8Ipokjc4IqIuw4oChE66qnOpyi+rBU5ehCqaM5polj5lECwdLGUOgZUwuL+U5V+/buZnbYLWSixiZ+jmMtLZBIEEkkMAyDQKDKhk1WoeTGDfT8/GcADDY0EFZUWs+/gEB7R4UjE0II4aXxzgn64qivv+BxDH3AK4GjdVx1XXc0TXOARtzemT+M2ecvwB2apinAZYXHHhm1/w5N0w4BVwJPe9TGlBco3NVUwjHP2rSDYTDTkM+ffmPhKcc0iRYqftU0VFESFAhiOPYJkyBwsHMZlGBp41UibuIQsEvX21QOnbt2srxQ7tsXm/jvbWPrLJJ79zI/FGHXrh2sXHmm1yFOK3Yux+Effh+AB3q6+eHzz6AADc8/zWdntXHNNddVNkAhhBCemfCcIABN0xYDIV3Xt2maVg98CVgA/I+u6z+bSFu6rg8B945p/2ZgKXA/8LfAwTG7HQaiQDMwF+jTdX1sV8RhYF7h67ketFEUn8+r2TeT4zgOI/fe/bFaFK8qxIUikAbVNPD7q+N7HWvkHFTLufCKkXRLntuOQ2NzA6qHVf8mwx8MksbBMLOMrcqsKAq2mUO1LVS1dOfDF3N7ggKOU7Wvy/FIFIaxZf0+fIGJv10HGxsA6AiH2bJhHWefffbR56br78Vk7Pzl/0AqRXc2y/8l4rziumvZvHkLh7u6+ehHP8iXv/RVrjv/AsIeF5mQc1FdpJq8EDPDhP+qapp2I/C/wLeBjwHfw51Hswn4iaZpQV3Xf1hsQJqmvRS3zPbvdF3/k6ZpUdw5OqONJCth3ETmRLecs4XnOck2E22jKHV11TFXI5vNEipcdEYbGyHizXAkf00NDILPsmhs9K6HqRSq5Vx4ZXCoh8PZDApwyawmwuHSDjEbL38sxqBig2rjV33HPe+YBj7FJhD2br2qsfJ17msxqFD1r8tTMXt7IFKDEosRKeZ3NhLksKpi5vP07Nx+wp/FdPu9KFYul+Nf7/kd56YyJBob+c1v7ibZd4hUMsEPf/4bNqx+lpq772bvXx7m0h//F4rv+Nf2ZMm5EEKI8immJ+izwAPAFzVNawBeD3xF1/XPaZr2JeA2oKgkSNO01wK/AFbjzgcCyABjS1+NXD2lTvL8yDYpD9soSjyewbIqv1ZJf38/dx86SK3fzyWxJpyMN8PX7IA7v8hn2QwOTupHVTI+n0pdXaRqzoVXDqcNPrR5A8FAgCdtyHp0TicrFFNIZJOYxvHzcRRFwYeBlc9hEMAp0XA1Jer+eocUlYH+BEoJe51KxTRN/PEERGoI1taRKfL8Hlq5gk/f9SPOyGdf9Ds6XX8vivX979/JM1u3sqOpmd/9+EekB7oYHhwC4G/e+Friw3FCpoIzHGfP/Q/T9NLLTt3gBMi5qC719ZGS9lQLIapDMUnQucBrdF1PaJr2tkIbvyk892fgo8UEomna+4E7gP8BbtF1feQv/kFgbEme2UASGC4831zogcqP2eaQh20UxbJsTLPyf9SGh+M83t9HJBLlonANeHXxWZhfFHCcqvg+T6VazoVX+vr6AWiorcFx3CGP1cBRAyTzCU4cjsPIvCAnUINdoiQoUHOs+Ec+kSpqPk2l7d9/gMd6e+gzDG679KVF/6zmtbUDsGvXDjKZ3HHFEabb70UxhoeH+MEPvgfAJz/5aUJ+ONzXM+pnrvDXb349j915F69taWPnL3/BBS+51PM45FxUhyp5KxVClFgxtzoyHEuergeO6Lq+sfD/dmBoog1qmvZe4DvAd4G3jUlEHgeuGrPLNcBqXddt4Enc7+OKUe0tB+YU9vWqjSktlUoCEI56ezFo1TfzgU3r+Gp/j6ftitMbHBwEoLGKKsMB2AE/ufyJRpeO2iafRXFKV7ktWBvjjj07+erO7TglGLZUDvv27aEzm2FfJEywpbXodtqiMWLRKPl8nv1SKvuE7v3h93lX+2yuO+MsbrrhBgaOHMYes6hvfW0tTZdfhGnb1CYSDO/aWaFohRBCeKGYnqDVwMc0TWsE3gj8BEDTtAuAz+MmFONWSDbuAH4PfAWYpWnayNMZ3ORonaZpXy0c65W4C5peD6Dr+mFN034J/EDTtL/HHb72PeBRXdefKbTjRRtTWnJoiLPr6qmpa/C03VC0liO5HGYi7mm7Yhyee5Z/PeNs9gaqaxav5feTM069sKdtGvhsE5RASZYLCoZDrB5we8rS+Rx1JZx/VCr79rkJy4JZ7ZNryLL45PKVxAyD7Vu3sHTpcg+imz6y2Sz9Tz3JK5pbOG/ePHKZBImhEy+ye+HFF7Jt3TbOjkRZ+7O7uPqLXypztEIIIbxSTE/Qh3Grqf0C2IdbGQ7cxUhDwKcm2N4bgQDu3KKuMR936Lq+BXgNcBOwHngX8HZd1/8yqo1/AB7GTaQeBLYX2gXAizamumxfH59dvpJbm5o8bTcUcXuWEomEp+2K03MG+lkUjdEQrI6CCHDqNYJGc8w8WAZKicowqQEfwcLPZaq+Ng/v3s3VLa2cU98wqXYUv5+l/gDzIlEObd54+h3KLLVlMwe/9hX2/dOn6f313di5U792vPbwww9yRshNkpffeBPD/T2YhnHCbX0+H74zlgIQ3b+PfJljFUII4Z0J9wTpur5H07QzgDZd14+Meup1wDpd1yf0V0HX9S8DXz7NNvfjlss+2fMp4N2Fj5K1MZVlh4cA8HrqfDgS5eaOOTQEAqR7eoi2tXl8BHEyTsqd5K5USVU4cNcIyjs2ufypF891bNsdEheswSlBV5BtW6xqaSWUzZHs7IQ5cz0/RqnlDh7gvQuXkEskJ9WOoihkw2FqsllSe6trOFziuWfp+t5/HP1/vruLjL6duR//FGqZeu8e+7/f865IFBuInanRv18/5fYLX/oSUrt+S6Pfz5rf/por/upvyhKnEEIIbxVV/kTXdWdMAoSu689MNAES5ZMrDFfLKd5WvAmFo1zb0sb1be0kuiZVQ0JMkJp1Ew1fOHCaLctHDYQwscmfZjgcgJ3PoDqlmQRuOTavbmnlA4uXkt29qyTHKDVlyJ3zpXhQ1CHQ0AiAv7+/agpoGP19dP/4vwB4PpPhO3t2ETdNsvv3cegnPypLDEeOdKMWEkP/ggWYqkP6ND2H/lCQTW1NfHrbJv770b+cclshhBDVq5h1glqBfwNeBcSAseNZHF3Xi1qEVZSOkXTvJhsel/1UVR/pwoVseuDE4+hFafgNt18vNKoSWqWpgSBZK49ln77ogW0YYJug+D2fF2TbNmahIEJ+Cs5Xy2TS1BomAJFJDocDqGttJdfdRYfPR3d3Fx0dY4tllp+Tz5EMR9jf38fX9a04QHcuy+vaZ/PwA3/iq2+4mba2WSWN4f77/8Sq+noAWi6+hORQP5Zlnna/xddczp4HH2T3s09z6FAnc6ZgT6MQQsx0xSQr3wVeDfwS6ASknucUYKXdoVOGz/v8NFu4gM0U7lyL8ghZNigK0frqqQ6nBoKk8qfvBYJR84ICAc97JyzHxvK7yZWRqs71q07l0KFOOgrDwUK1dZNuL9TQQA5YGI2xfdvWqkiCNncd5p2PPEhUVbnqilfzqhv+ikNd+/jxL79FX38Pt912K3fd9cujc7tK4fG/PMSHa90kqOasM+gaPnKaPVwNtTHOW3Uua9et54EH7uXv//4fShajEEKI0ijmivhG4EO6rn/f62BE6Vhp98LU9Hs/dCpXmNyei0+9O+5TlWNZRAs/97rG2gpHc4zjD5DKji8ZducFZVCCMc/nBVm2hRUIQN7ESk1uTk0lHDx48GgS5KuZ/HA4X20dNlAfCLBp80auvublk25zMrLZLP/0/z6F4zisuuha3vamW1EUhbq6Rj7y/q/x1W/dxrZtW/jend/mA7d9rCQx9Pf3cWTHdnoXL2duRwdKSyOZ7t3j3v+GM8/gooE48YcfAkmChBBiyilmbJQB7PE6EFFihfkjlt/7u6r5wjwjYwoOO5qq7GyWrlyOuGHQ0NxQ6XCOsvwBcsapiyKM5s4L8n69INuxcULua93OjK9nqpocOrCPtmAIAF9s8j19is9HKhhkVyrJoQqvb2MbBo9/82skeo/Q1NjKW9/43hdVCWxtaec9b7mV9y1cwqJnnjlaKtxrjz/+KJ2ZDD9wTLQvf5VcOkk+O/7X7oqWZq5tbeNMx2GXrBkkhBBTTjFJ0O+At3kdiCit3bbJTw/u53Cj92Ps84UhdmZy6g07mqryqsJtm9bxrg0v0Nww+eFS3lCw/f6JJUFGvjAvyNtILNtGibhJBFOwjPHAvn34VRULUDyqkpZatYrPbNvM07tOXf2s1OIb1rFwzx7+ZcVZvObGvyYcihy3zfJlF3BZSyvLYzX84ptfK0kcjz3mFjW46qpr8cUiJIb6J7S/umA2NrAgGmP1/X8qQYRCCCFKqZjhcGuBf9E0bQnwDJAe87yj6/rtk45MeGpvNsNzR7p4W1M7xa89f2KGPwBY2GlJgsqlv9+9YAsHg0RD1VEiWw0EMbDJjXNOEIBj5HEsAyUQ9HRekIODEnGTByU/9ZKg3Ue6+KK+lVuuuoZWj9ZSWtjs/uYfPnyYeHyYpqZGT9qdqF33/pE6YGs2y8UvufbEG0VqyM1fhv/AThr372PXrp0sXbrMsxhM02Tz2ufxKwqXXXYFtpkjO9H3r1CIZCxCXSpDz7NrPItNCCFEeRTTE/TvQANwJfAJ4Asn+BBVJlnopQmEvK8ktilUwwc2rUNvL20lJ3FMf38fAE31tSVbcHSi1EAQk9OvETSa4zg4uQxqCb6HVGsz39mzixeqaDHZ8drb2cmWRJzQ3HmetRn1+5k9qx2forBjR2V6gxzLwr9/PwD2orPwn6JQi3Lm5QBc1tTCL378A0/j2LZtC5dFa/jReRfRvncPRi478SQICC1ZAEBbMklvb4+nMQohhCitYhZL9bbGsiiLhlyWpbEaIqr31eHMSC1HcjmGJzCeXkxO5rln+doZZ7NXqZ7ijGogRM42McyJ9bzY+Qx+x8LrMXFOcz1PDPThTLHhcJZlcfiwu+bWLA8qw41wLIt/mreAhjnz2bhlM5dccolnbY/X7scfJaooJEwD7crXn3Jbo3U+Rm094cQwqeefo6+vl5YWb/qx16x5mvPrGwirKsG6OrLpBEYRPYa+BXNg43bOrqvn8Uf/ws1veqsn8QkhhCi9SSU0mqbVa5q2QtO0kKZpPq+CEt57XbSWL688i9b0sOdth8Ju71LiNIsMCu8YPUdYGI3R4tF8ES+45bHHjo49PXdekAEe9waFo+7PJpmcWq/L7u4urmho4Nq2dhpU795WFZ+PmM+HX1Xp27rZs3YnYu/DfwZgnxqgrqH51BsrCurZlwFweWMT99zzB8/i2PTsM2g1blXF2nPPITlcXHl/u7mRvKpS4/ez4zFZOFUIIaaSopIgTdOu0jRtDTAAbAbOBH6hado3vAxOeKcwRRw16n055eZgiLfNmceyHhkOUi5WoRy5E/K+5HnRAiGS+YkPKbLNPI6ZR/V4RFwo5OeC+gaWTLGeoM7Og7yxYy7vmb8QPK5sZxUqzRmHD3va7nj5OjsBcOYuH9f26bkrcQCtppZH//B7T+aN5XI52LfPHYLZ0oqvoa6ooXAAqCrW7Fl0ZjLs2bbNbVsIIcSUMOEkSNO0a4AHgQzwSY6NYdkA3KZp2ke8C094wTDyRH3uqVZi9Z63XxcI8vqOOayQC4CyUQoXbUq4eua7WAE/2QkURTjKATub9rojiJDfzyeXreAtsVoc0/S28RI6tH8fraGR8tiTXyNotGiz2/tSk0piGHlP2z6d3du20uFze7bazr9qXPvYkVqUc17Cb3q62XPoAC+88Nyk49iwYR3nFH6uTRdehGnkyGUm3oM5Inj9y/hKz2Ge6+9l/fq1k45PCCFEeRTTE/QvwB90Xb8K+DcKSZCu618Gvga8y6vghDfi8TjRwgRkf633SZCvtgGAkLfrXYpT8BcSzlBNtQyHU7D8geKSIMA2cii2t4lKsP7Y+jpTaa2gwb3uMmw5QPG4qENtoULcgnCEPXvKu9zbU8+v4d3rX+DXlkOkefa49zOveB25884nYZrcd98fJx3Hs2ue5ty6BgBqz1tFPpshnyt+PqPl2Fyw6lwAnnnmqUnHJ4QQojyKSYJWAT8qfD32svdBYOEk4hElEB8cIKi6p9opQXU4f517dzmgKNj58t5dnqnCprvAaKTe++GNxSimPPZotpEDy/C00l2wJkrGcn9OZmrqlG/PHnKLIuSDQc8r//nr3Zsgc8MR9G1bPW37dJ5+ejVJyySy4oIJ7ZdO5bn6yusBeOihBzAMY1JxHH7+WeoCAaxAgJrly0knhiY9zO6sFcvxKwobJQkSQogpo5gkaBjoOMlz8wvPiyqS6Os7+rUdCJ1iy+IE6xqxCxcR1hS62JyqHNtmJJWtaaqOhVLVYGhSSZBjmjhGDsXDiUGhSIi05fYupQYmthBmRQ0OAODEvL9hoUYi5BXwqypdGzd43v7J5HI51q59HoDlS86d0L6OAwval3L9/IWc4wtMqrclmUzyrL6Nn3ceIHLFlaDYZFKTL5xxtuPwo1UXcmE6w+BgcUUWhBBClFcxSdD/4i6WeuGoxxxN0+YCnwEmP15BeCo94F5UZW0HVO8rnEdr6kkX7rinCxdwonTsbJbufI6EadDY7P3wxmKogRA5y8Awi+8JtHIpVLwr+a0GfKRGXpf9fafZujo4jkO4MHQv5GF57BGKohCvq2N1fx979u31vP2T2fDMaj61YDF/s2QZs1onvvZRbvsW3tnWzlvnzOP+SQyJW7v2OfqyWdYGAiz8q7/BMvLkPBgqGayvI+zzcU5dPc+ueXrS7QkhhCi9Yq6IPwX0AGuAA4XHfgnouMPjPu1NaMIrw/kcPzu4n8cKQ6i8FgiGjiZB8Z4jJTmGOMZQVT68aT3vXP8CTQ3V0xOUKKIy3Gh2Pg+W6dlyQbZjM3J5m5kiyfnw8BCtheIBdY1NJTmG7+xzuGPvLlbv2O5JtbXx2Pn4Y5xRW8flTa0oRdyISbUsxgkEaA2F6FzzNNki1yRbs+YZAF7ykovx+RSMfI5ctviiCCOsWc1YQGsoxJYnH590e0IIIUpvwn+NdF0fBC4G/hF4HHgI2Ah8ArhA1/Wpcct1BhnO57nnSBcvhCIlaV9RFDKFi6kpNexoiuov9GoE/H5qItVRGMEJBEnmkpNrw8jhWHm3dLEHLNsmVxhel50iQ5QOHjzIHXt38e3DnURmzSrJMebXNeBTfQwNDdHV1VWSY4yV2rkDgFxTcd+TrfoJnLEKgItitTz11JNFtdO39nkua2rmknPPR1VVcpkU5iTnGAHg95Ntcntls9u3li25FEIIUbxiSmRfCQR0Xf+Brutv03X9Fbquv1nX9X8HgpqmyZLZVSYed6dphSM1p9myeP+dSPKBTesYqquO4VnT2UAh0WxuqPN84nyxrECAbG5yw4ocx8HOpjz7nizHYoMK39mzi8H6Bk/aLLVDhw7Sn8+TqImhhkqT4AZ8PhbNnUt7KMyWzaVfNDWVStJU6LmJLFxZdDtmYS7RpU1NPPTAvRPef2Cgn3MNg9sWL2NlLoeiOKQSQ0XHM1ZoyULArQzU2XnQs3aFEEKURjHD4R4BTvaX7Dzgx8WHI0ohPzDAkliMlhJdVAGkwjGO5HIMpybXGyBOL7N6NV8742xe1dZe6VAAUHx+TJ9KNj/5YUV2PovieFMq27ItBurreGKgjz67NENBvTZy8TynpbVkx3Ach8+2dfDts1ex+4XSr2uzZfMmlkbddXnU2cuKbifdOA87GqXWH2Bo3doJD4l7/unVnFMojd166UuxTWNS6wON5cx2e7nOrK1nzdOrPWtXCCFEafjHs5GmaXcBI7NZFeBOTdPiJ9h0OdDtUWzCI809PXxl5dnszqUo1XKmkZhbqnl4eKhERxAjjJ5uFkZjDDjVUY5cDYTIODbZnBdJUA7MPIovMukhRZZtU1fvzpmaKq/L3O5dvHn2XBZGS9drqygKRjBAJG/Qv21byY4zYvezz3CB348B2A1tRbdjmA5Nqy4m+9QjvKSmlqeeeoJrrrlu3PsfePwxFqoqqUCA0Ny5WGbW2ySoqZ6cTyUCHHjmKXjz2zxrWwghhPfG2xP0G9zkZ2ScinKCDxt4BniHxzGKycq6w5TMoPflsUcsCUd465x5BPfsLtkxhMuMu/cf1EjpzudEqMEwOccsujz2aI5lYuezqB6UyrZsi5ZYjPPrG/AdnBrDk6K9vbxx9lwW2d5VyTsRtTBs1eoq/T2r4e1uohWP1oDqm1RbI0Piavw+HpzAkDjHcQgd2A+Asmw5Pp8PM58lX2SBhRNSFJJLF/LzzgM8uXGDzAsSQogqN66eIF3X7wHuAdA07RHgVl3XS38LUXhCzbn9P1bQ+3VHRsz3+bi8Yw6dPT0lO4ZwqWm3ClsgVh1FEXzBEKlcGue4tZOLY+dS+KP1TLZMnOXYzPWpvHrZCvrLVABgssLpNERjBOtKW/WvtqUVp6+PRsMglUoSKsEiyuAmH/2HD5Gqb8Rpm3hp7LHSsRbsW97Jlz74biIHD5DNZgmHT/97cGD/XlYWbgItePl1qKpCNpPCsrwZejmi7oqLeeA3vyWby7Fr1w6WLdM8bV8IIYR3iqkOd7UkQFOLv1D9yArHSnaMkbbVbKkG3IkRgbx7PqP1pRsyNRFOMEQ8N/kFJ0fY+RxYBnhQIMFX5w7T9JveXuyWQj6fp6HQe1Db0FjSY9U0twCwKBJjh66X7DhdXYf5n727efem9fhe+upJt5fJmCw+5yJmz55DJpNm9erxlaPecv991AUCZHBoOPNsFLwtijDCsS3OOfssAJ59do3n7QshhPDOuHqCRtM0LQL8E/AqIMbxiZSj6/oSD2ITHglaNvjBjtQwucEoJ2dFamDwWMIlSifq2KCo1FXJQqlWMEgm7t3cCtvI4xg51EgY25pc71KgULY4VOLhZV44fLiTjkKvRl0hSSkVf10dtuPQGAyybeN6zj7nvJIcZ9OmDQAsWbIcNeBNb9PQYIbrr7+R3/3sLp64/16uvfYVp92nd9NGlgJDrW0oPh+2ZXiySOqJXLB8KYE9+9j/zGp4+y0lOYYQQojJm3ASBNwBvBN4FFgPHi7xLkoiMjJMKVa6i2alZuRic2pU4Zqq7FyOsOLed2hqLW1vwXiMVIbL5Ca3UOpYdjaJGqmddDuBJndYWVhRcEwTxV/MW155HN65kxafH9tx8MVK12sLoPj9JAJ+6k2Lwa1bS3acTRvXA7B86RmetZlK5nhFYzPXnXMeD+/cSSaTIRI5+Rpopmnygw1r+Wk+x799699RFLDMHPlsiZIg0+Hqxct49HAXpmnir+LXnBBCzGTFvDvfDHxG1/V/9ToY4T3btokWLprVutJdNCu1btulWY5VjEj293Egk6bG52dZa1Olw0ENelcZbjQrn8VnGaAEmMxUo0Cj2+OhKgpWKoW/vjp6z05kYOcOWoAE0OIrVZ/tMZnmFh5a9wK9HhS0OJnYli185+xVpMLevTOkknkWnbmK3scf4/KGRp567C9ce8MrT7r9hg3rSCYTqHX1nHHJSwuLpObIlSgJii5dCHsOcEY0xratWzj7nHNLchwhhBCTU8w6QQHgWa8DEaWRTqf5fdchftd1CKWxNCvQAwQa3XVNgoqKnZN5QaXSn8vxsS0b+ejOrdREKl8YwReMkLUNT9YIGu3okDilmLeoYyL1NaQKk9+NwqLB1Sp7uBOAdJl6DuqXL+dXhzt5aoeOZXnfg2sYeepTKWaFwjQ1eLfukWXaGO2LSQeDxPx+Ou/94ym3f/rB+wC48sqr8Pl8blGEdBK7BN8zgD2rBQtoC4XY9MSjJTmGEEKIySvmCuMB4EavAxGlEY8P80DvEX7bc6SkPUGRxlmYhXkXqb6+kh1npuvpOQJAa1NDZQMpUENh4rkSLJDrONjZJIoyudG2kZooiUJRhESVVy58KpnkA5vW0dVa2vlAI2Y3NBIJhclmsxwolI/2kr59O0si7jyg4NwVnradiOcJv+wqALThOOmTJLiZvXt4+a7dfHjxMq65+trCow7pRAkT4oCf4Zjb8zW8fn3pjiOEEGJSirnl+CvgPzVNa8NdF+i4W8C6rv90soEJbyQSbtWuaKy0lcRCkShf2L2DoUyGH5oGk5/NIU5kJAlqa6yOYV12MEQi1V+Stq1cFp9lguIvfkicT+F/+3sxc3k+Gq6OdZVOpvNwJ0dyOeqaypME+VSVc+bPJ9/Tw671a1m0aLGn7esvPMvZwSAWYDS2e9p2OpVDe+UbWHf/vTQFAmy468dc+oEPHbfdgd/8GlVRsFWFS196BQCOlS/ZULgRvgVzYetOGoYGyefzBIPBkh5PCCHExBXTE/RroAm4BfgP4CdjPn7sSWTCE/HeHpbGaphTW9qLZkVRGAhF6cnn6B8cKOmxZrLo88/x9TPO5pISn8/xsoJBz4sijLCNHI6RndSQOMu22OFTeWKgj+EqLpPtOA4HCwu6dpRx3tLfNLbw6WUrGFq/zvO2+zZuBCARCoPf2yQgmzHJGg5dixYBULthHcbAi5PxzO5dKPp2bMfh8Jy5RCKRQlGEfMmKIoyILl0AwMqaGjaue6GkxxJCCFGcYnqCFnkexSiapn0auF7X9atGPbYKtyrdhUAv8E1d17896nkV+DzwLqABeAx4n67re71sYyrK7tvLl1eeRbdlU+rUpK6+kb6ew/T3y3C4UvENDjIvGiMRqfydZTUYIo9DOluC4XBwdEicGi6+X9G0LRoaGjjU2cnQ0KCHwXlroOcI726fzeFclra6Mia49bUwOIx9qNPzppWuwxCrwWydQ8Dz1mGoP8Nl73kfz9z2PuaEI+zesIEVV18DgJXJ0P3DHwDwWH8vl9/ytwAlL4owwmluJANEfX7WPP4oF158aUmPJ4QQYuKKWSx1/+k+ig1G07RbgS+NeawZ+DOwCzeB+SLwr5qmvWPUZp8FbgX+AXgp4AMe0DQt6FUbU1V2wE19curkJpiPx6q6Bt42Zx5ZfXvJjzVT+TPu6NNoQ+UXSvWFIuSwyGRL0xMEYOUyKFa+6IVTLdtidl0dF9Q3kNuzx+PovHN4y2Yub27hVbM6CAZKkTKcWGNHBwANmYynxREGBwdpLyz8Glm40rN2R0slc7S2trN57lw+u30zP/2zWwAhvX0bnV//KkbPEfryOe5Np7jssisBCkUREiUrinCUorBj2QL+YcMLPLxlU2mPJYQQoijj6gnSNO1HwO26ru8tfH0qjq7r75xIEJqmzQa+B1wN7Bjz9D8AeeA9uq6bwDZN05YBnwJ+XEhSPgp8Utf1PxXaewtwGLec9y89amNKyhcmDOf9pb+wWhkMcG7HHPYcOlTyY81UUcsGVaWhCtYIUkMRkvk0ll26YWa2kcPJZ1EjoaIWTjVti7NDYS5ZtoK+Kk7OB3btpAMYdBzmFpnwFWPOosX0bN3OvFCYPfp2lp1xpiftbt68kV3JJDWhME0d3s41GpFO5Umn87zh3e/hVw89wKF77+Htb7+FpqeeIndgPynb5uu7dvC6d7/36Fo9CjbpRLwk8YzVfs4ZDP3yV2zevJF0OkU0Wtq1n4QQQkzMeLsHrgbqCl9fU/j/qT4m6gLcJOUcYM2Y564AHiskLyP+AizXNG0WsAqoBR4eeVLX9SFgLXClh21MSWahMIIRKP2kcDPkVoKyUiUaHjXDWfk8NYUevZaO8kyePxUlGGEoU+Ky0w5YmQRqkWsym5aJWu8Op1NSpeuxmqxsYThaJlDehTVDtTUM2zZ+VWXfU0941u6mTRv4aed+HpzVgREtzXpWtu0wPJDhrLPO5qabXg3Apz71MYzmJnbV1vKxzesZDod585vfemwfyyCX8bac+8k01tfS0d6OaZqsXSvzgoQQotqM6y+uruuLRn290OsgdF2/B7gHQNO0sU/PBcaOJzhc+Dyv8DzAwRNsM8/DNori85V+GNqpOIU/+FYoQkAt7R1mJ1oLyQHUTAa/v7Lf92gj56DS52Ky+na509NytsXijhbUEp/P0zHDQdLx5IRGqimFjd3P4+vZcYwsipVH9YXBmVhvkI1NsLkJOo8QyOWq6nX5IoViInYkUrbzOnKceChIvWGS3L7Ns5/P5s1uUYQli1eW9PtJJXPYlsOnP/3/WLfuBQ4e3M9r/vmzR5//9hdup77evX+nKO6NBCOfLdvP+A3LltFQ28CBv/wZ/1VXnXS76fIeNV2UsTNWCFFB5b3tWJwoMHb1zWzhc7jwPCfZZuQWpBdtFKWuzruV0ovhyxe+pVgtkRJPps80NEPPfgKGQWNj9Q39qPS5mKydhw8AMGRZ1NVV9uer+INkAj7yZhp/wDfh/X0Tuti2UMws4WhNUVcnsdltsGEbEdumoSF6NBGrJpF0GlCINDSU/Pd0rFBrCxzuJtrf78nvrW3b9OzYTkBRWL7sTMKR0g3FtUwb23JYvHged9/9S973vvexefNmIpEI//Iv/8LNN7/2RdsPHBlCUSzCZfoZr2ioZ1bG4IW9e8b1s53q71FCCDGVTIUkKAOMHcsVLnxOFZ6nsE1mzDYj41+8aKMo8XgGy5rcgo+T4cvlwefHDMXIZPIlPZZV4+aLEdtmcLB6hh75fCp1dZGKn4vJOnjgELl0inwwQLbE5/J0/DVRUoZBPDGMZY9/krmiKPj8KpZp40ygV8dJxnFCNVjOxBOuYJs7dDAA9Hf144tU14Wm4zg02A6oCrVNzSX/PR2hqgqhUIDWBQu5c/Vq9HSKa7v6CYfDp9/5FPbs2c1tHXNpnr8YJ+eQzRgeRXxifT0JQhEfzc0d/OIXv6Gzs5Pm5iZisZoXvQ/5/T6Gh4bIpLKnaM1b4SULoauPeabF3r2dNDSceC7fdHmPmi7q6yOoZSgmJISorKmQBB0EZo95bOT/h+Bo9dXZwO4x22z0sI2iWJaNaVbuj9qTw0NszOVov+B6QnaxK06Oj9o4C4A6VSWXM/D5Jn7BWkqVPheTtSuf59tbN3HT5S/h5SU+l6ejBiMM5xKY1kSLIrhxO44zoZFtVjaDP5/DCURxJvi9x1obSVsmUZ+fXP8AwfaOCe1faoOHOvEDluMwq302dpnPbUvrLDaaBv2ZNJs2bea8886fVHubnnmGZaEwjuOQrmku+fczNJChraMWq3Cc2bPd0c1jf9cVxSE1PFTWn29k0TzMJ56jLRTmhYce4mWvu/mU20/196jpYoKjboUQU9RUuNXxOHCFpmmjr6ivAXRd13uADUAcuGrkSU3TGoDzC/t61caU9EjXIe4+dBC7fX7JjxVocS8uQ6qPwe7ukh9vpunqcqvudTRXfqFUO1yGogijOLblFkgoYiRbtKGGIcPtjUj1HPE4ssnrHOjnb9Y9x+0H9hCrQC+VoiisnO8u7jkyl2cyjhQWXo0HQ5hK6YedJRM5shnztPN8HDNf8vWBjhMI0FcYLnrkmafKe2whhBCnNBWSoB/hVqb7oaZpZ2ia9nfAh4GvAOi6ngO+i7vuz2s0TTsH+BVu789vPWxjyslkMmQy7h/9aKz0F86+cJR/OXiAWzeupXe4ehemnKoOFUqPtzfWnWbLElMUzGCQZLo8pYZHWNl0UWsG+UN+ft/bwx17dhIvQ6n4idq3by+W4xA+yVCpcjino4Mb29pRnn160m3ZnW59GbOlfdJtjUc+Z5IYzp6yqICqKhhGrmyV4UbLtbcBEDvcVfZjCyGEOLmqT4IKPTXXAxpuyerPAx/Xdf2uUZt9Dvgh8F/AasAErtd13fCqjaloqK+X5bEaOqJRQuHy3GGO1zbQl8/T1S1/8L321nSGr59xNvNjlS2K4AtFyWGTyiTKelzbyOLk0hOu7GXaFntDAVYP9NNXgYvg09m/fx8Ac5qaKxbDGU2tvGP+Qs5Mpie1kGgmk6Y55xZjiSwqzSKpJzI8mDnlMDdVVTByWfK58s0HGlF/zgoAFgcCdO/bW/bjCyGEOLGqmxOk6/rfneCx54BLT7GPBXyy8HGybSbdxlQzvHcPX1p5FnHTpLNMFbEaW2axd9fWo70WwhuZRII2nx81GiA6u62isfgiMdJWnkyuzOtBFdYM8kdqsSdw/8awTNpmzeLAgQN0V+EwzcVbt3DrwiUE6yo3zHHRkqX06tuJ+XzsfeYpllx2RVHtbN6wnqWFRUGD81dSrjtIiXiWXMYkGPadMBlSFIV0YmhCxTi8Em1vo9M06EklaVrzNO0LF51+JyGEECVX9T1BoniJwgVfoox/98+qqeWv5szD3qGX76AzwMGtm1AVhZxt09xauWFTAEo4Sn+mMsMdrWwax5jYOi+mbbK4fRYX1DeS3ra1hNFNnGOaLMzluaqllY7G0iwqOh6hYJCDhSp/h54sfhrk3qdXE/L5yCgK2Wj5Xqe5rEkinjn5kDjHJJMqb8/laI/NauCrO3We2ra5YjEIIYR4MUmCprFsfx8AmTKW+lys+nhdxxxifb1lO+ZM0K27SeWwY1e8dKsVDhNPla8owmiObWOn46jK+DN7w7LQIlE+uUyjY++eEkY3cdnuLvyKQtoyaZ9Vnjk0J5OvLcw121v8kK11u3dx18F9dM1ZgGWVt9dlqP/kQ+IsM0+2gkMhly9dDMCaNc9UpDdKCCHE8SQJmsaMIfdufcZXvlGPdq1791dNV9/ci6ksfmA/ALlgZUewqsEwOQWS6aGKxWBlUmDkUMbZG2TaJuHZboIRzo1dD7myejZvAqAzk6W9gj1BAE3z3QqSrYaBmZr4Ol+O4/D05g386Ug3gUtf7nV4p+UOiTOO6yX0+dz5QLlMmSvDjaItXYzf5yPf18eetc9XLA4hhBDHSBI0jdlxt3pXNjB2ndjSURrc+Sohc6Lrx4hTyff0AKDEJreQ5WT5ozWk7DypbOWGFtmmgZ0df7lswzKpW+Re4Nc4Dk4VvTYHd7o9fP2OXfF1tZYtWsLhbAafotC5+okJ73/gwD6GhoYIBoPM7ij/vJdc1iQ+dPyQOFVVyWWSmEblFhgOh0K886yzufPc8+n+n19VLA4hhBDHSBI0jSlJ90I1F6kt2zEDrXMAqFdV4vHyllCezvwJ92cZbizfuTwRJVJDf3qw4kN6zHQCxcqhjKPgh2mbNC2cR962URWF/EB/GSIcn/yhTgCyofLdqDiZcDBIJ2DYNns3rp/w/ltXP8mVzS1cvPIsrArV1Bzsz2CZL35tKtgkq6Bkf2Sxm4g39PZiZ8tfpU4IIcSLSRI0jQWz7tAfs6aMVafqWwBoCgQ5XFgvREyO4zgcHB6iM5OmcU5LBSNRMMNhhlKVv6C08znsTJLxTo+qbWmkN+/+PvTt3lXCyCYmNOj+LAN1FV77qSA9q513bXiBPxzcP+F9U88/x/sXLeUNjc1kM5XpbUsMZ8mm8y/qDbLMPNn0xIf3eW3JRefRlc0QUBQOP/ZIpcMRQogZT5KgaezJbJrfdx0i39RRtmOa0Vosx8GvqhzZUz0Xm1PZ4cOH+MGeXXxC38q8MxZXLA5fOEpWcUhUQRIEYKXjKFZ+fL1BmCQK2/Xu2lnq0MbFymRIGSambdPQXr7f0VNZtVwjY1msWfM0uQnOn6otFEMJLNYq1lNoGBaD/cfWklJVBTOfrcgiqWM1NtSz1XEr8B159C8VjkYIIYQkQdPYX7q7+OWhg6htc8t3UFUlobgvq2q52Jzqtm3bAsCyBXMJ+CtXGMEfqyVuZkhny7w+0ElYuSx2JjGu3qCskcWMRQFIHDxQ4sjGRwmF+OjWTbxj/fMsrJIkaNGsdlobGslms7zw1JPj3q9zh86CQBCA5gteVqrwxmVoMI2Rt1CUwnygbJpclQw/Mxe678Wx3l5MGS4shBAVJUnQNGVZFv2FEtm1deWtOvX47MX844a1bOjtKetxpyt9q5sEaQvnVTQOJ1pDb7KvojGMNd7eoLxlMjxvLnfs2ckG2y5TdKfW2XmQTDaD4/Mxp6m50uEA7qKiVy/T+PLKs6i5+xc44/xZ7XzwPlRFodu2UWoqOWQTkvEcqXgOv9+HqjokhweA6ihLrV1wLrtSSVSg74ni12MSQggxeZIETVP9Bw+wPBqjORgiWs45QYB/3jIGjDy7ZDicJ2q2buEn513IVaFoxWJQ/AHywQDDiYGKxXAibm9Q/LS9QYZlUHfmGawe6Gdb16HyBHcau3e5leEWtLZVvDLcaGcuXkJ7KEzYskhv3zauffLb3O2Ss9rJpCtUFaHAth36epM4joNt5skkK1fJcKzZ7bPYaLjDDLsfkyFxQghRSZIETVMDLzzPP684k9uWamW/wGpqc3ss9u7dg10ld92nMt/QEFGfn+aGylWG88fqSNh54qnqSoIAzOQwipk95bpBectgwaIFAOzZs7tcoZ2U4zg0/+Y3fEE7gzPbZlU6nBc5f8kyni1UUzvwp3tOu72RSjKnsAZP7aqXYJqV/50fHsyQy5qYRrYqiiKM5luxhP/Yu5vvD1RXr6oQQsw0kgRNU5nC3e5BxrmYioeaVD9/PX8hr2pspqvrcNmPP5309vbQUphj1Ta3rWJxqLE6epJ9WLZVsRhOxjbyWKlhfMrJhzzlLYN5ixdwVm0d51k2g52VnRdkdHcRzudZGquho8qSoEgoxEBdofd4h46VOHVPytaH/4wKdOdzzD73itIHOA65rEkmZZDLpMhlK7dI6olcdMlFPNrfy1PPP8uRI12VDkcIIWYsSYKmKaOwuGaijAuljvCbeV7T1s51rbPYvVuKI0zGpvXrmB+JABBrL+/crhGKz08+HGYgUb13rs1UHCefRj3JuDjDMojVxnjn4qX83fyF7H1qdZkjfLH0Dnco3I5kguVz51c0lhM564wz2Z1K4nMcBp947JTbPrxrB+/ZuJbnZs3CNKpj7g1ALpsn3t8L46geWE4tTY2sXLYEgPvu/b+qWrxXCCFmEkmCpilleBiAdLT864/k69yJ0Y3BIPt0vezHn052PfMUflUlr4C/tjJzgvw19SQcg6EqToIcy8RKDKI6Bifq/DQsk5xlkI7FABgY51yXUhnctAGA7akkyzpmVzSWE7lw6XIeG3KHxPXe+0fsk5TLdhyHRx75CwnT5IyrX0E6lS9nmCelqgqOnWNoYPhouexqctlLLuDSxiaWPPY4Aw89WOlwhBBiRpIkaJoKFcbom/Xlr9RkB0OkfW4p597tW8t+/OlkSHcv1s262LjWwykFtaae7mQPllXdd6zNTBInk8B3kovetJHGP8ctUex0VXYYUmbHDgCG/H7CwWBFYzmRoN9P3eIlHMll8WWzJJ595oTbbX7mKQ4e3E8oFOKcMy/ENCo/HwggEgtiWzn6uvuwLeeEiXElXXLBedSHI8zyB+i570/SGySEEBUgSdA0ZKXThEcKErRUZv2RXF0jAIn9+ypy/OkgHh8mVpiP0TCvMvNG1ECIbDhE/9AUKHfuOBiJARQjc8K7/8l8mlnnngtAfSZTuQU9+/vwp9OYtk20tbUiMYzHqy68mJ8ePMA3du1gYO7xa43ljxzB/8Mf8LnlK7np2usw89VT4S4WC5JJDJGIp8nnjKrrDQqHQ6grFjOQz+NLpRh++qlKhySEEDOOJEHTUL67G4AhI0+spUJDbQoV4qKZzNH1isTErF37AntSKbblstTPq0xRhEBdE4NGmqEqWx/oZGwjj5kcQMU67u5/zsihXX0ltuPQ4Pezf8umisSY3uKu+7QnnWLp3Mqu/XQqs5uaCM2by5qhAe6887sves6xLA796Af4ANNxuPE1N5OqkqFwAJGowtBAH47jkErkcaqjg+pFrnnZ5fypUBih+3//MO41mYQQQnhDkqBpyNfUyPcP7OO3hw9R31iZO835pnYA5kejbNy4oSIxTHWrVz/Bw309bFnQTnRBBXqCFAW7tp7DQ4cr1mtSDDOVwE4PHzcsLmvmCDXUMpLO7XykMuu0OLU1rI8P8+zQAGdUYVGE0W654moUReHBB+9jw+OP0v2TH5LauoWu79+JsXsXWcviiaCfM888n0yVJEHhSACFHPHBIQAyGYNc1kD1VVdvUHtbK90tDSRNE7uvj74nK1usQwghZhpJgqahuGnyUE83D/b1UltfmZXo041uEtQeCrNp0/qKxDCV2bbNI488BMBVF5xVkRgCNQ0kVJveoSlWxtdxMOL9kEui+o69xeXMPIZtkGt3X5vxrZsrEt5OM8+Xd2zjqXSKeS3VOxwOYPGsdl512eUA9P7w+8SffIJD3/w6yReex3Qcvrt3F2/+x/cRH8pi29WRKNfUhcil46ST7vpAjuOQTOSxLapubtCNN7z8aG/Q7p/8TOYGCSFEGUkSNA0dOnQQgPrGloqtRJ9p6uCJcy/hw5s3sGHDuorEMJVt2LCeYDLBvIYGzl+2oCIxqA3NdCaOkMtX1zor4+GYJma8D3XUIqpZI0feyrPgta/nM9s28/UXniWVSpY9tqefehKACxYvq1ixi4n4+6uupb2tjTt36mw38mSDQbakU3xR30J01XlccfnVJIazlQ7zqFhMZbDvxXPYsmmDbMY4aQn1Slm+ZBF7G2sYMvJY/f0kNqyvdEhCCDFjVNdfBDFpjuMw/OTjLI/V0NJawdK7Ph+tZ16Eg3tBn0yW/2JzKnv44Qe4Ze4CvrF0BakN28t+fH+sjmTAR3f/wbIf2ytWNoMZ78PnmCiKgmlbpPMZVrz0peSbm8nm8zz66CNljSm1ZTNbCmsUnb9kaVmPXazaQIivve+DDIXDfG7DWm556nG+uHUTdsdsbr/9K+QyBqnEiUtol1sk6g6FG+obeNHjDg7JeBbLtKsu8Xztq27gB/v38s87ttFdG6t0OEIIMWNIEjTNmAP9tK9bzxe0M2itZBIExBpmsWDBIkzT5Omnn6xoLFNJPp/n/j/dw4raWgACTTVlj8HX2MahVC/J9HDZj+0lMxXHSvTjUyxQFIayCRRV4aabXg3Ab35zd9licUyTw9+/k4/WNrA8VsP5i6dGEgQwNxjhV3d+n3e841287GVX87733cZPfvILmpqaGBxIY5rVMam/rj5MOjFAOpU67rlcziSVyFVdErRk4QJ8SxeyOT7M5z77GZxqrOIghBDTkL/SAQhvZXbvAmBfJk3dwuPL2paT0dXFBxct5bDfz+OPP8p1191Q0XimioceeoB20yTq8+OLRQi21Jf1+IHaBuJBlc5De8t63FIxEoMoqoq/ppmUkcHE4PXXXY99/73MSWfYvGkjZ519TsnjSG3dgpNKMWwY+Bsbaawpf3JbLDufJ5ZM8YnbPkSu8GdDUcDIW8QHq2MonOpTiEbhwM7uk26TTOQIhf2EIn53/aAq8Tdvei0bt2xj85Yt/OFnP+LGK68lvHBRpcMSQohpTXqCppncnt0A7EwmaK5wT5CFwrxkggvqG1mz+nEsy6poPFOB4zj86le/4Px6d52lyMKO8t65VlSUplkciHeRzMTLd9xSchyM4X7s5AB5I4VhG7TNmcuVrbNYWVvH/337m2Wpfpd42h0Gt3qgjyvPLH3S5bV09xHy3d0EAu48Q5/PRzqZJxGvjiSoviGCaSQZ6O0/6TaWZRMfzmKZTlX1CDXW1/PXb3otK2tqWfzIY+z/1v+HmZgmv39CCFGlJAmaZtKFleh3pJI0tVU2CTJqG7Fq6vCrKh2mxerVT1Q0nqngmWeeYuOGdVzS5Fb1i8xtKevxQ83t9CoGB4/sLutxS81xHPLDfcQHOslbaYK1MWKXXArAWYkE//e/vyvp8Y2BfhLPPwfA4/19vOzMs0t6vFJwTJPEnj0oqQSqqqDg0NeTrIqqcIoCdfV++rs7sU5TYS2bMUjGcygKVVUt7hVXX07d4vn053MoqRSd3/sPWTtICCFKSJKgacQcGiJ3YD8A2zJZmlo6KhuQopCZtxyACxsa+d3vfl3ZeKqc4zh85zvfYkVNLS3BIGooSKSMi6T6IjVk6+rY3bOLvFEdE9095ThkBo8wMHiIoJJn0ZvfgqWqrKip5dE7v1PSKoZDD/8ZHIfN8WHa5y+gtb68Qxy9ku3tJ71vHyEfpFMGQwPpSocEQF19BOwUvV1HxrV9Mp4llcyjKtXzJ1BVVd71d2/nroFe8rZNfvt2Dv/8p5UOSwghpq3q+QsgJi21eSMAu1JJIm1zUNXKlMcebWD2MgAuamjiiccf5ciRk4/Xn+l++9tfs3XrZq5scxdGjS6di+IvzzlU/AHUWXPYm+ymZ+BQWY5ZEY5Db99Bsv2HCIctZr3mNQDc0jGX2z/8AZ555inPD2kODTFYWJj1niNdvP7il3p+jHKK796LlYgz0Jcil638ujaKotDQFKC/+xC57PiG5tmOw/Bghmwm/6K1pCotFo3wV++6hZ90u7+Dqcce5cBv5eaREEKUQvW8+4tJy+huKeW1Q4O0z11S4WhcqY5FOKEwTcEgZ9XU8l//9b1Kh1SVDh3q5Jvf/FcAmt5wM7Pf9GpqV84vz8FVlWDHAjrNJHsOlb8cd7kNJwdImmlSezcz67KzCS9aSMzv56Nz5/HFD7+Pr33tywwNDXp2vNzhQ+QMg12pJHZjE6sWLfas7UoIxKIM98Tp29+LqlZ+PFljcxTbjNPd2Tmh/SzLZmggQzZtVFUiNKdjFte+4238T4+7iGr2vnvZ+L3/KMu8NSGEmEmq551fTNrc97yHXznwaH8v7XOr40LL8flJLFsFwCtaZ/H73/8PBwpD9oQrnU7xoQ/dSjqd5rzzLuBv/urNRBe3lqcqnKoS6lhEl2qw/eAmTMso/TErLJ4aJGHmUH0+Unu3MOfmlxNsbyMajpAxTX7xi59yww1Xc/vtn+O5557BPM0ck9O5d8tGbl33HP++bw//eMMrq2pC/kQpqkqoYzZdnYMM7e+EXBbVV7nvJxT2U1+v0LV/L/lcfsL7G4bF0ECabLrQI1Qlp2benNlc8vd/xYOJIQA2//l+vvC5T9PVdbiygQkhxDQiJbKnCUWBZMbg3m2byOTzzJ6/rNIhHdWz5DzqOncwFPBj7t7Bl770ef7zP39Udau3V0I2m+UjH/kAO3fuYGlbO1//l6/gxI9gxAdOv/MkqYEQgY75dJFn8/4NZHLHr60yHTmOzeF4N61183AGezCTvbS/+jLmBGr4evqtfPO7d7JD387Bh//Me377a2rq6lm16jxWrTofTVvJokWLaW/vOO3rNzU0yE9/+d98//vuXfw3X3UtyzoqW6xksmJz55C0gnTv7sTMGeR6egi1taKGI2UvOa36FGZ1xIgPHKC3q/hhtoZhMdCXpr7RIRoLggpOFRR7mNXWSv17/paHfnsPP9mzi/yuHfzpvj9y/Stu5NWveT0XXXQxPl/lhzwLIcRUpUgX+zGapqnA54F3AQ3AY8D7dF0vZsGUPcCiwcFUyRcSNBNxgtEwD6/ZyIdv/WtCkRif/OrdVTEnaERtxMecBot3/M3NZDIZ3v/+D/Gud/1jWY7t96s0NsYox7mYiP7+Pj7+8Q+xdu3z1EVjfP/qlxO2TNpuvARfrLT3JwJ1TdjNbXTmh9l+cBO5fKakxxuhKOAP+DANi0q+9UTDNVy8+GJiPT2YyaGjj/tjdQSbO9jw4FMEH32SAcPgyf5enhkcYFcqeXS7cDjC/PnzaW2dRVvbLFpaWgiFQgSDQZLJJNae3Vza38+de3bxwvAQb7j0Mt57fXX1AqmqQiQSJJPJj6vCW7i1BWXWPHZu6WK459giuv5IhFBrC2oshuUAZTivqqowe14tVr6PHRs3YuQn3gs0lqIo1NSGqKkL4Q/4sG27LN8LuN9POBIke5JzsWvvfn5//8Ns2LSZTy9bQXc2y6OZNMsvuJCXvOQSzjzzLBYtWkIoFCpPwNNcU1MMn0/dC1THkAohRElIEjSKpmmfB94P/B3QCXwNWAScpev6RP/KliUJckyTQ//2DbKHOnk02sR3//Qrlp91MX/1ns+X7JjFWjyngd0bH+E/v/LPHMnl+H//7wu86U1vLflxqy0JchyHJ554jNtv/yy9vb001tTw7ze8Gv++vajhEB1vfBn+mkhJju2P1eFrbCMeVNkzeJCDR3Zj2+Vbv6lakiCApXPP5IxYB/mDO2FMKeLU7i4GV2/CSh9LDjOKwq5clrU9R3i4p5vsmH1iPh/La2q5pqWVixvdEuc7shkyZ5zJ1VVYEnsiSVBkVitq2xz27RmkZ1/P8W0FAoSaGvHX1+H4A257JTq/gaCP9tk1WPl+dm/ZTCbtbYW6YNBPTV2ISDSAz6di207J5+OcLgka0btFZ86aDQAYts2TA3082tfL9mQC1edj/vwFzJ49l46ODtrbO2htbaOhoYH6+mMfdXV1+P0yCORUJAkSYmaQJKhA07Qg0Ad8Utf1OwuPNQCHgXfquv7LCTZZ8iTIGByk5yc/JLVlM04gyFd7+lm3ews33PweLrnqtSU55mT4VIWVdi/GT+/k+YE+fnRgHze88a188IMfIRIpzUU/VE8SZFkWq1c/zs9//jPWrHGrkF2vreRdi5fi9Pai+Hy03nQJkTlerg2k4AtH8cfqcGpqSfoUDqd6Odizl1QFFkOtpiQoGAixavFFzDZUsl37wXnxa8OxLNL7e8ge6CG95xB2/th8qdinPkln/wDd3d00PPM0bX39+EZ9Qw6QX7SQWWedW7UTL8eTBPnCIaKzZ2NEGzi4Z4Ce/ccnQKP5Y1GCDQ34olEIBLAd74aW+XwqDU0RautU0sPd7NX1cVeDmygFCIUDRGuChMJ+/H4VFAWnRAnReJMgAOVwD4GN2+DwsXLgw6bJpuEh7jnSxd706Ye1BoNBwuEI4XC48OF+HYlEjv7f7/ejqip+vx+fz4eq+vD5fPj9o792t/H5/Pj9vqPbuV+PPOdDUZTCZxVVVVBVX+GzevRrRTm2rbufWtj+2Ie7zYu/HrvNi7c/0XFf/PWxbZSjPbWSBAkxM0gSVKBp2kuANYCm6/qOUY8/CWzSdf29E2xyT2JoaNEv/v174LgXf+rI6nyKQr6+HkUBRVEJpVL4LMu9WFJAVVQUKLwpQ66lldraOhYtWkz94CD5zoNk9+witWEDjmXh+ANsXnUNt//nF1FUlY/c/lNq65q8+tF4qnnnWtqeuRfFtjFtm63JOIdRWHHxJZx3xVW0XHgRSmGuhTEwgJ09+TCtYHvH0W3NoSHszInvCPt8KrNWLGYonsU0bcyhIaxkwn3y6Mv/2MVNYFY7JmBZJvn+foyhQWzbxrIsbMvCMk0sy3I/mpoxFQXLMrGGBnGGhwvP2+7+uRw9R7rpPHSQBzesp6dQdezG9tm8ZdESooZ7Ye2LRWi57kLC7RM8b4qCovrcD58fxe9H9QdRA0GcYBgzFCSLTdzMciR+hL6hbtLZxMSO4aFqSoIAaqL1nDXvHGYRxB7sx0zHcczji0M4lkWuZ4h8zzBmPMOcN96IL1aPGq1j3/fuIrFpCwDB1lZqtOVEFizAyOaxRxVVePH361T8+z9REqQG/PhCIfyxKP7aOpxILcNJi85d3SQHkqdpsUBR8EfCbhuxGEogCD4fqCoOhZ+D47i/eif5GSgK+PwqwaCfUMhPJOonFLIx8gmOdO6n53B32RYSDQR8BEN+wpEAgaAPn08pXLQrhe/h2PfiUFwP2ESSoBHKkT4Cezth9z4oFIVIvPJGDqk+urq7Ce/axfyhYQZNg75slqFMmuFMmoxlkbFsNsSHSFtuL3BzMEhLMITlOFiOgz3yPRUcyWXJFX7etX4/Df7A0eecMZ/78rmj28Z8PuoDAUYb/bofNPJHe1QjPt+L2h1ryDDIFHqtw6pKYyB40m2HTePo9xZSVZpOsW3cNEgd3dZHWyTMbx9+mDnz5kkSJMQ0J33ix8wtfD445vHDwLxiGgxkc5z17LPHPZ6xLP523XNH//+ZZStYVd9wwjZsx+GtL6w5+v9PrzyX82LHek32Nq/gD+e8m00PfxuA8NKr+J1zFQyPbalKtJ3DnCuv4FWb7mJx/1bOqWvgHIBt2xjcto3XfeVOAoteSrBtOX8/+Dzn928+aVOffeXPyAfcn8Ub1/6Uiw785aTbvnnx2xk2DexsnDcPruca4+QTqd+/cR09eXex0LfPmc9rTzGZ/eNbNnAw4yZqN3fM4S1zjn+pzAXOB9YYBn2RBmrOexMtc+YT3fsncv4wz82/loe1m0lTBx4uo3T8pVQVZB3VZgg47N79Pe1sHQWYVfjYcOzh+o4PoM4ySYXqyPsLv5vjyTMrPT3IAdKFV8VILGbhIwXOkVGvF/UcmGgHpeO2c7xTfePOsX+dka+dY187DqCV/y9XvvBxAsrRf170RXksAt98gwVDO1nev4WH7NdjKQGYBa8a+DlzBu9hjs8PsRr3Y5Svn3sbh0KNOPk0Lz/8OK/ueeakh/lq7Bz2qFEc2+K63GHebJ58LbGvGw1stfw4tsnL1Ax/Fz75wsvfGrJYm7PAsbkkpPDexpPPafrOkUGeiifBsTk3Fuajc2addNvvHTjAw/29YFusqKnl/y1fedJtf3xgH/f1uG+8C6NRbl9xJs2nSJqEENOHJEHHRAufx75jZ4GiulVsIO64fxSdUTcIs0oAZflN7vAbx2E4nKLXshiZUzzqTz+Oo6DMfylOegAGdrNpoId0Nsb+bJYNTeeyv/blsOFJ7LW/AiB/0Qc5GK/01dWpHVSX8sy5tzM71cnKvnUsPvgwjcN7qLPzpPZugr3uH+PBBYuINxR+9KN60Ubs/+6NZC0DLIO+1noSdTWAc9xliIND3+8+wnDhDv/wnHkMt7Qx+l7n6PNjj3o8aZn05XKFdkYuGAvnFAUr3AwBB1Q/yVANhw2LkQshZyReNYDjC2Ld8E2URdeTVv08nO5mW+25bGk8C8MXcl91J79W8Eh1vy6mqoO0ul+Up7aEEGME6YyuYnV01YveQ/7Y8nI2hpfRmBugIT9I1EwTtjJEzAxhK8uh6HJ6Iu0A9KUH6Ersx+dYqI6Nz3F7MEfeMRIr306ybikAyc77Gd77q6PHGfuukjnvI+QazwQg2/UXEjvvOrqNMuZGjHHlbVgtFwCQP7KalH7ydeSsaz+G0nYpAHbf86S2fvuk29rXfx1/x1XufwY2ktz8/4169sW9dfbL/gnfrJeBY6PEd5Lc8e/Y8l4pxIwgw+EKNE27GfgNENV1PTPq8V8DIV3XJzrJZk/OZNGz+7LjHt5wOvlclg3PPcGDv/spW9Y9fdzz1776bbzzI7d7cqxycxyH7kP72fTcE+zevpGug3s4fHAv6WTx81ZC4QjRmjqisVpq6+sJR2qIxuqI1tQSrakjVlNX+Oz+/+hjsVqC4fDRce9qYWy7mDxVVYjFwqRS3v1eiOLIuageci6qy0sWhYgEZE6QENOd9AQdMzIMbjawe9Tjs4GNxTQY8sNZzZaHk/H9rHr11fztq69m27Yt/OY3v+LZZ59BVVVuuunVvPOd78Hvn9zCjpV0ZtNcrj37bcDbjj5mGHmGhoYYHh4il8thGAaGYWBZFn6/v/AROPp1OBympqaGWKyGQGEs+uQLI9iFDzFZ7rmAwUEvfy9EMeRcVA85F9UlqEqpcSFmAkmCjtkAxIGrKCRBhepw5wPfrVhUJ7Fy5Zl89rP/XOkwSi4QCNLa2kZra1ulQxFCCCGEENOEJEEFuq7nNE37LvCvmqb1AvuAr+P2EP22krEJIYQQQgghvCNJ0It9Dvdn8l9ABHgcuF7X9eNr5gohhBBCCCGmJEmCRtF13QI+WfgQQgghhBBCTENS8koIIYQQQggxo0gSJIQQQgghhJhRJAkSQgghhBBCzCiSBAkhhBBCCCFmFEmChBBCCCGEEDOKJEFCCCGEEEKIGUWSICGEEEIIIcSMIkmQEEIIIYQQYkaRJEgIIYQQQggxo0gSJIQQQgghhJhRFMdxKh3DdJUBwpZlVzoOAfh8KnIuqoOci+oh56J6yLmoHqqqoChKFohUOhYhROlIElQ6Q0AI6KpwHEIIIYQYvw4gBzRUOA4hRAlJEiSEEEIIIYSYUWROkBBCCCGEEGJGkSRICCGEEEIIMaNIEiSEEEIIIYSYUSQJEkIIIYQQQswokgQJIYQQQgghZhRJgoQQQgghhBAziiRBQgghhBBCiBlFkiAhhBBCCCHEjCJJkBBCCCGEEGJGkSRICCGEEEIIMaNIEiSEEEIIIYSYUSQJEkIIIYQQQswo/koHMJ1omvZp4Hpd168a9dgq4A7gQqAX+Kau69+uSIAzyEnOxauBzwErgT7gf4DP6bqeqUiQM8SJzsWY538AXKfr+sJyxjUTneT3ogP4JnAjYAH3A7fput5XkSBnkJOcj/Nxz8cFwCDwC9z3qXxFgpzGNE1rAr4MvAqoAzYCn9J1/cnC89cAXwPOAA4AX9B1/e4KhSuE8Jj0BHlE07RbgS+NeawZ+DOwCzcJ+iLwr5qmvaP8Ec4cJzkXVwC/L3ycB7wXeCvw72UPcAY50bkY8/zrgHeVLaAZ7CS/FyHc96j5wNXATcAq4Kfljm+mOcXfjAeBbbjvU+8G3jF2O+GZu4GXAm/D/Ru9HnhQc60A/oR7U+B84L+An2madm2FYhVCeEx6giZJ07TZwPdwLyB2jHn6H4A88B5d101gm6Zpy4BPAT8ua6AzwGnOxXuAR3Rd/3Lh/zs1TfsM8ENN096r63qujKFOe6c5FyPbdADfBx4FFpUtuBnmNOfibcBCYImu60cK238E+A9N02p1XU+UM9aZ4DTn4wqgGfhE4We/S9O0nwM3AJ8oa6DTnKZpS4HrgMt1XV9deOwDuD/rtwOzgI26rv9TYZfthV66TwAPVyBkIYTHpCdo8i7ATXTOAdaMee4K4LFCAjTiL8ByTdNmlSm+meRU5+IbwMfGPGYDAaC29KHNOKc6F2iapgB3AT8DHitvaDPOqc7F9cDDIwkQgK7rD+i6vkQSoJI51fnoKXx+r6ZpPk3TFuL2zh33OyQmrQ94JfD8yAO6rjuAAzTi/v0em+z8Bbi88P4lhJjipCdoknRdvwe4B0DTtLFPzwU2jXnscOHzPOAIwjOnOhe6rq8b/X9N0wLAR4DnZe6D907zewHwYaADeDXw6fJFNvOc5lxowOOapn0W+FvcmwIP4PZEDJUxzBnjNO9TT2ma9iXgdty5Kj7cC+/3lznMaa/w+r539GOapt0MLMUdAve3wMExux0Gori9dfJ3Q4gpTnqCSisKjB1mlS18Dpc5FlGgaZoftwfiTODWCocz42iadg7weeDtMgyx4upwL/bOBf4Kdwjv5cD/yt3u8tM0rQ63cMu/Ay8B3gQsxx02KkpI07SX4g5T/52u639C/n4LMe1JT1BpZYDQmMdG3jxTZY5FAJqm1QK/Bq4C3qDr+nOVjWhm0TQtjFvt6ku6rm+sdDwCA0gCb9N13QDQNO1vgWdxJ4rL70d5/SvQqOv6Gwv/X6tp2iDwkKZp39J1fX3lQpu+NE17Le770mrc+UAgf7+FmPakJ6i0DgKzxzw28v9DZY5lxitMxH8CuBS3LO29p9lFeO9i3B64L2ialtQ0LQl8Bphf+P8VlQ1vxukE9JEEqGBL4bMUqyi/Kzg+8Xym8HlZmWOZETRNez/wO9whiq/SdX2kt+dkf7+TwHD5IhRClIokQaX1OHCFpmm+UY9dg3vR0XOSfUQJaJrWiDu2vhW4Qtf1xysc0kz1LO7F3Lm4pZhXAf+JO9Z+FaMmKYuyeAw4V9O0yKjHzi583lWBeGa6TtyCCaON/P+EVRZF8TRNey/wHeC7uL2ho9diehx3xMBo1wCrdV23yxOhEKKUZDhcaf0It5zmDzVN+xruGO8PA/9Y0ahmpm8Bi3HLn/ZqmtY+6rleXdetyoQ1sxQWpn3RxbWmaQOAqeu6XHSX33/iTrr/haZp/wQ0FB57RNf1tZUMbIb6FnCfpmm3Az8BFgD/AfxJ1/UNlQxsutE0bTnuQua/B74CzBpVqCKDmxyt0zTtq7jn4pW4c7SuL3uwQoiSkJ6gEir09lyPW4FpLe5k8I/run5XRQObYQo9cW8Bgri9QV1jPuZVLjohKqdQGfEK3Kpwz+IOCXoWeEMl45qpdF1/AHgV7vo163FvpN2L+/4lvPVG3Nf96zn+b8Iduq5vAV6DW6J8Pe6izm/Xdf0vFYlWCOE5xXGcSscghBBCCCGEEGUjPUFCCCGEEEKIGUWSICGEEEIIIcSMIkmQEEIIIYQQYkaRJEgIIYQQQggxo0gSJIQQQgghhJhRJAkSQgghhBBCzCiSBAkhhBBCCCFmFEmChBBTkqZpSqVjEEIIIcTUJEmQEGLK0TTtNcBdha+v0jTN0TTtqspGNXmF7+MLlY5DCCGEmO78lQ5ACCGK8JFRX68FLgW2VigWL10KdFY6CCGEEGK6kyRICDGl6boeB56pdBxe0HV9WnwfQgghRLVTHMepdAxCCDFumqY9Crxs1ENXA48AV+u6/mhhONlbgU8DtwNLge3AewEHuAM4B9gN3Kbr+sOj2j4L+CpwZeGhh4GP6rq+Z4IxOoXjXQK8HrCA/wY+Cfwz8He4w5F/D7xf1/XsqP2+qOv6FwrD+x4BXl7Y73IgjjsM8DO6rlsTiUkIIYQQx8icICHEVHMrsK7wcSlQd4Jt5gHfAP4FeBPQCPwG+CXwX8DrAAW4W9O0CICmacuBp4A24G+BdwKLgdWaprUVEefXgCxuEnQX8IFCzPOBtwPfLhzjA6dp5+fAE8CrgF8AnwDeVUQ8QgghhCiQJEgIMaXour4Vt0ckXhg+Fj/BZlHgVl3Xf6nr+j3AfwCzgdt1Xf+BrusPAJ8DWgCtsM/ngTTwcl3Xf6/r+v/g9jJFgI8XEepWXdf/Udf1vwAfA1JAEHi7rusP6rr+RWAzcNlp2vmBruu367r+F13XPwLsxU2IhBBCCFEkmRMkhJiunhr19ZHC5zWjHusvfG4ofL4WeBRIa5o28t4Yx+2FuW4yx9d13dI0rQ94Qdd1c0wMDWN3HOPpMf/vBGJFxCOEEEKIAkmChBDTUqFgwlipU+zSDLyl8DFWbxEhTPT4J5Me838b6cUXQgghJkWSICGEcA0BD+HOJRrLPMFjQgghhJiiJAkSQkxFFuDzuM3HgDOA9SND1jRNU3ALE+wE1nt8PCGEEEJUiCRBQoipaAi4VNO0a4B6j9r8Z9z5N3/UNO1O3Mpu78GtJPdGj44hhBBCiCog48qFEFPRdwEDuA+3etuk6bq+EbgCdy2hn+GW1O4AXqfr+u+8OIYQQgghqoMsliqEEEIIIYSYUWQ4nBBCjIOmaSrj6D0fUwJbCCGEEFVIhsMJIcT4/Ah3CN7pPoQQQghR5aQnSAghxucLuHORhBBCCDHFyZwgIYQQQgghxIwiw+GEEEIIIYQQM4okQUIIIYQQQogZRZIgIYQQQgghxIwiSZAQQgghhBBiRpEkSAghhBBCCDGjSBIkhBBCCCGEmFEkCRJCCCGEEELMKP8/n9jKescWq3UAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "import hplc.quant\n", + "chrom = hplc.quant.Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "peaks = chrom.fit_peaks()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks.head()\n", + "scores = chrom.assess_fit(tol=0.05)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence).\n", + "3. Clipping of the chromatogram into \"peak windows\" which contain at least one \n", + "peak. Regions of the chromatogram which are stacked with heavily overlapping signals\n", + "are grouped into single windows. \n", + "4. For a window with $N$ peaks, a mixture of $N$ skew-normal distributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "5. Given best-fit parameters for each distribution, the expected signal of the \n", + "compound across the entire observation window is computed. The integrated signal \n", + "over the entire peak is computed and stored.\n", + "6. The estimated mixture of all compounds is computed given the parameter estimates \n", + "of each distribution. \n", + "7. The quality of the chromatogram reconstruction is computed and each window \n", + "is graded.\n", + "\n", + "The following notebooks will cover how each of these steps is achieved." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.12" + }, + "orig_nbformat": 4 + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/_static/basic.css b/_static/basic.css new file mode 100644 index 0000000..30fee9d --- /dev/null +++ b/_static/basic.css @@ -0,0 +1,925 @@ +/* + * basic.css + * ~~~~~~~~~ + * + * Sphinx stylesheet -- basic theme. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ + +/* -- main layout ----------------------------------------------------------- */ + +div.clearer { + clear: both; +} + +div.section::after { + display: block; + content: ''; + clear: left; +} + +/* -- relbar ---------------------------------------------------------------- */ + +div.related { + width: 100%; + font-size: 90%; +} + +div.related h3 { + display: none; +} + +div.related ul { + margin: 0; + padding: 0 0 0 10px; + list-style: none; +} + +div.related li { + display: inline; +} + +div.related li.right { + float: right; + margin-right: 5px; +} + +/* -- sidebar --------------------------------------------------------------- */ + +div.sphinxsidebarwrapper { + padding: 10px 5px 0 10px; +} + +div.sphinxsidebar { + float: left; + width: 230px; + margin-left: -100%; + font-size: 90%; + word-wrap: break-word; + overflow-wrap : break-word; +} + +div.sphinxsidebar ul { + list-style: none; +} + +div.sphinxsidebar ul ul, +div.sphinxsidebar ul.want-points { + margin-left: 20px; + list-style: square; +} + +div.sphinxsidebar ul ul { + margin-top: 0; + margin-bottom: 0; +} + +div.sphinxsidebar form { + margin-top: 10px; +} + +div.sphinxsidebar input { + border: 1px solid #98dbcc; + font-family: sans-serif; + font-size: 1em; +} + +div.sphinxsidebar #searchbox form.search { + overflow: hidden; +} + +div.sphinxsidebar #searchbox input[type="text"] { + float: left; + width: 80%; + padding: 0.25em; + box-sizing: border-box; +} + +div.sphinxsidebar #searchbox input[type="submit"] { + float: left; + width: 20%; + border-left: none; + padding: 0.25em; + box-sizing: border-box; +} + + +img { + border: 0; + max-width: 100%; +} + +/* -- search page ----------------------------------------------------------- */ + +ul.search { + margin: 10px 0 0 20px; + padding: 0; +} + +ul.search li { + padding: 5px 0 5px 20px; + background-image: url(file.png); + background-repeat: no-repeat; + background-position: 0 7px; +} + +ul.search li a { + font-weight: bold; +} + +ul.search li p.context { + color: #888; + margin: 2px 0 0 30px; + text-align: left; +} + +ul.keywordmatches li.goodmatch a { + font-weight: bold; +} + +/* -- index page ------------------------------------------------------------ */ + +table.contentstable { + width: 90%; + margin-left: auto; + margin-right: auto; +} + +table.contentstable p.biglink { + line-height: 150%; +} + +a.biglink { + font-size: 1.3em; +} + +span.linkdescr { + font-style: italic; + padding-top: 5px; + font-size: 90%; +} + +/* -- general index --------------------------------------------------------- */ + +table.indextable { + width: 100%; +} + +table.indextable td { + text-align: left; + vertical-align: top; +} + +table.indextable ul { + margin-top: 0; + margin-bottom: 0; + list-style-type: none; +} + +table.indextable > tbody > tr > td > ul { + padding-left: 0em; +} + +table.indextable tr.pcap { + height: 10px; +} + +table.indextable tr.cap { + margin-top: 10px; + background-color: #f2f2f2; +} + +img.toggler { + margin-right: 3px; + margin-top: 3px; + cursor: pointer; +} + +div.modindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +div.genindex-jumpbox { + border-top: 1px solid #ddd; + border-bottom: 1px solid #ddd; + margin: 1em 0 1em 0; + padding: 0.4em; +} + +/* -- domain module index --------------------------------------------------- */ + +table.modindextable td { + padding: 2px; + border-collapse: collapse; +} + +/* -- general body styles --------------------------------------------------- */ + +div.body { + min-width: 360px; + max-width: 800px; +} + +div.body p, div.body dd, div.body li, div.body blockquote { + -moz-hyphens: auto; + -ms-hyphens: auto; + -webkit-hyphens: auto; + hyphens: auto; +} + +a.headerlink { + visibility: hidden; +} + +a:visited { + color: #551A8B; +} + +h1:hover > a.headerlink, +h2:hover > a.headerlink, +h3:hover > a.headerlink, +h4:hover > a.headerlink, +h5:hover > a.headerlink, +h6:hover > a.headerlink, +dt:hover > a.headerlink, +caption:hover > a.headerlink, +p.caption:hover > a.headerlink, +div.code-block-caption:hover > a.headerlink { + visibility: visible; +} + +div.body p.caption { + text-align: inherit; +} + +div.body td { + text-align: left; +} + +.first { + margin-top: 0 !important; +} + +p.rubric { + margin-top: 30px; + font-weight: bold; +} + +img.align-left, figure.align-left, .figure.align-left, object.align-left { + clear: left; + float: left; + margin-right: 1em; +} + +img.align-right, figure.align-right, .figure.align-right, object.align-right { + clear: right; + float: right; + margin-left: 1em; +} + +img.align-center, figure.align-center, .figure.align-center, object.align-center { + display: block; + margin-left: auto; + margin-right: auto; +} + +img.align-default, figure.align-default, .figure.align-default { + display: block; + margin-left: auto; + margin-right: auto; +} + +.align-left { + text-align: left; +} + +.align-center { + text-align: center; +} + +.align-default { + text-align: center; +} + +.align-right { + text-align: right; +} + +/* -- sidebars -------------------------------------------------------------- */ + +div.sidebar, +aside.sidebar { + margin: 0 0 0.5em 1em; + border: 1px solid #ddb; + padding: 7px; + background-color: #ffe; + width: 40%; + float: right; + clear: right; + overflow-x: auto; +} + +p.sidebar-title { + font-weight: bold; +} + +nav.contents, +aside.topic, +div.admonition, div.topic, blockquote { + clear: left; +} + +/* -- topics ---------------------------------------------------------------- */ + +nav.contents, +aside.topic, +div.topic { + border: 1px solid #ccc; + padding: 7px; + margin: 10px 0 10px 0; +} + +p.topic-title { + font-size: 1.1em; + font-weight: bold; + margin-top: 10px; +} + +/* -- admonitions ----------------------------------------------------------- */ + +div.admonition { + margin-top: 10px; + margin-bottom: 10px; + padding: 7px; +} + +div.admonition dt { + font-weight: bold; +} + +p.admonition-title { + margin: 0px 10px 5px 0px; + font-weight: bold; +} + +div.body p.centered { + text-align: center; + margin-top: 25px; +} + +/* -- content of sidebars/topics/admonitions -------------------------------- */ + +div.sidebar > :last-child, +aside.sidebar > :last-child, +nav.contents > :last-child, +aside.topic > :last-child, +div.topic > :last-child, +div.admonition > :last-child { + margin-bottom: 0; +} + +div.sidebar::after, +aside.sidebar::after, +nav.contents::after, +aside.topic::after, +div.topic::after, +div.admonition::after, +blockquote::after { + display: block; + content: ''; + clear: both; +} + +/* -- tables ---------------------------------------------------------------- */ + +table.docutils { + margin-top: 10px; + margin-bottom: 10px; + border: 0; + border-collapse: collapse; +} + +table.align-center { + margin-left: auto; + margin-right: auto; +} + +table.align-default { + margin-left: auto; + margin-right: auto; +} + +table caption span.caption-number { + font-style: italic; +} + +table caption span.caption-text { +} + +table.docutils td, table.docutils th { + padding: 1px 8px 1px 5px; + border-top: 0; + border-left: 0; + border-right: 0; + border-bottom: 1px solid #aaa; +} + +th { + text-align: left; + padding-right: 5px; +} + +table.citation { + border-left: solid 1px gray; + margin-left: 1px; +} + +table.citation td { + border-bottom: none; +} + +th > :first-child, +td > :first-child { + margin-top: 0px; +} + +th > :last-child, +td > :last-child { + margin-bottom: 0px; +} + +/* -- figures --------------------------------------------------------------- */ + +div.figure, figure { + margin: 0.5em; + padding: 0.5em; +} + +div.figure p.caption, figcaption { + padding: 0.3em; +} + +div.figure p.caption span.caption-number, +figcaption span.caption-number { + font-style: italic; +} + +div.figure p.caption span.caption-text, +figcaption span.caption-text { +} + +/* -- field list styles ----------------------------------------------------- */ + +table.field-list td, table.field-list th { + border: 0 !important; +} + +.field-list ul { + margin: 0; + padding-left: 1em; +} + +.field-list p { + margin: 0; +} + +.field-name { + -moz-hyphens: manual; + -ms-hyphens: manual; + -webkit-hyphens: manual; + hyphens: manual; +} + +/* -- hlist styles ---------------------------------------------------------- */ + +table.hlist { + margin: 1em 0; +} + +table.hlist td { + vertical-align: top; +} + +/* -- object description styles --------------------------------------------- */ + +.sig { + font-family: 'Consolas', 'Menlo', 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', monospace; +} + +.sig-name, code.descname { + background-color: transparent; + font-weight: bold; +} + +.sig-name { + font-size: 1.1em; +} + +code.descname { + font-size: 1.2em; +} + +.sig-prename, code.descclassname { + background-color: transparent; +} + +.optional { + font-size: 1.3em; +} + +.sig-paren { + font-size: larger; +} + +.sig-param.n { + font-style: italic; +} + +/* C++ specific styling */ + +.sig-inline.c-texpr, +.sig-inline.cpp-texpr { + font-family: unset; +} + +.sig.c .k, .sig.c .kt, +.sig.cpp .k, .sig.cpp .kt { + color: #0033B3; +} + +.sig.c .m, +.sig.cpp .m { + color: #1750EB; +} + +.sig.c .s, .sig.c .sc, +.sig.cpp .s, .sig.cpp .sc { + color: #067D17; +} + + +/* -- other body styles ----------------------------------------------------- */ + +ol.arabic { + list-style: decimal; +} + +ol.loweralpha { + list-style: lower-alpha; +} + +ol.upperalpha { + list-style: upper-alpha; +} + +ol.lowerroman { + list-style: lower-roman; +} + +ol.upperroman { + list-style: upper-roman; +} + +:not(li) > ol > li:first-child > :first-child, +:not(li) > ul > li:first-child > :first-child { + margin-top: 0px; +} + +:not(li) > ol > li:last-child > :last-child, +:not(li) > ul > li:last-child > :last-child { + margin-bottom: 0px; +} + +ol.simple ol p, +ol.simple ul p, +ul.simple ol p, +ul.simple ul p { + margin-top: 0; +} + +ol.simple > li:not(:first-child) > p, +ul.simple > li:not(:first-child) > p { + margin-top: 0; +} + +ol.simple p, +ul.simple p { + margin-bottom: 0; +} + +aside.footnote > span, +div.citation > span { + float: left; +} +aside.footnote > span:last-of-type, +div.citation > span:last-of-type { + padding-right: 0.5em; +} +aside.footnote > p { + margin-left: 2em; +} +div.citation > p { + margin-left: 4em; +} +aside.footnote > p:last-of-type, +div.citation > p:last-of-type { + margin-bottom: 0em; +} +aside.footnote > p:last-of-type:after, +div.citation > p:last-of-type:after { + content: ""; + clear: both; +} + +dl.field-list { + display: grid; + grid-template-columns: fit-content(30%) auto; +} + +dl.field-list > dt { + font-weight: bold; + word-break: break-word; + padding-left: 0.5em; + padding-right: 5px; +} + +dl.field-list > dd { + padding-left: 0.5em; + margin-top: 0em; + margin-left: 0em; + margin-bottom: 0em; +} + +dl { + margin-bottom: 15px; +} + +dd > :first-child { + margin-top: 0px; +} + +dd ul, dd table { + margin-bottom: 10px; +} + +dd { + margin-top: 3px; + margin-bottom: 10px; + margin-left: 30px; +} + +.sig dd { + margin-top: 0px; + margin-bottom: 0px; +} + +.sig dl { + margin-top: 0px; + margin-bottom: 0px; +} + +dl > dd:last-child, +dl > dd:last-child > :last-child { + margin-bottom: 0; +} + +dt:target, span.highlighted { + background-color: #fbe54e; +} + +rect.highlighted { + fill: #fbe54e; +} + +dl.glossary dt { + font-weight: bold; + font-size: 1.1em; +} + +.versionmodified { + font-style: italic; +} + +.system-message { + background-color: #fda; + padding: 5px; + border: 3px solid red; +} + +.footnote:target { + background-color: #ffa; +} + +.line-block { + display: block; + margin-top: 1em; + margin-bottom: 1em; +} + +.line-block .line-block { + margin-top: 0; + margin-bottom: 0; + margin-left: 1.5em; +} + +.guilabel, .menuselection { + font-family: sans-serif; +} + +.accelerator { + text-decoration: underline; +} + +.classifier { + font-style: oblique; +} + +.classifier:before { + font-style: normal; + margin: 0 0.5em; + content: ":"; + display: inline-block; +} + +abbr, acronym { + border-bottom: dotted 1px; + cursor: help; +} + +.translated { + background-color: rgba(207, 255, 207, 0.2) +} + +.untranslated { + background-color: rgba(255, 207, 207, 0.2) +} + +/* -- code displays --------------------------------------------------------- */ + +pre { + overflow: auto; + overflow-y: hidden; /* fixes display issues on Chrome browsers */ +} + +pre, div[class*="highlight-"] { + clear: both; +} + +span.pre { + -moz-hyphens: none; + -ms-hyphens: none; + -webkit-hyphens: none; + hyphens: none; + white-space: nowrap; +} + +div[class*="highlight-"] { + margin: 1em 0; +} + +td.linenos pre { + border: 0; + background-color: transparent; + color: #aaa; +} + +table.highlighttable { + display: block; +} + +table.highlighttable tbody { + display: block; +} + +table.highlighttable tr { + display: flex; +} + +table.highlighttable td { + margin: 0; + padding: 0; +} + +table.highlighttable td.linenos { + padding-right: 0.5em; +} + +table.highlighttable td.code { + flex: 1; + overflow: hidden; +} + +.highlight .hll { + display: block; +} + +div.highlight pre, +table.highlighttable pre { + margin: 0; +} + +div.code-block-caption + div { + margin-top: 0; +} + +div.code-block-caption { + margin-top: 1em; + padding: 2px 5px; + font-size: small; +} + +div.code-block-caption code { + background-color: transparent; +} + +table.highlighttable td.linenos, +span.linenos, +div.highlight span.gp { /* gp: Generic.Prompt */ + user-select: none; + -webkit-user-select: text; /* Safari fallback only */ + -webkit-user-select: none; /* Chrome/Safari */ + -moz-user-select: none; /* Firefox */ + -ms-user-select: none; /* IE10+ */ +} + +div.code-block-caption span.caption-number { + padding: 0.1em 0.3em; + font-style: italic; +} + +div.code-block-caption span.caption-text { +} + +div.literal-block-wrapper { + margin: 1em 0; +} + +code.xref, a code { + background-color: transparent; + font-weight: bold; +} + +h1 code, h2 code, h3 code, h4 code, h5 code, h6 code { + background-color: transparent; +} + +.viewcode-link { + float: right; +} + +.viewcode-back { + float: right; + font-family: sans-serif; +} + +div.viewcode-block:target { + margin: -1px -10px; + padding: 0 10px; +} + +/* -- math display ---------------------------------------------------------- */ + +img.math { + vertical-align: middle; +} + +div.body div.math p { + text-align: center; +} + +span.eqno { + float: right; +} + +span.eqno a.headerlink { + position: absolute; + z-index: 1; +} + +div.math:hover a.headerlink { + visibility: visible; +} + +/* -- printout stylesheet --------------------------------------------------- */ + +@media print { + div.document, + div.documentwrapper, + div.bodywrapper { + margin: 0 !important; + width: 100%; + } + + div.sphinxsidebar, + div.related, + div.footer, + #top-link { + display: none; + } +} \ No newline at end of file diff --git a/_static/css/badge_only.css b/_static/css/badge_only.css new file mode 100644 index 0000000..c718cee --- /dev/null +++ b/_static/css/badge_only.css @@ -0,0 +1 @@ +.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}@font-face{font-family:FontAwesome;font-style:normal;font-weight:400;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#FontAwesome) format("svg")}.fa:before{font-family:FontAwesome;font-style:normal;font-weight:400;line-height:1}.fa:before,a .fa{text-decoration:inherit}.fa:before,a .fa,li .fa{display:inline-block}li .fa-large:before{width:1.875em}ul.fas{list-style-type:none;margin-left:2em;text-indent:-.8em}ul.fas li .fa{width:.8em}ul.fas li .fa-large:before{vertical-align:baseline}.fa-book:before,.icon-book:before{content:"\f02d"}.fa-caret-down:before,.icon-caret-down:before{content:"\f0d7"}.fa-caret-up:before,.icon-caret-up:before{content:"\f0d8"}.fa-caret-left:before,.icon-caret-left:before{content:"\f0d9"}.fa-caret-right:before,.icon-caret-right:before{content:"\f0da"}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60}.rst-versions .rst-current-version:after{clear:both;content:"";display:block}.rst-versions .rst-current-version .fa{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}} \ No newline at end of file diff --git a/_static/css/custom.css b/_static/css/custom.css new file mode 100644 index 0000000..013aa6c --- /dev/null +++ b/_static/css/custom.css @@ -0,0 +1,13 @@ +@import url("https://fonts.googleapis.com/css?family=Lato"); + +body { + font-family: Lato, Roboto; +} + +h1, +h2, +h3, +h4 { + font-family: Lato, Roboto; + font-weight: 700; +} \ No newline at end of file diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff b/_static/css/fonts/Roboto-Slab-Bold.woff new file mode 100644 index 0000000..6cb6000 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Bold.woff2 b/_static/css/fonts/Roboto-Slab-Bold.woff2 new file mode 100644 index 0000000..7059e23 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Bold.woff2 differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff b/_static/css/fonts/Roboto-Slab-Regular.woff new file mode 100644 index 0000000..f815f63 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff differ diff --git a/_static/css/fonts/Roboto-Slab-Regular.woff2 b/_static/css/fonts/Roboto-Slab-Regular.woff2 new file mode 100644 index 0000000..f2c76e5 Binary files /dev/null and b/_static/css/fonts/Roboto-Slab-Regular.woff2 differ diff --git a/_static/css/fonts/fontawesome-webfont.eot b/_static/css/fonts/fontawesome-webfont.eot new file mode 100644 index 0000000..e9f60ca Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.eot differ diff --git a/_static/css/fonts/fontawesome-webfont.svg b/_static/css/fonts/fontawesome-webfont.svg new file mode 100644 index 0000000..855c845 --- /dev/null +++ b/_static/css/fonts/fontawesome-webfont.svg @@ -0,0 +1,2671 @@ + + + + +Created by FontForge 20120731 at Mon Oct 24 17:37:40 2016 + By ,,, +Copyright Dave Gandy 2016. All rights reserved. + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/css/fonts/fontawesome-webfont.ttf b/_static/css/fonts/fontawesome-webfont.ttf new file mode 100644 index 0000000..35acda2 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.ttf differ diff --git a/_static/css/fonts/fontawesome-webfont.woff b/_static/css/fonts/fontawesome-webfont.woff new file mode 100644 index 0000000..400014a Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff differ diff --git a/_static/css/fonts/fontawesome-webfont.woff2 b/_static/css/fonts/fontawesome-webfont.woff2 new file mode 100644 index 0000000..4d13fc6 Binary files /dev/null and b/_static/css/fonts/fontawesome-webfont.woff2 differ diff --git a/_static/css/fonts/lato-bold-italic.woff b/_static/css/fonts/lato-bold-italic.woff new file mode 100644 index 0000000..88ad05b Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff differ diff --git a/_static/css/fonts/lato-bold-italic.woff2 b/_static/css/fonts/lato-bold-italic.woff2 new file mode 100644 index 0000000..c4e3d80 Binary files /dev/null and b/_static/css/fonts/lato-bold-italic.woff2 differ diff --git a/_static/css/fonts/lato-bold.woff b/_static/css/fonts/lato-bold.woff new file mode 100644 index 0000000..c6dff51 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff differ diff --git a/_static/css/fonts/lato-bold.woff2 b/_static/css/fonts/lato-bold.woff2 new file mode 100644 index 0000000..bb19504 Binary files /dev/null and b/_static/css/fonts/lato-bold.woff2 differ diff --git a/_static/css/fonts/lato-normal-italic.woff b/_static/css/fonts/lato-normal-italic.woff new file mode 100644 index 0000000..76114bc Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff differ diff --git a/_static/css/fonts/lato-normal-italic.woff2 b/_static/css/fonts/lato-normal-italic.woff2 new file mode 100644 index 0000000..3404f37 Binary files /dev/null and b/_static/css/fonts/lato-normal-italic.woff2 differ diff --git a/_static/css/fonts/lato-normal.woff b/_static/css/fonts/lato-normal.woff new file mode 100644 index 0000000..ae1307f Binary files /dev/null and b/_static/css/fonts/lato-normal.woff differ diff --git a/_static/css/fonts/lato-normal.woff2 b/_static/css/fonts/lato-normal.woff2 new file mode 100644 index 0000000..3bf9843 Binary files /dev/null and b/_static/css/fonts/lato-normal.woff2 differ diff --git a/_static/css/theme.css b/_static/css/theme.css new file mode 100644 index 0000000..19a446a --- /dev/null +++ b/_static/css/theme.css @@ -0,0 +1,4 @@ +html{box-sizing:border-box}*,:after,:before{box-sizing:inherit}article,aside,details,figcaption,figure,footer,header,hgroup,nav,section{display:block}audio,canvas,video{display:inline-block;*display:inline;*zoom:1}[hidden],audio:not([controls]){display:none}*{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}html{font-size:100%;-webkit-text-size-adjust:100%;-ms-text-size-adjust:100%}body{margin:0}a:active,a:hover{outline:0}abbr[title]{border-bottom:1px dotted}b,strong{font-weight:700}blockquote{margin:0}dfn{font-style:italic}ins{background:#ff9;text-decoration:none}ins,mark{color:#000}mark{background:#ff0;font-style:italic;font-weight:700}.rst-content code,.rst-content tt,code,kbd,pre,samp{font-family:monospace,serif;_font-family:courier new,monospace;font-size:1em}pre{white-space:pre}q{quotes:none}q:after,q:before{content:"";content:none}small{font-size:85%}sub,sup{font-size:75%;line-height:0;position:relative;vertical-align:baseline}sup{top:-.5em}sub{bottom:-.25em}dl,ol,ul{margin:0;padding:0;list-style:none;list-style-image:none}li{list-style:none}dd{margin:0}img{border:0;-ms-interpolation-mode:bicubic;vertical-align:middle;max-width:100%}svg:not(:root){overflow:hidden}figure,form{margin:0}label{cursor:pointer}button,input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}button,input{line-height:normal}button,input[type=button],input[type=reset],input[type=submit]{cursor:pointer;-webkit-appearance:button;*overflow:visible}button[disabled],input[disabled]{cursor:default}input[type=search]{-webkit-appearance:textfield;-moz-box-sizing:content-box;-webkit-box-sizing:content-box;box-sizing:content-box}textarea{resize:vertical}table{border-collapse:collapse;border-spacing:0}td{vertical-align:top}.chromeframe{margin:.2em 0;background:#ccc;color:#000;padding:.2em 0}.ir{display:block;border:0;text-indent:-999em;overflow:hidden;background-color:transparent;background-repeat:no-repeat;text-align:left;direction:ltr;*line-height:0}.ir br{display:none}.hidden{display:none!important;visibility:hidden}.visuallyhidden{border:0;clip:rect(0 0 0 0);height:1px;margin:-1px;overflow:hidden;padding:0;position:absolute;width:1px}.visuallyhidden.focusable:active,.visuallyhidden.focusable:focus{clip:auto;height:auto;margin:0;overflow:visible;position:static;width:auto}.invisible{visibility:hidden}.relative{position:relative}big,small{font-size:100%}@media print{body,html,section{background:none!important}*{box-shadow:none!important;text-shadow:none!important;filter:none!important;-ms-filter:none!important}a,a:visited{text-decoration:underline}.ir a:after,a[href^="#"]:after,a[href^="javascript:"]:after{content:""}blockquote,pre{page-break-inside:avoid}thead{display:table-header-group}img,tr{page-break-inside:avoid}img{max-width:100%!important}@page{margin:.5cm}.rst-content .toctree-wrapper>p.caption,h2,h3,p{orphans:3;widows:3}.rst-content .toctree-wrapper>p.caption,h2,h3{page-break-after:avoid}}.btn,.fa:before,.icon:before,.rst-content .admonition,.rst-content .admonition-title:before,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .code-block-caption .headerlink:before,.rst-content .danger,.rst-content .eqno .headerlink:before,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-alert,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before,input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week],select,textarea{-webkit-font-smoothing:antialiased}.clearfix{*zoom:1}.clearfix:after,.clearfix:before{display:table;content:""}.clearfix:after{clear:both}/*! + * Font Awesome 4.7.0 by @davegandy - http://fontawesome.io - @fontawesome + * License - http://fontawesome.io/license (Font: SIL OFL 1.1, CSS: MIT License) + */@font-face{font-family:FontAwesome;src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713);src:url(fonts/fontawesome-webfont.eot?674f50d287a8c48dc19ba404d20fe713?#iefix&v=4.7.0) format("embedded-opentype"),url(fonts/fontawesome-webfont.woff2?af7ae505a9eed503f8b8e6982036873e) format("woff2"),url(fonts/fontawesome-webfont.woff?fee66e712a8a08eef5805a46892932ad) format("woff"),url(fonts/fontawesome-webfont.ttf?b06871f281fee6b241d60582ae9369b9) format("truetype"),url(fonts/fontawesome-webfont.svg?912ec66d7572ff821749319396470bde#fontawesomeregular) format("svg");font-weight:400;font-style:normal}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{display:inline-block;font:normal normal normal 14px/1 FontAwesome;font-size:inherit;text-rendering:auto;-webkit-font-smoothing:antialiased;-moz-osx-font-smoothing:grayscale}.fa-lg{font-size:1.33333em;line-height:.75em;vertical-align:-15%}.fa-2x{font-size:2em}.fa-3x{font-size:3em}.fa-4x{font-size:4em}.fa-5x{font-size:5em}.fa-fw{width:1.28571em;text-align:center}.fa-ul{padding-left:0;margin-left:2.14286em;list-style-type:none}.fa-ul>li{position:relative}.fa-li{position:absolute;left:-2.14286em;width:2.14286em;top:.14286em;text-align:center}.fa-li.fa-lg{left:-1.85714em}.fa-border{padding:.2em .25em .15em;border:.08em solid #eee;border-radius:.1em}.fa-pull-left{float:left}.fa-pull-right{float:right}.fa-pull-left.icon,.fa.fa-pull-left,.rst-content .code-block-caption .fa-pull-left.headerlink,.rst-content .eqno .fa-pull-left.headerlink,.rst-content .fa-pull-left.admonition-title,.rst-content code.download span.fa-pull-left:first-child,.rst-content dl dt .fa-pull-left.headerlink,.rst-content h1 .fa-pull-left.headerlink,.rst-content h2 .fa-pull-left.headerlink,.rst-content h3 .fa-pull-left.headerlink,.rst-content h4 .fa-pull-left.headerlink,.rst-content h5 .fa-pull-left.headerlink,.rst-content h6 .fa-pull-left.headerlink,.rst-content p .fa-pull-left.headerlink,.rst-content table>caption .fa-pull-left.headerlink,.rst-content tt.download span.fa-pull-left:first-child,.wy-menu-vertical li.current>a button.fa-pull-left.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-left.toctree-expand,.wy-menu-vertical li button.fa-pull-left.toctree-expand{margin-right:.3em}.fa-pull-right.icon,.fa.fa-pull-right,.rst-content .code-block-caption .fa-pull-right.headerlink,.rst-content .eqno .fa-pull-right.headerlink,.rst-content .fa-pull-right.admonition-title,.rst-content code.download span.fa-pull-right:first-child,.rst-content dl dt .fa-pull-right.headerlink,.rst-content h1 .fa-pull-right.headerlink,.rst-content h2 .fa-pull-right.headerlink,.rst-content h3 .fa-pull-right.headerlink,.rst-content h4 .fa-pull-right.headerlink,.rst-content h5 .fa-pull-right.headerlink,.rst-content h6 .fa-pull-right.headerlink,.rst-content p .fa-pull-right.headerlink,.rst-content table>caption .fa-pull-right.headerlink,.rst-content tt.download span.fa-pull-right:first-child,.wy-menu-vertical li.current>a button.fa-pull-right.toctree-expand,.wy-menu-vertical li.on a button.fa-pull-right.toctree-expand,.wy-menu-vertical li button.fa-pull-right.toctree-expand{margin-left:.3em}.pull-right{float:right}.pull-left{float:left}.fa.pull-left,.pull-left.icon,.rst-content .code-block-caption .pull-left.headerlink,.rst-content .eqno .pull-left.headerlink,.rst-content .pull-left.admonition-title,.rst-content code.download span.pull-left:first-child,.rst-content dl dt .pull-left.headerlink,.rst-content h1 .pull-left.headerlink,.rst-content h2 .pull-left.headerlink,.rst-content h3 .pull-left.headerlink,.rst-content h4 .pull-left.headerlink,.rst-content h5 .pull-left.headerlink,.rst-content h6 .pull-left.headerlink,.rst-content p .pull-left.headerlink,.rst-content table>caption .pull-left.headerlink,.rst-content tt.download span.pull-left:first-child,.wy-menu-vertical li.current>a button.pull-left.toctree-expand,.wy-menu-vertical li.on a button.pull-left.toctree-expand,.wy-menu-vertical li button.pull-left.toctree-expand{margin-right:.3em}.fa.pull-right,.pull-right.icon,.rst-content .code-block-caption .pull-right.headerlink,.rst-content .eqno .pull-right.headerlink,.rst-content .pull-right.admonition-title,.rst-content code.download span.pull-right:first-child,.rst-content dl dt .pull-right.headerlink,.rst-content h1 .pull-right.headerlink,.rst-content h2 .pull-right.headerlink,.rst-content h3 .pull-right.headerlink,.rst-content h4 .pull-right.headerlink,.rst-content h5 .pull-right.headerlink,.rst-content h6 .pull-right.headerlink,.rst-content p .pull-right.headerlink,.rst-content table>caption .pull-right.headerlink,.rst-content tt.download span.pull-right:first-child,.wy-menu-vertical li.current>a button.pull-right.toctree-expand,.wy-menu-vertical li.on a button.pull-right.toctree-expand,.wy-menu-vertical li button.pull-right.toctree-expand{margin-left:.3em}.fa-spin{-webkit-animation:fa-spin 2s linear infinite;animation:fa-spin 2s linear infinite}.fa-pulse{-webkit-animation:fa-spin 1s steps(8) infinite;animation:fa-spin 1s steps(8) infinite}@-webkit-keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}@keyframes fa-spin{0%{-webkit-transform:rotate(0deg);transform:rotate(0deg)}to{-webkit-transform:rotate(359deg);transform:rotate(359deg)}}.fa-rotate-90{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=1)";-webkit-transform:rotate(90deg);-ms-transform:rotate(90deg);transform:rotate(90deg)}.fa-rotate-180{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2)";-webkit-transform:rotate(180deg);-ms-transform:rotate(180deg);transform:rotate(180deg)}.fa-rotate-270{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=3)";-webkit-transform:rotate(270deg);-ms-transform:rotate(270deg);transform:rotate(270deg)}.fa-flip-horizontal{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=0, mirror=1)";-webkit-transform:scaleX(-1);-ms-transform:scaleX(-1);transform:scaleX(-1)}.fa-flip-vertical{-ms-filter:"progid:DXImageTransform.Microsoft.BasicImage(rotation=2, mirror=1)";-webkit-transform:scaleY(-1);-ms-transform:scaleY(-1);transform:scaleY(-1)}:root .fa-flip-horizontal,:root .fa-flip-vertical,:root .fa-rotate-90,:root .fa-rotate-180,:root .fa-rotate-270{filter:none}.fa-stack{position:relative;display:inline-block;width:2em;height:2em;line-height:2em;vertical-align:middle}.fa-stack-1x,.fa-stack-2x{position:absolute;left:0;width:100%;text-align:center}.fa-stack-1x{line-height:inherit}.fa-stack-2x{font-size:2em}.fa-inverse{color:#fff}.fa-glass:before{content:""}.fa-music:before{content:""}.fa-search:before,.icon-search:before{content:""}.fa-envelope-o:before{content:""}.fa-heart:before{content:""}.fa-star:before{content:""}.fa-star-o:before{content:""}.fa-user:before{content:""}.fa-film:before{content:""}.fa-th-large:before{content:""}.fa-th:before{content:""}.fa-th-list:before{content:""}.fa-check:before{content:""}.fa-close:before,.fa-remove:before,.fa-times:before{content:""}.fa-search-plus:before{content:""}.fa-search-minus:before{content:""}.fa-power-off:before{content:""}.fa-signal:before{content:""}.fa-cog:before,.fa-gear:before{content:""}.fa-trash-o:before{content:""}.fa-home:before,.icon-home:before{content:""}.fa-file-o:before{content:""}.fa-clock-o:before{content:""}.fa-road:before{content:""}.fa-download:before,.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{content:""}.fa-arrow-circle-o-down:before{content:""}.fa-arrow-circle-o-up:before{content:""}.fa-inbox:before{content:""}.fa-play-circle-o:before{content:""}.fa-repeat:before,.fa-rotate-right:before{content:""}.fa-refresh:before{content:""}.fa-list-alt:before{content:""}.fa-lock:before{content:""}.fa-flag:before{content:""}.fa-headphones:before{content:""}.fa-volume-off:before{content:""}.fa-volume-down:before{content:""}.fa-volume-up:before{content:""}.fa-qrcode:before{content:""}.fa-barcode:before{content:""}.fa-tag:before{content:""}.fa-tags:before{content:""}.fa-book:before,.icon-book:before{content:""}.fa-bookmark:before{content:""}.fa-print:before{content:""}.fa-camera:before{content:""}.fa-font:before{content:""}.fa-bold:before{content:""}.fa-italic:before{content:""}.fa-text-height:before{content:""}.fa-text-width:before{content:""}.fa-align-left:before{content:""}.fa-align-center:before{content:""}.fa-align-right:before{content:""}.fa-align-justify:before{content:""}.fa-list:before{content:""}.fa-dedent:before,.fa-outdent:before{content:""}.fa-indent:before{content:""}.fa-video-camera:before{content:""}.fa-image:before,.fa-photo:before,.fa-picture-o:before{content:""}.fa-pencil:before{content:""}.fa-map-marker:before{content:""}.fa-adjust:before{content:""}.fa-tint:before{content:""}.fa-edit:before,.fa-pencil-square-o:before{content:""}.fa-share-square-o:before{content:""}.fa-check-square-o:before{content:""}.fa-arrows:before{content:""}.fa-step-backward:before{content:""}.fa-fast-backward:before{content:""}.fa-backward:before{content:""}.fa-play:before{content:""}.fa-pause:before{content:""}.fa-stop:before{content:""}.fa-forward:before{content:""}.fa-fast-forward:before{content:""}.fa-step-forward:before{content:""}.fa-eject:before{content:""}.fa-chevron-left:before{content:""}.fa-chevron-right:before{content:""}.fa-plus-circle:before{content:""}.fa-minus-circle:before{content:""}.fa-times-circle:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before{content:""}.fa-check-circle:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before{content:""}.fa-question-circle:before{content:""}.fa-info-circle:before{content:""}.fa-crosshairs:before{content:""}.fa-times-circle-o:before{content:""}.fa-check-circle-o:before{content:""}.fa-ban:before{content:""}.fa-arrow-left:before{content:""}.fa-arrow-right:before{content:""}.fa-arrow-up:before{content:""}.fa-arrow-down:before{content:""}.fa-mail-forward:before,.fa-share:before{content:""}.fa-expand:before{content:""}.fa-compress:before{content:""}.fa-plus:before{content:""}.fa-minus:before{content:""}.fa-asterisk:before{content:""}.fa-exclamation-circle:before,.rst-content .admonition-title:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before{content:""}.fa-gift:before{content:""}.fa-leaf:before{content:""}.fa-fire:before,.icon-fire:before{content:""}.fa-eye:before{content:""}.fa-eye-slash:before{content:""}.fa-exclamation-triangle:before,.fa-warning:before{content:""}.fa-plane:before{content:""}.fa-calendar:before{content:""}.fa-random:before{content:""}.fa-comment:before{content:""}.fa-magnet:before{content:""}.fa-chevron-up:before{content:""}.fa-chevron-down:before{content:""}.fa-retweet:before{content:""}.fa-shopping-cart:before{content:""}.fa-folder:before{content:""}.fa-folder-open:before{content:""}.fa-arrows-v:before{content:""}.fa-arrows-h:before{content:""}.fa-bar-chart-o:before,.fa-bar-chart:before{content:""}.fa-twitter-square:before{content:""}.fa-facebook-square:before{content:""}.fa-camera-retro:before{content:""}.fa-key:before{content:""}.fa-cogs:before,.fa-gears:before{content:""}.fa-comments:before{content:""}.fa-thumbs-o-up:before{content:""}.fa-thumbs-o-down:before{content:""}.fa-star-half:before{content:""}.fa-heart-o:before{content:""}.fa-sign-out:before{content:""}.fa-linkedin-square:before{content:""}.fa-thumb-tack:before{content:""}.fa-external-link:before{content:""}.fa-sign-in:before{content:""}.fa-trophy:before{content:""}.fa-github-square:before{content:""}.fa-upload:before{content:""}.fa-lemon-o:before{content:""}.fa-phone:before{content:""}.fa-square-o:before{content:""}.fa-bookmark-o:before{content:""}.fa-phone-square:before{content:""}.fa-twitter:before{content:""}.fa-facebook-f:before,.fa-facebook:before{content:""}.fa-github:before,.icon-github:before{content:""}.fa-unlock:before{content:""}.fa-credit-card:before{content:""}.fa-feed:before,.fa-rss:before{content:""}.fa-hdd-o:before{content:""}.fa-bullhorn:before{content:""}.fa-bell:before{content:""}.fa-certificate:before{content:""}.fa-hand-o-right:before{content:""}.fa-hand-o-left:before{content:""}.fa-hand-o-up:before{content:""}.fa-hand-o-down:before{content:""}.fa-arrow-circle-left:before,.icon-circle-arrow-left:before{content:""}.fa-arrow-circle-right:before,.icon-circle-arrow-right:before{content:""}.fa-arrow-circle-up:before{content:""}.fa-arrow-circle-down:before{content:""}.fa-globe:before{content:""}.fa-wrench:before{content:""}.fa-tasks:before{content:""}.fa-filter:before{content:""}.fa-briefcase:before{content:""}.fa-arrows-alt:before{content:""}.fa-group:before,.fa-users:before{content:""}.fa-chain:before,.fa-link:before,.icon-link:before{content:""}.fa-cloud:before{content:""}.fa-flask:before{content:""}.fa-cut:before,.fa-scissors:before{content:""}.fa-copy:before,.fa-files-o:before{content:""}.fa-paperclip:before{content:""}.fa-floppy-o:before,.fa-save:before{content:""}.fa-square:before{content:""}.fa-bars:before,.fa-navicon:before,.fa-reorder:before{content:""}.fa-list-ul:before{content:""}.fa-list-ol:before{content:""}.fa-strikethrough:before{content:""}.fa-underline:before{content:""}.fa-table:before{content:""}.fa-magic:before{content:""}.fa-truck:before{content:""}.fa-pinterest:before{content:""}.fa-pinterest-square:before{content:""}.fa-google-plus-square:before{content:""}.fa-google-plus:before{content:""}.fa-money:before{content:""}.fa-caret-down:before,.icon-caret-down:before,.wy-dropdown .caret:before{content:""}.fa-caret-up:before{content:""}.fa-caret-left:before{content:""}.fa-caret-right:before{content:""}.fa-columns:before{content:""}.fa-sort:before,.fa-unsorted:before{content:""}.fa-sort-desc:before,.fa-sort-down:before{content:""}.fa-sort-asc:before,.fa-sort-up:before{content:""}.fa-envelope:before{content:""}.fa-linkedin:before{content:""}.fa-rotate-left:before,.fa-undo:before{content:""}.fa-gavel:before,.fa-legal:before{content:""}.fa-dashboard:before,.fa-tachometer:before{content:""}.fa-comment-o:before{content:""}.fa-comments-o:before{content:""}.fa-bolt:before,.fa-flash:before{content:""}.fa-sitemap:before{content:""}.fa-umbrella:before{content:""}.fa-clipboard:before,.fa-paste:before{content:""}.fa-lightbulb-o:before{content:""}.fa-exchange:before{content:""}.fa-cloud-download:before{content:""}.fa-cloud-upload:before{content:""}.fa-user-md:before{content:""}.fa-stethoscope:before{content:""}.fa-suitcase:before{content:""}.fa-bell-o:before{content:""}.fa-coffee:before{content:""}.fa-cutlery:before{content:""}.fa-file-text-o:before{content:""}.fa-building-o:before{content:""}.fa-hospital-o:before{content:""}.fa-ambulance:before{content:""}.fa-medkit:before{content:""}.fa-fighter-jet:before{content:""}.fa-beer:before{content:""}.fa-h-square:before{content:""}.fa-plus-square:before{content:""}.fa-angle-double-left:before{content:""}.fa-angle-double-right:before{content:""}.fa-angle-double-up:before{content:""}.fa-angle-double-down:before{content:""}.fa-angle-left:before{content:""}.fa-angle-right:before{content:""}.fa-angle-up:before{content:""}.fa-angle-down:before{content:""}.fa-desktop:before{content:""}.fa-laptop:before{content:""}.fa-tablet:before{content:""}.fa-mobile-phone:before,.fa-mobile:before{content:""}.fa-circle-o:before{content:""}.fa-quote-left:before{content:""}.fa-quote-right:before{content:""}.fa-spinner:before{content:""}.fa-circle:before{content:""}.fa-mail-reply:before,.fa-reply:before{content:""}.fa-github-alt:before{content:""}.fa-folder-o:before{content:""}.fa-folder-open-o:before{content:""}.fa-smile-o:before{content:""}.fa-frown-o:before{content:""}.fa-meh-o:before{content:""}.fa-gamepad:before{content:""}.fa-keyboard-o:before{content:""}.fa-flag-o:before{content:""}.fa-flag-checkered:before{content:""}.fa-terminal:before{content:""}.fa-code:before{content:""}.fa-mail-reply-all:before,.fa-reply-all:before{content:""}.fa-star-half-empty:before,.fa-star-half-full:before,.fa-star-half-o:before{content:""}.fa-location-arrow:before{content:""}.fa-crop:before{content:""}.fa-code-fork:before{content:""}.fa-chain-broken:before,.fa-unlink:before{content:""}.fa-question:before{content:""}.fa-info:before{content:""}.fa-exclamation:before{content:""}.fa-superscript:before{content:""}.fa-subscript:before{content:""}.fa-eraser:before{content:""}.fa-puzzle-piece:before{content:""}.fa-microphone:before{content:""}.fa-microphone-slash:before{content:""}.fa-shield:before{content:""}.fa-calendar-o:before{content:""}.fa-fire-extinguisher:before{content:""}.fa-rocket:before{content:""}.fa-maxcdn:before{content:""}.fa-chevron-circle-left:before{content:""}.fa-chevron-circle-right:before{content:""}.fa-chevron-circle-up:before{content:""}.fa-chevron-circle-down:before{content:""}.fa-html5:before{content:""}.fa-css3:before{content:""}.fa-anchor:before{content:""}.fa-unlock-alt:before{content:""}.fa-bullseye:before{content:""}.fa-ellipsis-h:before{content:""}.fa-ellipsis-v:before{content:""}.fa-rss-square:before{content:""}.fa-play-circle:before{content:""}.fa-ticket:before{content:""}.fa-minus-square:before{content:""}.fa-minus-square-o:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before{content:""}.fa-level-up:before{content:""}.fa-level-down:before{content:""}.fa-check-square:before{content:""}.fa-pencil-square:before{content:""}.fa-external-link-square:before{content:""}.fa-share-square:before{content:""}.fa-compass:before{content:""}.fa-caret-square-o-down:before,.fa-toggle-down:before{content:""}.fa-caret-square-o-up:before,.fa-toggle-up:before{content:""}.fa-caret-square-o-right:before,.fa-toggle-right:before{content:""}.fa-eur:before,.fa-euro:before{content:""}.fa-gbp:before{content:""}.fa-dollar:before,.fa-usd:before{content:""}.fa-inr:before,.fa-rupee:before{content:""}.fa-cny:before,.fa-jpy:before,.fa-rmb:before,.fa-yen:before{content:""}.fa-rouble:before,.fa-rub:before,.fa-ruble:before{content:""}.fa-krw:before,.fa-won:before{content:""}.fa-bitcoin:before,.fa-btc:before{content:""}.fa-file:before{content:""}.fa-file-text:before{content:""}.fa-sort-alpha-asc:before{content:""}.fa-sort-alpha-desc:before{content:""}.fa-sort-amount-asc:before{content:""}.fa-sort-amount-desc:before{content:""}.fa-sort-numeric-asc:before{content:""}.fa-sort-numeric-desc:before{content:""}.fa-thumbs-up:before{content:""}.fa-thumbs-down:before{content:""}.fa-youtube-square:before{content:""}.fa-youtube:before{content:""}.fa-xing:before{content:""}.fa-xing-square:before{content:""}.fa-youtube-play:before{content:""}.fa-dropbox:before{content:""}.fa-stack-overflow:before{content:""}.fa-instagram:before{content:""}.fa-flickr:before{content:""}.fa-adn:before{content:""}.fa-bitbucket:before,.icon-bitbucket:before{content:""}.fa-bitbucket-square:before{content:""}.fa-tumblr:before{content:""}.fa-tumblr-square:before{content:""}.fa-long-arrow-down:before{content:""}.fa-long-arrow-up:before{content:""}.fa-long-arrow-left:before{content:""}.fa-long-arrow-right:before{content:""}.fa-apple:before{content:""}.fa-windows:before{content:""}.fa-android:before{content:""}.fa-linux:before{content:""}.fa-dribbble:before{content:""}.fa-skype:before{content:""}.fa-foursquare:before{content:""}.fa-trello:before{content:""}.fa-female:before{content:""}.fa-male:before{content:""}.fa-gittip:before,.fa-gratipay:before{content:""}.fa-sun-o:before{content:""}.fa-moon-o:before{content:""}.fa-archive:before{content:""}.fa-bug:before{content:""}.fa-vk:before{content:""}.fa-weibo:before{content:""}.fa-renren:before{content:""}.fa-pagelines:before{content:""}.fa-stack-exchange:before{content:""}.fa-arrow-circle-o-right:before{content:""}.fa-arrow-circle-o-left:before{content:""}.fa-caret-square-o-left:before,.fa-toggle-left:before{content:""}.fa-dot-circle-o:before{content:""}.fa-wheelchair:before{content:""}.fa-vimeo-square:before{content:""}.fa-try:before,.fa-turkish-lira:before{content:""}.fa-plus-square-o:before,.wy-menu-vertical li button.toctree-expand:before{content:""}.fa-space-shuttle:before{content:""}.fa-slack:before{content:""}.fa-envelope-square:before{content:""}.fa-wordpress:before{content:""}.fa-openid:before{content:""}.fa-bank:before,.fa-institution:before,.fa-university:before{content:""}.fa-graduation-cap:before,.fa-mortar-board:before{content:""}.fa-yahoo:before{content:""}.fa-google:before{content:""}.fa-reddit:before{content:""}.fa-reddit-square:before{content:""}.fa-stumbleupon-circle:before{content:""}.fa-stumbleupon:before{content:""}.fa-delicious:before{content:""}.fa-digg:before{content:""}.fa-pied-piper-pp:before{content:""}.fa-pied-piper-alt:before{content:""}.fa-drupal:before{content:""}.fa-joomla:before{content:""}.fa-language:before{content:""}.fa-fax:before{content:""}.fa-building:before{content:""}.fa-child:before{content:""}.fa-paw:before{content:""}.fa-spoon:before{content:""}.fa-cube:before{content:""}.fa-cubes:before{content:""}.fa-behance:before{content:""}.fa-behance-square:before{content:""}.fa-steam:before{content:""}.fa-steam-square:before{content:""}.fa-recycle:before{content:""}.fa-automobile:before,.fa-car:before{content:""}.fa-cab:before,.fa-taxi:before{content:""}.fa-tree:before{content:""}.fa-spotify:before{content:""}.fa-deviantart:before{content:""}.fa-soundcloud:before{content:""}.fa-database:before{content:""}.fa-file-pdf-o:before{content:""}.fa-file-word-o:before{content:""}.fa-file-excel-o:before{content:""}.fa-file-powerpoint-o:before{content:""}.fa-file-image-o:before,.fa-file-photo-o:before,.fa-file-picture-o:before{content:""}.fa-file-archive-o:before,.fa-file-zip-o:before{content:""}.fa-file-audio-o:before,.fa-file-sound-o:before{content:""}.fa-file-movie-o:before,.fa-file-video-o:before{content:""}.fa-file-code-o:before{content:""}.fa-vine:before{content:""}.fa-codepen:before{content:""}.fa-jsfiddle:before{content:""}.fa-life-bouy:before,.fa-life-buoy:before,.fa-life-ring:before,.fa-life-saver:before,.fa-support:before{content:""}.fa-circle-o-notch:before{content:""}.fa-ra:before,.fa-rebel:before,.fa-resistance:before{content:""}.fa-empire:before,.fa-ge:before{content:""}.fa-git-square:before{content:""}.fa-git:before{content:""}.fa-hacker-news:before,.fa-y-combinator-square:before,.fa-yc-square:before{content:""}.fa-tencent-weibo:before{content:""}.fa-qq:before{content:""}.fa-wechat:before,.fa-weixin:before{content:""}.fa-paper-plane:before,.fa-send:before{content:""}.fa-paper-plane-o:before,.fa-send-o:before{content:""}.fa-history:before{content:""}.fa-circle-thin:before{content:""}.fa-header:before{content:""}.fa-paragraph:before{content:""}.fa-sliders:before{content:""}.fa-share-alt:before{content:""}.fa-share-alt-square:before{content:""}.fa-bomb:before{content:""}.fa-futbol-o:before,.fa-soccer-ball-o:before{content:""}.fa-tty:before{content:""}.fa-binoculars:before{content:""}.fa-plug:before{content:""}.fa-slideshare:before{content:""}.fa-twitch:before{content:""}.fa-yelp:before{content:""}.fa-newspaper-o:before{content:""}.fa-wifi:before{content:""}.fa-calculator:before{content:""}.fa-paypal:before{content:""}.fa-google-wallet:before{content:""}.fa-cc-visa:before{content:""}.fa-cc-mastercard:before{content:""}.fa-cc-discover:before{content:""}.fa-cc-amex:before{content:""}.fa-cc-paypal:before{content:""}.fa-cc-stripe:before{content:""}.fa-bell-slash:before{content:""}.fa-bell-slash-o:before{content:""}.fa-trash:before{content:""}.fa-copyright:before{content:""}.fa-at:before{content:""}.fa-eyedropper:before{content:""}.fa-paint-brush:before{content:""}.fa-birthday-cake:before{content:""}.fa-area-chart:before{content:""}.fa-pie-chart:before{content:""}.fa-line-chart:before{content:""}.fa-lastfm:before{content:""}.fa-lastfm-square:before{content:""}.fa-toggle-off:before{content:""}.fa-toggle-on:before{content:""}.fa-bicycle:before{content:""}.fa-bus:before{content:""}.fa-ioxhost:before{content:""}.fa-angellist:before{content:""}.fa-cc:before{content:""}.fa-ils:before,.fa-shekel:before,.fa-sheqel:before{content:""}.fa-meanpath:before{content:""}.fa-buysellads:before{content:""}.fa-connectdevelop:before{content:""}.fa-dashcube:before{content:""}.fa-forumbee:before{content:""}.fa-leanpub:before{content:""}.fa-sellsy:before{content:""}.fa-shirtsinbulk:before{content:""}.fa-simplybuilt:before{content:""}.fa-skyatlas:before{content:""}.fa-cart-plus:before{content:""}.fa-cart-arrow-down:before{content:""}.fa-diamond:before{content:""}.fa-ship:before{content:""}.fa-user-secret:before{content:""}.fa-motorcycle:before{content:""}.fa-street-view:before{content:""}.fa-heartbeat:before{content:""}.fa-venus:before{content:""}.fa-mars:before{content:""}.fa-mercury:before{content:""}.fa-intersex:before,.fa-transgender:before{content:""}.fa-transgender-alt:before{content:""}.fa-venus-double:before{content:""}.fa-mars-double:before{content:""}.fa-venus-mars:before{content:""}.fa-mars-stroke:before{content:""}.fa-mars-stroke-v:before{content:""}.fa-mars-stroke-h:before{content:""}.fa-neuter:before{content:""}.fa-genderless:before{content:""}.fa-facebook-official:before{content:""}.fa-pinterest-p:before{content:""}.fa-whatsapp:before{content:""}.fa-server:before{content:""}.fa-user-plus:before{content:""}.fa-user-times:before{content:""}.fa-bed:before,.fa-hotel:before{content:""}.fa-viacoin:before{content:""}.fa-train:before{content:""}.fa-subway:before{content:""}.fa-medium:before{content:""}.fa-y-combinator:before,.fa-yc:before{content:""}.fa-optin-monster:before{content:""}.fa-opencart:before{content:""}.fa-expeditedssl:before{content:""}.fa-battery-4:before,.fa-battery-full:before,.fa-battery:before{content:""}.fa-battery-3:before,.fa-battery-three-quarters:before{content:""}.fa-battery-2:before,.fa-battery-half:before{content:""}.fa-battery-1:before,.fa-battery-quarter:before{content:""}.fa-battery-0:before,.fa-battery-empty:before{content:""}.fa-mouse-pointer:before{content:""}.fa-i-cursor:before{content:""}.fa-object-group:before{content:""}.fa-object-ungroup:before{content:""}.fa-sticky-note:before{content:""}.fa-sticky-note-o:before{content:""}.fa-cc-jcb:before{content:""}.fa-cc-diners-club:before{content:""}.fa-clone:before{content:""}.fa-balance-scale:before{content:""}.fa-hourglass-o:before{content:""}.fa-hourglass-1:before,.fa-hourglass-start:before{content:""}.fa-hourglass-2:before,.fa-hourglass-half:before{content:""}.fa-hourglass-3:before,.fa-hourglass-end:before{content:""}.fa-hourglass:before{content:""}.fa-hand-grab-o:before,.fa-hand-rock-o:before{content:""}.fa-hand-paper-o:before,.fa-hand-stop-o:before{content:""}.fa-hand-scissors-o:before{content:""}.fa-hand-lizard-o:before{content:""}.fa-hand-spock-o:before{content:""}.fa-hand-pointer-o:before{content:""}.fa-hand-peace-o:before{content:""}.fa-trademark:before{content:""}.fa-registered:before{content:""}.fa-creative-commons:before{content:""}.fa-gg:before{content:""}.fa-gg-circle:before{content:""}.fa-tripadvisor:before{content:""}.fa-odnoklassniki:before{content:""}.fa-odnoklassniki-square:before{content:""}.fa-get-pocket:before{content:""}.fa-wikipedia-w:before{content:""}.fa-safari:before{content:""}.fa-chrome:before{content:""}.fa-firefox:before{content:""}.fa-opera:before{content:""}.fa-internet-explorer:before{content:""}.fa-television:before,.fa-tv:before{content:""}.fa-contao:before{content:""}.fa-500px:before{content:""}.fa-amazon:before{content:""}.fa-calendar-plus-o:before{content:""}.fa-calendar-minus-o:before{content:""}.fa-calendar-times-o:before{content:""}.fa-calendar-check-o:before{content:""}.fa-industry:before{content:""}.fa-map-pin:before{content:""}.fa-map-signs:before{content:""}.fa-map-o:before{content:""}.fa-map:before{content:""}.fa-commenting:before{content:""}.fa-commenting-o:before{content:""}.fa-houzz:before{content:""}.fa-vimeo:before{content:""}.fa-black-tie:before{content:""}.fa-fonticons:before{content:""}.fa-reddit-alien:before{content:""}.fa-edge:before{content:""}.fa-credit-card-alt:before{content:""}.fa-codiepie:before{content:""}.fa-modx:before{content:""}.fa-fort-awesome:before{content:""}.fa-usb:before{content:""}.fa-product-hunt:before{content:""}.fa-mixcloud:before{content:""}.fa-scribd:before{content:""}.fa-pause-circle:before{content:""}.fa-pause-circle-o:before{content:""}.fa-stop-circle:before{content:""}.fa-stop-circle-o:before{content:""}.fa-shopping-bag:before{content:""}.fa-shopping-basket:before{content:""}.fa-hashtag:before{content:""}.fa-bluetooth:before{content:""}.fa-bluetooth-b:before{content:""}.fa-percent:before{content:""}.fa-gitlab:before,.icon-gitlab:before{content:""}.fa-wpbeginner:before{content:""}.fa-wpforms:before{content:""}.fa-envira:before{content:""}.fa-universal-access:before{content:""}.fa-wheelchair-alt:before{content:""}.fa-question-circle-o:before{content:""}.fa-blind:before{content:""}.fa-audio-description:before{content:""}.fa-volume-control-phone:before{content:""}.fa-braille:before{content:""}.fa-assistive-listening-systems:before{content:""}.fa-american-sign-language-interpreting:before,.fa-asl-interpreting:before{content:""}.fa-deaf:before,.fa-deafness:before,.fa-hard-of-hearing:before{content:""}.fa-glide:before{content:""}.fa-glide-g:before{content:""}.fa-sign-language:before,.fa-signing:before{content:""}.fa-low-vision:before{content:""}.fa-viadeo:before{content:""}.fa-viadeo-square:before{content:""}.fa-snapchat:before{content:""}.fa-snapchat-ghost:before{content:""}.fa-snapchat-square:before{content:""}.fa-pied-piper:before{content:""}.fa-first-order:before{content:""}.fa-yoast:before{content:""}.fa-themeisle:before{content:""}.fa-google-plus-circle:before,.fa-google-plus-official:before{content:""}.fa-fa:before,.fa-font-awesome:before{content:""}.fa-handshake-o:before{content:""}.fa-envelope-open:before{content:""}.fa-envelope-open-o:before{content:""}.fa-linode:before{content:""}.fa-address-book:before{content:""}.fa-address-book-o:before{content:""}.fa-address-card:before,.fa-vcard:before{content:""}.fa-address-card-o:before,.fa-vcard-o:before{content:""}.fa-user-circle:before{content:""}.fa-user-circle-o:before{content:""}.fa-user-o:before{content:""}.fa-id-badge:before{content:""}.fa-drivers-license:before,.fa-id-card:before{content:""}.fa-drivers-license-o:before,.fa-id-card-o:before{content:""}.fa-quora:before{content:""}.fa-free-code-camp:before{content:""}.fa-telegram:before{content:""}.fa-thermometer-4:before,.fa-thermometer-full:before,.fa-thermometer:before{content:""}.fa-thermometer-3:before,.fa-thermometer-three-quarters:before{content:""}.fa-thermometer-2:before,.fa-thermometer-half:before{content:""}.fa-thermometer-1:before,.fa-thermometer-quarter:before{content:""}.fa-thermometer-0:before,.fa-thermometer-empty:before{content:""}.fa-shower:before{content:""}.fa-bath:before,.fa-bathtub:before,.fa-s15:before{content:""}.fa-podcast:before{content:""}.fa-window-maximize:before{content:""}.fa-window-minimize:before{content:""}.fa-window-restore:before{content:""}.fa-times-rectangle:before,.fa-window-close:before{content:""}.fa-times-rectangle-o:before,.fa-window-close-o:before{content:""}.fa-bandcamp:before{content:""}.fa-grav:before{content:""}.fa-etsy:before{content:""}.fa-imdb:before{content:""}.fa-ravelry:before{content:""}.fa-eercast:before{content:""}.fa-microchip:before{content:""}.fa-snowflake-o:before{content:""}.fa-superpowers:before{content:""}.fa-wpexplorer:before{content:""}.fa-meetup:before{content:""}.sr-only{position:absolute;width:1px;height:1px;padding:0;margin:-1px;overflow:hidden;clip:rect(0,0,0,0);border:0}.sr-only-focusable:active,.sr-only-focusable:focus{position:static;width:auto;height:auto;margin:0;overflow:visible;clip:auto}.fa,.icon,.rst-content .admonition-title,.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content code.download span:first-child,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink,.rst-content tt.download span:first-child,.wy-dropdown .caret,.wy-inline-validate.wy-inline-validate-danger .wy-input-context,.wy-inline-validate.wy-inline-validate-info .wy-input-context,.wy-inline-validate.wy-inline-validate-success .wy-input-context,.wy-inline-validate.wy-inline-validate-warning .wy-input-context,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li button.toctree-expand{font-family:inherit}.fa:before,.icon:before,.rst-content .admonition-title:before,.rst-content .code-block-caption .headerlink:before,.rst-content .eqno .headerlink:before,.rst-content code.download span:first-child:before,.rst-content dl dt .headerlink:before,.rst-content h1 .headerlink:before,.rst-content h2 .headerlink:before,.rst-content h3 .headerlink:before,.rst-content h4 .headerlink:before,.rst-content h5 .headerlink:before,.rst-content h6 .headerlink:before,.rst-content p.caption .headerlink:before,.rst-content p .headerlink:before,.rst-content table>caption .headerlink:before,.rst-content tt.download span:first-child:before,.wy-dropdown .caret:before,.wy-inline-validate.wy-inline-validate-danger .wy-input-context:before,.wy-inline-validate.wy-inline-validate-info .wy-input-context:before,.wy-inline-validate.wy-inline-validate-success .wy-input-context:before,.wy-inline-validate.wy-inline-validate-warning .wy-input-context:before,.wy-menu-vertical li.current>a button.toctree-expand:before,.wy-menu-vertical li.on a button.toctree-expand:before,.wy-menu-vertical li button.toctree-expand:before{font-family:FontAwesome;display:inline-block;font-style:normal;font-weight:400;line-height:1;text-decoration:inherit}.rst-content .code-block-caption a .headerlink,.rst-content .eqno a .headerlink,.rst-content a .admonition-title,.rst-content code.download a span:first-child,.rst-content dl dt a .headerlink,.rst-content h1 a .headerlink,.rst-content h2 a .headerlink,.rst-content h3 a .headerlink,.rst-content h4 a .headerlink,.rst-content h5 a .headerlink,.rst-content h6 a .headerlink,.rst-content p.caption a .headerlink,.rst-content p a .headerlink,.rst-content table>caption a .headerlink,.rst-content tt.download a span:first-child,.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand,.wy-menu-vertical li a button.toctree-expand,a .fa,a .icon,a .rst-content .admonition-title,a .rst-content .code-block-caption .headerlink,a .rst-content .eqno .headerlink,a .rst-content code.download span:first-child,a .rst-content dl dt .headerlink,a .rst-content h1 .headerlink,a .rst-content h2 .headerlink,a .rst-content h3 .headerlink,a .rst-content h4 .headerlink,a .rst-content h5 .headerlink,a .rst-content h6 .headerlink,a .rst-content p.caption .headerlink,a .rst-content p .headerlink,a .rst-content table>caption .headerlink,a .rst-content tt.download span:first-child,a .wy-menu-vertical li button.toctree-expand{display:inline-block;text-decoration:inherit}.btn .fa,.btn .icon,.btn .rst-content .admonition-title,.btn .rst-content .code-block-caption .headerlink,.btn .rst-content .eqno .headerlink,.btn .rst-content code.download span:first-child,.btn .rst-content dl dt .headerlink,.btn .rst-content h1 .headerlink,.btn .rst-content h2 .headerlink,.btn .rst-content h3 .headerlink,.btn .rst-content h4 .headerlink,.btn .rst-content h5 .headerlink,.btn .rst-content h6 .headerlink,.btn .rst-content p .headerlink,.btn .rst-content table>caption .headerlink,.btn .rst-content tt.download span:first-child,.btn .wy-menu-vertical li.current>a button.toctree-expand,.btn .wy-menu-vertical li.on a button.toctree-expand,.btn .wy-menu-vertical li button.toctree-expand,.nav .fa,.nav .icon,.nav .rst-content .admonition-title,.nav .rst-content .code-block-caption .headerlink,.nav .rst-content .eqno .headerlink,.nav .rst-content code.download span:first-child,.nav .rst-content dl dt .headerlink,.nav .rst-content h1 .headerlink,.nav .rst-content h2 .headerlink,.nav .rst-content h3 .headerlink,.nav .rst-content h4 .headerlink,.nav .rst-content h5 .headerlink,.nav .rst-content h6 .headerlink,.nav .rst-content p .headerlink,.nav .rst-content table>caption .headerlink,.nav .rst-content tt.download span:first-child,.nav .wy-menu-vertical li.current>a button.toctree-expand,.nav .wy-menu-vertical li.on a button.toctree-expand,.nav .wy-menu-vertical li button.toctree-expand,.rst-content .btn .admonition-title,.rst-content .code-block-caption .btn .headerlink,.rst-content .code-block-caption .nav .headerlink,.rst-content .eqno .btn .headerlink,.rst-content .eqno .nav .headerlink,.rst-content .nav .admonition-title,.rst-content code.download .btn span:first-child,.rst-content code.download .nav span:first-child,.rst-content dl dt .btn .headerlink,.rst-content dl dt .nav .headerlink,.rst-content h1 .btn .headerlink,.rst-content h1 .nav .headerlink,.rst-content h2 .btn .headerlink,.rst-content h2 .nav .headerlink,.rst-content h3 .btn .headerlink,.rst-content h3 .nav .headerlink,.rst-content h4 .btn .headerlink,.rst-content h4 .nav .headerlink,.rst-content h5 .btn .headerlink,.rst-content h5 .nav .headerlink,.rst-content h6 .btn .headerlink,.rst-content h6 .nav .headerlink,.rst-content p .btn .headerlink,.rst-content p .nav .headerlink,.rst-content table>caption .btn .headerlink,.rst-content table>caption .nav .headerlink,.rst-content tt.download .btn span:first-child,.rst-content tt.download .nav span:first-child,.wy-menu-vertical li .btn button.toctree-expand,.wy-menu-vertical li.current>a .btn button.toctree-expand,.wy-menu-vertical li.current>a .nav button.toctree-expand,.wy-menu-vertical li .nav button.toctree-expand,.wy-menu-vertical li.on a .btn button.toctree-expand,.wy-menu-vertical li.on a .nav button.toctree-expand{display:inline}.btn .fa-large.icon,.btn .fa.fa-large,.btn .rst-content .code-block-caption .fa-large.headerlink,.btn .rst-content .eqno .fa-large.headerlink,.btn .rst-content .fa-large.admonition-title,.btn .rst-content code.download span.fa-large:first-child,.btn .rst-content dl dt .fa-large.headerlink,.btn .rst-content h1 .fa-large.headerlink,.btn .rst-content h2 .fa-large.headerlink,.btn .rst-content h3 .fa-large.headerlink,.btn .rst-content h4 .fa-large.headerlink,.btn .rst-content h5 .fa-large.headerlink,.btn .rst-content h6 .fa-large.headerlink,.btn .rst-content p .fa-large.headerlink,.btn .rst-content table>caption .fa-large.headerlink,.btn .rst-content tt.download span.fa-large:first-child,.btn .wy-menu-vertical li button.fa-large.toctree-expand,.nav .fa-large.icon,.nav .fa.fa-large,.nav .rst-content .code-block-caption .fa-large.headerlink,.nav .rst-content .eqno .fa-large.headerlink,.nav .rst-content .fa-large.admonition-title,.nav .rst-content code.download span.fa-large:first-child,.nav .rst-content dl dt .fa-large.headerlink,.nav .rst-content h1 .fa-large.headerlink,.nav .rst-content h2 .fa-large.headerlink,.nav .rst-content h3 .fa-large.headerlink,.nav .rst-content h4 .fa-large.headerlink,.nav .rst-content h5 .fa-large.headerlink,.nav .rst-content h6 .fa-large.headerlink,.nav .rst-content p .fa-large.headerlink,.nav .rst-content table>caption .fa-large.headerlink,.nav .rst-content tt.download span.fa-large:first-child,.nav .wy-menu-vertical li button.fa-large.toctree-expand,.rst-content .btn .fa-large.admonition-title,.rst-content .code-block-caption .btn .fa-large.headerlink,.rst-content .code-block-caption .nav .fa-large.headerlink,.rst-content .eqno .btn .fa-large.headerlink,.rst-content .eqno .nav .fa-large.headerlink,.rst-content .nav .fa-large.admonition-title,.rst-content code.download .btn span.fa-large:first-child,.rst-content code.download .nav span.fa-large:first-child,.rst-content dl dt .btn .fa-large.headerlink,.rst-content dl dt .nav .fa-large.headerlink,.rst-content h1 .btn .fa-large.headerlink,.rst-content h1 .nav .fa-large.headerlink,.rst-content h2 .btn .fa-large.headerlink,.rst-content h2 .nav .fa-large.headerlink,.rst-content h3 .btn .fa-large.headerlink,.rst-content h3 .nav .fa-large.headerlink,.rst-content h4 .btn .fa-large.headerlink,.rst-content h4 .nav .fa-large.headerlink,.rst-content h5 .btn .fa-large.headerlink,.rst-content h5 .nav .fa-large.headerlink,.rst-content h6 .btn .fa-large.headerlink,.rst-content h6 .nav .fa-large.headerlink,.rst-content p .btn .fa-large.headerlink,.rst-content p .nav .fa-large.headerlink,.rst-content table>caption .btn .fa-large.headerlink,.rst-content table>caption .nav .fa-large.headerlink,.rst-content tt.download .btn span.fa-large:first-child,.rst-content tt.download .nav span.fa-large:first-child,.wy-menu-vertical li .btn button.fa-large.toctree-expand,.wy-menu-vertical li .nav button.fa-large.toctree-expand{line-height:.9em}.btn .fa-spin.icon,.btn .fa.fa-spin,.btn .rst-content .code-block-caption .fa-spin.headerlink,.btn .rst-content .eqno .fa-spin.headerlink,.btn .rst-content .fa-spin.admonition-title,.btn .rst-content code.download span.fa-spin:first-child,.btn .rst-content dl dt .fa-spin.headerlink,.btn .rst-content h1 .fa-spin.headerlink,.btn .rst-content h2 .fa-spin.headerlink,.btn .rst-content h3 .fa-spin.headerlink,.btn .rst-content h4 .fa-spin.headerlink,.btn .rst-content h5 .fa-spin.headerlink,.btn .rst-content h6 .fa-spin.headerlink,.btn .rst-content p .fa-spin.headerlink,.btn .rst-content table>caption .fa-spin.headerlink,.btn .rst-content tt.download span.fa-spin:first-child,.btn .wy-menu-vertical li button.fa-spin.toctree-expand,.nav .fa-spin.icon,.nav .fa.fa-spin,.nav .rst-content .code-block-caption .fa-spin.headerlink,.nav .rst-content .eqno .fa-spin.headerlink,.nav .rst-content .fa-spin.admonition-title,.nav .rst-content code.download span.fa-spin:first-child,.nav .rst-content dl dt .fa-spin.headerlink,.nav .rst-content h1 .fa-spin.headerlink,.nav .rst-content h2 .fa-spin.headerlink,.nav .rst-content h3 .fa-spin.headerlink,.nav .rst-content h4 .fa-spin.headerlink,.nav .rst-content h5 .fa-spin.headerlink,.nav .rst-content h6 .fa-spin.headerlink,.nav .rst-content p .fa-spin.headerlink,.nav .rst-content table>caption .fa-spin.headerlink,.nav .rst-content tt.download span.fa-spin:first-child,.nav .wy-menu-vertical li button.fa-spin.toctree-expand,.rst-content .btn .fa-spin.admonition-title,.rst-content .code-block-caption .btn .fa-spin.headerlink,.rst-content .code-block-caption .nav .fa-spin.headerlink,.rst-content .eqno .btn .fa-spin.headerlink,.rst-content .eqno .nav .fa-spin.headerlink,.rst-content .nav .fa-spin.admonition-title,.rst-content code.download .btn span.fa-spin:first-child,.rst-content code.download .nav span.fa-spin:first-child,.rst-content dl dt .btn .fa-spin.headerlink,.rst-content dl dt .nav .fa-spin.headerlink,.rst-content h1 .btn .fa-spin.headerlink,.rst-content h1 .nav .fa-spin.headerlink,.rst-content h2 .btn .fa-spin.headerlink,.rst-content h2 .nav .fa-spin.headerlink,.rst-content h3 .btn .fa-spin.headerlink,.rst-content h3 .nav .fa-spin.headerlink,.rst-content h4 .btn .fa-spin.headerlink,.rst-content h4 .nav .fa-spin.headerlink,.rst-content h5 .btn .fa-spin.headerlink,.rst-content h5 .nav .fa-spin.headerlink,.rst-content h6 .btn .fa-spin.headerlink,.rst-content h6 .nav .fa-spin.headerlink,.rst-content p .btn .fa-spin.headerlink,.rst-content p .nav .fa-spin.headerlink,.rst-content table>caption .btn .fa-spin.headerlink,.rst-content table>caption .nav .fa-spin.headerlink,.rst-content tt.download .btn span.fa-spin:first-child,.rst-content tt.download .nav span.fa-spin:first-child,.wy-menu-vertical li .btn button.fa-spin.toctree-expand,.wy-menu-vertical li .nav button.fa-spin.toctree-expand{display:inline-block}.btn.fa:before,.btn.icon:before,.rst-content .btn.admonition-title:before,.rst-content .code-block-caption .btn.headerlink:before,.rst-content .eqno .btn.headerlink:before,.rst-content code.download span.btn:first-child:before,.rst-content dl dt .btn.headerlink:before,.rst-content h1 .btn.headerlink:before,.rst-content h2 .btn.headerlink:before,.rst-content h3 .btn.headerlink:before,.rst-content h4 .btn.headerlink:before,.rst-content h5 .btn.headerlink:before,.rst-content h6 .btn.headerlink:before,.rst-content p .btn.headerlink:before,.rst-content table>caption .btn.headerlink:before,.rst-content tt.download span.btn:first-child:before,.wy-menu-vertical li button.btn.toctree-expand:before{opacity:.5;-webkit-transition:opacity .05s ease-in;-moz-transition:opacity .05s ease-in;transition:opacity .05s ease-in}.btn.fa:hover:before,.btn.icon:hover:before,.rst-content .btn.admonition-title:hover:before,.rst-content .code-block-caption .btn.headerlink:hover:before,.rst-content .eqno .btn.headerlink:hover:before,.rst-content code.download span.btn:first-child:hover:before,.rst-content dl dt .btn.headerlink:hover:before,.rst-content h1 .btn.headerlink:hover:before,.rst-content h2 .btn.headerlink:hover:before,.rst-content h3 .btn.headerlink:hover:before,.rst-content h4 .btn.headerlink:hover:before,.rst-content h5 .btn.headerlink:hover:before,.rst-content h6 .btn.headerlink:hover:before,.rst-content p .btn.headerlink:hover:before,.rst-content table>caption .btn.headerlink:hover:before,.rst-content tt.download span.btn:first-child:hover:before,.wy-menu-vertical li button.btn.toctree-expand:hover:before{opacity:1}.btn-mini .fa:before,.btn-mini .icon:before,.btn-mini .rst-content .admonition-title:before,.btn-mini .rst-content .code-block-caption .headerlink:before,.btn-mini .rst-content .eqno .headerlink:before,.btn-mini .rst-content code.download span:first-child:before,.btn-mini .rst-content dl dt .headerlink:before,.btn-mini .rst-content h1 .headerlink:before,.btn-mini .rst-content h2 .headerlink:before,.btn-mini .rst-content h3 .headerlink:before,.btn-mini .rst-content h4 .headerlink:before,.btn-mini .rst-content h5 .headerlink:before,.btn-mini .rst-content h6 .headerlink:before,.btn-mini .rst-content p .headerlink:before,.btn-mini .rst-content table>caption .headerlink:before,.btn-mini .rst-content tt.download span:first-child:before,.btn-mini .wy-menu-vertical li button.toctree-expand:before,.rst-content .btn-mini .admonition-title:before,.rst-content .code-block-caption .btn-mini .headerlink:before,.rst-content .eqno .btn-mini .headerlink:before,.rst-content code.download .btn-mini span:first-child:before,.rst-content dl dt .btn-mini .headerlink:before,.rst-content h1 .btn-mini .headerlink:before,.rst-content h2 .btn-mini .headerlink:before,.rst-content h3 .btn-mini .headerlink:before,.rst-content h4 .btn-mini .headerlink:before,.rst-content h5 .btn-mini .headerlink:before,.rst-content h6 .btn-mini .headerlink:before,.rst-content p .btn-mini .headerlink:before,.rst-content table>caption .btn-mini .headerlink:before,.rst-content tt.download .btn-mini span:first-child:before,.wy-menu-vertical li .btn-mini button.toctree-expand:before{font-size:14px;vertical-align:-15%}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning,.wy-alert{padding:12px;line-height:24px;margin-bottom:24px;background:#e7f2fa}.rst-content .admonition-title,.wy-alert-title{font-weight:700;display:block;color:#fff;background:#6ab0de;padding:6px 12px;margin:-12px -12px 12px}.rst-content .danger,.rst-content .error,.rst-content .wy-alert-danger.admonition,.rst-content .wy-alert-danger.admonition-todo,.rst-content .wy-alert-danger.attention,.rst-content .wy-alert-danger.caution,.rst-content .wy-alert-danger.hint,.rst-content .wy-alert-danger.important,.rst-content .wy-alert-danger.note,.rst-content .wy-alert-danger.seealso,.rst-content .wy-alert-danger.tip,.rst-content .wy-alert-danger.warning,.wy-alert.wy-alert-danger{background:#fdf3f2}.rst-content .danger .admonition-title,.rst-content .danger .wy-alert-title,.rst-content .error .admonition-title,.rst-content .error .wy-alert-title,.rst-content .wy-alert-danger.admonition-todo .admonition-title,.rst-content .wy-alert-danger.admonition-todo .wy-alert-title,.rst-content .wy-alert-danger.admonition .admonition-title,.rst-content .wy-alert-danger.admonition .wy-alert-title,.rst-content .wy-alert-danger.attention .admonition-title,.rst-content .wy-alert-danger.attention .wy-alert-title,.rst-content .wy-alert-danger.caution .admonition-title,.rst-content .wy-alert-danger.caution .wy-alert-title,.rst-content .wy-alert-danger.hint .admonition-title,.rst-content .wy-alert-danger.hint .wy-alert-title,.rst-content .wy-alert-danger.important .admonition-title,.rst-content .wy-alert-danger.important .wy-alert-title,.rst-content .wy-alert-danger.note .admonition-title,.rst-content .wy-alert-danger.note .wy-alert-title,.rst-content .wy-alert-danger.seealso .admonition-title,.rst-content .wy-alert-danger.seealso .wy-alert-title,.rst-content .wy-alert-danger.tip .admonition-title,.rst-content .wy-alert-danger.tip .wy-alert-title,.rst-content .wy-alert-danger.warning .admonition-title,.rst-content .wy-alert-danger.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-danger .admonition-title,.wy-alert.wy-alert-danger .rst-content .admonition-title,.wy-alert.wy-alert-danger .wy-alert-title{background:#f29f97}.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .warning,.rst-content .wy-alert-warning.admonition,.rst-content .wy-alert-warning.danger,.rst-content .wy-alert-warning.error,.rst-content .wy-alert-warning.hint,.rst-content .wy-alert-warning.important,.rst-content .wy-alert-warning.note,.rst-content .wy-alert-warning.seealso,.rst-content .wy-alert-warning.tip,.wy-alert.wy-alert-warning{background:#ffedcc}.rst-content .admonition-todo .admonition-title,.rst-content .admonition-todo .wy-alert-title,.rst-content .attention .admonition-title,.rst-content .attention .wy-alert-title,.rst-content .caution .admonition-title,.rst-content .caution .wy-alert-title,.rst-content .warning .admonition-title,.rst-content .warning .wy-alert-title,.rst-content .wy-alert-warning.admonition .admonition-title,.rst-content .wy-alert-warning.admonition .wy-alert-title,.rst-content .wy-alert-warning.danger .admonition-title,.rst-content .wy-alert-warning.danger .wy-alert-title,.rst-content .wy-alert-warning.error .admonition-title,.rst-content .wy-alert-warning.error .wy-alert-title,.rst-content .wy-alert-warning.hint .admonition-title,.rst-content .wy-alert-warning.hint .wy-alert-title,.rst-content .wy-alert-warning.important .admonition-title,.rst-content .wy-alert-warning.important .wy-alert-title,.rst-content .wy-alert-warning.note .admonition-title,.rst-content .wy-alert-warning.note .wy-alert-title,.rst-content .wy-alert-warning.seealso .admonition-title,.rst-content .wy-alert-warning.seealso .wy-alert-title,.rst-content .wy-alert-warning.tip .admonition-title,.rst-content .wy-alert-warning.tip .wy-alert-title,.rst-content .wy-alert.wy-alert-warning .admonition-title,.wy-alert.wy-alert-warning .rst-content .admonition-title,.wy-alert.wy-alert-warning .wy-alert-title{background:#f0b37e}.rst-content .note,.rst-content .seealso,.rst-content .wy-alert-info.admonition,.rst-content .wy-alert-info.admonition-todo,.rst-content .wy-alert-info.attention,.rst-content .wy-alert-info.caution,.rst-content .wy-alert-info.danger,.rst-content .wy-alert-info.error,.rst-content .wy-alert-info.hint,.rst-content .wy-alert-info.important,.rst-content .wy-alert-info.tip,.rst-content .wy-alert-info.warning,.wy-alert.wy-alert-info{background:#e7f2fa}.rst-content .note .admonition-title,.rst-content .note .wy-alert-title,.rst-content .seealso .admonition-title,.rst-content .seealso .wy-alert-title,.rst-content .wy-alert-info.admonition-todo .admonition-title,.rst-content .wy-alert-info.admonition-todo .wy-alert-title,.rst-content .wy-alert-info.admonition .admonition-title,.rst-content .wy-alert-info.admonition .wy-alert-title,.rst-content .wy-alert-info.attention .admonition-title,.rst-content .wy-alert-info.attention .wy-alert-title,.rst-content .wy-alert-info.caution .admonition-title,.rst-content .wy-alert-info.caution .wy-alert-title,.rst-content .wy-alert-info.danger .admonition-title,.rst-content .wy-alert-info.danger .wy-alert-title,.rst-content .wy-alert-info.error .admonition-title,.rst-content .wy-alert-info.error .wy-alert-title,.rst-content .wy-alert-info.hint .admonition-title,.rst-content .wy-alert-info.hint .wy-alert-title,.rst-content .wy-alert-info.important .admonition-title,.rst-content .wy-alert-info.important .wy-alert-title,.rst-content .wy-alert-info.tip .admonition-title,.rst-content .wy-alert-info.tip .wy-alert-title,.rst-content .wy-alert-info.warning .admonition-title,.rst-content .wy-alert-info.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-info .admonition-title,.wy-alert.wy-alert-info .rst-content .admonition-title,.wy-alert.wy-alert-info .wy-alert-title{background:#6ab0de}.rst-content .hint,.rst-content .important,.rst-content .tip,.rst-content .wy-alert-success.admonition,.rst-content .wy-alert-success.admonition-todo,.rst-content .wy-alert-success.attention,.rst-content .wy-alert-success.caution,.rst-content .wy-alert-success.danger,.rst-content .wy-alert-success.error,.rst-content .wy-alert-success.note,.rst-content .wy-alert-success.seealso,.rst-content .wy-alert-success.warning,.wy-alert.wy-alert-success{background:#dbfaf4}.rst-content .hint .admonition-title,.rst-content .hint .wy-alert-title,.rst-content .important .admonition-title,.rst-content .important .wy-alert-title,.rst-content .tip .admonition-title,.rst-content .tip .wy-alert-title,.rst-content .wy-alert-success.admonition-todo .admonition-title,.rst-content .wy-alert-success.admonition-todo .wy-alert-title,.rst-content .wy-alert-success.admonition .admonition-title,.rst-content .wy-alert-success.admonition .wy-alert-title,.rst-content .wy-alert-success.attention .admonition-title,.rst-content .wy-alert-success.attention .wy-alert-title,.rst-content .wy-alert-success.caution .admonition-title,.rst-content .wy-alert-success.caution .wy-alert-title,.rst-content .wy-alert-success.danger .admonition-title,.rst-content .wy-alert-success.danger .wy-alert-title,.rst-content .wy-alert-success.error .admonition-title,.rst-content .wy-alert-success.error .wy-alert-title,.rst-content .wy-alert-success.note .admonition-title,.rst-content .wy-alert-success.note .wy-alert-title,.rst-content .wy-alert-success.seealso .admonition-title,.rst-content .wy-alert-success.seealso .wy-alert-title,.rst-content .wy-alert-success.warning .admonition-title,.rst-content .wy-alert-success.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-success .admonition-title,.wy-alert.wy-alert-success .rst-content .admonition-title,.wy-alert.wy-alert-success .wy-alert-title{background:#1abc9c}.rst-content .wy-alert-neutral.admonition,.rst-content .wy-alert-neutral.admonition-todo,.rst-content .wy-alert-neutral.attention,.rst-content .wy-alert-neutral.caution,.rst-content .wy-alert-neutral.danger,.rst-content .wy-alert-neutral.error,.rst-content .wy-alert-neutral.hint,.rst-content .wy-alert-neutral.important,.rst-content .wy-alert-neutral.note,.rst-content .wy-alert-neutral.seealso,.rst-content .wy-alert-neutral.tip,.rst-content .wy-alert-neutral.warning,.wy-alert.wy-alert-neutral{background:#f3f6f6}.rst-content .wy-alert-neutral.admonition-todo .admonition-title,.rst-content .wy-alert-neutral.admonition-todo .wy-alert-title,.rst-content .wy-alert-neutral.admonition .admonition-title,.rst-content .wy-alert-neutral.admonition .wy-alert-title,.rst-content .wy-alert-neutral.attention .admonition-title,.rst-content .wy-alert-neutral.attention .wy-alert-title,.rst-content .wy-alert-neutral.caution .admonition-title,.rst-content .wy-alert-neutral.caution .wy-alert-title,.rst-content .wy-alert-neutral.danger .admonition-title,.rst-content .wy-alert-neutral.danger .wy-alert-title,.rst-content .wy-alert-neutral.error .admonition-title,.rst-content .wy-alert-neutral.error .wy-alert-title,.rst-content .wy-alert-neutral.hint .admonition-title,.rst-content .wy-alert-neutral.hint .wy-alert-title,.rst-content .wy-alert-neutral.important .admonition-title,.rst-content .wy-alert-neutral.important .wy-alert-title,.rst-content .wy-alert-neutral.note .admonition-title,.rst-content .wy-alert-neutral.note .wy-alert-title,.rst-content .wy-alert-neutral.seealso .admonition-title,.rst-content .wy-alert-neutral.seealso .wy-alert-title,.rst-content .wy-alert-neutral.tip .admonition-title,.rst-content .wy-alert-neutral.tip .wy-alert-title,.rst-content .wy-alert-neutral.warning .admonition-title,.rst-content .wy-alert-neutral.warning .wy-alert-title,.rst-content .wy-alert.wy-alert-neutral .admonition-title,.wy-alert.wy-alert-neutral .rst-content .admonition-title,.wy-alert.wy-alert-neutral .wy-alert-title{color:#404040;background:#e1e4e5}.rst-content .wy-alert-neutral.admonition-todo a,.rst-content .wy-alert-neutral.admonition a,.rst-content .wy-alert-neutral.attention a,.rst-content .wy-alert-neutral.caution a,.rst-content .wy-alert-neutral.danger a,.rst-content .wy-alert-neutral.error a,.rst-content .wy-alert-neutral.hint a,.rst-content .wy-alert-neutral.important a,.rst-content .wy-alert-neutral.note a,.rst-content .wy-alert-neutral.seealso a,.rst-content .wy-alert-neutral.tip a,.rst-content .wy-alert-neutral.warning a,.wy-alert.wy-alert-neutral a{color:#2980b9}.rst-content .admonition-todo p:last-child,.rst-content .admonition p:last-child,.rst-content .attention p:last-child,.rst-content .caution p:last-child,.rst-content .danger p:last-child,.rst-content .error p:last-child,.rst-content .hint p:last-child,.rst-content .important p:last-child,.rst-content .note p:last-child,.rst-content .seealso p:last-child,.rst-content .tip p:last-child,.rst-content .warning p:last-child,.wy-alert p:last-child{margin-bottom:0}.wy-tray-container{position:fixed;bottom:0;left:0;z-index:600}.wy-tray-container li{display:block;width:300px;background:transparent;color:#fff;text-align:center;box-shadow:0 5px 5px 0 rgba(0,0,0,.1);padding:0 24px;min-width:20%;opacity:0;height:0;line-height:56px;overflow:hidden;-webkit-transition:all .3s ease-in;-moz-transition:all .3s ease-in;transition:all .3s ease-in}.wy-tray-container li.wy-tray-item-success{background:#27ae60}.wy-tray-container li.wy-tray-item-info{background:#2980b9}.wy-tray-container li.wy-tray-item-warning{background:#e67e22}.wy-tray-container li.wy-tray-item-danger{background:#e74c3c}.wy-tray-container li.on{opacity:1;height:56px}@media screen and (max-width:768px){.wy-tray-container{bottom:auto;top:0;width:100%}.wy-tray-container li{width:100%}}button{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle;cursor:pointer;line-height:normal;-webkit-appearance:button;*overflow:visible}button::-moz-focus-inner,input::-moz-focus-inner{border:0;padding:0}button[disabled]{cursor:default}.btn{display:inline-block;border-radius:2px;line-height:normal;white-space:nowrap;text-align:center;cursor:pointer;font-size:100%;padding:6px 12px 8px;color:#fff;border:1px solid rgba(0,0,0,.1);background-color:#27ae60;text-decoration:none;font-weight:400;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 2px -1px hsla(0,0%,100%,.5),inset 0 -2px 0 0 rgba(0,0,0,.1);outline-none:false;vertical-align:middle;*display:inline;zoom:1;-webkit-user-drag:none;-webkit-user-select:none;-moz-user-select:none;-ms-user-select:none;user-select:none;-webkit-transition:all .1s linear;-moz-transition:all .1s linear;transition:all .1s linear}.btn-hover{background:#2e8ece;color:#fff}.btn:hover{background:#2cc36b;color:#fff}.btn:focus{background:#2cc36b;outline:0}.btn:active{box-shadow:inset 0 -1px 0 0 rgba(0,0,0,.05),inset 0 2px 0 0 rgba(0,0,0,.1);padding:8px 12px 6px}.btn:visited{color:#fff}.btn-disabled,.btn-disabled:active,.btn-disabled:focus,.btn-disabled:hover,.btn:disabled{background-image:none;filter:progid:DXImageTransform.Microsoft.gradient(enabled = false);filter:alpha(opacity=40);opacity:.4;cursor:not-allowed;box-shadow:none}.btn::-moz-focus-inner{padding:0;border:0}.btn-small{font-size:80%}.btn-info{background-color:#2980b9!important}.btn-info:hover{background-color:#2e8ece!important}.btn-neutral{background-color:#f3f6f6!important;color:#404040!important}.btn-neutral:hover{background-color:#e5ebeb!important;color:#404040}.btn-neutral:visited{color:#404040!important}.btn-success{background-color:#27ae60!important}.btn-success:hover{background-color:#295!important}.btn-danger{background-color:#e74c3c!important}.btn-danger:hover{background-color:#ea6153!important}.btn-warning{background-color:#e67e22!important}.btn-warning:hover{background-color:#e98b39!important}.btn-invert{background-color:#222}.btn-invert:hover{background-color:#2f2f2f!important}.btn-link{background-color:transparent!important;color:#2980b9;box-shadow:none;border-color:transparent!important}.btn-link:active,.btn-link:hover{background-color:transparent!important;color:#409ad5!important;box-shadow:none}.btn-link:visited{color:#9b59b6}.wy-btn-group .btn,.wy-control .btn{vertical-align:middle}.wy-btn-group{margin-bottom:24px;*zoom:1}.wy-btn-group:after,.wy-btn-group:before{display:table;content:""}.wy-btn-group:after{clear:both}.wy-dropdown{position:relative;display:inline-block}.wy-dropdown-active .wy-dropdown-menu{display:block}.wy-dropdown-menu{position:absolute;left:0;display:none;float:left;top:100%;min-width:100%;background:#fcfcfc;z-index:100;border:1px solid #cfd7dd;box-shadow:0 2px 2px 0 rgba(0,0,0,.1);padding:12px}.wy-dropdown-menu>dd>a{display:block;clear:both;color:#404040;white-space:nowrap;font-size:90%;padding:0 12px;cursor:pointer}.wy-dropdown-menu>dd>a:hover{background:#2980b9;color:#fff}.wy-dropdown-menu>dd.divider{border-top:1px solid #cfd7dd;margin:6px 0}.wy-dropdown-menu>dd.search{padding-bottom:12px}.wy-dropdown-menu>dd.search input[type=search]{width:100%}.wy-dropdown-menu>dd.call-to-action{background:#e3e3e3;text-transform:uppercase;font-weight:500;font-size:80%}.wy-dropdown-menu>dd.call-to-action:hover{background:#e3e3e3}.wy-dropdown-menu>dd.call-to-action .btn{color:#fff}.wy-dropdown.wy-dropdown-up .wy-dropdown-menu{bottom:100%;top:auto;left:auto;right:0}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu{background:#fcfcfc;margin-top:2px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a{padding:6px 12px}.wy-dropdown.wy-dropdown-bubble .wy-dropdown-menu a:hover{background:#2980b9;color:#fff}.wy-dropdown.wy-dropdown-left .wy-dropdown-menu{right:0;left:auto;text-align:right}.wy-dropdown-arrow:before{content:" ";border-bottom:5px solid #f5f5f5;border-left:5px solid transparent;border-right:5px solid transparent;position:absolute;display:block;top:-4px;left:50%;margin-left:-3px}.wy-dropdown-arrow.wy-dropdown-arrow-left:before{left:11px}.wy-form-stacked select{display:block}.wy-form-aligned .wy-help-inline,.wy-form-aligned input,.wy-form-aligned label,.wy-form-aligned select,.wy-form-aligned textarea{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-form-aligned .wy-control-group>label{display:inline-block;vertical-align:middle;width:10em;margin:6px 12px 0 0;float:left}.wy-form-aligned .wy-control{float:left}.wy-form-aligned .wy-control label{display:block}.wy-form-aligned .wy-control select{margin-top:6px}fieldset{margin:0}fieldset,legend{border:0;padding:0}legend{width:100%;white-space:normal;margin-bottom:24px;font-size:150%;*margin-left:-7px}label,legend{display:block}label{margin:0 0 .3125em;color:#333;font-size:90%}input,select,textarea{font-size:100%;margin:0;vertical-align:baseline;*vertical-align:middle}.wy-control-group{margin-bottom:24px;max-width:1200px;margin-left:auto;margin-right:auto;*zoom:1}.wy-control-group:after,.wy-control-group:before{display:table;content:""}.wy-control-group:after{clear:both}.wy-control-group.wy-control-group-required>label:after{content:" *";color:#e74c3c}.wy-control-group .wy-form-full,.wy-control-group .wy-form-halves,.wy-control-group .wy-form-thirds{padding-bottom:12px}.wy-control-group .wy-form-full input[type=color],.wy-control-group .wy-form-full input[type=date],.wy-control-group .wy-form-full input[type=datetime-local],.wy-control-group .wy-form-full input[type=datetime],.wy-control-group .wy-form-full input[type=email],.wy-control-group .wy-form-full input[type=month],.wy-control-group .wy-form-full input[type=number],.wy-control-group .wy-form-full input[type=password],.wy-control-group .wy-form-full input[type=search],.wy-control-group .wy-form-full input[type=tel],.wy-control-group .wy-form-full input[type=text],.wy-control-group .wy-form-full input[type=time],.wy-control-group .wy-form-full input[type=url],.wy-control-group .wy-form-full input[type=week],.wy-control-group .wy-form-full select,.wy-control-group .wy-form-halves input[type=color],.wy-control-group .wy-form-halves input[type=date],.wy-control-group .wy-form-halves input[type=datetime-local],.wy-control-group .wy-form-halves input[type=datetime],.wy-control-group .wy-form-halves input[type=email],.wy-control-group .wy-form-halves input[type=month],.wy-control-group .wy-form-halves input[type=number],.wy-control-group .wy-form-halves input[type=password],.wy-control-group .wy-form-halves input[type=search],.wy-control-group .wy-form-halves input[type=tel],.wy-control-group .wy-form-halves input[type=text],.wy-control-group .wy-form-halves input[type=time],.wy-control-group .wy-form-halves input[type=url],.wy-control-group .wy-form-halves input[type=week],.wy-control-group .wy-form-halves select,.wy-control-group .wy-form-thirds input[type=color],.wy-control-group .wy-form-thirds input[type=date],.wy-control-group .wy-form-thirds input[type=datetime-local],.wy-control-group .wy-form-thirds input[type=datetime],.wy-control-group .wy-form-thirds input[type=email],.wy-control-group .wy-form-thirds input[type=month],.wy-control-group .wy-form-thirds input[type=number],.wy-control-group .wy-form-thirds input[type=password],.wy-control-group .wy-form-thirds input[type=search],.wy-control-group .wy-form-thirds input[type=tel],.wy-control-group .wy-form-thirds input[type=text],.wy-control-group .wy-form-thirds input[type=time],.wy-control-group .wy-form-thirds input[type=url],.wy-control-group .wy-form-thirds input[type=week],.wy-control-group .wy-form-thirds select{width:100%}.wy-control-group .wy-form-full{float:left;display:block;width:100%;margin-right:0}.wy-control-group .wy-form-full:last-child{margin-right:0}.wy-control-group .wy-form-halves{float:left;display:block;margin-right:2.35765%;width:48.82117%}.wy-control-group .wy-form-halves:last-child,.wy-control-group .wy-form-halves:nth-of-type(2n){margin-right:0}.wy-control-group .wy-form-halves:nth-of-type(odd){clear:left}.wy-control-group .wy-form-thirds{float:left;display:block;margin-right:2.35765%;width:31.76157%}.wy-control-group .wy-form-thirds:last-child,.wy-control-group .wy-form-thirds:nth-of-type(3n){margin-right:0}.wy-control-group .wy-form-thirds:nth-of-type(3n+1){clear:left}.wy-control-group.wy-control-group-no-input .wy-control,.wy-control-no-input{margin:6px 0 0;font-size:90%}.wy-control-no-input{display:inline-block}.wy-control-group.fluid-input input[type=color],.wy-control-group.fluid-input input[type=date],.wy-control-group.fluid-input input[type=datetime-local],.wy-control-group.fluid-input input[type=datetime],.wy-control-group.fluid-input input[type=email],.wy-control-group.fluid-input input[type=month],.wy-control-group.fluid-input input[type=number],.wy-control-group.fluid-input input[type=password],.wy-control-group.fluid-input input[type=search],.wy-control-group.fluid-input input[type=tel],.wy-control-group.fluid-input input[type=text],.wy-control-group.fluid-input input[type=time],.wy-control-group.fluid-input input[type=url],.wy-control-group.fluid-input input[type=week]{width:100%}.wy-form-message-inline{padding-left:.3em;color:#666;font-size:90%}.wy-form-message{display:block;color:#999;font-size:70%;margin-top:.3125em;font-style:italic}.wy-form-message p{font-size:inherit;font-style:italic;margin-bottom:6px}.wy-form-message p:last-child{margin-bottom:0}input{line-height:normal}input[type=button],input[type=reset],input[type=submit]{-webkit-appearance:button;cursor:pointer;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;*overflow:visible}input[type=color],input[type=date],input[type=datetime-local],input[type=datetime],input[type=email],input[type=month],input[type=number],input[type=password],input[type=search],input[type=tel],input[type=text],input[type=time],input[type=url],input[type=week]{-webkit-appearance:none;padding:6px;display:inline-block;border:1px solid #ccc;font-size:80%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;box-shadow:inset 0 1px 3px #ddd;border-radius:0;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}input[type=datetime-local]{padding:.34375em .625em}input[disabled]{cursor:default}input[type=checkbox],input[type=radio]{padding:0;margin-right:.3125em;*height:13px;*width:13px}input[type=checkbox],input[type=radio],input[type=search]{-webkit-box-sizing:border-box;-moz-box-sizing:border-box;box-sizing:border-box}input[type=search]::-webkit-search-cancel-button,input[type=search]::-webkit-search-decoration{-webkit-appearance:none}input[type=color]:focus,input[type=date]:focus,input[type=datetime-local]:focus,input[type=datetime]:focus,input[type=email]:focus,input[type=month]:focus,input[type=number]:focus,input[type=password]:focus,input[type=search]:focus,input[type=tel]:focus,input[type=text]:focus,input[type=time]:focus,input[type=url]:focus,input[type=week]:focus{outline:0;outline:thin dotted\9;border-color:#333}input.no-focus:focus{border-color:#ccc!important}input[type=checkbox]:focus,input[type=file]:focus,input[type=radio]:focus{outline:thin dotted #333;outline:1px auto #129fea}input[type=color][disabled],input[type=date][disabled],input[type=datetime-local][disabled],input[type=datetime][disabled],input[type=email][disabled],input[type=month][disabled],input[type=number][disabled],input[type=password][disabled],input[type=search][disabled],input[type=tel][disabled],input[type=text][disabled],input[type=time][disabled],input[type=url][disabled],input[type=week][disabled]{cursor:not-allowed;background-color:#fafafa}input:focus:invalid,select:focus:invalid,textarea:focus:invalid{color:#e74c3c;border:1px solid #e74c3c}input:focus:invalid:focus,select:focus:invalid:focus,textarea:focus:invalid:focus{border-color:#e74c3c}input[type=checkbox]:focus:invalid:focus,input[type=file]:focus:invalid:focus,input[type=radio]:focus:invalid:focus{outline-color:#e74c3c}input.wy-input-large{padding:12px;font-size:100%}textarea{overflow:auto;vertical-align:top;width:100%;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif}select,textarea{padding:.5em .625em;display:inline-block;border:1px solid #ccc;font-size:80%;box-shadow:inset 0 1px 3px #ddd;-webkit-transition:border .3s linear;-moz-transition:border .3s linear;transition:border .3s linear}select{border:1px solid #ccc;background-color:#fff}select[multiple]{height:auto}select:focus,textarea:focus{outline:0}input[readonly],select[disabled],select[readonly],textarea[disabled],textarea[readonly]{cursor:not-allowed;background-color:#fafafa}input[type=checkbox][disabled],input[type=radio][disabled]{cursor:not-allowed}.wy-checkbox,.wy-radio{margin:6px 0;color:#404040;display:block}.wy-checkbox input,.wy-radio input{vertical-align:baseline}.wy-form-message-inline{display:inline-block;*display:inline;*zoom:1;vertical-align:middle}.wy-input-prefix,.wy-input-suffix{white-space:nowrap;padding:6px}.wy-input-prefix .wy-input-context,.wy-input-suffix .wy-input-context{line-height:27px;padding:0 8px;display:inline-block;font-size:80%;background-color:#f3f6f6;border:1px solid #ccc;color:#999}.wy-input-suffix .wy-input-context{border-left:0}.wy-input-prefix .wy-input-context{border-right:0}.wy-switch{position:relative;display:block;height:24px;margin-top:12px;cursor:pointer}.wy-switch:before{left:0;top:0;width:36px;height:12px;background:#ccc}.wy-switch:after,.wy-switch:before{position:absolute;content:"";display:block;border-radius:4px;-webkit-transition:all .2s ease-in-out;-moz-transition:all .2s ease-in-out;transition:all .2s ease-in-out}.wy-switch:after{width:18px;height:18px;background:#999;left:-3px;top:-3px}.wy-switch span{position:absolute;left:48px;display:block;font-size:12px;color:#ccc;line-height:1}.wy-switch.active:before{background:#1e8449}.wy-switch.active:after{left:24px;background:#27ae60}.wy-switch.disabled{cursor:not-allowed;opacity:.8}.wy-control-group.wy-control-group-error .wy-form-message,.wy-control-group.wy-control-group-error>label{color:#e74c3c}.wy-control-group.wy-control-group-error input[type=color],.wy-control-group.wy-control-group-error input[type=date],.wy-control-group.wy-control-group-error input[type=datetime-local],.wy-control-group.wy-control-group-error input[type=datetime],.wy-control-group.wy-control-group-error input[type=email],.wy-control-group.wy-control-group-error input[type=month],.wy-control-group.wy-control-group-error input[type=number],.wy-control-group.wy-control-group-error input[type=password],.wy-control-group.wy-control-group-error input[type=search],.wy-control-group.wy-control-group-error input[type=tel],.wy-control-group.wy-control-group-error input[type=text],.wy-control-group.wy-control-group-error input[type=time],.wy-control-group.wy-control-group-error input[type=url],.wy-control-group.wy-control-group-error input[type=week],.wy-control-group.wy-control-group-error textarea{border:1px solid #e74c3c}.wy-inline-validate{white-space:nowrap}.wy-inline-validate .wy-input-context{padding:.5em .625em;display:inline-block;font-size:80%}.wy-inline-validate.wy-inline-validate-success .wy-input-context{color:#27ae60}.wy-inline-validate.wy-inline-validate-danger .wy-input-context{color:#e74c3c}.wy-inline-validate.wy-inline-validate-warning .wy-input-context{color:#e67e22}.wy-inline-validate.wy-inline-validate-info .wy-input-context{color:#2980b9}.rotate-90{-webkit-transform:rotate(90deg);-moz-transform:rotate(90deg);-ms-transform:rotate(90deg);-o-transform:rotate(90deg);transform:rotate(90deg)}.rotate-180{-webkit-transform:rotate(180deg);-moz-transform:rotate(180deg);-ms-transform:rotate(180deg);-o-transform:rotate(180deg);transform:rotate(180deg)}.rotate-270{-webkit-transform:rotate(270deg);-moz-transform:rotate(270deg);-ms-transform:rotate(270deg);-o-transform:rotate(270deg);transform:rotate(270deg)}.mirror{-webkit-transform:scaleX(-1);-moz-transform:scaleX(-1);-ms-transform:scaleX(-1);-o-transform:scaleX(-1);transform:scaleX(-1)}.mirror.rotate-90{-webkit-transform:scaleX(-1) rotate(90deg);-moz-transform:scaleX(-1) rotate(90deg);-ms-transform:scaleX(-1) rotate(90deg);-o-transform:scaleX(-1) rotate(90deg);transform:scaleX(-1) rotate(90deg)}.mirror.rotate-180{-webkit-transform:scaleX(-1) rotate(180deg);-moz-transform:scaleX(-1) rotate(180deg);-ms-transform:scaleX(-1) rotate(180deg);-o-transform:scaleX(-1) rotate(180deg);transform:scaleX(-1) rotate(180deg)}.mirror.rotate-270{-webkit-transform:scaleX(-1) rotate(270deg);-moz-transform:scaleX(-1) rotate(270deg);-ms-transform:scaleX(-1) rotate(270deg);-o-transform:scaleX(-1) rotate(270deg);transform:scaleX(-1) rotate(270deg)}@media only screen and (max-width:480px){.wy-form button[type=submit]{margin:.7em 0 0}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=text],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week],.wy-form label{margin-bottom:.3em;display:block}.wy-form input[type=color],.wy-form input[type=date],.wy-form input[type=datetime-local],.wy-form input[type=datetime],.wy-form input[type=email],.wy-form input[type=month],.wy-form input[type=number],.wy-form input[type=password],.wy-form input[type=search],.wy-form input[type=tel],.wy-form input[type=time],.wy-form input[type=url],.wy-form input[type=week]{margin-bottom:0}.wy-form-aligned .wy-control-group label{margin-bottom:.3em;text-align:left;display:block;width:100%}.wy-form-aligned .wy-control{margin:1.5em 0 0}.wy-form-message,.wy-form-message-inline,.wy-form .wy-help-inline{display:block;font-size:80%;padding:6px 0}}@media screen and (max-width:768px){.tablet-hide{display:none}}@media screen and (max-width:480px){.mobile-hide{display:none}}.float-left{float:left}.float-right{float:right}.full-width{width:100%}.rst-content table.docutils,.rst-content table.field-list,.wy-table{border-collapse:collapse;border-spacing:0;empty-cells:show;margin-bottom:24px}.rst-content table.docutils caption,.rst-content table.field-list caption,.wy-table caption{color:#000;font:italic 85%/1 arial,sans-serif;padding:1em 0;text-align:center}.rst-content table.docutils td,.rst-content table.docutils th,.rst-content table.field-list td,.rst-content table.field-list th,.wy-table td,.wy-table th{font-size:90%;margin:0;overflow:visible;padding:8px 16px}.rst-content table.docutils td:first-child,.rst-content table.docutils th:first-child,.rst-content table.field-list td:first-child,.rst-content table.field-list th:first-child,.wy-table td:first-child,.wy-table th:first-child{border-left-width:0}.rst-content table.docutils thead,.rst-content table.field-list thead,.wy-table thead{color:#000;text-align:left;vertical-align:bottom;white-space:nowrap}.rst-content table.docutils thead th,.rst-content table.field-list thead th,.wy-table thead th{font-weight:700;border-bottom:2px solid #e1e4e5}.rst-content table.docutils td,.rst-content table.field-list td,.wy-table td{background-color:transparent;vertical-align:middle}.rst-content table.docutils td p,.rst-content table.field-list td p,.wy-table td p{line-height:18px}.rst-content table.docutils td p:last-child,.rst-content table.field-list td p:last-child,.wy-table td p:last-child{margin-bottom:0}.rst-content table.docutils .wy-table-cell-min,.rst-content table.field-list .wy-table-cell-min,.wy-table .wy-table-cell-min{width:1%;padding-right:0}.rst-content table.docutils .wy-table-cell-min input[type=checkbox],.rst-content table.field-list .wy-table-cell-min input[type=checkbox],.wy-table .wy-table-cell-min input[type=checkbox]{margin:0}.wy-table-secondary{color:grey;font-size:90%}.wy-table-tertiary{color:grey;font-size:80%}.rst-content table.docutils:not(.field-list) tr:nth-child(2n-1) td,.wy-table-backed,.wy-table-odd td,.wy-table-striped tr:nth-child(2n-1) td{background-color:#f3f6f6}.rst-content table.docutils,.wy-table-bordered-all{border:1px solid #e1e4e5}.rst-content table.docutils td,.wy-table-bordered-all td{border-bottom:1px solid #e1e4e5;border-left:1px solid #e1e4e5}.rst-content table.docutils tbody>tr:last-child td,.wy-table-bordered-all tbody>tr:last-child td{border-bottom-width:0}.wy-table-bordered{border:1px solid #e1e4e5}.wy-table-bordered-rows td{border-bottom:1px solid #e1e4e5}.wy-table-bordered-rows tbody>tr:last-child td{border-bottom-width:0}.wy-table-horizontal td,.wy-table-horizontal th{border-width:0 0 1px;border-bottom:1px solid #e1e4e5}.wy-table-horizontal tbody>tr:last-child td{border-bottom-width:0}.wy-table-responsive{margin-bottom:24px;max-width:100%;overflow:auto}.wy-table-responsive table{margin-bottom:0!important}.wy-table-responsive table td,.wy-table-responsive table th{white-space:nowrap}a{color:#2980b9;text-decoration:none;cursor:pointer}a:hover{color:#3091d1}a:visited{color:#9b59b6}html{height:100%}body,html{overflow-x:hidden}body{font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;font-weight:400;color:#404040;min-height:100%;background:#edf0f2}.wy-text-left{text-align:left}.wy-text-center{text-align:center}.wy-text-right{text-align:right}.wy-text-large{font-size:120%}.wy-text-normal{font-size:100%}.wy-text-small,small{font-size:80%}.wy-text-strike{text-decoration:line-through}.wy-text-warning{color:#e67e22!important}a.wy-text-warning:hover{color:#eb9950!important}.wy-text-info{color:#2980b9!important}a.wy-text-info:hover{color:#409ad5!important}.wy-text-success{color:#27ae60!important}a.wy-text-success:hover{color:#36d278!important}.wy-text-danger{color:#e74c3c!important}a.wy-text-danger:hover{color:#ed7669!important}.wy-text-neutral{color:#404040!important}a.wy-text-neutral:hover{color:#595959!important}.rst-content .toctree-wrapper>p.caption,h1,h2,h3,h4,h5,h6,legend{margin-top:0;font-weight:700;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif}p{line-height:24px;font-size:16px;margin:0 0 24px}h1{font-size:175%}.rst-content .toctree-wrapper>p.caption,h2{font-size:150%}h3{font-size:125%}h4{font-size:115%}h5{font-size:110%}h6{font-size:100%}hr{display:block;height:1px;border:0;border-top:1px solid #e1e4e5;margin:24px 0;padding:0}.rst-content code,.rst-content tt,code{white-space:nowrap;max-width:100%;background:#fff;border:1px solid #e1e4e5;font-size:75%;padding:0 5px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#e74c3c;overflow-x:auto}.rst-content tt.code-large,code.code-large{font-size:90%}.rst-content .section ul,.rst-content .toctree-wrapper ul,.rst-content section ul,.wy-plain-list-disc,article ul{list-style:disc;line-height:24px;margin-bottom:24px}.rst-content .section ul li,.rst-content .toctree-wrapper ul li,.rst-content section ul li,.wy-plain-list-disc li,article ul li{list-style:disc;margin-left:24px}.rst-content .section ul li p:last-child,.rst-content .section ul li ul,.rst-content .toctree-wrapper ul li p:last-child,.rst-content .toctree-wrapper ul li ul,.rst-content section ul li p:last-child,.rst-content section ul li ul,.wy-plain-list-disc li p:last-child,.wy-plain-list-disc li ul,article ul li p:last-child,article ul li ul{margin-bottom:0}.rst-content .section ul li li,.rst-content .toctree-wrapper ul li li,.rst-content section ul li li,.wy-plain-list-disc li li,article ul li li{list-style:circle}.rst-content .section ul li li li,.rst-content .toctree-wrapper ul li li li,.rst-content section ul li li li,.wy-plain-list-disc li li li,article ul li li li{list-style:square}.rst-content .section ul li ol li,.rst-content .toctree-wrapper ul li ol li,.rst-content section ul li ol li,.wy-plain-list-disc li ol li,article ul li ol li{list-style:decimal}.rst-content .section ol,.rst-content .section ol.arabic,.rst-content .toctree-wrapper ol,.rst-content .toctree-wrapper ol.arabic,.rst-content section ol,.rst-content section ol.arabic,.wy-plain-list-decimal,article ol{list-style:decimal;line-height:24px;margin-bottom:24px}.rst-content .section ol.arabic li,.rst-content .section ol li,.rst-content .toctree-wrapper ol.arabic li,.rst-content .toctree-wrapper ol li,.rst-content section ol.arabic li,.rst-content section ol li,.wy-plain-list-decimal li,article ol li{list-style:decimal;margin-left:24px}.rst-content .section ol.arabic li ul,.rst-content .section ol li p:last-child,.rst-content .section ol li ul,.rst-content .toctree-wrapper ol.arabic li ul,.rst-content .toctree-wrapper ol li p:last-child,.rst-content .toctree-wrapper ol li ul,.rst-content section ol.arabic li ul,.rst-content section ol li p:last-child,.rst-content section ol li ul,.wy-plain-list-decimal li p:last-child,.wy-plain-list-decimal li ul,article ol li p:last-child,article ol li ul{margin-bottom:0}.rst-content .section ol.arabic li ul li,.rst-content .section ol li ul li,.rst-content .toctree-wrapper ol.arabic li ul li,.rst-content .toctree-wrapper ol li ul li,.rst-content section ol.arabic li ul li,.rst-content section ol li ul li,.wy-plain-list-decimal li ul li,article ol li ul li{list-style:disc}.wy-breadcrumbs{*zoom:1}.wy-breadcrumbs:after,.wy-breadcrumbs:before{display:table;content:""}.wy-breadcrumbs:after{clear:both}.wy-breadcrumbs>li{display:inline-block;padding-top:5px}.wy-breadcrumbs>li.wy-breadcrumbs-aside{float:right}.rst-content .wy-breadcrumbs>li code,.rst-content .wy-breadcrumbs>li tt,.wy-breadcrumbs>li .rst-content tt,.wy-breadcrumbs>li code{all:inherit;color:inherit}.breadcrumb-item:before{content:"/";color:#bbb;font-size:13px;padding:0 6px 0 3px}.wy-breadcrumbs-extra{margin-bottom:0;color:#b3b3b3;font-size:80%;display:inline-block}@media screen and (max-width:480px){.wy-breadcrumbs-extra,.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}@media print{.wy-breadcrumbs li.wy-breadcrumbs-aside{display:none}}html{font-size:16px}.wy-affix{position:fixed;top:1.618em}.wy-menu a:hover{text-decoration:none}.wy-menu-horiz{*zoom:1}.wy-menu-horiz:after,.wy-menu-horiz:before{display:table;content:""}.wy-menu-horiz:after{clear:both}.wy-menu-horiz li,.wy-menu-horiz ul{display:inline-block}.wy-menu-horiz li:hover{background:hsla(0,0%,100%,.1)}.wy-menu-horiz li.divide-left{border-left:1px solid #404040}.wy-menu-horiz li.divide-right{border-right:1px solid #404040}.wy-menu-horiz a{height:32px;display:inline-block;line-height:32px;padding:0 16px}.wy-menu-vertical{width:300px}.wy-menu-vertical header,.wy-menu-vertical p.caption{color:#55a5d9;height:32px;line-height:32px;padding:0 1.618em;margin:12px 0 0;display:block;font-weight:700;text-transform:uppercase;font-size:85%;white-space:nowrap}.wy-menu-vertical ul{margin-bottom:0}.wy-menu-vertical li.divide-top{border-top:1px solid #404040}.wy-menu-vertical li.divide-bottom{border-bottom:1px solid #404040}.wy-menu-vertical li.current{background:#e3e3e3}.wy-menu-vertical li.current a{color:grey;border-right:1px solid #c9c9c9;padding:.4045em 2.427em}.wy-menu-vertical li.current a:hover{background:#d6d6d6}.rst-content .wy-menu-vertical li tt,.wy-menu-vertical li .rst-content tt,.wy-menu-vertical li code{border:none;background:inherit;color:inherit;padding-left:0;padding-right:0}.wy-menu-vertical li button.toctree-expand{display:block;float:left;margin-left:-1.2em;line-height:18px;color:#4d4d4d;border:none;background:none;padding:0}.wy-menu-vertical li.current>a,.wy-menu-vertical li.on a{color:#404040;font-weight:700;position:relative;background:#fcfcfc;border:none;padding:.4045em 1.618em}.wy-menu-vertical li.current>a:hover,.wy-menu-vertical li.on a:hover{background:#fcfcfc}.wy-menu-vertical li.current>a:hover button.toctree-expand,.wy-menu-vertical li.on a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.current>a button.toctree-expand,.wy-menu-vertical li.on a button.toctree-expand{display:block;line-height:18px;color:#333}.wy-menu-vertical li.toctree-l1.current>a{border-bottom:1px solid #c9c9c9;border-top:1px solid #c9c9c9}.wy-menu-vertical .toctree-l1.current .toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .toctree-l11>ul{display:none}.wy-menu-vertical .toctree-l1.current .current.toctree-l2>ul,.wy-menu-vertical .toctree-l2.current .current.toctree-l3>ul,.wy-menu-vertical .toctree-l3.current .current.toctree-l4>ul,.wy-menu-vertical .toctree-l4.current .current.toctree-l5>ul,.wy-menu-vertical .toctree-l5.current .current.toctree-l6>ul,.wy-menu-vertical .toctree-l6.current .current.toctree-l7>ul,.wy-menu-vertical .toctree-l7.current .current.toctree-l8>ul,.wy-menu-vertical .toctree-l8.current .current.toctree-l9>ul,.wy-menu-vertical .toctree-l9.current .current.toctree-l10>ul,.wy-menu-vertical .toctree-l10.current .current.toctree-l11>ul{display:block}.wy-menu-vertical li.toctree-l3,.wy-menu-vertical li.toctree-l4{font-size:.9em}.wy-menu-vertical li.toctree-l2 a,.wy-menu-vertical li.toctree-l3 a,.wy-menu-vertical li.toctree-l4 a,.wy-menu-vertical li.toctree-l5 a,.wy-menu-vertical li.toctree-l6 a,.wy-menu-vertical li.toctree-l7 a,.wy-menu-vertical li.toctree-l8 a,.wy-menu-vertical li.toctree-l9 a,.wy-menu-vertical li.toctree-l10 a{color:#404040}.wy-menu-vertical li.toctree-l2 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l3 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l4 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l5 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l6 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l7 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l8 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l9 a:hover button.toctree-expand,.wy-menu-vertical li.toctree-l10 a:hover button.toctree-expand{color:grey}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a,.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a,.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a,.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a,.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a,.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a,.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a,.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{display:block}.wy-menu-vertical li.toctree-l2.current>a{padding:.4045em 2.427em}.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{padding:.4045em 1.618em .4045em 4.045em}.wy-menu-vertical li.toctree-l3.current>a{padding:.4045em 4.045em}.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{padding:.4045em 1.618em .4045em 5.663em}.wy-menu-vertical li.toctree-l4.current>a{padding:.4045em 5.663em}.wy-menu-vertical li.toctree-l4.current li.toctree-l5>a{padding:.4045em 1.618em .4045em 7.281em}.wy-menu-vertical li.toctree-l5.current>a{padding:.4045em 7.281em}.wy-menu-vertical li.toctree-l5.current li.toctree-l6>a{padding:.4045em 1.618em .4045em 8.899em}.wy-menu-vertical li.toctree-l6.current>a{padding:.4045em 8.899em}.wy-menu-vertical li.toctree-l6.current li.toctree-l7>a{padding:.4045em 1.618em .4045em 10.517em}.wy-menu-vertical li.toctree-l7.current>a{padding:.4045em 10.517em}.wy-menu-vertical li.toctree-l7.current li.toctree-l8>a{padding:.4045em 1.618em .4045em 12.135em}.wy-menu-vertical li.toctree-l8.current>a{padding:.4045em 12.135em}.wy-menu-vertical li.toctree-l8.current li.toctree-l9>a{padding:.4045em 1.618em .4045em 13.753em}.wy-menu-vertical li.toctree-l9.current>a{padding:.4045em 13.753em}.wy-menu-vertical li.toctree-l9.current li.toctree-l10>a{padding:.4045em 1.618em .4045em 15.371em}.wy-menu-vertical li.toctree-l10.current>a{padding:.4045em 15.371em}.wy-menu-vertical li.toctree-l10.current li.toctree-l11>a{padding:.4045em 1.618em .4045em 16.989em}.wy-menu-vertical li.toctree-l2.current>a,.wy-menu-vertical li.toctree-l2.current li.toctree-l3>a{background:#c9c9c9}.wy-menu-vertical li.toctree-l2 button.toctree-expand{color:#a3a3a3}.wy-menu-vertical li.toctree-l3.current>a,.wy-menu-vertical li.toctree-l3.current li.toctree-l4>a{background:#bdbdbd}.wy-menu-vertical li.toctree-l3 button.toctree-expand{color:#969696}.wy-menu-vertical li.current ul{display:block}.wy-menu-vertical li ul{margin-bottom:0;display:none}.wy-menu-vertical li ul li a{margin-bottom:0;color:#d9d9d9;font-weight:400}.wy-menu-vertical a{line-height:18px;padding:.4045em 1.618em;display:block;position:relative;font-size:90%;color:#d9d9d9}.wy-menu-vertical a:hover{background-color:#4e4a4a;cursor:pointer}.wy-menu-vertical a:hover button.toctree-expand{color:#d9d9d9}.wy-menu-vertical a:active{background-color:#2980b9;cursor:pointer;color:#fff}.wy-menu-vertical a:active button.toctree-expand{color:#fff}.wy-side-nav-search{display:block;width:300px;padding:.809em;margin-bottom:.809em;z-index:200;background-color:#2980b9;text-align:center;color:#fcfcfc}.wy-side-nav-search input[type=text]{width:100%;border-radius:50px;padding:6px 12px;border-color:#2472a4}.wy-side-nav-search img{display:block;margin:auto auto .809em;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-side-nav-search .wy-dropdown>a,.wy-side-nav-search>a{color:#fcfcfc;font-size:100%;font-weight:700;display:inline-block;padding:4px 6px;margin-bottom:.809em;max-width:100%}.wy-side-nav-search .wy-dropdown>a:hover,.wy-side-nav-search>a:hover{background:hsla(0,0%,100%,.1)}.wy-side-nav-search .wy-dropdown>a img.logo,.wy-side-nav-search>a img.logo{display:block;margin:0 auto;height:auto;width:auto;border-radius:0;max-width:100%;background:transparent}.wy-side-nav-search .wy-dropdown>a.icon img.logo,.wy-side-nav-search>a.icon img.logo{margin-top:.85em}.wy-side-nav-search>div.version{margin-top:-.4045em;margin-bottom:.809em;font-weight:400;color:hsla(0,0%,100%,.3)}.wy-nav .wy-menu-vertical header{color:#2980b9}.wy-nav .wy-menu-vertical a{color:#b3b3b3}.wy-nav .wy-menu-vertical a:hover{background-color:#2980b9;color:#fff}[data-menu-wrap]{-webkit-transition:all .2s ease-in;-moz-transition:all .2s ease-in;transition:all .2s ease-in;position:absolute;opacity:1;width:100%;opacity:0}[data-menu-wrap].move-center{left:0;right:auto;opacity:1}[data-menu-wrap].move-left{right:auto;left:-100%;opacity:0}[data-menu-wrap].move-right{right:-100%;left:auto;opacity:0}.wy-body-for-nav{background:#fcfcfc}.wy-grid-for-nav{position:absolute;width:100%;height:100%}.wy-nav-side{position:fixed;top:0;bottom:0;left:0;padding-bottom:2em;width:300px;overflow-x:hidden;overflow-y:hidden;min-height:100%;color:#9b9b9b;background:#343131;z-index:200}.wy-side-scroll{width:320px;position:relative;overflow-x:hidden;overflow-y:scroll;height:100%}.wy-nav-top{display:none;background:#2980b9;color:#fff;padding:.4045em .809em;position:relative;line-height:50px;text-align:center;font-size:100%;*zoom:1}.wy-nav-top:after,.wy-nav-top:before{display:table;content:""}.wy-nav-top:after{clear:both}.wy-nav-top a{color:#fff;font-weight:700}.wy-nav-top img{margin-right:12px;height:45px;width:45px;background-color:#2980b9;padding:5px;border-radius:100%}.wy-nav-top i{font-size:30px;float:left;cursor:pointer;padding-top:inherit}.wy-nav-content-wrap{margin-left:300px;background:#fcfcfc;min-height:100%}.wy-nav-content{padding:1.618em 3.236em;height:100%;max-width:800px;margin:auto}.wy-body-mask{position:fixed;width:100%;height:100%;background:rgba(0,0,0,.2);display:none;z-index:499}.wy-body-mask.on{display:block}footer{color:grey}footer p{margin-bottom:12px}.rst-content footer span.commit tt,footer span.commit .rst-content tt,footer span.commit code{padding:0;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:1em;background:none;border:none;color:grey}.rst-footer-buttons{*zoom:1}.rst-footer-buttons:after,.rst-footer-buttons:before{width:100%;display:table;content:""}.rst-footer-buttons:after{clear:both}.rst-breadcrumbs-buttons{margin-top:12px;*zoom:1}.rst-breadcrumbs-buttons:after,.rst-breadcrumbs-buttons:before{display:table;content:""}.rst-breadcrumbs-buttons:after{clear:both}#search-results .search li{margin-bottom:24px;border-bottom:1px solid #e1e4e5;padding-bottom:24px}#search-results .search li:first-child{border-top:1px solid #e1e4e5;padding-top:24px}#search-results .search li a{font-size:120%;margin-bottom:12px;display:inline-block}#search-results .context{color:grey;font-size:90%}.genindextable li>ul{margin-left:24px}@media screen and (max-width:768px){.wy-body-for-nav{background:#fcfcfc}.wy-nav-top{display:block}.wy-nav-side{left:-300px}.wy-nav-side.shift{width:85%;left:0}.wy-menu.wy-menu-vertical,.wy-side-nav-search,.wy-side-scroll{width:auto}.wy-nav-content-wrap{margin-left:0}.wy-nav-content-wrap .wy-nav-content{padding:1.618em}.wy-nav-content-wrap.shift{position:fixed;min-width:100%;left:85%;top:0;height:100%;overflow:hidden}}@media screen and (min-width:1100px){.wy-nav-content-wrap{background:rgba(0,0,0,.05)}.wy-nav-content{margin:0;background:#fcfcfc}}@media print{.rst-versions,.wy-nav-side,footer{display:none}.wy-nav-content-wrap{margin-left:0}}.rst-versions{position:fixed;bottom:0;left:0;width:300px;color:#fcfcfc;background:#1f1d1d;font-family:Lato,proxima-nova,Helvetica Neue,Arial,sans-serif;z-index:400}.rst-versions a{color:#2980b9;text-decoration:none}.rst-versions .rst-badge-small{display:none}.rst-versions .rst-current-version{padding:12px;background-color:#272525;display:block;text-align:right;font-size:90%;cursor:pointer;color:#27ae60;*zoom:1}.rst-versions .rst-current-version:after,.rst-versions .rst-current-version:before{display:table;content:""}.rst-versions .rst-current-version:after{clear:both}.rst-content .code-block-caption .rst-versions .rst-current-version .headerlink,.rst-content .eqno .rst-versions .rst-current-version .headerlink,.rst-content .rst-versions .rst-current-version .admonition-title,.rst-content code.download .rst-versions .rst-current-version span:first-child,.rst-content dl dt .rst-versions .rst-current-version .headerlink,.rst-content h1 .rst-versions .rst-current-version .headerlink,.rst-content h2 .rst-versions .rst-current-version .headerlink,.rst-content h3 .rst-versions .rst-current-version .headerlink,.rst-content h4 .rst-versions .rst-current-version .headerlink,.rst-content h5 .rst-versions .rst-current-version .headerlink,.rst-content h6 .rst-versions .rst-current-version .headerlink,.rst-content p .rst-versions .rst-current-version .headerlink,.rst-content table>caption .rst-versions .rst-current-version .headerlink,.rst-content tt.download .rst-versions .rst-current-version span:first-child,.rst-versions .rst-current-version .fa,.rst-versions .rst-current-version .icon,.rst-versions .rst-current-version .rst-content .admonition-title,.rst-versions .rst-current-version .rst-content .code-block-caption .headerlink,.rst-versions .rst-current-version .rst-content .eqno .headerlink,.rst-versions .rst-current-version .rst-content code.download span:first-child,.rst-versions .rst-current-version .rst-content dl dt .headerlink,.rst-versions .rst-current-version .rst-content h1 .headerlink,.rst-versions .rst-current-version .rst-content h2 .headerlink,.rst-versions .rst-current-version .rst-content h3 .headerlink,.rst-versions .rst-current-version .rst-content h4 .headerlink,.rst-versions .rst-current-version .rst-content h5 .headerlink,.rst-versions .rst-current-version .rst-content h6 .headerlink,.rst-versions .rst-current-version .rst-content p .headerlink,.rst-versions .rst-current-version .rst-content table>caption .headerlink,.rst-versions .rst-current-version .rst-content tt.download span:first-child,.rst-versions .rst-current-version .wy-menu-vertical li button.toctree-expand,.wy-menu-vertical li .rst-versions .rst-current-version button.toctree-expand{color:#fcfcfc}.rst-versions .rst-current-version .fa-book,.rst-versions .rst-current-version .icon-book{float:left}.rst-versions .rst-current-version.rst-out-of-date{background-color:#e74c3c;color:#fff}.rst-versions .rst-current-version.rst-active-old-version{background-color:#f1c40f;color:#000}.rst-versions.shift-up{height:auto;max-height:100%;overflow-y:scroll}.rst-versions.shift-up .rst-other-versions{display:block}.rst-versions .rst-other-versions{font-size:90%;padding:12px;color:grey;display:none}.rst-versions .rst-other-versions hr{display:block;height:1px;border:0;margin:20px 0;padding:0;border-top:1px solid #413d3d}.rst-versions .rst-other-versions dd{display:inline-block;margin:0}.rst-versions .rst-other-versions dd a{display:inline-block;padding:6px;color:#fcfcfc}.rst-versions.rst-badge{width:auto;bottom:20px;right:20px;left:auto;border:none;max-width:300px;max-height:90%}.rst-versions.rst-badge .fa-book,.rst-versions.rst-badge .icon-book{float:none;line-height:30px}.rst-versions.rst-badge.shift-up .rst-current-version{text-align:right}.rst-versions.rst-badge.shift-up .rst-current-version .fa-book,.rst-versions.rst-badge.shift-up .rst-current-version .icon-book{float:left}.rst-versions.rst-badge>.rst-current-version{width:auto;height:30px;line-height:30px;padding:0 6px;display:block;text-align:center}@media screen and (max-width:768px){.rst-versions{width:85%;display:none}.rst-versions.shift{display:block}}.rst-content .toctree-wrapper>p.caption,.rst-content h1,.rst-content h2,.rst-content h3,.rst-content h4,.rst-content h5,.rst-content h6{margin-bottom:24px}.rst-content img{max-width:100%;height:auto}.rst-content div.figure,.rst-content figure{margin-bottom:24px}.rst-content div.figure .caption-text,.rst-content figure .caption-text{font-style:italic}.rst-content div.figure p:last-child.caption,.rst-content figure p:last-child.caption{margin-bottom:0}.rst-content div.figure.align-center,.rst-content figure.align-center{text-align:center}.rst-content .section>a>img,.rst-content .section>img,.rst-content section>a>img,.rst-content section>img{margin-bottom:24px}.rst-content abbr[title]{text-decoration:none}.rst-content.style-external-links a.reference.external:after{font-family:FontAwesome;content:"\f08e";color:#b3b3b3;vertical-align:super;font-size:60%;margin:0 .2em}.rst-content blockquote{margin-left:24px;line-height:24px;margin-bottom:24px}.rst-content pre.literal-block{white-space:pre;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;display:block;overflow:auto}.rst-content div[class^=highlight],.rst-content pre.literal-block{border:1px solid #e1e4e5;overflow-x:auto;margin:1px 0 24px}.rst-content div[class^=highlight] div[class^=highlight],.rst-content pre.literal-block div[class^=highlight]{padding:0;border:none;margin:0}.rst-content div[class^=highlight] td.code{width:100%}.rst-content .linenodiv pre{border-right:1px solid #e6e9ea;margin:0;padding:12px;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;user-select:none;pointer-events:none}.rst-content div[class^=highlight] pre{white-space:pre;margin:0;padding:12px;display:block;overflow:auto}.rst-content div[class^=highlight] pre .hll{display:block;margin:0 -12px;padding:0 12px}.rst-content .linenodiv pre,.rst-content div[class^=highlight] pre,.rst-content pre.literal-block{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;font-size:12px;line-height:1.4}.rst-content div.highlight .gp,.rst-content div.highlight span.linenos{user-select:none;pointer-events:none}.rst-content div.highlight span.linenos{display:inline-block;padding-left:0;padding-right:12px;margin-right:12px;border-right:1px solid #e6e9ea}.rst-content .code-block-caption{font-style:italic;font-size:85%;line-height:1;padding:1em 0;text-align:center}@media print{.rst-content .codeblock,.rst-content div[class^=highlight],.rst-content div[class^=highlight] pre{white-space:pre-wrap}}.rst-content .admonition,.rst-content .admonition-todo,.rst-content .attention,.rst-content .caution,.rst-content .danger,.rst-content .error,.rst-content .hint,.rst-content .important,.rst-content .note,.rst-content .seealso,.rst-content .tip,.rst-content .warning{clear:both}.rst-content .admonition-todo .last,.rst-content .admonition-todo>:last-child,.rst-content .admonition .last,.rst-content .admonition>:last-child,.rst-content .attention .last,.rst-content .attention>:last-child,.rst-content .caution .last,.rst-content .caution>:last-child,.rst-content .danger .last,.rst-content .danger>:last-child,.rst-content .error .last,.rst-content .error>:last-child,.rst-content .hint .last,.rst-content .hint>:last-child,.rst-content .important .last,.rst-content .important>:last-child,.rst-content .note .last,.rst-content .note>:last-child,.rst-content .seealso .last,.rst-content .seealso>:last-child,.rst-content .tip .last,.rst-content .tip>:last-child,.rst-content .warning .last,.rst-content .warning>:last-child{margin-bottom:0}.rst-content .admonition-title:before{margin-right:4px}.rst-content .admonition table{border-color:rgba(0,0,0,.1)}.rst-content .admonition table td,.rst-content .admonition table th{background:transparent!important;border-color:rgba(0,0,0,.1)!important}.rst-content .section ol.loweralpha,.rst-content .section ol.loweralpha>li,.rst-content .toctree-wrapper ol.loweralpha,.rst-content .toctree-wrapper ol.loweralpha>li,.rst-content section ol.loweralpha,.rst-content section ol.loweralpha>li{list-style:lower-alpha}.rst-content .section ol.upperalpha,.rst-content .section ol.upperalpha>li,.rst-content .toctree-wrapper ol.upperalpha,.rst-content .toctree-wrapper ol.upperalpha>li,.rst-content section ol.upperalpha,.rst-content section ol.upperalpha>li{list-style:upper-alpha}.rst-content .section ol li>*,.rst-content .section ul li>*,.rst-content .toctree-wrapper ol li>*,.rst-content .toctree-wrapper ul li>*,.rst-content section ol li>*,.rst-content section ul li>*{margin-top:12px;margin-bottom:12px}.rst-content .section ol li>:first-child,.rst-content .section ul li>:first-child,.rst-content .toctree-wrapper ol li>:first-child,.rst-content .toctree-wrapper ul li>:first-child,.rst-content section ol li>:first-child,.rst-content section ul li>:first-child{margin-top:0}.rst-content .section ol li>p,.rst-content .section ol li>p:last-child,.rst-content .section ul li>p,.rst-content .section ul li>p:last-child,.rst-content .toctree-wrapper ol li>p,.rst-content .toctree-wrapper ol li>p:last-child,.rst-content .toctree-wrapper ul li>p,.rst-content .toctree-wrapper ul li>p:last-child,.rst-content section ol li>p,.rst-content section ol li>p:last-child,.rst-content section ul li>p,.rst-content section ul li>p:last-child{margin-bottom:12px}.rst-content .section ol li>p:only-child,.rst-content .section ol li>p:only-child:last-child,.rst-content .section ul li>p:only-child,.rst-content .section ul li>p:only-child:last-child,.rst-content .toctree-wrapper ol li>p:only-child,.rst-content .toctree-wrapper ol li>p:only-child:last-child,.rst-content .toctree-wrapper ul li>p:only-child,.rst-content .toctree-wrapper ul li>p:only-child:last-child,.rst-content section ol li>p:only-child,.rst-content section ol li>p:only-child:last-child,.rst-content section ul li>p:only-child,.rst-content section ul li>p:only-child:last-child{margin-bottom:0}.rst-content .section ol li>ol,.rst-content .section ol li>ul,.rst-content .section ul li>ol,.rst-content .section ul li>ul,.rst-content .toctree-wrapper ol li>ol,.rst-content .toctree-wrapper ol li>ul,.rst-content .toctree-wrapper ul li>ol,.rst-content .toctree-wrapper ul li>ul,.rst-content section ol li>ol,.rst-content section ol li>ul,.rst-content section ul li>ol,.rst-content section ul li>ul{margin-bottom:12px}.rst-content .section ol.simple li>*,.rst-content .section ol.simple li ol,.rst-content .section ol.simple li ul,.rst-content .section ul.simple li>*,.rst-content .section ul.simple li ol,.rst-content .section ul.simple li ul,.rst-content .toctree-wrapper ol.simple li>*,.rst-content .toctree-wrapper ol.simple li ol,.rst-content .toctree-wrapper ol.simple li ul,.rst-content .toctree-wrapper ul.simple li>*,.rst-content .toctree-wrapper ul.simple li ol,.rst-content .toctree-wrapper ul.simple li ul,.rst-content section ol.simple li>*,.rst-content section ol.simple li ol,.rst-content section ol.simple li ul,.rst-content section ul.simple li>*,.rst-content section ul.simple li ol,.rst-content section ul.simple li ul{margin-top:0;margin-bottom:0}.rst-content .line-block{margin-left:0;margin-bottom:24px;line-height:24px}.rst-content .line-block .line-block{margin-left:24px;margin-bottom:0}.rst-content .topic-title{font-weight:700;margin-bottom:12px}.rst-content .toc-backref{color:#404040}.rst-content .align-right{float:right;margin:0 0 24px 24px}.rst-content .align-left{float:left;margin:0 24px 24px 0}.rst-content .align-center{margin:auto}.rst-content .align-center:not(table){display:block}.rst-content .code-block-caption .headerlink,.rst-content .eqno .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink,.rst-content dl dt .headerlink,.rst-content h1 .headerlink,.rst-content h2 .headerlink,.rst-content h3 .headerlink,.rst-content h4 .headerlink,.rst-content h5 .headerlink,.rst-content h6 .headerlink,.rst-content p.caption .headerlink,.rst-content p .headerlink,.rst-content table>caption .headerlink{opacity:0;font-size:14px;font-family:FontAwesome;margin-left:.5em}.rst-content .code-block-caption .headerlink:focus,.rst-content .code-block-caption:hover .headerlink,.rst-content .eqno .headerlink:focus,.rst-content .eqno:hover .headerlink,.rst-content .toctree-wrapper>p.caption .headerlink:focus,.rst-content .toctree-wrapper>p.caption:hover .headerlink,.rst-content dl dt .headerlink:focus,.rst-content dl dt:hover .headerlink,.rst-content h1 .headerlink:focus,.rst-content h1:hover .headerlink,.rst-content h2 .headerlink:focus,.rst-content h2:hover .headerlink,.rst-content h3 .headerlink:focus,.rst-content h3:hover .headerlink,.rst-content h4 .headerlink:focus,.rst-content h4:hover .headerlink,.rst-content h5 .headerlink:focus,.rst-content h5:hover .headerlink,.rst-content h6 .headerlink:focus,.rst-content h6:hover .headerlink,.rst-content p.caption .headerlink:focus,.rst-content p.caption:hover .headerlink,.rst-content p .headerlink:focus,.rst-content p:hover .headerlink,.rst-content table>caption .headerlink:focus,.rst-content table>caption:hover .headerlink{opacity:1}.rst-content p a{overflow-wrap:anywhere}.rst-content .wy-table td p,.rst-content .wy-table td ul,.rst-content .wy-table th p,.rst-content .wy-table th ul,.rst-content table.docutils td p,.rst-content table.docutils td ul,.rst-content table.docutils th p,.rst-content table.docutils th ul,.rst-content table.field-list td p,.rst-content table.field-list td ul,.rst-content table.field-list th p,.rst-content table.field-list th ul{font-size:inherit}.rst-content .btn:focus{outline:2px solid}.rst-content table>caption .headerlink:after{font-size:12px}.rst-content .centered{text-align:center}.rst-content .sidebar{float:right;width:40%;display:block;margin:0 0 24px 24px;padding:24px;background:#f3f6f6;border:1px solid #e1e4e5}.rst-content .sidebar dl,.rst-content .sidebar p,.rst-content .sidebar ul{font-size:90%}.rst-content .sidebar .last,.rst-content .sidebar>:last-child{margin-bottom:0}.rst-content .sidebar .sidebar-title{display:block;font-family:Roboto Slab,ff-tisa-web-pro,Georgia,Arial,sans-serif;font-weight:700;background:#e1e4e5;padding:6px 12px;margin:-24px -24px 24px;font-size:100%}.rst-content .highlighted{background:#f1c40f;box-shadow:0 0 0 2px #f1c40f;display:inline;font-weight:700}.rst-content .citation-reference,.rst-content .footnote-reference{vertical-align:baseline;position:relative;top:-.4em;line-height:0;font-size:90%}.rst-content .citation-reference>span.fn-bracket,.rst-content .footnote-reference>span.fn-bracket{display:none}.rst-content .hlist{width:100%}.rst-content dl dt span.classifier:before{content:" : "}.rst-content dl dt span.classifier-delimiter{display:none!important}html.writer-html4 .rst-content table.docutils.citation,html.writer-html4 .rst-content table.docutils.footnote{background:none;border:none}html.writer-html4 .rst-content table.docutils.citation td,html.writer-html4 .rst-content table.docutils.citation tr,html.writer-html4 .rst-content table.docutils.footnote td,html.writer-html4 .rst-content table.docutils.footnote tr{border:none;background-color:transparent!important;white-space:normal}html.writer-html4 .rst-content table.docutils.citation td.label,html.writer-html4 .rst-content table.docutils.footnote td.label{padding-left:0;padding-right:0;vertical-align:top}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{display:grid;grid-template-columns:auto minmax(80%,95%)}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{display:inline-grid;grid-template-columns:max-content auto}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{display:grid;grid-template-columns:auto auto minmax(.65rem,auto) minmax(40%,95%)}html.writer-html5 .rst-content aside.citation>span.label,html.writer-html5 .rst-content aside.footnote>span.label,html.writer-html5 .rst-content div.citation>span.label{grid-column-start:1;grid-column-end:2}html.writer-html5 .rst-content aside.citation>span.backrefs,html.writer-html5 .rst-content aside.footnote>span.backrefs,html.writer-html5 .rst-content div.citation>span.backrefs{grid-column-start:2;grid-column-end:3;grid-row-start:1;grid-row-end:3}html.writer-html5 .rst-content aside.citation>p,html.writer-html5 .rst-content aside.footnote>p,html.writer-html5 .rst-content div.citation>p{grid-column-start:4;grid-column-end:5}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.field-list,html.writer-html5 .rst-content dl.footnote{margin-bottom:24px}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dt{padding-left:1rem}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.field-list>dd,html.writer-html5 .rst-content dl.field-list>dt,html.writer-html5 .rst-content dl.footnote>dd,html.writer-html5 .rst-content dl.footnote>dt{margin-bottom:0}html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{font-size:.9rem}html.writer-html5 .rst-content dl.citation>dt,html.writer-html5 .rst-content dl.footnote>dt{margin:0 .5rem .5rem 0;line-height:1.2rem;word-break:break-all;font-weight:400}html.writer-html5 .rst-content dl.citation>dt>span.brackets:before,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:before{content:"["}html.writer-html5 .rst-content dl.citation>dt>span.brackets:after,html.writer-html5 .rst-content dl.footnote>dt>span.brackets:after{content:"]"}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a{word-break:keep-all}html.writer-html5 .rst-content dl.citation>dt>span.fn-backref>a:not(:first-child):before,html.writer-html5 .rst-content dl.footnote>dt>span.fn-backref>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content dl.citation>dd,html.writer-html5 .rst-content dl.footnote>dd{margin:0 0 .5rem;line-height:1.2rem}html.writer-html5 .rst-content dl.citation>dd p,html.writer-html5 .rst-content dl.footnote>dd p{font-size:.9rem}html.writer-html5 .rst-content aside.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content div.citation{padding-left:1rem;padding-right:1rem;font-size:.9rem;line-height:1.2rem}html.writer-html5 .rst-content aside.citation p,html.writer-html5 .rst-content aside.footnote p,html.writer-html5 .rst-content div.citation p{font-size:.9rem;line-height:1.2rem;margin-bottom:12px}html.writer-html5 .rst-content aside.citation span.backrefs,html.writer-html5 .rst-content aside.footnote span.backrefs,html.writer-html5 .rst-content div.citation span.backrefs{text-align:left;font-style:italic;margin-left:.65rem;word-break:break-word;word-spacing:-.1rem;max-width:5rem}html.writer-html5 .rst-content aside.citation span.backrefs>a,html.writer-html5 .rst-content aside.footnote span.backrefs>a,html.writer-html5 .rst-content div.citation span.backrefs>a{word-break:keep-all}html.writer-html5 .rst-content aside.citation span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content aside.footnote span.backrefs>a:not(:first-child):before,html.writer-html5 .rst-content div.citation span.backrefs>a:not(:first-child):before{content:" "}html.writer-html5 .rst-content aside.citation span.label,html.writer-html5 .rst-content aside.footnote span.label,html.writer-html5 .rst-content div.citation span.label{line-height:1.2rem}html.writer-html5 .rst-content aside.citation-list,html.writer-html5 .rst-content aside.footnote-list,html.writer-html5 .rst-content div.citation-list{margin-bottom:24px}html.writer-html5 .rst-content dl.option-list kbd{font-size:.9rem}.rst-content table.docutils.footnote,html.writer-html4 .rst-content table.docutils.citation,html.writer-html5 .rst-content aside.footnote,html.writer-html5 .rst-content aside.footnote-list aside.footnote,html.writer-html5 .rst-content div.citation-list>div.citation,html.writer-html5 .rst-content dl.citation,html.writer-html5 .rst-content dl.footnote{color:grey}.rst-content table.docutils.footnote code,.rst-content table.docutils.footnote tt,html.writer-html4 .rst-content table.docutils.citation code,html.writer-html4 .rst-content table.docutils.citation tt,html.writer-html5 .rst-content aside.footnote-list aside.footnote code,html.writer-html5 .rst-content aside.footnote-list aside.footnote tt,html.writer-html5 .rst-content aside.footnote code,html.writer-html5 .rst-content aside.footnote tt,html.writer-html5 .rst-content div.citation-list>div.citation code,html.writer-html5 .rst-content div.citation-list>div.citation tt,html.writer-html5 .rst-content dl.citation code,html.writer-html5 .rst-content dl.citation tt,html.writer-html5 .rst-content dl.footnote code,html.writer-html5 .rst-content dl.footnote tt{color:#555}.rst-content .wy-table-responsive.citation,.rst-content .wy-table-responsive.footnote{margin-bottom:0}.rst-content .wy-table-responsive.citation+:not(.citation),.rst-content .wy-table-responsive.footnote+:not(.footnote){margin-top:24px}.rst-content .wy-table-responsive.citation:last-child,.rst-content .wy-table-responsive.footnote:last-child{margin-bottom:24px}.rst-content table.docutils th{border-color:#e1e4e5}html.writer-html5 .rst-content table.docutils th{border:1px solid #e1e4e5}html.writer-html5 .rst-content table.docutils td>p,html.writer-html5 .rst-content table.docutils th>p{line-height:1rem;margin-bottom:0;font-size:.9rem}.rst-content table.docutils td .last,.rst-content table.docutils td .last>:last-child{margin-bottom:0}.rst-content table.field-list,.rst-content table.field-list td{border:none}.rst-content table.field-list td p{line-height:inherit}.rst-content table.field-list td>strong{display:inline-block}.rst-content table.field-list .field-name{padding-right:10px;text-align:left;white-space:nowrap}.rst-content table.field-list .field-body{text-align:left}.rst-content code,.rst-content tt{color:#000;font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;padding:2px 5px}.rst-content code big,.rst-content code em,.rst-content tt big,.rst-content tt em{font-size:100%!important;line-height:normal}.rst-content code.literal,.rst-content tt.literal{color:#e74c3c;white-space:normal}.rst-content code.xref,.rst-content tt.xref,a .rst-content code,a .rst-content tt{font-weight:700;color:#404040;overflow-wrap:normal}.rst-content kbd,.rst-content pre,.rst-content samp{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace}.rst-content a code,.rst-content a tt{color:#2980b9}.rst-content dl{margin-bottom:24px}.rst-content dl dt{font-weight:700;margin-bottom:12px}.rst-content dl ol,.rst-content dl p,.rst-content dl table,.rst-content dl ul{margin-bottom:12px}.rst-content dl dd{margin:0 0 12px 24px;line-height:24px}.rst-content dl dd>ol:last-child,.rst-content dl dd>p:last-child,.rst-content dl dd>table:last-child,.rst-content dl dd>ul:last-child{margin-bottom:0}html.writer-html4 .rst-content dl:not(.docutils),html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple){margin-bottom:24px}html.writer-html4 .rst-content dl:not(.docutils)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{display:table;margin:6px 0;font-size:90%;line-height:normal;background:#e7f2fa;color:#2980b9;border-top:3px solid #6ab0de;padding:6px;position:relative}html.writer-html4 .rst-content dl:not(.docutils)>dt:before,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:before{color:#6ab0de}html.writer-html4 .rst-content dl:not(.docutils)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt{margin-bottom:6px;border:none;border-left:3px solid #ccc;background:#f0f0f0;color:#555}html.writer-html4 .rst-content dl:not(.docutils) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) dl:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt .headerlink{color:#404040;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils)>dt:first-child,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple)>dt:first-child{margin-top:0}html.writer-html4 .rst-content dl:not(.docutils) code.descclassname,html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descclassname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{background-color:transparent;border:none;padding:0;font-size:100%!important}html.writer-html4 .rst-content dl:not(.docutils) code.descname,html.writer-html4 .rst-content dl:not(.docutils) tt.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) code.descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) tt.descname{font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .optional,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .optional{display:inline-block;padding:0 4px;color:#000;font-weight:700}html.writer-html4 .rst-content dl:not(.docutils) .property,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .property{display:inline-block;padding-right:8px;max-width:100%}html.writer-html4 .rst-content dl:not(.docutils) .k,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .k{font-style:italic}html.writer-html4 .rst-content dl:not(.docutils) .descclassname,html.writer-html4 .rst-content dl:not(.docutils) .descname,html.writer-html4 .rst-content dl:not(.docutils) .sig-name,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descclassname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .descname,html.writer-html5 .rst-content dl[class]:not(.option-list):not(.field-list):not(.footnote):not(.citation):not(.glossary):not(.simple) .sig-name{font-family:SFMono-Regular,Menlo,Monaco,Consolas,Liberation Mono,Courier New,Courier,monospace;color:#000}.rst-content .viewcode-back,.rst-content .viewcode-link{display:inline-block;color:#27ae60;font-size:80%;padding-left:24px}.rst-content .viewcode-back{display:block;float:right}.rst-content p.rubric{margin-bottom:12px;font-weight:700}.rst-content code.download,.rst-content tt.download{background:inherit;padding:inherit;font-weight:400;font-family:inherit;font-size:inherit;color:inherit;border:inherit;white-space:inherit}.rst-content code.download span:first-child,.rst-content tt.download span:first-child{-webkit-font-smoothing:subpixel-antialiased}.rst-content code.download span:first-child:before,.rst-content tt.download span:first-child:before{margin-right:4px}.rst-content .guilabel,.rst-content .menuselection{font-size:80%;font-weight:700;border-radius:4px;padding:2.4px 6px;margin:auto 2px}.rst-content .guilabel,.rst-content .menuselection{border:1px solid #7fbbe3;background:#e7f2fa}.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>.kbd,.rst-content :not(dl.option-list)>:not(dt):not(kbd):not(.kbd)>kbd{color:inherit;font-size:80%;background-color:#fff;border:1px solid #a6a6a6;border-radius:4px;box-shadow:0 2px grey;padding:2.4px 6px;margin:auto 0}.rst-content .versionmodified{font-style:italic}@media screen and (max-width:480px){.rst-content .sidebar{width:100%}}span[id*=MathJax-Span]{color:#404040}.math{text-align:center}@font-face{font-family:Lato;src:url(fonts/lato-normal.woff2?bd03a2cc277bbbc338d464e679fe9942) format("woff2"),url(fonts/lato-normal.woff?27bd77b9162d388cb8d4c4217c7c5e2a) format("woff");font-weight:400;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold.woff2?cccb897485813c7c256901dbca54ecf2) format("woff2"),url(fonts/lato-bold.woff?d878b6c29b10beca227e9eef4246111b) format("woff");font-weight:700;font-style:normal;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-bold-italic.woff2?0b6bb6725576b072c5d0b02ecdd1900d) format("woff2"),url(fonts/lato-bold-italic.woff?9c7e4e9eb485b4a121c760e61bc3707c) format("woff");font-weight:700;font-style:italic;font-display:block}@font-face{font-family:Lato;src:url(fonts/lato-normal-italic.woff2?4eb103b4d12be57cb1d040ed5e162e9d) format("woff2"),url(fonts/lato-normal-italic.woff?f28f2d6482446544ef1ea1ccc6dd5892) format("woff");font-weight:400;font-style:italic;font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:400;src:url(fonts/Roboto-Slab-Regular.woff2?7abf5b8d04d26a2cafea937019bca958) format("woff2"),url(fonts/Roboto-Slab-Regular.woff?c1be9284088d487c5e3ff0a10a92e58c) format("woff");font-display:block}@font-face{font-family:Roboto Slab;font-style:normal;font-weight:700;src:url(fonts/Roboto-Slab-Bold.woff2?9984f4a9bda09be08e83f2506954adbe) format("woff2"),url(fonts/Roboto-Slab-Bold.woff?bed5564a116b05148e3b3bea6fb1162a) format("woff");font-display:block} \ No newline at end of file diff --git a/_static/doctools.js b/_static/doctools.js new file mode 100644 index 0000000..d06a71d --- /dev/null +++ b/_static/doctools.js @@ -0,0 +1,156 @@ +/* + * doctools.js + * ~~~~~~~~~~~ + * + * Base JavaScript utilities for all Sphinx HTML documentation. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +const BLACKLISTED_KEY_CONTROL_ELEMENTS = new Set([ + "TEXTAREA", + "INPUT", + "SELECT", + "BUTTON", +]); + +const _ready = (callback) => { + if (document.readyState !== "loading") { + callback(); + } else { + document.addEventListener("DOMContentLoaded", callback); + } +}; + +/** + * Small JavaScript module for the documentation. + */ +const Documentation = { + init: () => { + Documentation.initDomainIndexTable(); + Documentation.initOnKeyListeners(); + }, + + /** + * i18n support + */ + TRANSLATIONS: {}, + PLURAL_EXPR: (n) => (n === 1 ? 0 : 1), + LOCALE: "unknown", + + // gettext and ngettext don't access this so that the functions + // can safely bound to a different name (_ = Documentation.gettext) + gettext: (string) => { + const translated = Documentation.TRANSLATIONS[string]; + switch (typeof translated) { + case "undefined": + return string; // no translation + case "string": + return translated; // translation exists + default: + return translated[0]; // (singular, plural) translation tuple exists + } + }, + + ngettext: (singular, plural, n) => { + const translated = Documentation.TRANSLATIONS[singular]; + if (typeof translated !== "undefined") + return translated[Documentation.PLURAL_EXPR(n)]; + return n === 1 ? singular : plural; + }, + + addTranslations: (catalog) => { + Object.assign(Documentation.TRANSLATIONS, catalog.messages); + Documentation.PLURAL_EXPR = new Function( + "n", + `return (${catalog.plural_expr})` + ); + Documentation.LOCALE = catalog.locale; + }, + + /** + * helper function to focus on search bar + */ + focusSearchBar: () => { + document.querySelectorAll("input[name=q]")[0]?.focus(); + }, + + /** + * Initialise the domain index toggle buttons + */ + initDomainIndexTable: () => { + const toggler = (el) => { + const idNumber = el.id.substr(7); + const toggledRows = document.querySelectorAll(`tr.cg-${idNumber}`); + if (el.src.substr(-9) === "minus.png") { + el.src = `${el.src.substr(0, el.src.length - 9)}plus.png`; + toggledRows.forEach((el) => (el.style.display = "none")); + } else { + el.src = `${el.src.substr(0, el.src.length - 8)}minus.png`; + toggledRows.forEach((el) => (el.style.display = "")); + } + }; + + const togglerElements = document.querySelectorAll("img.toggler"); + togglerElements.forEach((el) => + el.addEventListener("click", (event) => toggler(event.currentTarget)) + ); + togglerElements.forEach((el) => (el.style.display = "")); + if (DOCUMENTATION_OPTIONS.COLLAPSE_INDEX) togglerElements.forEach(toggler); + }, + + initOnKeyListeners: () => { + // only install a listener if it is really needed + if ( + !DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS && + !DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS + ) + return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.altKey || event.ctrlKey || event.metaKey) return; + + if (!event.shiftKey) { + switch (event.key) { + case "ArrowLeft": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const prevLink = document.querySelector('link[rel="prev"]'); + if (prevLink && prevLink.href) { + window.location.href = prevLink.href; + event.preventDefault(); + } + break; + case "ArrowRight": + if (!DOCUMENTATION_OPTIONS.NAVIGATION_WITH_KEYS) break; + + const nextLink = document.querySelector('link[rel="next"]'); + if (nextLink && nextLink.href) { + window.location.href = nextLink.href; + event.preventDefault(); + } + break; + } + } + + // some keyboard layouts may need Shift to get / + switch (event.key) { + case "/": + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) break; + Documentation.focusSearchBar(); + event.preventDefault(); + } + }); + }, +}; + +// quick alias for translations +const _ = Documentation.gettext; + +_ready(Documentation.init); diff --git a/_static/documentation_options.js b/_static/documentation_options.js new file mode 100644 index 0000000..add8e0c --- /dev/null +++ b/_static/documentation_options.js @@ -0,0 +1,13 @@ +const DOCUMENTATION_OPTIONS = { + VERSION: '0.2.1', + LANGUAGE: 'en', + COLLAPSE_INDEX: false, + BUILDER: 'html', + FILE_SUFFIX: '.html', + LINK_SUFFIX: '.html', + HAS_SOURCE: true, + SOURCELINK_SUFFIX: '.txt', + NAVIGATION_WITH_KEYS: false, + SHOW_SEARCH_SUMMARY: true, + ENABLE_SEARCH_SHORTCUTS: true, +}; \ No newline at end of file diff --git a/_static/file.png b/_static/file.png new file mode 100644 index 0000000..a858a41 Binary files /dev/null and b/_static/file.png differ diff --git a/_static/homepage_logo.png b/_static/homepage_logo.png new file mode 100644 index 0000000..e990a72 Binary files /dev/null and b/_static/homepage_logo.png differ diff --git a/_static/jquery.js b/_static/jquery.js new file mode 100644 index 0000000..c4c6022 --- /dev/null +++ b/_static/jquery.js @@ -0,0 +1,2 @@ +/*! jQuery v3.6.0 | (c) OpenJS Foundation and other contributors | jquery.org/license */ +!function(e,t){"use strict";"object"==typeof module&&"object"==typeof module.exports?module.exports=e.document?t(e,!0):function(e){if(!e.document)throw new Error("jQuery requires a window with a document");return t(e)}:t(e)}("undefined"!=typeof window?window:this,function(C,e){"use strict";var t=[],r=Object.getPrototypeOf,s=t.slice,g=t.flat?function(e){return t.flat.call(e)}:function(e){return t.concat.apply([],e)},u=t.push,i=t.indexOf,n={},o=n.toString,v=n.hasOwnProperty,a=v.toString,l=a.call(Object),y={},m=function(e){return"function"==typeof e&&"number"!=typeof e.nodeType&&"function"!=typeof e.item},x=function(e){return null!=e&&e===e.window},E=C.document,c={type:!0,src:!0,nonce:!0,noModule:!0};function b(e,t,n){var r,i,o=(n=n||E).createElement("script");if(o.text=e,t)for(r in c)(i=t[r]||t.getAttribute&&t.getAttribute(r))&&o.setAttribute(r,i);n.head.appendChild(o).parentNode.removeChild(o)}function w(e){return null==e?e+"":"object"==typeof e||"function"==typeof e?n[o.call(e)]||"object":typeof e}var f="3.6.0",S=function(e,t){return new S.fn.init(e,t)};function p(e){var t=!!e&&"length"in e&&e.length,n=w(e);return!m(e)&&!x(e)&&("array"===n||0===t||"number"==typeof t&&0+~]|"+M+")"+M+"*"),U=new RegExp(M+"|>"),X=new RegExp(F),V=new RegExp("^"+I+"$"),G={ID:new RegExp("^#("+I+")"),CLASS:new RegExp("^\\.("+I+")"),TAG:new RegExp("^("+I+"|[*])"),ATTR:new RegExp("^"+W),PSEUDO:new RegExp("^"+F),CHILD:new RegExp("^:(only|first|last|nth|nth-last)-(child|of-type)(?:\\("+M+"*(even|odd|(([+-]|)(\\d*)n|)"+M+"*(?:([+-]|)"+M+"*(\\d+)|))"+M+"*\\)|)","i"),bool:new RegExp("^(?:"+R+")$","i"),needsContext:new RegExp("^"+M+"*[>+~]|:(even|odd|eq|gt|lt|nth|first|last)(?:\\("+M+"*((?:-\\d)?\\d*)"+M+"*\\)|)(?=[^-]|$)","i")},Y=/HTML$/i,Q=/^(?:input|select|textarea|button)$/i,J=/^h\d$/i,K=/^[^{]+\{\s*\[native \w/,Z=/^(?:#([\w-]+)|(\w+)|\.([\w-]+))$/,ee=/[+~]/,te=new RegExp("\\\\[\\da-fA-F]{1,6}"+M+"?|\\\\([^\\r\\n\\f])","g"),ne=function(e,t){var n="0x"+e.slice(1)-65536;return t||(n<0?String.fromCharCode(n+65536):String.fromCharCode(n>>10|55296,1023&n|56320))},re=/([\0-\x1f\x7f]|^-?\d)|^-$|[^\0-\x1f\x7f-\uFFFF\w-]/g,ie=function(e,t){return t?"\0"===e?"\ufffd":e.slice(0,-1)+"\\"+e.charCodeAt(e.length-1).toString(16)+" ":"\\"+e},oe=function(){T()},ae=be(function(e){return!0===e.disabled&&"fieldset"===e.nodeName.toLowerCase()},{dir:"parentNode",next:"legend"});try{H.apply(t=O.call(p.childNodes),p.childNodes),t[p.childNodes.length].nodeType}catch(e){H={apply:t.length?function(e,t){L.apply(e,O.call(t))}:function(e,t){var n=e.length,r=0;while(e[n++]=t[r++]);e.length=n-1}}}function se(t,e,n,r){var i,o,a,s,u,l,c,f=e&&e.ownerDocument,p=e?e.nodeType:9;if(n=n||[],"string"!=typeof t||!t||1!==p&&9!==p&&11!==p)return n;if(!r&&(T(e),e=e||C,E)){if(11!==p&&(u=Z.exec(t)))if(i=u[1]){if(9===p){if(!(a=e.getElementById(i)))return n;if(a.id===i)return n.push(a),n}else if(f&&(a=f.getElementById(i))&&y(e,a)&&a.id===i)return n.push(a),n}else{if(u[2])return H.apply(n,e.getElementsByTagName(t)),n;if((i=u[3])&&d.getElementsByClassName&&e.getElementsByClassName)return H.apply(n,e.getElementsByClassName(i)),n}if(d.qsa&&!N[t+" "]&&(!v||!v.test(t))&&(1!==p||"object"!==e.nodeName.toLowerCase())){if(c=t,f=e,1===p&&(U.test(t)||z.test(t))){(f=ee.test(t)&&ye(e.parentNode)||e)===e&&d.scope||((s=e.getAttribute("id"))?s=s.replace(re,ie):e.setAttribute("id",s=S)),o=(l=h(t)).length;while(o--)l[o]=(s?"#"+s:":scope")+" "+xe(l[o]);c=l.join(",")}try{return H.apply(n,f.querySelectorAll(c)),n}catch(e){N(t,!0)}finally{s===S&&e.removeAttribute("id")}}}return g(t.replace($,"$1"),e,n,r)}function ue(){var r=[];return function e(t,n){return r.push(t+" ")>b.cacheLength&&delete e[r.shift()],e[t+" "]=n}}function le(e){return e[S]=!0,e}function ce(e){var t=C.createElement("fieldset");try{return!!e(t)}catch(e){return!1}finally{t.parentNode&&t.parentNode.removeChild(t),t=null}}function fe(e,t){var n=e.split("|"),r=n.length;while(r--)b.attrHandle[n[r]]=t}function pe(e,t){var n=t&&e,r=n&&1===e.nodeType&&1===t.nodeType&&e.sourceIndex-t.sourceIndex;if(r)return r;if(n)while(n=n.nextSibling)if(n===t)return-1;return e?1:-1}function de(t){return function(e){return"input"===e.nodeName.toLowerCase()&&e.type===t}}function he(n){return function(e){var t=e.nodeName.toLowerCase();return("input"===t||"button"===t)&&e.type===n}}function ge(t){return function(e){return"form"in e?e.parentNode&&!1===e.disabled?"label"in e?"label"in e.parentNode?e.parentNode.disabled===t:e.disabled===t:e.isDisabled===t||e.isDisabled!==!t&&ae(e)===t:e.disabled===t:"label"in e&&e.disabled===t}}function ve(a){return le(function(o){return o=+o,le(function(e,t){var n,r=a([],e.length,o),i=r.length;while(i--)e[n=r[i]]&&(e[n]=!(t[n]=e[n]))})})}function ye(e){return e&&"undefined"!=typeof e.getElementsByTagName&&e}for(e in d=se.support={},i=se.isXML=function(e){var t=e&&e.namespaceURI,n=e&&(e.ownerDocument||e).documentElement;return!Y.test(t||n&&n.nodeName||"HTML")},T=se.setDocument=function(e){var t,n,r=e?e.ownerDocument||e:p;return r!=C&&9===r.nodeType&&r.documentElement&&(a=(C=r).documentElement,E=!i(C),p!=C&&(n=C.defaultView)&&n.top!==n&&(n.addEventListener?n.addEventListener("unload",oe,!1):n.attachEvent&&n.attachEvent("onunload",oe)),d.scope=ce(function(e){return a.appendChild(e).appendChild(C.createElement("div")),"undefined"!=typeof e.querySelectorAll&&!e.querySelectorAll(":scope fieldset div").length}),d.attributes=ce(function(e){return e.className="i",!e.getAttribute("className")}),d.getElementsByTagName=ce(function(e){return e.appendChild(C.createComment("")),!e.getElementsByTagName("*").length}),d.getElementsByClassName=K.test(C.getElementsByClassName),d.getById=ce(function(e){return a.appendChild(e).id=S,!C.getElementsByName||!C.getElementsByName(S).length}),d.getById?(b.filter.ID=function(e){var t=e.replace(te,ne);return function(e){return e.getAttribute("id")===t}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n=t.getElementById(e);return n?[n]:[]}}):(b.filter.ID=function(e){var n=e.replace(te,ne);return function(e){var t="undefined"!=typeof e.getAttributeNode&&e.getAttributeNode("id");return t&&t.value===n}},b.find.ID=function(e,t){if("undefined"!=typeof t.getElementById&&E){var n,r,i,o=t.getElementById(e);if(o){if((n=o.getAttributeNode("id"))&&n.value===e)return[o];i=t.getElementsByName(e),r=0;while(o=i[r++])if((n=o.getAttributeNode("id"))&&n.value===e)return[o]}return[]}}),b.find.TAG=d.getElementsByTagName?function(e,t){return"undefined"!=typeof t.getElementsByTagName?t.getElementsByTagName(e):d.qsa?t.querySelectorAll(e):void 0}:function(e,t){var n,r=[],i=0,o=t.getElementsByTagName(e);if("*"===e){while(n=o[i++])1===n.nodeType&&r.push(n);return r}return o},b.find.CLASS=d.getElementsByClassName&&function(e,t){if("undefined"!=typeof t.getElementsByClassName&&E)return t.getElementsByClassName(e)},s=[],v=[],(d.qsa=K.test(C.querySelectorAll))&&(ce(function(e){var t;a.appendChild(e).innerHTML="",e.querySelectorAll("[msallowcapture^='']").length&&v.push("[*^$]="+M+"*(?:''|\"\")"),e.querySelectorAll("[selected]").length||v.push("\\["+M+"*(?:value|"+R+")"),e.querySelectorAll("[id~="+S+"-]").length||v.push("~="),(t=C.createElement("input")).setAttribute("name",""),e.appendChild(t),e.querySelectorAll("[name='']").length||v.push("\\["+M+"*name"+M+"*="+M+"*(?:''|\"\")"),e.querySelectorAll(":checked").length||v.push(":checked"),e.querySelectorAll("a#"+S+"+*").length||v.push(".#.+[+~]"),e.querySelectorAll("\\\f"),v.push("[\\r\\n\\f]")}),ce(function(e){e.innerHTML="";var t=C.createElement("input");t.setAttribute("type","hidden"),e.appendChild(t).setAttribute("name","D"),e.querySelectorAll("[name=d]").length&&v.push("name"+M+"*[*^$|!~]?="),2!==e.querySelectorAll(":enabled").length&&v.push(":enabled",":disabled"),a.appendChild(e).disabled=!0,2!==e.querySelectorAll(":disabled").length&&v.push(":enabled",":disabled"),e.querySelectorAll("*,:x"),v.push(",.*:")})),(d.matchesSelector=K.test(c=a.matches||a.webkitMatchesSelector||a.mozMatchesSelector||a.oMatchesSelector||a.msMatchesSelector))&&ce(function(e){d.disconnectedMatch=c.call(e,"*"),c.call(e,"[s!='']:x"),s.push("!=",F)}),v=v.length&&new RegExp(v.join("|")),s=s.length&&new RegExp(s.join("|")),t=K.test(a.compareDocumentPosition),y=t||K.test(a.contains)?function(e,t){var n=9===e.nodeType?e.documentElement:e,r=t&&t.parentNode;return e===r||!(!r||1!==r.nodeType||!(n.contains?n.contains(r):e.compareDocumentPosition&&16&e.compareDocumentPosition(r)))}:function(e,t){if(t)while(t=t.parentNode)if(t===e)return!0;return!1},j=t?function(e,t){if(e===t)return l=!0,0;var n=!e.compareDocumentPosition-!t.compareDocumentPosition;return n||(1&(n=(e.ownerDocument||e)==(t.ownerDocument||t)?e.compareDocumentPosition(t):1)||!d.sortDetached&&t.compareDocumentPosition(e)===n?e==C||e.ownerDocument==p&&y(p,e)?-1:t==C||t.ownerDocument==p&&y(p,t)?1:u?P(u,e)-P(u,t):0:4&n?-1:1)}:function(e,t){if(e===t)return l=!0,0;var n,r=0,i=e.parentNode,o=t.parentNode,a=[e],s=[t];if(!i||!o)return e==C?-1:t==C?1:i?-1:o?1:u?P(u,e)-P(u,t):0;if(i===o)return pe(e,t);n=e;while(n=n.parentNode)a.unshift(n);n=t;while(n=n.parentNode)s.unshift(n);while(a[r]===s[r])r++;return r?pe(a[r],s[r]):a[r]==p?-1:s[r]==p?1:0}),C},se.matches=function(e,t){return se(e,null,null,t)},se.matchesSelector=function(e,t){if(T(e),d.matchesSelector&&E&&!N[t+" "]&&(!s||!s.test(t))&&(!v||!v.test(t)))try{var n=c.call(e,t);if(n||d.disconnectedMatch||e.document&&11!==e.document.nodeType)return n}catch(e){N(t,!0)}return 0":{dir:"parentNode",first:!0}," ":{dir:"parentNode"},"+":{dir:"previousSibling",first:!0},"~":{dir:"previousSibling"}},preFilter:{ATTR:function(e){return e[1]=e[1].replace(te,ne),e[3]=(e[3]||e[4]||e[5]||"").replace(te,ne),"~="===e[2]&&(e[3]=" "+e[3]+" "),e.slice(0,4)},CHILD:function(e){return e[1]=e[1].toLowerCase(),"nth"===e[1].slice(0,3)?(e[3]||se.error(e[0]),e[4]=+(e[4]?e[5]+(e[6]||1):2*("even"===e[3]||"odd"===e[3])),e[5]=+(e[7]+e[8]||"odd"===e[3])):e[3]&&se.error(e[0]),e},PSEUDO:function(e){var t,n=!e[6]&&e[2];return G.CHILD.test(e[0])?null:(e[3]?e[2]=e[4]||e[5]||"":n&&X.test(n)&&(t=h(n,!0))&&(t=n.indexOf(")",n.length-t)-n.length)&&(e[0]=e[0].slice(0,t),e[2]=n.slice(0,t)),e.slice(0,3))}},filter:{TAG:function(e){var t=e.replace(te,ne).toLowerCase();return"*"===e?function(){return!0}:function(e){return e.nodeName&&e.nodeName.toLowerCase()===t}},CLASS:function(e){var t=m[e+" "];return t||(t=new RegExp("(^|"+M+")"+e+"("+M+"|$)"))&&m(e,function(e){return t.test("string"==typeof e.className&&e.className||"undefined"!=typeof e.getAttribute&&e.getAttribute("class")||"")})},ATTR:function(n,r,i){return function(e){var t=se.attr(e,n);return null==t?"!="===r:!r||(t+="","="===r?t===i:"!="===r?t!==i:"^="===r?i&&0===t.indexOf(i):"*="===r?i&&-1:\x20\t\r\n\f]*)[\x20\t\r\n\f]*\/?>(?:<\/\1>|)$/i;function j(e,n,r){return m(n)?S.grep(e,function(e,t){return!!n.call(e,t,e)!==r}):n.nodeType?S.grep(e,function(e){return e===n!==r}):"string"!=typeof n?S.grep(e,function(e){return-1)[^>]*|#([\w-]+))$/;(S.fn.init=function(e,t,n){var r,i;if(!e)return this;if(n=n||D,"string"==typeof e){if(!(r="<"===e[0]&&">"===e[e.length-1]&&3<=e.length?[null,e,null]:q.exec(e))||!r[1]&&t)return!t||t.jquery?(t||n).find(e):this.constructor(t).find(e);if(r[1]){if(t=t instanceof S?t[0]:t,S.merge(this,S.parseHTML(r[1],t&&t.nodeType?t.ownerDocument||t:E,!0)),N.test(r[1])&&S.isPlainObject(t))for(r in t)m(this[r])?this[r](t[r]):this.attr(r,t[r]);return this}return(i=E.getElementById(r[2]))&&(this[0]=i,this.length=1),this}return e.nodeType?(this[0]=e,this.length=1,this):m(e)?void 0!==n.ready?n.ready(e):e(S):S.makeArray(e,this)}).prototype=S.fn,D=S(E);var L=/^(?:parents|prev(?:Until|All))/,H={children:!0,contents:!0,next:!0,prev:!0};function O(e,t){while((e=e[t])&&1!==e.nodeType);return e}S.fn.extend({has:function(e){var t=S(e,this),n=t.length;return this.filter(function(){for(var e=0;e\x20\t\r\n\f]*)/i,he=/^$|^module$|\/(?:java|ecma)script/i;ce=E.createDocumentFragment().appendChild(E.createElement("div")),(fe=E.createElement("input")).setAttribute("type","radio"),fe.setAttribute("checked","checked"),fe.setAttribute("name","t"),ce.appendChild(fe),y.checkClone=ce.cloneNode(!0).cloneNode(!0).lastChild.checked,ce.innerHTML="",y.noCloneChecked=!!ce.cloneNode(!0).lastChild.defaultValue,ce.innerHTML="",y.option=!!ce.lastChild;var ge={thead:[1,"","
"],col:[2,"","
"],tr:[2,"","
"],td:[3,"","
"],_default:[0,"",""]};function ve(e,t){var n;return n="undefined"!=typeof e.getElementsByTagName?e.getElementsByTagName(t||"*"):"undefined"!=typeof e.querySelectorAll?e.querySelectorAll(t||"*"):[],void 0===t||t&&A(e,t)?S.merge([e],n):n}function ye(e,t){for(var n=0,r=e.length;n",""]);var me=/<|&#?\w+;/;function xe(e,t,n,r,i){for(var o,a,s,u,l,c,f=t.createDocumentFragment(),p=[],d=0,h=e.length;d\s*$/g;function je(e,t){return A(e,"table")&&A(11!==t.nodeType?t:t.firstChild,"tr")&&S(e).children("tbody")[0]||e}function De(e){return e.type=(null!==e.getAttribute("type"))+"/"+e.type,e}function qe(e){return"true/"===(e.type||"").slice(0,5)?e.type=e.type.slice(5):e.removeAttribute("type"),e}function Le(e,t){var n,r,i,o,a,s;if(1===t.nodeType){if(Y.hasData(e)&&(s=Y.get(e).events))for(i in Y.remove(t,"handle events"),s)for(n=0,r=s[i].length;n").attr(n.scriptAttrs||{}).prop({charset:n.scriptCharset,src:n.url}).on("load error",i=function(e){r.remove(),i=null,e&&t("error"===e.type?404:200,e.type)}),E.head.appendChild(r[0])},abort:function(){i&&i()}}});var _t,zt=[],Ut=/(=)\?(?=&|$)|\?\?/;S.ajaxSetup({jsonp:"callback",jsonpCallback:function(){var e=zt.pop()||S.expando+"_"+wt.guid++;return this[e]=!0,e}}),S.ajaxPrefilter("json jsonp",function(e,t,n){var r,i,o,a=!1!==e.jsonp&&(Ut.test(e.url)?"url":"string"==typeof e.data&&0===(e.contentType||"").indexOf("application/x-www-form-urlencoded")&&Ut.test(e.data)&&"data");if(a||"jsonp"===e.dataTypes[0])return r=e.jsonpCallback=m(e.jsonpCallback)?e.jsonpCallback():e.jsonpCallback,a?e[a]=e[a].replace(Ut,"$1"+r):!1!==e.jsonp&&(e.url+=(Tt.test(e.url)?"&":"?")+e.jsonp+"="+r),e.converters["script json"]=function(){return o||S.error(r+" was not called"),o[0]},e.dataTypes[0]="json",i=C[r],C[r]=function(){o=arguments},n.always(function(){void 0===i?S(C).removeProp(r):C[r]=i,e[r]&&(e.jsonpCallback=t.jsonpCallback,zt.push(r)),o&&m(i)&&i(o[0]),o=i=void 0}),"script"}),y.createHTMLDocument=((_t=E.implementation.createHTMLDocument("").body).innerHTML="
",2===_t.childNodes.length),S.parseHTML=function(e,t,n){return"string"!=typeof e?[]:("boolean"==typeof t&&(n=t,t=!1),t||(y.createHTMLDocument?((r=(t=E.implementation.createHTMLDocument("")).createElement("base")).href=E.location.href,t.head.appendChild(r)):t=E),o=!n&&[],(i=N.exec(e))?[t.createElement(i[1])]:(i=xe([e],t,o),o&&o.length&&S(o).remove(),S.merge([],i.childNodes)));var r,i,o},S.fn.load=function(e,t,n){var r,i,o,a=this,s=e.indexOf(" ");return-1").append(S.parseHTML(e)).find(r):e)}).always(n&&function(e,t){a.each(function(){n.apply(this,o||[e.responseText,t,e])})}),this},S.expr.pseudos.animated=function(t){return S.grep(S.timers,function(e){return t===e.elem}).length},S.offset={setOffset:function(e,t,n){var r,i,o,a,s,u,l=S.css(e,"position"),c=S(e),f={};"static"===l&&(e.style.position="relative"),s=c.offset(),o=S.css(e,"top"),u=S.css(e,"left"),("absolute"===l||"fixed"===l)&&-1<(o+u).indexOf("auto")?(a=(r=c.position()).top,i=r.left):(a=parseFloat(o)||0,i=parseFloat(u)||0),m(t)&&(t=t.call(e,n,S.extend({},s))),null!=t.top&&(f.top=t.top-s.top+a),null!=t.left&&(f.left=t.left-s.left+i),"using"in t?t.using.call(e,f):c.css(f)}},S.fn.extend({offset:function(t){if(arguments.length)return void 0===t?this:this.each(function(e){S.offset.setOffset(this,t,e)});var e,n,r=this[0];return r?r.getClientRects().length?(e=r.getBoundingClientRect(),n=r.ownerDocument.defaultView,{top:e.top+n.pageYOffset,left:e.left+n.pageXOffset}):{top:0,left:0}:void 0},position:function(){if(this[0]){var e,t,n,r=this[0],i={top:0,left:0};if("fixed"===S.css(r,"position"))t=r.getBoundingClientRect();else{t=this.offset(),n=r.ownerDocument,e=r.offsetParent||n.documentElement;while(e&&(e===n.body||e===n.documentElement)&&"static"===S.css(e,"position"))e=e.parentNode;e&&e!==r&&1===e.nodeType&&((i=S(e).offset()).top+=S.css(e,"borderTopWidth",!0),i.left+=S.css(e,"borderLeftWidth",!0))}return{top:t.top-i.top-S.css(r,"marginTop",!0),left:t.left-i.left-S.css(r,"marginLeft",!0)}}},offsetParent:function(){return this.map(function(){var e=this.offsetParent;while(e&&"static"===S.css(e,"position"))e=e.offsetParent;return e||re})}}),S.each({scrollLeft:"pageXOffset",scrollTop:"pageYOffset"},function(t,i){var o="pageYOffset"===i;S.fn[t]=function(e){return $(this,function(e,t,n){var r;if(x(e)?r=e:9===e.nodeType&&(r=e.defaultView),void 0===n)return r?r[i]:e[t];r?r.scrollTo(o?r.pageXOffset:n,o?n:r.pageYOffset):e[t]=n},t,e,arguments.length)}}),S.each(["top","left"],function(e,n){S.cssHooks[n]=Fe(y.pixelPosition,function(e,t){if(t)return t=We(e,n),Pe.test(t)?S(e).position()[n]+"px":t})}),S.each({Height:"height",Width:"width"},function(a,s){S.each({padding:"inner"+a,content:s,"":"outer"+a},function(r,o){S.fn[o]=function(e,t){var n=arguments.length&&(r||"boolean"!=typeof e),i=r||(!0===e||!0===t?"margin":"border");return $(this,function(e,t,n){var r;return x(e)?0===o.indexOf("outer")?e["inner"+a]:e.document.documentElement["client"+a]:9===e.nodeType?(r=e.documentElement,Math.max(e.body["scroll"+a],r["scroll"+a],e.body["offset"+a],r["offset"+a],r["client"+a])):void 0===n?S.css(e,t,i):S.style(e,t,n,i)},s,n?e:void 0,n)}})}),S.each(["ajaxStart","ajaxStop","ajaxComplete","ajaxError","ajaxSuccess","ajaxSend"],function(e,t){S.fn[t]=function(e){return this.on(t,e)}}),S.fn.extend({bind:function(e,t,n){return this.on(e,null,t,n)},unbind:function(e,t){return this.off(e,null,t)},delegate:function(e,t,n,r){return this.on(t,e,n,r)},undelegate:function(e,t,n){return 1===arguments.length?this.off(e,"**"):this.off(t,e||"**",n)},hover:function(e,t){return this.mouseenter(e).mouseleave(t||e)}}),S.each("blur focus focusin focusout resize scroll click dblclick mousedown mouseup mousemove mouseover mouseout mouseenter mouseleave change select submit keydown keypress keyup contextmenu".split(" "),function(e,n){S.fn[n]=function(e,t){return 0",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=y.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=y.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),y.elements=c+" "+a,j(b)}function f(a){var b=x[a[v]];return b||(b={},w++,a[v]=w,x[w]=b),b}function g(a,c,d){if(c||(c=b),q)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():u.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||t.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),q)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return y.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(y,b.frag)}function j(a){a||(a=b);var d=f(a);return!y.shivCSS||p||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),q||i(a,d),a}function k(a){for(var b,c=a.getElementsByTagName("*"),e=c.length,f=RegExp("^(?:"+d().join("|")+")$","i"),g=[];e--;)b=c[e],f.test(b.nodeName)&&g.push(b.applyElement(l(b)));return g}function l(a){for(var b,c=a.attributes,d=c.length,e=a.ownerDocument.createElement(A+":"+a.nodeName);d--;)b=c[d],b.specified&&e.setAttribute(b.nodeName,b.nodeValue);return e.style.cssText=a.style.cssText,e}function m(a){for(var b,c=a.split("{"),e=c.length,f=RegExp("(^|[\\s,>+~])("+d().join("|")+")(?=[[\\s,>+~#.:]|$)","gi"),g="$1"+A+"\\:$2";e--;)b=c[e]=c[e].split("}"),b[b.length-1]=b[b.length-1].replace(f,g),c[e]=b.join("}");return c.join("{")}function n(a){for(var b=a.length;b--;)a[b].removeNode()}function o(a){function b(){clearTimeout(g._removeSheetTimer),d&&d.removeNode(!0),d=null}var d,e,g=f(a),h=a.namespaces,i=a.parentWindow;return!B||a.printShived?a:("undefined"==typeof h[A]&&h.add(A),i.attachEvent("onbeforeprint",function(){b();for(var f,g,h,i=a.styleSheets,j=[],l=i.length,n=Array(l);l--;)n[l]=i[l];for(;h=n.pop();)if(!h.disabled&&z.test(h.media)){try{f=h.imports,g=f.length}catch(o){g=0}for(l=0;g>l;l++)n.push(f[l]);try{j.push(h.cssText)}catch(o){}}j=m(j.reverse().join("")),e=k(a),d=c(a,j)}),i.attachEvent("onafterprint",function(){n(e),clearTimeout(g._removeSheetTimer),g._removeSheetTimer=setTimeout(b,500)}),a.printShived=!0,a)}var p,q,r="3.7.3",s=a.html5||{},t=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,u=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,v="_html5shiv",w=0,x={};!function(){try{var a=b.createElement("a");a.innerHTML="",p="hidden"in a,q=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){p=!0,q=!0}}();var y={elements:s.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:r,shivCSS:s.shivCSS!==!1,supportsUnknownElements:q,shivMethods:s.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=y,j(b);var z=/^$|\b(?:all|print)\b/,A="html5shiv",B=!q&&function(){var c=b.documentElement;return!("undefined"==typeof b.namespaces||"undefined"==typeof b.parentWindow||"undefined"==typeof c.applyElement||"undefined"==typeof c.removeNode||"undefined"==typeof a.attachEvent)}();y.type+=" print",y.shivPrint=o,o(b),"object"==typeof module&&module.exports&&(module.exports=y)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/html5shiv.min.js b/_static/js/html5shiv.min.js new file mode 100644 index 0000000..cd1c674 --- /dev/null +++ b/_static/js/html5shiv.min.js @@ -0,0 +1,4 @@ +/** +* @preserve HTML5 Shiv 3.7.3 | @afarkas @jdalton @jon_neal @rem | MIT/GPL2 Licensed +*/ +!function(a,b){function c(a,b){var c=a.createElement("p"),d=a.getElementsByTagName("head")[0]||a.documentElement;return c.innerHTML="x",d.insertBefore(c.lastChild,d.firstChild)}function d(){var a=t.elements;return"string"==typeof a?a.split(" "):a}function e(a,b){var c=t.elements;"string"!=typeof c&&(c=c.join(" ")),"string"!=typeof a&&(a=a.join(" ")),t.elements=c+" "+a,j(b)}function f(a){var b=s[a[q]];return b||(b={},r++,a[q]=r,s[r]=b),b}function g(a,c,d){if(c||(c=b),l)return c.createElement(a);d||(d=f(c));var e;return e=d.cache[a]?d.cache[a].cloneNode():p.test(a)?(d.cache[a]=d.createElem(a)).cloneNode():d.createElem(a),!e.canHaveChildren||o.test(a)||e.tagUrn?e:d.frag.appendChild(e)}function h(a,c){if(a||(a=b),l)return a.createDocumentFragment();c=c||f(a);for(var e=c.frag.cloneNode(),g=0,h=d(),i=h.length;i>g;g++)e.createElement(h[g]);return e}function i(a,b){b.cache||(b.cache={},b.createElem=a.createElement,b.createFrag=a.createDocumentFragment,b.frag=b.createFrag()),a.createElement=function(c){return t.shivMethods?g(c,a,b):b.createElem(c)},a.createDocumentFragment=Function("h,f","return function(){var n=f.cloneNode(),c=n.createElement;h.shivMethods&&("+d().join().replace(/[\w\-:]+/g,function(a){return b.createElem(a),b.frag.createElement(a),'c("'+a+'")'})+");return n}")(t,b.frag)}function j(a){a||(a=b);var d=f(a);return!t.shivCSS||k||d.hasCSS||(d.hasCSS=!!c(a,"article,aside,dialog,figcaption,figure,footer,header,hgroup,main,nav,section{display:block}mark{background:#FF0;color:#000}template{display:none}")),l||i(a,d),a}var k,l,m="3.7.3-pre",n=a.html5||{},o=/^<|^(?:button|map|select|textarea|object|iframe|option|optgroup)$/i,p=/^(?:a|b|code|div|fieldset|h1|h2|h3|h4|h5|h6|i|label|li|ol|p|q|span|strong|style|table|tbody|td|th|tr|ul)$/i,q="_html5shiv",r=0,s={};!function(){try{var a=b.createElement("a");a.innerHTML="",k="hidden"in a,l=1==a.childNodes.length||function(){b.createElement("a");var a=b.createDocumentFragment();return"undefined"==typeof a.cloneNode||"undefined"==typeof a.createDocumentFragment||"undefined"==typeof a.createElement}()}catch(c){k=!0,l=!0}}();var t={elements:n.elements||"abbr article aside audio bdi canvas data datalist details dialog figcaption figure footer header hgroup main mark meter nav output picture progress section summary template time video",version:m,shivCSS:n.shivCSS!==!1,supportsUnknownElements:l,shivMethods:n.shivMethods!==!1,type:"default",shivDocument:j,createElement:g,createDocumentFragment:h,addElements:e};a.html5=t,j(b),"object"==typeof module&&module.exports&&(module.exports=t)}("undefined"!=typeof window?window:this,document); \ No newline at end of file diff --git a/_static/js/theme.js b/_static/js/theme.js new file mode 100644 index 0000000..1fddb6e --- /dev/null +++ b/_static/js/theme.js @@ -0,0 +1 @@ +!function(n){var e={};function t(i){if(e[i])return e[i].exports;var o=e[i]={i:i,l:!1,exports:{}};return n[i].call(o.exports,o,o.exports,t),o.l=!0,o.exports}t.m=n,t.c=e,t.d=function(n,e,i){t.o(n,e)||Object.defineProperty(n,e,{enumerable:!0,get:i})},t.r=function(n){"undefined"!=typeof Symbol&&Symbol.toStringTag&&Object.defineProperty(n,Symbol.toStringTag,{value:"Module"}),Object.defineProperty(n,"__esModule",{value:!0})},t.t=function(n,e){if(1&e&&(n=t(n)),8&e)return n;if(4&e&&"object"==typeof n&&n&&n.__esModule)return n;var i=Object.create(null);if(t.r(i),Object.defineProperty(i,"default",{enumerable:!0,value:n}),2&e&&"string"!=typeof n)for(var o in n)t.d(i,o,function(e){return n[e]}.bind(null,o));return i},t.n=function(n){var e=n&&n.__esModule?function(){return n.default}:function(){return n};return t.d(e,"a",e),e},t.o=function(n,e){return Object.prototype.hasOwnProperty.call(n,e)},t.p="",t(t.s=0)}([function(n,e,t){t(1),n.exports=t(3)},function(n,e,t){(function(){var e="undefined"!=typeof window?window.jQuery:t(2);n.exports.ThemeNav={navBar:null,win:null,winScroll:!1,winResize:!1,linkScroll:!1,winPosition:0,winHeight:null,docHeight:null,isRunning:!1,enable:function(n){var t=this;void 0===n&&(n=!0),t.isRunning||(t.isRunning=!0,e((function(e){t.init(e),t.reset(),t.win.on("hashchange",t.reset),n&&t.win.on("scroll",(function(){t.linkScroll||t.winScroll||(t.winScroll=!0,requestAnimationFrame((function(){t.onScroll()})))})),t.win.on("resize",(function(){t.winResize||(t.winResize=!0,requestAnimationFrame((function(){t.onResize()})))})),t.onResize()})))},enableSticky:function(){this.enable(!0)},init:function(n){n(document);var e=this;this.navBar=n("div.wy-side-scroll:first"),this.win=n(window),n(document).on("click","[data-toggle='wy-nav-top']",(function(){n("[data-toggle='wy-nav-shift']").toggleClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift")})).on("click",".wy-menu-vertical .current ul li a",(function(){var t=n(this);n("[data-toggle='wy-nav-shift']").removeClass("shift"),n("[data-toggle='rst-versions']").toggleClass("shift"),e.toggleCurrent(t),e.hashChange()})).on("click","[data-toggle='rst-current-version']",(function(){n("[data-toggle='rst-versions']").toggleClass("shift-up")})),n("table.docutils:not(.field-list,.footnote,.citation)").wrap("
"),n("table.docutils.footnote").wrap("
"),n("table.docutils.citation").wrap("
"),n(".wy-menu-vertical ul").not(".simple").siblings("a").each((function(){var t=n(this);expand=n(''),expand.on("click",(function(n){return e.toggleCurrent(t),n.stopPropagation(),!1})),t.prepend(expand)}))},reset:function(){var n=encodeURI(window.location.hash)||"#";try{var e=$(".wy-menu-vertical"),t=e.find('[href="'+n+'"]');if(0===t.length){var i=$('.document [id="'+n.substring(1)+'"]').closest("div.section");0===(t=e.find('[href="#'+i.attr("id")+'"]')).length&&(t=e.find('[href="#"]'))}if(t.length>0){$(".wy-menu-vertical .current").removeClass("current").attr("aria-expanded","false"),t.addClass("current").attr("aria-expanded","true"),t.closest("li.toctree-l1").parent().addClass("current").attr("aria-expanded","true");for(let n=1;n<=10;n++)t.closest("li.toctree-l"+n).addClass("current").attr("aria-expanded","true");t[0].scrollIntoView()}}catch(n){console.log("Error expanding nav for anchor",n)}},onScroll:function(){this.winScroll=!1;var n=this.win.scrollTop(),e=n+this.winHeight,t=this.navBar.scrollTop()+(n-this.winPosition);n<0||e>this.docHeight||(this.navBar.scrollTop(t),this.winPosition=n)},onResize:function(){this.winResize=!1,this.winHeight=this.win.height(),this.docHeight=$(document).height()},hashChange:function(){this.linkScroll=!0,this.win.one("hashchange",(function(){this.linkScroll=!1}))},toggleCurrent:function(n){var e=n.closest("li");e.siblings("li.current").removeClass("current").attr("aria-expanded","false"),e.siblings().find("li.current").removeClass("current").attr("aria-expanded","false");var t=e.find("> ul li");t.length&&(t.removeClass("current").attr("aria-expanded","false"),e.toggleClass("current").attr("aria-expanded",(function(n,e){return"true"==e?"false":"true"})))}},"undefined"!=typeof window&&(window.SphinxRtdTheme={Navigation:n.exports.ThemeNav,StickyNav:n.exports.ThemeNav}),function(){for(var n=0,e=["ms","moz","webkit","o"],t=0;t0 + var meq1 = "^(" + C + ")?" + V + C + "(" + V + ")?$"; // [C]VC[V] is m=1 + var mgr1 = "^(" + C + ")?" + V + C + V + C; // [C]VCVC... is m>1 + var s_v = "^(" + C + ")?" + v; // vowel in stem + + this.stemWord = function (w) { + var stem; + var suffix; + var firstch; + var origword = w; + + if (w.length < 3) + return w; + + var re; + var re2; + var re3; + var re4; + + firstch = w.substr(0,1); + if (firstch == "y") + w = firstch.toUpperCase() + w.substr(1); + + // Step 1a + re = /^(.+?)(ss|i)es$/; + re2 = /^(.+?)([^s])s$/; + + if (re.test(w)) + w = w.replace(re,"$1$2"); + else if (re2.test(w)) + w = w.replace(re2,"$1$2"); + + // Step 1b + re = /^(.+?)eed$/; + re2 = /^(.+?)(ed|ing)$/; + if (re.test(w)) { + var fp = re.exec(w); + re = new RegExp(mgr0); + if (re.test(fp[1])) { + re = /.$/; + w = w.replace(re,""); + } + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1]; + re2 = new RegExp(s_v); + if (re2.test(stem)) { + w = stem; + re2 = /(at|bl|iz)$/; + re3 = new RegExp("([^aeiouylsz])\\1$"); + re4 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re2.test(w)) + w = w + "e"; + else if (re3.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + else if (re4.test(w)) + w = w + "e"; + } + } + + // Step 1c + re = /^(.+?)y$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(s_v); + if (re.test(stem)) + w = stem + "i"; + } + + // Step 2 + re = /^(.+?)(ational|tional|enci|anci|izer|bli|alli|entli|eli|ousli|ization|ation|ator|alism|iveness|fulness|ousness|aliti|iviti|biliti|logi)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step2list[suffix]; + } + + // Step 3 + re = /^(.+?)(icate|ative|alize|iciti|ical|ful|ness)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + suffix = fp[2]; + re = new RegExp(mgr0); + if (re.test(stem)) + w = stem + step3list[suffix]; + } + + // Step 4 + re = /^(.+?)(al|ance|ence|er|ic|able|ible|ant|ement|ment|ent|ou|ism|ate|iti|ous|ive|ize)$/; + re2 = /^(.+?)(s|t)(ion)$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + if (re.test(stem)) + w = stem; + } + else if (re2.test(w)) { + var fp = re2.exec(w); + stem = fp[1] + fp[2]; + re2 = new RegExp(mgr1); + if (re2.test(stem)) + w = stem; + } + + // Step 5 + re = /^(.+?)e$/; + if (re.test(w)) { + var fp = re.exec(w); + stem = fp[1]; + re = new RegExp(mgr1); + re2 = new RegExp(meq1); + re3 = new RegExp("^" + C + v + "[^aeiouwxy]$"); + if (re.test(stem) || (re2.test(stem) && !(re3.test(stem)))) + w = stem; + } + re = /ll$/; + re2 = new RegExp(mgr1); + if (re.test(w) && re2.test(w)) { + re = /.$/; + w = w.replace(re,""); + } + + // and turn initial Y back to y + if (firstch == "y") + w = firstch.toLowerCase() + w.substr(1); + return w; + } +} + diff --git a/_static/logo_dists.py b/_static/logo_dists.py new file mode 100644 index 0000000..61d5d9e --- /dev/null +++ b/_static/logo_dists.py @@ -0,0 +1,45 @@ +# %% +import seaborn as sns +import numpy as np +import pandas as pd +import matplotlib.pyplot as plt +import hplc.quant +import hplc.io +import scipy.stats +import importlib +importlib.reload(hplc.quant) +np.random.seed(666) +dt = 0.01 +x = np.arange(0, 40, dt) +sig = np.zeros_like(x) +n_peaks = 6 +locs = np.linspace(0.2 * x.max(), 0.8 * x.max(), n_peaks) + \ + np.random.normal(size=n_peaks) +scale = np.random.uniform(1, 2, n_peaks) +skews = np.random.normal(size=n_peaks) +amps = np.random.uniform(10, 500, size=n_peaks) + +for i in range(n_peaks): + sig += amps[i] * \ + scipy.stats.skewnorm(skews[i], loc=locs[i], scale=scale[i]).pdf(x) +plt.plot(sig) + +_df = pd.DataFrame(np.array([x, sig]).T, columns=['time', 'signal']) +chrom = hplc.quant.Chromatogram(_df) +chrom.fit_peaks(enforced_locations=locs, + enforcement_tolerance=1, + correct_baseline=False) +mix = chrom.unmixed_chromatograms +chrom.show() +# %% +pal = sns.color_palette('Blues_r', n_colors=n_peaks+1) +np.random.shuffle(pal[:-1]) + +fig, ax = plt.subplots(1, 1, figsize=(6, 2)) +ax.axis('off') + +for i in range(n_peaks): + ax.fill_between(x, mix[:, i], color=pal[i], linewidth=0, alpha=0.85) + +ax.plot(x, sig, color='k', linewidth=3, zorder=1000) +plt.savefig('./page_logo_dists.pdf') diff --git a/_static/logo_horizontal-01.png b/_static/logo_horizontal-01.png new file mode 100644 index 0000000..ef5d72f Binary files /dev/null and b/_static/logo_horizontal-01.png differ diff --git a/_static/logo_horizontal-02.png b/_static/logo_horizontal-02.png new file mode 100644 index 0000000..ccf6455 Binary files /dev/null and b/_static/logo_horizontal-02.png differ diff --git a/_static/minus.png b/_static/minus.png new file mode 100644 index 0000000..d96755f Binary files /dev/null and b/_static/minus.png differ diff --git a/_static/nbsphinx-broken-thumbnail.svg b/_static/nbsphinx-broken-thumbnail.svg new file mode 100644 index 0000000..4919ca8 --- /dev/null +++ b/_static/nbsphinx-broken-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/nbsphinx-code-cells.css b/_static/nbsphinx-code-cells.css new file mode 100644 index 0000000..a3fb27c --- /dev/null +++ b/_static/nbsphinx-code-cells.css @@ -0,0 +1,259 @@ +/* remove conflicting styling from Sphinx themes */ +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt *, +div.nbinput.container div.input_area pre, +div.nboutput.container div.output_area pre, +div.nbinput.container div.input_area .highlight, +div.nboutput.container div.output_area .highlight { + border: none; + padding: 0; + margin: 0; + box-shadow: none; +} + +div.nbinput.container > div[class*=highlight], +div.nboutput.container > div[class*=highlight] { + margin: 0; +} + +div.nbinput.container div.prompt *, +div.nboutput.container div.prompt * { + background: none; +} + +div.nboutput.container div.output_area .highlight, +div.nboutput.container div.output_area pre { + background: unset; +} + +div.nboutput.container div.output_area div.highlight { + color: unset; /* override Pygments text color */ +} + +/* avoid gaps between output lines */ +div.nboutput.container div[class*=highlight] pre { + line-height: normal; +} + +/* input/output containers */ +div.nbinput.container, +div.nboutput.container { + display: -webkit-flex; + display: flex; + align-items: flex-start; + margin: 0; + width: 100%; +} +@media (max-width: 540px) { + div.nbinput.container, + div.nboutput.container { + flex-direction: column; + } +} + +/* input container */ +div.nbinput.container { + padding-top: 5px; +} + +/* last container */ +div.nblast.container { + padding-bottom: 5px; +} + +/* input prompt */ +div.nbinput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nbinput.container div.prompt pre > code { + color: #307FC1; +} + +/* output prompt */ +div.nboutput.container div.prompt pre, +/* for sphinx_immaterial theme: */ +div.nboutput.container div.prompt pre > code { + color: #BF5B3D; +} + +/* all prompts */ +div.nbinput.container div.prompt, +div.nboutput.container div.prompt { + width: 4.5ex; + padding-top: 5px; + position: relative; + user-select: none; +} + +div.nbinput.container div.prompt > div, +div.nboutput.container div.prompt > div { + position: absolute; + right: 0; + margin-right: 0.3ex; +} + +@media (max-width: 540px) { + div.nbinput.container div.prompt, + div.nboutput.container div.prompt { + width: unset; + text-align: left; + padding: 0.4em; + } + div.nboutput.container div.prompt.empty { + padding: 0; + } + + div.nbinput.container div.prompt > div, + div.nboutput.container div.prompt > div { + position: unset; + } +} + +/* disable scrollbars and line breaks on prompts */ +div.nbinput.container div.prompt pre, +div.nboutput.container div.prompt pre { + overflow: hidden; + white-space: pre; +} + +/* input/output area */ +div.nbinput.container div.input_area, +div.nboutput.container div.output_area { + -webkit-flex: 1; + flex: 1; + overflow: auto; +} +@media (max-width: 540px) { + div.nbinput.container div.input_area, + div.nboutput.container div.output_area { + width: 100%; + } +} + +/* input area */ +div.nbinput.container div.input_area { + border: 1px solid #e0e0e0; + border-radius: 2px; + /*background: #f5f5f5;*/ +} + +/* override MathJax center alignment in output cells */ +div.nboutput.container div[class*=MathJax] { + text-align: left !important; +} + +/* override sphinx.ext.imgmath center alignment in output cells */ +div.nboutput.container div.math p { + text-align: left; +} + +/* standard error */ +div.nboutput.container div.output_area.stderr { + background: #fdd; +} + +/* ANSI colors */ +.ansi-black-fg { color: #3E424D; } +.ansi-black-bg { background-color: #3E424D; } +.ansi-black-intense-fg { color: #282C36; } +.ansi-black-intense-bg { background-color: #282C36; } +.ansi-red-fg { color: #E75C58; } +.ansi-red-bg { background-color: #E75C58; } +.ansi-red-intense-fg { color: #B22B31; } +.ansi-red-intense-bg { background-color: #B22B31; } +.ansi-green-fg { color: #00A250; } +.ansi-green-bg { background-color: #00A250; } +.ansi-green-intense-fg { color: #007427; } +.ansi-green-intense-bg { background-color: #007427; } +.ansi-yellow-fg { color: #DDB62B; } +.ansi-yellow-bg { background-color: #DDB62B; } +.ansi-yellow-intense-fg { color: #B27D12; } +.ansi-yellow-intense-bg { background-color: #B27D12; } +.ansi-blue-fg { color: #208FFB; } +.ansi-blue-bg { background-color: #208FFB; } +.ansi-blue-intense-fg { color: #0065CA; } +.ansi-blue-intense-bg { background-color: #0065CA; } +.ansi-magenta-fg { color: #D160C4; } +.ansi-magenta-bg { background-color: #D160C4; } +.ansi-magenta-intense-fg { color: #A03196; } +.ansi-magenta-intense-bg { background-color: #A03196; } +.ansi-cyan-fg { color: #60C6C8; } +.ansi-cyan-bg { background-color: #60C6C8; } +.ansi-cyan-intense-fg { color: #258F8F; } +.ansi-cyan-intense-bg { background-color: #258F8F; } +.ansi-white-fg { color: #C5C1B4; } +.ansi-white-bg { background-color: #C5C1B4; } +.ansi-white-intense-fg { color: #A1A6B2; } +.ansi-white-intense-bg { background-color: #A1A6B2; } + +.ansi-default-inverse-fg { color: #FFFFFF; } +.ansi-default-inverse-bg { background-color: #000000; } + +.ansi-bold { font-weight: bold; } +.ansi-underline { text-decoration: underline; } + + +div.nbinput.container div.input_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight] > pre, +div.nboutput.container div.output_area div[class*=highlight].math, +div.nboutput.container div.output_area.rendered_html, +div.nboutput.container div.output_area > div.output_javascript, +div.nboutput.container div.output_area:not(.rendered_html) > img{ + padding: 5px; + margin: 0; +} + +/* fix copybtn overflow problem in chromium (needed for 'sphinx_copybutton') */ +div.nbinput.container div.input_area > div[class^='highlight'], +div.nboutput.container div.output_area > div[class^='highlight']{ + overflow-y: hidden; +} + +/* hide copy button on prompts for 'sphinx_copybutton' extension ... */ +.prompt .copybtn, +/* ... and 'sphinx_immaterial' theme */ +.prompt .md-clipboard.md-icon { + display: none; +} + +/* Some additional styling taken form the Jupyter notebook CSS */ +.jp-RenderedHTMLCommon table, +div.rendered_html table { + border: none; + border-collapse: collapse; + border-spacing: 0; + color: black; + font-size: 12px; + table-layout: fixed; +} +.jp-RenderedHTMLCommon thead, +div.rendered_html thead { + border-bottom: 1px solid black; + vertical-align: bottom; +} +.jp-RenderedHTMLCommon tr, +.jp-RenderedHTMLCommon th, +.jp-RenderedHTMLCommon td, +div.rendered_html tr, +div.rendered_html th, +div.rendered_html td { + text-align: right; + vertical-align: middle; + padding: 0.5em 0.5em; + line-height: normal; + white-space: normal; + max-width: none; + border: none; +} +.jp-RenderedHTMLCommon th, +div.rendered_html th { + font-weight: bold; +} +.jp-RenderedHTMLCommon tbody tr:nth-child(odd), +div.rendered_html tbody tr:nth-child(odd) { + background: #f5f5f5; +} +.jp-RenderedHTMLCommon tbody tr:hover, +div.rendered_html tbody tr:hover { + background: rgba(66, 165, 245, 0.2); +} + diff --git a/_static/nbsphinx-gallery.css b/_static/nbsphinx-gallery.css new file mode 100644 index 0000000..365c27a --- /dev/null +++ b/_static/nbsphinx-gallery.css @@ -0,0 +1,31 @@ +.nbsphinx-gallery { + display: grid; + grid-template-columns: repeat(auto-fill, minmax(160px, 1fr)); + gap: 5px; + margin-top: 1em; + margin-bottom: 1em; +} + +.nbsphinx-gallery > a { + padding: 5px; + border: 1px dotted currentColor; + border-radius: 2px; + text-align: center; +} + +.nbsphinx-gallery > a:hover { + border-style: solid; +} + +.nbsphinx-gallery img { + max-width: 100%; + max-height: 100%; +} + +.nbsphinx-gallery > a > div:first-child { + display: flex; + align-items: start; + justify-content: center; + height: 120px; + margin-bottom: 5px; +} diff --git a/_static/nbsphinx-no-thumbnail.svg b/_static/nbsphinx-no-thumbnail.svg new file mode 100644 index 0000000..9dca758 --- /dev/null +++ b/_static/nbsphinx-no-thumbnail.svg @@ -0,0 +1,9 @@ + + + + diff --git a/_static/page_logo.png b/_static/page_logo.png new file mode 100644 index 0000000..e990a72 Binary files /dev/null and b/_static/page_logo.png differ diff --git a/_static/page_logo.svg b/_static/page_logo.svg new file mode 100644 index 0000000..8e9fd57 --- /dev/null +++ b/_static/page_logo.svg @@ -0,0 +1,5605 @@ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + diff --git a/_static/page_logo_dists.png b/_static/page_logo_dists.png new file mode 100644 index 0000000..a401138 Binary files /dev/null and b/_static/page_logo_dists.png differ diff --git a/_static/plus.png b/_static/plus.png new file mode 100644 index 0000000..7107cec Binary files /dev/null and b/_static/plus.png differ diff --git a/_static/pygments.css b/_static/pygments.css new file mode 100644 index 0000000..84ab303 --- /dev/null +++ b/_static/pygments.css @@ -0,0 +1,75 @@ +pre { line-height: 125%; } +td.linenos .normal { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +span.linenos { color: inherit; background-color: transparent; padding-left: 5px; padding-right: 5px; } +td.linenos .special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +span.linenos.special { color: #000000; background-color: #ffffc0; padding-left: 5px; padding-right: 5px; } +.highlight .hll { background-color: #ffffcc } +.highlight { background: #f8f8f8; } +.highlight .c { color: #3D7B7B; font-style: italic } /* Comment */ +.highlight .err { border: 1px solid #FF0000 } /* Error */ +.highlight .k { color: #008000; font-weight: bold } /* Keyword */ +.highlight .o { color: #666666 } /* Operator */ +.highlight .ch { color: #3D7B7B; font-style: italic } /* Comment.Hashbang */ +.highlight .cm { color: #3D7B7B; font-style: italic } /* Comment.Multiline */ +.highlight .cp { color: #9C6500 } /* Comment.Preproc */ +.highlight .cpf { color: #3D7B7B; font-style: italic } /* Comment.PreprocFile */ +.highlight .c1 { color: #3D7B7B; font-style: italic } /* Comment.Single */ +.highlight .cs { color: #3D7B7B; font-style: italic } /* Comment.Special */ +.highlight .gd { color: #A00000 } /* Generic.Deleted */ +.highlight .ge { font-style: italic } /* Generic.Emph */ +.highlight .ges { font-weight: bold; font-style: italic } /* Generic.EmphStrong */ +.highlight .gr { color: #E40000 } /* Generic.Error */ +.highlight .gh { color: #000080; font-weight: bold } /* Generic.Heading */ +.highlight .gi { color: #008400 } /* Generic.Inserted */ +.highlight .go { color: #717171 } /* Generic.Output */ +.highlight .gp { color: #000080; font-weight: bold } /* Generic.Prompt */ +.highlight .gs { font-weight: bold } /* Generic.Strong */ +.highlight .gu { color: #800080; font-weight: bold } /* Generic.Subheading */ +.highlight .gt { color: #0044DD } /* Generic.Traceback */ +.highlight .kc { color: #008000; font-weight: bold } /* Keyword.Constant */ +.highlight .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */ +.highlight .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */ +.highlight .kp { color: #008000 } /* Keyword.Pseudo */ +.highlight .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */ +.highlight .kt { color: #B00040 } /* Keyword.Type */ +.highlight .m { color: #666666 } /* Literal.Number */ +.highlight .s { color: #BA2121 } /* Literal.String */ +.highlight .na { color: #687822 } /* Name.Attribute */ +.highlight .nb { color: #008000 } /* Name.Builtin */ +.highlight .nc { color: #0000FF; font-weight: bold } /* Name.Class */ +.highlight .no { color: #880000 } /* Name.Constant */ +.highlight .nd { color: #AA22FF } /* Name.Decorator */ +.highlight .ni { color: #717171; font-weight: bold } /* Name.Entity */ +.highlight .ne { color: #CB3F38; font-weight: bold } /* Name.Exception */ +.highlight .nf { color: #0000FF } /* Name.Function */ +.highlight .nl { color: #767600 } /* Name.Label */ +.highlight .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */ +.highlight .nt { color: #008000; font-weight: bold } /* Name.Tag */ +.highlight .nv { color: #19177C } /* Name.Variable */ +.highlight .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */ +.highlight .w { color: #bbbbbb } /* Text.Whitespace */ +.highlight .mb { color: #666666 } /* Literal.Number.Bin */ +.highlight .mf { color: #666666 } /* Literal.Number.Float */ +.highlight .mh { color: #666666 } /* Literal.Number.Hex */ +.highlight .mi { color: #666666 } /* Literal.Number.Integer */ +.highlight .mo { color: #666666 } /* Literal.Number.Oct */ +.highlight .sa { color: #BA2121 } /* Literal.String.Affix */ +.highlight .sb { color: #BA2121 } /* Literal.String.Backtick */ +.highlight .sc { color: #BA2121 } /* Literal.String.Char */ +.highlight .dl { color: #BA2121 } /* Literal.String.Delimiter */ +.highlight .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */ +.highlight .s2 { color: #BA2121 } /* Literal.String.Double */ +.highlight .se { color: #AA5D1F; font-weight: bold } /* Literal.String.Escape */ +.highlight .sh { color: #BA2121 } /* Literal.String.Heredoc */ +.highlight .si { color: #A45A77; font-weight: bold } /* Literal.String.Interpol */ +.highlight .sx { color: #008000 } /* Literal.String.Other */ +.highlight .sr { color: #A45A77 } /* Literal.String.Regex */ +.highlight .s1 { color: #BA2121 } /* Literal.String.Single */ +.highlight .ss { color: #19177C } /* Literal.String.Symbol */ +.highlight .bp { color: #008000 } /* Name.Builtin.Pseudo */ +.highlight .fm { color: #0000FF } /* Name.Function.Magic */ +.highlight .vc { color: #19177C } /* Name.Variable.Class */ +.highlight .vg { color: #19177C } /* Name.Variable.Global */ +.highlight .vi { color: #19177C } /* Name.Variable.Instance */ +.highlight .vm { color: #19177C } /* Name.Variable.Magic */ +.highlight .il { color: #666666 } /* Literal.Number.Integer.Long */ \ No newline at end of file diff --git a/_static/searchtools.js b/_static/searchtools.js new file mode 100644 index 0000000..7918c3f --- /dev/null +++ b/_static/searchtools.js @@ -0,0 +1,574 @@ +/* + * searchtools.js + * ~~~~~~~~~~~~~~~~ + * + * Sphinx JavaScript utilities for the full-text search. + * + * :copyright: Copyright 2007-2023 by the Sphinx team, see AUTHORS. + * :license: BSD, see LICENSE for details. + * + */ +"use strict"; + +/** + * Simple result scoring code. + */ +if (typeof Scorer === "undefined") { + var Scorer = { + // Implement the following function to further tweak the score for each result + // The function takes a result array [docname, title, anchor, descr, score, filename] + // and returns the new score. + /* + score: result => { + const [docname, title, anchor, descr, score, filename] = result + return score + }, + */ + + // query matches the full name of an object + objNameMatch: 11, + // or matches in the last dotted part of the object name + objPartialMatch: 6, + // Additive scores depending on the priority of the object + objPrio: { + 0: 15, // used to be importantResults + 1: 5, // used to be objectResults + 2: -5, // used to be unimportantResults + }, + // Used when the priority is not in the mapping. + objPrioDefault: 0, + + // query found in title + title: 15, + partialTitle: 7, + // query found in terms + term: 5, + partialTerm: 2, + }; +} + +const _removeChildren = (element) => { + while (element && element.lastChild) element.removeChild(element.lastChild); +}; + +/** + * See https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions#escaping + */ +const _escapeRegExp = (string) => + string.replace(/[.*+\-?^${}()|[\]\\]/g, "\\$&"); // $& means the whole matched string + +const _displayItem = (item, searchTerms, highlightTerms) => { + const docBuilder = DOCUMENTATION_OPTIONS.BUILDER; + const docFileSuffix = DOCUMENTATION_OPTIONS.FILE_SUFFIX; + const docLinkSuffix = DOCUMENTATION_OPTIONS.LINK_SUFFIX; + const showSearchSummary = DOCUMENTATION_OPTIONS.SHOW_SEARCH_SUMMARY; + const contentRoot = document.documentElement.dataset.content_root; + + const [docName, title, anchor, descr, score, _filename] = item; + + let listItem = document.createElement("li"); + let requestUrl; + let linkUrl; + if (docBuilder === "dirhtml") { + // dirhtml builder + let dirname = docName + "/"; + if (dirname.match(/\/index\/$/)) + dirname = dirname.substring(0, dirname.length - 6); + else if (dirname === "index/") dirname = ""; + requestUrl = contentRoot + dirname; + linkUrl = requestUrl; + } else { + // normal html builders + requestUrl = contentRoot + docName + docFileSuffix; + linkUrl = docName + docLinkSuffix; + } + let linkEl = listItem.appendChild(document.createElement("a")); + linkEl.href = linkUrl + anchor; + linkEl.dataset.score = score; + linkEl.innerHTML = title; + if (descr) { + listItem.appendChild(document.createElement("span")).innerHTML = + " (" + descr + ")"; + // highlight search terms in the description + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + } + else if (showSearchSummary) + fetch(requestUrl) + .then((responseData) => responseData.text()) + .then((data) => { + if (data) + listItem.appendChild( + Search.makeSearchSummary(data, searchTerms) + ); + // highlight search terms in the summary + if (SPHINX_HIGHLIGHT_ENABLED) // set in sphinx_highlight.js + highlightTerms.forEach((term) => _highlightText(listItem, term, "highlighted")); + }); + Search.output.appendChild(listItem); +}; +const _finishSearch = (resultCount) => { + Search.stopPulse(); + Search.title.innerText = _("Search Results"); + if (!resultCount) + Search.status.innerText = Documentation.gettext( + "Your search did not match any documents. Please make sure that all words are spelled correctly and that you've selected enough categories." + ); + else + Search.status.innerText = _( + `Search finished, found ${resultCount} page(s) matching the search query.` + ); +}; +const _displayNextItem = ( + results, + resultCount, + searchTerms, + highlightTerms, +) => { + // results left, load the summary and display it + // this is intended to be dynamic (don't sub resultsCount) + if (results.length) { + _displayItem(results.pop(), searchTerms, highlightTerms); + setTimeout( + () => _displayNextItem(results, resultCount, searchTerms, highlightTerms), + 5 + ); + } + // search finished, update title and status message + else _finishSearch(resultCount); +}; + +/** + * Default splitQuery function. Can be overridden in ``sphinx.search`` with a + * custom function per language. + * + * The regular expression works by splitting the string on consecutive characters + * that are not Unicode letters, numbers, underscores, or emoji characters. + * This is the same as ``\W+`` in Python, preserving the surrogate pair area. + */ +if (typeof splitQuery === "undefined") { + var splitQuery = (query) => query + .split(/[^\p{Letter}\p{Number}_\p{Emoji_Presentation}]+/gu) + .filter(term => term) // remove remaining empty strings +} + +/** + * Search Module + */ +const Search = { + _index: null, + _queued_query: null, + _pulse_status: -1, + + htmlToText: (htmlString) => { + const htmlElement = new DOMParser().parseFromString(htmlString, 'text/html'); + htmlElement.querySelectorAll(".headerlink").forEach((el) => { el.remove() }); + const docContent = htmlElement.querySelector('[role="main"]'); + if (docContent !== undefined) return docContent.textContent; + console.warn( + "Content block not found. Sphinx search tries to obtain it via '[role=main]'. Could you check your theme or template." + ); + return ""; + }, + + init: () => { + const query = new URLSearchParams(window.location.search).get("q"); + document + .querySelectorAll('input[name="q"]') + .forEach((el) => (el.value = query)); + if (query) Search.performSearch(query); + }, + + loadIndex: (url) => + (document.body.appendChild(document.createElement("script")).src = url), + + setIndex: (index) => { + Search._index = index; + if (Search._queued_query !== null) { + const query = Search._queued_query; + Search._queued_query = null; + Search.query(query); + } + }, + + hasIndex: () => Search._index !== null, + + deferQuery: (query) => (Search._queued_query = query), + + stopPulse: () => (Search._pulse_status = -1), + + startPulse: () => { + if (Search._pulse_status >= 0) return; + + const pulse = () => { + Search._pulse_status = (Search._pulse_status + 1) % 4; + Search.dots.innerText = ".".repeat(Search._pulse_status); + if (Search._pulse_status >= 0) window.setTimeout(pulse, 500); + }; + pulse(); + }, + + /** + * perform a search for something (or wait until index is loaded) + */ + performSearch: (query) => { + // create the required interface elements + const searchText = document.createElement("h2"); + searchText.textContent = _("Searching"); + const searchSummary = document.createElement("p"); + searchSummary.classList.add("search-summary"); + searchSummary.innerText = ""; + const searchList = document.createElement("ul"); + searchList.classList.add("search"); + + const out = document.getElementById("search-results"); + Search.title = out.appendChild(searchText); + Search.dots = Search.title.appendChild(document.createElement("span")); + Search.status = out.appendChild(searchSummary); + Search.output = out.appendChild(searchList); + + const searchProgress = document.getElementById("search-progress"); + // Some themes don't use the search progress node + if (searchProgress) { + searchProgress.innerText = _("Preparing search..."); + } + Search.startPulse(); + + // index already loaded, the browser was quick! + if (Search.hasIndex()) Search.query(query); + else Search.deferQuery(query); + }, + + /** + * execute search (requires search index to be loaded) + */ + query: (query) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + const allTitles = Search._index.alltitles; + const indexEntries = Search._index.indexentries; + + // stem the search terms and add them to the correct list + const stemmer = new Stemmer(); + const searchTerms = new Set(); + const excludedTerms = new Set(); + const highlightTerms = new Set(); + const objectTerms = new Set(splitQuery(query.toLowerCase().trim())); + splitQuery(query.trim()).forEach((queryTerm) => { + const queryTermLower = queryTerm.toLowerCase(); + + // maybe skip this "word" + // stopwords array is from language_data.js + if ( + stopwords.indexOf(queryTermLower) !== -1 || + queryTerm.match(/^\d+$/) + ) + return; + + // stem the word + let word = stemmer.stemWord(queryTermLower); + // select the correct list + if (word[0] === "-") excludedTerms.add(word.substr(1)); + else { + searchTerms.add(word); + highlightTerms.add(queryTermLower); + } + }); + + if (SPHINX_HIGHLIGHT_ENABLED) { // set in sphinx_highlight.js + localStorage.setItem("sphinx_highlight_terms", [...highlightTerms].join(" ")) + } + + // console.debug("SEARCH: searching for:"); + // console.info("required: ", [...searchTerms]); + // console.info("excluded: ", [...excludedTerms]); + + // array of [docname, title, anchor, descr, score, filename] + let results = []; + _removeChildren(document.getElementById("search-progress")); + + const queryLower = query.toLowerCase(); + for (const [title, foundTitles] of Object.entries(allTitles)) { + if (title.toLowerCase().includes(queryLower) && (queryLower.length >= title.length/2)) { + for (const [file, id] of foundTitles) { + let score = Math.round(100 * queryLower.length / title.length) + results.push([ + docNames[file], + titles[file] !== title ? `${titles[file]} > ${title}` : title, + id !== null ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // search for explicit entries in index directives + for (const [entry, foundEntries] of Object.entries(indexEntries)) { + if (entry.includes(queryLower) && (queryLower.length >= entry.length/2)) { + for (const [file, id] of foundEntries) { + let score = Math.round(100 * queryLower.length / entry.length) + results.push([ + docNames[file], + titles[file], + id ? "#" + id : "", + null, + score, + filenames[file], + ]); + } + } + } + + // lookup as object + objectTerms.forEach((term) => + results.push(...Search.performObjectSearch(term, objectTerms)) + ); + + // lookup as search terms in fulltext + results.push(...Search.performTermsSearch(searchTerms, excludedTerms)); + + // let the scorer override scores with a custom scoring function + if (Scorer.score) results.forEach((item) => (item[4] = Scorer.score(item))); + + // now sort the results by score (in opposite order of appearance, since the + // display function below uses pop() to retrieve items) and then + // alphabetically + results.sort((a, b) => { + const leftScore = a[4]; + const rightScore = b[4]; + if (leftScore === rightScore) { + // same score: sort alphabetically + const leftTitle = a[1].toLowerCase(); + const rightTitle = b[1].toLowerCase(); + if (leftTitle === rightTitle) return 0; + return leftTitle > rightTitle ? -1 : 1; // inverted is intentional + } + return leftScore > rightScore ? 1 : -1; + }); + + // remove duplicate search results + // note the reversing of results, so that in the case of duplicates, the highest-scoring entry is kept + let seen = new Set(); + results = results.reverse().reduce((acc, result) => { + let resultStr = result.slice(0, 4).concat([result[5]]).map(v => String(v)).join(','); + if (!seen.has(resultStr)) { + acc.push(result); + seen.add(resultStr); + } + return acc; + }, []); + + results = results.reverse(); + + // for debugging + //Search.lastresults = results.slice(); // a copy + // console.info("search results:", Search.lastresults); + + // print the results + _displayNextItem(results, results.length, searchTerms, highlightTerms); + }, + + /** + * search for object names + */ + performObjectSearch: (object, objectTerms) => { + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const objects = Search._index.objects; + const objNames = Search._index.objnames; + const titles = Search._index.titles; + + const results = []; + + const objectSearchCallback = (prefix, match) => { + const name = match[4] + const fullname = (prefix ? prefix + "." : "") + name; + const fullnameLower = fullname.toLowerCase(); + if (fullnameLower.indexOf(object) < 0) return; + + let score = 0; + const parts = fullnameLower.split("."); + + // check for different match types: exact matches of full name or + // "last name" (i.e. last dotted part) + if (fullnameLower === object || parts.slice(-1)[0] === object) + score += Scorer.objNameMatch; + else if (parts.slice(-1)[0].indexOf(object) > -1) + score += Scorer.objPartialMatch; // matches in last name + + const objName = objNames[match[1]][2]; + const title = titles[match[0]]; + + // If more than one term searched for, we require other words to be + // found in the name/title/description + const otherTerms = new Set(objectTerms); + otherTerms.delete(object); + if (otherTerms.size > 0) { + const haystack = `${prefix} ${name} ${objName} ${title}`.toLowerCase(); + if ( + [...otherTerms].some((otherTerm) => haystack.indexOf(otherTerm) < 0) + ) + return; + } + + let anchor = match[3]; + if (anchor === "") anchor = fullname; + else if (anchor === "-") anchor = objNames[match[1]][1] + "-" + fullname; + + const descr = objName + _(", in ") + title; + + // add custom score for some objects according to scorer + if (Scorer.objPrio.hasOwnProperty(match[2])) + score += Scorer.objPrio[match[2]]; + else score += Scorer.objPrioDefault; + + results.push([ + docNames[match[0]], + fullname, + "#" + anchor, + descr, + score, + filenames[match[0]], + ]); + }; + Object.keys(objects).forEach((prefix) => + objects[prefix].forEach((array) => + objectSearchCallback(prefix, array) + ) + ); + return results; + }, + + /** + * search for full-text terms in the index + */ + performTermsSearch: (searchTerms, excludedTerms) => { + // prepare search + const terms = Search._index.terms; + const titleTerms = Search._index.titleterms; + const filenames = Search._index.filenames; + const docNames = Search._index.docnames; + const titles = Search._index.titles; + + const scoreMap = new Map(); + const fileMap = new Map(); + + // perform the search on the required terms + searchTerms.forEach((word) => { + const files = []; + const arr = [ + { files: terms[word], score: Scorer.term }, + { files: titleTerms[word], score: Scorer.title }, + ]; + // add support for partial matches + if (word.length > 2) { + const escapedWord = _escapeRegExp(word); + Object.keys(terms).forEach((term) => { + if (term.match(escapedWord) && !terms[word]) + arr.push({ files: terms[term], score: Scorer.partialTerm }); + }); + Object.keys(titleTerms).forEach((term) => { + if (term.match(escapedWord) && !titleTerms[word]) + arr.push({ files: titleTerms[word], score: Scorer.partialTitle }); + }); + } + + // no match but word was a required one + if (arr.every((record) => record.files === undefined)) return; + + // found search word in contents + arr.forEach((record) => { + if (record.files === undefined) return; + + let recordFiles = record.files; + if (recordFiles.length === undefined) recordFiles = [recordFiles]; + files.push(...recordFiles); + + // set score for the word in each file + recordFiles.forEach((file) => { + if (!scoreMap.has(file)) scoreMap.set(file, {}); + scoreMap.get(file)[word] = record.score; + }); + }); + + // create the mapping + files.forEach((file) => { + if (fileMap.has(file) && fileMap.get(file).indexOf(word) === -1) + fileMap.get(file).push(word); + else fileMap.set(file, [word]); + }); + }); + + // now check if the files don't contain excluded terms + const results = []; + for (const [file, wordList] of fileMap) { + // check if all requirements are matched + + // as search terms with length < 3 are discarded + const filteredTermCount = [...searchTerms].filter( + (term) => term.length > 2 + ).length; + if ( + wordList.length !== searchTerms.size && + wordList.length !== filteredTermCount + ) + continue; + + // ensure that none of the excluded terms is in the search result + if ( + [...excludedTerms].some( + (term) => + terms[term] === file || + titleTerms[term] === file || + (terms[term] || []).includes(file) || + (titleTerms[term] || []).includes(file) + ) + ) + break; + + // select one (max) score for the file. + const score = Math.max(...wordList.map((w) => scoreMap.get(file)[w])); + // add result to the result list + results.push([ + docNames[file], + titles[file], + "", + null, + score, + filenames[file], + ]); + } + return results; + }, + + /** + * helper function to return a node containing the + * search summary for a given text. keywords is a list + * of stemmed words. + */ + makeSearchSummary: (htmlText, keywords) => { + const text = Search.htmlToText(htmlText); + if (text === "") return null; + + const textLower = text.toLowerCase(); + const actualStartPosition = [...keywords] + .map((k) => textLower.indexOf(k.toLowerCase())) + .filter((i) => i > -1) + .slice(-1)[0]; + const startWithContext = Math.max(actualStartPosition - 120, 0); + + const top = startWithContext === 0 ? "" : "..."; + const tail = startWithContext + 240 < text.length ? "..." : ""; + + let summary = document.createElement("p"); + summary.classList.add("context"); + summary.textContent = top + text.substr(startWithContext, 240).trim() + tail; + + return summary; + }, +}; + +_ready(Search.init); diff --git a/_static/sphinx_highlight.js b/_static/sphinx_highlight.js new file mode 100644 index 0000000..8a96c69 --- /dev/null +++ b/_static/sphinx_highlight.js @@ -0,0 +1,154 @@ +/* Highlighting utilities for Sphinx HTML documentation. */ +"use strict"; + +const SPHINX_HIGHLIGHT_ENABLED = true + +/** + * highlight a given string on a node by wrapping it in + * span elements with the given class name. + */ +const _highlight = (node, addItems, text, className) => { + if (node.nodeType === Node.TEXT_NODE) { + const val = node.nodeValue; + const parent = node.parentNode; + const pos = val.toLowerCase().indexOf(text); + if ( + pos >= 0 && + !parent.classList.contains(className) && + !parent.classList.contains("nohighlight") + ) { + let span; + + const closestNode = parent.closest("body, svg, foreignObject"); + const isInSVG = closestNode && closestNode.matches("svg"); + if (isInSVG) { + span = document.createElementNS("http://www.w3.org/2000/svg", "tspan"); + } else { + span = document.createElement("span"); + span.classList.add(className); + } + + span.appendChild(document.createTextNode(val.substr(pos, text.length))); + const rest = document.createTextNode(val.substr(pos + text.length)); + parent.insertBefore( + span, + parent.insertBefore( + rest, + node.nextSibling + ) + ); + node.nodeValue = val.substr(0, pos); + /* There may be more occurrences of search term in this node. So call this + * function recursively on the remaining fragment. + */ + _highlight(rest, addItems, text, className); + + if (isInSVG) { + const rect = document.createElementNS( + "http://www.w3.org/2000/svg", + "rect" + ); + const bbox = parent.getBBox(); + rect.x.baseVal.value = bbox.x; + rect.y.baseVal.value = bbox.y; + rect.width.baseVal.value = bbox.width; + rect.height.baseVal.value = bbox.height; + rect.setAttribute("class", className); + addItems.push({ parent: parent, target: rect }); + } + } + } else if (node.matches && !node.matches("button, select, textarea")) { + node.childNodes.forEach((el) => _highlight(el, addItems, text, className)); + } +}; +const _highlightText = (thisNode, text, className) => { + let addItems = []; + _highlight(thisNode, addItems, text, className); + addItems.forEach((obj) => + obj.parent.insertAdjacentElement("beforebegin", obj.target) + ); +}; + +/** + * Small JavaScript module for the documentation. + */ +const SphinxHighlight = { + + /** + * highlight the search words provided in localstorage in the text + */ + highlightSearchWords: () => { + if (!SPHINX_HIGHLIGHT_ENABLED) return; // bail if no highlight + + // get and clear terms from localstorage + const url = new URL(window.location); + const highlight = + localStorage.getItem("sphinx_highlight_terms") + || url.searchParams.get("highlight") + || ""; + localStorage.removeItem("sphinx_highlight_terms") + url.searchParams.delete("highlight"); + window.history.replaceState({}, "", url); + + // get individual terms from highlight string + const terms = highlight.toLowerCase().split(/\s+/).filter(x => x); + if (terms.length === 0) return; // nothing to do + + // There should never be more than one element matching "div.body" + const divBody = document.querySelectorAll("div.body"); + const body = divBody.length ? divBody[0] : document.querySelector("body"); + window.setTimeout(() => { + terms.forEach((term) => _highlightText(body, term, "highlighted")); + }, 10); + + const searchBox = document.getElementById("searchbox"); + if (searchBox === null) return; + searchBox.appendChild( + document + .createRange() + .createContextualFragment( + '" + ) + ); + }, + + /** + * helper function to hide the search marks again + */ + hideSearchWords: () => { + document + .querySelectorAll("#searchbox .highlight-link") + .forEach((el) => el.remove()); + document + .querySelectorAll("span.highlighted") + .forEach((el) => el.classList.remove("highlighted")); + localStorage.removeItem("sphinx_highlight_terms") + }, + + initEscapeListener: () => { + // only install a listener if it is really needed + if (!DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS) return; + + document.addEventListener("keydown", (event) => { + // bail for input elements + if (BLACKLISTED_KEY_CONTROL_ELEMENTS.has(document.activeElement.tagName)) return; + // bail with special keys + if (event.shiftKey || event.altKey || event.ctrlKey || event.metaKey) return; + if (DOCUMENTATION_OPTIONS.ENABLE_SEARCH_SHORTCUTS && (event.key === "Escape")) { + SphinxHighlight.hideSearchWords(); + event.preventDefault(); + } + }); + }, +}; + +_ready(() => { + /* Do not call highlightSearchWords() when we are on the search page. + * It will highlight words from the *previous* search query. + */ + if (typeof Search === "undefined") SphinxHighlight.highlightSearchWords(); + SphinxHighlight.initEscapeListener(); +}); diff --git a/citation.html b/citation.html new file mode 100644 index 0000000..f504d3d --- /dev/null +++ b/citation.html @@ -0,0 +1,154 @@ + + + + + + + Credit — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Credit

+

This package is primarily written by Griffin Chure +with contributions from Jonas Cremer who +are both at Stanford University. Griffin Chure is supported by a National Science +Foundation Postdoctoral Research Fellowship under the award number 2010807.

+
+

Citing hplc-py

+

If you end up using hplc-py in your research, great! Please consider citing +the project. The package is being actively developed and improved, so please +ensure that you cite the version number you are using.

+
@misc{#10.5281/zenodo.8197910,
+      doi = {10.5281/zenodo.8197910}
+      url = {https://doi.org/10.5281/zenodo.8197910},
+      author = {Chure, Griffin and Cremer, Jonas},
+      keywords = {Github},
+      title = {cremerlab/hplc-py: Version 0.2.00},
+      publisher = {Zenodo},
+      year = {2023}
+     }
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/genindex.html b/genindex.html new file mode 100644 index 0000000..208cb6e --- /dev/null +++ b/genindex.html @@ -0,0 +1,273 @@ + + + + + + Index — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+ +
+ +
+ +
+

© Copyright 2023, Griffin Chure & Jonas Cremer.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/getting_started/algorithm.html b/getting_started/algorithm.html new file mode 100644 index 0000000..74b549b --- /dev/null +++ b/getting_started/algorithm.html @@ -0,0 +1,316 @@ + + + + + + + Methodology — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Methodology

+

Note: This notebook is under active development and will change a lot.

+
+

The Problem

+

High-Performance Liquid Chromatography (HPLC) is an analytical technique which allows for the quantitative characterization of the chemical components of a mixture. While many of the technical details of HPLC are now automated, the programmatic cleaning and processing of the resulting data can be cumbersome and often requires extensive manual labor.

+

Consider a scenario where you have an environmental sample that contains several different chemical species. Through the principle of chromatographic separation, you use an HPLC instrument to decompose the sample into its constituents by measuring the time it takes for each analyte to pass through the column. The resulting data is a chromatogram, which may look something like this

+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set()
+
+# Load the measurement
+data = pd.read_csv('./data/sample_chromatogram.txt')
+
+# Plot the chromatogram
+fig, ax = plt.subplots(1,1)
+ax.plot(data['time_min'], data['intensity_mV'], 'k-')
+ax.set_xlim(10, 20)
+ax.set_xlabel('time [min]')
+ax.set_ylabel('signal [mV]')
+
+
+
+
+
[1]:
+
+
+
+
+Text(0, 0.5, 'signal [mV]')
+
+
+
+
+
+
+../_images/getting_started_algorithm_1_1.png +
+
+

By eye, it looks like there may be six individual compounds in the sample. Some are isolated (e.g., the peak at 11 min) while others are severely overlapping (e.g. the peaks from 13-15 min). This indicates that some of the compounds have similar elution times through the column with this particular mobile phase.

+

While its easy for us to see these peaks, how do we quantify them? How can we tease apart peaks that are overlapping? This is easier to say than to do. There are several tools available to do this that are open source (such as HappyTools) or proprietary (such as Chromeleon). However, in many cases peaks are quantified simply but integrating only the non-overlapping regions.

+

Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the chromatogram that contain either singular or highly overlapping peaks, allowing one to go from the chromatogram above to a decomposed mixture in a few lines of Python code.

+
+
[2]:
+
+
+
# Show the power of hplc-py
+import hplc.quant
+chrom = hplc.quant.Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})
+peaks = chrom.fit_peaks()
+
+# Display the results
+chrom.show(time_range=[10, 20])
+peaks.head()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 663.24it/s]
+Deconvolving mixture: 100%|██████████| 3/3 [00:08<00:00,  2.96s/it]
+
+
+
+
[2]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_id
010.900.1574500.67428623250.3493872.790042e+061
013.170.5828663.83986042250.7839745.070094e+062
014.450.353036-3.01915335229.5835554.227550e+063
015.530.3125631.63078714891.0414521.786925e+064
016.520.3442661.98416710770.6567321.292479e+065
+
+
+
+
+
+
+../_images/getting_started_algorithm_3_2.png +
+
+
+

How It Works

+

The peak detection and quantification algorithm in hplc-py involves the following steps.

+
    +
  1. Estimation of signal background using Statistical Nonlinear Iterative Peak (SNIP) estimation.

  2. +
  3. Automatic detection of peak maxima given threshold criteria (such as peak prominence).

  4. +
  5. Clipping of the chromatogram into “peak windows” which contain at least one peak. Regions of the chromatogram which are stacked with heavily overlapping signals are grouped into single windows.

  6. +
  7. For a window with \(N\) peaks, a mixture of \(N\) skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the chromatogram.

  8. +
  9. Given best-fit parameters for each distribution, the expected signal of the compound across the entire observation window is computed. The integrated signal over the entire peak is computed and stored.

  10. +
  11. The estimated mixture of all compounds is computed given the parameter estimates of each distribution.

  12. +
+

The rest of this notebook will examine in detail how each of these steps is implemented.

+
+

Step 1: Correcting for a Drifting Baseline

+
+
+

Step 2: Identification of Peak Maxima and Including Obscured Peaks

+
+
+

Step 3: Clipping the Chromatogram Into Windows

+
+
+

Step 4: Per-Window Estimation of Constituent Signals

+
+
+

Steps 5 & 6: Integration of Signal and Evaluating Composition of Mixture

+
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Griffin Chure & Jonas Cremer.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/getting_started/algorithm.ipynb b/getting_started/algorithm.ipynb new file mode 100644 index 0000000..8177fc2 --- /dev/null +++ b/getting_started/algorithm.ipynb @@ -0,0 +1,276 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Methodology\n", + "**Note: This notebook is under active development and will change *a lot*.**\n", + "\n", + "## The Problem\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. The resulting data is a chromatogram, which may look something like \n", + "this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the \n", + "chromatogram that contain either singular or highly overlapping peaks, allowing \n", + "one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 663.24it/s]\n", + "Deconvolving mixture: 100%|██████████| 3/3 [00:08<00:00, 2.96s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1574500.67428623250.3493872.790042e+061
013.170.5828663.83986042250.7839745.070094e+062
014.450.353036-3.01915335229.5835554.227550e+063
015.530.3125631.63078714891.0414521.786925e+064
016.520.3442661.98416710770.6567321.292479e+065
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.157450 0.674286 23250.349387 2.790042e+06 1\n", + "0 13.17 0.582866 3.839860 42250.783974 5.070094e+06 2\n", + "0 14.45 0.353036 -3.019153 35229.583555 4.227550e+06 3\n", + "0 15.53 0.312563 1.630787 14891.041452 1.786925e+06 4\n", + "0 16.52 0.344266 1.984167 10770.656732 1.292479e+06 5" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdeXgURfoH8G/33JP7Pgg5IcUNAiq6KCAKoojirj9RRFc88UARBBQUBVFURAyusnIriAq6qKwHi+CBIiKKcqVJQhLITUKuuaeP3x8zgyEkkEwmySS8n+fhYaa7uromPZPM21X1FqcoCgghhBBCCCHkQsC3dwMIIYQQQgghpK1QAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWCo27sBnVgVAB2A4nZuByGEEEKaLg6AHUBoO7eDENJKOFoItdVYFUXRyzL9fP0Bz3Oga+Ef6Fr4D7oW/oOuhf/geQ4cx9kAGNq7LYSQ1kE9QK2nmOO4lJoaC0RRbu+2XNDUah5hYQGga9H+6Fr4D7oW/oOuhX8JDw+ASsXR6A1COjGaA0QIIYQQQgi5YFAARAghhBBCCLlgUABECCGEEEIIuWBQAEQIIYQQQgi5YFAARAghhBBCCLlgUBY4QgghhBA/t2/fviC41iiim9eEnE0GUDxo0KDaphRu9wCIMaYB8ByASQDCAOwHMEsQhJ/c+wcAeAPAYAAVADIEQVhc53gewDwA97qP3wXgIUEQsuuUaXEdhBBCCCFtbd++fTyApzmOv5PjOA0Arr3bRIgfUhRFce7bt+9dAC8OGjTonGsKtHsABGAugMkA7gJwDMAsAF8yxnrCtRLz/wBsAfAggCEA3mKMVQiCsMZ9/DPufXcDKATwivv43oIgOBhjES2tozVfPCGEEELIOTytUqmnBAeHObRavYXjOFoxl5B6FEXhHA6bsaamcookiQDwwrnK+0MAdCOA9wVB2AYAjLHpcPXEXAYgHa4gaIogCCKAI4yx7nAFSWsYY1oA0wHMFAThC/fxtwIoAnAzgA8A3O+DOgghhBBC2tS+ffuCOY6/Mzg4zBEUFFbR3u0hxJ/pdAYrgIiqqoo79+3b98a5hsP5wzjSCgBjGWPJjDEV/gpY9gO4AsD37sDFYwcAxhiLBjAAQJB7GwBAEIQqAL8BuNK9yRd1EEIIIYS0tViO4zRard7S3g0hpCNw95Jq4Jov1yh/6AF6DMCHAHIBSHBNYvqHIAg5jLEEAAfqlS9y/58IIMH9+EQDZRLdj31Rh9dUKn+IMS9snmtA16L90bXwH3Qt/AddC//C+dcMGx4AR8PeCGka92eFw3k6efwhAOoJoBLATXDNv7kPwLuMsSsBGOHqDarL5v5f796PRsqEux/7og6vBQcbWloF8RG6Fv6DroX/oGvhP+haEEJI22jXAIgxlgRgA4CRgiD84N78K2OsF4DnAVgB6Oodpnf/b3bvh7uMtV4Zs/uxL+rwWk2NFZJ0zkQUpJWpVDyCgw10LfwAXQv/QdfCf9C18C8hIQbwPPXGEdKZtXcP0CUANAD21tv+M4DrAOQDiK+3z/O80H2sZ1tOvTJ/uB+f8EEdXpMkGaJIf9D8AV0L/0HXwn/QtfAfdC38g0KDzTq9jIwl8Tt2bIvYsuWr+lMk/FJm5mF9QUGB7uqrR1W3d1s6i/a+xeGZd9Ov3va+ALIAfA/gCndyBI+RAARBEMrgClBqAAz37GSMhQIYCMDTo+SLOgghhBBCCGlzs2dP73748MGA9m5HZ9LePUC/wBVkrGOMPQSgAMCdAK4GMBSudYFmAljFGHsFrh6jx+FasweCINgZY28CeJkxdhJAHoBX4QqsPnGfY7UP6iCEEEIIIaQdULekr7VrACQIgswYuxGuxYrWAgiDK2PbSEEQfgYAxthoABlwpaUuBvCkIAjr6lTzLFyvYyUAA1w9PqM9C5gKglDW0joIIYQQQvyFLMuwWCztMorHaDTKzZ0jNXTo4EF///utxd9++02E0+nk33jj7Uyj0SgvW/Z6wp9//h5sNptVISEh4ogRV1c89tiMwiNHDhseeOCfvd56a+WRfv0GWADg8ccfSjt48M/gr7769ne1Wg1FUXD99Vf3v+uuyYW33jqxvP45y8tPqpcseSXht9/2hkiSxKWn9zA98cSsE2lp3U4nvXrnnbditm7dElNbW6vu1q27efbsZ/M8+xtqc0JCV8e///2vuO++2xFRWVmp6dKli23SpLuLrr32+ioA2LTpg4iNG9+Lu/vuewtXrXonobq6StOzZ+/auXOfz1u7dlXst99uj1Cr1cq4cTeXPvjgIyUAYLfbuTfffD1+167vw06dqtDq9Qa5f/8B1bNnP3M8PDxCuumma/uWl5drP/ro/bgDB/YHrVjxrlBZeUr15ptLu+zd+3NobW2tOiUlzXz//Q8VDhlyucnz2rZs+Th8w4Z1cSdPntQlJiZaR4y4pmLVquVdd+36dZ8314Tnea9en79q7x4gCIJQCeBh97+G9u+Fa1HUxo6X4FrUdNY5yrS4DkIIIYSQ9ibLMm6//e89MjOPtMuQqB49epnef3+z0NwgaNu2L6Jeeum1LEkSue7d0+233/73XiEhoc6XX156NCgoSPruux2hK1a83bVXrz7m0aOvq4qMjHTs3v1jcL9+AyySJOHw4YNBdrud//33fQEXX3ypef/+34y1tTXqq666pqr+uURRxGOPTUkHOOW5517MiYiIEJctez1h+vRH0zdv/vwAAJSXl2sPHvwz6KWXlmQ5HHbuxRefT3nxxeeTV616T2iszY8//lDasWM5xkcfnXY8JSXN9tVX/w1fuPC5NJ7ns0eNGlMNABUV5drPPvtP9AsvvJJtsZj5Z56Z1f3uuyf2HjnymvK33lp15IsvPotYv35tl2HDRlT17Nnb9tprixL27NkdOmvWnLyuXRPtgiAYFi9+Mfnf//5X/FNPPXti5cr3jkyePLHX3/427NT9908pliQJU6c+mO50OrlZs+bmRkVFOz/88P3o2bOfSF+69K3MAQMGWrZv/zpkyZKXU+68c3LB8OEjq/bs+Sl45crlXVt6Tbx5fc16k7Shdg+ACCGEEEJIc3S8dYGGDbuqYsCAgRYAsFqt3FVXXVMxevSYyq5dkxwAkJx8T9mmTR/EZmcfNYwefV3V4MGXVv32295gACX79/8WoFKplfT0Hqa9e/cEXXzxpeYffvgutHt3ZoqKihbrn+vHH78Pzs/PM6xZ8/7B7t3T7QAwZ85zeWvXrow9dapCDQAqlUpZsODl3JCQEAkAxowZe3L9+rVdGmvz0aOZ+l9//SX0uecWZl999ehqAHjkkceLjx3LNm7YsC7OEwBJksQ98cSsfM+X/759+9ccPZoZ+OSTTxdwHIf773+4+KOPNsZlZR019OzZ29azZy/ziBEjKy+7bKgJALp2TXL8739f1eTlHTMAQGRklMjzvGIwGOSwsHBpx47/BefmHjOuWLHukOccc+c+f/zo0cyADRvWxQ4YMPDYBx9siB0y5PJT9977YCkAdOvW/WRBwQnd559viWnJNfHm9bXkPdOaKAAihBBCCOkgeJ7H++9vFjrSEDgASEjoenromcFgUCZNurvsiy8+D1u/fl1AUVGhLj8/11hVVamRJJkDgCuuGF49b97TUVarlduzZ3dQ7959art06Wr744/fggGU7N27J+TKK4efauhcWVlHDUajUfIEPwAQExMrzpo1t8DzPCQkRPQEPwAQFBQsORyOM15Y3TYLQqYBAAYPvtRUt0zfvgNq3313VULdbd26/XVenU4nR0XF2Dn3Crt6vV4BALvdzgPA+PG3nPrhh++Clix5uUthYYGuoOCEoaioUN+jR88zzuORnZ1lMBiMUt3gguM49OrVx/Tbb78GA0Be3jHj0KFXVtY9rn//i0z1A6DmXhNvXp+/ogCIEEIIIaQD4XkegYGBHSpnuk6nP91ei8XCP/DAP5nNZuOvuGJY5ahRYyr69x9w/JFH7u/hKXPZZX+r1WjU8s8//xj0++/7gkeMGHkqKSnZ/tlnn8SeOJGvzcs7ZnzuuYXHGjqXSqVWPF/IG8Pz/Hl70eq2ubFEBLIscSqV6oydGo3mjOc833hb5s9/JvHHH78PHz58ZMWQIX+r7tGjV/GGDetiKypOahsqrygNvzRZlqFWqxXX+XhFaUI+9+ZeE29en7+iAIgQQgghhLSZ777bEZybe8z4ySf//SM6OkYEgMrKU6rq6mq1J9DQarVK//4X1Xz//behWVlHA2fPfiY/IaGrg+M45a23lsXHxcXb6iY0qCs1Nc1mNptVx47l6FJT0+wAUFFRrr7ttpv7vPDCK1netDk9vYcVAH79dU+gZwgcABw48Edgly5drd7UeepUhWrbti+jZs2ac+yGG8af7rEpKDiu1+sNdYKvvwKMbt3SrRaLRXXkyCF93V6gw4cPBSYkJNoAICkp2Xr48KFAAGWe/YcOHTjnnLGmXJPOxK+7pwghhBBCSOcSExPrAIDPPvtPxIkT+do9e3YHzpgxtZskSZzD4Tz9bf/yy4dW7dz5TWRwcJCYltbNrtPpFMZ6mnbt+i5iyJDLqxqr/4orhtWkpKRZ5s+fm7Jv396AzMzD+ueem5McEhLq7N//Ios3bWasp23AgIHVGRlLErdv/zokOztL9+abS+P27dsb+n//d1upN3UGB4dIBoNR2rXr+9Bjx3J0hw8fNMyb93RSXl6u0en86+eg1+ulwsICXVlZqXrYsBHVXbsmWefPfyb1p59+CDp6NFO/YMGziQUFxw0TJtxeCgC3335n8Z49P4WtWvXvmGPHcnSbN38Y8d//fh59rrY09Zp0FtQDRAghhBBC2szAgYMtkyfff2LLlo9jNmxY1yUsLNxxxRXDT0VGRjkE4a/sdiNGXF29dOlirk+f/jWebRddNKjmwIE/gocNu6qqsfp5nscrr7yevWTJK11nz57eHQB69+5Tu2TJsiydTud1d8aiRUuOLV36apclS15Jtlgsqq5du1qffvq5nDFjrm+0LeeiVqsxd+7zx5YvX5Zwzz139A4ICBT79OlXe8cd/yzcvPmDOLPZzAcEBMg33vj3stWr/53w2GMPGTZu/PhwRsbbR5cseSXh+efnpjmdIpeSkmpZtGjJ0UGDLjEDwIgRV9eUlZXmf/DBhtj33lvTJSUl1TJ69JiTX365tdEgqKnXpLPgmjJGkHjlGICUykozRLFDDdPtdNRqHmFhAaBr0f7oWvgPuhb+g66FfwkPD4BKxecCSG3vtuzbt68Hz6u+io7uYtJq9X6bUYv4l927dwVGRkY76yaBePvtZbHbtn0Z+Z//fHGwPdvW2hwOm76srDBQlqVrBw0alNlYOeoBIoQQQgghpJP4+eefQr79dkf4zJlP5yUlJdsPHz5k+Oyz/8SMGTP2ZHu3zV9QAEQIIYQQQkgn8dBDjxVZrVZ+0aIXUmpra9Th4RGOG2+8ufS++6aUtHfb/AUFQIQQQgghhHQSOp1OefrpeScAnGjvtvgrygJHCCGEEEIIuWBQAEQI8Vs7dvwPs6ZPxU8/fNveTSGEEEJIJ0EBECHEL2VnH8W655/BbadOQb9qJU7s/rG9m0QIIYSQToACIEKIX/rww40QZRlWSUKgWo2yDe+B0vYTQgghpKUoACKE+B1FUfDDD9/iUG0Nvo6LgyjLCLLZ4CgoaO+mEUIIIaSDowCIEOJ3srOPoqSkGDqdDg88PgP7a6oAABW/7mnfhhFCCCGkw6MAiBDid37duwd/C4/AsEEXIy4uHgUcBwCoPNipF7AmhJBOaejQwYM2bfogoqnlv/32m+Dx46/rM3z4kIEvv7wwoTXb1hQZGUvib7rp2r6+rLM5P5OCguPazz77T5gvz3+ho3WACCF+p+DPP/FYandITgmy0wE5Lh6wWKEUF7V30wghhDTTxx9v/SM4OERqavkVK95OiImJtb/xxltHAwODmnxcR9Kcn8nzzz+THB0d7Rg3bnxla7frQkE9QIQQv6MczwMAiNEx4DVaRKYzyIoCmyRBdjrbt3GEEEKaJSYmVjQYDE3OYmM2m1W9evU2JyYmO8LDIzplANS8n4nCtW5rLjzUA0QI8StWqxUBZgtgDEQw6wEA6NanH+5Y9W+kdk/HRxpNO7eQEELan2S1NnoTm+N5hdfplNYu21RDhw4e9NhjM/JuuWVCxZw5TybLssyFhYU7d+78JsJut/H9+g2oeeqpZ/NjYmLFoUMHDwKAjz7aGPfRRxvj3n9/84GuXZMcK1a8HfPll1ujq6ur1LGxcfZbbrmtZPz4f5wCgJ9++iFo5sxp6XfeObng448/iouMjLK/8MLLxyZN+r8+t902qei///0sWqvVyGvXfnCY4zgsWfJywi+/7A4VRZFLSUmzPPTQ1IIBAwZaPO3duPG9yE2bPoitrDyl7d//ouro6BjHuV7ffffdyXr37ldbWXlK8+OP34drNBp57NibykaNGnNq0aIFyceOZQfExsbbZs58Ou+iiwZZ6v5Mrrnm2qo77/y/3snJqZaMjOXZAPD9998GzZnzZPpTTz2b85//bIo5cuRw4JEjhwNvuunaoC1bvjpw003X9r3qqlEVU6c+UVS3DdHRMfaFC1/Na+jn8e67HxwpLS3RvP76q1337/8tWKXilfT0HubHHptxIi2tm72517SjowCIEOJXjh3LRorRCAAI6+EKgFJSUiAqCk6cOAFFUcBxdDOMEHJhy3l0ykWN7TOks+quM5/K9jw/9sTU/orT2WBgo0tOMSXNnSd4nufOmt5Xtlga/H6oje9iSZ6/8EhL2g0Au3f/GDZ06LBTb7zxllBUVKh96aUFqW++ubTLggWL8j/+eOsf9913Z6+//W3YqX/+856SyMgo8fXXX+ny3Xc7wx99dNrxtLTutl9/3RP4r38tTTKZTKpJk/550lPvnj27Q996a+URi8XCq1S8AgDffvtN+OuvvylYrVY+JCREmjz5jh5qtVp+4YVXsoODg6XPP98S8fjjD/VYtuzfR/r27W/97LP/hC1f/mbivfc+eOKyy4bWfPPNtrD169d2iYiIOGcQtGXL5thbbrmteOXK9w7997+fRmzc+F78N99si3jwwUdOJCR0dbz88gtJS5a8nPTeex+d8fMLDQ2VnnxyTu7TT89I//TTT8KvuGJY9SuvLEwZOXJU+XXX3VB12WV/q33iiUe6R0ZGOWbNmnu8OT/nuj8Pm83GP/roAyw5OcXy+uv/ElQqXtmw4d3Yhx66p+eaNe8fio/vckENr6AAiBDiV07k5yHR4AqA9InJAIC4uC7gOA5WqwWVlacQHt7kubSEEEL8jMFgkObNeyFfo9Eo6ek9bLt3/1ixb9/eEMA1NIznecVgMMgxMbGi2WzmP/98S8yMGU/lXn316GoASElJtRcXF+k+/viD2LoB0K233l7i6c04fjxPCwDXXz/uJGM9bQDwww/fBWVlCQFbtnz5R2RklAgATzwxq/Dw4UOBH3ywPqZv3/55n3zyUczllw+tnDTp7pMA0K1b95IjRw4F5OUdM57rNXXtmmh9+OHHigHg7rvvL924cX38FVcMPzVq1JhqABg1akzFihXLuzZ07BVXDKsdM+aGsuXL3+z6zTfbwgMCAiRPsBMWFi6p1WpFq9XKnjY3Vd2fx4cfboisra1RL1q0JFej0SgAMH/+S3k333x9382bP4yq25t0IaAAiBDiVyqyjiKV5+HkOGiiowEAWq0WwxKTMdJgRMm6NQifNqOdW0kIIe0rbdnbvze2j+P5M4appS7J+KOpZVNefu1AU8t6KyYm1u75Eg4AAQGBkiiKDXbtHz2aqXc6ndxrry1KXrLk5WTPdkmSOVF0clar9fRxyckpZw3lSkxMsnkeZ2YeNgLArbfedEZGN1EUOafTwQHAiRPHDcOHjzxVd3+vXn1M5wuA4uMTTp/HaDTKANClS5fT7dFqdbIoOhsdvvDEEzMLfvttb8hvv/0a8vbbqw83Z85UY+r+PI4eFYxWq1V17bXDB9Qt43Q6+RMn8vUtPVdHQwEQIcSvOE64evgtgYHg+L9GbMRGRoJxKtiKLqibVIQQ0iCVwSC3d1lv1Q1+/tLw931ZljkAePrpecdSU7vZ6u/X1ZmTpNfrz2q7Xq8/vV+WZc5gMEj//vfas4bxabVaGQA4joNSrylqtfq8wYharTqrDMc1PddYaWmJpqqqUqNSqZTdu3cF9+3bz3ruI848nShKZwVXdX8esiwjLi7etmjRkuz65QICAjploolzoSxwhBC/su9UBV7LOQpLnzOXXDBExwAAOFNtezSLEEJIO+jWLd2mUqmU4uIibWpqmt3z7/vvd4a8997qGJ5v+lfZtLTuVqvVqnI47FzdutauXRm7Y8f/QgEgKSnZcvDgH4F1jxOEIwG+fVVnkmUZ8+fPTUlKSrE89NDU4++//26XgwcPGP4qwZ0R7ahUasVkMqvqHl9WVqo91zlSU9Os5eXl2uDgYMnzuhMTk+xvvrm0yy+/7A7y9WvydxQAEUL8inDiOPZUnkL4JUPO2B6a4Bo6rXE6oUgX3M0qQgi5IIWEhEjXXHPtyffeW9Plk08+Cs/Ly9Vu3vxhxNq1qxLCwsKbNSdmxIiR1UlJydZ5855O27Xr+6Bjx3J0r7yyMGHnzu2RKSlpNgC47bY7S3755eewFSvejsnJydatW7cqes+e3a26COk777wVm5uba5wz57m8W2+dWN6zZ+/aF154NsVut3MAYDAY5LKyUl1hYYEGAHr27GXateu78N27fwzMzs7SzZ//TJLValGd6xzjxt18KjAwQJo1a1ravn2/BGRlCfpnnpmVsn//vpDu3dl5eps6HwqACCF+w2az4eTJMgBA165nzhWNSEyCKMvgAYjV1e3QOkIIIe1h9uxnTtx4482l7767pss//3lbnw0b1sVNmDCx6NFHmzdxX6VSISNj+dHu3dPNCxfOS7333km9/vxzf9Dcuc/nXHHFsFoAuPrqUdUzZz59bNu2LyPvuWdS7127vg8dN258aeu8MuDAgT8NH3ywPn7SpH8Wpqam2QHgqaeeyS8vP6l7/fVXugDAuHE3nzxx4rh+8uSJvSVJwiOPTCtMT2emOXNmdn/00Qd6BAcHi5dffsU5F0kNCQmRli17JzMkJFScPXtG9ylT7ulZVlaqffHFxVk9evQ6a2hhZ8cp9Qc6El85BiClstIMUWz14bTkHNRqHmFhAaBr0f7Ody2yjhzGu48/jFMAln35DeoObdizZzfENzMQpdOh69PPwJCa1oYt73zoc+E/6Fr4l/DwAKhUfC6A1PZuy759+3rwvOqr6OguJq1Wf8F9SSWkuRwOm76srDBQlqVrBw0alNlYOUqCQAjxG6VHDmNS1ySYFRn1x3VHRUXjoNOBKJ0OYuUpABQAEUIIIaT5aAgcIcRvVOfmAABq1Zqz9kVHx6DMbkOZ3QaHjW6EEkIIIcQ71ANECPEbzpJiAIAYHHzWvoCAAKwqKYbVmoNPE7qClkIlhBBCiDfaPQBijA0HsLOR3bmCIKQyxgYAeAPAYAAVADIEQVhcpw4ewDwA9wIIA7ALwEOCIGTXKdPiOgghrUvlTm6gjok5ax/HcYiKisLx4/k4ebIMSUnJbdw6QgghhHQG/jAE7icAcfX+jQIgAniRMRYB4H8AjsIVvMwDsIAxdnedOp4B8CCA+wBcBtfqUF8yxrQA4Is6CCGtL9DuAAAENRLcRLvXAvJkiiOEEEIIaa527wESBMEBoMTznDGmAfA6gI8FQVjJGHsKgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cddwKoAjAzQA+AHC/D+oghLQip9OJCHfigyjWo8EyvULDML5HH4R+uxMYM7Ytm0cIIYSQTsIfeoDqexhAVwDT3M+vAPC9O3Dx2AGAMcaiAQwAEOTeBgAQBKEKwG8ArvRhHYSQVlR6LAd6lQqyoiA2veEAKCw0FN0DA6GvqWnj1hFCCCGks2j3HqC6GGN6AHMALBUEodi9OQHAgXpFPQtfJbr3A8CJBsok+rAOr6hU/hhjXlg814CuRfs717UorizHi4cPoFdCV7wcaGzweGNkJJCXD60oQq2m69kS9LnwH3Qt/AvHtXcLCCGtza8CIACTABgAZNTZZoRr+Fpdnhy4evd+NFIm3Id1eCU42NCSw4kP0bXwHw1di4qqcuRazEjt2gVhYQENHhed3BX4dR80ioJgoxoqna61m9rp0efCf9C1IISQtuFvAdCdcM39qaizzQqg/rccvft/s3s/3GWs9cqYfViHV2pqrJAkWtm7PalUPIKDDXQt/MC5roUn4WJsbBdUVjb8sdMGhsIpy9DwPCpOlEATEdnqbe6s6HPhP+ha+JeQEMNZCzH7I46DiuO4Nm+ooiiyokBq6/MS4kt+EwAxxqIAXA7gxXq7TgCIr7fN87wQgKbOtpx6Zf7wYR1ekSQZokh/0PwBXQv/0dC10GVn47roWKSGhTd6nYJDwlEjOhGh1cFeWQMupEUdtAT0ufAndC38g6K0dwvOj+OgkjkuzmIT2/x7nFGvFnkoxf4WBGVkLInfsWNbxJYtX9Wf8nBe2dlZuvvv/2evtWs3HEpMTHa0RvuIf/GbAAiu4EcB8F297d8DeJAxphIEwfNhGwlAEAShjDFWDaAGwHC4gxfGWCiAgQDe9GEdhJBW1K3WhKsSk1GlbXxYW3h4OIpEERFaHcSa6jZsHSGE+A+O43iLTVT/fLBYttjaLmo26tX8kD5x6iC9mlcUxa8CIG8dPnzQMHv29G4Oh93/u/2Iz/hTANQfwDFBECz1tq8GMBPAKsbYKwAuAfA4XGv2QBAEO2PsTQAvM8ZOAsgD8CpcvT6f+LAOQkgrURQFIXDddo3s1r3RcuHh4Siz2xGgUiHCZkVgWzWQEEL8kMUmymars627DTtNoPDWWxmxmzd/ENelS4Lt1KkKWvfxAuJPAVAsgIr6G909NKPhSozwG4BiAE8KgrCuTrFn4XotK+FKovA9gNHuNYZ8UgchpPVUFBchRO0aiRrXq0+j5QwGI/5VeAI2mxVb47u0VfMIIYS0wNChgwdNmfLo8W+++V94bm5OQExMrG3y5PsLR40ac7orf/v2r0PWrl0ZX1hYYAgLC3dceeWIU1OmPFqs0+kUAMjMPKxfvvzNLkeOHA6y2ax8RESk44Ybxpfdffe9Da6MvXbtyui1a1cmPPXUs8dGj76uqqEy+/b9EvLkk0/nhoSESDNnTktvlRdP/JLfBECCIDx0jn17AVx2jv0SXIuazmrNOgghraPw8EEYAJgkCYbQ0HOWDQ8PR1FRIU6dqkBCQtc2aR8hhJCWWbNmRcJdd91T8NRTz+Z9+uknkQsWPNstLCw88+KLLzXv3Lk9eOHC59LuvffBE5dffkXN8eN5umXLXk8sKDiuX7w445jFYuGnT5+a3rdv/9ply5ZnqtUaZcuWzZGrVi3vOnjwJbV9+/arm8AK69evjVq3blXC3Lnzc66+elSj46VXrVovAMBPP/0Q1Nqvn/gXvwmACCEXrspjOTAAqGnCOihhYZ4A6FTrN4wQQohPjBhxdfmkSXefBIAZM2YXHjz4R9CmTRujL7740tz169fGjRw5qnzixLtOAkBKSqpdrVbnz5r1RPrx43laozFAHjdufNltt00qCw4OlgHgkUemFX3yyabYrKxMQ90AaOPG9ZGrV7+TMG/eC9nDh4+kVbNJg5odADHGIgCMhyuJQAqAEADlAPIBfAngv4IgVPmwjYSQTs5cWAgAcBgbXgC1rouDgjGxZx9od/8EDL+qtZtGCCHEBwYOHFxb9zljPc379/8WDAC5ubnGnJzsgJ07t0d49nuy8WVnZ+mvuuqamttvv7Ns69ZPw3NysoyFhQW6/PxcIwBIknx66drKykrN229nJKlUKiUhIbH+2o6EnNbkAIgxFglgDoB73ccdgStZQBaAMAB9AUwAYGeMLQfwsiAIDY7LJISQuuRTrul/fNj501qH6A3oJkqorKps7WYRQgjxEbVafUaCcUVRwPMqxfVY5m666R8l48aNP2sueExMrLOsrFR9//3/7BkUFCwOGXJ51aBBl9T069fffOutN/WrW5bjeMyf/2LW6tXvxC9c+FzKqlXvZXaENZ1I22tSAMQY+wdc6aD3AbgfwKcNZGsDYywYwBgADwA4zBh7SBCEj3zYXkJIJ/R5dRXW5mThoeuuP29ZVWAAYDIBNlsbtIwQQogvHD58MOCaa649PR8nM/NwYFpamgUAEhISrSdO5OtTU9NO99rs3r0r8MMP34956qln87du/TTCZKpVb9r02UGNRqO46zO4Sv4VV4WGhjiHDRtREx0d7Xjwwcm91qxZEXPPPQ+UttFLJB1IU3uAHgNwnSAIv52rkCAINQA+BPAhY+xSAEsAUABECDmn7IITOGU2I65Hz/OW1QQFAyWlUDkoQSMh5MJm1KvbtHujJef7/PMtMUlJKbY+ffqZP/74o6j8/DzDrFnP5AHAhAkTSxYtWpCakbEk/rrrbqgoKSnWvvbaouTIyEhHTEysGBMT67Db7fzWrZ+GXXzxJaacnGz9W29ldAUAh8NxVpt69uxtGz/+lpING9bFDx8+siotrRsNhyNnaFIAJAjCFc2tWBCEPQD+1uwWEUIuKGazCafcQ+ASEhLPW14bFAwAUEtiq7aLEEL8laIoslGvFof0iVOjjdflMerVoqIozV57aNSoMSc3b/4gZunSxYakpCTLSy8tzurdu48VAK6/flyloijHNm58L+6TTz6KNRoDpMGDL6maNm1mgWd/ZuaRkhUr3u66bNkSPjIyyjF69HXlu3f/GHrkyKEAACfrn2/KlEeLf/zx+7CFC59LXrnyXYGGwpG6OEVRzl+KeOMYgJTKSjPEtlukmTRAreYRFhYAuhbtr6FrIez7FV88NweVHIf5n3113jq+/GAD0rb/DyKAXivXtm6DOzH6XPgPuhb+JTw8ACoVnwsgtb3bsm/fvh48r/oqOrqLSavVnzHul+Og4jiuzb/VK4oiKwqk5hwzdOjgQY89NiPvllsmnDXHhxBfcjhs+rKywkBZlq4dNGhQZmPlmjoHaHVzTi4IwuTmlCeEXLhOZh7G9TFxKJeb9sXPGO5KEqQGIDsc4LW0eDch5MKjKJAURWlWIEIIcWnqHKCrUHeWGRAPQAPgOIBiABFw3SmxA/jDlw0khHRuNSeOIxqAVadrUvngyEjUOJ0QeQ6y3UYBECGEEEKapalzgJI9jxljtwN4GcDfBUH4pc72XgC2wJUEgXRgZVs+xrpDBxDVpQvuuutecBx3/oMI8ZKjzJUtXwkJaVL5oOAQ/OOPfQgNDcW37vlAhBBC/NeuXb/ua+82EFKXN2NHFwKYXTf4AQBBEA4DmAtgpi8aRtqH8+RJVG39HH0PHsQbS1/Dd9/tbO8mkU6Or3Ut1K2Ljm60jErr+gcAIe5AqaamBnITh80RQgghhHh4EwBFAqhuZJ8IIND75pD2Zsk8DACwyTIUAN98s619G0Q6PYPdlZ00ODGpwf0ajQpl1pMot1VArVYhONgVAMmyDLPZ3GbtJIQQQkjn4E0A9DOAeYyxiLobGWNxAJ4HQF0GHZgpNxcAoON53N01GZqjQju3iHRmTqcDYe4kRtHd0xssI3EiTlQVobCmFOBl6HQ6TE5OxYs9++DUvr1t2VxCCCGEdAJNTYJQ13QA3wHIY4zthiv3egyAywGcAvC4z1pH2lzNsWyoAGh4HmNiYrGn8hRsNhv0en17N410QoW5uQjWaAAAUd3ZWfs5joNVsqDaZoJWpYFdtkMFLboYA9DNGABrGS3wTQghhJDmaXYPkCAIfwLoDWA5gCAAgwEYACwG0E8QhDxfNpC0LanClaI/W+XKyBWl1SEvL7c9m0Q6scKyUtyz/1f8q6YKaqPxrP0qFQeL0wqzwwKLwwq7ZAfPc5DUrns3tpqatm4yIYQQQjo4b3qAIAhCEYAnfdwW0s4USYLaagUAVASEAE4TIrRaFBUVoEePnu3cOtIZnSg4gVpRBBcf3+B+juNQaa2GoiiwiXZYRTuCdRxkd6+Rvba2LZtLCCF+oyMthEqIv/EqAGKM6QBMBnANgDgAdwMYDuC3+tnhSMchVlWCB+CUZZjDYoAyE0I0Gggnjrd300gnVVDgem8lJHRtcL8ECbV20+nntfZaxBliAK0OcDohmk0NHkcIIZ0Zx0Fl4J1xisPi1fe4Fp1baxStsqaYgiDSkTX7g8MYiwSwA0BPAEfgGg5nBHA9gCWMsZGCIOz2aStJm+B1evyPAwoLjkPX+wqIZceghoJKCoBIKwk6dgx3dU1C9+CG1wASFSesTtvp5ya7GTJk8HpXACRZLG3VVEII8Rscx/GKw6I2CXtk2W5ts/UAeJ2BD2SXqjlNKK8oil8FQBkZS+J37NgWsWXLVweaesymTRsjPv74o5iysjJdWFiYc9Soa8vvvXdKiUqlas2mEj/gzZ2DxQCC4QqA8gA43NtvAfA1gPlw9QyRDkYVGIivS0twvKwE/wyLhk2jRaDTDkd5RXs3jXRScSYTesTEwaTRnbWP4zg4ZCdsTvvpbXbJCUmRoDIagVoTZJvtrOMIIeRCIdutsmQzt/WCaG0+7K41bNnycfi//vVG0oMPPnr80ksvqz106IAxI+O1JIfDyT366LTi9m4faV3evIlvADBXEIRsAIpnoyAINriCo0E+ahtpY4qioLTU9ZkPDouEXW9wba9tbNknQrwnSRKC3AuZRnbrdtZ+nufgkBxnBEAO0QEJEtQBgTCJIhyS2GbtJYQQ0nl89tl/ooYNu6piwoSJ5SkpqfaxY2+svPHGv5f+739fRbZ320jr8yYA0sOV7rohIgCt980h7alCOIJUjRahGg2CQyIh9Lkck3//Fbsqytu7aaQTKikuQpTW1fMTnX52Cmye52B1WiEpf93cdIhOOCUnzMnJmLz/V+wwUHp2Qgjxd0OHDh60YcO6qMmT72AjRlw2cMKE8b22bfvyjLHP27d/HXLHHbf0HDHisoE333x9n6VLF8fb7XbOsz8z87D+8ccfShs9eviAYcMuHXjzzdf3WbNmZXRj51y7dmX08OFDBn799RehDe1/8MFHCiZNuruk/naz2dTm86pI2/MmANoL4KFG9k0E8Kv3zSHtqWL7//B8j964PiEJao0GfEQcTJKIU6cai3cJ8V7hUQFanoekKNBFRp21n+OAWof5jG0OyQlREREYGAgAMJnMZx1HCCHE/6xZsyJhxIiRp955Z92hwYMvrV6w4Nlue/fuCQCAnTu3By9c+FzamDFjy1ev3nDoscemH9+167vwOXOeTAEAi8XCT58+NV2vN8jLli3PXLPm/UNDh15ZuWrV8q4HDvxpqH+u9evXRq1btyph7tz5OaNHX1fVUHsuuWSIuVu37qeHGFRVVam+/HJrVP/+F9H6ChcAb6LcZwBsZ4ztB/AFXMPgbmOMPQ9gtPsf6YCcVZXQAnCoXXfl9UbXzZmammo4nQ5oNNS5R3ynPCcLoQBMPAeugQmnMmRYnNYztjklEaIsIigoCABgMlEabEII6QhGjLi6fNKku08CwIwZswsPHvwjaNOmjdEXX3xp7vr1a+NGjhxVPnHiXScBICUl1a5Wq/NnzXoi/fjxPK3RGCCPGze+7LbbJpUFBwfLAPDII9OKPvlkU2xWVqahb99+p/9YbNy4PnL16ncS5s17IXv48JFNCmZMJhM/Y8bUbk6ng586dfqJ1nj9xL80OwASBOEHxtg1AF4CMBMAB+AJAL8BuF4QhJ2+bSJpK5J7TRW7e0J6kLkG9yalosJuw6lTpxATE9uezSOdTK07u6DDcPYCqAAgKiLsouOMbQoU2JwOBPM85qb3QAC4Bo8lhBDiXwYOHHzGHSvGepr37/8tGAByc3ONOTnZATt3bo/w7Ffcs8yzs7P0V111Tc3tt99ZtnXrp+E5OVnGwsICXX5+rhEAJEk+/YegsrJS8/bbGUkqlUpJSEi0owlKS0vUM2ZM7V5aWqJbtGjJ0eTkFMf5jyIdnbcLoX4P4G+MMQOAMAA1giCYAIAxphYEgWYmd0CcexFUp971hVRjNWFUVDSyzSZUVJRTAER8ylHumlvGhYY1uF9URDhE51nbLaIVAYGB6BccCllRoCgKOI4CIUII8WdqtVqp+1xRFPC8SnE9lrmbbvpHybhx489KOxsTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N99660396pblOB7z57+YtXr1O/ELFz6XsmrVe5k83/hsj6wsQT9jxmPdJUnili59S+jVq4+10cKkU2n2HCDG2DHGWH8AEATBKghCUZ3g5xIApT5uI2kjKrvrZolkcM2vkHSuYbXBajUqKigVNvGtLaUluHf/r+CvvOKsfTzPQZRFOMSzb8TZRDsCwlxBE89xUOxNuslHCCGkHR0+fDCg7vPMzMOBaWlpFgBISEi0njiRr09NTbN7/pWWFmsyMl5LMJlq+c8/3xJhMtWqV69en/nww48VjxlzfVV1dZX7Jv5fcVVoaIhz2LARNbNnz807dizbuGbNipjG2pOfn6d9/PGH0/V6vbx8+eojFPxcWJrUA8QYuw2Axv00GcB4TxBUz8g65UgHIjud0EjuNc0CXXN/JJ2rJyhQrUYeZYIjPiTLMgoKjsMuiujCep21n+M4OCUnHNLZPUBOyQlDaBRMigIVx0GyWsDrKRscIeTCw+sMbbomT0vO9/nnW2KSklJsffr0M3/88UdR+fl5hlmznskDgAkTJpYsWrQgNSNjSfx1191QUVJSrH3ttUXJkZGRjpiYWDEmJtZht9v5rVs/Dbv44ktMOTnZ+rfeyugKAA6H46w29ezZ2zZ+/C0lGzasix8+fGRVWlq3s+6UvfDCvGRRdPLPPLMgS6PRKKWlJae/E8fExNJIpk6uqUPgBgOY5n6sAHj2HGVfa1GLSLuQLa5sWrKiQBXourvu6QEyqtSorapst7aRzqe0tBR2ux1qtRpxcfFn7ec4wC46IcpnLzTulEQYgwNglSQEqtWwVlVCExbeFs0mhBC/oCiKzGmNYiC7VI02XpiU0xpFRVaavfjqqFFjTm7e/EHM0qWLDUlJSZaXXlqc1bu3q9fl+uvHVSqKcmzjxvfiPvnko1ijMUAaPPiSqmnTZhZ49mdmHilZseLtrsuWLeEjI6Mco0dfV75794+hR44cCgBwsv75pkx5tPjHH78PW7jwueSVK98V6g6FKy4u0hw5cigIAB588O6z7sLt2vXrvua+PtKxNDUAegpABlwJD44BuBnA7/XKSACqBUGgtEwdEKfVYRtklBacgLHvcACApNVDhus3q7WSAiDiOydyczAjLR1WnRZn539zDYGrnwHOQ5RE6I360wGQ+VQlglNat72EEOJPFAWSVdYUc5rQNg1+AECRFVlRcPbdqfNISUmzzpw5p6Cx/WPH3lg5duyNDX7Z4DgOM2bMLpwxY3Zh3e333PPA6WkXU6c+UTR16hNFnuc6nU7ZtOmzQw3VFxcX76Qg58LWpABIEAQHgHwAYIylACgC0EcQhN/d22IBXALgy1ZqJ2llKoMBOysrkVNajEkBwa6NPA8Hr4JeluCorm7fBpJOpeSogEvCwuEAgAZSYAOA2WlpcLsoi5Ahw+Ye922tpuCcEHLhURRIiqI0OxAhhHiXBU4CsB+AHkCae9sAAFsA7GWMXS8IQrMmjDDG7gQwG0AqgBwAzwmCsMm9bwCAN+AahlcBIEMQhMV1juUBzANwL1wZ6XYBeEgQhOw6ZVpcx4Wgyj3MzRgYfHqbQ6WGXpYg1tK6YMR3qvLyAQBWrbbBDG4SpAYTIACAKEuQFAl2AGZRhNbccKBECCGEENIQb7pOXwWgAnCrZ4MgCF8B6A8gCMCi5lTGGLsDwGoA/wbQB8AHAD5gjF3GGIsA8D8AR+EKXuYBWMAYu7tOFc8AeBDAfQAug2uO0peMMa27/hbXcSFwVJQjThQRo9PBGBByevvu9P6Y/PuvyLJSchTiO7aSYgCAHBLS4H5JkRpMgAAAoiRBkmWstlpw9/5fYYqObrV2EkIIabldu37dd8stEyidLPEb3vQAjQRwvyAIv9bdKAjCAcbYswCWNbUixhgHYAGA1wVBeMO9eQFjbCiA4e5/dgBT3GsLHWGMdQcwC8Aad4AyHcBMQRC+cNd5K1xD9G6GK5i63wd1dHqVv/yMZ7v3wM+nKmAICPprR0gkTJKIWhP1ABHfUaqrAZ0euqiGgxdJkeCUGk7CI8oiJEVCYKArXbvJRNMOCSGEENJ03vQAaQE0lv3DBlcvUFMxuNJqv193oyAIowVBeAnAFQC+r7ew6g4AjDEWDdfQuyD3Ns+xVQB+A3Cle5Mv6uj0rJVVAACLIkOj1Z3ernMvilpTQwEQ8Q1FUWCw2wAAwYlJZ+3nOA6iIsLZwCKogGsInCiLCAx0LSlhMplar7GEEEII6XS86QHaDWAaY+xLQRBOf0NhjGkAPA5gTzPqSnf/H8AY+xrARQByAbwgCMLnABIAHKh3jCfDR6J7PwCcaKBMovuxL+rwmkrV5glavOJ09/DYORV4/q85GbG1lbgnMRnHZRlqdcd4LfV5rkFHuRadmUrFo7i4GNFq1+jSaMbOel/xPAezKEFUxDPei3WJsoiBGi2u7N4DxqyjHfa92Z7oc+E/6Fr4lwamJRJCOhlvAqC5cCUJyGWMfQmgDEAUgGsBRMI1bK2pPLPt3wXwPFzD0v4O4FPG2DUAjHANX6vL5v5f796PRsp4FgbxRR1eCw42tLSKNqFYXRPJHSoVDIa/pj4ZrSb0iI7FtvIyhIYaG5yw3lF0lGvR2e3//ReEaFzrJcf27AZDWMBZZWqqq6DS8tCjkWl4KhnRGg3SQ0JRaqpBWAN1kKahz4X/oGtBCCFto9kBkCAI+xhjl8KVOGAsgAgAVQB+ALBAEIT9zajOk+bpVUEQ1rkf72eMDQTwBAArAF29YzxLvpvd++EuY61Xxux+7Is6vFZTY4UkNXu9sDZnr66BDoBTpYbV+lf2La3G9QfZwHEoLq6AwdDx/kCrVDyCgw0d5lp0ZioVj2O5uZjzxz6MHT4CPbUBsFWe+TFTq3nUWiywWs9auPs0k9UKaF3BkcNsQWVliz+qFxz6XPgPuhb+JSTEgLqLZhJCOh9veoAgCMKfAG7xwfk9C2LVH6J2CK7gKg9A/WXiPc8LAWjqbMupV+YP9+MTPqjDa5IkQxT9/w+aZHH1ADnVOsiycnq7onfdWTeq1Dh1qgoxMfVjyY6jo1yLzi4725VdPjI5DZIMQD7zmvA8B7PDesb7sD6raAevd93HUOwOuq4tQJ8L/0HXwj8ojf/q8SscBxXHcW2/EKri3UKohPgTrwIgAGCMjQFwDYA4AE/DNX9nnyAI+c2o5ncAtQCGwDWszqMvgGwAPwF4kDGmEgTB82EbCUAQBKGMMVYNoAauYXc57naFAhgI4E13+e99UEfnZ3ONCpQ0ZwY4ktbdA6RSoba2BjExMW3eNNK5eAKg5OSURstYRVuj+wBAkiSoja7Rq5yz4WQJhBDSWXEcVIpairNIVq+/x3nLoDaInKgq9rcgKCNjSfyOHdsitmz5qv5N9UatW7cq+rPP/hNdUVGhjYmJsf/97/9X8n//dzul674ANPuDwxgzwrXo6dVwBQ5BcK0NNAXARYyxYYIgHGpKXYIgWBljrwB4ljFWCOAXABMAjIIrSDkMYCaAVe5yl8CVaOFB9/F2xtibAF5mjJ2Eq8foVbh6fT5xn2a1D+ro9I7HxOB34TBqU/qcsV12B0RGdwBESEt1KSnD9LR0pDVym1VSJDgayQDnIcoSVJ4ASGw4XTYhhHRWHMfxFsmq/qVgv2x12tqs29Cg0fOXJAxQB3BBvKIofhUANdeGDeui1q1b3WXatBl5/fpdZP7pp13Bb765NDkoKEQaM+b6qvZuH2ld3tw5eBHAILgClB/w1zyeSQC+hmtdn5ubWpkgCC8wxiwAFgLoAuAIgJsFQfgWABhjowFkwJWWuhjAk3XmCwHAs+7XsRKAAa4en9GCIDjc9Ze1tI4LQY5eh/8UF+FvvS8/Y7us9QRAapjNNM+CtIzFYkYXWcGlYeEI1GgaLCNBgtjIIqiny8gSdO402Cq5Q/8NJoQQr1mdNtnssLb1uMlOMUHKZDKp7rzz7sIbbhhfCQBJScnlW7duif711z3BFAB1ft4EQLcCeEoQhJ2MMZVnoyAIJYyxFwD8q7kVCoKwBMCSRvbtBXDZOY6V4MoeN+scZVpcR2fn6d3R6c/MpiVpXfMsAlQqlFEARFooLy8PsTpXUB2S1PAQOFmRG10E1UOSJWiDAiErChSZ5kwQQog/Gzp08KApUx49/s03/wvPzc0JiImJtU2efH/hqFFjqj1ltm//OmTt2pXxhYUFhrCwcMeVV444NWXKo8U6nU4BgMzMw/rly9/scuTI4SCbzcpHREQ6brhhfNndd99b1tA5165dGb127cqEp5569tjo0ddV1d//wAMPl3geO51O7r///SyssLBAP2nS3UX1y5LOx5soPhSuYWINqQQQ6G1jSPtQJAkBp04hyWCEXm88Y58jMAxvg8fUg/thsVAARFomL/cYYnWuoFoTffZ8Mo5zDYFzyucOgERZgiY1BRP27cHik6Wt0lZCCCG+s2bNioQRI0aeeueddYcGD760esGCZ7vt3bsnAAB27twevHDhc2ljxowtX716w6HHHpt+fNeu78LnzHkyBQAsFgs/ffrUdL3eIC9btjxzzZr3Dw0demXlqlXLux448OdZ6WnXr18btW7dqoS5c+fnNBT81PXzzz8FXnXV5QMXL34p5YorhlecrzzpHLwJgA4CmNjIvhvc+0kHIlnMuMFkwau9+8FgrLeeikoFq96IWlGkIXCkxQqFTOhUKsgANBERZ+3nOA6iIjapB0hvdP3Ns7gzGBJCCPFfI0ZcXT5p0t0nu3dPt8+YMbswLa2bedOmjdEAsH792riRI0eVT5x418mUlFT7sGFX1Uyb9mT+zz//FHb8eJ7WYjHz48aNL3v66Xn56ek9bKmpafZHHplWBABZWZlnBEAbN66PXL36nYR5817IvvrqUdUNtaWutLRutrffXn146tQn8nbv3hX+2muLurTOT4D4E2+GwL0A4D+MsQgAnwNQAAxjjN0NV2KB23zYPtIGZHcGOJskQWcMOmu/Tu/5okkBEGmZqrxcAIDDYACnPvvXD8cBoiTBeb45QIoMncE1lI4CIEII8X8DBw6urfucsZ7m/ft/CwaA3NxcY05OdsDOndtP3xnz5MnJzs7SX3XVNTW3335n2datn4bn5GQZCwsLdPn5uUYAkCT59ArtlZWVmrffzkhSqVRKQkJi44vJ1REVFS1GRUWLffr0tVZWVmo2blwfP3Xq9CKtVttBEqITb3izEOqnjLE7ACwCcJ1782sAygA8KAjCZh+2j7QBxRMAyRL0BuNZ+y8RneiWmAypsrKtm0Y6GWdZGaA3ggsPb3A/x3EQZRHieRIbSLIEjVaFJ1K7Q69SwWmzQaPXn/MYQggh7UetVp8RUCiKAp5XKa7HMnfTTf8oGTdu/FkpqGNiYp1lZaXq++//Z8+goGBxyJDLqwYNuqSmX7/+5ltvvalf3bIcx2P+/BezVq9+J37hwudSVq16L7OxRW137PhfcEJCV0d6eo/T6y6kpXW3iqKTO3WqQh0bG0drLHRizR4CxxjrKQjC+4IgJALoCWAogD4A4gVBWOXrBpLW5+kBskgStLqzAyBmM2N0dCw4U+1Z+whpKlmWYamshEOWEZCQ0GAZjuNgE8+ffFGSJegDjRgSHoEBIaGwVlf5uLWEEEJ86fDhg2eMsc/MPByYlpZmAYCEhETriRP5+tTUNLvnX2lpsSYj47UEk6mW//zzLREmU6169er1mQ8//FjxmDHXV1VXV7lv4v8VV4WGhjiHDRtRM3v23Lxjx7KNa9asaHTxwpUrlyesWbMytu62Q4f+DAgMDBSjo2Mo+OnkvJkD9DVj7E7AtZKoIAg/CYJwWBAESsXUQdUdAqfVnX0XXVK5fsdIFmubtot0LsXFRdhSeAKTD/yO5LvubrAMxwG28yyCCgCSLEOj18Hu7imyUABECCF+7fPPt8Rs2fJxeHZ2lu7llxcm5OfnGW677c5SAJgwYWLJL7/8HJaRsSQ+OztLt2vX90GvvPJiitlsUsfExIoxMbEOu93Ob936aVhBwXHtd9/tCH7++bmpAOBwOM76LtuzZ2/b+PG3lGzYsC4+JydbV3+/65x3FO/a9V3Ee++tjTp2LEe3ceN7kVu2fBx7++13FjXWa0Q6D2/mAKkBnPR1Q0j7Ed1zKKyyDK22oQBIA8AK2U4BEPFeTk4WACCtWzdojUaIYsP3TKxNCIAUKJAUGXZZgY4HrNXnnedKCCGdjkGjb9Nv6i0536hRY05u3vxBzNKliw1JSUmWl15anNW7dx8rAFx//bhKRVGObdz4Xtwnn3wUazQGSIMHX1I1bdrMAs/+zMwjJStWvN112bIlfGRklGP06OvKd+/+MfTIkUMBaOB76ZQpjxb/+OP3YQsXPpe8cuW7Qv2gZty48ZWSJOZ+8MGGuFWr/t01MjLS8cADjxyfMGFiubevkXQc3gRAzwBYxhhbCFfGt7Ny0AqCcLylDSNtx+Ee2ubqATormyQk94KVsq1J8wkJaVB2tisAYow1WkZSJIjiuTPAeTglJxzuWbL2WhqeSQi5cCiKIhvUBvGShAFqtPHCpAaVQVREpdmjflJS0qwzZ84paGz/2LE3Vo4de2ODk405jsOMGbMLZ8yYXVh3+z33PHD6O+jUqU8UTZ36xOk1fHQ6nbJp02eHztWm8eNvOTV+/C2nmv4qSGfhTQC0HIAKwCrUHXh5JlUj24kfUqKjsbHwOEptdlyt0Z61X9a4e48d55+bQUhjyoRMvNqrLwLExhPryJDPuwaQh1N2wunO/UMBECHkQqIokDhRVRzABbX5WC1FVGRFwbkz1RDi57wJgO71eStIu3KGR+A/xUXQ6vQY1cC4V8UdFHFOmhNIvGctOIEkYwCkc/TwyJDOuwaQh1MS4eRcEZDdbPJJGwkhpKNQFEiKolAgQogXvAmAugD4VBCEc3Yrko7DanXNAWpo/g8AKO7tvEgBEPGOJElQV1UBhgAEJiU2Xk6RITYxAHJIDkjugN1JawERQojf2rXr133t3QZC6vKm63QmgK6+bghpP9biIiQZjAg1BDS4vzR9MB498Du2lBQ1uJ+Q8ykoOI4Yd09iZHp6g2VcawBJTR4CJ8oSvjDocOuvP+NkZKTP2koIIYSQzs2bAOgogL6+bghpP9yuXXi1dz8MDQlpcL8SHI5Sux0VJhMUhRZGJs2XnZ2FLnpXgg1j14bvn3AcIClik3uAZFmGLiAACv7qxSSEEEIIOR9vhsBtBfACY2wsGs4CpwiCsKDFLSNtRra50ls7VQ2/HdTuIXCKosBqtcBobLiniJDGZGcdxaV61/vIkNAFDaXT4DgOotT0HiBJkWA0uhbutVopRTshhBBCmsabAOg59/9XuP/VpwCgAKgDUeyu9NZiIwFQgKkatyckosJuh9lspgCINFtxdhaMajUUAIb4ODhMZ4dAHAc4JGeTexklWUY3UcK01O4IPnHCxy0mhBBCSGfV7ABIEARaHrezcae3ltVnp8AGAK2pCjfFxuOoqRYWi7ktW0Y6idL8PBzX6hAf3wW8RgM00AfEcRzsYtPXmpIVGWGKgu7hEcitqfFhawkhhBDSmXnTA3QaY6wHgFAAJwVByPFJi0ib86S3lhpYAwgAFPdCqHpeBbOZAiDSPA6HA3tzc7BbFLHt9YxGy3EcB2szAiBJlsDrXWtUUYp2QgghhDSVVwEQY+w2AIsBxNbZVgLgKUEQ3vVR20gb4d3rspxe8LQeSe3arldRAESaLy8vF6IoIjAwEHFxcY2WUyDD0awASD4dAIFStBNCLjAcBxXHcW2/EKpCC6GSjq/ZARBj7AYA6wHsAPA0gBIA8QDuALCGMVYhCMJ/fdpK0qp4T9atRtYBkt09QwYVDxMNgSPNJAhHAADp6T3AuRcubYikyHBKTf+bKikyVAbXe5Y7x+KqhBDS2XAcVDrZGSdZLC0ayeMNldEo2nlNsb8FQRkZS+J37NgWsWXLVweae6yiKHjooXu7i6KTX7HiXaE12kf8izcfnLkANgmCMKHe9jWMsQ8APAWAAqAOQlEUHA0LQ9bBgxB7JzdY5nQAxKtQSj1ApJkyjxzGyv6DIBoCINbUAGENJ9GQIUFsYgY4AJBlCWqDK7U2L8k+aSshhHQEHMfxksWirtizRxYt1jb7Bag2GviISy9Vc0GhvKIofhUAtcSaNSuiDxz4I7hnz16m9m4LaRveBEB9AcxrZN9aAJu8bg1pcxzHYb9Bjy2Fx3HN4KsbLOMZGqfmeVhNtW3ZPNIJlApHEKzRQHY6oQoMbLScrMhNXgMIcPUA6Y2uAEilUABECLnwiBarLJrNbf0LsFMlwzp8+KDhgw/Wx3fr1p3u8F5AvHkTlwOIaGRfJBpK70T8mmdej6axIXB1ssPZKNsWaQZFUeAsKgQAcNHR4PjGf+VIStPXAAJcc4A0Aa51gNQyLdBLCCH+aujQwYM2bFgXNXnyHWzEiMsGTpgwvte2bV+esfr69u1fh9xxxy09R4y4bODNN1/fZ+nSxfF2u/30uOnMzMP6xx9/KG306OEDhg27dODNN1/fZ82aldGNnXPt2pXRw4cPGfj111+ENlbGZrNx8+c/kzJx4l1FXbok2HzyYkmH4E0AtB3A84yxxLobGWNJcPUMbfNFw0jbkB0OGExmRGl10OoMDRfieXwUFIGpB/aj1kHxLWm6oqJCRLvn6AalpjVajuM4SIoEUW76iApZkcAnd8Wdv/2CF4poHSBCCPFna9asSBgxYuSpd95Zd2jw4EurFyx4ttvevXsCAGDnzu3BCxc+lzZmzNjy1as3HHrssenHd+36LnzOnCdTAMBisfDTp09N1+sN8rJlyzPXrHn/0NChV1auWrW864EDf5715WX9+rVR69atSpg7d37O6NHXVTXWptdeW5QQFhbuvPPOyWWt9sKJX/JmCNzTAH4FIDDGdsOVBCEWwGUATgGY7bvmkdbmKC7CHU4RY3r0wk5dw1ngAKAmIBAldhssNrpBQpouM/MwkgyuXhpDYlKj5TgOEGWpWUPgZEWBLtAImyzDZLG0uK2EEEJaz4gRV5dPmnT3SQCYMWN24cGDfwRt2rQx+uKLL81dv35t3MiRo8onTrzrJACkpKTa1Wp1/qxZT6QfP56nNRoD5HHjxpfddtuksuDgYBkAHnlkWtEnn2yKzcrKNPTt28/qOc/GjesjV69+J2HevBeyhw8f2eiwlZ07twf/8MO34WvWvH/4XAl6SOfkzUKoJYyxgQCmAxgGYDBcgU8GgCWCIJT6tomkNcl2V9phuyw33gOEv4bH2SgAIs2QmXkEfd0BkC6ha6PlPD1AzRkCBwAadxpsq9UCRVHOmWWOEEJI+xk4cPAZk4gZ62nev/+3YADIzc015uRkB+zcuf30FAvFPbI5OztLf9VV19TcfvudZVu3fhqek5NlLCws0OXn5xoBQJLk07/4KysrNW+/nZGkUqmUhITERtdVKC8/qV68eFHyI49MOx4XF0/rKFyAvE2fWAHgA0EQZgEAYywOwMVwBUKkA1EcfwVAjc0BAgBmMyOoS1eoamkOEGm6Y0cO4Rq9632l65LQaDmOAxySE4rSvLk8ag54MCkVOp6HzWKBIaDhDHOEEELal1qtPuMXvKIo4HmV4nosczfd9I+ScePGV9Q/LiYm1llWVqq+//5/9gwKChaHDLm8atCgS2r69etvvvXWm/rVLctxPObPfzFr9ep34hcufC5l1ar3MvkG5p5+++2OkOrqKs3rr7+S/PrrryQDgCiKnCzL3MiRf7to4cJXs4YMuZwywnVi3qwDlADXPB8dAM+g/v4AtgDYyxi7XhCEcp+1kLQq2e6a02OXJGh1jQdA3WqrMCSuC7aZaahRZ3LgwB8oLCzApZdejrCwMJ/WrSgKjmdlYU9gIAb36gtVUFCjZTmOg11q/vwytVaNq6Jcc2CttTUUABFCiJ86fPhgwDXXXFvteZ6ZeTgwLS3NAgAJCYnWEyfy9ampaad7bXbv3hX44Yfvxzz11LP5W7d+GmEy1ao3bfrsoEajUdz1uYet/BVXhYaGOIcNG1ETHR3tePDByb3WrFkRc889D5w1Mmn06OsqBw4cfEaA8+abrydUVJRr5s1bmBsXF08Tnjs5b3qAXoUrecKtng2CIHzFGOsP4EMAiwDc65vmkdZWtwdIe44eIEmtcT1w0u+EzkBRFLzyykJs3LgeABAUFIw33ngLAwcO9tk5iouLkFVajDcq1Ni14dzZ8TmOg83Z/OGVslYFWVHAcxysNTVAbJy3zSWEkA5HbTS0aUrqlpzv88+3xCQlpdj69Oln/vjjj6Ly8/MMs2Y9kwcAEyZMLFm0aEFqRsaS+Ouuu6GipKRY+9pri5IjIyMdMTGxYkxMrMNut/Nbt34advHFl5hycrL1b72V0RUAHA7HWW3q2bO3bfz4W0o2bFgXP3z4yKq0tG5nDIcLCgqSg4KCzthmMBgkrVarrhuEkc7LmwBoJID7BUH4te5GQRAOMMaeBbDMJy0jbUKyNW0OkCcA4igLXKfw+edbsOXDjRgZGY2Q4BD873gupk6dgo8+2oL4+C4+OceBA38CANLTe0Cvbzy4dlFgF5v/3pIUCQ5FgZ7jYDfRaAVCyIVBURRZZTSKEZdeqkYbr8ujMhpFUWn+4mujRo05uXnzBzFLly42JCUlWV56aXFW7959rABw/fXjKhVFObZx43txn3zyUazRGCANHnxJ1bRpMws8+zMzj5SsWPF212XLlvCRkVGO0aOvK9+9+8fQI0cOBQA4Wf98U6Y8Wvzjj9+HLVz4XPLKle8KDQ2FIxcubwIgLYDG3vg2AI2PcyF+R7S5hrTZZQkB5+gB8iyGyos0V7CjczgcWJXxOl7u1Rex7sDkxrBwLBIOY/78Z7B8+WqfnOfAgf2I0GrRt0/f85aVIEFsZgIEABAlEU5FgR6AjeanEUIuEIoCyc5rirmg0Db/Vi8qiqwoaPqaBW4pKWnWmTPnFDS2f+zYGyvHjr2xsqF9HMdhxozZhTNmzC6su73u8LapU58omjr1iSLPc51Op2za9NmhprZv4cJX85palnR83gRAuwFMY4x9KQjC6W/DjDENgMcB7Gluhe41hPIa2HWfIAgrGWMDALwBV8a5CgAZgiAsrnM8D9caRPcCCAOwC8BDgiBk1ynT4jo6IyU6Fp+VFCHXYsbIc6TBVjSuxVA5sdm/84if+frrL2CqqYIUnwBVaChUegNQUozZ3Xvg6f2/4aefduHyy4e2+DzZf/6Bt/sNhFhYBNnpAK/RNlpWUpqXAvuv42Q43eO/HRZaxJsQcuFQFEiKotAfZUK84M2dg7kAhgDIZYytYIwtZIy9AyAHwOUAnvKizn5w9R7FA4ir828DYywCwP8AHIUreJkHYAFj7O46xz8D4EEA98G1HpEC4EvGmBYAfFFHZyV3icf6guPYU1sLnlc1Wk5Ru34MvES/azu6LVs+RoXDgby//Q2Js+Yg8dnnYUhnMKhUeDSlO1avWt7iczidDqDIdaNOExR0zuAHABTIcDZjEVQPWZEhwpUB1WGiAIgQQggh5+fNOkD7GGOXwhUwjAUQAaAKwA8AFgiCsN+LdvR1VS0U19/BGHscgB3AFEEQRABHGGPdAcwCsMYdoEwHMFMQhC/cx9wKoAjAzQA+AHC/D+rolCzuBSTPNf8HABT38DiVF19Sif+orKzE77/vAwCMGnsjNFFRAIC4B6bg2JynkAogLP8YDh06gN69zz90rTGCIKCb3vWeCurZ+7zlJUX2agicJMsQeVcA5LRShkJCCPFHu3b9uq+920BIXV6NHRUE4U9BEG4RBCFOEAStIAjRgiD83cvgB3D1AB1uZN8VAL53By4eOwAwxlg0gAFwzTvaUad9VQB+A3ClD+volGzlJxGl1SHwHCmwAaAiuTdmHT6AzUWF5yxH/Nuu7V/jqvBIXNSjF7rUWZdHHRKK6H/cAsFgwE+nKrB+/boWnefAgf3oGRgMADCmp5+zLMdxkGQJohe9i7IiY4tWhbt+34tKH6fxJoQQQkjn5O1CqL7WF0AxY+wHAOkAsuDqTfoaQAKAA/XKeya5Jbr3A8CJBsokuh/7og6vqFT+nXVE2fEN/tXvImyuqgbPc40XDI1ErnuOBc8DHSmbiuca+Pu1aAsVP/2I+5NTUWM0wqiVAUWGxOshSTIir74a6XGxMP+wE9u3f425c59FSEioV+c5+Ps+TDQaAQCBPXtCrT7zGtS9FjzPwSLKkBXp3O/BBiiQwRmNsEoSHE7H6fOQ86PPhf+ga+FfuOb9GiKEdEDtHgC5h5+lAzADeBKACcAdcM2/uQaAEa7ha3V5FgzRu/ejkTLh7se+qMMrwcHnHlrW3jh36mFZrYHB0Pg8DZ4LPP3YYFDBaDQ2WtZf+fu1aAvGslLAYERAv15A8RHIohPGxF5Qh0UAAIYOvRS9e/fGoUOHsHPH17h78uRmn0NRFFQeOgh1XAIQHISY7klnlal/LWprqqHS8dArzZtyp9aqEBDgqUtEWBgthNpc9LnwH3QtCCGkbbR7ACQIgoMxFgpAFATBE4DsY4z1BDADgBVA/fRknvFaZvd+uMtY65XxzIr2RR1eqamxQpKanS6/zYgWG9QARF4Nq7XxdVhU1VW4MTYeJlFEUVE5IiIi2q6RLaRS8QgONvj9tWhthQUnkKZxreeUOKAnqo/nAIoMUVFBm9gXDtl19/nWEVfD5pBQsukTVI6/9VxVNignJxtd3QtzB/bohcrKvz5CDV0LlYqHxWaHxdL8hVCtih3dnBIeSEoBdyz/jHORc6PPhf+ga+FfQkIMHWqUAyGk+do9AAIAQRAa+tZyAMC1cA1Li6+3z/O8EICmzracemX+cD/2RR1ekSQZoui/f9AUx189QLKsNFrOUFOJiQmJyLOYYTKZERLS8eZb+Pu1aG0HduxAoloDu6LAGKKDo9q1bo617ARU4XGAMRqiKOPSHr1R/fMeWCQRB/fuRY+LBjXrPD///DP2VVchqUsCxl0ypMGfed1rwXEcbE77Od9/jRElGbFOCalRMcg+VXlBX19vXeifC39C18I/KM3/VUQI6WBafIuDMaZnjHk9YpYx1o8xZmKM1V94ZDCAQwC+B3AFY6xujuaRcGWNK4MrQKkBMLxOnaEABsKVmQ4+qqNzcrqWclLOk6ZYdvcc6HkVrFbrOcsS/1R96CAAoMqoh9NcdXq77LDDebIAas71xSv6b1egQqWCUaWGsHF9s8+zd+8eZJtNMF9yKQIHXHTe8hwH2MT6o0+bRlZkwP3e9ATzhBByIeA4qHie07T1P45D42tmENJBeNUDxBhjAOYDuAZAMIBLGGP3AjgiCMKyZlZ30P3vbcbYFADlcKWtvgzAxQBKAcwEsIox9gqAS+BacPVBABAEwc4YexPAy4yxk3AtqPoqXL0+n7jPsdoHdXROoisxnmedn8bI7v06nqcAqKMqLQHAQRUdAUV0nrHLUX0SWnsteHUwZBnQDBsG7NiBpJPlsFZWwtDEDGuiKOLnn38CAFxyyZAmN61FAZDW3YHrdJ67MCGEdBIcBxXP8XEOm9jmI3m0erUoQy5WFNC6GKTDavYHhzE2AK4elTIAGwA85N7lALCUMVYjCEKTc+gKgiAzxm4AsAjAJgChcKWfvkYQhAPuc44GkOHeXgzgyXrneNb9WlYCMLjbN1oQBIf7HGUtraOzOr2wqfbcabAVtetLpk7Fw2aj9VY6GkVREGa3Azo9wpNiz9ovWUyQayugigyFLEsYcMtt2PX1V4jXaPHn2lW4dNqMJp3njz9+xyCdDs6gIPRiPZt0jAwZotT8NYAAQJIlcDp38C56VwchhHQ0HMfxDpuoPnKwWLbb2m7cpE6v5nv2iVNr9CpeURS/CoAyMpbE79ixLWLLlq/qZ/1t1H333ZV+5MihoLrb0tN7mFavXi/4voXEn3hz52AxgF8BjHI/fxgABEF4nDFmBPAYgGYtIiIIwkkA95xj/164eoQa2y/BtajprNasozPKDw5GfuYROFjCOct5eoD0vAo1FuoB6miKigqxIPMQWHAIXrtvPICz/146Kkuhj+gKJ1RQazQo756O+Lw8GA4dhGS1QmU4f4aq3d/txD2JKdCrVBCLiqBJTT3vMZIiwellACQrMnidK78JTwEQIeQCY7eJss3qbOuJY50mQ8SJE/mGKVMePX711aMrPdu0Wi3NArsAePMmvgzA6+5FReu/ST6AK6U16SD2BRiw4nguJH3gOcvJ7h4gnuNgM1OmrY7m2LEcVDqdOBUaDHUjtz1EUxVgN59ei+fSO+9GgdUKPYCC/37epPNU7t0DvUoFR0Ag9CkpTTpGhgxRbkEAZHAFQJwXC6kSQgi5MBUXF2lMJpO6X7+LTDExsaLnX1hYOP0xuQB4EwDZ8Ne6OfVF4K/1dUgH4JnPo9WdewicXGeOkN1U26ptIr6Xl3cMAJDSJQ5QGr5ZKNkskM1Vpxdj7JqYhF8MeryTdwxfnyw97zmOHctBd3cvTNjlfwPXxNUEZUWGKHv390ZWFKj0rveuSqbsWYQQ4o+GDh08aMOGdVGTJ9/BRoy4bOCECeN7bdv2ZUjdMtu3fx1yxx239Bwx4rKBN998fZ+lSxfH2+32039IMjMP6x9//KG00aOHDxg27NKBN998fZ81a1ZGN3bOtWtXRg8fPmTg119/EdrQ/szMwwaO49C9ezp9b70AeRMAbQPwPGNnjJlSGGOBcK3bs90nLSOtTpEkcLUmBKrU5w2AwPPYyGvw1JEDMNNQow5HPngA/4jrgj7hoecs56wqgwp/Xd++4/+B7eVl+M9n/4F0nh6WnZ9+gv7Brvqjhg1vUrs4zjUEzts5QABgT+mKB//4De+aaryugxBCSOtas2ZFwogRI0+98866Q4MHX1q9YMGz3fbu3RMAADt3bg9euPC5tDFjxpavXr3h0GOPTT++a9d34XPmPJkCABaLhZ8+fWq6Xm+Qly1bnrlmzfuHhg69snLVquVdDxz486zx2evXr41at25Vwty583NGj76uqqH2ZGdnGYzGAGn+/GeSbrhhVL9bbhnXu37QRTovbwKgmQACAQhwJQpQALzmfp4I4CmftY60KrGqCnfbHfh3/4HQnCcJAgCU6AOQYzbDavcuYxdpP1Hl5fi/Ll2Roj13tj/RUgPOaYWn82bkyGsQGhqK4uIifPvNNoi1DQcZiqJA/OVnqDgOlqhoaGPjmtQujuMgyZLXPUAAoA4w4JTTgWobzU0jhBB/NWLE1eWTJt19snv3dPuMGbML09K6mTdt2hgNAOvXr40bOXJU+cSJd51MSUm1Dxt2Vc20aU/m//zzT2HHj+dpLRYzP27c+LKnn56Xn57ew5aammZ/5JFpRQCQlZV5RgC0ceP6yNWr30mYN++F7KuvHlXdWHtyc48ZnE4n16/fANMrr7x+9Lbb7ij++usvop57bk5S6/4kiD9odhIEQRBOMMb6A3gCwFVwLRwaCOB9AEsEQSj2bRNJa5HdgYxdlqHVnX+Cu6eXyGqlLHAdTbAoAhotwuIizllOtNRCtpmgCgyEKMrQ6/W45Zbb8P3G9Qj88AOUHDiILtOmg6u3Svpv33+Ly/WukbGJf/9Hk9vFcXAHQN73AGn0rvlplJ6dEEL818CBg88YP89YT/P+/b8FA0Bubq4xJyc7YOfO7af/SHkWpM3OztJfddU1NbfffmfZ1q2fhufkZBkLCwt0+fm5RgCQJPl0j01lZaXm7bczklQqlZKQkHjOu7ULFizKM5lMJ0JCQiQA6Nmzt02t1iivvLIwtaystCA6OoaGu3RiXuWPFwShAsAcH7eFtDHPwpE2WYK2CT1APWQRwTFx4GpoqFFHUlVehkh3EovYrjHnLizLEGvLoQr+K1X2rbfejq83vgejLMNy5BAqv/4S4WOuP+Owz/+zGUPtdhhCQ9F90MVNbhvHcRBbOARO7XTizoQkaM7Tu0UIIaT9qNXqMxJnKYoCnlcprscyd9NN/ygZN258Rf3jYmJinWVlper77/9nz6CgYHHIkMurBg26pKZfv/7mW2+9qV/dshzHY/78F7NWr34nfuHC51JWrXovk+cbHuykUqngCX480tOZFQCKi4u0FAB1bt4uhBoCV+9PABoYRicIwrstbBdpA7LDdXPEIcvnnwMEoL+lFiO7JuGHWkqC0JEc378feo6DWZKQGBJw3vJSbTU0kgOeXw+RkVEYct04rN2xHQ8kp6L8k83gAwIQeuVwAEBWloBPv9uB/wJ4f8W7TU5+4MLBITrPSifZHFqew9jYONgoCxwhhPitw4cPBlxzzbWnh6RlZh4OTEtLswBAQkKi9cSJfH1qatrpXpvdu3cFfvjh+zFPPfVs/tatn0aYTLXqTZs+O6jRaBR3fe6hK3/9BQkNDXEOGzaiJjo62vHgg5N7rVmzIuaeex5oMIvP5Ml3sK5dE23PP/9ivmfbgQN/BqjVaiUlJY0SI3Ry3iyEOgauBUsbywSnAKAAqANQ3EPgbJLcpDlAkkoNOO2QbfR7oSOpOCqgC4AqHk0KTkSrCXBawamCobjHIDz44MO44b+fIrG0BGNiYlH27lrU/LgLuqRkvPbdN1AUBcOuHo3ug5ve+wO4hsDZpZbNKfOkwdarVHDY7dC61wUihJDOTqdXt+maPC053+efb4lJSkqx9enTz/zxxx9F5efnGWbNeiYPACZMmFiyaNGC1IyMJfHXXXdDRUlJsfa11xYlR0ZGOtzpqR12u53fuvXTsIsvvsSUk5Otf+utjK4A4HA4zmpTz569bePH31KyYcO6+OHDR1alpXU76w/NiBEjT61cubzrxo3vmS+7bGjNgQP7A1av/nfCjTfeXBocHExpRTs5b3qAXgJwBK45QAVoaEVF0iH8NQdIatIcIFnlersoDkqC0JHYiosAAA5904aISTYzFLsZqqAQiKIrAAoPj8ADDzyM15e8AgsU3BzXBbacbNhysqHkHIVWq8Wjj05rdts4joNNdDT7uDPqMP4VvNtMJgqACCGdnqIoslavFnv2iVOjjRcm1erVoqw0f92BUaPGnNy8+YOYpUsXG5KSkiwvvbQ4q3fvPlYAuP76cZWKohzbuPG9uE8++SjWaAyQBg++pGratJkFnv2ZmUdKVqx4u+uyZUv4yMgox+jR15Xv3v1j6JEjhwIAnKx/vilTHi3+8cfvwxYufC555cp3hfpD4SZNuvskz/P4z382x/z7328lhoaGOseNu7n0gQceLvHuJ0M6Em8CoB4AbhQE4QdfN4a0Lac7mYErCcL5vzR6FkNVnM5WbRfxLbnKtcA1H3j+IBcAoCgQa8qhCulyxuY77vgn9uz5GR/++D12lJXiyoRE1NZUI89ixpNPPo2kpORmt02BDIfYsoBaVScAstZUIzji3IkeCCGko1MUSDLkYo1e1abBDwDIiiwrCpo95jglJc06c+acgsb2jx17Y+XYsTdWNrSP4zjMmDG7cMaM2YV1t9cd3jZ16hNFU6c+UeR5rtPplE2bPjt0rjZNnHjXyYkT7zoreCKdnzcfnHwAwb5uCGl7SnAwtp8sxf7qqiYNgfMEQJyzZXfsSdvaYjbhsQP7ISfFnr+wm2SuAV9vaBrP83jttQxce+11OGm34eOco9hZdQqTHn0Ct9wywau2yWhZCmwAUHjXPDYAsNH8NELIBUJRIMmy4mzrf94EP4T4G2+HwM1jjO0VBCHPx+0hbUiMjcM7+blQqdS4xB3cnIuscQ2h4mgh1A7lRFEhSuw2REWHNfkY0WYG57SBUwWdngcEAHq9HosWLcEDDzyCoqJC9OzZG+Hh4V63TVLkFmWAAwBJliEpCrQA7CZTi+oihBBCSOfnTQA0EUAXADmMsZMA6i8KowiCkNbilpFWZ7O5Ll1T5v8AgKJ2DZPjRbr501E4nQ6UlblGCMSGBTX5OMlmgeywQBUYfHoeUF0pKalISUltcfsUyHC2tAdIkSG6swDZTJSinRBC/M2uXb/ua+82EFKXNwFQgfsf6eAslZUwqlTQNXHSeElCd7z7zRYgJAT3tG7TiI+UZGfjgcRknHQ6ER4c2PQDZRlSbSW4oLjWaxzcPUAtWATVU8cqSy1yc/PwwuR7fdQyQgghhHRWzQ6ABEG4uzUaQtqe9N23WHvRxfiiiQubOkOjcLC2BqFtP+eSeKlMyMSIyGiUi85mrs8DSOYq6BQnnK2UYIjjOEhyyxZBBQBZkWHRanHSYYfVQfPTCCGEEHJuTQqAGGOJAIoFQXC6H5+TIAjHW9wy0uok93o+Mq9qUnm1xpUowUbrAHUYNSeOIwiA2YugVbRZoBftAJqYPa6ZOA4QlZYnQZBlGXqD571p9UXTCCGEENKJNbUHKBfAZQB+AZAHnHfh9qZ9oybtyrOgqcg37W0Q4LDh6sho1IoiZFlG/Zz6xP/YS13LGYi68ye5qE+ymaE4rVDpAyBJvl/ui+M4SJIveoAU9Fdr0TMhESgqOv8BhBBCCLmgNTUAmgwgp87j8wVApANQ3MOF5CZkgAOAIFMV7k9ORWZtDWw2K4zGgNZsHvEBuaoKQDPWAKpDEZ2QrbXgjVGQWiHvBccBoixCUloWXMmKjO7gkBobj+MV5T5qHSGEEEI6qyYFQIIgrKvzeG2rtYa0qeYGQJze9SVap1LBaqUAqCPQ2KwAOOhCmpEAoQ6x9hQ0kck+bZMHx3GwSy2fsyMpMhSVCoB4elgnIYR0dhwHFcdxbT4UQ1EUrxZCJcSfNHUO0J3NqFMRBOE9L9tD2pLTCQBQ1NomFVc0rmxxOp6H1UpzLToCgygBajUCQr0LViWrGTrRAaD5Q+jOh+MAm2g/f8HzkGUZikYNWO2QKQkCIeQCwHFQqTgxzmm3eJPNt0U0OqMoQV3sb0FQRsaS+B07tkVs2fLVgaYek52dpVu69NWuR44cCtLp9PLllw+tfOKJWQVGo9H3476JX2nqB2dtM+pUAFAA1AF4FjSVtU1Lg624e4r0vIomm3cAiqIgyJ35LSQy1Ks6JJsFimgDp9KesSCqr9h9EQApMqBxvTcVe8vrI4QQf8dxHO+0W9Q5h36THXZbm31Z1+r0fFrvgWqVLoRXFMWvAqDmOnWqQjV16oM9UlPTzP/614ojpaWl2ldeWZi8ePFLePbZBZTMq5NragCU0qqtIO2iOMCIssIC2FOattaL7O4pcvUA0VAjf2c2m3HfH/sQptHgg7tGe1WHZLdAcVihCgxpcEHUlpAhw9nCBAiAOwDSunsx3b2ahBByIXDYbbLdamnr3opOkQFp/fp1MWq1Slm8OCNHr9crPXr0shUXFxVt3bolSlGUZi8dQTqWps4Bym9sH2NMD8AuCAIlRuhgfg8KxObcbFzV+/ImlffMFdLxPMw2S2s2jfhAWVkpHLIMi1oFoztNdLMpCiRTVassiCopUosXQQVcARCndQ/REykAIoQQfzN06OBBU6Y8evybb/4XnpubExATE2ubPPn+wlGjxlR7ymzf/nXI2rUr4wsLCwxhYeGOK68ccWrKlEeLdTqdAgCZmYf1y5e/2eXIkcNBNpuVj4iIdNxww/iyu+++t6yhc65duzJ67dqVCU899eyx0aOvq6q/f9++vcFDhvytUq/Xn/7+OmHCxPIJEyZSNp0LgFdRPHP5kDF2CoAJwEWMsbcYY4/6tnmkNVksriBGq2val2NZ47rLruZ5WE3mVmsX8Y2yslIAQFR4WIvqkcxVUKHlgUp9vusBUsDpXO9Nz7BOQggh/mXNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs9Kcrl+/NmrdulUJc+fOz2ko+AGAkpIifUREpHPRogUJ48aN7nvzzdf3efXVFxNsNht1/VwAmh0AMcYGANgLYBCADQA8bxQHgKWMsbt81jrSahRFgWgxgwOg0TYxAFJr8b7dgQVHj8BK2bb8nungAUxJTsWwiMgW1SPZrYAP5urUJytyixdB9ahOjMf0g39gB/3ZIoQQvzRixNXlkybdfbJ793T7jBmzC9PSupk3bdoYDQDr16+NGzlyVPnEiXedTElJtQ8bdlXNtGlP5v/8809hx4/naS0WMz9u3Piyp5+el5+e3sOWmppmf+SRaUUAkJWVeUYAtHHj+sjVq99JmDfvheyrrx5V3VBbAMBqtao+/vjDWIfDwS9YsCjnvvumFHz33c7w55+fm9S6PwniD7zJHrIYwK8ARrmfPwwAgiA8zhgzAngMwLpGjiV+QnE4cK/JinsHD8HHTUyDDZ5HjlqLAzXVsDlosrm/kwsLMCIyGtktzBEk2SyA0wZea4As+26kq6S0fBFUDz44CCdsVkTbKTAnhBB/NHDg4Nq6zxnrad6//7dgAMjNzTXm5GQH7Ny5PcKz35N3Jzs7S3/VVdfU3H77nWVbt34anpOTZSwsLNDl5+caAUCS5NO3viorKzVvv52RpFKplISExHN+UVGr1XJcXBebJ+FB//4XWSRJ4hYtWpB68mRZQVRUNA0p6MS8+Wp0GYAJgiCIjDFVvX0fALi95c0irU2uE8Dw+qanSNa6M8ZRGmz/J1dXuR4Ympblr9F6HDYodgt4fQRkH/XYcBwHSfbNHCAA0OhcQTwl5yCEEP+kVqvPuIOmKAp4XqW4HsvcTTf9o2TcuPEV9Y+LiYl1lpWVqu+//589g4KCxSFDLq8aNOiSmn79+ptvvfWmfnXLchyP+fNfzFq9+p34hQufS1m16r1Mnm94sFNYWLgzKSnpjC8z3bunWwHgxInjWgqAOjdv5gDZABgb2Rfh3k/8nGcRVIcsQ6s/a/hso3qoVBgZGQ2ppqa1mkZ8hHfP8VIHNv36NkY0VaKRvyFe4Ti4AyDfBFR6pwN/j+uCwZSKhRBC/NLhwwfPuNuamXk4MC0tzQIACQmJ1hMn8vWpqWl2z7/S0mJNRsZrCSZTLf/551siTKZa9erV6zMffvix4jFjrq+qrq5y38T/6xd/aGiIc9iwETWzZ8/NO3Ys27hmzYqYxtrTu3ef2qysowF1l3g4ejTTwPM8EhOTaFG5Ts6brzTbADzPGEuos01hjAUCmAFgu09aRlqV7F4vxS5LTZ4DBADDRDseSE4F7+ldIH5L6w5yDSGN3a9oOslqAi/77u8Bx3EQfTgETud04tYuXTGkiQk9CCGEtK3PP98Ss2XLx+HZ2Vm6l19emJCfn2e47bY7SwFgwoSJJb/88nNYRsaS+OzsLN2uXd8HvfLKiylms0kdExMrxsTEOux2O79166dhBQXHtd99tyP4+efnpgKAw+E467tsz569bePH31KyYcO6+Jyc7AaHQUyaNLmktLRUN3/+3MTs7Czdt99+E7xixdtdr7xyREVkZBT1/nRy3gyBmwlgNwABwH64Qu/XADC4AqoJvmocaT2eBSPtkgytruk9BCLPA7IEiYbA+b1A912t4PCQFtcl2SzgJAeAlvcmeThEJ3zVYcMbXYGP1kf1EUJIR6DV6dt0TZ6WnG/UqDEnN2/+IGbp0sWGpKQky0svLc7q3buPFQCuv35cpaIoxzZufC/uk08+ijUaA6TBgy+pmjZtZoFnf2bmkZIVK97uumzZEj4yMsoxevR15bt3/xh65MihAAAn659vypRHi3/88fuwhQufS1658l2h/lC47t3T7a+9liH8619vdL3vvjt7GwxGafjwqyoee2xGobevkXQczQ6ABEE4wRjrD+AJAFcByAEQCOB9AEsEQSj2bRNJa5DdvQM2WYZW1/Q5IhKvAuCERJPN/ZosSQjkXVP0QiNCW1yfa0FUG3id0SeJEDiOg13yXSINzuh6D2to4TpCyAVAURRZozOKab0HqtHGC5NqdEZRUpRmL76akpJmnTlzTkFj+8eOvbFy7NgbKxvax3EcZsyYXThjxuwzgpN77nmg1PN46tQniqZOfaLI81yn0ymbNn126FxtuuiiQZaVK98Vmv4qSGfhVX4oQRAqAMzxcVvAGEsH8BuARwRBWOveNgDAGwAGA6gAkCEIwuI6x/AA5gG4F0AYgF0AHhIEIbtOmRbX0dmI7vkhDllqVg+QpHK9ZTxD6Ih/qiouAs9xkBUF4VGhLa5PcTog281QGSN9kgiB4wCb6LshdWqj6z2s43nIsozGJr0SQkhnoCiQJKiLVbqQNv9lJymKrCjwzQROQtqJtwuhXskYu9z9OIkx9l/G2J+MsWe8bQhjTAPXukIBdbZFAPgfgKNwBS/zACxgjN1d59BnADwI4D64MtQpAL5kjGl9VUdn5NRqsftUBQ7U1DRrDpAnAILD2UotI75Q5XDgjt9+wewcAVqtb97GkqkSvupgURQFDh+uLaQKcAVAPMfBbqZFegkhnZ+iQJJlxdnW/yj4IZ1Bs3uAGGN3wLXOz2sAfgKwHMBQuIKMOYwxhyAIL3vRlucB1Nbbdj8AO4ApgiCIAI4wxroDmAVgjTtAmQ5gpiAIX7jbdyuAIgA3w5WW2xd1dDpSVBReP5YFnufxTFPXAQIgu8sqtA6QX6uoKIdDlsH5IAOch2Q1QyM5ANTPfu9FXZDglHz3N1Qd8NfrtNZUwxAU5LO6CSGEtMyuXb/ua+82EFKXN0PgpgNYKwjCTMZYNIBrAMwWBGExY2w6gAcANCsAYoxd6T5uAIDjdXZdAeB7d+DisQPAU+5zJwMIcm8DAAiCUMUY+w3AlXAFL76ow2sqlX8OxXE4XHN4tDpDs9qoqF29CZwkQa32z9dWn+f1+eu1aA1VVacAAOHBQeB533TbKA4reMUBtbrp60bV57kGCmTIkHzWNl6rhlOWoeF5OC2mDvPebE8X4ufCX9G18C80lZCQzs+bAKgHgGnux2MAcAA+dT/fC+CF5lTGGAsF8B6AR90JFuruTgBwoN4hngluie79AHCigTKJPqzDa8HBvrsD70sFxyVwAHR6AwyGpg+RKk1Mw+afdyAoJQVhYd5/EW4P/notWoMqJwtTklOhBIdA34zrey4cL0ILEQE+uO4qLQ9ezfmsbWqtCq8U5KGq1oR14UEd7r3Zni6kz4W/o2tBCCFtw5sAqAquHhMAuA5AviAIWe7naQDKm1nf2wB2C4LwfgP7jHANX6vLk35Mj78WZG2oTLgP6/BaTY0VktTsZCmt7tTWr/Dh4CHYWVsLq7Xpk9GrAyPwS1UlupuiUFnZMeZaqFQ8goMNfnstWoN0/ARGREbjqJqHrRnX99wcUNdWw6YNgyh693P0XAurzQ6z1QqbzTdts/F2FAE4abXg5KlaRHaQ92Z7uhA/F/6KroV/CQkxUCIVQjo5bwKgbwA8xxjrA9ccmcUAwBj7O4AFAL5uakWMsUlwDVHr20gRK4D6OZo9M/bN7v1wl7HWK+P5BuSLOrwmSbLXXxZbk8NqhRqAwqualdaYV7nu2FssFr98Xefir9eiNcgm11uX1+t8krbaw1lbCVVYUot/jqIswiGKPmubJMnQ610fa5PJfMFcZ1+4kD4X/o6uhX9QfPcrkxDip7y5xfEYXL08z8KV+OBF9/bX4Zq/81Qz6poMIAbACcaYiTFmcm9fzhg7BNewtPh6x3ieF+KvYWsNlfHkmvdFHZ2OZHV1gkmq5k1oDxCduDwsAkmgQdL+TGVzXV9NQNMz/DWFZDWD98H6PaIsQZR8t9C2pMgYEhSCm+O6wF5S4rN6CSGEENL5eLMQagWA0Q3sGioIwvEGtp/LHTh7afksuIKrDwHcBuBBxphKEARPyqiRrmYIZYyxagA1AIbDtSCrZ07RQABvust/74M6Oh3ZvZCpxDfvLRBeU4HH07rjT1P9hH3En+hEEeB56IN8O6dAslvASU54uYTYX/XIEkTZdwGQoii4VKdHYpeuqCgtPf8BhBBCCLlgef0thjEWA0ALnO4K4BljvQFcIQjC8qbUIQhCYf1t7iQIZYIg5DPGVgOYCWAVY+wVAJcAeByuNXsgCIKdMfYmgJcZYycB5AF4Fa5enU/cVfqijk5HcbjmXsiq5r0FOK3rC7VGUaAoCjhKl+OXjO4xHIFhvk0HLdmsUJw2qPRGSJL340ScshOyD8eZSIoMyT1mX7RZfFYvIYT4K46DiuO4Np+spNBCqKQT8GYdoP4ANgJgjRRR4FobqMXcPTSjAWQA+A1AMYAnBUFYV6fYs3C9jpVw9SZ9D2C0IAgOX9XRGXkCIEndvCxcnN6VM0LHq+BwOKDT1Z9eRdqbLEkIcAcDIRFhPq1bER2Q7WbwxkhILVjHxyb69qMlKzJkFQ9ICkSr7fwHEEJIB8ZxUOlVqjg4pJZ1x3tDqxJtklTsb0FQRsaS+B07tkVs2fJV/cy/Dbrppmv7lpeXN/gl6NVX3xAuu+xvpob2kc7Bmw/OqwDCAMwAMBau7Gmfw5URbgxcQ8m8JggCV+/5XgCXnaO8BNeiprPOUabFdXQ6TicAQGnGIqgAwBlcAZBexcNms1IA5IdqSkvAcxxkRUF4pG8DIACQTJVQhSe1qA676NuFdGVZhqxWA5ITko0CIEJI58ZxHA+HpK7NKpdle9ulDuR1Kj6oe6SaU3O8oih+FQA118qV7x2peyNPkiTuyScf72Y0GuSLL76Ugp9OzpsA6FIATwiCsMqdtGCSIAhvA3ibMbYZwFQAu3zZSOJ7FXod8goLYOsS1azjPEPgdDwPq9WKkJDQVmgdaYlqpwMT9+1BbFAgNutv8nn9ktUMjewA0LwEGh6yLMPm6wBIkaGoVYDdCdnh27oJIcRfyXZJluxtnjqwU+QIj4yMOmMi6vLlb8aWlZXq1q//6KBa3fYda6RtefMm1gE46n6cCaBfnX1rcI6eFuI/fg8KxEtZmSg3hjTrONndY6TjVbDZrOcpTdpDRUUFnIoCGFtnUUXJbgXXgiFsouLbDHCAJwBy/cFS7BQAEUKIPxk6dPCgDRvWRU2efAcbMeKygRMmjO+1bduXZ3wB2b7965A77ril54gRlw28+ebr+yxdujjebrefHhWUmXlY//jjD6WNHj18wLBhlw68+ebr+6xZszK6sXOuXbsyevjwIQO//vqL0PO1r7i4SLNp08a4O++cXBgTE+vbP1DEL3kTAB0HkOp+nAUgmDGW7H5uhw8WDyWtz2p1BS9aXfPSJMvuOUN6noeNhhr5pYoK11rE4SG+TYDgIdtdiRB43rsEGKIswunDDHAAICsKFK17OKez007dI4SQDmvNmhUJI0aMPPXOO+sODR58afWCBc9227t3TwAA7Ny5PXjhwufSxowZW7569YZDjz02/fiuXd+Fz5nzZAoAWCwWfvr0qel6vUFetmx55po17x8aOvTKylWrlnc9cODPs+72rV+/NmrdulUJc+fOzxk9+rqq87Vt1ap/xwYHhzhvv33SSZ+/cOKXvAmAPoYrY9o/BEEogasXaCFjrC+A6XCnkib+zWJ2LZSp1TYvAJL0RqyvrERGbjasFsq25Y+kw4cxJTkVFwc1r3evqWSnHYrdApXKu1EQrhTYvh06LisySmKj8EzmIRwKCPBp3YQQQlpuxIiryydNuvtk9+7p9hkzZhempXUzb9q0MRoA1q9fGzdy5KjyiRPvOpmSkmofNuyqmmnTnsz/+eefwo4fz9NaLGZ+3LjxZU8/PS8/Pb2HLTU1zf7II9OKACArK/OMAGjjxvWRq1e/kzBv3gvZV189qvp87aqsrFTt3Lk98pZbJpSomrk2Ium4vBnk+DyAbnAtYroZwDQA/wEwAYDk/p/4ucm1ZvzzoouxrZlprBWVGvslGccrT+FO6gHyS6rSEoyIjEamtvVSlIvmKqjCu3p1rOTjRVBP1xscCMFUi+4ijV4ghBB/M3Dg4DMWEGSsp3n//t+CASA3N9eYk5MdsHPn9gjPfs9KCdnZWfqrrrqm5vbb7yzbuvXT8JycLGNhYYEuPz/XCACSJJ/+Y1dZWal5++2MJJVKpSQkJDZpPPS2bV+EKQowbtzNp1r+KklH4c1CqDYAtzDGNO7nXzPG+gAYBOA3QRCoB8jPKbIMLQCoVOCbOQQO+GvYHM0B8k+KxdW7xxual+K8OSSrCWpZRHM7kTkOEH28CKqHRud6vfS+JIQQ/6NWq89Y/E1RFPC8SnE9lrmbbvpHybhx4yvqHxcTE+ssKytV33//P3sGBQWLQ4ZcXjVo0CU1/fr1N996601156GD43jMn/9i1urV78QvXPhcyqpV72Xy/Ln/Tv344w+hgwYNrg4MDGzrZBKkHbUkzYWRMXYZXCmxywB8KQgCpQ3sABR3CmwA4A2BzT6+h16PqLBw2KtrfNks4iO8zXXTS21ovRTlst0CXnIAaF4AzXGcKwBqwRpCjQkURYyJjkWcyezzugkhhLTM4cMHA6655trTQ9IyMw8HpqWlWQAgISHReuJEvj41Ne10r83u3bsCP/zw/Zinnno2f+vWTyNMplr1pk2fHdRoNIq7PvfQt7/iqtDQEOewYSNqoqOjHQ8+OLnXmjUrYu6554HSc7VLEDID77prcoFPXyzxe94shMrDNQzuMQABADxdj2bG2EJBEBb5sH2kFch1smSpDM2fL3GTRoXgtHRknTrrRg3xAxr3EDCtsfUCIMmTCEFrgCwr5z+gjtZIggAAwTYH7k5MRqGThsARQi4MvM7LyZjtcL7PP98Sk5SUYuvTp5/5448/isrPzzPMmvVMHgBMmDCxZNGiBakZGUvir7vuhoqSkmLta68tSo6MjHTExMSKMTGxDrvdzm/d+mnYxRdfYsrJyda/9VZGVwBwOBxntalnz9628eNvKdmwYV388OEjq9LSujU4HK6g4LjWbDapundnNHTgAuNND9CzAGYDWAbgE7h6f2IB3AbgBcaYSRCEN33XROJrinudFLskQatvfqpkERwABaKVfl/4I50sAbwK+iBjq51DdtihOKzg9eHNCoA4joNTEiErvh9pwLl7vNStUDchhPgTRVFkaFViUPdINdp6XR6tSlSk5i++OmrUmJObN38Qs3TpYkNSUpLlpZcWZ/Xu3ccKANdfP65SUZRjGze+F/fJJx/FGo0B0uDBl1RNmzazwLM/M/NIyYoVb3ddtmwJHxkZ5Rg9+rry3bt/DD1y5FAAgLOyt02Z8mjxjz9+H7Zw4XPJK1e+KzQ0FK6srEwNAKGhYXTn7ALjTQA0GcALgiA8X2fbUQDfM8Zq4EqKQAGQH5PtrjTBdlmGVutFAMTzgCxBtFIWOH9kcHfKBrZSGmwP0VQJVWhCs47hOMDu40VQT9O75gCpm9chRQghHY6iQLJJUjGn5tp8UVJFkmRFQbPHMaekpFlnzpzT6FCzsWNvrBw79sbKhvZxHIcZM2YXzpgxu7Du9rrD26ZOfaJo6tQnijzPdTqdsmnTZ4fO1aaBAwdbdu36dV/TXwXpLLwJgCIB/NTIvq8APOp9c0hbkNyTxO2yDI0XSRBEXgXIEiTKAud3JIcDBvddruCw4FY9l2w1QSOL+GsU7PlxHAdrKwVAKveQP1q/mxByIVAUSIqi+H5CJSEXAG/uHHyDxlNdXwPgR++bQ9qCU1Gwv7oKmaaaZi+ECgCSO08+BUD+x+Z04I7ffsGUP35DSCsHQJLdCkjNC2YUKLC1UgDEu4fAtWL2b0IIIYR0Ak26WcoYu7PO090AnmOMxQL4CEAJXJngrgXwdwBP+LqRxLfEsDC8mJUJjuPwrKb5E+Ul3vW28cwlIv6jqqoKDlmGSa3AoGu9NNgAINksgNPerEQIstI6KbABQBXgmvOk5XgoigKumWtcEUIIaR00zIz4m6aOFlnbwLYx7n/1LQewwtsGkdZnsbjm7mh1eq++JMpqDQBAcTh82i7ScpWVruHToUGBrR4AyA47FKcVvD6syQGQpMgQ5dYZscEHuOazqTgOstMJlbZ1A0BCCCGEdExNDYBSWrUVpE3VDYC8kR8eg6//3Ivw3n182SziAxYhE1OSU1Gj17TB2RRIpipwwV2afITUij1A6gA9XjyaCbssYY0oUgBECCGEkAY1NQAqEgTBef5iZ2KMabw5jrQu5y8/Y+2AwfjNyzk8laHR2FlxEkOoB8jvOAoLMCIyGoLUNtdGstZCqzQ9EUJr9gCpDTrsr6kCANidDujRemnACSGEENJxNTUJwgHG2I3NqZgx9g8AB5vfJNLanGYzjGo1NO5kBs2lcc8bsttpHSB/46xxLbItqb27ts0l2azg5KYFWxzHQVIkSK3UA8TxHDQaV8+XldaoIoQQQkgjmtoDdCeAtYyxhQDWA9gsCEJ2/UKMsV4ArgNwHwAVgEm+aijxHU/2Nonz7ktyoCxjQHAowuzUA+RvZJPJ9UDbNsmgJbs7EYJGf955QBwHiLLYaj1AsiLjiqhoaJwirOUngdi4VjkPIYQQQjq2Jn1LEgThF8bYRQAehmuh04WMsSoAeQDMAEIBJAAIgWs13lcAvCUIAuVJ9kOedYBEL3uAYmsq8HR6Dxyw0+X1O+7FaXldW8wBAmSHDYrTBl4X2oQAiIMktd4cIFlRcHNULKI1GthLSoA+/VrlPIQQQgjp2Jp8m1gQBDuAJYyxZQCuAjACQCpcQc8JAFsBbAPwgyAItDCXH5PtrvTVMu9dL4GidSVPUMuyz9pEfEPl7pVTG5qf3twrigLZXAU++Py9LRwHOGQnZKVpGeOaS5ZleCYcOszmVjkHIYQQQjq+Zi+EKgiCUxCErwVBmC0Iwv8JgjBaEISJgiA8LQjCtxT8+D9PACSpWxgA+axFxFc0oqt3RRtoaLNziuYacE1YjJzjONhbaRFUwDUETnTnYqAAiBBCOg+z2cy/996aKM/zOXOeTL7vvjtZa56zoOC49rPP/hPWkjo2bfogYujQwYMa298Wr2Po0MGDNm36IKI1z9FWjh/P0w4dOnjQTz/9ENTSupodAJFOwOnqJZBV3g2T4vSu7FptM8iKNIfO3StnCA5os3PKdiv4JmSd4zgOtlYOgCTe9StNdA8FJIQQ0vGtXv1OzMcffxjreT5z5twTr7yy9Ky56L70/PPPJO/Z81NIa56DtB+6iX8BqlGpUWmqhSUq3KvjeXcApHXP6VB5OZeI+N6zBfmwV1ZiyeiBbXZOyW6FItrBqXRQzjG8TYEMm7M1AyClTgBEWeAIIaSzUBTljLUWQkJC2mC0kdK6q4mTdkUB0AVof0gwPsw8hGEp/dHdi+N5vat3Qc+rYLNZERAQ6NsGEq8oioKyU6cgik6EBre4d7jJJLsVisMGVWAIRLHxAEhSJDhbKQEC4O4BUvGApECiBB2EkE5MUQCL2D6jeIxqyFwzQ4Pq6mrVkiUvJ/zyy+5QURS5lJQ0y0MPTS0YMGCgBQAsFgu/aNH8rr/+ujfUYrGounTpYrvjjn8WjRkztiojY0n8Rx+9Hwe4hnO9//7mA//+97/iy8pKdStWvCv89NMPQbNnT09/6aXFR99447XEsrIyXXJysmXu3Pm527Z9GbZ165YYSZK4K64YXjFnznMnOI6DoihYuXJ5zLZtX0aePFmm02g0co8evUwzZjx1PCkp2XHffXeyI0cOBx45cjjwppuuDdqy5asDDoeDy8h4Lf7bb3dEWK0WVUJConXy5PuKhg27qsbzOr/88r+h69atjC8tLdGnpXU3DxgwsKaxn4mHJMlYuPC5rt9++02EWq1Wrrnm2vKpU6cXqt3TFH755eeA1avfic/JyQpwOp18TEys/fbb7yy+8cabT3nq+PTTT8I//HBDbHFxkT40NMw5duyNZffc80Bp/XOdPFmmfvjh+1hoaJhz6dK3so1Go/zddzuCV6x4u0thYYEhOjrG/ve//19JRsaS5Pff33wgMTHZcdNN1/a99NLLq37/fV9wdXW15tln5+cMGfK32nXrVkV/8cXn0eXl5drIyEjH3/9+a8ltt91RDgA//fRD0MyZ09I9dQCu4Wu33/6Pvq+88vrRyy+/onbOnCeTZVnmwsLCnTt3fhNht9v4fv0G1Dz11LP5MTGxIgAcOXJI//rrryZmZ2cFhIWFOW+99fbi5r3zGkcB0AXIYnHNj9C65/I0l2cInJ7nYbVSAOQvLBYzRNGVBiA0sA0XAVVkyJYa8MGx5ywmQ4YotW4ApKhVgCRC9nKRX0II8XeKAtzxlbGHUKlqu7HOdfQIk0zvXWsRmhoEKYqCxx9/qLtarZZfeOGV7ODgYOnzz7dEPP74Qz2WLfv3kb59+1uXLVsSn5eXa1y06LWskJBQ8eOPP4xatGhBau/efQ5Onnx/idVq5X/88bvwFSvePRwZGXXWHxJZlvHWWxldZ82a8//t3XeYXGXZ+PHvOdNntrdssunthISEkFAEqQICggo21NdXxA76Kj9RsIKKWFCkiCiogKKgINKkKr0T0utJr7vZzdbZ6XPK748zGzbJJtkybXfvz3XttbszZ55z754p5z7P89zPVq/Xb1199benfeUrXzji6KMXdt188+/0RYveLLnttlsmvetdJ4bPPPPsrrvu+kPdAw/cN/Zb3/rullmzjojv2LHdd8MNv5h0443XT7jppts2XX/9TRu/8Y2vzqipqU1dddX3twP84AdXTd6+fXvgO9/5wZb6+nGpF154tuLqq78z/Qc/uHbTmWe+t2vRojdDP/3pD6d99KOfaHrf+97f9vbbb5XefvutEw/3/1m/fl1JdXV1+je/uX3dzp07fL/+9fWTE4mE+t3vXrOjsXGX59vf/sbMs88+b8+VV35vu2Gklb/85a76G2/85eQTTnh3uK5ujPH4449W/upXP5vyqU99ZteZZ57dsWbNquCNN14/ORQqMT/+8f9p7dlPW1ur+6tf/aJWXV2T+vWvb90YCATslStXBK6++jvTzz//gy3XXHPd5nXrVgdvvfWmSfvH+PTTT9b++Mc/21BWVmYeccSc+C9+cd2EF198tvrSS7+2fe7co6KvvfZy2e233zoxlUqqF1/8uZb+PTPg9ddfrTzppFPbb775Nr2xcZf3Zz+7duqtt97UcO21P9/W1dXluuKK/9NmzpwVue22P6xtbm723njjLw6IbbD6lQBpmna2rutPZ2unorB6Fon0+gY3Ud4MlPLXpl10JxJcISeaRaN9wwYumzyNlnQKv8+b132b0U489qGrAlpYOSuBDc4H4IayEh557Q3OOPronO1HCCEKTYHclNPMgVdeeal0wwY99PDDTy7vSV6+8Y2rdq1Zs7rk73//65i5c4/a2tTU6AsEguakSVOS5eXl5te//s1dRx+9sLu8vNIsKSmxAoGApaqq3dMz0JdLLvnCroULj4sCnHjiSZ3//vcjdVdffe22YDBozZihJf761z83bNq0IXDmmWd3TZgwMfnNb35ny1lnndMFMGHCpNSbb77e8dJLL1QCVFZWmW632/Z6vVZNTa2xefMm36uvvlx16613rO3ptZo2bXrzpk0bA//4x1/rzzzzvV0PPHBf3cyZWuRrX/tGI8D06TOSmzdvCjzxxKN1h/r/lJdXpK+99hdb/H6/PWvW7MSePXt23X77rRMvv/xbu1KplPLxj3+q8fOf/3KzmhnifcklX2h64YVnqzdv3uSvqxsT+ec//z7mhBPe3f6lL31ldyauZCwWdfn9gb0fyuFwl/urX/3SzJqa2uQNN/xmk9/vtwHuu++eMVOmTI1961vf3QkwY8bMZHt7u+cPf/jdhN4xHn30gq5TTjmt22krrD799OO1n/vcl3ZccMGH2zP73NPYuMv3j3/cO/bTn/5svxOgQCBgXnPNT7Z5PB575sxZiddff7Vt8eJF5QCPP/5IZSqVUn/0o59tLS8vN2fNmp2Ix2M7fvKTa6b1t/1D6W8P0JOapu0A7gTu0nV9ezZ2Lgrjw11hPjzvaN44zAnrwVheHy9GI3R1dnCZTDYvGuHt2zitppZtyfzPfzGTcXxmEug78epZBDVtGjkrvWLaFtGyEpZ0dXLQkjtCCDHMKQrcc05MHy5D4NatWxMEuOiiC+b2vt0wDCWdTikAn/rUZ3Z///tXTv/gB88+asaMmdEFC47tOvfc89sHMtdnypRpe6/I+nx+q7y8Ih0MBvee6Hi9HiuZTKkAZ511TtfixYtCt9xyw7hdu3b6du7cEdi5c4e/srIy3Vfba9asCgJcccX/7VOxzTRNJRgMmgDbtm0NHn30wq7e98+dOy9yuARo2rTpsZ6EBGDevPlRwzCUTZs2+ubOnRf/8Ic/1vaXv9xZt23bFv+uXbv8W7duDgJYlqkAbN++LXDKKe9p793mRRe90/MDcM89dzeYpqHsv6/NmzcG9x+mt2DBsd3wu31ibGgYv/d/u3Hjer9pmsrRRx8T6b3N/PkLIo899vCYPXta+j26bMyY+qTH49kbTyhUYhqGU8918+ZNwTFjxiZ6PwcWLjw20lc7g9HfID8EfBr4DvADTdOeBf4APKLrep9PFlG8QpaN3+vD5R38WjFO71EHCekBKhrx9jY8QHKgg7OzwCmEkDpoIQRFUTAtM6cJEIDP7yRgiYQUQRBCjFyKAiEPw2IxPsuylEAgYN5++91r97/P6/VaAMccc1z0oYeeXPHyyy+ULVr0ZtkzzzxZ8/e//3XcT35y/YaTTz61uz/78Xjc+3z4qOrBPwvvuOO2Mffdd0/D6aef2Tp//oLuj33sEy0vvPBcxcsvv9BndSg7c8H4pptuWxcKlezzf3e5XPY72+1bOMHt9hy2p05V1X22sSznfN/n89obNuj+r371i7MmT54aW7jw2K6TTjqtq6qqKv1///elI3rv/3Af+3Pnzgu/730faL3uumumPf/8f9tPP/3McOaxWNbhiz14vb4D/kZlv51amSq0vROa3qcD6bRxwH56b/uO3jcN/P/ZX/06FdF1/WFd1z8EjAMuByqA+4FdmqbdoGnaEYd4uCgyPeWr1cDg54nMCJVwVFk58fBh5/eJPEl2dACQdhUiAYpBOnHQDxxFUTBsM6dD4AAqbIVTq2soy/wvhBBCFNa0aTPi8XjclUollalTpyV7vu6++4/1zz33nwqAW265Ydxbb71R+t73ntv1ve/9cMc///nYqrq6Mcnnn/9vJYCiKFkd8nf//feO+/jHP9V49dXXbv/EJ/63deHC46K7du3073v97p19zpihxQGam5u9vf+GRx55sOahh/5ZAzB16rTY2rWr95kUvXbtqsPO09q6dXPQ6rWw/JIlb5d6vV5r0qQpyfvvv6+2rKw8ffvtd63/4hcvaz7jjLO6Wlv3eIC9FxsbGiYkdH3tPvv52c9+POHyyy/bO1TslFNO7zj33PM6TzzxpPYbb7x+cjgcVgEmT54S2/+xK1cuO2TM06fPTLhcLnvJkkX7/K3Lli0pLS+vSFdUVJoej5PYhsPhvWWCt23bMqCr7jNmzIw1NTX62tpa93bWrFixNGvz3gZ0LVbX9XZd12/Vdf14YA7OkLiPAqs0TXtN07TPaZpWkEl5on9sw8CVydp7qrkNxhcrKvjezCNIt7UefmORF0a3k4xa7gKUJbcszFj4EAmQMwTOsHJbuXRMIslXpkxnakdnTvcjhBCif04//YyuSZMmx6+55rvTXnnlpdLNmzf5rr/+uvHPP//fmp5ha7t27fLddNMvJ77yykulO3Zs8z7++KOVra17fHPnzosABAIBKxqNujZu3OBLp9NDvspXXV2TWrJkUZmur/Vv2LDed+ONvxz31ltvVKTT6b3nxYFAwGppafbt2rXTM2vW7MSCBcd03XLLryY988yT5Vu3bvH+8Y+/H/Ovfz1Q39DQkAT45Ccv3r1t29bAL35x3fiNGzf4Hnron1VPPvnv2oNH4Whra/P+4AdXTV63bo3/iSceq7j33r+Mu+CCjzT7fD67rm5Mqr29zfvcc/8p27Fjm/fJJ/9dccstv54EkEo5wwc/+cn/bXrttVcq7777j3Vbtmz2PfroQ5XPPPNk7Uknndq5/76uvPJ7O1KplPKrX/10AjhDD7ds2RT61a9+3rBx4wbfU089XnHPPXc3wIE9PD3Ky8vNM888u/Vvf/tzw8MPP1i1efMm3z333FX79NNP1F544UeaFUVh1qzZcb/fb9111x/Gbt68yff666+W/OlPt48/WJt9Of/8C9rLysqN733vyimrVq0MvP76KyW//e3NEw7/yP4ZdBU4XdfXAt/WNO07wHuAjwHXAb8G+r1wlKZpdcANwDlAAHgR+Jau62sy988HbgaOAdqAW3Rd/1Wvx6vANcDngUrgFeAyXdc39tpmyG2MFFbynXVY1MDgE6A0zpM4FY0OOSaRHVY0MzTWW5glas1oJx6l7xEZziKoh18sdch8zt+u5LDanBBCiP5zuVzccsvv19944/Xjr7vumqnJZFIdN64h8f3v/2hTz/C2733vh9tuuOHnE37+8x9PiUQi7pqa2tTFF39u54UXfrQd4L3vPafj6aefqPn85z8954YbbtGHGtP3vvfDLb/+9S8mXnrp547w+/3WjBla5LLLvrbtd7/7zaTt27d6J06cnPrABz6051e/+unkz372f+Y88cRzy37+819vvvnmXzXccssNkyKRqLuuri75la9cvu2jH/1EG8DcufPiP/nJ9Rtuv/3W8U8++e+68ePHxz/60U80/eUvd44/VCzHHHNcp8vlsr/ylS8c4fP5rHPOOb/lK1/5eiPApz/92Zbt27f5f/GL66aapqGMGTM28ZnPfH7XPffcNW7VqpWh008/M3zWWed0dXZ2brv//nvr7777j+Orq2tSX/jCpds/8pGL2vbfV01NrfGFL1y288Ybr5/8nvc823HaaWeEf/CDH2/84x9/P/7f/354zNix4xLve9/7W/7xj7+N83i8B+11+853rt5+2203G3feeUdDONzlGTOmPvmlL311e08Z7NLSUuuqq76/+Y9//P34z372f+aMHTsucemlX9vx/e9fObO/xygUClm33PI7/frrfzrx61//8qxQqMT49Kc/23jTTb+c3N82DkU51MKF/aFpmht4H/AR4HzApev6QBKgNwAL+BoQBa4FTgSm4yRE64CHcRKrdwG34SQnd2Uefw1wGXAJsAu4HpgKzNF1PaVpWvVQ2xjEvwVgMzCloyOKYRTPMN10eztbrvwGhmXx+vlfpLp23KDaqbv7x9QosPWEE3jv576U5Sizy+1WqawMUWzHItte+NpljIvFWF3u5X2fODfv+/dW1hGYeRwJ88AEzOt1oXduZF3LRvwBL4l4CsvKfhGj9BOLmb1Mp1FROO0Pd2W9/ZFktLwuhgM5FsWlqiqEy6VuwTkPKKjFixfPUlXXU3V1DRGv1y+TbkVWLV26OOh2u+25c4/aO3H24YcfrLrppl9N/u9/X17SsxbRcJJKJfwtLbtKLMs8Z+HChesOtt2g/zJN004CPoWT+FQCrwL/D3hgAG1UA1uAn+i6vjpz27XAMpwhdmcCSeBSXdcNYK2maTOAq4C7NE3zAlcAV+q6/kTm8RcBjTiFG/4OfDELbYwYVmaByKRlDXodIABDUQAbIy6TzYuFK+X07nmCgz+uQ2EmYihGEkX10Nd1lbiRh8/uTPlvtyUnkUIIIcShrFu3NnjnnXeM/9a3vrNl9uw58a1bt/ruueeuce9+90ntwzH5GYgB/XWaps0G/gf4JDAR2I1TDe5OXdc3DHTnuq63AZ/o1f4Y4JvATmAN8CPgpUzi0uM54DuZoXOTgdLMbT1tdmqatgQ4BSd5OTkLbYwYqXSaDZEIScvE6xtCAqSqYJmSABWRew0DfflS/t+8DxZk/2Yyjp1OoAbKMM19ExDTNjGM3A9LUwJOAuQaYs+2EEIIMdJ9/OP/09rW1ur53e9+M7Gjo91TVlZmnHzyae1f/er/21Xo2HKtvwuhXoGT+BwFmMDjOEPWntB1PSuzmjVNuwP4Ak5vzQd0XY9qmjYeWLnfpo2Z7xOBnnGVO/rYpmf13Wy0MWguV0HK9B+UXVHO99atAuCHfv8hy0QeiqG6wDKxkwnc7uL6G/fXcwyK7VhkW1u4k/Z0isrKskEf16GxsBIRPGVj2X+eo62aGLaBkolLUZWcVMN2BZwiMx7son9eFtpoeV0MB3IsiksBVhIQoiAUReGrX7286atfvbyp0LHkW397gH6JM4/m28CfdV3v9yqvA3ATcDtwKfBwZohdECch6q1nHI0/cz8H2aanlns22hi0srLAUJvIqkjEWSvL6/URCg0+NtPtBiOFahlUVg6Pwn/FdiyyraurE4Da6nL8gb4XJM01V7KbUNCN4tq3dzGcjKC6FXyZIgU937MtVeY8Fz0ow+Z5WWgj/XUxnMixEEKI/OhvAnSSruuv5TKQXlXfvgicAHwViAP71w3vObOKZu4ns018v216ypNlo41BC4fjBwwHKqSmJqdstdfnJx4ffFWuHaEKXt6whobxDXR0FHclOJdLpawsUHTHIpuM7m4+GiqjY7yPoMcpMlAIVnc3Snc3KXvfBCypJIjG4yRTaXw+D8lkGjsHRRDs0hA3bdqAJxRiYZE/LwttNLwuhgs5FsWlvDyAqhZNb5wF2PsvsCmE6FvmtWLDoRcK7lcCtH/yo2naOJyS0hUH2f4v/Wk3MwfnDOD+nqF0uq5bmqatARpwhqXtX6as5/ddvLOm5zhg037bLM/8nI02Bs00raKq6hNbsoTb5h7NutTQqnA1llbzePNuPmCZRfX3HUqxHYts6ty5i1Oqqgmn05QFAzmpsNYf6UQUfyqBqbr3FkJQFIW0YpBKv5P02JadkxhdQT+vdbQRTMZH7LHOtpH8uhhu5FgUhyKbQrjbtu10KpUI+nwBmXQrxGGkUomgbdtp4JDD+gZc4iFTIe1uDuxV6WED/UqAcJKMe4FmMkUINE3zAAuARzO3f1nTNFevuUZnALqu6y2apnUBYeA0MsmLpmkVmcffmtn+pSy0MWKkw2FqfD5Khnjy6fE6hz+RkKqcxSDcvBuAbtPA7yvM8DcAK3FgIQRVBcM0SFu5L4Lgyfzt8Xgc27YPupCbEEIMBwsXLgwvXrz4L+Fwx6VAtdfrjymKUlwpmhBFwLZtJZVKBMPhDq9tW39auHBh96G2H0yNu58Ai4DLcRYVHYrlwNPAbZqmfQHoAL6HU1b7Rpx5OFcCf9I07XrguMx+vwyg63pS07RbgV9omrYH2IozX2kH8K/MPu7MQhsjRjoWA8AcYvd+SFGYESrBLwuhFoXulhY8QILCfi7alokZ60YNjcHMXG5QFAXDMkibRs6LM7i9bo6pqCSgukiEwwTK+70kmRBCFKufmqZBZ2fbpxVFCQJyZUeIA9m2badt2/oT8NPDbTyYBGgc8DVd15cM4rH70HXdzvQo/Qz4B86QupeBk3Vd3w6gadrZwC3AEpzurG/puv7nXs1cjfN3/BFn4dSXgLN7FjDN9PIMqY2RxIg7CZChuobUzpTuDj54xJGsSY64f9GwlOhoxwMki6DHw4x24ql7ZxiPoigkjPw8T9weN1+dPI2g201sT4skQEKIYW/hwoUW8JPFixffbNuMhZwU0RRiuLOApsP1/PQYTAL0OqABTw7isQfQdb0LuCzz1df9i3CKIhzs8SbOoqZXHWKbIbcxUpiZIWuma2gLXNkeZ6iRamalCroYolRnBwBGEZTRNRMxvGaKnul1ipKnRVABxaWStC2n9GN3v94DhRBiWMic2MkbmxBZMJiz4MuAxzRNKwfeBGL7b6Dr+ktDDUzkhpV0qn1bQ02AvE4hPZclE3aLgZE52Tc9Q+vZywYzEUMxkiiqFzszmzhh7F9lPjcs28bo2Wd3OC/7FEIIIcTwMpiz4JlAPXBN5vfekw56Ss8V/ixM9MlOOUORLPcQ12HJJEDuIiuXM1pZmblYSo7W1xkIMxnHTiVQg2WYpo1pm6SMdH72bVv07CkVjeRln0IIIYQYXgaTAP0K2IIzb2d3dsMRuRZVYGc8RiJYObSGfM76sR7Jf4rC6+VlPP3Cf7no7FMKHQpYJmYsjFriFEIwMTHM/CRAVu8EKCIFOoQQQghxoMEkQJOAD+i6/p9sByNyb0lJCf9cvYLTz5vH+CG0o/icFcsL398gANrDXXSk04RKg4UOBQAz2oEnswaZZVukzdyXwAawLIt0phCEEZMESAghhBAHGsyM6ZUwpHNnUUDxTBU4rzcwpHbUQMhpR1X2zvMQhdPR4RRBKC8pkgQoEUc1UygKmLaZlzWAwEm2DLUnATpgeqIQQgghxKB6gC4H7tM0zY1TEe6AmcY9JaxF8YllTgq9vqElQHZ5Nffv2kHENJiXSBAIDK09MTSnJ1PMGj+RSr+/0KEAYCZj2EYC1ePLrAGUvyFwKzwqz23cwAfPem9e9imEEEKI4WUwCdCzOCOfboeDrrooRRCK1Pu6o5w3Zx7rrKGdkKollfyzaRcAV8ZjkgAVkJVMcozXB/XjiIeKpAcoUwjB5a/AMM28DYEzbYsWv4/X2tt4j2fkD9D0eFwogGFaWJb0xAohhBD9MZgE6MtZj0LkTYVtUR4IssnjG1I7qqri9wdJJGLEYjGqqqqzFKEYKCPilMA2LIvyitICR5NhWVixLtyV40ibaQwrP+tF2baNz+88txOJeF72WQjJXbtQkzHUshKMri7iO3cS3dVE3Sf/t9ChCSGEEEVvwAmQrut/7s92mqYpwJ+AH8qQuOLhtgHlnTk8QzG5tBzTpRLt6oLxE4YenBiUaGsrAGHDoKF06Mc1W4xoJx6svK0B1KPK5ebYiko8LS153W8+tT30T6IrV9A0eTItkQjzmpsBKDvxJPyTpxQ4OiGEEKK45XLZeBW4GKjJ4T7EAPkyFbLUwNCHSn1vwgSuO+JI4iP4RHM46G52qtFHTBO/z1vgaN5hJmKotkksnd+emCmWzbema9Tv3JnX/eZLcucOIsuWYhoGP3v4QX7y+CO81tkOQPtjjxQ4OiGEEKL45TIBAmdhVFEkbNPE3ZMA+UuG3F4i8z3Z3TXktsTgRfbsASCRKTtdLKxkHMtIkTRSed2v7XXm/ijp/BReyLfw668BsKizgw7LZEJNLf/Y4XSyR1YsJ93eXsjwhBBCiKKX6wRIFBEr+c5QJFdw6HNFek5rk93dQ25LDF48c8KbUovreoOZjJM2khhDLLgxUHsTICM/hRfyybYs2l95CYCX21u57lOf4Y5Lv0b9uAbWdIfBtgm/9kqBoxRCCCGKmyRAo0gyEgHAtG28waH3AKUV5+mTyrQrCiPV5awBZLiK7OVs2xhGnHSeCiDs5XeGAbrMPO83D5LbtqJEo8QMg7qp0zhq8lQ8bjdXfPDDvNrhJMLNmQRJCCGEEH0rsjMmkUvxSDe74nGaEgk8Q1wHCN5JgIxYdMhticHbMmYMX1q+mFXe4uoBQlUx0kmMPBdBUAJOFbiRmAA1Znp3VnWH+ei7T9l7e31lJTVTpmDZNu7WVozOjkKFKIQQQhQ9SYBGkaTfz/9bvZyr1q/F5Rr6Uk1Gpg0js7iqKIzO7jAd6TS+0uJYA6iH6vaSMlKkzcThN87mfoPOYrBue+Sti9P69iIAOn0+Gqr3rS9z/okns6Y7zOLODnZt3lyI8IQQQohhQRKgUSSWSVR8/uwsWmq4nCrqViK/J7hiX52dnQCUh4prMVrF7SFtpkmnEihK/nqnehIgzwhMgG7evplfb1rPmOkzDrhvTEUlj1sGv9io88zitwoQnRBCCDE8SAI0isTj2U2AtgfLeKBxJ7tVeRoV0rTGRj49fhJ13uIpgQ2g9iRAyThKHgs0KOWl/GHbFh6Ojay5aTt2bGf1pk0sCndx3Jy5fW5zxtyjAHjiicewR2ACKIQQQmSDnLmOIqk1a/jl7Ll8orYuK+3tKq/hgcad7JQTrYKankhwfv1YKvy+QoeyD9XtIWEkMVOxvNbDd5cG+c+eZl4dYfNgXn3VKW4wb8pUQn5/n9u8e9YcfF4v4Z070Zcuzmd4QgghxLAx4ARI07RnNU37H03TDtmNoOu6CUwBVg42OJFdRlcnk4Ihqj2erLTXU0ghJkUQCsa2bfyZ/DNUNvTKftmkuL3E03FsI4Vi568ggTdTBa6nx3OkSL34Ah8dN56TJk896DYhv59vz5nH745awBZZFFUIIYTo02B6gNLA3UCTpml3aJp2wsE21HV9m67rI3M1wmGop1hBWhl6AQSAgMtNgz+AJzqyhhoNJ3YyiSczv6asYuhrO2WVy008ncAy0mAZeVsW2eP3opWUork8mCOkQIdpmsyKx/nouPHMrR1zyG1DlVUAWNu25SM0IYQQYtgZcAKk6/o5wETgp8CJwKuapumapn1H07SGbAcosseMx53vWagABzAp2sWNRx7FSUnJcQvFyCxCm7IsysqLKwEyPS5S6SS2kQbTyFshBI/Py9enTueKKdOINzbmZZ+5tmXFMircHgzbZsLUaYfcdvy06QA02BadmbWBhBBCCPGOQc0B0nW9Sdf163VdPxI4HngU+CywVdO0JzVNu0DTtCJblERYSadaW0/1tiHzOkPg3Ple6FLs1d3SDEDYSFNZFipwNPuyXG5SRhLbsrDSyTwmQB4SmTWAEuGuvOwz1za//hoA7ZaJ5zDFLmobxpOwLIIuN0v+81Q+whNCCCGGlWwUQfBkvno+lWuA+4HVmqb1XapIFERPuWrTlZ05QPidE+6RWG54uAg37wYgapr4sjS3KytUF6aqkEo7i6DaqTgK+XmeKC4XycxzMj5CEqDODToAqX5UcFQUhXDmudCYWTdICCGEEO8YVAKkadpUTdOu0TRtA/AycB5wOzBJ1/Vjgck4c4XuzVagYuiUVAoA052dcslKwEmAiqv48ugSbd0DQLGtxKRmhmv1JECWkUaxjLzs27ItUpmfk5khgsPeHuc4+ysr+7W5u8LZzm7clbOQhBBCiOFqMFXgXgU2AFcCrwPv0XV9hq7rP9V1vREg8/1fwIRsBiuGJm5btKdSpL3ZKZesBJyqY768FjkWvbXV1vKl5Yt5IllcJ/qq24OBRdrI9ADtLYSQ++eKZVsYmf2kRkCBjnA4TE2mR6tuXP+mWdY2ONuNsWza2lpzFpsQQggxHA2mB8gDXAaM1XX907quv3iQ7R4Gzh5sYCL7XgkE+PKKJWwtP3QVqf5yhZxJ935VxTDyc3Vf7Ksz3EVHOo0Sys7ittmieLykbZO04fTFWEYa20jnI/9xEqDMwqvpEZAArV+7mqrMvJ+y2tp+PaZ0TD2vxqI81NTI4sVv5zI8IYQQYtgZTAJ0K/BPXdfD+9+haVq9pmlXAui6vlzX9TeHGqDInp51UTy+vhdRHChXsAwAn8tFdKQMNRpmOjs7AagoCRY2kP2obi+J9L4D86xUPC99haZl7q10mI7G87DH3Fq/aQOXLH2be4wUSj9fu6rfz676Mbze0caSJTIPSAghhOhtMAnQXcDBVuKbD/x40NGInIpGnQVLvb7s9BYowRKeaGnmn407ictiqAVRvnEjF0+YxCR/dpLabFHcbqLpfZMPO51Esa2c79uyLTZ4VP60bQtd1VU531+u6fo6bKC6fuyAKunNnTgJgGXLluYoMiGEEGJ46lc9ZE3T/g3MzvyqAA9rmpbsY9MxwKYsxSay7MK0yfmz5rDdzlLZatXFA+2tRCPdfDzZ19NB5Fp1exuzx4xltbuIKsABtttDIr5fD1DPPCCyMwftYCzbpiUU4NU9zRzry+2+8mH9eqcC3NS6ugE9bmZ1LUeUlFLa0kwikcBfZEmyEEIIUSj9XRDmp8AXMj9PBpYCe/bbxgQ6cXqIRBEapygESkpp9mbvRMjvDxKNdBOLxbLWpug/d9pZhNZbZHOATLd7bwW4HraRxjbzs2iuP+A8x3uGfQ5X6XSaU+IJzpwynSkD7LktTyT50aw5NCXirFu3hvnzF+QoSiGEEGJ46VcCpOv6a8BrAJqmAVyr6/rmbASgaVoVToJ1PlAGrAC+rev6K5n75wM3A8cAbcAtuq7/qtfjVeAa4PNAJfAKcJmu6xt7bTPkNoY727bxZobP9JSvzoaaYAif30+sqzNrbYr+85kWKArBoloEVcFyuUnuNwfItizsdH56Css8XmaXluHas/91muFl27YtzC8ro9rroyQwsATIXVEBwFh/gLeXLZUEaABs2ya6cgXxdWtxV1RSduK7cZWUFDosIYQQWTLgOUC6rl+SreQn4+/Au4CPA8cCS4BnNE2bpWlaNfAfYD1O8nINcK2maZf0evwPgC/j9FCdANjAk5qmeQGy0cZIYKfTuDIJkCtUlrV2L6uu5qYj55PeuiVrbYr+sW2bnlPiYHnxnJwpbrdTAruPZMdKxrGtLA3BPIRJls0PtdlM2rYt5/vKpc26TnWmbL27dGCvW9XrJZEpBtG8cnnWYxupbMti951/oPGWG+l45in23H8f2350NcmdOwodmhBCiCzp7xwgEzhB1/W3NE2z4JBLutu6rve33enAWcC7M71MaJr2deBc4JNAHEgCl+q6bgBrNU2bAVwF3JVJUK4ArtR1/YnM4y8CGoEP4SRXX8xCG8OemXhnQro7U746G9KKk0Mnuw8oCihyzIrH9ia15RXZS2qHSvV4SWIf0AMEmWFwRppBrsHcfz7n2oVq5GfIXa60rF/HZJyFblXvwK/H2KWl0NlJasf2bIc2YrU+9CDdr7+GrSi01NRQFY+jJOIY4XCOZ68JIYTIl/7OAfoxsLPXz4dKgAaiFTgPWNxzg67rtqZpClCFU23upUzi0uM54DuaptXhzEcqzdzW8/hOTdOWAKfgJC8nZ6GNYS+eKZecME18gez1FhiqC7BIRaQKXL4lOzoBiJsm9RXZS2qHSnV7MbAOmAMEYBkpMA0UxUf23kb64HeSBZeR+96mXIpkEpekZ3BFLkpqajE7O6lIpejo6KCysjKb4Y04ia1baX/qCRTg5o3reW3R64RcLqaNbeDyRBwZRCiEECNDf+cA/ajXzz/M1s51Xe8Enuh9m6ZpHwWmAU8D1wEr93tYY+b7RGB85uf9xyY0Zu4ns81Q2xg0lyvHV7r7KRHudL5bFj6ff0DldA/FcLvBSGHGY7jdxfG37q/nGBTLsciWaGszAN2GgVYaRFXzscrO4bm8XhJGErAOXPjUMrGMJKrPj23nLl4l6BRBcFlW0T4v+8NubQWvDyUUGtTxDVZV0g1MCYZYu3Ylp5xy2t77RurrYig2vvkqhmGwpLODLX4vZ51xOkuWLmfFzu186UuXcNttd3DCCe/O+n7lWBSXfCzYLIQorP72AO1D07SpgF/X9TWaplXgJCoTgAd0Xb9nsMFomvZu4E7gEV3XH9M07Uac4Wu99Yyr8QM9qz/2tU3PAiDBLLQxaGVlxVGdazcGHakU3ZZFMJi9gRxxjxeMFEo6SWVlMU3EP1CxHItsaR5XyxeXL6aurJQHQ8VT4tgTChI3o7g9rj7vt5NxPCWVeLyDevvpXwzlzsvaa9tF/7w8GMuy8Eaj4PVRVl1FIDDwIXCeMbV0A+P9AZZt0vngB887YJuR9roYrPb2dq648w66W1s5/ZRTufeqy+ls2UX8ovdz8x1/4a23l3HfD3/AxEs+y5GXfiknMcixEEKI/BjwGYimaecAjwC/Ab4J/B74ME4vy92apnl1Xf/TINr9IHAv8AbwiczNcQ5cNKTnTC+auZ/MNvH9tukZk5WNNgYtHI5jmrlf/PFw9ri8fGnFEqpr6vl6PJW1dk2XMzQnFYnS0VGcw+BcLpWyskDRHIts2b6zmc50mgqfh0QWj+lQ2aZCJBHFSB84/ExRFFQjhZFMYdi5u9pt+ZyXuNe2aW/rRlGH35X1pqYmVMvCsC3KyiuID+IY24qbDTXV3P3yi0ypqtjnNTpSXxeD9cMf/pjm5mamTZvG9350NY2b15FKJACFSy/+JJ5wjC+XVdH51DPsPvUMfGPHZm3fciyKS3l5AHUYvmcIIfpvMJdgrwaeAX6kaVo5cCHwM13Xr9Y07SfA14EBJUCapn0Vp0z1v4BP6bre0xuzAxi33+Y9v+8CPL1u27TfNj1lj7LRxqCZpoVhFP4DraurGwBfIIhlZW/uhelxcks7mSyKv/NQiuVYZEtraysAFaUlWT2mQ5V2uUmmEth9hmTvXQ/IVnzYfW80ZEqJkwApikIqEsMVDB7mEcVn48aN3LxlI9NS4/n92IZBH+Pg9BlseOpxEvq6Pp//I+11MRibVq9i9dNPAfDDa64l2tFKotfaZm6Xmw98/EMsue9hFpRXsPTOP3HMVd/NehxyLIpDjt6WhBBFZDCXOI4CbtJ1vRs4GyeJ+mfmvv8AMwbSmKZpl+L0Jt0KXNQr+QF4CThZ07TeY2nOAHRd11twEpQwcFqv9iqABcDLWWxj2ItGI4CzcGk2dZZW80RzE5sN4/Abi+xas4aLJ0xiTpGtT2K5XX0WQOhhmwa2kcrpOHtvaYi/7dzOAx1tKK6+h+IVu61bndUGJtTXD6kHa0p1DQA7dmynu7s7K7GNNG/d+Qd+PGsOP3vXScw5Ygad7a0HbDOuvo7YVGdaqKqvw0wVT6+rEEKIgRnMp2qcd3qOzgWadV1fkfm9Hujsb0Oaps3E6fl5CPgZUKdpWn3mqxxnPlAZ8CdN02ZrmvYZ4PLMtmSSpVuBX2ia9gFN0+YB/8Dp9flXZjfZaGPYU9eu5UfabE4PZTcBaq9p4O4d21gWi2S1XXF4/qZdnDdmLBO8xTP/R3F7MbBJ9VEC+x02VjKetUIcffEFfDyyu5Enm5tQfcOzePGWLc7aWhNq64bUTtC0uGDKNM4bU8+GDXo2QhtRWlqaqW5qAmDKKafQ3bGHZDzW57ZHnnkKnek0JarKa/f8OZ9hCiGEyKLBJECvAN/UNO0TwMfIJAmapi3EWWT0lQG09RGcIWgXAk37fd2c6aE5G9BwFki9BviWruu9P3muxhly90fgVcAAztZ1PQWQjTZGAqWzgyNKy6hxD66c7sF4Mj1KkYhcWc43Je5MWVP9xbNer+pxEqC+1gDqzUonUezc9Rr6MlXgotEoljU8hxS5t2zmullHspChJYpWIs4nq2v52LgJ6OvWZCm67LAti/annmDr97/N1h98h/ann8Q281u6/Kl/3MvkYBDLttE+eD5dbXsOum0wFKSlxikl3vHyC/kJUAghRNYNZg7Q/wMeB/4GrAF+krn9cZyiAd/ub0O6rv8U+OlhtlkEnHCI+02cRU2vymUbw52VWQjVyHICFPAGqPB48MYPfcIrss+VdPJzT6h4ejhUj5e0bR6mBwhsIwWWAYovJwPuPX4fY31+KjwewrubqBjXkPV95Jqno4MZFZXElaFNxnaFSjCBgMvFrtWrshNclrT87S90vfjC3t9bH/gHqR3bGfPZL+SlcIVt2zS+/BKUlZOsrcV0KUQPs6hz/YkL4ckXmaq6WL10MXOOXpjzOIUQQmTXgBMgXde3aJo2B6jTdb25110XAEv3m8MjioSdcE5ITU92ewuqU1HuOGohLSk57Pnmy8y78pcUT5ln1eMllk4ctriBZaSxjTSq10cu6jeoHhdfmDyVI0vLCK9YPuwSoEQiQVmmJyRYUTGkthRVJR0M4orFiG/dOvTgsiS+YQNdL76ADTzY1k5XpIuLJ04m/MbrqA3jqTv3wJLd2bZixTImZ3oIx510Mt0drZhG+pCP8dfX0ako7I5G2PDg/ZIACSHEMDSoS2y6rtv7JT/ouv6GJD/FS8lM2O2p2pYtrpIKAIKqi3T60CcOInts2yaQSTJCFcVTBEFxe4mm+54/sQ/bxkrFclYIwbYtUpnGE+Gu3Owkh3bt2slYvzOML1hWMeT2fFXOkmb+cBfpdHGM7A3OnMHi+nru27md+7es5+k9zfx5+1YSpsl9999LJJL7eYVPPfYIR5aVA1C5YD6RzILRh6QotL/3ZK7W1/DAf58hfpD5QkIIIYrXYNYBqgVuAs4HQnDAAHVb1/XcrXAoBkXNJCemJ7sT5vcmQC4X3eEwVdXVWW1f9M2KxXBlTvDLq8oLHM07LI+HWDR++A0BO5VEsS0OfAsZOtO2SLuc6zup8KGHNBWjnTu2MTazlpErC1X+QlXVxHbuZILfz+bNm9G0WUNuc6geffQhfvHvhwG48P2f4dSTzkNfv5zvPXgbOzrb2fidK7j55t/lbD0Wy7JoeusNvHX1mKEQSk0F8aZNh38gMGHCOMY3NLBz1y5eeOE5zj33/JzEKIQQIjcG88lyG07Rgn8C1wE/3u/r2qxFJ7LGZWQmFme5DDYBZ/iVqihEOtqy27Y4qHRXJwBRw6CqsqywwfRiut2kUv1LgKx0Cqw0uegGMi0L0+2Uv07noSch23Zv2ULI7cbGxhUa+hBHV6nzHJkcCKHra4fc3lC1t7Xw858700c/eN6ned97P04oWMqC+SfxmS/+CK/Hy8svv8iDD96fsxjWrFnNyzu28dMtm2j430+TiHaTSvZvLqNtWZx60omEXC5efOKxnMUohBAiNwbTU3MOcLmu63dkOxiRO2nLImlZ4M/ufBHb5SZtW3gUlWhbG0zPavPiIGI+P19YtpiQ28UDpRcUOhyHqmK51MNWgOuRy3lAlm1ieZyCH0Ysmt3G8yC8zSmBHVddWVnHyF1Whg1Ueb28sWolfODCIbc5WInt29j202t5T0kZK6sbeN97L9rn/okTZvCpj3+JRY/8hSV/uZP3vvccyssrsh7HCy88i2nb1By9gOp3vYsdG5YN6PHvCZVy/vxjeHb7Drq6OnMSoxBCiNwYTA9QCtic7UBEbv2+u4v/XbqI7uqx2W1YUUhkzl5jHe3ZbVscVHtHO11GmqjbhdtdHAt9qh4fadsimepnRUDbxkrGcrIekGXb2D6n4IcV71+PVDHpaG5hdyJBKktrGCluN5umTuZzy95m5aYNWWlzsFpeepGQYTA9VMJHLvg8qnrg8/ekCUfwg5lH8LHqOv74u1tzEsdLLz0PwOmnn4FpJEhEB5YoB8fW4lIUjior4+WXXshBhEIIIXJlMAnQv4BPZDsQkVvRqDMMyBfIfsWwntPdeOfwm2w+XLW1OSvVV5WXFjiSd6geL2kskv0cAgc984Bysx5QTwLUUwFxOHmtaSdfW7WMsKZlrc36yVPpNgx0fd1hq/Tlim3btL/xGgBb3H60GfP63M6sn0wqWELI7ab1xedpb8/uxZX29jbGtbVzyYTJHD9xMulknPgAewrNuipMBcb4/Cx7/tmsxieEECK3BjMEbglwnaZp04A3gP1L4Ni6rss8oCLTU1HJl+05QMAqWyHW3MQRVu4WthT7Sq5czsUTJhErL6YS2D4SRgpzAM8Dy0iBaYCa/fWAwqUh7lurM2vSJN6V1ZZzy7Isdu3aCUB9WfYKXIwvq8DtdhOJdNPYuItJkyZmre3+im3bRjCRIG1Z1B171sE3VFTU+afAa09wckUlf//7X7nssq9lLY5Fi97k1Jpa5pSW4W3bQyxScdjy1wfweEjXVOPa00Z6vU46ncKT5WUGhBBC5MZgeoB+C1QApwBXAj/s40sUESPSzRVjG7hquobPF8h6+294A/x5xzZkAFz+KDt2cN6YsUwLZD+hHSzV4yOSGthVdMtIYRsp1ByUw05UlfFQUyObsjCHJp9aWppJp9O4XS5qS7LYwxeL8mVtNl+eNJX16/XstTsA6x9/FIA1sRhHH3P6IbeNjZ+NrShMD5Xw0kP/JJXKXvnuJa+/yqzM/7Z03jyiXR2Dasc3bRIARwQCvP32oqzFJ4QQIrcGsxBq7pfnFlkV7+hgVkkpcdNkXQ6GwPkDTpnefKzbIRx2pBsA1V88V5xtj4dofICVAG2wkjFUf/aH8vmDThnpSOZ/NVzs2L6NW+ceTQwbxTAgawmcwimBIJY/wMtrVnHWWYfogcmR6OpVhICu6rFMdnsOua0dKEGZMgs2r2W+18dzz/2Hc87JzuKokZUrcFVWY5SX46oqI9G0cVDtGGNr8QBHlpbzxPP/5YQT3p2V+IQQQuTWkJIZTdPKNU2bpWmaT9O04XWZdRSJtjknpTHTxOPN7jpAAMFAiHK3h7gUQcgbJe7Ma3EHs7uw7VCYHs+A5v/0sFIJlBwMn/QHfEwKBCnpGl5z03Zv2kCdz8dErw/Fc+gkYSBUn4+ky4WqKLTp67LWbn8lI91UJZ21ssvnnNCvx6SmOnOETq6q4V8PPpCVOHbt2skk0wKgcuExGKkEyfjgKgXaFWWkfV68qsruRW8VbG6VEEKIgRlUAqRp2mmapr0JtAOrgDnAvZqm3ZDN4ER2xDud4R1xy8rJooInpmL8Yf5CJjU2Zr1t0TdPZmFbf2mRDIFTVUyXSmIwCVBmHlC2q8GFXC5+OWceH04ksS0rq23nUtcWpwR2VFVRsvx6tcucnjarKf+v1cWvvcrLbXvYGI8zcfZx/XpMfMx0bK+PpGWxYdnivXOjhmLRW28wv9yZW1V17LEkYlHSgx1epyi4jl/AH7ZvZfGO7ezYsX3I8QkhhMi9AX+6apr2HuAZIA5cxTvLuC8Fvq5p2jeyF57IhlgmAUrmqH2rZ15RIld7EPvzZ07oQxXFUQXunRLYA0+AbMPANpIoWZ4I5M4UiFAUBSs5fJ6bqebdzndv9oc3hqprAahMpQiHw1lv/1BeWrKI323dzHN1E1Fd/Rx97fbgueRb3B8K0JFO89RTjw85jk2vvkyFx4uhqoRmziQaHtz8nx72rKm0NdTTZaR5883XhxyfEEKI3BvM5cXrgId1XT8NuIlMAqTr+s+B64HPZys4kR2JzBCglJKb6Vt2ZnFVNZ29Scri4GzDIJjpLSmvyl6VsKFQPT5SAyyB3ZuViKKQ3V4abyhIKpMoWrH9i1UWL7WzEwAllP35eoHKSgAmBUN5L4TwRqb89ayZRw/ocVElwFnvdeb+DDUBsm2bHfo6WpJJ7EmTQbFIxIf23DANg6PnzQXgjTdeHVJbQggh8mMwZ8TzgTszP+8/4PkZYPIQ4hE5kMxc6U3nYPgbAJkiCC5DymDnQzpzgmxYFpXVxZEAubw+4ukkpmUO6vFWOpn1eUC+UIBI5jlpRodPgY5AprcqUFqW9bZdpU6P4cRAEH3t6qy3fzC7tmxGaWnBparMmNr32j8Hk4inOf7YUwh4vLRu3cLGjYNfyHXz5k28sGMbV6xfw/Sv/T+MdJLkEBMggLnjx3F27Ri6V63CNAf3GhBCCJE/gzkj7gLGHuS+iZn7RRFJJuKkLIu0K3sTqntTQ85JuNeSCcD5EHOpfH7Z23xrzUqqyopjCJzi8dGdGnySYaVTYKSzOgzOG/C9kwB1D49KcOFwF7WZqm/lNTVZb18NhjAUhbRlsWPNmqy3fzBrnnqCX8yey/VHLSQYLBnw41MrVvKHoxZwyYTJPP30E4OO4623nCFq8+cvJFRZTjqZIJkYXK9lb+Na2/ncpCm8KxhizZpVQ25PCCFEbg0mAXoEZyHUY3rdZmuaNh74LvDvrEQmsmZLdTWfWvIWz/oGfuLRH67SCgD8irOIo8it9o4OwoZB2KXg9QxmLePsszxeYsnBX0m3Lcsph53FQgjeoI+I6SRAw6VC4Y7t22hOJmlLpwlUVGa9fUVR2HbkHC5Z9jZLNg2u9PNgtK92kgKjbHB/U8JfiRdYUFHJC08/OehqayveeAMVOP74d6GqCvFoOCsFMowxTrI6t6ycN16XYXBCCFHsBpMAfRtoAd4Eekre3AfoOEPivpOd0ES2dHc7Q+B8wdz0FrjLqgAIudx79yVyp62tFYDq8uLo/QEwvR4SqaENJbJScRQ7e8PgXB43kcxwpGjmf1bsdu7axS826twWDeMK5qbC36Sx4wDYuHE96Uw1wVyyLAtfu1OK3zNh5qDaiPmrUOvG4FVVGqJRdH3tgNswTZO5u5v44/xjOL68EtsyiXVnZ8CCVVuFqaqUezxsfvO1rLQphBAidwacAOm63gEcD3wZeAn4L7ACuBJYqOv68DjTGEV6qj35/Lk5obJLKnils4PnW1vozMxPEbmTXLaUSyZMYkFlVaFDAUBxe0grNokh9AABWKkkmOmslcO2bIvlqQT37dpOvLwiK23m2q5dOwBoyMHwtx61gRChYJBUKsWmTZtytp8emzZtZLLXWa+qZNrACiD0sFFwzXEGHZxUXcMzzzw14DbWrlzBnGCIErebyUfNxzJTJBOJQcVzAJcLc2wdAP6m3cSzMK9ICCFE7gymDPYpgEfX9T/ouv4JXdffq+v6x3Rd/y3g1TTt49kPUwzF3N3NXDl9Jg1ZLjPcw/IFuLeri3t2bicclilguaZs38a5Y8YyLUc9BAOlev2kbWtQawD1Zhlp7HT2ymGbtsUmr5uHmhrp9Gd/AeBc2LHd6VQfW5G75NaOx7lq5hH87IgjWbM694UQNrzxGkG3m5Rto1TVD7qd9KQjATiytIw3nn1mwMPgNjz3HwIuF1FFoWT6dIxUkmQie4mKZ8oEJ76SUpYuXZK1doUQQmTfYIbAPQ8ccZD7jgbuGnw4IhfqkkmOqagi5Mn+uiI9QpmKVdIDlHt2ZkK/GvAVOBKHy+sjYaVJpYd+NT2b5bBNy6Qss+BlV1dnVtrMtZk7d3LHUQs4Mof7UNxuZro9TAuVsHHpshzuydG2cjkAHb4AqK5BtxN1hXBPnIyqKExJJFi3bmBFHNJrne1j48bhcrtIJROksrh2WXpMNQCzSkpZLOsBCSFEUevXDGpN0/4MTMj8qgC/0zStr8keM4HdWYpNZInPtkBRIZT9sro9ykrKqPR4CA+TuRbDmTtTtcpXWjw9QN3JaFbastJJXKYBivvAIvsDZFomNeWlTAwEie/YfvgHFIFgIkGF3w+B3B1bxeUi4fMRTCbp0HO/FpC6ezd4fRg144bUjmFYeOcdi7F9K++ucobBHXHEnH49Nh6PMzGZAq+X+pNOQVEUYt2dDPlJ1ltZKUmfF1c8wY7Fi7LXrhBCiKzrbw/QP3ESn56xKUofXxbwBnBJlmMUQ2DbNoHMYVNCFTnbz+e8Hm4/aiFs3ZqzfQiHL1PaOVRRHEUQbI+XSDI76+yYqSS2kcxKNTgbmOH186s582hYuXLoweVYOp2iKvNnl1dX53RfrkzPmN3cMuiKav0Ri0V5dMsm/rFrB56ZC4fcXnLCbDqPnMvNmzfwzDP9rwa38j9PU+X1krQsJp96OtgGiViW14ZSFMyzT+ezy97mv2tWyXBgIYQoYv3qAdJ1/THgMQBN054HLtMHU4ZH5J2dSuHOnEy6B1mCtj9Sbg8YKdLyoZ9TtmEQsAEFKmpzdzwHwvB6iXdmaS6FbWMlo6hZKtmulgahtQs1lcpKe7nUuGMHtZliARU1dTndV1ltLcmWFsagsGdPC1VVtTnZz+rVq9C7w7T7A5wzqX+9NYcSs73M/uyX6Pr7PSR27WTt2tXMnn34AYNtr75MBbA7GGSu14tpJLOy/s/+/GNrGTNhAtu2bWPx4rc5/fQzsr4PIYQQQzeYKnCnS/IzfBiZ+SKGZeHJrNeTC2mPc+JmRLJ8VVXsI93VhaooGJZFdREkQIrbg6EqxLM0BA7ASiZQrOyUw3aVOYmUx8heee1c2b12DaqikLAs1BwXbfBmquJNC4VYty53b+erVq0AYOaM2VlpLxFPY1tuTj31dIB+V4P79/ZtPNi4E/fCY1BVBSOdmwTISKc4+qi5wDuLrgohhCg+A15FUdO0IPA94HwgxIFJlK3r+rQsxCayoGf9k27DwD+IFdj7y/D6Id4NMSn/mkvhxl0AdBlpZleWFzgacHn9JGxzyCWwe7NSCTBSKJ4gtjW04VmuCmfem9e2sS0LRR1M3Zf86NyymUqgCxiXxQVh++Iur8ACqr0+Fq1YzoknnpKT/bQuWcyxFZUcMWF61trsbI/xgfkLmL9pM6teegH761ccsnR6e3s7r651FmL94gcuQFUVUok46WT2CiD0dnJJKccdcSRLli3NSftCCCGGbjDLyN8MfBZ4AVgGWSrZJHIi0tFO0jSJmiYeT+6qhpn+EHTtQU1maV0N0ad2n5fPLXub+tJS/ur1FDocVK+fhJmdCnA9bMvCSsZQvUHMIbblqXTmSamAlYjjCoaGHF+uJDLJbcKT++OquN1EvR6aOzrYuWF9TvZh2zaT29r44HSNRnUwHzV9i3anmOb1U1tRSaA7zOrVqzjyyLkH3f6VV14EYObMWVRX16CqCvFI7obq1geCeEIlNLW10tbWSnV17tZ0EkIIMTiD+VT6MPBdXdd/ke1gRPbFq6r536WLqCir5PIcXlW2g5kTzWEw12I427NnD92GwZgiqgDXmeyrIOTQmMkYnhKTwVXqf4e/spSEaeJ3uTAj0aJOgJq6w5jhLvzjJxx+4yzomDuX795+G5Pj2Ru+2FtTUyOTMslcaOrBE5SBikaTjD/hVDqffJzZpWW88si/DpoAGeEwvif+zbyyck447T0AWKZBPJq7obrKhHpYvpp5ZeW89ebrnPu+9+dsX0IIIQZnMGcXbuCtbAcicqOnEpE3lLvhbwCUOPNRvOZQr9mLQ2lpaQagrgiGvwFYPh/RRPZPoPcOgxvioqiBkiCRzPwfs8jnp72wp5kfr1+LNW5o5aL7a0q1U/hg27atxOPZH7q67s3XqfB4MWwbarKX1FmmTdT2k5g6BYCqtWsOWg2u9b/PMMUw+di48Zz+nrMyj0+RTOSup9qqriCtKJR7PKx/9ZWc7UcIIcTgDSYBeho4N9uBiNzozhRBCARye+VbqZvAi617eLN1D+l0Oqf7Gs3cq1dyyYTJzC4tghLYioLh8RBLZD+xsE3TGQY3xF7LQEmIJ1p2c9/O7RAqjl6zvti2zY7MWkVjK/JT3KIyEKC6shI3sGF99tcDal66BIBOjxfc2R3W192VYMb/XoJp28z2B1j19BMHbGPGYnQ8+x8AXksl0bRZTgGEVJJUDgog7OVykah2jqGxMTfDC4UQQgzNYIbA/QP4vaZpdTjr/hxw6VDX9b8MNiBN074PnKnr+mm9bpuPM/foGKANuEXX9V/1ul8FrgE+D1QCr+CU6t6YzTaGI9eK5Vw1XWNTMMcnzOOm8LvtW7Esk690tFNXNya3+xulypqbOXdMPat9uZvP1V+q108Km3iW1gDan5WI4g5VMJRhcN6Alyf2NGNZFpepKoGsRZddHW1tGHHnpLw+TwmQbdt8b8p06lHYsPht5h11dFbbN3fuANVFsmoM2Z7VFIum8E1vYFMwwMx4gsRD/8I64yxUj3fvNu2PP4YrmWRXPE71CSeiKAqqqpJKxkmnclMAoYd/+hRobWeSDbt27aShYXxO9yeEEGJgBnNmcT9QBXwauA24e7+vuwYbjKZplwM/3u+2auA/wHqc5OUa4FpN03ovuPoD4MvAF4ATcNZAfFLTNG+22hiu1D0tLKyopM6X27K6qqpSXlEFQFum8pzIPm/COXHzlRd+LovLFyBpG8RzMAQOwMzCMDhLsSmvcIYLdnZ2ZCu0rGtc8jb3LDiO6488Cl8eiiAAKIpC0OfHrap0rlmd1bbT6TSVmWFmvokzs9o2QDJhEO1OMu2Sz9KZTlFumux++aW998fWrqEjUyL7rzu38YELPgyAqkI03Jn1eA7Q4KzjdERJKW+/8Wru9yeEEGJABpMATTnM19SBNqhpWoOmaU8CPwH2H4vxRSAJXKrr+lpd1+8CbgSuyjzWC1wBXKPr+hO6ri8HLgIagA9lsY1hyc6UpTa9uU2AAKoqqqj0eNjT3JzzfY1Gtm1TYjlzrCrHVBU4GqcEdncqimXnphCkbZpYiShDmQZkmiZ1FRVMCgQJb92SveCyrHOz09Fsu7JXLa0/3FUVACi7m7La7oa1q5nkd/rbfBOHvgBqXzrb48w97l08hc19O7fzYGbNociK5ez6zU1g2zzf2kJi/ARmzNAAsK00yVhuEvbe7LISOn0e3upoZ8Vbb+Z8f0IIIQZmMAuhbjvc1yDiWAB0APOA/T8tTgZe0nW990qGzwFaZhjefKA0c1tPjJ3AEuCULLYxLCmZstRmIMdFEIBrKiu5/aiFdGfmMojsMmMxfIrzkq0dW1vgaMD2+emMZ78CXG9mMjakRVENy+SUiip+OWceyuuvZTGy7Eo0NjrfPflNgGoaGgAYY1lEslgkYuWa1Vyxejn/RsEqyU2yHo0kSSdNTrr4czy0u5G/3fsXdu9uwopEsFMpVkQi/HHbFi6++HN7H2Ma6ZwsgHoARaHl9BO5ectGXly86KBFGoQQQhRGvz5tNU27E7hW1/UtmZ8PxdZ1/XOH2WYfuq4/BjyW2df+d48HVu53W2Pm+8TM/QA7+thmYhbbGBSXq7ALL3oyBQmUYBnqECtqHU5cVfHbFrHWPbjdxbPgZM8xKPSxGKrWbU4PRjidZnZ9dc6P5+GYPh/xzggDqVPQs2Cl8/3wJ4V2KgFmCpc3NKhFUS1MKA1BNIXd3V1Uz8velI7M8LxAIG/HVVUVqsePp2nJMiYFgugrl3L8yadmpe1Vq1fQnExiTJuNmqPXXSKeJhFPc845Z/PXvy5kyZLFXHXVN7jxBz/kv34ff3j7DabP0Dj77LNxuVRUVSEZTZJOJfLyP548fiw+n4/W1j1s376FadMOvhjsSHmPGilyvA6xEKII9Pdy4+k4BQQA3sOhz1yyfakriDN8rbeeGqb+zP0cZJueS4/ZaGNQysoKO+3ab1mAgruqhkAgt9OZkl4fJONY4U4qKws/R2V/hT4WQ7Wh0elc7bJMSgu8DpDi8RHzqCSNGG6Pa8CPdw0gEVFSMbwlZaAM/ORQATxVFRBtwRWPF+XzEiCQKYAQqqzI+et0Xx7C2JQpCs1LFlH5gfdlpdXVq53rTTNnzMEfyN2cpmgkRcPESm655Wbe9773sXz5Ut7zkQ8C4Ha7ueWWm6ipKdu7fXN4N243uN35+R/PO3IOTavXsmbJWxxzzFGH3X64v0cJIcRw0a8ESNf1Kb1+npyzaPoWB/YvedUzoSWauZ/MNvH9tukZ7J2NNgYlHI5jmrmZI3E4tmEQwLmUZYbKicdzu0ip4gtAMk6irY2OjtyPs+8vl0ulrCxQ0GORDbvXb6IaiLsUEjk+lofjdoeIpVN0R7qwrP6v/aQoCi63imlY/R4WZMUiEIhjKoM7kXZXVcCOFlzJZFE9L3vYhkGFbYOiEKioyvnrtIeqKvh8HuLBIGWxOOE167Ly/+nq6uQMw2b2mLE0VI4jEc9dWfyO1iidHTEqKur4/e//xJVXfoOdO3dQUVHBz3/+KyZMmLb3b3K7VTra2vL62rm4pJy6I4/i+edeoOOjnzzodiPlPWqkKC8PoKrSGyfESJbfAeeDswPYf2XAnt93wd4Kq+OATfttszyLbQyKaVoYRmE+0IxwhIRl4VEU3GU1WIMYQjSg/flLINwOkWjB/uZDKeSxyIa1Ph9/WrqIc9+1gLNyfCwPR/UG6Ex0Yw544Vsnbtu26e+0CDOZwErFwe/FGsTJobeuGgCfbZOKJ/YplVwMwpu34FYU4qZJff24nL9O9+etG8PrSxaz0kzz8Sy8Ppa/9jpn1Y3Bsm1iriBmDv+e7nCSWDRFqNTH7NlzefjhJ2ls3MWYMfX4fL59X+9WmkQ0ktf/r6e+FjZtJ9DcTDKZxuU6dG/pcH+PGilkypYQI99wuMTxEnCypmm9PznOAHRd11twEpQwcFrPnZqmVeAUVng5i20MP8EgFy9dxMVLFxEsrcj57qwSp9ywJ5nbNTZGq6bdjURNk/LqikKHgu0L0BnvytPObMxYNyqDOzEM1FSStpzHmuHcFm0YjMbm3fx3TzNvd3dRHsr/EL3xR8zmlq2b+O+2rTRnoYJj49tvAdDpcmO6cptsmqZFV0d875wet9vNxImT8O23TpaigGmm8lMAoZfgDGfwxBGBIOv1tXndtxBCiIMbDgnQnUAZ8CdN02ZrmvYZ4HLgZwC6rieBW4FfaJr2AU3T5uEs1roD+FcW2xh2wuEwtm2TsiwCuV4IFbBKnelSftOUqkc50JipFFZfVXaYLXNMUUh7PUTj3XnbpZWMg5HcW0RhIEKVpXRmioEYXXlK2gZgW7iLO7Zt4Xlz8NXuhiLg9TI1s1Dn6tUrhtxeMlNuPFFZPeS2+qO7M4F5mF4TVVUxUsm8J0DKmBpS2JR7PKx87tm87lsIIcTBFX0ClOmhORvQcMpSXwN8S9f1P/fa7GrgT8AfgVcBAzhb1/VUttoYjnoWfgyGSg879CIr6ifzYuseFne0EQ4X34nmcHdCV5hLJkyioTT3Jc0PxeULksQimuMS2L1ZRtpZE2gQ71gllWU80dLE33Zuh1Bhi0f0ZVumut/4qpqCxXDEhImM8/vZMsRS4bZtU9rtJMaeCdlfALUvke4kibhxyApqqqoQj0YwjTwnmS4XnZnnXGTlkEZTCyGEyKKimwOk6/pn+rhtEXDCIR5j4ixqetUhthlyG8NN5K03uGq6xro8jXk36ifxt65OOjva+FTjLsrLK/Ky39EgGYtxjM+POmYsntrKgsbiCoSImkniyfwWFDDjETzBcmBgyby/JMDTba0YhsGXLZtiq7PVtWkjHkWhobJwx/WUsgo+deR8tmzcOKR2tm7ZxGSfU1+mdPpRB5TVzIV02qSrM05JmZeDTUlTsIh2d+QhmgOpkxpgzUZqwmHS6RSeIpuDJoQQo1HR9wCJwUvv2snCikrGB/M3r6Cmrh6ApqbGw2wpBqJxzSrUzET5MWMK11MAoPiDtMc7875fMxnHTsUHvK6MaZnUjRkDwO7du3MR2qBZ6RTvb23nngXHMbmicAnQuMnOXJXxikJ3R/ug29FffAG/y0XctjFK8/c8DXfEMdIHHwZnmmlS8fwOf+tRMnsGADODIVa99VZBYhBCCLEvSYBGMDMz3yHp3r8CeO7UVo+h2uulccf+a8qKoWhe50yg7rDN/AxnPATT7yccLcAQR9vGjIVR7YFVnjMsg4ljxzIpEKR1zeocBTc4qaYmVEUhZpqMqxtTsDhq68fSbqTxqCrr/vP0oNtpXreGtGXRESrFtPK3mmR3OEEy0fcwOEVRMFIJEvFY3uLpTS0r5VXV4ifr17Jo5bKCxCCEEGJfkgCNZJEIAAmv/zAbZs/nzRS/m7eA2JbNedvnaNC1zVkENeEp7KhV1esnqUAkXxXg9mMmYmAkUNT+n1ynTZPjKir55Zx5lC15O4fRDVxrJrHdGY8xtrpwPXuKorDH7awG0L5k8aDbeXTjBj6zdBEdR5+YrdD6JZ0y6eqI43Id+LxwuRTSyQSpPBdA6C2qTWVVd5i33pYeICGEKAaSAI1g7kQCgHQgf5Pm05lkK97akrd9jgbpPU55YqWksDNY3MESYlY6rwUQerNNwymJPYDOhbSZxlvnJBfuaHEthNqxXgegzbbxugub3LqqnaptoT2De+12d3ezefNG0rbNeG1BNkPrl872WJ/D4FRVIdrdWdDKlLOmOUMMly1bSnd3/qonCiGE6JskQCOUbdv4ekr/ZtbnyQcj6CRbRkdn3vY5GrgyJ02BytyXMz8U1V9CW7y9oCeTZjyCMoCS2IZlEBg/FoCAYWBbxbPQZHqnM1Q06vEcZsvcGz9tBpZtU6eodDc1DfjxK1csw7ZtGhom4Pfm/3naHU6QiKUPGAZnW2nikcKu/1RfV8vxkybxP2PHsfT++woaixBCCEmARiwrHseTOUlVKuvyt99y5yqyu0Dj7UcqT8qpxl5ZX1XQOIyAn85IZ0FjsNIprER3v0tiW7ZN2aQGLNvGTfEshmrbNp4OpzKZXVLY0uYAY+vq2JZ0eo3XP/7ogB/f/p+nuX72XD40fSbJRDrb4R2WkbboaI/tMwxOUcBIpwo2/6e3syZN4rwxY0ktXlToUIQQYtSTBGiEMiMRErZFxDAIVtTmbb92pVMFrhyFcJGcaA53nZ0dfHPlMj637G0atMkFi8PlDxJXbMLRwpQT7s2IdqOYqX73AlXU19CeSSJTrXtyGVq/Ge3t+EwTw7KoHFNf6HBQFIXNoRA/27COZ1sGXi3Ps3Mnk4MhxlWNoVAdhF0dcdLJd4pkqKpKOhknGSt8AhQ8UgNgXDJFvL2twNEIIcToJgnQCOWtq+OrG3S+vGIJJWX5K69rlDo9QLVeH42NO/O235FswwZnnkhpVSWhUOHmALmDpUTMBLFE4ecwWKkEVrz/vUChqjJa004CtGfT0Na6yRbF6+HB1j083rybyfWFT4AAGqZNZ2lXJy+++vKAhjnGw2EaMkMLy+e+K1fhHVZ3V4JoNIXb7TwxXC6FeCSMaeZ5AdQ+jJ+tsS0Rx60orHnwn4UORwghRjVJgEaoVCpFONxFyrIoKcvfsKl0Zr5Rrc/L1q1b8rbfkWzt2jUAzJoyobCBBEtoibQWNoZezFi4371AJubeeTbtGzfkOrR+CadT/GPrJu5t3MHk2sKVwO7t6MlT8bjd7Nq1c0Cv33XPPIlXVWkz0lRMmZPDCA/Nsmza90RRcJ4TtmUSCRe+xxKc3qhdZc6abOllSwocjRBCjG6SAI1QbW3OMB+320MgmL/5BanSStZ7fTy7p4XNRXKlfbizly7hqukaJ2eqdBWC4nKT9HrpihTHySSAmex/L1DaTNNcVcnfdm5naz+HzeXahg3rAWioqsbv9RY4GkfA5+PkGTP5RMMEdtz1x34/ruNtZ15Lc6iEZGJg6zRlW1dHnGTCQFUVTCNJogiGv/UIzp2FadtUJZPEd0kPuRBCFIokQCNUx6OP8O3pGseNaej3PIlssLx+Vs08in807mTTZkmAsiHQ2srCikomhIIFi8EdKiNmG4Qj7QWLoS9GtKtfFeFSZhpVm84juxtZ3V74Xizbtml/5WXG+HxMLuACqH1ZMGEiF45toK5xF0ZX52G3ty2Lsj3OBRfX9CMwjMJW2YtFU3R1xvF4XKQTMRKxSEHj6W3mnFmsijhDSDc89GCBoxFCiNFLEqARyty2lQUVlVSH8l9dqq5+IgCbN2/K+75Hmng8RqXpnFDWTSjcibIaLKMl1o5h5r+616FYqSRWPIyqHnq+SsowmDR5EgBbimCR3nTzbqatXcsNc45iapElQEfNnose6UZFoem/zxx2+9ZlSyhTFGKGwZiFp+U+wH5oa4lg2zbR7k5Mo/Dzf3q43W5aqsrpTKdYtUXeH4UQolAkARqhlEwFtngeF0HtUV0zjlqvj2hTE+nMxHMxOOvXrqHB7ywuW12oBEhVSQf8tHcXR/W0/RmRLpR0AuUQq6OmzTQTp06mwe+npLERo8ALosYz85A2RiNMqR9b0Fj2N7ayCj1TAKH9xRcOWwxh6bq1vNC6h6WmQXllcRRzCHcmSMWTxLq7Ch3KAeqPP5pLVyzl1tdfIR6PFzocIYQYlSQBGoGsdBpPwlnPI12a/3Vj6tct5bfzjub9dWPYtm1r3vc/kmxY9BZuVSWFjaukMBXgPKEyoopFZ3fhh471xTLSmJFOXBx86FXKTDFh6kSumjGLrzRMYOfbb+UxwgNF9HUA6JFuZjUUuLhFH6qmTiVumgRiMaIrVxxy26cXv8VtWzfRfczxxKPF0UOoqgrRSIR4EQ1/6zFzxjSqq6uIxWK89NLzhQ5HCCFGJUmARiCjrQ0FSJgmnqr8LYLaIxFykq6x/gCbNskwj6FoWrEcgKTfm9e5XL2pJRU0R9tIpZMF2X9/GLEwdjKC6ur7Lc2ybUws2t1uAHYvX57P8A7QvW4tAE2mSW15eUFj6ctJc+bx3z3NADT+64GDbpdMJnnttVcBOO6Yk0mnC1sAoUewxEssHKa7q/uQPYOFoCgKJx67AAVY9uD9pJqbCx2SEEKMOpIAjUDpPS0AtCSTlFflf9hUIlN2e5zfj66vzfv+RwrLsrCbGgHwjylMBTjF5SYVCNDaVdwnabZlYXR3oJoHL4gQTccwa2oAiG8rXIl2o6sLtcOppueuzH8PbX9UlZbSWl1F2rJg506iq1cdsI1tWSz/zU3UYFNfP5b6usn5D/QggiEPne2txLoTBbtwcCinnXg8n580hQst2P7A3wsdjhBCjDqSAI1AycZdAOxKxCmvrM37/lNlzsl6jdfHuhWFvdI+nG3YsB4znSJhmdROLszcCk9pBWE7RUeRzv/pzUzEMKOduA5SECGailGhzQTA19mZx8j2FVu7GoDN0SiTGhoKFsfhnLngOJ7Z08zz7W2kqg5M1MKvv0bFurX8WJvDBee+n0SsOIa/KYqC32cT7uggFk1hpM2iS4JqqqtoriwFwFi2lHR7cVVXFEKIkU4SoBHITqWImQY7E3HKK/M/BM70B0n7nZLN4c2bMM3iGBYz3Cxe/BZ/3rGNO1STspnjCxKDUlZJY3g3plk8lbQOxYh0Yif6HgqXNFLMPPVkAKqAaHtbnqNzxNY4C9uuDHdxxPjim//TY96kybxmW/xu8wbu/vvf9rkv3d5Oc+a2h3c3cua5FxCNFkfBk2CJF8tKEO7oJJ02iUfTRTcMDmDOqe9mdXcYFdj92COFDkcIIUYVSYBGohNP4DNL3+aR5iZKyysLEoJZ51zZHutS2ZipeCUG5tVXXwFg4ZwZKC5X3vfvCpQQcavs6WjK+74HyzZNjHAbqnFgVbikkaJ+1gxajTSqorDmP4cv8ZyTGE8/jRs2rueljlZmjitMYtsfiqJwyRnvBeDee//Czq1baH3kIcKvvcrOX/4c4nE2RyMkjjyS0lANlnnoanH5UlLiJRbuIJV05qxFI0mnF6jIkqDZM6fzctJZpLXzxRdJFbBXUgghRhtJgEag5ubdAATKq1HV/J84AyQyc48mB0KsXLmsIDEMZ+FwmLfefB2AU+bPLkgM7vIaWhKdRGLFV0r4UMxkHDPSjgsTep3zJtJJ0pZBV1kZAM0FqgT31vKlvNnZTllNLUGfryAx9NexU6Zx7JwjSafTvPbja2h/7BF23/kH0ntaaEkm+PXmjXz285fS3ZUodKgAKAoEgtDR+s6QzXTaJBZJFd0wOEVR0E49kQ2RCC7LYtOf/1rokIQQYtSQBGiEsW2bbdu3A1BRgAIIPbrGTGVDTR1vdLSxbNnSgsUxXL388ot8YfxEfnv0MVR35D8BUb0+kqEAjW078r7vbEhHurCinbh7vcMljRQpM0nl6e/hhk3ruWvVcizr4KWzc+X1V18GYOHU6Xnf90ApisLX338hJaEQD61fi25bdIVCPNW6h++uXcVZH/koU6fMJNJdHBUCQyU+bCtB535zaqKRJOmkgVpkvUAnHLuAp+LdALQ99zzJxsYCRySEEKODJEAjTGTJYsY++igfb5hAde24gsURrZ9M8uT3srI7zBtvvFaQE83h7Nn/Ps28snJqXe6CvEo9lXW0JLtpD7fkf+fZYNukw23Y8TAul3PSa2MTTkY5/oILWZlMsKmpkeXL85ucN/7+t1Rt2EjI5WLhtBl53fdg1QeC/PzyK9hmmvxg8Vt84cVnuXPrJo5YeCzf/OZVdHXESaeKY55faZmPSGcrqcS+CZlhWES6kxxmTde8U1WV+WedyqKOdrbEY7S37C50SEIIMSpIAjTCJLduIZhKUeZ2U11X2ApTDVNmEwyGaG3dw9pM5StxeG1trWx6602qvF5wqfjr81sqWfX6SYRK2N66FbvYzhgHwDZN0l17IBnZmwSFE2E8Pg9nnnk2AA/ksQRxqqmRyNuLOL+qhoDXx6yG4p3/s7+5VTU8cOfdXHTRJznttDO46qrv8Zvf3I5L9dLVES90eAC43Cp+v0V7S99JeyySIhFP4zrIWlGFcuz8eTxJmu+sXsEv/3JXocMRQohRobg+CcSQJbY665tsjEaoKmAPEEAymuAjxxzPrJJSXnrphYLGMpw89NA/ObIkBEBgQj2KO7/zuLzV9TQnO2nrHP5Xo610mnRnC6SiqC6FWDpB2k7z8fdfwIfGNjBp7dq9c+ZyLZyZ07WyO8yR06bjKkBhi8FKR6LU2fDD7/+Am276LZ/4xP8SCPhJxFKEu4ojASqvCJBOddPR1ndJacu26e5KkC6yggiqqvKpT3wERVV55pmnefnl57Glx1wIIXJKEqARxDYMEls2A7AxGi14D5Br6RucH4txQf04Xnzx+YLGMlwYhsGDD97PcRVOr09gQn7XcXKHyokEfGxp3oTN8O396c1KJUl3tKCkoiTNBEkzhTZD46PjxnN6dQ333XxDzmOwDYOul18C4IXWFk47cl7O95ltkR07MVpb8XicxM2lKrS3RjHShT9ZVxQoLXPRtrsR6xBl95NJg0g4MzyueHIgJo4fxwfOOQMVWHzjDWz59fWSBAkhRA5JAjSCxDdvwkokCKfT7EjEqawZW9B4wvVTADiyrJzN69exceP6gsYzHDzyyL+I7dmDVuIskhiYlMdCFqoLtaaerd1NdEUKs0ZOrlipBOmOZmKRPSStOL6aKpjpLIpauW4db731Rk73H1m6BLOri45UitWJOMdNn5nT/eWCmUjSvXETaiKGqqokEwYd7bFChwVAabkfrBitu5sPu22kO0kskkJVi+vj7+MXnsexUyZzZkUVxrp17Hn8sUKHJIQQI1ZxfQKIIYmvWQU4CyxW1Y7D4/EWNJ5kRR1WWQVeVeXI0jIefPCBgsZT7BKJBLff/ltOqa5BVRR842pxlwTytn9/bQO7SbCtaWSu22SlkqTadtPWuQufB6Z96tPYwAlV1dxxzXfZtm1rTvZr2zYdTz8JwLOtLZx51AK8Hk9O9pVrsabdxLdvx+9V6eqIv9ObUkCKAhWVPtqbd5JMHL4ct23bhDvjJOPpPhfMLRSv18MnP/+/3NvsVIJrf+QhOt56s8BRCSHEyFQ87/5iyKIrlgOwPNxF/fhpBY4GUBQiEzQATqis5t//foR4vDjmCxSjO+74LS0tzez2eSk79mhKj5iUt317K2rpCvlZ37iWtJHK237zzTLStDZvJR7eTdn4Okrf/W4APlNTxxWXfo5169ZkfZ+RxYtIbN1C3DR5Zk8zHzjuXVnfR97YNt3bthPvCNO6J1LoaAAorwyC1c3unf0vIW0YFp3tcVJJo6iSoNrqKhZ87IM839aKCjTd8Ttal7xd6LCEEGLEKZ53fjEktmlSctR8OhSFtzs7qG+YWuiQAGibNAeAE6qrMWJR/v73vxU4ouK0YsUy7r77TwBcfMUVjH3fSYRm5GcOl6e0gmR1DetaNtLZPbKGvvWlq7uVru5WUrvWMfFD5+KqqqLO5+eLFVX832f/lzvuuI1YLJq1/XknTmKFkebR3Y0cP2ce46trstZ2IfirKtmzvZVwUweqq7ATadxulYpKNy27tvWr96e3VMqgsz3mrA9UREnQrBnTqHj/mbzd1YEbaP7tb1j370cLHZYQQowoxfOuL4ZEdbspef+FXL1zFxHToH58cSRA8ZoGjOoxeBWVM2rquPPOOwiH87+wZzFraWnmiiu+hmVZnHfe+znzhGNIdeRn/R1PWRXp2rGsa99KU+u2vOyz0GKJCO3JbmwjRWLHaiZf8hFcpSXUB0NgGNx22y2cc857+PWvf8HKlSuGXAr89nv/zE+WLeapjjY+856zsvRXFIa3rBSzpIod63YSb2mGZKKgSVDd2BISkZYB9f70lkwYdLTFSCWKKwmaM2smZRecw4poBI+ikHzwAW7+xU9ob++7wp0QQoiBKZ53fDEkbrfKhi2NNDdtB2DchCJZZFFR2DPreACOGlNPd3eYX/3q5wUOqnh0dHTw1a9+iT17WvjEEXO4dOw4ohtWYqUGdjV74BS81WNJ1NSxun0z25pGV4GK3Z2NpEtKsVJJjGgzDR87C+0Ln+LbP/4hEydOIhLuYvnD/+LT//sxzjrrFL75za9xzz138eabr9PS0tyvpKjlzdf56XXXcOfddwJw+fkXUFtenuO/LHdUjxv/hIk0t0QJ7wljRGIkmpshHi9IElRdF8KtRtm2ccMhK78dTjJp0N4aJR5JoapK0ZTInjxlEuM+/RFWYvGXHdu4676/ct55Z3DddT9ixYplw3qNLiGEKDR3oQMoFpqmqcA1wOeBSuAV4DJd1zcWNLB+aH3oQdwTJvL8ik0A1I2dRKi0eE60OqbOJTS+gclVLtQvfJpHH32I448/kfPOe3+hQyuobdu28o1v/B+bNm3gqPpxXFheSWzZcjpKoXTO5Jzt1+UP4a4dS5sb9KbV7OkY3NXz4WxPZxPttVOorawl1bYbxWOBEuH0adWc9adbeOuJFyh7+XVaUyneaG9j0Ruv89x/n6GnMHFJSSnjx0+grq6OuroxVFVV4/P58Hg8RDo7qV+3liNTaapbW1AUhS+9932cPveogv7NQ6G4XJRMnUJHXGWX/s7zxYjEiJu78ddU4yopxbIhH+flVTUhSkMG2zasIxruHnJ76bRJe1uUkpSPUKkPj8eFma8/5hDKyssou+QiUmvXs/2p/7Jh4ybWP/0Ez7/xGj81DWYecxzHHns8Rxwxm0mTpuAZpsU1hBAi3xS5iuTQNO0a4DLgEmAXcD0wFZij6/pgZoVvBqZ0dEQxjNyt5xB+/VV2/+kPANzlLefJ157m+FM/wLkf+XLO9jkYigJHTqvh6Yfv5p4/3k5aUbnhhps59dT35HzfbrdKZWWIXB+L/rIsi3//+xGuv/46IpEIJ4yfwP+bMh3icYJTxlHz3mNQlOxfhXYFS/CU1xAL+NkZa2NL03riyfxOZFcUcHtcGGmz0OeWjK2ZyPy6WSi7tmIl9y3OEd20m/aXl2El3qlylga2p1Ksam/lkaZGIqYBQMjlosztoc7n48jSck6rqaU8cyL6n0iY6ce9i4XTiqRHthdVVQgEvMTjKSzr4AfD5fMRmjKZsOln47JtJGMHVn5T3C58FRV4KsrB68Oy7JwcX5dLpba+BJ83zo6N6/pV9nqgvF43JaU+/EEPLreKbdvYh/j/ZIOqKvgDXhKHOBa2bbNp6w4aXnyTcsvGtG0Wd3bwansrS7o6MVUXkydPZty4BurrxzF27FhqamopLy+nvLwi872SsrKyYbUIbyFUVYVwudQtOOcAQogRSBIgQNM0L9AKXKnr+u8zt1UAjcBndV3/+yCazWkCZHR10vHkE3Q8+x+wbTrmnsg3//Vnurva+PgXr2bW3OKrNOX1qBzREKL5J99ma3srD+1u4qxPX8LFn/l8Tq9cFksClEqleO65/3DPPXezevVKpgRDfHLWHI5yucC28dXXUHfucai+7PwvFLcHlz+IK1CCFSwh5oLmeAe72rbTEd6TlX0MOKYiSoAUReGISfOZ5q/G2r0TM7Fv4QPLMEnsaCG+o5XYll1Y8XdO/H1f/z8aI1F2726m8s03GNe6b/GIhNeLOWcODePGF916Mz0OlwCpHg/+2hpc1bW0hy22rt5BKn7oa0Euvx9veSmuUAmK14ut9iQQQ4vV43FRVuGntEwlFW9n+8YNhDs6h9boYfh8bgJBL/6AB7dHdYbG2U5il+3Pzf4kQADYNkpjC+7V61F2Nu292bRtNkejvNbRyuPNuw+7P6/Xi98fIBAI4Pf78fvf+R4I+PH7/bhcblwu1z5fqurC7Xb1ed87X25cLnXvNqqq7v1SFBWXy/muqgoul2vvz6rqymyjZB6nZLZ3oShKpg1XZtt3ft63zb6/9t+mr+0VRdl74UkSICFGPhkC55gPlALP9dyg63qnpmlLgFOAwSRAdO5p467vXY+iALaCojiLjyfcXtbXTobMG+7sli34jdTeN1+l11fK42PthDkEyiqpGT+D2W8+SrBpM/6W7Sg4H5Q7jjyD/5RNorurDV+wjMD8D7GzwGsAHUz3W8s5yoYF5ZUsKK8k/MorPPnSK3gaplEyQaPrqNOIj3U+c7wdzZTrb4LS9wlkZNIc4pnFVj1drVSsfb3P7RQFklPnEa6bhG2DO9JB5cqXDxpjZNx0wvVTsS0TNdJJzaqXsG3LuQpsW9i2hWU63zsr62mtnYBlGKiJCJM2L8O2rMz2FkY6STLcTqpzD4t3bOT1FufkRKuo4drp050d2jZts45nx7svwPL4DvHfyzyBMt8VFPY+qVCdHxUXtqpgKQo2NoZpY3SbJNqTpFNJDCsEjIeCXQBWUCywVYDCX3zZtFOhLFhB0DUVlx9sI41tmc7QJ7cNU3C+Trbwd7QQ2rOdYOsuGu0jUMo9UOXBvyOCGX6TdFkN8ZrxdE48krYxMzBNC2dlLgWw+/5r8/4veKdnUVFAdbmwXJZzu6qgqC4UtwvV7cZUXJimQmxrklh3HEKzIdSPXZigRFRUtxvF7UZxq6A4J7EoCraiOFHYNrbSE1Xm/TFzn6IqqC4lc5IM2BZWOEWsqZtYt4ptzQR/1v85B4qDknR6nlSX4nxXnb9D7XkNZux7KAd+YF1pF6bRj7lMNcCpZ1LSsZux21dRv20Vge42ZpSU4J82F6thDuG2JiJ7Grkq2kTEtggbBt3pFPF0iqRlkTQt1ke7eS6TLCnAx8aNxwYs28ba+93GsGFnMsGizo69Ibx/zMEX2d6TSvJGxzvFGs6tq8d9kB7t9nSKV9vfuXhwVm0dPrXvN6eudJqX21v3/n56TS3Bg/RkRQ2TF9reuchzSnUNpe6+T3cSpsWzrU7RGUVVeXdVDbc+/m9qx+enCqcQojAkAXKMz3zfsd/tjcDEwTbqNw2Obz5wCtH2WIxbHv7T3t/fO+coGgJ9L3jZnEzwswfv2Pv7z45cSLXf6SHQyzUemvxRllfNx/rHRQCktAu5Z2vtYEPOg1OoP246F2x5gGNbXqPMA2UArduhdTsPvvwiL9W9G6qns8Cd5sot9x20pbtmfp7/jHfWGTqio50fLL33oNv+dfEG/u2ZDMkupsYa+am56qDbPtC4kwcadwIw3h/g10cefO7Go7sb+etOp/BErdfHb+cd3feGCsT9fl4vqUeZ90l2zv0o8WXfYXn10Tw54f1sKNdgy0F3I4rCFFCOh1qg99On5mtwUq/fDZxBtCIHxhQ6gCIyG+reA3VQE29hVucaur1lLK9YABVQMb4d96tfoEJRqfB6wbvvRTHvjPfy4rgPQjqOO9XNh7f97qB7ekut5m33TLAMsEz+x1py0ApKyw0vb9aVgW2Bmeaiim6CBxnRuzZl86p/srOtbfGRsT4qD1KNb3MixcuGf++2F45roN7bd295YyLBCx2de7d9/5ixTAr2nb23ppJ7EyDbsjinppaQW4YICjHSSQLkCGa+7z+4PQFUDbbRJAqLlIAzZCJzBdjGpivgZ9yC92HbFtg2y5QEG03Lubf3trZNVAlSO+vdJDqbibRs4f4dm3ApCluSaUqPncb4iigz19/E2u2vorp9nPWxLxMq5vwHgHE0zv86jxmXEmpcQ/rNf5Lc8AbeZIQdne1Y614CYE8gyPNj6nGpLlSXB0V1QWY4A0Dbq7/CF7sWy0wTURVeqizDNk3nCv5+dmy4B6urE4Cw18fz4w5+dW9LrzVgoqbBc3syJalVBQU103PnDJnYjptAVQOqy4PL4+alWBJQUDJxKqoLNVCGXVKFveDjXHjMh1EyQ6IeW3A3lsvDEcARQ/+nCiFGrTqgjiqgZ/lkxSrn0Sm344t14o934U3FcBlJ3OkELiOFXTmeD06ZB4BqptFf34ZiWyi2hZr5rljO2EVX7TQunPu+vXvb+vytKAcZBmhVTeTC+R/c+3vTi79DNdN9bpsuH8eHFn5k7+97Xv4DXalYn9vGS2v50OWf3Pt752t3kYiH+9w2EazgQ5dfvPf36Bt/ZWtkT2bY7TvFLWzbIukNcd5n/4JtOclSdMVjmO58dC8KIQpJ5gABmqZ9GPgnENR1Pd7r9vsBn67rHzzogw9uMzAlHI5jmtmZdxKJRHjhhef4y1/uZs2aA3swLr/8Cj7/+S9lZV/5Zts2Gzas57XXXmHt2jVs2bKZbdu2Eo0OfkHKYDBEaWkJJSWlVFVVEgw6P5eVlVJaWpb5KqWszPleWlpGWVkZJSWl+HzefcayF+s8juHG5VIpKwuQzdeFGBw5FsVDjkVxKS8PoKoyB0iIkUx6gBw9Q9/GAZt63T4OWD6Uhk3TytrEe78/yDnnnM/ZZ5/H4sWL+Ne/HmDp0sWUlpbyoQ99jIsu+mRRVDkbrKlTZzB16r7VspLJJJ2dnYTDnaTTadLpNKlUCtu2cbudSbZutxu324Pb7cbv91NaWkooVLK30tFQiyBYllO5TWRPNl8XYmjkWBQPORbFQa4LCzHySQLkWA6EgdPIJECZKnALgFsLFtVBKIrCMcccxzHHHFfoUHLO5/MxZswYxoyRsf9CCCGEEGLoJAECdF1Papp2K/ALTdP2AFuBX+L0DP2rkLEJIYQQQgghskcSoHdcjfP/+CMQAF4Czh7kIqhCCCGEEEKIIiQJUIau6yZwVeZLCCGEEEIIMQJJaSshhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUUGzbLnQMI1Uc8JumVeg4BOByqcixKA5yLIqHHIviIceieKiqgqIoCSBQ6FiEELkhCVDudAI+oKnAcQghhBCi/8YCSaCiwHEIIXJEEiAhhBBCCCHEqCFzgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFFDEiAhhBBCCCHEqCEJkBBCCCGEEGLUcBc6gJFE07TvA2fqun5ar9vmAzcDxwBtwC26rv+qIAGOIgc5Fu8HrgaOAFqBB4CrdV2PFyTIUaKvY7Hf/X8AztJ1fXI+4xqNDvK6GAv8GjgXMIGngK/rut5akCBHkYMcj2OAG4AFQCdwH/ADXdeThYhxpNI0rQr4KXA+UAasAL6t6/ormfvnI5/dQoxY0gOUJZqmXQ78eL/bqoH/AOtx3kSvAa7VNO2SvAc4ihzkWJwMPAQ8CMwHvgxcBNyW5/BGlb6OxX73XwB8Pl/xjGYHeV34cN6jpgJnAufhnHj/Jd/xjTYHOR41OAnoWuBo4AvAZ4Dr8hzeaPB34F3Ax4FjgSXAM5qmzZLPbiFGPukBGiJN0xqAPwInA/p+d38RSAKX6rpuAGs1TZsBXAXclddAR4HDHIsvAc/puv7zzO8bNU37LnCXpmlflqur2XWYY9GzzVjgDuBFYHLeghtlDnMsPoHzv5+m63pzZvvLgds0TSvTdT2cx1BHhcMcj5OAauBbuq5347xP/RU4G/hmXgMdwTRNmw6cBbxb1/XXMrd9HacX9JNAHPnsFmJEkx6goVsAdADzgDf3u+9k4KXMG2iP5wBN07S6PMU3mhzqWNwAfKuPx7iB0hzHNRod6ligaZoC/Bm4B3ghr5GNPoc6FucAz/YkPwC6rj+t6/o0SX5y5lDHoy3z/VJN01yapk0G3ge8kb/wRoVWnN7OxT036LpuAwpQhXx2CzHiSQ/QEOm6/hjwGICmafvfPR5Yud9tjZnvE4GWnAY3yhzqWOi6vrT375qmeYErgCUy1yH7DvO6APh/wFjg/cB38hfZ6HOYYzETeEnTtB8AFwMe4GngSl3XO/MY5qhxmPeplzVN+zlwLc78FBfOBYL/y2+UI1vmuf1E79s0TfsoMA3n+X8d8tktxIgmPUC5FcTpRu8tkfnuz3MsIkPTNDdOz8Ns4LIChzPqaJo2D2dM/f/I0MOCK8NJfI7CGfrzRZxhWI9keulEHmmaVoGTlP4WOA74KDAd+F0BwxrxNE17N3An8EgmQZXPbiFGOOkByq044Nvvtp43z2ieYxGApmmlwP3A6cBHdF0/YHiWyB1N0/zAvcBPdF1fUeh4BCkgAnxC1/U0gKZpFwNv4Uz+XlTA2EajXwAVuq5/OPP7Ek3TOoD/app2k67rywsY24ikadoHcd6T3sCZEwfy2S3EiCc9QLm1Axi33209v+/KcyyjXmbS/cvAicC5mSt9Ir+OB+YAP9Q0LaJpWgT4LjAx8/v/FDa8UWcnoPckPxmrM9+nFCCe0e4kDkw6e+b/zMxzLCOepmlfBf6FMxzufb2WRJDPbiFGOEmAcusl4GRN01y9bjsD54RDxhDnkaZplTiTWGuBk3Rdf77AIY1WbwEzcIZczc98/R5nfP184NECxTVavQQcpWlaoNdtczPfNxYgntFuB05xhN56jseGPMcyommadinwG+BW4KL9huPKZ7cQI5wMgcutO4ErgT9pmnY9zpjuy3HWoBH5dSPOWifnAHs0Tavvdd8eXdfNwoQ1umSusO5zYq1pWjtg6LouJ9z593vgq8C9mUII5Znbntd1fUlBIxudfg08pWnatcDdwCSctcqe0HV9WQHjGlE0TZuJs8jpQ8DPgLpeBSniyGe3ECOe9ADlUOZK0dmAhrPI2jU46zv8uaCBjTKapqk4i556cXqBmvb7mlC46IQonEwFxJNxqr+9iVOd7C3gwkLGNVrpuv4McD7OGjXLcE7EnwA+VsCwRqKP4DznL+TAz4Ob5bNbiJFPsW270DEIIYQQQgghRF5ID5AQQgghhBBi1JAESAghhBBCCDFqSAIkhBBCCCGEGDUkARJCCCGEEEKMGpIACSGEEEIIIUYNSYCEEEIIIYQQo4YkQEIIIYQQQohRQxIgIcSwpGmaUugYhBBCCDH8SAIkhBh2NE37APDnzM+naZpma5p2WmGjGjpN07ZqmnZ3oeMQQgghRjJ3oQMQQohB+Eavn5cAJwBrChRLNl0IhAsdhBBCCDGSSQIkhBjWdF0PA28UOo5s0HV9aaFjEEIIIUY6xbbtQscghBD9pmnaC8CpvW46HXgeOF3X9Rc0Tfsh8HHg28BPgOnAOuBSwAZuBuYBm4Cv67r+bK+2jwR+DpySuelZ4Apd1zcPMMatwF1AOfBpwAc8CnwJ+Arwf0Ap8F/gi7qut/V63Au6rn9G07TJwBbgY8BFwNmAATwIXK7remQgMQkhhBDCIXOAhBDDzWXA0szXCUBZH9tMAH4NXIeTQFQB/wTuA/6AkyCpwN81TQsAaJo2E3gNqAM+A3wOmAq8qmla3SDi/AYwKbOvnwKfBN4G3gt8Efgh8EHgx4dp53ZgK3ABcD3wWeB7g4hHCCGEEMgQOCHEMKPr+hpN08KZn984SPGDIHCZrutPAWiaNhv4GfA5XdfvzNzmxkmKNGAZcA0QB87MDKtD07Rngc3AtzJfA9ENXKTrugH8V9O0i4FxwPG6rncBT2ia9h7g3Ydp53Fd17+Z+flZTdPOAs4HvjPAeIQQQgiBJEBCiJHrtV4/7858+kcirAAAAaFJREFU7z1XqC3zvSLz/QycoXSxTHIETkGCl4GzBrH/tzLJT+8Ywpnkp3cMcw/Tzuv7/b4TmDyIeIQQQgiBJEBCiBGqpxdnP7FDPKQaZ67NRX3ct2cQIQx0/wez/2MsZPiyEEIIMWiSAAkhhKMTpyjBDX3cZ/RxmxBCCCGGIUmAhBDDkQm4stzmi8BsYFnP0DVN0xTgr8BGnHlCQgghhBjmJAESQgxHncAJmSIC5Vlq88c4823+rWna74AETtnqC4CPZGkfQgghhCgwGUcuhBiObgXSwJNAIBsN6rq+AjgZZ62ge3AqxI0FLtB1/V/Z2IcQQgghCk8WQhVCCCGEEEKMGjIETggh+kHTNJV+9JrvV/paCCGEEEVGhsAJIUT/3Ikz7O6QX5qmTS5UgEIIIYQ4POkBEkKI/vkhztyjw2nMcRxCCCGEGAKZAySEEEIIIYQYNWQInBBCCCGEEGLUkARICCGEEEIIMWpIAiSEEEIIIYQYNSQBEkIIIYQQQowakgAJIYQQQgghRg1JgIQQQgghhBCjhiRAQgghhBBCiFHj/wNWMk1OIxk4dwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "import hplc.quant\n", + "chrom = hplc.quant.Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "peaks = chrom.fit_peaks()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks.head()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence).\n", + "3. Clipping of the chromatogram into \"peak windows\" which contain at least one \n", + "peak. Regions of the chromatogram which are stacked with heavily overlapping signals\n", + "are grouped into single windows. \n", + "4. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "5. Given best-fit parameters for each distribution, the expected signal of the \n", + "compound across the entire observation window is computed. The integrated signal \n", + "over the entire peak is computed and stored.\n", + "6. The estimated mixture of all compounds is computed given the parameter estimates \n", + "of each distribution. \n", + "\n", + "The rest of this notebook will examine in detail how each of these steps is \n", + "implemented.\n", + "\n", + "#### Step 1: Correcting for a Drifting Baseline\n", + "\n", + "#### Step 2: Identification of Peak Maxima and Including Obscured Peaks\n", + "\n", + "#### Step 3: Clipping the Chromatogram Into Windows\n", + "\n", + "#### Step 4: Per-Window Estimation of Constituent Signals\n", + "\n", + "#### Steps 5 & 6: Integration of Signal and Evaluating Composition of Mixture" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/index.html b/index.html new file mode 100644 index 0000000..00f47c3 --- /dev/null +++ b/index.html @@ -0,0 +1,179 @@ + + + + + + + About — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ + _images/page_logo.svghttps://img.shields.io/badge/License-GPLv3-blue.svg +https://github.com/cremerlab/hplc-py/actions/workflows/pytest.yaml/badge.svg +https://codecov.io/gh/cremerlab/hplc-py/branch/main/graph/badge.svg?token=WXL50JVR6C +https://badge.fury.io/py/hplc-py.svg +https://zenodo.org/badge/667610900.svg +
+
+

About

+

Welcome to the documentation for hplc-py! This package provides a limited, yet +robust, interface for accurate and efficient peak detection and quantification +from chromatography data, specifically from High-Performance Liquid Chromatography (HPLC).

+

Chromatography is an analytical technique which allows for quantitative +characterization of a chemical mixture. While many of the technical details of +HPLC are now automated, the programmatic cleaning and processing of the +resulting data can be cumbersome and often requires extensive manual labor. The +goal of hplc-py is to reduce this manual labor and make running of the +chromatographic separation the most time-consuming step in the process.

+
+

Installation

+

You can install hplc-py using pip:

+
$ pip install --upgrade hplc-py
+
+
+

Dependencies for hplc-py are as follows:

+ +
+
+

Contributing

+

Development of hplc-py occurs on various feature branches which are merged and +released upon approval by Griffin.

+

Please submit issues and bug reports using the issue tracker. When filing an issue, +provide a reproducible example that demonstrates the bug or problem. Feature +requests can also be made through the issue tracker, though it is up to the +discretion of the maintainers what is worth implementing.

+
+
+
+
+
+
+
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/io.html b/io.html new file mode 100644 index 0000000..a6e2897 --- /dev/null +++ b/io.html @@ -0,0 +1,160 @@ + + + + + + + hplc.io — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

hplc.io

+
+
+hplc.io.load_chromatogram(fname, cols, delimiter=',', dropna=False)
+

Parses a file containing a chromatogram and returns it as a Pandas DataFrame.

+
+
Parameters:
+
    +
  • fname (str) – The path to the file containing the chromatogram. This must be a text +file (i.e. not .xslx!)

  • +
  • cols (list or dict) – The desired columns present in the file. If provided as a dict, columns will +be renamed as key -> value. If not provided, it will be assumed +that the chromatogram begins without needing to skip any lines.

  • +
  • delimiter ('str') – The delimiter character separating columns in the chromatogram.

  • +
  • dropna (bool) – If True, NaN’s will be dropped from the chromatogram.

  • +
+
+
Returns:
+

df – The chromatogram loaded as a Pandas DataFrame with the desired columns.

+
+
Return type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/baseline.html b/methodology/baseline.html new file mode 100644 index 0000000..2802e1f --- /dev/null +++ b/methodology/baseline.html @@ -0,0 +1,389 @@ + + + + + + + Step 1: Baseline Correction — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Step 1: Baseline Correction

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+
+

What’s in a baseline?

+
+
In liquid chromatographic analysis, compounds are carried through an absorptive substrate (termed a stationary phase) by a solvent (termed the mobile phase). In an ideal world, the column is saturated with the mobile phase and is held at a stable temperature and pressure. This sets baseline signal that can be subtracted from
+
the signal detected over the course of the chromatographic separation, allowing for quantitation.
+
+

However, we don’t live in a perfect world. Often, variations in the column temperature or ineffective equilibration of the column with the solvent, resulting in a drifting baseline. For complex samples, such as whole-cell metabolomic extracts, a drifting baseline may result from the sheer number of compounds present in the sample at low abundance that convolve to a “bumpy” baseline.

+

For quantitative analysis, we would like to correct for a drifting baseline, so we can more effectively tease out what signal is due to our compound of interest and what is due to nuisance. Take for example the following chromatogram with a known “true” drifting baseline.

+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set()
+
+# Load a dataset with a known drifting baseline
+df = pd.read_csv('data/sample_baseline.csv')
+
+# Plot the convolved signal and the known baseline
+plt.plot(df['time'], df['signal'], '-', color='k', label='observed signal', lw=2)
+plt.plot(df['time'], df['true_background'], '--', color='dodgerblue',
+         label='known baseline', lw=2)
+plt.legend()
+plt.xlabel('time')
+plt.ylabel('signal')
+
+
+
+
+
[1]:
+
+
+
+
+Text(0, 0.5, 'signal')
+
+
+
+
+
+
+../_images/methodology_baseline_2_1.png +
+
+

This chromatogram was simulated as a mixture of three peaks with a known (large) drifting baseline (dashed blue line). But what if we don’t know what the baseline is?

+
+
+

Subtraction using the SNIP algorithm

+

In reality, we don’t know this baseline, so we have to use clever filtering tricks to infer what this baseline signal may be and subtract it from our observed signal. There are many ways one can do this, ranging from fitting of polynomial functions to machine learning models and beyond. In hplc-py, we employ a method known as +Statistical Non-linear Iterative Peak (SNIP) clipping. his is implemented in the hplc-py package as method correct_baseline to the Chromatogram class. The SNIP algorithm works as follows.

+
+

Log-transformation of the signal

+

First, the dynamic range of the signal \(S\) is reduced through the application of an LLS operator. This prevents enormous peaks from dominating the filtering, leading to the erasure of smaller (yet still important) peaks. Mathematically, the compression \(S \rightarrow S_{LLS}'\) is achieved by computing

+
+\[S_{LLS} = \ln\left[\ln\left(\sqrt{S + 1} + 1 \right) + 1\right] \tag{1},\]
+

where the application of the square-root operator selectively enhances small peaks while the log operator compresses the signal across orders of magnitude. Applying this operator to signal in our simulated chromatogram yields the following

+
+
[2]:
+
+
+
# Apply the LLS operator to the signal and visualize
+import numpy as np
+S = df['signal'].values
+S_LLS = np.log(np.log(np.sqrt(S + 1) + 1) + 1)
+plt.plot(df['time'], S_LLS, '-', color='r', label="$S_{LLS}$")
+plt.legend()
+plt.xlabel('time')
+plt.ylabel('signal')
+
+
+
+
+
[2]:
+
+
+
+
+Text(0, 0.5, 'signal')
+
+
+
+
+
+
+../_images/methodology_baseline_5_1.png +
+
+

Note that the y-axis has been compressed to a small range and that the first peak is now comparable in size to the other two peaks.

+
+
+

Iterative Minimum Filtering

+

With a compressed signal, we can now apply a minimum filter over a given window of time \(W\) over several iterations \(M\). For each time point \(t\) in the compressed signal, the filtered value \(S'_{LLS}\) for iteration \(m\) is computed as

+
+\[S'_{LLS_m}(t) = \min\left[S_{LLS_{m-1}}(t), \frac{S_{LLS_{m-1}}(t-m) + S_{LLS_{m-1}}(t + m)}{2}\right] \tag{2}\]
+

Note that the average value of the signal at time \(t\) is compared to the average of the window boundaries, with the window increasing in size from one iteration to the next. To see this in action, we can plot the filtering result over the first 200 iterations of this procedure applied to the above compressed signal.

+
+
[3]:
+
+
+
# Define a function to compute the minimum filter
+def min_filt(S_LLS, m):
+    """Applies the SNIP minimum filter defined in Eq. 2"""
+    S_LLS_filt = np.copy(S_LLS)
+    for i in range(m, len(S_LLS) - m):
+        S_LLS_filt[i] = min(S_LLS[i], (S_LLS[i-m] + S_LLS[i + m])/2)
+    return S_LLS_filt
+
+# Apply the filter for the first 100 iterations and plot
+S_LLS_filt = np.copy(S_LLS)
+for m in range(200):
+    S_LLS_filt = min_filt(S_LLS_filt, m)
+    # Plot every ten iterations
+    if (m % 20) == 0:
+        plt.plot(df['time'], S_LLS_filt, '-', label=f'iteration {m}', lw=2)
+
+plt.legend()
+plt.xlabel('time')
+plt.ylabel('signal')
+
+
+
+
+
[3]:
+
+
+
+
+Text(0, 0.5, 'signal')
+
+
+
+
+
+
+../_images/methodology_baseline_7_1.png +
+
+

As the number of iterations increases in the above example, the actual peak signals become smaller and smaller, eventually approaching the baseline.

+
+
+

Inverse Transformation and Subtraction

+

Once the signal has been filtered across \(M\) iterations, the filtered signal \(S'_{LLS}\) can be passed through the inverse LLS operator to expand the dynamic range back to the scale of the observed data. This inverse operator, converting \(S'_{LLS} \rightarrow S'\) is defined as

+
+\[S' = \left(\exp\left[\exp\left(S'_{LLS}\right)-1\right] - 1\right)^2 - 1. \tag{3}\]
+

Performing the subtraction \(S - S'\) effectively removes the baseline signal leaving only the “true” signal

+
+
[4]:
+
+
+
# Compute the inverse transform
+S_prime = (np.exp(np.exp(S_LLS_filt) - 1) - 1)**2 - 1
+
+# Perform the subtraction and plot the reconstructed signal over the known signal
+S_subtracted = S - S_prime
+plt.plot(df['time'], df['true_signal'], '-', lw=2, label='true signal')
+plt.plot(df['time'], S_subtracted, '--', lw=2, color='r', label='baseline-subtracted signal')
+plt.legend()
+plt.xlabel('time')
+plt.ylabel('signal')
+
+
+
+
+
[4]:
+
+
+
+
+Text(0, 0.5, 'signal')
+
+
+
+
+
+
+../_images/methodology_baseline_9_1.png +
+
+

With 200 iterations of the filtering, the baseline-subtracted signal is almost exactly overlapping the known signal, demonstrating the power of the SNIP algorithm.

+
+
+
+

How many iterations?

+

The above is dependent on how many iterations are run. As described by Morhác and Matousek (2008), a good rule of thumb for choosing the number of iterations \(M\) is

+
+\[M = \frac{W - 1}{2} \tag{4},\]
+

where \(W\) is the typical width (in number of time points) of the preserved peaks. Choosing \(W\) is dependent on your particular signal. In HPLC chromatograms, the observed peaks are typically on the order of a minute or two wide. In general, it’s advisable to be generous with the approximate peak widths as an underestimation can result in subtracting actual signal.

+
+
+

Implementation in hplc-py

+

The above SNIP background subtraction algorithm is included as a method correct_baseline of a Chromatogram object. The above steps can be called in a few lines of code as in the following:

+
+
[9]:
+
+
+
from hplc.quant import Chromatogram
+
+# Load the dataframe as a chromatogram object
+chrom = Chromatogram(df)
+
+# Subtract the background given a peak width of ≈ 3 min
+chrom.correct_baseline(window=3)
+
+# Show the chromatogram
+fig, ax = chrom.show()
+
+# Plot the true signal
+ax.plot(df['time'], df['true_signal'], 'r--', label='true signal')
+ax.legend()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 187/187 [00:00<00:00, 490.64it/s]
+
+
+
+
[9]:
+
+
+
+
+<matplotlib.legend.Legend at 0x17eb01450>
+
+
+
+
+
+
+../_images/methodology_baseline_11_2.png +
+
+
+

© Griffin Chure, 2024. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/baseline.ipynb b/methodology/baseline.ipynb new file mode 100644 index 0000000..806e6da --- /dev/null +++ b/methodology/baseline.ipynb @@ -0,0 +1,382 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 1: Baseline Correction\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## What's in a baseline?\n", + "\n", + "In liquid chromatographic analysis, compounds are carried through an absorptive substrate \n", + "(termed a stationary phase) by a solvent (termed the mobile phase). In an ideal world, the column is saturated with the mobile phase and is held at a stable temperature and pressure. This sets baseline signal that can be subtracted from \n", + "the signal detected over the course of the chromatographic separation, allowing \n", + "for quantitation.\n", + "\n", + "However, we don't live in a perfect world. Often, variations in the column temperature or ineffective equilibration of the column with the solvent, resulting \n", + "in a drifting baseline. For complex samples, such as whole-cell metabolomic extracts,\n", + "a drifting baseline may result from the sheer number of compounds present in the sample at low abundance that convolve to a \"bumpy\" baseline. \n", + "\n", + "For quantitative analysis, we would like to correct for a drifting baseline, so we \n", + "can more effectively tease out what signal is due to our compound of interest and \n", + "what is due to nuisance. Take for example the following chromatogram with a known\n", + "\"true\" drifting baseline." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB7KElEQVR4nO3dd3hUZd7G8e+U9J5AEhIC6YReJIB0qRYsiGV1ce1iX3QVX8WCq6xl7WIFVOysoK4oFrAgCNJ7gJBKEkhCei8zc94/ZmcyQ50kk8xk5ve5Li9Pzpw558nDQO48VaUoioIQQgghhAtQO7oAQgghhBD2IsFGCCGEEC5Dgo0QQgghXIYEGyGEEEK4DAk2QgghhHAZEmyEEEII4TIk2AghhBDCZUiwEUIIIYTLkGAjhBBCCJehdXQBHEFRFAwG+y+4rFarOuS+rkjqqnWkvmwndWU7qSvbSV3ZrqPqSq1WoVKpznqdWwYbg0GhrKzWrvfUatWEhPhRVVWHTmew671djdRV60h92U7qynZSV7aTurJdR9ZVaKgfGs3Zg410RQkhhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLsMtBw8LIYQ4NYPBgF6vc3QxnIrBoKKhQUNTUyN6vcyMOpO21pVGo0Wttk9biwQbIYQQKIpCVVUZ9fU1ji6KUyopUWMwyIwoW7S1rnx8/AkMDLVpSveZSLARQghhDjX+/iF4enq1+4eLq9FoVNJaY6PW1pWiKDQ1NVJTUw5AUFBYu54vwUYIIdycwaA3hxp//0BHF8cpabVqWcPGRm2pK09PLwBqasoJCAhpV7eUDB4WQgg3p9frgZYfLkI4gunz194xXhJshBBCAEj3k3Aoe33+JNgIIYQQwmVIsBFCCCGEy5BgI4QQwm0sXfoOV1xxsaOLYRft/V7Gjh3O6tWr7FiiMzt27Chjxw5nx45tHfocCTZCALm5OVx33dVce+0VZGdnObo4QgjR4f773x+YPHmqo4thdxJshNtTFIVHH32IvXt3k5a2jyeffNTRRRJCiA4XFtYNLy9vRxfD7mQdG+H28vPz2Lt3t/nrXbt2UFRUSEREpANLJYRoi6qqShYvfps//vidiooK+vRJ4fbb72bw4KFW133wwRJWrPic5uZmJk+exj333I+Pjw8Amzb9wZIlb5OTk4WPjy/nnjuG++57AF9ffwBycrJZtOhldu/eia+vL8OGpXL33XMJC+sGwN1330Z0dE+ysjLJy8tl7twHefrpJ/j44y+IjY0zl2Hu3DsJCwvjsceeoqamhjfeeJX163+lubmZPn36cued95KS0s98/X//+yWffvohx48fZ+TIUURE9DhjXeTlHeHll//N/v17MBgUBg4cxF13zSUhIREwdkU98sgTXHihsTvrP//5jC+++IzS0lIGDhzMkCFD+e67b1ixYhXHjh3lyisv4Z//fJbPPvuIzMzDhIV15/rrb2LGjEsBaGpq4r333uXXX9dSVFSIr68fqakjuf/+eQQFBbfjT7V1JNgIt7dt25aTzm3evIlLLpnpgNII4Tx++ukH3nrrNWprazv92X5+ftx5571MnXq+ze/R6/Xcd9/dNDc38eijTxIaGsbKlf9h7tw7eeutpeaQUFh4jG3btvDSS4uora3l+ecX8uST83n22ZeoqKhg/vwHufvu+xg9eizFxUU89dQTvP76Kzz00KOUlBznrrtuYfLkadx99300NDTw3nvvcPvtN/Phh5+bw9Hq1at47LGnSExMIiwsjB49ovnpp++57bY7ASgpKWHHjm28+OLrKIrCgw/ei1brwXPPvYK/vz8//PAdd9xxM++88z7JySmsXfsjL730HPfe+w9SU0fy+++/8u67bxIeHnHa+njiiUdITExiyZKP0Ol0vPHGKzzyyAMsX/71SdeuXPkf3nlnEffdN49Bg4bw669rWbr0nZPuv2jRy9x//zxiYnrz+ecf8/zzCxk2bDhRUdG8+eZrrF//G48//k8iInqQlZXJwoVPsGzZUu699x82/zm2lwQb4fZ279550rmDBw9IsBFub9mypQ4dc7Zs2XutCjZbtvzJoUMH+PDDz4mPN7ZK3H//PNLS9vHppx/xz38+A4Cnpyf//OczhIaGma+57767yc/Po76+jqamJiIiIomM7EFkZA+ee+4lVCrjFgFffbWCsLBu3H//Q+bn/vOfz3LRRZP59de15taPpKRkpk1rKfsFF1zE999/Zw42a9b8QLdu3TnnnFS2b9/K3r17WLVqDSEhIQDMmXMXe/fu5osvPmf+/AV88cXnTJkyjVmzrgJg9uwb2L9/L4cPp5+2Po4ezWfEiFH06BGFVqvl4YcfJzc3B4PBcNLKvp999hFXXnmNufXl+utvJj39IIcOHbS67i9/+Stjx04A4K675rJq1dfs37+XqKho+vbtx4QJ53HOOcPR6QxERvZgxIhzyczMsPnP0B4k2Ai3l5WVedK5Q4cOOKAkQjiXG264mTffdFyLzfXX39Sq92RlZeDv728ONWBc9G3w4CFs3rzJfC4mppc51AD06zfgf+/PZPz4iUyZMp2HHrqP8PAIUlNHMnr0WCZMmAhAevpBcnNzmDp1nNWzm5qayMnJNn/ds2cvq9cvuGAG77+/mL17dzNw4GB+/HE106dfiFqtJj3dGB6uuuqSk+7Z2Nho/t6mTJlu9fqAAYPOGGxuvfVOXnvtRb7+egXDhqUycuS5TJo09aRQU1lZQWHhMQYMGGh1fvDgoScFm969W7rS/P2NXXM6nXGl4OnTL2Tbti289dbr5OYeIScnmyNHchg0aMhpy9gRJNgIt6Yoivkfo8jIHuj1Oo4fP37KsCOEu5k69fxWtZg4mqIowMmr1xoMBrTalh93J/5g1+uN+xp5eHgAsGDBQm666Vb+/HMjW7duZsGC+QwaNJhXX30bg0Fh2LDh/OMf/3fSc/z9A8zHXl7W21P06BHF0KHn8NNPP+Dn509GRrq5BclgMODn58fSpR+fdE9TmUD1v++vheX3dCqzZl3FpElT2LTpD7Zv38I777zBe++9w/vvf2oV7DQa7f/KcfaNK1vK08JUrhdeeJaff/6Jiy6awejRY7n++pv47LOPKS4uOut97UlmRQm3Vl5eRlVVJQCxsXHExPQ2n6+r6/zfUoUQbZeQkEhNTTVZWdZdH3v27LIatJuXd8Tq7/eePbtQqVTExcWzb99eXnvtRXr1iuWqq67l3/9+lYcffpzt27dRXl5GfHwCubk5hIdH0LNnDD17xhAYGMhrr7140nNPdMEFM/j9919Ys+YHBgwYRK9exn9v4uMTqa2tpampyXzPnj1j+OSTZWzYsA4wdm3t2bPL6n4HDqSd9lllZaW89NJzNDc3c+GFF/PYY0+xbJlxYPDOnTusrvX39ycysgf79++1Or9//74zfj+WKisr+PrrFTzwwP8xd+4DXHjhxSQl9bFqxeosEmyEW8vNzTUfx8bGER3d0/x1QUG+I4okhGij1NRRJCQk8eSTj7JjxzZycrJ58cXnyMzM4MorrzVf19TUxGOPPUx6+kG2bv2Tl19+nvPPv4jIyB74+fnx5Zdf8Oabr5Gfn0dmZgZr1/5ITEwvgoKCmTnzCmpqaliwYD6HDx8iI+MwCxbMJy1tP3Fx8Wcs33nnTaG+voGVK//DBRfMMJ8fOfJckpKSefzxh9m+fSv5+Xm88carfPfdN+aun9mzb+D333/l008/JC/vCCtWfM66db+c9lmBgUFs3LiB555byOHDhygoyOerr1bg4eFBSkrfk66fPft6Vq5czvfff0t+fh7Ll3/Cr7+utXn/Jj8/f/z9/Vm/fh15eUfIzMzguecWkp5+kKamJpvuYS/SFSXcWnFxofk4MjKKhoZ689cFBQUkJfVxRLGEEG2g1Wp55ZU3WLToFebPn0dzcxN9+vTl1Vffsho/0qdPX5KSkrn33tsBFVOmGGc4AcTFxbNw4b95//3FfPXVF6jVaoYNS+Xll19HrVYTFRXNokXv8Pbbi7jzzlvQaDT07z+I1157i5CQ0DOWz9vbm0mTpvDTTz8waVLLwngajYaXX36TN998lSeeeJj6+np6945j4cLnGT58BACjR4/liSee5r333mXJkrfp338gf/nLbNas+eG0dfHCC6/xxhuv8Pe/30lDQwNJSck8//wrVr/AmVx22RVUVVXx7rtvUllZwZAh53DBBTNOaiU6U90/9dSzLFr0CrNnX01AQCDDhg1nzpy7+PDD96mvrz/7TexEpZzYaecG9HoDZWX27WbQatWEhPhRXl6LTmew671djTPV1YcfvsdLLz0PwDPPvIBer+fRR42zHR544GFmz77ekcUDnKu+nJ3Ule0s66q+voHS0mOEhfXAw8PT0UVzSlqt2qU/U3/+uZG4uHir9buee24hR4/m8+qrb7XqXm2tq+bmpjN+DkND/dBozt7RJC02wq1ZDmqLiIhEr9ef8jUhhHBlP/64mpycLP7xj4fp1q0bO3du56efVp9ykLSzk2Aj3FpRkXWw0emazV+XlBx3RJGEEKLT3Xffg7z++ss88sgD1NRUExXVk3vv/Yd5XZ6uRIKNcGtFRS1jbLp3D6e5uWWQ2/HjxY4okhBCdLrAwCDmz1/g6GLYhcyKEm7N1N0UEhKKp6cnfn7++Pj4AtJiI4QQXZEEG+G29Hq9uVXGcsBc9+7dATh+XIKNEEJ0NRJshNuqqCg3DxY2hRnL45qa6k6doiiEEKL9JNgIt1VeXm4+tlx/olu3cPOxdEcJIUTXIsFGuK3y8jLzsWWwCQvrZj4uLS3p1DIJIYRoHwk2wm2drsUmJCTEfFxZWdGZRRJCCNFOEmyE26qoaAk2wcHBFsctwcYy/AghnN/YscNZvXqVo4vRZgsXLuDuu29zaBlWr17F2LHDzV9fccXFLF36jgNL1Dqyjo1wW5ZdUaGhLS02liGnoqKiE0skhBDOZ/HiD/Hy8nJ0MWwmwUa4rdONsbFssbFs1RFCCHdk2T3fFUhXlHBb1l1RLX9xLf8SS7ARousqLy9j9uwruffe22loaGD16lVcccXFfP/9t1x99WWcd9653HLL39i3b4/5PY2NDSxe/BZXXnkpkyaN5sYbr+X3338DICPjMGPHDufQoYPm6x9++AGmTh2PTqcDQFEULrlkOt9++7VNzzsVvV7PK6/8m+nTJzBjxhTeeecN8/0B9uzZxdy5dzJ9+gTOO+9crrvuKqtdvsvLy3j00Ye46KLJTJo0hjvuuImdO7ebX29ububNN1/jsssuYOrUcdx22w1s2fLnactj2RW1dOk73H33bXzyyTJmzryQSZNGc++9t3PkSI75+pqaap57biEzZkxh+vQJ3Hvv7Rw8mHbG79meJNgIt3W6wcPSYiNE11dRUcG9995O9+7h/Pvfr+Dt7Q0Yl3D4+uuVPPbYU7z99vuoVCqefvoJFEUBYMGC+Xz//bf8/e//4IMPPmP8+POYP/9Bfv99HYmJSURG9mDrVmMI0Ov17Ny5nYaGeg4c2A/AwYNpVFSUM2bMeJuedyp79+6mrKyMt956j4cffoLvvvuGRYteAYxbvdx3310kJiazdOnHvP/+p/Tt259nnvknZWWlALzwwjM0Njbw+uvv8uGHnxMT05uHH/6HeV2uhQsXsHnzJh5//Cnee+8TJk2awrx5c9m4cYNNdbt//1527drB88+/wiuvvElh4TFefPE5wBjs7rvvXvLzj/Dcc6/w7rvL6N9/IHfccTPp6QfPcmf7kK4o4bZMXVEeHh74+fmZzwcFBVtcI8FGuLePD3jw6UHPs17XJ9TAyxOsF7S8b50Ph8rO/vvztSlNzO7bsgFtbTN8leFhda41qqoq+fvf7yAiIpKFC/9tNT5Ep9PxwAP/R1JSHwD+9rcbefjhBygtLaWmppr169fx3HMvM2bMOABuvPFWMjLS+eCDpYwePY4xY8axdetmZs++gYMHD6DVahk0aAg7dmxj4MDBbNy4gf79B5p/WTrT87p168aphIWFMX/+Ary8vIiPT+CWW27n5Zef5/bb76apqYmbbrqNa665DrXaWLfXXXcjq1evIi/vCKGhYRQUFJCQkEB0dE+8vLz4+9//wdSp56NWq8nPz2Pt2h9ZsuRDUlL6AfCXv8wmI+Mwn376IaNHjz1r/ep0Oh577J8EBgYBcMUVf+Gtt14DYPv2rezdu5tVq9aYW7/nzLmLvXt388UXn3fKflQSbITbMoWWkJBQVCqV+byHhwf+/gHU1FRLi41we7XNKorrzx5OIhpOboGoaLDtvbXNKquvlVOca413332T5uZm+vRJOeWg196948zHfn7+AOh0zWRmZgAwaNAQq+sHDx7GO+8sAmDs2PGsWvU1jY0NbNu2maFDzyEmphc7dmzj+utvZtOmP5g0aYpNzzudlJR+VuXu128Azc3N5OXlkpTUh4suupSVK/9DTk4WeXlHSE8/BGBeSf3GG2/lqaceY926Xxk8eBgjR45i0qRpeHl5ma+95545Vs/U6XT4+wectkyWQkNDzaEGwN/fn+Zm4/djapW56qpLrN7T1NREY2OjTfdvLwk2wi0pimIONpZdTyYhISESbIQA/DwUwn0MZ70u2PvkYBPsbdt7/Tys36s6xbnWGD58BBdddCnz5z/IpElTGTVqtNXrnp4nt0AZu4ZO/UyDQY9GY/xxOWTIOXh4eLBz5w62bdvC5MnT6NWrN59//gmFhcc4dOgATzzxtI3POzW1WnPS8wE8PDzJzc3h9ttvIjk5hREjRjJ27HiCg0O49dbrzddPmHAe55zzA5s3b2Tbti188smHLF78Nu+88z6KYvzzeOONxfj6+lk9x9QCdDYeHqdvwTMYDPj5+bN06UeneJ+HTfdvLwk2wi3V1dWaf2OynN5tEhwcQl7eESorK9HpdGi18ldFuKfZfZvb3CV0YteUrfw8aPMzASZOnMyECecxefI0nn9+IR99tNzcUnIm8fGJgHFwrqkrCmD37l3ExRlbXTw8PBgx4lw2bFjH/v17mTdvPhERkahUsHjxW/TuHUtMTK82lx3g8OFDGAwGc9DYs2cXXl5eREVF8+abrxIaGsqrr75pvn7Dht/Nx01NTbzzziKmT7+QyZOnMXnyNBoaGrj00uls2rSBc881djWVlJQwenSK+X3vvPMGarWaW2+9o11lj49PpLa2hqamJuLjE8znn3vuaRITk5g16+p23d8WMnhYuKXq6mrzcWBg4EmvWzaz1tRUn/S6EML5zZ374P8G0b5s0/VxcfGce+4YXnzxWf74Yz1HjuTy/vuL2bBhHX/969/M140ZM47Vq1cRHBxCTEwvPD09GTRoCGvW/MC4cRPbXe7i4iKeeeafZGVl8ttvP7N06btce+3f8PT0JDw8guLiIjZt+oPCwmOsW/cLL774LGAMNZ6enqSl7eP55//Fvn17OXbsKN999w11dXUMGDCI+PgERo8exwsvPMOGDesoKMjn008/4uOPPyAqKrrdZR858lySk/vw+OMPs337VvLz83jjjVf57rtvrLrkOpL8GircUlVVlfk4ICDopNcDAlr6mqurq0/ZXSWEcG4hISHcffd9LFy4gPPOm3L2NwBPPvkM77yziOeee5qammri4hJ4+unnmTRpMjqdsRtn9Oix6PV6hg1rWZ13+PARbN26mbFjJ7S73GPHTkCj0TBnzg14e/swc+YV3HDDLYBxoG5ubg5PPfU4zc3NxMTEcNttd/Lee++SlraPUaNG89RTz/Haay/xf/93P7W1NfTqFcsTTzzN4MFDAfjnP5/h3Xff4N//fobq6iqioqKZN28+F110yZmKZRONRsNrr73Ja6+9whNPPEx9fT29e8excOHzDB8+ot33t4VKOVNHn4vS6w2UldXa9Z5arZqQED/Ky2vNH35xas5QV9u3b+Xmm68D4G9/u4n7759n9fq//vVP/vOfTwH49NMV9Os3oNPLaOIM9dVVSF3ZzrKu6usbKC09RlhYjzOOn3BnWq1aPlM2amtdNTc3nfFzGBrqh0Zz9o4m6YoSbsmyxeZUXVGWLTaW1wohhHBuEmyEW6qutuyKOlWwCTzltUIIIZybBBvhls4+eLjlnLTYCCFE1yHBRrilqqpK8/GpW2ysBw8LIYToGhwebAoKCujTp89J/33xxRcAHDhwgNmzZzNkyBAmTpzI0qVLHVxi4QpaM91buqKEEKLrcPh070OHDuHl5cXatWutlrUPCAigvLycG2+8kSlTpvDkk0+ya9cunnzySYKDg5k1a5YDSy26uta02EhXlHAXbjhJVjgRe33+HB5s0tPTiYuLIzw8/KTXli1bhqenJwsWLECr1ZKQkEBubi6LFy+WYCPaxXLRPcsQ03JOBg8L96HRGJfwb2pqxNPz5L2VhOgMTU3GvaRM21e0lcODzaFDh0hMTDzla9u2bSM1NdVqOftRo0bxzjvvUFpaSlhYWGcVU7gY6wX6zjx4WMbYCFenVmvw8fGnpsa4N5qnp5dVC7oAg0GFXi8tWrZobV0pikJTUyM1NeX4+PjbvGfV6Tg82KSnp9O9e3euvfZacnJy6N27N3feeSfjxo2jsLCQ5ORkq+tNLTtHjx5tV7DRau07vMi0aJAtiwe5O2eoK1NY8fLyws/P56TXg4Jagk1NTZXdPy+t4Qz11VVIXdnuxLoKDe1GRYXKHG6EJRVqtQqD4fQbZQqTtteVn18AwcFh7Q7VDg02TU1N5OTk4OPjw7x58/D19eWbb77h1ltv5f3336ehoeGkXVFNW7m3Z/tztVpFSIjf2S9sg8DAk39IilNzZF3V1BhbbIKDg0/7WfD396empoba2poO+7y0hny2bCd1ZTvLugoN9Uev19Pc3PYNKIVoCw8PD3OXaHs5NNh4enqydetWtFqtOcAMGDCAzMxMli5dire3N01NTVbvMQUaX1/fNj/XYFCoqqpre8FPQaNRExjoQ1VVPXq9LLt9Js5QV5WVxmDj5+dPefmpt9cICAikpqaG8vKK017TGZyhvroKqSvbSV3ZTurKdm2tq/p6/VmvCQz0sak11uFdUacKKMnJyWzYsIHIyEiKi4utXjN9HRER0a7ndtSeH3q9QfYTsZGj6qq5uZm6OmNQCQgIPG0ZAgICOHbMOHjYGf5M5bNlO6kr20ld2U7qynaOrCuHdkQfPHiQoUOHsm3bNqvz+/btIzExkdTUVLZv345e35LkNm3aRFxcnAwcFm1WU1NjPj7VwOGW14yzpZqamtrV9SmEEKLzODTYJCcnk5SUxJNPPsm2bdvIzMzkmWeeYdeuXdx+++3MmjWLmpoa5s+fT0ZGBl9++SXLli1jzpw5jiy26OIs17A51eJ8JgEBLYv0Wb5HCCGE83JosFGr1bz99tsMHDiQuXPnMnPmTHbv3s37779Pnz59CAsLY8mSJWRnZzNz5kwWLVrEvHnzmDlzpiOLLbo4y+nbp1rDxsTf3998XFtbc9rrhBBCOA+Hj7EJDQ3lX//612lfHzRoEMuXL+/EEglXd7advU0sg01NjeMGDwshhLCdLPYg3I7lqsP+/qdvsfHzkxYbIYToaiTYCLdTW9vS+uLvf/r1aaQrSgghuh4JNsLtWAYbX9/TBxvLFhvZVkEIIboGCTbC7Vi2vli2ypxIuqKEEKLrkWAj3I5li41leDmRZTeV5XuEEEI4Lwk2wu1Ytr74+dnWFWW5qJ8QQgjnJcFGuB3bW2ykK0oIIboaCTbC7Vi32Jwp2LRMBZcWGyGE6Bok2Ai305auKGmxEUKIrkGCjXA7tbV1AGi1Hnh6ep72OsvQI4OHhRCia5BgI9yOqfXFz88XlUp12us8PT3NwUe6ooQQomuQYCPcjimknGl8jYnpGumKEkKIrkGCjXA7dXXGbqUzLc5nYrpGgo0QQnQNEmyEW2lubqaxsRE483YKJqYWm5qaWhRF6dCyCSGEaD8JNsKtmFprwNauKGP40emaaWpq6rByCSGEsA8JNsKtWA4CPtNUbxPL7qqaGtkIUwghnJ0EG+FWbF11+FTXyMwoIYRwfhJshFuxDDaWm1yejizSJ4QQXYsEG+FWLMOJLYOHAwIk2AghRFciwUa4FesWm9Z2Rcnqw0II4ewk2Ai3YusGmKe6RlpshBDC+UmwEW7F1g0wTaxnRUmwEUIIZyfBRriV9syKkhYbIYRwfhJshFtpfYuN5Q7fEmyEEMLZSbARbqU9LTbV1RJshBDC2UmwEW7FOtjYso5NyzWW2zEIIYRwThJshFtp7ZYK1mNsJNgIIYSzk2Aj3Ir1Jpita7GRMTZCCOH8JNgIt2IKJ56ennh4eJ71em9vH9Rq9f/eKy02Qgjh7CTYCLdi6oqyZeAwgEqlMm+9IC02Qgjh/CTYCLdi6oqyZTsFE9O1MnhYCCGcnwQb4VZM+z3ZsgGmial1R/aKEkII5yfBRriNpqYmdLpmwHrhvbPx8/MFoL6+Dr1e3yFlE0IIYR8SbITbsJ7qbXtXlOW1dXV1di2TEEII+5JgI9yG5eDf1nVFyZRvIYToKiTYCLdhOV27NYOHZZE+IYToOiTYCLfR1hYby2ulxUYIIZybBBvhNtraYmN5rbTYCCGEc5NgI9yGZWtLawYPS4uNEEJ0HRJshNuwDja2d0VJi40QQnQdEmyE27AMJa0JNtJiI4QQXYcEG+E22hpsLBfzq62VdWyEEMKZSbARbsMeC/RJi40QQjg3CTbCbVhuYtm6YCNdUUII0VVIsBFuw7rFpvWbYIIMHhZCCGcnwUa4DWmxEUII1yfBRrgNabERQgjXJ8FGuA1TKPH29kGj0dj8Pi8vL/P10mIjhBDOTYKNcBumrqjWbKcAoFKpzK020mIjhBDOzamCTXZ2NkOHDuXLL780nztw4ACzZ89myJAhTJw4kaVLlzqwhKIrM3VF+fr6tvq9pq4rCTZCCOHcnCbYNDc388ADD1BX17IAWnl5OTfeeCOxsbGsXLmSe+65h1dffZWVK1c6sKSiK1IUpc0tNiDBRgghugqtowtg8vrrr580oPM///kPnp6eLFiwAK1WS0JCArm5uSxevJhZs2Y5qKSiK2poaECv1wOtmxFlYtpWoaGhHp1Oh1brNH91hBBCWHCKFputW7eyfPlynnvuOavz27ZtIzU11eqHyKhRo8jOzqa0tLSziym6sLZugGli2cpj2aoohBDCuTj8186qqirmzZvHo48+So8ePaxeKywsJDk52epceHg4AEePHiUsLKzNz9Vq7ZvpNBq11f/F6Tmirhob683H/v7+rf7ztww2jY11aLXB9iraWclny3ZSV7aTurKd1JXtnKGuHB5sFixYwJAhQ7j44otPeq2hoQFPT0+rc15eXgA0Nja2+ZlqtYqQkNb/1m6LwECfDrmvK+rMusrL05uPQ0ODW/3nHxoabD5Wq/Ud9vk5E/ls2U7qynZSV7aTurKdI+vKocHm66+/Ztu2baxateqUr3t7e9PU1GR1zhRo2jKzxcRgUKiqsm93gkajJjDQh6qqevR6g13v7WocUVfHjpWYjz08vCgvb90gYA8Pb6t7RUR03iBi+WzZTurKdlJXtpO6sl1H1lVgoI9NLUEODTYrV66ktLSUiRMnWp1/4oknWLp0KVFRURQXF1u9Zvo6IiKiXc/W6Trmw6nXGzrs3q6mM+uqqqrafOzt7dfq5/r4tATpqqoqh/wZy2fLdlJXtpO6sp3Ule0cWVcODTYvvPACDQ0NVuemTZvGvffey4UXXsh3333H559/jl6vN6/8umnTJuLi4to1vka4H8tp2v7+re9Gst4vSqZ8CyGEs3LoSKiIiAh69+5t9R9AWFgY0dHRzJo1i5qaGubPn09GRgZffvkly5YtY86cOY4stuiCLGdFmaZut4YEGyGE6Bqceoh3WFgYS5YsITs7m5kzZ7Jo0SLmzZvHzJkzHV000cVYt9i0ZYE+2QhTCCG6AofPijrRoUOHrL4eNGgQy5cvd1BphKuwb4uNbIQphBDOyqlbbISwF2mxEUII9yDBRrgFabERQgj3IMFGuAXTBpjQ/hYb0y7hQgghnI8EG+EWLMNIe1tsLEOSEEII5yLBRrgFyzDSllWrrcfYSIuNEEI4Kwk2wi3U1BiDjY+Pr3mxx9bw9PREq/UAoLZWdvcWQghnJcFGuAVTi01bVh0GUKlU+PkZW3qkxUYIIZyXBBvhFkxjbNoyvsbE1B0l072FEMJ5SbARLk9RFHOLjeVYmdYyDSCWFhshhHBeEmyEy2toqMdgMO4yazm7qbVMoaixsZHm5ma7lE0IIYR9SbARLs+y68geLTYgU76FEMJZSbARLs+y68geLTbGe0qwEUIIZyTBRri8jmixkXE2QgjhnCTYCJdnvxablvea1sURQgjhXCTYCJdnGULaE2wsp4rLGBshhHBOEmyEy7MMIe0JNpabZ8pGmEII4Zwk2AiXZxlC2jfGpuW90mIjhBDOSYKNcHmWIcSy1aW1rMfYSIuNEEI4Iwk2wuVZhhB7bKkA0mIjhBDOSoKNcHnWY2xkurcQQrgyCTbC5VmPsZEF+oQQwpVJsBEuT1pshBDCfUiwES7PXuvYSIuNEEI4Pwk2wuVZttj4+vq2+T7WLTYSbIQQwhlJsBEuz9Rt5Ovri1rd9o+8p6cnHh4egEz3FkIIZyXBRrg8U+tKe8bXmJhabWS6txBCOCcJNsLlmVps2jO+xsQUjmTwsBBCOCcJNsKlKYpi5xYbU7CRFhshhHBGEmyES6uvr0NRFMBeLTbGezQ1NdHc3NTu+wkhhLAvCTbCpVm2rNizxebEewshhHAOEmyES7McC2PPFhvjvSXYCCGEs5FgI1xadXVLsGnPzt4mEmyEEMK5SbARLq2mptp87O8f0O77ybYKQgjh3CTYCJdm/2AjY2yEEMKZSbARLq26uiXYBARIi40QQrg6CTbCpXVki41sqyCEEM5Hgo1waZbhIyDAvoOHZVsFIYRwPhJshEuz7IqSFhshhHB9EmyES6uurjIf23tWlLTYCCGE85FgI1yadVeUvVtsJNgIIYSzkWAjXFpHrmMjLTZCCOF8tI4ugBAdydRio9Vq8fb2bvf9LIONjLERzmrTpj/4+OMP0Ol0XHPNdUycOMnRRRKi09gUbL7++utW3fSyyy5rQ1GEsD9Ti42/vz8qlard95MWG+HsfvvtF+6//24MBgMAmzdv4plnXuCCC2Y4uGRCdA6bgs3//d//2XxDlUolwUY4DdPgYXt0QwF4eHji6elJU1OTLNAnnE5VVRVPPvmoOdSY/Otf/2TUqDGEhIQ4qGRCdB6bgs3PP//c0eUQwu4URTF3F9lj4LCJn58/TU1lsqWCcDorVnxOeXkZABMnTsLb25sfflhNdXUVn376IXfd9XcHl1CIjmdTsImOjrb5hoqitLkwQthTQ0M9er0esF+LDRi7o8rLyzq0xaa+vp6MjHR6944lNFR+yxZn19zczGeffQQYW87vv/8hvLy8WLPmR/R6PStX/ofbbrsDDw9PB5dUiI7VpsHD3333HVu2bKG5udkcZBRFoa6ujl27dvH777/btZBCtIW9F+czMU357qjp3vv27eXee2+nrKwUb28fnn3231x55cwOeZZwHVu3bub48eMATJw4mV69egNw3nlTWLv2R8rKStm8+U/Gjh3vyGIK0eFaHWwWLVrEokWLCAgIQKfT4eHhgVarpaysDLVazZVXXtkR5RSi1ayDTfu3UzAxDSDW6ZppamrC09N+vwHX1NRw3313UlZWChhbnR566B+MGDGMwMBudnuOcD1r1vxoPr7ooovNxxdeeDFr1xpf+/nnNRJshMtr9To2X331FZdccglbtmzhhhtu4LzzzmPjxo2sWLGC4OBgkpKSOqKcQrSavdewMenIKd+fffaR+bduk8bGRl544QW7Pke4Fp1Ox6+/rgHA29uHMWNawsu5544xL3Xw228/nzSwWAhX0+pgU1RUxKWXXopKpaJ///7s3LkTgAEDBnD77bfzxRdf2L2QQrSFvVcdNumoKd96vZ7//OdTADQaDZ9//iXBwcEArFq1ipKS42d4t3BnaWn7qKioAGDs2PH4+PiYX/Px8WHUqNEAlJeXkZFx2BFFFKLTtDrY+Pr6mtcDiY2NJT8/n4aGBgD69u1Lfn5+q+5XWlrKgw8+yKhRoxg6dCi33XYbGRkZ5tcPHDjA7NmzGTJkCBMnTmTp0qWtLbJwU5YtNvaeFdXyDPu12GzevMncWjNu3ERSUvpx+eXGrt3m5mZWr/7Wbs8SrmXz5j/Nx6NHjz3p9dTUUebjrVs3d0qZhHCUVgebgQMH8tVXXwHQq1cvNBoNGzduBCAzM7PV4w3uuOMO8vLyWLx4MStWrMDb25sbbriB+vp6ysvLufHGG4mNjWXlypXcc889vPrqq6xcubK1xRZuqKMHDwN2nRm1Zs0P5uOLL74UgBkzLjOf+/nnNXZ7lnAtW7e2BJuRI8896fXhw0dYXCvBRri2Vg8evv3227nxxhuprq7m7bff5pJLLuH//u//GDlyJBs2bGDKlCk236u8vJyePXtyxx13mMfm3HnnnVx66aUcPnyYTZs24enpyYIFC9BqtSQkJJCbm8vixYuZNWtWa4su3ExHDR62bP2xfEZ7KIrCpk1/AODl5WUeIxEfn0BcXBzZ2dns2LGdsrIyQkND7fJM4RoaGxvZtWsHAFFR0URH9zzpmqSkZIKCgqisrGTHjm2yLIdwaa1usUlNTWXFihVccMEFADz++ONMnz6drKwszj//fB599FGb7xUSEsJLL71kDjUlJSUsXbqUyMhIEhMT2bZtG6mpqWi1Lflr1KhRZGdnU1pa2tqiCzfTUYOHAwODzMdVVZV2uWdOTjaFhccAGDZsuNW+VhMnTgaM4Ud+2xYn2r9/L01NTQCkpo485TVqtZrBg4cCxs/skSO5nVY+ITpbm9axSUlJISUlBTD+dvnUU0+1uyCPPfYY//nPf/D09OStt97C19eXwsJCkpOTra4LDw8H4OjRo4SFhbX5eVqtfTc212jUVv8Xp9dZdVVX19JNFBwcZLc/85CQYPNxbW21Xe67efNG8/GYMWOt7jl69Gjef38JANu3b+Giiy5q9/NclTv+Pdy/f6/5eOjQYaf9PA4cOIjff/8NgEOH0khOTgTcq67ayh0/V23lDHXVpmBTXV3Nn3/+SV1d3SmbNNuyV9T111/P1VdfzWeffcZdd93Fp59+SkNDw0ljdry8vABj82tbqdUqQkL8zn5hGwQG+pz9IgF0fF01Ntabj6Ojw+32Zx4VFW4+bmqqt8t99+3bZT6eOnWS1T0nTBiLVqtFp9OxbdvmDvvsuhJ3+nt46NB+8/HYsaNO+/kYNSqVN94wHh8+fIDAwKsB96qr9pK6sp0j66rVwWbdunXMnTuX+vr6U77e1k0wExONvz089dRT7Nq1i48//hhvb29zE6uJKdD4+vq2+hkmBoNCVVVdm99/KhqNmsBAH6qq6tHrZZ2IM+msuiopKbP4ypPycvtMzVarvczHRUXH7XLf7duNYyR8fHyJjOxldU+NRs3gwYPZvn07WVlZZGXlERIi42xOxR3/Hlp+drp3jz7t5zE2tmWNsR07dlJVVe92ddVW7vi5aquOrKvAQB+bWoJaHWxeeukl4uPjefjhh4mIiECtbntzU2lpKZs2beKCCy5Ao9EAxr7ghIQEiouLiYyMpLi42Oo9pq8jIiLa/FwAna5jPpx6vaHD7u1qOrquTOt6APj4+NntWZazoioqKtt935KS4xw7dhSAfv36oyiqk+45dOhQtm/fDsDu3Xtk9dizcJe/h7Z8dkwCAoKJiorm6NEC0tLSaGpqBnzcpq7sQerKdo6sq1ankqysLObOncvw4cOJiYkhOjr6pP9sVVxczD/+8Q+2bNliPtfc3ExaWhoJCQmkpqayfft280aGAJs2bSIuLq5d42uEezAN7PXz88PDw8Nu9w0IsBw8XNXu++3du8d8PGDAoFNeM3ToUPOx5ZgK4d727Wv5LJzus2OpX7/+ANTX15GXd6TDyiWEI7U62ERFRdltUbKUlBTGjh3Lk08+ybZt20hPT+ehhx6iqqqKG264gVmzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8cuzxeuzRQ6LGcx2YPldG97zIrat68l2AwceOofToMHDz7l9cK9WYbcAQMGnvX6xMSWyRiHD6d3SJmEcLRWB5s5c+bwxhtvtHqF4VNRqVS88sorjBo1irlz53LllVdSWVnJJ598QlRUFGFhYSxZsoTs7GxmzpzJokWLmDdvHjNnyk7H4swURTGHjqCgYLve28PDwzzGq7q6/S021sFm8CmviY2NNQe0/fv3yTokAoD09IPm4379Bpz1+sTElnE2EmyEq2r1GJtVq1ZRVFTE1KlTCQ0NtVpvA4xhZe3atTbfLyAggAULFrBgwYJTvj5o0CCWL1/e2mIKN1dXV4tOpwMgMDDQ7vcPDAyirq6u3V1RiqJw8GAaAN26dSciIvKU16lUKgYMGMjGjRsoKyvl2LGjREXZ3u0rXFN6+iHA2N3ao0fUWa+3DDayZ5RwVa0ONpGRkURGnvofXyGchWXgsHdXlPGegRQWHqOqqhJFUcz7p7VWeXkZlZXGliXLHzqnYgo2AAcPHpBg4+aqq6vNA4cTE5NtmsgRE9MbT09PmpqaOHz4UEcXUQiHaHWweeaZZzqiHELYlSksAAQFdUSwMd6zubmZhoYGq92UWyMzs2XD1/j4xDNem5zcx3yckZHOpEm2b18iXE9GRktXkuVn40w0Gg3x8YkcPJhGbm6ueQNjIVxJq4PN0aNHT/uaWq3G19e3Q5r+hWgNy0G9HRlsjM+qanOwycrKNB/Hxyec8dqkJBn4KVqYuqEAkpJsCzZgbBk8eDANg8FARkYG0dFxHVE8IRym1cFm0qRJZ212DwoK4m9/+xt33nlnmwsmRHtUVlaYjy2nZ9uLZXivrq5s87pKWVktLTYJCWdusendO9bcjWD527pwT5ZdSa0JNgkJLV2e6enpEmyEy2l1sHn22Wd5/PHHGTFiBDNmzKBbt26Ulpby448/8ttvv3HnnXdSW1vLW2+9RXBwMNdee21HlFuIM7IcY9MxLTYtwaY9A4gtW2zi4uLPeK1WqyUuLoFDhw6Qm5tDY2OjeYsR4X4sZ0RZtuadjeXnLCsri/POs2uxhHC4Vgeb7777josuuuiksTaXXnopTzzxBPv27ePtt98mMDCQzz77TIKNcIiO7oqy1yJ9pmATFtaN4OCQs16flJTMoUMHMBgMZGVl0Ldv/zY/W3RdBoOBw4eNs5qio3vi7+9/lne06N071nycmZl5+guF6KJavY7Nli1bmDFjxilfmzZtGn/++ScA55xzDnl5ee0rnRBtZDl4uKNmRbU8q6JN96ioKKe0tAQ4e2uNiSywJgAKCvKprzfud9eabiiAnj17mrewycrKsnvZhHC0Vgeb4OBgDh48eMrXDh48aP7Noa6urs0DKoVor84MNm1tscnObvmhcrYZUSaWXQ4yzsZ9ZWe3tLScbWzWiTw8PImK6gkYg40s9ihcTauDzcUXX8xrr73GsmXLKCoqorm5maKiIj766CMWLVrExRdfTGVlJcuWLbNaBl6IzlRd3Xmzotq6+rD1VO8zz4gykRYbASeGYts+O5ZiY2MB4y+gxcVF9iqWEE6h1WNs5s6dS2lpKc8++yzPPvus+bxarWbWrFncd999/Pjjj6SlpbFs2TK7FlYIW3X8OjaWLTZt2y/KcuBwQoJtP5zCw8MJDAyiqqrS6v3CveTkZJuPe/du/aym3r1jWb9+nfleYWHhdiubEI7W6mCj1Wp55plnuOOOO9i8eTPl5eVEREQwbNgwYmJiABg/fjzr16/H09PT7gUWwhamYOPh4YG3t/27RC1bbCxDVGtYTvW2tStKpVIRGxvHnj27KCoqpLa2Bj8/2weOCtdgGWxiY1sfbCzfk5OTwznnjLRLuYRwBq0ONia9evWiV69ep3ytI35DFqI1TN1DgYFBbd7u4ExCQlpmMFVUlLfpHqYWl6CgIEJDw2x+X1xcPHv27AIgNzfHps0PhWvJyTF2RXXv3r1VM6JMLGdGWYYkIVyBTcFm8uTJvPHGG6SkpJx1gb7WboIpREcoLzeGDXvv7G0SEBCIVqtFp9OZn9Ua1dXV5rEN8fGJrQpfcXEt3VbZ2dkSbNxMRUW5+TMXG2vbbLoTWXZfSbARrsamYDNixAj8/PzMxx3xG7AQ9lJfX09DQz1g3bJiTyqViuDgEEpKjlNeXtbq91vOamnt4M+4OMsfSjJd1920txsKoHv3cHx9/airq5VgI1yOTcHGcjG+Z599lpqaGmpra4mIiKCpqck8Q2ratGmMGDGiwworhC0sg0ZISGiHPSckpCXYtHaHb+s9olo3Xdfyt3TL2THCPVgHm7a12KhUKmJiYjh06CDHjh1Fp9Oh1bZ5ZIIQTqXV07337NnDpEmT+OijjwB4+umneemll/jmm2+44YYb+Pnnn+1eSCFao/OCjfHeTU1N1NXVtuq91gOHW9diEx3dE63WA5AWG3dkjxYbgJ49jZM9dDodRUWF7S6XEM6i1cHm5ZdfJj4+nquvvpqGhgZWrVrFNddcw5YtW7jiiit4++23O6KcQtjMcsxLR3VFAVZbIFRUVLTqvZZL2be2xUar1dKrV2/AOHhYr9e36v2ia7N3sAHjSsZCuIpWB5vdu3dzxx13EBMTw6ZNm2hoaODSSy8F4MILLzTvXyKEo1i32HRcsLG8d1lZ68bZmFps/P39CQ9v/RoipnE2zc3NHD1a0Or3i67L1Ern5eVFjx5Rbb5PTEzLrNb8fNn+RriOVgcbtVptXp9m3bp1BAYGMmjQIABqamrw9va2bwmFaKXO7oo68ZlnU1dXy7FjRwFjN1RbBuPLOBv31NzcbA4hvXvHola3+p9wM9O6YyDBRriWVv+tGDBgACtWrGDnzp18//33TJw4EZVKRWlpKYsXL2bAAJl6KhzLuivK+YJNW/aIOpHlppkyzsZ9FBTkodPpgLYPHDaRrijhqlodbObNm8emTZu45ppr0Gg03HHHHQDMmDGDnJwc5s6da+8yCtEqjmmxsX0tG+sZUa3f5wdObLGR6bruwvLPuj3jawCioqLMrYXSYiNcSavn9/Xr14+ffvqJzMxMkpKS8PX1BWDBggUMGzaM7t27272QQrSGI8bYtKbFpj1TvU1kLRv3ZK+Bw2Da5TuKgoICCgok2AjX0aYOWn9/fwYPHmwONQDTp0+XUCOcgmXIsJy5ZG9t3VahPVO9Tfz8/AkPjwAk2LgTyz/r9gYbwLwtTkVFBdXV1e2+nxDOoO0jz4RwUqZuoYCAQDw8PDrsOW0dY2NqsfHx8SUyskebn28aZ1NeXt6mbR1E12PPFhuA3r17m49lnI1wFRJshMsxhYyO7IYC632obA0WDQ0N5vEMcXHx7ZrVYr1Ds4yzcQemFpuIiEh8ff3afT/LjYylO0q4Cgk2wqU0NjZSU1MDdOzAYTAulBccHAxASclxm96Tk5ONoihA27uhTCxnRlnuPSVcU3l5OZWVlYB9WmvAusVGBhALVyHBRrgUy4DRGWO+uncPNz/XFFjOxB7ja0wsZ0bJOBvXZ+/xNWDdYpOfL11RwjVIsBEu5fjxYvOxKXR0JNMA3ubmZpu2VbDHjCiTuLiWYJSVJcHG1Vmuf9QxLTZH7HJPIRxNgo1wKZYtNt26dV6LDViHqtOxxxo2JuHh4fj5GcdZSIuN67PHrt4nCg0NNY/VkRYb4Sok2AiX4uzBJiMjHQBvb2+io3u269kqlcr8A66gIJ+GhoZ23U84t47oilKpVPTsafwcHjtWIBuqCpcgwUa4lOPHHTPGBqC4uOiM1544I0qj0bT7+aYBxIqicORIbrvvJ5yXqcXG29uHiIhIu93XtLWCTqejqKjQbvcVwlEk2AiXYj14uPPG2MDZW2xycrIwGAwAJCQk2eX5MjPKPTQ3N5nXmYmNjWvXMgEnMrXYgKxlI1yDBBvhUizDRbduHR9sLFuFzhZsMjIOm487JtjIOBtXlZeXZ+4mio2Nteu9LbtEJdgIVyDBRrgUU4uNVuthXmOmI7WmKyozs2Wqd2KivYJNywBkCTauy3p8jX0GDptER7fs8n30aIFd7y2EI0iwES7FNMame/fu5p2LO1JoaJi5W+DsLTbp5uOEhPZN9Tbp2TMGrda4l610Rbkue2+lYEm6ooSrkWAjXEZzc7N5O4XOmBEFxtWHw8K6AVBUZFuLja+vLz16RNnl+R4eHsTEGBdZy83NkVktLqojg01UVLT5WIKNcAUSbITL6Oyp3iamkFJaWkJ9ff0pr6mrqzU38yckJNm1NcnUHdXY2MixY0ftdl/hPCyDTe/esXa9t6+vrzmcS7ARrkCCjXAZlj/U7dUiYgvTdFk4/RiFzMyWbiJ7ja8xsfwNXsbZuKbcXGOwiYiIxMfH1+73j442ttocP15MY2Oj3e8vRGeSYCNchmWocFSwOd0OyYcOHTAf22tGlInlCsYyzsb1dMTmlyeKimoZZyMDiEVXJ8FGuAzLFpuoqM4LNpbTZU+3Q/LBg2nm4759+9n1+ZazZKTFxvVYd0N1TLCRKd/ClUiwES7j6FHHd0Wdbr+dtLT9gHEJ+5SUvnZ9flycdEW5MlM3FNh/DRsTCTbClUiwES7j2DHLrqjoM1xpX2frimpubuLw4UOAceCnn5+/XZ/v5+dvXmI/OzsTRVHsen/hWB05I8pEgo1wJRJshMswdUV5e/t0yuJ8Jt27h+Ph4QEYV4g9UWZmJs3NzQCkpNi3G8rE1B1VWVlJeXl5hzxDOEZnd0UdPSrBRnRtEmyES1AUhcLCY4BxXY7OWJzPRK1W06tXLABHjuSaQ4zJgQP7zcf9+vXvkDLEx8ueUa7K1BXl5eXVYV2sERGR5oUmpcVGdHUSbIRLKC0tMU9T7czxNSZJSckA6HTNVmMiAHbu3G4+HjBgUIc833oAsQQbV6HT6cytgL169bbr5peWPDw8zN2ZBQUyK0p0bRJshEs4ciTXfBwTE3OGKztGcnIf83F6+iGr10zBxsPDg/79B3bI8y1bbLKyZACxqygoyEenM7YAdlQ3lImpO6qqqpLq6uoOfZYQHUmCjXAJnTHA8kySkk4dbIqLi8jLOwIYW2u8vLw65PmWa+NkZh4+w5WiK7GeEdU5wQakO0p0bRJshEvIzc0xH5vGu3Qm6xabg+Zjy26oYcOGd9jzQ0PDzMvip6cflJlRLqIzA7sMIBauQoKNcAmd+ZvtqYSHR5iDxZ49u8ybUW7Y8Lv5mnPO6bhgAy3jfMrLyyktLenQZ4nO0RkzokykxUa4CocHm4qKCh5//HHGjx/PsGHDuOaaa9i2bZv59QMHDjB79myGDBnCxIkTWbp0qQNLK5yV6QeAl5cXkZE9Ov35KpXK3CJTU1PDoUMH0Ol0rF//G2DcaHD48JEdWoYzjfMRXZNlYLf35pcnkmAjXIXDg83999/P7t27eemll1ixYgX9+/fn5ptvJjMzk/Lycm688UZiY2NZuXIl99xzD6+++iorV650dLGFE9HpdOatDDpy5sjZDB8+wnz8xx/r2bZtCxUVFQCMHj0WT0/PDn1+YmKy+di0IKDo2nJycgBjV2NgYGCHPkuCjXAVWkc+PDc3lz/++IPPPvuMYcOGATB//nx+//13vv32W7y9vfH09GTBggVotVoSEhLIzc1l8eLFzJo1y5FFF04kJycbnU4HQFxcwlmu7jjjxk3gmWeMx9999w0HDrTsDzVt2oUd/nzLFpvDh9M7/HmiY1VXV5u7FDuje7Vbt+54eXnR2NgowUZ0aQ5tsQkJCeHdd99lwIAB5nMqlQpFUaisrGTbtm2kpqai1bbkr1GjRpGdnU1paakjinxadXV1/LRpHwfzSjEYZOBmZzp0qGWwbp8+KQ4rR1RUtHkcTU5ONr/8sgaAsLBunHfepA5/flxcAhqNBpCuKFfQmeNrwPhvb1SUcSuSo0cLZAC66LIc2mITGBjIhAkTrM59//33HDlyhLFjx/Lyyy+TnJxs9Xp4eDhg3PAwLCyszc/Wau2X6fR6PbNnX01G3M2oB/8VGivxqSugm7qS2IBmBkZ5MzKxGwNju6NWd96KuM5Ko1Fb/b+90tMPmI/79+9v1z/b1rrlljls377N6twdd9yNj493m+9pa31ptT7ExsaRmZnxvz2j9OatHtyFvT9bjpSXl2M+jo+Pt/vn+lR11bNnT7Kzs2hoaKCysoxu3brb9ZldlSt9rjqaM9SVQ4PNibZv384jjzzC5MmTmTRpEs8888xJ4xJM64CYVpltC7VaRUiIX7vKaslgMFBcXIRq+P9CmFcQ9V5B5AF5wPpCeLMQ+KUG7/oC+jTt4vyoEpKTk0lKSiImJsZh40IcKTDQxy73ycxs6XYZOfIcu/7ZttYll1zIrl1zeOeddwCYNWsWc+bcbJc/X1vqa8CA/mRmZtDc3Ex5eRF9+vQ563tckb0+W4509OgR8/GAASkd9rm2rKv4+DjWrzfO5KusLCEpKbZDntlVucLnqrM4sq6cJtisXbuWBx54gMGDB/PSSy8B4O3tTVNTk9V1pkDj6+vb5mcZDApVVXVtL+wpfPLJcp74oYSc8l1UeUZi8Is8+SJPfxo8k9nx+1dsf/8182kvv0C0f/0vYZTT27+JfpGepMaHMiwhAk8PjV3L6Qw0GjWBgT5UVdWj1xvadS9FUdi7dx9gHCPg4eFHeXmtPYrZZvfc8w+uuOIampub6dWrN5WV9e26X2vqKza2ZYzR1q07CQ/veYarXY89P1uOlpbW0hIZGRlj98/1qeqqW7eWf7cOHswgIaGvXZ/ZVbnS56qjdWRdBQb62NQS5BTB5uOPP2bhwoVMnTqVF154wdxKExkZSXFxsdW1pq8jIiLa9Uydzr4V3rt3HP/9vwGUl9ei0xkoqSpi48EidudVcbgMjjb5Uq0NR+cfBaXWAzsbfaPRBydzFDgKbCqBpSXAxga8avIIpYxefo30i/BiekoA8b2iXaKFR683tPvPITMzg8rKCgD69x9g9z/Xture3fgDwp7lsaW+kpJaxhjt3buH6dMvstvzuxJ7fLYc7fDhDMC4W31ERFSHfT+WdWW5z9qRI3ldvg7tzRU+V53FkXXl8GDz6aef8tRTT3HdddfxyCOPWP3ATk1N5fPPP0ev15sHRW7atIm4uLh2ja/pDN0CfblkRByXjLA+X1FTypGhc8jLnkxm5mGys7PYXx9BqUGPSn1C64zWm8bgJI4Bx4DNZbD4LwPwpp64uHgSEpIITDyXwB7JjEoKY1BsuNuN4dmxo2U8S0eu7NtVWO5FtX//PgeWRLRHQ0MD+fnGrqj4+PhO+0VGVh8WrsChwSY7O5t//etfTJ06lTlz5ljNdPL29mbWrFksWbKE+fPnc8stt7Bnzx6WLVvGk08+6cBSt0+wvzfB/foyqJ91E29VXTl/Hipk55Eq0kv0FDT4UKHpTrN/NCq18Y9JqSmGhnIagAMH0jhwIA311JGoPUeypBT4vQbvunzCVeXEBeoYFOXDmD7diY8McdnAs337VvPxsGGpDiyJcwgJCSE6uicFBfkcOLAfnU5nNatQdA05OVnmWUnx8Ymd9lxZy0a4Aof+i/fjjz/S3NzMmjVrWLNmjdVrM2fO5Nlnn2XJkiUsXLiQmTNn0r17d+bNm8fMmTMdVOKOE+jrxbShvZk21Pp8VV0FW9KL2J5bydHaUtTnTSEz8zD5+XkYDAZU3SwGh3r60+CZwhHgCLDuGLx+DFT1ZYQXrmW8djuJickkJSWTmJiEr6/jBtnag8FgYNu2LYCxuT4lRcYDgLHVpqAgn4aGBrKyMq3WtxFdQ2Zmpvk4IaHzgk1gYBD+/gHU1FRLsBFdlkODze23387tt99+xmsGDRrE8uXLO6lEzifQ14spQ3oxZYjpzETAOIg6OzuLVQcb2F+ynoJGP6q0EegDok+6h+ITyrGj+Xz2x8ctJ9VavG5dR5ChlF4+dfQL1zAyIZTUxMguM2B5//59lJQcB2DkyFFuN7X5dAYMGMhPP30PwP79eyXYdEGWO7R3ZrABY6vNoUMHKCw8Ji1+okuST2wX5eXlRUpKX1JOWI+upKqIPw4UsuNINellKgp1AdR49UA5ftD6wpB49EGxlBFLGbCrCj7dCWypx7v2COGqMhKDdQzt6cfUARF0C+nY5dzb4tdfW1r5Jkzo+AXwugrLcTb79u1h5swrHFga0RZZWRnm44SEpE59ds+exmCj1+spKiq06p4SoiuQYONiugX6cunIeC49Yb/FsssfJTPzSg4fTufw4cPsqvAjr6kWPE/ojvLwoSG4j7E7S4Ff8uC5h4fRI0BDcnIf+vTpS3jiUOLjkxkS77jByjqdjlWr/guARqNhwoTzHFIOZ9S3bz/UajUGg0EGEHdRmZktM6IsZyp1hhMHEEuwEV2NBBs3ERoaQmjoKFJTR5nP6fQ6dmSm82dGGfuLmsmt86FcG4HOPxqVyjgLQ6krg5oijtXAsWNHWbfuV9STFqAefiGsr8KvLpcobQV9w2BUQjDj+kXh49XxXUIbNvzO8ePGqf/jx59HWFi3Dn9mV+Hr60d8fAIZGYfJyEinoaEBb++2r3wsOpdxRpRxU9fOnBFlEhXVEmTy8/NJlTH5oouRYOPGtBo1I5J7MCK5h9X5kqrjrE87xrbcao41lGEYMozDhw9RW2tcIEwV3t94oVcgtV4DOAwcboJvDgB7G/CuyiJKU8KIsBouHBBCYmKyXXe2VhSFJUveNn99+eVX2u3erqJ//4FkZBxGp9Nx8GAaQ4YMc3SRhI0cNSPKRGZGia5Ogo04SbdAX2aOSmCmuXFnEgaDgYKCfA4dOsAXOfVkle+g0jPq5BWWtd40hPYjC8j44w0+/tetaLUeJCYmkdK3Hx59LmR8Shjnj+nf5vL9979fsm/fHsC4o/WYMePafC9XNXjwUP773y8B41o/Emy6DlM3FHT++BqQYCO6Pgk2wiZqtZqYmF7ExPRiisX5nKJ8ftt/jJ0F9WRUe1OiiUIfYPyHUTm2CwCdrpmDB9M4WFiLNulVvkqDuVuL8a3KpKe2hIHdYVxSKMMHJOLjc+atMv78cyPPPPNP89d///sDLrEKs72dc05L/8G2bVu46abbHFga0RqOnBEFmHf4Bgk2omuSYCPaJTYiiBsigrjB4tyx8kLW7iuk8ZIR5Bz0IC1tv7F5vccQ8zUqv3Dq/cKN3VjAl4dB2ZqLb9U+eqiPM9Y/h7iYaIKCgvD19aOoqIgtWzbxzTdfmZvpL7/8SmmtOY1evXrTvXs4x48Xs3PnDpqbm2U6fBeRleWYNWxMvL296datOyUlxzl6tKDTny9Ee0mwEXbXI8SP68YlwLgE4C8A1NfX8fPuPL7P2k5mrS9lHj0xeAZYvU8V3Jv64N5kNlaR/mo/QLG46VBQDKD2AH0T48dP5OGHH+u8b6qLUalUDB8+gu+//5b6+joOHNjPoEFDHF0sYYPDh417yfn4+Hb6jCiTqKhoSkqOU1JyXAafiy5Hgo3oFD4+vswY1YcZo0CrVRMc7MfWw+Ws3VfMtvwmsur8qPCMQtF4oxTuxSrUAOqxD6KOmwD6JrqryuiRFML3Rwz0CzMQF2jAhg1f3Y4p2ICxO0qCjfOrqqoyd/8kJSU7rJs1Orone/bsAuDo0QLi4xPO/AYhnIgEG+EQKhUkdfckblwUt/7vnM7QTEZ5EwWFkahHvcGxYwXU1NRQXVPNlxEjaQTQeHKcSFZmwsr/tdj7aBVSQvT0CzNwQWwzKaGy+y4Yg42JjLPpGtLTWxbSTEnp57BynDiAWIKN6Eok2AinoVVDSpiKlLBw6D/ZfL5ZDz0zYH9pM2llanKr1Ci0LAxYr1Ox87iWncehT4jeKtjUNMPBMg39w/T4uNmnvVev3oSHR1BcXMSOHdukS6ELOHjwgPm4T5+UM1zZsWRmlOjK3OyfetEVeWjg6j7NQDPQElb2l2rYX6omrVRDYZ2xyb5fmN7qvTuKNNz/uy8alUKfEAODuukZ3F3PkO56uvsqJz7KpahUKsaMGcdXX62goaGBrVs3M27cBEcXS5zBoUMtwcaRm7qeuPqwEF2JBBvR5fh7wPAIPcMjWkJMWYOKtFI1vQKsw8ruEuOGnnpFRVqZhrQyDZ8bx2YS7W9gyP9CztBwHbGBrhd0xo2byFdfrQDg999/k2Dj5EzBRqPRkJiY7LBySIuN6MpkyKVwCaHeCmOj9Zy4ddU54XpmJjQRH6Q/6T0FNWq+y/Zg4RZvHt/oc9LrigvknFGjzjVP816//jfzVHnhfJqamsxTvePi4vHy8nJYWSIiItFojL8UFBTIlG/RtUiLjXBpo6P0jI4yhpqqJthzXMPu4xp2HTd2ZTUZjEloSPeTg89fv/elm4/CsHA9w8J19AszoO1ivwr4+vqRmjqSjRs3UFh4jLS0fVa7fwvnkZlp3AIDHDtwGECr1RIZ2YOCgnxpsRFdjgQb4TYCPWFstJ6x0cYQ06SHA2Vqdh7XMqy7zurawloV6RUa0itg4zEt4IW3RmFwdz3nROgZFq6nf6geD03nfx+tNXnyNDZu3ADA999/K8HGSTnLwGGT6OieFBTkU11dRVVVJYGBQY4ukhA26WK/fwphP54aGNzdwA39mhjU3XqK+NFaNWHe1uca9Co2F2p5c7cXt6zxZeIKf+78xYfiuhP6v5zM1KnT0WqN3VE//rgavf7k1inheM4ycNhExtmIrkqCjRCnMCxczw8za1k5o4b5Ixq4ILaZcB/roNOoV7H7uIYQL+txKwfL1BwqV2NwkuEsgYFBjB07HoDjx4+zbdsWB5dInIpli01ysuNbbKKiJNiIrkm6ooQ4DZUKegcq9A5sZmZiM4oC+TUqthdr2V6kYXuRhrggw0ndUYv3ebIu34MgLwPnhOsZEalnRISOmAAFlYMady688GJ+++1nAL7+eiUjR57rmIKIU9LpdBw8mAZAjx5RBAUFO7ZAQHS0bIYpuiYJNkLYSKWCmACFmIBmLkswBp0666E56A2wvcj416qyUc0veWp+yTN2A0X6GkiN1DMyUseISD2h3p3XpDNhwnmEhIRQXl7OmjU/cv/98+jePbzTni/OLCMjnYaGBgCn2frCuitKZkaJrkO6ooRoI5UK/E7YMFunwO2DGpnYs5kAD+vgUlinZlWWB49u9GHal/58n915v1d4eXkxc+aVxjLqmvnii8877dni7Pbs2W0+HjhwsANL0iImppf5OC8v14ElEaJ1JNgIYUdeGvhLn2ZeGN/A2lk1fDi9lrsHNzIiQoen2jro9D1hleT0cjUfHfDgcLm6Q9bQueqqa8xrkyxf/gnV1dX2f4hok717W4LNoEHOEWxCQkLx9w8AICcn28GlEcJ20hUlRAfRqKFfmIF+YU3c0B8a9bD7uIYthRoyKjT0PmGV5LVHtLy334tXgTBvAyMj9YyO0jG6p4EQO5QnMrIHF1wwg2+//S+VlZV8+OF73HXX3+1wZ9FepmDj4eHh8DVsTFQqFbGxcezbt4djx45SX1+Pj8/JC1kK4WykxUaITuKlgRGReu4e0sQrE+tPGkj857GW3zNKG9SszjF2W03+jy8zPoPXd3qws1iDrh2bl99xxz3mqd8ff7yMkpLjbb+ZsIvKygpzi0jfvv3w9PR0cIlaxMbGmY+PHJHuKNE1SLARwkn8c3Q9D5zTwNgoHT7altYcBRV7i2HpXk9uXevLC9vbvtR+dHRPrrjiKgDq6+t4+ukFss2Cg+3bt9d8PHDgEMcV5BR6924JNtIdJboKCTZCOInYQIW/9GnmlYn1/Dyrhrcn1/G3vo0kh1iPxUmNsP66ohEW7fK0uTXnttvuIiQkFIDffvuZr79eabfvQbTe7t07zcfOMr7GJDY21nycmyvBRnQNMsZGCCfkqWnZwfx+rY4mTz9+ONDIhnw1IyOt55j/eUzLB2lefJAGgZ4Ko3roGBOlY3QPPSGnmFIeGhrK448/xX333QXA88//i8GDhxIfn9Ap35uwtmPHNvOxs0z1NrHsipIWG9FVSIuNEF1AhB9ckqDjX2Ma8D9hCMYmi7E5VU0qfsr14IlNPkz70o8bf/RlyV5PDpZZz7Q677zJzJx5BWDskrrzzlsoKirsjG9FWGhsbGTPnl2AsZuwR48oxxboBDExvVH9bzCYBBvRVUiwEaKL+/vQRhaMqmdqL+u1cxRU7C3V8PZeL2b/4Mfff7Oe0fLggw+bZ+AUFh7jhhuu5fDhQ51adne3d+9umpqaABg+fISDS3Myb29vc9jKzc2W8ViiS5BgI0QXF+qtMCNexzNjG1gzq4Z3p9Rxfb9GEoKsx+IM7Gb9tY+PH3957GOi4/sDcOzYUW644VrWrPmh08ru7iz37XLGYAMt3VG1tbUyi050CRJshHAhWrVxA897hjSx/KI6vr20hv9LNc60Oi/GemxOVqWap3dHUHLljwTe9C2qYTdSqw7iwQfn8o9/3EN+fp6Dvgv3sXXrn+bjc85JdWBJTi82Nt58LN1RoiuQYCOEC4v0U7giyTjTKjHYesrUugLj2By9oqKu21A0U55Ge8dWNNf/wC/1A7j0lvt5ZP48MjIOO6LoLq+6uppdu4wzomJiehMVFX2WdziG5QBimRklugKZFSWEmzq3h47yBhW/52spqG35HUcVMRBNxEAY+wA/Vubxw6tfMYYXuOyyWYwfPxEPD+dZQK4r27JlE3q9sXtw7NhxDi7N6VkGm8zMTAeWRAjbSLARwk31DTXQN7SR+4c1klGhZl2+lnUFWg6UaczXqIJiUELiWP/Nc6xfv47g4GCmT7+QydMuYvjQoajV0ujbVhs2rDcfjxkz3oElObPExCTzcWamtN4J5yfBRgg3p1JBUoiBpJAmbhnYRGGtit8LtPx6RMX2Ii3+xZup+N+1FRUVLF/5JSvCH8Fj7R4G+RZzdWo4E1MHmjfYFGenKAp//PE7YNx53VkHDgOEhoYRGhpGWVkphw+nO7o4QpyVBBshhJVIP4Wrkpu5KhlqmppQXfEAu7eP4ZtvvuLXX9fSFDMOlU8Iuphx7AB2ZIHmzz300eZx6YAALh7d36n2O3JG6emHKC4uAoyzoby9vR1cojNLSkpm8+ZNlJeXUVZWSmhomKOLJMRpSbARQpyWcTFADaNHj2X06LFUV1ezaG02qyrLaPIMNV+nDx9EGoNIOwrPLsmhV3M60xM9+OvEvvj5+Tms/M5q7dofzcfjxk10XEFslJCQxObNmwA4fDidkSPPdXCJhDg96SAXQtgsICCAh2cO4o/rPXhn/HHGe+3Dt856WrgSHEtu92m8k9WTSZNG8/e/38HXX6+kvLzcQaV2LoqimNcKUqlUTJkyzcElOrukpGTzsXRHCWcnLTZCiFZTqeCcnt6c07M3AJklJXy0sYA/irwp90kEtQbl8I80Njaybt2vrFv3KxqNhu5XvcmwGB+uHxtLn17hDv4uHCMjI928HsywYefQrVt3B5fo7BITW4JNRoYEG+HcJNgIIdotoZsXCy4xLuRWUlPJxxvzONazlu3duptXq9X7R1MSM4OfgB9/1+NbnsbQoDKuHRHJqBTn2iOpI33//bfm46lTz3dgSWyXmJiISqVCURRpsRFOT4KNEMKuuvl7MHdaPEy7E8MDt7N3725++WUtq/KCqPrfNSq1hvqwgWwENu4Aj1+z6e+Vx9VDQ5k8uBdqtcqR30KH0el0rFr1NQBarZZp0y5wbIFs5OPjS8+eMeTlHSEzMwODwSBT/YXTkmAjhOgwarWawYOHMnjwUO41KPyw+wBf7qogrSmK5oDe5uuag+LYRRy7DoB2UyZXNn7I1MlTGDBgkEv9AN24cQPHjxtbsMaPP69LzS5KSEgiL+8IDQ315Ofn0atX77O/SQgHkGAjhOgUGrWKi4b25KKhPQH489BhPt1SyM6qbtSH9DVf11SSxUdfLuGjZUuIiIhk0qQp9B93GdNS++Lp0bXXyvn884/Nx5deOtOBJWm95OQ+/PbbzwAcPHhAgo1wWhJshBAOMapPJKP6RAKwPzebDzfms7ksmOrDq83XFBUV8tny5Wi6P8yTB/T0bkrjwmQt14xNxMfLw1FFb5P09ENs3LgBgOjonowdO8HBJWqd/v0HmI/T0vYxbVrXGB8k3I8EGyGEw/Xv3Y3nencDoPza+1i3bjBr1/7E5s0b0UWfi8o7GAXI8RnNm0Xw5icVRDfs4/wENdeNT8Tfx/kXBPzoo/fNx9ddd0OXW6m5b9/+5uMDB/Y7sCRCnJkEGyGEUwkJCeGyy2Zx2WWzqK6u5tNf9/JV3jZKAgaA9n8r9HoHU+B9LktLYenyGiLr0pjaW8+cqUmEhDjfgoC5uTnm2VCBgUFceunlDi5R64WHR9C9ezjHjxezf/8+FEVBpXLNQd6ia3OdUXlCCJcTEBDAnEtG88NdffhpZiV/DdxERMUWaKppucjTn8LgEXyY14uJE0Zx6623snr1t9TW1pz+xp3s1VdfRKfTAXDttdfh4+Pr4BK1jak7qqammry8Iw4ujRCnJi02QoguITTAl/tmDOA+oKqugY9+38ePWQpHffqBVxBK+moa6utZvXo1q1evxtPTk6irXmN4fAg3TYgjKizQIeXeuHEDv/yyBoBu3brzt7/d6JBy2EPfvv357bdfAOM4GxlALJyRBBshRJcT6OvFXef35y6grrGJzzZs4WC342wLCTFv3dDkGUp+1MXkN8DXq5sIqtzH2PBabhwfS2xkcKeUs6qqkgUL5pu/vuuuv+Pr63xdZbbq189yAPF+zj//IgeWRohTc6pg8+abb7Jp0yY++ugj87kDBw6wcOFC9u3bR3BwMNdddx0333yzA0sphHAmvl6e3Dy5L0zuC4/cRXr6Plau/JrV+YHUmy7SeFIZOozvdPDtWh2BFfsYGVrB7FE9GBDfMaseNzc388gj88y7eI8aNZrLLpvVIc/qLJYzo/bu3e3Akghxek4TbD744ANee+01UlNTzefKy8u58cYbmTJlCk8++SS7du3iySefJDg4mFmzuvY/EEII+9NqtYwZM4Z+/Ybwj/pmvt6yk6/315KhSsLgFwGASq2lOnQIa4E1G/V4/3cnl/MtE8ePZ/DgoWi17f9n0WAw8M9/PsaGDesACAgI5Mkn/9XlB9uGhoYRE9ObvLxc9u3bQ2NjI15eXo4ulhBWHB5sioqKmD9/Ptu3bycuLs7qtf/85z94enqyYMECtFotCQkJ5ObmsnjxYgk2Qogz8vTQcNWYRK4aA3qDwrfb9rByTzWHDHHo/Y2tNCq1hvqGBj5avpiPli0mICCQMWPGMWLsFCaNHUVwcEirn1tTU8MTTzzMzz8bx9V4enry8suLiIiItOv35yjDhp1DXl4uzc3N7N+/l2HDhju6SEJYcfisqP379xMUFMQ333zD4MGDrV7btm0bqampVr9BjRo1iuzsbEpLSzu7qEKILkqjVnHpiDg+vGUQm27x51/90hiq24xnbQEc/t58XXV1FT/8+D0Lj05g8tJSZixYwcvvL2fr1j+prKw44zPq6+tYsWI5l156vjnUqNVq/vWvfzN8+IiO/PY61dCh55iPd+zY5sCSCHFqDm+xmTRpEpMmTTrla4WFhSQnJ1udCw8PB+Do0aOEhXWdfVaEEM5BrVYxbUgM04aAokDp5XPY/Gc/fv/9N/74Yz01wf1Q+UeAfwSFPYbyCfDxhr0Yln5KaOlm+kZ4Exsbi79/AAaDgfz8PPLzj3D48GHq6+vMz/H39+eZZ15k3LiutcLw2Vi20Ozcud2BJRHi1BwebM6koaEBT0/rFUVN/bmNjY3turdWa9/GKo1GbfV/cXpSV60j9WW7ttRVZEQYl156GZdeehnNzc18vD6HZdmFVHi0dB2pIgaiiRhIJbDp+EE2pq/GcOg7KDl4yntOmTKNBx/8P6Kje7br++lIbf1cxcXF0q1bd0pKjrNr1w5UKqXLraLcWvJ30HbOUFdOHWy8vb1pamqyOmcKNL6+bV/gSq1WddjqpIGBPh1yX1ckddU6Ul+2a09d3T9rCPcD2eXwydYyVh9WKNC1tA6ruqcY/xvyN/RvDgXFAEBkZCSTJ0/mL3/5C8OGDWvvt9Bp2lJXo0aN5Ntvv6W2tpajR3MYNGhQB5TM+cjfQds5sq6cOthERkZSXFxsdc70dURERJvvazAoVFXVnf3CVtBo1AQG+lBVVY9eb7DrvV2N1FXrSH3Zzp51FQzclerFXalQUFPHL0c0rM3Vsvu4sXVibGQdVy16i+jonkRH98THx4fPD2qp8DVQWlaL2sknQLWnroYMOYdvvzVuEfHjj2uJiUnoiCI6Dfk7aLuOrKvAQB+bWoKcOtikpqby+eefo9frzU2dmzZtIi4urt3ja3S6jvlw6vWGDru3q5G6ah2pL9vZu64ivOGaZD3XJDdRXKfi1zwtA7qF0T+sZfxMSY3Cv7d6oldUhHkbmBSjY1KMjqHheuzc821XbamrUaPGmo/Xr1/HDTfcau9iOSX5O2g7R9aVE/91g1mzZlFTU8P8+fPJyMjgyy+/ZNmyZcyZM8fRRRNCuKlwX4Wr+zTTP8z6H+11BRr0irGZprRBzReHPbnjF1+mf+nPk396s75AQ6PeESW2v549Y8zbKezevYvq6moHl0iIFk4dbMLCwliyZAnZ2dnMnDmTRYsWMW/ePGbOnOnoogkhhJXzYnQsGFXP+OhmPNWK+Xxlk4pVWR7ct86XaSv9mf+HN67QmzFmzHgAdDodW7f+6eDSCNHCqbqinn322ZPODRo0iOXLlzugNEIIYbtAT5gRr2NGvI7aZthQoOW3fC0bjmqp1xlbcmp1Ko7VqjlxmECzHjy62MSiMWPG8dlnxu1vfv31ZyZNmurgEglh5FTBRgghXIGfB0yP1TE9VkeDDrYUavg134N1+VomxTRbXasocMW3fvTwNzCxp46JPXVE+imnubPzSE0dib+/PzU1Nfz66880Nzfh4eF59jcK0cEk2AghRAfy1sL4nnrG99SjM8CJ4ykPlKkpqDX+t61IywvboV+onokxOs7rqSMuyDn7rby8vJgwYRLfffcNNTXVbNq0kfHjJzq6WEI49xgbIYRwJVq1MehYqmhU0dPfOryklWl4c7cXV37nx6xvfVm0y5N9JWoUJ2vImTr1fPPxTz99f4Yrheg8EmyEEMKBRkfp+eriWj6/sJY5AxtJDrGeOpVbpeGDNC/u/c0XvZMFm3PPHYO/vz8Av/yyhtraGgeXSAgJNkII4XAqFSQGG7h1YBOfXlDHfy+p4b5hDQztrkOFMc2Mi9adtB7Okn2efJulpaLBMasBenl5cf75FwFQV1fH999/55ByCGFJxtgIIYSTifZX+GtKM39NaaasQcXvBVriAq1bcmqajcFGZ1ChVikM6qZnfLSO8dF6egcaUHVS1pk16ypWrDDOXF25cjlXXHF15zxYiNOQYCOEEE4s1FvhsoTmk85vPqZFZzCmF4OiYtdxLbuOa3ltF8T4GxjfU8e4aB1Dunfsysd9+/anX7/+pKXt58CBNHbs2Ga1A7gQnU26ooQQogua2FPHkil1XNe3idgTWnPyatR8ctCT2382rnxc03Sam9jJNddcZz5euvTdjn2YEGchwUYIIbogjRqGhOv5+9BGVsyo48sZNcwd2sCwcB0aVcso40g/A/4nLC+zs1hDfrX9+qrOP/8ievSIAuCPP35nz55ddru3EK0lwUYIIVxAr0CF2X2beXdKPT9dXsNT59YztVcz58eevCDgk396M+MrX6Z+DK/t8GBviRpDO2ZceXh4cPPNt5m//ve/n0Fxtrnpwm1IsBFCCBcT5AUXxOl4ZmwD1/W1DjY5VWrya4z/9KeXwnv7PLnxJz/O/8qPJ//05rc8LfW61j/zssuuID4+EYC9e3fz3/9+2e7vQ4i2kGAjhBBuJMBT4e7BjQzqrseyM6qsQc2qLA8eWO/D5BX+/P03H4rrbO+u0mq1PPDAQ+avn332abKzs+xYciFsI8FGCCHcSDcfhRv6N/HhBQ1suxUWjG7kvJ7NeGtauo6aDCp2FmsI9rLuTiqpV520JYSl0aPHMXPmlQA0NNQzb95cGhoaOuT7EOJ0JNgIIYSb6uYLlyXq+Pf4Bn6+ooZXJ9YxK7GJcB8Do3ro8Dxhx/GFW7yZvNKfeeu9+TrTg+OnaNGZN+8REhKSADh8OJ158+bS2NjYGd+OEACoFDcc4aXXGygrq7XrPbVaNSEhfpSX16I70680QuqqlaS+bCd1Zbsz1ZWiQG0zVrOpGvUweYU/DXrrMJMYrOfcHnpG9zCumeOhgczMDP761ytpaKgHYOTIc3n55UX4+vp1+PfVEeRzZbuOrKvQUD80mrO3x0iLjRBCCCsqFSdNEa9pUjGxp44gT+vfhTMqNHx0wJM7fvFl0kp/7l/nDWHJvP762/j4+AKwefMmrr/+GjIyDnfWtyDcmAQbIYQQZxXmo/D0mAZ+uryG96fVcsuARvqF6s17WQHU61T8XuCBl1YhNXUk77zzHgEBgeATwuHcAv7yl8t58cVnqaqqdOB3IlydbKkghBDCZho1DOxmYGC3Jm4f1ERFg4o/CzVsOqZl0zENvlro6W8MO4MGDeGDDz7l1g8PUJl4JcrRHXyc+Ttf3vQAM1LjuPyyy+nTJ8XB35FwNRJshBBCtFmwt8L5sTrOj9VhUIwzpywlJCQSPmIgVZVaiBmJJmYkjcCKhkq++OwPIhv/5JLB3bjmgnEEBQU55psQLkWCjRBCCLtQqyDc13oMjkGBYREGmgwGjlS3jH5QeQehSr6QYmCJAZZ8lk/vvHeZkahm3LjxJCQkoeqsLcqFS5FgI4QQosOoVTBveCPQyLFaFZuPadmQZ+DPY2oa8G65MLAnWQf38up3a3j11ReIjOzB8HHnEz7kQi4fEUPP7sGO+hZEFyPBRgghRKfo4adwWWIzlyWCQdGTXq7n271l/JrVQLE6CiVvo/nawsJjfHegFk3caJb9qMe7MoN4j2LGx3lx2YhedA/qmlPHRceTYCOEEKLTqVWQEmogZUIwD0wAncFAwcSVbNjwO3/88Tvbtm1B13ssACq1hsaQPhygDweOw9urdPhWHSbBs4Rxcd5cmtqLboG+Dv6OhLOQBfrsRBZwsp3UVetIfdlO6sp2zl5X9fV1fLIhm19zDGTrImkKij/9xdm/0u/Qvxk+fATDhqUyZMgw/P397VYWZ68rZ+IMC/RJi40QQgin4+Pjyy1T+3PL/77OKszj6235bMpXyCMaXWBv87X6I5vYs2c3e/bs5r33FqPWeOB3wzf08qpiVIyWS87pSe9wmXHlLiTYCCGEcHrxkcHcPyPY/HV6QS7/3V7A5qMK9Y2HKbC41tAthfqwQRwCDpXDsrXgUZlFT1Uh50QqXDg4kkFx4Z39LYhOIsFGCCFEl5McHcqD0aHGL25/jZKS42zfvo0dO7byW0kYpSdc3xwUTzbxZNfBik2gXnOMcF0e14TtJXXoYBISEtFoNCc9R3Q9EmyEEEJ0ed26dWf69AuYPv0CHgZyi/P577Z8NufryNGF0xAYj0rd8iPP4N+DY1UK/35mJgD+/v4MGjSE0GGXkxCfwEXDehIeLDOvuiIJNkIIIVxO7/Ag7r2wZVxNSWUpq7bn8UdOPZn1wVT7J6AUbDW/XlNTw8aNG9DEP4SqcBiLvjPgVZVNtKqIoZEwc2RP+ptaiIRTk2AjhBDC5XUL8uXGSX248X9f1zc2sPtgDw4n/x+7dm1n9+5dlFRUQ8RAAFQqNU1BCWSTQHYdfPkr0FBOcH0OiX41XJgAk4Ym2nX2lbAPme5tJzId0HZSV60j9WU7qSvbSV1ZUxSF7LyjLN9exs4iyDd0pzEwHpX61ONu9Cv+Btm/kJCQSL9+A4jrew7d4wczcWAM/r7ep3yPO5Dp3kIIIYQTUKlUxPeK5uFe0eZzxRXH+X5nPpuPNJBR50+ZV2/wDgFAObYTFIWMjMNkZBxGleWB5sIbUQ7W4V2VSQ91KX1DDYxJDGb8wF74ens56ltzOxJshBBCiFMID/bj+vP6cPP/WiFKS2vYdCCddWnHaJ4xnX37dpOefgi9Xo8qahgAKg9fGsMGkgPkKPD9YSCtDq+qLKLUpQwOa+TS/n4kJ/fBy0vCTkeQYCOEEELYQK1WMbJPD0b26QEzjUGmoaGBw4cPsWJfAzsqd3Bc0wOdXw/rN3r40hg2gGwgM30NK569Cq1WS0JCEv36DcAr5XyGJkYwfkAvfLw8O/8bczESbIQQQog28vb2ZuDAwQwc2HKuqLKEX/YfY0tuLYcrvSjRRLaEnaI9AOh0Og4dOsCh9HQ0c59hxSEf2FeHd3U2PdQl9AtTGJMYzLgBMRJ2WkmCjRBCCGFHEUFeXDM6lmtGt5wrrDjOL/uPUUEkx0IvIy1tP9nZmRhCE1F5+Bgv8vClIbQ/2UC2Hr47hEXYKeXC8KOM6h9LYmISHh4Sdk5Hgo0QQgjRwSKDvbl2TByMiQMuAYwbfW7el8XXhzdxuMqLEk0P9KfoxjKFnVdfTeXV6qN4eHiQlNSHyKEX4tPrHFJjAxjfL5LQANnhHCTYCCGEEA7h4+PLxNQBTExtOXesoohf9hay5UgdGVVelGiNYUepLYHqowA0NzeTlraPg5FXoI4ey4+ZoGQY8KjOI1RfRKxfA4N6eDG2T3f69eqGWq1y0HfoGBJshBBCCCfRI9iXv46L568W546WF7L5QB61DzxMWto+DhzYT05ONoT3N1+jUqnRBfammN4UA1tKYclG4JcKwgvXMkGzlaSkPiQl9SExMQkfH5/O/tY6jQQbIYQQwolFhfgxc3QKjE4xn6utreH7nQVsOfI7GZUeFCmhNPrHgvaEKeTewRQeO8Zn6z82n1KpNXjd8gtBSgW9fOrpF65lZEIowxMj8PTo+huBSrARQgghuhg/P3+uGNuHKyzONTTV8eehLP7MLCPtuEJBkz9VnlEox9Os3qsE9UIXnEgpUArsrIJPdgJbG/CqOUIYZcQFNDGwhzdT+4XSq0c4KlXX6c6SYCOEEEK4AG9PLRMH9mTiwJ5W58uveJiMjMtJT08nPf0gu8t8yW+uB48TuqO03jQGJ3MUOAr8UQyLnkzFX6kmMTGJxMQkguNTCYpKYnRyd+J7hDhl4JFgI4QQQriwkJAQUlNHkZo6ynyuqbmR7ZlH2JxZRlqRjiP13lRowmn272neH0tprILqo9QAu3btYNeuHajP64M6dTivHgVVfRl+DQWEa6tJCDIwMMqH8f0jCQnxc9B3aiTBRgghhHAznh4azk2J4tyUKKvzlbVlbDxUyPacKvKrytGMGU9WVgbHjhlnZBGWbL5W8QmlxieUGiDLAGvy4aV8CP/nE7wx9zLi4hI78TtqIcFGCCGEEAAE+XlzwbBYLhhmOjMBgOrqarKyMvjmkI608g0U6gKp8eqB4tv9pHscPfgnP//sxy23SLARQgghhBMKCAhg8OChDB5sfT63OJ9Nh4rYW1BHRqWaIl0QQwb35tJLL3dMQZFgI4QQQog26h0eRO/wIP7yv6+1WjUhIe9SXl6LTmdwSJnUDnmqEEIIIUQHkGAjhBBCCJchwUYIIYQQLqNLBBuDwcBrr73GuHHjGDx4MDfddBO5ubmOLpYQQgghnEyXCDZvvvkmn3/+OU8//TTLly9HpVJx66230tTU5OiiCSGEEMKJOH2waWpq4r333uOee+5hwoQJpKSk8PLLL1NUVMSaNWscXTwhhBBCOBGnDzYHDx6ktraWUaNaloIODAykX79+bN261YElE0IIIYSzcfp1bAoLCwHo0aOH1fnw8HCOHTvW5vtqtfbNdBqN2ur/4vSkrlpH6st2Ule2k7qyndSV7Zyhrpw+2NTX1wPg6elpdd7Ly4vKyso23VOtVnXYJl2BgT5nv0gAUletJfVlO6kr20ld2U7qynaOrCunDzbe3t6AcayN6RigsbERH5+2VZzBoFBVVWeX8ploNGoCA32oqqpHr3fMaotdhdRV60h92U7qynZSV7aTurJdR9ZVYKCPTS1BTh9sTF1QxcXF9OrVy3y+uLiYlJSUNt+3o5Z61usNDltGuquRumodqS/bSV3ZTurKdlJXtnNkXTl9h2FKSgr+/v5s3rzZfK6qqoq0tDSGDx/uwJIJIYQQwtk4fYuNp6cns2fP5oUXXiA0NJTo6Gj+/e9/ExkZydSpUx1dPCGEEEI4EZWiKIqjC3E2er2el156iS+//JKGhgZSU1N5/PHH6dmzZ5vupygKBoP9v22NRi39rzaSumodqS/bSV3ZTurKdlJXtuuoulKrVahUqrNe1yWCjRBCCCGELZx+jI0QQgghhK0k2AghhBDCZUiwEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNHRgMBl577TXGjRvH4MGDuemmm8jNzXV0sZzOm2++yXXXXWd17sCBA8yePZshQ4YwceJEli5d6qDSOV5FRQWPP/4448ePZ9iwYVxzzTVs27bN/LrUVYvS0lIefPBBRo0axdChQ7ntttvIyMgwvy51dWrZ2dkMHTqUL7/80nxO6qpFQUEBffr0Oem/L774ApC6OtHXX3/NhRdeyMCBA7nooov4/vvvza85tK4U0W6vv/66cu655yq//fabcuDAAeWmm25Spk6dqjQ2Njq6aE7j/fffV/r06aPMnj3bfK6srEwZOXKkMn/+fCUjI0NZsWKFMnDgQGXFihUOLKnj3Hjjjcoll1yibN26VcnMzFSeeuopZdCgQUpGRobU1QmuvPJK5eqrr1b27NmjZGRkKPfcc48yZswYpa6uTurqNJqampTLL79cSU5OVlauXKkoivwdPNHPP/+sDBw4UCkqKlKKi4vN/9XX10tdneDrr79W+vbtq3zwwQdKTk6OsmjRIiUlJUXZsWOHw+tKgk07NTY2KkOHDlU+/fRT87nKykpl0KBByrfffuvAkjmHwsJC5eabb1aGDBminH/++VbB5u2331bGjRunNDc3m8+9+OKLyvTp0x1RVIfKyclRkpOTle3bt5vPGQwGZerUqcorr7widWWhrKxMue+++5T09HTzuQMHDijJycnK7t27pa5O48UXX1Suu+46q2AjdWXtrbfeUi655JJTviZ11cJgMCjnnXee8uyzz1qdv+mmm5S3337b4XUlXVHtdPDgQWpraxk1apT5XGBgIP369WPr1q0OLJlz2L9/P0FBQXzzzTcMHjzY6rVt27aRmpqKVqs1nxs1ahTZ2dmUlpZ2dlEdKiQkhHfffZcBAwaYz6lUKhRFobKyUurKQkhICC+99BJJSUkAlJSUsHTpUiIjI0lMTJS6OoWtW7eyfPlynnvuOavzUlfWDh06RGJi4ilfk7pqkZWVRUFBARdffLHV+aVLlzJnzhyH15UEm3YqLCwEoEePHlbnw8PDOXbsmCOK5FQmTZrEiy++SExMzEmvFRYWEhkZaXUuPDwcgKNHj3ZK+ZxFYGAgEyZMwNPT03zu+++/58iRI4wdO1bq6jQee+wxxowZww8//MDChQvx9fWVujpBVVUV8+bN49FHHz3p3ympK2vp6emUlpZy7bXXMnr0aK655hrWr18PSF1ZysnJAaCuro6bb76Zc889lyuvvJJffvkFcHxdSbBpp/r6egCrH0gAXl5eNDY2OqJIXUZDQ8Mp6w1w+7rbvn07jzzyCJMnT2bSpElSV6dx/fXXs3LlSi655BLuuusu9u/fL3V1ggULFjBkyJCTfrsG+TtoqampiZycHGpqapg7dy7vvvsuAwcO5NZbb2XTpk1SVxZqamoAeOihh5gxYwbvvfceY8aM4c4773SKutKe/RJxJt7e3oDxL4XpGIx/eD4+Po4qVpfg7e1NU1OT1TnTh97X19cRRXIKa9eu5YEHHmDw4MG89NJLgNTV6Zi6DZ566il27drFxx9/LHVl4euvv2bbtm2sWrXqlK9LXbXw9PRk69ataLVa8w/lAQMGkJmZydKlS6WuLHh4eABw8803M3PmTAD69u1LWloa77//vsPrSlps2snUtFtcXGx1vri4+KSmOGEtMjLylPUGEBER4YgiOdzHH3/MPffcw/jx41m8eLE5LEtdtSgtLeXbb79Fr9ebz6nVahISEsx/76SujFauXElpaSkTJ05k6NChDB06FIAnnniCiy66SOrqBL6+vie1NCQnJ1NUVCR1ZcH0sy05OdnqfGJiIvn5+Q6vKwk27ZSSkoK/vz+bN282n6uqqiItLY3hw4c7sGTOLzU1le3bt1v9gNq0aRNxcXGEhYU5sGSO8emnn/LUU0/x17/+lVdeecXqH1ipqxbFxcX84x//YMuWLeZzzc3NpKWlkZCQIHVl4YUXXmD16tV8/fXX5v8A7r33Xt59912pKwsHDx5k6NChVmtHAezbt4/ExESpKwv9+vXDz8+P3bt3W51PT0+nV69ejq+rTpl75eJeeuklZcSIEcratWvN69hMmzZN1rE5wUMPPWQ13bukpERJTU1VHnroIeXw4cPKypUrlYEDBypffvmlA0vpGFlZWUr//v2Vu+66y2r9jOLiYqWqqkrqyoLBYFBuuukmZfr06crWrVuVQ4cOKffdd5+SmpqqFBQUSF2dheV0b6mrFnq9XrnyyiuVGTNmKFu3blUyMjKUf/3rX8qAAQOUgwcPSl2d4I033lCGDh2qrFq1SsnNzVXefPNNJSUlRfnzzz8dXlcSbOxAp9Mpzz//vDJq1ChlyJAhyq233qrk5eU5ulhO58RgoyiKsnv3buWqq65SBgwYoJx33nnKRx995KDSOdZbb72lJCcnn/K/hx56SFEUqStLVVVVyhNPPKGMGTNGGTRokHLTTTdZrWsjdXV6lsFGUaSuLJWWlioPP/ywMmbMGGXgwIHK1VdfrWzdutX8utSVtffee0+ZNGmS0r9/f+WSSy5R1qxZY37NkXWlUhRF6fh2ISGEEEKIjidjbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVyGBBshhFOSlSiEEG0hwUYI4XR+/vlnHnroIQA2b95Mnz59rLYtEUKI05HdvYUQTueDDz4wH/fv35/ly5ebd/IWQogzkWAjhHBq/v7+DBkyxNHFEEJ0EdIVJYRwKtdddx1btmxhy5Yt5i4oy66o119/nfPPP5+1a9cyY8YMBg4cyKWXXsrOnTvZtWsXV155JYMGDWLGjBls2rTJ6t7p6enMmTOHYcOGMWzYMO666y7y8vIc8W0KITqIBBshhFN54okn6NevH/369WP58uXU1NScdE1hYSHPPPMMt99+O6+88gqVlZXce++93H///Vx11VW89NJLGAwG7rvvPhoaGgDIzs7mL3/5C6WlpTz77LMsXLiQvLw8rrnmGkpLSzv72xRCdBDpihJCOJXExET8/f0BGDJkyCkHDdfX1/PEE08wfvx4ADIzM3nxxRdZuHAhV1xxBQB6vZ57772X7Oxs+vbty6JFi/D29uaDDz4w3//cc89lypQpLFmyxDxYWQjRtUmwEUJ0ScOGDTMfd+vWDcBqLE5wcDAAVVVVAPz555+MHDkSb29vdDodYBy/M3z4cDZu3Ng5hRZCdDgJNkKILsnU6mLJ29v7tNdXVFSwevVqVq9efdJroaGhdi2bEMJxJNgIIdxCQEAAo0eP5sYbbzzpNa1W/ikUwlXI32YhhNNRq9UYDAa73nPEiBFkZGTQt29fc5BRFIUHHniA3r1707dvX7s+TwjhGDIrSgjhdAIDA8nOzmbTpk3mMTLtdeedd3LkyBHmzJnD2rVrWb9+Pffccw/fffcdKSkpdnmGEMLxJNgIIZzOX//6Vzw8PLj11lvN07XbKyUlhU8++QSVSsW8efO49957OX78OG+88QbTpk2zyzOEEI6nUmSnOSGEEEK4CGmxEUIIIYTLkGAjhBBCCJchwUYIIYQQLkOCjRBCCCFchgQbIYQQQrgMCTZCCCGEcBkSbIQQQgjhMiTYCCGEEMJlSLARQgghhMuQYCOEEEIIlyHBRgghhBAuQ4KNEEIIIVzG/wO7xz1RQ0Z1HQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a dataset with a known drifting baseline\n", + "df = pd.read_csv('data/sample_baseline.csv')\n", + "\n", + "# Plot the convolved signal and the known baseline\n", + "plt.plot(df['time'], df['signal'], '-', color='k', label='observed signal', lw=2)\n", + "plt.plot(df['time'], df['true_background'], '--', color='dodgerblue',\n", + " label='known baseline', lw=2)\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This chromatogram was simulated as a mixture of three peaks with a known (large) \n", + "drifting baseline (dashed blue line). But what if we don't know what the baseline is?" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Subtraction using the SNIP algorithm\n", + "In reality, we don't know this baseline, so we have to use clever filtering\n", + "tricks to *infer* what this baseline signal may be and subtract it from our\n", + "observed signal. There are many ways one can do this, ranging from [fitting of polynomial functions](https://www.sciencedirect.com/science/article/pii/S0169743905001589?via%3Dihub) to [machine learning models](https://pubs.rsc.org/en/content/articlelanding/2022/an/d2an00868h) and beyond. In `hplc-py`, we employ \n", + "a method known as [**Statistical Non-linear Iterative Peak (SNIP) clipping**](https://www.sciencedirect.com/science/article/pii/0168583X88900638). his is \n", + "implemented in the `hplc-py` package as method `correct_baseline` to the `Chromatogram` class. The SNIP algorithm works as follows.\n", + "\n", + "### Log-transformation of the signal\n", + "First, the dynamic range of the signal $S$ is reduced through the application of an [LLS operator](https://cds.cern.ch/record/264009/files/P00023745.pdf). This prevents enormous peaks \n", + "from dominating the filtering, leading to the erasure of smaller (yet still important) peaks. Mathematically, the compression $S \\rightarrow S_{LLS}'$ is achieved by computing\n", + "$$\n", + "S_{LLS} = \\ln\\left[\\ln\\left(\\sqrt{S + 1} + 1 \\right) + 1\\right] \\tag{1},\n", + "$$\n", + "where the application of the square-root operator selectively enhances small peaks while the log operator compresses the signal across orders of magnitude. Applying \n", + "this operator to signal in our simulated chromatogram yields the following" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABa4ElEQVR4nO3dd3zTdf4H8Nc3O2maDroHe5Q9ZCMiKE4c5+kp95NT8TjXieJCz4GeIjgATxE5PRTPfe6Fg6EIgmxURsvs3itpm518f3+kCRQKpG3Sb8br+XjwEDO+33c/pPDqZwqiKIogIiIiikAyqQsgIiIiChYGHSIiIopYDDpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOERERRSyF1AWEAlEU4XYHZ4NomUwI2rUjDdvKf2wr/7Gt/Me28h/bqm2C0V4ymQBBEM74OgYdAG63iNrapoBfV6GQISEhBiaTGU6nO+DXjyRsK/+xrfzHtvIf28p/bKu2CVZ7JSbGQC4/c9Dh0BURERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYnEyMhERUQC53W64XE6pywgZbrcAq1UOu90Gl8u/lVdyuQIyWWD6Yhh0iIiIAkAURZhMtbBYGqUuJeRUV8vgdrdtxZVWq4fBkOjXEvLTYdAhIiIKAG/I0esToFKpO/wPdCSRywW/e3NEUYTdbkNjYx0AIC6uS4fuzaBDRETUQW63yxdy9HqD1OWEHIVC1qY9dFQqNQCgsbEOsbEJHRrG4mRkIiKiDnK5XACO/QNNHedty47Od2LQISIiChAOVwVOoNqSQYeIiIgiFoMOERERRSwGHSIiIopYXHVF1ArR7YZp4wY4qqtgmHA2VKlpUpdERNSpRFHE119/gc8//wRHjx4GACQlJWPIkGG4/fa7EB8fL22BfmLQIWpF5dtvwvjTegBA/Y/r0PWRx6FKSZG4KiKizrNw4ZNYu/Z7XHPNdNx88y1wuVzIy9uPb775Cmp1+KwuY9AhOoE5L9cTcgQBivh4OOvqUPXe28i86x6pSyMi6hS7du3A119/gcceewoXXHCR7/EJEybipptmhdXqMs7RITpB3ervAABxEych6765gCCg6fffYCsplrgyIqLOsXPndgDAyJGjTnounEIOwKBD1IKzvh5Nv+4GACRMvQCq1DToh40AAJg2bZSwMiKizqPV6gAAr7zyEgoLCySupmM4dEV0nMbfdgOiCE2PnlClZwAAYseMReOuHWjcsQNJV18bdj/NEJF0RFGEaLdLdn9BpWrX31nTpl2OdetW45tvvsI333yFzMwsTJkyFX/603QkJCQGodLgYdAhOk7T7l0AgJihw3yPxQweAkGlgqO6CvbSEqgzsySqjojCiSiKKFo4H9bDhySrQdO7D7Ln/qPNYcdgiMOrr67E7t07sWHDemzatAFvvfUGVq36AitXvo+EhARs3PgT3n33v1i27D8t3nuqx5uaGvHvf7+MPXt+h91uhyi6ce+9D2LEiJEd/jpPh0GHqJnodMKcux8AoD8u6MjUamh794F5316Y83IZdIjIf2HcAyyTyTBixEiMGDESd911L1as+DfeeOM1rF+/Dlde+UccOnQAffr0Pel9p3r8uecWoHv3Hlix4i0IgoDq6mrIZMFvHwYdombWwkKIdjtkuhioTggz2n45MO/bC0teLhKmnC9RhUQUTgRBQPbcf4Tl0FVrxowZhzfeeA325q/nwIE8jB8/4aTXnerxLVs246qrrvHVk5SUFJC6zoRBh6iZ9fBBAIC2d28Ispbz9HV9c1ADwJKXB1EUOU+HiPwiCAKEMNpzBgBqa2uQmNjlpMc3bFgPQRB8K7EOHjyAG264+aTXnerxs88+B/feOxtjx47HhAkTcf75F0KhCH4MYdAhamY55A06fU56TtOjBwSFAq7GBjiqq6BK5uaBRBSZHn30QWg0Wpx33lRkZGTCaDRiw4Yf8d13qzBjxk3o2bM3GhsbUVVVgR49erZ476keB4CHH34c06fPwM8/b8Drr7+KjRt/wlNPPRP0r4dBh6iZpXnCoKaVoCMoFFBlZsFWkA9bQQGDDhFFrIsvnoYff1yL//xnOerqaqFWq9Gv3wA8/fRzmDjxXADAwYN56NatO1QqVYv3nupxr549e6Fnz17o1q07li5dEuwvBQCDDhEAwGk0wlVfDwgCNN26t/oaTbfusBXkw1qQj9hWNtEiIooE06ZdgWnTrjjtaw4ezEPv3idPOD7V45s2/YyhQ4dDrdbAbrdj/fp1GD/+7IDVfDoMOkQAbMVFAABlSipkpxhPVzcHIFtBfidVRUQUmg4ePICff/4JV199me+x+fOfO+XjP/30A55/fiG0Wi0EQYZx4ybgpptmdUqtDDpEOBZ01FmnXjru7emxFhZwQjIRRbWHH368TY8PHPgInE538Ao6DR4BQYTjgk5211O+RpWZAQgC3I2NcJlMnVUaERF1AIMOEQC7r0cn+5SvkSlVUDZPQraXlXZKXURE1DEMOhT1RKcTtlJPcDnd0BUAqDI851/ZS0uCXhcREXUcgw5FPXtlJeByQVBroOhy+p06vQd92tijQ0QUFhh0KOo5KsoBAKq0tDNOMFb7enQYdIiIwgGDDkU9uzfopKad8bWq9EzPexh0iKgVoihKXULECFRbMuhQ1PMGHWVq6hlfq0pPBwC4GkxwNTYGtS4iCh9yuRwAYLfbJK4kcnjbUi7v2E443EeHop6jogKAZ+jqTGRqNRQJCXDW1cFeWQGtXh/s8ogoDMhkcmi1ejQ21gEAVCo199o6jtstwOXyr4dGFEXY7TY0NtZBq9VDJutYnwyDDkW9tgxdAYAyOQXOujo4qiqh7dkrmKURURgxGBIBwBd26BiZTAa3u20bBmq1el+bdgSDDkU1l8UCl9EIwHP8gz+UKSmwHMiDo7IymKURUZgRBAFxcV0QG5sAl8spdTkhQy4XEBeng9Fo9rtXRy5XdLgnx4tBh6Kad9hKbjBArtP59R7vpoEMOkTUGplMBpms9dO7o5FCIYNGo4HF4pLkGAhORqao1tZhKwBQNff82KsYdIiIQh2DDkU1h2/Flf9B51iPTkVQaiIiosBh0KGo5qiuAgAok5P9fo8yxfNal8kEt9UalLqIiCgwGHQoqjlqawEAyi5d/H6PXBcDWfOycgeHr4iIQlpIBZ1ly5ZhxowZfr3W7Xbj5ptvxksvvRTkqiiSOWuqAQCKRP+DDgCovKeYc0IyEVFIC5mgs3LlSrz44ot+vdZqteL+++/Hxo0bg1wVRTLR7W5Xjw5w3Dyd5qEvIiIKTZIvL6+oqMDDDz+MHTt2oEePHmd8/c6dO/Hwww/D4XDAYDB0QoUUqVwmI+ByAYIARXxCm96raA5G3h4hIiIKTZL36OzduxdxcXH44osvMHTo0DO+fsOGDZg6dSo+++wzxMbGdkKFFKkcNTUAAEVCAoTmc2r85e0B8l6DiIhCk+Q9OlOmTMGUKVP8fv1dd90VlDoUisBnPrlc1uK/dGpStJXb6NmmXdmlS5v//NXNK6+ctTVB+eycDj9X/mNb+Y9t5T+2VdtI3V6SB51QIJMJSEiICdr1DQZt0K4daTqzrZqaTACAmPS0Nv/5q3tkoQieoBPMz87p8HPlP7aV/9hW/mNbtY1U7cWgA8DtFmEymQN+XblcBoNBC5PJAper87e9DidStJWpuAwAIMbGoa6uqU3vdSs94cbVZEZ1SZXfx0cEAj9X/mNb+Y9t5T+2VdsEq70MBq1fvUQMOs2Cef6Gy+WW5HyPcNSZbWVvnl8jT0hs+z0VKshiYuBuaoK1sgrqrOwgVHh6/Fz5j23lP7aV/9hWbSNVe3GAkaJWe/fQ8VJ2SQLACclERKEspIOOy+VCVVUVrNxmn4LAUdO+PXS8uMSciCj0hXTQKSsrw9lnn41Vq1ZJXQpFGLfVArfZMy+n3T06iVxiTkQU6kJqjs7ChQtb/H9WVhby8vJO+fp169YFuySKUN7eHJlOB7m2fSsBuJcOEVHoC+keHaJgcdY2bxbYzt4c4Lihq1oGHSKiUMWgQ1HJ0Tyvpr3zczzv5WRkIqJQx6BDUcnZfJhnIHp0XMZ6uB2OgNRFRESBxaBDUcnbC6PsQNCR62MhqFQAjgUnIiIKLQw6FJW882o6MnQlCAIUiYme69Ux6BARhSIGHYpKvpPLOxB0AECZwJVXREShjEGHoo7ocsFZf+zk8o5QdGnu0eHKKyKikMSgQ1HHWV8PuN2AXA65Ia5D1/JtGsigQ0QUkhh0KOr45uckJEKQdexbwLtqi5ORiYhCE4MORR3vHjodnZ8DHBv6YtAhIgpNDDoUdbyhpCNLy728q64ctTUQRbHD1yMiosBi0KGoc2zFVWKHr6VI8FxDtNngbmrq8PWIiCiwGHQo6hzbLDCpw9eSqVSQx8Z6rssJyUREIYdBh6KO70DPAMzRATghmYgolDHoUFQRRfG4Hp2OD115rsNTzImIQpVC6gKIOpPbbIZoswLo2IGex/PO9XGwR4dClOh2w3LoIFxGIzS9+0CZkCB1SUSdhkGHooq310Wuj4VMrQ7INdmjQ6HMUVODsuUvw3r0iOcBmQxJV16FxEumSVsYUSfh0BVFlUCdcXU83xJznndFIcbV2IjiJc/BevQIZBoN1NnZgNuN6k8+Qt3330pdHlGnYI8ORRXvyqhA7KHjFezJyC6zGdUf/Q8NO7ZBHqNH0rRpSLjikqDciyJL5Xtvw1FeDkViIrLn/gPKLkmo/XYVqj/6H6o+/hC6/gM94YcogrFHh6KKM4B76Hj5hq7q6yC6XAG7LgC47XaUvLAIxp9+hLupCY7KCpS9vgLFn3wW0PtQ5DHv34eGLb8AgoCM2/4OZRfPdgoJF16MmOEjAJcLVR99IHGVRMHHoENRJZB76HjJDQZALgdE0XNgaADVfP4JrEcOQ6aLQeZd9yDxsisAAAVvvQPzoYMBvRdFDlEUUf35pwCA+MlToOnR0/ecIAhI+dN0QC6Hee8eWA4ekKpMok7BoENR5dgeOoHr0RFkMt9S9UBOSLZXlKNu9fcAgLSbZyFm8BB0ufxKxI0bD7jdKH/nHYhud8DuR5HDciAP1kMHISgUSLzkspOeVyYnI27C2QCAujXfd3Z5RJ2KQYeiSjDm6ADHjoII5O7Itd+sAtxuxAwZCv3QYQA8P42nXjcdMo0G1qNHYN67J2D3o8hRv3Y1AMAwYSIU8fGtviZ+yvkAgMbdu+A0GjurNKJOx6BDUUN0OuFq/gtd0SVwQ1ee6zXP0wnQyiun0QjT5p8BAImXtvyJXBEXh7QLPP9I1a3+LiD3o8jhbDCh8dfdADzDVqeizsqGpmcvwOWCadPGTqqOqPMx6FDUcNTVAqIIQaHwnU8VKN4eokBtGtiwZTPgckHTsye0vXqf9Hz6tEsBQYB5317Yy8sDck+KDA2bNwEuF9Tde0CddfoVVYazJ3res21rZ5RGJAkGHYoazuP20BEEIaDXVgRw00BRFGH82fMTtmHCxFZfo0lNgX7wYACAacvmDt+TIofpF8/nIe7s1j87x9MPHwEIAmyFBbBXVga7NCJJMOhQ1AjGiisvZQCPgbAXF8NeUgxBoUDsqNGnfJ1h7DgAQMPWXyCKYofvS+HPUVUFW2EBIAiIPWvUGV+viDVA2y8HAGDasT3Y5RFJgkGHokYwVlx5BbJHp3H3TgCAbtBgyHUxp3xd7PAREFQqOCoqYMs/2uH7Uvhr3OX57Gj79vN7eFY/4izPe3fvDlZZRJJi0KGocaxHJ7ArrjzX9IQnt9kMl8XSoWt5J5J6V1qdilyrRcyQoZ737N7VoXtSZGjctQPAsfDij5iBniFQ86GDHf7sEoUiBh2KGsfm6AR+6Eqm0UKm03nu04HhK2d9nad3RhAQM2TYGV+vb35N02+/tvueFBmcRiMszZtI6oeP8Pt9ypQUKJKSAJcLxr37glUekWQYdChqOGqrAQDKAB7oeTzf8FVd+4evGn/1BBZNj55QxMWd8fW6wYM9k0mLCuGoq2v3fSn8mfftBUQR6q7d2tRrKQgCYgYMAgDU72ZgpsjDoENRQXS7fT06yiD06ADHhq8cNe3v0Wna8xsAIOYMw1ZeiliDb3t/9upEN/O+vQAA3YCBbX6v9z3GX38LaE1EoYBBh6KCy2SC6HQCggBFQkJQ7uHbNLCdE5JFt9t37pCu/wC/3xczeAgAwLyPuyRHK1EU0dQcdGIGDmrz+3XNK6/MhUVwNTYGtDYiqTHoUFRw1HiGrRQJCRAUiqDcQ9nBYyDsZWVwNzZCUKmg6drN7/fpcjyhyJyXy7OvopS9tBQuYz0EpRKa3idvMHkm8thYqNLSAADmQ4cCXR6RpBh0KCoEe9gK6PgxEJYDeQAAba8+bQpjmh49IKjVcDc2wl5S0q57U3jz9uZp+/aDTKlq1zV0ffp4rtU8oZkoUjDoUFTw9egEYWm5l9K3l0775uhYDjYHnb592/Q+QaGAto/nPeZcrpqJRub9nj/39szP8dL29nyGvMOnRJGCQYeigm8PnaQg9uh4z7uqq23zEJIoijDneYNOvzbfW5fTHwBgzt3f5vdSeBPdbt+ycu9cm/bw9uhYjhzxzGcjihAMOhQVnN4enSAtLQcARXw8IAiAywWXydSm9zoqKz1zLBQK3yqqtvDO07EcyOM8nShjLyuF22yGoFZDnd213ddRpadDERsL0eGAtbAggBUSSYtBh6KCd+gqmHN0BLnct6KrrROSvcNWmh49IVO1fY6FumtXCGoN3BYL5+lEGe9Qk7ZnLwhyebuvIwgCYvt6JjLbCvIDURpRSGDQoYgniuKxoasg9ugAgKJ55VVbl5j7JiL3adv8HC9BJoO2Zy/PtQ5zMmk08Q5baXr36fC1Ynp6ehOtDDoUQRh0KOK5m5og2mwAgjsZGTgWpBxtXHllOdD8U3kH5lh4lxVbuGomqnj/vLUBCDr6Xp6wzB4diiQMOhTxvMNWcoOhXcNCbXHsGAj/V145amvgqK4CZDJom/+haQ/vP3TWw9wHJVo46urgrK4GBKFDnx0vfW9Pj46ttBRuh73D1yMKBQw6FPEc1VUAgrviyst7DISzDcdAeOdYqLt2g0yjbfe9NT16AoIAR1UVnMb6dl+Hwoe1uTdHnd21Q58dL1VSEuSxsYDLBXtxcYevRxQKGHQo4jkqKwEAyuTUoN/Lt8S8uRfJH5bmZeW6diwrP55cp4MqM8tzTe5uGxV8E5EDMGwFeCYka7p5duXmPB2KFAw6FPEcVc1BJyUl6PdSpnjClL2iAqIo+vUe30TkDgYdAND28szTsXKeTlSw5h8FAGgCMGzlpenew3NtBh2KEAw6FPHszT06qs4IOsnJgCBAtFnhMhrP+HqnyQR7eRmAwPxU7r2GhfN0Ip7odsNWXAQA0HTrHrDrapvPWePQFUUKBh2KeI7KCgDHeluCSaZUQpmUDACwV5Sf8fXe/XNUmVmQ6/Udvr935ZW1IJ+TSSOcvbwMot0OQa0O6GdbneUZ/rSVlnDzSYoIDDoU0dx2u+/sqc4YugIAZarnFGi/go53WXkAhq0AQJmUDLnBALhcsOVzd9tIZivw/Pmqs7tCkAXur3JVaioEhQKizdamuWZEoYpBhyKad8WVTKuFXB/bKfdUpXl+unb4FXQCMxHZSxAEaJrn6ViOcPgqktmaj2nQdG3/sQ+tEeRyqNIzAHD4iiIDgw5FtGMrrlIgCEKn3FPl69GpOO3rXOYm3xyL9u6I3JpjE5IZdCKZ9zwqdfOcmkBSeYevShh0KPwx6FBE8wWdTpif4+UdunKUn75Hx3LgACCKUKameQ4EDRDtcT06/q78ovAiiqKvRycYQUfdvE2BnUGHIgCDDkU0e/NE5M5YceXl69GpqoTodJ7ydea8XACALqf9xz60Rt2tOyCXw2U0enbNpYjjqK6C22IB5HKoMzIDfn1v0GGPDkUCBh2KaN6l26q09E67pyIxETKt1rO7bPP9W2PJ3Q+gY+dbtUamUkHT/FM+5+lEJl9vTmYWBIUi4Nf3bjxpLy+H2+EI+PWJOhODDkU0e0kJAECVkdFp9xQEAeqsbACAraiw1de4Ght983N0AQ46wLEN5HjuVWTyrbgKwrAVACgSEiDT6QC3+4xDsEShjkGHIparoQGuBhOAzu3RAQB1tjfoFLX6vOVgHiCKUKVnQBEXH/D7a3s1bxzICckRyVroCdDe4xoCTRCEY8NXpRy+ovDGoEMRy1ZWCgBQdOkCmUbTqfdWZ3mW/J4q6Hjn5wR62MrL26NjKy6C22YLyj1IOrbCfADB69EBAGVa81wz9uhQmGPQoYhlbw46qvTAT9Y8E3Xz3ibWooJWVz6Z9+wBAOhy+gfl/srELlAkJAJuN6xHjwTlHiQNZ309XCYTcNwQaTB4e0HtZaeeZ0YUDhh0KGLZSz1BR92J83O8VM2TRN2NjSdtHGivqPBMUpbLoRswMGg1+ObpHDkctHtQ5/Pun6NKS4dMrQ7afbxBx1HBoEPhjUGHIpa9tPMnInvJlEpoenqChveYB6+m33YD8GwSKNfpglaDbz8dTkiOKMHcP+d4vh6digqeeUVhjUGHIpIoirAedxaQFLR9Pbsdm5sP7vRq3L0LAKAfOiyo9/ceBWE9fJgbB0aQY0EnuJ9rZVISIJdDtNvhrKsN6r2Igimkgs6yZcswY8aM076mrq4O9957L0aNGoVRo0bh0Ucfhdls7qQKKVw4q6vhNjcBcjlUQdhQzR/avp6Jxua9e3w/ETtqanznW+mHjwjq/TVdu0FQKOBqbPCd4E7hzzt0penWPaj3EeRyqFI9O4pzng6Fs5AJOitXrsSLL754xtfNnj0bRUVFvtf//PPPeOKJJzqhQgon1oJ8AJ4N1WRKpSQ16Pr2g0yng8tkguXQQQCAadNGQBShzekPZVJyUO8vKBRQd+8BgMvMI4Wrqcm323Vn9FSqUpuHr7jyisKY5EGnoqICf/3rX/Gvf/0LPXr0OO1rd+3aha1bt2LBggUYOHAgxo0bh3/+85/4/PPPUXGGAxQpuniDjqZ7d8lqEBQK6Id5em2MP/0It82G+nVrAABxEyZ2Sg1a34RkBp1I4B22UiYlQx4TE/T7qdK9QYc9OhS+JA86e/fuRVxcHL744gsMHTr0tK/dvn07kpOT0av5L28AGD16NARBwI4dO4Jdapu5bTaILpfUZUQlm7dHJ8jd+2cSP+V8AEDDll9QvOgZuBoaoExKRuyo0Z1yf41348DDXHkVCaydND/Hy3tALYMOhbPAH5LSRlOmTMGUKVP8em1FRQXS01vucKtSqRAfH4+yDo4hKxSBzXwNu3eh6F8vQJDLoUxKgiolBcrkFKhSUqBKTYUqJRXK5GTJhlVCjVwua/HfjhBdLt+San3v3gH/s20Lfe+eiBs3HsbNm2A9cgQQBKTfeCOUGlW7r9mWtort2wdl8JxCLThskGu17b5vOArk5yoU2JuPFNF27xHwz3VrbaXN8sxvc5SXS/p9FGoi7XMVbFK3l+RBpy0sFgtUqpP/gVCr1bB1YPdXmUxAQkJgu4HlaUko1engamqCvby89TFuQYA6OQmatDRo0tOgSUuDNiMdmvR0aNJSIQ/iHhmhymDo+D/EDQcPwW21Qh4Tg7TB/SDI5QGorP0Mc/6OovQUmAuLkHbxhUgceVZgrutPWyXEoCAlBbbKSigqSxA/7PS9ppEqEJ+rUHC0+Xy0pIF9A/53ltfxbRWb0wv5AJz1dYhVC1AEcTuEcBQpn6vOIlV7hVXQ0Wg0sNvtJz1us9mg68A3oNstwmQK8MqttGz0X/YKNA4zag4XwlpWBntlJeyVlXBUVcJeUQG31QpbZRVslVUw/vb7SZdQxCdAlZoCVWqapxfI+yslNagbhUlBLpfBYNDCZLLA5erYnh0123cDALS9+6DeZA1AdR0Xd/lViGv+fV1dU4eu1da2UvfsBVtlJSp374HYrXeH7h1uAvm5kprbZoOl+ZBaV5e0Dn+OTnSqtpIb4uAyGVGZexjaHj0Des9wFUmfq84QrPYyGLR+9RKFVdBJS0vDmjVrWjxmt9tRX1+P1OZlkO3ldAb+w6pQyKBOToZWoYOyV98Wz4miCFdDAxwVFZ7gU1kOR2UV7JUVcFRWwG02w1lfB2d9Hcx5eSdfOyERyubgo0xJ9YShtDQok5IhKMLqj7UFl8vd4T+Lxv37AQCavv2C8ucaKvxtK3XPXsAvm9F08CASIrg9TicQnyupWfILAFGEPC4O0BuC9vWc2FaqtDRYTEZYikuhzO4elHuGq0j4XHUmqdorrP5FHDVqFJ5//nkUFBSgW/OpvVu2bAEAjBgR3D1JAk0QBCgMBigMBmj79DnpeVdjoy/02Cs8/3VUNvcEmZvgrKuFs64Wltz9Ld8ok0GZlOwJQM3hR5WWDlVaGuRx8RAEoZO+Qmm4bTaY9+8DAOj6D5C4mtDg3SHZeuQwRLcbgozzCsKRd4K9Jsg7Ip9ImZoKy4E82LkXE4WpkA46LpcLtbW1iI2NhUajwdChQzFixAjMmTMHjz/+OMxmM+bNm4crr7yywz06oUau10Or10Pbs9dJz7kaG2GvKIejogL2inJPEKooh72yAqLN1hyKKoDff2vxPplG0zL8pKdDlZYOZWoqZMr2T44NJeb9+yDa7VB06SLZjsihRp2VDUGlgttshr28DGqJNlCkjrEWeiYiB/vohxOpklMAAI6qyk69L1GghHTQKSsrw3nnnYcFCxbgqquugiAIWLp0KZ544gnccMMNUKvVuOiii/DQQw9JXWqn8oSg3r6f1L1EUYSzvt4TesrLjgWg8nI4qio9c4IK8n0/GfoIgmdlWFo6VOkZngCUngFVekan7NURSI27dgIA9EOHR3zvlb8EuRya7j1gOZAH6+FDDDphqrPOuDqRMsXzQ6SjkkGHwlNIBZ2FCxe2+P+srCzknTA/pUuXLn7toByNBEGAMiEByoQE6HL6t3hOdDo9E6EryjyrwMrKPGGorBRuiwWOqio4qqrQdEIvkDwuzhd61BkZUGVkQp2RCXlsbGd+aX5xW61o2L4NAKA/a6TE1YQWbe8+sBzIg+XwIcRNnCR1OdRGotMJW0kxAAmGrlKae3QYdChMhVTQoeARFAqoMzxh5XiiKMJlMsFeVtocfDzhx15WBmddLVxGIyxG40lzgeSxBqgyMz3hJzML6owsqDIzg3oa95k0bN0C0WaFMjUV2r79JKsjFHlPUrdy48CwZCstAVwuyHQ6KJKSOvXequag42psgMvcBLkuvHp5iRh0opwgCFDExUERF3dSL5DLYmkOPiWwl5bCXloCW2kJnDU1cDWYYMk1nRSAFF26QJ2ZBXVWNtRZ2VBlZUOVmhr0vWxEpxO1364CAMSdcy6HrU7gHea0l5XC1dQUdkOS0e74YavO/mzLNFrIDQa4TCY4Kqsg787PDoUXBh06JblWC23PntD2bLl3httqga20DPbSEtjLSmArKYG9pMSzEqymBs6aGjT99qvv9YJC4Rnyysry9P40hyBFXNyJt2y3+vU/wFFZAXlsLOInTQ7YdSOFPDYWytRUOCoqYD1yGDGDh0hdErWBtaD5xPJOHrbyUqakNgedCknPjyNqDwYdajOZpvUA5Gpqgq2kGPbiItiKi2ErLoKtpBiizQZbYYHvp1IveawB6mxP6NF26wbVoL4QYxLQ1iPYbEWFqP74QwBAl8uvhEyj6dDXF6m0vXrDUVEBy+FDDDphxtbJZ1ydSJWSAuuhg1xiTmGJQYcCRh4TA13fftAdNz9GdLvhqKluGX6Ki+GorICrwQTzvr0w79uLOgClACCXeyY+NwcgdVY21NldoTAYTrqfKIpo+nU3Kla+DtFuh67/QMSxN+eUNL16w7TpZ1gOHZS6FGoD0e2Grci7tLy7JDVw5RWFMwYdCipBJoMqOQWq5BTohx8748lts3mGvIqLYCsuhL3EE4JcTWbYi4tgLy5Cw3HXkRsMUKWlQxYTA7lW63l/UZFnvyB4TilPv+12boZ3Grp+OQAA66GDcNtsEXeMSKRyVJRDtNshqFRQpaVJUoNv5RX30qEwxKBDkpCp1S2GvxQKGeLjdag8VAhzfoGn56eo8Fjvj8kEi8l00nUElQrxk6egyxVXQdbKga90jDI1DYouXeCsqYE5Lxf6IdF5wGe4sXqHrbK7ShbkvZsGcuiKwhGDDoUMQRCgSkqCLD4R+mHDfY97en+K4aiugttigdtshiCXQ5mWDm3vPpIuaQ8ngiAgZuBgGH/6Eea9exh0woTU83OAY0NXLqMRbquV8+AorDDoUMjz9P70avU4DGob3cBBMP70I5r2/i51KeQnqVdcAZ75d7KYGLibmuCoqoI6O1uyWojaihMaiKKIrn9/QCaDo7wcjppqqcuhMxBFETaJzrg6kaq5V4fDVxRuGHSIoohcFwNND8+8qKY9eySuhs7EWVMNt7nJsxpR4jPKeBQEhSsGHaIo491Dp2n3TokroTPxnViekQmZUilpLb4l5lXs0aHwwqBDFGX0IzzL/M3798FlNktcDZ2OrTAfAKDuJu2wFXD8yiv26FB4YdAhijLqjEyo0tIhOp0nnVZPoSVU5ucAgLI56DiqqySuhKhtGHSIopC3V6dx53aJK6HT8a24yg6FoJMMAHDW1EB0OiWuhsh/DDpEUUg/YiQAoOn33+CyWCSuhlrjNNbDZawHBCEklnPL4+IgKJWAKMJRWyt1OUR+Y9AhikLqbt08w1d2Oxq3bZW6HGqFtSAfAKBKTQuJDfoEQfD16vAoCAonDDpEUUgQBBgmngMAMP68QeJqqDW25mErdffu0hZyHGVSc9DhPB0KIww6RFHKMHY8IJPBevgQbKWlUpdDJ/D26Gi6dZe0juP5JiRXMehQ+GDQIYpSirg4xDSfd2XasF7iauhEtuagow6poMOhKwo/DDpEUSzunEkAAOPGn7inTghxGo1w1tUBgiDpGVcn8g1dsUeHwgiDDlEUixk0BKqMDLgtFhjX/yh1OdQs1CYie3EvHQpHDDpEUUyQyZBw4cUAgLo138Fts0lcEQGhOWwFAMqkJACA22yGq6lJ4mqI/MOgQxTlDGPGQZGUBJfRiLrvv5W6HMJxE5FDaMUVAMjUasjj4gBw+IrCB4MOUZQTFAok//FPAIDab76Go65O4oooVHt0gOOXmHNCMoUHBh0ign7kKGh69YZot6Pynf9CFEWpS4paoToR2evYyiv26FB4YNAhIgiCgNTrbwDkcjTt3gXTpp+lLilqhepEZC/upUPhhkGHiAAA6uxsdLnsCgBA5dtvwpp/VOKKopP16BEAobUj8vG4xJzCDYMOEfkkXjINMUOGQnQ4ULL0X3DUVEtdUtSxHjkMAND26i1xJa3zDV1xjg6FCQYdIvIRZDKkzboVqowMuOrrUfTMAtgrKqQuK2qIbrcv6GhCNug0D13V1EB0uSSuhujMGHSIqAW5VovMOfdDmZoGZ20NCuf/E017fpe6rKhgLy+D22KBoFJBnZkldTmtUsTFQVAoALcbztpaqcshOiMGHSI6iTIhAdkPPAhNz55wm5tQ8q/FqPrf+3BZLFKXFtF8vTnde0CQyyWupnWCTMZTzCmsMOgQUasUcfHIuv8hz3lYooi6779F/iMPwrR5E5efB4nl8CEAgKZnL4krOT3vPB07D/ekMMCgQ0SnJFMqkfqXm5Axew6UKalwGY0oX/EqihbOR9Oe3xh4Asx6xLPiKlQnIntxLx0KJwqpCyCi0KcfMhS6/gNQv/o71Hz9JayHD6HkhcVQd+2GxIsugf6skSE71BIuXGYz7KUlAMKgRyeJe+lQ+GDQISK/yJRKJF4yDYbxE1D33beo/+lH2AoLUPbqK1AkJCLu3MmIO2cSFLEGqUsNS9ajRwBRhDIpGYrm86RC1bEl5gw6FPoYdIioTRTxCUi+djoSL70M9evWoP6HtXDW1aLm049R++XniB09BvGTz4OmR0+pSw0rlrxcAICmTx+JKzmzY0NXnKNDoc+voPPZZ5+16aJXXnllO0ohonAi1+vR5fIrkXDxpWjcvhV1a9fAln8Upk0/w7TpZ6i790D8uVMQO3oMZCqV1OWGPHNz0NH16y9xJWfmXXXlbmqCy9wEuS5G4oqITs2voPPggw/6fUFBEBh0iKKITKmEYdwExI4dD+vRI6hftwaN27fBln8UFStXoOp/7yPu7ImImzQZqtRUqcsNSW6bzXfkhq5fjsTVnJlMo4E8Lg4uoxGOyirIuzPoUOjyK+isXbs22HUQUZgTBAHanr2g7dkLzmunw7RxA+rX/wBndTXqvv8Wdd9/C92gwYifcj5iBg2GIOOiTy/LoYOAywVFYhcokpKkLscvqpRUWIxGOCoroAnRc7mIAD+DTmZmpt8X5HJTIlLEGpB48aVIuPBiNO35DcYf1qFpz+8wN/9SpqQifsp5MIw/G3KdTupyJeedn6PLyYEgCBJX4x9lcjIsBw/AXskjQii0tWsy8tdff42tW7fC4XD4go0oijCbzdi9ezd++umngBZJROFJkMmgHzIM+iHDYK+shPGHtTBu/AmOygpUvf8uqj/9GIbxExA/+XyoMzKkLlcy3vk52jAYtvJSpniGIbnEnEJdm4PO0qVLsXTpUsTGxsLpdEKpVEKhUKC2thYymQzXXHNNMOokojCnSklB8rXT0eWKP8D0yybUr1sDe2kpjD+sg/GHddANHISEqRdAN3Bw2PRqBILbagmr+TleypTmvXTYo0Mhrs2D5J9++ikuv/xybN26FTfeeCMmT56MTZs24aOPPkJ8fDz6hMHSSCKSjkyjQfy5U9DtifnIuvcBxAwbDggCzHv3oOSFxSh47GHUr/8BbptN6lI7hXn/PsDlgjI52beaKRyomk8xt1dyiTmFtjYHnYqKClxxxRUQBAEDBw7Erl27AACDBg3Crbfeig8//DDgRRJR5BEEAbr+A5D597vQ/elnEH/+BZBpNLCXlaLyrTdx5IF7UP3px3Aa66UuNaiafv8NABAzeKjElbSNd+jKZayPmlBK4anNQUen0/m6lbt3747i4mJYrVYAQP/+/VFcXBzYCoko4qmSU5By3Z/R47klSL52OpRJyXA3NaH26y9xdO59KF/5OmzNxyNEElEUjwWdIeEVdOQxMZDFeJaVc+NACmVtDjqDBw/Gp59+CgDo2rUr5HI5Nm3aBAA4fPgwVNwYjIjaSa7VImHqhej+9DNIv+3v0PTqDdHphGnjTyh47GGUvLgE5tz9EbO601ZUCGddHQSVCtp+/aQup82UHL6iMNDmyci33norbrrpJjQ0NGD58uW4/PLL8eCDD2LMmDHYuHEjzj///GDUSURRRJDJEHvWSMSeNRKWQwdR9/23aNy1E02//Yqm336FunsPJF58KfTDR4T1fjxNv/0KAND1HwCZMvx+SFSlpMKWf5Q9OhTS2hx0Ro0ahY8++gh5eXkAgMceewwymQw7d+7ERRdd1KZdlImIzkTbuw+0vfvAXlGOutXfw/TzBtjyj6LslaVQpqUh8aJLEDtmHGRKpdSltlnjzh0AgJghw6QtpJ248orCQbv20cnJyUFOjmcZpFqtxpNPPhnQooiITqRKTUPq9X9Bl8uvRP261ahftxaO8nJUrHwdNZ9/ioSpFyFu0rmQqdVSl+oXe0UFbIUFgEyG2BFnSV1Ou3iHrhwcuqIQ1q6g09DQgF9++QVms7nVsXKedUVEwaIwGJB05R+ReNElqF//I+pWfwdnXR2q/vcealZ9iYTzpiJ+8nmQ6/VSl3paDdu3AvAMW8ljYyWupn1UzSuv7By6ohDW5qCzfv163H333bBYLK0+z0M9iagzyDRaJF54MeKnnI+GzZtQ+83XcFRVoubzT1H33TeIm3weki++GEgIvQMnRVFEw5ZfAACxI0dJXE37eYeunDU1cDscYTl8SJGvzUFn8eLF6NmzJx566CGkpqZCFsYTAYko/MmUSsSdMwmGCWejYcc21K76GvbiItR98zXq165G40UXIGbKBRD0BqlL9bEeOQx7aQkElQr6s0ZKXU67yQ0GCGoNRJsVzppqqNLSpS6J6CRtDjpHjhzBsmXLMHJk+H5zElHkEeRyGEaPReyoMWj6dTdqvvoCtvyjKP3iKwirvoNh4jlIvPhSKBMTpS4Vxg3rAQCxZ42CXBd6PU7+EgQBqpRk2IqKYK+sYNChkNTmoJORkYHGxsZg1EJE1GGCIEA/bDhihg6DLXcv6lZ9hYb9uTD+sBamDeuPCzxdJKnPZbGgYesWAEDcOZMkqSGQlCmpsBUVwVHJwz0pNLU56Nxyyy14+eWXMXjwYGRlZQWjJiKiDhMEAfrBQ5A1cSxKNm1H5aefwHLwAIw/rINpw08wTJiIxEundXrgMf74A0S7HaqMDGh6h//ZgMdWXnGJOYWmNgedL7/8EhUVFZg6dSoSExOh0WhaPC8IAtasWROwAomIOkIQBMQMGIDsvjkw5+5HzRefwXIgD8b1P8C48SfETZyExEumdcqQltthR92a7wAACRdeHBGntHsnJHN3ZApVbQ46aWlpSEtLC0YtRERBpcvpD11Of5jzclHz5eew5O6H8cd1MG38CQZv4ElICNr969esgctohCIxEYYx44J2n87kXWLO3ZEpVLU56CxYsCAYdRARdRpdvxzo+p3Qw9M8hyfunHORcNHFAR/ScjaYULvqSwBAlyuugqBo1zZmIce3O3J1FUSXC4JcLnFFRC21+TuttLT0lM/JZDLodDoYDKGzjJOI6FR0Of2h7ZcDS14uaj7/FJaDB1C/bg3q1/8Aw7jxSLzokoCsJBJFEZXvvAW3xQJ1124wjBsfgOpDgyI+AYJCAdHphLO2FsrkZKlLImqhzUFnypQpZxxXjouLw1/+8hfcfvvtZ7ye2+3G0qVL8eGHH8JkMuGss87CvHnz0K1bt1ZfX1RUhPnz52Pnzp1QKpW4+OKLce+990Kr1bb1SyEigiAIxwJP7n7PkNaBPJg2boDp543QjzgLiRdPg6Z793bfw7RpIxq3bwPkcqT+5aawPoj0RIJMBmVyCuxlpbBXVTLoUMhp83fbwoULoVQqMWHCBCxYsACvvfYaFi5ciMmTJ0MQBNxxxx34wx/+gFdeeQXvvvvuGa+3bNkyvP/++3jqqafwwQcfQBAEzJo1C3a7/aTXNjQ0YPr06TAajfjPf/6D5cuXY8+ePbjjjjva+mUQEbUgCAJ0/Qcg+4GHkP3QI4gZNhwQRTTu2I7Cpx5H8aLnYN6/r9Vjb06ncfcuVL71JgCgy7TLOxSYQhUP96RQ1uYena+//hqXXnrpSXN1rrjiCsybNw979uzB8uXLYTAY8N577+HPf/7zKa9lt9vx+uuv4/7778ekSZ79JJYsWYKJEydi9erVuPTSS1u8/tNPP0VjYyNefvllJDavkFiyZAkmT56M7du3cxNDIgoIba/eyPz7XbCVFKP221Vo2PILzPv3wrx/L9Tde8Awbjz0w0ZA2eXU83hEtxvGn35E5btvA2439GeNROKll3XiV9F5eLgnhbI29+hs3boV06ZNa/W5Cy64AL/84jm/5ayzzkJRUdFpr5Wbm4umpiaMHTvW95jBYMCAAQOwbdu2k15/9OhR9OzZ0xdyACA9PR0JCQnYunVrW78UIqLTUmdmIf3mv6HH088gbvJ5EJRK2PKPouq9d3B07r0oePJx1Hz1Baz5+XA1NsJtt8NRUwPTls0ofPpJVL79X8DthmH8BKT/7baIGrI6nsq3xJw9OhR62tyjEx8fj9zcXEyYMOGk53Jzc6FvPjHYbDafcd5MeXk5AE9YOV5KSgrKyspOen1ycjKqqqrgcrkgb57Z39jYCKPRiJqamrZ+KS0oFIH/C0gul7X4L50a28p/bCv/BaqtFGmpyLzhBqReeSWMmzehYedOmA8egK0gH7aCfNR89kmr75NpNEi+4g9IvPDCkA85HWkrTYbn73BHRXlQ/i4NNfwebBup26vNQeeyyy7Diy++CIVCgYsuugiJiYmora3F999/j6VLl+K6666D0WjEm2++iaFDh572Wt4T0FUqVYvH1Wo1jEbjSa+/9NJLsXz5cjz99NO455574HK58MQTT0AQhFbn9PhLJhOQEMQTjg0GTpT2F9vKf2wr/wWsrRJikNz9amD61bDXG1G3bRtqftmKhrw8OBuaj8aRyRDTvRsSRgxH+rRLoArivjzB0J620uX0RiE8Q1dxsWrIImTp/Jnwe7BtpGqvNn8a7777btTU1GDhwoVYuHCh73GZTIY//vGPmDNnDr777jvs27cPb7755mmv5d1V2W63t9hh2Waztdob1K1bN7z00kt47LHH8M4770Cj0WDGjBkYNGiQryepPdxuESaTud3vPxW5XAaDQQuTyQKXyx3w60cStpX/2Fb+C25bKaAaOQ7pI8chHYDbbofodEKm0fh6b5oANNU1Bfi+wdGRthLlGsg0GritVlTmHYE6IzNIVYYGfg+2TbDay2DQ+tVL1Oago1AosGDBAtx2223YsmUL6urqkJqaihEjRiA7OxsAcM4552DDhg0n9dScyDtkVVlZia5du/oer6ysRE5OTqvvmTRpEtavX4+qqirExsZCo9Fg/PjxuOqqq9r6pbTgdAbvw+pyuYN6/UjCtvIf28p/ndJWMgWgUsDlBuAO3z+X9raVMi0dtvyjMBeVQJ4SHaeY83uwbaRqr3b3L3bt2rVFODleXFycX9fIycmBXq/Hli1bfNcymUzYt28frr/++pNev2PHDixZsgSvv/46kpv3ati6dSvq6uowfnzkbMBFRBRuVOmeoGMvO/WmskRS8CvonHfeeXj55ZeRk5Nzxg0D23Kop0qlwvXXX4/nn38eiYmJyMzMxHPPPYe0tDRMnToVLpcLtbW1vp6bXr164eDBg3j66adx8803o6ioCA888ACuu+46X28SERF1PnV6BhoA2FtZSEIkJb+CzujRoxETE+P7fSBP3J09ezacTiceeeQRWK1WjBo1CitWrIBKpUJxcTHOO+88LFiwAFdddRXi4+Px6quvYsGCBbjsssuQkJCA6667DrfddlvA6iEiorZTNU9FYI8OhRpBbOs2n/As6W5qakJqairsdjvefPNNVFRU4IILLsDo0aODUWdQuVxu1NYGfsKgQiFDQkIM6uqaOI57Bmwr/7Gt/Me28l9H28peXob8Rx6CoFKh99LlIb+cviP4uWqbYLVXYmKMX5OR2/xJ/O233zBlyhS89dZbAICnnnoKixcvxhdffIEbb7wRa9eubXu1REQU1pTJKYBcDtFuh7OuTupyiHzaHHSWLFmCnj174tprr4XVasWXX36J6dOnY+vWrbj66quxfPnyYNRJREQhTJDLoUpNBcDhKwotbQ46v/76K2677TZkZ2dj8+bNsFqtuOKKKwAAl1xyCQ4ePBjwIomIKPSp0jMAMOhQaGlz0JHJZL79cdavXw+DwYAhQ4YA8MzdOX7jPyIiih7HJiRz5RWFjjbvozNo0CB89NFH0Gg0+Oabb3DuuedCEATU1NTgtddew6BBg4JRJxERhThvj46ttETiSoiOaXOPzgMPPIDNmzdj+vTpkMvlvqXd06ZNQ35+Pu6+++5A10hERGFAneXZ+NVeXAQxjHeHpsjS5h6dAQMG4Pvvv8fhw4fRp08f6HQ6AMDjjz+OESNG+HYsJiKi6KJKS4OgUMBttcJRXQ1VSorUJRG1vUcHAPR6PYYOHeoLOQBw4YUXMuQQEUUxQS6HKjMLAGArKpC4GiKPyN3RiYiIOp062zN8ZSsqkrgSIg8GHSIiChh1V2/QKZS4EiIPBh0iIgoYdZbngGUGHQoVDDpERBQw3qDjrK2Fq7FR4mqIGHSIiCiA5DodlM0LU2zFnKdD0mPQISKigPLup2Mr5PAVSY9Bh4iIAso7IdnKJeYUAhh0iIgooNTdugMArEeOSFsIERh0iIgowLQ9ewEAHBXlnJBMkmPQISKigJLr9VCmpQEALEcOSVwNRTsGHSIiCjhtz94AAOvhwxJXQtGOQYeIiAJO08sTdCyH2aND0mLQISKigNP28szTsR49AtHlkrgaimYMOkREFHCqjEzINBqINhtsJcVSl0NRjEGHiIgCTpDJjg1fHTggcTUUzRh0iIgoKHQ5/QEA5v17Ja6EohmDDhERBYVuwEAAgCUvF6LTKXE1FK0YdIiIKCjU2V0h0+vhtlphzT8qdTkUpRh0iIgoKASZDLqcAQAA8z4OX5E0GHSIiChodAM8Qadp7x6JK6FoxaBDRERBEzNoCADAeuQwHHV1EldD0YhBh4iIgkaZmAhN7z6AKKJx+1apy6EoxKBDRERBFTt6DACgYdsWiSuhaMSgQ0REQRV71khAEGA9cgSOqiqpy6Eow6BDRERBpYiL920e2MDhK+pkDDpERBR0+lGjAQANWzl8RZ2LQYeIiIIudsRIQC6HragQttISqcuhKMKgQ0REQSfX6xEz2LPUvH7dWomroWjCoENERJ0i4fwLAACmTRvhamyUuBqKFgw6RETUKbT9cqDOzoZot6P+B/bqUOdg0CEiok4hCAISLroUAFD3/bfs1aFOwaBDRESdJnbUaKgys+C2WFD77Sqpy6EowKBDRESdRpDJkPSHPwIA6teuhr2qUuKKKNIx6BARUaeKGToM2pz+EB0OVLz5BkS3W+qSKIIx6BARUacSBAGpM26EoFLBkrufE5MpqBh0iIio06lSU5F8zbUAgOqP/gdrfr60BVHEYtAhIiJJxE2ajJghQyE6HChd9iKcRqPUJVEEYtAhIiJJCDIZ0v56C5SpaXDW1qLkX4vhMjdJXRZFGAYdIiKSjFynQ+add0Mea4CtsAAlLyyG22qRuiyKIAw6REQkKVVaGrLuuR+ymBhYjxxGyYsvwGU2S10WRQgGHSIikpw6OxtZc+6DTKuF5UAeihY8BXtFhdRlUQRg0CEiopCg6d4DWffNhSIhAfayUhQ+/U+Y9++TuiwKcww6REQUMjTduqPrw/Og6dET7qYmFC95HvU/rJO6LApjDDpERBRSFPHxyHrgQcSOGQe43ah857+oeOe/EJ1OqUujMMSgQ0REIUemVCHtr39D0lVXA4IA4w/rUPzCIp54Tm3GoENERCFJEAQkXjINGbffCUGthiV3Pwrn/xO2okKpS6MwwqBDREQhTT98BLo++AgUXbrAUVWJwqefhHHjBqnLojDBoENERCFPnZ2Nbo8+Ad2gIZ5Tz1euQPnKFXDb7VKXRiGOQYeIiMKCXK9H5uy70eXKqwBBgGnjBhQ+/ST326HTYtAhIqKwIchk6DLtcmTOuQ/y2FjYi4tQ+NTjaNi5Q+rSKEQx6BARUdiJGTAQ3eb9E5peveG2WFC27CVUffg+l6DTSRh0iIgoLCniE5B9/4NIuOAiAEDdd9+ieNGzcNbXSVwZhRLJg47b7caLL76IiRMnYujQoZg5cyYKCgpO+fqqqircc889GDNmDMaMGYO77roL5eXlnVgxERGFCkGhQPKfrkP6bX/3nJN18AAK/jkP5tz9UpdGIULyoLNs2TK8//77eOqpp/DBBx9AEATMmjUL9lPMpJ8zZw7Kysrwxhtv4I033kB5eTluv/32Tq6aiIhCSexZI9H1kXlQZWXDZTKhePFzqP12FURRlLo0kpikQcdut+P111/HnXfeiUmTJiEnJwdLlixBRUUFVq9efdLrTSYTtm3bhlmzZmHAgAEYMGAA/va3v2Hv3r2oq2NXJRFRNFOlpqHrQ48gdtx4wO1G9Uf/Q+myl+Aym6UujSQkadDJzc1FU1MTxo4d63vMYDBgwIAB2LZt20mvV6vV0Ol0+Oyzz9DY2IjGxkZ8/vnn6N69O+Li4jqzdCIiCkEytRppM2chZcYNEBQKNO3aicInH4etuEjq0kgiCilv7p1bk56e3uLxlJQUlJWVnfR6tVqN+fPn45///CdGjhwJQRCQnJyMt99+GzJZxzKbQhH4zCeXy1r8l06NbeU/tpX/2Fb+i7S2SjrvPMT06IHil1/y7aacceNMxI0f3+FrR1pbBZvU7SVp0LFYLAAAlUrV4nG1Wg2j0XjS60VRRF5eHoYPH46//vWvcLlcWLJkCe644w6899570Ov17apDJhOQkBDTrvf6w2DQBu3akYZt5T+2lf/YVv6LpLZKOGswkl9YhAOLlqB+968oeXU53KWF6H7jXyBTKjt8/Uhqq84gVXtJGnQ0Gg0Az1wd7+8BwGazQas9uUG+/vprvPvuu/jhhx98oWb58uWYPHkyPv74Y9xwww3tqsPtFmEyBX4MVy6XwWDQwmSywOVyB/z6kYRt5T+2lf/YVv6L3LaSIX32HCg+/QTVX36Bsq9WoT7vILLvuBOK+Ph2XTFy2yo4gtVeBoPWr14iSYOOd8iqsrISXbt29T1eWVmJnJyck16/Y8cO9OjRo0XPTVxcHHr06IH8/PwO1eJ0Bu/D6nK5g3r9SMK28h/byn9sK/9FalslXnEVVF27o/z112A5eBCH5z2GjFtvh7ZP33ZfM1LbKlikai9JBxhzcnKg1+uxZcsW32Mmkwn79u3DyJEjT3p9eno6CgoKYLPZfI9ZLBYUFxejW7dunVIzERGFJ/3wEej68DyoMjLgMtaj6PlnUL9uDZegRzhJg45KpcL111+P559/HmvXrkVubi7mzJmDtLQ0TJ06FS6XC1VVVbBarQCAK6+8EgBw9913Izc31/d6lUqFq666SsKvhIiIwoEqLQ1d//EYYkeNBlwuVL77NireWAG3g6egRyrJp4zPnj0bV199NR555BFMnz4dcrkcK1asgEqlQllZGc4++2ysWrUKgGc11rvvvgtRFHHDDTfgpptuglKpxHvvvQeDwSDxV0JEROFAptEg7W+3Iemaaz2noG/aiKJnFsBRUyN1aRQEgsg+O7hcbtTWNgX8ugqFDAkJMaira+I47hmwrfzHtvIf28p/0dpWTfv2ouzVV+BubIRcH4v0W2+HLqf/ad8TrW3VXsFqr8TEGL8mI0veo0NERCSVmAED0e3Rx6Hu2g2uxgYUL34Odau/47ydCMKgQ0REUU3ZJQnZDz7sOzqi6oP3UP76a3Cf4sxFCi8MOkREFPVkKhXSZs5C8nV/BmQyNGzehKJnnoajlvN2wh2DDhEREQBBEJBw/gXIuud+yPR62AryUfjkEzAfyJO6NOoABh0iIqLj6HL6o9sj86DOzoarwYTiRc+ifv2PUpdF7cSgQ0REdAJlUjKyH3wE+pHN++28tRIV/10J0emUujRqIwYdIiKiVsjUaqTfchuSrroaEAQYf/oRxYuehdNkkro0agMGHSIiolMQBAGJl0xDxp13Q6bVwnLwAI48/hgajxyVujTyE4MOERHRGeiHDEXXfzwKZWoanLW1+P3Bh2HatlXqssgPDDpERER+UKVnoOs/HkXMoEFw22wofnkpqj//FKKbuyOHMgYdIiIiP8ljYtB1zr3IuOIyAEDtl5+j7N/L4LbZJK6MToVBh4iIqA0EuRw9Zt6IjJv/CsjlaNyxHUULn+KhoCGKQYeIiKgd4ieeg+z7HoQ81gBbUREKn/4nLEcOS10WnYBBh4iIqJ20ffqg6yPzoMrMgstoRPGzC2Daslnqsug4DDpEREQdoOzSBV0fehgxQ4dBdDpR/tq/Uf3px5ykHCIYdIiIiDpIptEi447ZSLj4UgBA7ddfomz5y5ykHAIYdIiIiAJAkMmQ/MdrkHbzLAgKBRp37mg+Ab1W6tKiGoMOERFRABnGTUDWfXMhj42FrbAAhfOfgDWfOylLhUGHiIgowLS9W05SLnp2ARp37ZC6rKjEoENERBQEyi5JyH7wYegGDoJot6N02VLUfvcNRFGUurSowqBDREQUJHKtFpmz5yBu8hRAFFH94Qeo+O8bEJ1OqUuLGgw6REREQSTI5Uj58wwkX/dnQBBg2vATSv61GK6mJqlLiwoMOkREREEmCAISzr8AGXfMhqBWw7x/H4oWzoejukrq0iIegw4REVEn0Q8bjuy5/4AiIQH2slIUzn8S1qNHpC4rojHoEBERdSJN127IfuhRqLKy4Wowoei5hWjctVPqsiIWgw4REVEnUyYmInvuP45bkfUS6taslrqsiMSgQ0REJAG5VovMO+9G3DnnAqKIqvffQeX77/CMrABj0CEiIpKIoFAgZcYNSPrjnwAA9WtWo/SVpTwjK4AYdIiIiCQkCAISL74E6X+7DYJCgaZdO1H03EI4jUapS4sIDDpEREQhIHb0GGTd+wBkMTGw5R9F4YInYS8vl7qssMegQ0REFCK0ffqi6z8ehTI5Bc7qahQufAqWw4ekLiusMegQERGFEFVqGrIfegTq7j3gbmxE8aJn0bh7l9RlhS0GHSIiohCjMBiQfd9c6AYN8Sw/f/lF1P/0o9RlhSUGHSIiohAk02iQ+ffZMEyYCIgiKv+7EtWff8rTz9uIQYeIiChECQoFUm+cicRplwEAar/8HBVvvgHR5ZK4svDBoENERBTCBEFA0pV/RMr1f/Gcfr7xJ5S+/CL32vETgw4REVEYiD93CjJuvxOCUomm335F8fPPwNlgkrqskMegQ0REFCb0w0f49tqxHj2CogXzYa+qlLqskMagQ0REFEa0vfug64MPQ9GlCxyVFSha8BSshQVSlxWyGHSIiIjCjCo9A10fehTq7Gy4TCYUP7cQ5gN5UpcVkhh0iIiIwpAiPh5Z9z8IbZ++cFssKFn8HBp37ZC6rJDDoENERBSm5LoYZM65DzHDhkN0OlG6bCmMGzdIXVZIYdAhIiIKYzKVChm3/d23sWDFyhWo/e4bqcsKGQw6REREYU6Qy5F640wkXHgxAKD6ww9Q/clH3EUZDDpEREQRQRAEJF9zLZL+eA0AoHbVV6h8+78Q3W6JK5MWgw4REVEESbz4UqTMuBEQBBjX/4Dy/7wK0emUuizJMOgQERFFmPhJ5yJ91q2AXI6Grb+gdNlLcNvtUpclCQYdIiKiCBQ7egwy/36X78iIkiXPw2WxSF1Wp2PQISIiilAxg4cgc859kGm1sBw8gOJFz8LV2Ch1WZ2KQYeIiCiC6fr2Q9Z9cyHT62HLP4qi55+B0xQ9h4Ey6BAREUU4TbfuyL7/Qcjj4mAvLkLRs0/DUVsjdVmdgkGHiIgoCqgzs5D9wENQJCbCUV6O4mcXwlFdJXVZQcegQ0REFCVUqWnIfvBhKFNS4aiuQtEzC2CvKJe6rKBi0CEiIooiysQuyLr/QajSM+Csq0XRswthKy2VuqygYdAhIiKKMsqEBE/YycyCy1iP4ucWwFZSInVZQcGgQ0REFIUUBgOy75sLddducDU0oPi5hbAWFkhdVsAx6BAREUUpeWwssu65H+ruPeBqbEDxomcjLuww6BAREUUxuV6PrHvuh6ZHT7ibmlD8fGSFHQYdIiKiKCfX6ZA55z5oevWG29wcdgrypS4rIBh0iIiIyBN27r4Xmp69PGFn8XMR0bMjedBxu9148cUXMXHiRAwdOhQzZ85EQUHrDfvSSy+hX79+rf566KGHOrlyIiKiyCLXaj09Oz17eYaxFj0LW1Gh1GV1iORBZ9myZXj//ffx1FNP4YMPPoAgCJg1axbsrRwnP3PmTGzcuLHFr7vvvhsajQY33HCDBNUTERFFlmNhxzNnp2jRs7AVF0ldVrtJGnTsdjtef/113HnnnZg0aRJycnKwZMkSVFRUYPXq1Se9PiYmBsnJyb5fFosF//73v/Hggw8iJydHgq+AiIgo8si1Ws8wVo+ecDc2enp2SsNznx1Jg05ubi6ampowduxY32MGgwEDBgzAtm3bzvj+hQsXok+fPrj22muDWSYREVHUketikHn3vVB36+7ZZ+f5Z2AvC78dlBVS3ry83HO+Rnp6eovHU1JSUFZWdtr3/v7771i7di3efPNNyGQdz2sKReAzn1wua/FfOjW2lf/YVv5jW/mPbeW/aGorRVwsut//AAqeXQhrYSGKFz2H7g/9A6rUVL+vIXV7SRp0LBYLAEClUrV4XK1Ww2g0nva9K1euxNChQ1v0BrWXTCYgISGmw9c5FYNBG7RrRxq2lf/YVv5jW/mPbeW/qGmrhBjEzX8Cv//jUViKilG06FkMfvpJqJOT23QZqdpL0qCj0WgAeObqeH8PADabDVrtqRvEbDZj9erVmDdvXkDqcLtFmEzmgFzreHK5DAaDFiaTBS6XO+DXjyRsK/+xrfzHtvIf28p/0dlWcmTfNxf5Tz8FW0UFfnt4Hro/9DAU8fFnfmeQ2stg0PrVSyRp0PEOWVVWVqJr166+xysrK087uXjDhg1wu92YOnVqwGpxOoP3YXW53EG9fiRhW/mPbeU/tpX/2Fb+i7q2iolF5r1zUfTMfNgrKpD/7DPIfuAhyPV6v94uVXtJOsCYk5MDvV6PLVu2+B4zmUzYt28fRo4cecr37dixAwMHDoTBYOiMMomIiAiAMjERWffOhTw+HvbSEhQveR6u5mkooUrSoKNSqXD99dfj+eefx9q1a5Gbm4s5c+YgLS0NU6dOhcvlQlVVFaxWa4v35ebmom/fvhJVTUREFL1UKSnIuucByPWxsBXko/SlF+BuZe+7UCH5lPHZs2fj6quvxiOPPILp06dDLpdjxYoVUKlUKCsrw9lnn41Vq1a1eE91dTXi/RgXJCIiosBTZ2Qgc869kGm1sBzIQ9nylyE6nVKX1SpBFEVR6iKk5nK5UVvbFPDrKhQyJCTEoK6uKbrGcduBbeU/tpX/2Fb+Y1v5j211jPlAHkpeWATRbkfs6DFI++stEE7Y8iVY7ZWYGOPXZGTJe3SIiIgoPOn69kP6rXcAcjkatm5B5XtvI9T6Txh0iIiIqN30Q4YibeYsQBBg/GEdar/8XOqSWmDQISIiog4xjBmLlD/PAADUfPEZ6tetkbiiYxh0iIiIqMPiJ09Blyv+AACofO8dNOw485mVnYFBh4iIiAIicdrliJs0GRBFlL/2b5gP5EldEoMOERERBYYgCEj5vxmIGT4CotOJ0qX/grWoUNKaGHSIiIgoYASZDOmzboWmdx+4zWYULlkMe12dZPUw6BAREVFAyVQqZN55N1Rp6XDW1qJ223bJapH0UE8iIiKKTPKYGGQ98BAsv/+KpLPPRoNNms0V2aNDREREQaEwGJAwaRIUOq1kNTDoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLAYdIiIiilgMOkRERBSxGHSIiIgoYjHoEBERUcRi0CEiIqKIxaBDREREEYtBh4iIiCIWgw4RERFFLEEURVHqIqQmiiLc7uA0g1wug8slzdH04YZt5T+2lf/YVv5jW/mPbdU2wWgvmUyAIAhnfB2DDhEREUUsDl0RERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBp0gcLvdePHFFzFx4kQMHToUM2fOREFBgdRlhZxly5ZhxowZLR7bv38/rr/+egwbNgznnnsuVqxYIVF10quvr8djjz2Gc845ByNGjMD06dOxfft23/Nsq2Nqampw//33Y+zYsRg+fDj+9re/4dChQ77n2VatO3r0KIYPH45PPvnE9xjbqqWSkhL069fvpF8ffvghALbXiT777DNccsklGDx4MC699FJ88803vuckayuRAu6ll14Sx40bJ/7444/i/v37xZkzZ4pTp04VbTab1KWFjDfeeEPs16+feP311/seq62tFceMGSM+/PDD4qFDh8SPPvpIHDx4sPjRRx9JWKl0brrpJvHyyy8Xt23bJh4+fFh88sknxSFDhoiHDh1iW53gmmuuEa+99lrxt99+Ew8dOiTeeeed4oQJE0Sz2cy2OgW73S5eddVVYt++fcWPP/5YFEV+D7Zm7dq14uDBg8WKigqxsrLS98tisbC9TvDZZ5+J/fv3F1euXCnm5+eLS5cuFXNycsSdO3dK2lYMOgFms9nE4cOHi++++67vMaPRKA4ZMkT86quvJKwsNJSXl4s333yzOGzYMPGiiy5qEXSWL18uTpw4UXQ4HL7HFi1aJF544YVSlCqp/Px8sW/fvuKOHTt8j7ndbnHq1KniCy+8wLY6Tm1trThnzhzxwIEDvsf2798v9u3bV/z111/ZVqewaNEiccaMGS2CDtvqZK+88op4+eWXt/oc2+sYt9stTp48WVy4cGGLx2fOnCkuX75c0rbi0FWA5ebmoqmpCWPHjvU9ZjAYMGDAAGzbtk3CykLD3r17ERcXhy+++AJDhw5t8dz27dsxatQoKBQK32Njx47F0aNHUVNT09mlSiohIQGvvvoqBg0a5HtMEASIogij0ci2Ok5CQgIWL16MPn36AACqq6uxYsUKpKWloXfv3myrVmzbtg0ffPABnnnmmRaPs61OlpeXh969e7f6HNvrmCNHjqCkpASXXXZZi8dXrFiBW265RdK2YtAJsPLycgBAenp6i8dTUlJQVlYmRUkhZcqUKVi0aBGys7NPeq68vBxpaWktHktJSQEAlJaWdkp9ocJgMGDSpElQqVS+x7755hsUFhbi7LPPZludwqOPPooJEybg22+/xfz586HT6dhWJzCZTHjggQfwyCOPnPT3FNvqZAcOHEBNTQ3+/Oc/Y/z48Zg+fTo2bNgAgO11vPz8fACA2WzGzTffjHHjxuGaa67BunXrAEjbVgw6AWaxWACgxT9QAKBWq2Gz2aQoKWxYrdZW2w1A1Lfdjh078I9//APnnXcepkyZwrY6hRtuuAEff/wxLr/8ctxxxx3Yu3cv2+oEjz/+OIYNG3bST94AvwdPZLfbkZ+fj8bGRtx999149dVXMXjwYMyaNQubN29mex2nsbERADB37lxMmzYNr7/+OiZMmIDbb79d8rZSnPkl1BYajQaA5xvE+3vA8wep1WqlKissaDQa2O32Fo95vwF0Op0UJYWENWvW4L777sPQoUOxePFiAGyrU/EOMTz55JPYvXs33n77bbbVcT777DNs374dX375ZavPs61aUqlU2LZtGxQKhe8f6UGDBuHw4cNYsWIF2+s4SqUSAHDzzTfjD3/4AwCgf//+2LdvH9544w1J24o9OgHm7QqurKxs8XhlZeVJ3XbUUlpaWqvtBgCpqalSlCS5t99+G3feeSfOOeccvPbaa77wzLY6pqamBl999RVcLpfvMZlMhl69evm+79hWHh9//DFqampw7rnnYvjw4Rg+fDgAYN68ebj00kvZVq3Q6XQn9UT07dsXFRUVbK/jeP9969u3b4vHe/fujeLiYknbikEnwHJycqDX67FlyxbfYyaTCfv27cPIkSMlrCz0jRo1Cjt27GjxD9bmzZvRo0cPdOnSRcLKpPHuu+/iySefxP/93//hhRdeaPGXLdvqmMrKStx7773YunWr7zGHw4F9+/ahV69ebKvjPP/881i1ahU+++wz3y8AmD17Nl599VW21Qlyc3MxfPjwFvtXAcCePXvQu3dvttdxBgwYgJiYGPz6668tHj9w4AC6du0qbVsFfV1XFFq8eLE4evRocc2aNb59dC644ALuo3OCuXPntlheXl1dLY4aNUqcO3euePDgQfHjjz8WBw8eLH7yyScSVimNI0eOiAMHDhTvuOOOFnt3VFZWiiaTiW11HLfbLc6cOVO88MILxW3btol5eXninDlzxFGjRoklJSVsqzM4fnk526oll8slXnPNNeK0adPEbdu2iYcOHRKffvppcdCgQWJubi7b6wQvv/yyOHz4cPHLL78UCwoKxGXLlok5OTniL7/8ImlbMegEgdPpFJ999llx7Nix4rBhw8RZs2aJRUVFUpcVck4MOqIoir/++qv4pz/9SRw0aJA4efJk8a233pKoOmm98sorYt++fVv9NXfuXFEU2VbHM5lM4rx588QJEyaIQ4YMEWfOnNliXx221akdH3REkW11opqaGvGhhx4SJ0yYIA4ePFi89tprxW3btvmeZ3u19Prrr4tTpkwRBw4cKF5++eXi6tWrfc9J1VaCKIpicPuMiIiIiKTBOTpEREQUsRh0iIiIKGIx6BAREVHEYtAhIiKiiMWgQ0RERBGLQYeIiIgiFoMOEYUF7oRBRO3BoENEIW/t2rWYO3cuAGDLli3o169fi2NWiIhOhaeXE1HIW7lype/3AwcOxAcffOA7qZyI6HQYdIgorOj1egwbNkzqMogoTHDoiohC2owZM7B161Zs3brVN2R1/NDVSy+9hIsuughr1qzBtGnTMHjwYFxxxRXYtWsXdu/ejWuuuQZDhgzBtGnTsHnz5hbXPnDgAG655RaMGDECI0aMwB133IGioiIpvkwiChIGHSIKafPmzcOAAQMwYMAAfPDBB2hsbDzpNeXl5ViwYAFuvfVWvPDCCzAajZg9ezbuuece/OlPf8LixYvhdrsxZ84cWK1WAMDRo0dx3XXXoaamBgsXLsT8+fNRVFSE6dOno6amprO/TCIKEg5dEVFI6927N/R6PQBg2LBhrU5CtlgsmDdvHs455xwAwOHDh7Fo0SLMnz8fV199NQDA5XJh9uzZOHr0KPr374+lS5dCo9Fg5cqVvuuPGzcO559/Pv7zn//4Jj8TUXhj0CGiiDBixAjf75OSkgCgxVye+Ph4AIDJZAIA/PLLLxgzZgw0Gg2cTicAz/yfkSNHYtOmTZ1TNBEFHYMOEUUEb6/M8TQazSlfX19fj1WrVmHVqlUnPZeYmBjQ2ohIOgw6RBSVYmNjMX78eNx0000nPadQ8K9GokjB72YiCnkymQxutzug1xw9ejQOHTqE/v37+4KNKIq477770K1bN/Tv3z+g9yMiaXDVFRGFPIPBgKNHj2Lz5s2+OTYddfvtt6OwsBC33HIL1qxZgw0bNuDOO+/E119/jZycnIDcg4ikx6BDRCHv//7v/6BUKjFr1izf8vCOysnJwTvvvANBEPDAAw9g9uzZqKqqwssvv4wLLrggIPcgIukJIk/KIyIiogjFHh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxGLQISIioojFoENEREQRi0GHiIiIIhaDDhEREUUsBh0iIiKKWAw6REREFLEYdIiIiChiMegQERFRxPp/1KcZtkcixEEAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Apply the LLS operator to the signal and visualize\n", + "import numpy as np\n", + "S = df['signal'].values\n", + "S_LLS = np.log(np.log(np.sqrt(S + 1) + 1) + 1) \n", + "plt.plot(df['time'], S_LLS, '-', color='r', label=\"$S_{LLS}$\")\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the y-axis has been compressed to a small range and that the first peak \n", + "is now comparable in size to the other two peaks.\n", + "\n", + "### Iterative Minimum Filtering\n", + "\n", + "With a compressed signal, we can now apply a minimum filter over a given window \n", + "of time $W$ over several iterations $M$. For each time point $t$ in the compressed signal, the filtered value $S'_{LLS}$ for iteration $m$ is computed as \n", + "$$\n", + "S'_{LLS_m}(t) = \\min\\left[S_{LLS_{m-1}}(t), \\frac{S_{LLS_{m-1}}(t-m) + S_{LLS_{m-1}}(t + m)}{2}\\right] \\tag{2}\n", + "$$\n", + "Note that the average value of the signal at time $t$ is compared to the average \n", + "of the window boundaries, with the window increasing in size from one iteration \n", + "to the next. To see this in action, we can plot the filtering result over the first 200 iterations of this \n", + "procedure applied to the above compressed signal. " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjoAAAG1CAYAAADwRl5QAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADuM0lEQVR4nOydd3hUVf7/X3d6yqRXEkISqrTQpSNNLIis4qrooqjsV3+uuLiytmVXFEVc0BVdlWUtqKuiuyqogF0EFKSGGkJCeiZl0mcy/d7fHzeZEEIJkFDP63l4mLnlnDMnd+687+d8iqQoioJAIBAIBALBRYjmXA9AIBAIBAKBoL0QQkcgEAgEAsFFixA6AoFAIBAILlqE0BEIBAKBQHDRIoSOQCAQCASCixYhdAQCgUAgEFy0CKEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQCC4aNGd6wGcDyiKgiy3T4JojUZqt7YvNsRctR4xV61HzFXrEXPVesRcnRrtMV8ajYQkSSc9TggdQJYVKivtbd6uTqchPDyI2tp6vF65zdu/mBBz1XrEXLUeMVetR8xV6xFzdWq013xFRASh1Z5c6IilK4FAIBAIBBctQugIBAKBQCC4aBFCRyAQCAQCwUWLEDoCgUAgEAguWoQzskAgEAjOCWrEq4ws+871UE4JWZZwOrW43S58PhF5dTJOZ760Wh0aTdvYYoTQEQgEAsFZRVEUHA4bNlvNBSdyGrFaNciyiLhqLaczXwEBwYSERLQqhPxECKEjEAgEgrNKbW0lDocNkykIkykQjUZ7xj9mZxutVhLWnFPgVOZLURTcbhc2WxUAoaGRZ9S3EDoCgUAgOGvIsg+Hw05wcBjBwaHnejinjU6nETl0ToFTnS+DwQiAzVaF2Rx+RstYwhlZIBAIBGcNn88HKBiNpnM9FMF5TqPY8fm8Z9SOEDoCgUAgOAdcWEtVgrNPWy1nCqEjEAgEAoHgokUIHYFAIBAIBBctQugIBAKBQHAajBw5iDVrPgfA6/WycuV/zkq/mzZtICfnMAA7dmxj5MhBWCzF7drn9u1bufvu3zFu3AhuueU3rFv3Zbv215YIoSMQHIO8kjoWvredP7/2M59tOIwsizBSgUDQnFWr1jF+/EQAvvlmHS+//GK791lSYuGRR+ZQVVUJQJ8+aaxatY6YmNh26zMvL5e5c//IsGEjePvt/zBlyg0sXPgU27b92m59tiUivFwgOIqqOhd//2An9S7V03/1plwApo5KPYejEggE5xuRkVH+14pydh6Gju5Hr9c3G0d7sHLlf+jSpSv33HMvANOnJ5OZmcH777/LoEFD2rXvtkBYdASCo/jvj9l+kdPIl7/kYa1xnKMRCQSC85HGpas1az7n2Wfn+7ft2LENUJeY7rrrdsaNG8HNN09l+fLXcLvdzc7/179e5cYbJzNlyiTy83MpKyvlqafmcd11VzJmzOXccMO1LFv2T2RZxmIp5qabpgAwe/a9vPHGshZLVy6Xk+XLX+Omm65n3LjhzJw5nZ9++tHf55o1nzNt2nWsXfsFN988lbFjh3HPPTPYu3f3cT/n7t27GDhwcLNtAwcOZvfunWdN4J0JwqIjEBxBjc3FrwdKAQgy6RjcI4YfdxXjkxW+317Eb8d1OccjFAguXrZmlPHZhsM43We/LITJoOU3o1IZ1CPmlM8dP34iNpuNpUuXsGrVOkJCQtm8+WfmzXuU2bPnMHjwUIqKCnnxxefJz8/j6aef85+7evUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB58cM6S7rKysxdJYVFQUTqeTmpoawsLCTnnOziZC6AgER/DLvlJ8Df44Y/olcOWQjmzcU4LXJ/PLvhKmje2M5gJLVS8QXCis25KHpaL+nPW/dkv+aQkdo9FEcHAw0LSc9c47bzJ58hSmTp0GQEJCInPnPs7s2fdisRQTH98BgEmTrqFHj56Aao2ZNOkaxo4dT1xcPADTpt3Ce++tIDs7i1GjriAsLBwAszmEwMDAZuPIzc1hw4b1LFr0IiNGjAJg5sxZZGVlsmLFm36h4/V6efjhR+natTsAM2bM5LHHHqaiooKoqJbLYC6XE71e32xbYzI/t9t1yvN1thFCRyA4gl2Hyv2vR/aNJyTQQO+UCHZlWamxu8kuqqFrYti5G6BAcBFz9eWd+PQcWnSuvjypzdrLzMzgwIF9rF37hX9b4zJPbm6OX+gkJjb1aTSauPHG3/Ljj9/x0UfvU1hYQFbWIazW8oaM0icmOzsLgL59+zXbnpY2gNdff6XZtk6dUvyvg4JUkeb1eo7ZrsFgxONpvq9R4JhMAScd17lGCB2BoAGbw8OhohoAOkdAWManOOxVjI2+jF1ZqhVnV5ZVCB2BoJ0Y1CPmtCwq5yOyrDB9+gyuvnpyi31HOg8bjUb/a6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67H9ZWTZh07X/OfeYDC0PPs4/jaxsbFYreXNtlmtVgICAv2WrPMZIXQEggb251aiKBAkOblH9zWevdUAJLONocZhbHZ1JTO/+pyOUSAQnJ8c7duSmtqZvLxcEhM7+rft3Lmdjz76gIcffpSAgJaWkC1bfubgwQOsXv0VERFqxe7a2hoqKyuO20/zPlUfwt27d/mXrgDS03eRnJxyvNNOSlpaf3bu3N5s27Ztv9KnT9oZFds8W5z/IxQIzhJZhao159qAXQR6q5vtuyFoGyFSPTmWOpzuMyswJxAILj4ahUtGxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurPW44eHS0as366qu1lJRYSE/fxaOP/gmv1+uP1mrs5/DhLGw2W7PzU1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hjem699fbT/mw33ngz+/fv5bXXXiYvL5cPPniPH3/8jttum3HabZ5NhEVHIGggq6iGUKmeocZD6ga9CW10Cr7iAxjxMNqUwReOAWQV1tA7NfLcDlYgEJxXDBgwmJ49e3PffXcxb97TjBs3gfnz4d133+S9997GbA5hxIhR3Hff7OO20bNnbx54YA4rV77P8uWvER0dzfjxVxITE8v+/XsBCA0N49prp/Dqq0spLCxg9OixzdqYP38hy5a9wqJFC7DZ6khJ6cyCBc8zZszYY3XZKlJTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRcj5+YqkXAhB8O2MzydTWWlv83Z1Og3h4UFUVdnxeuU2b/9i4lzPlcvt4/4Xf2K8MZ3JgbsAMAyYgr7nOOzv/wlkH3Wyib9WT+P6UZ25bsTpm4HPlHM9VxcSYq5az9maK4/HTUWFhcjIePT6ln4iFwo6nUZcU6fA6czXya6ViIggtNqTL0yJpSuBAMix1CIrCoONhxu2SOi7j0YTGIYueQAAZo2TLroSckvqzt1ABQKBQHBKCKEjEAD5pXVEauqI1dYCoI3risasrqPrUpvMs30MBeSVCqEjEAgEFwpC6AgEQEG5jZ76Iv97bce+/te6xD6gUd3ZeukLqax1UVvvbtGGQCAQCM4/hNARCICCMhuXHSF0dB37+F9LhgC0cV0BiNTaCdfYyBfLVwKBQHBBIISO4JLHJ8tYrDZSdWUASAEhaCKbZ0jVxnf3v+6iK6XI2vbO6wKBQCBoe4TQEVzylFQ6iKSaAI2a4lwb27VFUq5mQkdfSrEQOgKBQHBBIISO4JKnoKyOZF1TenNtbOcWx2hjOoNGC0CyrpziCiF0BAKB4EJACB3BJU+xtZ5kbZPQ0cS0FDqSzoAmIhGAGE0NFdaa49aFEQgEAsH5gxA6gkue0sp6knVWABRJgzb62MkAtVHJAGgkiPCVUWMXkVcCgUBwviOEjuCSp6KillitWudKE5GIpDt2tlZNg9AB6KitEH46AsElzsiRg1iz5nMAvF4vK1f+56z0u2nTBnJy1OSmO3ZsY+TIQVgsxe3a55dfrmbGjJuZMGEkt9zyG9599218Pp9/v8vlYsmSRUyePJGJE0fzl788QlVVZbuOqbUIoSO4pFEUBaW2GI2kLkNpj4q2OhJtdLL/dUddpRA6AsElzqpV6xg/fiIA33yzjpdffrHd+ywpsfDII3P8IqJPnzRWrVpHTExsu/X59dfrWLx4ITfddCsrVnzI739/P//5zwpWrHjDf8ySJc+xdetmnnnm77z00qsUFxcyb96j7TamU0EIHcElTbXNTYxS4X+vjeh43GM1EYkokuqQnKCtpKzK0e7jEwgE5y+RkVEYjSaAs+azd3Q/er2eyMgotFptu/X56acfc9VVk7nuuqkkJCQybtwEbrnlNr74YhUA5eVlrFv3JX/841zS0vrRs2dvnnzyWXbt2sHevXvabVytRQgdwSVNSWU9HXTV/veayOMLHUmrhxD1qSlGW0t5la29hycQCM5jGpeu1qz5nGefne/ftmPHNkBdYrrrrtsZN24EN988leXLX8Ptdjc7/1//epUbb5zMlCmTyM/PpayslKeemsd1113JmDGXc8MN17Js2T+RZRmLpZibbpoCwOzZ9/LGG8taLF25XE6WL3+Nm266nnHjhjNz5nR++ulHf59r1nzOtGnXsXbtF9x881TGjh3GPffMYO/e3cf9nPfd9wC33np7i+11dWrJnN270wHo33+gf19SUieio2NIT99xOlPbpujO9QAEgnNJaWU9HbRV/veNkVXHQx+ZgLemGJ0k46sube/hCQSCC4Dx4ydis9lYunQJq1atIyQklM2bf2bevEeZPXsOgwcPpaiokBdffJ78/Dyefvo5/7mrV3/C4sVL8Xp9JCUlc+ed0wkPD+eFF14mMDCIX37ZyD/+sZiePXsxfPgoli9fwaxZd/DMM88zePBQMjL2NxvLk08+wcGDGTz00CMkJXXiu+++5okn5rJw4WJGjhwDgNVazmef/Y95855Gr9ezePFCFiz4Gx988EmLHGIAffv2a/a+rq6Ozz77H0OGDAWgvLyU0NAwjEZjs+OioqIoLS1piyk+I4TQEVzSlFTY6d4gdHwGM5qAkBMerwlPBLYCYLCXIMsKGk3LG4NAIDh1PId/xb3tUxSP86z3LelNGAbdgP6IIr6txWg0ERwcDKjLWQDvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfHxHQCYNOkaevToCajWmEmTrmHs2PHExcUDMG3aLbz33gqys7MYNeoKwsLCATCbQwgMDGw2jtzcHDZsWM+iRS8yYsQoAGbOnEVWViYrVrzpFzper5eHH36Url3VRKgzZszksccepqKigqioqBN+1vr6eh577E+4XC7+3/97EACn04ler29xrMFgbGbBOlcIoSO4pKmtKCdY4wJAOoF/TiOa8A7+1zFSNVV1LiJDTe02PoHgUsKdvha52nJO+lYa+j8doXMsMjMzOHBgH2vXftHUR4N/TW5ujl/oJCY2BUAYjSZuvPG3/Pjjd3z00fsUFhaQlXUIq7W8WYTT8cjOzgJaWmDS0gbw+uuvNNvWqVNTGo2gIFWkeb2eE7ZfUWHlz3+eQ1FRIS+88DIJCYn+cXs8Lc91u12YTAEnHXd7I4SO4JJGqWm6qRqiWyF0IhL8r+O01ZRV1QuhIxC0EYa0a3Bv++TcWXTSrm6z9mRZYfr0GVx99eQW+xqtPkCz5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxHaJl2YdO1/zn3mBomUbjRA7VeXm5PPTQH/D5fPzzn8vp3LmLf19MTCy1tTV4PJ5mlh2r1UpMTEwrx95+CKEjuGSRFQWjwwoNDxzasPiTnqMJiUWWtGgUH3HaaizVDi5r53EKBJcK+tTBbWZROdsc7duSmtqZvLxcEhObHqB27tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiIhIAGpra6isbIoMPZYPTVOfqvjYvXuXf+kKID19F8nJx06E2hqKi4uYPfv/MJtDWbJkKbGxcc32p6X1Q5Zl0tN3MmjQEADy83MpLy+jb9/+p91vWyGirgSXLHV2N1FStf+9JjTu+Ac3IGm0eIPUJxQ18krk0hEIBPiFS0bGAVwuJ7fdNoP167/njTeWkZ+fx/btW3n22aeoq6ttZtE5kuho9d7y1VdrKSmxkJ6+i0cf/RNer9fv69LYz+HDWdhszSM/U1JSGTZsBEuWPMemTRvIz8/jrbeWs3Hj+mNGTbWWhQufwu328Le/LUCn01FRYfX/A4iKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nHa/bcV5ZdF59dVX+eWXX3j33XdPeqwsy8yaNYt+/frxwAMPnIXRCS42KmpdxGhq/e81YScXOv7jbBa0kkJ9RQnQrZ1GKBAILhQGDBhMz569ue++u5g372nGjZvA/Pnw7rtv8t57b2M2hzBixCjuu2/2cdvo2bM3Dzwwh5Ur32f58teIjo5m/PgriYmJZf/+vQCEhoZx7bVTePXVpRQWFjB69Nhmbcyfv5Bly15h0aIF2Gx1pKR0ZsGC5xkzZuyxujwpVms5O3duB2DmzOkt9m/cqIbS//nPT7B06RIef3wuAEOHDmfOnLmn1WdbIynnSWXCt99+m+eee47BgwefVOg4nU6eeOIJvvjiC/7whz+csdDx+WQqK9v+yVyn0xAeHkRVlR2vV27z9i8mzsVcbc0oI+qHp4jS2vBqDITdveyEZuFGHFs+xpv+JQD/017LnXff1N5DbYa4rlqPmKvWc7bmyuNxU1FhITIyHr3+2OVWLgR0Oo24pk6B05mvk10rERFBaLUnX5g65xad0tJSnnjiCbZv305KysnXEHfs2METTzyBx+MhJOTEocACwYmorKqjm0Y1/XoCY1olcgB0YXF4G14bHRUnPFYgEAgE55Zz7qOzb98+QkNDWb16NWlpaSc9fsOGDUycOJHPPvsMs9l8FkYouFhxV1rwp8AJaX2dGCm06dgQuQqX++RhnwKBQCA4N5xzi864ceMYN25cq49/8MEH22UcOl3ba75Gk1prTGuXOudirpTaMv9rY1RCq68BTUQ8jVWuojV1VNtdJAQGt8MIj424rlqPmKvWc7bmSpYv/ASbjcZfSYLzw/nj/OZM50urlc7oN/qcC53zAY1GIjw8qN3aDwk59wmTLhTO5lwZHOX+1zEpqYS08hpQwgKp0BjRyS6itbU4fbTr9XM8xHXVesRctZ72niunU4vVqjnjH6/zASGgT41TnS9ZltBoNISGBmIynX6+MiF0UBM71dbWt3m7Wq2GkJAAamsd+HzCae1EnIu5CnBa/d8AlzGSqiNCxQ9X5/F9/gbqPQ76RvdkVOJQtJqm6sDugEh09mIiNHZ2F1jpHHd2LTriumodYq5az9maK7fbhSzL+HzKBevMK0nqfPl8srDotILTnS+fT0GWZWpq6nE4WroIhIQEXBjOyOcL7fmF8/nkC/YLfbY5W3PlcvsIU6r975WgGH+/Pxdv5f2M/6I0ZBndV3GQnaV7+b++d2LQqlk/leAYsBejkRTqyi14vUkt+mhvxHXVesRctZ72niuf78JXBo0/1kLktI4zna8zFcXC7ia4JKmodRKhVS04Dk0gkl5Nw364Jq+ZyGkko+oQn2Q11azRhzfl3JFFFXOBQCA4bzmvhY7P56O8vByn8+zXPRFc3FRW2wiR1OVKl0GtBiwrcjORMyZxBP8v7W4MGtWKs6HoF/JqCwAIiGoq7qmxlyEQCASC85PzWuhYLBZGjhzJmjVrzvVQBBcZddZSf2i5HBgBwK7yvVjsqnUmyZzAjV0m0yuyO9elTvKftybnGwAMEU11sQzOyrM0aoFAIBCcKueVj85zzz3X7H1iYiIHDx487vHff/99ew9JcJHiqmpabtKao1AUha9ym66n61Kv8jsfj04czvcFG6lyVbO3IoP8ukISzU21aoJ9NXh9MjoRgSEQCATnHeLOLLgk8dU2hZYbwmPJrS2g0FYMqNacyyKa6lfpNDqu7NRUJ2ZT0RakwFB8qEIoQmOnqs51lkYuEAjOF0aOHMSaNZ8D4PV6WbnyP2el302bNpCTcxiAHTu2MXLkICyW4rPSt6IoPPTQH/jDH37fbLvL5WLJkkVMnjyRiRNH85e/PEJV1flh7RZCR3BJoqlv+gIGR8Xxi2Wr//3ohOEtykEMieuPQavWWtlWmo5H9uHQhwIQobVRUe1AIBBcWqxatY7x4ycC8M0363j55Rfbvc+SEguPPDLHLyL69Elj1ap1xMS0Prv7mfDRR+/z66+bW2xfsuQ5tm7dzDPP/J2XXnqV4uJC5s179KyM6WQIoSO4JDG6qv2vdeGR7CjbrW7XGugf07fF8SadiQHR6nanz8mByky8JtW3xyh5qa4UNa8EgkuNyMgojEY1kd3Zqo99dD96vZ7IyCi0Wu1xzmg7srOzeOutf9OrV59m28vLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tPu4ToYQOoJLDllWCJZr/O9zfHYcXtUi0zvyMkw64zHP6x/T9OVOL98LR/jpOCtK2mm0AoHgfKVx6WrNms959tn5/m07dmwD1CWmu+66nXHjRnDzzVNZvvw13G53s/P/9a9XufHGyUyZMon8/FzKykp56ql5XHfdlYwZczk33HAty5b9E1mWsViKuemmKQDMnn0vb7yxrMXSlcvlZPny17jppusZN244M2dO56effvT3uWbN50ybdh1r137BzTdPZezYYdxzzwz27t19ws/qcrmYP/8J7rnn/0hK6tRs3+7d6QD07z/Qvy0pqRPR0TGkp+84zdltO84rZ2SB4GxQbXMR3lC1vF4KYm/VIf++vlE9j3te9/AuGLUGXD43e60HmBjSFxqWxb211nYds0BwKbCjbDdfHP4al+/s+7wZtUYmp17JgGNYdE/G+PETsdlsLF26hFWr1hESEsrmzT8zb96jzJ49h8GDh1JUVMiLLz5Pfn4eTz/dFHizevUnLF68FK/XR1JSMnfeOZ3w8HBeeOFlAgOD+OWXjfzjH4vp2bMXw4ePYvnyFcyadQfPPPM8gwcPJSNjf7OxPPnkExw8mMFDDz1CUlInvvvua554Yi4LFy5m5MgxAFit5Xz22f+YN+9p9Ho9ixcvZMGCv/HBB5+0WLZv5LXXlhIVFc2NN97sF3WNlJeXEhoahtHY/CExKiqK0tJz/xAohI7gkqOyyk6sRrXgOAyh7LaqNwqNpKFnZPfjnqfX6ukV2YMdZbuxe+spidDSpWGfZBNCRyA4U77NW09p/bnLS/Vt/vrTEjpGo4ngYLUMTGSkaul95503mTx5ClOnTgMgISGRuXMfZ/bse7FYiomPV3NxTZp0DT16qA9YLpeTSZOuYezY8cTFqSkspk27hffeW0F2dhajRl1BWJia98tsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZV73czZszksccepqKigqioKI5m8+af+eabdaxY8eExhZDT6USv17fYbjAYm1mwzhVC6AguOWqtFhrd9sqDQ7E6VP+aLqEpBOoDj38ikBbd2+/PkyXV+oWO3nV+RBcIBBcyEzqNOacWnQlJY9qsvczMDA4c2MfatU0Z1Rv9a3Jzc/xCJzGxqXyM0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fla1no6muzsLAD69u3XbHta2gBef/2VZts6dUrxvw4KUkWa1+tp0WZVVRULF87nT396jKio6GP2azSa8Hhanut2uzCZzn1BXSF0BJcczsqmJ8Zcc9NXoE/UZSc997KIbkhIKChkOkq5qmF7kLcGRVGOa/YVCAQnZ0BM39OyqJyPyLLC9OkzuPrqyS32NVp9gGbLPU6nk/vvn4XT6WDcuIlMmnQtc+b04v77Z7Wy12M7RMuyD52u+c+9wWBoefYxHKo3b95ERUUFCxfOZ+FCdcnK7XajKAoTJ45i8eKlxMTEUltbg8fjaWbZsVqtxMTEtHLs7YcQOoJLDu8ROXQKDV5oqBV32QmWrRoJ0gfS0ZxAfl0hxfVlVGgNRPrchEt12J1eggNamm8FAsHFz9EPOampncnLyyUxsaN/286d2/noow94+OFHCQhoaenYsuVnDh48wOrVXxEREQlAbW0NlUdEdZ7oYSo1VbUx7969y790BZCevovk5JTjnXZCxowZS58+ac22vfbaUsrKyvjb3xYQHR1NXV0dsiyTnr6TQYOGAJCfn0t5eRl9+/Y/rX7bEhF1JbjkkOyqP40MFCq1AATrg4gLbN2TR4+Irv7XGcFqLp1wjZ3Kmvq2HahAILhgaBQuGRkHcLmc3HbbDNav/5433lhGfn4e27dv5dlnn6KurraZRedIoqPVe9BXX62lpMRCevouHn30T3i9Xr+vS2M/hw9nYbPZmp2fkpLKsGEjWLLkOTZt2kB+fh5vvbWcjRvXc+utt5/W5woMDCIxsWOzf4GBQRiNRhITO2I0moiKimbChEksWvQMO3Zs48CBfTz55BP07z+Q3r37nLyTdkZYdASXHAZXFQAlBh1ORV1X7hKW2uplp25hnfk67wcA8gNNjKgBnSRTU14OcaHtM2iBQHBeM2DAYHr27M19993FvHlPM27cBObPh3fffZP33nsbszmEESNGcd99s4/bRs+evXnggTmsXPk+y5e/RnR0NOPHX0lMTCz79+8FIDQ0jGuvncKrry6lsLCA0aPHNmtj/vyFLFv2CosWLcBmqyMlpTMLFjzPmDFjj9Vlm/HnPz/B0qVLePzxuQAMHTqcOXPmtmufrUVSzlaWo/MYn0+mstLe5u3qdBrCw4OoqrLj9cpt3v7FxNmcq72vzaWTtpyNoQF8EW0GYFrXKYztOLJV5zu8Tub+9DcUFKJ9Bv6UUwjA/m73cPkVrWvjTBDXVesRc9V6ztZceTxuKiosREbGo9e39BO5UNDpNOKaOgVOZ75Odq1ERAShbUWNQbF0JbikqHd6CZNUc2/WEWvkXcNSW91GgM5Eh+A4AKxaN64GS5C35tyFxQoEAoHg2AihI7ikqKyqI1TjQAEKAtSV2wBdgF+4tJbU0GRAjXHINzWsAItcOgKBQHDeIYSO4JKiplzN0lmr1WBvKA3TyZyIRjq1r0JqaFMK9DyTGmmlc1a1zSAFAoFA0GYIZ2TBJYWjoSZVoanp0k8KSTzldhotOgD5DUInwFN9RmMTCNqL7OIaNqRbqKt30yUhlCv6JxBgFLd/waWBuNIFlxSeGjWHTpGxKd9NJ/OpC51IUzghBjO17jryTAZkIESpwyfLaDXCUCo4f1i7JY///pDtTyW385CVH3cVMfeW/kSFnfustQJBeyPuyIJLisaaVIVHPM12PA2hI0mS36rj0kqUGbSEaexU1zjaZJxH43B52Xu4guziGmQRKCloJZv2WPi4QeRIyOhQywiUVztZ8lE6LvfJywoIBBc6wqIjuKTQu6pQgKKG5aZgfRARprDTais1tBO7yvcAqp9OnNtJRVkJkeGd22i0Ktsyynh7bQb1Li8AyfFm5t01FL2oNiE4AZW1Tt77JpNAycl1ATsYEpCHTvFQRCwf1Q4gtzKa/63PZvrEbud6qAJBuyIsOoJLigBPDdU6DfaG3AtJ5sTTrk91pENyo5+OvcEHqK3Yc7iC11bt9YscgFxLHX9Z9jP1Tu8JzhRc6nz0QxYGj40HQ75iuCkLXUNyzARKecD8FT31hXy/o4iyKpHRW3BxI4SO4JLB65MJoY7CI/xzTscRuZGE4A5IqCKpxKAaR91VbZdLp97p5c01B1AUkFAY1klHcri6z2K185+vD7ZZX4KLi2KrnW0HSpkRvIE4bY26UW9CMqvVp3WSzB3BPxEu1fLFz3nncKQCQfsjhI7gkqG6IYdO0ZERV6fhn9OIQasnNlD94Sgxqt4PShvm0lm7JY8am5vOulKejPqCW+reZI70Dv8X8gPBkoMNuy3kltS2WX+Ci4c1m/MYYTxIN71qYZSCwgm68WmCbn4OXcogAEySl2mBW9i834LN4TmXwxUI2hUhdASXDNVl6k2/WcTVGVh0ABKC4wHwSRLlBi1aR+UZtddIvdPL9zsK6aIr4T7zN4TJTTl6euoKmB3yFQGSizWb89ukP8HFg83hIf1AIVcFpPu3mcb+Hk1INJJGi2nM3UhBEQD0NBSTLJXw8x7LuRruBc3IkYNYs+ZzALxeLytX/ues9Ltp0wZycg4DsGPHNkaOHITFUtyufebn5zF37oNMnDiKKVMm8cILi3A6nf79LpeLJUsWMXnyRCZOHM1f/vIIVVVtcz88U4TQEVwy1FeUoNAUcWU2BBNqCDmjNhPNHfyvLQYdJnf1GbXXyMbdxUhuOzOCN6CX1PowmsiOSAHqeGO1tdwS9AvbD5ZhrW6fSC/Bhckve0sYod9PsMYFgK7zUHQdLvPvlwwBGIdM87+fGLCHn3YLoXM6rFq1jvHjJwLwzTfrePnlF9u9z5ISC488MscvIvr0SWPVqnXExMS2W581NdX84Q+/B2DZsreZN28+69d/zyuv/MN/zJIlz7F162aeeebvvPTSqxQXFzJv3qPtNqZTQQgdwSWDu6acSp0GR4MjcqczcERuJCG4SegUG/WY5TNfSlIUhY17LFwbsItQjSpitIm9CfzN3wicOg/JGARAP0M+3bTFrE9v3yc5wYWDoij8nF7AaFOG+l7SYBz0mxbH6Tpf7vfX6aG34KssoqjcdlbHejEQGRmF0WgC1Lk/Gxzdj16vJzIyCq1W2259/ve/K9HpdCxY8DypqZ0ZPHgo99xzH/v370VRFMrLy1i37kv++Me5pKX1o2fP3jz55LPs2rWDvXv3tNu4WosQOoJLBqXO6g8rhzPzz2kk8QihYzHqCJHs1Nc7T3DGyckvtWGvKGWoMUvdoDepyw0aHRpzNAEjb/cfe13gDrbsLzlrN1nB+U2x1U5k7QHMGvUa1KcMRBPa8klf0mgx9J7ofz/UmMXWA6Io7anSuHS1Zs3nPPvsfP+2HTu2AeoS01133c64cSO4+eapLF/+Gm63u9n5//rXq9x442SmTJlEfn4uZWWlPPXUPK677krGjLmcG264lmXL/oksy1gsxdx00xQAZs++lzfeWNZi6crlcrJ8+WvcdNP1jBs3nJkzp/PTTz/6+1yz5nOmTbuOtWu/4OabpzJ27DDuuWcGe/fuPu7n3LLlF0aPHovRaPRvu+66qbz55ntIksTu3eoyaf/+A/37k5I6ER0dQ3r6jjOc5TNH5NERXDLonZUcDjmz0g9HE2o0Y9YHU+exYTHqkCTVFygwOfm029y8v4Txpn3oGpasDL0nogkK9+83dBuGd983uEsO01FXSVhtHoeLe9M5IfRMP47gAmd7ZjkjjU3RePqe4497rL7rcJxbPkKSvQw2Hmb5AQszr+9zNoZ5XOq2/UrFZ58iu87sYeF00BhNRE69AfOgwad87vjxE7HZbCxduoRVq9YREhLK5s0/M2/eo8yePYfBg4dSVFTIiy8+T35+Hk8//Zz/3NWrP2Hx4qV4vT6SkpK5887phIeH88ILLxMYGMQvv2zkH/9YTM+evRg+fBTLl69g1qw7eOaZ5xk8eCgZGfubjeXJJ5/g4MEMHnroEZKSOvHdd1/zxBNzWbhwMSNHjgHAai3ns8/+x7x5T6PX61m8eCELFvyNDz745JhW7oKCfEaPvoKXX36BH374Dr1ez5gxY7n77nsxGo2Ul5cSGhrWTAgBREVFUVratik3TgchdASXDCZPdfPQ8jaw6IDqp3OgMhO7VkOdVkO91QKnKXQURWHvIQuzjdnqBp0RQ59JzY6RJA1hQ6+n7DPVH+AK03427x8khI6ArIPZjNWrlhklJA5tfPfjHiuZgtF36oc3ZxtmjRNTVTblVY5z+qNQuW4t7pJz5y9U9dXa0xI6RqOJ4OBgQF3OAnjnnTeZPHkKU6eq/lAJCYnMnfs4s2ffi8VSTHy8ag2eNOkaevToCajWmEmTrmHs2PHExamBDtOm3cJ7760gOzuLUaOuICxMfegxm0MIDAxsNo7c3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1etjxoyZPPbYw1RUVBAVFdXi89XX23nvvRVMmDCJZ59dTGmphRdf/DsVFRXMm/cUTqcTvV7f4jyDwdjMgnWuEEJHcEmgKApmuZYio3ozCjWEEGo8M0fkRhKC4zlQmQlAsVGHqbL0tNsqqawn0X4AU7CaDFDf5XIkU3CL44J6DIWgcLBX0UtfxNeH8lEmdD1jnyPBhUt5tYOY2v3Q8Ntn7Db8pNeDLnUI3hx1maWvIZ9dmWUM6tbyh+5sEXHVNVR89sk5s+iET7q6zdrLzMzgwIF9rF37hX9b4xJzbm6OX+gkJib59xuNJm688bf8+ON3fPTR+xQWFpCVdQirtRyf7+TlOrKz1eXuvn37NdueljaA119/pdm2Tp1S/K+DgtR7jNd77DQDOp2OpKROPPyw6lzco8dl+Hwyf/3ro/zhD3/EaDTh8bQ81+12YTKd+3pqQugILglsdXbcRg+uxozIbbBs1cjRfjqd6k4/l86uLCvDGn1zAH2PK455nKTVYeo+EueOz9FICimuDIqtQ0mIbimKBJcGOw9ZGWDI9b/Xd778pOfoOvZB0eiQZC99DAV8e/DcCh3zoMGnZVE5H5FlhenTZ3D11ZNb7Gu0+gDNlnucTif33z8Lp9PBuHETmTTpWubM6cX9989qZa/H9tWTZR86XfOfe4PB0PLs4/j6RUfHkpravLRNSkoqABZLMTExsdTW1uDxeJpZdqxWKzExMa0ce/shnJEFlwRVJRYshqYv+pHi5ExpzKUDaoi5xn76uSOyDx4mRa9WWJdDOqCJTjnusYZuw/2vBxlzSM+uOO1+BRc++Yey6KhTrz1fWNIxnZCPRjIEoE3oBUCoxkF59n5RNPY0Odp6lpramby8XBITO/r/lZeX8c9/vkR9vf2YbWzZ8jMHDx7g5ZeXcffd/8f48RMJCgqisrLpu30iK11qahcAdu/e1Wx7evoukpOPfy85Gf369efAgX3NhNDhw1lotVri4xNIS+uHLMukp+/078/Pz6W8vIy+ffufdr9thRA6gksCm7WEEuORQif+BEefGrGB0egkNbTTYtRhdFed5IxjU+/0ElK5z//e1G3oCW9q2ogEfOGq2TtJV0FeZtZxjxVc3Hi8PgKtTU6pAd1Obs1pRJ/c9EOU6M2noFSEmZ8OAQHqEk1GxgFcLie33TaD9eu/5403lpGfn8f27Vt59tmnqKurbWbROZLoaNX68dVXaykpsZCevotHH/0TXq/X7+vS2M/hw1nYbM3/VikpqQwbNoIlS55j06YN5Ofn8dZby9m4cT233no7p8v06b+jqKiQxYsXkp+fx5Ytv/DPf77EpEnXEB4eTlRUNBMmTGLRomfYsWMbBw7s48knn6B//4H07n1uHdxBLF0JLhHc1WWUGJryTHQIjjvusd6aaur37cNdYsFdVorPZiOoVx/CJ16JpGv5ldFqtHQIjie/rhCrXoterjmtMWYV1dBX35TpWJc66KTnBHQdivtX9Rxz1QGc7jGYDOJrfamRVVhDN22B/72uU+ufonUJvXA1vO6ut5BZUE1CVFAbj/DiZ8CAwfTs2Zv77ruLefOeZty4CcyfD++++ybvvfc2ZnMII0aM4r77Zh+3jZ49e/PAA3NYufJ9li9/jejoaMaPv5KYmFj2798LQGhoGNdeO4VXX11KYWEBo0ePbdbG/PkLWbbsFRYtWoDNVkdKSmcWLHieMWPGHqvLVpGUlMzLLy/jn/98iTvvnE5wcDCTJl3DrFn3+Y/585+fYOnSJTz++FwAhg4dzpw5c0+7z7ZEUkQCDnw+mcrKY5sSzwSdTkN4eBBVVXa8XrnN27+YaO+52rFyGZ+FHqTCoEOPlhfGPoNGamnQrP11M6VvvYFyDMc6Y1In4mbeg7Fjxxb7/nPgY362bAXg/xVU0mP6q2j1LdfAT8Tqb9MZk/0iGglcgbFE3b7omMcdOVcuayH1Hz0OwCFPLPqr/0yf1MhT6vdi5lL5Dn76/QGuOPR3dJKM2xhGxIwXm1kDnV4Xlc4qwoyhBOpbOodWv/cntPUVeBUNn8Q+wN1T22+5weNxU1FhITIyHv0pfkfOJ3Q6zUV9TbU1pzNfJ7tWIiKC0GpPvjAlHv0ElwSK00pllGrRiTVFHVPk1G3bSsnyZXAc7e/KzyNvwZNETLqayKk3IGma2kgwd4CGqFiLUUdCeQlhHZKO2c5xKdiJpuG3yZAy8MTHNqAJjccdEIXBYSVVV8YPh4uF0LkEsefu9udd0iel+UWOzWPn06wv+bVkB7Iio5E0DIjpy7SuUzAbmhzXDR174zu4Hp0k47FkAufer0IgaCuEj47gksBODUrDzT8xtGXElW33LizLX/eLHPPgISQ8+BDJzyyi42N/wdAhQT3Q56NyzRdUrVvT7PzEZqUgdNSVn1ouEJfHR3R9tv99UPchzfbLiozdU49Pbh5iKkmS38dCKyl48tIRXFrYnR6ibE3XTmCqej1UOatZsv2fbLZsQ1ZUESQrMttKd/H3ba9Q6WzyJdMn9vK/jnXnU1l79sO7BYL2Qlh0BJcEdQYHoJrsE0MSmu2rzzyI5dVXoCFPRciIUcTeMbPJYhMbS9K8J6n8cjWVX6iViiu+WE3woCEYGkInE47w+bEY9DgrTi2XzuHCKrroVHHk1AQSHKlag+rcNr44/BXbSnfh9LkwaPT0i+nNjIE3oG/4PIGdB+I48A0AUfWHsTs9BJlaJu8SXJxkFdbQQ6+m//ehRdvhMtw+D8t2v01ZvZrqIEAXwGURXTlYlYXdU0+Fs5LXd7/N3IF/QK/Vo43v5m8vRVdOVlENQ0JM5+TzCARtjbDoCC567HV2aoxNy1EdgppEiezxUPrmv1G8aoI+8+AhzUVOAxq9nqipNxI2Qa0PpLjdlK54E0VWn5QDdAGYGzK1lRi1eGpPrW5QaeZeTJI6BmdkdyRJw+GaXBZsWcLG4i04faq7qFv28GvJTv789bMcqFCTFGpju+CVVGHTTW8hM+/0or4EFyYFOXlEatXoG2doMpLeyKrsNRTYVPETZYrgscF/5O7et/P4kDlEB6hLm0U2C1/kfA2AJjAMT8P2JJ2V7ILTT5EgEJxvCKEjuOipLi2i5IhIpCMjrqq//xaPVc1bE9CtO3F3/76FyDmSqKk3ootUfxAcBzOo+OwT/75Yk2rdcWs01DrLT22Qlqaw8uDUNIptJby869/YPKqTvElrpEd4V4L0qpiq9zj45863yKnJQ9LqcIWrybxCNQ4sOdkt2xdctHiKDvhfByT1pKCumPWFPwOg1+j5v753Ehmglg0IM4Yyq88MdBr1+/BDwUbK6tVr1dChq3qOJFNvOXw2P4JA0K4IoSO46LGXWyhtEDoBstbvhOmrq6Pyi9XqQZJEzK23HTN8/Eg0JhNxd94NDf4+lWu+oPr7bwHoGNbkfFxF60PMvT6ZaEeO/70+pTvL9qzA7VPzZnQP78Lfhv2ZB/rPYv6wR+kbrdbF8cgelu95F7unnoDk3v7zZcsBBJcGHq9MiC3X/z6oUy8+OfQ5SkOG3GuSJ7RIpZAQHM+EJLXmkU/x8cVh1aoTkNBUF8tUk4ssX/IBuYKLBCF0BBc91VWF2HTqpR4hmf3bras+RXY4AAgZMRJjx9ZFSQVe1pPoW29rauezT5E9bjpHdfJvq9I5Wj2+vLwSEjXWhvOi+TD/O6wONRNqx+AO3Nv3TkIM6rgDdCZ+nzaDy6LVp+8ady0fZX5GcEpff3uR9Tl4RNjrJUFeSR2pWrU6tA8tuUYtmdWqRS86IJJxSaOOed7EpCsI1qu5cnaU7cbqqEAb19W/P0lTiqWyvp1HLxCcHYTQEVz0VDibIqBiTNEAuAoLqFn/AwCS0UTU1BtPqc3wcRMIbqjJI9fbse3YQZK5ycm5wgiK13W805thPbjDH1Z+KLYjO8t2AxCkD2RWnzswaJvnj9BrdDw49C4Cdaoz8rbSXeRovDg16rJWF10JeZbqU/o8gguT/MO5RDX459Sbk/iq8Cf/vknJ4/1LVEdj0hm5InEkAAoK3xdsRBuRiE+r1l1K1pWTV1LbzqMXCM4OQugILnqq5Wr/68TwTiiKQvnKD/yh5JHXTkYXFnbK7YaNHe9/XbP+ByJM4eh9qmIpNupwVbXOIVlbmgGAD/jJ3PTjckOXyX7fiqOJCAzjhm7X+t9/kv0l9jC1yJ5J8lCSdfCUPovgwsRR0LRMWdshhf0V6t89whTOkNgT58IZnTgMg0Z1Yv+1ZAcexYccoVolwzQOLIWnliJBIDhfEUJHcNFTo23KCdIlvgvO7CzqD6h1gfRR0YRNvPK02g3o1h1DnFozy5F5EFd+HuFe9Ym4VqelpCT3pG34fDIxTtU/Z3twAFavKnRSQpIYEjfghOeOSBjijyDLqy2gIL6pSrC7OOOUP4/gwkJRFAJrmpyG94Y0+dSMSRyOVqM91ml+gvSB9I9RlzwdXge7yvYS0rFp+cpVmnO8UwUNjBw5iDVr1JQTXq+XlSv/c1b63bRpAzk56t9+x45tjBw5CIuluF37/PXXzdx99++YMGEkv/3t9fznPyuaFfl0uVwsWbKIyZMnMnHiaP7yl0eoqjo/oveE0BFc1MiyTJWhKcleorkD1Q1LVgAR101Bc5pp6CVJaiaSKtd8QYQU6n+fYz155Epxbh7hGjsy8ENkiH/71C7XHjN785FoJA1TOl/lf79F21ThOKg2F1Hd5eKmvMZJoqTma3Kj4dc6VZjoJC1D405eJw1gWHzTcT8Xb8Wc1CR09LWFwiH5JKxatY7x49WUE998s46XX36x3fssKbHwyCNz/CKiT580Vq1aR0zMyavVny55ebk8+uhDjBw5mhUrPuT//u8PvPnmv/jkk4/8xyxZ8hxbt27mmWf+zksvvUpxcSHz5j3abmM6FYTQEVzU1FrLKTeqT7Zmr4Te6cW29VcANIFBmAe3vsrzsQgZOhytWXUUtm3fRpfKpkR9pY6TJw2sOKRmMt4fZKRKr/6odA5NoUtYSqv67xXZg/gg9QaXU28hM0D100mSSiivbr1DtODCo7CwjDitGt23PTwGu1d1Hu4X04dgQ+uKcnYJSyXKFAFARsUhnBFNP5YdJCvlNeIaOhGRkVEYjWpixbP1YHF0P3q9nsjIKLTaE1vwzoQtW37GZApg5sxZJCQkMn78RC6/fDhbtmwGoLy8jHXrvuSPf5xLWlo/evbszZNPPsuuXTvYu3dPu42rtQihI7ioyS/KwtWQFyfcZ6T2503+5IAhw0egMZxZUUGN0UjUjTf53ydvycDkVCOeqnx1J2+g9CAK8EN4oH/TpORxre9f0jAx6Qr/+58jVJ+eYI2LgkOHWt2O4MKjNr/JD2tvWFOhzhEdhhzr8GMiSRIDYtMA1Sk5vb4Mr0b9TiRqKyksa/tixxcTjUtXa9Z8zrPPzvdv27FjG6AuMd111+2MGzeCm2+eyvLlr+F2u5ud/69/vcqNN05mypRJ5OfnUlZWylNPzeO6665kzJjLueGGa1m27J/IsozFUsxNN00BYPbse3njjWUtlq5cLifLl7/GTTddz7hxw5k5czo//fSjv881az5n2rTrWLv2C26+eSpjxw7jnntmsHfv7uN+zpCQUGpra/jmm3UoikJ2dha7d++iVy81rcXu3eoDW//+TTX6kpI6ER0dQ3r6jjaY6TNDCB3BRU1hVZOfQbhkbrZsFTbmijbpI2TEKAIbvvBaez39DqpP1jWaE0ddybJMlDOPQwEGihpKNnQM7kDPiG4nPO9oBsSm+UOFDwV4sTeEcNnzRT6di5qGpVGHRiJXq15zoYYQujQ4pbeWtOimOle/FqXjaYgejNDaKSs5tQzflyrjx09k9uw/AepyVp8+aWze/DPz5j3KlClTeffdlfzpT4/y/fff8PTTf2127urVn/DMM8/z7LOLSUpK5s9/VpelXnjhZd5//39Mn/473n33LTZt+omYmFiWL18BwDPPPM+tt/6uxViefPIJ1q79ggcf/BNvv/0Bo0eP5Ykn5rJx43r/MVZrOZ999j/mzXua119/C0mSWLDgb8e1Sk2YMIlrrrmOp5/+K1dcMZQ77riFQYOGMGPGXQCUl5cSGhqG0Whsdl5UVBSlpSWnP7FthKh1JbioqXCUNJa4IrVSh6fhSxfQvQeG+A4nOLP1SJJE7B0zyfmzeqPrUuhic1owVfoT57Ipzc8jVKrnw4gw/7Yrk8f5K0+3Fr1Gx+XxA/ku/yd8KGwPMTG62oGhSmS3vZgx1xeCRl329DUkCBwQ0/ekvl1Hk2ROJMwYSrWrhj2lGVwT3QVq1AcEZ0kO0OvEDbQh2Rnl/LohF4/be9b6bERv0DFkVDKde0Sf8rlGo4ngYDURaWRkFADvvPMmkydPYerUaQAkJCQyd+7jzJ59LxZLMfEN959Jk66hRw81CajL5WTSpGsYO3Y8cQ2BDtOm3cJ7760gOzuLUaOuICxMtdqazSEEBgY2G0dubg4bNqxn0aIXGTFCzaE0c+YssrIyWbHiTUaOVBNFer1eHn74Ubp2VZNEzpgxk8cee5iKigqioqJafL7KygpKS0u5++7/Y9iwEWRmHuSVV/7BW28t5667fo/T6USvb1lfz2AwNrNgnSuE0BFc1FT7mjIUdzjU9HQaPnFSm/ajj4jElJKKM+cwkTU+zHYfdUFaqmoqCA+NPOY51oO7qDXoyAlQlwpiA6PpF937mMeejJEdLue7fDWHyuaQQEZWO4j3FuFweQkwiq/5xUZ1nYME1Ot5V3DTj13jMtSpoJE0pEX3Zn3hJryyl6KoYHpkqft0NQVtMt7WsmtLAdUV5ypRoZtdWwpOS+gci8zMDA4c2MfatV/4tzVaTHJzc/xCJzGxKVGp0Wjixht/y48/fsdHH71PYWEBWVmHsFrL8fl8nIzsbPUP17dvv2bb09IG8PrrrzTb1qlTkx9gUJAq0rxezzHbfe65p4mLi+OOO+4GoFu3HoDC4sXPccMNv8VoNOHxtDzX7XZhMgW02H62EXdAwUVNjc4JSERVedAVqD8M+thYgvqe+g/CyQjqm4azIeQzpcjF7m6BHMrfx5A+o499QslBfg1tqhB9ReLIU34abyQmMJpu4V3IrMqi0qClwKSjk9NOQU4e3Xp0Pq02BecvxYdz6KhxU6+RyA5Ub+PhxjCSQzqeVnu9I3uwvnATAIcUBz0atge7yvF4ZfS6s+Pl0O/yjufUotPv8tObv2MhywrTp8/g6qsnt9jXaPUBmi33OJ1O7r9/Fk6ng3HjJjJp0rXMmdOL+++f1cpej730JMs+dEeVtzEcwz/xeEtXu3fv4g9/+GOzbT179sHr9WKxFBETE0ttbQ0ej6eZZcdqtRITE8O5RggdwUWLz+driGSSGLK/6SkxfMKkExbuPF2C0vpRsepTAFIL3ezuFkixNRtoKXRkWcbsymOnWfWtMWgMDI47cYK3kzE0biCZVeoT3a5gE52cNqqy94EQOhcd9gLVETkz0IDcsNLZP6bPaQvlLmEp6DQ6vLKXA/YirkFCi0K8tgpLhZ2kWPPJG2kDOveIbjOLytnm6CXn1NTO5OXlkpjYJJ527tzORx99wMMPP0pAQEtLx5YtP3Pw4AFWr/6KiAjVElxbW0NlZVPqiBMtbaemdgFUYdK4dAWQnr6L5OTWRXIei5iYWLKyspptO3w4C0mSSEjoSHR0DLIsk56+k0GDVGf4/PxcysvL6Nv3zO5rbYFwRhZctBSV5ODUajC5ZDrnq47BmsAgQoaPaJf+jB2T/JXNk0rchNh8WO3Hzi5bmnOY7BDFHxE2KLYfATrTMY9tLX2je/lT/u8JNuEDsIpK5hcjUqXqQ5MR1GQN6BPV87TbM2gNdG1IaVDprKYoSLU4xGprKCoVpSBaQ6Nwycg4gMvl5LbbZrB+/fe88cYy8vPz2L59K88++xR1dbXNLDpHEh2tWj+++motJSUW0tN38eijf8Lr9fp9XRr7OXw4C5vN1uz8lJRUhg0bwZIlz7Fp0wby8/N4663lbNy4nltvvf20P9stt9zO559/yscff0hxcREbNvzIyy+/wNSp0wgJCSEqKpoJEyaxaNEz7NixjQMH9vHkk0/Qv/9Aevfuc9r9thXCoiO4aMkqVLMfdy5woWmwyIaOGInmqMiAtkKSJEJHX0HFp/9DAgbtt3O4d0sHPQDroXR+DWl6ohuZcGb5fEAt+Nk7sge7yvdi02k4HKAnzF6ArChoTtHBWXB+E+ooQpbgYKC6/GDSmugcmnxGbV4W2Y0DlWpKguywUJLs5egkmarifOibcJKzBQMGDKZnz97cd99dzJv3NOPGTWD+fHj33Td57723MZtDGDFiFPfdN/u4bfTs2ZsHHpjDypXvs3z5a0RHRzN+/JXExMSyf/9eAEJDw7j22im8+upSCgsLGD16bLM25s9fyLJlr7Bo0QJstjpSUjqzYMHzjBkz9lhdtoopU36DXq9n5cr3WbbsFaKiYvjNb27i9tvv9B/z5z8/wdKlS3j88bkADB06nDlz5p52n22JpIj0qfh8MpWVbZ8vQqfTEB4eRFWVHa+oJn1C2mOu/vP1K/ysy+f6H6pJtqhPQx0f/ysBqacWfnsqeOtqyXl0LopLtSBtHBjMXfe90uK4bz94ik9j1aexWH0E80Y+0upoqxPN1Y6y3byx9z0ABtY6uLHURv31fyc+7thPkBc7F+N3sK7Ohvz+A+QH6Hg9UY3A6R/dh3v6tAw1PhVKHCU8/csLAPTQhHFnZiYA3wddw/W3/fbMBn0EHo+bigoLkZHx6E8zK/n5gE6nuWiuqbPB6czXya6ViIggtNqTL0wJi47goqXSXYlekUksVUWOLiICU8rpr1O3Bp05hKjf3Ej5h+8DMHSnjcLcDBKTe/iP8ck+DgVUAuoXd1zKWL/Iqc88iNdqxVtTjX13Oo7D2ejDIzAmp2BMSCCgazfMvY6/RNE78jJMWiNOn4v9QUZukOoozdxLfNwV7faZBWeXsuxDxEgKGYFNN/5eUZedcbsJwfGYjcHUuWzkU4+M6tugt537PCgCwZkghI7goqVWspNU4kbX8BARlNbvlHPUyLJCTqaVnENWAgL0pHSPIiwikF9/ysXp8HD5mBTCI5vnsggbP5H9P64iusSOToacreubCZ3DB9I5YFaXtEw+iSHxA1BkGeun/6Nq7ZctxuCxluOxlmPb1vA5evXGdN8sCG5Z2dyg1dMrsgfby9JxaDXkBOjxFGcCV5zS5xacv9QVZRMDZAQdIXQiu59xu5Ik0SOqM1uL0qmX3ZQZtMS5fYR6zm7klUDQ1gihI7go8fl8VBl89CpqSlYVfFRuiWOhKArZGeUcSLdQWV5Pvb15sqvd24qavS/Or+aam/qg12v4cV0moeEBjL2mO+7UJChRMxO78pqXYtiR8yO+QFVwDagyU/Xhh7gtxTgyWmYy1ppDkB31/rIVAPZ9e9n14ENEXjuZ8MnXt4ggS4vuxfYyNSX7viAj/ay5J/3cgguIyjxqtRpKjKpYTjInEmJom6ioy6K7sLVIvXayTSbi3HbitdWUVTtIiGpd/SyB4HxDCB3BRYmlJBePItG5QPWVkYxGAnr0OO7x1ZX1HNxTSk6mlapTSFjmcnpZ9Z9daDQSXq9MWXEd0bHBdBx8Bb6fD+DQh2C0Nq95lS2pSwHB9T4G/VRAjfOIsE1JIqhff4J69yWwRw8MsXEoXi/usjKch7OoWL0Kb2UFis+HdfUqnEVFxM+6F+mIHBk9I3ugk7R4FR/7g4xMKi/DXu8gKPDcJ+4SnDlBDgtZ5iZrzqmWDDkRl0U3VS/PDg5mRK2dSE0d2WVVQugILliE0BFclOzP3UX3PCdGj+prbx40BM0xnNkURWHXr4X8+lMOsq+5X74pUE9IqIngECOde0Tj86nLWPY6F2ERAZSV2KiuqEeWFWS56dxtm/K57d4hrIkbQmlwL8zOcvpWVRIaHkF23gFqZR8Gt8S1m2qRnE3ZRLXmEGJn3k3wUckMJZ0OY4cOGDt0wDz4cqq/Xov189Ugy9i2b8MiLVPFTkP14gCdiW4RXdhfcZAavRarCbQHM+jW/9znsxCcGU6Hkyilkp8CmkRH94gubdZ+clgiRq0Rl89FgUmDAmgkqLPkQc/ENutHIDibnFdC59VXX+WXX37h3XffPe4xVVVVLFiwgJ9+UtPdX3XVVTz22GMtan4ILm2KanLoc8jhfx92RcvQynq7m43fZJGdUd5se2xCCINGdKJjSngLn57uvWP9r31emY3fZZGxu6SZSHK7vKz89zbqg9UaQXWmaDav/pJJd/yOfeve57Yddgw+J0e23OH+2QT26n3Sauoao5GY39xAdN+eZCz8O4rXg23bVkq0OuLunuVfxkqL6sX+CjWp3P4gI8n5B0AInQueksNZREgy2Q1lQ/QaHSkhndqsfa1GS2pYJw5UZFKn8VGl0xDhlXFXFLdZHwLB2ea8ETpvv/02S5cuZfDgwSc8bvbs2bhcLt5++21qa2t54oknmD9/PosWLTpLIxVcCHgrSomtVP1alNhojEdkBXW7vOzYnM+ebUV4PU3hjmlDEuk3pCOBwa0LedXqNIyZ1I0R47ugyAoul5eV/96K2+Vr4dtjLfThcjqpL+7MxpQJJFXtoWvFNtBqSXxoLoHdj7+sdiwiBg0kcfZsCl76B/h81G35BUNcHJHXXQ9A76jLQNU5HAw00KVEFPi8GKgtOISi11KjV613nUNT0GuPnavpdOkalsKBCjW0PCfAQESdE6mutE37EAjOJufcjb60tJR77rmHl156iZSThP7u3LmTX3/9lYULF9KrVy+GDRvGU089xapVqygtFV9EQRPxeU3ZXKMnXuW3zLhdXlZ/kM7OXwr8Ikdv0HLVjb0YPq5zq0XOkeh0GvQGLcFmI1ff2BujqeXzg11K5IvX3qYqQL3G88P7oCR3J3HOw6cschox902jw733Q8Nnq1j9GfUH1CSJYcZQEoPVooFFJj0mXzE+n8j5caEjV+SRFdAkbLqHt92yVSOdw5L9rwsbCsIGuKzHrYMkEJzvnHOhs2/fPkJDQ1m9ejVpaScutLht2zaio6Pp3Lmpds+QIUOQJInt27e391BPiV1bf+E/X/yX1955i9WfriRjz65zPaRLhqKiLDo1RFt5dBJhw0YCqj/Od19kUF6iJurTaCV6D+jArbMGk9K1bRLqdUgK47Z7L+eam3pz6+8HEyqrJRh8Gj1lrua5TqpG3YyxS3e2bshlzX/3Ul156lWbg/sPIPL636hvFAXLv17HW10FqIUaGykKlinJzz/NTyU4XwisLyb7iPw5J/LPUWQZx6FDVH39FVXffEV9xgEU+eRit1NIIlLDwmq+Se0rimpqj7JSCgQXCud86WrcuHGMGzeuVceWlpYSHx/fbJvBYCAsLAyL5dg1hVqLro1zRPzicVEQ2VTjY6MTAn7dTYhsw+yxEeSox1RfT6isofvAwSSmdjnlHC8XE43ZLVuT5fJkZP7yNQkNTsiVccEYggJQFIVN3x0m95BaHM9g1HHjjP5ExQafcX9Hows20Lm7Wphw4KQ+/PhVDbKm5fLCrs2FZO0ro65WjQxz1Lv57cyBJ70Ojp6rmClTcGZnYd+zG19dLaUr3iLpoT/RN7Yn6/K+B+BgkIGYw3vp1LX9skKfj7TldXWu8bjdRMhWsgMiAAjUBZAS3vGYhTxte/dQ+v77uIqbp0PQR0URe+t0QgYOanFO4xwFm4KIDYqmxF6GxajFC8Roaymvricy7Mwj92T5wr/PNX5FJQmEoevknOl8abXSGf1Gn3Ohcyo4HI5jlpY3Go24GlLunw4ajUR4eNuGTuplb4ttDikAhzaAUm00mICGfG8by2yElGzA7LET5KwnoM6Ood5BZFQEvYaPomNK6iUjgkJCzvxG6slpyltj6NoF2avw/ZqDHNitimFJgmkzBtClR8wZ93UyRl41joLM5eQeDsOjDSDYW0Ri/15k7KlGURS/yAEoK65j3w4LfQYkYC2zEREVRMQJQnqPnCvzn+ew68E/4a6sxL5nN97d2xkwehSB24zUyy4OBRoYVp7V5tf5hUJbXFfnmuw9OVQYNdQ3CJJesd2IjGieP0dRFPLfe5/C/35yzDY8ViuFLy8lcdoNJN0+/Zj3lZCQALpFp1BiL0OWJCxGHR1dXuyVZYT3Tzrjz+F0arFaNWf843U+MGLEIP7ylyeZPHkKXq+Hjz9eeUbFM1vLxo0/kZCQSEpKKtu3b+P++3/PJ598QYcOHdq97/z8PGbMuJX33/9vs/5cLhdLl77A999/i8vlYujQ4Tz88KNERET4j9m5cxuvvPISOTmHiY6O4e67Z3H11ZOP25csS2g0GkJDAzGZTr/o8QUldEwmk7+C65G4XK4zirqSZYXa2lNfNjgRt/Ybwlfrv6I+IIB6YwB2XSB1UjBOqeUfq55A6jWBlBgBIxCqbg/Ayc/7D2HevYvABgFkrKlF4/USmpxEStrlxMXGXxQiSKvVEBISQG2t44x9SUJKm/LWBKSO5bXn1zcL/77i6u5Exqr1j04HRVFQZBnZ58Xn8yL7fGh1OvTGgGP+La763XRcbieVllLiO41t+HwHydjTMrX+D2sP8sNa1YtYo5WYOr0fCZ3Cmh1z7LnSEvu7Oyh46UUAct56B22PPvSM7M628t24NBqqPfmn/ZkvVNryujrXFO7fQ8ER/jnJwZ1a/D3LPvkf1tWr/O8DUjsTNmYMSBI1v/zi9+Eq/O8nuLwK0VN/4z/2yLnqYGr6ASsw6eno8lKRf5iqqjMvNeF2u5BlGZ9PuWBrRUmSOl+rV68jKCgYr1dm7dq1vPTSC9x00/R27bukxMLDD/+RpUtfp2PHZHr27MOqVesICwtv9/nMzs5i7twHcTqd+Hxys/4WLXqW3bt3sWDB39HrdSxevJDHH/8zr7zyLyQJCgryeOihB5k+/Xf89a9Ps3HjBhYsmE94eBSDBg05Zn8+n4Isy9TU1ONw+FrsDwkJuPhqXcXFxfHtt9822+Z2u6muriY2NvY4Z7WOtr5AgoJD+O31N7coKJixL51DednU6bTUBwRh0wdRozHjklpW1HZgwqExUWJALYsUAiRAIPWEKbUcyNyJefcmAm12dFU2PDYHkllPdJdupPYcQnhYRIs2z3eO/vKcKpbsDCKqVWtaWXgQh7ba/CLHFKBj9KRudO4RfcI+ZFnGYaumrqqc2ooSaitLGv4vxeN2Ivt8QEv7q0ajxRQcijk8GnNYDOaIGEIiYomMT0ZvMBGd0NHf79hruzNwRBIej0xEVCBbN+axfVNe83H4FL76dB/X39aP0PCWFomj5yqgTxpB/fpj37UTb3U1ZV98Qe/Le7GtfDcApYEuqqyVmMPCTmlOLwbO9Lo6H/CU5pAb2CR0Us3JzT5T7S+bmkSOJBF90y2ETbzSL76Dh42k+vtv1TpsikL5Z5+ii4vHfNSPjM8nkxTclDOnoMEhWa60tMkc+nwX/lpP4/JLRETUEdvOzuc6uh+9Xk9kZPsX7V2x4g3eeedNkpNTKStrHvxTXl7GunVf8vzz/yAtrR8ATz75LNOn38jevXvo3bsPH374H7p06co999wLwPTpyWRmZvD+++8eV+g0cqai+IISOoMHD2bx4sXk5eXRqZOaO2LLli0ADBgw4FwOrdX06JVGj17Nna4VRcFaXcWe/bspc9iwGYzY9EHUas3HtwBJgaBH/WcG4hVCsBGm1FDhtVG48xsC6+rRV9tx1jlx4SY0oQOJlw0kKbUHBn3bhqSeLxz48TMab9E5kcNx1qsJ+TokhXLVDceOiAJw2mspyt5LUdZuSgsykX0tlx5Phiz7qK+tpL62ktK8g/7tkkZDVIdU4pMvo0Pn3oRExCFJEiFH+DsMGZVMdFwwmXtLkX0KuVmqL5Hd5ubDf28lNj6EDkmh9BmUgDnk+Cbc6Gk3Y9+zG3w+qr5aS7dhf0VSQJEgI9DIgIzdmIeOPuXPJjj3GO1F5Eaq31uDxkBCcJO/orvEQul77/jfR988nfAJE5udL0kS4eMnoni9WD9eCUDpO29j6twVfXjzumkdguPRSlp8io9CU0OfzrJ2+VwXMiNHDuLxx/8GwLPPzvdvW7r0dQYMGMSmTRt4441l5ObmEB0dzYQJk7jjjrv9LhgjRw5ixoy7+OqrNXg8Hl55ZRkmUwCvv/4KW7duoba2hsjIKCZNuoZZs+6jtLSEm26aAsDs2fcyc+Ys+vcfyOzZ9/Lxx6uJj++Ay+XknXfe4uuv11FRUU6nTsnMnPl7Ro++AoA1az7nzTf/xd13/x9vv/1vyspK6dy5K3/848P07t33uJ91y5Zf+Otfn8ZsDmH27Hub7du9Wy0b0r//QP+2pKROREfHkJ6+g969+7Br105Gjbqi2XkDBw7mpZcWoyhKu65MnNdCx+fzUVlZidlsxmQykZaWxoABA5gzZw5PPvkk9fX1/O1vf2Pq1KlnbNE5l0iSRHR4BONGXNFiX63DQcbhTPIryqhGok4fRI3WjLuFBUiiFjO1krlJAAWDJt5HGHWEU43La6PespvCrC1oapw4a9zYHQ4CYszEdulJ6mWDCA0Na/8P3J4UqFaRYnNXbA2Sx2jSMWHKZc1Ejsthx5K7n7rKMkrzD1JhyeNYVpojCQgOxRgQjEarQ6vVodFq0WjU/31eD876Ouy1lXhcjmbnKbJMeWEW5YVZ7N74OUGhkXRI7U1Kr8sJj2l6ck7pGuWP/qq3u1n9QTpV1npkn4KlsAZLYQ2Z+8r47V0Dj+trY4iLI2zsOKq//QbF7cbx+VriUsOwKNWUGXWUFO+hK0LoXGj4vD40UiW1ujAAUkM7odWouXQUrxfLv15HafBTDBk5uoXIOZLwK6/ClZdL3a9bkOvrKXtvBQkP/LHZMXqNjsTgDuTVFVBu0OHUSIS6K/HJMlpN+/nVFGTuZM/Pa/C6ne3Wx/HQGUz0GX4NHbudemLN8eMnYrPZWLp0CatWrSMkJJTNm39m3rxHmT17DoMHD6WoqJAXX3ye/Pw8nn76Of+5q1d/wuLFS/F6fSQlJXPnndMJDw/nhRdeJjAwiF9+2cg//rGYnj17MXz4KJYvX8GsWXfwzDPPM3jwUDIy9jcby5NPPsHBgxk89NAjJCV14rvvvuaJJ+aycOFiRo4cA4DVWs5nn/2PefOeRq/Xs3jxQhYs+BsffPDJcQXHq6/+G4AdO7a12FdeXkpoaBhGY/PfpaioKEpL1SX6srIyYmJiW+x3Op3U1NQQ1o6W5vNa6FgsFsaPH8/ChQu54YYbkCSJV155hfnz53PHHXdgNBr9mZEvVkICAhjSK40jDXuKolDr9nDYUkhOiQWr10utNpAabTA+qfmfVEZLJWFUEqb+tXVAEOhjPIRTQzjV4LNR7irCvikLyebFUevDZnOgMeuJTEmhS++hxESf/75A1dZSokrcZEUMIC+8KeJt1JVdCQpWv4BOey0Ht/9AVvpGvJ5jO7AHBIcREZtEcFgUIZGxhETEERIZh8F4codWRVFwOWzUVZVRV1lGVVkBJbkZ2Gqs/mPsNRUc2rmeQzvXE9OxK90HjiM+5TKkI6JnAoMM/Ob2/uzcnM+h/WXYGpyW62qcfL5yN7f/fuhxxxA5+Xpqf/4Zud5O7S+bGJg8li+kagBKvAUn/QyC84/yglyKA5uujy5hTTnHqr//Dle+KvANcfHE3HrbCduSJImY6b+j/uBBfDXV2NN3UX9gPyF9ejc7rlNIR/Lq1OulwKgj3ltDZa2L6DaIvDoeGVu/o67yXOVEqyFj2/enJXSMRhPBwWoEZ+My0jvvvMnkyVOYOnUaAAkJicyd+zizZ9+LxVJMfLzqBzVp0jX06NETAJfLyaRJ1zB27Hji4lSL3bRpt/DeeyvIzs5i1KgrCAtTrW9mc0gL39Tc3Bw2bFjPokUvMmLEKABmzpxFVlYmK1a86Rc6Xq+Xhx9+lK5d1ar3M2bM5LHHHqaiooKoqFNfBnM6neiPsUpgMBj9frUuV8tjDAb1vux2n34wUWs4r4TOc8891+x9YmIiBw8ebLYtMjKSpUuXns1hnXdIkkSo0UD/5FT6JzeFC8uKQqXTQ0GllZzSEsqcLqo1Ruo0QShHhaB60FNGFGVEgRYIVP+Zop1ESDVEUE2Irw63q5KcHZ+QbVdw1kJdnRtMGqI7daLrgBFERcWcNwJoy6fvUtJhCvWGMP+2Xv1jiQivpyBzJ8U5+8nP2H7MZamQyDgSOvclsUtfwmM7nvZnkiQJU6AZU6CZ6ITOwDAA6qrKKc7ZS3H2PsqLsvz5TMoKDlFWcAhzeAzdBo4l+bLB6BpqchlNOoZekcrQK1Kpqqjn8w/SsdvclBXX8c/nfmDg8CR6DUhoEbmiDQ4mcsr1qi8G0PXXHBiigCRhMTnxelzo9C19wgTnL1W5meSYmn4kOjcIHW9tLRWrP1U3ShKxd81CYzz531YbHEzUDdMofUt9Si//eCXmXj2bHZMUkggN0enFRj1dHfUUlpYTHXbmkVfHo8fg8efUotNjUOtSnbSGzMwMDhzYx9q1X/i3NfrX5Obm+IVOYmLTfBqNJm688bf8+ON3fPTR+xQWFpCVdQirtRyfr6Uz7tFkZ6sFgvv27ddse1raAF5//ZVm2zp1ahLLQUGqSPN6PZwORqMJj6fluW63C5MpoOEYY4tjGgVO4zHtxXkldARnhkaSiAowEJXQgf4JTVETXlnB6nRTVFtLXnkZFruDavTYtS0j1ZyYKFZMFBOrppMMUP8FR9qIlGqIoIYQuRbZXUbezg/JrtfgqgNbnRuvXkt89250TxtGaGh4i7bbE1mWqSqOoN4YBoAkKfRKM1BTsJJv91W0OF6j1ZLSayhxnXoQHtuRoJD2ddw2h0fTPXws3QeMxe2sJ//gdg5u/xFbtVpnq66qjO3frmTvpi/o2n8M3QZcgd7Q5IsTHhnItb/tw5cf78Fe58bl9PLz94fZt9PCdbf0xRza3G8n7IpxVP/wHZ7SUuTsXHrEh5GRZOBwoJ6izH106nVh+LQJVDzlueSGqEJHg0RyiPrjWLVuDbJTFQUhI0cRkNr6PEkhw4ZT/e1XuAoKcOXnYUtPJ2LcSP/+jsFN9xBLg0OyraQAuref0OnYrf9pWVTOR2RZYfr0GccMnz7SefjI5R6n08n998/C6XQwbtxEJk26ljlzenH//bNa2euxl99l2YdO1/zn/lipWk7XoTomJpba2ho8Hk8zq43VaiUmJsZ/jNXavK6g1WolICDQbw1rL4TQuQTQaSTiAo3EBUYzMC7av93lkylzuCm22SmoqMBir6dK0ePUtPwC2AjGpgSTRwJIgBEko0xYeB0RUjURUg2hcg2KK5vsrRl47HqcNqi3e/GY9CSn9ad7z0EY28mS8O0HH1JlVDNma2UbfQc6yd+/AUVp7qmvMxjp3GcE3QeOJSA4tF3GcjIMpkC6pI2ic98RFB/ex8HtP1BeqD6JuRx29v68hkM713PZkCvpkjYSrU69cUTGBDPtzoFs/SmXA7stKArUVDn44qM9/Ob2fpiOCD2WdDqip/2W4n++DMDQfU4yOurxaCQOFGwVQucCw2svxBql3q4TA+MxaPV4a2qo/lFNCCnp9URdf8MptSlpNERefwPFr7wEgPXLz+k4doR/f1xQjN8hudig9u2qPLPErBczR1uBU1M7k5eXS2JiR/+2nTu389FHH/Dww48SENDSirFly88cPHiA1au/IiIiEoDa2hoqK5se1k5kbU5NVTNl7969y790BZCevovkI+r9tTVpaf2QZZn09J3+CKr8/FzKy8vo21cVrv37D2DnzuYVDLZt+5U+fdLQtKPfFwihc0lj1GroGGyiY7CJy+Mi/dttHi+lDjcl9S4Kq6qw2OxUKjq8R/n/KGioIpQqJZTsxgcBI+iMXsJDa9QlMKmGCLkKn20zB37ajLtej9MmUe9QwBxCt2EjSUnozJlQV1tLSb6NYP1mJJzoNZXk7Wt6MgmLTiCxaxrhMYnEdOyGVqtHrnHiOlSBXOdGMmiRjFokjYTiVVA8PhS3+g9AE6BHCtAhaRtvMBKSUYsm2IDGbEA6zay7kqQhoXMfEjr3obI0n4Pbf6Dg4E4URcblsLNr/adk7viRPiMn06nHICRJIjDIwPjrejBqQlc+fHMrNVUOqivq+WLlHq6Z1rtZra6gfgMwJnXClZ9HaJWTlGIjOQlG8lzCT+dCQpZ91OmrAPWpt1tUVwCqvlqL0uD/EDpmLLrTcOYM6puGoUMC7uIiHFlZ1O7bDwnJAOg0OuKDYim0FVNu0OKRgDoReXU8GoVLRsYBUlJSuO22Gfz1r4/xxhvLmDjxKsrLy3juuQXExsYeNxw8Olq1fnz11VrGjh1PaWkpy5a9gtfr9fu6NPZz+HAW3bo1r5OXkpLKsGEjWLJEdQPp2DGJ7777mo0b1/PUUwvb5XMDREWpEWWLFj3DY4/NIyAggL///Vn69x9I796qv+RNN93CjBm38tprL3PNNdfx888b+fHH73jhhVdO0vqZI4SOoAXBeh3Beh2dQwIhTl2CUhSFarcqgEodLopq6rDY7FTJWuSj/H+86CgnknIlssmSagCzwUZUaBVRUhVRVBGhlOHK/5jdmXrcDj0uuwanW4MmMpa+I8cSGRxxUl8Zt8vB1/96nbCAGjyKC6/iQUIiSBtGjDGJTuF9MXhNSPkapBIt9TuzkZ1eaKucKhJoggxoQgxozEa0IUY0IUa04SY0Qa0vEBoRm8Swa+6g97Cr2fvzWvIPqk8+9XVVbFn7LoWH0hk04WZMgWom3NgOIVw/PY3/vr2Derub8pI6/vfODq66oRfRceoxkiQRed31FP9T9WkbssdOTgcDhUZHu4dzCtqOyuIiio5yRPbW1jaz5kRcdc1ptS1pNERcfS0lb/wLgKJPVxH/hwf9+xPNHSi0FaNIEiUGHQZny2VggcqAAYPp2bM39913F/PmPc24cROYPx/effdN3nvvbczmEEaMGMV9980+bhs9e/bmgQfmsHLl+yxf/hrR0dGMH38lMTGx7N+/F4DQ0DCuvXYKr766lMLCAkaPHtusjfnzF7Js2SssWrQAm62OlJTOLFjwPGPGjD1Wl23Gn//8BEuXLuHxx+cCMHTocObMmevfn5rameeee4HXXlvKxx9/QHx8B/761wUMHDi4XccFICmiJC0+n0xlZdtnjNXpNC0SBl5s+GSFCpeHUoeLEocbi82Opa6eGlnTVODkBATg8AufaKmSKKmKIMWO06XD5TTirtfjsutwufWYYuLoPngw0RFx1NbUsmf1GkIdwSQYm4oQnk9ozAZ0ccHqv/hgNAGtz11UVV7Eno2fY8lpCh01BgTRd9T1dE0bSkSEmaoqO6XFtXz58V7sdapTn06nYdzkHnTuoS5RKopC/lN/xVWgWnE+uyKUvA5G/phyG11TTlxE92LgYvgOHtzwLZ/UfenPZ/P8qCepX/UFVevWABA2YSIxt5w40upEKD4fOY/NxVtZCRoNXf++BKnBx+6Hgo3899BqAH5TVktCVSDd712C5gxEssfjpqLCQmRkPHp96x8Gzjd0Os0Fe02dC05nvk52rUREBF18mZEF5x9ajURMgIGYAAOqgVJdAnP7ZMqdbiz1LorrXRTZHJTUu/AcJUgcBFCgBFBAB7/1x4iLaEMlMYYKYkIriZEqCJSc+GQL5Rl7yHPqsTl12IJ0FGqr2O2xEEwgZgIIwoQBHRISXnz4kAkwBhAsBWL2GtFrdUhGLdrwALRRgWjDTCg+GcXlA1kBrQbJoFGXswxakBUUh1e1AjWWkVAUZKcXuc6NXOvCV+sCT8svsFznxl1XiftQJQCaUKNf9Ohig9EcJ3khQHh0AqN/cy+Fh9LZ9u2HuBx2XA47W79+n9x9m5n427uR9KGq384dA1j3yV5Ki+vwemW+XX2AILOBuIRQJEkiYvL1WF5TzcND9tWTF29gW/Yvl4TQuRiwlWZRHK5eKxFSMAGKDstP6wHVF+t0rTmNSFotoaPGULHqU5Blqjf8RPjk6wFIPMohOU1TS3Wtk4jQC792mODSQQgdQbtg0GpICDKRENQUDSQrClanxy9+iuudFNtdOI6qQeTCSKESTyHxfvETjJ1oqZIYYwUxxgoSwyoxSGqYuMcrYXPqsTt1VDt12Bx66l06ZKVBVB1RHi3IFIw5KASdrEdXqUNXq0Ov1xMaGk5EVCRhYWEtohNOhqIoKE5vg+hRxY+33I6vvL5JHAFyjQt3jQv3QdX8r4sLRp8ahqFTmCqqjkFi1zSiOqSw44f/UZC5E4DyosN8uPRv9Bs9hS79xhAYbGDK9H6sX3uQzH1lyLLC15/u5ze/64851ERw/wEYOnTAXVxMh3IPCWUeckOFn86FQrWrELnBgpIckkzd1i3I9aoFOnjwEHRhZx7hGDJiFBWrPwNFoeqn9YRdcx2SRkOiuSn7crFBj0myYSktJyK0/SKvBIK2RggdwVlDIzVZf9IiVT8Sv++Py02lTybLWkeBzYnd2zxnhI0gbEoQOUpjBINCOLVESxXEaCqJCaogPqgarSQ3tAv1Lq1fANU59Ngceux2G3a77bhjlCSJ4GAzAQGBBAQEEhgYRGBgIGFh4URGxhyzgq4kSUgBejQBenRHJP5UvDLeMjveEhveEhs+a32z6M/G7Y7NReg7hqBPCUefaG7h3GwKCmH45JmU5A1n+3cfYasuR/Z52fHDJ5TkHWTIpNsxBgQx9toe2GpdFBfUYLe5+fKjPUxtiMaKuHqy3w9j8D47n1+hx+FxEKAXT+bnM4qiUKWvBdTr7rK4HtS8vc6/P+yKtsn7oo+IILhvX2zp6XgrK3EcyiSwew8CdAFEmSKwOispMWqRgbqyQugmhI7gwkEIHcE5RZIkwo16ooOMqi9FtB2Px0eN20uB3UmR3dXwvxO3fKQ7meSP+MpU1NwhGnxEUk2sZCVOKifOaCXW1Lwcg8ujpc7RKHzU/93eJmuKoijU1dVSV1d7zPGazSFERcUQGRlFREQU4eGRLdKe+0eo06DvYEbfoUHUuX2q8LHY8BTUINc1mJpkBU9eDZ68GiSDFn1yKMbLotGGNRdVcZ26M+l3j7B/8xoObFUdUYsP7+Ordxcx7No7iE7ozJW/6cmn7+6ipspBVUM01pRb+2IecjkVqz7FYy2nU4mH0Dofm/f+yNj+V7f6byU4+9SWlWAJaFruTa7TY8s5DICxY0dMqWcWsXgkocNGYEtXaxbVbdlMYHc1oifR3AGrsxK3RkOFXourorjN+hQIzgZC6AjOOyRJIsyoJ8yop0+EKhJkRaHc6abQ7qLQ5qTQ7qTE4eLIQsgyWn+0115FTW0ejJ04yUqsVE6cZCVSV01UiIuokCNSjmuC8BKKzWmivFrBWuXG5T52FtJGEZSTk+XfFhQUTEREFBERkURFxRAdHXvMZFySQYs+MQR9YgimQfH4rA7cOVV4cqpRnOoynOL24c6sxJ1ZiS7BjLF3DLrYIH+ElE5vYMDYG+jSK42vVy7H5bDhsFXzw0cv03v41Vw2ZCKTb+7Dp+/tot6mRmOt+e9erv1tH8LGT6B85QcApGU6OGDaxViE0DmfKTt8kPwGJ2SjrEHza7p/X+gV49s0cs7cvz8akwnZ6aRu21Zipt+OpNORGJzArnI14qfYqEOqKz9JSwLB+YUQOoILAo0kERtgJDbAyMCoEAA8skxJvZtCuyp8CuxOrM7mKcZtBJGlBJGlqNXudXiJlazEYiVeKidWsmKQ7eiwE2aAsBjoGqNBHxCDxhCLTwrH6Q2motqB1WqlosKKLDcXQY3LYQUFuf5tYWERxMTEEh2t/jObQ5r9KEmShC46EF10IMqgDngtdbgPV+PJr/GHvnuL6vAW1aGNDMDYKxp9pzAkjdpGp+59uebOR9n4+duUF2ahKDJ7Nn1JhSWXodfcwXU39+Wz/+zC5fRiKajh60/3c+U1Iyn/5L/g8XDZYQd7elaIMPPznJKyDOrN6lJmvBKObdtWACSDgZDLj1/v7HTQGI1EXj6E8vU/Idfbse/dQ3C//iQEx/mPKTXo6FRlPUErAsH5hxA6ggsWvaYp4WEjDq+PfJuTPJuDfJsqfjxHLHl50VGkxFFEHCggoRAtVRFPKR2kMuKkcoySB4+jBBxq1V0dEG8KpFO3BAyB3XETSU0dVFZVUFlZQVVVZYsaMdXVlVRXV5KZeQCAgIBAEhOTSEzsRHx8QjOHZ0kjoU8IQZ8QguLx4TpUiWt/OYpdbdNX4aD+p3w0wSUYe0ah7aEmGws0h3HFtD+wf/M69m/5CkVRKD68j+9XvsTo39zL5Jv7svqDdDxuH/mHK0nfZabjyNHU/PAdeh90zHeSXZRJl8Tu7fL3EZw5Ze4i/+u0uuAmJ+T+A9Acw1/sTIkaPZLy9T8BUPfrZoL79afDEUKnxKCjl7dKCGTBBYUQOoKLigCdlu5hQXQPCwLUPD8lDhd5R4ifGndTUU8FiTIlgjIiSFcuAxSiNDbilWI6SGXES2WYJDeytx5n7SGctYfUfrQBpMYk0zM1BWPwCBxuHZWVVsrKSikvL6WqqqJZ3RiHo55DhzI4dCgDrVZLXFwCCQkdSUjoiNkc4j9O0msx9YzG2CMKT241rn3l+CpVPyPZ5sbxazHO3WVIwzqiJIWg0WjoPfwaohI688sXb+F21VNdXsS3H7zA6N/cy9U39ubzD9NRFNi2KY/oK4fBD98B0O9gPZv3fyuEznlMpc4GqEtXnQqbcn2ZLx/WLv2F9UtDGxyMz2bDtmsnsstFhCkcg9aA2+em1KAlUlNLrc1FqLnthZZA0B4IoSO4qNFqJH+Y+/DYMACqXR7ybE5ybQ5y6hyUOY6IP0fCKpux0p09DX4+Udp6Eiimg1JEvFSGQfIi+xw4qg/gqFYtNlp9CCHmFKK7JGPq3wdFCqCiopyyshLKykooKbH4l7x8Ph9FRfkUFeUDEBISSmJiJ5KTOxMZGaVGcWkkDKnh6FPC8JbYcO0rx1tUB4Di9GL9IQdNoB5jnxgMXSOI69Sd8bfOYf0nr1FfW0l9XRXfrfwHI667m0Ejk9m6IRdFge/Wl5LWqRvmvExC6mXknMyz84cQnDL2qgpKTKrVxOiW0Rw4hAJog80E9ezVLn1qdDpCBg2m6scfUNxu6vfvJbj/QOKDYsmrLaBSr0Wj8VJRVk6ouePJGxQIzgOE0BFccjQ6OjeGuNs8XnLrnOTUOcitq6fE4W5WA9jqC8RKF9LpggaFOJ2deKWARIqIoQKtJOPz1GKvTMdeqTqL6oyRmMwpdElKoXfPsfgUHSUlxRQW5lFYmI/DUe9vv7a2hv37d7N//27M5hBSUrqQnNyZsLBwJElCH29GH2/GV+XAubsMT241AHK9B8eWIlz7yjH1j8OcEsOEWx9iw6evU1VWiMflYP3//kmfkVNITI6iMLcal9PL/tBR9NfmY/A5ST5sp9xaTHRUBwTnF4XZ+yhtyK/UJ8+H4lGXMoMHD0Y6xVxPp0LwgAFU/fgDALZduwjuP5AOQXHk1RagSBJlBh3u0kLoLISO4MKgfUuGCgQXAMF6Hb0jgrmuUzQP9O7EX/qn8ruu8YyMDSMh0Ngsl7OMRLE3mO2+y1jlm8Db8k2s42rS5Z5UKqE0rlZ5XRXYrNuw5nxM4Z6/U5H9NsGaQ/TrlcANN/yWyZNvoH//wcTExDXzdairq2X37h2sXv0xn3/+X/bs2ekPddeGBxA0phNhU7sT1CWiaUw2N/Ub8rGtyULv0jP2tw8Sn6I+8SuKwu4Nq4gI2kFElLrUYKuX2ZE4AZ+kJa7Cy9Zv32/fCRacFrml+1Earo3uBU0+YCHttGzVSFCPy5AaUibYd+9CkWU6BDUliCox6EQV8wZGjhzEmjWfA+D1elm58j9npd9NmzaQ05BmYMeObYwcOQiL5eyE/efn5zFhwsgW/ZWWlvC3vz3OlCmTuOqqsTz00AMcPpzd7Jjt27dy992/Y9y4Edxyy29Yt+7LszJmYdERCI4iQKflsrBgLgtTq0XXe30crnWQXVdPdm19s8guj6Ih1xtGLmH8QhpmrZckqZwEXzYJUglGST3W7bDgdlioK/sZJC3GoEQ6xXTjsm6j8CoB5OfnkJubTUlJ082jqqqSqqpKdu7cSnR0LN26XUanTqmYIgOJntqTsswy7FuL8VrUBIg+az22LzIxXhbNiGvuYv+2r9i/5WsACg/tJDqxHpczDbvNh10fzcHoYfQs24hx/6GzNbWCU6DUbYEACHTIRJaqf2NdVBSmzl3atV+NwUBQr97YdmzHV1eHMzubDpFNGZJLDDo614oq5gCrVq0jOFi9T3zzzTpefvlFbr759OuOtYaSEguPPDKHpUtfJyUllT590li1ah1hbZAh+2RkZ2cxd+6DOJ3OZtvdbjdz5z5IeHgEzz//DwwGA2+//W8efPA+3nlnJeHh4eTm5jB37h+ZPv13/O1vT7Nx4wYWLnyKqKhoBg0a0q7jFkJHIDgJgTotvSOC6R2h3tBq3B6yax1k1arCp87TFG5e59OxzxfPPuKRUEgwOEmkiARfFlFUqXVOFR8uWx4uWx7Vxd+gD4glNrQHyaMG45GDyM/PIScnG6u16cekvFx1ct669Re6du3G4MED0UcHEXxlZzxFdTi2FiHXuEAB1/5y3LnVdB88kvDrOrJl3bt4PW7KCw/SIV4hx9Ubr0fCEtKVGFsuCZZCMnZsoseAEWd7agUnoEJrA7R0zXciNVgKQ4YMPSvRTkFp/bDt2A6Afe9u4q+50r+v1KilR7UIMQeIjIzyvz5b9bGP7kev1zcbR3uxYsUbvPPOmyQnp1JWVtpsX3r6Tg4fzuazz14hKkotKPyXv8znmmvGsWnTT0yefD0ffvgfunTpyj333AvA9OnJZGZm8P7777a70BFLVwLBKRJq0DMgKoTfpsbxaFoKD/ZO4tqOUXQLDUR3xI+QgkShO4DN7i78z3cV73ELG3TXkKvpjkdpesbwOEqpKVlPScYyavLeJi6khPFjBjF16s307z+k2ZOa2+1i3749vP3223z55SqyszORYgMwX9cNU/840Kr9K/Ue6tfnEZYTzOgr/w9dQ+XfCksmcWFbkFAjuTJihiNLegq/+d/ZmDpBK7HX1lLaENR0WU7T03N7RVsdTVCvPk1j2beXEEMwQbpAQLXoBHmrzso4zncal67WrPmcZ5+d79+2Y8c2QF1iuuuu2xk3bgQ33zyV5ctfw+12Nzv/X/96lRtvnMyUKZPIz8+lrKyUp56ax3XXXcmYMZdzww3XsmzZP5FlGYulmJtumgLA7Nn38sYby1osXblcTpYvf42bbrqeceOGM3PmdH766Ud/n2vWfM60adexdu0X3HzzVMaOHcY998xg797dJ/ysW7b8wl//+jT33/9gi32pqZ35+99f8oscUHOFKYpCba269L5r104GDhzc7LyBAweze/fOdheJwqIjEJwB0hGJDEfEheORZXLqHGTW1JNZY2+2zGX3SezzhbKPAWilASQZXXQin0TPfoIl1TnZ66qkruwX6sp+Qas3kxDWnS5XDKDWEcChQwfJzT3sj94qLbVQWmrh1183kZLSlZ49+2BO7o7j1yJ/hJbXYkNfAlf0vouf9q7A7XFQX1NEhKmSGtfluHSR7I8ZSZf8H7HXVRFkbn/zt+DkZB3aSZ1OS2idl9hKNR2CsWNHjAkJZ6V/XVgYhsSOuAsLcOXlIttsdAiO41D1Yep0WkyaKtweLwZ92/6EuHOrce4qQfHIJz+4jZH0Gkz94jAkh53yuePHT8Rms7F06RJWrVpHSEgomzf/zLx5jzJ79hwGDx5KUVEhL774PPn5eTz99HP+c1ev/oTFi5fi9fpISkrmzjunEx4ezgsvvExgYBC//LKRf/xjMT179mL48FEsX76CWbPu4Jlnnmfw4KFkZOxvNpYnn3yCgwczeOihR0hK6sR3333NE0/MZeHCxYwcOQYAq7Wczz77H/PmPY1er2fx4oUsWPA3Pvjgk+NaDF999d8AfhF3JJGRUQwb1tyq9PHHH+B2uxkyRE1sWVZWRkxMbLNjoqKicDqd1NTUEBYWdmqTfgoIoSMQtCF6jYZuoUF0Cw0Coql0esistXOoRl3maqzX5VMgx2kkh65AV2INXjpJFhK9+4mmEkkCn6cOm3UbNus2NFoTl3XsRp8eQ7CU+8jKzqKyshIAj8dDZuZ+MjP3k5SUQq+0voR2i8Txa5GadFABbb6HK+JvZ1fN95TVZKPIDsz6n7B7B1AenIzZ1ZeKD19l/Kwnzt3kCfwcLt8PBuie21Sq5GxZcxoJ6tUbd2EBKAr2/fvoEK4KHYAqIxjKyohLaNtoPdfeMnUJ9hygAK595acldIxGk99Xp3EZ6Z133mTy5ClMnToNgISERObOfZzZs+/FYikmPl6du0mTrqFHj56Aao2ZNOkaxo4dT1yc6hc1bdotvPfeCrKzsxg16gq/hddsDiEwMLDZOHJzc9iwYT2LFr3IiBGjAJg5cxZZWZmsWPGmX+h4vV4efvhRunZVU2jMmDGTxx57mIqKCqKiznwZbP3671m27J9Mm3YLXbp09X82vV7f7DiDQXV6d7vb928uhI5A0I5EmPQMNYUxNCYMryxzuM7BgWo7GdX2ZokLS906SunIr3QkWCuTorXSybufeErQSgqyz4m9cjdU7iZIo2d0/+445F4cLnCRk5uL16u2lZ+fQ35+DjExcVw2sBfR1eG495aDrCDZZfrrr6AkNpW9pT/gw0uQdhuKouNw5AA6Z/2A2+3y33wE545SVwnoFbrnNSxbSRLmIZef1TEE9e5D1VdrAajft4f4SU3LWaVGHaaSojYXOsbeMefUomPsFX3yA1tJZmYGBw7sY+3aL/zbGpdocnNz/EInMbGpErzRaOLGG3/Ljz9+x0cfvU9hYQFZWYewWsvx+Y5df+9IsrPVGnx9+/Zrtj0tbQCvv/5Ks22dOqX4XwcFqSLt6Azvp8Nnn/2XF1/8O+PHX8kDD8zxbzcajXg8zdtvFDgmU8AZ93sihNARCM4SuiOsPVOSFCwONxnVNg5U2Smqb3qisfk07PHFsIcYAjQKqboqknwHSFQK0UoyiuyhumwvsJfEID2dh3ajwmZm78ESHA71h7ExUWFwsJnuvboTX2RCU6lad+K8SURFT2d/zc9Y3FkE636lzjuS3NCRfL/iX1w164FzNEOCRip09cRUeYmoVX/cArp2Qx8ReVbHYOrSFclgQHG7se/bR/xvJvj3lRq0xFrbPsTckBx2WhaV8xFZVpg+fQZXXz25xb4jnYeNxqYHC6fTyf33z8LpdDBu3EQmTbqWOXN6cf/9s1rZ67F9XWTZ16zsDHDMwsNn6ivz2msv85//rGDatFt48ME/NVsGi4mJxWptXhDWarUSEBDot4a1F0LoCATnAEmS6BBopEOgkXEdIql1e8losPRk1dbjbbjhOGSJfa4I9jECg0YhVV9LJ99BEuVc9JIPRfbgrNlHEDCsRzBuKYHMPDdlFaqzsc1Wx/a929Dr9aTEdCS5PAyTokcn6+lrHkNHTw/22TcCm7AxFEtpEnVVVZjDha/OuaKutoYyIwzbf4QT8tCzu2wFoNHrCezeA/ue3fhqqompbnoaL9Pr8NWUnuDsS4+jfVtSUzuTl5dLYmJTYsWdO7fz0Ucf8PDDjxIQ0NKKsWXLzxw8eIDVq78iokHY1tbWUFlZcdx+mvepph7YvXuXf+kKID19F8nJKcc7rU149dWlvP/+O/y///cg06f/rsX+/v0HsHPn9mbbtm37lT590tBo2jcuSkRdCQTnASEGHUNiQpnRrQNP9E/l1s5x9IkIxqBpuqm5ZYkMZyhfeYbwjvJbvtNOJovOeBQ1e67staHzHKRnhxyu6O+jR4oRnUZdAvB4PGSWH+Y7TTr7zRYcqJEf4fpYhoZeR4yhA8G6n1EMVtb8e+XZnwCBn72ZW/BK0C2/wcqn1WIeMKhV5zodHoryqjiQbuHXDbns+CWfkqKa035SDzwi+krOyCJYq/qElBl06OpFiPmRNAqXjIwDuFxObrttBuvXf88bbywjPz+P7du38uyzT1FXV3vccPDo6BgAvvpqLSUlFtLTd/Hoo3/C6/X6o7Ua+zl8OAubzdbs/JSUVIYNG8GSJc+xadMG8vPzeOut5WzcuJ5bb729vT46O3Zs4/3332HatFuYNOlqKiqs/n/19WqgxU033cL+/Xt57bWXycvL5YMP3uPHH7/jtttmtNu4GhEWHYHgPMOo1dAnwkyfCDMeWSartp59lTYOVNtx+BqEiwyHXGYOMQS9NJhUfRXJ3n0kScVoJRm85cQFQ1xvLfXeSLILfVTU6vDJPrJs+WRrCuigjSLZE02EFEx/80QOO3aR7diJyxfL1u+/ZfC4CScZqaA9yLUeIK7WS7BD/VsH9eqN9iSm/dLiWjZ+k0WZpe6Y+0MjAkgbnEj3PnHodK1/vg3q3ZvGxQb7vj3Ej43jUM1hbDoNeCtb3c6lwIABg+nZszf33XcX8+Y9zbhxE5g/H959903ee+9tzOYQRowYxX33zT5uGz179uaBB+awcuX7LF/+GtHR0YwffyUxMbHs378XgNDQMK69dgqvvrqUwsICRo8e26yN+fMXsmzZKyxatACbrY6UlM4sWPA8Y8aMPVaXbcI333wFwH//+yH//e+HzfbNnDmLu+/+P1JTO/Pccy/w2mtL+fjjD4iP78Bf/7qgRch5eyApZyvL0XmMzydTWWk/+YGniE6nITw8iKoqO17v2Xeuu5AQc3VyfLLC4bp69tfY2V9lp+4IZ+ZGjJJMqraEVPkgCVIpGqnp6+1TTBRZ9VgqjTjcTc84oUogXUkgnnBqvRXst22kyu3l6rv/SPhZ9gtpay7E6+qlz/9C1KFKBu9Xn4Rj77yL0JGjj3msx+Nj64Zcdm8tpDV38sAgA6MndSWlW0uLwrHmSlEUch6bi9dqRdLp2HX/VfxY/isAMwvqGPC7f57ysoPH46aiwkJkZDx6fUs/kQsFnU5zwVxT5wOnM18nu1YiIoLQak9+/QmLjkBwgaDVSHQNDeKySDN3hQWyPc/KrvIa9lbZqG+4gbgUDQe8HThABwI0PjoreXSWDhNHOVrJSVK0k6ToOmodRoorjJTXmKiR69nGIcKUIHrpOjE09HqKXYf44c1/M3n2nGM6LQraD6veyZDChmUrSSLoqAiaRiwFNXz/ZQa11U2+PGGRgXRMDicsIoDgECOOeg+Ze0spLqgBoN7uZt0n+xh6RQr9hyYds90jkSSJoF69qVn/I4rXS0drU+RPtVHBVl1FyAUuhgUXP0LoCAQXIBpJoktoIMlBJq5LiiGrtp7dlXXsr7LjklXR45C17CWVvaRi1rjoKmfRTZNDmFRHSICLkEQXXTvYKK8xYKkKpNqusIn9xBFON1MCow3JbF32IcP/8LuzUnZAACVlBchOmcjGaKsuXdGFhDQ7RlEUtv+cz7aNuX4rjlYrMWhkMmlDEls84V6WFk95SR1bN+SSl60uN23+MQefT2HQiE4nHVNg98uoWf8jABGWWohTt5cZdFRZCoXQEZz3CKEjEFzgaDUS3cOC6B4WhEeWOVitip6Mars/eqtONrKDXuzw9SJWU01XDtFFysekcRMX7iQu3InDpcVSFYClysdP3iqiNaF0C0lh1+uf0mPmJAJMQef4k1787M7cQmphU6qBoH79WxyzZX0OOzcX+N/HJYZwxdXdCY8MbHFsI9FxZq6e1psdv+Tz60+5AGzdkItGIzFg2IktO6au3fyv9fklRwgdLfXlxUBaKz6ZQHDuEEJHILiI0Gs0/gKkLp/MgWobuyrqOFRT78+wUSqHUcpgfmYQnaRiukmHSZKKCTD6SI2zkRxjo7zGRFGlm0311UQEmnG++xWxQzqTmiZ+1NqTgppsUouaaiEFpzUXOgfSLc1EzpBRyfQfloRGc3KLmyRJDBzeCa1Wwy8/qBmOt6zPITDIQI++ccc9Tx8ejj4qGo+1HG9uHgEDY3BovZTpdXirSv5/e/cdH1WZLnD8d6ZkJr333kMKJRTpHXFR0VWxlwVlbVdWV13doq5r96J4saEu2AsqCNJURFF6L1ICJCQkgdRJb5PMzLl/TBiIgCRImBCe7+eTj8k7p7znMcw8eWtHH1GIc04SHSG6KYNWQ29/L3r7e1HbYmGHqZZt5TUUNdo/SG0o5Krh5KrhGJUW4sklSZNLkFJBsG8Twb5N1DbqOGxqJKfKlaLttRzYtI0xf7r5hMXHxNlR02QitLx1vRp/P1xCjiUghw9V8fO3Bxw/D7s4gfTMju991fuiSGw2lQ0/5QKwctk+vP1ciYw59dpJrolJtJSXoVosJNUY2eFbR7VeS0uDrKUjuj5ZR0eIC4CnXsfQEF/uS4/mvrQohoX44KnXOl5vUvXsVpP4yjqeL2wT2GlLplF1wdPVQkpEDYNSSgkKLaPavYGlH37CT59/6cSn6Z5aWlpwNTWiaW168+k7wPFadWUj3361G1vrXmkZfcPPKMk5qs/ASDL62c9XVfhxyT5aWk69xYDrcd1XsdXHktwGm0wxF12f/FkmxAUm1M1AqFsgF0cEkFPTwLbyWvZU1dHS+iFaoXqzVs1kPb2JVQpIUQ4SoS0mKrCByIAGKmprOWxyY/GcD3A3ujDqxuud/ETdw659m4gsOtZt5dknEwBzUwtLv/gFc5N9OYHIOF8Gj4n/XfdSFIXBo+MpPVJDyZFaqisb2fBTLpdPOnnXpGvSsUQnqLQBYuzf12sbflc9hDgXJNER4gKlVRTH3ltNViu7KurYXF5Dfp19urINDTlqNDlqNB7Uk6I5SLJyEH+vBvy9zDSYazhicmPRB3NwadEw7MZJuLnKgOUzdaBwK6mtiU6LixZjvH05/5++OUBVhX1LD98AN8ZNTG3XmJzT0WgURl2awhdzNmO1qmzfUMiAobG4GLUnHKsPDkHr6YW1tgZjYRlKPy9UjUK1QaWloQa9m9dJ7iBE1yBdV0IIjFot/QK9uatHJPenRzM02Ad33bEPvDrc2WzL4GPrRJZYR5Jji8TgopIQVkt6WiHeMWX8uPBjlr41m6JDOU58kvOX+UgeLhZ7q5o1NhpFoyH3QDk5Wfa1iQ1GHROuScdgPHt/n/r6u5E52D7FXFVVls7bddLtIhRFwTUx0f59kxn/anvrUomLjqqiwrNWHyE6gyQ6Qog2glxdmBAVyCO9YrkxPoQkbzeOtR8oFKihLLcN5SPrRDZaM2hQ3AjzayQjuZiItFL2bPuGZW/PYdOKZU58ivOLqqp4lh7btyh86BiazRZWfXds8PHQcQl4+Zy4EeTv1fuiSLx97dctyK0ga+fJZ1IdP04nstSe6JTptdSWHD7rdTpfDB3aj6VLFwFgsViYO/fjc3LfNWtWkZtrnzm3detmhg7tR1HRkXNy7/z8Q4wdO/Q377djxzaGDx/A1q2b25Rv2bKJ22+/hdGjh3D99X/km2+WdHZ1gXZ2XS1YsKBDF73yyivPoCpCiK5Ep1FI9/Mk3c+TKnMLW001bCmrobJ164lGXNmqprPNmkqUcoQ0JZtItyJ8ok2YwzSUVFTz3XtHUDVWRlx3G0aDwclP1HUdyNtLeGu3lU0Bn96ZrFmZS32tvSwyzpfE1KBOubdOp2HYxQksnvsLAGtW5BAZ54fRVd/mONfEZMf30WUq25KhQq+lvuLcfMB2RQsXfoNH6z5ky5d/w6uvzuC6627q1HsWFxfxyCMPMHPmLGJj48jI6MXChd/g43PqWXNnS05ONg8//BeamppOeUxdXR1PPfU4Nlvb7R7y8nJ5+OH7ufHGW3jiiadYvXoVzz33HwICAunXb8AprnZ2tCvRefTRR9t9QUVRJNERopvxMegZHebPyFA/cmoa2FhWw97KOmyAioZDagSH1Ag8qSNVk02K7iBRwbXYAmsprXJl9Zcf0lhVT78/Xk1oWISzH6fLObD9BxLr7R8M1QFuFJU0sXubPYHQ6TUMvzipU1enjoz1IyE1iOw9pTQ2tLDh51xGjE9qc4whMhLFYEQ1NxFcZgbVFVVRqGoo6rR6dXXH70J+rraN/PV99Hr9KXdDP5vef382H3wwh5iYOEpLT72swPTpzxEeHkFxcdvfi88++5iEhETuuOMuAG68MYb9+7P45JMPu0ais2LFik6thBDi/KBR7PttJXq7U9NsYVNZNZvKaqhpsbfy1OLBBltvNpFBnFJAmuYAIb7lhPg1UlHrwr61S9hSZCa4X0/6DRwhW0u0suZmO75XYxP5cek+x8+DRsbh5WPs9DoMG5tAfo6JZrOVvduL6D3gWJcWgKLV4pqQQMPuXRgbW/Cus1LtqaPWVtXpdeuqhg7txz/+8QQAzz77pKNs5sxZZGb2Y82aVcye/RZ5ebkEBgYydux4brvtdsf+cUOH9uPWW6fw7bdLaWlp4bXX3sJodGXWrNfYtGkDNTXV+PsHMH78BKZOvZuSkmImTZoIwLRpdzF58lT69OnLtGl38cUXXxMaGobZ3MQHH7zLd999g8lURnR0DJMn/5nhw0cCsHTpIubMeZvbb7+T9977L6WlJcTHJ3L//Q+Rnt7zlM+6YcM6Hn/8KTw9vZg27a6THvPtt0vZvfsXnn/+ZW67re1szO3btzFs2Mg2ZX379uf//m86qqp26ntBuxKd8PD2r9cgm6ELcWHwctExJtyfkWF+7KuqZ0NpNQdq7NONbWjJVmPItsbgRxXpmv0keuTh51lCfbiO8rLdLHtjL0qwjlGX3YLR2Pkf5F2V1WrF57jxOTU+w6g7WA9AeLQPaZlh56QeHl4GBo9KYOU3+1BV2L6hgBGXtG3VcU1MomH3LgDCylqo9tRRp208J/XrysaMGUddXR0zZ77EwoXf4OXlzfr1a3nssUeZNu0B+vcfyOHDhcyY8SL5+Yd46qnnHed+/fV8pk+ficViJSoqhj/96UZ8fX15+eVXcXNzZ9261bzyynRSU9MYPHgY77zzPlOn3sYzz7xI//4Dycra06Yu//73P9m3L4u//vURoqKiWbHiO/75z4d57rnpDB06AoDy8jIWLJjHY489hV6vZ/r053j66Sf49NP5p0w43njjvwAnjLs5qqjoCK+8Mp3nn38JN7cTtyMpLS0lKCi4TVlAQABNTU1UV1fj4+PT7nh31BkN31+yZAkbN26kpaXFkdioqkpDQwPbt2/n559/PquVFEJ0XVpFIdXXg1RfD0xNzWwsq2ZLeY1jR/UKfPjZNoAN9KKHkkO64QDRkSaaQzSUmjz5+YMPqNWUM2jCLYSFRTr5ac69A3s3E2Syt4gV+EWS05rk6F20jPxD8jlt9RowNIY1P2TT0mwl65di+g2Nxt3j2Ngq14REx/dhZS3sjXOl2kXFam5Aazj1XlvtlZd3kB07NtPS0vK7r9VRer2e3r37ER0d1+FzDQajY6zO0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERQkPtCez48RNISUkFwGxuYvz4CYwaNYaQkFAArrnmej766H1ycrIZNmykYyyOp6fXCQlFXl4uq1b9xAsvzGDIkGEATJ48lezs/bz//hxHomOxWHjooUdJbB13deutk/n73x/CZDIRENDxbjCr1cpTTz3OFVdcRa9efU46UNlsbkKvbzvuy8XF/rvV3Gw+4fizqcOJzmuvvcZrr72Gp6cnFosFvV6PTqejoqICjUbDpEmTOqOeQojzgL/RhT9EBjI23J9dFXVsKK0mv94+cNGMge1qKjusKcQqhWTo9hEeXI4tqJqySnf2Lv+G9dVFxA8bRa8+w5z8JOfOoQ3LiVXtW3Lk+Q10lA8eHX9OuqyOZ3TVk9E3jK3rCrBZVXZuOsygUcc++I1x8aDVgtVKeKk9GSnTa6kuLsQvOulUl2233bt3UF1d9buv83vufyaJzsns35/F3r27WbZssaPsaMNAXl6uI9GJiDi2qarBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1lOvXH1UTo69C7Rnz95tynv1ymTWrNfalEVHxzq+d3e3J2kWy5klmB9++C6NjQ3cfvudpzzGYDCckMAeTXCMxrM/m/B4HU50vvrqKyZOnMgLL7zAzJkzOXLkCC+88AK7du3iz3/+M4mJiae/iBCiW9NrNPQJ8KJPgBeF9U2sK6liZ0UtVtU+ePmgGsVBaxQBVJCh2U+C3yGC/eqpqDVQuW8vX61chXdaLMNGX4Nepz/9Dc9j+gL79OxizwSasX/ghEZ606PXqTfa7Ey9B0SyfWMhNqvK7m1HyBwU5Vi7R+PigjEmlqacbHxrrbg12ig16Kg5S4lOenovtm93XotOWtrZ27TWZlO58cZb+cMfLjvhteMHDxuOm43Y1NTEvfdOpampkdGjxzF+/KU88EAa9947tZ13PfnQEZvNesL+dEfHCbU5+wyHnixZ8jXl5WVMmDC6zXUeeugv9OnTl5demklQUDDl5WVtzisvL8fV1c3RGtZZOpzolJSUcMUVV6AoCmlpaSxZYp8Hn56ezl133cUXX3zBzTfffNYrKoQ4P0W4G5kUF8IlkQFsLK1mQ2k1dRb7X6fl+PGjbSDr6U2qkk2q5wH8vYqpjdRTWVrFsldnooRpGXXpHZ3+ZugMjY31BJQ2YUPDQf/ejvKBI2KdNlDb3dNASkYIe7YX0dJsZdfWw/RtXVQQ7N1XTa0tByGmFg5GGCg35R/dFeJ3iY6OO2stKufar/9/xcXFc+hQHhERx7pjt23bwueff8pDDz2Kq+uJrRgbNqxl3769fP31t/j5+QNQU1NNRYXplPdpe0/7ato7d253dF0B7NixnZiY2FOd9ru9+upbWCwWx89lZaXcd9+dPProv+jTpy8Affpksm3bljbnbd68kYyMXmg0nbukX4ev7ubm5gh0TEwMhYWFjjn1PXr0oLBQVskUQpzIU28fvPy3XjFMig0m3O3YX7KNGNmipvOxdSI/Wi+ixdWNqJgyUgY3EuCuZdV77zHvv09SVNS9Fqfb9t08jM0qh72TMevsiVxUvB8hEd5OrVfviyI5+nm6c/PhNht+Ht2aAiCkdad1U9PJFxm8kBxNXLKy9mI2N3HTTbfy008/MHv2W+TnH2LLlk08++x/qK2tOeV08MBA+1pJ3367jOLiInbs2M6jjz6IxWKhubm5zX0OHsymrq6uzfmxsXEMGjSEl156njVrVpGff4h3332H1at/4oYbOq8BIiQklIiISMfX0fFFAQGBjmeaNOl69uzZxZtvvsqhQ3l8+ulHrFy5gptuurXT6nVUh1t0MjIy+Oqrrxg8eDBRUVFotVrWrl3L6NGjycnJOWlzmBBCHKVr7dbq7e9Jfl0Ta0uq2N26Jo8NLfvUOPZZ44hUjtBbl0VYWAnBIQqmCm92L1rEmubD9Bw7iaSUU0+FPV807N2KRdGR63usy2TAsBjnVaiVt68r8SmBZO8to6mhhX07i0nva5996xp3rMXlaKJTY6t2Sj27kszM/qSmpnP33VN47LGnGD16LE8+CR9+OIePPnoPT08vhgwZxt13TzvlNVJT07nvvgeYO/cT3nnnTQIDAxkz5mKCgoLZs8c+283b24dLL53IG2/MpLCwgOHDR7W5xpNPPsdbb73GCy88TV1dLbGx8Tz99IuMGDHqZLc8Z+Li4nn++Zd5882ZfPHFp4SGhvH440/Tt2//Tr+3onawU27Tpk1MnjyZoUOHMmvWLP75z3+yfPlyLrroIlavXs3YsWP53//9386qb6ewWm1UVNSf9evqdBp8fd2prKzHYrGd/oQLmMSq/bpjrKqbW1hXUs3GsmqarG2fKYAKemmyiFPy0aBSUe1GdYEnZaYjxA8dSWb/U7+Bd+VYWa1Wtj04lXJ9T3L9+wCQ0COQcVekOqU+v45VeUkdX7xr72rw9DJww50D0GrtnQAH//YglgoTLVp4c1IgmbUWpvxxRrvu09LSjMlUhL9/KHr9+fuHsU6n6XK/U13ZmcTrdL8rfn7ujt/J37x3h+4K9O/fny+//JJ9++wLWj3++ONoNBq2bt3KJZdc0qFVlIUQAsDbRc8lkQGMCvNjc1k1a0qqqGrdaqIcP1bYBrOBXmRo9tHDOwd/nxIC6l2pyt3HvJ/XEtQ3nSHDL+/0vv6zae/6H9A1uXMoKAOw7yY+YHjnjaPoqIBgD6Li/Mg/WEFtjZm8AybiUwIBcI2Pp7bChN4K/tUWKg0qtuYmNC4X7npIous6o3V0UlJSSElJAewjxp966qmzWikhxIXJoNUwJMSXgcE+7K6oY1VxJYcb7FNQ63BnnS2TLaTTQ8khw20fUYmlBETqqCw+wqL/m4FHcjAjxl+PTnv2dvjuLEfWfkdF0GBsGntd0zLD2qxE3BX07B9O/sEKALJ+KXYkOsa4eGo3bQQgtNxCXqwLdaVH8Io4PwcSi+7tjN4NamtrWb9+PQ0NDSedjiZ7XQkhfg+totDT35MMPw/y6ppYVVxJVpW9e7kZF3aoPfjFmkSykktvw17CY8rwD9NQUVrFt6+/iSbUhdETJ6PTdc0WBovFgtXkQ6WPfS0Vo6vCRe1ozVFVlaqyQkoLskEBF4MbeoMrehcDWp0Lehcjnn5BaDTas1LPiBhfPLwM1NWYKThYQX2tGXdPg309nVYh5S38kuhKSVGuJDqiS+pwovPTTz9x//3309h48mW/ZVNPIcTZoigKsZ6uxHq6UtrYzJqSSraV12JRVWxo2asmkGWNI14poI9+D2ERFQSGKJjKvflpzhyaPc1cd+cDzn6ME2xfsZAi996On0dflobe5cTkxGazUl9dQbWpCNORXAr2b6O+puI3r2108yS6R3/iew7B0zfwd9VTURSS04PZsjYfVYX9u0voMzAKQ1Q0ik6HarEQ2joguagyD1lFTXRFHU50Xn75ZeLi4vj73/9OcHDwedUnLoQ4fwW5uvDHmGDGhvuztqSK9aXVmK02VDRkq9FkW6OJUg6Tqd1DSEg5gUFgqvDk6/+bRb2+ltHX3ImHe9dYi+fQlkOY9fb1Rdx0JqLj/du8brPZyNmxml3rltLc1NChazc11LJvyw/s2/IDIdEpJPQeRmhs2hm/VydnhLBlbT4AWb+U0PuiSDR6PYaoaJoO5uBba8VotmFqLj2j6wvR2Tqc6Bw8eJA33niDfv36dUZ9hBDiN3nqdYyPCGB4iC8bSu0Dl+tbFyDMV8PJt4YTSimZmt1E+BcT6F+LqcqNTV9+Sk1LDaOuuwMvT+etU1NecoQaa6JjFbMBY3q0ff1ILlt/+ILK0hPXJFMUDUFRiYTHZeBidKOluZFmcyOW5mYsLWYaaiooytuDrXW7gOJDWRQfysLN05f0IZcS06N/hxci9PZ1JTTSm6KCaqpMDZQW1RIc5oUxLp6mgzmAvfuq2qPmDKIhROfrcKITFhZ2wiJFQghxrrnqtIwM82NwsA+by2tYVVxJdetMrSKCWGILIoAKMjW7ifUpJMC3gcoaI9sXz6Wqup5hN/wJX2/fc17vVXMX0qS3TyF3s5XQo88IzI31FBzYTv7ezZQdzmlzfEh0Cn4hUfgEhhMYkYDRzfM3r29urOPgrvXk7Fjt6OZqqK1k4zcfcfjADvqNvQ6ju1eH6pySEUJRgX2tnKxfigkO88I1Lp6qo3U0tVDp3bkbMwpxpjqc6Nx55528/vrrZGRkEBER0Rl1EkKIdnPRahgc7MOAQG92VNTyU1EF5U32cSPl+PGdbRh+VNFXs4s4zwJ8U4qpqdeza/lcqspaGHz9Dfj7dnzH5jNhNjdRVRPmeOeNTDbwy5rFZG3+AZvV0uZY74Aw+o65lsDwjg3wNbh60KP/WJL7jqY4by/Z21dRlLcHgMM5v1B2+CD9xl5LZFKfdl8zLjmAVcsPYGmxkb2nlCGj4zHGtx2QfDDFiGppRtGdv2vjiO6pw4nOokWLKCkpYdy4cfj5+WE0tp3VoCgK33///VmroBBCtIdOo9A3wIs+/p7sqaxjZVElR1qnplfgw3LbUHypoq9mN3FuBXjFlxIQrmPPyi+oLoF+V11OSFDn/vH27bsf06Szb6HgZinGaGhgz4ZtbY7x9A0iKXMEcRmDf9fsKY1GQ1hcGmFxaRRm72Tz93MxN9TS3FTP2sXvknrREdIHT2hXV5aLQUd8ciD7dpXQbLaSe8BEQo9AtF5eWGtqCK6wUK7TUFtWiFeozLwSXUuHE52QkBBCQpyzq64QQpyORlFI9/MkzdeDnLpGfiyuJLfKPqC3Eh++tw3Bl2p7C4+hgOiYMhpCtOxbu5CtJS70vnwcYWExZ71e9fV1mMr9QQcaGnD32knB/lrAPvYmvucQ4jIG4hMYcdY39IxI6ElAWCxbVnxO4YEdAOzZ8C1NDbX0HXNtuwYqJ2eEsG9XCQBZO4tJTA3CGBNL/c4dGJtVPOtt5B7eRy9JdEQX0+FE57nnnuuMegghxFmlKAopvh4MjA1iQ14Zy/PLya+3b0BciTff24bgQzV9NbuJN+QTG22yJzybF7O92I3EkQNJTDp72zEsnfUJzboI3LQ7MGhysbYOoNbq9Ay+bAphcWln7V4nY3TzZPBlUziw7Se2rfwKUDn4y1psVgv9L76R0+3xHBbljZePkZqqJgrzKqmtbsIYG0f9TnviFGyyUORWQK/fvEr3MnRoP/7xjyeYMOFyLBYL8+bN5brrbur0+65Zs4qwsHBiY+PYunUz06bdxRdffE1oaFin3zs//xBTptzEhx9+fsL9PvnkQ7766ktMpnJiY+O4996/kJl5bOLSli2beOONmeTmHiQoKIg//ekOLrnk0k6vc4fnGx45cuSUX8XFxdTUyMh7IUTXoSgKyT7u3NkjgslJYUR7HOtur8KbFbbBfG6dwH5bNEYXG/GRFcT3LCI/63uW/Pc9dmzd9LvrsO3nH2myVeGt/wajNhtFsSc5ru7ejLzmfzo9yTlKURSSMkcyaMKtKK2tOHl7NrLx24+x2X57HyJFUUjpeaw1P+uXYowxxxY5DDa1UG4u65yKd1ELF37DmDHjAFi+/BtefbV9+339HsXFRTzyyANUVtoHmmdk9GLhwm8ICgru9Hvn5GRz//330NTUdMJr7733X+bMeYupU+/i/fc/pUePNB555AGOHDkMQF5eLg8/fD+DBg3hvfc+ZuLEq3juuf+wefPGTq93h1t0Ro8efdpmVW9vb2699Vbuueee017PZrPx2muv8cUXX1BTU0Pfvn154okniI6OPunxBQUFPPPMM2zduhW9Xs8f/vAHHnzwQcfW9UIIcTKKopDo7U6Clxs5tY38cNhEXp39DbsKL36wDWYbqfTX/EKsSyGJkVU0BdeQf7iaxdv34BcVzuCxYzt834qSIvZu+BEXbZWjTKvVE5s+kIwhl+JidDtbj9huUSl90Wh1rF3yLqrNxqG9m1AUmHDTXb95XnJ6CJtW5aGqsG9nMX1uPtbiFVxhYZd6Yc3I9fc/Noi9g/tjn7Ff30ev17epR2d5//3ZfPDBHGJi4igtLWnzWmNjIx9//D533z2Niy/+AwAPPPAwv/yyg507txMWFs5nn31MQkIid9xh/x278cYY9u/P4pNPPqRfvwGdWvcOt+g8//zz6PV6hgwZwnPPPcc777zD888/z6hRo1AUhXvvvZc//vGPvPnmm3zyySenvd4bb7zBZ599xtNPP83cuXNRFIWpU6fS3Nx8wrG1tbXccMMNVFdX89///pdZs2axa9cu7r333o4+hhDiAqUoCglebkxNieD25HBiPI/9kVSJD9/ZhjHfejH5tlAMehtJEdUkpRXQ0LSLhe+9x4pP57b7Q+3woVy+eX8W2tYkR1U1xKQN5fI/P0nfMZOckuQcFZHYiyGXTXEMeM7bs4nvv3jnN5/Nw8tAZKwfALU1ZopMFjR+9p8DKy1UaU983+7Ohg7tx9Kli1i6dBHPPvuko2zr1s2AvYtpypSbGT16CNdddyXvvPNmm8+2oUP78fbbb3D11ZcxceJ48vPzKC0t4T//eYzLL7+YESMu4qqrLuWtt17HZrNRVHSESZMmAjBt2l3Mnv0WW7duZujQfhQVHQHsM/veeedNJk26gtGjBzN58o38/PNKxz2XLl3ENddczrJli7nuuisZNWoQd9xxK7t27fzNZ92wYR2PP/4U9977lxNe27FjG01NTYwbN95RptVqef/9Tx1dU9u3b6Nv3/5tzuvbtz87d27r9CSxwy06S5Ys4dJLLz1hrM4VV1zBE088wa5du5g1axZeXl58+umn3Hjjjae8VnNzM3PmzOHhhx9mxIgRAMyYMYNhw4axfPlyLr20bd/dV199RV1dHa+//jp+rf+4ZsyYwahRo9i8ebMsYiiEaDdFUYj3ciPey42cmgaWF5ocY3jK8GepbSQhlDJAu5MwlzKSwmswB9WRX+bOVx+8i7FJITQ9md6DB520lfvH+XMpztmBVmdv5VBVLUFRfblo/LXn9Dl/S3hCTwZfPoW1i+Zgs1nZv309Hr5hJPYZecpzUnqGODb6zN5bRnJsHHUVFbhYVGyNNqwWM1qd4Yzq01C5h6qilai2c78mj6Ix4BM6Ejffjo/LGjNmHHV1dcyc+RILF36Dl5c369ev5bHHHmXatAfo338ghw8XMmPGi+TnH+Kpp553nPv11/OZPn0mFouVqKgY/vSnG/H19eXll1/Fzc2ddetW88or00lNTWPw4GG88877TJ16G8888yL9+w8kK2tPm7r8+9//ZN++LP7610eIiopmxYrv+Oc/H+a556YzdKj9c7a8vIwFC+bx2GNPodfrmT79OZ5++gk+/XT+KXts3njjvwCOJO54BQX5eHp6kZ19gHfeeZOCgnxiYmK58857yciwj9oqLS09oXstICCApqYmqqur8fHx6XDc26vDic7GjRt54403TvraxRdf7Ghd6du3L2+99dZvXisrK4v6+noGDhzoKPPy8iI1NZVNmzadkOjk5uYSFxfnSHIAQkND8fX1ZePGjZLoCCHOSLyXG3E9XNlX3cDywyaKWqelFxPE19axRChF9NfsJFhfQWJYLebAegrK3Nmd8wt5Bw7gZtFibFHQoaK36fDSeZKijyDRP4QGazV1lhps7u70HDAa84EKbLVmbA0taDxc0AW4oQ1yR3OSva7OhfD4DAZdNpk1X9s/yLb/tBC/kFj8Q08+fCA6wR+dXoOlxUbeARMZCTGwxf7h51dpobgkh/DwMxvEXVO6Fou5/IzO/f1qqSlde0aJjsFgxMPDvr3I0W6kDz6Yw2WXTeTKK68BIDw8gocf/gfTpt1FUdERx0De8eMnkJJiv6fZ3MT48RMYNWoMISGhAFxzzfV89NH75ORkM2zYSHx87Itcenp64ebWtkUwLy+XVat+4oUXZjBkyDAAJk+eSnb2ft5/f44j0bFYLDz00KMkJiYDcOutk/n73x/CZDIRENDxbrD6+jrM5iZefPFZ7r77fwgODmXhwvn85S93M2fOx8TExGI2N6HX69uc5+JiT4ibmzs3se1wouPj40NWVhZDhgw54bWsrCzH/+yGhobTjpspLi4G7MnK8YKCgigqKjrh+MDAQMrKyrBarWi19jeFuro6qqurMZlMHX2UNnS6s79nl1arafNfcWoSq/aTWLVfR2OVHuBJqr8Huyrq+K6gnNJGezdDoRpKoTWUGKWQ/pqd+OurSQirJSqwnoJyd45UuGJ10eCvehJDEIH4om0dGeCh9SHIBVChYWXeCfc8+hav9TGiGHUoGvtf1IpBi0uUN4ZobxR95yZBMSm9qSq9mN3rv8Nms7Ju6Xv84bZHMJyka02n0xCT4E/23jKaGluo8zm29lBwhYWDRfuJjk4/5b1stlOP8fQKGuzUFh2voMHtO7Yds//3789i797dLFu22FF2tIsmLy/XkehEREQ5XjcYjFx99bWsXLmCzz//hMLCArKzD1Bebv/cO52cnGwAevbs3aa8V69MZs16rU1ZdPSxgeTurXvAWSwtp3+wk9Dr9ZjNZv7ylwcZNMieGyQn/4Ndu3Ywb97nPPTQIxgMhhOufzTBMRp/O1fQapXf9Rnd4UTn8ssvZ+bMmeh0Oi655BL8/PyoqKjgu+++47XXXuP666+nurqa999/n169fnui4dEd0F1c2q6kaTAYqK6uPuH4Sy+9lFmzZvHss8/y17/+FavVypNPPomiKCcd09NeGo2Cr6/7GZ9/Ol5eMlC6vSRW7Sexar+OxmqEnwdD44LZcKSCrw8UYWpNePLUCPKs4SQrufTT/IKnvoH40FoiA+soLHfnsMnGFlstLqqOCAKIVgPxVNo3DsdadeJMlubcKup1GtxifHCN8MYlwA0XP1d0noazvtbO8MsmYTqSQ3F+DvXVJjYv/4RLb77PMTvreBmZEWTvtc+wKm/x4OiGEkEVForrjvzm+2lTk5bycs1JP7y8AtPxCjx1ktQVaTT259C0JqhHn0lVVW6++TYmTLjshHMCAgIdx7m6Gh3fNzU1cs89d9DY2MjYseOYMOEyUlPTueuu2x33OT55//XPR/9X6XSaX8VWRafTtamnm9ux2YdHr3H0Hr/l1/cHHGvrJScntTk/Li6e4uIjaLUagoKCMZnK27xeUWHCzc0NHx+vk67lZLMpaDQavL3dTlicuCM6nOjcf//9mEwmnn/+eZ5//lg/o0aj4eqrr+aBBx7g22+/Zc+ePbz//vu/ea2jFW9ubm7zEGaz+aStQdHR0bz66qs8/vjjfPzxxxiNRm655RbS09MdLUlnwmZTqanp2A7B7aHVavDycqWmphGr9benbl7oJFbtJ7Fqv98bqx7uRhJ7xrCptJoVhSZqWiyAwj41jmxrDOnKPjI1uzHoWogLqSMyoJ78MncOm9w4qBZzUCkmLDicaP8IQo2BuGj0KDoNWk8XNK56rDVmWkrqaSmpsyc61hMHZaoWG/XZFdRnVzjKFIMWY0oArmmBaFz1J5xzJrRaDeNvuJvPZj6BubGevL3bWf3tAtIHjj/h2MBQdzQaBZtNJWuviT6eHuhr6wisbGF3XSmVlfWnvE9zsxmbzYbVqmKxnJ+/v4py7APfZrM/x9HxtEefKTY2ntzcXEJDj7V4bdu2hc8//5SHHnoUvd7Q5nyANWvWkJW1l6+//hY/P/uO9jU11VRUmBzH2Wz2G1mtNiwWm+P32mq1ERNj35Zj69atjq4r+323EhMT2+b842N//DVO9//kZMemp/dCURR27NjBqFH2mYmqqpKTk0O/fv2xWm306ZPJli2b21x/48YNpKf3wmbjpMsbWK0qNpuN6uoGGhtPbNHy8nJtV2tthxMdnU7Hc889x913382GDRuorKwkODiYzMxMIiMjARg+fDirVq06oaXm1452WZWWlhIVdaz5rrS0lJSUlJOeM2LECH766SfKysrw9PTEaDQyePBgrrrqqo4+Shud+Q+uPb88wk5i1X4Sq/b7vbHqH+BFbz8P1pVUs7KogiarDSsadqg9yLIl0Uf5hXRlP3qdlfjQOiIDG8gvdedIhRtHSg5zpOQwiqIQEhJGYmIKUcGxoNGg9TGijfLGSGu3hlUFVQUVrBWNNOdW0ZJfjdrUdh8s1WylcUcJjbtKcUnww9AjAK33mf/Fe5Svrz+DL7uNH794E1DZuWoxvkFRBEcltzlOq9MSHu1DQa594cDmiB7o925CbwVrbe1vxtp6kmTufHOySUJH/zjPytpLbGwsN910K48//ndmz36LceMuoayslOeff5rg4OBTTgcPDAwC4NtvlzFq1BhKSkp4663XsFgsjl6Lo/c5eDCbpKS2n5OxsXEMGjSEl16yN0JERkaxYsV3rF79E//5T+ct9hscHMKll07klVemYzQaiYiI4ssvP6Oo6DBXXfUiqgqTJl3PrbfewJtvvsqECZezdu1qVq5cwcsvv3ba6//epLjDic5RUVFRbZKT43l7e7frGikpKXh4eLBhwwbHtWpqatizZw8333zzCcdv2bKFGTNmMGfOHAIDAwH74OjKykoGD25f36oQQpwJvUbD8FBf+gV68VNRBetKqrGoKmZVy3q1N7s1qfRVt5Kk5OGis9nH8AQ1kFfiRlGlG6oKRUWHKSo6jIeHJ6mpPYmPT3IM0FQUBXTHuqN0IR7oQjxQLwrHWtmItaIJW3UT1qomLEV1YLMnRs37TDTvM6HxNqCP8cElzhet15nNegIIi00lfdAl7Fq3DFVVWbfkfS6++W+4efq0OS4mMYCC3EoAqn2TcMe+sKKhthlVVc9611pXl5nZn9TUdO6+ewqPPfYUo0eP5ckn4cMP5/DRR+/h6enFkCHDuPvuaae8RmpqOvfd9wBz537CO++8SWBgIGPGXExQUDB79uwCwNvbh0svncgbb8yksLCA4cNHtbnGk08+x1tvvcYLLzxNXV0tsbHxPP30i4wYMepktzxrHnrIntS98MIz1NTUkJSUzIwZrxMVFQPYu7Gef/5l3nxzJl988SmhoWE8/vjTJ0w57wyK2o4J7GPGjOH1118nJSXltAsGdnRTzxkzZvDZZ5/x7LPPEh4ezv/+7/9SWFjIokWL0Gq1VFRUOFpuqqqqGD9+PH/4wx+4/fbbKSgo4G9/+xvjxo3jiSeeaPc9f81qtVFRceqm1jOl02nw9XWnsrJe/vI+DYlV+0ms2q8zY1VlbuH7wya2mWo5/k3UX9vIAHUjUcoRx6BVq+rKoTIv8ksAjr1/6vUuJCQkkZychpdX+/5ABLDVN2PeU455vwl+/VwKGHoEYuwd3KFBzMfHqqXFws9fvUVx3l77M4XFMvrav7QZR1FfZ+aD19YD4Omuof+O2SjAjkRXRv/P0/i7+5/0Pi0tzZhMRfj7h6LXn787net0Gvn31wFnEq/T/a74+bmfva6rAQMG4O7u7vj+bGbq06ZNw2Kx8K9//Yumpib69+/P7NmzcXFxobCwkDFjxvDcc89x1VVX4ePjw9tvv81zzz3H5Zdfjq+vL9dffz133333WauPEEK0h49BzzVxIQwJ8eW7wnL2VdvH+ZmsrixjBJH6Ggba1uCvVKFVGokLaiQuzI8Ckz85+TWAQktLM3v37mLv3l2EhoaTmNiDyMhox6zSU9G4u+DaPwxDzyCasytpya/CWto6zlAF854ymvOqcL0oHJeo9idQRymKhoF/uJXvPnqRhtpKTEdyObhrHQk9j822dfcwEB7tw+FDVdTW26g2BuHTVEpwRQv78/cwqMew37iDEOdOu1p0fq2uro76+nqCg4Npbm7m/fffp6SkhIsvvpgBAzp3KefOIC06ziexaj+JVfudy1gdrGngm8JyCuuPTY1WgDSXEjKta3FTjs2q0hojOFIVxP6DJSdMGzYajSQlpdKjRwYGQ/u7oGwNLZj3mzDvKm0zqFkX4YVrvzC03r99rZPFqrQwmx8/nwmAi9GNCZMfw+B6bEbVvl+K+WHJPgBC6veTVrQGiwZ23TiCa0dOPul9pEXnwuTMFp0OT0zfuXMno0eP5sMPPwTg6aef5uWXX+brr7/mT3/6EytWrOjoJYUQ4rwX5+XG3T0iuT4+BF8Xe2O5CuxqDuYz9Y/s1FyERbW/5VqbCgk2bmXsQC/69knHw8PTcZ2mpiZ27tzK/PmfsGPHlnYvnaFx0+PaOwTPK5LRhR+7nqWwhtqFWTRsKMT2q0HNpxMUkUBUSl8Ampsa+GXN4javxyUHotPbn6nMLQYbGnQ2aCo+1KH7CNGZOpzozJgxg7i4OK677jqamppYtGgRN9xwAxs3buSaa65h1qxZnVFPIYTo8hRFoaefJ/dnRDM+wh9D65iWZhusbY7jC+VaDmpSHLN2zDV78bT+yMgBfowdM4bo6DjHOJiWlhZ27NjC/PmfsHPn1nYnPFpPA+5jYnEbEY3i2jo6QYXmLBM18/fSnFPx2xf4ld7Dr0TXOhU6Z+daKkoKHK/pXbTEJtlnEFkVF8rd7TNvdaaqDt1DiM7U4URnx44d3H333URGRrJu3Tqampq44oorAJgwYQIHDhw465UUQojziV6jYUSoHw/2jGZAoJdj+HG1ReG75j4s1l1DmdK6Irxqpa5sA1bTl/RJceWKiVeTmJjiGAvZ3NzM9u2bmT//U375ZRstLadPeBRFwSXGB68/pmDsHQxHF2lrsdGwuoCGtQWo7exGcPXwJm3gJa0/qWz94QtU9di5yenH9i8q8bSvtutxksUPhXCWDic6Go3GsT7OTz/9hJeXFz179gTsY3d+z+qFQgjRnXjodVwZE8x9aVEkeB1bIfmwWc+8lpH8rJ9IA/bFTlWrmaojK6gp+ICeKf5cccW1JCQkH5fwmNm2bRPz53/Grl3baWk5/XL9il6LsVcIXn9MQR/v6yhvPlBB7dIDWKvbt9VCYuYIPH3ta7yYivLI27PJ8Vp4tC/G1kULy90isSo6/Kos1DbVtuvaQnS2Dic66enpfPnll2zbto1ly5YxcuRIFEXBZDLxzjvvkJ5+fi3fLYQQnS3EzcDkpDBuSwwj0HhsJeM9je58ZpvIHsNorEfH7zRXY8qbR2PxV/TrncQVV1xLXFyiI+Exm5vYunUjX331Gbt378RiOf24G42bHvehUbgNjXS07tgqm6hdsp/mvKrTnq/V6sgcdbXj5x0/L8DcaN+VXaNRHN1XNo2OCrcwAqosHDi4o33BEaKTdTjR+dvf/sa6deu44YYb0Gq1jqndl112GXl5edx///1nu45CCHHeUxSFZB93pqVFc3lUIK7ao+N3VH6uD2a+9gZKjH0cx5vr8yne9w4tlT8x6KL+TJw4idjYBMfrTU2NbNmynq+++ozs7H20ZwKtS7wfnhMS0RydgdVio+GnQ9SvzsfW/NubRobE9CAisbe9bo31bPtxvuO1mMRja+aY3MLQqFCyd+tp6yPEudDhlZFTU1P57rvvyMnJITEx0bFN/L///W8yMzMdKxYLIYQ4kVajMCjYh17+nnxXaGJTWTUqYGq28VVzCsnuyVxkW4Vby2EA6iu201C1B++QYQwdMpyMjD7s3LmFvLyDADQ2NrB27U/s27ebfv0GERwc+tv39zXieWkiDesLaTlYBUBLTiU1NWZ8ru/5m+dmjr6Gkvx9tJgbOZS1maiUvoTFpREe5ePY+6rCNRwA65HC3xcoIc6SM9r33MPDg169ejmSHIDx48dLkiOEEO3kptNyZUwQ96RGEuVxbGzjvnqFT5pG8Iv7FVg09vdY1dZM1ZEVFGXNwqCUMXz4WC6//BoiIqId55lM5Xz77SJWrvyOmpqq37y3otfiNjQK1yGR0Do93FLWwJEvd2Mzn7orzNXdiz4jj+0ruPn7ubQ0m9G7aAmJsO9h3ujiRYPOE0OFjNERXcMZJTpCCCHOjnB3I3emRDApNhjP1i0bLKrKmmo3vlSv4oj7CFTVPj7HYq6g7OBnlOZ8gocbjB49nnHjLsXX189xvfz8PBYu/IJNm9b+5oBlRVEwJPjheUkCisF+36aiWmq+yf7NZCcmdQDB0fZNPhvrqsjZuQaAyNhjdahwC8Orun3T4c9nQ4f2Y+nSRQBYLBbmzv34nNx3zZpV5ObaW/S2bt3M0KH9KCo6ck7unZ9/iLFjh55wv4aGeqZPf54rrhjPJZeM5MEHpznqeNSWLZu4/fZbGD16CNdf/0e++WbJOamzJDpCCOFkiqLQJ8CLBzKiGRbig6Z1PnpVi5Wvq8NY4XoTTa6JjuObarIp3juL6uKfCQkO5tJLr2LQoOGOna1VVWXv3l0sWvQlR07ThaT1c8VjfDyK0T6SwVLeSN23OdgaT54kKYpC5sirObpn174tP2C1tBAZe2xWV4VbON61VirKS840JOeFhQu/YcyYcQAsX/4Nr746o9PvWVxcxCOPPEBlpX09pIyMXixc+A1BQcGnOfP3y8nJ5v7776Gp6cTlA15++UW2bdvM00+/yKxZ76LVannwwfswm+0z+/Lycnn44fsZNGgI7733MRMnXsVzz/2HzZs3dnq9JdERQoguwqjV8ofIQKalRbeZjp5dZ+Wjuv7s9ZoEOh8AVNVCddFKirLeork+j8TEFK688np69err2Currq6W779fytq1P/3mgoNaX1e8JySgdbfPCLNVNlG7+ACWsoaTHu/lH0JEon08T1N9Dbm71xMQ7IHRzX5+hVsYKlqyN/z4u2PSlfn7B2Aw2Lsdz2A3pTPy6/vo9Xr8/QNOuz/a7/X++7P5859va9N6eLzVq3/ij3+8hoyMXsTExPLnP99DaWmJo1Xns88+JiEhkTvuuIuoqBhuvPEWRo0ayyeffNip9QZJdIQQossJcnVhclIYN8aH4qVvbWlRVX6q0PGlejmV3iM52qJiMZsozf6I8rz5aGiiV6++XH75NW0GJWdn7+Prr7/g8OH8U95T5+tKxHU90bQmO2pDC3XfZNN8sPKkx/cYMM7x/d5NK1BtNqLj7B+CVo2eStdQalt3P++ujnZdLV26iGeffdJRtnXrZsDexTRlys2MHj2E6667knfeebNNwjl0aD/efvsNrr76MiZOHE9+fh6lpSX85z+PcfnlFzNixEVcddWlvPXW69hsNoqKjjBp0kQApk27i9mz3zqh68psbuKdd95k0qQrGD16MJMn38jPP6903HPp0kVcc83lLFu2mOuuu5JRowZxxx23smvXzt981g0b1vH4409x771/OenrXl7e/PDD91RWVtDc3MySJV/j7e1NRIR9tezt27fRt2//Nuf07dufnTu3dXqS2OFZV0IIITqfoiik+3mQ6O3GisMm1pZUYQPKzRbmmkPp6X0LA2yr0DXmAtBQuYvG6gP4hI3CM6AfF198GQcO7GXz5g1YLC00NNSzYsU3xMUl0q/foJMu7uri54rPxGSqVxy074ZuU2lYlY/abMWQEtDmWL/gKEJielCct5eGmgpyd28gLjmJfbvs3VWlHjF4mbZ16Jl/qajl+8MmzNZz0zpyPINWYWy4Pxl+nqc/+FfGjBlHXV0dM2e+xMKF3+Dl5c369Wt57LFHmTbtAfr3H8jhw4XMmPEi+fmHeOqp5x3nfv31fKZPn4nFYiUqKoY//elGfH19efnlV3Fzc2fdutW88sp0UlPTGDx4GO+88z5Tp97GM8+8SP/+A8nK2tOmLv/+9z/Zty+Lv/71EaKiolmx4jv++c+Hee656QwdOgKA8vIyFiyYx2OPPYVer2f69Od4+ukn+PTT+Y71mn7tjTf+C+BI4n7t0Ucf45ln/s3ll1+MVqvFaDQyY8breHjYF8QsLS09oXstICCApqYmqqur8fHx6XDc20tadIQQogszaDVMiArk3rQoIt2PJSc7q1v4qGEweT5/RNG0js2xmaks/IaSfbNpbjhCUlIqEydeQ2houOO8gwcP8PXXn5Obm33Sv6Q1bno8Lo7HJfFYF0XjhsM0H6o+4djUi8Y7vv9l7RKCw9yObfLpHoVbO1dePmpVcSVlTS3UtFjO+VdZUwurik/eenU6BoPR8YHu7x+AXq/ngw/mcNllE7nyymsID49gwICBPPzwP/jxx+/bDOQdP34CKSmppKdnYDY3MX78BB555F8kJiYTHh7BNddcT0BAIDk52Wi1Wnx87GOhPD292sx8Bvs4mFWrfuLBBx9l6NDhREVFM3nyVIYPH8n7789xHGexWHjooUdJT88gOTmFW2+dTGFhASaT6YyeH+DgwWwiIiKZMeN1Xn/9v2Rm9udf/3qEsrJSwN7SpNfr25zj4mJfz6m5uWO/Jx0lLTpCCHEeCHUzcGePCDaX1fBtYTmNVhtNVhvflBuJcJvEaOM+3Go2ANDcWETJ/tl4Bl6Ed9hoxo6dQHb2PjZvXk9LSzNNTU2sWvUDBw8eYNCg4bi5ube5l6LV4DooAsWgxbyrDICGVYfQuMajCzp2bGB4HBGJvSg8sANzQy37t35PTGIi2XtKsWgN2FqCqKs24eHtT3sMC/F1aovOsBDf0x/YTvv3Z7F3726WLTu24/vRxDIvL5fQ0DAAIiKijtXBYOTqq69l5coVfP75JxQWFpCdfYDy8jKs1t9e0BHsg4UBevbs3aa8V69MZs16rU1ZdHSs43t3d3uSZrGcfluRk9m1ayf/938v8cUXiwgJCQHgqaee58Ybr+bTTz9k2rQHMRgMJ8wCPJrgGI2uZ3Tf9pJERwghzhMaRWFAkDepvu4sKyhnm8m+Vk1hQwsfNcYx2C+RjKbvUc3FANSWbaCxej9+UZeRmJhCeHgkGzeuIT8/D4DDhwtYvHg+I0aMIzw8rM29FEXBmBmKrcFCy8FKsKrU/5CLxx8S0R5dWRnoNewKjhzchc1qZf/WH0kdmkx2a29KmXsMe9d/T//x17Xr+TL8PM+o66grstlUbrzxVv7wh8tOeM3f/1g3oMFwLJZNTU3ce+9UmpoaGT16HOPHX8oDD6Rx771T23nXkyeINpsVna7tx/3RPSvbnH2GY2V27tyOr6+fI8kB0Ol0JCWlUFBgHxcWFBRMeXlZm/PKy8txdXVztIZ1Fum6EkKI84yHXsekuBDuSA537J1lU2G1ycoXloup8bsElNY1eZorKc3+EFP+YowGLSNHXsyIEeNwdbV3ezQ1NfLdd4vYtWvHCR90iqLgNjgCXWjrxqNmK/XfH2wz9dzDJ4DkzFH2OlitlB/6EQV760OZRzQV2W3HkHRXvx7bEhcXz6FDeURERDq+yspKef31/6Ohof6k19iwYS379u3l1Vff4vbb72TMmHG4u7tTUXGsS+lUY2js97RvEbJz5/Y25Tt2bCcmJvYkZ5wdQUHBVFdXUV5e7iiz2Wzk5R10tFj16ZPJtm1b2py3efNGMjJ6odF0bioiiY4QQpyn4rzcuC8titFhfmhbP//KzS18UurLZs9bwO3Yh1u9aStFe9+koXof0dGxXH751YSE2FtxVFVl48Z1LFq06ITxEopWg/vIGDS+9vFBtrpm6lfkorYc60rpcdF4XD28ASjO24Ovp337ihatEbPpwviYObqGUVbWXszmJm666VZ++ukHZs9+i/z8Q2zZsolnn/0PtbU1bVp0jhcYaN8h/ttvl1FcXMSOHdt59NEHsVgsjtlaR+9z8GA2dXV1bc6PjY1j0KAhvPTS86xZs4r8/EO8++47rF79EzfccHNnPTpDhgwnNDScxx77G7t37yIvL5cXX3yGkpJiJk26HoBJk65nz55dvPnmqxw6lMenn37EypUruOmmWzutXkddGL+BQgjRTek0GsaG+/M/vxqsvLnCzCeNQyj3uxxFY++msLbUUn5wLuV589HrVMaOnUB6em/HOQcOHGDhwnkndDEoLlo8xsShtK6TYzU1Urf8oGMjUL2LgV7Dr3Qc76I5AK2tOs2Wtl1i3VVmZn9SU9O5++4prFmzmlGjxvLkk8+xevVP3Hbb9Tz55L/o168/zz47/ZTXSE1N5777HuCLLz7lxhuv4dln/03v3pmMHTuePXt2AeDt7cOll07kjTdm8t//vnnCNZ588jmGDRvBCy88zZ/+dAOrV//M00+/yKhRYzvt2V1dXXn11VmEhITxj388yF13TaGkpJg335xDWJh9IHxcXDzPP/8y69evYfLkG1m8eAGPP/70CVPOO4OinqtVjrowq9VGRcXJmxJ/D51Og6+vO5WV9VgstrN+/e5EYtV+Eqv2u9BiZVNV1pdW811hOc22Y2/tad4GBrMObf0+R5lG54ZfxARcfXpQWHiINWtWOloNNBoNmZkD6NEjo01XibWykbpvclBbExytnyvu4+LQGHWoqsqPn8+k7HAOAPUtmZjVWPTWJsZfHUZkSgYALS3NmExF+PuHotefOE7kfKHTaS6I36mz5UzidbrfFT8/d7Ta07fXSIuOEEJ0ExpFYXCwD39JjybJ+9jU493VZj6q60eB71UomtYuKEsD5XlfYsqbR1hoMFdccQ2hofZFBm02G5s3r+fHH79ts9y/1rftdhHWikZ7N5ZNRVEUMoZe7jjWVWtPqlq0Rnau2tDpzy7EqUiiI4QQ3YyvQc9tiWFcGxeMm87+Nt9otbGkzMD3huuxeGQ4jm2o2kPx3jfR2kq57rrryMjo5XitsDCfxYvnUVJS5Chz7I3l2prslDfQtMM+yysgLBafQHtXhUZTj1axr0tTU37BdxwIJ5JERwghuiFFUejt78X96dH0Pm7K9oFaMx/V9qTQ7xpH647VUkfx/o84vH8hfTP7MmbMJY49nBoa6lm+fAkHDx5wXEPrY8R9dOzRXSgw/1KKpaQORVFI6DXUcZxRY+/GMltPPvhWiHNBEh0hhOjGPPQ6ro0P4dbEUDz19innTVYbi0v1rDBch8U92XFsWcE6Du+eRYCPps2sLJvNxurVP/LLL8f2JdIFuGHs3bpuigr1q/KxmS1E9+iH3sWeJLlo8lFopFHnR37rYnZCnGuS6AghxAUgxceDv6RH08f/WOvO/tpm+9gdn4mg2LuiWswVlOx/l+bqjYwZM56kpB6O47dt28TatT85Vuk1pAehbV0pWa1voWFlHlqNnvieQwBQFBVX7X4AdqxY86saSXeW+G1na66UJDpCCHGBcNNpmRQXwi0JbVt3lpS786Prjdg84luPVKkpXkXpgffI7JlEnz4DHNfIydnPt98uoqGhAUWj4D4syjE42VJcT8PaApIyR6LV2aeiGzQHUWiktrx1ppZWCyiYzccGOQtxMkfXdNJqf98mDjK9HJle3hVIrNpPYtV+EqtTa7BYWXyojO0VtY4yN52W0d4mwqu+RVFa46Vo8Qkbi6nOn7XrjrXmuLq6MWrUxQQEBGEpa6Du22xo3aPK0COArPoN7N+2EgCzNQqLOYk//eMyNBoN1dUmGhvrMBrdMRrd0Gi0v7nib1ek1SpYnbAn1/mqI/FSVZXmZjN1dZW4unrgfYq90to7vVwSHSTR6QokVu0nsWo/idXp7amsY0FeKXWWYysdp3hqGWJbgd58bLaV0SsRjedQVv78s2MLA41Gy6BBw4iPT6I5v5qGlXmOHildmi/fbXidFnMjANUtI8m8yId+I0ejqiqNjfXU1VVhs51+s8quSKPRYLPJ71R7nUm8XF098PLyO2USLIlOB0ii43wSq/aTWLWfxKp9GixWFheUsb38WOuOh07DxZ6HCapd6SjT6j3xCJnAus37KC0tdpSnpvYkM3MALTmVNK4tdJTXhTWy5pdPALDYfNFpwrjur3c6XldVFZvNdt4lO1qtgre3G9XVDdKq0w5nEi+tVnfaPbDam+jI7uVCCHGBc9NpuTExjEFRzXywM596i5U6i435laFket9A36bFaK21WFtqqS6Yy0UZQ8jKT+LAAftA4z17dlJbW8Pw4WMwNtto2nwEAI8jrgS6xVLWkItOU0mLuW0XhKIoaLXa1nE75w+dToPRaKSx0SoJdDs4O14yGFkIIQQAmSG+/LVXDMnHraq8tRrmqVdQYTy2yGBt6Rpi/Q8ysH8fR7dCQUEeK1d+hzbJB0NGkOPY3v5jUFo/arQu+fyyYf05ehoh7CTREUII4eDpouPWxDCuiA5Cr7EnMRXNVr6oS2en2+VYVfvHRnN9Ia4tPzBqSIqjRebw4QK++24xtiQvtP72XbY1DSoxRvvGjRqlmT1rfnTCU4kLmSQ6Qggh2lAUhYuCvLnvuB3RVWBtjQdL9NdTo7Nv86Bazdiqf2REPw8MLvZkx2QqY9k3CzCnezhWTk50T8NbFwiAzVp31tZHEaI9JNERQghxUgFGF/7cI4Kx4X6OD4sjTSpfmEew3zCco/mKrWEfQ9Ib8Pex7zDd0FDP8nXfUhFtP0BBoafHaPSKCxptLasXf+WEpxEXKkl0hBBCnJJWURgd5s9dPSIJMNoXAWxRVX6oD2eFYRJNin1lZFtLJRlRRcRFtB7T0sKa/E3keVQA4Kb1oLfnWBQ0HM7a5ZyHERckSXSEEEKcVoSHkf9JjWJgkLejLLtBx5fqFRTpUuwFagtRvgX0SVJRFBVVVdlZf4BftIewoeKnDyXdYxiqppqSw/lOehJxoZFERwghRLu4aDVMjA7itsQw3HX2MTl1FpWFTX3Y7DLOMVDZ21DC4LRGjHoLALm2YjYrB7BhI8yQQIp7b376/GOnPYe4sEiiI4QQokOSfdyZlh5FotexaeibGwJYrLuGauwtPnqlhotSagjwagagmEq2cRAVlVjXnkS6BFFbW+WM6osLjCQ6QgghOsxTr+O2pDD+EBmAtnV2VZFZyzzbBLI1aagqKDSTHl1BfGgdCiqHFRPbOIgNlR4e/dj6gQxKFp1PEh0hhBBnRKMoDAvx5a4ekfgb7IOQm23wfXNPftKOp1m1L74fGVBH77gKXHRWCpVyNrMfKzaSXVMoys115iOIC4AkOkIIIX6XcHcj/5MWRd8AL0dZVrMf85SrKFHt6+d4u7fQL9GEj7uZYqWKNewBrY6iZVucVW1xgZBERwghxO9m0Gq4OjaY6+JCMLRutFht0bLAOpYd9EZVwUVno1dsJRH+9VQpdfzMLnzcgln3+Xwn1150Z5LoCCGEOGt6+XtyX1oUUcetqLzO0oNvlUtoVF1QFEgIq6VHZDXNmmbWKftwqXOhsqj4ty8sxBmSREcIIcRZ5WfQM7VHBCNDfY/uAkGexZf5XEGRGgBAsE8TmfEm9C7N7NYeYdviH2lubnZepUW3JYmOEEKIs06rKFwcEcCfko6tuVNr1fG1dSzb1XRUFTxcLfRNMOHraabQUMsP733q5FqL7kgSHSGEEJ0m0dud+9KiiPW072auorDemsE3jKVRdUGvU+kZU0lUYB2lhia+eec951ZYdDuS6AghhOhUXi46piSHMyrUz9GVdcgayDzb5RSpASgKxIXUkRZdRYXRLMmOOKsk0RFCCNHptIrCuAj/Nl1ZdaoLX1vHss3WA1WFQG8zmYnl1Hk2suztd51cY9FdSKIjhBDinDlZV9YGW2+W2kbRqLrgZrCSmVCONaCOpW+/j01VnVxjcb6TREcIIcQ55ejKCjvWlVWghjDPNoES1Q+dViUjphLXiAqWzfkAU2mZU+srzm+S6AghhDjntIrCuHB/JieFH9eV5cpC6zh22RIAiA+tJTC2hNXLlrBz7VpnVlecxyTREUII4TQJ3m78T1oU0R72BQZtaFht688PtkG0qFpCfJuITygiJ3cPP3w618m1FecjSXSEEEI4lbeLjjuSIxgS7OMoO6DGMN96MVWqJ15uLaQnFlOrLWfZOzJIWXSMJDpCCCGcTqtRuDQqkBviQ3DR2EfuVOLDPOt4DtoiMOht9Io3oQmuYdk7H1BVYXJyjcX5QhIdIYQQXUaGnyf3pEYRZHQBoAU939mGsc7aG1VR6BFZjVdMKeu+WsqOjWucXFtxPpBERwghRJcS5OrC3amR9PTzcJTtUHuw2DqaetVIZEADoYmHKcrK4duPpCtL/DZJdIQQQnQ5Bq2G6+JCuDwqEG3rHPQigvjSeglH1ED8PJuJSSxA1aosfPVVWiwtzq2w6LIk0RFCCNElKYrCoGAfpqZE4KXXAdCIK4uso/nFloSrwUpiwmGMoTq+e/NdCgoPObnGoiuSREcIIUSXFuXhyv+kRRLvdXQ1ZQ1rbH350TYQRashOa4MY0wjexb9yKoflji5tqKrkURHCCFEl+eh1zE5KZzhIb6Osv1qLAusY6nHjcSIajwTymk8WMGXc15Fla0jRCunJzo2m42ZM2cybNgwevXqxZQpUzh06NTNj2VlZfz1r3/loosu4qKLLuIvf/kLxcXF57DGQgghnEGjKFwSGcD18SHoW6egl+PHPOslHLYFExHQQGDSYby1Psx9ZTo1dbVOrrHoCpye6Lzxxht89tlnPP3008ydOxdFUZg6dSrNzc0nPf6BBx6gqKiId999l3fffZfi4mLuueeec1xrIYQQztLTz5O7e0TiZ9AD0ISBxbaR7LCl4OfRTERSPv7BgXw/6z12Z+10cm2Fszk10WlubmbOnDncd999jBgxgpSUFGbMmEFJSQnLly8/4fiamho2bdrE1KlTSU1NJTU1lT//+c/s3r2byspKJzyBEEIIZwhxM3BvaiRJ3m6AfdzOOlsfVtgG42KAuMQCPGMM5H2znmWLPnVybYUzOTXRycrKor6+noEDBzrKvLy8SE1NZdOmTSccbzAYcHNzY8GCBdTV1VFXV8fChQuJiYnB29v7XFZdCCGEk7nqtNyaGMbI0GPjdrLVaBZYx9GodSMxrhi3ODP6/CY+fft/aW6RKegXIp0zb350bE1oaGib8qCgIIqKik443mAw8Mwzz/Cf//yHfv36oSgKgYGBfPTRR2g0vy9n0+nOfs6n1Wra/FecmsSq/SRW7Sexar/zOVYTYoKI8nTls+wimm0qJnyZZx3PWM1a4iOLKTC0EH4olM9nTmf8bZMJDQn7Xfc7n2PlDM6Ol1MTncbGRgBcXFzalBsMBqqrq084XlVV9u3bR58+fbjjjjuwWq3MmDGDe++9l08//RQPD48TzmkPjUbB19f9jM5tD6/WKZHi9CRW7Sexaj+JVfudr7Ea5utOfLA3b2w9SEm9GTMGlthGchE76B24l3JDC9G5Mfww+zPSLhvAqJHjf/c9z9dYOYuz4uXURMdoNAL2sTpHvwcwm824up4YkCVLlvDJJ5/w448/OpKaWbNmMWrUKObNm8dtt912RvWw2VRqahrO6NzfotVq8PJypaamEavVdtav351IrNpPYtV+Eqv26w6xcgXuSY3ks+wi9lbWAwobbL0xKT6M9NqIMTkXmy6afUu2k713J1dfdzeKonT4Pt0hVudSZ8XLy8u1Xa1ETk10jnZZlZaWEhUV5SgvLS0lJSXlhOO3bNlCbGxsm5Ybb29vYmNjycvL+111sVg675fVarV16vW7E4lV+0ms2k9i1X7ne6z0KNwUH8oPRyr44UgFANlqDNVWT8YbVxGWnIvNJYKGAjMfvPYMV976F9zdz6xF/3yP1bnmrHg5tYMxJSUFDw8PNmzY4Cirqalhz5499OvX74TjQ0NDOXToEGaz2VHW2NhIYWEh0dHR56TOQgghujaNojA23J+bEkJxaV1vpwx/5lnHU6nzJSa+ANdoCLEGMX/WTHJz9zm5xqIzOTXRcXFx4eabb2b69OmsWLGCrKwsHnjgAUJCQhg3bhxWq5WysjKampoAuPLKKwG4//77ycrKchzv4uLCVVdd5cQnEUII0dWk+XpwV49IfF2O7ZP1tXUMB5QY4mNK0Mc0EOcRydpPl7Fq9UIn11Z0FqcPGZ82bRrXXHMN//rXv7jhhhvQarXMnj0bFxcXioqKGDp0KEuXLgXss7E++eQTVFXltttuY/Lkyej1ej799FO8vLyc/CRCCCG6mhA3A/ekRhHraR/3aUPLSttA1tn6EBVWjTauhISgMApXFTLvs1ew2qQrqrtRVNkQBKvVRkVF/Vm/rk6nwdfXncrKeunHPQ2JVftJrNpPYtV+3T1WVpvK4oIyNpQem9EboRQxTrOGuloNzXnxFJYW0+RhYuLNf8XT0/OU1+rusTrbOitefn7u7RqM7PQWHSGEEKKzaTUKV0QHcWV0EK3DdihUQ5lnHY/G04Bn4n6CwwLwbvJn0VuvcFDG7XQbkugIIYS4YAwI8ub25AjcdFoAavBkvvViTIYgghOz8Qz3JMQQzMaPF7F61RIn11acDZLoCCGEuKDEerpyb2okIa72xWpb0LPMNpw92mQi4w6hiYCYgGAKVh7kq7n/h03G7ZzXJNERQghxwfE16LmrRyRpvkfXZbMvLriSQURGldISWUlySChNOXrmvv1vGhrP/qKy4tyQREcIIcQFyUWr4Yb4EMaE+TnKstUYFtvGEBjaREvsIVJCItDWBrPotefILzjoxNqKMyWJjhBCiAuWRlEY86vFBUsIYL71Ylz8dBC/l7igcIy6IDbOmcvGdcudXGPRUZLoCCGEuOCl+Xrw5x6ReOvtiwvW4c4C6zjqPPxxTdxDYFAInr5eHPomi0WfzURWZjl/SKIjhBBCAGFuBu5OjSTC3QAcG6R80BCPf8I+XIO8CQkyULXHhXeefhBzs/k0VxRdgSQ6QgghRCsvFx1TUyLIOG6Q8jpbJhu1fQmLz8MSrCExyJ26iggWvPQEZaZSp9ZXnJ4kOkIIIcRx9BoN18WHMPq4Qcp71QS+UUYSGlNOXWgVPYP8aSSCVW+8Ttberc6rrDgtSXSEEEKIXzm6A/q1ccHoWldSPqIGs1Adh19kM7Xh+fT0j6TFzZe9ny7n5+VfOrfC4pQk0RFCCCFOobe/F3ekRODeupJyNV58ZR2HNsiVpugskvwS0PrqKV1VzNcfvySDlLsgSXSEEEKI3xDl4co9qZEEt66kbMbAEttIKnzCUOJ3EeIfj1eAlfpsL+bP+hdN5kYn11gcTxIdIYQQ4jSOrqSc7O0GgA0NP9sGkOWWhlvCblwDQokMsNJQEcuSV/9NaWmxk2ssjpJERwghhGgHg1bDLYlhDAv1dZTtVFNY7TIY/4SDNAe4kupvpM4aw9q3XmXPrk1OrK04ShIdIYQQop00isLlMUHckh7l+ADNV8NZqozBP66cqsAGMn2DqTMGcWDud6z6/nOn1ldIoiOEEEJ02PCoAO5IjcCotU/JqsCHr7kYj5gWTCFH6OOXQJOPgfIfi1j06XTZAd2JJNERQgghzkCCtzv3pEbhb7BvG9GIkcW2MVjDPakM30+aXxpKgJmGvd589c6/aG5udnKNL0yS6AghhBBnKMDowt2pUcR5GgGwomWFbTAlATHUR+8ixi8dT/8qGkuS+fr1f1FZVeHkGl94JNERQgghfgc3nZbJSRH0D/RylG1R09nl1Qdb3C4CfBMJ9a2kviGdlW++QG7uPifW9sIjiY4QQgjxO2k1CldGBzEhMgCwLxqYo0azyjgUfWI2Bv9QEn2aqFYS2fXeR2zZ9KNzK3wBkURHCCGEOAsURWFoiC+3Joahb902ooRAvtWNxphQRHOgkZ4+rpjcgzmyYA0rln7o3ApfICTREUIIIc6iFB8P/twjEs/WTbJq8GSJMhaX2AaqAuvp6xtOjY8rdavLWfjxizIjq5NJoiOEEEKcZeHuRu5OjSbYaJ+RZcbAUkZiizZQHnyYPr4pmP3NtOz1Yv5//0lzs9nJNe6+JNERQgghOoGPQc+dqVEkerkCYEPLD+pgqsJDKQ/fT7pvb/QBlViOJLJw1t+prjI5ucbdkyQ6QgghRCcxarXcmhhO/4BjM7I22XqSG5hKddRu4rwz8fEtp6m6Dz/MepZD+fudWNvuSRIdIYQQohNpNQpXxgQxPtzfUbZPjWOrzwDq43YT6JtKhI+Jalsvdr47m507Vjmxtt2PJDpCCCFEJ1MUhRFhftwQH4JWsU8/P6yGsMptOC3xObj6RpHgXU+5IYWCL5bz84/znVzj7kMSHSGEEOIcyfDzZGpKJG5a+8+VeLPcZRSWhGJsfj5keCuUeoVTs3wvS7+a5dzKdhOS6AghhBDnUJSHK3enRuPvYv8IbsSV77SjaIlvotYfMr19qfD1xLKxgfkfPoNVpp//LpLoCCGEEOeYv9GFu9NiiHbXA2BBxwplCLVxrpgCq+jrE02dvw1lry/zZv9DNgT9HSTREUIIIZzATafl9pQoevm6tZYorFczKY4KozS4gD6+abT410B+AgveeZTammqn1vd8JYmOEEII4SQ6jYZr48MYFerjKNulJrM/LI2SsGzSfXuj8y3DWtqLb2Y/QWnxYedV9jwliY4QQgjhRIqiMC4ikKtjgtC0bgh6SI1gW0B/yqIPkOSbiZdvEea6vqx5bzoHDvzi5BqfXyTREUIIIbqAvoHe/Ck5AhfFPvi4DH/WeA2jPD6HML90grxLqLH2IevT99i6WXY/by9JdIQQQoguIsHLjbvTYvDS2Vt26nBnpesIKhKK8PGLJ9q7CpO+JyULv+OnH75wcm3PD5LoCCGEEF1IsKuBe9LiCDHYf27GhR/1wyhPrEPvH0Syt5lij0Qavt/FssX/dW5lzwOS6AghhBBdjJeLjjvT4kn0tO9+bkPLas1AihJcMAcY6O3tQrFPGOqaYhbMnY6qqk6ucdcliY4QQgjRBRm0Gm5NjqG/v6ujbCsZ5MUGUxnUSF+fAMr9fNBvszLvo6ewWmVhwZORREcIIYToorSKwpWx4YwP83aU7SeerMhkysPKyPSJoirAgGG3J1+890/MZllY8Nck0RFCCCG6MEVRGBEexHWxgWiwt9oUEsq24ExKow7Tyzee+kArxpwI5r//KHV1dU6ucdciiY4QQghxHugV4MPtyZEYFCsAJnxZ7zeI4rjDpPqmYAmoxyU/mUUf/IsKk8nJte06JNERQgghzhOxXm7cnRaHl9ae7NThzmqPYRQnlhDnn4zGvwptUQbfffIkR44UOLm2XYMkOkIIIcR5JMjVhXszEghxsXdjNePCz8YhHEmqITwwAVf/cjBlsvrT/yUnZ4+Ta+t8kugIIYQQ5xlPvY470xOJd1cA+/TztbqBHEpU8A2Kxtu3nJb6vuz4chZ792xxcm2dSxIdIYQQ4jxk0Gr4U0o8mb56R9k2TQbZiT64hgYR7FtBXUtfshZ+yPbta5xYU+eSREcIIYQ4T2k1ClfHRzMu1MNRtp94dsfGoInwJsqnlhpbHw4tnseG9d87sabOI4mOEEIIcR5TFIVREaFcG+PvmH5+mFC2RmTQEutGnK+ZKm0GJd8t4+efFzm5tueeJDpCCCFEN9A70I/bk8Ix0AJABT5sDMqkMVFLoi9U6FOp/mEVK77/3Mk1Pbck0RFCCCG6iVhvD+5Oj8dLY18huR531voMpCYFevgbMBkTaPp5C98t+9DJNT13JNERQgghupEgVwP/0zOZYJ092WnGhTXugyhLVUkL9KLcPZaWNXtY/PVbTq7puSGJjhBCCNHNeOh13NWzB7FGCwBWtKw1XERBqoa0IF8qvSLQbDjE1/NndvudzyXREUIIIbohg1bDlLQUMjyPlihs1vUhK9WN5NAAqn1C0W8q46t5L3frZEcSHSGEEKKb0moUrk9OYIj/sbV29mhS2JocSExkEDUBgRi31PDVF9O7bbIjiY4QQgjRjSmKwqVxMVwa5o7SOv38kBLJ+vhoQmOCaAj0w7C9kflf/C82m83JtT37JNERQgghLgBDwsO4Oc4ffev08zL8WR2VjG9SEC2BPrhsb2H+5y9i7WbJjiQ6QgghxAWih38Ad6ZE4U4TAHV4sCq4J4a0IDTBXrjsggVzn+9WyY4kOkIIIcQFJMzTg//pmYS/Ug+0Tj/37Y2tVxCGIA90u7V8Nfe5bpPsSKIjhBBCXGC8DQbu7Z1BlLYOsO9+vs69D7WZoXiGe6PfrWfBZ890i2RHEh0hhBDiAmTUaZnauzcphvrWEoWthp4U9Q7HJ9IX7V4DC+ee/8mO0xMdm83GzJkzGTZsGL169WLKlCkcOnTopMe++uqrJCcnn/Tr73//+zmuuRBCCHF+02oUbsnoxQCPZkfZbl0K2b2jCYwJRNljZMFnz57XyY7TE5033niDzz77jKeffpq5c+eiKApTp06lubn5hGOnTJnC6tWr23zdf//9GI1GbrvtNifUXgghhDi/KYrClT3SGOMHYF9LJ0cTy46MOEISg1GyDCz87MXzdp0dpyY6zc3NzJkzh/vuu48RI0aQkpLCjBkzKCkpYfny5Scc7+7uTmBgoOOrsbGRt956i0cffZSUlBQnPIEQQgjRPYyJT+SPoQY0qhWAQiWMNT1SCEiLgH16Fsx96bxMdpya6GRlZVFfX8/AgQMdZV5eXqSmprJp06bTnv/888+TmJjIdddd15nVFEIIIS4I/SOiuSnGF71q71WpwJef49LwzoxE3afw9ef/d94lOzpn3ry4uBiA0NDQNuVBQUEUFRX95rm//PILK1as4P3330ej+f35mk539nM+rVbT5r/i1CRW7Sexaj+JVftJrNqvu8cqIywUXzcjc/bkUqe404ArP4VlMMCoo2VDPkvmvc6V109r9/WcHS+nJjqNjY0AuLi4tCk3GAxUV1f/5rnvvfcevXr1atMadKY0GgVfX/fffZ1T8fJy7bRrdzcSq/aTWLWfxKr9JFbt151j5evrzuNBvkxfuZ5SxRcLOtb6pTNgmELz2jyWzX+bG29/oEPXdFa8nJroGI1GwD5W5+j3AGazGVfXUwekoaGB5cuX88QTT5yVethsKjU1DWflWsfTajV4eblSU9OI1Xr+jlg/FyRW7Sexaj+JVftJrNrvQorVtAH9mL1xHblKEKCw0SOd/sNU6lcf5pM5/8cf/njHaa/RWfHy8nJtVyuRUxOdo11WpaWlREVFOcpLS0t/c3DxqlWrsNlsjBs37qzVxWLpvF9Wq9XWqdfvTiRW7Sexaj+JVftJrNrvQoiVBg139B/Mh5vXkUUgAJtcM+gzTIN53RG+03/E6EtubNe1nBUvp3YwpqSk4OHhwYYNGxxlNTU17Nmzh379+p3yvC1btpCWloaXl9e5qKYQQghxwVIUhVv6DSJDU+Uo22ZMo3ZwJE27avh5xQKn1a09nJrouLi4cPPNNzN9+nRWrFhBVlYWDzzwACEhIYwbNw6r1UpZWRlNTU1tzsvKyiIpKclJtRZCCCEuLIqicH1mP/q61DjKfjGkUDI4lrodxaxffeKSMF2F04eMT5s2jWuuuYZ//etf3HDDDWi1WmbPno2LiwtFRUUMHTqUpUuXtjmnvLwcHx8f51RYCCGEuAApisLVvfoyxLXOUXZAH0f24AxKdh5k+5Y1TqzdqSnq+TYhvhNYrTYqKupPf2AH6XQafH3dqays7/b9uL+XxKr9JFbtJ7FqP4lV+0ms4Md9O1lR44INLQCeai0pe7eR2i+T5LQ+bY7trHj5+bm3azCy01t0hBBCCHF+GZXck0lBKkbVPrSkVvFke+pAdh3YR27OfifXri1JdIQQQgjRYb2iezA52hdfWxUALbiwJTyTtXlZFB7KdW7ljiOJjhBCCCHOSGRwBHelpxDRcnQ3A4XdXj349lA25SXFTq3bUZLoCCGEEOKMebp7MnXAYHrUZzvKclxjWHDgF6orTU6smZ0kOkIIIYT4XfQ6HbeM/AN9KnajYB9wfNAQw+e7t1HfcPYn+3SEJDpCCCGEOCsmjb+SPqZjyU6uIZpP1v2M2Wx2Wp0k0RFCCCHEWXPNJVfRu2yXI9k54BbH219+7rT6SKIjhBBCiLNq0oSr6Vmx1/FziVeQ0+oiiY4QQgghzrrrxl9Jb9MvhFhLiS4rdFo9nLp7uRBCCCG6r2svuarNysjOIC06QgghhOi2JNERQgghRLcliY4QQgghui1JdIQQQgjRbUmiI4QQQohuSxIdIYQQQnRbkugIIYQQotuSREcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbktRVVV1diWcTVVVbLbOCYNWq8FqtXXKtbsbiVX7SazaT2LVfhKr9pNYdUxnxEujUVAU5bTHSaIjhBBCiG5Luq6EEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG5LEh0hhBBCdFuS6AghhBCi25JERwghhBDdliQ6ncBmszFz5kyGDRtGr169mDJlCocOHXJ2tbqcN954g1tuuaVN2d69e7n55pvp3bs3I0eOZPbs2U6qnfNVVVXx+OOPM3z4cDIzM7nhhhvYvHmz43WJ1TEmk4mHH36YgQMH0qdPH/785z+TnZ3teF1idXK5ubn06dOH+fPnO8okVm0dPnyY5OTkE76++OILQOL1awsWLGDChAlkZGRw6aWXsmzZMsdrTouVKs66V199VR00aJC6cuVKde/eveqUKVPUcePGqWaz2dlV6zLeffddNTk5Wb355psdZRUVFepFF12k/vOf/1Szs7PVL7/8Us3IyFC//PJLJ9bUeSZPnqxOnDhR3bRpk5qTk6M+9dRTas+ePdXs7GyJ1a9MmjRJve6669SdO3eq2dnZ6n333acOGTJEbWhokFidQnNzs3rVVVepSUlJ6rx581RVlX+DJ7NixQo1IyNDLSkpUUtLSx1fjY2NEq9fWbBggdqjRw/1vffeU/Py8tTXXntNTUlJUbdu3erUWEmic5aZzWa1T58+6ieffOIoq66uVnv27KkuXrzYiTXrGoqLi9Xbb79d7d27t3rJJZe0SXRmzZqlDhs2TG1paXGUvfTSS+r48eOdUVWnysvLU5OSktQtW7Y4ymw2mzpu3Dj1lVdekVgdp6KiQn3ggQfU/fv3O8r27t2rJiUlqTt27JBYncJLL72k3nLLLW0SHYnVid5880114sSJJ31N4nWMzWZTR40apT7//PNtyqdMmaLOmjXLqbGSrquzLCsri/r6egYOHOgo8/LyIjU1lU2bNjmxZl3D7t278fb25uuvv6ZXr15tXtu8eTP9+/dHp9M5ygYOHEhubi4mk+lcV9WpfH19efvtt0lPT3eUKYqCqqpUV1dLrI7j6+vLyy+/TGJiIgDl5eXMnj2bkJAQEhISJFYnsWnTJubOncsLL7zQplxidaJ9+/aRkJBw0tckXsccPHiQw4cPc/nll7cpnz17NnfeeadTYyWJzllWXFwMQGhoaJvyoKAgioqKnFGlLmX06NG89NJLREZGnvBacXExISEhbcqCgoIAOHLkyDmpX1fh5eXFiBEjcHFxcZQtW7aM/Px8hg4dKrE6hccee4whQ4bwzTff8Mwzz+Dm5iax+pWamhr+9re/8a9//euE9ymJ1Yn279+PyWTixhtvZPDgwdxwww2sWrUKkHgdLy8vD4CGhgZuv/12Bg0axKRJk/jhhx8A58ZKEp2zrLGxEaDNBxSAwWDAbDY7o0rnjaamppPGDbjgY7dlyxb+8Y9/MGbMGEaPHi2xOoXbbruNefPmMXHiRO699152794tsfqVf//73/Tu3fuEv7xB/g3+WnNzM3l5edTV1XH//ffz9ttvk5GRwdSpU1m3bp3E6zh1dXUAPPLII1x22WXMmTOHIUOGcM899zg9VrrTHyI6wmg0AvZ/IEe/B/v/SFdXV2dV67xgNBppbm5uU3b0H4Cbm5szqtQlfP/99zz00EP06tWLl19+GZBYncrRLoannnqK7du389FHH0msjrNgwQI2b97MokWLTvq6xKotFxcXNm3ahE6nc3xIp6enk5OTw+zZsyVex9Hr9QDcfvvt/PGPfwSgR48e7Nmzh3fffdepsZIWnbPsaFNwaWlpm/LS0tITmu1EWyEhISeNG0BwcLAzquR0H330Effddx/Dhw/nnXfecSTPEqtjTCYTixcvxmq1Oso0Gg3x8fGOf3cSK7t58+ZhMpkYOXIkffr0oU+fPgA88cQTXHrppRKrk3BzczuhJSIpKYmSkhKJ13GOfr4lJSW1KU9ISKCwsNCpsZJE5yxLSUnBw8ODDRs2OMpqamrYs2cP/fr1c2LNur7+/fuzZcuWNh9Y69atIzY2Fn9/fyfWzDk++eQTnnrqKW666SZeeeWVNm+2EqtjSktLefDBB9m4caOjrKWlhT179hAfHy+xOs706dNZunQpCxYscHwBTJs2jbffflti9StZWVn06dOnzfpVALt27SIhIUHidZzU1FTc3d3ZsWNHm/L9+/cTFRXl3Fh1+ryuC9DLL7+sDhgwQP3+++8d6+hcfPHFso7OrzzyyCNtppeXl5er/fv3Vx955BH1wIED6rx589SMjAx1/vz5Tqylcxw8eFBNS0tT77333jZrd5SWlqo1NTUSq+PYbDZ1ypQp6vjx49VNmzap+/btUx944AG1f//+6uHDhyVWp3H89HKJVVtWq1WdNGmSetlll6mbNm1Ss7Oz1WeffVZNT09Xs7KyJF6/8vrrr6t9+vRRFy1apB46dEh944031JSUFHX9+vVOjZUkOp3AYrGoL774ojpw4EC1d+/e6tSpU9WCggJnV6vL+XWio6qqumPHDvXaa69V09PT1VGjRqkffvihk2rnXG+++aaalJR00q9HHnlEVVWJ1fFqamrUJ554Qh0yZIjas2dPdcqUKW3W1ZFYndrxiY6qSqx+zWQyqX//+9/VIUOGqBkZGep1112nbtq0yfG6xKutOXPmqKNHj1bT0tLUiRMnqsuXL3e85qxYKaqqqp3bZiSEEEII4RwyRkcIIYQQ3ZYkOkIIIYTotiTREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSHEeUFWwhBCnAlJdIQQXd6KFSt45JFHANiwYQPJyclttlkRQohTkd3LhRBd3nvvvef4Pi0tjblz5zp2KhdCiN8iiY4Q4rzi4eFB7969nV0NIcR5QrquhBBd2i233MLGjRvZuHGjo8vq+K6rV199lUsuuYTvv/+eyy67jIyMDK644gq2bdvG9u3bmTRpEj179uSyyy5j3bp1ba69f/9+7rzzTjIzM8nMzOTee++loKDAGY8phOgkkugIIbq0J554gtTUVFJTU5k7dy51dXUnHFNcXMxzzz3HXXfdxSuvvEJ1dTXTpk3jr3/9K9deey0vv/wyNpuNBx54gKamJgByc3O5/vrrMZlMPP/88zzzzDMUFBRwww03YDKZzvVjCiE6iXRdCSG6tISEBDw8PADo3bv3SQchNzY28sQTTzB8+HAAcnJyeOmll3jmmWe45pprALBarUybNo3c3Fx69OjBa6+9htFo5L333nNcf9CgQYwdO5b//ve/jsHPQojzmyQ6QohuITMz0/F9QEAAQJuxPD4+PgDU1NQAsH79ei666CKMRiMWiwWwj//p168fa9euPTeVFkJ0Okl0hBDdwtFWmeMZjcZTHl9VVcXSpUtZunTpCa/5+fmd1boJIZxHEh0hxAXJ09OTwYMHM3ny5BNe0+nkrVGI7kL+NQshujyNRoPNZjur1xwwYADZ2dn06NHDkdioqspDDz1EdHQ0PXr0OKv3E0I4h8y6EkJ0eV5eXuTm5rJu3TrHGJvf65577iE/P58777yT77//nlWrVnHfffexZMkSUlJSzso9hBDOJ4mOEKLLu+mmm9Dr9UydOtUxPfz3SklJ4eOPP0ZRFP72t78xbdo0ysrKeP3117n44ovPyj2EEM6nqLJTnhBCCCG6KWnREUIIIUS3JYmOEEIIIbotSXSEEEII0W1JoiOEEEKIbksSHSGEEEJ0W5LoCCGEEKLbkkRHCCGEEN2WJDpCCCGE6LYk0RFCCCFEtyWJjhBCCCG6LUl0hBBCCNFtSaIjhBBCiG7r/wGAGBXLInHb8AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Define a function to compute the minimum filter\n", + "def min_filt(S_LLS, m):\n", + " \"\"\"Applies the SNIP minimum filter defined in Eq. 2\"\"\"\n", + " S_LLS_filt = np.copy(S_LLS)\n", + " for i in range(m, len(S_LLS) - m): \n", + " S_LLS_filt[i] = min(S_LLS[i], (S_LLS[i-m] + S_LLS[i + m])/2)\n", + " return S_LLS_filt\n", + "\n", + "# Apply the filter for the first 100 iterations and plot\n", + "S_LLS_filt = np.copy(S_LLS)\n", + "for m in range(200):\n", + " S_LLS_filt = min_filt(S_LLS_filt, m)\n", + " # Plot every ten iterations\n", + " if (m % 20) == 0:\n", + " plt.plot(df['time'], S_LLS_filt, '-', label=f'iteration {m}', lw=2)\n", + "\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the number of iterations increases in the above example, the actual peak signals \n", + "become smaller and smaller, eventually approaching the baseline. \n", + "\n", + "### Inverse Transformation and Subtraction\n", + "Once the signal has been filtered across $M$ iterations, the filtered signal $S'_{LLS}$ can \n", + "be passed through the inverse LLS operator to expand the dynamic range back to the scale of the observed data. This inverse operator, converting $S'_{LLS} \\rightarrow S'$ is defined as\n", + "$$\n", + "S' = \\left(\\exp\\left[\\exp\\left(S'_{LLS}\\right)-1\\right] - 1\\right)^2 - 1. \\tag{3}\n", + "$$\n", + "\n", + "Performing the subtraction $S - S'$ effectively removes the baseline signal leaving \n", + "only the \"true\" signal\n", + " " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal')" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACTR0lEQVR4nOzdd3wb5f3A8c+dTtO2LG/Hzk4IAbIhEDaEETZNgdL2By2UUsJqwygtUEooZRbCKIUUGtq0lA1lljJbVsNIIDSE7DjTcbyHbO273x+yJTlObNmWLFn+vl+vvHI6ne4ePz5ZXz3j+yiGYRgIIYQQQmQANdUFEEIIIYRIFAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDAlshBBCCJExJLARQgghRMaQwEYIIYQQGUMCGyGEEEJkDC3VBUgFwzDQ9cQnXFZVJSnnzURSV70j9RU/qav4SV3FT+oqfsmqK1VVUBSlx+OGZGCj6wb19a0JPaemqeTlZdHc3EYwqCf03JlG6qp3pL7iJ3UVP6mr+EldxS+ZdZWfn4XJ1HNgI11RQgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyxpAcPCyEGNp0XScUCqa6GCml6wperwm/30coJLN9uiN1Fb++1pXJpKGqiWlrkcBGCDFkGIZBc3M9Ho871UVJC7W1Krous3ziIXUVv77Wld2ejdOZH9eU7u5IYCOEGDI6gprs7DwsFmu//4AOdiaTIi0QcZK6il9v68owDPx+H253AwC5uQX9ur4ENkKIIUHXQ5GgJjvbmeripAVNUyUvS5ykruLXl7qyWKwAuN0N5OTk9atbSgYPCyGGhFAoBET/gAoh0kvHe7O/498ksBFCDClDvftJiHSVqPemBDZCCCGEyBgS2AghhBAiY0hgI4QQg0xVVRXvvPNmqovRxW23LeCKK34yoNe84oqfcNttCwb0miK9pVVgU1FRwfTp03nxxRcj+1avXs15553HtGnTOOaYY1i8eHEKSygyVaC+nm133c6WWxfg31mZ6uII0a3bbruZTz9dmupidPGzn13L7bf/LtXFEENc2gQ2gUCAa6+9lra2tsi+hoYGLrzwQkaPHs0LL7zAlVdeyQMPPMALL7yQwpKKTFT7/LN41q/Dt2Uzu574a6qLI0S3DCM986lkZ2fjdOamuhhiiEubPDa///3vycrK6rTv2WefxWKxsGDBAjRNY9y4cWzZsoXHHnuMs846K0UlFZnGCAZxr/gCAOuIEZReNLBN6UL0xhVX/IQVK75gxYov+PLL5Tz//KucffbpHHXUMXz22SfU19fz29/exeOPP8qwYWXceOOCyGtvu20BO3dW8tBDjwJQXV3NAw/cy6efLsVkMjFp0hSuuOIqRowYucdrh0Ih/vjHP/DOO2/S0FDPsGFlfOc73+Nb3zp7j+dfs2Y1v//9Qtas+Yb8/EIuvnget922gPvu+wMzZhzEFVf8hIkT96elpZn3338PXTc46qhjuPrqX+BwOAD46KMP+Pvf/8KGDesJhUKMGzeen/zkcmbOPCSJtSwGs7QIbD7//HOeeeYZXnrpJY455pjI/mXLljFz5kw0LVrMWbNm8cc//pG6ujoKCvqXnVAIAH/VTgy/HwDLsDLM+fkpLpEYSJ+vqealDzfh9YdScn2bxcTcI8dy0MTiuI6//fbfcd11V1FcXMJVV10X2f/SSy9w1133kZOTw9ix43s8j8fj4bLLLmb8+An8/vePYjKpPP303/nJTy7gr399mqKiruX5xz+e49//fpdbbrmdoqJiPv74A+65507GjBnP1KnTOh1bW1vDz342jyOOOJprr72eqqqd3HPPHZF8Qh1eeOEZvvvd83j00SWsX7+W225bwPDhI7jggh+zZs1qbrjhWi699KfcdNOttLa28thjD/Ob39zEiy++jtlsjqvOxNCS8sCmubmZ6667jl/96lcMGzas03NVVVVMmDCh077i4vCbrbKysl+BjaYlthfOZFI7/S/2Lt3qyl25PbLtzS9N+L3RX+lWX+msu7rS9T3nyPjXp1vYWde2x+cGyhufbo07sHE6c9E0DavVSl5eXmT/rFmH96oV491336SpqZFbbrkNkyn8UfDLX97El18u55VX/sFFF13S5TU7duzAbrdRVlZOQUEhZ511LiNHjmbkyK4tPC+//CLZ2Tlcf/2v0TSNMWPGctVV1/HLX17d6bhRo8ZwySWXAzBy5Cjeeect/ve/FUD49/izn13LWWd9J3L8Oed8l6uuuoL6+jpKSkrj/nn7oyO9iqJAmvYCpo1E1JXJpPTr73DKA5sFCxYwbdo0Tj/99C7Peb1eLBZLp31Wazgzoc/n6/M1VVUhLy+r5wP7wOm0J+W8mShd6qqpdldk++9fuTl5Wg0nHTo6dQXai3Spr8FgT3Xl9ZqorVW7/NE89bDRvPCfjSltsTn1sFG9+kOuKAqK0vnnGDlyZKfHezomdt/69WtpbW3lpJOO7XRuv9/P1q2b91iec845lw8//Ddz557CxIn7c8ghszjuuBMoKirscv5169YwceJ+2GzRv+EHHnggEA5YNE1FURTGjBnT6Vo5OTm0trrRNJX99tuPvDwXTz31V7Zu3cLWrVtYt25t+7WInGP3nzNZ5MtF/PpSV7quoKoqubkObDZbn6+d0sDmpZdeYtmyZbz66qt7fN5ms+Fv7yLo0BHQdPS/9oWuGzQ3J/Ybmsmk4nTaaW72EArJeiLdSbe6atm+M+aRwfvPvcN+nok4p09PWZlipVt9pbPu6srv96HrOqGQ0Wkdmxn7FDFjn6KBLmoXvVlbxzAMDKPzz2E2Wzo9NgwDXdc77QsEApHXhUI6I0eO4q67Fnb5Zm232/dYnrKy4Tz99Et8+eUyPv/8U95//9/85S+LueGGmzn55NM6lUtVTV2u37EdCoX3G4aBppn3Wu4VK77g6quvYNasw5k6dRqzZ5+A1+vl+uuv7XSO3esi0RQlfG+FQrq02PSgP3UVCoV/901NbXg8Xb9oOJ32uAKmlAY2L7zwAnV1dZ3G1QDcfPPNLF68mLKyMqqrqzs91/G4pKSkX9dO1pug480mepYudeWtrY1sf7vqP2iGTuXfPsMxeWoKS9VVutTXYLCnusqklZnjST1vNptpbXV32rd9+7ZIq/eYMeP4179ex+HIjnRpBYNBFiy4gWOPPZ7jjjuxyzmfe+5p8vLyOP74OcycOYvLLvsZ8+dfxrvvvsXJJ5/W6djx4/fh9ddfIRgMRsZJfvPN1736OZ966m9Mn35Qpynkzz//NDCwM8M6LiVBTc8SUVe7f/norZS2q91zzz3885//5KWXXor8A/jpT3/Ko48+ysyZM1m+fHmnwWZLly5lzJgxMnBYJIyvtg6ANtVKnTk8VTXU0IARSk3XhBA9sdsd7NxZSXX1rr0eM3nyVD7//FM++ugDduzYzuLFf2TTpg2R5+fMOQWnM5cbb/w5X3+9ki1bNnPHHbewdOnHjBkzbo/nrK+v47777uajj96nqmonn3zyX9avX8ukSVO6HPvtb5+D2+3mrrt+y+bNFSxb9hkLF94FxL8mUHFxKRs3ruerr1awc2clr7/+Cn/60yIg3PokxJ6kNLApKSlh1KhRnf4BFBQUUF5ezllnnYXb7ebGG29kw4YNvPjiiyxZsoRLLuk6qE2IvjBCIWhpBqDZnEWzOTz2SjF0Qi0tqSyaEHv1rW+dRUXFRn74w+91mWXU4bvf/T+OOeY4br31Ji666Dzq6mr5zne+H3k+OzubRYv+RF5eHtdeeyU//vEP2LlzJwsXPsTYsXsObC666BJOPfVMFi68m+9979v87ne3M3fuOZx//oVdjs3Ly+feex9k8+ZNXHjh97n77ts488xwmo54ZzP9+MeXcMABk/jFL+Zz4YXf59VXX+L663+N1WrtdeuPGDoUI80yPe27777ccccdfPvb3wbgf//7H7fddhvffPMNRUVF/OhHP+K8887r1zVCIZ36+tZEFDdC01Ty8rJoaGiV7oIepFNdGbrOq0//m7WrNhNSTIxt28G05vUAjPz1LdhGjkpp+SC96ivddVdXgYCfurqdFBQMw2y27OUMQ4umqUm7pyoqNtHS0syUKdMi+1au/IpLL72IF154bcBmNCVKMusq0/S1rnp6j+bnZ6X/GJs9Wbt2bafHU6ZM4ZlnnklRaUSmU1SVTeZCVueEm8ZLfHWR50LNTakqlhCDXm1tNdde+zN++cubmD79QGpra3jwwYVMmzZj0AU1YnBJu8BGiIFW0+gBwKypkJUDDeH9wabmFJZKiMFt5sxZzJ//c5544i/87ne3k5WVzRFHHMWll16Z6qKJDCeBjRjy6pvDKQQKnDZU1RnZ72+UFhsh+mPu3LOZO/fsVBdDDDES2IghrWXLVsoat+IxWSmwjURTowv4eerrU1gyIYQQfSGBjRjS6j/8kHN3vgvAFyO+g5bnijzna2hMTaGEEEL0mQQ2YkjzxYyjseQ6sea3JypTVAxfMFXFEkII0UcS2IghLdDSQkdGDUdeLll5Tu4Z+32CqsZ5x03ggJSWTgghRG/Jil5iSNPd0ZTzWfkuXE4bQTUc7ze6/Xt7mRBCiDQlgY0Y2trCiRq9qplcp50cRzQjqtsjKduFEGKwkcBGDGkmTziw8Zhs5GZZybJJYCPS3xFHHMQ///lqSstwxRU/4bbbFgDwxRfLOOKIg9i5szKlZerJP//5KkcccVC3xzQ1NfLaay8ltRyGYfDGG6/R0NC/mZdnn306ixf/sU+vjacuEm3x4j9y9tmnJ/06EtiIIcvQdbSAFwgvgJnjMJNtN3NA80ZOqPmUiZ+/QsjjSXEphUh/kydP5eWX/0VxcUmqi9Jvf/jDA/zrX/9M6jVWrPiC225bgNfrTep1unPccSfw8sv/Stn1k0kGD4shS/dGgxafyYLDpmE1mxjnqWT/lgpoglBLCya7PYWlFCL9mc1mCgoKU12MhBiI5RPTYYlGq9WG1WpLdTGSQgIbMWTpbW2Rbb9qwWo2oSgKIYst5pjELpYqRKJs2bKZSy+9iLVrV1NePpyf/vRqZs6cBYQ/OJ966m+8/vorVFbuwGKxMHXqdObP/zllZeUALF36MYsXL6KiYhN2u4NDDz2cK6+8GqcznH178+YKHnroPr766kscDgczZszkiivm7zGA+eKLZfz0p/N47rlXGDasjLPPPp1vfessVq9exWeffYLFYmHOnFO47LKfoWnhj52VK79i0aKHWL36G1wuF4cffhTz5l1OVlb2Xn/mbdu2ct99v2PVqv+h6waTJ0/h8svnM27ceCDcRXfDDTdzyinR7o6zzz6dk08+jYsuuiSy79VXX+Lxxx+lpaWZWbMO55prfkleXh633baAN954LXKujz5axhVX/ITy8uFUVGxi69bNzJ//c2bPPoHHH3+U9957m+rqXTgcWcyceQhXX30dubkuABoaGvjDH+5n6dKPCAaDTJ48lZ/97Fpqaqr56U/nAXDOOWdEyttTfbjdbu6//3d89NH7aJqZH/yg64rqu3vjjdf4+9//SmXldpzOXI499nguvfRKLBYL//znq9x++y189NGySHnvv/9uPv10KSaTiVNPPZM1a75h6tTpXHTRJSxe/Ee+/HI5hx56OM8//wxNTY1MmjSFa6/9JSNHjgZg06aNPPbYw3z11Qra2lopKSnlrLPO5Tvf+V6PZU0k6YoSQ5bu8xNUTACELFYUJbwQpm6NttCEWiWwEenpueeeYs6cU/jLX57iqKOO5eqrr2TNmtUAPPvsk/z1r3/m0kt/ylNPvcgdd9zL1q1b+P3v7wOgsbGRG2/8OaeddiZ///vz3H7771ix4ksefvgBAGpra7j88h9TVlbOY4/9lbvuup/WVjfz5l2EJ87u2ccff5Rp0w7k8cf/zo9+9BOee+5p3nnnTQA2bFjPz352GTNnHsKSJU9x8823sXbtaq666opuWzNuvvkGCgsL+dOf/sajj/4FVVW54YZre113zz//NL/5zR089NBj1NRUc/XVl2MYBj/72bXMnn0CkyZN6dRN889/vsq5536Phx9ezKGHHs7DDz/I22//i1/+8iaefvof/OpXt7Bs2acsWbIYgGAwyNVXX86mTRu4/fZ7ePTRJaiqiauvvoLJk6dy2213A/DYY0s47rgT4qqPX//6l6xevYq77rqP++57iI8//pCqqp17/Rk3bFjP3XffxkUX/YQnn3yR66//Nf/61+s8+eRfuxyr6zrXXTefbdu2cc89D7Jw4R/45puv+fLL5Z2OW7VqJStWfMHdd9/P/fc/TFXVTu699y4AvF4vV111GXa7gz/+cTFPPPEcs2efwIMP3sv69Wu7XDOZpMVGDFnW8nL+sP8P8Hn9lLpszG3fr9gdkWP8LS1kpaZ4YgA1vPUvGt5+s8fjrCNHUX7l/E77dvz+fnxbt/T42rwT5pB34kmRx7rXw+abbuiyP17f+tZZfOtbZwFw8cWX8sUXn/Pss0/y61/fSnn5CH71qwUcccRRAJSWDuPYY4/n3XffAqCmZhd+v5/S0lJKS4dRWjqMu+5aSCgUAuAf/3iegoJCrr76F5Hr/eY3d3Lqqcfx73+/06lFZG8OOeRQzjnnuwCMGDGS1157mf/9bwUnnXQqTz31Vw46aCYXXPDjyPMLFtzGd75zJl9+uZwZM/Y8qLWycjsHHzyLYcPK0DSN66//NVu2bEbXdVQ1/u/pv/rVb9hnnwnt27fwve99m2XLPmPmzEOwWq1omtapZWqffSYwZ87JBIM6APvttz9HH30s06cfGKnfgw8+lI0bNwDhFqz169fx5JPPR1ozfvGLG3nyyb/R0tJMTk64VczlysNqtfVYH4WFhXz22Sfcf//DTJ06HYCbb/5ttwNxKyt3oCgKw4aVt/+eS7nvvodwOLr+RVux4gtWr17Vqby33nonZ53V+fzBYJCbbvoNTmd46Zmzz/4ujzzyIAAej4dzzvkec+eeTW6uk2BQ50c/+gl/+9uf2bhxA/vss2+cv53+k8BGDFm6buDxhUAxYcuKttIoMW98T2MLeakonBhQIY+HYENDj8dpefldX9vSEtdrdx+IbhgQbGjo8wD1jg+4DvvvP4nly8PdCkcccRSrVn3N4sV/ZNu2rWzZUsGmTRspKioGYJ999uX44+dw7bXzKS4uYebMQzjssCM4/PBwILRu3Rq2bNnMCScc2ekafr+fzZsr4irfqFFjOj3OysomGAxn8167di3bt2/tcn4Id7HV1tbwu9/dHtk3Zcp07r33QS6++DIefPBeXnrpeWbMmMkhhxzK7Nkn9CqocTiyIkENhIOInBwnFRUbmTnzkD2+ZvjwkZ0ez5lzCsuWfcYf//gHtm3byubNFWzdupkpU6YB4daS7OycSJAAUFBQyJVXXgXQpQ57qo+mpkYgHFB1yM8viHQr7skhhxzKpElT+PGPz2f48JHMnHkIRx55NPvuu1+XY9euXUNOjrNTefPy8hk5clSn4/Lz8yNBDUB2djaBQKD9+Dy+/e1zeOedt9i0aT1bt25l/fp1QLhFaCBJYCOGrLaYJRMctuhbwZQVDWxil1wQmctkt6Pl9RzCmnJy9rgvrtfuNghdUUDLy+vz4PTdP8xDIR2zOZyu4O9/X8LixY9yyimnM336gZx99nf56KP3I11BAAsW3MbFF1/Cxx9/xOeff8qCBTcyefJUHnxwEbpuMGPGQVxzzS+7XDc7u2sd7ElHWWJ1dKsYhs6JJ57MD37woy7HuFx5qKrC/vtPiuyzWq0AnHXWd5g9+3iWLv2Y5cvDgcXjj/+RP//5SfLzCzpdo0NHMNVhT0GQYeiYzZa9/iwd1+9wzz138u67b3Hyyady2GFH8MMf/oinnnqC6updAGiaFunajkdP9fH5558A4S9jsUymvX+EW61WHnxwEevWreHTTz/h888/4eWXX+Ckk07lhhtu3u08Jgyj5+Cjuzqqr6/jkksuJDfXxVFHHcP06TPZb7/9+fa3T+3xvIkmgY0Yslq90Tw1sflrLFkxXVHuNkTmyzvxpD51BwFduqbipdrsjP3dfX16LYS/ZR955DGRxytXfsX48fsAsGTJ4/zoRxdz3nkXRJ5/6qm/Rj70v/56Je+99xZXX/1zystH8p3vfJ+33nqD3/zmJhoa6hk7dhzvvvsWxcUlWCzhD7Pm5iZ++9ub+e53z9trV1G8xowZR0XFRoYPHxHZt3XrZh566AHmzbucsWPHd+kyqa+v4y9/+RPnnXcBp5xyOqeccjo1NdXMnXsKX375BccddwKaptHaGs0m3trq7pIrxu1uYceO7ZSXDwdg48YNuN1uxo4dB9BjQNLU1MhLLz3PLbfcznHHnRjZv3lzBQ6Ho/3nG0NLSzPbt2+L/IyNjY1897tzufvu+7pco6f6mDBhIhD+HR922BEAtLS0sGPHtr2Wc+nSj1mz5hsuvPBiJkyYyPnnX8CSJYv5618f7xLYjB+/D263my1bNjNq1Ggg/Pvevn1rt3UR66233qCpqYmnnnoRm81CMKhHuuYGehaYBDZiyHJ/+QUnVn+CT7VgDxwe2a/FBDZBjwQ2Ij0988zfKS8fzgEHTOKll15g06YN3HzzbwEoLi7h888/5fDDj8JkUvnXv/7J++//O9KqkZWVxYsvPofFYuG0076Fz+fjnXfeZPjwkeTmupg792xefvlFFiy4kQsv/DGKovLwww+wbt1axowZ2++yf/e753H55T/md7+7nbPP/i5tbW3ce++dtLW1den26eB05vLf/37Ejh07mDfvchyOLF5//RXMZjMTJ4a7V8L5dF5k6tQZmM0ajz32SGQWVgdVVfn1r6/nqquuA+Cee+5g2rQZka49u91ObW0tlZU79tjVk5WVTXZ2Nh9++D777rsfPp+P559/hnXr1kRamQ488GAmTtyfW2/9NT/96TXY7XYWLfo9+fn5TJy4P5s2bQRg/fp15Oa6eqwPi8XCsccez3333d0+tb6ARYv+EOkG2hNNM/HnPz+Gw+HgyCOPobm5iY8//pBJk6Z2OXbGjIM44IDJ3Hrrr5k//+dYrVYWLXoIr9cbd8tTcXEpXq+H9957mxkzZrBpUwUPPrgQgEBgYJenkVlRYsjyb9rAjOZ1HNr4Nc5QdJyDNTv6TVES9Il0dcEFP+a5557mhz/8Hl9+uZy7774/Mibippt+g9fr5cc/Pp/LL/8JmzZt4Nprr6ehoZ6dOysZM2Yst932O5Yv/5wLL/w+l112ESaTxr33PoiqqpSVlfPQQ3/E6/Vw2WU/5oorLkZRVB588BHy9jDOqLcmTZrMwoUPsWnTBi666Hyuu+5nlJcP5/77H460EO1O0zTuuedBVFXhZz+7jPPPP5flyz/n7rvvj7S+XHvt9RQUFHLppT/i2mt/xvTpB3b5IHe58pgz5xSuv/4arrrqMkaNGs1vf3t35PmTTz4Nn8/L+ed/h9ra2j2W49Zb76SiYiM/+MF3ueaaK/H5vFxyyeVUVGzC4/Ggqip33nkvpaWlXHPNFZH6XbjwISwWC+PGjefQQw/n5puv5+WXX4yrPn71qwXtr7mByy67mDFjxu5xvEyHmTNn8ctf3sRrr73M+ed/h2uuuTIyKHlPbrvtboqKipk//1Lmz7+U/fbbn5KS0j12Ke7Jsccex/e+dz4PPXQ/5557Fg8+eC+nnXYG06bN4JtvVsV1jkRRjHTIFDTAQiGd+vrETuPVNJW8vCwaGlojI+fFnqVLXa188GGs//sMgO3fvpTZp4QHDv738400/e1xfKqZYdMmccgFZ6esjJA+9TUYdFdXgYCfurqdFBQM63aswFCiaarcU3HK5LpqbGxk1aqVHHLIoZEWrkAgwCmnHMc11/yCk07q3TiZvtZVT+/R/PwsTKae22OkK0oMWaG2PbfS2HOd/KnsOAC+PaH/ze5CCJHOTCYTN998PWeeeRZz555NIBDgqaf+hsViZtasw3s+QZqRwEYMWUbMkgo2Z3Smh90afVt4fJ1nVAghRKbJycnh7rvv57HHHuaVV/6BoihMmTKVBx/8Iy6XK9XF6zUJbMTQFbMAXVZuTIuNBDZCiCFmxoyDeOSRx1NdjISQwcNiyFL84cDGr2jY7dE8FXarKbLt8YcGvFxCCCH6TlpsxJBlag9sfKqZophgxm7V+PbOf1PqrcO61YAzHklVEYUQQvSSBDZiyDIFfAD4VAs2S/StYLdq2EM+nKE2CIERDKJo8lbJFENwIqgQg0Ki3pvSFSWGJEPX0ULh5FY+1YzNEm2x0UwqQVM0d4MeMxZHDF4mU/h37Pf7UlwSIcSedLw3u1sqIh7yNVQMSUYoyJbC8QTaPNRbcrFonWP8oDk65kb3eDBlZw90EUWCqaoJuz0btzu8YKXFYu3Vej6ZSNcVQiFpwYqH1FX8eltXhmHg9/twuxuw27N7tajpnkhgI4Yk1WzhvbHHs6u+DYdV47zdPuD02MBGWmwyhtMZzprbEdwMdaqqDvjKy4OV1FX8+lpXdnt25D3aHxLYiCHL2z6V2xYzcLiDYYkGNkFPG9YuR4jBSFEUcnMLyMnJIxQa2lP5TSaF3FwHTU1t0hLRA6mr+PW1rkwmrd8tNR1SHtjU1dVx55138uGHH+Lz+Zg5cybXXXcd48ePB+D666/nxRdf7PSakpISPvjgg1QUV2QQb/tU7tiBwx0Miy2y7WtpJavLEWIwU1UVVR3ayypomorNZsPjCWXsUgGJInUVv3Soq5QHNpdeeimqqvLYY+FVSB944AEuuOAC3n77bex2O2vXrmXevHmcd955kdd0DAIUoq90w8AXCAc2dkvX+0m1xQQ27sSuKyaEECJ5UhrYNDQ0MHz4cC699FL22WcfAC677DLOPPNM1q9fzwEHHMCGDRu47LLLKCoqSmVRRYZp+up/XFbxPAFVY7t5JnBQp+dVmz2yLYGNEEIMHikNbPLy8li4cGHkcW1tLYsXL6a0tJTx48ezefNmfD4f48aNS2EpRSbyNrVE8tTU0jW7sGKPttgEWz1dnhdCCJGeUt4V1eGmm27i2WefxWKx8Mgjj+BwOFi3bh2KorBkyRI++OADVFXl6KOPZv78+eTk5PR80m5oWmJT+HQspR7PkupDXTrUVTBmppNqs3a5H/SS4bxRNIuAqnHGPvsn/H7pjXSor8FC6ip+Ulfxk7qKXzrUVdoENj/84Q8599xzeeqpp7j88st58sknWb9+PaqqUl5ezqJFi9iyZQt33XUX69atY8mSJX0eQa2qCnl5yRkO6nTaez5IAKmtqy16dEaMLSery/2QNbyMr3InAPDtsvKk3S+9IfdW/KSu4id1FT+pq/ilsq7SJrDpmAV16623smLFCp544gluv/12LrjgApxOJwATJkygqKiIc889l5UrVzJ16tQ+XUvXDZqb2xJWdghHp06nneZmD6GQjJrvTjrUVUt9cyTttq6ZaWjoPI7GCEW7p2ob2ro8P5DSob4GC6mr+EldxU/qKn7JrCun0x5XS1BKA5u6ujqWLl3KySefHJnppKoq48aNo7q6GkVRIkFNhwkTwt+iq6qq+hzYAEmbhhYK6TIdME6prKtAmzeSm8ZktXUphznmzdPmDaTF71TurfhJXcVP6ip+UlfxS2VdpbTDsLq6mmuuuYbPPvsssi8QCPDNN98wbtw4rrnmGi666KJOr1m5ciUQbeERoi9C3uiAYLOja5OpVVPI9zdR6q1Fr9o5kEUTQgjRDykNbCZOnMgRRxzBLbfcwrJly1i3bh2/+MUvaG5u5oILLuC0007j448/5pFHHmHr1q28//773HDDDZx22mkyU0r0i+6LLoRoyeoa2NgI8pOtL3PB9n/i+u8bA1k0IYQQ/ZDSrihFUbj//vu59957mT9/Pi0tLRx00EH8/e9/p6ysjLKyMh544AEWLVrEokWLyMnJ4fTTT2f+/PmpLLbIAIYvOivK4nB0ed4aG+zIatBCCDFopHzwcE5ODgsWLGDBggV7fH7OnDnMmTNnYAslMp/PH9m07qnFxmalVVHRDB0l4O/yvBBCiPSU8sBGiFSoHD+TTYFCLHqQOTldp3JbLSYaFQ3N8KMGJbARQojBQgIbMSRV54/gq1wzAGfaui6GaDWb8Ktm7LofNRgY6OIJIYToI0mjKIYkX8w0RKu56yKYNosJvxqO+03SYiOEEIOGBDZiSPIHogn4LOaubwOr2URAaQ9sQgEMwxiwsgkhhOg7CWzEkGSv30m+vwlH0LPHFhtVVQiawl1VCmD4pdVGCCEGAxljI4YcwzA45vOnORaotBZg1k7Z43Gh9sAGQPf7UK3WPR4nhBAifUiLjRhyDL8fpX07aDKjKMoej9O16KBiwyu5bIQQYjCQFhsx5MRmHQ6Zus6I6vDFuCN5vXYGhsXCQ4WFA1E0IYQQ/SSBjRhy9JiswyHNvPcDs7Jpa9RBB90wMO2lZUcIIUT6kK4oMeTEdivFdjftzhYzqNjnlxV9hRBiMJDARgw5sS02unnvgY3VEm3Q9MVMDxdCCJG+pCtKDDkBjyeybXQT2OS31XFIw9dY9ACtm4aRN3W/gSieEEKIfpDARgw5gbZoi023gY27moPqvgDAt3V/kMBGCCHSnnRFiSEn4IkGNko3gU1s3ppgzGuEEEKkLwlsxJAT8MYENpa9BzYmmy2yLYGNEEIMDtIVJYaeyTP5/bIAmhFkxqhRez0sNrAJeSWwEUKIwUACGzHk+BWVVs0OgMnu2Otxmj0a2OiSeVgIIQYF6YoSQ44/EM1JY7V0XQCzQ2xgYwQksBFCiMFAAhsx5PhjctJYtL2/BcwxXVGyurcQQgwO0hUlhhx97SoOafiagKJhC5Xt9TizIzoryvAHBqJoQggh+kkCGzHkmNZ8xbHt+Wl2BQ/b63HWmK4oAtJiI4QQg4EENmLI0WO6lbSYXDW7M9ttVFpcBBQNLSd/IIomhBCinySwEUNO7HgZS2yrzG6sVjOPjzwDgCMmD+PIpJdMCCFEf8ngYTH0xHQrxY6j2Z01ZmCxPyiLYAohxGAggY0YeoLRgcAW294DG4s5OhXc55fARgghBgMJbMSQo7S32AQUExaLea/HWWMCG39Q3+txQggh0oeMsRFDjtLeYhNQNHLN3eSxMaucWP0Jxf4GHFXA96YPUAmFEEL0lQQ2YshROwIb1dSpu6nLcYpCSaCRcm8NAEYwiKLJW0YIIdKZdEWJIUcNBQEIKlqnAcJ7EjJFAxk9IEn6hBAi3aU8sKmrq+PnP/85s2bNYvr06fzkJz9hw4YNkedXr17Neeedx7Rp0zjmmGNYvHhxCksrMkFLVj41FhcNZme3LTYAuik6Bsfwy3pRQgiR7lIe2Fx66aVs27aNxx57jOeffx6bzcYFF1yAx+OhoaGBCy+8kNGjR/PCCy9w5ZVX8sADD/DCCy+kuthiEHtv+tksHnkGz5fNxtLNGBsAXYsGNrqsFyWEEGkvpQMGGhoaGD58OJdeein77LMPAJdddhlnnnkm69evZ+nSpVgsFhYsWICmaYwbN44tW7bw2GOPcdZZZ6Wy6GIQ61gEUzMpmNTuAxsjtsXGJy02QgiR7lLaYpOXl8fChQsjQU1tbS2LFy+mtLSU8ePHs2zZMmbOnIkWM2Bz1qxZVFRUUFdXl6pii0HOHwhP3bZo3XdDARjmaGAT8HqTViYhhBCJkTZTPG666SaeffZZLBYLjzzyCA6Hg6qqKiZMmNDpuOLiYgAqKyspKCjo8/W0HgaN9pbJpHb6X+xdquuqI4uw1WLq+T6wRBP4hXz+hN838Uh1fQ0mUlfxk7qKn9RV/NKhrtImsPnhD3/Iueeey1NPPcXll1/Ok08+idfrxWKxdDrO2r5ooa8f3QKqqpCXl9Wv8u6N02lPynkzUSrqyrOzitPWvILPUKkuGUde3kndHm+KyUxsVvSk3TfxkHsrflJX8ZO6ip/UVfxSWVdpE9iMHz8egFtvvZUVK1bwxBNPYLPZ8O82YLMjoHE4HH2+lq4bNDe39b2we2AyqTiddpqbPYRCkqW2O6msK09lDWVtuwDwewtpaGjt9nhdjb5FGmubcfZwfDLIvRU/qav4SV3FT+oqfsmsK6fTHldLUEoDm7q6OpYuXcrJJ5+MyRQe76CqKuPGjaO6uprS0lKqq6s7vabjcUlJSb+uHUxSivxQSE/auTNNKurK3+aJbBuaucfrtxUN5+O8yQQUjRPzilL6u5V7K35SV/GTuoqf1FX8UllXKe0wrK6u5pprruGzzz6L7AsEAnzzzTeMGzeOmTNnsnz5ckKh6AKES5cuZcyYMf0aXyOGroAnpgvTvPd1ojr4S0fxYcF0PsmfTDCvf8G0EEKI5EtpYDNx4kSOOOIIbrnlFpYtW8a6dev4xS9+QXNzMxdccAFnnXUWbrebG2+8kQ0bNvDiiy+yZMkSLrnkklQWWwxifk+0xQazZe8HtovNc+MLygrfQgiR7lIa2CiKwv3338+sWbOYP38+55xzDk1NTfz973+nrKyMgoIC/vSnP1FRUcHcuXN56KGHuO6665g7d24qiy0GsdgWG8XSc2DTaYXvgAQ2QgiR7lI+eDgnJ4cFCxawYMGCPT4/ZcoUnnnmmYEtlMhYwZhcNPEENhZNRdODmI0gfncrUJTE0gkhhOivlAc2QgykoLd3LTbZDZVcu+lJAFo/OhSmSzeoEEKkM8k2JIaUUExgY7Laejxes0WP0X2yVpQQQqQ7CWzEkBKKSeyoWntusYkNbIyABDZCCJHupCtKDCm+sjGsyJuEWQ9R7Mrv8XiLI5p5GFndWwgh0p4ENmJI8YwYzwcF4QDl/wp6HghsscekBQ8EklUsIYQQCSJdUWJIiZ2ybYljQUuLPWYcTlBabIQQIt1JYCOGFH8gmuLbEpOjZm+sNjOh9reJImNshBAi7UlgI4aUQFsbJj0EhtEpq/DeWM0mAmr7OmZB6YoSQoh0J2NsxJAy7K0n+fmuLRhAULm7x+MtZhMBRcNGADUUTH4BhRBC9Iu02Iihpb07yUDBEsd0b6tZJaCG4381JC02QgiR7qTFRgwpSnt3UkAx4bD0PMZGM6m8WnokhgHFxblMTnYBhRBC9IsENmJI6QhsgqoW1+BhRVGozynB5w+hWrKSXTwhhBD9JF1RYkjp6E4KKFpc070BrO3HyereQgiR/iSwEUOKGgwPAA6oprhabCA6LVwCGyGESH/SFSWGDMMwMOntXVGKhjXOwGaYr46ilmrsrTohz0GYYrMRCyGESCsS2IihIxRCNQwAAqqGZlLietl+1asYW70GgGDDKZjs5UkrohBCiP6RrigxZOgxK3uHVA1FiS+wMczmyHbA4+vmSCGEEKkmgY0YMvSY1bl1k7mbI3ejRfPd+No8iSySEEKIBJOuKDFkmLKzeWH8GfjavNhyszk53hdaYlps2rxJKZsQQojEkMBGDBmq2cw2SwFeQpTlxp+TRjFbI9sBrwQ2QgiRzqQrSgwZhmFEVveON4cNgGKJdkUFvTLGRggh0pkENmLICOkGevusqHhz2ACosYGNDB4WQoi0Jl1RYshoq65hYstmAqpGbqAXgU3MYplBn3RFCSFEOpPARgwZres38K1dHwCwNvdo4Oi4Xqdao2NsQj5psRFCiHQmgY0YMoIxA39jx830xGSz41XNBBUNlfhbeoQQQgw8CWzEkBHwxAQ21vgDG330eO4f+z0ALpw6MeHlEkIIkTgyeFgMGSFfNEGfyWLt5sjOrFq0lcYnC2EKIURak8BGDBmxXVFqL1psYmdQ+YN6QsskhBAisSSwEUOGHttiY+1Fi405+jbxS4uNEEKkNRljI4YM3R+d0WSy2eJ+nYUQJ1f/F00PkvfFFjhybDKKJ4QQIgFSHtg0NjaycOFC/vOf/+B2u9l333255pprOOiggwC4/vrrefHFFzu9pqSkhA8++CAVxRWDWGyLjWaLv8XGbFaZ2rwBgOYq6YoSQoh0lvLA5uqrr6auro6FCxeSn5/Pk08+yUUXXcSLL77IuHHjWLt2LfPmzeO8886LvMZkkim3ovdiV/c296IrymKzEWjfVoL+bo8VQgiRWikdY7NlyxY+/vhjbr75Zg466CDGjh3LjTfeSElJCa+99hqhUIgNGzYwefJkioqKIv/y8/NTWWwxSOmKgk/R0FEw23sxxsZiwq+EvwMowUAPRwshhEillLbY5OXl8eijjzJp0qTIPkVRMAyDpqYmNm/ejM/nY9y4cSkspcgU2w//Fi8bU8EwuMrlivt1FrOJoGLCYgRRJbARQoi0ltLAxul0cvTRndPav/HGG2zdupUjjjiCdevWoSgKS5Ys4YMPPkBVVY4++mjmz59PTk5Ov66t9WJ153iYTGqn/8XepaqugqH28TGKgt1mjvseyLKZCaga6D7UUDDh905P5N6Kn9RV/KSu4id1Fb90qKuUj7GJtXz5cm644QaOO+44Zs+ezYMPPoiqqpSXl7No0SK2bNnCXXfdxbp161iyZAmq2reKU1WFvLysBJc+zOm0J+W8mWig60qJuV8KC7Livgd03SDQ3hVlCgWTdu/0RO6t+A31ujJ0ndqP/ounspL8gw8ie+zeZ/IN9brqDamr+KWyrtImsHnnnXe49tprmTp1KgsXLgTgyiuv5IILLsDpdAIwYcIEioqKOPfcc1m5ciVTp07t07V03aC5uS1hZYdwdOp02mlu9hAKycyZ7qSqrprc0QR9Po+fhobWuF8bNGkQAFMoQH29G0VRklHEPZJ7K35SV2AYBjsfX0zjh+GZo9uefZ6RP7uK7ClTOh0ndRU/qav4JbOunE57XC1BaRHYPPHEE9x2222ccMIJ3HPPPVjaFyhUFCUS1HSYMGECAFVVVX0ObACCScogGwrpSTt3phnouhr5xducVNeC22THpBzaq2uH1PBbRcUg6AugaAP/1pF7K35Dua5aV/4vEtQAEApR+efHGf3bOzqtVB99eujWVW9JXcUvlXWV8g7DJ598kltvvZX/+7//4/77748ENQDXXHMNF110UafjV65cCcD48eMHtJxi8CvZvpppzes5wF3RaZmEeOiaObodk+hPiHRT/+YbXfYFG+pp+fyzFJRGiIGX0sCmoqKC22+/nRNOOIFLLrmEuro6ampqqKmpoaWlhdNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdFraig8oymgmLD2MrDZlVvO1zljWZm3Lygp/z4gxF6Vzbsc/ZSzWecax1+HnxzZ3/SRJDUVQ0NKu6LefPNNAoEAb7/9Nm+//Xan5+bOncudd97JAw88wKJFi1i0aBE5OTmcfvrpzJ8/PzUFFoOWYRhoehCAgKJhNvcuOFk38kC2Wt2YVIWz7DKAUKQvN2Ye2uKkrfBwMAxqLC6K/I14N6wn2NSIlutKdRGFSKqUBjbz5s1j3rx53R4zZ84c5syZM0AlEpnKCETzz4RMGmovB/92dF2FdINgSEeTaZ8iTf3zk620+cJBPIrCuqwRFPkbAWj9+mtyDz8idYUTYgDIX2cxJBgxyynoau/jeWtM7pqADB4UacoXCPHRyp0AmDWVs44eS4WjDB2FpoLhmBzS2igyX1rMihIi2WIH/MYOBI5X7GBjfyCE3SpvHZFePOvXseHdjyitN7PdXszB+43g+ING8MbSCh6wnAs2Ow9Onp7qYgqRdNJiI4YEwx/titJNvQ9sxm5bwU83PcPVG5/E/b8VCSyZEInR+vVKrMs+4Nyd7zK2bQeH7FeC1Wxi+oQSfCYLvkCIddsbU11MIZJOAhsxJMS22Bh9aLHRFAOH7sNiBAl4ZLq3SD/ezRWR7brsEvYd6QJg8riCyP6VG+sGulhCDDgJbMSQEPL1L7BRLdHEZgGvBDYivRiGQVtFOLBpNdkYPm44Zi3cfbr/6Hw6hsqv3daIEQymqJRCDAwZKCCGBN1iY1X2GMxGkNbcol6/XrFGE0eGJLARaSZQWwNt4SVCdloL2GeEK/Jctt3MiDwLB696g+LNDWxr+ICRV12TopIKkXwS2IghQS8s5dXSIwGYNrKw1683xaSiD3m93RwpxMDzbd4c2a6yFnBEeW6n50cNz2f48hpsuh/v1q0DXDohBpZ0RYkhwR8IRbYtvUzOB527omK7tYRIB75t0WBll72Q0aU5nZ4fN9xFtSUv/KCliZDbPZDFE2JASWAjhoTOgU3vllMA0GzRrijd5+/mSCEGXtv27ZFtS/nwLvf42GFOaqyuyGPf9m0DVTQhBpwENmJI8Mck1evtOlEAms0W2ZZFMEW68bYHNn5Fo2hUWZfnSwsc1FrzI499O7Z3OUaITCFjbMSQ4P/oPa6o+BdBRaNu1BnAhF693twpsJEWG5E+dL8fo6EOBaiz5DK8OLvLMZpJRSkuherwY2/lzoEtpBADSFpsxJAQam0jO+TFFXRj6eU6UQBmR3SMjSGBjUgjht9P9ZipbLMVU2krZHhR18AGIHt4eWS7dfuOgSqeEANOWmzEkBDy+SI3u8lm7fbYPTE7c3mt+HACqsYBE8cltnBC9IMpO5uPRh7JerUJgDOLsvZ4XMnwQjyqBbvuJ7CraiCLKMSAksBGDAmx3Ud9CWwsWQ6+doYDmuHO0oSVS4j+MgyD7TXhHDb5TisO254TUJYX5VBndlLuq8XkbkL3+YA9B0FCDGZxBTYvvfRSr076rW99qw9FESJ5YgMbzdqHwCZminjsDCshUq2+2YfHF84mvLduKAgPIF5vCQc2AP5du6A0f6/HCzFYxRXY/PKXv4z7hIqiSGAj0k7suBizvS+BTczq3jEzrIRItR1VDZHt8r10QwEUOm2scu3DZvswtKISriqVlkeRmeIKbN59991kl0OIpDICMS02dls3R+6ZVVMp9DVg0YPYq/3AAQksnRB9YxgGloW/5go0NjuGUVJw8V6PVVUFf/lYNte2ogVV6MOaaUIMBnEFNuXl5T0f1M4wjD4XRoikiWmxsfZljI3ZxLmV75AT8uCpzQZOSmDhhOibUFMjaihANgFsIR8l+Y5ujy/Js1NZ20owpFPX5KWgYO9dV0IMVn0aPPz666/z2WefEQgEIoGMYRi0tbWxYsUKPvjgg4QWUoj+UoKByLa5Dy02FrNKUNUgBGpIVkcW6cFfXR3ZbjTnUJJn7/b40gIHrA9v76xvY8LYZJZOiNTodWDz0EMP8dBDD5GTk0MwGMRsNqNpGvX19aiqyjnnnJOMcgrRP+2BTRCVnJjlEeJlUlWCSvjtYtIlsBHpIVATDWxa7blk27vvXirNc5DnbyY/0Ezzx2446P+SXUQhBlyvE/T94x//4IwzzuCzzz7jggsu4Nhjj+W///0vzz//PC6Xi3322ScZ5RSiXzZNPILXiw/j7aKD+7QIJkDIFA5sND2IocsAYpF6vl27IttKQSFKD8knS/IdfKvqfc7Z+R55/34JIyQz/ETm6fVf+F27dnHmmWeiKAoHHHAAX375JQCTJk1i3rx5PPfccwkvpBD9VZU/mpXO8XyVOwGL1vu1oiAa2AAYgUA3RwoxMFp2RJdGsBWX9Hh8kctOozm88rdi6Pjq6pJWNiFSpdeBjcPhiHwrGD16NNu3b8fr9QKw3377sX27LK4m0k9s7pm+LIIJEDJFm/llWQWRDjrG2BiAs3xYj8fnZltosUQHDHurdnVztBCDU68Dm8mTJ/OPf/wDgJEjR2Iymfjvf/8LwMaNG7FYej9+QYhkiw1s+toVZcRMj5WFMEVaqA+3uLRoDoqLcno8XFUUgjl5kcfeXRLYiMzT68HD8+bN48ILL6SlpYVFixZxxhln8Mtf/pJDDjmEjz76iOOPPz4Z5RSizwzDILuhkiKfH79mRTP1P7AJ+XxIFhCRSqG2Nky+NgAatRzG9TDVu4OSXwBbw9vN26soOihZJRQiNXod2MycOZPnn3+etWvXAvDrX/8aVVX54osvOOmkk3qVpViIgWD4/Zz41QsAbMsqBU7r23liAht/m5feTxoXInFiZ0Q1mHMocnU/1buDtbg4st28YydFCS+ZEKnVpzw2EydOZOLEiQBYrVZuvfXWhBZKiESKHQ8TUvvezmKYo92sfo+nX2USor8sZWW8vP+3Mepq8NlzONsW35/z7JJoKOOrqU1W8YRImT4FNi0tLXzyySe0tbXtMdOwrBUl0okes5yC3o808tv2O5yXlX0IqCbuGDEmEUUTou80M+tDOQRzsikvyupxqneHgiIXXtWMTQ8QbKhPciGFGHi9Dmzef/995s+fj2cv31hlEUyRbmJbbAytT7E8ACabHZ8p3GoTCMrSISK1mtx+gqHwfVjojL9jtDDXxk4tC5u/EbWlSXIyiYzT67/yCxcuZOzYsVx//fWUlJSgqn0biNmhsbGRhQsX8p///Ae3282+++7LNddcw0EHhUe0rV69mttuu42vv/4al8vF+eefz0UXXdSva4qhJeTzRbYNU99n7cXOpvIFJLGZSK26Zm9kuyC3F4GNy85aLQtnsJVAVi661wsWGTEmMkevA5tNmzbx8MMPRwKP/rr66qupq6tj4cKF5Ofn8+STT3LRRRfx4osvkp+fz4UXXsjxxx/PLbfcwooVK7jllltwuVycddZZCbm+yHxBT/QDAHPfu6IsMflv/BLYiBRr+vxTJrgradKyKMwdH/frnA4zr42YjTekMLw4m0McDoJBabURmaPXgU1ZWRlutzshF9+yZQsff/wxTz31FDNmzADgxhtv5IMPPuC1117DZrNhsVhYsGABmqYxbtw4tmzZwmOPPSaBjYibzxPTYmPue4tNtruOw+r/h1kPEtiYDSMPTkTxhOgT279f49utzbSabIRyj477dYqikOfKYmddGzWNnj2OkxRiMOt1P9Ill1zCH/7wh4RkGM7Ly+PRRx9l0qRJkX2KomAYBk1NTSxbtoyZM2eixYyLmDVrFhUVFdRJKnARp0DMeDClHy02Wa0NHFW/gkMbv8bYVpGIognRJ4auo7W1AOHkfL3pigLIy7EC4POHaPPKoq4is/S6xebVV19l165dnHDCCeTn52OzdX5DKYrCO++8E9e5nE4nRx/d+ZvGG2+8wdatWzniiCO47777mDBhQqfni9tzMFRWVlJQUNDb4kdoWv/GBu3O1J70zdTH5G9DyUDXVWyWYMVi7fPv3myP3uu635/we2hv5N6K31Cpq0BDE0p7S0uL5qAk39Gr+7EgZrBxY6uf8sKshJcxkwyV+yoR0qGueh3YlJaWUlpamoyysHz5cm644QaOO+44Zs+ezR133NFliQartf2bRsyA0N5SVYW8vOS8kZ3O+JJkiYGrq+1GdPyAJcve5999tiu6xo5JDybtHtobubfil+l11VK9I7LdaslmZLkr7uneAMNdGnOqPyEn2Ir71Sryrr4kGcXMOJl+XyVSKuuq14HNHXfckYxy8M4773DttdcydepUFi5cCIDNZsO/25o8HQGNwxFf+vA90XWD5ua2vhd2D0wmFafTTnOzh1BIBuJ1Z6DrqnWfqdw/5lzMRpCjRo6loaG1T+cJKjGzolo9fT5Pb8m9Fb+hUldNW6KBjZ6dS2Nj7/6e2axmpjevA8C7Xhuwe3mwGir3VSIks66cTntcLUG9DmwqKyv3+pyqqjgcDpxOZ6/O+cQTT3DbbbdxwgkncM8990RaaUpLS6muru50bMfjkpKSXpa8s2TNAgiFdJlhEKeBqitvwMBrsuLFimqz9/mappgpsbrPN+C/Z7m34pfpddVcWRPZVnNdvf5Zc13ZtKlWHLoPmhozuq4SKdPvq0RKZV31OrCZPXt2j02eubm5/OAHP+Cyyy7r8XxPPvkkt956K+effz433HBDp7w4M2fO5OmnnyYUCmEyhafaLl26lDFjxvRrfI0YWhKxsjeA2W6NPgjI6t4iddzV0cDG0oe/hXk5NjZrDhx+H1pbM4auo/QzJ5kQ6aLXd/Kdd96J2Wzm8MMP54477uCxxx7jzjvv5Nhjj0VRFC6//HLmzp3LI488wpNPPtntuSoqKrj99ts54YQTuOSSS6irq6OmpoaamhpaWlo466yzcLvd3HjjjWzYsIEXX3yRJUuWcMkl0h8s4ufrFNiYujmye7GDh41AoF9lEqI/fLXRWaFZxYW9fn1ejpVmLTxGTDEMgk1NCSubEKnW6xab119/nVNPPbXLWJszzzyTm2++ma+//ppFixbhdDp56qmn+P73v7/Xc7355psEAgHefvtt3n777U7PzZ07lzvvvJM//elP3HbbbcydO5eioiKuu+465s6d29tiiyFMWb+KQ+tXElQ1bMHhfT6PxW6jY8i6Ii02IoVCjQ2R7dxhvV+fO8um0WrNhvahOcH6Osx5eYkqnhAp1evA5rPPPuPhhx/e43Mnnngil19+OQAHHnggf/zjH7s917x585g3b163x0yZMoVnnnmmt8UUIsK8fhVH168AoDFwZJ/PY7Vbo4FNUFpsROp4VTOGGu4aLSjo3ZhGCKflCGU5oT0+CjY2JrB0QqRWrwMbl8vFmjVrOPzww7s8t2bNGrKzw1Ni29rasNtlapxIPcMfTQ1gsfV9TRyr1cx2WxEGCkp2778lC5Eon0w5g6821qEaIe7pZXK+DqozN7LtqasnJ1GFEyLFeh3YnH766Tz44INomsZJJ51Efn4+9fX1vPXWWzz00EN897vfpampiSVLljB16tRklFmIXokdD2N29D2wsZhVnhh+MgCTxuYzu98lE6JvGlrCwbpi0nBm9W2ZEM3limy31kgmd5E5eh3YzJ8/n7q6Ou68807uvPPOyH5VVTnrrLO46qqrePPNN/nmm29YsmRJQgsrRJ/EBDYWW99bEa2dFsGUKZ8iderbAxtXthW1F4n5YtkL8yPb3rr6hJRLiHTQ68BG0zTuuOMOLr30Uj799FMaGhooKSlhxowZjBgxAoCjjjqKDz/8sEvWYCFSQQlGB/paHNZujuyeSVVQFQXdMGR1b5EygWAItyccrHes+dQX2aXFrMwZi9tkZ+KIfRNVPCFSrteBTYeRI0cycuTIPT6Xm5u7x/1CpET7QN+gopJr7fsimIqiYDGreP0h/JKkS6TIrg8/5js73qZFy8I77LA+nyevyMVfSo4AwFU0JlHFEyLl4gpsjjvuOP7whz8wceLEHhP09WYRTCEGghoJbLR+5bEBmL3rU4rcu7Bt1zGCB6Joff5uIESftFZsZqxnJwDrtYP7fJ78nOh4s/pmb7/LJUS6iOuv8sEHH0xWVlZkuzeLrQmRah2BTUAxYe1H5mGA/EAzw3zhgZZ6IIBJAhsxwPz19XR0QNmLep+cr0NsN1ajW/IyicwR11/l2GR8d955J263m9bWVkpKSvD7/SxZsoRdu3Zx4okncvDBff8GIUQyqKEgAAG1/y02uinalWX4fSApDcQA02OS82WX9D2wyXaYMakKeiiEv64OPRBANfe9q1aIdNHrr6//+9//mD17Nn/7298A+O1vf8vChQt55ZVXuOCCC3j33XcTXkgh+qMhq4Aqaz51FhdaHCvDdseIaaHRfb5ujhQiOZSW8PIHXtVCfkHfxzOqisIJzV9x3cYnmLv8r/i2bklUEYVIqV7/lb/vvvsYO3Ys5557Ll6vl1dffZXvfe97fPbZZ5x99tksWrQoGeUUos/enHg6fxlxGv8cfXy/z2Vo0Zl+AY+MSxADyzAMLJ4WAJo1R79mRQFoDjsdAwv8DQ3dHivEYNHrwOarr77i0ksvZcSIESxduhSv18uZZ54JwCmnnML69esTXkgh+qNjanZ/u6EAjJimel+btNiIgRVyt6Dq4fvZrTnIze5fSg1TbnR9KEnSJzJFrwMbVVUj+Wnef/99nE4nU6ZMAcDtdmPrR8p6IZLB155Mz6r1P7BRYgIbv8fT7/MJ0RvBmFYVry2n312rlvxoYNNWI0n6RGbo9ZSOSZMm8fzzz2Oz2XjjjTc45phjUBSFuro6HnvsMSZNmpSMcgrRZ4lsscEc2xUlLTZiYPnroq0qoez+5wvLKi6IbPvqJbARmaHXgc11113Hj3/8Y15//XXy8/O59NJLATjttNPQdZ3FixcnvJBC9JWvehffrXiNoGKiXh8P9G/WnmKJjmkIemWMjRhYLVU1kW3F6er3+bKLo4u5hpqb+n0+IdJBrwOb/fffn7feeouNGzeyzz774HA4AFiwYAEzZsygqEhWPRbpw9fkpsxXC0DIV9Lv8ymWaFdUUFpsxADzFAzj47wp5ARbMZWW9ft8eSV5eFDR0KFFAhuRGfqUXSw7O7vLyt1z5sxJSIGESCR/W1tk20jA2mX+khF8mD+VgKJxZFH/P1iE6I1GZykfFkwD4KxRo/t9voJcO2s0B66gG1NrS7/PJ0Q6kLSpIqP522K6i8z9D2yM0uF8nB/O0npIXnG/zydEbzS0RFsJ+zvVGyDfacOt2XEF3Zj9HknSJzJC/4bUC5HmAjEzl5QEtNhYYmZW+YKywrcYWJ0Dm/7PQHVmW2nVotmzZZyNyATSYiMyWuw4GMXS/w8CS8xaU/5A8lb4bl76X+rffAMtN5fhl8yDvKykXUsMDoZh4Nm1C5MRIqSYyE9Ai41JVVhZfhCfufdHceZyS15+AkoqRGpJYCMyWtDrjWRWVW39b7GxagrWkB+zESTY3AwkfpyN+6sVVC1+FADnwYdgyslJ+DXE4KO3tnLou49xKLA6exSunKMTct5g8TB2hFpQgmCgIEsci8FOAhuR0YJeLx0jBlRr/1tsrM31XFXxNADNlulw5MR+nzOWoevUvvAsADkHzyL3mNkoinzUCAg2RPPM6JoFayLyMgF52VY204JhQHObH1d2/1uChEglGWMjMprujXZFmaz9/4NtdkSDIyMJi2B6N27EX1kJQKCuFlVWDxftAjEJ9ELZzoSdNzaQaXL7E3ZeIVJFAhuR0UIxwYdm739gY4kJNBR/4gObls8/jWy7jjlWWmtEhLs6mpwPZ97eD+wll01hH/dWpjetpXn5soSdV4hUka4okdHaysfxRUUTZiPIeFdBzy/ogSXLTuQ7bSDx325bV60EwFBNPLXNSnbzWk7b14anajN+zU7WQf3LnCwGr9ZdtZFtLc+VsPPm2VXOqvoPAL5ldXDqsQk7txCpIIGNyGjNpWP5qCA8e2m/ggQENjYLHhRMGCgJDmyCjY0Edu0CoNKSz6ebmskJ7GTmcy8AYJ8wQQKbIcxXWxf5g20rTFyG99wCF0FFRTN0DHdzws4rRKpIV5TIaB0LYELnqdp9ZTVrBNTwcGQ1mNjAxrN+XWR7iz28/EOLOYs6c3g8hWfjRnRZn2rICjZGV/bOKilM2Hlzc2y4TeGlcST7sMgEEtiIjOaLCWwSMYvEYlbxq+HvzaYEBzZt69ZGtrfZoutabWsPcgiF8G3bmtBrikGkpREAv6KRV9D/lb075OVYcbcn6TP7PRjBYMLOLUQqSGAjMlrI3YpF96MYOpYEBDZWswm/Em6xMQUD/T5fLN/WLZHtSlsR3z9+H8aWOdlpjXaheTdXJPSaYnAwDANzezdRi+bA5ex/6oIOziwzrabooPhgk2QfFoObjLERGW3Cf/7OjKZqQqhYzIf2+3xmTSXQ0WITCmAYRsJmLpWc9wOefuLfhOrr8JssHLx/CcGQwfubYgObzQm5lhhcdE8bplA4kG7RHAnJOtzBpKr4bdnQGn4cbGrEnIDxaEKkigQ2IqOp7a0qflXDqvW/gVJRFIKm9jE2GBjBAEoCFtcE8BWU8r4yAgpGMLIkG6fDwvR9Cnn+vejgTu8WabEZilSbnWenn09bTR1mzcQJ1sT+6dazsqEuvB1obESyJ4nBLK0Cm4cffpilS5fyt7/9LbLv+uuv58UXX+x0XElJCR988MFAF08MQh0DfAOqhsWSmEytH5Qfhs/rJyc3mxtMiXsLrd3aGNnef3R4zZ7iPDvOHDvVlnzKfLUEqqrQvR5Um3z0DCmKwg6vhs9WSEm+I+H5jRSnK7LdWlNH4tL/CTHw0iaw+ctf/sKDDz7IzJkzO+1fu3Yt8+bN47zzzovsM5kS8wElMl9H831A0bBqiblv2nIKqDN8+DQLipq4YWoVldGpthNGuIBwC9GEkXlUb3JR5gvnMfHv3IltzNiEXVekP48vFBkIn8huqA4mZ3QwclttfTdHCpH+Uh7Y7Nq1ixtvvJHly5czZsyYTs+FQiE2bNjAZZddRlFR4vI2iKHDFArP8AioGuYETPcGIoOQE7m6t/urFXi+qSA3oNKkZTO6NLrw5b4jXKyxuCKPfZWVEtgMMQ3uaJbrvCQENtaCfNrU8OyoPDUxXatCpErKZ0WtWrWK3NxcXnnlFaZOndrpuc2bN+Pz+Rg3blyKSicGMyMYRDXCwUdQNaMmqPneonUENqEejoxf7fPPcuiKl7l468u4ss2d1u8ZW+ak2uKi1pxLbdkEtNzETfUVg0PjZ59yYONqJri3kG9P/J9t+4gRPDj2XB4feQb1+89K+PmFGEgpb7GZPXs2s2fP3uNz69atQ1EUlixZwgcffICqqhx99NHMnz+fnJycPb4mXloCBpLGMpnUTv+LvRuougr5otOxQ5o5Yb/zwkAj2c2bsRhBAnWTsJeU9Pyibhi6jr86nHG4wexkdJmrU1lHDXOyLauMPznOZFRpDkdNm7q3Uw15mfo+NJYt5YTa9QDsdByRkHs5tq7yc6PTx5vb/An/+zjYZep9lQzpUFcpD2y6s379elRVpby8nEWLFrFlyxbuuusu1q1bx5IlS1D7OL5BVRXy8rISXNowp1MGdcYr2XXlC0Wz9OqaOWG/81FNW5hQ/TEARvUR5E3sX7eQt6oKQuHWn3qzk4mjC7qUtbw4m2273OyoaSU7x45ZPni6lWnvQ8Udzi0TUEyUjylN6N8vp9POiGHRVkBPQE/a38fBLtPuq2RKZV2ldWBz5ZVXcsEFF+B0hsfoT5gwgaKiIs4991xWrlzZpesqXrpu0NzclsiiYjKpOJ12mps9hEKJG3uRiQaqrny7ooMgQyYzDQ2tCTmvrkXHIDRUN+Do53nd66JTuOvNOUx2WjqV1WRSGVOWy7ZdboIhnW82VDOypH8tlpkqU9+HSnM4sGnRHDhNSkLu5di6MhlGZP+uutaEvVcyRabeV8mQzLpyOu1xtQSldWCjKEokqOkwYcIEAKqqqvoc2AAEg8m5OUMhPWnnzjTJrit/myeybWiWhF1LsUTHv3jdbf0+r6dyZ2S7weKkxGXvcs6xZbl88OUOACp2NDLMZUOR2YF7lUnvw5DHgxYMDx5u0bJw2s0J/dlCIZ0sm8aBjasZ27aDgp0+vLNvQst1JewamSKT7qtkS2VdpXVgc80119DY2MjixYsj+1auXAnA+PHjU1UsMUioxaX8ecSpmPUgxcOLE3deWzSwCXj6vyhlYFdVZLve4qQ4z9HlmFHDnOzr3sIR9V9R8Ac37ot/Qo6s9D0kBBuii1+6NQc5WYmftaSZVIbpLYxrq2y/ZqMENmLQSuuO+tNOO42PP/6YRx55hK1bt/L+++9zww03cNppp8lMKdGjgKKxy1rAdnsJQVfiVkPWYpLjBWNahfrKXxUNbNTCkj2OnxlenA0YFPkbUUNBAtXV/b6uGByCDdEuVb/DmbDZfbsLOaLdm4GYlcSFGGzSusXm2GOP5YEHHmDRokUsWrSInJwcTj/9dObPn5/qoolBwOuPrlKciJW9O5js0RkkIW//W2y87UGKTzGTV5y/x2OK8hy4rdEBnn4JbIYMX21dZNvISd5UfyUn2u3fVluPjOISg1VaBTZ33nlnl31z5sxhzpw5KSiNGOx8/mieGWuCllMA0ByJC2wMXSfU0IACNJmzGFaYvcfjTKqCpbgI2hcA75geLjKfe1dNZFt15SXtOqaY/EhtNXXdHClEekurwEaIRPLs2M4BzRsJqBo5wcR907XEdEXpPl83R/ZM93oJ5uRhNDXQrGVRWtB1fE2HwtJwdliH7sO3SwKbocIb02Jjyd9zi14iWPOjQZO3XrqixOAlgY3IWIHVX3N6e76ZrU2JW5LDkh0NbAxv/wIbk8PBijkX8+6ybWhGiGvz9x7YDMt30GDOweHzYTQ1ovv9qBZJf5/pPNZsmqz55ATbcBQnbqzY7hwFBZHtYFNj0q4jRLJJYCMyVsjjo6MDymRL3Po6FocDj2rBr5rRzf0/b32zFxSFoKJR5Np7UqthhVnssDgpb18MM1BTg7W8vN/XF+lt56QjebZmGACXFBf0cHTfZRflYQAKYLTnzRFiMJLARmSsUEw3UexMpv6y5WRx59jvAjDn4BEc0s/z1TWHx+mYVIXcbqbyDitwsEqLjsEJ1FRLYDMENLQkdwHMDi6ngxaTjayQF7W1JWnXESLZ0nq6txD9ofuiA3vNMTOZ+ssWMxDZ6+//Qpj1zeEPrrwcK6q696m8JXkOGizRmSsBGUA8JMSu7O1KYmCTm23BbQp/AdC8rRi6JKITg5O02IiMpfv8kW2LIzmBja+fgU3VM09z4qZVNGtZVA47pttjs+xmPA5X5LG/RqZ8DwUNLdEAPS87eWOqXNkWVjrHsSHkw1GYz766Dn1cj0+IVJLARmQswx/9pmvO2vug3N6yWaJvm/622LhXr2ZC6zYMoM11So/Hq8WlvOGeRbM5m5+feFK/ri3SX9vaNRz/yRMcpNpZU7QfZi15y2iYNROrS6fQ6g1SlGvjXE0+HsTgJHeuyFwxXVHWBAY2VouJI+u+pMDfRG6jCc6e0udzhRrqUQC3yU6eq+cVlV2FuSyrC6+X1qw5SFw7lEhH/ppq8nyN5NFIrSn5y8jkZltp9QZpdPsxDAMlSVmOhUgmaWcUGUuJabGxZiVu8LBFUxnt2cnE1q0Mq63o81gEPRBAaR+k2axlUeDsOUyJnTVV09j/rMcivbXuqo1sK0lMztfB1d7VFQjqeHzBHo4WIj1JYCMylhoIj7HxKxo2mzlh51UUhaApOtZB72P24djFDZvNWeT3OrDp/zpVIr15aqKBTTKT83XIzbKiGiGcATf1lTKGSwxO0hUlMpbfZEFVLfhVDVsC14oCCMXkr9G9HkyO3nd1BeujGWXDLTY9z3gpctlxBD0U+psILm8gMHo25rzkf5MXqeGvq4v8kbYXJS85X4dhvlqu2/h3ANxvVcO8Hyf9mkIkmgQ2ImN9eNA5fLM53CrycALXigIIaTEtNp4+ttjUR1dtbtbibbGxMbV5PUfXr4BK8E4fhfnAg/p0fZH+jPYMwEFFxVmY/ADWHrOsQqCxMenXEyIZpCtKZKzYqdiWBLfY6JZo60rI09ancwRiWmx8did2a8/fM/KdNprN0SR9wTpZrDCTqS2NALRoWeTFEfj2V05RtLtLb5Hsw2JwksBGZCxvIBzYWM0m1ATP7jAs0Q8Zv7u1T+cIxAQl8a7arJlUcEU/fAJ1td0cLQYz3evBFAgPgG/WHEnNOtzB5cqiTQ1fR3U3J/16QiSDBDYiY3W02FgT3A0VPmk0sPG5+9Zi440ZGGotjH8NIEvMYoXempo+XVukv0DMCtstWtaABDa52RbcWnv2YY8bwzCSfk0hEk3G2IiMFGxs5Nj1b9FmmGgoGAEckdgL2PrfYhOcdCCfVhlkB9vI7sX4ieySQkIomDDwVUtgk6mCDdExWK2WrLi6KvvLlWWl1WQHGjHpIfS2NkxZPedXEiKdSGAjMlKopYVxzZsBWO9I/DddNWZRzUBr31psGkdP4t/tE13Ozo0/z06By0GLloUr6EaP+fATmcUyrIy3hx2O3dtCS9GoAUmWZ7WY8Fgc0J5JINjUKIGNGHQksBEZKRAzoNcwJ359nZCrkJU54/CpZg4qGtanc3Ss6g2QH8dU7w4FThtN5nBgo/g8hNra+jTdXKS3YJaT5VnjIAsmlrkG7LohRw60jxsONTVBmawgLwYXGWMjMpLfHZO8zpL4FhujtJzXSw7nnaKD8Q0f16dzxAY28WQd7lCYa6NJk5lRma5z4Dtwi2cY2dEV5Ntq5N4Sg48ENiIj+WO7h5IQ2PR3IcxQWyvu6jpoH5zZm8CmwGmjWYt2D8jMqMxU3xxdEqQ3LXr9ZXLmRrZbayWwEYOPdEWJjORvjQ7oVayJ/7Zri5lp5fX3fk2dlk8/4Zj3/saRqLxeegS52cfE/VpXjpUmSzYhVNps2Rih/q0wLtJTy/r1uPzNtMSZvDFRQqPHs2TXKbhNdi6bPmvAritEokhgIzJSoC3aFaXakhjYGAZej6/7g/egI4eNCR0tOwuTGn/jqWZSqRy2H7/LHke2w8KDknk44xiGQf5LjzMv6KfO7CQrZ8aAXTs7P4+dtvCo9kZP3xZ4FSKVJLARGSnY5qFjDolqT0JgY1b56aZnsOp+/M3lcMhve/V6f0wTvyk//hw2HfJcDurcAdyeAL5ACGuCMyuL1NI9HkzB8CKuLZqDEQPYFeXKiQ62b3T3PmgXItVkjI3ISMGYFbdNtvinUsfLYbdgMkKYMMDX+7WivLXRcTH2wt4vblgY0zVR39y3tapE+orNYdOiZfVqDFZ/ubKiQVST2z9g1xUiUSSwERkpdmFKzZH4wMZu1fCp4W+2aqD3gUXHAphtqhVXfk6vXx875qKuSQKbTBO7QGqbNXtAkvN1yM22MKqtkhmNa3Ate3fAritEokhXlMhInuLhrM0Zh0UPkJfT+8ChJ3arCb9qhhCYAr37VmuEQtC+wGCzOYuCPnQzFOTamNa0llGeKlj8Hvqvb0K1Dlx3hUguf0xgY+S4BvTarmwrhzV8Hb63akH3/qBTQkoh0p0ENiIjNYyZzD8rwn+M5/Whq6cnDquGTzUDoAX9GLqOEucA4GBTI4oRHpTZrGUxvA/dDAVOG8M91ezn3gLu8JRvqyRSyxhtMUtlxLtAaqLYLCbazDHZhxubsJRKYCMGD+mKEhnJ44tOwU5GM77NqoVbbNrpvvgHWQbrot/Gm/s4fqIg10aTWZL0Zaq26tgFUvO7OTLxFEUhaI+5t5oaB/T6QvSXBDYiI3l80dwudkviAxtVUQiao10/uif+9aICDdEgJBzY9KErymmVJH0ZLBATqDqKigb8+kZ2tPvWWyfrkYnBJa0Cm4cffpjzzz+/077Vq1dz3nnnMW3aNI455hgWL16cotKJwcTjj22xSc5U6FDMGlSxg5V7Etti47X1bWCozaLhc0QzxAakxSajGE0NAPgUDVdhbg9HJ57qdEW23dVyb4nBJW3G2PzlL3/hwQcfZObMmZF9DQ0NXHjhhRx//PHccsstrFixgltuuQWXy8VZZ52VwtKKdHfgG49wkM9LgzkHu/WwpFzDsES7kHrTYuM6/gTu+CJElq8Fc+mwPq/abMrPhy3hbWmxyRyGYaC0uQFoMmdT0IuV3xPFHDOuR1psxGCT8sBm165d3HjjjSxfvpwxY8Z0eu7ZZ5/FYrGwYMECNE1j3LhxbNmyhccee0wCG9EtLeDFrPux6IFO6zolkm6NfuAE3K3E+/Hj9hvUmbKoc2QxuaDv4ydsRdFB0d5dNd0cKQYTRVH4z4lXsHrVVqy6n58PYHK+DvaCaGDjb2wc8OsL0R8p74patWoVubm5vPLKK0ydOrXTc8uWLWPmzJloWvSDadasWVRUVFAnTe9iLwxdR2vP2upTzZ3WdUqkuvJ9ebH0GJ4sOxG9fFT8r+u0qnffP7Ty8nNoNYVbjYL18n7IJA0tPlo1O/WWXPJzBj6wySqKBtyh5qYBv74Q/ZHyFpvZs2cze/bsPT5XVVXFhAkTOu0rLi4GoLKykoKC3qei76BpiY3pTCa10/9i75JdV6HW6HIKAc2KJUmBjVFYyrpd7de02uO+pxpbo3lvCl09v25v9VWcZ6dJyyYr5MVoacaEjqKl/C2dUpnyPqxvCc+yc2ZZsNvMPRzdN93VVX6RC7+iYTGCKO7mhP+9HGwy5b4aCOlQV2n9V9Dr9WKxWDrts7YnIfP1Ynrt7lRVIS8vq+cD+8DplHwP8UpWXXkD0ZW9Q2Zr0n7XrtzoGBuTRYvrOiGfD+U/bzC1qZVqaz4jy2bEXb7d62tkmYvV5izKfLUoGNiDHuxFpb37ITLUYH4fBkN6ZI2m4jx70u7fDnuqq5HlIT61uMLLhrhKkl6GwWIw31cDLZV1ldaBjc1mw+/vnNW1I6BxOBx9Pq+uGzQ3xz/YMx4mk4rTaae52UMoJCvidifZdeWtinbLhMxWGhpauzm672LfPLtq3BRmW/Z6bAdfZSWOT97lZODrnLHYTHN6LN/e6stmUtjkKKfVZKdoVBkT/AbeJP2sg0UmvA+3vf4mx9Z8SZOWhTb2kKTdv93Vlarr/HXEKQBMGpPPUXJfDfr7aqAks66cTntcLUFpHdiUlpZSXV3daV/H45KSkn6dOxhMzs0ZCulJO3emSVZd+Zqjf4R1iy1pvw+ryaDcU41N9+NZl0VwxCE9vsZbE5291Kw5cGVZ4i7f7vXlyraw0jmelcCkknxOcGTLvdduML8Pm79YzsGNawBYkXV40n+OPdWVRVPRTCrBkE6D2zdo6zLRBvN9NdBSWVdp3WE4c+ZMli9fTigUTba2dOlSxowZ06/xNSKz+VrckW3DmrxVkbOUEOfv+Bfn7HwP09L34npNbIbgFi0LVz8GhubYzVjaxz7UyQrfGSPUPhDcr2jkFQ1s1uEOiqLgam+BbGzpe7e/EKmQ1oHNWWedhdvt5sYbb2TDhg28+OKLLFmyhEsuuSTVRRNpzBsT2JDExfuszui4AyPOPDaBmNlLoRwXWj8G2CmKQkH7OJ+6Ji+GYfT5XCI9GIaB2hxOztdkzqbQlbpxCh1Bd6s3iD8Q6uFoIdJHWgc2BQUF/OlPf6KiooK5c+fy0EMPcd111zF37txUF02kMX9MYJPMVYkddhve9vWiFK8nrtf4a6NdUaa8/i9uWOC0gWFg8rXRsGV7v88nUivU3IQaCmfNbtKyUhrYjDCa+U7lO1y09WWqXn01ZeUQorfSaozNnXfe2WXflClTeOaZZ1JQGjFYBcbtz/PDjsUW8jOqbHTSruOwajSoFmx6ADXOwMYTM8bGloA1gApzbVy25QWcwTZqH3qH/HsW9vucInUCMYFvkzm7TwukJorLYWZsWyUAbTsqU1YOIXorrVtshOgLn93JhqwRfO0ch6mgsOcX9JHdasJjCjfXm/yeuLqCOsbYeFUzuQX9XwOoINeGRw2XwWhuxNBlYONgFrs0hsfmxGFL3XdPR0k08A42yLIKYvCQwEZkHI8/Oh4gWcspADhsZrxqeIClaugYPeRWMnQdmhsBaNYS8228INdGkzkbAEXXCTY29PucInViuypxpWbgcOTyhXkElHByS6OpMaVlEaI3JLARGcfjS/7K3gDZdg2vGp3VFGrtPtdHqLkJRQ8HXc1aFvkJWAOoMNdOsxYdxBzblSEGH/fOXZFtcxJbG+ORn2uL3Fuau0kGp4tBQwIbkXH0rRWM8FRR7KvHbkneLW7WTPjNsYGNu5ujwQgEaSgeQ605lzqLMzEtNs5oiw10nk4uBh/frmjeLntJ/8dg9Ue+00aLFk6EagoFerWCvRCplFaDh4VIBNd/3+D/asIzhLzmo5J6rVDMCt96W/d/+M1FRXw05QxWbQ53F81NQGCTm23BbYkGNrFjNMTg4x42hp272sgKesgrSW2urhyHGbc5C9rHxQfr6zE5ZGkFkf4ksBEZR/GFk9X5FQ2HPckrI9vC32i9qhnd33Mis7rm8DFWs4msBAwMVRUFxZUP7ZNWAtJiM6htHXcwr+4KL/T70xRO9YbwvRXIckJz+HGgvh7r8BEpLZMQ8ZDARmQc1R8ObHyqGVcSx9gAbB93IG9p4zAUlYcmTOr2WMMwqG/PEJzvtKIoSrfHx8tSGB2L4aupScg5RWrUNkUzSBfmpm6qd4QzD3aGNz01tWR3f7QQaUHG2IiMYwqEW0V8qoUsmzmp18rKsmEo4beR2xvo9tgWTwB/+9opicxP4ix04VfC31H8Mnh4UKtriuZDSofARotJIumukqBZDA7SYiMyihEKoYXCAYZPNSc9D0iWPRo4tXoC0E33wa6Fd3PBznoazDk0TftewspQ4HLQZM6iyN+E3liPYRgJaw0SA0f3+6ltD2yy7eakpiqIl7msnI/zJtOsZXH8uANSXRwh4pL6d44QCRRqi0659mq2yCKRyZId0yLk9nTfYqPv3E6pz4tVD6Al8Nt4odPGK8VHEFA15hw/mX0lqBmUql98gQtXvEOTls2yySelujgA5JQW81LBdACm22XhYTE4SGAjMooek0smaLElveUi22bi6NovcIS86G9vhUsu2ONxoba2yKDmZi0rsnhlIhTk2thlC3/o1LRK5uHBqrVyJ2YjRGGgCWd+/7NSJ0JeTJdpvawgLwYJCWxERolNkhc7FTtZsh1WDmxag8UI4t/QtNfjYvPLNGlZjHEmrmyxYzHq5MNn0ApUV6MCIVRyS4tTXRwA8nOiswrrW3qe9SdEOpDBwyKjBFqaI9t6+1TsZMqym2k1hQMLtW3vCfr8NdHEa43mnIS22LiyrZjUcMtU7KwaMXgYhgEN4eC30ZxNSWF65IvJd9pQDJ3cQAvq5vXocS72KkQqSYuNyCjeljZ0FFQMFHvyA5tsu5k6k428oBvN58EIBlG0rm+rQExg02zJITfbkrAyqKpCcZZKXuV6ippaafrYR+7hRybs/CL5Qk2NqO2D3hvMOUzIS/69G48sm8YJ9cuZ0bAatoDvhInY95mQ6mIJ0S0JbERGMQ6Ywd3jfFj1AAeOLUn69bLtGm2aDdpb6UPuFjRXXpfjAtXRNYAMVwFqgsf+FOWYOWXXRwA0/tcrgc0g46+qimw3mJ0U56U2OV8HRVEI5uRB+9qq/poaCWxE2pOuKJFRWr1BUBR8Jgu2rOR/681xWGg1RT+Egs3NezzOWxUNbLSixI+fcOa7IiuN+2OCKDE4+HfujGw3O1zk2JObf6k31JjFON2VVd0cKUR6kMBGZJS2mCR5jiQn5wOwWzV85mhgE9pLYOOvDndFeVUzOYWuhJej0GWnwZwDgN7YgB7ofuq5SC/enZWRbaOwJK3yEFmLooFNa5UEzSL9SWAjMkqrNxjZTsRaTPHQs3Ii28HGxi7PG8EgemO4Lb/RnENhbuK7GQpybZHARjEMgrIY5qDSuj0a2NhKh6WwJF1lDyuNbAdqJfuwSH8yxkZkFHXpexxXsxWPyYrDPH5Arqk7XZFt314Ciuo53+d/y9YSUDVmJiFVfmGujXXmaIDlr96FJc0+IMXeBXbtRCXcoucqTa9EeIXFLjyqBbvuh4b6VBdHiB5JYCMyinX9SmY2VaKj0OZI3LIF3YkdLOyp7hrYKJrGFucIlrvCDaSnJmFgaJHLToPZGXkcqK7u5miRbipPu4gP/70Ce8jH4fnpMdW7Q2Gunc3mHOy+OrTW5r3O/BMiXUhXlMgoircNAK9qIcueuCnV3TEXFFFhH8ZXOePxDx+zx2OqG6L5P4qTMJXXlWOl2Rob2MhYiMFkZ8DCFkcZa3LGpM2MqA5FLhtNWnhdbwWDgLTaiDQnYbfIKCZfOIDwmiwUDMDgYYCsglyeKT8BgHHjJu/xmI7AxmYx4XQkvlyqooRnW20LP/ZLi82gUtXQFtlORuDbHw6bGbfNCe1JvYO1tViSMLNPiESRFhuRMYxQCC0QTijjUa1kD9CUWVdWtGWoqdXf5fmmL77AUrUVa8hPcZ49aTNenEX5+JTwdxVvlUzLHUx21oWjBodVS0rg2196bri7NaioBPYy80+IdCEtNiJjdFrZ2zRwgU1sFuEmd9f1dKqXPM55rW7cJjufHHB50spRnO9gu70EzQgyctQ4DMNIq2nDYs9qP/qY4du+xmFxYi8bn5a/M/e4yfxBL6LF5ODufaemujhCdEsCG5ExQi0tkW2f2Y5ZG5gGydys6EKBzU2t6IEAqjkcVAWbmzFaw2tI1VpyKUni+IniPDtPlB0HwAWHTWTfNPyAFF3V/+ufnFKzAx2FTw6alOri7JGr0EVLRfj9VdPkpdCVXuOAhIglgY3IGLHJ8YIDsABmB1eOlSlN6zm6/kuyNnhpHXY5OQfOBMBfuSNyXK3FxYgkBzYddsWM2RDpywiFMGp2oQD1ZifDSnJTXaQ9KooJZGobPTCq67IhQqQLGWMjMkagqSmyrTtyujkysZwOMyGzlaxQeGXt2PT4uwc2JUkcGBo76DR2FpZIX/5du1BC4aSSNVYXZWmyqvfuCmNyL9U0yb0l0psENiJjeOobow+yswfsuoqioBdEZ4n4Y9Lje7dsiWxXW/IozU9eYFPgtGJSw91P1Q0e9EDXgcwivfh3bI9s11jyGFaQXjOiOhTn2RndVskxtcspefMpgu2ZtIVIR9IVJTKGP8vFmqxROEJecA1s9lZLSQn6SgUVA8+OmMBmcwUAIRTa8opxZiUvt45JVSnNNnH0N69TWNFEZdN4hl91bdKuJ/rPt2NbZLvBkU++M/FZqROhyGVnbFslBzd+A4RbJfe0ir0Q6UACG5ExvGMm8tKw8NiSOSNGDOi18/OyaTRnkx9oIbirCkPXMfy+SFdUjTWP0uLkj5/IK8ih2N+ATffj3bGj5xeIlPJujQY2SmkZapoO+NZMKoHcAmgMP/ZV7cSx3/4pLZMQezMouqJ27NjBvvvu2+Xfc889l+qiiTTS0hZd0Xqgpnp3KHTZqLG0f4MN+PHv3Im3ogIMA4Cd1gLKi5LfPVaSl0WtJRxA6Y0NhDwyHiKdebaFAxu/opFblt5re5mKSyLb7m2V3RwpRGoNihabtWvXYrVaeeeddzrleMjJGbgBoiL9uT3RMSU5joFZTqFDYa6d5bZC9m3dCoB34wb8NdHsv9vsJRxUlPyBocV5dmotLoZ7w6sw+3dWYh87LunXFb2nez0YDXUA1FhclA3A/dEfWWVlke22SglsRPoaFC0269atY8yYMRQXF1NUVBT5Z7OlZ3+0SA23J3UtNsPyHeywRQcQt61fi5bjpC0nH4DN9mEML0x+i01pgSPSYgPglw+gtOWL6SqssbooK0jvwKagvBh/e2brUI0s2SHS16BpsRk/fnyqiyHS3Ognfse8kMJOWwHZ9hkDeu3SAgc19kJ8iobVCNK64ktKfnAhL2x10VhVg8/iYGRJ8gObYQUOai2uyOPY6eYivSgmE1XF47HXV7LLWsDsAbg/+qOkIIsai5NSXz2m5npZ5VukrUFxV65bt46ioiK+//3vs3nzZkaNGsVll13GkUce2edzagnOSmsyqZ3+F3uXjLrSfT7MvlZcQHMwi4JcW8J/x93RNJWiohzW7xrJpJZNWIYNw+92U1nbiqE5GF2cjaOPrUi9qa/ifAfNjuhslUBV5YDWQ6oNpvdh9vhxvFx+LA1OHw6riZJ8x4Aup9DbuiovymKtORzYKIZBqK4aW/nwZBYxbQym+yrV0qGu0j6w8fv9bN68GbvdznXXXYfD4eCVV17h4osv5s9//jOHHnpor8+pqgp5eclp9nU6JdV4vBJZV95d7sh2m8nGqOF52K0De3uPK3exfNtEttuKuOjan1DfGsBof26/MQX9vufira/88hK8m8zY9AD+nTuTdq+ns8HwPmxy+2hoCa8tNm54Hvn5qWmxibeuXC4HL9jzwb0ZAK2hlrxJ+yaxZOlnMNxX6SKVdZX2gY3FYuHzzz9H0zQslvCA0EmTJrFx40YWL17cp8BG1w2amxObct5kUnE67TQ3ewiF9ISeO9Mko65aK6JdLm3WLLxtPrxtXRekTKZh+XY+sBWy01bI8tW7qGmMzkgaVZxFQ0NrN6/eu97WV3GegzpzLuW+Wvw1NdRW1mKyD40/yIPpffj1prrIdlmBvc/3R1/1pa5ChaUQHpdO7er1aJOmJa+AaWQw3Veplsy6cjrtcbUEpX1gA+BwdM3GOWHCBD766KM+nzMYTM7NGQrpSTt3pklkXfnqoh8SQYczJb+DCSNcke2vK+qpqgt/UCnAxFF5/S5TvPVVmu+gxuqi3FcLQNvWbdjHDa0xaun+PtR9Piq210ceDy/KTll5e1NXWlk5mzYPo9aax9Flo9O6jpMh3e+rdJLKukr7DsM1a9Ywffp0li1b1mn/119/LQOKRYSvNhrYkJOahQRHleREur+Wralme004sBk9zIlzAKeflxVmsTJnPK+UHMGGb12GbczYAbu2iE/jf95jzF9u5wfbXqfcU82I4vQeONwhf0QZz5afwHuFB7Erd2CTYAoRr7QPbCZMmMA+++zDLbfcwrJly9i4cSN33HEHK1asYN68eakunkgTbTXRwEbJS02qd1VVmLFPYZf9h08uHdByDCtwsMNezDc5Y9kcdKCoaf82H3J8mytQ9RBlvjpCmjltF7/c3fCYAGxbtbubI4VInbT/i6eqKosWLWLy5MnMnz+fuXPn8tVXX/HnP/+ZffcdWgPXxN756qLN+ta8/JSV4/iDRhA7ryU328KhBwxsYFOcZ48shrmzdmDHbYj4tG3cCEBAMWErK0cbJLNthsckEdxeI4GNSE+DYoxNfn4+t99+e6qLIdJYqKEeU/u2oyh1gc2o0hx+ePJEnv/PRrJsGhedtv+Az84yqSql+Q521LZSVd9GMKQPmg/OoSBQX0eoPtzCWGkrZMyIwbOYZKHLjtVswucP0rR9J4HaYZgLi1JdLCE6GRSBjRA9MVqaAGg12XA6U9usf9TUMo6aWtbzgUk0ojibxqpayr01bHnqGUYcfyyW0oFtORJ75lm/LrK93VbCvmXOFJamd1RFYX+bhyPX/gOH7qPmn1WU/eCHqS6WEJ1IYCMywtbDz2TVik2ohs7x2QO7TlQ6GlmSQ9BdwfG1ywhVgWdkmQQ2acKzLhrYbLMXc0pZaga795VrRCmOL8OpFNztXWpCpBNpnxYZYbu9lFU5Y1npHE9+jjXVxUm5kSXZ7LIWRB57t2xOXWFEJx0tNjoKjbnDKM4bXDmGSssKqDOHW5mMnTswgsEUl0iIziSwERmhvtkb2c53yuKoI0ty2GXNR28fyuzdtCHFJRIAoZaWyPpdVdZ8Ro4sHNBlFBJheFE2O9uDZkUP4duxPcUlEqIzCWxERqhrD2wcVm3AB+umo2y7mRxXNjXtC2L6tm8n1JbYbNui91pXr4psb7WXMnYQja/pMKI4mypbTGvg5ooUlkaIriSwEYNe24YNuCo3ku9voiC7bwtNZqIRxTlstxeHHxgG3k0yHiLV/Dt3RtYPq3CUMW6Qja+BcNDsKYgOjvdUSGAj0osENmLQq3nrTc6qfJefbH2ZEZqn5xcMESNLstluK4489mxY183RYiAUnjmXp6b9gFdKjmCno4Tx5YMvsAHIGTs60s3pXi/dnCK9SGAjBj1fdXVk215aksKSpJdRpTEtNoBng3wApVp9s5etbvgmZyyjhudhtZh6flEaGjWikGprOP+OvmsnIbck6xPpQwIbMejpdeHFHptNDvLzBseaOwNhXFkuLVoWTVo4r4934wZ0vz/FpRraVm9piGzvN2rwJObb3ZhhTrbawl8iFAw8G9anuERCRElgIwa1UEsLqie8bECDJUdmRMVwZlkozrNT4RgGgBEI4Fm3NsWlGroMXWdNhgQ2o0py2OYIBzZ+k4VQc3OKSyRElEwfEYOar33qLECtxcWEfEcKS5N+xpfnUrGtnGHeOkoOnoG5sOsinSL5AnW1bP3tbyiwlDHMPoa67BLGDsKBwx2sFhOhkeN5XMum1uLigYMPS3WRhIiQFhsxqPljApsaS96gS3aWbOPLc1mbNZI/jzydTfsdjaV0WKqLNCS1LPucUEsz+9etYUzbTiaOysOsDe4/v2PHFFNtzUdXVNZta0x1cYSIGNzvLDHk+XZEAxtPbqHksNnN+OG50J4Abv32xtQWZghr+fyzyPaa7FFM22fwt5ztG7N459qtjakriBC7kcBGDGqe7dGsp+bS1C48mY7KCrPIsoWDvbVbGwnpeopLNPT4tm3D157Ebpclj3pLLlPHDf7AZsKIaFfa2m2NsrSCSBsS2IhByzAM/O3p3FtMdvJL8lNcovSjKgr7jw7XS5svSMXXG2l8/98pLtXQ0vTh+5Htr5z7MGaYk7wMWM8sx2FheFEW05rWcujyF9h0/XUYEjiLNCCBjRi09LY2AgWl+BWNKmsBpTJweI8OGBMObE7d9RH6g7dR/bcl+HdVpbhUQ4Pu99P8yVIAAoqJVTljmZ4B3VAdJo7KY1zrDkZ7qgg11MvyCiItSGAjBi1TVharjv4+9439Lv8sOYyyQgls9uSA9habGkt0TETz0v+mqjhDStOH76O3hdMRrM0ehc9k4cB9i1JcqsSZOq6Q9dkjIo9b2oM4IVJJAhsxqG3b1YKhqHhMNkaW5KS6OGmpINdGab6Db3LGRNLgN33wHxkTkWRGMEjDv96IPP7MtT9jhjkZVpCVwlIl1oQRLja7xhBUwh8lLZ9/KveVSDkJbMSgZRgGW3aFU7k7HWZysywpLlH6mjKuALfmYF1W+Nt1qLmZluXLUlyqzNb8yX8JNtQDsMFRTrU1n8Mnl6a4VIll1lTGjx/G+o77qqWF1lVfp7hUYqiTwEYMSnrAT0NjG25PAIARJTko7dOaRVczJ4bXjPoid2JkX/0/X5PBnklkLixCKw5n5/1v3hRMqsLB+2XeWmbTxheyKmds5HHz0o9TWBohJLARg1TLZ59Rc8NVfHvnvxnmrWVksawR1Z0xZeGZOFvtJVTawoNX/Tu207Lssx5eKfrKMXE/Kr51KS+XHEmlvYhD9i8h225OdbESbsaEQrbmDKfVFF7OxP3FcgLt67cJkQoS2IhBqfWrL1ECfia0bsNkhMKJ6MReqYrCQfsWg6LwYd7UyP7a555B93pSWLLMpesGb31RyeqcMQDMOXhkikuUHA6bmcnji/nSOSG8Q9dpePut1BZKDGkS2IhBJ9TaSuv/vgKg1WRjh62IfYa7UluoQeCIKeHlFCocZexwhT9kgw0N1Dz3TCqLlVF0rwc9EO4e/WzNLmoavQAcMDqPERncqnjopFKWuyYSUExAeHB6oL4+xaUSQ5UENmLQafnsk8jMi1XZYygrysnIJv5EG1GczbhyJygKr+QeCFq4znSvT8baJIDu87HjgfvYdsdvaduxkxff3xR57qRZo1JYsuSbOr4AR14uK9pbbUz7T0ExyceLSA1ZWEcMKkYoRMNbb0Yef+0cx+RRed28QsQ6Zlo5G3c002TO4at9j+X4SQW4jj9RBl73U7ClmZ1/fATP+nUAVPzuLupLTgXFxAGj8yK5hDKVSVU57sARvNwwhbXZI9lnnxmMzXWlulhiiJKQWgwqjf95j0BNNQAV9mFUW/MzKpNrsh2yfwkFznA6/zd8pdQfMKtTUGPouoy56aW2NavZsuDXeNasDu+w2ni64Ah0xYSiwNnHjE9tAQfIkVOHgc3BdnsJH3xVSVV9W6qLJIYoCWzEoOHfWUndP16IPP4ofyp2q8aEEa7UFWqQ0Uwqpx42OvL46XfWoxtG5HHTB/+h4oZfUPvyP/Bs3CDJ1rrhr6qi6i+L2X7v3YSaGgFQnU7e2udkdpjDLTRzDh7JqNKhkTgyy2bmxJnt+Wx0g2ff2wCAd8tmQq2tqSyaGGKkK0oMCv6qnWy79250b3gw5grneHbYizli3yI06cvvlSMmD+Otz7ZRVd/Gxspm/v3FDo47cDjB5mZqX3weva2N+ldfpv7Vl1GsVuzj98FSVo7mcqHl5qLaHdjGjkXLcUbOqft8BJuawuMqFBXFpKKoJlBVUNVwq5CqgqKgmgf3eKjmT5fS+M7beCs2ddpv329/3iw7ii+2hFsqSvMdfOuIMakoYsqcPGskH/yvkia3nxUbalnx0ltkvfkc5qIihs27AmtZWaqLKIYACWxEWjJ0HUWNBixqVha6JxzU1DsKeLdwJhAeMyJ6RzOp/GDOvtz91JcAPPPeekYPy2GkXcex/wG4ly+D9lYcw+ejbdXXtO2WTbb8qmvRDpgUedy2+hsqH3qgx2srmsY+i/7UaV/100/S9MF/wr/vSCCkQntwpJjC+xz7HUDJeT/o9Nqdjy4i2NyEoqooJhOqprHLZiEQMjDUaHDlnHUojon7RV4XbGyk/o3XMUIh0EMYwVB0O9TxT4dQiNKfXNIpiPNu2tQpqFHtdnJPOpVXjNH89+twN6nNYuLyb0/GYjb1WCeZxGbR+M4x43nstW+whvwY/3oZIxjAX1nJ1t/8mryTTyXvuBMwZWfuDDGReoMisNF1nYceeojnnnuO5uZmDjzwQG6++WZGjcrsmQaDgWEYGIEAht+P7vdh+Hzofn/4sc+HdcRItNxojplAbQ31//2IRtXA09JGyOfHCPjR/X70tjb0tjZCnjYUk8aY2+6MvE7LcZJ34hx2LVvB32yHEFDNjC1zMmbY0GjmT7SJo/I47sDhvLt8O8GQwYPP/4/550xlzLzLCdTV0bpqJZ61a2hbsybSzRJLtVo7PTZCofgurHZtXTPa7xdjD4fHCg7r+m3fs2kDwdqek8HZRo3uFNiE2tpofPftHl8H4eCOmNvMUhYOpq0jRpBz8KH4phzCH97ayNZd4aBGVRQuOeMAygszZ02o3ph1QAlfbazls9XV/LX8JL6369+4vI0YwSD1r75MwxuvY993IlmTp2IbOxZLSSmmrKFZVyI5BkVg8/DDD/P0009zxx13UFJSwu9+9zsuvvhiXnvtNSwWWR+oJ4ZhYASDXboAfNu2EqitJdTWiu71dglKOoIVx8T9cB17XKfXbrruGkKtbgy/P/Ltfk+GXXoFOQceFHkcbGik9pWX4yp3qKUFU070EyU461ge3ejC4w9fb+5RY2U2Tz+cO3s823a1sG57Ey1tAe5+8ksuOnU/Dty3CNdRx+A66hgMwyBYV0ugvp5gYwOhpiZ0rxdzYecB21pePjmHzAJdx2j/RygU/t8wwvsNA8XUtQXDlJuLpXx45LXh/0OdH4d0VJut6w8RinOa+m7dlXsqx94Yu10je/oMHBMnohQU8cFXO3n+ma/x+cOBnWZSufj0/Zk6fugOaFcUhR/MmciO2lZ21MCfyk7huOaVTKtbhWLoGMFgl1bAsffch+aKWX3+06W4v1iOarWimM3h35dJQ1EVaG/FU1QT5qIinIce3un6Lcs+R29rC7f8qSqoSvt2R+ufCcVkwlJairkwutK6EQziq9wRbS00mcItfiYTWM0ENJ1QmxfdUMJl2kOQLtJD2gc2fr+fxx9/nJ///OccffTRANx3330ceeSRvP3225x66qkpLmFyGbqO3taGv7qaYH0djon7dWrG9W7ZTMtnn6B7veF/Hg8hdwuh1tZwfhKfF93nQ3O5GPu7+zqdu+71V3Ev+7zHMqhWK+wW2Oi+cCDUY/n9nY9RLD2MrzCZMDmyMOXkEGxqjAQ2GyubePgfq2hpD2oO3q8446fQJptmUrny7Cn8/vn/sW57E75AiIdf+ppJY/I5dkY5k8cWoJlUzIVFnT4A9sQ+diz2sfP6VI7CM+dSeObcPr12zB13h7uNdB2CQUwqOLOtNNa3EPQHwkGJoaPtNvVYy89jxA03dfrwUkztH3wmrX2/iqKZUCzR1ildN9jqhuVr3SxdtYFGtz/yXGm+g3lnHiCrzAMOm8bV35nG3U99ya76Nt50TeeTrPGcrGxhdEMFNDV0Ot6U3bnOfFu3hrtEe2CfuF+XwKbu1Zfx79je42sLz/oO+SefEnkccrew9Tc39/g6gFE3/wbriGgm6eZP/suuv/01fN9oJpT2eyhyX2nhxyank/Ir53c6V+O/38VbsQlF08L3nhbzz2RqD+w0rOXlOPbbv9Nr21Z/A0p7oGU2o2hm1I7tyD5tyAVhaR/YrFmzhtbWVmbNmhXZ53Q62X///fn888/TNrAxOr6lhkIYgQC6pw3d5wt/2y0o6PTtRPf7qfzDg+Hj2o/RPW3hVhS/v9N5R9zwa+wxgY1/ZyUNb/6rx/LoewhCVIt1D0d2FfL60HUDI6azwFw6DN3jQbVYUCwWFIu1fdva/tiCarWglpYRCIaijTr5hQz72dXk5OfQ6tPRVQ3FbEGxmFHsDhSzGVBodPv4uraNyv9uZv22Rr6uiGYxLS/M4gdzJiL6L8tm5prvTuNPr63m8zXhrpSvK+r5uqKebLuZ/UfnMao0h2KXndwsKzlZZmwWDatZxaKZUFUlfK9D9O4wOv5r379bg56x24GGEfOot68FQMVABU3DZFKw2rPwZakErXrknD7AaPV3OolRPHyP19B1A68vSKs3SKO7lZ11beysa6Wyto1dDW0Egl1biQ6fVMr/nTgBmyXt/6QOmLwcKzeefyB/fPlrVm1uoMmcw9NMgsIDGDesjammekpDzdgDHtbvdOPKsWKzmLBqJkLtkwR6sseWtziTTe6eQLBXSSrVztc1/AEMn7fH7lQtr2vOrba1a+L6guk87IgugU3lIw+FW6d6UHrxPJyHRD9DfZU7qPrTo+G/0x1/r2P/bw+SFJOJvDknd+p67viSHf4bb0W1WFGs1kjrWjpMtlYMo5t+hDTw1ltvceWVV/LVV19hi2mK/tnPfobX6+WPf/xjr88ZCuk0Nyc2V8fz/9mI7cW/MKJlO6qhY+rmFv+w6ECWFU6J/PE26UF+tvaJuK7z1IiT2G6PrhA83r2VuZX/7nKcVzXj7/inaPhUC8+Wn9CpVONbt1Hka8BrsuJXzQQUDb+qEVRMBBSNgKq17zPjM6VHl9/44bn89OwpuLLjC8oygcmk4nTaaW72EIq366WXDMPg89XVPPnOOuqbe26JE6AoMGNCEacfPoaxZc6eX5BmBuK+gvC99d+VVTz97nqaWv09vwAw6wHsIT8WApgMHZOhoxo6CgaqYaAaOioGHpOVKlvn1sR93Fuwhfyo6CiG0R726qiGgYLRfi6DiqwyKu3FkdfZQj6OrP1it2uEjzXRfn0jfK5/lR5Oizn6BXPf5s0cVrci/Jr2snWUueM8mqHTZM7mT+PO7lTeM7e/y3j3th7r5CvXBN4ddlinfT9d8zc0o+fxba+WH8sG52ggfN+Wte3iO5v/2ePrAB7e9//wx/z9n1X9JbNqV+z1+ICi8e9pZ3HueccyrMAR1zXi5XTaMcUxCzbtv154POEAZPexNFarlaampj6dU1UV8vISN1gtENR545MtnBkMYo7jJsvzNuALRI9TYqINHQW/quFTzfhUSyQwaTZn02jOpt6URUiPvmCrtYgnyucQUDV8SjiQ8Zqs6ErPv/wNWSPYkDWidz9sihS67Jx17HjmzBqNWUv9N4JUcDrtST3/nMOzOX7WaL5cV8N7y7bx2TdVkbEjAkyqwrDCLEaU5HDgxBJmTSolNwMC7GTfVwCnHT2eEw8bw4crdvDhih2s3FiHP7D3eyugmgmocaYF2O27+dqsXiw2GvO3tFWx8K+iWd0cvJtQ9LWrskaxKquHySztgZWxW4vfG4WzsObPaA/gQpFAzmSEMBHdbjDn4A90fu3SvEloegjNCGEywv93/DNF/tdpwtLpMyfkDxBERaPngLYlqHSaHKAEuw9OzUaQypoW/ldRz/7ju+/CTpa0D2w6Wmn8fn+nFhufz4fd3rc3pK4bNDcnNivmd4/bh9YXl1OPF0NR0BUVXVExFJWQYiKgWQiYzARVM81ZhQwvCgdWiqKAYfBswUWEVC0ckCgKexoTqygK+UA+EH06B5QiNMAOKDHP7G1cbef9ez5+b0NyYwfr7uU0nfbvaXCvooCmmQiF9PZujK5lyLKbKS/Morwwi7L2f6qq4G4ZellxB+qbdYdxpdmMO20/fnTKvuyoaWVbtZv6Zi9Nbj/NbX58gRA+v04gGIp8LnT83nb/bXf8/iP7dztu9/sj/FDZ8zkjjzs/H/taRVHQNBPBYMwf4piN7l7bcW5FCU9bdtg0chwWSgsclBVmUZJn75QzSQ8EaWgYvAkMB/q+ApgxvoAZ4wsIhnS217iprG2jocVLY4uPJnf7vRXQ8QdD6Hr3nQnx9DUYPXUOxXWO8D2kmlT0kN7lJf3v9Mju2uUKBNv/ddCA3b+Gbi3uPL6ou7IMJ/rjBhnPU6PGoxg6Jj2IFgqi6UE0PYApFMSkhzDpIRQMylydxz+1mEaz0mENHx8KRF4XPkf4/wnjijloQiENDYlNzJgxLTbDhoVXJK6urmbkyGgkXl1dzcSJfR9nEdxDP3l/nDBzBHknLqChoTXh5840mqaSl5fVq7rSdaPHP3SZLhTSB/zeKivIoqxg8EzF7cu9FTcj8X830kEq7iuA4YXZDC8cHPlsknpfDTqHdPuspqmcluK6Svs2/YkTJ5Kdnc2nn34a2dfc3Mw333zDQQcd1M0rhRBCCDHUpH2LjcVi4bzzzuOee+4hPz+f8vJyfve731FaWsoJJ5yQ6uIJIYQQIo2kfWAD8NOf/pRgMMivfvUrvF4vM2fOZPHixZKcTwghhBCdDIrAxmQy8fOf/5yf//znqS6KEEIIIdJY2o+xEUIIIYSIlwQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhmL0f831QccwkrNStMmkEgoN9ZVf4yN11TtSX/GTuoqf1FX8pK7il6y6UlUFRVF6PG5IBjZCCCGEyEzSFSWEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBjRBCCCEyhgQ2QgghhMgYEtgIIYQQImNIYCOEEEKIjCGBTQLous6DDz7IkUceydSpU/nRj37Eli1bUl2stPPwww9z/vnnd9q3evVqzjvvPKZNm8YxxxzD4sWLU1S61GtsbOTXv/41Rx11FDNmzOB73/sey5YtizwvdRVVV1fHz3/+c2bNmsX06dP5yU9+woYNGyLPS13tWUVFBdOnT+fFF1+M7JO6itqxYwf77rtvl3/PPfccIHW1u5deeolTTjmFyZMnc+qpp/LGG29EnktpXRmi337/+98bhx56qPGf//zHWL16tfGjH/3IOOGEEwyfz5fqoqWNP//5z8a+++5rnHfeeZF99fX1xiGHHGLceOONxoYNG4znn3/emDx5svH888+nsKSpc+GFFxpnnHGG8fnnnxsbN240br31VmPKlCnGhg0bpK52c8455xjnnnuu8b///c/YsGGDceWVVxqHH3640dbWJnW1F36/3/j2t79tTJgwwXjhhRcMw5D34O7effddY/LkycauXbuM6urqyD+PxyN1tZuXXnrJ2G+//Yy//OUvxubNm42HHnrImDhxovHFF1+kvK4ksOknn89nTJ8+3XjyyScj+5qamowpU6YYr732WgpLlh6qqqqMiy66yJg2bZpx0kkndQpsFi1aZBx55JFGIBCI7Lv33nuNOXPmpKKoKbV582ZjwoQJxvLlyyP7dF03TjjhBOP++++XuopRX19vXHXVVca6desi+1avXm1MmDDB+Oqrr6Su9uLee+81zj///E6BjdRVZ4888ohxxhln7PE5qasoXdeNY4891rjzzjs77f/Rj35kLFq0KOV1JV1R/bRmzRpaW1uZNWtWZJ/T6WT//ffn888/T2HJ0sOqVavIzc3llVdeYerUqZ2eW7ZsGTNnzkTTtMi+WbNmUVFRQV1d3UAXNaXy8vJ49NFHmTRpUmSfoigYhkFTU5PUVYy8vDwWLlzIPvvsA0BtbS2LFy+mtLSU8ePHS13tweeff84zzzzDXXfd1Wm/1FVna9euZfz48Xt8TuoqatOmTezYsYPTTz+90/7FixdzySWXpLyuJLDpp6qqKgCGDRvWaX9xcTE7d+5MRZHSyuzZs7n33nsZMWJEl+eqqqooLS3ttK+4uBiAysrKASlfunA6nRx99NFYLJbIvjfeeIOtW7dyxBFHSF3txU033cThhx/Ov/71L2677TYcDofU1W6am5u57rrr+NWvftXl75TUVWfr1q2jrq6O73//+xx22GF873vf48MPPwSkrmJt3rwZgLa2Ni666CIOPfRQzjnnHN577z0g9XUlgU0/eTwegE4fSABWqxWfz5eKIg0aXq93j/UGDPm6W758OTfccAPHHXccs2fPlrraix/+8Ie88MILnHHGGVx++eWsWrVK6mo3CxYsYNq0aV2+XYO8B2P5/X42b96M2+1m/vz5PProo0yePJmLL76YpUuXSl3FcLvdAPziF7/gtNNO4/HHH///9u4upKk+jgP4V9FYtiIqqKsiHGuv5oazl4FUhAWNIkgrpIsMMRQHljS62oVYETWEsqBXIQu8MARrN62roOlWpBDDTJNaQa0GNYKi1N9zEZ62rB540s48z/cDg3HO2P776rYv//MGt9uNurq6rMgq798fQr+j0+kAfPtQTN4Hvv3x5s6dq9awZgWdTocvX75kLJv8py8oKFBjSFkhFAqhqakJq1evRiAQAMCsfmVys0FzczP6+/vR0dHBrNJ0d3fjwYMH6Onp+el6ZvXdnDlzEI1GkZeXp/wo22w2jIyM4PLly8wqTX5+PgDgwIED2LlzJwDAbDYjFovh6tWrqmfFGZs/NDm1m0gkMpYnEokpU3GUadmyZT/NDQCWLl2qxpBU19HRgYaGBpSVleHixYtKWWZW3yWTSdy6dQvj4+PKstzcXBQWFiqfO2b1TVdXF5LJJDZs2ACHwwGHwwEA8Pv92LZtG7P6QUFBwZSZBqPRiDdv3jCrNJO/bUajMWO5wWDAy5cvVc+KxeYPmUwm6PV69PX1KctSqRRisRhKSkpUHFn2c7lcePjwYcYPVDgcxsqVK7F48WIVR6aOGzduoLm5GVVVVWhtbc34gmVW3yUSCRw+fBiRSERZ9vXrV8RiMRQWFjKrNKdOnUIwGER3d7dyAwCv14sLFy4wqzSDg4NwOBwZ544CgMePH8NgMDCrNBaLBfPmzcPAwEDG8qGhISxfvlz9rP7KsVcaFwgEpLS0VEKhkHIem/Lycp7H5gc+ny/jcO93796Jy+USn88nT58+la6uLrHb7XLz5k0VR6mOZ8+eidVqlfr6+ozzZyQSCUmlUswqzcTEhFRXV8uWLVskGo3KkydPpLGxUVwul7x69YpZ/Yv0w72Z1Xfj4+NSUVEhHo9HotGoDA8Py7Fjx8Rms8ng4CCz+kFbW5s4HA7p6emR58+fy7lz58RkMklvb6/qWbHYTIOxsTE5efKkrF27VoqLi6Wmpkbi8bjaw8o6PxYbEZGBgQGprKwUm80mGzdulGvXrqk0OnWdP39ejEbjT28+n09EmFW6VColfr9f3G63FBUVSXV1dcZ5bZjVr6UXGxFmlS6ZTMrRo0fF7XaL3W6X3bt3SzQaVdYzq0xXrlyRTZs2idVqle3bt8udO3eUdWpmlSMiMvPzQkREREQzj/vYEBERkWaw2BAREZFmsNgQERGRZrDYEBERkWaw2BAREZFmsNgQERGRZrDYEFFW4pkoiOi/YLEhoqxz9+5d+Hw+AEBfXx9WrVqVcdkSIqJf4dW9iSjrtLe3K/etVis6OzuVK3kTEf0Oiw0RZTW9Xo/i4mK1h0FEswQ3RRFRVtm3bx8ikQgikYiyCSp9U9SZM2ewdetWhEIheDwe2O127NixA48ePUJ/fz8qKipQVFQEj8eDcDic8dxDQ0Oora2F0+mE0+lEfX094vG4Gm+TiGYIiw0RZRW/3w+LxQKLxYLOzk58/PhxymNev36N48eP4+DBg2htbcWHDx/g9Xpx6NAhVFZWIhAIYGJiAo2Njfj8+TMAYHR0FHv27EEymcSJEyfQ0tKCeDyOvXv3IplM/u23SUQzhJuiiCirGAwG6PV6AEBxcfFPdxr+9OkT/H4/ysrKAAAjIyM4ffo0WlpasGvXLgDA+Pg4vF4vRkdHYTabcfbsWeh0OrS3tyvPv27dOmzevBmXLl1SdlYmotmNxYaIZiWn06ncX7JkCQBk7IuzcOFCAEAqlQIA9Pb2Ys2aNdDpdBgbGwPwbf+dkpIS3L9//+8MmohmHIsNEc1Kk7Mu6XQ63S8f//79ewSDQQSDwSnrFi1aNK1jIyL1sNgQ0f/C/PnzsX79euzfv3/Kurw8fhUSaQU/zUSUdXJzczExMTGtz1laWorh4WGYzWalyIgImpqasGLFCpjN5ml9PSJSB4+KIqKss2DBAoyOjiIcDiv7yPypuro6vHjxArW1tQiFQrh37x4aGhpw+/ZtmEymaXkNIlIfiw0RZZ2qqirk5+ejpqZGOVz7T5lMJly/fh05OTk4cuQIvF4v3r59i7a2NpSXl0/LaxCR+nKEV5ojIiIijeCMDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERaQaLDREREWkGiw0RERFpBosNERERacY/ynqhxCE52igAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the inverse transform\n", + "S_prime = (np.exp(np.exp(S_LLS_filt) - 1) - 1)**2 - 1\n", + "\n", + "# Perform the subtraction and plot the reconstructed signal over the known signal\n", + "S_subtracted = S - S_prime\n", + "plt.plot(df['time'], df['true_signal'], '-', lw=2, label='true signal')\n", + "plt.plot(df['time'], S_subtracted, '--', lw=2, color='r', label='baseline-subtracted signal')\n", + "plt.legend()\n", + "plt.xlabel('time')\n", + "plt.ylabel('signal')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With 200 iterations of the filtering, the baseline-subtracted signal is almost exactly overlapping the known signal, demonstrating the power of the SNIP algorithm.\n", + "\n", + "## How many iterations?\n", + "\n", + "The above is dependent on how many iterations are run. As described by Morhác and Matousek (2008), a good rule of thumb for choosing the number of iterations $M$ is\n", + "\n", + "$$\n", + "M = \\frac{W - 1}{2} \\tag{4},\n", + "$$\n", + "\n", + "where $W$ is the typical width (in number of time points) of the preserved\n", + "peaks. Choosing $W$ is dependent on your particular signal. In HPLC chromatograms,\n", + "the observed peaks are typically on the order of a minute or two wide. In\n", + "general, it’s advisable to be generous with the approximate peak widths as an\n", + "underestimation can result in subtracting actual signal.\n", + "\n", + "## Implementation in `hplc-py`\n", + "The above SNIP background subtraction algorithm is included as a method\n", + "`correct_baseline` of a Chromatogram object. The above steps can be called in a\n", + "few lines of code as in the following:" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 187/187 [00:00<00:00, 490.64it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACycklEQVR4nOzddXgbV9bA4d+M2DKzwzxJGmqbppRiysywZYYtbhm2uG2/drfcbmlTSJmZmZtCmrQNTNjMDJKF3x8jOw5aliVLts/7PH5sS6OZq2vZPrpwjhIMBhFCCCGEGAjUeDdACCGEECJaJLARQgghxIAhgY0QQgghBgwJbIQQQggxYEhgI4QQQogBQwIbIYQQQgwYEtgIIYQQYsCQwEYIIYQQA4Y53g2IgwbABpTHuR1CCCGECF8B0A6kb+kgZRBmHnYFg0F7IBD9562qCrE470Al/RU+6avwSV+FT/oqfNJX4YtVX6mqgqIobsCxpeMG44hNeSAQHF1X1xrVk5rNKhkZTpqa2vD5AlE990Ak/RU+6avwSV+FT/oqfNJX4YtlX2VmOjGZlG5nW2SNjRBCCCEGDAlshBBCCDFgSGAjhBBCiAFDAhshhBBCDBiDcfGwEEL0qUAggN/vi3cz1hMIKLjdJjyedvx+2e2zJdJX4Yu0r0wmM6oanbEWCWyEECJGgsEgTU11uFwt8W7KJtXUqAQCsssnHNJX4Yu0rxyOZFJTM1EUpVfXl8BGCCFipCOoSU7OwGq19foPdrSZTIqMQIRJ+ip8Pe2rYDCIx9NOS0s9AGlpWb26vgQ2QggRA4GAvzOoSU5OjXdzNslsViUvS5ikr8IXSV9ZrTYAWlrqSUnJ6NW0lCweFkKIGPD7/cC6P9hCiC3r+F3p7Xo0CWyEECKGEm36SYhEFa3fFQlshBBCCDFgJNQaG03TJgALgAt0XX86dNsM4H5gJlALPKDr+n/i1UYhhBBCJK6EGbHRNM0CPA84u9yWBXwKLMcIbG4EbtU07bS4NFIIIUTczZ37GEcddXC8mxG21atX8cMP38W7GYNGwgQ2wM1A8wa3nQ20A+fpur5U1/WngHuBq/q6cWLg+/TTj3j66bn4fImVSE0I0b9dddWlLF26ON7NGDQSYipK07RdgXOAGUBRl7t2Ab7Rdb3rf5ovgGs0TcvVdb2q71opBrKlSxdzxRWXAGAyqZx0kgwKCiGiIxiU/Dd9Ke6BjaZp6cCzwIW6rhdrmtb17mHAnxs8pCz0eQQQcWBjNkd3sMpkUtf7LLYs0frrk08+XO/r0047I46tWV+i9VUiS6S+CgQ2vcMjGAzidrv6uDUGu93RufOkYwOKokB3/3dnz57JySefzscff4DX6+Whhx7Dbnfw6KMP8csv82lqaiQrK5t99z2As846j9WrV3Hqqcczd+5zaNpEAK655nJ+/fVnPvzwC8xmM8FgkEMP3Y+zzz6Pgw46bKNr1tfX8/DD9/Hjj9/h8/mYOnU6F198OcOHj+g85vnnn+H111+hoaGByZO34qqrru+8f1NtzsvLZ968p/jkk4+ora1m5MhRnHba2ey66+4AfPDBuzzzzFzOPvt8Hn30IWpra5kxYxuuvfafvPjis3zwwXuYzRaOOeb4zjc/Ho+HJ598nC+++JSqqkqSkpxst932/OMfV5KWls5RRx1MRUU5Tz31BL///hsPPfQ4TU2NPPHEo3z//Tc0NDSgaRM599wLmD59687n9sknH/HMM/+jvLyMsWPHsffe+/PAA3fz3Xe/RvQzUVV1s8/vmmv+yQsvPMuHH76HxbL+8+upnryuNsdkUnr1PzrugQ3wCPCjrusvbOK+JIypqK7coc/2SC+oqgoZGc7uD4xAaqojJucdqBKlv5YtW8yc7FyG2h28pi/D6bRgtVrj3az1JEpf9QeJ0Fdut4maGnW9P9LBYJCTTvobCxcuiEubtt56G+bNe3G9bbXhBoHvvPMG9977EH6/jzFjxnDSSceRkZHJ/fc/jNPp5Pvvv+Oee+5i6tSp7Lrr7uTnF/Dbbz+z1VaT8fv9LFz4G263i+XLlzJt2nSWLFlMQ0M9u+66+0b/xHw+H5dddgGgcOedd5OensGDD97HP/5xAa+++haqqlBRUc4ffyzk7rvvx+v1cvPN/+TOO2/l0UfnbrbNV175D3R9GZdffhUjR47i008/5rrrruDOO+9h1113Q1UVKisreOut17nrrntoa2vjiisu4eSTj+fggw9h7tx5fPzxBzz22MPsuutujB07jgceeJBvvvmSf/7zFoYMGcLq1au45ZYbefbZJ7nkkst56qnnOOWUv7HXXvtwyimnoyhB/vGPC/B6vdx44y1kZmbx2msvc8kl5/P4408xadJkvvvuG2677UbOP/9CdtllN3799Rfuv/9uYP035T39mWzu+Z1yivH8nnxy4+cXqUjeXAQCCqqqkpaWhN0e8b/4+AY2mqadhDHdNHUzh7iADbNbdTzb1kivGwgEaWpqi/Thm2QyqaSmOmhqcuH3S3bK7iRSfwWDQTyr13LpqDEANPu8LFjwZ+c7zXhLpL5KdInUVx5Pe6j4ZbAzC2u8pySCQfD5AiiKgqIY/eX3B8J6Z73vvgcwfrzxO9Ha2sY++xzAHnvMIT+/AIAjjjiGefOeYvny5ey0067svPMuzJ//I3/728ksXrwYk8nMtGkz+OWXn5k8eSrffvsNW201ldTU9I2y1P78888sX67zwguvMWLEKACuvPI6XnjhWerq6gkEgphMJv75z1tJTk4G4JBDDufxx/+73rm6tnnlylV8881X3Hnnvey44y4AnHLKmSxfrvPUU/9jp512IRAI4vP5uPTSKxg92vinvu22s1i8+E8uuOASAoEgf/vbqcyd+wQrVqxg5MgxaNokdtlld6ZP3waAnJx8Zs3agRUrVuDzBUhJSUNVVWw2O05nCj/88D3Lli1l3ryXGDPGuMYll1zJX3/9xbPPPsMtt9zBc8/NY/fd53DssSeGnttwCgsLefnl5zf7/ML5mWzp+Z177kUoirLR8+upnr6uuvL7gwQCARob23C5/Bvdn5rqCCtgiveIzelAHrDhFNSjmqZdARQCQzZ4TMf3pb25cKxSY/v9AUm73QOJ0F9VVZVMtlg6v98+I5MVK1YwduyEOLZqY4nQV/1FIvTVpmrlKIrCU089nxBTUR3/dML95zNs2LopIJvNzpFHHsNXX33OK6+8QElJMStXrqCmproz4/Ls2bvy7rtv0d7u5tdf57P11tsyfPgIFiz4lVNOOYMff/yePffca5PXWrlyBcnJKZ1BDUBWVjYXXnjpet93BDUAKSmptLevP8Dftc2rVq0EYNq0GesdM336Njz66EPr3db1una7nYKCISiKQjAYxGYz3mt7PB7ACC5+/fVnHnvsYYqLi1i7dg1FRWs3uk6H1atXkpyc3BnUgPG6mD59BvPn/wiAri/j7LPP36CdW/Pyy89v9vmF8zPp7vkZ51n/+fVUT19Xm9L1zUAk4h3YnAhsOGa8ArgBeBk4HjhX0zSTrusdP5k5gC4Lh0W0lJWVEujySzjCkcTPpSXxa5AY0BRFweFIinczeqzjHx6A2+3m738/C7fbxZ577s2++x7IpZduxd//flbnMTNmbIvFYuH33xfw668/M2fOPowYMZKXXnqeiopydH0pN974r01ey2w2d5uFNpxaQl3bDJv+TxsI+DGb1/9XuOH3W2rLf/7zf3z++Sfsv/+B7LTTbE455XRefPE5qqoqN3m8MWq38fkCgUDndU0mE8Fg9//Ye/ozieT59UdxDWx0Xd9o1CU0clOl63qhpmlPAlcCczVNuwuYBVwCnNuX7RQDW2VlBc+XFrEkN4fLrXYsQGvh2ng3S4iENX/+D+j6Ut5552MyM41KzE1NjdTV1XYeY7FYmDVrR7777msWL/6TK6+8jry8fBQFnnjiEUaOHLXeQuCuRo8eTXNzEyUlxQwbNhyAhoYGjjvucO66696I2twxQvLHHwvZeeddOm9ftGgho0aNjuicjY0NvPXWa9x88+3MmbNP5+1r164hKWld8No1cBg7dhwtLc2sXr1yvVGbP/5Y145x48azePH6+2aWLPlri20J52cyWMR/68AWhEZl9gU0jIzENwJX6Lr+TFwbJgaUiopyAPLy8vGkGlWYPVUyICjE5uTk5ALw8ccfUlFRzqJFC7n66svw+XzrTWHsvPMufPDBu6SnZzB8+AisVivTps3g008/Ypdddt/s+bfddhYTJ07m1ltvYPHiv1i9ehW3334TmZmZTJw4OaI2jx49hh133Jm77/4/vv/+W4qKCnnqqSf47ruvOf74EyM6p9OZTHJyMt9++zUlJcWsWrWSO++8jeXLl63XDw6Hg5KSYurqatluux0YO3Y8N998PQsW/MratWu4++47WbVqJUcf/TcATjzxVL766gteeuk5SkqK+fDD93jttZe22JZwfyaDQbynojai67qywfe/ADvGqTliEKioqAAgP7+A9slb8fdrLmfomLFc2s3jhBisJk+ewoUXXsrLL7/AE088Qk5ODnPm7ENubt56Iws77TQbv9/PNtvM7Lxt5sxZ/PLLfGbP3m2z51dVlf/7v7t58MF7QrujYOutZ3LPPQ/1arfizTffwWOPPcSdd/6LlpZmRo8ey7/+dRe77bZHROczm83ceuv/8dBD93HyyceRmprKNtvM5Jxz/s68eU/hcrlwOBwcddRxPPzwfaxevYpnnnmR++57mIceuo/rrrsSr9eDpk3i/vsfYcoUYx/NDjvsxBVXXMO8eU/x2GMPo2mTOPTQI3njjVc225ZwfyaDgRLvVfpxsNrvD4yuq4t4U9Ummc0qGRlO6utb475osT9IpP565MJzmdbQSGD8eHKP/RvHHnsYmZlZfPHF93FtV4dE6qtEl0h95fV6qK0tJyurAIslsVIHdDCb1bj3U3/Rl331+++/kZWVtd4i33nznuS9997mlVfe7pM29EakfdXd70xmphOTSV0DbHG7VkJPRQnRF0xNTeTYbDgtVrKyjLnphob6jXYSCCFEX/j555+49NILWLDgVyoqKvjuu6955ZUX2XffA+LdtH4h4aaihOhrFo8HLFZsmZkk+/ycOXI03kCAhoZ6srKy4908IcQgc9ppZ+Fyubj11htoaKgnNzePY4/9G3/728nxblq/IIGNGPTsoZEZR3Y2itfDPjl5NHq91NTUSGAjhOhzVquVSy65nEsuuTzeTemXZCpKDGoej4fkUD6M5Nw8TGnpAKRZLNRWy84oIYTobySwEYNafX09aWYj63ByfgGm5GQ6VtY0lZdt/oFCCCESkgQ2YlBraKgnPVROwZyahqKquEMjOK2byRwqhBAicUlgIwa1htoailxt1Pv9mNNCyflCgY63oSGOLRNCCBEJCWzEoNbQ3MT1yxbzuAqq3ShbFgglAPM2N8ezaUIIISIggY0Y1Orr6wHIyMhYd6PDCHCCrrZ4NEkIIUQvSGAjBrX6+joA0tPXBTZ1287k1N9/4SdPe7yaJcSA4nK5eP31deUAbrvtJi644OyYXrOiooLPPvu4V+f44IN3mT175mbv74vnMXv2TD744N2YXqOvlJeXMXv2TBYs+DWm15E8NmJQc5aW8NDUGbQ3t3TelpydTZvfT2NTUxxbJsTA8eKLz/LBB+9y5JHHAHDxxZcTCMQ2s/dtt91Ifn4Be+21b0yvIxKPBDZiUFNaW8m12alV1tVeTU1NB6BJAhshomLDmoTJycl9fk0xeEhgIwY3txsAJbSuBiDF1cZZI0fTqspMrRAALS0tPPzw/Xz77Zd4vV40bRLnn38REydOBsDtdnPfff/mhx++o6WlmZEjR3HqqWey2257MnfuYzz11BOAMa3y6qvv8OSTj1NeXsZDDz3OggW/cumlf+feex/mnnvupKyslPHjNa677ia+/PIzXnvtZXw+H/vssx+XXHIFiqIQDAZ58cVnef/9dygrK8VqtTJ9+tZccskVDBkylAsuOJuFCxewcOECfv/9N1577V28Xi9PPPEIn3zyIa2tLYwePZYzzzyXWbN26HyeX3/9JXPnPkpJSQmTJ2/Ftttu123f+P1+7rvv33z44XtYLBYOPvhwzjjjHMxm49/rH38s5MknH2fp0sV4PB6GDRvOySefzt5779d5jk8//Yjnn59HUVEhWVnZHHnk0Rx33IkbXau+vo4LLzyHzMws7rrrPux2Oz///BOPPvoQa9euYciQoRx33An83//dyquvvkNBwRCOOupgdt11d37++Sfq6ur417/uZPr0rXnttZd4663XqaysIC8vn+OPP4lDDjkcgAULfuWii87tPAcY00hHH30IDzzwKNtsM5PbbruJQMBPZmY2H374Hi5XG7Nm7cDll19DXl4uAKtXr+S++/7DkiV/kZ2dy4knnhLJy6/H5C+3GNRUj8f4nOTsvC3J72fvnDymOZIIBKTysYiuYBBcvvh8RDKIEQwGueKKiygpKeLOO+/j8cefYautpnLeeWewfPkyAJ544hFWrVrBv/99P8899yo77LAzN9xwDeXlZRx//Ekcd9yJ5Obm8fbbH5Gbm7fRNfx+Pw8+eA9XX30Djz32FPX1dZx77ukUFq7loYce55xz/s7rr7/CDz98B8Arr7zAvHlPcd55F/Hii29wxx13U1RUyIMP3gvA7bf/mylTprHnnnvzxBPzAGM9zPz5P3LDDbfy5JPPs+eee3HllZd0nvPPPxdx/fVXsttue/L00y+w774H8OyzT3fbP3/+uYi6ujoeeeRJrrnmRt5//x0eeug+AKqrq7j00r8zbtwE5s59jqeeeoFJk7bijjtuoa6uFoAvv/yMW2+9gb322odnnnmRc8+9gCeeeIR3331rves0NDRw0UXnkpOTy7//bQQ1K1boXHHFxcycuR1PP/08p512Jg8/fP9GbXzrrde5+OLLueeeB5kyZRoPPXQfTz89l9NOO5tnnnmJo446jnvvvYvXXnup+xdEF1988RmNjQ089NDj3H77f1i0aCGPP/5fwAiGL774fJxOJ48//gyXXXYlTz/9vx6dP1IyYiMGNZPXC1Ybli5D48k5ebQAySYzLS0tpKamxq+BYkAJBuGMT5P4o8YUl+tPz/Hxv71cdJl57dZvv/3Cn3/+wbvvftq5e/Ccc/7On38u4tVXX+K6626irKyEpKRkhg4dRnJyMmeeeS7Tp29NSkoqSUlJOBwOVFXdYu21M888jylTpgKw++578sorL3Lllddht9sZOXIUTz75OKtXr2LnnXdh6NDhXH/9TcyevSsA+fkF7LHHXnz++ScApKamYTabsdlsZGRkUFJSzGeffcz//jevc5TpuONOZOXKFbzwwjx22mk2r732MlOnTueMM84BYMSIkaxevYpXX31xi/2TlZXFddfdhM1mY8wYYxTo3nvv4txzL8Dj8XD66Wdz/PEnoYZGgE866TQ++OBdiouLyMzM4uWXX2CPPfbixBNPBWD48BG4XK3YbPbOazQ1NXLxxeeRl5fPbbf9G5vNBsDLL7/AxImTOf/8i0NtHkV9fR333fef9dq4ww47s9122wPQ2trCm2++yoUXXso+++zXec2yslLmzXuKI488dovPtyun08mVV16H2Wxm1KjR7LffAfz44/cAfPbZx7jdbq677maSk5MZM2YsF110GddeG/v6VxLYiEHNEiqAae0SvNgz0gFIMZtpbm6SwEZElaL0r7UfHaMyxxxzyHq3ezwe2tuNnYMnnHAKV111KQcfvDdbbTWVWbN2YM6cfXq0lmbEiJGdX9tsdjIzs7Db1/1zt1qteEI7FWfP3pXFi/9i7tzHKC4uorBwDatXryInJ3czz0EH4MILz1nvdp/PR3JyCmBMm3SdlgKYMmVat4HNxImTOwMNgMmTp+D1eikuLmT8eI0DDzyU119/hbVrV1NcXNTZFn/ob8+qVSvYc8+91zvnQQcdtt73jz/+39AU4MT1rrV8+bLOgKXD9Olbb9TGYcOGd35dWLgWn8/HtGkz1jtmxoytefnl5zt3ioZj6NDhnVNuAE5nMj6fDzD6c/jw4eu9BqZOnRb2uXtDAhsxqFlDY/O2UPFLAFNoWsphMtFYX8fQocPi0TQxACkK/G8vF+7YbgjaLLuJHo3WAAQCAZxOJ3PnPrfRfZZQlu4pU6bxxhvv88sv8/n115957723mTv3Me6++0FmzpwV1nW6/oMEOkc4NuX5559h7tzHOeCAg9l662056qjj+O67rze7vTsYNKaUH374CZK6TDtveJ0NFxxv2KZNUdX1R986dntZLFYKC9dy7rmnM2HCRGbN2p7Zs3clPT2Ds85at9bEZDKjdPNDmTlzFgceeCjXXXcFe+65NzvssFPosSYCge4D5a7B0LqnuP41O6bduz7nrv3REbB01fHz76rrYzbsT5Opb0IOWWMjBq1gMEi1202F240je90QudplIXFbD969CBEORQGHOT4fPQ1qAMaMGUdra2vnwteOj+eff4bvvvsagLlzH+OPPxYye/ZuXHLJFbz44hsMHTqMr776IvScI7jwFjzzzJOcfvpZXH751Rx66BFMmTKV4uLC9f6Rdr3m6NFjAaipqVnvObz//ju8//47AEyYoPHnn4vWu86yZUu6bcuKFfp6a/H++GMhNpuNIUOG8uabr5KZmcn99/+XE044hR13nE1tbe16jx89ejTLli1e77YHHriba665rPP73Xefw2677cGcOftw11230dpqpKcYN24Cixf/ud5jFy/+a4vtHTlyFCaTiT/++H292xct+p2srCxSUlI7A5aO6wCUlBR31xXrmTBBo6iokIYupWnC6c9okMBGDFouVxsPrF7BRX8tJHP6jM7bFbMZb+gPZFtDY5xaJ0Ri2H77HRk/fgI33HANv/32CyUlxTz88P28//47jBw5GjD+6f3733fw22+/UFFRzpdffkZFRUXn1IPDkURzcxNFRYWbfOffU7m5efzyy3zWrFlNUdFaHn/8v3z9tbFjq4PDkUR5eRlVVZWMGTOWnXbahf/85w6+++5rSktLeOGFZ3nuuacZMmQoYKy5WbFiOQ89dB9FRYV88smHvPHGK5trQqeqqkruuOMWVq9exVdffc7cuY/zt7+djNVqJTc3j6qqSn788XsqKsr5+usvuPvu/wOMqTyAE044lc8++4RXX32J0tISPvvsY9566w123XWPja51ySVX0N7u7lwkffzxJ6LrS3nkkQcpKirkm2++4n//exTYfDCZnJzMIYccwf/+9xiffPIRJSXFvP76K7z55mscd9xJKIrC2LHjSEpy8swzcykpKWbhwgU8/vjDPQpQ58zZl8zMLG666VpWrFjO77//xgMP3B3243tDAhsxaDWHkvKZTCbsdsd693lCv8DuJglsxOBmMpm4997/MnnyVtx44zWccspx/PbbL9x2212d00yXX3412247i1tu+SfHH38Ec+c+xnnnXci++x4AGIuBs7KyOfXU49H1Zb1u0z//eQtut5szzzyJv//9bFavXsnll19DfX0d5eVlABx22JGsWbOKU045Hr/fzy233MHuu+/Jv/99ByeddAwffPAOV155HQceaKwdGj9e4z//eYAFC37l1FOP56WXnufkk0/vti2zZ++GyWTinHNO5e677+Tww4/i1FPPBOCoo45jzz335tZbb+Ckk47lmWfmcvbZ51NQMIQlS/4KPX5Xrrrqet566zVOPPFo/ve/x7joon+w//4HbXStjIwMLrjgUt57723mz/+RMWPGcdtt/+aHH77llFOOY+7cRzniiKMBMJs3nibqcPHFl3HUUcfy6KMPctJJx/Dmm69x6aVXcvzxxhbzpCQnN9xwK2vXruWkk47h3nvv4vzzL97i9OCGHA4HDzzwKBaLhfPPP4Nbb72BE07om+3eyiBMYrTa7w+MrqtrjepJzWaVjAwn9fWt+HyyRbg7idBfq1at5MgjDyItLY2vv56/3n03/ONCPv/6Cy68/BqOO37jfBJ9KRH6qr9IpL7yej3U1paTlVWAxWKNa1s2x2xW495P/UUi9tXSpYsxmUxMmDCx87ZPPvmI//u/W/jkk2/CWiMUC5H2VXe/M5mZTkwmdQ0wZovX7/GVhRggWqqrjHIKqkowEEDp8m5ESUmh1e+nTQphCiES1IoVy/nvf+/n+utvZtw4jdLSYp588jHmzNknbkFNIhi8z1wMem319eTa7LQHg+sFNWBsWwQjyZQQQiSigw8+jNraGu6//x5qaqrIyMhkr7326czFM1hJYCMGLXdjAwCeTdw3rr2ds0aOxl5d1adtEkKIcCmKwmmnncVpp50V76YkFFk8LAatjoXBvk0siMt1u9k7Jw9ns4zYCCFEfyKBjRi02kNBi9+0cXp7pSPjaSjTqRBCiP5BAhsxaHlDyacClo1nZE1JSQCoHu9G9wkhhEhcEtiIQcvfseNpE9sKzaG066pPAhshhOhPJLARg5bL46XC7ca/Qe0YAGuKURjPHEisvBVCCCG2LO67ojRNywXuBvYDHMDXwBW6ri8J3f8UcOoGDyvVdV0qE4peWawEuf+vhVxz8CEb3WdNMSp6WySwEUKIfiURRmzeAcYC+wPbAS7gM03TkkL3TwNuBwq6fGxcl12IHmprM6aikpKSNrrPkZYGgHXQJeYWQoj+La4jNpqmZQFrgH/pur44dNutwEJgK03TFgCTgVt1Xa+IW0PFgLSlwCZl0lac+cfvtPl97On3Y9rEzikhBouKigr++msRe+21b7ybsp7bbruJ8vIyHnro8T675gUXnE1BwRCuu+6mPrum6Jm4Bja6rtcCx3d8r2laHnA5UAIsAcYD9tDXQkTVbv4Ax02aSlpF5Ub3JWdkUB3a6t3W1kZKaM2NEIPRbbfdSH5+QcIFNhdffDmBgD/ezRAJJu5rbDpomvY4cBbQDhyi63qrpmlTgSBwiaZp+wMB4APgel3Xe1V22WyO7iycyaSu91lsWSL0VyYwxunEa1I2ej2YzXYsFgterxe3u42MjLT4NJLE6Kv+IpH6KhBQ4t2ELQoVsEdRoLtayIlaLDk5OblPrtO1r8SW9eR1tTmmTfxN7omECWyA+4DHgPOAtzRNmw1MwQhm1gIHY4zg/AeYqmnanrquR7SyU1UVMjI23gkTDampjpicd6CKZ39ZQr91aTlZG70e/O3tnDJyNEGPBxVPzF4vPSGvrfAlQl+53SZqatRN/pEOtG8h8aOioFqtMT+2Q3dB4HnnncXChQtYuHABv//+G2+99T6HHXYgu+++Bz/99CN1dXXcccdd/O9/j1NQMIQbbri587G33HIj5eVlPPLIEwBUVVXxwAP38NNPP2AymZk6dRoXXfQPRowYsclr+/1+HnnkIT755CPq6+sYMmQoxx77N4444qhNnn/ZsiXcd9/dLF26lKysLM4++zxuvfVGHnjgEbbddibnnXcWkyZNprm5iS+//JxAIMjuu+/B5Zdf3Tkl/e23XzNv3tOsXLkcv9/PuHHjOffcC5g1a3tMJhVFUVCU3v3jHQwieXMRCCioqkpaWhL2jiSpEUiYwKbLLqizgR2BC4AzgHt1XW8IHfaXpmnlwI8YC43nR3KtQCBIU1N0qzabTCqpqQ6amlz4/bKTpjuJ0F+W0LuJgNlOfX3revcFvF72Sc8EoLKkkryCkX3dvE6J0Ff9RSL1lcfTTiAQwO8P4vOt35bl52y+to9z6jSGXvyPzu9XXPh3gp5NVTQDxwSN4Vde0/n9qsv+gb+leZPH2kaNZuT1N3Z+ryhGf/n9gS2+s77ttru48spLyc3N49JLr+x8Lm+88Rp33nkvKSkpjBkzjmAwSDC4/nPtepvL5eL8889i3LgJPPjg45hMKi+99DxnnHEy8+a9RE5O7kbXfu21l/n888+4+ebbycnJ5fvvv+Guu25n5MgxTJ8+Y73z19RU8/e/n8Ps2btx2WXXUFFRzn/+cwd+vx+/P4DPFyAYDPLqqy9x3HEn8vjjz7Bihc5tt93EkCHDOPXUM1m2bClXXXUZ5513Ef/85y20trbyxBP/5cYbr+Oddz5EVU2bfJ5inXBfV5vi9wcJBAI0Nrbhcm08xZia6ggrYIr34uFcYA7wiq7rfgBd1wOapi0Bhuq6HgQaNnjYn6HPw4gwsAFi9qLs+AUS4YlXfwUCAWyhMVNrcspGbQii4g8GMSkKrQ0NCfEzlddW+BKhr/z+xJy+6dDxT6e7fz6pqWmYzWZsNhsZGRmdt++ww85st932YV/v888/pqGhgZtuug2z2fjXc/XV/+T333/jnXfe3GRF6tLSUhwOO0OGDCUrK5sjjzyWESNGbXKE5+233yA5OYVrrrkBs9nM6NFjuPTSK7n66n+sd9zIkaM555y/AzBixEg+++wT/vhjIWD8Q7744ss58shjOo8/+ujjuPTSC6irqyUra+PgS6wv3NfVlmzqzUBPxHvEZgjwAlAJfAGgaZoF2AZ4R9O0F4AsXde7rljbLvRZFhSLiLW3u3GEdjo50tM3ul9RFDwYiZXcTZt+ByxEpMY9/Njm71TXX8gx9t4HN3/sBos+Rt/5n7CP7a1hw4b36Hhd12lra2X//fdY73aPx0Nh4dpNPuaII47mm2++5PDDD0DTJjFr1g7suefeZGRkbuL8y9C0SZ1BE8D06RtnBhk5ctR63ycnJ9MSGuUaP14jJSWN559/hqKiQoqLi1ixQgeI+wigCF+8A5tFwMfAfzVNOwuoB64DMoB7MXLYvKNp2nXAS8AE4GHgBV3Xl8anyWIgaGtr6wxs7KmpmzzGF/pH4GmVCt8iulSbLe7H9pZtE9facJGxz+frcl+AESNG8n//d89Gj3M4Nr0mavjwEbz88lv8/vuv/PLLfL799ivmzXuSa6+9kf33P2i9Y00mE8Fg98GHdRPrjDravXDhAv7xjwvYYYedmT59BnvttQ9ut5trrrm82/OKxBHX1U+hqaZjMUZrXgZ+xtissouu60W6rr8HHA0ciTEFNRd4A2PtjRARa21poc7jocnn66wLtaGOwMbbIoGNGNyUMEZ7LBYLrRu8CSgpKe78evTosVRUlON0JjNs2HCGDRtOfn4Bjz76IAsXLtjkOV999SW++upztttuB84//2LmzXuZbbfdjs8//2SjY8eNG4+uL1svmFqy5K9wnyIAL774LFtvPZPbb/83xx57AttttwOVlR0p1BJ7alGsE+8RG0Lbts8PfWzq/teB1/u0UWLAc7ndXPTXQrKzc/jMuZnAxqSCz4/XFd2F5kL0Nw5HEuXlZVRVVZKbm7fJY6ZOnc4LL8zju+++YfToMXz00fusXr2SSZO2AmDffQ/g+eef4brrruD88y8mJSWFefPm8uOP33P66RuvrwGoq6vl6aefwG63M27cBNauXcOKFTpHH338RsceccTRvPzyC9x557844YRTqKmp5p577gTCC8wAcnPz+fbbr1i0aCG5ubksWPAr//vfo4AxZSb6h7gHNkLEQ0fWYYdj46zDHQImM/j8+F2uvmqWEAnpsMOO5LbbbuSUU47nvfc+3eQxxx13AmVlpdx66z9RFIU999ybY475G3/+uQgw1rI89NDjPPzwfVx++YX4/QHGj5/APfc8xJgxYzd5zjPOOAe/388999xFfX0dmZlZHH740Zx00mkbHZuRkcnddz/AAw/czWmn/Y2cnFwOO+wo/vvf+7FYLGE9zzPPPIe6uhquuuoSAEaNGsM119zALbf8k8WL/2LYsPjtjhThUxI18VIMrfb7A6Pr6lq7P7IHzGaVjAwn9fWtcd+N0R/Eu79++OFbzj//LDRtEi+//OYmj3no9lt4+63XOfRvJ3LBJVf0cQvXiXdf9SeJ1Fder4fa2nKysgqwWDZe15EIzGY17v0ULWvWrKa5uYlp02Z03vbnn4s477wzeP3198jLy+/V+QdSX8VapH3V3e9MZqYTk0ldA4zZ0nkkw5AYlLylpdw+aQrHOzdfKkFJS6Pa006L292HLRNCRKKmpooLLzyHDz98j4qKcv766w8eeOAeZszYptdBjehfZCpKDErepibGOZOp2cLUe8dODZdMRQmR8LbbbgcuueQKnnvuaf7979txOpOZPXtXzjvvwng3TfQxCWzEoOQJrbEJqJsftMxzuThh6AgcDb0qSyaE6COHH34Uhx9+VLybIeJMpqLEoORzG6MwgVAum01Jb27h0IIh5MpUlBBC9BsS2IhBydcxvWTe/KClOTQVpfq8fdEkIYQQUSCBjRiUAu2hURjz5reBmkKBjcm/cTE2IcI1CHeeChGRaP2uSGAjBiV/e7vxxSbSq3ewOJMBMAVki6foOVNomtPjaY9zS4ToHzp+V0ym3i3/lcXDYlBq93pp8nphC7V1rKGMxOaAvOMWPaeqJhyOZFpa6gGwWm1hZ8DtK4GAkvBVyBOF9FX4etpXwWAQj6edlpZ6HI5k1C1s6giHBDZiUPqNIPcs+o0bDj1ss8dYk5PxAxapESMilJpqVKHuCG4SjaqqBGREMizSV+GLtK8cjuTO35nekMBGDEodJRWSkjZfUsGemkorYCWx3mWL/kNRFNLSskhJycDv93X/gD5kMimkpSXR2NgmIxHdkL4KX6R9ZTKZez1S00ECGzEohRPYOEeP4fzFf9Dm97OT15OwafFF4lNVFVVNrNeP2axit9txufxSKqAb0lfhS4S+ksBGDEqzgSMnTCKlsnKzxzjT0ykMVfZ2uVwS2AghRD8gu6LEoJSDwpTUNKy+zU8PWCxWzKHt4B0jPEIIIRKbjNiIQckcypdgTXJu9pigz8fRw4aD10tbczPkF/RV84QQQkRIAhsxKJlDa9o6tnRvkqpyeHYuAK7GxNzVIoQQYn0yFSUGnWAwiCW00WlLIzaKquINjey4m1v6omlCCCF6SQIbMeh4PB6sivHS3+KIDdBRJcrd3BzjVgkhhIgGCWzEoON2u7CF8iXYQmUTNqdjabGnrTXGrRJCCBENEtiIQcftduMLBvEEAliSHFs81q8ac1Ze2RUlhBD9Qo8XD2uaZgZ2B+YAo4E0oAYoBD4EftB1XVIzioTldru46K+FJCen8N2QoVs81q+q4A/gc7n6qHVCCCF6I+zARtM0K3AecBkwDKjHCGZageHAQcC1QJmmaXcCj+u6LmVtRcJxudwAOBz2bo8NqCbwB/C7JbARQoj+IKzARtO0WcAzgB94BHhF1/VVmzhuKnAAcBFwsaZpJ+m6/mMU2ytEr7lDQYrdvuVpKIAFOdl88enHHLT11rFulhBCiCgId8TmWeBqXdff3NJBuq7/CfwJ3Klp2jEYwdCE3jVRiOhqb2zk+gmTsDgcBINBFGXzRS49qamsdbXRuoUMxUIIIRJHuIuHp3YX1GxI1/VXgCk9b5IQseVpaWZaahrjzZYtBjWwblTHLVNRQgjRL4QV2Oi67onk5JE+TohY8rQaW7e9W45pAMhvb+ew/CGkNjTEtlFCCCGiItw1Njf05KS6rt8SWXOEiD1vqGK3n+4jm9ymZv42bASLWiSPjRBC9AfhrrG5aYPvg4CCsZi4BsgArIAHqAMksBEJyxvauu1Xux+wVG1W4wufd8sHCiGESAjhTkWpHR/A3kAtcBxg13W9QNd1O8ZuqFrgHzFrrRBR4Att9w4vsDG2hKuyeFgIIfqFSKp7PwT8M7Q4uJOu6x9pmnY9cBvwUrgn0zQtF7gb2A9wAF8DV+i6viR0/wzgfmAmRuD0gK7r/4mg3UIAdOakCZhM3R5rshuBjeL3x7RNQgghoiOSkgojgKLN3FcN5PXwfO8AY4H9ge0AF/CZpmlJmqZlAZ8CyzECmxuBWzVNOy2CdgsBgM/jwR8MEgwjsDGHdkWpgUCsmyWEECIKIglsFgEXappm6Xqjpml24EpgfrgnCgUua4CzdF3/Vdf1pcCtQAGwFXA20A6cp+v6Ul3XnwLuBa6KoN1CALDWZuX43+azcEL3KZbMDiOwMUlgI4QQ/UIkU1HXAB8DqzRN+4h1ozQHAE5gt3BPpOt6LXB8x/eapuUBlwMlwBLgZuAbXde7LnD4ArhG07RcXderImi/GOTcbmONjd3RfebhjiKZ5qCUPxNCiP6gx4GNrutfa5q2E0aAczCQibEz6jPgFl3XV0bSEE3THgfOwhihOUTX9VZN04ZhZDLuqiz0eQQQcWBjNke3sLnJpK73WWxZPPurvd0IbJKSkrp9HSRNmMA1yxaDw8HBUX7NhEteW+GTvgqf9FX4pK/Clwh9FcmIDbquLwCOjnJb7gMewyi0+ZamabOBJIxApyt36HP3FQw3Q1UVMjKckT58i1JTux8FEOvEo7/GtLVy+dgJjGhu6PZ1UDB2BEtbmrH7vDF7zYRLXlvhk74Kn/RV+KSvwhfPvooosAHQNG1/jK3fBRhVvbcGftN1vTCS83XZBXU2sCNwAcZCYtsGh3YENBFnTAsEgjQ1tUX68E0ymVRSUx00Nbnw+2U9Rnfi2V/ONjczMzJpaGimvn7LL6P2dmMKyu12U1vbjBrGFvFok9dW+KSvwid9FT7pq/DFsq9SUx1hjQT1OLDRNC0JeAvYC2gCUoB/Y4y0bK1p2m66ri8O81y5wByMauF+AF3XA5qmLQGGAsXAkA0e1vF9aU/b3pXPF5sXp98fiNm5B6J49Jfi84PJhGKzdXttk9fHvjl5qIpCa2sbDkdSH7VyY/LaCp/0Vfikr8InfRW+ePZVJG8/bwe2xQhIsqEzL/1JGMHGrT041xDgBbosOA7tttoGY/HwN8AumqZ13Zc7B9Bl4bCIlBowctKY7d3PZpoDAc4YOZoTho3A5XJ3e7wQQoj4iiSwORa4Rtf1LzFKKwCg63oF8C9gdg/OtQhjh9V/NU3bRdO0KcA8jBIN9wJPAqnAXE3TJmuadipwCXBHBO0WAli3dbsjR80Wjw0FP1ZVxdUm9aKEECLRRRLYpANrN3NfPZAc7ol0XQ9iBEpfAC8DP2PsstpF1/Wi0KjMvoAGLMBI0HeFruvPRNBuIYB1gY0pjO3eqnXdEi93S0vM2iSEECI6Ilk8/BdwAvDJJu47OHR/2HRdbwTOD31s6v5fMBYTCxEVHTlpLGGsl1Es6/JQtrc0xaxNQgghoiOSwOZfwJuhrMHvYkxH7RYqc3AuXRLuCZGIOhZsWZ3db99WVBVPMIhVUWhvkakoIYRIdD2eitJ1/W3gRGAa8AjG4uG7MfLanKvr+mtRbaEQURQIBLh2yZ+c8Nt8kqdOC+sx3tAIj6dVpqKEECLRRZqg7wXgBU3TNCALaACW6bou++BEQmtvN/I9eoNBHGGM2AD4FGPjn6cturmPhBBCRF8keWy+AM7XdX2Zruv6BvdNA57TdT28t8JC9LGOOlEANlt4yas/MqksW7qYEw86JFbNEkIIESVhBTah8gYd01a7Y6ypyd3EoQcBY6PTNCGiz+128fdRY1FNKsHWVkhN7fYxtUkOFjc30eb3dXusEEKI+Ap3xOZM4GSMhcJB4L8Ya2u6ljzuSNT3QtRaJ0SUud1uds7MwqyqBP3+sB5jD+Wy6TraI4QQIjGFG9hcDDyFEbx8AfwdIzNwV36MtTZhlVMQIh7crS2YQ/WeVKs1rMeMQmGfnDzUutpYNk0IIUQUhBXYhHLNfA2gadoewG9AcijbMJqmZQDDdV3vUQ4bIfqau6WFjiXDSpiBjeZys+fI0SytlcBGCCESXSSZhxcBbwJfdblte2ChpmlvhYpkCpGQ2luNXDSBYBDFHOaAZShJX8DTHqtmCSGEiJJIApv/A7YCru1y2xfAocBM4JYotEuImPCEAhsvoCjKlg/uEApsgh5PjFolhBAiWiIJbA4BLtd1/Y2OG3Rd9+i6/i5GsHNMtBonRLR5Q4UsfeEGNXQpq+D1xqJJQgghoiiSwCYFo9jlplQC2ZE3R4jY8oaS7Pl7ENiotlAhTK9s9xZCiEQXSWCzADhjM/edBvwReXOEiK16u42TFvzM22nd56/p0BnY+CSwEUKIRBdpEcwPNU37FWMRcRWQg7HGZluMJH1CJCR3ezvtgQBKUvhr3E2hDMWqJOgTQoiEF0kRzE+BgzGS890CPAbcihEkHarr+kdRbaEQUeRyuQCw2x1hPyYwZjR3rljGN+2yK0oIIRJdpEUwP8QYtbEDmUCjruutUW2ZEDGQVFvL+aPGktWDgpaWnDx+a2xgbHZODFsmhBAiGiJZYwOApmmTgLOBC4F0TdNma5qWErWWCRED9tZWds/OIa8H5RHWlVRwxapZQgghoiSS6t4m4FHgdNbVi3oVuBEYo2nabrqul0S1lUJESbAjyV7HFu4w2P0BdsnMxqaaYtQqIYQQ0RLJiM31wAkYhTHzWVf88jLABNwWnaYJEX3BUC4apQeBjbWlmQvHjOPg9IxYNUsIIUSURBLYnA7coOv6U0Bn8Rxd1/8AbgD2jlLbhIg6JbRlu3MLdxiszmQALIpCMBjs5mghhBDxFElgkwcs3Mx9JYC8rRUJqyOwCbcAJoA92QhsrIqKV7IPCyFEQosksFkJHLCZ+3YP3S9EQuoIbDpy04TDnmqsibepKu4eLDoWQgjR9yLZ7n0f8JimaVbgXYzFw+M1TdsDuBz4R/SaJ0R0qYEAmMBkDz+wsTicANhMJlxtraSmhp+1WAghRN+KJEHf/zAWEJ8KfICxePhFjEXD/9F1/dFoNlCIaHqpvpazFv6GMn1G2I8xdVmP425tiUGrhBBCREsk270zdF2/Q9O0h4EdgSygAfhJ1/W6KLdPiKhqdrtp9Hmx92DUpet6nPZmCWyEECKRRTIV9bOmadfruv4y8HG0GyRELHWskelJSQVFVZlXX0tlbQ0XBvyxapoQQogoiCSwyQBqot0QIfrCfqlpONPSsTY39+hxS4FVDfW4pcK3EEIktEh2Rd0P/FvTtD00TZPiOaLf8Pv97JiWwf55BZh7uG1byioIIUT/EMmIzcnASOAzAE3TNrw/qOt6RMU1hYil9nY3NtWI5Tty04RLs9tJz8zCU18fi6YJIYSIkkgCkOei3goh+oDb3Y41FNjYnM4ePXZP1UzumPEUVVXFomlCCCGiJJLAZg3wRbQKXWqalgncDhwEpAJ/AFfruv5d6P6nMLaWd1Wq6/qwaFxfDB5ut6tzxKYneWwAAqoKfj8+mYoSQoiEFskam3uAmVFsw0vADsBxwHbAAuATTdMmhu6fhhH4FHT52DqK1xeDhMvlwmYyKnQr1vBrRQEEQo/zS+ZhIYRIaJGM2FQB6dG4uKZp4zCKZu6s6/oPodsuBvYH/qZp2s3AZOBWXdcronFNMXi1tzR3vuDVHtSKAgh2BDbt7VFulRBCiGiKJLB5Ang4VELhL6BywwN0XZ8X5rlqgAOB37o8NqhpmgJkAuMBO7AkgnYKsR53SwsdS4Z7UgQTIGg2flUCEtgIIURCiySwuTv0+aTN3B8EwgpsdF1vwCjL0EnTtKOBsRjJ/6aGzneJpmn7A4HQ8dfrut7Y45Z3YTZHMgu3eSaTut5nsWXx6C+vCucs+o1J4ybwuLVnL33FagEg6PVE/bXTHXlthU/6KnzSV+GTvgpfIvRVJIHN6Ki3IkTTtJ2BJ4G3dV1/NzQVFQDWAgdjjOD8B5iqadqeuq4HIrmOqipkZPRsV0y4UlPDz2gr+ra/TBaFeq8Xj9PR45+/xWEsNjYH/DF77XRHXlvhk74Kn/RV+KSvwhfPvupxYKPremHH15qmJWHsZKrVdb1nGc82oGnaocALwE/A8aGbbwLuDY3sAPylaVo58CPGQuP5kVwrEAjS1NTWm+ZuxGRSSU110NTkwu+PKN4aVOLRXzU1DQCYzVbq61t79Ni6/AJe/uYbRmZu1+PH9pa8tsInfRU+6avwSV+FL5Z9lZrqCGskKKJEepqm7QLchRFcKKHbfgau1XX9ywjOdwFGRuM3gBN1XW8HY70NRoHNrv4MfR5GhIENgM8Xmxen3x+I2bkHor7sL29VNacMH0m6aurxNT3ZuXxbV4PZ643bz1deW+Eb7H3V2NjA5ZdfzIIFv7L//gdx4423YrFsel3ZYO+rnpC+Cl88+6rHk2Capu2EkXU4HbgVOB/4F8Zi3481Tduxh+c7D3gQeAg4tiOoCd33gqZpGxba3C70WRYUi55pbOTAvAImRvAuQkoqiP7khhuu4Zdf5uP3+3nvvbeZO/fxeDdJiD4TyYjNv4BvgX11Xe8sdRxaD/MxcDOwTzgn0jRtAsZIzZvAHUBulxINLoypqXc0TbsOI9/NBOBh4AVd15dG0HYxiHUk1+vISdMTzkCAbdPSyXLLriiR2BYt+p2vv/4Sk8nE8cefyHPPPcPTT8/lhBNOISUlJd7NEyLmIlm2PAu4v2tQAxBayPtg6P5wHQVYgMOB8g0+7td1/T3gaOBIjCmouRjTVWdE0G4xyHVs1Q5GENik1NZy1fiJ7BAMRrtZQkTVW2+9we5ZORy1z/5cdtnVjBkzDrfbxUcfvR/vpgnRJyIZsWnGCEY2xUpozU04dF2/HSOr8JaOeR14PezWCbEZnYGNuecve7PDWOFvksBGJLD29nYWfvU5d4wZj9LQiK+hgRP22of2L1Q++fA9jj76uHg3UYiYi2TE5nvgWk3T1iuPrGlaCnANxjSVEAmnM7leBIGNJcnY4i2BjUhkCxcuYKekZFRFIWn8BMxpaUxbtYqZ6ZlYC9fS3Nwc7yYKEXORjNhcjZEpeLWmae8BFUA+RhFLO3Ba9JonRPQEvR7jC8vmBhw3z5rkJMjmhyqFSATzf/qe2VlZAKTvvieKqpIxe1fq3n+X2RlZ/Pzzj8yZE9YSSCH6rR6P2Oi6vhLYEfgSOAC4PPT5S2AHXdf/iGoLhYiSoNdItdTTcgoAtmRjgFICG5HI1v7yC1lWGwGTCefUqQCkzDSWPW6VksrCX3+JZ/OE6BMR5TzWdX0JcLGu6/m6rlsxClXeFrpdiIT0G0Eu/nMh9et23oXNlmxMRVkVhaBMR4kE5HK1kV5XA4B1/ATUUN4a67Bh+Ox27CYTTUv+imcThegTkeSxSdc07VPgqy43zwIWapr2VigbsRAJp7G9nfJ2N5aMzB4/1p5sbJO1qirtUghTJKBly5YyOfQ6zdx2ZuftiqJgmzgJAGddHR6PJy7tE6KvRDJi83/AVsC1XW77AjgUmAncEoV2CRF1brcbALu95zVMHNk5PFG4hrmFayVJn0hIi//6kzFJxpSpY9yE9e7LmjodgLGOJJYtk4F1MbBFEtgcAlyu6/obHTfouu7Rdf1djGDnmGg1TohomhQIcOyQYThber4zxJqczFcNdXxbV9MZIAmRSBYv+Yu///k7f0yciHXo0PXuc4wdC0CaxcJyyW0qBrhIApsUoH4z91UC2ZE3R4jYmayaOHLIMOyNTRE9vmOkR0ZsRCJasuQvXH4/BTvujKKu/6fdOmQon2saly/+g+UrVsSphUL0jUgCmwVsPvPvaYDsihIJqSMHjcUZ2TKwKWnpbJ2WjltygYgE09raQmHhWgAmT56y0f2KqjIidPvKlcv7smlC9LlIa0V9qGnarxg1nqqAHIw1Ntti5LMRIuGYQ4GNNSmywObc3Hwc+UNoq6mNZrOE6LXVq1dzxohRmO12kgObLvI6fryx7mb5cl129okBrceBja7rn2qadjDGIuFbMEooBIGFwKG6rn8U1RYKESUdOWisSclbPG5zfKHPnraWqLRHiGhZvWoFe2TnYlVVgj7fJo8ZoihcN2ESTV4vFRXlDB8+rI9bKUTfiGTEBl3XP8QYtbEDmUCjruutUW2ZEFHk9/uxKsbMa0dOmp7yhaqgedraotUsIaKictlSJqkqPkXBkpOzyWPMZjPTU9No8HpYs2a1BDZiwIoosOmg67obKItSW4SImfZ2N9bQgkqrM8IRm1Bg5JPARiSYtqK1ALSnpGy0cLiDdchQgkC6xcqi5ctg1137roFC9KGIMg8L0d+43W5saseITWSBjV81hmy8LtkVJRKLqbYOAMuQIZs9RrXZaAuVE2lcvbpP2iVEPPRqxEaI/sLlcnH9sr9ItTt4PjuyjAQB1QQBH37Z7i0SiMvlIiO0riZj/JbLhQTS06GqivaK8j5omRDxISM2YlBwu92Uut2UE+ysodNTQZMJAL9bSiqIxFFYuIZhDiPHUvr4CVs81l5gjOiYGxtj3i4h4kUCGzEodCTVi6ScQofC9HSeLFpDrVVqfIvEsXrVSpJNxuC7bQtTUQDpY4wMxKl+v2TQFgNWRFNRmqZlA1cAewMFwL7A4cBCXdffjl7zhIgOd1MTRw8ZRlJaWsTnqMvK5KOqSvIUJYotE6J3ikuKuXbRbxx78GFcnZa+xWPTR4+h0u/D7fdTXFxEQUFW3zRSiD4USXXv0RjZhc8GSoBcjABpAvC6pmkHRrWFQkSBt7GBo4cMY68Ic9iAlFQQiam4uAiAnJGjULoJupMmTeYuVxv3r1lJaWlJXzRPiD4XyVTU3RjZhkcDR2Ak6EPX9ROAd1i/6rcQCaEj98ymU5eFJ1VRmJScgqVZEvSJxNERoAwbNrzbYxVFYWioQGZJiQQ2YmCKJLCZA9yq63oDRsbhrh4DNi5UIkSceVpDgU0vppGG1dZy88StGNskCy9F4pjS3MSV4yYw3Bte2D50qJGYT0ZsxEAV6Xbvzf0G2dg42BEi7nwuI7Dx9yKwUa02AJTNpKwXoq+5XC5GqiampaaTareH9Zht3e1sM2U6K9ZILhsxMEUyYvMtcI2maV3z0gc1TVOB84Dvo9IyIaLIF1oXEzBFvhHQZDcCG9Xvj0qbhOit0tIS8m3G2q/UEaPCekyazc4QuwO1sSmGLRMifiIZsbkaI3hZCXyJMUJzOTAZGAfsErXWCREl/tDWVr9qivgc5tDiYUUCG5EgSgrXkh/KJmzNzwvrMcnDhhFYugR7e7tU+RYDUo/fvuq6/hcwE/gC2APwY2z7XgnspOv6wmg2UIhoCLQbSfU6kuxFwhxKgmYKBKLSJiF6q3rFclRFwQOYUsNLZZA12shlk2EyUV9fH8PWCREfkVb3XgGcEOW2CBEzJTYrzy/9i30POpRIS/9ZkpIAMAXkXa5IDC2lxQC47fZut3p3SCooACDXaqOoqIiRI8fHrH1CxEOkCfoUYAbgZBOjPrquf9O7ZgkRXU1eHytbW5iTnh7xOToCG7OsjxcJwlNdDUAwzNEaAHOWUSst1WKhaOUqCWzEgNPjwEbTtFnAq8Cw0E0dbxOCoa+DQOTj/ULEQDRKKtjyhzCvpAiXycycaDVMiF5oaajH5XBiz80J+zGmpCTaFQVbMEjd2jUxbJ0Q8RHJiM29gBc4FSPzsCw4EAkvs7mZg/IKyG6PvD6OIz+ftyrKsFojK6IpRDQFg0FeXr2SZz0e3rvp1h49tikpicaqSmorq2LUOiHiJ5LAZhvguGjVhNI0LRO4HTgISMUo13C1ruvfhe6fAdyPsWC5FnhA1/X/ROPaYvAY6nZz4PCRVNc3RHyOjtEej8eD3+/H1IuFyEL0VkNDAx6PB4C8bopfbqhohx24887bOGD0iFg0TYi4iiSpRxXRHaV5CdgBOA7YDlgAfKJp2kRN07KAT4HlGIHNjcCtmqadFsXri0FA8RlbtNVQLppI2CwWRjmSmOBMpr0XIz9CRENlZQUAWVnZWCw9G0XMyzMWEJeXl0e9XULEWyQjNg8DV2ua9oWu6629ubimaeMwtorvrOv6D6HbLgb2B/4GuIB24Dxd133AUk3TxgNXAU/15tpicFH9PjCZMdnCy866KRa/n7u2mgaAq62NpCRnN48QInaqykq4a/JU2q02Ah4Pag+mSPPz8wEoKyuLVfOEiJtIApvxGMn4KjRNWwy0bXB/UNf1cNdW1gAHAr913KDrejC06yoTGAN8EwpqOnyBkfk4V9d1mSAWYVEDATCty0UTCVOXlPWupibIDn/BphDR1lBUyMQkJx5AsVh69NjMNhf3TZlOvdeL1+tFUWRaVQwckQQ244CFXb7fMHlC2MV4QoU0P+h6m6ZpRwNjgY+B24A/N3hYx1uMERjTYhExmyNPrb8pZa0mntGhwG5hapaPgmTZErwlplBpA1MvShz06HqhpHrWpKSIf/ZBdd00ls/dFvXX0Ob0dV/1Z4Opr9oqjGkkt9WCxdKzwCQjJ5shdgc2VaW2tob8/IJYNHHAGEyvq95KhL7qcWCj6/oesWgIgKZpOwNPAm/ruv6upmn3YkxFddWxuCHiOQVVVcjIiO40wr2L4JlFAFbAyrBU2HEY7DTM+FyQEtXLDRipqZGPoPRExws9LTu9Vz97TyCAVVUxB71Rfw11p6/6aiAYDH0VqK8DIJia2uPXonPscAqBDIuVpsYaJk0aF4MWDjyD4XUVLfHsq0ire0edpmmHAi8APwHHh252YVQM76ojoIl4fU8gEKSpacMZtN45UVNRcPBzSQC9TqGkSeHVJfDqEuP+ESkBdhziZ4cCP9vl+0ke5DuGTSaV1FQHTU0u/P7YZwwwh2ri+DBTXx/50jAvRuhaW1nbq/P0RF/3VX82mPrKXxcqh5Ca1uPXYjBgxk8Qk6JQuHgZE7SpMWjhwDGYXle9Fcu+Sk11hDUSFFZgo2maH9hR1/WfNU0LwBZTrwZ1Xe9RwKRp2gUYW7rfAE7Udb1jlKYY2HAfY8f3pT25xoZ8vuh2eI4dbt4d6utdNLkCLKw28WuliV8rzSyrVylqVinSVV7WLZiUIFtlBdg+38f2BX6mZPnpo1mNhOP3B6L+s9iUJ4rWYg8G+b+Ro3t1PW/os7u5uU/a3VVf9dVAMBj6yuJygd2BNSc3oufqUk0kBwLUFxUP+L6KlsHwuoqWePZVuAHILRjJ+Dq+jtoCEk3TzgMeBB4ALtV1vWtPfAOcq2maSdf1jpLKcwA9kRcOJ1lgpyF+dhriBzy0eODXSjPzK0zMrzBT1KzyR42JP2pMPPEXOM1Bts3zsX2+n+0LfIxMCRJm2RcRBr/fz4qmRgCSQunkIz5X6AfjdUV3xE+InggGgySH3g2nDhse0Tm8dju0tdEW2jYuxEARVmCj6/rNXb6+KVoX1zRtAsZIzZvAHUCupmkdd7sw1ttcCczVNO0uYBZwCXButNrQF5KtsPtwH7sP9wHtlLcqzC83Ap2fK8w0ehS+KbXwTamxsyEvKTSak+9nVr6fDLssRO6Nrjln7PbIt3sDLDKpVBUXsb2aMLO4YhBqbm7G7ffi9vvJGz0monMoqanQ1oa3ri7KrRMivsKdiupRQeQeFME8CrAAh4c+unpG1/VTNU3bF2M0ZwFQDlyh6/ozPWlPoilwBjlsnJfDxnkJBEGvV/kpFOgsqjZR2abyzmor76w2jtcy/J3TVjNy/NhkZ2aPuN1u9svNwxsIYgn2LkhcluTgq/JStpLdESKOqqoq+NfyZaSnp/OlNjGic5gLCli5aiXV7RKki4El3Ff0V6ybftrcJEmPi2Dqun47RjmFLR3zC7BjWK3sh1QFJmUGmJTp4bStwOWD36uMKav5FSZWNpjQ642PeUvBZgoyI2ddoDM+PYAq01Zb5Gpr4/QRo41vvN4tH9yNjhEft1syD4v4qaysBCA3Nx8lwnnrlH325fQnHiEzM4sro9k4IeIs3MAmZlu8xfoc5q7rc6DGpfBzxbpAp8alhr42w0LIsAWYlb8u0MlLkmmrDblb1+0YUW2Rl1QASLdYGeFIwh9asyNEPHSUU8jLy4v4HHl5RvbhurpavF4vlh4m+RMiUYW7xubrWDdEbFq2I8gBo30cMNpHMAirG9XORcgLqkzUt6t8XKjycaHxR2lUqt9YhJzvY5s8P8nyt4r2lqbOF7rSy8rcM5tbOGKraegVsuBSxE9g2VLumjyVNmvkgXp6ejoWiwWv1ytJ+sSAEtHkqqZp2cAVGHWeCoB9MdbILIxW1W+xMUWBsekBxqYH+NtEL14//FFj6gx0ltaprG0ysbbJxMvLrZiUIFOy/czKM4KdKdmDc1t5e0sLZsAbDKKoveyA0LvaoGfDvJFC9J1AbQ2jkpxU9LD45XrnaGnh3q2m4UShuqpKAhsxYPQ4sNE0bTTwPeAAvgWmh84zAfinpmmH6rr+flRbKTbJYoJt8/xsm+fn/OkemjzwS8W63VYlLSqLqs0sqjbzxF+QZA6yba6fWfk+dijwMyo1MCi2lXtaW3EC3ihkKVA6A5verdURoleamwEwp2dEfApTUhLZJjOqolBWXATTpkerdULEVSQjNndj1GjaHWgBPAC6rp+gaZoDuBaQwCYOUq0wZ4SPOSOMbeWlLcq6QKfSRGO7yrdlZr4tM37sHdvKdygwgp303i0/SVie0BobX/hlzDarYyor2MtFyEL0hsXdDlYrjtzI19goZjMuk4ozEKSptKT7BwjRT0QS2MwBTtd1vUHTtA13Pz0GvNL7ZoloGJocZGiXbeXL61V+rjDxU4WZhVXrbytXCDIpM8AOBUagMzXLTw/r6iWsjmR6vigMT6mhNQ2Kz9fNkULETpLf2FyQOnRor87jsdlwuty4qxM236kQPRZpAoPN/VW3EcWsxCJ6VAUmZgaYmBng5Mle3D5YWG3ix3IzP5WbWNVoYkmd8fHkYmPaamaeEeTskO9jeD/OhtxstfGv5UuZMm06O/TyXB27qiSwEfHS2tpCmsl415E5clTvTuZ0gsuNr16S9ImBI5LA5lvgGk3TPmNdpe2gpmkqcB7G+huR4OxmjKClwHjnV92mML/CCHTmV5hoaFfXy4Y8xLluNGe7PB8p/aiIZ2vAzx9NjRQ4k3t9LrPDyGOjBPzdHClEbFSWl5MeWuuVUrBhKb2eMWekQ00tgdCaHSEGgkgCm6sxgpeVwJcYIzSXA5OBccAuUWud6DM5SUEOGuPjoDG+zmmrn8rN/FhuYlGNibJWlTdWWnljJahKkClZoUAn38fkrEBC77bqSKbX23IKAOTm8XZ5Gf6sLA7u/dmE6LHqkmJa3C4ybHZMKSm9OpcjJwdWrMLkckWpdULEX48DG13X/9I0bSZwE7An4MfY9v01cLKu639GtYWiz62btvJw6lbQ5oUFVSYj0KkwUdhk6izi+fifNpItQbbP97HTEB87D/GT7Uis2UhTfT17ZucwtJflFABMw0fwfGkR4xwDdKW1SHgVjQ3cuPgPdtppNv/tZfqC1JEj+OPTzyhrl/QFYuCIaI2NrusrgBOi3BaRoJIsMHuon9lDjemXjiKeP4W2lTd5FD4vtvB5sTE8rmX4O4OcKVnxz52TWlfHuaPGUtLa+4rcUlJBxFtVlVFOoSNzcG+M2HsvDrrsHwBcJNmHxQARaYK+MYBd1/UlmqalA7cBw4FXdV1/NortEwmoaxFPfwCW1ql8X2bm+zIzS+rW1bZ6ajGkWoPsUOBjpwIfOw3xkxmPSuUej/HZ3Ptif3azhRyrjRRZPCzipKOcQm4vtnp3yMjIwGw24/P5qKurjUqwJES8RZKgbz/gbeBBjLU1jwJHAn8CT2uaZtV1fW5UWykSlkmFKdkBpmR7OGeahzq3wo/lJr4vM/NTuTGa80mhhU8KLZ1bynce4mPX4QF2TuubNga9RmCj9rKcAoC1sYGHp21NdUewJEQfG1lSwl2Tp2Jp7/1rUFVVsrNzqKgop6qyUgIbMSBE8hb2BuAT4GZN09IwSincoev6DZqm/Qu4GJDAZpDKtAc5cLSPA0f78AVgce260Ry9ft2W8if+gkwH7JBvY6cCLzsUxDBBoNcYXVF6WQATwOZMxgtY++ved9HvOVwuRiU5aXE4en2uYDDIDUOGk1IwjLqitZJ9WAwIkQQ204FDdF1v1jTtmNA5Xgvd9ylwWbQaJ/o3swrTcwJMz/Fw/nQPNS6FH8qM0Zz5FWbqXAofrDHzwRpz506rXYb62HWojzFp0Sv30JFzpreVvQHsKSm0AFZVlYrIIi4cPh9YrKQM6d1WbwBFUbCbTNiCQZrKy6PQOiHiL5LAxtXlcfsDlbqu/xH6Ph9oiEK7xACU7QhyyFgfh4z1EVRV1ridfLjUw3elJlY0rNtp9fAiG0OTA+w61Mduw3zMyOndAmQ1lKU1WoENgE1VcblcEtiIPuV2u0kL7YTKGDEqKuf0WK3Q3o5Lsg+LASKSwOY74HJN0zKBY4CnADRN2xa4MXS/EFtkUWH7oTAhycvfp7dT2abwXamZb0vN/FxhorRF5UXdyou6lRRL0FiXM8xYhJzcw6Uyqt8PJhNme++H7q1JTuOcioK7tYXU1NRen1OIcFVWlpMRqujd23IKHYJJSdDejkeyD4sBIpLA5lKMIpfPA0uAf4Vufx9ow0jgJ0SP5CUFOXK8lyPHe3H5YH65ma9LzXxXaqK+XeWjQgsfFVowKUG2zfOza2jKakhy97usPm9r4b2qSs445rhet9PUZdTH3dwMBb0+pRBhqy5cS6qqEggGsfSisndXamoq1NcTaGqKyvmEiLdIEvSt0TRtKyBX1/XKLncdBvyu67pkehK94jDD7sN97D7chz8Af9WqfFNq5psSM2uajNw5P1eY+c9vMC7dCHJ2H+ZjUuam1+WsaGmmtL6O8/N6vz1WMZvxB4OYFIX21pZen0+InmgoLiIVaFMUlCikLwCwZWZCYSEml+RmEgNDpAn6gkDlBrf9pGmaU9O0PXRd/ygqrRODnqnLAuQLZ3goalKMIKfUzMJqEysbjI8nF9vISwqw53Afew73MS3bjym0LscVShfvcCRFpU3ftrbQ3NLMPl7JZSP6Vn1NDYqrDUtaetTO6czLIwjYvJLCQAwMkeSxGQk8BuwGbG61g6k3jRJic0akBjkx1cuJk7w0tMMPZWa+LjHzQ7mZyrZ163Ky7AF2G2YEOVtZrPgysrBHqfD8R552VpcUsasSu2SDfr+f7777mpSUVGbNmhWz64j+ZWVbKy8v/oMzzzyXXaN0zvRRY/iltYXC5ibZ6ScGhEhGbO4FdgIeB3bGWFfzI7APMBU4ImqtE2IL0m1wwGgfB4z24fbBTxVmviw2pqxq3UbRztdXWHg4r4BMq5VlxT5yxxiVzXvDEcof4opR4cBgMMjVV1/Gp58aA5+XXXYV//jHRTG5luhfKiujV06hQ96sWdywYhk+n48TJfuwGAAi2US7G3C9rusXY+yIatd1/SpgJkYhzEOj2D4hwmI3w+7DfNy8o5tPjmjhoT3aOHych0xzG9bQ9tgH9Bz2fiOZq7+z80mhmVZvZNfKdCSRbbXiitFiy2+//bozqAG4//57KCkpicm1RP9SVWWUU8iLwnqxDqqqkpWVHTq/bPkW/V8kgU0ysDD09RJgBoCu637gYYyK30LEjcUEOxT4uW5WOy/MqcYeCmxS05Jx+RQ+K7Jw7fcO9nkjmSu+tfNpoRl3D5bLHK2q/HfaNqjFxTFp//PPzwPgtJNOY7uZs/D5vDz//PMxuZboXw4OwF2Tp5Ib5YW+2dk5ANRILhsxAEQS2JRjJOIDWAlkaprWsem1DojeWwkheqm9rQVzKLCZd2iQZ/Zt5ZTJ7QxPDtDuV/iy2MI13zvY6/Vkrv3ezlfFZtr9Wz5nwGQsIfPFYCqqtraGX375iTnZuey/fAX/sDnQkpN54403CAbjUEBUJAyv10OeycSoJCcZmVlRPfc5zhSe22YWLatXRfW8QsRDJIHN+8CtmqbtpOt6MVCCkbAvBTgdKI1mA4XoDVdTY+fXqs3KVlkBLpzh4Y2DW3luPyPIGeIM4PYbxTov/9YYybnhBzvflZrwbiLICZqMRTqxCGy+++4bCqxWzhw5Gvw+TO3tXDJ2AlVlZaxcuSLq1xP9R1VVFZmhQq7pw4ZF9dw2sxmrqtImIzZiAIi0COZM4BZgL+Ba4BngktD9f49Ky4SIAndLMzYgEAyimNft9lAUmJgZYGKmhwume1hcq/JpkYXPiozdVR+stfDBWgup1iB7DPey9wgfM/NCpR0sFnC78bdHP7BZsOBXDswrwKQoOCZOgmCQv1YuB+Cnn35k9OhxUb+m6B+qSopxhoJqS0ZmVM8dcDjA48FTJ9mHRf8XSYK+WmD7juknXdef1zStENgR+FnX9a+j3EYhItbe0oIN8BJE2UxVTUWBKdkBpmS3c/HW7fxRY+KTQjOfFxm7q95eZeXtVVYybAHmjPAxXTECJH979HNR/rHgV27MygUg66BDSJo4Cdu8J/HM/4GffvqB448/KerXFP1DXeFanIA7GES126N6biUlBRobCTRL9mHR/0W88VXX9XJN0yYCGUC5ruv/jl6zhIiONmDuquWMGD6CqWEcryowI8fPjBw/l23Tzu/VRpDzRbGZ+naV11ZYSW6zMxaobvCytlFlVFogKm2tqqokvamJpLwhmNIzcEzQANhuOyOPzaJFvxMMbj5AEwNbc5kxy++KUsbhrqwZmVBSgilGKQyE6EsR/YZomnYGxpTUsC63FQPX6Lr+YpTaJkSvtfl8/Fhfh3dsz6dwTCrMzPMzM8/PlTPb+bXSxMeFFnw/2MAHLS4fR73vZFKmn/1HedlnpI9sR+QLfBcv/os2v4/FXg+zt98eJbToeWxePrvm5FLW1kZZWSlDh0Z3fYXoH9zV1QD4HL0v5rqhpFxjlNDqkezDov+LJPPwBcADwFvAdUAVxi6p44HnNE3z6br+aiSN0TTtemAvXdd373LbU8CpGxxaquu6/HUX3VpXTqF3/wzMqrGFfIcCP58syOLTj36iPHUYJiXI0joTS+tM3Pd7kO3zjSBn92E+knqYwHX58mXoLS0sGDGCw49eV7Cz+csvuGDkGD6rrmTJkr8ksBmk6pubKHK1YR8+POrnTikYQivgxMh6bTJJ8njRf0WyK+pi4CFd14/Qdf05Xdc/0XV9nq7r+2Mk7LspkoZomnYJxoLkDU0Dbseoo9zxsXUk1xCDj6++ju0zMhlp3lz1j55Txo/jiaI11FtdfHR4K1fOdDMt208gqPBjuZkbfjR2Vl3/vZ3vy0z4wpypWr58GQATQlNQHZImTABgYnIKS5YsjtrzEP3LD/V1XL74Dzy7RKuYwjoZo0azsrWFwrZW6upqo35+IfpSJFNRw4B3N3Pfi8AJPTmZpmlDgf8BuwD6BveZgMnArbquV/S8qWKws1ZXc9nYCVRGcaFvRzHNtrY2MuxBjpng5ZgJXoqbFT5aa+HDtRaKmlU+KrTwUaGFTHuAfUf6OGSMl/EZm49ySlesIMdqY8L49QMbx/jxAAxzJPHO4r+i9jxE/1JZafwJzM2NfsmDpFGjuae6kpqaavaoqSYnJzfq1xCir0QyYvMLMGcz920N/NHD820D1GOMzMzf4L7xgB0jw7EQPeZ3Gxlag1FccJlkt+M0mcDVtt7tw1OCnDXVw+sHtfL0Pq0cO8FDhi1Andsoznn8h05O+DCJl3QLDe71FwC3trYw2u3m4Wlbk//rL+vdZ05OQckytvf6yyRN1GDk8/moqTHW2ESznEJXHdmHq0NreYTor8L6a69pWtexzxeBe0MJ+V4BKjB2Ru0HXASc05MG6Lr+LqERIE3TNrx7KhAELtE0bX8gAHyAUauqccODe8JsjiSm2zyTSV3vs9iyvuqvYMdiSIs5aj/z5NISntp6O3S3a7PnnJEPM/K9XD7Ly49lJt5ZZebrYhN6vQn9N2M9zm7D/Bwy1sdOQ/2sXbuaMUlOAFJHj17vvCaTStr48TTUzifD56W1tYm0tPSoPJeBZqD+HtbU1HH3pKn4CZKuROfv14Z9lZOTw7JlUFdbHfW/j/3dQH1dxUIi9FW4b2O/wggwOijAecC5G9wG8BIQ0eLhTZiCEcysBQ7GGMH5DzBV07Q9dV2PaJ+tqipkZDij1MT1paZGf8fCQBbr/lL9RqVLs90etZ95Rk4G9YA5GAzrnIdmwaFTod4Fby+H15bAn1UKnxcZuXJykmBiZSkHOo1zZW+lbXTetPHjaPhpPqMcTqqryxg1amhUnstANdB+D1ctr2FoaAF8ztBcLKnR+/vV0VdHKyrnbDOL1cVrY/b3sb8baK+rWIpnX4Ub2OwR01Zs3k3AvbquN4S+/0vTtHLgR2A7Np66CksgEKSpqa37A3vAZFJJTXXQ1OTC749OXpOBrK/6yxsqFhgwmamvb43KOQMmGwAWoK6upUd5ZQ4dYXysqFd4d5WF91abqW5TqF6wkrPtxh+CN+qGsFdFK2nGZTCZVJyjRwEwKimJhQv/ZNy4yVF5LgPNQP09XPvXMgoAXzBIs09BicJrecO+soTKKrSUV0Xtd2WgGKivq1iIZV+lpjrCGgkKK7CJVzZhXdeDQMMGN/8Z+jyMCAMbAF+4W1V6yO8PxOzcA1Gs+yvoMUZsFKs1atexOFMAsKsqra0u7BFkgR2dAhfN8HP+NPihzMQTn6zEZFZwYeLWpQX833LYfZiPw8d52WFogDRtAr8MG8rTH7zHPitWymusGwPt97C+qJgCoM1kwu8Psv4Aeu909pUzBZqa8TU2Dqi+i6aB9rqKpXj2VViTYJqmfaNp2oyenFjTtJmapn0XUavWneMFTdM+3uDm7UKfZUGx6JbiMwIb1Ra9FPSOtDQA7KqpM09OpMwq7DrMzxhPKKtsSgZaZgBvQOHTIgvnf5HEIW86eHRJMv7JW1PtaWfNGqnAPNi4QsUpvTZbzK5hyUgHQG2L7mi2EH0t3Kmo+4GPNE37FXgOeEfX9Y1e/aEFxftiLCDeGji/l+17AXhH07TrMNbuTAAeBl7QdX1pL88tBoEFnnZ+LC3hiP32i9o5zUnGdm+7yURbWysZGRm9Ol8gEMDS1ARJyWSPLOD5/dtYVqfy9iqjEGdJi8q/fwSldCsAlixfiS9gBEVicPDVG8Upg8kpMbuGI7QryuKV7MOifwt3Kup1TdO+xiij8D/ArGnaEmAN0AqkA8MxFvt6Q8ecqOt6ZW8ap+v6e5qmHY2R4fg6jGmpF4Dre3NeMXisdrWxvKaao4dEL1tvx+iPVVVpa2nu9fmqq6v4s6EOm6Jw1pnGpkKj8rhRlPPLUivvrLFRU2VmasFQSlxtHPSayiGamUPHehmaHL1pCZGgWlpANWHpZRC9JSn5BbiBpEBAapKJfi3s5B66rtcAF2madjNwFMaC4jFAGlADLMUY2Xk3VAG8x3RdP3UTt70OvB7J+YRYV1IhKWrnVO12FrS1Ut/aws6tvV9kWVi4Fr2lBXdWNlfssON699nNcPBYHyfPtPFT40r8Q4fzfW0Nv1WU8KRP48nFNmbl+zh8rJfdhvmwSib8Aam6uZkiq5X8obHbDZc+bDgVQJrJTGNjA+npsQuihIilHmctCwUtj4U+hEhow4NBMlPTiObGQ8Vs5jWPm5WFa9g6CkUDi4oKARg+fOQWjxsyZgjFwBCHg5MLlrM8ayzzK8z8HPpItwU4cLQR5ESr4riIv0AgwAtrVjLP5+Oju++P2XUceXmsdrkoa2tlSE21BDai34peOlYhEtCR6ZkMzx+KpaE+qudNCq2z6e3iYYDq0hK2SklldDdp7K0FRir9ApudKtcaHt7TRWmLwjurLLyz2kK1S+X5ZVaeX2Zl21wfR403inFaZBSnX6urq8Xn86GqKllZ2TG7jiUrm/+1t7FyzUomVVczbtyEmF1LiFiSwEYMWMFgEGtonYAtJbqLLpPsSSSZTLS1tPT6XO2lpdyoTcZdueUladbsHAKKgt1kombtGgCGJgc5b7qHs6Z6+LHcxBsrrXxfZuK3KjO/VZnJtAc4dIyXw8d5GSJrcfqljhpRWVnZWCw9LBnfQ9nZOaxcuYLq0C4sIfojCWzEgNXe3o5NNbYO2VPSonruU1HI3Ho7VpWV9Ppc3roaQCXYTfClmM14k5zYWlto3+C6ZhV2Gepnl6EuKloV3lpl4a1VFmpcKk8tsfH0Eis7DfFz5DgPOw/xI5nh+4/qwkKenDGTFlUlGAigqLH74XXUi6qRwEb0YxLYiAHL5XJhV415GEdaalTP7VdVCATwRWHxME3NkJqGOTOz20PVnGxobSFQV7fZY/KdQc6d5uHMKR6+LjHz+koLP1eY+b7M+MhLCnD4OC+HjfWS7ZBRnETXWFLEELMZRVFiGtQA7OVyc9w2s1i0enVMryNELMn7NjFgtbW2YDcZgY3FGd3aN/5QtXBfL9fYBAIBbO1G2YekvIJuj3cOMXbF2N1uvF7vFo81qzBnhI//7unijYNaOHGihzRrkMo2lUf/sHHgW06u/NbOzxUmAhLfJKy20BSlx2qN+bVsdjtWVcXf1Ksaw0LEVbjVvU/uyUl1XZ8XWXOEiB5XU1Pn19HMPAyAxQxuCLjdvTpNXV0tmWZj3UTq0O5z7RQcdCjHPf0EJc3NHF1RzvDhI8K6zojUIJds085509v5vMgYxVlUbeaLYgtfFFsYkRLgiHEeDhrjJT12yW1FBDx1RvaMYJSD800xpaVDZSVKNEYihYiTcKeinu7BOYOABDYi7tzNTViBQDCIEuVFl0GL8e450N7eq/OUl5eTFXonbsvJ6fZ4W24uSnYu3qYmiouLwg5sOh9vggNG+zhgtI8V9SpvrLTwwRoLRc0q9/1u57+LbOw1wscxEzxMyZYt44kg2NQEimoEHTHmyM6G5TqWXr6uhYincAOb0TFthRAx4PL5eGrtavJycrgyyllUlY6aPb38B1BZWU62NVQtPCsrrMcMHTqU1atXUlZW2qtrj88IcNV27Vw4o52PCi28tsLC8noTH6w1SjlMzvRz9AQPe4/wYZfVeHFjcrkgyYk9d8vpAKIhOb8AL2D3S/Zh0X+FW1KhMNwTapomvwkiIbT5vHxeU8VWeXlRP3dnYNPLujrlZWV8VFrMrImTGZvd/YhNMBhkd3sSk0eOoaq4qFfX7pBkgSPGeTl8rJfFtSqvrrDyaaGZJXUmbv7JwX2/G1vGjxovW8b7WjAYJMnvByBlyJCYXy992DCqgTSTidbWVpKTk2N+TSGiLaL3YZqmHQfsBliBjkBGBZzAjkD0CvMIEaHW0DoBZwzWJgSyc/hhwW80ZvcuYVplVQWf1VQxZMxBmBzd50dWFAWtpYWpObm8U9r7rebrnxumZAeYku3mkq0V3l5ljOJUtKnMW2rj2aVWZg/1c+wED7Py/ajyFibm6uvrqHC5SDObmTV6TMyv58zNoxrIsFqoqamSwEb0Sz0ObDRNuxG4EWgMPd4b+sgBAsAT0WygEJHy1NcxNTWN4bZoFlQw+CdM4L5HH2Racu9qUFVUlANQUND9jqgOgdRUqK3FV1vTq2tvSYY9yKlbeThpkodvy8y8stzYMv5tqfExIiXA0eONxcYpsd+sM2hVVlbwRNEasrNz+GzylJhfz5yeTqHXQ0VLCxMrKxk1KvbBlBDRFsl271OA54BM4F6Mopd5wHZALbA4es0TInKm8nL+OWESu/l8UT+302m8k21tbevVedwVFUxKTqEgNfwEgpbQImO1qfeVxbtjUmH3YcaW8dcOauG4CR6cliBFzSp3L7Cz/5vJ3P6zjZUNkjkiFioqjKzDeXn5fXI91e7gJbOJu1ctp6YuolrGQsRdJH+NhgLP6roeBH4DdgLQdf034DbgzOg1T4jI+UM5ZoLm6K98TU5ORgE8bb3bFjvW7ebmiVuRv3Jl+NceOtz47PPi7eUan54YlRrk8pntfHhYC1dv52ZMmh+3X+GNlVaO+8DJ2Z85+LTQjE82U0VNZWhEr68CG4CcUOBcU1PdZ9cUIpoi+YvfirGlG2AFMFrTNIeu6y5gIbKDSiQIvzsU2MSgvo6jopyXZ+7A2l4k6PN4PCSFRpOSQ4n3wpE6YgQuINdmo7KykmHDhkfchkgkWeCo8V6OHOfltyoTry638FWJmQVVxkeOI2AsRh4nmY17y7t6FU/OmEmzv++ixc6yClVSVkH0T5GM2PyMMR0FsArwAXuFvp8ESAIEkRACbuOlqMQgY6sjVHvKohjZgyNRWVnRmcMmpQeBjSVUBTzXaqe8vHdbvntDUWBmnp87d3HzzqGtnDmlnSx7gGqXymN/GpmNr/3ezsIqE0GJbyLSXlNDstmMwxzb4pddzWps4vltZpETpV13QvS1SAKb24FjNU17V9f1doz1Ns9omvY6cDfwcTQbKETEPKHAJtpZh4Gk9HQAHKoJlyuydTYVFT3PYQNgCe3EyrZaKS2J7s6oSOUlGfWp3ju0lX/t5GJ6jg9/UOGTQgtnfpbEiR8l8c4qM+3+eLe0fwk0NQBgSo9uEdctsSU5sagqtEj2YdE/9Tiw0XX9G2Am8HLopguA14CJwKvARVFrnRC9EPQYtZRM9ugHNvYUo6imXVVpifAfQEV5WWdgY84MP7Axp2fwQUE+py38lfLQGoxEYTHBfqN8zN3bxfP7t3LoWA82UxC93sQt8x0c+JaThxdZqWyTveLhMLUZU522MHIcRYs9FGSb23tXLkSIeIloVaWu638Af4S+dgNnR7NRQkSD6vMaqejDyA/TUx3ntJtMtLQ0kxdBEsDakhK0ULVmc0ZG2I9TVBXniFG0BwKUl5f1+Lp9RcsI8M/tjczGb6+y8upyIyfOU4ttzFtiZY/hPo6b4GV6jh9JcLuxQCCAI7QGK6Ug9sn5Ojjz8ggAthjsJhSiL0SaoC8N2BMjId9Goz5SBFMkgt/dLn6vqeagAw6K+rlVuzHSoioKbY0NEZ2jJVQSod1sRu3hAuchoSy0vS2r0BfSbXDKZA8nTPTwTamZl3ULv1WZ+azIwmdFFiZk+Dlugod9R/mwmeLd2sRRX19HZmhHX/qIntUE6420ocOpB1JVFbfbjT0GI55CxFIkCfr2x5hy2lxmMimCKRLCn81NFFVWcOSoUVE/t2JdVwK7taE+onMU1tXw+NrVHHTgIT1+7PD2ds4ZOZri+siuHQ9mFfYc7mPP4UYBzpeXW/hwrVGf6pb5Dh5YGODwsV6OHO8l3ymrjY3F5cbrzJ4T+zpRHVLyC6gHMixWamqq+3zXnRC9Fcni4TuApRglFcZibO/u+iGpKkVCaGszFvUmJUW/pIKiqujBAD/W1XaWbuip1ZWVfFZThW2HHXv82NTWNubk5DHE58fv738rcsdnBLh++3beP6yFC2e0k58UoKFd5aklNg59x8lV39r5fZDvpqooK2NVWwtVgQDmjMw+u64ltDA+2Wymujyx1nAJEY5IpqImAofquv5ttBsjRDTlBQJkOJNJikGCPoCPHQ6+++1nboowsKioMNbH5OeHX06hQ9qw4VQDWRYL1dVVEZ0jEXSdpvq21MxLoWmqz4stfF5sTFMdO8HDviMHX4Xxqpoq/m+Fzpw5ezO7D2s2qU4nhYEAFY31DKmq6LPrChEtkfypKARSo90QIaIpEAhw1pBhDLE7sEW4BqY7ycnGSFBLS0uPH9vc3MwIRYXkFHJTe/7rZA1lh82x2igvL+u3gU0Hswp7DPexR2ia6pXlFj4ITVPd2mWa6qhBNE21rpxC3/5sFUXh48x0PlvwM1c1NfbptYWIhkinom7UNG1UlNsiRNS0tbVhC+04sqfEJgeI02mUVWhr6XnNpoqKMk4YNoKbJ25FYO3aHj++Y3t4ttVKWVni7oyKxPiMANdt384Hh7Vw0Qw3+UkBGttVnu4yTbVgEExTrSun0PMdd73VkX24ulrKKoj+J5IRmxMw6kWt0jStGtgwO1lQ1/WxvW6ZEL3Q1taKXTW22NhTUmJyjd3q6jl25g78HkFgUV4eWXK+Dh2PSTKbqSwq7PHj+4M0G5w82cvfJnr5ttTMy8st/FrZZZoq3c+x2sCdphpbVcWTM2biren7YpQdgU1dtZRVEP1PJH8OSkIfQiSs1tYWHCYjsDElRT+PDdC5RTsQQebhqvIypoQe35PkfJ3XttnwmM1YfT5aSot7/Pj+pOs01coGlZf10DRVw8bTVMP6LkFvzJldLpKdyXj6cH1Nh0k1tbywzSx+q6zs82sL0Vs9Dmx0XT8tFg0RIpraGhqwhLK+qfbYBDaKzRhxCbp7nqG1vrgIVVHwKwqmCEeU/E4nNDbiGkTTBePSjWmqC2a08/YqC6+usFLeakxTzVtqZc/hfs6eBeNj8yPvM4FAgKTQovSUocP6/PpJKSmYVRVzBK9tIeItkjw2W8oUFQBadF1viLhFQkSBq7EBC+APBmNSBBNAdRipnBSPp8ePdVUaC0M9NhtKhGl32w84iLOvuJiCESMjenx/1jFNdUJomuql0DTVZ0VmPiuCCRl2jpngZb+R3n45TVVXV0tmaEQvIw4/36TQuh7JPiz6o0h+5ddiJOHbLE3T6oD7dV3/VySNEqK33I1NpAIeiDhw6I7ZaQQ2qtfb48f66mpBMRGMYEdUh4IJGu2BABUV5QSDwZg9z0RmUmH34T52D01TvbrCyvtrjN1U/5pv4sHfbRw2zsPR/Ww3VWVlBdkWIyC35/RdnagOaUOG0QQkA16vF0sPM2MLEU+R7Io6BeP/xSfAacD+odvexQh4bgGeBq7XNO28npxY07TrNU37aoPbZmia9rWmaa2aphVpmnZ5BG0Wg0yL38+84kLmq7H7Z29ONqaQTJG8q202dlJZMrMjvn5+fj6KouB2u6mvr4v4PAPFuPQA/9zRw/wz4JJtPBQ4AzR6FJ5ZYuOQd5xc8a2dXyv7x26qqpLizvxLkazB6q20oUMBSLdYqKvr+8XLQvRGJCM2xwMvbWKtzXOapj0CbKvr+iGapjUA5wGPhHNSTdMuwQiKvulyWxbwKfAWcC6wA/BfTdNqdV1/KoK2i0GiJeDjvcpydp80OWbXsIYqfFsCgR49zu/3801ZKaV1dVx62hkRXz9YU8NFEybR0NZKWVkZmXH4B5iI0u1w6hQvx09oX2+a6stiC18WWxib5udYzcv+o7w4EnSaqq5wLUMBt2IsFO9rlnSjKGuq2UJ1ZSV5efl93gYhIhXJiM3uwAubue8NYE7o6+8wSi5skaZpQzVN+xD4F6BvcPfZQDtwnq7rS0PBzL3AVRG0WwwiHWUOnM7ol1PoYM/LY2FjA6tae5agr7a2hrUtzXxZV0P+9j0vp9Ah0N7Ozimp7JiR1S+KYfa1jmmqR+e4eOmAVo4Y58FuCrKq0cTtP9s54M1k7ltgo7Ql8abwqquqWNBYT31ybFIVdMeUkkIgGERVFOpKBvauOzHwRBLY1ALTN3PfdKAp9HUyEE4RnW2AemAaMH+D+3YBvtF1vetY/xeApmla31WFE/2Ot76esU5nZxHBWEjbagq3r1jGs2tXE+jBqE1FKPFabm4e5l6Ue+iYosi0WqkY4Fu+e2tceoBrZ7XzweEtXLK1m6HJAZq9Cs8ts3LYO04u/drB/IrEmaZaXlfL/63QKd9++7hcX1FVCs1mfqqrpb528Oy6EwNDJH9Vnwdu0TTNC7wGVAG5wBHATcCjmqZlAJcAP3V3Ml3X38VYn4OmaRvePQz4c4PbOrKhjQhdOyJmcyQx3eaZTOp6n8WWxbq/MqoquWPSVMqbm6L+s+6QmWkM1weDQVyuVtLSwkuiUl1Vwc6ZWWQVDMFEAKWb4GZzfWXKSDO2iweDNJWWxOx59ifdva4yzXDqVD8nbeXiu1ITLy6z8FO5iW9LzXxbamZMWoBjNS8Hj/WRFMf1suXlxgjcsGHDY/Zz7a6vfh0xnFfnf895ba2D/rUlf9/Dlwh9FUlgcz1GIHNP6KNDAHgSuBY4Ctga2LOX7UvCmIrqqiOxgj3Sk6qqQkZGbKYoUlP7eQKNPhar/lI8xsvG4nTG7GcNThwOB26XC0Xxhn2dppoKLh4zHoC0VDumMNdQbKqv/E4nppYWvDVVMXye/U84r6vDsuCwabCyDp5ZBK8vhdWNKnf8bOOhhTaOngynTIdR6bFv74aqyo33b5MmjYv5z3VzfTVihLGAuKmpXl5bIfL3PXzx7KtIEvT5gNM1TbsN2APIxshE/L2u62sAQmtmhuq6vmFQ0lMuYMO/+h0BTTjTXJsUCARpaup5ttgtMZlUUlMdNDW58Pt7tph0MIp1f/naXAAELVbq6yN+qWyRv7WVRydNxaYoFK0pITU1vB1OVSvXshXgMZloavNB25Z3VW2xr1JToaUFd3VNzJ5nfxLJ6ypLgX/MgLMnwzurzLy0zEJRs8qTC+HJhbDzUB/HT/Sx0xA/Mdxk16mlpYXzcwsYM2oc6ppi6vOGx+Q63fVVSko6ClBWVDLoX1vy9z18seyr1FRHWCNBEU/w67q+Cli1mfvqIz3vBoqBIRvc1vF9r1ZL+nyxeXH6/YGYnXsgilV/GUnzFFRHUsx+HkGTBUeo0GZdVXXY13GF0tT7knrWtk31lTUnF8rKMLW0yuuui0heV3YVjhnv4ahxHn4qN/Hycivfl5n5vtT4GJES4JgJHg4a4yU5htNUxcXF5FhtOM1m7GmZMf+5bq6vRlRW8/w2s/i9sUleWyHy9z188eyrsAIbTdNWA4frur5I07Q1bDlBXzSLYH4DnKtpmknXdX/otjmAruu6VGcTm6X6fGC2YIlhnR3FbMYTDGJVFFp7kOsj0FgPVjtKWnqv25A6dBhNixZiDwZobm4mJUYFPwcTVYGdhvjZaYiLoiaFV1dYeWe1MYrzn9/s/HeRjQNHezl2gpdRadH/w11eWkJ2KFu2OSvyPEe9lZKZSVBVsUaQWVuIeAp3xOZr1u12+ppuMg9H0ZPAlcBcTdPuAmZhLEo+t4+uL/opk98PZgu2lMgz+4bDo6pYg0FcDeEPUppb28Bqx57T+419OfsfyCkP3k1lfT37lZeRkrLRAnzRCyNSg1y2bTvnTmvngzUWXlluYU2TiVdXWHl1hZXt830cp3nYqcBPtNZKVq9dQ76q4gfM6enROWkE0oePpB5IUVRcLhcOh6wvEf1DWIFN12R8uq6fGrPWbHzdKk3T9gUeABYA5cAVuq4/01dtEP1TR9I8ey9KFoTDbzKBz4eroSGs49vb23GG2pYSyu7aGyaHg8z8Airr6ykvL2XCBAlsYsFpgaMnGBXEf6408bJu4dtSM/MrjI+hyQGOHu/h0LFeUnpZmqy52Ni677JYUNT47SxJHTqUeiDbaqWyspxRo8bErS1C9EREa2w0TUsBUnVdL9U0zQpcDAwHXtN1/ZstP3rzNhU06br+CxB5FjMx6ASDQT6rquQPi4WTR8a2gGDAYgGfD0+oREJ3KisryApNMyQP6X1gA1BQMJSlS5dQXl7W/cGiVxQFts/3s32+n9IWhddWWHlrpYXSFpX7frfz6B82Dhjt5ZgJXsalRzZN1V5tzLL7YziNGg5zRiYAqRYLlaWlEtiIfqPHbwc0TZsFFAIXhm56ALgTOBH4QtO0Q6LXPCF6zu1282V1JS+XlZA2OlrLvTYtGApSfGFmHy4vL+Pl0mJeb2nCMTY6bdtXNXHt+InUFhVG5XwiPEOTg1y8tZH079pZbsam+XH7Fd5YaeW4D5yc+7mDL4vN9HhjSGj0Lx41orpSnU46yrvWrl0T17YI0RORjHPeBiwDHtM0zYER0PxX1/VMYC5wXRTbJ0SPtbQYoyeKopCUlBTTa3mysljY2ECd2939wRiBzdKWZooyMrBEaWHoEJebGWnptJXJiE08OMxwxDgvLx3QxqNz2thjuBdVCfJrpZkrvnVw6DtOnl5ipSHM5Bdr6utY0FhP0thxsW14NxRFwRVKHtkio4GiH4kksNkeuDWUs2YO4ACeDd33EjAlSm0TIiLNzc2MTXIyNiOTWKcdcW07k9tXLOOvtvDyfHRMFxUUbJjFoBfSjHVEPqnCHFeKAjPz/Px7FzfvHNLKqZPbSbMFqGhTeWihjQPfSubW+TaW12/+z67L1cZHxYX83wqdgv0O6MPWb1pjZiY/1tVS1YPF8ULEWyRrbAKsywZ8ANAA/Bz6PhWIbuY7IXqotaGeOyZPBSDoaUexx243R0po11VTU2NYxzeVlLBLZjYTorhby5KdA1VVqC09K8YpYiffGeSCGR7OnOLh40IzLy+3srzexNurrLy9ysr0HB9Hj/ey53AfVtO6x5WFRt2Sk1NIjfHC93A0bTeLez94h50LCuLdFCHCFklg8ytwpqZpLuBY4D1d14OhopRXh+4XIm5a6uqwAYFgEMUWceWNsHTUh2pqaurmSIO5qpILx4yjraIiam1IGTqM1iWLSfb7cbvd2O2xfc4ifHYzHDrWxyFjfCyqNvHycgtfFJtZVG18ZNoDHDrWy5HjvOQ7g5SWFONQTQyJ0sLy3srLywegsrI8zi0RInyRBDZXAB8BxwHVwL9Ct/+FMbW1b3SaJkRk2hoayAI8GOsEYslZVsZTM2ay1u0K63ilqQlSUqO6MNQ5dCitQI7VRkVFmexeSUCKAjNy/czI9VPdpvDWKgtvrLRQ7VJ5arGNZ5ZY2WWoj+ELV/LMNtvRqigEg8GYv367k59fgAI0VUuFb9F/9HiNja7rvwPjMLZgj9F1fUXorvOAKbqu/xbF9gnRY+2NDQB4+qCwjzMtDafZjFNV8XSToTUQCGBtNxYZO/Pzo9YGa2gRco7V1jmVIRJXTlKQs6Z6ePfQVu6c7WK7PB+BoMLXJRZ++cOoFNOuWmj2xjeoAUhvauT5bWZx+dDhtIW5jkyIeIsoj42u683A/A1uez0qLRKil7yh9S5eU8Sl0MLmzM4xsrOazTQ2NpCzhWzCdXW1ZJmNIkOpw6OXX8ecbQQ2NlWlvKxXJdREHzKrMGeEjzkjfKxpVHlthYXy98ogCUqUNC57M5l9R3o5eoKXSZnxqbnjzMnFrKpkW21UVFQwZkxs0ycIEQ3xS2spRIx4W413ln5z7AMbS2gRcLLJTEM3O0fKy8s7awDZc3tfTqGzDVnZvDFyJOf/+TvlFbIWoj8anRbgipntjAnWAdCWmku7X+Gd1VZO+sjJKR8n8d5qM+3+bk4UZR1J+pLNZipLivv24kJESAIbMeAEQoFNwNrL3PZhUEPZYW0mE3VVW67LWl5WSo7NBoAlK3prbBRVJW/YMOMakm+k3/L7/SS1GxtOd9l6CP/bu439Rnoxq0EW15q46ScHB7zl5P7fbZS09M00lSkpqXMLbH3R2j65phC9Ffu3tEL0sRKfl1VlJUzT5sT8Wqrdjp8gJhQaugkqqkuKGBWaHot2VtmOvDhlMhXVb1VVVZIbCsYzxoxldI6fGTl+LnUpvL3awusrLFS2qTy71MpzSy3sNMTP0eM97BjFApyb4raYsXl9NMv6LdFPyIiNGHBWtbXxclkJ3vETYn4tRVHwKMavUUtNzRaPLauq5Pbly/hz6FDU0MhNtAyrr+fa8RMZ2RhePh2ReEpKisgPpSdwDFmXwDHLEeT0rTy8c0grd+/axo4FPoIofF9m5pKvkzjiXSfPLLFS747NKI4/yQmAu5sRSSEShQQ2YsDpSJaXmprWJ9erdTpZ2NhAYzdJ+korK1nY1IB/q+gn507x+5mRlk6W34/X6+3+ASLhFBcW8mN9LWsVBcsmFqGbVNhtmJ8H93DxxkEtnDDRQ4olSGmryoMLbRzwlpNrv7fza6WJYDB67TKlZwDgb6iL3kmFiCEJbMSAY25ppsBmJ93p7JPrrdpqCrevWEaxa8tJt8vKSoAol1MISR0+AoBsi5Wqqsqon1/EXklZCXOL1vLr6NGo3SRZHJEa5NJt2vnw8BZu2N7F5Ew/3oDCJ4UWzv08iaPeT+K5pRYaojCKYx87lh/rallRJ4GN6B8ksBEDzmEOJ/dPnUFKFLP7bklmprFzpLZ281NRwWCQlLp6dsnMZlgMAi5rdg4AOTabrLPpp4qLjV1Hw4cPD/sxdjMcMtbHvP3aeG6/Vg4f5yHJHKSwycR9v9vZ/y0n139vZ0FV5KM4eXvtw72rV/BJ4Rp8Pl9kJxGiD0lgIwaUQCBAx3tdZxR3Hm1JVihBXt0W3tHW1dWye1oaF44ZR0r1ltfiRMLSJUlfqWzL7ZdqitbiUE2MHDkqosdPzAxw3SxjFOfaWW4mZhijOB8VWjj7sySOeT+JF5ZZaAyzyniH7OwcLBYLfr+fysq+ebMgRG9IYCMGlJaWFpwmo6pgcmgUI9Zyigp5asZM5vg3n0StuLiIbKuxYNielxf1NpizjFEjh8lE+ZrVUT+/iK1AIMBsX4BnttmOYWW9y0XktMAR47w8t38b8/Zt5bCxHhzmIGuaTNyzwM7+bybzzx/s/F6phjWKo6oqQwqGkGGxUFZa0qu2CdEXZLu3GFCamhpJCm2ptqen98k1k1JSsZjN2Nv8m63vU1JSTL41+jlsOqgWKx6rFavHQ1NxUdTPL2KroqKcnFBCycxRo6J23slZASZntXPJNu18tNaoT7W83sSHay18uNbC+F/g8LFm9hvpIXUzaZ+CgQD/yi3AllvAipUrYNYOUWufELEgIzZiQGlsqCcpNGKjOpL65JqpBQUApKjqZuvplK1dQ6rFKKdgDk0bRb8hqTR5vTTI4uF+Z+3a1eSHFgzb86O/uDzZAkeN9/L8fm08vU8rh4zxYDcHWVEHd/1iY/83k7nxRzuLqjcexVFUFU8o6GqUoFn0AzJiIwaUpupqskIjJqY+2hWVlJNLLZBusVJVVcXo0ckbt6uoEACP2YwpKTYBl+P0szjxmENxOp0JURlahK9o5Qq2sRhDJpbc2E2hKgpMyQ4wJbudK2Z5+arCybOL/CyvN/H+Ggvvr7EwJs3PIWO8HDDaR6bdiHJ8Tic0NtJeKUGzSHwyYiMGlJaaagA8BFH6oFYUgDk05ZVhsWy2CKU3lNwskBa73DrDRo5CURRaW1upr5etuf1J7apVAHhMJkxJfROQp1jh5Onw8kFuntqnlYPHeLGZgqxuDO2oetPJFd/Y+a7UhBqqGRVsbOiTtgnRGxLYiAGl0eXitbISFkc5s++WmFKNQpgWVaW6dNM7kkxNTQBYc6O/cLiDzWYjP9+YFisKjRCJ/sEdCoh9oddSX1IUmJod4MYd3Hx8eAvXbOdmqyw//qDClyUWLvk6iS/dRp4kS9uWczUJkQgksBEDSp3bxStlJegx2Hm0OarFikc1pn0aSjbeNdLU1MgHxWu5ffkycvbdP2bt8NZUc8nQEdyoTaZY1kL0K2q9URneGoPkjT2RbIUjx3t5Zt82XjqgleM1D2m2AEXOsQCkBAKc+ZGJ99eYcUtKG5GgJLARA0pjqFZSeh/tiOq8bloGCxrrqQlNhXW1evUqGrxeyh12sqZMjVkbFKuN0cCk5BRKCtfG7DoiulpbW1hUVcmnVZVkbTsz3s3pNC49wGXbtvPhYa0cvZuRNDDXZuP3leXc+KODfd9M5vafbSyuDW/buBB9RQIbMaB46mopsNnJSNp4AW8s1e26K/+3Qmd5be1G961ebayfGDNmbEzbYEpJwa+aUBWFhrVrY3otET2FhWtZ2NTA6y1N5O22R7ybsxGrCWZPzeYvr4fvamvYP1VniDNAq1fhjZVWTvnYyfEfJvHiMkvMCnEK0RMS2IgBZWRdHfdPncH4it4lOeupjrUtlZUbX7dw5XKOLBjKLtm5BAObT+LXW4qi4A+t0WiXDLH9xpo1awAYNWp0nFuyeaaUFH7IyeaF0mImqqt565BWHtmzjf1Gev+/vTuPb+OuEz7+0cxIlnzIt+M4ce54Eue+mqul6RGaNm0pfcrRhefZloUCXXg4W1hYFpYC+xS2QB+WhUJhWY7S0t1CaZ+W3k1zNPcdJxPndBLHjm/5kCzNaJ4/Rj4bl6SJPZL8fb9eeo08Go2+/mmk+er3+83vh0+xOdKq8tBOP2v+mMXn1/l5pUYjarkdtRit5HJvkVaUSAS8Pry5eSP6uj2JTVN9HfF4HEXp+83QcuwYHx5XjtnYiEcZ3t8SvjFjoLUFJdQ6rK8jLp+Thw8yOTOTislT3A7lbU2YMBFwOqYrHlhSarGk1CIUhb+c8PLsMS9VzSpvnPHyxhkvQZ/NuyfGWDs5xuzCODL6gBgpktiItKLFYuD1EUhMTDlSgnV1/GrBEg53tFNfXzdgBm+zvg4Ki/EUDdPAfP3klE+g3ThEbhza2lrJHeEET1y8SPVhHqycS1dzi9uhvK0J5RPJ93ppPHF8wPqgD95fEeP9FTGOtSk8d1zjueNezoUV/qvax39V+5iQE2ft5Bg3TY4xNks65IjhJU1RIm3Yto0v0dSTNULzRPXw5uSQqaqUZGRwvN9cTaFQiGA0CkD2xOFvasgsGwdAqd/fO1u0SG52YlJUb6LWL1lNO3uWR+YtYmZi6ILzmZIb51Pzozzznk5+fG0XN02K4VdtatoVfrI3g1uezuYTrwR45phGZ2wEgxejiiQ2Im10dHSQnZhOIXeETxI9s2sX+TI4nugsDFBVtZ9yfwCA7MnDn9h4S0oI2zbdlsVJuTIq6bW3txOMOWf4/GnTXI7m7eUnmspyLYvu7refIlxVYGmpxTdXRHjh9g6+sSzM4jHO9eHb6zX+eXOAG55yJuPcfFbFHL6uZ2IUSommKF3XJwInzvPQxwzDeHSEwxFJqrm5iWBitOFAweWfaPLtaAUFxAGfolB3tLp3/f79e6lIzFmVMW78sMcR0Gfw9MQJPLVjCx87IbN8J7sjR6oZF3AS35wk7jwMkD9lGp3AWL+f06dPMXXqhSViWV64eYrJzVNMznZ6eC4xdUNNu9I7GWehP87qCSZrJsWYJf1xxCVKicQGmAtEgClA/wbaNnfCEcmouamJHM2ZaFLNGdnLvT2qipWZidLVNeBSa2P/Pq5MjILsSzQTDWscHg9TpjgnnGPHjgz764lLc6TaoCJRo+cbO/zHx6XwlZYCUOzL4OSxoxec2PQ3Nsvm72ZH+cisKAeaFJ497uWlk16aIgqPH/bx+GEf47Lj3DAxxppJJlNypSpHXLxUSWzmAIZhGCN7Da9IKc1NDWw+e4bJY0qZljWyiQ04o8baR49g1Z8lFouhqirNh6pQxk8knpmJNkLD5feMl3OsX5OYSE5nDlYxT1WxPB58JSVuh/O21GCQqMeDD2ioNmD1De94X/0n4/zCwm621Km8cNLL66c1znQo/PJABr88kEFFnsUNk0xumBijVDodiwuUKonNXKDK7SBEcmtubeXJ2tOsqtD5G693xF8/d/p0Wo8eYazmpbraQFEUdtSd5b5wmN/8+8i1mI6vreWHs+fxcmMDsVgUb2LWaJF8IidPgKISCwZHbNLWd8rj8RAOBPB1ddF+8vLNReZV4cpxFleOswib8MZpjRdOamw6q3G4VeXwbpUf7c5gfrHJmkkm15eb5PklyRFDS+5PUp85wFld19cDFUA18IBhGC+80x1q2uXtN62qyoCleHvDUV6trc6M1sXFRZf9/b0QORUV7H7xL5zs6mL79i1EIhEAJs1fQMG8ue94vxdbVtkZPsr8Acr9fs6cOcW0adPf8WunmlT6HMbjcTYfPUKH389dN35yxI/Zd1JWalER1NRgNtQPS7w5GqydFmfttCht3VFePqnx/HGNHfUKuxs0djdo/Ot2m6VjLVZPtFhVbpLnv+xhvEUqHVduS4aySvrERtd1H04y0wncB3QAHwae13V9tWEYr1zsPhXFQ35+1uUNNCEYDAzLftPV5SyvaGsTZX4/5SVFw/b+vp38696FdeYEL//DP3Dm+WcJh8MA3H77bZclngstK6tiCo3AOH+AurpTLFky/5JfO9WkwufwyJEjnGhroT4a4Mcf/Vs0l2psLqasSlYs5fGtmzkUi5KXl4lnGHv55gMfLYWPLoW6DnjmMDxtwL5zHjbWamys1dC2ZLBiPNw0HW6YCgXD/LanwnGVLNwsq6RPbAzDiOq6ngeYhmH0XGO4Q9f1mcAXgYtObOJxm1Co6zJG6WSnwWCAUCiMZUmHt79mOMor+1QtP5w9n5bjp2hp6bws+7xYV155DT6fj4MHDzI2w89XZ8xitqVcUjwXW1axoHNF2Dh/gG179nPllde+49dONan0Ody0aSsAM2bMpL29G3j7S6gvt3dSVmOveTe//9L9WJaFYRxjzJjSYY7SkQHcMdm5nQx5ePGExksnVQ63qLxRA2/UwFdftVlSGuf6iSbXTjApuIw1Oal0XLltOMsqGAxcUE1Q0ic2AIZhnO+ssA9Y8073aQ7TwAmWFR+2faejy1le8fZ2UDW0vDzX3oOcnDw+/ZF7eOw/HmVhXh7zsnMI79qFee3qS973hZaVUlSCDWRpGrXV1aPyeEyFz+HBPXtYkV/I7KkVrsZ6MWWlql7Kyydw4sRxDOMwhYUj3+F5XCbcXWlxdyXUhDy8csrLyzUaRovK5rPO7V+2+FhUYnHdBJNryk0KLlOfnFQ4rpKFm2WV9ImNrutzgU3AGsMwNvR7aDFwwJ2oRDLSIhHIysZfOPxTFwyl9Y3XWbp9O0vWrMUTjUHDObLmLRjRGBSvFysYRAuF6DpVM6KvLS5cy6EqPjt1OrFz59wO5aLMmjKVzKYmThgHWbHiSldjmRC0uXtWlLtnRTnV7uGVGifJOdSisrVeY2u9xoPbbRaWWKwab7JqvClXV40CSZ/YAPsTt5/ouv5JoBG4B1gOLHEzMJE84vE4fsuZTjhYVvZXth4+WbPngqKgnDkDgEfTCC5bPuJx+MvGY4aqUFtbiUQi+P0j0MNSXDDTNFEaGmDsOHzjy90O56Lc0R0jS6/kVeOQ26EMUJ5jc9esKHfNinK63cPLp7y8UqNxsFlle73G9nqNf90Ben5fkjMtTwYDTEdJ38XbMIw4cAuwFXgS2AUsBVYbhrHPzdhE8mhubiI30fkyt2z4R/gdireggLxV1/T+XbD2FtTskR9TJ1hRwclIhC4zRnX14RF/ffH2jh8/yiSfM3Bj/sxKl6O5SIl52My6OpcDGdr4HJu7KqP8Zk0Xf7q1g88uiLCg2ETx2BgtKo/sy+DO57N4z5+zeGhHBtvrZVqHdJIKNTYYhtEA/J3bcYjkVV9fR15i7JqMEZ7Ze7DiD/wN/slT8Xi9ZC9a7EoMRbfexh//8iyb9jdylVHFnDnv/HJzcfnt37+PaYmEN/AORvB1U/bkydhnThNobycej6Moyf37eHy2zYdnxvjwzBgtEQ/rz6i8flpjS51GbafC7w0fvzd85Ppsrhrn1OQsG2viT4mzozgfeetEWjhXV8fYnukUgrmuxuJRVYLLV7gaA8CMGZVs2rSBgwdlbMtkc3D7Vu7I8GMD/iSfI2qw4srZnNuwnjKfj5qaE0yaNMXtkC5Yvt/m1qkmt041CZuw+azGutMa689otEU9PHvcy7PHvWSoNleMsVg5zuTKMpPx7n6liIskiY1ICw31dWyoPc3sSVOYnpPjdjhJYcaMSlSPh8OS2CSdkHEI8gqw8vJQMzPdDueiZE6YCEB5IJMD+/enVGLTX0CDa8qdq6bMOOxpcGpy1p12anLW12qsr3VOkdPz4lw/FZYUKVTmx3Fh/E9xESSxEWmhrrGB/z57Bu/Vq/AkedX4SJl6sIrfLFjCj2tOEIvF8LowzYR4q8bGBvLCYciDHH2G2+FcNG9JCabHg09RqNm7C26+1e2QLpmmwKIxFovGWHx+YTfVrQobajU2nNHY36RQ3apQvQN+QoAcr82ysSYry0xWllnky/QOSUcSG5EWzp2rB6CkZIzLkSSPrNxcLEVhvM/H8ePHqKjQ3Q5JADt37uC5+rN05ebyD9e92+1wLppHUTCDuWhtrYSOpN8M8h4PVOTHqch3ZiFv7Yat9V62NPh5/bhNW9TDSzVeXqrx4sGmsjDOlWUmy8eazCyII7MuuE8SG5EWOs6cZpzfz/gRGgk1FfgnTCTEeiZnZlFVtV8SmySxa9cOQqZJ5tx5BKakaDPOlVfxyI8f5mB3N1+0LFRVdTukYZOXATdNsfjQImhs6mJ3PWys1dhQq3G4ReVAk3N7ZF8GQZ/NkjEmy8ZaLBtrMlbGzHGFJDYiLVR2dnHv7PlYp067HUrSyCh3+kJMyszihT27uO22/+FyRAJg69bNACxcmLrDcE259TY2PPgtIpEwJ0+eYMqUqW6HNCJUBeYVx5lXHOXeeVHOdXnYVKux8azKtjqNUNQZCfmVU06z74ScOMvGmiwrNVk0xiJLWoNHhCQ2IuVFIhGyEoPz5U2c6HI0ySOjvBwbKPD5qN6zy+1wBFBXd5aS5iYWjStn0YQJbofzjqmqysyZlezatYOqqv2jJrEZrCTT5rZpMW6bFsOMQ1WTwpY6jc11KvsbVWraFWraffzhsA/VYzOnyGLJGIvFYyzmFFn40reiy1WS2IiUd+bMaYoynMHOcsaNczma5KH4/WjFJVgN5/A1NdHS0kJ+fr7bYY1qb765kasLi1mYl49ScwpmpNjgfP0smzKNwlOnOLJ7J9z8HrfDcZ2mwNziOHOLo3xsDnREYXu9k+RsPqtxukNhd4PG7gaNn++HDNVmXpHF4lKLxSUmlYVytdXlIomNSHlnzpyiyOcDwOviPFHJKKtCJ9RwjorsHPbs2cWqVaNnpu9k9ObG9XwoJwhAYEbqXRHV3/L2Dq6ZNIUnq2Q4gfPJ9sGqcpNV5SbQzekOD9vrNLbXq2yrV2mKKL3zWUEGmZrNghKLxWNMloyxmJ4nHZHfKUlsRMqrPXGchYnB+bSCQpejSS5Zs+ewf+d2jnd2krFrhyQ2LjJNk3N7dhOYOBnb7ycjxeaIGix3xky6N20gq72dUKiNoMsDYya78dk24xPNVrYNJ0IK2+pVtter7Kh3BgjcWKuxMTF2To7XZl6xxfwSi4XFzhVXXmm6uiCS2IiU13rsKAARTUMNBFyOJrnkLLmCSP1Ztqx/jdDWN90OZ1Tbu3c3UxPzmWXPrEz58ZYKZs/h7KYNzMjOYdeuHVx9tSTNF8rjgcm5cSbnxnl/RYy4DdWtCtvqnCRn5zmV9pjHGUun1qnRyVBtZhdaLCixmF9sMbfIIlM6I5+XJDYi5XWdPg14iMsvxvNavnwlAAcPVtHU1EihNNe54qWXXmBRntPHKXvuPJejuXSBxPABkzIzeXHrZklsLoHiAT0/jp4f58MznY7Ih1sUdjWo7DqnsrtBpbVbYcc5jR3nnNO26rHR8+PMLbKYm0h0xmTaMls5ktiINLDj1EnaFYX3rU69wc5GQkFBIStnzqbmxFE2b97E2rWpP1JsqonH42x77WXeO34iNpA1d77bIV0yLS+PaFY2vs4OmvfsdjuctKIpUFkYp7Iwzodm9DVd9SQ6u86p1HUpVDWrVDWrPH7YeV5xIM6cIifJmVtkMaMgPiqvvJLERqS05uYmDtTXUeXxcP+tt7kdTlJqfeVlPpOVzbaycjZuXC+JjQv27t2Nv7OTDsukcFoFWm561C5mV1YS3baV7NZWqQ0cRv2brm6fFgOgrtPD7gaVvY0q+xpVDrcoNIQVXj2l8GpiHB2vYjMjP5HsFDuXmI/JTP9BAyWxESnt6NFqAMaNG08gkFqTCY6UwPTpAMwKBvnlmxswTRNNk4/+SHr22afZ3x7ij2Vl/NO9n3Y7nMumYO586rZtpSI7h40b13Prre91O6RRozTLZk2WyZpJJgBhE6qanCRnb6PCvkaVlm6FfU0q+5pUHjOc543JdJqvemp2pufHyUizWh35dhMp7eiRapbk5VM6eQq2beORBua3yCifgJKdTWZHB0Uxkx07trF06XK3wxo1wuEunn/+WQBuve12vGk0llDm7NnsmjqVh578PVevXyeJjYsCWt9EngC2DWc6POxtVHtvR1oV6rsUXqpReKnGqdVRPTZTc+PoBXH0fKf5qiIvtTsmS2IjUtrJfXu5b5pOPBIFywKpiXgLj6KQVTmL9q1bmBfM5S9/eU4SmxH00ksvoHVHKR9fzqJFV7gdzmWl5QSZufYWok/8jjff3EA0GsWXGFNKuMvjgfE5NuNzTG6a7NTqdMWgqjnRfNWgsq9JobVb4XCryuFWlWdwshkPNhOCcWbk9yU7er5Fboab/9GFk7OASGmhI9UQzMPKy8cjSc2QMhOJzfzcPB589UW+8pWv4fXKCWi42bbNH/7wez4/dTqTC4uIHKkmM80mI509ey4lJWM4d66e9etf57oUnLF8tMj0wuLElA7g1OrUd3k41KJiNCscalYxWhTOhRVOhlROhlReONlXdVOW5SQ4ekGcGYmEpyiQfH125EwgUlZbWyuZHR0QzCN76jS3w0lqWXPmgcfDtKxsvOEwb7whJ6CRsHXrZs4dNpg5dwHEYvhKStwO6fKLxfjcwiWYJ47z3DNPy3GVQjwep69OaZbJqvF965vCHowWBaNF5VCzwqEWlTMdCrWdzu21fnMNF/rjvTU6MwrizCq2ycsb8X9lAElsRMrav38fkxIdhoPTJLF5O1puLoHpFYQPGyzNL+CJJx6TE9AI+MUvHuHdJWMAp9ZMy0uf/jU9PF4vU8NhyM7hmb17aG1tIS8N/8/RpDBgsyJgsaLM6l3XHqU30TFanJqdEyGFpojCxlqld8RkgPIgPPpuD4UuVQpLYiNS1o7tW7kiKxuAjAkyq/dfU3DzrTTX1/HyF/833fV1HD16hKlS0zVsdu3ayb7t27h33gIA8q673uWIhodHUchbvpLWl19kWW4ef/nLc3zwgx9yOyxxmeX4+jdjOZech02o7qnZaXGaso62KdR1eAjHAJcSm9Qe01uMalVvbqLA58P2ePBPmux2OEkvq3IW5ddcx8rECLG/+MUjLkeUvizL4nvf+zbXFheTqWr4SseSNXuu22ENm+DSZQAszsvnj0/8jng87nJEYiQENGdG8/dVxPja0m5+d2MXb97Zxd5PwKRc9/reSGIjUlJDwzkyGs4B4J0wEUWuxLhg99zzSQCef/5ZqqsNl6NJT0899SSHD1axtrQMgLzVN6T83FBvJ2PSZLQxpfhVlSmdXaxb95rbIQmXeFVcv1Q8fT9pIq29/PIL7Gxr4cloNyW3vMftcFJGvLubokOH+MkVK9CA73znm/Lr+jI7fvwYDz30IAty8yjy+tDy8wkuX+F2WMPK4/FQkJjS5MaSUn7+sx9jWdZfeZYQw0MSG5GSnnnmadpNk8lrbiR7/gK3w0kZHq+X0JsbKYzHWVM2nl27dvDEE79zO6y00dHRwZe+9DkikTCKPoNxX/oKJf/zrlFRoxhcvhJPIECp30+g9ix/+tN/ux2SGKUksREp58CBfVRV7UfTNNasWet2OCnFoygU3OiU2QcmTsbr8fDQQw+yc+d2lyNLfZFIhM9+9l4OHzbIzy/ggQf+D1nTK9JiJu8LoWRkkLfqWhpLSznW1cGPfvR9mpub3Q5LjEKS2IiU8/Of/5QbS0q5b+XVZMdMt8NJOcGVV6EVFOCLRvnclaswTZNPf/rjbN68ye3QUlZt7Rnuuedv2b59K8tKxvDjb3+XksRl3qNJ0e13cMU3vkXhxEm0trbyhS98mmg06nZYYpSRxEaklA0b3mDDule5o2wcCzo7iZ6tdTuklKN4vRTdfgcAS0yT1YuX0tnZyac+dQ+//vUvicViLkeYWtate5UPfvB29u7dw5ziEj43eRre3/6a8LFjboc24jweD5qm8d3v/pDs7Gyq9uziW9/6OradfKPTivQliY1IGTU1J/na177MlQVF5GhetPx8suak7yW0wyln6XICM2Zix2L8ffkE1t5wI6Zp8v3vf5cPfOA2/vCH33PqVI2ckIZgWRabN2/i4x//CJ/5zL2EQm2smj2Xr1XOwWNZZM6YiX/SJLfDdM2E4mJ+uvpGvjhN55k//5GvfvV+wuEut8MSo0RKDNCn67oCfB34KJAPbADuNQzjiKuBiRFh2zbr1r3GN77xFTrb2rhzwRIA8q5bjUdVXY4uNXk8Hkrv/ig1D3yDWH09X/ncF1m8bCUPP/yvHDt2lO98558BKCkZw6JFS5gyZRrFxcUUF5eQnZ2N3x/A7/fj8/lQFKXfTUVRPIOWCh6Pp/fW/+9UYNs2jY0NHDlSzZEj1VRXG2zcuJ6mpkYANE3jvptuYWFTM3ZnJxnlEyj92CfS+vLuv8Zqbyejvp55wVzumTSVnz33DHv27OL++7/CVVetQhnFZSOGnycVfpHpuv514F7gbuAM8F1gCjDLMIyLbcA9Zlnxyc3NnZc1Rk1TyM/PoqWlE9OUy2f/mv7lFYlE6e6OEIn03Wprz2AYBzGMQ1RV7efMGWdyks/PW8gyrw81L4/J334QJSNFppu9BMN5bIWrD6P4A2SUlwMQCoX44x+f5LXXXmH//n2Y5vA2S/UkQ6qq4PEoiWSo/30VVVUHJE+qqqFp6oDkSVVVNM1Z+v0ZxOM2Ho/S+1xn2XcfwDRjxGIxTNMkFjvffWfZ0dFBe3voLbHn5uaydvWN3JGXj7l7FwCBGTMp+8Tfo2ZnD2u5XQ7D/Z3Vvn0bZx/5d7BtdnR18vChA0TiccaNG8+7330jV1yxjJkzK1Ni+gX5fr9ww1lWBQVZqKpyHOf8P6SkT2x0XfcBjcD9hmH8NLEuD6gFPmIYxuMXuctRldjYtk002pc4OPe7iUa7iUQidHd3D/gyj8V6Ho8Si0UTy9iAW88X/vnWmabZu7+e+6bZ/76Z2NbEspztLmQcFb8/wFevXY1+zhmUr+xTnxk1l3mP5LEV2roZOxoj54qldFsWe/fuZteuHZw9W0tjYwMNDQ2Ew12Ew2EikTDRaJR43CYet9J6PBxFUSgvn8D06RVMnTqduXPnc8UVy+ja8ib1v/oleDwU3nobBWtvSZmampE4rkJvbqTuV78EyyKsafznyeO8dvYM/c86wWAupaWlZGVl4/f7CQQyE8sAGRn+fkmsMqDWDxhQEziwFtCDx0Pvc8CDovQ97vH0r0Uksc++1xhcq6hpKjk5ASIRE9umNxnvSa57kmiPx5NIovvW9d2chFzTNFRVG7Bu4H2tNyFPlVrN/pIhsUmFpqj5QA7was8KwzBadV3fCbwLuNjEJilYlkUoFCIa7UksokQiEcLhCF1dnXR2dhKJhAmHw4RCbbS3t2NZFqYZIxqN0d0dobs7ktgu0pu49Pzdk0zEYrGU6ifh9wcIBPzk5xeiV+jo+kxmzKykcrpO8//9AVGg8D3vHTVJzUiyOjo499hviXd00PDEY+QsuYLKWXNY+L4PouUX/NUTtm3b2LaNZVm9y3jcwrZ7Hotj2zbxuN37t7NNz/r+yziWFScet3qX8XiceDyOaVpYltn7dzxuJdZZQBy/X6O9PZxInp3nDVw6A8d5vT40TcPr9fYu+9/XNC+aouKPdlOEB7upkejZs/gnTiRv5VUABJetoH3bVgpuXEvmjJnD/RalnODylWiFRdT/x6PQ0MAnxpVzx5qbeK7hHDt3bqfhbC0doTYOh9rcDjUpOUnQ4MTIi8/nw+fz4fX6BhyzPesHb9N331mvqs72fn8Gfn+AjIyMRPNyz99+/H4/GRl+AgFn6fP5UibRSoXEpmcy9VOD1tcCE97pTjXt8v6qqqk5yRP/+BMCrW3OF3M8Tty2sRNfpqYZ48/tIVq7umhvb2ee10tldpD+h0n/Y+a3p2toN51LmZfnF7IgN69vu0Gv/diZGloSV7IszSvgisKi/nsdsP+nGxtpUyAjI4MFwTwWBbKc6vzEr5SeXy2KorAvmE04Mwufz0dZd5RJoVDvLxHnOUrv3826Try4GE3TyGpsJKe62vnFoygoOOOnOL+AFLwrVxCYNo38/BxCVYfpen2d8+vH0/Oe2JihEN21tZSvWEH2rNkAZH/ms3QerCL/6lWX8lalHFVVBiyHi5IVoOimtbS88jKxpiba3lhH2xvreoIg/+qrGfu/7gKcEYzP/PxnTh+n3sTZpueneKY+g4LrnUkf49EoZx75Kb0P9m7u3AlMn07RTX3jEdX88Adg23j7b5xY+CdPpuS9t/dt+/APsHuu4rKdY1xVFSwzjm/8eErv/JvebU/96GGsri5nX/1jBnxjyyi76+7ebU/8y3eINpzDCrVjmzEa+pVT5Gg1hatXO1/ymo9J991/IcWbdEbquApWziT72/9C03P/j+aXXmTpnR/iXWXOVBNnn/4TLX/6I/FAANPvx1QUTI8HEzDjcQ6WFNOpqth2nOLWNsaG2gHbedfsxL3EW1mVl0u7V8O2bUrDYSZ2dPVsCTbE7b7ag/2ZmbRoKrZtM6Y7yvTubucHYGKfzn3n2Xs0hQbF+a4rjMSYbcWxiWPH7cShFHeeZ9tsi3Zz0jSJxy1KPQor/H7suO2cC3qS+7hN3I6zvqWZ/W1tmGaM8f4AN48ZO2QZbmppYm8i+RuTkcHNpeMgDnRHnVs/21qb2dnWCkCh18cdZeMGPB5L3CLAurZWtrW2OO+TpvHBceVDxrC/PcSucBd+v588f4D3Fhb1JlyqqqKpGoqqoGkakUqdOz7xKTTNnbkVUiGxyUwsuwetjwAF72SHiuIhPz/rkoIa7Ac/eBz/7j1cXVQ8xItq/NvxY73JSsWESVxXXDLk/qpLirGynCrZK2NxprcO/Ytm4b0fxzd2LH6/H+/W7URfWzfktvf+8hfkTHdmdD791J84+Z+/GbiBbYNlgWXxns9/jtzZswA4+/+e59jPHh1yv8vu+TsKFi8CoP7lVznyyitDbjvlvbdQNMf5ddt44iTGgf1Dbqu2NPS9V/mTQR+9k10Gg4Fhf43CD70f+847aNt/gKaNm2g3quk6dQrbNPFnZfa+F9HWGO3btw25H39O37ZWROXQjqEHAPRlZgz4PFYl+qucj9erDtj20IEDxIcYJyXosQdse7i6GjP01r4yAErcGrDtsbYWzMTgch6vl8C4MjLHjydQPp7M8nLycwNp03F9JI4ryKLw7g8T/9D7B4zC3GJGwbZRurrwdXW9ZTLo1f/4ZbKnOK0Op578b2p++9iQr3Dz175CcOYMAGqfeZbjj/7HkNve8uX7yV8wH4C6F1/i6I9/OuS2773vixQuXwpAw7r1HP7+DwGl3zXFfcfB+++/j5JV7wKgactWDn3nwSH3e9dX/oHSG5xpKJp37uLgP39r6Bju+RiBq1ZimibhI0fp/Nkvhtx24TWraJg2he7ubtSmZiq37hhy26IJE8hUnMEl/eEI1/uGPhai8TibmpsIh8Pg7WDZuH71CjZgmmAC3VG+/bvHWLxmDYsXLx5yf8MpFfrY/A/gv4BMwzDC/db/AcgwDONiJwo6ZlnxyaFQ+K9veREaG8+x5Xe/Rm1uTdRo9O/sqOLz+bAXLSIzN4+srCwC9fVojY29HRkHy7/2OtRMJ6frPHiQ8PFBY2L0q97Ju/IqtJwcALqqqwkfPXLe7QByly5Dy8sDIHziOF3V1X2bDnpOzqJFePOd3DFy6hRdhwdNmNhv39lz5+ErcmqKumtr6TIODRlDVuUsAmNLCQYDNB45SWj/gX7bOgs1kEnGuDJ8JWPwaKmQfw8fVVUIBgOEQmEsa+T7sdiWhdnaikdVe48dKxymbeNG7LgFHs+gY8eDb2xpb02bbZq09NT84OnbLHHHW1zcuy1Ay7rXne08PZv09ZvQ8vPJnt23bdubm7Djdu+2iqIQCPiIRGJ4srMH7De0fRu2afWF0dPfAg9KVuaAbbuOVONRVdTsHLyFhSnTb+ZiuH1cAU6NdihErLUFs7WVeKSbeLQbOxrFtixyl69ACwYB6Dp6lHD14SH3FVy6tPf7KnziBF0HDw65bc7ixfiKnR+hkVM1dOwf+sdVzoKFZI4rIxgMcO7gEdp27hx623nzyRjn1JB019XR/jYJffbsOfgnTgQg2tBAaMvmIbfNqqwkMGUqALHmZto2bRxy20xdJ3N6BQBmW1u/z955tp02jayZlYDTFN386lt/kMYtC9OyYGwp9sRJzgUeoRDmls1Yie4OlmU5/SotE8u0UGfP5Pr33clb2xcuTTAYSJvOw1cAW4BphmEc7bd+A7DHMIy/v8hdjqrOw8lKyuvCSVldOCmrCydldeGkrC5cMnQeToWfIXuAELCqZ0XiqqiFwHp3QhJCCCFEMkr6On7DMLp1Xf834EFd1xuAE8D3cDoTP+VmbEIIIYRILkmf2CT8E06sjwIB4A3ghncwOJ8QQggh0lhKJDaGYVjAlxI3IYQQQojzSoU+NkIIIYQQF0QSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaUMSGyGEEEKkDUlshBBCCJE2JLERQgghRNqQxEYIIYQQaSPpZ/ceBmHbtv3x+OX/v1VVwbJk5tcLJeV14aSsLpyU1YWTsrpwUlYXbrjKSlE8eDyeCM7USkMajYlNK5ABnHU5DiGEEEJcuLFAN5D3dhuNxsRGCCGEEGlK+tgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbktgIIYQQIm1IYiOEEEKItCGJjRBCCCHShiQ2QgghhEgbmtsBpANd1xXg68BHgXxgA3CvYRhHXA0syei6/o/A9YZhrOq3bj7wMLAYaAL+r2EY/+pKgC7Tdb0A+A5wMxAE9gJfNgxjQ+Lx+UhZAaDregnwELAGCADrgPsMw6hKPD4fKau30HW9AtgJfMowjF8l1s1HygoAXdcnAifO89DHDMN4VMpqIF3X/xfwZWAKcBT4hmEYTyYem49LZSU1NpfH14BPAB8DlgM28Lyu6z5Xo0oiuq5/FvjmoHWFwEvAYZyD/+vAA7qu3z3iASaHx4FlwAeBJTgnoBd1XZ8hZfUWfwamAjfilFUYeFnX9Uwpq/PTdd0L/A7I6rdOymqguUAEKAPG9rv9TspqIF3XPwz8EngEmI3z/fW4ruvL3S4rqbG5RInk5QvA/YZhPJdY9wGgFrgd580etXRdHwc8ClwFGIMevgfoBj5pGIYJHNR1fTrwJeA/RjRQl+m6Pg1YDaw0DGNTYt1ncE7cf4Nz4payovdkfBz4lmEYBxLrHgB2A7OA65GyOp9/BtoHrZPP4EBzAMMwjLODH0j8OJOyAnRd9wAPAD8wDOPhxOoHdF2/EliVuLlWVlJjc+nmAznAqz0rDMNoxfm1/S53QkoqC4EWnF9CWwY9dhXwRuLA7/EqoCeaGkaTRmAtsKNnhWEYNuABCpCy6mUYRpNhGHf2S2rGAF8ETgNVSFm9ha7r7wI+DvztoIekrAaai3MMnY+UVR8dmAQ81n+lYRg3GIbxL7hcVlJjc+nGJ5anBq2vBSaMcCxJxzCMZ4BnAHRdH/zweGDfoHW1ieUE4NywBpdEEsnwc/3X6br+PpzmlheAbyNl9Ra6rv8Mpwm4G7jVMIxOXdfluOpH1/U84DfApw3DODXocyhlNdAc4Kyu6+uBCqAaeMAwjBeQsuqvIrHM0nX9BWABfbWoz+ByWUmNzaXLTCy7B62PAP4RjiXVZHL+coNRXna6rq/Eab9+OvFFIWV1fj/EacP/LfAnXdcXImU12E+ANw3DeOw8j0lZJSS6FVTgdNz/R+AmYBtOf8nrkLLqL5hY/hqn1ubdwIvA08lQVlJjc+nCiWVGv/vgvHmdIx9OSgnjlFt/PQf9qC07Xdffg/NlsRm4M7Fayuo8+l0FdQ9Ox/1PIWXVS9f1/4nTLDBniE2krBIMw4gmardMwzB6Tso7dF2fidPUKWXVJ5pYfs8wjP9M3N+d+GHxeVwuK6mxuXQ9TVBlg9aX4bT5i6Gd4vzlBnBmhGNJCrqufwp4CqdZ6ibDMHqSZSmrBF3XS3Rdv1PXdbVnnWEYcZy+EeOQsurvI8AY4JSu6x26rnck1v9U1/UDSFkNYBhGZ7+kpsc+nKYVKas+Pee2wc1NB4DJuFxWkthcuj1ACKcXONDbpr0QWO9OSCnjDeCq/ico4DqcqxJGU3s1ALqufxL4EfBvwAcGfcFKWfUpw6nRurpnReJS5oU4yY2UVZ8PAzNxLnLouQH8E05Ti5RVgq7rcxPJ35WDHlqMc8KWsuqzC+cKu2WD1s8BjuByWXls2x7u10h7uq5/G+eKg4/gDO70PZwe43MMw4gO/czRRdf1XwGTegboS/SOP4QzJsl3gStw+gN8ol/15qiQGDhtP/AscO+gh3uqdaWs6L3U9Hmcz9jHcK66+ypwA86JO4KU1ZB0XbeBuw3D+JV8BvskBlrdhDPOzydxrlS8B+fzuASoR8qqV2LA1ftxzn1bccbf+iZOAlOFi2UlNTaXxz8Bv8AZr2UjYAI3SFLz9hKZ+w04lw7uxBnE6b7R+CUB3AF4gfcCZwfdHpay6pO4DP4DOJePPoHzpVoAXGUYRo2U1YWTsuqTaM68Bed4ehKnVmIpsNowjH1SVgMZhvEt4Bs4V2xWAe8DbjcM43W3y0pqbIQQQgiRNqTGRgghhBBpQxIbIYQQQqQNSWyEEEIIkTYksRFCCCFE2pDERgghhBBpQxIbIYQQQqQNSWyEEEkpMRCfEEJcFElshBBJR9f1W4H/TNxfpeu6rev6KnejEkKkApndWwiRjD7f7/5OnJm7q1yKRQiRQiSxEUIkNcMwQsBmt+MQQqQGmVJBCJFUdF1/nX4zdwPXAK8B1xiG8bqu69/AmXDvy8C3gGk4E+59ErCBh4G5wFHgM4ZhvNJv37OB/wO8K7HqFeALhmEcG8Z/SQgxgqSPjRAi2dyLMwHhLpwmqOB5tikHvo8zAd/7cSbB/C/g98DPcRIfBXhc1/UA9M6gvgkoAe4C/g6YAmxMzHIthEgDktgIIZKKYRhVQAgIGYaxOXF/sEzgXsMwfm8Yxp+BfwfKgAcMw3jUMIynga8BRTgzDIMzw3AYuN4wjKcMw3gSpzYoANw3rP+UEGLESB8bIUSq2tTvfl1i2b8vTlNimZdYXofTpNWl63rPd18IWA+sHqYYhRAjTBIbIURKSnQqHqzrbZ5SCHwgcRus4bIEJYRwnSQ2QojRohV4GXjoPI+ZIxuKEGK4SGIjhEhGFqBe5n2uAyqB3YZhmNA7uvFvgSPA7sv8ekIIF0hiI4RIRq3Acl3XrwVyL9M+vwm8CTyr6/pPgAjwceA24I7L9BpCCJfJVVFCiGT0b0AMeB7nqqVLZhjGXuAqnLFufoNzefhY4DbDMJ66HK8hhHCfDNAnhBBCiLQhNTZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdKGJDZCCCGESBuS2AghhBAibUhiI4QQQoi0IYmNEEIIIdLG/weN9Vctp7byAQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the dataframe as a chromatogram object\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Subtract the background given a peak width of ≈ 3 min\n", + "chrom.correct_baseline(window=3)\n", + "\n", + "# Show the chromatogram\n", + "fig, ax = chrom.show()\n", + "\n", + "# Plot the true signal\n", + "ax.plot(df['time'], df['true_signal'], 'r--', label='true signal')\n", + "ax.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/methodology/fitting.html b/methodology/fitting.html new file mode 100644 index 0000000..9c39700 --- /dev/null +++ b/methodology/fitting.html @@ -0,0 +1,378 @@ + + + + + + + Step 3: Fitting Peaks — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Step 3: Fitting Peaks

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

The meat of hplc-py is its ability to take in windowed regions of a chromatogram and fit a number of peaks such that the chromatogram in that region is well reconstructed. As is the theme in these notebooks, it’s easier to look at a chromatogram and see what the reconstituted signals should like than to do it quantitatively.

+

Ideally, one would have a physical model that would describe how an analyte interacts with the stationary phase of the chromatography column and a generative model that would capture the statistical distribution of the measurements as a function of time. However, having this in chromatography is exceedingly rare, so we are left with phenomenological descriptions of peak shape that we relate to chemical species and concentrations through calibration curves and control experiments. This is what +hplc-py excels at–phenomenological quantitative description of signals in a chromatogram. It is important to note that hplc-py does not provide a model of the components of the chromatogram but rather fits the parameters of a minimal number of convolved signals that can capture the observed data in the chromatogram. In this notebook, we outline how this fitting procedure is executed and how the total chromatographic signal is reconstructed.

+
+

The Skew-Normal Distribution

+

In hplc-py, we consider that each detected maximum in a chromatogram results from a single compound \(i\) whose time-dependent signal intensity \(S_i\) can be phenomenologically well described by an amplitude-weighted skew normal distribution. Mathematically, this is defined as

+
+\[S_i(t) = \frac{A}{\sqrt{2\pi\sigma_i^2}} \exp\left[\frac{(t - \tau_i)^2}{2\sigma_i^2}\right]\left[1 + \text{erf}\left(\frac{\alpha_i (t - \tau_i)}{\sqrt{2\sigma^2}}\right)\right], \tag{1}\]
+

where \(\text{erf}\) is the error function, \(A\) is the amplitude, \(\tau\) is the retention time, \(\sigma^2\) is the signal variance, and \(\alpha\) is the skew parameter. The skew normal distribution is used because the skew parameter \(\alpha\) can break symmetry, allowing for heavily tailed signals. When the distribution is unskewed, meaning \(\alpha = 0\), Eq. 1 simplifies to a Normal distribution symmetric +about \(\tau\). To get a sense of how \(\alpha\) impacts the resulting signal, we can use scipy.stats.skewnormal to examine the amplitude-weighted output,

+
+
[1]:
+
+
+
import numpy as np
+import pandas as pd
+import scipy.stats
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set()
+
+# Set a range of skew parameters to demonstrate the signal as a function of time
+alpha_range = [-5, -1, 0, 1, 5]
+time = np.arange(0, 20, 0.01 )
+
+# Set constants for each signal
+A = 100
+tau = 10
+sigma = 3
+for alpha in alpha_range:
+    # Compute the skew normal distribution and plot the resulting signal.
+    signal = A * scipy.stats.skewnorm(alpha, loc=tau, scale=sigma).pdf(time)
+    plt.plot(time, signal, label=alpha, lw=2)
+
+# Add necessary labels
+plt.xlabel('time')
+plt.ylabel('$S$')
+plt.legend(title=r'$\alpha$')
+
+
+
+
+
[1]:
+
+
+
+
+<matplotlib.legend.Legend at 0x1788ded40>
+
+
+
+
+
+
+../_images/methodology_fitting_3_1.png +
+
+

When the skew parameter \(\alpha\) is large and negative, the signal is heavily skewed towards shorter retention times. Even though all signals in this plot have different heights and locations of the maxima, they all have identical values for \(A\), \(\tau\), and \(\sigma\). The flexibility of \(\alpha\) in defining the signal trace allows for a broad array of peak shapes to be well described by this distribution.

+
+
+

Fitting Peak Windows

+

As described in the notebook for Step 2, a chromatogram is broken down into multiple “peak windows” which likely contain overlapping analyte signals. Each window is fitted independently, which assumes that distant peaks have no influence on each other. As an example, let’s look at a real peak window from a sample chromatogram.

+
+
[2]:
+
+
+
from hplc.quant import Chromatogram
+import pandas as pd
+
+# Load an example chromatogram and correct the baseline
+df = pd.read_csv('data/sample_chromatogram.txt')
+chrom  = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},
+                      time_window=[10, 20])
+chrom.correct_baseline()
+
+# Assign the peak windows with a modified buffer and prominence filter
+windows = chrom._assign_windows(buffer=50, prominence=0.01)
+
+# Get the first peak window and plot
+first_peak = windows[(windows['window_type']=='peak') & (windows['window_id']==1)]
+plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')
+plt.xlabel('time [min]')
+plt.ylabel('signal [mV]')
+plt.legend()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3935.20it/s]
+
+
+
+
[2]:
+
+
+
+
+<matplotlib.legend.Legend at 0x1789c3280>
+
+
+
+
+
+
+../_images/methodology_fitting_6_2.png +
+
+

To determine the properties of this peak (including its area which is proportional to concentration), we will find the best-fit parameters using a non-linear least squares trust region fitting method as is implemented in scipy.optimize.curve_fit which is a robust estimation algorithm for bounded problems.

+

To do so, we must provide i) initial guesses for the parameters \([A, \tau, \sigma, \alpha]\) and ii) reasonable bounds on their values.

+
+

Default settings for initial guesses of parameters

+

In hplc-py, initial guesses are set given the properties of the observed chromatogram. These default parameter guesses are:

+
    +
  • \(A_0 \rightarrow\) the observed value of the chromatogram at the location of the maxima

  • +
  • \(\tau_0 \rightarrow\) the observed time-location of the maxima

  • +
  • \(\sigma_0 \rightarrow\) one-half of the observed peak width at its half-maximal value

  • +
  • \(\alpha_0 \rightarrow\) 0, which guesses that the peak is approximately Gaussian.

  • +
+

These values are determined using peak measurements returned by scipy.signal.find_peaks and scipy.signal.peak_widths. These properties are accessible via the chromatogram attribute .window_props

+
+
[3]:
+
+
+
# Set the initial guesses from the window properties
+props = chrom.window_props[1]
+p0 = [props['amplitude'][0],
+     props['location'][0],
+     props['width'][0] / 2,
+     0]
+p0
+
+
+
+
+
[3]:
+
+
+
+
+[65992.999952423, 10.98, 0.16630057317687066, 0]
+
+
+
+
+

Default bounds for parameters

+

By default, hplc-py applies broad, permissive bounds on these parameters given information of the chromatogram. The default bounds given to each parameter are

+
    +
  • \(A \in [0.1 \times A_0, 10 \times A_0]\) where \(A_0\) is the initial guess for the amplitude.

  • +
  • \(\tau \in [t_{min}, t_{max}]\) where \(t_{min}\) and \(t_{max}\) correspond to the minimum and maximum times in the peak window.

  • +
  • \(\sigma_{bounds} \in [dt, \frac{t_{max} - t_{min}}{2}]\) where \(dt\) corresponds to the time sampling interval of the chromatogram.

  • +
  • \(\alpha \in (-\inf, +\inf)\).

  • +
+

These bounds can be overridden for all peak inferences by providing a dictionary of their values, as is specified in the documentation for hplc.quant.Chromatogram.fit_peaks.

+
+
[4]:
+
+
+
# Give initial bounds for the parameters (lower, upper)
+bounds = [[], []]
+bounds[0] = [p0[0] * 0.1, first_peak['time_min'].min(), chrom._dt, -np.inf]
+bounds[1] = [p0[0] * 10, first_peak['time_min'].max(), 0.5 * (first_peak['time_min'].max() - first_peak['time_min'].min()), np.inf]
+
+
+
+
+
+

Optimization of parameters

+

Given initial guesses and parameter bounds, the best-fit parameters are estimated by calling scipy.optimize.curve_fit on the observed data in the peak widow. The cost function is defined as a method _fit_skewnorms of a Chromatogram.

+
+
[5]:
+
+
+
import scipy.optimize
+
+# Perform the fit
+param_opt, _ = scipy.optimize.curve_fit(chrom._fit_skewnorms, first_peak['time_min'],
+                                        first_peak['intensity_mV_corrected'],
+                                        p0=p0, bounds=bounds)
+print(f'Optimal parameters (amplitude, location, scale, skew) : {param_opt}')
+
+
+
+
+
+
+
+
+Optimal parameters (amplitude, location, scale, skew) : [2.33773945e+04 1.09020036e+01 1.59217385e-01 7.03685471e-01]
+
+
+

With the optimal parameters estimated, we can compare the inferred signal to the observed chromatogram

+
+
[6]:
+
+
+
# Compute the amplitude-weighted skewnorm with the inferred parameters
+fit = param_opt[0] * scipy.stats.skewnorm(param_opt[3], loc=param_opt[1], scale=param_opt[2]).pdf(first_peak['time_min'])
+
+# Plot the data and the observed peak
+plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')
+plt.fill_between(first_peak['time_min'], fit, color='dodgerblue', label='inferred signal')
+plt.xlabel('time [min]')
+plt.ylabel('signal [mV]')
+plt.legend()
+
+
+
+
+
[6]:
+
+
+
+
+<matplotlib.legend.Legend at 0x178c7f7c0>
+
+
+
+
+
+
+../_images/methodology_fitting_14_1.png +
+
+

With an adequate reconstruction of the observed peak, the signal area is computed by integrating the signal over the entire time range of the peak window, and the procedure is repeated for the next peak window.

+
+

© Griffin Chure, 2024. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/fitting.ipynb b/methodology/fitting.ipynb new file mode 100644 index 0000000..0331c8d --- /dev/null +++ b/methodology/fitting.ipynb @@ -0,0 +1,405 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 3: Fitting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "The meat of `hplc-py` is its ability to take in windowed regions of a chromatogram \n", + "and fit a number of peaks such that the chromatogram in that region is well reconstructed. \n", + "As is the theme in these notebooks, it's easier to look at a chromatogram and see \n", + "what the reconstituted signals should like than to do it quantitatively. \n", + "\n", + "Ideally, one would have a physical model that would describe how an analyte interacts \n", + "with the stationary phase of the chromatography column and a generative model that \n", + "would capture the statistical distribution of the measurements as a function of time.\n", + "However, having this in chromatography is exceedingly rare, so we are left with \n", + "phenomenological descriptions of peak shape that we relate to chemical species and \n", + "concentrations through calibration curves and control experiments. This is what \n", + "`hplc-py` excels at–phenomenological quantitative description of signals in a chromatogram.\n", + "It is important to note that `hplc-py` does **not** provide a model of the components \n", + "of the chromatogram but rather fits the parameters of a minimal number of convolved \n", + "signals that can capture the observed data in the chromatogram. In this notebook,\n", + "we outline how this fitting procedure is executed and how the total chromatographic \n", + "signal is reconstructed. \n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## The Skew-Normal Distribution \n", + "\n", + "In `hplc-py`, we consider that each detected maximum in a chromatogram results from \n", + "a single compound $i$ whose time-dependent signal intensity $S_i$ can be phenomenologically \n", + "well described by an amplitude-weighted [skew normal](https://en.wikipedia.org/wiki/Skew_normal_distribution) distribution. Mathematically, this is defined as\n", + "\n", + "$$\n", + "S_i(t) = \\frac{A}{\\sqrt{2\\pi\\sigma_i^2}} \\exp\\left[\\frac{(t - \\tau_i)^2}{2\\sigma_i^2}\\right]\\left[1 + \\text{erf}\\left(\\frac{\\alpha_i (t - \\tau_i)}{\\sqrt{2\\sigma^2}}\\right)\\right], \\tag{1}\n", + "$$\n", + "\n", + "where $\\text{erf}$ is the [error function](https://en.wikipedia.org/wiki/Error_function), $A$ is the amplitude, $\\tau$ is the retention time, $\\sigma^2$ is \n", + "the signal variance, and $\\alpha$ is the skew parameter. The skew normal distribution is \n", + "used because the skew parameter $\\alpha$ can break symmetry, allowing for heavily \n", + "tailed signals. When the distribution is unskewed, meaning $\\alpha = 0$, Eq. 1 simplifies to \n", + "a Normal distribution symmetric about $\\tau$. To get a sense of how $\\alpha$ \n", + "impacts the resulting signal, we can use `scipy.stats.skewnormal` to examine \n", + "the amplitude-weighted output," + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAG3CAYAAABIcHTrAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADIKklEQVR4nOz9d3xU953vjz/Pma4y6oUi1CV6x4ALYDAGF2zjGjt24sQpTjbZzSbZ7C/JvXu33LT73U022WziTeLELW5xd9yxDRiMwfSqglABhHoZjUaaen5/nKkU1el8no8HD+acOed83kfSzLzmXSVFURQEAoFAIBAIkgQ51gYIBAKBQCAQhBMhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFQIcSMQCAQCgSCpEOJGIBAIBAJBUiHEjUAgEAgEgqRCiBuBQCAQCARJhRA3AoFAIBAIkgptrA0A6Ovr4+c//zlbt27FarVSXV3Nd77zHZYuXQrA97//fV566aWQcwoKCti+fXsszBUIBAKBQBDHxIW4+fa3v013dzc///nPyc7O5umnn+ahhx7ipZdeory8nNraWh5++GHuv/9+/zkajSaGFgsEAoFAIIhXpFjPlmpubub666/nmWeeYfHixQAoisKGDRu46aab+MY3vsGiRYv4+c9/znXXXRe2dRVFweMJ/63LshSR68YTyX6P4v4Sn2S/x2S/P0j+exT3N/HrSpI06nEx99xkZWXxu9/9jrlz5/r3SZKEoij09/fT1NSE3W6nvLw8rOt6PAo9PYNhvaZWK5OVlYrFYsPl8oT12vFCst+juL/EJ9nvMdnvD5L/HsX9TZzs7FQ0mgQQN2azmdWrV4fse+utt2hpaeHqq6+mrq4OSZJ4/PHH2b59O7Iss3r1ar71rW+Rnp4+qbW12vDmU2s0csj/yUiy36O4v8Qn2e8x2e8Pkv8exf1FnpiLm/PZt28fP/jBD1i3bh1r167lV7/6FbIsM23aNB555BGam5v52c9+Rl1dHY8//jiyPLEfnixLZGWlhtl6FbPZFJHrxhPJfo/i/hKfZL/HZL8/SP57FPcXOWKecxPMli1b+O53v8uCBQv4n//5H4xGI4qiMDAwgNls9h938OBB7rnnHp5//nkWLFgwobXcbg8Wy1C4TAdUlWo2m7BYhnC7k8/VCMl/j+L+Ep9kv8dkvz9I/nsU9zdxzGbTmDxCceO5eeqpp/jRj37E+vXr+fd//3f0ej2g5t8ECxuAqqoqANra2iYsboCIxTrdbk9SxlGDSfZ7FPeX+CT7PSb7/UHy36O4v8gRF+Lm6aef5t/+7d944IEH+MEPfhASavrOd75DX18fjz76qH/fkSNHAKioqIi6rQKBQCAQhBu1gteDx+OOtSmTxuORGB7W4HDYcbvHHhzSaLQTTjU5n5iLm8bGRn784x+zfv16vvrVr9Ld3e1/zmg0cvPNN/O1r32N3/72t9x00000Njbyr//6r9x8881hr6ASCAQCgSCaKIrC0JAVq7U/KYSNj64uGY9n/F4bkykNszl7TOXeIxFzcfPOO+/gdDp57733eO+990Ke27x5Mz/96U/55S9/ySOPPMIjjzxCeno6mzZt4lvf+lZsDBYIBAKBIExYLD0MDVkxGlMxGlOQZc2kP9jjAY1GGpfXRlEUHA47VmsvABkZOZNaP+bi5uGHH+bhhx8e8ZgNGzawYcOGKFkkEAgEAkHk8XjcDA0NkpaWSVpaRqzNCStarTzufBu93gCA1dpLenrWpEJUyVlkLxAIBAJBnONyuQEFg8EYa1PiBp/Acbtdk7qOEDcCgUAgEMQEX9gm8cNQ4SJcITkhbgQCgUAgECQVQtwIBAKBQCBIKoS4EQgEAoFAkFTEvFpKIBAkN4qisL+uk60HznKmcxCjQcu8smxuXFFMZpoh1uaNi45zAxz4pIWOcwNIksSU6RksuGI6uQVpsTZNIBAEIcSNQCCIGEN2F4++cYL9dZ3+ff2DDtp7bOw+3s7f3jGf8mmJUQJ7ZN9Zdm45SfA0voH+YeqPt7PsmhIWr5yRFP1JBIJkQISlBAJBRBiyu/j5cwdDhE2aSYdGVgXAgM3JL54/RHuPLVYmjpm6Y+3seC8gbHR6DTq9BgBFgT3bm9j5fgNxNIdYIBgVRVF45ZUX+Nzn7mHt2iu5557b+PDDLXg8Hh544G6eeOKPsTZxwgjPjUAgCDseReF/XjtGQ6sFgFSjls9vnMmS6jwGbE4eefUoNS192OwuHnn1GP/r80vQhGmmTLix9A2z7a06//bC5UVcsaoERYEDu1rYu7MZgCN7z5JuNrLgiumxMlUgGDOKovBP//R9Pv74Ix566KtUVlbz5z8/zo9//C8MDg4yMDDA3XffF2szJ0x8vpsIBIKE5vWdTRxuUOfEpRq1fO++xSydmY8kSZhT9XzzjvlMyUkBoLl9gA/3n42luSPy8fsn/Z1WZ84vZMWaUjQaGa1WZtk1JVx7Y7X/2F0fNnDuTH+sTBUIxsybb77Ohx9u4R//8X9z332fY9my5XzhC19maGiI//7vX/LQQ1/FaEzc5oJC3AgEgrDS3DbAazsbAZAk+NptcynKD024NRm0fOGGWf7tv37chN0Zf0MDz53pp7FeFWkpqXquWld+QV7NzPmFLLlyBqCGqD74aw1OR/zdi0AQzIsvPk9ZWTnXX7/Rvy89PR2AnJwcbrxxU6xMCwtC3AgEgrDh9nj401sn/Lkpt15VyuyS7IseWzE9g2Uz8wGw2JxsP9gaLTPHzKHdp/2Pr1hVgt5w8Uj+0qtLKJxmBtQw1p6PGqNin0AwESwWC/X1tVx11aqQ/W636qH88pe/jkajiYVpYUOIG4FAEDbe33eWlnYrANPyUrlxZfGIx2+6ssT/+MMDZ+MqIbevx+b32qSm66maW3DJY2VZYu3NM9Fq1bfUo/ta6e0ajIqdAsF4OXv2NIqiMGXK1JD9r732MgCzZs2OhVlhRYgbgUAQFmzDLl7fGfBYPLhxJlrNyG8x0/PTqC7KBKCtx0Z9HOWr1Bxp8z+et2QamlHuJSPLxMIVRQB4PIqonhLELbKsemX6+nr9+2pqTvDaay8BJMXfrRA3AoEgLLy1u5nBYXWS74o5BWPuX7NqYeDb4/ZD8RGaUhSF+mMdgJo3VD2vcEznLVxeRJpZbUx4urGXs819kTJRIJgwpaVlZGZm8fzzT/Puu2+zZcs7/OM//j1r1qwDVA9Oe3vbKFeJb4S4EQgEk6Z3wM57n6r5KVqNxO3XlI353KXVeZi8uSwH6jtxeeP+seTc6X6sFjsARaXZpKTqx3SeTqdh+epS//anO5qS4luwILnQ6/X8+Mf/HwUFU/jJT/6F//iPn3HjjZv453/+Ebfcspk///lxdu3aEWszJ4XocyMQCCbNO3tacHjLpa9dNJ3cTNOYz9VpNSysyGHXsXaG7G5ONPcyrywnUqaOiVO1Xf7HlXPyx3Vuxax89n/cQm+3jbYzFs409VJUevGkaoEgVsyfv5BHH33ygv3f+94P+d73fhgDi8KL8NwIBIJJYR1yss1b6aTTyqMmEV+MxVUBAbGvtnOEIyOPoig0e3v0yLJEcfn4hJYsSyy9OvAz+HRHs/DeCARRRogbgUAwKT7Yd8bfo+aa+VPIGGMIJ5i5ZdnovZVGB092xVQM9PUMYekbBqBwegYG4/gd3OUz88jKVZsUtp+10HbGElYbBQLByAhxIxAIJozd4WbLvjMAyJLEhitmTOg6Bp2GmcVZAFgGHZztjF0ZdYvXawNQXD6xcJIkSSxaXuTfPrTn9AhHCwSCcCPEjUAgmDDbD7diHXICcMXsfPLGkWtzPsHN/o439UzatonS3BBYe6LiBqBidj6paaoXq7G+m74EGBAqECQLQtwIBIIJ4VEU3vd6bQBuWD7+XJtg5pRk+R8fa+od4cjI4XZ5aDurhpDSzAYyvfOvJoJGIzNv6TT/9uFP43d+lkCQbAhxIxAIJsTxxh46eocAmFWcdcH8qPEyNTeVDK+no/Z0b0xKwjvbBnB7q76mFmVeMEdqvMxeOAWtTn2brT3Shn3YOWkbBQLB6AhxIxAIJkSw12bt4umTvp4kScycoXpvHE4Ppzusk77meAme6D2laGxNCEfCYNQx09sA0OXyUHukfdLXFAgEoyPEjUAgGDedfUMc9ibeZpsNLKwMT1+aiqCuxg1noz+KofV0eMUNwJxFgQ7Mxw6eE2XhAkEUEOJGIBCMmw8PnMX3Eb1m4TQ0cnjeSoLFzckoixuPR6HN67kxpujIzJ54cnQw2XmpfqHU122jtSV+5mcJBMmKEDcCgWBcOF1uPvLOgNJqJFYtmDrKGWNnen4qem+OSrQ9N71dgzjsar+eKdMzJp1vE0yI9+ZAfMzPEgiSGTF+QSAQjIv9dV3+AZlLZ+ZjnkDTvkuhkWXKppipaemj22Knd8BOVrohbNcfiY5zA/7HhdPMYb12WXUuxhQdwzYnjXVd2KwOUtLC93MTCOIRl8vF+vXX4HSGJtJ/7nNf5Ctf+XpE1xbiRiAQjIsdhwOeh1Xzw+e18VE+LYOalj5A9d4snTm+2U4TpbM9kMCcVzi5yq/z0WhkZs0v5MAnp/F4FGqOtLF45cQaHgoEiUJzcxNOp5PHHnuGrKxAqweTaeItFsaKCEsJBIIx09U/xHFvD5q8TCNVMzLDvkbZlIDXpLl9YIQjw0tnkOcmtyA97NefvXCK/3HNkTaRWCxIehoaTpKWlkZFRSU5Obn+fykpQtwIBII44uMjbf5E4qvnTUEOY16KjxlBwiJa4sbt9tDtLT3PyDZNaJ7UaJgzTUydoSYW9/cM0d4q5k0JkpuGhnpKSspisrYISwkEgjHhURR2HDkHgARcNW/KyCdMkGyzgVSjlsFhFy3t0el109tlw+1WZVteYfi9Nj5mziv0V0vVHG6ncFp4ys0FycenNR288tEphh3uqK9t1GvYfE3ZpEPCp06dxO128e1vf4P6+jry8wu4++572bDhxjBZemmEuBEIBGOitrmXrn51Wvac0myyzcaIrCNJEjMK0jnR3Itl0EGf1U5mWmSTijvaAh6i/DDn2wRTVp3HR++dxOlw01DTwVXXlaPTaSK2niBxeXt3M+e6YzeP7K3dLWEQNw1otVoeeuhhcnJy+PjjHfz4x/+C0+nk5ptvDZOlF0eIG4FAMCY+8nptAK6eHxmvjY9ir7gBaGkfiLi46Q5JJo6c50an11BenUfNkTYcdjeNdV1UzSmI2HqCxOWG5cW8HEPPzQ3Lx5fw/sQTf+TJJ//k39648UaefvpFFEXBaFS/CFVWVtPR0c4zzzwpxI1AIIg9tmEn+2o7AUg1allUmRvR9WYUBLwnze1W5pdHdr3uzkH/4+y81IiuVT2/gJojbYA6b0qIG8HFWDozP2qVguHgttvuYO3a9f5tszkdg+HCLyVlZRW8++7bEbdHJBQLBIJR2VvbidM7UHL57AJ02siGUoKTilsinFSsKAo9XnGTmqbHaNJFdL0p0zMwZ6rfZM809THgDfUJBImM2ZzB9OlF/n8ajYaNG9fwzjtvhhxXU3Oc0tLIJxkLcSMQCEblk2Nt/sdXzo1sSAqgMDsFrUZ9e2rtGhzl6MlhG3Rg9zYljLTXBrwDQr3DNAHqjolhmoLkIyMjg6VLl/M///Pf7N69i9OnW3jyycd49923eOihr0Z8fSFuBALBiPQO2Kn1NtXLzzJROiVyOSk+ZFliSo7aC6O9ZwiX2xOxtXqCQ1K5kRc3AJVBoaj64x2i540gKfnhD/+ZtWvX87Of/V8+//nP8MEH7/Jv//Yzli9fGfG1Rc6NQCAYkd3H2/29bVbMLgjrzKWRmJqbyukOKx5Fob3HxrS8yFQx9XQGKlKi4bkBMGcaKZxupu2Mhd4uGz2dg+TkR65KSyCIBSaTiW9841t84xvfivrawnMjEAhG5JPjgZDUijmFIxwZXqbmBLqYtkawJLanK3rJxMFUzg4ki9Yf74jaugLB5YAQNwKB4JK0dg36G+mVFKZTmB35tuk+puYGPBlnOyPXzC84LJWVE737K5+Zh88JJkJTAkF4EeJGIBBckk+OB5JdV8yObsny1NzIe24URfF7bsyZRnT66DXUM6XoKSrNBsBqsdN2RoxjEAjChRA3AoHgoiiKwm5vSEqS4Iooi5v8LBMaWXVtnItQxdRAvx2XU01WjlYycTAiNCUQRAYhbgQCwUU51Wqhs0/twTKrOCviXYLPRyPLFHrDRG09tohUTPX3BjxCmVEMSfkoqcxBq1XfhhtqOnBHsCpMILicEOJGIBBclE+C+q8sj7LXxsfUHNWb4vYodPYNhf36fT2Ba2Zmm8J+/dHQG7SUVOYAMDzk4kxjb9RtEAiSESFuBALBBbg9HvbUqOJGq5FZUhWbNvBTg0JFrV3hz7vpDxI3GTEQNyBCUwJBJBDiRiAQXEBNSx8DNicACypySDHGpiVWQZDg6OgNv7jpCw5LRbESLJiismwM3p9vY30XzhgMShQIkg0hbgQCwQXsrQl4EK6YFbvBjgVZAcHRHgFx4/Pc6PQaTCmRnSl1KTQambLqPABcTg8tp3piYodAkEwIcSMQCEJwezz+CeB6rcz8spyY2VKQFey5CW/Ojdvl8Q+tzMw2Ra3z8sUonxmYet5Q0xkzOwSCSPHOO29y552boraeEDcCgSCEmpY+rENqSGp+eQ6GKPZ+OZ8Uo44075Tu9jCLG0vfEL6+eRkxCkn5mFachdGkhqaaG7pxOkVoSpA8vP/+u/z0p/8W1TWFuBEIBCEEh6SWzoxNInEwvryb3gE79jB+6PcFiaXMrNgkE/uQZYnSKtV743J6aGkQoSlB4jM4aOVf//V/86//+r8pLi6N6tpC3AgEAj/nh6QWlOeOckbkyc8MeFU6w+i9iYdKqWDKZ+b5H5+qFaEpQeLT2tqKxdLPH/7wBNdcszqqa4up4AKBwE9tHIWkfARXTLX32pgepunZse5xcz5TZ2RiMGqxD7toOtmNy+lGq4v9z18QG5yn9uDY+zKKczjqa0s6I/qlt6MrWzap61RWVvHv//4rALZv3xoGy8aOEDcCgcDPp3EWkoLzK6bC6LkJqr7KyIptzg2oVVOlVbnUHG7zV035qqgElx+OQ2/h6TsXk7UV7/qTFTexRIgbgUAAxGdICtQZUz7C2evGF5Yypuj8fWZiTfnMPGoOq/O8Gmo6hbi5jNEvuBHH3pdi57lZcMO4znniiT/y5JN/8m9v3Hgj3/nO98Nt2piJj1e0QCCIOcEhqXlxEpKC0HLw9p7weG5cTjeDVgcAGZnGsFwzHEwrFqEpgYqubFlCeU5uu+0O1q5d7982m9NjaI0QNwKBwEtwldSyOAlJQaAc3DrkpCNM86UGLHb/4/TM2Ofb+LgwNNVLWXV8eNAEgpEwmzMwmzP821qtjMsVu0GwolpKIBCoIam6+AtJ+cjzCpC+ATvOMLxhWoJEkjkjfjw3EFo11SCqpgSCCREX4qavr49/+qd/YtWqVSxevJh7772XvXv3+p8/ceIE999/PwsXLmTNmjU8+uijMbRWIEg+aoNmScVTSMpHrleAKEDPwORzEHydiQHS4ygsBYHQFECzNzQlEAjGR1yIm29/+9scOnSIn//857zwwgvMmTOHhx56iIaGBnp7e/nCF75ASUkJL774It/85jf55S9/yYsvvhhrswWCpGFvkIcgnkJSPnKDvCtdfeEVN/HmudFoZEorVc+Z0+HmdGNvjC0SCCbPQw99lRdeeD1q68U856a5uZmdO3fyzDPPsHjxYgB++MMfsn37dv76179iNBrR6/X88z//M1qtlvLycpqbm/n973/PHXfcEWPrBYLEx6MoHKhXxY1WIzO/PHazpC5FblBeTFf/5PNuLEECyRxnnhuAspm51BxRq6Ya67r83YsFAsHYiLnnJisri9/97nfMnTvXv0+SJBRFob+/n71797Js2TK02oAOW7FiBY2NjXR3d8fCZIEgqTjVaqHfWzk0tzQboz7m33kuIMRz0x8+z40kQWq6YdLXCzfTi7PQeUODTSe7cbtjl5gpECQiMX8XM5vNrF4d2pb5rbfeoqWlhauvvppf/OIXVFVVhTyfn6+6zVtbW8nJmfi3TK02vNpOo5FD/k9Gkv0eL8f7O1Df5X+8dGZ+2F8X4aAwJ9Bkr9syPKKNY/kd+sRNWroBgyHmb4MXoNXKlFTkUH+8A/uwi45WC0Wl2UDy/41C8t9jst+fJAX+9w2nHS8ajTSp96K4e1Xv27ePH/zgB6xbt461a9fyk5/8BL1eH3KMwaB+07Lb7Re7xJiQZYmsrNRJ2XopzOb4KS2NFMl+j5fL/SmKwkGvuJFliTXLZpCRFn+ejJS0gOemz+oY02v3Ur9D+7CT4SEXANl5qRF7H5gs85dMp/64Wp5/tqmP+YuLQp5P9r9RSP57TEszIsvypD/I45WJiDePR0KWZTIyUjAaJx4yjitxs2XLFr773e+yYMECfv7znwNgNBpxOBwhx/lETUrKxFumezwKFkv4up2C+os0m01YLENJ60ZO9nu83O7vdIeVc92DAFQXZeJxuujtdcXYyouTkaan3+rgXPcgvb2DlzxutN9hZ7vV/zglVT/itWJJbmEqGo2M2+3h+OFzLF9TiiRJSf83CpfP69BqHcbj8eB2KzHtCRNuJAn/3+54PTdut4LH46G/38bQ0IWVgmazaUyiKW7EzVNPPcWPfvQj1q9fz7//+7/7vTWFhYV0dHSEHOvbLigomNSakfpjcrs9SfWHejGS/R4vl/v79Hi7f9+iyty4vufcDCP9Vgf9Vge2ISf6UTr3Xup32Ncd+FKTZjbE7T3LGpnpJZk0N/QwOOCg9XQ/BVPN/ueT/W8Ukv8ek1G4QSAUNdGQFDBpwRcXfrCnn36af/u3f+Ozn/0s//mf/xkShlq2bBn79u3D7Q4ouF27dlFaWjqpfBuBQAD76wIl4Iur4nuOUW5GIETRbZl4UnFwpVQ8dSe+GMFVUo11XSMcKRAIgom5uGlsbOTHP/4x69ev56tf/Srd3d10dnbS2dnJwMAAd9xxB1arlR/+8IecPHmSl156iccff5yvfvWrsTZdIEhoOvuGaOlQQzQlhelkm+OvJDqYcFVMxXOPm/MpqczxJ2eequ1CmcxXYYHgMiLmYal33nkHp9PJe++9x3vvvRfy3ObNm/npT3/KH/7wB370ox+xefNm8vLy+N73vsfmzZtjZLFAkBwcSCCvDYRP3FiCuxPHubgxpeiZMj2D1tP99PcO0dtlI39KbAcSCgSJQMzFzcMPP8zDDz884jHz58/nueeei5JFAsHlQSKFpCA0LNU1iQGaVm9IS5YlUtL0oxwde0qrcmk93Q+ooSkhbgSC0Yl5WEogEEQfy6CD+jPqB2ZhdgpTc+OzHDqY3MzweG6s3ongqekGZFmatF2RJjjv5pTIuxHEMR6Ph0cf/R9uu+0GVq++kr//+7/hzJnTMbFFiBuB4DJkf10nvuyNJdXx77UByE4PiJuJDs90OtzYh9VS97Q47Ex8MdIzjOQVpgHQ1W4NSYgWCOKJxx77A6+88iL/+I8/5A9/eAxJkvjud/8Wp9MZdVuEuBEILkP21QbaKyRCSApAp5Uxp+gA6LFMrIGndSBwXpo5McQNnOe9CRpyKhDEC06nk2ef/TMPPfQVVq68msrKKv7lX35CZ2cH27Z9EHV7hLgRCC4zbMNOjjX2AJCVbqCkMHFyOLK8FV19Vjtuz/h7YFiDSsgTVdw0CHEjiEPq62ux2QZZvHiZf196ejpVVTM5ePBA1O2JeUKxQCCILntPtONyq0GpxZV5SFL85534yE430Nw2gKJAv9Ux7vJ1qyUxPTdZOSlkZJvo7xni3Ol+Bq0THz0jSAz2dxzmr6fexe6O/u/aoDFwc9n1LM6fP+ZzOjsv3lw3NzePjo62sNo3FoS4EQguM3YdOed/vDjII5AIhOTdWOzjFzfBYakEybkBkCSJsqpcDnxyGkWB2qPtlFaLJqbJzJbmbbTbOkY/MFLrt2wbl7gZHla9ojpdaAWiXq/HYrGE1baxIMSNQHAZ4XC52VejjlxINWqpmpEZW4PGSXaQt0VNKs4Y1/mhnpv47nFzPqVecQNQd0yIm2TnuuLVMfXcXDdj9fjO8Q60djodGAyB15bD4cBkiv5rTYgbgeAy4kRTL0N2dZTJwopcNHJipd1lBYubCSQVJ2pYCiB/SjopaXpsVgen6jpxOt0JFVIUjI/F+fPH5TmJNfn5ajiqq6uLadOm+/d3dXVSUVEVdXsS651NIBBMiuCuxIsSpEoqmMmWg/vCUlqtjMGYWN/tJEmipEL11rhcHk6f6omxRQJBgIqKKlJTUzlwYK9/38DAAHV1NSxYsDDq9iTWq1sgEEwYRVE4UK82gdNpZOaUZMfYovETHJbqHafnRlEUf7VUqtmQkF6Pkoocjh9Uc6Ya67qZUS5CU4L4QK/Xc/vtd/Pb3/4XmZlZTJs2jf/6r/8kP7+A1avXRt0eIW4EgsuElnYrvV7PxezSLAx6TYwtGj+ZaQYkQGH8nhuH3YXLqZaPpydYSMrHtOJMtDoZl9NDY30X12yoTIguy4LLgy996WHcbjc//en/xeGws2DBIn7+81+j0+mibosQNwLBZcKB+qCQVGXihaQAtBoZc5qefqtj3Dk3Ifk26YmVTOxDq9MwoyybU7VdDNmcdLRaKJw+vqRqgSBSaDQavv71v+XrX/9btFoZl2v8vajChci5EQguEw6d7PY/XliZWCXgwfjybiyDDlzusb95DgSJm9QE9dwAlAWV7zcF/U4FAkEAIW4EgsuAHsswze0DAFRMzxh3f5h4wpd3owB9A2P33iRypVQwJRU5+NKFGuuFuBEILoYQNwLBZcChhsCH4BWzC2NoyeQJrZgah7gJytFJpAZ+52NK1TPdmwze122jr8cWY4sEgvhDiBuB4DLgoLdKCuCKOQkubkJ63Yw9qXgwSTw3ANVzAi3um4T3RiC4ACFuBIIkZ9jh4kRzL6DOZiqbltgJqFnpwV2KJxiWSmDPDUCVEDcCwYgIcSMQJDnHGnv9ibcLqxJrUObFCM4XGpfnxuoAQG/QoDckdqFobn4amTkpALSd7WfI5oyxRQJBfCHEjUCQ5Bw6GQhJLUrgKikf2enjH8GgKIp/knZKWmJ7bXyUVakN/BQFWhqE90YgCEaIG4EgifF4FA41qOLGoNMwqyQrxhZNnow0vb9aqM86NnHjsLv9DfxS0/SjHJ0YlAYJVVE1JRCEIsSNQJDEnDpnYcAbsphTmo1em3hdic9HI8uYU1WBMlZxYws6LjVJPDeF0zMwmtTOr6cbe2LaME0giDeEuBEIkpjgKqmFFYkfkvKR6RUo/YMOPB5l1ON9+TYAqenJ4bmRZYniCrUk3OX0cNabNC4QxAN//OMf+MY3vhKz9YW4EQiSGF++jQTMT6Ihi1lecaMoYLE5RjkaBgeSz3MDUBIkWEXVlCBeeP75p/n9738bUxsSu2RAIBBcko6+Ic52DQJQPi3DH8pJBjKD8mb6rHa/J+dSBHtuUpIk5wagqDQLjUbC7VZoPtmNoigJXw0nSFw6Ozv46U//L4cPH2DGjOKY2iI8NwJBknIoKCS1oCJ5vDZAiJjpGxjdc2NLwrAUgE6vYbo3SXzQ6qCzzRpjiwSXM7W1NaSnp/PYY88wZ868mNoiPDcCQZJyMKgEfGGCTgG/FJlB5eC9Y0gqtiZpWAqgpDKH5oYeAJrqu8ifkh5jiwSXK1dfvYqrr14VazMAIW4EgqTENuyk7nQfAHmZRqZ6G74lC6Gem9HFTXC1VDKFpQCKy3OAekDNu7liVWlsDRKEhYG9e+h+5WU89rE3qgwXssFIzm23k750WdTXDhdC3AgESciRUz24vVVECysSvyvx+ZyfczMavpwbY4oOjSa5ovGp6Qbyp6TTcW6A7s5BLH3DmDMTd+q7QKXn7bdwtJ2L2fq977wlxI1AIIgvQkNSyVMC7iM4LNVnHTnnRlEUf85NsjTwO5+Syhw6zg0A0HSyi/lLp8fYIsFkyd54I92vvBQzz03Whhuivm44EeJGIEgyXG4PR7zt+E0GLZXTE3tQ5sVIM+nQyBJujzKq52bI5vT3wklN8IGZl6KkIoc925sANTQlxE3ik750WUJ7TmJNcvlnBQIB9Wf6sdldgNrbRptkYRgAWZL8oanRxE1IpVSSem6y81JJz1BDUedO92MfdsXYIoEgtiTfu55AcJkTPCgz2UrAg/ElFQ/YnDhHGD0Q3MAvWYZmno8kSZR4f9cej8Lpxp4YWyQQxBYRlhIIkghFUfwjFzSyxLyyJBY3QSGm/kE7uRmmix43eBl4bkDNuzmy7yyghqYqZuXH2CLB5cw//dO/xHTemfDcCARJxLluGx19QwBUTs8g1aiLsUWRI6QcfISk4sHgoZlJmnMDMKUoA71BHYza3NCD2y0GaQouX4S4EQiSiGRu3Hc+IeXgI/S6uRxybgA0GpkZZeogTYfdRdsZS4wtEghihxA3AkESESJukjjfBs733Fxa3CTr0MyLURz0O28K+lsQCC43hLgRCJIEi81Bw5l+AKbmppKflVxdic9nrL1ufDk3kgSm1OQN0wEUl2fj69fYVK8O0hQILkeEuBEIkoQjDd34PsqSuUrKR7DnpneEsJQv5yYlzZB0nZrPx2DUMaVI7Wtk6Rumr9sWY4sEgtggxI1AkCQcDJoCvqgiufNtALLGEJZyuz0MDTqB5M63CaakItCRuulkdwwtEQhihxA3AkES4HS5OertbZJm0lE21RxjiyKPyaBBr1Pfwi4lboYGL49k4mBKKoPybuqFuBFcnghxIxAkATUtfdidbkANSclycodfQG1c5wtNXUrcBPe4SUniMvBgMrJMZOWq+VZtZy3YBkeevSUQJCNC3AgESUBolVTyDcq8FJmpqjdmyO72i7tgLpcy8PMpCcq5amkQ3YoFlx9C3AgECY6iKP6RC1qNxJzS7BhbFD3MQXk3lot4KIK9Fimpl6e4EXk3gssRMX5BIEhwTndY6bGoYZlZxdkY9ZfPyzojSLD0DzrIywwdwRDsubmcxE3+VDPGFB3DNienG3twuTxoteK7rCCytLWd4847N12w/x//8X+xadNtUbXl8nkXFAiSlOAqqWg17lMUD57OJtxt9bi7m1Fs/SiOISSdAcmYhpw9HU1+OZopM5E0kXubCe5S3H+RXjchnpsIh6XcViu248cYbm7E0daGx2ZDcbvRpKaizcnFWFJCSvUsdHmRr2STZYmS8hxqjrThcno429xLcXnytwcQxJaTJ+vR6w08//yr6HSyf7ZUWlpa1G0R4kYgSHAOhEwBj2y+jcfWh/PoFpwnd6FYRwh3nPpU/V9vQle2DN28jWiypobdHnOQN8YyeGFScbC4MUXAc6MoCrZjR+jdsgXbiWPgvjDvx0e/939DSSkZ16zGfOWVyLrICa7iClXcgBqaEuJGEGlOnTrJjBnF5ObmotXKMR2cKcSNQJDA9A7YaW4bAGBGQRrZZmNE1lEcNux7X8F54kNwO8d+omMIZ812nDXb0ZZdgWHFPchp4fuQzUgduUtxiLhJCW93YltdLZ3PPo29pXlc59mbGuloaqT7tZfJuWUzGdesQpLDHzIqKs1Co5FwuxWa67tRrleSvomhILY0NNRTUlIaazMAIW4EgoTmUBSqpJynPsX+8Z9RbH2BnZKMZvpctMUL0eSXI6fngj4F3A4Uaw/urmZcLYdwNR8A5zAArlN7cDUfxHDFnejmrg/LB+35OTfnM+QVPEaTDo0mPALCPTRE5zNPYfl4Z8h+bXY26UuWYZo1C8P0GWjS05FkGffgII5zrQydrMe6b69fDLn7++l48jH6P9pG4Re+hGHatLDY50On1zCtJIuWhh4GrQ662q3kFaaHdQ1B5Gio6WTPR004Ha6or63Ta7nimhLKZ44vhNrQ0EBOTi5f//qXOH26henTi3jwwS+xfPnKCFl6aYS4EQgSmNAp4OEVN4rLgf3jp3HWbA3s1OrRzV6Lfv5G5JTMC0/SGpAypyBnTkFXsQLFMYSzZhuOg2+gDA+A24F919O4zhzFdO1XkIyTi8VnpAWHpULFjaIofs9NuPJthluaOffIb3B2tPv3GYpmkH3zLaQtWnxRD4zWbEZrNpNSPZOcmzYx3HiKnjffwHpgH6B6clp+9C/kfeY+Mq5ZHVbvSklFjr8UvKm+W4ibBOLg7tMxHJ/h4ODu0+MSN06nk9OnmzGZjHz9639Henoqb775Bt/97t/yi1/8N0uXXhFBey9EiBuBIEGxO9wcb+oF1MTa4oLwfXB5BnsZeuc/8XQFQi6aGQsxXnW/6qUZI5LehH7+RnTV12Df+xLOY+8D4D59mMFX/o2UG/4eOaNwwnamp+iQAAXoPy/nxmF34Xar07bCUSk1sG8vbb9/BMWlfpOWTSZy77iLjFVrxhVWMpaWMfVvvomttoaOPz+Bo7UVxeGg44nHsDc1kv/ZzyFpNJO2F/Dm2dQDat7NsmtKwnJdQeRZuLwopp6bhcuLxneOTsfbb29Fo9Gg1+vRamUqKmbS1NTEM888JcSNQCAYG8ebenC51YS9hRW5YfvG7+lrw/bm/xdIGNboMV79ANqqqye8hmRIxXjVA2hnLGR46+9RhiwolnZV4Gz8ezQFFRO6rkaWSU/VYxl0XBCWGgxjGXjfh+/T8fRT4J2ybSgpZcpXv4Y+L3/C10ypnsmM//XPdD7/LP1bPwCgf/s2nD09TH3468hG0yhXGJ00s4G8wjQ626x0tVuxWoZJi1BeliC8lM/MG3dYKNaYTBf+zZaXV7B798dRt0U0PhAIEpQDEQhJubuasb32I7+wkdJzSdn8v9FVXxMW8aQtmkfKbf+EnDVd3WEfxPbmf+DuaJjwNX15N/1WB4qi+PeH9LhJm3gyce9779Dx5yf9wsa88iqK/vEHkxI2PmS9noL7P0fhl7+KpFW/a9qOHuHsL3+BZ3h40tcH0dBPEB1Onqxn/fprOHToYMj+mprjlJaWRd0eIW4EggTEoygc9oobvU5mVnHWpK/p7m1l6M1/V3NjADm7iJRb/xea7PG5p0dDTs8l5dYfoJk6S93hHML2xr/j7myc0PV84sbtURgcDrjww9GduG/bVjqfe8a/nX3jzRR88UvIuvBWXpmXr2Tat/8BOSUVgKH6Os7+6hd47BefmTUeioW4EUSBsrJySkvL+Y//+AmHDh2kqamR//qvn3Ps2BE+97mHom6PEDcCQQLS2GrBYlNLsueUZKPTTi5Hw2PpZOiN/xcQNgUVpGz6/108aTgMSPoUTBu/FSJwht7+BZ6BznFfK6RiKmiAZrDnZiI9bgY+3UPHU4/7t3NuuY3c2++MWDl1SlU107/7vYDAqaul9de/8uf4TJTcgjRSvUNDzzb34bBHP4dDkPzIsszPfvYLZs2awz/90z/y+c/fx/HjR/nFL/6b8vKJhZ0nZU/UVxQIBJMmnIMyFfsgtrf+w1/qLecUk7Lx75EMqZO67mhIWgOmDd9CU1il2jFkYejtX6DYB8d1HXPaxcvBJ5NzM9x4irY//t4fisrasJHsTbeO6xoTwTijmOnf/gfkFHWqt+3EMdqffDwk3DZeJEmipFL13njcCqcbe8Niq0BwPllZWXz/+//Eq6++w7Ztu/jtb//IggWLYmKLEDcCQQLiEzcSMH8S4kbxuBl6/7co/WonWzlzCqYbvxNxYeND0hkwXf+3SN6KKU9vq2qPZ+ydTTODGvkFi5vQnJuxixtnby9nf/0rFKfqGTNfeTW5d94TtQZ4xpISpv3t3/tzcCw7P6Lnjdcndc3gvJtmEZoSXAYIcSMQJBidfUOc7VS9G2XTzCFhmfFi/+RZ3GeOAiAZ0jBt/DayyRwWO8eKZEwj5YZvIxnVUnb3maM49r865vMzLjFfyhZUGj5Wz43icnHut7/G3d8HgKmyivwHPh/1zr6mikoKv/QV/3b3Ky9hPS9RczxMm5GJTq+GLpsbuvF4Ju4JEggSASFuBIIEI1whKefJXTiPvqduyBqM138T2Ryb0lPZnI/xur8Br4hw7H8N1+kjYzo3tEtxQND4wlKyLGEwjq3rRdcrLzF8Sq3c0ubkMOXr3wh78vBYSV96Bbm33+nfbnv0dzg7x5+TBKDRyhSVqknnw0Mu2s9awmKjQBCvxJ24+c1vfsMDDzwQsu/73/8+1dXVIf9WrVoVIwsFgtgSOgV8YuLG3d/O8EeBZFnD1Z9DO6V60rZNBu3UmeiX+T7MFYY/+B88wSMfLoH5EiMYgrsTj8XzMnj0CL1vv6luaDRM/do30KZH14t1Plk33ETaoiUAeGw2Wh/5bzyOC8dMjIXQkvCuEY4UCBKfuBI3jz32GL/61a8u2F9bW8vDDz/Mjh07/P9eeeWV6BsoEMQY27CLutN9AORlGpmaO/7cGMXlZPDd//bPfNJWXoV+5upwmjlh9AtuQDNjIQCK3crw9j+NmkwbPDzTF5byuD0MDao5M2MJSbn6+2l79Hf+7bw77sIYBwMAJUmi4AsPocsvAMDe3ETHX56f0LVmlOf4HGM0newJl4kCQVwSF+Kmvb2dL33pS/zyl7+ktDT0DcXtdnPy5EnmzZtHXl6e/192dnaMrBUIYsfRxm7c3nyJBRPsStz94VO4O5sAkDIKMV79wMgnRBFJkjGueQjJm/fjbjmEs3b7iOeYDBr0WvWtzDdfanBwfGXgHU8/iXtALYNPnTefzOuun5D9kUCTksLUr/0Nkjc81vPeu/QdPDTu65hSdBRMU3+ufd02+npiNbdIEMD3+hU5UD4mUxkYTFyIm2PHjpGRkcFrr73GggULQp5ramrCbrdTXl4eI+sEgvghOCS1aAIhKefZE1j2/FXd0Ggxrfsaki6+2vHLxnSMq77g37bvegaP5dK5JpIk+UNTvrCU1RLIvUkdpVJqYO+nWPftBUCTlk7BF740rllR0cBQNIPcO+72b9f/6r9xD46vZB6gJKiTdVO9qJqKNVqtBpCw28PTjToZcDjU165GM7npUHExW2rt2rWsXbv2os/V1dUhSRKPP/4427dvR5ZlVq9ezbe+9S3S0yc3KFCrDe8bmEYjh/yfjCT7Pcbz/bncHg6fUj+QUgxaZpVmox2HnYrTjuXDR/3bphX3YCiMfejlYmjLl+CeuQpHzXZwDmPf+ThpN//DJT1VmekGuvqHsQ45UQDrQJC4STdc8rXusg7Q8fST/u3C+x/AmJ0ZzlsJG7nXr8d2+ACDx4/j6O6m/c9PMvUrD4/rGhUz8/jkw1OAWjW19KriSJg6aeL5dRgOfPel0+lITU3Dau3D5XJiNKYgy5qoV+eFG0kCj0fC41EYqyNGURQcDjtWax+pqeno9Ukgbkaivr4eWZaZNm0ajzzyCM3NzfzsZz+jrq6Oxx9/HHmC37BkWSIrKzK9PMzmyQ+8i3eS/R7j8f6OnOzC5h0vsHRWAXm54xP3Xe8+i8fSAYCxaBaFq29DkuL3wyPj5i9z+uwx3APduE4fRd92iLTZV1302LysFE6e6QfAjcxgkLjJy0+75Gu97rE/4LaolUPZy5dRvHFtXH+wpH777zjwd3+Pe9BG38cfU7jmGnKWj33aclZWKjl5qXR3DnLujAWDXheWiemRIh5fh+HEbDaRnj6D/v5+2ts7sFgub2+aJEFOThZTpkyZ9Osw7sXNN7/5TR588EHMZjVWXFVVRV5eHvfccw9Hjhy5IIw1VjweBYslvDFnjUbGbDZhsQzhdo+9CVkikez3GM/3t23/af/jOSVZ9PaOPSzhbK3F+qlaCSRp9ZjWPERf31DYbQw3xqvuZ/DtXwLQ+c4fcWRXIRlSLjjOpA+MnzjT1h8ibpC46M9q8MQJOreq+TxySgo5n7mfvr44z0PRmpjywOc488gjAJx85PcoRWVoLjKN+VLMKM+mu3MQxaNwaN9pZs4rjJS1EyaeX4fh4ML705GXNxWPx4Pb7SbRc3A0Gpm0NCNW6/A4fn8SWq0GWdaM+Do0m01j8ujFvbiRJMkvbHxUVant2tva2iYsbgBcrsi8aNxuT8SuHS8k+z3G2/0pisKBWjXvRJYkZpdkjdk+xe3CtvWP/u2sNfehpOfH1f1dCnnGIrTFi3A1H0Cx9TH4yQsYr7r/guPMKYFeNL2WYRwDgRwGg0l7wb0qLhfnngqEo3LvvBspPSMhfibpy1eSufsT+g4cxNXTQ/uLL5D/mc+O+fwZZdkc+EQVyqdqu6iYNfnp5pEi3l6H4ebC+5OQ5bj/WB4VjUbGaDQyNORGUcb++/N4wDOO7uQjEb8+aS/f+c53eOih0ImiR46ozb0qKqI/jEsgiAXnum10eD0tVUUZpBrH3ljOceRdPH3nANAUlJOx7MaI2BgpDFd+FrRq6MR5/H3cXc0XHBPcyK/P6ghJKL5Y2KVv6wc4zp5Rr19SSsbVidM3S5Ikyr/2FSS9el99729huGnsE9ULp2f4mxq2nOpJSs+IQBD34ubmm29m586d/Pa3v6WlpYVt27bxgx/8gJtvvllUUAkuG0K6EleOvYuwx9qNY/8r6oYkkbLq80jy5CaIRxs5PRf94tvUDUXBvuuZC8pFQ3rdDNpDEorPLwV39ffT/erL/u38+x6Iu+qo0TAWFJB322Z1Q1Fof+KxMc/jkmWJ4nK1oZ/T4aa1pS9CVgoEsSPuX9HXXnstv/zlL3n33XfZtGkTP/zhD7n++uv58Y9/HGvTBIKoETpyIWeEI0Ox73oGXGp5tG7WWrR5JeE2LSro512PZFYb2bnP1eBqPhDyfPB8qWDPjd6gQacLFXNdL7+IZ0j1gpmvXoWprCySpkeMnOs3oJ9eBIC9pZn+j0buBxSMb0o4iJJwQXISd8G9n/70pxfs27BhAxs2bIiBNQJB7LHYHDR4K4Gm5qaSn3VhQu3FcJ0+gqtR7d8iGdMxLLs9YjZGGkmjxbD8bobf+y8A7LufQ1s0H8nbCyNkvpTVjtHruTnfa2M/exbLzo8AkE2mkNlNiYak1ZJ/3/2c+X8/AaD75RdJX7YMTcroVaBFpVnIslqq23Sym6vXV8R1lZhAMF7i3nMjEFzuHGno9tdOLBij10bxuLF/8ox/27DiHiRDZFofRAttyWI03vlXSn87zuMf+J8LmS81YMdhV0vmz8+36XrxeXyNN7Jv3ITWHNvZUZMlpaqa9GVqKbjbOkD366+N6Ty9Qcu04kxAbXjY0zn+hoACQTwjxI1AEOeEdiUeW76Ns/YjPL2tAMj55WgrL94fJpGQJAnDinv92/b9r6LY1Q9lrUYmzaQmWQ8OBEYvBIsbW10tg4fVsQXarGwy110XDbMjTu6d9/hHM/R9sAXHudYxnRcySFOEpgRJhhA3AkEc43S5OdqoDjlMT9FRNnV0T4PiGMKx9yX/tnHFZ5Im5KDJK0FbeaW6YR/EceQd/3O+0NSQ7UJxoygKXS8859+fc+tmZH38Nq8bD7qcHLI2eivg3G46n392TOcVh0wJF+JGkFwIcSMQxDE1LX3YnW4A5pfnIMujixTH4bdQhtSuu9rSpWgKKyNqY7QxLNkM3oovx5F38Xjv1ReakoJKm1O8icbW/XsZPqWOHdBPm475ysT3ZAWTvfFGtFnqMOHBI4ex1ZwY9Zz0DCM5+WqosuPcQGjjQ4EgwRHiRiCIY4JDUgvHEJLyDPbiOPS2uiFrMFxxV6RMixmyOQ/dzNXqhnMYxyG187KvYkpLQACmpOpRPJ6Q0u/cO+5MuNLv0ZANBnJuCySMd734lzFNVw4OTTU39ETENoEgFiTXK1wgSCIURfGXgGs1MnNKs0Y9x/7pS+D2ln7PXoecURBRG2OFftEm0Kh5Js5j7+MZ7PWHpYLbG6ak6bHu24ujVc1DMZZXkDpv4l3N4xnzyivRT5sOwHDjKaz79416TmhJeNcIRwoEiYUQNwJBnNLSbqXXGyqYVZyFcZQpue7es7jqdqgb+hQMi2+JtIkxQ07NQjdnnbrhduI48Lq/kV+wuDGZtHS//qp/O+eW25Im/+h8JFkmd/Md/u3ul19EcbtHPCevMN0fujvT3IfTOfLxAkGiIMSNQBCnhHYlzh31eMe+V/AN3NMvvBnJmBYhy+ID/cKbQGcEwFmzjRyt2phPFxSWUk6dwNF6FlC9Nimz50Tf0CiSumAhxgo1x8rRdg7LxztGPF6SJH9oyu3ycKapN+I2CgTRQIgbgSBOCc63WVA+cn8bd1czrlOfAiCZzOjnrouobfGAbExHP8dbzu1xM7VT/SD3eW4kCQbfCfR9SWavjQ9Jksi7427/dvdrr+BxOEY4Q5SEC5ITIW4EgjikxzJMc/sAAMUF6WSbjSMer3ptVPSLNiFpDZc+OInQzbseNGpYJf3sJ6RJQ35xY9BJOC8jr40PU2UlqQsWAuDq7aV/24cjHj+tOBOtVv0oaD7ZPaZEZIEg3hHiRiCIQw41BL5BjxaScnec8s9aklKzA5VElwGyyYxulnq/ktvJasMJv7jRDVv8x+VsujXpvTbBBOfe9Lz95ojeG61Ow3RvsvqQzUl760DE7RMIIo0QNwJBHHIoZFDmyOLGHtSwT/XaJEdzurGin3+Dv+/NCkMjsjfnxidujGVlpMyZGzP7YoFhehFpS5YC4O7vp3/71hGPDykJFw39BEmAEDcCQZwx7HBx3JvYmZVuYEbBpRODXedqcZ85CoCUnouu+pqo2BhPyGnZ6KquBsATNAvY4LIB6gypy8lr4yNn063+xz1vvTGi90Z0KxYkG0LcCARxxtFTPbi8XXYXVuSO+MHs2B8oczYsvtU/JftyQ7/wJpAkhj2Biel69zD6KVNJnZ+cfW1GYzzem5RUPQVT0wHo6RzE0jcUDRMFgoghxI1AEGccqO/0P15cdemuxO6OBtxnjwMgmfMDM5cuQ2RzPtryFQx5AonXepeNrA03JF034vGQc/PYvTclQbldompKkOhcvq96gSAOcbk9HPKGBUwGLdUzMi95rH3/6/7H+oU3IXnzTi4Xhl3D1Pee4sPTO3im5kUeNyt8pA/q4qx18kJ6Iy/Uv8bHrZ/SYjmD23N5NakzFBWRtngJ4PPebLvksSUiNCVIIi5PH7ZAEKfUne7DZncBam8brebi3z/c3S24Ww4C3gqpyuQaBHkpuoZ62N9xiOPdtTT0N+FRPCHPX9FTis0bxWuc6uJg91EI+pw2aY1UZ1UwN2cWC/PnYdKOXGKfDORsutU/iqHnrTfIWL0GWae74Lis3BTMmUYsfcOcO92PfdiFwSg+IgSJifjLFQjiiP11gZDUohFCUo4Df/U/1i+4IalzbdweNwc7j7CjdQ91vScveVyqzU26VYdNTR3hZPGF/VqGXMMc7DzKwc6jPF/3Cgvz57F6+pWUmGdEyvyYYyiaQdqiJVgP7MPd34dl104yV6254DhJkiiuyOHI3rN4PAotp3qonJ0ffYMFgjCQvO+IAkGCoSgKB+p9gzIl5pZmX/Q4T9+5QDdiYzq6mauiZmM0cXlc7G7bx7vNW+kaujBMkmfKoTqrgqL0aUxLm4Lu7e3sDMqv+bv2c2gWf4XeNDNnredosrRQ23OSQW8VlcPjZE/bfva07acqq4KNxWupzq6I2v1Fk6wbbsJ6QPXe9L79FhlXr7poLlKJV9yAGpoS4kaQqAhxIxDECU1tA/5BmbNLsjEZLv7ytB98A98MKd38DUnZjfho1wlePPk6HbbQSdV5phxWTlnGovz55KcEEmA9djundn6CI0cdOyHjJg07upqPKbj+m8zMVucteRQPTZbTfNq2n0/bDzLkUquC6npPUtd7krk5M9lccTOFqcn1oW4qK8M0cxZDNSdwdrRj3beX9GVXXHDclKIM9AYNDrubloYe3G4PmkuERgWCeEaIG4EgTgiuklp0ia7EnoEuXPW71A19CvrZyTVDqnuol+frXuZod03I/uqsCq4vvpbqrIqLlsZbPtmFxzaII98EgF6yI0ngatqPp78dOaMAAFmSKcsopiyjmNsrbmZP+37ea95Kp9czdLS7huM9dawrWsVNpevRaS7MTUlUsm+8mbM1JwA19yZt6bILfpYajcyM8hxOHu/AYXfRdqafacVZF7ucQBDXCHEjEMQJB+pUL4XEpbsSOw69BYpa8aOfex2S3hQt8yKKoih8cm4vL9S/xrDb7t9fllHC5oqbKMsoHvHcvvffQ0HCqfFOCQ88i+PIuxivfuCC83QaHVdNXc7KKcv4tO0Ar516mz57Px7Fw3stWznSdZz7Z91NaUZy5OOkzJqNobgEe3MT9pZmbMeOkjp33gXHlVSo4gbUknAhbgSJiPA3CgRxQHuPjbNdgwCUT8sgI+3CUJNneABn7UfqhlaPfu710TQxYticNn535AmeqvmLX9hkGjL4wux7+fbir40obABsJ47jaD2LU2NAkdS3tD7FgMP73c1Z9xGKffCS58uSzPIpS/g/K/6BG0uuQyupJfVttg7+Y99/83bT+xdUZSUikiSRfeNN/u2et9646HEzyrKQZdWj0yQGaQoSFCFuBII4wJdIDLCo6uJeG+fxD8CtNmHTzVyNZLz0WIZE4fRAKz/99Fcc7jrm37eicCn/a/m3WVq4aExjE/q2vAuAQxPwYg0jsd+l5tngcuCs3THqdfQaPTeVXc8/Lvs7ZqRPB0BB4fVT7/Dbw3/C6ry0QEoU0hYtQVdQCMBQbQ1DDRdWnxmMOqYUZQBg6Rumt9sWVRsFgnAgxI1AEAfsD+5KXHlhCbjicuA8ukXdkCT08xLfa7OnbT//se/XdA/3AJCmS+Wr8z7PA7PvxqQdW7jN0d7O4JHDALgyA0nATuADa2XguOPvo4zR+zI1rZDvLvkbbixdj+Qdwnm8u5af7vklrda2MV0jXpFkmeyNN/i3L+W9CWnoJ7oVCxIQIW4EghjTP+ig4Uw/AFNzUynITrngGGf9xyjDAwBoS5chp1+6B068oygKb5x6l8ePP4vTozYsLE4v4h+X/S3z8+aM61p9H24Bb9hEO2eRf78TaPdk4imYqa5p6cB9+siYr6uRNdxUup5vLPwSabpUAHrtffzHvt9wortuXDbGG+krrkSbpebRDB48gKPt3AXHlFQGi5uuC54XCOIdIW4Eghhz6GQXvqyGi1VJKYoHx+G3/dv6BTdccEyi4Pa4ebrmBd5s2uLfd9XU5fz9kq+RbRxf4qp7aAjLDjUHSdLroSjQo8bl/d8642r/Psex98dt78zsSr5/xbf8Yaph9zC/OfxHdrbuHve14gVZpyPzuoDnr/e9dy84xpxpIjtPFXXtrQMMDtgvOEYgiGeEuBEIYkxwV+KLDcp0Nx9C6VfDIZop1WjySqNmWzhxuJ387sjjfHzO24AQiTsqbua+mXegk8dfuGnZuQPP8DAA5hUrGXYF8nOcXrnYmVaFlKZ6IdynD+Ppbx/3OpmGDL61+GHm56peJY/i4emaF9nScuk5TfFOxjWrkAxqZZnl4x24BwYuOKY0KPerUXhvBAmGEDcCQQwZsrs43tQLQFa6geLC9AuOcRx+y/84Ub02DreD/zn8mL9/jVbS8MW5n2XtjIl1V1Y8HjUk5SVz3XqGBgMTr32l4BabC11QL6CJeG8ADBo9X573ANcWBTxBL598g7catyRkNZEmJZWMa64BQHE66dv24QXHlAWJm1O1QtwIEgshbgSCGHKssQeXW010XViZi3xedZC7owF3m5rjIWdORVM0P+o2Tha728FvDz9GTW89oAqFbyz8EovzJ34vtpoTONtVL4xp5iwM06Zju4i46bfa0c9cBd5mfM66j1CcwxNaU5Zk7qy8hU1lG/z7/tr4Lq+dejshBU7WuuvB+/fW98EWPE5HyPM5+amYM1XvTmtLH8NDzguuIRDEK0LcCAQxZLQqKcehgNdGN38DkpRYL1mH28FvD/3RP/DSqDHwjYVfpjKrfFLX7d/6gf9x5pq1ANgG1Q9fWSPh9h036EAypqGrWOE1aAhn/ceTWntjyTpur7jZv/1u84e83TQxj1As0eXlkbZ4CQBui4WB3aF5RJIk+UNTiiKqpgSJxZjfKX/6059y5513XvS5U6dOUVNTg8eT+I2uBIJo4XJ7OHRS/cAwGbRUz8gMed5j6cDVpA47lExmdJVXRtvESeH2uPnD0aeo7zsFgElr5BsLvzxqU77RcPX1Yj14AABNRgZpC9UqKZ/nxpgSGJnQ792nm3Odf5/z2PuT9rSsm7GKe6pu82//tfFdPjj90aSuGQuyrt/of9z73jsX/FzKqoNCU3UiNCVIHMYsbvbs2cOcOaFlmk6nk4ceeoibbrqJzZs3c91117Fv376wGykQJCO1LX0M2dW6ngXlOWjPG1DoOPKuv8xZN3c9UgLNOfIoHp488TzHvDk2Ro2Bby78clhGGfR/tB28X6QyrlmFpNXi8SgM21TPTVpQd2eLV9xocovRFHiHZ/ae9Yf6JsOq6VeGeHBerH894aqoTOUVGMvVKjPH2TPYjh8Leb5gqpmUND0AZxp7cNhdF1xDIIhHxixuzp49y7Jly0L2vfTSS+zcuZOKigruuusuAL761a9y7tyFfRMEAkEo+2o7/I8XnVclpThsOOu8XXW1evSzro2maZNCURRerH+dT9tV74pW1vLw/AcpNhdN/tpuN/3bvVVKkkTGNWsAGLIF8kVS0/SkmlQh2B+Uh6ObHfgZOk9snbQtoHpwbixd799+puYlDnUeG+GM+CNrfSCHqPfdt0OeCw5Nud0KLad6omqbQDBRxixuBgcHKSgoCNn35ptvYjAYeOKJJ/jXf/1XXn75ZXJycvjjH/8YdkMFgmTC41H8JeB6rcy8suyQ5501H4E38VVXeVVCjVp4r2UrW8/sBNRy7y/O+eykc2x8DB45jKtX/YBNnb8AXY5a5m2zBkRMSpqerHTVexMsbrSlS8Gg9m5xNX6KMmwNi003llzHuiK16ktB4U/HnqbZcjos144GaYuXoMtVxbXt2FHsZ8+EPB9cNdUoQlOCBGHM4iYzM5POzkDyo8Ph4MCBAyxfvpwsb7fLjIwM7r33Xj76KPFizwJBNKk/04fFG0aZW5aDUR/o86J4PDiOBcqcdXPXX3B+vHKw4wivNgSSoD87804WjLPr8Ej0bQ2ULGesDnhihmyBSp6UVD1Z6WqVj93hZtihhlIkrR5dlbeU2+0KeMYmiSRJbK64iaUFCwFwepz89vCf6B5KDC+HJMtkXhf4G+t9952Q56cUZWAwqn+fzQ09uFwit1IQ/4xZ3CxZsoTXX3/dv71r1y4cDgfLly8POa6qqkqEpQSCUdhXG/iisKQ6NCTlbjmEMqA+r5k+F03W1KjaNlFaLGd47Piz/u2bSzewcuqyEc4YH87OTmzH1BEK2txcUufO8z93Kc8NBPJuAPSz1gSud2Jr2Eq4JUni/ll3U56hNlgccFj5zaE/YnMmxtDJjKuvQTap87wGdu/CZbH4n9NoZP84BqfDzRlvXyaBIJ4Zs7h58MEH2bp1K//wD//AK6+8wi9+8QskSWLNmjWhF5RlZDmxylUFgmjiURT2eUNSGlliQXnoyAXH0UA7fP3c60gE+uz9PHL4MZwe1YOyrGAxG0vWhneN7Vv9CdaZq9YgBb3PBOfcpKTqyQwSN8GhKTlzCpop6rwpT38b7nM1YbNPJ2v56vzPU5CiitU2Wwd/PPY0njEO7IwlstFExqrVACguF/3bt4Y8HxKaEg39BAnAmFXIokWL+D//5//w9ttv8/3vf5+amhrWr19PeXloLL2+vp7c3Avn4wgEApXGVgu93lk9c0qzSTEGQlLuntO4W08AIGUUJETTPl/34X6H+m2/LKOEz866E+m8hoSTweN0YtmxXd3QaDBfdU3I8yGem/PFjTW0OZ0u2Htz/MLOvJMhVZfC1xd80T9s80RPHa81vD3KWfFB5rXrAk39PvwAxRWojJpemo1Wp35cNNZ34fEkXtNCweXFuFwsn/nMZ9iyZQv/7//9P37zm9/wn//5nxcc88YbbzBr1qxw2ScQJB0hIanzqqScR9/zP9bPuS7um/YpisKztS/TMnAWgBxjFl+Z97kJzYoaCeuBff75R+mLl6DNyAh53hacc5MWyLmBUM8NgLZ0CZJRHXPhatqHZ8hCOMk15fClufcje39377VsZV/7wbCuEQl0uXmkensGufv7GNi/1/+cVitTXK6GpuzDLlpb+mJhokAwZsb9zllQUMCmTZtYu3btBeGnzs5OjEYja9eG1x0tECQLiqKw11sCLktSSAm4MmzFWb9L3dAZA8mvccyO1k/Y3ab2ttJr9Dw8/wuk68Nf2dUfnEi85sL3l/M9N1nmi4elACSNDl211/PjceOsDU9icTCVWeXcUbHJv/3Uib9wZqA17OuEm6x1gcTivve3hDwX3NBPVE0J4p2wfi3My8vjscce47bbbgvnZQWCpKGl3UpXv1riPbM4kzRToDGfo2YruFUPhK76GiS9KRYmjpkmSwsv1L3m375/5p1MTSsM+zqOc60M1dUCoC+cgqmq+oJjfDk3Wp2MTq8J8dxYzhM3ALqZq/2PnTVbUSKQF7N6+pUsL1THGzg8Tn535Im4TzA2Vc9EP206AMMNJxluavQ/N6MsG1mjhq0a67oScp6W4PIhvn3eAkGSsa8u0LhvSXW+/7HiceE85puXJKGP8/LvAYeVPxx5CpeiTnG6dvrVLPGWQoebfl+uDZCxas1Fc3l8nhtTih5Jki5ZLeVDzihAM00tUVcsHbjPngi32UiSxL3Vt1OcrjYv7B7u4akTf4lrUSBJEpnrAknswd4bvUFLUYna9mPQ6qC9dSDq9gkEY0WIG4EgSiiKwt4aNd9GAhZXBtz8rsb9KINqXxTNjAXI5vyLXSIu8CgeHjv2DL32PkBNIN5ccVNE1lJcLiwfq4MuJa0W88oL52u53R7sw2ryq29UgDnN4MuNpX/QftFrhyQWnwhvYrF/DY2OL897gFRtCgCHuo75GxzGK+blK5FT1ITogU934+rv9z9XFtS24FRQ7phAEG8IcSMQRInWrkHaetSwROX0DDKCZiCFJBLPuz7qto2H95q3UtNbD0C6Po2H5n4WjayJyFrWQwdxD6gJv6kLF6NJT7/gmKHBoGRi79BMjSxhTlGFzvk5Nz60JYuQTGYAXE0H8Nj6L3rcZMkyZvK52ff4t18++UZcdzCWDYZLloUXV+T4ReOpWhGaEsQvQtwIBFEitHFfwDPj7mzC3a6KBTlrGpqp8Vtt2NjfzF8b1T486miF+8g0ZIxy1sSxBIekrll10WNsQeLF5PXcAGR4H/dbHRf9EJZkbSCxWHHjqv84HCZflLm5s1g3Q7Xfrbh59OhT2JxDEVtvsmReuzZQFr71Q39ZuClFx7RiNTQ10D9MZ1t4RlgIBOFGiBuBIErsvURX4uCmfbq568PaHyacDLmG+NOxZ/xN6TaUrKUqqyJi6zl7ehg86u1InJNDyqzZF7drMLRSyofZ+9jtURgcvvg0a7+4AZw12yLqibi17AZKzepU9O7hXv5cE7/5N7qcXNIWLQa8ZeH7AmXh5bMCf7sNNR0XnCsQxANC3AgEUaC9x8aZTvVbbtlUM9lmtZrHY+vD1bBbPciQiq5yZaxMHBFFUXim5iW6h9W8oFJzMTeWRLZ7suXjHf6OxBlXrwrpSByM7RLiJiP10uXgPuSMQjRT1OorT38b7vaTk7b7UmhkDV+c+1lStGoV3MHOo+w692nE1pssmSFl4YGwaWllrj801XCiM24FmuDyRogbgSAK+HrbQKjXxnn8Q/CoFUf6mauRtIYLzo0HPmnbx76OQwAYNUa+MOfeiOXZgDo81F8lJUmYr7x0z59LiZvMoBCVxXrxpGIAXXUg3OWs2X7J48JBtjGL+2fd5d/+S/1rdNq6I7rmRDFVVaOfrlZ6DZ9qYOjUKXV/io7p3qqpAYudzjZRNSWIP4S4EQiiwN6L5NsoblegSkeS0c1ZFwvTRqXD1snzda/4t++beTs5puyIrmmrOYGrS20UlzJnLrqcnEseG5xQbEoN9A3KCBI3l/LcAGjLloK3p5Dr1G4UR2RzYRbkzeXKKVcA6uiKx48/g9srcOMJSZLICi4L/yDgvSmbGRDoJ0+IqilB/CHEjUAQYdp7bTR7v90WF6STn+n9IG38FMXb+l9bshg57dIf4LHCo3h44vjzONyqOLhyyrKI9bMJJiSR+OqLJxL7GEtY6mK9bnxIWgO6Cm840OXA6QsTRpA7KjeRa1J/342WFt5p/mCUM2JD+vKVyKm+svA9uPr7AHWQpr9qqkaEpgTxhxA3AkGE+fREICR1xaxAlZTjaKBBmm5OfE7/3tKyjUZLM6DOTLqj8paIr+m2WrHuV0c6aNLSSfPOO7oUIdVSqRdWS8HInhuIbmgKwKg18ODsz/jnT73V9D5NlpaIrzteZL2ejFVr1A23mz7vGAyjKTQ01XFOhKYE8YUQNwJBhNkTJG6WzVTFjbuzEU9HAwBy9nR/Ums8cdZ6jjdOBcq+PzfrHoxRyAmyfLLLX3psXnklknbkIZw+caPTa9DpAnlAwX2ERhM3cm4xco5ayeTpPIW7J/J9aEozitlYrM7J8jVGtLtHtjMWZF67FrzJ3P3bt/p/N+Uzg6umRGhKEF8IcSMQRJBz3YMhVVK53pCU41io1ybeyr9dHhdPHn/OP15h3YxVlGeWRHxdRVHo/2ibf9t8id42wfhKwYNDUgCZqWP33EiSFHXvDcDGknUUm9Wk3c6hbl5teCsq644HXXZOUFl4PwP71Aqv0qpcZFn9u20QoSlBnCHEjUAQQYK9Nld4vTaeIUug/FufEsj3iCPebnqf01Z1ivWU1AJuLo1O12R7UyOOs2cAMJZXYJg6bcTjXS4PDrsqwIKTiQFSjFq03kGP/dbRPSK6ypWgUb1EzvqPUdzOUc6YPBpZw4OzP4NOVm3fdmYn9b2nIr7ueMlcGzxvSk0sNpp0TCvJBMAqQlOCOEOIG4EgQiiKwp4T7f7tpV5x46zZDm7Vta+buQpJF1/l382W07zTrOZWyJLM52bdg06jG+Ws8ND/0egdiYO5VAM/UL0xvkZ+lkvMlwo53pCKtnSpumEfxNV0YCwmT5r8lDxuKd/o336q5i/+BO54IbQs/BTDjaoAKw9qa9AgqqYEcYQQNwJBhDjbOci57sAsqWyzEcXjxnk8aPr37LWxM/AiON1Onjj+nL8L8caSdcwwT4/K2h67nYE9nwAgGYykL71i1HMuVSnlI8O7b8DmxO3xjHq90NDUthGODC9rpl9FWUYJAF1D3bx26u2orT0WJEkiK8h70/uBGlYNCU3VitCUIH4Q4kYgiBB7aoKrpAoAcDUfCJr+PT/upn+/3fQ+bTbV7hnp0/wJr9FgYO8ePMPDAKRfcQWy0TjqOaOLG9UrpqAKnNHQTJ2JlK56I9xnj+MZiI43QpZk7p91FzpZDYttPb2Tk32NUVl7rKQvXxEoC9+jTgsPrpqyWuy0t4rQlCA+iDtx85vf/IYHHnggZN+JEye4//77WbhwIWvWrOHRRx+NkXUCwdhQFIVPvSEpSYKlXve989j7/mP0cVb+fWaglXdbtgKgkTQ8MOueiHYhPh/Ljo/8j0frbeNj6BJl4D7MwUnFY8i7kSQ5aN6UgrN2x5jsCAcFKXncXLbBu7LCn0/EV3hKNhjIuEadFo7b7Z8WHlo1JWZNCeKDuBI3jz32GL/61a9C9vX29vKFL3yBkpISXnzxRb75zW/yy1/+khdffDFGVgoEo9PSbqW9V+10W12USUaaAXfPGdytJwCQMgrRTJ8TSxNDcHvc/LnmL/5w1PXF1zI1rTBq6zvOtTJUXweAfuo0jGXlYzrPZg323FyYF5QxjoopH7rqa/wTsZ21H6GMIZwVLtYWXeMfrtkx1MXrp96J2tpj4WLTwkurckTVlCDuiAtx097ezpe+9CV++ctfUlpaGvLc888/j16v55//+Z8pLy/njjvu4MEHH+T3v/99jKwVCEZnT00gkXiZNyTlDCr/1s9ZhyTFxcsPgA/P7KBl4CwAhSn5bCiJbi5Q/3lem7GWxttswaMXLhKWCp4vNUZxI6dmoSmaD4Ay2IP77LExnRcO1PDU3Wi94akPT++gsb85auuPhi4nl7SFQdPC9+/FYNRRVKqGpgYHHJw73R9LEwUCIE7EzbFjx8jIyOC1115jwYIFIc/t3buXZcuWoQ1q5LVixQoaGxvp7o7PgXOCyxs1JKW652VJYkl1Hop9EGf9x+oBOiO6qksPgow2HbYu/hrUrO+zQbkf0UBxubB8vFPd0Ggwr7xyzOcGe25S0y6dUAzQP4aKKR+xSiwGKEzN95feKyg8XfNiXM2eygyeN/W+KtgrZgdyx+qPi9CUIPZE7x1sBNauXcvatRf/ptjW1kZVVVXIvvx89YXU2tpKzggD9UZDqw2vttNo5JD/k5Fkv8dw3F/D2X66+tXE2NklWWSbjQwf2gou9YPYUH01upTUSds6Ec6/P0VReLb2RZwe1QNy7YyrqMopveT5kcBy8BDuAXXGlnnxEgxZGWM+NzjnJj3DiEYjh9xjtjmQlDww5Bzza15Ttgi7yYwyZMHVfADZaUU2mcds12S5vnQ1+zoOcXrgLK2DbXxwZjs3lKmDVWP9GkyfMxvD9OnYz5xhuOEkzjPNVMwqYtvbdbicHk7VdrLmhqpJ2Rfre4w04v4iT1yIm5EYHh5Grw/9RmYwqBUQdvvYv4mdjyxLZGVF5gPGbDZF5LrxRLLf42Tu79BHgSqXa5fNIDPTxOnjgcGIeVdtQh+hv72x4ru/9xt2UNurjoHIS8nmwaV3YNSNXqUUTs7t2ul/PP2mDeN6XQ55w1IpqXpyc9NDnjObTcyYlhk41uEZ17WVBdfS/8mr4HGjOf0pmcsjP1crmL9Z8QDf3/IzFEXhjVPvsbZqBYXpAQ9JLF+DjltuouE3/wPA4PYPqfy7bzJzbiFHD7QyPOSip8NG1eyCSa8j3mcSm1jeX9yLG6PRiMMRGiv3iZqUlJQJX9fjUbBYbJOy7Xw0Ghmz2YTFMoTbHb0kxGiS7Pc42fvzeBS27Vc77GpkiVlFGXQe+gRXbxsA2ulzGNRkMdg7GFa7x0rw/XUP9vLEwUBi/r0z72DI6maI6Nnm7Omhd7/aLE+Xk4Myo5zeMf5sFEVhwKJ6yEypOv95wfeIKxDO6ewZHPO1AZTSK+GTVwHo27cFT+XaqI7JyJJyWTfjGrY0b8fpcfGbT57iW0u+glariflrULdgKXLKk3hsNjq37yDztjspqczh6AG1q/X+T5rJm5I24euL95nEJpL3ZzabxuQRintxU1hYSEdHaAzXt11QMLlvBi5XZP6o3G5PxK4dLyT7PU70/k409dA7oIrveWU5GHUabIff8z+vnb0uLn5ubreHZ068zJBLFQdXFC6mOrMy6rb1bN8O3uoa81XX4PYAY6xOGh5y4nGr56ak6i+w3e32oJElDHoNdoebPqtjfPeXXoCmsAp3Wx2e3rM4WuvRFFSM/fwwcEPxeva3H6FnuJeanno+PrOXq4qWATF+DWp0ZFyzit533kZxuej+4AOm3nAzBqMW+7CLU3VdDNmc6PSTayUg3mcSm1jeX9wH/JYtW8a+fftwuwPfwHbt2kVpaemk8m0Egkiw63igSmrFnAI8/W24Tx8GQErLQTtjYYwsC+VI53EOdh4FIE2Xyh2Vm6Jug+LxBHrbSBLmq8aXZB1aBn5hMrEPX1LxWEvBgwn0vAFnbXSGaQZj1Bq4p+o2//aLJ19nwGGNuh0XI3PNOn9ZeP+2D5EVj7/njcvpoemkKPgQxI64Fzd33HEHVquVH/7wh5w8eZKXXnqJxx9/nK9+9auxNk0gCMHpcrOvVvUqGvUaFlbk4jgWyLXRzV6HJMf+JWd3OXjmxMv+7TsqN5Gmi34O0FBtDc4utQNwyuw56HJyx3V+SHfii1RK+fCJmyG7C4dzfFVH2rIrwJuD5GzYg+IcHtf54WBu7iyW5KtVpINOGy/Uvh51Gy6GLi+P1AULAXD19mI9sJ/K4KqpY+2XOFMgiDyxf6cdhZycHP7whz/Q2NjI5s2b+fWvf833vvc9Nm/eHGvTBIIQDp3sZsg7oXpJdR46nDhrvZ4JjQ79zLF13Y00Lx5/k+7hXgCqMstZVrAoJnb07wgakjnGjsTBDA4ECgrGIm5g7L1ufEg6A7ryFeqGcxhXw57xGRkm7qi8BZNWTc785Nw+DrediIkd55O1br3/cd8HW5hSlEFquvrzPt3Yy/BQ5CerCwQXI+7EzU9/+lOefPLJkH3z58/nueee48iRI3zwwQfcf//9MbJOILg0u461+R+vmFOo9rVxql2KdRUrkYwTT7AMF63WNl6vUXOAtJKGz1RvjmqSrA/34CDWfXsBkNPSSF04foEV7LlJTbv0ZHXffCmAftsEQlNBotQRg9AUQIYhnc0VN/q3f7/3aRzu2AsH08xZ6KdOBWCovg776RYqZqneG49H4VStmBQuiA1xJ24EgkTEOuTkcIOaY5CRpmdmUWbIHCndnHWxMs2Poij8+fiLuL0jFtYXr6EgNTaDOwd270JxuQAwr1iJrLtwdMJoDI4x58Yc3KV4DPOlzkfOK0XOVieje9pP4u5tHfc1wsHKKcuoyFR7ELUPdvF24/ujnBF5JEkic21oU7/Q0JRo6CeIDULcCARhYG9tB26PWrmzfFYBSlsNnl51nIGmsApNbnEszQPgk7Z9/knTeaYcro/ixO/zOX/cwkQISSgeY1hqIknFkiSFdiyOkfdGlmTurb4djaRWIL3T+CHttth7RswrrkQ2qSGzgd27yEpRyMxWt1tP92O1RD9PSSAQ4kYgCAOfBCVPrpxTGHdeG6tzkJdP/tW/fe+s29Frxu8tCQfDLc3YW9R5SYaSUgzTiyZ0nbGKG/MkxQ2ArvJK8I6kcNXtRHG7JnSdyVKYWsD6EnUyt0tx83ztKzEfVCkbjZi9AlVxubDs2B7qvTkRewEmuPwQ4kYgmCTd/cPUne4DYEpOCtNThnE17wdASslEW7okhtapvHryTQadatPKK4uWMCe3Oma29H8UlEh8zcSTrH05N3qDBp3u0v1UJuu5AZCMaWhL1IGRyvAAruYDE7pOOLip7DryUrIBqOmtZ3/H4ZjZ4iPz2nVB08I/oHxmoPKt7mh7zAWY4PJDiBuBYJJ8cjw0kdhVs9XfmE4361qkKA6hvBgNfU18fO5TAIxaI59bdGfMbPE4HAzs3gWApNeTvmz5hK81aPV2Kh8h3wbOEzfWiY9sCU4s9lfBxQC9Rs8XFt/t336x/jV/M8ZYoc/PJ3WeOknd1dODtvkEBdPUWVw9nYN0tcdHbx7B5YMQNwLBJPkkuHFfVRbOE94p0rIG3azVMbJKxe1x82ztS/7t2yo2km3KjJk91gP78NhUD1L6kmVoJjhCxWF34XKqidEjhaQgNCw13lLwYDTTZiOlqY1D3WeO4LHGrknd0mkLmJc7C4B+xwBvNr43yhmRJzO4LPz9LVTPDXSQrzsqet4IoosQNwLBJGhpH+BspzqvqGJaBpndh1Hs6rdUbdkVyCmZMbQOPjj9Ea2DqmdpRvo0VhddGVN7gkNS5jCEpABSRigDB9BqZNJMan7RRMNSAJIkBxKLFQVn3Y4JXyscfGbmbei8XsGtZ3ZyZiA2VVw+UmbPQV84BYChulqK0h1oNGqoqu54R1LOUBLEL0LcCAST4OOjgZDUytn5OI4GvkHrY5xI3D3U6/9GLyFxb/UdyFLsXvKOzg6GatTmc7r8AkyVVRO+VnAyceooYSkIHcEwmfwPXfXVgPqB7az9CEWJ3Qd2bkoOG0vUvzGP4uG5upfxxNAetSw88Ddv2/kBJZVq7s2wzcnpUz2xMk1wGSLEjUAwQVxuj79xn1YjsyzXgqe7BfD2Rskvj6V5vHjydRwetdHbqulXMsM8Pab2WHYGl39fM6nmgYNjrJTy4QtNOV0ehh3jG8EQjJyWg2b6HACUgS7crTUTvlY4WDdjNfkpqoA41d/MJ+f2xdQe85VXBcrCP9lFRbnZ/1ytCE0JoogQNwLBBDnS0M2ATRUPi6ty0dQG5kjp510fk86/Po5113DIOxjTrE9nU9n1MbMFvEMyd+5UNyQJ85VXTep6Yy0D95GRNvmKKR+6mYE8KmdNbHre+NDJWu6pCoyieaXhDazOwZjZIxtN/gGoitOJ+fRhTClqSLDpZLcYxyCIGkLcCAQTZMeRc/7Hqyv055V/L4uVWTjdTp6ve9W/vbniJv9colhhO3YUV68alkidNx9tZtbkrjcYqHpKHYu4CVPFFIC2eBGSMR0AV9NelOHYVgLNzK4MGaz5WsNbMbUn89rr/GXhlq3vUzlLnRTucSucFD1vBFFCiBuBYAJYbA7/uIXMND0l/fsC5d+z1yJpYlf+vaVlG11Dqm0VmaUxG4wZTMiQzEkkEvsI9dyMnFAM582XmqTnRtJo0VZ6E7PdLpwnd03qeuHg9sqbMWrUe9zZuofG/uaY2aIvKCB17jwAXD3dTNf1+p+rC8pREwgiiRA3AsEE2H2s3T9u4erZWbjqvB/eGh26WWtiZlfXUA/vNKvhMVmSuacqNoMxg3ENWLAeVJveacxmUuctmPQ1xzpXykdwWKpvYHKeGyB0HEPN9pg3qcs0ZHBz2Qb/9rO1L+P2TDy3aNL2rAvMm5L3fkhOXioA7a0D9HbbYmWW4DJCiBuBYALsDApJXZPaBI7A9G/ZZL7EWZHnhfpXcXrU0QBrpl/F1LTCmNniY2DXx+BWP2jNK69C0k7eq+UrBddqZfSGS3cn9pEV5N3pnWRYCkCTPc2fMO7pOY2nq2nS15wsq6atZFqaWop9xtrK9rOx8yilzJ6LrkD92xuqOUF5UeDnL3reCKKBEDcCwThpaR+gpUPNsyibko6pKRBy0c1bf6nTIs6RruMc6VJLrTP0Zm4qjZ0tPhRFCQ1JXX1NWK7rC0ulpOnH5JnKSg8SN2Hw3MB5HYtjnFgMoJE1fKb6dv/2X0+9S7/dEhNbJFkOKQvPPXvQl4ZD3TExjkEQeYS4EQjGyc4jgbyBG2dYUPrVb6KaqbPQZE9sCORkcbid/KXuNf/27ZU3Y9QaY2JLMMONp3C0qs3ljBWV6KdMnfQ1XS4P9mHVOzWWSimAzCDPTTjCUgC6sitAq17XefITFFd4rjsZyjKKuXKKmsw+7B7m5ZNvxMwW85VXIxnUv0HHpx8xfUYGAFaLnTNNvSOdKhBMGiFuBIJxcH5vm0proK+Ifl7syq3fa/6Q7mG1Gqkqs9xfPRNrLCFem8knEsN5ycRjyLcBMOg1mAxqOKzPOrmEYh+S3oSu/Ap1wzmE69TesFx3stxafiOpWnWsxaftB6jrPRkTOzQmExm+snCHgxlyh/+5E4dEYrEgsghxIxCMg8MN3Vi9vTquLQPOHQdAMuejmREbQdFp6+bdlq2AmkR8d/VtMU8iBvAMD2PZvRsAyWAkfWl4yuNDy8BHr5Ty4QtN9VrtYQuLhCQW18Y+NAWQpk/llvKN/u3nal/B5c3DijaZawOJxSkH3vP3vGms62LIJnreCCKHEDcCwTjYfigwv2e1MdCdVj93PVIMRhsoisJf6l/1f3itK1rFlNSCUc6KDgN7dqPY1WnV5uXLkY3hCZMNDoyvgZ+PrLRAl+LB4fB82MsFFciZaqjNfa4WT198eCSunHoFxWY1RNpm6+DD07GZg6UvLCTFWxbu6eqkNF/d7/EooixcEFGEuBEIxkiPZZgjp9T+MdPNCult3pCUzoiu6uqY2HS46zjHulWRlWnI8M8aigf6tm/1P85YdW3YrjsYVO2Umj52z01mevjzbiRJQjczkCQdL94bWZL5TPVmJO8crDcb36N3uC8mtgR7b/Kbd/sfnzjUJhKLBRFDiBuBYIzsOHzO16eP26e2glt1q+uqVyHpo98B2OF28EJ9IIn4jspNGLVj/7CPJMPNTdibGgEwzCjGWFIStmsHe27G0p3YR0hScRjKwX1oK68CSS1Hd9btRIlhf5lgZqRP55ppKwFweJwhfyvRJHXuPHSFalm4pv4QBXne8GC3jfazsanmEiQ/QtwIBGPA41HYflgNSWklN2UDvkRiCf3c6y59YgR5p/lDeobVqpOZWZUsypsXEzsuRv/2bf7HGavXhPXagwMT89xEohwcQDaZ0ZaoXaCVoX7cLYfDdu3JsqlsA+m6NAAOdh7lWHdt1G2QZJms9YEcoGm2U/7HIrFYECmEuBEIxsDRxh56LOoH4i3TupCG+gDQFi9ENudH3Z4OWydbmrcCoJE03F11a1wkEYOaSDywW20gJxkMpF+xIqzXDxY3aeMRN2Fu5BdMcGKxo2bbCEdGlxSdic0VN/m3n697Bac7+om85pVXoklX53GZj36ITqd+9Jys6cBhj02ysyC5EeJGIBgD2w6e9T5SWCEFvpnrFtwYdVsUReH5uldxKWr4Y92MVRSkRl9gXYqBPbvxDKuJxOlXLEdjCm/Izjd6QW/QoNOP3p3YRyRybnxops9FSs0GwH36MJ7B+OnjckXhYioySwHoGurmPW9lXTSR9Xoyr1XzwTRuJ0XGAQBcTg8nT3SMdKpAMCGEuBEIRqHPaufQSTWReHF6J4ZBdfSCnF+OpqAi6vYc6jzKiZ46ALIMmXGVRAyhicSZq8OXSAyqsLN6hcl4QlJwfs5NeHrd+JBkGV21N6lc8cRNYjGoSc/3VG1G9lbzvdP8IZ227qjbkXHtWiSdWgqed/Ij/34RmhJEAiFuBIJR2HH4HB5vJvFNmXX+/fr5G6MeCrK7HbxQ/7p/+87KTRg0Y0+qjTTDLc0hicSG4pKwXt8+7MLt8gDjC0kBZKTqkb2/r3Dm3PjQzVyNb8aA88S2uEksBpiaVsi1Rar4cnlc/KX+1ahXKmnTzZhXXgVA2sA5Mk3q77Hj3ABd7dao2iJIfoS4EQhGwKMo/t42UzW95A6qyZBSeh7akiVRt+ftpvfptfcBMCu7igV5c6Nuw0j0b9vqf5yxanXYxV9IMvE4GvgByLLknw4e7pwbADktB+2MhQAogz24T8dPYjHAjSXryTSoIxCOdddwuOtY1G3IWh/o4j2l84j/8bGDrRc7XCCYMELcCAQjcKKpl65+NX9kc26gjb1+/gYkObovn7bBDt5vUcMd2jhLIobzEon1etKXrwz7GtaQSqnxe6x8oamBQQcutydsdvnQzQqE4RzHPwz79SeDUWvgjspN/u2/1L2G3R3e8Nxo6KdMJXW+2sk7v/0IWm/KVN3RdpFYLAgrQtwIBCOw9YCaSJwhDVLp8pbRGlLRVYVnuvVYURSFv9S9itubRHxd8RryU/KiasNoDHwanEi8IuyJxBBIJobx59wAZHo9NwpgGQz/B7tm+lyk9FwA3KeP4LF0hn2NybAobx4zsyoB6LX38XbT+1G3IWvDDQBoFSdTHWcANbG47mh71G0RJC9C3AgEl6C7f5j99eqH0/XmOiRF/aavn70WSRfdZnkHOo9Q01sPQLYxiw3F4U3UDQfBvW0yw9zbxsegZWI9bnxEqteND0mW0c1c491ScMZRWTioycV3V9+G1tt08P2W7bQNRrdayVRV7c/FKjwbGDZ69ECr6FgsCBtC3AgEl2DrwbMoChhwsELnTSSWtejmRLdp37BrmBdDkohvQR9HScSgJhIPN6r5SIaiGRhKSiOyTvDohfEmFEPkxQ2ArvqaQMfi2u0o7vgKtxSk5HFd8RoA3Iqb5+peiaqokCSJrOvVpn7pjl6yZTWZuLfLxrnT/VGzQ5DcCHEjEFwEp8vjTyS+ynQSrUf9INRVXYmckhFVW95qep8+u/qmPzdnJvNzZ0d1/bEQmki8JmK5QCGjFyaRcwORSSoGkFMy0JaqyebKkAVX0/6IrDMZNhRfS44xC4C63pPs6zgU1fXTlyxFm632BZrSGuS92S8SiwXhQYgbgeAi7DnRzoDNiYyH61IDLet18zaOcFb4abW28cFptSeIVtZyZ2V8JREDuG02LJ98DHg7Ei8Pb0fiYHwJxbJGwmjSjfv8kEZ+ERI3ALrZgbCh8/gHEVtnoug1eu6qutW//VL96wy5hqO2vqTVknXdBgDyrc0YJNW71VjXFeKdEwgmihA3AsFF2LL3NABL9I2ketRuqpoZC9BkTY2aDR7Fw7O1L+Hx5vpcP2MNeSk5UVt/rFh27USxqx9I5hVXoklJidhavlLw1DTDhERe8AiGcHcpDkYzZSZShjos0n2uBndf/Hkk5uXOZp7XC9jvGOCNxnejun7GqtXIqanIeJjScxxQZ7idOHguqnYIkhMhbgSC86g/3UvDWQsSCjekBXqB6BfeHFU7Pjm3j4b+JgDyTDlcH4dJxIqi0P9hwDORuTZy3ZJdTjf2YfUb/kRCUhCdnBtQ80r0s4K9N1sjttZkuKvyFnSy6gHbduZjzgxET4TJRiOZa9X8tWn9Nag1bHD84DncESjTF1xeCHEjEJzHGzvVDrvzdC3k0AeAprAKbWFl1GywOgZ55eQb/u17qjej04w/DBNphmpO4GhTv2mbqqoxTJsesbWCy8AnkkwMYDJoMXjnUUVS3ADoqq4C7+/MWbcDxRXdnjJjIceUzcaStYDqKXyu7mW/pzAaZK1bj2QwYHQNkmdTy8IHrQ4a67qiZoMgORHiRiAIYsDmYPuBs4DChpSj/v36RdH12rzc8AaDLhsASwsWMiu7Kqrrj5W+DwJ9UnyDESNFSHfiCYobgByzEYCeAXtEq4QkYxra8ivUDYcNV8PuiK01GdbNWE1+itqb51R/M7vP7Yva2pq0NDJWrQFgWu9x//6De85EzQZBciLEjUAQxLaDrThdHqq155iuUYcLyjnFaKbPi5oN9b2n+OScWkFi0hq5vWLTKGfEBmdPN9aDaiWQJiOTtEWLI7qeNUziJtt7rtPlYWDIOWm7RiI4NOU49n5c9nHRyVruqdrs336l4U0GnbaorZ+1fgNoNGQPtZLqVKsCz53up/V0X9RsECQfQtwIBF5cbg9bPlUTidebAnNv9ItujlqFksvj4tnal/zbt5TdQIYhPSprj5f+7VvB+2GdsWo1klYb0fWCPTcTDUsBZHs9NwC9lsiGpuT8cuTcEgA8XU14Ohoiut5EmZldyeL8+QBYnYO8durtqK2ty87GvPIqJKCoN+At3b29MWo2CJIPIW4EAi97azroGbBTou2gUqe2gpczCqM6IPP9lu202dSOscXmIq6etjxqa48HxeUKdCTWaCLWkTiYkB43aRNvYphjDgijbktky58lSUI/N9D00XH0vYiuNxnuCJowv/Psbpotp6O2dvbGG0GSKBxoQOftKXXsYCvWCItPQfIixI1AgFr1884er9fGGJRrs/CmqA3I7Brq5q2mLQBISNxbfTuyFJ8v0YF9e3FbLACkLVqMNjMr8msGCZG0DOMIR45MsOcm0uIGQFt2BZJR9b65Tu3FM9gb8TUnQqYhg5tK1andCkpIG4JIoy8sJG3JUjSKm2l9NYBaFn54r8i9EUyM+HznFAiiTN3pPprbB5iq6WGuXn1DlVKz0VaEf7L1xVAUhefqXsHpUUud1xRdRVH6tKisPRH6PoxeIrEPa7+3gZ8skZI6cc9NNMNSAJJWj27WGnVDceM8EV/TwoNZM/0qpqaq/XlaBs6y4+wnUVs7+0Y1aX96/wn/HLdjB1pxOt1Rs0GQPAhxIxCA32tzXbDXZsENSJrI5pH4ONh5lOPdaifkTEMGN3u/Qccjwy3NDJ9Uh3jqp07DVFUdlXV9npvUdAOyPPEcqGiGpXzoZq8FrxfOeWIrijuyicwTRSNruKc6kFz8asPb/tEfkcY4o5iUufMwuIcoGFDnlA0PucS0cMGEEOJGcNnT1mPj0MkuCuQ+FuubAJBM6ehmrorK+kOuYf5S96p/+87KWzBqJx52iTR9WwJ5I5nXrotKsrXTEWjgl26e3ET2rPTAz7YnSuJGTs1CW7oU8M6batgTlXUnQkVmKSunLANg2D3M87WvRG3tnJtuAWBGX6B55uFPz8RllZkgvhHiRnDZ897e0yjABtNhfJ/TxoU3Imkn9yE6Vl5reJt+h5q/MidnJgvz5kZl3Yng6u9jYI8aqpBTUjBfeVVU1g3JtzFPTvjptDJmb1irJ8KN/ELWnbve/9hxbEtcf2BvrriJdF0aAIe6jnGw48goZ4QHU2UlKbPmkO7oIXNIbQ7Z1zNEy6meqKwvSB6EuBFc1liHnOw8fI4CuY9FXq+NnGLGEFThEkka+pr46OwuAPSyjrurbou7wZjB9G39EMWlelAyVq1BNkRHAA70B8RNesbk1/SFpvoG7Lii1OpfU1CBnFsMgKezMW7LwgFSdSncVXWLf/v5ulewOYeisnbOLepAzxl9gaZ+Bz6JXuWWIDkQ4kZwWfPB/jM4XB42mA7jS+PIXHErki7yH9pOj4una15A8c7U2VS2gVxTdsTXnSgep4P+rd45UrIc0TlS5xNcEjxZzw1Atjc0pRDZAZrBSJKEfk5wWfiWqKw7URbnL2BuzkxAHaz5asObUVnXVFlF6pw55A62kOLoA9Smfm1nopP7I0gOhLgRXLbYHW627D0T4rWRjOmYl2yMyvrvNn0Q6GmTXsSaoqujsu5EGdi9G/eAOiE9fekydNnRm1AeKm4mLzyDK6aiGZrSli8PKgv/NG7LwkEVY/dUb/b3vtnRupuTfdFprJd3621IQHFvIBy2X3hvBONAiBvBZcu2Q61Yh5whXhvjohuR9ZFP5m21tvFOs1oSLEsyn511Z9z2tAG1VL33vXf825nXRbeaKzjnJn0SPW58xKJiCrxl4TNXqxuKG+ex90c+IcZkG7PYVBYQ+0/XvOhvVxBJUqqqyZg/j8KBUxicgwA0n+ymu3Mw4msLkoP4fTcVCCKI0+XhnT0tF3htopFr41E8PF3zAm5F7d9x/Yw1TEubEvF1J8NQzQkcZ9X+P8byCkxl5VFd39fjBiY3esFHiOcmiuIGQDdnHcjqZHLH8Q9QnNFdf7ysnn4lJeYZALTbOnin6YOorFv0mbuR8TCjL9Ce4eAnLVFZW5D4CHEjuCzZdayN3gF7iNdGv+DGqOTabD+7i0aL+iadn5LLxpLo5a5MlGCvTVaUvTYQ8NwYTTp0es2krxcqbqLb4l9OzQo0h3TYcNZ+FNX1x4ssydw38w6/Z/Hd5g9ptbZFfN2MObNJnT2baZY6dG71919/vANLX3yLQUF8IMSN4LLD7fHw5q5mpmh6Q7w2utlrI752z3AvrzW85d++r/pOdBpdxNedDI62NgYPHwJAm51D2uLozdoCtQ2/b2hmOPJtIHZhKR/6+YFQj+PIOyie+O7COy1tCutnrAHArbh5pvbFqIxmyL11MxrFxXRv5ZSiwKE9IvdGMDpC3AguO/bWdNLRN8RNpgNR9dooisJztS9jd6sDIK+eupzKrLKIrhkOere863+cue46JM3kPSfjYXDA7hs+HpZ8G4D0VD0a7y8/FuJGkz0dTdE8AJSBLlyN+6Juw3i5oWQd+aZcAE71N7PtzMcRXzO1upqUOXMp6j+BxqN2dT5xuA3boGOUMwWXO0LcCC4rFEXhjV1NlGg7mOefIZWl5kFEmD1t+znarQ4FzNCnc1vFjRFfc7K4LBYsO9WwiWQwknF1dLo2BxPuSikAWZLI8Qqlrv7hmDTU08+/wf/YcfituG7qB6DT6Lhv5h3+7Vcb3qLD1hnxdXM334nO42BavzqexO3ycHC38N4IRkaIG8FlxcGTXZzptLLJtN+/T7/kNiTtxAcxjoU+ez9/qX/Nv31P9e2YtKaIrhkO+t5/D8WpfmPOXL0GTWpq1G0IqZQKk7gByPOKG7vDjXUo+rOeNFNnIeeoibqezkbcbXVRt2G8VGaVs3r6lQA4PU6eOvGXiIenjCUlpC1dxoy+o8jeSq1j+1uF90YwIkLcCC4bPIrCKx81MkvXSoVO7S8jZRSiq4psfxlFUXi65kWGXGqH12UFi1mQNyeia4YDz/BQYPq3RkPm+g0xsSPcDfx85GUGxGVnDJJUJUlCvyDIe3PorRGOjh9uLb+RXKPabLKhv4mtZ3ZGfM3c227HoNiZZlG9Ny7hvRGMghA3gsuG/bWdnOkY4OYgr41h2e1IcmRzSD45t5djQeGo4Lb28Uzftq14bDYAzCuuRJeVFRM7wj16wUdukLjp6o/OaIHz0ZYtQ0pVhYK75SDuvtaY2DEeDBo998+6y7/9WsPbEQ9P6QunYL7yaop7j4R6b6zCeyO4OELcCC4LPIrCqzsaWahvYrpW7Qor55b4JzVHit7hPl6of92/fe/MO0jVpUR0zXDgcTpDy7833DDC0ZEluPTXnBm+UF5uUHJyZ19sxI0ka9HPC5TWOxPEe6OGp9ShqU6PkyejEJ7KueVWjJKTaRb1i4LL5eHAbtH3RnBxEkbcnD17lurq6gv+/eUvf4m1aYIEYG9NB+e6BrjJdNC/z3DFnUgR7AqsKAp/rnmBYW+PjuWFS5iXOzti64WTgd27cPf1AZC6aDGGqVNjZovFKzz0Bg0GozZs1411WMqHbuZq0KuC11n3MR5rd8xsGQ+3lt9ArkkdwXEqCuEpXXYOmdeuC/XeHDjHoDW6fYoEiUHCiJva2loMBgMfffQRO3bs8P/btGlTrE0TxDkej+q1ucpQS55GnY2kmToLzbTI5r183LqHEz1qkmiG3sydlYkRjlI8HnreDgxJzN4Yu6ouj0fx59yYM0xhnZieFwdhKQBJb0Lv64ytuHEcjM6Aysli0Oi5f2Z0w1PZN96MSQfT+1XvjdvlERPDBRclYcRNXV0dpaWl5Ofnk5eX5/9nNEZ+DpAgsdl9op2+nl5uMB3y7zNccVdYPyjPp3uolxdPBsJRn511Jym6+K+OAhg8dABnm9qB1lRVjam8Ima2WC3DeDxqibQ5K7yv9VSjFpNBzbeKVVjKh37u9aBV84mctdvw2Ppias9YqcwqY01QeOqJ48/jjmBDQk16Olkbb2RGX8B7c/xAa0jSuUAACSRuamtrqaiI3ZusIDFxuT28uqORDabDpMpq8qG2YiWa/Mg1z/MoHp488Zy/Wd/KKcuYkzMzYuuFE0VR6P5rQJRlxdBrA+fn24RX3EiSRG6GKjh7LHbcnsh33L2kLcY0dLOvVTfcLhyH346ZLePllqDwVKOlmXebt0Z0vazrN5KakcL0/hMAuN0Kn+5oiuiagsQjfAHsCFNXV0deXh733XcfTU1NFBcX8/Wvf51rrrlmwtfUasOr7TQaOeT/ZCTR7nHrwbMo/e1ck6GWkKLVk7rybuRL/O7DcX9vN26lvu8UAFnGTO6ZeUvY/9Ymymj3N3DwIPbmJgCMM2aQsWhhRD1coxH8jTwzO2VMP8fx/A7zs0yc7rDi9ihYbM6QUFW0SVl8I/3H3ge3E+fxD0lZugnZmH7BcfH2GtRqjXxx3r38f3v+GwWFN5veY25+NaUZMyZ8zRHvUWuk4K67Gfr9n2g1V+HSGKg90saSlTPIzot+H6aJEG+/w3ATD/eXEOLG4XDQ1NSEyWTie9/7HikpKbz22mt8+ctf5k9/+hMrV64c9zVlWSIrKzIvBLM5McIPkyER7tE27OTVHY3ckbIfraR+K89ccQvZM0Z/053o/Z3qaeG1BrXKSELi71Z+gan5uRO6ViS52P0pikLLG4FGgyX3fYbs7LRomnUB9iGX//G0oqxxvWbH8jssKjSzr1bNExl2KxF7TxgTWakoC9dh2fc2uOxIdR+StfreSx4eT6/BpVlzuGPwBl449iYexcPjx57lZxt+gFE7udL9S91j5sZ19H/wPsWdR2jIXYqiwN4dzdzzxWWTWi/axNPvMBLE8v4SQtzo9Xo+/fRTtFoter3aSXbu3Lk0NDTw6KOPTkjceDwKFostrHZqNDJmswmLZQi3O3Yu7kiSSPf44tYG8oZbWGBWy0WllAyYdT29vYOXPGcy9+dwO/jPTx715xxsKL2WKbppI64XbUa6v4FDh7DWnwTAUFSEVDU75rZ3tFn8jzVaaUz2jOd3mB5UfXWqpZeinNiW6Uuzr4cD74HHTf+eN6H6OiRDqE3x+hpcO2U1e08foclymnPWDv6w+1k+O/vOCV1rLPeYe/c9FP34J5zJnIVdm0rtsXaOHT7L1KLMSdxFdIjX32G4iOT9mc2mMXmEEkLcAKSkXPimU1VVxY4dOyZ8TZcrMn9UbrcnYteOF+L9Hvusdt7e3cQ3U/b69xmW3oFb0sMY7J7I/f2l9nXaBtXOx0Xp07ih+Lq4/Rmdf3+KotD5ysv+7eybb8XtAWKYhwLQ36sm+koSGFN14/p5juV3GDwdvL3XFvvflykbXeVVOGu3ozhs2A69i2Hxxavs4u81KPH52Z/hJ3v+E4fHyfYznzArq5r5k+jGPdI96ksryFiyhLLaA5woULuM79zSwG33xzaUOh7i73cYXmJ5fwkR8KupqWHRokXs3bs3ZP/Ro0dFkrHgory6o5FFch1F2h4A5JwitBEcs3C06wTbz+4CQCfreHD2vWjlhPnugO3YEYYb1Twh/bTppC1aHGOLVPp71YTiNLMxIvF7X0IxxLbXTTD6hTepag5wHH4bxR4/nr/RyE/JC2l58OeaF+i3D0Rsvbw77mLKUBMpjj4A2s5aaKpPjD5BgsiSEOKmqqqKyspK/uVf/oW9e/fS0NDAT37yEw4ePMjDDz8ca/MEcUZr1yB7D58KGY5pWHkfkhyZP/cBh5WnTgSaSd5ecTOFqfkRWSsSKIpC92uv+rdzNt0asZ/VeLAPO3HY1ZybcFdK+QjuUtwV43JwH3JGAdpKtbwahw3HkXdGPiHOuHLqFczPVb01VucgT9U8H7GJ57q8PLLXX09F9z7/vl1bTyVlqEcwPmL/DjYGZFnmkUceYd68eXzrW99i8+bNHDp0iD/96U9UV1fH2jxBHKEoCs9+UM9NxoOkyWqljbZ8OdqpsyKynkfx8PjxZxlwWgGYmzOLa6atiMhakcJ27CjDpxoAr9dm8ZIYW6QSyTJwH3qdhsw0NY+vvTc+xA2AYfGt4J155jjyLp7hyHk/wo0kSdw38w7S9Woy+vHuWt4/vT1i6+XctIlCvZXMIbU3U3/PEEf3nY3YeoLEICHEDUB2djY//vGP2bFjB4cPH+bZZ59l6dLIzgUSJB6HGrrpb65jpUHtDIzWgGHFZyK23pbmbf4uxOn6NO6fFdnmgOFG8XjoevlF/3bOzbfEhdcGIjdT6nwKstR8PuuQk8FhZ8TWGQ+yOU8dywDgHMZx8I3YGjRO0vVpfG7WPf7tVxveorE/MnOgZKOR/HvupbJrD3g9RHt3NGMbFEM1L2fi411MIAgDTpeHZ7fUcVfqbmSvvjAsvQ05NTLTrE/2NfJ6Y6Ds+8HZ9/q/rSYK1v17/X1tDEVFpC2Jny8MfT2BasaMrAiKm+xAsUJbT3grKCeDftEm0Kh5W85j7ydM12Ifs3Oqub5YbUzoUTz88difsTkj8/NNW7KUwvJCplrULxoOh5s92xsjspYgMRDiRpA0vPtpC+VDhynWqgmFcuZUdHPXR2Qtq2OQPx172j8JeWPJWmZmV0ZkrUihuFwhXpvc2++KG68NQF9PIEyUmR05cVMYJG7a40jcyKlZ6GavUzfcThz7Xx/5hDjk5tLrKcsoAaBnuJenal6ISP6NJEnk33c/5X2H0Hg7g5841EZnW+KE8wThJX7eyQSCSdA7YOfDXbWhScRXP4AUgYolj+LhiRPP0WfvB6Ays4wbSyMjoiJJ/8c7cLa3A+oMqZS582JsUSjBnhtzBD03hSGem/jJuwFv5ZRv5lTNVjwDkR1MGW40soYvzrmPVK36Mz7UeZRtZz6OyFr6wikUrr+Wst6D/n073jsZsWRmQXwjxI0gKfjL1pPcrNsVmB9VviJiScTvt2znWLc6lThNl8qDc+5FlhLrpeSx2+l+7RX/du4d8ZUrpCgKfd2q0EgzG9DpNBFbqyDIKxRPnhsA2WRG7/M+etzY97488glxSJYxkwdm3+3ffvnkX2mxnInIWtk3baJEbgspDa8/1hGRtQTxTWK9IwsEF+FEcy+Wun0sMTSpO/QpGFZeum39ZDjZ18hrp9Shhr48m0xDRkTWiiQ972/B3dcHQOrCRTGd/H0xhocCZeCZ2ZHtGpyXaUL2Crt4yrnxoV9wAxjUsRCu+o9xdSReLsm83NmsK1oFgEtx84ejT2J1hr9/j2wwUHj/A2pysZedW04yPBQfieKC6CHEjSChcbrcPPv2Ye5O+cS/z3jlfcgp4RccffZ+/nD0SX+ezfXF1zIrpyrs60Qa58AAXW/8Vd2QJHI3T6xFfiTxeW0gsvk2AFqNTJ631Ly914YnzsIYkiE1pEvx0MfPJmSo5ZbyjZSa1blu3cO9PHbsGf9rKZykzV9I6dwi8q2qCBwedvHJ1lNhX0cQ3whxI0ho/vpxM8vtH5OlUb9xa6bNCTRACyNOj4s/HHmSAYfaz6Y6q4KbEjDPBuD0s8/jGVS/NZtXXIlh2rQYW3Qhwfk2kfbcQKBiyuH00DdgH+Xo6KObvQ7JrDaGdLWewFa/d5Qz4g+trOWhufeTrlMrCk/01PH6qcg0KMy79z6qbUfReALJxa2n+yKyliA+EeJGkLCc7RrkxKd7uMZYC4Ci0WNc9WBEckdeqHuVRovapyPbmMUX53wWjRy5PJBIYW89y7k3vWE1vZ6czXfE2KKLE1wplRFhzw2cn1Qcf6EpSaPFcMVd/u2eD55AcbtGOCM+yTJm8tDcz/pz1N5t/pCDHUfCvo423cyMu26nPKhz8bY3a0Xn4ssIIW4ECYlHUXj6rSPcnRKovDBecQdyel7Y1/q4dQ87WncDoJO1fHneA6TpU8O+TjRof/ZZ/zDM7BtuQpedHWOLLk60PTfxWg4ejLZ0KZoCtd2As7sV+4mtsTVoglRmlbO54ib/9hMnnvMPnA0n6StWUjVdh3lYrTDr6x3m4Cenw76OID4R4kaQkGw72Mrs3g8p0FgAkPLK0M0Jf5ioydLCc7WBCpV7q+9gRvr0sK8TDQaPHsZ6+BAA2uxssq7fGGOLLk2/13Oj0UikZxhGOXryFMRxObgPSZIwrAx02x7e83JCDdUM5trpV7O0YCEAdreD3x15nCFXeH/ukiRR+LnPM6vvUyRvbs/enU30dCXmz0wwPoS4ESQcHX1DHNi2jVXecJRH1pFy7ZfD3oCuz97P7w4/gUtxA7B6+pUsnxIfc5fGi+J20/ncs/7tgrvuRjZEXjRMBLfbQ793zlNGdkpUStSDPTfnuuP3w0+TX46uQp1dpgwPYP/0pRhbNDHU+VN3MjW1EIB2WyePHv0zbo87rOvocnIpu/0GivqOAarT8v3XjuPxJF5CtmB8CHEjSCg8isKf/3qAu4w7/PtMK+5BzpwS1nWGXXYeOfQn+h2qZ6g8o4TbK24O6xrRpO/DD3CcawUgvboK84qVMbbo0vT3Dvk/fLJzIx+SAshM02MyqA0fz8b5N/uUlfcg6byN/U58gLurOcYWTQyDRs9X5n3e3+DvRE8dL54MfxfmjGtWM2+qy9/7pqvDxv5difkzE4wdIW4ECcWWvWdY1PsumbKaFyFNmY1uztqwruFRPPzxyNOctqpiINeYzZfnfQ5tBLodRwNXXy/drwTGLJQ+9IW4ath3Pj2dAXGRnRud3CZJkpiWp67VO2DHFicDNC+GnJ5D1tXe8n1FYXjnkygRKKmOBnkpOXx53gNoJDU5f9uZj9l6ZmdY15AkiakPfoF5A/vA+3Pat6OZrnZrWNcRxBdC3AgShnPdgzTsfM/frM+jNZGy9stIYe4O/PThVznUqbqxTVojX1vwhYQbiBlM53PP4BlWJ2xnrlpNenV89+YJETd50Uvcnh4kpFq74jOp2EfG8k3ImWpIx9N+Eld9ZEYaRIPKrHLurb7dv/1C3Wsc7aoJ6xrajAwq772Vkl61MsujwPuvHhXVU0mMEDeChMDl9vDCa7u40xR4E09Z9fmwT/zeeXYPr9W8C4AsyTw0534KUwvCukY0GTx2lIFP1W6tcloa+XffPcoZsacnSFhEU9xMywsI2DNd8f2tXtLoSLn6Af+2/ZPnEja5GGDl1GWsn7EGAAWF3x9+itP9rWFdI33xEuZXp5Jm7wGgp8fOp9tEc79kRYgbQULw6tY6rht6A6Ok9vaQy1f6EyvDxbHuWp46/oJ/+67KWxOyA7EPj9NBx5+f9G/n3XkP2rT0GFo0NnzVLFqtTHqGMWrrTgvy3JztjH+hoJsxD23pUsCbXLznLzG2aHLcUr6RBblzABh2DfPj7b+md7g/rGsU3ncf8x1H/dVTB/ac4UxTb1jXEMQHQtwI4p6jjd0Yj73MdK36JuRKKyBl1efDukaTpYU/HHnC3w5+7YyrWTU9fpNux0LPm2/g7PBO/a6swnxl+Ds3hxuX043FWymVmZOCLEcvN2hqXrC4iW/PjQ/DynsDU8NPbMXVeiLGFk0cWZL5/Jx7KUpXO2Z323r51f7fY3OGL0SoMZmo/vIDlPce8O6R2PLSEWyDjrCtIYgPhLgRxDX9gw52vfmmv+zbLWkxb/gGki583+jbBzv47aE/4fCoSaQrpi/mrupbRjkrvrGfOU3Pm975URoN+fd/Luyl8pGgt9uGb2xSNENSAOYUPeZUPRD/FVM+5LQcDFcEZoMNb38MxZW4H9QGjZ6vzf8iuSa1uWSrtY1HDj+Owx2+BG9jSQlLNswne1CdTD7kUHj/5cMJOa9LcGni/91OcNniURT+8upObtVs9+8zXfVZNDlFYVujz97Prw896p9QXJVVzjdWPOhvD5+IKG43bX96FNxqz5Cs6zdimJYYjQdjlW/jwxeaGrA5sSTIt3nd7HXIBepUd8XSjmPfK7E1aJJkGNL5uyVfwWxQc6Aa+ht57Hh4h2xmrV3HsgILepf693bmzCAHRXl4UpG47+CCpOfN7bWs7n8Fk6x+a1OKl6GftSZs17c5bfzm0B/pGVbDXdPSpvD1hQ+i1+jCtkYs6H3nLezNTQDop04l55bbYmrPeOgJCgdFq8dNMNOCBNWZBAlNSbKMcdUXwduqwHH4LdydjTG2anLkp+Ty/VXfwKBRPWmHOo/ybO3LYfOuSJJE8Rc/x/zhw/59u7c3cbZF5N8kC0LcCOKSg/UdZB95ikKNmlDoSCskfe1DYevPMuQa5teHHuWs9RwAOcYs/mbBQ5h0kR/SGEnsZ8/S/dor6oYkUfDgl5B1iSPWOtsCgiI3P/rl90VBaza3D0R9/YmiyZqKfrE3lKooDG99NKHDUwDl2cU8vPBBfw+cna27efHk62ETOJqUVOZ9+R5K+o8CoCDxzvOHsMbhVHjB+BHiRhB3tPfYaHznaebp1Zi4U2Mk6+Zvhy3PZthl5zeH/kizRR2il65L428WfokMgzks148VistF25/+gOJSK8qyNtyAqawsxlaNHUVR/I3VUlL1pKZHfzxESWHgb6C5LXHEDYB+4Y3I3pCtp/cM9k9fHOWM+Gd2ThWfm30PEuqXmg9P7+DVhrfCJnCMxSWsvGUR2bazANhdEm89vRe3S/S/SXSEuBHEFcMOF++8+CrX6Q8C4EEi/fq/QTbnh+X6DreT/zn8GKf6mwBI1aXwt4u+QkFK+KeJR5vu117B3qSGI/SFU8i59bbYGjROBvqHsQ+rwiyvMDZNE6fmpqDTqm+LiSZuJFmL8dqvgEYNTzmPvIPrzLEYWzV5lhYs5L6ZgaTp91q28mbje2G7fubKK7lqtgajU/19d/W62P7XI2G7viA2CHEjiBs8HoWXX3qfmzxb/Pu0S+5EVzQvLNd3up387sjj1PU1AGDSmvjGwi8xNa0wLNePJbaaE/S89Ya6odFQ+NCXkXX62Bo1TkJCUgWxETcaWWa6t5lfe+8QNq/YShQ02UUYrrjLvz289fcow4mROzQSV05dxmeqN/u332zawjtNH4Tt+tPuvosrUlqQPervu6amj8O7Ejtv6XJHiBtB3PDXdz9ldd/L6CW1ysc1Yxkpi28My7UdbgePHH6MEz11ABg1Bv5mwUPMSE+MKqKRcFuttD36O3w11Lm33Y6xNHHCUT46gzwleYWxazZYErT26Y7E8t4A6OauRzNNbYan2PoY/uixpChzvmbaSu6sDLRoeO3U27zV+H5Y7k2SZWY+/Hnm2I/69+3c1kxjbfukry2IDULcCOKCbbvrmNP4JOmyOgNpOKuczPVfCUsC8ZBrmF8ffJSa3noA9Bo9X1vwRUozZkz62rFGURTan3wMV69a5WGaOYusDTfE2KqJETzIMFZhKYDiIHHTlGChKQBJkjGu+RIY1MovV+NenCc+jLFV4eHaoqu5rTzwheevje+ELQdHk5rKFV//DKVW31wrifdePk7nOcukry2IPkLcCGLO4dpzZO77Pfka9YNkyJRP7i3fRgpDSfag08Z/Hfw9Df2qi9moMfLNhV+iIrN00teOB/refw/rvr0AyKmpFD70lYRo1nc+iqL4PTfGFF1Mkol9FBcExE2i5d34kFOzMK76gn/b/vHTCV8e7mN98Ro2V9zk336vZSvP170alj44///27js+juJu/Phn94pOvRf3Jqu4W64UG2xjjOndAUwI5kfNYwLBQEh5/OSVEBNC7/UBQsIT0wkdbDAG3OQCLrhJlizZ6u1U7nRt5/fHSSfJOskqJ13JvF8Infb29mY8W747MztjTE1l/vWLSG1yj3njQuWjf2ynsV4+QRVsgu8sKIWUvKJqmtc/xVh9JQA2XRRJF9+DEtb/Adzq7Q08vut5z1NRkfoIfjX9JsbGju73tgOB5dBBKt9a6/k77Rc3YIj37USig6XBbKPZ2tKZODXKZ4/898Ww5Ej0Ovf3FwTxXbthzEwMkxa7/9CcWL98KiT63wCcNfIMfpZ5iecpqo3HN/HP/W/j0lz93nbEuHQWXjSR2OYKAJpdOj743000W303SrI08GRwI/lNUWkdFR89Sbbe/RimQzEQe8FdqNFJ/d52uaWSh7Y/7RnHJtoYxR05tzAyJvj72AA46+ooff6ZtlGIl55H1PQcP6eq78qOt02QmDLUv4/k63Wqp/amvNZKvSV4x4sJm7MMNWUcAKKxGuuGFxE+HOnXn+YNO4Vrs6/0BDhbyrbz0t5/YHf1v7ziZs5g4SnxhDvcwW19s8oHL32P3RZcHcz/k8ngRvKLsupGjr7/FJP1hQA40RO59NcYUvrfXHTEfJSHdzxNdXMNAPFhcdyZc2tIPBUF7vFsSp9/BpfZHRBEZE8g6eJL/Zyq/ik/3lZDMmS4/8cbSh8e63mdf8y3M1MPJkWnJ/ys21BapjJwFf2Ifft7fk6V78wZMoMbJi33DPS3u2ofj+96gQZ7/2uo0pacxYKJeKZoqGlS+PB/v8fp6H/tkDTwZHAjDbqq2iYOvPUU03R5gLtd27R4JWHDs/u97R8r9/LErudpaplJeFjUEFbN/GVIjGMDLR2I//F3rIfdT33pExJIu+kWFJ3Ozynrn7JjbcFNypAACG6GxXleHz4evMENuCfXNC26BVpqOOy7PsSRt9m/ifKh6SmTuXXq9Zh07n5ahfVFPLTjaSoslf3e9shLzueMsVb0LveDDhVm+PjVTXKQvyAggxtpUFVUN7B/7WPMUN1PJGgo6M+8mfAxU/u1XSEE64s28uKe13G0jFWRGZ/OnTm3EBcWe5JPB4/azz6h/jv3RKKKXs+QW/4LfbT/g4H+sNucVLfM45SYHEmYSe/nFHWsuckL4pqbVvrhkwibu8zzd/M3L+Mqz/NjinwrOyGDO3NuJdboPhaqrNU8tONp8usK+7VdRVEYd9UlzBtmRqe5+9yUVGt8+PK3OGWAE9BkcCMNmtLKevLffIRpqvuRbA0FTruBqIw5/dquw+Xg9f1v8m7eRwjcj4TOSp3ObVNXEK4P7rmi2mvYnkvVO295/k5bcWNQTa/QlYrShtYhekgbHhiBaGykkZR4975TWFaPwxn8TRGGyUswZM13/+FyYv3iCbSGKv8myoeGRw/l7pn/xdBId/Nzk8PC47ue57vjW/q1XUVRyLzuCk5NrkJtCXBKa+HfL3yDQzZRBSwZ3EiD4nhZLcfefohJOvfjqC5UmHczsRNP79d262xmHtv1PFvLdniWnTN6ET+fsAy96v8aAF+x5h12D9TXIvHiS4me3b+gMFCUFLfVjKQNC5xaqPHD3IGW0yUoKA3OR8LbUxSFsNN+jm5IFgDCWo/1k4fQrMH7RNiJ4k1x/HrGrWTFjwfAJVz838F3+b+D7+LU+t4ZWFEUJt5wJaen1XpqcMrrVT547hvZyThAyeBGGnCH849T894DZOmKAHCgQ7fgl8Rmz+3Xdo+YC3kw9wkK693bNaoGbpi0nAvGLkFVQmfXthUXcfzxRxAO90k15tTTSDjvAj+nyneOH631vB46MjBqbgDGj4jzvD5YXOe3dPiSotMTvvi/UGLdtRuauQzrp48g7FY/p8x3wvXh3DZ1BQuGt904fXd8C0/sepF6e9+DVEVVmXD95cwf1Yiu5YmsyiYd7zy9gab65n6nW/Kt0LkCSAFp9w/7Ub/4K6N17mHM7egxLL6D6PEz+rxNTWh8eXQDj+58DnPLySo+LI5fz/glOSlTfJLuQGEvK+PYIw+hWd0Xn4jsiaT+/Hq/jgPjS3abk4oSdxnGJYQTFeObmd99IWtU25hBPxXU+DElvqWYoog4dxVKpDt/WlUh1i+eQDiD95H3E+lUHZdnXMi12Vd6anDzzQWs2fYYB2v63tdIURSyrrmYBRl29C73wH51dgNvP/stNWXB3zcrlMjgRhowm7/ZRNKWx0nRuau9LUoE4ef9hugxfZ8Is9HexLO7X+H9/E88I5KOjxvLvbNuZ0T0UJ+kO1A4qqs49siDuBrc/36mcekM/a/bUfSh09xWWmxG09wdboaNDqwBCFPiwj39bvKOm7GGUPODGp1E+LmrPFM0uEr2Y133NMIVWgPVzR0ykztzbvF0NK63N/DkDy/y4ZHP+zXg3/grzuPsHANhDndHeIsw8u4ruRw/VOKTdEv9J4MbyeccTo2v336LjAMve+aKMusTib/if4gYlt7n7R6qzWNN7mP8VH0QAAWFc0YvYuW0G4k2+m8uooFgr6ig+ME1OGvcNQZhI0Yw7Fd3oob5b1qCgXCssK1JaviowApuACaOSQDApQkOFtX5NzE+posfRsQ5d4LePXu8q+hHrF88GVI1OACjY0bym9m/IjshAwCB4LPC9Ty+6wVqm+v6vN1RSxdw/pKhRNnd+7BDMfDROwfYs2HvST4pDQYZ3Eg+VWduYttrjzKz5mPP7N414aMYevUfMcal9Gmbdpedtw59wOO7XqDO5q76jTZE8ctpN3DB2CXo1OAe4+VE9tISih/8C87qagAMqWkMu2MVuoj+T0kRaIpbghtFgWGjAqe/TatJoxM8r/eFUNNUK11qOuHtA5zi3SHXRAUQY4zmtqkruGjsUk9/vHxzAfdve4TNpdv7PPFmyuzpXHT1VBLs7qkaNEXHd1uqWf/3jbhc8lFxf5LBjeQzR/KLOP5/f2SKa49nWXXqHEZe/XtUU99qVgrMRazJfYwNx773LMuIG8d9s+/w3ImFEtuxYooffABXXR0AxqFDGXH3b9DHBt6Fv7/MtVZqq9yDLaYMjSHM1P+JUn0ta1Q8OtXdv2lvQbWfUzMw9EOzCV96F+jdtYKuY3uxfvowwtbk55T5lqqonD16AXfm3EJ8WBwAVmcz/9j/Js/veRWzrW9PjcWkj+GiWxcwUjvuWXaoRPDOE1/SZLb4IulSH8jgRuo3TRNs/uwzwr+8n5Gq+w7GKXQ0TruK0Rfd2qfZvZudNt7N+4iHdzxNhcU9FodB1XP5+AtZOf1GYsMC55FhX7Hs/4niv/7F08cmbMRIht/9G/Rxcf5N2AApONQ2xsqY8Yl+TEnXwsP0jGt5JLy81kppdWhd8Fvph2S6++AY3B26XaUHsfx7DVpj6NVWjY0dzW9n38HstLa52PZU7ef+rY+wtXRHn2pxTMlJLL37cqbHVqAId411tc3Ev575niM7QmewxGAigxupX2prG9j26sNMKvoXUar76YEGJQrd0nsZMntJn7b5Y+U+/rz1YdYXbfQMyjcqZgS/mXUHC0acHlKPebcyf/8txx572PNUlGnMWIavujfoRx/uTuHhtpqQ0eP7P1nqQMlpl7btB/s/pH+g0qeNJ+K8e1BM7klDtdpjWD74M66aY35Ome9FGCK4bsLPuGnydUQb3LXKTU4Lf9+/lsd3PU9pU3mvt6kajMy99QoWT9F55qOyK0Y+//I4X722Qc5JNchC7yohDQohBD9u2UrN2t8z0dnWga4yKpOUa+4nZmTvm4yqrTU8v/s1XtjzGrW2OgD0qp4Lxi7hrpzbSIvsW5+dQCY0jar33qH8lZc9M3xHTp3G8FX3oosMvT42rawWu2cm8LiEcOITI/ycoq7NyGzb73YcqPBjSgaeLmUsERf9DiXaPRebaKrB8sGfcRTuOMkng9PU5In8fs5dzEhpm/7lcN0R/rLtUd7P+wRbH2YYH3feGVx6eQZJzrZ95WCpwtpHv6A8r9Qn6ZZOLnSeKZUGTVVlDVv+/jRZ1h9QW8Jjh9DRNOlSxpx6bq/HYLE6rXxe+DVfH/uuwyiiWfHjWZZ5CSkRgXtX3x+uxkZKX3wOy7624DBu4SKSf3YNihra9x15+ys9Uy6MyQjs8k2MNTFmSDQFpQ0UVTRSUWshJT5wg7H+UmPTiLjo91g/fwytsgAczTR/8SRazoUYZ1yMEmI1p1HGSFZMuoY51TN48+D7VDXXuMfSKtpAbvkuLhi7hNlpOb2qMY7PGselq4ax5ZVP2FMXh1B01GsRvPfWAbKHH2T+NfMHMEcSgCL62k08yLlcGjU1vm0/1+tV4uMjqa1tCslJ1VwujT3ffk3igXeJU9v+7ar0qSSd+0ui00b2bnuai+9KtvJJwZc0Otq2F2OM5vLxF5CTMnXQB6sbrDJsLiyk5NknPU9EoSgkX/kz4s46e0DzHCj76Duv7aSiZUqDK2+YSWKy72qpBiKPn2w5ytsb8gG4+PQxXHj6GJ9sty8GqwyFw0bzxv/Fmb/Vs0w3YgqmM/8favjANpf6az+1uxx8cfRrvjz6NU7R1ow0LGoIl4w7j+zE3tdIF32Ty4ZvS2nStz0UEImF8y+fQkrWiJC8Vgxk+SUkRKLTnTzQlMGNDwXKhWMg5O/7CcumNxgt2trf7UJH3biljF14CUovHsd2aS62l//Ap4XrqLS29bvQq3oWDD+dJaMX+G3Cy4EuQ6Fp1H7+KVXvv+tphtJFRzPkpluJyJ7g8+87USDso7XVFv71Yi4ASSlRXLGi76NVezMQeaypb+buZzYhgKRYEw/ccgqqn0aJHswyFELg2P0Ztm1v0lrVpoTHYlpwI/rhkwbse/29n1ZYKnnn8IfsrT7QYXlW/HjOG3s2Y2NH9Wp7dnM93//9Sw42xiOUtnPl8EgL8y6bTdzQwOxQ31eBENzIZimpW5XllRR+8U/GW34kRWmLg8vDRpF27s2MS+75qMAuzUVu+S4+K1zfIagBmJEylYvGLSUxPKGLTwc/R1UlZS+/iPXwIc8y09hxDLnllxgSQjffJzq4p8zzOmNScPSjSogxMXFsAnuP1FBlbubA0VomjA79MlMUBePUpaiJI2n+6jlEcwPCasb6yUMYJi0mbPblKPrQGlgSICUimVunruBQbR7v5X1MUYP7Me8DtYc5sOMwmfHpLB19FuPjx/Zoe8bYGBasvIzxW35k47oCzHr3gJXHmiJY+9oPZA9VmHvFaRgjQu/f0l9kzY0P+ftuw5dqKqs5sv4dRpm3YVLa+sGYicZ02lWkTjkNl6tnu06z08aW0u18XfwtVc0dHy3NiBvHheOWMia2d01aA2UgylC4XNStX0fVB+8hbC0T7CkK8UuWknTxpYM6nYK/91GHw8XrT2/B1uxEVRWuvW0uEVFGn37HQOVx+4EKnnnf3T9qZlYKt108cDUX3fFXGWqWOpq/eRlXcds4Vkp0MqbTf45+RN+nVPHG3/tpe5rQ2Fmxm3/nf0b1Ceev9LgxLB55JhMSM3vcJ8dpbWbXm1/x4zEdDl3bXGpGzcbEcSZyLpqL0eTbY2KwyZobKeDUVFZz5Ov3GFm7lUzFAS017zahp3rEQrLOuYKk1ARqa5uA7oOb2uY6Nhz7nu9LtmJ1dpw1NyM+nXN7cecTrKz5eVT84zVsxcWeZfqkJNJW3EhERqYfU+Yfh/eVY2t2B8vp2ck+D2wG0tT0JGIiDNRbHOw4WBHyHYtPpEbEEX7OnTj2rce2dS24nIiGSqyfPow+fS5hc3+GGhHn72T6nKqozEydxvTkyWwt28nnhes9N2l5dQXk1RWQEpHEGcNPY27aTEwnqcnSh5s45YbzOb2pkY+f+5w8SxxCUbGrYewqEPz0yNdMSg9n2oXBH+T4k6y58aFAutvorWP5+VRs/oiRTXsIa1dT4xQqpQkzGLVoGZEJSSfNoyY0fqo+yKbSXPZU/eSZ3LJVVvx4zhm9KGCDGl+VoaOqkqoP3qNhy2ZPXwUUhdj5Z5B0+TJ04aHZp6g7miZY+/J26qrdY4Bcdl0OKUOiff49A5nHjzYV8u7GIwAsyBnGtWcPfoAaCOcZra6U5m9fxVV6sF3CwjBOPRfjlHNQDP1rXgmEPHaltc/gZ0fXewYYbWXSmThlyExOHTqboVFpXW6jff6O79zPlk/3UaIluOchaWHQbIwfopBzwSyik+IGKjsDIhBqbmRw40OBfEB643A6yd++BftPXzHKcQS1Xf9Il1AoiZvGiEXLiE5qO0i7ymOVtYbNpblsKd3umf/J8xlFx6y0HBaMOJ1hUUMGPF/90d8ydDU0UP3JR5i/Xo9wtgWJYSNGkLL8OsLH9X3iUF/w5z56cE8ZX33svhgOGR7LxcunDcj3DGQem5odrHp6EzaHC4NeZc1Nc0mIMZ38gz4UKOcZIQTOg9/SvHUttJuqQYmIwzjjYgwZp/VpdHIInDx2RxMae6r2s6H4Ow7V5Xd6f1T0CE4ZOpMZKdOIMHS8mfGWv5Lt+9i2/hClomNfLlW4GBllZcqZ2QydNGbQnyDtCxnc+NF/cnBTcfwYx7d8QVLVTuKUxg7v2YSe8oQchs+/mNjUzp2F2+exqqmWnRW72Vm+m4L6o53WjTFGc9rQOcwffgoxRt/foQ+Evpaho6aa2i8+x7xxA8LeNvCXGhlJ4gUXEbdgEYrO/xN8+msfdbk0/u+FXBrM7ubJi66eytCRcQPyXQOdxze/yuOzbUUAnDopjf93/sA/5dZeoJ1nNGs99h0f4Nj/NbSrqVUiEzBOXYoha36vOx0HWh5P5nhjKRuKv2Nb+a4OY3WBe9qYiYlZ5KRMYWJiNiZ9WLf5O5a7j50bDlHidDdXtRcjGhk/NorJS3IIjwvcc6oMbvzoPy24qa2sonj7RvTHdzLMdaxDLQ1AvYjEPPx0xs4/D1M3Q/7X2mvIa8rnu4Lt5NUVdHpfVVQmJmZx6pBZTEzMCroZu3tbhs2FhdR9tY76rZs9j3YDKAYDcWedTcLScwNqNm9/7aPbvysk9zt3ADxiTDznL5syYN810HlstDq47/nNNLX0HfrDdTMZM2TwpskI1POMq64E+9a3cB7d1WG5Eh6DIftMDFlnokb17AmzQM3jyTQ5LGwv/4HNpbkUNxzv9L5BNTAxMYuZaVM4NX06jia6zF9tfjE7PttFgTkcp9qx740qXKSFNTEuO5XxZ0wmLMI/zdxdkcGNH/0nBDeVJccp3b0V/bFdLQFNx6LWhEJJ2GiMWfMZPeN0dIbOVcgOzUl+XQH7qg+wt3p/pzbmVkMj05iZOo05Q2YQFxa8M1j3pAy1Ziv1W7di3rgB29HCDu8pRiOxp88jfun5GOLjByHFveOPfbS2qok3X9mB5hIoClz+ixkkpfZtlvieGIw8fpFbzL/WHwZgaFIkq38xE4N+cAL5QDvPnMhVkY9t54e4in7o+Iaioh81HcOEBeiGTuh2FO5Az2NPFDeUsLk0lx3lP3QYpLSVqqiMjR3FhIRMJiRmMTxqiNcmJ2uNmX2f53KooAmzGtd5O5qTtDALY7OSSD9tUkDU6Mjgxo9CMbix25op2rOLxvwfiDEfIplar+vVEkN92gxGzl1CTErHTm8OzcnR+mIO1x4hr+4IR8yF2DWH1+2kRqQwI2UKOalTGRKZ6vP8+ENXZajZ7TTt3UPj9m00/vgDwmbr8Dk1IoK4hWcRt+isgJ7scrD3UYfdxbuv76Km0n2sTZ87grlnDmxn8sHIo9Olcf/fd3C03D3K8qKc4Vxzdu9Hr+0Lf59nespVXYx914c4C7Z3aK4Cd22OftwcDOmnoCZ37kcSLHnsCZfmIq+ugJ2Vu/mhYo/XQAfczfjj48aSHjeG9LixpEWmdHi8XAhB2Y+H2PvdIY6ajR0eI29bSSNeaWRYahhjpo1i6JR0VD80h8vgxo9CIbhpqjdzfP8eLMX7MdUVkOIqx6B4n3m2lhjMiZNJmnI6aelZKIqCEIKa5jqKGo5R1HCMAvNRCuqLOrUZt2q905g9cirpkeNIMaUERee23mhfhs01dVj27aVpz+6WgKa50/pho0YTe8aZxMyei2oa3I6lfTGY+6imCdb9ez/5B9wzaccnRnD5L3LQGwb2ZDtYeTxe2cgfX83F2TLe08+XZHLm9GED9n2tgu3CrzXV4ti/AceBbxCWuk7vK1GJ6EdORT9yKrqh2Sh6Y9DlsadaA519tQfYX3OQkoauZx+PNESQHjuG0TEjGRkznJHRw4gwuIcecNrsFHy/m7zdJRxvCvMe6OB+4irB0ExqajjDs4YybOp49GED/3i5DG78KNiCm6b6BiqOHKTh+BGoKSLSWkKSqOnUd6aVJhTKdanYkrJInDCHxLHjqGqupqypnJLGMooajlPUcKzLu4hWcWGxZMSPY1JiFtkJGcSER4XkSQfA1dSE/egRtKNHqN6+k+ajnTtJg7uTcPTMWcTOOxPT6NGDm8h+GqyLhqYJNnxykIN73Sdvg1HHZdflDMrs34N5Ydz4Ywmvfuoeol9R4BdLs5g3peejdvdFsF74hebEefQHnIc34yz6EbzdROmM6IZkYBiWTULmNCzhabhEcPXb64nWMjx0vIjdFfvZV32AvLojJ52FPCk8kVHRwxkRPYwhkamkRaYSq0ZSuGkvhftKKDWrNOm6bvJVNSexqoX4KIXktBhS09NIzR7t84BHBje9oGkaTz31FG+99Rb19fXMmDGD1atXM2pU7+b4aBWIwY0QgobaGqqPHaWp/BiuulJ0jRVE2ytJUOpP+vlqEUNJzDCsQ0ejH56GGStlTeWUWsqptFQjTjLoHkCiKYH0uDGMjxvL+PixJJoSOtTOBOuJ9URasxXb8ePYjh2jueAIzfl52EtLulxfjYggKmcG0TNnE5GVPaijCvvSYJSf1WJn3b/3c6ywDgBVVVhy6URGpw/O/DmDvY+u/eown29rG6Rx6dyRXDJvLPoenID7IhSOQWFrwlmwA8eRbbhKDngPdAB0BnTJY1CTRqNLGoWaNAo1bkiv5rILRN7K0KW5ONZY4hkYMK/uCBan9aTbMqgG0iJTGBKZSmpECrFVKrb9DdSUuqhxhHdZq9NKES6ihYVok0ZcrJH4lBgSRyWTOHYYYVF9uxmRwU0vPPXUU7zxxhusWbOG1NRU/va3v1FcXMxHH32E0dj7qNMfwY1Lc9FYXYO5sgxLdQV2cyWiqQadtZYwh5lozUykYvOyZXABTTqVer1Kg07FrNNRro+kNiKapogwmgwuzI5GXMJ7s5Q3UYZIRsYMZ1T0cEZGD2dkzPCTdgYOphOr0DSctbU4KitwVFXiqKjAVnIc+7FjOKoqT/r5sJGjiJw0mYiJkwgflx60AU17A1l+LpfGwb3lbN1whGar+2KlqgqLL8pmbGayT7+rO4O9jwoh+L/1h1m3vW1S2VGp0SxbmE7WKN93Kg+mY7AnhKMZ5/F9uI7+iLN4t9emqw50BtS4oahxaaixaS2/h6DGJIMxIiiaynv04ILQKLdUUlR/zNN1oLihBEcXfSC9CVMMjKlLIqkiBtUcgcURQ3M3NTsnMrksROgcRBghKspAVKyJ2KQYYtISiBmSgCkuGtVLx3AZ3PSQ3W5n7ty53H333Vx11VUA1NfXM2/ePP7yl79w3nnn9XqbAxHcWOprKflhE9baKjRrA6qtEb2zkTCXBZOwEk4zQhXYFAW7qmBTFayqikXX+lvFqipYdSqWlt9NOoUGnY5GneqZCqG3DKqetIgU0iLTGBKZQlpkCiOihxEfFtfrE4G/T6xCCITdjma14Gqy4Ko34zTX4TSbcZnNOM0tf9fW4Kiq6vB4drd0OkwjRxGRnk7S1EkwcixEDNwTPf7i6/ITQlBTZSH/QCUH95TRWN8WnJsiDJxzyUSGjBjcp+f8sY8KIfgit5i3N+Tj0tpOqWOGRDNvylCmjEv02WB//j4GB5IQAlFfjig/jFqTj6VgL1qD9yc0vTKYUCMTUCLjUaMSUCITUCLiUExRKKbolp8oFFMkiuq/m5W+lqFLc1FmqeB4YymlTeWUNVVQ1lROpbVnNfMAEU06UiojiTVHY7TGIrR4mnUx0MO5sdpThAujZidMcWDSC0xGMJn0REYZGZU5lGFzJqD5eBcNqeBm9+7dXHHFFXz22WeMGTPGs/yqq64iMzOT//mf/+n1Nn0d3Lg0F9/+804OxkCz2ha82FsCGXvLazFAdxUm1UhieAKJpgQSw+NJDIsnKTyBtIgUEkzxqCdERm3FLjr84sTd4YT1dDqVuLgI6moacdqdCM2FcGnQ/remIVwucLV7fcJvYbejOewIuwPhsKPZ7S3LHAi7DWF3oDnsaFYrmsWCy2JBs1jQrJYOI//2hRIWhnHYcMKGDXf/HjEC0+gxqMaWjoxxkdTWeT/p9OVo6dMh1s1Hut1aF9/VutRr/rrZoMulYbe5sNuc2O1ObM1OGs02GszN1NVYKC+p99TStJeencxpi9L9MneUPy/+R0rqefXTAxyrbOz0Xmp8OCNSohiaFElCjImYSCOxkUbCw/QY9SpGgw6DXsWgU1EUurzxCOXgplX7PNobzWhVR3FVHXX/rj6KqK/o28HYnjECxRiOYjCBwYTS8oOx9XU46I0oOj3oDKDq217rDO1e692BkqpzBwiKCqqC0vras8z9W1FUdAYd8fHR1JmtODXaTbug4LmLVTz/O+lNqN3loMJSSbmlkurmGqqtNVQ311Jlraamue6kNfp6h0JCjYnY+nAiGyMx2KJAi8ahROHU9X0MnZnjXMy6YmGfP+9NSE2cWVZWBsCQIR2H7k9JSaG0tLTP29Xrfdcm7mhupqA0G7VoLOGKSu92h94HPN0d1tUoVOPgEOVA173xe/xdfQrIevoZBQhr+ekiXyoQpUBXFSl9DRhLW362++bfSYLR6YnMOG0kQ0fE+S0NrSe+npwAfS1jZBx/vnEO3+8p5YvcYo6WNXjeK6+1Ul5rhYMnbxKFtmubqiieYEfx/N26zwf8vWkfufPqjl9a8xgFTAQmosNFgtJAsmomSa0nWTETrzYSqzQRqzRh7OKp0Q7sFoTd4rd/QfPJV/HKXTHoLv/2aY9EYSwwFhDtzr8uoEGvw6xXadAr1OtUGvVtXRwaW5ZXplioSLUCHWc+N9gV4urCiGoMI8ISTpjNhM4RAVoYAhMuxYRTNXUaTRngWG0xp/jwOtsbQRHcWK3uTlUn9q0JCwvDbO7bLqKqCvHxvhs5Nsqqx+bMRATAEPuSNFjCIwwMHx3PmPFJTJg6hJjYwBkpNSbGf2m58MzxXHBGOnnH6sj9qZydBys4ctyMoxc1La3XddeJtawSAI1EU4S3AesEEYqNONVCvGohSrESqdqIUmxEqs1EKjai1GaiFBthioMwxdlhsuBA535C1tu+4H3/MAAml4tkF+C9SycAGu5Wh9buEZaW7hEWnYpFr9KcoGBLcrdANLW0TLS2TthQ0NmMhFmMRFgNhNkMOI02otKSfXqd7Y2gCG5MLeOH2O12z2sAm81GeB9nV9Y0QX29xSfpa5UzBg4VNKC1ViX2ZSNePtSr7XRTi9Hr9CheX3rGyHF/l9L6X9t3KydUpSpK221oy2/FfSuKoiot1bZelrVW7apq20e7TGsf8u3131pBp1NxaVo31d5dbLGbBHaf9q4W922D3eVXUVry59JOaC7z/ilVpxAWpscYpsMYpsdo1BEVYyImzkRMXDjRsWGecnZpGrW1vu3H1hc6nUpMTDj19VZcLv822yRFGVk6ewRLZ4/ApWlU1FopqWrC3GjH3OT+sdmd2J0adocLu0PD4dIQoqX/iQCB6Pi3ECiqgssV2sGOTtefPEYBidRCF0OZdqQIDQMOwnBgwIERB0bsGHCiw4UOF3o0VOFE7/nb1fKehh4XChoqAgWBiobiee19maoIFNG6DNoHJ0qH123vdX7tbX3vnz3xPa80948J90/rZBndXztEy08zGs04FXAYQehjGTnrIp+fE2JiwkOnWaq1OaqiooKRI0d6lldUVJCVldXn7fq6vfrUa8/ivP+gtvBQzKPMX++4Lz6BeZF1ubSAK8Pk2HCS+1m7Fer7KIR+HmX+Bp5/GsN6KSsri6ioKLZu3epZVl9fz08//cTMmTP9mDJJkiRJkgJNUNTcGI1Gli9fzkMPPURCQgLDhg3jb3/7G2lpaSxevNjfyZMkSZIkKYAERXADcPvtt+N0Ovn9739Pc3Mzs2bN4uWXX+7TAH6SJEmSJIWuoAludDodd999N3fffbe/kyJJkiRJUgALij43kiRJkiRJPSWDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQogghAnNK3wEmhEDTfJ91nU7F5Qq9WV7bC/U8yvwFv1DPY6jnD0I/jzJ/faOqCoqinHS9/9jgRpIkSZKk0CSbpSRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKTK4kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuOkFTdN44oknmDdvHlOnTmXFihUcPXq0y/Vra2u56667mDVrFrNmzeIPf/gDFotlEFPcO3V1dfz3f/838+fPJycnh6uuuort27d3uf57771HZmZmp5/u/k387fjx417T/NZbb3ldP9jKcOvWrV7zl5mZyaJFi7x+JpjK8ZlnnuHaa6/tsGz//v0sX76cadOmceaZZ/Lyyy+fdDuffvop5557LpMnT+aCCy5g48aNA5XkXvGWv6+++orLLruM6dOns3DhQv7617/S3Nzc7XYWLlzYqTxXrVo1kEnvEW/5u++++zqldf78+d1uJ1DLDzrn8dprr+3ymHz//fe73E4gleHJrg0BeQwKqceefPJJccopp4gNGzaI/fv3ixUrVojFixcLm83mdf3ly5eLK664Quzdu1ds2rRJLFiwQNxzzz2DnOqeu/7668WFF14ocnNzRX5+vvjTn/4kpkyZIvLy8ryuv2bNGrF8+XJRUVHR4cfpdA5yyntu/fr1YvLkyaK8vLxDmq1Wq9f1g60MbTZbp/L47rvvxIQJE8Sbb77p9TPBUo6vvPKKyMzMFMuXL/csq6mpEXPmzBG/+93vRF5ennj77bfF5MmTxdtvv93ldjZv3iwmTpwoXn/9dZGXlyceeOABMWnSpC7388HiLX+5ubkiOztbPP/886KwsFB888034owzzhC/+c1vutxOQ0ODyMzMFF9//XWH8qyvrx+MbHTJW/6EEOKSSy4RjzzySIe0VldXd7mdQC0/Ibznsba2ttOxddNNN4lzzjlHNDQ0eN1OoJVhd9eGQD0GZXDTQzabTUyfPl288cYbnmVms1lMmTJFfPTRR53W37lzp8jIyOhQWN9++63IzMwUZWVlg5Lm3igsLBQZGRlix44dnmWaponFixeLxx57zOtnrr/+evHnP/95sJLoE88++6y48MILe7RusJWhN3a7XZx33nnijjvu6HKdQC/HsrIyccMNN4hp06aJc845p8OF47nnnhPz5s0TDofDs+zhhx8WS5Ys6XJ7K1as6PTvsWzZMvGHP/zB94nvge7yd9ddd4nrr7++w/rvv/++mDBhQpc3VTt27BAZGRnCbDYPaLp7qrv8OZ1OMXnyZPHll1/2eHuBVn5CdJ/HE3344YdiwoQJ4sCBA12uE0hleLJrQ6Aeg7JZqocOHDhAU1MTc+fO9SyLiYlhwoQJ5Obmdlp/+/btJCcnM27cOM+y2bNnoygKO3bsGJQ090Z8fDwvvPACkyZN8ixTFAUhBGaz2etnDh48SHp6+mAl0Sd6k+ZgK0Nv/vnPf1JaWsp9993X5TqBXo779u0jNjaWf//730ydOrXDe9u3b2fWrFno9XrPsrlz51JQUEB1dXWnbWmaxs6dOzscxwBz5szptgl2IHWXvxUrVnDPPfd0+ozT6aSxsdHr9g4ePEhycjIxMTEDkt7e6i5/hYWF2Gy2DsdYdwKx/KD7PLZnsVh48MEHue6668jMzOxyvUAqw5NdGwL1GNSffBUJoKysDIAhQ4Z0WJ6SkkJpaWmn9cvLyzutazQaiYuL87q+v8XExHDGGWd0WPbpp59SVFTE6aef3mn9mpoaqqqqyM3N5fXXX6euro6pU6eyatUqxowZM1jJ7rVDhw6RnJzM1VdfTWFhIaNGjeK2225j3rx5ndYNtjI8kc1m47nnnuO6664jJSXF6zrBUI4LFy5k4cKFXt8rKysjIyOjw7LWvJaUlJCYmNjhvfr6eiwWC2lpaZ0+468y7S5/EyZM6PC33W7nlVdeYeLEiSQkJHj9zKFDh4iIiGDlypXs2rWLhIQELr30Un7+85+jqoN/P9td/g4dOoSiKLz22mts3LgRVVU544wzuOOOO4iOju60fiCWH3Sfx/b+9a9/0dTUxK233trteoFUhie7Njz66KMBeQzKmpseslqtgPvi1l5YWBg2m83r+ieu2936gWbHjh389re/ZdGiRV4P2kOHDgGg0+n461//yqOPPorFYuHqq6+mqqpqsJPbI3a7ncLCQhobG7njjjt44YUXmDx5MjfeeCObN2/utH6wl+EHH3yAzWbr1IGzvWAsx/aam5u9HpOA1zJq7Yjb0+M4kDidTu655x7y8vJYvXp1l+sdPnyYhoYGzj33XF5++WWWLVvG448/zpNPPjmIqe2Zw4cPo6oqw4YN47nnnuPee+/lm2++4bbbbkPTtE7rB3P5uVwuXn/9da6++mqvgVt7gVyGJ14bAvUYlDU3PWQymQD3BbL1NbgLLzw83Ov6dru903KbzUZERMTAJdQH1q1bx6pVq5g6dSqPPPKI13Xmzp3Ltm3biI2N9Sx7+umnWbBgAe+++y433XTTYCW3x4xGI7m5uej1es+BNWnSJPLz83n55Zc55ZRTOqwfzGUI8P7773P22WcTHx/f5TrBWI7teSuj1hOktzJqPel6+4y34zhQtAbkW7du5Yknnui26eOVV17BZrMRFRUFQGZmJk1NTTz77LOsXLnSL7U3XVm5ciW/+MUvPM0vGRkZJCcns2zZMvbs2dMpn8FafgDbtm2jpKSEK6+88qTrBmoZers2BOoxGDh7eYBrbZ6oqKjosLyioqJT9RpAWlpap3Xtdjt1dXWkpqYOXEL76R//+AcrV65k/vz5vPjiix0CuRO1vyCCe0cePnw45eXlA53MPouIiOh0x5CRkeE1zcFahuBubtq1axfnnnvuSdcNxnJs5a2MWv/2VkZxcXFERET0+DgOBBUVFVxzzTXs2rWLF1988aTNHwaDwXNRbJWRkYHFYumy/5y/KIrSqV9JaxNHa1eA9oKx/FqtW7eOKVOmMGLEiJOuG4hl2NW1IVCPQRnc9FBWVhZRUVFs3brVs6y+vp6ffvqJmTNndlp/1qxZlJWVdRgrpPWzOTk5A5/gPnjjjTf405/+xDXXXMNjjz3mtUmm/bpz5szpMN5GY2MjhYWFAds59cCBA0yfPr1Tp7W9e/d6TXMwlmGrnTt3oigKs2fP7na9YCzH9mbNmsWOHTtwuVyeZZs3b2bMmDGd2vrBfTHNyclh27ZtHZZv3bqVGTNmDHh6e8tsNnPddddRU1PDG2+80akT5ok0TWPhwoU8++yzHZbv2bOHpKSkbmvx/OGuu+7ihhtu6LBsz549AF73v2Arv/Z27Nhx0vKDwCzD7q4NgXoMyuCmh4xGI8uXL+ehhx5i/fr1HDhwgDvvvJO0tDQWL16My+WisrLSc5GYOnUqOTk53HnnnezevZstW7awevVqLr744oC86y8oKOAvf/kLixcv5uabb6a6uprKykoqKytpaGjolL8FCxYghOCee+7h8OHD7Nmzh5UrV5KQkMAll1zi59x4l5GRwfjx4/njH//I9u3byc/PZ82aNfzwww/ccsstQV+G7R04cIARI0Z0quYNhXJs77LLLqOxsZHf/e535OXl8e677/Laa69x8803e9ZpaGigpqbG8/f111/Pxx9/zCuvvEJ+fj4PPvgg+/fv57rrrvNHFrq1Zs0aiouL+dvf/kZCQoLnmKysrPRcTNrnT1VVlixZwksvveTp9Ll27VpeeuklfvWrX/kzK16df/75fP/99zz77LMUFRXxzTff8Nvf/pbzzz/f8wRVMJdfK5fLRV5eXqeOt60CuQxPdm0I2GPQZw+V/wdwOp3iwQcfFHPnzhXTpk0TN954oyguLhZCCFFcXCwyMjLEO++841m/qqpKrFy5UkybNk3MmTNHrF69WjQ3N/sr+d169tlnRUZGhtefe++912v+fvrpJ7FixQoxY8YMkZOTI1auXClKSkr8mIuTq66uFvfdd5847bTTxOTJk8WyZctEbm6uECL4y7C91atXiyuvvLLT8mAvx3vvvbfTGCI//vijuPLKK8WkSZPEggULxOuvv97pMwsWLOiw7L333hOLFy8WkydPFpdcconYtGnTgKe9J9rnz+VyicmTJ3d5XLaee07Mn8PhEM8884xYtGiRmDhxoliyZIlYu3atX/JzIm/l99lnn4mLL75YTJkyRZx22mnigQce6HCMBVP5CeE9j1VVVSIjI0Ns3Lixy88Eahme7NogRGAeg4oQQvguVJIkSZIkSfIv2SwlSZIkSVJIkcGNJEmSJEkhRQY3kiRJkiSFFBncSJIkSZIUUmRwI0mSJElSSJHBjSRJkiRJIUUGN5IkBSw5UoUkSX0hgxtJkgLS+vXruffeewH30OyZmZkdpj+RJEnqipwVXJKkgPTqq696Xk+cOJG1a9cGxXxXkiT5nwxuJEkKeFFRUUybNs3fyZAkKUjIZilJkgLOtddey7Zt29i2bZunOap9s9STTz7JOeecw7p16zj//POZPHkyF110Ebt27eKHH37giiuuYMqUKZx//vls3ry5w7YPHTrEzTffTE5ODjk5Ofzyl7+kuLjYH9mUJGmAyOBGkqSAs3r1aiZMmMCECRNYu3YtjY2NndYpKytjzZo13HLLLTz22GOYzWZuv/12fv3rX3PllVfyyCOPoGkad955p2cW9IKCAn72s59RXV3NAw88wP33309xcTFXXXUV1dXVg51NSZIGiGyWkiQp4KSnpxMVFQXAtGnTvHYktlqtrF69mvnz5wOQn5/Pww8/zP3338/ll18OgMvl4vbbb6egoIDs7GyeeuopTCYTr776qmf7p5xyCmeddRYvvfSSpwOzJEnBTQY3kiQFrZycHM/rpKQkgA59c+Li4gCor68HYMuWLcyZMweTyYTT6QTc/XlmzpzJpk2bBifRkiQNOBncSJIUtFprX9ozmUxdrl9XV8cnn3zCJ5980um9hIQEn6ZNkiT/kcGNJEn/MaKjozn11FO5/vrrO72n18vToSSFCnk0S5IUkFRVRdM0n25z9uzZ5OXlkZ2d7QlmhBCsWrWKUaNGkZ2d7dPvkyTJP+TTUpIkBaSYmBgKCgrYvHmzp89Mf912220UFRVx8803s27dOr799ltWrlzJxx9/TFZWlk++Q5Ik/5PBjSRJAemaa67BYDBw4403eh7l7q+srCz++c9/oigK99xzD7fffjuVlZU8/fTTnH322T75DkmS/E8RcmY6SZIkSZJCiKy5kSRJkiQppMjgRpIkSZKkkCKDG0mSJEmSQooMbiRJkiRJCikyuJEkSZIkKaTI4EaSJEmSpJAigxtJkiRJkkKKDG4kSZIkSQopMriRJEmSJCmkyOBGkiRJkqSQIoMbSZIkSZJCigxuJEmSJEkKKf8f6IqaUphhN74AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np \n", + "import pandas as pd \n", + "import scipy.stats\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Set a range of skew parameters to demonstrate the signal as a function of time\n", + "alpha_range = [-5, -1, 0, 1, 5]\n", + "time = np.arange(0, 20, 0.01 )\n", + "\n", + "# Set constants for each signal\n", + "A = 100\n", + "tau = 10\n", + "sigma = 3\n", + "for alpha in alpha_range:\n", + " # Compute the skew normal distribution and plot the resulting signal.\n", + " signal = A * scipy.stats.skewnorm(alpha, loc=tau, scale=sigma).pdf(time)\n", + " plt.plot(time, signal, label=alpha, lw=2) \n", + "\n", + "# Add necessary labels\n", + "plt.xlabel('time')\n", + "plt.ylabel('$S$')\n", + "plt.legend(title=r'$\\alpha$')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "When the skew parameter $\\alpha$ is large and negative, the signal is heavily\n", + "skewed towards shorter retention times. Even though all signals in this plot\n", + "have different heights and locations of the maxima, they all have identical\n", + "values for $A$, $\\tau$, and $\\sigma$. The flexibility of $\\alpha$ in defining the \n", + "signal trace allows for a broad array of peak shapes to be well described by \n", + "this distribution." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "vscode": { + "languageId": "plaintext" + } + }, + "source": [ + "## Fitting Peak Windows\n", + "As described in the notebook for Step 2, a chromatogram is broken down into\n", + "multiple \"peak windows\" which likely contain overlapping analyte signals. Each \n", + "window is fitted independently, which assumes that distant peaks have no influence \n", + "on each other. As an example, let's look at a real peak window from a sample chromatogram.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3935.20it/s]\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABpT0lEQVR4nO3deVhUZf8G8HsWdhw2EdxFdlzYlczdzErNjPZo0TLT0l/1mlma2au2WuaSaYrma4uammVq5pJriICCC6CiiCuorLIzy++PaQZJVAbOcGa5P9flJc6ceeb7ZXC8Pc8zz5FoNBoNiIiIiKjBpGIXQERERGRuGKCIiIiIDMQARURERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYHkYhdgqTQaDdRq093kXSqVmHR9QmGfloV9Wh5r6ZV9mgepVAKJRNKgYxmgjESt1qCgoEzsMuoll0vh5uaEkpJyKJVqscsxGvZpWdin5bGWXtmn+XB3d4JM1rAAxSk8IiIiIgMxQBEREREZiAGKiIiIyEAMUEREREQG4iJyIiKiO1Cr1VCplE14vASVlTJUV1dBpTLfT6jdjTn0KZPJIZUKc+6IAYqIiKgeGo0GJSUFqKgobfJY169LoVab5yfTDGEOfTo4OEOhcG/wdgW3wwBFRERUD114cnZ2g62tXZP+wZXJJCZ7VkZIptynRqNBdXUVSksLAQAuLh5NGo8BioiI6F/UapU+PDk7K5o8nlwuNdu9kQxh6n3a2toBAEpLC9GihVuTpvO4iJyIiOhfVCoVgNp/cMly6F7TpqxrAxigiIiIbqup62TI9Aj1mjJAERERERmIAYqIiIjIQAxQREREBADo3TsKW7ZsavTjL1++jN69o3D4cLKAVTXMtm1b8Nhjw5vt+fgpPCKiZlJaWorU1MM4fDgJBQUFCA7ugu7dQxEUFMK1NmQSfv31Dzg7O4tdhsF27vwTn3wyEx4eLZvtORmgiIiMTKPR4OefV+PLLz9DZWWF/vaNG9cDAMLCIjBz5ido376DWCUSAUCzBhAhlJWV4osvPsXOnX/Cx8cXpaU3mu25OYVHRGREBQX5mDDhVXz00YeorKxA27btMGLEo3j55VfRq1dv2Ns7IDX1MJ544hFs2PCz2OXSXWg0GlRUlBv8q7zc8MfU90ujMWyTytGjn8VXX32u//O+fbvRu3cUduzYpr9t0aJ5GD/+ZQB1p/Bmz56BmTPfx9dfz8OwYYMxaNC9ePfd/yA//7r+sWfPZmHixFdx33298dRTjyIl5dAtNWzd+jteeOFpDBx4Lx57bDj+97/lUKvVUKvVGDZsMFav/l5/7Nq1P6F37ygcP35Mf9v770/BzJnv19vf5cuXUVJSjGXL/oc+ffoZ9L1pKp6BIiIykhs3buCVV15EVtZp2Nra4v/+bxKefjquzuZ9ly5dxPTp7yIlJQn//e/7kEqBMWNGi1g13Y5Go8GLLz6DtLQjotUQFhaBFSt+aPCU77339sWuXdv1f05OPgSJRIKUlGTcd98QAMDffx/AQw/Vv3Zo164dGDz4ASxc+C3y8nLx4YfT8O23i/Duu9NRWlqK//u/8ejatRu+/XYl8vOv4dNPZ9d5/Nq1P2Lx4oV47bU30KNHDDIy0vHll5+iuLgYEya8iXvuuRdJSYfw1FNxdeo7fDgJXbt2g1KpRFLSQbzzzrR66/P3D8CcOfMBAHv37m7Q90QoPANFRGQENTU1mDTp/5CVdRqenp748cf1ePbZ52/Z+bht23ZYunQlRo8eAwCYOXMGdu/eLULF1BDmtlbt3nv7IifnHPLycgFoA0rfvv1x5Ih2kfeVK5dx7txZ9O3bv97HOzk5YfLkqejUyQc9e96DBx54CEePpgIAduzYhsrKSkyd+iE6d/ZFdHQM3nxzkv6xGo0G33+/Eo8++gRiY59A+/YdcP/9D+Dll8di/fo1KC0txb339kFa2mFUV1dDqVQiNfUw+vbtr1+EfvRoKqqrq9GzZy/jfZMaiWegiIgEptFo8NFHHyIx8W84ODhiwYIl8PPzv+3xUqkUEya8hatXr+L333/FK6+8glWrVqNz59s/hpqfRCLBihU/1FnH1lAymRQqVdMvcWJv72BQiAsKCoanZyskJSWiZ897cPHiBUyfPgsvvRSHvLxc/P33fnTq1Bnt2rWv9/Ft27aHXF4bFZycnKFUanfwPns2C+3bt6+z6Lxbt1D910VFhSgoyEf37mF1xgwNjYBSqUROzjn06HEP1Go1jh1Lg42NDezs7PDII7GYMuU/qKmpQULCAURGRsPR0bHBPTcXBigiIoHt2rUdv/yyDlKpFJ99NhdBQSF3fYxEIsEHH8zEtWt5SEw8iGnT3sWqVWsgk8maoWJqKIlEAgcHw/8xF/Macb169UZS0kHIZDIEBYUgMDAI3t6tcfhwMhIS9t9x7ZCNjc0tt928Duvfa7JuDlu6+/6d99Rqtf5YR0dHhIVF4tChg7Czs0NERBS6dw+HRgOcOHEMCQn78cQTzxjcc3PgFB4RkYBu3LiBTz6ZCQB46aWxBi1stbGxxaeffgmFQoH09ONYs+YHY5VJVqR3775ISUlCUlIiIiKiAACRkdFISDiAw4dTGr34OiAgEOfP56CoqEh/W0bGCf3Xbm7ucHNzR1paap3HpaUdgY2NDdq2baevLynpIA4fTkZkZDTs7OzQrVt3/P77r8jJOYd77+3TqPqMjQGKiEhACxbMxbVr19ChQ0e8/PKrBj++ZcuWePfddwEAX389D3l5eUKXSFYmIiIaVVVV2L17JyIjowEAkZE9sHv3TigUCgQHd2nUuIMGDYG7uwdmzHgPp0+fwpEjKZg7d47+folEgqefjsOGDWuxYcPPuHjxAv788w8sX/4tHn54pH7q7957+yAr6zSOHz96U33R+PPPrejSpZvJbq3AAEVEJJCjR1Px888/AQCmTfsQdnZ2jRonLi4OoaFhKCsrw+effyRkiWSF7OzsEBXVE0DtGqWoqGhoNBr07t230QvjHRwcMH/+YtjY2GD8+Jcwc+Z0PPfci3WOeeaZ5zFu3ESsXfsj4uIex7Jl3+DZZ1/AxIn/0R/j5eUNX18/eHi01J+ViorqAbVajd69+zaqtuYg0Ri6qQQ1iEqlRkFBmdhl1Esul8LNzQmFhWWizck3B/ZpWcyhz5dffh7JyYcwbNgIzJr1aaPG0PWZkJCMJ54YCbVajdWrNzRoHZW5MeXXtKamGvn5V+Dh0Ro2NrZNHk/MNVDNyRz6vNNr6+7uBJmsYeeWeAaKiEgAycmHkJx8CHK5DV5//Y0mjxcUFIwhQx4CACxbtrjJ4xGRsBigiIgEsGTJ1wCAkSNj4e3dWpAxX3ppLABgx44/kZV1WpAxiUgYDFBERE2k+4STXG6D0aNfEWxcPz9/3Hff/QCA5cu/FWxcImo6Bigioib69ttFAIBHHnkUrVu3EXRs3Sf5/vhjM86fzxF0bCJqPAYoIqImOH36JBITEyCTyQQ9+6QTFBSC3r37Qa1WY+3aHwUfn+6Mn7OyPEK9pgxQRERNsHbtagDAgAGD0KZNW6M8x5NPandi3rRpI6qqqozyHFSXbgf46mp+vy2N7jWVyZp2MRZeyoWIqJFKS0uxefOvAGDUy0306tUb3t6tkZt7BTt2/ImhQ4cb7blISyqVwcHBGaWlhQAAW1u7Jl1IWK2WQKWy/LNZptynRqNBdXUVSksL4eDgfMuFvQ3FAEVE1Ei///4rysvL4ePTGdHRPY32PDKZDCNHPoZvvlmADRvWMEA1E4XCHQD0IaoppFKp/hpwlswc+nRwcNa/tk3BAEVE1AgajQZr12p3HX/iiaebdHaiIR555DEsWfI1UlKSkZ19Fj4+nY36fKS9FImLiwdatHCDSqVs9DgymQQuLo4oLi432bMzQjCHPmUyeZPPPOkwQBERNcLhw8k4ezYL9vYOGDbsEaM/n5eXF/r27Y/du3dh/fo1mDTpXaM/J2lJpVJIpY3fjVwul8Le3h4VFSqT36W7KaylTx0uIiciaoRNmzYCAB58cChatGjRLM/56KOPAwC2bPkdSmXjz4gQUdMxQBERGaiqqgo7dmwDAAwd+nCzPe899/SGq6srCgrykZx8qNmel4huxQBFRGSgvXv/QmlpKby9WyMiIqrZntfGxgaDBml3Jt+2bWuzPS8R3YoBiojIQFu2/A4AePDBYYItSG0o3QWGd+78EzU11c363ERUiwGKiMgAxcVF2LdvDwDgoYeGNfvzR0ZGw8OjJUpKinHwYEKzPz8RaTFAEREZYPv2bVAqaxAQEAh//8Bmf36ZTIbBg4cAALZt29Lsz09EWiYRoDZu3IiHHnoI3bp1w9ChQ7F1a+3cfkZGBuLi4hAWFob+/fsjPj6+zmPVajXmz5+PPn36IDQ0FKNHj0ZOTt0LbgoxBhERAGzdugkA8OCD4m1mOWTIUADAX3/t4KVdiEQieoD69ddf8d577+HJJ5/E77//joceeghvvfUWjhw5gsLCQowaNQqdOnXC+vXrMWHCBMybNw/r16/XP37RokVYvXo1Zs2ahTVr1kAikWDMmDGortauDRBiDCIiACgoyMfhwykAgCFDHhStjtDQMHh5eaOsrAyJiX+LVgeRNRM1QGk0GsybNw8vvPACXnjhBXTs2BGvvfYaevXqhUOHDmHt2rWwtbXFjBkz4Ovri9jYWLz44otYunQpAKC6uhrLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYiIAGD37l3QaDQICelitAsHN4RUKkW/fgMBAHv2/CVaHUTWTNQAdfbsWVy6dAnDh9c9FR4fH4+xY8ciOTkZ0dHRkMtrN0yPiYlBdnY28vPzkZmZibKyMsTExOjvVygUCAkJQVJSEgAIMgYREQDs2rUDADBgwGCRKwH69RsAANi7dzc0GtO8bAaRJRP1Ui7nzp0DAJSXl+Oll15Ceno62rVrh3HjxmHgwIHIzc1FQEBAnce0atUKAHD58mXk5uYCAFq3bn3LMVeuXAEAQcZoLLlc9BnSeslk0jq/Wyr2aVnE7rO0tFQ/XXb//fcb7e93Q/uMiYmBg4Mjrl27ilOnMtClS1ej1GNMYr+mzYV9WiZRA1RpaSkA4J133sHrr7+OSZMmYdu2bRg/fjxWrFiByspK2NrWvf6QnZ0dAO1OwBUVFQBQ7zHFxcUAIMgYjSGVSuDm5tToxzcHhcJB7BKaBfu0LGL1uXfvDtTU1MDX1xeRkd2NfvHgu/fphP79+2Hr1q1ITNyP3r17GrUeY+LPrmWxlj5FDVA2NjYAgJdeegkjR44EAAQHByM9PR0rVqyAvb39LQu5dZ84cXR0hL29PQDtOibd17pjHBy0L6AQYzSGWq1BSUl5ox9vTDKZFAqFA0pKKqBSWe4FH9mnZRG7z19/1X76rn//QSgqMt7fbUP67NWrL7Zu3Yo//tiG0aNfNVpNxiL2a9pc2Kf5UCgcGnwGTdQA5e3tDQC3TLH5+flh9+7daNu2La5evVrnPt2fvby89BfTvHr1Kjp06FDnmKCgIP1zNHWMxjL1q1GrVGqTr1EI7NOyiNFnVVWVfvPMAQMGN8vzN6TPe+/tC4lEgvT0E7h06Qq8vLyMXpcx8GfXslhLn6JOVIaEhMDJyQlpaWl1bj916hQ6dOiA6OhopKSkQKVS6e9LSEiAj48PPDw8EBQUBGdnZyQmJurvLykpQXp6OqKitNenEmIMIrJuSUmJKC8vR6tWXia11sjd3QPdunUHAOzbx0/jETUnUQOUvb09Xn75ZXz99df4/fffcf78eXzzzTc4cOAARo0ahdjYWJSWlmLq1KnIysrChg0bsHLlSowdOxaAdt1SXFwc5syZg507dyIzMxNvvvkmvL29MXiw9lMyQoxBRNbtwIG9AIA+ffoZfe2Tofr21X4aT3eGjIiah6hTeAAwfvx4ODg46Pde8vX1xYIFC9Czp3ZB5LJlyzB79myMHDkSnp6emDx5sn69FABMnDgRSqUS06ZNQ2VlJaKjoxEfH69fFO7h4dHkMYjIuu3frw1QvXv3E7mSW917bx8sXPgVkpMPoaamRr+2lIiMS6LhBiJGoVKpUVBQJnYZ9ZLLpXBzc0JhYZlFz1OzT8siVp85OecwYsQDkMttsHfvQTg6GvfTtYb2qVarMWjQvSgsLMSKFT8gPDzSqPUJiT+7lsUS+nR3d2rwInLr2KyBiKiRdGefIiOjjB6eGkMqlaJHj3sAAAkJB0Suhsh6MEAREd3B/v3atUW9e/cVuZLbi4npBQA4eJDXxSNqLgxQRES3UVFRjpQU7SWd7r3X9APU8eNHUVJSInI1RNaBAYqI6DaSkhJRXV2NNm3awsens9jl3Fbr1m3QsWMnqNVqJCcn3v0BRNRkDFBERLexf/8+ALUbVpoy3VmohARO4xE1BwYoIqLbOHhQuyi7V6/eIldydzEx9wLgOiii5sIARURUj8uXL+H8+RzIZDJERfUQu5y7io7uCZlMhgsXcnD58iWxyyGyeAxQRET1OHToIACgS5duaNGihcjV3J2zszOCg7sAgH7hOxEZDwMUEVE9dFNhurVF5iAyMhoAAxRRc2CAIiL6F7VajcTEBABAz573iFxNw+mmGhmgiIyPAYqI6F+ysk6jsLAA9vYO6N49VOxyGiw8PBJSqRQXLpxHXl6u2OUQWTQGKCKif0lM1E7fRUZGw8bGfC4q7uzsjKCgYABAcjLPQhEZEwMUEdG/HDyonb6LiTGf6Tud2mm8QyJXQmTZGKCIiG5SU1OtX0PUs6f5LCDX4UJyoubBAEVEdJPjx4+jsrICbm5u8PcPELscg4WHR0EikSAn5xyuXbsqdjlEFosBiojoJrqpr8jIHiZ/+Zb6KBQKBAQEAeBZKCJjYoAiIrpJcrI2QEVFRYtcSePppvEOH04RuRIiy8UARUT0j5qaGqSmHgEAs7h8y+2Eh0cAAFJTD4tcCZHlYoAiIvpHenrt+qfOnf3ELqfRwsK0ASor6xRKS0tFrobIMjFAERH9Qzd9FxERBanUfN8ePT1boW3bdlCr1Th6NFXscogskvm+QxARCUy36Nqcp+90dGehOI1HZBwMUERE0K5/OnJEGzYsKUClpR0RuRIiy8QARUQEIDMzHRUV5XBxcYGvr7/Y5TRZWFg4AODo0TQolUqRqyGyPAxQRESovXZcRES0Wa9/0vH19YezcwtUVJTj9OmTYpdDZHHM/12CiEgAqanaPZMiIqJErkQYUqkUoaFhALgOisgYGKCIyOppNBr9WiHd2iFLULuQnOugiITGAEVEVu/cuWwUFRXBzs4OQUFBYpcjGN06KJ6BIhIeAxQRWT1dwOjatRtsbGxFrkY4Xbt2h1QqRV5eLq5ezRO7HCKLwgBFRFZPF6BCQy1n+g4AHBwc4eur3VH9xInjIldDZFkYoIjI6ukClCWtf9Lp2jUUAHDsWJrIlRBZFgYoIrJqBQUFyMk5BwD6T61Zkq5duwEATpw4JnIlRJaFAYqIrJru03edO/vBxcVV3GKMoGvX7gC0AUqtVotcDZHlYIAiIqtWO30XLnIlxuHr6wd7eweUlpbqz7QRUdMxQBGRVbPk9U8AIJfLERLSBQDXQREJiQGKiKxWVVUV0tO1n06z1AAF1K6DOn6c66CIhMIARURWKz39BGpqauDu7oH27TuIXY7RdOmiXQd1/PhRkSshshwMUERktW6evpNIJCJXYzy6M1CnTp1EVVWVyNUQWQYGKCKyWmlplr2AXKdNm7Zwd/eAUlmDkyczxC6HyCKIHqAuXbqEwMDAW379/PPPAICMjAzExcUhLCwM/fv3R3x8fJ3Hq9VqzJ8/H3369EFoaChGjx6NnJycOscIMQYRWRZLvYBwfSQSyU3roDiNRyQE0QPUyZMnYWdnh3379mH//v36X8OHD0dhYSFGjRqFTp06Yf369ZgwYQLmzZuH9evX6x+/aNEirF69GrNmzcKaNWsgkUgwZswYVFdXA4AgYxCR5cnJyUZhYSFsbW0RFBQidjlGp9sP6tgxBigiIcjFLuDUqVPw8fFBq1atbrlv5cqVsLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHYq1a9c2eQwisjypqdqzT126dIOtreVcQPh2+Ek8ImGZxBkoPz+/eu9LTk5GdHQ05PLanBcTE4Ps7Gzk5+cjMzMTZWVliImJ0d+vUCgQEhKCpKQkwcYgIstj6fs//VuXLtoAdeFCDoqLi8QthsgCmMQZKE9PTzzzzDM4d+4cOnbsiPHjx6NPnz7Izc1FQEBAneN1Z6ouX76M3NxcAEDr1q1vOebKlSsAIMgYjSWXi55P6yWTSev8bqnYp2URuk/dAvLIyEiT+rtqrNfTw8MdHTt2Qk7OOWRmnsC99/YRdPzG4M+uZbGWPnVEDVDV1dU4d+4cHBwcMHnyZDg6OuK3337DmDFjsGLFClRWVt5yat3Ozg6AdgO8iooKAKj3mOLiYgAQZIzGkEolcHNzavTjm4NC4SB2Cc2CfVoWIfosKChAdnY2AKBfv3tN8u+qMV7PyMgI5OScw+nTGRg27AHBx28s/uxaFmvpU9QAZWtri6SkJMjlcn2A6dq1K86cOYP4+HjY29vfspBbt4eJo6Mj7O3tAWiDmO5r3TEODtoXUIgxGkOt1qCkpLzRjzcmmUwKhcIBJSUVUKks9+Ki7NOyCNnnnj0HAAA+Pp0hkdihsLBMiBIFYczXMyAgBMAGHDqUbBI982fXslhCnwqFQ4PPoIk+hefo6HjLbQEBAdi/fz+8vb1x9erVOvfp/uzl5QWlUqm/rUOHDnWOCQoKAgBBxmgspdK0f4BUKrXJ1ygE9mlZhOgzLU17Tbhu3UJN9ntmjNdTtw7q2LGjqKlRmczmofzZtSzW0qeoE5WZmZkIDw9HcnJynduPHz8OPz8/REdHIyUlBSqVSn9fQkICfHx84OHhgaCgIDg7OyMxMVF/f0lJCdLT0xEVFQUAgoxBRJZFtxdSt26hIlfSvAICgiCX26CwsACXL18SuxwisyZqgAoICIC/vz8+/PBDJCcn48yZM/j444+RmpqKV199FbGxsSgtLcXUqVORlZWFDRs2YOXKlRg7diwA7RRgXFwc5syZg507dyIzMxNvvvkmvL29MXjwYAAQZAwishwajUb/UX7dR/uthZ2dHQICAgFwQ02iphJ1Ck8qlWLx4sWYM2cO3njjDZSUlCAkJAQrVqxAYKD2L/myZcswe/ZsjBw5Ep6enpg8eTJGjhypH2PixIlQKpWYNm0aKisrER0djfj4eP2aKg8PjyaPQUSW4/z5HNy4UQJbW1v4+QXc/QEWpmvX7khPP47jx49iyJCHxC6HyGxJNBqNRuwiLJFKpUZBgfiLNOsjl0vh5uaEwsIyi56nZp+WRag+N2/ehKlT30b37mH43/9WC1ihMIz9em7atBHvvz8FYWER+O67HwUf3xD82bUsltCnu7tTgxeRW8dmDURE/9BNXekubWJtgoO7AABOnsysszaUiAzDAEVEVuXECV2Asq71Tzo+Pp1hb++Aiopy5OScE7scIrPFAEVEVqOmphqZmRkArPcMlEwmQ2CgdouWjIwTIldDZL4YoIjIapw+fQrV1dVQKFzQvn2Huz/AQoWEaKfx0tMZoIgaiwGKiKyGbvuCLl26mswmkmIICgoBAGRmMkARNRYDFBFZDWtfQK6jOwOVmZkBtdo8Py1FJDYGKCKyGidOHAdgvQvIdXx8fGFvb4+ysjKcP39O7HKIzBIDFBFZhbKyUpw9mwWg9ppw1koul+t3JOc6KKLGYYAiIquQnn4CGo0GrVu3QcuWnmKXIzrdflD8JB5R4zBAEZFVqF1Abt1nn3RqA1S6yJUQmScGKCKyCrUbaFr3AnIdXYDKzEznQnKiRmCAIiKroDsDZe0LyHU6d/aFra0tSktLceHCebHLITI7DFBEZPGuXbuK3NwrkEql+o/wWzsbGxsEBHBHcqLGYoAiIoun276gc2dfODo6iVyN6QgO1m6oyXVQRIZjgCIii8cNNOvHT+IRNR4DFBFZvNoAxfVPN9NNZ2ZkpEOj0YhcDZF5YYAiIoumVqtv2oGcZ6Bu5uvrBxsbG9y4UYKLFy+IXQ6RWWGAIiKLduFCDm7cKIGdnR18ff3FLsek2NjYwt8/AADXQREZigGKiCyabvuCoKAQ2NjYiFyN6eE6KKLGYYAiIoumW//EHcjrpwtQvCYekWEYoIjIop04wQ0076R2IfkJLiQnMgADFBFZrJqaamRmZgDgAvLb8fMLgFxug5KSYly+fEnscojMBgMUEVms06dPobq6GgqFC9q37yB2OSbJ1tYWfn7axfVcB0XUcAxQRGSxbr7+nUQiEbka08V1UESGY4AiIovFHcgbRrcOKjOTWxkQNRQDFBFZrJvPQNHtBQXVXhOPC8mJGoYBiogsUmlpKbKzzwDgFgZ34+8fAJlMhsLCAly9mid2OURmgQGKiCxSRsZxaDQatG7dBh4eLcUux6TZ29vDx6czAE7jETUUAxQRWaTa6Tuuf2qIm6fxiOjuGKCIyCLVLiDn9F1D6D6JxzNQRA3DAEVEFolnoAwTHMwzUESGYIAiIotz9Woe8vJyIZVK9cGA7iwwMAgAkJeXi4KCfJGrITJ9DFBEZHFOnDgOAPD19YOjo5PI1ZgHJydndOzYCQCn8YgaggGKiCxO7QWEOX1nCC4kJ2o4Bigisji6BeTc/8kwugCluwAzEd0eAxQRWRS1Wq2fwuMn8AyjWy/GKTyiu2OAIiKLcuFCDm7cKIGdnR18ff3FLsesBAUFAwAuXDiPkpISkashMm0MUERkUXTbFwQFhcDGxkbkasyLq6sbWrduAwA4eZLTeER3wgBFRBaldgNNLiBvDG6oSdQwJhWgsrOzER4ejg0bNuhvy8jIQFxcHMLCwtC/f3/Ex8fXeYxarcb8+fPRp08fhIaGYvTo0cjJyalzjBBjEJF5qN1Ak+ufGoMbahI1jMkEqJqaGkyaNAnl5eX62woLCzFq1Ch06tQJ69evx4QJEzBv3jysX79ef8yiRYuwevVqzJo1C2vWrIFEIsGYMWNQXV0t2BhEZB5qaqr1Z054BqpxAgO166D4STyiO5M35KCFCxc2+glef/31Bh23YMECODnV3fBu7dq1sLW1xYwZMyCXy+Hr64ucnBwsXboUsbGxqK6uxvLly/H222+jX79+AIC5c+eiT58+2L59O4YOHSrIGERkHk6dOomamhq4uLigXbv2YpdjlnRnoM6dO4uKinI4ODiKXBGRaTJqgJJIJA0KUElJSVizZg02btyI/v37629PTk5GdHQ05PLaMmNiYrBkyRLk5+fj0qVLKCsrQ0xMjP5+hUKBkJAQJCUlYejQoYKMQUTm4ebr30kkEpGrMU+enq3QsqUnrl+/hlOnTiI0NFzskohMUoMCFKA9G9S9e8NPiaempuLpp5++63ElJSWYPHkypk2bhtatW9e5Lzc3FwEBAXVua9WqFQDg8uXLyM3NBYBbHteqVStcuXJFsDEaSy43mRnSOmQyaZ3fLRX7tCwN6TM9XRugunXrbrJ//+7GFF7P4OAQ7Nu3B6dOZSAyMtJoz2MKvTYH9mmZGhSgIiIibpleu5sWLVogPPzu/3OZMWMGwsLCMHz48Fvuq6yshK2tbZ3b7OzsAABVVVWoqKgAgHqPKS4uFmyMxpBKJXBzM+1rcCkUDmKX0CzYp2W5U5/p6doNNO+5p4fJ//27GzFfz4iIMOzbtwdnzpxqlu8jf3Yti7X02aAAFRkZCZlMZtDAvr6++PHHH+94zMaNG5GcnIxNmzbVe7+9vf0tC7mrqqoAAI6OjrC3twcAVFdX67/WHePg4CDYGI2hVmtQUlJ+9wNFIJNJoVA4oKSkAiqVWuxyjIZ9Wpa79Xnjxg1kZWUBADp1CkBhYVlzlygIU3g9fXy0G5CmpqYZ9ftoCr02B/ZpPhQKhwafQWtQgFqxYgWWLVuGqKgoPP744xgyZIj+LE5TrF+/Hvn5+XXWPQHABx98gPj4eLRp0wZXr16tc5/uz15eXlAqlfrbOnToUOeYoKAgAIC3t3eTx2gspdK0f4BUKrXJ1ygE9mlZbtfnsWPHoNFo0KZNW7i4uJn990LM19PfX/vel5WVhfLyW8/iC83af3YtjbX02aCYtW/fPrz77rsoKyvD5MmT0bt3b/z3v/9FRkbTPuY6Z84cbNmyBRs3btT/AoCJEyfi22+/RXR0NFJSUqBSqfSPSUhIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6ejqioqIAQJAxiMj0nThRu4CcmqZNm7ZQKFygVNbgzJnTYpdDZJIaFKDc3Nzw/PPPY8OGDdi0aRMef/xx7NixA48++ihGjhyJH3/8ETdu3DD4yb28vNCxY8c6vwDAw8MDbdu2RWxsLEpLSzF16lRkZWVhw4YNWLlyJcaOHQtAu24pLi4Oc+bMwc6dO5GZmYk333wT3t7eGDx4MAAIMgYRmb7aHci5gWZTSSQSbqhJdBcN/hSejr+/PyZPnoxJkyZh//79+PXXX/HZZ5/hs88+w+DBg/HEE08gOjpakOI8PDywbNkyzJ49GyNHjoSnpycmT56MkSNH6o+ZOHEilEolpk2bhsrKSkRHRyM+Pl5/ylmIMYjI9N28hQE1XVBQCBITExigiG5DotFoNE0dpKysDLt27cLXX3+NnJycJk/tWQKVSo2CAtNcxCqXS+Hm5oTCwjKLnqdmn5blTn1evZqH++/vB6lUigMHks1680dTeT3/+GMzpkz5D7p1C8WqVWuM8hym0quxsU/z4e7uJOwi8js5fvw4Nm3ahO3bt+PKlSvo2bNnU4ckIjLIiRPa7Qt8ff3MOjyZEt0U3qlTmVAqlXU2IyaiRgaoCxcuYNOmTdi0aRPOnTsHLy8vjBw5ErGxsWjXrp3QNRIR3VHt+idO3wmlffuOcHR0RHl5Oc6dy4afn7/YJRGZlAYHqMLCQmzZsgWbNm1CWloa5HI5Bg4ciPfeew+9e/fmZROISDS69U9dunABuVCkUikCA4Nx5EgKMjPTGaCI/qVBAerVV1/F/v37oVQq4e/vjylTpuDhhx+Gm5ubsesjIrojtVrNLQyMJCgoBEeOpCAjIx3Dho0Quxwik9KgAJWcnIzY2FjExsYadD08IiJjO3/+HEpLb8De3h6+vn5il2NRdOugMjNPiFwJkelpUIDav39/ncucEBGZCt30XVBQCGxsbESuxrLUBqgMqNVqSKXWcZFYooZoUID6d3jatm0bDh8+jJKSkluOlUgk+Oijj4SpjojoLriBpvH4+PjCzs4OZWVluHDhPDp27CR2SUQmw+BP4c2ZMwfLli2Ds7MzFArFLfdzMTkRNSduoGk8crkc/v6BOH78KDIzMxigiG5icID65Zdf8MQTT+C///2vMeohImqwmppqnDyp3biXAco4goND/glQ6Rgy5EGxyyEyGQZPaFdVVeGBBx4wRi1ERAY5deokampq4OrqirZtuQedMQQGBgMAMjK4kJzoZgYHqPvvvx+7du0yRi1ERAap3f+pO5cPGEntQvJ0CHDlLyKLYfAU3nvvvYfHH38czz33HEJDQ29ZYC6RSPDaa68JViAR0e1wAbnx+fkFQC6Xo6ioCLm5V9C6dRuxSyIyCQYHqFWrViE7OxvZ2dlISkq65X4GKCJqLtxA0/js7OzQubMfTp3KREZGOgMU0T8MDlDff/89hg4dinfffRctW7Y0Rk1ERHd148YNZGefBcBLuBhbcHAITp3KRGZmOgYOvE/scohMgsFroMrLy/HEE08wPBGRqDIyTkCj0aBt23Zwd3cXuxyLdvM6KCLSMjhA9erVC4mJicaohYiowXTrn3j2yfiCgrQBKiODAYpIx+ApvBEjRmDatGnIyclBeHg4nJ2dbznmkUceEaI2IqLbqt1AkwHK2AICAiGRSHDt2lVcv34NLVt6il0SkegMDlATJ04EAGzevBmbN2++5X6JRMIARURGV/sJPC4gNzZHRyd06uSD7OyzyMzMQO/eDFBEBgeonTt3GqMOIqIGy8vLw9WreZBKpfr1OWRcQUEhyM4+i4yMdPTu3VfscohE16A1UPPmzUNeXh4AoG3btnf9BWjf4ObNm2e8yonIaum2L/Dz84eDg6PI1ViH2oXk3JGcCGhggFq8eLE+QDVUbm4uFi9e3KiiiIjupHYBOafvmkttgMoQuRIi09CgKTyNRoMZM2bUu2D8dkpLSxtdFBHRndRuoMkF5M0lMFAboC5duoiSkmIoFC4iV0QkrgadgYqOjoaTkxM0Gk2Dfzk5OSEqKsrY9RORlVGr1Thx4jgALiBvTgqFQn/BZm5nQNTAM1CrVq0ydh1ERA2Sk3MOpaU3YG9vD19fP7HLsSrBwV1w6dJFpKefQM+e94hdDpGoDN5Ik4hITEePpgHQfipMLjf4g8TUBLpNS3VTqETWjAGKiMzKsWPaANW9e6jIlVifLl26AgDS04+LXAmR+BigiMisHD2q20CTAaq5BQd3AQBcvnwJBQUFIldDJC4GKCIyGxUVFTh1KhMA0K0bF5A3txYtWqBjx04AeBaKiAGKiMzG8ePHoVQq0bKlJ7y9W4tdjlXSrYNigCJr16AVmBs3bjRoUF4Lj4iM4fDhwwC02xdIJBKRq7FOISFdsWXLJi4kJ6vXoAA1ZcqUBg/IiwkTkbEcOXIEAKfvxMQzUERaDQpQvIAwEZmC2gDFBeRiCQoKhlQqxbVr15CXlwcvLy+xSyISRYMClO4CwQ2h0WgaXQwR0e1cv34dFy9ehEQiQUhIV7HLsVoODg7w9fXD6dOnkJ5+nAGKrFajdqHbvHkzDh06hJqaGn1g0mg0KC8vR2pqKvbu3StokUREuv2f/Pz8DbouJwmvS5duOH36FE6cOIYBAwaJXQ6RKAwOUAsXLsTChQvRokULKJVK2NjYQC6Xo6CgAFKpFI8//rgx6iQiK6fbgZzrn8QXEtIVGzeu5zoosmoGb2Pwyy+/4OGHH8ahQ4fw4osvYsCAAfj777+xbt06uLq6wt/f3xh1EpGVO3o0FQB3IDcFuh3JT5w4xmUbZLUMDlB5eXkYMWIEJBIJunTpol/U2bVrV7z66qv4+eefBS+SiKybSqXC8ePaj81zAbn4/P0DIZfboLi4GJcuXRS7HCJRGBygHB0d9fuvdOrUCRcvXkRlZSUAIDg4GBcv8i8TEQkrO/ssysrK4OjoCD8/nuUWm62tLQICAgEAJ05wGo+sk8EBqlu3bvjll18AAB06dIBMJsPff/8NADhz5gxsbW2FrZCIrN7x49rr34WGhkImk4lcDQF1p/GIrJHBAerVV1/F1q1b8eqrr8LW1hYPP/wwpkyZggkTJuDTTz9F7969DRovPz8fb7/9NmJiYhAeHo5XXnkFWVlZ+vszMjIQFxeHsLAw9O/fH/Hx8XUer1arMX/+fPTp0wehoaEYPXo0cnJy6hwjxBhEJB7dJ/DCw8NFroR0uKEmWTuDA1R0dDTWrVuHBx98EAAwffp0DBkyBGfPnsUDDzyAadOmGTTeuHHjcOHCBSxduhTr1q2Dvb09XnzxRVRUVKCwsBCjRo1Cp06dsH79ekyYMAHz5s3D+vXr9Y9ftGgRVq9ejVmzZmHNmjWQSCQYM2YMqqurAUCQMYhIXMeOac9ARUREiFwJ6ejOQGVknIBarRa5GqLm16h9oIKCghAUFAQAsLOzw8yZMxv15IWFhWjXrh3GjRun//Te+PHjMWLECJw+fRoJCQmwtbXFjBkzIJfL4evri5ycHCxduhSxsbGorq7G8uXL8fbbb6Nfv34AgLlz56JPnz7Yvn07hg4dirVr1zZ5DCIST0VFObKyTgHgGShT4uPjC3t7e5SVlSEn5xx8fDqLXRJRs2pUgLpx4wYOHjyI8vLyej/C2tBr4bm5ueHLL7/U//n69euIj4+Ht7c3/Pz8sGDBAkRHR0Mury0zJiYGS5YsQX5+Pi5duoSysjLExMTo71coFAgJCUFSUhKGDh2K5OTkJo9BROI5ceI41Go1vLy84e3tjcLCMrFLIgByuRxBQSFITT2MEyeOMUCR1TE4QO3ZswdvvPEGKioq6r2/sRcTfv/99/Vni7755hs4OjoiNzcXAQEBdY5r1aoVAODy5cvIzc0FALRu3fqWY65cuQIAgozRWHK5wTOkzUImk9b53VKxT8uQnq5dpBwaqt2+wFL71DGn17Nr125ITT2M9PTjeOSRkQY/3px6bQr2aZkMDlBffvklOnfujHfffRdeXl6QSoX5Rr3wwgt48skn8dNPP+G1117Djz/+iMrKyls+1WdnZwcAqKqq0oe4+o4pLi4GAEHGaAypVAI3N6dGP745KBQOYpfQLNinecvMPAEA6NEjGoDl9vlv5tBnz55R+P77lTh5Mr1J73fm0KsQ2KdlMThAnT17FosWLUJUVJSghfj5+QEAZs6cidTUVHz//fewt7e/ZSF3VVUVAO1+VPb29gCA6upq/de6YxwctC+gEGM0hlqtQUlJeaMfb0wymRQKhQNKSiqgUlnu4k/2aRlSUlIAAAEBIQBgsX3qmNPr2amTdu3q8ePHcfVqEWxsbAx6vDn12hTs03woFA4NPoNmcIBq06YNSktLDS6qPvn5+UhISMCDDz6o39tFKpXC19cXV69ehbe3N65evVrnMbo/e3l5QalU6m/r0KFDnWN0i9yFGKOxlErT/gFSqdQmX6MQ2Kf5ysvLQ15eHmQyGYKCtAHKEvusjzn02bZtBzg7O6O0tBQnT57Uv0aGModehcA+LYvB829jx47F119/LciO41evXsV//vMfHDp0SH9bTU0N0tPT4evri+joaKSkpEClUunvT0hIgI+PDzw8PBAUFARnZ2ckJibq7y8pKUF6err+DJkQYxCROI4e1V4qys8vAI6OjiJXQ/8mlUrRpYv24s66iz0TWQuDz0Bt2rQJeXl5GDx4MNzd3etMewHaReQ7duxo0FhBQUHo3bs3PvzwQ8yaNQsKhQKLFy9GSUkJXnzxRdjZ2WHZsmWYOnUqXn75ZRw9ehQrV67Ehx9+CEC7bikuLg5z5syBu7s72rZti88//xze3t4YPHgwACA2NrbJYxCRONLStAEqLIzbF5iq0NAwJCb+jaNHU/HEE0+LXQ5RszE4QHl7az9KLASJRIKvvvoKX3zxBd544w3cuHEDUVFR+OGHH9CmTRsAwLJlyzB79myMHDkSnp6emDx5MkaOrP20x8SJE6FUKjFt2jRUVlYiOjoa8fHx+kXhHh4eTR6DiMSRlpYKAAgNZYAyVd27hwEAjh5NFbUOouYm0dS3kRM1mUqlRkGBae5XI5dL4ebmhMLCMouep2af5q2yshK9e0dDqazB5s070LFjB4vs89/M7fUsLi5Cv37affT++isBbm5uDX6sufXaWOzTfLi7OxlvEfnly5dve59UKoWjoyMUCoWhwxIR1ZGRcQJKZQ08PT3Rpk1bscuh23BxcUWnTj44dy4bx46lom/fAWKXRNQsDA5QAwcOhEQiueMxLi4ueP755zF+/PhGF0ZE1i01Vbv+KTQ0/K7vOSSu7t3DcO5cNo4eTWOAIqthcID65JNPMH36dPTo0QPDhg1Dy5YtkZ+fj23btmH37t0YP348ysrK8M0338DV1RXPPPOMMeomIgunW0DO9U+mr3v3MPz22y9cB0VWxeAAtXnzZgwdOhQff/xxndtHjBiBDz74AMePH8fixYuhUCjw008/MUARkcE0Gg0DlBnRLSQ/fvwoVCqVfl8/Iktm8D5Qhw4dwrBhw+q97/7778fBgwcBAJGRkbhw4ULTqiMiq3ThwnkUFhbA1ta20ZszUvPx9fWDk5MTysvLceZMltjlEDULgwOUq6srMjMz670vMzMTzs7OAIDy8vImXQqFiKyX7uxTcHAXbidiBmQyGbp21W2oeUTkaoiah8EBavjw4Zg/fz5WrlyJvLw81NTUIC8vD6tWrcLChQsxfPhwFBcXY+XKlfqrpxMRGYLTd+ZHN42n27uLyNIZvAbqjTfeQH5+Pj755BN88skn+tulUiliY2Px5ptvYtu2bUhPT8fKlSsFLZaIrAN3IDc/3bpp/8N87Bgv6ULWweAAJZfL8fHHH2PcuHFITExEYWEhvLy8EBERgfbt2wMA+vbti3379vHUOxEZ7MaNG8jKOg2g9qwGmb7u3bUB6ty5bBQXF8HFxVXcgoiMzOAApdOhQwd06NCh3vtcXFwaXRARWbdjx9Kg0WjQrl17tGzpKXY51ECurm7o2LETcnLO4ejRNPTp00/skoiMqkEBatCgQfj6668RFBR01400DbmYMBHRv3H9k/nq1i0UOTnncOwYAxRZvgYFqB49esDJyUn/NXcFJiJjYYAyX6Gh4fj991+5kJysQoMC1M2bZt68cJyISEgqlQrHjx8FwABljmo31Ezjhppk8QzexgAASktLkZeXBwCorq7GsmXLMGvWLCQlJQlaHBFZl7Nns1BaWgpHR0f4+fmLXQ4ZyNfXDw4OjigrK8PZs9xQkyybwQHq6NGjGDhwIFatWgUAmDVrFubMmYPffvsNL7zwAnbu3Cl4kURkHXTTd926hfHshRmSy+Xo2rUbAODoUW5nQJbN4AA1d+5cdO7cGU8++SQqKyuxadMmPPPMMzh06BAee+wxLF682Bh1EpEVSE3VrX8KE7cQajTdNB4vLEyWzuAAlZaWhnHjxqF9+/ZISEhAZWUlRowYAQB46KGHcPr0acGLJCLroFt8zA00zZcu/DJAkaUzOEBJpVL9Bpl79uyBQqFA9+7aayCVlpbC3t5e2AqJyCpcv34NFy7kQCKRoGtXXgbKXHXrFgYAyM4+i6KiQnGLITIigwNU165dsW7dOhw5cgRbt25F//79IZFIkJ+fj6VLl6Jr167GqJOILNzhwykAAH//QCgUCpGrocZyc3ODj09nALVTskSWyOAANXnyZCQkJODpp5+GTCbDuHHjAADDhg3DuXPn8MYbbwhdIxFZgcOHtZ/ijYyMErkSaqrw8EgAwOHDySJXQmQ8Bl/KJSQkBH/++SfOnDkDf39/ODo6AgBmzJiBiIgIeHry0gtEZDjdP7YREQxQ5i4iIgobNvyMI0dSxC6FyGgadS08Z2dnhIbWXaMwZMgQQQoiIutTXFyE06dPAWCAsgS6M1AZGSdQUVEOBwdHkSsiEl6jNtIkIhJSauphaDQadOrkAw+PlmKXQ03Upk1beHl5Q6lU4tixo2KXQ2QUDFBEJLqUFE7fWRKJRMJ1UGTxGKCISHS6f2QjI6NFroSEogvDXAdFlooBiohEVV5ehoyMEwB4BsqSRERoz0ClpaWipqZG5GqIhMcARUSiOno0DSqVCq1bt0Hr1m3ELocE0rmzHxQKF1RWViAzM0PscogExwBFRKLi9gWWSSqVIjw8AgCQkpIkcjVEwmOAIiJR6f5xZYCyPFFRPQAAKSmHRK6ESHgMUEQkmurqahw7lgaAO5BbIl2AOnw4GUqlUuRqiITFAEVEojlx4hiqq6vh7u6Bjh19xC6HBBYQEIQWLRQoKytDRka62OUQCYoBiohEc/P0nUQiEbkaEppMJtNvTZGczGk8siwMUEQkmtr9nzh9Z6l003jJyYkiV0IkLAYoIhKFUqlEauphAEBEBDfQtFTR0T0BaDfU5H5QZEkYoIhIFCdPZqC8vBzOzi3g5+cvdjlkJP7+AXBxcUF5ebl+w1QiS8AARUSi0E3fhYdHQCaTiVwNGYtUKkVkpG4aj+ugyHIwQBGRKGovIMzpO0sXFaV9jZOSuA6KLAcDFBE1O5VKxQXkVqRHjxgA2nVQ1dXVIldDJAzRA1RRURGmT5+Ovn37IiIiAk8//TSSk5P192dkZCAuLg5hYWHo378/4uPj6zxerVZj/vz56NOnD0JDQzF69Gjk5OTUOUaIMYhIOCdPZqCkpBhOTk4ICekqdjlkZL6+/mjZ0hOVlZVISzssdjlEghA9QL311ltIS0vDl19+iXXr1qFLly546aWXcObMGRQWFmLUqFHo1KkT1q9fjwkTJmDevHlYv369/vGLFi3C6tWrMWvWLKxZswYSiQRjxozR/y9HiDGISFiJiQkAtB9xl8vlIldDxiaRSNCz5z0AgIMHE0SuhkgYogaonJwcHDhwAB988AGioqLQuXNnTJ06FV5eXvj999+xdu1a2NraYsaMGfD19UVsbCxefPFFLF26FID2MhDLly/HhAkT0K9fPwQFBWHu3LnIy8vD9u3bAUCQMYhIWLoA1aPHPSJXQs2lNkD9LXIlRMIQNUC5ubnh22+/RdeutafwJRIJNBoNiouLkZycjOjo6Dr/Q42JiUF2djby8/ORmZmJsrIyxMTE6O9XKBQICQlBUpJ2h2MhxiAi4VRXV+v3f+rZM+YuR5Ol6NmzFwAgPf04iouLxC2GSACinjtXKBTo169fndu2bt2K8+fPo3fv3pg7dy4CAgLq3N+qVSsAwOXLl5GbmwsAaN269S3HXLlyBQCQm5vb5DEaSy4XfYa0XjKZtM7vlop9mqbDh9NQWVkJD4+WCAwMbPAlXMytz8ay1D7btm0NX18/nDmThZSUQ7j//gcsttd/Y5+WyaQWH6SkpOC9997DoEGDMHDgQHz88cewtbWtc4ydnR0AoKqqChUVFQBQ7zHFxcUAgMrKyiaP0RhSqQRubk6NfnxzUCgcxC6hWbBP05KWpv2QSN++feDu7mzw482lz6ayxD779+/3T4BKxJNPxupvt8Re68M+LYvJBKgdO3Zg0qRJCA0NxZdffgkAsLe3v2Uhd1VVFQDA0dER9vb2ALRTArqvdcc4ODgINkZjqNUalJSUN/rxxiSTSaFQOKCkpAIqlVrscoyGfZqm3bv3AADCw6NRWFjW4MeZW5+NZcl9RkT0QHx8PPbs2YvCwjKL7vVm7NN8KBQODT6DZhIB6vvvv8fs2bMxePBgzJkzR382yNvbG1evXq1zrO7PXl5eUCqV+ts6dOhQ55igoCDBxmgspdK0f4BUKrXJ1ygE9mk6SktLcfz4MQBAVFTPRtVrDn0KwRL7DAuLhFwux8WLF5CdfQ4+Pp0AWGav9WGflkX0icoff/wRM2fOxLPPPouvvvqqzlRadHQ0UlJSoFKp9LclJCTAx8cHHh4eCAoKgrOzMxITa3e3LSkpQXp6OqKiogQbg4iEkZJyCCqVCu3bd0CbNm3FLoeamZOTM0JDwwAAf/+9X9xiiJpI1ACVnZ2Njz76CIMHD8bYsWORn5+Pa9eu4dq1a7hx4wZiY2NRWlqKqVOnIisrCxs2bMDKlSsxduxYANp1S3FxcZgzZw527tyJzMxMvPnmm/D29sbgwYMBQJAxiEgYiYkHAdTuTE3W5957+wIADhzYK3IlRE0j6hTetm3bUFNTg+3bt9+y59LIkSPxySefYNmyZZg9ezZGjhwJT09PTJ48GSNHjtQfN3HiRCiVSkybNg2VlZWIjo5GfHy8/kyWh4dHk8cgImEcOqTd/0n3kXayPvfe2xfz53+JQ4cO/rMe1bQ/bEN0OxKNRqMRuwhLpFKpUVDQ8AWyzUkul8LNzQmFhWUWPU/NPk3L9evXcN99fQAAf/2VADc3N4Meby59NpWl96nRaHD//f1w7dpVLFmyHMOGDbHYXnUs/TXVsYQ+3d2dGryIXPQ1UERkHQ4d0k7fBQYGGxyeyHJIJBL07q2dxtu3b4/I1RA1HgMUETULXYDi7uOkC1D793MdFJkvBigiMjqNRsPr35Fez569IJfLce5cNs6dOyd2OUSNwgBFREZ38eIFXLlyGXK5DSIiIsUuh0Tm7OyMsLAIAMBff/0lcjVEjcMARURGpzv71L17KBwd+akrqt3OYOfOnSJXQtQ4DFBEZHS103dc/0Ra/foNAAAcOHAAZWWlIldDZDgGKCIyKqVSiYMH/wYAxMRw/yfS8vHpjA4dOqK6uhoHDnBXcjI/DFBEZFTHjx/FjRslUChc0LVrd7HLIRMhkUgwYMAgAMCuXTtErobIcAxQRGRUumuexcRoP3lFpDNwoDZA7d27BzU1NSJXQ2QYBigiMirdXj/33ttH5ErI1ISFRcDd3R0lJcVITU0RuxwigzBAEZHRFBTkIz39OACgV6/eIldDpkYmk+G+++4DAPz11y6RqyEyDAMUERlNQoJ28XhgYDA8PVuJXA2ZoiFDhgAAdu/eCV6alcwJAxQRGc2BA7rpO559ovr169cPdnZ2uHz5Ek6ezBS7HKIGY4AiIqNQq9VISNAuIO/Vi+ufqH4ODg76a+Nt3/6HyNUQNRwDFBEZxYkTx1FYWAgnJyeEhoaLXQ6ZsCFDHgSgDVCcxiNzwQBFREaxb99uANqzTzY2NmKWQiauX7/+sLW1xfnzOTh16qTY5RA1CAMUERnF3r27AQB9+/YXtQ4yfU5Ozujdux8ATuOR+WCAIiLB5eXlIjMzHRKJRH/RWKI7GTxY+2m8P//cymk8MgsMUEQkuH37dgMAunULhbu7u5ilkJno25fTeGReGKCISHC66bt+/QaIWwiZDScnZ/3Zyj//3CpyNUR3xwBFRIKqqKhAYmICAK5/IsM88MBDAICtW3+HWq0WuRqiO2OAIiJBJSUdRFVVFVq3bgM/vwCxyyEz0rfvADg5OeHy5UtISzsidjlEd8QARUSC2r1be02zPn36QyKRiFwNmRMHBwcMGnQ/AGDz5t9ErobozhigiEgwKpVKH6D69x8ocjVkjoYOfRgA8Oeff6C6ulrkaohujwGKiARz9GgaCgry4ezcAtHRPcQuh8xQVFQPeHq2QklJMfbv3yt2OUS3xQBFRIL566/tALSLx21sbEWuhsyRTCbDgw8OAwBs2cJpPDJdDFBEJAiNRoNdu3YAAAYOvE/kasic6abx9uz5C0VFhSJXQ1Q/BigiEkRW1ilcvHgBtra26NWrt9jlkBkLCAhEYGAwampqsGXLJrHLIaoXAxQRCUJ39umee+6Fo6OTyNWQOZNIJBg58jEAwIYNP/PSLmSSGKCISBC6ADVgAKfvqOkeemg47OzskJV1GsePHxO7HKJbMEARUZOdP5+DkyczIJPJ0K8fty+gplMoFBg8+AEAwC+//CxyNUS3YoAioibbvv0PAEB0dE+4ubmJXA1ZCt003h9/bEZ5eZnI1RDVxQBFRE3255/aAHX//Q+KXAlZkoiIKHTo0BHl5eXYunWz2OUQ1cEARURNkpOTjZMnMyCXy7l9AQlKIpHgsceeBACsWfMDF5OTSWGAIqIm0Z196tnzHri6cvqOhPXII7Gwt3fAqVMnceRIitjlEOkxQBFRk/z551YA0C/4JRKSQuGCoUOHAwB++ul7kashqsUARUSNdvbsGZw+fQpyuQ2n78honnrqWQDArl3bkZeXK3I1RFoMUETUaH/8oV3YGxPTCwqFi8jVkKXy9w9EZGQ0VCoVfv55tdjlEAFggCKiRtJoNPrLbDz00DCRqyFL9/TTcQCAdetWo6KiQuRqiEwsQC1atAjPPfdcndsyMjIQFxeHsLAw9O/fH/Hx8XXuV6vVmD9/Pvr06YPQ0FCMHj0aOTk5go9BRHUdPZqKixcvwMHBEQMGDBK7HLJw/fsPQrt27VFUVIRff10vdjlEphOgvvvuO8yfP7/ObYWFhRg1ahQ6deqE9evXY8KECZg3bx7Wr6/9y7No0SKsXr0as2bNwpo1ayCRSDBmzBhUV1cLNgYR3WrzZu3Zp0GDBsPBwVHkasjSyeVyPP/8aADA//63AkqlUuSKyNqJHqDy8vLw8ssvY968efDx8alz39q1a2Fra4sZM2bA19cXsbGxePHFF7F06VIAQHV1NZYvX44JEyagX79+CAoKwty5c5GXl4ft27cLNgYR1VVTU4M//9wCQHvNMqLm8PDDI+Hm5o7Lly/pP/1JJBbRA9SJEyfg4uKC3377DaGhoXXuS05ORnR0NORyuf62mJgYZGdnIz8/H5mZmSgrK0NMTIz+foVCgZCQECQlJQk2BhHVlZCwH0VFRWjZ0hM9esTc/QFEArC3t8czz2iXeXz3XTw31iRRye9+iHENHDgQAwfWf/HR3NxcBAQE1LmtVatWAIDLly8jN1f7cdbWrVvfcsyVK1cEG6Ox5HLR82m9ZDJpnd8tFfs0ns2bfwMAPPjgUNjb2zbLc/L1tDyN6fWZZ57F8uVLcepUJv7+ey/69RtgrPIEYy2vqbX0qSN6gLqTyspK2NrWfXO2s7MDAFRVVek/iVHfMcXFxYKN0RhSqQRubk6NfnxzUCgcxC6hWbBPYRUWFmL37l0AgGeeebLZf875eloeQ3p1c3PCiy++gG+++QZLlnyNESOGQiKRGLE64VjLa2otfZp0gLK3t79lIXdVVRUAwNHREfb29gC065h0X+uOcXBwEGyMxlCrNSgpKW/0441JJpNCoXBASUkFVCq12OUYDfs0jh9+WI2qqioEBgahXbvOKCwsM/pzAnw9LVFje3366Rfw3XcrcfToUfzyyyaT/xSotbymltCnQuHQ4DNoJh2gvL29cfXq1Tq36f7s5eWl/xTG1atX0aFDhzrHBAUFCTZGYymVpv0DpFKpTb5GIbBPYW3YoP0E6yOPxEKl0gBo3nUofD0tj6G9KhSuePpp7VTewoXz0bt3f7M4C2Utr6m19GnSE5XR0dFISUmBSqXS35aQkAAfHx94eHggKCgIzs7OSExM1N9fUlKC9PR0REVFCTYGEWllZJzAyZMZsLGx4afvSFTPPz8ajo6OOHkyA7t28RPT1PxMOkDFxsaitLQUU6dORVZWFjZs2ICVK1di7NixALTrluLi4jBnzhzs3LkTmZmZePPNN+Ht7Y3BgwcLNgYRaf3yi/bs08CBg+Hi4ipuMWTVXF3d8OyzLwAAvv56HveFomZn0lN4Hh4eWLZsGWbPno2RI0fC09MTkydPxsiRI/XHTJw4EUqlEtOmTUNlZSWio6MRHx+vXxQuxBhEpP1Ahu7SLY88EityNUTas1A///wTzp49g19+WYfHH39K7JLIikg03EjDKFQqNQoKmmdxraHkcinc3JxQWFhm0fPU7FNYv/32C6ZPfxetW7fB5s07IJU27wlsvp6WR4heV6/+Hp98Mgvu7h747bdtcHZ2FrjKprOW19QS+nR3d2rwInKTnsIjItOxdu1PAIDHHnuy2cMT0e3Exj6JDh06oqAgHytWLBW7HLIifBckors6ceIYjh8/ChsbG4wc+ZjY5RDp2djY4I033gYAfP/9d7h06aLIFZG1YIAiortas+ZHAMDgwQ/A3d1D5GqI6howYBCionqgqqoKn302W+xyyEowQBHRHRUVFWLbNu2Fg5988hmRqyG6lUQiwbvvTodcLseePX/pd8onMiYGKCK6o40bN6CqqgpBQSHo3j1M7HKI6uXr64fnnx8FAPj001moqDDNK0GQ5WCAIqLbqqmpwZo1PwDQnn0yh92eyXqNGTMOrVu3wZUrl/HNNwvFLocsHAMUEd3Wjh3bcOXKZbi7e3DncTJ5Dg6OmDJlGgBg1aoVSEs7InJFZMkYoIioXhqNBitXLgcAPP10HOzs7ESuiOju+vUbiGHDRkCj0WD69HdRWVkpdklkoRigiKheSUmJyMxMh729PXd4JrMyefJ78PT0RE7OOXz99Vdil0MWigGKiOqlO/s0YsSjcHV1E7kaooZTKFzw/vszAQCrVn2Hv//eL3JFZIkYoIjoFidPZuLAgb2QSCSIi3tR7HKIDNa3b3/9mdNp097B9evXRK6ILA0DFBHd4ttvvwYA3H//g2jfvoPI1RA1zn/+MwUBAYEoKMjH1KmToVKpxC6JLAgDFBHVcfr0SezcuR0SiQRjxowTuxyiRrO3t8enn86Fvb0DEhMT8M03C8QuiSwIAxQR1fHtt98AAO67bwj8/PxFroaoaXx8OuP99z8EACxbthh//vmHyBWRpWCAIiK9rKzT2LFjGwDglVd49oksw9ChD+O5514EAEyf/i5OnswUtyCyCAxQRKT3zTfzodFoMGjQYPj7B4pdDpFg/u//JuGee+5FZWUFJk58FXl5uWKXRGaOAYqIAACpqYexc+d2SKVSjB//f2KXQyQouVyOTz/9Ej4+nZGXl4vXXhuDkpISscsiM8YARUTQaDSYO/dzAMCIEbHw9fUTuSIi4SkULvj666Xw9PREVtZpvPnma9ypnBqNAYqI8NdfO5GWdgT29vYYN+51scshMpo2bdpiwYJv4eTkhJSUJPznPxNQVVUldllkhhigiKxcTU015s2bAwB49tkX0KqVl8gVERlXUFAw5s9fDHt7Bxw4sA+TJk1EdXW12GWRmWGAIrJy33+/Ejk55+Du7oEXX3xZ7HKImkVkZDQWLPgG9vb22LdvD9588zVUVJSLXRaZEQYoIit25cplLFmyCADw5ptvo0WLFiJXRNR8oqNjMG/eN/ozUWPHjkZxcZHYZZGZYIAismJffPEJKisrEB4eiWHDRohdDlGz69nzHixZshwKhQuOHk3FqFFxuHTpothlkRlggCKyUvv27cGOHX9CJpPhvfemQyKRiF0SkShCQ8OxfPn38PRshbNnsxAX9zgOH04WuywycQxQRFaopKQY//3v+wCAZ599nptmktXz8/PH99//jODgEBQWFuKVV0Zh7dqfoNFoxC6NTBQDFJEV+uyzj3Dt2lV07NgJ48ZNFLscIpPg5eWF5ct/wODBD0CprMFHH32Id9/9D8rKSsUujUwQAxSRldm9exd+//1XSKVS/Pe/H8PBwUHskohMhoODAz77bC7eemsyZDIZ/vhjC556KhapqYfFLo1MDAMUkRXJy8vDhx9OBQA899wohIaGi1wRkemRSCR4/vnRiI9fBW/v1rhwIQejR8dh/vwvuOkm6TFAEVmJmpoavPPOmygsLERQUAjGj+fUHdGdhIVFYO3aXzFs2Aio1WosX74Ujz/+MBITE8QujUwAAxSRlVi48Cukph6Gs7MzPv/8K9jZ2YldEpHJUygUmDXrU3z55QJ4enri/PkcjB07Cm+//QZycs6JXR6JiAGKyAps3fo7Vq6MBwB8+OFHaN++g8gVEZmXgQMHY8OGLXjqqWchkUiwffsfiI0dhtmzZ+Datatil0ciYIAisnBHjqRg+vR3AQDPPz8agwbdL3JFROapRYsWmDLlfaxZsxG9e/eDUqnEzz+vxvDhQ7BgwVzuYm5lGKCILFhOzjm8+eZrqKmpwcCBg/HGG5PELonI7AUEBGLhwiWIj1+F7t1DUVlZgfj4JRgyZABmz/4Q586dFbtEagYMUEQW6uLFCxg7dhSKiorQtWt3zJ79GaRS/pUnEkpkZDRWrlyNuXO/RmBgMCorK/Dzzz/hkUcewuuvj8XBg39DrVaLXSYZiVzsAohIeJcuXcSYMS8gN/cKfHw6Y968RdzvicgIJBIJBgwYhP79ByI5+RB++GEl9uz5C/v378H+/XvQpk1bDBv2MJ599il4eLQWu1wSkETDfeqNQqVSo6CgTOwy6iWXS+Hm5oTCwjIolZb7vyNr7fPMmSy8/voruHLlMjp27IRly/4HT89WYpfZZNb6eloyS+01J+ccfvppFTZt2oiystp/B7p06YoHHxyOAQMGoW3bdiJWaByW8Hq6uztBJmvYmXoGKCNhgBKfNfb5999/4623JqC09AY6duyEpUtXolUrL7FLFIQ1vp6W3Cdg+b1WVlZiz55d2LJlEw4c2AelUqm/z9fXH3379kffvgPQvXsoZDKZiJUKwxJeTwYoE8AAJT5r6tPV1RGLFi3BZ599DKVSifDwSMyduxCurm5ilycYa3o9raFPwHp6lculUKsr8dNPa/Hnn9uQmnoYKpVKf3+LFgpEREQiKqoHIiOjERgYbJaByhJeTwaoRlCr1Vi4cCF+/vlnlJSUIDIyEh988AE6duzYqPEYoMRnLX2WlhZj5szp2LZtGwDggQeG4sMPP7K4jTKt5fW0lj4B6+n1332WlBTjwIF92Lt3Nw4c2IeSkuI6xzs7O6Nbt1CEhHRFSEgXhIR0hbd3a0gkEpE6aBhLeD0ZoBph4cKF+PHHH/Hxxx/Dy8sLn3/+OS5cuIDff/8dtra2Bo/HACU+S+9To9Fgy5bf8eWXnyI//zpsbGzw1luT8dRTcSb/RtsYlv566lhLn4D19HqnPpVKJTIy0pGSkoSUlEM4ciQFpaWlt4zh5uaGgIAgdO7sB1/f2l8KhUtztXFXlvB6MkAZqLq6GjExMXj77bfx9NNPAwBKSkrQp08ffPTRRxg6dKjBYzJAic+S+0xLO4IFC+YiOfkQAMDX1xeffPIF/P2DRK7MeCz59byZtfQJWE+vhvSpUqlw6lQmjh8/hvT040hPP4EzZ07XWT91M1dXV7Rt2x5t27ZDu3bt0LZte7Rrp/2zl5c3bGxsjNFSvSzh9TQkQHEbAwCZmZkoKytDTEyM/jaFQoGQkBAkJSU1KkAZy/Xr15Cbm4va3Kv9XfdnjUZz09eo9xipVIIWLexRUlIBpVL1r2Nwy3j/Hrchx95aV/3H3nzcrePgrsdq+5HBxkYOudwGcrlc/7WdnS3c3VugvLwGMpkc9vaOcHBwgIODQ7O+qQhFrVYjMTEBK1fG4+DBvwEA9vb2eOWVcXjjjQkoL1ea7ZsWEWnJZDIEB3dBcHAX/W1VVVU4deokzpw5jTNnTuPs2TM4cyYLublXUFRUhKKiIpw4caze8dzc3NCypSdatvSEp2erf373hLt7S7i6usLFxQUKhQtcXFzg6OhkkWevjYUBCkBubi4AoHXrunt0tGrVCleuXBGjpHrl5eVi6ND7bvs/EWo4GxsbODg4wtFRG6oUChe4urrC1dUNLi6u+q9vvs3NTft7cy7u1Gg0OHkyA3v2/IXffvsFly5dBADI5XIMGzYCY8aMQ8eOHWBnZ4fycv5cEFkiOzs7dOvWHd26da9ze1lZKS5evIhLly7i0qULuHjxAi5duoRLly7g0qWLqK6uRmFhIQoLC3H69Km7Po9cLkeLFoo6ocrJyRmOjrr3ytrfHRwc/rndSf91ixbOqKhwQ0WFChKJDLa2trCxsbHYDXwZoABUVFQAwC1rnezs7FBcXFzfQxpELhf2h8bd3Q3h4ZH6f0R1/1Oo/Q+D5F+31/5e91gJZDIp1Oraszj1PabumLc/pr5j71bHrbU2tI66vWg0gFqtQk2NEkplDZRKJZRKJWpqtF+r1SpUV1ejpqYG5eXl+k++1NTUoKam+JbFm3cjlUrh6uoGD4+W8PDwgIdHS7Rs6QF3d486t3l4eMDd3R02Ng1fP6fRaHDt2lWcO3cOmZnpSEtLxeHDKXUuVNqiRQsMG/YwXnhhNNq1aw8A+tPNDT3tbK7Yp+Wxll6N1aeLiwIuLiHo0iXklvvUajWKiopw7dpVXL9+DdeuXcO1a1dx7do1XL9+Dfn511FSUoLiYu0ZrOrqaiiVShQWFqCwsEDQOrUzA7b6QGVrW/v1zbfLZDLI5TLIZHLIZFLIZHJIpVLI5drfb77dzs4Ojz76GPz9AwSt1aC+RHtmE2Jvbw9AuxZK9zWgPW3a2N2bpVIJ3NycBKlPx83NCRs3bhB0TGui0WhQXV2N8vLyOr9KS0tRVFSEwsJCFBQU6P/Hpvu6oKBAf5pcrVajoCAfBQX5OH367s/p6uqKli1bokWLFre8eSiVSlRWVqK0tBT5+fm4fv26PszfzMHBAX369MFDDz2EYcOG3fZnUqGwjp3G2aflsZZem7tPD48W8PVt36BjKyoq9O9zxcXF+vfE0tJSlJWV6d8vy8rKUFZWhoqKCv3XN99XWVmJmpqaOmPr/mNbUVEuaH+lpcVYuHChoGMaggEKtVN3V69eRYcOHfS3X716FUFBjVuUq1ZrUFIi7A+LUGQyKRQKB5SUVEClstw1M7fv0xaOjrZwdHQ1aLyamhoUFRUiP/+6PvAUFBT882ftbfn52tsKCvKhUqn0b0gNr1mGNm3aws/PH926dUdoaBjCwyP1Z0crK9WorCz712Os/fW0LNbSJ2A9vZpLn/b2Cnh7K+Dt3bjH6/osKipDZWUVampq/pkBqEZ1dbV+NkD3Z939ul9qtRoqlRIqVd3f1Wo1lEoV1GoVlEoVVColJBIJhg4djsJCYT+spVA4cBG5IYKCguDs7IzExER9gCopKUF6ejri4uIaPa6pL+hVqdQmX6MQhOpTIpHBza0l3Nxaws/vzseq1WoUFxf/E6jyUVFR/s+bhPbNo6amBnK5HLa2dnB0dISbmxvc3T3QunXreqf9GlI/X0/LYi19AtbTq7X0qdEAMpkNZDIb2Ns7GvW5xPx+MkBBu/YpLi4Oc+bMgbu7O9q2bYvPP/8c3t7eGDx4sNjlkRmSSqVwc3ODm5sbAH+xyyEiIoExQP1j4sSJUCqVmDZtGiorKxEdHY34+PhGbaJJRERElo0B6h8ymQxvv/023n77bbFLISIiIhNn2Z8dJSIiIjICBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGUii0Wg0YhdhiTQaDdRq0/3WymRSqFRqscswOvZpWdin5bGWXtmneZBKJZBIJA06lgGKiIiIyECcwiMiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiIDMUARERERGYgBioiIiMhADFBEREREBmKAIiIiIjIQAxQRERGRgRigiIiIiAzEAEVERERkIAYoIiIiIgMxQFmYRYsW4bnnnqtzW0ZGBuLi4hAWFob+/fsjPj7+jmOo1WosW7YMQ4YMQVhYGIYOHYqff/7ZmGUbTIg+b1ZdXY3hw4djypQpQpfaJEL1efToUTz77LPo3r07+vXrh/nz50OtVhurbIMJ1eemTZswdOhQhIaG4qGHHsL69euNVXKj1dcrAGRnZyMsLAwXL1686xg//PADBg0ahO7du+PJJ5/EsWPHjFFqkzS1z8rKSnzxxRcYOHAgwsPD8eijj2Lnzp3GKrfRhHg9dQoKCtC7d28sWLBAyBIFIUSfe/bswaOPPopu3brhvvvuww8//GCMUpuPhizGihUrNIGBgZq4uDj9bQUFBZqePXtqpk6dqsnKytKsW7dO061bN826detuO86iRYs00dHRmi1btmhycnI0a9as0XTp0kWzYcOG5mjjroTq82YzZ87UBAQEaN555x1jlW0wofo8e/asJjQ0VDNlyhTN2bNnNVu2bNGEhYVpvv322+Zo466E6vPvv//WhISEaH766SfN+fPnNd9//70mKChIs2vXruZoo0Hq61Wj0WgyMzM1/fr10wQEBGguXLhwxzE2bNigCQ0N1fz222+a06dPa95++21Njx49NPn5+cYs3SBC9Dl16lRN//79NXv37tWcO3dOs3jxYk1QUJDm4MGDxizdIEL0ebPx48drAgICNPPnzxe61CYRos/ExERNcHCw5osvvtDk5ORoVq9erQkODtZs3rzZmKUblVzsAEdNl5eXh6lTpyIlJQU+Pj517lu7di1sbW0xY8YMyOVy+Pr6IicnB0uXLkVsbGy9461evRqjR4/Ggw8+CADo0KED0tLSsG7dOowcOdLo/dyO0H3q7Nu3D1u3boW/v78xy28woftcsmQJ/Pz88NFHH0EikcDHxwenT5/G4cOHm6Od2xK6z127diEwMBBPPfUUAODZZ5/FunXrsH//fgwYMMDo/dzJnXr95ptvsHjxYvj6+uLKlSt3HWvx4sWIi4vD8OHDAQAfffQR7rvvPqxbtw6vvPKKUepvKKH6rKiowMaNG/Hxxx+jT58+AICxY8ciISEB69evR8+ePY3WQ0MI+XrqrFmzBtnZ2fD09BS63EYTss8FCxbgvvvuw1tvvQWg9t+V5ORkPPTQQ0ap39g4hWcBTpw4ARcXF/z2228IDQ2tc19ycjKio6Mhl9dm5ZiYGGRnZyM/P/+WsdRqNT755BM88sgjt9xXXFwseO2GELJPnYKCArz77ruYOXMm3NzcjFa7IYTuc9++fRg2bBgkEon+tokTJ+Kbb74xTgMNJHSfrq6uyMrKwsGDB6HRaJCYmIgzZ87cMrYY7tTrvn378Pnnn+Odd9656zj5+fk4d+4cYmJi9LfJ5XJERUUhKSlJ8LoNJVSfEokEixcv1oenm4n9PgQI16dOdnY25syZg88//xy2trZCl9toQvVZUVGB5ORkfejX+eijjzB9+nRBa25OPANlAQYOHIiBAwfWe19ubi4CAgLq3NaqVSsAwOXLl+Hh4VHnPqlUinvuuafObRcvXsTmzZv1/7MXi5B96kydOhUDBgzAwIEDsWLFCmELbiQh+ywtLcX169fRokULvPfee9i7dy8UCgUeeeQRvPTSS5DJZMZpogGEfj2ff/55HDt2DC+88AJkMhlUKhXGjBmDhx9+WPjiDXSnXn/88UcAQGJi4l3Hyc3NBQC0bt26zu2tWrVCZmZmE6tsOqH6tLe3R+/evevclpaWhoMHD2Lq1KlNL7SJhOoTAGpqavCf//wHL730Erp06SJYjUIQqs+cnByo1WrIZDJMnDgRSUlJaNWqFeLi4vD4448LWnNz4hkoC1dZWXnL/2js7OwAAFVVVXd9/LVr1/DKK6/Aw8MD48aNM0qNQmhMn6tXr8aZM2fw7rvvGr0+oRjaZ2lpKQDg008/RZs2bbB06VK8/PLLWLJkCRYuXGj8ghupMa/nlStXUFRUhOnTp2P9+vWYMmUK/ve//2HDhg1Gr7e5VFRUAEC935uG/H02V2fPnsVrr72Grl274sknnxS7HEHNnz8fdnZ2GDNmjNilGI3ufWj69OmIiorC8uXLMXLkSHz44YdYt26dyNU1Hs9AWTh7e3tUV1fXuU33Ruvo6HjHx549exavvPIKampqsGrVKri4uBitzqYytM+zZ8/i888/R3x8/F2/D6bE0D5tbGwAAL169cLrr78OAAgODkZBQQG+/vprTJw4sc7UnqlozM/txIkTMXz4cDz77LMAtH0WFxfj008/xSOPPAKp1Pz/v2hvbw8A9X5vHBwcxCjJ6A4fPozx48fD09MT3377rUlNcTXVoUOH8NNPP+GXX34R9WywselesxEjRuD5558HoP37mZOTgxUrVuCxxx4Ts7xGM/93FLojb29vXL16tc5tuj97eXnd9nEpKSl46qmnYGdnh9WrV6NDhw5GrbOpDO1zy5YtKCsrw6hRoxAeHo7w8HAkJydj06ZNCA8Px+XLl5ulbkMZ2qerqyvs7OxumQ7z9/dHeXk5CgoKjFdsExjaZ0FBAbKzs9GtW7c6t4eFhaGoqAhFRUVGq7U5tWnTBgDq/d54e3uLUZJRbd++HS+++CJ8fX3xww8/wN3dXeySBPXLL7+gvLwcDz/8sP596PLly1iyZAnCw8PFLk8wur+z/34f8vPzM2ibB1PDAGXhoqOjkZKSApVKpb8tISEBPj4+t10XdPToUbz88svw9/fHjz/+eMt6C1NkaJ9xcXHYtm0bNm7cqP/VtWtXDBw4EBs3btSvtzE1hvYpk8kQERGBtLS0OrefPHkSCoUCrq6uxi65UQzt09XVFQ4ODjh58mSd20+dOgWFQmEx//C6u7vDx8enzroTpVKJ5ORkREVFiViZ8Hbt2oU33ngD/fv3x4oVK6BQKMQuSXCTJk3C1q1b67wPtWrVCk899RQ2btwodnmC8fLy0n/q7manTp0y+f+c3wkDlIWLjY1FaWkppk6diqysLGzYsAErV67E2LFj9cfcuHFDfyZCqVRi0qRJ8PDwwCeffILq6mpcu3YN165dM9mzFYDhfbq6uqJjx451ftnb28PJyQkdO3as8+kvU2JonwAwbtw47Nu3DwsWLMD58+exdetWfPvtt/rF1qbI0D6lUileeOEFfPPNN9i4cSMuXLiAjRs3YvHixXUeY47+fQZt9OjRWLFiBX755RdkZWXhvffeQ2VlpdlOg+jc3GdxcTHeeecddOnSBVOnTkVxcbH+fcjczybe3KeHh8ct70NyuRwuLi7o2LGjuIU20b9/bl9//XWsWbMGP/zwAy5cuIA1a9Zg/fr1eOmll8QrsolM818JEoyHhweWLVuG2bNnY+TIkfD09MTkyZPr7Oc0e/ZsHDp0CLt27cLRo0eRk5MDALjvvvvqjNW2bVvs2rWrWetvKEP7NFeN6bNnz55YsmQJ5s6diyVLlsDT0xOvvPIKXn75ZbHauKvG9Dlx4kS4urpiyZIluHLlCtq1a4e3335b9E+PNtWECRMAAKtWrQIAPPHEE7hx4wa++uorFBUVoWvXrlixYoXZn2W7uc+9e/eipKQEaWlp6Nu3b53jevToof9emKN/v56W6t99jhgxAoB2X7qPP/4Ybdu2xQcffFDvljnmQqLRaDRiF0FERERkTjiFR0RERGQgBigiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUEZkN7rpCRKaCAYqIzMLOnTvxzjvv6P+cmJiIwMDAOpc1aU5TpkxBYGAgAgMDMWnSpCaNFRgYiAULFjT4+Kefflr/3IY8joiEw53IicgsfPfdd3X+3KVLF6xZswZ+fn7iFATA09MTCxcubPIu4GvWrDHoYsAzZ85EaWkpnnzyySY9LxE1HgMUEZklZ2dnhIWFiVqDra2tIDUYOoaYoZGItDiFR0Qm77nnnsOhQ4dw6NAh/bTdv6fwFixYgAceeAA7duzAsGHD0K1bN4wYMQJHjhxBamoqHn/8cXTv3h3Dhg1DQkJCnfFPnTqFsWPHIiIiAhEREXjttddw4cIFg+sMDAzETz/9hClTpiAyMhI9evTArFmzUFlZiU8//RQxMTHo2bMnpk6diqqqqjqP003F6fpKSEjA6NGjERoail69euHTTz+FUqlswneRiITEAEVEJu+DDz5ASEgIQkJCsGbNGnTp0qXe43Jzc/Hxxx/j1VdfxVdffYXi4mJMnDgRb731Fp544gl8+eWXUKvVePPNN1FZWQkAyM7OxlNPPYX8/Hx88sknmD17Ni5cuICnn34a+fn5Btc6Z84c2NraYuHChRgxYgRWrVqFRx55BFeuXMHnn3+Op556CuvWrbvrxWQnTZqEyMhILF68GMOHD8fy5cuxbt06g+shIuPgFB4RmTw/Pz84OzsDuPN0V0VFBT744AP07dsXAHDmzBl88cUXmD17Nh577DEAgEqlwsSJE5GdnY3g4GAsXLgQ9vb2+O677/TPcc899+C+++7DsmXL6ixcbwhfX1/897//BQBER0dj3bp1qKmpwZw5cyCXy9GnTx/s2rULhw8fvuM4jz/+OF577TV9PTt27MDu3bvx1FNPGVQPERkHAxQRWZSIiAj91y1btgRQN3S5uroCAEpKSgAABw8eRM+ePWFvb6+fInN2dkZUVBT+/vtvg58/PDxc/7VcLoebmxu6du0Kubz27dbV1RU3btxo8DgA4O3tjfLycoPrISLjYIAiIouiO4t0M3t7+9seX1RUhC1btmDLli233NeYT9fV9/wODg4Gj/PvmqVSKffBIjIhDFBEZNVatGiBXr16YdSoUbfcd/NZIyKim/HdgYjMglQqhVqtFnzcHj16ICsrC8HBwfrApNFoMGnSJHTs2BHBwcGCPycRmT9+Co+IzIJCoUB2djYSEhJQXFws2Ljjx4/H+fPnMXbsWOzYsQP79u3DhAkTsHnzZgQFBQn2PERkWRigiMgsPPvss7CxscGYMWOwd+9ewcYNCgrCDz/8AIlEgsmTJ2PixIm4du0avv76a9x///2CPQ8RWRaJhqsSiYgMNmXKFBw6dAi7du0SrYbAwEC8/vrrmDBhgmg1EFkrroEiImqk6upqpKamwt3dHR06dGi2583KykJpaWmzPR8R3YpTeEREjXTt2jU8+eSTmD9/frM+7/vvv88LCROJjFN4RERERAbiGSgiIiIiAzFAERERERmIAYqIiIjIQAxQRERERAZigCIiIiIyEAMUERERkYEYoIiIiIgMxABFREREZCAGKCIiIiID/T9oZFtulprtswAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd\n", + "\n", + "# Load an example chromatogram and correct the baseline\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "chrom.correct_baseline()\n", + "\n", + "# Assign the peak windows with a modified buffer and prominence filter\n", + "windows = chrom._assign_windows(buffer=50, prominence=0.01)\n", + "\n", + "# Get the first peak window and plot\n", + "first_peak = windows[(windows['window_type']=='peak') & (windows['window_id']==1)]\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To determine the properties of this peak (including its area which is proportional\n", + "to concentration), we will find the best-fit parameters using a non-linear least \n", + "squares [trust region](https://en.wikipedia.org/wiki/Trust_region) fitting method\n", + "as is implemented in `scipy.optimize.curve_fit` which is a robust estimation \n", + "algorithm for bounded problems. \n", + "\n", + "To do so, we must provide i) initial guesses for the parameters $[A, \\tau, \\sigma, \\alpha]$\n", + "and ii) reasonable bounds on their values. \n", + "\n", + "### Default settings for initial guesses of parameters\n", + "In `hplc-py`, initial guesses are set given the properties of the observed \n", + "chromatogram. These default parameter guesses are:\n", + "\n", + "* $A_0 \\rightarrow$ the observed value of the chromatogram at the location of the maxima\n", + "* $\\tau_0 \\rightarrow$ the observed time-location of the maxima \n", + "* $\\sigma_0 \\rightarrow$ one-half of the observed peak width at its half-maximal value\n", + "* $\\alpha_0 \\rightarrow$ 0, which guesses that the peak is approximately Gaussian.\n", + "\n", + "These values are determined using peak measurements returned by `scipy.signal.find_peaks`\n", + "and `scipy.signal.peak_widths`. These properties are accessible via the \n", + "chromatogram attribute `.window_props` " + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[65992.999952423, 10.98, 0.16630057317687066, 0]" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Set the initial guesses from the window properties\n", + "props = chrom.window_props[1]\n", + "p0 = [props['amplitude'][0],\n", + " props['location'][0],\n", + " props['width'][0] / 2, \n", + " 0]\n", + "p0" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Default bounds for parameters\n", + "By default, `hplc-py` applies broad, permissive bounds on these parameters given \n", + "information of the chromatogram. The default bounds given to each parameter are \n", + "\n", + "* $A \\in [0.1 \\times A_0, 10 \\times A_0]$ where $A_0$ is the initial guess for the amplitude.\n", + "* $\\tau \\in [t_{min}, t_{max}]$ where $t_{min}$ and $t_{max}$ correspond to the minimum and maximum times in the peak window.\n", + "* $\\sigma_{bounds} \\in [dt, \\frac{t_{max} - t_{min}}{2}]$ where $dt$ corresponds to the time sampling interval of the chromatogram.\n", + "* $\\alpha \\in (-\\inf, +\\inf)$.\n", + "\n", + "These bounds can be overridden for all peak inferences by providing a dictionary \n", + "of their values, as is specified in the documentation for `hplc.quant.Chromatogram.fit_peaks`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "# Give initial bounds for the parameters (lower, upper)\n", + "bounds = [[], []]\n", + "bounds[0] = [p0[0] * 0.1, first_peak['time_min'].min(), chrom._dt, -np.inf]\n", + "bounds[1] = [p0[0] * 10, first_peak['time_min'].max(), 0.5 * (first_peak['time_min'].max() - first_peak['time_min'].min()), np.inf]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "### Optimization of parameters\n", + "Given initial guesses and parameter bounds, the best-fit parameters are estimated \n", + "by calling `scipy.optimize.curve_fit` on the observed data in the peak widow. The \n", + "cost function is defined as a method `_fit_skewnorms` of a `Chromatogram`." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Optimal parameters (amplitude, location, scale, skew) : [2.33773945e+04 1.09020036e+01 1.59217385e-01 7.03685471e-01]\n" + ] + } + ], + "source": [ + "import scipy.optimize\n", + "\n", + "# Perform the fit\n", + "param_opt, _ = scipy.optimize.curve_fit(chrom._fit_skewnorms, first_peak['time_min'],\n", + " first_peak['intensity_mV_corrected'],\n", + " p0=p0, bounds=bounds)\n", + "print(f'Optimal parameters (amplitude, location, scale, skew) : {param_opt}')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With the optimal parameters estimated, we can compare the inferred signal to \n", + "the observed chromatogram " + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB0JUlEQVR4nO3dd3wU1frH8c/sbnoIhAAJRXoJRXoUFYSLYm+IWFGsFxv8rFwVC17FckW9ICIiiFgQEBBF5CqCBaSGDgm9lwRIQkJ6sju/P5YsRIrZsGGSzff9euWVzezs2eckk8mTc545Y5imaSIiIiIiJWazOgARERGRikYJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeMlhdQD+yjRNXK7yu8i7zWaU6/h8Rf30L+qn/6ksfVU/KwabzcAwjBLtqwSqjLhcJqmpWVaHcUoOh43IyDAyMrIpLHRZHU6ZUT/9i/rpfypLX9XPiqN69TDs9pIlUJrCExEREfGSEigRERERLymBEhEREfGSEigRERERL6mIXEREyi2Xy4XTWWh1GGfF5TLIzbWTn5+H01lxr1D7OxWhn3a7A5vNN2NHSqBERKTcMU2TjIxUcnIyrQ7FJw4ftuFyVcwr07xREfoZEhJORET1Ei9XcDpKoEREpNwpSp7CwyMJDAw66z92VrPbjXI7KuNL5bmfpmmSn59HZmYaAFWrRp1Ve0qgRESkXHG5nJ7kKTw8wupwfMLhsFXYtZG8Ud77GRgYBEBmZhpVqkSe1XSeishFRKRccTqdwPE/diK+VHRcnW1tnRIoEREplyr6tJ2UT746rpRAiYiIiHhJCZSIiIiIl5RAiYiIlANdu3bmxx9nlfr1Bw7sp2vXzqxcGe/DqErmp59+5JZbrj/n72slXYUnInKOHTiwn5SUFJo1a05QkAqlxe277/5HeHi41WF4bd68n3nrrdeIiqphdSjnlBIoEZFzYPv+wwx550O2rFpA4ZG9ANjsATRrEcs9d93NNddcr6LpSq6iJSBZWZm8++7bzJv3M40aNSEz86jVIZ1TmsITESlDpglDJv7BzbfcSOKvX7uTJ5sDQiJxOQvYlLCOIUMG89RTA0lNTbE63HLNNE1ycrIt+zBN7xaIvP/+u/jvf9/xfL1gwW907dqZX375ybNt9OgRPProg0DxKbxhw4by2msv8eGHI7juul5cdtklPP/806SkHPa8dvv2rQwa9DCXX96V22+/mRUrlp8Uw5w5P9C//x307HkJt9xyPZ9//ikulwuXy8V11/Vi8uQvPftOnfo1Xbt2Zv36dZ5tL730HK+99tIp+7d//34yMtIZN+5zunXr7tX3xh9oBEpEpIy4TLj7pdFs+GGke0PNlti6D8GodwEEhELGXswN03AtGsGvv/7C2nVr+PKLr4mMbGlt4OWQaZrce++drFmzyrIY2rfvyIQJX5V4pPCSSy5l/vy5nq/j45dhGAYrVsRz+eVXArBo0Z9cc82pa4fmz/+FXr2uYtSosSQnJ/Hqqy8yduxonn/+ZTIzM/m//3uUNm3OZ+zYiaSkHOLtt4cVe/3UqZMYM2YUjz32BBdc0IXExATee+9t0tPTGTjwSS666BKWL1/G7bf3KxbfypXLadPmfAoLC1m+fAn/+teLp4yvWbPmDB/uPrb/+OO3En1P/IlGoEREyoDTBfe/M8OTPBlxD2O/eza2xv/ACAzDMAyMqudhu/hJ7PfMhqhmpBw+xCOPPERaWprF0ZdPFW2K85JLLmXXrp0kJycB7gTl0kt7sGqVu8j7wIH97Ny5nUsv7XHK14eFhTF48BAaNmzEhRdexFVXXcPatasB+OWXn8jNzWXIkFdp3LgJcXFdGDToac9rTdPkyy8ncvPNt9Knz62cd159rrjiKh58cADTp08hMzOTSy7pxpo1K8nPz6ewsJDVq1dy6aU9PEXoa9euJj8/nwsvvLjsvkkVmEagRETKwKtfL2L11+6pD9slT2O75KnT7mvUao391sk4v7yenTt38OCDDzJ69DhsNp2iixiGwYQJX5Gbm2NZDMHBIV4lcbGxLalZsxbLly8lIOAS9u7dw8svv84DD/QjOTmJRYsW0rBhY+rVO++Ur69b9zwcjuPHQFhYOIWF7tWzt2/fynnnnVes6Pz889t6Hh85kkZqagpt27Yv1ma7dh0pLCxk166dXHDBRbhcLtatW0NAQABBQUHcdFMfnnvuaQoKCli8+E86dYojNDS0xH2uTPTbKSLiYwsTk/h+xCAwnRht+mJc/OTfvsaoEoP9ls9xftWbJUuW8N//Duepp547B9FWHIZhEBJSsf6YX3xxV5YvX0JAgIPY2Fa0aBFLTExtVq6MZ/HihWesHQoICDhp24l1WH+tybLbHSc999d8z+Vy36fO4XAQGhpK+/adWLZsCUFBQXTs2Jm2bTtgmrBhwzoWL17Irbfe6XWfKwtN4YmI+FBOgcngoa9DfibU6YTtyv+UeNTCqNkSx/WjAPjyy89JTNxQlqHKOdC166WsWLGcZcuW0LFjZwA6dYpj8eI/WblyRamLr5s3b8Hu3bs4cuSIZ9vGjQmex5GR1YmMrM6aNauLvW7NmlUEBARQt249T3zLly9h5cp4OnWKIygoiPPPb8sPP3zHrl07ueSSbqWKrzJQAiUi4kPPT5hP9qZfwBaA/ep3MeyB3jXQ5HJssTfgcrl47bVXPDfWlYqpY8c48vLy+PXXeXTqFAdAp04X8Ntv84iIiKBly9alaveyy66kevUohg59gS1bNrNq1QpGjnzX87xhGNxxRz9mzJjKjBnfsHfvHn7++X98+ulYbriht2fq75JLurF16xbWr197Qnxx/PzzHFq3Pr/CLa1wLimBEhHxkS1JR/lt4qsAGF0ex4hqVqp2jJ5DIbAKCQnr+eabr30Wn5x7QUFBdO58IQDnn98OgM6d4zBNk65dLy11YXxISAgjR44hICCARx99gNdee5m77upfbJ8777yHRx4ZxNSpk+jXry/jxn3EXXf1L1ZsHh0dQ5MmTYmKquEZlerc+QJcLhddu15aqtgqC8P0dmELKRGn00VqapbVYZySw2EjMjKMtLQsCgtdVodTZtRP/1IR+tnnmXfZ9ssnENkY+31zMRzBpW9s1WcUzh1CeHgVfvzRPVrhb073My0oyCcl5QBRUbUJCPByBK+ccjhs5fa49aWK0M8zHV/Vq4dht5dsbEkjUCIiPrByRyrbfvsCAFvPoWeXPAFmu7shqjmZmUeZMmWSDyIUEV9SAiUi4gNDP5gAhblQuwNG455n3Z5hs2O/eCAAX331GdnZ5XNEW6SyUgIlInKW4rensvuPY6NPlzzluwUfW9wA1Rpy5MgRvvlmsm/aFBGfUAIlInKW/vPRCaNPjf7hs3YNmwPHRe5RqM8/n0Bubq7P2haRs6MESkTkLOxLOcrm374CwHbxkz6/3YjZqg9E1CUl5TA//PCdT9sWkdJTAiUichaGfz4LCrKhRguf1D79lWEPwN7pAQCmT5/i8/ZFpHSUQImIlFKh0+SP2e4r5Gwd7im7m9227gv2QBITE0hIWF827yEiXlECJSJSShP+F4/z8FYICMNo1afM3scIrY7R/BoApk3TKJRIeaCbCYuIlNKUqe5Vwo3WfTCCqpTpe9na3YUzcSZz5szm6af/RVhYeJm+X3mVlGVwJK+MRvr+RrUgk5gwrT0tbkqgRERKYfOegxxe+xPgnr4rc+ddBNWbkJO6jTlzZnPLLbeV/XuWM0lZBjfPCiPfZU0CFWgzmXF9lldJVNeunXnhhVe44YYbS7T/0qWLeffdtzh06CB9+tzG448/UcpofWP8+I+ZM+cHpk2bVarXF/X/mmuu93Fkp3bgwH769r2BkSPHeG7eXFaUQImIlMKHX30PphPqXYBRs2WZv59hGNjb3YXz13/z7bfTKmUCdSTPsCx5Ash3uUe/vEmgvvvuf54b95bEmDEfUKdOXUaM+IjQ0NDShFmueNv/ikQ1UCIiXjJNkyXz3UsK2Nqcw0SmVR8wbGzYsI49e3afu/eVUouKqkFQUMlv65OZmcn557ejdu06VK1arewCO0e87X9FogRKRMRLv67YRN7BLWAPwmhxzTl7XyOsBkaDrgD89NOP5+x9pfS6du3Mjz+6p7+GDRvKa6+9xIcfjuC663px2WWX8PzzT5OSctiz74ED+5kw4RPPY9M0+eqrifTteyOXXXYJ9957Jz//PMfT/sqV8XTt2pmvvprINddcxv3338W+fXvp2rUzn302jhtuuJJbbrmeo0ePkpmZydtvD+O66y7nyiu7M2jQw2zcmFAs3u++m8Ftt91Ez57u2I4ePXrG/u3Zs5unnhrIlVd2p1evS/m//3uUbdu2nrL/AFOnfk3fvjfQs+cl/N//PcqECZ9wyy3u6b0DB/bTtWtn5s//hYce6k/PnhfTt++NxdY/y8/PZ8yYUdx664306NGFa665jFdeeYH09COl+wGdBSVQIiJemjDtBwCMppdjBEWc0/e2xbr/2Jz4R1QqjvnzfyE9/QijRo3ljTeGs2bNasaOHQ24p7tq1Yrm9tv7eR6PHTuaGTO+4YknnuHzz6fQt+/tDB/+FjNmfFOs3UWLFvLxxxN4/vmXsdncf9p//nkOI0Z8xOuvv014eDjPPjuIvXt38/bb/2Xs2Im0bn0+jzzyAJs3bwTgl19+4r333ubWW+/ks88m0br1+cyYMfWM/XnllReoUaMG48Z9wdixn2Gz2XnhhWdOue/06VP5+ONR9O//AJ99NomOHTsxYcInJ+03atT79O9/PxMmTKJz5zj+859h7N+/D4DRo0cyd+7/eO65l5g8+VtefPFV4uOXMnHieO9+ED6gGigRES8UFjrZsPB7gDJduuC0ml0NP7/A5s2b2L59G40bNzn3MUiphYWFMXjwEBwOBw0bNuKqq65h8eI/Afd0l81mIyQkhKioGuTk5DBlyiReeulVLrmkGwB169YjKekAkyZ9zs039/W0e8cd/TjvvPqAeyQHoHfvvjRq1BiA+PhlrFu3llmz5hIZGQnAgAGPsW7dGr75ZjJDhgzlm28mc/nlV9Cnz60A9Ot3Lxs2rGPLls2n7c/+/Xu54IIu1K5dB4fDwYsvvsK2bdtxuVyeRK7I119/Qd++d3Ddde6C+v793cnbpk0bi+13++130bVrdwAee+wJZs2ayYYN66hTpy4tW7aie/d/0KFDJwBiYmpzwQUXFRv1OleUQImIeGH6/GW4Mg9CcDWMxr67711JGSGRGA0vxdw+j59++pFHHhl4zmOQ0qtb9zwcjuN/esPCwiksLDzlvjt3bic/P4/XX3+FN9541bPd6XSSn59PXt7xeyPWq1f/pNfXq3ee53HRKNOtt95QbB93O3kAbN++lcsvv7LY823atD1jAvXQQ48ycuS7zJw5jY4d47j44ovp3v3yk5Kn9PQjJCUdoE2b84ttb9euw0kJVIMGjTyPiwrQi75HV155DfHxy/j44w/Zs2c3O3fuYPfunbRt2/60MZaVcpFAzZw5k7Fjx7Jnzx7q16/P448/ztVXXw1AYmIiw4YNY/369VSrVo27776bBx54wPNal8vFqFGj+Oabb8jIyKBTp0688sorNGjQwLOPL9oQEQGY/v2x6bsW12HYAy2JwdbqBpzHEqiHH3687FZAF58LCAg4aZtpnvqqPpfLvf3f/36LBg0anqKt48dfUFDQSc+fuM3lchEWFsb48V+eISbjpFhOTPZOpU+fW+nZ83IWL/6TFSuWMXr0KD75ZAwTJkyievUoz352u6NYn87kTN+j4cPfYt68n7n66mu5+OKu9O9/P19//SUHDyb/bbu+ZnkN1HfffccLL7zAbbfdxg8//MA111zDU089xapVq0hLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/uef3o0aOZPHkyr7/+OlOmTMEwDB566CHy8/MBfNKGiAhAQUE+W+N/AcDWqrd1gTS5EuxB7Ny5g82bN1kXh5SpBg0aYrfbSUo6QL1653k+Fi/+k6+//uKkUZ4zady4KVlZWeTn5xdr66uvJrJw4e8ANGvWnLVrVxd7XWJiwilac0tNTeG9996moKCAa665npdeeo0vv5xCSkoKq1atLLZveHg4MTG12bBhXbHtGzaU/NZE6elHmDlzGs888xyDBj3NNddcT7NmLdi5c0eJ2/AlSxMo0zQZMWIE/fv3p3///jRo0IDHHnuMiy++mGXLljF16lQCAwMZOnQoTZo0oU+fPtx777188om76Cw/P59PP/2UgQMH0r17d2JjY3n//fdJTk5m7ty5AD5pQ0QE4Iff43HlpkNoDagbZ1kcRlAVjEbuGpHff59vWRxStsLDw7nppj588slH/O9/s9m3by9z5vzARx+NLDa6UxIXXngRzZo15+WXn2fFiuXs3buHDz8cwezZ33umzPr1u5c//viVSZM+Z8+e3UybNvmMx1dERFUWLVrI228PY8uWTezbt5cZM74hICCA2NiT10br168/06dPYc6cH9i7dw9TpnzFr7/+UuIR1LCwcMLDw1mw4Hf27t3Dtm1befvtYWzevNGSAQ9LE6jt27ezb98+rr+++Aql48ePZ8CAAcTHxxMXF1dsCLFLly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fDmAT9oQEQGYMcc9+mQ0uxLDZrc0FnvTywH4/fdfLY1DytbAgU9x++13MX78x/Tr15cJEz7hvvse4v77/+lVO3a7nfffH02rVq155ZXn6d//dlasWM6wYf+hc+cLALj44q688srrzJ79Pf37387vv//K7bf3O22bDoeD4cNHYrMZ/N//Pcrdd99GfPwy/vOf/1K3br2T9r/pplu45577GTt2NPfccxtLly7h6quv+9tpwhPf77XX3mLHjm3cc8/tPP30QPLychkw4DF27NhOTk6OV9+Ts2VpDdTOnTsByM7O5oEHHiAhIYF69erxyCOP0LNnT5KSkmjevHmx19SqVQuA/fv3k5SUBEDt2rVP2ufAgQMAPmmjtBwOy2dIT8lutxX77K/UT/9idT9dLheJy9yj0kazqy2J4URmY3cCtWHDOtLSDlOzZi2LI/Le6X6mrtOsNl4tyCTQZlp6K5dqQd7dC2/hwniKBlhefHEofy13euCBATzwwADP13+9ZYrD4eDeex/k3nsfPGX7HTt2ZuHC+GLbateuc9I2gGrVqvHCC6+cMd7LLruCyy67oti2AQMeO+3+DRs24p13RgBgGO6fpdPp8vTzxDiWLFnElVdewz333O/Z9vbbw6hVK/qMcZ+4LS6uCxMnTj5pn7vvvg+AkJCQU7ZxKna7cVZ/py1NoDIzMwH417/+xeOPP84zzzzDTz/9xKOPPsqECRPIzc0lMLB4kWZRUVxeXp4n2zzVPunp6QA+aaM0bDaDyMiwUr/+XIiICLE6hHNC/fQvVvVzzu/LKTx6CAKrYDS4xJIYTmSER0NMe0haTXz8Yu68806rQyq1v/5Mc3PtHD5sO+kPXL2q8N1NOZbeTLh2uAGU7v39/Z+cIqfr588/z2Hnzu0MHvw8UVE1WLVqJT//PIdnn33unA44uFwGNpuNqlVDCQ4u/SrpliZQRZX2DzzwAL17uwsyW7ZsSUJCAhMmTCA4OPikec2iyy1DQ493PD8/v9g3IS8vj5AQ9y+kL9ooDZfLJCMju9SvL0t2u42IiBAyMnJwOl1Wh1Nm1E//YnU/x02eDYDR5HLLrr77K3vTy3EmrebHH//H1VeX7Ga15cnpfqb5+Xm4XC6cTpPCwuI/65rB7g+rnGbFgTM61ciMP/q7fj7xxDN88MH7DB78NJmZR6lTpx6DBj3FVVddd9LPuSw5nSYul4v09GxycpzFnouICClxomtpAhUTEwNw0hRb06ZN+e2336hbty4HDx4s9lzR19HR0Z51IQ4ePEj9+vWL7RMbG+t5j7Nto7TO5QFRGk6nq9zH6Avqp3+xop+mabJ60c8AGM2tn77zaNILFg5n8eI/yczMPqv/pq3015+p0+lfWUZRMuHPyRP8fT8jIqoyZMjQcxbP3zlVgu4NS8cTW7VqRVhYGGvWrCm2ffPmzdSvX5+4uDhWrFiB03k8Q1y8eDGNGjUiKiqK2NhYwsPDWbp0qef5jIwMEhIS6Ny5M4BP2hCRym3Dps3kHt4FjmCMRud+8czTqtUaqtQhNzeXZcuWWB2NSKViaQIVHBzMgw8+yIcffsgPP/zA7t27+eijj/jzzz+577776NOnD5mZmQwZMoStW7cyY8YMJk6cyIAB7oK7wMBA+vXrx/Dhw5k3bx4bN27kySefJCYmhl69egH4pA0Rqdym/bQAAKP+JRiBoRZHc5xhGNiOXY33xx+6Gk/kXLJ8JfJHH32UkJAQz9pLTZo04YMPPuDCCy8EYNy4cQwbNozevXtTs2ZNBg8e7KmXAhg0aBCFhYW8+OKL5ObmEhcXx/jx4z1F4VFRUWfdhohUbov+/AMAo0lPiyM5hUY9YdXnnvup+ZPTrdAtcjZ8dVwZpo7QMuF0ukhNzbI6jFNyOGxERoaRlpbl1zUz6qd/saqfGRkZXNrjInA5sf9zMUa1k+85ZiUzPwvnyNbgKmDWrJ89N5StCE73M3W5nBw8uJfw8EjCwyMsjNB3HA6bX/9+FqkI/czMzCAzM41atc47aTX36tXDKkYRuYhIeffjb4vB5YTqTctd8gRgBIZBnY6wdylLliyqUAnU6dhsdkJCwsnMTAMgMDCowt/vz+Uy/K44/lTKcz9N0yQ/P4/MzDRCQsK9uhXOqSiBEhE5gx/nH6t/alwOp++OsTe6FOfepSxe/Cd9+95udTg+ERFRHcCTRFV0NpsNl6t8j8z4QkXoZ0hIuOf4OhtKoERETsPlcpG4wn2j1XJZ/1SkwaWw4B2WLVtCYWFhiW+NUZ4ZhkHVqlFUqRKJ01mKxZfKEbvdoGrVUNLTs8vt6IwvVIR+2u2Osx55KlLxf8tERMrIhoRECo4egoBQjLoXWB3O6cW0g6CqZGamk5CwnrZt21sdkc/YbDZstop9QY/DYSM4OJicHGe5rw86G5Wln0Uqx7ryIiKl8O0vCwEwGnTDcARZHM3pGTY7RoOLAff9xkSk7CmBEhE5jcWLjyVQjXpYGkdJGA27A/jlcgYi5ZESKBGRU8jOzuLAllUAGI26WxzN3zMaXgrA2rVryMrKtDgaEf+nBEpE5BQWL4sHVyFUrY9RrYHV4fwto1oDqHoeTmcha9assjocEb+nBEpE5BRm/+a+t5zRoJvFkZSc7bwuAMTHL7M4EhH/pwRKROQUVsW7i7GNhl0tjsQL510EQHz8cosDEfF/SqBERP7i8OFDpO3dBIBRv+IkUMaxBGrDhvXk5GRbHI2If1MCJSLyF78tck/fUasNRujZr1h8zlQ9D6rUweksZPVq1UGJlCUlUCIif/HzH0uB41e2VRSGYWCr7x6FWrFC03giZUkJlIjICUzTZP3KovqnilNA7nGeEiiRc0EJlIjICfbs2U126n6wB2LUjbM6HK8Zx67EW7duLTk5ORZHI+K/lECJiJzgzyXHlgCo3REjIMTaYEqjWkMIj6GwsIB169ZYHY2I31ICJSJygvmL3FNfxrFaoorGXQel9aBEypoSKBGRY0zTZMMad9JRNBVWIdW9EEArkouUISVQIiLH7N27h+y0JHf9U51OVodTakY9d+3WmrVrKCwstDgaEf+kBEpE5JjFS4vqnzpUzPqnIjVaQFAEuTnZbNmyyepoRPySEigRkWPmFdU/VeTpO8AwbBh1OgKwevVKi6MR8U9KoEREOFb/tPpY/VMFLSA/UdESDFqRXKRsKIESEQH27dtLZuoBsAVg1OlsdThn71gCtXKVRqBEyoISKBERYOmyY/VPdSp4/dMxRu0OYNg5dDCJAwf2Wx2OiN9RAiUiAvyxdAUARr0LLY7EN4zAUIzoNoDqoETKghIoERFg7Vp3klERb99yWnXdU5FKoER8TwmUiFR6qakppB3YCYBRt+Ku//RXhqcOSoXkIr6mBEpEKj3PlWo1WmAEV7M0Fl8qSqC2bt1ETk62xdGI+BclUCJS6f25vGj6zg+uvjuBUSUGqtTGdLlITEywOhwRv6IESkQqveUr3SNQflX/dIxRuz0A69atsTYQET+jBEpEKrW8vDz2btsA+GsC1QGAtevWWRyJiH9RAiUilVpCwnpchfkQVhOqNbA6HN+LaQ/AGiVQIj6lBEpEKrVlK44vX2AYhsXR+J4R0w4wOJy8j5SUw1aHI+I3lECJSKW2KL6o/sm/CsiLGEHhGDWaA7B+/VqLoxHxH0qgRKTSMk2TTev9t4Dcw1NIrgRKxFeUQIlIpbVz5w5yM9PAEQTHbnvij4oKyVesUR2UiK8ogRKRSmvVqmO3OInpgGEPtDaYMlSUQCUmrMPlclkcjYh/UAIlIpXW4qIC8nr+Wf/kUaMFOILIzcpg9+6dVkcj4heUQIlIpbVqVSWofwIMewBEtwVg/XpN44n4guUJ1L59+2jRosVJH9988w0AiYmJ9OvXj/bt29OjRw/Gjx9f7PUul4uRI0fSrVs32rVrx/3338+uXbuK7eOLNkTEv6SmpnJ4/w4AjDr+cwPh0ylakXz1WhWSi/iC5QnUpk2bCAoKYsGCBSxcuNDzcf3115OWlsZ9991Hw4YNmT59OgMHDmTEiBFMnz7d8/rRo0czefJkXn/9daZMmYJhGDz00EPk5+cD+KQNEfE/a9Ycu4FwVHOMkEhrgzkHiuqg4ldrBErEFxxWB7B582YaNWpErVq1Tnpu4sSJBAYGMnToUBwOB02aNGHXrl188skn9OnTh/z8fD799FOeffZZunfvDsD7779Pt27dmDt3Ltdeey1Tp0496zZExP+sWHV8Ac3KoCiB2r0tkfz8fAID/bdoXuRcKBcjUE2bNj3lc/Hx8cTFxeFwHM/zunTpwo4dO0hJSWHjxo1kZWXRpUsXz/MRERG0atWK5cuX+6wNEfE/S1ccq3/y9wLyIlXPg5DquJwFbNqUaHU0IhVeuRiBqlmzJnfeeSc7d+6kQYMGPProo3Tr1o2kpCSaN29ebP+ikar9+/eTlJQEQO3atU/a58CBAwA+aaO0HA7L89NTstttxT77K/XTv/iyn3l5eWzftB6oRCNQhoFRuz3m9vls2LCODh06WB2Sjl0/U1n6WcTSBCo/P5+dO3cSEhLC4MGDCQ0N5fvvv+ehhx5iwoQJ5ObmnjTMHBQUBLhPgDk5OQCn3Cc9PR3AJ22Uhs1mEBkZVurXnwsRESFWh3BOqJ/+xRf9XL48AWdhPoTWgGoNzz6oCsKo3RFz+3xWbUhgYDk6P+nY9S+VpZ+WJlCBgYEsX74ch8PhSWDatGnDtm3bGD9+PMHBwScVcufl5QEQGhpKcHAw4E7Eih4X7RMS4v4B+qKN0nC5TDIyskv9+rJkt9uIiAghIyMHp9N/F9VTP/2LL/u5cOFiwH31nT/eQPi0jl2Jt2LFStLSsqyNBR27/sYf+hkREVLiETTLp/BCQ0NP2ta8eXMWLlxITEwMBw8eLPZc0dfR0dEUFhZ6ttWvX7/YPrGxsQA+aaO0CgvL9wHkdLrKfYy+oH76F1/0c8Vq96X8Rh3rp7HOJaN2OwAO799JSkoqVatWszagY3Ts+pfK0k9LJyo3btxIhw4diI+PL7Z9/fr1NG3alLi4OFasWIHT6fQ8t3jxYho1akRUVBSxsbGEh4ezdOlSz/MZGRkkJCTQubO7MNQXbYiIf1m77til/MdGZCoLI6S6Z8pyw4b11gYjUsFZmkA1b96cZs2a8eqrrxIfH8+2bdt48803Wb16NQ8//DB9+vQhMzOTIUOGsHXrVmbMmMHEiRMZMGAA4J4C7NevH8OHD2fevHls3LiRJ598kpiYGHr16gXgkzZExH+kpqaQkrwXACOmncXRnHtFyxloQU2Rs2PpFJ7NZmPMmDEMHz6cJ554goyMDFq1asWECRNo0aIFAOPGjWPYsGH07t2bmjVrMnjwYHr37u1pY9CgQRQWFvLiiy+Sm5tLXFwc48eP99RURUVFnXUbIuI/PLcyqd4UIyjC2mAsYNRuj5n4LUtXreVRq4MRqcAM0zRNq4PwR06ni9RU64s0T8XhsBEZGUZaWpZfz1Orn/7FV/0cPXokY8eOxmh9C/ZrR/gwworB3Lcc51c3EVatJn/+tsDSWHTs+hd/6Gf16mElLiKvHIs1iIgcs3KtewSqaCqr0qnVBgwbWUcOcfBgstXRiFRYSqBEpNIwTZOEDUUJVHtrg7GIERACUc0ASEzcYHE0IhWXEigRqTT27t1D9tEjYA+Emi2tDscyRnQbAOLXJFgciUjFpQRKRCqN9euPXXlWqxWGI8jaYCxkRLcFYOV6JVAipaUESkQqjXXrKnn90zFGjDuB2rFZU3gipaUESkQqjeMF5O2tDcRqtVoDBtlHkjl8+JDV0YhUSEqgRKRSKCgoYOuxERcjpr21wVjMCAyDqKYAbEjQKJRIaSiBEpFKYdu2LRTm50FQBFRvbHU4ljOizwdg8SrVQYmUhhIoEakUigrIjZh2GIZOfUUJ1Or1GoESKQ2dRUSkUqisNxA+naJC8l1bNQIlUhpKoESkUlhV2Vcg/6tabQCDnLQDpKamWB2NSIWjBEpE/F5WViZ7dm4BdAVeESMo3FMLtnqdpvFEvKUESkT8XmJiApgmVKmNER5tdTjlRtGCmgtVSC7iNSVQIuL3NmzQ9N2pGDHuQvK1GzQCJeItJVAi4vfWrtMCmqd07Eq8vVuVQIl4SwmUiPi9NUVX4FXyBTT/quimwrlp+0lNTbU4GpGKRQmUiPi1lJTDHE7eBxieS/fFzQiKgMhGAKxQIbmIV5RAiYhf89Q/RTXDCKpicTTlT1Eh+YKViRZHIlKxKIESEb+2fr0W0DyTolG59bonnohXlECJiF9bu+7YLVyUQJ3asULyfSokF/GKEigR8VumabJuvZYwOJOiQvK8tL2kpaVZHI1IxaEESkT81p49u8k6mg72IKgZa3U45ZIRXBWqNQRg8WrVQYmUlBIoEfFb69cfm76Lbo1hD7Q4mvLLODaN96dWJBcpMSVQIuK3jheQa/ruTIoKyTeokFykxJRAiYjfWlc0AqUFNM/sWB3UgR0agRIpKSVQIuKXCgoK2JjoTgh0Bd6ZeQrJU3aRnpFhcTQiFYMSKBHxS1u3bqagIB+CqnpW25ZTM0KqQ0Q9AP5YucniaEQqBiVQIuKX1q8/fgNhwzAsjqb8KyokX7Ra03giJaEESkT8UtEVeFqBvGSKpvESE5VAiZSEEigR8Uvr1h0fgZISODYCdWCHrsQTKQklUCLid7KyMtmxYyugK/BKqmgKL+/gNo5mZVscjUj5pwRKRPxOQsIGTNOEiLoY4bWsDqdCMMJrQVg0YDJ/xWarwxEp95RAiYjfKSogt2n6zitFdVBL1my0OBKR8k8JlIj4nQ0bjhWQx2gFcq8UFZJvVCG5yN9RAiUifkcF5KVTVAd1YLsKyUX+jhIoEfErhw4dJDn5ABg2OHaPNykZTyF58iYysvMtjkakfFMCJSJ+ZcOG9e4HUc0wAsOsDaaiiagLwdXAVcj8VVutjkakXFMCJSJ+pWgBTRWQe88wDM8o1OLViRZHI1K+lasEaseOHXTo0IEZM2Z4tiUmJtKvXz/at29Pjx49GD9+fLHXuFwuRo4cSbdu3WjXrh33338/u3btKraPL9oQkYrh+ArkKiAvlWMJ1EatSC5yRuUmgSooKOCZZ54hO/v4Am5paWncd999NGzYkOnTpzNw4EBGjBjB9OnTPfuMHj2ayZMn8/rrrzNlyhQMw+Chhx4iPz/fZ22ISMXgcrk8U3iGEqhSKVrKQCuSi5yZoyQ7jRo1qtRv8Pjjj5dovw8++ICwsOL1ClOnTiUwMJChQ4ficDho0qQJu3bt4pNPPqFPnz7k5+fz6aef8uyzz9K9e3cA3n//fbp168bcuXO59tprfdKGiFQMe/bs4ujRDHAEQ40WVodTIRVN4eUnbyQtu5DI0BL9mRCpdMo0gTIMo0QJ1PLly5kyZQozZ86kR48enu3x8fHExcXhcBwPs0uXLnz88cekpKSwb98+srKy6NKli+f5iIgIWrVqxfLly7n22mt90oaIVAxFC2ga0W0w7AEWR1NBRTaEwHDIz+S3tbvo3aWJ1RGJlEsl/tdi6tSptG1b8kuCV69ezR133PG3+2VkZDB48GBefPFFateuXey5pKQkmjdvXmxbrVru2zLs37+fpKQkgJNeV6tWLQ4cOOCzNkrL4Sg3M6TF2O22Yp/9lfrpX0rSzw0btAL52TIMG9RqA3uXsHRNIn27Niuz99Kx618qSz+LlCiB6tix40nTa3+nSpUqdOjw9zUIQ4cOpX379lx//fUnPZebm0tgYGCxbUFBQQDk5eWRk5MDcMp90tPTfdZGadhsBpGR5fsS6oiIEKtDOCfUT/9ypn4mJrrrn8yYDhjnKiA/ZES3wdy7hE2bEomM/Pt/hM+Wjl3/Uln6WaIEqlOnTtjtdq8abtKkCZMmTTrjPjNnziQ+Pp5Zs2ad8vng4OCTCrnz8vIACA0NJTg4GID8/HzP46J9QkJCfNZGabhcJhkZ5fOO5na7jYiIEDIycnA6XVaHU2bUT//yd/0sKMhn/fqiAvL25zg6/2JEt8EE9m5dR1paVpm9j45d/+IP/YyICCnxCFqJEqgJEyYwbtw4OnfuTN++fbnyyis9ozhnY/r06aSkpBSrewJ45ZVXGD9+PHXq1OHgwYPFniv6Ojo6msLCQs+2+vXrF9snNjYWgJiYmLNuo7QKC8v3AeR0usp9jL6gfvqX0/UzISGRgoIC90KQ1Rqc+8D8SFEhecGBDSRlOKkRWrbjeZX92PU3laWfJUqzFixYwPPPP09WVhaDBw+ma9eu/Pvf/yYx8ewWWhs+fDg//vgjM2fO9HwADBo0iLFjxxIXF8eKFStwOp2e1yxevJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7cGcAnbYhI+ecpIK/dHsPQBN5ZiWrqvpKxIIvf1++xOhqRcqlECVRkZCT33HMPM2bMYNasWfTt25dffvmFm2++md69ezNp0iSOHj3q9ZtHR0fToEGDYh8AUVFR1K1blz59+pCZmcmQIUPYunUrM2bMYOLEiQwYMABw1y3169eP4cOHM2/ePDZu3MiTTz5JTEwMvXr1AvBJGyJS/mkFct8xbA6o2RLQiuQip+P1Ah/NmjVj8ODBPPPMMyxcuJDvvvuO//znP/znP/+hV69e3HrrrcTFxfkkuKioKMaNG8ewYcPo3bs3NWvWZPDgwfTu3duzz6BBgygsLOTFF18kNzeXuLg4xo8f7ykK90UbIlL+FV2BZ9ZWAbkvGNHnYx5YdWxF8iutDkek3DFM0zTPtpGsrCzmz5/Phx9+yK5du856as8fOJ0uUlPLrvjybDgcNiIjw0hLy/LreWr107+cqZ9Hjx7l0ksvwDRN7I+twQirYVGU/sO1ZhKun57F0bAry78dR1nMiurY9S/+0M/q1cN8W0R+JuvXr2fWrFnMnTuXAwcOcOGFF55tkyIiXklM3IBpmlD1PCVPPlJUSF6YtJ4DWVAn3OKARMqZUiVQe/bsYdasWcyaNYudO3cSHR1N79696dOnD/Xq1fN1jCIiZ1RU/2TEtLc2EH9SoznYAiD3CAs3JnNr52irIxIpV0qcQKWlpfHjjz8ya9Ys1qxZg8PhoGfPnrzwwgt07dpVV72IiGWKrsCz12lvbSB+xHAEue8neHA9S1YnKIES+YsSJVAPP/wwCxcupLCwkGbNmvHcc89xww03EBkZWdbxiYj8raIRKK1A7ltG9PmYB9eTmJgA/MPqcETKlRIlUPHx8fTp04c+ffp4dT88EZGylpyczMGDyWDY4FjdjviGEdMGcx0c3LkBlwk2ZaciHiVKoBYuXFjsNiciIuVF0fIF1GiBERhqbTB+xqjVBgBn0np2ZdhoVLViXlklUhZKlED9NXn66aefWLlyJRkZGSftaxgGb7zxhm+iExH5G54Cci2g6Xs1W7lH9rIOsmTLYRp1rm51RCLlhtdX4Q0fPpxx48YRHh5ORETESc+rmFxEzqWiESi7EiifMwJDoXpTSNnMkrWJ3NH5EqtDEik3vE6gvv32W2699Vb+/e9/l0U8IiIl5nK5TliBvKMKyMuAEd0GM2XzsUJyJVAiRUq23OYJ8vLyuOqqq8oiFhERr+zatZPMzEwICHGvWyQ+V7Sg5uGd6ylw/s3OIpWI1wnUFVdcwfz588siFhERrxTVPxHd1n0DXPG5ogTKlbyebele/8kQ8Vten3FeeOEF+vbty9133027du1OKjA3DIPHHnvMZwGKiJyOCsjPgejW7s8Z+1i2M4PY6rqniwiUIoH64osv2LFjBzt27GD58uUnPa8ESkTOlaIVyB2123PWd0WXUzKCIqBaQziyk2VrErmnY5zVIYmUC14nUF9++SXXXnstzz//PDVq6KadImKN/Px8Nm3aCICrtlYgL0tG9PmYR3aSkJgAKIESgVLUQGVnZ3PrrbcqeRIRS23atJHCwgIIjYII3cS8LBkx7jqotN0byC6wOBiRcsLrBOriiy9m6dKlZRGLiEiJbdhwrP4ppr3WnytrxwrJzeR1bEyzWxyMSPng9RTejTfeyIsvvsiuXbvo0KED4eEnFxTedNNNvohNROS0iuqfVEBe9opu6ULaDlbuyaJjLd3aS8TrBGrQoEEAzJ49m9mzZ5/0vGEYSqBEpMwVXYFnr6MC8rJmhFaHKnXg6H6Wrt3Eg53aWR2SiOW8TqDmzZtXFnGIiJRYRkYGO3fuAMAV014F5OeAEX0+5tH9bNqYACiBEilRDdSIESNITk4GoG7dun/7AZCcnMyIESPKLnIRqbQSEta7H1RrgBGiG9yeC0ULah7du57UXKWsIiVKoMaMGeNJoEoqKSmJMWPGlCooEZEzOb6AZgeLI6lEot11UGbyehJStCK5SImm8EzTZOjQoacsGD+dzMzMUgclInImKiA/94pGoEjZwur9+XStq6vxpHIr0b8RcXFxhIWFYZpmiT/CwsLo3LlzWccvIpWMaZqeESiHEqhzJzwawmqC6WLZus1WRyNiuRKNQH3xxRdlHYeISIkkJydz+PAhsNlx1mqjAvJzxDAMdyH59vls3rQB02yJlt+SykwT2SJSoaxbtwYAo0YsRkCIxdFUMjHuq+/y9q1hb6ayJ6nclECJSIWydq07gUIF5OecEdMWADNpLesPqwZKKjclUCJSoXhGoOoogTrXjGMjUKRsYfW+XGuDEbGYEigRqTAKCwvZsMG9BpRdCdQ5Z4RHQ3iMu5B8baLV4YhYSgmUiFQYmzZtIicnB1tQFVzVm1kdTqVUtHTE7i3ryHdaG4uIlUp0Fd7MmTO9alT3whORsrBy5UoAzJj22Az9/2cFI6Yd5pb/4Tqwhi1H+tE6ymV1SCKWKFEC9dxzz5W4Qd1MWETKyqpVq9wPNH1nnWN1UGbSatYftiuBkkqrRAmUbiAsIuVBUQJl0xV4lim6Eo8ju1i1J5PbWgRZG5CIRUqUQBXdILgkTNMsdTAiIqeTmZnJli1bAHcBucY9rGGEREK1hnBkJyvWrofLO1kdkoglSpRA/dXs2bNZtmwZBQUFnoTJNE2ys7NZvXo1f/zxh0+DFBFZv34tpmniiKyPK7Sm1eFUakZMW8wjO0nZuY70vE5U1SCUVEJeJ1CjRo1i1KhRVKlShcLCQgICAnA4HKSmpmKz2ejbt29ZxCkilVzRAprO6A5oCUdrGTHtMDd+j3lgDRtS7FxcR5fjSeXj9WUs3377LTfccAPLli3j3nvv5R//+AeLFi1i2rRpVKtWjWbNdGmxiPheUQKlBTStZ5xQSL5OK5JLJeV1ApWcnMyNN96IYRi0bt3aU9TZpk0bHn74Yb755hufBykilZtpmp4EyqYEynrR5wMGHD1A/PYUq6MRsYTXCVRoaCjGsVtwN2zYkL1795Kb617Sv2XLluzdu9e3EYpIpbd//z5SU1Mw7AEY0a2tDqfSM4LCIco927BhwwZcunZIKiGvE6jzzz+fb7/9FoD69etjt9tZtGgRANu2bSMwMNC3EYpIpbd+/VoAHDGtMe0hFkcjcHw5g5x9a9h91LA4GpFzz+sE6uGHH2bOnDk8/PDDBAYGcsMNN/Dcc88xcOBA3n77bbp27epVeykpKTz77LN06dKFDh068M9//pOtW7d6nk9MTKRfv360b9+eHj16MH78+GKvd7lcjBw5km7dutGuXTvuv/9+du3aVWwfX7QhItYpuoFwYbSm78qLolu6kLSG9aqDkkrI6wQqLi6OadOmcfXVVwPw8ssvc+WVV7J9+3auuuoqXnzxRa/ae+SRR9izZw+ffPIJ06ZNIzg4mHvvvZecnBzS0tK47777aNiwIdOnT2fgwIGMGDGC6dOne14/evRoJk+ezOuvv86UKVMwDIOHHnqI/Px8AJ+0ISLW8hSQawHNcqNoBMpMWsPaQ7qtjlQ+pVoHKjY2ltjYWACCgoJ47bXXSvXmaWlp1KtXj0ceecRz9d6jjz7KjTfeyJYtW1i8eDGBgYEMHToUh8NBkyZN2LVrF5988gl9+vQhPz+fTz/9lGeffZbu3bsD8P7779OtWzfmzp3Ltddey9SpU8+6DRGxTkFBPhs3JgDuBTRVblNO1GoNNgdkp7B8SxJcWN3qiETOqVIlUEePHmXJkiVkZ2efcuXxkt4LLzIykvfee8/z9eHDhxk/fjwxMTE0bdqUDz74gLi4OByO42F26dKFjz/+mJSUFPbt20dWVhZdunTxPB8REUGrVq1Yvnw51157LfHx8WfdhohYZ/PmTeTn5+MIrYZZrZHV4cgxhiMYasTCwfXs2bKOnMLuhJTqL4pIxeT14f7777/zxBNPkJOTc8rnS3sz4ZdeeskzWvTRRx8RGhpKUlISzZs3L7ZfrVq1ANi/fz9JSUkA1K5d+6R9Dhw4AOCTNkrL4Sifw9p2u63YZ3+lfvqHhIR17ge1O4ChYuXyxIhph3lwPc6ktWw6chmdY7y7wY6/H7tF1E//5HUC9d5779G4cWOef/55oqOjsdl8843q378/t912G19//TWPPfYYkyZNIjc396Sr+oKC3PcMyMvL8yRxp9onPT0dwCdtlIbNZhAZGVbq158LERGV42om9bNi27hxAwCumI7eF21KmTJqt8Nc+xUkrWZrVgi9IkvXjr8eu3+lfvoXrxOo7du3M3r0aDp37uzTQJo2bQrAa6+9xurVq/nyyy8JDg4+qZA7Ly8PcK9HFRwcDEB+fr7ncdE+ISHuH6Av2igNl8skIyO71K8vS3a7jYiIEDIycnA6/feWrOqnf4iPX+F+oALycuf4iuTr+HNHPrc3KfDq9f5+7BZRPyuOiIiQEo+geZ1A1alTh8zMTK+DOpWUlBQWL17M1Vdfjd3uvgzWZrPRpEkTDh48SExMDAcPHiz2mqKvo6OjKSws9GyrX79+sX2Kitx90UZpFRaW7wPI6XSV+xh9Qf2suNLTj7Br104AAuq0Q3dcK2dqtABHMORlsGLTbgq6R5dqltUfj91TUT/9i9cj4gMGDODDDz/0yYrjBw8e5Omnn2bZsmWebQUFBSQkJNCkSRPi4uJYsWIFTufx0+bixYtp1KgRUVFRxMbGEh4eztKlSz3PZ2RkkJCQ4Bkh80UbImKNouULgmo0xhlcyvkhKTOGPQCi2wCQuWsl+zJVoyaVh9cjULNmzSI5OZlevXpRvXr1YtNe4C4i/+WXX0rUVmxsLF27duXVV1/l9ddfJyIigjFjxpCRkcG9995LUFAQ48aNY8iQITz44IOsXbuWiRMn8uqrrwLuuqV+/foxfPhwqlevTt26dXnnnXeIiYmhV69eAPTp0+es2xARa6xZ477XZmHtOAz0x7k8Mup0wtwXj7l/JWsOX0+9KoVWhyRyTnidQMXExBATE+OTNzcMg//+97+8++67PPHEExw9epTOnTvz1VdfUadOHQDGjRvHsGHD6N27NzVr1mTw4MH07t3b08agQYMoLCzkxRdfJDc3l7i4OMaPH+8pCo+KijrrNkTEGkUJlFmns9Kncsqo08m9Ntf+Faw7bOfaRkqgpHIwzFMt5CRnzel0kZqaZXUYp+Rw2IiMDCMtLcuv56nVz4qtsLCQrl3jyM3NwX7/fIwaLawOSU7BPHoA50edwbDR9KX1TLu55JUh/nrs/pX6WXFUrx5WdkXk+/fvP+1zNpuN0NBQIiIivG1WRKSYLVs2kZubQ0BoBEaNplTM07H/M6rUhip14Oh+dmxaR1ZBO8ICrI5KpOx5nUD17NkT428us6hatSr33HMPjz76aKkDE5HKrWj6LqBuJ/LRzWrLM6NOJ8xN+zH3ryQhpSNxMbpeUvyf11fhvfXWWwQEBHDJJZfw5ptv8sknn/DWW2/xj3/8A8MweOyxx+jduzcfffQRkyZNKouYRaQSWL3anUDlRutq2PLOqNvJ/WD/CtYeVrIrlYPXI1CzZ8/m2muv5c033yy2/cYbb+SVV15h/fr1jBkzhoiICL7++mvuvPNOnwUrIpVH0QgUdZVAlXdGnY4AuPavZNVBrRcvlYPXR/qyZcu47rrrTvncFVdcwZIlSwDo1KkTe/bsObvoRKRSSk5O5sCB/RiGDXud9laHI3+nVhuwB0JOKqs278alS5OkEvA6gapWrRobN2485XMbN24kPDwcgOzs7LO6FYqIVF5r17pHn8LqtoSA8n1PSQHDEQTR5wOQs2cVO9I1CiX+z+uj/Prrr2fkyJFMnDiR5ORkCgoKSE5O5osvvmDUqFFcf/31pKenM3HiRNq1a1cWMYuInyuaviuI6YypFaAqBKOOuw7K3LeCNaqDkkrA6xqoJ554gpSUFN566y3eeustz3abzUafPn148skn+emnn0hISGDixIk+DVZEKoc1a1YDUBAT5/1/eWIJo24nzHhg/wpWH7Rzc1PvbiwsUtF4nUA5HA7efPNNHnnkEZYuXUpaWhrR0dF07NiR8847D4BLL72UBQsWaCVvEfFabm4uiYkJABgqIK8wigrJzUOJLN+Ta3E0ImXP6wSqSP369alfv/4pn6tatWqpAxKRyi0xcQOFhQWEVK2Fq2pdtKJQxWBUqQNVasPRAyTvWMfhnLbUCFE1ufivEiVQl112GR9++CGxsbF/u5CmNzcTFhH5q6L1nwLO60S2JvAqFPeCmj+4p/EOdeDy+rovnvivEiVQF1xwAWFhYZ7Hf7cSuYhIaRUVkGfVjFP5eAVzYgK15tAAJVDi10qUQJ24aOaJheMiIr5kmqYW0KzAPAtq7lvBimSNHop/K1UNVGZmJllZWURHR5Ofn8/nn39OUlISV155JXFxcb6OUUQqiT17dpOWloo9IBBbrdaogqaCiT7fs6Dmlh17yCmsQUipK21Fyjev/0VYu3YtPXv25IsvvgDg9ddfZ/jw4Xz//ff079+fefPm+TxIEakcikafws9r616cUSoU94KabQBw7l/JOq0HJX7M6wTq/fffp3Hjxtx2223k5uYya9Ys7rzzTpYtW8Ytt9zCmDFjyiJOEakEihKo/OjOuFQBVSEVLajJ/hWsOqgESvyX1wnUmjVreOSRRzjvvPNYvHgxubm53HjjjQBcc801bNmyxedBikjlUJRA5cWoFKCiKkqgXPtWsEIJlPgxrxMom83mWSDz999/JyIigrZt2wLu2qjg4GDfRigilUJGRgZbt7r/AfOMYkiFU1RIzqFE1u7PpUALeYmf8jqBatOmDdOmTWPVqlXMmTOHHj16YBgGKSkpfPLJJ7Rp06Ys4hQRP7d69UpM06RKdCMc4TWsDkdKyYioCxF1wXSSv3clG9N0NZ74J6+P7MGDB7N48WLuuOMO7HY7jzzyCADXXXcdO3fu5IknnvB1jCJSCaxcGQ+A7bwLcZqqf6rIjHoXuh/sXcLKg7oMT/yT10d2q1at+Pnnn9m2bRvNmjUjNDQUgKFDh9KxY0dq1qzp8yBFxP+tXLkcgMzoLiofr+CMehdgJszA3LOMFcl2+reyOiIR3yvVvwbh4eG0a9eu2LYrr7zSJwGJSOWTk5NNQsIG9xf1LrI2GDlrxnldADAPrGJlkhOnC+yayRM/o0NaRCy3du0aCgsLqRJVB3u1ulaHI2erelMIqQ6FueTsXce2dP2pEf+jo1pELLdihXv6LrjhhZhafrzCMwwDo94FAJh7l2o9KPFLSqBExHJFBeQZtbpgqgLKLxxPoJYRn6wESvyPEigRsVR+fj7r1q0BoLBOF4ujEV8puhLP3Luc5Uk2jSyK31ECJSKW2rBhPXl5eYRGVMeo3tjqcMRXottAQCjkpXN0/ybVQYnf0REtIpYqWr6gSuMLsdk0fecvDJvDs6K8uXcJKzSNJ35GCZSIWKqo/ikzugsuLaDpV4z67iUpzD1LVAclfkcJlIhYprCwkNWrVwKQG6P6J39jnHcxAObuxSxLsuFSHZT4ESVQImKZzZs3kpWVRXBoFajZ0upwxNdqt4OAEMhJJfPAFrarDkr8iI5mEbHMihXu6bvIJnE4tFS13zHsgRh14wAwd/+paTzxKzpjiYhliuqfcmK66AbCfsqoXzSNt4jlSqDEjyiBEhFLuFwuVq1yJ1BHo1X/5K88CdSeJSxXHZT4ESVQImKJ7du3ceTIEQKCQiD6fKvDkbIS3da9HlTuEbL2b2Rzmv7siH/QkSwiliiavqveuCMOR4DF0UhZMewBnlXJ0TSe+BElUCJiiaIFNPNrX6j6Jz9XNI3n2r2YxQccFkcj4htKoETknDNNk/h4dwKVXlP1T/7ueB3UYlYlmeQ7LQ5IxAcsT6COHDnCyy+/zKWXXkrHjh254447iI+P9zyfmJhIv379aN++PT169GD8+PHFXu9yuRg5ciTdunWjXbt23H///ezatavYPr5oQ0R8Z9u2rRw+fIiAwCCMup2sDkfKWvT5EFwN8jLI37+WdYc1jScVn+UJ1FNPPcWaNWt47733mDZtGq1bt+aBBx5g27ZtpKWlcd9999GwYUOmT5/OwIEDGTFiBNOnT/e8fvTo0UyePJnXX3+dKVOmYBgGDz30EPn5+QA+aUNEfGvZssUARDXtjCMgyOJopKwZNrtnFIqdf6gOSvyCpQnUrl27+PPPP3nllVfo3LkzjRs3ZsiQIURHR/PDDz8wdepUAgMDGTp0KE2aNKFPnz7ce++9fPLJJwDk5+fz6aefMnDgQLp3705sbCzvv/8+ycnJzJ07F8AnbYiIby1btgSAwnpdVf9USRgNugHg3LmARftVByUVn6UJVGRkJGPHjqVNmzaebYZhYJom6enpxMfHExcXh8Nx/JetS5cu7Nixg5SUFDZudN8GokuX4zUUERERtGrViuXL3fUVvmhDRHynsLCQ+PhlAKRFX2pxNHKuGA2P/az3ryQxKYfMAmvjETlblv4bEBERQffu3YttmzNnDrt376Zr1668//77NG/evNjztWrVAmD//v0kJSUBULt27ZP2OXDgAABJSUln3UZpORyWz5Cekv3YLTPsfn7rDPWzfNqwIYHMzExCwiPI1/pPlYYR2RCq1of03Tj3LGHN4a70bOheVbOiHLulVdF+R0ursvSzSLkaR12xYgUvvPACl112GT179uTNN98kMDCw2D5BQe56iby8PHJycgBOuU96ejoAubm5Z91GadhsBpGRYaV+/bkQERFidQjnhPpZvqxZ475IpFbsJSQ77BS6LA5IzhmjYTfMNV9h7PyDlamXc1Nb9/aKcuyeLfXTv5SbBOqXX37hmWeeoV27drz33nsABAcHn1TInZeXB0BoaCjBwcGAu46p6HHRPiEhIT5rozRcLpOMjOxSv74s2e02IiJCyMjIwen0379e6mf59NtvfwCQFXOxkqdKxmh4Keaar3DuXMDcrS6e6ZhXoY7d0qpov6Ol5Q/9jIgIKfEIWrlIoL788kuGDRtGr169GD58uGc0KCYmhoMHDxbbt+jr6OhoCgsLPdvq169fbJ/Y2FiftVFaheX8r4PT6Sr3MfqC+ll+5OTksGrVCsBd/6Ty8crFqH8JYEDKZvYlJbP7SFXaRFSMY9cX1E//YvlE5aRJk3jttde46667+O9//1tsKi0uLo4VK1bgdB5fdW3x4sU0atSIqKgoYmNjCQ8PZ+nSpZ7nMzIySEhIoHPnzj5rQ0R8Y/XqlRQUFBARFQ3Vm1gdjpxjRkgkxLQDwNz5O4v2azkDqbgsTaB27NjBG2+8Qa9evRgwYAApKSkcOnSIQ4cOcfToUfr06UNmZiZDhgxh69atzJgxg4kTJzJgwADAXbfUr18/hg8fzrx589i4cSNPPvkkMTEx9OrVC8AnbYiIbxQtX1Ct2SWU02sspIwZjf/hfrD9V/5UAiUVmKVTeD/99BMFBQXMnTv3pDWXevfuzVtvvcW4ceMYNmwYvXv3pmbNmgwePJjevXt79hs0aBCFhYW8+OKL5ObmEhcXx/jx4z0jWVFRUWfdhoj4xtKl7gU0j9a+VOs/VVK2xv/Aueh9XDv/YPFekwLd1kUqKMM0TdPqIPyR0+kiNTXL6jBOyeGwERkZRlpall/PU6uf5Ut6+hF69LgI0zSxP7ICo0qM1SGJBUyXE+eH7SAnDfsdM5j25IU0Cy3fx+7Zqii/o2fLH/pZvXpYiYvINYguIudEfPwyTNOkRt0mGFWirQ5HLGLY7BiNjk3j7ZjH77rtqFRQSqBE5JxYutRd/xTWpCt2zd5VakUJlHPbfObvsDgYkVJSAiUi50TRDYQP1eqm+qdKzmjUAzDgUCIbdhwgJcfigERKQQmUiJS55OQkdu7cgWGzkVfnYqvDEYsZodWhTgcAzO2/snBfuViSUMQrSqBEpMwVXX1Xq2Eb7CERFkcj5YGtUU/3g+3z+H2vljOQikcJlIiUuaL1n4yG3XDpul8BjCaXA+Da+Tt/7szXcgZS4SiBEpEy5XK5WLRoIQAptS4F3cBFAKLbQJU6UJBDzvY/WX1Io1BSsSiBEpEytWlTIqmpKQSFhOGqe4HV4Ug5YRgGRtMr3F9s/YkFqoOSCkYJlIiUqYULFwBQs8XFOBwBFkcj5YnR7EoAXNt+4bfd+nMkFYuOWBEpU4sWuROorHr/0PIFUoxxXhcIrAJZh9i3dTW7M3R8SMWhBEpEykxGRgZr1652P67b09pgpNwx7IEYjd3Hhbn1J/7QNJ5UIEqgRKTMLF26CKfTSfU6TbBVrWd1OFIOeabxtvzM/D1KoKTiUAIlImWm6Oq7oKY9rA1Eyi2j8T/AFgCpW1m7aQepuZrGk4pBCZSIlAnTNPnzT3f90+GYnphavkBOwQiKwGjQFQDXptks2KflDKRiUAIlImViy5bNHDyYTEBQMK56XawOR8oxI/Z6AMxNs/h1j67UlIpBCZSIlInff/8VgBotLsEREGRxNFKeGU2vAJsD89BGFq3fSXaB1RGJ/D0lUCJSJhYscCdQmef10vIFckZGSCRGg24AFG78gSVJKiaX8k8JlIj4XGpqCuvWrQUgu/7lFkcjFcHxabwf+FVX40kFoARKRHxuwYLfMU2Tmg3bYI+IsTocqQCOT+MlMn/1LvJ1c2Ep55RAiYjPLVjwGwCuxpfhMq2MRCqKE6fxchJmsTRJV+NJ+aYESkR8qqAg37P+05G6V4KWL5ASMlreAICZMJOfdmoaT8o3JVAi4lPx8cvJzs4mrFpNjJg2VocjFYjR7GpwBGOmbmX+8gRN40m5pgRKRHzqjz/cV9+FNu+JYegUIyVnBFXBaOq+tUvOuhksOaBpPCm/dHYTEZ8xTZNff50HQFq9q7T6uHjNaH0zAGbid/y0Q8ePlF9KoETEZxIS1pOUdIDA4FDMhpdaHY5UQEbD7hBSHbIPM3/BYk3jSbmlBEpEfGb+/F8AqBbbA7tWH5dSMOwBGC1vBCB3/bcs2q9icimflECJiM/8+qs7gUo772pcWn1cSsnWug8A5pY5fJeQY3E0IqemBEpEfGLnzu1s374NuyMAV2OtPi5nIaY9RDWDghwWzJ/N0XyrAxI5mRIoEfGJoum7qk27YA+uYnE0UpEZhoGt7R0AFK75mnl7AiyOSORkSqBExCeKEqiM+tdo+k7OmtH6FrAFQNIapi7cbHU4IidRAiUiZ+3Agf2sX78WwzAwj63jI3I2jNAojGbuYynx96kkZSkpl/JFCZSInLVffvkJgIjGcdir1LI4GvEXRts7ATA3zOCHLVrPQMoXJVAictZ+/vl/AGQ1vlHTd+IzRsNuEFEP8tKZPGsupm5MLeWIEigROSv79u1l3bo1GDYbZrOrrQ5H/Ihh2LC1c49CHV70GWsP60+WlB86GkXkrMyd656+C290IbZwTd+Jbxlt7wJ7IBxYxYR5CVaHI+KhBEpEzsrPP88BIKvxDbr3nficEVYDI/Z6ABb+8AVZBRYHJHKMEigRKbW9e/eQkLAew7Bhb3GN1eGIn7J1vB+AwsRZfLsu3eJoRNyUQIlIqf30048ABDW6GDM0yuJoxF8ZtdtD7Q7gzOfLr7+xOhwRQAmUiJSSaZrMnv09APktbgZN30kZKhqFSlr0OYkHCy2ORqScJVCjR4/m7rvvLrYtMTGRfv360b59e3r06MH48eOLPe9yuRg5ciTdunWjXbt23H///ezatcvnbYhIcRs3JrjvfRcQhKPFVVaHI37OiL0OqtSGrIO8+8Usq8MRKT8J1GeffcbIkSOLbUtLS+O+++6jYcOGTJ8+nYEDBzJixAimT5/u2Wf06NFMnjyZ119/nSlTpmAYBg899BD5+fk+a0NETlY0+mQ0vQJXYFWLoxF/Z9gDsXV+CIAVsz8hPUcLa4q1LE+gkpOTefDBBxkxYgSNGjUq9tzUqVMJDAxk6NChNGnShD59+nDvvffyySefAJCfn8+nn37KwIED6d69O7Gxsbz//vskJyczd+5cn7UhIsUVFhbyv/+5659cLftYHI1UFkbbuyCoKmbqdkZ887vV4UglZ3kCtWHDBqpWrcr3339Pu3btij0XHx9PXFwcDofDs61Lly7s2LGDlJQUNm7cSFZWFl26dPE8HxERQatWrVi+fLnP2hCR4pYtW8Lhw4ewh0Zib9Td6nCkkjCCwjE69gdg9tSxuFxamlys4/j7XcpWz5496dmz5ymfS0pKonnz5sW21arlXqhv//79JCUlAVC7du2T9jlw4IDP2igth8Py/PSU7HZbsc/+Sv0sOz/+6J6+c7W4EcMeeM7eV8TW8QGcyz4mb+9qJs1dzr3Xdvn7F1lM5yL/ZHkCdSa5ubkEBhY/OQcFBQGQl5dHTk4OwCn3SU9P91kbpWGzGURGhpX69edCRESI1SGcE+qnb2VkZPDLLz8D4Gh9MxoDkHPJCKuB0e5OzJUTGDf2A564qyeGUTGuANW5yL+U6wQqODj4pELuvLw8AEJDQwkODgbcdUxFj4v2CQkJ8VkbpeFymWRkZJf69WXJbrcRERFCRkYOTqfL6nDKjPpZNqZO/Ybc3FxsNZrhqt1RixfIOWe78HGcayZxZNtyxk/9mT5XdLU6pDPSuajiiIgIKfEIWrlOoGJiYjh48GCxbUVfR0dHU1hY6NlWv379YvvExsb6rI3SKiws3weQ0+kq9zH6gvrpW9OnH1vIsM3tFeY/f/EvRpUYjPZ3Y64Yx4gPRnLDPy6qEMeizkX+pVxPVMbFxbFixQqczuOXqy5evJhGjRoRFRVFbGws4eHhLF261PN8RkYGCQkJdO7c2WdtiIjbli2b2LBhHdgc2Frr6juxju3Cx8ARTOqO1cyZv8DqcKQSKtcJVJ8+fcjMzGTIkCFs3bqVGTNmMHHiRAYMGAC465b69evH8OHDmTdvHhs3buTJJ58kJiaGXr16+awNEXH79lv3+mlG0ysgrKbF0UhlZoTXwuhwLwDvjni/2D/JIudCuZ7Ci4qKYty4cQwbNozevXtTs2ZNBg8eTO/evT37DBo0iMLCQl588UVyc3OJi4tj/PjxnqJwX7QhIu46wdmzvwPA3vY2i6MRAVuXx3CunUTK7kSmf/cdt958s9UhSSVimKapi2jKgNPpIjU1y+owTsnhsBEZGUZaWpZfz1Orn741Z84PPP/8MxAeg/3hZRg2e5m9l0hJuZaNwfXba4RFRvPLj/87q4t/yorORRVH9ephJS4iL9dTeCJSfkyZMgkAe7s7lTxJuWF0vBeqnkdWWjKffjbB6nCkElECJSJ/a9OmjaxevRJsDmjXz+pwRDwMRzC2S58H4LPPxpGcnGxxRFJZKIESkb81ZcpXANiaXY0RHm1xNCLFGbE3QJ1OFORl85/hb1kdjlQSSqBE5IwyMjL48ccfgGPTJSLljGEY2K94Ewwb8+bOYdGihVaHJJWAEigROaPvv/+W3NwcqNEC6l1odTgip2TUao3R8X4Ahr3xmueOEyJlRQmUiJyW0+lk0tdfAGDrcG+FWO1ZKi9b12cgPJp9e3cxbtwYq8MRP6cESkROa/78uezftxdCIjHa9LU6HJEzMoKqYLvs3wCM/3QsiYkbLI5I/JkSKBE5JdM0mfDZpwAYHe7FCCh/6+uI/JWtxXXYWlyHy+nkpZeeO+lm8iK+ogRKRE5p9eqVJGxYC/YgbMdumSFSERi93oDQKLZu3cKYMaOsDkf8lBIoETmlcRPGA2C0uQUjrIbF0YiUnBEaheOKNwD32lDx8cssjkj8kRIoETnJ1q1b+POP+QDYOv/T4mhESqH5dRhtbsXlcvH888+QmppqdUTiZ5RAichJRox2X8FkNL8GI6qpxdGIlI7t8texRTXl0KGDvPTSc7hcFfP+bFI+KYESkWK2b9/Ggl9/BMB28RPWBiNyFozAMGw3foQtIIg///yD8eM/tjok8SNKoESkmDdHjgHTxGh2FUat1laHI3J2arSCy4YB8OGHI/jtt/kWByT+QgmUiHhs2rqd5b/PBsB28ZMWRyPiG/a2txMS1x+AF154hq1bt1gckfgDJVAi4vHc2x+C6cJoegVGdBurwxHxCRODwu5DqdG8C9nZ2fzf/z3C4cOHrA5LKjglUCICwA9/rmPH8tmA4b4lhogfMW2BpF3xCVEx9dm3by8DBw4gKyvT6rCkAlMCJSIUOE3eGP4ucGzdJ9U+iR+yhUaS23sSVatVJzExgaefHqSVyqXUlECJCC99uZDsHUvcq453fdbqcETKhIlBYURDou+eSEhIKEuWLGLw4CcoKFASJd5TAiVSyS3f7+J/n78DgNHpAYyIuhZHJFJ2nKbBjpAOXPTIxwQFBfHbb/P517+epqCgwOrQpIJRAiVSiR3Nh6fenwQpmyEkEluXx6wOSaTMmRj84ejJ7f8aQ2BgIPPnz+XZZ/+P3Nxcq0OTCkQJlEgl5TLhuTlHOPr7+wDYug/BCK5mbVAi54zJlLxe/N/Q0Z6RqMcee5CjR49aHZhUEEqgRCqpT9cHsujrNyA/C+p0wjj/NqtDEjmHDFwmjM++iqHDxxMeHs6KFfE88EA/kpIOWB2cVABKoEQqoT/22hn9/RLMjd+DYcPe6w0MQ6cDqVxcGGQVwIcp3Xn3wy+JiqrB5s2buOuuvqxdu9rq8KSc0xlTpJLZmGrj+XkFuP7nXuvJ6HifFs2USstpGhzKMXh/X0dGj59C8+YtSEk5zIMP3sPMmdMxTdPqEKWcUgIlUonsPWrw2PwQcn55FY7uh2oNsXV7zuqwRCzlNA22p9t4NaEZI8dOokePnuTn5zN06BBeeuk5cnKyrQ5RyiElUCKVxOEcg0fmh5K+cT6udVMAA/vV72EEhlodmojlXKbB1nQbTy+uyStvjuLxx5/AZrPxww/fcccdfVi/fp3VIUo5owRKpBI4lG3w0NxQkpOTKfzxaQCMzg9inHehxZGJlB8u02DrERv3z63CtXc8wtixn1GzZk127txB//63M3r0SK1cLh5KoET8XFKWwf1zQ9l31En+949D9mGo2RJbt39ZHZpIueM0DfZnGfT/XygRTbrwzTffc9VV1+B0Ohk7djS33XYT8fHLrA5TygElUCJ+bOsRG/f9HMrBbIOCP4bD3iUQGI79xo8xAkKsDk+kXHKaBkfyDe79KZTl6TV56633ePvt96lePYodO7bz4IP38NxzT7N37x6rQxULKYES8VOL99u596dQUnINChJnYS4dBYDtquEY1ZtYHJ1I+eYyDQpc8PyfIYxYGcRlva5m5swf6dv3dgzD4H//m81NN13DW2+9RkrKYavDFQsogRLxMy4TPk8I4P9+CyHPCc698bhmPwGA0fkhbLHXWxugSAVhYgDw5cYA+v8UShrVGDJkKJMmTeOiiy6hsLCAyZO/4rrrrmD06JFkZGRYHLGcS4apRS7KhNPpIjU1y+owTsnhsBEZGUZaWhaFhS6rwykzlbGfh7NcvLwohEUHHACYaTtxfnk95KRiNL0S202fYNjsFkcsUvHYDRO7AYM65NG3WQF2GyxbtoQRI95lwwb3FXohIaHceGNv7rzzHurXb+B5bWU8F1XUflavHobdXrKxJSVQZUQJlPUqWz+nrc7l34sDOVpg4DINzPQ9OL++BTL2Qkw77LdP05IFIj7QPNLJSxfm0rK6C9M0mTfvZ8aMGcXWrVsAMAyDSy/tQb9+/enc+UICAuyV6lxUkfupBKocUAJlvcrSz8N5dv67OpT/bQMDExMDM30vzsm3QPoeiGyM/Y7pGOG1rA5VxC/YDBOXCdc0LOTRdnnEhJmYpsnSpYv58suJLFz4u2ffevXO47rrbuDOO2+jevUYvz4X+cM5VwlUOaAEynr+3s/sAvg8MZCJCYG4TAPnsd9kM2ULzml3H0ueGrlHnqrEWBusiB+yG+4qqd5NC+jfKp+YMPcv4c6d2/nqqy/44Yfviq1ifv75bbn66uvo0eMy6tSpa1HUZccfzrlKoMoBJVDW89d+ZhbA1M2BfJ4QSFbB8UJXANeuP3HNfAjy0qFaQ+x3TMOoUtvCaEX8n81w/xm9skEht7fIp3WU+3yTk5PNr7/OY86cWSxa9CdOp9PzmmbNmnPppf/g0kt70KZNW+z2il+b6A/nXCVQ5YASKOv5Wz93Zhh8szmQ77cFkOssnjiZpom5eiKueUPBVQB1O2Pv/SlGaJR1AYtUMnbDxGkatIh00rtpAb3qF1A1yH0uKizM5uuvv+Hnn//HmjWrcLmOn5OqVq1Kx45xdOoUR+fOcTRr1qJCJlT+cM5VAlUKLpeLUaNG8c0335CRkUGnTp145ZVXaNCgwd+/+BSUQFnPH/qZnge/7A7gh+0O1qU4PCfoE5k5abj+9yzmljkAGC2ux3btfzEcwVaELFLpGbj/rNoM6FLbSa8GTm5oE4Qtz30uOnIkjT//XMiCBb+ycOECMjOPFnt9eHgV2rVrT6tWbWjZsjWtW7ehVq1oDMM41duVG/5wzlUCVQqjRo1i0qRJvPnmm0RHR/POO++wZ88efvjhBwIDA71uTwmU9SpiP00TdmTYWHLAzq97HKw5ZMcFGBQfcXLva2Imfofr139DVjLYArD1GILR6cFyf6IVqSxsmMd+hw1aVHdyce1COkc7aRPlJDQACgoKSEzcwIoVy4mPX87q1SvIyjr5b0f16lE0b96CJk2a0bhxE5o0aUrjxk2JiIg49506jYp4zv0rJVBeys/Pp0uXLjz77LPccccdAGRkZNCtWzfeeOMNrr32Wq/bVAJlvYrQz5xC2JJmY32KnbWH7cQn2zmSZ/P8B/vXpKmIuX8lrj/ewtz9p3tD9SbYrxuFEdP2XIUuIl5zryXlNA1smDSu5uL8Gk5aVXfRrJqTxlVdBBqFbNqUyPr160hIWE9i4ga2bdtarH7qRJGRkdStex5169ajbt161Kt3HvXqub+uVSuagICAc9a7inDO/TveJFCOMo6lQti4cSNZWVl06dLFsy0iIoJWrVqxfPnyUiVQZSUl5TBJSQcoSnuP57+m5+uibcc/U2wfmw2qVAkhIyOHwkLnadrhL22c3G5J9j0xrtPtW7TfyXGf+jUn7uvujx2Hw0FAQAAOh+PYRwDBwQFUrx5BdnYBNpuDkJAQQkJCCQkJweE4d4d+oQsO5xjsy7SxP8tgd4aNHRk2NqfZOZBlYGJgYGIY7ttHuHt4cuJkmi7MXQsxl43B3HnsMmlHMLaLBmHEPYzhCDpnfRKR0jh+tawLg61H7OxMt/HtVvdzADVDXDSqegENGnemWVsX3cNNIu3ZZO7fyMHdm9mxfQvbt29j27atJCcnkZaWRlpaGuvXrz353QyDatUiqVmzJjVq1KRmzVrHPtekevUaVKtWjYiIqlStWpWIiAhCQ8M0eu0FJVBAUlISALVrF79aqVatWhw4cMCKkE4pOTmJa6/tRWFhgdWhVHiBgYGEhIQQGhpGSEgIERFVqVatGtWqRVK1arW/PI4kNKIaoVUiCQqLJN+0kVNokF1gkFUImfkGmQUGR/MN0vMNjuQZpOYaHMw2OJzj/vrEhMhhmDjNvxSBY3CqsWDTNOHgBsytc3Gtnwrpu91PGHaMNrdgu+gJjGr1y/rbJSJlpPAvNY2HcmwcyjFYmeyevnf/UxUCXIKNi6nS0KR6rEmjEJO2Zgb29N04j+wmP3U3WYf3cPTwHo4k7yEleQ+FBQWkpaWSlpbK5s2b/jYWh8NxQkLl/hwWFk5oaOgJ58uix6HFzqGhoaFUqRJOTk4kOTlODMNOYGAgAQEB2Gz+edc4JVBATk4OwEm1TkFBQaSnp5e6XYfDtwdNZGQ1Ys/vQML2fbhMKPqPBc9/DCd+/Zf/Ik65z7Gvz/Rcsa9P8VxJYvjrfzQl2vfU7Rsn7WNiulzuK8+cBe7PrsJjjwuPPc53f12QDaZ7xC0/P5/8/Hzvf76GDUKjILQGRlhNCK1x/HHYscehJzy2nzx8/tcTZhHTNCEzGdJ2YB5cj7l/JebeZZCZdHynwCoYrW/GFjcAo1rpLnAQkfLOoPAU/1C5cP+Tlp4POzIAqrs/QtpDXdwfx5imC3t2KmQlY2YehKyDkJmMWfQ5+zDkpkPOEchNA2c+hYWFpKamkJqa4tvu2BxgDzz9hyMQwxbg3s/mAJsdDPsJnx3uqROb4/h2exC33nILL13f2LexekEJFBAc7L5aKT8/3/MYIC8vj5CQkFK1abMZREaG+SS+IpGRYXz4+bfcPNV9dZZ4xzRNcOa5E6n8bPfngmzM/EzIPQI5aZCThpmTevLj3CPuD9MFWYcg6xDmocTjbZ/mPR2h1QiqUgNHSBVsjkAMewA2RyA2RyCmsxBnQS6FuZkUZKaQf/Qwzvyck9qwB4ZQPbYb0e2vIabjddgDS3dMioh/cwFZ+e5FdrMLbGSF1yC3sAY5ha3JP3UJFXDs3FiY606kco5Abjpm0TkxPxMKsjALciA/CwqyPOdQsyD7hG3Hni/Mdf8jWyywY//MFmSf6u3dMZSiv2tCUoi8Z1QpXukbSqA4PnV38OBB6tc/Ph1y8OBBYmNjS9Wmy2WSkXH6g6W0ogz4/baza8NutxER4a6BcjorZqFfSZy+n0HHPiK9aq+goIAjR9JISTlMSkoKhw8fJjU19djX7m0pKe5tqakpOJ1OCrOPUJh9pMTvYbPZqFOnLk2bNqNt23a0a9eeDh06nTA66gKKX5ygn6d/qSz9hMrT14rTz6rHPkqnqJ9HjmSRm5tHQUGBZ7Q/Pz+fggL3R35+gefr488V4HQ6cbmcFBa6PzudJ364cDoLPZ8Nw+Daa68nLc23F2tFRISoiNwbsbGxhIeHs3TpUk8ClZGRQUJCAv369St1u+X9KgSn01XuY/QFX/XTMOxERtYgMrIGTZueeV+Xy0V6evqxhCqFnJzsYyeKgmMnkQIcDgeBgUGEhoZSvXp1IiOrU7t2bQICTl42oyTx6+fpXypLP6Hy9LWy9NM0wW4PwG4PIDi4bG9gbuX3UwkU7tqnfv36MXz4cKpXr07dunV55513iImJoVevXlaHJxWQzWYjMjKSyMhIoJnV4YiIiI8pgTpm0KBBFBYW8uKLL5Kbm0tcXBzjx48v1SKaIiIi4t+UQB1jt9t59tlnefbZZ60ORURERMo5/1ycQURERKQMKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvKYESERER8ZISKBEREREvGaZpmlYH4Y9M08TlKr/fWrvdhtPpsjqMMqd++hf10/9Ulr6qnxWDzWZgGEaJ9lUCJSIiIuIlTeGJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlIiIiIiXlECJiIiIeEkJlJ8ZPXo0d999d7FtiYmJ9OvXj/bt29OjRw/Gjx9/xjZcLhfjxo3jyiuvpH379lx77bV88803ZRm213zRzxPl5+dz/fXX89xzz/k61LPiq36uXbuWu+66i7Zt29K9e3dGjhyJy+Uqq7C95qt+zpo1i2uvvZZ27dpxzTXXMH369LIKudRO1VeAHTt20L59e/bu3fu3bXz11VdcdtlltG3blttuu41169aVRahn5Wz7mZuby7vvvkvPnj3p0KEDN998M/PmzSurcEvNFz/PIqmpqXTt2pUPPvjAlyH6hC/6+fvvv3PzzTdz/vnnc/nll/PVV1+VRajnjil+Y8KECWaLFi3Mfv36ebalpqaaF154oTlkyBBz69at5rRp08zzzz/fnDZt2mnbGT16tBkXF2f++OOP5q5du8wpU6aYrVu3NmfMmHEuuvG3fNXPE7322mtm8+bNzX/9619lFbbXfNXP7du3m+3atTOfe+45c/v27eaPP/5otm/f3hw7duy56Mbf8lU/Fy1aZLZq1cr8+uuvzd27d5tffvmlGRsba86fP/9cdKNETtVX0zTNjRs3mt27dzebN29u7tmz54xtzJgxw2zXrp35/fffm1u2bDGfffZZ84ILLjBTUlLKMnSv+KKfQ4YMMXv06GH+8ccf5s6dO80xY8aYsbGx5pIlS8oydK/4op8nevTRR83mzZubI0eO9HWoZ8UX/Vy6dKnZsmVL89133zV37dplTp482WzZsqU5e/bssgy9TDmsTuDk7CUnJzNkyBBWrFhBo0aNij03depUAgMDGTp0KA6HgyZNmrBr1y4++eQT+vTpc8r2Jk+ezP3338/VV18NQP369VmzZg3Tpk2jd+/eZd6f0/F1P4ssWLCAOXPm0KxZs7IMv8R83c+PP/6Ypk2b8sYbb2AYBo0aNWLLli2sXLnyXHTntHzdz/nz59OiRQtuv/12AO666y6mTZvGwoUL+cc//lHm/TmTM/X1o48+YsyYMTRp0oQDBw78bVtjxoyhX79+XH/99QC88cYbXH755UybNo1//vOfZRJ/Sfmqnzk5OcycOZM333yTbt26ATBgwAAWL17M9OnTufDCC8usDyXhy59nkSlTprBjxw5q1qzp63BLzZf9/OCDD7j88st56qmngON/V+Lj47nmmmvKJP6ypik8P7BhwwaqVq3K999/T7t27Yo9Fx8fT1xcHA7H8Vy5S5cu7Nixg5SUlJPacrlcvPXWW9x0000nPZeenu7z2L3hy34WSU1N5fnnn+e1114jMjKyzGL3hq/7uWDBAq677joMw/BsGzRoEB999FHZdKCEfN3PatWqsXXrVpYsWYJpmixdupRt27ad1LYVztTXBQsW8M477/Cvf/3rb9tJSUlh586ddOnSxbPN4XDQuXNnli9f7vO4veWrfhqGwZgxYzzJ04msPg+B7/pZZMeOHQwfPpx33nmHwMBAX4dbar7qZ05ODvHx8Z6kv8gbb7zByy+/7NOYzyWNQPmBnj170rNnz1M+l5SURPPmzYttq1WrFgD79+8nKiqq2HM2m42LLrqo2La9e/cye/Zsz3/2VvFlP4sMGTKEf/zjH/Ts2ZMJEyb4NuBS8mU/MzMzOXz4MFWqVOGFF17gjz/+ICIigptuuokHHngAu91eNp0oAV//PO+55x7WrVtH//79sdvtOJ1OHnroIW644QbfB++lM/V10qRJACxduvRv20lKSgKgdu3axbbXqlWLjRs3nmWUZ89X/QwODqZr167Ftq1Zs4YlS5YwZMiQsw/0LPmqnwAFBQU8/fTTPPDAA7Ru3dpnMfqCr/q5a9cuXC4XdrudQYMGsXz5cmrVqkW/fv3o27evT2M+lzQC5edyc3NP+o8mKCgIgLy8vL99/aFDh/jnP/9JVFQUjzzySJnE6Aul6efkyZPZtm0bzz//fJnH5yve9jMzMxOAt99+mzp16vDJJ5/w4IMP8vHHHzNq1KiyD7iUSvPzPHDgAEeOHOHll19m+vTpPPfcc3z++efMmDGjzOM9V3JycgBO+b0pye9zRbV9+3Yee+wx2rRpw2233WZ1OD41cuRIgoKCeOihh6wOpcwUnYdefvllOnfuzKeffkrv3r159dVXmTZtmsXRlZ5GoPxccHAw+fn5xbYVnWhDQ0PP+Nrt27fzz3/+k4KCAr744guqVq1aZnGeLW/7uX37dt555x3Gjx//t9+H8sTbfgYEBABw8cUX8/jjjwPQsmVLUlNT+fDDDxk0aFCxqb3yojTH7aBBg7j++uu56667AHc/09PTefvtt7npppuw2Sr+/4vBwcEAp/zehISEWBFSmVu5ciWPPvooNWvWZOzYseVqiutsLVu2jK+//ppvv/3W0tHgslb0M7vxxhu55557APfv565du5gwYQK33HKLleGVWsU/o8gZxcTEcPDgwWLbir6Ojo4+7etWrFjB7bffTlBQEJMnT6Z+/fplGufZ8rafP/74I1lZWdx333106NCBDh06EB8fz6xZs+jQoQP79+8/J3F7y9t+VqtWjaCgoJOmw5o1a0Z2djapqallF+xZ8Lafqamp7Nixg/PPP7/Y9vbt23PkyBGOHDlSZrGeS3Xq1AE45fcmJibGipDK1Ny5c7n33ntp0qQJX331FdWrV7c6JJ/69ttvyc7O5oYbbvCch/bv38/HH39Mhw4drA7PZ4p+Z/96HmratKlXyzyUN0qg/FxcXBwrVqzA6XR6ti1evJhGjRqdti5o7dq1PPjggzRr1oxJkyadVG9RHnnbz379+vHTTz8xc+ZMz0ebNm3o2bMnM2fO9NTblDfe9tNut9OxY0fWrFlTbPumTZuIiIigWrVqZR1yqXjbz2rVqhESEsKmTZuKbd+8eTMRERF+84e3evXqNGrUqFjdSWFhIfHx8XTu3NnCyHxv/vz5PPHEE/To0YMJEyYQERFhdUg+98wzzzBnzpxi56FatWpx++23M3PmTKvD85no6GjPVXcn2rx5c7n/5/xMlED5uT59+pCZmcmQIUPYunUrM2bMYOLEiQwYMMCzz9GjRz0jEYWFhTzzzDNERUXx1ltvkZ+fz6FDhzh06FC5Ha0A7/tZrVo1GjRoUOwjODiYsLAwGjRoUOzqr/LE234CPPLIIyxYsIAPPviA3bt3M2fOHMaOHespti6PvO2nzWajf//+fPTRR8ycOZM9e/Ywc+ZMxowZU+w1FdFfR9Duv/9+JkyYwLfffsvWrVt54YUXyM3NrbDTIEVO7Gd6ejr/+te/aN26NUOGDCE9Pd1zHqroo4kn9jMqKuqk85DD4aBq1ao0aNDA2kDP0l+P28cff5wpU6bw1VdfsWfPHqZMmcL06dN54IEHrAvyLJXPvxLiM1FRUYwbN45hw4bRu3dvatasyeDBg4ut5zRs2DCWLVvG/PnzWbt2Lbt27QLg8ssvL9ZW3bp1mT9//jmNv6S87WdFVZp+XnjhhXz88ce8//77fPzxx9SsWZN//vOfPPjgg1Z142+Vpp+DBg2iWrVqfPzxxxw4cIB69erx7LPPWn716NkaOHAgAF988QUAt956K0ePHuW///0vR44coU2bNkyYMKHCj7Kd2M8//viDjIwM1qxZw6WXXlpsvwsuuMDzvaiI/vrz9Fd/7eeNN94IuNele/PNN6lbty6vvPLKKZfMqSgM0zRNq4MQERERqUg0hSciIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiIiLiJSVQIiIiIl5SAiUiFYZWXRGR8kIJlIhUCPPmzeNf//qX5+ulS5fSokWLYrc1OZeee+45WrRoQYsWLXjmmWfOqq0WLVrwwQcflHj/O+64w/Pe3rxORHxHK5GLSIXw2WefFfu6devWTJkyhaZNm1oTEFCzZk1GjRp11quAT5kyxaubAb/22mtkZmZy2223ndX7ikjpKYESkQopPDyc9u3bWxpDYGCgT2Lwtg0rk0YRcdMUnoiUe3fffTfLli1j2bJlnmm7v07hffDBB1x11VX88ssvXHfddZx//vnceOONrFq1itWrV9O3b1/atm3Lddddx+LFi4u1v3nzZgYMGEDHjh3p2LEjjz32GHv27PE6zhYtWvD111/z3HPP0alTJy644AJef/11cnNzefvtt+nSpQsXXnghQ4YMIS8vr9jriqbiivq1ePFi7r//ftq1a8fFF1/M22+/TWFh4Vl8F0XEl5RAiUi598orr9CqVStatWrFlClTaN269Sn3S0pK4s033+Thhx/mv//9L+np6QwaNIinnnqKW2+9lffeew+Xy8WTTz5Jbm4uADt27OD2228nJSWFt956i2HDhrFnzx7uuOMOUlJSvI51+PDhBAYGMmrUKG688Ua++OILbrrpJg4cOMA777zD7bffzrRp0/72ZrLPPPMMnTp1YsyYMVx//fV8+umnTJs2zet4RKRsaApPRMq9pk2bEh4eDpx5uisnJ4dXXnmFSy+9FIBt27bx7rvvMmzYMG655RYAnE4ngwYNYseOHbRs2ZJRo0YRHBzMZ5995nmPiy66iMsvv5xx48YVK1wviSZNmvDvf/8bgLi4OKZNm0ZBQQHDhw/H4XDQrVs35s+fz8qVK8/YTt++fXnsscc88fzyyy/89ttv3H777V7FIyJlQwmUiPiVjh07eh7XqFEDKJ50VatWDYCMjAwAlixZwoUXXkhwcLBniiw8PJzOnTuzaNEir9+/Q4cOnscOh4PIyEjatGmDw3H8dFutWjWOHj1a4nYAYmJiyM7O9joeESkbSqBExK8UjSKdKDg4+LT7HzlyhB9//JEff/zxpOdKc3Xdqd4/JCTE63b+GrPNZtM6WCLliBIoEanUqlSpwsUXX8x999130nMnjhqJiJxIZwcRqRBsNhsul8vn7V5wwQVs3bqVli1behIm0zR55plnaNCgAS1btvT5e4pIxaer8ESkQoiIiGDHjh0sXryY9PR0n7X76KOPsnv3bgYMGMAvv/zCggULGDhwILNnzyY2NtZn7yMi/kUJlIhUCHfddRcBAQE89NBD/PHHHz5rNzY2lq+++grDMBg8eDCDBg3i0KFDfPjhh1xxxRU+ex8R8S+GqapEERGvPffccyxbtoz58+dbFkOLFi14/PHHGThwoGUxiFRWqoESESml/Px8Vq9eTfXq1alfv/45e9+tW7eSmZl5zt5PRE6mKTwRkVI6dOgQt912GyNHjjyn7/vSSy/pRsIiFtMUnoiIiIiXNAIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4iUlUCIiIiJeUgIlIiIi4qX/B2D9wbLR1ok6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Compute the amplitude-weighted skewnorm with the inferred parameters\n", + "fit = param_opt[0] * scipy.stats.skewnorm(param_opt[3], loc=param_opt[1], scale=param_opt[2]).pdf(first_peak['time_min'])\n", + "\n", + "# Plot the data and the observed peak\n", + "plt.plot(first_peak['time_min'], first_peak['intensity_mV_corrected'], 'k-', label='window 1')\n", + "plt.fill_between(first_peak['time_min'], fit, color='dodgerblue', label='inferred signal')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With an adequate reconstruction of the observed peak, the signal area is computed \n", + "by integrating the signal over the entire time range of the peak window, and \n", + "the procedure is repeated for the next peak window." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/methodology/peak_detection.html b/methodology/peak_detection.html new file mode 100644 index 0000000..2cf4d02 --- /dev/null +++ b/methodology/peak_detection.html @@ -0,0 +1,381 @@ + + + + + + + Step 2: Detecting Peaks — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Step 2: Detecting Peaks

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

Peak detection is a common problem in time-series analysis. In some cases, they are very easy to spot by eye, but that can be difficult to define mathematically. This is particularly true for signals that are “noisy” or have pronounced variations in their baseline values. There are several Python libraries out there for automatically identifying peaks in time-series data, such as findpeaks.py and +PeakUtils. In hplc-py, peak detection is executed using the scipy.signal which is very mature and actively maintained. In this notebook, we won’t cover the algorithms used under-the-hood for peak detection, but will outline how hplc-py leverages scipy.signal.find_peaks and scipy.signal.peak_widths to 1) identify peaks in chromatographic data and 2) clip the chromatogram +into discrete peak windows which are used in the fitting procedure.

+
+

Selecting peaks by topographic prominence

+

Peaks are defined by a handful of quantitative properties. The most relevant to hplc-py is the topographic prominence, which is a measure of the relative height of a maxima in the signal to its nearest baseline. For chromatographic data, peaks are often highly pronounced relative to their surrounding signal, except in two limits:

+
    +
  1. The concentration of the analyte is close to the sensitivity limit of the detector

  2. +
  3. The peak overlaps with a nearby peak which is much higher in concentration, drowning out or completely subsuming the signal.

  4. +
+

As an example, we can load a real chromatogram of a minimal medium for bacterial growth which has a slew of compounds, some of which overlap.

+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set()
+
+# Load a sample chromatogram and show the trace, cropped between 10 and 20 minutes
+df = pd.read_csv('data/sample_chromatogram.txt')
+plt.plot(df['time_min'], df['intensity_mV'], 'k-')
+plt.xlabel('time [min]')
+plt.ylabel('signal intensity [mV]')
+plt.xlim([10, 20])
+
+
+
+
+
[1]:
+
+
+
+
+(10.0, 20.0)
+
+
+
+
+
+
+../_images/methodology_peak_detection_2_1.png +
+
+

With this signal, the location of peaks (meaning, the index where a local maxima is detected) can be identified using scipy.signal.find_peaks, even with a very low prominence filter. TO allow prominence filters to be comparable between chromatograms, we normalize the chromatogram first between 0 and 1.

+
+
[2]:
+
+
+
import scipy.signal
+
+# Create a normalized signal
+signal_norm = (df['intensity_mV'] - df['intensity_mV'].min()) / (df['intensity_mV'].max() - df['intensity_mV'].min())
+
+# Find peaks with a low prominence filter of 0.01
+peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=0.01)
+
+# Plot the  original trace and overlay vertical lines with location of peaks
+plt.plot(df['time_min'], signal_norm, 'k-', label='normalized chromatogram')
+plt.vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--',
+           color='dodgerblue', label='peak location')
+plt.xlabel('time [min]')
+plt.ylabel('normalized signal intensity')
+plt.xlim([10, 20])
+plt.title('prominence filter = 0.01')
+plt.legend()
+
+
+
+
+
[2]:
+
+
+
+
+<matplotlib.legend.Legend at 0x16b293640>
+
+
+
+
+
+
+../_images/methodology_peak_detection_4_1.png +
+
+

These maxima have prominence values greater than or equal to 0.01, meaning that maxima with prominences as low as 0.01 units above the local background are considered to be bonafide peaks. Increasing the prominence filter begins to remove peaks we would otherwise care about.

+
+
[3]:
+
+
+
# Plot the  original trace and overlay vertical lines with location of peaks
+fig, ax = plt.subplots(4, 1, figsize=(6, 8), sharex=True)
+for a in ax:
+    a.plot(df['time_min'], signal_norm, 'k-')
+    a.set_ylabel('normalized\nsignal intensity')
+
+# Plot for a few prominecne values
+for i, p in enumerate([0.01, 0.1, 0.3, 0.5]):
+    peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=p)
+    ax[i].vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', color='dodgerblue')
+    ax[i].set_title(f'prominence filter = {p}')
+
+# Add necessary labels
+ax[3].set_xlabel('time [min]')
+ax[2].set_xlim([10, 20])
+plt.tight_layout()
+
+
+
+
+
+
+
+../_images/methodology_peak_detection_6_0.png +
+
+

The choice of a prominence filter is going to be dependent on the size of peaks that you care to resolve in your chromatogram, their degree of overlap, and how noisy your signal is. The prominence filter can be passed as a keyword argument in the fit_peaks method of a Chromatogram. For example, passing a restrictive prominence filter of 0.1 can be done as follows:

+
+
[4]:
+
+
+
from hplc.quant import Chromatogram
+
+# Load the signal trace as a Chromatogram object and crop between 10 and 20 min.
+chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},
+                     time_window=[10, 20])
+
+# Pass a prominence filter, fit the peaks, and show the result
+peaks = chrom.fit_peaks(prominence=0.1)
+chrom.show()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3788.10it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:02<00:00,  1.03s/it]
+
+
+
+
[4]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time_min', ylabel='intensity_mV (baseline corrected)'>]
+
+
+
+
+
+
+../_images/methodology_peak_detection_8_2.png +
+
+

Note that even though the small peak at ≈ 13 minutes was not detected by the prominence filter, hplc-py still attempted to fit its signal as if it was part of the peak with a maximum at ≈ 14.2 min. This because the small peak was considered part of the same window of the major peak, as we will explore next.

+
+
+

Clipping the signal into peak windows

+

Once peak maxima are identified, hplc-py slices the chromatograms into windows–regions of the chromatogram where peaks are overlapping or nearly overlapping. This is achieved by measuring the widths of each peak at the lowest contour line. Peaks which have overlapping contour lines are considered to be close enough that their signals may be influencing one another. This is achieved under the hood in a method _assign_peak_windows of a +Chromatogram which is called as part of fit_peaks.

+
+
[5]:
+
+
+
# Fit the peaks using a permissive prominence filter
+window_df = chrom._assign_windows(prominence=0.01)
+
+# Plot each window
+for g, d in window_df.groupby('window_id'):
+    plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}')
+plt.xlabel('time [min]')
+plt.ylabel('signal [mV]')
+
+plt.legend()
+
+
+
+
+
[5]:
+
+
+
+
+<matplotlib.legend.Legend at 0x16b494790>
+
+
+
+
+
+
+../_images/methodology_peak_detection_10_1.png +
+
+

Peaks within each colored region are considered to be interacting signals, and are fit together as one unit. In the above example, the peak at ≈ 11 min (in window 1) is considered to be isolated from the peaks at ≈ 13 min onward.

+

The extent of each peak window can be controlled by a buffer parameter passed to fit_peaks and _assign_windows. This, given in units of time points, extends each peak window on to account for nearby baseline signal. The above windows can be expanded by increasing this parameter, which has a default value of 0.

+
+
[6]:
+
+
+
# Increase the buffer and plot the change in the peak window.
+buffer = 75
+window_df = chrom._assign_windows(prominence=0.01, buffer=buffer)
+
+# Plot each window
+for g, d in window_df.groupby('window_id'):
+    plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}')
+plt.xlabel('time [min]')
+plt.ylabel('signal [mV]')
+plt.title(f'buffer size = {buffer}')
+plt.legend()
+
+
+
+
+
[6]:
+
+
+
+
+<matplotlib.legend.Legend at 0x16b65d240>
+
+
+
+
+
+
+../_images/methodology_peak_detection_12_1.png +
+
+

Note that increasing the buffer size expanded the extent of the orange window by half a minute or so.

+

Once the chromatogram is clipped into peak windows, each window is passed to an inference stage where the peak mixture is inferred.

+
+

© Griffin Chure, 2024. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/peak_detection.ipynb b/methodology/peak_detection.ipynb new file mode 100644 index 0000000..f5c4609 --- /dev/null +++ b/methodology/peak_detection.ipynb @@ -0,0 +1,392 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 2: Detecting Peaks\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peak detection is a common problem in time-series analysis. In some cases, they are very easy to spot by eye, but that can be difficult to define mathematically. This is particularly true for signals that are “noisy” or have pronounced variations in their baseline values. There are several Python libraries out there for automatically identifying peaks in time-series data, such as [findpeaks.py](https://erdogant.github.io/findpeaks/pages/html/index.html) and [PeakUtils](https://peakutils.readthedocs.io/en/latest/). In `hplc-py`, peak detection is executed using the [scipy.signal](https://docs.scipy.org/doc/scipy/reference/signal.html) which is very mature and actively maintained. In this notebook, we won’t cover the algorithms used under-the-hood for peak detection, but will outline how `hplc-py` leverages `scipy.signal.find_peaks` and `scipy.signal.peak_widths` to 1) identify peaks in chromatographic data and 2) clip the chromatogram into discrete peak windows which are used in the fitting procedure.\n", + "\n", + "## Selecting peaks by topographic prominence\n", + "Peaks are defined by a handful of quantitative properties. The most relevant \n", + "to `hplc-py` is the [topographic prominence](https://en.wikipedia.org/wiki/Topographic_prominence), \n", + "which is a measure of the relative height of a maxima in the signal to its nearest \n", + "baseline. For chromatographic data, peaks are often highly pronounced relative\n", + "to their surrounding signal, except in two limits:\n", + "\n", + "1) The concentration of the analyte is close to the sensitivity limit of the \n", + "detector \n", + "2) The peak overlaps with a nearby peak which is much higher in concentration, \n", + "drowning out or completely subsuming the signal.\n", + "\n", + "As an example, we can load a real chromatogram of a [minimal medium for \n", + "bacterial growth](https://www.sigmaaldrich.com/US/en/product/sigma/m9956) \n", + "which has a slew of compounds, some of which overlap." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(10.0, 20.0)" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACCSklEQVR4nO3dd3xT9frA8U+SbrpLFxvKqOxVLMoShet1IaJXveIARVxw9So4QEUFx08UQcTBUK6L6d6AA1T2XmWWMgptKaVt2qZtmvz+iCdtZSXNSXKSPu/Xixc0OfnmS0/aPHm+z3m+OqvVakUIIYQQQqhG7+0JCCGEEEL4GwmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsgBvT8BfWa1WLBZpkq8Ver1OzodGyLnQDjkX2iHnQhv0eh06nU6VsSTAchOdTkdRUSlms8XbU6n3AgL0xMQ0kPOhAXIutEPOhXbIudCO2NgGGAzqBFiyRCiEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCKFZS5YsZPLkZ8nOPubtqQghhFMCvD0BIYQ4m19//ZnJk58FYMuWTSxa9CV6vXwmFEL4BvltJYTQpI8++sD+7/3797F+/VrvTUYIIZwkAZYQQnOMRiNbtmwCoFevdAB+++0Xb05JCCGcIgGWEEJz1q1bg9lsplmz5tx00y0AbNiwzsuzEkIIx0mAJYTQnHXrVgNw6aV96dixMwAHDx6gsrLCm9MSQgiHSYAlhNCc3bt3AdCpUxeSkpIJD4/AbK7k0KFML89MCCEcIwGWEEJTLBYLe/fuAaBdu4vQ6XS0bdsOwH67EEJonQRYQghNOXIki7KyUkJCQmjRoiUAbdq0BSTAEkL4DgmwhBCakpGRAUCbNu0wGAwApKS0AeDQoYNem5cQQjhDAiwhhKYcPpwFQMuWrey3NWnSBEA6ugshfIYEWEIITTl27AgATZs2s9/WqFHjv+47itVq9cq8hBDCGRJgCSE05ehRW4DVqFET+23JybYAq7S0lMLC096YlhBCOEUCLCGEphw7dhSoXhYECA4OJj4+vtb9QgihZRJgCSE0o7KykpycEwA0btyk1n1KFkvqsIQQvkACLCGEZpw4cRyLxUJISAhxcQ1r3acEXMeOSYAlhNA+CbCEEJpRs/5Kp9PVui8hIRGAvLxcj89LCCGcJQGWEEIzlCsIa9ZfKRo2tNVgnTyZ59E5CSFEXUiAJYTQDGX5r3Hjpmfcl5CQAMDJk5LBEkJonwRYQgjNUJYI/17gDtUZrNxcyWAJIbRPAiwhhGZUt2g4M4MlS4RCCF/i1QBr7dq1tGvX7qx/Lr/8cgB2797N8OHD6dq1KwMGDGDu3Lm1xrBYLMyYMYO+ffvSpUsXRo4cSVZWVq1j1BhDCOF+Sg1W48aNz7hP6YNVVlZKSYnRo/MSQghneTXA6tatG7///nutP/PmzSMgIID77ruPgoICRowYQYsWLVi6dCljxoxh+vTpLF261D7GrFmzWLBgAZMnT2bhwoXodDpGjRpFRUUFgCpjCCHcr7i4mMLCQuDsS4RhYQ0ICwsD5EpCIYT2eTXACgoKIj4+3v4nOjqal156icGDB3PTTTexaNEigoKCmDRpEikpKQwbNoy77rqL2bNnA1BRUcG8efMYM2YM/fv3JzU1lWnTppGTk8OyZcsAVBlDCOF+yvJgTEwsYWENznqMskyYlyfLhEIIbdNUDdbHH3/M8ePHefLJJwHYsGEDaWlpBAQE2I9JT08nMzOT/Px8MjIyKCkpIT093X5/ZGQk7du3Z/369aqNIYRwv+oWDWfWXymUAOvUqXyPzEkIIeoq4MKHeEZ5eTnvvPMOd955p/1y7BMnTtC2bdtaxyn3ZWdnc+KEbUuN5OTkM445fvy4amPUlcGgqfi13lLOg5wP7zvfuTh+3NaioUmTJgQEnP1cxcbGAlBUdPqcxwjHyM+Fdsi50I6/9Td2iWYCrC+//JLy8nJuv/12+20mk4mgoKBaxwUHBwO2gKysrAzgrMcotRxqjFFXkZGhLj1eqEvOh3ac7Vzk5dk+7LRu3YqYmLMvESYl2T4clZUZz3mMcI78XGiHnAv/opkA64svvmDw4MHExMTYbwsJCTmj0Ly8vByAsLAwQkJCAFsdlfJv5ZjQ0FDVxqiroqIyqqosLo0hXGcw6ImMDJXzoQHnOxcHDhwEoGHDJAoKSs76+LCwCACys0+c8xjhGPm50A45F9oRFRWKXq9OJlETAdapU6fYvHkzo0ePrnV7UlISubm1rxZSvk5MTMRsNttva9asWa1jUlNTVRujrqqqLJjN8sOiFXI+tONs5+LoUVuRe3Jy43Oep6go2wewU6cK5FyqRH4utEPOhfdZreqNpYkF302bNqHT6ejVq1et29PS0ti4cSNVVVX221avXk3Lli2Ji4sjNTWV8PBw1q5da7+/qKiIXbt20bNnT9XGEEK4l8VisV9FeLYWDQolw11QcMoj8xJCiLrSRICVkZFB06ZNz1iSGzZsGEajkQkTJrB//34+++wz5s+fb890BQUFMXz4cKZOncqKFSvIyMjgkUceISkpiUGDBqk2hhDCvfLy8qisrMRgMJCYmHTO46KjJcASQvgGTSwRnjx5kujo6DNuj4uLY86cOUyZMoWhQ4cSHx/P+PHjGTp0qP2YsWPHYjabmThxIiaTibS0NObOnWsvWldjDCGEeyktGpKTG9VqqfJ3ylWEp0+f9sS0hBCiznRWq5orjqKmgoISWU/XgIAAPTExDeR8aMC5zsVXX33OM888ycUX9+bdd98/5+Nzck7wj38MICAggPXrt6NT85rqekZ+LrRDzoV2xMY2UK1dhiaWCIUQ9Zsj9VdQvURoNpspLi52+7yEEKKuJMASQnidEmCdr4s72PrTKfsRnj5d4PZ5CSFEXUmAJYTwOkczWACRkVGA7WpfIYTQKgmwhBBed/Sorci9cePzZ7AAIiJszUaLilzbaUEIIdxJAiwhhFeZTCby8mzNfx3LYEUCSA2WEELTJMASQnjV8ePZADRo0OCs7Vr+LiLCtkRYXCwZLCGEdkmAJYTwqurlwSYOtV1QMlhSgyWE0DIJsIQQXlVd4H7h+iuAiAhZIhRCaJ8EWEIIr1K6uDdpcuH6K6iZwZIlQiGEdkmAJYTwqqNHHW/RALJEKITwDRJgiTMcOnSQ0aNHsmTJAm9PRdQDdV8ilABLCKFdmtjsWWjLiy8+z7p1a1i79k/S0y+9YHdtIerKarXalwglgyWE8CeSwRK1GI1GNm3aYP961apfvTUVUQ8UFp6mpKQEgEaNGjv0mOo2DRJgCSG0SwIsUcvu3Tsxm832r7dv3+bF2Qh/p9RfxcfHExIS4tBjpMhdCOELJMAStRw4sO9vX+/30kxEfVC9POj4MrSyVU5xcTFWq9Ut8xJCCFdJgCVqOXDgAACDB/8TgMzMA1gsFm9OSfgxZzZ5ViibPVssFvvyohBCaI0EWKKWnJzjAHTv3hO9Xk9FRQX5+Se9PCvhr2p2cXdUSEgIQUFBgCwTCiG0SwIsUUtOTg5ge8OLj08AqveKE0Jtx44dA5wLsEC6uQshtE8CLFFLbu4JABITk0hObgRIgCXc5+jRwwA0bdrMqcdJobsQQuskwBJ25eXlFBQUAJCQkEBCQiIAJ0/KEqFQX2VlJSdO2JaknSlyB2k2KoTQPgmwhF1urm15MDg4mKioaGJjYwE4dSrfm9MSfurEieNUVVURHBxMfHy8U49VAixpNiqE0CoJsISdEmAlJCSh0+mIjY0D4NSpU96clvBTR47YlgcbN26KXu/cr6Lw8HAASkvlKkIhhDZJgCXscnKU+ivb0qCSwSookAyWUJ9yBWGTJs4VuAM0aNAAQNo0CCE0SwIsYXfyZB4ADRvalmuqM1gSYAn1KQXuTZo4V+AOEmAJIbRPAixhd/r0aQBiYmL++luWCIX7KNvkNG3q/GbiDRrYlghLSoyqzkkIIdQiAZawO33adgVhVFQ0UHOJUAIsoT41MlhGowRYQghtkgBL2BUWngYgOjoaqF4iLCkpwWQyeWlWwh9ZrVaOHFFqsOqewZIidyGEVkmAJeyUJcLoaNsSYXh4OIGBgYBksYS68vPzKSsrRafTOd3FHSSDJYTQPgmwhJ2SwVKWCHU6HTEx0gtLqE+5gjAxMcm+r6AzJIMlhNA6CbCE3d+XCAGioqIA2fNNqKu6B5bz2SuoDrCMRgmwhBDaJAGWAGw1MQUFp4HqDBbIliTCPZQAy9k9CBXVbRpkiVAIoU0SYAnAttRiNlcCtTNYERERgGSwhLqUAKsuBe5QHWDJEqEQQqs0EWB98cUXXHXVVXTq1Imrr76a77//3n7f7t27GT58OF27dmXAgAHMnTu31mMtFgszZsygb9++dOnShZEjR5KVlVXrGDXG8HdKgXtQUBChoWH22yWDJdxBqcFyNYNlMpkwm82qzUsIIdTi9QDryy+/5KmnnuLmm2/mm2++4aqrruK///0vmzdvpqCggBEjRtCiRQuWLl3KmDFjmD59OkuXLrU/ftasWSxYsIDJkyezcOFCdDodo0aNoqKiAkCVMeqDmgXuOp3OfrtksIQ7KC0aGjd2LYMFksUSQmhTgDef3Gq1Mn36dO68807uvPNOAB588EE2bdrEunXrWLduHUFBQUyaNImAgABSUlLIyspi9uzZDBs2jIqKCubNm8e4cePo378/ANOmTaNv374sW7aMq6++mkWLFrk8Rn1QWFgIVBe1KySDJdRWWlpq35apLl3cAQIDgwgKCqKiogKj0UhkZNSFHySEEB7k1QzWwYMHOXbsGNdee22t2+fOncvo0aPZsGEDaWlpBARUx4Hp6elkZmaSn59PRkYGJSUlpKen2++PjIykffv2rF+/HkCVMeoDo9GWoQoPj6h1e3i47WotyWAJtRw+bKu/ioiIrHVBhbNkuxwhhJZ5NYN16NAhwPaJ9u6772bXrl00adKE+++/n4EDB3LixAnatm1b6zEJCQkAZGdnc+LECQCSk5PPOOb48eMAqoxRVwaD11dgHaYss0RERBAQUD1vJaNlNBbXut2XKOfBl86HvzIY9Paf+6ZNm7n0mgoPD6eg4BQmU5nPvja9SX4utEPOhXbUqJBxmVcDLKUL8+OPP85DDz3EY489xo8//sgDDzzA+++/j8lkOqMJYXBwMADl5eWUlZUBnPUYZclLjTHqKjIy1KXHe1JVVTkADRvGEhNTXd+SnBwPQFlZSa3bfZEvnQ9/dvDgQQDatm3t0msqMtKWbdXpzD7/2vQm+bnQDjkX/sWrAZayDcvdd9/N0KFDAbjooovYtWsX77//PiEhIWcUmpeX2wKBsLAwQkJCAKioqLD/WzkmNNT2QlVjjLoqKiqjqsri0hiekptr69QeFBRKQUF10bBebws8CwpO17rdlxgMeiIjQ33qfPgrg0FvD7CSk5u49JpSrnbNycn32demN8nPhXbIudCOqKhQ9Hp1MoleDbCSkpIAzljCa926Nb/++iuNGzcmNze31n3K14mJifbLs3Nzc2nWrFmtY1JTU+3P4eoYdVVVZcFs9o0flqIiW41VgwYNas05LCz8r/uLfOb/ci6+dD78mRJgNW3a3KXzoQRYRUXFcl5dID8X2iHnwvusVvXG8uqCb/v27WnQoAFbt26tdfvevXtp1qwZaWlpbNy4kaqqKvt9q1evpmXLlsTFxZGamkp4eDhr1661319UVMSuXbvo2bMngCpj1AfnKnKvvopQityFOpQAq3nzFi6NU71djhS5CyG0x6sBVkhICPfccw9vvfUW33zzDYcPH+btt9/mjz/+YMSIEQwbNgyj0ciECRPYv38/n332GfPnz2f06NGArW5q+PDhTJ06lRUrVpCRkcEjjzxCUlISgwYNAlBljPpAeZM6M8CyfV1WVkplZaXH5yX8S3FxMXl5thYNzZq1cGks6eYuhNAyry4RAjzwwAOEhoYybdo0cnJySElJ4c033+Tiiy8GYM6cOUyZMoWhQ4cSHx/P+PHj7fVaAGPHjsVsNjNx4kRMJhNpaWnMnTvXXrQeFxfn8hj1QXUGK7zW7X9v6OjKZfVCZGUdAiAurqE9eK8radMghNAyrwdYACNGjGDEiBFnva9z584sXLjwnI81GAyMGzeOcePGnfMYNcbwd+daIgwMDCIwMJDKykpKS0slwBIuUQKsFi1auDyWEvzLEqEQQouk6YYAoLjY9ial1FzVpLyRlZTIUoxwzaFDmYDr9VdguwoYsLdaEUIILZEASwBgNNq2womICD/jPuVqrbKyUo/OSfifw4dtm6i3aNHS5bHkdSmE0DIJsARWq9Wewfr7EiHULCaWNzLhGjUzWNUBlmSwhBDaIwGWoLy8HLPZdoXg2QIsZSlGlgiFK6xWa40aLNczWMrrUgJ/IYQWSYAlal3mrrxp1RQWZstgyVKMcMWpU/kYjUZ0Oh1Nmza78AMuQNlpQV6XQggtkgBL2JdYQkLOvkWAEmBJBku4QsleNW3aVJUWKFLkLoTQMgmwhD0DcK69F2UpRqghM9PWwb1Vq1aqjKe8XuV1KYTQIgmwhD0DcO4ASzpmC9cdPHgAgDZt2qgyXvXStWSwhBDaIwGWqBFgnVl/BTUzWBJgibo7eHA/cObm7nWlfCAwmcqwWGSDXCGEtkiAJexLLOfKYEmbBqEGtTNYNT8QmEySxRJCaIsEWOKCNVjKG5lksERdGY1GcnJOAOoFWCEhIeh0OkCCfyGE9kiAJS5YgyUZLOEqpcA9Pj6B6OhoVcbU6XSEhCitGiSDJYTQFgmwhMM1WNKmQdSVUn+VkpKi6rhyhasQQqskwBIOtGmQRqPCNUr9VatWrVUdV5qNCiG0SgIs4UCbBslgCdcoGaxWrdyTwZIlQiGE1kiAJRwOsGQZRtSVksFKSVE3g1VdgyWvTSGEtkiAJRyowZIlQlF3ZWVlZGcfA9QPsCSDJYTQKgmwRI0arAs1Gi3FarV6bF7CP2RlZWK1WomJiSE2NlbVsatbiEjwL4TQFgmwhL1J44XaNFgsFkwmk8fmJfzDgQO2+quWLdWtv4KaGSwJsIQQ2iIBlrhgDZZS5wLSbFQ4b+/ePQC0bq3OFjk1yYbPQgitCnDkoPXr19f5CdLS0ur8WOEZF1oi1Ov1hIWFUVpaSmlpKXFxnpyd8HV792YA0LZtO9XHrm7TIDVYQghtcSjAuv322+1bUjjKarWi1+vZtWtXnSYmPOdCGSywFbqXlpZKqwbhNCWD1a5dqupjKx8KJMASQmiNQwEWwNNPP03r1o5fAbRv3z4mT55cp0kJz3IkwKp+I5OlGOG4/PyT5OefRKfT0bq1OnsQ1iT7ZAohtMrhAKtjx4507tzZ4YGDg4PlijMfcaE2DVBd6C4ZLOEMJXvVtGmz876+6kopclcu1BBCCK1wqMj9nXfecSq4AujSpQs7d+6s06SEZ11oqxyAkJAQAMrL5SpC4bjq+iv1lwdBityFENrlUIB13333cdlllzFz5kyys7MdHtxgMNR5YsIzrFarQ0uESoAltS7CGe6svwJpNCqE0C6HAqyZM2fSoUMH3n33Xa644gruvvtufvjhByorK909P+Fm5eXl9qVcR2qwZClGOMOdVxCCNBoVQmiXQzVYV1xxBVdccQWnT5/mm2++4csvv+Thhx8mJiaGIUOGcNNNN5GSon4TQeF+NT/51+x39XfVGSxZIhSOqaioIDPzIABt2rgrwJK9CIUQ2uRUo9Ho6GiGDx/O4sWL+fbbbxk2bBg//PAD11xzDbfccguLFy+WT5I+RnljCg4OPu+SrhJ8SSd3/7F162YefHAUo0bdycqVv6g+/t69ezCbzURHR5Oc3Ej18aE6wJLXpRBCa+rcyT0lJYXHHnuMX375hXnz5tG2bVveeOMN+vbtq+b8hJs5Un8FNTNYEkD7g4yM3YwadSd//LGK9evX8p//PMBXX32u6nPs3LkdgPbtOzrdR89REvgLIbTK5a1yqqqqKC0txWQySU2WD3KkRYPtfnkj8xcWi4Xnn59IRUUF6emXcP31w7Barbz44nNkZWWq9jxKgNWxo3NXIDtDCfylNlAIoTUO98H6uw0bNvDVV1/x448/UlRURPfu3XnyySe58sor1ZyfcDNHWjTUvF/eyHzfmjV/sGvXTsLDw5k8+RViY+M4fjybtWtX89prrzBjxjuqPM/OnTsA6NChoyrjnY2SwaqoqKCqqkquXBZCaIZTGaz9+/czbdo0Bg4cyO23384vv/zCv/71L77//ns+/vhjhg4desE36r87duwY7dq1O+PP4sWLAdi9ezfDhw+na9euDBgwgLlz59Z6vMViYcaMGfTt25cuXbowcuRIsrKyah2jxhj+Sslgna/A3Xa/kimQDJavW7RoAQDXXjuUhg3j0ev1PPnk0+j1elau/JXt27e6/BylpSVkZh4AoEOHTi6Pdy7K6xKkR5sQQlscCrDmzZvH0KFDufbaa5k7dy4XXXQRb731Fr/++iuPPvooLVq0qPME9uzZQ3BwMKtWreL333+3/7n22mspKChgxIgRtGjRgqVLlzJmzBimT5/O0qVL7Y+fNWsWCxYsYPLkySxcuBCdTseoUaOoqKgAUGUMf+Z4DZZsqusPjEYjv/++EoBhw/5lv71Fi1ZcffV1AHz00XyXn2f37l1YLBYSE5No2DDe5fHOJTg42P5vCf6FEFri0BLh//3f/9GqVSseffRRhg4dSlxcnGoT2Lt3Ly1btiQhIeGM++bPn09QUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD8C0adPo27cvy5Yt4+qrr2bRokUuj+HPqpcIHa3BkgDLl61Z8wdmcyXNmjU/Y2/A2267k6+//oIVK34iNzeHhITEOj+PUn/lzuwVgF6vJyQkBJPJJMG/EEJTHMpgffLJJ3z33Xfcc889qgZXYMtgnWsT6Q0bNpCWlkZAQHUcmJ6eTmZmJvn5+WRkZFBSUkJ6err9/sjISNq3b8/69etVG8OfKQGTo1cRSpbAt61c+SsA/foNOOO+1NSL6NatB2azmSVLFrr0PDt2KAGW++qvFPLaFEJokUMZrO7du9f6Oicnhx07dlBcXHzW46+//nqHJ7B3717i4+P597//zaFDh2jevDkPPPAAffv25cSJE7Rt27bW8UqmKzs7mxMnTgCQnJx8xjHHjx8HUGWMujIYXL5I0+2UupUGDcIICDj3fBs0CLMff77jtEg5D75wPtxt0ybbh4a+ffud9TzeeuttbN68kW+//YqHHhqLXu/898xqtbJly0YAunXrXut53HEubMvXp6msLPe516Y3yc+Fdsi50A41O8o4fRXhd999xxNPPHHO+iSdTudwgFVRUcGhQ4cIDQ1l/PjxhIWF8dVXXzFq1Cjef/99TCYTQUFBtR6j1FyUl5fblwTOdkxhYSGAKmPUVWSkcwX/3mC1mgGIjo4kJqbBOY+Lj48BbAHW+Y7TMl84H+6Uk5PD0aNH0ev19O9/KRERZ57HG264jhdeeJZjx46yb9/OWpldR2VlZZGbm0tgYCD9+vU+a3ZUzXOhBP+Bgfjsa9Ob6vvPhZbIufAvTgdYb7zxBp06deKpp54iOjrapScPCgpi/fr1BAQE2AOcjh07cuDAAebOnUtISMgZgVx5eTlg2+RVWRqoqKj429VE5fZf6mqMUVdFRWVUVVlcGsPdCgpsQaReH0hBQck5jzObbWF9SUnpeY/TIoNBT2RkqE+cD3f69dffAWjTpi1ms/6c53HQoH/w2WdL+PjjT2nXzvkaqp9/thXRd+jQCZPJgslU/TzuOBdBQbYPTHl5BT732vQm+bnQDjkX2hEVFVqnzP3ZOB1g5ebmMmHCBDp06KDKBMLCziyubtu2Lb///jtJSUnk5uae8fwAiYmJmM1m+23NmjWrdUxqaiqAKmPUVVWVBbNZ2z8sJSXKVjkh551rYKDtTcxkKtP8/+lcfOF8uNPmzZsA6NKl+3m/D1dddR2ffbaEn376gfHjJ9b64OGIDRtsy5C2eq6zP4+a5yI42Da/kpLSen1+66q+/1xoiZwL77Na1RvL6TCta9euZGaq0+05IyODbt26sWHDhlq379ixg9atW5OWlsbGjRupqqqy37d69WpatmxJXFwcqamphIeHs3btWvv9RUVF7Nq1i549ewKoMoY/c3arHCkk9l179mQA0L79+T8cde/ek+TkRhiNRn777Wenn2fTJtvPc7duPZyfZB3Ia1MIoUVOZ7CeffZZ7rvvPoxGI507dz7rG3NaWppDY7Vt25Y2bdrw3HPP8eyzzxITE8OiRYvYsmULS5YsoWHDhsyZM4cJEyZwzz33sG3bNubPn89zzz0H2JYYhw8fztSpU4mNjaVx48a8+uqrJCUlMWjQIACGDRvm8hj+rC5b5VgsFtVSqMIzrFYre/bsBqBdu/NnZvV6PddcM4TZs9/m66+/5B//uMrh5zl27CiHD2dhMBjo2rX7hR+gAunRJoTQIqcDrEOHDnHy5ElmzpwJUGsTV6vVik6nY/fu3Q6Npdfreeedd5g6dSoPP/wwRUVFtG/fnvfff5927doBMGfOHKZMmcLQoUOJj49n/PjxDB061D7G2LFjMZvNTJw4EZPJRFpaGnPnzrXXdMXFxbk8hj9zdqscsBW6XyggE9qSm5tDYWEhAQEBtGp19rYoNV1zzXXMnv02q1f/zsmTeQ43C1292lbn1alTFyIjI12as6MkgyWE0CKnA6xXXnmFJk2aMHr0aBo2bOjyBGJjY3nxxRfPeX/nzp1ZuPDcPXkMBgPjxo1j3Lhxbh3DXzm6RKjUudgeIwGWr1GyVy1atKzV/fxcmjdvSefOXdi2bSvff/8tt99+l0PP8+effwBwySV96jxXZ0kTXCGEFjkdYGVnZ/P2229z6aWXumM+wsMcDbD0ej3BwcGUl5fLG5kPOnDAti/g37u3n88111zPtm1b+eabLx0KsCorK1m3bjUAl1zSt07zrAvJYAkhtMjpQpq2bdvam3MK3+foVjkgb2S+7PBh2+blzZu3dPgx//jHPwkICGTPnt3s3bvngsdv2rQBo9FITEwMF13Uvs5zdZZksIQQWuR0gPXUU08xc+ZMFi1axN69e8nOzj7jj/AdjtZg2Y4Jq/UY4TsOH7Zd+du8eQuHHxMVFU3//gMA+Prrzy94/I8/fgfAZZddgcFgcHqOdaUUuUvgL4TQEqeXCO+66y7MZjPPPPNMrQL3mhwtchfe5+gSIUgGy5dlZSkZrBZOPe7aa4eyYsUyvv76Cx588OFz9sSqrKzk55+XATB48D9dmquz5HUphNAipwMspb2B8H1Wq9UeYIWEOLJEKJkCX2Q0Gjl5Mg+AZs1aOPXYPn36kZzciOPHs/nhh2+5/vphZz1u3bo1nD59mpiYWHr27OXqlJ1S3aZBMqtCCO1wKMBavXo1nTt3pkGDBrXaG5yP0Whk+/bt9O7d26UJCveprKy0N2B1LoMltS6+5PDhQwDExTUkIiLCqccGBARw88238cYbr/LJJx8yZMgNZ81cL1liu0rXVrfl9Oc2l0gGSwihRQ7VYI0cOdJ+FZKjDhw4wMiRI+s0KeEZNT/xO1aDJQ0dfVFW1iHA+eVBxdChwwgNDWPv3gx++WX5GfcfO3bU3vH9pptures066w6syqvSyGEdjj0UdNqtbJkyRJWrlzp8MA5OTl1npTwDCVQCggIJDAw8ILHyxuZb3I1wIqKimb48DuZPftt3nxzGv36XVYrSzV79ttYLBbS0y8hJeXCTUzVpmSwysokgyWE0A6Hc/mLFi1yevBzFcELbXCmwB3kjcxXHTlyGIBmzZrXeYw77hjJokWfkJl5kPffn82oUfcDsGXLJr76ynaF4QMPjHV9snUQGipLhEII7XEowMrIyHD3PIQXONOiAaTI3VcdP25rndKoUeM6jxEREcFjjz3J008/waxZMwgNDSMlpTXPPPMEFouFa64ZQufOXVWasXMksyqE0CLPVqMKTXE2g1VdgyVXa/kSJcBKTm7k0jjXXDOEbdu2snjxp0yd+pL99pSUNjz++ESXxnaFFLkLIbRIAqx6rDrAcmxfQXkj8z1ms5ncXFs9ZFJSsktj6XQ6nnzyaZo1a87HH8/HaCzmssuu4NFHH3f66kQ1SQZLCKFFEmDVY84uEcqWJL4nLy+XqqoqAgMDadgw3uXx9Ho9t99+l8ObP3tCzcDfarVK7acQQhOc3ipH+I+6FrlLBst3KMuDSUnJ6PX++eOuZLAsFguVlZVeno0QQtj4529c4ZC612BJBstX1Ayw/FXN7XskuyqE0AqnA6xBgwbx9ttvc/z4cXfMR3iQ8zVYskToa9QqcNeywMBAe18uaSEihNAKpwOs3r178/7773P55ZczYsQIvvnmG8rLy90xN+FmzrdpkCVCX1MfMlgg2zgJIbTH6QDr+eef5/fff2fq1KkEBgby+OOP06dPH5555hm2bNnihikKd3G+BksyWL5GjR5YvkB6tAkhtKZOVxEGBQVx1VVXcdVVV3Hy5El+/PFHvvrqK2699VZatGjBzTffzI033kh4eLja8xUqUgIs5c3pQqQGy/ecOGFbypcMlhBCeJZLRe7l5eWsXr2aP/74g4yMDCIiImjTpg3vvPMOV1xxBatXr1ZrnsINqpcIpQ+Wv1J6YCUmJnl5Ju4lr00hhNbUKYO1Zs0avvzyS3766SdKS0vp1asXkydP5h//+AdBQUGYTCZGjhzJxIkTWbFihdpzFipRPu07u0Qondx9Q1lZKUajEYD4+AQvz8a9ZPlaCKE1TgdYAwYMICcnh8TERO644w6GDRtGkyZNah0TEhLCJZdcwocffqjaRIX66toHSy5q8A15eXmALUPZoEEDL8/GvSSDJYTQGqcDrC5dunDjjTfSp0+f83ZMvuGGG7jxxhtdmpxwL2fbNFR3cjdhsVj8tnGlv8jLywWgYcN4v+9uXp1dlQyWEEIbnH6HbNOmDW3btj3rL+yjR4/y/PPPA9CoUSOSkvy77sPX1bVNA0gWyxecPGnLYCUkuL5FjtZJBksIoTVOB1hvvfUWOTk5Z71v69atLF682OVJCc9QPu2HhTmWwQoOrtkxW97ItC4315bB8vf6K5AASwihPQ4tEd5yyy1s3boVAKvVys0333zOYzt16qTOzITbOVuDZTAYCAoKoqKi4q9i4hg3zk64quYSob+rbiEiF2AIIbTBoQBrypQpfP/991itVt566y2GDRt2xvKfXq8nMjKSwYMHu2WiQn3O1mCBrdbFFmBJpkDrlCXC+pTBkqVrIYRWOBRgpaSk8NBDDwGg0+m46aabSExMdOvEhPs5W4MFtjeyoqJCuRzeBygZrPoRYEmbBiGEtjgUYGVnZxMfH09gYCA33HADVVVVZGdnn/P4Ro38d2NZf2E2m6msrAScD7BAal18QXWA5f9LhPK6FEJojUMB1uWXX87ChQvp3LkzAwcOvOAl37t371ZlcsJ9al7O7swSoXKsXA6vffVriVAyWEIIbXEowHrxxRdp2rSp/d/+3lOnPlCWBw0GA4GBgQ4/TjIFvqG0tKTedHEHCA4OBsBkkhosIYQ2OBRgDR061P7vG264wW2TEZ5T8wpCZwJmyRT4hvz8fMB2vho08P9N16ub4MrrUgihDXVqxb1+/Xo2bdoE2JqL3nvvvVx77bW89dZbLk0mMzOTbt268dlnn9lv2717N8OHD6dr164MGDCAuXPn1nqMxWJhxowZ9O3bly5dujBy5EiysrJqHaPGGP7G2RYNitBQyWD5glOnbAFWXFycl2fiGZJZFUJojdMB1pdffskdd9zB8uXLAZg0aRLr16+nefPmvPPOO7z33nt1mkhlZSWPPfYYpaXVfWwKCgoYMWIELVq0YOnSpYwZM4bp06ezdOlS+zGzZs1iwYIFTJ48mYULF6LT6Rg1ahQVFRWqjeGPlAArJMTx+ivb8cobmWQKtOzUqVMAxMbWlwCrehsnIYTQAqcDrPfff5+hQ4cyfvx48vPz+fPPP3nooYeYOXMmjzzySK3AxRlvvvnmGRvSLlq0iKCgICZNmkRKSgrDhg3jrrvuYvbs2QBUVFQwb948xowZQ//+/UlNTWXatGnk5OSwbNky1cbwR3Vp0QDyRuYrlAxWTEz9aAYrgb8QQmucDrAOHjzIkCFDAFi5ciVWq5XLL78csHVxP378uNOTWL9+PQsXLuSVV16pdfuGDRtIS0sjIKC6VCw9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9+e9evXqzaGP1LeiJwPsGQpxhfUtwyWso2TNBoVQmiFQ0XuNUVGRlJSUgLAb7/9RqNGjWjRogUAhw8fdvoTc1FREePHj2fixIkkJyfXuu/EiRO0bdu21m0JCbYrorKzszlx4gTAGY9LSEiwB3pqjFFXBkOdStw8orzcFiCFhYUREOD4PJV9C8vLTU49zpuU86Dl86G206dtAVZcXJymzpO7zkV4uO11aTKVaer/q2X18edCq+RcaIeaTRKcDrDS09OZOXMm+/btY9myZYwcORKAH3/8kenTp9OnTx+nxps0aRJdu3bl2muvPeM+k8lEUFBQrduUy7HLy8vtdURnO6awsFC1MeoqMtK57JAn6XRVAERFRRAT0+ACR1eLiYkEwGo1O/U4LdDy+VCb0Wh77TZpkqzJ86T2uUhMjAVsP+9a/P9qWX36udA6ORf+xekAa8KECTz22GO89dZbXHLJJYwePRqAl156iUaNGvHoo486PNYXX3zBhg0b+Prrr896f0hIyBmF5soSQFhYmH25qqKiwv5v5Rhl6UuNMeqqqKiMqiqLS2O4S37+aQAMhiAKCkocfpzVagCgsLDYqcd5k8GgJzIyVNPnQ20nTuQAEBoaoanz5K5zUV5uBWwXb5w6ZZRefQ6ojz8XWiXnQjuiokLR69XJJDodYMXExJzR5gDgk08+cXqLnKVLl5Kfn8+AAQNq3f7ss88yd+5cGjVqRG5ubq37lK8TExMxm83225o1a1brmNTUVACSkpJcHqOuqqosmM3a/GEpKbEVuYeEhDg1x6CgYPvjtfp/Oxctnw+1KX2woqJiNPl/VvtcBAZWZ6BLSspqfVgS51effi60Ts6F91mt6o3ldIClKCwspKysDIul+sWg7E/oaKA1derUM4qlBw8ezNixY7nqqqv49ttvWbBgAVVVVRgMtszJ6tWradmyJXFxcURERBAeHs7atWvtwVFRURG7du1i+PDhAKSlpbk8hj9S2mFIkbt/qq9F7mCrD5QASwjhbU4HWIcOHeKJJ55g69at5zzG0b0IExMTz3p7XFwcjRs3ZtiwYcyZM4cJEyZwzz33sG3bNubPn89zzz0H2Oqmhg8fztSpU4mNjaVx48a8+uqrJCUlMWjQIABVxvBH1W0anOuDJR2ztc9isXD6dAEAsbGxXp6NZwQEBBAQEIjZXInJZCIqytszEkLUd04HWC+88AKHDh3ioYceIikpSbW1yrOJi4tjzpw5TJkyhaFDhxIfH8/48eNrbd0zduxYzGYzEydOxGQykZaWxty5c+1F62qM4Y/q2sldMljaV1hYaM8sR0fXjz5YYHttGo2VEvwLITTB6QBrw4YNTJkyhWuuucYd82HPnj21vu7cuTMLFy485/EGg4Fx48Yxbty4cx6jxhj+pu4BlmSwtE5pMhoVFeXURt6+LjQ0BKOxmLIyCf6FEN7ndPopPDycKMm/+7zqAKuuW+XIm5hWKQFWfam/UkjwL4TQEqcDrCFDhvDxxx9jVbPUXnicbJXjv6oL3OtH/ZWiZn87IYTwNqeXCENDQ9m4cSODBg2iU6dOZ1yto9PpePHFF1WboHAP12uwJEugVQUFyj6EksESQghvcTrA+vzzz4mIiMBisZz1SkJp8Ocb6r4XoWSwtK6+tWhQyPK1EEJLnA6wfv75Z3fMQ3iYksEKCXG2TYPtTcxsNlNZWVmviqh9hVKD5ey+oL5OCf6V17YQQnhTnXssWCwWMjIyWLlyJUajkdOnT6s4LeFurtZggWQKtKr+ZrCkBksIoR116uT+5Zdf8tprr5Gbm4tOp2PJkiW8+eabBAYG8tprr/l1/yh/UdcarMDAQPR6PRaLBZOpjIiICHdMT7igOoNVv4rcpQZLCKElTmewvvvuOx5//HHS09OZNm2a/WrCwYMHs3LlSmbNmqX6JIW6qqqq7J/ynW3ToNPppNZF4woLTwMQExPt1Xl4mrwuhRBa4nQG65133uGWW25h0qRJVFVV2W+/4YYbyM/PZ9GiRTz88MNqzlGorOYnfGczWGDLFJSWlkqmQKOU5fqoqPpWgyUBlhBCO5zOYGVmZp5zj74uXbqQk5Pj8qSEeynLgzWzUc6QNzLtslqtFBUVAtS7hsCyRCiE0BKnA6y4uDgOHDhw1vsOHDhAXFz9Kqz1RdVXEIbWqa2GvJFpl9FotGeWo6KivTsZDwsOVgJ/KXIXQnif0wHWVVddxYwZM/jhhx+oqKgAbJmQHTt2MGvWLK688krVJynUVdcCd4WSwZI937RHqb8KCQmpU3bSl0kTXCGEljhdg/Xwww+zd+9eHn74YfR6W3x2++23U1paSs+ePfnPf/6j+iSFuuraokGh9MKSJULtqa6/ivbqPLxBXpdCCC1xOsAKCgpizpw5/PHHH6xZs4bTp08TERFBr1696N+/v3Ry9wGuZ7BsVx5KpkB7lAxWfQywZOlaCKElTgdYX3zxBf379+fSSy/l0ksvrXVfXl4eX3zxBaNGjVJtgkJ91QGWcy0aFJIp0C4lgxUdHe3VeXiDXHwhhNASp2uwnnzySY4cOXLW+3bv3s2MGTNcnpRwL1eXCCVToF2FhQVA/cxgKUXu5eUSYAkhvM+hDNbo0aPZv38/YLsM/MEHHzxrt/b8/HyaNWum7gyF6tQqcpdMgfYUFtbPFg0gr0shhLY4HGAtXrwYgM8//5z27dsTG1t7Gw69Xk9kZCQ33HCD+rMUqlIvwJIMltZIDZZs9iyE0AaHAqzu3bvTvXt3+9cPPPAATZs2ddukhHu5WoNV/UYmmQKtqc81WFIbKITQEqeL3F966SV3zEN4kFKDpQRKzpKlGO2SDJa8LoUQ2uB0gHXq1CmmTJnCr7/+SllZmX2zZ4VOp2PXrl2qTVCoz/UlQily1yolwKqPGazg4GDAVuRutVqlZYwQwqucDrAmTZrEb7/9xtVXX01SUpK92ajwHUpgVPclQslgaVV9bjSqBP4Wi4XKysqzXogjhBCe4nSAtWrVKp566iluvvlmd8xHeIDrndwlg6VV9TmDVXNrIJOpTAIsIYRXOZ1+CgoKkgJ3HydtGvxTZWUlJSUlAERGRnt3Ml4QGBhIQIDtM6NcgCGE8DanA6xBgwbxzTffuGMuwkOkBss/FRXZemDpdDoiIyO9PBvvkBYiQgitcHqJsH379rzxxhscOXKELl261ErLg+2X+4MPPqjaBIX6XG/TIBksLVLqryIiIjEYDN6djJcEB4dgNBopLy/39lSEEPWc0wHW888/D8D69etZv379GfdLgKV9rm+VIwGWFtXnFg0KyWAJIbTC6QArIyPDHfMQHiRLhP6pPjcZVUgvLCGEVkiPhXpIrSVCKSTWFslgSQZLCKEdDmWw7rjjDp599llSUlK44447znusTqdj/vz5qkxOuIerGayabRqkoaN2KBs91+8Mlq3ZqMkkNVhCCO9yKINVs1u71Wo97x+LxeK2yQrXWa3WGo1GXavBAqSYWEOUDFZkZJR3J+JFsnwthNAKhzJYH3744Vn/LXyPyWSyB8xhYXVbIgwOrt3Q8e9XkgrvkBosuQBDCKEdXq/Bys/PZ9y4caSnp9OtWzfuvfde9u/fb79/9+7dDB8+nK5duzJgwADmzp1b6/EWi4UZM2bQt29funTpwsiRI8nKyqp1jBpj+AtleRDqvtmzwWCwd8mWNzLtkBosyWAJIbTD6wHW/fffz5EjR5g9ezZLliwhJCSEu+66i7KyMgoKChgxYgQtWrRg6dKljBkzhunTp7N06VL742fNmsWCBQuYPHkyCxcuRKfTMWrUKCoqKgBUGcOfKC0aQkJCXNpHUt7ItKewsACQDBZI4C+E8D6vBlgFBQU0adKEF154gU6dOpGSksIDDzxAXl4e+/btY9GiRQQFBTFp0iRSUlIYNmwYd911F7NnzwagoqKCefPmMWbMGPr3709qairTpk0jJyeHZcuWAagyhj9xtQeWQt7ItOf0aVuRe33OYCnL1/K6FEJ4m1cDrJiYGF5//XXatGkDwMmTJ5k7dy5JSUm0bt2aDRs2kJaWZt9fDCA9PZ3MzEzy8/PJyMigpKSE9PR0+/2RkZG0b9/e3gRVjTH8ibJEWNflQYW0atCe+rzRs0ICfyGEVjjdaNRdnn76aXu26e233yYsLIwTJ07Qtm3bWsclJCQAkJ2dzYkTJwBITk4+45jjx48DqDJGXRkMXl+BPUNFhe2NJywsjICAus9PyYBVVpa7NI4nKOdBi+dDLVar1R5gxcXFavacuPtcNGhgu3CjosKk2e+BVtSHnwtfIedCO9TsOuRQgPXFF184Nej111/v9ETuvPNObr75Zj799FMefPBBPvnkE0wmk72YWhEcbOtzU15ebs/GnO0YpSeQGmPUVWSka1kid9DrbW00IiLCiYlpUOdxwsNtjw0IsLo0jidp8XyopaSkhMrKSgCaN29EgwbaPifuOhcxMbZNri0Ws8+8Lr3Nn38ufI2cC//iUID1xBNPODygTqerU4DVunVrAF544QW2bNnCRx99REhIyBmF5krfpbCwMPtyQEVFxRm9mZQMixpj1FVRURlVVdrqC5aXZyuEDgwMpqCgpM7jBAYG2cdzZRxPMBj0REaGavJ8qCU7+xgAgYGBlJdbqajQ5jlx97mwWm2bXBcWFmv+delt9eHnwlfIudCOqKhQly4Aq8mhAGvFihWqPNnf5efns3r1av75z39iMNh+Mer1elJSUsjNzSUpKYnc3Nxaj1G+TkxMxGw2229r1qxZrWNSU1MBVBmjrqqqLJjN2vphKSmpvorQlbkpxcQlJaWa+z+eixbPh1ry808BtvqrqiorYD3/A7zMXedCCfxNJpPfnmu1+fPPha+Rc+F9VhV/dToUYDVu3NjhAa1OzC43N5dHH32UuLg4evfuDUBlZSW7du1i4MCBNGzYkAULFlBVVWUPwFavXk3Lli2Ji4sjIiKC8PBw1q5daw+OioqK2LVrF8OHDwcgLS3N5TH8SfVVhHVrMqqQNg3aojQZrc9XEIK8LoUQ2lGnIvdvv/2WdevWUVlZaQ+orFYrpaWlbNmyhZUrVzo0TmpqKn369OG5555j8uTJREZG8s4771BUVMRdd91FcHAwc+bMYcKECdxzzz1s27aN+fPn89xzzwG2uqnhw4czdepUYmNjady4Ma+++ipJSUkMGjQIgGHDhrk8hj9xdR9CRfV+hHK1lhZIk1EbubpVCKEVTgdYM2fOZObMmURERGA2mwkMDCQgIIBTp06h1+u56aabHB5Lp9Pxxhtv8Nprr/Hwww9TXFxMz549+fjjj2nUqBEAc+bMYcqUKQwdOpT4+HjGjx/P0KFD7WOMHTsWs9nMxIkTMZlMpKWlMXfuXHvRelxcnMtj+BMlwKrrNjkKuRxeW2SbHJvQUHldCiG0wekA6/PPP+e6667jlVdeYcaMGWRnZ/PKK6+wY8cO7r33XntPK0dFREQwadIkJk2adNb7O3fuzMKFC8/5eIPBwLhx4xg3btw5j1FjDH9RWipLhP6oqEiajIK8LoUQ2uF0qXxOTg5DhgxBp9PRoUMHNm/eDEDHjh257777WLx4seqTFOpRrwZLlmK0RGqwbJSLL5QrhYUQwlucDrDCwsLQ/dWJq0WLFhw9etSejr/ooos4evSoujMUqlICLNeXCCVToCVSg2VTvXQtr0shhHc5HWB16tSJzz//HIBmzZphMBj4888/AThw4IBf1i35E2WJUGqw/IvUYNnUfF06c0WzEEKozekarPvuu48RI0ZQXFzMO++8w3XXXccTTzzBxRdfzO+//84VV1zhjnkKlagfYEmmQAskg2WjZFarqqowmyvtfbGEEMLTnA6w0tLSWLJkCXv27AHgmWeeQa/Xs2nTJq688kqnur4Lz6sucpc2Df5ENnq2qbkbQ1mZSQIsIYTX1KkPVmpqqr3LeXBwMC+88IKqkxLuo2Sc1CpylwBLG6TI3SYwMBC9Xo/FYqG83AREentKQoh6qk4BVnFxMWvWrKG0tPSsdQ512YtQeIZ6S4S2DJZSNC+8p6qqiuLiIkAyWDqdjpCQEEpLSyX4F0J4ldMB1m+//cbDDz9sb1j5d3Xd7Fl4hlp9sJQA7VyvA+E5RUVF9n9HREjGJiQk9K8AS16bQgjvcTrAev3112nVqhVPPvkkiYmJqu06LTxDrTYNSoCmBGzCewoLCwAIDw8nMDDQy7PxPlm+FkJogdMB1sGDB5k1axY9e/Z0x3yEG1VWVlBZWQmoEWDJEqFWSP1VbRJgCSG0wOn0U6NGjTAaje6Yi3Czmst5rl5FGBbWALC9iVVVVbk0lnCNtGiorb4EWAsWfMTgwf0ZPLg/n3zyP+n7JYTGOB1gjR49mrfeeks6tvsgJcAKCAh0+fL1mhkwqcPyLmkyWlt92GXggw/m8vLLk8nNzSE3N4f/+78XefvtN709LSFEDU4vEX799dfk5OQwaNAgYmNja/WdAVuR+/Lly1WboFCPWlcQAgQFBWEwGKiqqqK0tITw8HCXxxR1Ixs91+bvGayDBw/w1ltvAPDAA2MJDAxk+vTXeO+9WVxySR+6du3u3QkKIYA6BFhJSUkkJSW5Yy7CzUpLSwB1AiydTkdoaBhGY7HUYXmZZLBqq24h4p8ZrNmz36ayspI+ffozatT96HQ6Dh3K5MsvP+O1117hf/9bYN8vVgjhPU4HWC+99JI75iE8QHnDcbX+ShEWZguw5EpC71JqsCIjo7w7EY2obiHif6/LnJwTLFv2AwAPPjjWHkiNGfMIP/74Hdu3b2XTpg306JHmzWkKIahDgJWdnX3O+/R6PWFhYURGSi8eLVKrB5ZCeSOTAMu7JINVm/IBwh9fl9999w1ms5nu3Xty0UUd7Lc3bBjPNdcMYcmShXzyyf8kwBJCA5wOsAYOHHjB9HNUVBR33HEHDzzwQJ0nJtSnVg8shTQb1Qa5irA25QOEP74uf/rpOwCuuuraM+67+eZ/s2TJQn777VeKiorkg64QXub0VYQvv/wygYGBXHrppbz00kvMnj2bl19+mcsuuwydTseDDz7I0KFDefvtt/nkk0/cMWdRR8objloBljQb1QbZ6Lk2f10izM4+xu7duzAYDAwcOOiM+9u0aUdKShvM5kp++UUuNBLC25zOYH377bdcffXVZ9RiDRkyhGeffZYdO3bwzjvvEBkZyaeffsq///1v1SYrXKMUuau/RFiiyniibqTRaG3+ukS4du1qADp27ExsbOxZj7nyyqt4663p/PTT9wwZcoMnpyeE+BunM1jr1q3jmmuuOet9gwcPZs2aNQD06NGDI0eOuDY7oSo12zTYxrE1G/W3TIGvqc5gxXh3IhpR/br0ryXCdetsv1svvrj3OY8ZPPifAKxZ82etPSqFEJ7ndIAVHR1NRkbGWe/LyMiw90MqLS1V7Wo1oQ4pcvc/ZWVllJeXA7JEqPDHzKrVamX9+rUApKVdfM7jmjdvQcuWraiqqmL9+jWemp4Q4iycDrCuvfZaZsyYwfz588nJyaGyspKcnBw+/PBDZs6cybXXXkthYSHz58+nS5cu7pizqCO12zQo/YYkwPKe06dtGz0HBATaMzf1nT8uER48eICTJ/MIDg6mS5du5z02Pf1SAFav/sMTUxNCnIPTNVgPP/ww+fn5vPzyy7z88sv22/V6PcOGDeORRx7hxx9/ZNeuXcyfP1/VyQrXuOsqQn96I/M1NQvcpbmkjZKh9aetcjZt2gBA167dCQo6/zZXvXtfyqeffigBlhBe5nSAFRAQwEsvvcT999/P2rVrKSgoIDExke7du9O0aVMA+vXrx6pVqy74i0B4lvo1WP55tZYvkR5YZ/LHDNauXTsAW4H7hfTsmUZAQCDHjh3l8OEsmjVr7u7pCSHOwukAS9GsWTOaNWt21vuioqSjtBYpgZDUYPkPZYlQriCspiyV+tPrcudOW4DVoUPHCx4bFtaALl26sHHjBjZsWCcBlhBe4lCAdfnll/PWW2+Rmpp6wUajstmzdqld5C59sLxPyWDFxMgVhAp/a4BrMpk4cGAfAO3bXzjAAujatQcbN25gy5ZN3HDDTe6cnhDiHBwKsHr16kWDBg3s/5ZaD9+kfg2Wcjm8/1yt5Wuki/uZlCXCsrJSLBYLer3T1/Joyt69GVRVVREbG0diYpJDj+nWrQcAmzdvcufUhBDn4VCAVbOpaM3CduFb1O7kLkuE3idLhGeq+fo2mcp8/upKpf6qffuODn+47dy5KzqdjiNHssjPP0lcXEN3TlEIcRZ1+mhnNBrJyckBoKKigjlz5jB58mTWr1+v6uSEuqqXCNVp0yABlvfJEuGZgoND7IGIPywT7t69C4D27Ttc4MhqkZGRtG7dBoAtWySLJYQ3OB1gbdu2jYEDB/Lhhx8CMHnyZKZOncpXX33FnXfeyYoVK1SfpFCHu64ilADLe2SJ8Ex6vd6verTt32+rv2rduq1Tj+vatTsAW7duVn1OQogLczrAmjZtGq1ateLmm2/GZDLx9ddf8+9//5t169Zx44038s4777hjnkIF1Y1G1VkyUYrcpU2D9yhLhLJNTm3+EvxbLBYOHjwAQEpKa6ce26FDJ6D6CkQhhGc5HWBt3bqV+++/n6ZNm7J69WpMJhNDhgwB4KqrrmLfvn2qT1K4rrKyArO5EnBPBstqtaoypnCO9ME6O3/p0Xb8eDZlZaUEBAQ63W5Baemwe/dOLBaLO6YnhDgPpwMsvV5vbyD622+/ERkZSefOtuZ3RqORkJAQdWcoVFHzk7zaNVgWi8W+H57wLClyPzt/aTZ64MB+wLbHYGBgoFOPbdkyhZCQEEpLS8nKOuSG2QkhzsfpAKtjx44sWbKEzZs38/333zNgwAB0Oh35+fnMnj2bjh0d69OiOH36NM888wz9+vWje/fu3HrrrWzYsMF+/+7duxk+fDhdu3ZlwIABzJ07t9bjLRYLM2bMoG/fvnTp0oWRI0eSlZVV6xg1xvB1yhtNUFAQAQF17i9bS81+WiUlRlXGFI6rrKywn1cpcq/NX5avlQDL2eVBsO260a7dRQDs2rVT1XkJIS7M6QBr/PjxrF69mltvvRWDwcD9998PwDXXXMOhQ4d4+OGHnRrvv//9L1u3buX1119nyZIldOjQgbvvvpsDBw5QUFDAiBEjaNGiBUuXLmXMmDFMnz6dpUuX2h8/a9YsFixYwOTJk1m4cCE6nY5Ro0ZRUVEBoMoY/kAJgBo0CFdtTL1eb++PVlIivbA8TVke1Ov1hIdHeHcyGuMvzUaVBqN1CbCg+spDpdWDEMJznE5ltG/fnp9++okDBw7Qpk0b+y+ySZMm0b17d+Lj4x0eKysriz/++INPP/2U7t1tV7xMmDCBlStX8s033xASEkJQUBCTJk0iICCAlJQUsrKymD17NsOGDaOiooJ58+Yxbtw4+vfvD9iK8Pv27cuyZcu4+uqrWbRokctj+AMlAFICIrU0aBBOSUkJRmOxquOKC6teHozy+WaaavOXXQbqWuCuUDq/S4DluPLycubNe49vv/2K06dP06FDR0aNup+ePXt5e2rCx9Tpt3J4eDhdunSpVSz9j3/8w6ngCmzLGu+9916tZUWdTofVaqWwsJANGzaQlpZWa0krPT2dzMxM8vPzycjIoKSkhPT0dPv9kZGRtG/f3t6TS40x/IGSwVK76WJ4eHit8YXnVBe4y/Lg3/lLkfuRI4cBaNGiZZ0erwRYu3fvoqqqSrV5+auioiJGjhzOu+++xdGjRzAai1m7djX33HMH8+fPvfAAQtSgTjFOHUVGRtqzRorvv/+ew4cP06dPH6ZNm0bbtrV7vyQkJACQnZ3NiRMnAEhOTj7jmOPHjwNw4sQJl8eoK4NBO1kFk8m2VBIREU5AgHrzioiwLU2VlpaoOq6alPOgpfOhBqOxCLBdQajV7/3feepcKJlak6nMZ743f1dYWEhxse0cN2/evE7/j9atUwgNDaOsrJQjRw7Zm4+C//5c1JXFYuHJJx9l587tREdH88QTE2ndug2ffvoRS5cuZtq0V2nYMI4hQ25Q/bnlXGiHmjsBejXA+ruNGzfy1FNPcfnllzNw4EBeeukl+xWLiuDgYMCWxlXqK852TGFhIWDbKNXVMeoqMlKdq/XUYLXaWjRERUUSE6NeFis6Oso+vprjuoOWzocaystty74JCfGa/97/nbvPRUxMJAAWi/Zfl+dy5IhteTA+Pp5Gjeq+1U379hexceNGjh07RFpa1zPu97efi7r64IMP+OOPVYSEhLBw4UL7ykrv3j1JTk5k5syZvPDCJPr370PLlnXLKF6InAv/opkAa/ny5Tz22GN06dKF119/HYCQkJAzCs2VdgBhYWH2lhAVFRW12kOUl5fbL9NWY4y6Kioqo6pKG/1ncnNPARAcHEpBgXoF6cHBoX+Nn6/quGoyGPRERoZq6nyoITvbtl1VWFiEZr/3f+epc6HX21oaFBQU+cz35u927doLQKNGTVz6P6SktGXjxo1s2rSV/v0H2W/315+LuigsLOT//u9VAB555DEaN25Z63t+770PsX79BtauXcP48U/w3nvzVH1+ORfaERUVqlpNqyYCrI8++ogpU6YwaNAgpk6das8mJSUlkZubW+tY5evExETMZrP9tmbNmtU6JjU1VbUx6qqqyoLZrI0fFqPRViMVGhqm6pyUqxILC4s18389Fy2dDzUUFNiK3CMjo3zu/+Xuc6FslWM0Gn3ue6M4fNhWf9W4cROX/g/KFjsZGRlnHcfffi7q4pNPPqaw8DStWrVm2LBbzvr9mDjxeYYOvZo///yd1atXk5Z2serzkHPhfWr2zPb6gu8nn3zCCy+8wG233cYbb7xRa6kuLS2NjRs31irOXL16NS1btiQuLo7U1FTCw8NZu3at/f6ioiJ27dpFz549VRvDHygBllKUrpbqNg1S5O5pSoAlRe5nUgL/0lLfzF4BHD16BIAmTZq6NE6bNu0A2Ldvj8tz8kcVFRUsXPgxAHfffe85+wQ2bdqMG264CYBZs2bI7hXigrwaYGVmZvLiiy8yaNAgRo8eTX5+Pnl5eeTl5VFcXMywYcMwGo1MmDCB/fv389lnnzF//nxGjx4N2Oqmhg8fztSpU1mxYgUZGRk88sgjJCUlMWiQLRWuxhj+QHmjUf8qQluRuwRYnqds9Czb5JxJ+SBRXOy77UOOHTsK2DJYrmjTxpbBys3Nsbf2ENV++ul7Tp7MIz4+nsGDrzzvsXffPZqgoCA2b97I9u1bPTRD4au8ukT4448/UllZybJly1i2bFmt+4YOHcrLL7/MnDlzmDJlCkOHDiU+Pp7x48czdOhQ+3Fjx47FbDYzceJETCYTaWlpzJ07154Ji4uLc3kMf6BksNzRBwt8+43MV0mbhnNTXpe+3ABXCbBczWCFh4fTuHETjh07yr59e0hLS7/wg+qRL76wNZ3+17/+TWDg+X/nJyYmcuWVV/PVV5+zcOEndO7c1QMzFL7KqwHWfffdx3333XfeYzp37szChQvPeb/BYGDcuHGMGzfOrWP4OiWDpWYnd5A+WN4kGz2fm6+/Ls1mM8ePZwOuZ7AA2rZN5dixo+zdu1eTAVZ5eTmFhaeJjY1TbSsvR+TknGDjRlu/w6uvvs6hx/zrX//mq68+56efvufRR58gNjbWnVMUPszrNVjCM9yVwap+I/PdTIGvUpYIZaPnMymvS+V172tyck5gNpsJDAwkPj7B5fGUZUKt1WGVl5fz+uuvMGBAbwYP7s+gQf348MMPsFg8U+j944/fYbVa6datB40aNXboMR07dqJ9+45UVlby3Xdfu3mGwpdJgFVPuCuDpYwnW+V4VmVlJUVFtj5tMTHyCfrvfP11qSwPNmrUGIPB4PJ4bdvaCt337s1weSy1VFRU8J//3M///ve+veN+QcEpXnvtZZ57bqJHgqwff/wegH/+8xqnHnfdddcD8MMP36o9JeFHJMCqJ4xG9+xFqHRy99VMga9SipUNBgNRUVFeno32KAFWZWWlT27arlb9laJtW1vLmQMH9ttb03jbjBmvsWbNn4SGhjFt2lusX7+dJ598BoPBwJdffsb778926/Pn5eWyc+d2AAYOvMKpxw4adCUGg4EdO7Zx+HCWO6Yn/IAEWPWEuzNYvlrr4qtOnbI1jo2JiZWNns+i5gcJXwz+lRYNjRurE2A1adKUkJBQysvLNREQ7Ny5nY8//h8AL788lcsuu5zAwEBuvvnfPPXUswC8/fabbl3S/P33lQB06NCJhg2d20c3Lq4hvXrZatl+/PE71ecm/IP8Zq4nlADIXVcRGo1G6QvjQadO5QNIge05GAwG+4bPvrhMeOyYEmA5Vhd0IXq9XlN1WG++OQ2r1cpVV11L//4Da913ww03MWDA5ZjNZqZNe9Vtc1i58lcA+vUbUKfHDx78TwB++WWFSjMS/kYCrHrAbDZjMpkA9ftgRUTYAqyqqir7cwj3UwKsmJg4L89Eu3w5u3r0qLpLhFCzDsu7Adbu3TtZs+ZPAgICePDB/5xxv06n49FHHycgIJA///ydP//8XfU5VFZWsGbNn0DdA6y+ffsDsGvXDnJzc9SamvAjEmDVAzW7WaudwQoNDUP31/bjvvhG5qskg3VhvlwfWJ3BUi/AUjq6e7vQffHiBQBcccU/ztmComnTZvzrX7cC8MEHc1Sfw44d2ykrKyUmJpZ27S6q0xgNG8bTsWNnAFat+k3N6Qk/IQFWPaC0UAgMDFS9eapOp/P5K7Z8kVKDFRsrGaxz8dVmoyUlRvs2SGr0wFIoGaz9+/epNqaziouL+e67bwC46aZbznvsHXeMwGAwsG7dGjIydqs6jw0b1gHQo0eaSzWM/ftfBsDKlb+oMi/hXyTAqgeUzJLa+xAqqjMFvvVG5sskg3VhSrbW1wL/Y8eOAbYGssrPlhpat24DwPHj2RQVFak2rjOWLfsBk6mMVq1S6N79/Hu9JiUlM2jQPwD4+OP5qs5jwwZbc9GePXu5NE6/frYAa+3a1VIiIc4gAVY9oHyCV7v+SiEbPntedYAlGaxz8dVmo8oVhI0aqZe9AoiMjCIpKRmAAwe8k8VascK2JdpVV11rLy04n1tvvR2wBWZqncfKygq2bt0EuB5gtW3bjqSkZEwmk70jvBAKCbDqgeorCN2VwYoEsDe+FO5XvUQoGaxz8dWNyJX6KzUL3BXKlYTeKHQvLi5m7drVAFx++WCHHtO5c1datGiJyWRi2bIfVJnHjh07MJlMxMTEkJLS2qWxdDodvXtfCmD/vwmhkACrHlAyWGoXuCuURpfeWnaojySDdWG+ehWhksFq0kTdDBZUB1j79+9VfewLWbXqV8zmSlq1SqFly1YOPUan0zFkyA0AfPnlZ6rMo7r+qpdDWbQLUfphSYAl/k4CrHpASa27qwYrMlIJsCSD5QlWq5WCAilyvxDlA0Vxsa8FWLYWDWpeQaiovpLQ8xkspe/UZZc51zX96quvQ6fTsWXLJvsG2K5QAqyePdNcHguqA6w9e3bbL04QAiTAqheKi22ZJWUpT21KBquwUAIsTygrK7UX1MoS4bkpBeK+lsHKzla/B5aiZgbLk42BrVYr69evBeCSS/o49diEhES6d+8BwPLlP7o0D1v91WbA9forRVxcQ/v3dd26NaqMKfyDBFj1QHGx7SoqNa9IqikyMhqQAMtTlPqrkJBQQkPDvDwb7fLFJUKLxaL6PoQ1NW/ekoCAQEpKSsjOPqb6+Ody4MA+8vNPEhISQqdOXZx+/KBBVwK4XIe1c+cOTKYyYmJiaNXKtfqrmnr16g3AunWyTCiqSYBVD3gqg1VUdNot44vapEWDY2pu4+Qr8vLyqKiowGAwkJiYpPr4gYGBtGplq3/y5DKhktnp1q1HnXrxXX75YHQ6Hdu2beXEieN1noda/a/+7uKLbcuEksESNUmAVQ9U12C5J4MlS4SeJU1GHeOLbRqUKwiTkpIJCAhwy3NU12F5rtBdCTyUTI+z4uMT6NZNWSb8qc7zqK6/Umd5UNGjRxoGg4EjRw7bM5BCSIBVD1RnsNy1RChF7p4kGSzHVAdYvtNotPoKQvWXBxWe3jLHbDbbA5tevS6u8zhXXGFr7bBiRd0CrMrKSrZssdVf9eihToG7okGDcPu2OUqtmRASYNUD1TVYUuTuD/LzpUWDI6oDf99pH6JkP9TcIufvlILsffs8k8HKyNiN0WgkIiKS1NT2dR5n4MBBAGzZsomTJ/OcfvyuXbb6q+joaFJS2tR5HufSo4etM/3mzRtVH1v4Jgmw6gF3Z7CioqIBCbA8RTJYjlEC/+LiIqqqqrw8G8e4s8BdoQRYWVmHPLK9y44dWwHo0qUbBoOhzuMkJSXTsWNnrFYrv/66wunHu6v+StG9uy0rtmnTBtXHFr5JAqx6wN0ZLCVTYDKVUV5e7pbnENXy808CEBvb0Msz0TbldQm+k8VSlgjdmcGKj08gKiqKqqoq9u/f77bnUezYsR2ADh06ujzW5ZfbsljKljvOcFf9laJLl27o9XqOHDlMbm6OW55D+BYJsOoBpQYlIsI9jUbDw8Ptn0ylDsv98vJyAVt/IHFuAQEB9jqswkLfaACpFLm7o8moQqfT2euwdu3a5bbnUezatQOADh06uTzWwIG2JqXr16916ndNZWUFmzers//guURERNC2bSogy4TCRgIsP1dVVWW/ispdGSydTkdkpG1sWSZ0PyXAio+P9/JMtM+Xlq/LysrIy7PVFrljm5yalGXC3bt3u/V5SkqMZGYeBKBjR9cDrObNW9K6dRvMZrO9M7wjduzY/lf/q1i31F8pune31WFt3CjLhEICLL9Xs8miu9o0gFxJ6ClWq9Ve4Bsfn+Dl2Whf9QUYp707EQcojT/Dw8PtgaG7KBmsjAz3Xkm4a9dOrFYrycmNVLsoQyl2d2aZUGkTkZZ2sVvqrxRKofumTevd9hzCd0iA5eeU+quQkJA6NfhzlFxJ6BnFxcX2wuSGDSWDdSG+lMGqvoKwqSqbEJ+PEmC5O4O1c6eyPOh6/ZXi8stt7Rr+/HMVZWWlDj2mug9X3dtEOKJbN1uAtX//Pp8I6oV7SYDl59y9TY4iIsJ3MgW+TFkejIyMIiQkxMuz0T4l8D99+rR3J+IApf7K3cuDAK1bt0an05GXl2dv++EOO3cqBe6uLw8q2rZtR5MmTSkvL+ePP1Zd8HiTycS2bVsAWwbLnWJjY2nZ0tYpX6n5EvWXBFh+zt3b5ChqXhIv3Ke6/kqWBx2hZLB8Yen66FH398BShIaG0bRpMwD27XPfljnuCLB0Op19mdCRru5bt26msrKShIREmjVrodo8zkWpw5JlQiEBlp9TMljK1VTu4kuZAl8mBe7OUQIsX3hdeuIKwprc3XD01KlT9rqyiy7qoOrYSlf3Vat+paKi4rzHKlmuXr3S3b70CtX9sKTQXUiA5ec8lcGKibE1vVT2yRPuIRks51TXYJ326jwc4Yltcmpq29ZWh7Vnj3syWEr2qkWLlqqXKHTs2Jn4+ARKSkpYu3b1eY9dufIXAPr2HaDqHM6le3fbnokZGbsoLS3xyHMKbZIAy895qgZLuULo1KmTbn2e+k4CLOdER0cD2i9yt1qtHDtmy/Z4ogYLqgOsvXvdG2CpuTyo0Ov19p5YP/987qsJs7IOcehQJgEBAVxySR/V53E2ycmNSE5uRFVVFVu3bvHIcwptkgDLz1U3GXVvBisuztZV3J0Fs0KWCJ2ltA/RegaroOAUZWWl6HQ6kpMbe+Q5lQDrwIF9btlKqDrAUu8KwpqUqwl//XUFZrP5rMco2asePdLc/iGzJmUzadk2p36TAMvPVddgufeXS1ycLYOlbOMi3ENpRCkZLMdUZ7BOe3UeF6IsDyYkJLq1nUpNTZo0JTQ0lPLycg4fzlJ1bKvVWqNFg/oZLLAVk0dHR1NQUMAff6w86zHLlv0IQL9+l7llDucihe4CNBZgzZo1i9tvv73Wbbt372b48OF07dqVAQMGMHfu3Fr3WywWZsyYQd++fenSpQsjR44kKytL9TF8lfLGUnNfNndQMlinTuVjtVrd+lz1mbLHmQRYjvGVDFZ1/ZVnlgcBDAYDF110EWCrF1LTiRPHOXUqn4CAANq1u0jVsRUBAQFcd90NACxc+MkZ92dlHWLbti3o9XoGD77SLXM4F6UOa/v2bbI/az2mmQDrgw8+YMaMGbVuKygoYMSIEbRo0YKlS5cyZswYpk+fztKlS+3HzJo1iwULFjB58mQWLlyITqdj1KhR9itL1BjDlylXTymf5N1FCbDKy8spKZHCTncwm832ACs5uZGXZ+MblNd9aWkplZXa/Xmu2WTUk7p06QJU7xeoFmV5MCWljVv7tf3rX7ei0+n488/fycrKrHXfF1/Yfsf37n2pxz+QNG/ekoYN46moqGDHjm0efW6hHV4PsHJycrjnnnuYPn06LVu2rHXfokWLCAoKYtKkSaSkpDBs2DDuuusuZs+eDUBFRQXz5s1jzJgx9O/fn9TUVKZNm0ZOTg7Lli1TbQxfpnxyj46OcevzhISE0KBBAwDy8/Pc+lz1VW5uDlVVVQQEBEoXdweFh0fYL83XcqG7ksHyRA+smjp37gy4I8CyjafG/oPn06RJU/r06QfA7Nnv2G83Go0sXrwAgBtvvMWtczgbnU5Hz562Oqz169d6/PmFNng9wNq5cydRUVF89dVX9k9Tig0bNpCWlkZAQID9tvT0dDIzM8nPzycjI4OSkhLS09Pt90dGRtK+fXvWr1+v2hi+zFMZLIDYWCl0d6cTJ44DkJSU5Nb91PyJwWCwf7jQcguRo0cPA9ibf3pKdQZrl6qF7u68gvDv7rvvIQC+/fYrNm60/c5+++03MRqLadmyFf37e7b+StGzZy8ANmxY55XnF94XcOFD3GvgwIEMHDjwrPedOHGCtm3b1rotIcGW6s3OzubEiRMAJCcnn3HM8ePHVRujrgwG778JFhYWABAbG0NAgHvn07BhHEeOZHH69Cm3P5czlPOghfPhipwc2+uxUaPGmvr+OsMb56Jhw3gKCk5RUJCv2e/bkSO2AKtlyxYem6PBoKd169aEhoZSVlbK0aNZpKS0dnlci8Viz4h17tzZ7f+fLl26cP31w/jii6U8+ugYBg/+pz179fjjTxEU5J23uYsvtn1o37ZtC1VVlQQHB5/zWH/5HeUP1OxF6/UA63xMJtMZV9QoL9Ly8nLKysoAznqMshygxhh1FRkZ6tLjXWU2mykqsjUabdmyCTExDdz6fMnJSWzeDGVlxW5/rrrw9vlwVUGBbem1RYtmmvz+OsOT5yI5OZF9+/ZQVlakye9bWVkZubm29hsdO6Z6fI6dOnVi3bp1ZGbupWfPLhd+wAXs378fo9FISEgIaWlda60euMurr77MwYP72LZtG4sWfQrAfffdx7XX/tPtz30u0dEdSUhIIDc3l8zMPfTu3fuCj/H131GiNk0HWCEhIWcUmitXZISFhdmLJysqKmoVUpaXlxMaGqraGHVVVFRGVZXFpTFcUXNJxGIJoKDAvcXnERHRABw5ku3253KGwaAnMjLU6+fDVQcPHgIgLi5BU99fZ3jjXERH23YZOHz4mCa/b8pWNZGRkUCQx+aonIvU1PasW7eOdes2csUVV7k87p9/2pbEUlPbU1xcDnjmKrp58z7igw/msn//Pvr1G8C11w7x+vnu0SON77//lp9//o3U1M7nPM5ffkf5g6ioUNVKMDQdYCUlJdk/2SmUrxMTE+3N5XJzc2nWrFmtY1JTU1Ubo66qqiyYzd77YTl50lYLZWsyqnf7XJRu7nl5eV79f5+Lt8+Hq5RO34mJyT79/wDPngulNjAnJ1eT37fMzEMANGnSjKoqK+DZNidKndSOHdtV+f5s22a7aq59+44e/X4HBARxzz3327/2xvfy73r06MX333/LunVruffeBy94vK//jvIHanYZ0vSCb1paGhs3bqxVfLl69WpatmxJXFwcqamphIeHs3Zt9VUaRUVF7Nq1i549e6o2hq/y1BWECmk26l7Hj2cD0qLBWdW7DGjz6tYjR2w992p+wPMkpdP6nj27z9kR3RmeLHDXurQ0W6H7tm1bpB9WPaTpAGvYsGEYjUYmTJjA/v37+eyzz5g/fz6jR48GbHVTw4cPZ+rUqaxYsYKMjAweeeQRkpKSGDRokGpj+CpPXkEIEBdnax1w8qQEWGqzWq32qwglwHJOw4a2AEurr8vqJqPeCbCaNWtOeHg45eXlHDiw36WxKisr2bNnNwAdO7pnixxf0qxZC+Ljbf2wtm3b4u3pCA/TdIAVFxfHnDlzyMzMZOjQocycOZPx48czdOhQ+zFjx47lxhtvZOLEidx6660YDAbmzp1rL1pXYwxfdfq07QrCqKhojzxfYmIiUH21m1BPQcEpTCYTAElJyRc4WtSkBFhazawePuydFg0KvV5P+/a2YGj79i0ujXXgwD7Ky8sJD4+gadPmKszOt+l0Onr0kHYN9ZWmarBefvnlM27r3LkzCxcuPOdjDAYD48aNY9y4cec8Ro0xfJGnM1jKJrV5eXlUVFT4fICqJcrWTcnJjeT76iQls6rs46g11UuE3gtIunbtzrp1a9i8eZNLjTm3b7fVX3Xo0El6tf2lZ89e/PDDt2zYsBYY4+3pCA+SnwA/Vl2DFe2R54uOjrZfiZmTc8Ijz1lfHD58CLAtOQjnKJlVo7EYo9Ho5dnUVllZYV/69VYGC6BbN9veeZs3b3RpHGVbmE6dzn3FXH3Tq5fSD2srpaXau4pVuI8EWH6seonQM0XuOp3Ovnx14kS2R56zvsjKOgRA8+YtvDoPX9SgQbh902clmNGK7OxjWCwWQkPD7MX43tC5cxf0ej3Z2cdc+nCkZLAkwKrWtGkzmjRpSmVlpWybU89IgOXHlCXCmJhojz2nUoCdnS0BlpqUDJYEWHVTHfhrK8BSln6bNm1q3zPRGxo0CKddO1tbmi1bNtVpDKPRSGbmAQA6dXK9Yam/0Ol0XHJJXwD++ON3L89GeJIEWH5MWSL0VJE7QFKSLcDS2huZr1MyWN6s0/FlylZYWsusHjp0EIAWLVp5eSbQtatry4Q7d27HarXSqFFje088YXPppX0A+OOPlVjVbLQkNE0CLD9WUGDr5O6pPlhQ/Uam9GwSrrNYLPa96iSDVTdKBsvV/UXVdvCgLePTsqX3AyylDmvTproFWNu3bwUke3U2aWkXExgYyLFjR+3ZaOH/JMDyY/n5tk7uDRvGe+w5lSVCrb2R+bLc3BxMJhMBAQE0atTY29PxSVrNrCoBVqtWKV6eCXTvbguw9u3bU2ubLUcpBe4dO0r91d+FhTWge3db4+rff1/l5dkIT5EAy0+Vl5dTXGzb6FnpsO4JUuSuPmV5sEmTph7ZONcfKZnV7OxjXp5JNavVSmambYmwZUvvB1gNG8bTtm07rFYra9b84dRjrVYrW7duAWwF8+JMl1xiWyb8808JsOoLCbD81KlTtuxVYGDgX3sReoaSYTlx4rjUGqhk//59gDbqdHyV0iVdWWrVgvz8kxQXF6HX6zWz9Nu7txIEOFeMffDgAQoKThESEkL79h3cMTWfd+mltkL39evXSruGekICLD+lbAvSsGG8R69OSkhIJCAggPLycumFpZK9ezMAaNu2nZdn4ruUAObkyTzN9MJSrrhr3LgJwcHBXp6NjZJlWbPmT6c+IG3cuB6Azp27EhgojXDPJiWlDU2aNKWiokKWCesJCbD8lLItiKev5gkMDLQ3TFSWP4Rr9uyxBVipqRd5eSa+KyIiwt5nSitFxgcOaKfAXdGtWw9CQkI5eTKPvXv3OPw4JcDq0SPNXVPzeTqdjssvHwzAihU/eXk2whMkwPJTSoCl7MPmScpSlvIJXdRdZWUlBw7Ylgjbtk318mx8m5LFUmravE05r61atfbyTKoFBQXRs6dt7zxHlwmtVqsEWA664gpbgLVq1a+Ul5d7dS7C/STA8lNKgOWN7tDKJ/LMzEyPP7e/OXToIJWVlYSHh8sVhC7SWoC1Z89uAHuDT63o08dWK/TLL8scOv7gwQOcPJlHUFCQtGi4gA4dOpGQkEhpaanTFxII3yMBlp9SarC8G2BJBstVyjJNmzbtZPNcF7Vo0RKovmjAm6qqqti7dy8AqantvTyb2gYOHIROp2Pbtq0OtbVYteo3wNbrSSu1ZFql1+u5/PJBAPz00w9eno1wN/mN7adOnswDvBVg2S45P3RIMliuysjYBUiBuxqUJValps2bsrIOYTKVERISqrnu/AkJifaeWMuW/XjB41et+gWAvn0HuHNafuOf/7wGgBUrllFSoo0LLoR7SIDlp5RPnkpfKk9SMgUnT+ZRVFTk8ef3J1u2bAakO7YalEzRkSNZXn9jU5YH27Zth8Fg8OpczmbQoCsB+OGHb897XGHhaftrtG/f/m6flz/o1KkLzZu3wGQqcyiAFb5LAiw/lZubA0BSUpLHnzs8PJyEhEQADh7c7/Hn9xdlZaXs3r0TqN7GRNRdTEwMiYm2nwdnrpBzh4wMW4ClteVBxeDB/yQgIJCdO7fbs6hns2rVb1RVVZGS0obGjZt4cIa+S6fTcd11QwH4+uvPvTwb4U4SYPmhysoKe5F7QoLnAyyoXo5RAgThvO3bt2E2m0lMTJICd5UorS527tzh1XkoQYtWW2/ExsbZa4UWL15wzuO++eZLAAYN+odH5uUvrrlmCDqdjo0bN3D4cJa3pyPcRAIsP5Sbm4vVaiUoKIiYGM9t9FxTx46dANixY7tXnt8fbNq0AbBlrzzZLNafdenSDYDNmzd4bQ5ms9m+MbKW9+276aZbAPjuu28oKCg44/7jx7NZu3Y1YAsYhOMSE5PsTV0XLPjYy7MR7iIBlh9SOqgnJiZ57Y1ZeeNQNoAVzlMCLGWTWOE65Xu5adMGr23ltHdvBqWlpYSHR9C6dRuvzMERPXqkkZranrKyUubOfeeM+z/55H9YrVbS0i6mSZOmXpihb7vttjsA+OKLJRQXF3t5NsIdJMDyQ0qBu1Jv4g1KBisr6xBFRYVem4evKi4uZtOmjQD06nWxl2fjPzp06EhISAgFBQUcOOCd+kDlvHbt2l3TrTd0Oh1jxz4CwMKFn9TaxzEnJ4clSxYBcMcdI70yP1/Xu3cfWrVqTWlpKUuXLvL2dIQbaPenW9RZzQyWt0RHx9i3zPF2vYsv+vPPVZjNlbRo0VI2eVZRYGCQPYul9G/yNGV5UmmFoGW9e/fh4osvobKykscf/y8lJUbMZjMvvPAMZWWldO7chT59+nl7mj5Jp9Nx++13AfDhh/MxmUzenZBQnQRYfkj5pOntq3o6dLBlsbZu3ezVefiiX35ZAcCAAZd7eSb+57LLrgDgl1+We/y5rVYrmzdvAqBbN+0v/ep0OiZNmkxkZBS7du3g5puHctttN/H7778RFBTEhAnPSX2gC6666loSE5PIyTnBBx984O3pCJVJgOWHlADL2w0Mnd3TTNhUVFTw++8rARgwYKCXZ+N/+ve/DIBt27aQnX3Mo8+9Z89uTp3KJyQklA4dOnr0uesqObkRs2bNISYmlqNHj7Bnz26Cg4N5+eXXNbfNj68JDg7m/vvHAPDmm29K30A/IwGWH1ICLGWJzluUpYMdO7ZRWHjaq3PxJb/8shyjsZiEhERpMOoGCQmJXHxxbwA+/3yJR59bWZZMT+9NUFCQR5/bFR07duKrr37kmWde4Iknnuarr35k4MArvD0tv3DttdfTunUbTp8+zdtvz/T2dISKJMDyM+Xl5fYaLG8HWElJyaSktMFisbB6tWxs6iil4PX664dpssu3Pxg27GbA9r0uKyvz2PP+9pvvbisTERHBDTfcxC233ObV+k5/YzAYeOyxxwH46KP5bNmyycszEmqRAMvPHDt2FKvVSoMGDYiJifX2dLj00r4A9iUvcX5ZWZmsW7cGnU7H9dcP8/Z0/NZll11O48ZNOHUqnwULPvLIcx4+nMWOHdvQ6/X2ZUohwJbtv+mmm7BarTz77FMeDfqF+0iA5Weysg4B0KRJM00UnypvJL/8spyyslIvz0b75sx5F7Dt6ybd290nMDCQ0aMfBOC9997m2LGjbn/Ob7/9CoD09Eto2DDe7c8nfMukSZOIj08gK+sQTz/9BBaLxdtTEi6SAMvP7N+/F0AzDQy7d+9J06bNKCkpYfnyn7w9HU3Lysq0vwmPGvWAl2fj/665Zgg9evSkrKyURx8dS2lpidueq6Kiwr70K13PxdlER0fz2mtvEBAQyPLlPzJz5htea4Yr1CEBlp9RNrFt06adl2diY9vY9AbA1rFYnJ3VamXq1JexWCz06zeATp20u4WKv9Dr9Tz//MvExsaRkbGLsWPvd1tT3G+//YqTJ/OIj0+QffvEOXXv3pOJEycBMG/ee8yY8boEWT5MAiw/s2+fLcBq21YbARbAddddj8FgYOPGDWzbtsXb09GkH374llWrfiMwMJCHHx7n7enUG40bN2H69FmEhoaxYcM6/v3vG+3766mlpMTIrFnTAbj99rsIDPSdqweF511//TD++9/xALz//myefPJRjEajl2cl6kICLD9iMpnsO7NrKcBKTEyyL4vMmjXDy7PRnqysQ0yZ8hwA99xzH61apXh5RvVLp05d+OCDT0hObsTRo0cYPXoEd989nBUrfnK5u7bVauWll14gLy+PJk2acsstw1WatfBnd9wxkokTn8NgMPDDD99xyy1D+e23nyWb5WMkwPIju3btwGKxEBfXkLi4ht6eTi333vsAAQEBrFnzJ7/99rO3p6MZp06d4pFHHsRoLKZr1+6MHDnK21Oql9q1S2XRoi+55ZbbCAgIZOPGDTz66FgGDryERx8dw8cf/4+dO7dTXl7u8JiVlRW8/PILfPPNl+j1ep577kWf6n0lvOvGG29m3ryP7IH/f/7zACNHDmf58h8xm83enp5wgM4qITEAFouFmTNnsnjxYoqKiujRowfPPvsszZvXvRt6QUEJZrPnrgSZPfsd3nrrDQYNupJXX33DY8/rqNdf/z/+9795xMU1ZPHir4iN9UwbiYAAPTExDTx+Pi4kLy+XBx+8l717M0hISOTjjxcTH5/g7Wm5lVbPRU05OSdYsOBjfvjhW44fz651n16vp1mz5rRsmUKjRo1JTm5EUlIS4eERBAeHEBAQQEHBKXbv3sk333xpb/o7ceIkbrzxFm/8d87JF85FfXG+c2E0Gpk7910++ugDKisrAYiJiaV//8vo128AXbp009wHal8WG9sAg0Gd3JMEWH+ZOXMmn3zyCS+99BKJiYm8+uqrHDlyhG+++abOnzo9/YvrvvtGsmbNnzzxxERNLkWUl5dz663DOHhwP507d+Xdd+cRGhrm9ufV4hvJli2bGDfuP+Tl5dGwYTxz5syvF5s6a/FcnIvVamXHju2sW7eaTZs2sn37VqeL4GNiYnn66ecYOHCQm2ZZd750LvydI+ciJyeHxYs/ZenShRQUFNS6Lzm5Eamp7WnevAVNmjSladNmxMcnEBsbS2RkFHq9LFY5SgIslVVUVJCens64ceO49dZbASgqKqJv3768+OKLXH311XUa15O/uMrKSrnssksxmcpYvPhLzVxF+Hf79+9j5MjhFBUV0qVLN15//U23f/rS0htJTs4J3ntvFp99thir1UpKShumTZvp9X0jPUVL58JZVquVkyfz2L9/H4cOHeT48eMcP55NTs5xSktLKS8vp7KykpiYGJo0acYll/Thyiuv8siHiLrw5XPhb5w5F5WVlWzevJFfflnB2rV/kpl58Ly1WQaDgZiYWGJjY4mIiCQsLIywsAZ//QmjQYMGhIaGERoaQkBAIIGBNf8E1fq65v0BAQEYDAb0ej16vR6dTo/BoLd/bftjQK/X/fV37fu0Ss0AK0CVUXxcRkYGJSUlpKen22+LjIykffv2rF+/vk4BVlVVFYWFp6mqsgI6dDrlD/Z/K7fbXpz87ThdjeMu7JdfVmAyldG0aTNat27r9Hw9pXXrNrz55js8+OC9bN26mRtvvI7//OdRrr76OgIDA709PdVVVFRw+PAhtm7dwqpVv7Jq1W9UVVUBtn5ITz75NA0ahHt1jsIxOp2O+PgE4uMT6N37Um9PR9RTgYGB9OqVTq9etvcro9HI7t072bt3D0ePHubIkSMcO3aE/Px8iooKqaqq4uTJPE6ezPPyzGs7MwDTXTAocyx4O99jLzz2lCnP07ChOh/6JcACTpyw7d2XnJxc6/aEhASOHz9epzGPHj3KpZde4vLcwPYD1bhxE9q2bUefPv248sqrCAur/an4yy+XAnD11dcSGKjt/et69OjBggVLePjhh9i/fx+TJk3g7bdncM01Q+jffwDt23ckJCREtedTPo0YDHqsVitlZWUYjcUUFxdjNBpr/LuY4mLl6yKKi4spKTFSUVGB2VxFVVUVVVVmqqqqMJvNf319rn+bqaqyYDQWn9GRuWfPXowZ8x969EhT7f/oK2qeC+Fdci60w5VzER0dSe/evendu/cZ91VWVlBQUMCpU/l/BVxFlJaW/vWn5K8/pZSUlNgzsMofs7my1tfVfyrs/66qsmC1WqiqqsJqtWKxWBzuQO/MsZ701FOPS4ClJmXfp7/XWgUHB1NY6J7Gg86orKzk0KFMDh3K5KeffuC1117h9ttv55577iE+Pp7ly5ezdu0aAgMDufPO4cTENPD2lC8oJqYjy5b9xNy5c3n33XfJyclh7tz3mDv3PQwGA61ataJJkyYkJSURHx9PgwYNCAkJISQkhMDAQCwWiz2osVqtlJeX1/jFUYrRaKS4uJiiIlugVPPfnr4CJzIyktTUVPr168c///lPUlNTPfr8WhQZGertKYi/yLnQDvXPRQMSEmIAz9V3Wq1WrFYrVVVV9iBK+X3tzNfKbTXHcvTrujyf8tjo6GjVvhcSYIE9W1JRUVErc1JeXk5oaN1e8M2aNWPbtt1/nbTqF53yB5R/c47bq+8zmco4cuQwmzZt5OuvbVcmzZw5k9mzZ9OpU2d27twJwL//PZyIiDgKCty35YfabrnlDm644RaWL/+JX35ZwZo1f1JQUMC+ffvYt2+f255Xr9cTHh5BREQE4eHhf/1d+98REZGEh4cTHBxsrzcwGAw1/h1AQIDtb9vtNf9t+zs8PJy4uIa1lnp96fyozWDQExkZSlFRGVVV2vv0Wp/IudCO+nEuDIABnQ4MBtsfLYqIUC/IlQCL6qXB3NxcmjVrZr89Nze3ztkGW22VAYtFh6t7LkdFxZCY2IiePdO5++77WLnyV+bNe4/t27eyYcN6AC6+uDf33TfWJ4tV9foABg++isGDr8JqtZKbm8uBA3vJyckhNzeH/Px8ystNlJebMJnKMZvNGAy2okpl3TwgIOCv4s0wQkNtfyuBUlRUJMnJ8UAgoaENCA8PJyysgcc2w7bV4dX7a0lqqaqy+ORr1R/JudAOORfep+ZlfxJgAampqYSHh7N27Vp7gFVUVMSuXbsYPlxb7Q4MBgOXXXY5AwYMZM+e3ezdu4eEhER69UrX9JUZjtLpdCQmJpKYmKjamHK1lBBCCE+TAAtb7dXw4cOZOnUqsbGxNG7cmFdffZWkpCQGDdJe/xqwBSKpqe1JTW3v7akIIYQQ4m8kwPrL2LFjMZvNTJw4EZPJRFpaGnPnzpWtLYQQQgjhNGk06kayJKUNskSoHXIutEPOhXbIudAONRuN+n7RjhBCCCGExkiAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJnsRulFVlewppRUGg17Oh0bIudAOORfaIedCG/R6HTqdTpWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUtGsWbO4/fbba922e/duhg8fTteuXRkwYABz58710uzql7Odi59//plhw4bRrVs3Bg4cyCuvvILJZPLSDOuPs52LmiZOnMjAgQM9OKP662znIjc3l//+97/07NmTiy++mEcffZRTp055aYb1x9nOxfbt2xk+fDjdunWjf//+/N///R8VFRVemqF/O336NM888wz9+vWje/fu3HrrrWzYsMF+vxrv3RJgqeSDDz5gxowZtW4rKChgxIgRtGjRgqVLlzJmzBimT5/O0qVLvTTL+uFs52LDhg089NBD/OMf/+CLL75g0qRJfP/99zz33HNemmX9cLZzUdPy5ctZvHixB2dUf53tXFRUVDBy5EiOHDnC+++/z7vvvsuuXbt4/PHHvTTL+uFs5+LUqVPcc889tGrVii+++IIXXniBzz//nGnTpnlplv7tv//9L1u3buX1119nyZIldOjQgbvvvpsDBw6o9t4d4Ka51xs5OTlMmDCBjRs30rJly1r3LVq0iKCgICZNmkRAQAApKSlkZWUxe/Zshg0b5qUZ+6/znYsFCxaQnp7OvffeC0Dz5s155JFHeOqpp3juuecICgryxpT91vnOhSI3N5enn36aXr16cezYMQ/PsP4437n45ptvOHbsGMuWLaNhw4YA9p8Jo9FIeHi4N6bst853LjZt2sTp06cZP3484eHhNG/enOuuu47ff/9dAl6VZWVl8ccff/Dpp5/SvXt3ACZMmMDKlSv55ptvCAkJUeW9WzJYLtq5cydRUVF89dVXdOnSpdZ9GzZsIC0tjYCA6jg2PT2dzMxM8vPzPT1Vv3e+czFy5EjGjx9/xmPMZjNGo9FTU6w3zncuAKxWK0888QRDhgyhV69eXphh/XG+c7Fq1SrS09PtwRVA3759Wb58uQRXbnC+cxEdHQ3Ap59+SlVVFUePHuW3334768+PcE1MTAzvvfceHTt2tN+m0+mwWq0UFhaq9t4tGSwXDRw48Jz1IydOnKBt27a1bktISAAgOzubuLg4t8+vPjnfuWjfvn2trysqKnj//ffp0KEDsbGxnphevXK+cwG2JZK8vDzeeecd3n33XQ/OrP4537k4dOgQPXv25K233uKLL77AbDbTp08fxo0bR2RkpIdn6v/Ody569uzJvffey/Tp05k2bRpVVVX06tWLp59+2sOz9H+RkZH079+/1m3ff/89hw8fpk+fPkybNk2V927JYLmRyWQ6Y+kpODgYgPLycm9MSWDLWo0fP579+/fz7LPPens69U5GRgYzZ87k1VdflaVZLzMajXzxxRfs2bOH1157jeeff56NGzfywAMPYLVavT29eqWoqIhDhw5x2223sXjxYqZPn87hw4eZNGmSt6fm9zZu3MhTTz3F5ZdfzsCBA1V775YMlhuFhISccQWIcnLCwsK8MaV6z2g08vDDD7N27VpmzJgh6XcPKy8v57HHHuP+++8nNTXV29Op9wIDAwkLC+O1114jMDAQgKioKG666Sa2b99O586dvTzD+mPq1KkUFRXx5ptvAtChQweioqK46667uPPOO+XnxU2WL1/OY489RpcuXXj99dcB9d67JYPlRklJSeTm5ta6Tfk6MTHRG1Oq13Jzc7ntttvYvHkzs2fPltYAXrB161b27dvHzJkz6datG926dePdd98lOzubbt268dVXX3l7ivVKUlISLVu2tAdXAG3atAHg6NGj3ppWvbRx40Y6depU6zblA2BmZqY3puT3PvroI8aMGUO/fv2YPXs2ISEhgHrv3ZLBcqO0tDQWLFhAVVUVBoMBgNWrV9OyZUupv/KwwsJC7rzzToxGI5988gnt2rXz9pTqpc6dO/PTTz/Vuu3DDz/kp59+4sMPP5SfCw/r2bMn//vf/zCZTPY3l7179wK2K22F5yQlJbFnz55atynnokWLFl6YkX/75JNPeOGFF7j99tt56qmn0Our801qvXdLBsuNhg0bhtFoZMKECezfv5/PPvuM+fPnM3r0aG9Prd556aWXOHLkCK+++iqxsbHk5eXZ/1RVVXl7evVGSEgIzZs3r/UnKiqKgIAAmjdvLleuedgtt9yCwWDg0UcfZe/evWzcuJGJEydy8cUX06FDB29Pr14ZMWIEq1at4o033uDw4cOsXr2aJ554gv79+3PRRRd5e3p+JTMzkxdffJFBgwYxevRo8vPz7e8HxcXFqr13SwbLjeLi4pgzZw5Tpkxh6NChxMfHM378eIYOHertqdUrFouF7777jsrKSu68884z7l+xYgVNmjTxwsyE8K7Y2Fg+/vhjXnrpJf71r38RFBTEFVdcwZNPPuntqdU7ffr04d133+Wtt95i/vz5xMTEMGjQIP7zn/94e2p+58cff6SyspJly5axbNmyWvcNHTqUl19+WZX3bp1VLhURQgghhFCVLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgifIV1lhBC+QgIsIYRPWLFiBY8//rj967Vr19KuXTvWrl3rlfk88cQTtGvXjnbt2vHYY4+5NFa7du3sm/w64tZbb7U/tzOPE0J4jnRyF0L4hA8++KDW1x06dGDhwoW0bt3aOxMC4uPjmTlzJrGxsS6Ns3DhQpKSkhw+/oUXXsBoNHLzzTe79LxCCPeRAEsI4ZPCw8Pp2rWrV+cQFBSkyhycHcObQaUQwjGyRCiE0Lzbb7+ddevWsW7dOvuy4N+XCN98802uvPJKli9fzjXXXEOnTp0YMmQImzdvZsuWLdx000107tyZa665htWrV9caf+/evYwePZru3bvTvXt3HnzwQY4cOeL0PNu1a8enn37KE088QY8ePejVqxeTJ0/GZDLxyiuvkJ6ezsUXX8yECRMoLy+v9ThlqU/5f61evZqRI0fSpUsXLrnkEl555RXMZrML30UhhCdJgCWE0Lxnn32W9u3b0759exYuXEiHDh3OetyJEyd46aWXuO+++3jjjTcoLCxk7Nix/Pe//+Vf//oXr7/+OhaLhUceeQSTyQRAZmYmt9xyC/n5+bz88stMmTKFI0eOcOutt5Kfn+/0XKdOnUpQUBAzZ85kyJAhfPjhh1x//fUcP36cV199lVtuuYUlS5bw4Ycfnnecxx57jB49evDOO+9w7bXXMm/ePJYsWeL0fIQQ3iFLhEIIzWvdujXh4eHA+ZfTysrKePbZZ+nXrx8ABw4c4LXXXmPKlCnceOONAFRVVTF27FgyMzO56KKLmDlzJiEhIXzwwQf25+jduzdXXHEFc+bMqVVY74iUlBSef/55ANLS0liyZAmVlZVMnTqVgIAA+vbty88//8ymTZvOO85NN93Egw8+aJ/P8uXL+fXXX7nlllucmo8QwjskwBJC+JXu3bvb/92wYUOgdlAWHR0NQFFREQBr1qzh4osvJiQkxL4EFx4eTs+ePfnzzz+dfv5u3brZ/x0QEEBMTAwdO3YkIKD61210dDTFxcUOjwOQlJREaWmp0/MRQniHBFhCCL+iZKFqCgkJOefxp0+f5rvvvuO777474766XB14tucPDQ11epy/z1mv10sfMCF8iARYQoh6LSIigksuuYQRI0accV/NrJMQQjhDfnsIIXyCXq/HYrGoPm6vXr3Yv38/F110kT2gslqtPPbYYzRv3pyLLrpI9ecUQvg/uYpQCOETIiMjyczMZPXq1RQWFqo27gMPPMDhw4cZPXo0y5cvZ9WqVYwZM4Zvv/2W1NRU1Z5HCFG/SIAlhPAJt912G4GBgYwaNYqVK1eqNm5qaioff/wxOp2O8ePHM3bsWPLy8njrrbcYPHiwas8jhKhfdFapmhRCCKc98cQTrFu3jp9//tlrc2jXrh0PPfQQY8aM8dochBBnJzVYQghRRxUVFWzZsoXY2FiaNWvmsefdv38/RqPRY88nhHCeLBEKIUQd5eXlcfPNNzNjxgyPPu/TTz8tGz0LoXGyRCiEEEIIoTLJYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqOz/Ab1LKcmPLql6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd \n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load a sample chromatogram and show the trace, cropped between 10 and 20 minutes\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "plt.plot(df['time_min'], df['intensity_mV'], 'k-')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal intensity [mV]')\n", + "plt.xlim([10, 20])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "With this signal, the location of peaks (meaning, the index where a local maxima is \n", + "detected) can be identified using `scipy.signal.find_peaks`, even with a very \n", + "low prominence filter. TO allow prominence filters to be comparable between \n", + "chromatograms, we normalize the chromatogram first between 0 and 1." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkMAAAHJCAYAAACG+j24AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACsQUlEQVR4nOzdd3hTZRvA4V9G23QvWgqUvfdGkCUoDhQXbkUFFQcIooLiApWhTEVAceBGFAcgIJ+AynCwh6yyd6FAF93N+P6IJ23pStKkOWme+7q4aJMznpP3pHnyTo3FYrEghBBCCOGjtJ4OQAghhBDCkyQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQQgjh0yQZEkIIIYRPk2RICCGEED5NkiEhhBBC+DRJhoQQwk4yR60QVZMkQ0KIMg0aNIhBgwZ5OgyX27hxI9dddx2tWrXikUce4b333qNp06a25y+/7kWLFvH22297ItRyHTlyhKFDh9KxY0euuOIKXnrpJdLT08vdb9euXTzwwAO0b9+e7t278/bbb5OXl1fq9sOHD+fFF190ZehCqILe0wEIIdRt3Lhxng7BLd5++23MZjMffvgh0dHRhIeH07Nnz1K3f//99+nSpUslRmif9PR0Hn74YWJjY5kyZQoXL15k6tSpnD17lvnz55e634kTJxg8eDDt27fnnXfe4fDhw8ycOZNLly4xYcKEItuaTCYmTZrEqlWruO2229x9SUJUOkmGhBBlatSokadDcIvU1FQ6d+7MlVdeaXssLi7OgxE555tvviE9PZ3FixcTFRUFQPXq1Rk6dChbtmyhU6dOJe738ccfExwczNy5c/H396d3794YDAbefPNNnnzySWrVqgXA/v37efPNN9m9ezcGg6HSrkuIyiTNZEKoRN++fZk5cyaTJ0+mS5cudOnShdGjR5OSkmLb5sUXX+Shhx5i3LhxdOrUidtuuw2j0Uhubi5z5szh+uuvp3Xr1lx77bV8+OGHmM1m276DBg3itdde4/3336dnz560bduWxx57jAsXLvDDDz/Qr18/2rdvz8MPP8ypU6eK7Fe4uahp06Z8/fXXvPzyy3Tp0oX27dszYsQILly4UOR6Vq9eze23307r1q3p3r07EyZMICsry/b8e++9R79+/fjjjz8YMGAArVq14rrrruOnn34qcpyLFy/y0ksvceWVV9K+fXvuv/9+tm7danteqd3p16+f7Rhffvllqa/zqVOnaNq0KadPn2bx4sU0bdqUjRs3Fmsmu7xsTp8+zU8//UTTpk1tr8+ZM2d49tln6dKlC23btuWhhx5i7969xc716aefcsMNN9ClSxd+/PHHUmMq7V9ZzZQbNmygY8eOtkQIoGfPngQHB7Nu3boy97vqqqvw9/e3PXb99ddjNpvZsGGD7bEXXngBs9nMt99+S3R0dKnHE8KbSc2QECqyYMEC6taty6RJk0hOTmb69OkcOXKERYsWodVav7ts2bIFjUbDe++9R2ZmJjqdjscee4wdO3YwbNgwmjdvzsaNG3nnnXc4efIkb775pu34y5cvp0WLFkycOJEzZ87w5ptv8sADD2AwGHjhhRdITU1l4sSJvPHGG3z44Yelxjlz5kz69evHjBkzOHnyJJMnT0av1zNjxgwAfv75Z55//nkGDBjAM888w+nTp5k5cyaHDh3i008/RaPRAHD+/HneeOMNW03EJ598wosvvkibNm1o2LAhWVlZ3HPPPeTn5/Pcc88RFxfH559/zqOPPsr3339Pw4YNGT9+PD/++COPP/447du3Z/PmzUyaNIn09HSGDRtWLPbY2Fi+/fZbhg8fTosWLXjqqado1KgRmzZtKvV6Z8+ezdChQ23bx8bGkpyczD333ENgYCCvvvoqgYGBfP7559x///222Aq/Xq+99hphYWG0atWq1JhKExISUupzhw8fpn///kUe02q1xMfHc+zYsRL3ycnJ4fTp09SvX7/I41FRUYSEhBTZ7+2336ZZs2alnl+IqkCSISFURKPR8OmnnxIaGgpYP5yGDRvGunXruOqqqwAwGo28/vrr1K1bF4C1a9fy119/MXXqVG6++WYAunfvjsFg4N133+Whhx6yNXXl5+cze/ZswsPDAVi1ahUbNmxg9erV1K5dG4B9+/axZMmSMuNs0qQJkydPtv2+a9cuVq5cCVhHXE2bNo2ePXsybdo02zb16tXj4YcfZu3atbZryc7OZuLEiXTr1s22TZ8+fVi7di0NGzbkp59+4uTJkyxevNj2gdypUyduvfVWNm/ejFar5bvvvuPZZ59l6NChAPTo0QONRsO8efO47777iIyMLBK7v78/7dq1w9/fn6ioKNq1a1duubRo0aLY9p9//jmpqal88803tialXr160b9/f959911mzZpl2//aa6/ljjvuKPX4SkzOSE9PJzg4uNjjwcHBZGRklLoPlJxkXb6fJELCF0gzmRAq0qdPH1siBNbmGT8/P7Zs2WJ7zGAwUKdOHdvvmzZtQqfTFasdUBKjjRs32h5r2LChLRECiImJISoqypYIAURERHDp0qUy47z8gzsuLo7s7GzAOrLp7Nmz9O3bF6PRaPvXuXNnQkJC+PPPP0s9ltJnR2lO27JlC/Hx8UU+kAMCAvjll1+45557+Oeff7BYLMXO1bdvX3Jzc4s0p7na33//TfPmzalevbrtvFqtll69evHXX38V2bZJkyblHq9w/Jf/M5lMZe6r1LQVZrFYSnxcea40Ze0nRFUlNUNCqEhsbGyR37VaLREREUWGSUdHRxf5sEpLSyMyMhK9vujbOSYmBqBIYlNSTUBgYKDDcV6+j1artX3ApqamAvD666/z+uuvF9s3KSmp1GMpTYGFj1VWPxXlXDfeeGOJz587d66Mq6iY1NRUjh8/TsuWLUt8XkkOAapVq1bmsU6dOsXVV19d6vNdunQptR9USEhIiTVAWVlZpXYIVxLuzMzMEvcrnJAL4QskGRJCRZQPd4XJZCIlJaVI59jLhYeHk5KSgtFoLJIQKUnH5c1E7hYWFgbAmDFjShyKXrhmqjyhoaFFOnMrtm/fTkhIiO1cn3/+eYlNRTVr1rT7XI4KDQ2lS5cujBkzpsTnC3dMLk9sbCzff/99qc+XdG2K+vXrc+LEiSKPmc1mTp06xbXXXlviPkFBQVSvXp3jx48XeTw5OZmMjIwqO4JQiNJIM5kQKrJ+/foik96tWbMGo9Fo61NTki5dumAymVixYkWRx5cuXQpAx44d3RNsKRo0aEB0dDSnTp2idevWtn9xcXFMnz69yGir8nTq1ImTJ0+SkJBgeywvL4+nn36a7777js6dOwOQkpJS5Fypqam88847xZLLilBqrRRdunTh6NGj1K9fv8i5ly5dyqJFi9DpdHYf29/fv8gxLv/XoEGDUvft3r07mzdvJjk52fbY+vXryczMpHv37mXu98cffxS531auXIlOp6Nr1652xy5EVSA1Q0KoyNmzZ3nyySd58MEHSUxMZMaMGfTo0YMrrrii1H169erFFVdcwbhx40hKSqJFixZs2rSJjz76iNtuu63Sv+XrdDpGjRrFa6+9hk6no0+fPqSnpzN37lzOnTtXarNSSW6//Xa+/PJLnnzySUaOHElUVBRff/01OTk5DBo0iDp16nDzzTfz6quvcvr0aVq1asXRo0eZOXMm8fHx1KtXz2XXFRYWxt69e9m0aRNt2rTh4YcfZsmSJTz88MMMGTKEyMhIVqxYwXfffcfYsWNddt7y3HfffXz11VcMHjyY4cOHk5qaytSpU+nVqxft27e3bbdjxw6ioqJs/c0effRRli9fzqOPPsrgwYM5duwYM2bM4O6776ZGjRqVFr8QaiDJkBAqcuONNxIWFsYzzzxDUFAQt912G6NGjSpzH2Xk1KxZs/jiiy9ITk4mPj6eUaNGMXjw4EqKvKg777yT4OBgPv74Y7799luCgoLo0KED06ZNK9JZuzwhISF89dVXTJkyhYkTJ2I0Gmnbti1ffvml7UN98uTJzJs3j4ULF3L27Fmio6Pp378/zzzzjEO1M+UZMmQIkyZN4pFHHuHTTz+lU6dOLFy4kOnTpzN+/Hhyc3OpV68eEydOLHPkmKtFRUXxxRdfMGnSJJ5//nmCg4O5/vrrizXf3X333dx222289dZbgLUz/fz585kyZQojRowgMjKShx9+mJEjR1Za7EKohcYiKw8KoQp9+/alS5cutg8rIYQQlUP6DAkhhBDCp0kyJIQQQgifJs1kQgghhPBpUjMkhBBCCJ8myZAQQgghfJokQ0IIIYTwaZIMCSGEEMKnyaSLWBeFNJulH7kaaLUaKQuVkLJQFykP9ZCyUAetVlNk0eqKkGQI6wy+6elZGI1mT4fi0/R6LZGRwVIWKiBloS5SHuohZaEeUVHB6HSuSYakmUwIIYQQPk2SISGEEEL4NEmGhBBCCOHTJBkSQgghhE+TDtRCCAGYzWZMJqOnwyiR2awhJ0dHXl4uJpOMYvIkKYvKodPp0Worr75GkiEhhE+zWCykpyeTnZ3h6VDKdOGCFrNZRi+pgZRF5QgMDCEsLMplw+fLIsmQEMKnKYlQSEgk/v4BlfKH1xk6nUZqIlRCysK9LBYLeXm5ZGSkABAeHu32c0oyJITwWWazyZYIhYSEeTqcMun1WpnXRiWkLNzP3z8AgIyMFEJDI93eZCYdqIUQPstkMgEFf3iFEOqhvC8roy+fJENCCJ+n1qYxIXxZZb4vVZUMzZ07l0GDBpW5TUpKCs899xydO3emc+fOvPrqq2RlZVVShEIIIYSoalSTDH322WfMmjWr3O1GjBjByZMnbdv/+eefvP7665UQoRBCCCGqIo8nQ+fOnePRRx/l3XffpX79+mVuu337djZt2sTkyZNp2bIl3bp144033mDJkiWcO3eukiIWQghRERMnjmf48KEAJCaeoUePTmzbtqVSzueobdu20KNHJxITz7g4KvdIS0tl2bLFng7D63h8NNmePXsIDw9n6dKlzJkzh9OnT5e67ZYtW4iJiaFhw4a2x7p06YJGo2Hr1q3079/f6Th0Oo/nhT5PKQMpC89ztCxyc3OZO3cWOp2exx57gsDAQHeG5zJms3f0FVK6Tmg0YKliI7pjY6uzZMlKwsLCPR2KXdReFnPmvMuZM6e56aZbPR2Ky+h0GvT64n+LXNmlyOPJUN++fenbt69d2547d44aNWoUeczf35+IiAgSExMrFEdYmHf88S4sKx+az7X+vO8pCPLzbDyu4o1l4W6eKmt7y+Ll8e/wVfR4ADJnj2PKJO9ous7J0XHhgrbUP7auYrbA7iTrz61iQevkH3FPf1Fw1XVoNBo0GutrrtdrqV491q0xFT6fowp/MSi8v6fLoizOXqvamM0atFot4eFBGAwGt57L48mQI7Kzs/H39y/2eEBAALm5uRU6dnp6NiaTd80bkZ0PEAxAakomuV6eDOl0WsLCAr2yLNytssvakbLIycnhm2++gadeBuD7H37g6SefIiQkxL1BukBeXu5/y3BYiswbY7FYyMnJdtl5zBbIybZ+OF26ZC4ziTAYAouNotForGViMplLrY3o0aMTY8a8zG+/rWLXrp2EhYUxcOBdDBo02LbNX39t4LPPPubo0cMEBQVzzTXXMXToUwQEBNiO8eCDQ/jf/1aQn5/P7NnzePbZp7nnnvvZvn0r//zzF4Eh4Qy453GMreozc8ZbnDhxnCZNmvLKK29Qq1Y8ALt27WD+/A/Zt28PeXl5xMfX5sEHh9Cv3/WA9fW1WKyveWLiGe6882ZmzfoAgBEjnijx+t57bx7t23fk/PkkZs+eycaNf6PT6WjZqg03PPAc1WvWwWg0o8HC559/wpIlP3LpUjrXXHMdubk5tvOVxGg08vnnn/DLL8tISUmmbt36DB36FF27Xmm7/9evX8eSJT9w8uQJ4uNr89RTI+jWrQcAw4cPpVateI4cOczJk8d55pnRXH/9jfzyyzIWLvyakydPEBUVxc0338YDDzyMVqu1XffUqe/w8cfzOHr0MPHxtRkz5hWOHj3MZ599zKVLl7jyyh6MHfuarYyWL1/K998v5Pjx42i1Gpo1a8HTTz9L06bNmDhxPL/8sgyArl07sGHDFkwmE99/v5DFi3/g3LmzVK8ex733DuLmm2+zXf/+/ft4770Z7N+/l6ioajz22BNMnDiemTPn0KFDpxKvr2/ffsyf/yG//baKpKRzBAUF07nzFTz77BjCwyOcvr7CTCYLZrOZtLQssrNNxZ4PDw902fxDXpUMGQwG8vLyij2em5tLUFBQhY5tMpm9bhIto6nwz2aM3lHjXy5vLAt381RZ21MWGzduJDc3x/bHJDc3h7/++ou+fa9xf4AVVNIswhaLhYcfvo+dO7d7ICJo164Dn376dZGESEmAymuWmTv3XUaNGsOzz77A//63gnnz5tCmTTvatm3PunV/8MorYxgyZCivvDKekydPMn36W5w9e4aJE6fajrF06Y9MmzYLo9FEnTr1APjgg9mMGPEcTz41krnzv+TrDybzV736jBz5HEFBQbz66ljef38WEyZM4fz5JEaNGsZtt93J88+PxWg0smDBF0ye/AYdO3YmKqr02YRbt27LkiUrbb/n5OQwevRIYmKq07p1W7Kzs3n66cdp1KgJ7733ITqdloULv2by6AcZN+s7iKrGV199xoIFXzJ69FiaNm3GkiU/smzZEtq161DqeWfNms5vv61i1KgXaNasOb/8soyxY59j/vyvbdssWrSQMWNeolq1GObNm82rr77I0qW/2j57Vqz4mVdffZNGjRoTHR3Nd98t4IMPZjNs2DN06dKVffv2MmPG26SlpfH006Nsx50xYypjxrxEbGx1JkwYx+jRI2nWrDlTprzDqVMnGD/+ZVq3bsPAgXezdu3vTJs2mTFjXqZ9+45cvHiRd96ZyltvvcGnny5g5Mjnyc3NJSnpHBMnTgFg9ux3WLlyOaNGjaF58xZs2vQPM2dOIS8vlzvuuIcLF84zcuQT9OjRm+efH8vZs4lMmzbZNgeX4vLrmzt3FuvX/8HLL4+nZs1aHDlymIkTx/H5558wYsRzTl1faS7/sqJwZTOlVyVDcXFxrF69ushjeXl5pKamUr16dQ9FJYRv+/PP9cUe27Jlk1ckQ6Xx1nmHbrhhANddZ+07+dhjT/Ljj4vYtWsHbdu258svP6VXr6t4+OFHAahTpx4Wi4UXX3yWY8eOUq+edQDLddf1p1mzFkWO27Xrldx8822YLdD3pntZ978fGDjwbjp06ARA377XsH79H4D1b/KQIUO5995Btm/tgwYNZsWKn/+rISk9GfLz8yM6uhpgTUpfeWUMABMmvI1er2flymWkpqYyfvxE9Hrrx9eYF15l45atrP/1R7o2eozvv/+WO++8x1YL9fTTz5bZOTsrK5Off17MyJHPc/XV/QB49NEnMJlMRaZtGTnyWdv1DhnyGGvX/s6xY0do0aIVAI0bN+Haawtqvr766nNuv/0uBg68C4DateuQnp7K7NnvMHjwY7bj3nPPfXTufMV/5XcTM2a8zXPPvUh8fG0aNmxE48ZNOXLkMADh4eG88MIrXH/9jQDExdVgwIBbmTZtMgAhISEEBASg1+uJjq5GZmYGP/20iKefHmWLrXbtOpw5c5ovvviUgQPvZsmSHwkJCWXs2NfQ6/XUr9+AUaPG8OKLzxZ5nQpfH0Dz5i3o3bsP7dt3tMXSpUs3Dh8+VGQ/R67Pk7wqGercuTPTpk3j+PHj1K1bF7B+KwXo0KH0rL+q0gAdYo22n0XVpeay3rTpb7BYaOB3HpPZxGGLhQMH9ns6LKdpNBo+/fRrlzeTnbxkLbnaoRaHm8nsVbduvSK/BwcHk5+fD8CRI4fo1++6Is8rtSWHDx+0JUPx8XWKHbd27bq2n8NDrM0ZNWrWsj3m7+9vq7WvVSueG2+8hR9++I5jx45w8uQJDhxIAChW21CW99+fxfbt25g371NCQ0MBSEhIICsrkxtu6FNk29zcPM6fPkpaWhoXL16gefOiyVzLlm04duxIiec5ceI4+fn5tGzZusjjjz8+DMCWSCm1ZAChoWH/nbege0bh1y01NYXk5Iu0adOuyDHbtu2A0Wjk+PFjREVF/XfcgtdW6RdTs5TXtl27Dhw7dpTPPvuYU6dOcuLEcQ4dOlDqorHHjx/DaDQWi6Ndu/Z8++3XpKQkk5Cwn6ZNm9uSS2uc7Ysd6/L74rrr+rNlyybmzZvDyZMnOHbsKCdOHCt2Lkeuz5NUnQyZTCaSk5MJDQ3FYDDQtm1bOnTowKhRoxg/fjxZWVmMGzeOW2+91Sdrhgx6+PAa1/3BFuql1rLOycnh6NEjYDIxu3caycnJ3GPM4eDBBCwWi9fWsGg0GgIDK9b0frlmrj1ciUrqU2n5ry3B+l/R8jCbrclJ4Q/CkvpuKM9rNRAfYj2erpSM7vjxYzzxxBCaNGlGly5X0KNHLyIiInnssYfsvo6ff17Md999w4wZs6ldu+BD2GIxU6dOXd56a0axfQIDA21JpuWy9pPC13c5nc76XHn3akl9Uwqfp/Drpjx++SGVpKVwPMr5yzsXwOrV/+PNN1+jX7/rad68JTfddAtHjhxmxoy3S9y+ILzLy70gDp1Oh8VSfreEy++LadPeYs2aX7nhhhu58soePPTQEL755iuSkopOc+PI9XmS+iIqJDExkR49erBixQrAerPOnj2b+Ph4HnroIZ555hl69erF+PHjPRuoED7q0KGDmEwmIiOjiImJpUGDhuh0OtLS0or9URSe1bBhQ3btKtoPSukXVbdu2XO8OeKnnxYRFRXFu+/O5f77H6Jbtx5cvHjR7v23bNnE9OlvMWrUGFuzlKJ+/YacPZtIcHAI8fG1iY+vTVxcDT744D127NhGREQEsbHV2bVrZ5H99u/fW+r5ateug16vZ//+PUUef+yxB1mw4Au74y4sMjKKyMgodu7cUeTxnTu34+fnZ+to7qgvv/yUAQNu5ZVXXmfgwLto164Dp0+fAgonYAWJT9269dDpdCWWe3R0NKGhYTRq1JiEhP0YjQXrf+3du7vMONLSUlm8+Huef/5FRox4jv79B9C4cVOOHTvq1HWpgapqht56660iv8fHx5OQkFDksejoaLtmqhZCuJ/yIdOsWXM0Gg3+/v7Uq9eAw4cPcuBAAtWrx3k4QqG4994HGTduLJ999jF9+/bj5MkTzJw5lSuv7GlrInOF2NjqJCWd4++//6R+/QYkJOzjnXemAZTbHHLs2FFeeeUFbr11IL179+XixQu25wIDg7juuv58/fXnvPzyaJ56aiShoaF88cUn/P33nwwZ8jgADzzwMLNnv0PdunVp06Y9//vfCvbt20Pr1m1LPKfBYGDgwLv56KP3iYiIpH79hixfvpSjR4/w8ss9SU62P5FTaDQa7r33AT7++ANq1qxFly5d2bt3D/Pnf8jNN99GSEgIly6lO3zc2Njq/PvvThIS9hMSEsKGDWv58cfvAOtrGxAQQGBgIBcuXODMmdPUrFmLm2++nY8/nkdoaDgtWrRk48a/+emn7xk6dBgajYbbb7+Tb79dwNtvT+D++x/iwoXztpqm0mrLgoNDCAkJYf36tTRt2pzc3Fy+//5bDhzYb+tD5W1UlQwJx2QbYcAS63Drn2/JJFBKs8pSa1knJFj7BjVs1pZrfrDG17ZxCw4fPsixY0fo2bO3J8NTDbMFDqZaK+IbR5Q9tN5d+va9BpPJyFdffcbnn39CREQk/fpdxyOPPG73McwWOJJmvY7SBvLcccc9HD9+jDfffI38/Hxq167N0KFPMX/+h+zdu5uuXa8s9fhr1vxKRsYlvv/+W77//tsizw0e/BiPPPI4s2d/yJw57/D8809jMplp3LgJz7w+h/zIxpgtZm6//U7MZhOffz6fixcvcsUV3bjppls4fvxYqed94onh6PV6pk17i0uX0mnYsDFTp75LvXr1nUqGAO6770H8/Pz57rsFzJo1ndjY6tx//0Pcd1/Z62+WZdSoMUyZMpHhw4fi7+9Ho0ZNeOWV1xk37iX27t1N+/YdueGGm1i37g8GDbqLb79dwsiRzxEREcEHH7xHSkoytWrVZtSoMbah9ZGRUUyfPotZs6YzePB9xMTEcuutdzB37rv4+ZU8h4der+fNN99i9ux3ePDBewgLC6NDh048/vgwvvjiU7Kz1dekXx6N5fLGVR+VkpLpdcO5s43Q8ztrx8L1d11SzQeks/R6LZGRwV5ZFu5W2WVtb1k8/vgQNm78i1den8pbmfcBcO+FiXw5fy733vsAL7zwinsDraD8/DwuXkwkOroGfn7F+9u4itkC+5OtSUSzKOeSIb1e6/H3hSuuw9U8EZMaysJVjh49wqVL6UU6Pv/7706efPIRfvhhmUdrd8t7f0ZFBbts8ktV9xkSQqjb6dMnAWuTtqJGjZr/PXfKIzEJIex34UISTz/9OL/8soyzZxPZvXsXs2bNoF27Dj7VzO3ldQlCCE8xGo22xStr1KgF/3XvU5KhM2dKX2dQCKEOnTt35ZlnRvPVV58xdeokgoND6NGjF08++bSnQ6tUkgwJIZxy7txZTCYT/v7+VKtWzfZ4zZpKzdBprx5eL4SvuO22O7jttjs8HYZHSTOZEMIpSjNYzZq1iswbUr26dTHl7OwsUlNTPRGaEEI4RJIhIYRTlGSoVq3aRR4PCAggJia2yDZCCKFm0kzmxTRAiyiT7WdRdamxrE+dsnaerlUrvlh8sbHVOX8+ifPnkzwXoMp4+2hPhRqvQ40xCe8it5AXM+jhi+uzyt9QeD01lnXhkWSXxxcTEwPAhQvnPRKb2mg1UD/c+4diq/E61BiT8D7STCaEcMrp09bRYvHxtYs9pzSTSc2QEMIbSDIkhHCK0kxWs2bxdZaqVbPWDJ0/LzVDQgj1k2YyL5ZjhDuXW5dAWHRjJgYpzSpLbWWdlZVJSkoyYO0zdHl8SjJ04YLUDIF1luTD/y1j0TBcHTM3O0ON16HGmIT3kZohL2YBEjO1JGZqS10nSFQNaitrZZRYeHg4oaGhxeKTPkPF5Zus/7zZ/PnzeH7IjXZfx8SJ4xk+fKh7g6LgtbVYLPzyyzJbor5ixc/06NHJ7ecX3k+SISGEw06dKnlYvUKayYQn7NyxjYkTx5OTkwPA1Vf3Y8mSlR6OSngDaVgRQjisYI6h4v2FoCAZSk6+iMlkQqfTVVpswndZLqs3DQgwEBBg8FA0wptIMiSEcFjBsPqSa4aioqLRaDSYzWZSU1OIjq5W4nZqlm0s/TmtBgJ09m2rAfwv27a0fi0acLo/WI8enXj++Rf53/9+ISFhP/Hx8Qwd+hQ9evS2bfPnn+v55JN5HDt2lJiYGK655joeeugR/P2tK4IfOXKYjz6ay86dO8jKyqR69TgGDrybu+66t8RzLlq0kLlz3+WNNybTs+dV5cZ47txZ5s2bw5Ytm8jKyqRNm/YMGzaShg0b2bZZtWolX3/9BSdOHCc6uhoDB97JPfc8UGp8tw+8m9ZX30/Cv1uY/soTANx558289NI4ACZNep0NG7YAkJ6exkcffcCff64jNTWVpk2b8cQTw2nbtj0An3wyj+3bt9KtW3e+//5b0tJSadWqDc8//yJ16tRzrECEV5FkSAjhsIKaoVolPq/X6wkLCyMtLY2UFO9Mhnp+F1rqc91rGnn3qmzb7/1+CCHHVHKG0yHWyAdXF2x7y9JgUnNL7qHQIspUofmk5syZxRNPDGfs2FdZvvxnXnppNHPmfETr1m3555+/ePXVFxkxYhSdO3fl9OlTzJw5hRMnjvPmm2+Rk5PDqFFP0bFjF+bO/Ri9Xs/y5UuZNWs67dt3oHHjpkXOtfin73n//feYOHEqV17Zo9zYsrIyefLJR6hZsxZvvTUdf/8APv30Q4YNe4zPPvuGuLg4fv99NW+++RpDhz5F7959OXAggUmTxhMcHEK/fteXGN97s6bzav1ONGzWljcnTOHVV8bw0Uef06BBQ9asWWU7v8lkYtSo4eTn5/HKK68TFRXNDz98xzPPPMX7739Cs2YtANiz518CAwOZMuUdsrOzmDBhHNOnv827777vdLkI9ZM+Q0IIh5XXZwggMjIKwNaZVbjfjTcOYODAu6hTpx5PPvk0zZu35PvvvwXgiy/mc9NNN3PrrXdQq1Y8Xbp0ZfTol/j999UkJp4hOzubO++8l+eee4F69eoTH1+bIUOsnZ8PHz5U5Dzrf/2ROXNmMnnyNLsSIYD//e8X0tJSefPNt2nRohWNGjXmtdcmYDAY+PHH7wD49tsF9OlzDQ888DC1a9fh6qv7MWrUaAwGQ5nxnTp+EL2fH2FhYQBEREQWax7btOkfEhL2MX78RDp06ES9evV59tkxNGjQiAULvrRtZzQaefXVN2jcuAlt2rTjjjvuYdeuHY4XhvAqUjPkxTRAg3B1LdEg3ENNZW2xWDhzxpoMKc1kJcUXEREJHCUlJaXyg3SB9XddKvW5y5u5Vg3MKHVbZVOlWW3JzZllNpNVRPv2HYv83rJlKzZv3gjAgQP72bdvD7/8ssz2vMVi7WNz7NhRunXrzu2338nq1b9y6NABTp06ycGDBwAwmwtmeE5NPs/X709Gr9dTo0ZNu2M7fPgQtWvXJTIy0vZYQEAAzZu3tCVbhw8fpG/ffkX2u+mmW20/lxafDjMBOsimdEeOHCIkJIQGDQqa5DQaDW3btmPjxr9tj0VFRREWFm77PSQkhPz8fLuvU3gnSYa8mEEP392oriUahHuoqawvXrxATk4OWq2WuDjrCvUlxafUDKWmemcy5Mh6V/Zs2zDC/UtG6HRFAzGbLWi1OtvP9933IDfccFOx/aKjq5GcfJHHHx9MeHgEPXr0omPHLjRv3oLbb7/Rtp0G0Gm1vD11Bh999AGTJ7/OnDkfo9Xa08hgQVNCtmc2m9Drdbb4NSVtBGXGFxtkoWGEmW1lnd1ioaR002w2o9cXvG5+fv52XIuoaiQZEkI4RJl5unr1OPz8/ErdTqkBkGayyrN//1569Ohl+33Pnl00bdoMgAYNGnL8+LEind63b9/Kd999w/PPv8iqVStJS0vjm29+tCUHSo2NUoME1s7xnTt3JTq6GkOGPMB33y2wdXAuS4MGjWxzACmJcm5uLvv37+P6660JV/369dm/f0+R/WbNmk5i4hnatm1fbnylJVIADRs2IiPjEkeOHCpSO7Rr1w7q1atfbvyiapM+Q0IIhyhrkpU2rF5hbSaTZKgyfffdN/z660pOnDjO7NnvcPDgAe666z4A7r//Qdau/Y1PPpnHiRPH2bp1M5MmvcGlS+lER1cjNjaOnJxsfvttFWfPnmXTpn8YN+4lAPLz84qdq0GDRtx//0N89NH7nDx5otzY+vW7ntDQMF599UX27t3NoUMHefPNV8nOzuaWW27/L8aHWb36VxYtWsjp06dYvfp/LF78I7169bErvsDAIAAOHjxAVlbRmsrOnbvSsGFjXn/9FbZt28KxY0eZPv1tDh8+xJ133ufkKy6qCqkZ8mI5Rnjwf9Y3/xfXZXl8iQbhPmoq65KG1ZcUn7c3k7mS2QJH/1syor4bl4y45ZbbWbjwK44dO0LDho2ZMWM2jRo1BqBPn2t4/XX48sv5fPXVZ4SGhtG9e0+efHLEf89fTULCIGbPfofMzAxq1KjJTTfdwoYN69i7dw+33noHFsBohsOpWuqHm3nooUf44481TJr0OnPmfFRmc1loaCizZ3/InDnv8MwzwwBo06Yt77//CTVrWkcl9ujRixdeeIWvv/6cuXPfpXr1GowY8Sw33HATFoulxPjWr1/HPzv20Pqqu6jfoBHdunVn3LixDB06jPDwgr4/er2ed96Zw+zZ7/Dyy2PIz8+jadPmvPvu+7Rq1do9BSK8hsZSuP7Th6WkZGI0ur9N35WyjQXDf9ffdcmhPg5qpNdriYwM9sqycLfKLuuyyuK118aydOlPDBs2kscee7LU+JYvX8rLL4/hiiu6MW/ep+4N2En5+XlcvJhIdHQNt/YVMVtgf7I1UWgW5VwypNdry3xf9OjRiZdeGkf//gOcDbNcrrgOV/NETOWVhXCN8t6fUVHB6HSuaeCSZjIhhEPKm31aUdBnSGqGhBDqJsmQEMIhSjJU2uzTCqXPkDSTCSHUzssbVoQQlSk/P49z584C5dcMKXO1pKenuz0ugW3JCSGE46RmSAhhtzNnzmCxWDAYAomKii5z29BQax+inJzsEkcjCSGEWkgyJISwmzKSrFat+DLndAEICSlY2+vSpdJnc1YDGUcihPpU5vtSmsm8mAaoEWy2/SyqLrWUtTLHUHx80SaykuLT6XSEhISSkXGJ9PS0cmuSPEGns858nJeXi79/gFvP5acrfxtvoMbrUGNMouLy8nKB4jOru4MkQ17MoIefb8n0dBiiEqilrJXZp2vWLJoMlRZfWFjYf8mQOvsNabU6AgNDyMiwdvL29w8ot8bLWfWCrf+bjGByYn+zWYPJ5PkarIpehztUdkxqKYuqymKxkJeXS0ZGCoGBIXYu91IxkgwJIexm70gyRWhoGHBa1c1kYWHWySGVhEittFptkQVThedIWVSOwMAQ2/vT3SQZEkLYrWD26bJHkinCwsIASE9Pc1tMFaXRaAgPjyY0NBKTyejpcEqk02kIDw8iLS1LaiQ8TMqicuh0+kqpEVJIMuTFcowwdLV1CYQPr5HlOKoytZT1qVMlT7hYWnwFyZA6m8kK02q1aLXumYW6ouWn12sxGAxkZ5s8OvOxWu7Dwio7JrWUhXAtFdzKwlkWYG+ytefg9h3b6Napg2cDEm5TuKw99V00PT2NS5esSc3lyVBp8VmbybDt56vUUH6uoMbrUGNMwvvI0Hovlp2dbfv5lVdekOHBwq2U/kJRUdG21cHL4001Q0II3yXJkBfbsWO77eeLFy9w6NABD0YjqrqCztP29RcCCA21zkLt6zVDQgh1k2TIi+3evavI7//+u6uULYWoOKW/0OXD6sviDR2ohRBCkiEvdvTooSK/Hz58qJQthai4gpFk9g2rh4IlOdQ8tF4IISQZ8mJHjx4t8vuRI5IMCfdRmsnKW6C1MFmsVQjhDWQ0mZeyWCycPXsWS9ZFgoKCuAScOXPa02EJN4oI8OwwXmX26dL6DJUUnzSTFfB0+bmKGq9DjTEJ7yLJkJfKyMgg59JFmN2G+YuWcGd+NmfPJmKxWNy2nIDwnEA9rB7oueU4TCYTiYlngJL7DJUWX8HQet9uJvN0+bmKGq9DjTEJ7yPNZF7q3LmzgLUZol69+mg0GnJzc0lOvujhyERVlJR0jvz8fPR6PXFxNezeT6kZysi4JMsXCCFUS5IhL5WUZE2GYmNj8fPzJzLSun7LhQsXPBmWqKJOnToBQI0atWwrvdtDSYYsFgsZGb5dOySEUC9JhrzUuXPnQG/g4tVzGbo6kIhqcQBSM1RFWZccCGTo6kByPLB8ljKsvnbtkkeSlRafn58/BoMB8O2mMk+Xn6uo8TrUGJPwPtJnyEslJZ0DjYZL4S3YlgRto6oBkJyc7OHIhDtYgG1JetvPle3kSWvNUHx8nRKfLyu+4OAQcnJyyMz03X4dni4/V1HjdagxJuF9pGbISyl9hhRRkZGA1AwJ9yhvJFlZgoODAcjMzHBpTEII4SqSDHmpCxfOF/k94r8+QykpkgwJ11P6DJVWM1SWgmTId2uGhBDqJsmQl0pNTS3ye2RkNCDNZMI9yuszVJbg4BBAaoaEEOolyZCXSk1NKfJ75H/NZCkpkgwJ10pPT7NNmujIUhwKpWYoI0OSISGEOkky5KXS0lKL/B71XzOZ1AwJV1M6T0dHVyMwMMjh/ZWaoawsaSYTQqiTjCbzQiaTybrWk95AgNaMRqMhMko6UFd1Bp1nxsoUdJ4uu1aotPikZsjKU+Xnamq8DjXGJLyLJENe6NKldCwWC+Rn88fAFPz8/DlxIgKQmqGqKlAPG+72TDKhJEO1a5feebqs+KRmyLPl50pqvA41xiS8jzSTeSGliSw4OBg/P38AwsOtq4NnZ2eRn5/vqdBEFaQkQ46sVl+YkgxlZPhuMiSEUDdJhrxQSoq183R4eITtMeUDB6Q5QriW0meorJqhsgQHW/sZyWgyIYRaeTwZMpvNzJo1i549e9K2bVuGDBnC8ePHS93+/PnzPPvss1xxxRVcccUVjBw5krNnz5a6fVWk1AyFRcUw8o9ARv4RiEmjt/XNuHQp3YPRCXfINWEr61xT5Z7bnj5DZcVXMLTed2uGPFl+rqTG61BjTML7eDwZmjt3LgsXLmTChAl8++23aDQaHnvsMfLy8krcftSoUSQmJvLpp5/y6aefcvbsWZ566qlKjtqzlDmGwiOi+fOMnj/P6DFbIDTUuiimJENVj9lCkbKuLHl5ebbZzsuqGSorPpmB2nPl52pqvA41xiS8j0eToby8PObPn8/TTz9N7969adasGTNnzuTcuXOsWrWq2Pbp6els3ryZxx57jBYtWtCiRQuGDh3Knj17bE1HvkCpGQoPCy/yeGhoKODbC2IK1zp9+hQWi4XAwCCioqKdOoZ0oBZCqJ1Hk6H9+/eTmZlJ165dbY+FhYXRokULNm/eXGz7gIAAgoKCWLx4MRkZGWRkZLBkyRLq1atn60DsC9LSrBPghYWHFXlcaoaEqxUs0BqPRqNx6hgytF4IoXYeHVqv9PWpUaNGkcdjY2NJTEwstn1AQAATJ07kjTfeoFOnTmg0GmJiYvjqq6/QaiuW1+l0Hm8xtFtWlvVDRUl+APQ6ra1mKDMzA73ee65HoZSBN5VFZdEXqv7X67To3fzOVcrgzBllGY46Zd5TZcUX/l/SnpmZ6ZX3pStUtPzU8t6o7PvQHp56b3i6LAQ4+f2sRB69lbOzswHw9/cv8nhAQICt9qMwi8VCQkIC7du359FHH8VkMjFz5kyGDRvGN998Q0hISLF97BUWFuj0vpUtN9f6usXERMF/o+gjIoOJjrZOvGgy5RIZGeyp8CrMm8qisgQUmi0hIjKYIL/KOW9i4mkAGjduWOY9VVZ8NWvGANZmsoiIIKdrmLyZq8rP0+8NT92HZfFUTJ4uC+FaHk2GDAYDYO07pPwMkJubS2Bg8Rtt+fLlLFiwgN9//92W+HzwwQf06dOHH374gYceesjpWNLTszGZzE7vX5mSk1MB0OsDbMlQakomBoN1CPO5cxdISfG+/hk6nZawsECvKovKkp0PYE1GUlMyyXXzH3ylLA4cOARAXFytMu+psuIzGq3foPPz8zl3LoWAgAB3ha1aFS0/tbw3Kvs+tIen3hueLgsB4eGBFW4VUng0GVKax5KSkqhTp2CkSlJSEs2aNSu2/datW6lfv36RGqDw8HDq16/PsWPHKhSLyWTGaPSOG1vpExQYGAzWSiKMJjPBwdZmsrS0NK+5lpJ4U1lUFqOp8M9mjJVUuXLs2FEA4uPrllkmZcXn71/wRSct7RJRUSr4BK1krio/T783PHUflsVTMXm6LARYXDh60KPJULNmzQgJCWHjxo22ZCg9PZ29e/fywAMPFNu+Ro0arFixgtzcXNu3y+zsbE6dOsWAAQMqNXZPunTJ2mcoOiyQLdcXjByT0WRVV6AettxXueWal5fH6dPWPkN169Yrc9uy4tPpdAQGBpGdnUVmZgZRUVGuDlX1PFF+7qDG61BjTML7OFy/tHjxYnJyclxycn9/fx544AGmTZvGmjVr2L9/P6NGjSIuLo5+/fphMpk4f/687Xy33norAM888wz79++3be/v78/tt9/ukpi8QUaG9Y0fEhJa5HEZTSZc6cSJE5jNZgIDg4iJia3QsUJCZK4hIYR6OZwMvfTSS3Tv3p1XX32Vbdu2VTiAESNGcMcdd/DKK69w7733otPp+OSTT/D39ycxMZEePXqwYsUKwDrKbMGCBVgsFh566CEGDx6Mn58f33zzDWFhYeWcqepQhigXT4asv6enSzIkKu7IkSOAtVaoop2eg4KUZMj7+rIJIao+h5vJ/vjjDxYvXsySJUtYtGgRdevWZeDAgdxyyy1Ur17d4QB0Oh2jR49m9OjRxZ6Lj48nISGhyGMNGzbkgw8+cPg8VYXFYrF9u/YPDOWF9db+GG9cmSOT21VhuSZ47a+Csg7Quf+chZOh8pQXX8GSHL5ZM+SJ8nMHNV6HGmMS3sfhmqHY2FiGDh3K8uXL+e6777jyyiv5/PPP6du3L48++igrVqyQVdPdKDs7C5PJ2mMwKCSENSf9WHPSD7MFgoKso8mysrI8GaJwA7OFImVdGRxJhsqLz9cnXvRE+bmDGq9DjTEJ71OhDtRt2rShTZs23H777UydOpUNGzawYcMGIiMjeeihh3j00UfRq2FWripE6Tyt1+sxGIpOP6B84EjNkHAFR5Kh8iiJujK3mBBCqInTmcqpU6dYunQpS5Ys4cSJE9SpU4dnn32WPn368McffzBnzhyOHDnClClTXBmvz1M6R4eEhBTrxxEYKDVDwnWOHrUOq69Tp16FjyX3phBCzRxOhhYtWsSSJUvYunUrBoOB66+/nokTJ9KpUyfbNo0bNyY5OZmFCxe6NFhR+kgyKKgZys3NxWg0Sq2ccFpWVqZtuZy6detW+HhKMpSTIzVDQgj1cfjT8tVXX6Vt27a8/vrr9O/fv9QlMJo2bcrdd99d4QBFUaWNJIOCETtg/QbuSyPshGsdP34cgKioKMLCKr4IsvRnE0KomcPJ0LJly2jUqFGpz589e5a4uDjbnEDCtZShyUotUGH+/v7o9X4YjflkZ0syJJynzDztiv5CgG15nexsSYaEEOrj8GiyAQMGsGvXrhKf27JlCzfccEOFgxKlUz5MlGaHyynfwGU+F1ERx48fA6Bu3fouOZ50oBZCqJldNUPz58+3VW9bLBYWLVrEunXrim23ffv2YivQC9dS+lwEBgZi0MH6u6x9iAz/za0RFBREenqaNEdUMSWVtTsdPWodSVavXj27ti8vPqVmyFfvy8ouP3dR43WoMSbhfexKhvLy8pg9ezYAGo2GRYsWFdtGq9USGhrKk08+6doIRRHKN+vAwEA0Guu6PIUp/YZkeH3VUlJZu9Phw9bV6hs2LL1JvLDy4lNqMn21Zqiyy89d1HgdaoxJeB+7bqEnnniCJ554ArAurvrtt9/Stm1btwYmSlY4GSqJdFQVFWUymWw1Q/YmQ+UpSIYkSRdCqI/D+fT+/fvdEYewk1LjExgYRJ4JJm2yTkP/Upcc/HUy8WJVVVJZu8uZM6fJzc0lICCAWrXisdgxq2958fl6n6HKLD93UuN1qDEm4X3sSobGjh3LU089Re3atRk7dmyZ22o0GiZNmuSS4ERxhWuGTBZYdtQPgBc65/z3uFIzJMlQVVJSWbvL0aOHAes6gDqdDqPRXOH4fL3PUGWWnzup8TrUGJPwPnYlQxs3buShhx6y/VyWiq5uLcpWXjNZQc2Qb37oiIo7fNiaDDVp0sRlxywYWu+bNUNCCHWzKxn67bffSvxZVL6CZEiG1gv3OHLE2nm6cePGLjtmQcd+SdKFEOrj8DxDJdm1axe//vor6enprjicKEPBPEOldaAOLrKdEI46ckRqhoQQvsXhZOj8+fM8+OCDzJkzB4AvvviCu+++mxEjRnDttddy8OBBlwcpCtg7mkxqhoQzLBaLLRlybc2Q9b40GvPJz89z2XGFEMIVHE6GpkyZwpEjR2jTpg1ms5kPP/yQK6+8ksWLF9OoUSOmT5/ujjjFf2RovXCns2cTyc7OQq/X2z3hoj0K369SOySEUBuHk6ENGzbwwgsv0LNnT3bs2MGFCxd48MEHadasGY8++ihbtmxxR5ziP+X3GZJmMuE8ZSRZ3br18PPzc9lx/fys6+aBJENCCPVxeJ6hrKws4uLiAFi7di3+/v507doVsC4UarFnUhLhtJycgrXJDDpYdbt1FfvCy3GANJNVNSWVtTsoI8kcnWzRnvgCAwO5dCnfJ2stK6v83E2N16HGmIT3cTgZqlevHlu2bKFt27asXLmSLl26EBAQAMDSpUtdWrUuirt8OY5IQ9HkU4bWV00llbU7KCPJGjRo6NB+9sQXFBTEpUvpPllrWVnl525qvA41xiS8j8PNZI8//jizZ8+mW7dunDx5ksGDBwNw5513snTpUh555BGXBymsLBZLuX2GZNJFUREHDiQA0Lix60aSKXx94kUhhHo5XDPUv39/qlevztatW+nSpQvt2rUDoFOnTowYMYKePXu6Okbxn/z8fEwmE1CwHMfMbdZauVEdci9bjkM+cKqSksra1UwmE4cPW0eDNm3azKF97YnPl4fXV0b5VQY1XocaYxLex6m1fjt27EjHjh2LPPbCCy+4JCBRusLNC4GBgeRbYNFBfwBGtM8FpM9QVWUqoaxd7cSJ4+Tk5GAwBFK7dh2H9rUnPl9en6wyyq8yqPE61BiT8D5OJUN//vknv//+O9nZ2ZjNRdctkrXJ3Ef5EPHz80Ov15NvLL5NYGDBaDKLxSLLowi7FW4i0+lc//XaYJAmXCGEOjmcDH388cdMmzaNgIAAoqKiin3Yyoev+5Q3rB4KmslMJhO5ubkYDIZKiU14vwMH9gPu6S8EBTVDOTm+VzMkhFA3h5Ohr7/+mgEDBjBx4kT8/f3dEZMoRXlLcQC2kX0Aubk5kgwJuynJUJMmjvUXspd0oBZCqJXDo8kuXrzIHXfcIYmQB5Q3kgyUJjSZ3E44Tmkmc7TztL18uc+QEELdHE6GWrRoIeuPeYg9yVDh56U5QtgrLS2Vc+fOAtCokXuayQqmfZCaISGEujjcTPbSSy/xzDPPEBQURNu2bUv8YK5Zs6ZLghNFFTSTld5nCMBgMHDpUjo5OTmVEZaoApQmspo1axEaGuqWcxQMrZdkSAihLg4nQ/feey9ms5mXXnqp1M7S+/btq3BgorjLa4YCdLD05gzbzwqDQfnQkWSoqvh1+U80WbeWyMhITnW5n8aNHFsuozx79uwBoHnzFk7tX9q9WFhBjaXv3Zf2vD7eQI3XocaYhPdxOBmaMGGCO+IQdrg8GdJqoGZI8WnoAwMN/20v38Crgu+/X8iECeNtv//75wo++uhzl/bt2bPnXwBatmzt1P6l3YuFKUm6LyZD9rw+3kCN16HGmIT3cTgZuu2229wRh7CDkgwpHyql8eUPnarm3LlzzJgxBYD77nuQ3bt3smvXTl56aTQLFnxfZPRgRSjJUKtWbVxyvJIoIxulL5sQQm0c7kANkJeXx4IFCxg+fDh33303hw8f5ptvvmHXrl2ujk8UcnmfoXwTvLs9gHe3B5BvKthOOlBXHd9++xVZWVm0btsR/2vG0+KJb4isVp3Dhw/y7bdfu+QcycnJnDlzGoDmzVs6dYzS7sXCCpIh30vS7Xl9vIEar0ONMQnv43AylJyczMCBA5k4cSLHjx9n165d5OTksHbtWgYNGsT27dvdEaegeDOZ0QJf7vPny33+GAvVEvvyh05Vkp+fx08//QDA/YMe4av9AXx/LJwnnhoFwPz5H7pkNue9e3cDUK9efac7T5d2LxZWUGPpe0m6Pa+PN1DjdagxJuF9HE6GpkyZQmZmJitWrOCnn37CYrHefe+++y6tW7dm1qxZLg9SWNk7tL6gA7XvfehUJZs3byQlJZlq1WLo3qOX7fH+/W+idu06pKamsnz5zxU+T0X7C9lLknQhhFo5nAz9/vvvjBw5krp16xYZTRYQEMCQIUNso1KE69k7tF6ayaqGdev+AKBXr6vQ6wu69+n1eu6++34AFi782vaFxFkFyVCrCh2nPJKkCyHUyuFkKDc3l4iIiBKf0+l05OfnVzQmUQoluSm/Zki+gVcFBclQn2LP3XLL7QQGBnH48EG2bNno9DksFgu7d1dOzZAyylHuSyGE2jicDLVu3ZoFCxaU+NzPP/9Mq1bu/XbpyxxtJpOaIe+VmHiGM2dOo9Pp6NLlimLPh4aG0r//TQAsXbrY6fOcOHGc5OSL+Pn50ayZc3MM2UtGOQoh1MrhZGjkyJH8+eef3HLLLbz77rtoNBqWLVvGE088wcqVKxk2bJg74hQ4kgwp8wxJMuStduzYBkDTps0JCgoucZsBA24FYPXqX52eU2r79q0AtG7d1mXD9EtTeGh9RZv2hBDClRxOhjp16sSnn35KYGAgH3/8MRaLhc8++4zz588zb948unbt6o44Bc70GZJv4N5KSYbatetQ6jZt27andu06ZGdn8dtvq506z9atmwFo376jU/s7QqkZslgs5OXluf18QghhL4cnXQTo3LkzCxcuJCcnh7S0NEJCQggOtn57NRqNRTp7CtcpaTmOb/tn2n5WSDOZ99u1awdQkAyVVNYajYYbb7yZDz6YzbJlS7jxxpsdPo9SM9ShQ6cKxVvavVhkm0I1Tzk52W6viVITe14fb6DG61BjTML7OFwzdPXVV7N/v3VRR4PBQPXq1W2J0K5du+jevbtrIxQ2JS3H0TDCTMMIM9pCy8QVNJNJzZA3ys/P59Chg0DBCK/Syvqmm24BYOPGvzl37pxD5zl37hynTp1Eq9XStm37CsVcWnyF+fn5odf7Ab5Xa2nP6+MN1HgdaoxJeB+7qnCWLVuG0WgE4PTp06xatcqWEBX2999/y2gyNypIhspbtV6pGZK1ybzRsWNHyM/PJyQkhJo1a5W5bXx8bdq378j27Vv55ZdlPPzwI3afZ+PGvwBo1qwFISEhFYrZXgaDgYyMfKm1FEKoil3J0O7du/nss88Aa9X8nDlzSt128ODBLglMFFfQZ8ia7OSbYP4efwCGtMzD778qYuV5qRnyTgcOJADQpEkz21xepZU1WGuHtm/fys8/L+ahh4YUmf+rLH/9tR6AK6/sUeGYy4qvsMBAAxkZl3zu3rT39VE7NV6HGmMS3seuZOjZZ59l0KBBWCwWrrnmGmbPnk3z5s2LbKPT6QgJCam0b5i+xmg02mrdCi/H8dFua7+LB1vk4ffftjKfi3dLSNgHQJMmTW2PlVbWAP36Xc/bb0/g8OGDJCTss2uIvMlk4p9/rDVDrkiGyoqvMF/tz2bv66N2arwONcYkvI9dyZC/vz+1almr69esWUNsbCx+fnLLVabCw+TtbybzrQ+cquLw4cMANGrU2K7tw8LCuOqqq/n111/4+ecldiVD+/btJTU1lZCQEFq3bluheB0hE4IKIdTI4WFftWrV4ujRo6xdu5asrCzMZnOR5zUajcw15AZKE5lOpys3EZUPHO924sRxAOrWrW/3PjfddAu//voLK1b8zDPPPF/uPbJ27W8AdOnSrVK/2Mi0D0IINXI4GVq8eDFjx44tddI0SYbco3B/ofL6hCg1RzLpovfJz8/jzJlTANStW8/u/bp1605UVDTJyRf566/19O7dt9RtLRYL//vfCgCuuebaCsXrKKm1FEKokcND699//32uvPJKfv/9d/bt28f+/fuL/Nu3b5874vR59s4+DTLTrzc7ffoUJpOJwMAgYmJi7d7Pz8/PtjzH999/W+a2CQn7OXHiOAEBAfTuXXzdM3eSWkshhBo5nAydOXOGRx99lBo1atg9akVUnJIMGQxl9xeybiMz/Xqr48ePAdZaIUffX3feeS8AGzasszW1lUSpFerRoxfBwZU74KFg5XqZ9kEIoR4OJ0P169cnMTHRHbGIMlw+rL4syrdvkOYIb1M4GXJU3br16NGjNxaLhYULvy5xm7y8PJYs+RGAG264ydkwnSY1Q0IINXK4z9Bzzz3Hm2++Sa1atWjXrp1PTanvSSU1k/lr4fPrMm0/K/R6PX5+fuTn55OdnU14eERlhioqoLRkqLSyvtx99w1iw4a1/PDDtzz00CNUr169yPOrVq0kOfkiMTGxZfYrcpS98RXUDPlWkm7v66N2arwONcYkvI/DydDEiRO5ePEiDz/8cInPazQa9u7dW9G4xGVKSoZ0WmgZbS5xe4MhkPx8menX25SWDJVV1oV169bdNiP1vHmzee21N23PGY1GPvxwLgB3332fS0eR2Rufr9YM2fv6qJ0ar0ONMQnv43AydPPNji8GKSrO3qU4FAaDgUuX0n3uQ8fbnTx5AoA6deo6tb9Go2HEiGcZPPh+fvrpe2688WY6duwMwJdffsbx48eIjIzk3nsfcFnMjvDVZEgIoW4OJ0PDhw93RxyiHCX1Gco3wTcJ1m/39zbNLzINfUFzhHzoeIv8/HySkqyLrV6+JllZZX259u07csstt7NkyY8899zTvPHGZJKSkpgz5x0ARo583uUdp+2Nr2CeId+qsXSk/NRMjdehxpiE97ErGdq8eTMtWrQgODiYzZs3l7t9586d7Q7AbDYze/ZsFi1aRHp6Oh07dmTcuHHUrVvyN+P8/HxmzZrF4sWLuXTpEq1ateLll18utjxIVVNSM5nRArN2WL9p39kkv8g09AXrk8moHW+RlHQOi8WCv78/UVHRRZ4rq6xL8sILL3Po0EH27PmXESOetD1+0023cMstt7s6dLvj89WaIUfLT63UeB1qjEl4H7uSoUGDBvHdd9/Rpk0bBg0ahEajKTZ/jfKYRqNxaK6huXPnsnDhQiZPnkz16tWZOnUqjz32GMuWLcPf37/Y9uPHj+e3335j8uTJ1K5dm5kzZ/LYY4/xyy+/EBoaavd5vY0j8wyB737oeLMzZ04DEBdX8WkrgoKC+eCD+cyaNYNff12Bn58/d911L4888rhHp8SQSReFEGpkVzL0xRdf0LBhQ9vPrpKXl8f8+fMZPXo0vXv3BmDmzJn07NmTVatWceONNxbZ/uTJk3z//ffMmzePq666CoBJkyZx6623snv3brp16+ay2NSmoJnMvj5Dvtoc4c3OnrVOWVGjRq1ytrRPaGgoL788jpdfHueS47mCJOlCCDWyKxnq0qVLiT9X1P79+8nMzKRr1662x8LCwmjRogWbN28ulgxt2LCBsLAwevXqVWT73377zWUxqZXUDFV9iYlnAKhZs6aHI3EfqRkSQqiRwx2oXens2bMA1KhRo8jjsbGxJU7seOzYMWrXrs2vv/7Khx9+yLlz52jRogUvvviirebKWTqduieoyM21JjXBwUHo9dZY9YVaKvU6LfpCpRkUFGTbT9le7ZQyUHtZuMvZswXJ0OVlVlZZu4OjZWFvfMHB1vsyJ8d77ktXqGj5qeW9Udn3oT3U/t4Q7uPKFn+P3spKbcflfYMCAgJIS0srtn1GRgYnTpxg7ty5jBkzhrCwMN5//33uu+8+VqxYQXR0dLF97BUWZl+Ni6fk5+cCUK1aJJGRwQAE5Bc8HxEZTFChnoPh4db+UxqNyba9t1B7WbjLhQtJADRqVL9YmZVV1u5kb1nYG19sbCQAeXm5XndfVoSrys/T7w1P3YdlUft7Q3gHjyZDSlNOXl5ekSUkcnNzS2wO8vPz49KlS8ycOdNWEzRz5kx69+7NTz/9xKOPPup0LOnp2ZhM6p24Kz09AwCzWUtKinW21ex8AOsHSmpKJrmF/ghotdaiTUlJt22vdjqdlrCwQNWXhbucOHESgPDw6GJlVlZZu4OjZWFvfPn/fXBlZWV5zX3pChUtP7W8Nyr7PrSH2t8bwn3CwwPRal1TQ+fRZEhpHktKSqJOnTq2x5OSkmjWrFmx7ePi4tDr9UWaxAwGA7Vr1+bUqVMVisVkMmM0qvfGzsqydqAOCDDY4tRa4IOrs/772YzRWLC9v7/Btp+ar6skai8Ld7BYLLY+Q7GxNYpdf1ll7U72loW98fn5WWuBs7NzfKqMXVV+nn5veOo+LIva3xvCfS4b1F4hHk2GmjVrRkhICBs3brQlQ+np6ezdu5cHHig+Q26nTp0wGo38+++/tG7dGrD2PTh58mSxztZVjdLh9PLlODpVN5W4fcE8Q9JR1RukpCSTm5uLRqMptp4YlF3WamBvfL7agVrt5WcvNV6HGmMS3seuZKhv3752z02i0WhYvXq1Xdv6+/vzwAMPMG3aNKKioqhVqxZTp04lLi6Ofv36YTKZSE5OJjQ0FIPBQKdOnbjyyit54YUXeOONN4iIiGDWrFnodDpuueUWu87prZSkxmCwfzkOkNFk3kKZeToqKtpWe1IVKfdlfn4+RqMRvRp64AohfJ7dQ+vdNVHbiBEjMBqNvPLKK+Tk5NC5c2c++eQT/P39OXXqFFdffTWTJ0/m9tuts+a+9957TJs2jeHDh5OTk0OHDh344osviIqKckt8alHSchxGM/x4yNpAfnujfAoPzilYjkNmoPYG58+fByAmJrbE58sqazWwNz7lvgRlpKNrlwVRK7WXn73UeB1qjEl4H7uSobfeesttAeh0OkaPHs3o0aOLPRcfH09CQkKRx0JCQhg/fjzjx493W0xqVNI8Q/lmmLLF+k17QIPLkyGlZii38oIUTjt/3jqSLCYmpsTnyyprNbA3voCAANvPOTk5Ll8jTa3UXn72UuN1qDEm4X2crqO+cOEC+fn5tmU5zGYz2dnZbNmyhXvvvddlAQowmUzk5lqTGvtXrffNvhneSkmGqlUruWaoqtBoNBgMgeTkZEsTrhBCNRxOhvbv38+zzz7L0aNHS3xeo9FIMuRihRMae2egDgyUPkPe5MIFpZms5JqhqiQw0EBOTrZ07hdCqIbDydCUKVNIT0/nhRde4Pfff8ff358+ffqwbt061q1b59K1y4SV8qFh/VZtKGdrq4KaIUmGvIFSMxQbW7VrhkC5N1Pk3hRCqIbDras7d+5k5MiRPPzww9x4441kZWVx33338cEHH3DNNdfw5ZdfuiNOn1a4v5C9HdkL+gzJt29vkJTkG81kUHBvSud+IYRaOJwM5eXlUb9+fQAaNGhQpIPz7bffzo4dO1wWnLAqSIbs6y8EUjPkbXypmUxJhpR+cEII4WkOJ0M1a9bk5EnrsgF169YlIyPDNvuzv79/iWuKiYopaVh9eaRmyHuYTCYuXrwAlD60viqRzv1CCLVxuM/Qtddey7Rp0wgMDOT666+nQYMGzJw5k6FDhzJ//nxq167tjjh9WknD6gH8tPBO7yzbz4UVnnTRYrG4bZ4oUXEpKcmYTCY0Gg1RUSUvNlxWWauBI/H54oSgai8/e6nxOtQYk/A+DidDw4cP5/jx4/zwww9cf/31jB07luHDh7NixQp0Oh0zZsxwR5w+rbRkSK+FHrVKW47D2qRmMpkwGvOr9KzG3k5pIouOrlbqjMxllbUaOBKfL9YMqb387KXG61BjTML7OJwMBQQEMGvWLPL/W366Z8+e/Pzzz+zZs4eWLVsWWXBVuEZBM5kjfYYKRp1lZ+dIMqRiSudpX+gvBAUTL8qEoEIItXB60kU/Pz/bz3Xq1JEkyI1KqxkymuGXY9YivKGescjMq35+fuj1eoxGIzk52YSFhVVavMIxSn+h6OjSk6GyyloNHIlPuY99qWZI7eVnLzVehxpjEt7H4WQoOzubDz74gN9//53s7GzMZnOR5x1ZqFXYp2CR1qLJUL4ZXv/H+tg1dS4V+yNgMBjIyMjwqb4Z3ig5+SIA0dEl9xeC8sva0xyJzxf7DKm9/OylxutQY0zC+zicDE2cOJEffviBLl260Lx5c7RaufPczZmh9WBNniQZUr/k5GSAUjtPVzW+2GdICKFuDidDv/76K6NGjWLo0KHuiEeUwJmh9SDD672FUjMUGRnp4Ugqhy/WDAkh1M3hah2j0UibNm3cEYsoRWl9hsojHzrewddqhgIC5L4UQqiLw8lQjx49WLdunTtiEaVQanYcT4akOcIbpKRYa4aioqI8HEnlkCRdCKE2DjeT9e/fn3HjxpGcnEzbtm1L/IC+9dZbXRGb+I8zQ+uh8BpQ8qGjZr5WMyTJkBBCbRxOhp555hkAFi9ezOLFi4s9r9FoJBlyMeebyaRmSO3MZjMpKdZkKDLSN5IhXxxaL4RQN4eToTVr1rgjDlGGspbjeKtHtu3nyxXUDMmHjlqlp6dhMllnz42KKr0DdXll7WmOxOeLNUNqLz97qfE61BiT8D4OJ0O1atVyRxyiDFlZJTeT6bVwTR1jqfv54oeOt1GayEJDw8qcJby8svY0R+JTOlDn5vrOfan28rOXGq9DjTEJ7+NwMjR27NhSn9NqtQQFBVGvXj369+/vM0OF3c3ZZjJpjlA/pYnMVzpPgyTpQgj1cTgZOnv2LNu2bSM3N5datWoRExPDxYsXOXXqFFqtlmrVqnHx4kXef/99vvnmG1nF3gVKm2fIaIY/TlmL8Kr44tPQy4eO+ilzDJXXebq8svY0R+Lzxb5sai8/e6nxOtQYk/A+Dt82ffr0ITQ0lIULF7JmzRoWLlzIqlWr+PHHH6levTpPPfUUf/75J/Hx8bKCvYuUVjOUb4YXNwTy4oZA8s3F9/PFDx1vUzCSrOyaofLK2tMciS8w0PdGOaq9/OylxutQY0zC+zicDH322Wc899xztGvXrsjjzZs3Z+TIkcybN4/w8HCGDBnCxo0bXRWnT3N+OQ6pGVI7e2uGqpKCJF3uSyGEOjicDKWkpJT6LTY8PJyLFwsmkFM6/grnmc1mmXSxClNqhiIjfafPUEBAAABGYz5Go3R8FUJ4nsPJUIsWLfj444/Jy8sr8nheXh7z58+nefPmAOzZs4caNWq4JkofVnjEjSzHUfUUzD7tezVD4FsjyoQQ6uVwB+rnn3+ewYMH07dvX6666iqio6O5ePEia9euJSMjg48//pgtW7YwY8YMnnzySXfE7FMKzxFU+EPEHsr2vtQ3w9v42uzTUFAzBNZEPTg4xIPRCCGEE8lQ+/bt+eGHH5g3bx7r168nOTmZuLg4evbsyRNPPEGdOnX4+++/GTFiBI888og7YvYpSjJkMBjQah2ryFM6qkozmXr52or1YJ2l3mAIJCcnW2othRCq4HAyBNCwYUOmTJlS6vPdunWjW7duTgclCpQ2rN4e0kymfr5YMwRgMARIMiSEUA27kqHFixfTu3dvIiMjS1yP7HKyNpnrFNQMFU+G/LQwrmtZy3FIB2o1y8/PJz09DSi/A3V5Ze1pjsZnvTdTfebeVHv52UuN16HGmIT3sSsZevHFF/nuu++IjIzkxRdfLHNbWajVtcoaVq/XwoAGshyHt1ISIY1GQ3h4eJnbllfWnuZofL52b6q9/OylxutQY0zC+9iVDK1Zs4aYmBjbz6LyVKyZTGqG1Cw1NRWwrkum0+k8G0wlk7mGhBBqYlcyVHhx1pIWajUajWRkZBAREeGywIRVWeuSGc3wT6L1Q7RrDZMsx+FllJqh8mqFoPyy9jRH4yu4N30jUVd7+dlLjdehxpiE93H4tjEajcyePZulS5cC8Pfff3PllVfSrVs3HnroIdLS0lwepC8rKxnKN8Mza4N4Zm1Qmctx5ObmYjbLPPVqo9QMhYdHlLtteWXtaY7Gp6xcn5OT6+bI1EHt5WcvNV6HGmMS3sfhZOi9997j/fff59KlSwBMmjSJyMhIxo4dy4kTJ5g+fbrLg/RlBc1kji3FYd3HYPtZJrdTn7S0VMC+ZKiqkWkfhBBq4nAytGzZMp599lnuv/9+jhw5wsGDB3nyySd58MEHGTVqFL/99ps74vRZZdUMlUf59m09jiRDaqPUDPli87I04Qoh1MThZCgpKYm2bdsCsG7dOrRaLb169QIgLi7OVmMkXKMiyZBWq/W5vhnexJdrhqRzvxBCTRxOhmJjYzl16hQAq1atonnz5raFW7dv305cXJxrI/Rxzq5Yr5Bv4OolNUNyXwoh1MHhZOjmm29m8uTJPPLII2zdupWBAwcCMHHiRN577z0GDBjg8iB9WUWG1oN8A1czX64ZUppwpS+bEEINHF6OY8SIERgMBjZv3sxzzz3HfffdB8C///7LkCFDeOqpp1wepC+rSDMZyDdwNStIhsofWl/VKPel9GUTQqiBw8mQRqPh8ccf5/HHHy/y+MKFC10WlChQVjLkp4UxnXJsP5dEaobUy5GaIXvK2pMcjc/X7ku1l5+91HgdaoxJeB+nFmoVlae85TjuapJf5v5SM6ReSjJkT58he8rakxyNr2BovW/cl2ovP3up8TrUGJPwPpJHq1zF+wxJc4QaWSwWhyZdrGp8rWZICKFuUjOkcsqHRUmr1pvMsP28dRr69jEmdLJyvdfIzs4iP9/6bdaemiF7ytqTHI0vICAAsM6O7gvUXn72UuN1qDEm4X0kGVK5sprJ8szwxBrr4+vvukRgicmQbzVHeAulVsjPz8+uaRPsKWtPcjQ+X0vS1V5+9lLjdagxJuF95LZRuYqOJlP285UPHW9RuL+QRqPxbDAeIEm6EEJN7KoZGjt2rEMHnTx5slPBiOJc1WdIPnTURVnQOCwswrOBeIhSMyR92YQQamBXMrRx48YivyclJWE0GqlZsyYxMTGkpqZy8uRJ/P39adasmVsC9UUWi8UF8wxJzZAaFdQM+d4cQyALtQoh1MWuZKjw4qs///wz06ZN47333qNNmza2xw8dOsSwYcO44YYbXB+lj8rLy8NsNgOyHEdVUzCSLNKzgXhIwQzUvtGBWgihbg73GZo5cybPPfdckUQIoFGjRowcOZKPP/7YZcH5OqWJDFwxtF6+gauJLy/FAcgCwkIIVXE4GUpJSSE0NLTE5/R6PVlZWSU+JxynJDB+fn7o9c4N/CtoJpOaITXx5UVaoeC+zMvLw2QyeTgaIYSvc/gTtl27dsyePZt27doRGVlQxZ+UlMR7773HFVdc4dIAfVl5K9brNTCiXY7t55JIM5k6OVozZE9Ze5Kj8Sn3JVgXaw0KCnZXaKqg9vKzlxqvQ40xCe/jcDL0wgsvMGjQIPr27Uv79u2JjIzk4sWLbN++nfDwcN5//313xOmTyhtJ5qeDB1uUtxyHdKBWI2U0mb01Q/aUtSc5Gp8y6SJATk5ulU+G1F5+9lLjdagxJuF9HG4ma9asGcuWLeOee+4hMzOT3bt3k5OTw5AhQ1i6dCnx8fHuiNMnVXQkmXVfqRlSI6VmKCzMN0eTabVaW0IkiboQwtOc6ohSvXp1XnjhBVfHIi6jJENBQSU3k5nMsD/Fms82izTLchxexNE+Q/aUtSc5E5/BYCA3N9cnEnW1l5+91HgdaoxJeB+nkqG8vDy+//57/vrrL86fP8+kSZPYtGkTLVu2LDbKTDivvJqhPDM89D9r84Isx+FdHO0zZE9Ze5Iz8RkMgaSlpflEoq728rOXGq9DjTEJ7+PwbZOcnMzAgQOZOHEix48fZ9euXeTk5LB27VoGDRrE9u3bHTqe2Wxm1qxZ9OzZk7Zt2zJkyBCOHz9u174///wzTZs25dSpU45ehlfIysoEwGBwbo4h674ymkxtTCYTly6lA747mgwkURdCqIfDydCUKVPIzMxkxYoV/PTTT1gsFgDeffddWrduzaxZsxw63ty5c1m4cCETJkzg22+/RaPR8Nhjj5GXl1fmfqdPn+b11193NHyvonxjrkifIZnPRX3S09Nt7xtf7TMEBRMvSjIkhPA0h5Oh33//nZEjR1K3bt0iC0wGBAQwZMgQ9uzZY/ex8vLymD9/Pk8//TS9e/emWbNmzJw5k3PnzrFq1apS9zObzYwePZqWLVs6Gr5XcUUHavn2rT5paSkAhISE4Ofn5+FoPEfuTSGEWjicDOXm5pZata/T6cjPt3+I4/79+8nMzKRr1662x8LCwmjRogWbN28udb8PPviA/Px8Hn/8cbvP5Y3Km2fIHkozmdFodKhshPsow+p9dfZphZLkS62lEMLTHO5A3bp1axYsWEDv3r2LPffzzz/TqlUru4919uxZAGrUqFHk8djYWBITE0vcZ9euXcyfP5/vv/+ec+fOORB52XQqHIKQm2v9kAgODkKvLx6f3lLoZ52WkiapDg0tSKSMxjwCAwOKb6QSShmosSxcSekvFB4eUWK5lsSesnYlR8vCmfiUZCgvL9fu18FbVbT81PLeqOz70B5qf28I99G4cJJNh2+bkSNH8vDDD3PLLbfQu3dvNBoNy5Yt47333mPDhg0OrU2m1Hz4+/sXeTwgIMD27bmwrKwsnn/+eZ5//nnq1avn0mQoLMz5pih3MZmsNTlRUeFERhaflC6gUEVPRGQwQSW0uFgsQeh0OkwmE/7+lHgctVFjWbhSfr51Ms2YmGi7y8OesnYHe8vCmfjCwkIA0GrNXnFfVoSrys/T7w1P3YdlUft7Q3gHh5OhTp068emnnzJ9+nQ+/vhjLBYLn332GS1atGDevHlFmrzKo/QZyMvLu2x6/twS+8lMmDCBevXqcc899zgadrnS07MxmcwuP25FpKam//eTnpSUzGLP55vg8TbWd35GWj65upKPYzAYyMzM5Ny5ZAICSl5XTg10Oi1hYYGqLAtXOnPGmsQHB4eWWK4lsbesXcXRsnAmPq3W+ucnJSXd7tfBW1W0/NTy3qjs+9Aean9vCPcJDw9Eq3VNDZ1TFYqdO3dm4cKF5OTkkJaWRkhICMHBjn+zU5rHkpKSqFOnju3xpKQkmjVrVmz7H374AX9/f9q3bw9gW+Dxpptu4uabb+aNN95w5nL+O5YZo1FdN3ZWlrXmLCDAUGJsGuCxVrnWXyxgNJZ8HIMhkMzMTDIyslR3jSVRY1m4UnKytQN1WFi43ddpb1m7mr1l4Ux8/v7WL0CZmd5xX1aEq8rP0+8NT92HZVH7e0O4j8VS/jb2cjgZGjt2LAMHDqRTp04YDIYiNTr79u1j+PDhrFmzxq5jNWvWjJCQEDZu3GhLhtLT09m7dy8PPPBAse1//fXXIr/v3LmT0aNH8+GHH9KwYUNHL0X1ylubzF7SUVVdHJ1wsaqS0WRCCLVwOBn66aef+Pnnn3n11Ve5++67izyXl5fHmTNn7D6Wv78/DzzwANOmTSMqKopatWoxdepU4uLi6NevHyaTieTkZEJDQzEYDNStW7fI/koH7Jo1axIdHe3opaheectxmC1wNM1aRVg/3IxWVq73Co4uxQH2l7WnOBOfL92Xai8/e6nxOtQYk/A+TjW29e7dm3HjxvH666/bmqqcNWLECO644w5eeeUV7r33XnQ6HZ988gn+/v4kJibSo0cPVqxYUaFzeKusLKVmqORkKNcEd68I5u4VweSWUQyyPpm6pKc7PrTe3rL2FGfi86UaS7WXn73UeB1qjEl4H6f6DD3++OPceOONvPTSSxw6dIj33nvP6WUFdDodo0ePZvTo0cWei4+PJyEhodR9r7jiijKf93YFzWTOzzMEBd/As7Or/jdwb6DUDPl6M5myan1ubq6HIxFC+Dqnu2H379+fr7/+mhMnTjBw4EASEhLQq2HSiSqkvGYye0nNkLpInyEruS+FEGpRoTFpLVu25Pvvv6datWrcc889/Pnnn66KS1CwUGvFkyHf6ZvhDZRkyJcXaQW5L4UQ6lHhAfoxMTF8+eWXXHvttcyYMcMVMQms66+5rmZIFmtVi5ycHNuHv9QMWWuGlPtcCCE8xeF2reHDh1O9evUij/n7+/P222/TrFkzfvvtN5cF58tyc3NsK5u7bmi9fAP3NKVWSK/XExIS4tlgPMxgsPYZkvtSCOFpTiVDpRk8eDCDBw+uUEDCqvC3ZeUbtLOkOUI9lM7TYWHhaFy5sI4XUu7r3Fy5L4UQnmVXMvTggw8ybtw4GjZsyIMPPljmthqNhs8//9wlwfmywsPqS5tuXK+BQc3zbD+XpqA5Isu1QQqHpaenAo73F7K3rD3Fmfh8KUlXe/nZS43XocaYhPexKxmyFJrz2lLO/NflPS/sU5AMlV4r5KeDke3LH5as9DmSvhmeV7hmyBH2lrWnOBOfL40mU3v52UuN16HGmIT3sSsZ+vLLL0v8WbiPUotT0c7TUDBPkZJgCc+RkWQFfKlmSAihbjIxkEopiUtZyZDZAmczrfXCccGWUqehV2qXJBnyPGcnXLS3rD3FmfiUZCg3Nxez2eyy1afVSO3lZy81XocaYxLex65kqFmzZnZ39tRoNOzdu7dCQQn7Zp/ONcHNS60jktbfdYnAUkqzoJlMkiFPc3bCRXvL2lOcia/wIs+5ubkVHjWpVrm5uUyeNo1l9d8CYFrdVVzVvauHo3KOGu9DNcYkvI9dt82wYcN8fuRLZVP697jiAyIoKBiQmiE1cGaR1qoqIKAgGcrJyamSyZDFYuH550ew/p9N6EdZk6Fnnx3G7JnvcuWVPTwcnRBCYVcy9PTTT7s7DnGZgmay4AofS6kZUma0Fp7jzCKtVZVOp8Pf35+8vLz/OlFHejokl1uy5EfWr19LQEgkyhqiZrOZl18ew9Kl/yM0NNSj8QkhrJyqUMzJySEhIYH8/Hzb6DFlxuQtW7bw/PPPuzRIX+SqpTigoKlNmsk8T2qGijIYAsnLy6uSIx2NRiMffDAbgEcffYJ5/z1et259jh/ay/z5HzJy5HOeC1AIYeNwMvTPP/8wcuRI0tPTS3w+ODhYkiEXcG0zmYwmUwulz5CjQ+urqqCgINLT06pkor5mza+cPZtIZGQUd955D/OWWB8fNmwkY0Y9znffLeCRRx73+ZnIhVADh4dvvPPOO0RERDBr1iyuueYarr32Wj744APuu+8+NBoNH330kTvi9DmFJ12sqMLJkMwD5VkytL6oqjzScenSxQDceec9BAQE2B7v0aMX9es3IDMzk59//slD0QkhCnM4GUpISODpp5+mX79+9O3blzNnztC7d29effVV7rjjDt5//313xOlzXDnPkHIMi8VCbq5MTuYpZrOZtDTpM1RYQRNu1WomS01NYePGvwDo3/+mIs9pNBruuuteAJYv/7nSYxNCFOdwM5nZbCYuLg6A+vXrc+jQIdtz1113HS+88ILrovNh9qxYr9PAnY3zbD+XpvDaZllZWUWGNIvKk5FxCbPZDEBEhGOdhe0ta09xNr6qOu3DunV/YDQaadKkKfXqNSDPVPT1ufbaG5g6dTK7d+/i9OlT1KoV7+GI7aPG+1CNMQnv43AyVKdOHRISEujUqRN169YlOzubw4cP07BhQ4xGI5mZMmLJFexpJvPXwQudy6/p0Wq1BAYGkZ2d9d+HTpSrwhQOUDpPBwYG4e/v79C+9pa1pzgbX1VtJtu48W8Aeva8Cij++kRHV6Nz5yvYuPFvfv31FwYPfswTYTpMjfehGmMS3sfhZrIBAwYwbdo0vvzySyIjI2nVqhUTJkzgt99+Y86cOTRq1MgdcfocV44mK3wcGV7vOdJfqDhl6oiqVDNksVjYtOkfAK64olup21177Q0ArFq1slLiEkKUzuGaoUcffZSUlBR27doFwLhx43jsscd46qmnCAkJkT5DLmJPzZDFAqm51nrhiAALZc2LGRQUxMWLVe8buDepyLB6R8raE5yNryqOdDx27Cjnzyfh7+9PmzbtgJJfn169rgJg3769JCcnExWl/hpbNd6HaoxJeB+HkyGtVlukX1Dr1q1ZvXo1R44coUGDBjJM1EWUlbzLGlqfY4J+P9o3DX1VbY7wJqmpKYBznacdKWtPcDY+pT9bVbovlVqhdu06FCxGW8LrExMTS5MmTTlwIIFNm/7m+utv9FjM9lLjfajGmIT3ccnKiCEhIbRp00YSIReyZ6FWR8jEi54nEy4WV9CBuuqMJtu2bQsAnTtfUe62Xbt2B+Dvv/90a0xCiLI5nEOfOXOGN954g23btnHp0qViz8tCra7h6mSoKjZHeJuCPkNVb9kJZyk1llUpSd+7dzcArVq1KXfbbt2688UX8/n77z+xWCyyBqQQHuJwMvTyyy+zY8cOBg4cKN9w3ahgaH3F1yazHkeSIU+rSDNZVVXV7sv09DROnjwBQIsWLcvdvn37jvj5+ZGUdI6TJ09Qp05dd4cohCiBw8nQjh07ePXVV7n99tvdEY9AWedN6UDtmpW8lWayqvKh442UZrLISKkZUlS10WR79+4BID6+tl1Jr8FgoEWLVuzcuZ0dO7ZJMiSEhzjcZygmJobwcFlXyZ2UztPgmuU4oOBDR4bWe47STCY1QwWqWsd+pYmsRYtWdu/Tvn1HALZv3+aWmIQQ5XM4GXr88ceZM2cOp0+fdkc8goImMo1G47LZoqvqTL/eRJrJiqtqHfudSYbatesAwI4dW90SkxCifA43k1111VV8/PHHXHPNNURFRRX7sNZoNKxevdplAfqigjmGAsvsUKnTwE31820/l6Wq9c3wRhVpJnOkrD3B2fiq2miyffusg0cu7y9U1uvTtm17AI4ePUJKSoqqm1HVeB+qMSbhfRxOhsaOHcvJkyfp3r07MTEx7ojJ5xWMJCu787S/DsZ3y7HrmNJnyLMsFkuFmskcKWtPcDa+qtRMlpWVyenTpwBo1KhJkefKen0iIyOpX78BR48e4d9/d9CrVx+3x+osNd6HaoxJeB+Hk6FNmzbx2muvcdddd7kjHgGFOk+7pr8QSDOZp2VnZ5GXZ11MUs3f/CtbQV82778vjxw5AkBkZJTDs0m3bNmao0ePsGfPblUnQ0JUVQ73GQoLC6NmzZruiEX8x945hiwWyDZa/1ksZR9Tmsk8S2ki8/f3t8267AhHytoTnI2vKjWTHT58EICGDYuvz1je69OypbWPkdLnSK3UeB+qMSbhfRxOhu677z4+/PBDMjIy3BGPALuH1eeYoOd3ofT8LpQcU9nHlGTIswp3nnZmYj1HytoTnI1PuceNxnzy8/PcFF3lOHz4EFByMlTe66N0uN67dw8WFX+iq/E+VGNMwvs4NQP13r176dGjR4lrkWk0Gj7//HOXBeiLXD37dOFjZWZKEusJMsdQyQon/FlZWYSH+3swmoopSIYaO7xvkybN0Ol0XLx4gaSkJKpXr+7q8IQQZXC4Zujo0aM0b96c1q1bExwcjMViKfLPbDa7I06foiQswcGuW+stJCT0v2PLPEOeIHMMlczPzx8/Pz/A+5vKjhwpvWaoPIGBgTRo0BBQf1OZEFWRwzVD48ePp2HDhu6IRfxHSViCg12zFIf1WNbEKiOj+Hpywv1kjqHSBQYGkZ+f5tVNuFlZmSQmngGcS4bA2lR28OAB9u7dTZ8+V7syvCorKekc78yZC01nADB+/CuMePIJatWK93Bkwts4XDP0yCOPsHjxYjeEIhRKzZCr1iUDbM2ZWVlZmEzSsF7ZpJmsdFVhpOPJkycBiIiIcHoh3oJ+Q1IzZI8DBxK4++5bWbFiqe2x//1vOXfeeTObN//jwciEN3I4GTIajfIH3c2UmqHL+2NVhNJMVvj4ovJIM1npqkLn/tOnrclQfHwdp49ROBlScydqNUhJSWHYsMdISUmhUaOmtsfbtGlHVlYWI0Y8xaFDBz0YofA2DidDI0eOZMKECfzwww/s2rWLM2fOFPsnKkZJVlxZM+TvX9A3QzpRVz6lmczZWoOqTJlqwJtrhk6dsiZDFWmeady4CVqtlpSUFC5cOO+q0KqkSZNe5/z5JOrXb8CcOR/ZHp816wM6depCdnYWL7zwrNePUBSVx6k+QyaTiZdffrnUIcL79u2rcGC+rKBmqOxkSKuBq2vn234uT0hICCkpKZIMeYDSTBYREeHU/o6WdWWrSHxVYa6hU6esM0+XlgzZ8/oYDAbq1q3H0aNHOHgwgZiYWLfEWhFquA+3bdvCqlUr0Wq1TJ48jYjwUFtMgYYApkx5h4EDb+Lw4YN88cWnPPLI454JVHgVh5OhCRMmuCMOUYiysnx5NUMBOni7p/3T0IeEhJKSksKlS5IMVbaKNpM5WtaVrSLxFUz74L3NtwXNZLVLfN7e16dx46YcPXqEhIQErryyp0tjdAU13Ifz5s0F4Lbb7qBZsxZA0ZgCoqJ4/vkXefnlMXz66cfceec9hIWFeyRW4T0cToZuu+02d8QhClEmtHRlnyEoGFEmNUOVr6BmSJrJLldwX3pvMqQ0k5WWDNmrceOm/PrrLxw8mOCKsKqcAwcS2LjxL7RaLUOGDC11uxtuuIlPP/2IQ4cO8uWXnzFs2MhKjFJ4I4f7DAEkJyczffp07rrrLq6//nruvfdepk+fzsWLF10dn0+yt2bIUUpyJclQ5atoM1lVptyX3jrtg9ls5syZ00DF+gwBNG1q7QwsyVDJFiz4AoC+ffuV+VprtVqefPJpABYu/Nqrm2BF5XA4GTp79iy33XYbn332GQEBAbRo0QK9Xs+nn37Krbfeyrlz59wRp09RaobKm2co2widFoTSaUEo2cbyj6t86Fy65J0fOt4qNzfX1jnY2ZohR8u6slUkPm+vsTx/Pon8/Hz0ej3Vq8eVuI29r0/jxtZk6OjRI7aFfdXEk/dhdnYW//vfLwDcf/+D5cbUp8811KoVz6VL6axcubxygxVex+FkaOrUqej1elasWMGXX37JjBkz+PLLL/nll18wGAzMnDnTHXH6FKVmyJUzUBc+nrd+6HgrpVZIr9e7vOmzKiiosfTOZjKliSwurgZ6vcM9D4qIi6tBaGgYRqORo0ePuCI8t6ns4f9//PEb2dlZxMfXpl27DuVur9VqufPOewH49tsFMl2BKJPDydCGDRsYMWIEtWsXbRuvXbs2w4YNY926dS4LzheZzWa3zEAN3v+h462UztNhYeFOLdJa1RU0k3lnkl4wrL5i/YXAurZjkyZNAPU1lZ07d44xY0bZfr/vvjv5668NlXb+X35ZBlj7A9n7Prr11tvx9/dn//69JCTsd2d4wss5nAyZTKZSJ12Miory2j9oalF4rhV31QxJM1nlSklJBiAyMsrDkaiTty8Vc/q0dVh9fLxrloBQmsoOHFDPh3di4hkefPBu1q//w/bYsWOHeeqpR1m8+Ae3nz89Pd2WeN1ww0127xcREUmvXlcBSFOZKJPDyVDTpk1ZsmRJic8tXrzY9q1GOCcjw1pro9PpCAgIcOmxQ0OVxVolYa1MycnWgQVRUZIMlcTbm28LkqGK1wyBdQV7sI6cUgOj0cjzz4/k3Lmz1KlTz/b4gAG3A/DGG6+ybdsWt8bw998bMBqN1K/fwLagrb2U5GnlyuWykLgolcMN3E899RSPPPIIqampDBgwgGrVqnHhwgV+/vln/vrrL2bNmuWOOH1G4f5Crm5S8fYPHW+VnGytGYqOjvZwJOoUGqrUDHln860rm8mgcM2QOpKhb775ij17/iU0NIx3353Lnf/1hBg79hWM2Wn88ssyXnnlBX78cTkGg8EtMaxb9wcAvXr1cXjfHj16ExISwtmziezcuZ327Tu6ODpRFThcM9S9e3fefvttEhISePHFF3n00Ud58cUXSUhIYNKkSfTr188dcfoMe0eSOaOgOUKSocqk1AxFRkoyVJKq0kxWq1YtlxyvUaNGaDQakpMvcvHiBZcc01kZGRl8/PH7AIwaNZq4uBq25zQaDa+8Mp7q1eM4c+a0bdi7q5lMJjZsWAtga/JyREBAAL179wXg99/XuDI0UYU4Nc/QLbfcwvr161m+fDkLFixg+fLlrF+/XiZkdAFH5hjSaqB7TSPdaxrtmhq/4Bu4JEOVqaCZzPlkyNGyrmwVic+bayyzs7Nt64iV1UzmyOsTGBhEnTp1Ac/XDv300yLS0tKoV68+N998W7HrCA4O4emnrZ2qP/lkHikpKS6P4d9/d5KWlkZoaBht27Yv9rw9r61So7Ru3e8uj09UDU6PA01PTyc4OJjAQOsii4mJibbnatasWfHIfJTygWBPzVCADt69yv7JxLz5Q8ebuaLPkKNlXdkqEl9BX7ZMzGYzWq1T39E8QqkVCgkJLXPJB0dfn8aNm3L8+DEOHNhPt27dKxynMywWC4sWLQTggQceRq/Xo6f4dfTvP4Cvvvqc/fv3smjRNwwd+pRL49i8eSMAV1zRrcSpC+x5ba+8sgd6vZ5jx45y/Pgx6tat59IYhfdz+K/OsWPHuOeee+jatSt9+vTh6quvLvZPOM9dw+qtx5SaIU9Q+gxVpGaoKis8ajIry7tWrj9zpqDztCv7+DVposxEfcBlx3TUpk3/cOLEcYKDg7nhhhtL3U6r1fLQQ0MA62zPubm5Lo1jy5ZNAHTq1MXpY4SGhtKxY2dAaodEyRyuGXrzzTc5duwYw4cPJy4uzqu+xXmDgpoh10/Op3wDl2SocslosrL5+/uj1/thNOaTkXHJqyamLFiTzDXD6hWNGilzDXkuGVqy5EfAWvNT3t+ja665jnfemca5c2dZuXI5t9xyu0tiyM/PY+fO7UDFkiGwNpVt3Pg3a9f+zqBBg10RnqhCHE6GtmzZwsSJE7npJvvnehD2c6RmKNsI/X6w/pFaNTCDwHJKUzlmTk42RqOxwrPlCvu4ombI0bKubBWJT6PREBISTGpqqtcl6qdOWWuGatYsOxly9PVRaoaOHDn033vVv+LBOiA/P89Wg3LjjTfbHi/tOvz8/Ljrrnt5772ZLF78g8uSod27d5OTk0NkZCQNGzYqcRt7X9vevfswdeoktm/fSmZmhlu+cArv5XC1TkhICOHhpbeNi4pxtGYox6Qhx2Rf9XxISKjtZ5l4sXJkZ2fZJtKsaM2QI2XtCRWJT7k3va0/2+nT9q9W78jrU7NmLYKCgsjPz+f48WMVCdEpmzZtJCMjg2rVYmjTpl2R50q7jptuuhWtVsv27Vs5ceK4S+JQmsg6duxSZjOkPa9tfHxtateug8lkYutW986LJLyPw8nQLbfcwtdffy3rvLiJO/sMFV4bKz09zeXHF8UptUIBAQF2jRD0Vd7auV+pGXJ1M5lWq6VRo8YAHDpU+U1la9b8ClgXO7W3K0T16tVtnb2XLv3JJXG4or9QYV26dAVg48a/XXI8UXU4XNkeGBjI1q1b6devH61bty42yZZGo2HSpEl2H89sNjN79mwWLVpEeno6HTt2ZNy4cdStW7fE7Q8ePMjUqVPZuXMnWq2Wzp078+KLL1aZEWxKM4G7+k2EhYWTkZEhyVAlKdxEJuuSlS4kxJooXrrkPcmQxWIpNMeQayZcLKxx46bs2rWTAwcSuPHGyuuWYLFYbMtu9O17jUP73nzzbfz553pWrlzOsGEjK3TPW/sLbQOgU6fOTh+nsC5duvHDD9+xaZMkQ6Ioh2uGfvrpJ0JDQzGbzezcuZONGzcW++eIuXPnsnDhQiZMmMC3336LRqPhscceIy8vr9i2KSkpDB48mODgYL766is++ugjUlJSePTRR10+gsFTLl1KByA0NMwtx1eaONPSJBmqDCkpyoSL0nm6LN7YTJacfJGcnGw0Go1bvow1bmztRF3ZNUNHjx7h/PnzBAQE0KFDJ4f27dXrKgwGA6dOnWT//r0VimPPnoL+Qg0alNxfyFFKzdDBgwc8PqGlUBeHa4Z+++03l508Ly+P+fPnM3r0aHr37g3AzJkz6dmzJ6tWreLGG4sO51y9ejXZ2dm89dZbtnW7pk6dSu/evdm2bRvdunVzWWyeovTlUUZ+uVpYWAQgyVBlkWH19vHGZjJlJFlcXA38/FzfwdlTy3IotSbt2nVweH3EwMAgevToxerVv7Jq1UqaN2/pdBwF/YU6u2zUcmRkJE2bNichYR+bNv3j0KKvomrz6JiU/fv3k5mZSdeuXW2PhYWF0aJFCzZv3lwsGerWrRtz5swp8Q1a0Q93nU4dUwQoSxJERISj15cdk75Qty29Tos9g8MiIsL/O09aucevbEoZqKUsXCE11ZoMVasWXaHX25myrghHy6Ki8SnJf1ZWpuruy9IkJp4GoFateLe8V5s1a/bfec6QlZVJZGRwpbw3lEkOu3btVuy67LmO6667gdWrf2X16l8ZNep5p5vKtm7dDECXLleU+fo6+tp27dqNhIR9bN78DwMG3Fz2xiWoin+nvJUrex54NBk6e/YsADVq1CjyeGxsbJEZrRXx8fHFOirOmzePgIAAOneuWJtyWFhghfZ3FeWbcc2asURGlt3hNtAIXf9bDikqKhiDHaUZG1sNgLy87HKP7ylqKQtXyMy0NnvWrBlXodfbmbJ2BXvLoqLxVasWCUB+fo5q78vLXbhg/fvVsGF9t7xXIyODqVGjBomJiZw5c5xatWLd/t4wmUy2Gpl+/foWuy57ruOWW27k1VfHcuLEcc6cOUarVq0cjiM/P58dO6z9ha6++qoyX19HX9t+/fry+efz2bTpHyIigpxO1qrS3ynh4WQoO9s6hbq/f9Eq5oCAALtqer744gsWLFjA2LFjK7wieHp6NiaTuULHcIWC6/YjJaX8Vbw/+G/C7+xLYM9k/waD9Y/K2bPn7Tp+ZdLptISFBaqmLFzhzJlzAAQFhVb49Xa0rCvCmbKoSHx6vbW298KFFNXdl6U5dOgIALGxNdzyXgXr5IuJiYls27aTzp07u/29sXv3v6SlpRESEkJ8fIMSr8ue6+jevSdr1qzixx+XUKtWfYfj2LFjO9nZ2URERBATU6vc19eR17ZJk1bo9XpOnTrF7t0Jdk2LUFhV/DvlrcLDA13WhOrRZEgZiZaXl1dkVFpubq5tzbOSWCwW3n33Xd5//30ef/xxHn744QrHYjKZMRo9e2MbjUbb0PrAwBC3xKN0zE5NTfX49ZZGDWXhKhcuWDtpRkREeeU1VVZZhIRY78u0tDSveZ1OnrT2GapRo5bbYm7UqAnr168lIcHab8jd5fHPP/8AylB2rdPn6tv3WtasWcWqVb/y5JMjHN5/40ZrHB07dsZsto46dhV/fwMtWrRk166dbN68mbi4Wk4dpyr9nfJWrpzhx6ONnkrzWFJSUpHHk5KSiIuLK3Gf/Px8Ro8ezQcffMCYMWN49tln3R5nZSnceVRZYd7VlMUkpQN15VBGk8lSHGVT7sv09FTPBuIAZVi9ozULjlBGlB04sN9t5yhs9+6dALRr17FCx+nZszd6vR9Hjhzi6NEjDu/v6vmFLtehg7VbxbZtMvmisPJoMtSsWTNCQkKKDMdPT09n7969dOpU8pDOMWPGsHLlSqZPn84jjzxSWaFWCmUkmcEQaNfolGwjXPNDMNf8EEy20b5zhIdHAN71oePNlJqhqKhqFTqOM2VdmSoaX0REBACpqd6RpOfl5XHunLXPUK1a5U+46OzroyRDBw8eqJSJbvfs2Q1Ay5Yl9/Ox9zrCwsK44grrwJjfflvlUAzW/kL2r0fmzGurTBkgyZBQeDQZ8vf354EHHmDatGmsWbOG/fv3M2rUKOLi4ujXrx8mk4nz58+Tk5MDwI8//siKFSsYNWoUXbp04fz587Z/yjbeTBlJ5kitUGqultRc+4tR5hmqPPn5+bZFWmNjq1f4eI6WdWWrSHwF92WqCyNyn8TE01gsFgyGQLunTXDm9alXrz56vR8ZGRmcPn3amVDtlpx8kcTEM2g0Glq0KH1IvL3X0bdvPwDWrHEsGdqz51+ys7OIiIigYcPGdu3j6Gvbrl0HNBoNx48f48KF8w7FJ6omj/9lHTFiBHfccQevvPIK9957Lzqdjk8++QR/f38SExPp0aMHK1asAGDZsmUATJkyhR49ehT5p2zjzdw94SIUbo6QZMjdlEnd9Hq9reZDlEypsUxLS/WKpX4KL8PhzpnF/fz8qV/f2gF5796KTWJYnt27/wWgfv0GLlnEtE+fq9FoNOzdu5vExDN276cM7e/U6QqXdY69XFhYmG0ep23btrrlHMK7eHzta51Ox+jRoxk9enSx5+Lj420dBwHmz59fmaFVOqWZrPCCqq5WuGbIbDa77Y+NgPPnrd84q1WLkde5HMp9mZ+fT3Z2lurXcVMmXHRnfyFF48ZNOXjwAPv376dz5+5uO8+ePdZkqEULx4fClyQqKpoOHTqydesWfvttNfff/6Bd+23aZO08rcwW7S4dO3biwIH9bNu2mWuvvd6t5xLqJ3+hVSQ9vfJqhsxms23kmnCP8+etAwNiYmI9HIn6BQYG4efnB3hHE6471yS7nFKDsW/fPreeR+kv1KpVa5cds2/fawH47bdf7do+NzeXnTut/YW6dLnCZXGUpKDfkNQMCUmGVEVZpNVdS3GAdQ4nZRoDaSpzL0mG7KfRaIo0land6dNKzZBrV6svidKJev9+940os1gstpqhli1dmQxZF3rdtm2rXWuB7dq1nby8PGJiYqhb1/H5iRyhJEMHDybI30IhyZCaVEafIZB+Q5WlIBmK8XAk3qEgGVL/fan0GbJnJFlFKTVDhw8fLnEBa1dITDxDSkoyer2eJk2auey4NWrUpEWLVlgsFn7/fU2522/aZO0v1LlzV7f2xQKIjq5G3br1sFgsttmuhe+SZEhFChZpta/zogZoEWWiRZQJR/5sKP0zUlNTHQtQOMSVNUPOlnVlcUV8yrp5ar8vLRaLrWbI3mayirw+sbGxhIWFYzKZOHLkkIN720fpPN24cZMyF2d15jquuUZpKit/VNmff64HHOsvVJHXVplvaOtWGWLv6zzegVoUcLRmyKCHL67Pcvg8kZHWCQCVFdWFe7gyGXK2rCuLK+ILC4sA1N9MlpaWamvSrlnTvtmLK/L6aDQamjRpypYtm0hISKBRI9fV3CjsbSJz5jquvrofs2bNYNOmf0hPTycsrOS/b0lJ59i719pvqUePXnYfvyKvbYcOHfnpp0Vs3y7JkK+TmiEVKagZcl+fIcA2L0pycvlt+MJ50mfIMcr0A2pvJlM6T8fExJS5bJArNWmizESdUM6WznFHfyFF3br1adiwMUajkfXr/yh1u/Xr1wLQqlUbqlWrnKZlpd/Q3r17yM5W75cN4X6SDKlIwaSL7u0zFB1tnQ354sWLbj2Pr5M+Q44pWComxcORlK2gv5D7R5IpmjSx9hs6ePCAy49tNpvZt28P4J5kCKy1Q1D2BIzr1v0OQO/efdwSQ0lq1qxFXFwNjEYju3btrLTzCvWRZEhFHJ1nKMcIA5YEM2BJMDkOTPEfHW2tGbJndIdwTl5enq3viytqhpwt68riivi8p2ZI6S9kf+fpir4+SqfmhATXjyg7duwomZmZGAwGGjRoWOa2zl7H1Vdb+w2tX/9Hic3z6enp/P33nwD06uVYMlSR11aj0dhqh7Zu3ezYzqJKkWRIRZS+Eso35PJYgMRMLYmZWhyZs1epGVKWihCup9QK+fv720ZJVYSzZV1ZXBFfQc1QqqvCcgtlwkVHkqGKvj6NGjVGq9Vy8eIFkpLOOXGE0ilNZM2atUCvL7sbqbPX0bRpM1q0aEV+fj6LF39f7PnVq/9HXl4eDRo0stWC2auir22HDtZFaWWdMt8myZCKKDUJ7l66QZrJ3O/MGes6UnFxNdw+RLiq8J6aIfevVn+5oKAgW78hpUnLVdzZX6iwu+++D4BFixZiNBZU4VgsFn76yZogDRhwS6W/X5TFYP/9dye5ubmVem6hHpIMqURubi45OdkAREREuvVcBc1kskChuyhrMdWoYd9oI1G1a4ZcoU2bNkDBTNGu4o6Zp0ty3XX9iYiIIDHxDMuWLbE9vm3bFv79dyf+/v7cfPNtbo2hJHXr1qdatRhyc3P591/pN+SrJBlSCaVWSK/XExJS8UUSyxIVpTSTJWM2m916Ll919mwiADVq1PBwJN6jYJSjeqd8yM/PsyW6tWvXqdRzt23bFnBtMpSfn0dCgnWZD3fXDBkMBoYMGQrA7NnvkJx8EaPRyPTpbwEwYMCttlrryqTRaOjUyTrf0JYtmyr9/EIdJBlSidRU6wiasLBwt1cTR0VZ5xkymUyqb5LwVgU1QzU9HIn3qFbN+kGYnp7mtpmWK+rMmTOYzWYMBkOlT5mg1Azt3bsbi8U1PccOHTpIXl4eYWHhlZLc3X33/dSv34ALF87z5JOP8txzT7N37x5CQ8N44onhbj9/aZSmMkmGfJckQyqhNA24u4kMwM/PzzYLtYwoc48zZyQZclRYWLhtsVa13peFV6uv7L4tzZs3R6/Xk5KSbKt5rKiClepbVsr1BAQEMHXqu4SHh5OQsI+1a39Hr/fj9dcnenQ+LiUZ2rVrh/Qb8lGSDKmEM52nNUCDcBMNwh2fhl5GlLlXYqK1A7WrkqGKlHVlcEV8Go3GNtnehQvqTIZOnjwOQO3adR3azxWvT2BgII0aNQawzdRcUUqTm71NZK64jkaNGvPtt4u55577uemmW/j448/p27efk0dzTUxKv6G8vDzpN+SjZDkOlVCayRwZhm3Qw3c3OjdranR0NY4cOazab+DezGw2276527tcQ3kqUtaVwVXxRUdXIzHxDBcuqLNz/4kTJwDH+wu56vVp1ao1+/fvY8+e3ba5eyrC0ZFkrrqOuLgavPjiqxU+DrgmJmu/oS6sXLmcLVs22WqKhO+QmiGVqMxmMigYUabWb+DeLDn5Inl5eWg0GmJjZSkORyj9htQ60lGpGapTp3I7TytatmwFuKZmKDs7i8OHD/13XPd2nvYGSgK0efNGD0ciPEGSIZWorDmGFNHR1uYIqRlyvcREa61QTEwsfn7+Ho7GuyjNt2pN0gv6DHkqGbImLXv37qlwJ+r9+/dhMpmIiYmhevXqrgjPq3XuLPMN+TJJhlTCmWayHCPctTyIu5YHOTwNvfLHz1UdMUUBZcJFV3aerkhZVwZXxVcwIaj6kiGTyWRLhhxtJnPV69O4cWMCAgJIT0/j+PGjzh8I2L3b8ckW1XgfuiqmOnXqERNj7Te0a9cOl8UnvIMkQyrhTM2QBTiSpuNIms7haeiVD2plCLhwnRMnlE62rqs9qEhZVwZXxad0oD5/Xn3NZOfOnSU/Px+93o+4OMfmj3LV6+Pn52+bHHH79m0VOBLs3r0LgJYt29i9jxrvQ1fFpNFo6NhRmsp8lSRDKlHZfYbi4qzJkNQMud6JE8cA6wgV4Zi4uDgAzp1T331Z0EQWj06n81gc7dpZ19Lavn1rhY6jJEOtW9ufDFV1Xbp0BWDjxr89HImobJIMqYQzzWQVocyMfP58Evn5+ZVyTl9x/PgxAOrWrefROLyRmpN0pcbPU/2FFO3bK8mQ8zVDycnJnD59Co1GI52nC+nWrTtg7TeUni4T0voSSYZUQmkmi4yMqJTzRUVF4+/vj9lsdvkq2L6uoGaonkfj8EZK81NKSgrZ2dkejqYodzR/OqNNm3ZoNBpOnjzu9BQEu3db59KpX78BoaGhrgzPq9WoUZMGDRphNpv55x+pHfIlkgypQH5+PhkZlwAID6+cZjKtVkv16tYPHjV+C/dWaWmptsTWU8OvvVloaCjBwcGA+prKjh07AlgTCE8KCwujcWPrCvY7djhXO/Tvv9YmslatpInsct279wDgzz/XeTgSUZkkGVIBpb+QRqMhLCys0s6rNJVJJ2rXUWoPYmOrExgY5OFovI9Go7E1lSlTFKjFkSOHAc8nQ1DQb2jbNuf6DSmzLLdu3dZlMVUV3bv3AuCvv9a7bA04oX6SDKnAxYvWJTGioqId6pipAWoEm6kRbHZqGvqCEWXq+tDxZu7qL1TRsnY3V8anNJWpqcYyJyeH06dPAdCgQUOH93d1+XXs2AmATZscb8oxm822YfWOdp5W433o6pjat++IwRDI+fPnOXAgwQVHFN5AluNQAWW2XWVWaHsZ9PDzLZlOn7fgQ0dqhlzFXclQRcva3VwZn1JjqczXpAbHjx/DYrEQFhZOVJRj71NwffldcUU3NBoNhw4d5Ny5cw5NmnjkyGEyMi5hMATSqFETh86rxvvQ1TEFBATQuXMX1q9fy19/radp02YuO7ZQL6kZUgGlZkiZcK6yyFxDrnfo0EEA6tXzfFOKt1JGaylLX6jB0aMFTWSVvVp9SSIiImnRwro0x99/b3Bo361bNwPQtm079Hr5PlyS7t17ArBu3R+eDURUGkmGVEBZeqCyk6H4+NpAQT8XUXEHDuwHoGnTph6OxHvVq2edn0mpZVMDpb+QM01k7nLlldaOvn///adD+ynJUMeOnV0eU1XRu3dfwNpBXa2LBgvXkmRIBQqayRxLhnKM8ODKIB5c6dw09EpH0NOnT8laPC5w6dIlW7+SJk1cW7Ve0bJ2N1fGpzQxKk1TalDRztPuKD8lGfrnnz8xmUx27WOxWCqUDKnxPnRHTDVq1KRly9ZYLBZ+/32Naw4qVE2SIRVQmsmUFbvtZQH2JuvYm+zcNPRRUdGEhoZhsVhU9S3cWx08aO1sGRdXw+WTZ1a0rN3NlfHFx8ej1WrJyspSzbfyw4etzZ8NGjRyan93lF+rVm0ICQkhLS2NvXv32LXP8eNHuXjxAv7+/k4Nq1fjfeiumK655loA1qz51YVHFWolyZAKKItSVnYzmUajsX3TPXr0SKWeuypKSNgHIB0uK8jPz59ateIBdTSVZWdnceyYdVFUNZWtn58fXbteCcDvv6+ya5+NG/8BrEPqAwIC3BZbVdC3bz8AtmzZZJv+RFRdkgypgKf6DAGFkqHDlX7uqkYZhuvqJjJfpPQbUjqke9LBgwewWCxER1cjJibW0+EU0a/f9QCsWvU/u5oU169fC0CPHr3cGldVULduPRo3boLRaOS331Z7OhzhZpIMqYDSFOCZZMjaIVSZXVc4b//+vQA0aSKdpytKSSgTEvZ7OBLYv99a49esWXMPR1Jcz569MRgMnDx5wlYzWZrs7CzbvEQ9e15VCdF5vxtuuAmAn39e7NlAhNtJMuRh2dlZtgUBlXl/KlP9+tZv4EeOSDJUEVlZmbaaIZnVt+KUxKO8D/jKUND8qb5kKCgo2FbL88svy8vcdtOmf8jLy6NmzVo0bOhc3ydfc+ONN6PRaNi2bQsnT57wdDjCjSQZ8rBz584CEBISQkhISKWfX6kZOn78qN0jUkRxO3fuwGQyUaNGTY8ktVVNs2YtADh06AD5+fkejaWgZqiFR+MoTf/+NwOwdOlP5OXllbqdMiqqZ8/eqpgryRtUrx5n65cltUNVmyRDHnb2rDUZio2Nc2r/iAAzEQFmp89fq1Y8QUFB5ObmcuTIIaeP4+u2b7euEdWhQye3naOiZe1uroyvVq14QkJCyMvL4/Bhz92X+fn5HDp0AKh4M5m7yq9Xr6uIja1OSkpyqSOfcnJyWLVqJVDQz8hZarwP3RnTzTffBliTIfnCWHVJMuRhyvpLcXGOJ0OBelg9MJPVAzMJdHIiWZ1OZ5vJVlmvSDhu27YtgHVdI3dwRVm7k6vj02q1tGnTDoDt27dU/IBO2r9/L7m5uYSHh9smKXWGO8tPr9dz++13ArBgwZcldqRes2YVmZmZ1KhRs0IJuxrvQ3fH1KfPNYSFhZOYeIa1a393/QmEKkgy5GFJSecAa3WspyjzjezevctjMXizvLw822vnzpohX6O8llu3ei4ZUmr82rfviFar3j+XAwfehcFg4N9/dxb7wLZYLHz11acA3HrrQFVfhxoZDAbuuOMuAL7++jPPBiPcRt4VHqbUDHkyGVJWrpaaIeds3ryRnJwcYmJinJ6hWBSnzJC8detmzGbPNMts22ZNhtq1c0+Nn6vExMRy332DAJg1a0aRvkNr1/7Ovn17MRgM3HXXfZ4K0avdffcD6PV6tm7dIn8nqyhJhjxM6UDtTDKUY4ShqwMZujqwQtPQKzVDhw4dIDs72/kD+ag//rB2TO3du6/bOqa6qqzdxR3xtWrVmuDgYFJSktmzZ7drDuoAs9nMjh1KX7CKJUOVUX4PP/wYERERHDlyiKlTJ2OxWLh48QJvvfUmAPfeO4jIyMgKnUON92FlxFS9enWuu64/APPnf+SekwiPkmTIw5ThmvHx8Q7vawG2JenZlqSv0DT0sbHViYmJwWQysWePfOtxhNls5o8/fgPgqquudtt5XFXW7uKO+Pz8/OnRozcAv/9e+ZPeHT16hNTUVAwGA82bV2wkWWWUX1hYGK+/PgmARYu+4cEH7+Heewdy9mwitWvXYejQJyt8DjXeh5UV08MPP4JGo+HXX1eyY8cON55JeIIkQx5kNBo5c+Y0ALVr1/VYHBqNho4duwDw118bPBaHN9qzZzfnzycRFBREly5dPR1OldOnjzXBXLVqZaU3lSnvhbZt2+Pn51+p53ZW7959ee21N9Hr9fz7706Sks4RF1eDOXM+IjAwyNPhebXGjZty443WaQwmTpyomkWEhWtIMuRBZ88mYjQa8ff3Jza2ukdjUSZu+/PP9R6Nw9ssXfojAL169cHf3zs+ML1J7959CAkJ4eTJE2zevLFSz71hg7J0Re9KPW9F3X77nSxZspIxY17i9dcn8dNPy6lTx3NftqqSp54agZ+fH3/99ZesZl/FSDLkQQVNZLU9PsLjyit7ANbZds+fT/JoLN4iKyuTFSt+BmDgwDs9HE3VFBgYZJtU8OuvP6+08166dMk2iq1Xr6sq7byuUqtWPPfd9yC33HK71Ai5UM2atXjwwYcBePPN8bbVA4T3k2TIg5RkqHbtOh6OBKKiom3zDUntkH1++WU5mZmZ1K5dl06drvB0OFXW/fcPQqvVsm7dH+zataNSzrl69f8wGvNp2LAxdevWq5RzCu/w5JNP07BhQ86fT2LKlEmeDke4iCRDHnT8+DEA4uM9nwyBtUkC4Jdflnk4EvXLz8/ns88+BuDOO++W5Q3cqG7d+tx00y0ATJz4eqUsz7Fs2RIAbrxxgNvPJbyLwWBgxowZaDQali1bwsKFX3s6JOECkgx5kDLNf6NGjZ0+hkFnwaBzTUe+AQNuRaPRsHHj35w+fcolx6yqli9fysmTJ4iMjOLOO++plHO6sqzdwZ3xjRz5HOHh4SQk7GPy5Dfc2nn1wIEEtm7djFarpX9/1yVDai8/e6nxOio7pk6dOjFq1PMATJ06ifXr11bauYV7SDLkIRaLhQMH9gPWUQrOCNTDhrsz2HB3hkumoa9ZsxZdunQDYMmSHyt+wCrq0qVLzJnzLgCDBz9aKX0yXF3Wrubu+KKjq/Hmm2+h1Wr58cdFTJ/+ltvWifr8808AuPrqa1226K7ay89earwOT8U0ePCj3HTTLZhMJp59dji//Vb50z8I15FkyEMuXrxASkoKWq2Whg0beTocm9tuGwhY5ynJzMzwcDTq9M47Uzl/Pok6derKjL6VqFevPowZ8zIAX331OU8++QgnThx36Tn27PmX5cuXAtZ5ZYQojUajYdy4N7nmmmvJz89n9OiRfPrpRx6bLV1UjCRDHnLgQAIAderUJTAw0MPRFLjmmuuoU6cuKSkpfPPNV54OR3X+979f+OGH7wB47bU3MRgMHo7It9xzz/1MnjyNgIAANm36h9tu68/LL49h+/atFf4QysrK5NVXXwSgf/8BtGzZ2hUhiyrMz8+ft96awa23DsRkMvHuu9N5/PHBti4QwntIMuQhysKeTZs2d/oYuSYY+UcgI/8IJNdFLQZ6vZ7HHx8OwGeffWxbO03Av//uYvx4a83Eww8/SqdOXSrt3O4oa1eqzPhuuOEmFi1aSvfuPTGZTCxfvpTBg+/n+uv7MH78yyxZ8iPHjx91qBnt4sULDBs2lCNHDhMTE8vzz7/o0pjVXn72UuN1eDomvV7PuHETbF+ONm/eyF133cqLLz7Hv//urPyAhFNU0urre5Q5TCqyyrnZAn+e0dt+dpXrr+/PN998ye7d1g//uXM/9vg8SJ62c+d2hg0bSnZ2Ft26dWf48Gcq9fzuKmtXqez46tSpy5w5H7F3724WLPiSP/5YQ1LSORYv/oHFi38AICAggAYNGlK3bn1q1qxJXFxNYmOrExQUREBAAABJSefYtm0LP/+8hIyMS4SEhDJz5hyioqJdGq/ay89earwONcSk0Wi4/fY76dKlKzNnTmHNmlWsXLmclSuXU69efXr37kuPHr1o2bIVQUHBnglSlEmSIQ/Iz89n587tAHTs6Hwy5C46nY4JE97i7rtv459//mLq1MmMGfOSTw4ft1gs/PDDd7z99gTy8/Np374j06fPQq+Xt44atGjRigkT3iYvL49Nm/5h69bNbNu2hf3795Kbm8u+fXvZt2+vXcdq2rQ5Eye+TaNGTdwctaiq4uNrM336e+zbt4cFC75k5crlHDt2lGPHPuHzzz9Bq9VSv35DmjZtRu3adahduw61atUmOjqaqKhogoODffLvrBrIX3QP2LFjGzk52URERNCggXo6TxdWr14DXnttAi+/PJpvvvkSozGfMWNe8po1mlxh797dzJgxhS1bNgFw9dX9ePPNt+SbnQr5+/vTo0cv27IyJpOJ06dPcejQAU6ePEFi4hnOnk0kKSmJnJwccnNzsFgsVKsWQ8OGjenTpy89evT2+RpQ4RrNm7fkzTffYsyYl/nrrw2sXfsb27Zt4ezZRA4fPsjhwwdL3M/f35+oqGiioqIICQklKCiIwMAggoODCQoKIijI+r+/fwB+fn5l/PMv8r9Op0On06HRaC77X4tWq0Gr1aHVatHptGg0hf/X+Uxy5vFkyGw2M3v2bBYtWkR6ejodO3Zk3Lhx1K1b8lo6KSkpTJgwgXXr1gFw/fXXM3bsWIKCnB/ebDKZSEtLw2SyoNFo/vuH7WfQFHrc+lzxxzR23zTKpIZXXXW1qv/43njjAC5dSufttyewaNFCdu7cwZgxL9GxY+cq+Qa5dOkSR48eZuvWzaxZs8rWrysgIIAnnnjatmq1UD+dTkedOnVlTS7hUaGhoVx33Q1cd90NAJw/n8SePbs5evQwJ06c4NSpE5w5c5rk5GSys7PIy8vj7NlE1fXVLJ44lZ9AKf9rtdpi+1z+7/J97dlHq9UyceIbVKtWzSXX6PFkaO7cuSxc+P/27jwoinNdA/gDjMOIAwiITqJHRE3YVAQB0YPoJZrVRD1uUOo1GpVEBTdEInrALUhAccFE4oYhbhETrkWwImglmoRgROVYMUqwUHHFAlkGGAaGuX8QRicQjsSBRvr5VXVNT3dP9zu8NP3yfb0cRlRUFHr06IGYmBjMnTsXqampTT74Mjg4GNXV1UhMTERZWRnCw8OxZs0aREdH/+0Ybt++jX/+c/izfA0dMzMz9OrVGwMGDMSoUa/Ax8dXr+BRKpVIT/8WAAx6Q7fW4u8/DS+++CJWrQpDbu5VzJnzv3BycsYbb4zF8OE+sLfvBxMTk1bZdl1dHSorK1FeXgalshxKpRLl5eW68frXcpSX149XVChRW1sLjUaje60falFb+3j8r+YrleV625dIOuG1197A/PnB6NmzV6t8RyISD1vb7hg1yg+jRvk1mldVVYni4mIUFxfj0aMiKJVKVFZWoqqqEhUVFXrjarUatbU1qKn56+HxfDVqa2tRV6dFXZ0GdXV1uuFpb15afzFCOzlj/gkrV67oGMWQWq3G3r17sXz5cowcWf9k6Li4OIwYMQLp6el466239Ja/ePEizp07h7S0NPTr1w8AsHbtWsyZMwdLly5Fjx7CPvkdACorK5GbexW5uVfx1VdH8Y9/2GHGjHcxbty/YGpqis8++wTl5WWws+uDIUM8hQ73qfj6/g9SUk7g00+34fjxr3XnYWze/DFkMhn69u2H7t0V6N69B6ysrCCTdYZMZgpTUxmMjY3/2PE0up1RpapGVVXlH0OVrrCpqFCiqqoSJSWlKC+vf9+adxpuiq2tLRwdnTF8uA9effUN2NgYZkcjImpO585m6NnTrE3/8dJqtY3+Pte/1zYx7c9D/XyNRgOttg4aTd2fXjXQah/Pf7zs032muW02vFpaWhrsZyFoMXT16lVUVFTA29tbN83CwgLOzs745ZdfGhVD58+fh62tra4QAgAvLy8YGRkhOzsbb7755t+Ko3fv3vjPf377IxH1vyBPDkDDOP5i+uN5paUluHEjHz//nInU1P9DQcFNfPTRGuzcuR329n11V5EtXx4GU9NOfyveBpIn6gSJiTFa85ze7t27ISJiLYKDF+Obb1Lx3XenkZNzEVVVVbhy5VdcufJrq21bIukEc3M55HJzmJtbPDFuDrncHHK5HObm5ujSRQ6pVAqJRKLrI388LoFEYqIb159XP9jYdIO5uXmrfY9n0Za5BgATE2O91/+mreN73jzrz6el+Wgt7THP7X3faP9MADzbsUgoFhaGu0efkbat//V+wsmTJxEUFIScnBy9m9ctWrQIKpUKCQkJesuvX78eOTk5OHr0qN70YcOGYc6cOXjvvfZ1x9jKykocPnwYn376Ke7evaubHhQUhLAww97HRAgajQb5+fm4fv067t27hwcPHqC4uBgqlUo3aLXaP/qE6/t9jYyMIJPJYGb2+KTALl26wMLCQjeYm9cXOg3jMpmM5+oQEVGrEbSur6qqAoBG5waZmpqitLS0yeWbOo/I1NQU1dXVzxRLWVkVNBrD30Z9woSpGDv2X8jO/gUPHtyHg4MTHB2d8OhRhcG3JQQbmxdgY2OY5zeZmBjDwqKzXi5UqjqoVJUGWT89vaZyQcJhPtoP5qL9sLTsbLCLkAQthhpag9RqtV7LUHV1dZOPqJDJZFCr1Y2mV1dXP9PVZACg0dShtrZ1frGNjEzg4fG4K7C1ttNRtGYuqGWYi/aF+Wg/mAvhGbJfS9BOzxdeqG9RKCws1JteWFgIhULRaHmFQtFoWbVajZKSknZx8jQRERE9fwQthhwdHSGXy5GVlaWbVlZWhitXrsDDo/GdmT09PXH//n3cvPn4SdUNn3V3d2/9gImIiKjDEbSbTCqVYvr06YiNjYW1tTV69uyJmJgYKBQKjBkzBhqNBsXFxbqTaF1dXeHu7o4lS5YgMjISlZWViIiIwPjx49kyRERERH+L4NcGBgcHY9KkSVi1ahUCAgJgYmKCPXv2QCqV4t69e/Dx8UFaWhqA+jtCx8fHo1evXpg5cyYWL14MX19fREZGCvsliIiI6Lkl6KX17cmjRxU8GU5gEokxrKy6MBftAHPRvjAf7Qdz0X5YW3cx2P2eBG8ZIiIiIhISiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI03XfyDRsObZ7UHJibGzEU7wVy0L8xH+8FctA/GxkYwMjIyyLpYDBEREZGosZuMiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjUWAwRERGRqLEYIiIiIlFjMURERESixmKIiIiIRI3FEBEREYkaiyEiIiISNRZDREREJGoshoiIiEjURFkMffLJJ5gxY4betN9++w3Tp0/H4MGDMWrUKOzZs0eg6MSlqVycPn0aEydOhJubG/z8/BAdHQ2VSiVQhOLSVD6etGrVKvj5+bVhROLVVC4KCwuxdOlSeHh4YOjQoVi2bBmKi4sFilA8msrF5cuXMX36dLi5uWHkyJH4+OOPoVarBYqwYyspKcG///1v+Pr6wt3dHQEBATh//rxuviGO36IrhhITE7Ft2za9aY8ePcKsWbPQp08fHDt2DEFBQdi6dSuOHTsmUJTi0FQuzp8/j4ULF+K1115DSkoKIiMjceLECaxZs0agKMWjqXw8KSMjA0ePHm3DiMSrqVyo1WrMnj0bBQUF2LdvHxISEnDlyhWsWLFCoCjFoalcFBcXY86cOejbty9SUlKwbt06fP3114iLixMoyo5t6dKlyMnJwebNm5GcnAwXFxe89957uH79usGO35JWir3defDgAcLDw5GdnQ17e3u9eV9++SWkUikiIyMhkUjQr18/3Lx5E7t27cLEiRMFirjjai4Xhw8fhre3N+bNmwcAsLOzw5IlS7By5UqsWbMGUqlUiJA7tOby0aCwsBCrV6+Gl5cX7ty508YRikdzuUhNTcWdO3eQnp6Obt26AYBuv1AqlZDL5UKE3GE1l4sLFy6gpKQEoaGhkMvlsLOzwzvvvIMffviBxamB3bx5Ez/++CMOHToEd3d3AEB4eDjOnDmD1NRUyGQygxy/RdMy9Ouvv8LS0hLHjx+Hq6ur3rzz58/D09MTEsnj2tDb2xv5+fkoKipq61A7vOZyMXv2bISGhjb6TG1tLZRKZVuFKCrN5QMAtFotwsLCMG7cOHh5eQkQoXg0l4uzZ8/C29tbVwgBwIgRI5CRkcFCqBU0l4uuXbsCAA4dOgSNRoPbt2/j+++/b3L/oWdjZWWFzz77DAMGDNBNMzIyglarRWlpqcGO36JpGfLz8/vLcx3u37+Pl19+WW9a9+7dAQB3796FjY1Nq8cnJs3lwtnZWe+9Wq3Gvn374OLiAmtr67YIT3SaywdQ303w8OFD7Ny5EwkJCW0Ymfg0l4sbN27Aw8MDO3bsQEpKCmpra+Hj44Ply5fDwsKijSPt+JrLhYeHB+bNm4etW7ciLi4OGo0GXl5eWL16dRtH2fFZWFhg5MiRetNOnDiBW7duwcfHB3FxcQY5foumZag5KpWqUfeLqakpAKC6ulqIkAj1rUGhoaHIy8tDRESE0OGI0tWrVxEfH4+YmBh2UQpMqVQiJSUF165dw6ZNm7B27VpkZ2dj/vz50Gq1QocnKmVlZbhx4wamTZuGo0ePYuvWrbh16xYiIyOFDq3Dy87OxsqVK/HKK6/Az8/PYMdv0bQMNUcmkzW6CqDhh2hmZiZESKKnVCqxePFiZGVlYdu2bWx+FkB1dTVCQkLwwQcfwNHRUehwRK9Tp04wMzPDpk2b0KlTJwCApaUlJk+ejMuXL2PQoEECRygesbGxKCsrw/bt2wEALi4usLS0xLvvvouZM2dyf2klGRkZCAkJgaurKzZv3gzAcMdvtgwBUCgUKCws1JvW8L5Hjx5ChCRqhYWFmDZtGi5evIhdu3bxUm6B5OTk4Pfff0d8fDzc3Nzg5uaGhIQE3L17F25ubjh+/LjQIYqKQqGAvb29rhACgJdeegkAcPv2baHCEqXs7GwMHDhQb1rDP2z5+flChNThffHFFwgKCoKvry927doFmUwGwHDHb7YMAfD09MThw4eh0WhgYmICAMjMzIS9vT3PF2pjpaWlmDlzJpRKJQ4ePAgHBwehQxKtQYMG4eTJk3rTkpKScPLkSSQlJXHfaGMeHh74/PPPoVKpdAeC3NxcAPVXXVLbUSgUuHbtmt60hlz06dNHgIg6toMHD2LdunWYMWMGVq5cCWPjx+04hjp+s2UIwMSJE6FUKhEeHo68vDx89dVX2L9/PwIDA4UOTXSioqJQUFCAmJgYWFtb4+HDh7pBo9EIHZ6oyGQy2NnZ6Q2WlpaQSCSws7PjFUxtzN/fHyYmJli2bBlyc3ORnZ2NVatWYejQoXBxcRE6PFGZNWsWzp49iy1btuDWrVvIzMxEWFgYRo4cCScnJ6HD61Dy8/Px0UcfYcyYMQgMDERRUZHumFBeXm6w4zdbhgDY2Nhg9+7d2LBhAyZMmABbW1uEhoZiwoQJQocmKnV1dUhLS0NNTQ1mzpzZaP6pU6fQq1cvASIjEp61tTUOHDiAqKgoTJkyBVKpFKNHj8aHH34odGii4+Pjg4SEBOzYsQP79++HlZUVxowZg0WLFgkdWofz7bffoqamBunp6UhPT9ebN2HCBGzcuNEgx28jLS9DICIiIhFjNxkRERGJGoshIiIiEjUWQ0RERCRqLIaIiIhI1FgMERERkaixGCIiIiJRYzFEREREosZiiIhaBW9hRkTPCxZDRGRwp06dwooVK3Tvs7Ky4ODggKysLEHiCQsLg4ODAxwcHBASEvJM63JwcNA9rfxpBAQE6Lbdks8RUdvh4ziIyOASExP13ru4uODIkSPo37+/MAEBsLW1RXx8PKytrZ9pPUeOHIFCoXjq5detWwelUompU6c+03aJqPWwGCKiVieXyzF48GBBY5BKpQaJoaXrELIAJKKnw24yIjKoGTNm4Ny5czh37pyua+zP3WTbt2/H66+/joyMDIwdOxYDBw7EuHHjcPHiRVy6dAmTJ0/GoEGDMHbsWGRmZuqtPzc3F4GBgXB3d4e7uzsWLFiAgoKCFsfp4OCAQ4cOISwsDEOGDIGXlxfWr18PlUqF6OhoeHt7Y+jQoQgPD0d1dbXe5xq6uxq+V2ZmJmbPng1XV1cMHz4c0dHRqK2tfYafIhG1JRZDRGRQERERcHZ2hrOzM44cOQIXF5cml7t//z6ioqLw/vvvY8uWLSgtLUVwcDCWLl2KKVOmYPPmzairq8OSJUugUqkAAPn5+fD390dRURE2btyIDRs2oKCgAAEBASgqKmpxrLGxsZBKpYiPj8e4ceOQlJSE8ePH4969e4iJiYG/vz+Sk5ORlJTU7HpCQkIwZMgQ7Ny5E2+//Tb27t2L5OTkFsdDRMJgNxkRGVT//v0hl8sBNN+lVFVVhYiICPj6+gIArl+/jk2bNmHDhg2YNGkSAECj0SA4OBj5+flwcnJCfHw8ZDIZEhMTddsYNmwYRo8ejd27d+udtP00+vXrh7Vr1wIAPD09kZycjJqaGsTGxkIikWDEiBE4ffo0Lly40Ox6Jk+ejAULFujiycjIwHfffQd/f/8WxUNEwmAxRESCcXd3141369YNgH4B1bVrVwBAWVkZAODnn3/G0KFDIZPJdN1QcrkcHh4e+Omnn1q8fTc3N924RCKBlZUVBgwYAInk8Z/Grl27ory8/KnXAwAKhQKVlZUtjoeIhMFiiIgE09C68ySZTPaXy5eUlCAtLQ1paWmN5v2dq8Sa2n7nzp1bvJ4/x2xsbMz7LBE9R1gMEdFzw9zcHMOHD8esWbMazXuyNYeIqCX414OIDM7Y2Bh1dXUGX6+Xlxfy8vLg5OSkK360Wi1CQkJgZ2cHJycng2+TiDo+Xk1GRAZnYWGB/Px8ZGZmorS01GDrnT9/Pm7duoXAwEBkZGTg7NmzCAoKwjfffANHR0eDbYeIxIXFEBEZ3LRp09CpUyfMnTsXZ86cMdh6HR0dceDAARgZGSE0NBTBwcF4+PAhduzYgVdffdVg2yEicTHS8iw/IurgwsLCcO7cOZw+fVqwGBwcHLBw4UIEBQUJFgMRNY3nDBGRKKjValy6dAnW1tbo3bt3m203Ly8PSqWyzbZHRC3HbjIiEoWHDx9i6tSp2LZtW5tud/Xq1XxIK1E7x24yIiIiEjW2DBEREZGosRgiIiIiUWMxRERERKLGYoiIiIhEjcUQERERiRqLISIiIhI1FkNEREQkaiyGiIiISNT+H75rcUtLrMlnAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import scipy.signal\n", + "\n", + "# Create a normalized signal\n", + "signal_norm = (df['intensity_mV'] - df['intensity_mV'].min()) / (df['intensity_mV'].max() - df['intensity_mV'].min())\n", + "\n", + "# Find peaks with a low prominence filter of 0.01\n", + "peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=0.01)\n", + "\n", + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "plt.plot(df['time_min'], signal_norm, 'k-', label='normalized chromatogram')\n", + "plt.vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', \n", + " color='dodgerblue', label='peak location')\n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('normalized signal intensity')\n", + "plt.xlim([10, 20])\n", + "plt.title('prominence filter = 0.01')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "These maxima have prominence values greater than or equal to 0.01, meaning that \n", + "maxima with prominences as low as 0.01 units above the local background are considered \n", + "to be bonafide peaks. Increasing the prominence filter begins to remove peaks \n", + "we would otherwise care about." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkgAAAMQCAYAAADctJqBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3zM9x/A8dddhkSW7MQm9qaE2ptSVUrpsFuq1OgwqrVHlaJmq0pVtVV+tXXRltqb+iE2QfYQ2bnc/f643x3Zl8sld5e8n49HHuJ73/H+3ueb3DufqdBoNBqEEEIIIYSe0twBCCGEEEJYGkmQhBBCCCEykQRJCCGEECITSZCEEEIIITKRBEkIIYQQIhNJkIQQQgghMpEESQghhBAiE0mQhBBCCCEykQRJCCEKgczBK4R1kwRJCGEygwYNYtCgQeYOw+ROnDhBt27dqFevHiNGjGDFihXUrFlT/3rm+966dSsLFy40R6h5unXrFiNHjuSZZ56hefPmfPjhh8TFxeV53MWLF3n99ddp3LgxrVq1YuHChaSmpua4/9ixY5kyZYopQxeiSNmaOwAhRPExY8YMc4dQKBYuXIharWbt2rV4enri5uZGmzZtctx/zZo1BAYGFmGEhomLi2Po0KH4+Pjw6aefEhUVxaJFiwgNDWX9+vU5Hnfv3j2GDRtG48aNWbZsGTdv3mTp0qU8fvyYuXPnZtg3PT2d+fPn88cff9CnT5/CviUhCo0kSEIIk6lWrZq5QygUsbGxNGvWjJYtW+q3+fn5mTEi4/zwww/ExcWxY8cOPDw8APD19WXkyJGcPn2apk2bZnvcunXrcHJyYvXq1djb29OuXTscHByYM2cOo0ePply5cgBcvXqVOXPmcOnSJRwcHIrsvoQoDNLEJoQV6tixI0uXLmXBggUEBgYSGBjIBx98QExMjH6fKVOmMGTIEGbMmEHTpk3p06cPKpWKlJQUVq1aRffu3alfvz5du3Zl7dq1qNVq/bGDBg1i+vTprFmzhjZt2tCwYUPefPNNIiMj+c9//kOXLl1o3LgxQ4cO5f79+xmOe7qpqWbNmmzevJlp06YRGBhI48aNGTduHJGRkRnuZ//+/fTt25f69evTqlUr5s6dS2Jiov71FStW0KVLF/7++2969epFvXr16NatG9u3b89wnqioKD788ENatmxJ48aNee211zhz5oz+dV0tUJcuXfTn2LRpU47v8/3796lZsyYPHjxgx44d1KxZkxMnTmRpYstcNg8ePGD79u3UrFlT//48fPiQd999l8DAQBo2bMiQIUO4fPlylmtt2LCB5557jsDAQH7++eccY8rpK7cmzsOHD/PMM8/okyOANm3a4OTkxKFDh3I9rn379tjb2+u3de/eHbVazeHDh/XbJk+ejFqtZsuWLXh6euZ4PiGsgdQgCWGlvv/+eypVqsT8+fOJjo7ms88+49atW2zduhWlUvu3z+nTp1EoFKxYsYKEhARsbGx48803OX/+PGPGjKF27dqcOHGCZcuWERwczJw5c/Tn37t3L3Xq1GHevHk8fPiQOXPm8Prrr+Pg4MDkyZOJjY1l3rx5zJ49m7Vr1+YY59KlS+nSpQtLliwhODiYBQsWYGtry5IlSwDYvXs377//Pr169WLChAk8ePCApUuXcuPGDTZs2IBCoQAgIiKC2bNn62ssvv76a6ZMmUKDBg0ICAggMTGRgQMHkpaWxnvvvYefnx8bN27kjTfeYNu2bQQEBDBz5kx+/vlnRo0aRePGjTl16hTz588nLi6OMWPGZIndx8eHLVu2MHbsWOrUqcPbb79NtWrVOHnyZI73u3LlSkaOHKnf38fHh+joaAYOHIijoyMff/wxjo6ObNy4kddee00f29Pv1/Tp03F1daVevXo5xpQTZ2fnHF+7efMmPXr0yLBNqVRSvnx57ty5k+0xycnJPHjwgCpVqmTY7uHhgbOzc4bjFi5cSK1atXK8vhDWRBIkIayUQqFgw4YNuLi4ANoPrDFjxnDo0CHat28PgEqlYtasWVSqVAmAgwcPcvToURYtWsQLL7wAQKtWrXBwcODzzz9nyJAh+maytLQ0Vq5ciZubGwB//PEHhw8fZv/+/VSoUAGAK1eusHPnzlzjrFGjBgsWLND//+LFi/z666+AdqTX4sWLadOmDYsXL9bvU7lyZYYOHcrBgwf195KUlMS8efN49tln9ft06NCBgwcPEhAQwPbt2wkODmbHjh36D+mmTZvy4osvcurUKZRKJT/99BPvvvsuI0eOBKB169YoFAq+/PJLXn31Vdzd3TPEbm9vT6NGjbC3t8fDw4NGjRrlWS516tTJsv/GjRuJjY3lhx9+0DdHtW3blh49evD555+zfPly/fFdu3alX79+OZ5fF5Mx4uLicHJyyrLdycmJ+Pj4HI+B7BOvzMdJciSKE2liE8JKdejQQZ8cgbZpx87OjtOnT+u3OTg4ULFiRf3/T548iY2NTZZaBF2ydOLECf22gIAAfXIE4O3tjYeHhz45AihTpgyPHz/ONc7MH+Z+fn4kJSUB2hFVoaGhdOzYEZVKpf9q1qwZzs7OHDlyJMdz6foA6ZriTp8+Tfny5TN8SJcqVYpffvmFgQMHcvz4cTQaTZZrdezYkZSUlAxNcaZ27Ngxateuja+vr/66SqWStm3bcvTo0Qz71qhRI8/zPR1/5q/09PRcj9XVyD1No9Fku133Wk5yO04Iayc1SEJYKR8fnwz/VyqVlClTJsOQbU9PzwwfYI8ePcLd3R1b24w/+t7e3gAZkp3sagwcHR3zHWfmY5RKpf5DNzY2FoBZs2Yxa9asLMeGh4fneC5dM+LT58qt34vuWj179sz29bCwsFzuomBiY2O5e/cudevWzfZ1XcII4OXlleu57t+/T6dOnXJ8PTAwMMd+Vc7OztnWFCUmJubY6VyXhCckJGR73NNJuhDFiSRIQlgp3Qe+Tnp6OjExMRk64Gbm5uZGTEwMKpUqQ5KkS0QyNzEVNldXVwAmTZqU7bD4p2uw8uLi4pKhw7jOuXPncHZ21l9r48aN2TYzlS1b1uBr5ZeLiwuBgYFMmjQp29ef7vycFx8fH7Zt25bj69ndm06VKlW4d+9ehm1qtZr79+/TtWvXbI8pXbo0vr6+3L17N8P26Oho4uPji+3IRSGkiU0IK/XPP/9kmKjvwIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfmratWqOR7bqlUrTp06RXR0tH7bP//8Q0JCAq1atcr1uL///jvD8/brr79iY2NDixYtDI5dCGsiNUhCWKnQ0FBGjx7N4MGDCQkJYcmSJbRu3ZrmzZvneEzbtm1p3rw5M2bMIDw8nDp16nDy5Em++uor+vTpU+S1ATY2NkycOJHp06djY2NDhw4diIuLY/Xq1YSFheXYJJWdvn37smnTJkaPHs348ePx8PBg8+bNJCcnM2jQICpWrMgLL7zAxx9/zIMHD6hXrx63b99m6dKllC9fnsqVK5vsvlxdXbl8+TInT56kQYMGDB06lJ07dzJ06FCGDx+Ou7s7+/bt46effmLq1Kkmu25eXn31Vb777juGDRvG2LFjiY2NZdGiRbRt25bGjRvr9zt//jweHh76/mtvvPEGe/fu5Y033mDYsGHcuXOHJUuWMGDAAPz9/YssfiGKkiRIQlipnj174urqyoQJEyhdujR9+vRh4sSJuR6jG7G1fPlyvv32W6KjoylfvjwTJ05k2LBhRRR5Rv3798fJyYl169axZcsWSpcuTZMmTVi8eHGGDuF5cXZ25rvvvuPTTz9l3rx5qFQqGjZsyKZNm/Qf9AsWLODLL7/kxx9/JDQ0FE9PT3r06MGECRPyVYuTl+HDhzN//nxGjBjBhg0baNq0KT/++COfffYZM2fOJCUlhcqVKzNv3rxcR6yZmoeHB99++y3z58/n/fffx8nJie7du2dp+hswYAB9+vThk08+AbQd9tevX8+nn37KuHHjcHd3Z+jQoYwfP77IYheiqCk0sqKiEFanY8eOBAYG6j/AhBBCmJb0QRJCCCGEyEQSJCGEEEKITKSJTQghhBAiE6lBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiExkokgT0Wg0qNXS392clEqFlIGZSRmYl7z/5idlYF5KpSLDAt0FUSwTpNWrV3Ps2LEcV7QG7XpMc+fO5dChQwB0796dqVOnUrp0aaOuqVAoiItLRKVSG3W8KBhbWyXu7k5SBmYkZWBe8v6bn5SB+Xl4OGFjY5oEqdg1sX3zzTcsX748z/3GjRtHcHCwfv8jR44wa9asIohQCCGEEJau2NQghYWFMW3aNM6cOUOVKlVy3ffcuXOcPHmSffv2ERAQAMDs2bN54403ePfdd/H19S2KkIUQQghhoYpNDdJ///tf3Nzc2LVrFw0bNsx139OnT+Pt7a1PjgACAwNRKBScOXOmsEMVQgghhIUrNjVIHTt2pGPHjgbtGxYWhr+/f4Zt9vb2lClThpCQkMIITwiRyePHj7Gzs8PBwcHcoQghRBbFJkHKj6SkJOzt7bNsL1WqFCkpKUaf18am2FTIWR3dey9lYD6GloFGo2H16hV8+eVqSpUqxUcfzaR37z5FEWKxJj8D5idlYH4mGsAGlNAEycHBgdTU1CzbU1JSjB7FBuDq6liQsMxCrYEb0drvq3mA0oQPlzlYYxkUFnOVbV5l8P3337NmzSrwrE4SMGPGR7Rq1Zzq1asXTYAWzBRlZu6fAUv7nWKOeMxdBsI0SmSC5Ofnx/79+zNsS01NJTY2tkAdtOPikkhPt66hnUlp0OUHJwCOvZKAo52ZAzKSjY0SV1dHqyyDwlLUZWtIGTx+/Jj58+eDnQO2I/4CQLW0GrNmzWHFijWFG6AVKEiZWcrPgKX9TinKeCylDEoyNzdHlErT1OCVyASpWbNmLF68mLt371KpUiUATpw4AUCTJk2MPm96utrq5r5QpT/9vRqVldcgWWMZFBZzlW1uZfCf/2wjJiaGigG1efjU9oMH/+LBg5ASP4LUFGVm7p8BS/udYo54zF0GJZnGhHN0loiG0vT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF0v8L2ghCotGo+E//9kCwMsvv6rf3rBBY9RqNfv27TJXaEIIkUWJSJBCQkJo3bo1+/btA7SzXq9cuZLy5cszZMgQJkyYQNu2bZk5c6Z5AxWiGDt79jS3b9/C0bE03br10G/v1l37/V9/HTBXaEIIkUWxbGL75JNPMvy/fPnyBAUFZdjm6elp0IzbQgjT2LtXW0PUvXsPnJ2d9NuffbYVAJcuXSQu7hGurm5miU8IIZ5WImqQhBDmlZ6erq8herr2CMDPz5+qVQNQq9UcP37MHOEJIUQWkiAJIQrduXNniImJxtXVjWeeaZbl9ebNn/3/fqeLOjQhhMhWsWxiE4azVcCg2qn670XxYUlle+DA7wC0a9cBOzs7SM8YW4MGjfjhh++4cOG8GaM0P0sqM2NZ2j1YWjzCekiCVMLZ2cD4xsbPHi4sl6WUrVqt5sCBPwDo3LkrkDW2Bg0aAXDt2lWSk5NL7PIjllJmBWFp92Bp8QjrIU1sQohC9d//XiI8PIzSpUvTokWrbPcpW7Ycnp5eqFQqrly5XMQRCiFEVpIglXBqDTyMV/AwXoHahBNsCfOzlLLVNa+1adOeUqVKZRubQqGgVq06AFy/HpTjuYo7SymzgrC0e7C0eIT1MEuC1KVLF9asWUNISIg5Li+ekpIOL+xy5oVdzqSk572/sB6WULYajUbfvNaxY5dcY6tRoyYA169fK/I4LYUllFlBWdo9WFo8wnqYJUF69tln2bBhA506dWLYsGHs2bOHlBRpIxaiuLl+/RrBwXext7enTZu2ue5brVqN/x9TcmuQhBCWwywJ0uzZszl8+DCLFy/Gzs6OyZMn07p1a6ZPn8758+fNEZIQohDs3/8bAC1btqZ0aadc961RQ5sg3bhxHY0pF1QSQggjmG0Um729PT169KBHjx5ERkby22+/sWvXLl555RUqV67MgAED6NevH87OzuYKsUQIDw8HXMwdhiimdM1rnTp1zXPfypWrYGtrS3z8Y0JDQ/D3L1vY4QkhRI7M3kk7JSWFY8eOceTIEa5evYqLiwvVq1fniy++oHPnzhw7JjPrFpaEhHjeGjVM//+7d++YLxhR7Ny+fYubN69ja2tHu3Yd8tzfzs6eKlWqAtLMJoQwP7MlSMePH2fq1Km0bNmSSZMmkZCQwNy5czl8+DDLly/n77//pmrVqnz00UfmCrHY++WXvYSEPtT/f+PG9WaMRhQ3+/drR681b97C4PXVdP2Qbt68UWhxCSGEIczSxNa+fXvCwsLw9fVl8ODBvPTSS5QvXz7DPg4ODrRs2ZJNmzaZI8QSYd++3Rn+f+jQ36hUKmxtZf5QUXC64f2GNK/pVKpUGYB79+4VRkhCCGEws3wSNmzYkH79+tG6dWsUipznfu/bty/9+vUrwshKjujoaM6ePQ029vQoG8Nvv/9CwuNYrlz5L/XrNzR3eMIEbBTQv3qq/vuidP9+MFevXkapVNK+fSeDY6tQoRIA9+7dKYowLY45y8xULO0eLC0eYT3MkiBVr16dGjVqZJsc3b9/n/Xr1zN9+nTKlpVOmoXl4sXzAFStVJHZ7W1J2P07B9JTOX78qCRIxYS9DUxuZp7pM3S1R02bBuLh4ZHl9Zxiq1hRmyAFB5fMGiRzlpmpWNo9WFo8wnqYpQ/SqlWrCAsLy/a1CxcusHXr1iKOqOS5ePEcAA0bNgKgWbPmACV+sVBhGrr+R/lpXgOoWLEiAOHhYSQlJZk8LiGEMFSR1SANHDiQCxcuANrZdQcMGJDjvvXr1y+qsEosXSJUv34jYpIVlA3Q1hrJ6KHiQ6OB2BRtLW2ZUhpyac02qZCQh/z77wUUCgUdO3bOV2xubmVwdXUjLu4R9+/fo3r1mkUTtIUwV5mZkqXdg6XFI6xHkSVI8+bN45dffkGj0bBq1Speeukl/Pz8MuyjVCpxdXWla9f8/dUp8kej0RAUdAWAarUb0uVnZ6Al2DkSFhbKo0exuLmVMWuMouCS0/l/2cI/Lz/GsYh+2vft2wNAkyZN8fb2yXdsFStW4tKli9y7d7fEJUjmKjNTsrR7sLR4hPUoskclICCAsWPHAtqFKfv374+vr29RXV48JTw8nPj4eGxsbKhUqRJoW9vw9ytLSPBNrl0L0je5CZFfe/ZoR0f26NHLqOMrVKj4/wSpZPZDEkJYhiJLkB4+fIi3tzd2dnb07duX9PR0Hj58mOP+0kG78Ny6pZ1jpkKFitjb2+u3V6teg5Dgm9y4cU0SJGGUy5cvc/16EHZ2dnTp0s2oc+g6at+7d9eUoQkhRL4UWYLUqVMntmzZQoMGDejYsWOuw/sBrly5UkSRlTy6SfgCAqpl2F6pYmX+QT6YhPG2b98OQJs27Q2eHDKzcuW0c6I9fPjAZHEJIUR+FVmCNH/+fCpUqKD/Pq8ESRQeXQ1S1aoZE6Ry5bXlExwcXOQxCeunVqvZsWMHAD16PG/0eXRrsIWG5lzDLIQQhc3gBGnq1Kn5OvGCBQsy/L9Pnz767/v27ZuvcwnT0tUQVa5cJcN23WzmwcFSgyTy78yZ0zx8+BAXFxfatGlv9HmeJEghaDQa+WNKCGEWBidIJ06cyPD/8PBwVCoVZcuWxdvbm9jYWIKDg7G3t6dWrVp5nu/UqVPY2NjQpEkT7t+/z+zZswkJCaF79+6MGTMm/3ciDPbgwX3gSVOGTvn/1yA9ePBAlhwR+bZzp7Z5rXPnbpQqVcro8/j6+qJQKEhJSSEmJhoPD09ThSiEEAYz+BPwzz//1H+/e/duFi9ezIoVK2jQoIF++40bNxgzZgzPPfdcrufauXMnU6ZMYdiwYTRp0oSZM2dy5swZWrVqxRdffIGdnR0jR4404nZEXtLS0ggLCwW0CZKNAp6vkgaAv68v9vb2pKamEhYWmiWBEtbl6bIt7CUW4uPj+e23fQD06fNSnvvnFpudnT1eXt5ERIQTEvKwRCVIRVlmhcXS7sHS4hHWw6gqgqVLl/Lee+9lSI4AqlWrxvjx41mwYAFDhgzJ8fgNGzbQp08fJk2aRFRUFEePHuW9995jxIgRrF+/ni1btkiCVEhCQ0NQq9WUKlUKLy9vFAqY+Wzy/19VUq5ceW7fvsX9+8GSIFk5e5uny7Zw/frrHpKSkqhevTqNGzchPV1ToNj8/f2JiAgnNDSEunVLzsSxRVlmhcXS7sHS4hHWw6ilRmJiYnBxccn2NVtbWxITE3M9/tatW/Tu3RuAQ4cOodFo6NRJu6Bl/fr1CQkJMSYsYYD797UdsMuVK59t3w4/P39Am0gJYaiff9YuD/TKK6+YpM+Qn5+2H5L8LhBCmItRCVKjRo1YuXIlMTExGbaHh4ezYsUKmjfPfQ4dV1dXEhISADh48CBly5alcuXKANy7dw93d3djwhIG0PU/KltWWzuk0UCSSvul0TxJkHTNcMJ6ZS7bwnL16mUuX/4vdnZ29O/f3ySxPUnUS9ZItqIqs8JkafdgafEI62FUE9vkyZMZNGgQHTt2pHHjxri7uxMVFcW5c+dwc3NjzZo1uR7fokULVq5cyfXr1/njjz8YPnw4AL/99huff/45rVu3NiYsYQBdgqQbsZacDm1+0tYG/vPyY3x9tcu/SA2S9ctctoW1xMLWrT8C0KlTFzw8PIiJSShwbLqJYkNCSlaCVFRlVpgs7R4sLR5hPYyqQapVqxZ79uxh4MCBJCQkcOnSJZKTkxk+fDi7du3Sf/jmZNq0abi7u7Nq1SpatmzJqFGjAO3UAGXLluW9994zJixhgJxGsOlIDZLIj5iYGPbs2QnAK6+8ZrLzShObEMLcjM6lfX19mTx5slHHuru78/XXX2fZ/v3338sSI4XsSYJUIdvXn9QgSYIk8rZt2xZSUlKoU6cuTZo0Ndl5dQtZS6IuhDAXoxOk1NRUtm3bxtGjR4mIiGD+/PmcPHmSunXrZhndlpNHjx6RlJSEWq3Wb9OtzyaJUuHQLd+Q0/v7pAZJ/nIXuUtLS+WnnzYD8NprQ0w6oaO3tw8A0dFRMieXEMIsjPqtEx0dzZAhQ7h16xZVq1blxo0bJCcnc/DgQT755BO++eYbGjdunOPxd+7cYcqUKVy4cCHHfWQtNtNLTU0lJiYaAB8fv2z30f3lHh8fz+PHj3McrSjEb7/9QkREBN7e3nTt2t2k53Z398DGxob09HSioqLw9fU16fmFECIvRiVIn376KQkJCezbt49y5cpRr149AD7//HNGjBjB8uXL2bBhQ47Hz5kzhzt37jB27Fj8/PxQKo3qCiXyKSIiHAA7O7scRwo6OpbG1dWNuLhHhIWFSIJkpTQaDZcu/Qu0AiA6KopyvqabcDE9PZ2vv/4SgIEDX8fOzt5k5wZQKpV4eXkTFhZKRES4JEhCiCJnVIL0119/8eGHH1KpUiXS09P120uVKsXw4cOZMmVKrsefPn2aefPm8fzzxi9oKfIvPFybIHl7++TaHOLn50dc3CNCQ0OpVq1GUYUnTCQ6OoqpU9/nxNnz2E7ULkzc+8XnGPzKQEaPHmuSZObXX/dx+/Yt3NzcGDDAdJ2zn+bt7aNPkIQQoqgZlSClpKRQpkyZbF+zsbEhLS0t1+OdnZ1xc3Mz5tKiAMLDw4AnHbEBlAroVCFN/73u9WvXgmSovxV6/Pgxb7wxhFu3bmBf2gX3qBOkpKQQm5rC+vVrOX36JCtXfomrq/E/fyqVirVrVwEwaNAwnJ2d832O7J67zHT9kEpSgmTI+2LpLO0eLC0eYT2MSpDq16/P999/T7t27bK8tnv3bn2TW0569+7N5s2bad26tazUXYR0CZKPz5PmilI2sLBNxmn4dQlUSfpgKi7mzZvJrVs38Pb2Ye3ab6hSpSoajYYDjT5l1qyPuXjxPG++OZQ1a77Gw8PDqGv8/PNW7t69g5ubGwMHvm7UObJ77jIriQmSIe+LpbO0e7C0eIT1MCpBGj9+PEOHDqV37960a9cOhULBnj17WLFiBYcPH2bdunW5Hu/o6MiZM2fo0qUL9evXx8HBIcPrCoWC+fPnGxOayEVEhC5B8sl1Py8vbwAiIyMKPSZhOmfPnubXX/diY2PDkiUrqFKlKqD9eercuRuVK1dh1KjhBAVd4a23hrNu3cZ81yTFxsawatUyAEaPHmdU7ZGhSmKCJISwHEb1jm7atCkbNmzA0dGRdevWodFo+Oabb4iIiODLL7+kRYsWuR6/fft2XFxcUKvVXLhwgRMnTmT5EqaXXQ1SdiRBsj4ajYZlyxYB0Ldvf+rXb5hln2rVavD119/i6enFtWtXGTNmJAkJ8fm6zsqVy3j06BHVq9egX78BJok9J97e2udQEiQhhDkYPblIs2bN+PHHH0lOTubRo0c4Ozvj5ORk0LF//vmnsZcVBaDrpP10gpSkyjoN/5MPJkmQrMXp0ye4ePECDg6OjBo1Bsi+bCtXrsqXX65nxIhB/PvvBcaPf5uVK9dmqcXNzpEj/7Bt2xYAJk/+qEBzE2UXW2a6ms6SlCAZ8r5YOku7B0uLR1gPo2qQpk6dyunTpwFwcHDA19dXnxxduXKFTp06GXQetVrN1atXOXToEPHx8cTGxhoTjjCQ1CAVX1u3ahOXXr1e1JdfTqpVq8Hq1etwcnLi9OmTvPfeONLSUnM9JiTkIdOnTwXglVdep2nTQNMEngtpYhNCmJNRCdL27dsZOnQoW7ZsyfJaamqqfjbs3OzcuZP27dvz4osvMmrUKO7evcuUKVN45513SE3N/Ze1yD+NRpOPBOnJLMZPz3IuLFNUVCR//vkHgMHNXnXr1mfFii9xcHDgyJFDTJ36PiqVKtt9Y2JiGDfuLaKiIqlevQbjx79vsthzo0uQYmJi5HeCEKLIGT1DY7t27ZgxYwazZs3KMBeSIfbt28fkyZNp0aIFS5cuRaPRANC1a1cOHTrE6tWrjQ1L5CA2Nlb/IaP74MmJh4cHCoUClUpFbGxMUYQnCuDXX/ehUqmoX78hNWvWMvi4Jk2asmTJSuzs7Ni//3dGjhyqX6tP59q1IIYNe5Xr16/h5eXN8uVfGNQcZwpubmWws7MDpDZTCFH0jG6NHTVqFD179uTDDz/kxo0brFixIse5kTL74osvGDhwIDNnzsyQXPXt25eoqCh++uknJkyYYGxoIhu62iN3d3fs7XOfKNDOzo4yZdyJiYkmMjISDw/TzcAsTO/PP38HoHv3nvk+tmXL1nz22QqmTn2Ps2dP07v3c7Rv34GqVatx69ZN/vprP+np6fj5+bN69Tr8/YtujUSFQoG3tw8PHz4gIiKcsmXLFdm1hRCiQGt89OjRg82bN3Pv3j1eeuklgoKCDOq4efv2bbp06ZLtaw0bNiQsLKwgYYls6BIkb2/DlmzQddSOjJT+H5YsKiqSs2fPANCxY2ejztG2bXt++OFnmjdviUqVxv79v7N27Wr27/+N9PR0OnfuyqZNW6haNcCUoRtE159K+iEJIYpagfvz161bl23btjF27FgGDhzI6NGj8zzG09OTmzdv0qpVqyyv3bx5E09PqbEwNUP7H+l4eXlz7VqQjGSzcH///ScajYY6deoVqHanYsVKfPnlei5d+pdjxw4THh6Gl5c3bdu2p3btuiaMOH90I9l0z68QQhQVkwx49Pb2ZtOmTXz88ccsWbIkz9mxe/TowfLly/Hx8dHPxq1QKLh06RKrV6+WNdoKwZMEKWP/I6UCWpVV6b/XkZFs1uHIkX8A6NAh68jRnMo2N/Xq1adevfomiy8nhsam6y9XUp5DY8rM0ljaPVhaPMJ6GJUgjR07Nsvq2vb29ixcuJBatWrlOc/RhAkTuHbtGhMmTECp1LbyDRo0iMTERJo2bcr48eONCUvkIrs5kEA7Df/n7ZOy7C8JkuVLT0/n5MnjADz7bOssr+dUtpbA0Ng8Pb0AiIyMLOyQLIIll5mhLO0eLC0eYT2MTpByMmzYMIYNG5br8fb29qxbt44jR45w/PhxYmNjcXFxITAwUL90iTCt/DaxyWSRlu/y5f8SH/8YFxdXateuY+5wCoUk6kIIczE4QRo8eDAzZswgICCAwYMH57qvQqFg48aNOb6+Y8cO2rVrR6tWrbL0Q4qIiGDHjh28+eabhoYmDPBkHTbD+yCBfDBZshMnjgIQGNgcGxsbM0dTOEpaE5sQwnIYPIpNN1eR7vvcvvKaXHDq1KkEBwdn+9qVK1dYvny5oWEJA+VUg5SkgtZbnGm9xZmkp+YJ1CVIUVElo2nDGuma1wIDn8329ZzK1hIYGtuTUWwlI0Gy5DIzlKXdg6XFI6yHwTVImzZtyvZ7Q40aNYobN24A2gRrzJgx2c7HExUVRcWKFfN9fpGzlJQU/TIumTtpAySnZ23SfPqDSaPRSLOnhVGpVFy8eAGAZ55pluN+2ZWtpTAkNl1Tb0xMNGlpafqJI4szSy4zQ1naPVhaPMI6FNmyfaNGjWLr1q2AdqmSOnXq4OHhkWEfpVKJq6srffv2LaqwSgTdHDL29va4uZUx6BhdgpScnERCQgLOzs6FFZ4wwo0b10hOTsLZ2cUs8xMVlTJl3LG1tUWlUhEdHYWvr5+5QxJClBAGJ0i1atUyuBZBoVBw+fLlDNuaNGlCkyZN9P9/++23qVChgqGXFwXwdPOaoWXo6OiIs7Mz8fHxREaGS4JkYc6fPwdAgwYN9SNBiyOlUomHhyfh4WFERERIgiSEKDIGJ0hjxowxWTPLggULTHKep6nValauXMnWrVuJi4vjmWeeYcaMGVSqVCnb/bdv386UKVOybP/9999zPMZa5XcEm46Xlzfx8fFERERQuXLVwghNGOnixfMANGjQyKxxFAUvL2/Cw8Oko7YQokgZnCC98847JrtodHQ08+bN4++//yYpKSlDB3DIvgYqL6tXr+bHH39kwYIF+Pr6smjRIt5880327NmTbV+noKAgAgMDWbJkSYbtmZv9ioOcJonMi5eXN3fu3JYPJgt04YKuBqmReQMpAk+WvZHnUAhRdIzug5ScnExQUBBpaWn6BEetVpOUlMTp06d5//33czx25syZHDx4kJ49e+Ln51fgJoLU1FTWr1/PBx98oJ+Ze+nSpbRp04Y//viDnj2zLuJ57do1atWqpf/lW5wVpAYJ5IPJ0kRGRvDgwX0UCgX16zc0dziF7slkkfIcCiGKjlEJ0vHjxxk/fjxxcXHZvu7k5JRrgvTPP//w4YcfMmDAAGMun8XVq1dJSEigRYsW+m2urq7UqVOHU6dOZZsgBQUF0a1bN5Nc39LpZtHObqFaBdDER6X//mkyWaRl0o1eCwiohouLS4775Va25paf2EpSom7JZWYoS7sHS4tHWA+jEqRly5ZRpkwZ5s6dy65du1AqlfTt25dDhw7xww8/8NVXX+V6vL29vUk7aIeGhgLg7++fYbuPjw8hISFZ9o+OjiYyMpJTp06xadMmYmNjadiwIe+//z5VqlQxOg4bG8vsLKubJLJsWX9sbTPG6GwL67un/P9/GV/TLScTFRWZ5ThLo3vvLbUMTOnatSsA1KvXINdyya1sC0N+yiA/sVnTc1hQBSkzS/kZKOrnLi9FGY+llEFJZsoZaYxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCptumH9AQCXc3Z0MPq5yZW0SGxMTma/jzMlSy8CUbt7UPr/PPNPIIsvF1GVQpYruOYyyyPu1NCXhZ8DSSRkUD0YlSGq1Gj8/7XDbKlWq6CeABOjWrRuTJ0/O9fg6deqwbNkygoODadiwIQ4ODhleVygUjBkzxuB4dMenpqZmOFdKSgqOjlkf1BYtWnDy5Enc3Nz021atWkWHDh34+eefGTlypMHXflpcXBLp6bnPIl7U1Go1oaHaGqTSpd2IiUkw+NjSpbXvT0hISL6OMwcbGyWuro4WWQam9u+/lwCoUKGqRZVLYZWBo6O2GTEkJNSi7tfSlKSfAUslZWB+bm6OJpv6xKgEqWLFigQFBdG0aVMqVapEUlISN2/eJCAgAJVKRUJC7r/EZs+eDcCpU6c4depUltfzmyDpmtbCw8MzzMIdHh5OrVq1sj3m6eQIoHTp0pQvX56wsDCDr5tZeroalcqyfiiio6NQqdIAcHf3zBJfkgp67dT+Vb67dwKOTz0RHh6egLYPkqXdV04ssQxM6dGjWEJDtc3GAQE1cr3X3Mq2MBlSBvmJzd1dW6MbFRVJaqqqWM/7ZIoyM/fPgLmeO0uKx9xlUJJlGhRfIEY9Kr169WLx4sWo1WoGDRpEvXr1mDt3LoMGDeKLL76gWrVquR5/9epVo4LNSa1atXB2dubEiRP6BCkuLo7Lly/z+uuvZ9n/+++/5/PPP+fgwYP6Gqf4+Hju3LlDv379TBqbuelGsHl4eGJnl3W6A4DYlOw/cHQLhcbHx5OUlIijY+nCCVIY7No17c9OuXLlc+2grZNT2VoCQ2Pz9NQm6iqVitjY2GI5FcfTLLnMDGVp92Bp8QjrYNRT88YbbzBw4EAuXrwIwIwZM7hy5Qpvv/02t27dYtKkSSYNMi/29va8/vrrLF68mAMHDnD16lUmTpyIn58fXbp0IT09nYiICJKTkwHo0KEDGo2GSZMmcf36df7991/eeecdPDw86NOnT5HGXth0CZKuo2t+ODk565MiGclmGXR/XNSokX3NaHFkZ2ePu7s7AFFR8hwKIYqGUTVISqUyQz+j+vXrs3//fm7dukXVqlWzXZZi8ODBzJgxg4CAAAYPHpzr+RUKBRs3bsxXTOPGjUOlUvHRRx+RnJxMs2bN+Prrr7G3t+f+/ft06tSJBQsW0LdvX/z9/dm4cSOLFy/mlVdeQaPR0KpVK7799tss/aGsna7JML9zIOl4e3tz795dIiLCqVixeM0wbo10NUg1a5acBAm0cyHFxMQQERFB9eo1zR2OEKIEMFlrrLOzMw0aNMjx9adny848c3Zu+xrKxsaGDz74gA8++CDLa+XLlycoKCjDttq1a/P111/n+zrW5skkkcatYeXt7cO9e3dLxBw01iAoSJcg1TZzJEXLy8ubGzeuy3MohCgyRiVIDx8+ZPbs2Zw9e5bHjx9neT27pUI2bdqU7feicIWFaeeIKkgNEjyZbFKYT1paKrdu3QRKXg1SSZosUghhGYxKkKZNm8b58+d56aWXKFOmjIlDEqZUkD5I8KSjtnwwmd+tW7dQqdJwcXHF37+sucMpUrrnUPrCCSGKilEJ0vnz5/n444/p27evqeMRJpbXOmwKoI5Huv77zHR/uesmmxTmExSknUG7Ro2aKAyYLjavsjWn/MZWUmqQLLnMDGVp92Bp8QjrYVSC5O3tnWUeIWGZntQgZd8HycEWvu2emOPxT/5ylwTJ3PLb/yivsjWn/MZWUhIkSy4zQ1naPVhaPMJ6GDXMf9SoUaxatYoHDx6YOh5hQgkJ8cTHxwPademMoeuDVNw/mKzB0zVIJc2T5zDSzJEIIUoKo2qQ2rdvz7p16+jcuTMeHh7ZLhWyf/9+kwQojKfrWO3s7IyTU9apFwwhNUiWQaPRcO2adiRmrVolawQblJwaJCGE5TAqQZo6dSrBwcG0atVK/5ddXnbs2JGva7z44ov5D0xkkFf/I4BkFfTfq52Gf2vPBBwyPRFeXjKbtiUIDQ0hLu4Rtra2VK2a+0z1OnmVrTnlNzbdAtJJSYkkJMQbnfBbOksuM0NZ2j1YWjzCehj1qJw8eZLp06fz8ssvG3zMlClTDN5XoVBIgmQChgzx1wAhCUr995k5OTnh6FiapKREIiIiZLJIM9H1P6pSpSr29tkvGZNZXmVrTvmNrXRpJ0qXLk1iYiKRkRHFNkGy5DIzlKXdg6XFI6yHUQmSq6srZcvmb5jxgQMHjLmUKABDapDyolAo8PLyJjhYO1mkJEjm8WQG7ZLXvKbj5aWb1T2CSpWqmDscIUQxZ1SC9Oqrr7J27VoaNWqU7bIi2SlXrpzB5zdmJm2RlW6ZkZxGsBnKx0ebIEk/JPPRddAuaRNEPk237I30QxJCFAWjZ9K+fPkyrVu3znbtNUPWUtu7dy8nT54kLS1NnxBpNBoSExM5f/48hw4dMiY08ZSIiILXIMGTjtoym7b5lNQlRp6m6w8nk0UKIYqCUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk/6IBk3xF9Hl2CFh4cWOCaRf/Hx8dy/HwyUzCH+OiVhJJv2jxAXAFJTU3G0Nay/mRDC9IxKkGbOnElAQIDRF92+fTsvvPACCxcuZPny5Tx8+JCFCxdy6dIlRo4cSfXq1Y0+t3hCV+NT0CY2Pz9/AEJCQgock8i/69e1w/t9ff0oU8bdzNGYjy5BiooqfnMhRUZGsGDBbA4cOoztxBsAvPBCN0YOG8Yrr7yOUmnUlHVCiAIw6qduxIgR+R62/7SwsDB69+6NQqGgbt26nDt3DoB69erx1ltvsXXrVqPPLbTS0lL1HyS5NbEpgKpu6VR1S89xGn4/P22H/NBQSZDMwdj+R4aUrbkYE5tuSpHi1sQWHHyPV1/tx4EDf6AA7B7dRhlzg0exMSxaNJ8PPhhPWlqqucM0mKU9d5YWj7AeRtUgqVQq3N2N/0u2dOnS+rWkKleuzP3790lOTsbBwYHatWtz//59o88ttHS1R3Z2drnWOjjYwk89c5+G399fW4MkCZJ5BAVpa5Bq1MhfgmRI2ZqLMbEVxya2xMQExox5k/DwMKpUqcqnny6lenUvVCoV232m8Omn8zhw4A8mT36PxYs/t4qaJEt77iwtHmE9jPppGz9+PHPnzuU///kPFy9e5OHDh1m+clO/fn22b98OQMWKFbGxseHo0aMA3Lx50+B5XkTOQkK0ZeDnV7bAv1R1NUiRkRGkplrPX7LFhYxg03qSIBWfwQILF87j3r27+Pn5s27dt1Svru1jZmtrS//+A1m+/Avs7e35888/+OqrNWaOVoiSxeg+SOnp6UybNi3HVcWvXLmS4/FvvfUWw4YN4/Hjx3zxxRe88MILTJkyhebNm3P48GE6d+5sTFjiKboEqWxZw6dXyEmZMmVwcHAgOTmZsLBQKlSoWOBzCsOoVCpu3LgGlOwRbPBkNu1Hjx6Rmppq9X9InTlzip07f0apVDJ//iI8Pb2y7PPss62YNm0mM2Z8yBdfrKRFi5Y0bNjYDNEKUfIYlSDNnTu3QBdt1qwZ27Zt0zcdTJ8+HaVSydmzZ+nevXu+Zt0W2Xv4ULuQcF4TeiarYPBv2uVDvu2WmO00/AqFAj8/f+7cuU1o6ENJkIrQ3bt3SE1NpXTp0pQvXyFfxxpStuZiTGxubmWwt7cnNTWViIhwypUrX8hRFh6NRsPSpYsA6Nu3P02aNAWyf1969+7LqVMn2LNnJ7NmfcyPP/5s0cmhpT13lhaPsB5GPSp9+vQp8IVr1apFrVraJoNSpUoxZ86cAp9TPPEkQcq9BkkD3Hpko/8+J7oESUayFa2rVy8DUL16zXw3lRpatuZgTGy6RP3evbs8fPjAqhOkQ4f+4tKlizg6luatt8bqt+f0vnzwwVSOHj3MrVs3+PHH7xg8eHjRBpwPlvbcWVo8wnoYnUtHR0ezYcMGTpw4QVxcHO7u7jRt2pShQ4fi6emZ5/GPHz/m+PHjJCYmZjtvkqzFVjCmbGID8PeXkWzmoEuQ6tSpa+ZILIO/fznu3burf76t1bffbgBgwIBX9X2rcuPmVoZx495l5sxpfPXVF/Tu3Rc3tzKFHKUQJZtRCVJoaCgDBgwgOjqaRo0aUadOHSIiItiwYQM7duxg27Zt+PrmPLT84MGDTJgwgaSkpGxfl8VqC05Xg6RLbApK5kIyjytXtAlSSe9/pKNrMrbmBOny5UucOXMKW1tbXnnldYOP69XrRb777htu3LjO119/ybvvTi7EKIUQRiVIixYtwtbWln379lGhwpN+EcHBwQwfPpylS5fyySef5Hj8kiVLqFq1KlOnTsXX19cqhq5ak/T0dEJDtbNem7oG6eFDmYKhqGg0Gq5e1Q52qF1bapDgyXNozQnStm1bAOjSpXu+JnG1sbFhwoQPGDt2JFu2fM+QISOy7dgttNRqNefOneHE2QvgNBGA3bt30r5ViwIvvyRKBqMyk8OHDzNu3LgMyRFAhQoVGDNmTJ7rqN26dYsJEybQtGlTKlSoQLly5bJ8CeNFRkagUqVha2urX0etoCpUqARoJ7UTRePBg/vExz/Gzs6OqlWNn7m+OLH2BCkpKYnff/8FgJdeejnfx7dq1Yb69RuSkpLC5s3fmjq8YuPQob/p27cnI0YMYu3aVfrt8+fP5LnnOjJ16vtW+wyJomNUgpSenp7jRJEeHh7Ex8fnenzZsmXz3EcYT9e85uvrh42NjUnOWbGiduRaaGiIzIVURK5c+S+g7aBtZ2dn5mgsw5OaTOv8cPvrr/3Ex8dTtmw5/ci1/FAoFAwfPhKAn376nri4OFOHaNVUKhWLFi1g3Li3uHPnNk5OTnTp3F3/et269UlPT+eXX/bQt+/z/PrrXjNGKyydUQlSzZo12blzZ7av7dixgxo1auR6/KhRo1i1apXMmF1IdB8ehjSvKQB/JzX+Tupcp+H38PCkdOnSqNVqHjyQcisKuv5HtWoZ1//I0LI1B2NjezJY4CFqtbpQYitMu3ZpJ8jt1evFbLsWGPK+tGvXgYCA6sTHx/PTT98XXrBGMtdzl56ezkcfTWLz5o0ADBo0lN9/P8icOQv08Xy97lt++OE/NGrUhKSkRKZMeY+vv/6yCKMU1sSoPkhvv/02I0aMIDY2ll69euHl5UVkZCS7d+/m6NGjLF++PNfjd+/eTVhYGF26dMHDwwMHB4cMrysUCvbv329MaIL8ddB2sIXdvRPy3E+hUFChQiWCgq4QHHyXKlWqFjhOkTvdDNrG9j8ytGzNwdjYfHy0fRbT0tKIioo0WRNyUQgPD+PEiWOANkHKjiHvi1KpZPjwkUyb9gGbN3/L668PzfI71BxSUlLYv/93jhw5hPv9YOzt7Vl2pTrt23eiefNnc5xU2FQWL17Ar7/uw9bWlvnzF9O165Oao6ff09q16/L115tYuXIZGzZ8xYoVS1GrNbz55luFGp+wPkYlSK1atWLhwoUsWrSII0eO6Ld7eXkxf/58unTpkuvxfn5++PkVbIV5kbOQEMPmQMqvChUqEhR0hXv3pB9SYdNoNFy+rG1iq1WrjpmjsRx2dnb4+PgSGhpCSMhDq0qQ/vzzDzQaDQ0aNMz3pJ+Zdev2HCtXLiUk5CF79uykX78BJorSOP/8c5B582ZmmQbk9OmT/PjjZmrXrsNHH82ibt36hXL9fft288MP36FQKJg3b1GG5Cg7NjY2jB//Hs7OzqxYsZRVq5ZRtmw5evbsVSjxCetk9DxIvXv3pl27dly/fh1bW1vc3Nywt7dHqVTy8OHDXGdwXrBggbGXFQZ48MC0Q/x1dP2QgoPvmvS8Iqvw8HBiYqKxsbGhevXcm6xLmnLlyhEaGsL9+8E0aNDI3OEYbP/+3wHo3Llbgc9la2vL668PZdGi+WzatIG+fftjZI+JAtFoNHzzzdd8/vliQFvD17t3X2rWrEVKSgpnzpzil1/2cuXKZQYNGsC7707mtdcGm7Q26e7d28yZMwOAN954i27dnjP42BEjRpGQEM/69V8xa9Y0KlWqTL16hZPECetjVIJ0584dpkyZwoULF3LcJ7e12HLrYKlUKildujSurq7GhCaAe/fuAFCxYuU8901Wwcj92mn413bOfRp+GclWdP7734sAVK0aYHTzSX7KtqgVJLaKFatw5sxp7ty5XUjRmV50dBRnz54GoFOnrjnul5/3pU+fl/jii5XcvXuHgwf/yrPmvjBs3LhenxwNGPAqEyZ8gMLOUXsPNrD2wxcYO3YiCxfO5bff9rF48QLCw0OZOHGSSZIkjUbDnDkzSEpKpFmz5hlmJdfJ6z0dO3YiN25c59Chv5k69T22bNlO6dJOBY5NWD+jfmXOmTOHO3fuMHbsWPz8/PI9j1HHjh3z/OFwc3Nj8ODBvP3228aEWGKlpKToq7krVaqU5/4a4HK0YdPw69Zgu3dPapAK24UL5wEKtDBpfsq2qBUktsqVKwPadeqsxZ9/7ketVlOnTt1cl0jJz/tSurQT/fsPZP36tWzc+HWRJ0h//rmfZcu068mNG/eufnRdkirjPXh4ePDJJ59Rt249liz5lG+/3YCtrR3jxr1b4Bh27vyZ06dP4uDgwMyZ87IdtZvXe6pUKpk791Nefrk3wcH3WLz4E6ZPl6WvhJEJ0unTp5k3bx7PP/+8URf95JNPmD59OoGBgTz//PN4eXkRFRXFb7/9xt9//83bb79NQkICa9asoUyZMrz66qtGXackCg6+h0ajwdnZBXd3D5OeW9cx+8GD+yQlJeLoWNqk5xdPXLhwDihYglRcVa5cBcCqapD27/8NME3z2tNeeeV1vv12A+fPn+X8+XN06NDapOfPSUREOLNmTdPHoEuOcqJQKBg8eDilSjmwYMFs1q9fi5+fPy+//IrRMURHR7N06acAvPXWOwVam8/V1ZU5cz5h5Mih/PzzVtq160C7dh2NPp8oHoxqtHZ2dsbNzc3oi+7du5eePXuybt06XnzxRVq3bk3v3r1ZvXo1/fv359KlS0yePJm3336bH374wejrlES62p2KFSuZfNSIp6cX7u4eaDQabt68adJziydSU1O5fPkSgFX1sSkqugTp7t07VjHUPzY2hlOnTgC5N68Zw9vbR9+x+JtvvjbpuXOi0WiYOfMjHj16RO3adXj33UkGHztgwKu88452VutPP53HqVPHjY7js88+4dGjR9SoUYvXXhts9Hl0mjVrzqBBQwGYP382CQkyV19JZ1SC1Lt3bzZv3pztIrOGOHnyZI61T127duX4ce0PzTPPPENwcLBR1yipdM0OlSpVLpTz6zoM37hxrVDOL7QL1KampuLu7k7Fink3k5Y0ZcuWx9bWluTkJMLDw8wdTp7+/vtP0tPTqVGjZqH8XA4aNAyAAwf+4Pbtwq9V++uvAxw5cgh7e3vmzFmInZ19vo4fPnwkzz33PCqVivffH2/UvGrHjx9l795dKBQKPv54tskmUn377fGUL1+BsLBQ1qxZYZJzCutlVILk6OjImTNn6NKlCxMnTmTq1KkZvj788MNcjy9TpgxXr17N9rWrV6/i7OwMQGJiIo6OjsaEWGI9XYNUGKpXrwnA9euSIBWWp/sfFfbcMdbIzs5O35xiDc1sf/75B2D62iOdatWq07p1OzQaDWvXri2Ua+ikp6ezcuUyQJuYVatWPd/nUCgUzJgxlzp16vHo0SMmThyb48Ll2UlKSmLuXO2otQEDXqV+/Qb5jiEnDg4OTJ06HYDvv9/E1auXTXZuYX2MSpC2b9+Oi4sLarWaCxcucOLEiSxfuenVqxfLly9n48aNhIWFkZaWRlhYGJs2bWLlypX06tWLR48esXHjRho2bGjUjZVU+RnBZgypQSp80v8ob9bSDyk+Pp5jx7RzxRVWggQwZMhwAH766Seio6ML7Tq//LKHW7du4OLiypAhI4w+j4ODA0uWrMDd3YNr164ye/bHBrdIfPnlKu7fD8bX14+xYycaHUNOWrVqQ9euz6FWq5k7dybp6ekmv4awDkZ10v7zzz8LdNEJEyYQFRXFJ598wieffKLfrlQqeemll5g4cSK//fYbly9fZuPGjQW6VknzJEEyvAapTCnD+3FUq6ZNkKQGqXBoNBrOnTsDmCZByk/ZFrWCxFalSgAHD/7FzZs3TBiR6R0+fJC0tDQqV65CQEA1g44x5n1p2jSQOnXqcfnyJX78cTMjR47J9znykpaWqm92GjbsjVynYjHkHvz8/Fm0aBmjRg3jl1/2UKdOPX0foJxcvXqZTZs2APDhh9P1rQ15ye97+v77Uzhy5BCXLl3kP//5qUCdyYX1UmiM7UhkAvfu3ePEiRPExMTg6+tLkyZNqFBBO8Pso0ePcHR0xN4+f+3b5hQTk4BKZb4PpEePYmnXrgUAR46cxsnJsF8e+ZGUlETLlk3QaDTs3/8PXl7eJr+GMWxtlbi7O5m9DArq2rUgXn65N46OpTl06Hi++3eYU1GWwS+/7GHq1Pdp0KAh3367pVCvVRDvvz+e/ft/Y/jwkSYZ1p6b33/fx6RJ7+Lu7s4vv/xl8uVHtmz5ngULZuPl5c3u3b+brPvD999/y6efzsfGxoY1a74mMLBFtvslJibw2mv9uX37Fl27Psenny41yfVz8sMPm1i4cB7Ozi7s3PkLnp5eeR5TXH4PWTMPDydsbEwzaWrRT736lIoVK9K/f39GjhxJ79699ckRoJ+ZWxhOV6tTtmy5QkmOQNv/TPeX8MWLOU8UKoxz/Li2OeaZZ5pZVXJU1HTLr1y7ds1im0CSk5M5fPgQAJ06Ff4cRV27dqd8+fLExMSwe/cOk547KSmRr75aA8Cbb442ad/QV14ZxPPP9yY9PZ13332H//733yz7qFQqpk+fyu3bt/Dx8WXKlI9Ndv2cvPzyq9SpU5f4+McsWfJpoV9PWJ4iS5A6deqk75jdsWNHOnXqlONX586diyqsYkXXL6iwl6Zo1KgJAOfPny3U65REusVMmzd/1syRWLaKFSvh4OBIcnKSxU4YefToYZKTk/D3L0udOvUK/Xq2tra8+eabAGzatMGkieOPP24mMjKCcuXK07dvP5OdF7Sdtj/6aBZNmjQlPv4xo0YN488/nyxWnpyczEcfTWb//t+xtbVj4cIleHiYdo637NjY2DBt2kwUCgV79+7i5EnjpyQQ1qnIFh8IDAzEyclJ/72MzjG9a9eCgCcjzQyRrIJxf2v/GlzePsmgJR8aNmzMtm1b9J2JhWlo167SLkfx7LMtC3w+Y8q2qBQ0NhsbG2rWrMWFC+e4dOkiVasGFEKUBaMbvdaxYxeDf98V9H155ZVX+Oyzz7h37y4HD/5Jx44Fr7mKi4tjw4Z1AIwe/U6eNZvG3IODgwMrVnzBuHFvcebMad59dyzPPNOUSpWqcOzYEUJCHmJjY8Onny6hceNn8hV/Qd7TunXr07//K/z00/fMnz+Ln37aKS0bJUiR/cp8eoHapztmC9MxpgZJA5wNt9V/bwhd5+HLly+RmpoqvzBM5NixIyQnJ+Hn509AQP6HT2dmTNkWFVPE1qhREy5cOMf582d54YU+JovNFFJSUvj7b+1glvw0rxX0fXFycuLll19h3bovWbfuC9q375TvpaAy27jxa+LiHhEQUJ3nnst79QRj78HJyZkvvtjAihVL2Lz5W86cOa3/g8Hb24fZsxfw7LOt8h1/Qd/TsWMncODA79y5c5uNG9fz5ptvGXEWYY3M1gcpPj6esDDtJG+pqamsW7eOuXPncurUKXOFZNXUajU3blwHnow0KywVKlTE3d2DtLQ0/YzPouB0y1Hkp8ahJNPVJFhiU+/Bg38RH/8YPz9/fZN0URk0aChOTk5cvvxffvllb4HOFRUVyebN3wIwZsz4bNc6MyU7OzvefXcyu3f/zpQpHzFq1BgWLlzCnj1/GJUcmYKrqyvvvTcZgHXr1shi3SWIWRKkixcv0rFjRzZt2gTA3LlzWbx4Mbt27WLIkCEcOHDAHGFZtQcP7pOYmIidnV2hz76sUCh45plmgLafhSi4tLQ0Dh78C4DOnQtvvpzipFEjbU3mrVs3iY6OMnM0Ge3duxOAHj2eL3ANTn55enrq10ZbsWIJycnJRp9r3bovSE5Ool69BnTo0MlUIeapbNlyDBz4OqNHv0O3bj0oVapUkV07O8899zzNmz9LSkoKM2d+aLEDA4RpmSVBWrp0KVWrVmXAgAEkJyeze/duXn31VU6ePEm/fv344osvzBGWVdONKKtVq47Jpt3PTdu27QE4dOjvQr9WSXDs2GEeP47Dw8NTJog0UJky7tSsWRuAI0f+MXM0T0RHR+vj6dmzt1lieO21Ifj7lyU0NITvvvvGqHPcvXuHrVt/BOCddyaW6FpN3ZImjo6lOXPmtNHvqbAuZkmQLly4wOjRo6lQoQLHjh0jOTmZ3r21v0h69OjB9evXzRGWVbt4UdthuqgWN23dui0KhYKrVy/rm0qF8X7+eSsAPXv2KvRmjOJEl6j/889B8wbylN9+24tKpaJ27ToGTw5pag4ODvpFYb/6ag137+Z/xvHlyz9DpVLRqlVbGVUJlC9fgfffnwLAypXL9INiRPFllgRJqVTqO/YePHgQV1dXGjTQrqcTHx9v8gnOSoJ//9XWIDVoUDRLs3h4eFK/vvZahw79VSTXLK7CwsL0NXF9+75s3mCsjC5BOnLkUL7W8yosGo1GX+ti7o7jzz33PM8+24qUlBSmT89fs9CZM6c4cOAPlEolEyd+UIhRWpe+ffvTtm170tLSeO+9d4iLe2TukEQhMkuCVK9ePbZt28a5c+f45ZdfaN++PQqFgqioKL766ivq1Sv8OUOKk6SkJP1fM8bUIDnYaHCwyf/4Dt0Q4t27t+f7WPHEli2bUavVPPNMU6pUqWrScxtbtkXBFLHVrVufcuXKk5CQwF9/7c/7gEJ28uRxbt26SenSpenVy7gEyVRlplAomD59Dk5OTly4cI4vv1xl0HHJycnMnq2diLFv3/5GLUhrac+dKd/TWbMW4O9fluDge0yd+oH0RyrGzJIgTZo0iWPHjvHKK69gY2PD6NGjAXj++ee5c+cOEyZMMEdYVuvy5UuoVCq8vX3w8/PP17GOtnB4QDyHB8TjmM9JH3r16o2trS0XL17g+nWpbjZGTEwMP/74HQCvvz7MpOcuSNkWNlPFplQq6dXrRQC2bTP/kiO6vinPP/+iweuEPc3UZebvX1a/Ov3atav1IyVzs2LFUu7evYO3tzfjxr2X72ta2nNn6njc3d1ZunQlpUqV4siRQyxevMDghXaFdTFLglSnTh1+//13tmzZwv79+6lcuTIAM2fOZM+ePVKDlE+6GV4bN36mSDtSenp60b59R8AyPpys0fr1X5KYmEjt2nX076XInz59+mFra8fZs6c5d858Q/7//fci//xzEKVSyWuvDTJbHJk9/3xvXnttCADTpk3i6NGcO7Tv2bOTzZu1C4R/9NGsXBekLclq1arDzJnzAPjhh+9YsWKJJEnFkNnmQXJ2dqZhw4aULl1av61bt254e1vG4qfWRDdipmXL1kV+7f79tatcb9++jZCQh0V+fWv23//++9QcMxNK9CihgvD19dPXIi1ZshC1uugXCdVoNKxatQyAnj1foFKlKkUeQ24mTvyA9u07kpKSwrhxb/P9999meJ80Gg0//7yV6dOnAvDGG2/Rrp0k7Ll57rnnmTZtJgDr139ltmdPFB6zLlYrCi46Olq/uOOzz+Y/QUpJh/F/OzL+b0dSjGhKDwxsQdOmgaSmprJmzYr8n6CEevz4MR9/PAW1Wk337j1o3bqtya9R0LItTKaObfTosTg5OfHvvxfYsOGrgp8wn37//ReOHz+Kra0do0aNMfo8hVVmtra2LFq0jG7deqBSpfHpp/Pp3783X365iu++28hbbw1n9uyPUavVvPjiS4we/Y7F3YMlxtO//0Dee087sm3Tpm+YMGEMMTExpr2IMBtJkKzcgQO/o9FoqFWrDr6+vvk+Xq2BIw9tOfLQFrURNcQKhYJx494FYNeu7RY1H42lSklJYfLkidy6dRNvbx8mTfqoUK5T0LItTKaOzcfHV/9BtXLlMv1IsqIQFhbKJ5/MBeCNN0ZRvnwFo89VmGVmZ2fPJ598xpQpH+Hs7MLNm9dZs2YFixcv4MSJY9ja2vL22+OYMWNugaaasLTnrrDjGTRoKPPnL8LOzo4//zxAp06dZH64YkISJCv36697AHjuuZ5mi6FBg0YMGPAqANOnT+XBg/tmi8XSRUdHM3bsSI4ePYyDgwOff766SFYmLwn69OnHq68ORqPRMG/eTD7+eArh4YU7R1dcXBzvvPMWMTHR1KhRkxEjRhbq9QpKoVAwcODr7Nt3gKlTp9Oz5wt07tyN0aPfYefOXxk58m1p6jVCjx692LDhe6pUqUJYWBhvvz2SUaOGcf78WembZMWKTYKkVqtZvnw5bdq0oWHDhgwfPpy7d+/muH9MTAzvvfcezZo1o1mzZnz88cckJiYWYcQFd+PGNc6cOY1SqaRbtx5mjWXixElUr16DqKhIRo4cyt27d8waj6XRaDQcOPA7/fu/wKlTJ3BycmLFii+oU0cGJJiKQqHggw+mMmrUGBQKBbt376BHj05MmjSRPXt2EhYWZtIPq+vXgxgyZCDXrl3Fw8OTpUtX5bnSvaVwdXVlwIBXmTfvUxYv/pxRo8ZQrlx5c4dl1erVq8/WrTsZNWoUtrZ2nDhxjKFDX2XAgBfZtGkDt2/fkmTJyljAIEzTWL16NT/++CMLFizA19eXRYsW8eabb7Jnz55sV5sfN24cKSkpfPPNN8TFxTFt2jRmzZrFwoULzRC9cTZsWAdAp05d8z2839QcHBxYteorRowYRHDwPV57rR/vvTeF3r37FvlaVJYkOTmZv/7az+bN33Lp0kUAqlatxieffEaNGjXNHF3xo1AoGD36HVq2bM2yZYs5d+4Mv//+C7///gsAZcqUISCgGv7+5fD29sHHxwcPDy9cXFxwcXHB2Vn7r5OTE7a2dtjY2KBUKtFoNCQmJhAZGcGVK5f5668D/PHHr6jVanx8fFmx4ktJMAQODg5Mnz6dl14ayJo1q9i7dxfXrgXx2WcL+eyzhfj7l6Vu3frUrFmLatVqULZsOXx9fXFzKyM1dxZIoSkGKW1qaiotWrTggw8+4JVXtKOq4uLiaNOmDfPnz6dnz4zNT+fOnWPgwIHs27ePgIAAAA4fPswbb7zBwYMHjerLAxATk4BKVTSjGM6cOcWIEdqhxJs3b6Vu3fpGnSdJBW1+cgHgn5cfF3iekIiIcD74YIJ+hfUKFSrRr9/LtGvXgUqVqhTaLwFbWyXu7k5FWgbZefz4Mffu3eHSpX85deo4x48fIz7+MQAODo689tpgRo58u0gW3zR12eYlP2VQVLFdvnyJAwf+4OjRfwgKumrUKCNdgp/dsZ07d2XSpGn4+Bj3OyOzgrwvlvIzUNTPnSXFk7kM4uIesW/fbv7660/Onj1FWlpatsc5ODji6empT9CdnV1wdnbG2dkZe/tS2NvbU6pUKezs7ClVyl6/zd7eHqVS+f9E3uap77P+q1TaYGOjRKFQ/P9L9z3//72seOq1J9uf7KfQ//7OuF/2X0/ORzbbctuufS3rtifXz42HhxM2Nqb5o7xY1CBdvXqVhIQEWrRood/m6upKnTp1OHXqVJYE6fTp03h7e+uTI4DAwEAUCgVnzpyhR4/8N1eFhYUxcuRbANk8JJkfKGWWbZkfnFKlHPDz86ds2bJUrFiZSpWq4OPjg0Kh4OLF87z//nhA2+/C2OSoMHh7+/DVVxv58cfv+PLL1QQH32Xp0kUsXboIb28fqlevQZUqAfj5+VGmjDvu7h44OTljb2+n/wVgb2+PQqFAo9Hk+JWWlkZaWiqpqdqv9PQ07O2VREfHkZycQkpKyv/3SUOlUqFSqUhPV+m/V6me3p6u/1etTkelSic9PZ30dBXp6er//5vxtey+T0iIz3ZVeX//svTq9SIvv/wKXl4yjUVRqlOnHnXq1OOddyaSkpLC7du3uHXrBmFhYUREhBMeHkZMTBSPH8fz+HEc8fHxxMc/ztAU8nRi5ODgQLVqNWjUqDHPP9+bWrXqmOO2hJVwdXVj4MDXGTjwdZKSkrhw4RxBQVe4di2IW7duEBoaSkxMNMnJSdJ3Mx+yT8a02w8ePEjFihVNcp1ikSCFhoYC4O+fsZnJx8eHkJCQLPuHhYVl2dfe3p4yZcpku78hkpOTOX36pFHHGqp0aSfKlCnDw4cPAKhTpy5TpnyIra3x2bLtU/WHtjZKbE3wRNjalmLYsBEMGDCQvXt38+uv+zh79gwREeFERIRz9Ojhgl/Egnl6elG9enWaNWtBYGBzGjZsZJZmxsIo29zo/moz5K+3oo4NwNbWkXr16lKvXt1c91Or1SQnJ/0/AdYm0RqNBhcXVxwcHAq1KaQg70t+3v/CZI6yzU1RxpNbGbi4ONG6dWtat844HUtKSgphYaHExMTw+HEcjx8/5vHjx8THPyY+Pl7/R2BqagqpqamkpKQ8tS0VtTqd9HT1//9NR61Wo1Jp/3DL+Jr2X+0fmWT6o1OdYTtk/qM0p+2619QZthW23K5jyusXiwRJt0hl5r5GpUqV4tGjrIsJJiUlZdsvqVSpUqSkpBgVg5eXF2vWrNEXTm61H4Z8JSYm8uDBA+7du8etW7e4d+8eiYkJJCYmYGNjQ58+fZg9ezZubm5GxavjDtwdr/ufU4HOleXc7k6MHDmCkSNHkJSUxMWLF7l+/To3b94kIiKCqKgooqKiSEhIyPCDn5KSgkajybX61s5OW+Okq3rWVTc7ODjov9d92djYYGdnh62trf5f3ZednZ3+daVSqd9uY2Oj/9Jt073+9Pan/3V0dKRSpUq4uLiY9H00VmGWbW5cXR3z3MdcsRnOPGVoivfFkPe/MFla2ZojnvyVgRN+fsVvJKshn3OFsZ+xXWSyUywSJAcHB0DbF0n3PWgzc0fHrA+qg4MDqampWbanpKRkmNk7P5ycnGjfvgvp6YXT9p+WlkpwcDCxsbFUrVqVMmXcUau1/Z6sRY0a9ahRo3BGbdnYKHF1dSQuLqnQysAQKpV1lYkpWUoZlFTy/puflEFBKP7/lWmrIuO/eTFlbX2xSJB0zWXh4eEZ2h7Dw8OpVatWlv39/PzYvz/jyt+pqanExsYWKPtMT1cXWudIhcKWihWroLs9c3bCtGSFWQbCMFIG5iXvv/lJGZiPKVv4isX461q1auHs7MyJEyf02+Li4rh8+TJNmzbNsn+zZs0IDQ3NME+S7tgmTZoUfsBCCCGEsGjFogbJ3t6e119/ncWLF+Ph4UG5cuVYtGgRfn5+dOnShfT0dKKjo3FxccHBwYGGDRvSpEkTJk6cyMyZM0lMTGTGjBm8+OKLJm2/FEIIIYR1KhY1SKCd+LFfv3589NFHvPLKK9jY2PD1119jb29PSEgIrVu3Zt++fYB2KODKlSspX748Q4YMYcKECbRt25aZM2ea9yaEEEIIYRGKxUSRlkI65ZmXjY1SysDMpAzMS95/85MyMC+l0rAJJQ0hCZIQQgghRCbFpolNCCGEEMJUJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQQQohMJEESQgghhMhEEiQhhBBCiEwkQRJCCCGEyEQSJCGEEEKITCRBEkIIIYTIRBIkIYQoAhqNxtwhCCHyQRIkIUShGTRoEIMGDTJ3GCZ34sQJunXrRr169RgxYgQrVqygZs2a+tcz3/fWrVtZuHChOULN061btxg5ciTPPPMMzZs358MPPyQuLs7g4+Pj4+nYsSM///xzIUYpRNGzNXcAQojia8aMGeYOoVAsXLgQtVrN2rVr8fT0xM3NjTZt2uS4/5o1awgMDCzCCA0TFxfH0KFD8fHx4dNPPyUqKopFixYRGhrK+vXr8zw+NjaW0aNH8+DBgyKIVoiiJQmSEKLQVKtWzdwhFIrY2FiaNWtGy5Yt9dv8/PzMGJFxfvjhB+Li4tixYwceHh4A+Pr6MnLkSE6fPk3Tpk1zPHb//v3MmzePxMTEogpXiCIlTWxCFAMdO3Zk6dKlLFiwgMDAQAIDA/nggw+IiYnR7zNlyhSGDBnCjBkzaNq0KX369EGlUpGSksKqVavo3r079evXp2vXrqxduxa1Wq0/dtCgQUyfPp01a9bQpk0bGjZsyJtvvklkZCT/+c9/6NKlC40bN2bo0KHcv38/w3FPNzXVrFmTzZs3M23aNAIDA2ncuDHjxo0jMjIyw/3s37+fvn37Ur9+fVq1asXcuXMzfBCvWLGCLl268Pfff9OrVy/q1atHt27d2L59e4bzREVF8eGHH9KyZUsaN27Ma6+9xpkzZ/Sv62qBunTpoj/Hpk2bcnyf79+/T82aNXnw4AE7duygZs2anDhxIksTW+ayefDgAdu3b6dmzZr69+fhw4e8++67BAYG0rBhQ4YMGcLly5ezXGvDhg0899xzBAYGZtuMpdsvp6/cmjgPHz7MM888o0+OANq0aYOTkxOHDh3K8bi4uDjeeecdAgMDWbduXY77CWHNpAZJiGLi+++/p1KlSsyfP5/o6Gg+++wzbt26xdatW1EqtX8LnT59GoVCwYoVK0hISMDGxoY333yT8+fPM2bMGGrXrs2JEydYtmwZwcHBzJkzR3/+vXv3UqdOHebNm8fDhw+ZM2cOr7/+Og4ODkyePJnY2FjmzZvH7NmzWbt2bY5xLl26lC5durBkyRKCg4NZsGABtra2LFmyBIDdu3fz/vvv06tXLyZMmMCDBw9YunQpN27cYMOGDSgUCgAiIiKYPXs2o0ePply5cnz99ddMmTKFBg0aEBAQQGJiIgMHDiQtLY333nsPPz8/Nm7cyBtvvMG2bdsICAhg5syZ/Pzzz4waNYrGjRtz6tQp5s+fT1xcHGPGjMkSu4+PD1u2bGHs2LHUqVOHt99+m2rVqnHy5Mkc73flypWMHDlSv7+Pjw/R0dEMHDgQR0dHPv74YxwdHdm4cSOvvfaaPran36/p06fj6upKvXr1cowpJ87Ozjm+dvPmTXr06JFhm1KppHz58ty5cyfH4xwcHNi7dy9Vq1bNkBALUZxIgiREMaFQKNiwYQMuLi4AeHh4MGbMGA4dOkT79u0BUKlUzJo1i0qVKgFw8OBBjh49yqJFi3jhhRcAaNWqFQ4ODnz++ecMGTJE30yWlpbGypUrcXNzA+CPP/7g8OHD7N+/nwoVKgBw5coVdu7cmWucNWrUYMGCBfr/X7x4kV9//RXQjvRavHgxbdq0YfHixfp9KleuzNChQzl48KD+XpKSkpg3bx7PPvusfp8OHTpw8OBBAgIC2L59O8HBwezYsYNatWoB0LRpU1588UVOnTqFUqnkp59+4t1332XkyJEAtG7dGoVCwZdffsmrr76Ku7t7htjt7e1p1KgR9vb2eHh40KhRozzLpU6dOln237hxI7Gxsfzwww+UK1cOgLZt29KjRw8+//xzli9frj++a9eu9OvXL8fz62IyRlxcHE5OTlm2Ozk5ER8fn+s1q1atatQ1hbAW0sQmRDHRoUMHfXIE2qYdOzs7Tp8+rd/m4OBAxYoV9f8/efIkNjY2WWoRdMnSiRMn9NsCAgL0yRGAt7c3Hh4e+uQIoEyZMjx+/DjXODN/mPv5+ZGUlARoR1SFhobSsWNHVCqV/qtZs2Y4Oztz5MiRHM+l6wOka4o7ffo05cuX1ydHAKVKleKXX35h4MCBHD9+HI1Gk+VaHTt2JCUlJUNTnKkdO3aM2rVr4+vrq7+uUqmkbdu2HD16NMO+NWrUyPN8T8ef+Ss9PT3XY3U1ck/TaDTZbheiJJEaJCGKCR8fnwz/VyqVlClTJsOQbU9PzwwffI8ePcLd3R1b24y/Cry9vQEyJDvZNdU4OjrmO87MxyiVSv0cQbGxsQDMmjWLWbNmZTk2PDw8x3PpmhGfPpenp2eOceiu1bNnz2xfDwsLy+UuCiY2Npa7d+9St27dbF/XJYwAXl5euZ7r/v37dOrUKcfXAwMDc+xX5ezsnG1NUWJiolV2OhfClCRBEqKY0H3g66SnpxMTE5OhA25mbm5uxMTEoFKpMiRJukQkcxNTYXN1dQVg0qRJ2Q6Lf7oGKy8uLi7Z9o85d+4czs7O+mtt3Lgx22amsmXLGnyt/HJxcSEwMJBJkyZl+7q9vb3B5/Lx8WHbtm05vp7dvelUqVKFe/fuZdimVqu5f/8+Xbt2NTgGIYojaWITopj4559/SE1N1f//wIEDqFQqfR+d7AQGBpKens6+ffsybN+1axcAzzzzTOEEm4OqVavi6enJ/fv3qV+/vv7Lz8+Pzz77LMMor7w0bdqU4OBggoKC9NtSU1N55513+Omnn2jWrBkAMTExGa4VGxvLsmXLsiScBaGr3dIJDAzk9u3bVKlSJcO1d+3axdatW7GxsTH43Pb29hnOkfkrt75CrVq14tSpU0RHR+u3/fPPPyQkJNCqVav836gQxYjUIAlRTISGhjJ69GgGDx5MSEgIS5YsoXXr1jRv3jzHY9q2bUvz5s2ZMWMG4eHh1KlTh5MnT/LVV1/Rp0+fIp/HyMbGhokTJzJ9+nRsbGzo0KEDcXFxrF69mrCwsBybpLLTt29fNm3axOjRoxk/fjweHh5s3ryZ5ORkBg0aRMWKFXnhhRf4+OOPefDgAfXq1eP27dssXbqU8uXLU7lyZZPdl6urK5cvX+bkyZM0aNCAoUOHsnPnToYOHcrw4cNxd3dn3759/PTTT0ydOtVk183Lq6++ynfffcewYcMYO3YssbGxLFq0iLZt29K4cWP9fufPn8fDwyND/zUhijtJkIQoJnr27ImrqysTJkygdOnS9OnTh4kTJ+Z6jG7E1vLly/n222+Jjo6mfPnyTJw4kWHDhhVR5Bn1798fJycn1q1bx5YtWyhdujRNmjRh8eLFGTqE58XZ2ZnvvvuOTz/9lHnz5qFSqWjYsCGbNm3Sf9AvWLCAL7/8kh9//JHQ0FA8PT3p0aMHEyZMyFctTl6GDx/O/PnzGTFiBBs2bKBp06b8+OOPfPbZZ8ycOZOUlBQqV67MvHnzch2xZmoeHh58++23zJ8/n/fffx8nJye6d++epelvwIAB9OnTh08++aTIYhPC3BQaWUFRCKvXsWNHAgMD5QNMCCFMRPogCSGEEEJkIgmSEEIIIUQm0sQmhBBCCJGJ1CAJIYQQQmQiCZIQQgghRCaSIAkhhBBCZCIJkhBCCCFEJpIgCSGEEEJkIjNpm4hGo0GtlgGB5qRUKqQMzEzKwLzk/Tc/KQPzUioVKBQKk5yrWCZIq1ev5tixY2zatCnHfWJiYpg7dy6HDh0CoHv37kydOpXSpUsbdU2FQkFcXCIqldqo40XB2NoqcXd3kjIwIykD85L33/ykDMzPw8MJGxvTJEjFrontm2++Yfny5XnuN27cOIKDg/X7HzlyhFmzZhVBhEIIIYSwdMWmBiksLIxp06Zx5swZqlSpkuu+586d4+TJk+zbt4+AgAAAZs+ezRtvvMG7776Lr69vUYQshBBCCAtVbGqQ/vvf/+Lm5sauXbto2LBhrvuePn0ab29vfXIEEBgYiEKh4MyZM4UdqhBCCCEsXLGpQerYsSMdO3Y0aN+wsDD8/f0zbLO3t6dMmTKEhIQYHYONTbHJN62O7r2XMjCf/JTB7t07Wbp0EaVLOzF9+iwCA1sUdnjFnvwMmJ+UgfmZqH82UIwSpPxISkrC3t4+y/ZSpUqRkpJi9HldXR0LEpZZqDVwI1r7fTUPUJrw4TIHayyD4iavMvjjjz/48MPJaDyqwWMY+87b/HPoIH5+fkUUoeUyxc+juX8GLO13ijniMXcZCNMokQmSg4MDqampWbanpKQYPYoNIC4uifR06xq5kJQGXX5wAuDYKwk42pk5ICPZ2ChxdXW0yjIoLgwpg9TUVD766GM0tqWwHfEXAIlLqzFnzjzmzv2kKMO1SAX5ebSUnwFL+51SlPFYShmUZG5ujiiVpqnBK5EJkp+fH/v378+wLTU1ldjY2AJ10E5PV1vd0E5V+tPfq1FZeQ2SNZZBcZNbGezevYv794Px8q9A7FPb9+7dzcSJk3BzK1MUIVosU/w8mvtnwNJ+p5gjHnOXQUmmMeEUVCWyobRZs2aEhoZy9+5d/bYTJ04A0KRJE3OFJUSxt23bFgD6939Fv61atRqkpaXx66/7zBWWEEJkUSISpPT0dCIiIkhOTgagYcOGNGnShIkTJ3Lx4kWOHz/OjBkzePHFF2WIvxCFJCjoKv/+ewFbW1ue79lbv/2553oC8Oeff5grNCGEyKJEJEghISG0bt2affu0f6EqFApWrlxJ+fLlGTJkCBMmTKBt27bMnDnTvIEKUYzt3r0dgA4dOuPh6anf3rJlWwDOnj1NUlKiWWITQojMimUfpE8+ydjZs3z58gQFBWXY5unpadCM20KIgtNoNBw4oK0heu655zO8VqlSJfz9yxIS8pBTp07Stm17M0QohBAZlYgaJCGEeV258l9CQh7i4ODIs8+2yvCaQqGgRYuWgLYWSQghLEGxrEEShrNVwKDaqfrvhSgMutqj1q3b4ujoSFp6xueuYcPGbN++jYsXz5sxSvMrDj+PlnYPlhaPsB6SIJVwdjYwvrHxk2MKkRdt89rvAHTq1AXI+tw1aNAIgMuXL5GWloadnZVOyFVAxeHn0dLuwdLiEdZDmtiEEIXq1q2b3LlzGzs7O9q0aZ/tPpUrV8HV1Y3k5GSuXw/Kdh8hhChKkiCVcGoNPIxX8DBegdqEE2wJoaOrPWrRoiXOzs5A1udOqVRSq1ZtAK5dK7kJUnH4ebS0e7C0eIT1MEuC1KVLF9asWVOghWGFaaSkwwu7nHlhlzMp6XnvL0R+6fofderUVb8tu+euevWaQMlOkIrDz6Ol3YOlxSOsh1kSpGeffZYNGzbQqVMnhg0bxp49ewq0SKwQwjLdvx9MUNAVbGxsaNeuY677Vq9eA4AbN64VRWhCCJErsyRIs2fP5vDhwyxevBg7OzsmT55M69atmT59OufPnzdHSEKIQrB/v7Z57ZlnmuHu7p7rvroE6fr1IDSmXFBJCCGMYLZRbPb29vTo0YMePXoQGRnJb7/9xq5du3jllVeoXLkyAwYMoF+/fvo+C6JwaGcudjF3GKKYejJ6rWsee0LVqtVQKpXExMQQFRWJl5d3YYcnhBA5Mnsn7ZSUFI4dO8aRI0e4evUqLi4uVK9enS+++ILOnTtz7Ngxc4dYbKWlpTJmzEj9/yMjI8wYjShuQkND+PffCygUCjp27Jzn/o6OjlSoUBGA69elmU0IYV5mS5COHz/O1KlTadmyJZMmTSIhIYG5c+dy+PBhli9fzt9//03VqlX56KOPzBVisbd//+9cufJf/f83bfrGfMGIYkfXObtRoyZ4e/sYdMyTfkjXCy0uIYQwhFma2Nq3b09YWBi+vr4MHjyYl156ifLly2fYx8HBgZYtW7Jp0yZzhFgi7N27O8P///jjN6a+/z4KhUw3KwouP81rOpUqVQHg3r27hRKTEEIYyiwJUsOGDenXrx+tW7fO9cO4b9++9OvXrwgjKzkeP37MsWOHARu6+ISzf//vxESFc+PGNf1wayGMFRkZwblzZ4Ans2c/zUYB/aun6r/XqVixElByE6Sc3hdrYmn3YGnxCOthlgSpevXq1KhRI9vk6P79+6xfv57p06dTtmxZM0RXMvz77wXS09MpX74sCzo7Erd9D0fSUzl+/KgkSKLA/vrrABqNhnr1GuDvn/Xn2N4GJjfLOrWHLkEKDi6ZCVJO74s1sbR7sLR4hPUwSx+kVatWERYWlu1rFy5cYOvWrUUcUcmjWxS0fv2GADRr1gKAc+fOmiskUYzs3/8bkL/mNXiSIIWGhpCammryuIQQwlBFVoM0cOBALly4AGgXrxwwYECO+9avX7+owiqxdAlSgwaNiElWUKFmIwBZB0sUWExMNKdPnwSgc+fsEySNBmJTtDXIZUpp0FUme3h4Urp0aRITE3nw4D5VqlQtkpgtRU7vizWxtHuwtHiE9SiyBGnevHn88ssvaDQaVq1axUsvvYSfn1+GfZRKJa6urnTtmr+/OkX+6Uav1ajbmC4/OwPtwc6R4OB7JCTE4+Qk808J4/z22y+kp6dTu3Yd/bD9zJLT+f9zB/+8/BjH//8mUigUVKhQiaCgK9y7d6fEJUg5vS/WxNLuwdLiEdajyB6VgIAAxo4dC2h/Cfbv3x9fX9+iurx4SnR0NDExMSgUCu0H0CXtdi8vLyJDgrlx4zoNGzY2b5DCau3Zox0d2aNHL6OOr1hRlyDdM2VYQgiRL0WWID18+BBvb2/s7Ozo27cv6enpPHz4MMf9pYN24bl16wYAZcuWw9HRUb+9WrWaRIYEc/16kCRIwij37t3j/PmzKBQKunXrYdQ5dLVOJXUkmxDCMhRZgtSpUye2bNlCgwYN6NixY55z7Vy5cqWIIit5bt26CUDVqgEZtleuXJnj/8gHkzDe9u3bAQgMfBYfH+NqiHUJ0sOHD0wWlxBC5FeRJUjz58+nQoUK+u9lMkLzuXlTO0txQED1DNvLltWWjzRtCGNoNBp+/vlnAHr0eN7o8/j5+QMQEpJzDbMQQhQ2gxOkqVOn5uvECxYsyPD/Pn366L/v27dvvs4lTOvu3TsAVK5cJcN2XQIbHCwJksi/K1cuc+PGDUqVKpXv4f1P0zWvh4Y+RKPRyB9TQgizMDhBOnHiRIb/h4eHo1KpKFu2LN7e3sTGxhIcHIy9vT21atXK83ynTp3CxsaGJk2acP/+fWbPnk1ISAjdu3dnzJgx+b8TYbAHD7RNF+XLV8iwXff/+/fvoVarUSrNvpaxsCK7d+8EoH37jjg7Gz8K0tdXW4OUmJjI48dxuLq6mSQ+IYTID4MTpD///FP//e7du1m8eDErVqygQYMG+u03btxgzJgxPPfcc7mea+fOnUyZMoVhw4bRpEkTZs6cyZkzZ2jVqhVffPEFdnZ2jBw5MtdzCOOkp6frmy7KlSuPjQKer5Km/b+/P7a2tqSkpBARESGjDIXBUlJS2LVrBwC9e/fJfWfI8NxlXv7BwcEBd3cPYmKiCQkJKVEJUm7vi7WwtHuwtHiE9TCqD9LSpUt57733MiRHANWqVWP8+PEsWLCAIUOG5Hj8hg0b6NOnD5MmTSIqKoqjR4/y3nvvMWLECNavX8+WLVskQSok4eFhqFRp2Nra4ePji40NzHw2+f+v2uLvX5bg4HsEB9+VBEkY7M8//+DRo1jKli1Lq1Zt0Ghy398+w3OXlb+///8TpIfUrJl3jXRxkdf7Yg0s7R4sLR5hPYxqQ4mJicHFxSXb12xtbUlMTMz1+Fu3btG7d28ADh06hEajoVOnToB2Fu2QkBBjwhIGuH8/GAB//7LY2NhkeV23blZYWGiRxiWs288/a5cHGjhwYLbPVX7pnsPQUOmoLYQwD6MSpEaNGrFy5UpiYmIybA8PD2fFihU0b9481+NdXV1JSEgA4ODBg5QtW5bKlSsD2hFU7u7uxoQlDPDgwX0AypcvD2in4U9Sab80GvD11c5uHhoqSaowzL17dzl16gQKhYKBAwcadEzm5y4zPz9tglTS/ljK632xBpZ2D5YWj7AeRjWxTZ48mUGDBtGxY0caN26Mu7s7UVFRnDt3Djc3N9asWZPr8S1atGDlypVcv36dP/74g+HDhwPw22+/8fnnn9O6dWtjwhIG0CVI5cppE6TkdGjzk7Y28J+XH+uHWIeGSg2SMIyu9qhVq9aUK1eOmJiEPI/J/NxlXv7hyXNYshKkvN4Xa2Bp92Bp8QjrYVQNUq1atdizZw8DBw4kISGBS5cukZyczPDhw9m1a5e+diIn06ZNw93dnVWrVtGyZUtGjRoFaKcGKFu2LO+9954xYQkDZE6QMtPVIIWFlawPJmGcxMQE/vOfnwAYMOBVk53X3183F5JMFimEMA+jc2lfX18mT55s1LHu7u58/fXXWbZ///33ssRIIXuSIFXI9nWpQRL5sXv3Th4/jqNChUq0a9fBZOfVNbHJcyiEMBejE6TU1FS2bdvG0aNHiYiIYP78+Zw8eZK6detmGd2Wk0ePHpGUlIRardZv063PJolS4dAt31C2bLlsX/fzkxokYRi1Ws3mzRsBeO21QSadN8vb2weAqKhImZNLCGEWRiVI0dHRDBkyhFu3blG1alVu3LhBcnIyBw8e5JNPPuGbb76hceOcFzu9c+cOU6ZM4cKFCznuI2uxmZ5KpSIqKhIgxyH8ukn6dMnr04vZCvG0w4cPcu/eXVxcXHnhhbznPsoPT09PFAoF6enpxMRE4+npZdLzCyFEXoxKkD799FMSEhLYt28f5cqVo169egB8/vnnjBgxguXLl7Nhw4Ycj58zZw537txh7Nix+Pn5yV+HRUT317itrS0eHp7Z7uPi4oKTkxMJCQmEhYVQuXLVIo5SmEp0dBRXr17BxcWFWrXqYGdnZ7JzazQa1q37AoC+fftTurSTyc4N2ulCPD29iIyMICIiXBIkIUSRMypB+uuvv/jwww+pVKkS6enp+u2lSpVi+PDhTJkyJdfjT58+zbx583j+eeMXtBT5Fx4eBoCXl3euc9X4+vpz69YNQkNDJUGyQsnJyXz22UL+858t+uZrb29vxoyZQO/efU2yttnRo4e5ePECDg4ODBo0tMDny463tzeRkRGEh4dTq1adQrmGEELkxKgEKSUlhTJlymT7mo2NDWlpabke7+zsjJtbyVk+wFLoEiQfHx/9NqUCOlVI038P2n5I2gRJ+iFZm7S0VMaPH82JE8cA7YLEMTHRREREMHPmNI4fP8qcOQuws7M3+hoajYYvvlgJQP/+A/Hy8s73ObJ77jLz9vbhypXLRESEGx2rtTHkfbF0lnYPlhaPsB5GJUj169fn+++/p127dlle2717t77JLSe9e/dm8+bNtG7dWlbqLkJPEqQn/Y9K2cDCNhmn4dcN9dftL6zH8uVLOHHiGKVLl2bx4uW0bNmatLRUNm36htWrl/Prr3uJj4/ns8+WU6pUKaOuceDA7/z7r7b2aOjQN4w6R3bPXWa6jtolKUEy5H2xdJZ2D5YWj7AeRiVI48ePZ+jQofTu3Zt27dqhUCjYs2cPK1as4PDhw6xbty7X4x0dHTlz5gxdunShfv36ODg4ZHhdoVAwf/58Y0ITuQgP137QeHvnvsaarkYgIiKi0GMSpnPjxjU2b/4WgHnzFtGypXbCVTs7e4YPH0mtWnV4992xHD58kHffHcvSpauwt89fTVJSUhKffbYQgMGDhxdq36CSmCAJISyHUb2jmzZtyoYNG3B0dGTdunVoNBq++eYbIiIi+PLLL2nRokWux2/fvh0XFxfUajUXLlzgxIkTWb6E6WVXg5QdXYKkG/EmrMPnn3+GWq2mc+eudOjQKcvrLVu2ZuXKtTg4OHLkyD9MnfoeKpUqX9fYsOErQkIe4ufnz7Bhb5oq9GxJgiSEMCej50Fq1qwZP/74I8nJyTx69AhnZ2ecnAwbyfLnn38ae1lRANklSEmqrNPwe3trE6TISPlgshZXrvyXf/45iK2tLe+8MzHH/Zo2DWTp0pWMG/cWBw78wcyZ05g9e4FBI0kvX77E+vVrAXj33ckFmgIiu+cus5KYIBnyvlg6S7sHS4tHWA+japCmTp3K6dOnAXBwcMDX11efHF25coVOnbL+9ZodtVrN1atXOXToEPHx8cTGxhoTjjBQdp20syNNbNZn69YfAejcuRuVKlXJdd9nn23Fp58uw8bGhj17drJgwWw0eaziGRcXx4cffoBKpaJz56506dLNZLHnRPecynMohDAHoxKk7du3M3ToULZs2ZLltdTUVP1s2LnZuXMn7du358UXX2TUqFHcvXuXKVOm8M4775CammpMWCIXGo2GsLD8NbFFRkbk+cEpzC8+Pp5fftkLaEeVGaJDh07MnbsQhULB1q0/snTpohzLOiUlhUmTJnDnzm18fHz56KNZRTK44unZtPPbFCiEEAVl9AyN7dq1Y8aMGcyaNSvDXEiG2LdvH5MnT6ZFixYsXbpU/4u5a9euHDp0iNWrVxsblsjB48ePSU5OAgxPkNLS0oiLe1TosYmC+eOPX0lKSqRq1QCaNGlq8HHPPfc806fPAeDbb9czffpUEhMTMuwTHR3FmDFvcvz4URwdS7N8+RrKlHE3afw5cXf3wMbGBo1GQ1RUVJFcUwghdIxujR01ahQ9e/bkww8/5MaNG6xYsSLHuZEy++KLLxg4cCAzZ87MkFz17duXqKgofvrpJyZMmGBsaCIbuuY1FxfXPPuO2Nvb4+bmxqNHj4iIiMDNrUwRRCiMdeDAHwA891yvfNfs9OnTj5SUFD79dB67d+/gyJF/ePHFvgQEVOfWrZts3fojcXGPcHJyYtmyVUU6YaNSqcTLy5uwsFAiIsJzXB5HCCEKQ4HW+OjRowebN2/m3r17vPTSSwQFBWFrm3fOdfv2bbp06ZLtaw0bNtQ3BQnTMXQEm46n55NmNmG5Hj9+zIkTRwHo1Cn7n6m8DBz4GmvXfkOFChWJjo5i/fqvmDZtEl9//SVxcY+oWbM269dvplmz3EenFoaS2FFbCGEZCtyfv27dumzbto2xY8cycOBARo8enecxnp6e3Lx5k1atWmV57ebNm3h6Zr9OmDCeoR20dby9vbl164YM9bdwhw8fJC0tjSpVqlK1aoDR52naNJCff97LH3/8ytGjh4mICMfLy5s2bdrRuXM3g/7wKQySIAkhzMUkv/W8vb3ZtGkTH3/8MUuWLMmzmr9Hjx4sX74cHx8f/WzcCoWCS5cusXr1almjrRDoPmAy1yApFdCqrEr/vY6MZLMOhw79DZDtvEf5ZWdnR48evejRo1eBz5WXnJ67zJ48hyUjQTL0fbFklnYPlhaPsB5GJUhjx47N0h/A3t6ehQsXUqtWrTznOZowYQLXrl1jwoQJ+vlXBg0aRGJiIk2bNmX8+PHGhCVykVMTWykb+Lx9Upb9n4xkKxkfTNZIo9Ho11xr2bKNmaPJn5yeu8yezMlVMhJ1Q98XS2Zp92Bp8QjrYXSClJNhw4YxbNiwXI+3t7dn3bp1HDlyhOPHjxMbG4uLiwuBgYH6pUuEaeW3D9LTQ/2FZbpx4xrR0VE4ODjSoEEjc4dTKKQmUwhhLgYnSIMHD2bGjBkEBAQwePDgXPdVKBRs3Lgxx9d37NhBu3btaNWqVZZ+SBEREezYsYM33yzcZQxKGmP6IIF8MFmy48e1tUfPPNM032uqWQtJ1IUQ5mLwKLanJ5HTaDS5fqnV6lzPNXXqVIKDg7N97cqVKyxfvtzQsISBdAvVZq5BSlJB6y3OtN7iTNJTc/HJB5PlO3lSmyA1b/6smSPJv5yeu8x0iXpUVMl4Dg19XyyZpd2DpcUjrIfBNUibNm3K9ntDjRo1ihs3bgDaBGvMmDHZ/tUbFRVFxYoV831+kbO0tDSio7UT7WXXxJacnrVJs6T1/bA2arWa8+fPAfDMM83MHI1xsnvuMvP09AK0vxfS09OxsbEp7LDMzpD3xdJZ2j1YWjzCOhTZ2N1Ro0axdetWQLtUSZ06dfDw8Miwj1KpxNXVlb59+xZVWCWCbskQW1s73N098j6AJ/MgJSQkkJSUiKNj6cIMUeTTnTu3efw4DgcHB2rUqGXucAqNh4cnCoUCtVpNTEy0vmZTCCEKm8EJUq1atQzuPK1QKLh8+XKGbU2aNKFJkyb6/7/99ttUqFDB0MuLAtD1P/L29jZo1XYAJycnHBwcSU5OIjIykgoVpFbPkly8eB6AunXrYWdnZ95gCpGtrS0eHp5ERUUSGRkhCZIQosgYnCCNGTPGZKPLFixYYJLzPE2tVrNy5Uq2bt1KXFwczzzzDDNmzKBSpUrZ7r99+3amTJmSZfvvv/+e4zHW6kmCZFgHbdAmud7e3gQH3yMyMkISJAtz4YK2ea1hw8ZmjqTweXl5ExUVSUREBLWKb2WZEMLCGJwgvfPOOya7aHR0NPPmzePvv/8mKSkpyyri2dVA5WX16tX8+OOPLFiwAF9fXxYtWsSbb77Jnj17su3rFBQURGBgIEuWLMmwPXOzX3GQUwftvHh5aRMkGclmeS5cOA9AgwYlI0EKCroi/eGEEEXK6D5IycnJBAUFkZaWpk9w1Go1SUlJnD59mvfffz/HY2fOnMnBgwfp2bMnfn5+Bjf75CQ1NZX169fzwQcf6GfmXrp0KW3atOGPP/6gZ8+eWY65du0atWrV0ndGLs50NUi+vn75Ok4mi7RMcXGPuHVLO+ChuM5/9DQZMCCEMAejEqTjx48zfvx44uLisn3dyckp1wTpn3/+4cMPP2TAgAHGXD6Lq1evkpCQQIsWTxbTdHV1pU6dOpw6dSrbBCkoKIhu3bqZ5PqWLrc5kBRAEx+V/vunyVB/y/TvvxcBqFChktXWeOb23GVWkiaLzM/7Yqks7R4sLR5hPYxKkJYtW0aZMmWYO3cuu3btQqlU0rdvXw4dOsQPP/zAV199levx9vb2Ju2gHRoaCoC/v3+G7T4+PoSEhGTZPzo6msjISE6dOsWmTZuIjY2lYcOGvP/++1SpUsXoOGxsClYTVlh061j5+/tja5sxRmdbWN895f//y/ian5+2SS4yMiLLcZZG995bahmY0tWr2ubnBg0aWFS55KcMcnvuMvP11Sb20dGRFnW/hSE/70tmlvIzUJB7KAxFGY+llEFJZsqFOIxKkIKCgpgzZw5dunQhPj6e77//nnbt2tGuXTvS0tJYs2YNa9euzfH4Ll26sGfPHlq2bGl04E9LStKus5O5r1GpUqV49OhRlv2vXbsGgI2NDQsXLiQxMZHVq1fz6quvsnv3bry8vIyKw9XV0ajjCpuuiSwgoBLu7k4GH1epUnkAYmOj83WcOVlqGZjSrVva57dJk0YWWS6mLgPdcxgTE2WR92tpSsLPgKWTMigejEqQ1Go1fn7a/ixVqlTRTwAJ0K1bNyZPnpzr8XXq1GHZsmUEBwfTsGFDHBwcMryuUCgYM2aMwfHojk9NTc1wrpSUFBwdsz6oLVq04OTJk7i5uem3rVq1ig4dOvDzzz8zcuRIg6/9tLi4JNLTc59FvKhpNBp9LZqjoxsxMQkGH+vkpH1/Hj4Myddx5mBjo8TV1dEiy8DU/v33EgAVKlS1qHIprDJwdHQFIDQ0zKLu19KUpJ8BSyVlYH5ubo4F7tesY1SCVLFiRYKCgmjatCmVKlUiKSmJmzdvEhAQgEqlIiEh919is2fPBuDUqVOcOnUqy+v5TZB0TWvh4eEZZuEODw+nVg7jgp9OjgBKly5N+fLlCQsLM/i6maWnq1GpLOuH4tGjWFJStNXLHh5eWeJLUkGvndq/ynf3TsDxqSfCw0PX9yPc4u4rJ5ZYBqaUkBBPcPA9AKpVq2GR92pIGeT23GXm4aGt0Y2ICCctLb1YL2adn/clJ+b+GTDFPVh7POYug5Is06D4AjHqUenVqxeLFy9GrVYzaNAg6tWrx9y5cxk0aBBffPEF1apVy/X4q1evGhVsTmrVqoWzszMnTpzQJ0hxcXFcvnyZ119/Pcv+33//PZ9//jkHDx7U1zjFx8dz584d+vXrZ9LYzE3XQdvNzS1LTZ1ObEr22bZu9NCjR49ISUmhVKlShROkMNj169fQaDR4e/vg4eFp7nAKJKfnLjNdJ+3U1FQeP47D1dUtjyOsm6HviyWztHuwtHiEdTDqqXnjjTcYOHAgFy9qR9PMmDGDK1eu8Pbbb3Pr1i0mTZpk0iDzYm9vz+uvv87ixYs5cOAAV69eZeLEifj5+dGlSxfS09OJiIggOTkZgA4dOqDRaJg0aRLXr1/n33//5Z133sHDw4M+ffoUaeyFTTcHUn6H+AO4uLjqkyIZyWYZgoK0f1zUrFnbzJEUnVKlSuHiom1mKwkj2YQQlsGoGiSlUpmhn1H9+vXZv38/t27domrVqjg7O2c5ZvDgwcyYMYOAgAAGDx6c6/kVCgUbN27MV0zjxo1DpVLx0UcfkZycTLNmzfj666+xt7fn/v37dOrUiQULFtC3b1/8/f3ZuHEjixcv5pVXXkGj0dCqVSu+/fbbHGtZrFVYmHaEn7d3/iaJBG05eHl58+DBfSIiwilXrrypwxP5dO2aNkGqUaOmmSMpWt7e3jx+HEdkZAQBAbnXUAshhCmYrDXW2dmZBg0a5Pj607NlZ545O7d9DWVjY8MHH3zABx98kOW18uXLExQUlGFb7dq1+frrr/N9HWvzZJLI/CdIoF2eRJcgCfMriTVIoG1mu3XrJpGRkeYORQhRQhiVID18+JDZs2dz9uxZHj9+nOX17JYK2bRpU7bfi8Kl63Se32VGdGSySMuRnp7OjRvaIf45DT4ormRWdyFEUTMqQZo2bRrnz5/npZdeokyZMiYOSZiSscuM6OgWuJUaJPO7d+8uycnJODg4Ur58yVo8WBJ1IURRMypBOn/+PB9//DF9+/Y1dTzCxMLDtX2QcqpBUgB1PNL132emG8kmnWPNLyjoCgA1atTAxsbGzNEUTF7PXWa6yVuL+3OY3/fFElnaPVhaPMJ6GJUgeXt7Z5lHSFimvPogOdjCt90TczxeapAsR3Hqf5TXc5dZSalByu/7Yoks7R4sLR5hPYwa5j9q1ChWrVrFgwcPTB2PMKHk5GT9UivSB8n6PRnBVrL6H8GTmkx5DoUQRcWoGqT27duzbt06OnfujIeHR7ZLhezfv98kAQrj6WqPHBwc9fPI5JfUIFmOJzVIJS9B8vLSPoeSIAkhiopRCdLUqVMJDg6mVatW+r/s8rJjx458XePFF1/Mf2AiA12C5OPjk+PyDMkq6L9XOw3/1p4JOGR6Inx8tB9MMpu2eUVFRRIZGYFCoaB69RrmDqfA8nruMtPVZMbHx5OUlJTtGovFQX7fF0tkafdgafEI62HUo3Ly5EmmT5/Oyy+/bPAxU6ZMMXhfhUIhCZIJ6Ib45zaCTQOEJCj132fm4uKKvb09qampREZGyGSRZqKrPapUqTKOjqXNHE3B5fXcZebs7IyDgwPJyclERUVSvnyFQo3PXPL7vlgiS7sHS4tHWA+jEiRXV1fKli2br2MOHDhgzKVEATypQTKu/xFok9WnJ4uUBMk8dAlSSex/BE9mdb9/P5iIiIhimyAJISyHUQnSq6++ytq1a2nUqFG2y4pkp1y5cgaf35iZtEVWuiH+xs6iraNbbkT6f5iPboh/Sex/pKNLkGSySCFEUTB6Ju3Lly/TunXrbNdeM2Qttb1793Ly5EnS0tL0CZFGoyExMZHz589z6NAhY0ITTzFFDRJIR21LoBvBVhyG+BtLRlQKIYqSUQnS7du3qV37yS/qzDU+edUArVy5kpUrV+Li4oJKpcLOzg5bW1uio6NRKpX079/fmLBEJk+WGTFuFm0dXYKlO58oWsnJydy5cxsoeYvUPq0kTBapUqnMHYIQ4v+MSpBmzpxJQECA0Rfdvn07L7zwAgsXLmT58uU8fPiQhQsXcunSJUaOHEn16tWNPrd4wlQ1SP7+/gCEhj4scEwi/27cuI5arcbd3UNfm1cSFecapOTkZNauXcWWn3fCyHMADB36KmNGjqRt2/bmDU6IEsqoiSJHjBiR72H7TwsLC6N3794oFArq1q3LuXPaXwj16tXjrbfeYuvWrUafW2ipVCr9B4luqH52FEBVt3SquqXnOA2/n582QQoJCTFxlMIQT/c/ymm6BmtjyHOXWXFNkGJjYxg27FXWr/+KhPg4iLqGJjKIoKuXGTfuLZYtW2xV/TKNKdvCZGnxCOthVA2SSqXC3d3d6IuWLl1a/4u+cuXK3L9///+LcDpQu3Zt7t+/b/S5hVZUVBRqtRobGxs8Pb1y3M/BFn7qmfs0/H5+2hGLoaGSIJlDcZxB25DnLjNd7VlxSpDS0tIYP/5trly5jLu7Ox9/PId27XyIi4vj69QBfPfdRr75Zh0qVRrvvz/V3OEaxJiyLUyWFo+wHkbVII0fP565c+fyn//8h4sXL/Lw4cMsX7mpX78+27dvB6BixYrY2Nhw9OhRAG7evIm9vb0xYYmnhIRol4Hx8fEt8MKmuia2iIhw0tLSChybyJ/itAZbQTypQYo0cySms3btai5cOIezswvr1m2iY8fO2NjY4O7uzvvvT2X69DkoFAq++24jO3f+bO5whShRjO6DlJ6ezrRp03Ks8r9y5UqOx7/11lsMGzaMx48f88UXX/DCCy8wZcoUmjdvzuHDh+ncubMxYYmnPHyoTZDKljV8eoWceHh4YmdnR1paGhER4SY5pzCMWq1+agRb8alBMoZu1v6YmGhUKhW2ttY9JfKNG9f4+usvAfj449kEBFTLsk/fvv2JjIxg9erlzJ8/i4YNG1G5ctWiDlWIEsmo3zBz584t0EWbNWvGtm3bCAoKAmD69OkolUrOnj1L9+7d8zXrtsheSIi2Fi+vZCZZBYN/087M/G23xGyn4Vcqlfj5+RMcfI/Q0BBJkIrQgwf3SUxMxN7ensqVq5g7HJMx5LnLrEwZd2xtbfX963R946zVsmWfoVar6dSpC926PQdk/7688cZbnD17muPHjzJ79nTWrfsWpdKoyv8iYUzZlqR4hPUw6lHp06dPgS9cq1YtatXS/kVcqlQp5syZU+Bziid0NUj+/rnPeK4Bbj2y0X+fE12CJB21i9bVq5cBqFatutXXmDzN0OfuaUqlEh8fXx4+fEBISIhVJ0jnzp3h8OGD2NraMm7ce/rt2b0vSqWSjz+eTb9+L3D27Gn27NnJCy8U/HdwYTGmbAuTpcUjrIfRv3Gjo6PZsGEDJ06cIC4uDnd3d5o2bcrQoUPx9PTM8/jHjx9z/PhxEhMTsx2hIWuxFYwpm9jgyUg2GepftK5c0SZItWvXNXMklsHfv+z/E6QHNG7cxNzhGO3bbzcA0KtXHypVqpzn/uXKlWfkyNF8/vlnrF69nK5dn8PBwaGQoxSiZDMqQQoNDWXAgAFER0fTqFEj6tSpQ0REBBs2bGDHjh1s27Yt1+UtDh48yIQJE0hKSsr2dVmstuB0TWz5WeIlN7qaKBnJVrR0NUi1atUxcySWQfcc6p5va3T37h3+/lu7NuWgQUMNPu6VVwaxZcv3hIaG8MMP3zFs2BuFFKEQAoxMkBYtWoStrS379u2jQoUni0YGBwczfPhwli5dyieffJLj8UuWLKFq1apMnToVX19fi25Pt0YajUb/AeLvb9oaJF3NlCh8Go1GX4MkCZKWrkbUmhOkbdt+RKPR0Lp1O6pWNXzCXQcHB8aMGc/HH09h/fq1vPzyQJycDFsLs6QKCwvj5LnzQD8Azp8/S9OG9bCzk5HSIm9GZSaHDx9m3LhxGZIjgAoVKjBmzJg811G7desWEyZMoGnTplSoUIFy5cpl+RLGi46OIiUlBaVSWeCFanUqVKgIQHDwPZOcT+QtPDycmJhobGxsqF69hrnDsQjWniClpaWxd+9uAPr3H5Dv43v06EXlylV4/DiObdu2mDq8YuPmzRu8884oundvz8cfPxn0M3r0CLp168CaNStISpK5kUTujEqQ0tPTc5wo0sPDg/j4+FyPL1u2bJ77COPpanl8fHxN9pdSxYqV9OeW9aKKxtWr/wWgSpWq0t/k/6y9ie3YscNER0fh4eFJy5Zt8n28jY0NQ4dqm9Y2bfqGlJQUU4do9X766QcGDHiRf/45iEajyVD7WqaMB9HRUXz55Sr69n2eCxfOmTFSYemMSpBq1qzJzp07s31tx44d1KiR+1+7o0aNYtWqVTJjdiExdAQbaKfh93dS4++kznUafm9vH0qVKoVKpZJ+SEWkODevGfrcZaZ7ph8+fGhVy2/o7NqlnSC3R4/nsbOzy/K6Ie9Lz5698PPzJzIyQn8+S2Js2ZrCypXLmD9/FiqVirZt27Nz5y98s2GzPp49u39j4cIllC1bjpCQh4wYMZhff91bxFEKa2FUH6S3336bESNGEBsbS69evfDy8iIyMpLdu3dz9OhRli9fnuvxu3fvJiwsjC5duuDh4ZHlr2OFQsH+/fuNCU2AfiZzQ0awOdjC7t4Jee6nVCopX74iN29e5969u5QvXyHPY0TBXL2qnWy1OI5gM/S5y0zXFy45OYnY2NgCLXlU1B49iuXvv/8C4IUX+ma7jyHvi52dPUOGDGfhwnl88806+vTpZxFTQGg0Gi5d+pejR/+hYfA97O3t+TmhOu3adaRcufKFfv1vv13PunVfAPDOOxMZPnykfiLjJ++pLd269aB167bMmPEh+/f/zocffoBaraZHj16FHqOwLkb9VLVq1YqFCxeyaNEijhw5ot/u5eXF/Pnz6dKlS67H+/n54efnZ8ylhQHyU4OUHxUqaBMk6YdUNJ6MYCvZS4w8zd7eHm9vbyIiIggJeWBVCdLff/+JSpVGtWrVqVGjZoHO9eKL/Vi7djUPHtznzz/307VrdxNFaZwbN64zd+4Mzp8/m+W1RYsW0LXrc7z77mST9YnM7NSp4yxbthiA8ePfz3OEn5OTM59+uozZsz9mx47/MH36VLy9vWnWrEWhxCesk9F/dvTu3Zt27dpx/fp1bG1tcXNzw97eHqVSycOHDylbNucP5wULFhh7WWGAwkqQKlbUddS+a9LziqxiYmL0TZklfQ22zPz9yxEREcH9+/epU6eeucMx2IEDvwPQuXO3Ap/L0dGRl19+lS+/XMXGjV/TpUvBz2ms/ft/48MPPyA1NRV7e3vat+9EzZq1SElJ4ezZ05w+fZLfftvHkSP/MG/eQtq162jS60dFRTJlyvuo1WpeeKGPwdMfKJVKpk+fQ0pKCr/8sof33x/P5s3bpHZc6BmVIN25c4cpU6Zw4cKFHPfJbS223BazVSqVlC5dGldXV2NCEzxJYHQJTW6SVTByv3Ya/rWdc5+Gv0IFbUfte/ckQSpsly9fArSd452di99Q7vw8d5lVrFiJixfPc/funcIJrhDEx8dz7Ji2tj23BCk/78uAAa/yzTfr+O9//+Xs2dM0b97cpDEb4rfffmHKlHfRaDS0atWG6dPn4Obp9+QeRiZy58YV5s6dwaVLF5kwYQwffjiD/v0HmiyGhQvnERUVSbVq1Zk6dXqW13N7T5VKJTNmzOXu3TtcvnyJyZPf5Ztvvs+2f5goeYxKkObMmcOdO3f+x959hzdVdwEc/ybp3i10sMooS1aZBVlCEUQQkCVDmQq8DBkOpkJBpiDIFBVFZCkgICAuQPZGhsjeBTqALrqbJu8fMYHuNk2bjvN5njxtb+44ufc2OflNRo0ahZeXV47HMfL3989wkls9Z2dn+vfvz4gRI4wJsdhKSkriwQNd43dv76zn7tICl8KyNwy/vqu/JEh5T9+7pk6duuYNJI/k5L5LTT8n3d27t00bVB46ePAvkpKSqFChYrqT0url5Ly4uZWgU6fX2bLlR77//tt8T5DOnz/Lxx9PQKvV0rVrTz76KACVSkWcOuVrqF79BVavXs+8eTPZsuVHZs0KwMLCgq5de+Q6hkOHDvDHH7+iUqmYOXMetra2adbJ6pza2NiwcOFSevbswr///sOqVSsZPvzdXMcmCj+jEqTTp08za9YsXnvtNaMOOnfuXKZOnYqfnx+vvfYaJUuW5MmTJ/z+++/s37+fESNGEBMTwxdffIGLiwt9+/Y16jjF0cOHD0hOTsbGxhYPDw+T7lv/wXT/fiBJSYky2Foe0idIdevWM3MkBY/+Prxzp/AkSM9Xr2X15TAn+vUbyE8/beLAgb+4efMGDRv6mmzfmYmOjmbSpA9ITEykdeuXDclRRiwtLZkyJQAbGxvWrVvDjBkf4+bmlqvqtri4WGbPng7Am2/2z1VvTy+vUkyZMo2JE99n1aqVNG/ektq18+dcioLLqG7+Dg4OODs7G33QX375hY4dO7Jq1Spef/11mjdvTpcuXVixYgU9e/bk4sWLTJgwgREjRrBx40ajj1Mc6asdvL3Lm/SNGMDT0wsHB0fUajW3bxeeD6fCJjk5mX/+0VVf+/pKgpTa8wlSYejqHxcXy5EjhwDTtD96XvnyFWnVqg3wbH63/PDZZ3N5+PABpUuX4ZNP5maaHOkpFAref38i3br1RKvVMmnSB9y4cd3oGL74YhlBQQ8pVaq0SUp82rfvSPv2HUlOTiYg4COSkpJyvU9RuBmVIHXp0oX169cb/eZ08uTJDEuf2rVrx/HjxwFo0KABgYGBRh2juNJXf+kHdjQlhUJhGNH5+vVrJt+/0Llx4zqxsbE4ODhQqVLG1THFVblyuuQ/OvopYWFPzB1Olg4fPkh8fDxly5ajWrXqJt//gAGDAdixYzuhoaEm339qZ8+eYdu2LSgUCmbMmJOjNnIKhYJJk6bSsKEfsbGxjB07gsjIiBzHcOXKZdavXwPApElTsbW1y/E+0jNx4ke4urpy8+Z11q1bY5J9isLLqATJ1taWM2fO0LZtW8aNG8ekSZNSPCZPnpzp9i4uLly5ciXd565cuWL4h4uNjU23TllkTJ8gZWeGcGNUrqxPkK7myf7Fs+q12rV9s/XNvLixtrY2jPFVGKrZ9NVrbdq0M3mpLkDduvWpU6cuSUlJrF6dt6VIWq2WJUsWAtC1aw8aNvTL8T4sLS2ZP38xZcqU5f79QCZOfJ/k5ORsb5+cnMyMGR+TnJxM27btadmyVY5jyIiLiyvjxo0H4Msvlxnac4riyagEadu2bTg6OqLRaDh//jwnTpxI88hMp06dWLJkCWvWrCEkJISkpCRCQkJYu3Yty5Yto1OnTkRGRrJmzRp8faUeOCeer2LLC1KClPcuXDgHFN0G2qag/wJQ0BOkhIQEDh7cD8DLL7fLs+PoS5G+//57YmNzPgBndh05coizZ89gbW3NsGGjjN6Pq6srixYtx8bGlmPHjrB8+efZ3nbDhrVcunQRBwdHxo/P/Mu4MTp1ep0GDRoRHx/P3LmfFIpqXJE3jGqkvW/fvlwddOzYsTx58oS5c+cyd+5cw3KlUkn37t0ZN24cv//+O5cuXWLNGinmzIl79+4A4O1dIdvbuFhrsr2uPkG6cUMSpLyg1Wr5++/TQNFvf5ST+y61ihV9OHr0MDdv3jBhRKZ34sRRYmNj8fT0ombN2tnaxpjz0qpVG7y9y3Pv3l22bfuJXr3eyvE+sqLRaFi6dBEAvXq9memgj9l5DVWrViMgYCYTJ77Pt99+TfXqNbMc8PLBg/ssX74YgPfeG4+7e/Y6ouTknCoUCj76aDo9e3bh0KED7Nv3J23a5F1yKwous4xPb2FhwZw5cxg+fDgnTpwgPDwcT09P6tevT7lyukG6WrZsyaFDh7Cykp5S2RUTE22YxLNixay7+APYWsCe7tn/xunjUwWAkJBgIiMjcHZ2yXGcImOBgfd4+PABlpaW1KtX39zh5Jmc3nep6Ueivno14/HWCoI9e3TVa/7+L2drOBRjz4tKpaJ//0HMnBnA999/R/fuvU0+/ciff/7G1auXsbe3Z9CgIRmul5PX0L59Ry5d+pfvv/+WadMmU6lSJUM1fmpqtZqPPppAfHwcDRo0yvYwAcac04oVKzFw4NusWrWSTz+dTZMmTbG3L3rjkYnMGVXFZire3t707NmToUOH0qVLF0NyBBhG5hbZp+8R4u7ugYtL3kzB4OTkZBgw8uLFf/LkGMXZ8eNHAV3pkakanhZF+i7dV69eKbBVIElJSRw4oCtt9/fPfPolU+jSpStubm48eHCfvXv/NOm+1Wq1oeSmf//BJp3iZfTo92jc+EXi4mJ5993/GWYCeJ5Wq+Xzz+dz9uwZ7O3tCQiYlSftuZ73zjv/o2zZcoSEBLNy5bI8PZYomPItQWrTpo2hYba/vz9t2rTJ8PHyyy/nV1hFir5dkL4aLK/4+tYFnjUmFqZz4oQuQWrcuKmZIynYKlXywdLSkujopwW2Ie2ZM6eIjIzE1dWN+vUb5vnxbG1tGThwIABr1nxj0sRxx45t3Lt3F1dXV956a4DJ9gu6GoW5cxdSvnwFgoIe8vbb/QzzEIKuam/FiiWGXmXTps0yDFqbl2xsbJg48WNA1+7p2jXpmFLc5FsVm5+fH/b29obf8zr7L4707YIyKqJOT7waRu/X9RRc0iouW1M+1K1bj127fpYEycTUajUnT+o6ODRpUrQTJGPuu+dZWlpSpUpVLl36l3//vVgg58/Sl+K0atUm270Rc3teBg4cyPLly7l06SJnzpwyqpdZagkJCXz55XIABg8elmVVkzGvwdXVla++WsOQIf25d+8u/fr14rXXXqd8+Qrs37/XMAnu++9PzPHEvLk5p82bt+Tll9uxZ88fzJw5je++25DjmSNE4ZVvCdLzE9Q+3zBbmI4xJUha4O9QC8Pv2aFvPHzhwnnUarXJ2zoUV3//fZqnT6NwcXGhRo2a5g4nTxlz36VWp05dLl36l3Pn/uaVV141WWymoFar2bdPlyDlpPdabs9LiRIl6NKlG5s2beSbb740SYK0adNGQkKC8fT04o03+mS5vrGvwdPTk3XrNjF16iT279/Htm2bDc9ZWVkxfvwUevTolcPoc39OP/xwMkePHubChXNs27aF7t3fMGIvojAyWyocHR1NSEgIAImJiaxatYqZM2dy6tQpc4VUqGm12nyrYvPxqYKDgwNxcbEyHpIJ6Rv0tm79sox/lA316jUAdAMXFjQnTx7jyZPHuLi44OeXv3OkDRz4NhYWlhw7doSjRw/nal8xMdF8++2XAAwbNhJra2tThJghJydnFi1aztdfr6FPn7do374jI0eOYefOP4xKjkzB09OL4cNHA7B48WeEhYWZJQ6R/8ySIF24cAF/f3/Wrl0LwMyZM1mwYAE7duxgwIAB7N271xxhFWqhoaFERUWiUqmoWNEnT4+lVCqpW1f34XT8+LE8PVZxodFo+OsvXYmDdCnOHv09eO3aFZ4+fWrmaFLatWsHAK+80iHf5yz09vamVy/d/JWLFn2ao0EYU1u3bg3h4eGUL1+Bzp27mirETCkUCho1asyECR8xd+5nDBkyHE9Pr3w5dkb69HmLqlWrExUVKWMjFSNmSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28aJu7i4fn8p5/i0PoEWLlwDdLOUi986ePcOjR49wcHDAz6+JucMpFDw9PfH2Lo9GozE0bi8IYmNj2LdvDwCvvdbFLDEMHTocJydnrl+/xs8/bzVqH48fP2LNmm8AGDFidLGuSrewsGDatE9QqVT88cev/PrrLnOHJPKBWRKk8+fPM3z4cMqVK8exY8eIj4+nSxfdG0mHDh24ft34CQyLq/PnzwH5N/qyPkE6f/4sERHh+XLMomzbti2AbjJTGd4i+/TTTBw6dMC8gTxn794/iY+Pw9u7PLVq1TFLDM7OLgwdOgKAxYsX8PjxoxzvY+XKZcTGxlKzZm3ats1Zw+iiqGbN2gwZMhyA2bNnEBwcZOaIRF4zS4KkVCoNHwIHDhzAycmJOnV0byTR0dHY2NiYI6xCLb+npyhdugxVq1ZDo9EYZioXxomMjOCPP34FoHt387SzKKxatGgFwMGD+wvM7OubN/8A6KasMGdv3V69+lK9eg0iIyOZNWt6jqqFbty4ztatukbS778/QXpu/eftt4dRs2ZtoqOfMn78WBITE80dkshDZrnra9WqxZYtWzh79iy//vorrVq1QqFQ8OTJE77++mtq1apljrAKraSkRC5dugg8G6MoJ2xUWmxUOa9Tb9WqDQC//LIjx9uKZ7Zv/4nExESqVq1OrVrZm46iKDD2vnte/foNcXMrQXh4GMeO5a5BsilcunSRCxfOYWFhme2RnlMzxXkB3VAIM2bMwcLCgr/+2mMopcyKfjJYjUaDv39bo8ZwMtVrMBVTntO5cz/D0dGJCxfOM2/eTBNEJwoqsyRI48eP59ixY/Tp0weVSsXw4bpiy9dee407d+4wduxYc4RVaF25coXExERcXFxyNAcb6IbhP9wrmsO9orHNYRODTp1eB+DYsSMFdrC+gi4uLpbvvtO18+jbt1+xGR8sN/fd8ywtLenYsROAocTDnDZs0HU8adeuPSVLuud4e1OdF72qVasxfPi7gK5aSD+eUGbWrfuOCxfOYW9vb9RksKZ+Dbll6njKlfNm7tzPUCgU/PTTJtav/z73OxUFklkSpBo1avDHH3/w448/smfPHipUqABAQEAAu3btkhKkHDp9+iSgq17Lzw/YcuW8ady4KVqtNtvfTkVKGzeuIzw8jLJly9GxY2dzh1Modev2BgqFgv3795l18tq7d2+ze/dOAPr27W+2OFIbNGgIL7/cDrU6iXHjRmU6NMepU8dZsmQhAOPGjcfLq1R+hVmoNGvWgtGj3wNg/vzZBSI5F6ZntoplBwcHfH19sbN7Nt/UK6+8grt7zr91FXdHj+raADVt2jzfj92jh27QtB9+WE9kZES+H78wCwy8x1dfrQB0Y8xYWlqaOaLCqWLFSvj766YnWrx4gdm6YK9cuRyNRkPLlq0KVFWpUqlkxow51KhRk/DwMN55pz+HDx9Ms97Jk8cZM2YEycnJdOzYWQZEzMLAge/Qv/8gAD75ZCpbtvxo5oiEqUnLu0IuJiaas2d1xeZNm7bI8fYJyTBmvy1j9tuSYMRwKf7+balSpSrR0U/59tuvc76DYiopKZFp0yYTHx9Po0aNi13pUW7vu9RGjhyLhYUlBw/uN0ubuFOnjhu6fo8YMdro/Zj6vOjZ2dmzcuVq6tTxJTIyklGjhjJ27Eh+++0XDh7cz6xZAfzvf4OJjY3Fz68JH388w+jS6Lx6DcbKq3gUCgXjxo3njTf6otVqmTlzGvPnzy0wnQVE7kmCVMgdOPAXanUS3t7l8fYun+PtNVo48tCCIw8t0BjxxVulUvHuu7qi5vXrv+fy5X9zvpNiRqPRMHv2DP7++zR2dnZMnfpJsesllNv7LrVKlXx4551hgO7bfH72rIyOjmbGjKkA9OzZm+rVaxi9L1Ofl+c5OTmxatVa+vR5678qyb1MnPg+o0f/j82bf0Cj0dCxY2eWLv0yVz2J8/I1FLR4FAoFkyZ9bGjntWbNt3Tq1IkbN2SomqKgeL0rF0H6b63t23c0WwwtWryEv39b1OokJk36gKioSLPFUtAlJiYSEDCFbdu2oFQqmTt3Yb7MTF4cDBkynFat/ElISGDMmBGsWrUyz7thJyUlMX78WAID7+Hp6cWYMR/k6fFyy8rKigkTPmLr1l94880B1K7tS9Wq1ejYsTNff72GWbM+zZeBZosShULBsGEjmT//c5ydXfjnn3/o0aMLs2YFGKbTEoVTkUmQNBoNS5YsoUWLFvj6+jJ48GDu3r2b4frh4eG8//77NGrUiEaNGvHxxx8TGxubjxHn3sOHDwxzLb366mtmi0OhUDB16gw8PDy5c+c2I0YMkfZI6bh69QpvvfUGO3ZsQ6VSERAwyzDQocg9lUrF/Pmf8+qrr6FWJ7Fs2ee8+qo/y5Z9zoUL53I15UZ6wsPDGTVqKEePHsbGxpZFi5bh4JD5TPcFRcWKlfjww0msXfsjmzb9zKxZn9KoUf7OGVfUtG3bnu3bd9G2bVvUajWbN/9Ax44v88EHozl48C/i4uLMHaLIoQLQCdM0VqxYwQ8//MCcOXPw9PRk/vz5DBkyhF27dqU7MvHo0aNJSEjgu+++IyoqiilTpjB9+nTmzZtnhuiNs27dGpKTk2ncuCkVK1YyaywuLq6sWPE1b7/dj4sXL9CnT3c++WQuDRo0Mmtc5qbVarl06SLr13/Pr7/uQqvV4urqyowZcw2jkQvTsbS0Yvbs+TRv3pLFiz8jNDSEVatWsmrVSuzs7PDxqULlylUoVao07u4eeHh4UqJECRwdnXB0dMTe3iHTiYKTkhK5fv0af/21l40b1xEd/RRbWzvmz/+cGjWk921x5+7uwXfffceff+5nyZJF/P33afbs+YM9e/7A0tKS+vUbUrNmbapVe4EqVapSqlRpbG1tzR22yIBCWwRm3UtMTKRJkyZ8+OGH9OnTB4CoqChatGjB7Nmz6dgxZfXT2bNn6d27N7t378bHRzex6+HDh3nnnXc4cOAAnp6eRsURHh6DWq3J3YvJpps3b9Cr1+uo1WpWrFhldA+2ODW02OQIwKE3nuZ6nJBr167y3nujuH8/ENB1h+3RozdNmjTN0zcCCwslrq72+XoNMhIdHc3Fixc4efI4hw7t5/r1a4bn2rZtz4QJU4waI6egy8k1MPV9l56kpCT27tV9OJ04cYynT6OytZ29vT12dvZYWlqiUllgYaFLmJ4+fUpERDhqtdqwbtWq1fnkk7lUq1bdJDHn5rwUlP+B/Li2BTWe1Nfg2rWrbNu2hf379xIU9DDdbZydnfH0LGVI1B0cHP776YiDgz2WllZYW1tjZWWFlZX+57OHUqlCpVKm+ql7KJVKw0/98wqF4r8G+LqfSqUSXXt8heG55x+FjZubPSqVaSrHikQJ0pUrV4iJiaFJk2eTfDo5OVGjRg1OnTqVJkE6ffo07u7uhuQIwM/PD4VCwZkzZ+jQoUOOY3jy5AnTp3+CVkuqm0uBUqlIc1PqHvzXODf1TQnW1jZ4enpRunQZvL3L4+HhaWjIGxwcxHvvjUKtVtOyZStefLGZMactT1StWo0NG7awZMlCfvppE0eOHOLIkUNYWVlRp05dqlSpSsWKPnh6euLi4oqrqxsODo6Gf3ZLS8ss/ym1Wi1qtZqkpEQSE3WP5OQkHj+24PHjCOLiEkhISCApKYmkpCTUajVqtZrkZLXhd91D/1wyyclqkpOTUz10z2k0z5ap1Wo0Gs1zzz37PSYmmnv37hIW9iRFvFZWVvj7t6V//0FSypCPLC0tad++I+3bd0StVnP37h1u3LjOrVs3CA0NITQ0lEePQggLCyM6+inx8fEAxMTEEBMTk+F+HR2dqFu3Hq+91oWXX34l0xInUbxVrVqNCROmMH78ZO7cuc3Jk8e5evUy165d5datG8TGxhIZGUlkZMFut5k2adJ9TukTrGefYWT4WZf+ckWGyVlWx027XPfcxo0bKF26tEled5FIkIKDgwEoVSrloGYeHh4EBaWdUDAkJCTNulZWVri4uKS7fnZER0fz0095N1iYra0t5ctXwMXFlfPnzxIXF0epUqUJCPgES0vj36Atnis/tFApMcWE3W5urgQEfMLgwe/w448b+e233YSEBHP69EnDoJaZsbKyQqFQoNVq/3uAVqt57u+CX+jp5VUKP7/GNG7chFat2uDs7GzukPKc/ltbdr695cV9l+nxLKyoVq0q1apVzXCdpKREnj6NJjr6KdHR0YbENzk5Ga1Wi6OjAy4ubnh6eubZN+vcnJecnP+8lN/XNiv5GU9m16BKlcpUqVLZ8LdWq+Xp06cEBwcRHBxEeHg4T58+JTr6KU+fRvH06VNiYmIMXwJ1X/qe/Z6YmEhSUiLJyZr/vsQ9+6n7wqf7W6PJfWliYXnfBUw6zEKRSJD0jd9StzWytrZONzOPi4tLt12StbU1CQkJRsXg4uLC+PHjU9xIz3+gazRpP+Azek6r1RIbG8uDBw8IDAzk3r17xMXFceXKZcPxGjRowLJly/D2zl0PKFfg7hj9X/a52leafbvWwNf3E2bNmsHNmzc5ffo0169f5+bNm4SGhhIWFsaTJ0/SNI7Pac8jlUplKIJ+/qelpSVWVlZYWFgYHpaWlml+qlQqLC0tUSqVWFhYoFKpDD+z87uFhQVKpRIbGxsqVqxIxYoVcXR0NOWpLFScnLKuSs3L+8549nh4uJo1AlOcl+yc/7xU0K6tOeLJ7jVwc3OgfPm8Ha1c/xmjLwXXL8vu51Nmj+f3n9U62dmPKdbz8PAw2bkrEgmSfsyOxMTEFON3JCQkpNvuxcbGJt0P4YSEhBQje+eEs7MzgwYNJTnZ9HX/SUlJ3L8fyJ07t4mMjMTHpzK1atVGoVAQHp5xVUBBUqJEKV55pROvvJL2OY1GQ1JSUopvSVqtNt0qSv0yffJjZWX1X8KixMnJlqiouDy5BjmhVlNorospFaRrUBzJ+Te/wncNFP89npV46QtHC2HzIwCTDlNRJBIkfXVZaGhoihKV0NBQqldP23jSy8uLPXv2pFiWmJhIRESE0Q20AZKTNXnSOFKhUFGuXAXKlavw3LG0QOEo8swOlcoSW1tLbG1z9g1PqyXFOc+rayCyT66Becn5Nz+5BuZjyprAIjEOUvXq1XFwcODEiROGZVFRUVy6dImGDRumWb9Ro0YEBwenGCdJv239+vXzPmAhhBBCFGhFogTJysqKt956iwULFuDm5kaZMmWYP38+Xl5etG3bluTkZMLCwnB0dMTGxgZfX1/q16/PuHHjCAgIIDY2lmnTpvH666/nqgRJCCGEEEVDkShBAt3Ajz169OCjjz6iT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HURXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQFI5GeUWXSqWUa2Bmcg3MS86/+ck1MC99px5TkARJCCGEECKVIlPFJoQQQghhKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqkiAJIYQQQqQiCZIQQgghRCqSIAkhhBBCpCIJkhBC5AOtVmvuEIQQOSAJkhAiz/Tr149+/fqZOwyTO3HiBK+88gq1atXi7bffZunSpVSrVs3wfOrXvXnzZubNm2eOULN069Ythg4dSoMGDWjcuDGTJ08mKioqy+02bdpEx44dqVOnDq+88gpr1qyRJFAUKRbmDkAIUXRNmzbN3CHkiXnz5qHRaPjqq68oUaIEzs7OtGjRIsP1v/jiC/z8/PIxwuyJiopi4MCBeHh48Omnn/LkyRPmz59PcHAw3377bYbbbdiwgenTpzNkyBCaNWvG+fPnmTdvHnFxcfzvf//Lx1cgRN6RBEkIkWcqV65s7hDyREREBI0aNaJp06aGZV5eXmaMyDgbN24kKiqK7du34+bmBoCnpydDhw7l9OnTNGzYMM02Wq2Wr7/+mldffZUPPvgAgBdffJE7d+6wbt06SZBEkSFVbEIUAf7+/ixatIg5c+bg5+eHn58fH374IeHh4YZ1Jk6cyIABA5g2bRoNGzaka9euqNVqEhISWL58Oe3bt6d27dq0a9eOr776Co1GY9i2X79+TJ06lS+++IIWLVrg6+vLkCFDePz4MT/99BNt27alXr16DBw4kPv376fY7vmqpmrVqrF+/XqmTJmCn58f9erVY/To0Tx+/DjF69mzZw/dunWjdu3aNGvWjJkzZxIbG2t4funSpbRt25b9+/fTqVMnatWqxSuvvMK2bdtS7OfJkydMnjyZpk2bUq9ePd58803OnDljeF5fCtS2bVvDPtauXZvheb5//z7VqlXjwYMHbN++nWrVqnHixIk0VWypr82DBw/Ytm0b1apVM5yfhw8f8t577+Hn54evry8DBgzg0qVLaY61evVqXn31Vfz8/Ni6dWuGMWX0yKyK8/DhwzRo0MCQHAG0aNECe3t7Dh48mOF2q1at4sMPP0yxzNLSksTExAy3EaKwkRIkIYqIDRs2UL58eWbPnk1YWBifffYZt27dYvPmzSiVuu9Cp0+fRqFQsHTpUmJiYlCpVAwZMoRz584xcuRIXnjhBU6cOMHnn39OYGAgn3zyiWH/v/zyCzVq1GDWrFk8fPiQTz75hLfeegsbGxsmTJhAREQEs2bNYsaMGXz11VcZxrlo0SLatm3LwoULCQwMZM6cOVhYWLBw4UIAdu7cyQcffECnTp0YO3YsDx48YNGiRdy4cYPVq1ejUCgAePToETNmzGD48OGUKVOGb775hokTJ1KnTh18fHyIjY2ld+/eJCUl8f777+Pl5cWaNWt455132LJlCz4+PgQEBLB161aGDRtGvXr1OHXqFLNnzyYqKoqRI0emid3Dw4Mff/yRUaNGUaNGDUaMGEHlypU5efJkhq932bJlDB061LC+h4cHYWFh9O7dG1tbWz7++GNsbW1Zs2YNb775piG258/X1KlTcXJyolatWhnGlBEHB4cMn7t58yYdOnRIsUypVFK2bFnu3LmT7jYKhcIQn1arJTIykj///JPt27fz9ttvZ3gsIQobSZCEKCIUCgWrV6/G0dERADc3N0aOHMnBgwdp1aoVAGq1munTp1O+fHkADhw4wNGjR5k/fz6dO3cGoFmzZtjY2LB48WIGDBhgqCZLSkpi2bJlODs7A/Dnn39y+PBh9uzZQ7ly5QC4fPkyP//8c6ZxVq1alTlz5hj+vnDhAr/99hug+8BdsGABLVq0YMGCBYZ1KlSowMCBAzlw4IDhtcTFxTFr1ixefPFFwzqtW7fmwIED+Pj4sG3bNgIDA9m+fTvVq1cHoGHDhrz++uucOnUKpVLJpk2beO+99xg6dCgAzZs3R6FQ8OWXX9K3b19cXV1TxG5lZUXdunWxsrLCzc2NunXrZnldatSokWb9NWvWEBERwcaNGylTpgwALVu2pEOHDixevJglS5YYtm/Xrh09evTIcP/6mIwRFRWFvb19muX29vZER0dnuf3ff/9N3759AahZs2aRbJAvii+pYhOiiGjdurUhOQJd1Y6lpSWnT582LLOxscHb29vw98mTJ1GpVGlKEfTJ0okTJwzLfHx8DMkRgLu7O25ubobkCMDFxYWnT59mGmfqD3MvLy/i4uIAXY+q4OBg/P39UavVhkejRo1wcHDgyJEjGe5L3wZIXxV3+vRpypYta0iOAKytrfn111/p3bs3x48fR6vVpjmWv78/CQkJKariTO3YsWO88MILeHp6Go6rVCpp2bIlR48eTbFu1apVs9zf8/GnfiQnJ2e6rb5E7nlarTbd5amVLVuWtWvXsmDBAqKjo+nevXua6lIhCispQRKiiPDw8Ejxt1KpxMXFJUWX7RIlSqT44IuMjMTV1RULi5RvBe7u7gApkp30qmpsbW1zHGfqbZRKpaF7eEREBADTp09n+vTpabYNDQ3NcF/6asTn91WiRIkM49Afq2PHjuk+HxISksmryJ2IiAju3r1LzZo1031enzAClCxZMtN93b9/nzZt2mT4vJ+fX4btqhwcHNItKYqNjc1Wo3NPT088PT0B8PX1pV27dmzevJnhw4dnua0QBZ0kSEIUEfoPfL3k5GTCw8NTNMBNzdnZmfDwcNRqdYokSZ+IpK5iymtOTk4AjB8/Pt1u8c+XYGXF0dExRYNxvbNnz+Lg4GA41po1a9KtZipdunS2j5VTjo6O+Pn5MX78+HSft7Kyyva+PDw82LJlS4bPp/fa9CpWrMi9e/dSLNNoNNy/f5927dqlu010dDT79u3D19fXUFUL4O3tjbOzM0FBQdmOXYiCTKrYhCgiDh06lKIX0d69e1Gr1YY2Ounx8/MjOTmZ3bt3p1i+Y8cOABo0aJA3wWagUqVKlChRgvv371O7dm3Dw8vLi88++yxFL6+sNGzYkMDAQK5evWpYlpiYyLvvvsumTZto1KgRAOHh4SmOFRERweeff54m4cwNfemWnp+fH7dv36ZixYopjr1jxw42b96MSqXK9r6trKxS7CP1o1KlShlu26xZM06dOkVYWJhh2aFDh4iJiaFZs2bpbqNSqZgyZQqrVq1KsfzChQtERESkqNIUojCTEiQhiojg4GCGDx9O//79CQoKYuHChTRv3pzGjRtnuE3Lli1p3Lgx06ZNIzQ0lBo1anDy5Em+/vprunbtmu/jGKlUKsaNG8fUqVNRqVS0bt2aqKgoVqxYQUhISIZVUunp1q0ba9euZfjw4YwZMwY3NzfWr19PfHw8/fr1w9vbm86dO/Pxxx/z4MEDatWqxe3bt1m0aBFly5alQoUKJntdTk5OXLp0iZMnT1KnTh0GDhzIzz//zMCBAxk8eDCurq7s3r2bTZs2MWnSJJMdNyt9+/Zl3bp1DBo0iFGjRhEREcH8+fNp2bIl9erVM6x37tw53Nzc8Pb2xtbWliFDhrBixQpcXFxo2rQpt2/fZtmyZVSvXp3u3bvnW/xC5CVJkIQoIjp27IiTkxNjx47Fzs6Orl27Mm7cuEy30ffYWrJkCd9//z1hYWGULVuWcePGMWjQoHyKPKWePXtib2/PqlWr+PHHH7Gzs6N+/fosWLAgRYPwrDg4OLBu3To+/fRTZs2ahVqtxtfXl7Vr1xoaqs+ZM4cvv/ySH374geDgYEqUKEGHDh0YO3ZsjkpxsjJ48GBmz57N22+/zerVq2nYsCE//PADn332GQEBASQkJFChQgVmzZqVaY81U3Nzc+P7779n9uzZfPDBB9jb29O+ffs0VX+9evWia9euzJ07F4BRo0ZRsmRJNm7cyJo1a3B2dubVV19l7NixWFtb51v8QuQlhVYmzxGi0PP398fPz8/wASaEECJ3pA2SEEIIIUQqkiAJIYQQQqQiVWxCCCGEEKlICZIQQgghRCqSIAkhhBBCpCIJkhBCCCFEKpIgCSGEEEKkIgmSEEIIIUQqMpK2iWi1WjQa6RBoTkqlQq6Bmck1MC85/+Yn18C8lEoFCoXCJPsqkgnSihUrOHbsGGvXrs1wnfDwcGbOnMnBgwcBaN++PZMmTcLOzs6oYyoUCqKiYlGrNUZtL3LHwkKJq6u9XAMzkmtgXnL+zU+ugfm5udmjUpkmQSpyVWzfffcdS5YsyXK90aNHExgYaFj/yJEjTJ8+PR8iFEIIIURBV2RKkEJCQpgyZQpnzpyhYsWKma579uxZTp48ye7du/Hx8QFgxowZvPPOO7z33nt4enrmR8hCCCGEKKCKTAnSv//+i7OzMzt27MDX1zfTdU+fPo27u7shOQLw8/NDoVBw5syZvA5VCCGEEAVckSlB8vf3x9/fP1vrhoSEUKpUqRTLrKyscHFxISgoyOgYVKoik28WOvpzL9fAfHJyDU6dOsny5Uuwt7fnvfc+xMencl6HV+TJ/4D5yTUwPxO1zwaKUIKUE3FxcVhZWaVZbm1tTUJCgtH7dXKyzU1YwgTkGphfVtfg77//Zvjwd4iPjwfgypVL7N+/Hycnp/wIr8iT/wHzk2tQNBTLBMnGxobExMQ0yxMSEozuxQYQFRVHcnLh6rmg0cKtSF3KXclZi9KE2Xd+UqmUODnZFsprUFRk5xpoNBomTJhIfHwCtVv15NGjUIL/Pci8eQv44IMJ+RxxwZOb/0f5HzA/uQbm5+xsi1JpmhK8YpkgeXl5sWfPnhTLEhMTiYiIyFUD7eRkTaHr2hmnhh47HAE49MZTbAv5HVEYr0FRk9k12LfvTy5d+hd7F3cu+32uW3itMps3/8CwYaOwtS3e37xN8f8o/wPmJ9fAfLQmHIKqWFaUNmrUiODgYO7evWtYduLECQDq169vrrCEKPI2b/4BgG7dehqWlS5VhpiYGPbt25PRZkIIke+KRYKUnJzMo0ePDG0efH19qV+/PuPGjePChQscP36cadOm8frrr0sXfyHyyP37gRw7dgSALl26GZa3f/U1AP74Y7dZ4hJCiPQUiwQpKCiI5s2bs3u37g1YoVCwbNkyypYty4ABAxg7diwtW7YkICDAvIEKUYTt2LENgBdfbEaZMmUNy1u0eAmAU6dOkJSUtm2gEEKYQyFvcZK+uXPnpvi7bNmyXL16NcWyEiVKZGvEbSGEaezd+ycAHTt2TrG8atVquLq6ER4exrlzZ2nUqLE5whNCiBSKRQmSEMK87ty5xc2b17GwsKBly9YpnlMqlTRp0hTQlSIJIURBIAmSECLP6UuP/PyapDveUd26us4RFy6cy8+whBAiQ0Wyik1kn4UC+r2QaPhdiLywd+8fALRp0w5Ie9/5+tYF4OLFC2g0GpONY1LYyP+jEAWHJEjFnKUKxtQzfvRwIbLy8OEDLl36F6VSSevWbYC0913lylWxtbUjOjqaW7duULlyVXOFa1by/yhEwVE8v6YJIfKNvnqtXr0GuLmVSHcdCwsLqld/AYCrV6/kW2xCCJERsyRIbdu25YsvvsjVxLDCNDRaeBit4GG0Ao0JRyAVQm/fPl2C1KZNW8Oy9O47fanR9evX8j3GgkL+H4UoOMySIL344ousXr2aNm3aMGjQIHbt2pWrSWKF8RKSofMOBzrvcCAh2dzRiKLm8eNHnDv3NwD+/s8SpPTuu6pVqwHFO0GS/0chCg6zJEgzZszg8OHDLFiwAEtLSyZMmEDz5s2ZOnUq586dM0dIQog8sG/fHrRaLTVr1sbLq1Sm6z4rQbqa6XpCCJEfzNZI28rKig4dOtChQwceP37M77//zo4dO+jTpw8VKlSgV69e9OjRAwcHB3OFWCxoTTmznxCp6HuvvfzyK1muW7lyFQBCQ0OIiorEyck5T2MTQojMmL2RdkJCAseOHePIkSNcuXIFR0dHqlSpwsqVK3n55Zc5duyYuUMssjQaDZMmfWD4Ozo6xozRiKImIiKc06dPAvDyy+2yXN/R0ZHSpcsAxbuaTQhRMJgtQTp+/DiTJk2iadOmjB8/npiYGGbOnMnhw4dZsmQJ+/fvp1KlSnz00UfmCrHIO3LkEAcO7DP8vXHjWjNGI4qa/fv3kZycTNWq1SlXzjtb21SpIg21hRAFg1kSpFatWjFo0CCOHTtG//79+fPPP1mzZg2dOnXCysoKABsbG5o2bUp0dLQ5QiwWfvnl5xR//7p7p1S5CZP588/fAWjbNuvqNb0KFSoBcPfunbwISQghss0sbZB8fX3p0aMHzZs3R6HIeLjYbt260aNHj3yMrPiIi4tj//59wLPzHxT8kPv3A7P9bV+IjERFRXHihK56XD96dnZ4e5cHIDDwXp7EJYQQ2WWWEqQqVapQtWrVdJOj+/fvM2PGDABKly6Nl5dXfodXLFy+/C/x8fGUdHOlR5VEStzfDZpkTpw4au7QRBFw6NB+1OokKlXyoVIlnzTPqxTQs0oiPaskonrubcDbW5ec37t3J1/iLGgyOi9CiPxnlgRp+fLlhISEpPvc+fPn2bx5cz5HVPycP38OAN9aNZnYKIHuLv9AcqKhUa0QubFnT+a916xUMKFRAhMaJWClera8XDldCdLDhw9Qq9V5HmdBk9F5EULkv3yrYuvduzfnz58HdF3Le/XqleG6tWvXzq+wii39rOl16tQFoEaNWgBcuyZj0IjciY2N4ejRQ0DOqtcAPDw8sba2JiEhgaCgh1LdK4Qwm3xLkGbNmsWvv/6KVqtl+fLldO/ePU31mVKpxMnJiXbtcvamKnLu33//AaB27bqExyvwKK+bB+vOndskJCRgbW1tzvBEIbZ37x4SEhLw9i5vGB07Na0WIhJ0dUgu1lr0te1KpZKyZb25efM6gYF3i12ClNF5EULkv3xLkHx8fBg1ahQACoWCnj174unpmV+HF8+JiooiNFRXxVm2YjXabnUAHHAuWYrIx0HcunWDF16oad4gRaG1a9cOADp06JRhJ4z4ZP677+DQG0+xfe6dyNu7PDdvXufevbs0bdoiz+MtSDI7L0KI/JVv/34PHz7E3d0dS0tLunXrRnJyMg8fPsxw/dKlS+dXaMXO7ds3AV11hqPjs5HKfXyq8PfjIK5evSIJkjDKo0ePOHbsCKBLkIyhLzW6d096sgkhzCffEqQ2bdrw448/UqdOHfz9/TPt3g9w+fLlfIqs+Ll1S5cgpe5dVLFiRf4+cbDY9iASubdjxw40Gg21atUxdNnPKX2CdP++JEhCCPPJtwRp9uzZlCtXzvB7VgmSyDs3b14HoFKlyimWly0r39xF7mzbtg2Ajh2NKz0CKFVKV3ocHBxskpiEEMIY2U6QJk2alKMdz5kzJ8XfXbt2NfzerVu3HO1LmNadO3cAqFSpUorlZcvqElgZpE8Y4+7dO5w9exaVSsUrr3Qwej9eXqUACA4OMlVoQgiRY9lOkE6cOJHi79DQUNRqNaVLl8bd3Z2IiAgCAwOxsrKievXqWe7v1KlTqFQq6tevbxgcMigoiPbt2zNy5MicvxKRbQ8eBALPSoz09H/fv38PrVYrpXwiR3bu1E1d8+KLTXFzK2H0fkqV0iVIUVGRxMREY2/vkMUWQghhetkeKHLfvn2Gx7hx4yhRogSbNm1i3759/Pjjj/z+++/s2LEDT09PXn311Uz39fPPP9O/f3/27NkDQEBAAKdOnaJ8+fKsXLmSr776KnevSmRIo9Hw8OEDAMqUKZviudKlS6NQKIiJiSE8PMwc4YlCKjk5me3btwLQuXPXLNbOnL29A05OzgAEBUkpkhDCPIwaSXvRokW8//771KlTJ8XyypUrM2bMGFatWpXp9qtXr6Zr166MHz+eJ0+ecPToUUaNGsWyZcsYN24cP/30kzFhiWx4/PgRCQkJKJVKvLxKoVLAaxWTeK1iErbWVobqjXv37po5UlGYHD16mODgIFxcXGjTpm2W6z9/36U3pUZxrWbL6rwIIfKPUY20w8PDcXR0TH+HFhbExsZmuv2tW7cMbZoOHjyIVqulTZs2gG4U7c8//9yYsEQ2PHigKz3y9PTC0tISgIAX4w3PlypVmqCgh8Xug0nkztatuumBevTogbW1NWq1JtP1rVQp77vUSpUqxbVrVwgOzngokKIoq/MihMg/RpUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAHQ9aBydXU1JiyRDQ8f3geeNchOzdNTN7q59CAS2fXoUSgHD/4FwJtvvmmSfepLkDIbK00IIfKSUSVIEyZMoF+/fvj7+1OvXj1cXV158uQJZ8+exdnZmS+++CLT7Zs0acKyZcu4fv06f/75J4MHDwbg999/Z/HixTRv3tyYsEQ23L+va6Ctb3+k1epG7wWwUT37YAoJkRIkkT0//7yV5ORk6tatT9WqVQkPj8lym9T3Xer+AKVKlQGKXxVbVudFCJF/jCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2bKZbj9lyhRcXV1Zvnw5TZs2ZdiwYYBuaIDSpUvz/vvvGxOWyIYHD3QlSPoEKT4ZWmxypMUmR+KTpQRJ5ExSUhKbNm0EoGfPjCegTi31fZeavidbcUuQsjovQoj8Y/RAkZ6enkyYMMGobV1dXfnmm2/SLN+wYYNMMZLH9F38U/dg05MSJJETf/75G6GhIZQs6c6rr3Y02X71iXpQkFSxCSHMw+gEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodE8a9Cpb3MgiVLe0J/frBIkKUESWdFqtaxbtwaAN97og5WVlcn27eGhm8j68eNHMiaXEMIsjEqQwsLCGDBgALdu3aJSpUrcuHGD+Ph4Dhw4wNy5c/nuu++oV69ehtvfuXOHiRMncv78+QzXkbnYTE+j0fDoUSjw7Bt6al5euuVhYU9ITEw06YeeKFrOnfubS5cuYmVlRY8evU2675Il3QFdFV5kZAQuLtJxQwiRv4xKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIofCwp6gVqtRKpWUKFEy3XWcnV2wsbEhPj6ekJBgw8ShovBJTk4mODgIe3v7PEkwvv1WN6Brx45dcHNzM+m+rayscHV1JTw8nEePQiVBEkLkO6MSpL/++ovJkydTvnx5kpOftSS0trZm8ODBTJw4MdPtT58+zaxZs3jttdeMObwwUmhoCAAlSpQwjIGUmkKhwNPTi7t37xAcHCQJUiGk0WhYv/57vv32S8NQHHXr1ufdd8fRoEEjkxzjn38ucOjQAVQqFQMHvm2Sfabm7u5hSJCqVKmWJ8cQQoiMGFV0k5CQgIuLS7rPqVQqkpKSMt3ewcEBZ2dnYw4tciE0VFe95u7umel6zxpqSzukwkar1TJjxsd89tlcwsPDDYnwuXN/8847/fnii6VotdpcH2flymUAdOjQifLlK+R6f+lxd/cAnt23QgiRn4xKkGrXrs2GDRvSfW7nzp2GKreMdOnShfXr15vkjVpkn74ESd8AFkCpgDblkmhTLgnlf+1g9e2TJEEqfNat+47t239CpVIxadJUjh07yx9/HOD117uj1Wr58svlzJnzSYqOETl15swpjhw5iEqlYsiQ4UbtI737LjV9gvTo0SNjQy10snNehBD5w6gqtjFjxjBw4EC6dOnCSy+9hEKhYNeuXSxdupTDhw9nORebra0tZ86coW3bttSuXRsbG5sUzysUCmbPnm1MaCIT6SVI1iqY1yLl1Ab6BrKPHxefD6aiIDg4iGXLPgfgww8n06tXX0B3vQMCZlGrVh1mzQpg06YNaDTJTJkSkOPeYWq1mnnzZgLQtWsPvL3LGxVrevddas8SpOJTgpSd8yKEyB9GJUgNGzZk9erVfPbZZ6xatQqtVst3331HjRo1+PLLL2nSpEmm22/btg1HR0c0Gk26PdmkS2/eeJYgeWS6nru7LkEqTt/ci4IVK5aQkJBAgwYNDcnR83r06IWtrS0ffzyRLVt+xNbWlvfem5Cj/7efftrEtWtXcXJyZuTIsSaMPq3imCAJIQoOo8dBatSoET/88APx8fFERkbi4OCAvb19trbdt2+fsYcVuZBeCVJ6SpSQEqTC5t69u+zcuR2AsWPHZ5j0dOzYmaSkJAICprB27XfY2dkzfPi72TrGgwf3WbLkMwBGjHg3z+dMlARJCGFORrVBmjRpEqdPnwbAxsYGT09PQ3J0+fJl2rRpk639aDQarly5wsGDB4mOjiYiIsKYcEQ2pZcgxamh4QZHGm5wJE6tW6YvQZIEqfDYsuVHtFotzZq1pHbtzAdqff317kyYMAWAL79czpo1aUe1Ty0pKZEpU8YTExND3br16dmzT67iTe++S604JkjZOS9CiPxhVIK0bds2Bg4cyI8//pjmucTExGzNwP3zzz/TqlUrXn/9dYYNG8bdu3eZOHEi7777LomJicaEJbKQ3RKkZ22QHktD+kIgMTGRHTu2AvDGG9kbsLFPn368++44ABYtmm+YTy09Wq2WmTMDOHfub+zt7Zk5cx4qlSr3gWdBnyA9fvwoV43KhRDCGEaP0PjSSy8xbdo0pk+fnmIspOzYvXs3EyZMoEmTJixatMjwIdyuXTsOHjzIihUrjA1LZCA2Nobo6Ggg+wlSfHwcMTFZz8wuzOuvv/YSERGBp6cXzZq1zPZ2b789jMGDhwIwe/Z0vv56ZZpEJDExkWnTJvPzz1tRKpXMm7eIsmXLmTT+jJQoUQKFQkFycjLh4WH5ckwhhNAzug3SsGHD6NixI5MnT+bGjRssXbo0w7GRUlu5ciW9e/cmICAgRXLVrVs3njx5wqZNmxg7dqyxoYl06EuP7OzscHBwyHRdW1tbHBwciI6O5vHj0CzXF+a1d+8fgG5MIguLnP1Lv/vuOBISEli/fg3Ll3/O3r1/0Lv3m/j4VOHWrRusXv01d+7cRqVSMW3aTJo3z34CllsWFhaUKFGSx48f8ehRaIajvwshRF7I1RwfHTp0YP369dy7d4/u3btz9erVbL1B3759m7Zt26b7nK+vLyEhIbkJS6RDP9heVqVHevpSJOnJVrAlJCRw6NABANq0aZfj7RUKBR98MJGAgFnY29tz5colAgKm0K/fG0ybNpk7d25TokRJPv98BZ07dzV1+FnSt4eTwSKFEPkt15Og1axZky1btlCyZEl69+7NkSNHstymRIkS3Lx5M93nbt68SYkSJXIblkglu+2P9GQspMLh+PEjxMXF4unpRc2amQ/QmhGFQsHrr3dn1649DBs2kjp16uLlVYratX0ZMWI027btpkWLl0wcefYUx4baQoiCwegqtue5u7uzdu1aPv74YxYuXJjluCodOnRgyZIleHh48NJLujdehULBxYsXWbFihczRlgckQSqa9u//CwB//5dzPX6Yq6srw4e/m+1u//nhWUmmJEhCiPxlVII0atQoPD1TftBaWVkxb948qlevnuU4R2PHjuXatWuMHTsWpVJXiNWvXz9iY2Np2LAhY8aMMSYskYmMBolUKqBZabXhd72SJXXtPaSKreDSarUcP64rsc1J4+yCIKP7LrXilqhn97wIIfKe0QlSRgYNGsSgQYMy3d7KyopVq1Zx5MgRjh8/TkREBI6Ojvj5+RmmLhGmlVEbJGsVLG4Vl2b9kiV1idSTJ4/zPjhhlPv3AwkKeoiFhSX16zcwdzg5ktF9l9rzXf2Lg+yeFyFE3st2gtS/f3+mTZuGj48P/fv3z3RdhULBmjVrMnx++/btvPTSSzRr1oxmzZqleO7Ro0ds376dIUOGZDc0kQ05rWKTwSILvhMnjgK6jg12dtkbxb6wkc4CQghzyXYj7ecHDNRqtZk+shrUbdKkSQQGBqb73OXLl1myZEl2wxLZpE+Q3N2lF1tRcfz4MQAaN25q5kjyTnGrYhNCFBzZLkFau3Ztur9n17Bhw7hx4wagS7BGjhyJlZVVmvWePHmCt7d3jvcvMpacnGyoKktdghSnhrY/6cY5+rN7NLb/3RHywVSwabVazp37G4CGDf3MHE3OZXTfpaYvyXzy5DEajcbQZrGoyu55EULkvXz79xs2bBibN28GdFOV1KhRAzc3txTrKJVKnJyc6NatW36FVSw8efKY5ORklEplukMoxCenbfOl/2CKiookISEBa2vrPI9TZN/Dhw94/PgRFhYW1KhhXPd+c0vvvktNf7+q1WoiIiLSvGcURdk5L0KIvJftBKl69erZbjytUCi4dOlSimX169enfv36hr9HjBhBuXL5M2VBcadvoF2iRMlsj7Ts6OiElZUViYmJPH78iDJlyuZliCKHzp8/C0D16jWwsbExczR5x9LSChcXFyIiInjy5FGxSJCEEAVDthOkkSNHmqx32Zw5c0yyn+dpNBqWLVvG5s2biYqKokGDBkybNo3y5cunu/62bduYOHFimuV//PFHhtsUVjltoA26JLdkSXdDSYUkSAWLPkGqU6eueQPJByVLuhMREcGjR4+oUqWaucMRQhQT2U6Q3n3XdIPHhYWFMWvWLPbv309cXFyaGePTK4HKyooVK/jhhx+YM2cOnp6ezJ8/nyFDhrBr16502zpdvXoVPz8/Fi5cmGJ5UfyGakyCBBgSJOnqX/BcuHAOAF/feuYNJB+ULOnOjRvXpT2cECJfGd0GKT4+nqtXr5KUlGRIcDQaDXFxcZw+fZoPPvggw20DAgI4cOAAHTt2xMvLK9cNLxMTE/n222/58MMPDSNzL1q0iBYtWvDnn3/SsWPHNNtcu3aN6tWrG9raFGX6BCn14J5ZkZ5sBVNcXCzXrl0FwNe3rnmDyQfSYUAIYQ5GJUjHjx9nzJgxREVFpfu8vb19pgnSoUOHmDx5Mr169TLm8GlcuXKFmJgYmjRpYljm5OREjRo1OHXqVLoJ0tWrV3nllVdMcvyCztgSJH3yKNM8FCwXL/5DcnIyHh6eeHmVMnc4ee7ZfGySIAkh8o9RCdLnn3+Oi4sLM2fOZMeOHSiVSrp168bBgwfZuHEjX3/9dabbW1lZmbSBdnBwMAClSqX8sPDw8CAoKCjN+mFhYTx+/JhTp06xdu1aIiIi8PX15YMPPqBixYpGx6FSFcwuyI8e6RIkLy8vLCxSxmgJNPBM1v1uoeT5Ntz6hOrJk8dptito9Oe+oF4DU7pyRVf97Otbt0Bdl5xcg8zuu9T00+OEhRX8+zC3cnJeUitO/wMFlVwD8zPlRBxGJUhXr17lk08+oW3btkRHR7NhwwZeeuklXnrpJZKSkvjiiy/46quvMty+bdu27Nq1i6ZNTTPAXVycbmj+1G2NrK2tiYyMTLP+tWvXAFCpVMybN4/Y2FhWrFhB37592blzp2EespxycrI1aru8pq+a8PEpj6tr2hGXt/bW/5byuYoVdUlsZGRYutsVRAX1GpjS7dvXAahXz7dAXpfsXoOM7rvUKlTQdRAID39SIF+vqWX3vGSkOPwPFHRyDYoGoxIkjUaDl5cXABUrVjQMAAnwyiuvMGHChEy3r1GjBp9//jmBgYH4+vqm6aasUCgYOXJktuPRb5+YmJhiXwkJCdjapr1RmzRpwsmTJ3F2djYsW758Oa1bt2br1q0MHTo028d+XlRUHMnJmY8ibg5BQboSNjs7Z8LDY7K9nZ2dEwAPHjzM0XbmoFIpcXKyLbDXwJQuXPgHAG9vnwJ1XfLqGujvw6Cg4AL1egua4vQ/UFDJNTA/Z2dbkw0oa1SC5O3tzdWrV2nYsCHly5cnLi6Omzdv4uPjg1qtJiYm8zexGTNmAHDq1ClOnTqV5vmcJkj6qrXQ0NAUo3CHhoZSvXr1dLd5PjkCsLOzo2zZsoSEhGT7uKklJ2tQqwvWP0V0dDSxsbrrUaKEe47ic3PTtUEKDQ0tcK8rIwXxGphSQkICt2/fAqBKlWoF8rWa+hq4uupKdB8/flwgX29BU9T/BwoDuQbmk6pTfK4YlSB16tSJBQsWoNFo6NevH7Vq1WLmzJn069ePlStXUrly5Uy3v3LlilHBZqR69eo4ODhw4sQJQ4IUFRXFpUuXeOutt9Ksv2HDBhYvXsyBAwcMJU7R0dHcuXOHHj16mDQ2c9M30HZwcEh3QtM4NXT6Wbd8Z5eYFFMb6HsPhYeHkZSUhKWlZd4HLDJ18+Z1kpOTcXFxyXGj+4Iks/suNX2Vd1xcLDEx0djbO+RHiGaRk/MihMhbRpVDvfPOO/Tu3ZsLFy4AMG3aNC5fvsyIESO4desW48ePN2mQWbGysuKtt95iwYIF7N27lytXrjBu3Di8vLxo27YtycnJPHr0iPj4eABat26NVqtl/PjxXL9+nX/++Yd3330XNzc3unbtmq+x57VnPdi8MlwnIkFJRELaW8HFxQULC11SJGMhFQxXr+q+XFStmv2R7QuqjO671Ozs7LGzswOKR1f/7J4XIUTeMur7iVKpTNHOqHbt2uzZs4dbt25RqVIlHBzSfsPr378/06ZNw8fHh/79+2e6f4VCwZo1a3IU0+jRo1Gr1Xz00UfEx8fTqFEjvvnmG6ysrLh//z5t2rRhzpw5dOvWjVKlSrFmzRoWLFhAnz590Gq1NGvWjO+//77ITdsQEqJrf6TvCZQTSqWSkiVLEhwcxKNHj4pFl/KC7to1XYJUrVr6VcdFVcmS7ty7d5dHjx5RvrzxPU2FECK7TFaA6+DgQJ06dTJ8/vnRslOPnJ3ZutmlUqn48MMP+fDDD9M8V7ZsWa5evZpi2QsvvMA333yT4+MUNvp52Dw9My5Byoy7u8d/CZKMhVQQ6EuQqlV7wcyR5C93d12CVBxKkIQQBYNRCdLDhw+ZMWMGf//9N0+fPk3zfHpThaxduzbd30XeCg3VlyAZ115FP0iffDCZn0aj4erVy0BxLEGSwSKFEPnLqARpypQpnDt3ju7du+Pi4mLikIQpGTvNiN6z6UakBMncHj58QExMDJaWllSoUMnc4eQrmW5ECJHfjEqQzp07x8cff0y3bt1MHY8wMf2wBbktQZIEyfz07Y98fKoUux6F+gRJOgsIIfKLUQmSu7t7mnGERMGUVS82BVDDLdnwe2rP5mOTb+7mduVK0aley+q+S6243Ic5PS9CiLxjVII0bNgwli9fTvXq1SlTpoypYxImkpSUSFjYEyDjEiQbC/i+fWyG+5ASpIJDX4JUtWrhT5Cyuu9SKy5VbDk9L0KIvGNUgtSqVStWrVrFyy+/jJubW7pThezZs8ckAQrj6XuwWVpa4urqatQ+issHU2HwrAdb4U+Qcko/WOTjx5KoCyHyh1EJ0qRJkwgMDKRZs2aGou+sbN++PUfHeP3113MemEhBnyB5eHgaPaigvgQpLOyJjKZtRlFRkQQFPQSKRglSTukT9cjISBITE9NMTC2EEKZmVIJ08uRJpk6dyhtvvJHtbSZOnJjtdRUKhSRIJpCdLv7xauj5i25qg80dY7BJdUfoRtO2QK1WExb2xOjxlETu6EuPSpUqjZOTk5mjyb2s7rvUnJ1dsLS0JCkpicePH1G6dNGs2s/peRFC5B2j/v2cnJwoXbp0jrbZu3evMYcSuZCdLv5aIChGafg9Nd1o2u4EBwcRGhoqCZKZXLumG+i0qAwQmdV9l5pCoaBkSXeCgh4W6QQpp+dFCJF3jEqQ+vbty1dffUXdunXTnVYkPTlpzG3MSNoirWfTjORuUlN9giQNtc2nuA4Q+bznEyQhhMhrRo+kfenSJZo3b57u3GvZmUvtl19+4eTJkyQlJRkSIq1WS2xsLOfOnePgwYPGhCae86wNUu5KfWQ0bfMrrlOMPO9ZhwEZC0kIkfeMSpBu377NCy88e6NOXeKTVQnQsmXLWLZsGY6OjqjVaiwtLbGwsCAsLAylUknPnj2NCUukYqoSJH2CpN+fyF9JSYncunUDkBIkkERdCJE/jEqQAgIC8PHxMfqg27Zto3PnzsybN48lS5bw8OFD5s2bx8WLFxk6dChVqlQxet/imdxOM6JXqlQpQBIkc7l9+zZJSUk4ODgU2bY32VGUB4vUaDTs2LGNDZt/go47AZj68USGvT2YypWrmjk6IYonpTEbvf322znutv+8kJAQunTpgkKhoGbNmpw9exaAWrVq8b///Y/NmzcbvW+ho9FoDG2GcluC5OWlS5D03cxF/nq+/ZGxwzUUBc9KkIpWW7jExETef380AQFTuHbtsmH5n3t+p0+f7mzdKu+HQpiDUQmSWq02euBBADs7O8MbfYUKFbh//z7x8fEAvPDCC9y/f9/ofQud8PAw1Gq1ofdPRhRAJedkKjknZzi1gZeXrsdicHCQ6QMVWSpKI2jrZee+S+3ZYJFFpwRJq9UyefKH/PXXHqysrBgxYgzl7BIobR1Ds2YtSEpKYsaMj/nhh3XmDlWIYseoKrYxY8Ywc+ZMHj9+TJUqVQxvXM/LbBiA2rVrs23bNpo2bYq3tzcqlYqjR4/i7+/PzZs3ZRA4E3j4UFfa4+7ukengjjYWsKlj5lMbPKtiCyE5ORmVSmW6QEWWimID7ezcd6kVxTZImzf/wJ49v2Npacny5V/RqFEThpIIgLbbYpYsWcjq1V/z6aez8fauQNOmzc0csRDFh9FtkJKTk5kyZUqGRf6XL19OdznA//73PwYNGsTTp09ZuXIlnTt3ZuLEiTRu3JjDhw/z8ssvGxOWeI6+OqxUqZyNV5WekiXdUalUqNVJPHnyONdVdiL7tFqtdPH/jz5BevLkSZFI1IODg1i4cB4AY8Z8QKNGTVI8r1AoGD36PSIiIti2bTOTJr3PTz/tyrREWAhhOkYlSDNnzszVQRs1asSWLVu4elU3+N3UqVNRKpX8/ffftG/fPkejbov0PXz4AMAkjXotLCzw8PAkKOghwcFBkiDlo9DQECIjI1GpVFSqVNnc4ZiVm1sJlEolGo2GsLAnht6VhdXy5YuJj4+nfv2G9O3bL911FAoFkyZ9zOXL/3LlyiXmzp3JggWL8zlSIYonoxKkrl275vrA1atXp3p13Tdia2trPvnkk1zvUzwTFJS9BCleDf1/twPg+1diM5zawMurFEFBDwkKCqJOnbqmDFVk4sqVSwBUrFgJa2trM0djOtm9755nYWGBu7sHISHBBAcHFeoE6caNa+za9TMA48aNR6nUNQdN77xYWVkREDCLN9/swZ49v3Po0AFatHjJbLELUVwYPdNPWFgYq1ev5sSJE0RFReHq6krDhg0ZOHAgJUqUyHL7p0+fcvz4cWJjY9MdN0nmYssdfQlSVlVsWuBWpMrwe0b0PdmCg6UnW366fFmXIFWvXsPMkZhWdu+71EqVKk1ISDAPHz6kdm3fPIktP3z//Wq0Wi1t2rSldu06huUZnZfq1V/gzTf78/33q/n88wU0bdq80FcxClHQGZUgBQcH06tXL8LCwqhbty41atTg0aNHrF69mu3bt7Nly5ZMx945cOAAY8eOJS4uLt3nZbLa3NM30jbVuDn6htrSky1/6UuQXnihppkjKRhKlSrNuXN/F+ohJx49CmX37l0ADBjwdra3e+ed/7F9+1Zu3rzOzp3bef317nkVohACIxOk+fPnY2Fhwe7duylXrpxheWBgIIMHD2bRokXMnTs3w+0XLlxIpUqVmDRpEp6enobiZWEaWq3WUMWWkznwMqPv6q8vmRL548oVXQPtF14oWiVIxtKXiOrv78Jo69bNqNVJ+PrWy1F1tZOTM0OG/I/PPpvHF18spUOHTtLjNwtJSYncvHmDkJBgrK1tqFKlKiVKpO11LUR6jEqQDh8+zOTJk1MkRwDlypVj5MiRfPrpp5luf+vWLVasWEHDhg2NObzIQmRkBLGxui7U+sQmt8qW1V3rwMBAk+xPZC0sLMxQYleUxkDKDf3wIYW1BEk/YjbAG2/0yfH2b7zRl++/X01ISDC//LKDrl17mDrEIiEiIpyvv17Jzp3biYqKTPFczZq16du3P6++2lG+nItMGXV3JCcnZzhQpJubG9HR0ZluX7p06SzXEcbTf3iULOlusoa93t7lAbh//x4ajcYk+xSZ01eveXuXTzMhdHFVqpSuRLSwJkh//32aBw/uY29vj79/zoczsba2pn//QQCsXv01ycnJpg6x0Dty5BBdurRn/fo1REVF4uTkTI0atahYsRIKhYJ///2HKVM+ZNCgN3nwQAYlFhkzKkGqVq0aP//8c7rPbd++napVM587aNiwYSxfvlxGzM4jz7r4m6b0CHSNtC0sLEhMTDTM8Sbyln78I2l/9MyzKrbCmSDpS4/atXsVW1s7o/bRvfsbODs7c+/eXfbs+cOU4RV627f/xLvvDiMyMpIqVaqybNlX/PXXUTZs2MK2bbvZu/cwI0eOwc7OjvPnz9K3b3fOnv3b3GGLAsqoKrYRI0bw9ttvExERQadOnShZsiSPHz9m586dHD16lCVLlmS6/c6dOwkJCaFt27a4ublhY2OT4nmFQsGePXuMCU3wrIG2/tt2ZhRAKXuN4feMWFhYULp0Ge7du0tg4F1DrzaRd571YCs6I2jrZfe+S03fWSA6OpqoqCicnJxMH1weiYuL5c8/fwegc+f0h0rJznmxs7OnT59+rFy5jG+//Yp27doXmDn6wsKecOLEMe7fD8TKyorKlatSv35DbG1t8/zYf/zxG9Onf4RWq6VLl25MmRKQpo2Wm1sJhgwZzmuvdeHDD8dy8eIFRox4h+XLv6J+fWnyIVIyKkFq1qwZ8+bNY/78+Rw5csSwvGTJksyePZu2bdtmur2XlxdeXl7GHFpkQ04GibSxgJ1dYrK133LlynPv3l3u3buXZtRfYXpFtYs/5Oy+e56trR2urq6Eh4cTFPSwUCVIR44cIi4ultKly1C3bv1018nueenT5y3WrPmWq1cvc+LEMZo0aWrqcHMkLCyMxYsX8MsvO1Grk1I85+joRJ8+bzFo0JA8S5Ru3LjO1KmT0Gq19OjRiylTAjJNGkuVKs3XX69h7NiRnDhxlFGjhvL99z9SuXKVPIlPFE5Gj4PUpUsXXnrpJa5fv46FhQXOzs5YWVmhVCp5+PBhptU7c+bMMfawIhv0PXxMMc3I87y9vTlyBAID75l0vyKt6OhoAgPvAkUzQcqNUqXKEB4ezoMH9wvV9Ct79uhKj15++ZVcl/g4O7vw+uvd2bhxLWvWfGPWBOmffy4wZsxwwsKeALr7tVq16iQkxHPu3FmCg4P46qsV/PrrLubPX2zyEtHY2Bg+/HAM8fFxNGnSlEmTpmbr/Nra2rJ48QpGjhzCmTOnGDt2BOvWbcLFxfiJ2EXRYlSCdOfOHSZOnMj58+czXCezudj0VUDpUSqV2NnZFapvhgXNvXu6BEbf88xUypXzBjB8cIu8c/nyv4Cu7VdGHSKKK2/v8ly6dJG7d++YO5RsS0hI4ODB/QC0bfuKSfb51lsD+PHH9Rw7doRr165So0b+V8WePXuG4cPfIT4+jsqVq/DxxzPw9a1neF6j0bB37x8sWDCXwMB7DBzYlwULFtO8eUuTxbB06efcvn0LDw9PZs9ekKMBNG1sbFiwYAlvvtmD+/cDmTp1EosXf1FgqiyFeRmVIH3yySfcuXOHUaNG4eXlleOukv7+/lnegM7OzvTv358RI0YYE2KxlZyczP37ugSpfPkKWa4fr4ahe3SNRb96OfMpH8qV0/Vku3dPEqS8duHCOYAiO61LTu671PT39d27t/Mgsrxx7NgRYmNj8fT0ombN2hmul5PzUqZMWdq2bc/vv+/m+++/Ze7c+aYOO1N3795h7NgRxMfH8eKLzfjssyXY2dmnWEepVNK2bXsaN36R8ePHcfz4Ud57bxSff76Cpk2b5zqGixf/4Ycf1gEwffps3NzccrwPV1dXFi1azltv9eTgwf389NMmevTolevYROFnVIJ0+vRpZs2axWuvvWbUQefOncvUqVPx8/Pjtddeo2TJkjx58oTff/+d/fv3M2LECGJiYvjiiy9wcXGhb9++Rh2nOAoODiIxMRFLS8tsNaTWApfCsjflQ4UKFQHdG6NarcbCwugaWpGF8+fPAqT4Nl6U5OS+S01/H965U3gSJH31Wps27TL9QpnT89K//yB+/303v/32C2PHvo+rq48Jos1aUlIiEya8R2RkJLVr+7Jw4bJM2xc5OTmzdOmXTJjwHvv2/cl7741i1aq11KqVcbKYFbVazSefTEWr1dKhQydefLGZ0fuqVq067747joULP2XBgrn4+TUxDG0iii+juvk7ODjg7Oxs9EF/+eUXOnbsyKpVq3j99ddp3rw5Xbp0YcWKFfTs2ZOLFy8yYcIERowYwcaNG40+TnGkL90pV87b5HM1lSlTFhsbWxITE6UdUh7SarWGBKmoliDlxrNEvXAkSElJiezfvw+Al19uZ9J916xZmwYNGqFWq1m3bo1J952Zr79eyZUrl3B2duazz5Zkq/G1paUl8+Z9RrNmLYmPj2fcuJE8ehRqdAwbNnzP1auXcXZ25oMPJhq9H7233hpIo0aNiY+PY/r0KenOESqKF6MSpC5durB+/Xqjb6CTJ09mWPrUrl07jh8/DkCDBg1k5OYc0rfL8PauYPJ9K5VKfHwqA3D9+jWT71/o3L17m8jISKytralevfA0Qs4v+iq28PBwIiMjzBpLdpw8eYLo6KeULOmeJyWC+vncNm/+gaioKJPvP7UbN67zzTdfAjBlynQ8PDKedzM1S0sr5s1bSKVKlXn0KJRx40aRkJCQ4xgePLjPihVLARg3bjxubllPkJ4VpVJJQMAsbGxsOXPmNDt3bs/1PkXhZlSCZGtry5kzZ2jbti3jxo1j0qRJKR6TJ0/OdHsXFxeuXLmS7nNXrlwxjBocGxubL+NnFCX6EqS8Kh6uUkU3COiNG5Ig5ZXz588ButIBS0uZays1Ozt7w4dyYWiorR/MsXXrl01eqgvQvHlLKlXyISYmhg0bNph8/6ktX76Y5ORkWrd+mXbt2ud4ewcHBxYvXoGTkzMXL15g9uzpOfqyrdVqmT17BvHxcTRo0JAuXbrlOIaMlClTlmHDRgKwaNGnRESEm2zfovAxKkHatm0bjo6OaDQazp8/z4kTJ9I8MtOpUyeWLFnCmjVrCAkJISkpiZCQENauXcuyZcvo1KkTkZGRrFmzBl9fX6NeWHGV9wlSNUBKkPJSUW9/ZAqFpR2SWq1m/37doLemrl7TUyqV9O8/GICvv/6apKTEPDkOwD//nOevv/agVCp5991xRu+nXDlvPv10EUqlkp9/3srmzT9ke9vffvuFI0cOYmlpyUcfzTB5j7O33hpA5cpVCA8PZ/Hiz0y6b1G4GNXKdt++fbk66NixY3ny5Alz585l7ty5huVKpZLu3bszbtw4fv/9dy5dusSaNflXr14U6L9RZ6cHmzGkBCnvnTunm/pA2h9lrHz5ipw8eZxbt26aO5RMnT17hvDwcJydnWnQoFGeHadDh04sXbqI4OBgfv11Nx06dM6T4yxb9jkAr73WhUqVctcgvEmTpowe/T6ffz6fTz+dRZUqValXr0Gm20REhPPpp7MBGDJkOBUrVspVDOmxtLRkypTpDBrUl23bttC5c9cs4xJFk1mmMrawsGDOnDn8/vvvzJgxg3HjxjF37lx+++03ZsyYgZWVFS1btuTQoUPSBiMH4uPjefBA12ZL/w07O1ysNbhYZ28C2sqVdQnS/fuBxMbmfCRkkbmQkBBu3bqJUqmkQYOiPfVBTu671KpV05Vk6uerK6j27tVVr7Vq1SbbvT6NOS9WVla8+WY/AL777ps8aWB84sQxTpw4hoWFJf/73yiT7HPAgMG0a/cqarWaDz4YQ0hIxvM8arVaZs4MIDw8DB+fKgwa9I5JYkhPvXr16dq1JwCzZgWQlJSUxRaiKDJLgqTn7e1Nz549GTp0KF26dKFcuWcDG+pH5hbZd/v2TTQaDS4uLpQs6Z6tbWwtYE/3GPZ0j8E2G+/fbm5ueHp6odVquXTp31xGLFI7ceIoADVq1MLJyfieogVdTu+71KpV040ufuXK5QLb20ij0bBvn656rU2bzKdf0svNeenVqw92dnZcu3aV48eP5jTcTGm1WpYuXQRAz569sjWNUXYoFAqmT59F5cpVePLkMWPHDs+wofmGDWvZs+d3LCwsCAiYleft88aMeQ9XV1du3LjO+vXf5+mxRMGUbwlSmzZtDA2z/f39adOmTYaPl19+Ob/CKlL07YIqV66apyPB6tvG6KuChOmcOHEMgMaNXzRzJAVblSpVUalUhIeHERpqfFfxvHTx4gVCQ0Owt7enceO8nwrE2dmFPn36ALBmzTcm3fdff+3l4sUL2NjY8s47/zPpvm1t7Vi4cBmurq5cvnyJ4cPfTlOStHPndhYs0E1RNWbMB9SuXcekMaTHxcWVsWM/BGDlymWGOS5F8ZFvI/35+flhb29v+F2Gcjc9fbsgfTuhvOLrW48//vjV0JhYmIZWqzUkSOaefLSgs7GxoUKFSty8eZ3Ll//F0zP7Xc3zy969fwLQosVLWFtb58sxhwwZwurVqzl+/ChXr14xyVx1ycnJhrZHb77ZnxIlSuZ6n6l5e5dn5crVDB06gH///YfevV+nf/+3qVChIn/9tYcdO7YB8MYbfXnrrQEmP35GOnfuys8/b+Xvv0/z6aez+fzz5fl2bGF++ZYgPT9B7fMNs4XpXLt2FXjW0yw74tUwer9uKIUlreKyNeWDvgTpwoVzaDSaHE81I9J38eI/PH78CDs7uyLfg82Y+y61OnV8uXnzOufPn6VVK38TR5g7Wq3W0P6oTZvs917L7XkpV64c7dq157ffdrN69dfMnZv7Xli//rqLW7du4OTkbBhzKS9Uq1adtWs38cEHo7l27SqLFy9I8Xz//oMZO/aDfP1yrVAomDx5Gr17d2X//r3s37+vwN1rIu+Y7ZMtOjraUIyamJjIqlWrmDlzJqdOnTJXSIXejRvXgZyVIGmBv0Mt+DvUIttTPlSrVh0bGxsiIyMLxTg0hcW+ffoSh1ZFvv2dMfddanXr1gfg779PmywuUzl//iz37wdia2uXo4lZTXFe3n57KKDrDv/vv/8YuRedpKREvvhCNyDjoEHv5Pkk4t7e5Vm/fjMffzyDZs1aUKNGLV57rQtr1mzkvffGm+XLWOXKVejXbxAA8+bNJC4uNt9jEOZhlgTpwoUL+Pv7s3btWgBmzpzJggUL2LFjBwMGDGDv3r3mCKtQCw8P5/HjRwCG0a7ziqWlJbVq6doA6BsVi9zRarWGAQX9/bPXoLe4q19f18vv338vEh8fb+ZoUvrllx2ArnG2ra1dvh77hRdq0LGjrpv/woWf5qoR+9atW3jw4D4lS7rTu/dbpgoxU5aWVnTv/gbLl3/Nhg1bmDlzntlLVIcOHU6pUqUJCnrIsmWLzRqLyD9mSZAWLVpEpUqV6NWrF/Hx8ezcuZO+ffty8uRJevTowcqVK80RVqF28eIFQDf+UeoZtfNC8+YvAXDo0IE8P1ZxcPXqFQID72JlZUWLFtkvcSjOypYth4eHJ2p1EmfOFJyS56SkRH7//VcAQ6KS3959dxzW1tacOXPKMA9cTsXERPPVVysA3ZhDxXlWA1tbO6ZMCQBg/fo1nDx53LwBiXxhlgTp/PnzDB8+nHLlynHs2DHi4+Pp0qULAB06dOD69evmCKtQu3DhHJB/gwu2bNkKgJMnj8t4SCawffsWAFq2bJ0vCW5RoFAoDNVXhw7tN2coKRw6dJCoqEjc3T3w82tilhi8vErx1lsDAZg/fzYxMdE53sd3333DkyePKVeuPN269TBxhIVP8+Yt6dGjFwBTp07Kl3nvhHmZJUFSKpWGNhYHDhzAycmJOnV0VTbR0dHY2NiYI6xCTZ8g+frWzZfjVaxYiXLlvElKSuL48WP5csyiKi4ujl27dFUy3bu/YeZoCpeWLVsDcODAX2g0xg06aWo//fQjoBvdOi/mXsuut98eSunSZXj48AGLFy/M0bYhIcGsXbsagHHjPpA5Af/z3nvjKVfOm+DgIKZNm1xg7jmRN8ySINWqVYstW7Zw9uxZfv31V1q1aoVCoeDJkyd8/fXX1KpVyxxhFVrJycn88895AOrUyZ+6eoVCYfhw+vXXXflyzKLqt99+ITr6KWXKlJXxj3KoceMXsbe3JyjoIWfPnjF3ONy9e5sjRw6hUCgMpQ3mYmdnT0DALAA2bdrAkSOHsrWdVqtlzpxPiI+Pp169BrRuLePS6dnZ2TN79gIsLS356689fPPNV+YOSeQhsyRI48eP59ixY/Tp0weVSsXw4cMBeO2117hz5w5jx441R1iF1s2bN4iNjcXe3t6oBto2Ki02qpw35OzcuSugG0QuLCwsx9sLSEpK4ptvvgTgjTf6FKshE4y9755na2tLu3YdANi2bYspwsqVH37YAOiqY8qV8zZqH6Y4L3p+fk14442+AEyc+H62ep3+9tsv7N+/FwsLSyZPnipj1qVSu3YdJk+eBsCKFYsNo6WLoscs78Y1atTgjz/+4Mcff2TPnj1UqFABgICAAHbt2iUlSDn099+6Bqq1atXJcZG+rQUc7hXN4V7ROZ7aoFq16tSsWRu1OskwkJvImV27fub+/UDc3Erwxht9zB1OvsnNfZeavn3Mb7/tJjg4yATRGefRo1C2bt0EQJ8+/YzahynPi94HH0ykTp26PH0axbvvDiM0NOP5zm7cuMaMGVMBXRVdTsZUK066du1Bz5590Gq1TJgwjqNHD5s7JJEHzPZ11cHBAV9fX+zsnnWBfeWVV3B3z94cYuIZ/T9nkybN8v3Y+jYzGzZ8X+C6Whd0YWFhLFmiG8hv0KB38r07eFFRu7YvDRv6oVYnsXLlMrPF8e23X5GQkECdOnV58cX8/1/MiJWVFQsXLqVUqdLcu3eXt9/ux/XrV9Osd+vWTUaMGEJcXCx+fk0YMmS4GaItPCZMmMLLL7cjKSmJ994bJUlSEVR8yvOLqMTERE6ePAFA06bN8/34r73WhVKlShMaGsIPP6zP9+MXVrp2HjMIDw+nSpWq9O79prlDKtRGjRoLwPbtPxmma8lP165dZfPmHwAYOXJMgauWKlnSnVWrvqd06TIEBt7jrbfeYOHCT7l06SJ3795m7drV9O/fi9DQECpV8mHevEVYWOTbRAuFkoWFBXPmLKBFi5eIj4/n3XeHsWnTDwV28mSRc5IgFXLHjh0mPj4Od3cPqlbNeXF4QjKM2W/LmP22JCTn/PhWVlYMH/4uAKtWfcGDB/dzvpNiaNWqL/nzz99QqVRMm5b3M5MXNLm971KrW7e+oTRz4sT3DNPu5IekpCSmT/8ItVpN69Yv56qhvanPy/PKlCnLunWbadasJQkJCXz//bf07duDLl1e5bPP5hEdHY2vbz2++WYdrq6upj14EWVpacVnny2lY8fOJCcnM2PGVIYOHSptMosISZAKOX0PsldeedWob60aLRx5aMGRhxZojPzi07FjZ+rUqUt0dDSTJ39IYmKicTsqBrRaLV9/vZLlyz8HYOLEj6lVq7Z5gzIDU9x3qX344WRq1KhFeHg4b7/djz/++C3Pv81rtVpmz57Ov//+g4ODI5MmfZyr/eXFeXmem5sby5Z9ydKlX9K8+Us4OTljY2NDrVp1+Oij6Xz7rSRHOWVlZcXMmfMYPfo9LCws2L17N126vMratd+RkJBg7vBELii0RaQ8UKPRsGzZMjZv3kxUVBQNGjRg2rRplC9fPt31w8PDmTlzJgcPHgSgffv2TJo0KUWbqJwKD49Brc6/cTHCw8N59dXWxMfHs27dZqM+aOPU0GKTIwCH3nhqdMPQBw/u88YbXYiJicHfvy3z5n2Wr6UiFhZKXF3t8/0a5ERY2BNmzPjYMLLx0KEjGDFitJmjMp2cXANT3XepRUVFMXr0/zh37m9A13GhV6++NGvWEjc3N9Mc5D9JSYnMmfMJW7duRqlU8vnnKwwDqBorN+elMPwPFHXXrl1m6tRJXLlyBdBVbXbu3JXOnV+nQoVKZo6ueHBzs0elMk3ZT5FJkJYtW8aGDRuYM2cOnp6ezJ8/n8DAQHbt2pXuxJ/9+vUjISGBadOmERUVxZQpU2jUqBHz5s0zOob8fmP68svlfPHFUmrUqMn69VuMKkEy5QfVsWNHGD36fyQlJVGnTl3mzFlAmTJljd9hDhTkD4ewsDA2bdrAunXfER0djaWlJe+/P7HItTsqCAkS6Ce/Xsl3360ylGYqFAqqVKlK1arV8fGpQunSpXF398DDw5MSJUpgY2Ob7f+fp0+fsn//XlatWsndu3dQKpVMnjzNJOMeSYJUuFlYKHF0tOa779bxxRfLUvSqLFu2HC++2JxatWpTrVp1KlWqXOQnpTYHSZBSSUxMpEmTJnz44Yf06aPrKh0VFUWLFi2YPXs2HTt2TLH+2bNn6d27N7t378bHxweAw4cP884773DgwAE8PT2NiiM/35hCQ0Po2rUDMTExzJ37Ge3bd8x6o3SY+oPqyJFDTJjwHtHRT7Gy0k062bNnHypV8sndjrNQ0D4cHj58wMmTxzl0aD8HDuxHrU4CoHr1GsyYMceo9mIFXUFJkPTCwp6wZcuP7NnzB9euXcl0XQsLCxwcHHBwcMTR0RE7O3ssLS1RqSywsNANnfH06VMePQolMPCeYTtXVzemT5+d65IjPUmQCrfnr0FcXDwHD+5n69YtnDhxzPAeoKdUKilZ0h1PTy88Pb0oWbKk4f5zcNA/HLCyssLKygpra2ssLXU/9cusrKxQKlWoVEqUShVKpbLAdRDIb6ZMkIpEN4UrV64QExNDkybP5j1ycnKiRo0anDp1Kk2CdPr0adzd3Q3JEYCfnx8KhYIzZ87QoUOHHMcQGRnJt99+h1arRaFQ/HeTKgy/KxQ897syxfKU6+ke1tbWeHmVplSpUnh4eKYYQDA2NoYJE94jJiaG2rV9adfu1RzHm1eaNWvBxo0/8cknUzl58jgbN65j48Z1lCvnTaNGjalSpSoVK/rg5eWFi4srTk7OJhscUa1WExsbS1xcPAkJCSQlJaFWJ5GUpEatVpOcrPuZ8pFEcnIyanUyyclqNBrNf+smp3qoSU7W/Pcz5XMajW77mJho7t27y927dwgLe5Iitho1ajJgwNu0bdu+WA0GaU5ubiUYOnQEQ4eO4NGjUC5e/IcbN65z69YNQkODCQ19xKNHIcTHx6NWq4mIiCAiIiJb+y5fvgKvvdaF3r3fwtHRMW9fiCiULC2taNOmHW3atCMmJprTp09y8uQJrl69zLVrV4mKiiQ0NITQ0BDDTAimoFQqUyRNqX+m/tx5PqlK/TmkWyej5brndO9naT/r0n6ukc6yjJend+znj5tyfaVh+YIF8/HwMM1wQUUiQQoODgagVKlSKZZ7eHgQFJR24LiQkJA061pZWeHi4pLu+tkRERHBwoWfGrVtVmxsbPD2Lk+FCpVwcXHl4MG/CA4OwsHBkYCAWQXuA7dcOW++/HI1x44dYdOmDRw+fJDAwHspvnnrKZVK7OzsDd+GdN+QrFAoFGi1WrRa/vup+e+n7pGUlERSUhKJiYn/PRIK1LxIKpWKmjVr4+fXhHbtXi2SJUaFibu7B61bt6F16zYplmu1WuLiYnn6NJqnT6OIjn5KdHQ0MTHRhqRZrVaj1WpxdHTC1dUFH5+qJm/PJIo2e3sHXnrJn5de8gd0992TJ48JDg4mJCSI4OBgIiLC/7sHn78XY0hK0r3H6b70JZKQoHu/S05Ov5ujRqP574tefr7CgiMuLtZk+yoSCVJcXBxAmvpca2trIiMj010/vbpfa2tro3sd2Nvb06VLVzQajeGDHbQpPtT1tZlarfa59bT/rUeK9WJjYwkOfkhwcDDx8fFcu3Y1RddlL69SfPbZYqpVq2pUvHoWz1WwWqiUmHLok5YtW9KyZUuio3Xfns6ePcOtW7e4c+cWjx8/5unTp2g0GqKjn5ruoP/RT4isqyZRYWFhiYWFBRYWFlhaWvxXdaJ7qFS6ZbpvWSosLFSoVBYolcr/nleleligUikN1S/6dW1tbSlXzpvy5StQsWJF7OzsTf66CjJ9sXZ2irfz8r7LKUtLR5ycHIFSWa6b13JzXnJy/kXeyMk18PLyxMvLE/A16lhqtZqkpCQ0mmSSkzUpfqrVyamWJ6PRaP5LqtJ+3ui+gKZepv9sSrl+2s810nyBzewz8PnPwewvTy/m9OMzZS/MIpEg2djYALq2SPrfARISErC1tU13/fS6oickJBjdi61kyZKsWGH6UXzVajWBgYHcuHGDmzdvEh4eTvXq1Wnfvn26ry2nXIG7Y/R/5c0HuqurPeXKdaJr104plicmJhIWFkZMTIzhG1JiYmKKEbn1xb/6n/qHpaWloV4+vZ8yyJ35ODllfV/mx31XGJnivGTn/Iu8JdegaCgSnyL66rLQ0FC8vZ9NEBkaGkr16tXTrO/l5cWePSknGExMTCQiIsLoBtoAUVFxJCebvprHxcWDhg09aNiwqWFZfLyG+PgYkx8rv1lbO2Jtnfs2HCqVEicnW6Ki4v4rBZTxR/Lb89cgL/4PRObk/JufXAPzc3a2NVmzkyKRIFWvXh0HBwdOnDhhSJCioqK4dOkSb731Vpr1GzVqxIIFC7h7965hnKQTJ3TTddSvX9/oOJKTNdJ7xMzkGpifXAPzkvNvfnINzMeU/fKLRIJkZWXFW2+9xYIFC3Bzc6NMmTLMnz8fLy8v2rZtS3JyMmFhYTg6OmJjY4Ovry/169dn3LhxBAQEEBsby7Rp03j99ddzVYIkhBBCiKKhyLTmGz16ND169OCjjz6iDT2Z0QAAYLBJREFUT58+qFQqvvnmG6ysrAgKCqJ58+bs3r0b0HUPXLZsGWXLlmXAgAGMHTuWli1bEhAQYN4XIYQQQogCoUgMFFlQSJ2zealUSrkGZibXwLzk/JufXAPzUir1YyblniRIQgghhBCpFJkqNiGEEEIIU5EESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQghhBAiFUmQhBBCCCFSkQRJCCGEECIVSZCEEEIIIVKRBEkIIYQQIhVJkIQQQgghUpEESQgh8oFWqzV3CEKIHLAwdwBCiKKrX79+AKxdu9bMkZjWiRMnmDp1Kg8ePKBx48bUrVuXZcuWcfXqVSDt6968eTM3b95k4sSJZos5I7du3WLu3LmcOXMGCwsL2rRpw8SJE3Fycsp0u2bNmvH48eM0yw8fPoy7u3tehStEvpEESQiRZ6ZNm2buEPLEvHnz0Gg0fPXVV5QoUQJnZ2datGiR4fpffPEFfn5++Rhh9kRFRTFw4EA8PDz49NNPefLkCfPnzyc4OJhvv/02w+0eP37M48ePmTRpEnXr1k3xnIuLS94GLUQ+kQRJCJFnKleubO4Q8kRERASNGjWiadOmhmVeXl5mjMg4GzduJCoqiu3bt+Pm5gaAp6cnQ4cO5fTp0zRs2DDd7S5dugRA27ZtKVOmTL7FK0R+kjZIQhQB/v7+LFq0iDlz5uDn54efnx8ffvgh4eHhhnUmTpzIgAEDmDZtGg0bNqRr166o1WoSEhJYvnw57du3p3bt2rRr146vvvoKjUZj2LZfv35MnTqVL774ghYtWuDr68uQIUN4/PgxP/30E23btqVevXoMHDiQ+/fvp9hOX90EUK1aNdavX8+UKVPw8/OjXr16jB49Ok1VzZ49e+jWrRu1a9emWbNmzJw5k9jYWMPzS5cupW3btuzfv59OnTpRq1YtXnnlFbZt25ZiP0+ePGHy5Mk0bdqUevXq8eabb3LmzBnD8/pSoLZt2xr2kVl14P3796lWrRoPHjxg+/btVKtWjRMnTrB06VKqVauW4bV58OAB27Zto1q1aobz8/DhQ9577z38/Pzw9fVlwIABhsTj+WOtXr2aV199FT8/P7Zu3ZphTBk9nj//qR0+fJgGDRoYkiOAFi1aYG9vz8GDBzPc7sqVKzg5OUlyJIo0KUESoojYsGED5cuXZ/bs2YSFhfHZZ59x69YtNm/ejFKp+y50+vRpFAoFS5cuJSYmBpVKxZAhQzh37hwjR47khRde4MSJE3z++ecEBgbyySefGPb/yy+/UKNGDWbNmsXDhw/55JNPeOutt7CxsWHChAlEREQwa9YsZsyYwVdffZVhnIsWLaJt27YsXLiQwMBA5syZg4WFBQsXLgRg586dfPDBB3Tq1ImxY8fy4MEDFi1axI0bN1i9ejUKhQKAR48eMWPGDIYPH06ZMmX45ptvmDhxInXq1MHHx4fY2Fh69+5NUlIS77//Pl5eXqxZs4Z33nmHLVu24OPjQ0BAAFu3bmXYsGHUq1ePU6dOMXv2bKKiohg5cmSa2D08PPjxxx8ZNWoUNWrUYMSIEVSuXJmTJ09m+HqXLVvG0KFDDet7eHgQFhZG7969sbW15eOPP8bW1pY1a9bw5ptvGmJ7/nxNnToVJycnatWqlWFMGXFwcMjwuZs3b9KhQ4cUy5RKJWXLluXOnTsZbnf58mWcnJwYNWoUx44dQ6PR0KpVKyZNmoSHh0eG2wlRmEiCJEQRoVAoWL16NY6OjgC4ubkxcuRIDh48SKtWrQBQq9VMnz6d8uXLA3DgwAGOHj3K/Pnz6dy5M6BrfGtjY8PixYsZMGCAoZosKSmJZcuW4ezsDMCff/7J4cOH2bNnD+XKlQN0H5w///xzpnFWrVqVOXPmGP6+cOECv/32G6Dr6bVgwQJatGjBggULDOtUqFCBgQMHcuDAAcNriYuLY9asWbz44ouGdVq3bs2BAwfw8fFh27ZtBAYGsn37dqpXrw5Aw4YNef311zl16hRKpZJNmzbx3nvvMXToUACaN2+OQqHgyy+/pG/fvri6uqaI3crKirp162JlZYWbm1ua9jfpqVGjRpr116xZQ0REBBs3bjSUwrRs2ZIOHTqwePFilixZYti+Xbt29OjRI8P962MyRlRUFPb29mmW29vbEx0dneF2ly9fJiQkhDfeeIOBAwdy8+ZNlixZQr9+/di2bRt2dnZGxSNEQSJVbEIUEa1btzYkR6Cr2rG0tOT06dOGZTY2Nnh7exv+PnnyJCqVKk0pgj5ZOnHihGGZj4+PITkCcHd3x83NzZAcga6B7tOnTzONM/WHuZeXF3FxcYCuR1VwcDD+/v6o1WrDo1GjRjg4OHDkyJEM96VvA6Svijt9+jRly5Y1JEcA1tbW/Prrr/Tu3Zvjx4+j1WrTHMvf35+EhIQUVXGmduzYMV544QU8PT0Nx1UqlbRs2ZKjR4+mWLdq1apZ7u/5+FM/kpOTM91WXyL3PK1Wm+5yvTlz5rBp0yaGDRtGw4YN6dWrF0uWLOHOnTts3749y3iFKAykBEmIIiJ11YZSqcTFxYWoqCjDshIlSqT44IuMjMTV1RULi5RvBfpu2s8nO+lV1dja2uY4ztTbKJVKwxhBERERAEyfPp3p06en2TY0NDTDfemrEZ/fV4kSJTKMQ3+sjh07pvt8SEhIJq8idyIiIrh79y41a9ZM93l9wghQsmTJTPd1//592rRpk+Hzfn5+GbarcnBwSLekKDY2NtNG5/Xq1UuzrEGDBjg6OnLlypVM4xWisJAESYgiQv+Br5ecnEx4eHiKBripOTs7Ex4ejlqtTpEk6ROR1FVMeU0/9s748ePT7Rb/fAlWVhwdHVM0GNc7e/YsDg4OhmOtWbMm3Wqm0qVLZ/tYOeXo6Iifnx/jx49P93krK6ts78vDw4MtW7Zk+Hx6r02vYsWK3Lt3L8UyjUbD/fv3adeuXbrbREVF8ccff1C3bt0UvRS1Wi1JSUn5fs8IkVekik2IIuLQoUMkJiYa/t67dy9qtdrQRic9fn5+JCcns3v37hTLd+zYAehKBfJTpUqVKFGiBPfv36d27dqGh5eXF5999lmKXl5ZadiwIYGBgYbBGwESExN599132bRpE40aNQIgPDw8xbEiIiL4/PPP0yScuaEv3dLz8/Pj9u3bVKxYMcWxd+zYwebNm1GpVNnet5WVVYp9pH5UqlQpw22bNWvGqVOnCAsLMyw7dOgQMTExNGvWLN1tLC0tmT59epqG+Hv37iU+Pp7GjRtnO3YhCjIpQRKiiAgODmb48OH079+foKAgFi5cSPPmzTP9wGrZsiWNGzdm2rRphIaGUqNGDU6ePMnXX39N165d830cI5VKxbhx45g6dSoqlYrWrVsTFRXFihUrCAkJybBKKj3dunVj7dq1DB8+nDFjxuDm5sb69euJj4+nX79+eHt707lzZz7++GMePHhArVq1uH37NosWLaJs2bJUqFDBZK/LycmJS5cucfLkSerUqcPAgQP5+eefGThwIIMHD8bV1ZXdu3ezadMmJk2aZLLjZqVv376sW7eOQYMGMWrUKCIiIpg/fz4tW7ZMUY127tw53Nzc8Pb2xtbWlnfeeYcVK1ZQokQJWrZsydWrV1m6dCmtWrVKMTaUEIWZJEhCFBEdO3bEycmJsWPHYmdnR9euXRk3blym2+h7bC1ZsoTvv/+esLAwypYty7hx4xg0aFA+RZ5Sz549sbe3Z9WqVfz444/Y2dlRv359FixYkKJBeFYcHBxYt24dn376KbNmzUKtVuPr68vatWsNDdXnzJnDl19+yQ8//EBwcDAlSpSgQ4cOjB07NkelOFkZPHgws2fP5u2332b16tU0bNiQH374gc8++4yAgAASEhKoUKECs2bNyrTHmqm5ubnx/fffM3v2bD744APs7e1p3759mqq/Xr160bVrV+bOnQvAu+++S8mSJdm4cSPr16/HxcWFXr16MXr06HyLXYi8ptDKDIpCFHr+/v74+fkZPsCEEELkjrRBEkIIIYRIRRIkIYQQQohUpIpNCCGEECIVKUESQgghhEhFEiQhhBBCiFQkQRJCCCGESEUSJCGEEEKIVGSgSBPRarVoNNLe3ZyUSoVcAzOTa2Becv7NT66BeSmVihQTcudGkUyQVqxYwbFjxzKcwRp08y/NnDmTgwcPAtC+fXsmTZqEnZ2dUcdUKBRERcWiVmuM2l7kjoWFEldXe7kGZiTXwLzk/JufXAPzc3OzR6UyTYJU5KrYvvvuO5YsWZLleqNHjyYwMNCw/pEjR5g+fXo+RCiEEEKIgq7IlCCFhIQwZcoUzpw5Q8WKFTNd9+zZs5w8eZLdu3fj4+MDwIwZM3jnnXd477338PT0zI+QhRBCCFFAFZkSpH///RdnZ2d27NiBr69vpuuePn0ad3d3Q3IE4Ofnh0Kh4MyZM3kdqhBCCCEKuCJTguTv74+/v3+21g0JCaFUqVIplllZWeHi4kJQUJDRMahURSbfLHT0516ugfnk5BrcuXOb1atXYW9vz9tvD6NEiRJ5HV6RJ/8D5ifXwPxM1D4bKEIJUk7ExcVhZWWVZrm1tTUJCQlG79fJyTY3YQkTkGtgflldg9u3bzNgQF+ePHkCwMmTx9m9ezfW1tb5EV6RJ/8D5ifXoGgolgmSjY0NiYmJaZYnJCQY3YsNICoqjuTkwtVzQaOFW5G6lLuSsxalCbPv/KRSKXFysi2U16CoyM410Gq1fPjhBJ48CaOsrz9Pnz7lypXTLFv2BYMHD8nniIsW+R8wP7kG5ufsbItSaZoSvGKZIHl5ebFnz54UyxITE4mIiMhVA+3kZE2h69oZp4YeOxwBOPTGU2wL+R1RGK9BUZPZNTh16gTHjh3BwtaJ4Ff+G4ZjUWVWr/6GPn36Y2lpmY+RFk3yP2B+cg3MR2vCIaiKZUVpo0aNCA4O5u7du4ZlJ06cAKB+/frmCkuIIm/Tpo0AvPZaF8MyV9cShIeHcfToIXOFJYQQaRSLBCk5OZlHjx4RHx8PgK+vL/Xr12fcuHFcuHCB48ePM23aNF5//XXp4i9EHnny5DF//aUrue3atadhefv2rwLw66+7zBKXEEKkp1gkSEFBQTRv3pzdu3cDulGvly1bRtmyZRkwYABjx46lZcuWBAQEmDdQIYqwXbt+Rq1WU7u2L1WrVjUsb9myNQDHjx8lOTnZXOEJIUQKhbzFSfrmzp2b4u+yZcty9erVFMtKlCiRrRG3hRCm8eefvwPQqdPrKZbXrFkbBwcHIiIiuHz5ErVq1TZDdEIIkVKxKEESQphXcHAQFy9eQKFQ0Lp1mxTPWVpa4uf3IgAnThw1R3hCCJGGJEhCiDynb3vk61sPd3ePNM/Xq6frHHHhwrn8DEsIITJUJKvYRPZZKKDfC4mG34XIC3v2/AFAmzbtgLT3XZ06dQFdgqTValGYcjhcIYQwgiRIxZylCsbUM370cCGyEhb2hLNndXMc+vu/DKS976pXr4GFhSXh4eEEBt7D27u8WWIVQgg9qWITQuSpv/7ai0ajoUaNmpQpUzbddaytralWrToAV65czs/whBAiXWZJkNq2bcsXX3yRq4lhhWlotPAwWsHDaAUaE45AKoTevn1/AuDv39awLL37rmrVagDcuHEt32MUQojUzJIgvfjii6xevZo2bdowaNAgdu3alatJYoXxEpKh8w4HOu9wIEGGoBEmFhUVxYkTx4Fn7Y8g/fuucmXd2EjXrl1Nsx8hhMhvZkmQZsyYweHDh1mwYAGWlpZMmDCB5s2bM3XqVM6dO2eOkIQQeeDgwb9Qq5OoVMmHihUrZbqufvBIKUESQhQEZmukbWVlRYcOHejQoQOPHz/m999/Z8eOHfTp04cKFSrQq1cvevTogYODg7lCFELkkr732ssvv5LlupUr66rY7t8PJDY2Bjs7+zyNTQghMmP2RtoJCQkcO3aMI0eOcOXKFRwdHalSpQorV67k5Zdf5tixY+YOsUhbvmyx4fekpCQzRiKKmtjYGI4dOwykrF7LiKurK+7u7gDcuHE9T2MTQoismC1BOn78OJMmTaJp06aMHz+emJgYZs6cyeHDh1myZAn79++nUqVKfPTRR+YKscg7e/Zv1q3/zvD3tm2bzReMKHIOHTpIQkIC5cp5GxpgZ0XfDun6dalmE0KYl1mq2Fq1akVISAienp7079+f7t27U7Zsyu6/NjY2NG3alLVr15ojxGJh585tKf7++edtDOjb10zRiKJmzx7d3Gsvv/xKtgd+rFSpMseOHeHu3Tt5GJkQQmTNLAmSr68vPXr0oHnz5pm+cXbr1o0ePXrkY2TFR1JSkmHyUL1bt24QGhqCh4enmaISRUV8fDyHDx8Esle9pleunDcA9+7dzZO4hBAiu8xSxValShWqVq2abnJ0//59ZsyYAUDp0qXx8vLK7/CKhatXr/D0aRRODvZ0r5yA850doEnmxAlp8yVy7+jRw8TFxVKqVGlq1qyV5nmVAnpWSaRnlURUz70N6EfQDgy8l1+hCiFEusySIC1fvpyQkJB0nzt//jybN0tbmLx24cJZAOrUrMkkv0S6OJyF5EROnTph5shEUbB3r37utbbpfhGyUsGERglMaJSAlerZcn2CdP/+PTQaTb7EKoQQ6cm3KrbevXtz/vx5ALRaLb169cpw3dq1a+dXWMWWftZ0X9+6ANSu7QvoSpaEyI3ExEQOHNgHQJs2WXfvf56XVyksLCxISEggNDQEL69SeRGiEEJkKd8SpFmzZvHrr7+i1WpZvnw53bt3T1N9plQqcXJyol277LdZEMa5ePEfAGrV8iU8XoFnhRqArh1SUlISlpaW5gxPFGKHDx8kOjoad3cPQwKemlYLEQm6kiUXay36QiYLCwvKlCnL3bt3uHfvriRIQgizybcEycfHh1GjRgGgUCjo2bMnnp7SGNgc4uJiuX8/EIDylWvQdqsDUBU755LERj7m7t07VK5cxbxBikLrl192AtC+fQeUyvRr8eOT+e++g0NvPMX2uXeicuXKGxIkP78meR6vEEKkJ98SpIcPH+Lu7o6lpSXdunUjOTmZhw8fZrh+6dKl8yu0Yuf27VsAuLq64erqYlju41OZf/5+zLVrVyRBEkaJiopi/35d9VrHjp2N2oe+HZL0ZBNCmFO+JUht2rThxx9/pE6dOvj7+2c5Lsrly5fzKbLi59atmwBUquSTYnnFij788/dx7ty5bY6wRBHw66+/kpCQQKVKPlSr9oJR+yhXrhyAoZRTCCHMId8SpNmzZxve+GbPnp3tgeOE6d26dQPQDcr3PBmDRuTW1q1bAXj11U5G/4+XLl0GgODgjEuYhRAir2U7QZo0aVKOdjxnzpwUf3ft2tXwe7du3XK0L2Fat27pqtgqVUo5u3q5sroEVsagEcYIDQ3hyJEjAHTo8JrR+/Hy0lWvBwUFmSQuIYQwRrYTpBMnUo6PExoailqtpnTp0ri7uxMREUFgYCBWVlZUr149y/2dOnUKlUpF/fr1DYNDBgUF0b59e0aOHJnzVyKy7cEDXdVFuXLlUywvXUZftSEJksi53bt3odVqqVevPmXKlM16gwyUKqXruRYeHkZ8fDw2NjamClEIIbIt2wNF7tu3z/AYN24cJUqUYNOmTezbt48ff/yR33//nR07duDp6cmrr76a6b5+/vln+vfvz549ewAICAjg1KlTlC9fnpUrV/LVV1/l7lWJDGm1Wh48uA+Q5kOsbFld1UZkZCSRkRH5HZooxLRaLVu3bgGgU6fXc7UvR0cn7OzsAAgJkVIkIYR5GDWS9qJFi3j//fepU6dOiuWVK1dmzJgxrFq1KtPtV69eTdeuXRk/fjxPnjzh6NGjjBo1imXLljFu3Dh++uknY8IS2RAeHk5sbCyga+uhUsBrFZN4rWISDnZ2uLu7AxAYKA1kRfadO3eWW7duYmtrm63qtefvO1WqpkoKhYJSpXTJemY9XYUQIi8ZlSCFh4fj6OiY7nMWFhaGD+CM3Lp1iy5dugBw8OBBtFotbdq0AXSjaEvbg7yjLz1yd/fA2toaKxUEvBhPwIvxWKkwfDAFBT0wZ5iikNm6dRMAnTt3xsHBIcv1U993qekHiAwOlvcCIYR5GJUg1a1bl2XLlhEeHp5ieWhoKEuXLqVx48aZbu/k5ERMTAwABw4coHTp0lSoUAGAe/fu4erqakxYIhsePtQlSGX/a5Cd2rMPpuB8i0kUblFRUfz5528A9O3b1yT71LdDCgqSEiQhhHkY1c1/woQJ9OvXD39/f+rVq4erqytPnjzh7NmzODs788UXX2S6fZMmTVi2bBnXr1/nzz//ZPDgwQD8/vvvLF68mObNmxsTlsgG/dgy+vZHWq1uVGMAGxWG6V+k7YfIrl9/3UV8fDyVK1ehQYMGRERkXoIMae+71CMCSAmSEMLcjCpBql69Ort27aJ3797ExMRw8eJF4uPjGTx4MDt27KBs2cx7sEyZMgVXV1eWL19O06ZNGTZsGKAbGqB06dK8//77xoQlsiF1A+34ZGixyZEWmxyJTwZPTylBEtmn0WjYuHEtAD169Mr22Eep77vUnlX1SgmSEMI8jB4o0tPTkwkTJhi1raurK998802a5Rs2bJApRvJYRj3Y9J6VIEmCJLJ29Ohh7ty5jYODA127mm58M30Vm5QgCSHMxegEKTExkS1btnD06FEePXrE7NmzOXnyJDVr1kzTuy0jkZGRxMXFodFoDMv0vVYkUcobWSVIz0qQ5INJZG3duu8A6Nq1B/b2WTfOzi4PD91E1o8ehaLVamXkfSFEvjMqQQoLC2PAgAHcunWLSpUqcePGDeLj4zlw4ABz587lu+++o169ehluf+fOHSZOnMj58+czXEfmYjM9rVZLaGgI8KyNR2r6EqTHjx+RlJSEpaVlvsUnCpcbN65x/PhRlEolvXu/ZdJ9lyypG24iPj6ep0+f4uTkZNL9CyFEVoxKkD799FNiYmLYvXs3ZcqUoVatWgAsXryYt99+myVLlrB69eoMt//kk0+4c+cOo0aNwsvLC6XSqKZQIociIiJITEwEwMPDI9113NxKYGFhiVqdxKNHoYZ5sYRI7bvvdNXk/v5tczVydnpsbGxwcnImKiqSR49CJUESQuQ7oxKkv/76i8mTJ1O+fHmSk5+1sLS2tmbw4MFMnDgx0+1Pnz7NrFmzeO014+drEjmnLz1ydXXD0tIq3XWUSiWenp48eHCfkJBgSZAKqYMH/+Lrr1dy+fK/ODg40LJla4YOHZHh8A45dffubXbv3gnAwIHvmGSfqbm7exgSJB+fyllvIIQQJmRU0U1CQgIuLi7pPqdSqUhKSsp0ewcHB5ydnY05tMgFfYKkb9+REX01m7RDKpy++eZLRo8ezj//nEetVhMREcGOHdvo2bMLv/yywyTH+OqrL9BoNLRs2YpatWqbZJ+p6Ud1f/QoNE/2L4QQmTEqQapduzYbNmxI97mdO3caqtwy0qVLF9avX49WqzXm8MJIzxKkZ9VrSgW0KZdEm3JJKP9rB6tvqB0SEpLvMYrc+f333SxdugiAvn37s3PnH3zzzVoaNGhIXFwsU6aMZ926Nbk6xo0b1/j1110A/O9/o4zaR3r3XWr6dkiSIAkhzMGoKrYxY8Yw8P/t3Xd4U3UXwPFv0nQA3QMKyF5lQ1mVVWQ5QAGRJUtQhiwBmYKCDAFBNshUhiBLQUVU1sveUxFo2ZTVpgPa0pk27x8xKZ20aZp0nM/z9KFNcu895N72nvzG+X3wAR06dMDX1xeFQsHu3btZsmQJx44de+labIUKFeL8+fO0adOGmjVrplqtW6FQ8NVXXxkTmshAWi1ItlYwp1lMstd5eOgSqOBguTHlJc+ePWXmzC8BXbfXyJFjAChVqjSrVq1n0aJv2LDhO+bNm0VCgoa+fT/M8jG0Wi1ff/0ViYmJtGrVhmrVMv4wlJ60rruU9Im8JEhCCEswKkGqX78+33//Pd988w1r1qxBq9Wybt06qlWrxsqVK/Hx8clw+507d+Lg4EBiYmKaM9lkSm/OCArS3Whe1sWm/+QeHKzO8ZiE6axdu4rw8GdUrFiJYcNGJnvOysqKUaPGUrhwYVasWMqCBXOxsytEt25ZWxrkwIG9nDlzCltbW0aPNq4OWmbpE3W1Wq5DIYT5GV0HqUGDBmzZsoWYmBiePXuGvb09RYoUydS2Bw8eNPawIhsyOwYpaeyH3JjyCrU6iC1bfgBg5MixqFSpf7UVCgWDBw9Do9GwZs0KZs2aRqFChXjnnU6ZOsbTp2HMmTMDgL59PzT5zLWUkhIkaUESQpifUWOQJk6cyLlz5wDddNxixYoZkqNr167RqlWrTO0nMTGR69evc+TIESIjI3n69Kkx4YhMCgrSVcd+MUGK1kD9zQ7U3+xAtEb3mLQg5T27dv1MXFwctWrVoUmTZhm+dujQT+jRozcAU6dOMiw0mxGtVsuMGVNQq9WUK1ee/v0HZivetK67lCRBEkJYklEJ0s6dO/nggw/YunVrqufi4uIM1bAz8ssvv9CiRQs6duzIoEGDuHfvHhMmTGD48OGGWj3CtNIapJ0WfQuSJEh5Q0JCAj//vA2Arl17vLSLWqFQMHbsRDp1eo/ExEQmThzL0aOHM9xm1arl7N+/F5VKxcyZX6caN5gTXkyQZEKHEMLcjK7Q6Ovry5QpU/jyyy+T1ULKjD179jB+/Hh8fHxYsGCB4Y9f27ZtOXLkCMuXLzc2LJEOfVcovLyLzc1NlyA9f/6c6OiXr8wuLOvUqRM8fvwIJycnWrd+PVPbKJVKJk/+kjfeeAuNJp4xY0awd2/qliStVsvq1Sv49tslAEyc+IXRA7OzSt+SGR8fz7NnT81yTCGE0DM6QRo0aBDz5883tCZlpXtsxYoVdO/ena+//pq2bdsaHn/33XcZNmwYv//+u7FhiXTouylsbW1xdMy4BlWRIkWwsysEQHBwcI7HJrJH30X2+uvtstSyY2VlxfTpc2jRoiWxsbGMGzeSsWNHcvHiecLDn3Hx4gWGDh3AsmULARg0aCidO3fNif9CmmxsbHBxcQGkm00IYX7ZWuPjrbfeYtOmTdy/f5/OnTvj5+eX5uDQlO7cuUObNm3SfK527dpSfycHvDhAOzNdMNLNljdoNBoOHToAQJs2bV/y6tSsra2ZN28x/fsPQKFQsG/fn/Tr15PmzRvRr9/7nDhxDGtrayZMmMzHHw83dfgvJeOQhBCWku1F0KpXr86OHTtwd3ene/fuHD9+/KXbuLm5cevWrTSfu3XrFm5ubtkNS6SQ2fFHeklF+iRBys0uXjzH06dPcXZ2pm7d+kbtQ6VSMWLEp2zbtos332xvaLVxdHSiXbt32LHjN5MvRptZ+gRJX6JCCCHMxehp/i/y8PBg48aNfP7558yfP/+lLRRvvfUWixcvpmjRovj6+gK6VosrV66wfPlyWaMtB+gTJA+PjMcf6SXNZJMbU272v//pSmb4+rbMVOttRipVqsKsWfPQarXEx8djbW1t8Zpk0oIkhLAUo/6iDhs2jGLFkt9obWxsmDNnDl5eXi+tczRy5Ej8/f0ZOXIkSqWuEat3795ERUVRv359PvnkE2PCEhlIr0ikUgFNSmgM3+vJVP+84dSpEwA0a+Zrsn0qFApsbNJezNhU0rvuUpKWTCGEpRidIKWnX79+9OvXL8PtbWxsWLNmDcePH+fUqVM8ffoUBwcHGjZsaFi6RJhWekUiba1gUYvoVK+XYpG5X1BQILdv30ShUNCgQSNLh5Ml6V13Kbm7uwMQEiLXoRDCvDKdIPXp04cpU6ZQoUIF+vTpk+FrFQoF69envyDmrl278PX1pUmTJjRp0iTZc2q1ml27djFgwIDMhiYyIbNVtPWkBSn3O3PmFABVq1bHycnZssHkEGlBEkJYSqYHab9YqE2r1Wb4lZiYmOG+Jk6cSEBAQJrPXbt2jcWLF2c2LJFJWR+krf/kLtP8cyt995qPz6sWjiTnSKIuhLCUTLcgbdy4Mc3vM2vQoEHcvHkT0CVYQ4cOTXOcQ0hICKVLl87y/kX6EhMTDZ/AU7YgRWugzU/2AOzrHEmh/64Id3dZKDS3u3BBt9xP/fp5q3sN0r/uUtIP0g4OVqPVaqX7XQhhNiaZxZYZgwYNYvv27YBuqZJq1arh6uqa7DVKpRJHR0feffddc4VVIDx9GoZGEw8kjS16UUxC6puO/pN7WFioYUaTyD3U6iAePXqIQqGgVq06lg7HKGlddynpr8O4uDgiIsJfWuRUCCFMJdMJkpeXV6Y/vSkUCq5evZrsMW9vb7y9vQ0/DxkyhFKlSmX28CIb9N1rrq5uWFtnbnaSs7MzKpUKjUZDaGgIxYp55mSIIov+/vsSABUrVsLe3t6yweQgW1tbHBwciYgIR61WS4IkhDCbTCdIQ4cONVnz9qxZs0yynxclJiaydOlStm/fTnh4OPXq1WPKlCmUKVMmzdfv3LmTCRMmpHp879696W6TV+kTpJSlGTKiVCpxc3MnMPAJarVaEqRc5vLlSwDUrl3XsoGYgYeHBxER4QQHq6lQoaKlwxFCFBCZTpCGDzfdMgOhoaHMnDmTQ4cOER0dnWql7rRaoF5m+fLlbNmyhVmzZlGsWDHmzp3LgAED2L17d5pjnfz8/GjYsCHz589P9njKbr/8IKsz2PTc3T0IDHwiA2RzocuXLwLk2e61rHB39+D27VuyLqAQwqyMHoMUExODn58f8fHxhgQnMTGR6Ohozp07x5gxY9LddurUqRw+fJh27drh6elpKBZprLi4OL777jvGjh1rqMy9YMECmjVrxr59+2jXrl2qbfz9/fHy8kpzTE5+k16RyJdJWo9NqhjnJnFxcVy79i9QMFqQpKq7EMISjEqQTp06xSeffEJ4eHiazxcpUiTDBOno0aN89tlndOvWzZjDp3L9+nWeP3+Oj4+P4TFHR0eqVavG2bNn00yQ/Pz8eP31101y/NwuOy1IIDPZcpvr168SFxeHi4sLpUvnr+7gtOhLTkhLphDCnIxKkBYuXIizszMzZszg119/RalU8u6773LkyBF+/PFHVq9eneH2NjY2Jh2g/eTJEwCKFy+e7PGiRYvy+PHjVK8PDQ0lODiYs2fPsnHjRp4+fUrt2rUZM2YM5cqVM1lcuUVgoO790U+ZfpEC8C6qMXz/IqlBkzv9++8/ANSoUSvPTnvP6LpLSRJ1IYQlGJUg+fn5MX36dNq0aUNkZCSbN2/G19cXX19f4uPj+fbbb1m1alW627dp04bdu3fTuHFjowN/UXS0bsmClGONbG1tefbsWarX+/v7A2BlZcWcOXOIiopi+fLlvP/++/z222+GT6xZZWWVva7CnKJf6LN48eKoVMljtFfBd2/E/vdT8uc8PXUtTsHB6lTb5Tb69z63ngNT8vf3A6B69Rq56rxk5RxkdN2lpJ9cEBISnKv+v7lNQfodyK3kHFieKT8zGpUgJSYm4umpm9VUrlw5QwFIgNdff53x48dnuH21atVYuHAhAQEB1K5dGzs7u2TPKxQKhg4dmul49NvHxcUl21dsbCyFChVK9XofHx/OnDmDk1PSlOFly5bx2muv8fPPPzNw4MBMH/tFjo6pj5Ub6BOkSpXK4uJSJNPblSunK9gZFhaSpe0sKbeeA1O6eVOXINWrVydXnhdTn4Ny5XStzaGhwbny/5vbFITfgdxOzkH+YFSCVLp0afz8/Khfvz5lypQhOjqaW7duUaFCBTQaDc+fP89w+2nTpgFw9uxZzp49m+r5rCZI+q61oKCgZFW4g4KC8PLySnObF5MjgMKFC/PKK68QGBiY6eOmFB4eTUJCxsusmFt0dLShFc3OzpGwsIzPzYsKFXIE4PHjJ1nazhKsrJQ4OhbKlefAlOLj4/Hz0yVIJUuWy1XnJafOgZ2dAwCBgYG56v+b2xSU34HcTM6B5Tk5Fcr2xC89oxKkt99+m3nz5pGYmEjv3r2pUaMGM2bMoHfv3qxYsYKKFTOuVXL9+nWjgk2Pl5cX9vb2nD592pAghYeHc/XqVXr16pXq9Zs3b2bRokUcPnzY0OIUGRnJ3bt3ee+994yOIyEhEY0md/1SPHqkG4NlZ1eIQoWKpIovWgNv/6L7VP5bh+fJlnxwdU1ajy02Nh4rKyvzBJ0NufEcmNKtW7eIi4ujSJEieHqWyJX/18ycg4yuu5RcXHTXYWRkJBERz9NsFRZJ8vvvQF4g58ByUlQNyhaj0qyPPvqI7t278/fffwMwZcoUrl27xpAhQ7h9+zbjxo0zXYSZYGNjQ69evZg3bx4HDhzg+vXrjBo1Ck9PT9q0aUNCQgJqtZqYmBgAXnvtNbRaLePGjePGjRv8888/DB8+HFdXVzp16mTW2HPai0Ui0xvQ+zRWydPY1JeCi4srSqWSxMREQkNDcjROkTl+froPF5Ure5nsU5KlpHfdpWRvb2/4ICOLJwshzMWoFiSlUplsnFHNmjXZv38/t2/fpnz58mkufdCnTx+mTJlChQoV6NOnT4b7VygUrF+/PksxjRgxAo1Gw+TJk4mJiaFBgwasXbsWGxsbHjx4QKtWrZg1axbvvvsuxYsXZ/369cybN48ePXqg1Wpp0qQJGzZsSDUeKq8zdoo/6Aaxu7m5o1YHoVYHpTkLTphXUoJUxcKRmI9CocDd3YMHDwJQq9W88oosUSSEyHkmW6zW3t6eWrVqpfv8i9WyU1bOzui1mWVlZcXYsWMZO3ZsqudeeeUVw7gNvapVq7J27dosHyevSWpBMm6pEA8PD9TqIJnqn0voE6QqVapaOBLzcnNz58GDACkWKYQwG6MSpEePHjFt2jQuXLhAREREqufTWipk48aNaX4vcpa+BlLRosa1/uhajf41VOMWlqPVavH3vwZAlSppTz7Ir5KqukuiLoQwD6MSpEmTJnHp0iU6d+6Ms7OziUMSppS0zIhxLUhSLDL3CAoKIiwsDKVSSYUKlSwdjllJsUghhLkZlSBdunSJzz//nHfffdfU8QgTy84YJEiqvq2vpSQsx99f171Wtmz5fDdW7mUkURdCmJtRCZKHh0eqOkIid9J3semrEaekAKq5Jhi+T0luTLmHn1/+6V572XWXklyHQghzMypBGjRoEMuWLcPLy4uSJUuaOiZhIhqNxjAtOr0WJDsVbHgjKt196McuSQuS5b04xT+ve9l1l5K+JVMSJCGEuRiVILVo0YI1a9bQunVrXF1d01wqZP/+/SYJUBgvJCSYxMREVCoVrq5uRu1DuthyD30XW35oQcqqpBYkqYMkhDAPoxKkiRMnEhAQQJMmTQyzS15m165dWTpGx44dsx6YSEY//sjd3cPoKtj6G1NISAgJCQl5opp2fhQV9Zz79+8BBTNB0v+dCQsLRaPRoFKZrEKJEEKkyai/MmfOnOGLL76ga9eumd5mwoQJmX6tQqGQBMkEkqb4pz9AO0YDXX7XLfmwvd1z7FJcEa6ubsmqaUuxSMu4ccMfrVaLh4cHbm7ulg4n21523aXk7OyClZUVCQkJhISEpDumTgghTMWoBMnR0ZESJUpkaZsDBw4YcyiRDZmZwaYFHj9XGr5PSVdN2w21Wk1wsFoSJAvx99cVOs0P44/g5dddSkqlEldXt/+KlgZJgiSEyHFGJUjvv/8+q1atok6dOmkuK5KWrAzmNqaStkgtMDB7U/z1PDyKolarUauDqFq1uilCE1mUn2awGUuqugshzMnoStpXr16ladOmaa69lpm11H7//XfOnDlDfHy8ISHSarVERUVx6dIljhw5Ykxo4gUvLlSbHVKkz/IK6hIjL5LrUAhhTkYlSHfu3KFq1aQ/1ClbfF7WArR06VKWLl2Kg4MDGo0Ga2trVCoVoaGhKJVKunTpYkxYIoWgoJePQcoMfbeafkyTMK+EhARu3PAH8k8XmzGkFpIQwpyMSpCmTp1KhQoVjD7ozp07eeedd5gzZw6LFy/m0aNHzJkzhytXrjBw4EAqVSpYyyjkFP0yI8YuVKvn6akbbyYJkmUEBNwjJiYaOzs7SpcuY+lwLCa/J0gXLpxjy5ZN3LjhR5Ei9jRu3JTu3Xvh6upq6dCEKJCUxmz04YcfZnna/osCAwPp0KEDCoWC6tWrc/HiRQBq1KjB4MGD2b59u9H7FjparTZTs9gyo3jx4gA8efI423GJrNN3r1WqVKVAl1lIKhaZv2ohJSYmMn/+1/Tv34u9e//gzp3bXLnyN6tWLadz53acPHnc0iEKUSAZlSBpNBpcXFyMPmjhwoVRKHQLDJQtW5YHDx4QExMDQNWqVXnw4IHR+xY6z549JS4uDiDDmWcKoLxTAuWdEtJd8sHTU5cgPX78yMRRisxIqqBdxcKRmE5mrruU8msL0sKFc9mw4TsAOnXqwrffrmXGjDlUqlSZsLAwRowYzKFDBy0cpRAFj1FdbJ988gkzZswgODiYSpUq4e6eui5LRmUAatasyc6dO2ncuDGlS5fGysqKEydO0LJlS27duoWNjY0xYYkX6Ft7XF3dsLW1Tfd1dirY1i7jJR+KFy9h2KdWqzUkt8I88uMA7cxcdynlxwTp0KGDbNjwPQDTps3inXc6GZ5r2/ZNJk0ax759fzJhwmjWrfsRL6/8cw0IkdsZPQYpISGBSZMmpXuzvHbtWrrbDx48mH79+hEREcGKFSt45513mDBhAo0aNeLYsWO0bt3amLDECx49eghAiRLZXyuvaNGiKBQK4uLiCAsLNXrZEmEcf3+Z4g9J1bSDg4PzRaIeHv6ML7+cBECfPv2TJUcANjY2zJo1j6ioKI4fP8Knnw5n27ZdFCmSudIqQojsMSpBmjFjRrYO2qBBA3bs2IGfn6743RdffIFSqeTChQu88cYbWaq6LdL26JGuO0zf+pMd1tY2uLvratA8fvxIEiQzCg0NQa1Wo1AoqFSpsqXDsSg3N911p9HEExYWlucHL69Zs4KwsDAqVKjE8OEj03yNSqXiq6++pnv3d3n48AFLlixgwoTPzRuoEAWUUQlSp06dXv6il/Dy8sLLS/eJ2NbWlunTp2d7nyJJZluQYjTQ56/CAGx4PSrdJR+KFy+OWh3EkyePqV69pkljFem7fl3XelSqVGkKFy5i4WhMJ7PX3YusrW1wc3MnJCSYwMDHeTpBevz4ET/++AMAo0aNxdo6/WEFTk7OTJkyg8GD+7N162batetAzZq1zBWqEAWW0Ss+hoaG8v3333P69GnCw8NxcXGhfv36fPDBB4ZPehmJiIjg1KlTREVFpVk3SdZiyx79gOqXJUha4PYzK8P36fH0LMHff1/m8WOZyWZO169fBch3Fcwze92lVLx4CUJCgnn8+FGefk82bVpPfHw89es3pEmTZi99vY9PY9q378Du3b+wcOHXrFmzMc93MQqR2xmVID158oRu3boRGhpKnTp1qFatGmq1mu+//55du3axY8eODKs3Hz58mJEjRxIdHZ3m87JYbfbpW5BM0cUGSTPZnjyRmWzmpG9B8vKqZuFIcofixUtw5crfhi7kvCgiIoKdO3cA0K/fgEwnOsOGjWTfvj85f/4cR478D1/fljkZphAFnlEJ0ty5c1GpVOzZs4dSpUoZHg8ICKB///4sWLCA2bNnp7v9/PnzKV++PBMnTqRYsWIolUZVGxAZMOUgbUiqhSRT/c3r2jVdC5LMXtLRJ/x5+Tr89dedPH/+nPLlK9K4cdNMb+fpWZyePfvw3XerWbRoPs2atZC/nZnw/HkkQUFB2Nra4ulZXN4zkWlGJUjHjh3js88+S5YcAZQqVYqhQ4fy9ddfZ7j97du3Wb58OfXr1zfm8OIlIiIiiIgIBzIut5AVJUvqznVAQIBJ9ideLiIigoCAe4C0IOnpr+e8nCD98svPAHTr9n6Wu8k++GAA27Zt4fbtmxw6dICWLdvkRIh5Xnx8PDt37uDnn7cbuqkB7O0daNbMl/ff703NmrUtGKHIC4xKpRMSEtItFOnq6kpkZGSG25coUeKlrxHG0988nJ2dTTawt3Tp0gAEBNx/6Vp7wjT8/XX1j4oXL5Gtwqz5ib5F9PHjhxaOxDjXr1/D3/861tbWvPHGW1ne3tHRke7dewKwdu0q+V1Mw82b/nTr1omvvvrSkBzZ2ztgbW1NZGQEf/yxm969uzF58ni5D4kMGZUgValShV9++SXN53bt2kXlyhlPRx40aBDLli2Titk5RH/zMFX3mm5fr6BUKomOjiIkJH8t9ZBb6bvX8lOByOzK611sv/66E4AWLVrh5ORs1D7ef78PdnZ2/PvvP5w+fdKE0eV9J08ep0+f7ty+fRMXFxfGjv2MgwePc+zYWU6evMiGDVto3163zNXu3b/w/vuduXfvrqXDFrmUUV1sQ4YM4cMPP+Tp06e8/fbbuLu7ExwczG+//caJEydYvHhxhtv/9ttvBAYG0qZNG1xdXbGzs0v2vEKhYP/+/caEJsja+CMFULxIouH79NjY2ODpWZxHjx4SEHDfUNVY5JykGWz5r3sts9ddSsWL667pp0+fEh0dRaFChU0fXA6Jj4/njz9+A0hVFDIrXF1deffdrmzevIG1a1fi49PYVCFmm0ajwd//OgEBAdjY2FCpUmVKlnzFLDPuLl68wKhRQ4mJiaFBg0bMnbsQZ+eklleVSkWtWnWoVasOXbp0Z/z40dy/f4+PPurDmjXrKVOmXI7HKPIWoxKkJk2aMGfOHObOncvx40kLKbq7u/PVV1/Rpk3G/eKenp54emZvhXmRvqzMYLNTwW8dnmdqv6VKleHRo4fcv3+PunXrZStG8XL5OUHKynX3Int7exwcHImICOfRo0dUqFAxB6LLGWfPnvqvwKUbr77aJFv76tOnH9u2bebs2dP8++8/Fq9NFh8fx4YN3/Pjjz+kWgqmYsVKfPDBR7z11ts5NkA6MDCQ0aOHERMTQ5MmzVm4cGmGtaVq167Lpk3bGTiwH7du3WDAgA/44Ydt2V7YW+QvRtdB6tChA76+vty4cQOVSoWTkxM2NjYolUoePXqU4eDgWbNmGXtYkQmZrYGUVaVLl+b06RMEBNw36X5FatHR0dy+fQuQAdopFS9e4r8E6WGeSpD27dsLQKtWbVCpjP7TC+hmtL3xRjt27/6FDRu+Z86c+aYI0SgPHz5g5Mgh3LjhD4CDgyMVKlQkLi4Wf39/bt68weTJ49m16ydmzpybYQkYY8THxzNhwmjCwkKpXNmLefMWZZgc6bm5ubN69Xo++qg3t2/fYvTo4axduzHDtStFwWLUb+ndu3eZMGECly9fTvc1Ga3FllENE6VSSeHChXF0dDQmNEHSTLOSJV8x6X5LlUoaqC1y1o0bfiQmJuLq6oaHR1FLh5OrlC5dGn//69y7d5dmzXwtHU6maDQaDh3SDRto1aqtSfbZu3c/du/+hX37/mTEiNGUKVPaJPvNinv37vDhh30IDlbj4uLKqFFjefPNdoYEJTw8nG3bNrNmzUrOnTtDr15dWLJkpUnLVqxfv5aLF89jb2/PvHmLKFSoUKa3dXV1ZdGib+nZswtXrvzN11/P5PPPp5ksNpG3GZUgTZ8+nbt37zJs2DA8PT2z3GzasmXLl/ZJOzk50adPH4YMGWJMiAWWVqvl/n3d1PAyZcq+9PUxGhi4XzeOY1XrjJd8KFWqDIBh6rnIOZcvXwKgZs1a+bJiclauu5T0Y0Xu3buTE6HliAsXzhEWFoazszP16jUwyT6rVPHi1VebcPLkcX74YT2TJpl3jbbQ0FCGDh1IcLCaihUrsWzZaooVSz50wtHRkY8+Gkzbtm8ycuRQbt++yeDB/Vi9ej2VKlXJdgz3799j1arlAEyY8DmlS5fJ8j5KlSrNnDnzGTLkI376aRu+vq/RvPlr2Y5N5H1GJUjnzp1j5syZtG/f3qiDzp49my+++IKGDRvSvn173N3dCQkJ4a+//uLQoUMMGTKE58+f8+233+Ls7Mz7779v1HEKIrU6iOjoKKysrChR4uUtSFrgamjmlnzQ//G5e/cOiYmJUnAtB12+fBHQjZXIj7Jy3aVUtqwuQbp7N+8kSPv367rXWrRohbW1tcn226dPf06ePM6uXT8xbNhwXFzMs16fVqtl8uRxPHgQwCuvlGLVqnUZLmJdunQZ1q//kY8//pArV/5m0KD+bNy4NVut3FqtlpkzvyQuLg4fn8a0a/eO0ft69dUm9O79ARs2fM/UqZPZseO3PL3WnzANo+5w9vb2ODk5GX3Q33//nXbt2rFmzRo6duxI06ZN6dChA8uXL6dLly5cuXKF8ePHM2TIEH788Uejj1MQ6aeslijxikn/EIPuj5xKZU1UVFSenWadF2i12nyfIGVHXkuQEhMTOXhwHwCtW79u0n37+DSmcmUvoqOj2LrVfH8rt2/fwokTx7C1tWXhwuUZJkd6Dg4OLF++mipVqhIaGsInn3zM8+fG1yHas+c3Tp8+ga2tLZMmTc12S+vQoSOpWLESoaEhzJol3WzCyASpQ4cObNq0yegiZWfOnEm39alt27acOnUKgHr16knl5izSd68Z09T8MtbW1pQvXwHAMCBTmN6TJ49Rq4NQqVRUq1bD0uHkOvquY7U6KFs3WHO5fPkiwcFq7O0daNTIx6T7VigU9O3bH4BNmzYSGxtr0v2n5cmTx8yfr1stYcSIT6lYsVKmt3V0dGLx4hW4u3tw8+YNJk0aT2JiYpZjePo0jHnzdJN9Bgz42DA+MjtsbW2ZMeNrrKys2LfvT44dO5LtfYq8zagEqVChQpw/f542bdowatQoJk6cmOzrs88+y3B7Z2dnrl+/nuZz169fx97eHoCoqKgsDbgTSS1ImRl/ZIxKlXRFQCVByjn61qMqVarK9Z8GR0cnXFx03R95ochfUvday0zNrsqqtm3fpFgxT0JCgtm5c6fJ95/SypXLiImJpk4db3r06JXl7YsVK8aCBUuxsbHh0KEDrFy5LMv7mD//a8LCwqhQoZIhQTQFL6+qvP9+bwBmzZqW7oLqomAwKkHauXMnDg4OJCYmcvnyZU6fPp3qKyNvv/02ixcvZv369QQGBhIfH09gYCAbN25k6dKlvP322zx79oz169dTu7asl5MVOdmCBFCxoi5BunlTEqScIt1rL5dXutm0Wq2he81Us9dSsra2pmfPPgCsWLHCqBaZzLp797ahGvjIkWOMHodYs2ZtJk/+EtAlXIcOHcz0tqdPn+TXX3eiUCj4/PMvTZ50fvzxcIoV8+ThwwesWbPCpPsWeYtRg7QPHsz8xZyWkSNHEhISwuzZs5k9e7bhcaVSSefOnRk1ahR//fUXV69eZf369dk6VkGT0wlSUguSX47sX8ClSxcAqF27jmUDycXKli3HxYvnc32CdPXqFR4/fkShQoWzXRwyI+++25VVq5Zz48YNjh49TJMmOVP+YPnyJSQkJNC8eQvq1PHO1r7eeacTV69eYcuWTUyePI4ffthG2bLlM9wmJiaGGTOmANC1a49sx5CWwoWLMH78ZEaPHsb69d/x1ltv56l6W8J0LDINSaVSMWvWLP766y+mTZvGqFGjmD17Nn/++SfTpk3DxsaG5s2bc/ToUby8vCwRYp4UHx9vmIKflS42Z9tEnG0z96lTnyDdu3fXLOMdCpqnT8O4fl1XQ8zbu76Fo8lZWbnuUtJfh35+6ddbyw0OHNB1rzVt2jzVkkqmZG9vT5cu3QH4/vu1OXKM69evsnfvHwAMGzbKJPv89NMJeHvXJzIyklGjhr108dglSxYQEHCfokWLMXz4aJPEkJbXXmuFr+9raDTxfPXVl7IocAFl0XnapUuXpkuXLgwcOJAOHTpQqlQpw3P6ytwi8+7du0t8fDxFihTJdBXtQirY3/k5+zs/p1Am2hOLFi2Gi4sLCQkJhtXmhemcOXMarVZLxYqV8nWByKxedynpq4vrk8ncSKvVGsYftWqV8fJLptCzZx9UKhXnzp3hypV/TL7/JUsWAvDGG+2oXDn7NYxA1z04d+5CihYtxp07t5k48VPi4+PSfO3Bg/vYtEnXozB58peGsao5QaFQMH78ZOzsCnH+/Fl27057cXaRv5ktQWrVqpVhYHbLli1p1apVul+tW7c2V1j5ir7bq2LFyjlWXFChUFCrVh0ALl26mCPHKMhOnz4BQKNGuWcB0tyocmVdy3Jg4BPCwsIsHE3abt26wf3797C2tjZLxW9PT086dOgAwIYN35l03xcunOP48SOoVCqGDBlh0n27ubnzzTeLsbW15ejRw4wbN5ro6Khkrzl79jSffTYWgN69P6B58xYmjSEtJUqUZNAgXaHi+fPn8OzZ0xw/pshdzJYgNWzYkCJFihi+z+irQQPTVJotaPQzy/TdDzlFP3hYP5hYmM6pU7oEKTet0J4b2dvbGyq7X7v2r4WjSduBA7rB2a++2oQiRXKuteNFgwcPBmD//r94+PCBSfap1WpZsmQBAB07ds6R8Y01a9Zm/vylWFtb87//7adXr24cPLifW7dusnbtSoYOHUBMTAzNmvkyYsSnJj9+enr16kv58hUJCwtj8WLLrXcnLCN7KyZmwYsL1L44MFuYjn5mmX6mWWbEaGDEId1U8sUtojO15ENSgnQBrVabL5fCsIRbt27y8OEDrK2tqVcvf48/Mua6S6lGjZoEBNzj8uWLNG7c1MQRZp9+/FFOzV5LS7Vq1WjcuCknThxjw4bvmDjxi2zv89ixI1y8eB5bW1sGDMi5pZ+aNGnGypXfM27cKG7dusHo0cOSPd+iRSvmzJlv8gK4GbG2tmHSpCl8+GFvfvppG++800lmlxYgFhuDFBkZSWBgIABxcXGsWbOGGTNmcPbsWUuFlOcZ04KkBS4EqbgQpMr0kg/Vq9dEpVKhVqt59Ohh1gMVadJPB/fxaUzhwuZZMsJSjLnuUqpbtx6QNOsvN7l50x9/fz9UKmtatGhp1mN/+OEAAH76abthVquxEhMTWbp0IQDduvWkWLFi2Q0vQ97e9dm27Rf69v2QUqVKY2/vQK1atZk+fTYLFizF1tY2R4+flnr1GvDOO50AmDnzSzQajdljEJZhkQTp77//pmXLlmzcuBGAGTNmMG/ePH799Vf69u3LgQMHLBFWnhYREWFY/iOnu9js7OwMg2TPns245pXIvKQBveZrccjLvL11CdLly5eIj4+3cDTJ7d79KwDNmvni5ORs1mM3avQqjRs3RaOJZ/Hib7K1r337/sTP7xpFihShf/8BJoowY66urowaNZbfftvLsWNn2bBhK2+/3dGiLdUjR47F0dEJf//rbNy4zmJxCPOySIK0YMECypcvT7du3YiJieG3337j/fff58yZM7z33nusWCHFubJKPw6jePESODoav05eZum7NI4dO5zjxyoIAgLu4+d3DSsrK3x9zdvikFeVL18RJycnYmKi+eefy5YOxyAhIYE9e34DoH174xdQzY7Ro8ehVCrZv38vFy+eN2of8fFxLF26CNAtiuvs7GLKEPMUV1dXRo8eB8Dy5Yvw95c6cAWBRRKky5cv8/HHH1OqVClOnjxJTEyMYfbFW2+9xY0bNywRVp52+fIlAMMMs5zm6/saACdOHCMuLu1puSLzfvnlZwAaNvTBxaXg3oiyQqlU0qRJcwCOHs09ifr582cJCgrE0dGJZs1aWCSGihUr07FjZwBmz55hVAvb9u1bCAi4h5ubO7169TV1iHlOhw7v4uv7GvHx8UyaNFb+7hUAFkmQlEqlocbR4cOHcXR0pFatWoBubFJOFlTLr/755xKgmw1iDlWrVsfd3YOoqCjOn5dxY9kRHx/PL7/8BMC773axcDR5i376/OHD/7NwJEl+/nk7AG3bvmHRWm5Dh36Ck5MTfn7XWLduTZa2DQ9/Zlgj7eOPh5ttFl5uplAo+OKL6bi4uHDjhj/z58+xdEgih1kkQapRowY7duzg4sWL/PHHH7Ro0QKFQkFISAirV6+mRg1ZwTwrtFqtoYvBXMtTKJVKw6fjvXv/NMsx86sjR/6HWq3G1dXN7AN687omTZpjbW3N7ds3c0XRSLU6iP37/wLgvfe6WTQWNzd3xo+fDMDKlcuzVA5hyZIFPHv2jAoVKhlaooTuPZ06dSYAW7Zs4rffdlk2IJGjLJIgjRs3jpMnT9KjRw+srKz4+OOPAWjfvj13795l5MiRlggrz7p//x5hYWHY2Njg5VU1y9vbWWmxs8r6XCL9+Io///yd588zXiJApE2r1RoWxOzU6b0cWe09tzL2unuRo6Mjr72mKyyrb4WzpB07tqLRaKhTx9swkcGS3nyzPa+91hqNJp7Ro4cTGhry0m3Onj3N9u1bAJgwYTIqldmqweQJvr4tGThQV+5gxowp/PPP3xaOSOQUiyRI1apVY+/evWzdupX9+/dTtmxZAKZOncru3bulBSmL9IMwq1atnuUbbCEVHOsWybFukVle8sHbuz5ly5YjOjqKP//ck7WNBQCHDh3k2rWrFC5cmN69P7B0OGaTnesupY4d3wV047gsWe04IiKCH3/8AYAePXpZLI4XKRQKvvxyJqVLl+Hx40eMHj2cqKjn6b4+KCiQiRPHALoWsAYNGpkr1Dxl8OBhNG/egtjYWIYOHSCDtvMpi9VBsre3p3bt2hQuXNjw2Ouvv46Hh4elQsqzTpw4Buim95qTQqEwjJn54Yd1Uh8ki6Kjo/jmG13R1B49ehfoWULZ8eqrTalc2YuoqCjWr8+ZhVozY9Om9YSHP6NcufK0bv26xeJIydHRiYULl2Nvb8+lSxcYMmRAmi1JoaEhDBs2iOBgNRUrVjLM2hKpKZVKZs2aR61atQkPf8bgwf25eVMmF+U3Fl2sVmSfRqMxLE/RpEkzsx+/U6cuODk5cefObVnQMYuWLFnIgwcBFCvmSb9+5qkxkx8pFAo+/ng4ABs2rDOsSWhOT548Nqx/NnjwcKysrMweQ0bKl6/At9+uxd7egUuXLtC1a0d++mkbERERxMfHc/jwQXr37oa//3VcXFyZP39pvi9Wml1FitizdOlqvLyqERoawgcf9ODEieOWDkuYkCRIedzFi+cJD3+Go6MT1avXzPL2sQnwyaFCfHKoELEJWT++g4MDH344CIBlyxbJgo6ZtHv3L2zevAHI+ZXJc6PsXncptWjREl/f1/4bazOCoKDA7O80k7RaLTNnTiUqKopaterQpk3uaT16Uc2atVm//kcqVKhEcLCa6dO/oFmzBvj41OGTT4bw8OEDSpQoybp1m3JkvbX8yNHRkRUr1uLtXZ/IyEgGD/6QWbNmSQmAfEISpDzujz92A9CqVRujBlMmauH4IxXHH6lINHK8bLduPSlTpixqdRDTpn2OVpu9gbf53Z9//s7UqbrZRf37DzTLSu+5jSmuuxcpFAqmTv2K4sVLEBBwj379evLvv/9kf8eZsGbNSo4ePYy1tTVTpsxAqcy9f1YrVKjIpk3bGTNmoiEJSkhIwMnJiT59+rNt2y+UKVPOwlHmLc7OLqxY8R0dO3b+b2mWpXTt2okjR/4nfwvzOIU2n5xB/YW5fft2wsPDqVevHlOmTKFMmbQ/CYWFhTFjxgyOHDkCwBtvvMHEiROTjYnKqrCw52g0iUZvn1XR0VG0bduCiIhwVq1aR8OGPlnfhwaabXMA4GjXCKMHzF69eoU+fXqg0cTTq1dfPv10glmXBlCplLi4FDH7OciK2NhYli1byMaN69Bqtbz5Zntmzvw6V99QsyIr58BU111KDx8+YPDg/gQE3EepVPLmm+3p2rUHNWvWNvn7rNVqWb/+OxYunAvAZ59NoWvXHiY9RlYY8zvw9GkYsbFxeHh45Jvr0JL+9799zJgxlZAQ3Riv6tVr0qVLd9q2fUO6LM3E1bUIVlamuZbzTYK0dOlSNm/ezKxZsyhWrBhz584lICCA3bt3p1msrXfv3sTGxjJlyhTCw8OZNGkSDRo0YM4c44t/mfvmvGXLD8yePYNSpcqwa9ceo8Y9mPJGtWvXT0ydOgnQTS+ePHmq2QrM5eYESaPRsG/fnyxfvoSAAN3ioT169GbMmAm5bqxKduSGBAl0H37mzJmebGali4sL9eo1pHLlKlSsWInixUvg4VEUV1e3LCcG+rpjK1YsNUyQ+OCDjxg5cozp/hNGyM2/AwWFSqUE4liwYBGbNm0kJiYGAFtbW+rVa8CrrzalRo1aVK5cWYpv5hBJkFKIi4vDx8eHsWPH0qOH7hNceHg4zZo146uvvqJdu3bJXn/x4kW6d+/Onj17qFChAgDHjh3jo48+4vDhw0avWG3OP0wRERF06vQWwcFqJk78gm7d3jdqP6a+Ue3YsZVZs6aRkJCAh4cHH344iPbtO+b4GJvcdnOIj4/jypV/OHLkELt370KtVgPg6urGF19Mz5cFIXNLgqR39eoVNm3awKFDB3j+PO2p7SqVChcXFxwcHLG3d8DBQfdVuHARVCprrKysUKl0SWxERARqtRo/v2sEB6v/296aTz8dR/fuvSy6mKoultz1O1AQvXgOAgOD+OWXn9m58yfDB6MXlSz5CsWLl8DTszjFinni5uaW7Dq0t3fA3t4ea2sbbG1tsLGxwcbGVupSvYQpE6R88U5fv36d58+f4+OT1MXk6OhItWrVOHv2bKoE6dy5c3h4eBiSI4CGDRuiUCg4f/48b731VpZjiIqK4sCBfSQm6sZDKBT89wdT8d/PihceV6Z6LOXrbG1tKV68BC4urqn+8CYkJDB9+hcEB6spXbpMrqp0+9573ShfvgJTpnxGQMB9Zs+ewcKF86hXrwENG/pQqVJlypWrgIdHUbP8omu1WjQaTbKvhIQXf45Ho0kgISGBhATNf/8mfWk0GhITEw3PaTQJJCamfk6jSeD580ju37/H/fv3uH79GtHRUYY4XFxc6NGjNz179pFPjmZSrVoNZs78mvj4eP755zJ//32Zmzf9uX37FkFBgYSEBKPRaFCr1YYENrPs7ArRunVbBg4cIgOaRZrc3Nzp338g/foN4NatG5w8eZwzZ07h53edoKBAHj58wMOHD7K8X91SXbb/JUw2KJVKrKysUCqVKJVWWFkpsbJSYWWl+/nF562srFLdb3QtqEn3LP1X0mvSezzz9zP9PSzlY0n7e/mxUx83rccVjB79Ca6upimZki8SpCdPngBQvHjxZI8XLVqUx48fp3p9YGBgqtfa2Njg7Oyc5uszQ61W88knQ43aNiN2dnaUKlWaMmXKUbZsOZydXdi79w/+/vsSKpVuUKitra3Jj5sd3t71+emn3fz88za2bt3MnTu3OX78KMePH032OicnJ5ydXbC3dzD8sus/LSkUCrRaLVot//2b+N+/uq/4+Hji4+OIi4snNjaW+Pg4EhI0REfHEBcXS1yc7nlL1mZycXGhfv1GvP76m/j6vlagqmTnJtbW1nh718fbu36yxzUaDSEhwYSGhhAZGUFEhO4rMjKS588j/0umdcmwVqvF3t4BFxdnKlWqQuXKXhQqVMhC/yORlygUCipWrEzFipXp3bsfoOsGvn37Jk+ePCEw8DFPnjzh6dMwIiLCiYyMNPwbGRn539+2pKmeiYmJxMREExMTban/Uq42YEA/SZBeFB2tu1BSjjWytbXl2bNnab4+rXFJtra2xMbGGhWDra0tderUTXYTT/oi1Q1e17Gp+z4xMfG/2Q5JCUFUVBTBwWpiYmK4ccOfGzf8kx2vUKHCfPXVHBo1yl6lW9ULHawqKyWmatRRqezo1asPPXv2xt/fj1OnTnDx4gVu377F/fv30Gg0PHv2LM3zk9MUCgUqlQqVyhpra9V/3SjWKJVKVCrdz8m/VKhUViiVuu4W3acx/fdJr09KZstSsWIlKlasVKAGvuqbtTPTvJ1T111WqFQ2lCxZgpIlS5j/4DkgK++/yBmZPQceHm54eLhler8ajYa4uLj/PhTGERsbS1yc7ntdK3ZCin81JCQkGlq7X3wu5f0JSPX4i/ei1I8nfw60L2xPitdpX/J48nthWrGl/Xjq+PT7cHBwyNpJy0C+SJDs7OwA3Vgk/fegmzWU1qc8Ozu7NOtUxMbGGj2LzdPTk99/323UtumJi4vj4cOH3L59m1u3bnHr1i3CwsLw8vKiW7dulCxZMtvHcAHufaL/KWdmWfj41MPHp57h54SEBMLCwggNDSUkJITIyEjDL3tsbCyxsbFotdpkTcApm2Wtra2xsbHB1tY23X/1r9ElQ7ova2vrfDUwOjdydHx5y4o5rruCKjPvv8hZcg7yh3yRIOm7y4KCgihdurTh8aCgILy8vFK93tPTk/379yd7LC4ujqdPnxo9QBsgPDyahATTDo50di6Kt3dRvL1TT+EPC0t/TaXczsqqEB4eJfHwyH6Sp9ufEkfHQmmeA60W4uMhPj6B6GgTVCUUacroHIicJ++/5ck5sDwnp0Ima7nPFwmSl5cX9vb2nD592pAghYeHc/XqVXr1Sr1oZIMGDZg3bx737t0z1Ek6ffo0AN7e3kbHkZCQKLNHLEzOgeXJObAsef8tT86B5ZhyXn6+SJBsbGzo1asX8+bNw9XVlZIlSzJ37lw8PT1p06YNCQkJhIaG4uDggJ2dHbVr18bb25tRo0YxdapuiYApU6bQsWPHbLUgCSGEECJ/yDej+UaMGMF7773H5MmT6dGjB1ZWVqxduxYbGxseP35M06ZN2bNHVzhOoVCwdOlSXnnlFfr27cvIkSNp3rw5U6dOtex/QgghhBC5Qr4oFJlbSJ+zZVlZKeUcWJicA8uS99/y5BxYllKZVHcpuyRBEkIIIYRIId90sQkhhBBCmIokSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgiSEEEIIkYIkSEIIIYQQKUiCJIQQQgiRgiRIQgghhBApSIIkhBBCCJGCJEhCCCGEEClIgpQNy5cvp3fv3skeu3btGr169aJOnTq0aNGCtWvXWii6/C+t9//gwYN07tyZunXr0rJlS+bMmUNMTIyFIsz/0joHL5o8eTItW7Y0Y0QFS1rvf1BQEKNHj6Z+/fo0atSITz/9lNDQUAtFmP+ldQ7++ecfevXqRd26dfH19eXrr78mLi7OQhHmP0+fPuWLL76gefPmeHt706NHD86dO2d43lT3YUmQjLRu3ToWL16c7LGwsDD69etH2bJl+emnnxg+fDiLFi3ip59+slCU+Vda7/+5c+cYNmwYr7/+Ort27WLq1Kn88ccffPnllxaKMn9L6xy8aP/+/Wzfvt2MERUsab3/cXFx9O/fn4CAAL7//ntWrlzJ1atXGT9+vIWizN/SOgehoaF89NFHlC9fnl27djF9+nR27tzJggULLBRl/jN69GguX77M/Pnz2bFjB9WrV+fDDz/k1q1bJr0Pq3Ig9nwtMDCQSZMmcf78ecqVK5fsuW3btmFjY8PUqVNRqVRUqFCBe/fusXr1ajp37myhiPOXjN7/LVu24OPjw8CBAwEoU6YMo0aN4rPPPuPLL7/ExsbGEiHnOxmdA72goCA+//xzGjZsyMOHD80cYf6W0fu/e/duHj58yL59+3B3dwcwXP+RkZHY29tbIuR8J6NzcOHCBZ4+fcq4ceOwt7enTJkyvPPOOxw7dkwSVRO4d+8ex48f58cff8Tb2xuASZMmceTIEXbv3o2dnZ3J7sPSgpRF//77L05OTvz666/Url072XPnzp2jQYMGqFRJeaePjw937twhJCTE3KHmSxm9//3792fcuHGpttFoNERGRporxHwvo3MAoNVqmTBhAh06dKBhw4YWiDB/y+j9P3r0KD4+PobkCKBZs2bs379fkiMTyugcODs7A/Djjz+SkJDAgwcPOHz4cJq/KyLrXFxcWLVqFTVq1DA8plAo0Gq1PHv2zKT3YWlByqKWLVumO6biyZMnVK5cOdljRYsWBeDRo0e4ubnleHz5XUbvf7Vq1ZL9HBcXx/fff0/16tVxdXU1R3gFQkbnAHTdDmq1mhUrVrBy5UozRlYwZPT+3717l/r167Ns2TJ27dqFRqOhadOmjB07FkdHRzNHmn9ldA7q16/PwIEDWbRoEQsWLCAhIYGGDRvy+eefmznK/MnR0RFfX99kj/3xxx/cv3+fpk2bsmDBApPdh6UFyYRiYmJSdePY2toCEBsba4mQCiyNRsO4ceO4efMmU6ZMsXQ4Bcb169dZunQpc+fOlS5NC4iMjGTXrl34+fnxzTffMG3aNM6fP8+QIUPQarWWDq9ACA8P5+7du/Ts2ZPt27ezaNEi7t+/z9SpUy0dWr50/vx5PvvsM1q1akXLli1Neh+WFiQTsrOzSzVTQX9CChcubImQCqTIyEhGjhzJ6dOnWbx4sTRtm0lsbCxjxozh448/xsvLy9LhFEjW1tYULlyYb775BmtrawCcnJzo0qUL//zzD7Vq1bJwhPnfvHnzCA8PZ8mSJQBUr14dJycnPvjgA/r27Su/Gya0f/9+xowZQ+3atZk/fz5g2vuwtCCZkKenJ0FBQcke0/9crFgxS4RU4AQFBdGzZ08uXrzI6tWrZYq5GV2+fJkbN26wdOlS6tatS926dVm5ciWPHj2ibt26/Prrr5YOMd/z9PSkXLlyhuQIoFKlSgA8ePDAUmEVKOfPn6dmzZrJHtN/SLtz544lQsqXfvjhB4YPH07z5s1ZvXo1dnZ2gGnvw9KCZEINGjRgy5YtJCQkYGVlBcDJkycpV66cjD8yg2fPntG3b18iIyPZvHkzVapUsXRIBUqtWrXYu3dvssc2btzI3r172bhxo/wOmEH9+vXZsGEDMTExhhuGv78/oJvVKXKep6cnfn5+yR7Tn4OyZctaIKL8Z/PmzUyfPp3evXvz2WefoVQmtfWY8j4sLUgm1LlzZyIjI5k0aRI3b97k559/Zv369QwaNMjSoRUIs2bNIiAggLlz5+Lq6oparTZ8JSQkWDq8fM/Ozo4yZcok+3JyckKlUlGmTBmZRWUG3bt3x8rKik8//RR/f3/Onz/P5MmTadSoEdWrV7d0eAVCv379OHr0KAsXLuT+/fucPHmSCRMm4OvrS9WqVS0dXp53584dvvrqK9q0acOgQYMICQkx/J2PiIgw6X1YWpBMyM3NjTVr1jBz5kw6deqEh4cH48aNo1OnTpYOLd9LTExkz549xMfH07dv31TPHzhwgFdeecUCkQlhPq6urmzatIlZs2bRtWtXbGxsaN26NRMnTrR0aAVG06ZNWblyJcuWLWP9+vW4uLjQpk0bPvnkE0uHli/89ddfxMfHs2/fPvbt25fsuU6dOjF79myT3YcVWpnaIIQQQgiRjHSxCSGEEEKkIAmSEEIIIUQKkiAJIYQQQqQgCZIQQgghRAqSIAkhhBBCpCAJkhBCCCFECpIgCSGEEEKkIAmSEMLipBybECK3kQRJCGFRBw4cYPz48YafT58+TZUqVTh9+rRF4pkwYQJVqlShSpUqjBkzJlv7qlKlimFV98zo0aOH4dhZ2U4IYXqy1IgQwqLWrVuX7Ofq1auzdetWKlasaJmAAA8PD5YuXYqrq2u29rN161Y8PT0z/frp06cTGRlJt27dsnVcIUT2SYIkhMhV7O3tqVOnjkVjsLGxMUkMWd2HJZNCIURy0sUmhLCY3r17c+bMGc6cOWPoVkvZxbZkyRLeeOMN9u/fT/v27alZsyYdOnTg4sWLXLp0iS5dulCrVi3at2/PyZMnk+3f39+fQYMG4e3tjbe3N0OHDiUgICDLcVapUoUff/yRCRMmUK9ePRo2bMiMGTOIiYlhzpw5+Pj40KhRIyZNmkRsbGyy7fRdZfr/18mTJ+nfvz+1a9emcePGzJkzB41Gk413UQiREyRBEkJYzJQpU6hWrRrVqlVj69atVK9ePc3XPXnyhFmzZjF48GAWLlzIs2fPGDFiBKNHj6Zr167Mnz+fxMRERo0aRUxMDAB37tyhe/fuhISEMHv2bGbOnElAQAA9evQgJCQky7HOmzcPGxsbli5dSocOHdi4cSMdO3bk8ePHzJ07l+7du7Njxw42btyY4X7GjBlDvXr1WLFiBW+//TbfffcdO3bsyHI8QoicJV1sQgiLqVixIvb29kDG3VHR0dFMmTKF5s2bA3Dr1i2++eYbZs6cyXvvvQdAQkICI0aM4M6dO1StWpWlS5diZ2fHunXrDMd49dVXad26NWvWrEk2MDwzKlSowLRp0wBo0KABO3bsID4+nnnz5qFSqWjWrBkHDx7kwoULGe6nS5cuDB061BDP/v37OXToEN27d89SPEKInCUJkhAiT/D29jZ87+7uDiRPqpydnQEIDw8H4NSpUzRq1Ag7OztDF5a9vT3169fnxIkTWT5+3bp1Dd+rVCpcXFyoUaMGKlXSn1FnZ2ciIiIyvR8AT09PoqKishyPECJnSYIkhMgT9K1AL7Kzs0v39U+fPmXPnj3s2bMn1XPGzE5L6/iFChXK8n5SxqxUKqUOlBC5kCRIQoh8ycHBgcaNG9OvX79Uz73Y6iOEEGmRvxJCCItSKpUkJiaafL8NGzbk5s2bVK1a1ZAQabVaxowZQ5kyZahatarJjymEyD9kFpsQwqIcHR25c+cOJ0+e5NmzZybb75AhQ7h//z6DBg1i//79HD16lOHDh/P777/j5eVlsuMIIfInSZCEEBbVs2dPrK2tGTBgAEeOHDHZfr28vNi0aRMKhYJx48YxYsQI1Go1y5Yto23btiY7jhAif1JoZXSgEEIYTJgwgTNnznDw4EGLxVClShWGDRvG8OHDLRaDEAWdjEESQogU4uLiuHTpEq6urpQuXdpsx7158yaRkZFmO54QIn3SxSaEECmo1Wq6devG4sWLzXrczz//XBaqFSKXkC42IYQQQogUpAVJCCGEECIFSZCEEEIIIVKQBEkIIYQQIgVJkIQQQgghUpAESQghhBAiBUmQhBBCCCFSkARJCCGEECIFSZCEEEIIIVKQBEkIIYQQIoX/AwmvwN3DqZbZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the original trace and overlay vertical lines with location of peaks\n", + "fig, ax = plt.subplots(4, 1, figsize=(6, 8), sharex=True)\n", + "for a in ax:\n", + " a.plot(df['time_min'], signal_norm, 'k-')\n", + " a.set_ylabel('normalized\\nsignal intensity')\n", + "\n", + "# Plot for a few prominecne values\n", + "for i, p in enumerate([0.01, 0.1, 0.3, 0.5]): \n", + " peak_locations, _ = scipy.signal.find_peaks(signal_norm, prominence=p) \n", + " ax[i].vlines(df['time_min'].values[peak_locations], 0, 1, linestyle='--', color='dodgerblue')\n", + " ax[i].set_title(f'prominence filter = {p}')\n", + "\n", + "# Add necessary labels\n", + "ax[3].set_xlabel('time [min]')\n", + "ax[2].set_xlim([10, 20])\n", + "plt.tight_layout()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The choice of a prominence filter is going to be dependent on the size of peaks \n", + "that you care to resolve in your chromatogram, their degree of overlap, and how \n", + "noisy your signal is. The prominence filter can be passed as a keyword argument \n", + "in the `fit_peaks` method of a `Chromatogram`. For example, passing a restrictive \n", + "prominence filter of `0.1` can be done as follows:" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3788.10it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:02<00:00, 1.03s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAADw1UlEQVR4nOzdd3gUVfcH8O/M9k2y6ZWEJAQYereDgDRRRNDXVyygYkURG1IEQSmKvDTBH6h0BUFRREWxoFhAVARBIMmQ3gvpZfvO/P6Y3RBIXzbJJjmf5+FJsjNz52QyJHP23nsuI4oiCCGEEEIIIaQjYFs7AEIIIYQQQghpKZQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOgxIgQgghhBBCSIdBCRAhhBBCCCGkw6AEiBBCCCGEENJhyFs7gHasBIAKQE4rx0EIIYSQxgsFYALg08pxEEKaCUMLoTYbgyiKakFw/fVlWQbN0S65HF3nlkHXueXQtW4ZdJ1bRnNdZ5ZlwDCMEYDG5Y0TQtwC9QA1nxxBEKOLiipd2qhczsLX1wNlZXpYrYJL2yaX0HVuGXSdWw5d65ZB17llNOd19vPzgEzG0OgNQtoxmgNECCGEEEII6TAoASKEEEIIIYR0GJQAEUIIIYQQQjoMSoAIIYQQQgghHQYlQIQQQgghhJAOg6rAEUIIIYS4uZMnT3pBWqOI3rwmpCYBQM7gwYPLG7MzJUCEEEIIIW7q5MmTLIBXGIadxjCMAgDT2jER4oZEURQtJ0+e/ADAG4MHD663Pj4lQIQQQggh7usVmUw+Q6fzNSuVaj3DMLTKLiFXEEWRMZuN2rKy4hk2mxUAltW3PyVAhBBCCCFu6OTJkzqGYafpdL5mLy/fwtaOhxB3plJpDAD8S0oKp508efLt+obD0ThSQgghhBD3FMIwjEKpVOtbOxBC2gJ7L6kC0ny5OlECRAghhBDinlgADA17I6Rx7P9XGDSQ41ACRAghhBBCCOkwKAEihBBCCCGEdBiUABFCCCGEkA5j/fo1YZMm3dq3teNorPj4WPXhw997t3Yc7QklQISQNiEpKREPPvhfLFo0HxaLubXDIYQQQlrEvHkvdYuNPefR2nG0J5QAEULahNdfX4hz5/7Fl19+jr17d7d2OIQQQkgLoRoYrkbrABFC3F5GRjr+/fd01dcHD36JqVMfab2ACCGkFQmCAL1e3ypvYmu1WoFlm3bqoUOHDL777ntzfv75R3+LxcK+/fameK1WK2zYsDb833//0VVWVsq8vb2tI0eOLnzuudlZcXGxmieffLjXxo1b4vr1G6AHgOeffzrm3Ll/dd9++/M/crkcoiji9ttH93/ooelZ9977QMGV5ywouChfs2Zl+KlTJ7xtNhvTvXuPihdfnJsRE9PV5Njn/fc3Bh88eCC4vLxc3rVrt8p58xalOrbXFnN4eIT5vff+L/SXX37yLy4uVnTq1Mk4deoj2bfeensJAOzbt9d/z54PQx955LGsrVvfDy8tLVH07Nm7fOHC11N37Nga8vPPh/3lcrk4ceJdeU89NTMXAEwmE/POO2vDjh791beoqFCpVmuE/v0HlM6b92q6n5+/bdKkW/sWFBQoP/nko9CzZ097bd78AV9cXCR75511nU6c+MOnvLxcHh0dU/nEE09nXX/9jRWO7+3Agc/8du/eGXrx4kVV586dDSNHjincuvXdiKNH/z7pzM+EZVmnvj93RQkQIcTt/fXXHwCAqKhopKamgOfjUFJSDB8f31aOjBBCWpYgCLj//rt7xMfHtcqQqB49elV89NGnfFOToO+//ybwzTdXJ9hsVqZbt+6m+++/u5e3t4/lrbfWXfDy8rL98stPPps3b4ro1atP5bhxt5UEBASYjx8/puvXb4DeZrMhNvacl8lkYv/556THNddcV3n69ClteXmZ/JZbxpRceS6r1YrnnpvRHWDE1157I8nf39+6YcPa8Jdeerb7p59+dRYACgoKlOfO/ev15ptrEsxmE/PGG69Hv/HG61Fbt37I1xXz888/HZOcnKR99tkX0qOjY4zffvu13/Llr8WwLJs4duz4UgAoLCxQfvnl50HLlq1M1Osr2VdfndvtkUce6D1q1JiCjRu3xn3zzZf+u3bt6DR8+MiSnj17G1evXhH+55/HfebOXZAaEdHZxPO8ZtWqN6Lee+//wubPX5SxZcuHcdOnP9DrppuGFz3xxIwcm82GWbOe6m6xWJi5cxemBAYGWT7++KOgefNe7L5u3cb4AQMG6Q8f/s57zZq3oqdNm545YsSokj///F23Zcu7EVf7M3Hm+2vSTdKCKAEihLi9Eyf+BACMHTseP/zwLVJSknHu3FkMHXpzK0dGCCGtoe2tCzR8+C2FAwYM0gOAwWBgbrllTOG4ceOLIyIizQAQFfVo/r59e0MSEy9oxo27rWTIkOtKTp06oQOQe/r0KQ+ZTC52796j4sSJP72uuea6yt9++8WnWzeuIjAwyHrluY4d+1WXlpaq2b79o3PdunU3AcCCBa+l7tixJaSoqFAOADKZTFy69K0Ub29vGwCMHz/h4q5dOzrVFfOFC/Hqv//+y+e115Ynjh49rhQAZs58Pic5OVG7e/fOUEcCZLPZmBdfnJvmePjv27d/2YUL8Z4vv/xKJsMweOKJZ3I++WRPaELCBU3Pnr2NPXv2qhw5clTxDTcMrQCAiIhI8w8/fFuWmpqsAYCAgEAry7KiRqMRfH39bD/99IMuJSVZu3nzzvOOcyxc+Hr6hQvxHrt37wwZMGBQ8t69u0Ouv/7GosceeyoPALp27XYxMzND9dVXB4Kv5mfizPd3NfdMc6IEiBDi9s6c+QcAMGTItUhNTUFKSjKSkxMpASKEdDgsy+Kjjz7l29IQOAAID4+oGnqm0WjEqVMfyf/mm698d+3a6ZGdnaVKS0vRlpQUK2w2gQGAYcNGlC5e/EqgwWBg/vzzuFfv3n3KO3WKMJ45c0oHIPfEiT+9b755RFFt50pIuKDRarU2R/IDAMHBIda5cxdmOr729va2OpIfAPDy0tnMZvNl31j1mHk+XgMAQ4ZcV1F9n759B5R/8MHW8Oqvde166bwqlUoIDAw2MQwDAFCr1SIAmEwmFgAmT76n6LfffvFas+atTllZmarMzAxNdnaWukePnpedxyExMUGj0Wht1ZMLhmHQq1efilOn/tYBQGpqsnbo0JuLqx/Xv//AiisToKb+TJz5/twVJUCEELdWUVGBnJxsAADH9UCXLjEAgOTkpNYMixBCWg3LsvD09BRaO46mUKnUVfHq9Xr2yScf5oxGIzts2PDisWPHF/bvPyB95swnejj2ueGGm8oVCrnwxx/HvP7556Ru5MhRRZGRUaYvv9wfkpGRpkxNTda+9try5NrOJZPJRccDeV1Ylm2wF616zHUVIhAEGyOTyS7bqFAoLvuaZeuOZcmSVzsfO/ar34gRowqvv/6m0h49euXs3r0zpLDworK2/UWx9m9NEATI5XJROh8rimLDnYRN/Zk48/25K0qACCFuLSkpAQAQGBgEb28fdOnSFQCQnJzYmmERQghx0i+//KRLSUnW7t//9ZmgoGArABQXF8lKS0vljkRDqVSK/fsPLPv11599EhIueM6b92paeHiEmWEYcePGDWGhoWHG6gUNquvSJcZYWVkpS05OUnXpEmMCgMLCAvl9993VZ9mylQnOxNy9ew8DAPz995+ejiFwAHD27BnPTp0iDM60WVRUKPv++0OBc+cuSL7jjslVPTaZmelqtVpTLfm6lGB07drdoNfrZXFx59XVe4FiY897hod3NgJAZGSUITb2vCeAfMf28+fP1jtnrDE/k/bErbunCCEkMVH6W9WtW3cAuKwHqDHvcBFCCHEvwcEhZgD48svP/TMy0pR//nncc/bsWV1tNhtjNluqnvZvvHFoyZEjPwbodF7WmJiuJpVKJXJcz4qjR3/xv/76G0vqan/YsOFl0dEx+iVLFkafPHnCIz4+Vv3aawuivL19LP37D9Q7EzPH9TQOGDCodP36NZ0PH/7OOzExQfXOO+tCT5484fPf/96X50ybOp23TaPR2o4e/dUnOTlJFRt7TrN48SuRqakpWovl0nVQq9W2rKxMVX5+nnz48JGlERGRhiVLXu3y+++/eV24EK9eunRR58zMdM2UKffnAcD990/L+fPP3323bn0vODk5SfXppx/7f/31V0H1xdLYn0l7QQkQIcStJSVJPT0xMVLPT+fOkQCkoXGlpSWtFRYhhBAnDRo0RD99+hMZX375edC0aVP6vPXWsqg+ffqX33TTsCKev1TdbuTI0aWCYGP69Olf5nht4MDBZaIoYvjwW0rqap9lWaxcuTYxMDDYPG/eS92effapHjKZTFyzZkOCSqVy+p2zFSvWJF977fUla9asjHrssWm9//zzd59XXnkt6fbbJxY3fHRNcrkcCxe+npyenqZ59NEHe8+Z80I3k8nEPvjgw1lZWRmayspKFgDuvPPu/FOnTng/99zT3eVyOdav33QhKqqL/vXXF8Y89dSjPVNTUzQrVqy5MHjwtZUAMHLk6LJnnnku7eDBLwKnT3+g99dffxE4btz4i44hcrVp7M+kvWDoHdRmk2yzCdFFRZUubVQuZ+Hr64Hi4kpYrW1q+G+bQte5ZTTmOj///NP4+eef8Mori/Hf/94HABg1aigKCwuwd+/n6NGjZ0uG3GbRPd0y6Dq3jOa8zn5+HpDJ2BQAXVzasBNOnjzZg2Vl3wYFdapQKtVuW1GLuJfjx496BgQEWaoXgdi0aUPI998fCvj882/OtWZszc1sNqrz87M8BcF26+DBg+Pr2o96gAghbi0nJwcAEBoaVvVacHAIACA3N6dVYiKEEELc1R9//O49e/as7seO/eqVmZmu/P77Q95ffvl58MiRo2utmtcRUREEQohbc1SACw0NrXotJCQUsbHnKAEihBBCrvD0089lGwwGdsWKZdHl5WVyPz9/85133pX3+OMzcls7NndBCRAhxG1VVlagrEwqthMScqkHKCRESoYoASKEEEIup1KpxFdeWZwBIKO1Y3FXNASOEOK2HMPfvLx08PT0rHo9JISGwBFCCCHEOZQAEULc1qXhb2GXvR4cLPUA5eVRbz4hhBBCmoYSIEKI23L08FSf/wMAAQEBAIDCwoIWj4kQQgghbRslQIQQt5WTkwWgZg+Qv78/AKCoqLDFYyKEEEJI20YJECHEbTnmAIWEhEEwGlH+918AAD8/qQeooqICJpOpzuMJIYQQQq5ECRAhxG055gCFBQQi/c1lKDywH0qlDD4+OigUCgA0DI4QQgghTUMJECHEbTnmAIUnXoA5KxOwWCBknoMKZvj7O+YB0TA4QghxZ0OHDhm8b99e/8bu//PPP+omT76tz4gR1w96663l4c0ZW2OsX78mbNKkW/u6ss2mXJPMzHTll19+7uvK83d0rb4OEMdxIwAcqWNzCs/zXTiOGwDgbQBDABQCWM/z/KpqbbAAFgN4DIAvgKMAnuZ5PrHaPlfdBiGk5VgsFuTn56GTWg35+fMAgOAJw1GZwcNTrkC3gEDk5uagqIh6gAghxJ199tnBMzqdt62x+2/evCk8ODjE9PbbGy94eno1+ri2pCnX5PXXX40KCgoyT5w4ubi54+oo3KEH6HcAoVf8GwvACuANjuP8AfwA4AKk5GUxgKUcxz1SrY1XATwF4HEANwAQARziOE4JAK5ogxDSsi5ezIcgCJgcFgGIInR9e0HmycBcWIrYhW/hUbUWDKgHiBBC3F1wcIhVo9GIjd2/srJS1qtX78rOnaPMfn7+7TIBato1EZnmjabjafUeIJ7nzQCqFvPgOE4BYC2Az3ie38Jx3HwAJgAzeJ63AojjOK4bgLkAttsTlJcAzOF5/ht7G/cCyAZwF4C9AJ5wQRuEkBaUk5MNL7kcN/j6AQC8h/SAaLNC4e0BCAK0ACI0WkqACCEdks1gqPNNbIZlRValEpt738YaOnTI4Oeem516zz1TChcseDlKEATG19fPcuTIj/4mk5Ht129A2fz5i9KCg0OsQ4cOGQwAn3yyJ/STT/aEfvTRp2cjIiLNmzdvCj506GBQaWmJPCQk1HTPPfflTp78nyIA+P3337zmzHmh+7Rp0zM/++yT0ICAQNOyZW8lT5363z733Tc1++uvvwxSKhXCjh17YxmGwZo1b4X/9ddxH6vVykRHx+iffnpW5oABg/SOePfs+TBg3769IcXFRcr+/QeWBgUFm+v7/h5/fBrXu3e/8uLiIsWxY7/6KRQKYcKESfljx44vWrFiaVRycqJHSEiYcc6cV1IHDhysr35Nxoy5tWTatP/2jorqol+//t1EAPj115+9Fix4ufv8+YuSPv98X3BcXKxnXFys56RJt3odOPDt2UmTbu17yy1jC2fNejG7egxBQcGm5cv/l1rb9fjgg71xeXm5irVr/xdx+vQpnUzGit2796h87rnZGTExXTtcNaFWT4Bq8QyACABj7F8PA/CrPXFx+AnAfI7jggBEAfCyvwYA4Hm+hOO4UwBuhpS8uKINQkgLys3NwciAQCgYBprO4WC1DGADGJkMqhA/GDMvooenF0pLaUQAIaTjSXp2xsC6tmm6c6URc+ZXDeFPfnFWf9FiqTWxUUVFV0QuXMw7vk6Z+1JfQa+v9flQGdZJH7VkedzVxA0Ax48f8x06dHjR229v5LOzs5Rvvrm0yzvvrOu0dOmKtM8+O3jm8cen9brppuFFDz/8aG5AQKB17dqVnX755Yjfs8++kB4T0834999/ev7f/62LrKiokE2d+vBFR7t//nncZ+PGLXF6vZ6VyVgRAH7++Ue/tWvf4Q0GA+vt7W2bPv3BHnK5XFi2bGWiTqezffXVAf/nn3+6x4YN78X17dvf8OWXn/u+++47nR977KmMG24YWvbjj9/77tq1o5O/v3+9SdCBA5+G3HPPfTlbtnx4/uuvv/Dfs+fDsB9//N7/qadmZoSHR5jfemtZ5Jo1b0V++OEnl10/Hx8f28svL0h55ZXZ3b/4Yr/fsGHDS1euXB49atTYgttuu6PkhhtuKn/xxZndAgICzXPnLkxvynWufj2MRiP77LNPclFR0fq1a/+Pl8lYcffuD0KefvrRntu3f3Q+LKyTpSltt3VulQBxHKcGsADAOp7nc+wvhwM4e8Wujoy3s307AGTUsk9nF7bhFLnctaMMZTL2so+kedB1bhn1Xefc3Bx08/AEAPgM6glWtAGsNApAFegDY+ZFRGg0KCgvc/n/s/aI7umWQde5ZdB1bts0Go1t8eJlaQqFQuzevYfx+PFjhSdPnvAGpKFhLMuKGo1GCA4OsVZWVrJffXUgePbs+SmjR48rBYDo6C6mnJxs1Wef7Q2pngDde+/9uY7ejPT0VCUA3H77xIsc19MIAL/99otXQgLvceDAoTMBAYFWAHjxxblZsbHnPffu3RXct2//1P37Pwm+8cahxVOnPnIRALp27ZYbF3feIzU1WVvf9xQR0dnwzDPP5QDAI488kbdnz66wYcNGFI0dO74UAMaOHV+4efO7EbUdO2zY8PLx4+/If/fddyJ+/PF7Pw8PD5sj2fH19bPJ5XJRqVQKjpgbq/r1+Pjj3QHl5WXyFSvWpCgUChEAlix5M/Wuu27v++mnHwdW703qCNwqAQIwFYAGwPpqr2khDV+rzmj/qLZvRx37+LmwjSZjWQa+vh7OHl4vnU7TLO2Sy9F1bhm1XeeionzsTkrAvIdvxP3dQsAIl/57eoT4oRTSELgMQ2Wz/T9rj+iebhl0nVtGR77OMRs2/VPXNoZlLxum1mXN+jON3Tf6rdVXvmFc577OCg4OMTkewgHAw8PTZrVaa53ncuFCvNpisTCrV6+IWrPmrSjH6zabwFitFsZgMFQdFxUVXWMoV+fOkY7nPcTHx2oB4N57J11W0c1qtTIWi5kBgIyMdM2IEaOKqm/v1atPRUMJUFhYeNV5tFqtAACdOnWqikepVAlWq6XOuTwvvjgn89SpE96nTv3tvWnTttimzJmqS/XrceECrzUYDLJbbx0xoPo+FouFzchIU1/tudoad0uApkGa+1N9UL8BgOqK/Rw/qEr7dtj3MVyxT6UL22gyQRBRVqZveMcmkMlY6HQalJUZYLMJLm2bXELXuWXUd51TU6Wefq/QAJj0FYBY7W+Bl/TQE6HRoKCgEMXFTv837TDonm4ZdJ1bRnNeZ51O0yZ6lmQaTaO/8eba11nVk59Lan/eFwSBAYBXXlmc3KVLV+OV21XV5iSp1eoasavV6qrtgiAwGo3G9t57O2oM41MqlQIAMAxz2Z8bAJDL5Q0mI3K5rMY+DNP4+ygvL1dRUlKskMlk4vHjR3V9+/Yz1H/E5aezWm01kqvq10MQBISGhhlXrFhTo7qxh4dHuyw0UR+3SYA4jgsEcCOAN67YlAEg7IrXHF9nAVBUey3pin0c73i4og2nWK3N83vEZhOarW1yCV3nlnHldRZFEQX2RVADNHIIVzzgyHWeEAF4yRWwFRfSz6gJ6J5uGXSdWwZd5/ava9fuRplMJubkZCsdQ+AAYMeOLUFpaSnqxYuXN3peTExMN4PBYJCZzSamR49eVcnUokXzI7t27aafNm36xcjIKP25c2c8AeQ7tvN8XLMOMxAEAUuWLIyOjIzWjx17a+GmTRs633jjsLI+ffrakyDmsmxHJpOLFRWVsurH5+fnKcPCwmokiA5dusQYfvnliL9Op7M5htJZrVbMmfNCl5Ejbym+446OVWLbnd7iuBFSOvvLFa//CmAYx3Gyaq+NAsDzPJ8PKUEpAzDCsZHjOB8AgwD85sI2CCEtxJichIU+fngyMhqBHjUr0TNyGYQuodiXnYnS8rJWiJAQQkhL8Pb2to0Zc+vFDz/c3mn//k/8UlNTlJ9++rH/jh1bw319/Zo0J2bkyFGlkZFRhsWLX4k5evRXr+TkJNXKlcvDjxw5HBAdHWMEgPvum5b7119/+G7evCk4KSlRtXPn1qA//zzerIuQvv/+xpCUlBTtggWvpd577wMFPXv2Ll+2bFG0yWRiAECj0Qj5+XmqrKxMBQD07Nmr4ujRX/yOHz/mmZiYoFqy5NVIg0Evq+8cEyfeVeTp6WGbO/eFmJMn//JISODVr746N/r06ZPe3bpxDfQ2tT/ulAD1B5DM8/yVY8a2AdAB2MpxXC+O4x4G8DyANwGA53kTgHcAvMVx3ESO4/oB+BhSr89+F7ZBCGkhBcd+g4qVQcnKEKBV1LqPx5Du2JediaziIohXjlcghBDSbsyb92rGnXfelffBB9s7PfzwfX12794ZOmXKA9nPPtu0ifsymQzr1797oVu37pXLly/u8thjU3v9++9pr4ULX08aNmx4OQCMHj22dM6cV5K///5QwKOPTu199OivPhMnTs5rnu8MOHv2X83evbvCpk59OKtLlxgTAMyf/2paQcFF1dq1KzsBwMSJd13MyEhXT5/+QG+bzYaZM1/I6t6dq1iwYE63Z599sodOp7PeeOOwentwvL29bRs2vB/v7e1jnTdvdrcZMx7tmZ+fp3zjjVUJ1XvDOgrGXR4cOI7bCGAgz/M31LLtGkiFEQYCyAGwmuf5d6ptl0EaOvcIpCIKvwJ4huf5VFe20UTJNpsQXVTk2rkJcjkLX18PFBdXUrd/M6Lr3DJqu86iKOLCyy+AKSnBezmZeOP1Z2o91mAyY8QziwEAx4+fgkZT7/zUDo/u6ZZB17llNOd19vPzgEzGpgDo4tKGnXDy5MkeLCv7NiioU4VSqe5wD6mENJXZbFTn52d5CoLt1sGDB8fXtZ/bzAHief7peradAFAjMaq23QZpUdO5zdkGIaT5WXJzwJSUwCIIKFTV/StKJWMRrvWAzWZDaWkpJUCEEEIIaRR3GgJHCCGoOHMaAHC+vAx+vl517ld5IRNrevXFQxGRKC0trXM/QgghhJDqKAEihLiVyn+lwosnS4oR4udd535yL6nHJ0ClQllZSUuERgghhJB2gBIgQojbsFVUwJCYAAA4VVqCEH+fOveVeUhLefkplNQDRAghhJBGowSIEOJWAu+6G2csZlw0m+pPgLRSAuQpl6O8uKjO/QghhBBCqqMEiBDiNmSengieeAc2pUnrEYf41730AqtSQLCvhG0oKmyR+AghhBDS9lECRAhxK+bKMhSVSEPaQvx86tyPYRiYGAYAYCrqUAtYE0IIIeQquE0ZbEJIx2a+mA9zWipKVVKvjkalhM5DU+8xFjkLjUWArYzmABFCCCGkcSgBIoS4hYoTf6Fg/6ewhIcAAEL8fcDYe3jqUuyjxXdn4sF461oiREIIIYS0A5QAEULcgj4uFgBQoJBG5tY3/M2hItQX+w5lYmiX6OYMjRBC3A7DQMYwTItPZRBFURBF2Fr6vIS4EiVApNkIFjNKjvwETY+e0HSObO1wiBsTzGYYEi4AAJJNegCotwKcg4dGqgRXXl7ebLERQoi7YRjIBIYJ1RutLf4cp1XLrSzEHHdLgtavXxP200/f+x848O3Zph6bmJigeuKJh3vt2LH7fOfOUebmiI+4F0qASLPJ/XQfKn78AaWCDZHL30JQaFhrh0TclP7CBYhWKxS+PkgsKADQuB4gD6UCoSo1VHp9M0dICCHug2EYVm+0yv84lyPojVahpc6rVcvZ6/uEyr3UclYURbdKgJwVG3tOM2/eS13NZhMVButAKAEizabw96NQAdiWkoS+n+/D008/19ohETdVGXseAOARE4mcI1JPUGN6gHQlerzddwDiDIbmDI8QQtyS3mgVKg2WFkuA7NpNorBx4/qQTz/dG9qpU7ixqKhQ2drxkJZDCRBpFrbycqjsD6VnykphPPFXK0dE3FnleSkB0kQEIq+oBAAQ3IgeIJW9SpzKvh4QIYQQ9zN06JDBM2Y8m/7jjz/4paQkeQQHhxinT38ia+zY8VUlPA8f/s57x44tYVlZmRpfXz/zzTePLJox49kclUoqDRofH6t+9913OsXFxXoZjQbW3z/AfMcdk/MfeeSx/NrOuWPHlqAdO7aEz5+/KHncuNtKatvn5Mm/vF9++ZUUb29v25w5L3Rvlm+euKV2k8UT92LOzQUA5JtM0NtsSEjgIYr0kEpqslZUwJieBgBQBPkgr0j6exhazyKoDhpPKQHSMiwEoaXfBCWEENJY27dvDh85clTR++/vPD9kyHWlS5cu6nrixJ8eAHDkyGHd8uWvxYwfP6Fg27bd55977qX0o0d/8Vuw4OVoANDr9exLL83qrlZrhA0b3o3fvv2j80OH3ly8deu7EWfP/ltjvYRdu3YE7ty5NXzhwiVJdSU/ALB16y5+/PgJdW4n7Rf1AJFmYc6XEiCbKOCpyC5QsAwKCwsQEBDYypERdyP39ESPdetgOHcKBeVZsNpskLEsAny8GjxWq/OEAYCnXA6DQQ8PD8/mD5gQQkiTjRw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI1ffv2qxoHvWfProBt294PX7x4WeKIEaPKWue7Je6uyQkQx3H+ACYDGAUgGoA3gAIAaQAOAfia5/kSF8ZI2qBS+zv6pVYrbgkMQoXVioyMdEqASK2U/v6Qde2Es4fPAAACfXSQy2QNHqf2kKrAaWUyVJSXUwJECCFuatCgIZeV6+S4npWnT5/SAUBKSoo2KSnR48iRw/6O7Y5BI4mJCepbbhlTdv/90/IPHvzCLykpQZuVlalKS0vRAoDNJlQtGFdcXKzYtGl9pEwmE8PDO5ta4vsibVOjEyCO4wIALADwmP24OACpABIA+ALoC2AKABPHce8CeIvn+VrHZZL2rzw3FwoAWYKAHpDeoc/Iy2ntsIibYgULTBUlyC2Uhr8FN6IAAgDI1CrpeIZBZVEhEBLaXCESQgi5CnK5/LJx8KIogmVlovS5wEya9J/ciRMnF155XHBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM+yNNuD1NSoBIjjuP8AeAfASQBPAPiC5/kadWc5jtMBGA/gSQCxHMc9zfP8Jy6Ml7QRGRGdsf2zvfCN7IabRUDBAKXZ2a0dFnEz1rIyxL7zNjTRnaHu7IncwmIAQIifd6OOZ2QsjIIANcuisrDG301CCCFuIjb2nMeYMbdWFT2Ij4/1jImJ0QNAeHhnQ0ZGmrpLl5iqXpvjx496fvzxR8Hz5y9KO3jwC/+KinL5vn1fnlMoFKK9Pfvcn0t5lY+Pt2X48JFlQUFB5qeemt5r+/bNwY8++mReC32LpA1pbA/QcwBu43n+VH078TxfBuBjAB9zHHcdgDUAKAHqgDKKi8BXVOCGgGBU6svgIwrQ51OHILmc/gKP4r9PwpCVhZDJNyLHXgGuMQUQHI7ry1BQVoExVkszRUkIIe5Jq5a3aPfG1Zzvq68OBEdGRhv79OlX+dlnnwSmpaVq5s59NRUApkx5IHfFiqVd1q9fE3bbbXcU5ubmKFevXhEVEBBgDg4OsQYHh5hNJhN78OAXvtdcc21FUlKieuPG9REAYDaba8TUs2dv4+TJ9+Tu3r0zbMSIUSUxMV1pOBy5TKMSIJ7nhzW1YZ7n/wRwU5MjIu1CUZG0mKWnzg8Gswk+FgNMRUWtHBVxN3qeBwBoo8IgCjbkFEg9QKEBTUiAbEaczs7EDSJVgSOEdAyiKApatdx6fZ9QOVq4oq9WLbeKYtN/4Y4dO/7ip5/uDV63bpUmMjJS/+abqxJ69+5jAIDbb59YLIpi8p49H4bu3/9JiFbrYRsy5NqSF16Yk+nYHh8fl7t586aIDRvWsAEBgeZx424rOH78mE9c3HkPABevPN+MGc/mHDv2q+/y5a9FbdnyAU9D4Uh1VAWOuJwoiojKzMStQcHQajxhVmsAiwFCWWnDB5MORX9BSoDUoQEAgNzCEgCNWwTVwUMjzQOqrKxwaWyEEOKuRBE2FmKOVwv3AEnnFgVRhK2px0VHxxjmzFmQWdf2CRPuLJ4w4c7i2rYxDIPZs+dlzZ49L6v669WHt82a9WL2rFkvVo21V6lU4r59X55vTGw33jis/OjRv082Zl/SPjR2DtC2pjTK8/x058Ih7YFoMmKgwYiBnaPxhVYHq1YHlBfBVlnZ2qERN2LT62FMTwcAqIK9YRNMyLHPAQprwhA4P5UaoSo1jNTDSAjpQEQRNlEUm5yIEEIa3wN0C3DZUuthABQA0gHkAPAH0AWACcAZVwZI2h5rqVR232izQeHlgwz/MCz85mP4+PnhqVaOjbgPQ+IFQBShCgoAIxdRWqSHwWQG0PgqcABwk0yNqX0HIDk1tXkCJYQQQki70tg5QFGOzzmOux/AWwDu5nn+r2qv9wJwAFIRBNKB2cqkBKjEYoFaq4Payxc2UURxcTFEUQTDMA20QDoCw4ULAADPLhEQbVbk2Ie/+Xt7QaVQNLodUS4DrAIEg7E5wiSEEHKVaHgZcTfOjB1dDmBe9eQHAHiejwWwEMAcVwRG2i6rfS5Ghc0KtdYLGo20OKUgCKikYXDETjCZwCgU0IRLi+M6hr+FNqH3BwBYhfQ+jmiiBIgQQgghDXOmCEIAgLpms1sB0FLsHZyhWHqQrbRaofX0hoehHM/FdEOFxYKyslJ4etItQoDgB6Yi8r7JsKacgqG06NIaQE2Y/wMArFIOwAyYzc0QJSGEEELaG2d6gP4AsJjjOP/qL3IcFwrgdQBHXBEYabsqi6QFKQ2iCKVSDdZiwk2+/hjs7Ysy+/A4QliWAStaAUFKXBwlsJtSAAEAZGql1J6F1gEihBBCSMOc6QF6CcAvAFI5jjsOqfZ6MIAbARQBeN5l0ZE2yVBcBDkAi0y6vWxKabFmT7kc5eWUABFAFATIFArYysohWu0JkH0R1KaUwAYAhUpKgGRWqytDJIQQQkg71eQeIJ7n/wXQG8C7ALwADAGgAbAKQD+e51NdGSBpe0o6R2JB3Dkct0nVOW0qKQFSy2QoL6W1gAiQvXEDEl+Zh5J//ql6zZlFUAFAYV8HSCGKDexJCCGEEOLkQqg8z2cDeNnFsZB2okywIaGyAj3siY+gUFVt0xcVtFZYxE2IoghjYiJsFeUAbHD8GrpUBKGJCZDOA9/k5cCi1WCki2MlhBB3xTCQMQzTZhZCJcSdOJUAcRynAjAdwBgAoQAeATACwKkrq8ORjqe8vBwAoNHaix2wLIwA1LhUIIF0XJb8PNgqysHI5VD4qAGIKNcbUGkwAWj6EDilnw47MtIQ4O9P78oQQjoEhoFMw1pCRbPeqee4qzq3Ums1CIocSoJIW9bk/zgcxwUA+AlATwBxkIbDaQHcDmANx3GjeJ4/7tIoSZuiTUrEbUEhsKnUVa+ZGBZqUYCZhsB1eMakJACAJqKTNP9HrkC2ffibr5cHNPY5PY2lte+vNxjAMACNhCOEtHcMw7CiWS+v4P8UBJNBaKnzsioN68ldJ2cUPqwoim6VAK1fvybsp5++9z9w4NuzjT1m3749/p999klwfn6+ytfX1zJ27K0Fjz02I1cmkzVnqMQNOPPOwSoAOkgJUCoAR+3ZewB8B2AJpJ4h0kEFZWbi4c5R+Epx6UHWxMoBmxmWCiqC0NEZkhIAAOrwoKps5VIJbJ8mt6dWKuAtV8BDEGGz2sDSHy5CSAchmAyCzVjZYgmQXYsPu2sOBw585vd///d25FNPPZt+3XU3lJ8/f1a7fv3qSLPZwjz77As5rR0faV7OJEB3AHiO5/lEjuOqnjR4njdyHLcKwM6mNshx3DQA8wB0AZAE4DWe5/fZtw0A8DakYguFANbzPL+q2rEsgMUAHgPgC+AogKd5nk+sts9Vt0EaT26vxsWotVWvHQqOwbdf7cCtwRNaKyziJgz2HiBV8KW5Po4eoKbO/wEAjUKBzQMGS22XFMPDP8AFURJCCGnPvvzy88Dhw28pnDLlgQIAiI7uYkpLS1V/9903AZQAtX/OZPFqSOWua2MF0KTxKxzHPQhgG4D3APQBsBfAXo7jbrCvNfQDgAuQkpfFAJZyHPdItSZeBfAUgMcB3ABABHCI4zilvf2rboM0jdxe/Q0aj6rXZJ7esIkirQPUwdkMBpizMgEAygBd1eu5hSUAml4BDgA0GhXMgvQGqLG05KpjJIQQ4lpDhw4ZvHv3zsDp0x/kRo68YdCUKZN7ff/9Ie/q+xw+/J33gw/e03PkyBsG3XXX7X3WrVsVZjKZGMf2+PhY9fPPPx0zbtyIAcOHXzforrtu77N9+5agus65Y8eWoBEjrh/03Xff+NS2/amnZmZOnfpI7pWvV1ZWtPi8KtLynPkhnwDwNIBvatn2AIC/G9sQx3EMgKUA1vI8/7b95aUcxw2FVFRhBAATgBk8z1sBxHEc1w3AXADb7QnKSwDm8Dz/jb3NewFkA7gLUjL1hAvaII0kCgKUjkkYGq+q11VqqSJcZWVla4RF3IRoMsL7hhthK8wDIxOltxpQvQfIp8ltsiwLg80GJctCX1IC/4YPIYQQ0sK2b98c/tBDj2bOn78o9Ysv9gcsXbqoq6+vX/w111xXeeTIYd3y5a/FPPbYUxk33jisLD09VbVhw9rOmZnp6lWr1ifr9Xr2pZdmde/bt3/5hg3vxsvlCvHAgU8Dtm59N2LIkGvL+/btZ6h+rl27dgTu3Lk1fOHCJUmjR4+tdfLxtddef9kDSUlJiezQoYOB/fsPpHdqOwBnEqBXARzmOO40pCRIBHAfx3GvAxhn/9dYHIAoAB9Vf5Hn+XEAwHHcNwB+tScuDj8BmM9xXJD9WC/7a45jSziOOwXgZkjJyzAXtOE0udy1Q2VlMvayj+5GMJrheLuG9dSBZaWvulSW4Nnorsgzm11+TZqDu1/ntkoe4I/Ip5+GkJ+AysTTYOz3R/ZFqVO5U6B/1T3TFCZR6gGyVJS1ifurNdA93TLoOrcMus5tz8iRowumTn3kIgDMnj0v69y5M1779u0Juuaa61J27doROmrU2IIHHnjoIiANR5PL5Wlz577YPT09VanVeggTJ07Ov+++qfk6nU4AgJkzX8jev39fSEJCvKZ6ArRnz66AbdveD1+8eFniiBGjGpXMVFRUsLNnz+pqsZjZWbNeymiO75+4lyYnQDzP/8Zx3BgAbwKYA4AB8CKAUwBu53n+SBOa627/6MFx3HcABgJIAbCM5/mvAIQDuLKaR7b9Y2f7dgC48mbNtm+Hi9pwCssy8PX1aHhHJ+h0mmZp92qZi6WaGIIowsPbBxqNNIpQYzMh0j8Av+krm+2aNAd3vc5tmWCzotJUBrX93hBFEZn2BKhLRHDV601hcvQ6mg1t6v5qDXRPtwy6zi2DrnPbMWjQkPLqX3Ncz8rTp0/pACAlJUWblJToceTI4apOfMev9cTEBPUtt4wpu//+afkHD37hl5SUoM3KylSlpaVoAcBmE6reNSsuLlZs2rQ+UiaTieHhnU2NiSsvL1c+e/asbnl5uaoVK9ZciIqKNjd8FGnrnF0I9VcAN3Ecp4FUNKCM5/kKAOA4Tn5Fb0t9HJMAPgDwOqRhaXcD+MKeZGkhDV+rzmj/qLZvRx37+Nk/d0UbThEEEWVl+qtpogaZjIVOp0FZmQE2W0sXfmmYOU8aymQUbBBlKhgM0u8RpVxaDFVms6K42P2Hwbn7dW6LREGAKTMTXuGBMJaVwWIwg2EZVJpM0BtNYBgG/l6eMBqa/rfHbB9LV15Q3Cbur9ZA93TLoOvcMprzOut0GupZagZyufyyRQpEUQTLykTpc4GZNOk/uRMnTi688rjg4BBLfn6e/IknHu7p5aWzXn/9jSWDB19b1q9f/8p7753Ur/q+DMNiyZI3ErZtez9s+fLXordu/TCeZev+WSYk8OrZs5/rZrPZmHXrNvK9evUx1LkzaVecWQcoGcBknufP8DxvAGCotu1aAIeARg/Ddzzp/I/neUf1uNMcxw2C1KtkAKC64hjH4jKV1c6tqh6HfR/HU5Ar2nCa1do8fwBtNqHZ2r4qXt5YnpoEi8mEMQoNBEH6fSeqpDxTLojuGXcd3PY6t0Gm7GykLVoIuc4LEY/cDkEQwQLIyCsAAAT66KCQyavumaaw2t//M1dU0M+rAXRPtwy6zi2DrnPbERt7zmPMmFur5uPEx8d6xsTE6AEgPLyzISMjTd2lS0zVm9HHjx/1/Pjjj4Lnz1+UdvDgF/4VFeXyffu+PKdQKER7e/buv0t/M3x8vC3Dh48sCwoKMj/11PRe27dvDn700SfzaosnLS1V+fzzz3T39PS0rV694UJ4eISlWb5x4pYalQBxHHcfAIX9yygAkzmO61/LrqOq7dcYmfaPVw5ROw9gAqR1hsKu2Ob4OqvaucIglc+uvs8Z++cZLmiDNJZcjjMFFwEAt6kulcFm7BXhlACsVivkciqy0tEYk6Wq8qqgAAhmY9XrGXnSG37hgc53uKaJViTn5aC/6sr3OgghpP1iVZoW7aq6mvN99dWB4MjIaGOfPv0qP/vsk8C0tFTN3LmvpgLAlCkP5K5YsbTL+vVrwm677Y7C3Nwc5erVK6ICAgLMwcEh1uDgELPJZGIPHvzC95prrq1ISkpUb9y4PgIAzGZzjZh69uxtnDz5ntzdu3eGjRgxqiQmpmuN4XDLli2Oslot7KuvLk1QKBRiXl5u1YNJcHBIY0cykTaqsU+hQwC8YP9cBLConn1XN+H8/wAoB3A9pLV3HPoCSATwO4CnOI6T8TzvWHF4FACe5/l8juNKAZRBqhaXBAAcx/kAGATgHfv+v7qgDdJIBsOlIX+qausAsfaKcFqZDHq9HjqdrsaxpH0zJicDANRhlxZABS71AHUKcr5+W4JcxC8ZaVjkQfN/CCHtnyiKAqPUWj256+Ro4YVJGaXWKgpik7vdxo4df/HTT/cGr1u3ShMZGal/881VCb17S0PObr99YrEoisl79nwYun//JyFarYdtyJBrS154YU6mY3t8fFzu5s2bIjZsWMMGBASax427reD48WM+cXHnPQBcvPJ8M2Y8m3Ps2K++y5e/FrVlywd89aFwOTnZiri4814A8NRTj/S68tijR/8+2dTvj7QtjU2A5gNYD6ngQTKk8tD/XLGPDUApz/PlaCSe5w0cx60EsIjjuCwAfwGYAmAspCQlFlKhha32/a4F8DykNXvA87yJ47h3ALzFcdxFSD1G/4PU67PffpptLmiDNFJ5SgpuCwpBntkEueLSZHZGI/VUq2Uy6PWVlAB1QMbUFACAKvCypR+QmW+vABfgfA+QRiXda9UTcEIIaa9EETaDoMhhFD4tPllJFERBFGFreM/LRUfHGObMWZBZ1/YJE+4snjDhzuLatjEMg9mz52XNnj0vq/rr1Ye3zZr1YvasWS86ilxBpVKJ+/Z9eb629kJDwyyU5HRsjUqAeJ43A0gDAI7joiFVSOvD8/w/9tdCICUWh5oaAM/zyziO0wNYDqATgDgAd/E8/7O97XGQkq9TAHIAvFxtvhAg9UbJAWwBoIHU4zPOHjPsvTxX1QZpPH1SAh7uHIUz5WVgmEvljG0KaWiSlpXRWkAdkGA2w2RfAFUR4AVpzWRJZlUPkPMJkIdSCW+5AhZaCJUQ0kGIImyiKDY5ESGEOFcFzgbgNKQiATH21wYAOADgBMdxt/M8X9CUBnmeXwNgTR3bTgC4oZ5jbZCqx82tZ5+rboM0jrmyEiwAC8NeNhnM6BeCF9PSkFuQi+16SoA6GlNGOmCzQe7lCSiY6vmPS+YA9RLluHfAYGQnp1xtqIQQQghp55zpOv0fABmAex0v8Dz/LYD+kBYUXeGa0EhbZLH37liuXMySlcGqVMEqitBTAtThGFOkxEQT0QmwXiq0YzSZcbFEWqeuU6Dzc4BkCvt7ORYq4kMIIe7m6NG/T95zz5QaJa4JaS3OJECjAMzjef7v6i/yPH8W0lCy210RGGmbrPYEyMrKamxzFEWorKR5Gh2Npnt3BN11F3R9ul72elaBNNzbU6OGzsP5BQ1ZpZQAMZQAEUIIIaQBzgyBUwKoq/qHEVIvEOmgrEZpKSWbrOatdbenByzRMTCV1jrHkbRj6s6R8InuBGPCXzAVXVqSITPfPvwtyP+yOWNNJVdKAy5ZGw2HJ4QQQkj9nOkBOg7gBY7jLlvvx/718wD+dEFcpI0SjVKp/doSoIFyGYb5B8JUWlpjG2nfGAZgrCbYjJf3/mVdvPr5PwAgV0tV4FiBFkQkhBBCSP2c6QFaCGnNnhSO4w4ByAcQCOBWAAGQ1tMhHZRgkha4FOQ118O1MAxUEGGmKnAdijkvD9bcbLCh3rCZDJdtqyqBfRVrAAGAQiklQHJKgAghhBDSgCb3APE8fxLAdZB6giYAeBnAJAAnANzI8/xfrgyQtC3JoaFYfiEOmZqaC1Ja7UOcrLRWS4dScfIEMje8jayPP4Nou3xx7ayL9gToKnuAlBp7AiQ2sCMhhBBCOjxneoDA8/y/AO5xcSykHSgAcKasFP4azxrbLAwLiAJsBkPNA0m75agApwqumeRcmgN0lQmQhwY/F1wEo1FjCAOIlAgRQto5hoGMYZiWXwhVdG4hVELciVMJEABwHDcewBgAoQBeATAQwEme59NcFBtpgwz23h2lSl1jm42VAYIVgsnU0mGRVmRMtSdAAbrLXrfabMi2V4ELv4oS2ACg9vbExtQkBPj744mraokQQtwfw0Amym2hepvB6ec4Z2nkGitjleW4WxK0fv2asJ9++t7/wIFvzzb2mJ07twZ9+eXnQYWFhcrg4GDT3Xf/N/e//72fynV3AE3+j8NxnBbSoqejAZRBqvr2PwAzAAzkOG44z/PnXRkkaTtCLhZgpH8gPGQ15wBZZXLAaoLNSAlQR2EtKYG1uAhgGMh9PSDaLv3scwqKYbXZoFLIEeznfVXnUdurwBmNRjAMA5G6gAgh7RjDMKzeZpD/lXlaMFiMLTb5UaNQs9eGD5B7MF6sKIpulQA11e7dOwN37tzW6YUXZqf26zew8vffj+reeWddlJeXt238+NtLWjs+0ryceefgDQCDIa0H9BsAs/31qQC+A7AUwF0uiY60Of1LS3FDdAy+ZWv2yguOynBmSoA6iqren5AgiOLla/Sk5xUAADqHBIJlWQiC80mLSqGAkmWhtNogCgIA50tqE0JIW2GwGIVKs6Glq7+0+LC75lBRUSGbNu2RrDvumFwMAJGRUQUHDx4I+vvvP3WUALV/ztzE9wKYz/P8EQBVTyw8z+cCWAZgqItiI22Qwv7OO2Nf9LS6v0K74dHTf+OM0KbfNCJNYExNBgBoOoUAV1RoS8+VEqCosKCrPo9aqcC2AUPwbt8BMOTlNXwAIYSQFjN06JDBu3fvDJw+/UFu5MgbBk2ZMrnX998fuqzr//Dh77wffPCeniNH3jDorrtu77Nu3aowk8lU9W5WfHys+vnnn44ZN27EgOHDrxt0112399m+fUudf0B27NgSNGLE9YO+++4bn9q2P/nkM7kPP/xYPgBYLBbmwIHP/LKyMtXXXHNdmYu+beLGnEmAfACk1rGtGEDN2e+kQxAFAVUD32pJgEQPL5RbrdDbS2WT9s9RAEEZ5FtjW1reRQBAVGjgVZ9HrVLAaF8E1VxZcdXtEUIIca3t2zeHjxw5quj993eeHzLkutKlSxd1PXHiTw8AOHLksG758tdixo+fULBt2+7zzz33UvrRo7/4LVjwcjQA6PV69qWXZnVXqzXChg3vxm/f/tH5oUNvLt669d2Is2f/1Vx5rl27dgTu3Lk1fOHCJUnjxt1WUl9cf/zxu+ctt9w4aNWqN6OHDRtR2ND+pH1wJgE6B+CBOrbdYd9OOiCx2tA2Vl2zDLZCoQIAGKgKXIcR9MA0dH78UWg713yTLs3eAxTtgh4gpVwOk72HyVheftXtEUIIca2RI0cXTJ36yMVu3bqbZs+elxUT07Vy3749QQCwa9eO0FGjxhY88MBDF6Oju5iGD7+l7IUXXk7744/ffdPTU5V6fSU7ceLk/FdeWZzWvXsPY5cuMaaZM1/IBoCEhPjLEqA9e3YFbNv2fvjixcsSR48e2+DK6zExXY2bNm2LnTXrxdTjx4/6rV69olPzXAHiTpyZA7QMwOccx/kD+ArSMLjhHMc9AuApAPe5MD7Shgj24gaCKEJWSw9QqL4Uj3aOQqmNFqvsKNQhwVAGaFAR+ztsV3T8pee6rgeIYRiYRem+MlVQAkQIIe5m0KAhl/1y5rieladPn9IBQEpKijYpKdHjyJHDVSVBHbVsEhMT1LfcMqbs/vun5R88+IVfUlKCNisrU5WWlqIFAJtNqBomV1xcrNi0aX2kTCYTw8M7N2rCcWBgkDUwMMjap09fQ3FxsWLPnl1hs2a9lK1UKqmaTjvW5ASI5/kvOI57EMAKALfZX14NIB/AUzzPf+rC+EgbItiHthkFG2TKGj3S8DVW4rqgEPypr2zp0EgrYVkGotkAm+nyXr8KgxEFpdLfQlfMAQIAs/2vpYXuL0IIcTty+eVLVYuiCJaVidLnAjNp0n9yJ06cXKMEdXBwiCU/P0/+xBMP9/Ty0lmvv/7GksGDry3r169/5b33TupXfV+GYbFkyRsJ27a9H7Z8+WvRW7d+GM/WUpQJAH766QddeHiEuXv3HlVvz8XEdDNYrRamqKhQHhISaqn1QNIuNHkIHMdxPXme/4jn+c4AekIqetAHQBjP81tdHSBpO0SzVBDQLAhQKGuuA8TY1waSCdQD1BGUHf8dRd8dgiE1qcbKpBn2CnB+Ok94aWsmy86w2muymCspASKEEHcTG3vusrHx8fGxnjExMXoACA/vbMjISFN36RJjcvzLy8tRrF+/Oryiopz96qsD/hUV5fJt23bFP/PMcznjx99eUlpaYn8T/9LfFx8fb8vw4SPL5s1bmJqcnKjdvn1zcF3xbNnybvj27VtCqr92/vy/Hp6entagoGBKfto5Z+YAfcdx3DQA4CW/8zwfy/M8PdV2cDI/f7yZEI9NqcmQK1U1d7AnRXJao6VDKP3tF+Tu2YOKC4k1tqXZh79FhgS47HxW+0eLXu+yNgkhhLjGV18dCD5w4DO/xMQE1VtvLQ9PS0vV3HfftDwAmDLlgdy//vrDd/36NWGJiQmqo0d/9Vq58o3oysoKeXBwiDU4OMRsMpnYgwe/8M3MTFf+8stPutdfX9gFAMxmc41n2Z49exsnT74nd/funWFJSYm1PJAAU6Y8mHP06C/+H364IzA5OUm1Z8+HAQcOfBZy//3TsuvqNSLthzNzgOQALro6ENL2WVgG/5SWAADGK2vOAXKUxlZA6vpmGFqrpb0SBQGmjHQAgCLAC9XfoQMuFUDoHHL1838cUq1m5BfoMVBds/eREELaI41C3aJP6ldzvrFjx1/89NO9wevWrdJERkbq33xzVULv3n0MAHD77ROLRVFM3rPnw9D9+z8J0Wo9bEOGXFvywgtzMh3b4+Pjcjdv3hSxYcMaNiAg0Dxu3G0Fx48f84mLO++BWp5LZ8x4NufYsV99ly9/LWrLlg/4K5OaiRMnF9ts1pS9e3eHbt36XkRAQID5ySdnpk+Z8kCBs98jaTucSYBeBbCB47jlkCq+1Vh0g+f59KsNjLQ9evs77wzDQK5Q1tjOqKQESMWyMBqN0GhcM/SJuB/LxXwIBgMYhQJyTxUE8+UVENKreoBclwCdtBnxb2oa3vb3b3hnQghpw0RRFDRyjfXa8AFytPDCpBqZxipaxSaP+omOjjHMmbMgs67tEybcWTxhwp3FtW1jGAazZ8/Lmj17Xlb11x999MmqZ9BZs17MnjXrxWzH1yqVSty378vz9cU0efI9RZMn31PU+O+CtBfOJEDvApAB2Ior39a9ROZ0RKTNqsjMxHD/QJRBRG3dx6y9B0hNCVC7Z0pLAwCoO4VCsNQsxJNmnwPkyiFwaqW0ChWVWSeEtHeiCBtjleV4MF4tPlZLtIqCKIJWNCdtmjMJ0GMuj4K0C6bkRDwTHYNzdUxCF+3zgtSsDAaDHr6+NRfHJO2DMd2eAIUE1CiAYBMEpOVIPUDRoa6pAAcAaqUSCoaBiRZCJYR0AKIImyiKlIgQ4gRnEqBOAL7geb7ebkXS8Vj0eigA2Bim1v54k28w5iQloKi8FNvpXfp2zZSWCgBQBnjX2JaVXwiz1QqVUoFOgX4uO+d1CjVmDr4OBWf+Be6e4rJ2CSGEXJ2jR/8+2doxEFKdM12ncwBEuDoQ0vZZjVJSY2VrL24gyuQoYViUWa0wmSgBaq9EUYQpUxrmrfD3qrE9KUsash0dGlTrUElnMTL7yNtahtwRQgghhDg40wN0AUBfAN+6OBbSxlmN0oOnwNQ9BcyxPhDN02i/GIZBzP9WQ0iNh60yo8YcoORsKQGK6VTn8gzOnVcuA6yAaLE2vDMhhBBCOixnEqCDAJZxHDcBtVeBE3meX3rVkZE2RzBJlb5sdb2rLwi4y9cXZoUMxgqap9GeydUqyMKDUXY+qca2ZHsPUBcXJ0CsXAbABlho/TpCCCGE1M2ZBOg1+8dh9n9XEgFQAtQB2Uz2HiBZHT1ADIORWg1YDy0yy8paMDLS0liWgVBZUqMAAgAkNVMPECuXA7ABNpoTTAghhJC6NTkB4nmelscltRLMZukjW3cCZAagBmCpo1IccS/OLFibv3c3WJsFuh5hNbZZrFak20tgdwlzbQIkU8gBmMBSAkQIIYSQelxVMsNxXA+O467nOC7GVQGRtisnMBBrkxKQrFLXuY8F0sO0RU8JkDtLSOBx99134Jpr+uH111+FpZHDykRRRPmff6DoyM+wVtTs5UvPK4DNJsBDo0KQb80KcVdDppLez2GFJq/PRwghhJAOxJkhcOA47j4AqwCEVHstF8B8nuc/cFFspI0pUihwvLgQw9Qede5jYRgAIqwGfcsFRpqkrKwMs2bNQE6OtKD255/vgygKeO215Q0eay0uhq28HGBZyL01EK3my7YnZuYCkHp/mtqz1BBGrcJfxUVQBQbgOpe2TAgh7odhIGMYpuUXQhVpIVTS9jU5AeI47g4AuwD8BOAVALkAwgA8CGA7x3GFPM9/7dIoSZvgqOymUKjq3MfKsIBog4WqwLmtvXt3IScnG+HhEXjssaewZMmrOHDgM4wfPwHXXXdDvceaqhZADYJoq1mN7UJ6DgCge+eaw+OuFqPTYlXSBVzn5417XN46IYS4D4aBTCVYQm16vVNvZF8NmVZrNbGKHHdLgtavXxP200/f+x848O3Zph4riiKefvqxblarhd28+QO+OeIj7sWZ/zgLAezjef7KlQa3cxy3F8B8AJQAdUBehYW4ztcP3nUVQQBgsydANqOxBSMjjWWxWLB3724AwNNPz8Jtt92B+PhY7N27G++++06DCZDRvgCqOjQIEGsORePTswAAPZohAVIpFAAAk4nuLUJI+8YwDGvT6+WFf/4pWPWGFhv3K9dqWP/rrpMzXj6sKIpulQBdje3bNwedPXtG17NnLypR20E4kwD1BbC4jm07AOxzOhrSpnEXL+KmmO44ItT9O9HKsoAA2Iy0WKU7OnnyBIqKCuHr64cxY24FAEyf/gQ+/fQT/PPPSZw9ewZ9+/av83iTPQFSBvrU2CaKIvg0aVgdF9nJ5bGrlfYEyGAEw9RagI4QQtoVq94gWCsrW3riY7sqhhUbe06zd++usK5du9Hk5A7EmQSoAIB/HdsCAJjr2FYnjuMiAaTWsulxnue3cBw3AMDbAIYAKASwnuf5VdWOZyElZY8B8AVwFMDTPM8nVtvnqtsg9WMck8+VdQ+B+9UnDH8c2Y/hERNaKCrSFEeOHAYAjBgxCgp7j0pQUDDGj78dX311ALt3f4AVK1bXebzRPgROGaCrsS2nsARlegPkMhm6hAW5PHYNw+CjQddCzrIQbQJQ13pUhBBCWtTQoUMGz5jxbPqPP/7gl5KS5BEcHGKcPv2JrLFjx5c69jl8+DvvHTu2hGVlZWp8ff3MN988smjGjGdzVCqVCADx8bHqd999p1NcXKyX0Whg/f0DzHfcMTn/kUcey6/tnDt2bAnasWNL+Pz5i5LHjbutpLZ9jEYjs2TJq9EPPPBQ9oUL8dr8/Ly6H2BIu+LME8JhAK9zHNe5+ov2JGYxgO+daLMfACOkuUSh1f7t5jjOH8APAC5ASl4WA1jKcdwj1Y5/FcBTAB4HcAOktYgOcRyntMd21W2QhskcPT/1zAEyajyRZzKh0tzkPJm0gN9/PwoAGDnylstev/feBwAAP//8Iyorax8hIBgNYGRygGEg99bU2B6fJg1/i+kUDIXc9cPWVRo15PakR7TQ/UUIIe5k+/bN4SNHjip6//2d54cMua506dJFXU+c+NMDAI4cOaxbvvy1mPHjJxRs27b7/HPPvZR+9OgvfgsWvBwNAHq9nn3ppVnd1WqNsGHDu/Hbt390fujQm4u3bn034uzZf2v8wdm1a0fgzp1bwxcuXJJUV/IDAKtXrwj39fWzTJs2vdYkirRfzjyFvALgbwA8x3HHIRVBCIGUNBQBmOdEm30B8DzP51y5geO45wGYAMzged4KII7juG4A5kKad6QE8BKAOTzPf2M/5l4A2QDuArAXwBMuaIM0QCZIY44YZd1lsOVKKZ+keRru5+LFfGRkpINhGAwcOOSybb1790FkZBTS0lLx00+Hcccdk2ocz6o16LZqDdiCVFSk/FNjO29PgHo0w/A3AFCpFFWfi2YzmHrKsRNCCGlZI0eOLpg69ZGLADB79rysc+fOeO3btyfommuuS9m1a0foqFFjCx544KGLABAd3cUkl8vT5s59sXt6eqpSq/UQJk6cnH/ffVPzdTqdAAAzZ76QvX//vpCEhHhN3779qior7dmzK2DbtvfDFy9eljhixKg6V10/cuSw7rfffvbbvv2jWFdXJSXuz5mFUHM5jhsEKWEYDqlHpQjAegBreJ7PcyKOfgBi69g2DMCv9sTF4ScA8zmOCwIQBcDL/pojxhKO404BuBlS8uKKNkgDZKIIMAxQTwIUadLjvk4RYCqpCpy7OX36FACgWzcOXl5el21jGAa33z4RGzeux9dff1lrAgQALMsAsAK1rMXDp9vn/zRDAQQAUKtUKBcEKFkWgsXcvgapE0JIGzdo0JDy6l9zXM/K06dP6QAgJSVFm5SU6HHkyOGqKRaOeZyJiQnqW24ZU3b//dPyDx78wi8pKUGblZWpSktL0QKAzSZUZS/FxcWKTZvWR8pkMjE8vHOdk40LCi7KV61aETVz5gvpoaFhjVvojrQrzo5DKQSwl+f5uQDAcVwogGsgJULO6Asgh+O43wB0B5AAYCnP898BCAdwZUnDbPvHzvbtAJBRyz6OYXquaMMpcrlrH8NkMvayj+7EcTPJ1Gr7g3BNYcZyjAjthD8tFpdfG1dy5+vcXM6ePQ0AGDx4cK0/mzvukBKgv/76A8XFBQgMrDmPR86KMOtLavz8RVFEbGomAKBnVKeq7Uy1j1d7pbVqJQoEG5QsC1jMbn1/tYaOeE+3BrrOLYOuc9sjl8svK00jiiJYViZKnwvMpEn/yZ04cXLhlccFB4dY8vPz5E888XBPLy+d9frrbywZPPjasn79+lfee++kftX3ZRgWS5a8kbBt2/thy5e/Fr1164fxbC3zQX/++Sfv0tISxdq1K6PWrl0ZBQBWq5URBIEZNeqmgcuX/y/h+utvpIpw7Zgz6wCFQ5rnowIQY3+5P4ADAE5wHHc7z/MFTWhPCSnpqQTwMoAKSGsKHeI4bgwALaTha9U5xk+p7dtRxz5+9s9d0UaTsSwDX9+6FwW9GjpdzTkWrUkUxaqbSenhCY2m9qlTFpU0P4gVbM12bVzJ3a5zc0pMvAAAuOaawbX+bHx9e2LQoEE4deoUfvvtJzz66KOXbT/9wmzIPbQIGTUQ6it+/qk5+Sit0EOpkKN/j6gac4CqD19zljcLmO09T3LR0ibur9bQke7p1kTXuWXQdW47YmPPeYwZc2tV0YP4+FjPmJgYPQCEh3c2ZGSkqbt0ial6Djt+/Kjnxx9/FDx//qK0gwe/8K+oKJfv2/flOYVCIdrbs//wL+VVPj7eluHDR5YFBQWZn3pqeq/t2zcHP/rokzVGJo0bd1vxoEFDLktw3nlnbXhhYYFi8eLlKaGhYTSRtJ1zpgfof5CKJ9zreIHn+W85jusP4GMAKyBVUmsUnufNHMf5ALDyPO+48U9yHNcTwGwABkjJVnWOMVaV9u2w72O4Yh9HSUNXtNFkgiCirEzv7OG1kslY6HQalJUZYLO1dOXLuomCgN0lRagsLUGvW9QwGGr/3cGw0oMuY7WhuNh9K06663VuLqIo4ty58wCAiIgudf5sxoy5FadOncL+/Qdw112XlgKzlpejMjkFAOA3vDdwRZGLE+ekYoq9osJhswiw2YsUMCwDlUoBk8kCUbi6utWiIMBkT4CK8gshd+P7qzV0tHu6tdB1bhnNeZ11Ok2b6VmSazUtGujVnO+rrw4ER0ZGG/v06Vf52WefBKalpWrmzn01FQCmTHkgd8WKpV3Wr18TdtttdxTm5uYoV69eERUQEGAODg6xBgeHmE0mE3vw4Be+11xzbUVSUqJ648b1EQBgNptrxNSzZ2/j5Mn35O7evTNsxIhRJTExXS97g9vLy0vw8vK67DWNRmNTKpXy6kkYab+cSYBGAXiC5/m/q7/I8/xZjuMWAdjQ1AZ5nq/tSeUsgFshDUu7ctKA4+ssAIpqryVdsc8Z++euaMMpVmvz/AG02YRma9tZx4qLUFRUiD4qDYQ6HmYZhdQzwAruF39t3PE6N4ecnGyUlZVCLpcjMrJLnd/zLbeMw8qVb+L06VPIzMxCSEgoAFQlP8rAAIiCtUYycyZRKo/dLybysnvD8VdLFMQ675nGY8BXViDbaMBIsfn+77V1HeWebm10nVtGR73OoigKMq3W6n/ddXK08Lo8Mq3WahVrWem6AWPHjr/46ad7g9etW6WJjIzUv/nmqoTevfsYAOD22ycWi6KYvGfPh6H7938SotV62IYMubbkhRfmZDq2x8fH5W7evCliw4Y1bEBAoHncuNsKjh8/5hMXd94DwMUrzzdjxrM5x4796rt8+WtRW7Z8wNc2FI50XM4kQEoAdd34RkjFBBqN47h+AH4HcCvP80erbRoC4DyA0wCe4jhOxvO8Y4XNUZCqxuVzHFcKoAzACNiTF3uP0iAA79j3/9UFbZAGGI3SqEKZvJ4y+grHELiO9wfLnSUk8ACAqKhoKJV1V34PDg7GwIGDcerU3/j++0OYNm06gEsLoKrDgiHWshDuv/YEqG/Xq5pS16Dd+dkoqzTgJh/fZj0PIYS0JlGEzcQqchgvnxZ/qreKoiCKqHvF8zpER8cY5sxZkFnX9gkT7iyeMOHO4tq2MQyD2bPnZc2ePS+r+uvVh7fNmvVi9qxZLzrmd0OlUon79n15vrHxLV/+v9TG7kvaPmcSoOMAXuA47hDP81WVMziOUwB4HsCfTWzvnP3fJo7jZkBaaPUJSGW1rwGQB2AOgK0cx60EcK39PE8BAM/zJo7j3gHwFsdxFyEtqPo/SL0+++3n2OaCNkg9rHo9+qrUqJTJIK8nAWLsCZBcvNp3+4krpdkTmOjomPp3BDB27Hh7AvRtVQLkWABVFVQz8Sgur0BKtrTEQt+Y5k2A1EolyioNVGadENLuiSJsoig2OREhhDiXAC0EcBRACsdxhwDkAwiENFwtAFIvSqPxPC9wHHcHpLlD+wD4ADgFYAzP82cBgOO4cZDKbJ8CkAPgZZ7nd1ZrZpH9e9kCQAOpx2ccz/Nm+znyr7YNUj9jbi5eiumGEosZyYp61o61l8h2/TKY5Gqk2xOYzp0jG9x3zJhxWLlyOc6d+xdZWZno1CkcpjTpeGWArsb+f8VK83+6RYTC18vThVHXpFJKd5ajN5IQQggh5ErOrAN0kuO46wC8CmACAH8AJQB+g1S6+rQTbV4E8Gg9209A6hGqa7sN0qKmc5uzDVI3Y6VU3t8sCFAo6+4BqgyNxpzz/6LSZsMdoghafMw9OHqAIiOjGtzX3z8AQ4Zci7/++kMaBnfv/bBclHp4FL6eEIXL5486EqBre3V1acy1eSAgFH07xcB68m+g38BmPx8hhJCGHT3698nWjoGQ6px6I57n+X8B3OPiWEgbZqqU6liYBREyWd23FePhjVSDVBnPZDJBra570VTScpqSAAHSMLi//voD3313CA9OmASPXr0hlJcCrHDZDEFRFFs0AZKxLBQsC4OBeoAIIYQQUjsqiUFcwmxPgKwN7KeoNsGe5mm4B4PBgLy8XABA585RjTpm1KixkMlkiI+PRba+ElFz5yHmhScgWi9fUDspKw/5xaVQyuUY0C3a1aHXINoXVrXRvUUIIYSQOlACRFzCopd6dSwN7Ke0mDE5tBPuDAmD0Uil9t1BRkY6AECn84aPj0+jjvH19cV110kjSr///hAYBrBVltTY78e/zwIAruvTDWrl1S922hBHAiSY6N4ihBBCSO0oASIuYbYPa7M2MKeHNRtxX6cI3BXaiXqA3ER6eioAafhbU+ZkjR07HgDw07ffgLGaYDNevuivKIr4yZ4AjRrc1zXBNkC0L14omCkBIoQQQkjtKAEiLmE1GAAAtgYeoEW51AugZFmYTIZmj4s0LCMjAwAQHh7RpONuuWUMvLVaLPbxw5nnnoelvPSy7YmZuUjNvQiFXIZh/Xu6LN76MPYESDRT8UZCCCGE1O6qqxFzHKcGYOJ5nhZ26cAqfX2xKzUZyqAQXFvPfoI9AZIxDEx66gFyB3l5OQCA0NCwJh2n0+lw36ixYHNyUVFeAVG8fAbY/p+lJcGG9u8JT20LFbuQyQAbIFoaGoxJCCFtG8NAxjBMi7+RLTq5ECoh7sSpBIjjOA7AEgBjAOgAXMtx3GMA4nie3+DC+EgbUaFS43BBPnqGhNebAInVKsSZ9RXNHxhpUG6ulACFhIQ2+dgx/QbAlvMt+JJiyBJT0COyEwCgoKQM3xw/BQC4Z2Sd1eddzqyQ4VxBMdQhQS12TkIIaWkMAxnLsKFmo7XFl9VTquVWAUIOJUGkLWvyfxyO4wZAWiQ0H8BuAE/bN5kBrOM4ruyKBUZJB2A0SsPZ6lsDCABEVgZBFMEyTFXpbNK6cnKcT4A8yitQBiBZX4mvd3+B9+Y8Cblcho37v4fRbEHvLhEYxDV/9TeHQg8lVl+Iw9RrBuO2FjsrIYS0LIZhWLPRKo87lyOYjFah4SNcQ6WWsz37hMoVahkriqJbJUDr168J++mn7/0PHPj2bGOPefzxh7rHxZ33qv5a9+49KrZt28W7PkLiTpx552AVgL8BjLV//QwA8Dz/PMdxWgDPAaAEqKMpKEBfLx0CFA1U+mIYWACoAFgN+vr3JS3i0hC4pidApow0AECO1YJzyXl45b2PEOrvi69/PwmGYTDrnttadLFblb3SnCMhJ4SQ9sxktApGg6XFEiC7djN/PCMjTTNjxrPpo0ePK3a8plQqaUpHB+BMAnQDgCk8z1s5jpNdsW0vgPuvPizS1vimpuBVrhf+aMTDrkUEVAxg1tNDamszGPQoKSkBAAQHNy0BEixmmLKzAQD/vXcCjm/cjl/+ia3a/sSdozGgW5SrQm0UlcKRANH8MkIIIXXLyclWVFRUyPv1G1gRHBzS0DKGpJ1xJgEyAtDWsc3fvp10MI5J544qb/XZZRaQmhyLh8ePb+6wSANyc6UFUD08PODl5dXA3pczZ2UBNhtkHh64fkhvvPvyE/joh6MwGE24/abBGHtt/+YIuV7+VgFb+g+GsaC44Z0JIYS0iKFDhwyeMePZ9B9//MEvJSXJIzg4xDh9+hNZY8eOryofevjwd947dmwJy8rK1Pj6+plvvnlk0YwZz+aoVCoRAOLjY9XvvvtOp7i4WC+j0cD6+weY77hjcv4jjzyWX9s5d+zYErRjx5bw+fMXJY8bd1vJldvj42M1DMOgW7fu9NzaATmTAH0P4HWO444ByLG/JnIc5wlgNoDDrgqOtCH2BEhoRAKUK1chWV8Jo43ecGltlwoghDV5qBqjVMF3xEiwghGixYR+XSPRr2tkc4TZaAq5HDqFAoLQ0iNCCCGE1Gf79s3hDz30aOb8+YtSv/hif8DSpYu6+vr6xV9zzXWVR44c1i1f/lrMY489lXHjjcPK0tNTVRs2rO2cmZmuXrVqfbJer2dfemlW9759+5dv2PBuvFyuEA8c+DRg69Z3I4YMuba8b99+lw0p2bVrR+DOnVvDFy5ckjR69NjS2uJJTEzQaLUetiVLXo08e/aMTq1W22666ebi6kkXab+cSYDmADgOgAdwGoAIYDUADtK40CmuCo60IVZ7MtOIBEiuUAIAjEZarLK1XUqAQpp8rCosDGGPTIeYfR6VaXGuDs0pcpW9zLpIf7sIIcSdjBw5umDq1EcuAsDs2fOyzp0747Vv356ga665LmXXrh2ho0aNLXjggYcuAkB0dBeTXC5Pmzv3xe7p6alKrdZDmDhxcv59903N1+l0AgDMnPlC9v79+0ISEuI11ROgPXt2BWzb9n744sXLEkeMGFVWVzwpKckai8XC9Os3oGLq1Idz4+LOazdvfjciLy9X+eabq1Kb+XKQVtbkBIjn+QyO4/oDeBHALQCSAHgC+AjAGp7nc+o7nrRPjCMBsic39ektYxAVEgpZMQ1Tam05OdIcHmcqwAGADFaY9HX+fWlxCpV0/8kp/yGEELcyaNCQ8upfc1zPytOnT+kAICUlRZuUlOhx5Mhhf8d2x/tYiYkJ6ltuGVN2//3T8g8e/MIvKSlBm5WVqUpLS9ECgM0mVA1fKC4uVmzatD5SJpOJ4eGd632XdenSFakVFRUZ3t7eNgDo2bO3US5XiCtXLu+Sn5+XGRQUTMNU2jGn6sfzPF8IYIGLYyFtGGOTqmGKyoYToIGiBVHhkThbWmuvNGlBBQUXAQCBgU1bN0e02WBKT4OycxBsJvcZPq2w339yAAxz6Q8oIYSQ1iWXX/7WlCiKYFmZKH0uMJMm/Sd34sTJhVceFxwcYsnPz5M/8cTDPb28dNbrr7+xZPDga8v69etfee+9k/pV35dhWCxZ8kbCtm3vhy1f/lr01q0fxrNs7UXrZDIZHMmPQ/funAEAcnKylZQAtW/OLoTqDan3xwO1lEPkef6Dq4yLtDGsfc4Fo6h/HSAAsLEywAYIZhoC19oKCwsAAAEBgU06zpybg/TlSyDTahHx2B3NEZpTlGopAVIwDERBAFp+kXRCCCG1iI095zFmzK1V73zGx8d6xsTE6AEgPLyzISMjTd2lS0zVg8Hx40c9P/74o+D58xelHTz4hX9FRbl8374vzykUCtHenkba81Je5ePjbRk+fGRZUFCQ+amnpvfavn1z8KOPPplXWzzTpz/IRUR0Nr7++htpjtfOnv3XQy6Xi9HRMe7zzh5pFs4shDoewD7UXQlOBEAJUAdzghFRkJGG0N7Xw7eBfW2sVD1dNJubPzBSr4IC5xIgU7r090IVGgTR4j6JrFJ1qQdStFjBNKJHkhBC2iqVWt6i7/Jczfm++upAcGRktLFPn36Vn332SWBaWqpm7txXUwFgypQHclesWNpl/fo1Ybfddkdhbm6OcvXqFVEBAQHm4OAQa3BwiNlkMrEHD37he80111YkJSWqN25cHwEAZrO5Rkw9e/Y2Tp58T+7u3TvDRowYVRIT07XGH6qRI0cVbdnybsSePR9W3nDD0LKzZ097bNv2Xvidd96V55hnRNovZ3qA3gQQB2kOUCYAukkIzpjN+CcvB494+TS4ryiTbjtH6WzSehw9QP7+AU06zpgmJUDqkEC3Gmem0iiRWFkBgWXQTXCrRcoJIcRlRFEUlGq5tWefUDlaeGFSpVpuFcSml9ocO3b8xU8/3Ru8bt0qTWRkpP7NN1cl9O7dxwAAt98+sVgUxeQ9ez4M3b//kxCt1sM2ZMi1JS+8MCfTsT0+Pi538+ZNERs2rGEDAgLN48bdVnD8+DGfuLjzHgAuXnm+GTOezTl27Fff5ctfi9qy5QP+yqFwU6c+cpFlWXz++afB7723sbOPj49l4sS78p588plc564MaUucSYB6ALiT5/nfXB0MabuMRqkAi7wRRRBs9gQIlAC1KlEUq/UANS0BcvQAKQN0Lo/raqiVSrwSdw5qlQoTtVoIgvskZ4QQ4iqiCJsAIUehlrX4OF9BFARRRJPfYYqOjjHMmbMgs67tEybcWTxhwp21VkdiGAazZ8/Lmj17Xlb116sPb5s168XsWbNezHZ8rVKpxH37vjxfX0wPPPDQRUflOdKxOJMApQFwr6ce0upCrDZYPDyhkDVcBtuxWGpV5TjSKsrKSmG1SkloU3qAREGAKSMdAKD018GdOoFVSuneMppMqD4unBBC2htRhE0URerqJsQJzrxz8CaAxRzHRbk4FtKGPaHzwRs9+0DdiOFQVYul2uj3dmty9P7odN5QNmGujOXiRQgGAxi5HDLPhotetCSV4lICbjZTDyMhhBBCanKmB+gBAJ0AJHEcdxGA/ortIs/zMVcdGWkzRKsVMkYqw8+qNQ3unxUQjv1Hv0VATAz+29zBkTpdqgDn3PA3dadQCFb3KYAAAGqlAou5XuikVqOMj4df776tHRIhhHR4R4/+fbK1YyCkOmcSoEz7P0IAAEK1am6s0qPB/U2ePjhfXoYeRqoy2ZocawA1tQCCqnNnBN87BTKhEmj6PNhmJZfLoJPL4aNQwlxR3vABhBBCCOlwmpwA8Tz/SHMEQtouRwIkiCJkKnWD+yvsawUZKQFqVc5WgFMGh8Dr9vGwJJ+EITet4QNamMU+DNOsv7JzmhBCCCGkkQkQx3GdAeTwPG+xf14vnufTrzoy0maYKisAAGZBgKwRC6F6Wc0YGxgMmX09INI6nK0ABwCMzQybyeDqkFzCMbOMEiBCCCGE1KaxPUApAG4A8BeAVDRcXomebDsQk32okVkQwMobnkzvY6rEY5HRSDa65wN0R3GpB6jxi6DaKiqgjz0HNiLIbRMgq/3Xk9XgnvERQgghpHU1NgGaDiCp2udUX5ZUMVbYe4BEAWxjenWU0jA5ZyagEddxzAFqSg+QITEBOe+/i+KwUIRMvrG5QrsqNntBDisl2IQQQgipRaOeQXme31nt8x3NFg1pkyxKJXZnpgMKBQY2Yn9WJVWKU4Bp3sBIvZyZA3SpAlwwRJt7ruMk2G8rC80xI4QQQkgtGjsHaFoT2hR5nv/QyXhIG2RUKPFFbjb8AwIblQAx9gRIyTKwWCxQKBpePJW43qU5QI0fAme0J0DKAO9mickVykQBKfpK+Lb8AumEEEKaQWVlJbt//yf+U6c+chEAFix4OSo/P0+1efMHfHOdMzMzXXnq1EmPiRMnFzvbxr59e/3ffntVVF1lwFvi+xg6dMjg556bnXrPPVMKm+scLSU9PVV5//3/6bty5doLN9447KpKvTZ2FNKOJrQpAqAEqAMx2ocaqRpRAQ4AWLVW2p+VwWQyUQLUCqxWK0pKpN/pTRkCZ0qzJ0D+umaJyxWOC0aciEvCyoepYCUhhLQH27a9H/zjj98FOBKgOXMWZghC8y6m/vrrr0YFBQWZryYBIu6rsQlQdLNGQdo0U3Exumg94K3RNmp/ViXtp2RZmM1GAJ7NGB2pTWlpCURRBMMw8Pb2adQx1vIyWIuLAAAKXw8IFvecY6OyJ9QmEw2BI4SQ9kAUxcvGzHt7ezdv9iOdlcbpt2ONnQNU52IfHMepAZh4nqfCCB0Uk5SIFb36It5qRWOWxRTtD6hKloVBrwf8mjc+UlNxsfSGlre3N2SyxhVtNKVL1e2VQYEQRfec/wMAKqV0f9E6U4SQ9koUAb0VrTLOVyuHwDQxNSgtLZWtWfNW+F9/HfexWq1MdHSM/umnZ2UOGDBIDwB6vZ5dsWJJxN9/n/DR6/WyTp06GR988OHs8eMnlKxfvybsk08+CgWk4VwfffTp2ffe+78wx9Cx33//zWvevJe6v/nmqgtvv726c35+vioqKkq/cOGSlO+/P+R78OCBYJvNxgwbNqJwwYLXMhiGgSiK2LLl3eDvvz8UcPFivkqhUAg9evSqmD17fnpkZJT58cencXFxsZ5xcbGekybd6nXgwLdnzWYzs3796rCff/7J32DQy8LDOxumT388e/jwW8oc3+ehQ1/77Ny5JSwvL1cdE9OtcsCAQWV1XRMHm03A8uWvRfz884/+crlcHDPm1oJZs17KksulR/S//vrDY9u298OSkhI8LBYLGxwcYrr//mk5d955V5GjjS++2O/38ce7Q3JystU+Pr6WCRPuzH/00SfzrjzXxYv58meeeZzz8fG1rFu3MVGr1Qq//PKTbvPmTZ2ysjI1QUHBprvv/m/u+vVroj766NOznTtHmSdNurXvddfdWPLPPyd1paWlikWLliRdf/1N5Tt3bg365puvggoKCpQBAQHmu+++N/e++x4sAIDff//Na86cF7o72gBqDl9bsODlKEEQGF9fP8uRIz/6m0xGtl+/AWXz5y9KCw4OsQJAXNx59dq1/+ucmJjg4evra7n33vtzmnbn1c2pQlwcx3EAlgAYA0AH4FqO4x4DEMfz/AZng+E4rjuAUwBmOootcBw3AMDbAIYAKASwnuf5VdWOYQEsBvAYAF8ARwE8zfN8YrV9rroNUjeb/UHTxrKNKmtgU6qxNj0NFYZKvG62NG9wpFaO4W8+Pr6NPsaUlgoA0HQKhmh1359bH5kSd/YZAPF8LHBPa0dDCCGuJYrAg99qe/DFMo/WOH8PX1vFh7fq+cYmQaIo4vnnn+4ml8uFZctWJup0OttXXx3wf/75p3ts2PBeXN++/Q0bNqwJS01N0a5YsTrB29vH+tlnHweuWLG0S+/efc5Nn/5ErsFgYI8d+8Vv8+YPYgMCAmu8AycIAjZuXB8xd+6CVKVSLSxaNC/mmWce7zlw4ODSt9/exJ848afnxo3rI6+//say0aPHlW7fvjlo3749oS+//EpKjx49DRkZ6arVq9+KXLt2ZcS6dRuTVq5cl/jiizO7BQQEmufOXZgOAK++OjcqPT1dM3/+qykhIWHmn3/+0WfRovldX311adLo0WNLT5z40+ONN16Lueee+3Juu+2Owr///svrvffeaXDtzAsX4j39/f0tGza8F5+ZmaFas2ZllNFoZF95ZXFGdnaWYt68F7uPG3f7xTlzFqRbrRbmgw+2h6xd+7+oG264qSwoKNj69ddf+q5a9Wb0gw8+nDV69Lji2Nhz2rVrV0Z5eHjapkx5oMBxnsLCAvnMmU9w/v4B5jVr3knUaDTi2bP/ahYtmt91woQ78xcvXp4cH39e+8476yKvjPG77w4FLlnyZoJOp7P17Nnb8NZbyyN++eVH/xkzZqX37du/8vfff9O99947nc1mE/vQQ4/mN+7OAI4fP+Y7dOjworff3shnZ2cp33xzaZd33lnXaenSFWmlpaWyl156luvevUfFxo2b4/Ly8pRr175VIzZnNTkBsicTvwLIB7AbwNP2TWYA6ziOK6teNa4J7Srs7XlUe80fwA8ADgB4CsD1ADZyHFfI8/x2+26v2rc9AiALwEoAhziO683zvNkVbTT1e+lorFUJkKxxNxQrw3mzGWXlZTCbTc0aG6mdMwmQ7qah0EZ0AlORC8B9e1c0MhlC1ArkG2ghVEJI+8S0oeVIjh791Sshgfc4cODQGUfy8uKLc7NiY8977t27K7hv3/6pOTnZKo1Ga4uMjDZ5e3vbnntudtbAgYPLvb19bZ6enoJGoxFYlhUdPQO1eeSRx7MGD762EgBuvHFoycGDXwQtWrQ0TavVCt26ccZdu3Z2SkpK0IwePa40IqKzafbs+SljxtxaCgAREZHmP/88Xvzrrz/7AoCvr59NLpeLSqVSCAgItCYnJ6mOHfvN75133o9z9FrFxHTNS0pK1Hz88a6Q0aPHlu7btyeoe3euYtasF7MBoGvXbqbk5CTNN998GVTf9fH29rEsXfpWilqtFnv06GW8ePFi1nvvvdP5+edfzjKbzcyUKQ9mP/bYU3ksyzq+z5yff/7RPzk5SR0UFFzx6ad7g2+44aaiJ598Jtcel0mvr5Sp1ZqqQTllZaXymTOf7B4QEGhavXpDklqtFgFgz54Pg6Oju+hffvmVTADo1q27qaioSLF586aI6jEOHDio9OabR5RLbZWx3333deCjjz6ZMWnS3UX2c17Mzs5SffzxR6HTpk1vdAKk0WhsixcvS1MoFGL37j2Mx48fKzx58oQ3AHz99Re+ZrOZff31N1O9vb1tPXr0MhoM+oxlyxbHNLb9+jjTA7QKwN8Axtq/fgYAeJ5/nuM4LYDnADQ5AQLwOoArKzo8AcAEYAbP81YAcRzHdQMwF8B2juOUAF4CMIfn+W8AgOO4ewFkA7gLwF4XtUHqIZikJEZozBpAdnKFtGAqzdNoHc4kQHJvH3gO6AdjogmmQpf1QrscI5MBECFa3LeXihBCnMUwwIe36vm2MgQuPj5WCwD33jupb/XXrVYrY7GYGQB48MGHcxcunNP1zjvH9e/WrXvloEHXlI4fP6GoKXN9oqNjqh4oVCq14O3tY9FqtVVJgFKpEEwmMwsAY8bcWnry5AmP9etXh2VlZaoyMzM0mZkZal9f31r/cMTGntMCwEsvPctVf91mszFardYGAGlpqdqBAweXVt/et2+/ioYSoJiYrnpHQgIA/foNqLRarUxSUqKqb99+hrvv/m/hBx9sC0pLS1FnZWWpU1OTtQAgCDYGANLT0zQ333xLUfU27733Us8PAHz44Y5ONpuVufJcycmJ2iuH6Q0adE05sOmyGDt1Cq+6tomJF9Q2m40ZOHBIRfV9BgwYVPHVVweCL17Mb3RuERwcYlIoFFXxeHh42qxWKyPFlqQNDg41Vr8HBg++pqK2dpzhTAJ0A4ApPM9bOY678ol3L4D7m9ogx3E3A3gSwAAA6dU2DQPwqz1xcfgJwHyO44IARAHwsr8GAOB5voTjuFMAbrbH44o2SD0Es9RJJsgafztd46WDVbTBXFra8M7E5YqLSwAAvr6NT4AAgLGZYTO5d88KI5cDsICxtsAcWUIIaQUMA3goGjXtttUJgsBoNBrbe+/tiLtym1KpFABgyJBrKz///NC/v/32s+7EiT91339/KGDv3l1hy5atTBg2bHijyh0rFPLLesVYtu4s7f33Nwbv2fNhp5EjRxcMGDCo/L//vS//559/8vntt59rnZUsitKlXrduY7yHh+dl110mk4mX9ru8cIJcrmiwp45l2cv2cVS3U6mUYkICr54584keUVFd9IMHX1M6dOiIUj8/P8uzzz7Zs/r5G0pI+/btV3bbbRMLli9fHHPkyOGikSNHl9mPhSA0XOxBqVTV+B6ZK04qCNJlqZ7QiNW+M4vFWuM81fe9pPpLTb+ejeVMAmQEUFe5L380cWwMx3E+kMpmP8vzfIY0vahKOICzVxySbf/Y2b4dADJq2ccx7tIVbThNLnftGzQy+9omMjda40S0SAmQKJfV+wunuru9veHj54vi4iKXXyNXcMfr7EplZSUAAD8/30Zdf2NmJipOnYQtKgSizdjon3NDGHs7DMu47K1MmUIGwALGZnPLe6u1tPd72l3QdW4ZdJ3bjpiYbgaDwSAzm01Mjx69qp4RFy2aH9m1azf9tGnTL65fvzqsf/9BFWPHji8dO3Z8qc1my5gyZXLvI0cO+w4bNrycYRiXDvn75JOPwqZMeTDbMWwMAHbv/iBEvOwsl87ZrRtnAIC8vDzl6NH9q965Xbt2ZSeGYcXnn5+d3aVLjD4u7vxlZW3j4s41OE8rNTVZKwgCHEPcTp3620upVAqRkdGmVaveDNfpvC3vvbf9gmP/H3741huQ5lYBQKdOEUaej7vsPG++uSQiLy9XuW7dxiQAuPnmkcXjx99ecuTID0Vr166MGjz42nM6nU6IiorWX3ns2bOn6425a9fuRplMJp46dcKzT5++VeVgT58+5eXt7WPx8fG1KRRSYltWVlbVUZKWlqJq6FpU161bd/1PP/3gX1hYIPf3D7ACwL///uOyeW/OJEDfA3id47hjABzjYESO4zwBzAZwuIntbQJwnOf5j2rZpoU0fK06x38eNS4lYrXt48jiXdGGU1iWga9v88xR1Ok0zdKuM2Si/Z12hRIajbJRxzjeB2BFa7NdI1dwp+vsSpWVUo93WFhIo65/9m8JyN//GUz9eyFsdB9A3rifc2OpVK5bC0qlUQEwghVsbn1vtZb2ek+7G7rOLYOus/sbOXJU6fbtUYbFi1+JefbZF9PDwjqZP/10b+CRI4cDxoy59QIAZGVlqY4c+dFPJpOlRUZGmv7555RHQcFFVd++/XIAQKPRCJWVlbLExARVZGTUVc/N9vcPMJ86dULH83ElLCsTDx78wv+vv/7w0em8q0YLaTQaIT8/T5WVlano0aOXcdCgIaXr16+KFARbWvfuPQyHD3/nu3//vpBZs15MBYD7738od+bMx3u+9dby8Lvv/u/Fs2fPeBw6dLDBlcYLCwuVr746N2rq1Edyk5OT1B999EHYpEn/yVOpVGJQULC5qKhQ+dNPP+i6detuPHfurHbjxvWdAcBsloYP3n//1JxlyxbH7NixpXL48FtKz549o/3++0OBzzzzfI0KznPmLMh48MF7eq9a9UbEkiUr0h588OHcJ598pPeqVSs6TZp0d0Fi4gXNhx/u6ATU7OFx8Pb2to0ePa5g9+6dnXQ6b1u/fgMqjx37Vffdd98EPvjgw1kMw6BHj14GtVotbN++OXTmzOez8vJyFVu3vhdeV5u1mTBhUtGePbtCFyyYEz1z5guZ5eWlsv/7v7cjGj6ycZxJgOYAOA6AB3AaUl/VagAcABbAlMY2xHHcVEhD1PrWsYsBwJUZo2O1zUr7dtj3MVyxT6UL23CKIIgoK3PtcCGZjIVOp0FZmQE2m3v0fqcplPg9OxMewRHwMDTu95LS3qtZWVKG4uKruszNwh2vsyvl518EAKhUHo26/kXx0ptPygBfGBv5M24MhmWgUilgMlkgCq55g0909CrZBLe8t1pLe7+n3QVd55bRnNdZp9NQz5ILyWQyrF//7oW1a1eGL1++uIvJZGLDwjoZFy58PckxvG3BgtfSVq9eEbFixZLoiooKeUBAoPmhhx7NnDz5niIAGDv21uLvvvsm4LHHpvVevXo9f7UxLVjwWsqaNW91njHj0Z5qtVro1o2rePrpWWmbNm2ITE9PVXbuHGWeOPGui6tWvRE1ffoDvb/55qfTK1asSX777VWd1q9fHVlRUSkPCgoyPfPM82n33HNfIQD07dvPsGzZyoT33nsn/NChg0Hh4eGGe+65L+eDD7aF1xfLkCHXlshkMvGZZx7vqVKphFtvnZD/zDPPZQPAtGnT89PT09RvvbW8i81mZYKDQ40PP/xY1ocfbg87d+6sx8iRo8vGjLm1tKSkJO2TTz4K2bFjS7i/f4D58cdnpP/nP/cWXnmugIBA6+OPP525du3KqFtu+bF4xIhRZa++uiRxy5Z3ww8ePBAcGhpmvO22O/I//nh3mEKhrPOP8vz5i9I3bnzbum3b+53KykoVwcEhpiefnJnuKIPt5eUlzJ27MHnLlnfDp09/oHdoaJhxxoxZGQsXzune2J+Rh4eHsH79Jn7lyjc6P/fcUz08PDyt06ZNz1637n9RjW2jPowoNv2hw15Z7UUAt0Aa9lYC4BcAa3ieb/TsaI7jjgAYist7XzzsXycBSANQyPP81GrHjIZU1S0Y0vydPwF05Xk+qdo+RwGc4Xn+GY7jvrnaNhr7/Vwh2WYToouKXPsAJpez8PWVHlqtVvf44/r66wvx+eefYvKUJ9D/pkmNOsZr+xJEsEDqoEEY+/Ss5g3QCe54nV3p/vv/g9jYc1i/fhNuvnlkg/unLl4Ic1Ymwv47Hgo/1/X+sCwDtUYJo8EMwUUJ0OEffofn+XSYtFqMfX97wwd0EO39nnYXdJ1bRnNeZz8/D8hkbAqALi5t2AknT57swbKyb4OCOlUolWqqGkRc6p9/TmrlcrnYt2//qg6AAwc+81u3blXU4cO/nXKsRdSWmM1GdX5+lqcg2G4dPHhwfF37OfWd8TxfCGCB09Fd8iCAK/uvEwAsAvAxgPsAPMVxnIzneceM5lFSCHw+x3GlAMoAjICUMDnmFA0C8I59/19d0Aaph2PBSUdlt8awMgwAEQItVtkqmlIFTjCbYc6Rps0p/Twhwr0rwwveHnju3Blcd801VaUqCSGEEHK5+Pg47bZt74e//PL8lF69ehtSU1NVH364Peymm4YWtcXkpymcXQj1ZgBWnud/5zguEsBGABEA9vE8v7Sx7fA8n1VL2wCQz/N8Gsdx2yANudvKcdxKANcCeB7Smj3ged7Ecdw7AN7iOO4igFQA/4NU0GC/vUlXtEHqodLrEapSQ92EKnA2VgaIVthoHaBW0ZQEyJSZCQgCZF6egAKAm1eXVimk+URGSq4JIYSQOk2Z8kBBYWGBYtOmDZ2Li4sUOp3OOmzYiKKZM1+o8Xze3jizEOqDkNb5WQ3gdwDvQhrG9gOABRzHmXmef8sVwdl7aMYBWA/gFKSiCy9fsdDqIkjfxxZIvUm/AhjnWMDUFW2Q+t2i1+P+vgNwwtj4+U5WlgVsl9YQIi3HZDJBr5d+Vo1KgNJTAQCaTqFVFf/cmUop/Voz0hpThBBCSJ0YhsHMmc/nzJz5vPsu7tdMnOkBegnADp7n59jX0RkDYB7P86s4jnsJ0no+TidAPM8zV3x9AtLaQ3Xtb4O0qOnceva56jZI3WSCKC1KoGp8hcMzah2+OnMMQ7p3a8bISG1KSkoASBNTvby8GtzflCEtzaUKvqqiiC1GDQYre/WFVqmEVKPFNSW7CSGEENI+OJMA9QDwgv3z8ZCeLr6wf30CwDIXxEXaELkoJUCMUt3wznYFGh1OlBSjq0iThFta9eFvjSlJGXT/VASPuQXWXB42q8sWYW42KpUSUVqp/LVosYBpwtw0QgghhLR/ztR5LAHgeNv4NgBpPM8n2L+OAVDggrhIG+LIohll49djcBRMMBhomFJLa8r8HwBgZDJoQoPBaly3Vk9zUlXriRTNbj5hiRBC6icAEEVRpK5sQhrB/n9FhPR/p07OJEA/AniN47j5AO6CVK0NHMfdDWAppIVSSQdS1Y3YhB6gAEbATX7+0FWUN0tMpG6XEiCfRu3PsgxEixE2k6Hhnd2AWq2EzV7eX7S6/5wlQgipR64oihaz2ahteFdCiNls1IqiaIE0579OzgyBew7AR5AKB/wA4A3762sBpAOY70SbpA1T2odRsarG/37uYtTj7i7dEFfp2oViScOKi6UEyNe34R6g8r//gv7sGfj06gLI2kZvnUqpQJkgQCOTQTCZIWvtgAghxEmDBw8uO3ny5AdlZcUzAPgrlWo9wzCuWTSNkHZEFEXGbDZqy8qKlaIobB08eHC977A3OQGyrwE0rpZNQ3meT29qe6RtE61WyBwJkKbxCZBgL1XMWG0N7ElcrSlD4CrPnUXZsWOQKwV4ckHNHZpLqBQKmO0JkMWgR9sYuEcIIXV6w2azoqSkcBrDMFpQZRdCaiOKomgRRWErLnXO1MnpVY44jgsGoMSl/4gsx3G9AQzjef5dZ9slbYsoijiQmw0FwyCiCXOAYJ8DxAqUALW00tISAIBO593gvqa0VACAKqDhfd2FSimHWZCG/horKkDjRgghbdngwYMFAMtOnjz5tigiFM5NXyCkvRMA5DTU8+PgzDpA/QHsAcDVsYsIaW0g0gFYRREfZUodf4s1Ho0/UCFNVGcFqgLX0srKygAA3t71JzWC2QxTlrQWmsLfC0DbmE8jl8lQYDZBgAhvCxVBIIS0D/YHO5o4S4gLONMD9D8AvgBmA5gAwATgK0gV4cYDGOGq4Ij7MxovzQuRyZUQGjsyWSklQLJGH0BcpaysFEDDPUCmzAxAECDz8gSjYCC2kVyCYRisSE2EwWTGN0FtY9geIYQQQlqOM92o1wFYyPP8WgB7AXjyPL+J5/k7ABwAMMuF8RE3ZygvQ7BKBX+VBgzb+OnmjEKqGCcXKQFqaY4eIJ1OV+9+juFvmogwiBZTc4flUir7HDOTqW0UbiCEEEJIy3GmB0gF4IL983gA/apt2w4a/tahGDIysKHvQBRazMhvSm+OSpov5PQkNOK0Sz1A9SdAxtRUAIAq2L+5Q3I5lVK6s6r3UBJCCCGEAM71AKUD6GL/PAGAjuO4KPvXJgB+LoiLtBFmfSUAwCoCTenMMfsEYkNyIvbkZjVTZKQujh4gL68G5gAZ9ADDQBXo0wJRudZdgSF4s2cfWGPPt3YohBBCCHEzzrwB/xmAtziOq+R5/lOO4+IBLOc4bgWAlwAkuTRC4tbMej2UAJo8PcTTG78VFUAmpz6gliSKYqN7gMKefhYKUwkMSSdh05e1RHguE6hQIkbtAX1paWuHQgghhBA340wP0OsAfgMw3f71CwAmAzgNYBSA11wRGGkbLAZ7DxDTtGUJ5PYqcDarFRaq1NVijEZj1fVuqAocyzKQyRiI1rZR/a06m/1+tNIQOEIIIYRcwZmFUI0A7uE4TmH/+juO4/oAGAzgFM/z1APUgVj10gOmrYkJkJKVYbC3D5SsDEajEQoFLVfZEhzD32QyGbTa+suWsywD0ayHYG5bBRAAQGSl+9FmanuxE0IIIaR5Xc34Iy3HcTdAKomdD+AQz/MVrgmLtBUWowEAYGOb1pmoYFnM7dYDAGDWVwBeXi6PjdRUXn5p+BtTT9Kat/sDWDIz4H9jP7Catlepz5EAtcXkjRBCCCHNq8lD4DiOYzmOWwogA8DXAHYD+AFADsdx81wcH3FzNqOjB6hpt5JYrcfHWE55c0u5VACh/vk/hgsXoE9IkAohtEGiPSEXTG1v+B4hhBBCmpczc4AWAZgHYAuA4QB6QFr8dBeAZRzHzXRZdMTtlavVOJSXi/SmFjNgZbDay8aZKikBaimX1gCqe/6PYDLBnC1V51P4ebZIXC4nk361iTS/jBBCCCFXcGYI3HQAy3ief73aaxcA/MpxXBmkogjvuCI44v4KtVpsz0jF0JgeiGjisWZBgFwmqyqlTZpfaWkJgPorwJky0gFRhFynAxRwosRf6xNkLMpMFlhEobVDIYQQQoibcaYHKADA73Vs+xZAqPPhkLbGsdCkQqFs8rGO52rqAWo5l3qA6k6AjGmpAABNeChES9scQpbuocBjZ04iNiS4tUMhhBBCiJtxJgH6EcCUOraNAXDM+XBIW2OrKIe3XAG1EwmQ2T4EzqI3uDosUofyckcC5FPnPqbUVACAKsS/BSJqHiqlNMfMSGWwCSGEEHKFRg2B4zhuWrUvjwN4jeO4EACfAMiFVAnuVgB3A3jR1UES9xWTmYnNAwbjH2PTJ8tbIVXqsujb5kT7tqgxi6A6eoCUAfWvE+TOVArpV5vJRAkQIYQQQi7X2DlAO2p5bbz935XeBbDZ2YBIG2O1AgBEJ3qADpusKMtIxUTNHa6OitShoSFwoiBAGRICobLcXgChbQ6BCxAYLOZ6QZWb39qhEEIIIcTNNDYBim7WKEjb5UiA5E1fyDSekSOh8CJGN3ENIeK8hqrAMSyL8JmzoDAWoiLuDwhtsAACAGhYFpyXDoXmtpnAEUIIIaT5NDYByuZ5vsmPQhzHKZw5jrQdjE1KgOBED5BcKR1jMtFilS2lMUPgZDIWolkPwdJ2fy4y+xwgVqAqcIQQQgi5XGPfej/LcdydTWmY47j/ADjX9JBIWyKzSQ+YjFLV5GPD5HIM9PaBWFzk6rBIHRwJUF0LodoqKgCIsJUXt2BUrie3zwGS2QttEEIIIYQ4NLYHaBqAHRzHLYe04OmnPM8nXrkTx3G9ANwG4HEAMgBTXRUocU+sKABgACcSoJtYAX269UBSTq7rAyO1amgIXNrSxYDFgk7/HevcKmFuQqGSeoBklP8QQggh5AqNesThef4vjuMGAngG0kKnyzmOKwGQCqASgA+AcADeAC4CWAlgI8/zVIKpnZMJIsAyYBTqJh8rsHJAsLTZtWbaGlEUqxIgb++aCZC1tBTWwkKAYcCqZRCsbXf0qsI+vLIN53CEEEIIaSaNfj7ged4EYA3HcRsA3AJgJIAukJKeDAAHAXwP4Dee523NECtxQ+fMJrAVFfD0rHtOSV1sMhlgBURz233QbkuMRgOs9qSmtjlAxpRkAIAqJAgi2vZ/YYWaEiBCCCGE1K7Jzwf2ogbf2f+RDu7r0mJkZKTjeW9/aJt4rCCThilRD1DLcPT+yOVyaDQ1f1rGVCkB0oSHQmzDvT8AoFIrYRYEWCBCtFrByCkVIoQQQoiEngrIVTEaDQAAuaLpc4BEmXT7MfZS2qR5VS+AwDBMje3GlBQAgCrIt0Xjag4qrQb3nfoLvj4++FkhB9VCIIQQQogDLcBCrorcYoGSZSGXN70Mtqiwrx1ECVCLqG8RVFEUq4bAKYN8WjKsZqGyl8E2Go0AaiZ7hBBCCOm4qAeIOE20WvF21x4AgPNo+norgj1pYm1te75JW1Fa6lgDqGYBBEt+HgS9HoxcDrmXGoJZ39LhuZTKXgbbaDJBpO4fQgghhFTT6gkQx3FBAFYDuBWABsAvAF7meT7Wvn0AgLcBDAFQCGA9z/Orqh3PAlgM4DEAvgCOAni6epluV7RBarIYDFWfMyqPJh9f7OWPbX8fgVdkNMa7MjBSq/oWQWXkcviNuxWoLIFgbfvFG1VKBZ6N7gofhQKG3BxoQkJbOyRCCCGEuIlGDYHjOG5cM8bwJYAYAOMBXAPAAOAwx3FajuP8AfwA4AKk5GUxgKUcxz1S7fhXATwFae2hGwCIAA5xHKe0x37VbZDaGSvKAQCCKEKuamoJBKDSyxff5ueBN7X9B+62oLy87jWAFP4BCHvgAYROHA0ITe/NczcqhQK9vLzQV+cNQ3HbXtSVEEIIIa7V2B6gQxzHZQDYBmA7z/Pprji5PTlJAbCM5/nz9teWAjgNoDeA0QBMAGbwPG8FEMdxXDcAcwFstycoLwGYw/P8N/bj7wWQDeAuAHsBPOGCNkgtTBUVAACzIICVKwFr0x6cFUpp7SAjJUAtor45QADAiDZYKkpaMKLmo5DLYBakoW8WQ0UrR0MIIYQQd9LYIgh3ATgJYD6AZI7jvuM47j8cxymu5uQ8zxfyPH9fteQnGMBsAJkAYgEMA/CrPXFx+EnalQsCMACAl/01R5slAE4BuNn+kivaILUwlks9QGZRgDOzLDQMg56eXgi10hyglnBpCNzlPUCi1Qp9XCzEihLYTG177o8DwzCw2uf+mCrax/dECCGEENdoVA8Qz/MHABzgOM4PwP0ApgL4BEABx3EfAtjC83zc1QTCcdz7kIagmQBM5Hm+kuO4cABnr9g12/6xM4Bw++cZtezT2f65K9pwmlzu2kJ7Mhl72cfWZDVKD5Zme/bDsk2rtuVjNeL1Hr1RYLW4/DpdLXe6zq5SYR+y6OPjfdn1NmRmIXP1SuR4eiDysTua/HO8Goz9XAzLuLwkpdWelttMBre7v1pDe7yn3RFd55ZB15kQcjWaVASB5/kiAO8AeIfjuJ4AHoKUED3PcdyfALYC2MvzfKUTsawD8B6AGZCSraEAtJASouoc46XU9u2oYx8/++euaMMpLMvA17fpxQEaQ6fTNEu7TSGHFRYAFohQqRVNXmvF7OUF/H979x0fx1knfvwzs12rXi1Z7mWcuKb3SgmB0AOhHPzoB4E74Djq3RGOesDBEY56QAKht1BCICHFidNtx72Ne5HV6/Y2M78/ZteWZVlltU3S9/16ySvtzj7z1WgszXee5/k+gIv8HaepKoXjnCvRqP3fsrm58YzjHXumDQD/glY8Dgt8hZ/65vFMqTN5VJkuX9VMlez5VQwz6ZwuZXKcC0OOsxAiG1lXgUv3+HxC07RPAjcCrwe+AHwdOHuW9fjtZaq+vQe7EMEHsAsijFxh05t+DKdfJ71NdMQ2mSQsF21kxTQtAoHcDr9xOFQqK30EAlEMo7iT1QdiSTb29WB4fTRHEpN+v6HYF9ouRWFgYEqHOudK6TjnSm9vHwAOh+eM4923y+689TTVEYuOvA+QX4qq4PG4iMeTWGZuy1Ub6R6g0MBQyZ1fxTATz+lSJMe5MPJ5nCsrfdKzJMQMl4sy2A7Aj13CelK3jtNzcF4A/EbXdQNA13VT07Q9wFzsYWktI96W+fok4Br23KER22xPf56LNrKWmmRhgIkyDDNvbU9UyOvjW0cOsWSpxluyuHi1PHYe6lYVkkkDRSm9BStL4TjnSmYdIL+/4ozvKXrIPu1dDVWYOU5CxpO5xLBMK+f7NhSFlGmSiCdmzM8wF2bSOV3K5DgXhhxnIUQ2sr7FoWna1ZqmfQ/oBP4ALAQ+DExmwY0W4BfAdcPadQEXYhdB2ABco2maY9h7XgDouq53YycoAeD6Ye+vTr//ifRTuWhDjCIWs0cSejzecbYcncNrD0tyKiqJWHScrcVUZarAVVWd7qA1QiESnR0AuOsqihJXvvw+MsCbtmwkuGhhsUMRQgghRAmZVA+QpmnnA2/GnvczHzv5+QFwl67rB7LY/3bgQeA7mqa9GxgA/g17MdL/wZ6H8zHgR5qmfQW4FPgQ9po96Loe1zTtW8CXNU3rAY4CX8Xu9bk3vY+7ctCGGEUsEsGlKLg8I0cYTozqPb12UCwUxOOb/FpCYmIsyxp1HaDoYbv3x93YAKoJM+hGqsdtd+5mEnUhhBBCCJhgAqRp2kewE5+1gAHcD/wz8NfM0LVs6Lpupdfc+RLwa6Aau9flmsxaQ+lFWL+JXZa6A/iorus/GdbMp9Pfxw+xh+FtAG7SdT2R3kf3VNsQo/Pr+/j5RZexJ8uha6rLg2lZqIpirynU0JTjCEVGNBohlbLLAgxfByh2+CAAZQvmYqWSRYktXzwuOwGKyzpTQgghhBhmoj1AXwX2AZ8AfpIeOpYTuq4PAbenP0Z7fRN2UYRzvd/AXtT042NsM+U2xNnMuD1h3lSdWY2lVFSVX3d2EE8muH2yJeTEpGSGvzmdLrze01WTKi+/Cm9tDQ4lhH1vY+ZY5fZx1ZLl+A8eLHYoQgghhCghE02ArtZ1/em8RiKmHTNhd5AZDkfWk8n+PjREODTEO60ZNPaqBGUSoMrKyjOKTbjnzKGqpZbI/o0kBnuKFV5e1DmcXFBTS9fAYLFDEUIIIUQJmehCqGckP5qmtQAXYw9ZG237e6YcmSh5VjoBspzZFxN0uuz5Q/F4YcsvzzZDQ4PAmcPfwF6rykrFMWK5LddeChSHCiZYyZk1tE8IIYQQUzPpK9f0nJ0fc/baOhkWIAnQLJBJgExH9otYzivz05QoJzY4lKuwxChOF0A4nQBF9u3F6O2mckE9RnwGJkBOByQtSYCEEEIIcYZsbt1/HtiEXUmtL6fRiOklPal+Kj1Ab6+vZV5zE8GTJ3IVlRjF6SFw1aeeG3rqCYLPPE3yBVfhX1ZfpMjyR3E4gBTKDCvuIIQQQoipyebKtQX4Z13Xt+Q6GDG9KJkEyDWp9W/PkMKej5KIzLweiFISCNg9bGdUgEsXB/A0VhcjpLxTXZkEaGYVdxBCCCHE1GQzd/0ZQMt1IGL66VQUNg70EyvLfgHNZHpCviFrteTV8CIIAKlAgGSPXczRNcMWQM1Q0z2TiiEJkBBCCCFOy6YH6HbgPk3TqoDngLNu3eu6vmGqgYnS9xwmTxzaz1tf8Cpqs2wjpTjsx2g0d4GJs5xOgOxFUGOH0r0/zU1Aqlhh5ZXDZZ9biikJkBBCCCFOyyYBWg7MAe5Ifz18ARcl/bVjinGJaSCaTlpcHm/WbaRUFTAxpQcorzJD4Coq7B6gaDoBKps/8xZAzYjVlPOm+x7iqquv5qpiB5NjqqrgdKok40lM00rPdxJCCCHERGSTAP03cAT4EtCZ23DEdBLLJEDuKSRADieYCYy4JED5NHIO0KkeoKaaosWUbx63i5RlEU9XK5wJhp54nEQsiuPydYS6jmP+8i9UXXYlNS9+SbFDE0IIIaaNbBKgBcArdF1/KNfBiOnlA24vlRdeys5oOOs2zHQCZMo6QHk1fAicZRjEjh0FwNNQzUwdAud12+XZYzOkd9FMJGj7+U9xpVLc+V+f57y1K3hxIEX/wCBVN7wA1ZV9OXohhBBiNsmmCMJOoDXXgYjpxwU4VRXV48u6jTZvOb8+eYJ2d/aV5MT4Mj1AVVVVKA4HS7/2DRb903tR/NmXMC91PkvhnxYt4aVZ/ZorPRt+9H+4Uim643Ge6evlrkefJOxQMAIBItueL3Z4QgghxLSRzdXPh4BfaprmxK4IFxi5ga7rx6cYl5gGXOkKbqq3LOs2Ov01PNpxkteoSq7CEqMYuRCqq6IC79L5BPZ2FDOsvPI4HVxT10DKssbfuMRFoxF6NzxGi7+c3tYmXnP9P/C7//0Zf2s7wa3NrQQ3baT8ksuLHaYQQggxLWSTAD2CffP/+5xZAGE4mZE7w1mWdSoBckwhAXJ7PABEIlIFLl8syzo1BK6iwq4Cp6qQCs7sdYxdHntImFNRsEwTRZ2+PUF/+v1vWOWz/5/Nve0luCpVdj+3g+d2HuTW5lZCu3ZhxuOo6f9PQgghhDi3bBKg9+Y8CjHtmMkkjlM9QH7MLNspc7iY7yvDG8l+HpEYWyQSxkivhVNRUcHJO79O2fxWKlc0Fjmy/PJ4hyUDqSS4p29ysPtvf+VCXxlxr4ehGg8YSW58/U18e+MOehJxGoD4AR3fqjXFDlUIIYQoeZNOgHRd/8lEttM0TQF+BHxGhsTNPNH0nBIAh6886wSoNRHmDSvX0BaZGRPVS1Gm98flcqEO9BPeuYPIvr2UL3ltkSPLL7fXc+q8NBMJHNM0ATp69DC1gSHwleFapRE37LLlLYvnMXfpfHYODXFjQyPRA/slARJCCCEmIJ9jQlTg/wH1edyHKJJoek6JYVkoruzLYCvpAgpOM9sUSoxnaChTAruK2MEDAJQtWoCZnNmV97weN8n0eWVO41LYGzY8ht/hxARSy86sP3PhDZeyNTDIHiOBZ+H84gQohBBCTDP5HhQvM9tnqFg8webBfnYEA6BM4TRypxOgGTBRvVQFg6fXAIru1wHwzWsCa2YnnV63i0Q6AUrFIkWOJnvPPfcs3zl6iI3XXE5gWcsZr624ZDXPDfTzn9u2El40r0gRCiGEENPL9J0VLIoq7nTwlYP7+W5PF6aZffKipCd2z9xizMV3ugBCJdED+wHwzqktZkgF4XGdToDioek5xyyZTLJly2YAVl92EWErecbr1fU1tCyZh2VZPPLoQzgccs9JCCGEGI8kQCIr0ahdtc3r9WFOofdG8fgB8Mh1W95kEqDWikpS/f3gUHHVlRc5qvxzOR18ZM8O/mHLRsz6umKHk5Vdu3YSjUaorq6hcWEzCSN51jbnXbIagO3rHyfZ1VXoEIUQQohpRxIgkZUzEqAp9AA5fHYC5FZULBkGlxeZOUBLvfZcrbJ5rVjG9J0TM1GKopBSFRKmSSw2Pec7bdmyiQ8vXsYXtPMJ7N416jZL12q8rGkO74gadP3uNwWOUAghhJh+JAESWTEP7OdnF17Ke6urp9SOWmYnQA5FwUqdfXdbTF0gXbGvwuPFUV6Ob34LlpEqclSF4XHbawHF49MzAdqzZxdL/eU0GAaxUXp/AOYumU97+v9O8ODBQoYnhBBCTEuSAImsJCMR3KqKQ53amrcOXwV/6mznNydPkIjP/F6JYsgkQH3z53P+N++k9srVRY6ocG6ub+L2hUuIHz1c7FCycnTvXhrSi5uG6ipG3cbhdJBqbbC/GBzElDW1hBBCiDFJAiSykkoPgTPUqZ1CLq+Pn7cd53cdJ0+tbyJyKzMErqqqCtVMYKZmT6K5sryc6+sbSHV3FzuUSRscHMCbLjev1NYQcRjn3HbOyqV0x+21tBJtJwoSnxBCCDFdSQIkspKK2QmQOcUeIFV14HTaw5Qy84pEbgUCARyKQlVlFVYighENFTukgjHSlfhTsem30O7evXtYkK6S6JjXTMo8dwK08PwlHEn3/MSPHytIfEIIIcR0NekESNO0RzRNe7Omab6xttN13QAWATuzDU6ULjN9QWk4pl7AutFfTqvXRzQ9VEvkViAwyFta57Po7w/S+9hjs2b+D4CZri6YmoZzgPbu3c3C9By55Dhly5sXtXIsfQNhKL3YrRBCCCFGl00PUBL4MdChadr/aZp2xbk21HX9mK7rMq5pBjLTF5Smc+oJ0McWLOLrq9YSO3pkym2Jsw0NDbGyohJHOAzm7Bn+BmCpdgZkTMMeoP37dRaU2T1A8abqMbf1+DwEyuy5QoEj8v9ICCGEGMukEyBd118CzAe+CFwJPKVpmq5p2ic1TZub6wBFabIS9oW0mR6+NhWZDDkxTRerLHVWOMyCdE+CZ5wL6ZnGTCdA5jTsATp8+BDtsSjJykoitaMXQBguMbeeeztOsqdq5q/xJIQQQkxFVnOAdF3v0HX9K7qurwIuA/4MvAM4qmna3zRNe5WmabK05Qw2iMWuwBARb9mU28r0SSTDs2duSqEYhsHCdKEK15xGLOXc80hmpPT3biSmVwJkGAbHjh3hzsMHcX34fUSqxhxxDEDF8vn86uQJHmk7jqrKr18hhBDiXHJRBMGV/nCnv64HfgPs1jRt9tTbnWV2Op18dv9e2hpbptxWUrFPw+k4Ub3UBYMBVlVUAeBfsmD2rbWUToDMxPT6vjs62onH47jdburm1BNLjZ/AtS6dD8De3bvzHZ4QQggxrWWVAGmatljTtDs0TTsAPAG8DPg+sEDX9UuAhdgjm36Rq0BFaclUbHO5vVNuK5VJgCKRKbclzjQ0NMTKykoA/Jm1YmYR3avw7m3Pc2huc7FDmZTDhw/iUBQWLlxM1IxjWda475mzsIVqj4eFlsKJTc8VIEohhBBiepr0DHZN054CLgdiwO+Bd+m6/vjwbXRdb9c07V7gwzmJUpSc0wmQZ8ptpVQHYE3LieqlLnCyjRavD9OycDVWYSVnV5Kpul0MpZJEk9OrB+jw4cO8ae48XlxVQ+jBR2DV+Amc0+Xi1UuXcLOvku4HH2DuRZcWIFIhhBBi+smmhJcLuB34pa7rgTG2+yPwQDZBidL32mSSd6+9iMOh4JTbMlQHkMKMSwKUa6FgkIe7OmitqWXxLKsAB1DmsUfmRqPTK/E7fPggK7xePJZFbBLTeWK1FRCFVFdn/oITQgghprlsEqBvAfePlvxomjYHeGu6QML2iTSmaVotdkW5W4BKYAfwCV3Xn0y/vg64E7gY6AO+qev6fw97vwrcAbwLqAGeBG7Xdf3gsG2m3IY4k9eCSpcLh9s9/sbjaHP76DyuM3/ZshxEJoYbMFL85MQxLquv4hWzaP2fjEbFwTvmL6Sps6vYoUzKsWNHucFjFz5I1EyiqltrAxzopSwcwbIsFEWKIWRYpklw03NEDx7A09JK1TXXouSgjL8QQojpJ5s5QHcDi8/x2jrgs5Ns71fYQ+reAFwCbAH+rmnaCk3T6oCHgP3YycsdwOc0TXv7sPf/B/Be4N3AFYAF/E3TNDdALtoQZ3Ol5ySonqlXgTteVs1P245zwuWYclviTIGAfZ+iwjs7T+UqReUljXOYE5pePUDtbSdo8tjDSyPV41eAyyhbNh/DsnABxtBgfoKbhizDoOP736HzB99naP2jdP/8Hk585YunFnQWQggxu0zo9pemaX8Bzk9/qQB/1DRttLJETcChie5c07SlwIuAq3Rdfzr93AeBm4E3AVEgDrxP1/UUsFfTtGXAx4G70wnKR4CP6br+1/T7bwPagddgJ1fvyUEbYgRX5sZyDspge7z2BV4wJGWwcyk1NITadgKXolDhm/pcrenI5bbXqVKM6VP+OxqNoIaCOFUVnE4iZS7sezLja1w4l+74UzR7fYRPHKequia/wU4TffffR+j5zaQsiycH+rispg4OH6brnrtpfs/7ih2eEEKIAptoD9AXgcfTHwBbh32d+XgU+C7w+knsvxe7gtzzmSd0Xbewk6xa4BpgQzpxyXgU0DRNa8TucapIP5d5/yB2L9K16ady0YYYwZOu3Kb6/FNuy+f2UOd2YwWmPp9InBbatpV1+/bxiWUrqPBMfcHa6ciVngOkmmaRI5m4trYTzPHY1RXVxjqMCSY/AOXVFXSnhzp27NmVl/imG8uy2PH4egC+e+QQ3zl8kM/v241pWfTu2Y0h1SeFEGLWmVAPULp3JtNDA/A5XdcPT3Xn6UTjr8Of0zTtdcAS4EHgC8DOEW9rTz/OB1rTn58YZZv56c9bc9BG1pzOXCy1dJrDoZ7xWAymYeBJr6+ilpVjTXHRxaWpGP9vzYWcCARyfryyVQrHeaqie+31YPYGA8zxLyjJxTGVdEyKquRkUbKRPF6758thmSVzbo2nvd2u3Adg1VdP+ucW8trJ7uCRw2d8zzPhnM7GQw89yL888iAtXi/XveIf+NzyS/nbQ7/hi3s3oYfD/PjYQVavXpez/c3W41xocpyFEFMx6Rmguq6/ffytsqNp2lXAXcCfdF2/T9O0/8EevjZcZtC2F8iMvxptm9r052U5aCMrqqpQUzP1HpLRVFZOfF5AroUHB099XlZVg+mZ2vwSl98+Rg7DzNvxylYxj/NUWIaBvncPANsDQ6ysrsDrK915QJ489VD5q+z/3k6Lkju3zqW3t5P+RII2t4u5i1sm/XNrb67m28/tZs3yJbx8lO95up7T2QiFQnz5y18A4IW3vpmbbnwTALe/55N86/ufJ75xPZ/61CdYv/5RXK7cnoOz6TgXkxxnIUQ2JjoHyACu0HV9o6ZpJmMPSLd0Xc9mfaFXYi+c+izwxvTTUWDk5IXMypvh9Oukt4mO2CacwzayYpoWgUBuh1c4HCqVlT4CgSiGUZxhPf3t3ewJBvCoKqrqJh6dWnllw2H/OBymycDAlA55zpTCcZ6KyIEDGOEwUcviYDiEz+0mNsWfUz4oqoLH4yIeT2KZEx/qNVEO1S6s4YSSObfGc+DAIZ4b7GfVqhVUXb6aWKhvUu83l8zl8b8+RvTwwTO+5+l+TmfjF1/9Msn+fubNm8/NL3oDkdDp9aDe/Pp/YveeLRw/eoRf/M83ecW735uTfc7G41wM+TzOlZU+6VkSYoabaKLyWaBt2Oc5vVLRNO0D2GWq7wX+Qdf1TG/MCaBlxOaZr09ir0mUee7QiG0yZbhz0UbWUqn8/AE0DDNvbY8nbFh8Rt+D2+3mP1ExzSlOME8XUnBZVtG+p3Mp5nGeisCOHQAcSMSwgAqfDzMPCcZUZS4xLNPKS3xun51cuxUFwzCxSu8QnOX48eMANM9tIZqIT/q4NM6zF009sH//qOfudD2nJyuRSNC4dSvfXn0BbZdcQSRsnnEsvZ4yXvei13P54ecpe+JJQq+5DW9VVc72P1uOc7HJcRZCZGOic4D+c9jnn8llAJqmvQ/4X+CbwId1XR/+m2wD8F5N0xy6rmeusl9gh6F3a5o2BASA60knL5qmVQMXYq9XlKs2xDCR9KRhrzc3F9Wqz17nxCNrluRMZJc97W17uhRypX92DhMpq/Lzzp1bSVrwqJWpr1La2k6cwO9w0NTSTDw1+V67xnlzOL+ikrkOF73Hj1A/f1Eeoix963/3axa5PRiWxdKrXkrP4NkXyZdc+wqih56nWlXZ9LMfc837P1iESIUQQhRaVqvAaZq2GPDqur4nnSx8AZgH/FbX9Z9Oop3l2D0/fwC+BDSmiyyAPRztLuBjwI80TfsKcCnwIew1e9B1Pa5p2reAL2ua1gMcBb6K3etzb7qdXLQhholE7GE1ZWV+jFwkQGWVAHhUVRZvzAEjFCJ29AgAm3q7AaiYrQlQmY+uuN2hHI8n8HhKuxx4KpWC/j7uvuAS+M0fOHj7LZNuw+1x857FS2lxuTmxefOsTYDa1j/CImCouhrFdHH2NE9wOl201c2lOdhDaPMm+f0jhBCzxKQHuWqa9hJgL/CO9FPfw15rpxX4saZp75xEc7diD0F7NdAx4uNOXde7gZsADbss9R3AR3Vd/8mwNj4N/Aj4IfAUkAJu0nU9AZCLNsSZEgcO8H9rL+R9jXNy0gPkKLcTIKeikIxKSdqpUv1+Fn3mczS+/tV0RuxpbZX+qa/XNB153acntkenwbnV1dVJY3oyvlLux8pyzN5geqGuwcMTXpatIKxUisDTT+V9P729PbSk1xWru/wawqFz/ypvutJOMhcoKvqOKY96FkIIMQ1k0wP0aeDvwH9qmlaFnbx8Sdf1T2ua9nngg9jJxLh0Xf8i9hpDY22zCbhijNcN7EVNP57PNsRp8WCAepebgGGQi6VLnf5KHunpImqYvCsawV02Pap1lSpFUShbuIBg+CQADlWlbIqV+qYrh6ry+tZ5lCkqoa5Oqkt8YdD29jaa02sAmfXVWbcTrSiDYJJ4Z0eOIsuOZVlYySSWQ+X4scMozz1H4pFHMONxqm+4MW/7ffwvf2K1vxzLsvCvuozB3nPPU/TNWUCfBXWqypY//o4Va9flLS4hhBClIZsyJ2uBb+i6HsTuWXECv0u/9hCwLEexiRKVDNtD4FIOR07ac7rc/PBkG/e0HSOSTI7/BjEuh5Wkv8OuW1JR5pvVw3peUNfIS5uaifX2FDuUcXV0dNDstROgVF1l1u0Y9fZkfnVoKCdxZSu0eRP7P/YRPvW6V/Hq17yCe+75MQDdv/klyb7JVbebjI6nnrT3X1VFxBx/2GO4aSEAxr59GMYUi7oIIYQoedkkQFFO9xzdDHTpur4j/fUcYDAHcYkSlkwXQTDV3CRAAJ50JbjM/CKRnXh7Ox0//D5DTz9Jb3cXANUVs7tHLZkuWhkLBoscyfg6OztoTi+CmqipyLodx/wmAMqLeEPBsizaf/sr1FCQimgUr9vNn7o62BMMQDJJ+29/lZf9RqMRyvv7AahcvY5IePyRzJVrrgHgPI+XHdu25CUuIYQQpSObBOhJ4F81TXsj8HrShQI0TbsIe37Nk7kLT5QiI2bPKzFy1AMEUOkto9blJjxY3DvW011453aCzz5D35NP0t/XC0B1+eyc/5ORSYASoVwM2Myvjo6OU0Pg4jXlWbdTtmw+ALUOJ4GB/pzENlmBHdtR+vuJGCk6qqv47b9+ih//80f4e8D+Px7ZvIlkHnqoNm3ayI+OHebugT7qrriBRDw17nuU5kU8pbj43P69PPnUhpzHJIQQorRkkwB9GJgL/Bw4Anw+/fz92IuJfiI3oYlSZcRiAJjO3K2c/i8tLXxv7YUkD+7PWZuzUXj7NgD8C1sYDNq9adXls7sHKDOgKREu/QSor+MktW57vlakKvvKfc6GaqKmgaooHC/SxH79Vz8H4LlgkI+88lZ8Hg/NNbW849W3cigcxgFs/8ndOd/vM888STCVouKiiwh7qif2JlUlfP6VHImE2fDE4zmPSQghRGmZdAKk6/oRYCXQrOv6Kl3XO9MvvQo4X9f10io7JHLOSidAlit3E+sT6Tkq0+EufakyQiGiBw8A4J3XwGDIToCqKmZ3D5Ch2udWKhotciTj6+vu4m9dnUQWziPmnsK8LUXhd0aET+/bzdH+/M21OZfo4AAV3XYJ9tq1a6n0nU7mFjbNYaCuFoDk1s0kczxM75ln7Cpzl192FdEJDH/LWHXexaiqgwMH9nPyZNv4bxBCCDFtZdMDhK7rlq7rXSOee1bX9bMXWhAzTtA0ORIJE/Pm7sI6qdinYqbAgpi88K4dYJp4W+aguGAwZM/VmvU9QOkEKFni88ssy+JQezt3nzhK6raXZ10CO6O7pZZ9oSCHTxzLUYQTt/lXv8ChKLQn4ly77qKzXr/iymuImQapVIonH/hLzvbb0dHORfEEr5s7j7ULlhCNTDy58vv8vOa8Nbx7/iKefOzRnMUkhBCi9Ey6DLamaQ3AN4BbAD9nL61u6bqe1QKrYnp43qHy0J6dvPmKF+as5F9SdQAWRqT012opVZnhb+XaYqxUgqFQZgjc7O4BQlXBAiMaK3YkYxoaGiSWnl/nrSmDwOCU2mtstQshHDlS+E750JbNNAHRhgYcpnnW6xV+Pw/W1fK9hx7kQpeTG17+6pzsd8vzm3lJ4xyqXC4IRkjEJ3GPT1G4pdxPmc/DH596At781pzEJIQQovRkk6h8B3gZ8EugDTj7r5uY0TKV2tye7OcojJRyOMFKYkyDYUqlyEqlCO/aCYBvfiNgSQ9Q2p4yB//77DZee8G6Yocyps7ODhrcHlyVlZjq1BcYnltfxwvqG6k/Wdi1gLq7u/jN/n1cXl3DDTfecM7tbrz4Mn746MNs2bKZ/ft1li/XprzvI5s3sszlwlAU4tXNEJpE5T9FId4wn7LOw7jaT5JMJnG5cjfPUQghROnIJgF6CfAhXdf/L9fBiOkhHM4kQN6ctZlyuiGZxIyV9l36UpUaGsTV2Igx0I+zyouZiJ4qglA1y3uAFJ+bjniMYGLi80GKoaOjgw8uXsry8grCO/bC/Ooptddc7ufGhYvpSyRIJBI4nbn7/zqWRx75O1sHB7BaW7mtvumcc69qvT6uu/Qy1j/zNH/78x9Y/q9Tr58TP7AffGUkG5uIxiZ/b869eDV0HkbzlbF3727WrFk35ZiEEEKUnmzmACWAw7kOREwft6Fw56q11MVy11tjZu60JmQaWTZcdfUs/eznWfbJf8ZM2D+XIekBAsDnSVdVK/E5QJ2d7czJlMCunHrS6lowB4A6t5tjhw5Mub2JeiJdRe36Sy8bt/DErS2t/HDdxaSefXrKC5CGQiEa0zdQqlavJRadfHEFo2UJAIvL/GxJF1MQQggx82STAN0LvDHXgYjpoxqFZq8Pp2v8FdYnaqisikd6umk7a0qZmCgHKczo6XVVBjJzgGb5QqiNlsptLa3M6St8NbTJ6GtrozJ9IyBaNfXeGqvMS9iye0Had++ccnsTEY1GKD98iOX+ci5bvGTc7ec1NFHudKI5XWzevHFK+965YxvnV9iLx9asvjCrBMjyVxJyelAVhc4tz08pHiGEEKUrmyFwW4AvaJq2BHgWGDlr3dJ1/XNTjkyULE+6ZLValv1CjSP11jRx37HDXLtwAW/PWauzgxEKoThUFMsiFbYToFg8QTxhXwDO9iFwNZbCa1taORwu7QIbsQ57rk7c7SKmAlOfBsSQU8FvQN/Bg1NvbAI2PrGBd8ydj6ooNDhcGMbYSYi7to4IsNRfzv1/f4DLLrsi630fevZpLnW6SCoKybpmzP7sFoBNNbZC+yEcHe0kEgnc7tyV+xdCCFEaskmAvp1+vDb9MZIFSAI0Q1mWhVe1Ow7VsoqcVcDw+uxkKhgI5KjF2WNw/SP0338fDS++Ht8C+zhmCiA4HQ783tz11E1HLq99AaukUkWOZGxWfy843SSrKjCt3PzPivi9EIgT62jPSXvjOfbEYzQrCkGnk/oJbK96PCQqynEHQwxu2YxlWShKdr3AHfv2EjFSGE1ziISz/1m7F5wP7YeodzjZvXsXF1xwYdZtCSGEKE2TToB0Xc9q7SAxMyQiEZyZHiBf7hIgn8+PT3VgBidRtUkAENy8CSuVwuFRIb12zOCwEtjZXlDOFF6fPZxMneIck3xzh8NQ5casr85Zm6n6Kgh0owwO5qzNsRhHj4LHizWnCTMxsSFo1YuXENm+ncUo7Nmzi5UrV09+v4bBH3fv4JfhML+6+xdZDX/LSC5cyXef+RvrjxzkQ9u3SgIkhBAz0JSSGU3TqjRNW6FpmkfTNEeughKlKzI4cOpz1V+Zs3YbjAQ/ufASbi/PXZuzQaKzk8TJNnCoeFvrTj1/OgGa3fN/ADw+uwfMaeZgTFmeJJNJqgz7doLSPJG+k4lxzGsEoDyRmHKRgfEEAkPUJe3Eo2HBwgm/z9Nor1e0pqqKx9Y/ktW+Dx48QDgcxuf3s/D81cRiU+jtc3tpXHA+ANu3b8m+HSGEECUrqwRI07TrNU17DugHdgErgV9omva1XAYnSk9kwE6AooaB4sjdGhkOfxVwen6RmJjQls0AlC9fimmcrqCXqQBXVTG75/8A+Pz2elWuXEyqyZPu7i42DfbzcF8PLJuXs3aV1Uv5/EGdrx/UaW8/mbN2R7P1+U0sLrMT7qp0UjMRis+H4XRS4XRxMF1BbrK2bbULFqxZsw4zBfGpJEDAogUrANi+fSuWVbrnjRBCiOxMOgHSNO1G4O9AFPg4nCrbtRX4oKZp/5K78ESpiUTCHImEOZmIY+bwjrqzohoAr6qSlFLYExbcvAmA8uULwDx9hz+zBpD0AEFZOgFyK0ree0Gy1dnZwVP9ffzNSBJrbchZu1ZlGb3VfgaSSQ4fPpSzdkdz4OmncKsqCUXBdExidLUFFRdcwO86TrLryOGsErXks0/zzVXruKVlLuFwYspJy2Kvj08tP483VtZw4sTxKbUlhBCi9GTTA/QF4I+6rl8PfIN0AqTr+n8BXwHelavgROmJer18fM9Ovtnfh2HkMgGqAUBVFAK9pV2uuFQkerqJHz8Gqopv3pnDpjJFEGZ7CWwAf7oKnld1nFrEt9R0dtoV4BrnNJFI5XbB1sZ59npAR47kd/m26BE7wUpUVWHGJ3cTo/6SSzjU1EhPIn5qHaHJ8Pf2MsfrpbW5hXBw6jdQnE4X6yqruKCq+lTvkhBCiJkjmwRoHXBX+vORV8B/BxZOIR5R4jIXkD6fDzOHQ0NUt4e4ac+BCPV256zdmSz0vD38zb9sMZZ55kXf0LAiCLOdr7qcT+/fyyf27iQUKs0qg73Hj7HAV0ZLYwPxHCdAF1RX88a58wjs3ZPTdoezLIt79+v8295deNatnfT7k+EI1111NcCkE6Durk4WOe3huAuuvo74FAogZBi1c0ihUOlycST9/0wIIcTMkU0Z7CGg+RyvzU+/LmaoUMiu0laWwzWAMiKmiUdVCff35rztmajisitweV04zBCWeebQroH0ELgqvyRAisNBj2LSF4sRCpVmD5Dz6BG+unINXeEYgRyVwM4433KwoHkuj7XnrxR2e/tJBgJDhJxOWhcvIdkzuV7cVDjCtWvW8UR1Df27dhCNRvH5fBN6777H1zPH6SRqmVQsXk7bzs5svoUzOZyEyqupDg0QPbh/6u0JIYQoKdn0AP0JeyHUi4c9Z2ma1gp8CvhLTiITJcmxbx/fWLWWmyd4cTIZsXSHUrR/YOwNBQDu2hoarr8ab2vtWa9lEqCaytwnqtORP10Ku1R7gDJlqpPVFblvfI59friCobxN6Nf1vQAsWbwE4pPvwTLiccr37uWjSzVeUFPLpk3PTvi9A9vsSm39/nJSKWvKBRAylLnLAKiLRAnI+mRCCDGjZJMAfQLoBp4DMrNDfwno2EPiPpmb0EQpMgNDtHh9VExmkvME7TFMHunpJmSW5kT1UuNwqFjRAMnQ4Fmv9Q3ZPXV1lXm4oJ6Gbqyp47aWVsLdpTm80heNAWA0VOe8bcd8ew5Qg9NJe556gU4+v5l3zV/EC1vnkQpHsmrD3WwPLFhbWc2Gx9dP+H3ezi77/cuWEQknclacxTlvOQBaeQU7d27PSZtCCCFKw6QTIF3XB4DLgPcCG4CHgR3Ax4CLdF2X8UszmBGxL24MlzvnbT+muPn+scP0qbLW7lgsy6Ljh99naMN64l0nwDx7yFR/IARAXZX0AAFc5avgtS2tJHp7ih3KWSzLojr9M3S05K4CXEYmqZrj8bJ/f36GcxmHD/HixiZWqQ6sLCvtOSoqsFwuKl0ujm98dkK9VbFQiLnpzxdedz2hHBRAyEg1tGICc7xe9m56LmftCiGEKL5symBfC7h0Xf+Brutv1HX9xbquv17X9W8Dbk3T3pD7MEWpMGP2nWorDwmQ12dfrAeDMtxkLLEjhwk++wwdP/s5ycDZcy3iySShdI9CrfQAAZBS7Wr98UDpTVEMDA3R4Lb/PzkXzMl5+8ka+xyodLk4sGtXztsHKBuyj6u3oTHrNoxYnPLz7PV35qUM9u/Xx32PvmsHj/Z2sz8aYe7qdcRjUy+AcIrby4C3nB2BIQ7tyc9xE0IIURzZ3GpfD5x3jtcuAO7OPhxR8tJr9Fie3M8B8vrK8Koq0fR8CDG64LNPA1C5+nzMZPSs1zO9Py6ng4oyb0FjK1VGOgFKlGARhK4DOm5VJWmZpGpz32NnuZ2EHfav+u594ycVkzUwMMA8pz0ktnHBgqzbSUUiVK6wE6ALqqrZsOGxcd+zff8+7jp+lEcaG7DMqS+AOlLHla/m8/v38viunSW7hpQQQojJm9BEDk3TfgJklidXgO9qmjbabfrlQA5K8IhSpSbTd1i9uU+ArrWSfOTCSzl07FjO254prFSK4MaNAPiXz4NRhgll5v/UVpajKMpZr89GpkMF0yIVCRU7lLP0HzpALTBgWSTM3F7AZ0TLvfiHIgSP535Rz/3Pb6LO7cG0LLzVNZhZFEEAMJMpvAuXALDUX859TzzGu9/93jHfs23bVgDWrr2AZMLIeQI0d+5CfN4yIpEwhw4dZPlyLaftCyGEKI6J9gD9DjvxyVxNKaN8mMCzwNtzHKMoIc6UfYFh+XK/wKbpsXsrlEkuojibhPfsxggFcVSU424cvbfg1PwfGf52mtMBkPUE/Xxqj0T56Ylj7Pa6MHJcAjvj2LWruH3HFv60X895JbjOdBIyqKpYyaklIJZp4pgzB1VRMI8fp7+//5zbJgYHCO7ehQpcdtllxKJJDCO3x09VHSxZvIIKp5Od22RBVCGEmCkm1AOk6/p9wH0AmqatB27XM3VPxawylErhMUyssqqct2167KRKTeRwHP8ME3jqCQCq1p6PGR/9Yr5vyE6AaqUE9imKywnRFFZ6DlspOR4Y4r6uDl527SW05mkfZSsWMmAYGKEQnZ2dNDQ05aztxLEjAMQrK7BGKcgxGclwmAVvfzsf+LdPsmmwn6effoJbbnnlqNse/utf+Oi8BWyvqWHlylW0HcnP/K53VlUxd93FPLJ5M7z+TXnZhxBCiMLKpgrcDZL8zF539XbzgZ1biTXPz3nbqt/usXCk8jMMaLpLBQKE0nfbK1ac+/j3B9IlsKukByjD4XbZnyRKr3exo8MuTV3VUJO3fThdTppa7TLThw4dyGnbZnrOnrcx+wIIGalIlLLWuay+5jqAMecBBbbYPTLBmloUHMSi+blx4qywfy5WW+6HDwohhCiOSS/momlaGfBvwC2An7OTKEvX9SU5iE2UoFDIvrh2e8ty3rZaXm23PcW7yDOVGQ7hX3EeViSI4lOwznG91xeQHqCR4q11fPKJp2lcvIQ3FjuYEco7O5nn81FVk/te1Qw1nuT1zXNJKh4OHtjP5ZdfnZN2o9EI/7VrOxUOB/e84pX2SnBTkIpEMWNxrrvuBn7wg+/yzNNPkkwmcblcZ2yXHBigMp14lV9wEYZh5nz+T4Z74fnQ386clMHg4ADV1flLVIUQQhRGNqtZ3gm8A3gM2IY990fMApZlEQxmEqDczwFyVtor1nvT+5IJ/GdyN7ew+OMfJXFkK7GOI+fcTtYAOlt5fTWHwmHiA+eeU1IMZizGbS43t61cy5bK3N9UyLAcKpenFNT6Bv5wIHc9QAcO7MeyLNxVVVSX+UmFp1Zlz0qlSAUDLK+u4t/OW0UoFmPbti1ccsllZ2zX98RjqMCeYIALb3yBXQAhnp8EyDlvOWx5mGX+cnZs28q119+Yl/0IIYQonGwSoNcCn9J1/cu5DkaUtnB3J18/bxXBVArL5SXXRWFd1fUA+B0OIpEwfr9cwA+nKKAmwhihgTG3O10FTobAZVRX2An7wMDYx67QIidPABBIJvE21+VtP5bTQdTnxh9NED52NGft7ttnj4bWliwlFT27JHs2EgODOOsbWOsvJ+UrY/2jD5+RAFmWRe9j63EDuyyT12orCPRHSSbyU6barKonioLP4eDYxmdAEiAhhJj2skmAnMDGXAeSoWnavwMv1HX9+mHPrcPueboY6AO+qev6fw97XQXuAN4F1ABPYhdqOJjLNma7YHc3zV4f5akUXS4vRirHFZcqatg4OEAwmeTlfX2SAA0T2raV8qVLMKwhkqGxJ3sPL4MtbBWWwsubmokYBolEArc79wv5ZqN3/34AOhJxXH5PXvcVq6/Ef6IX+vpy1sPqfvZp/m3ZChL1DZCjoavJcISKVXOI1Tfg7e1BfX4zqVQKZ3qtocjunbgDAWKGQdWll+NwKISCeZzbpagMlVXhiwwSzWHvmRBCiOLJZiHUB4Gbcx0IgKZpHwI+O+K5OuAhYD928nIH8DlN04aX2/4P4L3Au4ErsEei/03TNHeu2hAQSZekjZgmRo5L6QLgcvOD/n6+f+wwg4H8VHSajoxQiI7vf4f9H/4gof17Rl37J8OyLLoH7GPXVFtdoAhLnzdp8JZ5C7i5cQ4DJTQMLnD0MAADqnJ6kYF8aW0AoEl10NnZkZMmqwcHWVtVTWtl7uYvpaJRrESMBbe9AYCr/OU8+eBfT70+tHs3AA/3dHPti27CNCyikTxXjmxZDED50JAsiCqEEDNANj1Avwa+p2laI/a6P2fV4tV1/Z7JNKhp2lzgh8A1wMilyt8DxIH36bqeAvZqmrYM+DhwdzpB+QjwMV3X/5pu7zagHXgN8KsctTHrRQb68QAxLAwjDwkQ4C+vYqi/p6QuUott6IkNWMkk3tYWcKRgjKkOg6EwyZR9gdZQLUPgMlSPPYne53AwMNBPU9OcIkdkS3R24gVCPjf5GwBnSzXak/dbfT4OHNBpbm6ZUnuJSIRGxb6H1jR/4VTDOyUVjmDGYtRcdDG6z0d1NEr0D7/HuumlKE4nGyyTv+3fi1lXz4fXrEsXQMhvAlSmXcjjmx7m+f5eLjp4AE1bkdf9CSGEyK9seoB+A9QCbwW+A/x4xMfdWbR5ITAArAGeG/HaNcCGdOKS8SigpZOwdUBF+jkAdF0fBLYA1+awjVkvPmj3LMSVbE6biSnzV+FTHQz29uZtH9OJZRgMrn8YgJpLVmOlEmNu3z0QAOzhby5nNvc3ZibVbR+LMoejpOYBKelYYpW5LyoyUqLB7qWZ5ytj3949U27v2KZncSoKQ6kkDXW5S98swyAVDOJwqLS8/V0kTJMlKOz84meJRML86EffZ3tgiJfd9kYcDpVkwsxbAYRTMdW38pi7nGcH+tmxY1te9yWEECL/srlCWpTrIEYstDry5VZg54jn2tOP89OvA5wYZZvMYim5aCMrTmdukwWHQz3jsZBSIfviOuFw4FTzM17nnX4vSy68hIOHDuT82E1GMY/zcIGtm0n19+OsKKdsYT1mfOwqWz3pJLWppgo1Tz+jXFLSMSqqktXdmIlyeOyRrD6Hg+6hgaKeWxmWZeFNFw4wG6rz/vNKNVRhAW5V5ei+vVM+Bt3bt9EA9CgqS5LJUz/LXEgODuJTYeGll/CTRQtZeegwnbrO1973Lnp6umltbeV1r7sNl8tBJJggmTDyfvwWL1zB7r1b2LVrO29847kXRC2V3x0znRxnIcRUTDoB0nX9WD4CGUMZ9vC14TLLuXvTr3OObWpz2MakqapCTU1+7uxWVvry0u5YlLh9sZZyOqnw5WdqVNzthkQUMxzM27GbjGIc5+Ha1j8CQP2VF+FWkzDOcR8I2QnSnIYavHn6GeWDx+Maf6MpMNMX+6qiEA8PlcS5ZRkGD7lUBg8foeaGVQX5eW295TK+/Jk7mTd//pSPgXHCXhg0WV2Jz5vbn58jlcSjmJTXlPOPX/4ib73tNnoOHOJAOITX6+XOO+9kzpxaLMuipyOE15ff8wfgvGUr2fO4n9jePRM6dsX+3TFbyHEWQmRjQgmQpml3AZ/Tdf1I+vOxWLquv3PqoZ0SBUaWR/KmH8Pp10lvEx2xTeZ2eS7amDTTtAgEzpoiNSUOh0plpY9AIIphFHYJpqFIlGQ8Tqyqhmh07KFY2Uq5vJCIkhgMMDAwtTVFpqKYxzkjevQogT17waFStnwusej459LJLnvuVH1lBbE8/YxySVEVPB4X8XgSy8zPvDKwe1tM7DG/vW0dRT23hnusvZ2jne38Y5U/7z8vRVWoWrUICzh+/DjHjnVQWVmZdXvegUH7saEh578PUoMBfIEQYUPBsuAb3/0hP//5T+np6eE1r3ktmnY+AwNhHKrK4ECEWDTPRRCAxU4XXzp/NZ2xGIcPn6CmZvR7Y6Xwu2M2yOdxrqz0Sc+SEDPcRHuAbsAuIQ1wI2Ov953rq5gTwMjZupmvTwKuYc8dGrHN9hy2kZVUjktFZxiGmbe2z2WX3889O7dy8yveyGV5ulg1vGUQHkCJRAr+/Y0aTxGOc0b0ZDuK203l6vMwjChM4Jh39Q8C0FBdiZnHhCJXMpcYlmnlPV5DAdWCUH9fSZxblmXR0WGPxC2vrcr7968C3gofTc1NdHV0sWfPHi6++NKs2jISCU6GQ7g8XhrmL8x57IlQBCMSxfJVYBgmbrePt7/9Padez/z8DCxi0WRBznXH3OUYlsUcr5cdTzzBVS99+ZjbF/N3x2wix1kIkY0JJUC6ri8a9vnCvEUzug3AezVNc+i6nqk/+gI7FL1b07QhIABcTzp50TStGruwwrdy2MasNzg4CEBZefZ3jcdjllVC30kcidLvvci3yssup3a1RnT/85ip4ITekymC0FiTu7LEM8XB1hrueXADS6tKozpe55MbWO0rY79hUllXXZB9OrsHed/8RXS6/ezbtzfrBKizp5v/3LsLl9PJX297AyRy2wNjGQbJQABPYxPnqjqtqgrJuJH3CnCnuL10KU5aMOjevBHGSYCEEEKUrunQx3sXUAn8SNO08zVNexvwIeBLALqux7GTlC9rmvYKTdPWYJfqPgHcm8M2Zr2hoUEAfGX5u4BUyu1Sve6UrLXhdKo41CTWqelq48usASQJ0NmcjdUcioTpS5/HxTb0t/v52FKNi+c243QVqGKfYXK+AZfW1LJv7+6sm9H1fQAsWbgQJZmfCmyJgYExF1dVVYVEPEU8lt8KcMOFaprsfR8fWS9HCCHEdFLyCZCu693ATYCGXZb6DuCjuq7/ZNhmnwZ+hL2W0FPYK6XcpOt6IldtCHhZMMwXVqyiPo9lsJ219mKNPsvCzNHK8tNNamiI6IH9OEmR6DmBlZrYHW7Lsug6lQDlr5duuqoutyeu9/cXf40pyzShrw+AaAF7pFINVZiqQrnTSc/BA1m3c2C3XVRz+bwFYy7MOxWpSAQlMbIuzWmqqhAOJvK1+1G5F68GoDmZJJksUM+TEEKInCu5hUJ0XX/bKM9tAq4Y4z0G9qKmHx9jmym3MdvNAbzl5Qz6yvO2D2fDXDYO9NMdj7NqoJ+6uvq87atUDfz9AQYe/BuR66+mcs3EF6vsGwoSTyRRFYU5BRpSNZ3UJA1e3tRMZyQ6/sZ5luzpQTUMEqaJ1VRduB07HcTrq/B1D+Lo7SUej+PxjKwPMzbLMLh6+3bOW7WOtvqGPAUKyXAUMx5H9XtGneNjmhbh8LkTpHyo0i4ivulvVLtcHH7uWbSrryno/oUQQuRGyfcAidJgJhN41XQp4cr8rVlvVtXzf3193NN2jK6uzrztp1SlggEGH1sPgK+lFnOMO+AjneyxezaaaqtkEdRR+PvDvGXeApY5HMTjhb1wHinR3gZAWzRCVVPWlfazkpxr31RY4PWyN4thcPGTbbiACqeT+c0TT9AnKxWJYEaj51zfx0hZxKOFG/4GoLrctKU7pk8+80RB9y2EECJ3JAESE5IcsifXp0wTZ0VNXvdVVW1foHV3d+V1P6Wo/6/3Y8Vj+Oa34qzzjv+GYU722gnQ3Ib8JajTmbfCXu6rwumip6e7qLHET54E4EQ0Sk1TYX9e8Tl2wrWozM+OHdsm/f6+9HsOhkMsymcPrWWRGBxAUc5OgFRVIZkwiBWqAMIwR5oWcce+3TzQ2T7+xkIIIUqSJEBiQkLp3pihVBJ3HosgAFRW1+FzOOjp7MjrfkpNsr+PoczCp9dejJWcXC9Fe08mASpsj8J04fDaC41WOJ1F712MpxcRPR6NUDunsMM84832+bG4zM+O7dsm/f7eHfbKAD1OBx5G753JleTgEKpxdi9PMQogZNSvupK9oSDPbtqEca4SdUIIIUqaJEBiQgKd9gVj0DABR1739V63yk8uuITU4UPjbzyD9P35T1ipFP5li3HUTH5l+7Z0AtQiCdCoVI+dAJU7nUXvXYweOwrAkUi44AlQorEa06EymExyYNfOSb3XsizUE3YFtFR1dR6iO1MyHIFRbgSoqkIwMPHqiLk0f95SvN4yAoEhDhzQixKDEEKIqZEESExIpNceMhQh9yvdjhR32ZOyE+kqWbNBoqOdwNNPAlB3zQVYyckXH8zMAWqVBGhU6hk9QMVNgIxXvoY7Dx+gQ7Xw+csKum/L6aD9X/+Bj+u7OdbVQeckelqT3d14kklSpklVa2seo7SlwqPPAzINi0i4OAU6HQ4H1yxbzdvnLaTtD78rSgxCCCGmRhIgMSGRaIzueIyQmv9TJumzh9iZgUDe91UqjFAYV109FavPQy3LbliRDIEb2/AhcMXuAToZi/BUfx9ljcX5WZkelaXLlwGwIz2kbSKi6fV/9odDLJmTvwIIGUY8TioUwuE48/dOKmUSixavDPXqlgXc3DQH/+EjRYtBCCFE9iQBEhPSVV/HB3Zu40HH5IdmTZZRUQ2AMxrJ+75KRdnyZaz4/B00vOCSCa/7M1wsnqB3KAhAS70kQKPJ9ACVO5x0FXkC+8mT9jCyQhdAyIinEqxYdT4ORWHr1ucn/L5IWRkPdXfx7EA/C2sKc54l+vpRh/U7Oxz2/J9iJkAVKy/HsCzqLItIhxRDEEKI6UYSIDEhg4ODAJT5C7BoY7W9tog3mcIq5CqHReRyqljhHoxEMKv3H+3sAezFPqvKCzukarpw+Dz0rV7Ef+zbzcl0FbZiGHz0Ybw7d9Lg9hR8/k+GGk3wiqEQP1p3EVs2Pjvh9x2IhPjB8SMc8LjxOgpTaj0RDMGwcvCqqhINJ0kli7dQcsuCFRyM2Ddojjz8YNHiEEIIkR1JgMSEDA0NAlDmr8z7vpz19tCaKoeD3t6evO+vmAYffZih9Q+jRgeIdRwFM7uLusPt9pCuxS2NOYxuZlEcKnXLF3AoEqbt5ImiJdcDjz7Mmr5+WrxeGuY2FSUG0+vCH0tQ5nBCV8eE/59t27YVgBXzF+QzvDMkw2HMWOyMeUCBoeIuZquqKp0++3fh0JYtRY1FCCHE5EkCJCZk7Z49fH7FSpo9k1ubJhtWep2hOrebE+lywTNRoquTnt/+mq6f/4y+DY+SDA5k3dbhk3YCtKhIF9TTRXOdfdEaCoVO9WoWkhmLkkwXYDgaidDQWqSfl6KQXNgMwIrySp57bvxeoOiB/fRs24ICrJ6/ML/xDZMKRzAj4VMJUCppEosUb/hbhmPZWgCqAwGMyOwZriuEEDOBJEBiXJZlUROPs7y8Am95Vd73l/RXsdcwebq/j+PpcsEzjWVZdN3zY6xkkvIVy3DVeabUnvQATUzqeCdvXLKUZo+XtrbCJ9fRw4fBsuiJxxlKJYvWAwQQnm+fK2sqq3juuafH3b7nj/fyFtXJixuaOK85/wUQTrEs4r19qIpyagHUaBHn/2QsXHstJ6NRnIpCxxOPFzscIYQQkyAJkBiXGY2SKX2gVOf/Att0e3iweg4/On6U4zO0ByjwxAai+j5Ut9sufDDJRU9HOtxulylf3CI9QGMJ7jrCq2vqWV5eUZTexdjBAwDsCwWpbqjF7Z1a4jsVgYX2XLvzyivYuvHZMYcEGtEo0QP7AThqmbRU5v9GyHCJoSGUZByHQyUWTRRlAdSRKiqq2Wsp9MTjHND3FjscIYQQkyAJkBhXatAemhVKpXBXFqbyU3WdPTznxIljBdlfISW6u+n+9S8BaHjxtZjm1IbPRGJxOnrtn5EkQGNz+O0hnLUuF0ePFr6EcfTA6QSocd6cgu9/uGRNBWZtFU5VpTEa40A6wRlNeOd2FNOkPRalecECFCW7Uu3ZSgbDWLEoiqIQGCzOAqij6V20mvfv3Mq9siCqEEJMK5IAiXElB+yL64FkAm9ZdUH2WV3XTLnDSc/xmZUAWakUnT/8HlY8hn/pYsoW18EUJ+MfSs//qa0sp7rCn4swZyxHmZ0AVbvcHEz3xhSKZRhEDx8CQA8FaWwtbgKEopBabhczuLCqmofHqGYWTM8Reqa/jwsWLSlIeMMlw2FSoRBmyiQcKs4CqKNZu/ZqAJ555ilCoewqOAohhCg8SYDEuMIn2wDoScQpK8AcIICL+05w1wUXszIWn1GlsGNHDhM7dgxHmY/Gmy7HTEz9bvbuI/aaMuctnDvltma6Uz1AbhcHD567xyMfkj3dWKkkMSxORItYAGGY4LK5BBvr2RYY5NFHHxp1GyMUIrxrJwBP9vdx0YLFhQzRZlmkAkESiRTRSOkkQC3NC5jbvBDLMHjm3t8UOxwhhBATJAmQGFewzb7AHjBMXO7CzFlw1Np3xxscTrq7uwqyz0LwLVvO0k//Oy2veymmkZvKUbsP2z+fVYvn56S9mWx4D9CJE8eJRgtXTtk9pxntu9/jC0cPYQHNi4qfsA7Mr6X+Y7ezNRTk4MEDHDp08KxtghufBcPgaCSMu76eOZX5L4U/GstIEQnGSmL+z3BXrruK76+5kHkbniDZ31/scIQQQkyAJEBiXNFUiu54jKECLXwIkEwvhtrs9aLPoAnGbreKt9KJo0IBctOzteuwPZl/5aJ5OWlvJnOmE6B6jxfLsjhQ4Lkbnb096L29OJwOmuY3F3Tfo7Esi6TT5JprrgPg3nt/e9Y24T27AXi0t5vLz19Z0PiGMxUHQz1BCjz9aFxrL76RE7EoKtCz/uFihyOEEGICJAES42qbN48P7NzGFlfhKlYlKusAaPZ42bd3T8H2mw9mLMrJb/4PyZPHUUM9RE/oWKnclPHtD4Ro7x1AURRJgCYgMwSu2mXXNdy5c0dB979j1zYAmuY343S5xt64QIZiQW59+S3c1tLK03+7n1jszGGZVW97B189epjHenu4ZsX5RYlRcToxVDfBvgCKWloZUFPjXHaYdkx96x/FynIxYyGEEIUjCZAYV2dnJwBVNQ0F22eiohoT8DocHE/fgZ6OrFSK9m9/i/CO7Zz81jeJHNtDKpK7ydI7D9m9PwvmNFBelv9Faqc7R5mXpldcy85VKwDYsWNbQfYbPXSQo3f8G7FHHgWgZUnpDFcMxcLM27Wb17a0cnNlFX/84+/PeP2BB+5nU283TS0tLKsr3O+A4dyVFSRMhUBnH0oJJhiV664jnErhicVO9ZgJIYQoXZIAiTFZlkVXVwcAldX1hdux6iDmsyuaBabpYqiWadJ594+I7N2N6vHQ/KobSQ715nQfG/fYlcwu0hbltN2ZSnGo+OY3svzSCwHYtm1LQYpshHftJHHyJGaXvV7T3MWl01sXTkRwv8QeAnd9fQPP/vTHhEJBBh97lFh/Pz/+8Y8AeM21N1Csvhd3VSWBwTiJUARSSYoWyDlcfOkLeTK9XMCR3/y6yNEIIYQYjyRAYkzxY0e5+dAhPrJkGeVVdQXddzK96Ko7FGJoaLCg+54qy7Lo+dXPCT73DDgczL3tFnDmvnrVs7vsSmaXrVye87ZnKiuVZM15y3G73XR1dXLkyOG87zOcHmr3dPtJAOYuLZ0eIAvobyqn6sYbAfjHOS3s/ciH6P7ZPez/t4/T19FOTXU1L1l3YXECVBTwVzLUG8SIJzBjcdQSGwbn9ZbR1bIU07JwHD9O5PjMXMBZCCFmCkmAxJgS7e34LPA7nJRVFDYBisxfweOhIMeiEXaly/BOB5Zp0v2LnzL46COgKLS85iWo5eaU1/sZ6URXL209/TgcKhefV/i1WaareNcAgfVPcOuFFwPw1FMb8rq/ZF8f8aNHsIBnu7vx+n00l1jJ8qFokLo3v47E0mU4FIUqw8CwLH52cD9Rw+Bj73s/jnhxyk+7KytIWk4CfQEAUqEQSgmWxr/4ulezccCuArf/gb8XORohhBBjkQRIjCne0Q7AyViUqurCjv8fWHEJO1oWcCAcYtOm5wq676kYemIDQ+sftZOf174Ud4MH8jBv4emddgWztUsW4PcWrkDFdBc90U33Xx/h6kZ7HZ5HH81v5a7Qls0ADFaWM5RKsmjlUlRHaf3qDcSChM0Y6/79Pzh23fX877EjvH/HVv7e08Xt772dG1ecn5dzeCLcNdUMBRIkonYClorGIJkouWFwc1sWsr28no/u3sH3t24pdjhCCCHGUFp/hUXJiaXXAGqLRqksYBGEjCUr1gGwceOzBd93tqqvvgr/8mW03PpS3E1eLNPIy34efG4bANdeUJzKXNOVs7IMgGavD0VR2Lr1edrS53k+BJ+3E6CNwUEAFq9alrd9ZStlGnSH+1BUeNFb3sanf/Fb/v3LX+PPf36QD7z9HcQHBosSl6KqKBXVDHQPnXrOiMcxotGSGwYHcMVL3sSxaIS//OU+jhw5VOxwhBBCnIMkQGJM0XQBgh7AV1Ze8P0vXHgey/3lnDy4n0BgaPw3FEmyvx/LMHA4VHwui3lvfSWuBg+WkZ9FG4939rD7SBsOVeXFl67Nyz5mKleVXVzD6u3lssuuAOB3v8vPxPVEZyexgwdAUfjLHns9q1JMgAD6wwPETLsEdkNDIzfe+CKWLFlEoq+fRCB3lQsnw1NTTdxwMNR95v/9ZDBUktXgFsxbxgVrr8Q0Te783H8S75o5izgLIcRMIgmQOKfU0BAEApiWRaC8GqUIKxAu3HA/nz9vFRdXVpfsMLjQ1i0c+8y/M/CXP+FKhYif2E305EHIU88PwP1P20NsLj1/KXVVFXnbz0zkqq0EIBUI8OZX3wrAb3/7SwbTVbxySXE4qL7uegLzW+gKh6mqr6FpQUvO95MLA9EAgUQQp/P0nwU1mSDa3p7z+WsT5a6ro68vTCpx5o2EVCSKFY+V3JpAALe95h+5rqGJt6dM9n/9K7IukBBClCBJgMQ5xY4eAez5P2V1xVm1PtxkV8taWVHJQw89UJQYzsWMx+n+1c9p//Y3MSMRIru2Ez34PNGOo3m9YIzGE9z7uJ0Mvvzqi/O2n5lKdTlxVtq9QBcvXMjy5RrhcJhvfOO/c74vV0MDze98G3cN9QCw8vK1RbmRMBGGadAe7ALVvmB3OlVSQ4NEe/qKEo+zzEfKU05/+9mJqZVKkQqGUCm9YggN9XNovewFpCwLT18fbfffV+yQhBBCjCAJkDgnxeWi0+tlZ2CImvri3LUOz1kI2AnQY4+tJxqNFCWOkcJ7dnPsjn9n8OGHAKi7/krmvOJKEjle52c09z25mUA4SmtDLddfuDLv+5uJXLV2r1myvZ1PfvIOAP74x9+zfv0jOd2Pqiqc7DvJpg3PALDm6iKVkp6g3tAAwVQYVVVwWAbRE22YieJUf/M2NhIIJgn1h0Z9PRkKQTJBKeaTL3r5W3koYg8nHPzjvYTb2oockRBCiOEkARLn5D9/JT+NR/nxiWPUNhYnAYo2tGK63NS43cxVVR59NLcXqJOVGhyk4/++y8mvf5Vkbw+umhrmveVVVKxsxojnPzkLRWLc9Zf1ALzpxdfgUOW/cDbcdVUAxI4f54ILLuSNb3wLAJ/85Ed47rlnpty+ZRh0/fynJNqO8fNf/IxkIknzorm0Llsw5bbzKRQP0xnqxuVWMQYHiXR0FiUOh9cDFTV0n+g/5zZGLE4qGEQtwQzI5XKz6g3/gh4O41EUtn3u0ySj0WKHJYQQIk2unsQ5WZbF/v37AGhoKs7K9ZbDSbjVnjR+WU0tv/jFPVjFXANEUQjv2A6KQu3VlzHvrS9F9Vt5K3Yw0g/ve5iBYIgFcxp4xTUy/C1b5SvmM/+dr2Xe2+3E5yMf+ThXXXUtsViM97//3fzgB98lMYWej8HH1zO0/hGOfPnL/PkXvwPgyluuL9nhb8N1DHVjpKJEjx8nFSnORbuvuZmhkMFg1+CY2yWGApCIl2QvUENjC+GrX00wlaLBMPn7h/+JcKg4xSSEEEKcSRIgMap42wm6D+1naGgIVXXQ2LywaLEMzj8PgGvrG9i3ZxebNxeuGEK8/SR99/0Jy7JwOlXK6yqZ+8bXsuCdt1K5Zi5GfPThOfmwed8hfvXw0wB8+A0vw+V0FmzfM42zogxXdRmqmURRwOl08vWv/y8333wLqVSKb3/7Tl71qpu55567GBiYXHGEVCBA3x//AMBjJBkaCtIwt4m1106PhNXjdBHqOEmkvb0o+3dVlGOW19B+pHvcmx1GLE5yaIgSrIUAwJI1V3JkxeWkLItlqRRffNfb2LdvT7HDEkKIWU+uoMSoen79K8J7d3NdXT37PBU4Xa6ixRKatxyzrJyaSIhFZX6+8Y2vcc89v8LhcORlf2YsysCWzbQ9+zSBdOniqvOW453XQKLnBM7yJGYygVXA4k4dfQN8+ge/xrIsXnnNJVyxSivczmeoVDSMGQvjKC8nlTLxeDx88Ytf5dprr+drX/sy7e0n+frXv8I3vvHfrFmzjiuvvJqVK1dz3nkrqa2tHbVNyzTpvOsHmJEwgx4333l8A4qi8Orb35i38zWXfC4vLY5yOnbswBOJ4lW9mGbhelwVVcU3bx4dPRECPYEJvSc+OISjrAzVX17QWCdqwVW30OZ0cPjZB7j/oM4Db34dr3nN63jb297F3LmtxQ5PCCFmJUmAxFni7e1E9u1BAfYEg7QsKe46M5bDSdclN9G8vIXOj/wjod07+fWvf86b3vTWnO3DCIUIbX2e0PZtRPbsxsoMf1IUKlefjzlwjFD4CGYynrN9TlRX/yAf+p+76RsKsnTuHD78hlsKHsNMlBoMcvyuezBNB80f+BAAiqJw8823cP31L+CBB+7nN7/5BXv37mHbti1s27bl1HsbGhqZP38+c+fOY+7cVsrLK/D5fDTu3UPjkSMkLIvPPb8JC7jlna9lwXmLi/NNToJTdbCocg7msU66jh2iwuOnqdyFojgKNuy0fMF8Qik3Jw8cmfB7rFSKeF8fPrcLxeXBKsEkqOaym9HOv4zrHriLxzc8zIN/+B1P338fSy+5lJtueinXXHM9FRVSzl4IIQpFKep8ihKiaZoK3AG8C6gBngRu13X9YJZNHjYMc1F/fzhXIQJ2adqaGj8DA2FSqfx0QbR/91uEnt/MPtPk01s28rLb3s8lV78sL/uajAXNlRzc9jBf+PxncDpdfP/7d3HRRZdk1VZqcAArlcJV3wBA9NBBTnzp86de9zQ1UHfJarwLmzDMeF7X9BnL3qNtfPTbP6VnIEBjTRU//OT7aKqtKkos+aCqCl6fm1g0UfC796lQlJM/+zsAC+74LJ5580fdrqOjnSef3MCWLZvZs2cXx9KLAw+nAG9unc8r5tjFQr595BCbk1Fe/u5bWX1VaVR+G+tYOxSVJTWtVPYEOb75OVLxGIqiUO+vpdZbjWXmfykg/9wWktVNHNxxkmD/5OfKeGqqcDc0YqqOYi1bBGSOs4tYNHnWcVZVhd7BQ/CHe5hrmvylq4M/dbQTs0yWLdNYt+5Cli5dxqJFi1m0aDG1tXWoUuhkVPn8W1hb68fhUI8ApX/nQgiRFUmA0jRNuwO4HXg7cBL4CvYvv5W6rmczG3paJkBDTz5B149/BKrKx3fv5Eg4yD99+ofUNRR/8UaXU+Wi85r49X9+FO+Rw/yxv49Pf/nrXHHFVaNub1kWqcFBUr09JLq7SLS1EW9rI952AiMYoOrqa5j3nvegmCmUZJTDX/8GvtYmyhY04vA78TitolyYA/QNBfnZg0/w64efwjBNFjY3cueH3s6cuuqCx5JPxUyAAHoefp7IwTb8q1bT8s8fRpnAxWYwGOTIkUO0tZ2gre0EHR3tRMJhrgwEOC9lsKnGz8k1C1h64Xl4fJ4CfBcTc65j7XV6WFTVjL8nwMmtm4mHT89rc6gq9f46qj2VWKaSn54gVaV8XivJ8jqO7OtioDP7BWk9tTW46+uwHK6iDYcbKwECIBGl6qnfw3H73lrMNHm0p4sn+no5HAmfsbKRy+WioaGRxsYmGhubqK2tpaKikoqKijMey8vL8Xp9eL1efD4fHo8Hr9c3LYZdZksSICHEVEgCBGia5gZ6gY/puv699HPVQDvwDl3Xf5VFswVNgJLJBKFQmHg8RiwWJR5PYFnmqQsWy7LSH/b2ZWVlNDc34/OVAWBEIgw8+Df6//oXsCw6l5/HP//ibqpqG/nQZ+4umepVDW6Dxnu+hhWPYVgWRyJhPHOaWaqtwOP24GpspO6WVwB2KeIDt78HjFF6b9JD2+a95bWkgv0Y0RCpSPBUNbd8XJgbpolhmKQM46zPU4ZJ72CAg22dPLfnAM/s3E8iZcfyokvX8LE3v4pKvy8ncZSSYidAycEgHb99HMswqLruBhpe/wZUz9hJi2UYJHu6iezdg7OujvI163A6VWLJIEc3P8mhBhcpszBVASdj5LF2qg4a/LXMcfihvZv2XdtJxs6u+uZQVWrKqqn2VOLAmdOfk6emGk9zM2HDw9F9HQR6JzbvZyzuygrc9XUoXh+maRW8N2jcBAjAsvB2HsC35RHM3q5TT8ecTp5Q4G8njnHyZNupKkVGlt+Ey+U6lRid/rATJI/Hi8fjwe124/V6cbs9eL0e3G77Nb+/jLIyP+Xl5fj95ace/f5yKisr8Hp9gELcgHBSIZqCcEohklSIpUBRQB3+AaiKdeZz6Q8FcCigKFb68cz3Kcrp1zPPu50qLQ1+BgclARJCTJ7MAbKtAyqARzNP6Lo+qGnaFuBaIJsEKC9+9fAWhv7yOxzJBJgGlpkiEeglONiLZVn0JeI80H36D+rrWlopdzgABSX9h0ZBQQH6kwn2VFdx440v4lUvfAkDD/wVLAvX5dfw3cc3ALDygmuKnvyoioKq2h9BxUnFG95DxeN/gaOHWeovh2CQ+OZNxIF4XR3mRWtpnduMqpi46+sglcJVV4OnoQZ3XSWumkqclV4sM0no0PZz7jeZStE3FCQQjhIIRwlF04+RGMFIlOCpx+gZX0fjiTMSG8MwMUxz0nfPVy6exztuuZGr16yY4hEU5+KqrqD22rX0PbaFocfXE3j2aSouuYw5b3vHqW26fnYPqcEBzHAYIxQi2dONlU5Oy9esoeyilXTGBjnWf4KuOgWrBJMfAFVR8Tm9+P1+yp0+qi0XjkCYoUM76D95HMsc/SLSME36QgPEkjGqfVV4nV6cOE/dUJnMea263TjLfLjK/Tgqq0moHk52h+k4dJhkLJmT7zMRCJKKx/FUV+EsrwC3G0tRTt8AGidcyzq9yelH5fTn1unXzng+/aFaKilDJWY4MEwr/fqI7SywGlbCi8+jvO8I1Ye34Dq2F28izi1vfjevveI64okEgxufwvurH5H0+IirKnHLImZZRE2TeCrJs7E4e4IBIuEg9ZbJFf5yUqkU1rBvMvPZ5v5+DqR79xrdHm5ID/8dLp7+eCIwhJ4u2V3rcvOChsazD5SigsPD7qTCHsuH4q2iylvOi30WONzYf22Gb6+gK+XsUKpAAb+V4qVm94htTn96UClnq1oDgMcyeIXZccamFgp7L76VX76vNIaYCiGmF0mAbJlSPCdGPN8OjD4xYIKcztyO3/6v//wY31/QQIVzWFU2jwuamgE4EA7z90AMxeVBURRuaJhDvWv0H/PxSITf79nB3r17+M7/fZ83XfQSYhe8nC1xP0d2/TcAvRd+kN9H7ZtgI9Og4XmRco7nz3rtXC8woia7wqm/3Ge2Z9lvu/IaqtZ0Ub7zPtjxF8yhDiyg+9B+nrn5flS3D091C57qOajeShx9UdQjoDgC9oWemcIyTSwzhZmIYMTDGLEwRjxIKhogFRnCTMZGPW45pagoqhPF4cRVVk1Zs0bFgnXUrnoR/rkr+YOicG/o3AnoeNeeY7081TvjU2n7jJdHjHia0vc09ltH36ARllz9PC/cejc1oS62Hxjkkw+Xn3r5Q09vxJc4s9x50uGmo2Yx+5QL2Hh/NRZVWIyxyOkUvicY+5hM7L3Dr+ozn2d6hS+D6nEaGS6TJ2X+Y2ZOz8zjqQThzPPWsixIgBUHa8AOwzQtTAvwguU5nUScSiys089lkohzPm+dfi+AFbY/zn7fKMnIKPEWzvkw72U45yZZMbiHtqPzGezwAT6ua/fwj4A7HsWNfZduuCfWfZjO5hsAWNq7iZft+K9z7qV/7ds5VH4eJKM0hY/w2v6HzrltpHEN+2NOSISosUK8ru7cf8eskyfY07kfC6jw+rh11TmK5ljwp452trcdB8Dn9nDrmgvO2ibjge5Othw/CoDb6eTWdWeWkTcsi7f85H2o79+Iosg8KSHE5MgQOEDTtH8Afgo4dF03hz1/D9Ci6/oLs2j2sGVZi3Lde/L1XzxC4k+/waWAhYqlOIg7K4l452C5K+jzNfLgvNMFC2459kd8qQgoyrA/8gqmohCwVB4KG5hbfwKd6Z4QxQGWPWRMWfNmHC/5Sk7jzwfLsqBjC6b+V6wTz0D3HjBzczcZAE+l/eGtQvFWgacKvFXgqbS/PvVc+muXHxwu+1g6XKA6QM08Os/4XP5wlw7FMpkfOorHSLC/+nSv200n7iepugi7ygk5y+n2NdHrbcCSn52YBAXr1NAu+7ew/Y8Cp3vnh72mKPY5WZEMUBvrw5eKUJaK4jMieFNRnGaSvY0X0F05DwWYEzzBpW2P4bAM+2aSAmrmN74C++dfQVfTClwq1IfaWas/gJoeWmY/no6vb9mlBBeuweOEmnA3zRv/hEsFlwNcCqiksFIJrFSC1PxW4s31BAMBwl3dlO/aTTKZPKtn0LIs+srL6amuxLIsXKkUSzt7Tr8+IpXvLyujs7oSAIdhsLyjO70dpx5rbn0Nt9yStwI9MgROiBlMEiBA07TXAr8DynRdjw57/jeAR9f1V2bR7GHDMBcFArldSd3hUKms9BEIRDGM00NWBmIQSCjEUgoxAxLGmUM1hhv+I7fvgFrs3ryBP9/zTY7odiK08uJree9/fBuPt+yMbc9o5xxtjrbtWPuf6Gvn2m7ktslknIGeDgZ7Ohjs6yQejZCMRYnHo1imiaKqqKqKoqioDgduTxken9/+KPPj81fhr6impqEeS/HYyaN1ds/WSGO9PG4aPJW28xjXVPL3ibStqgplZR4ikfgZ8yWKHVfW753CjpUxz/ipnwOqqlLm9xAJxzGHDXeb6j2aqcaVSQRGTQw4Myk4nTBYZ753+HbDOqZGfe+IbU8/Wufcbvz3nt7O6VCpqvQRDEYxDXPKx1eM7lx/C3OhstInc4CEmOFkCJwtM/StBTg07PkW4NyTRCYgX6WqDcM8o+0Kp/2RrUtfdhVve+mVtLefRFVVmpszVd9y2JNSMCosnAvMzbqFQpQbF5nj7GFgICXHOc/kWOeJdebnigoO1V4UN9cX5uJsI/8WCiHERMgYDtt2IABcn3kiXQXuQuCJ4oRUeIqiMHdu67DkRwghhBBCiJlFeoAAXdfjmqZ9C/iypmk9wFHgq9g9Q/cWMzYhhBBCCCFE7kgCdNqnsY/HDwEfsAG4KctFUIUQQgghhBAlSBKgNF3XDeDj6Q8hhBBCCCHEDCRzgIQQQgghhBCzhiRAQgghhBBCiFlDEiAhhBBCCCHErCEJkBBCCCGEEGLWkARICCGEEEIIMWtIAiSEEEIIIYSYNSQBEkIIIYQQQswakgAJIYQQQgghZg1JgIQQQgghhBCzhiRAQgghhBBCiFlDsSyr2DHMVFHLsrymmfvj63CoGIaZ83bFmeQ4F4Yc58KRY10YcpwLI1/HWVUVFEWJAb6cNy6EKAmSAOXPIOABOoochxBCCCEmrhmIA9VFjkMIkSeSAAkhhBBCCCFmDZkDJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGJEBCCCGEEEKIWUMSICGEEEIIIcSsIQmQEEIIIYQQYtaQBEgIIYQQQggxa0gCJIQQQgghhJg1JAESQgghhBBCzBqSAAkhhBBCCCFmDUmAhBBCCCGEELOGs9gBiPFpmvbvwAt1Xb9+2HPrgDuBi4E+4Ju6rv93UQKcIc5xnF8OfBo4D+gFfgt8Wtf1aFGCnCFGO9YjXv8B8CJd1xcWMq6Z5hzndDPwdeBmwAAeAD6o63pvUYKcAc5xnC8GvgZcCAwCvwT+Q9f1eDFinK40TasFvgjcAlQCO4BP6Lr+ZPr1dcjfQiHEJEkPUInTNO1DwGdHPFcHPATsx/6lfwfwOU3T3l7wAGeIcxzna4A/AL8H1gHvBW4DvlPg8GaU0Y71iNdfBbyrUPHMVOc4pz3YvzsWAy8EXoZ9gX5PoeObKc5xnOuxE8u9wAXAu4G3AV8ocHgzwa+Ay4E3AJcAW4C/a5q2Qv4WCiGyJT1AJUrTtLnAD4FrAH3Ey+8B4sD7dF1PAXs1TVsGfBy4u6CBTnPjHOd/BB7Vdf2/0l8f1DTtU8Ddmqa9V+7kTs44xzqzTTPwf8DjwMKCBTeDjHOc34h9XJfout6V3v5DwHc0TavUdT1QwFCntXGO89VAHfBRXdeD2L87fgbcBPxrQQOdxjRNWwq8CLhK1/Wn0899ELv38k1AFPlbKITIgvQAla4LgQFgDfDciNeuATakf+FnPApomqY1Fii+mWKs4/w14KOjvMcJVOQ5rplorGONpmkK8BPgp8BjBY1sZhnrOL8EeCST/ADouv6grutLJPmZtLGOc1/68X2apjk0TVsIvBR4tnDhzQi92L2Uz2ee0HXdAhSgFvlbKITIkvQAlShd1+8D7gPQNG3ky63AzhHPtacf5wPdeQ1uBhnrOOu6vnX415qmuYGPAFtkvsTkjXNOA3wYaAZeDnyycJHNLOMc5+XABk3T/gP4f4ALeBD4mK7rgwUMc9ob53fHE5qm/RfwOez5Kw7spP6fChvl9JY+J/86/DlN014HLME+b7+A/C0UQmRBeoCmpzLsbv/hYulHb4FjmRU0TXNi90ycD9xe5HBmHE3T1mCP33+zDC3Mq0rsxGct9hCi92AP1/pTugdO5ICmadXYyea3gUuB1wFLge8WMaxpT9O0q4C7gD+lE1D5WyiEyIr0AE1PUcAz4rnML/twgWOZ8TRNqwB+A9wA3Krr+lnDt0T2NE3zAr8APq/r+o5ixzPDJYAQ8EZd15MAmqb9P2Aj9iTyTUWMbSb5MlCt6/pr019v0TRtAHhY07Rv6Lq+vYixTUuapr0S+/fEs9hz2UD+FgohsiQ9QNPTCaBlxHOZr08WOJYZLT0p/wngSuDm9F1HkVuXASuBz2iaFtI0LQR8Cpif/vrNxQ1vRmkD9Ezyk7Y7/bioCPHMVFdzdjKZmf+zvMCxTHuapn0AuBd7ONxLhy1DIH8LhRBZkQRoetoAXKNpmmPYcy/AvrCRMc85omlaDfaE2gbgal3X1xc5pJlqI7AMe1jWuvTH97DH8q8D/lykuGaiDcBaTdN8w55bnX48WIR4ZqoT2MURhssc5wMFjmVa0zTtfcD/At8CbhsxRFb+FgohsiJD4Kanu4CPAT/SNO0r2GPMP4S9To3Inf/BXi/lJUCPpmlzhr3Wo+u6UZywZpb03dwzLr41TesHUrquy0V5bn0P+ADwi3QhhKr0c+t1Xd9S1Mhmlq8DD2ia9jngx8AC7PXD/qrr+rYixjWtaJq2HHuR0z8AXwIahxWciCJ/C4UQWZIeoGkofWfrJkDDXhTuDuz1Jn5S1MBmEE3TVOxFT93YvUAdIz7mFS86IbKTrl54DXb1t+ewq5htBF5dzLhmGl3X/w7cgr2GzTbsC/W/Aq8vYljT0a3Y5+qrOft38J3yt1AIkS3FsqxixyCEEEIIIYQQBSE9QEIIIYQQQohZQxIgIYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEENOSpmlKsWMQQgghxPQjCZAQYtrRNO0VwE/Sn1+vaZqladr1xY1q6jRNO6pp2o+LHYcQQggxkzmLHYAQQmThX4Z9vgW4AthTpFhy6dVAoNhBCCGEEDOZJEBCiGlN1/UA8Gyx48gFXde3FjsGIYQQYqZTLMsqdgxCCDFhmqY9Blw37KkbgPXADbquP6Zp2meANwCfAD4PLAX2Ae8DLOBOYA1wCPigruuPDGt7FfBfwLXppx4BPqLr+uFJxngUuBuoAt4KeIA/A/8IvB/4J6ACeBh4j67rfcPe95iu62/TNG0hcAR4PXAbcBOQAn4PfEjX9dBkYhJCCCGETeYACSGmm9uBremPK4DKUbaZB3wd+AJ2AlEL/A74JfAD7ARJBX6laZoPQNO05cDTQCPwNuCdwGLgKU3TGrOI81+ABel9fRF4E7AZeDHwHuAzwCuBz47TzveBo8CrgK8A7wD+LYt4hBBCCIEMgRNCTDO6ru/RNC2Q/vzZcxQ/KANu13X9AQBN084HvgS8U9f1u9LPObGTIg3YBtwBRIEXpofVoWnaI8Bh4KPpj8kIArfpup4CHtY07f8BLcBluq4PAX/VNO1G4Kpx2rlf1/V/TX/+iKZpLwJuAT45yXiEEEIIgSRAQoiZ6+lhn3emH4fPFepLP1anH1+APZQukk6OwC5I8ATwoiz2vzGd/AyPIZBOfobHsHqcdp4Z8XUbsDCLeIQQQgiBJEBCiBkq04szQmSMt9Rhz7W5bZTXerIIYbL7P5eR7zGR4ctCCCFE1iQBEkII2yB2UYKvjfJaapTnhBBCCDENSQIkhJiODMCR4zYfB84HtmWGrmmapgA/Aw5izxMSQgghxDQnCZAQYjoaBK5IFxGoylGbn8Web/MXTdO+C8Swy1a/Crg1R/sQQgghRJHJOHIhxHT0LSAJ/A3w5aJBXdd3ANdgrxX0U+wKcc3Aq3RdvzcX+xBCCCFE8clCqEIIIYQQQohZQ4bACSHEBGiapjKBXvMRpa+FEEIIUWJkCJwQQkzMXdjD7sb80DRtYbECFEIIIcT4pAdICCEm5jPYc4/G057nOIQQQggxBTIHSAghhBBCCDFryBA4IYQQQgghxKwhCZAQQgghhBBi1pAESAghhBBCCDFrSAIkhBBCCCGEmDUkARJCCCGEEELMGpIACSGEEEIIIWYNSYCEEEIIIYQQs8b/B5kpIXDICiQaAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "\n", + "# Load the signal trace as a Chromatogram object and crop between 10 and 20 min.\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},\n", + " time_window=[10, 20])\n", + "\n", + "# Pass a prominence filter, fit the peaks, and show the result\n", + "peaks = chrom.fit_peaks(prominence=0.1)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though the small peak at ≈ 13 minutes was not detected by the prominence filter, \n", + "`hplc-py` still attempted to fit its signal as if it was part of the peak with a \n", + "maximum at ≈ 14.2 min. This because the small peak was considered part \n", + "of the same window of the major peak, as we will explore next.\n", + "\n", + "## Clipping the signal into peak windows\n", + "Once peak maxima are identified, `hplc-py` slices the chromatograms into *windows*–regions \n", + "of the chromatogram where peaks are overlapping or *nearly* overlapping. This \n", + "is achieved by measuring the widths of each peak at the lowest [contour line](https://en.wikipedia.org/wiki/Contour_line).\n", + "Peaks which have overlapping contour lines are considered to be close enough that their signals may be influencing one another. \n", + "This is achieved under the hood in a method `_assign_peak_windows` of a `Chromatogram`\n", + "which is called as part of `fit_peaks`. " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAG1CAYAAAA2g8rpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACQ+0lEQVR4nO3deXwU9f0/8Nccu9ndJAtJCAk34QyHnAlGOUWx1qOUH1q1xSpai1Whag1aQUUFj0pBUKkW8ahVQYVSz69FWg8UIQFEFAJyXwmBXJtrjzl+f6zZZGZ2kz1mdjfZ9/Px4KEzOzP7ybAk77w/73l/GFmWZRBCCCGEkKCxsR4AIYQQQkh7QwEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJCxMd6AB2VLMuQJGOavLMsY9i1STO6z9FB9zk66D5HD93r6DDiPrMsA4ZhgjqWAiiDSJKMysp63a/L8yzS0pLhcDRAECTdr0+86D5HB93n6KD7HD10r6PDqPucnp4MjgsugKIpPEIIIYSQEFEARQghhBASIgqgCCGEEEJCRAEUIYQQQkiIqIicEEJIwvI+MS1BkkRdridJDJxODm63C6JIT+IZJdz7zHE8WFaf3BEFUIQQQhKOLMtobKxDXV2NbsFTk3PnWEgSPYFntHDvs9WaArs9Peh2BYFQAEUIISThOByVaGysg8WSDIvFBpblIv6B2oTjGMo+RUGo91mWZbjdLtTVVQEAOnXKiOj9KYAihBCSUCRJRGNjPVJSOiMlpZPu1+d5lnpARUE499lsTgIA1NVVITU1LaLpPCoiJ4QQklBEUQQgIynJEuuhkBhoCqJEUYjoOhRAEUIISVD6TNmR9kWvqVoKoAghhBBCQkQBFCGEEEJIiCiAIoTEPVmS4P7hUzRu/htcu96HLLhjPSRC2r077/w9lixZFNE1rr76KqxZ86I+A4qAy+XEjTdeh48+ej9q70lP4RFC4p5r2zp49nzi3Ti0DdK5Y7BOuzO2gyKknXv88afBslyshxExh6MGDz54Pw4dOhjV96UAihAS16S6Cni+/49in3CkGGL5YXBd+8VoVKSjkiQZdU5PRNfgORaCGHobgxSLCSwbvcJ2u13/Fg7RtmXL51i27C9IS0uP+ntTAEUIiWvC4SJA1jbL8xzaRgEU0VVRSTne+M9+OBoiC6DCZbeZ8JtLByM/t2tY5z/77DIUF2/Ha6+tBQA4HA5ceeUluOqqX6Kw8AEAwNatW7BgwX348MNPUVj4R3Tr1h0LFizCRx+9j5df/jtuuWUOXn31JZSXn0H//gNx1133YvjwEQCAuro6PPPM09iy5XPwvAm//e1szRi+//47/P3vq7B//z7wPI8JEybjjjvugt1uxwMPFEIUBTz11HIAwI8/HsDs2b/GnDl34oYbbgIAbNjwDv75z1exYcOHWLPmRbzyymps2VIc8Gv+6qstuPrqa3HNNdfjoosuCOu+hYtqoAghcU04vc/vfvF0SZRHQjq6Vz8uiVnwBACOBg9e/Tj8z/X48ZNw6NBBVFScAwDs3FkEWZaxY0dzAPL1118hLy8fVqtVc/65c2exceN6PPjgY3jhhVfAMAwWL34Y8k+/wDz00P3Yt+8HPPXUcixf/hy++upLlJWV+s7fu/d7zJ07B3375uCFF17BY489hb17v8c999wJSZIwYcIk7Nq1E4Lg7b9UXLwdDMNg584i3zW2bt2CCRMmAQCuv/4G/Pvf/9fq13zffQvw61//FiaTKcy7Fj4KoAghcUuWRIil+/2+JlUcp2JyQloYMWIUUlPtKCraBsAboEyaNAUnTx7H2bPlALwBysSJU/yeLwgC7r33fgwffh4GD87Fb387GydPnkBFRQWOHz+K7du/wd13z8fIkaMxcOBgPPzwYpjNZt/5a9e+gf79B+Kee+5DTk4/jBmTh0WLHkdJyV5s27YVF1wwAU5nI374YY9ifHv27IbH44HL5cTOncW+8dlsNmRkdDHuhkWIAihCSNySqk4DHmeAV2VI1aUBXiMkdDf9PBd2W/QzGU3sNhNu+nlu2OfzPI+CggsVAdSVV05H165Z2LGjCIcPH0J5+RmMHz8x4DX69Mnx/X9ycgoAQBA8vgLtIUOG+l5PT89A9+49fNuHDx/EeeeNVFyvf/8BSElJxaFDPyItLQ3Dhg1HUdE2eDwefPfdLtxww2yIooi9e7/Hjh3FMJnMGD16bNj3IJqoBooQErekqpOtv159GlyXPlEaDeno8nO7YuygzHZdRD5+/EQ8++wylJaeRmnpaYwcOQZjxuRh585iVFScw7Bhw5GeHngR3ZYZpSZyixpESVLWI3IcrzjOX5NvWZbA897jLrxwEr788jOMHZsPm82G3NyhGDbsvJ/GV4ELLhjvOzbetY9REkISklTZRgBVeSpKIyGJgmUZ2G3aICIUsVxMuKBgPBYvfhjvvPMWhg4dBpvNhry8cViz5kWcOnUSEyZMDuu6gwZ5M2N79uzGhRdOAADU1tbi1KkTvmP69RuA3bu/VZz3448HUF9fj759vQ98TJgwCS+99Dd89tlmjBmTDwDIyxuHHTuKcPr0Kdx++x/DGl8s0BQeISRuiW0FUNWnozQSQtqHlJQUjBw5Ghs3rlcEKKWlp7Fnz+6A9U9t6dGjJy666BIsX/4XFBVtw+HDB/HYYw/B42nO1l177a9x8OABLFv2FI4ePYJdu3bg0UcXYtCgwcjLGwcAyMnph+zsbnj//Y0YOzYPADB2bD52796FysoKXHDBhb7rNTQ0+Ari4xEFUISQuCVVKQMkrvsQ5euOs9EcDiHtwvjxk+B2uzF2rDeA6tIlE3375qBXr97o3Tv8Ke+FCxfhggvG4+GHH8Dtt9+KnJx+GDy4+d/k8OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlmJYbP34i3G63L8AbMmQYrFYrxozJh82W7Dvurbdex/Tpl4U9XqMxsuynwQqJmChKqKys1/26PM8iLS0ZVVX1MUsRJwK6z9HR2n2WJRF1a24F5Ob95nHXwL39neaDzDak3rQqWsNtt+jzrOTxuFFRUYqMjG4wmSKbrvMnllN4iSTc+9za3396ejI4LrjcEmWgCCFxSW6oVgRPAMBlD1Ie5G6A7G6M3qAIIeQnFEARQuKSVFeh3MGZwXXprT2uvjJKIyKEkGYUQBFC4pJcqyweZVPSwfBJYCypyuPUgRYhhEQBBVCEkLgk1SkzS0yqtyMxk5Le6nGEEBINFEARQuKSXKfNQHn/m6E6jjJQhJDoowCKEBKXNBmolJ8yULbOiv1yoyNaQyKEEB8KoAghcUmbgfJmnhirXXkcBVCEkBigAIoQEndkWYZUq5yaYwIEUFJjTdTGRQghTSiAIoTEH1c9ILgUu5ozUJ0U++XG2qgNixBCmlAARQiJO5oeUGDApKQBAFjNFB5loAgJx513/h5LliyK6BpXX30V1qx5UZ8BhWHPnt24887f42c/m4xf/vLnePLJx+BwROd7QkwDqG3btmHw4MF+/1x88cUAgH379mHWrFkYNWoUpkyZgjVr1iiuIUkSVq5ciYkTJ2LkyJG4+eabcezYMcUxelyDEBI96gCKSe4MhvWupcXYlBkoCG7IHme0hkZIh/H440/jj3+8N9bDCNvx48dwzz13YuDAwVi9+jU88sgT2LfvByxceF9U3j+mAdTo0aOxZcsWxZ+XX34ZPM/jtttuQ1VVFWbPno2+ffti/fr1mDt3LlasWIH169f7rrFq1SqsXbsWixcvxrp168AwDG699Va43W4A0OUahJDoUrcmYFq0LlDXQAFUSE5IOOz2TkhJSYn1MML20UcfoEuXTMybdw969+6LkSNH4Z577sfOncU4deqk4e8f0wDKbDYjMzPT96dz58544okncOmll+Kaa67B22+/DbPZjEWLFqF///6YOXMmbrrpJqxevRoA4Ha78fLLL2Pu3LmYPHkycnNzsXz5cpw5cwabNm0CAF2uQQiJLnUGStH7iU8COOUCoHIDTeMRfciSBKnREZM/shTZAsTPPrsMN954nW/b4XBg0qRxePrpx337tm7dgqlTx6OxsVExhffRR+/j6quvwscff4Brr/0lLrroAvzud7/F999/5zu3rq4Oixc/jMsum4Irr5yGt99+UzOG77//DvPm3Yaf/WwyrrjiYjzxxKNwOLy/4DzwQCHuu+9u37E//ngAEybk4fXXX/Xt27DhHfy//3cFAGDNmhcxYUJewK/3Zz/7ORYseAQMw2heq601/pcq3vB3CMEbb7yB0tJSvPzyywCA4uJi5Ofng+ebh1lQUIAXX3wRFRUVOHXqFOrr61FQUOB73W63Y+jQoSgqKsIVV1yhyzUIIdGlXcalRQaKYcBYUxVZKtlZF7WxkY7Lc3g7XF/9M2YZTcZqR9L4WTD1GxfW+ePHT8K6dW+iouIcMjK6YOfOIsiyjB07in3HfP31V8jLy4fVatWcf+7cWWzcuB4PPvgYTCYTli59AosXP4y33toAhmHw0EP348yZMjz11HLYbDY899wzKCsr9Z2/d+/3mDt3Dq666pe4++75qKqqxPLlf8E999yJv//9VUyYMAnPPLMUgiCA53kUF28HwzDYubMIN9xwEwBvgDdhwiQAwPXX34Bf/nJmwK83J6cfBEEZdL7xxqvIyMjAgAGDApyln7gJoFwuF1544QXceOON6Nq1KwCgrKwMgwYpb0LTa6dPn0ZZWRkAoFu3bppjSktLdbtGuHhe/wQfx7GK/xJj0H2OjkD3WVYtEMx16qL498RaUiC2CKAYocGQf28dBX2elSRJm7EAAOcXrwDuxiiPppnc6IDzi1fCDqBGjBiF1FQ7ioq24bLLrkBx8XZMmjQFn3/+P5w9W47MzK7YunULbrzxFr/nC4KAe++9HwMHDgYA/Pa3s/HnP9+LiooKNDTUYfv2b/DMM6swcuRoAMDDDy/G1Vdf5Tt/7do30L//QNxzj7cGKSenHxYtehw33ngdtm3bigsumIAnn3wMP/ywByNHjvaNb9u2rfB4PJAkETt3FuPJJ5cBAGw2G2w2m9+xNiWdGAaQZe//P/vscmzd+hUWL35KkTQJhOOYiL5vxE0A9e9//xsulws33HCDb5/T6YTZrEzVJyUlAfAGXI2N3g+6v2Nqamp0u0Y4WJZBWlpy2Oe3xW7X/vZA9Ef3OTrU99mhCqA6ZfeErcW/J2eKHY0tklQW1oPOBv576yjo8+zldHI4d47V/ABlwECO4biaxhDuD3WeN+OCC8Zjx47tuPLKq1BcvB333FOIffv24ttvizF48BCUl5/BpEmTwfOsN5vLeN+PZb0RSf/+/X3vb7d76w1lWcDRo4cBAOedN9z3eteumejevQdY1nuNw4cP4vzzCxTjHzx4EFJTU3HkyCFMnDgRw4adhx07tmPEiBH47rtdWLVqNb7+egv27/8B9fX1MJvNyM/PC/oecBwLQfDgiScW46OPPkBh4Z9x8cWXtHqOJDFgWRadOtlgsVhCu8ktxE0AtXHjRlx66aVIS0vz7bNYLJpCbpfL2xvGZmv+wt1ut+ImuFwuX3pSj2uEQ5JkOBwNYZ8fCMexsNutcDgaIYqRzZeTwOg+R4e/+ywLboj11YrjGphkuKrqfdsCp/y32VBVCbnF60SJPs9KbrcLkiRBFGXFFFDSpJviYgpPPS0VigsvnIBnn12GEydOorT0NIYPH4UxY/JQVFSE8vKzGDZsODp1SoMgSJBlGbLsvQeS5A0dWZb3vX/TZ0UQJN//u90ikpKax8dxPCRJbnE9aMYvSRJYloUgSLjwwon48svPMHp0Hmw2GwYOzMWwYeehqKgIFRUVKCgYD4Br8x4wjPdz7XDU4s9/LsR33+3Cww8vxiWX/KzNc0VRhiRJqKlpQGOjqHjNbrcGnamNiwCqsrISu3btwpw5cxT7s7OzUV5ertjXtJ2VlQVBEHz7evfurTgmNzdXt2uEK5J/BG0RRcnQ6xMvus/R0fI+SzXnNK9L1nTILf8ezMq0vthYR39PQaDPs5co+s8zmfqNA983D7Irspo6nmfDus9MUgoYNrJp1oKC8Vi8+GG8885bGDp0GGw2G/LyxmHNmhdx6tRJTJgwOazrDhrk/Xm4Z89uXHjhBABAbW0tTp064TumX78B2L37W8V5P/54APX19ejbtx8AYMKESXjppb/hs882Y8yYfABAXt447NhRhNOnT+H22/8Y1HhkGfB4PCgsvAsHDx7AX//6LMaMCVxw7o86gA5VXEyI79y5EwzDYNw45bxvfn4+duzYAVFsjhC3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvL0+3axBCoke9iDDMVjBmZcaJSVI+ei27KPtE9MGwLFirPSZ/Ig2eACAlJQUjR47Gxo3rFQFKaelp7NmzGxMnTgnruj169MRFF12C5cv/gqKibTh8+CAee+wheDwe3zHXXvtrHDx4AMuWPYWjR49g164dePTRhRg0aDDy8rw/33Ny+iE7uxvef38jxo71/owdOzYfu3fvQmVlBS644ELf9RoaGlBRof2Fqsmrr67Bd999i8LCB9CnT19UVJzz/Wk5LqPERQBVUlKCXr16aabMZs6cibq6OixYsAAHDx7Ehg0b8Nprr/kyVWazGbNmzcLSpUuxefNmlJSU4O6770Z2djamTZum2zUIIdGjfQKvi+YYJklZ70QBFCHNxo+fBLfbjbFjvQFUly6Z6Ns3B7169Ubv3n3Cvu7ChYtwwQXj8fDDD+D2229FTk4/DB48xPf68OEjsHTpCpSU7MPNN/8GDz54P4YPH4lnnlmlKOoeP34i3G63L8AbMmQYrFYrxozJh83W/G/7rbdex/TplwUcz3/+83+QZRmLFi3A9OmXKf7s2bM77K8zWIwsy7GumcOiRYuwb98+rFu3TvPad999hyVLlmDv3r3IzMzEzTffjFmzZvleF0URy5Ytw4YNG+B0OpGfn4+HHnoIPXv21PUaoRJFCZWV+n9T53kWaWnJqKqqp1S8geg+R4e/++wq/hfcO//tO4brPQq2y+5SnOcp+QLOL172bbOZOUie8XBUxtwe0edZyeNxo6KiFBkZ3WAymds+IUThTuGR0IR7n1v7+09PTw66BiouAqiOiAKo9o3uc3T4u8+Nn70E4cAW3zGmoRfDMuEGxXmeozvg/M+zvm0mNRMp1z8dnUG3Q/R5VqIAqmOIdQAVF1N4hBDSRL2MC5uaoTmGaqAIIbFGARQhJK5oFhJO8RdAqXo+uRsiXgaDEEJCQQEUISRuyLIEWfUUHhtMAAUAbv37rhFCSCAUQBFC4obc6AAkQbEvqAwUaBqPEBJdFEARQuKGuoUBWA6MrZPmOIY3A5xJeS4FUISQKKIAihASN9RNNJnkdDCM/29T2l5QkXWPJoSQUFAARQiJG3KdqolmqraJZhN6Eo8QEksUQBFC4ob2Cbz0gMcyScr18CiAIoREEwVQhJC4IdWqekD5WcbFR7U+nuxxGjEkQgjxiwIoYpit35fhkVeK8PyGPaiqdcV6OKQdkOtDyECpAii4G40YEiEd1p13/h5LliyK6BpXX30V1qx5UZ8BhaGoaBtuvfVGXHzxeMyYcTlWrVoJt9sdlffm2z6EkNB9d+gcVn+wFwBw7Ewtyqsb8fDsfLAME+ORkXgWSgaKMakyUBRAERKSxx9/GizLxXoYYfvxxwOYP/8uzJp1ExYtWoLTp09iyZJH4Ha7cddd9xr+/hRAEUN8WnxSsX2ivA4/nqjG4N5pMRoRiXeyu1HTDNNfE80m6gwUBVBED5Isod4TWVNWXgpvjbZkkw1sgKdOjWC3a1uEtCdlZaW4/PKrcMstcwAAPXr0xNSpl2D79m1ReX8KoIjuREnCgZPVmv37jlVRAEUCUheQA61P4cFkUW5TDRSJ0M7y7/D2/o2o9cSmJUaqKQW/GvxLjOk6Iqzzn312GYqLt+O119YCABwOB6688hJcddUvUVj4AABg69YtWLDgPnz44acoLPwjunXrjgULFuGjj97Hyy//HbfcMgevvvoSysvPoH//gbjrrnsxfLh3PHV1dXjmmaexZcvn4HkTfvvb2ZoxfP/9d/j731dh//594HkeEyZMxh133AW73Y4HHiiEKAp46qnlALwZpNmzf405c+7EDTfcBADYsOEd/POfr2LDhg+xZs2LeOWV1diypdjv1ztx4mRccMFEAIAsy9i79wd8/vn/MHnyRWHdv1BRDRTR3bkaJ9we7W9fJ8/SU1IkMPUiwozV7m2YGQBloIje3ix5N2bBEwDUeurwZsm7YZ8/fvwkHDp0EBUV3nYgO3cWQZZl7NjRHIB8/fVXyMvLh9Vq1Zx/7txZbNy4Hg8++BheeOEVMAyDxYsfhizLAICHHrof+/b9gKeeWo7ly5/DV199ibKyUt/5e/d+j7lz56Bv3xy88MIreOyxp7B37/e45547IUkSJkyYhF27dkIQvKsNFBdvB8Mw2LmzyHeNrVu3YMKESQCA66+/Af/+9/+1+XWLoohLLpmAOXNuQqdOnTB79u/DuHuhowCK6O5ctf9MQGkFBVAksGAWEVa8rnkKjwIokthGjBiF1FQ7ioq8U1jFxdsxadIUnDx5HGfPlgPwBigTJ07xe74gCLj33vsxfPh5GDw4F7/97WycPHkCFRUVOH78KLZv/wZ33z0fI0eOxsCBg/Hww4thNjf/krN27Rvo338g7rnnPuTk9MOYMXlYtOhxlJTsxbZtW3HBBRPgdDbihx/2KMa3Z89ueDweuFxO7NxZ7BufzWZDRkYrT+L+RJZlPP/8aixduhJOpxP33jsPUhQWF6cAiujubI3/H2Rnqxt9v8kQoqbOQLVW/wQA0BSR0xQeicyvc69Gqiml7QMNkmpKwa9zrw77fJ7nUVBwoSKAuvLK6ejaNQs7dhTh8OFDKC8/g/HjJwa8Rp8+Ob7/T0723gtB8ODQoYMAgCFDhvpeT0/PQPfuPXzbhw8fxHnnjVRcr3//AUhJScWhQz8iLS0Nw4YNR1HRNng8Hnz33S7ccMNsiKKIvXu/x44dxTCZzBg9emzIX3du7lAUFFyIBQsewQ8/7MF3330b0jXCQTVQRHeBMlCCKKPeKSDFavL7Okls6ifwQs1AqQvQCQnVmK4jMCpzeORF5HzsisjHj5+IZ59dhtLS0ygtPY2RI8dgzJg87NxZjIqKcxg2bDjS0wP/22qZUWrS8hdfSVL+EsxxvOI4fw9ay7IEnvced+GFk/Dll59h7Nh82Gw25OYOxbBh5/00vgpccMF437FtKSnZi9raekXA1a9ffwDwZdyMRBkoortzATJQAFBTR/2giH9SCMu4ADSFR4zBMixSzSkx+aPHE3gFBeNRU1ODd955C0OHDoPNZkNe3jjs2rUDX3+9BRMmTA7ruoMG5QIA9uzZ7dtXW1uLU6dO+Lb79RuA3bu/VZz3448HUF9fj759+wEAJkyYhP379+GzzzZjzJh8AEBe3jjs3Fn8U/1T8OP7+OMP8fjjj0AURd++vXu/BwDf+xmJAiiiu7MBMlAAUF0fnQZnpP3RFJG39gQetH2gIAqQRY/ewyKkXUlJScHIkaOxceN6RYBSWnoae/bsDlj/1JYePXrioosuwfLlf0FR0TYcPnwQjz32EDye5n9z1177axw8eADLlj2Fo0ePYNeuHXj00YUYNGgw8vLGAQBycvohO7sb3n9/I8aOzQMAjB2bj927d6GysgIXXHCh73oNDQ2+gnh/Zs68FtXV1Vi69EkcP34M33zzNZ588jFMmTIVAwcOCuvrDAUFUER3jvrAWSbKQBF/ZFGAXF+t2NfqMi4AYLZodtFyLoR4n8Zzu90YO9YbQHXpkom+fXPQq1dv9O7dJ+zrLly4CBdcMB4PP/wAbr/9VuTk9MPgwUN8rw8fPgJLl65ASck+3Hzzb/Dgg/dj+PCReOaZVYppufHjJ8LtdvsCvCFDhsFqtWLMmHzYbMm+495663VMn35ZwPH07t0bK1f+DSdOHMMtt8zCE088gsmTp+KhhxaH/TWGgpGpqtcQoiihslL/p854nkVaWjKqqurDmmOPhtuWfgZ3gLFdM6U/fl4Q/j/gaGkP97kjaLrP544ehuONQsVrKTc+DyYpOcCZgCy4UPfyHMW+5Ov+Atbe1ZCxtmf0eVbyeNyoqChFRkY3mEyBW2WEK9waKBKacO9za3//6enJ4LjgckuUgSK6cnnEgMETANTQFB7xQ6pVpelN1laDJwAAZwZUNSPUC4oQEi0UQBFd1Ta0HiBV0xQe8UMdQLVVQA4ADMMAmkJymsIjhEQHBVBEV7UNrRfxtvU6SUzqAKqtFga+49TLuVAGihASJRRAEV3VNbYeINU7KYAiWuFkoACAMdsU2zL1giKERAkFUERXbU3hNTiFKI2EtCfaACrIDBRN4RFCYoQCKKKrOtUUHccq29JSAEX80XYhDy4DBdUUHhWRk9DQQ+iJSK/mAxRAEV3VqqbwuqYpMwSNLgESdc4gLciSCKmuUrEv+Ck89XIuFECRtnEcB4CBy0UZy0TkdnsfZmq5DE04aC08oit1DVRWmg2lFc11KTK8QVSyhdbDI15CbQUgK1tfMMEGUKYkxbYs0FOepG0sy8FqTUZdXTUEwQOLxQaW5bxPdupAkhiIIv2iaLRQ77Msy3C7Xairq4LVmgKWjSyHRAEU0VWjSzlF16Wztlt0g5MCKNJMqD6r3MGbwSSlBHcyr/p8eSiAIsGx29NhMiWhrq4aTqe+TY9ZloUkUSNNo4V7n63WFNjtrS8VFQwKoIiuGlQBVFpKEjiWgdhiBW+qgyItCTXKAIpN7RJ0JkCTgaIichIkhmFgs6XAak2GJEmQJLHtk4LAcQw6dbKhpqaBslAGCvc+cxwfceapCQVQRFeNquDIauFhTeIVU3vUyoC0JNSUK7aDLiAHAJrCIxFiGAYcx/1UFxU5nmdhsVjQ2CjSci4Giof7HBdF5Bs3bsTll1+O8847D1dccQU+/vhj32v79u3DrFmzMGrUKEyZMgVr1qxRnCtJElauXImJEydi5MiRuPnmm3Hs2DHFMXpcgwRHnYGyJfFItijjdMpAkZb8ZaCCxfDKAIqm8Agh0RLzAOrf//43HnjgAVx77bX44IMPcPnll+Oee+7Brl27UFVVhdmzZ6Nv375Yv3495s6dixUrVmD9+vW+81etWoW1a9di8eLFWLduHRiGwa233gq329uPSI9rkOCpa6CsSTxsqnondZBFEptHFUAF24Uc0HYipwwUISRaYjqFJ8syVqxYgRtvvBE33ngjAOCOO+7Azp07sX37dmzfvh1msxmLFi0Cz/Po378/jh07htWrV2PmzJlwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oor8Pbbb0d8DRI8fxkomyoDRVN4pKVIMlDqKTxQDRQhJEpimoE6fPgwTp06hauuukqxf82aNZgzZw6Ki4uRn58Pnm/+AVxQUIAjR46goqICJSUlqK+vR0FBge91u92OoUOHoqioCAB0uQYJjiBKcHuUc9HWJG8NVEuNLn2KNUn7J8sShBpVF/JQMlC8uoicMlCEkOiIaQbq6NGjAICGhgbccsst2Lt3L3r27Ik//OEPmDp1KsrKyjBo0CDFOV27dgUAnD59GmVlZQCAbt26aY4pLS0FAF2uES6e1z8+5ThW8d940ujWTs2lJpthUwVQbkE05N7oKZ7vc4fSUAlIys+NKa0r2CA/H7JF1UhTcMX9ZysW6PMcPXSvoyMe7nNMA6i6ujoAwH333Yc777wT9957Lz755BPcfvvteOWVV+B0OmE2mxXnJCV5f+N0uVxobPR2HfZ3TE1NDQDoco1wsCyDtLTksM9vi91ubfugKHP6SSx1z7ajs11VpwJj742e4vE+dySNjiOKbcZkQXr37kG3MXA5O6OuxbYsuNrNZysW6PMcPXSvoyOW9zmmAZTJ5C0uvuWWWzBjxgwAwJAhQ7B371688sorsFgsmkJul8uborfZbLBYvD+Y3W637/+bjrFavTdVj2uEQ5JkOBz6rwzPcSzsdiscjkaIYnw9IltW7lBscyyDhjonoGp0VlPrRFWVvo3r9BbP97kj8Zw+odhmUzNRXR38vxuxUdX/RRRQea4GTIRLNHQ09HmOHrrX0WHUfbbbrUFntWL6XSY7OxsANFNsAwYMwGeffYYePXqgvFzZI6ZpOysrC4Ig+Pb17t1bcUxubq7vPSK9RriM7E0hilLc9RipVS0kbE3iIYoyzCZlf5UGlxB3Yw8kHu9zRyJUn1FsM/bMkO63xJo1+wRnI5gkykL5Q5/n6KF7HR2xvM8xnaQdOnQokpOTsXv3bsX+AwcOoHfv3sjPz8eOHTsgis1zQ1u3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIMER93fyZrkDZwsZmUA5XRTETnxEmtUAVRqZkjnM7w2gKJCckJINMQ0gLJYLPjd736H559/Hh988AGOHz+Ov/3tb/jqq68we/ZszJw5E3V1dViwYAEOHjyIDRs24LXXXsOcOXMAeOuWZs2ahaVLl2Lz5s0oKSnB3XffjezsbEybNg0AdLkGCY7LowqgzN4EpyaAoqfwyE8khzI7zNq7hnYBdRsDALJArQwIIcaLeaHA7bffDqvViuXLl+PMmTPo378/nn32WZx//vkAgJdeeglLlizBjBkzkJmZifnz5/vqpQBg3rx5EAQBCxcuhNPpRH5+PtasWeMrCs/IyIj4GiQ4LlVmqSlwspiVHzN1oEUSl+RQ9YAKMYBiWB5geeWTfJSBIoREQcwDKACYPXs2Zs+e7fe1ESNGYN26dQHP5TgOhYWFKCwsDHiMHtcgbXN6lAFUUqAMFE3hEQCyqx6yS/kwQcgZKMCbhWrRwJWm8Agh0UCNKohu1FNzSQEyUBRAEUA7fQeGBZMafBNN32mq5VxAU3iEkCigAIroxqXKQFlM/ovIPYIEUaKnUxKdOoBiUjK8U3Ih0nYjpzUsCSHGowCK6EadWWrOQHFtHksST6T1Tz60Hh4hJAYogCK60WSgAkzhAfQkHgFk9RN4IbYwaKLJQAlUA0UIMR4FUEQ36qfwkgJM4QGA08+6eSSxaKbwdMpAURE5ISQaKIAiulEHRU1TeCzLwGxiVcdSBirRaXtAhZmBUheR0xQeISQKKIAiuglURA40Z6MCHUsSiyx6INdXKfaFWwNFU3iEkFigAIroJlAROaANoNweegovkcm15wAoFwLWr4icAihCiPEogCK6UQdQLWuf1AsKUwYqsWnqn6ypYMzWsK6lbWNAU3iEEONRAEV0o13KpfnpuyRVDZSbAqiEJlWXKbZZe1b4F1MvKCx6wr8WIYQEiQIoogtZljVZpZbTdmaeMlCkmVRTqtjm0rqFfS1tDRQ10iSEGI8CKKILQZQhSsqalpZTeEmqVgZugWqgEpk6A8V1zg7/YqoMFBWRE0KigQIoogt/GaWWQZOZV37U1NN9JLFINaopvM6RZKBUU3gCTeERQoxHARTRhb/GmEmttDFwCxRAJSrZ3Qi5oVqxj4sggNLUQFEGihASBRRAEV34yygpaqA0T+HRFF6iUmefwLBgO4XZwgDaDBTVQBFCooECKKILp2oKz2xiwbKMb1vbB4oyUIlKqlYWkPOdu4LhTOFfUJOBogCKEGI8CqCILjQtDFQBk3opF3oKL3GpM1Cm9Aim7+DnKTyRAihCiPEogCK6aK0LOUCdyEkz9RN4powekV2QV2WvBDdkWfZ/LCGE6IQCKKILdQYqycQrtqkTOWmi7gFlTu8e0fXUGSgA1EyTEGI4CqCILtQ1UBZz61N4VAOVmGRZglR9RrHPlBFZAKWpgQKoDooQYjgKoIguNBmoNqbwKAOVmOT6KkBVoxTpFJ6mDxSomSYhxHgUQBFdqDNK6oBJPYVHNVCJSao6pdxhsoBLSYvsopy/DBRN4RFCjEUBFNGFS9C2MWgpSd2JnDJQCUmqVAZQXHoPMAwT4OggsRzAKD9flIEihBiNAiiiC3VGSb14sFmzFh4FUIlIrFIHUD0jvibDMNQLihASdRRAEV2op/C0GSjtFJ5Ej5onHPUUnh4BFEDdyAkh0UcBFNGFW1BmoDQ1UKoMFAB4BKqDSiSyLGmn8DL0CaA0GShqpkkIMRgFUEQXmgwU33oNFEB1UIlGrj2nCWwoA0UIaa/4tg8hpG3qDJT6qTv1NkC9oOKVLEvwfP8pPIe+AWTA1H8cTMOngWG1f4ehECtPKraZpBQwVntE1/RRN9OkAIoQYjAKoIgutDVQrfeBAgAXtTKIS64t/4Bn32fN22cPQyw/BMvUP4Bhw09aq+ufWD2ewPuJNgNFT+ERQoxFU3hEF9qn8JQfLZZlwHPUjTzeeQ4XKYKnJsLhInj2/F9E15ZUGSg2Taf6JwDg1OvhUR8oQoixKIAiulC3JfA3ZZdEy7nENVmW4d75XsDXXTs2QqqvCvv60rljim1Wp/onQLseHtVAEUKMRgEU0UVbReSAvwWFaQovnoil+yFVngh8gOCG5/tNYV1bdjdCqlGugcd16RPWtfzS9IGiKTxCiLFiHkCdOnUKgwcP1vx55513AAD79u3DrFmzMGrUKEyZMgVr1qxRnC9JElauXImJEydi5MiRuPnmm3HsmPI3XT2uQVqnDob8Z6DUvaAoAxVPhCNFim22Uzb4QRMV+9z7PoPscYZ8bbHyBIAWfb8YVucMFD2FRwiJrpgHUPv370dSUhK+/PJLbNmyxffnqquuQlVVFWbPno2+ffti/fr1mDt3LlasWIH169f7zl+1ahXWrl2LxYsXY926dWAYBrfeeivcbu83UD2uQdqmncLzk4Gi5VzilizLEI7uUuzjB16IpFGXA2hR6O1ugOfHrSFfXzN9l9bD7yLAYaM+UISQKIt5AHXgwAHk5OSga9euyMzM9P2xWCx4++23YTabsWjRIvTv3x8zZ87ETTfdhNWrVwMA3G43Xn75ZcydOxeTJ09Gbm4uli9fjjNnzmDTJu9Ugx7XIK2TZVlTRK7uPA4AJlVQRY0044dUXQq5vlKxj+87FmznbuD7jFLsFw6GHkCJ544qtlk9p+9AGShCSPTFPIDav38/BgwY4Pe14uJi5Ofng+ebuy0UFBTgyJEjqKioQElJCerr61FQUOB73W63Y+jQoSgqKtLtGqR1/gIh/xko9Xp4FEDFC7HsgGKbSU4Dm9YdAGAaPElzrOQ4G9L11RkoXeufAFoLjxASdTHvA3XgwAFkZmbi17/+NY4ePYo+ffrg9ttvx8SJE1FWVoZBgwYpju/atSsA4PTp0ygrKwMAdOvWTXNMaWkpAOhyjXDxfgqpI8X91AqA42Ie+/o0ugXNPpvFpPn61XVRoiQZco/0EI/32UiuMz8qtvlug2H66e+LyxkJZ1IyZFe973Xx8DaY834R1LVlwQ2p6rRinzkrBzzP6nafBbNFuUN0x+1nKxYS7fMcS3SvoyMe7nNMAyi3242jR4/CarVi/vz5sNlseO+993DrrbfilVdegdPphNms/M0yKcn7uLLL5UJjYyMA+D2mpqYGAHS5RjhYlkFaWnLY57fFbrcadu1QCX4SmV0zU5FsVfbmSbEp7zHLc4beIz3E0302Uu3ZQ4pte//z0KnF3404bDxqd/6nefvQVnS+5LqgGmE6T55Atdwy28ggY0AuWHPzvY30PjvsKWhssc1DjPvPViwkyuc5HtC9jo5Y3ueYBlBmsxlFRUXged4XwAwfPhyHDh3CmjVrYLFYNIXcLpf38WSbzQaLxftbp9vt9v1/0zFWq/em6nGNcEiSDIejIezzA+E4Fna7FQ5HI0QxPqbAzlbUa/Y11DvhdqqmUWTleB21LlRVac+NB/F4n40iuxshVJUp9rlTeyr/bvqMA1oEUJ6KUzh3sAR8l95tXt95YI9im03vgZp6Caiv1+0+u1QfNY+zMW4/W7GQSJ/nWKN7HR1G3We73Rp0VivmU3g2m02zb9CgQdiyZQuys7NRXl6ueK1pOysrC4Ig+Pb17t1bcUxubi4A6HKNcAkG1viIomTo9UPR6FRO4XEsA8jar9+k+lC63ELcfA2BxNN9NopQfly5g+Eg27spvm65Sz8wyemKQnPXgW+Azm23IvCUKqcHuawBmnsa6X2WGGW2U/a4O/zfWzgS4fMcL+heR0cs73NMJ2lLSkowevRoFBcXK/Z///33GDBgAPLz87Fjxw6IYvPj7lu3bkVOTg4yMjKQm5uLlJQUbNu2zfe6w+HA3r17kZeXBwC6XIO0Tv0EnilA7YmJisjjklShajHQuZvmqTaGYcH3H6fY5zlcBFmW0RpZliGeUQdQAyMYrX+0Fh4hJNpiGkANGjQIAwcOxCOPPILi4mIcOnQITzzxBL799lvcdtttmDlzJurq6rBgwQIcPHgQGzZswGuvvYY5c+YA8E4Bzpo1C0uXLsXmzZtRUlKCu+++G9nZ2Zg2bRoA6HIN0jpXEMu4ePdTG4N4JFWo1qjL6OX3OFM/ZQAlO85ogi81ufYs5EaHYh+XrX8Ape0DRWvhEUKMFdMpPJZl8cILL2Dp0qW466674HA4MHToULzyyisYPHgwAOCll17CkiVLMGPGDGRmZmL+/PmYMWOG7xrz5s2DIAhYuHAhnE4n8vPzsWbNGl9NVUZGRsTXIK0LZhkXQJuZok7k8UGqUT5tyqb38Hscm5kDJjUTcm1zCwPh0HZwXfoGvLZ4ukSxzVjtYFIzwx9sANQHihASbTGvgUpPT8fjjz8e8PURI0Zg3bp1AV/nOA6FhYUoLCw09BokME0TzUAZKNUUHmWg4oN6jTq2U7bf4xiGgan/OLi//dC3z3N4O8zjrgn4NJ5w6gfFNtdtcFBP7oXMz1p4siwb816EEII4aKRJ2j9NBspPE03ATwaKAqiYkz1OyA3Vin2BAigA4NXTeLXnIJ097P/asgTx1F7FPq7HsPAG2gbNsjCyDEja/mSEEKIXCqBIxNSBkDrT1LxfXQNFU3ixps4+AQBr7xrweDajNxhVgOU5tN3/tStOQHbWKvbxPY0JoMAnaffRNB4hxEAUQJGIaTNQ/gMo9Vp4lIGKPXUAxaRktLrIL8MwMPXLV+wTDm+HLGv/LoXju5Xn2ruCNaD+CQAYzqTZR3VQhBAjUQBFIuYKcgpPUwPloQAq1qQaZQNNtlNWm+fw/c9XbMv1VRDPHNIcJxxWriXJ9zovjBEGyV/QR60MCCEGogCKRExdDB7sFJ6bpvBiLtgC8pa49J6+hYabCAe3Kq9bXQqp8oRiH5+jzFzpijMBUBaMywK1MiCEGIcCKBIx7VN4wRWR01N4sdeyJQEAsPa2M1AAwPdTZqE8B75SLDbsOfiN4nXG2glctnJRbz0xDPNTENWCSFN4hBDjUABFIhZ8I03qRB5vpLoKxTaT2iWo80yDJwBMi28fggvufZ8BAGRJgKfkc8XxfE4eGNbYbzfUC4oQEk0UQJGIqYvIAy/los1AtbUUCDGOLImQ66sU+9iU9KDOZVMywOcolzpy7/4IsqsenpIvNa0RTLmTIhprUDS9oGgKjxBinJg30iTtn3oKL2AGyk9g5RGkgMcTY8kN1YDq6TkmJSPo880jLoNwuEULA1c9Gv69BFLdOcVxXPYgcF36RDLU4PCqBYVpCo8QYqCgAqjnnnsu7De48847wz6XtA/qYvCkIBcT9p5LAVSsyHWVyh0cD8aSGvT5XNd+4HPyIBxpXgxcqj6tOc6cN0OzzwgMZ4Yin0lTeIQQAxkaQDEMQwFUAgg6A+WnuJwKyWNHU/+UkhHy0idJBddBOLUXcDf4fZ3PyQPffUjYYwyJJgNFU3iEEOMEPYX39ttvY8SIEUFf+Ntvv8X1118f1qBI+xLsUi7+pvColUHsSKoMFJscXP2T4pzULrBefBsa/7MSEJVLp7BpPWCZNDuiMYaC4dQ1UJSBIoQYJ6gi8jFjxiA5OTmkC6empmL06NFhDYq0L64g+0DxHAt1foOaacaOXK/NQIWD7zUCtl8sANdjqLeVQFIyTEMvhm36QjBJoX3fiAg9hUcIiaKgMlBjx44Fx4VWp9K/f3+8+eabYQ2KtC/BLuXCMAxMPKtoX0CtDGJHXQPFhhlAAQCXmQPbFfMjHVJENMu5UABFCDFQUBmoV155BT//+c9xww034L333oPLRUskkGbqACpQI03AXysDmsKLFW0NVOhTeHFF3caAaqAIIQYKKoD68ssv8ec//xn19fWYP38+JkyYgEcffRT79u0zenykHdAs5dLKU3XUTDN+qHs1hVMDFU+okSYhJJqCCqDS0tLw29/+Fhs2bMD777+Pa665Bp9++in+3//7f5gxYwbefPNN1NbWGj1WEockWdYEQf6KxZuoM1DqJ/hIdMiSCLlR+W+WsXWOzWD0oslAUQBFCDFOyJ3IBw4ciPnz5+Ozzz7Diy++iH79+uEvf/kLJk6ciMLCQhQVFbV9EdJh+GtD0GoGiqbw4oLsrAWUXZPAWO2xGYxO1DVQtJgwIcRIYXciZ1kWkyZNwqRJk1BfX4///ve/eP755/HBBx/Q1F4CUdc/AW1loGgKLx7IDTXKHQwTUhPNuKRZyoUyUIQQ40S8lMv333+P999/H5s2bUJpaSnOP//8tk8iHYa/KbjQMlAUQMWCOoBiLHbDF/s1nKoPFDXSJIQYKawA6sSJE3j//ffx/vvv4+jRo8jKysKMGTMwc+ZM9OzZU+8xkjjmrxFmoMWEAcCkekKPGmnGhtyoCqBsnWI0Ev0wPLUxIIRET9ABVFVVFT766CO8//772L17N3iex9SpU/HAAw9gwoQJIS8BQToGdQaKYxnwXOAASt1kkxppxoakzkB1gACKGmkSQqIpqADqtttuw5YtWyAIAgYOHIj7778fv/jFL5CWlmb0+EiccwXZRNP3uvopPJrCiwlNBsra/gMoTSNNegqPEGKgoAKo4uJizJw5EzNnzgxpPTzS8amn4AKtg9dE08aApvBiQl0DxXaIDFSSYpOewiOEGCmoAGrLli2wWCxGj4W0Q+opvKQA6+A10UzhUQYqJjpkBkpdA0UZKEKIgYIKoNTB0yeffIKdO3fC4XBojmUYBo8//rg+oyNxL+QMlLqInGqgYqJD1kCpn8KjGihCiIFCfgpv6dKleOmll5CSkgK7Xdt4j4rJE4s6AAq1BooaacaGpo1Bh8hAqftA0RQeIcQ4IQdQ//rXv/CrX/0Kjz76qBHjIe2MupFma000AX81UJSBijZZcAGeRsW+jlEDpZ3Ck2WZfqkjhBgi5M55LpcLl112mRFjIe2QZh28NjNQVAMVa3KDn6n3DhBAMaopPAAANdMkhBgk5ADq0ksvxX//+18jxkLaoZAzUNRIM+bUBeTgTIDJGpvB6Ek9hQdQM01CiGFCnsJ74IEHcM011+CGG27AyJEjNQXmDMPgjjvu0G2AJL5FXANFReRR56+AvCNMc2n6QMG7nEv7/8oIIfEo5ADq9ddfx5EjR3DkyBEUFRVpXqcAKrG4NE/hhTaFRzVQ0Sc3KqfwGKv2YZB2iTJQhJAoCnkK75///CeuuOIKbNmyBSUlJZo/+/btC3swR44cwejRo7Fhwwbfvn379mHWrFkYNWoUpkyZgjVr1ijOkSQJK1euxMSJEzFy5EjcfPPNOHbsmOIYPa5B/Iu0iJyewos+2Vmr2GYsqTEaic44E6DKN8nUC4oQYpCQA6iGhgb86le/QpcuXXQdiMfjwb333ouGhgbfvqqqKsyePRt9+/bF+vXrMXfuXKxYsQLr16/3HbNq1SqsXbsWixcvxrp168AwDG699Va43W7drkECi3QKjzJQ0Sc76xTbHSWAYhjmpyCqBWplQAgxSMgB1IUXXoht27bpPpBnn30WycnJin1vv/02zGYzFi1ahP79+2PmzJm46aabsHr1agCA2+3Gyy+/jLlz52Ly5MnIzc3F8uXLcebMGWzatEm3a5DA1BmopDYbadIUXqxpM1ApMRqJAVStDKiZJiHEKCHXQE2fPh0LFy7EsWPHMHr0aKSkaL/5/vKXvwzpmkVFRVi3bh02btyIKVOm+PYXFxcjPz8fPN88zIKCArz44ouoqKjAqVOnUF9fj4KCAt/rdrsdQ4cORVFREa644gpdrkECUwdApjaXcqEi8liTXeoMVMcJoBjeDNlV37yDpvAIIQYJOYCaN28eAODDDz/Ehx9+qHmdYZiQAiiHw4H58+dj4cKF6Natm+K1srIyDBo0SLGva9euAIDTp0+jrKwMADTnde3aFaWlpbpdI1x8G/VA4eA4VvHfWPOIygDImsS1+nVbLcqPnCTLAAPwcfL1NIm3+6wr1RQeb7Mb8lkNht73meHNkFtss7IQs68tnnToz3OcoXsdHfFwn0MOoDZv3qzrABYtWoRRo0bhqquu0rzmdDphNiufrElK8q647nK50Njo7abs75iamhrdrhEOlmWQlpbc9oFhstvjo2+PKMmK7bTOtla/bn8PlSenWGCzaB9Bjwfxcp/1VOuuV2yndumCZAM/q8HQ6z7XJyWhZc7JlsQgNcZfWzzpiJ/neEX3OjpieZ+DCqBWrFiB6667DllZWejRo0dQFz5z5gzWrl2LP/7xjwGP2bhxI4qLi/H+++/7fd1isWgKuV0uFwDAZrP5elC53W5FPyqXywWr1arbNcIhSTIcjoa2DwwRx7Gw261wOBohirGf/mpwCoptj1tAVVV9gKOBxnrtlEr52Vp0SknSfWyRiLf7rCdB1Ym8QTTB3crfmZH0vs+i6ltafU0thBh9bfGkI3+e4w3d6+gw6j7b7dags1pBBVAvvPACLrroImRlZQU9iLKyMrzwwgutBlDr169HRUWFou4JAB5++GGsWbMG3bt3R3l5ueK1pu2srCwIguDb17t3b8Uxubm5AIDs7OyIrxEuwcACaVGUDL1+sNRF5BzDtDou1k9Xw0angOQ4zUDFy33Wiyx6AI9TsU80JQMx/hp1u8+qp/BEt6tD/f1FqqN9nuMZ3evoiOV9DiqAkmUZixYt8lswHkhdXV2bxyxduhROp/Kb+aWXXop58+bh8ssvx4cffoi1a9dCFEVwnLc4eevWrcjJyUFGRgZSU1ORkpKCbdu2+YIfh8OBvXv3YtasWQCA/Pz8iK9BAgv1KTx1I02AnsSLJnULA6DjtDEAAPDKTKZMbQwIIQYJKk+Vn5+P5ORkyLIc9J/k5GTk5eW1et2srCz06dNH8QcAMjIy0KNHD8ycORN1dXVYsGABDh48iA0bNuC1117DnDlzAHjrlmbNmoWlS5di8+bNKCkpwd13343s7GxMmzYNAHS5Bgks1MWEWZYBp0pD0YLC0aMNoBgw5o5TI6RZzoWewiOEGCSoDNTrr79u9Dj8ysjIwEsvvYQlS5ZgxowZyMzMxPz58zFjxgzfMfPmzYMgCFi4cCGcTify8/OxZs0aX1G4Htcg/kmyrAl+1J3G/TGbWDS6mjNXtKBw9Gh6QCUlg2E70NNC6uVcqA8UIcQgIT+FZ7T9+/crtkeMGIF169YFPJ7jOBQWFqKwsDDgMXpcg2j5yxy1lYECvL2ilAEUZaCiRduFvOP0gAIARt1IU6QpPEKIMTrQr54k2tT1TwCQFEwGSr2ci5/rEGN02HXwmnCUgSKERAcFUCRs4Wag1MdQDVT0dPwMlDKAoqVcCCFGoQCKhM3lJ3MUTA2U+hj1gsTEOB0/A6VeTJgCKEKIMSiAImFTBz4cywS1JItmPTwqIo+ajp6BUheRUw0UIcQoQRWRb9y4MaSLhrqYMGmf1FNv5jZ6QPmOU2egaAovajp6Bko9hUcZKEKIUYIKoO6///6gLxjqYsKk/XKpMkcmP00y/VHXQFERefQkXgaKAihCiDGCCqD0XkCYdAzqwEedWQpEUwNFGaio0WagOlYApWmkSZ3ICSEGCSqACnYBYcC77AtJDOoaqKQgnsADtMu50FN40SO7VQtcJ3WsAIoyUISQaAmrkeaHH36I7du3w+Px+AImWZbR0NCAb7/9Fl988YWugyTxSd1BPJgn8ADAZKIMVCzIkqBZSJhJssVoNMZgNH2gKANFCDFGyAHUc889h+eeew6pqakQBAEmkwk8z6OyshIsy+Kaa64xYpwkDqkzUMH0gAKAJJ5qoGJBdjVo9jFJHWcdPACAuhO54IrRQAghHV3IbQz+9a9/4Re/+AW2b9+Om266CRdddBG+/vprvPvuu+jcuTMGDhxoxDhJHFJnoIJ9Co9qoGLEXwBl7mAZKM1TeJSBIoQYI+QA6syZM5g+fToYhsGwYcOwa9cuAMDw4cNx22234Z133tF9kCQ+edQZqKCfwlP1gaIMVFTI7nrlDs6kDTjaO/UUnuimukxCiCFCDqBsNhsYhgEA9O3bFydPnoTT6a2rGDJkCE6ePKnvCEncUrcxCD4DpZrCowxUVMhOZQDV4abv4CcDBQDUTJMQYoCQA6jzzjsP//rXvwAAvXv3Bsdx+PrrrwEAhw4dgtncwX6jJQFpaqDCzECppwKJMdQZqI4YQKmfwgNAARQhxBAhF5HfdtttmD17Nmpra/HCCy/gF7/4Be6//36cf/752LJlCy655BIjxknikHoJlnA7kaunAokxZFfHD6A0faDgXVC4I36thJDYCjmAys/Px7vvvov9+/cDAB566CGwLIudO3fisssuC6lrOWnfws5A0RReTGiewutgBeQAKANFCImasPpA5ebmIjc3FwCQlJSExx57TNdBkfbBpe5EHuZTeLSYcHQkQgYKATJQhBCit7ACqNraWnzzzTdoaGjw+4QLrYWXGNSZo+BroJTHuWgKLyrUGaiO1kQT8K7FCc6kzDpRAEUIMUDIAdTnn3+Ou+66C42NjX5fp8WEE4e6/UDYNVA0hRcdiVBEDnin8VoEUJSBIoQYIeQAatmyZejXrx/+/Oc/IysrCywb8oN8pINwhZmB0jbSFCHLsq89BjFGQkzhwVtIrsiL03p4hBADhBxAHT58GKtWrUJeXp4R4yHtiHoJlmAzUOpFh2UZECUZPEcBlJESJYACn6TYlKkbOSHEACGnj7p37466ujojxkLaGfXUW7gZKIDWw4uGRKiBAgBGtR4eZaAIIUYIOYCaM2cOnn/+eeo4TsLOQPlbdJhaGRhPk4Eyd9AMlGo5F6qBIoQYIeQpvPfffx9nzpzBtGnTkJ6eDovFonidYRh8+umnug2QxC9NDZSfwMgfvxkoCqAMJUsCILiUOzvoFJ4mA0VTeIQQA4QcQGVnZyM7O9uIsZB2RJZlP4sJh9cHCqAFhY2maaKJjjuFp2mmSVN4hBADhBxAPfHEE0aMg7QzoiRDUvUACzYDxTIMTDyrqKGiDJTBVNN3QMctImc0U3iUgSKE6C/kAOr06dMBX2NZFjabDXa7PaJBkfjnr+g72AxU07GKAIoyUIZS1z+BN/tdN65D0EzhufwfRwghEQg5gJo6dWqb/Xo6deqE3/72t7j99tvDHhiJb/4yRsFmoAB/y7lQBspICdPCAH4yULQWHiHEACEHUE8++SQeeughjBs3DldeeSW6dOmCiooKfPLJJ/jss89w++23o76+Hn/729/QuXNn/PrXvzZi3CTGIs5AmWhB4WhKmCfwAD8ZKKqBIoToL+QA6sMPP8QVV1yhqYWaPn06Hn74YXz//fd44YUXYLfb8dZbb1EA1UG5/axf5684PBB1sOWmBYUNlSg9oACA0TTSpACKEKK/kPtAbd++HVdeeaXf1y699FJ88803AICxY8fixIkTkY2OxC2XoO0BFcpSLCZV001/ARnRj5wo6+AB3sWEW6IpPEKIAUIOoDp37oySkhK/r5WUlCAlJQUA0NDQAKvVGtnoSNzStjAIvv7JezzVQEWTpo1BB85AqdsYUAaKEGKEkAOoq666CitXrsRrr72GM2fOwOPx4MyZM3j99dfx3HPP4aqrrkJNTQ1ee+01jBw5ss3rVVRUoLCwEAUFBRg9ejR+//vf4+DBg77X9+3bh1mzZmHUqFGYMmUK1qxZozhfkiSsXLkSEydOxMiRI3HzzTfj2LFjimP0uAZRUk+5BduFvPl4dQ0UTeEZSVtEnhKjkRiP0fSBogwUIUR/IQdQd911Fy6//HI8+eSTmDJlCkaMGIEpU6bgySefxFVXXYW7774bX3zxBfbu3Yu77rqrzev94Q9/wIkTJ7B69Wq8++67sFgsuOmmm9DY2IiqqirMnj0bffv2xfr16zF37lysWLEC69ev952/atUqrF27FosXL8a6devAMAxuvfVWuN3e3zr1uAbRUk+5RZyBoik8Y2kCqA6cgVJN4VEGihBihJCLyHmexxNPPIE//OEP2LZtG6qqqpCVlYUxY8agV69eAIBJkybhyy+/hNlsbvVaVVVV6NmzJ/7whz9g4MCBAIDbb78d06dPx48//oitW7fCbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkTbrcbL7/8MgoLCzF58mQAwPLlyzFx4kRs2rQJV1xxBd5+++2Ir0G0NBmoEArIAcCkylipa6qIvhLpKTxNBooCKEKIAULOQDXp3bs3rrnmGvz+97/H9OnTfcET4O0D1VbwBABpaWlYtmyZL3g6d+4c1qxZg+zsbAwYMADFxcXIz88HzzfHeQUFBThy5AgqKipQUlKC+vp6FBQU+F632+0YOnQoioqKAECXaxAtTQYqhB5QAGWgoi2RnsLTZKBoKRdCiAGCykBdfPHFeP7555Gbm9tmI81wFxN+8MEHfdmiv/3tb7DZbCgrK8OgQYMUx3Xt2hWAtyN6WVkZAKBbt26aY0pLSwFAl2uEiw8xKxMMjmMV/40VQVIGPElmLqSv12JWfvQESTbkfoUrXu6zXtRP4fG21Li430bcZzlJucA5BE9cfK2x1NE+z/GM7nV0xMN9DiqAGjduHJKTk33/H8rj6sG68cYbce211+Ktt97CHXfcgTfffBNOp1OTyUpK8vZ4cblcaGxsBAC/x9TU1ACALtcIB8sySEszbprEbo/tE44cr/zoJFvNIX29qSnKXj0w+H6FK9b3WS/VbmUGyt4lA5Y4ut963udGhx11LbYZyROXn61Y6Cif5/aA7nV0xPI+BxVAtWya+eSTTxoykAEDBgAAHnvsMXz77bf45z//CYvFoinkdrm861rZbDZYLN7fNN1ut+//m45paqGgxzXCIUkyHI6Gtg8MEcexsNutcDgaIYqxm/aqcTQqthnIqKrSLlgbiKQae129K6TzjRYv91kPsihA9ijXg6tzs2iMg/ttxH0WGpXXkTzx9dmKhY70eY53dK+jw6j7bLdbg85qhVxEDgB1dXWor69HVlYW3G43/vGPf6CsrAw/+9nPkJ+fH/R1KioqsHXrVvz85z8Hx3lraFiWRf/+/VFeXo7s7GyUl5crzmnazsrKgiAIvn29e/dWHJObmwsAulwjXIKBvY1EUTL0+m1xupVF3yaODWk8PKvMYrrcsf16Aon1fdaD1FCr2SfyNshx9HXpeZ9F9bc1wQOPRzQkc97edITPc3tB9zo6YnmfQ548/O677zB16lS8/vrrAIDFixdj6dKleO+993DjjTdi8+bNQV+rvLwcf/rTn7B9+3bfPo/Hg71796J///7Iz8/Hjh07IIrNP6y3bt2KnJwcZGRkIDc3FykpKdi2bZvvdYfDgb179yIvLw8AdLkG0VKvXRdpHygPPYVnGPUTeEDHLiJn1GvhQQYkISZjIYR0XCEHUMuXL0e/fv1w7bXXwul04v3338evf/1rbN++HVdffTVeeOGFoK+Vm5uLCRMm4JFHHkFxcTEOHDiA++67Dw6HAzfddBNmzpyJuro6LFiwAAcPHsSGDRvw2muvYc6cOQC8dUuzZs3C0qVLsXnzZpSUlODuu+9GdnY2pk2bBgC6XINoqRcTDrUPlHrdPFpM2EDqAIpPAsOGlXxuHzg/TwBTKwNCiM5C/i66e/duLF++HL169cL//vc/OJ1OTJ8+HQBw+eWX47333gv6WgzD4JlnnsFf//pX3HXXXaitrUVeXh7eeOMNdO/eHQDw0ksvYcmSJZgxYwYyMzMxf/58zJgxw3eNefPmQRAELFy4EE6nE/n5+VizZo2vKDwjIyPiaxAtTQAVagZKHUB5KANllIRaBw9++kDB20yzo3/dhJDoCjmAYlnWF1h8/vnnsNvtGDFiBABvbVTLQuxgpKamYtGiRVi0aJHf10eMGIF169YFPJ/jOBQWFqKwsDDgMXpcgyhpp/BCzUCpl3KhDJRREqoHFABopvBAy7kQQnQXcgA1fPhw35IrH3/8MaZMmQKGYVBRUYHVq1dj+PDhRoyTxBl1xkg9JdeWJFXGihYTNo52HbwOnonhtAEULedCCNFbyDVQ8+fPx9atW3H99deD4zj84Q9/AABceeWVOHr0aFDr35H2T50xSgo5A0VTeNGiyUCZO3YGimFYbRBFARQhRGchZ6CGDh2K//znPzh06BAGDhwIm837zXjRokUYM2YMMjMzdR8kiT/aIvLInsKjKTzjaJ7CS0qJzUCiiTcrpu1kmsIjhOgsrEdxUlJSMHLkSMW+n/3sZ7oMiLQP6oBHXdPUFnUGyiNIkGWZevUYQFtE3rEzUADAcCbILXdQBooQojNarIeERZ2BUtc0tcVf0TnVQRlDdiZYDRTgzUC1QAsKE0L0RgEUCYvbE9lTeP6m/GgazyDuBHsKDwCj7gUl0BQeIURfFECRsLiFyJ7C8xtAUSG5IRLuKTxA08pAFlwBDiSEkPBQAEVCJkoSBFFRYRLyU3j+MlaUgTKGJoAyd/wAStNMkzJQhBCdUQBFQuZyawOdUAMonmPBaRYUpgyUERKukSagbWNANVCEEJ114AWxiFFcfqbaksyhBVCANwvV6Gpe5NXfdUlkZNGjCR6YBGhjwPBJim25A2SgpJozcH2zFsLJPWCSUmAaPg3mEZeBYUP/t0cIiRwFUCRk/mqVQn0Kr+mcxhalKVQDpT9NDygASIQMlHo5l3aegZJqylC/8THfwtByQzXc29+BVHkClovmUPsPQmKApvBIyNSZIobxTsmFSj3tRxko/fkLoBJhCk/9FF57XspFliU0/vdFX/DUknDwG3j2fRb9QRFCKIAioVMHOkkmLqzfgCmAMp66/gkmCxg2ARLP6gxUO57CE47ugnT2SMDX3Tv+BdnjjOKICCEABVAkDP4CqHCYzeoAip7C053mCbyOn30CAKgzUO14Cs/93cetvi43OuAp+TxKoyGENKEAioRM/RReuAGUJgNFT+HpLiF7QMFfG4P2GUBJjnJIZw4q9lmmzgHXW7mUlmff55BlZWsRQoixKIAiIdMsJBxuBkrVTJOKyPUnJ2AXcgB+Gmm2zwDKc2ibYpuxpILvlw/ziMsU+6Xq05DOHo7m0AhJeBRAkZBppvDM4X2M1K0PXAIFUHrTZqA6fgsDwM9SLmL7rIEST+xRbPP98sGwPLhuuWDsWYrXhKM7ozk0QhIeBVAkZHrVQKnPc/tp0Ekiow2gEiUD1f6fwpM9TohnDin28b1HAQAYhoGpX77iNeHormgNjRACCqBIGIwKoOgpPP1p2hgkag1UOywiF0sPAHKLfxMMB67bIN8m33e04nip+jSk6tJoDY+QhEcBFAmZbk/hUQBluEQtIlcv5dIeO5ELp/cqtrms/mBMFt82m5kDxtZZeY5qyo8QYhwKoEjI1FNt4RaRq7uXUwClv0QNoDrCU3hi6QHFNtd9iGKbYVjwvc5TnbPf8HERQrwogCIhMyoDRU/hGUCzkHBiBFDqGqj2VkQuSwKkyuOKfVz2IM1xXLdcxbZQWgJZplpCQqKBAigSMt2ewqMpPMPJrjrFdqIEUIxmCs8V4Mj4JFWeAkRBsY/r0kdzHNdtsHKHqx5S1Skjh0YI+QkFUCRkxhWR02/OepJlWbOUS6IEUJoMlOBpV40mxXNHFdtMaiYYi7YFBZvaBUxqF+W5p0uMHBoh5CcUQJGQ6dVIU9PGgDJQ+hLcgKTMYiRKAKXpAwVZcy/imXTumGLbX/bJ95oqCyWWU0NNQqKBAigSMv0yUFREbiT19B2QOAGUZjFhoF0VkqszUGxm34DHcl37K89tZeFhQoh+KIAiIVNPtem3mDAFUHpST98BDGC2xmQs0cbwSZp9cjspJJdlCVLlScU+rkvfgMdzmTnK82vKtP2/CCG6owCKhEy96G/YGShePYUnQWpHdSrxTpOBSrKBYRLkn3w7zkDJdRWasbJpPQIez6b3AlhesU9UTQESQvSXIN9NiZ60U3jhfYzUGSgA8FAhuW4StoAc0DTSBNpPM02pStVN3GzVNMxsieF4sBm9FPtEWliYEMNRAEVCpiki9xMIBcNf5oqm8fSTqC0MAG+TSXDKrEx7Wc5Fqj6t2GY7dwfDMK2eo57Gk8qpDooQo1EARUIiyTLcgj41UP4yVxRA6ShBu5D7cO1zQWGpShlAcWnd2zxHHUBRITkhxqMAioTEX6sBvTqRAxRA6Smhp/DQfpdzEf1koNrCqgvJ6yshOWt1HRchRIkCKBISf80uww2gWIaBiVd+BN1UA6WbRJ7CAwConsRrDxkoWZYhVStroNi0bm2ex3buppmyVD/JRwjRV8wDqOrqajz00EOYNGkSxowZg+uvvx7FxcW+1/ft24dZs2Zh1KhRmDJlCtasWaM4X5IkrFy5EhMnTsTIkSNx880349gx5RMoelyDePnLEIUbQPk71+VuP80O412iLiTchDGpWhl4nLEZSAhkZ61m6jWYDBTDcmA7K5/UowCKEGPFPIC65557sHv3bixbtgzvvvsuhg0bhltuuQWHDh1CVVUVZs+ejb59+2L9+vWYO3cuVqxYgfXr1/vOX7VqFdauXYvFixdj3bp1YBgGt956K9xu72+belyDNHO7tQGUKcyn8ADAoipAd/q5PglPwk/hmSyK7fawHp5ce1a5g+HApGQEdS6b3lOxLVWe0GtY7Z5YeQqNm55D7St/QO2aW9Hw/hMQTnwX62GRdo5v+xDjHDt2DF999RXeeustjBkzBgCwYMECfPHFF/jggw9gsVhgNpuxaNEi8DyP/v3749ixY1i9ejVmzpwJt9uNl19+GYWFhZg8eTIAYPny5Zg4cSI2bdqEK664Am+//XbE1yDN1Bkos4kF28YTQq2xmJUfQQqg9JPwU3jtMAMlOcoV20xqFzBscBleLr0nWuZvRcpAAQCEo7vQuHkV0KKRqli6H42l+2EedSXM+TPbfMqREH9imoFKS0vD3//+dwwfPty3j2EYyLKMmpoaFBcXIz8/Hzzf/EO2oKAAR44cQUVFBUpKSlBfX4+CggLf63a7HUOHDkVRUREA6HIN0kyvZVyaWJKU5zfSFJ5uNJ3IEyyAUncjlz3xn4FSB1CsPTPoc7UZqFOQ5cSuKRTPHdUETy25v/0Anu8+jvKoSEcR0wyU3W73ZX2afPzxxzh+/DgmTJiA5cuXY9CgQYrXu3btCgA4ffo0ysrKAADdunXTHFNa6i3ELCsri/ga4eJ5/eNTjmMV/402QVJ2Ck8ycRF9nbYk5UfQLUiG3LdQxfo+60JVS8PbUuLi3rZk5H1mk5TL1jCiK+6+fjVX3TnFNt+pa9BjZrv2QWPLHYILbEMFuE5ZHePzHCJZEtHwxSsBg6cmrqL1MPcaBr5rTqvHBSsR73UsxMN9jmkApbZjxw488MADuPjiizF16lQ88cQTMJuVjyInJXl/q3S5XGhs9H678HdMTU0NAMDpdEZ8jXCwLIO0NON+47fbY7OmGW+qUmzbrKaIvs7UFNU0C8saet9CFav7HClZElHlVmagOmdmwhxH97YlI+6zmJKCllWMZlaMq8+WP431ygAqObsXOgc5ZrmzDbXWVEiNze0LrK6zSE7r59tur5/ncNQU/59mSZvkoeORlNUXlf97E8BPvwxKIjzb1qLLDY/pOpWXSPc6lmJ5n+MmgPr0009x7733YuTIkVi2bBkAwGKxaAq5XS5vGt5ms8Fi8RaJut1u3/83HWO1WnW7RjgkSYbDoV7MNXIcx8Jut8LhaIQoRj89X1mt/Jp4lkFVVfgLl6onAKtrGiO6nl5ifZ8j5a8HUK2LARsH97YlI++zW1Q94VlXFxefrda4KsuU26bOIY2ZTesJqXGfb7vm+EG4uw5v95/nUMmSCMdXGxT72LQeME28BTLHw+KohXPHe77XnCf2oXznlzD3GxvxeyfavY4Vo+6z3W4NOqsVFwHUP//5TyxZsgTTpk3D0qVLfdmg7OxslJcrawKatrOysiAIgm9f7969Fcfk5ubqdo1wCYJx/3hEUTL0+oE0OpU1SmaejWgcZtUTfA1OISZfVyCxus+Rkuq1AZTI2yDF6ddixH2WVJ3IJbczrv8uZcENuV6Z4ZWTu4Q0ZiatB3C6OYASzp1QnN9eP8+h8hwuglRXodiXNH4WRJkFBAn8yCvBHPgacm1zxq9xx/tge4/WbQyJcq9jLZb3OeaTtG+++SYee+wx/OY3v8EzzzyjmErLz8/Hjh07IIrNhctbt25FTk4OMjIykJubi5SUFGzbts33usPhwN69e5GXl6fbNUgzp95F5Jqn8KiIXA+aAnLOpO3M3cFp2hjE+VN4krqFAUIrIgf8FJJXJGYrA88PmxXbbGY/cN2afyFmeDOS8mcqjpHOHoZ45mBUxkc6hpgGUEeOHMHjjz+OadOmYc6cOaioqMDZs2dx9uxZ1NbWYubMmairq8OCBQtw8OBBbNiwAa+99hrmzJkDwFu3NGvWLCxduhSbN29GSUkJ7r77bmRnZ2PatGkAoMs1SDOXqs2AJSmyJKaV+kAZIuFbGACaNgbx/hSerG5hYLVrgsC2cOoAylEOWUysX0qkugqIpfsV+8znXaqpb+L7jdP02HL/8Knh4yMdR0yn8D755BN4PB5s2rQJmzZtUrw2Y8YMPPnkk3jppZewZMkSzJgxA5mZmZg/fz5mzJjhO27evHkQBAELFy6E0+lEfn4+1qxZ48tkZWRkRHwN0kydIVI3wgyVOgCjAEofid6FHAAYk6qGUYjzDJRDmYFi7F1DvgarXnhYliA5zgCZvSIZWsSapicZqx2M2diiX+HwduUOsw18jra2iWE5mIZeDPf2t5vPPbITsrvR8DGSjiGmAdRtt92G2267rdVjRowYgXXr1gV8neM4FBYWorCw0NBrEC91gBNxAKXJQCXWb8tGoQBKu5RLvGeg1FN4bGpo03cAwJhtYGydITdUN1+36nTMAijZ3QhX0bvwlHwJiG6AYcD3GYOkC64Hm9rFkPf0HFIGUKacsWA4k99jTYMnwF30LtDUL0t0Qzi6E6ZB4w0ZG+lYYl4DRdoXbQAVWQxOS7kYgwIoAO2sBkquq1RshxtgsJ2VPe3UixNHi+xuQMOHf/HWI4k/PQktyxCO7kDDxkchVp7S/T2lhmpIZ48o9vH9zw94PGu1g+s5XLHPc3Cr7uMiHRMFUCQkuk/h0VIuhpCdyhqoROtCDvhbTDjOM1Cqp8aCXQNPTb34sFR9OuwxhUuWZTi/eEUTzPheb3Sg8ZPlmkA/UuLJH5Q7TBZw3Vt/mto08ALlNU7tg+zWvwUN6XgogCIhUQc4STSFF5fUARRjSY3RSGKH4VUF2JIQ1wXVsiqAYlPSw7oOm6bKQFVFPwMlHt8N4XDrS2HJtefg2vZ2q8eESji5R7HN9xgKhm09S873GQ20PEYWIZz8XtdxkY6JAigSEs1TeDoHUIIoQ6DmcxGTVY00EzGA0iwmDMTtgsKy4Nb+nemWgSqN6pp4sizDteNfyp1JybBe9WewXfspdnv2f6HboseyLGkyUOrpOX8YP1kq4dhuXcZEOjYKoEhItFN4kdZAac+nabzIqTNQrCUlRiOJHX8tAGQhPqfx1PVPAMAmh5uBUj2JJ7oh1Vb4P9gA4vHdkFRLqFguuB58t8GwXnIH0LIfmSzDXbRel/eVKo5rglC+53lBncv3HqXYFk98B1miX+RI6yiAIiFRBzfqPk6h8pfBcrrid5qlvaAMFABem4GK10Jydf0TkpLDfpSesXYCVC0cpKro1UG59/1POZ5O2eAHXAgAYFMyYB55ueJ14dguSDXKJWzCIaiyT4w9K+hGpHzvkYpt2VkL6ezhiMdEOjYKoEjQZFnW/Sk8fzVUlIGKnLYGKgEzUCwLqJZziddCcr3qnwCAYRhNHZQYpQBKaqiBeEJZh2Qe+XPv30XT9ojLALNNcYz7+8gbWIplPyq2+R5Dgz6XtWeCTeuh2Ceovg5C1CiAIkETRAmiJCv2RVoDxTKMJoiiACoysuAGVFNVjDUBM1Dw1wuqfWSgmOTw6p+aqOugxCi1MhAOftPcUwkAeDNM/cYpjmFMFphyJyv2eQ5s8X5uwyTLMiTVMixc9sCQrsH1Uk73iS3WFCTEHwqgSNAa/QQ2kQZQ/q5BT+JFRtPCAAk6hQdoekHFawZKUveACrOA3He+upA8Shko4egOxTbfd6zfqUjzsIsBtFhaxeOEcOzbsN9XrinTLF8UagDFqwrJxfJDcVszR+IDBVAkaOon8IDI2xgA1AtKb+r6JzAskKBLU2gyUHG6nItcr08PqCZcDKbwZGcdxDPKaTTTAP9NLNnULuBUU2yeH78K+73V03eMrTOYlNAakXLZg73/VppIoua6hLREARQJmjqwYQAkmSIPoNSF6A1URB4RbQF5ChgmQf+pq7uRu+MzgFJP4UVSAwVoM1Cysw5ifU1E12yLcPJ7QG4xxc+ZwHUfEvB4TQPLE9/7zZ4GQ1RP32UN0Cwe3BbGbAWb2Vd53dMlYY2HJIYE/a5KwqGeWksycyF/k/LHZlFmoBqcFEBFggrIm2laGcRhDZQsy36KyCPLQDGpmQCn/HflrtCn31IgwnFl7ySu+xAwfp6EbML3HQu0XKNOFjXXCJY68xXq9J1vTN2VWTHh9N6wrkMSAwVQJGh6LyTcxGZRLvRJGajIUAuDZozqaa94XKJDdtYCqg7pkU7hMSwLtlO2Yp/nnP5rzzWRZVlTdM33HtHqOYzZCl7V6FI4tiv093bWadb747LCC6DUDTWls0fjfhFqEjsUQJGg6d3CoIktSXmdRspARUSTgUpK4AyUqvYrLgModQ8ohgVj6xzxddXTeO5zxmWgZEc55IZqxT6+R9tdwPm+YxTbwok9IT+NJ5Yrp+/AmcF26R3SNXynZg1Q1kHJEsQA6/kRQgEUCZq6waV+GShlAFXv8uhy3URFGagWNAFUY4wGEpi2hUGaom9SuNjOykJyj4FTeGLpfsU2Y7WD6ZTV5nlc75FAyzIAwQUxxGkzsUxV/9Q1p8317wJhTBawGb2U1z9DheTEPwqgSNCcHmOm8JKpBkpXVAPVTDOF54r/DFSk9U++66gCKLeBU3hCmTKA4roNDqo+krXaNdNtwtGdIb23pv4pzOm7QOerC9QJaUIBFAlatKbwqAYqMpoMVII20QS0ARQ88ZiBUvaAirT+qYl6TTzRcc6wRqJi6QHFNpc9OOhz+b6jFdvC8e8gy3KAo5VkSYBYrpxi47IGBP3e/qjPF88cjOpizKT9oACKBE27kLBBReSUgYqINgOVyAGUagovkTJQnbKhaFYJQKzSvyO57KqHXHtWsS+Up+DUC/nKDdWQKo4Hda507jggKmumIg6g1GN31UOqjnytPtLxUABFgmbcU3jqKTyqgYqEvz5QiYpJiv+n8DQ1UBH2gPJdhzeDSVU2kzSioaaoDnZYHmx6D/8H+8F0ygZjV9ZLCce/De69VdNrbOduEX/e2ZQMMMnKvwOqgyL+UABFgqYpIk+iKbx4I8syZaBa0rQxiL8pPFnnZVwU11ItkCtW6l9ILp07pnzP9B4hFXEzDKNpeRBsPyh/DTT1oJnGK6M6KKJFARQJmnpqTR34hEudgXJ7JAgi1RyExd0ASKqeQomcgVLXQLkb46qeRRY9kBuVHcL1qoECAC7N+DXxRFUAxWX0Cfka6mk8qfwIpIa2O6drMlAGBVASZaCIHxRAkaA1qjJDVt0CKJNmH9VBhUdudGj2MdZOMRhJfNAuZCvH1YLCcn2VZp+xGSj9n8STKk4o3zOMHkxct8GqZXdkiCe+a/196yog1yuzd7ploFR1UFJNGST1GpMk4VEARYLW4FLWQOmWgfJznXqqgwqL5rd2sxUMb47NYOKANoCKrzoodf0TzFa/Yw6XuhZJcpyFLOgXQMqCG1K1MqvFhpGBYjgefI9hin1tTeOJZw4pd5htmtYN4WIzegGc8t+NpH4/kvAogCJBa1Q1uNQrA2XiWZh55UeR6qDCo85AJXL2CcBPjTSVT6LFUwBl1BN4vut17gbl1y9rlj2JhFR5ElBMiTLgVI0og8X3GaXYFk5+D1kM/H3A/wLC+vxIY1geXNecVt+PEAqgSNA0GSiLPgEUAFhV16LlXMKjrqdhbYkdQDEMq5oaiq9Ccu0TePoGUAyfpHkST9JxGk/9BB7TKUu7gHOQuF7nKXd4nBDLDvg/GP4CqP5hvW/A8XRVXk8spwwUUaIAigRFkmXNU3h6ZaAA7TRePQVQYZFVU3iM1R6jkcQPzZRYHPWCkmtVGahkfVoYKK6pqoOSqvQLoNT9mriM8NagAwDW1hlspjLrE2gaT/a4NE//RdqBXDMe9ZN45YchS2KAo0kiogCKBMXlFqHuDWxN0qcPFAAkq5tp0hReWDRPdCX6FB7iuxeUJgOVqm8GCtA+iadnLyj1E3jhLuLbhO89UrEdqB+UWHYAkFsEMwwHrmu/iN5bTVOQLri8U5aE/IQCKBIUf0/F2ZK0T8+Fi5pp6kPS1EBRBkqzHl4cT+HpXQMFGJeBkiUJUqXyCbxwWhi0pOlKXnPGbxdw8fQ+xTbbNSfsqcNAWKsdTGqm8n2pDoq0QAEUCYq6hQEDwKJrBkoZQNU2UAAVDs0UXoLXQAH4qZC8WbxkoGRZ1hSRMyldAhwdPvWTeHLtOV2exJMcZYCgXEaFjWAKD/BmsNRZU3/TeIIqgOJ7DI3ofQPxty4eIU0ogCJBUU+pWZI4sEGsth6sVJvykWEKoMKjfgqPpSk8bQYqTmqgZGctICo/56xOy7gormnQk3jSOVUBua1zxA8tMAzb5jSe7KyDdO6oYh/XfUhE7xuIJoCiQnLSAgVQJChGNdFskmpTTgfWNroDHEkCkWVZWwNFGShNJ3b1UjexIteeU+5gWDC2NN3fh+GTwNqVU1F6PImnqX+KMPvUhOujDKDE0gOKaVfh+G5AblGRyZk0T8zpRR1AyY5yzTQ5SVwUQJGgqDNQejXRbEIZKB246gHVU0JUA+UvgIqPjtKaAvLkNDCsMd+SOXVDTR3qoDRP4HWJrP6pCd9jGNByLT1ZhHBij29TOFKsPL7ncMOaxbLpPQE+SbGPGmqSJnEVQK1atQo33HCDYt++ffswa9YsjBo1ClOmTMGaNWsUr0uShJUrV2LixIkYOXIkbr75Zhw7dkz3ayS6aGeg6hooAxUqqaFas48CKO1iyvESQGmaaKbqX//ku7bOT+LJsqwJoPTKQDEmC7juuYp9ngNfet/X44Jw8nvFa3xOni7v63csLAdO1VpBLKc6KOIVNwHUq6++ipUrVyr2VVVVYfbs2ejbty/Wr1+PuXPnYsWKFVi/fr3vmFWrVmHt2rVYvHgx1q1bB4ZhcOutt8Ltdut2DRKNAIoyUJFSrwvGWO1gOP2elGyv4jWA0mag9K9/asKl91S+d4QZKLm+SnMf9cpAAYCp3zjFtnhiDyRHOYRD25R1Y35qpvRGheQkkJgHUGfOnMHvfvc7rFixAjk5ykj/7bffhtlsxqJFi9C/f3/MnDkTN910E1avXg0AcLvdePnllzF37lxMnjwZubm5WL58Oc6cOYNNmzbpdg2ibWOgZxdyQJuBcgsSXG5qWhcKSbUwLZOsfz1Ne6TOwsVLABXNDJR6Ck+uPRtROwepQpWhN1k1Hc8jwQ84H0hKVuxzf/sB3D8ovydzPYdppmj1pu5wLp49Qg01CYA4CKB++OEHdOrUCe+99x5GjlT+JlFcXIz8/HzwfPMP64KCAhw5cgQVFRUoKSlBfX09CgoKfK/b7XYMHToURUVFul2DRCEDZdXWMNTSNF5I5DplBsqIrtbtkeYHrLux1TXWokWqNXYZl5a49B4Aq2w7ol6GJRTiOXX9U2/d1qEDvIXvpkETFPs8JV9AqlD2nTIPnarbewbCqgvUBbem/xVJTPr+FAzD1KlTMXWq/38EZWVlGDRokGJf165dAQCnT59GWZm3wVq3bt00x5SWlup2jXDxvP7xKcexiv9Gi1OVDUqxmHT9+lKTTeBYBqLU/HRNg1sw5B4GI1b3ORKuxmrFNpeaHrP7F6xo3Gc2RfskIifUg02KbYZOrlcGUKZOXQz7++I4HuYuveAuP9q8s+oE+F7hPf7vrFQGUHxmH93Hbhv9c9Ts+5+m11QTNq07knJGG1Z475PaGY2dsiDVnPHtks8eBp/tv/N5e/ze0R7Fw32OeQDVGqfTCbNZmZlISvI+EeFyudDY6E1B+zumpqZGt2uEg2UZpKUlt31gmOx2a9sH6cgjKRdySU+z6f71dUpJQqXD6duWWc7QexiMaN/nSDhdys+rrUt2zO9fsIy8z3InC2rAAC0WI0oxCUiK4b2R3E5UqdopdO7RC2YDx+TM7qsIoDjH6bA/H7WqDIy990Ck6j32tGRwE69B5f/e8Pty18t+B1tGqt/X9ObpnYu6Pc0BFFd5pM17156+d7RnsbzPcR1AWSwWTSG3y+XtoGuz2WCxeFv3u91u3/83HWO1WnW7RjgkSYbDoX/DPo5jYbdb4XA0QhQl3a8fSFWLwAYAWFlGVVW9ru+RYuVR2aLFyukzDlRlG1vfEEis7nMkXNVnldtciu5/R3qL1n1mLMmK/k815eUwmTNbOcNYop8+THWSDYxBf18cxyIpKwd1+My3r/H0wbA+H5KzHkJNuWKf09YNggFjl3OnwXzyCNw/fq3Yby24Bq60AXBF6fMtpfUF8Llvu+FEScB71x6/d7RHRt1nu90adFYrrgOo7OxslJcr/6E2bWdlZUEQBN++3r17K47Jzc3V7RrhEgTj/vGIomTo9dXqVE/F2ZI43d8/xaosJK+pc0f1a/Qn2vc5EpKqBkq2dm43Yzf6PjOWVEUAJdTVgInhvRFqlMEuk5QCkTEBBo7Jkq16HL/yFDwuNxgutB8DQstpQABgecip2Yb9/Zmn/A5sj2EQju0COB6mgePB9zovup/tLsrpOslxFm5HVaud19vT9472LJb3Oa4nafPz87Fjxw6IYnP9zdatW5GTk4OMjAzk5uYiJSUF27Zt873ucDiwd+9e5OXl6XYNAtQ1KgModbCjB3UrAwcVkQdNdjcCqqeqWHoKzyfeWhloCshTjSsgb5LUta9qEGJY7QzUS7iwaT1CDsJCwTAsTIPGwzrtTlin3ga+13mGvVcg/hpqUj8oEtcB1MyZM1FXV4cFCxbg4MGD2LBhA1577TXMmTMHgLduadasWVi6dCk2b96MkpIS3H333cjOzsa0adN0u0aiEyVJ04k82ZAASrWcSz0FUMGSGqo0+6iNQTNtABXb5VzkWmUGijVgEWE11pIM1t5VsU/dDDMYoqqFAddFnwaa8YxhOXBdVVko6kie8OJ6Ci8jIwMvvfQSlixZghkzZiAzMxPz58/HjBkzfMfMmzcPgiBg4cKFcDqdyM/Px5o1a3xF4XpcI9HVO7WPfBuRgeqcovwNr6ou8hXjE4W6hQGSksGofmNOZHGXgXIoywoYVWBjFK5LH8V7i+eOwTR4YkjX0GSgMvRroBnPuKwBEE/v821TQ00SVwHUk08+qdk3YsQIrFu3LuA5HMehsLAQhYWFAY/R4xqJrL5R2xU82aJ/AJWWqgqgaimACpbkUGU0DGzK2B4xVlUAFeMFYdUBlDozZBSuSx94Djf3t5POhbZklSy4IVUrl4FhdexAHs/8NtQUBUOnL0l8i+spPBIf1PVPSSYOJgP61aRTABU2zZRQauyeMItHjKrYV921PZpkWY5ZAMVnKoMd8dwxyFLwTUWlypOA3LJgl9EsE9NRcV2VS7pA9EA6eyQ2gyFxgQIo0iZtAbkxv3F1VgVQTreo6YBO/IvVD+T2Qr3OnBzLAMpZC3hUbUGilYFSZVEgujXdvVsjnjuq2GY6ZYExJ0a/I8aS4i0mb0FoMaVHEg8FUKRN6gDKiAJyAEhL0dbsVFIWKijqKTyGMlAK6icS5YYayFJsHn2WVcEuGA5MSnSW3WEtKWA7ZSv2iSEUQ0tnjyq2ucy+Ooyq/eC6Kzu3ixRAJTQKoEib6huVWSAjCsgBwGziNNeupgCqTbGcEmovNE8kyiJkZ2zqoDQF5KldwKjWqTMSq67lCeFxfPGccsqK65IT4MiOie8+VLEtnvkRcoClZkjHRwEUaVM0ekA1UT+JV1nrDHAk8XHVAx5VDyg7ZaBaYix2gFEGKbGaxtMU/Ef570pdyxNsBkoW3JAqVQXkiZaB6jYIYJjmHaIAsZzaGSQqCqBIm6I1hQcA6XYqJA+VOqMBho3alFB7wbBs3BSSxzpbqK6DkmvPQmpoe91PqfIEILdcVJwBl9Hxe0C1xCQlg+3SV7FPPLU3NoMhMUcBFGmTuo1BigEtDJqoWxnQFF7bJNUTeExKBhiWHq1WU0/jaXpnRYm6BiraARSb5qerdtmBNs8TVU+csZ2zE6aAvCVeVQdFheSJiwIo0qZoTuGpC8mpiLxtUpVqWoXqn/xS98ZSB57REqsmmr73Y1lwWappvCCCAPGssmeUOhOTKNSF5FL5Yciu+F60mxiDAijSpjpn9AKodLtFsX22ujHAkaSJej0zNq1HjEYS39S9sTRPw0WB7KqH3KicLmM7ZUV9HFyPYYpt4dQPbZ4jnvlReY3MxCogb8J1GwS0bJ4pSxBOtn3/SMdDARRpU22DKoCyGRdAZaUrpwTOVjdCkmTD3q8j0ARQ6RRA+aNZB84R/QyUVF2q3MFwMQmg+B7Kp8nkmjOQ6ioCHA1IjQ7INWWKfVz2QEPGFu8YPkmThRKO747RaEgsUQBFWiVJMmoblI/pdko2bo3Armk2xbYgyqh00JN4gciiB1LNGcU+jjJQfjGqp92k2nLIcnSDc1Ed7HbKikm9GpvRG0hKVuxrrRhaLFNmn8Anea+RoPheIxXb4onvYtZXjMQOBVCkVbUNbqh/xhgZQNltJljMysfNz1TRNF4gUk2ZamkNgE3rHqPRxDdNbZjg1kynGU1TrxajvyuGZbXF0K1MQ6mLzLmsAVHtXRVv+N7KAEp21kI6ezhGoyGxQgEUaVVNvTL7xDBAqs24AIphGGSpslBnqhoMe7/2TqpUZjSY5HQwZluAoxMbk5ymrF2Bnyk1g6nfj+3cLarv35KmDurEdwHXxRNL9yvPTdDpuyasPVMT/ApHd8ZoNCRWKIAirXKoAqhUmxksywQ4Wh/qOqgzlZSBCkSqPKnYpuxTYAzDgu2svD/qANRo8VTwz/ceodzhboB4ukRznNRQA0m1Bh7XbbCBI2sf+D6jFduew9ujPiVMYosCKNIqdQbKbmD2qYm6DqqcMlABqbsgJ1pjw1CpF4NVB6BGkt2NkFWF2rHMQLEpGWAz+yn2CUeKNceJJ75T7jBZwGUldgYKAPh+4xTbcu05msZLMBRAkVapM1CdUowPoLLSlBmoskoKoPyRJUnb3FDVZZoosWnKAEqsil4AJVYcV+5guJgGUADA54xVbAuHiyGLyqduBVUAxfcYBoajRq1sRm8wqicoPYe2x2g0JBYogCKtUmegjCwgb9K9i/LpoPKqRjjd/mszEplUfRrwKJ9Q5LpSANUazk8GKlpPT0lnjyq22fTuYHjj/z21xpSTp9iWXXUQjuxo3hZcEE7sURyjLqBOVAzDwKTKQgmHtkGWxABnkI6GAijSKvVadNEIoHpmJoNtsWCnDOBEeZ3h79veqKfvmJQMsLbOsRlMO8F26aPc4XFq6pKMIqrriOKgkzfbKUtTz+TZ9z/f/wtHdyqDdIYBp66dSmB8/wLFttxQDc/Rb2MzGBJ1FECRVqkDKPVadUYw8Ry6dVHWQR0/QwGUmnTmoGKb69ovwJGkCWvrBEbVkVxU3UejqAux42UpFNOQixTbYul+CKf3QZZluH/YrHiN6zGMgvQWuPQemjoy197/BTiadDQUQJFWVdYqp4jUS60YpXfXVMX2sTO1UXnf9kKWZU3fHvX6ZsQ/9TRnMAvpRkr2OCFVqzp5Z/Y1/H2DweeMBWPtpNjn+mYdxOPfaoJ006AJ0Rxau2AeqgxAheN74Kk+E+Bo0pFQAEUCkiQZ1bXKGqh0u/EZKADok60MoI5TAKUgVZ2GXF+p2Mf1HB6j0bQvXLZqId1TP0CWja2D8ma5WjzizrBg03sZ+p7BYjgTzGOnK/ZJ546i8ZMVyuNSMsD3U9ZMEYDvPw4wt3zwRUbNtg9iNh4SPRRAkYCq61yQVH1N0lOjk4Hqk5Wi2D51th4uNxVnNhFPKgt7meR0TY8j4h/f8zzFttzogKR+Qk5n6v5KbGbfmBeQt2TKnQS2U3arx5jH/CImy87EO4ZP0mTmar/9FFJ9dWwGRKKGAigSUKWq/onnGKQauJBwS32yU8G1aNgpSjJ+PFUdlfduD9SLl/K9hoNhjG1w2lGwnbLA2JWPnwuHtf2P9CSc3qfY5rsPDXBkbDAsD8vUOZpO7U24HsNgGjwxyqNqP8wjLgNaLG0jC244v/0whiMi0UABFAlIvYhvWmpS1H5IW8w8crrZFfv2HauKynvHO6muUpPR4HrRk1Gh4Puqukj/+LVh03iyuxGSql8X1z3XkPeKBJeZA+vP7tIsMsz1GArrJbeDYejHRSBsSgZMg8Yr9rn2bNYs9E06FvoXQQIqVy3i26WTNcCRxsjtk6bY3neUAigA8Bz8Bop6GpMVPAVQITENvFCxLddXQji6y5D3Ek+XKBd8Zrm4XUuO7zkcKdf9BUmTZsM87lew/vxPsF5eCEYVVBEt86grgZZBpiTA+fU/aXmXDowCKBKQehFfdYdwow1RBVDHztSitsEd4OjEIMsShANfKvaZ+uXHVT1Ne8Bl9AaboewJ5d6x0ZAmiB7V8ihc1kAwfHQexggHk5QMc+5kJI26HHyv82hqOEisvStMw6cp9okn9kD48asYjYgYjQIoEtAZVQZKvUad0Qb0sMPMN39EZRnYsf9sVMcQb8TjuyFVlyr28QMviNFo2jfzyMsU21LlCXj2fKLre8iCG8KxnYp96uVTSMeRNPaXYFR9spxb/gExyotWk+igAIoEpJ7Cy0qPbgbKxHMYMaCLYt+2vYlbUyDLMlyqwlQ2rSe4bvFXT9Me8P3GadbGc21fD+Hk97q9h3B4O+BW/jvi+1IA1VExZitsE2cpdwpuNP7fMkiqhaRJ+0cBFPGr0SVoFhLOinIGCgDOH6J8WurAiWqcq2kMcHTHJhzermlsaB75c5piCRPDcrBMvFG5UxbR+Mkz8Oz/MuLaFVmW4P5OmdHieg4Hm5Ie0XVJfDP3H4fUMZcq9sl1FWj44C+QasoCnEXaIwqgiF8nzyqXTmEZBpmdo5uBAoAR/dNhTWrxeDCA/xSdiPo4Yk121cP1zTrFPia1C/gB58doRB0Dlz0Q5pGXK3eKApyfr0HjB09COL477KfzhANfQapUflZNqq7VpGPKmDYbXGaOYp/sOIP6fz0Kz+HtVFjeQVAARfxSrz3XvYsNJj76HxcTz+HC4d0U+77YfRqOBComl2UZzi9e0XQeTyq4jhob6sA87mrw/cZp9oul+9H4f8tR/+af4PzyVXiOFEOqqwzqh5947hicX7+h2Mem9QTfZ3SAM0hHwvJmpFz5J21zW3cDnJ+uQuNHSyFEYQkhYiz67kv8Uq8910u1Nl00/Sy/F/6385SvK7rbI+Hd/x3CzVcMidmYosldvAGC+kmuHsOolkYnDMPCMnUOXJZUePZu1rwu11fBs+8zePZ95j3eageb3gusPROsvSuYlAwwJgvAmyG7GiCe+RGevf8FBGWQn3T+1dRLKYGwVjusVxSi8eNlmkykeOoHNJ76AWx6L/D98sH3GQU2rScYlj4f7QkFUD+RJAnPPfcc3nnnHTgcDowdOxYPP/ww+vTp0/bJHdDxMmUApV5aJZq6dLaiYFgWvv6+uX5gy55SjBmUiVEDu7RyZvsmyxJcW9fC8/1/lC8kJcMy5XdU+6QjhuVgmXADuJ7D4Pr6DcitFPzKjQ6Ip36AGMKDVfzA8eB7j4p8oKRdYZPTYJu+EM7PX4JwuEjzulR5Au7KE3AXbwBMVnBd+4FN6w62U7a3Y74tDaytE5CUTP/e4xAFUD9ZtWoV1q5diyeeeAJZWVl4+umnceutt+KDDz6A2ZxYPXbqGj04Ua6cwlMv7httMyf3x84DZ+FssR7ei+//gD9dOwoDenRq5cz2Saw6DdeWf0AsVXYcB8PAetEcsMlp/k8kETH1HQO+53B4Dm6F54dPIVVEXm/HdRusLVYnCYMxJcFy8e0QcrbD9fWbkBtr/B/oafwpMP9B+xrLgbF2AmNNBWOygjFbAZMFjNnqzX6aLGB4E8DyAGcCw3IAZ/Kex5m8S/SwPBiO9/4/w3mbfrKMNyvKsADD/PTfn/6wbODXGIYCOlAABQBwu914+eWXUVhYiMmTJwMAli9fjokTJ2LTpk244oorYjzCZk63gPKqBtTUOCEK3uJWGdqaDAYMWJYBw3gLwBX/zzAw8SxY1v8/gJJjVYormnkW/brHNkhJS03CzMn98cam5roBl1vE0rd24dqpAzB5VI+AX097IEsS5PoKiGcOQji0HcKxbwE/f69JE24E35u6jhuJ4c0w506GafAkSNWnIR7fDeHkDxDPHta0JGjjSjANvchbq0aNThMawzAw9T8ffJ9R8JR8AffujzU1ja2SRMj1laGdYzRfUKUMrpifgi//rzGtvPbTeWBwkpOw1eyBIzkVvK0zAAbsT+cz8P4M4zkeo3sMwai0kTG7BRRAASgpKUF9fT0KCgp8++x2O4YOHYqioqK4CaDe/ewQNhWdgEeMfM0ujmXQpbMV/bvbkTe4K0YMyAD7028Uu35UNqsc1KtzTArI1aaO6YFDp2vwzQ/NvaDcgoTX/3MAnxSdwJRRPTBqYBdkpVl1++1IliXIrnrIzroW/9X+PwSPt4u1LAKSBEii95seZO+2LHk7gSr+K3kLkgUX5EaHcrkPNYaDZcotmiVIiHEYhgGX1gNcWg+YR14OWZYhO8ohnjsGyXEGsqMckqMccqMDsuAGPC6AN4NNyQDXbTD4gReCS+ve9huRhMHwSTAPnwbT0Ishlh2AcHg7hBN7INe2wwbBsuz9fqfe3dopQVy2gWXwUu8M1LMs0FgPNAZu/bC9dCf+38BqXNxrchBX1h8FUADKyrx/Qd26KZ/26tq1K0pLS/2dEhRex6CjtKIeH31zTLfriZKMM5UNOFPZgK+/L0P3Lsn45cQcDO2bjuIS5T/mEQMydP1aIvG7q4aiwSngu0PKGpXyqka8/b+DePt/B2Gz8OjeJRnpdgvSUpNgNXMwmzgkS3XoLR5Ht04cWEiAJHiDHsED2VUPydXgDYxc9ZDdDahx1UNy1nm/UcQQm5IB2yVzYIrDBWgjxXGs4r9xL6Ob90870+7uczsW3L1mYeo9FOg9FAAg1VdDKPsRYsUJiNVlkKpLIdWe8/5ylmBqeRb1Ify8OeI4FrOfTxRAAWhs9Kbl1bVOSUlJqKkJMF/dBpZlkJam3wKcjaKxP8RPn6vHqn9pOzDzHIPLJ/RHp5T4WbvrkTkXYvXGPfjo66N+X29wCjh4sgZA899dN64Kf7J/CBMjwRWdYUaMMVvRKf8KdL5gOtik6DcxjSa7Pfo9xhIR3efoCelepyUDPXtodsuCB2JDDYS6aoh1VZAaayG5nZBcDZDcjT/90tcIyd0IWRQgix7vfwUBkDyQBUG5X/Tua8qAx6MMt4ieTg9OWkxBHV/Qe7SuP2tDQQEUAIvFAsBbC9X0/wDgcrlgtYb3DUeSZDgcDW0fGCQrx+Cai/rjw6+PocEl6HbdtowbkgXJI6CqKnrvGYzrpg7A8L5pePu/B3FU9cSgP3nmwzAx8fkNoyUmKRlc1gCY++XB1D8PTFIyahpkoKFj/ibKcSzsdiscjkaIOkxNE//oPkeP/vfaClitgFWZ+WQRWSNHWZYV5QRN5QWyJCn3SZKqFOGn8gNNaULTfj/X/Ok6iuNkP9f86fi5ght7xWo4UtMAs8U7fQ4ZsixDkr3jYVkWo3sOQS9Lb1RV6ff90W63Bp2ppQAKzVN35eXl6N27t29/eXk5cnPDnzYRBH2/Uf38/D64/II+SE6xorq6vtXre/9tyJBkQJJlyJL3/2VZhiTJqKl343CpA1/uPo2TZ/1/+JItPGZO7q/716GX3N5pePDGPOw7VoVte89g96EKzfIzTUpFHZ5a43gwSSneP5ZkxX9hSgIYztvHheW8T7m0KJb0/zSL9/8Zjgdj6wTG1tn7pM1P9VsSAClO773eRFGK289ZR0L3OXraz73+KRRj4P0T4WyYv+rTUCtSUwBoW9sq8TyLtLRkVFW1/rPQSBRAAcjNzUVKSgq2bdvmC6AcDgf27t2LWbNmtXF2dHEsC2sSD6eZh8CG/6Hp0tmK/j064eKxPbHrwDn868vDOH2uOZBKsZpwx4zhSEuNn6k7fxiGwdC+6RjaNx2yLKPS4cLx8lpU1DhRWeuCo94Nt0eE25OOLxs4DGSOoUuqGUkWs/cRX5bzPt6bZAOTlAyYk8Ek2cDbUmDv0gV1Hh4SbwVjSQE4Mz26SwghBAAFUAC8tU+zZs3C0qVLkZ6ejh49euDpp59GdnY2pk2bFuvhGYplGIwdnInRg7rg4MkanD5Xj2SrCcP6psNmaV8fD4ZhkNHJgoxOlgBHjAr6WjzPwpqWDGcMf7shhBASv9rXT0gDzZs3D4IgYOHChXA6ncjPz8eaNWsSpokmyzAY1KszBvXqHOuhEEIIIXGPAqifcByHwsJCFBYWxnoohBBCCIlz1BSEEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBAxsizLsR5ERyTLMiTJmFvLcSxEUTLk2qQZ3efooPscHXSfo4fudXQYcZ9ZlgHDMEEdSwEUIYQQQkiIaAqPEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBFCGEEEJIiCiAIoQQQggJEQVQhBBCCCEhogCKEEIIISREFEARQgghhISIAihCCCGEkBBRAEUIIYQQEiIKoAghhBBCQkQBVDuwatUq3HDDDYp9+/btw6xZszBq1ChMmTIFa9asidHoOg5/9/m///0vZs6cidGjR2Pq1Kl46qmn4HQ6YzTCjsHffW5p4cKFmDp1ahRH1HH5u9fl5eW45557kJeXh/PPPx9/+tOfUFlZGaMRdgz+7vOePXswa9YsjB49GpMnT8Zf/vIXuN3uGI2w/aqursZDDz2ESZMmYcyYMbj++utRXFzsez2WPwspgIpzr776KlauXKnYV1VVhdmzZ6Nv375Yv3495s6dixUrVmD9+vUxGmX75+8+FxcX484778TPfvYzbNy4EYsWLcLHH3+MRx55JEajbP/83eeWPv30U7zzzjtRHFHH5e9eu91u3HzzzThx4gReeeUVvPjii9i7dy/uu+++GI2y/fN3nysrK/G73/0O/fr1w8aNG/HYY4/hX//6F5YvXx6jUbZf99xzD3bv3o1ly5bh3XffxbBhw3DLLbfg0KFDMf9ZyEflXUjIzpw5gwULFmDHjh3IyclRvPb222/DbDZj0aJF4Hke/fv3x7Fjx7B69WrMnDkzRiNun1q7z2vXrkVBQQF+//vfAwD69OmDu+++Gw888AAeeeQRmM3mWAy5XWrtPjcpLy/Hgw8+iHHjxuHUqVNRHmHH0dq9/uCDD3Dq1Cls2rQJXbp0AQDf57murg4pKSmxGHK71Np93rlzJ6qrqzF//nykpKSgT58++MUvfoEtW7ZQsBqCY8eO4auvvsJbb72FMWPGAAAWLFiAL774Ah988AEsFktMfxZSBipO/fDDD+jUqRPee+89jBw5UvFacXEx8vPzwfPN8W9BQQGOHDmCioqKaA+1XWvtPt98882YP3++5hxBEFBXVxetIXYIrd1nAJBlGffffz+mT5+OcePGxWCEHUdr9/rLL79EQUGBL3gCgIkTJ+LTTz+l4ClErd3nzp07AwDeeustiKKIkydP4vPPP/f72SeBpaWl4e9//zuGDx/u28cwDGRZRk1NTcx/FlIGKk5NnTo1YB1IWVkZBg0apNjXtWtXAMDp06eRkZFh+Pg6itbu89ChQxXbbrcbr7zyCoYNG4b09PRoDK/DaO0+A95pkLNnz+KFF17Aiy++GMWRdTyt3eujR48iLy8Pzz//PDZu3AhBEDBhwgQUFhbCbrdHeaTtW2v3OS8vD7///e+xYsUKLF++HKIoYty4cXjwwQejPMr2zW63Y/LkyYp9H3/8MY4fP44JEyZg+fLlMf1ZSBmodsjpdGqmj5KSkgAALpcrFkPq8ARBwPz583Hw4EE8/PDDsR5Oh1JSUoLnnnsOTz/9NE2LGqyurg4bN27E/v378de//hWPPvooduzYgdtvvx2yLMd6eB2Gw+HA0aNH8Zvf/AbvvPMOVqxYgePHj2PRokWxHlq7tmPHDjzwwAO4+OKLMXXq1Jj/LKQMVDtksVg0T3M0fVhsNlsshtSh1dXV4a677sK2bduwcuVKSsPryOVy4d5778Uf/vAH5Obmxno4HZ7JZILNZsNf//pXmEwmAECnTp1wzTXXYM+ePRgxYkSMR9gxLF26FA6HA88++ywAYNiwYejUqRNuuukm3HjjjfRZD8Onn36Ke++9FyNHjsSyZcsAxP5nIWWg2qHs7GyUl5cr9jVtZ2VlxWJIHVZ5eTl+85vfYNeuXVi9ejU9Xq+z3bt348cff8Rzzz2H0aNHY/To0XjxxRdx+vRpjB49Gu+9916sh9ihZGdnIycnxxc8AcDAgQMBACdPnozVsDqcHTt24LzzzlPsa/rF68iRI7EYUrv2z3/+E3PnzsWkSZOwevVqWCwWALH/WUgZqHYoPz8fa9euhSiK4DgOALB161bk5ORQ/ZOOampqcOONN6Kurg5vvvkmBg8eHOshdTgjRozAf/7zH8W+119/Hf/5z3/w+uuv0+dZZ3l5efjHP/4Bp9Pp+yF04MABAN6nTIk+srOzsX//fsW+pvvct2/fGIyo/XrzzTfx2GOP4YYbbsADDzwAlm3O+8T6ZyFloNqhmTNnoq6uDgsWLMDBgwexYcMGvPbaa5gzZ06sh9ahPPHEEzhx4gSefvpppKen4+zZs74/oijGengdgsViQZ8+fRR/OnXqBJ7n0adPH3oyTGfXXXcdOI7Dn/70Jxw4cAA7duzAwoULcf7552PYsGGxHl6HMXv2bHz55Zd45plncPz4cWzduhX3338/Jk+ejCFDhsR6eO3GkSNH8Pjjj2PatGmYM2cOKioqfN+Da2trY/6zkDJQ7VBGRgZeeuklLFmyBDNmzEBmZibmz5+PGTNmxHpoHYYkSfjoo4/g8Xhw4403al7fvHkzevbsGYORERK+9PR0vPHGG3jiiSfwq1/9CmazGZdccgn+/Oc/x3poHcqECRPw4osv4vnnn8drr72GtLQ0TJs2DX/84x9jPbR25ZNPPoHH48GmTZuwadMmxWszZszAk08+GdOfhYxMj14QQgghhISEpvAIIYQQQkJEARQhhBBCSIgogCKEEEIICREFUIQQQgghIaIAihBCCCEkRBRAEUIIIYSEiAIoQki7QV1XCCHxggIoQki7sHnzZtx3332+7W3btmHw4MHYtm1bTMZz//33Y/DgwRg8eDDuvffeiK41ePBg38Kzwbj++ut97x3KeYQQ/VAnckJIu/Dqq68qtocNG4Z169ZhwIABsRkQgMzMTDz33HNIT0+P6Drr1q1DdnZ20Mc/9thjqKurw7XXXhvR+xJCwkcBFCGkXUpJScGoUaNiOgaz2azLGEK9RiyDRkKIF03hEULi3g033IDt27dj+/btvmk79RTes88+i8suuwyffvoprrzySpx33nmYPn06du3ahW+//RbXXHMNRowYgSuvvBJbt25VXP/AgQOYM2cOxowZgzFjxuCOO+7AiRMnQh7n4MGD8dZbb+H+++/H2LFjMW7cOCxevBhOpxNPPfUUCgoKcP7552PBggVwuVyK85qm4pq+rq1bt+Lmm2/GyJEjceGFF+Kpp56CIAgR3EVCiJ4ogCKExL2HH34YQ4cOxdChQ7Fu3ToMGzbM73FlZWV44okncNttt+GZZ55BTU0N5s2bh3vuuQe/+tWvsGzZMkiShLvvvhtOpxOAd8X36667DhUVFXjyySexZMkSnDhxAtdffz0qKipCHuvSpUthNpvx3HPPYfr06Xj99dfxy1/+EqWlpXj66adx3XXX4d1338Xrr7/e6nXuvfdejB07Fi+88AKuuuoqvPzyy3j33XdDHg8hxBg0hUcIiXsDBgxASkoKgNanuxobG/Hwww9j0qRJAIBDhw7hr3/9K5YsWYKrr74aACCKIubNm4cjR45gyJAheO6552CxWPDqq6/63uOCCy7AJZdcgpdeeklRuB6M/v3749FHHwUA5Ofn491334XH48HSpUvB8zwmTpyI//73v9i5c2er17nmmmtwxx13+Mbz6aef4rPPPsN1110X0ngIIcagAIoQ0qGMGTPG9/9dunQBoAy6OnfuDABwOBwAgG+++Qbnn38+LBaLb4osJSUFeXl5+Prrr0N+/9GjR/v+n+d5pKWlYfjw4eD55m+3nTt3Rm1tbdDXAYDs7Gw0NDSEPB5CiDEogCKEdChNWaSWLBZLwOOrq6vx0Ucf4aOPPtK8Fs7Tdf7e32q1hnwd9ZhZlqU+WITEEQqgCCEJLTU1FRdeeCFmz56tea1l1ogQQlqi7w6EkHaBZVlIkqT7dceNG4eDBw9iyJAhvoBJlmXce++96NOnD4YMGaL7exJC2j96Co8Q0i7Y7XYcOXIEW7duRU1NjW7Xvf3223H8+HHMmTMHn376Kb788kvMnTsXH374IXJzc3V7H0JIx0IBFCGkXfjNb34Dk8mEW2+9FV988YVu183NzcUbb7wBhmEwf/58zJs3D2fPnsXzzz+PSy+9VLf3IYR0LIxMVYmEEBKy+++/H9u3b8d///vfmI1h8ODBuPPOOzF37tyYjYGQREU1UIQQEia3241vv/0W6enp6N27d9Te9+DBg6irq4va+xFCtGgKjxBCwnT27Flce+21WLlyZVTf98EHH6SFhAmJMZrCI4QQQggJEWWgCCGEEEJCRAEUIYQQQkiIKIAihBBCCAkRBVCEEEIIISGiAIoQQgghJEQUQBFCCCGEhIgCKEIIIYSQEFEARQghhBASIgqgCCGEEEJC9P8B1qhMsSg1ewIAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Fit the peaks using a permissive prominence filter \n", + "window_df = chrom._assign_windows(prominence=0.01)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Peaks within each colored region are considered to be interacting signals, and \n", + "are fit together as one unit. In the above example, the peak at ≈ 11 min (in window 1) \n", + "is considered to be isolated from the peaks at ≈ 13 min onward. \n", + "\n", + "The extent of each peak window can be controlled by a buffer parameter passed \n", + "to `fit_peaks` and `_assign_windows`. This, given in units of time points, extends each peak window \n", + "on to account for nearby baseline signal. The above windows can be expanded by \n", + "increasing this parameter, which has a default value of 0." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlAAAAHJCAYAAABKYwdTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACSs0lEQVR4nO3dd3wUdfoH8M/MluymbEhCSCjSSyjSg6g08bjzLOfx42x3eIp3HjbswQIqFs6GIoKcHkU5TwUVzrOeoncWFOligYj0GgLpbdvM/P6IWTIzm2R3M7O7ST7v18uXzOzM7DfDkjx5vs88X0FRFAVEREREFDIx1gMgIiIiamkYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBGR4SZOnIi7777bkGu9//77OOecc3D66afj/vvvR0FBAaZOnYrTTz8dZ555Jmpqagx5n1AtXLgQ/fr1i+p7huPuu+9Gv379GvzvyJEjAIA9e/YEff28886L8VdA1DJYYz0AIqLGPPjgg+jevTsee+wxZGVlYcWKFdi2bRuefPJJZGVlwel0RnU8l1xyCcaOHRvV9wzHDTfcgMsvv1y1r6ysDLfccgtGjRqFjh07AgDy8/MBAP/4xz+QkJAQONbhcERvsEQtGAMoIoprpaWlOPvss3HGGWcEtjt06IDzzz8/JuPJzs5GdnZ2TN47FF27dkXXrl1V+2688UakpqZi3rx5EMXaiYedO3eic+fOgftKROHhFB4RmcLn8+GRRx5Bbm4ucnNzcdddd6G4uDjw+t13342JEyeqzjl8+DD69euHNWvWYMOGDYGpsueeew79+vXDxIkTsWbNGhw9ehT9+vXDwoULAdQGVffffz/OOussnH766bj00kuxfv161bX79euHRYsWYcqUKRgxYgQWL14cdNyHDh3C9ddfjzPOOANDhgzBZZddhs8++yzwev0pvLoxBvuv/td29OhR3H777Rg1ahSGDBmCq666Cjt27Gj0/l155ZWNTsUdPny4qb8CAMD//vc/fPzxx7jnnnvgcrkC+3fu3In+/fuHdA0i0mMGiohM8cEHH2Dw4MF47LHHUFxcjHnz5uHAgQNYuXJlSOcPHDgQq1atwmWXXYbf/e53uOSSSyAIAp577jns2LEDixYtQnZ2NjweD6666iqcPHkSt912Gzp06IDVq1fjz3/+M5YuXYozzzwzcM2//e1vuOWWW9CvX7+gWSRZljF9+nRkZmbiiSeegNVqxT/+8Q/ccMMNeP/999GtW7egY6xv3bp1WLhwIS699FIAQHFxMS6//HI4nU7cd999cDqdWLFiBf7whz/gzTffRK9evYJ+/Q888AAqKysbvD8dOnRo8h7KsownnngCo0aN0tU25efno1evXrjsssuwY8cOuFwuTJ48GbfccgtsNluT1yZq6xhAEZEpXC4Xli5diuTkZABAWloabrzxRqxbtw5jxoxp8vzk5GQMHToUQO20Wd2f09PTYbfbA9uvv/468vPz8frrr2PIkCEAgHHjxuHKK6/EvHnzsHr16sA1Bw8ejL/85S8NvmdRURH27NmD6667DuPHjw+cs2jRIng8nkbHCAD79u3DihUr8Otf/xrXXXcdAGDFihUoLS3Fa6+9hs6dOwfGd/7552PBggV49tlng46ld+/eTd6jpvz3v//F3r17cd9996n2nzx5EidPnoQgCLjzzjvRqVMnrF+/HkuWLMGxY8fw1FNPNfu9iVo7BlBEZIrx48cHgieg9sk8m82Gr776KqQAKlTr169HZmYmBg4cCL/fH9h/zjnn4IknnkBZWRlSU1MBAH379m30Wu3bt0fv3r1x33334auvvsK4ceMwZswY3HPPPU2Oo7y8HNdffz26dOmCRx99VDW+/v37IysrKzA+URQxbtw4vP322w1eT5IkKIrS4OtWa9Pfvl955RX0798fZ511lmp/cnIyXnzxRfTo0SNQVD5q1CjY7XY888wzuOGGGxrMjBFRLQZQRGSK9u3bq7ZFUUS7du1QXl5u6PuUlpbixIkTGDhwYNDXT5w4EQigtGPSEgQBy5cvx9/+9jesXbsW//rXv2Cz2fCLX/wCc+bMQbt27YKeJ0kSbrvtNpSXl2P58uWqJwNLS0tx4MCBBsdXU1MT9EnCq6++Ghs3bmxwrJ988gm6dOnS4OslJSXYsGED7rjjDt1rDodDF1QBwIQJE/DMM88EpveIqGEMoIjIFNpASZIklJSUICMjA0BtsCJJkuqY6urqsN8nJSUF3bt3x7x584K+3liQEUxWVhbmzJmDBx54APn5+fjPf/6DJUuWIDU1FQ8++GDQcx5//HFs2LABL730Ejp16qQb36hRozBz5syg59rt9qD7H3zwQVRVVTU4zqZqoL744gtIkhS0r9PevXuxYcMGXHTRRaosodvtBlA73UpEjWMARUSm+Oqrr+D3+wNTTR9++CH8fn/gsfmkpCSUlJTA4/EE+hBt3bo17PcZNWoUPv30U2RkZKiCl7///e/44YcfGgysgtm2bRtuvPFGPP/88xg8eDD69++P/v3747PPPkNBQUHQc1avXo0VK1bg4YcfxsiRI4OO75133kGPHj1UwcrcuXPh8Xjw0EMPBb1uz549Qx53MN9++y2ys7MDdVf1HT9+HHPmzIHNZsPvfve7wP73338fSUlJDWbLiOgUBlBEZIqTJ09ixowZuPLKK7F//348/fTTOPvsswNPxZ1zzjl4+eWXce+99+KSSy7BTz/9hOXLl8NisYT1Pv/3f/+Hf/7zn5g2bRquu+46dOzYEV999RWWLFmCqVOnhvVE2YABA+BwODBz5kzMmDED7du3x1dffYWdO3fij3/8o+74b775Bg888AAmTZqEQYMGYfv27aq6pQEDBuDqq6/Gv//9b1x99dW45pprkJaWhvfffx+vv/56SLVVkfrxxx8bLEQfNWoURo0ahcceeww1NTXo2bMnPv30U7z88suYOXNmYMqTiBrGAIqITHHppZfC7XbjxhtvhN1ux0UXXYS8vDwIggAAOPvss3HXXXfh5ZdfxkcffYSBAwdi0aJFui7aTUlMTMQrr7yCp556Ck8++SQqKirQuXNn3HHHHbjmmmvCulZCQgKWL1+Op556CnPnzkV5eTm6d++Ohx56CP/3f/+nO/6LL76Az+fD2rVrsXbtWt3rdXVKK1euxFNPPYU5c+bA4/Gge/fumDt3rir7Y7SioqIGl5yxWCxYvHgxFi5ciBdffBEnTpxA165d8dBDDwXaLxBR4wSlscc8iIiIiEiHnciJiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsQAioiIiChMDKCIiIiIwsRGmiZRFAWybE6LLVEUTLs2ncL7HB28z9HB+xw9vNfRYcZ9FkUh0Oy3KQygTCLLCoqLG14INFJWq4i0tCSUl1fD75cNvz7V4n2ODt7n6OB9jh7e6+gw6z6npyfBYgktgOIUHhEREVGYGEARERERhYkBFBEREVGYGEARERERhYlF5ERE1GbVPjEtQ5YlQ64nywLcbgu8Xg8kiU/imSXS+2yxWCGKxuSOGEAREVGboygKamoqUVlZZljwVOfkSRGyzCfwzBbpfXY6k+FypYfcrqAhDKCIiKjNKS8vRk1NJRyOJDgciRBFS7N/oNaxWARmn6Ig3PusKAq8Xg8qK0sAAKmpGc16fwZQRETUpsiyhJqaKiQnt0Nycqrh17daRfaAioJI7rPdngAAqKwsQUpKWrOm81hETkREbYokSQAUJCQ4Yj0UioG6IEqS/M26DgMoIiJqo4yZsqOWxaipWgZQRERERGFiAEVEREQUJgZQRBT3FFmG94ePUfPJ3+DZ9g4UvzfWQyJq8W666S+YO3dOs67xu99dhGXLXjBmQM3g8bhx1VWX4/3334nae/IpPCKKe54Nq+D77sPajT0bIJ88AOekm2I7KKIW7q9/fRKiaIn1MJqtvLwM9913N/bs2R3V92UARURxTa4sgu/7j1T7/Ps2QyrcC0uHnjEaFbVWsqyg0u1r1jWsFhF+Kfw2BskOG0QxeoXtLpfxLRyibd26z/D0008gLS096u/NAIqI4pp/7yZA0TfL8+3ZwACKDLUpvxCvfPQjyqubF0BFypVowx9+2Q+5OR0iOn/hwqexefNGrFixEgBQXl6OCy/8BS666LfIy7sXALB+/TrMmnUX3nvvY+Tl3YKOHTth1qw5eP/9d7B8+d/xpz9Nx0svLUVh4XH06tUHt956JwYNGgwAqKysxDPPPIl16z6D1WrDH/84TTeG77//Fn//+2L8+ONOWK1WjBkzHjfeeCtcLhfuvTcPkuTH44/PBwD89NMuTJv2e0yffhOuvPJqAMCaNW/gn/98CWvWvIdly17Aiy8uwbp1mxv8mr/8ch1+97vLcMklV+Ccc86M6L5FijVQRBTX/Ed3Bt0vHc2P8kiotXvpg/yYBU8AUF7tw0sfRP65PvvscdizZzeKik4CALZu3QRFUbBly6kA5KuvvsTIkblwOp2680+ePIG33lqN++57GM8//yIEQcAjjzwA5edfYO6//27s3PkDHn98PubPX4Qvv/wCBQXHAufv2PE9ZsyYju7de+D551/Eww8/jh07vsftt98EWZYxZsw4bNu2FX5/bf+lzZs3QhAEbN26KXCN9evXYcyYcQCAK664Ev/+938a/ZrvumsWfv/7P8Jms0V41yLHAIqI4pYiS5CO/Rj0NbnoIIvJieoZPHgoUlJc2LRpA4DaAGXcuAk4fPggTpwoBFAboIwdOyHo+X6/H3feeTcGDTod/frl4I9/nIbDhw+hqKgIBw/ux8aNX+O222ZiyJBh6NOnHx544BHY7fbA+StXvoJevfrg9tvvQo8ePTF8+EjMmfNX5OfvwIYN63HmmWPgdtfghx++U43vu++2w+fzweNxY+vWzYHxJSYmIiOjvXk3rJkYQBFR3JJLjgI+dwOvKpBLjzXwGlH4rv51DlyJ0c9k1HEl2nD1r3MiPt9qtWL06LNUAdSFF16MDh2ysGXLJuzduweFhcdx9tljG7xGt249An9OSkoGAPj9vkCBdv/+AwKvp6dnoFOnzoHtvXt34/TTh6iu16tXbyQnp2DPnp+QlpaGgQMHYdOmDfD5fPj222248sppkCQJO3Z8jy1bNsNms2PYsBER34NoYg0UEcUtueRw46+XHoWlfbcojYZau9ycDhjRN7NFF5GfffZYLFz4NI4dO4pjx45iyJDhGD58JLZu3YyiopMYOHAQ0tMbXkS3fkapjlKvBlGW1fWIFotVdVywJt+KIsNqrT3urLPG4YsvPsWIEblITExETs4ADBx4+s/jK8KZZ54dODbetYxRElGbJBc3EUAVH4nSSKitEEUBrkR9EBGOWC4mPHr02XjkkQfwxhuvYcCAgUhMTMTIkaOwbNkLOHLkMMaMGR/Rdfv2rc2Mfffddpx11hgAQEVFBY4cORQ4pmfP3ti+/RvVeT/9tAtVVVXo3r32gY8xY8Zh6dK/4dNPP8Hw4bkAgJEjR2HLlk04evQIbrjhlojGFwucwiOiuCU1FUCVHo3SSIhahuTkZAwZMgxvvbVaFaAcO3YU3323vcH6p6Z07twF55zzC8yf/wQ2bdqAvXt34+GH74fPdypbd9llv8fu3bvw9NOPY//+fdi2bQseemg2+vbth5EjRwEAevToiezsjnjnnbcwYsRIAMCIEbnYvn0biouLcOaZZwWuV11dHSiIj0cMoIgobskl6gDJ0qm/+vXyE9EcDlGLcPbZ4+D1ejFiRG0A1b59Jrp374HTTuuKrl0jn/KePXsOzjzzbDzwwL244YZr0aNHT/Trd+rf5KBBgzFv3gLk5+/ENdf8AffddzcGDRqCZ55ZrJqWO/vssfB6vYEAr3//gXA6nRg+PBeJiUmB41577WVcfPF5EY/XbIKiBGmwQs0mSTKKi6sMv67VKiItLQklJVUxSxG3BbzP0dHYfVZkCZXLrgWUU/vtoy6Bd+Mbpw6yJyLl6sXRGm6Lxc+zms/nRVHRMWRkdITN1rzpumBiOYXXlkR6nxv7+09PT4LFElpuiRkoIopLSnWpKngCAEt2X/VB3moo3proDYqI6GcMoIgoLsmVReodFjss7bvqj6sqjtKIiIhOYQBFRHFJqVAXj4rJ6RCsCRAcKerjtIEWEVEUMIAiorgkV6ozS0JKbUdiITm90eOIiKKBARQRxSWlUp+Bqv1/huY4ZqCIKPoYQBFRXNJloJJ/zkAltlPtV2rKozUkIqIABlBEFJf0GajazJPgdKmPYwBFRDHAAIqI4o6iKJAr1FNzQgMBlFxTFrVxERHVYQBFRPHHUwX4PapdpzJQqar9Sk1F1IZFRFSHARQRxR1dDygIEJLTAACibgqPGSgiir6YBlAbNmxAv379gv537rnnAgB27tyJqVOnYujQoZgwYQKWLVumuoYsy3j22WcxduxYDBkyBNdccw0OHDigOsaIaxBR9GgDKCGpHQSxdi0tIVGdgYLfC8XnjtbQiFqNm276C+bOndOsa/zudxdh2bIXjBlQBL77bjtuuukv+NWvxuO3v/01HnvsYZSXR+eXqpgGUMOGDcO6detU/y1fvhxWqxXXXXcdSkpKMG3aNHTv3h2rV6/GjBkzsGDBAqxevTpwjcWLF2PlypV45JFHsGrVKgiCgGuvvRZerxcADLkGEUWXtjWBUK91gbYGCmAhOVEk/vrXJ3HLLXfGehgRO3jwAG6//Sb06dMPS5aswIMPPoqdO3/A7Nl3ReX9rU0fYh673Y7MzMzAts/nw6OPPopf/vKXuOSSS/DCCy/Abrdjzpw5sFqt6NWrFw4cOIAlS5ZgypQp8Hq9WL58OfLy8jB+/HgAwPz58zF27FisXbsWF1xwAV5//fVmX4OIokubgVL1frImABY7IJ36BUepLgNcHaI1PGrFFFmG4qls1jVkqwg5gkVuhYRkCGL08houV2rTB8Wx999/F+3bZ+Lmm2+HIAjo2hW4/fa7ceONf8aRI4fRuXMXU98/pgGU1iuvvIJjx45h+fLlAIDNmzcjNzcXVuupYY4ePRovvPACioqKcOTIEVRVVWH06NGB110uFwYMGIBNmzbhggsuMOQaRBRd+mVc6mWgBAGCM0WVpVLczfuBRwQAvr0b4fnynzHLaApOFxLOngpbz1ERnb9w4dPYvHkjVqxYCQAoLy/HhRf+Ahdd9Fvk5d0LAFi/fh1mzboL7733MfLybkHHjp0wa9YcvP/+O1i+/O/405+m46WXlqKw8Dh69eqDW2+9E4MGDQYAVFZW4plnnsS6dZ/BarXhj3+cphvD999/i7//fTF+/HEnrFYrxowZjxtvvBUulwv33psHSfLj8cfnAwB++mkXpk37PaZPvwlXXnk1AGDNmjfwz3++hDVr3sOyZS/gxReXYN26zUG/3l/96tcYPXoMBEHQvVZRYf7fYdwEUB6PB88//zyuuuoqdOhQ+5tkQUEB+vZVr75e99rRo0dRUFAAAOjYsaPumGPHjhl2jUhZrcb/JmGxiKr/kzl4n6OjofusaBYItqS2V/17Eh3JkOoFUIK/2pR/b60FP89qsqz/gQsA7s9fBLw1UR7NKUpNOdyfvxhxAHX22eOwatWrKCo6iYyM9ti6dRMURcGWLacCkK+++hIjR+bC6XTqzj958gTeems17rvvYdhsNsyb9ygeeeQBvPbaGgiCgPvvvxvHjxfg8cfnIzExEYsWPYOCglM/J3fs+B4zZkzHRRf9FrfdNhMlJcWYP/8J3H77Tfj731/CmDHj8Mwz8+D3+2G1WrF580YIgoCtWzcFAqj169dhzJhxAIArrrgSv/3tlKBfqyAAPXr0hCTJUJRT+1955SVkZGSgd+++Qc+rz2IRmvV9I24CqH//+9/weDy48sorA/vcbjfsdrvquISEBAC1AVdNTe0HPdgxZWVlhl0jEqIoIC0tKeLzm+Jy6T/8ZDze5+jQ3udyTQCVmt0FifX+PbmTXaipl6RyiD60M/HfW2vBz3Mtt9uCkydF3Q9QAQKURs6LBgGR/1AfPnw4XC4Xtm7diF//+kJs2bIJ48efg08//S+Ki0+iQ4cOWL9+HaZN+zOsVrE2myvUvp8oCvD7/bjrrnvRt28/AMC0aX/CzJm3o6ysGFVVVdi48WssXPg3jBgxAgDw0EN/xeTJF0AUa6+xatUr6N27D2bOvCcwpocffhRTp16GzZs3YOzYcXjssYeRn/89hg4dji1bNmL8+HPw9ddfQVEkSJKErVu34Mknp8JqFeFyJcPlSm70a67/S8GCBU9j/fov8de/PgGHw97gObIsQBRFpKYmwuFwRHSvgTgKoN566y388pe/RFpaWmCfw+HQFXJ7PLW9YRITT33hXq9XdRM8Hk8gujbiGpGQZQXl5dURn98Qi0WEy+VEeXkNJCn8OXYKDe9zdAS7z4rfC6mqVHVctZAET0lVYNtvUf/brC4phlLvdVLj51nN6/VAlmVIkgJ/vVqlhHFXx8UUnj+C+qlaIs444yx8/fXXmDTpfGzatAG33HIHduz4ARs3bkDfvjkoLDyOM88cA79fhqIoUJTaeyDLtaFjly7dAu/vcCQCANxuL3bt2gUA6Nu3f+D11NQ0dOrUGbJce409e3YjN3e0avzdu/dCcnIKdu36EaNGnYmBAwfh66+/Rr9+A7F9+zYsXPgCvvzyC3z77beoqqqCzWbD4MHDmrwHglD7uZYkGT6fH088MRcffPAu7rjjLowde06j50uSAlmWUVZWjZoaSfWay+UMOVMbFwFUcXExtm3bhunTp6v2Z2dno7CwULWvbjsrKwt+vz+wr2vXrqpjcnJyDLtGpCL/R9A0SZJNvT7V4n2Ojvr3WS47qXtddqZDqf/3YE9Un19Tyb+nEPDzXEuSgueZbD1Hwdp9ZLOLyK1WMaL7bEQR+dlnj8XChU/j2LGjOHbsKIYMGY7hw0di69bNKCo6iYEDByE9PaPB87WzMUDtygB16gKtOhaLVXVckHIkKIocqEM+66xx+OKLTzFiRC4SExORkzMAAwee/vP4inDmmWerapYbUjekqqoq3HNPHr79dhseeOAR/OIXv2ry3DraADpccTEhvnXrVgiCgFGj1PO+ubm52LJlCyTpVIS4fv169OjRAxkZGcjJyUFycjI2bNgQeL28vBw7duzAyJEjDbsGEUWPdhFh2J0Q7OqMk5CgTusrHmafyBiCKEJ0umLynxFP4I0efTbKysrwxhuvYcCAgUhMTMTIkaOwbdsWfPXVOowZMz6i6/btW5tQ+O677YF9FRUVOHLkUGC7Z8/e2L79G9V5P/20C1VVVejevScAYMyYcfjxx5349NNPMHx4LgBg5MhR2Lp188/1T6GPz+fzIS/vVuTn/4CnnloYVvBkhLgIoPLz83HaaafppsymTJmCyspKzJo1C7t378aaNWuwYsWKQKbKbrdj6tSpmDdvHj755BPk5+fjtttuQ3Z2NiZNmmTYNYgoevRP4LXXHSMkqOudGEAR1UpOTsaQIcPw1lurVQHKsWNH8d132zF27ISIrtu5cxecc84vMH/+E9i0aQP27t2Nhx++Hz6fL3DMZZf9Hrt378LTTz+O/fv3Ydu2LXjoodno27cfRo6sTZD06NET2dkd8c47b2HEiNokxYgRudi+fRuKi4tw5plnBa5XXV2NoiJ9RrrOSy8tw7fffoO8vHvRrVt3FBWdDPxXf1xmiYspvJMnT6Jdu3a6/RkZGVi6dCnmzp2LyZMnIzMzEzNnzsTkyZMDx9x8883w+/2YPXs23G43cnNzsWzZskAa0ohrEFH06LqQJ+unGxhAETXs7LPHYcuWTRgxojaAat8+E92794CiKOjatVvE1509ew6ee24BHnjgXsiyjIsv/j+UlpYEXh80aDDmzVuAJUuexzXX/AGJiUkYO3YCrr/+JtW03Nlnj8Xrr78WCPD69x8Ip9OJQYOGIDHx1L/t1157udE2Bh999B8oioI5c2bpXnv22ecxfLi5s0iCUn9ykwwjSTKKi43/pm61ikhLS0JJSRVrGUzE+xwdwe5zzadL4d+1LnCMbcC5cIy5UnWeb/8WuD9aGNgWUjKRfMWT0Rl0C8TPs5rP50VR0TFkZHSEzWb8L8qR1kBReCK9z439/aenJ4VcRB4XU3hERHW0y7iIKcEyUKyBIqLYYgBFRHElkik8eKuhyPyNn4iihwEUEcUNRZGhaJ7CE0MJoADAa3zfNSKihjCAIqK4odSUA7JftS+kDBQ4jUdE0cUAiojihraFAUQLhET9ivGC1Q5YbOpzGUBR2PgMVVtk1LNzDKCIKG5om2gKSekQhODfpvStDJrXPZraDovFAkCAx+OO9VAoBrze2uXc6ndRj0Rc9IEiIgIApVLTRDNF30SzjpCQDKW69NS5zEBRiETRAqczCZWVpfD7fXA4EiGKFgjB1iGJgCwLDS4XQ8YJ9z4rigKv14PKyhI4nckQm9n5nQEUEcUN/RN46Q0eKySo18NjAEXhcLnSYbMloLKyFG63sZ8dURQh86lQ00V6n53OZLhcDX9vCRUDKCKKG3KFpgdUkGVcAjTr4yk+TsdQ6ARBQGJiMpzOJMiyDFmWmj4pBBaLgNTURJSVVTMLZaJI77PFYm125qkOAygyzfrvC/DRpkNon+rA7yf1RVpKQqyHRHFOqQojA6UJoOCtMWNI1MoJggCLxfJzXVTzWa0iHA4HamokdiM3UTzcZwZQZIpv95zEknd3AAAOHK9AYWkNHpiWC9GgGgNqncLJQAk2TQaKARQRRRGfwiNTfLz5sGr7UGElfjpUGpvBUIugeGt0zTCDNdGso81AMYAiomhiAEWGk2QZuw6X6vbvPFCiP5joZ9oCcqDxKTzYHOpt1kARURQxgCLDnSxzw+vTz0kfPsGnpKhh2kWEBaertmFmA5iBIqJYYgBFhjtZGjwTcKyIARQ1LJRFhFWv657CYwBFRNHDAIoMd6Is+A+yE6U1hrXQp9ZHm4FqrP4JAKArIucUHhFFDwMoMlxDGSi/pKDK7Q/6GpH2CbxwM1DaAnQiIjMxgCLDnWwgAwUAZZWeKI6EWhI5jGVcAE7hEVFsMYAiw51oIAMFAKVV3iiOhFoSXRF5Y0/gQd8HCpIfiuQzelhEREExgCLDlVc1nGViBoqCUSQ/lKpS1b5Gl3EBALtDt4vLuRBRtDCAIsNVVDecBSirZAaK9GqfwFM/YBDuFB4ALudCRFHDAIoM5fFJ8DayLlEZp/AoCLlCXf8EmxNCQlLjJ1nsgKD+FsZeUEQULQygyFAV1Y0HSKWcwqMgtAFUU9knoHYRWOgKyTmFR0TRwQCKDNXY9F0or1PbpA2gmmphEDhOu5wLM1BEFCUMoMhQlTWNB0hVbgZQpBdJBgoABHuialthLygiihIGUGSopqbwqtlIk4LQB1AhZqA4hUdEMcIAigxVqZmis4iCapsBFAWj70IeWgYKmik8FpETUbQwgCJDVWim8DqkqTMENR4/ZK6HR/UosgS5sli1L/QpPO1yLgygiCg6GECRobQ1UFlpmhoV1AZRRHX8FUWAom59IYQaQNkSVNuKn095ElF0MIAiQ2mDo/bt9N2iOY1H9flLT6h3WO0QEpJDO9mq+Xz5GEARUXQwgCJDVWsCqLTkBNZBUaP8ZeoASkxpX9vjKQS6DBSLyIkoShhAkaFqNMGR02GFM8Gq2sdWBlSfv6xQtR1yATkAcAqPiGIkLgKot956C+effz5OP/10XHDBBfjggw8Cr+3cuRNTp07F0KFDMWHCBCxbtkx1rizLePbZZzF27FgMGTIE11xzDQ4cOKA6xohrUGi0GajEBCuSHOoAihkoqi9YBipUglUdQHEKj4iiJeYB1L///W/ce++9uOyyy/Duu+/i/PPPx+23345t27ahpKQE06ZNQ/fu3bF69WrMmDEDCxYswOrVqwPnL168GCtXrsQjjzyCVatWQRAEXHvttfB6a/sRGXENCp22BsqZYEWiw6bapw2yqG3zaQKoULuQA/pO5MxAEVG0WJs+xDyKomDBggW46qqrcNVVVwEAbrzxRmzduhUbN27Exo0bYbfbMWfOHFitVvTq1QsHDhzAkiVLMGXKFHi9Xixfvhx5eXkYP348AGD+/PkYO3Ys1q5diwsuuACvv/56s69BoQuWgUp0cAqPGtacDJR2Cg+sgSKiKIlpBmrv3r04cuQILrroItX+ZcuWYfr06di8eTNyc3NhtZ76ATx69Gjs27cPRUVFyM/PR1VVFUaPHh143eVyYcCAAdi0aRMAGHINCo1fkuH1qR9Hdyboa6BqPFI0h0VxTFFk+Ms0XcjDyUBZtUXkzEARUXTENAO1f/9+AEB1dTX+9Kc/YceOHejSpQuuv/56TJw4EQUFBejbt6/qnA4dOgAAjh49ioKCAgBAx44ddcccO3YMAAy5RqSsVuPjU4tFVP0/ntR49VNzKUl2JGoCKK9fMuXeGCme73OrUl0MyOrPjS2tA8QQPx+KQ9NI0++J+89WLPDzHD2819ERD/c5pgFUZWUlAOCuu+7CTTfdhDvvvBMffvghbrjhBrz44otwu92w2+2qcxISan/j9Hg8qKmp7Toc7JiysjIAMOQakRBFAWlpSRGf3xSXy9n0QVHmDpJY6pTtQjuXpk4F5t4bI8XjfW5Nasr3qbYFmwPpnTqF3MbA426Hynrbit/TYj5bscDPc/TwXkdHLO9zTAMom622uPhPf/oTJk+eDADo378/duzYgRdffBEOh0NXyO3x1KboExMT4XDU/mD2er2BP9cd43TW3lQjrhEJWVZQXm78yvAWiwiXy4ny8hpIktz0CVFUUFiu2raIAqor3YCsHmdZhRslJVXRHFrY4vk+tya+o4dU22JKJkpLQ/93I9VolgWS/Cg+WQbBEtNvbXGHn+fo4b2ODrPus8vlDDmrFdPvMtnZ2QCgm2Lr3bs3Pv30U3Tu3BmFheoeMXXbWVlZ8Pv9gX1du3ZVHZOTkxN4j+ZeI1J+v3n/eCRJNvX6kajQLCTsTLBCkhTYbRbV/mqPP+7G3pB4vM+tib/0uGpbcGWGdb9l0a7b53fXQEhgFioYfp6jh/c6OmJ5n2M6STtgwAAkJSVh+/btqv27du1C165dkZubiy1btkCSTs0NrV+/Hj169EBGRgZycnKQnJyMDRs2BF4vLy/Hjh07MHLkSAAw5BoUGm1/J2dCbeDksKsDKLeXReRUSyrTBFApmWGdL1j1ARQLyYkoGmIaQDkcDvz5z3/Gc889h3fffRcHDx7E3/72N3z55ZeYNm0apkyZgsrKSsyaNQu7d+/GmjVrsGLFCkyfPh1Abd3S1KlTMW/ePHzyySfIz8/HbbfdhuzsbEyaNAkADLkGhcbj0wRQ9toEpy6A4lN49DO5XJ0dFl0dwruAto0BAMXPVgZEZL6YFwrccMMNcDqdmD9/Po4fP45evXph4cKFOOOMMwAAS5cuxdy5czF58mRkZmZi5syZgXopALj55pvh9/sxe/ZsuN1u5ObmYtmyZYGi8IyMjGZfg0Lj0WSW6gInh139MdMGWtR2yeWaHlBhBlCCaAVEq/pJPmagiCgKYh5AAcC0adMwbdq0oK8NHjwYq1atavBci8WCvLw85OXlNXiMEdegprl96gAqoaEMFKfwCIDiqYLiUT9MEHYGCqjNQtVr4MopPCKKBjaqIMNop+YSGshAMYAiQD99B0GEkBJ6E83AaZrlXMApPCKKAgZQZBiPJgPlsAUvIvf5ZUgyn05p67QBlJCcUTslFyZ9N3KuYUlE5mMARYbRZpZOZaAsTR5LbU9z658CuB4eEcUAAygyjC4D1cAUHsAn8QhQtE/ghdnCoI4uA+VnDRQRmY8BFBlG+xReQgNTeADgDrJuHrUtuik8gzJQLCInomhgAEWG0QZFdVN4oijAbhM1xzID1dbpe0BFmIHSFpFzCo+IooABFBmmoSJy4FQ2qqFjqW1RJB+UqhLVvkhroDiFR0SxwACKDNNQETmgD6C8Pj6F15YpFScBqBcCNq6InAEUEZmPARQZRhtA1a990i4ozAxU26arf3KmQLA7I7qWvo0Bp/CIyHwMoMgw+qVcTj19l6CpgfIygGrT5NIC1bboyor8YtoFhSVf5NciIgoRAygyhKIouqxS/Wk7u5UZKDpFLjum2rakdYz4WvoaKDbSJCLzMYAiQ/glBZKsrmmpP4WXoGll4PWzBqot02agLO2yI7+YJgPFInIiigYGUGSIYBml+kGT3ar+qGmn+6htkcs0U3jtmpOB0kzh+TmFR0TmYwBFhgjWGDOhkTYGXj8DqLZK8dZAqS5V7bM0I4DS1UAxA0VEUcAAigwRLKOkqoHSPYXHKby2Spt9giBCTI2whQH0GSjWQBFRNDCAIkO4NVN4dpsIURQC2/o+UMxAtVVyqbqA3NquAwSLLfIL6jJQDKCIyHwMoMgQuhYGmoBJu5QLn8Jru7QZKFt6M6bvEOQpPIkBFBGZjwEUGaKxLuQAO5HTKdon8GwZnZt3Qasme+X3QlGU4McSERmEARQZQpuBSrBZVdvsRE51tD2g7OmdmnU9bQYKAJtpEpHpGECRIbQ1UA5741N4rIFqmxRFhlx6XLXPltG8AEpXAwWwDoqITMcAigyhy0A1MYXHDFTbpFSVAJoapeZO4en6QIHNNInIfAygyBDajJI2YNJO4bEGqm2SS46od9gcsCSnNe+ilmAZKE7hEZG5GECRITx+fRuD+hK0nciZgWqT5GJ1AGVJ7wxBEBo4OkSiBRDUny9moIjIbAygyBDajJJ28WC7bi08BlBtkVSiDaC6NPuagiCwFxQRRR0DKDKEdgpPn4HST+HJfNS8zdFO4RkRQAHsRk5E0ccAigzh9aszULoaKE0GCgB8ftZBtSWKIuun8DKMCaB0GSg20yQikzGAIkPoMlDWxmugANZBtTVKxUldYMMMFBG1VNamDyFqmjYDpX3qTrsNsBdUvFIUGb7vP4Zvz9eAAth6jYJt0CQIov7vMBxS8WHVtpCQDMHpatY1A7TNNBlAEZHJGECRIfQ1UI33gQIAD1sZxCXPun/At/PTU9sn9kIq3APHxOshiJEnrbX1T6IRT+D9TJ+B4lN4RGQuTuGRIfRP4ak/WqIowGphN/J459u7SRU81fHv3QTfd/9p1rVlTQZKTDOo/gkALNr18NgHiojMxQCKDKFtSxBsyi6By7nENUVR4N36doOve7a8BbmqJOLryycPqLZFg+qfAP16eKyBIiKzMYAiQzRVRA4EW1CYU3jxRDr2I+TiQw0f4PfC9/3aiK6teGsgl6nXwLO07xbRtYLS9YHiFB4RmSvmAdSRI0fQr18/3X9vvPEGAGDnzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DggPo3XSOuQY3TBkPBM1DaXlDMQMUT/75Nqm0xNRvWvmNV+7w7P4Xic4d9ban4EIB6fb8E0eAMFJ/CI6LoinkA9eOPPyIhIQFffPEF1q1bF/jvoosuQklJCaZNm4bu3btj9erVmDFjBhYsWIDVq1cHzl+8eDFWrlyJRx55BKtWrYIgCLj22mvh9dZ+AzXiGtQ0/RRekAwUl3OJW4qiwL9/m2qftc9ZSBh6PoB6hd7eavh+Wh/29XXTd2mdgy4CHDH2gSKiKIt5ALVr1y706NEDHTp0QGZmZuA/h8OB119/HXa7HXPmzEGvXr0wZcoUXH311ViyZAkAwOv1Yvny5ZgxYwbGjx+PnJwczJ8/H8ePH8fatbVTDUZcgxqnKIquiFzbeRwAbJqgio0044dcegxKVbFqn7X7CIjtOsLabahqv393+AGUdHK/als0cvoOzEARUfTFPID68ccf0bt376Cvbd68Gbm5ubBaT3VbGD16NPbt24eioiLk5+ejqqoKo0ePDrzucrkwYMAAbNq0ybBrUOOCBULBM1Da9fAYQMULqWCXaltISoOY1gkAYOs3TnesXH4irOtrM1CG1j8BXAuPiKIu5n2gdu3ahczMTPz+97/H/v370a1bN9xwww0YO3YsCgoK0LdvX9XxHTp0AAAcPXoUBQUFAICOHTvqjjl27BgAGHKNSFmDFFI3l+XnVgAWS8xj34Aar1+3L9Fh03392rooSZZNuUdGiMf7bCbP8Z9U29aO/WD7+e/L0mMI3AlJUDxVgdelvRtgH/mbkK6t+L2QS46q9tmzesBqFQ27z367Q71D8sbtZysW2trnOZZ4r6MjHu5zTAMor9eL/fv3w+l0YubMmUhMTMTbb7+Na6+9Fi+++CLcbjfsdvVvlgkJtY8rezwe1NTUAEDQY8rKygDAkGtEQhQFpKUlRXx+U1wup2nXDpc/SCKzQ2YKkpzq3jzJiep7LFotpt4jI8TTfTZTxYk9qm1Xr9ORWu/vRhp4Niq2fnRqe896tPvF5SE1wnQfPoRSpX62UUBG7xyI9lP3trn3udyVjJp621ZIcf/ZioW28nmOB7zX0RHL+xzTAMput2PTpk2wWq2BAGbQoEHYs2cPli1bBofDoSvk9nhqH09OTEyEw1H7W6fX6w38ue4Yp7P2phpxjUjIsoLy8uqIz2+IxSLC5XKivLwGkhQfU2Aniqp0+6qr3PC6NdMoinq85RUelJToz40H8XifzaJ4a+AvKVDt86Z0Uf/ddBsF1AugfEVHcHJ3PqztuzZ5ffeu71TbYnpnlFXJQFWVYffZo/mo+dw1cfvZioW29HmONd7r6DDrPrtczpCzWjGfwktMTNTt69u3L9atW4fs7GwUFhaqXqvbzsrKgt/vD+zr2rWr6picnBwAMOQakfKbWOMjSbKp1w9HjVs9hWcRBUDRf/02zYfS4/XHzdfQkHi6z2bxFx5U7xAsUFwdVV+30r4nhKR0VaG5Z9fXQLumWxH4jqmnBy1ZvXX3tLn3WRbU2U7F5231f2+RaAuf53jBex0dsbzPMZ2kzc/Px7Bhw7B582bV/u+//x69e/dGbm4utmzZAkk69bj7+vXr0aNHD2RkZCAnJwfJycnYsGFD4PXy8nLs2LEDI0eOBABDrkGN0z6BZ2ug9sTGIvK4JBdpWgy066h7qk0QRFh7jVLt8+3dBEVR0BhFUSAd1wZQfZox2uC4Fh4RRVtMA6i+ffuiT58+ePDBB7F582bs2bMHjz76KL755htcd911mDJlCiorKzFr1izs3r0ba9aswYoVKzB9+nQAtVOAU6dOxbx58/DJJ58gPz8ft912G7KzszFp0iQAMOQa1DhPCMu41O5nG4N4JBdp1qjLOC3ocbae6gBKKT+uC760lIoTUGrKVfss2cYHUPo+UFwLj4jMFdMpPFEU8fzzz2PevHm49dZbUV5ejgEDBuDFF19Ev379AABLly7F3LlzMXnyZGRmZmLmzJmYPHly4Bo333wz/H4/Zs+eDbfbjdzcXCxbtixQU5WRkdHsa1DjQlnGBdBnptiJPD7IZeqnTcX0zkGPEzN7QEjJhFJxqoWBf89GWNp3b/Da0tF81bbgdEFIyYx8sA1gHygiiraY10Clp6fjr3/9a4OvDx48GKtWrWrwdYvFgry8POTl5Zl6DWqYrolmQxkozRQeM1DxQbtGnZiaHfQ4QRBg6zUK3m/eC+zz7d0I+6hLGnwaz3/kB9W2pWO/kJ7cC1uQtfAURTHnvYiIEAeNNKnl02WggjTRBIJkoBhAxZzic0OpLlXtayiAAgCrdhqv4iTkE3uDX1uRIR3Zodpn6TwwsoE2QbcsjKIAsr4/GRGRURhAUbNpAyFtpunUfm0NFKfwYk2bfQIA0dWhwePFjK4QNAGWb8/G4NcuOgTFXaHaZ+1iTgAFa4J+H6fxiMhEDKCo2fQZqOABlHYtPGagYk8bQAnJGY0u8isIAmw9c1X7/Hs3QlH0f5f+g9vV57o6QDSh/gkABItNt491UERkJgZQ1GyeEKfwdDVQPgZQsSaXqRtoiqlZTZ5j7XWGalupKoF0fI/uOP9e9VqS1tNOj2CEIQoW9LGVARGZiAEUNZu2GDzUKTwvp/BiLtQC8vos6V0CCw3X8e9er75u6THIxYdU+6w91JkrQ1lsANQF44qfrQyIyDwMoKjZ9E/hhVZEzqfwYq9+SwIAEF1NZ6AAwNpTnYXy7fpStdiwb/fXqtcFZyos2epFvY0kCMLPQVQ9EqfwiMg8DKCo2UJvpMlO5PFGrixSbQsp7UM6z9ZvDCDU+/bh98C781MAgCL74cv/THW8tcdICKK5327YC4qIookBFDWbtoi84aVc9BmoppYCIfMosgSlqkS1T0xOD+lcMTkD1h7qpY6829+H4qmCL/8LXWsEW864Zo01JLpeUJzCIyLzxLyRJrV82im8BjNQQQIrn19u8Hgyl1JdCmienhOSM0I+3z74PPj31mth4KlC9b/nQq48qTrOkt0XlvbdmjPU0Fg1CwpzCo+ITBRSALVo0aKI3+Cmm26K+FxqGbTF4AkhLiZcey4DqFhRKovVOyxWCI6UkM+3dOgJa4+R8O87tRi4XHpUd5x95GTdPjMIFjtU+UxO4RGRiUwNoARBYADVBoScgQpSXM5C8tjR1T8lZ4S99EnC6MvhP7ID8FYHfd3aYySsnfpHPMaw6DJQnMIjIvOEPIX3+uuvY/DgwSFf+JtvvsEVV1wR0aCoZQl1KZdgU3hsZRA7siYDJSaFVv+kOielPZznXoeaj54FJPXSKWJaZzjGTWvWGMMhWLQ1UMxAEZF5QioiHz58OJKSksK6cEpKCoYNGxbRoKhl8YTYB8pqEaHNb7CZZuwoVfoMVCSspw1G4m9mwdJ5QG0rgYQk2Aaci8SLZ0NICO/7RrPwKTwiiqKQMlAjRoyAxRJenUqvXr3w6quvRjQoallCXcpFEATYrKKqfQFbGcSOtgZKjDCAAgBLZg8kXjCzuUNqFt1yLgygiMhEIWWgXnzxRfz617/GlVdeibfffhseD5dIoFO0AVRDjTSBYK0MOIUXK/oaqPCn8OKKto0Ba6CIyEQhBVBffPEF7rnnHlRVVWHmzJkYM2YMHnroIezcudPs8VELoFvKpZGn6thMM35oezVFUgMVT9hIk4iiKaQAKi0tDX/84x+xZs0avPPOO7jkkkvw8ccf4//+7/8wefJkvPrqq6ioqDB7rBSHZEXRBUHBisXraDNQ2if4KDoUWYJSo/43KyS2i81gjKLLQDGAIiLzhN2JvE+fPpg5cyY+/fRTvPDCC+jZsyeeeOIJjB07Fnl5edi0aVPTF6FWI1gbgkYzUJzCiwuKuwJQd02C4HTFZjAG0dZAcTFhIjJTxJ3IRVHEuHHjMG7cOFRVVeG///0vnnvuObz77ruc2mtDtPVPQFMZKE7hxQOluky9QxDCaqIZl3RLuTADRUTmafZSLt9//z3eeecdrF27FseOHcMZZ5zR9EnUagSbggsvA8UAKha0AZTgcJm+2K/pNH2g2EiTiMwUUQB16NAhvPPOO3jnnXewf/9+ZGVlYfLkyZgyZQq6dOli9BgpjgVrhNnQYsIAYNM8ocdGmrGh1GgCqMTUGI3EOIKVbQyIKHpCDqBKSkrw/vvv45133sH27dthtVoxceJE3HvvvRgzZkzYS0BQ66DNQFlEAVZLwwGUtskmG2nGhqzNQLWCAIqNNIkomkIKoK677jqsW7cOfr8fffr0wd13343f/OY3SEtLM3t8FOc8ITbRDLyufQqPU3gxoctAOVt+AKVrpMmn8IjIRCEFUJs3b8aUKVMwZcqUsNbDo9ZPOwXX0Dp4dXRtDDiFFxPaGiixVWSgElSbfAqPiMwUUgC1bt06OBwOs8dCLZB2Ci+hgXXw6uim8JiBiolWmYHS1kAxA0VEJgopgNIGTx9++CG2bt2K8vJy3bGCIOCvf/2rMaOjuBd2BkpbRM4aqJholTVQ2qfwWANFRCYK+ym8efPmYenSpUhOTobLpW+8x2LytkUbAIVbA8VGmrGha2PQKjJQ2j5QnMIjIvOEHUD961//wqWXXoqHHnrIjPFQC6NtpNlYE00gWA0UM1DRpvg9gK9Gta911EDpp/AUReEvdURkirA753k8Hpx33nlmjIVaIN06eE1moFgDFWtKdZCp91YQQAmaKTwAAJtpEpFJwg6gfvnLX+K///2vGWOhFijsDBQbacactoAcFhtgc8ZmMEbSTuEBbKZJRKYJewrv3nvvxSWXXIIrr7wSQ4YM0RWYC4KAG2+80bABUnxrdg0Ui8ijLlgBeWuY5tL1gULtci4t/ysjongUdgD18ssvY9++fdi3bx82bdqke50BVNvi0T2FF94UHmugok+pUU/hCU79wyAtEjNQRBRFYQdQ//znP3HBBRfgnnvuQfv27c0YE7UgzS0i51N40ae4K1TbgiMlRiMxmMUGQACgBHYp7AVFRCYJuwaquroal156qSnB0759+zBs2DCsWbMmsG/nzp2YOnUqhg4digkTJmDZsmWqc2RZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg4Jr7hQeM1DRp7grVdutJYASBOHnIKoetjIgIpOEHUCdddZZ2LBhg+ED8fl8uPPOO1FdXR3YV1JSgmnTpqF79+5YvXo1ZsyYgQULFmD16tWBYxYvXoyVK1fikUcewapVqyAIAq699lp4vV7DrkEN02agEppspMkpvFjTZ6CSYzQSE2haGbCZJhGZJewpvIsvvhizZ8/GgQMHMGzYMCQn67/5/va3vw17IAsXLkRSUpJq3+uvvw673Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFhlyDGqYNgGxNLuXCIvJYUzzaDFTrCaAEqx2Kp+rUDk7hEZFJwg6gbr75ZgDAe++9h/fee0/3uiAIYQdQmzZtwqpVq/DWW29hwoQJgf2bN29Gbm4urNZTwxw9ejReeOEFFBUV4ciRI6iqqsLo0aMDr7tcLgwYMACbNm3CBRdcYMg1ImVtoh4oEhaLqPp/rPkkdQDkTLA0+nU7HeqPnKwogABY4+TrqRNv99lQmik8a6LLlM9qKIy+z4LVXq8CChAVf8y+tnjSqj/PcYb3Ojri4T6HHUB98sknhg6gvLwcM2fOxOzZs9GxY0fVawUFBejbt69qX4cOHQAAR48eRUFBAQDozuvQoQOOHTtm2DUiIYoC0tKSmj4wQi5XfPTtkWRFtZ3WLrHRrzvYQ+VJyQ4kOvSPoMeDeLnPRqrwVqm2U9q3R5KJn9VQGHWfqxISUD/nlJggICXGX1s8aY2f53jFex0dsbzPIQVQCxYswOWXX46srCx07tw5pAsfP34cK1euxC233NLocXPmzMHQoUNx0UUX6V5zu92w29WPJickJACo7YheU1O7HEWwY8rKygy7RiRkWUF5eXXTB4bJYhHhcjlRXl4DSYr99Fe126/a9nn9KCmpauBooKZKP6VSeKICqckJho+tOeLtPhvJr+lEXi3Z4G3k78xMRt9nSfMtraqsAv4YfW3xpDV/nuMN73V0mHWfXS5nyFmtkAKo559/Hueccw6ysrJCHkRBQQGef/75RgOot956C5s3b8Y777wT9HWHw6Er5PZ4PACAxMTEQBNPr9eraujp8XjgdDoNu0ak/CYWSEuSbOr1Q6UtIrcIQqPjEoN0Naxx+5EUpxmoeLnPRlEkH+Bzq/ZJtiQgxl+jYfdZ8xSe5PW0qr+/5mptn+d4xnsdHbG8zyEFUIqiYM6cOUELxhtSWVnZ5DGrV69GUVGRqu4JAB544AEsW7YMnTp1QmFhoeq1uu2srCz4/f7Avq5du6qOycnJAQBkZ2c3+xrUsHCfwtM20gT4JF40aVsYAK2njQEAwKrOZCpsY0BEJgkpgMrNzQVQG0iFKikpCSNHjmz0mHnz5sHtVv82/Mtf/hI333wzzj//fLz33ntYuXIlJEmCxVL7g3f9+vXo0aMHMjIykJKSguTkZGzYsCEQ/JSXl2PHjh2YOnVqYOzNvQY1LNzFhEVRgEUUVLVTXFA4evQBlADB3npqhHTLufApPCIySUgB1Msvv2zKmzc0JZiRkYHOnTtjypQpWLp0KWbNmoU///nP+Pbbb7FixQo8+OCDAGrrlqZOnYp58+YhPT0dnTt3xpNPPons7GxMmjQJAAy5BgUnK4ou+NF2Gg/GbhNR4zmVueKCwtGj6wGVkARBbEVPC2mXc2EfKCIySdhP4UVTRkYGli5dirlz52Ly5MnIzMzEzJkzMXny5MAxN998M/x+P2bPng23243c3FwsW7YsUBRuxDUouGCZo6YyUEBtryh1AMUMVLTou5C3nh5QACBoG2lKnMIjInPEXQD1448/qrYHDx6MVatWNXi8xWJBXl4e8vLyGjzGiGuQnrb+CQASQslAaZdzCXIdMkerXQevjoUZKCKKjlaUu6doizQDpT2GNVDR0/ozUOoAiku5EJFZGEBRxDxBMkeh1EBpj9EuSEzmaf0ZKO1iwgygiMgcDKAoYtrAxyIKIS3JolsPj0XkUdPaM1DaInLWQBGRWUKqgXrrrbfCumgkiwlTy6OderM30QMqcJw2A8UpvKhp7Rko7RQeM1BEZJaQAqi777475AtGspgwtUweTebIFqRJZjDaGigWkUdP28tAMYAiInOEFEAZvYAwtQ7awEebWWqIrgaKGaio0WegWlcApWukyU7kRGSSkAKoUBcQBsLrVk4tm7YGKiGEJ/AA/XIufAovehSvZoHrhNYVQDEDRUTRElEfqPfeew8bN26Ez+cLBEyKoqC6uhrffPMNPv/8c0MHSfFJ20E8lCfwAMBmYwYqFhTZr1tIWEhIjNFozCHo+kAxA0VE5gg7gFq0aBEWLVqElJQU+P1+2Gw2WK1WFBcXQxRFXHLJJWaMk+KQNgMVSg8oAEiwsgYqFhRPtW6fkNB61sEDAGg7kfs9MRoIEbV2Ybcx+Ne//oXf/OY32LhxI66++mqcc845+Oqrr/Dmm2+iXbt26NOnjxnjpDikzUCF+hQea6BiJFgAZW9lGSjdU3jMQBGROcIOoI4fP46LL74YgiBg4MCB2LZtGwBg0KBBuO666/DGG28YPkiKTz5tBirkp/A0faCYgYoKxVul3mGx6QOOlk47hSd5WZdJRKYIO4BKTEyEIAgAgO7du+Pw4cNwu2vrKvr374/Dhw8bO0KKW9o2BqFnoDRTeMxARYXiVgdQrW76DkEyUADAZppEZIKwA6jTTz8d//rXvwAAXbt2hcViwVdffQUA2LNnD+z2VvYbLTVIVwMVYQZKOxVI5tBmoFpjAKV9Cg8AAygiMkXYReTXXXcdpk2bhoqKCjz//PP4zW9+g7vvvhtnnHEG1q1bh1/84hdmjJPikHYJlkg7kWunAskciqf1B1C6PlCoXVC4NX6tRBRbYQdQubm5ePPNN/Hjjz8CAO6//36IooitW7fivPPOC6trObVsEWegOIUXE7qn8FpZATkAZqCIKGoi6gOVk5ODnJwcAEBCQgIefvhhQwdFLYNH24k8wqfwuJhwdLSFDBQayEARERktogCqoqICX3/9Naqrq4M+4cK18NoGbeYo9Boo9XEeTuFFhTYD1dqaaAK1a3HCYlNnnRhAEZEJwg6gPvvsM9x6662oqakJ+joXE247tO0HIq6B4hRedLSFInKgdhqvXgDFDBQRmSHsAOrpp59Gz549cc899yArKwuiGPaDfNRKeCLMQOkbaUpQFCXQHoPM0Sam8FBbSK7Ki3M9PCIyQdgB1N69e7F48WKMHDnSjPFQC6JdgiXUDJR20WFFASRZgdXCAMpMbSWAgjVBtamwGzkRmSDs9FGnTp1QWVlpxliohdFOvUWagQK4Hl40tIUaKAAQNOvhMQNFRGYIO4CaPn06nnvuOXYcp4gzUMEWHWYrA/PpMlD2VpqB0iznwhooIjJD2FN477zzDo4fP45JkyYhPT0dDodD9bogCPj4448NGyDFL10NVJDAKJigGSgGUKZSZD/g96h3ttIpPF0GilN4RGSCsAOo7OxsZGdnmzEWakEURQmymHBkfaAALihsNl0TTbTeKTxdM01O4RGRCcIOoB599FEzxkEtjCQrkDU9wELNQImCAJtVVNVQMQNlMs30HdB6i8gF3RQeM1BEZLywA6ijR482+JooikhMTITL5WrWoCj+BSv6DjUDVXesKoBiBspU2vonWO1B141rFXRTeJ7gxxERNUPYAdTEiROb7NeTmpqKP/7xj7jhhhsiHhjFt2AZo1AzUECw5VyYgTJTm2lhgCAZKK6FR0QmCDuAeuyxx3D//fdj1KhRuPDCC9G+fXsUFRXhww8/xKeffoobbrgBVVVV+Nvf/oZ27drh97//vRnjphhrdgbKxgWFo6nNPIEHBMlAsQaKiIwXdgD13nvv4YILLtDVQl188cV44IEH8P333+P555+Hy+XCa6+9xgCqlfIGWb8uWHF4Q7TBlpcLCpuqrfSAAgBB10iTARQRGS/sPlAbN27EhRdeGPS1X/7yl/j6668BACNGjMChQ4eaNzqKWx6/vgdUOEux2DRNN4MFZGQcpa2sgwfULiZcH6fwiMgEYQdQ7dq1Q35+ftDX8vPzkZycDACorq6G0+ls3ugobulbGIRe/1R7PGugoknXxqAVZ6C0bQyYgSIiM4Q9hXfRRRfh2WefhdVqxXnnnYf09HQUFxfjo48+wqJFi3D55ZejrKwMK1aswJAhQ8wYM8UB7ZRbqF3ITx2vrYHiFJ6Z9EXkyTEaifkEXR8oZqCIyHhhZ6BuvfVWnH/++XjssccwYcIEDB48GBMmTMBjjz2Giy66CLfddhs+//xz7NixA7feemuT1ysqKkJeXh5Gjx6NYcOG4S9/+Qt2794deH3nzp2YOnUqhg4digkTJmDZsmWq82VZxrPPPouxY8diyJAhuOaaa3DgwAHVMUZcg9S0U27NzkBxCs9cugCqFWegNFN4zEARkRnCDqCsViseffRRfPjhh3jooYdw22234bHHHsN//vMfPPTQQ7Db7Rg3bhy++OIL5OTkNHm966+/HocOHcKSJUvw5ptvwuFw4Oqrr0ZNTQ1KSkowbdo0dO/eHatXr8aMGTOwYMECrF69OnD+4sWLsXLlSjzyyCNYtWoVBEHAtddeC6+39pumEdcgPV0GKowCcgCwaTJW2poqMlZbegpPl4FiAEVEJgh7Cq9O165d0bVr16CvpaamhnSNkpISdOnSBddffz369OkDALjhhhtw8cUX46effsL69etht9sxZ84cWK1W9OrVCwcOHMCSJUswZcoUeL1eLF++HHl5eRg/fjwAYP78+Rg7dizWrl2LCy64AK+//nqzr0F6ugxUGD2gAGagoq0tPYWny0BxKRciMkFIAdS5556L5557Djk5OU020gxnMeG0tDQ8/fTTge2TJ09i2bJlyM7ORu/evbFw4ULk5ubCaj01zNGjR+OFF15AUVERjhw5gqqqKowePTrwusvlwoABA7Bp0yZccMEF2Lx5c7OvESlrmFmZUFgsour/seKX1QFPgt0S1tfrsKs/en5ZMeV+RSpe7rNRtE/hWRNT4uJ+m3GflQT1Aufw++Lia42l1vZ5jme819ERD/c5pABq1KhRSEpKCvw5nMfVQ3XfffcFskV/+9vfkJiYiIKCAvTt21d1XIcOHQDULilTUFAAAOjYsaPumGPHjgGAIdeIhCgKSEszb5rE5YrtE44Wq/qjk+S0h/X1piSre/XA5PsVqVjfZ6OUetUZKFf7DDji6H4beZ9ryl2orLctyL64/GzFQmv5PLcEvNfREcv7HFIAVb9p5mOPPWbKQK666ipcdtlleO2113DjjTfi1Vdfhdvtht2urmdISKj9wevxeFBTUwMAQY8pKysDAEOuEQlZVlBeXt30gWGyWES4XE6Ul9dAkmI37VVWXqPaFqCgpES/YG1DZM3YK6s8YZ1vtni5z0ZQJD8Un3o9uEqviJo4uN9m3Gd/jfo6si++Plux0Jo+z/GO9zo6zLrPLpcz5KxWRDVQlZWVqKqqQlZWFrxeL/7xj3+goKAAv/rVr5CbmxvJJdG7d28AwMMPP4xvvvkG//znP+FwOHSF3B5P7Q+CxMREOBy1qXqv1xv4c90xdT2ojLhGpPwm9jaSJNnU6zfF7VUXfdssYljjsYrqLKbHG9uvpyGxvs9GkKsrdPskayKUOPq6jLzPkvbbmt8Hn08yJXPe0rSGz3NLwXsdHbG8z2FPHn777beYOHEiXn75ZQDAI488gnnz5uHtt9/GVVddhU8++STkaxUVFeHdd9+FJJ36YSyKInr16oXCwkJkZ2ejsLBQdU7ddlZWVmDaLdgx2dnZAGDINUhPu3Zdc/tA+fgUnmm0T+ABrbuIXNCuhQcFkP0xGQsRtV5hB1Dz589Hz549cdlll8HtduOdd97B73//e2zcuBG/+93v8Pzzz4d8rcLCQtxxxx3YuHFjYJ/P58OOHTvQq1cv5ObmYsuWLaoAa/369ejRowcyMjKQk5OD5ORkbNiwIfB6eXk5duzYgZEjRwKAIdcgPe1iwuH2gdKum8fFhE2kDaCsCRDEiB/AjX8Wu34fWxkQkcHCDqC2b9+O66+/HqeddhrWr18Pt9uNiy++GABw/vnn46effgr5Wjk5ORgzZgwefPBBbN68Gbt27cJdd92F8vJyXH311ZgyZQoqKysxa9Ys7N69G2vWrMGKFSswffp0ALV1S1OnTsW8efPwySefID8/H7fddhuys7MxadIkADDkGqSnC6DCzUBpAygfM1BmaVPr4CFIHyiwmSYRGS/sX0NFUQwUXH/22WdwuVwYPHgwgNraqPp1RE0RBAHPPPMMnnrqKdx6662oqKjAyJEj8corr6BTp04AgKVLl2Lu3LmYPHkyMjMzMXPmTEyePDlwjZtvvhl+vx+zZ8+G2+1Gbm4uli1bFhhjRkZGs69BevopvHAzUNqlXJiBMkub6gEFALopPHA5FyIyXNgB1KBBgwIdwz/44ANMmDABgiCgqKgIS5YswaBBg8K6XkpKCubMmYM5c+YEfX3w4MFYtWpVg+dbLBbk5eUhLy+vwWOMuAapaTNG2im5piRoMlZcTNg8+nXwWncGSttIE2AGioiMF/YU3syZM7F+/XpcccUVsFgsuP766wEAF154Ifbv3x/S+nfU8mkzRglhZ6A4hRctugyUvXVnoARB1AdRDKCIyGBhZ6AGDBiAjz76CHv27EGfPn2QmFj7zXjOnDkYPnw4MjMzDR8kxR99EXnznsLjFJ55dE/hJSTHZiDRZLWrpu0UTuERkcEiehQnOTkZQ4YMUe371a9+ZciAqGXQBjzamqamaDNQPr8MRVHYq8cE+iLy1p2BAgDBYoNSfwczUERkMC7WQxHRZqC0NU1NCVZ0zjoocyjuNlYDBdRmoOrhgsJEZDQGUBQRr695T+EFm/LjNJ5JvG3sKTwAgrYXlJ9TeERkLAZQFBGvv3lP4QUNoFhIboo29xQeoGtloPg9DRxIRBQZBlAUNkmW4ZdUFSZhP4UXLGPFDJQ5dAGUvfUHULpmmsxAEZHBGEBR2DxefaATbgBltYiw6BYUZgbKDG2ukSagb2PAGigiMlgrXhCLzOIJMtWWYA8vgAJqs1A1nlOLvAa7LjWPIvl0wYPQBtoYCNYE1bbSCjJQctlxeL5eCf/h7yAkJMM2aBLsg8+DIIb/b4+Imo8BFIUtWK1SuE/h1Z1TU680hTVQxtP1gAKAtpCB0i7n0sIzUHJZAareejiwMLRSXQrvxjcgFx+C45zpbP9BFAOcwqOwaTNFglA7JRcu7bQfM1DGCxZAtYUpPO1TeC15KRdFkVHz3xcCwVN9/t1fw7fz0+gPiogYQFH4tIFOgs0S0W/ADKDMp61/gs0BQWwDiWdtBqoFT+H592+DfGJfg697t/wLis8dxREREcAAiiIQLICKhN2uDaD4FJ7hdE/gtf7sEwBAm4FqwVN43m8/aPR1paYcvvzPojQaIqrDAIrCpn0KL9IASpeB4lN4hmuTPaAQrI1Bywyg5PJCyMd3q/Y5Jk6Hpat6KS3fzs+gKOrWIkRkLgZQFDbdQsKRZqA0zTRZRG48pQ12IQcQpJFmywygfHs2qLYFRwqsPXNhH3year9cehTyib3RHBpRm8cAisKmm8KzR/Yx0rY+8PgZQBlNn4Fq/S0MgCBLuUgtswZKOvSdatvaMxeCaIWlYw4EV5bqNf/+rdEcGlGbxwCKwmZUDZT2PG+QBp3UPPoAqq1koFr+U3iKzw3p+B7VPmvXoQAAQRBg65mres2/f1u0hkZEYABFETArgOJTeMbTtTFoqzVQLbCIXDq2C1Dq/ZsQLLB07BvYtHYfpjpeLj0KufRYtIZH1OYxgKKwGfYUHgMo07XVInLtUi4tsRO5/+gO1bYlqxcEmyOwLWb2gJDYTn2OZsqPiMzDAIrCpp1qi7SIXNu9nAGU8dpqANUansKTju1SbVs69VdtC4II62mna8750fRxEVEtBlAUNrMyUHwKzwS6hYTbRgClrYFqaUXkiuyHXHxQtc+S3Vd3nKVjjmrbfywfisJaQqJoYABFYTPsKTxO4ZlO8VSqtttKACXopvA8DRwZn+TiI4DkV+2ztO+mO87SsZ96h6cKcskRM4dGRD9jAEVhM6+InL85G0lRFN1SLm0lgNJloPy+FtVoUjq5X7UtpGRCcOhbUIgp7SGktFefezTfzKER0c8YQFHYjGqkqWtjwAyUsfxeQFZnMdpKAKXrAwVFdy/imXzygGo7WPYp8JomCyUVsqEmUTQwgKKwGZeBYhG5mbTTd0DbCaB0iwkDLaqQXJuBEjO7N3ispUMv9bmNLDxMRMZhAEVh0061GbeYMAMoI2mn7wABsDtjMpZoE6wJun1KCykkVxQZcvFh1T5L++4NHm/J7KE+v6xA3/+LiAzHAIrCpl30N+IMlFU7hSdDbkF1KvFOl4FKSIQgtJF/8i04A6VUFunGKqZ1bvB4Mf00QLSq9kmaKUAiMl4b+W5KRtJP4UX2MdJmoADAx0Jyw7TZAnJA10gTaDnNNOUSTTdxu1PXMLM+wWKFmHGaap/EhYWJTMcAisKmKyIPEgiFIljmitN4xmmrLQyA2iaTsKizMi1lORe59KhqW2zXCYIgNHqOdhpPLmQdFJHZGEBRWGRFgddvTA1UsMwVAygDtdEu5AGWlrmgsFyiDqAsaZ2aPEcbQLGQnMh8DKAoLMFaDRjViRxgAGWkNj2Fh5a7nIsUJAPVFFFbSF5VDNldYei4iEiNARSFJVizy0gDKFEQYLOqP4Je1kAZpi1P4QEANE/itYQMlKIokEvVNVBiWscmzxPbddRNWWqf5CMiY8U8gCotLcX999+PcePGYfjw4bjiiiuwefPmwOs7d+7E1KlTMXToUEyYMAHLli1TnS/LMp599lmMHTsWQ4YMwTXXXIMDB9RPoBhxDaoVLEMUaQAV7FyPt+U0O4x3bXUh4TqCTdPKwOeOzUDCoLgrdFOvoWSgBNECsZ36ST0GUETminkAdfvtt2P79u14+umn8eabb2LgwIH405/+hD179qCkpATTpk1D9+7dsXr1asyYMQMLFizA6tWrA+cvXrwYK1euxCOPPIJVq1ZBEARce+218Hprf9s04hp0iterD6BsET6FBwAOTQG6O8j1KTJtfgrP5lBtt4T18JSKE+odggVCckZI54rpXVTbcvEho4bV4knFR1CzdhEqXrweFcuuRfU7j8J/6NtYD4taOGvTh5jnwIED+PLLL/Haa69h+PDhAIBZs2bh888/x7vvvguHwwG73Y45c+bAarWiV69eOHDgAJYsWYIpU6bA6/Vi+fLlyMvLw/jx4wEA8+fPx9ixY7F27VpccMEFeP3115t9DTpFm4Gy20SITTwh1BiHXf0RZABlnDY/hdcCM1ByeaFqW0hpD0EMLcNrSe+C+vlbiRkoAIB//zbUfLIYqNdIVTr2I2qO/Qj70Athz53S5FOORMHENAOVlpaGv//97xg0aFBgnyAIUBQFZWVl2Lx5M3Jzc2G1nvohO3r0aOzbtw9FRUXIz89HVVUVRo8eHXjd5XJhwIAB2LRpEwAYcg06xahlXOo4EtTn13AKzzC6TuRtLIDSdiNXfPGfgdIGUKIrM+Rz9RmoI1CUtl1TKJ3crwue6vN+8y58334Q5VFRaxHTDJTL5Qpkfep88MEHOHjwIMaMGYP58+ejb9++qtc7dOgAADh69CgKCgoAAB07dtQdc+xYbSFmQUFBs68RKavV+PjUYhFV/482v6zuFJ5gszTr60xMUH8EvX7ZlPsWrljfZ0NoammsiclxcW/rM/M+iwnqZWsEyRN3X7+Wp/Kkatua2iHkMYsduqGm/g6/B2J1ESypWa3j8xwmRZZQ/fmLDQZPdTybVsN+2kBYO/Ro9LhQtcV7HQvxcJ9jGkBpbdmyBffeey/OPfdcTJw4EY8++ijsdvWjyAkJtb9Vejwe1NTUfrsIdkxZWRkAwO12N/sakRBFAWlp5v3G73LFZk0zq61EtZ3otDXr60xJ1kyziKKp9y1csbrPzaXIEkq86gxUu8xM2OPo3tZnxn2WkpNRv4rRLkpx9dkKpqZKHUAlZZ+GdiGOWWmXiApnCuSaU+0LnJ4TSErrGdhuqZ/nSJRt/o9uSZukAWcjIas7iv/3KoCffxmUJfg2rET7Kx82dCqvLd3rWIrlfY6bAOrjjz/GnXfeiSFDhuDpp58GADgcDl0ht8dTm4ZPTEyEw1FbJOr1egN/rjvG6XQado1IyLKC8nLtYq7NZ7GIcLmcKC+vgSRFPz1fXKr+mqyigJKSyBcu1U4AlpbVNOt6Ron1fW6uYD2AKjwCxDi4t/WZeZ+9kuYJz8rKuPhsNcZTXKDetrULa8xiWhfINTsD22UHd8PbYVCL/zyHS5EllH+5RrVPTOsM29g/QbFY4SivgHvL24HX3Id2onDrF7D3HNHs925r9zpWzLrPLpcz5KxWXARQ//znPzF37lxMmjQJ8+bNC2SDsrOzUViorgmo287KyoLf7w/s69q1q+qYnJwcw64RKb/fvH88kiSbev2G1LjVNUp2q9iscdg1T/BVu/0x+boaEqv73FxylT6AkqyJkOP0azHjPsuaTuSy1x3Xf5eK3wulSp3hVZLahzVmIa0zcPRUAOU/eUh1fkv9PIfLt3cT5Moi1b6Es6dCUkTAL8M65EIIu76CUnEq41ez5R2IXYcZNoa2cq9jLZb3OeaTtK+++ioefvhh/OEPf8AzzzyjmkrLzc3Fli1bIEmnCpfXr1+PHj16ICMjAzk5OUhOTsaGDRsCr5eXl2PHjh0YOXKkYdegU9xGF5HrnsJjEbkRdAXkFpu+M3crp2tjEOdP4cnaFgYIr4gcCFJIXtQ2Wxn4fvhEtS1m9oSl46lfiAWrHQm5U1THyCf2Qjq+Oyrjo9YhpgHUvn378Ne//hWTJk3C9OnTUVRUhBMnTuDEiROoqKjAlClTUFlZiVmzZmH37t1Ys2YNVqxYgenTpwOorVuaOnUq5s2bh08++QT5+fm47bbbkJ2djUmTJgGAIdegUzyaNgOOhOYlMZ3sA2WKNt/CANC1MYj3p/AUbQsDp0sXBDbFog2gyguhSG3rlxK5sgjSsR9V++yn/1JX32TtOUrXY8v7w8emj49aj5hO4X344Yfw+XxYu3Yt1q5dq3pt8uTJeOyxx7B06VLMnTsXkydPRmZmJmbOnInJkycHjrv55pvh9/sxe/ZsuN1u5ObmYtmyZYFMVkZGRrOvQadoM0TaRpjh0gZgDKCM0da7kAOAYNPUMPrjPANVrs5ACa4OYV9D1C48rMiQy48Dmac1Z2jNVjc9KThdEOzmFv36925U77AnwtpDX9skiBbYBpwL78bXT527bysUb43pY6TWIaYB1HXXXYfrrruu0WMGDx6MVatWNfi6xWJBXl4e8vLyTL0G1dIGOM0OoHQZqLb127JZGEDpl3KJ9wyUdgpPTAlv+g4ABHsihMR2UKpLT1235GjMAijFWwPPpjfhy/8CkLyAIMDabTgSzrwCYkp7U97Tt0cdQNl6jIBgsQU91tZvDLyb3gTq+mVJXvj3b4Wt79mmjI1al5jXQFHLog+gmheDcykXczCAAtDCaqCUymLVdqQBhthO3dNOuzhxtCjealS/90RtPZL085PQigL//i2ofushSMVHDH9PuboU8ol9qn3WXmc0eLzodMHSZZBqn2/3esPHRa0TAygKi+FTeFzKxRSKW10D1da6kAPBFhOO8wyU5qmxUNfA09IuPiyXHo14TJFSFAXuz1/UBTOB12vKUfPhfF2g31zS4R/UO2wOWDo1/jS1rc+Z6msc2QnFa3wLGmp9GEBRWLQBTgKn8OKSNoASHCkxGknsCFZNAbbsj+uCakUTQInJ6RFdR0zTZKBKop+Bkg5uh39v40thKRUn4dnweqPHhMt/+DvVtrXzAAhi41lya7dhQP1jFAn+w98bOi5qnRhAUVh0T+EZHED5JQV+Np9rNkXTSLMtBlC6xYSBuF1QWPF79X9nhmWgjkV1TTxFUeDZ8i/1zoQkOC+6B2KHnqrdvh8/N2zRY0WRdRko7fRcMEKQLJX/wHZDxkStGwMoCot+Cq+5NVD68zmN13zaDJToSI7RSGInWAsAxR+f03ja+icAEJMizUBpnsSTvJArioIfbALp4HbImiVUHGdeAWvHfnD+4kagfj8yRYF302pD3lcuOqgLQq1dTg/pXGvXoapt6dC3UGT+IkeNYwBFYdEGN9o+TuEKlsFye+J3mqWlYAYKgFWfgYrXQnJt/RMSkiJ+lF5wpgKaFg5ySfTqoLw7/6ceT2o2rL3PAgCIyRmwDzlf9br/wDbIZeolbCLh12SfBFdWyI1IrV2HqLYVdwXkE3ubPSZq3RhAUcgURTH8KbxgNVTMQDWfvgaqDWagRBHQLOcSr4XkRtU/AYAgCLo6KClKAZRcXQbpkLoOyT7k17V/F3Xbg88D7ImqY7zfN7+BpVTwk2rb2nlAyOeKrkyIaZ1V+/yar4NIiwEUhcwvyZBkRbWvuTVQoiDogigGUM2j+L2AZqpKcLbBDBSC9YJqGRkoISmy+qc62jooKUqtDPy7vz7VUwkArHbYeo5SHSPYHLDljFft8+1aV/u5jZCiKJA1y7BYsvuEdQ3LaerpPqnemoJEwTCAopDVBAlsmhtABbsGn8RrHl0LA7TRKTxA1wsqXjNQsrYHVIQF5IHztYXkUcpA+fdvUW1bu48IOhVpH3gugHpLq/jc8B/4JuL3VcoKdMsXhRtAWTWF5FLhnritmaP4wACKQqZ9Ag9ofhsDgL2gjKatf4IgAm10aQpdBipOl3NRqozpAVXHEoMpPMVdCem4ehrN1jt4E0sxpT0smik2309fRvze2uk7IbEdhOTwGpFasvvV/lupI0u66xLVxwCKQqYNbAQACbbmB1DaQvRqFpE3i76APBmC0Eb/qWu7kXvjM4DSTuE1pwYK0GegFHclpKqyZl2zKf7D3wNKvSl+iw2WTv0bPF7XwPLQ90Gzp6GQtNN3Wb11iwc3RbA7IWZ2V1/3aH5E46G2oY1+V6VIaKfWEuyWsL9JBZPoUGegqt0MoJqDBeSn6FoZxGENlKIoQYrIm5eBElIyAYv635W3yJh+Sw3xH1T3TrJ06g8hyJOQdazdRwD116hTJN01QqXNfIU7fRcYUyd1Vsx/dEdE16G2gQEUhczohYTrJDrUC30yA9U8bGFwiqB52isel+hQ3BWApkN6c6fwBFGEmJqt2uc7afzac3UURdEVXVu7Dm70HMHuhFXT6NJ/YFv47+2u1K33Z8mKLIDSNtSUT+yP+0WoKXYYQFHIjG5hUCcxQX2dGmagmkWXgUpowxkoTe1XXAZQ2h5QggghsV2zr6udxvOeNC8DpZQXQqkuVe2zdm66C7i1+3DVtv/Qd2E/jScVqqfvYLFDbN81rGsETs3qra6DUmRIDaznR8QAikKmbXBpXAZKHUBVeXyGXLetYgaqHl0AVROjgTRM38IgTdU3KVJiO3Uhuc/EKTzp2I+qbcHpgpCa1eR5lq5DgPplAH4PpDCnzaQCTf1Thx5Nrn/XEMHmgJhxmvr6x1lITsExgKKQuX3mTOElsQbKUKyBOkU3heeJ/wxUc+ufAtfRBFBeE6fw/AXqAMrSsV9I9ZGi06WbbvPv3xrWe+vqnyKcvmvofG2BOlEdBlAUsmhN4bEGqnl0Gag22kQT0AdQ8MVjBkrdA6q59U91tGviSeUnTWskKh3bpdq2ZPcL+Vxr92Gqbf/Bb6EoSgNHqymyH1KheorNktU75PcORnu+dHx3VBdjppaDARSFTL+QsElF5MxANYs+A9WWAyjNFF5bykClZkPVrBKAVGJ8R3LFUwWl4oRqXzhPwWkX8lWqSyEXHQzpXPnkQUBS10w1O4DSjt1TBbm0+Wv1UevDAIpCZt5TeNopPNZANUewPlBtlZAQ/0/h6WqgmtkDKnAdqx1CirqZpBkNNSVtsCNaIaZ3Dn5wEEJqNgSXul7Kf/Cb0N5bM70mtuvY7M+7mJwBIUn9d8A6KAqGARSFTFdEnsApvHijKAozUPXp2hjE3xSeYvAyLqpraRbIlYqNLySXTx5Qv2d657CKuAVB0LU8CLUfVLAGmkbQTeMVsA6K9BhAUci0U2vawCdS2gyU1yfDL7HmICLeakDW9BRqyxkobQ2Utyau6lkUyQelRt0h3KgaKACwpJm/Jp6kCaAsGd3CvoZ2Gk8u3Ae5uunO6boMlEkBlMwMFAXBAIpCVqPJDDkNC6Bsun2sg4qMUlOu2yc4U2MwkvigX8hWiasFhZWqEt0+czNQxj+JJxcdUr9nBD2YLB37aZbdUSAd+rbx960sglKlzt4ZloHS1EHJZQWQtWtMUpvHAIpCVu1R10AZloEKcp0q1kFFRPdbu90JwWqPzWDigD6Aiq86KG39E+zOoGOOlLYWSS4/AcVvXACp+L2QS9VZLTGCDJRgscLaeaBqX1PTeNLxPeod9kRd64ZIiRmnARb1vxtZ+37U5jGAopDVaBpcGpWBsllF2K3qjyLroCKjzUC15ewTgJ8baaqfRIunAMqsJ/AC12vXEeqvX9Ete9IccvFhQDUlKsCiaUQZKmu3oapt/+HvoUgNfx8IvoCwMT/SBNEKS4cejb4fEQMoCpkuA+UwJoACAKfmWlzOJTLaehoxsW0HUIIgaqaG4quQXP8EnrEBlGBN0D2JJxs4jad9Ak9IzdIv4Bwiy2mnq3f43JAKdgU/GMECqF4RvW+D4+mgvp5UyAwUqTGAopDIiqJ7Cs+oDBSgn8arYgAVEUUzhSc4XTEaSfzQTYnFUS8opUKTgUoypoWB6pqaOii5xLgAStuvyZIR2Rp0ACAmtoOYqc76NDSNp/g8uqf/mtuBXDce7ZN4hXuhyFIDR1NbxACKQuLxStD2BnYmGNMHCgCStM00OYUXEd0TXW19Cg/x3QtKl4FKMTYDBeifxDOyF5T2CbxIF/GtY+06RLXdUD8oqWAXoNQLZgQLLB16Nuu9tXQF6X5P7ZQl0c8YQFFIgj0Vl5igf3ouUmymaQxZVwPFDJRuPbw4nsIzugYKMC8Dpcgy5GL1E3iRtDCoT9eVvOx40C7g0tGdqm2xQ4+Ipw4bIjpdEFIy1e/LOiiqhwEUhUTbwkAA4DA0A6UOoCqqGUBFQjeF18ZroAD8XEh+SrxkoBRF0RWRC8ntGzg6cton8ZSKk4Y8iSeXFwB+9TIqYjOm8IDaDJY2axpsGs+vCaCsnQc0630bEmxdPKI6DKAoJNopNUeCBWIIq62HKiVR/cgwA6jIaJ/CEzmFp89AxUkNlOKuACT151w0aBkX1TVNehJPPqkpIE9s1+yHFgRBbHIaT3FXQj65X7XP0ql/s963IboAioXkVA8DKAqJWU0066QkqqcDK2q8DRxJDVEURV8DxQyUrhO7dqmbWFEqTqp3CCKExDTD30ewJkB0qaeijHgST1f/1MzsUx1LN3UAJR3bpZp29R/cDij1KjItNt0Tc0bRBlBKeaFumpzaLgZQFBJtBsqoJpp1mIEygKcK0DwlxBqoYAFUfHSU1hWQJ6VBEM35lmzRNtQ0oA5K9wRe++bVP9Wxdh4I1F9LT5HgP/RdYNO/b7P6+C6DTGsWK6Z3AawJqn1sqEl14iqAWrx4Ma688krVvp07d2Lq1KkYOnQoJkyYgGXLlqlel2UZzz77LMaOHYshQ4bgmmuuwYEDBwy/RlsX7QxUZTUzUOGSq0t1+xhA6RdTjpcAStdEM8X4+qfAtQ1+Ek9RFF0AZVQGSrA5YOmUo9rn2/VF7fv6PPAf/l71mrXHSEPeN+hYRAssmtYKUiHroKhW3ARQL730Ep599lnVvpKSEkybNg3du3fH6tWrMWPGDCxYsACrV68OHLN48WKsXLkSjzzyCFatWgVBEHDttdfC6/Uadg2KRgDFDFRzadcFE5wuCBbjnpRsqeI1gNJnoIyvf6pjSe+ifu9mZqCUqhLdfTQqAwUAtp6jVNvSoe8glxfCv2eDum4sSM2U0VhITg2JeQB1/Phx/PnPf8aCBQvQo4c60n/99ddht9sxZ84c9OrVC1OmTMHVV1+NJUuWAAC8Xi+WL1+OGTNmYPz48cjJycH8+fNx/PhxrF271rBrkL6NgZFdyAF9Bsrrl+HxsmldOGTNwrRCkvH1NC2RNgsXLwFUNDNQ2ik8peJEs9o5yEWaDL3Nqet43hzW3mcACUmqfd5v3oX3B/X3ZEuXgbopWqNpO5xLJ/axoSYBiIMA6ocffkBqairefvttDBmi/k1i8+bNyM3NhdV66of16NGjsW/fPhQVFSE/Px9VVVUYPXp04HWXy4UBAwZg06ZNhl2DopCBcuprGCo4jRcWpVKdgTKjq3VLpPsB661pdI21aJErzF3GpT5LemdAVLcd0S7DEg7ppLb+qath69ABtYXvtr5jVPt8+Z9DLlL3nbIPmGjYezZE1Bao+726/lfUNhn7UzACEydOxMSJwf8RFBQUoG/fvqp9HTp0AAAcPXoUBQW1DdY6duyoO+bYsWOGXSNSVqvx8anFIqr+Hy1uTTYo2WEz9OtLSbLBIgqQ5FNP11R7/abcw1DE6j43h6emVLVtSUmP2f0LVTTus5isfxLR4q+CmBDbDJ1SpQ6gbKntTfv7slissLc/Dd7C/ad2lhyC9bTIHv93F6sDKGtmN8PHnjjs1yjb+T9dr6k6YlonJPQYZlrhfUBKO9SkZkEuOx7YpZzYC2t28M7nLfF7R0sUD/c55gFUY9xuN+x2dWYiIaH2iQiPx4OamtoUdLBjysrKDLtGJERRQFpaUtMHRsjlcjZ9kIF8snohl/S0RMO/vtTkBBSXuwPbimgx9R6GItr3uTncHvXnNbF9dszvX6jMvM9KqgNlEIB6ixEl2/xIiOG9kb1ulGjaKbTrfBrsJo7Jnd1dFUBZyo9G/Pmo0GRgXF37IMXosaclwTL2EhT/75WgL3c4789IzEgJ+prRfF1zUPndqQDKUryvyXvXkr53tGSxvM9xHUA5HA5dIbfHU9tBNzExEQ5Hbet+r9cb+HPdMU6n07BrREKWFZSXG9+wz2IR4XI5UV5eA0mSDb9+Q0rqBTYAICoKSkqqDH2PZKcVxfVarBw9Xo6SbHPrGxoSq/vcHJ7SE+ptS7Lhf0dGi9Z9FhxJqv5PZYWFsNkzGznDXFKQPkyVciIEk/6+LBYRCVk9UIlPA/tqju6O6PMhu6vgLytU7XMndoTfhLErOZNgP7wP3p++Uu13jr4EnrTe8ETp8y2ndQfwWWC7+lB+g/euJX7vaInMus8ulzPkrFZcB1DZ2dkoLFT/Q63bzsrKgt/vD+zr2rWr6picnBzDrhEpv9+8fzySJJt6fa1KzVNxiQkWw98/2akuJC+r9Eb1awwm2ve5OWRNDZTibNdixm72fRYcKaoAyl9ZBiGG98Zfpg52hYRkSIINMHFMjmzN4/jFR+DzeCFYwvsx4K8/DQgAohVKSrZpf3/2CX+G2Hkg/Ae2ARYrbH3OhvW006P72W6vnq6Ty0/AW17SaOf1lvS9oyWL5X2O60na3NxcbNmyBZJ0qv5m/fr16NGjBzIyMpCTk4Pk5GRs2LAh8Hp5eTl27NiBkSNHGnYNAipr1AGUNtgxgraVQTmLyEOmeGsAzVNVIp/CC4i3Vga6AvIU8wrI6yR06K4ZhBRROwPtEi5iWuewg7BwCIIIW9+z4Zx0E5wTr4P1tNNNe6+GBGuoyX5QFNcB1JQpU1BZWYlZs2Zh9+7dWLNmDVasWIHp06cDqK1bmjp1KubNm4dPPvkE+fn5uO2225CdnY1JkyYZdo22TpJlXSfyJFMCKM1yLlUMoEIlV5fo9rGNwSn6ACq2y7koFeoMlGjCIsJaoiMJoquDap+2GWYoJE0LA0t7YxpoxjNBtMDSQZOFYkfyNi+up/AyMjKwdOlSzJ07F5MnT0ZmZiZmzpyJyZMnB465+eab4ff7MXv2bLjdbuTm5mLZsmWBonAjrtHWVbn1j3ybkYFql6z+Da+ksvkrxrcV2hYGSEiCoPmNuS2LuwxUubqsQNAENmaxtO+mem/p5AHY+o0N6xq6DFSGcQ0045klqzekozsD22yoSXEVQD322GO6fYMHD8aqVasaPMdisSAvLw95eXkNHmPENdqyqhp9V/Akh/EBVFqKJoCqYAAVKrlck9EwsSljSyQ4NQFUjBeE1QZQ2syQWSztu8G391R/O/lkeEtWKX4v5FL1MjCigR3I41nQhpqS39TpS4pvcT2FR/FBW/+UYLPAZkK/mnQGUBHTTQmlxO4Js3gkaIp9tV3bo0lRlJgFUNZMdbAjnTwARQ69qahcfBhQ6hfsCrplYlorSwf1ki6QfJBP7IvNYCguMICiJukLyM35jaudJoByeyVdB3QKLlY/kFsK7TpzSiwDKHcF4NO0BYlWBkqTRYHk1XX3box0cr9qW0jNgmBvG/2OBEdybTF5Pf56U3rU9jCAoiZpAygzCsgBIC1ZX7NTzCxUSLRTeAIzUCraJxKV6jIocmwefVY0wS4EC4Tk6Cy7IzqSIaZmq/ZJYRRDyyf2q7Ytmd0NGFXLYemk7twuMYBq0xhAUZOqatRZIDMKyAHAbrPorl3KAKpJsZwSail0TyQqEhR3bOqgdAXkKe0haNapM5OoreUJ43F86aR6ysrSvkcDR7ZO1k4DVNvS8Z+gNLDUDLV+DKCoSdHoAVVH+yRecYW7gSMpwFMF+DQ9oFzMQNUnOFyAoA5SYjWNpyv4j/LflbaWJ9QMlOL3Qi7WFJC3tQxUx76AIJzaIfkhFbKdQVvFAIqaFK0pPABId7GQPFzajAYEMWpTQi2FIIpxU0ge62yhtg5KqTgBubrpdT/l4kOAUn9RcQGWjNbfA6o+ISEJYvvuqn3SkR2xGQzFHAMoapK2jUGyCS0M6mhbGXAKr2my5gk8ITkDgshHq7W003i63llRoq2BinYAJaYF6apdsKvJ8yTNE2diu+w2U0Ben1VTB8VC8raLARQ1KZpTeNpCchaRN00u0UyrsP4pKG1vLG3gGS2xaqIZeD9RhCVLM40XQhAgnVD3jNJmYtoKbSG5XLgXiie+F+0mczCAoiZVuqMXQKW7HKrtE6U1DRxJdbTrmYlpnWM0kvim7Y2lexouChRPFZQa9XSZmJoV9XFYOg9UbfuP/NDkOdLxn9TXyGxbBeR1LB37AvWbZyoy/Iebvn/U+jCAoiZVVGsCqETzAqisdPWUwInSGsiyYtr7tQa6ACqdAVQwunXgyqOfgZJLj6l3CJaYBFDWzuqnyZSy45Arixo4GpBryqGUFaj2WbL7mDK2eCdYE3RZKP/B7TEaDcUSAyhqlCwrqKhWP6abmmTeGoEd0hJV235JQXE5n8RriCL5IJcdV+2zMAMVlKB52k2uKISiRDc4l7TBbmpWTOrVxIyuQEKSal9jxdBSgTr7BGtC7TXaKOtpQ1Tb0qFvY9ZXjGKHARQ1qqLaC+3PGDMDKFeiDQ67+nHz4yWcxmuIXFagWVoDENM6xWg08U1XG+b36qbTzKarV4vR35Ugivpi6EamobRF5pas3lHtXRVvrF3VAZTiroB8Ym+MRkOxwgCKGlVWpc4+CQKQkmheACUIArI0WajjJdWmvV9LJxerMxpCUjoEe2IDR7dtQlKaunYFQabUTKZ9P7Fdx6i+f326OqhD3za4Lp507Ef1uW10+q6O6MrUBb/+/VtjNBqKFQZQ1KhyTQCVkmiHKAoNHG0MbR3U8WJmoBoiFx9WbTP71DBBECG2U98fbQBqtngq+Ld2Haze4a2GdDRfd5xcXQZZswaepWM/E0fWMli7DVNt+/ZujPqUMMUWAyhqlDYD5TIx+1RHWwdVyAxUg7RdkNtaY8NwaReD1QagZlK8NVA0hdqxzECJyRkQM3uq9vn3bdYdJx36Vr3D5oAlq21noADA2nOUalupOMlpvDaGARQ1SpuBSk02P4DKSlNnoAqKGUAFo8iyvrmhpss0qYlp6gBKKoleACUVHVTvECwxDaAAwNpjhGrbv3czFEn91K1fE0BZOw+EYGGjVjGjKwTNE5S+PRtjNBqKBQZQ1ChtBsrMAvI6ndqrnw4qLKmB2xu8NqMtk0uPAj71E4qWDgygGmMJkoGK1tNT8on9qm0xvRMEq/n/nhpj6zFSta14KuHft+XUtt8D/6HvVMdoC6jbKkEQYNNkofx7NkCRpQbOoNaGARQ1SrsWXTQCqC6ZSRDrLdipADhUWGn6+7Y02uk7ITkDYmK72AymhRDbd1Pv8Ll1dUlmkbR1RHHQyVtMzdLVM/l2/i/wZ//+reogXRBg0dZOtWHWXqNV20p1KXz7v4nNYCjqGEBRo7QBlHatOjPYrBZ0bK+ugzp4nAGUlnx8t2rb0qFnA0dSHTExFYKmI7mkuY9m0RZix8tSKLb+56i2pWM/wn90JxRFgfeHT1SvWToPZJBejyW9s66OzLPjfw0cTa0NAyhqVHGFeopIu9SKWbp2SFFtHzheEZX3bSkURdH17dGub0bBaac5Q1lIt7kUnxtyqaaTd2Z30983FNYeIyA4U1X7PF+vgnTwG12Qbus7JppDaxHsA9QBqP/gd/CVHm/gaGpNGEBRg2RZQWmFugYq3WV+BgoAumWrA6iDDKBU5JKjUKqKVfssXQbFaDQtiyVbs5DukR+gKObWQdVmueo94i6IENNPM/U9QyVYbLCPuFi1Tz65HzUfLlAfl5wBa091zRQB1l6jAHv9B18UlG14N2bjoehhAEUNKq30QNb0NUlPiU4GqltWsmr7yIkqeLwszqwjHVYX9gpJ6boeRxSctcvpqm2lphyy9gk5g2n7K4mZ3WNeQF6fLWccxNTsRo+xD/9NTJadiXeCNUGXmav45mPIVaWxGRBFDQMoalCxpv7JahGQYuJCwvV1y06BpV7DTklW8NOR0qi8d0ugXbzUetogCIK5DU5bCzE1C4JL/fi5f6++/5GR/Ed3qratnQY0cGRsCKIVjonTdZ3a61g6D4St39goj6rlsA8+D6i3tI3i98L9zXsxHBFFAwMoapB2Ed+0lISo/ZB22K3o0dGl2rfzQElU3jveyZXFuoyG5TQ+GRUOa3dNF+mfvjJtGk/x1kDW9OuydMox5b2aw5LZA85f3apbZNjSeQCcv7gBgsAfFw0RkzNg63u2ap/nu090C31T68J/EdSgQs0ivu1TnQ0caY6cbmmq7Z37GUABgG/311DV09icsDKACoutz1mqbaWqGP7920x5L+lovnrBZ9ESt2vJWbsMQvLlTyBh3DTYR10K56/vgPP8PAiaoIr07EMvBOoHmbIf7q/+yeVdWjEGUNQg7SK+2g7hZuuvCaAOHK9ARbW3gaPbBkWR4d/1hWqfrWduXNXTtASWjK4QM9Q9obxb3jKlCaJPszyKJasPBGt0HsaIhJCQBHvOeCQMPR/W007n1HCIRFcH2AZNUu2TDn0H/09fxmhEZDYGUNSg45oMlHaNOrP17uyC3XrqI6oowJYfT0R1DPFGOrgdcukx1T5rnzNjNJqWzT7kPNW2XHwIvu8+NPQ9FL8X/gNbVfu0y6dQ65Ew4rcQNH2y3Ov+ASnKi1ZTdDCAogZpp/Cy0qObgbJZLRjcu71q34YdbbemQFEUeDSFqWJaF1g6xl89TUtg7TlKtzaeZ+Nq+A9/b9h7+PduBLzqf0fW7gygWivB7kTi2KnqnX4vav7zNGTNQtLU8jGAoqBqPH7dQsJZUc5AAcAZ/dVPS+06VIqTZTUNHN26+fdu1DU2tA/5NadYIiSIFjjGXqXeqUio+fAZ+H78otm1K4oiw/utOqNl6TIIYnJ6s65L8c3eaxRShv9StU+pLEL1u09ALito4CxqiRhAUVCHT6iXThEFAZntopuBAoDBvdLhTKj3eDCAjzYdivo4Yk3xVMHz9SrVPiGlPay9z4jRiFoHS3Yf2Iecr94p+eH+bBlq3n0M/oPbI346z7/rS8jF6s+qTdO1mlqnjEnTYMnsodqnlB9H1b8egm/vRhaWtxIMoCgo7dpzndonwmaN/sfFZrXgrEEdVfs+334U5W2omFxRFLg/f1HXeTxh9OVsbGgA+6jfwdpzlG6/dOxH1PxnPqpevQPuL16Cb99myJXFIf3wk04egPurV1T7xLQusHYb1sAZ1JqIVjuSL7xD39zWWw33x4tR8/48+KOwhBCZi999KSjt2nOnadami6Zf5Z6G/209EuiK7vXJePN/e3DNBf1jNqZo8m5eA7/2Sa7OA1lLYxBBEOGYOB0eRwp8Oz7Rva5UlcC381P4dn5ae7zTBTH9NIiuTIiuDhCSMyDYHIDVDsVTDen4T/Dt+C/gVwf5CWf8jr2U2hDR6YLzgjzUfPC0LhMpHfkBNUd+gJh+Gqw9c2HtNhRiWhcIIj8fLQkDqJ/JsoxFixbhjTfeQHl5OUaMGIEHHngA3bp1a/rkVuhggTqA0i6tEk3t2zkxemAWvvr+VP3Auu+OYXjfTAzt076RM1s2RZHhWb8Svu8/Ur+QkATHhD+z9slAgmiBY8yVsHQZCM9Xr0BppOBXqSmHdOQHSGE8WGXtczasXYc2f6DUoohJaUi8eDbcny2Ff+8m3ety8SF4iw/Bu3kNYHPC0qEnxLROEFOzazvmJ6ZBTEwFEpL47z0OMYD62eLFi7Fy5Uo8+uijyMrKwpNPPolrr70W7777Luz2ttVjp7LGh0OF6ik87eK+0TZlfC9s3XUC7nrr4b3wzg+447Kh6N05tZEzWyap9Cg8n78ESZvmFwQ4z5kOMSkt+InULLbuw2HtMgi+3evh++FjyEXNr7ezdOynL1anNkOwJcBx7g3w99gIz1evQqkpC36gr+bnwPwH/WuiBYIzFYIzBYLNCcHuBGwOCHZnbfbT5oBgtQGiFbDYIIgWwGKrPc9iq12iR7RCsFhr/yxYapt+igIEiIAoAoJQu0849Weh3p9rj9G81sYxgALg9XqxfPly5OXlYfz48QCA+fPnY+zYsVi7di0uuOCCGI/wFLfXj8KSapSVuSH5a4tbFehrMgQIEEUBglBbAK76syDAZhUhisF/o8k/UKK6ot0qomen2AYpaSkJmDK+F15ZWxtQnGY5id8mbEbNv9/F8RET0SH3Vy06/a3IMpSKE5AK98C/dxP8B74Bgvy9Joy5Ctau7DpuJsFqhz1nPGz9xkEuPQrp4Hb4D/8A6cReXUuCJq4E24BzamvV2Oi0TRMEAbZeZ8DabSh8+Z/Du/0DXU1jo2QJSlVxeOdEg9BI4CWKAIR6gZc2MNMGZ0GCNs2fhXrHixYbLH2GQOkauwdpGEAByM/PR1VVFUaPHh3Y53K5MGDAAGzatCluAqg3P92DtZsOwSc1f80uiyigfTsnenVyYWS/DhjcOwPizynibT+pm1X2Pa1dTArItSYO74w9R8vw9Q/H8Yekr9DRWlr7wvZVqN7/GWz9x8PSdQjE1I6GprsVWYLirQY8VVA81VC81bX/91RB8VYBnupT+73VgN9b++SWLKn+0+5Tb/trO4U2RLDAMeFPuiVIyDyCIMCS1hmWtM6wDzkfiqJAKS+EdPIA5PLjUMoLIZcXQqkph+L3Aj4PYLVDTM6ApWM/WPucBUtap6bfiNoMwZoA+6BJsA04F1LBLvj3boT/0HdQKlpog2BF/vn3PHUH/6YeszDqGcSTP30F55nFsJ7+a4OuGB4GUAAKCmprazp2VD/t1aFDBxw7dizYKSGxGhh0HCuqwvtfHzDsepKs4HhxNY4XV+Or7wvQqX0Sfju2BwZ0T8fmfPU/5sG9Mwz9WprjzxcNQLXbj8Qij2q/XFZQ+5j/16sgOJIhpmbB4upQm/K2OyHYnD//RlT/JAmKzwPF74Hi8wA+DxRfTW1g5KlGua8Gck0lFJ96UeVoE1PaI/Hcv8AWhwvQNpfFIqr+H/cyOtb+18K0uPvcgoV2r0XYug4Aug4AAMhVpfAX/ASp6BCk0gLIpccgV5yE4qmKwohbNun4bjiGxeZzzQAKQE1NbVpeW+uUkJCAsrIG5qubIIoC0tKMW4CzRjK3b8jRk1VY/C99B2arRcD5Y3ohNTl+1u56cPpZ+N+re5B68O2gryvuSkjuSkjH90R5ZMYSEhKROuJXaHf2FIj26PfgiiaXq3V/ffGC9zl6wrrXaUlAl8663YrfB6m6DP7KUkiVJZBrKiB73ZA91ZC9NZA91VA8NZC9NVAkPxTJV/t/vx+QfVD8fvV+qXZfbeao+TMZ8SB1wGikGPizNhwMoAA4HA4AtbVQdX8GAI/HA6czsm84sqygvLy66QND5LQIuOScXnjvqwOo9vgNu25TRvXPguzzo6Qkeu8ZipEX/g6+IwNRs+4VSEUHYz0cwwiOZFizesPWYxjsvc6AkJCIsioZqGqdv4laLCJcLifKy2sgGTA1TcHxPkeP8ffaCTidgFOd+RTRvEaOiqLUlg3UBVM//1mp25YVADIgyz/vr3esXHt84Nh650ORocj1r6s5VtYcq2iOlUO7riAKaNdnCLxpvVBSYtz3R5fLGXKmlgEUTk3dFRYWomvXroH9hYWFyMmJfNrE7zf2G9Wvz+iG88/shqRkJ0pLqxq9fu2/DQWyAsiKAkWu/bOiKJBlBWVVXuw9Vo4vth/F4RPBP3xJDiumjO9l+NdhFCGrH5z/9yCkY/nw7foS0pEfoFSVmPumohVCQiKEhKTaR4vtibXb9tp9gj0RsCXUFjyKFkCse9ql9s+CKNY+KfPzPqHe60Jiau2TNj/Xb0kAEKf33miSJMft56w14X2OnpZzr38OxQTU/meAYJcxugmD1SrCmZYEd0njPwvNxAAKQE5ODpKTk7Fhw4ZAAFVeXo4dO3Zg6tSpTZwdXRZRhDPBCrfdCr8Y+YemfTsnenVOxbkjumDbrpP41xd7cfTkqUAq2WnDjZMHIS0lfqbughEEAdZO/WHt1L+2yLfiRG39QHkh5IqTgLcairemto5JW6QtCD83QEyAYEuo/b/dAcGeBIszCa6MDFT5REhWZyA44tNUREQEMIACUFv7NHXqVMybNw/p6eno3LkznnzySWRnZ2PSpEmxHp6pREHAiH6ZGNa3PXYfLsPRk1VIctowsHs6Eh0t6+MhCAIEVweIrg7NvpbVKiIxLQmekqo2kwUiIqLQtayfkCa6+eab4ff7MXv2bLjdbuTm5mLZsmVtpommKAjoe1o79D2tXayHQkREFPcYQP3MYrEgLy8PeXl5sR4KERERxTk2BSEiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKEwMoIiIiojAxgCIiIiIKk6AoihLrQbRGiqJAls25tRaLCEmSTbk2ncL7HB28z9HB+xw9vNfRYcZ9FkUBgiCEdCwDKCIiIqIwcQqPiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoIiIiIjCxACKiIiIKEwMoFqAxYsX48orr1Tt27lzJ6ZOnYqhQ4diwoQJWLZsWYxG13oEu8///e9/MWXKFAwbNgwTJ07E448/DrfbHaMRtg7B7nN9s2fPxsSJE6M4otYr2L0uLCzE7bffjpEjR+KMM87AHXfcgeLi4hiNsHUIdp+/++47TJ06FcOGDcP48ePxxBNPwOv1xmiELVdpaSnuv/9+jBs3DsOHD8cVV1yBzZs3B16P5c9CBlBx7qWXXsKzzz6r2ldSUoJp06ahe/fuWL16NWbMmIEFCxZg9erVMRplyxfsPm/evBk33XQTfvWrX+Gtt97CnDlz8MEHH+DBBx+M0ShbvmD3ub6PP/4Yb7zxRhRH1HoFu9derxfXXHMNDh06hBdffBEvvPACduzYgbvuuitGo2z5gt3n4uJi/PnPf0bPnj3x1ltv4eGHH8a//vUvzJ8/P0ajbLluv/12bN++HU8//TTefPNNDBw4EH/605+wZ8+emP8stEblXShsx48fx6xZs7Blyxb06NFD9drrr78Ou92OOXPmwGq1olevXjhw4ACWLFmCKVOmxGjELVNj93nlypUYPXo0/vKXvwAAunXrhttuuw333nsvHnzwQdjt9lgMuUVq7D7XKSwsxH333YdRo0bhyJEjUR5h69HYvX733Xdx5MgRrF27Fu3btweAwOe5srISycnJsRhyi9TYfd66dStKS0sxc+ZMJCcno1u3bvjNb36DdevWMVgNw4EDB/Dll1/itddew/DhwwEAs2bNwueff453330XDocjpj8LmYGKUz/88ANSU1Px9ttvY8iQIarXNm/ejNzcXFitp+Lf0aNHY9++fSgqKor2UFu0xu7zNddcg5kzZ+rO8fv9qKysjNYQW4XG7jMAKIqCu+++GxdffDFGjRoVgxG2Ho3d6y+++AKjR48OBE8AMHbsWHz88ccMnsLU2H1u164dAOC1116DJEk4fPgwPvvss6CffWpYWloa/v73v2PQoEGBfYIgQFEUlJWVxfxnITNQcWrixIkN1oEUFBSgb9++qn0dOnQAABw9ehQZGRmmj6+1aOw+DxgwQLXt9Xrx4osvYuDAgUhPT4/G8FqNxu4zUDsNcuLECTz//PN44YUXojiy1qexe71//36MHDkSzz33HN566y34/X6MGTMGeXl5cLlcUR5py9bYfR45ciT+8pe/YMGCBZg/fz4kScKoUaNw3333RXmULZvL5cL48eNV+z744AMcPHgQY8aMwfz582P6s5AZqBbI7Xbrpo8SEhIAAB6PJxZDavX8fj9mzpyJ3bt344EHHoj1cFqV/Px8LFq0CE8++SSnRU1WWVmJt956Cz/++COeeuopPPTQQ9iyZQtuuOEGKIoS6+G1GuXl5di/fz/+8Ic/4I033sCCBQtw8OBBzJkzJ9ZDa9G2bNmCe++9F+eeey4mTpwY85+FzEC1QA6HQ/c0R92HJTExMRZDatUqKytx6623YsOGDXj22WeZhjeQx+PBnXfeieuvvx45OTmxHk6rZ7PZkJiYiKeeego2mw0AkJqaiksuuQTfffcdBg8eHOMRtg7z5s1DeXk5Fi5cCAAYOHAgUlNTcfXVV+Oqq67iZz0CH3/8Me68804MGTIETz/9NIDY/yxkBqoFys7ORmFhoWpf3XZWVlYshtRqFRYW4g9/+AO2bduGJUuW8PF6g23fvh0//fQTFi1ahGHDhmHYsGF44YUXcPToUQwbNgxvv/12rIfYqmRnZ6NHjx6B4AkA+vTpAwA4fPhwrIbV6mzZsgWnn366al/dL1779u2LxZBatH/+85+YMWMGxo0bhyVLlsDhcACI/c9CZqBaoNzcXKxcuRKSJMFisQAA1q9fjx49erD+yUBlZWW46qqrUFlZiVdffRX9+vWL9ZBancGDB+Ojjz5S7Xv55Zfx0Ucf4eWXX+bn2WAjR47EP/7xD7jd7sAPoV27dgGofcqUjJGdnY0ff/xRta/uPnfv3j0GI2q5Xn31VTz88MO48sorce+990IUT+V9Yv2zkBmoFmjKlCmorKzErFmzsHv3bqxZswYrVqzA9OnTYz20VuXRRx/FoUOH8OSTTyI9PR0nTpwI/CdJUqyH1yo4HA5069ZN9V9qaiqsViu6devGJ8MMdvnll8NiseCOO+7Arl27sGXLFsyePRtnnHEGBg4cGOvhtRrTpk3DF198gWeeeQYHDx7E+vXrcffdd2P8+PHo379/rIfXYuzbtw9//etfMWnSJEyfPh1FRUWB78EVFRUx/1nIDFQLlJGRgaVLl2Lu3LmYPHkyMjMzMXPmTEyePDnWQ2s1ZFnG+++/D5/Ph6uuukr3+ieffIIuXbrEYGREkUtPT8crr7yCRx99FJdeeinsdjt+8Ytf4J577on10FqVMWPG4IUXXsBzzz2HFStWIC0tDZMmTcItt9wS66G1KB9++CF8Ph/Wrl2LtWvXql6bPHkyHnvssZj+LBQUPnpBREREFBZO4RERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUERERUZgYQBERERGFiQEUEbUYbFtHRPGCARQRtQiffPIJ7rrrrsD2hg0b0K9fP2zYsCEm47n77rvRr18/9OvXD3feeWezrtWvXz8sXLgw5OOvuOKKwHuHcx4RGYdLuRBRi/DSSy+ptgcOHIhVq1ahd+/esRkQgMzMTCxatAjp6enNus6qVauQnZ0d8vEPP/wwKisrcdlllzXrfYkocgygiKhFSk5OxtChQ2M6BrvdbsgYwr1GLINGIqrFKTwiintXXnklNm7ciI0bNwam7bRTeAsXLsR5552Hjz/+GBdeeCFOP/10XHzxxdi2bRu++eYbXHLJJRg8eDAuvPBCrF+/XnX9Xbt2Yfr06Rg+fDiGDx+OG2+8EYcOHQp7nP369cNrr72Gu+++GyNGjMCoUaPwyCOPwO124/HHH8fo0aNxxhlnYNasWfB4PKrz6qbi6r6u9evX45prrsGQIUNw1lln4fHHH4ff72/GXSQiIzGAIqK498ADD2DAgAEYMGAAVq1ahYEDBwY9rqCgAI8++iiuu+46PPPMMygrK8PNN9+M22+/HZdeeimefvppyLKM2267DW63GwCwb98+XH755SgqKsJjjz2GuXPn4tChQ7jiiitQVFQU9ljnzZsHu92ORYsW4eKLL8bLL7+M3/72tzh27BiefPJJXH755XjzzTfx8ssvN3qdO++8EyNGjMDzzz+Piy66CMuXL8ebb74Z9niIyBycwiOiuNe7d28kJycDaHy6q6amBg888ADGjRsHANizZw+eeuopzJ07F7/73e8AAJIk4eabb8a+ffvQv39/LFq0CA6HAy+99FLgPc4880z84he/wNKlS1WF66Ho1asXHnroIQBAbm4u3nzzTfh8PsybNw9WqxVjx47Ff//7X2zdurXR61xyySW48cYbA+P5+OOP8emnn+Lyyy8PazxEZA4GUETUqgwfPjzw5/bt2wNQB13t2rUDAJSXlwMAvv76a5xxxhlwOByBKbLk5GSMHDkSX331VdjvP2zYsMCfrVYr0tLSMGjQIFitp77dtmvXDhUVFSFfBwCys7NRXV0d9niIyBwMoIioVanLItXncDgaPL60tBTvv/8+3n//fd1rkTxdF+z9nU5n2NfRjlkURfbBIoojDKCIqE1LSUnBWWedhWnTpuleq581IiKqj98diKhFEEURsiwbft1Ro0Zh9+7d6N+/fyBgUhQFd955J7p164b+/fsb/p5E1PLxKTwiahFcLhf27duH9evXo6yszLDr3nDDDTh48CCmT5+Ojz/+GF988QVmzJiB9957Dzk5OYa9DxG1LgygiKhF+MMf/gCbzYZrr70Wn3/+uWHXzcnJwSuvvAJBEDBz5kzcfPPNOHHiBJ577jn88pe/NOx9iKh1ERRWJRIRhe3uu+/Gxo0b8d///jdmY+jXrx9uuukmzJgxI2ZjIGqrWANFRBQhr9eLb775Bunp6ejatWvU3nf37t2orKyM2vsRkR6n8IiIInTixAlcdtllePbZZ6P6vvfddx8XEiaKMU7hEREREYWJGSgiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgoTAygiIiKiMDGAIiIiIgrT/wNkObGJlc9D5AAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Increase the buffer and plot the change in the peak window.\n", + "buffer = 75\n", + "window_df = chrom._assign_windows(prominence=0.01, buffer=buffer)\n", + "\n", + "# Plot each window\n", + "for g, d in window_df.groupby('window_id'):\n", + " plt.plot(d['time_min'], d['intensity_mV'], '-', lw=3, label=f' window: {g}') \n", + "plt.xlabel('time [min]')\n", + "plt.ylabel('signal [mV]')\n", + "plt.title(f'buffer size = {buffer}')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that increasing the buffer size expanded the extent of the orange window\n", + "by half a minute or so.\n", + "\n", + "Once the chromatogram is clipped into peak windows, each window is passed \n", + "to an inference stage where the peak mixture is inferred." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/methodology/problem.html b/methodology/problem.html new file mode 100644 index 0000000..a492066 --- /dev/null +++ b/methodology/problem.html @@ -0,0 +1,360 @@ + + + + + + + The Problem — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

The Problem

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

High-Performance Liquid Chromatography (HPLC) is an analytical technique which allows for the quantitative characterization of the chemical components of a mixture. While many of the technical details of HPLC are now automated, the programmatic cleaning and processing of the resulting data can be cumbersome and often requires extensive manual labor.

+

Consider a scenario where you have an environmental sample that contains several different chemical species. Through the principle of chromatographic separation, you use an HPLC instrument to decompose the sample into its constituents by measuring the time it takes for each analyte to pass through the column. This measurement is typically performed by measuring a change in index of refraction or absorption at a specific wavelength. The resulting +data, the detected signal as a function of time, is a chromatogram which may look something like this

+
+
[1]:
+
+
+
import pandas as pd
+import matplotlib.pyplot as plt
+import seaborn as sns
+sns.set()
+
+# Load the measurement
+data = pd.read_csv('./data/sample_chromatogram.txt')
+
+# Plot the chromatogram
+fig, ax = plt.subplots(1,1)
+ax.plot(data['time_min'], data['intensity_mV'], 'k-')
+ax.set_xlim(10, 20)
+ax.set_xlabel('time [min]')
+ax.set_ylabel('signal [mV]')
+
+
+
+
+
[1]:
+
+
+
+
+Text(0, 0.5, 'signal [mV]')
+
+
+
+
+
+
+../_images/methodology_problem_1_1.png +
+
+

By eye, it looks like there may be six individual compounds in the sample. Some are isolated (e.g., the peak at 11 min) while others are severely overlapping (e.g. the peaks from 13-15 min). This indicates that some of the compounds have similar elution times through the column with this particular mobile phase.

+

While its easy for us to see these peaks, how do we quantify them? How can we tease apart peaks that are overlapping? This is easier to say than to do. There are several tools available to do this that are open source (such as HappyTools) or proprietary (such as Chromeleon). However, in many cases peaks are quantified simply but integrating only the non-overlapping regions.

+

Hplc-Py, however, fits mixtures of skewnormal distributions to regions of the chromatogram that contain either singular or highly overlapping peaks, allowing one to go from the chromatogram above to a decomposed mixture in a few lines of Python code.

+
+
[3]:
+
+
+
# Show the power of hplc-py
+from hplc.quant import Chromatogram
+chrom = Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})
+chrom.crop([10, 20])
+peaks = chrom.fit_peaks()
+scores = chrom.assess_fit()
+
+# Display the results
+chrom.show(time_range=[10, 20])
+peaks
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3337.39it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:08<00:00,  4.10s/it]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973
+A+, Success:  Peak Window 2 (t: 12.117 - 18.533) R-Score = 0.9977
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+C-, Needs Review:  Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0025
+Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0013
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 3 (t: 18.542 - 19.000) R-Score = 10^1 & Fano Ratio = 0.0000
+Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+
+
+
+
+
+
[3]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5944813.90350443149.0696795.177888e+062
014.450.349681-2.99602134710.5675084.165268e+063
015.530.3134761.61561315048.9650591.805876e+064
016.520.3392471.90911410805.7979781.296696e+065
017.290.3392531.56526612533.5412841.504024e+066
+
+
+
+
+
+
+../_images/methodology_problem_3_4.png +
+
+
+

How It Works

+

The peak detection and quantification algorithm in hplc-py involves the following steps.

+
    +
  1. Estimation of signal background using Statistical Nonlinear Iterative Peak (SNIP) estimation.

  2. +
  3. Automatic detection of peak maxima given threshold criteria (such as peak prominence) and clipping of the signal into peak windows.

  4. +
  5. For a window with \(N\) peaks, a mixture of \(N\) skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the chromatogram.

  6. +
  7. The estimated mixture of all compounds is computed given the parameter estimates of each distribution and the agreement between the observed data and the inferred peak mixture is determined via a reconstruction score.

  8. +
+

The following notebooks will go through each step of the algorithm in detail.

+
+

© Griffin Chure, 2024. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/problem.ipynb b/methodology/problem.ipynb new file mode 100644 index 0000000..46e68c0 --- /dev/null +++ b/methodology/problem.ipynb @@ -0,0 +1,320 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# The Problem\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---\n", + "\n", + "**H**igh-**P**erformance **L**iquid **C**hromatography (HPLC) is an analytical \n", + "technique which allows for the quantitative characterization of the chemical\n", + "components of a mixture. While many of the technical details of HPLC are now\n", + "automated, the programmatic cleaning and processing of the resulting data can be\n", + "cumbersome and often requires extensive manual labor. \n", + "\n", + "\n", + "Consider a scenario where you have an environmental sample that contains several \n", + "different chemical species. Through the principle of [chromatographic separation](https://en.wikipedia.org/wiki/Chromatography), you use an HPLC instrument to decompose the sample into its\n", + "constituents by measuring the time it takes for each analyte to pass through \n", + "the column. This measurement is typically performed by measuring a change in index of refraction \n", + "or absorption at a specific wavelength. The resulting data, the detected signal as a function of time, is a chromatogram which may look something like this" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'signal [mV]')" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlgAAAG1CAYAAAAlVIodAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8SUlEQVR4nO3dd3xUZfb48c+U9J4QEnqHUKRJICoBRLGhsixrx1XYRSwLq65gAVdcC/oVRRDbKpa1gQoWLD8FFAVFehUCBkInhfQ2mcxkfn+MdyaRlknuzL0zc96vFy/IzJ1nnuTOMCfnOfc8BofD4UAIIYQQQqjGqPUEhBBCCCECjQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmVnrCQQqh8NBXZ00ydcDo9Eg50JH5Hzoh5wL/ZBzoQ9GowGDwaDKWBJgeYnBYKCsrAqbrU7rqQQ1s9lIQkKUnAudkPOhH3Iu9EPOhX4kJkZhMqkTYMkSoRBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhC45HA7eeedNnnrqMU6cKNB6OkII4RGz1hMQQohT+eyzpTz77NMA/PbbHhYufFfjGQkhRONJBksIoUvvvvuW69+bNm0kK2u3dpMRQggPSYAlhNCd3NzjZGf/htFo5Nxz0wFYvXqVllMSQgiPSIAlhNCdn39eA0CfPn257LLRAGzcuF7LKQkhhEckwBJC6M769WsBuOCCTPr0OQeAPXt243A4tJyWEEI0mgRYQgjd2b17FwDnnNOPzp27YjQaKSkpkasJhRB+QwIsIYSuVFVVcujQQQDS0noSFhZGx46dANi7d4+WUxNCiEaTAEsIoSt79+7B4XCQnNySxMQkALp16+G6Twgh/IEEWEIIXdmzJwtwZq8UXbp0BeDAgf2azEkIITwlAZYQQleU5cFOnbq4bmvTph0Ax44d1WROQgjhKQmwhBC6cvToYQDatWvvuq116za/33dEkzkJIYSnJMASQujKkSPOAKtNmzau25QAKy8vF5vNpsm8hBDCExJgCSF0w+FwcPSocxlQWRYESE5OJiQkBLvdTl5erlbTE0KIRpMASwihG8XFRVRXV2EwGGjVqrXrdqPR6Ppa6rCEEP5AAiwhhG4oNVYpKamEhoY2uK9Nm7YNjhFCCD2TAEsIoRunqr9StGyZAkBBgXRzF0LonwRYQgjdOHLEmZ2qX3+laNEiGYATJ/J9OichhGgKCbCEELpx7JgzwGrb9uQAKzm5JYDsRyiE8AsSYAkhdMO9RNj2pPuSk50ZrIICyWAJIfRPAiwhhG4oBeynCrCUJUKpwRJC+ANNA6x169bRo0ePU/656KKLANi9ezfjx4+nf//+jBgxgoULFzYYo66ujvnz55OZmUm/fv2YOHEiBw8ebHCMGmMIIbyrtraW3NzjwJkDrBMnCnA4HD6dmxBCeErTAGvAgAGsWbOmwZ833ngDs9nM7bffTnFxMRMmTKBjx44sWbKEKVOmMG/ePJYsWeIa46WXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjCGE8L7c3OPU1dURFhbmCqbqU26rra2ltLTEx7MTQgjPaBpghYaGkpyc7PoTHx/P7NmzueSSS7jmmmv48MMPCQ0NZdasWXTp0oVx48Zx66238tprrwFgtVp54403mDJlCsOHDyctLY25c+eSl5fH8uXLAVQZQwjhffWXBw0Gw0n3h4WFERsbB0ihuxBC/3RVg/Xee+9x/PhxHnzwQQA2btxIeno6ZrPZdUxGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsUG0MIYT3nanAXdGiRQsACgsLfTInIYRoKvPZD/GNmpoaXnnlFW655RZatnRejp2bm0v37t0bHKfcd+zYMXJznXuStWrV6qRjjh8/rtoYTWUy6Sp+DUrKOZBzoQ9nOh/Hjzu3wGnXrh1m86nPV2JiIvv376OsrOS0x4jGkfeGfsi50I9TJM+bTDcB1meffUZNTQ0333yz6zaLxXLSdhlhYWGAMyCrrq4GOOUxpaWlqo3RVLGxEc16vFCPnAt9OdX5yM93/kLTrVsXEhKiTvm4li2ddVg1NZWnPUZ4Rt4b+iHnIrDoJsD69NNPueSSS0hISHDdFh4eflKheU1NDQCRkZGEh4cDzjoq5d/KMREREaqN0VRlZdXY7XXNGkM0j8lkJDY2Qs6FTpzpfOzfnwNAUlIKxcWVp3x8VFQsAEeOHD/tMaJx5L2hH3Iu9CMuLgKjUZ1Moi4CrKKiIrZs2cLkyZMb3J6amkp+fsOmgsrXKSkp2Gw2123t27dvcExaWppqYzSV3V6HzSZvFj2Qc6EvpzofSpF7amqb056r+HjnL2BFRcVyPlUi7w39kHOhPTU7wOhiwXfz5s0YDAYGDx7c4Pb09HQ2bdqE3W533bZ27Vo6depEUlISaWlpREdHs27dOtf9ZWVl7Nq1i0GDBqk2hhDCuyoqKigpKQFOvdGzQslwFxcX+WJaQgjRZLoIsLKysmjXrt1JS3Ljxo2joqKCGTNmkJ2dzdKlS3n77bddma7Q0FDGjx/PnDlzWLlyJVlZWdxzzz2kpqYyatQo1cYQQniXkr1KSEggKir6tMcpGSwJsIQQeqeLJcITJ04QHx9/0u1JSUm8/vrrPPHEE4wdO5bk5GSmT5/O2LFjXcdMnToVm83GzJkzsVgspKens3DhQlfRuhpjCCG86+hRpUXDyZs815eQkAhASUmx1+ckhBDNYXDInhNeU1xcKevpGjObjSQkRMm50InTnY///e8Nnnvu/7j00it4+unnTvv4rKzdXH/9WJKSWrBy5RpfTDlgyXtDP+Rc6EdiYpRq7TJ0sUQohAhuZ9rkub76GSz53VAIoWcSYAkhNHfkiDPAatv2bEuEzhosu91OeXm51+clhBBNJQGWEEJzx441LoMVGhrq6ldXXl7m9XkJIURTSYAlhNBUXV2da4nwbBksgJiYGADKypq304IQQniTBFhCCE0VFBRgtVoxmUykpKSe9fiYmDgAWSIUQuiaBFhCCE0py4Opqa0wm8/eOSY21rldjmSwhBB6JgGWEEJTR44oPbDOXH+lcAdYUoMlhNAvCbCEEJpyt2g4e/0VQEyMM8CSInchhJ5JgCWE0JSSwWrbVjJYQojAIQGWEEJTjW0yqlAyWBJgCSH0TAIscZLdu39l0qRb+PrrL7SeiggCskQohAhEutjsWejLww8/QHb2b2zYsI7zzruA+PgErackAlRNTQ35+XmA50XuEmAJIfRMMliigdzc42Rn/+b6eu3anzScjQh0x48fBSAyMtK1Dc7ZxMY6+2DJEqEQQs8kwBIN7Nix7Q9fb9doJiIYKHsQtmnTFoPB0KjHSB8sIYQ/kABLNFA/ewWwb1+2RjMRwcDdA6tx9VdQvwZLOrkLIfRLAizRwP79+wC45JLLf/9aAizhPY3d5Lm++m0aHA6HV+YlhBDNJQGWaCAv7zgA6elDACgoyMdqtWo5JRHAlCXCxvbAAneAZbPVYrFUe2VeQgjRXBJgiQby8pxXdKWl9SQ8PBxwFr4L4Q2e9sACiIiIxGQyAVBWJsuEQgh9kgBLuNhsNk6cKAAgJSWV1NRWABw/fkzLaYkA5XA4OHLkEABt27Zv9OMMBkO9Vg1S6C6E0CcJsIRLYWEhdrsdk8lEUlILWrZMAeDEiRMaz0wEouLiYiorKwFo3bqNR4+Vbu5CCL2TAEu45OfnAtCiRTImk4nExEQAiooKtZyWCFBHjzqvIGzZMsW1HN1Y0s1dCKF3EmAJF6WjdkqKM3OVkJAEQHGxBFhCfYcPO5cH27VrfIsGRXR0NIArAyaEEHojAZZwyctzZrBatkwFIDHRGWAVFRVpNicRuJrSA0sRFSUBlhBC3yTAEi5KgXtycjKALBEKr3JnsBpf4K6IjIwEJMASQuiXBFjCpaSkBMC1ubNksIQ3KS0a2rZtzhJhhapzEkIItUiAJVyUACsuLh5wZ7CKiyXAEupTMlietGhQREZGAVBRIQGWEEKfJMASLqWlxQDEx8cDksES3mOxWCgoyAeal8GqqpIlQiGEPkmAJVxKSpxNG91LhM4MVnV1FdXVVZrNSwQepcA9OjraFdB7QslgyRKhEEKvJMASLqWlJYA7gxUZGUVoaCggWSyhLiXAatu2PQaDwePHS5sGIYTeSYAlAOe2JX+swTIYDMTFxQFQXi57vgn1uOuvGr8HYX3uNg2SwRJC6JMEWAJwZgJstlqABks20jFbeENzCtwBoqKUInfJYAkh9EkCLAG4lwdDQ0MJD49w3R4dHQNIBkuoyx1geV7gDu4AS4rchRB6pYsA69NPP+WKK67gnHPOYfTo0Xz99deu+3bv3s348ePp378/I0aMYOHChQ0eW1dXx/z588nMzKRfv35MnDiRgwcPNjhGjTECXUmJcgVhQoOaGMlgCW9QarCa0mQU6mewZIlQCKFPmgdYn332GQ899BDXXXcdX3zxBVdccQX33nsvW7Zsobi4mAkTJtCxY0eWLFnClClTmDdvHkuWLHE9/qWXXmLRokU8/vjjLF68GIPBwKRJk7BarQCqjBEM/ljgroiJkQyWUJfdbufIkaY3GQV3DVZVVSUOh0O1uQkhhFrMWj65w+Fg3rx53HLLLdxyyy0A3HXXXWzevJn169ezfv16QkNDmTVrFmazmS5dunDw4EFee+01xo0bh9Vq5Y033mDatGkMHz4cgLlz55KZmcny5csZPXo0H374YbPHCAalpc4WDbGxcQ1ulwyWUFtubi61tbWYzWZSUlKbNIaSwaqrq8NiqSYiIlLNKQohRLNpmsHav38/R48e5aqrrmpw+8KFC5k8eTIbN24kPT0ds9kdB2ZkZJCTk0NhYSFZWVlUVlaSkZHhuj82NpZevXqxYcMGAFXGCAbKUotSc6WIiXFmCiSDJdSiLL+3atWmwfvSExERka6lbFkmFELokaYZrAMHDgBQVVXF3/72N3bt2kXbtm254447GDlyJLm5uXTv3r3BY1q2bAnAsWPHyM3NBaBVq1YnHXP8+HEAVcZoKpNJ8xXYRquqcn5IxcbGYDa75620aaisLG9wu79QzoE/nYtAZjIZXe/79u3bN+s1FR0dTXl5OTU11X752tSavDf0Q86FfjShLd9paRpgKb953n///fzjH//gvvvu45tvvuHOO+/kzTffxGKxuBpdKsLCwgCoqamhuroa4JTHKEteaozRVLGxEWc/SCdqay0AJCcnkZAQ5bo9JaUFABZLVYPb/Y0/nYtAt3//fgB69OjWrNeUEmAZjXa/fm1qTd4b+iHnIrBoGmCFhIQA8Le//Y2xY8cC0LNnT3bt2sWbb75JeHj4SYXmNTU1AERGRhIeHg6A1Wp1/Vs5JiLC+UJVY4ymKiurxm6va9YYvnLihLNTe0hIOMXF7kvfTSZnMFpYWNzgdn9hMhmJjY3wq3MRyEwmoyvASk1t06zXlLJdTm7uCdq397/XptbkvaEfci70Iy4uAqNRnUyipgFWaqqzwPWPS3hdu3Zl1apVtGnThvz8/Ab3KV+npKRgs9lct7Vv377BMWlpaa7naO4YTWW312Gz+cebpazMWWMVGRnVYM7K1VplZWV+872cij+di0CnBFht23Zo1jlRAqzS0nI5t80g7w39kHOhPTUvStZ0wbdXr15ERUWxbdu2Brfv3buX9u3bk56ezqZNm7Db7a771q5dS6dOnUhKSiItLY3o6GjWrVvnur+srIxdu3YxaNAgAFXGCAYVFc4A6+Qid7mKUKjHbre7arA6dOjYrLGUKwlluxwhhB5pGmCFh4fz97//nRdffJEvvviCQ4cO8fLLL/PTTz8xYcIExo0bR0VFBTNmzCA7O5ulS5fy9ttvM3nyZMBZNzV+/HjmzJnDypUrycrK4p577iE1NZVRo0YBqDJGMDj9VYRKHywJsETzHTt2lNraWkJDQ0lNbXX2B5yBO8CS5UEhhP5oukQIcOeddxIREcHcuXPJy8ujS5cuvPDCCwwZMgSA119/nSeeeIKxY8eSnJzM9OnTXfVaAFOnTsVmszFz5kwsFgvp6eksXLjQVbSelJTU7DGCgTuDFd3gdndDxyocDkeDLu9CeOrgwQMAtG/fAZPJ1KyxZMNnIYSeaR5gAUyYMIEJEyac8r6+ffuyePHi0z7WZDIxbdo0pk2bdtpj1Bgj0Cl9rpSMlSIy0tnA0dnQ0dLswn8R3NRaHgTZLkcIoW/SdEMA7g+pPwZY9Ttky8a6orkOHswBoGPHjs0eS3ltKq1WhBBCTyTAEtTV1Z22yN1oNLo+yKqqqnw+NxFYlC7uHTp0avZYSna1ulpel0II/ZEAS7jqq+DkAAvcSzESYInmUmqwJIMlhAh0EmAJV/bKbA5xdbmvz53BkiVC0XQ1NTUcO3YUUDeDJa9LIYQeSYAlXJe5R0dHnfIqQclgCTUcPnwIh8NBbGwsiYmJzR5PueBCMlhCCD2SAEu4PqDqF7TXp2QKpN+QaI5Dhw4A0LlzZ1XafbhrsCTAEkLojwRYwlUkfLoWDLJEKNSQk+PcIqdz586qjOfOYElmVQihPxJgCVcGIDz81AGWe4lQAizRdPv37wOgW7duqowXEeF8XUoGSwihRxJgiXpLhKcOsNzFxJIpEE23f382cPLm7k2lvF4l8BdC6JEEWKLeEuHparCkyF00T11dnWuJUK0MltRgCSH0TAIscdYaLLkcXjTX8ePHsFgshISE0KFDB1XGVF6vVqsVm82myphCCKEWCbDEWZcIpU2DaC6l/qpjx86YzepsgVo/4ypZLCGE3kiAJc4aYMlVhKK5lPqrLl26qDZmaGgoJpMJkOBfCKE/EmCJs9ZgSQZLNJeSwerSpatqYxoMBtcvBRaLvDaFEPoiAZZo9FWE0mhUNJUSYHXurF4GC2Q/QiGEfkmAJRq9RCgNHUVTOByOekuE6mWwoH6rBnltCiH0RQIscdatcmSJUDRHfn4+lZWVmEwm1a4gVCgtRCSDJYTQGwmwhCszpSwF/pEsEYrmULJX7dt3ICQkVNWxpdmoEEKvJMASjajBUrIEksESntu3zxlgdeqkbv0VSLNRIYR+SYAlzroXoRJgWSwWaegoPPbbb3sA6NpVnQ7u9UkNlhBCryTAEo2uwap/rBCNtXdvFgA9eqSpPrbyS4G8LoUQeiMBlnD1EDrdEmFISIir+7bUughP2Gw21xJh9+7qB1iyfC2E0CsJsMRZa7CcDR2Vbu7yQSYa7+DBA1itViIjI2nTpq3q4yuvWQmwhBB6IwFWkHM4HGcNsMC9TChXEgpPKMuDXbt2x2hU/78bKXIXQuiVBFhBrra2FrvdDpy+BgsgPDwcgJoai0/mJQLD3r3OAndv1F+BFLkLIfRLAqwgV39p5UwZLCkmFk2hZLC8UX8FksESQuiXBFhBTvlgql/IfiruTXXlg0w0njvA6uGV8aU2UAihVxJgBbmztWhQKEuEFossEYrGKSoqoqCgAPBODyyQInchhH6dPmUhgoLywXSm5UFwLxFKBitw/PLLz7z55usYDPC3v91GenqGquPv2rUTgA4dOhIVFa3q2Ar361ICfyGEvkiAFeQacwUhuDNYUusSGDZuXM9dd01yXeCwceN65syZz4gRI1V7jl9/3QFA797nqDbmH8nStRBCr2SJMMg1NsByf5BJpsDfWa1WHn30Yex2OxddNIqLL74Um83Gv//9IPn5eao9jxJg9enjvQBLlq6FEHolAVaQcy8Rnq0GS64iDBTLl3/D4cMHadEimUcfnc3s2XPo2bMXZWWlLFjwvCrP4XA4+PVX5xKhNzNYskQohNArzQOso0eP0qNHj5P+fPTRRwDs3r2b8ePH079/f0aMGMHChQsbPL6uro758+eTmZlJv379mDhxIgcPHmxwjBpjBCpPlwjlg8z/ffTRBwBce+0NREdHExISwkMPPQLAF198xsGDOc1+jry8XAoLT2A2m+nRo2ezxzsd9+tSAn8hhL5oHmDt2bOHsLAwVq9ezZo1a1x/rrrqKoqLi5kwYQIdO3ZkyZIlTJkyhXnz5rFkyRLX41966SUWLVrE448/zuLFizEYDEyaNAmr1QqgyhiBzNMlQslg+be8vFy2bt2MwWDgT38a57r9nHP6kZk5nLq6Ot5//51mP4+yPNilSzdXEOQNSgbLarW66smEEEIPNA+w9u7dS6dOnWjZsiXJycmuP+Hh4Xz44YeEhoYya9YsunTpwrhx47j11lt57bXXAOd/qm+88QZTpkxh+PDhpKWlMXfuXPLy8li+fDmAKmMEMiVgUj6oTkeuIgwMq1evApwBVcuWKQ3uu+mmWwBYtuxTKioqmvU87gL3Ps0a52zqB2+yy4AQQk80D7D27NlD165dT3nfxo0bSU9Pb9AAMyMjg5ycHAoLC8nKyqKyspKMDPfl5bGxsfTq1YsNGzaoNkYga2wNVkSELBEGgh9/XAXAsGEjTrpvyJDz6Ny5C1VVVSxb9kmznmfnTu9fQQgQFhbm+re8NoUQeqJ5m4a9e/eSnJzMjTfeyIEDB+jQoQN33nknmZmZ5Obm0r179wbHt2zZEoBjx46Rm5sLQKtWrU465vjx4wCqjNFUJpPm8etZKb/1R0VFYjaffr7KliQ1NZYzHqc3yjnwh3PhbXV1dWzZsgmAzMxhpzyP1113A7NnP86yZZ9x8823NOl5amtr2bFjGwADBw5s8Dzqnw8j4eHhWCwWamtr/Oq1qTV5b+iHnAv9MBjUG0vTAMtqtXLgwAEiIiKYPn06kZGRfP7550yaNIk333wTi8VCaGhog8cov7HW1NS4lrdOdUxpaSmAKmM0VWzsmZfd9KCurhaAxMQ4EhKiTntcixbxANTW1pzxOL3yh3Phbbt376a8vJzIyEgyMs495dZIN954Hc888xS7du0kP/8IPXp4vsXNli1bqK6uJj4+nkGD+mE0nvyhoeb5iIiI+P19bvDL16bW5L2hH3IuAoumAVZoaCgbNmzAbDa7Apw+ffqwb98+Fi5cSHh4+EmF5jU1NYAzo6LUX1it1j/UYtS4irLVGKOpysqqsdvrmjWGt5WUlP3+LzPFxZWnPa6uzvkhWVFRecbj9MZkMhIbG+EX58LbfvjhJwD69u1HeXkNUHPSMQZDGMOGDee771by3nsfcM890zx+nu+/Xw3AgAHnUlrasGbPG+cjLMz5vs3LKyI52X9em1qT94Z+yLnQj7i4iFP+UtgUmi8RKktP9XXv3p01a9aQmppKfn5+g/uUr1NSUrDZbK7b2rdv3+CYtLQ0AFXGaCq7vQ6bTd9vFmWT3LCw8DPONSTEmfWrrq7W/fd0Kv5wLrxty5bNAPTtO+CMP4srrria775byRdfLOPOO+/GZDJ59DybNjlrF/v3H3ja51HzfCi/GFVWVgX9OW4KeW/oh5wL7Tkc6o2l6YJvVlYWAwYMYOPGjQ1u37lzJ127diU9PZ1NmzY1uPx67dq1dOrUiaSkJNLS0oiOjmbdunWu+8vKyti1axeDBg0CUGWMQCZ9sILH3r1ZwNmv7Bs27EJiYmLJy8tl48b1Hj1H/TqvgQN98/6RZqNCCD3SNMDq3r073bp149FHH2Xjxo3s27eP2bNns3XrVm6//XbGjRtHRUUFM2bMIDs7m6VLl/L2228zefJkwLnEOH78eObMmcPKlSvJysrinnvuITU1lVGjRgGoMkYga3yApfTBqvL6nIT6rFYr+/fvA6B79zNnZkNDQ7nssisAZ8sGT2Rl7aK0tJSoqCjS0no1aa6ekmajQgg90nSJ0Gg08sorrzBnzhzuvvtuysrK6NWrF2+++aaruPb111/niSeeYOzYsSQnJzN9+nTGjh3rGmPq1KnYbDZmzpyJxWIhPT2dhQsXumq6kpKSmj1GIGt8mwbJEviz/fv3YbPZiI2NIzW11VmPv/LKMXz00SJWrlzOQw/9m8jIxhWP//TTGgDS0zMICQlp1pwbS7KrQgg90rwGKzExkSeffPK09/ft25fFixef9n6TycS0adOYNu30xbhqjBGoPM1g1dTUUFdXp1oRoPCNPXt2A9C9ew8MjbgOuW/f/rRr14HDhw/y3XcruPLKMY16nrVrnQHW+ecPbfpkPST7ZAoh9Eg+JYNc47fKkY7Z/kxZHuzatVujjjcYDFx1lTOoWrbss0Y9pry8nO3btwK+DrAkgyWE0B8JsIKcO8A68xKhcim88zHyQeZvDh1ybl7esWOnRj9m9OirAVi/fi25uWdvuvvzz6ux2Wy0b9+Btm3bNW2iTaC8dqUGSwihJxJgBTmlTcPZMlhGo9GVKZBCd/9z8OABANq379jox7Rp05Zzzx2Ew+Hgyy8/P+vx33zzNQAXX3xpU6bYZJLBEkLokQRYQay2thabzdnJvTFNVeWDzD/Z7XYOH3ZmsDp06OjRY6+6ynkxyNKlHzVodfJHlZUVrFnzAwCXXHJ50ybaRO59MiWDJYTQDwmwglj9ouCzLRFC/X5D8kHmT3Jzj1NbW0toaGijriCs79JLryA2No6jR4+4AqhTWbXqO6xWKx06dKRHj+Y16PWUFLkLIfRIAqwgpnwgmUymRl1SLxks/3TwYA4A7dp18Lgre0REBH/+8zUAvP/+O6c97uOPnVfpXn75lY26SlFN8roUQuiRBFhBzGJx11815kNRWUaUTIF/UeqvPF0eVFx77Q2YzWbWrVvr2ganvqysXWzZsgmz2ewKxnxJMqtCCD2SACuINbZFg0I+yPxTcwOs1q3bMHbsXwCYP/85HH/YrOuVVxYAzuL2li1TmjzPppIMlhBCjyTACmJKgBUefvb6K+dx8kHmjw4fPgRA+/YdmjzGpEl3EB4ezrZtW1zLgQA//riKVau+w2g0MnnyXc2ea1NI4C+E0KNGdXJfsGBBk5/gH//4R5MfK7zLvU2OZLAC2fHjxwBnJqqpWrZM4a67/smzzz7N008/gdlsJjExkYcffhCAG2+8mU6dOqsyX0+524dI4C+E0A+vBlgGg0ECLB3zdIlQarD8j8Ph4NgxZ4DVqlXrZo110023sGPHdr799msefXSm6/a+ffsxZcq9zRq7OdxtGiTAEkLoR6P3Ivzwww/p27dvowfeunUrN9xwQ5MmJXzD8xos+SDzNyUlJa6MY0pKarPGMhqNPPnkM3Tt2o2PPvoAi6WGyy4bzT333EdYWJga020SyawKIfSoUQHWwIEDiYqK8mjgmJgYBgwY0KRJCd9o7DY5Cuk35H9yc53ZqxYtklUJgsxmM7fddie33XZns8dSiwT+Qgg9alSR+7nnnutx/5wuXbrw/vvvN2lSwjc8r8GSDzJ/o9RfNXd5UM8kgyWE0KNGBVhvvvkml19+OTfffDOff/45NTU13p6X8AHPa7AiGzxO6J9Sf+VpB3d/Uj/w/2MLCSGE0EqjAqzVq1fz4IMPUllZyfTp0xk6dCj/+c9/2L17t7fnJ7yo6TVYEmD5C2WJMBgyWHV1ddTW1mo8GyGEcGpUgJWQkMBf//pXli5dyrJly7jmmmtYsWIFf/7znxk7dizvv/8+5eXl3p6rUJl7ibBxNVhytZb/cS8RBn4GCyT4F0Loh8eNRrt168b06dNZtWoVr776Kp07d+b//u//yMzMZNq0aWzYcPJWGkKfpJN74HMHWE3vgaV3ISEhmM3O63WkF5YQQi8a3abhj4xGI8OGDWPYsGFUVlby3Xff8eKLL/LFF1/I0qGfkD5Yge/48eNAYNdggTOLVVFRIcG/EEI3mhxgKXbu3MmyZctYvnw5x48fZ8iQIWrMS/hAU9s0yBKhf6ittVJcXAQ0vweW3oWHR/weYMlrUwihD00KsA4fPsyyZctYtmwZBw4cICUlhbFjxzJu3Djatm2r9hyFlzS1TYPyOKFvJ06cAMBsDiE+Pl7byXiZXIAhhNCbRgdYxcXFfPXVVyxbtoxt27ZhNpsZOXIkDz30EEOHDsVgMHhznsILmnoVobTp8A8FBfkAJCcnB/z7U3q0CSH0plEB1u23386aNWuw2Wx069aNBx54gKuvvpqEhARvz094kfLbvhS5B6b6AVagk9emEEJvGhVgbdy4kXHjxjFu3DiP9iMU+qZksMLDG1uDJVkCf1JQUABAcnJLjWfiffLaFELoTaMCrDVr1jToNSMCg1JLFRnZ2D5Y7iL3uro6jEaPu3wIH3JnsIIhwJIrXIUQ+tKoAOuPwdU333zD5s2bKSsrO+lYg8HAk08+qc7shFc1tQYLnHVYjX2c0IYSYLVoEQxLhFLkLoTQF4+vIpwzZw6vv/460dHRxMbGnnR/oBfTBgq73e4qVm9sm4awsPodsy0SYOnciRPBuEQoF2AIIfTB4wDrk08+4dprr+U///mPN+YjfKT+b/qNDZRMJhOhoaFYrdbfHy8XOehZMC0RupevJYMlhNAHj4toampquOyyy7wxF+FDyvKgwWAgLCys0Y+TZqP+I7iuIpQidyGEvngcYF1yySV899133piL8KH69VeeLOtKpsA/WK1WSkpKgODIYEmbBiGE3ni8RPjQQw9xzTXXcPPNN9OvX7+TCuANBgN33XWXahMU3uHpNjkKyRT4B6X+KiQkhLi4eG0n4wNKFlaa4Aoh9MLjAOudd94hJyeHnJwcNmzYcNL9EmD5B0+3yVHI5fD+obDQuU1OixaB38Ud5HUphNAfj5cI3333XUaPHs2aNWvIyso66c/u3bubPJmcnBwGDBjA0qVLXbft3r2b8ePH079/f0aMGMHChQsbPKauro758+eTmZlJv379mDhxIgcPHmxwjBpjBBpPWzQoJIPlH4qKCgFITEzSeCa+Ia9LIYTeeBxgVVVVce2119KiRQtVJ1JbW8t9991HVZV7I+Hi4mImTJhAx44dWbJkCVOmTGHevHksWbLEdcxLL73EokWLePzxx1m8eDEGg4FJkyZhtVpVGyMQNT3AkloXf1BUVARAYmKixjPxDakNFELojccB1vnnn8+6detUn8gLL7xAVFRUg9s+/PBDQkNDmTVrFl26dGHcuHHceuutvPbaa4CzkPeNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbYxA5F4i9KwGKyJCMgX+QMlgJSQER4AlGSwhhN54XIM1ZswYZs6cycGDBxkwYADR0dEnHfOnP/3JozE3bNjA4sWL+fTTTxkxYoTr9o0bN5Keno7Z7J5mRkYGr776KoWFhRw9epTKykoyMjJc98fGxtKrVy82bNjA6NGjVRkjEDV/iVAyBXrmzmAFxxKh0gS3pkYCLCGEPngcYE2dOhWAL7/8ki+//PKk+w0Gg0cBVllZGdOnT2fmzJm0atWqwX25ubl07969wW0tWzovOT927Bi5ubkAJz2uZcuWHD9+XLUxmspk0u9efVar84MoMjISs7nx81QyXlZrjUeP04pyDvR8LryhpMQZYLVokaSr8+St8xEV5XxdWiwWXX2/ehas7w09knOhH2peE+RxgLVy5Ur1nh2YNWsW/fv356qrrjrpPovFQmhoaIPb6l+OrWRhTnVMaWmpamM0VWysfreScThsAMTHx5KQEHWWo93i42N+/5fdo8dpTc/nwhvKykoAaNeutS7Pk9rno2VL564CVmuNLr9fPQu294aeybkILI0KsObNm8f1119PSkoKbdq0adTAeXl5LFq0iH/+85+nPebTTz9l48aNLFu27JT3h4eHn1RorvS5iYyMdC1XWa3W025ErMYYTVVWVo3dXtesMbylqMgZPBqNIRQXVzb6cQaD8yVTXFzm0eO0YjIZiY2N0PW58Ia8PGcX9/DwaF2dJ2+dj9pa599VVVW6+n71LFjfG3ok50I/4uIiMBrVySQ2KsB65ZVXuPDCC0lJSWn0wLm5ubzyyitnDLCWLFlCYWFhg7orgEceeYSFCxfSunVr8vPzG9ynfJ2SkoLNZnPd1r59+wbHpKWlAZCamtrsMZrKbq/DZtPnm6Wy0lnkHhYW7tEcQ0Od2b+qqirdfm+noudz4Q1KDVZcXIIuv2+1z0dIiPN1WV1t0eX3q2fB9t7QMzkX2nM41BurUQGWw+Fg1qxZpyxoP52KioqzHjNnzpyTrvq55JJLmDp1KldccQVffvklixYtwm63YzKZAFi7di2dOnUiKSmJmJgYoqOjWbdunSs4KisrY9euXYwfPx6A9PT0Zo8RiKTRaOCqq6ujuNgZYCUkBEuRu7Lsb8HhcARFc1UhhL41Kg+Wnp5OVFQUDoej0X+ioqIYNGjQGcdNSUmhQ4cODf4AJCUl0aZNG8aNG0dFRQUzZswgOzubpUuX8vbbbzN58mTAWTc1fvx45syZw8qVK8nKyuKee+4hNTWVUaNGAagyRiCSrXICV3l5GXa7HYDExASNZ+MbSuDvcDgCun+dEMJ/NCqD9c4773h7HqeUlJTE66+/zhNPPMHYsWNJTk5m+vTpjB071nXM1KlTsdlszJw5E4vFQnp6OgsXLnQVrasxRiBqegZLAiy9U5YHY2JiCQkJ3NdwfUoGC5wtROp/LYQQWvD4KkJv27NnT4Ov+/bty+LFi097vMlkYtq0aUybNu20x6gxRqBpah8s6Zitf+5tcoKjySg4N7U2m0Ow2WqxWCzExWk9IyFEsJOmG0FKlggDV7DtQ6iQJrhCCD2RACtIyV6EgSvY9iFUuAOsGo1nIoQQEmAFLanBClySwZLgXwihPQmwglTzM1gSYOmVksEKlo2eFRL8CyH0pFFF7p9++qlHg3q62bPwvebXYEmWQK+Ki4OvyB1k+VoIoS+NCrAeeOCBRg/o6WbPwvfq6upcH0KSwQo87gxWcC0RKq0ZpAZLCKEHjQqw1N7gWWirpsYdHHnepsGZwbLZbNTW1hISEqLq3ETzuWuwgqPJqEIyWEIIPWlUgNXYDZ7B2UlZ6Fv9bW6UD6XGqn+8xWKRAEuHSktLAIiPD64ASwn+JbsqhNCDJjUa/fLLL1m/fj21tbWugMrhcFBVVcXWrVv58ccfVZ2kUJcSYIWHh3u8a3hISAhGo9G1zBgTE+ONKYomqquro7S0FIC4uHhtJ+NjksESQuiJxwHWggULWLBgATExMdhstt87KJspKirCaDRyzTXXeGOeQkVNbdEAzhq78PBwqqqqJFOgQxUVFdTV1QHBGGBJBksIoR8et2n45JNPuPrqq1m/fj233norF154IT///DMff/wx8fHxdOvWzRvzFCpyZ7A8D7DqP04yBfqjLA+Gh0cE3X58YWHOAKt+jaEQQmjF4wArLy+PMWPGYDAY6N27N1u2bAGgT58+3H777Xz00UeqT1Koq6ktGhSSKdCvkpISAOLj4zWdhxaU12V1tbwuhRDa8zjAioyMxGAwANCxY0eOHDni+qDt2bMnR44cUXeGQnXNWSIEyWDpmZLBCrblQZAWIkIIffE4wDrnnHP45JNPAGjfvj0mk4mff/4ZgH379hEaGqruDIXqmtrFXaE8TjIF+uO+gjBe03loQZrgCiH0xOMi99tvv50JEyZQXl7OK6+8wtVXX80DDzzAkCFDWLNmDRdffLE35ilU1NwAS5YI9UtZIgzGDJa0aRBC6InHAVZ6ejoff/wxe/bsAeDf//43RqORzZs3c9lll3nU9V1ow71E2NQaLFki1KtgXiKUInchhJ40qQ9WWloaaWlpgHN7iscee0zVSQnvav4SoWQK9ModYMVpOxENSGZVCKEnTQqwysvL+eWXX6iqqjpl53bZi1Dfmr9EKBksvQrmDJa8LoUQeuJxgPXDDz9w9913N9hupT7Z7Fn/pE1D4JI2DfK6FELog8cB1nPPPUfnzp158MEHSUlJ8XirFaG95rdpkKu19EoyWJz2lz8hhPAljwOs/fv389JLLzFo0CBvzEf4gFpLhNKmQX+CO4Pl7FxfU1Oj8UyEEKIJfbBat25NRUWFN+YifETaNAQuyWBJZlUIoQ8eB1iTJ0/mxRdflI7tfqz5NVjyQaZHtbVWqqqcy7/BmcFyB/6nuvhGCCF8yeMlwmXLlpGXl8eoUaNITEx0/aemMBgMrFixQrUJCvWpV4MlGSw9KS0tBZzvwejoGI1n43tK4F9XV0dtba3sKiGE0JTHAVZqaiqpqanemIvwESXzpHwgeUoJzCSDpS9K/VVsbCwmk0nbyWig/i97Fku1BFhCCE15HGDNnj3bG/MQPiRtGgJTMNdfAYSEhGAymbDb7VgsFmJjg6/ZqhBCPzwOsI4dO3ba+4xGI5GRkcTGxjZrUsK7pNFoYArmjZ4V4eHhVFZWSvAvhNCcxwHWyJEjMRgMZzwmLi6Ov/71r9x5551NnpjwHqnBCkzBvNGzIjw8QgIsIYQueBxgPfXUU/z73/9m8ODBXHnllbRo0YLCwkK++eYbVq1axZ133kllZSUvv/wy8fHx3Hjjjd6Yt2gih8MhbRoCVLAvEYI0wRVC6IfHAdaXX37J6NGjT6rFGjNmDI888gg7d+7klVdeITY2lg8++EACLJ2xWq3U1dUB0qYh0ChXEQbzEmFYmDPAqqmR4F8IoS2P+2CtX7+eK6+88pT3XXLJJfzyyy8AnHvuuRw+fLh5sxOqU5YHofkZLOnkri+SwZLXphBCPzwOsOLj48nKyjrlfVlZWURHRwNQVVXV5A9w4T3K8mBoaChms8cJTKBhmwZp6KgfUoMFERGyfC2E0AePA6yrrrqK+fPn8/bbb5OXl0dtbS15eXm88847LFiwgKuuuorS0lLefvtt+vXrd9bxCgsLmTZtGhkZGQwYMIDbbruN7Oxs1/27d+9m/Pjx9O/fnxEjRrBw4cIGj6+rq2P+/PlkZmbSr18/Jk6cyMGDBxsco8YYgaK59VfQsN+Q7PumH5LBkuVrIYR+eBxg3X333VxxxRU89dRTjBgxgr59+zJixAieeuoprrrqKu655x5+/PFHdu3axd13333W8e644w4OHz7Ma6+9xscff0x4eDi33nor1dXVFBcXM2HCBDp27MiSJUuYMmUK8+bNY8mSJa7Hv/TSSyxatIjHH3+cxYsXYzAYmDRpElarFUCVMQKJspVKU+uvwF3nAvJBpifBvNGzQi7AEELohcdrRGazmdmzZ3PHHXewbt06iouLSUlJYeDAgbRr1w6AYcOGsXr16rN2Ui4uLqZt27bccccddOvWDYA777yTMWPG8Ntvv7F27VpCQ0OZNWsWZrOZLl26cPDgQV577TXGjRuH1WrljTfeYNq0aQwfPhyAuXPnkpmZyfLlyxk9ejQffvhhs8cIJM1t0QBgMpkIDQ3FarXKB5mOSAZLityFEPrhcQZL0b59e6655hpuu+02xowZ4wquwNkHqzHbVCQkJPDcc8+5gqsTJ06wcOFCUlNT6dq1Kxs3biQ9Pb1BrVBGRgY5OTkUFhaSlZVFZWUlGRkZrvtjY2Pp1asXGzZsAFBljECixhIhyFKM3jgcDmk0imSwhBD60agM1kUXXcSLL75IWlraWRuNNnWz54cfftiVbXr55ZeJjIwkNzeX7t27NziuZcuWgLOjfG5uLgCtWrU66Zjjx48DqDJGU5lMTY5fvcZqdX7wREZGYjY3fX4REeGUlZVSW2tt1jjeppwDPZ4LNVVWVmCz2QBISkrU7Tnx9vmIjHQufdfUWHT7M9CLYHlv+AM5F/pxlj7qHmlUgDV48GCioqJc/z5bJ/emuOWWW7juuuv44IMPuOuuu3j//fexWCwnZcLCwsIAZ3F1/Svi/niM0hNIjTGaKjZWf1dRGo3OHlixsTEkJEQ1eRzlgywkhGaN4yt6PBdqqqgoApyv21atkrzyHlWTt85HfHwMAA6HzS9el3oQ6O8NfyLnIrA0KsCq31T0qaee8spEunbtCsBjjz3G1q1beffddwkPDz+p0Fy5ai0yMtK1HGC1Wk+6sk1ZAlNjjKYqK6vGbq9r1hhqO3GiGACzOZTi4somjxMa6gxS8/KKmjWOt5lMRmJjI3R5LtR08KBzj9C4uDhKSqrOcrR2vH0+DAbnf2mlpeW6fl3qQbC8N/yBnAv9iIuLwGhUJ5PYpEZIFRUVVFZWkpKSgtVq5X//+x+5ublceumlpKenN3qcwsJC1q5dy+WXX47JZAKcG0Z36dKF/Px8UlNTyc/Pb/AY5euUlBTXkkh+fj7t27dvcExaWhqAKmM0ld1eh82mrzdLZaXzwzcsLLxZc1OKiSsrq3T3PZ6KHs+FmgoLnRmsuLh4v/g+vXU+QkKcmejqaotf/Bz0INDfG/5EzoX21Gzt6HGYtn37dkaOHMk777wDwOOPP86cOXP4/PPPueWWW1i5cmWjx8rPz+df//oX69evd91WW1vLrl276NKlC+np6WzatAm73e66f+3atXTq1ImkpCTS0tKIjo5m3bp1rvvLysrYtWsXgwYNAlBljEDiLnJvepsG5+OlyF1P5ApCJ7n4QgihFx4HWHPnzqVz585cd911WCwWli1bxo033sj69ev5y1/+wiuvvNLosdLS0hg6dCiPPvooGzduZO/evdx///2UlZVx6623Mm7cOCoqKpgxYwbZ2dksXbqUt99+m8mTJwPOuqnx48czZ84cVq5cSVZWFvfccw+pqamMGjUKQJUxAokabRrqP16u1tIHuYLQSa4iFELohcdLhNu2bWPu3Lm0a9eO77//HovFwpgxYwC44oor+Pzzzxs9lsFg4Pnnn+fZZ5/l7rvvpry8nEGDBvHee+/RunVrAF5//XWeeOIJxo4dS3JyMtOnT2fs2LGuMaZOnYrNZmPmzJlYLBbS09NZuHChq2g9KSmp2WMEEiWDpRSpN5X7g0wyBXog2+Q4SQZLCKEXHgdYRqPRFXj88MMPxMbG0rdvX8BZm1W/ULwxYmJimDVrFrNmzTrl/X379mXx4sWnfbzJZGLatGlMmzbttMeoMUagUDq5Nz/AkgyWnihXvEqAJZs9CyH0weMAq0+fPq4tbb7++mtGjBiBwWCgsLCQ1157jT59+nhjnkIl7q1ymttoVJZi9MRdgxWn7UQ0prwuZY9MIYTWPK7Bmj59OmvXruWGG27AZDJxxx13AHDllVdy4MCBRu0/KLTjLnJvXo8gWYrRFylyd5KlayGEXnicwerVqxfffvst+/bto1u3bq6lplmzZjFw4ECSk5NVn6RQT3W1szeQWjVYshSjD+6NnhO0nYjGZOlaCKEXTeqDFR0dTb9+/Rrcdumll6oyIeFd6tdgSaZADySD5SQZLCGEXsjGR0FGarACkzuDFa/pPLSmNMCV16UQQmsSYAUZadMQeGw2GxUV5YBksCIinK9Lu91ObW2txrMRQgQzCbCCjLvRqDqd3JWATWinrKzM9e/Y2FgNZ6I9ZekaJIslhNCWBFhBxG63uz50mh9gOR8vAZb2lPqr6OgYzOYmlVUGjJCQENdGrZJdFUJoSQKsIFL/A6e5S4TK45WMmNCO1F+5GQwGqQ8UQuiCBFhBRClwNxqNhIWFNWssZYlQGVNoR64gbEgpdK+pkQBLCKEdCbCCSP0WDQaDoVljRUZGNRhTaKekpBiQDJYiGHq0ORwOXnvtFS66aChXXHERn366BIfDofW0hBD1BHfBRpBxd3FvXosGcC8RSoClPclgNaS8vgO5BmvevGd5663XXV/PmjWDqqpKbrzxrxrOSghRn2SwgohaVxDWH8Nmq6W21trs8UTTyUbPDQV6Ddb27Vt5++2FANx//wwmTpwEwLPPPs2+fdlaTk0IUY8EWEHEvUTYvH0IoWEWTLJY2lIyWLJE6KS0agjUK1xffvkFHA4HV145hhtuuJkpU+5l+PALsdvtPP/8M1pPTwjxOwmwgog7g9X8JcKQkBBCQ0MBCbC05l4ijNN2IjrhbiESeK/L7Oy9rF37E0ajkTvumAI4r5y89977MRqNrF79A9nZv2k8SyEESIAVVNTah1AhdVj6oLRpkCVCJ3cT3MB7XS5b9hkAI0ZcRJs2bV23d+jQkZEjLwbggw/e0WRuQoiGJMAKIu59CNUJsKTZqD5IkXtD7h5tgfW6dDgcfPvt1wCMHn3VSfdfd92NAHz77f+TukghdEACrCCi1j6ECqWWq7q6UpXxRNNIo9GGAjWzunv3rxw/foyIiEguuGDYSfcPHJhOcnIy5eVlrF37kwYzFELUJwFWEFGzBgsC94PMnzgcDslg/YGSWQ201+W6dWsBGDIkw3WlZH0mk4lRoy4H4Jtvvvbp3IQQJ5MAK4hUVTkzTWpcRegcJzA/yPyJxVKN1epcDpIMllOgbuO0fv0vAAwenHHaYy691BlgrVq1UpYJhdCYBFhBRO0i90DNFPgTZXkwJCREtcDZ3wXi69JqtbJlyybgzAHWOef0IyEhkcrKSrZv3+ar6QkhTkECrCCi1GApfYKaS/Yj1F79bXKau/1RoAjEqwh37NiGxWIhMTGJLl26nfY4o9FIRsb5AFKHJYTGJMAKIsoHjtptGgLpg8zfSIuGkwXiVYSbN28EID19yFkD6fPOuwCQAEsIrUmAFUSkD1bgcXdxT9B2IjoSiEuEv/66E4A+ffqe9Vglg7Vr105XhlMI4XsSYAURtds0BOIHmb+pv0QonAIx8N+1yxlg9e7d56zHtmyZQufOXXE4HGzevMnbUxNCnIYEWEFE7UajSlG1cnWi8D13DyzJYCkCbaucgoJ88vPzMBgMpKX1bNRjBgwYCMDWrZu9OTUhxBlIgBVElEBIvQArsD7I/JH0wDpZoBW57979KwCdOnVp9JWiAwacC8DWrZLBEkIrEmAFEYtF7U7ugbcU42+Ki2WJ8I8C7XWp1F/16tW70Y/p39+Zwdq1axcWi8Ur8xJCnJkEWEHEvUQondwDhRS5n0x5XVqtVmw2m8azab6srF2AZwFWmzZtSU5Oxmar5ddfd3hrakKIM5AAK0jY7XZqamoA9YvcA2Upxh/JEuHJ6i+BB0Krhuzs3wDo1q17ox9jMBjo18+Zxdq2bYtX5iWEODMJsIJE/Q8a2SoncChLhAkJksFShIaGYjKZAP9/bVZXV3H06BGAMzYYPRWlpYNyBaIQwrckwAoSSoG72WwmJCRElTElwNKeZLBOZjAYXFksi8W/X5v79+8DnAF0YmKSR4/t3du5pKjUcAkhfEsCrCChLOOFh0eotqWKu02Df3+I+Sur1er62UuRe0OBso3Tvn3ZAHTu3NXjx6alOQOs48ePuTKdQgjf0TzAKikp4d///jfDhg1j4MCB3HDDDWzcuNF1/+7duxk/fjz9+/dnxIgRLFy4sMHj6+rqmD9/PpmZmfTr14+JEydy8ODBBseoMYa/U7uLO1AvS1CN3W5XbVzROEqTUZPJRHR0jMaz0ZdAya4qAZany4MAMTExdOjQEYDduyWLJYSvaR5g3XvvvWzbto3nnnuOjz/+mN69e/O3v/2Nffv2UVxczIQJE+jYsSNLlixhypQpzJs3jyVLlrge/9JLL7Fo0SIef/xxFi9ejMFgYNKkSVitVgBVxggEFRUVAERHR6s2Zv2xKiul2aivKcuDsbFxGI2av5V1JVD2I3QHWJ5nsAB69lSWCX9VbU5CiMbR9H/lgwcP8tNPP/HII48waNAgOnfuzIwZM0hJSeGLL77gww8/JDQ0lFmzZtGlSxfGjRvHrbfeymuvvQY4l0jeeOMNpkyZwvDhw0lLS2Pu3Lnk5eWxfPlyAFXGCARKDZZaBe7gLCYODQ0FoKKiXLVxRePINjmnFyjbOO3f37wAS9laRwrdG6+ysoK5c5/hsssuJDNzMFOmTGbnTml1ITynaYCVkJDAf//7X/r0ce+vZTAYcDgclJaWsnHjRtLT0zGbza77MzIyyMnJobCwkKysLCorK8nIyHDdHxsbS69evdiwYQOAKmMEgooKZ4AVFaVegOUcz5nFqqysUHVccXayTc7pBUILkdpaK8ePHwOgY8dOTRqjVy8JsDxRWHiCm2++jrffXkhu7nHKy8tYvfoH/vrX6/jkk4+1np7wM+azH+I9sbGxDB8+vMFtX3/9NYcOHWLo0KHMnTuX7t0b9n5p2bIlAMeOHSM3NxeAVq1anXTM8ePHAcjNzW32GE1lMuln2Ua5mio6OhqzWb15xcTEUFxcRHV1parjqkU5B3o6F2opLy8DICEhXpc/+1Px1fmIjnb+IlFTU+03P5s/Ono0F4fDQUREBCkpLZt0cUqfPr0xGAzk5eVSUlJEixYtXPcF8nujKWpra7n77jvZv38fLVu25MEHH6ZNm7YsXPhfvvnmax59dCbJycmMGHGh6s8t50I/VLoGDNA4wPqjTZs28dBDD3HRRRcxcuRIZs+e7VqCUoSFhQFQU1Pjqq841TGlpaUAWCyWZo/RVLGx6nRMV0NdnbOeLCEhjoQE9bJYcXGxv//Lpuq4atPTuVCLxeLMGqaktNT1z/5UvH0+4uKcRf8Oh75fl2eybVsBAO3btycxsWm1kwkJUXTs2JGcnByOHz9It24dTjomEN8bTTF37lx27NhOXFwcS5cupVMnZ9bw/PPTuf/++3nvvfeYOfN+vv/+e9cv6WqTcxFYdBNgrVixgvvuu49+/frx3HPPARAeHn5SoXn9buTh4eGAs45K+bdyjHKZthpjNFVZWTV2e12zxlDLiRPOep3Q0HCKi9UrSA8Pdy7F5OaeUHVctZhMRmJjI3R1LtSSm5sPQEREtC5/9qfiq/NhNjt/YSoqKvWbn80f7d7t7ODeqlWbZn0P3br1ICcnh02btnLOOee6bg/k94ancnNzWbBgAQAzZjxCfHzLBj/z++57kC1btrJr16/MnPlvnn76WVWfX86FfsTFRah20ZAuAqx3332XJ554glGjRjFnzhxXNik1NZX8/PwGxypfp6SkuPYZy8/Pp3379g2OSUtLU22MprLb67DZ9PFmKS93ZjvCwyNVnZNSg1VWVqab7/VU9HQu1FJU5AyaY2Li/O578/b5CA93/nJUXl7hdz8bxaFDhwBo3bpts76Hrl278+23/4+srKxTjhOI7w1PvfnmQiwWC/37D2TUqMtP+nkYDGYefvg/3HDDOL78chm33PJ3unfvofo85Fxoz+FQbyzNF3zff/99HnvsMW666Saef/75Bkt16enpbNq0qUGPpbVr19KpUyeSkpJIS0sjOjqadevWue4vKytj165dDBo0SLUxAoFShK5mm4b64ylF9MJ3lCJ32SbnZErgr1w964+OHj0MQNu2bZs1TrduzkBg7949zZ5TICovL+eTTz4CYNKkO05b69azZ28uueRyAF5++QWfzU/4L00DrJycHJ588klGjRrF5MmTKSwspKCggIKCAsrLyxk3bhwVFRXMmDGD7Oxsli5dyttvv83kyZMBZ93U+PHjmTNnDitXriQrK4t77rmH1NRURo0aBaDKGIFA6VOlZpsGcAdYchWh78k2OaenBFj+3D7k6NGjALRt265Z4yiZlv3791FbW9vseQWaTz9dQlVVFZ07d+H884ee8djbb/8HBoOB779fwcGDOT6aofBXmi4RfvPNN9TW1rJ8+fKTek6NHTuWp556itdff50nnniCsWPHkpyczPTp0xk7dqzruKlTp2Kz2Zg5cyYWi4X09HQWLlzoyoQlJSU1e4xAoARA3mrT4M8fZP7K3QdLMlh/5M6s+mfg73A4OHLEuUTYpk3zAqzWrdsQHR1NRUUFBw7sd2W0hNNnnzmbTt9ww81nvVKzc+cuZGYO58cfV/Hhh4uYNu1BX0xR+ClNA6zbb7+d22+//YzH9O3bl8WLF5/2fpPJxLRp05g2bZpXx/B3SgZLCYjU4u8fZP7M3QcrXtN56JGydZC/7jBQVlbqek+1bt2mWWMZDAa6devBli2b2Lt3ry4DrOrqaioqyklKauHTXQl++20P2dm/ERISwqWXXt6ox1x77Y38+OMqPvtsKf/4xz9dPdeE+CPNa7CEb7gDLLWXCP37g8xf2Ww2Vx8sWSI8mfI699el6yNHnPVXLVokN/tqZnDXYf32m77qsCorK3jssX8zfPgQRo0axmWXXcgnn3yMQ81K4zP4+usvABg6dDixsXGNesz55w+lbdt2VFSU8913K7w5PeHnJMAKEkqxr9oZLOWDTJYIfUupvzIYDMTFNe6DIZgomdXycv98XR45cgSANm2aV+CuUJot792bpcp4aqiqqmTy5IksWfKhq5VOfn4ejz46k7lzn/F6kOVwOPjmm68BuPzyKxv9OKPRyOjRVwPw9ddfemVuIjBIgBUklOUGb2WwZInQt4qKCgFn/ZXJZNJ4Nvrj71s4HTvmDLCaW+Cu6N7d2XJGTxmsJ5/8Dzt3Oht7vvrqm6xfv52pU+8F4H//e4OlSz/y6vPv25fN0aNHCA0NJTNzmEePvfzy0QCsXbuGoqIib0xPBAAJsIKAw+Gol8GSqwgDgfKfelJSksYz0Scl8K+qqmrQosVfKEuEamWwunbtBkBBQYEuAoKff17DF198htFo5PnnX2LIkPMIDQ1l4sTbmDLlHgCeeWa2ay9Gb1i9ehUA6ekZHtdRdezYmZ49e2G321m58lvV5yYCgwRYQcBisbg+ZLx3FaEEWL6kZLASEyXAOpX6/d78sT5Q7SXCyMgo2rVzNlLWOovlcDh44QXnbh3XXz+eAQPObXD/hAmTGDhwEBZLNS+8MNdr8/jxx1UADBs2okmPV3pirVq1UqUZiUAjAVYQqN9sUe0rXiSDpY3CQiXAStR4JvoUGhpKSEgI4J+vTXeTUXWWCMHdD0vrhqNr1/7E7t27iIyM5O9/P/kqcqPRyH33PQDAV18tY9eunarPobS0hG3btgCQmTm8SWMMG+bc9Hn9+l/8uqGt8B4JsIJA/fortS+BVgIsi8UiTQx9SMlgJSRIBut03Fe4+leAZbPZXEtjagZY7o7u2ha6f/yxs2XOmDF/Pu0vCL169eGKK64C4K23Fqo+h02bNlJXV0enTp2b3Aajc+cutG3bjtraWn755WeVZygCgQRYQUD57UrtLu5/HNPfPsj8WXGxs45GlghPz197tOXl5WK32wkJCSE5uaVq4yoZrOzsvaqN6am8vDx++OE7AMaNu+6Mx06Y8HcAVqz4hqNHj6g6j40b1wMwaNDgJo9hMBhcWawffvhelXmJwCIBVhBQPmDU3ocQICQkxLWxrj/Wuvgrdw2WLBGejr/WByrBRJs2bVXNOHft6mzVsG9ftmuTe1/78svPsNvtDBhwrqvw/nS6devBkCHnU1dXx+LF76k6j02bNgDNC7AAhg93BlirV/9AXZ1s0iwakgArCHgzgwX+mynwZ8qVYJLBOj1/bTaq9hWEirZt2xEeHoHVauXw4UOqjt1YK1c6t0RT+kidzY03jgdg2bLPVCtBKC0tcS2TnntuerPGGjhwENHR0RQVFbJ7969qTE8EEAmwgkBFhTPA8kYGCyAmxlnrUlZW6pXxxckkg3V2yuvS3wJ/d4ClXv0VOIvHu3VTGo76vtD9+PFj/PrrDgwGAxdeeFGjHnPBBcNISmpBcXERa9b8qMo8Nm/ehMPhoFOnzrRokdyssUJCQhg0aAjgLHYXoj4JsIKAtzNYyhYTytYtwvskg3V2/tpsVFkibNtW3QwWuJcJtajD+v5757YyAwacS1JSi0Y9xmw2u7Jdn322VJV5qFF/Vd+QIRkA/PLLWlXGE4FDAqwgoGxj460MlrJVS2mpZLB8obq6iurqKkAyWGfirzVYSgZLzSsIFcqWOVr0wlL6Tl144cUePe7qq8cCsGbNj5SVNf+XOCXAau7yoGLw4PMA2Lp1EzU1NaqMKQKDBFhBQMksxcTEemV8JYMlAZZvKNmrsLAwr2UlA4G/1gYq2+SovUQI7gzWb7/5NoNltVrZunUz4Nws2RNdu3ajc+eu2Gy1risQm6qsrFS1+itF585dSE5OpqamxtVbSwiQACsoKBveKjUpaouLiwegrKzEK+OLhuovDxoMBo1no1/+2AS3oqKC4uJiQP0id8BVg3X06BGfBp7btm3BYrHQokUynTt38fjxo0ZdCsDy5f+vWfNQ6q86duykWgsMg8HgymKtWyfLhMJNAqwg4O0MliwR+lZxsdJkVJYHz8Qfa7CU+qv4+HivLOnHxye4AgtfZrE2bFgHQHr6kCb9UjBq1GWAswu88gtjU2zc6JyHWvVXisGDnXVYUugu6pMAKwiUl3uvDxbIEqGvSYF74yivd+X17w+ULXK8sTyoUBqO+jLAUjI7Q4ac16THO5cJu1BbW8uPPza9qefGjer0v/oj5fv69dcdqtSJicAgAVYQUDJYsbHezWBJmwbfkBYNjeOuwWp6xsPXvFngrvD1ljmVlRX8+usOwJnBaqqLL3YuE65Y8W2THl9WVsaePbsB9eqvFKmprejQoSN1dXVs2bJR1bGF/5IAKwgoHzDeq8GSDJYvuTd6lgzWmSiZVX/KKNTv4u4tSh2WrzJYW7Zsxmaz0bZtu2Z9XxdddAkAP/+82nUVrWfz2IjD4aBDh46qbkGkGDjQGbRt3rxJ9bGFf5IAKwh4/yrCeEAyWL4iGazGcQdYJdpOxANHjig9sHyRwdqDw+Hw2vModuzYBkD//gObNU737j1o27YdNTU1/PTTao8fr3b/qz8699xBAGzeLBks4SQBVhBwX0Xo7SL3Eq+MLxoqLDwB0OhmjcEqPj4ecGaw7Ha7tpNpJHcNlvcyWJ06dcJsNlNeXs6xY8e89jyKX3/dCUCfPuc0axyDwcDIkaMA95Y7nvB2gDVwoDPA2r371yZl2ETgkQArwNXWWrFYLID3G41WVVVRW2v1ynMIt4KCfABatlR/mSOQKDWHDofDL3YZqKurq9fF3XsZrJCQUDp27ATA7t27vfY84PzZK/VXvXs3L8ACuOgiZ4C1evUqrNbG/19TVlZKVpZ36q8UrVu3ITW1FTabje3bt3nlOYR/kQArwNW/gkq5bF1t0dExrkuv/anexV8pAVaLFhJgnUlISKhrw2d/qA8sKMintrYWk8lESkqqV59LaTjq7QDr+PFjFBcXYTab6d49rdnjnXNOP5KTk6moqPCoJcLGjRtc+w+2bJnS7HmcjpLF2rRpg9eeQ/gPCbACnPKbe1RUFGaz2SvPYTQaXdkCf/gg82fV1VWuBpHeKNQNNO4WIiXaTqQRlCsIW7Vq7bX3qkJp1ZCV5d0rCZXsVbdu3QkLC2v2eEajkQsv9HyZcMMGZzCWnp7R7DmciRJgSR2WAAmwAp63668USqG7BFjeVVBQAEBERKQrOyNOT6nD8ofXpfsKQu8tDyqUQndvZ7CU+is1lgcVyjLhqlUrGl1bt369s8Ho4MFNbxPRGMry444d26RcQkiAFei83aJBoWSw/OmKLX+kLA8mJyfLNjmN4A78SzSdR2O4e2B5r8BdobRq2Ldvn0e1TJ5Ss/5KMXDgIOLi4iguLmbLlrO3RCgsPMG+fb8BcO653ilwV3Ts2ImEhERqampcwaUIXhJgBThvt2hQuJuNSg2WN7kDLFkebAz/zGB5P8BKSUklNjYWm83G/v37vPIcdXV17NqlfgYrJCSE4cNHArBy5dmbjipXD3bvnkZCQoJq8zgVg8HAwIHnArJMKCTACnjKEqG3riBUKLUuJSUlXn2eYCcBlmeUjcj9KYPliyVCg8Hg9YajBw7kUFlZSXh4eJM2eD6Tiy92Nh1duXI5dXV1ZzxW6Znl7eVBhdJwdNMmCbCCnQRYAc5XGSxl42FlI2LhHdKiwTNKZtUfAn93iwbvZ7DAXei+d+8er4yvLA+mpfVSvWh/yJDziYyMJD8/74xLcXa7ndWrfwBg2LALVZ3D6SgZrG3bNvtN/zXhHRJgBTh3kbt3a7CSkpzbtijbuAjvyM+XDJYnlAyW3msDq6urOXHCeQGDN3tg1Ve/o7s3eKP+ShEWFkZm5ggAvvvu9FcT7ty5neLiIqKjYxgw4FzV53Eq3bunERUVRUVFBb/95p2frfAPEmAFOHeRu3czWEpXcQmwvMvdAytZ45n4B3/JYB07dhRw9pRTltu9TclgeSsIcF9B2Mcr4ytd3Ves+Pa0W/788MP3AFxwQSYhISFemccfmUwm+vd3BnOyTBjcJMAKcL6qwVIyWEVFJ7z6PMFOyXJIBqtx3BksfRe5198ix1dXh3br1g1wZkWLi4tVHbu21sqePc4WEN7IYAEMHZpJWFgYhw8fZPv2rSfd73A4WLHiG8B3y4MK976E0nA0mOkqwHrppZe4+eabG9y2e/duxo8fT//+/RkxYgQLFy5scH9dXR3z588nMzOTfv36MXHiRA4ePKj6GP5K+c1d+aDxFslgeZ/D4SAvLw+QAKux/CWD5csWDYqoqGg6duwIQFbWLlXHzs7+DavVSkxMLO3bd1B1bEVUVDSXXnoFAIsXv3/S/Tt2bOPQoYOEh0cwYoRvA6wBA5QAa5NPNtQW+qSbAOutt95i/vz5DW4rLi5mwoQJdOzYkSVLljBlyhTmzZvHkiVLXMe89NJLLFq0iMcff5zFixdjMBiYNGmSq7eLGmP4M+XqKV8GWPIfineUlJRgsVQDkJraSuPZ+Af3hs/6zmAdOeK7JqP19evXD8DVTkEtSv1Vr159vJqRu+66GwH49tv/59oEXfHJJx8Dzsak3tom7HT69OlDeHg4xcVFXmuDIfRP8wArLy+Pv//978ybN49OnTo1uO/DDz8kNDSUWbNm0aVLF8aNG8ett97Ka6+9BoDVauWNN95gypQpDB8+nLS0NObOnUteXh7Lly9XbQx/pgRY8fHe7f+SmOhcIrTZanX/Yeavjh931um0aJGsyrYjwUBpNFpRUUFtba22kzmD+kuEvtS3b1/AGwGWc7w+fbyzPKjo3fsczjmnHzZbLW+++Zrr9oKCfL744jMA/vKX6706h1MJCQmlX7+BAGzYsM7nzy/0QfMA69dffyUuLo7PP//c9duUYuPGjaSnpze4xDcjI4OcnBwKCwvJysqisrKSjAz3/lKxsbH06tWLDRs2qDaGP1OWRpTf5L0lNDTUVUgvy4TekZt7HJDslSdiY2MxmUwAFBcXaTyb0zt82BlgtWvX3qfPq/yfq3bXcW9eQfhHd9zxD8C5TLhnj3Nvxeefn0NtbS39+g1gwICBXp/DqQwa5OwarzQ6FcHHuzuKNsLIkSMZOXLkKe/Lzc2le/fuDW5T+v8cO3aM3NxcAFq1anXSMcePH1dtjKYymbSNX202m6sPVlJSImazd+fTokUS5eVllJQUYTZ38+pzNZZyDrQ+F2rIy3O+Htu0aeP1c+ktvj4fZrORxMQkCgryKSkponVr/QWndXV1HDlyCIBOnTr67NyaTEb69HEu4eXmHqekpIgWLVo0e9zq6mr27csGoF+/vl7/fjIzhzFixEhWrfqOqVMnc955Q/nyy88xGo3cf/9Dmr1XhgwZwosvwqZN6zGZDGdcKg2k/6f8nZor2poHWGdisVgIDQ1tcJuyNFJTU0N1tbMe5VTHKFtjqDFGU8XGRjTr8c114oSzJsFgMNChQyvVm/39UUpKCjk5OVgs5SQk6GsjYq3PhRoKC50tGjp16qC7n6+nfHk+UlJaUlCQr8vXJTh/0bNarZjNZnr16ub19+kfdenShezsbA4dyqZbt+YXpGdn78Jut5OSkkJamrod3E/nhRfmMWbMGPbv38+nnzrrax944AGGDz/fJ89/KpmZGb/XYRVTUHCUHj16nPUxgfD/lHDTdYAVHh5+UqF5TU0NAJGRkYSHhwPOOirl38oxERERqo3RVGVl1djtZ97GwZsOHHDW7MTExFJeXgPUePX54uKcdV6HDh2juLjSq8/VWCaTkdjYCM3PhRpycpxXtiYmJuvm5+spLc5HQoKzPvDAgSO6/Lnt2OFc1mrduo1P3qcK5Vz07Nmb7Oxs1q3byMCBGWd/4FmsXetcEuvVq4/Pft4GQxjvv/8xCxf+lyNHDnPppZdz8cWXaH6++/cfyC+//MzKlato2fL09XWB9P+Uv4uLi8BoVCeTqOsAKzU11dW5WqF8nZKSgs1mc93Wvn37BsekpaWpNkZT2e112GzavVkKC501J3Fx8T6Zh1LoXlBQoOn3fSpanws1KM0oU1Ja+f334svzoVzhmpeXr8uf24EDBwBn/ZUW8+vd+xyWLfuMnTt3qPL827dvB5wBli+/n/DwSO66627X13o414MGDeaXX35m3bp1XHPNjWc9PhD+n/J3al4Er+sF3/T0dDZt2tRgP6e1a9fSqVMnkpKSSEtLIzo6mnXr3FdplJWVsWvXLgYNGqTaGP5KKXBPSIj3yfMlJiqtGqTZqDccP34MgNTU1hrPxL+4W4gUaDyTUzt82Fl/5esCd4XSaV2tKwndBe7e6eDuT5RC902b1p91U2oReHQdYI0bN46KigpmzJhBdnY2S5cu5e2332by5MmAs25q/PjxzJkzh5UrV5KVlcU999xDamoqo0aNUm0Mf+WrHlgKpUBWqf0S6qmurnIFzK1aSYDlCb2/LpUAq21bbQKstLSeGI1GCgoKXI1sm6qsrJRDh5xL2b16SYDVu3cfwsMjKC4uZv/+bK2nI3xM10uESUlJvP766zzxxBOMHTuW5ORkpk+fztixY13HTJ06FZvNxsyZM7FYLKSnp7Nw4UJX0boaY/irkhLn9he+CrBSUlIA99VuQj3HjjmzV9HR0cTGendfyUCTlOTct1GvmVUlwKpfouBLERERdO3ajb1797Bjx1ZSUi5t8lhKu4e2bdt5vfeePwgJCaV//wH88svPbNy4nq5du5/9QSJg6CrAeuqpp066rW/fvixevPi0jzGZTEybNo1p06ad9hg1xvBH7iVC3/xH16pVG8C9lCXUo2QFtFpG8mfuDJb+lggdDgeHDyvn1jtbyjRG//7nsnfvHrZs2czFFzc9wNq501l/5e0Go/5EqcPasGEd118/XuvpCB/S9RKhaB5fLxGmpqYCzq7ZyibTQh2HDh0AoEOHjprOwx+lpDhfl3l5ubqrgykuLqKqqgqDweDzLu71Kc04t2zZ1Kxx3AFWv7McGTwGD3Zemblhw3rXRVUiOEiAFcCUJUJvd3FXREREup4rN1eyWGo6ePAAAO3bd9R0Hv6oZcsUDAYDVqtVd93clcxkamorTUsSBgw4F4A9e3ZTVdW01gYOh4MdO5wB1jnn9FVtbv6uV68+xMbGUVZW6roAQAQHCbACmHubHN/VQigF2LJMqC4lwOrQodOZDxQnCQkJITnZuXtDc3dnUJteln5TU1vRqlVr7Ha7K0jy1LFjRykqKsRsDiEtrZfKM/RfZrOZjAxnw9Offlqt8WyEL0mAFcB8vUQI7hYCevsg83fKEmH79trV6fgzZf9GvWVWDxzYD0DHjp01nomzKSY0fZlQWR7s3r2HbEb+B+efPxSQACvYSIAVwJTlEF8VuYP7g0wyWOqpqqqkoMBZoN2hgwRYTeHOrOor8N+/fx8AnTtrH2Apy4RNDbB27NgGyPLgqVxwQSbg7DVWVKSvZWrhPRJgBaja2lrXEqFymbovtG7t/CDTW6bAnynLSAkJicTGxmk8G//kzmDpM8Dq1Mk3e/adycCBzsbKW7duxmKxePx4d/2VFLj/UXJyS7p3T8PhcLB27U9aT0f4iARYAUr5LclkMhEX57sPZXcGS18fZP7MXX/VUdN5+LNWrZyvS2W7IT2wWq0cOXIYgE6dtM9gdenSlZYtU6ipqWHz5o0ePbampobdu38FJMA6HSWL9fPPskwYLCTAClBFRc6miomJSaptXNkY0gtLfdnZvwH6+BD2V0qXdKXnlB4cOnSAuro6oqOjXUX4WjIYDJx33gUArF27xqPH7ty5HavVSlJSC6kTPA13HdaP0q4hSEiAFaCUbUGUJou+0rats5dPfn4e1dVVPn3uQLV3bxbgLB4WTdOxo/Pqy0OHDuqmF9b+/c4C906dumAwGDSejZMSBPz8s2fLWJs2bQDg3HPTdfO96E3//gOJi4ujpKSELVs8yxAK/yQBVoBStgVRNmD2lfj4BFdRvbK0JZpnzx5ngNWjR0+NZ+K/WrVqjdkcgtVq1U0dlrI3nZ4yk0OGnIfBYGDfvt/Iy8tt9OPqB1ji1EJCQhgx4iIAVqz4VuPZCF+QACtAKQGWrzNY4L7kXCngFU1XWlriCgi6dZMMVlOZTCbXXn96CfyVpd/OnbtqPBO3+PgEevd2bnPT2GLs2lor27ZtASTAOpuLLroEgO++W6GbTKrwHgmwApSyRJiU5PsAS/mN/MCBHJ8/d6BRlgfbtGlLTEyMxrPxb0oXfL0EWO7MZJrGM2lIKcb+7rvljTp++/ZtWCwWEhIS6NJFP8GiHmVknE9UVBQFBfmuthYicEmAFaCUDJaWAZZksJpvz549AHTvrq8PYX+kvC737ftN45k49+tUCu711vV81KjLAGcGqzF7iq5e/QMA55+fKfVXZxEaGkpm5ggAvv32/2k7GeF1EmAFqBMnnI0ptVgiVHr6KF2qRdNlZe0CpMBdDcrPcM+e3RrPxJ2ZTElJ9Wkj4Mbo2rUbnTt3pba2lh9++O6sx//44yoAhg0b4d2JBYgrrrgSgK++WkZtba3GsxHeJAFWgFLqdlJSUn3+3Eqm4ODBA3I5cjMptS3SW6j5lEzR3r17sdvtms5FCfLS0vR54cKoUZcC8PXXX57xuCNHDrN/fzYmk4nzzhvqi6n5vfPOG0piYhLFxUXSEyvASYAVgOrq6sjPzwfcjT99qVWr1oSFhVFbW8vRo4d9/vyBoqAgn8OHD2EwGOjXb4DW0/F77dt3IDw8Aoul2tUdXytZWc4AS69Xhl5xxVWAsynmmZqzfv/9SsDZgiA2NtYnc/N3ISEhjB7t/Pl+/vknGs9GeJMEWAGoqKgQm60Wo9FIixa+2yZHYTQaXVe87dr1q8+fP1Bs3uzcE6579zQpcFeByWRyLRPu2rVT07ns3u1c+tVb/ZWiQ4eODBlyHg6HgyVLPjztcV9++TngrtsSjXPVVWMB+OGHVbI3YQCTACsA5eY6+9e0aJGM2WzWZA59+jgv9d65c4cmzx8IlGaEAweeq/FMAkf//s5MoKdbwaipoqKC7Oy9gPt9okfXXHM9AEuXfnTKpsF79mSRlbULszmESy+9wtfT82vdu/egV68+2Gy1LFmyWOvpCC+RACsA5ec7Aywt6q8Uffr0BZxbaIimUYKAAQMGaTyTwDFwoLNPk5YB1vbtW6irq6Nt23a0bJmi2TzOZvjwkbRp05bi4iLee+9/J93/zjtvAnDhhRfprlDfH9x00y0ALF78PlarVePZCG+QACsAaVngrjjnHGeAlZW1S66UaYLc3OPs3bsHg8HAoEHSvFEtAwYMxGAwkJOz33Wlra8pS7/9+w/U5PkbKyQkhDvv/CcAb731uqv1C0BOzn7+3/9zFsD/9a8TNZmfv7vkkktp2TKFEycK+PrrL7SejvACCbACkLJEqGWA1a5dB2JiYqmpqdFF3yF/s2qV8/L4fv0GkJiYpPFsAkdcXDw9ezrrntas+VGTObiXfvWfmbz88tH07NmLiooKHnpoGjU1NdTU1DBr1gxsNhuZmcNdv0wJz4SEhHLDDeMBeOON1zW/slWoTwKsAHTkiPPKPWXjZS0YjUZ69+4DwNatWzSbh79atcp5dZayd5lQz4UXXgzA99+v8PlzW61WV12iP9TWGY1GHn/8/wgPD2fdurVcf/1Ybrjhz2zbtoWoqCgeeOBhrafo18aNu46YmFj27ctmyZIlWk9HqEwCrACkdIhu166DpvMYNGgwAGvXrtF0Hv6mrKyMjRudm+deeOFIjWcTeC680Bm0rl37E6WlJT597k2bNlBTU0OLFsl06NDJp8/dVF26dGX+/FeIjo4mJ2c/+/fvIzo6mueff5E2bbT7JS4QxMbG8re/TQbgmWeeoaamRuMZCTVJgBVgHA4Hhw87M1jt2rXXdC5Dhw4DYP36dVLE6YGvvlqGzVZLt27d/eZD2J906dKN7t3TsFqtfPHF5z59bmVbmaFDh/nVtjKDB2ewbNlyZsyYxUMPPcLnn39DenqG1tMKCNdffxMpKakcO3aMt956Q+vpCBVJgBVgTpwowGKpxmg00rp1a03n0qNHT1q0SKa6ukrTq7b8ibPvkPOy7T//+RqNZxOYDAYDf/nLdQAsWvSez3YbcDgc/Pjj94B/biuTkJDANddcz7XX3iB1gSoKDw/n7rv/BcArryxg375sjWck1CIBVoA5fPgQ4OymHhISqulcDAYD55/v3D5jzZofNJ2Lv9i+fSu//baXsLAwRo++WuvpBKwrr7yahIQEDh8+yLJln/rkOXfu3M6RI4cJD48gI+N8nzyn8A9XXnk1F110EbW1tTzyyENy5XWAkAArwBw8eACAtm21XR5UDB9+IQDffPO17EvYCK+//goAl156BbGxcRrPJnBFRkYxYcIkAObPf9Yn3bS/+OIzAEaOvJjIyCivP5/wHwaDgaeffpqYmBh27tzO008/jsPh0HpaopkkwAowv/3m7BDdtWs3jWfiNGzYCBISEigoyGft2p+0no6u7dixjdWrf8BkMrkKX4X33HDDeLp1605xcTHTpv3Tq3WC5eXlrgDryivHeO15hP9q1aoVs2fPwWAw8PHHi3n33be0npJoJgmwAsxvv+0BoFu37hrPxCkkJJQrrnAudX366ccaz0a/7HY7zzwzG4DRo6+mQ4eO2k4oCISEhDJ79hyioqLYtGkD06fffcotYdTw8ceLqKyspHPnrpx33gVeeQ7h/0aMuJB//vM+AJ599mneemuhxjMSzSEBVgBxOByuAKtHjzSNZ+P2pz/9GYDvv1/JgQP7NZ6NPn344fts376VqKgo7rrrn1pPJ2h07dqdOXPmExISwqpV3zF+/HVs375V1ecoKipk4cJXAbj11r/51dWDwvduuWUiEyfeBsDzzz/D448/gsVi0XhWoikkwAogBQX5lJSUYDQa6dy5q9bTcenWrQfDh19IXV0dr7zyotbT0Z3du3/l+efnADB16r807cAfjM477wL++9+3SUxMYt++3/jrX6/nzjv/zo8/rqK2tnnLhnV1dTzyyENUVFSQltZLLlwQZ2UwGJg69V7++c9/uZYLb7zxL6xf/4vWUxMekgArgCgbK3fq1IWwsDCNZ9PQHXdMBeCbb75iy5bNGs9GP3Jzj3PvvVOoqalh2LARXHPN9VpPKSgNGDCQJUu+YMyYP2M0Gvn55zVMnXo7I0cO5f7772XRovfYsyfLo4CrurqamTPvZ/XqHwgNDeXRR5/EZDJ58bsQgWTChEm89NLrJCYmsX9/Nrfddiu33z6R1at/oK6uTuvpiUYwOORSBcD5m+aCBQv46KOPKCsr49xzz+WRRx6hQ4emd0MvLq7EZvPdG+GZZ2bz3ntvc801NzBjxiM+e97G+ve/H+Tzzz+hXbv2LF78iU+upDKbjSQkRPn8XDTGkSOHueOOv3P48EE6dOjIO+98SGxsrNbT8io9nw/FkSOHef/9d/j2269P2hDabDbTvn1HOnfuTOvWbUhNbUVqaisiI6MIDw/HZDJRVFTIjh3bWbbsU/LycjGZTDz55BwuvfRyjb6jU/OHcxEsznQuSkqKeeWVBXz00SLXfoXJyS0ZMWIkmZkj6Nu3H/HxCVpMOyAlJkZhMqmTe5IA63cLFizg/fffZ/bs2aSkpPDMM89w+PBhvvjiC0JDm9ZPytf/cV1//Z/JytrFU089y2WXjfbZ8zZWWVkZ1147htzc41xwQSbPP/+i13t16fVD5Oef1/Dgg/+itLSUNm3asnDhO6SmttJ6Wl6n1/NxKna7nW3btrBhwzq2bNnEzp3bqaio8GiMlJRUHn30SV32vfKncxHoGnMujh49wqJF7/LJJ0uoqChvcF/btu1IS+tF+/YdaNeuPW3btqNFi2QSExOJjY2Tuj8PSIClMqvVSkZGBtOmTeOGG24AnMFAZmYmTz75JKNHNy1Y8eV/XIWFJ7j44kwcDgfffvsDLVum+OR5PbV9+1Zuu20CFks1558/lKeeetar/Z709iFy5MhhXnxxHl9//QUAffr05dlnXyAlRZ/nS216Ox+ecDgc5OXlsm9fNgcO5JCbe4zjx4+Rl5dHdXUVFosFu91OQkIi7dt3IDNzOBdffKnulusV/nwuAo0n56KmpoYNG9axatVK1q//hUOHDp5lbDMJCQkkJCQRExNDVFQUkZGRREbW/zuK8PAwzOYQQkLq/wk97ddmsxmj0XiKPyaMRsPvfxv/8G/3H71SM8AyqzKKn8vKyqKyspKMDPfeWrGxsfTq1YsNGzY0KcCy2+2UlpZgtzsAAwaD8gfXv5XbjUYjzl8w6h9nqHfc2X3zzVc4HA769Omr2+AKoG/f/jz33HzuvXcKP/+8hmuuGcO9997PxRdfEpD1KRaLhQMHcti6dTM//vg9a9f+hMPhwGAwcO21N3Dvvffr9gNYNGQwGFxLghdckKn1dESQCgsLY+jQYa69XsvKSvn1151kZ//GkSOHOHz4EEeOHKaoqIiKinJsNhsFBQUUFBScZWTfOjkYcwdiJpMRg+FUwduZArnG/Dn7Y5544j+0aNFCle9RAiwgNzcXcDZ6q69ly5YcP368SWMeOXKECy5QZ1kgLCyM1q3b0LNnL4YNG8GoUQ1/K66rq+Ozz5YCzi0XzGb9/nYAMGzYcN59dxF33z2FI0cOc//999C2bVuuuupPDBs2nB49ejZ5WfaPlN9ElL8dDgfV1VWUl5dTUVHx+9/lDf6u/+/KykqsVit2uw2bzU5dnR273Y7NZsNuP9O/nX+Xl5ef1JH5ggsymTr1Hnr37qPK9+hP/ng+hHbkXOhHc85FYmICmZmZZGaeHPRbrVaKioooKiqksPAE5eXlVFVVUV1dRVVVFZWVlVRVVbr+n6uttVJbW9uIP87j6uocOBx12O12HA6H6+/GqKur02Wx/kMP3S8Blpqqq6sBTvpQDwsLo7S0VIspNVBTU0NOzn5ycvbz1VdfMGfOU9x6663ceuutJCQk8OGHH7JnTxZRUVHcdNN1JCTofxuO885LZ9Wq73nppZd44403OHLkCC+/vICXX16A2Wyma9eutGnThtTUVJKTk4mIiCAiIoLw8HDMZjN2u526ujrX3zU1NVRXV//+H0aVK3gqLy+nrKyMsrIy19dKoaivxMfH07NnT4YPH87o0aPp3LmzT59fj2JjI7SegvidnAv9UP9cRJGSkgB0UXnc03M4HK7gSQm46v9fXf++xnytBG71x2vs154+n8PhID4+XrWfhdRgAd988w1Tp05l27ZthIeHu27/5z+d22e8/PLLHo/pcDgoKir//aQ5v67/B5R/c5rb3fdVVlZy+PBBNm3ayGeffUJenjPjFhERSe/efdi+fStWq5V//vNeJk26XaWfiu9UV1fz7bdf8/3337F+/S+UlZV5/TlNJhPR0THExEQTHR3z+79jiI6OJiYmhpiY2N9vjyI0NAyz2YzJZMJkMtX7txmz2fm38/b6/3b+HRsbR0JCghSZ/s5kMhIbG0FZWTV2u/5+ew0mci70Q86FfsTFRahWIyYZLNxLg/n5+bRv794kOT8/n7S0pnVEd9ZWmairM9Dcz9a4uARat27LkCEXcNttd7FixTe88cZ/2bt3Dxs3rgfg4osvYfz4CX5ZrBoSEsbo0X9i9Og/4XA4OH78GPv2ZZOfn0d+fh5FRUXU1FioqamhpsaCzWZ3rdErf4eEhPxesBlJRISzcDM6Opq4uFhatUoGQoiIiCI6OobY2BjCwyN8FvQ46/CC/veYBuz2Or98rQYiORf6IedCe2qmnCTAAtLS0oiOjmbdunWuAKusrIxdu3Yxfvx4jWfXkNls5rLLRnPppVewc+d2cnL206ZNWwYOHBQQWRKDwUDr1m1o3bqNKuPJlVJCCCG0IAEWztqr8ePHM2fOHBITE2nTpg3PPPMMqampjBo1SuvpnZLBYOCcc/pxzjn9tJ6KEEIIIf5AAqzfTZ06FZvNxsyZM7FYLKSnp7Nw4ULVrmYTQgghRPCQIncvkmUp7ckSob7I+dAPORf6IedCP9RsNCoNUIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmexF6EV2u+wppQcmk1HOhY7I+dAPORf6IedCH4xGAwaDQZWxJMASQgghhFCZLBEKIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAEkIIIYRQmQRYQgghhBAqkwBLCCGEEEJlEmAJIYQQQqhMAiwhhBBCCJVJgCWEEEIIoTIJsIQQQgghVCYBlhBCCCGEyiTAUslLL73EzTff3OC23bt3M378ePr378+IESNYuHChRrMLPqc6H9999x3jxo1jwIABjBw5kqeffhqLxaLRDIPHqc5FfTNnzmTkyJE+nFHwOtW5yM/P595772XQoEEMGTKEf/3rXxQVFWk0w+BxqnOxY8cOxo8fz4ABAxg+fDj/93//h9Vq1WiGga2kpIR///vfDBs2jIEDB3LDDTewceNG1/1qfH5LgKWCt956i/nz5ze4rbi4mAkTJtCxY0eWLFnClClTmDdvHkuWLNFolsHjVOdj48aN/OMf/+DSSy/l008/ZdasWXz99dc8+uijGs0yOJzqXNS3YsUKPvroIx/OKHid6lxYrVYmTpzI4cOHefPNN3n11VfZtWsX999/v0azDA6nOhdFRUX8/e9/p3Pnznz66ac89thjfPLJJ8ydO1ejWQa2e++9l23btvHcc8/x8ccf07t3b/72t7+xb98+1T6/zV6ae1DIy8tjxowZbNq0iU6dOjW478MPPyQ0NJRZs2ZhNpvp0qULBw8e5LXXXmPcuHEazTiwnel8LFq0iIyMDG677TYAOnTowD333MNDDz3Eo48+SmhoqBZTDlhnOheK/Px8Hn74YQYPHszRo0d9PMPgcaZz8cUXX3D06FGWL19OixYtAFzviYqKCqKjo7WYcsA607nYvHkzJSUlTJ8+nejoaDp06MDVV1/NmjVrJOBV2cGDB/npp5/44IMPGDhwIAAzZszgxx9/5IsvviA8PFyVz2/JYDXDr7/+SlxcHJ9//jn9+vVrcN/GjRtJT0/HbHbHsBkZGeTk5FBYWOjrqQaFM52PiRMnMn369JMeY7PZqKio8NUUg8aZzgWAw+HggQceYMyYMQwePFiDGQaPM52L1atXk5GR4QquADIzM1mxYoUEV15wpnMRHx8PwAcffIDdbufIkSP88MMPp3z/iOZJSEjgv//9L3369HHdZjAYcDgclJaWqvb5LRmsZhg5cuRpa0dyc3Pp3r17g9tatmwJwLFjx0hKSvL6/ILNmc5Hr169GnxttVp588036d27N4mJib6YXlA507kA5xJJQUEBr7zyCq+++qoPZxZ8znQuDhw4wKBBg3jxxRf59NNPsdlsDB06lGnTphEbG+vjmQa+M52LQYMGcdtttzFv3jzmzp2L3W5n8ODBPPzwwz6eZeCLjY1l+PDhDW77+uuvOXToEEOHDmXu3LmqfH5LBstLLBbLSctOYWFhANTU1GgxJfE7m83G9OnTyc7O5pFHHtF6OkEnKyuLBQsW8Mwzz8jSrMYqKir49NNP2bNnD88++yz/+c9/2LRpE3feeScOh0Pr6QWVsrIyDhw4wE033cRHH33EvHnzOHToELNmzdJ6agFv06ZNPPTQQ1x00UWMHDlStc9vyWB5SXh4+ElXfygnJjIyUospCZwfKHfffTfr1q1j/vz5kn73sZqaGu677z7uuOMO0tLStJ5O0AsJCSEyMpJnn32WkJAQAOLi4rjmmmvYsWMHffv21XiGwWPOnDmUlZXxwgsvANC7d2/i4uK49dZbueWWW+T94iUrVqzgvvvuo1+/fjz33HOAep/fksHyktTUVPLz8xvcpnydkpKixZSCXn5+PjfddBNbtmzhtddek9YAGti2bRu//fYbCxYsYMCAAQwYMIBXX32VY8eOMWDAAD7//HOtpxhUUlNT6dSpkyu4AujWrRsAR44c0WpaQWnTpk2cc845DW5TfgHMycnRYkoB791332XKlCkMGzaM1157jfDwcEC9z2/JYHlJeno6ixYtwm63YzKZAFi7di2dOnWS+isNlJaWcsstt1BRUcH7779Pjx49tJ5SUOrbty/ffvttg9veeecdvv32W9555x15b/jYoEGD+N///ofFYnF9uOzduxdwXmkrfCc1NZU9e/Y0uE05Fx07dtRgRoHt/fff57HHHuPmm2/moYcewmh055vU+vyWDJaXjBs3joqKCmbMmEF2djZLly7l7bffZvLkyVpPLSjNnj2bw4cP88wzz5CYmEhBQYHrj91u13p6QSM8PJwOHTo0+BMXF4fZbKZDhw5y5ZqPXX/99ZhMJv71r3+xd+9eNm3axMyZMxkyZAi9e/fWenpBZcKECaxevZrnn3+eQ4cOsXbtWh544AGGDx9Oz549tZ5eQMnJyeHJJ59k1KhRTJ48mcLCQtfnQXl5uWqf35LB8pKkpCRef/11nnjiCcaOHUtycjLTp09n7NixWk8t6NTV1fHVV19RW1vLLbfcctL9K1eupG3bthrMTAhtJSYm8t577zF79myuvfZaQkNDufjii3nwwQe1nlrQGTp0KK+++iovvvgib7/9NgkJCYwaNYp//vOfWk8t4HzzzTfU1tayfPlyli9f3uC+sWPH8tRTT6ny+W1wyKUiQgghhBCqkiVCIYQQQgiVSYAlhBBCCKEyCbCEEEIIIVQmAZYQQgghhMokwBJCCCGEUJkEWEIIIYQQKpMASwjhN6SrjBDCX0iAJYTwCytXruT+++93fb1u3Tp69OjBunXrNJnPAw88QI8ePejRowf33Xdfs8bq0aOHa5Pfxrjhhhtcz+3J44QQviOd3IUQfuGtt95q8HXv3r1ZvHgxXbt21WZCQHJyMgsWLCAxMbFZ4yxevJjU1NRGH//YY49RUVHBdddd16znFUJ4jwRYQgi/FB0dTf/+/TWdQ2hoqCpz8HQMLYNKIUTjyBKhEEL3br75ZtavX8/69etdy4J/XCJ84YUXuOyyy1ixYgVXXnkl55xzDmPGjGHLli1s3bqVa665hr59+3LllVeydu3aBuPv3buXyZMnM3DgQAYOHMhdd93F4cOHPZ5njx49+OCDD3jggQc499xzGTx4MI8//jgWi4Wnn36ajIwMhgwZwowZM6ipqWnwOGWpT/m+1q5dy8SJE+nXrx/nn38+Tz/9NDabrRk/RSGEL0mAJYTQvUceeYRevXrRq1cvFi9eTO/evU95XG5uLrNnz+b222/n+eefp7S0lKlTp3Lvvfdy7bXX8txzz1FXV8c999yDxWIBICcnh+uvv57CwkKeeuopnnjiCQ4fPswNN9xAYWGhx3OdM2cOoaGhLFiwgDFjxvDOO+/wpz/9iePHj/PMM89w/fXX8/HHH/POO++ccZz77ruPc889l1deeYWrrrqKN954g48//tjj+QghtCFLhEII3evatSvR0dHAmZfTqqureeSRRxg2bBgA+/bt49lnn+WJJ57gL3/5CwB2u52pU6eSk5NDz549WbBgAeHh4bz11luu5zjvvPO4+OKLef311xsU1jdGly5d+M9//gNAeno6H3/8MbW1tcyZMwez2UxmZibfffcdmzdvPuM411xzDXfddZdrPitWrGDVqlVcf/31Hs1HCKENCbCEEAFl4MCBrn+3aNECaBiUxcfHA1BWVgbAL7/8wpAhQwgPD3ctwUVHRzNo0CB+/vlnj59/wIABrn+bzWYSEhLo06cPZrP7v9v4+HjKy8sbPQ5AamoqVVVVHs9HCKENCbCEEAFFyULVFx4eftrjS0pK+Oqrr/jqq69Ouq8pVwee6vkjIiI8HuePczYajdIHTAg/IgGWECKoxcTEcP755zNhwoST7qufdRJCCE/I/x5CCL9gNBqpq6tTfdzBgweTnZ1Nz549XQGVw+Hgvvvuo0OHDvTs2VP15xRCBD65ilAI4RdiY2PJyclh7dq1lJaWqjbunXfeyaFDh5g8eTIrVqxg9erVTJkyhS+//JK0tDTVnkcIEVwkwBJC+IWbbrqJkJAQJk2axI8//qjauGlpabz33nsYDAamT5/O1KlTKSgo4MUXX+SSSy5R7XmEEMHF4JCqSSGE8NgDDzzA+vXr+e677zSbQ48ePfjHP/7BlClTNJuDEOLUpAZLCCGayGq1snXrVhITE2nfvr3Pnjc7O5uKigqfPZ8QwnOyRCiEEE1UUFDAddddx/z58336vA8//LBs9CyEzskSoRBCCCGEyiSDJYQQQgihMgmwhBBCCCFUJgGWEEIIIYTKJMASQgghhFCZBFhCCCGEECqTAEsIIYQQQmUSYAkhhBBCqEwCLCGEEEIIlUmAJYQQQgihsv8PuRM8A3UVB1sAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "sns.set()\n", + "\n", + "# Load the measurement \n", + "data = pd.read_csv('./data/sample_chromatogram.txt')\n", + "\n", + "# Plot the chromatogram\n", + "fig, ax = plt.subplots(1,1)\n", + "ax.plot(data['time_min'], data['intensity_mV'], 'k-')\n", + "ax.set_xlim(10, 20)\n", + "ax.set_xlabel('time [min]')\n", + "ax.set_ylabel('signal [mV]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, it looks like there may be six individual compounds in the sample. Some \n", + "are isolated (e.g., the peak at 11 min) while others are severely overlapping\n", + "(e.g. the peaks from 13-15 min). This indicates that some of the compounds \n", + "have similar elution times through the column with this particular mobile phase.\n", + "\n", + "While its easy for us to see these peaks, how do we quantify them? How can \n", + "we tease apart peaks that are overlapping? This is easier to say than to do. \n", + "There are several tools available to do this that are open source (such as [HappyTools](https://github.com/Tarskin/HappyTools)) \n", + "or proprietary (such as [Chromeleon](https://www.thermofisher.com/order/catalog/product/CHROMELEON7)). However,\n", + "in many cases peaks are quantified simply but integrating only the non-overlapping \n", + "regions. \n", + "\n", + "Hplc-Py, however, fits mixtures of [skewnormal distributions](https://en.wikipedia.org/wiki/Skew_normal_distribution) to regions of the chromatogram that contain either singular or highly overlapping peaks, allowing one to go from the chromatogram above to a decomposed mixture in a few lines \n", + "of Python code." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3337.39it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:08<00:00, 4.10s/it]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 18.533) R-Score = 0.9977\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0025\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0013\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 18.542 - 19.000) R-Score = 10^1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5944813.90350443149.0696795.177888e+062
014.450.349681-2.99602134710.5675084.165268e+063
015.530.3134761.61561315048.9650591.805876e+064
016.520.3392471.90911410805.7979781.296696e+065
017.290.3392531.56526612533.5412841.504024e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594481 3.903504 43149.069679 5.177888e+06 2\n", + "0 14.45 0.349681 -2.996021 34710.567508 4.165268e+06 3\n", + "0 15.53 0.313476 1.615613 15048.965059 1.805876e+06 4\n", + "0 16.52 0.339247 1.909114 10805.797978 1.296696e+06 5\n", + "0 17.29 0.339253 1.565266 12533.541284 1.504024e+06 6" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gUVdsH4N/M9k2y6dkQEtIgQwcBsbwgIAiiiKKvryhiwYoFRZEiCAqiiIgY/LDQBQTFgopiBQuKiGABkgxJSCe9Z/uU74/dQAhJSDab/tzXlYtk5syZM9klO8+cc57DyLIMQgghhBBCCOkK2LZuACGEEEIIIYS0FgqACCGEEEIIIV0GBUCEEEIIIYSQLoMCIEIIIYQQQkiXQQEQIYQQQgghpMugAIgQQgghhBDSZVAARAghhBBCCOkylG3dgE6sDIAGQG4bt4MQQgghjdcNgA2AXxu3gxDSQhhaCLXFWGRZ1kpS5/z9siwDuraOh66tY6Jr65jo2jomlmXAMIwVgK6t20IIaRnUA9RychmGia6oMEMQpLZui0cplSz8/b1A19ax0LV1THRtHRNdW8cVEOAFhYKh0RuEdGI0B4gQQgghhBDSZVAARAghhBBCCOkyKAAihBBCCCGEdBkUABFCCCGEEEK6DAqACCGEEEIIIV0GZYEjhBBCCGnnjh496gPnGkX08JqQC0kAcocOHVrZmMIUABFCCCGEtFNHjx5lATzLMOxdDMOoADBt3SZC2iFZlmXH0aNH3wPw0tChQxvM0d/mARDHcSoAzwOYDsAfwN8A5vE8/5tr/2AAbwAYBqAYQDzP86tqHM8CWALgftfxBwE8wvN8So0yza6DEEIIIaQNPKtQKGcaDP52tVprZhimc65AS0gzyLLM2O1WfUVF6UxRFADgxYbKt3kABGARgBkA7gZwGsA8APs4jusDwAbgOwB7ADwM4HIA6ziOK+Z5frPr+Odc++4FkANgpev4fjzP2zmOC2xuHS158YQQQgghdTl69KiBYdi7DAZ/u4+Pf3Fbt4eQ9kyj0VkABJaVFd919OjRNxoaDtceAqAbAbzP8/y3AMBx3NNw9sRcASAOziBoJs/zAoBEjuN6wRkkbeY4Tg3gaQBzeZ7/ynX8bQDOALgZwC4AD3qgDkIIIYSQ1hbKMIxKrdaa27ohhHQErl5SvSyjG4B6A6D2MJGuGMAkjuOiOI5T4FzA8jeAkQB+dgUu1fYD4DiOCwEwGICPaxsAgOf5MgDHAFzl2uSJOgghhBBCWhsLgKFhb4Q0juv/CoOLxDjtoQfoCQAfAEgDIMKZxeG/PM+nchwXDuB4rfJnXP/2ABDu+j6rjjI9XN97og63KRTtIcb0rOpromvrWOjaOia6to6Jrq3jYijFACGdXnsIgPoAKAVwE5zzbx4A8B7HcVcB0MPZG1ST1fWv1rUf9ZQJcH3viTrcZjDomltFu0XX1jHRtXVMdG0dE10bIYS0P20aAHEcFwlgB4CxPM//4tr8J8dxfQG8AMACQFPrMK3rX5NrP1xlLLXKmFzfe6IOt1VUWCCKDWbi63AUChYGg46urYOha+uY6No6Jrq2jsvXVweW7Zy9W8QpPn512P793wbu2fN17RFC7VJSUoI2OztbM27c+PK2bktn0dY9QMMBqAAcqbX9dwDXAcgAEFZrX/XPOa5jq7el1irzj+v7LA/U4TZRlCAIne8DAqBr66jo2jomuraOia6t45Fptg1pZ+bPf7rX1VdfU0wBkOe09SOO6nk3A2ttHwAgGcDPAEa6kiNUGwuA53m+AM4ApQLA6OqdHMf5ARgCoLpHyRN1EEIIIYQQ0gYoKve0tu4B+gPOIGMrx3GPAMgGcBeAcQBGwLku0FwAGzmOWwlnj9GTcK7ZA57nbRzHvQngFY7jCgGkA3gVzsDqE9c5NnmgDkIIIYSQdkGSJJjN5jZ5iK3X66WmDhEcMWLY0FtuuS33xx9/CHQ4HOwbb7yVpNfrpbVrXw//99+/DCaTSeHr6yuMGTOu+Ikn5uQkJiboHnronr7r1m1IHDhwsBkAnnzykdgTJ/41fP31j38plUrIsozrrx836O67Z+Tcdtu0otrnLCoqVK5evTL82LEjvqIoMnFxvaueempeVmxsz7Nzvt99d51x7949xsrKSmXPnr1M8+cvTq/eX1ebw8Mj7O+883/dfvppf2Bpaamqe/fu1unT7z1z7bXXlwHA7t27Anfu3Nbt3nvvz9m48d3w8vIyVZ8+/SoXLXohfcuWjaE//vh9oFKplCdPvjn/4YcfywMAm83GvPnm62EHD/7sX1JSrNZqddKgQYPL589/LjMgIFC86aZrBxQVFak//PD9bseP/+2zfv17fGlpieLNN9d0P3Lkd7/KykpldHSs6cEHH8m5/PIrq6qvbc+ejwN27NjarbCwUNOjRw/LmDHXFG/c+HbEwYN/HnXnNWFZ1q3ra6/aNADieV7iOO5GOFdr3QLAH86MbWN5nv8dADiOmwAgHs601LkAnuF5fmuNahbDeR0bAOjg7PGZUL2AKc/zBc2tgxBCCCGkPZAkCXfccUvvpKREr7Y4f+/efavef/8jvqlB0LfffhX88suvJYuiwPTqFWe7445b+vr6+jleeWXNKR8fH/Gnn/b7rV//VkTfvv1NEyZcVxYUFGQ/dOhXw8CBg82iKCIh4YSPzWZj//rrqNell15m+vvvY/rKygrl1VdfU1b7XIIg4IknZsYBjPz88y+lBgYGCmvXvh7+9NOPx3300RfHAaCoqEh94sS/Pi+/vDrZbrcxL730QvRLL70QtXHjNr6+Nj/55COxp0+n6h9/fHZmdHSs9euvvwxYvvz5WJZlU8aPn1gOAMXFRerPP/805MUXV6aYzSb2uefm9br33mn9xo69pmjduo2JX331eeD27Vu6jxo1pqxPn37W115bEX748CG/efMWpkdE9LDxPK9bteqlqHfe+b+wBQsWZ23YsC1xxoxpff/zn1ElDz44M1cURcya9XCcw+Fg5s1blBYcHOL44IP3Q+bPfypuzZp1SYMHDzF///03vqtXvxJ9110zskePHlt2+PBvhg0b3o5o7mvizvU16U3Sitq6Bwg8z5cCeNT1Vdf+I3Auilrf8SKci5rOa6BMs+sghBBCCGkfOt66QKNGXV08ePAQMwBYLBbm6quvKZ4wYWJpRESkHQCiou4r2L17V2hKyindhAnXlQ0bdlnZsWNHDADy/v77mJdCoZTj4npXHTly2OfSSy8z/fLLT369enFVwcEhQu1z/frrz4aMjHTd5s3vn+jVK84GAAsXPp++ZcuG0JKSYiUAKBQKedmyV9J8fX1FAJg4cVLh9u1butfX5lOnkrR//vmH3/PPL08ZN25COQA89tiTuadPp+h37NjarToAEkWReeqpeRnVN/8DBgyqOHUqyfuZZ57NZhgGDz74aO6HH+7slpx8StenTz9rnz59TWPGjC294ooRVQAQERFp/+67ryvS00/rACAoKFhgWVbW6XSSv3+AuH//d4a0tNP69eu3nqw+x6JFL2SeOpXktWPH1tDBg4ec3rVrR+jll19Zcv/9D+cDQM+evQqzs7M0X3yxx9ic18Sd62vOe6YltXkARAghhBBCGodlWbz//kd8RxoCBwDh4RFnh57pdDp5+vR7C7766gv/7du3ep05k6PJyEjTl5WVqkRRYgBg5MjR5UuWPBtssViYw4cP+fTr17+ye/cI6z//HDMAyDty5LDvVVeNLqnrXMnJp3R6vV6sDn4AwGgMFebNW5Rd/bOvr69QHfwAgI+PQbTb7eddWM0283ySDgCGDbusqmaZAQMGV7733sbwmtt69jx3Xo1GIwUHG22Ma4EprVYrA4DNZmMBYMqUW0t++eUnn9WrX+mek5Otyc7O0p05k6Pt3bvPeeeplpKSrNPp9GLN4IJhGPTt27/q2LE/DQCQnn5aP2LEVaU1jxs06JKq2gFQU18Td66vvaIAiBBCCCGkA2FZFt7e3h0qBZ9Goz3bXrPZzD700D2c1WplR44cVTp+/MTiQYMGZz722IO9q8tcccV/KlUqpfT777/6/PXXUcOYMWNLIiOjbJ9//kloVlaGOj39tP7555efrutcCoVSZi6yoi3LshftRavZ5voSEUiSyCgUivN2qlSq835m2frbsnTpcz1+/fXngNGjxxZffvl/ynv37pu7Y8fW0OLiQnVd5WW57kuTJAlKpVJ2no+V5UakM2zqa+LO9bVXFAARQgghhJBW89NP+w1paaf1n3zy5T8hIUYBAEpLSxTl5eXK6kBDrVbLgwZdUvHzzz/6JSef8p4//7mM8PAIO8Mw8rp1a8O6dQuz1kxoUFNMTKzVZDIpTp9O1cTExNoAoLi4SHn77Tf3f/HFlcnutDkurrcFAP7887B39RA4ADh+/B/v7t0jLPUfWb+SkmLFt9/uC543b+HpG26YcrbHJjs7U6vV6moEX+cCjJ494yxms1mRmHhSW7MXKCHhpHd4eA8rAERGRlkSEk56Ayio3n/y5PEG54w15jXpTNp19xQhhBBCCOlcjMZQOwB8/vmngVlZGerDhw95z5kzq6coiozd7jh7t3/llSPKDhz4Ichg8BFiY3vaNBqNzHF9qg4e/Cnw8suvLKuv/pEjR1VER8ealy5dFH306BGvpKQE7fPPL4zy9fVzDBp0idmdNnNcH+vgwUPK4+NX9/j++298U1KSNW++uabb0aNH/P73v9vz3anTYPAVdTq9ePDgz36nT6dqEhJO6JYseTYyPT1N73Cc+z1otVoxJydbU1CQrxw1akx5RESkZenS52J+++0Xn1OnkrTLli3ukZ2dqZs69Y58ALjjjrtyDx/+zX/jxneMp0+naj766IPAL7/8IqShtjT2NeksqAeIEEIIIYS0miFDhplnzHgwa8+ej407dmzt7u8fYB85cnRJUFCwnefPZbcbM2Zc+Zo1q5j+/QdVVG+75JKhFceP/2MYNerqsvrqZ1kWK1e+nrJ69cqI+fOf7gUA/fr1r1y9em2yRqNxuztjxYrVp9esebX76tUro8xmsyIiIsLy7LPPp06ceH29bWmIUqnEokUvnH777bXh9913Zz8vL2+hf/+BlXfeeU/ORx/t6mYymVgvLy/pxhtvKdi06Z3wJ554RLdz58cJ8fFvnVq9emX4Cy8sinU4BCY6Osa8YsXqU0OHDjcBwJgx4yoKCvIzdu3aEbpt2+bu0dEx5gkTJhbu27e33iCosa9JZ8E0ZowgcctpANGlpaZOt1K2UsnC398LdG0dC11bx0TX1jHRtXVcAQFeUCjYNAAxbd2Wo0eP9mZZxdchId2r1Gptu82oRdqXQ4cOegcFhThqJoF46621od9+uy/o00+/OtGWbWtpdrtVW1CQ4y1J4rVDhw5Nqq8c9QARQgghhBDSSfz++2++P/64P2Du3GfTIyOjbAkJJ3Wff/6pceLESYVt3bb2ggIgQgghhBBCOolHHnnijMViYVeseDG6srJCGRAQaL/xxpvzH3hgZl5bt629oACIEEIIIYSQTkKj0cjPPrskC0BWW7elvaIscIQQQgghhJAug3qACCFdUklJCd7b9A6CweCWmY9D69XpktwQQgghpA7UA0QI6XJkWcbCObMw4K+/cGlSEk7OeRKi2a2lIQghhBDSwVAARAjpco4d+xM9CwoQodMDAHwcDuR+9mkbt4oQQgghrYECIEJIl/P9t/swOigYAHDMYQcAlP/6C2Sp861pQgghhJDzUQBECOlSJElC3qHf4KNUQdTpUDH8MmzMSMPnajXAMG3dPEIIIYS0MAqACCFdSnLyKeSVFON4VSX8/zMSgy+9DN8U5uOXpJNgKAAihBCPGzFi2NDdu3cFNrb8jz/+YJgy5br+o0dfPuSVV5aHt2TbGiM+fnXYTTddO8CTdTbld5Kdnan+/PNP/T15/q6OssARQrqUf//9G4lVlfjW1xc333Y7vKqqAABnzuSgpKQEAQEBbdxCQgjpXD7+eO8/BoOv2Njy69e/FW40htreeGPdKW9vn0Yf15E05XfywgvPRYWEhNgnT55S2tLt6iqoB4gQ0qX8++/fAICBAweBYRj4+PigX0wsJgQbkf7+trZtHCGEdEJGY6ig0+nkxpY3mUyKvn37mXr0iLIHBAR2ygCoab8TmYYneBj1ABFCupScE8cRoFJj4MDBZ7f15/rglsIiSP/8DVkQwCjpTyMhpH0TLZZ6H2IzLCuzGo3c0mUba8SIYUOfeGJO+q23Ti1euPCZKEmSGH//AMeBAz8E2mxWduDAwRULFizOMBpDhREjhg0FgA8/3Nntww93dnv//Y+OR0RE2tevf8u4b9/ekPLyMmVoaDfbrbfenjdlyn9LAOC3337xmTt3dtxdd83I/vjjD7sFBQXbXnzxldPTp/+v/+23Tz/z5Zefh6jVKmnLll0JDMNg9epXwv/445CfIAhMdHSs+ZFHZmUPHjzk7FoIO3duC9q9e1doaWmJetCgS8pDQoz2hq7vgQfu4vr1G1hZWlqi+vXXnwNUKpU0adJNBePHTyxZsWJZ1OnTKV6hoWHWuXOfTb/kkqHmmr+Ta665tuyuu/7XLyoqxhwf/3YKAPz8848+Cxc+E7dgweLUTz/dbUxMTPBOTEzwvumma3327Pn6+E03XTvg6qvHF8+a9dSZmm0ICTHali9/Nb2u38d77+1KzM/PU73++qsRf/99zKBQsHJcXG/TE0/MyYqN7Wlr6mva0dGnPCGky6isrMTlMjB/0BB4FRWf3d69dx+Ycw9Ar1TCnp8HTfc2H3JOCCENSn185iX17dPFceURcxekVP98+qlZg2SHo87ARhMVXRW5aAlf/XPavKcHSGZznfeH6rDu5qilyxOb024AOHToV/8RI0aVvPHGOv7MmRz1yy8vi3nzzTXdly1bkfHxx3v/eeCBu/r+5z+jSu655768oKBg4fXXV3b/6acDAY8/PjszNraX9c8/D3v/3/+tiayqqlJMn35PYXW9hw8f8lu3bkOi2WxmFQpWBoAff/wh4PXX3+QtFgvr6+srzphxZ2+lUim9+OLKFIPBIH7xxZ7AJ598pPfate8kDhgwyPL555/6v/32mz3uv//hrCuuGFHxww/f+m/fvqV7YGBgg0HQnj0fhd566+25GzZsO/nll58F7ty5LeyHH74NfPjhx7LCwyPsr7zyYuTq1a9Ebtv24Xm/Pz8/P/GZZxamPfvsnLjPPvskYOTIUeUrVy6PHjt2fNF1191QdsUV/6l86qnHegUFBdvnzVuU2ZTfc83fh9VqZR9//CEuKira/Prr/8crFKy8Y8d7oY88cl+fzZvfPxkW1t3RlLo7OgqACCFdRnp6GmK8vAAAvjExZ7dHRkUj0/oVenv7wJadTQEQIYS0IJ1OJy5Z8mKGSqWS4+J6Ww8d+rX46NEjvoBzaBjLsrJOp5OMxlDBZDKxX3yxxzhnzoK0ceMmlANAdHSMLTf3jObjj3eF1gyAbrvtjrzq3ozMzHQ1AFx//eRCjutjBYBffvnJJzmZ99qzZ98/QUHBAgA89dS8nISEk967dm03DhgwKP2TTz40XnnliNLp0+8tBICePXvlJSae9EpPP61v6JoiInpYHn30iVwAuPfeB/N37tweNnLk6JLx4yeWA8D48ROL169/O6KuY0eOHFU5ceINBW+//WbEDz98G+Dl5SVWBzv+/gGiUqmU1Wq1VN3mxqr5+/jggx1BlZUVyhUrVqepVCoZAJYufTn95puvH/DRRx8E1+xN6gooACKEdBlZp1MQo9UBALSRUWe39+gRhX0WM3p7+8Ce26U+AwghHVTs2rf+qm8fw7LnDVOLWR3/T2PLRr/y2vHGlnWX0Rhqq74JBwAvL29REIQ657mcOpWkdTgczGuvrYhavfqVqOrtoigxguBgLBbL2eOioqIvGMrVo0ektfr7pKQEPQDcdttN52V0EwSBcTjsDABkZWXqRo8eW1Jzf9++/asuFgCFhYWfPY9er5cAoHv37mfbo1ZrJEFw1DuX56mn5mYfO3bE99ixP33femtTQlPmTNWn5u/j1Cleb7FYFNdeO3pwzTIOh4PNysrQNvdcHQ0FQISQLqM0KREsw8CsUEDp53d2e3h4OIrsztENVWdyENRG7SOEkMZS6HSNXrm5pcq6q2bwc07d9/uSJDEA8OyzS07HxPS01t6vqTEnSavVXtB2rVZ7dr8kSYxOpxPfeWfLBcP41Gq1BAAMw0Cu1RSlUnnRYESpVFxQhmEan2ssPz9PVVZWqlIoFPKhQwcNAwYMtDR8xPmnEwTxguCq5u9DkiR06xZmXbFidUrtcl5eXp0y0URDKAscIaTLcGRnAwBsNYIfAFCp1BBcQ+PMebmt3SxCCCH16NkzzqpQKOTc3DPqmJhYW/XXzz8f8N22bZORZRt/Kxsb28tisVgUdruNqVnXli0bQvfv/84PACIjo8wnTvzjXfM4nk/08uxVnU+SJCxduig6MjLa/MgjszLff/+97idOHNedK8GcF+0oFEq5qsqkqHl8QUG+uqFzxMTEWoqKitQGg0Gsvu4ePSJtb765pvsffxzy8fQ1tXcUABFCugxNeRkAQFXHHB91cDAAQCqlZRYIIaS98PX1Fa+55trCbds2d//kkw8D0tPT1B999EHgli0bw/39A5o0J2bMmLHlkZFRliVLno09ePBnn9OnUzUrVy4PP3Dg+6Do6FgrANx++115f/zxu//69W8ZU1NTNFu3bgw5fPhQiy5C+u6760LT0tL0Cxc+n37bbdOK+vTpV/nii4ujbTYbAwA6nU4qKMjX5ORkqwCgT5++VQcP/hRw6NCv3ikpyZqlS5+LtFjMiobOMXnyzSXe3l7ivHmzY48e/cMrOZnXPvfcvOi//z7q26sXd5Heps6HAiBCSJcgSRL8BOdnpX8cd8F+dXgEFiQcx8Ho6NZuGiGEkAbMn/9c1o033pz/3nubu99zz+39d+zY2m3q1GlnHn+8aRP3FQoF4uPfPtWrV5xp+fIlMfffP73vv//+7bNo0QupI0eOqgSAcePGl8+d++zpb7/dF3TffdP7HTz4s9/kyVPyW+bKgOPH/9Xt2rU9bPr0e3JiYmJtALBgwXMZRUWFmtdfX9kdACZPvrkwKytTO2PGtH6iKOKxx2bnxMVxVQsXzu31+OMP9TYYDMKVV45s8Omdr6+vuHbtu0m+vn7C/Plzes2ceV+fgoJ89UsvrUru3bvvBUMLOztGrj3QkXjKaQDRpaUmCEKLD6dtVUolC39/L9C1dSxd/drOnMnBi9P+h54+Ppi5fit0RuN5+zdvXo833ngN118/GcuXr2yNZjdKV3/dOiq6to4rIMALCgWbBiDmooVb2NGjR3uzrOLrkJDuVWq1tsvdpBLSVHa7VVtQkOMtSeK1Q4cOTaqvHPUAEUK6hPT0NPxWWoyDSsUFwQ8AhIZ2AwDk0RwgQgghpFOjAIgQ0iVkZKQBACIj6x7iFhraDcP9/HG5yQzzKb7OMoQQQgjp+CgAIoR0CWV8Evp4+6BnRI869xuNoRjuH4BR3j6wpF6QJZQQQgghnQStA0QI6RLCcnLwQu9+yJfqnvcYHByCcoczSYIpPx+Brdk4QgghhLSaNg+AOI4bDeBAPbvTeJ6P4ThuMIA3AAwDUAwgnuf5VTXqYAEsAXA/AH8ABwE8wvN8So0yza6DENJxGWx2QK2Gb2zPOverVCoIGucyCqbCgtZsGiGEEEJaUXsYAvcbgG61vsYDEAC8xHFcIIDvAJyCM3hZAmAZx3H31qjjOQAPA3gAwBVwLo+7j+M4NQB4og5CSMdlNlUhWOl83hM2YGC95Rgf51pwjjJaC4gQQgjprNq8B4jneTuAvOqfOY5TAXgdwMc8z2/gOG4BABuAmTzPCwASOY7rBWAegM2uAOVpAHN5nv/KVcdtAM4AuBnALgAPeqAOQkgHlXn8ONQsC4ckITAmtt5yKl9/wGSCXFXViq0jhBBCSGtq8wCoDo8CiABwjevnkQB+dgUu1fYDWMBxXAiAKAA+rm0AAJ7nyziOOwbgKjiDF0/U4RaFoj10snlW9TXRtXUsXfnaCk8lwgigjAFU6vr/7GmDAgCTCQqrFUpl+/g9deXXrSOja+u4GKatW0AIaWntKgDiOE4LYCGANTzPVy/GEQ7geK2i1Sv/9nDtB4CsOspUp3vyRB1uMRh0zTm8XaNr65i64rVZz2QDAOxeXvD396r3+MCIcCAjC2pRhK+PBqyy/fyJ7IqvW2dA10YIIe1P+/l0d5oOQAcgvsY2PZzD12qqXg1Z69qPesoEeLAOt1RUWCCKnWulbIWChcGgo2vrYLrytVlynM875IAAlJaa6q1H4xeIuSf/BTd0GPpUWMG0g0fBXfl168jo2jouX18dWLb9924xDBQMw7R6Q2VZlmQZYmuflxBPam8B0F1wzv0prrHNAkBTq5zW9a/JtR+uMpZaZarvdDxRh1tEUYIgdL4PCICuraPqitd2oKQYP+Xn46bxExq8dv+AIKRbzNAVF0EUZThzobQPXfF16wzo2joeuf38t68Xw0AhMUw3s1Vo9fs4vVYpsJBz21sQFB+/Omz//m8D9+z5uvaIn4tKSUnWPPjgPX23bNlxskePKHtLtI+0L+0mAOI4LhjAlQBeqrUrC0BYrW3VP+cAUNXYllqrzD8erIMQ0gHJsozDaakwm814ZOilDZYNCgoCABQXFzdYjhBC2hLDMKzZKih/P5Erma2tF4XqtUr28v7dlD5aJSvLcrsKgNyVkHBCN3/+0z3tdlv77/YjHtOeXuwr4Xzc+lOt7T8DGMlxnKLGtrEAeJ7nC+AMUCoAjK7eyXGcH4AhAH7xYB2EkA6osLAAZrMZLMsiIqLhKX2BgcG4wj8QE7U6mPikVmohIYS4x2wVJJPF0WpfrRlstYZ16+JDH3vswd6+vr7CxUuTzqTd9AABGATgNM/z5lrbNwGYC2Ajx3ErAQwH8CSca/aA53kbx3FvAniF47hCAOkAXoWz1+cTD9ZBCOmAMhOOY0xgMGwGA9Tqhpf1CggIwDA/f4wMDEJZYiK8uN6t1EpCCOm8RowYNnTmzMczf/jhu4C0tFQvozHUOmPGgznjx08sry7z/fff+G7ZsiEsJydb5+8fYL/qqjElM2c+nqvRaGQASEpK0L799pvdExMTfKxWCxsYGGS/4YYpBffee3+dK1dv2bIhZMuWDeELFiw+PWHCdWV1lTl69A/fZ555Ns3X11ecO3d2XItcPGmX2lMPUCiAC8aduHpoJgDgAByDcxHTZ3ie31qj2GIAGwFsAPArnIuoTnCtMeSROgghHVPJ8ROYGR2L24JCLlpWpVLBoXB2FJuKC1u6aYQQ0mVs3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94J0hNu3bwneunVj+KJFS1PrC34AYOPG7fzEiZPq3U86r3bTA8Tz/CMN7DsC4IoG9otwLmo6ryXrIIR0PJYcZwpsh49Po8pLGme+FGtJSYu1iRBCupoxY8YVTZ9+byEAzJkzP+fEiX98du/eGXLppZelbd++pdvYseOLpk27uxAAoqNjbEqlMmPevKfiMjPT1Xq9lzR58pSC22+fXmAwGCQAeOyx2Wc++WR3aHJykm7AgIFnE1jt3Lk9aNOmd8OXLHkxZfTosRVtc7WkvWtyAMRxXCCAKXDOoYkG4AugCEAGgH0AvuR5vsyDbSSEELfJrkBGZTQ2qjyj1wMyIFRWtmSzCCGkSxkyZNh5f1Q5ro/p77+PGQAgLS1Nn5qa4nXgwPeB1furs/GlpCRrr776moo77rirYO/ezwJSU5P1OTnZmoyMND0AiKJ0dr2C0tJS1VtvxUcqFAo5PLxH7aVNCDmr0QEQx3FBcC5Ser/ruEQ458okA/AHMADAVAA2juPeBvCKa+gZIYS0GS+rFVCrYYiKblR5Ru8FmEyQzM3KgE8IIaQGpVJ5XoJxWZbBsgrZ+b3E3HTTf/MmT55ywVQIozHUUVCQr3zwwXv6+PgYhMsvv7Js6NDhFQMHDjLddttNA2uWZRgWS5e+lLxp07thy5c/H71x47akjrCmE2l9jQqAOI77L4A3ARwF8CCAz+pIVgCO4wwAJgJ4CEACx3GP8Dz/oQfbSwghjWaz2RDo+vDr1rdfo45R+vgAJhNYq/XihQkhhDRKQsIJr2uuufZs0oOkpATv2NhYMwCEh/ewZGVlaGNiYs/22hw6dND7gw/eNy5YsDhj797PAquqKpW7d39+QqVSya76XHN/zsVVfn6+jlGjxlSEhITYH354Rt/Nm9cb77vvofxWukTSgTS2B+gJANfxPH+soUI8z1cA+ADABxzHXQZgNQAKgAghbSKTT4S3UglJlhEc17iMbho/PyAvDwqHo2UbRwghzaTXKlu1e6M55/viiz3GyMhoa//+A00ff/xhcEZGum7evOfSAWDq1Gl5K1Ysi4mPXx123XU3FOfl5apfe21FVFBQkN1oDBWMxlC7zWZj9+79zP/SS4dXpaamaNeti48AALvdfkGb+vTpZ50y5da8HTu2ho0ePbYsNrYnDYcj52lUAMTz/MimVszz/GEA/2lyiwghxEPyEk7CCKBClqFwJTe4GHW3bpjz8YcYfMV/MKhlm0cIIW6RZVnSa5XC5f27KdHKGX31WqUgy3KT1wMaP35i4Ucf7TKuWbNKFxkZaX755VXJ/fr1twDA9ddPLpVl+fTOndu6ffLJh6F6vZc4bNjwstmz52ZX709KSsxbv/6tiLVrV7NBQcH2CROuKzp06Fe/xMSTXgAuSNs5c+bjub/++rP/8uXPR23Y8B5PQ+FITe0mCxwhhHhaankZ3uUTcOXwyzG8kcf4BgYh02JGSEX5xQsTQkgbkGWILORcn1buAXKeW5ZkGWJTj4uOjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNnfk7N7TWHt82a9dSZWbOeOlP9s0ajkXfv/vxkY9p25ZUjKw8e/PNoY8qSzqGxc4A2NaVSnudnuNccQgjxnNTsLByvrMDIJixo6ufnDwAoK6vzc5gQQtoFWYYoy3KTAxFCSON7gK5GzVlmQBgAFYBMALkAAgHEALAB+MeTDSTth2SzgVGr27oZhDRaRkYaACAysnEZ4ABnAHRtiBGRjAKOwkKogoNbqnmEEEIIaQONnQMUVf09x3F3AHgFwC08z/9RY3tfAHvgTIJAOhmxshKn5s9BlSQh9rnF8Pfv29ZNIqRBsiwjtqwcfoFBiArt1ujj/P39MS7IiB56PeyFBRQAEUJIM9HwMtLeuDN2dDmA+TWDHwDgeT4BwCIAcz3RMNK+pOXn4b1kHr4OBz5b+nxbN4eQiyopLsYtQSF4LLonwvwDGn2cn58/zKIAADAVX7AkBSGEEEI6OHcCoCAA9c0OFgB4u98c0l7t27cXDsmZ9CW4rBzFdGNI2rmsk8ehZlkIsgzv7t0bfZxGo0H1CkBVJfQ+J4QQQjobdwKg3wEs4TgusOZGjuO6AXgBwAFPNIy0L3/++QdOVFYAAKL0ehz5/XAbt4iQhhWcSgIAVDAMGIWiSccKrvKW0hKPt4sQQgghbcudNNhPA/gJQDrHcYfgzL1uBHAlgBIAT3qsdaRdKD9yGKNNJvyu18Miy9CxLBL++AOXXTmqrZtGSL0qMzMBADa9/qJllSoWYADB7uzlFJUqAIC9srLlGkgIIYSQNtHkHiCe5/8F0A/A2wB8AAwDoAOwCsBAnufTPdlA0vYKj/6J//gFIM7ghwqtFwCgODm5jVtFSMOkIue6eGxQUIPlFAoW5UIZcs25UKmcfxJlV7ZDRxUFQIQQQkhn49ZCqDzPnwHwjIfbQtopS14uNAAsWh3sPgGAzQypmIYGkfZNbTIBag28wiMaLMcoZGSVnkGl1YTA7oFgoQS0GsBqg2g2t1JrCSGkaRgGCoZhOsxCqIS0J24FQBzHaQDMAHANgG4A7gUwGsCx2tnhSMcnlZUBAARvX4hBYcjLTkFBSQlEUQTAtGnbCKmLIAjwlZxLlwU3sAgqwwBWyYpiUxnMdgvMDjN8Fb7IDQjA0999jVuGDMEVrdVoQghpJIaBQsc6usl2s1v3cc06t1ovWCRVLgVBpCNr8n8cjuOCAOwH0AdAIpzD4fQArgewmuO4sTzPH/JoK0mbUlY/BfcNROWwa7Bg5zqIooDHCvIRHBzato0jpA45OVlYfioRUQZfrBt0Sb3lFAoWZQ4zKm0miJKIClsl/L39ofLzR5bFgmIL9QARQtofhmFY2W5WVvGHJclmkVrrvKxGx3pzlykZlR8ry3K7CoDi41eH7d//beCePV8fb+wxu3fvDPz44w+NBQUFGn9/f8f48dcW3X//zDxFExPnkI7HnScHqwAY4AyA0gHYXdtvBfANgKVw9gyRTkC0WKBypb9mAkOhUCjg6x+EkqI85OdTAETap9OnT6PQbkNQcBBU3vVn5mcYBiWWMoiS83O8xFKOHj4yDAYDAKCioqJV2ksIIe6QbBZJtJpaLQByafVhdy1hz56PA/7v/96IfPjhxzMvu+yKypMnj+vj41+LtNsdzOOPz85t6/aRluXOm/gGAIt4nk8BIFdv5HneCmdwNNRDbSPtgFDinOtTJQjQB4QBAAx+zkUlCwsL2qxdhDQkPf00ACAqKqbBchIEVFjPJTqwOCwQZAcCNFrc0q07ehUVtWg7CSGEtI3PP/80eNSoq4unTp1WFB0dY5s06cbSG2+8Jf+7775uOHMO6RTc6QHSwpnuui4CALX7zSHtjVBeBgAostvg4xcMRhTwpK8B2oFDkJ1LD0hI+2RNTMStYeHoGRTcYDm77IDZbjl3nMMGh+SAr1aL27pHwGqztXRTCSGk0xsxYtjQmTMfz/zhh+8C0tJSvYzGUOuMGQ/mjB8/sby6zPfff+O7ZcuGsJycbJ2/f4D9qqvGlMyc+XiuRqORASApKUH79ttvdk9MTPCxWi1sYGCQ/YYbphTce+/9dT6N3bJlQ8iWLRvCFyxYfHrChOvKau9/+OHHsgMCAoXa202mqlafV0Vanzs9QEcAPFLPvmkA/nS/OaS9YaOjccfRw1h+Kgm+ASGQFUoEMgwC1GpU5p5p6+YRUidDYQFuDQtHQ/0/LMvAJtphtlvPbrM6bLBLDngFOns51TIgS609uoQQQjqfzZvXh48ZM7bk3Xe3nhw27LLyZcsW9zxy5LAXABw48L1h+fLnYydOnFS0adOOk0888XTmwYM/BSxc+Ew0AJjNZvbpp2fFabU6ae3at5M2b37/5IgRV5Vu3Ph2xPHj/+pqn2v79i3BW7duDF+0aGlqXcEPAAwffrmpZ89eZ59ylZWVKfbt2xs8aNAlNPa5C3Anyn0OwPccx/0N4Cs4h8HdznHcCwAmuL5IJ1FUVARBlmFVKqHTO+dSWBQqaEQ7rDQ8iLRDsixDZ7EC3t7wi64/BGJZBla7FTbhXC+PXXTAJtphcPUcsQwDyWqFohGLqRJCCKnfmDHjiqZPv7cQAObMmZ9z4sQ/Prt37wy59NLL0rZv39Jt7NjxRdOm3V0IANHRMTalUpkxb95TcZmZ6Wq93kuaPHlKwe23Ty8wGAwSADz22Owzn3yyOzQ5OUk3YMDAs135O3duD9q06d3wJUteTBk9emyjgpmqqip2zpxZPR0OOztr1tNZLXH9pH1pcgDE8/wvHMddA+BlAHPhzIP8FIBjAK7nef6AZ5tI2lJJSTEAwODrf3abTaMFzHY4SmktINL+FBcXIUTl/NNm7N233nIsy6DSWnVuIqOLyW6Gb2AgSiUJapaFZDFTAEQIIc00ZMiw81aW5rg+pr//PmYAgLS0NH1qaorXgQPfB1bvl11/nFNSkrVXX31NxR133FWwd+9nAampyfqcnGxNRkaaHgBEUTq7HkdpaanqrbfiIxUKhRwe3qNRY5jz8/OUc+bM6pWfn6dZsWL1qaioaPvFjyIdnbsLof4M4D8cx+kA+AOo4Hm+CgA4jlPyPH/BmErSMdl/PIDHomNxQnPuBtCh8wHMFZCrqtqwZYTULS3lFILUGgCAvnt4veUkSKi0my7YbrKb0d3XiBxRgJpVw15ZCVUgzYklhJDmUCqV5z1vkmUZLKuQnd9LzE03/Tdv8uQpxbWPMxpDHQUF+coHH7ynj4+PQbj88ivLhg4dXjFw4CDTbbfdNLBmWYZhsXTpS8mbNr0btnz589EbN25LYtn6Z3skJ/PaOXOe6CWKIrNmzTq+b9/+lnoLk06lyXOAOI47zXHcIADged7C8/yZGsHPcAD5Hm4jaUPK7CxcFRgMo5fP2W2Sjx8AQGWlCeKk/TmTkACWYWADoHCls66LIAuwOi58D9sEG7x8vGASnKmxTcUXfB4TQghpooSEE141f05KSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eb6yvPRkZ6eonn3w0TqvVSm+/vSmRgp+upVE9QBzH3Q5A5foxCsCU6iColrE1ypFOgLE4/x5I+nNrqTC+zh5qjSjCbrdDrabEf6T9KE9zpsC2aLVgGKbecoIsnDf/p5pdcIBVsrDKzuQHphIKgAgh7ROr0bXqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/hj/+KLS6IEwcE+99yyZJVKJefn5529JzYaQ2kkUyfX2CFwwwDMdn0vA1jcQNnXmtUi0q4o7M6hsIz+3JN0xi8IZ6wWVAgOlJWVIiSk3gcshLQ6W34eAIAJCKi3DMsyzoQHwoVDve2iA6Is4oOKMhSnpeDlwMdbrK2EEOIOWZYlRq0XvLnLlGjlhUkZtV6QJbnJ6THHj59Y+NFHu4xr1qzSRUZGml9+eVVyv37OXpfrr59cKsvy6Z07t3X75JMPQ/V6L3HYsOFls2fPza7en5SUmLd+/VsRa9euZoOCgu0TJlxXdOjQr36JiSe9ABTWPt/MmY/n/vrrz/7Llz8ftWHDe3zNoXC5uWdUiYknfQDg4YfvvWCy6MGDfx5t6vWRjqWxAdACAPFwJjw4DeBmAH/VKiMCKOd5vhKkU5BFEerqFMCuYW8AUBUzAK9mZqCyogyTyssoACLtyqeZ6fi4tBSv3HlXvWUYhoGjngDIIQoQJAEmnQ5ZFgsqrDQqghDSvsgyRIukymVUfq0a/ACALMmSLENs6nHR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzM+puf2++x46O+1i1qynzsya9dTZ9Tk0Go28e/fnJ+uqr1u3MAcFOV1bowIgnuftADIAgOO4aABnAPTnef4v17ZQAMMB7GuhdpI2IJpMYABIsgyF7/mTwPXePqisKEN5eXndBxPSBsxmE87kORfojbpkSL3lWJaB2WGBJNfOAQc4RAcEWYDB4AsAqKykJSEIIe2PLEOUZbnJgQghxL1uUxHA3wA+qrFtMIA9AA5yHEfpkjoJsdLZmVclCNB6+523z8vbeXNYXl7Wyq0ipH5paWkAgICAQPj6+tVbjmGAStuFGeCAcz1AcXov3NKtO5CS0hJNJYQQQkgbcScN9qsAFABuq97A8/zXrqQIHwBYAeD+plTIcdxdAOYDiAGQCuB5nud3u/YNBvAGnPOQigHE8zy/qsaxLIAlrnP6AzgI4BGe51NqlGl2HV2RaHKmua4UBOhqzgFy2PGkjzeUAy9BQWmdvdWEtIn05FN4NCoWbGAAZEkCU0/6U1EWYRWsde6TIcMq2BGjUmFQ9wjk5dQ7YoMQQkgj0HAz0t640wM0FsB8nuf/rLmR5/njcCZHuL4plXEcdyeATQDeAdAfwC4AuziOu4LjuEAA3wE4BWfwsgTAMo7j7q1RxXMAHgbwAIAr4EzSsI/jOLWr/mbX0VVpYnvijmN/4Lmkk9C7enwAQFaqEMIAQWoNTCVFbdhCQs5XwCdhVFAwhitU9QY/ACBChF1w1LvfJtig0OkAAJK17kCJEEIIIR2TOz1AagD1Zf+wAvCpZ98FOI5jACwD8DrP82+4Ni/jOG4EgNGuLxuAma7FVRM5jusFYB6Aza4A5WkAc3me/8pV521wzlG6Gc5g6kEP1NElVVVVQpAkVEGCrsY6QGAY2BgWOlmCtbSszdpHSG1VWZkAAIe3d4PlRFmsMwFCNYvDBpWXa8kKOy0KTgghhHQm7vQAHQIwm+O489b7cf38JIDDTaiLg3NdofdrbuR5fgLP8y8DGAngZ1fgUm2/83RcCJxzj3xc26qPLQNwDMBVrk2eqKNLqqhwTv7WanVQKM6PlW2unx3lNASOtB9SoTMTqrKBzIQMw8AhOWAX6+8Bsot2KL2dARAr0HIQhBBCSGfiTg/QIjjnyKRxHLcPQAGAYADXAgiCs9emseJc/3pxHPcNgEsApAF4kef5LwCEAzhe65jqFIc9XPsBIKuOMj1c33uiDrcpFK2eodJjTL//hseiY5EgiGDZcwtKsiwDh0oNCHaIVSYolR33Gmurfr068utWn85+bTabDV5WK6DzQkCvXvW+L1mWQZVDhCA5zntf1yTKItSuAEgpim36Hu/sr1vNfzsTuraOq4H1kwkhnUSTAyCe549yHHcZnPNmJgEIBFAG4BcAy3ie/7sJ1VXPrH8PwAtwDku7BcBnHMddA0AP5/C1mqoH5Gtd+1FPmepVED1Rh9sMBl1zq2g7Z7JxVWAwTCYTdLrzp0MJGh1gqQKsFvj7e7VRA1tOh37dLqKzXltCQgK6abQAgB6XDGzwfVlSWgylRgElFHXuZ5UM9AF+AAClLLWL93hnfd0AuraOqjNfGyGkc3OnBwg8z/8L4FYPnL96cP2rPM9vdX3/N8dxQwA8BcACQFPrGK3rX5NrP1xlLLXKVOe49UQdbquosEAUm7xgcrtgLSuHHoCgVMFiOTcPgmUZKLWuuNFsRmlps39N7YZCwcJg0HXo160+nf3a+KQkhLkCIIchoN73pVKpQLmpElZL/XN7zLBCoXfe3KkkuU3f4539daNr63g687UBgK+vDmwDSVTaC4aBgmGY1l8IVXZvIVRC2hO3AiAA4DhuIoBrAHQD8Cycw9eO8jyf0YRqqvPL1h6idhLO3qV0AGG19lX/nANAVWNbaq0y/7i+z/JAHW4TRQmC0DE/IESzGQAgqTWQpPMXjBQNAchJS0KZxdxhr68hHfl1u5jOem2n/z2OS1kWIgDWP7Dea2RZBlU28wXv6ZrsggAfoxHPJZ2El38ANrWD31dnfd0AuraOqrNeWx3rI7c7DAOFrBS7mUWL2/dx7tIpdQIjKHLbWxAUH786bP/+bwP37Pm69j1lvbZu3Rjy+eefhhQXF6uNRqPtllv+l/e//91R3JLtJO1Dk//jcBynh3PR03EAKuBMIPAqgJkALuE4bhTP8ycbWd1fACoBXA7nvKJqAwCkAPgNwMMcxyl4nq/+jzYWAM/zfAHHceWuNoyGK3jhOM4PwBAAb7rK/+yBOromm3NUoKy5cJhDyeCReOn9t6BSqbCwtdtFSB2Op6ch/tgfWPj4U+ijqHtoG1C9BlDDmd0ESYDWNwB8VSUMHeBJMCGka2EYhjWLFuUf2X9LFoe11aJQnUrLDg8frPRifFhZlttVANRUO3ZsDd66dVP32bPnpA8ceInpt98OGt58c02Uj4+vOHHi9WVt3T7Sstx5cvASgKFwBhG/4NwwtukAvoEzrfXNjamI53kLx3ErASzmOC4HwB8ApgIY76o/AcBcABtd5YbDmWnuYdfxNo7j3gTwCsdxhXD2GL0KZ6/PJ67TbPJAHV0S60r/K1cPd6tBq3fOiXA4HLDZbNBoao8yJKR18TwPQZYRMXBQg+VEiHA0kAEOcAVAOudwOpOpCrIsg6GZ0YSQdsbisEomu6W1u+E6xVOhqqoqxV133Ztzww1TSgEgMjKqaO/ePSF//nnYQAFQ5+dOAHQbgAU8zx/gOO7sY1ae5/M4jnsRwP81pTKe51/kOM4MYDmA7gASAdzM8/yPAMBx3AQA8XCmpc4F8EyN+UKAc/FVJYANAHRw9vhM4Hne7qq/oLl1dFVn0/9qL5wArtHqwTAMZFlGVVUlBUCkTZnNJmRmOtcAio3t1WBZURYbTIENAIIoQuulxTXBRvgolTAVF8M7KMhj7SWEkK5kxIhhQ2fOfDzzhx++C0hLS/UyGkOtM2Y8mDN+/MTy6jLff/+N75YtG8JycrJ1/v4B9quuGlMyc+bjuRqNRgaApKQE7dtvv9k9MTHBx2q1sIGBQfYbbphScO+99xfUdc4tWzaEbNmyIXzBgsWnJ0y4rqz2/oceejSv+nuHw8F8+eXn/jk52drp0+89U7ss6XzcCYD84OwlqUspgIZXIKwDz/OrAayuZ98RAFc0cKwIZ/a4eQ2UaXYdXZFKcj5UYvSGC/bp8rPwar+BKLBaUFVVicBAujkkbSc1NQX39YiCQaeH3mIB/P3rLMcwgCALF+0BkiFDoVbh1rBw+KlUqMo7QwEQIYQ0w+bN68Pvvvu+7AULFqd/9tknQcuWLe7p7x+QdOmll5kOHPjesHz587H33/9w1pVXjqzIzEzXrF37eo/s7EztqlXxp81mM/v007PiBgwYVLl27dtJSqVK3rPno6CNG9+OGDZseOWAAQNrJrHC9u1bgrdu3Ri+aNHS1HHjxpfX1yYA+P3337yfeeYJTpZljBkzrqiuYIl0Pu50Y54AMK2efTe49pNOYJ2Sxf1//wnRx+/CnbKMHlodumt1qKysavW2EVJTcnIyrvAPxBU+BshC/cENwzAQJAH2BspUE2QBNtn5EMBSRgv+EkJIc4wZM65o+vR7C3v1irPNmTM/Jza2p2n37p0hALB9+5ZuY8eOL5o27e7C6OgY26hRV1fMnv1Mxu+//+afmZmuNptN7OTJUwqefXZJRlxcb2tMTKztscdmnwGA5OSk8yYq79y5PWjTpnfDlyx5MeViwQ8AxMb2tL711qaEWbOeSj906GDAa6+t6N4yvwHSnrjTA/QigE85jgsE8AUAGcAojuPuhXNeze0ebB9pQ6WVFagQBGh0F3bqSa50w14KJaqqKlu7aYScJyMpAb1VzoSOamNoveUYhoEgCnCIwkXrtIn2sxMcLeUX/QwlhBDSgCFDhp13s8BxfUx//33MAABpaWn61NQUrwMHvg+s3l+djS8lJVl79dXXVNxxx10Fe/d+FpCamqzPycnWZGSk6QFAFKWzEzRLS0tVb70VH6lQKOTw8B6113esU3BwiBAcHCL07z/AUlpaqtq5c3vYrFlPn1Gr1R0gHyBxlzsLoX7GcdydAFYAuM61+TUABQAe5nn+Iw+2j7Shykrn3yp1HUkQJLUzANIrFMitqmjVdhFSW3nqaQCAXacD28B8NJZlYHXYIePin2t2wQGHa4kNWyUF+YQQ0hxKpfK8P7yyLINlFbLze4m56ab/5k2ePOWCFNRGY6ijoCBf+eCD9/Tx8TEIl19+ZdnQocMrBg4cZLrttpsG1izLMCyWLn0pedOmd8OWL38+euPGbUn1rem0f/93hvDwCHtcXG9r9bbY2F4WQXAwJSXFytDQbhcfKkA6rCYPgeM4rg/P8+/zPN8DQB8AIwD0BxDG8/xGTzeQtA17Xi7+q9Xj1rBwaLR19QA5e5yVLIsqejpO2pijIB8AoDQaGyzHMIBZsDRY5mydkgOiggIgQgjxhISEE+dlVEpKSvCOjY01A0B4eA9LVlaGNiYm1lb9lZ+fq4qPfy28qqqS/eKLPYFVVZXKTZu2Jz366BO5EydeX1ZeXuZ6iH8urvLz83WMGjWmYv78RemnT6foN29eX++HwoYNb4dv3rzhvCEDJ0/+6+Xt7S2EhBgp+Onk3JkD9A3HcXcBzoV0eJ7/jef5BJ7nO99qaF2YvbAQlxt8camfPzT6CwMgWaVG9QtuowCItKHS0lL4OpxD2nyjYy5a3uKwXrQM4MwEJymdn6+Ciea5EUJIc3zxxR7jnj0fB6SkJGteeWV5eEZGuu722+/KB4CpU6fl/fHH7/7x8avDUlKSNQcP/uyzcuVL0SZTldJoDBWMxlC7zWZj9+79zD87O1P900/7DS+8sCgGAOx2+wX3sn369LNOmXJr3o4dW8NSU1PqHBYwdeqduQcP/hS4bduW4NOnUzU7d24L2rPn49A77rjrTH29RqTzcGcOkBJAoacbQtoXS6lz0rdJFKGrYw4QGAY2MNBBhq2CAiDSdng+ERE6Z4+kd1RUg2UFWWxUAgTAmS5bUikBmwOC2dzcZhJCiMfpVNpWvVNvzvnGj59Y+NFHu4xr1qzSRUZGml9+eVVyv379LQBw/fWTS2VZPr1z57Zun3zyYahe7yUOGza8bPbsudnV+5OSEvPWr38rYu3a1WxQULB9woTrig4d+tUvMfGkF+q4L5058/HcX3/92X/58uejNmx4j68d1EyePKVUFIW0Xbt2dNu48Z2IoKAg+0MPPZY5deq0InevkXQc7gRAzwFYy3HccjgzvuXXLsDzfGZzG0baltmV9coqSdCp655TUa5QoaSqHJYqU2s2jZDzJCUlIkDhXJJMEx7RYFkJF0+BXU2URKQE+GHngR9x3ZAhzW4nIYR4iizLkk6pE4aHD1ailRcm1Sl0gizITR71Ex0da5k7d2F2ffsnTbqxdNKkG+tMuckwDObMmZ8zZ878nJrb77vvobP3oLNmPXVm1qynzq7ho9Fo5N27Pz/ZUJumTLm1ZMqUW0safxWks3AnAHobgALARqDemcSKeraTDsJaVgYGgI1loKunzOfGGHx/eAtu6tWzNZtGyHl4PhH7kk5iwdNz0CcqCmID+Q1EWYJDungGOAAQJBGiny+SqipxhYOGgxNC2g9ZhsgIilwvxqfVx2rJgizJMsTWPi8hnuROAHS/x1tB2h1bZQW0ABxs/W8Rrc45n5HSYJO2xPOJAIA+gwaCUSgAoe4Hk41dBLWaKInQezkzIFZV0RwgQkj7IssQZVmmQIQQN7gTAHUH8BnP8w12K5KOTXAFNYJSVW8ZjZZuDknbslgsSE9PAwD079+/wbLORVDFRq0BBDh7gAIYFteGGBFUfEFmVkIIIY108OCfR9u6DYTU5E4ANBfAMQAUAHViosk56VtUqestM6AsD5f1HYATlsalFSbE01JSTmFaWDh6+/pDmZEJ9Opbb9nqRVDtTegBCnA4MKNHNLIpyCeEEEI6DXfGjp4CMMDTDSHtSyoXh/v//hMJ6vpmAAFesoQovRe0dpofQdpGUlIiensb0Eung3yReToMw8AuOiDLjVvcW5REKL2dvZwKkUaZEEIIIZ2FOz1AewG8yHHcJNSdBU7meX5Zs1tG2lSVxYIKQQCj09dfSOO6ORQaN6SIEE/jkxIw2ZUCWx/ZA7YGyrIsYHE0vrdSlCRofZwp4FVNT3hECCGEkHbKnQDoede/I11ftckAKADq4MxmZ2prtUZbbxlZ67zxVEp0c0jaRv4pHlqNDjLLQtetG2wVDS9y2thFUAFAhgyVjzPRh7pxnUaEEEII6QCaHADxPE/L43YBsZmZmNEjCmWK+pMgMFrXzSEAURShUFD2c9J6BEGAmJcLRMaADTE6M8A1QILU6Pk/1RSuHiANw7jdTkIIIYS0L+70AJ3FcVxvAH4ACnmeT/VIi0i7EFFegV4hofhCVX8AxOqdN4c6BQuz2QwfH5/Wah4hyMhIR3dXkg6f2JiLlhdksckBkMrb2cupYVnIkgSGpec/hBBCSEfnVgDEcdztAFYBCK2xLQ/AAp7n3/NQ20gbUlZPFNfUnwQBrjTYOlZJARBpdUlJiYjRO3sh9VHRFy0vQ4TQyBTY1Rifc+9/u8kEDb3HCSHtBMNAwTBM6y+EKtNCqKTja3IAxHHcDQC2A9gP4FkAeQDCANwJYDPHccU8z3/p0VaSViULwrk3hmuYW10kjR5lggNVonB2zhAhreXEiX/hJzhgVSigbUQAJMiNXwOomsJbg5eTk2AVRbwtCNC421hCCPEghoFCIzm6iWZzs0byuEOh1ws2VpXb3oKg+PjVYfv3fxu4Z8/Xx5t6rCzLeOSR+3sJgoNdv/49viXaR9oXd/7jLAKwm+f5qbW2b+Y4bheABQAoAOrAJPu5XFqs1rvechZjD7yUmYXSkgJsN1EARFrXyZP/4t/004h44GFc0rNng2UZhoEoiXA0cQgco1DguMkEQXDAarfBtzkNJoQQD2EYhhXNZmXx4cOSYLa0WiYipV7HBl52mZLx8WNlWW5XAVBzbN68PuT48X8Mffr0pUXfugh3AqABAJbUs28LgN1ut4a0C5LVGQAJkgSFtoEhcADUWmeWOIuFAiDSehwOO5KSEgEA/QcMAnORJAUsCwiiAIfUtB4gUZKg1+tRUVEOs9nsdnsJIaQlCGaLJJhMrZ2KtVNNhkxIOKHbtWt7WM+evehGpgtx501cBCCwnn1BAOzuN4e0B7LNmSrYKklQqi4SALnWAqKbQ9KakpNPQXY4YDD4IiKix0XLMwwDQRKaPAROkkVcHhCICcFGmPPz3G0uIYR0aSNGDBu6Y8fW4Bkz7uTGjLliyNSpU/p+++2+8zrVv//+G98777y1z5gxVwy5+ebr+69ZsyrMZrOdfbqVlJSgffLJR2InTBg9eNSoy4bcfPP1/Tdv3hBS3zm3bNkQMnr05UO++eYrv/rKWK1WZunS56KnTbv7TPfu4Y1fJ4F0eO4EQN8DeIHjuPPuOjiOi4SzZ+hbTzSMtB3J5uwBsooilOr61wGCKOIxPwNW9h0AS0VFK7WOEOD48X/xVGwc1sT1gemfvy9anmEYWIWmP5sRJQkT/fxxX2Q07Gdy3GgpIYQQANi8eX34mDFjS959d+vJYcMuK1+2bHHPI0cOewHAgQPfG5Yvfz524sRJRZs27Tj5xBNPZx48+FPAwoXPRAOA2Wxmn356VpxWq5PWrn07afPm90+OGHFV6caNb0ccP/7vBU9qt2/fErx168bwRYuWpk6YcF1ZfW167bUV4f7+AY677ppR0GIXTtold4bAPQvgTwA8x3GH4EyCEArgCgAlAOZ7rnmkLWgieuCRhH8hCwKm/7eBHiCWRSTLgtV7IbGivPUaSLq8E8f/wQ1eXvAGoGhEZjaGAayC7aLlahMlEaIr9bWd5rkRQojbxowZVzR9+r2FADBnzvycEyf+8dm9e2fIpZdelrZ9+5ZuY8eOL5o27e5CAIiOjrEplcqMefOeisvMTFfr9V7S5MlTCm6/fXqBwWCQAOCxx2af+eST3aHJyUm6AQMGWqrPs3Pn9qBNm94NX7LkxZTRo8fW+3T2wIHvDb/88mPA5s3vJ1xsGDXpfNxZCDWP47ghAJ4GMArAMDgDn3gAq3mez/dsE0lrEyQJRa4hbZqG5gAxDGwMoANgr6psncYRAiArMQF+/oGQGQaaRgyBAwCL0PTRDaIsQnAFQA7KdEgIIW4bMmTYeTcKHNfH9PffxwwAkJaWpk9NTfE6cOD7s1MsqlfjSElJ1l599TUVd9xxV8HevZ8FpKYm63NysjUZGWl6ABBF6Wz0UlpaqnrrrfhIhUIhh4f3qPepV1FRoXLVqhVRjz02O7Nbt7CmZcchnYK76ROLAezieX4eAHAc1w3ApXAGQqSDs1jOzedRN7QOEAA7w0InS3BU0c0haR2VlZVQlxQD/oFQhoaCVasveowoi3AITf+MEyUJkoIFRBkCzXMjhBC3KZVKuebPsiyDZRWy83uJuemm/+ZNnjyluPZxRmOoo6AgX/ngg/f08fExCJdffmXZ0KHDKwYOHGS67babBtYsyzAsli59KXnTpnfDli9/Pnrjxm1JbB0LWP/4437f8vIy1euvr4x6/fWVUQAgCAIjSRIzdux/Llm+/NXkyy+/kjLCdWLurAMUDuc8Hw2AWNfmQQD2ADjCcdz1PM8XeayFpNWVnzyBeyOikG6zQqFo+C3iYFhAliDQ0/EuTZZlnDhxHMXFRRgyZCgMhpZLGH38+D/gvJzp2b3juEYdI0FqcgY4ABBlCZJSCYgOCBbLxQ8ghBBSp4SEE17XXHPt2fHySUkJ3rGxsWYACA/vYcnKytDGxMSe7bU5dOig9wcfvG9csGBxxt69nwVWVVUqd+/+/IRKpZJd9bme0J6Lq/z8fB2jRo2pCAkJsT/88Iy+mzevN95330MXjEyaMOG60iFDhp0X4Lz55uvhxcVFqiVLlqd16xZGCb06OXd6gF6FM3nCbdUbeJ7/muO4QQA+ALACwP2eaR5pC9b0dEw0huL3RszrERRKQBIgmOnmsKtyOOxYuHAevv12HwDAx8eAl19ehREjrmqR8/3111Fw3s55P7qecY06RkTT1wACnHOAZLUKsDkg25o+h4gQQlqSUq9r1ZTUzTnfF1/sMUZGRlv79x9o+vjjD4MzMtJ18+Y9lw4AU6dOy1uxYllMfPzqsOuuu6E4Ly9X/dprK6KCgoLsRmOoYDSG2m02G7t372f+l146vCo1NUW7bl18BADY7fYL2tSnTz/rlCm35u3YsTVs9OixZbGxPc/7A+7j4yP5+Pict02n04lqtVpZMwgjnZc7AdBYAA/yPP9nzY08zx/nOG4xgLUeaRlpMw6zCUoAAnPxv3OCQgk4ANlKAVBXtXLly/ju233obfBFSEAgDmWk4cknH8G7727BkCHDPH6+f48dwRi9FwBA17NXo44RZRGC2PQ1+0RJAlQqAIBkpQyphJD2QZZlSaHXC4GXXaZEK6/Lo9DrBUGWm7z20PjxEws/+miXcc2aVbrIyEjzyy+vSu7Xr78FAK6/fnKpLMund+7c1u2TTz4M1eu9xGHDhpfNnj03u3p/UlJi3vr1b0WsXbuaDQoKtk+YcF3RoUO/+iUmnvQCUFj7fDNnPp77668/+y9f/nzUhg3v8XUNhSNdlzsBkBpAfW98K4CLp2Qi7ZrD5AqAFIqLlrWrNCirLIHdTg9MuqKEhBPY9+luvNC7H3q7emXuCzbijVOJmDdvNj755Cv4NCJLW2PZ7XYkJ5zEvsBg3DhiFJRBQRc9hmEYiJJ7PUCSLCI3JBCfHj6MIRHjMMGdRhNCiIfJMkQbq8plfPxa/a5ekGVJltHkJ0rR0bGWuXMXZte3f9KkG0snTbqxtK59DMNgzpz5OXPmzD9vPYKaw9tmzXrqzKxZT52p/lmj0ci7d39+srHtW7781fTGliUdnzv/cQ4BmM1xnKrmRtfPTwI47IF2kTYkuuY6iBeZ/wMAf0b2x4P/HMNfDhou2xVtePctzI7phd7ePmA0Wih8DNDJMub25NDD7sC6dfEePd/Jk8dRYrHgS7MJsfOeRWNSl7IsnIugujEHSJJlCAF+OFZehnyh6ccTQkhLkWWIkiQ7WvvLneCHkPbGnR6gRQAOAkjjOG4fgAIAwQCuBRAEYHRTK3Qtoppex64HeJ7fwHHcYABvwJlyuxhAPM/zq2ocz8K5COv9APxd7XuE5/mUGmWaXUdXIbqG+kjKi7891Fo9AMBEa6R0OQUF+RBPHMeAqBhApUKP+c9CFdoNBdu2oiQpAan/mvDP7p2YPv0ehIV198g5jx49AgAYMmRYo4IfwPnkUJBFCKJ7AYxa68wyVzM7IiGEEEI6rib3APE8fxTAZXD2BE0C8AyAmwAcAXAlz/N/uNGOgXAOnwsD0K3G1w6O4wIBfAfgFJzByxIAyziOu7fG8c8BeBjAA3AuyCoD2MdxnBoAPFFHVyLZqgOgi1+6WqMFQAFQV7R372fIt1qQK8sIuuFGaCJ6gFWpYLxnBrgXloMbcikEQcDmzes9ds5/jh7BIIMvhg2+pNHHMAwDm8MO+eJF6+QDGVcFBiG0ijKiEkKIOw4e/PPorbdOvSDFNSFtxa11gHie/xfArR5sxwBntXxu7R0cxz0JwAZgJs/zAoBEjuN6AZgHYLMrQHkawFye579yHXMbgDMAbgawC8CDHqij67A7h7NJStVFCgLh5UV4nuuLDIl6xLuaAwd+QFJVJQqvnQj/8dee3c6wLBQ6HR566BEcPvwbvv7sU9x//8MwGkObdT5BEGBOPoWFcX0gH/sL8rS7G9ULxDCA1Y1FUKsZzFY8Ft0TOQ4aAkcIIYR0Bu0lJcZAAAn17BsJ4GdX4FJtPwCO47gQAIPhTLywv3onz/NlAI4BuMqDdXQZ/4SHY9bxv5GlN1y0rE6W0NfHgBDKrtKlFBUV4sSJfwEAV40aA5VWDY1GCaXyXOKMwQMGYu7Q4YjvOwB7tm9p9jmPH/8Xca4eR5++fRs9BA4ALEIzknToNQAApeRuHxIhhBBC2hO3eoBawAAAuRzH/QIgDkAygGU8z38DIBzA8Vrlq7N89HDtB4CsOsr0cH3viTrcolB0vMCgQnAgz2bFAJ0XWPbCm8zqbSzLgHWlI1bLgELBNOmmtD2qfr064ut2MZ68tt8P/oSxgcEwhxoREREGhaUUjqIsqPyMUBmMcAgyZIUGA0OMUBcWQvfHYQiCHVqt1u1zHj78Kwa6Flg1DBgIpfLcdTR0bQwrQ5Acdb6XG4PVO9usgnzeOVsLvSc7Jrq2jquDf4wRQhqhzQMg1/CzOAAmOOcTVQG4E875N9cA0MM5fK2m6vEsWtd+1FMmwPW9J+pwi8Gga87hbUIUnUPg9N5e0Onqnwek0aig8vMHAOgUCmi1LPR6fb3lO5KO+Lo1lieuLe+P3/FgVAysajV0jA2WvFOQygsgmIqh16jhHeRMenDJnNk4PncBLvfxxe+ffIApjz7i9jmPH/4No10Bd/crL4Xa3+uCMnVdm8VhBaNkoG3gvdwQxs8bAKACA/86ztla6D3ZMdG1EUJI+9PmARDP83aO4/wACDzPVwcgRzmO6wNgDgALAE2tw6ofI5tc++EqY6lVpnpmvifqcEtFhQWi2OT1wtpUTHYupnaPAGQWFsuF6a1ZloFGo4LN5gAUzl+rjlUgJ6cAQUHBrd1cj1IoWBgMug75ul2MR68tLQ3w8gEbEwNzfiZMeTkAZMBSAjEjCVqFHnaoAWM4ikKNCMkvgHXfNyieOh3uLEZXVlYKXXYO2MgYKMIjYGLUMJWe+6/Z0LWJCgfMFgusdbyXG0OrcQZOGoZBaWnrJ/ug92THRNfWcfn66tz6O0UI6TiaHQBxHKcFYON53u0B8jzP13VXcRzO1NpZcGaHq6n65xwAqhrbUmuV+cf1vSfqcIsoShCEjvUB0ddixaBu3bFPoYTUwLwHSZIhujLFaRUsKiqq4OcX2FrNbFEd8XVrrOZeW35+PmJY51yfiP9cBlthDiTpXH2WojwoA/LA+PeAwyGhz4MzceaFxeihUOKfDz/AgP/e1uRzHjx4EMP9nJ2x/sMvq7f9dV2bAAF2wdHge7khCr3zKbeaZWGz2KBQXTw5SEug92THRNfW8cgdZLofw0DBMEyrR2qymwuhEtKeuBUAcRzHAVgK4BoABgDDOY67H0Aiz/Nrm1jXQAC/AbiW5/mDNXYNA3ASwN8AHuY4TsHzfPV/uLFwZo0r4DiuHEAFnOsPpbrq9AMwBMCbrvI/e6COLkGWpLPRILQXH+4jKc/1AJnNlAq7K/j38CFE6pxDHQN6RcOSVWt6nSTCXpgFra8RDqgQGBmNA76+GFhZBdu330C+6RYwjVhjqqaDP3yHO3ycSTm8hwxr9HEMw0CQRDjcXAMIABSGc8M6LRXl8A4McrsuQgjxBIaBgmXYbnar0OojedRapSBByqUgiHRkTf6P41pQ9Gc4F0DdAaB6UL8dwBqO4yp4nt/ahCpPuL7e4jhuJoAiONNWXwHgUgD5AOYC2Mhx3EoAwwE8CeeaPeB53sZx3JsAXuE4rhDOBVVfhbPX5xPXOTZ5oI4uQbafmwbFNCYAUqlhl2XYJAmSidZJ6QoK/vkLkQAqVSpAqIRcR3BhLy+GxlQGpbcRgiCh/733o3TVSmgUCuT++zfCmhDE2Gw27P/1ZxwVJax6Yg7UoY1Pp80wgCg3LwBS6jSIP50CqyTiZYcD3m7XRAghnsEwDGu3CsrEE7mSzdp63XAarZLt07+bUqVVsLIst6sAKD5+ddj+/d8G7tnzde2kV/V64IG74xITT/rU3BYX17tq06btvOdbSNoTd54crALwJ4Dxrp8fBQCe55/kOE4P4AkAjQ6AeJ6XOI67AcAKALsB+MGZfvoanuePAwDHcRMAxLu25wJ4plaQtdh1LRsA6OAM0CbwPG93naOguXV0FZLVGQBJsgxWe/GEBoLeB/OLSpCdkYw3Le6vtUI6DjEzAwAgGUMgVJXVWUYWHHAU50DlEwwBQO+Bg7FIweLn439h6u+/4ZEmBECHDv0Ks9kMH2Mo+t4+rUltZRgGgihAkNwPgCTI+MtmgclkgsXepf4cEELaOZtVkKwWR2uPQ+w0E6SysjJ0M2c+njlu3ITS6m1qtbqDDIIkzeFOAHQFgKk8zwscxylq7dsF4I6mVsjzfCGA+xrYf8R13vr2i3AuajqvJevoCiSbM4ixiiJUmsZldFNrnHMkrFZzi7WLtA+yLMPXZAL0XvDjYiGYK+st66gohsZeBYb1gSzLGDl1Gvb+9Sc++ugD3H//w1CrG5eV7fvvvgYAXH31NU1Os84wgF10QGrGoH5RlqDT62EymWA203ucEEI6g9zcM6qqqirlwIGXVBmNobTSdRfjThRvxbm00bUF4lx6adIBSTZnD5BVkqBSN27NFpVrcUq6Oez8cnPP4PXkJLySmozoywZDste/wKhgqoRYVXp27Zyrrx6HkBAjSkqKcXDbFtjz8y96PrPZhJCEk3gmNg7XDrqkye1lGAa25iyCCkCSJAz09cXIgCBYiwqaVRchhHRFI0YMG7pjx9bgGTPu5MaMuWLI1KlT+n777T7fmmW+//4b3zvvvLXPmDFXDLn55uv7r1mzKsxms5196pWUlKB98slHYidMGD141KjLhtx88/X9N2/eEFLfObds2RAyevTlQ7755iu/uvYnJSXoGIZBr15xdN/aBbkTAH0L4AWO48JrbJM5jvOGM2319x5pGWkTgiuIsUoiNI3sAbpFrcQSri/EwsKWbBppB06d4lHmcMAUEgy15mK9MTIcpXlQyA4AgEqlwq233o5bw8IRfug35G/dBFlqeOTGd599itF+AbjUPwCx4RFNbi/DMDA7mvfZJsoSbvDxw+MxPeHIyWlWXYQQ0lVt3rw+fMyYsSXvvrv15LBhl5UvW7a455Ejh70A4MCB7w3Llz8fO3HipKJNm3acfOKJpzMPHvwpYOHCZ6IBwGw2s08/PStOq9VJa9e+nbR58/snR4y4qnTjxrcjjh//94IFqbZv3xK8devG8EWLlqZOmHBdWV3tSUlJ1un1XuLSpc9F3nDD+IG33jq5X+2gi3Re7gRAcwF4A+DhnCcjA3jN9XMPAAs81jrS6uQQI544/jdeTTkFtbZxi9z1YIB+PgZIlfUPhyKdQ1qaM0t8z9gYiJaLJ71wVJUBdvPZoWu33PI/HKqsgFUUYTnFo+zADw0eX/bNPmgVClR5e8OrX/8mt1eGBLvYvHk7oiRCcK0JYqdEH4QQ4pYxY8YVTZ9+b2GvXnG2OXPm58TG9jTt3r0zBAC2b9/SbezY8UXTpt1dGB0dYxs16uqK2bOfyfj999/8MzPT1WaziZ08eUrBs88uyYiL622NiYm1PfbY7DMAkJycdN7Nys6d24M2bXo3fMmSF1PGjRtfXl970tJO6xwOBzNw4OCqlStfP3X77XfmfvPNV8HPP78wsmV/E6Q9aPIcIJ7nsziOGwTgKQBXw5k22hvA+wBW8zyf69kmktZkdjiQa7OCZRVQKhu33omDZQFJOtt7RDov4eRJ/C8sHL2CgiBaLRctL5pNkMxlUPr7wuEQERAQgDE33YwdX+/DfZHRKPxwF7SRUdD17HXBsSd/OoBLXesNdbv1tibP/wGcGeCEZmSAAwBJliArWEACHCZ6jxNCiDuGDBl23lNSjutj+vvvYwYASEtL06empngdOPD92cUEq6dupqQka6+++pqKO+64q2Dv3s8CUlOT9Tk52ZqMjDQ9AIiidPbDobS0VPXWW/GRCoVCDg/v0eD452XLVqRXVVVl+fr6igDQp08/q1KpkleuXB5TUJCfHRJipHlBnZhb+eN5ni8GsNDDbSHtgMXiXMtHp9c3+obTwSoASWjUDTHp2IKLizAqLBzlChairTGvtwxHaT7U/udGzN599324/sOd6FtSjCsCAnFm3VpEPDMf6m7n1iqWrBZU7HgPgSyLTI0a4/4z0q32ipCalQIbcM4BkhQKQBIhWigAIoQQdyiVyvOy0ciyDJZVyM7vJeamm/6bN3nylOLaxxmNoY6Cgnzlgw/e08fHxyBcfvmVZUOHDq8YOHCQ6bbbbhpYsyzDsFi69KXkTZveDVu+/PnojRu3JbFs3YOdFAoFqoOfanFxnAUAcnPPqCkA6tzcXQjVF87eHy/UMYyO5/n3mtku0kbMPI//hYWjQNH4t4aoUAKCDZKV5hF2ZrIsw+AQAIUSQT3CALlxmVcFUwW0DgsYRgdZBoKCgnHnnfdg3eb1iPD2QXhFBTJXLEfYzMeg790HksMBfunzCJRklNjtiJk12+02S7IIRzNSYAPOOUCySgk4RIj0HieEELckJJzwuuaaa88OSUtKSvCOjY01A0B4eA9LVlaGNiYm9myvzaFDB70/+OB944IFizP27v0ssKqqUrl79+cnVCqV7KrPNfTtXFzl5+frGDVqTEVISIj94Ydn9N28eb3xvvseqjPjzowZd3IRET2sL7zwUkb1tuPH//VSKpVydHQs/bHv5NxZCHUinOv11DdDXgZAAVAHJWSk479h4fi9CcPZRIVzqJxsa162LdK+5eflIcSVurpbZDdAatx8GMFcAclaCYW3FwTXen333/8w9u3biyUJ/+LV4VciwGQC4wq67aKI0zlZMILBkfBwPD5wkFvtrV4EtblD4AA4AyDYzmZJJISQ9kCjVbbqmjzNOd8XX+wxRkZGW/v3H2j6+OMPgzMy0nXz5j2XDgBTp07LW7FiWUx8/Oqw6667oTgvL1f92msrooKCguxGY6hgNIbabTYbu3fvZ/6XXjq8KjU1RbtuXXwEANjt9gva1KdPP+uUKbfm7dixNWz06LFlsbE9L/jjPWbM2JING96O2Llzm+mKK0ZUHD/+t9emTe+E33jjzfkGg6G111YircydHqCXASTCOQcoGwC9STqR6nk8oqL2Ek/1E1Wu9VxokchOLfP4P/BjWThkGWofLRzljUwIIEkQyguhMHQ7u0mn02HRoufxyCMP4NFDv+D5/05Fz9hYWK1WLFz4DE6dSoTW2wfvrnnT7fYyDANBEps9BA4AZBUF+YSQ9kOWZUmtVQp9+ndTopUXJlVrlYJ0sRSedRg/fmLhRx/tMq5Zs0oXGRlpfvnlVcn9+vW3AMD1108ulWX59M6d27p98smHoXq9lzhs2PCy2bPnZlfvT0pKzFu//q2ItWtXs0FBwfYJE64rOnToV7/ExJNeAC5IQztz5uO5v/76s//y5c9HbdjwHl97KNz06fcWsiyLTz/9yPjOO+t6+Pn5OSZPvjn/oYcezXPvN0M6EncCoN4AbuR5/hdPN4a0PcFSHQA1/q0hKdVwSBJEh6OlmkXagaJTSfADUKlgITuaFggIVWVQiVYA5xJrXHnlSDz++GysXfs6ntu9E+/+/hvMZhOKi4ugVCrx1kuvwt/f3+32MgwDURKaPQQOAApC/PHdH3+i1xVXYmKzayOEkOaRZYgSpFyVVtGqwQ8ASLIkyTLEi5c8X3R0rGXu3IXZ9e2fNOnG0kmTbiytax/DMJgzZ37OnDnzz1uLoObwtlmznjoza9ZTZ6p/1mg08u7dn59sqE3Tpt1dOG3a3bSGRxfkTgCUAcDg6YaQ9kGyOm9sxUZmgAOAxKj+eO6bj9C//wDc00LtIm2vKisLAODw0kO0N214tGCuBGxmsGo/SNK58dr33fcQvLy88cYbryEryzkMOzAwCC+99CouvfSyZrWXYQCHJECUmvw5fQFLgC9+KSmCXqA5sYSQ9kGWIcqy3Pw/cIR0Qe4OgVvCcdwRnufTPdwe0sZkuzMAkpXqRh+j1jjnIZrMphZpE2knSksAAKpAf8hC03r7JJsFkqUCCl0ApFoBydSp03DddZNw7NhRKJVKDB9+OdTqxr//6sMwDKxN7Kmqj1rrbI+Z3uOEEEJIh+dOADQNQHcAqRzHFQKoPVte5nk+ttktI22ieo6DpGp8D5BaowUAmGmNlE7t/bwz2JifhxWTx7p1vFBeCFVARJ37DAZfjB59dXOadwGGAayCZwIgPYChvv4IprWuCCGkyQ4e/PNoW7eBkJrcCYCyXV+kE2JcQ3xktabRxwSZKzC3ZxyKJfnihUmHJIoiss+cgSA40K17MCA3fc0nwVwJtWAFoPV8A+vhqQDI32zFvF4cckQabUIIIYR0dE0OgHiev7clGkLah0N+fvj1z8MYcM3N6N7IY7SQ0dsvACkmGh7UWRUWFkAQHFAqlQg2eEModycAqgLsZii0eohiyyePFOGZDHAAwOidDwSUMgX5hBBCSEfXqACI47geAHJ5nne4vm8Qz/OZzW4ZaROFDjtSzSYM0Hs3+hhG61wSSssycDjsUKmaP3+DtC85CSfwaFQsKjVqQHQv258s2CGayqDwCkZrdKQ41wDyTGZCVu+c59b4gaGEEEIIaa8a2wOUBuAKAH8ASEfNZXfr1vhFZEi7Uj3JuzqxQWMo9D4AAC2rgNlshq8vBUCdTVlKCkYFBaMAMqRmJBYQKkqgCW6dYWQSJI+kwAYAhasHSMMwHqmPEEIIIW2nsQHQDACpNb6ncSCd1ACTCQZjN+iasA4QXMGSVqGAxWKBr69fyzSOtBlTrnNpBYdW26wASLRUgmmleUDOHiDPBFust/M9rqYAiBBCCOnwGnWXy/P81hrfb2mx1pA2JcsyRsoMroqIxPdNWAdIUjmfjusUCphoHlCnJBQXAwAYgzfQ9AXAz9VjMUG2maHQtew8IOciqKLHeoBYL+cwTxXLwm4xQ63Te6ReQghxF8NAwTBMqy+EKsuyWwuhEtKeNHYO0F1NqFPmeX6bm+0hbUi228G4nnCzWq9GHye51gxSMAysVZUt0jbSthRVVQDLQhvQvDWQZcEB0VwGhXfLzgNiGECQRDg8NAdI4X1uSKi5vJwCIEJIm2IYKBSM0M1hM7uTzbdZVBq9IEKZ296CoPj41WH7938buGfP18cbe0xKSrJmzZpXIxITT/poNFrpyitHlD711LxsvV7f8pl6SJtq7H+cLU2oUwZAAVAHJNnODW1idU0IgFxJDwRJgqW83OPtIm1P77ADGi18QwKaXVdrzANiWQaiKEDwUBY4VqPCxqwMWAQHFjgc8PNIrYQQ4h6GYViHzaxMPXlMstusrXazrtZo2dh+Q5QKjS8ry3K7CoCaqqSkWDFr1sO9Y2JiTf/3f+sT8/Pz1StXLo9ateplLF68jJJ5dXKNDYCiW7QVpF2QbFYAgFUUodI0PgACw2BuUSnS03msvXdGC7WOtBW73Q5/1pnXJDAspNn1iZaqFp8HxDAMrILdY5MVJUnCIYsJFRUVmC14JqgihJDmstusks1ibu3eilYfdtcStm/falQqFfKqVfGpWq1W7t27rzU398yZvXv3BMuyfHZEDOmcGjsHKKO+fRzHaQHYeJ6nxAgdnGR1BUCSCKWqaTenrCsRgtls9ni7SNvKy86Et9L5p8Iv2A+yo3mvsWCpgmw3Q6HVQRRb5s8GwwA2Dy2CCgCiLEGr06GiouJspkRCCCGNM2LEsKEzZz6e+cMP3wWkpaV6GY2h1hkzHswZP37i2WEj33//je+WLRvCcnKydf7+AfarrhpTMnPm47kajUYGgKSkBO3bb7/ZPTExwcdqtbCBgUH2G26YUnDvvfcX1HXOLVs2hGzZsiF8wYLFpydMuK6s9v6jR48YLr/8P6VarfbsB9HUqdOKpk6dVtQCvwLSzrgVxXNOH3AcVwKgCsAlHMet4zjucc82j7Qma0WF819Rglrb+DTYAKDWOAMmi4UCoM6moKQE0479gRXF+WBVzX/wJwsOSOYKsGzLPkS0NCNbXW2SLCHOYMAQXz9YXQkhCCGENN7mzevDx4wZW/Luu1tPDht2WfmyZYt7Hjly2AsADhz43rB8+fOxEydOKtq0acfJJ554OvPgwZ8CFi58JhoAzGYz+/TTs+K0Wp20du3bSZs3v39yxIirSjdufDvi+PF/L7hh2b59S/DWrRvDFy1amlpX8AMAeXlntIGBQY4VK5aFT548YcDNN1/f/9VXXwq3Wq3U9dMFNPkOhOO4wQCOABgKYAeA6jeKHcAajuPu9ljrSKuyuAIgmyRC5crs1ljXqBR4JjYOTF5eSzSNtKH8/HyIsgxVYABkh2eSCggVxWBbcP6sBAl20e6x+kRJws3evpjfqzeE7CyP1UsIIV3FmDHjiqZPv7ewV68425w583NiY3uadu/eGQIA27dv6TZ27PiiadPuLoyOjrGNGnV1xezZz2T8/vtv/pmZ6Wqz2cROnjyl4Nlnl2TExfW2xsTE2h57bPYZAEhOTjovANq5c3vQpk3vhi9Z8mLKuHHj652YbLFYFB9//EGo3W5nly1bkfrAAzOzf/rpQMALLyyKbNnfBGkP3MkesgrAnwDGu35+FAB4nn+S4zg9gCcAbK3nWNKO2YMCsSDxONRqLW5r4tP5KBaI8A9AoiuIIp1Hfn4uACA0OAiS4JmgQrCYoBZtAJoWaDeWKItweCgBAuDsARJd/yccNMyTEEKabMiQYeelieW4Pqa//z5mAIC0tDR9amqK14ED3wdW75ddA9NSUpK1V199TcUdd9xVsHfvZwGpqcn6nJxsTUZGmh4ARFE622NTWlqqeuut+EiFQiGHh/docBiAUqmUunXrbq1OeDBo0CVmURSZFSuWxRQWFmQHB4fQhM9OzJ0A6AoAU3meFziOU9TatwvAHc1vFmkLFlFCqskEf03Thr8BgINVAqIIkW4OOx1d8ik8GhULX4323CdSM4lWE2C3gFVrIUmenwckQYLgoTWAAGcAJChYQAIEeo8TQkiTKZXK8/7Yy7IMllXIzu8l5qab/ps3efKUC8YYG42hjoKCfOWDD97Tx8fHIFx++ZVlQ4cOrxg4cJDptttuGlizLMOwWLr0peRNm94NW778+eiNG7cl1Tfc2t8/wBEZGWmpua1XrzgLAGRlZaopAOrc3BmEbwVQ3yIYga79pAOqntyt1TU9ABIUzli6Zipt0jl4l5ZiVFAwjArPzdmR7FZI1iooPFjnefXLkkd7gABAVDif94g0z40QQposIeHEeellk5ISvGNjY80AEB7ew5KVlaGNiYm1VX/l5+eq4uNfC6+qqmS/+GJPYFVVpXLTpu1Jjz76RO7EideXlZeXuR7in4ur/Px8HaNGjamYP39R+unTKfrNm9cb62tPv379K5OTT3nJNR7snTqVpGNZFj16RHpuDDVpl9y5+/gWwAscx4XX2CZzHOcNYA6A7z3SMtLq7GmnMcnYDX29m77YpahUAQBkG8W/nY3KFdTqfL09Wq9QWQyW8XzvD8MAguy5NYCqSUpXAGSl9zghhDTVF1/sMe7Z83FASkqy5pVXlodnZKTrbr/9rnwAmDp1Wt4ff/zuHx+/OiwlJVlz8ODPPitXvhRtMlUpjcZQwWgMtdtsNnbv3s/8s7Mz1T/9tN/wwguLYgDAbrdfcC/bp08/65Qpt+bt2LE1LDU1pc6x1tOnz8jLz8/XLF26qEdKSrLmxx9/MKxf/1bEVVeNKQ4KCqben07OnSFwcwEcAsAD+BvO0Ps1ABycAdVUTzWOtC4mPR13RUTisND0yemSKwCCnR6adDZ6UQIUgCG4+Yug1iSaq1zzgFQerZdhGIiSCIcHh8ABgKxSAhY79XISQtoNtUbbqmvyNOd848dPLPzoo13GNWtW6SIjI80vv7wquV+//hYAuP76yaWyLJ/euXNbt08++TBUr/cShw0bXjZ79tzs6v1JSYl569e/FbF27Wo2KCjYPmHCdUWHDv3ql5h40gtAYe3zzZz5eO6vv/7sv3z581EbNrzH1x4K16tXnO211+L5//u/NyIeeOCufjqdXhw9+uriJ56Yk+PuNZKOo8kBEM/zWRzHDQLwFICrAaQC8AbwPoDVPM/neraJpLWIVudQ2OqhPk0hubLGMR7KEkbaB5vNBj/X+yHQ6OEAyGICHFawSrVH5wExDANB9GwSBACQVM4/lzIF+YSQNibLsqTS6IXYfkOUaOWFSVUavSDKcpMXX42OjrXMnbswu779kybdWDpp0o2lde1jGAZz5szPmTNn/nnByX33PZRf/f2sWU+dmTXrqTPVP2s0Gnn37s9PNtSmSy4Zat6w4T2+8VdBOgt3eoDA83wxgIUebgs4josDcAzAYzzPb3FtGwzgDQDDABQDiOd5flWNY1gASwDcD8AfwEEAj/A8n1KjTLPr6Aokq/PJ9tnenCaQ1a4ASKBe486kICsTWlcA5BvkB9nuufkvos0M2WYCq/b1cAAEOCQHpKZ/PjeoINCA34/9gx4hl3m0XkIIaSpZhihCmavQ+LZq8AMAoixLstyC6xgQ0grcXQj1Ko7jrnR9H8lx3Jccx/3Lcdxz7jaE4zgVnOsKedXYFgjgOwCn4AxelgBYxnHcvTUOfQ7AwwAegDNDnQxgH8dxak/V0VXI9uoAqOmXnRHWE9OOHsZH5ipPN4u0oaK00wAAsySB8fR8HVmGUFkClvXsmnMMw8AieH6YWlWAAd8U5iPLw0PrCCHEHbIMUZJkR2t/UfBDOoMm9wBxHHcnnOv8vAbgNwBvAxgBZ5CxkOM4O8/zr7jRlhcAVNba9iAAG4CZPM8LABI5jusFYB6Aza4A5WkAc3me/8rVvtsAnAFwM5xpuT1RR9fgGtpT3ZvTFEqdNxyyDDOlCO5Uys5kwwuAmQFkwfPDG0VzBVSSHUDTh13Wh2EYWB2eT1Sg1jr/X1gslouUJIQQUtPBg38ebes2EFKTOz1ATwPYwvP8XI7jQgBcA+AFnudvhnNY3H1NrZDjuKsAPATg7lq7RgL42RW4VNvvPIQLATAYgI9rGwCA5/kyOIfRXeXBOrqEs/N33AiA1BotAMBMKYI7lQwZuOPoYez394bs4Tk1gHMeECPYwHiwE0iGBFsL9ADpFSz6ePvA10TvcUIIIaQjc2cOUG8As13fTwTAAPjM9fMRAC82pTKO4/wAbAPwuCvBQs3d4QCO1zqkeoJbD9d+AMiqo0wPD9bhtpZa56QlsNU3uGptg8OSqvfVLOMv2PFoVCzsLAOlsuNcc23Vr1dHet0ay51rKy0tgiDL8Any9/hQNQCQ7RbAYYHKy6dZ84BqXpvICBBk0ePtDTTb8ELvfsiVpFZ9j9N7smOia+u4PPlAhhDSPrkTAJXB2WMCANcByOB5Ptn1cyyAoibW9xaAQzzPv1/HPj2cw9dqqh7bosW5BVnrKlOdssoTdbjNYGj6oqJt5aCXDscPH8aw/pdBp7v4PCCN5lyyBKVGiSFBwSi02eDnpwfTwT9BOtLr1lRNubbycmdCHmOAL7SNeE+4Q+Ewwdu3vrWVm8Zg0MFkN4NVMh5vr+TjbKNSluHv73WR0p5H78mOia6NEELaH3cCoB8APM9xXH8458isAgCO424BsAzAN42tiOO46XAOURtQTxELgNrjsbSuf02u/XCVsdQqY/JgHW6rqLBAFD2bjaqlnK4y4XhlBQZrvWCx1J/ql2UZaDQq2GyOc0/tlc4PQp1Cgby8Emi12nqPb88UChYGg65DvW6N5c61RWfn4dGoWBgFCdYG3hPNUlIIyd8EezOm1da8Nqtshcls8Xh7ZVfAr4KM0tJm/2loNHpPdkx0bR2Xr68OtdeMIYR0Lu4EQE/AuebPYjgTH7zk2v46gEwAC5pQ1wwARgC1h769zXHcMwAyAITVOqb65xycW0ExDM71iGqW+cf1fZYH6nCbKEoQhI7xAWEyOW/qVCpNo4YjSZJ8thyrdT4R17IsKiqqoHQjk1x70pFet6ZqyrVFCA6EBwWjSqnwaKrqmhxmE9QOCwSp6XPPapMkCQ5JgF1weLy9jCuo14Bpk/cGvSc7Jrq2jkdumT91hJB2xJ2FUIsBTKhj1wie5zObWN2dAGr3oSfDGVx9AOB2AA9zHKfgeb76+fBYZzP4Ao7jygFUABgNV/DimlM0BMCbrvI/e6COLuESUUJIUAg0iqavAwSN82VUsizMlRUICPDsopmkbXi7/jUE+bfYOUSrCbLdAlat9UDQwkCQPL8IKgCw3s73uJplIctyhx/mSQghhHRVbi2ECgAcxxkBqOFMggAALMdx/QCM5Hn+7cbUwfN8Tu1trp6gAp7nMziO2wRgLoCNHMetBDAcwJNwrtkDnudtHMe9CeAVjuMKAaQDeBXOXp9PXFV6oo5OTxYETNJ7AVEx+FXV9N6bmmsHWcrLPNgy0lYsJhMMCuefiICQlguAJLsVss0MVhsISWre8hIMA4iyAKEF1uphvZwBkIJhINhsUHXQYZ6EEEJIV9fkQa4cxw3iOC4Bzixp6QDSXF+pAP6FB3tNeJ4vgLO3iYMzLfUSAM/wPL+1RrHFADYC2ADgVwACgAk8z9s9VUdXIFnPrZui0Pk0ULIeLAu75BwKYa2o8FSzSBsqykgHyzAQZBnevt4XP6AZhMpieGLIPcMwcEgChGYGUnVR+pzrrDaXlXm8fkIIIXUzmUzstm2bg6t/XrjwmagHHriLa+iY5srOzlR//vmnzXr6t3v3rsARI4YNrW9/a1zHiBHDhu7evSuwJc/RWjIz09UjRgwb+ttvv7hxo3o+d3qAXgXgD2AOgElwZk/7As6McBPhHErmNp7nmVo/HwFwRQPlRTgXNZ3XQJlm19HZSTZnEjy7JEGpdS8jl012dgnaqmqvZ0s6otKsTGgBVIoiGElESw6LF82VUIk2NKNTGoCzB8jq8PwaQADAqJXYkZMJmyhitsMO3xY5CyGEkNo2bXrX+MMP3wRNn35vIQDMnbsoq7kjBi7mhReeiwoJCbFPnjyltEVPRNqEO89cLwOwiOf51wHsAuDN8/xbPM/fAGAPgFkebB9pJdVBi1UUoVS5N7Tn1Yoq3HnsD5i0zZ/MTtpeVa5zuSwzy0ASHS16LtFqBiNYm73+BsMwsLbAIqgAIMsyvq8sx9cF+bBKnW/iNyGEtFeyLJ/36eDr6yv6+we0bAQEmSZ6dmLuPG7VADjl+j4JwMAa+zYDaNT8H9K+VA/psUqS2wGQQ6WBXZJgtlguXpi0e6biYgQBcKiUQAvf8AtWM2S7Faze0Ky0ujJkWB3Wixd0gyRL0Op0MFWZYLGYW+QchBDSGLIMmAW3HmI3m14JqakPq8rLyxWrV78S/scfh/wEQWCio2PNjzwyK3vw4CFmADCbzeyKFUsj/vzziJ/ZbFZ0797deued95yZOHFSWXz86rAPP3y/G+AczvX++x8df+ed/wsrKMjXrF//Hv/bb7/4zJ//dNzLL6869cYbr/UoKCjQREVFmRctWpr27bf7/Pfu3WMURZEZOXJ08cKFz2cxDANZlrFhw9vGb7/dF1RYWKBRqVRS7959q+bMWZAZGRllf+CBu7jExATvxMQE75tuutZnz56vj9vtdiY+/rWwH3/cH2ixmBXh4T0sM2Y8cGbUqKvPjvvft+9Lv61bN4Tl5+dpY2N7mQYPHnLROQGiKGH58ucjfvzxh0ClUilfc821RbNmPZ2jVDpv0f/443evTZveDUtNTfZyOBys0Rhqu+OOu3JvvPHmkuo6Pvvsk4APPtgRmpt7Ruvn5++YNOnGgvvueyi/9rkKCwuUjz76AOfn5+9Ys2Zdil6vl376ab9h/fq3uufkZOtCQoy2W275X158/Oqo99//6HiPHlH2m266dsBll11Z9tdfRw3l5eWqxYuXpl5++X8qt27dGPLVV1+EFBUVqYOCguy33HJb3u2331kEAL/99ovP3Lmz46rrAJzD1+64478DVq58/dSVV46sXLjwmShJkhh//wDHgQM/BNpsVnbgwMEVCxYszjAaQwUASEw8qX399Vd7pKQke/n7+ztuu+2O3Ka98+rnTgCUCSAGwC9wZmwzcBwXxfN8OpzD4Sj9VwdkrSgHANhkCaxC4VYdarUzcDKbKQDqDE5pNZh/9DBun3QtRrX0ySQRoqkMCh8jxGY80xMlEY4WSIAAOAOgSG8fBFtssJSWXPwAQghpAbIM3Pm1vjdfqmj9FZkB9PYXq7Zda+YbGwTJsownn3ykl1KplF58cWWKwWAQv/hiT+CTTz7Se+3adxIHDBhkWbt2dVh6epp+xYrXkn19/YSPP/4geMWKZTH9+vU/MWPGg3kWi4X99defAtavfy8hKCj4gj/ykiRh3br4iHnzFqar1Vpp8eL5sY8++kCfSy4ZWv7GG2/xR44c9l63Lj7y8suvrBg3bkL55s3rQ3bv3tntmWeeTevdu48lKytT89prr0S+/vrKiDVr1qWuXLkm5amnHusVFBRsnzdvUSYAPPfcvKjMzEzdggXPpYWGhtl//PEHv8WLF/R87rllqePGjS8/cuSw10svPR97662351533Q3Ff/75h88777zZ42K/n1OnkrwDAwMda9e+k5SdnaVZvXpllNVqZZ99dknWmTM5qvnzn4qbMOH6wrlzF2YKgoN5773Noa+//mrUFVf8pyIkxCh8+eXn/qtWvRx955335IwbN6E0IeGE/vXXV0Z5eXmLU6dOK6o+T3FxkfKxxx7kAgOD7KtXv5mi0+nk48f/1S1evKDnpEk3FixZsvx0UtJJ/Ztvroms3cZvvtkXvHTpy8kGg0Hs06ef5ZVXlkf89NMPgTNnzsocMGCQ6bfffjG8886bPex2G3v33fcVNO6dARw69Kv/iBGjSt54Yx1/5kyO+uWXl8W8+eaa7suWrcgoLy9XPP3041xcXO+qdevWJ+bn56tff/2VC9rmLncCoI/hzJhm4nn+I47jkgAs5zhuBYCncf5aOqSDsFY6H1I0Z6DTZWolro6KhSr3guR+pAMqKiqEKMvw9W+d2S5CVRnUkoBziSWbTkTLpMAGAFGScIdfAHoEGlGelg5cMaJFzkMIIRfDoEWnZXrUwYM/+yQn81579uz7pzp4eeqpeTkJCSe9d+3abhwwYFB6bu4ZjU6nFyMjo22+vr7iE0/MybnkkqGVvr7+ore3t6TT6SSWZeXqnoG63HvvAzlDhw43AcCVV44o27v3s5DFi5dl6PV6qVcvzrp9+9buqanJunHjJpRHRPSwzZmzIO2aa64tB4CIiEj74cOHSn/++Ud/APD3DxCVSqWsVquloKBg4fTpVM2vv/4S8Oab7yZW91rFxvbMT01N0X3wwfbQcePGl+/evTMkLo6rmjXrqTMA0LNnL9vp06m6r776PKSh34+vr59j2bJX0rRardy7d19rYWFhzjvvvNnjySefybHb7czUqXeeuf/+h/OrF+e9994Hcn/88YfA06dTtSEhxqqPPtplvOKK/5Q89NCjea522cxmk0Kr1Z0dTlFRUa587LGH4oKCgm2vvbY2VavVygCwc+c2Y3R0jPmZZ57NBoBeveJsJSUlqvXr34qo2cZLLhlSftVVoyuddVWw33zzZfB99z2UddNNt5S4zll45kyO5oMP3u92110zGh0A6XQ6ccmSFzNUKpUcF9fbeujQr8VHjx7xBYAvv/zM3263sy+88HK6r6+v2Lt3X6vFYs568cUlsY2tvyHuBEAvAOgJ5yKmHwGYDeBTAFMBiK5/SQdjCQjAa6cS4e0fiPFu1hHDMugdFIzkUpov2BkUFRUCAIJ8m51spVFEqwmMaIdzlK17JFlqsQBIhgyBcX4AOcymFjkHIYRcDMMA26418x1lCFxSUoIeAG677aYBNbcLgsA4HHYGAO688568RYvm9rzxxgmDevWKMw0Zcmn5xImTSnx9fRs9JiA6Ovbs+GeNRiv5+vo59Hr92SBArVZJNpudBYBrrrm2/OjRI17x8a+F5eRka7Kzs3TZ2Vlaf3//Op8DJySc0APA008/fl7GNlEUGb1eLwJARka6/pJLhpbX3D9gwMCqiwVAsbE9zdUBCQAMHDjYJAgCk5qaohkwYKDlllv+V/zee5tCMjLStDk5Odr09NN6AJAkkQGAzMwM3VVXXX3esITbbjvX8wMA27Zt6S6KAlP7XKdPp+hrD9MbMuTSSuCt89rYvXv42d9tSsoprSiKzCWXDKuqWWbw4CFVX3yxx1hYWNDo2MJoDLWpVKqz7fHy8hYFQWCcbUvVG43drDXfA0OHXlpVVz3ucGchVCuAWzmOU7l+/objuP4AhgI4xvM89QB1QCZJxr8V5YgKavD/aYMEhQKQAMnaMpPQSesaWlGBwdGxCG2lBT9FqxlwNG9BVEEWWiwAAgBRwQIy4DDTHCBCSNthGMBLhQ6RjUWSJEan04nvvLMlsfY+tVotAcCwYcNNn366799ffvnRcOTIYcO33+4L2rVre9iLL65MHjlyVKNSy6pUyvM+OFi2/s+ud99dZ9y5c1v3MWPGFQ0ePKTyf/+7veDHH/f7/fLLj3VO45Bl5696zZp1SV5e3uf93hUKhXyu3PmJE5RK1UU/zFiWPa9MdXY7jUYtJyfz2scee7B3VFSMeejQS8tHjBhdHhAQ4Hj88Yf61Dz/xT6mBwwYWHHddZOLli9fEnvgwPclY8aMq3AdC0m6eLIHtVpzwTXWXgxccs0VrhnQyDWuzOEQLjhPzbLn1NzU9N9nYzUn56ye47gr4EyJXQBgH8/zHovMSOsyu55oa91MgQ0AolIFOCyQbRQAdQaxYGAMDIagVrXK+SS7FbLVBIXO/QVRBUmEILVcxjpRqQAcEkQrzXMjhJDGiI3tZbFYLAq73cb07t33bE/C4sULInv27GW+664ZhfHxr4UNGjSkavz4ieXjx08sF0Uxa+rUKf0OHPjef+TIUZUMw3h0yN+HH74fNnXqnWeqh40BwI4d74XK553l3Dl79eIsAJCfn68eN27Q2V6e119f2Z1hWPnJJ+eciYmJNScmnjxv0bzExBMXnaeVnn5aL0kSqoe4HTv2p49arZYiI6Ntq1a9HG4w+DreeWdzdfIxfPfd176Ac24VAHTvHmHl+cTzzvPyy0sj8vPz1GvWrEsFgKuuGlM6ceL1ZQcOfFfy+usro4YOHX7CYDBIUVHR5trHHj/+d4Nt7tkzzqpQKORjx4549+8/4OyH4d9/H/Px9fVz+Pn5iyqVM7CtqKg4O6k8IyOtScM7evWKM+/f/11gcXGRMjAwSACAf//9y2Pz3txZCJXlOG4ZgCwAXwLYAeA7ALkcx833VMNI65Kys3F1UDCitLqLF66vDqUaAMA4usz6sZ2WKIrwdg338gv0a7XzCpUlzUqFLUit0AMEQLK0TKY5QgjpbMaMGVseGRllWbLk2diDB3/2OX06VbNy5fLwAwe+D6oetpaTk6NZs+bVHgcP/uyTlZWh/vLLz/2Ligo1AwYMrAIAnU4nmUwmRUpKssbhcDR7WEJgYJD92LEjBp5P1CYnn9K8/vqrYX/88bufw+E4e1+s0+mkgoJ8TU5Otqp3777WIUOGlcfHr4r89tt9vunpaeoNG942fvLJ7tDu3bvbAOCOO+7Oy8hI173yyvLwlJRkzaeffhSwb9/e4Ppb4VRcXKx+7rl5UUlJCdqvvvrC7/333wu76ab/5ms0GjkkxGgvKSlW79//nSErK0O9b99ev/j41ZEAYLc7hw/eccf03N9+O+i/ZcuGkLS005rPP//U/9tv9wWPGDGqrPa55s5dmGW325lVq16KAJxDD9PSUr1WrVrRPSUlWfP111/6bdu2pTtwYQ9PNV9fX3HcuAlFO3Zs7b5nz8cBp0+narZt2xz8zTdfBU+Z8t98hmHQu3dfi1arlTZvXt/t9OlUzaFDv3pv3PhOeH111mXSpJtKDAZfYeHCudEnThzXHTp08P/bu+/wOKpz8ePfmZ3t6sVy7/aAjY3poQZIgUAKuSEhITedNEISctN/qTc9pPdKSbmhhITQCaGDAVNs3DDj3tS7tu9O+f0xKxCyZUmrbZLez/PokbQ7e+Zd7Wh33jnnvKfiV7/62bzRHzk2uYwf/SrwBeCPwCuBo3AXP/0r8C1d16/IV3CieIIH9vORhUtYpeXeKWh73eReyRR2zRhReL1dnYSzx0J1Q/GW/LQSEVQr9x5EtweocEtDOF73b2KnJAESQoix8Hg8/Pznv92+bNny2Le//bXFl132rhWbNj1X+eUv/++uweFtX/rS1/etXr0m8r3vfWPRu951yTF//vM1c97zng8cfPOb39oD8NrXnt9bU1Obueyyd6/ctOm53IeqZH3pS1/fk0ql1I9+9ANHf/KTHzlq797dwcsv/8S+SGRA279/rw/gjW/8r84DB/YH3v/+d660LIvvfe/Hu0899Yzen//8Rwve+95Lj7n33rsbPvaxK/e99a3v6AZYtWp14lvfumrH5s3PVV522btX/uMfNza99a3vGLVs84knntzn8Xicj33sg0f/8pc/WXD++a/v+NjHPtkC8O53v7/jtNPO7Pn+97+9+H3ve+fKv/71T7Pe+97LmhsaGtNbtmwOgzuf6YorPrXvzjtva3zf+y5d+ac/XT3ngx/86P6LL76ke/i+GhoazQ9+8PKDDzxwX8NDD91fdfTRK5Nf+co3dj799JM1l132rpV/+tPVsy+44A0dAF6vb8Rety9+8av7L7zwjR3XXPP7Oe9//ztX3nHHrTM+/OEr9l922UfaASorK+3Pf/7Lu5ubDwTf//53rvz5z380/8MfvuLAeBKgcDhs//znvzE0TXM++cmPHPXd735z0dvedmnb6I8cG8VxxterqOv6fuBqwzD+9zD3fR+42DCMvFRomOR2A4t6e2OYZvkP0334S59nVns76/xBKt/+2SNuq6oKwaCPRCL9srka8X//lRPbdrNDVbjw99cWOuSC0DSV2towk+V1G4/xPDfj6adQfvdrLMdhyScuwckUZ1ijFqqk4uhTSaphxvPWNPjcNrcYPHtgS8HiS/z2Nlb3RNlbU8Nrf/jTgu1nKDkmJyd5bpNXXV0Yj0fdg7vkR0k9++yzR6mq554ZM+ZEfb6AXHkRebVhw7MhTdOcVauOfXEo27/+9Y+6n/70hwvvu+/R9doELoqXSjqdDHR0NFfYtnX+CSec8MJI2+XSA9QAPD7CffcAs3JoU5SYk3aHrQ0OY8upjew6QJ6JLOQiykJ/tpR5zLGhgD0qw7kLoiZeHAs9XokCJ2pdNRVc37yfff7c/0+EEEKIcvDCC9tC//M/H9fvvffu6oMH9/see+yRyr/85drZp59+Rs9kTH7GI5dndz9uqev/HOa+1wBrJxSRKI1sAuT4ci9B3DljPh+87S/MW7KE8/MVlyiJWGcnNUBCVXEKOKfmEBNYENW2bZJmYS+QDtRXc0trCxeMs+dcCCGEKDdvf/s7u7q7u7y/+c0v5vf29nirqqrMM888u+eKKz415Rd0HFMCpOv6u4f8+gTwdV3XZwI3AW24leDOB94C/E++gxSFp5jZk9wJJECeUCX9ZoYqKRE86SV63SUFTM0zypb5Z0b78Dnj73UqdAEEAF/A/f9IJKQKnBBCiMlNURSuuOLK1iuuuHLUuUpTzVh7gK47zG2vy34N91vgD7kGJErjpQQokHMbPr/72LgkQJPeDq+Xrzy7jndfdCGnFXnf7oKoKca7IGrGNslYhS3AEfB4WBAMEYrJQqhCCCHEZDXWBGhRQaMQJefJzvNQ/LkXVwk5Du+btxDvFB83Oh309HRjOQ5VVZVF37eVjEN6/AuiWo6FaRe2B6ghkeIHK1fTZso8NyFEUdiAM3yBTSHE4WX/Vxw48kLBYz1TbTEMY9yXVnVd9+byOFF8/85kaN+3h+NPPJdcix77NS+va5pJ2rYZuqiXmHx6etzqmTWVeVtzbMzsdBInFUcNjG9BVNOyCj4ETgm6vVJemQMkhCiONsdxMul0MuT3B2XsrRCjSKeTIcdxMsARh/WNNQHarOv65w3DuHWsAei6fjHwbUAf62NE6bwQj7K9t4fjK3Jf88UTdnsLfKpKMh4jVFH83gORH8cPRFizaClNJTrRNyPdeGrGvt6ZoiikizAHSA25wzy9Bd2LEEK4TjjhhIFnn332zwMDvR8F6n2+QFxRFLkCI8QwjuMo6XQyNDDQ63Mc++oTTjghcqTtx5oAvRu4Ttf1b+MueHqzYRg7h2+k6/oK4ALgg4AHeNf4whelEsvOafD5gzm3oQYrXmqvt1cSoElsETC7voF0CYogAFjxKF4njfs2MjpFyRZBKPAQOCXk9gD5xrGYmxBCTNB3LMukr6/73YqihAB5AxLiUI7jOBnHsa8GvjPaxmNKgAzDeErX9eOAjwGfAr6t63ofsBeIATXAXKAa6ASuAn5tGIYs2jUJOLbNGo/G/No6vJ7c1zdRPBpp28anqiT6+2De/PwFKYrGcRxC2c/XitqqksRgJWMomSTKGBdEVRSFtJXBKvCaRZ6we4EgoKo4to0iwzyFEAV2wgkn2MC3nn322Z85DrPIbQ1HIaY6G2gdredn0JhnqxuGkQJ+rOv6L4BzgXNwV0muBg4AdwD3Ao8ahiEzhCcRO5nkPTNmwoyZrJ9AGWyAVDYBSg4M5Ck6UWzxWJSqbCGLmrrch0ROhJWM42QSqMFKLGv0leYVhYKvAQSgVLzUQ2qlUmjB3HtMhRBiPLIndmM6uRNCHNm4y3Vlixr8O/slpoBMdvibadtogYlNek8BlUAqIgnQZNXT3IyaHeIVqgzhWOmix+DYFlZsAE/F2BZEVRSFRCZV8Li0iiC246AqCsmBfiokARJCCCEmHelGFcT7+wBI2jbeCawDBJDODldKReQi1WTV13IQgJhtMUoVyYIyoz0oY1wQ1cYmaRY+AfJ4NW5pbebG5gMkMlLgUgghhJiMJAESJPr7AXf4muqZWH2rq2MJPrTxWSK1NXmITJRCpL0dgDjgFLiq2pFYyTiqNbakxrKtghdAAECB23q7+UdrM4VPt4QQQghRCJIAiRfn66QcB2scC08eTsIboC+TIZ6U+heTVbzbXQMo7Snt24M7DyiJqo5e8MjCwixCsmY5NoGg20saj8cLvj8hhBBC5J8kQIJkdr5OPmZ6eP3uyWEiIeu1TVZ7/T7e8ew6nqgt/iKoQ9mpBE4yNqYFdW3HxixCD5Bt28ysqGReMEiir7fg+xNCCCFE/o0pAdJ1/bxCByJKJxV15+uYeVjbZJXXy/vmLcB38OCE2xKl0dvbi+U4VFSXfh0nM9LDaPmPoihkirAGEICDw/vqGvnRymMxdx2yFJoQQgghJoGx9gDdrev6Pl3Xv6bruizuMsVEq6r58a7tPDqWclujWKTC65pmEcgOoxKTT0+P+9rVVlWMsmXhWYko6ihV6AYXQS1GDxCAmR2Sl4nJEDghhBBiMhprAvRfwLPAF4Hduq7/W9f1i3Vdn9iMeVEWIgo82dtDywTXAAKwNPeQcFIyRXyyOqqri48vWsrsiU0HywsrGUMxkxypc1JRFEzbJFOkgg1mtkvKTEgCJIQQQkxGY0qADMP4l2EY/wXMBq4EaoCbgGZd13+k6/rRBYtQFFwsuw6QLzDxNU1sbzYnzhR/7RiRH/NMkzPrG6j2jHuZsLx7qRDCyG9VqqqQMtM4FCdjs7LFIaykzHMTQgghJqNxFUEwDKPHMIxfGoZxCrASuAZ4K7BF1/XHdV3/gK7rpZ05LcZNaWvjFbV1zPJOvAfI1tw2FFkjZdIKOm4iEa4t/RwgxzKxYv14PCN3ASkKJIqwBtAgS/O436XQhxBCCDEp5VwFzjCMbYZhfAFYALwW2Ax8G2jJU2yiSOpamvmfJcs52pn4opd2diFVNVO69WNE7izLolJ1T/Cr66pKHI3LjPaOuiBqIlO8ZMT2uj1jtgzzFEIIISalfIxx8QBhIAj4xvtgXddnAD8Czs+28TDwWcMwns/evwb4GXAi0A383DCMHw55vAp8DbgMqAUeAy43DGPnkG0m3MZUNjhfx8nDHCCyZbA9eSioIIqvv7MDX3a4WVVdFRRpWNmRWMlYdkHUwx+flmORtorX42h73QTRScswTyGEEGIyyrkHSNf1M3Rd/y3QBtwCLAQ+BcwaZ1O3AUuA1wEnAQngPl3XQ7qu1wP/AbbjJi9fA76p6/r7hjz+K8BHgA8Cp+Kesd2t67ovG+eE25jqBoer5ScBcucRefLQmySKrzdbvjxpW/h8pZ8DBGAlYkdcENXCIlPEBKi3MsytbS00+6bF24MQQggx5YzrDEfX9RXAO4FLgfm4yc8fgGsMw9gx3p1nk5M9wLcMw9iave2bwHO4c4xeDaSAjxqGYQLbdF1fBnweuDaboHwa+JxhGHdlH38J7jC8/wJuAD6UhzamNNXMDlfzT7wIQqR2Jp/c/BxN8xdw1oRbE8U20NZCGIg5Dk6RqqqNxk4n3QVR/XXY9qE9i7ZjF60CHEBvQxU3HdzP69ccV7R9CiGEECJ/xpQA6br+adzE51jAAu4EPgHcZRhGzmOdDMPoBt4xZD9NwGeAg8DzwP8Cj2QTl0EPAF/MDp1bCFRmbxtss0/X9fXAWbjJy5l5aCNnHk/OnWxFMzhcTQmERrzKPtTgNofbVgtX0ppKosRjaFr5P/fhBl+vyfC6jddYnlu8p5ug45BUFFQFjlh/uoisaC/e+vkcrtM6qViYjvvvrahK7t3aY+QPuj2lqVSyKMf4dD8mJyt5bpNXmbztCSEKaKw9QD8AXgC+APzJMIyOfAei6/rvcYegpYA3GoYR03V9Lm5xhaEGiyzMB+Zmfz5wmG0GF2zNRxs5q6qaeK9KoWmODSh4KyoIBsc+rMfvP3QZqKpqd+J8Ih6ntnbyFgScDK9bro703Prqq/n4s+u44JWn8+pxHAuF5rETBL0OFZWHHlPt0QSKB7AOf0zmWygUoNHnJ5hKFPUYn67H5GQnz00IIcrPWBOgMwzDeLygkcBPgd8BHwX+pev6GUAINyEaKpn9Hsjezwjb1GV/zkcbORsYSGBZ5T0fxmPboHqwvAESidEndquqgt/vJZXKYNvDJsmbDpfMnkvY56OnawDF4ylQ1IXh8ahUVQUnxes2XmN5bgcOtGAD4aoKkmM4ForFo/TjiUbIJB2cIYecqirEM0liiQSaz0MqlcEZfkzmWV1/nF+tPo7OWIre3lhB9wVyTE5W8twmr+rq4BHXHhNCTH5jSoCGJz+6rs/GLShQM8L2fx5vIEOqvn0ItxDBFbgFEYbPzA9kv8ey95PdJjFsm8Ezk3y0kTPLsjHN8v6A+GdfL+mBfk581VsPTWiOwLadQ7bX/EHeMtvtVEv0R/BVlUcp5fGaDK9bro703Lq7uwGoragY17FQaHY8hp2MY4cqXnbCpWkqKTONaVloeHAOc0zmmxJw3040xynqMTJdj8nJTp7b5OOUz1ufEKJAxl3mKVsg4DpGqknrVlAbUwKUnYPzKuCmwblEhmHYuq4/D8zBHZY2e9jDBn9vBrxDbts1bJuN2Z/z0caUtq6ni76+Pk6qrJlwW1ogjGnbaKpKor9/0iZA09XClhY+sWgpTeU2CN62sGJ9eCqbGFphXVHcHqCiCrlvfd4yKBEuhBBCiPHLpY/3W8DTuD1Aiw7ztXgcbc0G/ga8cvAGXde9wPG4RRAeAc7UdX3oOKpXAUZ2HtJGYAA4e8jja7KPfzR7Uz7amNJiMbejy+cLjLLl6DTNS8J2rwgm+nsn3J4orqZkkjPqG6jRyqME9lBmtA912IKoigLxdPEWQQVQw+7/iY8ySxKFEEIIMSa5nOXMBj5hGMb6POx/I/Bv4Ne6rn8Q6AW+hLsY6U9w5+F8Drha1/WrgJOBK3HX7MEwjJSu678Evq/reiewF7dgwwHgn9l9XJOHNqasVCzK8eFK4raFlocESFEUkrZNJZAciEw8QFFUAcsGTSVYXVHqUA5hJWNgJnlpBCvY2KSt4s5VUkPZBEhVcSxr0s1zE0IIIaa7XHqAngD0fOzcMAwHuAS3BPWNwFO4hQfONAxjf7aH5rzs/tbjLmL6WcMw/jSkma8CVwN/BNYCJnCeYRjp7D4m3MZUFm1r5dNLl/PZJcvx+vJT0SeVHUCdigzkpT1RPOHs0LfK2vIbumglYpBJvKz8uuVYpIu4CCqAWvHS/4mVLPLwOyGEEEJMWC49QJcDt+u6Xg2sA+LDNzAM45GxNmYYRn+2zctHuP9p3KIIIz3ewl3U9PNH2GbCbUxV8b5+AFK2DYoKTHxC62DWmI5JD9Bkkk7ECWd7M6rrakobzGHYmRR2Ioon2PDigqiWY5EpcgKkhQMvznNLRQbQwpO33LsQQggxHeWSAC0HZuL2pAAvmwmsZH+XMSGTRKI/mwCRv+pZ6ezciHQ0mpf2RHH0HHSXwjIdm6rqIFjmKI8oPjPSg7d+AeDO/7Eci7RZ3Dg9Xi//7mzHdhzea5pI+iOEEEJMLrkkQD8E9gDfBdryG44otmRkgABur42VpwToX6kM7Tue59MXX5yX9kRx9DW3oAJRy0Z1nLKscWYlovisFOBFURQytln0HiBUuL6jjXQqxTtkrRAhhBBi0sklAVoAvNEwjP/kOxhRfKlohACQyWPZ44gWoDmZJF7kK/NiYiKd7VQ6DnEcHNsa/QEl4M4DSqJ4fCiKgmllE6AiFmSzHZtAMEA6lSIeP2QEsBBCCCHKXC6XLzcDc/MdiCiNTHaYmqnmb9Siz+9WyZKTw8mlIxTmHc+u4xZP+S5saKXiOKk4Ho+CokDaymA5xY+3NhSi3ucj0ddX9H0LIYQQYmJy6QG6Erhe13UNtyLcIaW+DMPYP8G4RJFkskmKlccEaLFPY+XsuQQOHMhbm6Lwenq6cYBwdWWpQxmZ42BGe/BUu2sZJzLFXQNo0Acamjhq9gLi27bCiSeVJAYhhBBC5CaXBOh+wAv8DkacJiBFECaJrlCI2/bupklfyfI8tblQVTlz9lyaOzry1KIoht7ebgBqK8t7Wr8VG8Brp7FVH7ESJUCZ7NyfTDxWkv2Xmp1K0XnzTcQ2PYevaSaNb3s7/rnzSh2WEEIIMSa5JEAfyXsUomS6Fbi/q4NzTzg1bwmQrfkgE0PJTPlllKaUWfv28cnFS6lUc3lbKB4rEUMxU9g+D2mzNMeY6XETIHMaDvN0HIeW3/yK+JZNAJjd3fTecyczL5OPBiGEEJPDuM90hi0gOiJd1xXcxUW/LkPiylcs5l7B9gdCeWvT9vohAUqmyNW5xITURqIcW9fAAa3ME6BkDCedwPIFir4I6iBT84AFdmL6LYTa/+jDbvKjaXQtW0qtP8Cct7wFRVMxzfKdPyaEEEIMKuSZjgq8B/glIAlQmfL19rCqqpoaT/4OBcfnA0CRKnCTis80QVUJVJX3EDjHMrFifTiV1cUvgZ1leVSwHOzk9EqAHNOk5/ZbAfjb/r3868nHAHjdlk1890c/QamowXHKsYC6EEII8ZJCL2JRxOK0IhfLurv5yvKjWZjO34mc4w8C4LHKs5SyOLxQ9sS1oqaqxJGMzopHMO1MyXqAbF/2gkEqVZL9l0rk6XWYvb30ptPc0drMzJpaFEXh7icf54ufvpKBh+6XBEgIIUTZk1X8pjnPYC9NNmnJC5/blpanhVVF4Tm2TTg7sb+qroyrwGU5ZgbTTJE2S5QAeb3uD9NsnlskmWRXIs49nW1cfPpZ/OXKz/Kd/34vAY/GRfEUrX/5M6l9e0odphBCCHFEkgBNc+pgL00e5wApAXcIlVeuBE8a8Z4ePNnFcGvqq0sczehsK03GTGE6pelljFQEua+znRa/vyT7L5VrHnuYL27dhOH38/5XvRZFUThp6XLede5r2BJxV0ToefCBEkcphBBCHJkkQNOcZruTltU89gClqmr5f9u28Nv+3ry1KQqr96C7ZlPENAn5fSWOZnQKColUtGSDbPtrK/j9vj087/OWJoAS6Onp5vbb/wXAB199Pqr60sfHxaeeztZsb1jvk0/gyPBXIYQQZUwSoGnOm+2kUYL5m/juDVWyMxZlX+SQNXJFmRpob8N2HGKODXb5n7wqmo9ovA9lxKXICssXcHt+EonSrENUCvdfdzVey2LFkqUcM2zNH4/Hw6mnnMpAJoPXsohs21qiKIUQQojRSQI0zQ1e61dC+Zv3MVhSOxqN5K1NUVg94TDveHYd1yai4JR/KWNH04gnoyh2aSoNen0aIY8HJTY9FkK1UilWbN3K1WtO5G0nnYyiHNr1dtbKVWzNLgxr3HFbsUMUQgghxqy8F/wQBefPnsiowYr8tRkMc8GMmYQ1DTMWRQvnr21RGD093ThAqKb8CyAA2JpGaiAGWCh5LOE+VtUOXHfcSaSS06MK3I4H7sOrKHSl05xw1MrDbuPxePDNnAWJBOzYgeM4h02UhBBCiFKTHqBpzLIsrt2/l78c2IdaUZu3dgOBMBfPnstbZ88l0taWt3ZF4fT09ABQVzU5EiBL00il4jhmCkUtwUl20B0C51cUHLv8e8wmav9jjwDQFfATVEb+2Fhz/IkkLYtqRaFty5ZihSeEEEKMy7gTIF3X79d1/Z26rh9x1rxhGBawCNica3CisJLJBPd1dXB7eyueUP56aTSvl2T2pDDe15O3dkXh1OzYzicXL2W5Vv6T+hWPhqVAOpPETidKMg9IrQi8+LM9DdYCUltbAAjPmXPE7Rrr6rhhoI8PPvcsD23ZUIzQhBBCiHHLpQcoA1wHtOq6/ntd108daUPDMPYZhlGahTrEqKJRd7y+qqqoWn4rf6WyJbAT/f15bVcURmVfH6fXNVDvLf8ESPX6MB2bdCaFnUmjlKBogxrwY2WPcTuZv0WEy1Ffdxczs+X2Fi4/atTtFy0/in4zwz333FXo0IQQQoicjDsBMgzjfGA+8B3gNGCtruuGrutf1HX9yJcHRVmJ9fZwTGUVR9XWk+8lewaXh0wOSCW4yUBLu6+YryJ/1QALRdF8ZLBJZ5I4mTTYGSjyXBNv0E8iW+rZnuKV4Db++x58qkrUtqmtHX2o7JkrjkFRFDZufI62ttYiRCiEEEKMT05zgAzDaDUM4yrDMI4BTgFuA94P7NV1/W5d1y/SdV1mv5a5xIH9fFVfwRXz5mPZ+c2A0tkrxikphT0pBLIn86Hq8k+AVK+PlJnGsi1sM4Njpoud/6D5vS8lQMmpnQC1Pfs0AJFwCDuVHmVraKiq4l3Lj+LLy49iw51SDU4IIUT5yUcRBG/2a3AMVQNwE7BV1/VVeWhfFMhgcpJBwc5zApTJLpKYjkTz2q7IP8dxGEx7KuuqShrLWKial3jmpaTDTiWKvh6qN+gjkR16l5ziwzzv2GHwm7278C1bNubHHF9bz+qqGvrWP1vAyIQQQojc5JQA6bq+WNf1r+m6vgN4FLgQ+B2wwDCMk4CFuHOF/pavQEX+pQbcE7d0AS6fm6pbmjgTnx7rpExmViKBL5uwVtZNgipwmo9YOv7ir3YmheIUdz0gX8DP03293N/ZQco7dVcT6OnpZvP+vTzU3cWS1ceO+XEVs2YBEOzpIZORaaBCCCHKSy5V4NYCO4DPAU8A5xqGscwwjO8YhtECkP3+T2DeyC2JUktF3IVKMx5P3tt+UgvypW1baK6tznvbIr9iHe0AJCyLuuryT4Asr0Yq81LlNSeTBqu4CZCiKNzR38Pv9u0mWTF117navHkjAIsXLsI/jk7iOYsWu48LBNn03PpChCaEEELkLJdLl17gcuB6wzCONMHjX8A9uQQlisPMVoEzC7CQZDRUyY5YlL60XP0td31trdiOw4BpEtA8OEVOJsbL0jTSmZcqr9mWOw+o2ELhELFo7MVqilPR7nVPcl5jE3OWLseMj32uk1ZVTcpxCHg8bHjwfk446ZQCRimEEEKMTy5nvr8E7jxc8qPr+kzg3dkCCRsnHJ0oKCvhDiOyvN68z6HwB9xloiLZXiZRvvpDId7z7DoWz5rN38o8+VE0L5YCqSEJEA7YqTg4dUWNJRQOE/T0EO3pLup+i8ncbvCBBYvoU1Ucc+zHhqIoJAIB/KkU0Re2FTBCIYQQYvxymQN0LbB4hPvWAN/IORpRVE62epXtze8aQACzPB4ubJpJbWdn3tsW+dXb24MDhGrKf/ibqvnIODbp9MvX3rEzKRyruL2Nb6qq5U/HnYT21Lqi7rdYLMvCny3wUJmd0zMe4aYmACr6+0lO8bWShBBCTC5j6gHSdf0OYEX2VwX4l67rh1v+vAnYlafYRIHt9misPbCPOa84m5l5bnu2Y3PavIXsHZAeoHLX09MDMCnm/6heH2Z2DaChnEwax8yA4gPyvKjVCEyvBxywpmihj927dzLP5wegce74p3PWzp5L1949pC2LzZs3cpIMgxNCCFEmxjoE7jvAB7M/LwQ2AMMv7VtAH24PkZgE9pgZ/tPeyjvrm/KeAJEdAqeW+ZAqAcEtm7ly8TJS2desnKleHwkzhe3YL7vdNk2cTArFl//ezJHYPi+kHJwpuhDq9q1bWBIIAOAJV2CNcz6ft6GBPzkW9+/dxUfXPyMJkBBCiLIxpgTIMIzHgccBdF0H+KZhGLsLGJcogmjU7Z3xB/O/+KUScNv0WvYoW4pSC3Z3c1pdPVuKmDzkShlWAvsljrsekK94vViW3wupNKQO1xk++bVv3sgyRSHhUXPqU1MUhWPmzuf+DevZsOGZvMcnwLFtrIF+FH8AT7D8L2AIIUS5GHcRBMMw3pfPAHRdr8PtYXo9UAVsAr5gGMZj2fvXAD8DTgS6gZ8bhvHDIY9Xga8BlwG1wGPA5YZh7ByyzYTbmIqqYjGWhMKECjAHiJBbGtjnFGc4ksidJzs/w1sRKnEko3O8XuKJwxcdsM0Uqm2Sn/WdxyDgh4E0arr4FeiKIbV/PwBmVTV2jtUcV81fCMDmjc+RyaTxFuK9ZpqKPreBzhuvJ9PZAR4PlSeezIxL/xtPOP8XtIQQYqoZ6xwgCzjVMIyndF23OfIge8cwjPEkVjcAM4C34w6r+xhwr67rx2d//w9uSe2PAK8Afq3rerdhGIND7b6Sve99QDNwFXC3rusrDcNI67peP9E2xvFcJpU3ejQaV6xiSyr/E5SVsLv+T6AAi6yK/PJlq3sFqsp/PRtL00ilD3+8OmYarAyKGsApRuIdDAAR1HFUR5ssHMfB198HVTUEm2bk3M4cj4dfrD6O3lSKrVu3sGbN8fkLchrrX/so7dddA4PHuWUReepJwquPpeqUV5Q2OCGEmATGmqh8Azg45Oe8nF3our4UeA1wenaYHbqufxJ4HXApkABSwEcNwzCBbbquLwM+D1yr67oP+DTwOcMw7so+/hKgBfgv3OTqQ3loY0ryZ78r4aq8t61V1AAQVFUc20JR87/Yqpg4x3EIOQ4oChW1+T8O8kpRsIetATSUY5k4ZgolEMSxCp8AOWF3fozXsgq+r2Lr6Ojgml07uC8U5hdvexskchvmp/oDNPn81GpeNjy3XhKgPEju3Uv7n68Dx+Gh3m6u3rOLJVXVnHHiyVw0bx5l/l8shBBlYaxzgP53yM9fz+P+u4ALgWeHtO/ouq4Adbjlth/JJi6DHgC+qOv6DNyCDJXZ2wYf36fr+nrgLNzk5cw8tDElBRR3qJAnXEW+Z+p4KmsAUBWFRH8/odrirtEixsZJJfFle+lq6sq7CpzqdUtgp0ZIgACsZAI1UF2cgCqDPNHTTaihkWOLs8ei2b79BWKWRbqxkUC4gmSuCVA4TEZR8KkqBzc+l98gp6kDf/sLWBbrenv49a4dADzf18vz9/2b/3viMX7wg59x2mlnlDhKIYQob7kshIqu64uBgGEYz+u6XgN8G5gH/N0wjL+MtR3DMPqAu4a1/VZgCfDvbLubhz2sJft9PjA3+/OBw2wzP/vz3Dy0kTOPp0jzEcYpnUjgU7MJUEUNqGMfqqZmt1WP8Bh/RRXf3r6NuGXxB8emSivPv8Nwg69Xub5uE3G45xbv7wMgaVnMrK8+4mtaah6fn4Rik84kGD6yUsne4JgpVMfEUXN6axsXpbaSn+zewZqqSt5RwOO7FMfkzp0GAEctXYqdSk7guFCwwmG80SiZ/fvQhv2dptv/20R1dXXx6Uce4FTVw0avxtV/vJbF82bwzLonuPqvN/DC9p385AufpubCN3LMpz+Lmq3il29T+XUDDnl/EUJMPeM+S9B1/XzgVuAXwGeA3wJvwU0yrtN13WcYxtW5BKPr+unANcCthmHcruv6T3CHrw01ePk3AAzO2j7cNoNdDqE8tJGzqqryrMzTMdD14s8VDY2knfEPUfP7vUe8/4V0hlQyjqrZ1NZOrom55fq65cPQ5zZg9GI5Dv1mhtV1lXic8q3a56mooA8bR7HQvIc/XlXHxIOFN1j4gg7haveYTibjRTm+i3lMRndt591zF7C8rg6f4uAN5l68oGb2LJLbd9BoWqTTUZqyC6QONV3+3ybCcRyuuOL/sb+tFe+SJfzjH//ASgxwcPcLLFkwi//9/Mf5yW+u5e1JB23HDjruuYOj3/eevOx7JFP5dRNCTG25XCb9KnAv8L+6rlcDbwa+axjGV3Vd/xbwSWDcCZCu628C/gY8Cbwje3OCl6aqDBq8pBXL3k92m8SwbQZXJ8xHGzkbGEhglWEp6NY97pSupGWRMiE5jkpWqqrg93tJpTLY9shzLfyBEKlknNbWTurq8r7SUEF4PCpVVcGyfd0m4nDPrdlWufTZdcxrbOAV8RSZIi0imgt/WCGSjGJmDp1zoygKHk3FTGdQEnEUNYhtF/b1UzwaCpDsH6Cnsx9FK0yvU0mOyf3NvH7mLOKRGPHoxNY58tbUkgSWhMM8+ugTvOpVr3nxvun2/zYRd/3j7zz00EMEAgF+8pNfoNgWB3bvIB556WPqI+9+B7f/6louCQRpufU2Gl57AVoo/xcDpvLrBlBdHURVp2bvlhDClcsn9rHAGw3DiOi6/rZsGzdn7/sPbkGBcdF1/QrcMtX/BP7bMIzB3pgDwOxhmw/+3gx4h9y2a9g2G/PYRs4sy8Y0y+8DYqCrBxVIOg4Z0z5iIjMS23aO+Ljja+oI+zUie/dh6isnEG3xlevrlg9Dn1t7ewcOEKqpLnjCMFGOx0skNcDhC7y5NzqOg5WMo4VqKPTT0fxefr5qDU3+ANHdewguXlLQ/RXrmHQch0AsBj4/wfqGnN4bhvJU1QAwPxji/g3reeUrX3XINtPl/y1XyWQS7R83852jj6H3tNNZsmQJ7fsNov39L9tO07yc+JYLab3tfmYFAjx5zR95xUeumNC+j2Sqvm6yeoMQU18ulzgSvJQ4vQ5oNwxjU/b3mUDfeBrTdf2juMPpfglcMiT5AXgEOFPX9aHjXV4FGIZhdOAmKAPA2UPaqwGOBx7NYxtTTgyHvxzYx0OJOFaBKmadU13Fe+YtxNy3tyDti4nr6uoEoKG2prSBjIHl9ZIcoQT2UHYmDZYJBR7H7w34SGQrwFmxCXcWl42urk5met3rQjWHGa42XmowSJ/fz4NdHezYumXC7U1HD/zlWub6/MwLhnjLu95LOhGht6PtsNvOmzuH1sZaAFJPPkEmk9saTkIIMZXl0gP0GPCZ7AKmbwOuBdB1/QTcxUQfG2tDuq4vx+35uQX4LjBD1/XBuxO484E+B1yt6/pVwMnAlbhr9mAYRkrX9V8C39d1vRPYC/wAt9fnn9l28tHGlBNxHG5vb+WounqWF+hyVzo7ET01MFCQ9sXEBbZs5lOLl5EswDCZfLM1jVR69OFY7npAaRSvt6DrAXlDfuLZBCjR30f5r6I0Nvv27mFewJ3b4auqIi8jnFYfy+/WPkyoswPLsvB4yrcsvmOa9D/6MLFNG1F8PqrPPIvwMatLFo9pmnQ9+ABLQ2Eis2dT2dhAV/MOErHoiI9Zet45pG66g1malwf/ch2vff8HixixEEKUv1x6gD4FzAH+D9gDfCt7+52482i+MI62LsYdgvZmoHXY18+yPTTnATqwHjfB+qxhGH8a0sZXcecc/RFYC5jAeYMLmOajjakoGo0AEAoX7rQto7lXkc3oyB/UorQCnZ2cWldPk2/4NLnyonh9ZHBIZcaQANk2diqBWuBSTl6fl7jtJkDJ3r6C7quYDhovENI0tzS+Lz9VxBbMaCLo9xOPx9izZ9foDyih1IH9dP79RmKbNxF99hmaf/pjOm++qTiL6x7GQ/fezbF+93U4+pJLsTJx+ro6jviYQFUFbdXue3vHffdiTcG1qoQQYiLG3QNkGMYeXddXAjMMw2gfctdFwIZhQ9hGa+s7wHdG2eZp4NQj3G/hLmr6+UK2MdWkujpZHApTHyhcFR/T64d0BiseL9g+xMR4Uu6/q6+yvKv0qV4/Sewx9QAB2OkEmmOS2zWesVEUhXQ2yUoO9I+y9eQxsGsnAHGvhp2n4VMeVWXlgkV0HtjP5s2bWLp0eV7aLYTg4sX0nnMuW/9zL0QinB4O03vPXSjhMA2vu7Do8Tx/6y2c7/EQ8/s5es2xJAY6iI3heGs89QRabv8PW7s6efTRhzn77HOLEK0QQkwOOZUtMgzDAdqH3fZkXiISRVGxdx/fW7GKbQ4Fq/tl+4OQjkJy9HkbojR8mQwoCsHq8h7ApXp9pG2LdGZs11fsTAosE0X1F/TKfTq7Pk4mMnWGeabaWgEwKytx8tRz4Jgmn66qwbOyhls2roc3X5yXdvPNsiyuuupb3Hjj9S/etmPGTN47fyFdN9+EOWcuM1cXb9nb1tYW6ru7oKaO6leciqpCf1c7tj3666LNmckjC2Zx9+bn6Ln+r5IACSHEELmsA9QI/BR4PRDm0KnGjmEYhV+FUEyInXB7ZSyvt2DXyJ1ACCKgpHNbRV4UXggHUKiqqyp1KEfk8fqJpsdeaMDOZHDMFEoggFOgIh8AZnYuS2YKDfO87eAB/trawlWfvDJvbSqahun14slkGNi+PW/t5ovjOHT85Tru3rOLG2+5GUVReNXZF7F65ckcOLCLZ7at5cSqap780fc59xe/oaqquihx3XnLzbwiW0VvzjmvwkwniI61t1FReOWpJ/Gvu/7NunWPs3v3LhYXuFKhEEJMFrkkKr8GLgSuBw4CU68G5jTgZIc+OXka439YQbdXwZMxC7cPkTM7mcSvuOlvVX1xTuhy5vUTTXeNvt0QdjKGGihsYtelqTzR083ScHkPIRyrTCZNS8tBLMti9uy5EM3f8FVvbS10dBDq7yeRSBAMls8imrGNz9H/yMMcZ1mENY1L//sznHzC2QAcrR9H5/JV3PT3n3Prvt089NUv8pOf/AqlwHPMAP5937083dPD+197PkcvmE98oIN4LDLmx9fX1nD6Ccdj7tzDnf/8Ox//zHim6AohxNSVSwJ0PnClYRi/z3cwonjU7MKnjr9wCVC0YQ7fvu9mKmfORgZflJ9Yp1sCO2VZzKmpLHE0R2Z5vSTHuSCnnU7hsU2gcBXH9oZ9/HPjJr7c+M6C7aOYDhw4gGVZhEIhagIBUnlMgMKNM0h0dLA4GMIwtrFmzfF5a3uieu67F4B7O9s569y3vJj8DGqcr7Py0v/h1h9cyUMPPcCtt/6Tiy56S0FjOnjwADt278Tj8fCDKz6JR4WBnk6ccS5w9b6KaiqWLOMvjz2CeeVn0Aq0YK8QQkwmuYx+SgO78x2IKC41ky1wFyzc3A9PTQMbB/oxersLtg+Ru96Wg5i2TZ+ZIez3jv6AUlEULM1DcowFEAbZmRSYaRS1cFfqQ5Xu/09//9QogrD/hW18dsly3r9kOVYyv0NXvbXu2jRLwmG2btmc17YnIt3RQfKFbdiOwwbb4Q3nHz6ZnTtrCZde4paT/uMvfsJAgcv7P/roQwCsWXM8VVXVmJkk8cj4jzP/4vkAHOXRWLfuifwFKIQQk1guCdA/gXfkOxBRXF4zO4k2XLgr/8GQ2/bAFKqQNZX0BYO8c/1T/LS7A8YwqbpUVK/fLYGdHl9vhGPb2Ol4QYcqhSpDKEC0p6dg+yimHmMbJ9XWsSYYxE7ldxUAT1U1NlDj9bF388a8tj0RXY88BMCmgX7OPP9SvF7fiNu+cskafrHmRD7QMIPf/e5XBY1r10MPcvGsOZx3wkl4PCqZZJx4LnPNFs4DYHVVNXfddkueoxRCiMkpl77w9cC3dV1fAjwJDD8rcQzD+OaEIxMF5c9WxlIrCjf3IxgIcXZ9I2HNQzIeIxCaGvMkpoquri4coKK2vOf/qF4/aexx9wAB2KkEWtjCPqRWS37M0rz87YRTSO/YUZD2iy1+8CAA6VAobyWwBykeD5lAAH8ySXJP+Qwi6HjkYULAC8B5x551xG3tYDUzvF6atCr+dsetdL3vMhoaGvMeUzweo6mzg1fOmYeqaqiqQnSgF8sc/2vi1FWTCQbwJ5L0bVhPKpXC7y/vdb+EEKLQcukB+hVQA5wFfA74+mG+RJn7d3cXt7Q2Q+2Mgu3DHwzzkYWLec+8hfS3tRVsPyI33d1uUYH6mvKuAKf6/CStFKY1/pM/O50CK1OwXiBPZRiPouCz7ZItlJlPaq/bk+WprilI+4EFC/m/g/t5Zt/egg8hG4vkwYOE4jEytk3TaeehqkeeL+aEq7EXrwTg3Jo6/vznawsS15OPr+X4bKW5WWefg2NniPb35taYoqAsyvYChUI8+eTafIUphBCT1rgTIMMw1FG+CjfjWOSFbdvcdnAf1zcfwFNXuARIUVUS2Qm7kVFWLhfFV7lpI59avIyjyqga1+GoXj8DqdzKTNtmBieTLNg8ILUmW+kQt6reZBfOPoeKhoaCtF+7XOdpK0NrKsm2bVsLso/xeGHDs+yJx9gSjbD6uHPG9JjE8pMBOLO+gbv++feCDPHdfv+9VGpeUh4PYf0ozHSSZHzsZeCHcxbMAeCE6lruu/eefIUphBCT1oSWgNF1vVrX9aN0Xffrui6JzyQRjUZfvFrt8xd2WFosmwDFusZXwlgUXrinh1Pr6mks8+Ewts9HLJV7NTI7GUMp0HK/vuoKUtnFQq3o2MsTl6P+/j5mZCuE1c+aXbD9HDV/AQBbt5a+EMLN6x7n889vZvOi5WiesVXEtBrnwYzZ+FSVk0Jhbr/91rzGZNs22q5dADhLlqJ5PaSSMZLx3P8HnKYGLK9GldfLvqfWkcnkd36XEEJMNjklQLqun63r+jqgB9gCrAT+puv6j/IZnCiM/q5OloTCzK2oQvEUtvpXIjv3ItEjleDKjS9bCj1Y5kPgLK+X1AQSICudQrEyhy7ZnAf+cJCI5a5zZU/yxVD3bn+Bep+bDAeqCzcvbPWMWZxaW8eeTaUthJBOp3nwwfsAOO2088b+QEUhteQ4AM5paOTmm2/I6/DHbc9vYVXA7ZWd/5rzUBSFaF8PjjOBJfdUFfucU/ny/j1s6mzn6afX5SlaIYSYnMadAOm6fi5wL5AAPs9LpxUbgE/quv4/+QtPFEJkz26+u2IVX166HMsq7Dq2yeyY+lRfX0H3I8bHcRxC2d65yjJeBFXRvJiqQnKcFeCGsjMpHDOFWoB5QIFwgKjpJkBWbHInQK0vvEDSsoji4BTwfeGEeJxPLVmOsm9fwfYxFk898B/MRIIZM5qYM2vZuB6bXHAMeDQWhsI4bW0880z+EoqNd99Jrc9HCqhetRrHSpGITny+lDN3FvqJbuL2wAP3Tbg9IYSYzHLpAfo28C/DMM4Gfko2ATIM43vAVcBl+QpOFEYiW7I3AZgFToBSHndITUZKYZcVO5nEn00I6mfUlTiakak+P2nHIjmBHiAcxx0GV4geoFCASDYBSvbmOEm9TGzv7eY9G57mwaYmrHThhkiFslXTGi2Trq7Ogu1nNLE7bueaNSfynjUnkU6Nswy8P4h9xoU83NTEvkScG2+8Pm9x7dv0HDHTJDFnDqrXi5lOTWj+z1DHHbMCgEcffXhKFO0QQohc5ZIArQGuyf48/B30XmDhBOIRRZDoc0/U0qpKoT8D05q7poYdzc8HuMiPRKdblCJmmtTXlu8QOI8vQMo2SWUmVmDATidRbDNPUb1EC/rYFovyRE83SS2XVQXKx969e3GAmbNmUsg3hkC9W2BhSbiCLSVaEDWdStEQjeJVVeasPDGnNmKLj+eUt74LB3jooQfo65t4AtzZ2cGNmzdy2cZnWfT+y/B4FFLJGKnk+EvAH85yj4fPLz+KNbbDjh3b89KmEEJMRrkkQP3ArBHum5+9X5Sxwd6YTBFO2HZW1vPt7dt43je5Tw6nmp59ewHoMzNUBUde+LHUVF+ASI4V4Iay00kw03mvBqcoCv+JDfCT3TtINOZ/PZhi2rt3DwBzawvbI6jV1gCwMBhia4nmAW194D9UahoJy2LmqtNzasO2Heqr53D00SswzQz//vfdE47rscceAeDolatoXLDIXf+nvzdvvTVqJMoJVTWcWlfPo48+lJc2hRBiMsolAboVdyHUoZfNHF3X5wL/D7gjL5GJgjGzk7VNrfAnvonqRjYO9HNwkk8Qn2r62tswbZuYooA9zuE/ReR4fXlJgBzbxk7FKUQ17IqqSgD6+yfvtR/LsrhE0/jU4mXM9o2tGlqu1GCIjKqiqSodJeoBaln7GADtwSDJCaz3Gmnp4CPLV/DJxUu5886JV4N7+qEHADjrrLMBsM00iVj+qgva893qfnpFJU8/+nDe2hVCiMkmlwToC0AHsA7Yn73tesDAHRL3xfyEJgrFypZTtXyFL39cUVUDQLdUgSsrrZWVvHP9U9yplm/yA2D5fCRS+Rk+aaXiKAVI9sKVFSjAQPfkPcab9+/j2MpqTq2rp66ioqD7UhQFO7sPq7m5JHNR1OaDAHgWLiWTzv2YiEeTzGpu5vS6BtpeeIF92Z7VXCSTSc7v6eXnx6zhzKNWoCgKZmZi6/8coiKMWV2JR1HwHjiQl2F7QggxGeWyEGovcArwEeAR4D5gE/A54ATDMGTBl3KXcMeT24HCL4BZEwjxyvpGlkQnMIld5F17exsOUFNXU+pQRqRoXjKqQmIiBRCGsNNJsPI/DO6EcCXXn3AK1ZO4slbzls2oikLStlE9hV/SrWJGEwCzFZUDBw4UfH9D9XR1MSdbvLRhzWkTassKVaMucivIndPQyJ133pZzWxv/czcz/X7qfD6Wn3QKHo9CJpXI2/yfQUp2UdTjq6p54om1eW1bCCEmi1zKYJ8FeA3D+INhGO8wDOO1hmG8zTCMXwE+Xdffnv8wRT7txOGW1mYi1fUF31etz8fHFi3hgnBhF1wV49PR0Q7AjDIvgDDhCnBDOJaFnYqj5LkcnBryuyW2E/k9US2mnuyE+AHNg13ACnCDQnPncuNAHzc0H+C5554r+P6Geu6eOwl4PMRtm8DMxRNuz8yOBj+nYQZ333lbzj1aHY+4Q9Law2E8waC7/s9AH46d30qdg8Pg1lTX8NgjD+W1bSGEmCxyGQL3IHD0CPcdB1ybeziiGDYm4lzffID4jMKt9j7IW+tODA+pHpKT+ARxqlm2Zw+fWryM+f7CzveYCNUXIGGlSU+wAtxQdjKG6uS3GpwTdntSPUVIHAol1dIMQCYcKugaQIM8lVVYM2bQk0kXPQFat20r1+3fy94ZTSQSEx8SGZuxBKWikjqfj5mxGM89t37cbdi2TV2nWxI8fEJ2eq2Tycv6P8M5DXWYPi9hTaNzw7NYVnkPgxVCiEIYU2kuXdf/BMzL/qoAv9F1/XDvzMuBtjzFJgpkYMB96QLBwo71B9Cq3ZK3qqLQ09LM7CVLC75PMbpZyRRH19XTGg6VOpQRqb4A/an8TQAHsNIpNDONogVx7DzNPakMQXsEzcx/me1iUft6AQWtuqZo+1w+070As3Fj8SrBOY7Dg0+vo6OjnVede8GE5v8MshUP2uqTyTx+P69ubOKOO27luONOGFcbu59YS6PmJW3brLrozSgKWJk0yUQBhg6rKsrCuRjPbSEWi7F162ZWr16T//0IIUQZG2sP0M24ic/g2BHlMF828CTwvjzHKPKsMhGnye/H7y/8ya/i0YhlrzD2tR4s+P7E6BzbZjD1rW6oKWUoR2T7/cSS+V0/yrHMvA+D81S5f02v42BnJlBSrIQqUm7vVWXjjKLt86jKKt48czb+vfuK1gvR3HyQjo52NM3LgvlH5a3d9LLjADi2qppnH7ifVCo1rscfvOcuAPZqGuGaOlRVdef/FCIBAqzTT+Q/dZVsjQy8WHpbCCGmkzH1ABmGcTtwO4Cu6w8ClxuGsa2QgYnCcByHTzU04Z0xiy1FKr4UdyAMRDo6irNDcUTpvj40RcF2HOpn1JY6nMNTFEyvl3gy/+XT7WQMLVyDndMI4ENpNRXYjoOqKNixKGpNmf5NRxCLRUlm0mS8XhpmjbTEW/41WBbvmDuf9f297Nmzm4ULlxR8n1see4Sz6xux587FMfPz+gPEPFU0Hncidz3yAP3RAR5++EEuuOCCMT3WMU1qWlpAUVBXHwuAqiokYhGsQvUqKgprjlnBI489ztq1j3L55Z8ozH6EEKJM5VIF7hxJfiavTDyOV3Vfdq2qsAseDkoo7v5i2THuorQ6d+0EoDeTob66PItTqF4/aZy8lcAeykonwUzlrRpcuKaSSPZE1YpMvvWu9u3by5df2Mon9ux4sWx9Mfjq3SIsy8OVbNm8qSj77H3maS5ftIS31dSRSOSvt86ybHxvejfmWWfRm8lwxx3/GvNju3t7+MH2bdzT0cZx/3Vx9lab2EBf3uI7nBVLF1Ph0ejfvZOenp6C7ksIIcrNmHqAhtJ1PQR8CXg97oX94UmUYxhG4S/liZz0Zte/SNs2WkUNeRgCP6qURwMskr3yIVsOunbvwgcMYONxCj/hPRcef5CUYxYkAXIsCzsZR60MYzHxbtBQVQXr+3up8AdY6B33W2rJ7d27B4AF8+ZhjXPo1kR4qqoxgQpNY9/6Z+ENby74Pn3tbeAPoC1aSiqZ396Vgf4kF17wRv7wh9+ydu2jdHd3U1s7+gWGhx95iK2RAZx58/nEbLdEtW2mCjP/Z4jK9k7+uOYEtkUjPPHEY1x44RsLuj8hhCgnuYwB+BnuYqhdwFrg4WFfMqC4jPW3tgAQsSxsCr/eB8D6ijq+vX0be/JcfljkJtLsVvxKauV7su7xB4mkY9gFWLgUwErGUOz89AAEq0L8Zu9ufmA8j1LfkJc2i+nFBGjWHJwiFnJQVJVkwK1CmNq9q+D76+7uZoHqvufVHXNS3tuPRpLMmjmPC1ev4UPzFnDXHWNbE+jBB+8H4NxzXw24w98y6VTB5v8MchpqURWFoyoqeUrKYQshpplczoDeAvw/wzC+n+9gROHFOjsIAwnALEK5W4BIbRMbB/qZO9BflP2JI4v29FBt29ih8i2B7fgD9CXaC9a+nU7imClUbxh7gtXg/OEgqqpi2zZ9fb00FrGQQD7Men4r31+ximQJSqIHGxvhwAGqIhEymTRer69g+9r6yIPM9HpJOw7BWUugJ7+9XWbGpr87yqUVVXh9Af55z11w5RVHfMzBP12LfvAAL/h8nHPOYAKkkk7GSKfyV/79sCorSIVD+GNxElu3YFkWniIsgiuEEOUglx4gDXgq34GI4oh3dQGQLOIHXUWlOym8u7u7aPsUI3vSo/DO9U/RNbd8T9RNn49EAQogDHJsGzsRJR+dko7iUF1bgwJ0t02+VQCqYjEWhcLUVxS+LP5wNdkhX8tCYbZvNwq6r/ZnngagNxgglS5MBZhIxKTuNa8F4CxUnl23bsRtM93dRB97lPMaZnDMwsUsXuyOHFdViPX3FiS+4dTF8wE4yuvj+ee3FGWfQghRDnJJgP4NvC7fgYjiSPf1ud81b9H2WecP8Mr6RuYM5H9RPzF+LS0tOMCMxvKsVqZ6/WQUClIBbig7FUexMi8V95+A1zXN4m8nnEL6jlsn3lgR2bZNQ/YPUDezeBXgBnnr63Ach1qvj23PbSjovpTs0E/PvEV5LYAwVDSSou7VFxL1qDT4/Tz9q9+MuG33rf9EdWy2DPSz5nWvf7E0u22mScTzP/ftsOa7azGtqa5h7aMPF2efQghRBnIZAncj8Ftd12fgrvtzyEBlwzD+PNHARGG0qQrrWpupWr6S2UXaZ6Pi8NpFS2hJF2+CtRhZS4t7Iji7vjwTIE8gSBSr4AmQlU6hZRKogWrsCQ4HVUMBPCgkB/K7cGuhtW83CHo8mLbNjKaZkCzu/6jq9bG2popfPXAfr58/j4tHf0hO4vEYs2wL0KhbfSIRqzA9QOmUSTxpE77gQrj9dvTefto2baJhxTEvj2fb8ww8vhaA61sO8uvXuwUIFAXMTOHn/wxyGutIax4qgANPPg5SDlsIMU3kkgDdlP3+7uzXcA6QcwKk6/qXgVcbhnH2kNvW4BZfOBHoBn5uGMYPh9yvAl8DLgNqgcdw1yramc82poI9pslNzQd446mvKloC5KltAqBK9WCaJloZT76f6jKJBB8OVdK5eBlN5VoC2x8iko5h2QWekO84WPEImr8Ce4LdQHZlCCIZiE2uMtgtm56jEui0LWZaFqWoCTh3/nwsx2Hr1s0F28emTRv5wvObOXXeAj62cCWRrsIlen09CVZcdDG33fovlqkeDvzy59R89yq06hoAMj3dtF79ewD+3dHGjGOPe3HemKqqJNOFWwD1EKqKPWcm7GumrqeXnp4e6uqKszyCEEKUUi5D4BaN8rU412B0Xb8S+Maw2+qB/wDbcZOXrwHf1HX9fUM2+wrwEeCDwKm4Sdjduq778tXGVNGbLUUdrqwu2j61+pmAW+62q62laPsVh2o1trM0HObY6hoaqoo/52NM/AF648UpmGGnEmClXxx+lLPs31IrYhnpfOjPrgkV9fmwM8WrADfUinnzANi1ayexAiWQGzY8S8Q00Y5eQcrK3wKohxONpEinLRre9W7aU0nC6TStTz4BQKa3lwPf/TZWXx/NyST/d3A/l176rhcfq6oK8Ug/tl28VNRzjM4/ov3c1tbCE0+sLdp+hRCilMZ9Kd4wjH35DkLX9TnAH4EzgeEzYT8EpICPGoZhAtt0XV8GfB64NpugfBr4nGEYd2XbuwRoAf4LuCFPbUwJnt4emvx+wsEinvwGQmRsG6+q0rl3DzPnzi/evsXLtG3fDkC/beFRbPKwDE7emX4/8d7iDCWzzQx2MoZaEcCaQMVtT10VNPfisywcy0KZJNW0rHa30p5dggIIg+oqKvjk8qNZ6PWx+emneMXZ5+Z9Hxs2PAvAsauPJ1mg+T+DkokM0YEUZ53/Oj51w/9Re7CZ/ofu5zvnvQ6tshLHzBDxevnWpvUsXH4Up512xksPdkzikeJWy3SaGrD0pfS/sI21ax/hwgvfUNT9CyFEKYzpUpiu69four5oyM9H+ro6hziOB3qB1cDwsjlnAo9kE5dBD7ih6DOANUBl9jYADMPoA9YDZ+WxjSnhzbbDL1YdR0MRrzCiKESyJ9q9Bw8Ub7/iEN273TVf4h4PFPMYGCPVHySFQyxRvLk0ViKKMsHhdoGmeizHQQGsyOQp9tERjdKSTOCvL92wJ0VVWVlZxZxgkP2PP5b39jOZDCd39/DW2XNZsTD/C6AeTm93HMd2+NiXv8SNrc3cdfcd/OMfN6FoGt2nnMoVTz1OdzrNpz712Zf1PlpmmmQiUfD4hjvmqKUAPPHEY0XtfRJCiFIZaw/QObjzZwDO5cjXjcd9TdkwjNuB2wF0XR9+91xg+ODwwXFU87P3Aww/s27J3p+vNnLi8RR2uMV4OI5DODvXQatpQFVzG/Yz+LjxPD6meqjDIdbehqaVz99kuMHXq5xet3zxeFSiBw5QBVjhQM6vfyF5g2EGHJNEanwlqgdPIt3v43sLctJJyCTxBCpxclwTqKqhlt5MmgafH2egD62hPqd2DqeQx+Sf9u+mo6ODP1xwQUmOh8F9pivCEItj7t6V9/eHbc+u56zaOqito6JmNq3dhU+A4rEU6ZTF8ccfz0c/+jF+9atf8M1vfpX777+XZ555irRl8V//dTGnn376i49RVYVULEkmlSj6a7F4RgMXzZ1PBWAYW1m16tgjbj+V3yeBvJTHF0KUtzElQIZhLBry88KCRXN4Idzha0MNrhAXyN7PCNsMXtbMRxs5qaoKTuTheZUeGMCnuh9YoZlz8AYnNr3J7x97Ke20PwDpBJm+Hmpry3Py/VDl9Lrlk5ldi8lfV01ggq9/IXgrKxnIRPBoCjD+YWSeXE+eU1F8FVUontzKwzfMqmdDXx8VPh/H1lVRUYBjPN/H5MDAAB0dHQAsaZpB0CndeMiGhQtg6zZmJJKEQhp+vz9vbR98ci0LgB5VpSIQJhAsfIEBx4Fkwk20vvCFz2FZGX7729/yeLaH64ILLuDHP/4hXu/Lj7fWvhY0DTStuP+bTjrFpTNnYzkOG554jLPOOm1Mj5uq75NCiKlvMpTjSgDDPw0HlyyPZe8nu01i2DaDiynko42cDAwksCZYYjdfugx3/kfUNLG9FSQS6ZzaUVUFv99LKpXBHuMV8511c7jhkdtZXFdDb2+R1rjIgcejUlUVLKvXLV88HhVfLAGqSkVjLckcX/9CMlUvvX29mJnxTchRFAWPpmKZNk4OJ/KWE0UJxbG1YE6P94WD/GG/O7zwYsVHJo/HeKGOyc0bngOgsb4eJZUhUYLjffC9pHH+Qrq3bmN+MMhj9z7I8Wecmbd99G99HoD0jCYG+hMFnwM0qLN9gKZZlSRTGa644n8455zXsmnTcyxevISTT34F0WgaeOl/UPMo9HZ1lub/0ucn5fcRTqXZ/8ij9H7oY0fcfCq/TwJUVwdR1anZuyWEcE2GBOgAHFKxefD3ZsA75LZdw7bZmMc2cmJZNqZZHh8QPfvdEX79lonteLAneMXXtp0xJ0DJpvlsHOhH6Wgvm7/HkZTT65YvjuOQTKUw/X4a5jSN+bUrFsWjkdY8ROL9jP/QdB/gOE4OjwUnk8FKRFAqAzn9XRxNoaa2hr7ePlpaWgiHK8cfxCjyfUz23X031x13Is84DtY4E858U3x+umybBlVl76OPsPoVp4/+oDGwbZuqgQgEglSvXE08li7acR/pTxKPpUEF07TR9RXo+goALMth+FBNx8qQiMVK9n/pLJgN2/cyo3+Azs5uamtHXydsKr5PAjm9hwghJpfJcInjEeBMXdeHjod5FWAYhtGBm6AMAGcP3qnreg1uYYVH89jGpBfNVnyKwoSTn/GqqmkAoLW1taj7FS/p7u7ic1s38q7nnmH2omKtAjV2nmCYpGMRS5SmiICViKJY6ZwmAJiWSeOMGShAx/79+Q+uAOzWVkIejVBleZRDT4TckcjWzh15a3PXtueZ73c7+5uOOzWbeBRHIp4hMpAc0zwZVVUw00mSidL1jvuXuiPd11TX8MTaR0oWhxBCFMNkSICuAaqAq3VdX6Hr+nuBK4HvAhiGkQJ+CXxf1/U36rq+GrgRt9fnn3lsY9JLdnUCkPAUv+OvPlzJ2fWNHGM7ZDLlN/RqOti7dy8As2fNwquU3yVOLRCmPx0lY5bm+LDSSZxUPKcJ6JZjc1J9PX874RRC99xVgOjyy3EcwlF3zR1fXf4KNkxE9dx5tKeSbG9rxTTzU6hg14P3oyoKvUDaW5WXNsejtzuOPYYhYqqqkkrGSCeTo25bKM6MelKKQoWmsfPhB0sWhxBCFEPZJ0DZHprzAB23LPXXgM8ahvGnIZt9Fbgady2htYAJnGcYRjpfbUwFXX4//2g5yF5v/iYYj1WNonD5oiVcMnuO9AKVyN697hyVhfPn4mSKMw9iPOxgiJ5Yb+kCcMCMD6Dauf1tvLXVeBQFNVa+c9wGWf19hBwHy3Gomzmr1OEAMHe5zpd27eD6fXvYsmVTXtps2WkQM03ijY0k48U/5mPRFMmEOWpSraoO0f4SHvtuEMQa3WFv6p7dUg5bCDGlld0cIMMw3nuY254GTj3CYyzcRU0/f4RtJtzGZLffsrix5SCvXHE8y4u8b7OiBoAar4/m/XuZP39BkSMQyjPP8J2jjyFWWUXZrYCqekh7vUTixV0Ecjg7GcdJJ1ADVWO6cj+Ud0YdtPfhS6dxbBuljCdRR3e5Ux2bEwnm1ZVuDaChNI+H45cs5aHNG1m37nHWrDl+Qu05jsMNz2/llx3t/Oa9vyVRpOIHQ6WSJpH+JA0zK7DtkedZ2WaaRCxaxMgOL3z0MjJtT2CmUjz//FaOOWZVqUMSQoiCKN9PaJF3XdkhcFU1xT/hsfxB0tl5R527dhZ9/wLUri6WhitoDAVG37jItGAFSSyi8b6SxuE4DlasH9UZ/xCs0NyZmLaNBzD7Snw1fxRtG58D4GAmTZ2/fEoZn7BoCR5FYc+TT0y4rebmg3R0tKNqXpYevYZ0qvDr/xxOb3cM+whzj1RVIZNOkoyXvudQWTCH36kZrjuwj7UyD0gIMYVJAjSNqO1tNPr8VFSOXt0n7xSFiOp2OA4cPFj8/Qv82ROs2lkzShzJobRQBX2pKOnM8KW4is9KxtxeoHHOBaqbM4POtBt/Jru+TrmK7XYvQsQDgRcXkS0Hx89fyNXHnsB7VY3+bNGWXK1/6kkAVq1aRap0U2uI9CdJJjIjFkNQVYV0Mk46mTjs/UWlaSzTlwHwyCMPlTYWIYQoIEmApgnHtrkonuRXq4+j3leaHoBE9kpzsqOtJPufzgYGBpihukUQ5y6bV+JoDuXO/+kpdRiA+79ixfpRGd8QuNqmOtpTbgIUay7vJH+/47C+vxfGUOq4mJoaGxmwbVRF4YU7b5tQW76HHuAXq9Zw/uKlbjnqEkmnLfp6Ri6uoaoK0f6enNafKoTjV61EVRW6dm7n4P59pQ5HCCEKQhKgacKKDKApCrbj4KkvzaTnTLgaALu3ryT7n852PbeekKZhOQ41jeV10qtoXlJejYFSFkAYxkrGcDLj6wXyBf30Zk9ie/fsKVRoeXFvTxff22FQPbv8yqF3+n0AJJ7bkHMbjm1TH4nS5A8wb6lOogQFEIbq7Y6PuLivbaaIRyNFjmhk1VWV/O/q4/jFquN49p9/L3U4QghREJIATRPpri4AejJp/JUlmvRc6w698sRiZXO1c7po2eyu5zugKjh2aeZCjEQLVRGzM0TKKAFyLAsr2jeuXqC0ZdITCrC2u4tuT/kMKzucHTu2A7CwTEpgD1WZLZAyIxbDzLGi3v6nn6La4yFhWSw98zWkkqVNgCIDSeLRDJr28o/ccpr/M5S/zr1IksnOFRNCiKlGEqBpoi87lKE7ncYfrC5JDOkVp/CdnQbXH9hLe7sMgyumSLZHwqyqwLHKqwS2J1RBV7wX6whVskrBSkRx0nHUMSxkCZCxMnTPbuJne3ZiKOX71trxwjYyfX0AzC9BQZTRrDx6Jc3JBJqisPPuO3JqY/8D/wFgn6rgEKDU11tsy6G7M4rCyxNjVVVJJaKkEmUw/2eIquPd6m/LUWjes7vE0QghRP6V76e0yKuBgwcA6HMcPB5PSWKwamfQGqqkK51m9+5dJYlhumrtaKc1mSDYVGZX/BWFTChEb7Sr1JEcwrFttxdojBXhMlaGeQvnA7Br145ChjYhndf/lT+sOYE3LVpC0F/8NcFG4/d6OZAtId7z+Nqc2vAMDkFcuoxYtPSFNQD6exMkk5mXDatUFIdIXzflVpa+YtE8uiyLgMfD5r9fX+pwhBAi7yQBmiaS2apUMc1b0jiaZrkniHvkqmLRmKbJDcbzfHLLRma/+hWlDudltGAFcSz6I+VRAGE4KxnDSUbH1AtkOw7zFi9AAXp278ROlceJ91CObaNmFyLWyqwAwlCVCxYCUNPfjxWPj+uxibY2Gmwb23FYePZrSj7/Z1A8lmagN/GyanC2mSIRLf36P4dQFDqzcwW927aVOBghhMg/SYCmiUy3e4U9FQiVNI6Tqut46+y5tO80ShrHdLJ79y5SqRThcJh5DTWlDudlPOEq+lJRkunxneQWi2PbmNE+VDsNYygX3bRgFt9fsYpPBiuIbS+/YzzdfBCPbRO3TBpnlV8BhEFrVq7ib80H+NzWTRwYZ9XIXdnqcdsTcRatOJZEvHQV4Ibr7oxhZtx5ZR6PQiYVL4sFUA9n5pknY9o28zwahpTEFkJMMZIATRO7w2FuaW1moKq0Y/5PSsd56+y5pPbtL2kc08mmjetRgNXHrASrfE4GAexwBR2R8l4zx0rFseMRxjIVqLqxhq6M2+PQue35Akc2fomd7vo/O6JRljbNLHE0I6sMBmmtrORgMsFdd90+rseua2/j3o522mfOJBZJl3z+z1ADfQli0RSa5sHjUYlHBsiky6+nECBcX8dOxf3j7b7j1hJHI4QQ+SUJ0DSxORHn+uYDpBtLe9U3U+3OQTG7OrDt8a2zInLT/dQ6rllzIpdU12GX0cmWJxgmrkLvQPnN/3kZB8xoL4qZRBmlLLbpWMRC7npXfWU4D6jv+S0AbI9FWdZUmnL4Y/XqY48D4Pbbb8UyxzYPy3Ecbnn8Uf64fw9LLnwDsUh5JfyW5dDVHgUcHNsk0lfex35m5XJ+smsHP356HZlMef0thRBiIiQBmiba2txx/5XVDSWNQ2mcC0CdonIwW5hBFFbm4AHCmkZ9VQWUUQlsraKGnnSUeLJ81kAZiZ1JY0V78YxSFjtlptFmuT0rmexcm3LhOA6JF9z5HD0+L+FAaRZEHqvT9KNZWFnF2wIhXvjet8b0mO3bDQ4ePIDf7+fkk04r6QKoI+ntjpNMmFiZZNkOfxu09KQ1PG9l6OztYe3aR0odjhBC5I0kQNNApqeHcHc3NV4v4arSJkCZmkYAZgeCvPCCTK4ttK6uThoybtIzY9mCEkczhKJghStp75885dDN2ABOMnLEgghpK0P9yqMBCMdjOFb5lPZOt7bgSSRI2zaBxhmlDmdUfq+XU5brnFpXj3fvXpLZUv4jsRIJWq75A4tCYc444yywNZKJ8iiAMFQ6ZRKLpEglYiRyXOeoWDweD2e+4kQAbrz+r2V1PAshxERIAjQNRJ7bwMfqG/nwgsVUVDeWNJZUjZuAzQsEeWHb1pLGMh2se/IJFofDAFTPLe1rP5QWqiKm2vT0l/f8n6Ec28aM9KJaSZQRCiKkzDSLTz2JuGniQyE+ykl7MWk1tdztUbix+QBLZpZvAYShzjnpFazt6Qag5e83HnHbvkceYk53Nx9ftITXvua19PaW19o6Q2VSGXo72ym38teH8+ozT+Pchhm8M55i553jm48lhBDlShKgaSCyz10TozWVorK6tKVvU9WN2ECV18verZtLGst0sPmJx6jx+rABraq0FQCH8lTV0h7vLdvqbyOxUgmsaB8e9fBD4dJmhtkL57I3lQTgwFNPFjO8I7K9Gjdseo7b21tZNW9+qcMZk6WzZrPN48F2HMxtzxPbsumw21mJBJ23uxP1/9PXyytf+RriZbL+z3AejwJOmu6O7petCVSuGurrOGb+XGb4/fTcfSeOzN0UQkwBkgBNA/HsXJsBTUNVS7MI6iBH85IMVwMQ2b0bc4yTm8X4OY5D1xY3yXTqasAuj/kQiuYlFQzS0Vdec2TGyoz24SQi7onsMA4OCStFc3U1/2g5yJbu8pnkvmXLZhKJBLWVlSyc0VTqcMbsrJNO5q52d6hk65+uw04mD9mm+9ZbUJNJWpIJqk8/AwWNWLQ8jvfhwpV+LDNOZ2sXmYw1Ym9iOak9/WTilkltJkP7YzIXSAgx+UkCNA047e0ARMNVJY7E1XrWW/j8ru0809WBYcg8oELZtm0rTdkx+zWLF+BY5ZFs+qrq6LeS9AxMnuFvQzm2TWagGyWTOOwV/EgqRv3Zr+TGloP8Z+NzxQ/wMBK7d9N+6y3MDgRYs2TppDjpHvSK5UexQYWuVAq7t4fWP/4OZ8iFk+hzG+i7714A/nRgH//97vfQ35vAMsuzp6Ki0sdATyeJeJJELDNqZcFysPSoZaxNuL21LTddL71AQohJTxKgKc6KRNCyV0zTdeWx7kdqxlxqlhyFA2zYsL7U4UxZDzxwHwcTcZo1D5ULyuO1R1Gwq2o40NeMbU/eCdV2OoU50I3qZA5JJhKZJKeecQYA69c/TTxe+onuA0+sZfHBg7yhaTar55VRMYwxUFWV9736PH66ewcZ2yba0vziZPyBdU/S+ttfAXBvRzt1J57E/HmLGOgrz/k/Hk3F77Po63bnNcWiKcy0VfZJkKIoVJ9+ElHTpCKZouX++0odkhBCTIgkQFNcKjv8rS2ZJNxQPhOfFy1fBcBTTz1R4kimJsdxuP/+e3m4uwvzTRcSWjKn1CEB4K2spV+x6extKXUoE2bGI1iRHjyKDUPOX5OZFHMXzGHx3HmsDoV56pZ/lC5I3B6r6IZnAXiqr4c1CxeXNJ5crF6wiLlHHcUPdm7nm89vpi9bPc3q78cxTdb1dvPX1oN86lOfJZUwiUbKc/5PZVUAMxOnv6cXgEzGIhZNo1DeCRDAscev5rGk+3dvu+lGrMMMRRRCiMlCEqApLnVgPwB74zGq68tk4UPH4TTNy2eWLOf5Z58hlSrPk5XJbMuWzezZs5tAIMDZp56ElSiP9UaUmgYORlpJpcvzCv14mZFe7Hgf2pB30qSZIu2YfGDNCXx+2VGkHnmoZPEBJPfuxerrI2FZdGoac+tLWwo/Vx9/7YW0B3xs2buH973vUu65507ufOF5fr9/Lz/etYPLPvwxFi9eRF9fgky6PHsXK6u89HW2Yg0pJx2LpkinTFS1vD+OFUWh8ezT6EilCGYy7PyP9AIJISav8n7HFRMWOvY4rm1t5v6uDuoay6MXAEWhqXkvJ9fWMU/TWL/+mVJHNOXcfvu/WBIOc+E5ryKs2NiZ0ieZ3spaBjRo7Zw6C+A6jkOmvwsn0f9iUYREJknKTLHiTRcBMC9j0r5vb8lijGR7Wdf393Ly8qMm1fyfoSoDAX7ysSuZ2dTEvn17+cIXPs0Pr/kd93W0ceHr38QHPvBhzIxNf095VhYMBDU0NU1358sLY1iWTXQgieM4lHtH0DGrVnBnJs6Xtm3hqn/dUupwhBAiZ5IATXExr8bdzQfYFBmgtqFM5oEAiQY3GdMrKnn44QdKHM3UMjDQz+23/4tPLlrG2zq76SuHeVaKglLXyIGBVhKp8uiNyhfHssj0dUFyAI9HwXEcBtJR9NNPp92x0VSVtVf/viSx2ZkMA088DsDDXV2cph9VkjjypUH1cMNPf8F73v1eli/XOe64E/j617/NN7/5PbxeD4lYmkh/eQ7NqqoJkoj2EO0fOOS+eDxDPJaeFL1AZ73lDexKxLnnnntYu1YqwgkhJqfyfrcVE7Zz5w4A6hpm4vX6ShzNS2JN7kTsYyqruPfee6Qcdh7ddNP11Ng2MwMBVI8Hb13p1//x1TTSq9oc7NhT6lAKwjYzZPo6IOmWx+5PDGBjEzjhJACqd++mOzvxvZhiG9Zjx2J0pVMcxGbV/IVFjyGvbButu5fPX/EJbr75Nq699v+46KK3oCgKiqLQ0xXHLMPqbx6PSjjk0Nl2+LlvjuMQ6U+SSVtlvzbQvDmzOf/cswD42de+QtsDMhROCDH5SAI0hSV27KD/wfuZHQjQNHtRqcN5mdhsdyL20nAF6f5+niqjBSMns0Qiwd/+9hdOrasHILxsMbZZ2iviiubFqqljT/e+KTP353DsTIZMbzsk+klaSdJOmjXvei8px2FeIMDNV32n6DGZ0Qhp4KGuTs5dfRweT2nXAcuHZHcPif378Q759FIUhXTSpK9Mh7/V1AXJpCL0dIy8LlQmYxHpT+I4QJkPU3zbG1/HcfPm8sVZc+n921+JZS+0CSHEZCEJ0BTWv/YRFuzYwasbmphRZgmQGa4iVTsDVVE4trqaf/7z76UOaUq49to/0NPTzTkz3OGOFUcvghKv2eFvnEObGaW1a19J4ygG28yQ7usg1tdCxk4SqKlGPe54AJYcOMD9/7mnqPFEli7jg889wx3trZy35vii7ruQInv2YnZ14PW6CZ2mqfT3Jsqy+puqKlRWeuhsPfCy4geHE4+miEVSqGWeAPl8Pv77sneyMTKAB9j1w+9j9vWWOiwhhBgzSYCmKMe2iWUXYVzf30vTnPJKgAAic5YCcHJNHQ8+eB9tba0ljmhya24+yHXX/ZEloTBNXi+K10twbn1JY/JW19Mf9LGj1cCaxOv+jIdjmgx07Gegv42gx2LlBz5I2uOhK5Pim1/7f0Xt7fzzn68hYZqsXqazoHFG0fZbaGY8QWTHTpREDI9HwcxYdLaX59yymroQZqafzta2Ubd1gIH+JIl4GtVT3h/PixbOJ3PGCRxIxAmYJpu/8TVsKY0thJgkyvsdVuQsuXsXViRCzDLZFo2UZQLUv+gYHFWltq4Oy7K4+urflTqkScs0Tb761S+QTqf57xXHAFB17Apss3RDzjyBEFb9DHZ072Ug2lOyOErBsW3aOveR6j1IwGey7Ktf5bEZTfTF43z84x/mX//6h1v1q0ASu3ay/Z47ueWWmwG45LQzCravUom3tpPYsxu/R6G/N1mWi59qmkpllULHwf2YmbHNc7Qsm/7eBKmEWfZJ0CmvOImN85qImBnCAwOs/9LnsWVZAyHEJFDe764iZwPr3KvM6/v68AXD1NQ1lTiiQ6Vqm9j3zs9S+4GPAvDPf/6dffum5iT5Qvvtb3/Js88+Q1U4zMqKSgBqVi+FAp5kH4mi+VBnzmNPvIPmjt0liaHU+qLdRFMxErs3Ulnt4de//Dlnn30u6VSKm370fa644kNs27Y17/u1Mxnarrsabv4759bV88rVa1i1oPwugEyY4xDdf5BETz9d7QPYdmmO9SOprQ+RjHbR0TK+3u1MxqKvN046Wf5J0GvecD6P1VURN02q+vt54tOfJNnfX+qwhBDiiMr7nVXkxE4miTyxFoCHujqYv+SY8iyvqijEVT9N84/mla88B8uyuOqq7xb0yvhUdPPNN/LHP/4WgP/3lW+gX/VD5lx6MUqoNK+5onnxzVnI/swAOw5snbavZ3+0m6iTwcEhuvM5aDX45fe+wS8ufCNf11dwXEsLl7/77bzrXZdwww1/pbn5YF722/n3G8i0ttKfybAlmeRDrzovL+2Wo8DMJtr2ddK7v/3FdZjKRWV1AK+W4ODuXdg5zMNLp9yiDumkiaeMkyBFUXjVxW9g3ewG4pbJ/rZW3v+R9/PCC9tKHZoQQoyofN9VRc76H30YO5mkV1HYEhlgwZJjSh3SEbV2xfjI297JCXX1rF37CDfc8NdShzRp3HTT9Xz7218H4P3v/xDnn38h/pCXimUzccx00eNRfQG8cxazz4yybf9GTCtT9BjKhWWZtEU6UCtrccwMiZbdJHeuZ+Wq5aAonFXfyM+OWcPq3l6u/vEPuPDCV/OGN5zHF7/4Gf7yl+tYt+4JWltbxnXyvOum6+l/4H4AfrdvDx9/y1tpqqkp0DMsrUBDPZlANQdeaCbe1okdGaBc8gSfX6O+XqOjeS8Dfbn3hqRSJj1dsZfmBJVxcYTTX/9adq1ZwbWdbTy/bSuXXvoWvvfNr9KSp8ReCCHySSt1AOVC13UV+BpwGVALPAZcbhjGzpIGlgM7lULRNP51YD8OsGBpeSdA6Re24rnvb/zPUSv50Lq1/OhHV7FgwUJOO+3MUodWtpLJJD/96Q+44Yb/A+Cdb7mEd61YhaapOP3NpLpHn3Cdb96qOuyGJnYluth+YAuZEiRg5aajt4VFC2bjC4axEjGsZIzQ0nrmNr2O7sc2wb6DvGnmbN44cxabBga4t6ONu+++g7vvvuPFNvx+PwsXLqS+vpH6+gYaGhqpqanB5/Ph9fpIpVJ0d3ZQu3kTpyhuBnBzewtveuvbOHnuglI99YLSwiG8s+ayd18fsd4YAIm2DgKNNp7qKmxHKdXoTzSvyqw5YQZ6DtCyb+KVDzMZi56uOFXVNqEKP6qq5tSjVAz6SWv48rKF3HTbPTz25FM0rV/Pxuc/xc3z5nLmO97FmjXHoZRxEieEmD6U6To8ZThd178GXA68D2gGrgIWAysNw8jlTG43sKi3N1b0hfk8HpX7b7ud//nSpwlUVPPpb/01r+t/qKpCMOgjkUjnZdy9YpksveMPePs6afZqfPbJtXh8Pr773R9x7rmvzkPEY6dpKrW1YUrxuo2F4zg8+eTj/OAH32H37l0AXPHBj/LaaIzkju00vOZcao5bSGbg0EU3VVUhEPSRzNPr9mK7Pj+++lkMBP3s6t3P/radOE5x/3aKAprXg5mxSnbiO5KVi45nqVpFqnnXy253HId0e5TIll3Edronysk1a3g6GGTLls207t1NVX8/uyIRujNHfgv6X30FR1dWAfC05uH4N72JxnT5V93L5b1ECwYJLV5CW6/F3k37XjbEUvGo+Otq8dbU4Hh92FZxDwafX2PWnDCJSCu7nn8eHAvTtPMyDFQBgmEflVUBfH4NBwenRPOexvJesu+F7SxYuwFfNuF5ITLAukya+tNO5xWnncHxx59EIBAoZthjVlcXxuNR9+CeAwghpiBJgABd131AF/A5wzB+m72tBmgB3m8Yxg05NFvUBMjOpLEGBvA1NGIr8IkrP82jD9zBiWdcyOsv+Vhe95XvBAjA39PO4nuuRcmkOaiqfHPD0/RmMrzjHe/i8ss/QWVlZV72M5pyTYDi8RgPPng/N998Ixs2PAtAY2Mj3/roJ5jx7LNk2ttQgwHmvefNwOEXg8x3AuQJhNGq60mFw7Sl+tndtp2BWGnWAinnBKgiVM2JC0+kqqeXdF/nYbcxoykS+7uoPWEN4eUrUPwV9D63lf0//xkAjqaRDoVIAEnLwsmkWef30+LYeL0+TtI0jukfoPL1r2fW4sX0bd9ZsgIY4zHe9xJ/bQ2+OfPo7LXYs3kftnX4/1EtHMJfV4saCuN4PG7bBf5zVNcGqavTiPQ2s/sFA8s00TQ1bwnQII9HJVzhI1Thx+tVAQXbsQv+/IYa83tJPEnqyfWE9x58cbx9zDRZ39/Hf3q7qDlqBcceexyrVh3LMcesoqam9pAmHAdSFgykFQbSCkkT/B7weRz8Hgh4wK+5P6t56lySBEiIqU8SIEDX9ZOBdYBuGMb2Ibc/BmwyDOPyHJo9bALU19fLvn17SSaTpNNp0ukU6XR6jEMaFGpra5kzZw7z5i1AATLtbcQ2b6bvgftwMhnmffFLbO1O8OH3vIlUMsF7PvE9Fi1bnUP4IytEAgQQbt3N/AdvQsmksRSFBzvauKW1hUwoyEUXXcyb3/wWFhS4mlUuCZDjOJimiWVZ2LaFZdnZ71b2NvvF+90vE9N0v1uWlb1v8Db39kwmQ3t7OwcPHuD557ewdesWTNOdTzMrXMH7zzqHEysqyexxK6xpNdXMueR1oCQZ6UxowgmQ6kELhPCEKrHDFSQ8Cl2pAQ52H6C7rw2nmGdgw5RzAgQwu3EhqxqX4evuJNN/aO/cUIrXhzdURWxPG92PPE2qo+uwi9nOvvwKKo4/EVVV0LAxO9tJHGwmsu/ApEh+YOzvJVo4THDmDMxgDW0tEZp3tIze+6GqeCtC+KqqUYMB8PpwHLCd/CVDqqpQUeWnpsaPQoyO5r207D+IY9soilKQBGiQpqkEgl5CYR9en+fFanGO7RS88MhY3kssRyHteEg7Hqx4htDO3fi3bsSfdstk/2TXdp7odcvj6xUVnF7XQJcnQLRiBvGqeURrl9Bbt4KeyqWkQ00oyugTvLyqg88DPtVBU8Gj4H5XHTQFPCpog7cp7jaqMuQLUFWHH5+v0RBWJAESYgqTOUCuudnvB4bd3gLMz7XRgbZ2/v7+y1Fwr845ZhrHdN/8rzuwj/0J90r9K2rruKBpFgpkv5QX57oqwDX797Ij5i7yd3JNLW+dPZcWr49ar/dlVSyUyiq2bdnL7+64jVQyQdOcxcxdshpzWK2LsVwkO+IwbUXBdMBWVBxl6Iffyz8Ix7SfIT/HZy9hz4WXMf+pO9Fa9vHqxiY2er2s27md6677I5F/382ZTTPxhsIEgkECwRA+vw+f34/m9TLnwx9Fq3KHAfU88ACR9c+OGNvsD1yGWlVNPB6n56GHiK9/BjubrDiOTTqdcZMTy2LzzCba02lisSiz+/pZnkoNSWYsbMt68YTj2v17OZB01yM5pbaO82fMHPHv8ZcD+9gVd+cvnFBdyxtnznrZ/RXA0YrCcarK1YEAibrZvP71b+TCmbOI3XYbmc5O8KjUnXw8tacchZ0eXAjy8H95JXt5VFGVlx8RioqiqtnvHhSPB8WjuV+aDzQflteL6dWIORb96RidffvoiXQSix9+grczplc/f48DFRwVC2VciZjjFCfOfR3NpB0fS+sXUhWqx470YSXj2GZ6SLKSbTMNpAegNkT1m16JonnxmJDqj4GtoqDiCVXgnz8Hx8qQiiQY6OwkdqAZMxID1f/i38DhcHNhsvdNIA840t/tSG0O/7upQNL2kkLFBlAUVM2D4vXi8fvQgkHUcAUJNUBzJEPH9i4ivVEggKO+vE13vwrO0J+jQGwA1Z/C4/ejBkMoXi94NBw1e/brgJ190GCa+dLfxm0PRUH1KHg8KqpHRfN68Po8aJpNn5XihX1d9HR1k0yawCwcQHEUFFvFcuwhMR4a60vfX3o+w28f/Hu/7PEZBScDRBQ0zYOqqXg0DUVTQfG42yoKNgq2o7j/Gw4v/m477n0OL/384veh23K4bVVMRSNpqaRtN8lJ2R7SjuYmPbYHk2HDrmtBOd1m6cB2Tux4ih1Hr0Bt3YLTup6j4i9wfv1gL38aUrugbRe03QvA17a/wDYnhFY1kzMrg7w+aGM5YGX/Jnb2NbOBv8S97LLcfa/xWlwQeHkhlqH/Dzcnveww3W1XahZvyG5rn/YrCE+dhYOFEIeSBMgVyn4fvoJbEqjLtVEfsNILLxbb8wUAd8xzuG4RWBp4fNRWaBxVMfJpQ3j2cSgZFRyLsNLPglD4xfvSts2OZIYnq47m0ZkXkbzteewH/g5A5ylf4fvNx+Yafuno53JU0/Oc0PU0z7zynai778d57i80cZDZmhfSafervx8H90VLAee8+jX0Khp4/LynqZ4Lq4Mj7uJ1559HW8w9eX/HnHm8edYcFHjxI3voP8btjz/Kvmyy+uZZs1k4Z757CVHzHtJucMhcq3qvj5XZeRmHE6pqQvFZoHqorQpzdGV4xG0bLriKpxa+nj8qCmsPbOFNtXvYUreatTPPojdQj7NpxIdOIKkQeTX88spE7R/6yxxgTZ53UCSRcW4/8r/1kQ2+URTEwsPfXIxRtA7ZpLkI+8pRwGMT8Nj4PQ7pykWsn7+Q+R6Ho449mirfxczt2caOPU8R7NqDP9KDNxUnYGYIZN+6MpYJsRbMSAsVTbOYVzG0uMfLPzuDbRtwIgMA1DXM4NiFI3fi3Lt/E06fO2y3pq6e4xYvA8BjZ2DEF1UIMRXIEDhA1/W3ADcDIcMwEkNuvwnwG4bxphya3d3f3bfouh9d416NUzXSaoiBwBy6M0G21KyiR6smZUFttJ0F0b04ipK9+qe8+DPArqqlRHzVANSmupkd2Uei7yBd+9fRt+Vf2Mm+Q3auHP8+1Fd9c0pV3Gnq20HDgUfx9+5E6T+IGmtHSfWjZOKoKDzZ200mezwvCYeZE3j5mdLQQ/2Zvl4StjtJfEG4knkVteDxgRYAbwC0IGh+0II8520k7q8FXwVzPQ7zlBRoQZTsdo4WzCZDHrbWrXJfK1VjZqKNhbGXV4Eamoy8UHM0A74aABoT7SyMHLoIrKMoJD0B9lcsZCB7DAgxVSmM/HmkKNke8sHv7gNeftuQ+17sRR/Smz7S/Ye777DtH+6+keJT3N58FOeQx77YxoiPe/l9Y33+HgXU7NCvwWFdQ2/zuJ1C7s/qkPsPs62a3Wboz+4QMfe2oFchoDkENdwvLwQ092vobX5P7tW77UyG1MAAPbEY7V1dtLW1ke7uRu3rx7HcPim3u87tslMch9SMBuxscQVtIIKvu2dIiy8/vlIzZmCF3eufnmgUf0cXAK+64nJClZUJXro4KoSYYiQB4mVzgJYahrFryO2PARsNw8ilisCYiyDYg0Mwhhj+shzuVXJwyyE/+MC93HvPnezcaVBVVc3rLngjb7/0vYet/Da8ncO9/IdsM+x3j0elpiZMX18MK/vcRnvMWPbDYYbVjKXddCpFX18PqVTSnVOVSpNKJXEcG0VRUVX3S1FVVEXF5/cRCIYJBsOEQmG8Pt+Ln9AeTaWmOkRfXxxz2ARrxxnfB/kRRxEe6b4cTxZGa1PzKFTXhOnvi2EOq46Va6woRzhhHSWenB43wu0eTaU2e0wOf91ybRNyj/NIxtumprn/b/19I7+XTOQ6R0FepzHGU65FR/JBntvkJUUQhJj6ZAicayMwAJwN7IIXq8AdD/yy0DsfvPqWC384wEVveCMXveGN+Q3qCDQNqvxg+cDM68KDOSbjQR+zamaOvt0Y9q1pDrUV4M84mObUujigaQq1IfCkmILPDSr9YPrANEsdTX5pHvBr4PUcMd8UQgghxBhJAgQYhpHSdf2XwPd1Xe8E9gI/wB21/89SxiaEEEIIIYTIH0mAXvJV3L/HH3Gn2T4CnJfjIqhCCCGEEEKIMiQJUJZhGBbw+eyXEEIIIYQQYgrK6wwOIYQQQgghhChnkgAJIYQQQgghpg1JgIQQQgghhBDThiRAQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg3FcZxSxzBVJYCAZdmljqMgPB4VeW6Tjzy3yUme2+Qkz21yUlUFRVGSQLDUsQghCkMSoMLpA/xAa4njEEIIIcTYzQJSQE2J4xBCFIgkQEIIIYQQQohpQ+YACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG5IACSGEEEIIIaYNSYCEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLShlTqAqUTX9S8DrzYM4+wht60BfgacCHQDPzcM44clCXACDvfcsrcvBzYAKw3D2FuC0CZshNftDcBXgaOBLuDvwFcNw0iUJMgcjfDc3g78P2AZ0AL8HrjKMAynJEHmaKRjcsj9fwBeYxjGwmLGlQ8jvG7XAu8dtmmzYRhzixjahI3w3GYBPwZeB1jAPcAnDcPoKkmQORr+3HRdfwh45Qibv8cwjD8XKbS8GOG1OxH4EXA80AdcD3zFMIxUKWLM1QjP7VXAd4CVuO+VPzcM45eliVAIkU/SA5Qnuq5fCXxj2G31wH+A7bgJ0NeAb+q6/r6iBzgBh3tu2dtXAfcBoWLHlC8jvG5nArcA/wDWAB8BLgF+XeTwJmSE5/Y64C/Ab4EVwGeBLwNXFjm8CRnpmBxy/0XAZcWKJ5+O8NxW456MzRrydVzxIpu4EY5JP+775GLg1cCFuCfTky05uJJDX7f/4uWv1yzgTuAF3PeYSWOE164BN1ndhnssfhA3Sf92kcObkBGe2yuAe4H1wEnAp4Ev6br+paIHKITIO+kBmiBd1+cAfwTOBIxhd38ISAEfNQzDBLbpur4M+DxwbVEDzcGRnlv2Q+BLwPPAvOJHNzGjvG4fBh4wDON72d936rr+/4BrdV3/SLlf2Rzluc0CvmcYxmAyt0fX9Xfhnnj+pHhR5maU5za4zSzcXq2HgYVFC26CRvl/8+AmrN80DKOtBOFNyCiv2ztwX6clhmG0Z7e/Evi1rutVhmEMFDHUcTvSczMMo2fYtu8AzgOONwwjUrQgJ2CU1+4MoB74bPb57NR1/a+4z/EzRQ00B6M8t88BzxiG8dHs79t0Xf8M8Htd139Y7p8DQogjkx6giTse6MW9Ortu2H1nAo9kk59BDwC6ruszihTfRBzpuZ0P/DeT4ENuBEd6bj/C7RkZTgMqCxxXPoz43AzDuMYwjK+Ae1Kt6/r5wNm4VzongyO9bui6rgB/wu3leqiokU3ckZ7bMiCAe8FhMhrtveT+weQHwDCMfxuGsaTck5+sIx6Tg3RdDwM/AH5iGMbmIsWWD0d6ft3Z7x/Nvp8sBC4AnixeeBNypOemA48Ou20D7oiHkwofmhCikKQHaIIMw7gduB1A1/Xhd88Fhn/QtWS/zwc6ChrcBB3puRmGcWb29rOLHlgejPLcNgz9Xdd1H+7wh/WTYU7CKMck2dvnA7sBD/Bv4DfFim8ixvDcPoXby/UG4IvFi2ziRnluqwAHuDI7jNEG7gK+bBhGfzHjzMUoz2058Iiu618B3gN4cY/JzxmG0VfEMHMylv+3rI/gXkCZVMPDRnmvfFTX9e8B38QdnunBvfDw8eJGmZtRXrtWDh3dsDD7vamggQkhCk56gAorhDsEbqhk9nugyLGIHOi6ruH2JqwALi9xOPnUh3sV863AsbjPcVLTdX017jy7d07B4SnH4CY9e3GTu8/gXmm/Vdf1yf4+XoWb+BwLXIo7dPgM3OemlDKwfMkOYfwE8OvJkLCOla7rNbgJ7K+Ak3HfT5YySS6ojOJa4GJd19+l67pX1/WlwLdwL0T4SxuaEGKipAeosBIc+kY5mPjEihyLGCdd1yuBm4BzgIsNwxhxeMtkkx1atAHYkD05u0HX9c8ZhrGvxKHlRNf1APA34FuGYWwqdTwF8HXcoVN92d+36LreCjyBm8hO5mMzDUSBdxiGkQHQdf09wFO4xWOeLmFs+XI2bq//H0ocR759H6gxDOMt2d/X67reC9yn6/pPDcPYWMLYJsQwjP/TdX0ebjJ3LW410M8B1wFTJokVYrqa7FcOy90BYPaw2wZ/by5yLGIcshPpHwVOA16XHSox6em6fma2bO1QW7Lfhx+rk8kpuKVqv67relTX9Shuqe/52d/fWdrwJsYwDOcww8EGh9dOqjLYh3EQMAaTn6yt2e+LShBPIVwEPGUYxu5SB5JnZ3Bogjo4/2d5kWPJu2whnCrc5HUO8AygADtKGZcQYuIkASqsR4Azs1fYB70K98O+rOf/TGe6rtfiFqtoBM4wDOPBEoeUT5/m0GpvpwAmbrn2yeop3EIBx+KWLl+DW+q7JfvzbSWKKy90Xf+bruv/Hnbz4ETsyVoYYdAjwLG6rgeH3LYq+31nCeIphDNw31OmmgO4BQSGGnztJnWSoOv6x3Rd/41h6QYasgAABURJREFUGLZhGC2GYVi4Q/z2GIYxmd8rhRDIELhCuwa3y/xqXdevwh0jfSXuZFhRvn6CuybJ+UCnruszh9zXmf0gnKx+CDyk6/r/4s77OR64CviZYRjdR3xkGcsuUPuyk2Vd13sA0zCMqXAS/Tfgtmz5+Rt4ad7F3wzD2FbSyCbut8AVwN+yhRCqs7c9aBjG+pJGlgfZC2ArcSvATTU/Bu7Rdf2buEPDFuCul3aXYRjPlTCufNgK/EzX9Wdx16k6D7dX+V0ljUoIkRfSA1RA2V6e83DLaa7HnaD9WcMw/lTSwMSIshPKLwF8uFdsW4d9Tbo1j4YyDOMx3IUmLwA24Z6U/Qg3URdlyjCMO3CvPr8Fd+jb1cA/gQ+UMq58yFZWPBO3+ts63KpcTwFvLmVceVSP+9wm7QWGkRiGcS/weuA1wHO4F/3uAt5WwrDywjCMh3D/vz6Lu9Drx4D/NgzjplLGJYTID8VxnFLHIIQQQgghhBBFIT1AQgghhBBCiGlDEiAhhBBCCCHEtCEJkBBCCCGEEGLakARICCGEEEIIMW1IAiSEEEIIIYSYNiQBEkIIIYQQQkwbkgAJIYQQQgghpg1JgIQQk5Ku60qpYxBCCCHE5CMJkBBi0tF1/Y3An7I/n63ruqPr+tmljWridF3fq+v6daWOQwghhJjKtFIHIIQQOfifIT+vB04Fni9RLPn0ZmCg1EEIIYQQU5kkQEKISc0wjAHgyVLHkQ+GYWwodQxCCCHEVKc4jlPqGIQQYsx0XX8IeOWQm84BHgTOMQzjIV3Xvw68HfgC8C1gKfAC8FHAAX4GrAZ2AZ80DOP+IW0fA3wPOCt70/3Apw3D2D3OGPcC1wLVwLsBP3Ab8GHgY8DHgUrgPuBDhmF0D3ncQ4ZhvFfX9YXAHuBtwCXAeYAJ/AO40jCM6HhiEkIIIYRL5gAJISaby4EN2a9TgarDbDMP+DHwbdwEog64Gbge+ANugqQCN+i6HgTQdX058DgwA3gv8AFgMbBW1/UZOcT5P8CC7L6+A1wKPAO8FvgQ8HXgTcA3Rmnnd8Be4CLgKuD9wJdyiEcIIYQQyBA4IcQkYxjG87quD2R/fnKE4gch4HLDMO4B0HV9BfBd4AOGYVyTvU3DTYp04Dnga0ACeHV2WB26rt8P7AY+m/0ajwhwiWEYJnCfruvvAWYDpxiG0Q/cpev6ucDpo7Rzp2EYn8n+fL+u668BXg98cZzxCCGEEAJJgIQQU9fjQ35uy34fOleoO/u9Jvv9VbhD6eLZ5AjcggSPAq/JYf9PZZOfoTEMZJOfoTGsGqWdJ4b9fhBYmEM8QgghhEASICHEFDXYizNM/AgPqceda3PJYe7rzCGE8e5/JMMfYyPDl4UQQoicSQIkhBCuPtyiBD86zH3mYW4TQgghxCQkCZAQYjKyAE+e23wYWAE8Nzh0Tdd1BfgrsBN3npAQQgghJjlJgIQQk1EfcGq2iEB1ntr8Bu58mzt0Xf8NkMQtW30RcHGe9iGEEEKIEpNx5EKIyeiXQAa4Gwjmo0HDMDYBZ+KuFfQX3Apxs4CLDMP4Zz72IYQQQojSk4VQhRBCCCGEENOGDIETQogx0HVdZQy95sNKXwshhBCizMgQOCGEGJtrcIfdHfFL1/WFpQpQCCGEEKOTHiAhhBibr+POPRpNS4HjEEIIIcQEyBwgIYQQQgghxLQhQ+CEEEIIIYQQ04YkQEIIIYQQQohpQxIgIYQQQgghxLQhCZAQQgghhBBi2pAESAghhBBCCDFtSAIkhBBCCCGEmDYkARJCCCGEEEJMG/8fMEGI/X4WTKUAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the power of hplc-py\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(data, cols={'time':'time_min', 'signal':'intensity_mV'})\n", + "chrom.crop([10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "scores = chrom.assess_fit()\n", + "\n", + "# Display the results\n", + "chrom.show(time_range=[10, 20])\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## How It Works\n", + "The peak detection and quantification algorithm in `hplc-py` involves the following \n", + "steps.\n", + "\n", + "1. Estimation of signal background using [Statistical Nonlinear Iterative Peak (SNIP) estimation](https://doi.org/10.1366/000370208783412762). \n", + "2. Automatic detection of peak maxima given threshold criteria (such as peak prominence) and clipping of the signal into peak windows.\n", + "3. For a window with $N$ peaks, a mixture of $N$ skew-normal disttributions are inferred using the measured peak properties (such as location, maximum value, and width at half-maximum) are used as initial guesses. This inference is performed through an optimization by minimization procedure. This inference is repeated for each window in the \n", + "chromatogram. \n", + "4. The estimated mixture of all compounds is computed given the parameter estimates of each distribution and the agreement between the observed data and the inferred peak mixture is determined via a reconstruction score.\n", + "\n", + "The following notebooks will go through each step of the algorithm in detail." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/methodology/scoring.html b/methodology/scoring.html new file mode 100644 index 0000000..0522e95 --- /dev/null +++ b/methodology/scoring.html @@ -0,0 +1,388 @@ + + + + + + + Step 4: Scoring the Reconstruction — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Step 4: Scoring the Reconstruction

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

After estimation and subtraction of the baseline, detection of peaks, splitting into windows, and fitting the peaks to a phenomenological function, we are left with the irritating problem of assessing how well we have done. Consider the following chromatogram:

+
+
[1]:
+
+
+
from hplc.quant import Chromatogram
+import pandas as pd
+
+# Load the sample chromatogram and fit the peaks using default parameters.
+df = pd.read_csv('data/sample_chromatogram.txt')
+chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'},
+                     time_window=[10, 20])
+peaks = chrom.fit_peaks()
+chrom.show()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3977.22it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:10<00:00,  5.20s/it]
+
+
+
+
[1]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time_min', ylabel='intensity_mV (baseline corrected)'>]
+
+
+
+
+
+
+../_images/methodology_scoring_2_2.png +
+
+

By eye, this looks like a very good reconstruction of the chromatogram, but it would be nice to have a quantitative measure.

+
+

The Reconstruction Score

+

Quantifying concentrations from HPLC data requires a measure of the Area Under the Curve (AUC), or more correctly stated, the integrated signal over a given time interval. A perfect reconstruction of the chromatogram, resulting from summing over all constituent peaks in a mixture, would yield an identical AUC over any given time interval as the integrated signal of the original chromatogram. This can be defined mathematically as

+
+\[\frac{\sum\limits_i^{N_\text{peaks}} \sum\limits_{t=0}^{t_\text{max}}S_i(t)}{\sum\limits_{t=0}^{t_\text{max}}S(t)^\text{(observed)}} = \frac{\text{AUC}^\text{(inferred)}}{\text{AUC}^\text{(observed)}} = 1, \tag{1}\]
+

where \(i\) represents the \(i\)-th component signal, \(N_\text{peaks}\) denotes the number of peaks in a given peak window, and \(t\) denotes the discrete time point. In peak windows where the constituent signal is very small \(S_{i}^\text{(observed)} \rightarrow 0\), even small deviations between the inferred mixture and the observed signal can cause this quantity to be much larger or much smaller than one, even if the total integrated signal difference is small.

+

To account for this fact, we can modify Eq. 1 as

+
+\[R = \frac{1 + \text{AUC}^\text{(inferred)}}{1 + \text{AUC}^{(observed)}}, \tag{2}\]
+

which we term a reconstruction score or \(R\)-score for short.

+

In practice, you’ll never get an \(R\)-score of exactly 1, but you can get close. For example, an \(R\)-score can be computed for the chromatogram reconstruction shown above by calling the _score_reconstruction method of a Chromatogram object:

+
+
[2]:
+
+
+
# Compute the R_score for the above chromatogram
+scores = chrom._score_reconstruction()
+scores[['window_type', 'window_id', 'reconstruction_score']]
+
+
+
+
+
[2]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
window_typewindow_idreconstruction_score
0peak10.997252
1peak20.995222
0interpeak10.390152
1interpeak20.000200
2interpeak30.084916
+
+
+

For the two peak windows (rows 1 & 2), the \(R\)-score is very close to one, within 0.01. Whether that is sufficient for your case or not is up to you, dear reader. My job is just to give you that number.

+
+
+

Scoring the regions between peaks

+

But what about the interpeak regions? These windows correspond to the chromatogram signal that lies outside of peak windows – thus, an \(R\)-score is a measure of how well you are reconstructing the subtracted baseline. As there will almost always be 0 inferred signal in this region, your \(R\)-scores will typically be terrible and close to 0.

+

While this will usually mean you are just not reconstructing the signal noise, a terrible \(R\)-score in an interpeak region may mean that there are peaks present, but your choice of a prominence filter is not detecting them. In this case, it is better to have a measure of what the noise-to-signal ratio is in these regions.

+

Mathematically, we can compute this as the Fano factor of the region, which can be thought of as a measure of the “predictability” of the signal in this sequence. This can be computed as

+
+\[F = \frac{\langle S^2 \rangle - \langle S \rangle^2}{\langle S \rangle}, \tag{3}\]
+

where \(S\) is the signal within a peak window. If the Fano factor is small, then the region is likely background noise whereas a large Fano factor would indicate there may be a peak present and you need to adjust your peak detection criteria.

+

But what determines if it’s big or small? As all chromatograms have a peak (why else would you be using hplc-py?), we can compare the Fano factor of the interpeak regions to the average Fano factors of the regions where we know there is signal. If this quantity, which term the Fano ratio, is close to zero, then it is likely the interpeak region is just noise and you are not missing anything substantive. However, if the Fano ratio is not close to zero, there may be a peak present. Again, +what determines “close” to zero is arbitrary.

+
+
+

Generating a chromatogram report card

+

In hplc-py, you can automatically generate “report” cards by calling the assess_fit method of a Chromatogram object. For the chromatogram above, the report card looks pretty good!

+
+
[3]:
+
+
+
# Generate a report card with the default tolerances
+scores = chrom.assess_fit()
+
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973
+A+, Success:  Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+C-, Needs Review:  Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024
+Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000
+Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+

This report card is telling you that the two peak windows seem to be really well reconstructed, whereas the interpeak regions may be poorly reconstructed and you should take a look. If you have a sense of what the relative tolerances should be (meaning, you have made a subjective decision of how close or far from 1.0 you deem to be successful), you can pass different tolerances to assess_fit.

+
+
[4]:
+
+
+
# Assess the fit, but with different tolerances.
+scores = chrom.assess_fit(rtol=1E-3)
+
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+F, Failed:  Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973
+Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds
+or add manual peak positions (if you have a shouldered pair, for example). If
+you have a very noisy signal, you may need to increase the reconstruction
+tolerance `rtol`.
+F, Failed:  Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952
+Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds
+or add manual peak positions (if you have a shouldered pair, for example). If
+you have a very noisy signal, you may need to increase the reconstruction
+tolerance `rtol`.
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+C-, Needs Review:  Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024
+Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000
+Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+

In either case, assess_fit will still print out the \(R\)-scores and Fano ratios for you to make your own call on what is good or bad.

+
+
+

Assessing the fit ≠ computing uncertainty

+

If you take one thing away from this page, please let it be that an \(R\)-score is not a measure of the uncertainty in your reconstruction. It is solely to be used as discriminator for you to make a judgement call of whether you are properly reconstructing the signal.

+
+

© Griffin Chure, 2024. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/methodology/scoring.ipynb b/methodology/scoring.ipynb new file mode 100644 index 0000000..8ffe867 --- /dev/null +++ b/methodology/scoring.ipynb @@ -0,0 +1,399 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Step 4: Scoring the Reconstruction\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "After estimation and subtraction of the baseline, detection of peaks, splitting into windows, and fitting\n", + "the peaks to a phenomenological function, we are left with the irritating problem \n", + "of assessing how well we have done. Consider the following chromatogram:" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3977.22it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:10<00:00, 5.20s/it]\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 1, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD8PElEQVR4nOzdd3gUVdsH4N/M9k2y6ZWQQiBDBykWBAFBEEUEfX1FERTEggUbUgRBQRR8aQY/RekKgoKKiGJBsYCICKKUZEjvvWf7zsz3x24whNTNpj/3dXElu3PmzNnJkMwz55znMJIkgRBCCCGEEEI6A7a1G0AIIYQQQgghLYUCIEIIIYQQQkinQQEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCCOk0KAAihBBCCCGEdBoUABFCCCGEEEI6DXlrN6ADKwGgApDdyu0ghBBCSMMFAzAD8GrldhBCmglDC6E2G6MkSWpRdP35ZVkGzVEvuRKd55ZB57nl0LluGXSeW0ZznWeWZcAwjAmAxuWVE0LaBOoBaj7ZoihFFhXpXVqpXM7C29sNZWUG2GyiS+sm/6Lz3DLoPLccOtctg85zy2jO8+zj4waZjKHRG4R0YDQHiBBCCCGEENJpUABECCGEEEII6TQoACKEEEIIIYR0GhQAEUIIIYQQQjoNCoAIIYQQQgghnQZlgSOEEEIIaeNOnz7tAfsaRfTwmpCriQCyBw8eXN6QwhQAEUIIIYS0UadPn2YBvMQw7AyGYRQAmNZuEyFtkCRJkvX06dMfAHh98ODBdebHpwCIEEIIIaTtekkmk8/R6bwtSqXawDAMrbJLSDWSJDEWi0lbVlY8RxBsAPBaXeUpACKEEEIIaYNOnz6tYxh2hk7nbfHw8C5s7fYQ0papVBojAN+SksIZp0+ffquu4XA0jpQQQgghpG0KYhhGoVSqDa3dEELaA0cvqQL2+XK1ogCIEEIIIaRtYgEwNOyNkIZx/F9hUE+MQwEQIYQQQgghpNOgAIgQQgghhBDSaVAARAghhBBCOo2YmHUhkyff2q+129FQcXEX1UeOfOfZ2u3oSCgAIoS0C4mJCXjggf9i6dJFsFotrd0cQgghpEUsXPhCj4sXz7u1djs6EgqACCHtwuuvLsGF8//g4MHPsXfv7tZuDiGEENJCKAeGq9E6QISQNi89PQ1cYSEe6T8IH2Wm4dChg5g+fWZrN4sQQlqFKIowGAyt8hBbq9WKLNu4Qw8fPmTw3Xffm/3TTz/4Wq1W9q233o3TarXixo3rQ//55y+dXq+XeXp62kaPHlv4zDPzMmNjL2oee+yh3u+8syW2f/+BBgB49tknos6f/0f3zTc//SWXyyFJEm6/feyABx+clXnvvdMKqh+zoCBfvm7dm6FnzpzyFASBiY7uWfH88wvSo6K6myvLvP/+O4GHDh0ILC8vl3fv3kO/cOHSlMrtNbU5NLSr5b33/i/4559/9C0uLlZ06dLFNH36zKxbb729BAD27dvru2fPh8EzZ87O3Lr1/dDS0hJFr159ypcseTVlx46tQT/9dMRXLpdLkybdlfv440/lAIDZbGbefnt9yLFjv3gXFRUq1WqNOGDAwNKFC19O8/HxFSZPvrVfQUGB8pNPPgo+d+6sx+bNH/DFxUWyt9/e0OXUqd+9ysvL5ZGRUfpHH30i8/rrh1VUfrYDBz712b17Z3B+fr4qLCzMOHr0LYVbt27qeuzYn6ed+ZmwLOvU52urKAAihLR5f5w8geG+fvBRKqFmZQgpKEDOrz8jaMTI1m4aIYS0KFEUcf/9d/eMi4ttlSFRPXv2rvjoo/18Y4Og77772v+NN9bGC4KN6dEj2nz//Xf39vT0sq5eveGSh4eH8PPPP3pt3vxu1969++rHj7+txM/Pz3LixHFd//4DDYIg4OLF8x5ms5n966/TbkOHXqc/e/aMtry8TH7zzbeUVD+WzWbDM8/MiQYY6ZVXXk/09fW1bdy4PvSFF56O3r//y3MAUFBQoDx//h+PN95YF2+xmJnXX3818vXXX43YuvVDvrY2P/vsE1FJSYnap59+Li0yMsr0zTdf+axc+UoUy7IJ48ZNKAWAwsIC5cGDnwe89tqbCQaDnn355QU9Zs6c1mfMmFsK3nlna+zXXx/03bVrR5eRI0eX9OrVx7R27arQkydPeC1YsDila9cwM8/zmjVrXo94773/C1m0aGn6li0fxs6aNa33jTeOLHr00TnZgiBg7tzHo61WK7NgwZJkf/8A68cffxSwcOHz0Rs2vBM3cOAgw5Ej33quW7c6csaMWRmjRo0pOXnyN92WLZu6NvVn4szna9RF0oIoACKEtHkJv/+GfkoVbCyLID8/THTzQP4P31MARAjppNrfukAjR95cOHDgIAMAGI1G5uabbykcP35Ccdeu4RYAiIh4OG/fvr1BCQmXNOPH31YyZMh1JWfOnNIByDl79oybTCaXoqN7Vpw6ddJj6NDr9L/++rNXjx5chb9/gK36sY4f/0WXmpqi2b79o/M9ekSbAWDx4ldSduzYElRUVCgHAJlMJq1YsTrZ09NTAIAJEybm79q1o0ttbb50KU79559/eL3yysqEsWPHlwLAU089m52UlKDdvXtncGUAJAgC8/zzC1Irb/779RtQdulSnPuLL76UwTAMHn30yexPPtkTHB9/SdOrVx9Tr1699aNHjym+4YbhFQDQtWu45fvvvylLSUnSAICfn7+NZVlJo9GI3t4+wo8/fq9LTk7Sbt6880LlMZYseTXt0qU4t927dwYNHDgoae/e3UHXXz+saPbsx3MBoHv3HvkZGemqL788ENiUn4kzn68p10xzogCIENLmWZKTAW8fSMHBkNy0QHkFkJ/f2s0ihJAWx7IsPvpoP9+ehsABQGho18tDzzQajTR9+sy8r7/+0nvXrp1uWVmZqtTUZG1JSbFCEEQGAEaMGFW6bNlL/kajkTl58oRHnz59y7t06Wr6++8zOgA5p06d9LzpplFFNR0rPv6SRqvVCpXBDwAEBgbZFixYklH52tPT01YZ/ACAh4dOsFgsV3ywqm3m+TgNAAwZcl1F1TL9+g0s/+CDraFV3+ve/d/jqlQq0d8/0MwwDABArVZLAGA2m1kAmDLlnqJff/3ZY9261V0yMzNUGRnpmqysTHXPnr2uOE6lhIR4jUajFaoGFwzDoHfvvhVnzvypA4CUlCTt8OE3FVfdb8CAayqqB0CN/Zk48/naKgqACCFtWkVFBYIE+98or9594ZmfC5w9C5XZDMFggEyrbeUWEkJIy2JZFu7u7mJrt6MxVCr15fYaDAb2scce4kwmEztixMjiceMmFA4YMDDtqace7VlZ5oYbbixXKOTi778f9/jrr9O60aPHFIWHR5gPHvwsKD09VZmSkqR95ZWVSTUdSyaTS5U35LVhWbbeXrSqba4tEYEoCoxMJrtio0KhuOI1y9beluXLXw47fvwXn1GjxhRef/2NpT179s7evXtnUGFhvrKm8pJU80cTRRFyuVyyH4+VJKn+TsLG/kyc+XxtFQVAhJA2LTExHt3d3AEAXr37ICzbG4V/nISvUgVLViY03Xu0cgsJIYQ0xs8//6hLTk7SfvbZV38HBATaAKC4uEhWWloqrww0lEqlNGDANWW//PKTV3z8JfeFC19ODQ3tamEYRnrnnY0hwcEhpqoJDarq1i3KpNfrZUlJiapu3aLMAFBYWCC/7767+r722pvxzrQ5OrqnEQD+/POke+UQOAA4d+5v9y5duhqdqbOoqFD23XeH/RcsWJx0xx1TLvfYZGSkqdVqTZXg698Ao3v3aKPBYJDFxl5QV+0FunjxgntoaJgJAMLDI4wXL15wB5BXuf3ChXN1zhlryM+kI2nT3VOEEJLIxyFYrQYAqMLC0K1bFNKN9r815qzM1mwaIYQQJwQGBlkA4ODBz33T01OVJ0+ecJ83b253QRAYi8V6+W5/2LDhJUeP/uCn03nYoqK6m1UqlcRxvSqOHfvZ9/rrh5XUVv+IESPLIiOjDMuXL4k8ffqUW1zcRfUrryyO8PT0sg4YcI3BmTZzXC/TwIGDSmNi1oUdOfKtZ0JCvOrttzcEnz59yuu//70v15k6dTpPQaPRCseO/eKVlJSounjxvGbZspfCU1KStVbrv+dBrVYLmZkZqry8XPnIkaNLu3YNNy5f/nK333771ePSpTj1ihVLwzIy0jRTp96fCwD33z8j++TJ37y3bn0vMCkpUbV//8e+X331ZUBdbWnoz6SjoACIENKmpSYm4Nu8HOS4u0Om80RYWDjyzfaHfhXZWa3cOkIIIY01aNAQw6xZj6YfPPh5wIwZU/uuXv1aRN++A8pvvHFEEc//m91u9OixpaIoMH37DiirfO+aawaXSZKEkSNvLqmtfpZl8eab6xP8/QMtCxe+0OPppx/vKZPJpHXrNsarVCqnuzNWrVqXdO2115esW/dmxOzZM/qcPPmb10svvZJ4++2Tiuvf+2pyuRxLlryalJaWqnn44Qf6zJ//XA+z2cw+8MBDmZmZ6Rq9Xs8CwJ133p135swpz2eeeSJaLpcjJubdSxER3Qyvvrok6vHHH+6VkpKsWbVq3aXBg6/VA8Do0WPLnnzymdRDh77wnzVrWp+vvvrCf/z4CfmVQ+Rq0tCfSUfBNGSMIHFKkiCIkUVFepdWKpez8PZ2Q3GxHjZbuxr+267QeW4ZDTnPzz77BH766Ue89NIy/Pe/9wEA/nfXHbjTxxdS337gnn2hJZvcbtE13TLoPLeM5jzPPj5ukMnYZADdXFqxE06fPt2TZWXfBAR0qVAq1W02oxZpW06cOObu5xdgrZoE4t13NwZ9991hv88///p8a7atuVksJnVeXqa7KAq3Dh48OK62ctQDRAhp07KzswEAwcEhl99L0ajxKn8RuT2iW6tZhBBCSJv0+++/ec6bNzf6+PFfPDIy0pTffXfY8+DBzwNHjx5bY9a8zoiSIBBC2jRrQT40rAzBwcGX31MFBuHChXPIKi+rY09CCCGk83niiWeyjEYju2rVa5Hl5WVyHx9fy5133pX7yCNzclq7bW0FBUCEkDZLr6/AE4EhCIvsDu/Sf4OdoCB7MJSTk91aTSOEEELaJJVKJb300rJ0AOmt3Za2iobAEULarKysLASqVAAAj9Cul98PCgzEzX7+CE5MhGB0KvsoIYQQQjopCoAIIW1WXlIiVDIZBEmCwtf38vuBQSG4v0sYrjEaYSsqbMUWEkIIIaS9oQCIENJmlaYkAwAqWBaM/N8Ru35+fiiz2QAAQnl5q7SNEEIIIe0TBUCEkDbLmG1f6NTkWAi1kq+vL8psVgAUABFCCCGkcSgAIoS0WWKRPWOn5Ol1xfs+Pn4odwRA5mLK6kkIIYSQhqMAiBDSZikqKuxfAwOveN/DwwMVgn3xw/K8vBZvFyGEEELaLwqACCFt1p/FxfguLxfu0VcueMowDKxKBQDAREkQCCGkTRs+fMjgffv2+tZf0u6nn37QTZlyW99Ro64ftHr1ytDmbFtDxMSsC5k8+dZ+rqyzMeckIyNNefDg596uPH5n1+rrAHEcNwrA0Vo2J/M8343juIEA3gIwBEAhgBie59dUqYMFsAzAbADeAI4BeILn+YQqZZpcByGk5VitVnydmgRRFHHvoCFXbRfVGgCApbSkhVtGCCGkMT799NDfOp2n0NDymze/GxoYGGR+6613Lrm7ezR4v/akMefk1VdfjggICLBMmjSluLnb1Vm0hR6g3wAEV/s3DoANwOscx/kC+B7AJdiDl2UAVnAcN7NKHS8DeBzAIwBuACABOMxxnBIAXFEHIaRl5efnQRRFKBQK+Pr6XbU918MDy+IuIC2yWyu0jhBCSEMFBgbZNBqN1NDyer1e1rt3H31YWITFx8e3QwZAjTsnEtO8rel8Wr0HiOd5C4CcytccxykArAfwKc/zWziOWwTADGAOz/M2ALEcx/UAsADAdkeA8gKA+TzPf+2o414AWQDuArAXwKMuqIMQ0oKyU5IRptFC5e8Plr36WY3K3x+xFeXIoYVQCSGdkGA01voQm2FZiVWppOYu21DDhw8Z/Mwz81LuuWdq4eLFL0aIosh4e/tYjx79wddsNrH9+w8sW7RoaWpgYJBt+PAhgwHgk0/2BH/yyZ7gjz7af65r13DL5s3vBh4+fCigtLREHhQUbL7nnvtypkz5TxEA/Pbbrx7z5z8XPWPGrIxPP/0k2M/P3/zaa6uTpk//b9/77pue9dVXBwOUSoW4Y8feiwzDYN261aF//HHCy2azMZGRUYYnnpibMXDgIENle/fs+dBv3769QcXFRcoBA64pDQgItNT1+R55ZAbXp0//8uLiIsXx47/4KBQKceLEyXnjxk0oWrVqRURSUoJbUFCIaf78l1KuuWawoeo5ueWWW0tmzPhvn4iIboaYmE0JAPDLLz95LF78YvSiRUsTP/98X2Bs7EX32NiL7pMn3+px4MA35yZPvrXfzTePK5w79/msqm0ICAg0r1z5v5SazscHH+yNzc3NUaxf/7+uZ8+e0clkrBQd3VP/zDPz0qOiupsb+zNt71o9AKrBkwC6ArjF8XoEgF8cgUulHwEs4jguAEAEAA/HewAAnudLOI47A+Am2IMXV9RBCGlB5RfPY02f/shGzX9rvb19AAClpTQigBDS+SQ+Peea2rZpornSrvMXXR7Cn/T83AGS1VpjYKOKiKwIX7KMr3ydvOCFfqLBUOP9oTKkiyFi+crYprQbAE6cOO49fPjIorfeeofPyspUvvHGim5vv72hy4oVq1I//fTQ3488MqP3jTeOLHrooYdz/Pz8bevXv9nl55+P+jz99HNpUVE9TH/+edL9//5vQ3hFRYVs+vSH8ivrPXnyhNc772yJNRgMrEzGSgDw008/+Kxf/zZvNBpZT09PYdasB3rK5XLxtdfeTNDpdMKXXx7wffbZJ3pu3PhebL9+A4wHD37uvWnT22GzZz+efsMNw8t++OE77127dnTx9fWtMwg6cGB/0D333Je9ZcuHF7766gvfPXs+DPnhh+98H3/8qfTQ0K6W1atfC1+3bnX4hx9+csX58/LyEl58cXHySy/Ni/7ii898RowYWfrmmysjx4wZV3DbbXeU3HDDjeXPP/9UDz8/f8uCBUvSGnOeq54Pk8nEPv30Y1xERKRh/fr/42UyVtq9+4OgJ554uNf27R9dCAnpYm1M3e1dmwqAOI5TA1gMYAPP89mOt0MBnKtWtDLiDXNsB4D0GsqEubAOp8jlrh1lKJOxV3wlzYPOc8uo6zwbcuwdw1aNpsb/Rz4e7hjvH4iwrCzIZAwYhkYI1IWu6ZZB57ll0Hlu3zQajbBs2WupCoVCio7uaTpx4njh6dOnPAH70DCWZSWNRiMGBgbZ9Ho9++WXBwLnzVuUPHbs+FIAiIzsZs7OzlJ9+uneoKoB0L333p9T2ZuRlpaiBIDbb5+Uz3G9TADw668/e8TH824HDhz+28/P3wYAzz+/IPPixQvue/fuCuzXb0DKZ599Ejhs2PDi6dNn5gNA9+49cmJjL7ilpCRp6/pMXbuGGZ988plsAJg589HcPXt2hYwYMapo3LgJpQAwbtyEws2bN3Wtad8RI0aWT5hwR96mTW93/eGH73zc3NyEymDH29tHkMvlklKpFCvb3FBVz8fHH+/2Ky8vk69atS5ZoVBIALB8+Rspd911e7/9+z/2r9qb1Bm0qQAIwHQAGgAxVd7Twj58rSqT46vasR21lPFxYR2NxrIMvL3dnN29TjqdplnqJVei89wyajrPkiO5gcLbq8b/R0GBfrguPBIoK4enmwIylaq5m9kh0DXdMug8t4zOfJ6jNr77V23bGJa9ouu827qYvxtaNnL12uoPjGst66zAwCBz5U04ALi5uQs2m63Gp1iXLsWprVYrs3btqoh161ZHVL4vCCJjs1kZo9F4eb+IiMirhnKFhYVX3u8hLu6iFgDuvXfyFRndbDYbY7VaGABIT0/TjBo15ooF5nr37ltRXwAUEhJ6+TharVYEgC5dulxuj1KpEm02a61P6p5/fn7GmTOnPM+c+dPz3Xe3XWzMnKnaVD0fly7xWqPRKLv11lEDq5axWq1senqq+qqdO7i2FgDNgH3uT9W8tkYA1e9sKn9Qesd2OMoYq5XRu7CORhNFCWVlhvoLNoJMxkKn06CszAjBsQ4KcT06zy2jrvMslpYCAFhvXxQXX/3fUK7xgCBJkDEMCjPzofCmDKF1oWu6ZdB5bhnNeZ51Ok276FmSaTQN/uDNVdZZVYOff9V8vy+KIgMAL720LKlbt+6m6ttVVeYkqdXqq9quVqsvbxdFkdFoNMJ77+24ahifUqkUAfsyC1K1psjl8nqDEblcdlUZhmn4dZSbm6MoKSlWyGQy6cSJY7p+/frXM8H1ysPZbMJVwVXV8yGKIoKDQ0yrVq27Kruxm5tbh0w0UZc2EwBxHOcPYBiA16ttSgcQUu29yteZABRV3kusVqbyiYcr6nCKzdY8v0cEQWy2usm/6Dy3jJrOs8psARQKaIOCa/wZuHvooLfZoFMoYCmrAOPh2VLNbdfomm4ZdJ5bBp3njq9792iTTCaTsrOzlJVD4ABgx44tAampyeply1Y2eF5MVFQPo9FolFksZqZnz96Xg6mlSxeFd+/ewzBjxqz88PAIw/nzf7sDuLzKNs/HNs9wHgdRFLF8+ZLI8PBIw7hxtxa+++7GsGHDRpT17dvPEQQxV0Q7MplcqqjQy6run5eXqwwJCbkqQKzUrVuU8eefj/rqdDqhciidzWbD/PnPdRs9+ubiO+7oXCm229IjjmGwh7M/V3v/FwAjOI6TVXlvDACe5/k82AOUMgCjKjdyHOcFYBCAX11YByGkhUiSBA/H0y2f8Igay+h0XtAL9uHQosHpjlpCCCFtmKenp3DLLbfmf/jh9i6fffaJT0pKsnL//o99d+zYGurt7dOoOTGjR48pDQ+PMC5b9lLUsWO/eCQlJarefHNl6NGjR/wiI6NMAHDffTNy/vjjd+/Nm98NTExMUO3cuTXg5MkTzTrE4P333wlKTk7WLl78Ssq9904r6NWrT/lrry2NNJvNDABoNBoxLy9XlZmZoQCAXr16Vxw79rPPiRPH3RMS4lXLl78cbjQaZHUdY9Kku4rc3d2EBQueizp9+g+3+Hhe/fLLCyLPnj3t2aMH1+nSqbalAGgAgCSe56uPGdsGQAdgK8dxvTmOewjAswDeAACe580A3gawmuO4SRzH9QfwMey9Pp+5sA5CSAspKSqEt9zeMRvYPbrGMp6entAL9l57m54CIEII6agWLnw5/c4778r94IPtXR566L6+u3fvDJ46dVrW0083buK+TCZDTMymSz16ROtXrlzWbfbs6b3/+eesx5IlryaOGDGyHADGjh1XOn/+S0nffXfY7+GHp/c5duwXr0mTpuQ2zycDzp37R7N3766Q6dMfyuzWLcoMAIsWvZxaUJCvWr/+zS4AMGnSXfnp6WnqWbOm9REEAU899VxmdDRXsXjx/B5PP/1YT51OZxs2bESdPTienp7Cxo3vx3l6etkWLpzXY86ch3vl5eUqX399TXzV3rDOgpGqD3RsJRzHvQPgGp7nb6hh21DYEyNcAyAbwFqe59+usl0G+9C5mbAnUfgFwJM8z6e4so5GShIEMbKoyLU3ZnI5C29vNxQX66nbvxnReW4ZtZ3n2H/OYu/859FFp8Mjez8DU8M6QEajAYdm3I8Bnl7wmf4g/EaObsmmtzt0TbcMOs8toznPs4+PG2QyNhlAq6+yfPr06Z4sK/smIKBLhVKp7nQ3qYQ0lsViUuflZbqLonDr4MGD42or12bmAPE8/0Qd204BuCowqrJdgH1R0wXNWQchpGVkFxTgi5ws9PH1xaM1BD8AoFZrYJTsNz76okL4tWQDCSGEENJutaUhcIQQAgDIzraPaggOrp675F8Mw+AHvR7L4i7AFBbRQi0jhBBCSHtHARAhpM0pS0tBmEaL0ICAOsuVazSIrShHmdioebCEEEII6cTazBA4QgipFJSejjV9+iPLbKmznE6nAwCUlpbWWY4QQgghpBL1ABFC2hy50Z6RUxMQWGe5cA8PjPcPhMTzLdEsQgghhHQA1ANECGlztDYBkMnh2TWsznLhSjWGh0eiJCmxznKEEEIIIZWoB4gQ0qaYTCZ4y+zruflHRdVZVuluX5xbstQ9VI4QQgghpBIFQISQNiUnPRXucnvntGfX8DrLqjzsc4BYq7XZ20UIIYSQjoECIEJIm5KXEA8AMIoi5FptnWVVHh4AAJkgNHu7CCGEENIx0BwgQkibUpKeBi8Aeln9z2eUjh4ghSQ1b6MIIaSNYRjIGIZp8QfZkiSJkgR66kTaNQqASLORBAGlv5+Apnt3qAKDWrs5pJ3IrKjA8Yw09Ow/EMPqKavx9AJgD4AkSQLDMM3ePkIIaW0MA5nIMMEGk63F7+O0armNhZTd1oKgmJh1IT/++J3vgQPfnGvsvgkJ8apHH32o944duy+EhUXQpNJOgAIg0mxyPv8U5d98jXJRRNfX3kBASJfWbhJpB5KKi/BlTha6/ue/9ZbVenkCAFiGgWSxgFGpmrt5hBDS6hiGYQ0mm/z389miwWQTW+q4WrWcvb5vsNxDLWclSWpTAZCzLl48r1m48IXuFouZpoV0IhQAkWaT/8vPUAP4JD0V4Qf244knnmntJpF2IDs7CwAQHFx/wOzm5Y3V8XFQe3rhbUfmOEII6SwMJpuoN1pbLABy6DCBwjvvxATt3783uEuXUFNRUaGytdtDWg4FQKRZCHo91AY9AOB4USHyTv3Ryi0i7YWqsABhGi2C/f3rLevm7oHTpSVwF2xg5PTrjBBC2qLhw4cMnjPn6bQffvjeJzk50S0wMMg0a9ajmePGTSitLHPkyLeeO3ZsCcnMzNB4e/tYbrppdNGcOU9nq1QqCQDi4i6qN216u0ts7EUPk8nI+vr6We64Y0rezJmz82o65o4dWwJ27NgSumjR0qTx428rqanM6dN/eL744kvJnp6ewvz5z0U3y4cnbVKHieJJ22LJyQYAFJjNqBBsiI/nIdFEdVIPURRxr7sOa/r0h38DMru5u7sDAPR6PUSxpR+CEkIIaajt2zeHjh49puj993deGDLkutIVK5Z2P3XqpBsAHD16RLdy5StREyZMLNi2bfeFZ555Ie3YsZ99Fi9+MRIADAYD+8ILc6PVao24ceOmuO3bP7owfPhNxVu3bup67tw/murH2rVrh//OnVtDlyxZnlhb8AMAW7fu4idMmFjrdtJx0SNT0iwsebkAAKMoYHJQCNQyGQoLC+DnV/9TfdJ55eflwldhH4XgF1nzIqgMw4BVSGAkFm5u7hjs6Q0/pRLlmRnw7BrWks0lhBDSQKNHjy2YPn1mPgDMm7cw8/z5vz327dsTMHTodcm7du0IHjNmXMG0aQ/mA0BkZDezXC5PXbDg+ei0tBSlVusmTpo0Je+++6bn6XQ6EQCeeuq5rM8+2xcUHx+n6devv7HyOHv27PLbtu390GXLXksYNWpMWet8WtLWNToA4jjOF8AUAGMARALwBFAAIBXAYQBf8Txf4sI2knaoNDUFAGAURNwfGoZymxXp6WkUAJE65SQnQsOyECUJaj+/GsvIFQwyDNnwUXtBrVbhP11CEaV1Q3liIgVAhBDSRg0aNKS86muO66U/e/aMDgCSk5O1iYkJbkePHvGt3F45aCQhIV598823lN1//4y8Q4e+8ElMjNdmZmaoUlOTtQAgCOLl9J/FxcWKd9+NCZfJZFJoaJi5JT4XaZ8aHABxHOcHYDGA2Y79YgGkAIgH4A2gH4CpAMwcx20CsJrn+RrHZZKOrzwnBwoAmaKIaAAecgXS8nJau1mkjStKSUEXAHqg1jk9VsmKzJIcKHzkCFBqUZmv1FhWWmN5QgghrU8ul18xDl6SJLCsTLJ/LzKTJ/8nZ9KkKYXV9wsMDLLm5eXKH330oV4eHjrb9dcPKxk8+Nqy/v0H6O+9d3L/qmUZhsXy5a/Hb9v2fsjKla9Ebt36YRzL0mwPcrUGXRUcx/0HwHkA0QAeBeDL8/wgnufv4nl+Os/zE3meHwDAB8AsANcAuMhxXP15bEmHlB7aFS/HXcBfChVsjl95ZVlZrdso0uaVZWYAAIwKRY3bWZaBUTCh1FSOIkMJWJaBzbH2j6WcRjoQQkhbdfHiebeqr+PiLrpHRUUZACA0NMyYnp6q7tYtylz5Lzc3WxETsza0oqKc/fLLA74VFeXybdt2xT355DPZEybcXlJaWuJ4SvZvXOXl5WkdOXJ02cKFS1KSkhK027dvDmzBj0jakYb2AD0D4Dae58/UVYjn+TIAHwP4mOO46wCsA/BJ05pI2qP04iLwFeW4wS8QekMZPCURese8IEJqY87PBwCIbm41bmdZBkaLEUaLCRVmPWywQZDZf41ZKiparJ2EENIWaNXyFu3eaMrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXWn4XDkCg0KgHieH9HYinmePwngxka3iHQIRUUFAAB3nQ+MFhM8rSZYCotauVWkrZNKSgAAMh+fGrezLItSUzkkSDBZzbCJNogK+68xqyPtOiGEdHSSJIlatdx2fd9gOVo4o69WLbdJktTotJvjxk3I379/b+CGDWs04eHhhjfeWBPfp09fIwDcfvukYkmSkvbs+TD4s88+CdJq3YQhQ64tee65+RmV2+PiYnM2b36368aN61g/P3/L+PG3FZw4cdwrNvaCG4D86sebM+fp7OPHf/FeufKViC1bPuBpKBypirLAkWYRnpmJ8f6BcNO4w6LSAlYTBJqjQerxR0kRLpaWYuKE22rcLkJAhdke6JhtFlglKySFArAJEAyGlmwqIYS0GkmCwELK9mjhHiD7sSVRklD/OgXVREZGGefPX5xR2/aJE+8snjjxzuKatjEMg3nzFmbOm7cws+r7Dz/82OWhJXPnPp81d+7zl8faq1Qqad++gxca0rZhw0aUHzv25+mGlCUdQ4MCII7jtjWmUp7nZznXHNIRiCYTBhmMGBQeiYNaD9i0HkBFERg9PaEntZMkCb+lpcJoNGDWkKE1lrFJVpis9pEMZsECq2AFlCrAZoBgNLVkcwkhpFVJEgRJkhodiBBCGt4DdDOqzjIDQgAoAKQByAbgC6AbADOAv13ZQNL+2Mrsk9HNggC5uxeydX7Y+OMXkNzd8Ugrt420XSUlJTAa7b04QUEhV21nGMAi2mCy2QMgq2CDRbQi39sLq//+C6P69sXwFm0xIYQQQtqjhs4Biqj8nuO4+wGsBnA3z/N/VHm/N4ADsCdBIJ1Y5VC3UpsVajdPyDy8kWkygbVYIEkSGIappwbSGWVnpOEaTy+IWjcolcqrtjMMA6tohdlmufye0WqC5OOD06XF6C3YWrK5hBBCGoiGl5G2xpmxoysBLKwa/AAAz/MXASwBMN8VDSPtl82RjavcZoNa6wGNxh0AIIoi9DQMjtQiLyEei3r0xPyQ0Bq3sywDi2CFxWa9/J7eYoSHh/36qqiga4sQQggh9XMmCYIfgNpms9sAuDvfHNIRGEvscxj1gg1ad09oLUbcGxoGk82GsrJSuLvTJUKuVpqehhAAepmsxl5ChmFgtJkgVRmNa7GZoZMrMMLHD/7FlGWQEEIIIfVzpgfodwDLOI7zrfomx3HBAF4FcNQVDSPtl77QvpCzUZSgVKohN1bg7qAQjPMPRFkZLVZJambIzQEA2LTaGrczDFBhuTLTm1W0wUsU8XS37hhMvYuEEEIIaQBneoBeAPAzgBSO407Anns9EMAwAEUAnnVZ60i7ZCwughyA1bFApaDSAADc5DKUl1MARGpmK7b3HDKenjVuFyHCZL0y05tVsEHpYQ+YZKJU026EEEIIIVdodA8Qz/P/AOgDYBMADwBDAGgArAHQn+f5FFc2kLQ/JWHhWBJ7Hr8J9uycgtIeAGllcpSX0lpApGYyx9wxlX9AjdsFSYBFsF7xnlWwQeEYUqkABUCEEEIIqZ9TC6HyPJ8F4EUXt4V0EGWigEv6CvR09PwISvXlbYaigtZqFmnj1BYLoFRB16XmJAiCJMBquzIAsokC3B09QApQdkFCSOfBMJAxDNNuFkIlpC1xKgDiOE4FYBaAWwAEA5gJYBSAM9Wzw5HOp7y8HACg0TqSHbAsTADUAIzFNS7yTDq5srIyeDmGTPpGRl61nWEqe4CuTHVtE2xQuLkBAOQMA8lmAyN36tcaIYS0GwwDmYa1BksWQ4v/wmOUWptRVGRTEETas0b/x+E4zg/AjwB6AYiFfTicFsDtANZxHDeG5/kTLm0laVc0SYmYEBAEUfVvz4+ZYaGWRJgpCQKpQVZWBj7OTEektzfmRXa7art9DSAbrMLVPUAqndfl16LFAhkFQISQDo5hGFayGOQV/ElRNBvFljouq9Kw7tx1ckbhxUqS1KYCoJiYdSE//vid74ED35xr6D779u3x/fTTTwLz8vJU3t7e1nHjbi2YPXtOjkwma86mkjbAmTuFNQB0sAdAKQAqVyW8B8C3AJbD3jNEOqnAjAzMDIvAIcW/i1laWDkgWGClJAikBllZWThZUoTykBDIPb2u2s4wDGw1BECCaIPcQwuLJEHGMBBMRshqySJHCCEdjWg2ioJJ32IBkEOLD7trDgcOfOrzf//3Vvjjjz+ddt11N5RfuHBOGxOzNtxisTJPP/1cdmu3jzQvZwKgOwA8w/N8Asdxl0NknudNHMetAbCzsRVyHDcDwEIA3QAkAniF5/l9jm0DAbwFe7KFQgAxPM+vqbIvC2AZgNkAvAEcA/AEz/MJVco0uQ7ScDKr4yZV/e+N6M9+YTj+w34MDvBrpVaRtiwzMxMAEBLSpcbtDANYBSsE6cq/8xIAhUqBNUkJsEkiNshkUNZYAyGEEPKvgwc/9x858ubCqVOnFQBAZGQ3c2pqivrbb7/2owCo43MmilfDnu66JjagcfcfHMc9AGAbgPcA9AWwF8BejuNucKw19D2AS7AHL8sArOA4bmaVKl4G8DiARwDcAPs90WGO45SO+ptcB2kchSP7GzRul98zefoh02RCsWN+ECFVlaQm4xpPL/TwrTlAti+Caq55m4LFieJCnCophlloUyMyCCGEABg+fMjg3bt3+s+a9QA3evQNg6ZOndL7u+8OX7HmwZEj33o+8MA9vUaPvmHQXXfd3nfDhjUhZrP5cnabuLiL6meffSJq/PhRA0eOvG7QXXfd3nf79i01pw0FsGPHloBRo64f9O23X3vVtP3xx5/KmD59Zk719/X6ChpH3Qk4EwCdAvBELdumAfizoRVxHMcAWAFgPc/zb/E8n8Dz/AoAR2BPqvAoADOAOTzPx/I8vx3AegALHPsrYV+XaBnP81/zPP83gHsBdAFwl+MwrqiDNJAkSVBIjnTEGvfL76vU9oxwelqsktRAlZGJRT16YmAtc8QYhoGx2hpAlayiDRqN/foyGAw1liGEENK6tm/fHDp69Jii99/feWHIkOtKV6xY2v3UqZNuAHD06BHdypWvRE2YMLFg27bdF5555oW0Y8d+9lm8+MVIADAYDOwLL8yNVqs14saNm+K2b//owvDhNxVv3bqp67lz/2iqH2vXrh3+O3duDV2yZHni+PG3ldTUnmuvvV7fvXuPy0/WSkpKZIcPH/IfMOAaGqvfCTgT5b4M4AjHcWcBfA17b8l9HMe9CmC8419DcQAiAHxU9U2e58cDAMdxXwP4hef5qqmffgSwiOO4AMe+Ho73Kvct4TjuDICbYO9NGuGCOpwml7t2qKxMxl7xta0RTabLUbXMXQeWtT+8CTUbcE9IKIxms8vPSXNo6+e5o7h8fsvKAKUKKn//Gq8PRibBIpgvX09VWUUrBvj4QmY0wpSfC3lEeHM3u12ia7pl0HluGXSe25/Ro8cWTJ8+Mx8A5s1bmHn+/N8e+/btCRg69LrkXbt2BI8ZM65g2rQH8wH7cDS5XJ66YMHz0WlpKUqt1k2cNGlK3n33Tc/T6XQiADz11HNZn322Lyg+Pk7Tr19/Y+Vx9uzZ5bdt2/uhy5a9ljBq1JgGBTMVFRXsvHlzu1utFnbu3BfSm+Pzk7al0QEQz/O/chx3C4A3AMwHwAB4HsAZALfzPH+0EdVFO766cRz3LYBrACQDeI3n+S8BhAKons0jy/E1zLEdAKpfrFmO7XBRHU5hWQbe3m71F3SCTnfVA482wVJsz4khShK0nt7QaOyjCDXmMtwQEopfDBXNdk6aQ1s9zx2JJElQGI2AUoWA7t1qvD5MVjMYOQO15upRqYwcmOIbgEilEmxeVru6vloDXdMtg85zy6Dz3H4MGjTkijHwHNdLf/bsGR0AJCcnaxMTE9yOHj3iW7m9cjBJQkK8+uabbym7//4ZeYcOfeGTmBivzczMUKWmJmsBQBDEy0/GiouLFe++GxMuk8mk0NCwmsdNV5ObmyOfN29uj9zcHNWqVesuRUREWurfi7R3zi6E+guAGzmO08CeNKCM5/kKAOA4Tl6tt6UuOsfXDwC8CvuwtLsBfOEIsrSwD1+rqnIcjNqxHbWU8XF874o6nCKKEsrKXDskRyZjodNpUFZmhCC0dOKX+lly7ev8mEQBkkwFo9H+e0Qpt6fElgkCiovb/jC4tn6eOwqZjIXVaoCnI+WoW1BojdeHILPCYDTCZLz675JRaYbg6BkqLShpF9dXa6BrumXQeW4ZzXmedToN9Sw1A7lcLlV9LUkSWFYm2b8XmcmT/5MzadKUwur7BQYGWfPycuWPPvpQLw8Pne3664eVDB58bVn//gP09947uX/VsgzDYvny1+O3bXs/ZOXKVyK3bv0wjmVr/1nGx/PqefOe6SEIArNhwzt87959jbUWJh2KM+sAJQGYwvP83zzPGwEYq2y7FsBhAL617V9N5d3M/3ier8wed5bjuEGw9yoZAaiq7VO5uIy+yrFVVdvhKFN5F+SKOpxmszXPH0BBEJut7ibx8MTrKYmwms0Yq9BAFO2/7ySV/SmdXGyj7a5Fmz3PHUhKSgr8lPaeHaVfQI3nW4AAi9V6+XqqyiYIEBx/4Cx6Pf286kHXdMug89wy6Dy3Hxcvnne75ZZbSytfx8VddI+KijIAQGhomDE9PVXdrVvU5YfRJ04cc//4448CFy1amnro0Be+FRXl8n37Dp5XKBSSoz5H99+/fxe8vDytI0eOLgsICLA8/vis3tu3bw58+OHHcmtqT2pqivLZZ5+Mdnd3F9au3XgpNLSrtaZypGNqUADEcdx9ABSOlxEApnAcN6CGomOqlGuIDMfX6kPULgCYCPs6QyHVtlW+zqxyrBDY02dXLfO34/t0F9RBGkoux9mCfADABNW/abAZR0Y4FRjYbDbIabFK4pCanAx/x5pRCt+rO10ZBhAkAVax5gxvgihAlMsAEbAZKQkCIaTzYFWaFu2qasrxvvzyQGB4eKSpb9/++k8//cQ/NTVFs2DByykAMHXqtJxVq1Z0i4lZF3LbbXcU5uRkK9euXRXh5+dnCQwMsgUGBlnMZjN76NAX3kOHXluRmJigfuedmK4AYLFYrmpTr159TFOm3JOze/fOkFGjxpRERXW/ajjca68ti7DZrOzLL6+IVygUUm5uzuUbk8DAoIaOZCLtVEPvQocAeM7xvQRgaR1l1zbi+H8BKAdwPexr71TqByABwG8AHuc4TsbzfOXdzxgAPM/zeRzHlQIogz1jXCIAcBznBWAQgLcd5X9xQR2kgYxVbkBVVdYBYjUeAACNTAaDwQCdTnfVvqRzyr4Uj0CGgQBA5nH1dWFfBFWATaj575EgCpBkMkAUYDPWnCmOEEI6EkmSREaptblz18nRwguTMkqtTRKlRne7jRs3IX///r2BGzas0YSHhxveeGNNfJ8+9iFnt98+qViSpKQ9ez4M/uyzT4K0WjdhyJBrS557bn5G5fa4uNiczZvf7bpx4zrWz8/fMn78bQUnThz3io294AYgv/rx5sx5Ovv48V+8V658JWLLlg/4qkPhsrOzFLGxFzwA4PHHZ/auvu+xY3+ebuznI+1LQwOgRQBiYE94kAR7eui/qpURAJTyPN/ghV54njdyHPcmgKUcx2UC+APAVADjYA9SLsKeaGGro9y1AJ6Ffc0e8Dxv5jjubQCrOY7Lh73H6H+w9/p85jjMNhfUQRqoPCUZEwKCkGsxQ674d8I6o7EHQxpWBoNBTwEQuSw5Jxs/J8XjtptvQa8axmozDANBtMEq1hYAiZAUCsAqQDRTAEQI6fgkCYJRVGQzCq8Wn6wkiZIoSWj0omuRkVHG+fMXZ9S2feLEO4snTryzuKZtDMNg3ryFmfPmLcys+n7V4W1z5z6fNXfu85VJrqBSqaR9+w5eqKm+4OAQKwU5nVuDAiCe5y0AUgGA47hI2DOk9eV5/i/He0GwBxaHG9sAnudf4zjOAGAl7GvvxAK4i+f5nxx1j4c9+DoDIBvAi1XmCwH23ig5gC0ANLD3+Ix3tBmOXp4m1UEazpCQgJlhEfi7vAwM82/KYkFun4alkcloLSByhcT0dPxRVIg7hgytcTvDAFZRgFDLEDibKAAK+68y0dygpD+EENLuSRIESZJo9WdCnODMRAwBwFnYkwREOd4bCOAAgFMcx93O83xBYyrkeX4dgHW1bDsF4IY69hVgzx63oI4yTa6DNIxFXwEWgJVhr5gMZvbyx6qsLOQU5WG1gQIg8q/U1FQAQGhozVnnGYaB2Vb7swhBFJDr44Uf/zqLgZGRzdJGQgghhHQczgRA/wMgA3Bv5Rs8z3/jSIrwMYBVAGa7pnmkvbHq9VABsFVbsFJSKJHFsMgxmWCgAIg4GI1GBBpNCPH0Qhdv7xrLMAxgstU+tE2URJh9vPBrUQGCmquhhBBCnEbDzUhb48zY0TEAFvI8/2fVN3mePwf7ULLbXdEw0j7ZDPYkCFZWdtW2yqQIej1l6iJ2mZkZuCckFIt69IQsK6vWcmZb7UPbBFGAWmPPbG+kLHCEEEIIqYczPUBKALVl/zAB8HC+OaS9sxntSykJsqsvrVFubqgI7gJzWUkLt4q0VenpaQhQ2ueHKf0DaiwjQoS1lgxwACBIIjxYFoM9veBdXtYs7SSEEEJIx+FMD9AJAM9xHHfFej+O188COOmCdpF2qjILl1hDAHSLQoZ7u3SFuaSkhVtF2qrMlGR4OxZBVfj51VhGkATYaskAV8nTaMKCHj0xxECLeBNCCCGkbs70AC2Bfc2eZI7jDgPIA+AP4FYAfrCvp0M6KclkD4AE+dXr4VoZBkpIsFAWOOJQlJwMALCyLFg3txrL1NcDBAAyjb0XSSbSivCEEEIIqVuje4B4nj8N4DrYe4ImAngRwGQApwAM43n+D1c2kLQvScHBeCM+Dpmaq29mrY602Daap0EcjDnZAADB3f2KtOlViZJoT3VdB8YRACkkybUNJIQQQkiH40wPEHie/wfAPS5uC+kACgD8VVoCb437VdtsDAtI4uV5QoQIRUWAuw4yX98atzOMYwhcPT1ArNaeBEFO8Q8hpJNgGMgYhmn5hVAl5xZCJaQtcSoAAgCO4yYAuAVAMICXAFwD4DTP86kuahtphyqzcClV6qu22VgZINposUoCALDZbFAajIC7Du5dutRYhmEYCA3oAWK19h4geS29SIQQ0pEwDGSSXAg2CEan7+OcpZFrbIxNlt3WgqCYmHUhP/74ne+BA9+ca+g+O3duDTh48POAwsJCZWBgoPnuu/+b89//3l/YnO0kbUOj/+NwHKeFfdHTsQDKYM/69j8AcwBcw3HcSJ7nL7iykaT9CCwowEhff7jJrp4DJMhkgA0QTRQAESArKxPf5WUj1WzEqtHLaizDMIAg1J8EgdXYEykoKQAihHQCDMOwBsEo/yPjrGi0mlps8qNGoWavDR0od2M8WEmS2lQA1Fi7d+/037lzW5fnnpuX0r//Nfrffjume/vtDREeHp7ChAm3l7R2+0jzcubJwesABsO+HtCvACqXaJ8O4FsAKwDc5ZLWkXZnYEkphkVG4Rv26l55wREUSRYKgAiQmpqCLJMJnpHecIuKgs1W099wxjEErp4eILW9x1HGMJBsNjDyFn8oSgghLc5oNYl6i7Gls7+0+LC75lBRUSGbMWNm5h13TCkGgPDwiIJDhw4E/PnnSR0FQB2fMxfxvQAW8Tx/FMDlEfc8z+cAeA3AcBe1jbRDcsckdEatuWrbuYBwLIk9D76e4Uykc0hJsWeA69atW61lGAawCFZIqHtyD+uuxZbUZPxfciKstrp7iwghhLSs4cOHDN69e6f/rFkPcKNH3zBo6tQpvb/77rBn1TJHjnzr+cAD9/QaPfqGQXfddXvfDRvWhJjN5svd+nFxF9XPPvtE1PjxowaOHHndoLvuur3v9u1bal5ADsCOHVsCRo26ftC3337tVdP2xx57Muehh2bnAYDVamUOHPjUJzMzQz106HW0oFwn4MxjUi8AKbVsKwZw9ex30ilIoghl5Qv11VngDDpfXNJXwNOxVhDp3LKSEjEhIAiDfWpOgADY5wCZBUut2yspNAp8l58LALDYbP9eh4QQQtqE7ds3hz744MMZixYtTfnii8/8VqxY2t3b2ydu6NDr9EePHtGtXPlK1OzZj6cPGzaiLC0tRbVx4/qwjIw09Zo1MUkGg4F94YW50f36DSjfuHFTnFyukA4c2O+3deumrkOGXFver1//K7Ir7dq1w3/nzq2hS5YsTxw7dlxpXe36/fff3F988RlOkiSMHj22YPz420qa9USQNsGZHqDzAKbVsu0Ox3bSCVUd2saqtVdtVyjsE9WNlAWOADCkp2JmWAR6pmXUWoZhGFhs9QdAjFx2OY22yUTXFyGEtDWjR48tmD59Zn6PHtHmefMWZkZFddfv27cnAAB27doRPGbMuIJp0x7Mj4zsZh458uay5557MfX333/zTktLURoMenbSpCl5L720LDU6uqepW7co81NPPZcFAPHxcVcMOdmzZ5fftm3vhy5b9lpCfcEPAERFdTe9++62i3PnPp9y4sQxn7VrV9WclYd0KM70AL0G4HOO43wBfAn7MLiRHMfNBPA4gPtc2D7SjlQmNxAlCbIaeoD8LEbcHhgEwUpDlAggFhQAfgFQBgbWUUqCSah/zpgkSejr7QO5IMBYUgL4+busnYQQQppu0KAh5VVfc1wv/dmzZ3QAkJycrE1MTHA7evTI5SEBlcu6JSTEq2+++Zay+++fkXfo0Bc+iYnx2szMDFVqarIWAARBvDxMrri4WPHuuzHhMplMCg0Na9CEY3//AJu/f4Ctb99+xuLiYsWePbtC5s59IUupVNLCCh1YowMgnue/4DjuAQCrANzmeHstgDwAj/M8v9+F7SPtSGV6a5MoQKa8eg5QYHkRhneNwO/6ipZuGmljKioq4G61AgC8IiNqLSdArHcNIAAQJBFPhkXAR66AKScb6N7DVU0lhBDiAnL5lSu1SZIElpVJ9u9FZvLk/+RMmjTlqhTUgYFB1ry8XPmjjz7Uy8NDZ7v++mElgwdfW9a//wD9vfdO7l+1LMOwWL789fht294PWbnylcitWz+MY2tIygQAP/74vS40tKslOrrn5XH5UVE9jDablSkqKpQHBQVbXfLBSZvU6CFwHMf14nn+I57nwwD0gj3pQV8AITzPb3V1A0n7IVnsQ5UsogiF8up1gKCyB0UyqaUT1pC2JjU1GcGOtaI8IyJqLSc2IAOcvZwIq+NPq0Wvd0UTCSGEuNDFi+evGBoSF3fRPSoqygAAoaFhxvT0VHW3blHmyn+5udmKmJi1oRUV5eyXXx7wragol2/btivuySefyZ4w4faS0tISx0P8f+MqLy9P68iRo8sWLlySkpSUoN2+fXOtQwy2bNkUun37lqCq71248I+bu7u7LSAgkIKfDs6ZOUDfchw3AwB4u994nr/I8zzd1XZyrLc3Vifw2JSSBLlSdXUBR1BUmSmOdF4pKSkIcqSuVocE11pOhFjvGkAAIIoiBMcgCIuBAiBCCGlrvvzyQOCBA5/6JCTEq1avXhmampqiue++GbkAMHXqtJw//vjdOyZmXUhCQrzq2LFfPN588/VIvb5CHhgYZAsMDLKYzWb20KEvvDMy0pQ///yj7tVXl3QDAIvFctW9bK9efUxTptyTs3v3zpDExIQabkiAqVMfyD527GffDz/c4Z+UlKjas+dDvwMHPg26//4ZWbX1GpGOw5k5QHIA+a5uCGn/bDIWp0uKAQC3Kq9OgsA4EiMoJHvXN0OLVnZaqSlJGOHoAdKEBKO2vIASJAgNSJsuSCJEx/VkpSQbhJBOQqNQt+idelOON27chPz9+/cGbtiwRhMeHm5444018X369DUCwO23TyqWJClpz54Pgz/77JMgrdZNGDLk2pLnnpufUbk9Li42Z/Pmd7tu3LiO9fPzt4wff1vBiRPHvWJjL7ihhvvSOXOezj5+/BfvlStfidiy5QO+elAzadKUYkGwJe/duzt469b3uvr5+Vkee+yptKlTpxU4+xlJ++FMAPQygI0cx62EPeNbbvUCPM+nNbVhpP0xGAwA7Jm75IqrExFXrg2klslgMpmg0Vw9T4h0DnnJSVDJZBAZBqqAAJjKr56ryjCAIAqwNnAInOAIgAQKgAghHZwkSaJGrrFdGzpQjhZemFQj09gkW+PHskdGRhnnz19ca9rPiRPvLJ448c7imrYxDIN58xZmzpu3MLPq+w8//Njle9C5c5/Pmjv3+azK1yqVStq37+CFuto0Zco9RVOm3FPU8E9BOgpnAqBNAGQAtgK1rk4oc7pFpN2qyMzATb5+KANQU/cx68gMp2JZCoA6OT4tFYszMzD/iafByuUAakrWw0CQBAgNGAIniCIEGQtIgM1E60wRQjo2SYLA2GTZboxHi4/VkmySKEmgFc1Ju+ZMADTb5a0gHYI5MQFPRXbHhVrmYEiOdYBUrAxGowHe3t4t2TzSRgiCgMSUJFgsFnQZfXOt5RgGECQBtgYMgRMlEZJMBthECoAIIZ2CJEGQJIkCEUKc4EwA1AXAFzzP19mtSDofq9EIBQAbGChq2G7x9MXa9FQUVpRjNQ1T6rQyMtJgsVigVqsRGtq11nIMw0AQxAYHQPEaJX69EIuhQ4a6srmEEEKa6NixP0+3dhsIqcqZrtP5AGq/ayGdls0R1AhszckNRKUavNWGBH0FzGYKgDqrhIR4TAgIwn+je0IoK6u1HMMANtEGsYFDzXN0bvgmLxclCmee6xBCCCGks3AmALoEoJ+rG0Lav8qhRwJT+xSwyvWBjNQD1GklJiZgSnAIJirVsBXVPveUYRiYhYYvxaBU2hNvmGgIHCGEEELq4Myj0kMAXuM4biJqzgIn8Ty/osktI+2OYHYEQLXlz5ckjNDpYBSDYKqoaMGWkbYk/RKPUY4sgaqQkFrLMQxgsdWUHKFmOhmLXu4ekJeWNLWJhBBCCOnAnAmAXnF8HeH4V50EgAKgTkg0229WRVntPUD/9XAHq/NARh1Dn0jHZkhLBXReENw9wDoWQ60ZA7NgaXC9UeVGTOrZB0l5tEwZIYQQQmrX6ACI53laHpfUSLTYb1ZFtpYAiGFgBaACYNXXnCmOtC2uXrDWarVAWVYK6Lyg6tKl7mNDhKURQ+AkpePXma3+tNmEEEII6byaFMxwHNeT47jrOY6LclWDSPuV7e+Pt5LikaSq/am+BfabaWstqbJJ2xAfz+Puu+/A0KH98eqrL8NqbXggUpfU1BSEKO3p0D26dauzrAgBQgMywF3mSH7ANGDhVEIIIYR0Xk6lS+I47j4AawAEVXkvB8Ainuc/cFHbSDtTpFDgeFEhRjgWPK2JjWEASLAZDS3XMNIoZWVlmDt3DrKz7Qtqf/75PkiSiFdeWdnkuuPjL6GrRgsAUIWE1llWlKQGpcC+TGWfV8QK1ANECOn4GAYyhmFafiFUiRZCJe1fowMgjuPuALALwI8AXgKQAyAEwAMAtnMcV8jz/FcubSVpFyozuykcC57WxMYwgCTBSlng2qy9e3eBLS7G6/2vQVdvH+zjY/HFgU8xYcJEXHfdDU2qOy72IkaoNQAAZT1D4ESIsDUimGFU9tWnGLFhabMJIaS9YhjIVKI1WDAYWjzvv0yrtZlZRXZbC4JiYtaF/Pjjd74HDnxzrrH7SpKEJ56Y3cNms7KbN3/AN0f7SNvizH+cJQD28Tw/tdr72zmO2wtgEQAKgDoh96IiXOvlDc86kiDYGBkgiRAoVXGbZLVa8fW+vVga3QveSiWg1+OB0DCYBAGbNr3d9ACIj8W+82ex7PGn0T249gxwgH1x08b0AFUGQDJRalIbCSGkrWMYhhUMBnnhyZOizWBssac+cq2G9b3uOjnj4cVKktSmAqCm2L59c8C5c3/revXqTSlqOwlnAqB+AJbVsm0HgH1Ot4a0a1xeHoZ353C0jptWgWUBEbCZG57emLSc06dPYYxGC2+lEoqQLvAcdiPK0tLw89nTMOfn4ty5v9Gv3wCn6pYkCbGxF2EQBISPuAmsQlFrWYYBBKlxc4BYxxA4mUQBECGkc7AZjKJNr2/pbu8OlQzr4sXzmr17d4V0796DJid3Is4EQAUAfGvZ5geg4XlrHTiOCweQUsOmR3ie38Jx3EAAbwEYAqAQQAzP82uq7M/CHpTNBuAN4BiAJ3ieT6hSpsl1kLqxjqFHjLL2IXB/6gLwwe/fo0+Xup/+k9Zx7Mi3uM0vAAAQeP8D0PbsBR8A49JT8OWXB7B79wdYtWqtU3VnZWWirKwUcrkCUVHd6yzLMAyERvYAWX10+CgjDayHDjc51UJCCCHNYfjwIYPnzHk67YcfvvdJTk50CwwMMs2a9WjmuHETSivLHDnyreeOHVtCMjMzNN7ePpabbhpdNGfO09kqlUoCgLi4i+pNm97uEht70cNkMrK+vn6WO+6Ykjdz5uy8mo65Y8eWgB07toQuWrQ0afz420pqKmMymZjly1+OnDbtwaxLl+K0eXm5td/AkA7FmSj+CIBXOY4Lq/qmI4hZBuA7J+rsD8AE+1yi4Cr/dnMc5wvgewCXYA9elgFYwXHczCr7vwzgcQCPALgB9rWIDnMcp3S0rcl1kPpVBkBSHXOACt28cLasBCU212QVI65l+udvyFkWVm9vaHv2uvz+vfdOAwPg/PFfodc7N0IgNvYCpnUJw5N9+kIqKqq3vCA2rgdI8tHhQE4Wfi2pv25CCCEta/v2zaGjR48pev/9nReGDLmudMWKpd1PnTrpBgBHjx7RrVz5StSECRMLtm3bfeGZZ15IO3bsZ5/Fi1+MBACDwcC+8MLcaLVaI27cuClu+/aPLgwfflPx1q2bup4794+m+rF27drhv3Pn1tAlS5Yn1hb8AMDatatCvb19rDNmzKoxiCIdlzM9QC8B+BMAz3HcCdiTIATBHjQUAVjoRJ39APA8z2dX38Bx3LMAzADm8DxvAxDLcVwPAAtgn3ekBPACgPk8z3/t2OdeAFkA7gKwF8CjLqiD1EPWgB4gudIeT5rNNAeorcnPz0N8Tjb+BoPhd9x5xbYefn54a+BgyEURPx75DnfceVej64+9eAGj/fyhUyggGurOAmjvARJgExueBEHuSINtpuGVhBDS5owePbZg+vSZ+QAwb97CzPPn//bYt29PwNCh1yXv2rUjeMyYcQXTpj2YDwCRkd3Mcrk8dcGC56PT0lKUWq2bOGnSlLz77puep9PpRAB46qnnsj77bF9QfHycpl+//pczK+3Zs8tv27b3Q5ctey1h1Kgxta66fvToEd2vv/7ks337Rxddud4daR+cWQg1h+O4QbAHDCNh71EpAhADYB3P87lOtKM/gIu1bBsB4BdH4FLpRwCLOI4LABABwMPxXmUbSziOOwPgJtiDF1fUQeohlyT75A3lVQ9jLgu0WTHK1x86A2WBa2vOnj2Dv8tKYQwKxtS77oISFkiMHGaBhcLXD94aLVRWK05/9SXgRACUGXcROoUCEsNAGVp3CmyGAWyiALER83nkcjkiNFq4sR1qeDohhHQIgwYNKa/6muN66c+ePaMDgOTkZG1iYoLb0aNHLk+xqPz1n5AQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8XL0UlxcrHj33ZhwmUwmhYaG1fo0rKAgX75mzaqIp556Li04OISGpHRCzqZPLASwl+f5BQDAcVwwgKGwB0LO6Acgm+O4XwFEA4gHsILn+W8BhAKontIwy/E1zLEdANJrKFM5TM8VdThFLnftzZhMxl7xtS2pvJhkajVYtuanKVH6ItwaGYWTFqvLz40rteXz3FzOnTsLABg8eDBUMMGccg4yrTs0wT1hkamgGzMG5m++QV+DAUWFeQgIDKq7wiokSYKUlgYEhQCBQVBq7Ivl1nae5XIWNqO11uuoJgpIeLNPf8cBBcjrSLLQGXXGa7o10HluGXSe2x+5XH7FEy1JksCyMsn+vchMnvyfnEmTphRW3y8wMMial5crf/TRh3p5eOhs118/rGTw4GvL+vcfoL/33sn9q5ZlGBbLl78ev23b+yErV74SuXXrh3FsDQ/FfvrpR8/S0hLF+vVvRqxf/2YEANhsNkYURWbMmBuvWbnyf/HXXz+MMsJ1YM6sAxQK+zwfFYAox9sDABwAcIrjuNt5ni9oRH1K2IMePYAXAVTAvqbQYY7jbgGghX34WlWV46fUju2opYyP43tX1NFoLMvA27v2RUGbQqervZelNUiSdPliUrq5Q6OpeeqUTWUfHseIQrOdG1dqa+e5OeXH8/BWKDBk8DVgy3OBinyIphLIfQLhFhCGgQ8+gJ8PH0YXtQZ/ffoxpi5+qcF1JyYmIsyRHj146OCrfvY1nWfJIEBdy3VUEwXz768zlUyErh1cX62hM13TrYnOc8ug89x+XLx43u2WW269nPQgLu6ie1RUlAEAQkPDjOnpqepu3aIu34edOHHM/eOPPwpctGhp6qFDX/hWVJTL9+07eF6hUEiO+hw//H/jKi8vT+vIkaPLAgICLI8/Pqv39u2bAx9++LGrRiaNH39b8aBBQ64IcN5+e31oYWGBYtmylcnBwSGNTuhF2hdneoD+B3vyhHsr3+B5/huO4wYA+BjAKtgzqTUIz/MWjuO8ANh4nq+88E9zHNcLwDwARtiDrarUjq96x3Y4yhirlalMaeiKOhpNFCWUldU916GxZDIWOp0GZWVGCELbWfBREkXsKS1GRUkJet2shtFY8+8OhnUsVmkTUFzcdjNOttXz3FwkScKAolLMHDAYsoJC6HMzYDGaAZghZSTCpvKCRZShJDwcQWlpEH4/1aif3y+//Iae7h4AAEVk1OV9azvPCoUM5QYjTLVcRzVh2H+DpdyMXAgsJfOpqrNd062FznPLaM7zrNNp2k3PklyradGGNuV4X355IDA8PNLUt29//aeffuKfmpqiWbDg5RQAmDp1Ws6qVSu6xcSsC7nttjsKc3KylWvXrorw8/OzBAYG2QIDgyxms5k9dOgL76FDr61ITExQv/NOTFcAsFgsV7WpV68+pilT7snZvXtnyKhRY0qiorpf8YDbw8ND9PDwuOI9jUYjKJVKedUgjHRczgRAYwA8yvP8n1Xf5Hn+HMdxSwFsbGyFPM/XdCd1DsCtsA9Lq54zufJ1JgBFlfcSq5X52/G9K+pwis3WPH8ABUFstrqd9WtRIYqKCtFHpYFYy2KUrNx+qlmx7bW/Jm3xPDeH7OwshCjsAUQIFwVLWcnln6GppAAKQykklTd6TJ2G4tUrEcGySP3jFLoMGtyg+s+f+gN3aewdrcrI7led0+rnmWEBs81S63VUE1HGwCKKULIsKkpK4RXS8X9uzugs13Rro/PcMjrreZYkSZRptTbf666To4XX5ZFptTabJDX6pI8bNyF///69gRs2rNGEh4cb3nhjTXyfPn2NAHD77ZOKJUlK2rPnw+DPPvskSKt1E4YMubbkuefmZ1Ruj4uLzdm8+d2uGzeuY/38/C3jx99WcOLEca/Y2AtuAPKrH2/OnKezjx//xXvlylcitmz5gK9pKBzpvJwJgJQAarvwTbAnE2gwjuP6A/gNwK08zx+rsmkIgAsAzgJ4nOM4Gc/zlTlxx8CeNS6P47hSAGUARsERvDh6lAYBeNtR/hcX1EHqYTLZRxXK5LU/eZcUjrkfYuf7g9WWJVw4hyC1/Wej9feEKeffvyWi2QihLB+yIB8ER3P4HUAfAJe+PNDgACjz4gUUadzg4e8PmUf9vyJENC4FNgCIkgirJEEJwFxBQ7cJIR2XJEEws4psxsOrxe/qbZIkShIa9wsaQGRklHH+/MUZtW2fOPHO4okT7yyuaRvDMJg3b2HmvHkLM6u+X3V429y5z2fNnft85fxuqFQqad++gxca2r6VK/+X0tCypP1zJgA6AeA5juMO8zx/OXMGx3EKAM8CONnI+s47/r3Lcdwc2BdafRT2tNpDAeQCmA9gK8dxbwK41nGcxwGA53kzx3FvA1jNcVw+7Auq/g/2Xp/PHMfY5oI6SB0EowF9VCoYZDLI6wiAKlNkyxqR3Ys0v4K4WAQC0LMMIF6dotxakg+1fyQAOZhhN2L5jq2AyYDRDai7qKgIv8bz+BXAkS++aVB7BElq1CKowL8BEACYDRQAEUI6NkmCIElSowMRQohzAdASAMcAJHMcdxhAHgB/2Ier+cHei9JgPM+LHMfdAfvcoX0AvACcAXALz/PnAIDjuPGwp9k+AyAbwIs8z++sUs1Sx2fZAkADe4/PeJ7nLY5j5DW1DlI3Y04OXoyKRqnVikRFHRPXlfZeBgUFQG2KOT0NAGB0d4NgvHpEqrWiFGpzBVilN0ZMvhvL/+8tiOf/QWZmBrp0qTul9cmTvwEAoqN7wi88okHtkSA2vgdIFFGZ595azzpDhBBCCOm8nFkH6DTHcdcBeBnARAC+AEoA/Ap76uqzTtSZD+DhOrafgr1HqLbtAuyLmi5ozjpI7UyOIUdmUYSijoVQTf6hWJ94CcVWK+6QJNDiY22DrNCewV4W4A/BfHXwIFpMEPUlkGl84evrhyFDrsUff/yOI4cPYfqMWWCVtQe9p347BgbA9dcPa3B7REmETWj4IqiV+/xuM0Ofm41b5M5m+CeEEOJqx479ebq120BIVU7dJfA8/w+Ae1zcFtKOmfX2AMgqiZDJar+sRE8/nCi232ybzWao1epay5KWozWZALUauq7BEC01J8CxluZD5RcOKxiMGzcBvikpGHjiBMq6dYfXzWNr3EeSJPjxPN4fMBgynWeD2sIwjgCokfPEJAB/shIuZmfiRjmtAUQIIYSQmlFKDOISFr2918Baz8g2RZWeArP56rkmpOUZjUZ8lZmOA9mZCIyqfd1fm6ECjNUEhgHGjBkHiWGgYRjkHf4KUi3BSvylOAxWa+CpUCCi34AGtoiBIAkQxMb1AAGASm3vfTSZjPWUJIQQQkhnRQEQcQmrwT5vxFbPiDaFIOAGH1/c4O0Dk4lS7bcF6elp+K24EF+Vl8EnuPZ1fwVjBSSLHizLwtvbG4Zu3VBhswHFxSg/VXPuk78+2w9vpRJGAN6DhzSoPQwDCJLQ6CQIAOCjUCBMo4W1tLT+woQQQgjplCgAIi5hMTp6gFB3BCQ3VeC5bj3wWHg36gFqI9LSUgAAEeFhkKy1B6WSYINQUQyWtf+Mbx5/G77MtWccLdj3CUTzlftKkgSPuFgAgCmqO5gGzsthGAaC2PgkCAAwRmCwpk9/aDPSG70vIYQQQjoHCoCIS9iM9iFHQj1JDUSZfW6GkmVhsVAA1BbkJsSjl7sHeoQEQ6jnZ2IrL4ZMsg9Nu/nmW3CkpBh5ZhNsJcXI3/fxFWXjv/8W3RVK2CQJ3LTpDW4PwwA2SYDQ+HX2IMpk9q9m6l0khBBCSM2aHABxHKfmOI5SeXVyem9vbE5Nxp9C3U/tRcfkdDnLwqSneRptgSolGa/27IORVrHWBAiVbEY9GMEeJOl0Otw68U5sTk0GAJT+9CNKfvnJXq60FPrP9gMA4lRKeIWFN7g9DMPAYnMu+7wotwdAkoWy1xNCOjaGgYxlGUVL/2MYyFr7sxPSVE5lgeM4jgOwHMAtAHQAruU4bjaAWJ7nN7qwfaSdqFCp8X1+LnoFdsG1dZSTqmTnstSw3gxpeYxjvgzrpYNks9ZZVjDpIVmMkKndIAgipk2bgcn79mJ/VgbuDgmFTOsGACjIzoLcYkGOxYKuM2vNcF8rq1B3O2ojyuzPdCSrc/sTQkh7wDCQsQwbbDHZWjznv1Itt4kQsyUJtAgrabca/R+H47iBsC8SmgdgN4AnHJssADZwHFdWbYFR0glUZt2qaw0gAJBYGURJAsswMDvWDiKtS200AnIF1H5e9ZaVbFaIxnKwWn8IAhAR0Q0TJkzEJ4cPodzfD8sHDAQAvPPRByhNTYIUEoq3hg1vVHsYhoFJcK4HR6rsAaIAiBDSgTEMw1pMNnns+WzRbLI1frywk1RqOdurb7BcoZaxkiS1qQAoJmZdyI8/fud74MA35xq6zyOPPBgdG3vBo+p70dE9K7Zt28W7voWkLXHmycEaAH8CGOd4/SQA8Dz/LMdxWgDPAKAAqJORCgrQx0MHP0XtC2ICABgGNgBKADZKVdwmeDhSWOv8a88AV5WtvAgKv4jLr5955gX8+utPOPz3WZjmP4eQkC44ePBzMAyDbWvecmKxWwlWJ4fASQr7rzQKgAghnYHZZBNNRmuLBUAOHWb+eHp6qmbOnKfTxo4dX1z5nlKprGdBD9IROHMR3wBgPc/zNtjXHqxqL4DoJreKtDs+KclYxvXGwAbc61ocV03l2kGk9RgMeng5Fq71DfJr0D6CUQ+2SoASFBSM1157E3K5HEePHsHu3fbnH088MRfXXDO40W1yNgU2AMARADFC49cQIoQQ0nlkZ2cpKioq5P37X1MRGBhkq/zn7e3Tpnq2SPNwpgfIBEBbyzZfx3bSyVQ+ca86x6c2X9kk5GQk4FbZrc3dLFKPnNRUqB2Z03Q+OgjG+tfPEUwGSDYTGJkSkmSPZkeNuhlbtnyAXbt2wGAwYNKkKbj11tudapMI0ekAqNTTDV+c+gfaqG5O7U8IIcT1hg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzfh8h+dI0e+9dyxY0tIZmaGxtvbx3LTTaOL5sx5OlulUkkAEBd3Ub1p09tdYmMvephMRtbX189yxx1T8mbOnJ1X0zF37NgSsGPHltBFi5YmjR9/W0n17XFxFzUMw6BHj2i6b+2EnAmAvgPwKsdxxwFkO96TOI5zBzAPwBFXNY60I5cDoPovqVhWiYtFhRjp7FN+4jIFSYnwAqAXRTBsw3r9BbPRngjB3RM227/7DBw4CAMHDmpym0RITq0BBABl/t7YnZmGGyMimtwOQgghrrN9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FmPpdu3b479y5NXTJkuWJY8eOq/HJXkJCvEardROWL385/Ny5v3VqtVq48cabiqsGXaTjciYAmg/gBAAewFnYh8GtBcDBPqRuqqsaR9oRm33IkSSvZw4QALljnpDJRGu1tLac8jLsS01CdLdu6Gtt4LwbSYSoLwGrC26WNkkQYROdG8KmUNp/pdEiu4QQ0raMHj22YPr0mfkAMG/ewszz5//22LdvT8DQodcl79q1I3jMmHEF06Y9mA8AkZHdzHK5PHXBguej09JSlFqtmzhp0pS8++6bnqfT6UQAeOqp57I++2xfUHx8nKZqALRnzy6/bdveD1227LWEUaPGlNXWnuTkJI3VamX69x9YMX36QzmxsRe0mzdv6pqbm6N84401Kc18Okgra3QAxPN8OsdxAwA8D+BmAIkA3AF8BGAdz/PZde1POihHAIT6kiAACJPLoPbyBsrqH25FmldGUSG+z8+D943XQ2xE4gGbvhRK0QbA9UuACZIAQXRuTq9SLoO/UgWNmdYBIoSQtmTQoCHlVV9zXC/92bNndACQnJysTUxMcDt69Ihv5XbHCGskJMSrb775lrL775+Rd+jQFz6JifHazMwMVWpqshYABEG8/IeouLhY8e67MeEymUwKDQ2r8ynrihWrUioqKtI9PT0FAOjVq49JLldIb765slteXm5GQEAgTSbtwJzKH8/zfCGAxS5uC2nH2MoFUBsQAN0kmhHRncM/RcX1liXNq6AgHwAQ4OMNNCLoEExGsKIFQN1pzxuLYRgIovM9QD6levxf/2uQTUkQCCGkTZHL5VcMK5MkCSwrk+zfi8zkyf/JmTRpSmH1/QIDg6x5ebnyRx99qJeHh852/fXDSgYPvrasf/8B+nvvndy/almGYbF8+evx27a9H7Jy5SuRW7d+GMeyNef7kslkqAx+KkVHc0YAyM7OUlIA1LE5uxCqJ+y9P26oIZMcz/MfNLFdpJ1hK2+e61kHCABElgUEQLTQELjWJs/LQ093DwS4qRu1n2A2QLKawSrUEEXXDZVmGEBsQhY4VmUPwGU0epsQQtqUixfPu91yy62Xh37ExV10j4qKMgBAaGiYMT09Vd2tW9TlG4MTJ465f/zxR4GLFi1NPXToC9+KinL5vn0HzysUCslRn8Ze8t9f+F5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbVn1qwHuK5dw0yvvvp6auV758794yaXy6XIyCgaR93BObMQ6gQA+1B7JjgJAAVAncwpRkJheiqC+lwP73rKCqxjrRYLDVNqbQP1evynZx+U6hu3JpNoMUGyGsGqvFwcADEQRMHpJAiM2h4A1Z+LkBBC2j+VWt6ia/I05XhffnkgMDw80tS3b3/9p59+4p+amqJZsODlFACYOnVazqpVK7rFxKwLue22OwpzcrKVa9euivDz87M40lNbzGYze+jQF95Dh15bkZiYoH7nnZiuAGCxWK5qU69efUxTptyTs3v3zpBRo8aUREV1v+qJ6+jRY4q2bNnUdc+eD/U33DC87Ny5s27btr0Xeuedd+VWzjMiHZczPUBvAIiFfQ5QBgC6SAj+tljwV242Znp41VtWdKw7A1qsstW5iSIgA7Q+no3bUZIgVJSC1XWBK38FMAwcQ+CczBCosQdActdPTSKEkDZDkiRRqZbbevUNlqOFFyZVquU2UWr8RM1x4ybk79+/N3DDhjWa8PBwwxtvrInv06evEQBuv31SsSRJSXv2fBj82WefBGm1bsKQIdeWPPfc/IzK7XFxsTmbN7/bdePGdayfn79l/PjbCk6cOO4VG3vBDUB+9ePNmfN09vHjv3ivXPlKxJYtH/DVh8JNnz4zn2VZfP75/sD33nsnzMvLyzpp0l25jz32ZI5zZ4a0J84EQD0B3Mnz/K+ubgxpv0wmew+CvAFzgCoDIIkCoFYlSRJ0jj8Inv5ejd5fMJRCJlrh2kQIDKyi89cF6+gBUjIdZqFyQgi5iiRBECFmK9SyFv9lJ0qiKElo9FOqyMgo4/z5izNq2z5x4p3FEyfeWePkYIZhMG/ewsx58xZmVn2/6vC2uXOfz5o79/msytcqlUrat+/ghbraNG3ag/mVmedI5+JMAJQKQOfqhpD2LcgmwKJ1g0JW/+Aj0bFYKmOj+YWtqbSwAG6OYNTHzxuQGjcnSzAbwYpWAPUHvQ3FMIBZcD4AYjT2uUwqloUoiqht8ishhLR3kgRBkiRaUI8QJzhzd/AGgGUcx0W4uC2kHXtU54U3eveDpgG94lJlACTQ7+3WVJBmn/dpFUUo1Y2fNSOajZCsJrCs63qAGIaBpRHpuKtj1f8m4bAYDK5oEiGEEEI6GGd6gKYB6AIgkeO4fADV7zIknuejmtwy0m5INhtkjP0mmFHXlhvjX7neQTh+6ieoQkPx3+ZuHKlVaVYmPADoJQmSE2mjBbPJHgC5NBGCBLPQhADITYVv83JgEUXMNhmhdnd3UbsIIYQ469ixP0+3dhsIqcqZACjD8Y8QAIBYJZsbq3Krt3yFpx9+KMhDTz/fesuS5lOemwMPACaWcSoAgiRCNJSD1QW7rE0iRNiasIYPo5BjR2Y6BEHAdCcXUyWEEEJIx9boAIjn+ZnN0RDSflUGQKIkQaaqfz0ZhcI+TMlkojT7rSlXFPFVajK4Xj1xnZNBh2AogUJyXaAhSE3IAAdAkkQoVSoYDQaYzbTOFCGEEEKu1qAAiOO4MADZPM9bHd/Xief5tCa3jLQbZn0FAMAiipAp6l8IVSOJ6KfzhLtEq1W2pqyKCnyfn4uQ0Tc6XYdgNkEpWuCqlXckiLCJzvcAiZIIX40WJpsNxopyl7SJEEIIIR1LQ3uAkgHcAOAPACmouuxuzWRNaBNpZ8yOG02LKIKV158RzM9QgpejeyHR1LjFN4lrFRYWAAB8PT2crkMwG8HYLGBYBVwRz4oQnV4EFbD/YlrcNRy+cgUsGRlArz5NbxQhhBBCOpSGBkCzACRW+Z4e3ZPLTBWOHiBJBMs2IPZVagAAcrqKWpUiPw+93D3gp6m/1642lzPBaTwgCE0fCic2cQgcAFQm0bZSFjhCCCGE1KBBARDP8zurfL+j2VpD2iWrUomPMtIAhQIDG1CedcwTUrhy/UzSaNebLbivZx+Um5zPuiYJNogmPVi3ADQ1qznDAIIkQGhiRYIjI6GNehgJIR0Yw0DGMC2/6rMkSU4thEpIW9LQOUAzGlGnxPP8h062h7RDJoUSB3Ky4Ovn36AAiFHZU2UrWRZWqxUKhWvmj5DG0ThSV3t4ezapHkFfCplf09vDMAwEsek9QDZHYG2lAIgQ0kExDGQyxhZsNRucyebbJAqV1iZAnt3WgqCYmHUhP/74ne+BA9+ca+g+CQnxqg0b/tc1NvaCh0qlFocNG178/PMLMrRaLaUR7eAa+h9nRyPqlABQANSJmBw3mqoGZIADAFZlHwKnZFiYzWYKgFqBzWaDO2t/cOjp69WkugSzHgrRgqZO/WMYQBSFJgdAguNz2YyUZZAQ0jExDMNazQZ54oUzosVsarGbdaVKzUb1GSSXqTxZSZLaVADUWEVFhbK5cx/v2a1blP7//m9zbG5urvLNN1dGrFnzBpYuXUHJvDq4hgZAkc3aCtKumYuLEanVwlNT/yKoAMA6FktVsSwsFhMAWqyypZUUFsBdbv/vr/P1BCTnU0aLZiMYwYqm5z5h7EPgmpAFDgBElgFEQDRTAEQI6dgsZpNoNhpaureixYfdNYddu3YGyuUyac2amES1Wi317NnblJ2dlXXo0AF/SZLAMDROvyNr6Byg1Nq2cRynBmDmeZ6mtHdSTGICVvfujzibDQ35LSw5MsWpZDIYDQbAp3nbR65WnJkJABAkCXKVDGITYgXBbIJkNYNVaiCKzv8aYBjAKghNzrAisCwgShBoHSBCCGkThg8fMnjOnKfTfvjhe5/k5ES3wMAg06xZj2aOGzehtLLMkSPfeu7YsSUkMzND4+3tY7npptFFc+Y8na1SqSQAiIu7qN606e0usbEXPUwmI+vr62e5444peTNnzs6r6Zg7dmwJ2LFjS+iiRUuTxo+/raT69tOnT+muv/7GYrVaffnPztSp0wqmTp1W0AyngLQxTo0d5TiOA7AcwC0AdACu5ThuNoBYnuc3OtsYjuOiAZwB8FRlsgWO4wYCeAvAEACFAGJ4nl9TZR8WwDIAswF4AzgG4Ame5xOqlGlyHaR2gmNBU4Fl0ZDnJaJShY9ycqA3GzHH7PwEfOK88pxsuAOoEEWgiUPORIsZktUIVu3dxACIgUVo+vWQqZIjLTsDIX37NrkuQgghrrF9++bQBx98OGPRoqUpX3zxmd+KFUu7e3v7xA0dep3+6NEjupUrX4maPfvx9GHDRpSlpaWoNm5cH5aRkaZesyYmyWAwsC+8MDe6X78B5Rs3boqTyxXSgQP7/bZu3dR1yJBry/v163/FpM9du3b479y5NXTJkuWJY8eOK62pPTk5Wephw4aXrFq1IvS33455y+Vy6YYbbix5+unnM6sGRaRjanQ3piOYOAVgMIDdwOV7XguADRzHPehMQziOUzjqc6vyni+A7wFcgj14WQZgBcdxM6vs+jKAxwE8AvtaRRKAwxzHKV1VB6mb7XIA1LAhUJJMjh8ryvF9fi4sVgqAWoOhwP7AzMgyEG1NG3IGSBANZWDZpg0XYBjA7IIA6JJOg82pychVN2xOGiGEkOY3evTYgunTZ+b36BFtnjdvYWZUVHf9vn17AgBg164dwWPGjCuYNu3B/MjIbuaRI28ue+65F1N///0377S0FKXBoGcnTZqS99JLy1Kjo3uaunWLMj/11HNZABAfH6epepw9e3b5bdv2fuiyZa8l1Bb8AIDRaJR9+unHQRaLhV2xYlXiI4/Myfj556M+r766JLx5zwRpC5zpAVoD4E8A4xyvnwQAnuef5ThOC+AZADtr2bcurwKovnT7owDMAObwPG8DEMtxXA8ACwBsdwQoLwCYz/P81wDAcdy9ALIA3AVgr4vqIHUQHUONxAYGQAAgV9hjSzPN02gVhQyDL1KT0K1Hd1zXxB4gALAZyqGUmj4M3WxregCkUNmTaphpCBwhhLQZgwYNueIej+N66c+ePaMDgOTkZG1iYoLb0aNHfCu3Vy6unZAQr7755lvK7r9/Rt6hQ1/4JCbGazMzM1SpqclaABAE8fLTt+LiYsW778aEy2QyKTQ0rM4/AnK5XAwO7mKqTHgwYMA1BkEQmFWrVnTLz8/L8PcPaOrTQdKGORMA3QBgKs/zNo7jqt/x7gVwf2Mr5DjuJgCPARgIoGrmjREAfnEELpV+BLCI47gAABEAPBzvAQB4ni/hOO4MgJsc7XFFHaQOosV+0yrKGn45ddO6IdhDB7NjEVXSsvJMZnyfn4e7rx3kkvpEsxGMaAHgfEY/ERJsgrX+gvVQKRRwk8lg0+ubXBchhBDXkMuvXP5ckiSwrEyyfy8ykyf/J2fSpCmF1fcLDAyy5uXlyh999KFeHh462/XXDysZPPjasv79B+jvvXdy/6plGYbF8uWvx2/b9n7IypWvRG7d+mEcy9Y82Mnb28caHh5+xdC5Hj2ijQCQnp6mpACoY3MmADIBqC3dl69je4NxHOcFe9rsp3meT7dPL7osFED1fO5Zjq9hju0AkF5DmTAX1uE0udy1yVJkMvaKr22B5BjGJsllDR4G9ZiPDzz9/VBUmO/yc+QKbfE8u1JZWQkAwFvn3uShawAg2cxgRSsUCtXlp3YNUfU8C4wNAsQmt6d/mREPXDMUSXm5bfLaai0d/ZpuK+g8tww6z+3PxYvn3W655dbLQ9Li4i66R0VFGQAgNDTMmJ6equ7WLepyr82JE8fcP/74o8BFi5amHjr0hW9FRbl8376D5xUKheSozzH07d8/Ol5entaRI0eXBQQEWB5/fFbv7ds3Bz788GO5NbWnT5++5fHxl9yqZny7dClOw7IswsLCaXx+B+dMAPQdgFc5jjsOINvxnsRxnDuAeQCONLK+dwGc4Hn+oxq2aWEfvlZVZYClxr+BWE1lKnOLuaIOp7AsA29vt/oLOkGn09RfqIXIKpcCUCih0TRs2pTVcY8rE23Ndo5coS2dZ1dSFBeit4cOgVoV1A38mdWJFaBgbHDzcu5nqdNpYLAYIZMzTW6PQWXfXyaKbfraai0d9Zpua+g8tww6z+3Hl18eCAwPjzT17dtf/+mnn/inpqZoFix4OQUApk6dlrNq1YpuMTHrQm677Y7CnJxs5dq1qyL8/PwsgYFBtsDAIIvZbGYPHfrCe+jQaysSExPU77wT0xUALBbLVVFwr159TFOm3JOze/fOkFGjxpRERXW/ajjc9Omzch57bGbv5cuXhE2b9lBuRkaaavPmd7vedNPoQj8/f+r96eCcCYDmAzgBgAdwFvbQey0ADvakClMbWhHHcdNhH6LWr5YiRgCqau9VzmzWO7bDUcZYrUzl+BdX1OEUUZRQVmZoShVXkclY6HQalJUZIQhtY6HiNIUSJ7Iz4RbYFW7Ghj00UTpyZ+hLylFc3PaGKrXF8+xKUXkFuJXrjdxyE0wN/JnVzQJFeRnMSh/YbA0/X1XPs1kywWAyN7k9otw+MleyWtvktdVaOvo13VbQeW4ZzXmedTpNu+lZUqrULdrQphxv3LgJ+fv37w3csGGNJjw83PDGG2vi+/TpawSA22+fVCxJUtKePR8Gf/bZJ0FarZswZMi1Jc89Nz+jcntcXGzO5s3vdt24cR3r5+dvGT/+toITJ457xcZecAOQX/14c+Y8nX38+C/eK1e+ErFlywd89aFwPXpEm9eujeH/7//e6vrIIzP6aDRaYdSomwufeWZeprOfkbQfjQ6AHMPUBgB4HsDNABJhX8nyIwDreJ7Prmv/amYBCARQfejbJo7jXgSQCiCk2j6VrzPx74SDEEc7qpb52/F9ugvqcFpjbgYbQxDEZqu7sZJkMnyemY4pIyagawPTIAuOAMhiMLSZz1GTtnSeXUlmtQIyOVTu2ialrq7KWlECmbfk1PkSBBECRFht1ia3R1LYf60xgtAhf3ZN1VGv6baGznPL6KznWZIkUaHS2qL6DJKjhRcmVai0NkFqfNabyMgo4/z5izNq2z5x4p3FEyfeWVzTNoZhMG/ewsx58xZeEZxUHd42d+7zWXPnPl85xQEqlUrat+/ghbradM01gw1btnzAN/xTkI7CqXWAeJ4vBLDYBcd/AED1/ut4AEsBfAzgPgCPcxwn43m+MlXVGHsT+DyO40oBlAEYBUfw4phTNAjA247yv7igDlIHkyMNdmVmt4awMQwAWqyytShFEZABGg/XDRETjXooRCuc+VvMMIAgCrCJLriRcWSBY11RFyGEtEGSBEGAPFum8mzxripBkkRJQtPThxLSipxdCPUmADae53/jOC4cwDsAugLYx/P8iobWw/P8Vd2Mjp6gPJ7nUzmO2wb7kLutHMe9CeBaAM/CvmYPeJ43cxz3NoDVHMflA0gB8D/Ye30+c1TpijpIHZQGA4JVaqjlDb+cbKwMkGwQKQ12q6hc4s3N091ldQoWEyBacfWI04ZgIIgCBLHpw64ZpT0AkrmoZ4sQQtoiSYIgSRIFIoQ4wZmFUB8AcBTAZMdbm2BPF50AYDHHcQtc1Tie5/MAjId9ftEZ2BcxfZHn+arrDC0FsBXAFgDHAdgAjOd53uKqOkjdxhgMeKvfQAQZGz7fSWDsl55oplPc0sxmM9xk9nkyOi/XBUCixQRYzU5lcWMYQJAE2FywJhHj6AGSNSYdHSGEkGZz7Nifp++5Z+pVKa4JaS3O9AC9AGAHz/PzHevo3AJgIc/zaziOewH29XxWO9sgnueZaq9Pwb72UG3lBdgXNa018HJFHaR2MlGy38GqGv7k/5LaHX/wfyEyqlsztozUpLigABpHAOSu0wIuGskgWEyAzQxGaR/e2BgMw0CQRJcEQDYPN/xaWACLWo0RTa6NEEIIIR2NM2NHe8K+bg8ATADAAPjC8foU7EPhSCcidzxpZ5Tqekr+K03rhS9zs5HvgjVoSOOU5uYAAERJAiuvvpZxE4giBGOF0+v4WAUbJBf02lj9PLExOQEHigqaXBchhBBCOh5nAqASAB6O728DkMrzfLzjdRQAuuvoZCq7ERllw9djqEyYYDTSHKCWVqKvwObUJHxrrAAan8inToKhDAzT+CCGYQCL4JrhkDKFPagz0/wyQgghhNTAmQDoBwCvcBy3CMBdsGdrA8dxdwNYAftCqaQTuTyOshE9QB4yBlFaNygNtE5LSysx6PF9fh7OqxSQBNfOnxXNBrBOBDIMw8DsogBIoVRAxjCAxeqS+gghhBDSsTgzB+gZ2Nf8WQrgewCvO95fDyANwCLXNI20F0rGPuSJVWkbvE8vQznu790PF8srmqtZpBbFxfZlFrw9PdDYuTr1EcwmMKINzvxqMdtckxJdKQjYM/g6AIAoCGBlLhzmRwghhJB2z5mFUAthz6pW3XCe59Oa3iTSnkg2m/1pOwBW0/AASFLYM3UxNsrg2dJMuTno7aFDF03Dhyw2lGgxQbKawCo1jVrQVJREWIWmp8AGAEbzbzIOi14PtU7nknoJIYQQ0jE4tQ4QAHAcFwhACXsSBABgOY7rA2AEz/ObXNE40vZJkoQvcrKgZBh0acQcIMjtc4BYF2T9Io3jnp2NV7jeyDa6foiYaDFDsprBqplGBUACBAguuhbYKgGQsbyMAiBCCCGEXMGZdYAGcBx3EUAW7IuGJjv+JQL4B8DbrmwgadtskoTdGWnYnp4Kmcat4Tsq7DeprODaSfikfpJjvSZGpWyO2iEayhqdCU50UQpsAGDkLCyi/boyV9AQS0IIae/0ej374Yfb/StfL178YsQjj8zgmvOYGRlpyoMHP/duSh379u31HT58yODatrfE5xg+fMjgffv2+jbnMVpKWlqKcvjwIYN/++1Xj/pL182ZJAj/A+ANYB6AnwB8C+ApAF/DPqFgVFMbRdoPk+nfTFsyecNvqCWlPQCSuzgLGakf4/iZsermCIAAwVgGppE/V1cGQAD+DYAoyQYhhLR727a9H/jppx8HVb6eP39J+ptvbkhozmO++urLESdP/ubZnMcgrceZAOg6AEt4nl8PYC8Ad57n3+V5/g4ABwDMdWH7SBtnrChHgFIFH5UaDNvwyeaVawbJXDsHnzSAzGof+qbQNjxrX2PYEyE0bnidPQByzRwgALA6kjtY9BQAEUJIeydJ0hXDCjw9PQVvb59mHkMv0UKFHZgzc4BUAC45vo8D0L/Ktu0AaP5PJ2JMS8Pb/a9BodWCvEbM+ahMmS13cRYyUj+FzQYoZVC6uT4JAmBPhMAIFjCMHA1d11SQBAguTMltcxzXYjC4rE5CCGkrJAkw2Jx6iN1kWjlEppGhQWlpqWzdutWhf/xxwstmszGRkVGGJ56YmzFw4CADABgMBnbVquVd//zzlJfBYJB16dLF9MADD2VNmDCxJCZmXcgnn3wUDNiHc3300f5z7733fyF5ebmqzZs/4H/77VePhQtfiH7jjTWX3nprbVheXp4qIiLCsGTJ8uTvvjvsfejQgUBBEJgRI0YVLl78SjrDMJAkCVu2bAr87rvDfvn5eSqFQiH27Nm7Yt68RWnh4RGWRx6ZwcXGXnSPjb3oPnnyrR4HDnxzzmKxMDExa0N++ulHX6PRIAsNDTPOmvVI1siRN5dVfs7Dh7/y2rlzS0hubo46KqqHfuDAQWW1nZNKgiBi5cpXuv700w++crlcuuWWWwvmzn0hUy6336L/8cfvbtu2vR+SmBjvZrVa2cDAIPP998/IvvPOu4oq6/jii898Pv54d1B2dpbay8vbOnHinXkPP/xYbvVj5efnyZ988hHOy8vbumHDOwlarVb8+ecfdZs3v9slMzNDExAQaL777v/mxMSsi/joo/3nwsIiLJMn39rvuuuGlfz112ldaWmpYunS5YnXX39j+c6dWwO+/vrLgIKCAqWfn5/l7rvvzbnvvgcKAOC33371mD//uejKOgD78LX77/9PvzffXH9p2LAR5YsXvxghiiLj7e1jPXr0B1+z2cT27z+wbNGipamBgUE2AIiNvaBev/5/YQkJ8W7e3t7We++9P7txV17tnAmA0gB0A/ArgHgAOo7jInieTwFgBuDjqsaRts9itD9ht0lo8M0uANg8fbA/KwMGhqExky1M6fhBqd0bnrWvMQSzCZLVDEblBqmBF4UgCS4dAhdnMyO+vAwD6PkdIaSDkSTggW+0PfliWSMm3rpOT2+h4sNbDXxDgyBJkvDss0/0kMvl4muvvZmg0+mEL7884Pvss0/03Ljxvdh+/QYYN25cF5KSkqxdtWptvKenl+3TTz/2X7VqRbc+ffqenzXr0Ryj0cgeP/6zz+bNH1z08/O/ariAKIp4552YrgsWLE5RKtXi0qULo5588pFe11wzuPStt97lT5066f7OOzHh118/rGzs2PGl27dvDti3b0/wiy++lNyzZy9jenqaau3a1eHr17/ZdcOGdxLffHNDwvPPP9XDz8/fsmDBkjQAePnlBRFpaWmaRYteTg4KCrH89NMPXkuXLur+8ssrEseOHVd66tRJt9dffyXqnnvuy77ttjsK//zzD4/33ns7rL7zc+lSnLuvr69148b34jIy0lXr1r0ZYTKZ2JdeWpaelZWpWLjw+ejx42/Pnz9/cZrNZmU++GB70Pr1/4u44YYbywICAm1ffXXQe82aNyIfeOChzLFjxxdfvHheu379mxFubu7C1KnTCiqPU1hYIH/qqUc5X18/y7p1bydoNBrp3Ll/NEuXLuo+ceKdecuWrUyKi7ugffvtDeHV2/jtt4f9ly9/I16n0wm9evUxrl69suvPP//gO2fO3LR+/Qbof/vtV917770dZrGY2QcffDivYVcGcOLEce/hw0cWvfXWO3xWVqbyjTdWdHv77Q1dVqxYlVpaWip74YWnuejonhXvvLM5Njc3V7l+/eqr2uYsZwKgTwGs5jhOz/P8fo7j4gCs5DhuFYAXYE+GQDoJi94AJYDG5hMTdb74JCsDMrkcrzVHw0iNJEmCxpG4UevRPAGQZLNAshjBahqeCU4QXTsE7iurEUlJiXjHrVXuDwghpFkxrl7ErRkdO/aLR3w873bgwOG/K4OX559fkHnx4gX3vXt3BfbrNyAlOztLpdFohfDwSLOnp6fwzDPzMq+5ZnC5p6e34O7uLmo0GpFlWamyZ6AmM2c+kjl48LV6ABg2bHjJoUNfBCxduiJVq9WKPXpwpl27dnZJTIzXjB07vrRr1zDzvHmLkm+55dZSAOjaNdxy8uSJ4l9++ckbALy9fQS5XC4plUrRz8/flpSUqDp+/Feft99+P7ay1yoqqntuYmKC5uOPdwWNHTuudN++PQHR0VzF3LnPZwFA9+49zElJiZqvvz4YUNf58fT0sq5YsTpZrVZLPXv2NuXn52e+997bYc8++2KmxWJhpk59IGv27MdzWZat/JzZP/30g29SUqI6ICCwYv/+vYE33HBj0WOPPZnjaJfZYNDL1GrN5cm4ZWWl8qeeeizaz8/fvHbtxkS1Wi0BwJ49HwZGRnYzvPjiSxkA0KNHtLmoqEixefO7Xau28ZprBpXedNOocntdZey3337l//DDj6VPnnx3keOY+VlZmaqPP/4oeMaMWQ0OgDQajbBs2WupCoVCio7uaTpx4njh6dOnPAHgq6++8LZYLOyrr76R4unpKfTs2dtkNBrSX3ttWVRD66+LMwHQqwC6A5gFYD+A5wB8DmAqAMHxlXQSVqMeSgC2RvaHyx1Z4ASbDVarFQrHukCkeZlMJuzPyoCPQoGn/W9vtuMIhjIwXg2/JgTJdWmwAUChtCd4MJlcs7gqIYS0FQwDfHirgW8vQ+Di4i5qAeDeeyf3q/q+zWZjrFYLAwAPPPBQzpIl87vfeef4AT16ROsHDRpaOmHCxCJPT88G/2GIjIy6nJVJpVKLnp5eVq1WezkIUCoVotlsYQHglltuLT19+pRbTMzakMzMDFVGRromIyNd7e3tXePz3IsXz2sB4IUXnr4iY5sgCIxWqxUAIDU1RXvNNYNLq27v169/RX0BUFRUd0NlQAIA/fsP1NtsNiYxMUHVr19/4913/7fwgw+2BaSmJqszMzPVKSlJWgAQRYEBgLS0VM1NN91cVLXOe+/9t+cHAD78cEcXQbAx1Y+VlJSgrT5Mb9CgoeXAu1e0sUuX0MvnNiHhkloQBOaaa4ZckWZ14MBBFV9+eSAwPz+vwbFFYGCQWaFQXG6Pm5u7YLPZGHvbErWBgcGmqtfA4MFDXZba1ZmFUE0A7uE4TuF4/S3HcX0BDAZwhud56gHqRGwG+/8JoZEBkEImR4haDRXLwmQyUQDUQsrKyvBzYT5kMhkWeblDspjq38kJgrEcSsmGf5cJq5tFsLr0caZSpQQDwGSkOUCEkI6HYQA3BdpFGlVRFBmNRiO8996O2OrblEqlCABDhlyr//zzw//8+utPulOnTuq+++6w3969u0Jee+3N+BEjRpY35DgKhfyKPyN1Lcfw/vvvBO7Z82GX0aPHFgwcOKj8v/+9L++nn370+vXXn2qcxiE5Mptu2PBOnJub+xXnXSb7N51T9WQNcrmi3j9tLMteUUZ0PAxUqZRSfDyvfuqpR3tGRHQzDB48tHT48FGlPj4+1qeffqxX1ePXdwvWr1//sttum1SwcuWyqKNHjxSNHj22zLEvRLH+ZA9Kpeqqz8hUO6joyL5aNaCpOgrearVddZyqZf9V9a3Gn8+GcnohVABajuNugD0ldh6AwzzP06IbnYzVZAQACGzjHkQpGWBD34EAHPOIPJqc0p00QHm5/eGUzsMDaMZFaEWLCaxohX2t5PqZBYtLj/8fVoWXh1yPrPhL9RcmhBDSbKKiehiNRqPMYjEzPXv2vvzUbenSReHdu/cwzJgxKz8mZm3IgAGDKsaNm1A6btyEUkEQ0qdOndLn6NEj3iNGjCxnGMalQ/4++eSjkKlTH8iqHDYGALt3fxB05bTVf4/ZowdnBIDc3Fzl2LEDLvfyrF//ZheGYaVnn52X1a1blCE29oJ71RpiY8/XOw47JSVJK4oiKoe4nTnzp4dSqRTDwyPNa9a8EarTeVrfe2/75T9m33//jSeAy3Nsu3TpauL52CuO88Yby7vm5uYoN2x4JxEAbrppdPGECbeXHD36fdH69W9GDB587XmdTidGREQaqu977tzZOtvcvXu0SSaTSWfOnHLv27efsfL9s2fPeHh6elm9vLwFhcIe2JaVlV1OD5yamqyqqb7a9OgRbfjxx+99CwsL5L6+fjYA+Oefv1w2rt2ZhVBZjuNWAEgH8BWA3QC+B5DNcdxCVzWMtA+CqbIHqHGXklRlzSBTOcXNLaWsoAB9PHTo4eUFyYVZ16oTzCZAsKChHYMWm2sDIMnxh0Q00xA4QghpTaNHjykND48wLlv2UtSxY794JCUlqt58c2Xo0aNH/CqHrWVmZqo2bPhf2LFjv3ikp6cqv/rqoHdBQb6qX7/+FQCg0WhEvV4vS0iIV1mt1iant/H19bOcOXNKx/Ox6vj4S6r16/8X8scfv3tZrdbLNzMajUbMy8tVZWZmKHr27G0aNGhIaUzMmvDvvjvsmZKSrNyyZVPgZ5/tC+rSpYsZAO6//8Gc1NQUzerVK0MTEuJVn3++3+fw4UP+tbfCrrCwUPnyywsi4uIuqr/++kuvjz76IGTy5P/kqlQqKSAg0FJUVKj88cfvdenpqcrDhw95xcSsCwcAi8U+fPD++6dn//bbMe8dO7YEJCcnqQ4e/Nz7u+8O+w8fPrKk+rHmz1+cbrFYmDVrXu8K2IceJicnuq1Zs6pLQkK86ptvvvL68MMdXYCre3gqeXp6CmPHji/YvXtnlwMHPvVJSkpUffjhdv9vv/3af8qU/+QyDIOePXsb1Wq1uH375uCkpETViRPH3bdufS+0tjprMnHi5CKdztO2ePH8yPPnz2lOnDjm/n//91bX+vdsGGfGjy4FsBDAFgAjAfSEffHTXQBe4zjuKVc1jrR95WoVvs3LQbq8kZ2JLAvB8fTCrKcAqKUYMzKwjOuNR3wCgGZchFa02DPBsQ3oGRQlESYX9wCJcvtxBYtr6yWEENI4MpkMMTGbLvXoEa1fuXJZt9mzp/f+55+zHkuWvJpYObxt8eJXUvv3H1i+atXyyOnT7+37wQfbujz44MMZU6bcUwQA48bdWuzl5W2dPXtGn3/+OdvkDD6LF7+SbDab2TlzHu71zDOP90xJSdI88cTc1PLyMnlaWooSACZNuis/PT1NPWvWtD6CIGDVqnVJN9wwvDgmZm34Qw/d3/e77w77Pfnks6n33HNfIQD069ff+Nprb8afO3fWY/bsGX0+/fTjwHvuua/etM1DhlxbIpPJpCeffKTX22+vD7/11ol5Tz75TBYAzJgxK2/YsBFFq1ev7DZz5rQ+u3btDH7oodmZfn7+lvPnz7kB9vlMTz31XOpXXx30nznz/j47d27t8sgjc9L+8597C6sfy8/P3/bII09k/PjjEb+ffvpB16tXH9PLLy9POHXqd6/Zs6f32blza8htt92RBwAKhbLWXrdFi5am3X77pLxt297vMmvWtD6HDn0R8NhjT6XNnv14LgB4eHiICxYsScrMTNfMmjWtT0zM2rDHHnsqvTEBkJubmxgT8y4vl8ulZ555vOcbb6yI/O9/78+pf8+GYRqaprYSx3FpALbyPP9qDdtWA/gPz/MuydDQziUJghhZVOTahRjlchbe3m4oLtbDZmv94b8ffrgDa9euwvBRt2Ls3Y1bAzdy+yvQsCzEh2ej5w3Dm6mFzmlr59lVjmzehLCTvyP//9u77/g4zjrx45+Z2b7qluUat9gel8RxbEMIJBAIgVCOkqNzRzkOjnY/yh3tuCMcHY7j6D0J5egtlAukd1JtJ+7jXmRZtvpq+7TfHzOyZVl1Nbsryd/366WXpN2ZZx7Prlfzned5vl9cNr39ZWU9Vq2+CbdpCaY58khTKKRSUxfhgYOPc6S7LbBj5778K9ZlTQ7Pm8fzPvnZwNqdzmbqe3qqkfNcGeU8z01NSTRNPYRX8qOqNm/evEpVtb+0tCxIRyKx8izaFOetrVs3J0KhkHvxxZecnsp2882/afryl7+45I477t8SmujN7SmgWMzHTp06XuM49rUbN27cM9J2pYwANQN/HeG5vwDzSmhTTFN5fwpcODy+tR6DmadHgIINEsXIin3e1GVTK3/yIDvbN64pcLYTbA0gADfkTzs2ZQRICCGEGM6ePbsT73//P+u33fbn+tbWo5EHHriv9sc/vmn+M55xRfd0DH4mopR/3Z14qa5vH+a5a4AHJ9UjMa1Y6X5qQyGiJQVA/vdcbvQNRWCstJdMxwmX/4PNyWcJOyZj3WexXDvQGkBwJgByzWDbFUIIIWaK17zm9Z1dXZ3hb33ra4t6errDdXV11pVXXtX97ne/73i1+1Zu47oK0nX9DYN+fQj4uK7rc4FfAu14meCuBf4WeH/QnRRT1/LWVm5Yv4mt+YmnGx5Itm9mJVVxpThZf7QtUv4AyC7kURwTGD3xi+M4WAEnZHAHAjxLAiAhhBBiOIqi8O53v/fEu9/93jHXKs00470K+sEwj73A/xrq28D3Su2QmGb8C0y3hBGgx0wbs6Odp4a0sTcWwch5UxaV6ISyUZbEKeZwrSKKFmO0tYbeCFCwAVA2GWNL32Hs2pqxNxZCCCHEeWW8AdDSsvZCTF8DAVBo4oVMH3Y19h0/xtrIxIMnURrFTwsdipc/ALKLeTALqGEF2x4+AFIUBcsJfgrcqZYGfrbP4LmLF/P6QFsWQoiKcgB3aIFNIcTw/P8rLoxeKHi8AVCbYRjm2JudTdf1cCn7ielDsf0L1xJGgEJ+4FOQWi0V80QhzxMn23nOxlXlP5jjYOfTqDVzGGmGm6KA5djYAY8Ahfwpfvm8vLeEENNau+u6ZrGYT0SjcVkwK8QYisV8wnVdExh1Wt94A6Dtuq5/yDCM34+3A7quvwL4NKCPdx8x/Wi2F2ArkYmPKNSFwsyNxrD6U0F3S4xga18Ph9vbeMG8WRU5np3pIzRGGTi7DCNAobA3IlnIS9ZYIcT0tXHjxtTmzZt/lEr1vAOYFYnEsoqiTKx+iRDnAdd1lWIxn0ileiKu69ywcePG/tG2H28A9AbgB7qufxqv4OmvDcPYP3QjXdfXAC8E3gpowN9PrPtiulFdB1CghADoWtVm7cXrOdDaGnzHxLBSKS/YrI3HKnI8p5BDdYp4HwfnUhQF07ZwJliPbCwtqRw/uvQp9DhynSCEmPY+Y9sWvb1db1AUJQHIdDghzuW6rmu6rnMD8JmxNh5XAGQYxqO6rl8KvAt4H/BpXdd7gcNABmgAFgL1QAfwBeCbhmHI7dcZTnNcUBWU8MQvqG01BI6JW5RaLZXgui7zbIfaeIKa6MTXbJXCKeZQbJORAyAoWMFPU1MiIWKaRijg7HJCCFFpGzdudIBPbd68+SuuyzxKq+EoxEznACfGGvkZMO5cuIZhFIAv6br+NeA5wLPxqiTXA8eAPwG3AfcbhiFXHeeJncUCu9NpkjV1E97X0TSwwDVlmVgl5HJZ/n35SjRFIVmhY9qFPK5VQA3HcYYZjVEUhaId/OuvRr31ZTO7jJsQ4nziX9iN6+JOCDG6CV8f+EkNbvW/xHnuT309HDt2lPfWzyIxwX0dzXv7uUUJgCoh1dmJpngzJ+LJOGMkSAmEYxZwzQJqVBk2AALIl2EEiJg3wlWZcS4hhBBCTCcyjComJZ/3ktKEwhNfA+Ro/uWpJQFQJaROnQSg6DioWoWmkLsuTrYfVR3+eLbrYNrBFytV/TTfIUWmygshhBDibBIAiUnRiiZhRSEUmngabNfP1KVYwV8Ai3NlOjsByLkuBJx2ejR2tg9lhNEmx7Wx3DL0xR8BiijKqEVYhRBCCHH+kSnyomSubfPVFV49mZ3uxKdTuX7QpMhC9YrIdneRBAoVHhSxi3kitslwHzcODnbAKbABlJiXlENVFBzTRJNiu0IIIYTwVT0A0nW9Bfhv4FogDtwLfMAwjF3+8+uBrwCbgC7gq4ZhfHHQ/ipwPfCPQCPwAPDOwWm6g2hDnMvMnanJpsQmvqy+P1nPn0+egLnzguyWGEG+txcAc4TpaOXiFHIodhFFCTF0MMZxHawyjEZpiQi7+lMUHYdFhYIEQEIIIYQ4bVxT4HRdf34Z+/AH4ELgBcBTgBxwh67rCV3XZwG3A3vxgpfrgU/quv7mQfv/B/B2vNpDlwMu8Gdd1yN+3yfdhhhe3i9g6rguoehEUyBAb/1sbjp2hM0FyZZeCQMFZ+3Q8Cmpy8Uu5nHNAsow63Fs18YuQwCkxsJ83NjFZ/btoShT4IQQQggxyHhHgP6s6/ox4EbgJsMwjgZxcD84OQR8yjCMnf5jnwSeANYCzwUKwDsMw7CA3bqurwA+BNzkByj/AnzQMIxb/P1fDbQB1wE/B94WQBtiGIVMGvAX1YciYE1sGlw44k1TyksAVBEnVZWHWo9y4UV6RY/rmkXcYg41fnYmOEVRsBy7LCNAaiiE4q//KRTywMTTtAshhBBiZhpvEoTrgM3AR4CDuq7fquv6K3Rdn1SWWcMwugzDeO2g4GcO8K9AK7ALuBK4zw9cBtzlbaq3AOuBWv+xgTZ7gS3AM/2HgmhDDCPf75UjKLoOpdxjj2ghGsJhYlIItSKOWyY3t7fRP6u+4se2s6lzRoAUxRsBKkcApCgKUX8dUKFQhjTbQgghhJi2xjUCZBjGzcDNuq43Aa8D/h74JdCp6/qPge8bhrF7Mh3Rdf27eFPQCsBLDMPI6Lq+ENg+ZNM2//siYKH/87Fhtlnk/xxEGyULhYJNtKdp6lnfq8nKZwEo+tHPSKmOR9JcTPPdSzbSYZqBn6fJmkrnOSjptBew1tUkJvxaTZabTxNRHdxBr7OqKjimg+1aKKoSeErKT164kpZwhOLRw4SWLA649elnJr6npyI5z5Uh51kIMRkTSoJgGEY38HXg67qurwbeiBcQvVfX9UeAG4CfG4aRKaEvXwa+A7wDL9i6AkjgBUSDDcyXivnPM8I2Tf7PQbRRElVVaGyceHKA8airi5el3YkIuRYmYOISjYXPWeA+FrPWm5YUVsp3niZrKpznoMTT/SyOJ2hKxIjFK7u8TVNsYmGXZF3NWY93dXfiuC7RaPAlSzVNI65phLGm7PurGmbSe3oqk/NcGXKehRClKDkLnD/i82Fd1z8CPAd4FfBp4EvAhOfYDMr69ja8RATvxkuIMLTCZsz/nvGfx98mN2SbgSAsiDZK4jguqVR2Mk2cQ9NU6uripFI5bHviqaeD1JM3eayrEzsWY2524tPYLMW76A0r0NMzqVMduKl0noNyWX+GV61dR1d/nnyustMONfoJpTOYBfV0oBwKqWT8QrqFgonrBJusYOA/fU9Hz5R7f1XDTHxPT0VyniujnOe5ri4uI0tCzHBBpMHWgCReCusJ3Vb21+BcDfzSMAwbwDAMR9f1XcACvGlp84fsNvD7cSA86LEDQ7Z50v85iDZKZk0wMcB42bZTtrbHKx2L87VD+7lwuc7fl3Lx6idBiCgqpmkPmyWs2qbCeQ5KxHFA1YjWxM9KRlAJbj6HU8zjaLWnL1ZUVSFveQOvruMG3ifLfz8VM5kZ8xoGYSa9p6cyOc+VIedZCFGKkm9x6Lp+ha7r3wbagd8BS4D3ARMp6jIf+CnwrEHthoENeEkQ7gOu1HV9cN7eqwHDMIxTeAFKCrhq0P4N/v73+w8F0YYYRj7vzSSMRmNjbDk81a8dFFZVivncGFuLyYrhBQSJmspPB3NtCyefOWft0UAAVA6WfygzL1kGhRBCCHHGhEaAdF1fA7web93PIrzg53vAjYZh7Cvh+E8CtwLf1HX9rUAP8FG8YqT/g7cO54PADbqufwF4KvBevJo9GIZR0HX968DndV3vAA4D/4U36vNb/xg3BtCGGEY+m0VTFMLRoTMMx0eNnakdlE+nicYnXktIjI/ruiRV735Hsq4659nO9KE1n/ndwcGyrZF3mOzx/GDLlgBICCGEEIOMKwDSdf1f8AKfSwAb+D/g/wG3DExdK4VhGK5fc+ezwC+ABrxRlysHag35RVi/ipeW+gTwAcMwfjiomY/5/47v403Duw94vmEYRf8Ypybbhhhe0tjDzzZexq4Sp66pkTMjR4VMGma3BNU1MUS2r5eIHwDV1lcnIYBdyBByinizZgdSYJcvAHJUBVywJQ22EEIIIQYZ7wjQfwF7gA8DP/SnjgXCMIw+4J3+13DPP4aXFGGk/W28oqYfGmWbSbchzuX4F5aOGippLqWiqtzV1YVpm7zcKt+FsIC+UycBsF2XWDwKZai9MxankEe1TQYCIAcH0y5fP3pCGnt6+olOwbVlQgghhKie8QZAVxiG8dey9kRMO45fwNTWtJIXk/244xSZdB8vlGvUskp3dACQdWyUksrWTp5dzONaBdSwl4TBcZ2yjgA9WhPhrw/t5H0veGHZjiGEEEKI6We8hVDPCn50XZ8PbMKbsjbc9j+adM/ElOf6AZAbKj2ZYCjsrR8qyDSlskqZJn9qPUpDQwMXOdXJmOQU87hmATWq4LquPwXOnkQqltFFIl6CR3lvCSGEEGKwCV+5+mt2fsC5tXUGuIAEQOeBgQDI0UovYpmIxnBCIfKZYOslibOlHJub29u4ZNaES3QFx3VxsinUunk4joLl2F4ShDIFQCG/uGpeMgwKIYQQYpBSbt1/CngML5NaV6C9EdOLv25nMiNAH5gzm4UL59N/5BA85bKgeiaGSKVSANRXIQX2YHa2j7DroChgO14ShBDa2DuW4OKsxSvWbaDn6LGytC+EEEKI6amUK9f5wP8zDGNL0J0R04sykLggPKH6t2cx/do0xayMAJVT/tRJFscTNCeqm2rcLuSJOCaKEsFyLCzHLlsAFNFUmiIRUqYkcxRCCCHEGaVMPnkI0IPuiJh+2hWFx3q6ycVrSm7DUqRWSyU0HD7Mf61dx6bKJ387i1PIoVgFFEWhaJllPdbAyKRiVfkfLYQQQogppZQRoHcCf9R1vR54BDjn1r1hGPdNtmNi6nsEh/sP7OUNV7+MphLbsBTv7r+Vk3Ua5eT651eNlj5aF4SBTHBaXKFglzc5gRvxA6Ayptquho5f/Zz8kSPM+puXktBXVbs7QgghxLRTSgC0EpgLXO//PjinruL/Xp45LWJKyfkX1eFobIwtR2apKuBgy0L1slL9TGhafKTcJZXhWiZOIYtWp5Azy5ydzc8Cp1ah5lE51T/1Mnpuv422r/4PF3z0eqLz51e7S0IIIcS0UkoA9EXgEPBZoD3Y7ojp5HQAFCk9ALJVDVwHR6bAlZVmetPNQonSX6ug2Ole1NkOpl3mtTl+AKQ51al7VA6apkIyTnj+fMzWVjp/+VMWvPdfq90tIYQQYlopJQBaDLzEMIzbg+6MmF7+ORKjdsNT2ZHLlNyGFQqDaeJIrZayCts2qCrRZLzaXcHOZ9CcImaZR2Zcf7pfyK1O3aMguY6Dk83yo1//lK99/as0aSG+cvF6Mjt2UDh6hOiixdXuohBCCDFtlJIEYTuwMOiOiOknDIRVFTVa+kV1ZyTBvZ0ddGoya7Kcon4QEK+tbhps8Aqi2o7l1QAq53GSUY5kM3RY5T1OJWR372L/+/6Z3M03Y1oWJwt5HuruBKD/oQer3DshhBBieillBOi9wM90XQ/hZYRLDd3AMIyjk+yXmAZCXgI31FjpqZUP187irsMHuG7DpQH1Sgwn7mfbS9RWNw02eIkQNMfEKvMIUG5WHR/YtZ3Fi5fwsrIeqfx6H3kIxXUxHZe/e9ZzmN80i9vvup1nNDXT/dCDzHrla1DUMlWUFUIIIWaYUgKgO/Fu/n+HsxMgDCa382c413WJKN4FlzaJACgS9RblZ7OSBKFcHMfh5vY2EqrG6+pLT1keFNe2sOwitlvekZmwnwWuMM2nV7quS/eWzUSBw67DB571HDRN46HdO0lbFjXpDMUjh4guvbDaXRVCCCGmhVICoLcH3gsx7TimieaPKqixJKWusgiHo4QVBSsnhVDLJZfL8ru24wC8vb4GSn61gqGoGlYxX/YRIC08EABN7wQb5qmTRPN5LMfh4o2b0Pzpoq+76mp+87tfUXDh36NRqpvfTwghhJg+JhwAGYbxw/Fsp+u6AtwAfFymxM08uVTf6Z+1eE3Jl9TL8v38ZONlHMvICFC5pFLeLNVwOEwkpIJd3QBIDYUpWAUsp7yFUDVV4X/WXkI8pOHkc6ix6ieAKMWxv3prfPZl0lyxau3px1fMm8/+UAjjeCsb7rqN1/3dP1Sri0IIIcS0Us5J4yrwRqC5jMcQVZLr9y6qbddFCU8itbKfQjvkTP9MXVNV36lTLI4nWNTQCFOgJo6ihTAtE9sqbxpsLRZhXixGUziCnZu+o0Btmx8DIJ1IUB8/O4h73iUbALj9tlsr3i8hhBBiuir3qlmlzO2LKsnnC2zu7WF7uh+U0t9Gip9BLuTOnFotU01un8F/rV3HO+cvhClwnpVQmHwxC65V1k+IcCxCwQ+szWzpqdqrTTl5EoDkvHnnPHf5qtVcEIvT0t5Ox64dle6aEEIIMS1J2iBRkkI4xOf3G3zzVDvOJApNKjEvLXNoxHwaYrLyvT0AmFMkS5iqhcgXc2BbKGWMgMKRMHnbG/HK9/eX7TjlZJomt7cd56HuLhYvX3HO8y31Dbxh2XLesmgpe//vj1XooRBCCDH9lJIEQQhyOW/NTiwWx5nEqILiZ5CLyGBh2RT9NUBWaGoEQGghsmY/rlVEKePKfS0UOj0CVEhPzwBox47t/P74URrq6/n13Hlgnps5L9TYCIUi2QP7q9BDIYQQYvqZIldEYro5KwCaxAiQ6o8ARRUJgMrF8kc/3HC4yj3xOJpG0TJxiuVNT60oCkU/OC+mp+cUuC1bvPU/my5eN2zwAzB30RIAmgoFbLv6a7yEEEKIqU4CIFESZ/9efnzpU/inhoZJtaMm/ClwqoprlTcr2PnKyfopxqNTJwCyrKI3AuSW94K94E+tLGbSZT1OuZzc/iRzozHWLl4y4jZLLlxO0XGo1UIc9AMmIYQQQoxMAiBREjObJapphNTJ1bzVErU82tPNfV0d5Kdxpq4pLe+N1qmxSJU74nFCIUyriGNbZc9K1+VYHMtlMd3pmWVwY1cPX714PRdpI89WDofDdPjn8fCDD1Sqa0IIIcS0JWuARElMfwqcM8mF9eFYgs8e2AvAKx2L6VmpZWpTC1666VB8EunKg6JqOAqYVtEb8bOHn9YVlJ/299Le2saN8z9Y1uOUQ09PN3P8oqfzL1g86rZWIgFFk779eyvRNSGEEGJakxEgURLbD4DsSY4AqapGKORNzRpYVySCtcO2+X17G2pjXbW7ghoKY7uuFwA5Dq5d3lpAEX/aXz4//UYX925+jEQohO26JOpGf+3qZrcAEOnpG3U7IYQQQpQQAOm6fqeu66/XdX3Um/WGYdjAUmB7qZ0TU5fjX1Dao0zNGa9wNIamKOSmca2WqezhdB8/aT1KtKWp2l1BCYWwcDD9IqhOMV/W2kSRqJdmrlAob8KFcjj+5BMApDQVxxx9fdy85Sv4hLGLz+/ZQUfHqQr0TgghhJi+ShkBMoEfACd0Xf+uruuXj7ShYRhHDMOQle0zkONfUDqhyQdAn7lwBT/beBl5SeNbFn193qhAXaL6U+BULYyNi2l57x/XMnHLOA3uymiCL61dR8wPJqaTzNEjANg1Nbj26GuYEnX1pJNJMrbNLimIKoQQQoxqwgGQYRjXAouAzwBPBx7Udd3Qdf0juq4vCLqDYmpyi/4d/NDkM4sNLIOfrqmKpzLXcWgoFmmORKiZAkkQlFCYglXE9Ud9HMvELWMihJpQiIXxBMo0LISq9XgFbMNN4xu50+fNB2DnTgmAhBBCiNGUdPveMIwTwBeAL+i6/hTgVcA/AJ/Qdf0O4DvA7w3DKN/cFlFVfbjs6k+RbVlAcpJtFf0iqNM1VfFUZqbTfHzJhQDUxcpYdXScVC1E3jozHc21LbBNFCUGBP9xYWsqWOCWueZQ0GzbJlYsQiRKffPsce2zqXk2LQsXYW57ssy9E0IIIaa3IJIghP2vgdvLzcAvgZ26rl8cQPtiCtoWCvFxYxetLfMn3ZblF0G1p+FC9akudeokADnbpnYKTIFDC5GzzrzOrm152eDKVAfXCflJOsZYQzPVnDjRxi3tbfy6vY1ZFywa1z4XxhP8zdz5NPf0nB5hE0IIIcS5SgqAdF1fpuv69bqu7wPuB16EN+qz2DCMpwBL8NYK/TSojoqpZSBjWzgy+YtqU/HehuZAwU4RmH5/QXzGsdGmQM5HNxSiYJ6d+c0p5ssV/2CHp2cAdPDgfh7v7eHJWJRQIjGufZrnLwRgfijM8eOt5eyeEEIIMa1NeAqcrusPAk8D8sBvgH80DOPewdsYhtGm6/pvgfcF0ksx5ZwJgCY/rcpSNcDFyUsa7KBlujqJAAUXXLu8RUfHw9ZCpxMgDHCtIkqZCpU64RBgoVjlrTcUtIMHDwKwdNFi7Pz4pu/FGhvJA/NiMXbv2MbChReUsYdCCCHE9FXKPeEw8E5gnmEYbxga/AxyM/D8UjsmprbrTJPvXrKBOenJLy4fqCU03gs9MX55fyF9QYVyrLGZKDeknU6Bffox2wKnTAFKxJuZO90CoPZ9BpfU1bNmTgtOcXy1kpRolILroioK7ZIIYViu62L19uCY5a0/JYQQYmorJQnC14H/MwwjNfQJXdfnAm8wDOMLhmGMayWurutNeBnlXgzUAduADxuG8YD//HrgK8AmoAv4qmEYXxy0vwpcD/wj0Ag8ALzTMIz9g7aZdBvibHHXpSEcQYtMPrNYVzjKY6dOkVy6NICeicEKvb0AWNrkCtYGQVE1bIVhAiATHAtFDQe+dsWOR+gsFChOgQQQExE5fpyPrlxNtrNn3PsoikIuHCZqWfQfPlTG3k1PxfYTnPjOtygcO4oajzP7la+h/pnPqna3hBBCVEEpI0A3ActGeG498IkJtvdzvCl1rwGeAmwBbtN1fZWu67OA24G9eMHL9cAndV1/86D9/wN4O/BW4HK829x/1nU9AhBEG+JcIf86VY2OWg93XPYkm/ivA3s5GJ9eF6nTgdnv3aewQ1MgAAqFsVyXojlkCpxj41omihL8SqBUUy3v3L6VW8a5jmaq0PyR1Uh93cT2q631fujsCLpL05rVn+LYFz9P4dhRAJxcjpM/uonUIw9XuWdCCCGqYVwjQLqu/wlY4/+qADfruj7cfKU5wIHxHlzX9eXANcAzDMP4q//Ye4AXAK8DckABeIdhGBawW9f1FcCHgJv8AOVfgA8ahnGLv/+rgTbgOrzg6m0BtCGGiAxcq8YmmwQbojEviOpPSxrsoJ0Kh3msvY3mldUfXVNDYSycc0aAwE+EEKsP/JgRv/ZRLjd9Emzkcllq/MKnNU2zJrRv7axm6OkhXiiQy2WJx6dX4Fcu2V27sHp7OWVZfGrfbv5u5Wou00Kc+smPSaxeQ6huYoGmEEKI6W28I0CfAe71vwC2Dvp94Osu4Ft4NYHGqxMvg9zmgQf82kEK0ARcCdznBy4D7gJ0Xddb8Eacav3HBvbvxRtFeqb/UBBtiCEi/t16NTb5C6yIP4qUkQAocEeAn7Qepb+p+hd43giQgzVMAOQlQgg+SUM46gVA2WmUYbC19Rhzot5oaLy+YUL7Nly4nA/u38tXDu7nwIFx34ua8W746/18eNc2vmjs4mQmw/9sfZxD2QwFx6Z4oq3a3RNCCFFh4xoB8kdnBkZoAD5pGMbByR7cDzRuGfyYruuvBC4EbgU+DWwfstvAX6tFwEL/52PDbDNQPGNhAG2ULBQKNvew5ucy1qqY09ixbWJ+4gI1WYurTm7q0kozyxs2PJW23r7Az1eppsJ5DkI67U2Bq0smUCf5Ok2WFo5QsIuguKfTXg9Me3NtE8W1UdVwoMeMhzU+tWotDS5oOCihkmo/V1RbWystfgCkxWMwgddNjUWZ1TKbw73dHDiwl/XrLzn93Ex5T0/U7bffyg9/eAMA/+//vY/nXHUl3/rm1/nCvQ+Qdh1uePs7WB/g5875ep4rTc6zEGIyJnw1YBjGm8feqjS6rj8DuBH4vWEYf9R1/X/wpq8NNlBFMQYMDD8Mt02T/3MigDZKoqoKjY2TnyI2nLq6ya+9KVXGX1gPkKhvwIlObqlUNJEgpKqotlO281Wqap7nIIT7UzRHIjTWJojFq7ukLZyIU3SyhMLnrkdScdBwCAfcx0R9kpU13rqYuniIUM3Uen8Np+vkcS4Ke+chVpuc8NqoFfPns3mvwdGjB4f9/zTd39MTkerq4lv/9TkA3v3ud/O+976Lo/t28ra/u45sup/7H36M66//N+68807C4WCD7/PpPFeTnGchRCnGuwbIBi43DONRXdcdRs+n6xqGUUp9oZfiFU59GHit/3AOGLoyfqDyZsZ/Hn+b3JBtMgG2URLHcUmlgp16o2kqdXVxUqkctl2e2ilj6W47xe7+FFFVQ1EjFHKTSylrhbyXI+TY9PRM6pQHZiqc5yBc05fmVes20F6wyE/ydZos14a0mcMyz0x1UxQFLaRiFU3UQh60GI4TXCY4O6RhOQ4hVaX7VDfhaVAP9cSevVwEmKpKLm9OuEjspeEoCy9cyfHtO8/6/zRT3tMT8btPfY5PzFvIQw1N/MNb30HHiRO0Hz2KbVu88dUvZ9uuPRw6cICff/6LvOid/xxIIo7z8TxXQznPc11dXEaWhJjhxhuofAJoHfRzoLlqdV1/N16a6t8Cf2cYxsBozDFg/pDNB34/jleTaOCxA0O2GUjDHUQbJbOs8vwBtG2nbG2PJWO7XG/sIhKJ8J9oOM7k1m4oUW8QLuyW73yVqprnOQgx1wVFIVabDDSwKIWtaRQyec7OdO394roudjGHGq8PtJ+hSISCHwCZmRxK7dR/LQ+cOIFxaD/XXX0Ncxx3wh+2c9UQSxub+L+urmHfu9P9PT1exWIRdu5AjSdYtempaKpC54lWTNOLgmPRGC+/9ho27j7InMcep9fYS+3yFYEd/3w5z9Um51kIUYrxrgH6z0E/fzzIDui6/g7ga8BXgfcZhjH4k+w+4O26rmuGYQxcZV/tdcM4pet6H5ACrsIPXnRdbwA24NUrCqoNMcjAgvJYLB7Ixaqa8KbpRKq7RGXGcW2buOrdxaypq342MFsLYVojF7t1zYFECMHdeY3EouQdmyQh7Hx+7B2mgH2trRzr6uR1q1aVtH9dczNmVyfNKHR2dtDcPDvgHk4Pt//xZpb7GSY3vP7vKWT76e/tPmubq668nD3bDOZEY+z4za+4/EP/Vo2uCiGEqLCSVgTrur4MiBmGscsPFj4NXAD8yjCMH0+gnZV4Iz+/Az4LtPhJFsCbjnYj8EHgBl3XvwA8FXgvXs0eDMMo6Lr+deDzuq53AIeB/8Ib9fmt304QbYhBsllvWk0ikcQOIABSEl6GsqgiUw6CZPlZ9RzXpaautrqdUVQcTcU0R56G51gmODYoamBjzNF4lILj3VMppNNM9dUClmVx4sRxAObV10M6N8Ye54o1NmICC2NxDh48MKUCINd1y1LvaTjGX25hhaKQicepWbiAjmMGZvHsADykaViL5kN3P46xu6L9E0IIUT0TvuLUdf1aYDfwD/5D38artbMQ+IGu62+ZQHOvwJuC9nLgxJCvrxiGcQp4PqDjpaW+HviAYRg/HNTGx4AbgO8DDwIW8HzDMIoAQbQhzlbcv4/vrNvA21vmBjICFEp6AVBEVTGnUb2WqS7X3QVA1rapS1a3yKzqp8AujjYCZJlgB1sQNRyJkPfXB+T7+gJrt1xOnmxnbSLJhsYmGkKlLcofKIY6Nxbj8IH9QXZvUvKHDnL0kx+n2H6i7Mfq7OygoasTgIaNm3Cs/DmjPwOWP/NyLMdhtqph/PXBsvdNCCFE9ZUyAvQx4DbgP3Vdr8cLXj5rGMbHdF3/FPAevGBiTIZhfAavxtBo2zwGXD7K8zZeUdMPlbMNcUYh5WUW67dtgqjcoyXr2dmfImdbzMmkqZfijYHoP3XK+25ZxMMhb3SlSpSBIqjmKAGQ6+KYBZRIDRNf+TI8VVPpsy26igWixZGPPVW0tbXy+oWLWJJIUmw7gZKYeNY6JRqjiFerq2ufEXwnS+Jw9Pe/g6NHaP2vz7Po458gVFu+2lR33PZn1tc1ADD/ymdiFrJk0/3DblvT1MAxFZYCxi1/YNUzrihbv4QQQkwNpcw5ugT4smEY/XgjKyHg1/5ztwPBrSIVU5KZ8abA2dq56YxLEYpE+dSBfXxh/15yljX2DmJcMl0dAORwwanuImE1HMHCHXUECMAp5lEItq/f7DjBO7Ztpbhw4dgbV9mJtrbTNYDUaGmjdoqiUIh4abRzrUPLm1WO67qkHvor27Y8yote+Dze9pMf0JrLYvX1cuzG75f12Mbdd1ETCmGGQtSsXEGmv++c6W9nucDLi6MeOYJtV+9GgRBCiMooJQDKcWbk6AXAScMwtvm/zwV6A+iXmMJMPwmCrQYTAAFEY96oz8D6IjF5/arK70+0sdMqEnDixglTQmHyVgHXHb0frmWiBDxSFY17gcRA8o6prLP1GAnN/3gNl14TSauppWDbZDo7A+rZxGV3bKf9hu/S+z//w4m2VnKKxjcOH8JxXczt2zj5xJayHDeXy3Lfjif59uEDxJ97DSgu6RGmvw2Yc+nFACyLRNm2+bGy9EsIIcTUUUoA9ADwr7quvxZ4FX6iAF3XN+Ktr3kguO6JqcjOewuzgxoBAohGveXpmbQEQEHpUjV+cvwouyLBvU6lUkNhcsWxF/Q7VhEcK9B1QLGYV2dqOgRAmeNeAoRCKIQ7iVG7+kvW84atj/Gbg/vp7x9+6le59dxzFwCP93SzevVGvviZn/GWf/0aj2W812HzN782ZkBciscee5SuXI49kQjLXvEqbLNAfowbK6FZDTygwceMndz/kPwJE0KIma6UAOh9wALgJ8Ah4FP+4/+HV0z0w8F0TUxVA+mEnRIXaQ/nffPn8b8bnkrR2BNYm+e73t4eABrqaqrcE0ALkzXHDoBcy/JGgQJMxHV5TR2fXLUWbfPjwTVaJpY/bdGOTy5fXW1NDbPqGwA4fPjgZLs1YXY6TXqbV0Ztc7HIW9/4YWLROLOb59L8vNcBsMx2uP+WPwV+7If8AObpT78CTdMoFnJjBkAoCs5FOgcyGe67/77A+ySEEGJqmXAAZBjGIWAtMM8wjIsMw2j3n3oZsMYwjAMj7ixmBNcPgNxJTNEZKqRqXha4ERYqi4nLnWxndiRKU7L6SSXssEZxlAQIgznFXKABUEMkjF5Ti9Iz+jSoqUBJee9/tWbyQeuiOXMAOHiw8h/JPQ/9FdV1OZTNsPG5ryCZPJOGvXnFpbSHo6iKwtb//QFWwOv+Dj76MNe2zOHKNRehaQq5dB+2PfYxLlq1HFVV2b9/L8ePt465vRBCiOmrpMIrhmG4hmGcHPLYw4ZhTP00S2LS+h2Hw9kM+VhwF9ZFvwbQQIIFMXmL9+/nG+suZW2AhUVL5YTCYyZAGOCaBRQ3uEQIdshbU+NM8UKorusSK3jnKOaP3kzGKxqa+OKadXTs2T3ptiaq9e47ANiaz/O0Tdec83z4ipfztePH+MHundxzz52BHffEiTYWZnP8w6KlLG1rw3VsMqnece1bk0zyijVreOuipTx05+2B9UkIIcTUU0odoNm6rv9E1/U+XdctXdftIV+SxmuG26ypfHDXdo7NWxRYm6afUMGSJAiBUf2sV+FEdct/KqqGrTD+ESDLBMeCgEaBnIifVKAwtct69fX1csuJ43zj0H4ali+fdHstmsaiRILssSMB9G78nEKBiJ+CPbF2E+FhRopDi1bR/JRn4wI//em4a2ePacuWzazx02vXrb0Y2yqQz42/mOzzahu4pmUOrQ9LPSAhhJjJSqkD9E3gRcDPgFYIOGetmPIGMrVFosFdWNtaCFwTewIXK2J0IdO7FxGtqe4UOCUcwXSdcQdAXkFUCyUcCWSRvBMNQ7aAYk7tAKi9/QRHc1ky8RjxWbModPdMqj01WQO9vdDZFUwHx+nEls2EgM5igbWXv2DE7a542gv5w//9nC1bHmfvXoOVK/VJH3v7E1t4UdKbPphcvRqrWKAwgeLKztxmONZO6EQ7pmkSDge3zlEIIcTUUUoAdC3wXsMwvht0Z8T0kMkMBECxwNq0QmEwzSk/TWk6iToOqCqJuokX0wySGvJrAJnje21dx8Ex86iRJHYA6bvdSAQooFrmpNsqpxMnTgAwb85cnOLkg7Vk0yzo7aW2WKRYLBIKBff/dTT3HT7Ajdu28tRVa3h5XQsjxbB10QTv3/g06lM9/OmPN/P+f5l8HequHduIJmuxo1FiCxaQ6W0bvf7PEIlli+FYO8tjcXbv3sm6desn3SchhBBTTymLA4pA5dMKiSnjVSh8+aJLmJUPbrTGDvnTZKb4NKXpwnVd4n4mgZr62jG2Li81HKbgmFj2+AMQp5AjqMFlN+a9tzRrahe47Dh2hKubW7h01izsAAKg2lnNACyIxTh69PCk2xuv+++/l45igbkbnzFi8AOAFuJSVWFlTS37775z0gVI0+k0dX19AMRWrETTFDKpvok1Mq8FgCWJBFsekmlwQggxU5USAP0WeG3QHRHTRyMK82PxYef2lyobr2FXf4quSdQ+EWe4hTwhPwCqbaxuGmwlFCFXnNjInlcQNZjlhG48Qta2mNrjP5A7epR/WrKMZ1suTnHyvdXqvMB3fizOwf37J93eeORyWR5//FEALl7z1NE31kI4S9YAsBzl9H6l2r79SVbXeP/mxkvW49gm+Wx6Yo0k4mTCIVRF4eSWzZPqjxBCiKmrlClwW4BP67p+IfAwMHSCtWsYxicn3TMxZUX9xelKIriRhbZZ8/nObb/mmXPnSHQdgIy/7qPoODTXVncKnBIKkzF7J7SPYxW9dUBaeNLrgAqNtbxp6+NceeVVjHFJXlVmx0ANoGCmqqnxBBYuEVWl3dgNL35xIO2OZusf/8A/X7CEg8Csxvnkc6MHsebCVUT2P8mmhkbuvOM2Lrvs8pKPve2JLVyW8N7r8ZWrcKwixRKm1Nots+D4ScLtJygWi0Qiwd3oEUIIMTWUEgB9w//+TP9rKBeQAGiGcl2XmJ+yWk3UBpYBIxb3Rin6U6mAWjy/pXIZfn+ijbCm8o5oGMZRB6VcnHCI/AQvRF3b9tJhhxO49uQCoGgiCkA6PbXfW0qqD7QQSjKYETtFUUiHQqRS/XQcOxpIm2M59fijXNbYxNxEgkJ+7PecNX8ZjqIyNxZjz4P347ouSolFoLY+uZUbt23h+re+E33hAqxCH4USpunGly6C4yeZpYXYuXMHl166oaT+CCGEmLomHAAZhlH9oiKiaoq5HCHVD4DiwQVA8YR30ZeSACgQKcviJ8ePMrt5Fu9wqrv2xQ6Fx50AYTCnmENNNEz6+FE/DXh//wSnQ1VYNJ+HZA2x+rrA2jy5dBn/8bMfo9uVWVunnTwJ4TChRctHX/8zIBzFWbAMtXU/Sx2HXbt2sHbtxRM+rm3bbN/+JAXH4cLnPBdN08jlc1glZP5zlyzkuw88xB0H9/HeJ7dKACSEEDPQpIIZXdfrdV1fpet6VNd1LahOiakr29N9+mc1GdyFWrNd5LuXbOA9NdVdsD9T9PR4KZQb6+sZ35VomagatqpQnEAmrgGOWQxkHVAkHuV9y1bw1nji9DSzqcY0Ter816lm1qzA2l0021vUf/jwoUknGRhLX28PC/zRm6Y1m8a9n7nQS3+9qaGRe+65q6Rj79+/j0wmQzKZZPnyFagqZNITTIAwIBJm3oWLAXjyyS2ltSGEEGJKKykA0nX9Kl3XHwG6gR3AWuCnuq7/d5CdE1NP1r+wztk2ihZcjYxwvIaGcIQaRQYYg9DffoLZkSjNddXOABfBch0KpYwADawDKnFK1IBoIsryZA1LozHsdP+k2iqXU6dO0hLxpurVNDQF1u7cxiYioTCFQoG2tuOBtTucHffeTU0oRNF1ic6/cNz7mQtXUgxHOJrLcs/dd5R07Ce2PM7H9TW8a83FKKaJY1sUJlFU+cJFCwF48smtgdSiEkIIMbVM+GpT1/XnALcBOeBDnKnXvhV4j67r7w+ue2KqyWYzHM5mOGEWcZzgLgxCtY0AxDUNc4oXrJwOYjt38I11l3JNgMVqS6GGI5g4FMyJr8VwLQvXKqCokwuAYok4OX/0w8yUflFcTu2tx2jyF9trseDq9SimyefWXMz3L9nIwQPlzQTXuvlxAHqjUQqF8U+OdZP1FN/wr9xw7Aj79u8rKVBr3fI4a2rruETVUCIRHLtIsVB6TbGl8QQfXbmaNzXM4liF1k8JIYSonFJut38auNkwjKuAL+MHQIZhfA74AvCPQXVOTD25WIwP7trOl7s6sSe5OH0wrbbB+64o9Hd1j76xGJOT9ta7uNFoVfuhhiIUbBO7xCQMTiGHMsliqLFkjKy/DirX2zuptsql/dRJrt+zkz+7Fs4kR7wGU8Jh5obD1IXDtO3eFVi7w7H8wEVpmUexOLHpdpoa55J1lwJeHaGJco4cBsBdsAAtpGGbpWWAGxCKhLmkrp5L6ht4YsvjJbcjhBBiaiolAFoP3Oj/PPTK5DZgyST6I6a4jH8HPR6P4wQ4NUSNxLD8GkD9nacCa/d8peS8ERctEdxoQinUcIRMcWim/PFzzMKk1wGFwmEK/nsr29czqbbK5cTJdnan++luno1rBpexT1FVspq3PLPv4IHA2h3KdV0yvT2YjkNs0finvw0oFm2euvHprEjW8Nf77pnQvh0dp1joj0Y3X7oRVVUwzQJmCevOBriN9RQVb0T66OOPldyOEEKIqamUAKgPmDfCc4v858UMlfbXUCQSARfXVBSy/kVqpqsz2LbPQ6GCd/EXTlZ3ChyhSQZAAa0DKvrT6Ap9U/Pjqb39BABzmpoCT1rhxL33gNneHmi7g7W1Heeb+/fyD9u2UrvpqpLaeObxo3x69UUUjT3kcuOfMrntiS2s8pOnNFy8DlVVyGf6J7d2R1HI1HmfccVD5QschRBCVEcpAdDv8QqhDk7z4+q6vhD4N+BPgfRMTEnanj38z9pLeEE8+AvrgUueXM/UvEs/nUQsbxQhVlfdIqh2OEyhWPpUpKDWARX8/YtTNACKtB7n6uYWLijDlMV4o7e+LtqfLtuCfsPYDcCSC5fjUlrh0NACb+RofU0Njz328Lj3O/ToIyRDIUxFIXrBInAdcgEkuwhfMB+A5lxe0vMLIcQMU0oA9GHgFPAIMLA69GeAgTcl7iPBdE1MRU6qjwXxOLVaKTV0R3fccdnVnyIzicXLwpPwZ6fWNQaXqnziFOyQVlIGuMGcQnbS64DMkEbOtikWp2aCjeXZDP+0ZBnzCsH3r95PhT03HKatrS3w9gH27PECoJUrV1EolDaFL7/AS4e9sb6R+++9e9z7Wfv3AVCYMwdF03Bsc1IJEAZEFy0AYFVtLdu3PTHp9oQQQkwdEw6ADMPoAS4D3g7cB9wBbAM+CGw0DEPmL81gdtabzmSHS7vLO5rfuWE+buyiMxxceu3zkVMoEPHTidfPqq9aP5RwGAuXQnHiGeAGC2Id0P0ReOPWxzhx4cTXp5Sb67rU2N70z2RjcCmwB0TrGwBYGIuz1zACbx8guX0bn19zMU9P1lIsMQAqzlqIHYl6CRsee3Rco1XFYpGTJ9vpNYs0XroRRQHbCiYAcmc3YQEN4Qh7H3lo0u0JIYSYOiZ8G1/X9WcCWwzD+B7wvSHPNei6/hLDMH4eVAfF1OL4mZXcMgRAsbg3576/X6abTEYhn+d3J45TGwrxqsbq1QHSwlHyJabAHswxi2CbKKEQbomp1+PJBDA131v9/f00+0F/Y/PswNtXk0m6HYf9qT6Su3ax/tLLAj9Goq+PpYkkvbWNpS9hUjW0FWth5xZWuC579xro+qpRd9m9eye/a2vlvnyO21/yMlRVoZgvUCyUngDhNE2jNxGjrf0kB/wpfkIIIWaGUqbA3Q2sHuG5S4GbSu+OmPL8zEpuGerLxBLeepX+/qlZrHK66Mmk+dnxY9zU1kptLPhAdbzUcJSCY1E0J3cx6to2TjE/qUQIsYT3fk376cGnkvbDB6kJefeiYjUBJxfBywT31/o6vnhgL8ahQ4G339PTwzx/SmzdsrWTastZ4u3/lIYm7hvHNLgnn9wKwMXr1qOGw6iqilnIY1vmpPoxoOcZG/jU3t3ctWM7tj2x1N5CCCGmrnGNAOm6/kPgAv9XBfiWruvD3UpdCZQv1ZCoOtX0LyxiwQdAl7kWb7lkA6fKcJF2Punys+g1NzWCU72LtsmmwB7MKWQJJRsYf3nNs80JR/jwCp05u6fenfzOA/tpBtKOQ7NT6r9wdIv8kSWjDFPgjCe30uInb9BaFkO29PVaueYlxFSN2dEo+x+8D972jlG3P7BlMwpwySXrAVAUyKaDG+W7YMF84rEY2WyGAwf2s3KlHljbQgghqme8I0C/xgt8Bm7BKsN8OcDDwJsD7qOYQkJ+djE3Fnx2sUg4TEM4gjqJAoYCeo4fZ3YkytymxsBTKk9IOEq6mAmkKccsgG2e+QSaoHgswob6RmZNwRGg1FEvl0xG03CKwYxcDLWkZQ4Axw8cCDwTXNvWLQCkVJWiMrn1exYa6nNfxL/v3sFt256gu3vkosi2ZfGi3l6+tW4DT1nqre1yHZtCLpj3HICqqqy4cBm1oRDbt0pBVCGEmCnGNQJkGMYfgT8C6Lp+N/BOw5BJ0eejPssiZju4yeCziw0EVWqZLgLPF+6TT/CNdZeyW6li8ANY4TD59OTW/wxwzCKuZaJGIqUV4K3x1gBFHAfXdSddVyhIhQ6v8G8xFi1bwDpXVblx/SZ6zSLt7e3Mnj0nsLYzhw8CUKirRy0xAcJgsUufhXrBj3H37Oavf72fF7/4pcNut++eO2kIhcnaNvrTng7gZ4ALYP3PIG9qaGLh+k3c+/hj8OrXB9q2EEKI6iglC9yzJfg5f93YeYp3bd9Kft7iwNtWEt6CfS2g+fvnKyvl17qp4vofFAUnpJGfZAa401wXp5gpOXBRar0ASAXcKZZmfUshz8eNXfTMnVu2Y0RqaqgJhZgfiwe+oD/U3QVAeMEF2Nbkp/DlskWuvOIqAO67754Rtzt5370AHImECcdiKIqCbRUxA359w/XezR617Xig7QohhKieUrLAJYCPAi8GkpwbRLmGYUy9XLMiEGm/wGAklgi8bbWmAYBwmdZBnC/cjDcFSE3EqtYHNRzFxCUf0Bog8AIXpcailNwtoZoYpuMQVlXsTBa1DGvYSnXoZDu7+lP8fUtL2Y6hRGPkXJe4onBi+zbwA4zJyuWytPb0MK8B5ixbQxATDLMZk8tXX4y7aCmNhw9jmibhIanxHbNIvV/TSF3tJU5QVYWCWQx8BCixbBGc6ma+49Lb20NDQ2Og7QshhKi8UrLAfQWvGGon8CBw75Cv+wLrnZhSXNc9naEtUoY1QKE6rwZKzD+WKI2a90ZdojXBB6nj7kMkShFn0jWABrP9dUCljALFa5Ok/fVrdmZqrQM6ccK7kG+pL1/NJkVRSIc0ANIBJhnZt28vP2k9yqfa24ivfkogbdq2w7y5S7l6dgtPqatn2x23nbNN14MPkAA6CwX0F7wQ8AOgXAYn4MQf0cULAViaSLJ9s6wDEkKImWDCI0DA3wL/ZhjG54PujJjaMqdO8t+rLyJlWSjhGEHnFws3zAIgqWrkclkSieCDrPNBxDRBUYnVVe/8qeEoOauAZQc3ndG1LNxiHiURx7UnFiDH65JkbItGIjjZ4EalJquYz3F1JMrJ5tk0J5IwwX/XRCg1tdDXh9LREVibe/Z40+l0fVXJBVCHU4jUcSwRZ0kuT//tt8ILXnT6Odd1af+/PxEFHi0WeM9Kr1aQokAuwAxwpyUTpIA6RaH10Yfh6muCP4YQQoiKKiUACgGPBt2RAbqu/zvwXMMwrhr02Hq8kadNQBfwVcMwvjjoeRW4HvhHoBF4AC9Rw/4g2zjf9Z86xfxYnFrL4mQ4Fsh8/8HUmgaO5nKkLZPGzk4SiyQAKkXCdUGBmqbyjSiMRY1ESRWCH2mx8xlCifoJp8OO18RJWxY526aYyVC9sbGzte/dy3XzFlB0HGojMZxccCNmQyWbm6Gvj7p8PrBEEPt27UABVq5cRSHAACiXKRK98iqcW//M/FSK/h3bqb3oYgDyhw4S7emmYNuENz3l9L/DsU0K+fKcv3Rtgrr+LMWDB8rSvhBCiMoqZQrcrcALgu4IgK7r7wU+MeSxWcDtwF684OV64JO6rg9Ot/0fwNuBtwKXAy7wZ13XI0G1ISDrp6TNOg52GaaoudE4nzzRxseNXfQOLOQXE2IXi9So3lSn5jlNVeuHE4mQLQSXjvh0uyWmw44m43xiv8Ebtz5GYeHCwPtVqq4DewHocWwoc/KP2fMXALAwGjs97W6yFh06xE2XbmITWqAjQNlskQ3Pewn3pnoBOPbdb2H29ABgt8zh4wf38b2jh7jiedee3se1LcyA1/8MCC2cB0B9Oi0FUYUQYgYoZQToF8C3dV1vwav7c858EsMwfjSRBnVdXwB8H7gSGFqp721AAXiHYRgWsFvX9RXAh4Cb/ADlX4APGoZxi9/eq4E24Drg5wG1cd7L9nQRBfK42GWaqpOsqaevu4OenpHrf4iR9XZ18Zu2VhrCEd7Q3ABOcBelE2GHI+TKEgAVca3ChNNhK4pCbUM9PV3d9PR0M2dO+TKuTUT/0WMk8WsAmeV9raINDWzO59jT28Nlxm7m+wFRqSzLoqFYJJGsITJvIRknuM8Ex3Yp5BzcK67kxGOPMQ84/O8fYcl/fpI/3XEbu7q7WLJkKevWrQe89T9WoUCxTBn+6lct556/PsoT3d2s3r8PXV9VluMIIYSojFJGgH4JNAFvAL4J/GDI100ltLkB6AHWAY8Mee5K4D4/cBlwF6D7Qdh6oNZ/DADDMHqBLcAzA2zjvFfo80ZlCkopb5vxSSS9aVs9/t1eMTEdfT38oq2V3/T3Eq5SqRslHAk8A9xprouTz1DK7K06P53xVHpvFU+d9L7Hyp+xT1FVHoyG+UnrUYz9+ybd3qFDB1jkZ9OrWbxm0u0N1Z/Kc91r/47PHdzPoWwGxyxSjEa54YbvAPCa17z+9PQ3VVWwzAJmsTwjQEpjPfdHNf7a08W2bU+U5RhCCCEqp5QRoKVBd2JIodWhTy8Etg95bGD+xiL/eYBjw2yzKMA2ShIKBRssaJp61vdKsvq9BcZFTSOklufq+jXJOIsu2cCp/fsCP3cTUc3zPBmdnV5RzTkts1FcG6VMr9NoQrE4ecWhUMyOGagMXMB638c3guAW86iOhatO7ONrQ0MDr12hoz70IKErr5zQvuWi+lM9lWQStcyvlaoqrJg3n78Ae/funvT/r8NbHmexpmG6LuH6WahdwY6+5HMmS1fO49pXv4YP33QDq5tnE373P9HRcYqFCxfyyle++vS/IRTSKOS8wLhcRW6XL13E9l172LHjSV772teNuN10/eyYbuQ8CyEmY8IBkGEYR8rRkVEk8KavDTbwlzbmP88I2wwsggiijQlTVYXGxvIs5K+rq3wdE6XgLTC2QiFq4+VZGhUOh2kgwsl0qmznbiKqcZ4nI3OyjTnRKAtnzyJWptdoLKHaWjpdE1exCYW1ce2jTeRi3LVQXZNwYmKpDJqTCTaoMdKdHVPivQUQy3sfQ/GmRuIVeL1WLlhAjRYiu3//pM9Bap83Wzkdj5PUQsTi4TH2mBjXBcdy+ehHP8K2bU+wefNm6OwgFovxla98hblzz3w0O7ZNezFb1vf82hUXsi2RxNq9e1znbrp9dkxXcp6FEKUYVwCk6/qNwCcNwzjk/zwa1zCMt0y+a6flgOiQxwbmi2T85/G3yQ3ZZmARQhBtTJjjuKRSwU4D0jSVuro4qVQO265swdC+bA67UKBQ30guVyzLMZxwFMwchd4+enqCX0MyXtU8z5Oy+Qm+dvGl7FfD5Mv0Go0lWqvRnenDMsdeLK4oClpIxbacCdR+slEy/dihBM4E1p3YiTjkMjjpdFXfWwNc16XOcUFRSJbx/9QAVVVYVlfLjZduImtZHD50nPqGhpLbyx0+CoDbMod0Xz7QLHADOjvSJOua+Na3vs9PfvJjOjo6uO66v0XX15z1GqqYZNKZsr7nl8YTfHbNxaRMkwMHjtLUNGvY7abtZ8c0U87zXFcXl5ElIWa48Y4APRsvhTTAcxh9rkrQq+OPAfOHPDbw+3EgPOixA0O2eTLANkpiBZwqeoBtO2VreyQ7kkl+tH0rL3jJa7kswAXPg9mxBGR7IZup+L9v2P5U4TxPhpPypimGaiYWHATJioRJ96UZXzzjbeS67ji399iFLKpt4rjjG2ECcOsS0JUhVChOidfUcRw+aOykUVH592ueV5HXq3F2Cz2OQyIUYu/DD3Hpc59fUjuu65LMpCFZQ/LCleTz5oRev/Hq78tTLFhEInHe/Oa3nX588OunKGA7RQq5XFnPYXT+XIquQ104zPZ77uEZL3n5qNtPt8+O6UrOsxCiFOMKgAzDWDro5yVl683w7gPeruu6ZhjGwC3lq72uGKd0Xe8DUsBV+MGLrusNeIkVvh5gG+e93t5eABI1dWU7hpOohW7QCtUZvZjuQv6UqlhDbXU6oCjYoTC5fHlHWJxiwcsGF06O+6JXbagDOojaNq7joKjVvcPb09NNWzrNCUWhKZmECowWKKpKp+swH5WTTz4BJQZAbW3H2dLdRdGyuXL1pRwv08udzRQpFmzCUW3E11lVFYr5YtkywJ2maZxUFS5woWvL4zBGACSEEGLqmg5jvDcCdcANuq6v0XX9TcB7gc8CGIZRwAtSPq/r+kt0XV+Hl6r7GPDbANs47/X19QIQT5Tx4rqmEYCIVZ30zdNdzD9v1SqCqkZiFHDKkgJ7MNdxcPLpCWWDU2d5gbsGONkyZKiboNZWL+fKnNmz0So4VSrvZ24rHi19Oadh7OGPJ0/wOw3shnlBde0c+ZxJLlMcdTqSoqiYhRyWWd46SgDZWQ0AhFuPl/1YQgghymfKB0CGYZwCng/oeGmprwc+YBjGDwdt9jHgBrxaQg8CFvB8wzCKQbUh4IX9GT61ai3NZUyDHW6cDUDMcXEcmdYwEa7rUutHBI2zG6vSBy0ap+DaZQ+AAJx8DsUZ/0VvvL6GtB8gWlOg0G7vQ3/lNQsu4ClzyhdADCc2y1u7kuxLldzGnj27AFi1ak2gBVCH09uTG/V5VYVsuvR/y0QkVi4DYL5tY+bLPOIkhBCibEpJg11WhmG8aZjHHgMuH2UfG6+o6YdG2WbSbZzv5gGxmlpS8ZqyHSM0ay5Hc1nacjl6erqZNau5bMeaaTpaj5LQvDUxLfNn48XwlaVF46QK/bhu+YNXu5gnZBZQI+FxTYOL19XQa5poioKTG/2iuhK0/fu4bt4CHo8Emz1tLHMXLYL2duaoKvlMhlhy4tng2nfvpD4UZuUKnUK+vO+zTLowakIN17Eo5CqT1GL2imWk7nuUulCYgw/ch/7c51XkuEIIIYI15UeAxNTgmEVi/poJpa7kzOBjsmbN4xPHj/Olg/s4ebK9bMeZidr2+GmJbZvIONNPB82JxujL9VfmYK6Lk+tHUca3BqimoZYP7NrGG7c+hrrwgjJ3bmyRtHeeQvWVna7YPGcuKcsioqrsu/+ektq4tLuH763fyBrTKfsIUDZdpJCzRpwG59gmhQqNxqiaxlE/cUf7Iw9V5JhCCCGCJwGQGBfTny5jOQ6h2vIFQAD1Dd6oz6lTJ8t6nJmmvaeLX7e1skMDx6rGzE0FKxImm69QAATYhRyKbTKexUCRZJRQ1KsT09FxqtxdG5Vr29SaXuCQrPAop6qqbLZNvnXoADvbWie8f2dnBwtC3uSBltXrMMeR7nwyLMsh1ZcftlCsqipYZgUSIAzSPm821+/Zyf91d1TsmEIIIYIlAZAYl7Q/GpOyLCLlTIIA1EkAVJLD3V38sq2Vo/OaKUtO4jGo0RhF3IoGQE6xgFvMDXtxPJTtODTP9taYVXt00ew4haYo5G2b2bOGrydT1uPPmcfdXR1s2bN7wvvuffQRGsIRLNdFm7O4DL07V39ffthpjqqqYBXzmBUMgBZcvIrd6X4efuxRbLu8wZ8QQojykABIjEuq3btg7LdtvDxa5fP3UY3vXbIR8+CBsTcWpw1kFVswuzrrprRogrxrky1zCuyh7Gw/qjv2haiLy9Na5vCRFasw7727Aj0bWf/hQwC05XPMqa18xr41FywC4Mkntk5431NPbAGgJxIhX/7EawCk+wsU89Y5ga6qKmTT/RMoojt5Sy5YSDwWI5VKsX+/UbHjCiGECI4EQGJcsl3edI+sEnyl26FiWoj6cJh8p0wxmYh8aytzolEWzqpOCmwtFqcn31eRBAiD2YUcWAWUcYwCza5Ncml9A0pbWwV6NrKuvXsBOGVbJMOVTYIAsGL+ApYkkmxAoW3n9gntax876n2fM7fsCRAG5HMm2WHSYbuuQy5TmQxwAzRN4xkrlvMPi5Zw4hc/q+ixhRBCBEMCIDEu2WyWjkKBdBlTYA8o+lnmnEmk6T0fPc+2+drFl7KgWJ0aSk4sTipb+dfMtS3sXD/jiH9w/QKxoSrXAcq0ekFEtgrBD0A8EuEfli3nzYuWcOyeuya0b0PGG+GrX72WQqFCQ0BAT1f2nLsvjlWkWIV01GsXXcC1LXNpPHoMV9L1CyHEtCMBkBiXk83NvGv7Vv6ilf+Cza5pAECbAsUqp4tcLkeDn6Vv9vyWih9fUTXMcIhMrjpBq5PPoNhFGCMIUv36SLFisaLTpobaNn8+7962lbYSUlAHJRv3C6LuHf80rlOtx1gQ9hJJLNh0OYV85dbAZPoLFIv26XwXiqJgm0UK+cqnNG+5aBVpyyIOpI09FT++EEKIyZEASIxLb28vAIlkeRMgALj13hqWaJUvUqeTw/v30uBfmNY3V34KnBZPknNt0rnqFBi1i3ncYnbMZAjxRV7R0TDgZCq7Vmmw1uOtnCoWaGyqfAKEAbULFgLQlM7gFArj2mfP3j1849AB7s3nUGqbK/r/M5Mukhs0DU7TFMxiviojQBdcsIDtGS/Zx7G776j48YUQQkyOBEBiXPr6egFIJOvKfqxQs3eR2qCF6JR1QONybPs2AAquC6FxzAULmBZLkjZzFM3xXUgHzh1fMoTG+XPoNb0U4cUqvrcOHfISfCysQga4AfpKnVOFAmFFof2xR8a1zxM7tnN/dyfHl19Itr+yr7XruvR0ZlD8ISAvAUKq4mvOvGOrdNZ7U3ULO3fIjRohhJhmJAAS47Ju1y4+uWot86Kxsh/LqfWmKTVFwhzzF1yL0XXt3wdANhrBtSq3LuO0eILOTHfljzuInc+OmRK7oaWRzqIXAPUdO1aprp0lu3sXz0lnedas2VzQUN6aWqNpSNZwyH+vHL/v3nHt84SfAe7S9RvJVygBwmD9qQJmwZsG5zoOuXT11gnWrVqB6TgkC0XM9hNV64cQQoiJkwBIjMl1XZoKBfSaWmI15Z9eZSbrOOW4HMllOXrkcNmPNxPk244DoNTXQqXviKsqZiRCOlud6W8DXMfBzqZQR8lTqGgqKQXSlkVXlS5au598gk01tayprWVBQ2NV+jDAqm8AQDtyeMxRjFxvL0tPnmRZIsm6iy+lUKkc2INk0oXT2eAcu0AhX711ghetW8OOfi8Aa69yWnUhhBATIwGQGJOTyzGQ+kBpKP8Ceztew0/r5/C5fQZHZQRoXNQ+L/hItFR+RCEUS5LDpj/bW/FjD2XnMmDmRkyJbToWd8Qj/MMTj3Mkmahw7zypA95oXbeiEo9EqtKHAQuWL6foOIRNE7Ora9Rt991xG6+et4D3LNeZO2dhxVJgD+Y4Lt2dGVRVxSoWKOQqnwBhQG1NDftV6CwUONRWndFEIYQQpZEASIzJ8hMgpC2LSF1lLrAbZnnrgI4dO1KR401n2WyGO48f4zdtrbSsubDix9cStfQVMxSK1bsYHeDaFna2D00ZfjTDtE3mLvIW/x/2i5FWmnPCG3mya2uqcvzB1i5Zxmf37+UtTzzOkZ7RA6DezY8B0FVbQzZj4jjVWffS35fHsR0K+SzFQuUTIAymrFjCu7Zv5dcH95/OTieEEGLqkwBIjMnq8dZ29JhFYomGihzzdAAkU+DGtH//Pral+rizkGP28kUVP76bSNKZHv3iuZKsXHrEUSDLtlh84VLAO2+VZmcyRPysZfEqJkAYEA2HqZ8/n6LjcOedt4+4nWtZNJw6BUBs3TrS/dULPDLpAsW8Rba/t2p9GLDx0nW4wEMPP0w6na52d4QQQoyTBEBiTOnjrQB0FAskKrAGCODS3nZuXL+JtbmcZFgaw3Y/A9xFa1bjFCt7YaqEwhTCIVKZnooedzSuZWFnhh8FcoELFs7nQ8t1ruvuGXf656Dk/VGn9nyeObOaK3rskVyxei0Ad955G/YIF/Edjz9GTFHoLhZZ98KXUMhVp9gugOtCLpMln6l+wLFg3lwWzp+La9s8/PMfS1FUIYSYJiQAEmPqb/Xmt/fYDuFItCLHjCVrqQmFaFZDnDp1siLHnK72P7GVS+rq2bRyBU6xshf0oWQdGcekfwoFQABWNj1iXaA5Fy5kZU0NLaEQ/UcrO8Uy54867c30s2zW7IoeeySX66tZVVvHOyIxDnzlS8Nu03rrnwHY7VjMnbOAXK4KmQZ9kYhGsZAj058+nRK7mp62YT1fXLOOCx56hNzundXujhBCiHGQAEiMKWeadBQK9Gmhih3T9IuhzovFMIzdFTvudKQcOsBHV65mw8kunArX4dEStZzKdGI7o9ffqTTX9kaBVM69Ix+pidFmehfwrf66lkpJdZzCchwOZLMsaZlT0WOPpDYeZ8nCC5gfi8OhgxRaz17Qb/X2kPCTkbhrLyKfMykWqjcCFE9EKOaz9Hb3jZjsopKetulSnkz1AtBx+63V7YwQQohxkQBIjKl10SLetX0rW8KVGf0BKNZ56yPmx2Ls2SMB0Ei6u7to8OvaNC5dWNmDqxrFeJye/qmz/mcwO9uPW0ijamdfJJuORa62FoCuCr+3DixezBu3PsaxaJRIqHI3FMZy5YZNPOKv9Wv/6f+eNe00dfQo/ZbJnv4Ul7/s5aR6q5t4IJYIk071kE0XcGwHqhwDzW2ZzS6/+HB+xw6KnZ3V7ZAQQogxSQAkxtTe3g5AfWPlpuwU/WxzDeEI+3fJtJKRPPnkEyyJe+mca+ZWdlF9OFlH2rXo7Z+aF3yu42Cle1Edk8Epuoq2SWyJlyzC9d/blbJ7905M12XpggUVPe5YNi1fya3pFEXHobDXoO/+M4VR79q7m/+37Ql+bxZYu+ZispliFXsK8ZhLf18vhYJFsWCjqtX/M7b2aZvYnupDAfruvafa3RFCCDGG6v/lEFOa67qcPOml7a1rqNyibScSo+CPOPUeOlCx4043Dz/0AIsSXgAUbqqt6LG1mnpOZbswrepeEI/Gzmdwsim0QZ90RctkzoZLAGgoFnHsykzfcx2HXX4wv7xlbkWOOV6aqvLcyy7n121ewpNTP/4hbd/6OoVUih/84AZyjs1z/vZVmEWHXLZ663+isRBgku5L4bou2XQBt0rpuAd7+lM2cLefRvzUHbfjFKfu/wkhhBASAIkxFI4c5toDB3j/shXU1Fd2hGFgHVAo1U9fX29Fjz1dGI8+TEIL4aoqWrJyUxQVLUQ+Hqejb4onqHDB6u9BGZQQoWAVWX7F08nYFnFV5dAjD1WkK23f/iZ/m85wcW0dK+fOq8gxJ+KFl25iMw63nzoJrkt68+Pc/I2v0Np6jMbGRl75yteQz5rkq5gAIZGMYBWzZNMZAHI5E7NoD5vsopLisRixlcvoLBZQcjlO3nl3VfsjhBBidBIAiVEVT7SRcKE2HCZRW9kAKD9nEbvyOfotkx07tlf02NPB0aNHiPf1ARCdNwfHqtzajHBdEymnQG+qo2LHLJVjmVj93aiuBYpC0S4Sioc5EQqzN93P9gokQnAdh/SuHSyOxdEiEZZNwQAopGm8/7pXcUPrET5h7OLPvd388o83A/CBD/wbyWSC3t7qFrtNJEOkujtPr1FyHJdMurKJP0Zy9bOv5A/tbQAcf/TRKvdGCCHEaCQAEqMqtHl/0FtzWeobKpu299Sma7izZQHb+1M89tgjFT32dPDAA/eyqsab9lazZCFUsAaJUtdAW6p9ymV/G4mV68fJ9hFSXRzXJVvM0ffsq/j3PTv5/ZbHy378wtGjKPk8Wduidv4CtCmwbmU4F8+Zx3++5/3sLeS5af9eDmQzvO1t7+QFL3gxlumQ6a9esKFpCpGwTV/P2SnXc1mT4hQYBbpg/jx65s3mP/bs4HvHj06JFN1CCCGGNzX/CospI+8XQW3N5airYBKEAReuWg/Ao48+XPFjT3W33PIn/nSynSOrV1GzeknFjhtK1NKvKXT0tFXsmJPmgpnqxs17WeFShTTPf8ELURSFrVs30zok9XPQ0k9uBWBnKsW6RYvLeqzJeo6+mtv/cAtf+tLX+P3v/8I73/n/CIU0CnmLbLp6a1uStVFsK0+qt++sx227uoHZYC9+wfMw0mlu+fNfOHRoX7W7I4QQYgQSAIlR5Q4fBqADiCdqKn78xcvXUR8Kc8DYTSrVN/YO54kjRw6xY8c2um2Ly9/8BiJNlXtttIZm2rNdZHL9FTtmEFzbwkp1opo58nae5pZmLrvscupCIf78kx+V9dj9j3vT7B7p7eaSRUvKeqzJynd20aipPP/517J48RIAVFWhvy+HaVZvxK+mJkKqpwPbOrcGUTZTpJC3UbXq/klbumghmy65GMdx+OLHryez7Ymq9kcIIcTwJAASI7L6+iDVh+O6pGoaqjKlY+ldv+N76zdyUU2tTIMb5A9/uBmAyy9/Bs21cexcpiLH1WIJsrEobV3lHTEpF7uQx0p1UiyksRWbNz/tGXx73Qaat26ht7dn7AZKUGhrwzzRhuU4HAWWzplaGeCGcm2bzJGjqMUzoyqO7dLXU731P5qmEo069I5QY8dxXNL9eS8jXJVnnv3dK1/K4poa3mzDsW98DbNj6q+TE0KI840EQGJE+cOHAGjL50jMqs6i7YKfeGFNbR233/6XqvRhqsnlsvz61z/nmtlzeMPaiym0t+KYlZkCFGqaQ3u+Z8rW/hkPK5sm03MCy8qy8W9egqoorK2p5ab/+mxZjtfvT9/clupj0+q102JtSPZkB2ZnB6GQiqYp5HMm/anqTTOrq49hmWn6ukcOUnMZk2ymWPW6QC3Ns3ja1VdyIJNGtW2Ofe9buBVcnyeEEGJsEgCJESnhMCdjMbanUjQ2z69KHzJzvfUSq2vruOeeu8nlslXpx1Ry882/oa+vj79deAENmzeT3rO7IscNJWrJxCIcPXWwIscrp1T3CTLpTurnNuGuWAHAXMPg7rvuCPxY7pKlPNrXw91dHTxr9ZrA2y8H17JIHzqMVsihaSp9PTmKhXOnnlVKbX2YnlPt2KPUbHJx6e/LT4m02Nf9zfO5xcyRt22sgwfpuv3WqvZHCCHE2SQAEiNKrlnLjwo5bjp2mKaW6gRA2TleALQskSRsmdx1151V6cdU0d/fz/e+922WJhI0aSGUSJjInPryH1hRUWfP42j6JH3p7vIfr8xc16Gzpw2rp43Vb3w9DrCxoZE/fuHTPBJwXaA/bX2cL+4z6K6pYdWCCwJtu5yyJ0+Rbz+BYzn0dFXvxkOyJoJKns6Tp8bc1jRt+vvyuC5QxZG2cDjM373l7/jVKa+IdOevflGxGxVCCCHGJgGQGJHruuzduweA2XOqc+FmJevIz5qHqihsamjkpz/90ekaIOej73zn63R3d/E3S5cDULdGxzHLvzYjOmsuHYrFkfb9ZT9WpfRlesllUyhmF3P+5oUAvGneQr78gffyve99i2Jx8hnPUqkUP/zhDQBcd9nl02L622mOg9nTS39XP+lU5WpMDdXQFKO/9xTZdHpc22fTBdL9BdQqn+uW5lmsve5FPNTTjQrs/+8v0OdPKxZCCFFdEgCJYRWOH+fUgX309fWhqhot85ZUrS+pC3QArpg1m507t/P44+dnMoTHHnuYn/zkR0RVlac3NAJQs3oplDkgDNXUk62rY1/7XgrF6hbCDFJ/to9iWKPQc5L61XNIrLyQmKbxgWUruOnbX+dlL3sBP/rRjfT0lJYcoe+B+7nvox+CTIYl8+fznDUXB/wvKDNVhViCtn1tuJZZleQCiWSEcKhIe2vruPdxgVRvzlsPVOWscBet1tGe8wwOZ7MkXJdbPvZv7Nmzq6p9EkIIIQGQGEHHL35K7+c+wzNnNTN77iJC4XDV+tK39CJcFC6qraMlEuXLX/7vUdcCzERtbcf5yEc+gOu6vO85z0MtFIg0zyIyO1HW42qxBG7LfPb3HaOz90RZj1Vp/dle0k6RcLIOM9VNyzUbSC5fgrV+HYnGJtrajvOlL32Bq69+Bm960+v47ne/yYMP3k9399hTALMn2mj90U2szOW4oqmZf3nZK9A0rQL/quAkWmaTdSKc3NuK1dODplQ+w9qs2XH6utro751YCnzHcenryZKbAkHQ+ksvJnf107mjp5v/3v4Er3/9K/n0pz/O8ePjD+qEEEIEK1TtDoipp3iijezuXSjAnv5+5l14SVX7Y9Y10XXps2jWF5Hbs4OdO7fzi1/8hNe97g1V7VeltLef4F3veiudnR1cvEJnk2XhAE3P2IhTLN/UJC2WRJl3AfszJznctrdsx6kWx7E52d9Bc81s6O3EtYvMuvoS5jfP47Y3v5Zb7n2YB3/xK+b3p/jLnt1884ktp/edPbuFRYsWsWDBBSxYsJCamlri8Ti2bXPy0AHW7tzJgnCEvel+Vj/veayeU50siqVSIxG02XNoP9SDmS9iFbuJaRqhhkZs8IZZyqypOYni9HP80JGS9rcsh97uLLgQT0ZwXLfso6UjuXD1SmbNn8vTfn8LDzz8KL/99S/ovOdunNWref61L+LKK6+itra2Kn0TQojzkXI+r6cYTNd1Fbge+EegEXgAeKdhGKUuejho287S7u5g67OEQiqNjUl6ejJYVnlSq7Z96+ukNz+O4Tj8x5ZHedGr38VTrnhRWY41EYvn1bH/iTv49Kc+TigU5jvfuZGNG59SlmNV4jyPx86d23nf+97NqVMnmTNnLj/8/o9Qbr+V/OEDzH/Fs3GK5VmcHq5rwm6ew4FMO/uO7cRxyjPipigQCmtYpl2Va9OG2lk89YINhI4fwSmcmd6nRqJEmuZz5IZfkT92HIBToRCP9nZz5+GDtOXzw8YAl9TV85ZFS5kbi9FnWfQ/+1msnz0PxzQr9C8amaoqxOMRcrkijjPKyVYU6pZfSLcVZ+/jB7zaOoCiacRmzyLU0IiDUtbXK1kbpaVF4+j+HXS0tU+qLU1VqWuIkayNoiiM/m8PgKoqxOIR8iOc50PHT9J16908HZWDmTQ/aT3KjnQ/K1borF+/geXLV7B06TKWLl1GU9Osqqf1nqrK+Rnd1JRE09RDwLJAGxZCTBkSAPl0Xb8eeCfwZuA48AW8D7+1hmGUshp6WgZAfQ8+wMmbvg+Kwod37+Bgup9//tj3mTW7OlngBguHVDaunsPPPvEB/nj/fRQiYb74xa9y+eXPCPxY1Q6Auro6+eEPb+AnP/kRtm2zbNmFfOMb32P+/AVElCK53Y9g9gdfYFGNxIjMmksqHmVf92FaTx4oa9KJagdAAOsvfCpLnCj5E4fPetx1XYod/aR3HSVtHDxr9MCNROifO48tc+dw4kQbZibDS3t6qfe3sRIJFv/TP2F3dlGc4PStchlXAKQo1CxeRD7exN6tR8j154Y2QqypgXBjI244gmMH/6J5wU+Yzrb9HNkfTMp1BUgko9TUR4lEQ7iuezqwC9pYARBA+MBR+OtmFD8wPpjJcGfnSR7r7aF3ULAcDoeZPbuFlpY5tLTMoampidraOmpra8/6XlNTQywWJxaLEY/HiUajxGLxaTftciIkABJCTIZMgQN0XY8A/wJ80DCMW/zHXg20AdcBP69i98bFNIuk0xkKhTz5fI5CoYjrOqcvXl3X9b+87ROJBPPmzSMe99aQ2LkcPbf+me5b/gRA+/JVHHzsIeqbWmhqnhrTd0zL4cjDW3lRrsCzL9nAjw8f5H3vfhvXvfr1/OM//hNNTbOq3cVR2baNbdtYlollnfnZ+27R0dHBvn0GDz30IA8+eB/FYpGwovCWZz+Xv1m1hnktLURDNnb7IcxMV3AdUxRCiVq02ibyiTiHC30cPLqT1AxIdz0eh04eYNaiS0nUz8LsO3NeFUUh2lJHtOUiGp6mU2jrJXvwONkjbVAsMi8Z593v/mds28VxXA7863uxs1manvksZl/9bPr3HZgywc94qJEIyUUXkAvXcXDH8XODHwDHId/ZjZXLE21sREsmcLWQd6E/yXhCVRWampPU1jp0tu3n6IHgMqa5QCZToFAwSdREveQKYRUUBddxK55Z0rxwEcyfQ3zPAezte1iWTLIsuYy3Lob9qso3245x/HgrpmnSf+okJ9qOl3R6w+Hw6cDozJcXIEWjMaLRKJFIhFgsRiQSJRaLEol4zyWTCRKJJDU1NSSTNae/J5M11NXVEovFAYWCDRlTIWdBxlLImgp5y7u5oQ7+AlTFPfsx/0sBNAUUxfW/n72fopx5fuDxiAsNcv9WCFEiGQECdF1/KvAIoBuGsXfQ4w8A2wzDeGcJzZZlBOjX9zxB359+jWYWwbFxHYtCqpP+3k5wXDqLBW7tOHl6+1fMW0BNKOSvXVZQlDPrmHtMk90N9TznOdfwsudeS8/nPgW2TfiyK/i3++5n9/ZHePrVf8vzXvaWQP8NkxFK97Hsvl8S6vAW5FuOw9Fcjl7bIjm7hfizrmLV069gwYKF5A8dJLPtCUZauV33tKcTmTsXgPyRw6S3nlnjoaoKkbBGb18/+Xye3OIlpCIRUqk+zLY24kePUCwWKRQKFAoFikXvq1Ao8FhfL4ezGWzbplnVeFpdPc4IleA39/VwIOO9RxbE4rxwzlxCikJtKMQFdQ20hMMofsKH2c+/htlXbSDbuh/XLq0opaKFUEJh1HAULRJDicUxYzGy2HTkejnRfZzuvpO4lVjkwdQYAQJYOOdC1jQvI97bR7Gv08t6NiIVO2uhKGHqLlqLlqhHiSXIt7YTaZ6NlUqR2rufYk/voBsQAG5V/43DjQApmka4JkmkoR7qmujLOBzZfZxcahzZ/lSVcDJBuK4WLRaHcAhX1cD1b7jAmEFRKKQSjYdJJCMkk2AV+mg7cojO9pOj7zhJoZBKNBYmnggTiYRQNQVVVXDxpsi5fjznno7rlNO/D/wM4PifLe6gKYGK6rWdz5vY/n97b1/lzM+n21BQ8gXqj7cSO3gA5UQb2qVPIfHmd2PaNl3t7SS+8FFcRaEQClNQFAou5ByHnG1xoFjkrr4+spl+zEKeVzbNwrRMvHjUPX08gOP5HPd1dZ4+B6+av/B0qvCh1wEnCwXu6TozwvzSufOJDJ2Kp6igRekmxJ3FCEqsHqJ1vDjuEg+FOOdzV1HoI8Rt6pzTT13rnKLWHfRZNmiXNCH+rJ25+fZc+ySNnPl/6aKwe9Mr+Nk7NmDbMgIkhJgYGQHyLPS/HxvyeBuwaDINh0LBzt/+3H9+kO8snk1taFBWtmgY/EXW+zIZbu/Po4SjKIrCc1rm0Rwe/mU+ms3y213b2L17F9/87nd4/aZrya97MZuLNRza8d8AdG14D7/NeX8DhpbVUEb4ZWi4Mfh3ZbTtRnjurOPGQL36aWzY+2cu2XsbDel2liWT3nOFAtd/9Uvs/sx/okbivGjhMv6+aeSFxZ+65WF2umGcQobL7H7eFB95ncvXf3gDj/R4IyKXN87ifReuOHejcBTCUfZ1nKKvz7vzv7K+gevmjjx9sMe0OJg3UbQQLY1zuGb2nLM3sG36E7PYu+TpbEm+hOzORuDMuqfRry9Hvwh1h/485CJorGv1UZ8fY2d38Cs8JI/DWEHCaE+P2eeRNjgMyuEz+5/p3Zmfht318TMjH67b7J/HFmD5WZ+uY/er9PRqE/o3FwHN+zp9QZ8BN+215LpA/CKID7PvsMdWwITT16Wn/xmj/3tc/1hnRqa9321nLi4rcbUzQcZAwDDQn7MCEn8Dd9DvZwcag7YdeJ1QcP0+u6nB+1axblAUWA11F/ZSY6Zpu7kGgIaCw9ddUF2HeLEw8LKc1r3wKtqf/z4AVMfm2nteNeIhHq9ZzgMtLwIzB1ael574X8IMHzhsd2LcO7sOimncYpqXzoaaEbLp7U33c+fRJ0+/Xi9cdymziJ67oQtHshlu3fWr0w89/6JLmB+Ln7XNgPZ8nlt2/PL071evvvjMZz1guy5//8N3oL7rURRF1kkJISZGRoAAXdf/DvgxoBmG4Qx6/EfAfMMwnltCswdd110adOHDL/30Tszf/4IwCq6i4igahVAd2dhciNTSGW/h1gvOJCx48ZGbSVgZ74+7cuYPvauo9DkKt2cdnK0/hPYnvR0UDVwvEFDWvR7t2i8E2v9AuS6zCp0sTh2kvnM7de1buffEYTpP7ATHZE1tHZc1NI24+20dJzme9+50r0jWcEVT8/AbahHuzpgcVhIosXqWxpNclfAe976i3vdQBEWLcH/TJg7ULgNFY2Gxk+d2PuTdLVUU7ztnfn54zjMwGtYA0Jw7xZXt92KpIbKhBJ2x2ZyMz6U9Pq+qVe2FEJOn4J6e2qXgh4gDPw/9zpn/8ppr0Vjooa7YS9LMErNzxK0MMStPR8089szZ4E0hc2yu3fsLQq6N5o9NnT4m0NVwAbtWXE1YhbAGVz7+AzTXQVMHpqf5XyrkG+fRvvGFRENQE4YL7v4REbtAWIOwAioWrlXEtYrYyRj5i1bRn0qRSqWo2fokTi53zqiS67oUwiEOzWk5/dyF7aeIWN7fm6GjzkVNY/+c2ad/X3qyk5hpnhUYN77iOl784rIl6JERICFmMAmAAF3X/xb4NZAwDCM36PFfAlHDMF5aQrMHbdtZmhrPVJIJ0DSVuro4qVTurGH/njykigp5SyFvQ9EefMfzbINfcu/OqMvOx+/jDz/6KocMLxBau+mZvP0/vkE0ljhr27PaGaHN4bYd7fjjfW6k7YZua5oFejpO0Ntxgt6udgq5LGY+R6GQw3UcFFVFVVUURUXVNCLRBNF40vtKJIkn60nWNtA4uxlXiXqBozt2DDLa02OGL5Npu4z9mkzcNZ62VVUhkYiSzRbOWjBe7X6VvO8kDqyM+o6f/HtAVVUSySjZTOGsKZmTja0n26+BQGDYwICzg4IzAYN79r6Dt1MGtT1Wm2d9d0fcbux9z2wX0lTq6+L09+dwbEfuXZTJSH8Lg1BXF5cpcELMcDIFzjMw9W0+cGDQ4/OBJyfTcLkyiNm2c1bbtSHvq1RPfdEzeNMLn05b23FUVWXevIFpW9VP3ztxKixZACwouYVqZ4E7X3jnOUpPjyXnuczkXJfJkLmkigqaCq7jBH5hLs419G+hEEKMh0yc9TwJpICrBh7Qdb0B2ADcX50uVZ6iKCxYsHBQ8COEEEIIIcTMIiNAgGEYBV3Xvw58Xtf1DuAw8F94I0O/rWbfhBBCCCGEEMGRAOiMj+Gdj+/j5UC6D3h+iUVQhRBCCCGEEFOQBEA+wzBs4EP+lxBCCCGEEGIGkjVAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOGBEBCCCGEEEKI84YEQEIIIYQQQojzhgRAQgghhBBCiPOG4rputfswU+Vc1405TvDnV9NUbNsJvF1xNjnPlSHnuXLkXFeGnOfKKNd5VlUFRVHyQDzwxoUQU4IEQOXTC0SBE1XuhxBCCCHGbx5QABqq3A8hRJlIACSEEEIIIYQ4b8gaICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeUMCICGEEEIIIcR5QwIgIYQQQgghxHlDAiAhhBBCCCHEeSNU7Q6Isem6/u/Acw3DuGrQY+uBrwCbgC7gq4ZhfLEqHZwhRjjPfwN8DFgNdAK/Aj5mGEauKp2cIYY710Oe/x5wjWEYSyrZr5lmhPf0POBLwAsAG/gL8B7DMDqr0skZYITzvAn4b2AD0Av8DPgPwzAK1ejjdKXrehPwGeDFQB2wDfiwYRgP+M+vR/4WCiEmSEaApjhd198LfGLIY7OA24G9eB/61wOf1HX9zRXv4Awxwnm+Evgd8BtgPfB24NXANyvcvRlluHM95PmXAf9Yqf7MVCO8p6N4nx3LgOcCL8K7QP9Rpfs3U4xwnpvxAsvdwKXAW4E3AZ+ucPdmgp8DTwNeAzwF2ALcpuv6KvlbKIQolYwATVG6ri8Avg9cCRhDnn4bUADeYRiGBezWdX0F8CHgpop2dJob4zz/E3CXYRif83/fr+v6vwE36br+drmTOzFjnOuBbeYB3wXuBZZUrHMzyBjn+bV45/VCwzBO+tu/F/imrut1hmGkKtjVaW2M83wFMAv4gGEY/XifHf8LPB/414p2dBrTdX05cA3wDMMw/uo/9h680cvXATnkb6EQogQyAjR1bQB6gHXAI0OeuxK4z//AH3AXoOu63lKh/s0Uo53n/wY+MMw+IaC2zP2aiUY71+i6rgA/BH4M3FPRns0so53na4E7B4IfAMMwbjUM40IJfiZstPPc5X9/h67rmq7rS4AXAg9XrnszQifeKOXmgQcMw3ABBWhC/hYKIUokI0BTlGEYfwT+CKDr+tCnFwLbhzzW5n9fBJwqa+dmkNHOs2EYWwf/rut6BPgXYIusl5i4Md7TAO8D5gF/A3ykcj2bWcY4zyuB+3Rd/w/gjUAYuBX4oGEYvRXs5rQ3xmfH/bqufw74JN76FQ0vqP/nyvZyevPfk7cMfkzX9VcCF+K9bz+N/C0UQpRARoCmpwTesP9gef97rMJ9OS/ouh7CG5lYA7yzyt2ZcXRdX4c3f//1MrWwrOrwAp9L8KYQvQ1vutbv/RE4EQBd1xvwgs1vAE8FXgksB75VxW5Ne7quPwO4Efi9H4DK30IhRElkBGh6ygHRIY8NfNhnKtyXGU/X9Vrgl8CzgVcYhnHO9C1ROl3XY8BPgU8ZhrGt2v2Z4YpAGnitYRgmgK7rbwQexVtE/lgV+zaTfB5oMAzjb/3ft+i63gPcoev6lw3DeLKKfZuWdF1/Kd7nxMN4a9lA/hYKIUokI0DT0zFg/pDHBn4/XuG+zGj+ovz7gacDL/DvOopgXQasBT6u63pa1/U08G/AIv/311e3ezNKK2AMBD++nf73pVXoz0x1BecGkwPrf1ZWuC/Tnq7r7wZ+izcd7oWDyhDI30IhREkkAJqe7gOu1HVdG/TY1XgXNjLnOSC6rjfiLaidDVxhGMbdVe7STPUosAJvWtZ6/+vbeHP51wN/qFK/ZqL7gEt0XY8Peuxi//v+KvRnpjqGlxxhsIHzvK/CfZnWdF1/B/A14OvAq4dMkZW/hUKIksgUuOnpRuCDwA26rn8Bb475e/Hq1Ijg/A9evZRrgQ5d1+cOeq7DMAy7Ot2aWfy7uWddfOu63g1YhmHIRXmwvg28G/ipnwih3n/sbsMwtlS1ZzPLl4C/6Lr+SeAHwGK8+mG3GIbxRBX7Na3our4Sr8jp74DPAi2DEk7kkL+FQogSyQjQNOTf2Xo+oOMVhbser97ED6vasRlE13UVr+hpBG8U6MSQrwuq1zshSuNnL7wSL/vbI3hZzB4FXl7Nfs00hmHcBrwYr4bNE3gX6rcAr6pit6ajV+C9V1/OuZ/BX5G/hUKIUimu61a7D0IIIYQQQghRETICJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhBBCCCGEOG9IACSEEEIIIYQ4b0gAJIQQQgghhDhvSAAkhJiWdF1Xqt0HIYQQQkw/EgAJIaYdXddfAvzQ//kqXdddXdevqm6vJk/X9cO6rv+g2v0QQgghZrJQtTsghBAleP+gn7cAlwO7qtSXIL0cSFW7E0IIIcRMJgGQEGJaMwwjBTxc7X4EwTCMrdXugxBCCDHTKa7rVrsPQggxbrqu3wM8a9BDzwbuBp5tGMY9uq5/HHgN8GHgU8ByYA/wDsAFvgKsAw4A7zEM485BbV8EfA54pv/QncC/GIZxcIJ9PAzcBNQDbwCiwB+AfwLeBfwzUAvcAbzNMIyuQfvdYxjGm3RdXwIcAl4FvBp4PmABvwHeaxhGeiJ9EkIIIYRH1gAJIaabdwJb/a/LgbphtrkA+BLwabwAogn4NfAz4Ht4AZIK/FzX9TiArusrgb8CLcCbgLcAy4AHdV1vKaGf7wcW+8f6DPA64HHgecDbgI8DLwU+MUY73wEOAy8DvgD8A/DREvojhBBCCGQKnBBimjEMY5eu6yn/54dHSH6QAN5pGMZfAHRdXwN8FniLYRg3+o+F8IIiHXgCuB7IAc/1p9Wh6/qdwEHgA/7XRPQDrzYMwwLu0HX9jcB84DLDMPqAW3Rdfw7wjDHa+T/DMP7V//lOXdevAV4MfGSC/RFCCCEEEgAJIWauvw76ud3/PnitUJf/vcH/fjXeVLqsHxyBl5DgfuCaEo7/qB/8DO5Dyg9+Bvfh4jHaeWjI763AkhL6I4QQQggkABJCzFADozhDZEfZZRbeWptXD/NcRwldmOjxRzJ0HweZviyEEEKUTAIgIYTw9OIlJfjvYZ6zhnlMCCGEENOQBEBCiOnIBrSA27wXWAM8MTB1Tdd1BfhfYD/eOiEhhBBCTHMSAAkhpqNe4HI/iUB9QG1+Am+9zZ90Xf8WkMdLW/0y4BUBHUMIIYQQVSbzyIUQ09HXARP4MxAPokHDMLYBV+LVCvoxXoa4ecDLDMP4bRDHEEIIIUT1SSFUIYQQQgghxHlDpsAJIcQ46LquMo5R8yGpr4UQQggxxcgUOCGEGJ8b8abdjfql6/qSanVQCCGEEGOTESAhhBifj+OtPRpLW5n7IYQQQohJkDVAQgghhBBCiPOGTIETQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDckABJCCCGEEEKcNyQAEkIIIYQQQpw3JAASQgghhBBCnDf+P8g1wXYS4vGjAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.quant import Chromatogram\n", + "import pandas as pd \n", + "\n", + "# Load the sample chromatogram and fit the peaks using default parameters.\n", + "df = pd.read_csv('data/sample_chromatogram.txt')\n", + "chrom = Chromatogram(df, cols={'time':'time_min', 'signal':'intensity_mV'}, \n", + " time_window=[10, 20])\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By eye, this looks like a very good reconstruction of the chromatogram, but \n", + "it would be nice to have a quantitative measure. \n", + "\n", + "## The Reconstruction Score\n", + "Quantifying concentrations from HPLC data requires a measure of the **A**rea **U**nder\n", + "the **C**urve (AUC), or more correctly stated, the integrated signal over a \n", + "given time interval. A perfect reconstruction of the chromatogram, resulting from \n", + "summing over all constituent peaks in a mixture, would yield an identical AUC\n", + "over any given time interval as the integrated signal of the original chromatogram. \n", + "This can be defined mathematically as \n", + "$$\n", + "\\frac{\\sum\\limits_i^{N_\\text{peaks}} \\sum\\limits_{t=0}^{t_\\text{max}}S_i(t)}{\\sum\\limits_{t=0}^{t_\\text{max}}S(t)^\\text{(observed)}} = \\frac{\\text{AUC}^\\text{(inferred)}}{\\text{AUC}^\\text{(observed)}} = 1, \\tag{1}\n", + "$$\n", + "where $i$ represents the $i$-th component signal, $N_\\text{peaks}$ denotes the number of \n", + "peaks in a given peak window, and $t$ denotes the discrete time point.\n", + "In peak windows where the constituent signal is very small $S_{i}^\\text{(observed)} \\rightarrow 0$,\n", + "even small deviations between the inferred mixture and the observed signal can cause \n", + "this quantity to be much larger or much smaller than one, even if the total integrated \n", + "signal difference is small. \n", + "\n", + "To account for this fact, we can modify Eq. 1 as \n", + "\n", + "$$\n", + "R = \\frac{1 + \\text{AUC}^\\text{(inferred)}}{1 + \\text{AUC}^{(observed)}}, \\tag{2}\n", + "$$\n", + "which we term a *reconstruction score* or $R$-score for short. \n", + "\n", + "In practice, you'll never get an $R$-score of exactly 1, but you can get close. \n", + "For example, an $R$-score can be computed for the chromatogram reconstruction \n", + "shown above by calling the `_score_reconstruction` method of a `Chromatogram` object:" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_typewindow_idreconstruction_score
0peak10.997252
1peak20.995222
0interpeak10.390152
1interpeak20.000200
2interpeak30.084916
\n", + "
" + ], + "text/plain": [ + " window_type window_id reconstruction_score\n", + "0 peak 1 0.997252\n", + "1 peak 2 0.995222\n", + "0 interpeak 1 0.390152\n", + "1 interpeak 2 0.000200\n", + "2 interpeak 3 0.084916" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Compute the R_score for the above chromatogram\n", + "scores = chrom._score_reconstruction()\n", + "scores[['window_type', 'window_id', 'reconstruction_score']]" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "For the two peak windows (rows 1 & 2), the $R$-score is very close to one, within 0.01.\n", + "Whether that is sufficient for your case or not is up to you, dear reader. My job is just \n", + "to give you that number. \n", + "\n", + "## Scoring the regions between peaks\n", + "But what about the interpeak regions? These windows correspond to the chromatogram \n", + "signal that lies outside of peak windows -- thus, an $R$-score is a measure of \n", + "how well you are reconstructing the subtracted baseline. As there will almost always \n", + "be 0 inferred signal in this region, your $R$-scores will typically be terrible and \n", + "close to 0. \n", + "\n", + "While this will *usually* mean you are just not reconstructing the signal noise, \n", + "a terrible $R$-score in an interpeak region may mean that there are peaks present, \n", + "but your choice of a prominence filter is not detecting them. In this case, \n", + "it is better to have a measure of what the noise-to-signal ratio is in these regions. \n", + "\n", + "Mathematically, we can compute this as the [Fano factor](https://en.wikipedia.org/wiki/Fano_factor) of the region,\n", + "which can be thought of as a measure of the \"predictability\" of the signal in this \n", + "sequence. This can be computed as \n", + "\n", + "$$\n", + "F = \\frac{\\langle S^2 \\rangle - \\langle S \\rangle^2}{\\langle S \\rangle}, \\tag{3}\n", + "$$\n", + "where $S$ is the signal within a peak window. If the Fano factor is small, then \n", + "the region is likely background noise whereas a large Fano factor would indicate \n", + "there may be a peak present and you need to adjust your peak detection criteria. \n", + "\n", + "But what determines if it's big or small? As all chromatograms have a peak (why \n", + "else would you be using `hplc-py`?), we can compare the Fano factor of the interpeak \n", + "regions to the average Fano factors of the regions where we know there is signal. \n", + "If this quantity, which term the *Fano ratio*, is close to zero, then it is likely \n", + "the interpeak region is just noise and you are not missing anything substantive. However,\n", + "if the Fano ratio is *not* close to zero, there may be a peak present. Again, \n", + "what determines \"close\" to zero is arbitrary. \n", + "\n", + "\n", + "## Generating a chromatogram report card\n", + "In `hplc-py`, you can automatically generate \"report\" cards by calling the \n", + "`assess_fit` method of a Chromatogram object. For the chromatogram above, the\n", + "report card looks pretty good!" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Generate a report card with the default tolerances\n", + "scores = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This report card is telling you that the two peak windows seem to be really well \n", + "reconstructed, whereas the interpeak regions *may* be poorly reconstructed and \n", + "you should take a look. If you have a sense of what the relative tolerances \n", + "should be (meaning, you have made a subjective decision of how close or far from 1.0\n", + "you deem to be successful), you can pass different tolerances to `assess_fit`.\n" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + } + ], + "source": [ + "# Assess the fit, but with different tolerances.\n", + "scores = chrom.assess_fit(rtol=1E-3)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "In either case, `assess_fit` will still print out the $R$-scores and Fano ratios \n", + "for you to make your own call on what is good or bad. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Assessing the fit ≠ computing uncertainty \n", + "\n", + "If you take one thing away from this page, please let it be that an $R$-score \n", + "is **not** a measure of the uncertainty in your reconstruction. It is solely \n", + "to be used as discriminator for you to make a judgement call of whether \n", + "you are properly reconstructing the signal.\n", + "\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + " © Griffin Chure, 2024. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively.\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/objects.inv b/objects.inv new file mode 100644 index 0000000..2f4cc6c Binary files /dev/null and b/objects.inv differ diff --git a/py-modindex.html b/py-modindex.html new file mode 100644 index 0000000..ac5c643 --- /dev/null +++ b/py-modindex.html @@ -0,0 +1,153 @@ + + + + + + Python Module Index — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + +

Python Module Index

+ +
+ h +
+ + + + + + + + + + + + + +
 
+ h
+ hplc +
    + hplc.io +
    + hplc.quant +
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Griffin Chure & Jonas Cremer.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/quant.html b/quant.html new file mode 100644 index 0000000..6ec493d --- /dev/null +++ b/quant.html @@ -0,0 +1,531 @@ + + + + + + + hplc.quant — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

hplc.quant

+
+
+class hplc.quant.Chromatogram(file, time_window=None, cols={'signal': 'signal', 'time': 'time'})
+

Bases: object

+

Base class for the processing and quantification of an HPLC chromatogram.

+
+
+df
+

A Pandas DataFrame containing the chromatogram, minimally with columns +of time and signal intensity.

+
+
Type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+
+window_props
+

A dictionary of each peak window, labeled as increasing integers in +linear order. Each key has its own dictionary with the following keys:

+
+
Type:
+

dict

+
+
+
+ +
+
+peaks
+

A Pandas DataFrame containing the inferred properties of each peak +including the retention time, scale, skew, amplitude, and total +area under the peak across the entire chromatogram.

+
+
Type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+
+unmixed_chromatograms
+

A matrix where each row corresponds to a time point and each column corresponds +to the value of the probability density for each individual peak. This +is used primarily for plotting in the show method.

+
+
Type:
+

numpy.ndarray

+
+
+
+ +
+
+quantified_peaks
+

A Pandas DataFrame with peak areas converted to

+
+
Type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+
+scores
+

A Pandas DataFrame containing the reconstruction scores and Fano factor +ratios for each peak and interpeak region. This is generated only afer +assess_fit() is called.

+
+
Type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+
+assess_fit(rtol=0.01, fano_tol=0.01, verbose=True)
+

Assesses whether the computed reconstruction score is adequate, given a tolerance.

+
+
Parameters:
+
    +
  • rtol (float) – The tolerance for a reconstruction to be valid. This is the tolerated +deviation from a score of 1 which indicates a perfectly reconstructed +chromatogram.

  • +
  • fano_tol (float) – The tolerance away from zero for evaluating the Fano factor of +inerpeak windows. See note below.

  • +
  • verbose (bool) – If True, a summary of the fit will be printed to screen indicating +problematic regions if detected.

  • +
+
+
Returns:
+

score_df – A DataFrame reporting the scoring statistic for each window as well +as for the entire chromatogram. A window value of 0 corresponds +to the entire chromatogram. A column accepted with a boolean +value represents whether the reconstruction is within tolerance (True) +or (False).

+
+
Return type:
+

pandas.core.frame.DataFrame

+
+
+

Notes

+

The reconstruction score is defined as

+
+\[R = \frac{\text{area of inferred mixture in window} + 1}{\text{area of observed signal in window} + 1}\]
+

where \(t\) is the total time of the region, \(A\) is the inferred +peak amplitude, \(\alpha\) is the inferred skew paramter, \(r_t\) is +the inferred peak retention time, \(\sigma\) is the inferred scale +parameter and \(S_i\) is the observed signal intensity at time point +\(i\). Note that the signal and reconstruction is cast to be positive +to compute the score.

+

A reconstruction score of \(R = 1\) indicates a perfect +reconstruction of the chromatogram. For practical purposes, a chromatogram +is deemed to be adequately reconstructed if \(R\) is within a tolerance +\(\epsilon\) of 1 such that

+
+\[\left| R - 1 \right| \leq \epsilon \Rightarrow \text{Valid Reconstruction}\]
+

Interpeak regions may have a poor reconstruction score due to noise or +short durations. To determine if this poor reconstruction score is due +to a missed peak, the signal Fano factor of the region is computed as

+
+\[F = \frac{\sigma^2_{S}}{\langle S \rangle}.\]
+

This is compared with the average Fano factor of \(N\) peak windows such +that the Fano factor ratio is

+
+\[\frac{F}{\langle F_{peak} \rangle} = \frac{\sigma^2_{S} / \langle S \rangle}{\frac{1}{N} \sum\limits_{i}^N \frac{\sigma_{S,i}^2}{\langle S_i \rangle}}.\]
+

If the Fano factor ratio is below a tolerance fano_tol, then that +window is deemed to be noisy and peak-free.

+
+ +
+
+correct_baseline(window=5, return_df=False, verbose=True, precision=9)
+

Performs Sensitive Nonlinear Iterative Peak (SNIP) clipping to estimate +and subtract background in chromatogram.

+
+
Parameters:
+
    +
  • window (int) – The approximate size of signal objects in the chromatogram in dimensions +of time. This is related to the number of iterations undertaken by +the SNIP algorithm.

  • +
  • return_df (bool) – If True, then chromatograms (before and after background correction) are returned

  • +
  • verbose (bool) – If True, progress will be printed to screen as a progress bar.

  • +
  • precision (int) – The number of decimals to round the subtracted signal to. Default is 9.

  • +
+
+
Returns:
+

corrected_df – If return_df = True, then the original and the corrected chromatogram are returned.

+
+
Return type:
+

pandas.core.frame.DataFrame

+
+
+

Notes

+

This implements the SNIP algorithm as presented and summarized in Morhác +and Matousek 2008. The +implementation here also rounds to 9 decimal places in the subtracted signal +to avoid small values very near zero.

+
+ +
+
+crop(time_window=None, return_df=False)
+

Restricts the time dimension of the DataFrame in place.

+
+
Parameters:
+
    +
  • time_window (list [start, end], optional) – The retention time window of the chromatogram to consider for analysis. +If None, the entire time range of the chromatogram will be considered.

  • +
  • return_df (bool) – If True, the cropped DataFrame is

  • +
+
+
Returns:
+

cropped_df – If return_df = True, then the cropped dataframe is returned.

+
+
Return type:
+

pandas DataFrame

+
+
+
+ +
+
+deconvolve_peaks(verbose=True, known_peaks=[], param_bounds={}, integration_window=[], max_iter=1000000, optimizer_kwargs={})
+
+

Note

+

In most cases, this function should not be called directly. Instead, +it should called through the fit_peaks()

+
+

For each peak window, estimate the parameters of skew-normal distributions +which makeup the peak(s) in the window. See “Notes” for information on +default parameter bounds.

+
+
Parameters:
+
    +
  • verbose (bool) – If True, a progress bar will be printed during the inference.

  • +
  • param_bounds (dict) –

    Modifications to the default parameter bounds (see Notes below) as +a dictionary for each parameter. A dict entry should be of the +form parameter: [lower, upper]. Modifications have the following effects:

    +
    +
      +
    • Modifications to amplitude bounds are multiplicative of the +observed magnitude at the peak position.

    • +
    • Modifications to location are values that are subtracted or +added from the peak position for lower and upper bounds, respectively.

    • +
    • Modifications to scale replace the default values.

    • +
    • Modifications to skew replace the default values.

    • +
    +
    +

  • +
  • integration_window (list) – The time window over which the integrated peak areas should be computed. +If empty, the area will be integrated over the entire duration of the +cropped chromatogram.

  • +
  • max_iter (int) – The maximum number of iterations the optimization protocol should +take before erroring out. Default value is 10^6.

  • +
  • optimizer_kwargs (dict) – Keyword arguments to be passed to scipy.optimize.curve_fit.

  • +
+
+
Returns:
+

peak_props – A dataframe containing properties of the peak fitting procedure.

+
+
Return type:
+

dict

+
+
+

Notes

+

The parameter boundaries are set automatically to prevent run-away estimation +into non-realistic regimes that can seriously slow down the inference. The +default parameter boundaries for each peak are as follows.

+
+
    +
  • amplitude: The lower and upper peak amplitude boundaries correspond to one-tenth and ten-times the value of the peak at the peak location in the chromatogram.

  • +
  • location: The lower and upper location bounds correspond to the minimum and maximum time values of the chromatogram.

  • +
  • scale: The lower and upper bounds of the peak standard deviation defaults to the chromatogram time-step and one-half of the chromatogram duration, respectively.

  • +
  • skew: The skew parameter by default is allowed to take any value between (-inf, inf).

  • +
+
+
+ +
+
+fit_peaks(known_peaks=[], tolerance=0.5, prominence=0.01, rel_height=1, approx_peak_width=5, buffer=0, param_bounds={}, integration_window=[], verbose=True, return_peaks=True, correct_baseline=True, max_iter=1000000, precision=9, peak_kwargs={}, optimizer_kwargs={})
+

Detects and fits peaks present in the chromatogram

+
+
Parameters:
+
    +
  • known_peaks (list or dict) – The approximate locations of peaks whose position is known. If +provided as a list, only the locations wil be used as initial guesses. +If provided as a dictionary, locations and parameter bounds will be +set.

  • +
  • tolerance (float, optional) – If an enforced peak location is within tolerance of an automatically +identified peak, the automatically identified peak will be preferred. +This parameter is in units of time. Default is one-half time unit.

  • +
  • prominence (float, [0, 1]) – The promimence threshold for identifying peaks. Prominence is the +relative height of the normalized signal relative to the local +background. Default is 1%. If locations is provided, this is +not used.

  • +
  • rel_height (float, [0, 1]) – The relative height of the peak where the baseline is determined. This +is used to split into windows and is not used for peak detection. +Default is 100%.

  • +
  • approx_peak_width (float, optional) – The approximate width of the signal you want to quantify. This is +used as filtering window for automatic baseline correction. If correct_baseline==False, +this has no effect.

  • +
  • buffer (positive int) – The padding of peak windows in units of number of time steps. Default +is 100 points on each side of the identified peak window. Must have a value +of at least 10.

  • +
  • verbose (bool) – If True, a progress bar will be printed during the inference.

  • +
  • param_bounds (dict, optional) – Parameter boundary modifications to be used to constrain fitting of +all peaks. +See docstring of deconvolve_peaks() +for more information.

  • +
  • integration_window (list) – The time window over which the integrated peak areas should be computed. +If empty, the area will be integrated over the entire duration of the +cropped chromatogram.

  • +
  • correct_baseline (bool, optional) – If True, the baseline of the chromatogram will be automatically +corrected using the SNIP algorithm. See correct_baseline() +for more information.

  • +
  • return_peaks (bool, optional) – If True, a dataframe containing the peaks will be returned. Default +is True.

  • +
  • max_iter (int) – The maximum number of iterations the optimization protocol should +take before erroring out. Default value is 10^6.

  • +
  • precision (int) – The number of decimals to round the reconstructed signal to. Default +is 9.

  • +
  • peak_kwargs (dict) – Additional arguments to be passed to scipy.signal.find_peaks.

  • +
  • optimizer_kwargs (dict) – Additional arguments to be passed to scipy.optimize.curve_fit.

  • +
+
+
Returns:
+

peak_df – A dataframe containing information for each detected peak. This is +only returned if return_peaks == True. The peaks are always +stored as an attribute peak_df.

+
+
Return type:
+

pandas.core.frame.DataFrame

+
+
+

Notes

+

This function infers the parameters defining skew-norma distributions +for each peak in the chromatogram. The fitted distribution has the form

+
+\[I = 2S_\text{max} \left(\frac{1}{\sqrt{2\pi\sigma^2}}\right)e^{-\frac{(t - r_t)^2}{2\sigma^2}}\left[1 + \text{erf}\frac{\alpha(t - r_t)}{\sqrt{2\sigma^2}}\right]\]
+

where \(S_\text{max}\) is the maximum signal of the peak, +\(t\) is the time, \(r_t\) is the retention time, \(\sigma\) +is the scale parameter, and \(\alpha\) is the skew parameter.

+
+ +
+
+map_peaks(params, loc_tolerance=0.5, include_unmapped=False)
+
+

Maps user-provided mappings to arbitrarily labeled peaks. If a linear +calibration curve is also provided, the concentration will be computed.

+
+
paramsdict

A dictionary mapping each peak to a slope and intercept used for +converting peak areas to units of concentraions. Each peak should +have a key that is the compound name (e.g. “glucose”). Each key +should have another dict as the key with retention_time , slope , +and intercept as keys. If only retention_time is given, +concentration will not be computed. The key retention_time will be +used to map the compound to the peak_id. If unit are provided, +this will be added as a column

+
+
+
+
+
loc_tolerancefloat

The tolerance for mapping the compounds to the retention time. The +default is 0.5 time units.

+
+
include_unmappedbool

If True, unmapped compounds will remain in the returned peak dataframe, +but will be populated with Nan. Default is False.

+
+
+
+
Returns:
+

+
peaks – A modified peak table with the compound name and concentration

added as columns.

+
+
+

Notes

+
+

Note

+

As of v0.1.0, this function can only accommodate linear calibration +functions.

+
+

+
+
Return type:
+

pandas.core.frame.DataFrame

+
+
+
+ +
+
+show(time_range=[])
+

Displays the chromatogram with mapped peaks if available.

+
+
Parameters:
+

time_range (List) – Adjust the limits to show a restricted time range. Should +be provided as two floats in the range of [lower, upper]. Note +that this does not affect the chromatogram directly as in crop.

+
+
Returns:
+

    +
  • fig (matplotlib.figure.Figure) – The matplotlib figure object.

  • +
  • ax (matplotlib.axes._axes.Axes) – The matplotlib axis object.

  • +
+

+
+
+
+ +
+ +
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/quickstart.html b/quickstart.html new file mode 100644 index 0000000..2da3941 --- /dev/null +++ b/quickstart.html @@ -0,0 +1,968 @@ + + + + + + + Quickstart — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Quickstart

+

This package is meant to get you from chromatogram to quantified peaks as rapidly as possible. Below is a brief example of how to go from a raw, off-the-machine data set to a list of compounds and their absolute concentrations.

+
+

Loading and viewing chromatograms

+

Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using hplc.io.load_chromatogram().

+
+
[4]:
+
+
+
# Load the chromatogram as a dataframe
+from hplc.io import load_chromatogram
+df = load_chromatogram('data/sample.txt', cols=['R.Time (min)', 'Intensity'])
+df.head()
+
+
+
+
+
[4]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
+
+
+

By providing the column names as a dictionary, you can rename the (often annoying) default column names to something easier to work with, such as “time” and “signal” as

+
+
[5]:
+
+
+
# Load chromatogram and rename the columns
+df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',
+                                                     'Intensity': 'signal'})
+df.head()
+
+
+
+
+
[5]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
+
+
+

This dataframe can now be loaded passed to the Chromatogram class, which has a variety of methods for quantification, cropping, and visualization and more.

+
+
[6]:
+
+
+
# Instantiate the Chromatogram class with the loaded chromatogram.
+from hplc.quant import Chromatogram
+chrom = Chromatogram(df)
+
+# Show the chromatogram
+chrom.show()
+
+
+
+
+
[6]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>, <Axes: xlabel='time', ylabel='signal'>]
+
+
+
+
+
+
+_images/quickstart_7_1.png +
+
+

The crop method allows you to crop the chromatogram in place to restrict the signal to a specific time range.

+
+
[7]:
+
+
+
# Crop the chromatogram in place between 8 and 21 min.
+chrom.crop([10, 20])
+chrom.show()
+
+
+
+
+
[7]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>, <Axes: xlabel='time', ylabel='signal'>]
+
+
+
+
+
+
+_images/quickstart_9_1.png +
+
+

Note that the crop function operates in place and modifies the loaded as data within the Chromatogram object.

+
+
+

Detecting and Fitting Peaks

+

The real meat of the package comes in the deconvolution of signal into discrete peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline, detection of peaks, and fitting of skew-normal distributions to reconstitute the signal. Luckily for you, all of this is done in a single method call Chromatogram.fit_peaks()

+
+
[8]:
+
+
+
# Automatically detect and fit the peaks
+peaks = chrom.fit_peaks()
+peaks
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3574.88it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:09<00:00,  4.86s/it]
+
+
+
+
[8]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5947213.90547143163.8800695.179666e+062
014.450.349615-2.99574234698.9663174.163876e+063
015.530.3139991.62113515061.4147981.807370e+064
016.520.3472751.99020210936.9918121.312439e+065
017.290.3480011.70371512525.2861051.503034e+066
+
+
+

To see how well the deconvolution worked, you can once again call the show method to see the composite compound chromatograms.

+
+
[9]:
+
+
+
# View the result of the fitting.
+chrom.show()
+
+
+
+
+
[9]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+_images/quickstart_15_1.png +
+
+

You can also call assess_fit() to see how well the chromatogram is described by the inferred mixture. This is done through computing a reconstruction score \(R\) defined as

+
+\[R = \frac{\text{Area estimated through inference} + 1}{\text{Area observed in signal} + 1}.\]
+

This is computed for regions with peaks (termed “peak windows”) and regions of background (termed “interpeak windows”) if they are present.

+
+
[10]:
+
+
+
# Print out the assessment statistics.
+scores = chrom.assess_fit()
+scores.head()
+
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973
+A+, Success:  Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+C-, Needs Review:  Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024
+Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+C-, Needs Review:  Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000
+Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+
+
[10]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
0110.0000010.550009.112041e+033.555077e+038.564681e+03135.98568562.9822240.390152interpeak0.01needs review
1211.7666712.108335.779000e+031.155481e+004.298102e+03137.57142931.2426940.000200interpeak0.01needs review
2319.8250020.000001.177637e+011.000001e+002.048615e-010.4898350.4182260.084916interpeak0.01needs review
0110.5583311.758332.810059e+062.802338e+065.279468e+0819379.71082727242.2449660.997252peak0.01valid
1212.1166719.816671.403344e+071.396639e+073.854511e+0815171.28177425406.6286170.995222peak0.01valid
+
+
+
+
+

Quantifying Peaks

+

If you know the parameters of the linear calibration curve, which relates peak area to a known concentration, you can use the map_peaks method which will map user provided compound names to peaks.

+
+
[11]:
+
+
+
# Define the two peaks of interest and their calibration curves
+calibration = {'compound A': {'retention_time': 15.5,
+                              'slope': 10547.6,
+                              'intercept': -205.6,
+                              'unit': 'µM'},
+               'compound B': {'retention_time': 17.2,
+                              'slope': 26401.2,
+                              'intercept': 54.2,
+                              'unit': 'nM'}}
+quant_peaks = chrom.map_peaks(calibration)
+quant_peaks
+
+
+
+
+
[11]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3139991.62113515061.4147981.807370e+064compound A171.373144µM
017.290.3480011.70371512525.2861051.503034e+066compound B56.928478nM
+
+
+

Successfully mapping compounds to peak ID’s will also be reflected in the show method.

+
+
[12]:
+
+
+
# Show the chromatogram with mapped compounds
+chrom.show()
+
+
+
+
+
[12]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+_images/quickstart_22_1.png +
+
+
+
+

Deconvolving Heavily-Overlapping and Subtle Peaks

+

Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a “shoulder” on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example.

+
+
[14]:
+
+
+
# Load, fit, and display a chromatogram with heavily overlapping peaks
+df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])
+chrom = Chromatogram(df)
+peaks = chrom.fit_peaks()
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1526.76it/s]
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 106.00it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+F, Failed:  Peak Window 1 (t: 2.230 - 20.430) R-Score = 0.9788
+Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds
+or add manual peak positions (if you have a shouldered pair, for example). If
+you have a very noisy signal, you may need to increase the reconstruction
+tolerance `rtol`.
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 0.9952 & Fano Ratio = 10^-5
+C-, Needs Review:  Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.6283 & Fano Ratio = 10^-5
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+_images/quickstart_24_2.png +
+
+

However, if you know there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to estimate the peak convolution including more than one peak.

+
+
[15]:
+
+
+
# Enforce a manual peak position at around 11 time units
+peaks = chrom.fit_peaks(known_peaks=[12])
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00,  2.22it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 2.230 - 20.430) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+C-, Needs Review:  Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 1.0441 & Fano Ratio = 10^-5
+Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+A+, Success:  Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.0077 & Fano Ratio = 10^-5
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+_images/quickstart_26_2.png +
+
+

Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If enforced_locations are provided, these are used as initial guesses when performing the fitting.

+

This approach can also be used if there is a shallow, isolated peak that is not automatically detected.

+
+
[16]:
+
+
+
# Load and fit a sample with a shallow peak
+df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])
+chrom = Chromatogram(df)
+peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 478.57it/s]
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00,  8.65it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0
+F, Failed:  Interpeak Window 2 (t: 16.470 - 79.990) R-Score = 10^-2 & Fano Ratio = 0.0382
+Interpeak window 2 is not well reconstructed by mixture and has an appreciable Fano
+factor compared to peak region(s). This suggests you have missed a peak in this
+region. Consider adding manual peak positioning by passing `known_peaks`
+to `fit_peaks()`.
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+_images/quickstart_29_2.png +
+
+

As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value to provide a better initial guess.

+
+
[17]:
+
+
+
# Add the location of the second peak
+peaks = chrom.fit_peaks(known_peaks={50: {'width': 3}}, prominence=0.5)
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.25it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000
+A+, Success:  Peak Window 2 (t: 47.000 - 52.990) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0
+A+, Success:  Interpeak Window 2 (t: 16.470 - 46.990) R-Score = 1.0034 & Fano Ratio = 0.0404
+A+, Success:  Interpeak Window 3 (t: 53.000 - 79.990) R-Score = 1.0034 & Fano Ratio = 0.0398
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+_images/quickstart_31_2.png +
+
+
+
+ + +
+
+
+ +
+ +
+

© Copyright 2023, Griffin Chure & Jonas Cremer.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + \ No newline at end of file diff --git a/quickstart.ipynb b/quickstart.ipynb new file mode 100644 index 0000000..322d8ab --- /dev/null +++ b/quickstart.ipynb @@ -0,0 +1,1125 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 6, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3574.88it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:09<00:00, 4.86s/it]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587680.69196123380.3864032.805646e+061
013.170.5947213.90547143163.8800695.179666e+062
014.450.349615-2.99574234698.9663174.163876e+063
015.530.3139991.62113515061.4147981.807370e+064
016.520.3472751.99020210936.9918121.312439e+065
017.290.3480011.70371512525.2861051.503034e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158768 0.691961 23380.386403 2.805646e+06 1\n", + "0 13.17 0.594721 3.905471 43163.880069 5.179666e+06 2\n", + "0 14.45 0.349615 -2.995742 34698.966317 4.163876e+06 3\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4\n", + "0 16.52 0.347275 1.990202 10936.991812 1.312439e+06 5\n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks()\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAD300lEQVR4nOzdd3gUVdsH4N/M9k2y6ZVACIEMvYOKKCBNFFH8Xl9RBAUbKGJDiiAgiKIvAgYFlS4gKqiI2BEsIDYQBZIM6b33ZPvMfH/sLoaQumySTfLc18WVZOfMmbOTYTPPnHOew0iSBEIIIYQQQgjpCNjWbgAhhBBCCCGEtBQKgAghhBBCCCEdBgVAhBBCCCGEkA6DAiBCCCGEEEJIh0EBECGEEEIIIaTDoACIEEIIIYQQ0mFQAEQIIYQQQgjpMCgAIoQQQgghhHQY8tZuQDtVCkAFIKeV20EIIYSQxgsFYALg08rtIIQ0I0aSpNZuQ3tkkCRJLYrNc25ZlkFz1U3+Ree5ZdB5bhl0nlsOneuW0RznmWUZMAxjBKBxacWEELdCPUDNI0cUpcji4iqXVyyXs/D19UB5uR5Wq+jy+okNneeWQee5ZdB5bjl0rltGc51nPz8PyGQMjd4gpJ2jOUCEEEIIIYSQDoMCIEIIIYQQQkiHQQEQIYQQQgghpMOgAIgQQgghhBDSYVASBEIIIYQQN3b69Gkv2FJ004NrQmonAsgZMmRIRWMKUwBECCGEEOKGTp8+zQJ4nmHYmQzDKAAwrd0mQtyUJEmS5fTp0+8BeHnIkCH1poekAIgQQgghxD09L5PJ5+p0vmalUq1nGIYWmCKkFpIkMWazUVteXjJXEKwA8FJ95SkAIoQQQghxM6dPn9YxDDtTp/M1e3n5FrV2ewhxdyqVxgDAv7S0aObp06ffqG84HI0lJYQQQghxPyEMwyiUSrW+tRtCSFth7ylVwDZnrk4UABFCCCGEuB8WAEPD3ghpPPv/FwYNxDgUABFCCCGEEEI6DAqACCGEEEIIIR0GBUCEEEIIIaTDiIlZH3bHHTf3a+12NFZ8fKz66NFvvVu7He0JBUCEkDYhOzsLGzb8D3/9daa1m0IIIYS0mMWLn+0RG3veo7Xb0Z5QAEQIcXuiKGL+/DnYvXs7Hn30AWRmZrR2kwghhJAWQnkwXI3WASKEuL0///wd1xlNuC68C77Oz8OhQx9j3rynWrtZhBDS4kRRhF6vb7UH2FqtVmTZph1+5MihQ/7v/+7O+eGH7/0tFgv7xhtb4rVarbhp04bwf/75S1dVVSXz9va2jhkzrujJJxdkxcXFah599IHemzdvi+vff6AeAJ566rGo8+f/0X399Q9/yeVySJKEW28dN+D++2dn3X339MKaxywsLJCvX/9a+Jkzf3gLgsBER/esfOaZRRlRUd1NjjLvvrs5+MiRQ8EVFRXy7t17VC1evDzVsb22NoeHdza/885boT/+eMy/pKRE0alTJ+OMGbOyb7751lIAOHDgA//9+/eEzpr1UNb27e+Gl5WVKnr16lOxbNmLqbt2bQ/54Yej/nK5XJoy5c68OXPm5QKAyWRi3nxzQ9iJEz/5FhcXKdVqjThgwMCyxYtfSPfz8xfuuOPmfoWFhcqPPno/9Ny5s15bt77Hl5QUy958c2OnP/741aeiokIeGRlV9cgjj2Vde+2ISsd7O3ToY799+3aHFhQUqLp06WIYM2Z80fbtb3c+ceLP0878TliWder9uSsKgAghbu+PX05gfGAw1DIZfispxsVTJ2G9737IfXxbu2mEENJiRFHEvff+X8/4+LhWGw7Vs2fvyvffP8g3NQj69tsvA1955fUEQbAyPXpEm+699/96e3v7WF59deNFLy8v4ccfj/ls3bqlc+/efasmTrylNCAgwHzq1Eld//4D9YIgIDb2vJfJZGL/+uu0x7Bh11SdPXtGW1FRLr/ppvGlNY9ltVrx5JNzowFGWrny5SR/f3/rpk0bwp999onogwc/PwcAhYWFyvPn//F65ZX1CWaziXn55RcjX375xa7bt+/h62rzU089FpWcnKR94omn0yMjo4xff/2F35o1K6NYlk2cMGFSGQAUFRUqDx/+NOill15L1Our2BdeWNRj1qzpfcaOHV+4efP2uC+/POy/d++uTqNGjSnt1auP8fXX14b/9tspn0WLlqZ27tzFxPO8Zt26l7u+885bYUuWLM/Ytm1P3OzZ03tff/2o4kcemZsjCALmz58TbbFYmEWLlqUEBgZZPvzw/aDFi5+J3rhxc/zAgYP1R49+471+/auRM2fOzhw9emzpb7/9otu27e3OV/s7ceb9NekiaUEUABFC3F7JX6ehVqhgUKlwU0AQbtJ4oOjETwiefHtrN40QQlpY21wXaNSom4oGDhysBwCDwcDcdNP4ookTJ5V07hxhBoCuXR/MP3Dgg5DExIuaiRNvKR069JrSM2f+0AHIPXv2jIdMJpeio3tW/vHHb17Dhl1T9fPPP/r06MFVBgYGWWse6+TJn3RpaamanTvfP9+jR7QJAJYuXZm6a9e2kOLiIjkAyGQyafXqV1O8vb0FAJg0aXLB3r27OtXV5osX49V//vm7z8qVaxLHjZtYBgDz5j2Vk5ycqN23b3eoIwASBIF55plFaY6b/379BpRfvBjv+dxzz2cyDINHHnk856OP9ocmJFzU9OrVx9irV++qMWPGllx33chKAOjcOcL83Xdfl6emJmsAICAg0MqyrKTRaERfXz/h2LHvdCkpydqtW3dfcBxj2bIX0y9ejPfYt293yMCBg5M/+GBfyLXXjih+6KE5eQDQvXuPgszMDNXnnx8KvprfiTPv72qumeZEARAhxK0ZDAZoiouB4FDo+g9AZU42AKDkIo/gBvYlhJD2hGVZvP/+Qb6tDYEDgPDwzpeGnmk0GmnGjFn5X375ue/evbs9srOzVGlpKdrS0hKFIIgMANxww+iyFSueDzQYDMxvv53y6tOnb0WnTp2Nf/99Rgcg948/fvO+8cbRxbUdKyHhokar1QqO4AcAgoNDrIsWLct0/Ozt7W11BD8A4OWlE8xm82VvrHqbeT5eAwBDh15TWb1Mv34DK957b3t49de6d//3uCqVSgwMDDYxDAMAUKvVEgCYTCYWAKZOvav4559/9Fq//tVOWVmZqszMDE12dpa6Z89elx3HITExQaPRaIXqwQXDMOjdu2/lmTN/6gAgNTVZO3LkjSXV9xswYFBlzQCoqb8TZ96fu6IAiBDi1pKTE9HDwxMA4N9vAIQ/fgUAmLOyW7NZhBDSKliWhaenp9ja7WgqlUp9qc16vZ599NEHOKPRyN5ww6iSCRMmFQ0YMDB93rxHejrKXHfd9RUKhVz89deTXn/9dVo3ZszY4oiIrqbDhz8JychIU6amJmtXrlyTXNuxZDK55LghrwvLsg32pFVvc12JCERRYGQy2WUbFQrFZT+zbN1tWbXqhS4nT/7kN3r02KJrr72+rGfP3jn79u0OKSoqUNZWXpJqf2uiKEIul0u247GSJDXcUdjU34kz789dUQBECHFriRd5dNfahruro7pD3TkCyMiAorwMkiiCceJJJCGEkNbz44/HdCkpydpPPvni76CgYCsAlJQUy8rKyuSOQEOpVEoDBgwq/+mnH3wSEi56Ll78Qlp4eGczwzDS5s2bwkJDw4zVExpU161blLGqqkqWnJyk6tYtygQARUWF8nvuubPvSy+9luBMm6OjexoA4M8/f/N0DIEDgHPn/vbs1KmzwZk6i4uLZN9++1XgokVLk2+7beqlHpvMzHS1Wq2pFnz9G2B07x5t0Ov1sri4C+rqvUCxsRc8w8O7GAEgIqKrITb2gieAfMf2CxfO1TtvrDG/k/aE7hwIIW4tL/Y8FCwLC8tCERSE4GgOJkGATJJgyc9vuAJCCCFuJTg4xAwAhw9/6p+Rkab87bdTngsWzO8uCAJjNlsu3e2PGDGy9Pjx7wN0Oi9rVFR3k0qlkjiuV+WJEz/6X3vtiNK66r/hhlHlkZFR+lWrlkWePv2HR3x8rHrlyqVdvb19LAMGDNI702aO62UcOHBwWUzM+i5Hj37jnZiYoHrzzY2hp0//4fPf/96T50ydOp23oNFohRMnfvJJTk5Sxcae16xY8XxEamqK1mL59zyo1WohKytTlZ+fJx81akxZ584RhlWrXuj2yy8/e128GK9evXp5l8zMdM20affmAcC9987M+e23X3y3b38nODk5SXXw4If+X3zxeVB9bWns76S9oACIEOLWCtLTUWg2weztDYZhENktCnlm20M/S9EVmU8JIYS4ucGDh+pnz34k4/DhT4NmzpzW99VXX+rat++Aiuuvv6GY5//NcDdmzLgyURSYvn0HlDteGzRoSLkkSRg16qbSuupnWRavvbYhMTAw2Lx48bM9nnhiTk+ZTCatX78pQaVSOd2dsXbt+uThw68tXb/+ta4PPTSzz2+//eLz/PMrk269dUpJw3tfSS6XY9myF5PT09M0Dz54X5+FC5/uYTKZ2PvueyArKytDU1VVxQLA7bf/X/6ZM394P/nkY9FyuRwxMVsudu3aTf/ii8ui5sx5sFdqaopm7dr1F4cMGV4FAGPGjCt//PEn044c+Sxw9uzpfb744rPAiRMnFTiGyNWmsb+T9oJpzBhB0mTJgiBGFhdXubxiuZyFr68HSkqqYLW2uSHAbQad55bRmPN8220TkJGRju3v7sKQ4dciLS0Vvy14CgO9fRB0/yz43DCqhVvd9tD13HLoXLeM5jrPfn4ekMnYFADdXFapk06fPt2TZWVfBwV1qlQq1W6bTYu4n1OnTngGBARZqieB2LJlU8i3334V8OmnX55vzbY1N7PZqM7Pz/IUReHmIUOGxNdVjuYAEULcliiKyM3NAQCEhtuWMAgODsEvxUVIqqrEw75+rdk8QgghxO38+usv3j/8cMxv4cLnUyMiuppiYy9oDh/+NHjSpMkFrd02d0EBECHEbRUVFcJisYBlWQQF2bJ3qtVq/C0KKMnOxJ0KBQJauY2EEEKIO3nssSezDQYDu3btS5EVFeVyPz9/8+2335n38MNzc1u7be6CAiBCiNvKycpETN+BKAfAmE2A3PaRFRoaipKSYuTl5YDjrsjQSQghhHRYKpVKev75FRkAMlq7Le6KkiAQQtxWQXISQtRqdFOpwKo1l14PCQpBsEqFsvg6h/cSQgghhNSKAiBCiNsqT08DAFTK5Zet9xPlH4BN/QYh6s8/WqtphBBCCGmjKAAihLgtU65tuLJZq73sdc9g23wguShCtFhavF2EEEIIabsoACKEuC2mrNT21e/ybG/egUGwirbUt0JFRUs3ixBCCCFtGAVAhBC3pdLbFuxWh4Re9rp/QCAqrFYAgFBJARAhhBBCGo8CIEKI2/Ky9/LoIrpe9rq/vz/Krbahb9QDRAghhJCmoACIEOKWKisrUWQ0othsRlCP6Mu2+fsHoMzeA2QtL2+N5hFCCGmkkSOHDjlw4AP/xpb/4YfvdVOn3tJ39OhrB7/66prw5mxbY8TErA+7446b+7myzqack8zMdOXhw5/6uvL4HV2rrgPEcdxoAMfr2JzC83w3juMGAngDwFAARQBieJ5fV60OFsAKAA8B8AVwAsBjPM8nVitz1XUQQlpWbm42Xk6Ih07njZ8iu122zc/PDxX25AdVhfnwbo0GEkIIaZSPPz7yt07nLTS2/NatW8KDg0NMb7yx+aKnp1ej92tLmnJOXnzxha5BQUHmKVOmljR3uzqK1u4B+gVAaI1/EwBYAbzMcZw/gO8AXIQteFkBYDXHcbOq1fECgDkAHgZwHQAJwFccxykBwBV1EEJaXnZ2NgAgNDTsim0KhRL/mIw4mJ0Jgzc9FCOEEHcWHBxi1Wg0UmPLV1VVyXr37lPVpUtXs5+ff7sMgJp2TiSmeVvT8bRqDxDP82YAuY6fOY5TANgA4GOe57dxHLcEgAnAXJ7nrQDiOI7rAWARgJ32AOVZAAt5nv/SXsfdALIB3AngAwCPuKAOQkgLy83NAQCEhobWuj1FqcDx1BSM16gR1ZINI4QQ0iQjRw4d8uSTC1Lvumta0dKlz3UVRZHx9fWzHD/+vb/JZGT79x9YvmTJ8rTg4BDryJFDhwDARx/tD/3oo/2h779/8FznzhHmrVu3BH/11ZGgsrJSeUhIqOmuu+7JnTr1P8UA8MsvP3stXPh09MyZszM//vij0ICAQNNLL72aPGPGf/vec8+M7C++OBykVCrEXbs+iGUYBuvXvxr++++nfKxWKxMZGaV/7LH5mQMHDtY72rt//56AAwc+CCkpKVYOGDCoLCgo2Fzf+3v44Zlcnz79K0pKihUnT/7kp1AoxMmT78ifMGFS8dq1q7smJyd6hISEGRcufD510KAh+urnZPz4m0tnzvxvn65du+ljYt5OBICffvrBa+nS56KXLFme9OmnB4Lj4mI94+JiPe+442avQ4e+PnfHHTf3u+mmCUXz5z+TXb0NQUHBpjVr/pda2/l4770P4vLychUbNvyv89mzZ3QyGStFR/esevLJBRlRUd1NzfF7d2et3QNU0+MAOgN42v7zDQB+sgcuDscAcBzHBQEYCMDL/hoAgOf5UgBnANzowjoIIS1M/c/feLPfIIxSqWvd7udnGzpdUkIjAgghHYtgMLB1/RNNJqYlyl6NU6dO+paXl8vfeGMzv3z56qS4uFivN9/c2AmwDQ3z8/Oz3Hbb1LyPPz7yd6dOnc0bNrzW6YsvDgc9/viT6du3742dOvU/eW+9tTFiz55dgdXr/e23Uz6bN2+LW7z4hVSZjJUA4IcfvvfbsOFNfuXKl5O8vb2Fp556rEd2dpbqpZdeS9y8eVt8z569qp566rGe5879rQGAw4c/9X377Te7TJ36n7ytW9+70KtXn6qvvjoS1NB7OnToYEhQULB527Y9FyZPvj1///49YYsWPd3j7rvvzX3rra1xSqVCXL/+1Yia+/n4+AjPPbc05a+/Tnt/9tknfsXFRbLXXlsTOXbshMJbbrmt9LXXNib26BFddd1115ds27Ynrinnufr5MBqN7BNPPMqJooANG97iN2x4i9fpvK2PPfZgr+zsLEVT6m0PWrUHqDqO49QAlgLYyPN8jv3lcADnahR1RLtd7NsBIKOWMl1cWAchpKWVliBIpYJZ61HrZl8vHUJVapiyM1u4YYQQ0rqSnpg7qK5tmmiurPPCJZfmMCc/M3+AZLHU+sBb1TWyMmLZCt7xc8qiZ/uJen2t94bKsE76rqvWNOkGvM42ajTCihUvpSkUCik6uqfx1KmTRadP/+EN2IaGsSwraTQaMTg4xFpVVcV+/vmh4AULlqSMGzexDAAiI7uZcnKyVR9//EHIjBkPFDjqvfvue3MdvRnp6alKALj11ikFHNfLCAA///yjV0IC73Ho0Fd/BwQEWgHgmWcWZcXGXvD84IO9wf36DUj95JOPgkeMGFkyY8asAgDo3r1HblzcBY/U1OTLV+SuoXPnLobHH38yBwBmzXokb//+vWE33DC6eMKESWUAMGHCpKKtW9/uXNu+N9wwqmLSpNvy3377zc7ff/+tn4eHh7Bo0bJ0APD19RPkcrmkVCpFR5sbq/r5+PDDfQEVFeXytWvXpygUCgkAVq16JfXOO2/td/Dgh4HVe5M6ArcJgADMAKABEFPtNS1sw9eqM9q/qu3bUUcZx8qJrqjDKXK56zvYZDL2sq+kedB5bhn1nWe53gCwLLShobX+X+qh0eDRfgNRdeYM5A/R76k+dD23HDrXLYPOc9sWHBxictyEA4CHh6dgtVpr7WG6eDFebbFYmNdfX9t1/fpXuzpeFwSRsVotjMFguLRf166RVwzl6tIlwnHPh/j4WC0A3H33HZdldLNarYzFYmYAICMjXTN69Nji6tt79+5b2VAAFBYWfuk4Wq1WBIBOnTpdao9SqRKtVkudvWjPPLMw88yZP7zPnPnTe8uWHbFNmTNVl+rn4+JFXmswGGQ33zx6YPUyFouFzchIq32oRTvmTgHQTNjm/hRVe80AQFWjnOOXVGXfDnsZQ40yVS6so8lYloGvb+1Prl1Bp9M0W93kX3SeW0Zt51krWAFWiZDoqFr/L3kG+AGFRZBZLc36f609oeu55dC5bhkd9TxHbdryV13bGJa97Ma52/qYvxtbNvLV12uOmKmz7NWoHvz8q/bqRVFkAOD551ckd+vW3Vhzu0qlurSjWq0Wa25Xq9WXtouiyGg0GuGdd3Zd0ZOlVCpFAGAYBlKNpsjl8gbfu1wuu6IMwzQ+QM/Ly1WUlpYoZDKZdOrUCV2/fv0N9e9x+eGsVuGK4Kr6+RBFEaGhYca1a9dfkeHYw8OjXSaaqI9bBEAcxwUCGAHg5RqbMgDUTAHl+DkLgKLaa0k1yjj+w7uijiYTRQnl5fqGCzaRTMZCp9OgvNwAQbji/zlxETrPLaOu82yxWODD2v5weIZ1RknJlc8iWI0t6JFZrLVuJ/+i67nl0LluGc11nnU6TZvoVZJpNI1+081VtqV07x5tlMlkUk5OttIxBA4Adu3aFpSWlqJesWJNemPriorqYTAYDDKz2cT07Nn7UjC1fPmSiO7de+hnzpxdEBHRVX/+/N+eAPId23k+rlmfsomiiFWrlkVGRETqJ0y4uWjLlk1dRoy4obxv3372IIi5LNqRyeRSZWWVrPr++fl5yrCwsCsCRIdu3aIMP/543F+n0wmOoXRWqxULFz7dbcyYm0puu61jpdh2iwAItuBHAvBjjdd/AjCH4zgZz/OO6HQsAJ7n+XyO48oAlAMYDXvwwnGcD4DBAN50YR1OsVqb73NEEMRmrZ/Y0HluGTXPc1ZyCrQy28eTT+fIWn8Hah/bCFWFJMFisoCRya4oQy5H13PLoXPdMug8t3/e3t7C+PE3F+zZs7OTh4eHMHjwsMo///zda9eu7eF33vmf3IZr+NeYMWPLdu7salix4vmoJ554Jj0srJP54MEPAo8fPxowfvzNFwHgnntm5r744tLuW7duCb7ppvGlJ0786P3bb6d8fXx8LM3zDoF3390ckpKSot227b3Ybt2iTD/8cMz3pZeWR+7e/UGcSqWSNBqNmJ+fp8rKylR06hRu6dWrd+WJEz/6nTp1siQwMMiyd++uEINBX+8fwSlT7iw+cGB/6KJFT0c99tj8TJ3OW9ix493Qs2dPez/yyNwONf8HcJ8scAMAJPM8X7PLZAcAHYDtHMf15jjuAQBPAXgFAHieN8EWpLzKcdwUjuP6A/gQtl6fT1xYByGkBeUnJQAAqkQRck3tQ1w8/P5dQFvUu763lRBCiHtYvPiFjNtvvzPvvfd2dnrggXv67tu3O3TatOnZTzzRtIn7MpkMMTFvX+zRI7pqzZoV3R56aEbvf/4567Vs2YtJN9wwqgIAxo2bULZw4fPJ3377VcCDD87oc+LETz5TpkzNa553Bpw794/mgw/2hs2Y8UBWt25RJgBYsuSFtMLCAtWGDa91AoApU+4syMhIV8+ePb2PIAiYN+/prOhornLp0oU9nnji0Z46nc46YsQN9fbgeHt7C5s2vRvv7e1jXbx4QY+5cx/slZ+fp3z55XUJ1XvDOgpGqjnQsRVwHLcZwCCe56+rZdsw2BIjDAKQA+B1nuffrLZdBtvQuVmwJVH4CcDjPM+nurKOJkoWBDGyuNj1w3Lkcha+vh4oKamip17NiM5zy6jrPH+3dzeMRw5D6emFidt21brvr7/+As07W6CRydB1zatQBge3UKvbHrqeWw6d65bRXOfZz88DMhmbAqCbyyp10unTp3uyrOzroKBOlUqlusPdoBLiDLPZqM7Pz/IUReHmIUOGxNdVzi2GwPE8/1g92/4AcEVgVG27ANuipouasw5CSMtJNejxVvwF3H77nZhYRxlvb2+UWK3QyGQQ9TQHiBBCCCGN4y5D4Agh5JKcHNuohpCQ0DrL6HTe+K4gD5/l50Km07VU0wghhBDSxrlFDxAhhFSXk50FAAgNrZnA8V86nTc+zbUFSk94eKLDLWNNCCGEEKdQAEQIcTuT9UZM7zcImnrS23p6ekImk0EQBJSXl0Gt7nDruBFCCCHECTQEjhDiViRJgjckBKlU8A8OqbMcwzAI8fFBqEqNMnuPESGEEEJIQ6gHiBDiVkqKi+Entw1oC+zevd6y/wkJw/UaDxhP/QIMHNwSzSOEEEJIG0c9QIQQt5KblAA5y0KUJGgDg+ovrFQCACyVlS3QMkIIIYS0BxQAEULcSnFqCgCgAhIYWb0LW4NR2eb9WCgNNiGEEEIaiQIgQohbKcvMBAAY5A3ndWPVGgCAaDA0a5sIIYQQ0n7QHCBCiFsxFeQDAAQPjwbLsmo1UFkJmM3N3SxCCHEbDAMZwzCt8hBbkiRRkiC0xrEJcRUKgEizspaWQO7j29rNIG1IQWUF+MoKeERFNVhW4aEFCkEBECGkw2AYyESGCdUbra1yD6dVy60spBx3C4JiYtaHHTv2rf+hQ1+fa+q+iYkJqkceeaD3rl37LnTp0pX+oHQAFACRZpP90Qeo/PZr5HXujBtWrG7t5pA24seiAsTGX8CGRx9rsKxca+slklmtzd0sQghxCwzDsHqjVf7r+RxRb7TWvVhaM9Cq5ey1fUPlXmo5K0mSWwVAzoqNPa9ZvPjZ7maziaaFdCAUAJFmIVmtqPz2awDA17/8DJ9z/6Bfv/6t3CrSFuTk5AAAQkPDGizL+Prhq7wc+EZEYnhzN4wQQtyI3mgVqwyWFg2A7NpNoLB5c0zIwYMfhHbqFG4sLi5StnZ7SMtpNxcxcS+mjHQAQIXVgi/ycnHq1M+t3CLSFhgMBpSWFAMAwsIaDoCUQUHYmZGGU4KluZtGCCHESSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3PntjrXSti1a1vQ6NHXDv7mmy996ipz+vTv3s8993zK3LlPZLrkjZI2gwIg0iz0aakAgOQqW3ri2NgLrdga0lbkZqZj3+Dh2Nx/MDwUDWeB8/DwBABUVdE6QIQQ4s527twaPmbM2OJ33919YejQa8pWr17e/Y8/fvMAgOPHj+rWrFkZNWnS5MIdO/ZdePLJZ9NPnPjRb+nS5yIBQK/Xs88+Oz9ardaImza9Hb9z5/sXRo68sWT79rc7nzv3j6bmsfbu3RW4e/f28GXLViVNnHhLaV1t2r59Lz9p0uQ6t5P2i4bAkWZRmppq+2qxoIeHJ8RMerhCGpaXmAg/loWXQnEpxXVNDAMoFDJYrSI8PbTwliug0hsgiSIYlp7pEEKIOxozZlzhjBmzCgBgwYLFWefP/+114MD+oGHDrknZu3dX6NixEwqnT7+/AAAiI7uZ5HJ52qJFz0Snp6cqtVoPccqUqfn33DMjX6fTiQAwb97T2Z98ciAkISFe069f/0trIezfvzdgx453w1eseClx9Oix5a3zbom7owCINAt9ViaUAHp4eWFUQCBOl5XAarVCLqdLjtStLCMdfgCqWAYMw9RaRq5gkanPRpg2GB5aD2wdOAQAIFRVQu6la8HWEkIIaazBg4dWVP+Z43pVnT17RgcAKSkp2qSkRI/jx4/6O7ZLku1rYmKC+qabxpffe+/M/CNHPvNLSkrQZmVlqtLSUrQAIAjipT8WJSUlii1bYiJkMpkUHt7F1BLvi7RNdDdKmoWlpARKAPlyJcIAeMsVKCkpRmBgncN1CYE+15YAwaxW11nGKBpRUFkEH5UOnjpvlAoC1DIZRKMRoACIEELcklwul6r/LEkSWFYm2b4XmTvu+E/ulClTi2ruFxwcYsnPz5M/8sgDvby8dNZrrx1ROmTI8PL+/QdU3X33HZdlV2IYFqtWvZywY8e7YWvWrIzcvn1PPEsjA0gt6KogzSLZ0wOf5WQj38sHAOCnUKKwsKB1G0XcnqXY9rdPqiOQkclYVFn1yC7Lg95igE7nBaNoy8Qq6PUt1k5CCCFNExt7/rLVrePjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDW7Bt0jaEAqASLP4w6jHvqx0VASGAwC8FQoU5ue1cquIu2MqbCMklP4BtW6XyRiUGStgFiwoN1XA21sHg2ALgPSlpS3VTEIIIU30+eeHgg8d+tgvMTFB9eqra8LT0lI199wzMw8Apk2bnvv777/6xsSsD0tMTFCdOPGT12uvvRxZVVUpDw4OsQYHh5hNJhN75MhnvpmZ6coffzyme/HFZd0AwGw2X3Ev26tXH+PUqXfl7tu3OywpKVHV0u+VuD8aAkeaRUGBrbdH4RcEMfUCZAyD0pzsVm4VcXdKkwlQa+BZxxpAEkSUGcoAAOXGCsh1chhF2zIYhrLSlmomIYS0Oq1a3uIPsa/mmBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAcMUQk7lzn8g5efIn3zVrVnbdtu09nobCkeooACIuJ5pM8KyogL9CCaWHN/QMC09IqMyjHiBSN6vViqSyMrBWKwZ371FrGbNkhcFim9dqtJohQIDZnizBUFbWYm0lhJDWIkmSqFXLrdf2DZWjFUbyaNVyqyRJTV6ANTIyyrBw4dI6U8JOnnx7yeTJt5fUto1hGCxYsDhrwYLFWdVff/DBRy/dWMyf/0z2/PnPXHrSqlKppAMHDjdqDY4RI26oOHHiz9ONKUvaBwqAiMuZMjPwuM4H+T374IJGB71MAU/BDCPNASL1yM/Pw3sZqZDLFfh96LArtjMMYBEtMFptAZDJaoYgCbDaAyBzRcUV+xBCSHsjSRBYSDlerdADZDu+JEoShNY4NiGuQgEQcTmLfS5GqcUMjYcOvG8IPj/9I7ReHvXvSDq07Gzbg73Q0DDUNlSBYRiYRQtMVjMAwCxYYBEtSIKE9LxcXFdP5jhCCGlPJAmCJEkUhBDiJAqAiMtV2ZMdlFks0HrocLFTd3zz9UcYVNqplVtG3FlOViYYAGFhtc//YVkGJrP53wDIaoFVtCJWqcSZjFT08vRswdYSQghpLBpeRtwNBUDE5fT2oW56BvCQK6DRegEAystpQWZSN3NcLPYNHo5cRe0JexiGgd78b6prq2iFWbTA0x74VFVVtkg7CSGEENK2UUoM4nJG+2R0i8wWX3vJ5OA8veBpMLRms4ibMxUWQM6yUGk0tRdggErz5Wv9GC0meHt4wFuugLGk1rmzhBBCCCGXoR4g4nLminIoAAj2J/nhxTlY3bMPfi2lG1RSN6nUFjjL/fxq3S7CCpM9AYKD0WrCAEHCjIFDkMPHN3sbCSGEENL2UQ8QcTlrZRUAQFLZJqWznjoAgJphYDKZ6tyPdGxyg613RxMcUut2QRJhtloue81gMUKmsQXaEl1bhBBCCGkECoCIy+V46/BpThZKNLa5GYzWFgB5yuWoqKB5QORKgiDAw76gqU+XiNrLSALMwuUBkFW0Qqa2DZljrNbmbSQhhBBC2gUKgIjLpahU2J+VgTJPbwCAqNECADxlckqEQGpVUFAAf4UCAODXNfKK7QzDwCJarwiALIIVMrXSVoYCIEIIIYQ0As0BIi5XWWlbkFKlsa37IyhtT+g95DKUl5e1WruI+8rOSIevwhbIqAODrtjOsoBVsMJSSw+QXGu7vmQiLYlBCOkYGAYyhmFoIVRCnEQBEHE5RUkxglUqqFW2nh9RaZsL5CGTo4ACIFKL3Ix0ZBUXoYu/P3p4eV2xnWEYWEULLMLlvTxWUYDcw3adyUSpRdpKCCGtiWEg07CWUMmsb5V7OEaptRpERY67BUExMevDjh371v/Qoa/PNXafAwf2+3/88UfB+fn5Kl9fX8uECTcXPvTQ3FyZTNacTSVugAIg4lKSJGFKaTnu6DcIX8htl5egsj2hZxkGVcXFrdk84qYyCwsQk5KI2/r2xVj2yoeaDMPAYL0yyYFVECBz9ABJYrO3kxBCWhvDMKxk1ssr+d9E0WRo0Q8+VqVhPblr5IzCh5Ukya0CoKY6dOhjv7feeiNizpwn0q+55rqKCxfOaWNiXo8wmy3ME088ndPa7SPNyy0CII7jZgJYDKAbgCQAK3meP2DfNhDAGwCGAigCEMPz/Lpq+7IAVgB4CIAvgBMAHuN5PrFamauugzSOZDJemljmSH4gyeQ4LrJIzUzGYH1V6zWOuK3s7CwAQFhYp1q3MwwDg8V4xetW0Qq1jw4/FhaA8fTEsGZtJSGEuA/RZBAFY1VrPPlpF/PHDx/+NHDUqJuKpk2bXggAkZHdTGlpqepvvvkygAKg9q/VL2KO4+4DsAPAOwD6AvgAwAccx13HcZw/gO8AXIQteFkBYDXHcbOqVfECgDkAHgZwHQAJwFccxynt9V91HaTxBL0tlbFVFCHX/juU6XeNDl/l56K0igIgcqW8zEwwqDsAAqRaAyBBFCAP8MNbqUn4pLiwWdtICCHEOSNHDh2yb9/uwNmz7+PGjLlu8LRpU3t/++1X3tXLHD36jfd9993Va8yY6wbfeeetfTduXBdmMpkYx/b4+Fj1U089FjVx4uiBo0ZdM/jOO2/tu3Pntisnjdrt2rUtaPToawd/882XPrVtnzNnXuaMGbNya75eVVXpFp0DpHm16i+Z4zgGwGoAG3ief8P+8mqO40YCGG3/ZwIwl+d5K4A4juN6AFgEYKc9QHkWwEKe57+013k3gGwAd8IWTD3igjpII4lVtgCoUrBCofa49LrKPh+oqqqyVdpF3NuwikrMHTwcloL8WrdbJeGK+T+AbQ6Q0r4OkMG+jhAhhBD3s3Pn1vD7738wc8mS5amfffZJwOrVy7v7+vrFDxt2TdXx40d1a9asjHrooTkZI0bcUJ6enqratGlDl8zMdPW6dTHJer2effbZ+dH9+g2o2LTp7Xi5XCEdOnQwYPv2tzsPHTq8ol+//obqx9q7d1fg7t3bw5ctW5U0btyEWicfDx9+7WVPZEtLS2VffXUkcMCAQZSutgNo7R4gDkBXAO9Xf5Hn+Yk8z78C4AYAP9kDF4djADiO44IADATgZX/NsW8pgDMAbrS/5Io6SCOJRttnkEEQoLDP/QGAALkcnKcnLJQGm9QgiiLUFgvkLAvvoNoXQRUhwCJaat2mUCqgZFnIzWZIIs0DIoQQdzRmzLjCGTNmFfToEW1asGBxVlRU96oDB/YHAcDevbtCx46dUDh9+v0FkZHdTKNG3VT+9NPPpf366y++6empSr2+ip0yZWr+88+vSIuO7mns1i3KNG/e09kAkJAQr6l+nP379wbs2PFu+IoVLyXWFfzUVFlZyS5YML+7xWJm589/NsP17564m9bu5ou2f/XgOO4bAIMApAB4ief5zwGEA6iZzSPb/rWLfTsA1LxYs+3b4aI6nCKXuz6+lMnYy766G9HkCIBEaDQeYFlb7/VNVUW4r2df/FRW1iznxdXc/Ty3FzIZi5ycHPjJbWsABUZ1q/X6sDAWiJJw6XqqTq6SY/egYZAxDMTyUqgCApq93W0NXc8th851y6Dz3PYMHjy0ovrPHNer6uzZMzoASElJ0SYlJXocP37U37Fdsif2TExMUN900/jye++dmX/kyGd+SUkJ2qysTFVaWooWAARBvPSHoaSkRLFlS0yETCaTwsO7XJk5pxZ5ebnyBQvm98jLy1WtXbv+Yteukearf7fE3bV2AKSzf30PwIuwDUv7PwCfcRw3HoAWtuFr1TkmAqjt21FHGT/7966oo8lYloGvr0fDBZ2k02kaLtQKys22AMgoCvDx84XcfmMrKZWAqQqwmJr1vLiau57n9uT8+TQEKG3T7YK6R0Bby/VRrLeAVTBQa66clqf2UKNMFKCVySGHpU1dXy2NrueWQ+e6ZdB5bjvkcvllaxVIkgSWlUm270Xmjjv+kztlytSimvsFB4dY8vPz5I888kAvLy+d9dprR5QOGTK8vH//AVV3331H/+plGYbFqlUvJ+zY8W7YmjUrI7dv3xPP1pJZ1CEhgVcvWPBkD0EQmI0bN/O9e/c11FmYtCutHQA5ouz/8Ty/2/79WY7jBgN4BoABgKrGPmr71yr7dtjLGGqUcYztdEUdTSaKEsrLXT8nQSZjodNpUF5ugCC433CfEkaOT3OyUCaKuNYiwWKx/Yo1MlsgJBiMKClx/0QI7n6e2wuZjEVGYhLC7SnTDXItTDWuD4ZhUCUaUVllgNF65YM5s0aASRShlQH5WXmQBYS2SNvbErqeWw6d65bRXOdZp9NQr1IziY097zF+/M2XhqTFx8d6RkVF6QEgPLyLISMjTd2tW9Slh9GnTp3w/PDD94OXLFmeduTIZ/6VlRXyAwcOn1coFJK9Pnv0+29c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p60tFTlU089Hu3p6Sm8/vqmi+HhnWsfZ03apSYHQBzHyWFLTjAWQCQAbwCFANIAfAXgF57nG7siYab9a80hahcATAaQCiCsxjbHz1kAFNVeS6pR5m/79xkuqMMpVmvz/fETBLFZ63dWhUaL/VkZ8PXzx/BqC1MKClsMypgtbtnuurjreW5P8hISEA7AxLIQZQqINc63TMbCIlhhtlog1rLYqUW0wmwfK1FZUkq/r3rQ9dxy6Fy3jI58nlmVpsUjtas55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgO99JLK7parRb2hRdWJygUCikvL/fSPXFwcMiVWXdIu9LoAMieLW0ubBnTwgGUwBb0VAHoDFvA8jyAbI7jXgXwLs/zDY2//AtABYBrYVt7x6EfgEQAvwCYw3GcjOd5x4JbYwHwPM/ncxxXBqActoAsyd5OHwCDAbxpL/+TC+ogjVRlT3OtVmsve11S2jrdZFb6TCGXK8+0PQexamofysIwtiDHKta+5p4gCnA8tjNVUpZBQkj7JkmSyCi1Vk/uGjlaIZkVo9RaJbHpK09PmDCp4ODBD4I3blyniYiI0L/yyrqEPn1sQ85uvXVKiSRJyfv37wn95JOPQrRaD2Ho0OGlTz+9MNOxPT4+Lnfr1i2dN21azwYEBJonTryl8NSpkz5xcRc8ABTUPN7cuU/knDz5k++aNSu7btv2Hl99KFxOTrYiLu6CFwDMmTOrd819T5z483RT3x9pWxoVAHEcNxzAbgACgC0APuJ5PqmWcv0A3AJgPoAnOY6bwfP8qbrq5XnewHHcawCWcxyXBeB3ANMATIAtSIkFsBDAdnu54QCegm3NHvA8b+I47k0Ar3IcVwBbj9H/YOv1+cR+mB0uqIM0krGwEMEqFXSaywMg2NNgs0KbXjiaNIO0/HycLK9Av959at3OMAzMtQx9cxBEEVbGNgfWTGnWCSHtnCRBMIiKHEbh0ypj9SRREiUJTf5jHhkZZVi4cGlmXdsnT769ZPLk20tq28YwDBYsWJy1YMHirOqvVx/eNn/+M9nz5z/jSHIFlUolHThw+EJt9YWGhlkoyOnYGtsDtAfAYp7nP62vEM/z52AbzvYqx3H/hS1oim5gn5c4jtMDWAOgE4A4AHfyPP8DAHAcNxFADGxpqXMAPFdtvhAALLe/j20ANLD1+Ezked5srz//ausgjaf86ww29RuEHyw1enrUtqf7ijqe4pOO65fUFHxZWoqP1r5e63aGAYzWujuTBVGAcCkAcv/5ZYQQcrUkCYIkSfQHlRAnNTYA6tfUYIDn+Y84jjvUyLLrAayvY9sfAK6rZ18Btuxxi+opc9V1kMYRTbYEe6JMcdnrxqAu+PC7A0g3GDBdksAwV6YzJh1PeXk5SktLAQDh4eF1ljNajXVuEyQB6SyDrKICcPLWzutCCCGEEHfXqLsFZ3tCqAel45FMtif1ouLyS8sS2hUf59h6rg0GPbRaSlVMgIyMdHjLFVB4e9d5TYgQYRHqnjsmiCLOapQ4dSYJqzw9m6uphBBCnETDzYi7aewcoOVNqZTn+VXONYe0efYASFJcvl6LQqECw7CQJBFVVVUUABEAQEZ6Gt7oOwAqmQzmvFwog0OuKCNIQgMBkACN1jbHzGCgJRwIIYQQUr/GjhdZWeNnCQADW1KEQgC+AJSwretTDIACoI7KYsvHJSouX3qJFQV09/aF1WyAXk/zNIhNbmoKutiHrcl9fGstI0KEVawnAJJEqNVqyBkGxoqKOssRQgghhACNHwJ3KdMIx3FjAewHMA/Ax47U0hzH3QxgO2xpskkHxTqe1CsvD4CU5cVY070Hyi2WS6myCSlNSwMAmBQKsKqa6xXbiJJYZwpswNYDNMxoxgNDrkF6UmKztJMQQggh7YczKRTfBPACz/MfVVtXBzzPfw1gGWzZ3EgHxVptl4Rj3R8HUW5LiqBiWQqAyCXGPFsGU9HLq9btDGMbAmetZwicKIlgFLbrSzLTtENCCCGE1M+ZAKgLgPQ6thUACHa+OaSt4xUKfJ2fC4v28hta0T4nSCWTwWTQt0bTiBuSSm1LPigDA2vdzjCMLQCqbwicKIBR2a4vxmKpsxwhhBBCCND4OUDV/Q3gCY7jjvI8f+lug+M4NWwLjv7mqsaRtucURJxIT8W0cd6XvS7K/02KYKykxSoJYLGYobH32HiFd661DMMAgiDAUs8CuqIkgVHbh89ZKQAihLR/DAMZwzCtsxCq5NxCqIS4E2cCoCUAvgGQxHHc1/i31+cWAB4ARrmueaStcQxvU9QYAifJ5BAlCSzD0GKVBACQnZ2FIPtcMe8uXWot4+gBEurpAQIAVm3vAaonUCKEkPaAYSCT5EKoXjC0ysJnGrnGylhlOe4WBMXErA87duxb/0OHvj7X2H12794edPjwp0FFRUXK4OBg0//9339z//vfe4uas53EPTT5Pw/P8z9yHDcCtkDoNgB+sGWCOwpgFc/zNAu5g5JEEWqjATq5HIoaSRDAMLCCsaUKrKIeIAKkpqbg7/JSyD08EFlHAAQwMAtWSA3Uxapsc4BYQXRpGwkhxN0wDMPqBYP898yzosFibNEPPY1CzQ4PHyj3YLxYSZLcKgBqqn37dgfu3r2j09NPL0jt339Q1S+/nNC9+ebGrl5e3sKkSbeWtnb7SPNy6ukBz/NnANzl4raQNk4oL8fTHjqIA4bgeI0eIACwMLZc6VZaq4XAFgB9kZcLdvgw/DeyG6zWK/+OMwxgspoarsyeQU4mUQBECOkYDBajWGU2tMaHXqsMvXO1yspK2cyZs7Juu21qCQBERHQtPHLkUNCff/6mowCo/XO6+5TjuEkAxgMIBfA8gEEATvM8n+aitpE2RjQZAQBGUYBCpb1i+59yDfLTE9Bp4ICWbhpxQ2lpqQCAqKioOsswDANjIwIgwUuDP0qKYfbwwI2uaiAhhBCXGDly6JC5c59I//777/xSUpI8goNDjLNnP5I1YcKkMkeZo0e/8d61a1tYVlamxtfXz3zjjWOK5859IkelUkkAEB8fq3777Tc7xcXFehmNBtbfP8B8221T82fNeii/tmPu2rUtaNeubeFLlixPnjjxltKa2x999PFcx/cWi4X54ovDvllZmeoZM2ZlN8MpIG6myVE8x3FajuO+BfAFgNkA/gvbQqhzAZzmOK6Pa5tI2grRZLtRNQoiFIor13Q5o/XFgexMlIv0lJ4AuWkp8FcqEdWtWz2lJJitDae2tgT54X9JF3G4oqzBsoQQQlrezp1bw8eMGVv87ru7Lwwdek3Z6tXLu//xx28eAHD8+FHdmjUroyZNmly4Y8e+C08++Wz6iRM/+i1d+lwkAOj1evbZZ+dHq9UacdOmt+N37nz/wsiRN5Zs3/5253Pn/tHUPNbevbsCd+/eHr5s2aqk2oKf6n799RfPm24aMXjdulcib7hhdFFD5Un74Ew35ssAhgAYCyAAAGN/fQaALACrXdM00tYI9qFtRlGATHHlEDjHvCADDYEjAAIKi7Gl/2CE/fpHnWUECLDUswiqg1xp68w2Go0uax8hhBDXGTNmXOGMGbMKevSINi1YsDgrKqp71YED+4MAYO/eXaFjx04onD79/oLIyG6mUaNuKn/66efSfv31F9/09FSlXl/FTpkyNf/551ekRUf3NHbrFmWaN+/pbABISIi/LADav39vwI4d74avWPFS4rhxExp8KhYV1d24ZcuO2Pnzn0k9deqE3+uvr+3UPGeAuBNnhsDdDWAJz/PHOY6TOV7keT6X47iXALzlstaRNsVUUQEAMAoClKorHsjAWyZHuFoDkZIgdHgVFRXwsi9u6tM1os5ygiQ2mAEOAORKWxIEs5GCa0IIcUeDBw+tqP4zx/WqOnv2jA4AUlJStElJiR7Hjx/1d2yX7NlvEhMT1DfdNL783ntn5h858plfUlKCNisrU5WWlqIFAEEQHQ/iUVJSotiyJSZCJpNJ4eFdGjGBFAgMDLIGBgZZ+/btZygpKVHs3783bP78Z7OVSmVD+XdIG+ZMAOQDILWObSUAPJ1tDGnbjBXlAACTKEKuUF6xfVR5Hmb0HYCT5eUt3TTiZlJTUxCqsvUSetcTAEkQYW1ED5DKbMH7g4eDZRhIkgSGYRrchxBCSMuRy+WXBRSSJIFlZZLte5G5447/5E6ZMvWKFNTBwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO2DnY4d+04XHt7ZHB3d89LQgaioHgar1cIUFxfJQ0JCaWG5dsyZIXDnAUyvY9tt9u2kAzLZFzi1AKjtA0eQ257SS2b6TOno0tJSEKq2BUDq0NA6y4mSCKvQcA8Qq1VDzrK2AMjacHlCCCEtKzb2vEf1n+PjYz2joqL0ABAe3sWQkZGm7tYtyuT4l5eXo4iJeT28srKC/fzzQ/6VlRXyHTv2xj/++JM5kybdWlpWVmp/iP9vXOXj420ZNWpM+eLFy1KTkxO1O3duDa6rPdu2vR2+c+e2kOqvXbjwj4enp6c1KCiYblTaOWcCoJcAzOA47giAh2C78kZxHLcJwGMAXnNh+0gbYvbwwDf5uYg11T4PQ5Tbe4Us9LnS0aWmJCPE3gOk6RRWaxmGAQRJaFQPkEzzb9INEy20Swghbufzzw8FHzr0sV9iYoLq1VfXhKelpWruuWdmHgBMmzY99/fff/WNiVkflpiYoDpx4iev1157ObKqqlIeHBxiDQ4OMZtMJvbIkc98MzPTlT/+eEz34ovLugGA2Wy+4l62V68+xqlT78rdt293WFJS4pVZmQBMm3ZfzokTP/rv2bMrMDk5SbV//56AQ4c+Drn33pnZdfUakfbDmYVQP+M47j4AawHcYn/5dQD5AObwPH/Qhe0jbYje1w/b01MREtYZ/WvZLtmHxTEUAHV4hcnJULAsRIaBKiAAhvIrg2aGYZoQACkhShJYhoGhogwaH59maDUhhLgPjULd4nfpV3PMCRMmFRw8+EHwxo3rNBEREfpXXlmX0KdPXwMA3HrrlBJJkpL3798T+sknH4VotR7C0KHDS59+emGmY3t8fFzu1q1bOm/atJ4NCAg0T5x4S+GpUyd94uIueAAoqHm8uXOfyDl58iffNWtWdt227T2+ZlAzZcrUEkGwpnzwwb7Q7dvf6RwQEGB+9NF56dOmTS909j2StsPZhVDfB/A+x3EcAH8ApQDieZ6n/MYdmMFge/KuVl+ZAAGoFgAJbXrxaOICptwswEMHUacDI5PVWoZhAEEQYW1EEgRGLoNZFKGWyS4NxSSEkPZIkiRRI9dYh4cPlKMVFiXVyDRWydr0VacjI6MMCxcuzaxr++TJt5dMnnx7SW3bGIbBggWLsxYsWJxV/fUHH3w0z/H9/PnPZM+f/8ylNXxUKpV04MDhC/W1aerUu4qnTr2ruPHvgrQXTQ6AOI47BuAxnufjeZ7na2zrD2Avz/O1dQCQds5QWgovuRwa1ZUpsAFAsqfGllEA1KGJooj4rCwc8qrAf8eNr6ekvQeoEdeLKIowSxLUAIwUABFC2jFJgsBYZTkejFerjNOSrJIoSaA/5KRNa1QAxHHcSPz7lGE0bHN+gmopOhlA3cu6k3bN4+xZbB84FCfFOjJHKu0BEC2E2qFlZ2chpbwMmQY9Fk67p85yDANYBCskNJyJVJBEWOzlzFV6l7WVEELckSRBkCSJghBCnNTYHqCHAMyELeGBBGAzbAugVr8zceSdfd9lrSNtimg2277Kar+sDP6h+Dw3G9lWAfe2ZMOIW0lMTAAAREZGQS6v+yOIYRiYBXOj6hQlEYlmM1IrK9Gn6SMzCCGENKMTJ/483dptIKS6xgZATwLYCVuQcwzA4wBia5QRYJsLVO94S9J+SRbbzapURwBkDO6CPZnpYFmW1mrpwBITL6KXpxd6R0ZBkuru3WEYwNTYAEgU8YmpCilJyXhHq3VVUwkhhBDSDjUqAOJ5vgzAjwDAcdwYAKcBePI8n2t/zRdAZ57naQ2gjsye3U2yr/dTk8I+BE4URZjNZqhUtWamJO1cRsJFvNizD1BUBNFgQH1rJ5usjVrIG6IkQm1fV8hURxp2QgghhBDAuewhfwP4FMAP1V67BsBZjuMOcRxHj187KKmBAEgpk8FfqUSQUgWj0dCSTSNupCo9FQAgaD0gq6e3RoQISyMWQQVsc4BUaltAbTBQAEQIIYSQujkTAK0F0AfA89VeOwbgdgBDAaxyQbtIG+RIby0pag+AtOWF2NJ/MFZwvWEwUADUEVmtVsiKbVlOlZ061VtWlEQIjVgDCLD1Kk6VqbB38HCo+firbichhBBC2i9nAqApABbwPP+J4wWe5808z38OW1D0X1c1jrQtjNX+tF5R+9A2UW5bB0gtY6kHqIPKyEhHmNJ2HXhFdqu3rAixUYugAoAECXIZCyXLQqAhcIQQQgiphzMLoXoBqHWhKgB5AAKcbw5pyzIUCsTmZMHQhat1u2NonIqVUQDk5rKyMvHOO2/BYDBg5szZ6NfPNUt7JSZeRGeNbdibqlN4vWVtAVDjhsABgMjKbHuZG5c4gRBCCCEdkzMB0BkADwL4qpZtswD8c1UtIm3W73IW36ck4a4bJte63dEDpGRZVNFaLW6rrKwUjz46C5mZGQCAn3/+Ae+8sxMDBgy66roTExMwRKMBAKgaMQSusT1AACDKZYDJAtHUuMQJhBDSVjEMZAzDtM5CqBIthEraPmcCoJcAfMVx3J+wJUPIBxAI2xygIbAthko6IKPRNvRIXucQuH/nBhkqK1ukTaTp3nlnM6rycvEw1wteXjrs/PsMli1bjIMHD1915r60+DiMVSghAVCGhtVZjmEAQRIgCI3/GyspZAAA0UI9QISQ9othIFOJllBBr3fmHu6qybRaq4lV5LhbEBQTsz7s2LFv/Q8d+vpcU/eVJAmPPfZQD6vVwm7d+h7fHO0j7qXJ/3l4nv+O47jbYEt2sAr/Loh6FsDtPM9/7dIWkjZDMhqgYBgoFMrat1dbH8iir2qpZpEmKC8vw/HPD2F1z74Isgc7/fsOxAtx53Hw4IeYPn3mVdUfdzEeb5ktePiuaWDrCaYYhoEgNq0HSLIvqiqZLVfVRkIIcWcMw7CCXi8v+u030ao3tOjKz3KthvW/5ho54+XDSpLkVgHQ1di5c2vQuXN/63r16k1PZzsIp54e8Dz/FWy9QGoAfgDKeJ6nO9oO7nHIoBhyDX4U6/g8ZhiYJQlKhoGpsqJlG0ca5dixo/hPQCCCVCrIAwIh02hQZjQi/+/T2LdvN+6++17I5c49dCwuLkZaTjbSALw84/56yzIMIIhCk+YAwd4DdCkZByGEtGNWvUG0VlW1aABk1ypD75pLbOx5zQcf7A3r3r0H3cd2IE53n3Ic1wvAeAChAN7kOG4QgL95nm/SnS3HcREAUmvZ9DDP89s4jhsI4A3YUmwXAYjheX5dtf1ZACsAPATAF8AJAI/xPJ9YrcxV10HqJ0kSFAwDAGBU6jrL/SkyKCnMQTe6SXVLZ77/Fvf62fKYhM19HMrgYAQKIrS//ozs7CwcP34U48ff7FTd8fGxAICIiK7w8Kh78VPA1gMkSkKj02ADgMFDjfPlZTB6eDjVPkIIIc1j5MihQ+bOfSL9+++/80tJSfIIDg4xzp79SNaECZPKHGWOHv3Ge9eubWFZWZkaX18/8403jimeO/eJHJVKJQFAfHys+u233+wUFxfrZTQaWH//APNtt03NnzXrofzajrlr17agXbu2hS9Zsjx54sRbSmsrYzQamVWrXoicPv3+7IsX47X5+Xm0QnsH0eQonuM4GcdxWwGcB7ARwEIAwbAFEGc5jqs/tdOV+gMwAgiDLZhy/NvHcZw/gO8AXIQteFkBYDXHcbOq7f8CgDkAHgZwHWzD8b7iOE5pb+9V10Ea5lgEFQCgqntxy6OsErsz0kApENyP2WyGNjUVLMMAkZFQR3QFq9ZA6+GB//u/uwEAnx36pIFa6hYfH4sx/oEY1b0HpAYDYAZmwQqpCfUXhAZg1cU4/ClrVw8nCSGkXdi5c2v4mDFji999d/eFoUOvKVu9enn3P/74zQMAjh8/qluzZmXUpEmTC3fs2HfhySefTT9x4ke/pUufiwQAvV7PPvvs/Gi1WiNu2vR2/M6d718YOfLGku3b3+587tw/mprH2rt3V+Du3dvDly1blVRX8AMAr7++NtzX188yc+bsWoMo0n450wO0DMB02HpLvgCQa3/9WQCHAawBUP/4lsv1A8DzPJ9TcwPHcU8BMAGYy/O8FUAcx3E9ACwCsNMeoDwLYCHP81/a97kbQDaAOwF8AOARF9RBGiBVSz3MKK/4LLpEbs8EZ6K1WtzOhQvnoWNZiJKE0DHjLtt263Uj4PH9UZRnpKO4uAh+fv5Nrj/p/DnMjYwCyiogmkyQ1TOUjmEAs9C0ZAZKle3aohTrhBDifsaMGVc4Y8asAgBYsGBx1vnzf3sdOLA/aNiwa1L27t0VOnbshMLp0+8vAIDIyG4muVyetmjRM9Hp6alKrdZDnDJlav4998zI1+l0IgDMm/d09iefHAhJSIjX9OvX/9IH//79ewN27Hg3fMWKlxJHjx5bXld7jh8/qvv55x/8du58P5axj2AhHYczAdBsAMt5nt/JcZzM8SLP8/9wHLccwNom1tcfQGwd224A8JM9cHE4BmAJx3FBALrCti7RsWrtKOU47gyAG2ELXlxRB2mAY+0VqyhCXs8QOK1cAV+FAmZKg+12zp49jXfTUpDdrRvWDB8OpYKBIDGwWkUEaz1xvX8AzKKIY0c+w39mzm5y/YbUFMAvAIJOB1kDw9QYBjBZmxYAyZS2LIMUXBNCiPsZPHjoZVMkOK5X1dmzZ3QAkJKSok1KSvQ4fvzopadrkn0IQGJigvqmm8aX33vvzPwjRz7zS0pK0GZlZarS0lK0ACAI4qXopaSkRLFlS0yETCaTwsO71LkmQmFhgXzdurVd5817Oj00NIwy53RAzgRAwbBlfKtNJmxzaJqiH4AcjuN+BhANIAHAap7nvwEQDqBmOsNs+9cu9u0AkFFLmS72711Rh1PkctcPxZHZh/fI3GyYj1WwfX6YRREKpRosW/vTlP9aKxE2YAjOFBc1y/lxFXc9z83p7NkzAIDew66BRiXCknUeCt8QyDyDIevbB1U6HTzKy1F+7HvIZz/UpLrLysrgZ7A9oPPs0ePS776u8yyTsTCL5jqvo9oElldh24AhKBYZt762WkNHvJ5bC53rlkHnue2Ry+WXjWqWJAksK5Ns34vMHXf8J3fKlKlFNfcLDg6x5OfnyR955IFeXl4667XXjigdMmR4ef/+A6ruvvuOy1bpZhgWq1a9nLBjx7tha9asjNy+fU88y155jfzwwzHvsrJSxYYNr3XdsOG1rgBgtVoZURSZsWOvH7Rmzf8Srr12BGWEa8ecCYASAdwC4Ggt20bbtzeKffhZNIAqAM8BqARwH2zzb8YD0MI2fK06x+NdtX076ijjZ//eFXU0Gcsy8PVtvsnYOl3dw8xaQ2mB7XPNJIrw9PKERlP79ClRJgcEC1jR2qznx1Xc7Tw3J56PAwCMuG4omNIsiEVpEK16aL19Idd5o/t99yBn8zsYCAalBVmIjI5udN1nzvyKnl46AEDosCFX/O5rnmerYAUrY6Cu4zqqjaRWQqdQwCC0jWurNXSk67m10bluGXSe247Y2PMe48fffCnpQXx8rGdUVJQeAMLDuxgyMtLU3bpFXboXO3XqhOeHH74fvGTJ8rQjRz7zr6yskB84cPi8QqGQ7PXZf/n/xlU+Pt6WUaPGlAcFBZnnzJnde+fOrcEPPvhoXs22TJx4S8ngwUMvC3DefHNDeFFRoWLFijUpoaFhtKBcO+dMALQRwDv24OVz2K68HhzHjQGwAMAzja2I53kzx3E+AKw8zzsu+tP2DHMLABgA1MzI4RhfVWXfDnsZQ40yjnSGrqijyURRQnm564d5yWQsdDoNyssNEITWyH5Zu+JyA04WFUIvCggTWRgMtX92aOwLV1v0BpSUuG/GSXc9z82luLgY830DIPkEIFgUUZWbCYvBDBizAa9gMIFK+Ay9DnF4Bz5yOU68vRU+L6xsdP0nf/4F1zsyv4V3vfS7r/M8y0QYjCYY67iOaiMqbR9ncglufW21ho52PbcmOtcto7nOs06noV6lZvL554eCIyIijX379q/6+OOPAtPSUjWLFr2QCgDTpk3PXbt2dbeYmPVht9xyW1Fubo7y9dfXdg0ICDAHB4dYg4NDzCaTiT1y5DPfYcOGVyYlJao3b47pDABms/mKX1ivXn2MU6felbtv3+6w0aPHlkZFdb/sIbeXl5fo5eV12WsajUZQKpXy6kEYab+cWQh1G8dxgQCWApgL20Ko+wGYAbzG8/zbTayvtjuVcwBuhm1YWs3l4h0/ZwFQVHstqUaZv+3fu6IOp1itzffHTxDEZq2/qYwaLd5ISYRMJscLjAyiWHv+LoG1TRsTzRa3an9d3O08N5fYf/5BpNYDMoaBh1YJQ04JIEoAJJgKsqD2CYUgKqDv3Rs+sbHwTkiAxWwFU8vQgtpk//UX1DIZrAoFZEEhV5zTK84zI8AiWOu8jmqltPUWydG8//faso5yPbsDOtctoyOfZ7lW0+KR2tUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPr20oHOm4mhwAcRzny/P8KxzHvQVbymh/AKUAfuV5vriJdfUH8AuAm3meP1Ft01AAF2CbazSH4zgZz/OOBUHGwpY1Lp/juDIA5bANvUuy1+kDYDCAN+3lf3JBHaQBRqNtVKFSVX8KfVFmjzctNOfQnWSePQM/hoGRYQAYgWqL2ZoriqE2VECmCcCA6TORsmgB/OVypBz9Bt0mTGqwbqvVCllONhDaCfKIro0KmkSITVsEFQCrtXXsKiibDyGkHZMkSZRptVb/a66RoxUWJZVptVarJDU56oyMjDIsXLg0s67tkyffXjJ58u0ltW1jGAYLFizOWrBgcVb116sPb5s//5ns+fOfcczxhkqlkg4cOHyhse1bs+Z/qY0tS9o+Z4bA/c5x3DKe5z8E8M1VHv+8/d8WjuPmAiiELW31dQCGAciDbZ2h7RzHvQZgOICnYFuzBzzPmziOexPAqxzHFcC2oOr/YOv1cSxYssMFdZAGGPV6yBgGqnoywAGA6Eh9TAGQWzGkpdm+enpA0F++lrFkMcNalg+ZZyB8g0PwsUqJtNQURCYmNCoAio+Pw+GsDKRbLNi0cEmj2iNKIqxNWAQVAFi1rQdIyTKQJAmU1pQQ0h5JEgQTq8hhvHxapUvDKkmiJKFpH9CEuBln/vP4whaoXDWe50UAtwH4HcABAH8BuAbAeJ7nz/E8nw9gIgAOwBnYFjF9juf53dWqWQ5gO4BtAE4CsAKYyPO82X6Mq66DNMz891/YP+QaPBlW/zq4kr0HiBHos9OdyIptiXdkQQEQDFeOSrWUF4G12nr5Am+ZjM/zcvDF9981qu5ffz0JEYB3n77wiOYaLM8wgCCJEJoaANl7gOQMCwulwiaEtGOSBEEUJUtr/KPgh7QHzvQAvQHgfxzHPQvgPM/zV4y7bAr7/g/Ws/0P2HqE6touwLao6aLmrIPUz2owQglAZFnI6ilXqvPD9/FnUOLj3VJNI43gbTIBag28uoRDMF2ZvMNaVQ6Yq8AqfTFmzDi89NIKJCUlIDExAd2796i37l9//QUAcO21IxrVFoZhIIgCrE0MklkPNZKqKmEWRYRU6aFUU3YoQghxBydO/Hm6tdtASHXOBEAzAUTAngab4654oivxPO9MvaQNsxptN80CU38AlB/UBXvSktFD2XBPAGkZVVWVCJbZ/ssGdQsHJMMVZUSzEWJVKWQaf+h0Ooy47npYzp1D8aaNsKxYBYWf/xX7AIDBoEfv/HwM6NIVw7tFNao9DAOIotDkIXCMSoGlfCxEUcSIJu5LCCGEkI7DmUBlr8tbQdo8q9GWNVJoYIK7XGFLkmCiIUpuIz0lGQlVleik9UD3AB0sZVcGQABgKSuEKqArLAAmTLwVptw8+FRVofT7owi86+5a9/nz5AmM9w+ESiZDSB1B0pUYp4bASZCgVquh1+svJeUghBBCCKnJmQAoBcAxnufrzORBOh7RZA+AZPX1/wAKuRwaVgbGRNOr3EV6ViZeTeQxeNAg3MDUHXQIhgowVgMADUaPHoOn17+KvjpvFP9wDH63ToZMe+Xioylff4FrZTKUKxRQN6EHyCJYIaEJKbBhS5yguhQA1R7EEUIIIYQ4kwRhPWxpqgm5RDTbAiCJrT8A6lSYjd2Dh+EBv4CWaBZphLS0VABA187hEMx195xYDVWQTHrIZCw8PDzh2X8g0g16MCYTig4fuqK82WxGaK4tQ6ly0OBGZ2VjGAZmoekBsiiKWNSpC94dMBimjPQm708IIYSQjsGZACgfgI+L20HaOMlsu2G9lOa6Lkr7Wi1NfLpPmk+GPQDqEh52KZCtjWS1QNCXQSazBTI3T5qM3Rm29Nmlx76HMTX1svJ/H/wIEWo1jKKInnff0+j2MAxgciYAkiR4yeXwUShhrqxtfWVCCCGEEOeGwG0F8BbHcWNgW8Mnr2YBnuffu9qGkbalTKlEZmkJysO6or78bozanqoYtFaLu+ifl4epA4fCqDdCsta/PpO1vBjKACsABmPG3IT//W8NThUX4To/f+S8/Ra6LF0OmZcXhMpKsMe/BwCk+fmiv7dPk9pktjY9AJIgwbF0qtVAQ+AIIYQQUjtnAqDX7V9n1LFdAkABUAeT7K3DjkQe46IHoHM95VilLTWxkmVhNpuhUqlapoGkTlqTGZ4qFZS6K+fw1CQYq8AIJgBqKBRKTJt2H97ZHAPO2wd+hQXQ83HwGjocGd99Ay9JQr7JiJ6zn2tSeyRIsAjOLZRrtQfUFpoDRAhpxxgGMoZhWmUhVIkWQiXtgDMBUKTLW0HaPIPBNndEoaw/oGHsa7OoWBYmk5ECoFYmiiJ87UGDT0jDWdoEYxVgMYJVaiCKEv7zn7uxa9d2rI47h2f+ey+ihw4HALzz60kMKy/DGT9fvNS7T5PaJEgirKLY9DcDQGBt78VKWeAIIe0Uw0DGMmyo2WhtlSVHlGq5VYSY425BUEzM+rBjx771P3To63ON3efhh++Pjou74FX9tejonpU7duzlXd9C4k6a/J+H5/k0x/ccx2kB6AAU8Tzv3CNb0i4Y7UOOGgyAFLYhcEqWhdFohE5HC6K2pqL8PPgpFACAgLBAwFr/3BnRbIJorIRM4w9RFODt7YM5c+bhf/97GUs/eh8eI0YiNTUFX33zJb4C8P77B5vcJhECBNHacMHa9mVZQAQECoAIIe0UwzCs2WiVx53PEU1Gq3NPi5ykUsvZXn1D5Qq1jJUkya0CIGdkZKRp5s59In3cuIkljteUSiVNUu4AnHp6wHHcDQBeAzAMAGN/7XcAz/M8f9x1zSNtxU25ufi/wcPxq6n+oUeSQgnA1gNkrmfCPWkZuUmJUDEMLJIEhUYJa0XDyQOEimLI/Lpc+nnatOk4ceJHnDp1EnPmzL70+sMPz0Xv3n2b3CYJUpMXQb3UNpYBRAkirTNFCGnnTEaraDRYWjQAsmuVoXeulpOTraisrJT37z+oMjg4xLmnbqTNavJFzHHcCABHYcsEtxrAYwBeAuAH4BuO465zZQNJ28CKIpQsC1aurLecoFTj9/JynCoposUq3UBpuq1DtxJSgwkQHARDJdhqWdpkMhnWr9+EKVOmQi5XQKvVYu7cJzB37hNOtUmURKcDoEqFHCn6KtAMIEIIcR8jRw4dsm/f7sDZs+/jxoy5bvC0aVN7f/vtV5cNATl69Bvv++67q9eYMdcNvvPOW/tu3LguzGQyXcqUFB8fq37qqceiJk4cPXDUqGsG33nnrX137twWVNcxd+3aFjR69LWDv/nmS5/atsfHx2oYhkGPHtF0M9IBOdMD9BKAnwFM5Hn+0l0Kx3EvAvgGwIsAJrimeaStkDnmbDQwBE5UabCtsAClxQUYaaIeoNZWnp2FYABGuRyipXGZ1wSjHozVBIaVQ7IPFNBotFi16hUsW/YiWJaFvKF06HVgGECQBAhOBkB/+nniu59/xpwbRzm1PyGEkOaxc+fW8PvvfzBzyZLlqZ999knA6tXLu/v6+sUPG3ZN1fHjR3Vr1qyMeuihORkjRtxQnp6eqtq0aUOXzMx09bp1Mcl6vZ599tn50f36DajYtOnteLlcIR06dDBg+/a3Ow8dOryiX7/+lz332rt3V+Du3dvDly1blTRu3ISy2tqTmJig0Wo9hFWrXog4d+5vnVqtFq6//saSuXOfyFGpVDQMrp1z5i5lOIB7qgc/AMDzvMhx3CZQBrgOSSZJAMOAsa/zUx+5whYkmSgAanUFFRWoKCuBd2TXxvcAGfWQLAawGi8IwuWjL5TK+nsAG8IwjD0JgnMBkEJlm89E1xYhhLiXMWPGFc6YMasAABYsWJx1/vzfXgcO7A8aNuyalL17d4WOHTuhcPr0+wsAIDKym0kul6ctWvRMdHp6qlKr9RCnTJmaf889M/J1Op0IAPPmPZ39yScHQhIS4jXVA6D9+/cG7NjxbviKFS8ljh49tryu9qSkJGssFgvTv//AyhkzHsiNi7ug3br17c55ebnKV15Zl9rMp4O0MmcCoAoAijq2KWGfE0Q6FtvCpsylhU7ro1QobVngKFVxqztfWY6jCTyev2Us0MjFaSVRgKCvAOsRDKEZpsAKovM9QAql7SPNSNcWIYS4lcGDh1ZU/5njelWdPXtGBwApKSnapKREj+PHj15KR+oYYZCYmKC+6abx5ffeOzP/yJHP/JKSErRZWZmqtLQULQAIgnjpvrOkpESxZUtMhEwmk8LDu9T7JGz16rWplZWVGd7e3gIA9OrVxyiXK6TXXlvTLT8/LzMoKJjmBbVjzgRAJwE8z3HctzzPVzpe5DjOC8AS2IbHkQ5Gbo97GZWmwbKvBAVCExKEvKLC5m4WaUBenm0d40BvzybtJ1SWQBHk+rm3DMNc1RwgrsKEN/oOQEnuFeszE0IIaUVyufyyp2ySJIFlZZLte5G5447/5E6ZMrWo5n7BwSGW/Pw8+SOPPNDLy0tnvfbaEaVDhgwv799/QNXdd9/Rv3pZhmGxatXLCTt2vBu2Zs3KyO3b98SzbO3T3WUyGRzBj0N0NGcAgJycbCUFQO2bMwHQYgCnASRzHHcEQC6AEACTAagBzHJd80hbIEnSpQupMQGQBYAGgEVPT+lbW5k9CA3w0jZpP8FkgFIwo+7OYOcwDGAVrRAl54IrFcMgVK2B3ty4+UyEEEJaRmzseY/x42++NB8nPj7WMyoqSg8A4eFdDBkZaepu3aIu9dqcOnXC88MP3w9esmR52pEjn/lXVlbIDxw4fF6hUEj2+uw3HP/GVT4+3pZRo8aUBwUFmefMmd17586twQ8++GitT8Rmz76P69y5i/HFF1++tLzLuXP/eMjlcikyMooSI7RzzqwDlGjP9LYCwC2wZX8rBnAcwIs8z8e6tonE7QkCLuj1YAQrWHXDN9KORypWg75520XqJUkSng8MhjIoFD7WpvW4/JsIQQlJct1cUYZhYBKcX1JMUtg+0pjmGJtHCCFuRKWWt3g66qs55uefHwqOiIg09u3bv+rjjz8KTEtL1Sxa9EIqAEybNj137drV3WJi1ofdcsttRbm5OcrXX1/bNSAgwBwcHGINDg4xm0wm9siRz3yHDRtemZSUqN68OaYzAJjN5iva1KtXH+PUqXfl7tu3O2z06LGlUVHdrxgON2bM2OJt297uvH//nqrrrhtZfu7cWY8dO94Jv/32O/Mc84xI++VUqiae52M5jnuS5/lcAOA4zg9AOAU/HRMjl2NdahIMBj0WaBoeSmVhbMPlrJQGu1VVlJXBR64AyzDw8dfh39C0YYLJAMlsBKvVQRBcGQABFuEqem/sSRBYJ4fQEUKIu5MkSVSq5dZefUPlaIU1eZRquVWUxCYHCBMmTCo4ePCD4I0b12kiIiL0r7yyLqFPn74GALj11iklkiQl79+/J/STTz4K0Wo9hKFDh5c+/fTCTMf2+Pi43K1bt3TetGk9GxAQaJ448ZbCU6dO+sTFXfAAUFDzeHPnPpFz8uRPvmvWrOy6bdt7fM2hcDNmzCpgWRaffnow+J13Nnfx8fGxTJlyZ96jjz6e69yZIW1JkwMgjuN8ABwA0BlAT/vLwwF8yXHcYQD38jxPj/Y7EEmSLk06l8vrT4MNAALDAJAgUADUqorSUsAyDKySCI2XFkJVnclyriQKEAwVYD1dnQiBgdHqfADEKB0BED28I4S0T5IEQYSYo1DLWmVBUlESRUlCkz/5IyOjDAsXLs2sa/vkybeXTJ58e0lt2xiGwYIFi7MWLFicVf316sPb5s9/Jnv+/GeyHT+rVCrpwIHDF+pr0/Tp9xc4Ms+RjsWZHqC1APoAmFfttWMAbgewBcAqAAuuvmmkrTCbzZeGQckUDadBtjIsIAkQTBQAtaaSrEx4AqgUJUBo+lxPoaoUikDXLpUgQYTlKobA4VIAREs4EELaL0mCIEkSdXUT4iRnAqApABbwPP+J4wWe580APuc4zhe2hVIpAOpAKlOS8d6gYSg0m1AiazgAElgZIAgQTTRRvTVV5uXBE4CRZSA2cg2g6gSjHkrRDCdH0tbqajLAAQCjsl1/cieTKBBCCCGk/XPmzsULQK1dlADyAAQ43xzSFhkrK6CWyaCSySCTyRosn6PQILcgB1KXzi3QOlIXQ6EtA5xFIYdkbXoPkGgy2BMhyOGqPAgiRAii85lHRY0KuUYjimk1MkIIcRsnTvx5urXbQEh1zowfPQPgwTq2zQLwj/PNIW2RuarK9rWRd8FnvQKwITkB2fKGgyXSfCxltucYklqFxi6CWp1gMkCymFDXGgvOEHF1PUDmUH/MP38Wm/NyXNYmQgghhLQvzvQAvQTgK47j/gTwKYB8AIGwzQEaAtt6QKQDMev1YND4HGJypW2YkslU7yLNpJnlG02oLCuBT6cgp/aXBCtEYyVYj0CXJUKQIEG4igBIprR9pJlofhkhhBBC6tDkR7c8z38H4DbYHhmvAvAOgNWwBVO38zz/tUtbSNyeWW/rAbKiceOOFApbpjizkRZCbU2nDVVYm8DD0i3c6TqEqjIwLhpuxjCAIApX1QMkVzgCIAquCSGEEFI7Z9cB+gq2XiA1bAuhlvE8X+XSlpE2w2owQAVHeuuGDSnPx/1DrsG58ormbRipV6F9DpC/zsPpOgRjFRSCGYArhjMyEKSrC4AUoohXe/eDkmEhiqJLh+cRQgghpH24qvRNPM8bAWQ3WJC0axaDrSfHyjTuZpOR2RbfZKyUwbM1lRXZAiA/74YXr62LYDKAES1wRQDEMIAgiVc3BE6tQKTWFtCZqqqg8fK66nYRQgghpH1xXf5a0mGZZCziKspRpPWAfyPKS3LbWi2Ma1fQJE0gCAJeDo8A2zkCPoLzKaNFswGSxQhWqYF4lWvvMAxjGwLnxJpEDjKN+tL3psoKCoAIIe0Sw0DGMI186uhikiQ5tRAqIe6EAiBy1Yr8/LGSj8WgoSNweyPKS/bFUlmR1mppLSWFBfCU2/77e/t5A5Jzc2ZEswmS2QBW7eeCAMg2B0i4ijV8GIUMVkmEnGFhrKQhloSQ9odhIJMx1lCLSd8q93AKldYqQJ7jbkFQTMz6sGPHvvU/dOjrc43dJzExQbVx4/86x8Vd8FKp1OKIESNLnnlmUaZWq6UblHaOAiBy1YxGW8YthVLdQEk7pS0JgowCoFZTlJEOBoAgSZCrZBCvImmaoC8D4+18IgUHhmFgFpq+IGt1oiTCLEqQywBjJU1LJIS0PwzDsBaTXp504YxoNhlb9A+pUqVmo/oMlstU3qwkSW4VADVVcXGRbP78OT27dYuqeuutrXF5eXnK115b03XdulewfPnq9NZuH2leFACRq+YIgJQqVeN2sGeBk7lq9UzSZGU52fABUCWJwFXMuQEAQV8JpYseBJoF81XtL0oSLPbrypGdkBBC2iOzySiaDPrWeJLYLrLL7N27O1gul0nr1sUkqdVqqWfP3sacnOzsI0cOBUqSBMZVKU6JW3IqAOI4LgDAcwDGAwgFMBHAVABneZ7/zHXNI21Bp4SLeHfAYMQ2du6GvadITvFPqzEUFMAHgIFlIVqdn3MD2OYBsYIZgPKq6mEYBibr1QVAAGCxL+rqWKCXEEJI6xo5cuiQuXOfSP/+++/8UlKSPIKDQ4yzZz+SNWHCpDJHmaNHv/HetWtbWFZWpsbX1898441jiufOfSJHpVJJABAfH6t+++03O8XFxXoZjQbW3z/AfNttU/NnzXoov7Zj7tq1LWjXrm3hS5YsT5448ZbSmttPn/5Dd+2115eo1epLdyPTpk0vnDZtemEznALiZpocAHEcFwngJAANgJ8BDLDXEw3gBY7jbud5/gtnGsNxXDSAMwDm8Ty/y/7aQABvABgKoAhADM/z66rtwwJYAeAhAL4ATgB4jOf5xGplrroOUjfWZIKPQgmFrHGZwEQPb5wtK0W+YMXEZm4bqZ2ppBgAYJHLrr4HyGSAZDWDkakgXVWvnnTVPUAAUCaKEE1GeFiubjgdIYQQ19m5c2v4/fc/mLlkyfLUzz77JGD16uXdfX394ocNu6bq+PGjujVrVkY99NCcjBEjbihPT09Vbdq0oUtmZrp63bqYZL1ezz777Pzofv0GVGza9Ha8XK6QDh06GLB9+9udhw4dXtGvX//LFhbcu3dX4O7d28OXLVuVNG7chLLa2pObm60eMWJk6dq1q8N/+eWEr1wul6677vrSJ554Jqt6UETaJ2e6MV8HkA8gEsCdgG31S57npwM4DOB5ZxrCcZwCwD4AHtVe8wfwHYCLsAUvKwCs5jhuVrVdXwAwB8DDAK6DbYHWrziOU7qqDtIAew+CJG/c6TIGdMLLCfHYlZ7ajI0i9bGU2f4eCErFVdclmoyA1QiWvbrhAgLEq1oDyGGrsQLzzp2F3sfnqusihBDiGmPGjCucMWNWQY8e0aYFCxZnRUV1rzpwYH8QAOzduyt07NgJhdOn318QGdnNNGrUTeVPP/1c2q+//uKbnp6q1Our2ClTpuY///yKtOjonsZu3aJM8+Y9nQ0ACQnxmurH2b9/b8COHe+Gr1jxUmJdwQ8AGAwG2ccffxhiNpvZ1avXJj388NzMH3887vfii8simvdMEHfgzBC4sQBm8zxfynFczUf+7wD4yMm2vAigZtqmRwCYAMzled4KII7juB4AFgHYaQ9QngWwkOf5LwGA47i7YVub6E4AH7ioDlIPxjGESt64m2mF0hYoWa1WWK1WyOU0Fa2lFVmtqCgtgUdw1FXXJYkCRGMVWA8GV5PZXJQEWF2QGl2lts0xM5muIrMDIYQQlxo8eOhl93gc16vq7NkzOgBISUnRJiUlehw/fvTSahqOAQWJiQnqm24aX37vvTPzjxz5zC8pKUGblZWpSktL0QKAIIiXnr6VlJQotmyJiZDJZFJ4eJd605vK5XIxNLST0ZHwYMCAQXpBEJi1a1d3KyjIzwwMDLq68eHErTl751nXRaEC0ORuQ47jbgTwKICBAKpn3rgBwE/2wMXhGIAlHMcFAegKwMv+GgDAHpidAXAjbMGLK+og9XCs5yMpG5cEQa74t6fIZDJCLnd+IU7inPNWC75N5LF43AiX1CdUlUEWcHV1SJCuahFUB4W9V8uRnIMQQkjrk8svn/krSRJYVibZvheZO+74T+6UKVOLau4XHBxiyc/Pkz/yyAO9vLx01muvHVE6ZMjw8v79B1Tdffcd/auXZRgWq1a9nLBjx7tha9asjNy+fU88y9Y+2MnX188SERFx2dC5Hj2iDQCQkZGupACofXMmAPoZtuDhKADHHYZkn0czF7b5QY3GcZwPgD0AnuB5PoPjuOqbwwHUzOeebf/axb4dADJqKdPFhXU4RS53faIUmYy97Ks7YO03rYxC2ahhUFqrGbsGDQULBlarpVnO09Vyx/PsSmVlJQAAXy/tVQ9dAwDJbIBcskKUN24emEP182yFBBHiVbdnrEyFe3r1hSot1S2vrdbQ3q9nd0LnumXQeW57YmPPe4wff/OlIWnx8bGeUVFRegAID+9iyMhIU3frFnWp1+bUqROeH374fvCSJcvTjhz5zL+yskJ+4MDh8wqFQrLXZx/69m9c5ePjbRk1akx5UFCQec6c2b137twa/OCDj+bV1p4+ffpWJCRc9Kie8e3ixXgNy7Lo0iXi6iekErfmTAC0GLYgJxHAcdiuvAUAegPoDluPS1NsAXCK5/n3a9mmhW34WnWOoEtt3446yvi5sI4mY1kGvr4eDRd0kk6nabhQC5HZF8CUa7TQaBqeB8QyHtDKbJeeSiE163m6Wu50nl2pstz2NyjAVwd1I35nDZExVqgVIjw8dE7tr9NpUGIwQ6Zgrro9fiyLKA9P5JkMbn1ttYb2ej27IzrXLYPOc9vx+eeHgiMiIo19+/av+vjjjwLT0lI1ixa9kAoA06ZNz127dnW3mJj1YbfccltRbm6O8vXX13YNCAgwBweHWIODQ8wmk4k9cuQz32HDhlcmJSWqN2+O6QwAZrP5iii4V68+xqlT78rdt2932OjRY0ujorpfMRxuxozZuY8+Oqv3qlXLukyf/kBeZma6auvWLZ1vvHFMUUBAIPX+tHNNDoB4nj/PcdxQACsB3ARAgC0d9o8AZvI83+gVeDmOmwFbwNSvjiIG2IbVVedYbbPKvh32MoYaZRw5cF1RR5OJooTycr2zu9dJJmOh02lQXm6AILjHQqIFooAqgwEWhQoGQ8MPTRjrv09r8rPz4am7yrFTzcAdz7MrzVVqoBs0DMryKhgN3lddHytUQF5ZCYtF2aRMcI7zXFFhgN5qgt5ghNF8dQ/eBJYFIMBUqUdJCaXCBtr/9exO6Fy3jOY6zzqdps30KilV6hZv6NUcc8KESQUHD34QvHHjOk1ERIT+lVfWJfTp09cAALfeOqVEkqTk/fv3hH7yyUchWq2HMHTo8NKnn16Y6dgeHx+Xu3Xrls6bNq1nAwICzRMn3lJ46tRJn7i4Cx4ACmoeb+7cJ3JOnvzJd82alV23bXuPrzkUrkePaNPrr8fwb731RueHH57ZR6PRCqNH31T05JMLspx9j6TtcGoOEM/zCQCmu+D4swEEA6g59O1tjuOeA5AGIKzGPo6fswAoqr2WVKPM3/bvM1xQh1Os1ub74ycIYrPW3xQf6SsRFxeLOZOmw0tsxM0v8+8wKUN5pdu8j9q403l2FUmSoGFYqGUyaLw8IDbmd9YA0WiEYDJCUkpOnS9RlGAVrDBbrVfdHlFmC4AEk6nd/e6uVnu8nt0VneuW0RHPsyRJokKltUb1GSxHKyxKqlBprYIkNfmkR0ZGGRYuXJpZ1/bJk28vmTz59pLatjEMgwULFmctWLD4suCk+vC2+fOfyZ4//xnHFAeoVCrpwIHDF+pr06BBQ/Tbtr3HN/5dkPbC2YVQGdgSFniglv98PM//1Miq7oNtPaHqEgAsB/AhgHsAzOE4TsbzvGN29FjbIfh8juPKAJQDGA178GKfUzQYwJv28j+5oA5SD8dkc7micUkQwDAwiyKULAuznp7Qt7Sqygp42Nds0vl4uahWCaK+HKx3zWcNjSdIgkvSYNvmIVkg0TpAhJB2SJIgCJDnyFTerdJVJUiSKEm4+g9rQlqRMwuhDgdwAP8mD3DMWJbs30sAGjUTmuf5K7oZ7T1B+TzPp3EctwPAQgDbOY57DcBwAE/BtmYPeJ43cRz3JoBXOY4rAJAK4H+w9fp8Yq/SFXWQejjSDcsVjV9TxiwBSoACoFZQmpcH1j7hU+uhhmitN1Noown6ciia/lAQgO3pniAKLskCJzkSMVAARAhppyQJgiRJFIQQ4iRneoA2ALAAeABAJoBm63u299BMBBAD4AyAHADP8Ty/u1qx5bC9j22w9Sb9BGAiz/NmV9VB6iZJEpYHhsLsF4TsJozDttiztlj0hgZKElcrzcuFEoBJFP99fOECgtkIpWiBs9n1zYJr5pxKCvvxrTSHlRBC3MGJE3+ebu02EFKdM3cqgwFM43n+M1c3BgB4nmdq/PwHgOvqKS/AtqjponrKXHUdpA6CAD+FAlAokKdUN1zeLlUQkVFVgQC6SW1xlQUF8ANghATRRUEHAIgmAxirCQwrRxPyIACw9QCZBdc8bxBVCpRbLDCLHWteACGEEEIax5nxo/loxl4f0rYIpn+HTzFqbT0lL/eRBXjpYjyqNI2cN0RcRl9cCAAwsyzggiFnDoLZCMlqcmodH4YBTC4KgNI7BeChv0/jJ1Xjh2QSQgghpONwJgB6C8BijuNogQ1yaQ6PKElglY1fj0FhT5hgNLpm/glpvDKDAadLS1CkdG6oWl0kqwWS2QiGafrHigQJJhfNRVIobYGPwWBsoCQhhBBCOiJn7oB6wLboaS7HcRcA1FzsRuJ5fuxVt4y0CcaKCgCAWRQhV6rQ2AzGCqVtsUuTiQKglpYpitieyGN6v2hMdHHd1qpSyHw7N3k/URJdkgEOAOT2AMiRnIMQQgghpDpnAqDuAM5W+7nmeBcXTqsm7s5YWQnANqGeYWRo7OSP2xkBTw8ciuy0tOZsHqlFaaltmQVvz8YPWWws0VgFuWhFUz8GBMk1GeAAwFdvwvLoXrQIJSGEEEJq1eQAiOf5Mc3RENI2matsAZAFEsQmzHxXsiw85XJI9JS+xZWWFAMAfJojADIZwYoW2JKcN2E/iLAKrgmAVAD66ryR76L6CCGEENK+uHYSAOlwzBYr0vRVqAQDpgmZvwSZDBAAyUxrtbS0EWXluH/QMFSWVrq8bsFsAKxmMDIVpCYExJIkwSq6KCOdyja/TI4mpqIjhBBCSIfQqNnKHMcJ9gVQwXGcaP+5rn+U17gDMfp447nYc3inpKhJ+4msLfaWLLTUUkuTW61Qy2RQq12fgU80OZcJTpAEl80BYjW2OUByGo1LCCHtQlVVFbtnz85Ax89Llz7X9eGHZ3LNeczMzHTl4cOf+l5NHQcOfOA/cuTQIXVtb4n3MXLk0CEHDnzg35zHaCnp6anKkSOHDvnll5+9rrauxvYArYJt0VPH9/RolQD4d6K5StX4NYAAQJQ5AiDqAWppSvv6OCqPxmftayxJFCAaq8B6BKEpI9BcGQAx9sCOkmATQkj7sGPHu8Hff/9NwIwZswoAYOHCZRmiC5dxqM2LL77QNSgoyDxlytSSZj0QaRWNCoB4nn+x2vcrm601pM1xpBpucgAkt92eMrQQaotT2x9faHXNk8le0JdBFtDEfUTRZUkQGJVt/pGCdSbLPyGEEHcjSdJlXfre3t4tMMlTomEE7VijAiCO425sSqU8z//kXHNIWyO7yGNDnwHIUDRt0rtkD4BAAVCLsljM8JDZAgMPneuTIACAYNRDLlrQlGXGBEmAVXDNtcBobNeinGEgWq1g5TTVkRDSfkgSoLc6tY6jS2jlEJkmhgZlZWWy9etfDf/991M+VquViYyM0j/22PzMgQMH6wFAr9eza9eu6vznn3/46PV6WadOnYz33fdA9qRJk0tjYtaHffTR+6GAbTjX++8fPPfOO2+F5efnqbZufY//5ZefvRYvfjb6lVfWXXzjjde75Ofnq7p27apftmxVyrfffuV75MihYEEQmBtuGF20dOnKDIZhIEkStm17O/jbb78KKCjIVykUCrFnz96VCxYsSY+I6Gp++OGZXFxcrGdcXKznHXfc7HXo0NfnzGYzExPzetgPPxzzNxj0svDwLobZsx/OHjXqpnLH+/zqqy98du/eFpaXl6uOiupRNXDg4PK6zomDIIhYs2Zl5x9++N5fLpdL48ffXDh//rNZcvvfrt9//9Vjx453w5KSEjwsFgsbHBxiuvfemTm3335nsaOOzz77xO/DD/eF5ORkq318fC2TJ9+e/+CDj+bVPFZBQb788ccf5nx8fC0bN25O1Gq14o8/HtNt3bqlU1ZWpiYoKNj0f//339yYmPVd33//4LkuXbqa77jj5n7XXDOi9K+/TuvKysoUy5evSrr22usrdu/eHvTll58HFRYWKgMCAsz/9393595zz32FAPDLLz97LVz4dLSjDsA2fO3ee//T77XXNlwcMeKGiqVLn+sqiiLj6+tnOX78e3+Tycj27z+wfMmS5WnBwSFWAIiLu6DesOF/XRITEzx8fX0td999b07Trry6NfbO4Af8O+ytrstesm+TAMiurlmkrRArK9BJo0FZE/czqj1wsbICJTpds7SL1K6srAye9uGHHl7N0wMkmo1gBDOAxvcKWkUBguSatNWMVg2zKMIsijBVVUHj7e2SegkhpLVJEnDf19qefIms1Raj7+krVO65Wc83NgiSJAlPPfVYD7lcLr700muJOp1O+PzzQ/5PPfVYz02b3onr12+AYdOm9WGpqSnatWtfT/D29rF+/PGHgWvXru7Wp0/f87NnP5JrMBjYkyd/9Nu69b3YgIDAK56WiaKIzZtjOi9atDRVqVSLy5cvjnr88Yd7DRo0pOyNN7bwf/zxm+fmzTER1147onzcuIllO3duDTpwYH/oc889n9KzZy9DRka66vXXX43YsOG1zhs3bk567bWNic88M69HQECgedGiZekA8MILi7qmp6drlix5ISUkJMz8ww/f+yxfvqT7Cy+sTho3bkLZH3/85vHyyyuj7rrrnpxbbrmt6M8/f/d65503uzR0fi5ejPf09/e3bNr0TnxmZoZq/frXuhqNRvb551dkZGdnKRYvfiZ64sRbCxYuXJputVqY997bGbJhw/+6Xnfd9eVBQcHWL7447Ltu3SuR9933QNa4cRNLYmPPazdseK2rh4enMG3a9ELHcYqKCuXz5j3C+fsHmNevfzNRo9FI5879o1m+fEn3yZNvz1+xYk1yfPwF7Ztvboyo2cZvvvkqcNWqVxJ0Op3Qq1cfw6uvrun844/f+8+dOz+9X78BVb/88rPunXfe7GI2m9j7738wv3FXBnDq1EnfkSNHFb/xxmY+OztL+corq7u9+ebGTqtXr00rKyuTPfvsE1x0dM/KzZu3xuXl5Sk3bHj1irY5q7EBEKW+JrUSTLYkBiIra9LjqOyAcGz8bDcGDhyMB5qlZaQ25UVFkNuHhslVCgCuH0UgmGyZ4FiFBmIjV8Y1C65LhiHTKHHfmd8BAD8xgOtnOhFCSOth2tg87BMnfvJKSOA9Dh366m9H8PLMM4uyYmMveH7wwd7gfv0GpObkZKs0Gq0QERFp8vb2Fp58ckHWoEFDKry9fQVPT09Ro9GILMtKjp6B2sya9XDWkCHDqwBgxIiRpUeOfBa0fPnqNK1WK/bowRn37t3dKSkpQTNu3MSyzp27mBYsWJIyfvzNZQDQuXOE+bffTpX89NMPvgDg6+snyOVySalUigEBgdbk5CTVyZM/+7355rtxjl6rqKjueUlJiZoPP9wbMm7chLIDB/YHRUdzlfPnP5MNAN279zAlJydpvvzycFB958fb28eyevWrKWq1WurZs7exoKAg65133uzy1FPPZZnNZmbatPuyH3poTh5r/9s9a9bDOT/88L1/cnKSOigouPLgwQ+Cr7vu+uJHH308194uk15fJVOrNZeeKpaXl8nnzXs0OiAg0PT665uS1GrbYPj9+/cER0Z20z/33POZANCjR7SpuLhYsXXrlstWNB80aHDZjTeOrrDVVc5+880XgQ8++GjGHXf8X7H9mAXZ2VmqDz98P3TmzNmNDoA0Go2wYsVLaQqFQoqO7mk8depk0enTf3gDwBdffOZrNpvZF198JdXb21vo2bO30WDQZ7z00oqoxtZfn8bOAfrRFQcj7Y9oNtm+NjEAUtiHzBlpHaAWVVFagtjSEvhoNIhgATTDWqGi2QRYTWCUjg7hhpkF1yXDYGQsWJaFKIowGo3Q6agHiBDSPjAMsOdmPd+WhsDFx8dqAeDuu+/oV/11q9XKWCxmBgDuu++B3GXLFna//faJA3r0iK4aPHhY2aRJk4ubMtcnMjLq0g2FSqUWvb19LFqt9tJfOaVSIZpMZhYAxo+/uez06T88YmJeD8vKylRlZmZoMjMz1L6+vrX+MYqNPa8FgGeffeKyjG2CIDBarVYAgLS0VO2gQUMuGxDTr1//yoYCoKio7npHQAIA/fsPrLJarUxSUqKqX7/+hv/7v/8WvffejqC0tBR1VlaWOjU1WQsAoigwAJCenqa58cabiqvXeffd//b8AMCePbs6CYKVqXms5OREbc1heoMHD6sAtlzWxk6dwi+d28TEi2pBEJhBg4ZetpbGwIGDKz///FBwQUF+o8edBweHmBQKxaX2eHh4ClarlbG1LUkbHBxqrH4NDBkyzGXrdzg1OJ7juAAAzwEYDyAUwEQAUwGc5Xn+M1c1jrg/yWzvAZI17VJSKG3Do0xGCoBaUrnZjFcTefTmonFTc2XQkUQIhkqwniGNzgRnsppcd3wGUKpUMBoMMJlcWC8hhLgBhgE8FM3x+Kp5iKLIaDQa4Z13dsXV3KZUKkUAGDp0eNWnn371z88//6D744/fdN9++1XABx/sDXvppdcSbrhhVEVjjqNQyC974lbfcgzvvrs5eP/+PZ3GjBlXOHDg4Ir//vee/B9+OObz888/+NVWXrIP0d64cXO8h4fnZedeJpNJ/5a7PHGCXK5o8Ckgy7KXlXFkt1OplFJCAq+eN++Rnl27dtMPGTKsbOTI0WV+fn6WJ554tFf14zcUkPbr17/8llumFK5ZsyLq+PGjxWPGjCu37wtRbDjZg1KpuuI9MjUOKtozzFYPaKovB2ixWK84TvWy/6r+UtPPZ2M1+QkCx3GRAP4B8AhsqbGDYAukogF8zHHcra5qHHF/jgBIauJE8wB9GTb3G4SHPGkOUEsqL7c96NF5ejbrcQR9GdhGrowriiJMVteuB/VI5wgsi+4FY3aWS+slhBDSNFFRPQwGg0FmNpuYbt2iTI5/u3ZtCzl27DsfAIiJeT3s999/9ZowYVLZ0qUrMw4e/Px8UFCw6fjxo74AwDBNWWq9YR999H7YtGn3ZS9fvjr9nntmFA4ZMrwqKytTffn63f8es0cPzgAAeXl5yurv4bPPPg749NODAQDQrVuUPi7uwmV/XOPizjc4Vys1NVnrCB4A4MyZP72USqUYERFp+uij/YE6nbflnXd2Xnzkkcfyxo4dX1ZYWKAAcGmx8U6dOht5Pu6y47zyyqrOTz312KWhYjfeOKZk0qRbS0eMGFm8YcNrXcvLy1kA6No1Ul9z33Pnztbb5u7do40ymUw6c+aPy97r2bNnvLy9fSw+Pr6CQmELbMvLyy/lBEhLS2nS4oM9ekTrc3KyVUVFhZduMP/55y+XzX1zpgv1dQD5ACIB3Al7UgSe56cDOAzgeVc1jrg/yZ7F7VJWt0aSyxUIUKmgYyhVcUsqL7MtZ6DzbJ4McA6i0QCmkcParJLVZWsAOURrPNBf5w1zWVPTcxBCCHGlMWPGlkVEdDWsWPF81IkTP3klJyepXnttTfjx40cDHMPWsrKyVBs3/q/LiRM/eWVkpCm/+OKwb2Fhgapfv/6VAKDRaMSqqipZYmKCymKxXHV6an//APOZM3/oeD5OnZBwUbVhw//Cfv/9Vx+LxXLppkSj0Yj5+XmqrKxMRc+evY2DBw8ti4lZF/Htt195p6amKLdtezv4k08OhHTq1MkEAPfee39uWlqq5tVX14QnJiaoPv30oN9XXx0JrLsVNkVFRcoXXljUNT4+Vv3ll5/7vP/+e2F33PGfPJVKJQUFBZuLi4uUx459p8vISFN+9dURn5iY9REAYDbbhg/ee++MnF9+OeG7a9e2oJSUZNXhw5/6fvvtV4EjR44qrXmshQuXZpjNZmbdupc7A7ahhykpSR7r1q3tlJiYoPr66y989uzZ1Qm4sofHwdvbWxg3bmLhvn27Ox069LFfcnKSas+enYHffPNl4NSp/8ljGAY9e/Y2qNVqcefOraHJyUmqU6dOem7f/k54XXXWZvLkO4p1Om/r0qULI8+fP6c5deqE51tvvdG54T0bx5m7z7EAVvM8X4orB/i/A6Dv1TaKtB0GSUS+yQiLskmBPRiVbWq6nLLstyiP5GS8N2gYxgrNe+IFsxGM2LgASBAEl60B5ODoaLfo9S6tlxBCSNPIZDLExLx9sUeP6Ko1a1Z0e+ihGb3/+ees17JlLyY5hrctXboyrX//gRVr166KnDHj7r7vvbej0/33P5g5depdxQAwYcLNJT4+vpaHHprZ559/zl71E7ylS1emmEwmdu7cB3s9+eScnqmpyZrHHpufVlFRLk9PT1UCwJQpdxZkZKSrZ8+e3kcQBKxduz75uutGlsTEvB7xwAP39v32268CHn/8qbS77rqnCAD69etveOml1xLOnTvr9dBDM/t8/PGHwXfddU+DaZuHDh1eKpPJpMcff7jXm29uiLj55sn5jz/+ZDYAzJw5O3/EiBuKX311TbdZs6b32bt3d+gDDzyUFRAQaD5//pwHYJvPNG/e02lffHE4cNase/vs3r2908MPz03/z3/uLqp5rICAQOvDDz+WeezY0YAffvhe16tXH+MLL6xK/OOPX30eemhGn927t4fdcstt+QCgUCjr7HVbsmR5+q23TsnfsePdTrNnT+9z5MhnQY8+Oi/9oYfm5AGAl5eXuGjRsuSsrAzN7NnT+8TEvN7l0UfnZTQlAPLw8BBjYrbwcrlcevLJOT1feWV15H//e29uoytoACNJTetV5DiuDMBMnuc/4zhOBsACYCjP82c4jpsC4D2e531c1cA2KlkQxMji4iqXVyyXs/D19UBJSRWs1tYfArx06UJ88cVh3DXjcfQZ3vjRj+bMBAz8fj8qrFYM2bW3GVvoHHc7z67y6eIF6FNYiEwPNa6fMbHZjsMq1fDqfR3MSt96M8HJ5SwUWuCnpN+RX1FcZ7mmUq3ejS4yBcrHjcPQafe5rN62qr1ez+6IznXLaK7z7OfnAZmMTQHQzWWVOun06dM9WVb2dVBQp0qlUk0TZonL/fXXaa1cLpf69RtgcLx26NDHfhs3rut69OjPZ+RtcB09s9mozs/P8hRF4eYhQ4bE11XOmR6gnwEs4Tiu+jg8ieM4FsBcACedqJO0USZ7FjeFomk9QDKV7QGOimVhsbguAxipn2Swfcax6qYtXNtUotkEyWKqdxKqgyAJLh8CZ7UvV2YxGBooSQghhHRM8fFx2meeeYL79tuvvDMz05UnTvzktWfPzrDrrx9Z3BaDn6Zw5t0thi3ISQRwHLZhcAsA9AbQHcANLmsdcXsGgy0AkiubdkPNqm0BkJJlYTTooVBQquKWwNoDVlbdtIC16SSI+nKw3mH1lmIY2yKorg6ABHvgZaUsg4QQQkitpk2bXlhUVKjYsmVTl5KSYoVOp7PecMPo4nnznm73GYSaHADxPH+e47ihAFYCuAm2lRTHA/gRtqFx51zaQuLWJhiNuLVXXxQZm/aknVX9O4TXVFUJL1qrpUXILBaAYaHQNncABAiGciikhoamMBBE188BElnbUoGCkdJgE0IIIbVhGAbz5j2VM2/eUw3OVWpvnOrf4nk+AcB0F7eFtEH+EhDk4YlyVtZw4WokuQKZRgOMgoD+ehqm1FLkVgFQsFB6aJr9WILJCKVoBlB3hkCGcQyBq3Nxb+eOzbIQrBIEi2vTaxNCCCGk7XN2IdRuANQ8z8dyHOcDYA2AzgAO8Dy/x4XtI25Obk+iwTQxCxxYFstSUqCvKsenjZgnQlxDZe+RUTdzGmwAEM1GMIIFDKNAXblWGIZpliFwR3VKrPzuJzx1w40urZcQQgghbZ8zC6HeDCAOwGz7S2/DtihqOIBdHMc96LrmEXfniKAdaa2bQmGfN2Rs4vA54rzkqkrEV1ZA6928C6ECth4gyWKqcy0BB4tgRVOzUTZEYZ/j5EjSQQghbZAIQJIkiZ4SEtJI9v8vEmz/f+rkTBa45QC+BfAi9//t3Xd8HGed+PHPzPZVL5Z7i8skcXCcOAkphAAhJIHAAUc9ONrRkuMox1EPyN3RDzh+4YCjhHr0o7dQE1JIt+Nuj4tsy7KtXrbv1N8fM7JlW7Kk1eyuZH3fr5deknZnn3k0O9qd7z7P8/1qWgPwAuDjuq5fCnwceFsJbYpZKuJf3CqxqY8ojGSOKxZlnUYlGIbB5w/s40N7dtKwqLXs+3MtA9fInzUTnKJA0Q7++Y9EvWl3EgAJIWaxLtd1TcMolH/IXohzhGEUkq7rmsBZ1zWVMgXuYuB5uq6nNU17id/Gj/37/gi8s4Q2xSw1EgCp8fiUH/uWtjZa58/D6jwCGzYG3TVxmlRqGPCmndVEI2CXP/24nUuhNJ4tAFIoWsGv01ll2PzLqrXEjwdWM00IISpq48aNqU2bNn07lRq8FWiJRuM5RVGCHS4X4hzhuq5iGIVkKjUYdV3naxs3bkyfbftSAqD8qMfdDHTrur7N/30BMFRCm2IWci2L8EgAFJ36B1SN4TBt4RD9mUzQXRNjSKVSANTX1aLgUol3UTufIcrZ1/cUrOBHgBoduKSpmYO54IsRCyFEBX3Mti2GhvpfpShKEpDpcEKMzXVd13Rd52vAxybauJQA6AHgXzRNawZeAnwDQNO0jcDt/v1iDjALBfqKRaKqippITvmCemT8wZJilRWRPtTOty+5nAHHxrWDTTowHsfIo9oGMHadKKcMRVAB3Ij30qZYlfk7hRCiHDZu3OgAH9m0adMdrstCSlu6IMRc4ADHJxr5GVFKAPQO4DfAd4FdwEf8238D5PAKpYo5wFTgtu1PAPDheC32RCVfTmMp3uu4FKusjFz/AC2hEDEFqMj4j5cIAdtAUaNjZoKz3OBrAMGoAKhCgZ4QQpSTf1E3qQs7IcTESimEelDTtHVAm67r3aPuej7whK7rsqJ9jij4gYuiKKhqGNuZWgRkKyrgYksShIooDA0CYEyQlS1IjuFlglMT9dhjRMgOTllGgPCTIKjlaFsIIYQQs1pJQ6m6rrunBT/ouv4wEPbTZIs5YCQAisXi49Z5ORtL9U4/R0aAKsLwkyBY4crNoHBtC6eYGzcTnOM62G4ZgpSY99lOaIpBuRBCCCHOfVMeAdI0bTnwZeA6xpvYD6HpdErMDrmOw3z0/IsYdB2cEiIgWw2BY8sIUIVYaW/2hBMuqf5xyezsEKGWM29XFG8KXDlGgBS/xpTqSMIkIYQQQpyqlCuhzwJXA18BrsFb9/MQ8CzgScALp9KYpmltwGeAm4AEcC/wLl3Xd/n3bwDuAC4D+oHP6br+6VGPV/GSL7weaMJLwnCbruv7R20z7TbEmczUMGtqa+kyDQZLuNDMhSIczQ5TDLgIphibk8t5P/jTwyq230KOiGNy+oCzoijYjo3lWMHvNO79jSE5t4QQQghxmlLmwlwHfEDX9bfhZYAr6rr+Hrzg4l7gb6bY3i+BVXgptS/HS7P9J03TkpqmteDVFtrrt3878GFN01476vEfBN4MvAG4Cm91912apkUBgmhDjM3IehfUJkpJS+ofqW3hHTu3cqCuNtiOibH52fbUeGVPa9sojFtzyHadsiRByM5v5hWbHuE/B3oDb1sIIYQQs1spAVAtsMX/eRewAUDXdRv4AvCMyTbkBycHgTfouv64ruu7gQ8DC4F1wBuBInCrruu7dV3/Bt4I1Hv8x0fxCq/eruv6b3Vd3wq8FFjMyZGoINoQYzDzXgBkl7ioPuJPUyoUJA12JfRbJnsyaaitbFFxxyiAVTxjHdDJEaDgA6BwLILpuifWqQkhhBBCjCglADqOV/AUYD/QrGnaQv/3AWD+ZBvSdb1f1/WX67q+E0DTtPnAvwCdeMHVtcB9uq6PniNzt7ep1oYXfNX5t420OQRsBp7q3xREG2IMth+4WCUGQOFIDEAuUivk3kKeD+3Zib18wcQbB8guegGQopweAIHhmGUpyRqKerN7i0U5t4QQQghxqlLWAP0GbwpZp67rD2qa1olXGPXfgNcBR0vpiKZpX8GbglYEnqfrelbTtCXA9tM2PeZ/XwYs8X8+MsY2y/yfg2ijJOEyZNsKhdRTvlfTSPICW1XHzfJ1NpqR48YL1zM8MFiWYzUdM+k4ByWdTgHQkIyX9HyVzsUpZIg0LGJ0DBQOqxh5AwBFVQKt7hdT4C0rV5EIRwiFlDOCr7nmXDyfZyo51pUhx1kIMR2lBEAfwltL8x/AM4H3A98C3u7f/48l9uX/4WWXuxX4uaZpTwGSeAHRaCMf6cb9+xlnm2b/5yDamDJVVWhqqin14ROqr0+Ure3JCvnrOpxQiGRi6utKasIhliWTtNtWWY/VdMyE4xyUkQCopbGWeAnP13SEzCw1NREUNX7K7U7Gm/4WiwWbmMGpSXBxyzwAGmoihGKxQNufrc6l83mmk2NdGXKchRClKKUQaj/w5JFpb7quf1fTtMN4yQMe1XX93lI6Mirr2xv9tt6ClxDh9CuXkSuorH8//jb507bJ+j8H0caUOY5LKpUr9eHjCoVU6usTpFL5MQtLVlI2XyRqWZjxBHn/k/ypsFTv9FMsm8HBkg91Wcyk4xyU/1iwBGf+IiL5IoUSnq/pcDIZlFQGwz35khOOqGT8dWTFookbYMpqc9QIV/fRXhJNTYG1PRudi+fzTCXHujLKdZzr6xMyqiTEHFByQRBd149rmnY+Xtro47quf2qqbfhrcK4HfuQnUUDXdUfTtF14SQiOAItOe9jI70eByKjbDpy2zVb/5yDaKIllle/Nz7adsrY/GYdbW3nnlsd52jNv4WklXLy64ZFaLdX/W8YzE45zEAq5HE0R71SvrU3iVLg+jlXI4ZpFrFET3VzVxbC9pXmu4wbaJyUWwXZdQopCZihFpK4hsLZns3PlfJ4N5FhXhhxnIUQpSvqYQ9O0f/BHfXbi1czZq2naIU3TXj7FphYB38NLrT3SdgS4FC8Jwn3AtZqmjS6sej2g67regxegpICnjXp8o//4+/2bgmhDjGEkeUEkWtr0IsWflhSWWi1lN9zTfeLnZG3lp4w4xQLuaZngHNfGLkcNICAUDmM43kVRMZspyz6EEEIIMTtNeQRI07S3AJ8Dfg78K9CDlxXu5cB3NE2zdF3/v0k2txX4PfBFTdPeAAz6bTbhpaouAO8GvqZp2n8CV+CtNXozgK7rRU3TPg98UtO0XuAQ8Cm8UZ+f+vv4egBtiDGMpK+OROMTbDmOiHchHpb4p+zSPT0A5GwbVVEoQ+K1s3LMIq6RR403nxjpcXAw7fIEQIqiYLoOCUIYEgAJIYQQYpRSpsC9Dfi8rutvPe32b2uadifwb8CkAiBd111N014KfBz4IdCIN+pyra7rHQCapt2IF3BtxkvB/S5d1781qpkP+X/HnUACb8TnRl3XDX8fPdNtQ4xt5fEuPrD2AgaN0lINKzEvcApX+mp8Dsr295EACq4LZai7Mxl2LoXauOTE747rlKUG0AjTP62K2Zm1vkwIIYQQ1VVKALQE+NU4930feMVUGtN1fRi4zf8a6/7H8JIijPd4G6+o6XvOss202xBnqs3nWV7fwCZKTDEcS9JvFBmyq3NBPpfkBwe8AKiK2aDtXJqQ6z3XigK2a2M5VokTcSdm+oG1kQs+GYkQQgghZq9SLj0ew1tDM5ZLgG2ld0fMJurI9KVoaSmVzeb53LrtCf7twN4AeyXGUhwaAsCsYnYjx8ij2n7dH0XBcmysMga/dwz18PebH6XQ2lq2fQghhBBi9pnUCJCmaU8d9ev3gc9qmlYH/AjowluzcxPwVuBNQXdSzEyqn3rUjZSWBCES8QKnYqGAtyhlbherLKe0aTKcTmE2VS8bml0sgG2gqFEURcF2vBGgMKGJH1zK/iIRio5D0Ti9xJcQQggh5rLJToH7C6cum1bwCpa++bTbAH7AJNcAidlN9bNsKSWOAIVHBU7FokFMilWWzZFohC/ru3jJc27glir1wTEKuGYRNVGPooDlWFiOXbYAKBLzzstCQQIgIYQQQpw02QDo6WXthZiVQo4DqgolZoGLhMN8+Px1RFWVwvAgsbYFAfdQjEilUgDUJatXNd21LZxCFrWmDQDDMsu6v6tiCW5YsQr1SEdZ9yOEEEKI2WVSAZCu6/eWuyNi9hnJ3qaUGACFIlFW19QSUhQK6TQNEgCVTTrtBUD1Ncmq9sPODhPyl+QU7fKOzJwXinJh6zy6BvrLuh8hhBBCzC6TWhGtadp9mqZtmErDmqZdpmnaAyX1SswKtuNiuy5KtPRRhZFilYV0OqhuiTFc09vL/6y/hMWF8o66TMQuZlEcLxFC3ixvAOT4CR/sokyBE0IIIcRJk50CdwfwO03THge+A/xS1/Uzcsv6iRFuxEuEcAnjpLYW54Z/O9pBb28P/3LLqyl19U7RdUmAFKsss5hl0RKNYcdKW68VFKdYQLVNTDWCaZe3zJYdUsFycIxzp5yXa9sM/ukPqPE49Vc/BTUSqXaXhBBCiFlnslPgfqJp2r14BUPvBMKapu0CDgJZvAKmS4GLANPf5pW6rneXo9NiZsjn8wBEYtMYAXK9aXTFjARA5RRzHAipxOuqPAWumMc1i7iRGGaZC7K6IRU4twIgJRTC6u1h6C/3kNuxnYW3/ROKItkThRBCiKmYdFEQXdf7dF1/K7AceBuwFy/oeTLQAuwG3gAs1XX9rRL8nPsKBS8ACkdKWwMEMHJpKiNA5RX3kzQmaqsbADlGEdfM4you1kgdqXLtK+xnlzOrO+0vSKGQyoKbb0IJhcg8sZn0gzLLWAghhJiqyU6BO0HX9X7gy/6XmKOK6RTvXrkaw3EIhyOn5EifCtO/MDey2eA6J07hOg41qvdZR119bbV7g5NL4TS2YjnlDoDCQPGcCoD+cNev+PqXv8jT4jVcl0gycNdvqLvqGhS1egVuhRBCiNlmygGQEAC5oWE2NDRiuy7t0TimU1o7WRSGTAPTPHemKc00+eFhVH+aVG1jtQMgsAs5bMfELPcIUMQbAVKs8u6nElIPP8iBX/+Sb993DztTwxxQVS67+FLo6qKg7yZxwbpqd1EIIYSYNeRjQ1GSvJ9Wueg4qKHSF2L/0Anxxq2b6WtqDqpr4jTD3V0AFB2bmkR1kyAAuLaJbXtFUMvp8LwG3rBlE/fXVT/om66B++6lpquLVTW13HzpZaxavJQH+7303unHHq1y74QQQojZRQIgUZJixktbbboOjlvqBDiIRL38cSPriUTwMuk0e9IpDhUK4JY4VBcgx7KwHQOzzFPglGSMYcskO8vTYDuGQX7fXgC6olHe/twX8KGX/h2PpYcBGHj4IVyn+s+rEEIIMVtIACRKUvSTFpguOE7pAVDUL6I6klFOBC8TDvEhfRdfTQ3ATLhQdmxMy8B2yzsCFI56I5PFYqGs+ym3rL6HkOvSbxR55tVPIaSqtNTVc+G6J9GRy7GzkIdZ/jcKIYQQlSRrgERJipksCcBSphcAXao4/I12IcrhjuA6J04xPOyNFDTMlKlgikLRyHnpm6cxejiResvhtUuX05Sf3SNAB++9hziwJ5fjptVrT9x+yxVX8srP/ieO63LlQB+LFy+rXieFEEKIWWRSAZCmaa+aSqO6rn+7tO6I2cLIZbwACKXkDHAADarCBXX1HJQ02GWTSnkBUF1NTZV74lHDEfKFDApM69yZSBx4xvyFDJcxyKqE1J7dxIFQ2zwi4ZMv2W0NjVy6ajWP79/H73/3W173D2+uXieFEEKIWWSyI0DfnEKbLiAB0DnOzBdwXBdrmul33bC/KP8cSlU80yR37OBL6y+lYxr1mgKlhsgXcyiujVvOWbgx79wqPUl79bmOQ30uB6rKwvNWn3H/Uy64iE3797Hznj/jvOofUCOlJyQRQggh5orJBkAry9oLMesMtLZy26ZHuOyyK7llGu04Ee8iVTFnf6rimcrNpGmORumNzIwZr244TNEYAseGctavSXjBQMSvNTUbdR8+REcuy8J4nLWrVp1x/9XaBaw42M6ieILurU+w8LIrqtBLIYQQYnaZ1BWRruuHJ9ugpmmz92pDTNpI0oJwPDGtdtyIlwVOKXNNmDnNf66UePVTYAM4oRCGWQBslFAZ+xT3zq2IouDaNkooVL59lcmmXTv4wJ6drFu7ljtCkTPWTDXX1bEHWATsu/ceCYCEEEKISSjpI2FN014GXAdE4cTHqypQA1wFLAmkd2LGyudzAMRi05tW5fppsEP2DMhOdo5S/DTQ4USsyj3xOOEwplHADeG9gpTLqJpHTrFIKJks487K47HHHgHgsgvXjZ8wor4BDIN8+4EK9kwIIYSYvaYcAGmadjtwOzDsP970v+YBDvDVIDsoZqa6zk7++bw1FKcZuChRbwQpNBPSM5+jQv76qkhyeqN1gVBVHAVMy8CxHUKJhrLtKhSP4rguqqLgGkWYhQHQzh3bAFi3bMW42zQvXgwHD1KfzeK6rpddTwghhBDjKmUC/quB7wDNwGeBX+m6Ph+4HOgHdgbXPTFTxVMprmxuoXW6C8zjCQq2jeGUtybMXBaxvWMbr6l+AKSGIliui2kZuJaBUsbCrOFYlIL/t9uF2VcnJ5fL8a6aOj69bj2r6+vH3W7lqtU4rktLOMLhndsq2EMhhBBidiolAFoM/K+u6y6wCbgaQNf1TcBHgdcH1z0xU7mm4X0PTS/rVLplEa964jHu6OsJoltiDDF/6lS8rvojIEo4jM1IAGRBGYuhRmIR3r1rO2/augmlsbFs+ymX/VufoDESZUk8QVPd+CNlsUSSfj/Q2/vA/ZXqnhBCCDFrlRIAZTlZvmMfsFLTtJGPlrcgGePmBHckbXVkeos4olFvDdFIUgURvOPFIp35HDX11S+EqoQiWDjeFDjLhDImv4hEI/QYRQZNk4Ix+9KsH9m8CYBhRcGZIEtiMeat7xrU9bL3SwghhJjtSgmAHsWbBgdwALCAZ/q/XwDM7rLrYlJG0laPJDEoVSQ2EgDlpt0ncSbXdfl3fSf/vHMb9a3lW28zWWo4jOlYOI6Na1u4ZQyAQuHwifUwxeLsmwI33L4fAKMmiWuffaRMmT+fHx49woOdHZXomhBCCDGrlZIF7mPAnzRNa9R1/bmapn0H+JamafcANwI/C7SHYkZSRy7IotMbAYqrId67WiMeCuGYBuo0R5TEqbLZLLb/XNUlYnh5SqpHCUcoWCc/I3HNwvjZzaa7L0XhWQsWsiAcIX/wIMxrK8t+yqavDyJRYi0tE266RLuAn/zypyiKQjaboaam+qN9QgghxEw15REgXdfvAy4Dfujf9Bbgx8D5wP8Bbw2sd2LGCp0IgKaXBjsUT3JpYxMX1tVTSGcC6JkYLZUaBiAajRILV78OjhqKkDdPjsY4ZhG3jBkAr2xs5jnzF1I8drRs+ygHx3GoN7x1do3zF0y4fVNtLfObmnBdl927JQ+NEEIIcTYl1QHSdX0bsM3/uQC8MchOiZkv5DgQCqHEppdZLJpIYjoOEVWlkBoi2dwcUA8FQGrXDr60/lI6LaOs080mywmFKBRGjQBZFq5jcbKcWLAMv1krly1L++Vy/Pgx5vmjoU3z50/qMZcsWkqvA/s3b+Kyy55czu4JIYQQs1qphVAbgGfgFT49YxRJ1/VvT7NfYob7wvAAnYcOctsNL2I6K0tUNURxJABKpwPrn/Dk+/tpjkZJKZRtqtlUOKEQlmWc/N32EyEoUZhuSvUxWCMB0CxLsnFg/z4OZtIsq29gXiyOPYkkDs+tq2feGo0Hdu6oQA+FEEKI2auUQqg34011Gy+nrgtIAHSOy+XzFB2HcLxm2m0VXZdaoJiRAChohcFBagAzVEq+k+A54TDG6DVAtoVrmShlWvtlqd7fbc2yOkAHD7Xz2fZ93PiM67l4knFhtLER+vpQeiSlvBBCCHE2pYwAfRzYDfwz0Em1V1WLqhjJ2haOTC8LHIDhj0wUM7IGKGhGKgWAMwPW/6CqOKqCOWoECNfFMYso0fIs2jdVbwjImWUBUHv7AQBWLl6CY04uhXfzgoXYfX20OA5DQ4M0NjaVs4tCCCHErFVKAHQ+8De6rkvFvTnsNa1tFBubmX74A4b/CbchAVDg7Kx3TJ1ISbNdA6WGIpiue2oAhJcJTnHL8zmK4498zbYAqOPgARRgxSTX/wDUNLeQApYkkuzbq3P5FVeWrX9CCCHEbFbKVdFhoD6oDmia1oyXWvsWv91twHt1XX/Av38DcAde5rl+4HO6rn961ONV4Hbg9UAT8ABwm67r+0dtM+02xEmWaXJ1o5esYG84ynSX1huKguE4FKUWUOCcnHdMlVj104sr4TA2YwRAtoXiWEDwo1ROOAwO2MXZVZ5sYybHOy+9glBvH9RNbiQnVFuL47rUhsNs3bVTAqDTWEOD9P30xxQOHyZ+3nm0vuBFhOsDeysTQggxi5SyMODjwO2apq0IqA8/AK4EXgZcDmwG/qBp2vmaprUAfwT24gUvtwMf1jTttaMe/0HgzcAbgKvw1iDdpWlaFCCINsSp8qmhEz+H4tOfunRn3uSVmx9laN68abclTqX4Ix9qvPqnshqOYOFgmqcGI65tgWOfKFoapN2JMG/fsYWDK5YH3na5DA8P0agoRFWV+tq6ST9OCYXI+WueBvfq5ererGSlUhz55MdJPfhXjKOdpO6/j87//Di2jDoLIcScVMoI0CuAxcABTdN6gdM/tnd1XV81mYY0TVsN3ABco+v6g/5tbwNuBv4OyANF4FZd1y1gt6Zpa4D3AN/wA5R3Au/Wdf23/uNfChwDXogXXL0xgDbEKPlhr7aM7boo0TiY05u+FPFTaWezsytV8WwwbNso+Ryh2oXV7gpKKIJhmzinTXdzbQvXNlEiscAT1Tk1cY4VCqQmuY5mJjhy5AhtMW9yaWwKARCAnUhALkfxWGc5ujZr9f/ip5i9PWRCIR6PRrjaAbqO0/OD77Lw9W+qdveEEEJUWCkjQJ3Az/Eyvd0F3Hva131TaKsPeA6waeQGXdddvKIgzcC1wH1+4DLibkDTNK0N2ADU+beNPH4IbxTpqf5NQbQhRsmnvGxtRcfBDaB+SyzuBUC5WVarZTa4yyzyzzu34S6q/uiaGj61COpJLq5RgDKMAEXjXiCRy82e6ZVHOztoi3r9VuJTKzQcWbaMO9r38fv2AzhlLDA72/y+kOf3PV38+7Yn+OL9f+H2Jx7DdV3Sjz6C2dtb7e4JIYSosCmPAOm6/tqJt5p0W0PAb0ffpmnai4FVwO+BjwLbT3vYMf/7MmCJ//ORMbZZ5v+8JIA2ShIOB596OOQv6g5VMa2xmfUCIMN1cQFVnd6F68ZwiGev1qg7fKgsx6wUM+E4ByGd9rLANdQkpv08TZcaiZC3hk+Jc0amvTlmkTAOBNzHllCYly5awtKu4zPm3JpI9+GDrAx7L81qLIprTz6QWbx6DY+mhjEti+7uYyxd6r2EnSvncyl+97vf8l9fuAOA5z3v+Tx/xTK++c1v8vmDB1CWLeWO1uZAz425fKwrSY6zEGI6SqkDdLagwAEyfmAzZZqmXQN8HfiFruu/0jTts3jT10Yb+Qg5zslaRGNt0+z/nAygjSlTVYWmpunXyBlPfX2ibG1PJOQYOIABxGJhItOctjQ/EmJjYxMd6XRZj1kpqnmcgzASALU01hJPVHcdUCgRx0r3EY6cmexAxSGkukSiQeQVPKk5EuYZi5aQGk7NuHNrPLnjRwEwwmHi0anPUl65cBF7j3Rw/HgH69dfcMp9s/18nqrBwUE+8YmPAHDbbbfxL+98B537d7NqYQPv+8hnyG55gu9+9xu84x3vCHzfc+1YV4scZyFEKUpZA3SICUq2a5o2ANyh6/pHJtuopml/A3wPeBh4uX9zHs7ItDwyJyTr34+/Tf60bUbmUwXRxpQ5jksqFfy0m1BIpb4+QSqVx57CJ8NBGurppwawgGzOmGjzCVmqdxpa+QKDgzNjGtxMOM7T5RSLfKh1AenGFmJAIT/952o6Qg4UCnks0z5xm6IohMIqVrGIahiYTgg3wIVAth9AqLY9Y86tiaQ7jwIqdjJBvoTn7Or581ldNNj+6CauuOIpwLlxPpfiJ+9+H29ubuXR5lbe/Oa30HOsk2Mdh2htauY1L30hX/j6d/jCF77AzTc8m/mLl0zc4CTM1WNdaeU6zvX1CRlVEmIOKCUAejXwFeAvwPeBLqANeBFeKusPA7XABzRN69d1/X8malDTtLfgpan+KfBKXddHRmOOAItO23zk96NAZNRtB07bZmuAbZTEssr35mfbTlnbP5uhphZu3fwoF15wEc9zpn+x6vrFVF3DrNrfNJ5qHufpyvf10xSJUBsKUZNM4ATwXE2LqmKYxmmJDrxfHMvEsUzcUDzQfo6k/w677qx5Hjt6e3gkHGHDmjUlHYvr1Ag1y1Zwl66f8TfP5vN5qlKpFI1HOllY38iKa56C4tr0HevEMr3loFduvIRH7nuYZyohDt/+IZq/+BUUNbgL37l0rKtJjrMQohSlvNq/HPiBrus367r+bV3X/6Dr+nd0XX8+8FVgo67r78ILhG6dqDFN024F/hv4PPDSUcEPeAkVrtU0bfScmesBXdf1HrwAJQU8bVR7jcClwP0BtiFGyRfyFBwHJza1BdrjcaNeO6o1ezJ1zQbpnm7vu2VRV+Xpb0oojK2AYY1fj8cx8oGnwlaSXnAdCTq9XJkYhsEDHYf5zIF9tDz5ySW14Sa9Wb1m1/Eguzbr/P6732JhLIbpulz2ildSyKZIDw2euF9RFG6+5VloNXXUWha9W56oYm+FEEJUUikB0NPwpqqN5ad4wQV4xUTPmg5b07S1eCM/P8OrL9SmadoC/6sBbz1QPfA1TdMu1DTtNcDb/W3xg6XPA5/UNO15mqatB36IN+rzU383QbQhRhnJ1hZPJCfYcnJcP5AK2fYEW4qpyPjZrXKOg3r2Watlp4QjWO6ZNYBGc00DxQ32HFBqvPUBIUXBtaZbsrf8jh7txHVdkokE9SV+wFDT7C1dTObzGEZ1pz1Wi+u6HL3vXgAKbW1EahIM9XVh26eeA2vXrGKv7X3wsuNnP654P4UQQlRHKQFQP3DxOPddjDeaAt40uIkm3b8IbwraC4Djp33d4Y/Q3AhoeGmpbwfepev6t0a18SHga8CdwF/xlqbcqOu6ARBEG+JU0Y4O3rz8PJ6knrmYvSRxb3F6WObLByrX3w9AQQGqnBJZjUSxcM8+AmSZ4AQbAKnJk8v/nMJYKbhnliNHOqgLh1m6ZAlOicFLbUsrAItjcTo6DgfZvWnJ6XsYuufuQNd4jWfvXp2V/jm/5LqnYxt5MqMKOI9QFIXwaq9IbvxIB7Z8CCOEEHNCKWuAvgv8h6ZpJvBjoAdvDdALgX8DvqRpWhPeKMvDZ2tI1/WPAR+bYJvHgKvOcr+NV9T0PeVsQ5wUHRjgGfPa2BlQe4ofAKmuBEBBKgwNEgWMKqe/Bq8GkOlYZ3wCP5prGeCYKOEIbkDrgMKJGIbjEFVVnGKBUG1tIO2Wy9HODr60/lJQVUy/4PBUherqAViaSHKwfT+rV68JsoslCYdVhu76DZkd2zH7epj34peVdX93/+YXPN0vIjvvyisp5jPkM+kxt115zZMxvvcLWsMRtt/9RzbccFNZ+yaEEKL6ShkB+gDwA+C/gA68dNEd/u/fBd4P3Axc4m8rzjFu0fsU3w1HJthycnLzFvHyTY/w750dgbQnPGbKu4C2wwGN1E2DEo6QM/Nn3cZ1HG8aXIDrgKKJGB/cs5P37ttNuKExsHbLZfDIESKqSghwldIW5Idqa3FwqQ2H6dy3N9gOToHrOFipFB0dB/nHW9/IN+/5MwCDv/8d2R3byrdf16XroQdRFQWjoYF4Wyupwf5xC8NGkwmO+3WA9v3hd2XrlxBCiJmjlEKoFvA6TdM+CjwdaAU6gb/qun4QQNO0u4DFpyU0EOcI1/Sm5riRYBbWx+K12K5LLjs70hTPFhnLIpfPUaivfv0bJRQhb479CfxojpFHTTYGtt9oPMZBf82aoyhUPxQ8u4KfuMCIRkuetqiEQuTVEDWOQ6r9wMQPKJP0ow/T9c2v8/Ou49x7yOtHwrF5zvyF7P3SF9nwuS8GmnVtxJEjHRzp6WabonLNs5+DYxnk0mcfTQstXwwHjxLuPIplWYTDpUyOEEIIMVuU/Cqv6/oBTk0bPfq+wbFuF+cI08/WFlDRymjcW6iez+dwXQelxE++xan21tby1Z3beNktz6p2V3DDYQq5idfgOJZJyLUpbXD6TNH4yXM0n89TO8OnwDmDAxCO4tZML2jtX7iQj/zpdySWnq1udXkN/PEPYFnki3nOW3kBL37+69m9/WHSfe3UFeDhb9zJVf/wxsD3++CDD7B5eAh1zVpe8qKXYBZT5HNn/3Bl3sXr2L59D4/097Fs6xNs3Hh54P0SQggxc0wqANI0rR14ga7rWzVNO8jZC6G6uq6fNfubmN1Uv44GsWAqcMeicf5p5WoSIZVM/wB1ra2BtDvXDfkpfxtrqz8CZIfDGGfJADfCtQywLVBjEMBi+XAkzNUtrSyOxUnt30vthkun3WY5hbNZaIgSqaubVjuty1dwIJslfuigP/Wrsh8qGF3HMQ4fwnZdNpsO73jbf1BTU8fq89ax94f/xcZCiuF77ib38leQTAZ7fj700AMAXH31UwiFVHL5LEbh7NMvleZG7mup5949O1l4318kABJCiHPcZN8V7+Vkdrd7J/i6L+A+ihlG9ReyK9Fg6gCFozGuaGrissZmsgN9gbQpYHDQD4Dqqh0AKTihyQVAjmXh2iZB5W1QFIXrWtt48aIlFA4dDKbRMjFNk1o/VXeiqWlabS1sbCISDlMoFDh+/FgQ3ZuSPj8F9dbhIW587qupqTkZ0K189muxXJfz4nF++j+fD3S/pmlwcMtmGsIRrrrqGhTFJT08MKnHXnyBBsD99/8l0D4JIYSYeSY1AqTr+mtH/fyasvVGzAphx4UQEFAdIEVRKDguMRXyQzJ7MijPGRripnXrAy8uOlVKOIyFg3mWFNgnuC6uUYBYHWcfaJ48w//zjfTEa5Cqqaenm3n+tNKaxukFQKrr8qIV56HmCxw82M7y5ZWdCtd7/70kgJ0u3LLhqafcF6proqttGQ9tfYj79d08/03/GNjUxK1bt/CcphaevuYCWg4dwlmnUchmJvXYdeevYV4sTlP/AEeOdLC0itMHhRBClFdJ8yI0TavTNG2x/3NU07R3aZr2OU3TnjrRY8Xs98X+Xt60dRPZBcFdIBT8Bd+FVGqCLcVkNbsuyxJJapPBBKqlGqkBVDQnV4fHMQuoARZENf3hJHOGJ9no6jrOltQQ2wt5QtOcAgfwgsZm/mbhIo7s3RNA7ybP7O0lkc9juy6Lr7kRdYx6YbU3v46H1TBd6WF+8Yvg6k1v2vQY6/w04Illy7HMIsV8blKPrQG+8KQNvGv1Wh68+4+B9UkIIcTMM+UASNO0K4DDwD/5N30O+CTwSuBuTdOeF1z3xEw0mM0waJqEk9O/SBsxMjZQTJVW+0ScyrVtEn4yibrG6k6BU8NRLJxJTYEDcEwTggyAQt5xsHKTuxCulq6u4/zs+DH+EIsQmmYSBCUcJueP/A3t3x9E9yat/e4/AbAvm+GiDdeNuY2iKDzr+hcA8IMffGfcFNVTdeCJTbTF4riKQq22FrOYpzjZArjJBJlwCFVROPb4o4H0RwghxMxUygjQR4E9wJc1TUvgBT5f1HW9Gfga8K8B9k/MQFn/k/RIQGuAAAz/Yq04w6cpzRZW5uS0n/qG4ALVUijhCAXLwJ1koVsvEYKJEtBCIMuvg+RMciSgWkbW6ixsa8MuGtNuz4x7/59mV2XXAP3l4AG+29lBR3Mrscj4gdzGi57CU+YvRMsX2LJl87T3a9s2dPi1xBYsJJRIkE0PT/q8A7DmNQOgdh712hNCCHFOKiUAejLwYb/mz/VAAvhf/74fABcF1DcxA1mmyavnL+RVS5YTU4OrlWH4oxUzfZrSbJHu6Qa8WkANdcFk6yuVGomSMyYffHgFUYuBrV0aKQTrTHYkoEr6jx6lIRxhfnMLbgAX39H6BgAiqRRuABn1Jut3jzzIL7qO0XTl9WfdLj7Uy1uXLucVS5Zx169/Me39Hjiwn1VRrzZZ4/r14NrkM1P7QCV53nIAVsVi6PruafdJCCHEzFRKAORwcsbSs4EhYGS+QD0wsz9mFdOSGx7i+nlt3LJgIeFocBfWlr9OQAKgYKS6uwDI2jaxUJXLf4YjZM2zpyE+nVPMowSUBMGJRrwfijO7LnPj8WN8dcNGLusJJhNiw7x5AMxTQwwMTC4T2nR1dh7h4MF2QqEQ56++5Kzb2vOXYUbj1ITDHP7rAxjG9Ea9tm59ggv99T+1F1yIYxkUJ0h/fYZFbQCcl6xh08MPTqs/QgghZq5SAqDHgddrmnYV8FLg17quu5qmtQHv9e8X56isfyFlOU5gabAB/hCp4+WbHuFgS3Ngbc5lmd5eAAoKuH7a8mqZbA2g0RzLQHGC6ffRmhjv372DPUuXBtJeuYT8aYuRgDKixRsbAVgST9DePmbN6sBt/tXPuaa5hWvWX4KqTFAoWVFxV1wIwLpolEceeWha+9636THmx+I4QHLNWiyzOGH9nzPU1pAPhwirKscef2xa/RFCCDFzlRIAvQtv6ttfAQv4iH/7DmAN8IFguiZmovzQkPfdcXAILr1yqKYO23VJyxqgQGTzOY7kcwxXNwM2MBIATW36mWOaYFuBTINz6xLsz2boNc1pt1UuruuSMLwgcbo1gEaEar21X83RKIf0ymSCc7c8wdvOW8NzFi/HsiZee2Mu8WrvbGxs5p5pZl7btHM7n2vfR/7SjURqkhjFAsZUR/0UBbPV+xBGOdqJZVX3wwMhhBDlMeUASNf1J4DVwFXAebqu7/PvuhW4SNf1TQH2T8ww+eEhAIq42HYwmZsA4glvsXQ6LWmwg9BVU8M7d27jL7GSMt0HRglHsBUmnQJ7hGtbuFYxkEQIsYQ3VXMmB9fpdJqWkDdVrz6gUVAlEuHuaJTXPfE47UePBNLm2di2TVPeG3GpW7t+Uo+xFq7EUUO0xWLsf+jBkrPB9fX1cuBIB38dHGDNq16LoijkMylKqSUVu2QdXzhymF8fPcL+/XtL6o8QQoiZraSrI13X07quP6LrenbUbT/Rdb0ruK6JmajoBygGCo4T3MLqFbj808pVLO/uCazNuWzILyjbWBfMdKpSqeEoputgGFNPQOAYwawDqovHuGX+Qlb39U67rXLp6jpOW8ybMharrQ+s3Zp588jYVkWmwO3b+gQL/EKuzedfNrkHhaM4S1YBsFpR2L59a0n7Hskit2bNWq+oqmuTz5UW8CoL20gvmEfKstiy5YmS2hBCCDGzVffjYTHrjKSpNpWglqh7mkMK17bMY15+Zmfqmi2G/KmKjbUzoQiqM+UpcACOaaA408+GloiFedXS5WzMFyqaDW0qujsOURv2sypGIoG1u6zVS4RQiQDowP33AtCvgKlOfn3gyDS4JfEE99zz55L2vXvTYzxvwUKedv46ABzbxJhG1r81560AYOvW6afnFkIIMfNIACSmZKS+jKkGe+oocW8KXLjKC/bPFecfOMCn163nPKXKU+AiUfJWEWcKtVhGuKYBjjntdUAhPwhUAXeamcbKZfDgQcBLoRlkjLYkkeTvlyzjqUroRP2ucknpOgDFlnkUC5Nfb2UsX8f2Jz+Nzx3cz333/aWkfWd37eKVS5bzlGwWRVGwTQOjWHoAtK61hRcuXIzr/01CCCHOLRIAiSnpbmnhzVs3c3csuAxwACS9BduRAKfVzWXJQoFliSQ18QkycZWZGo6SnUINoNEcy8S1jOkHQHUJHD+qcPJTzApWId2DA/y66zhH62pwA1x4nwypPHfBIq5rmcf+/fsDa3csUX/aZXL56qkFcdE4qy6+llAoRHv7fo4e7ZzSfguFAnX+2sTaCy5EVRUvA9w0AqDlqLxs8VLWqyrd3d0ltyOEEGJmkgBITEmmUGDANDAT41d4L4Va6xVtDDismrNifiHNeH2wz9NUuZHIlIqgns4p5lCU6QXF0WSCnH88nKmmRa6QAwP9fLvzMH0rVgTa7kgmuNZYjH07dgba9mgDA/0s8qfw1Z+3bsqPV4hx8cWXElIU7r//L1N67O7dOzm/xlvrNu+SjaiqQj6XwS0xoQJAeMkCALTaOrZukWlwQghxrpEASExJNutNgYvFg11bEqprBCChqjN2ncZs4bouI89OTUN1kyDY4TDFEhIgjAhiHVAsGSPvB0B2bmYGQF1dxwFoqwsuAQKAGo2eqEx9fGf5AqA9e3bxwT07+ebwIGrb8ik/3shk+YfmVr568UYeuveeKT12x2OPsjThnfHJtRoKrp8BrnRuSxMmUBeO0P7YI9NqSwghxMwjAZCYksajR/n7JctYFnC74Tqv9kk8FCKXHg649bnFLRaI+tPG6pqCvaCeEkXBCYennAJ7NMcsTnsdUDyZIOuvLTNSM/Pccvv7qA+HmVdXF3jbxWgUgFT7wcDbHrFnz276DANz+UqKdglvK+EozbZDbTiMtW8vudzk1ysNbfMyx+WSSUJ1dX4ChGkGuqpKptZLn57bJ+uAhBDiXCMBkJiS1tQwz12wiLaA21WTJy/Uh3tmbrri2SDf3w9AwbZpbqxeAKRGYn4K7NIvRl3LwjWnVw8oloiT8dfV5Ab6S26nXCzL4jUNTdy54TJaypAFMexPg6O/fH+77hdaXbNawyiWsIZJUVDXeLWDLq1r4JFHHp7Uw1zXJdHjrdGJrl4DgG2b01r/MyK02JsG15DOkJ+ha8eEEEKURgIgMSWq6WV3UmKJQNtVQiHetn8ff7fpEXIEV2B1Lhrs9BaRpyyLunhwKZWnSo1EMXGmNQIE4BSnVw9IDan8qK+H9+/eQXHR4mn1pRx6e7qZ59fPqW8KpgjqaPXzWgGoM8yyXci3Hj7E3y5czKqmtpLrgxWXnA/ApQ2N/PW+yU2D6+w8woqwd44vuuZaVFXBNosYxWJJfRgtvmIpAFpNLbt27Zh2e0IIIWYOCYDElKiWvx4j4DVAAGY0juW6pNOZwNueS4aHh+jI5ehzbJRpLASfLjUSpeiYmNb0Uk87ZhHFmV5mtN6wwv5s5sRUuJmku/0AUVXFcV3UWPBZ+2pbvACoJRotSz2gXC7LxlCEly5eyvxY6WvOio0LsWNxasJhuh9/bFJrAbdufYL37N7Ot80i9Rc9CVVVMIoFLDOAdOdtLTi41IfD7Nr02PTbE0IIMWNIACSmJOxfUKsBZ4EDiCe9i6fUDF2nMVv0xaL8y65t/J9VgEDL1U6NGomRKZaeAW6EYxbBnt46oGSNd76m/UK+M8ngwXYAUoBjBh+ghRubuGN4gHfv2s6BA8Gnwt67cweL4l7+xvji1aU3pKiENW8anKao6PruCR+ydesT2K5L88UbUGMxFEUhnw3oOY5EuHfJPF7zxGNs3l2+BBJCCCEqTwIgMSUx/1NZtSb4tSVPq6vnn1auwj7UHnjbc0m/v9ajpYrrfwCIRMkY0y++6do2rlmY1jqgFbU1PGf+Auzdu6bdn6Bl/Lo3+Ug40BpAI5RQiNbWeQC0twcfAHVs3oSqKOQAIzS9RPbOCi+F9uWNTdw/iWxwW7c+AcDFF1/i3eA6FHPBjSDPW7USB9i2bYtkpxRCiHOIBEBiSuL+p/CKX7cnSGuiEa5tmYcjSRCmpb+/D6h+AGRHIhSnkQDhlLYKOdRprA1bFU/w6qUriO/fF0h/gmT2ec+XnQh2Xd1oy/1pcPvL8Pen9u8FIFtbS9GYXsryXMtS0s0t/LzrGH994L6zbjvQdZzbonFetWQ5F697EgCubQSy/mfEimVLCIfD9Pf309l5JLB2hRBCVFe42h0Qs4dj2yRDIQCUmobAJ1eZ4TDYBlZW1gBNx9Ldu/nMuvUMhKqXAAFFwQ6HKQQUADmmAbYJSqSkWX12IgY5B7cQfJa16VLTXs2aUG35ajZpiQTvWrWW/q7uwNtWenogEiW0YDGWOb01Z5aj0vi6t3LXy25E6e2mv7+PFj94O92eX/+SRfEEkXlRWuYvQFEULCuYDHAjoqEQ/3zBOhY4sOPxR1m6NOgCAEIIIapBRoDEpOXyOd60dRPv3LmVUF3w2aqsiDd9xs5Of9rUXBbLZVmaSFKXmN50pOlQIzEM16FoTH8NEHjrgFzbRC1xHZAT92rhqAGODgTlidQwv+k+TnTevLLtoy1Zw+VNzSx3CTQTnGmaNBlewoHkirWBtBkL13HhhRfhui4PnGUUqOjX/+lvbUVRFFRVwTKLmEE+x6rKmkSSJYkEXZseD65dIYQQVSUBkJi0bDbLoGlyzDBRo8FfXDt+am1Xam5MS8RfSJ9oKN+IwkTUaAwTO7ARIFwXp5gtPRFC0jtfQ34a95nCdV3+1HGIbx05TMOy5WXbT0PbfACWJ5IcDHAd0MH2A8z3M9fVLj8/kDZzOYOnXXUNT2+ZR8fdfxpzGzuToc3/oKTpyqsBvAxwhTx2wJn+8o1eHSWn43Cg7QohhKgeCYDEpI1k0KqtraUs2ZUT/gV7YeZ9Sj+bJFzvyan1L9yqQY3GyVtGoBejTrGA4pbWnlLnZYGL2NNboxK0dDpN1r+Qb60pX8Aaqq3Fcl2S4TAdO7YH1u4efTdv2LKJr7k2Vk0wo8L5rMHVtQ3cunIV6wcGx5zSduS3vyaiKBzKZVn/zBsAUBTIZ1OB9GG0+PIlAMwzDPL5YEY0hRBCVJcEQGLSMocO8qoly7l+3nzsMkRAStJbtD/TPqWfTVzHoUbx/q0bmoNPVDFZaiRKqhjsWi7HLIJVWjrscJMXDIYBxwigRkxAjh9sZ3VNLUubW4iWcT+KqpLys+gN7d0TWLu6vgcHaF57PsY01/+MsCyH+dc/l5xtszAWY+fPf3bK/a7jkLrvLwDsSSZpaGgEwLEtimUIUJLneSNzq5I17NjyRODtCyGEqLwZlQRB07QPAM/Udf1po27bANwBXAb0A5/Tdf3To+5XgduB1wNNwAPAbbqu7w+yDQHm0aPcsmAhByyLYhkywobqvAv2iDOzPqWfTbK9PaiKguO6tDRXbwTIicTIZYLN5udalpcOO5LAtad2AkYb67Bdl5Ci4OSyqNFyhhuTN7hjGx+74CKO2xZ2sbyBmZVIQC6PdexYYG3u2eOlFV+9SqNYDG60L2eotDc2cFE6g3PPn3Fe+LeoEe85Sz30IPFCgYxl0fbMZ554jGubgWaAO6G+liwuNarK4Uce5PKrrgl+H0IIISpqxowAaZr2duA/TrutBfgjsBcveLkd+LCmaa8dtdkHgTcDbwCuwssRdZemadGg2hAew89WZajlOW2KS9by+i2P8/7dO3DKMsfu3NfrF9UctixqE7Gq9cOORigElADhlHYLWVR36udGor6Gj+3bw2d6jqOWcarZVGX9GkC5SAS3zNPzEi3eFLV4QMVgXdfliqFh/nHFKlbVNuJMMSg9m3zWYPELXsyAYVBnWXT93w9P3JdbsIA/9Hbzk+OdPO2ZNwLe+h/LMjADzAB3gqIw7K8hy+3dG3z7QgghKq7qAZCmaYs1TbsL+Aign3b3G4EicKuu67t1Xf8G8FngPf5jo8A7gdt1Xf+trutbgZcCi4EXBtiGAKyMN6XJDJcnvXKioYWUZWFYFul08HP554LBvl4O5bL0uQ5Uab2LEo5i4lIoBh8AOWYRHNNb8DEFifok21PDbOnuQgnPnIFvq9cbJbMrkLFv3uIlFG2bXC5HNoBU852dR7i0to7rWufRVNsSQA9PymVNLr7san5d8M6hzN1/5vhXv4Truvz8D3dx5+GDHFu0mAULFgKgKAq2aWAY5Vk/qCyaT2c+z6GjnVIQVQghzgFVD4CAS4FBYD3wyGn3XQvcp+v66LkVdwOapmltwAagzr8NAF3Xh4DNwFMDbEMAjn/RZEXKEwCFIxHiiSQAQ0MDZdnHue4Y8O5d2/lVBEoqmBOAUDSGgUO+TAGQaxannA47XuudV8VikUJh5mQZDGe80Ri1pvzTFVuXLeWf2/fyX+372BvASMaBLZtpiESwXRe7cUEAPTzJth2y6SLrX/RivtfZAUD+0EHS6TQ/+tH3AXjZy15xYntVVSjkMrhlGjmuv3Ij79Z38tPDBzlypKMs+xBCCFE5VQ+AdF3/la7rf6frevsYdy8BTi+/PTKBfZl/P+NsM1KxLog2BJwoImlFyje16u+XrOCtK1czGOA6hbmku7sLgPmtTVXrgxpLULANTKsMn8a74BQyKMrUgrtwLML6pmZumb+QXr9+zEyQ9Nf9JJoay74vRVVZtXAxAHv37p52e93btwGQjkQw3RLTk59FerjAC1/wYh5R4F937+BP2Qz//u//yuDgACtXnscznnHDiW0VxS1LBrgRkWiE85Z7bwfbtm0p236EEEJUxsyZCzK2JN70tdFGJnnH/fsZZ5uRnKxBtFGScDj4+DIUUk/5XkkjRSTdWAJVDf6CB+DJdbXUqyp93cfLcvwmq5rHeTp6e7sBmN/cWLbnaCKhWJxUMT2pWWojGd2875MLahyzSNgxcdWpjEQqPGP+Aq6urSe3awfha6q/kN11HBr8v7+htbWsz9dI26sXLODhPbvYq++a9v+X4Y+EWC2tmIYdeP8LeZNIOMqHP/xR3vSm1/PFv/wZgHA4zAc/+O8kRq9xcy3MYrGsx3D1ymUcaD/I3q2bCT//BeNuN1tfO2YbOc5CiOmY6QFQHjh9uGFksnzWvx9/m/xp22QDbGPKVFWhqamm1IdPqL4+Uba2xxOyvPTUam0tiUR58kPkFZV6wEwNlfX4TVY1jvN0rO/o4PJ163HDEeJleo4motYkyQ/3EY6EJv2Y0FQuxl0L1TWJJKd2fhhR7+XOzaRmxLmVOtJJWFGwHIdFCxeSCE/+eJXqsuZmLlm3nszBw9M+BvHUMCRqqFu1BlVViCeCnRrruuDYLjff/CzuvPNOPvWpTwHwvve9j2c84xmnbJtND6ModlnP+WtbWnjZhsvYt2//pI7dbHvtmK3kOAshSjHTA6AjwKLTbhv5/SgQGXXbgdO2GZnnEkQbU+Y4LqlU8GsgQiGV+voEqVQe265sprSf2Rb7dm7lpkuvpS5fnpS9rhoC1yZ9vIfBwZLjz2mr5nGejppCkYWJJAOJOIUyPUdnp6CgkMmmscyJkzAoikIorGJbzhQWl9somTR2uAbHmfxUOMNPfZ3rG6jquTXi8JEuvtFxiPpYjDe7CvkyPl+qqhCLRWhraiGcSDJgGvT0DBEpcT3fwMAAi1Tv7aNx7UX05MpTu6u3J0OyLsrll1/Dj350ctRu9POnqgrFXIZMKoNZxhpPzYsWEj9wlEWGTWdnNzXjZBOcra8ds025jnN9fUJGlYSYA2Z6AHQf8GZN00K6ro9cTV0P6Lqu92iaNgykgKfhBy+apjXiJVb4fIBtlMSyyvfmZ9tOWdsfy7HhYY7k84Trmqd04TkVxXAUzDzG8FDF/76xVOM4T0fScUGFhtamsj1HZ6NGYxiuS76QYXLxjLeR67qT3N5jF/OoloGjhCed68FKxiBn42YyM+I5PTo4yF09XaxYupQ3GJUp/tu2eAl9W7bQHImyb/MTrN14WUnt7NiyhYJjY7sutC7D6S1P9rX0cAGjaJ+18HI4rGIUChQLZUiBPUrNymWY9z1KSzTKjvvuY+MNN511+9n22jFbyXEWQpRipn/M8XWgHviapmkXapr2GuDtwMcBdF0v4gUpn9Q07Xmapq0Hfog36vPTANsQwPDwEACxZPkyVllRbzqDE0Ca3rmmmM9RF/KmUbW0TWv5WslCsThFbPLF8o6w2EYB15paNji3zpu2pJb5QnmyOju9vCsLW+dVbJ9qJEKvnx796ObHSm5HP7CPd+7cxv+2NGGW8XO0XNbAKFpnXdujqir5TDC1jc4qHOa4/2PPo6cnLBVCCDGbzOgASNf1HuBGQMNLS3078C5d1781arMPAV8D7gT+CljAjbquG0G1IcAxDJ4dT/CChYuIx5ITP6DU/fjBlZsNfvrgua67vR1VUbBcl4am6hT7VGMJ0kYW2ylzDSLX9bPBTeEx9V4AFC3jNKmpyO7ZxXnJGpY1B1tDZyKZiBewZPfvK7kNXfeyyK3WLqRYtCbYunSFvEk+Z5x1SpLr2BRyFQiAgExTPQBqx+GK7E8IIUR5zKgpcLquv2aM2x4DrjrLY2y8oqbvOcs2025jrsv393FjyzwMx2Fvsr5s+1HrmqD3MKEZ8in9bNKzfx/1QMqxURy7OlWAonGGC70V2ZVdyBOqNUCJTGoaXKi5AThO1HVxTAM1Up0kESPWHjrMJy58EjsSlV3EHWpshMEhov39JbexZ48XAK1ZrWEUyhcAAQwN5GlqHT/pgGMbGMXyTME7XXz1Cnh8BwtME8c0UctUE00IIUR5zegRIDFzDB/36vKkLJNwtHwjQOnVG3jDlk18at8eqbg+RUMdhwDIh8O4dnkvSsdjx2Lk8pWZvugVRS2gqpN7GYu1NvCJfXv4SiGHopY/49rZuLZNvT8Vra6lclPgAFoWeaXP5tsOljn1tUf5fI5bk7X8x/nrWF7bhGGUd7QvmymOm1BDURRsy8CoUHHbBResIW2ZJNQQhx9+sCL7FEIIETwJgMSkZHq8+jIZx6Wca+uTrQsZtkzyxeKJNUdicvoHBzmUy1KsiU+8cRkokSiGArlChdZvuS52Po3K5BZA17c2snl4iC1dx1FC1Q2AzN4eQopCwbZpbW2t6L4XL1/BoXyOhwb6ad+9c8qP37N1CyuTNZxfW0esofzBWy5jUMxbY06DU1UFyyhiFCszYhyORHjUMvhuZwfbDx+syD6FEEIETwIgMSm53j4A8lNadDF14UiE2rpGALq7u8u6r3PN4+kU7961nX5teVX2H4olKWKTLVRmPQaAUyyAVTxRUPVsahu9qZv9/X2YJYx8BGnwwH4AjhXytNWWb0rpWMKhED8o5PnS4Xa279s75cd3PuYlAEgpCsUzSqwFz7IcUsOFMRMhqKpCIZfBOUuWuKD1rVjML7qO8dftJVdJEEIIUWUSAIlJKQ4NAFAo8yfnim3xmqXLeevK1fR2HSvrvs41R496WcWWzKtSBrh4krSRw67g9DvHNHCKOZSzZAkbEa9Lsr6xiee0LaBn6xMV6N34+vfq3nfHITbJKXxBunDJUgC2b5/6ccjv94K3fHMzxUJlAsnUUB7HHmvo2SWXSVWkDyPWaWsAeOzRRyoaeAkhhAiOBEBiUqxh7yLDDJd34birhrg6keApLa0M+mmCxeR0dnYCsLilOgEQsTgDuaGK79bOZ1CdiS/EHRyuX7iYVy1dztATmyvQs/Hl/XM7F61OIoYLlixFBXq3b8ed4kV8ctD7MCR+3pqyZoAbLZsZOx22a1du/c+I85YvpTmZYJ2i0n7/Xyq6byGEEMGYUVngxMzl+HU2jGiZp7woCllVpcF1SB+TEaDJGh4e4lMrVpGxLdpiESZdHTQwClYsRm6wctPfRjjFvFcTKFJz1uKvlmNTjHsBR6G3p1LdG5Pb500pdWrGz25WTucvXsr/rL+UpmiU/r17aD3/wkk9LpNOscQfBV6w8XJ6ypwBbkQhb5LNFGlJ1uL4KdYVBWzLpFjhACgcDvOqNRpXR+L0/fEPrL7uGRXdvxBCiOmTESAxKVuam3nnzq0cbih/zZJc2Auyqn2ROpsc3b+PpmiUpYkk8SokQVBjcYo4ZHKVnY4E4DoOTi6Fqkwc9Nm1XsBhDw6Wu1tn9Wg8zreOHEJtbqrK/htqauj1pyp23PeXST9u30MPkgyFKToOtUvXnjXgDNpgf47RiSFVVcU0ChhVSJlvLpoPQE1XF65VnYyLQgghSicBkJiUvmyGI/k8Sn35L9iKcf8iVbLATdpxvy5LxnWBMhchHUM4UUPOMckXK5QB7jR2IQeWMWEyBLW1EYBQpjr9HLGpr5vfdHfRXOEiqKMNxbxAOb9r16Qf035gH48NDtAZi5LNV/bCP5suYhatE8+xlwAhW9E1ZyPmP+kCUqZJDMj667mEEELMHhIAiUkZSUkdT9aVfV9ObYP3Q7q6F6mzSX/7AQCKsQhuFTKcqfEaBvJDVavd5JgGTiEzZqaw0SILvLTNcdOsap2pQ4cOAbCoobFqfahf6iVCaEyncSZZSPSRg+186sBejm28nGKFA6Bc1iCXMQiHR962XHLpoYr2YcSKZUvYlvWme3bc/ceq9EEIIUTpJAASE3JMk8uHUzx/wSIS8fKvWVCaFwAQLRaxZHrJpBT8QrVKQx2VX/8DVjzOcHao4vsdzc6nUWwDzhID1axYCEAEcLLZynTsND2bHkNzXFoiUZY0VGcKHMAFazV6igUiikLPY49OuL3rujzxxCYA1l+8oWIZ4E7uHwb6sydOb9c2KOZzFe3DCFVVGWz0Pgwydu2Uos1CCDHLSAAkJmQPDXF5KMyLFi0hXlf+C7ZQixcANYTDHDt2tOz7Oxeow8MAJNsqP6VKjcYpqgqZ/HDF9z2aXczjGjnUs6SVblw0nyHTAKBYpTVmfX/6A29ftYably4jESt/HZ3xNNXWccAfLey8/y8Tbt+5V0dNDRMOR9BWr6NQoQQIo6VTxRPZ4CyzWPEECKM1rFuL4TgkDRPjyOGq9UMIIcTUSQAkJmQOeQvGBwyDRG35A6DskjV8oKeXf9d30dEhFxYTyefzNNjeup95SxdUfP+hRA051yRbhQQIp3DBzg6fNSV2fWsDXzh8kH/ZuY1UlVJQW352Q6u2tir7H81qbAQgfOjQhOmwD//21/z3ky7hves34DohbKvyNXBymSLZjEE0GsIsFiqeAnu0iy66kM3DgziuS8+W6taVEkIIMTUSAIkJZbu7ABg0DeLJhrLvz41Eic9biAsckU9WJ3ToUDud+TxHiwUaF7ZWfP+hRC39uUEct/pFIe1CzhsFCo390ubgMlBfR0c+R8fRzgr3DpxikZg/9S7aXKV6TaMsOm8VPz9+lM8fPTLhxEln/z4AIosWk0lVPvMa+NPg+rIoikouM1zVQqS1NTU8pLrctu0JHjGqF4gJIYSYOgmAxIRSR71paMOOQzRWmRTLzfMWAdDR0VGR/c1m+/fv48uH2/leVCXaXP4kFadSMBMJhjIDFd7v2FzX9UaB3LGnZ1m2xcpV5wFw4MC+SnYNgOLRoyjAkGnQNq+t4vs/3cXnreZnvd083tnBrl07x93OTA0zz0833Xb1NeTzlU+0MSI9XMAsFslnqjziCCxfdz4DpsHvf/fbCTMQCiGEmDkkABITKvR0A5BVQxXb51W4vHPVWnKHDlZsn7PVzp3bAbhg7WocY3LZvIISSiQpKC6pKidAGM0u5HCL2TEzwpmOxfnLl3LL/IVEHn+84n0rHvbO54O5XFUTIIyIRiJcsfZ8AO65Z/xsZod+/ztCikJ7Lsv6p15PoYoBUCFvUsjlKBarP+pyxaUXA7Bp82YGuo9XuTdCCCEmSwIgMSGzrxeAbLRyC7aXGnme3NSMIsVQJ7R721YUYP0FGo5Z2QAonKwnZeXJFdIV3e/ZuI6DnfFHgU6LgQzbZPmC+bxq6XLWDlU+bffwbq/mzr5MmhUzYAQI4NoL1rEikWTeww8z/MD9Y24z9PCDAByrryOkRChUOAX2aIlkhGw6Q6FKWfxGa2ttYf3KFbx31VqO3/5BHMOodpeEEEJMggRAYmJ+hrFCPFmxXTp+JrhYPk8uV/0LnZmqUChwcSbDty65nLWDlc/C5tbU0p3urfh+J2IVsrjFM+sCua5L6zoNy3GIKwrFvsr2PeevoxmKRqiNV2Y66USevEZjQ1MzlyaSHPvlz85IhlA8dpSG4WEc16XpqmvIpIpVTfucSEbJpIYp5AooE9R9qoQnXbKeRfEEYdMk8/jE6cSFEEJUnwRAYkIPrVjBu3ZuY7C+cou2nRavXsvCWBxdl0rr49mzZxdLY3HioRANjeWv0TSaGolRCIcYTvdVdL+T4rpYmSFU2zhjbUbL8oUc86cKHnn8sYp267FVq/jMgb2EW+dVdL9nk4jFcBcuJGdbhAYGSD/80Cn3H7/nzwA8PjTINTc9m0y6sqOMp4vHVYYH+snlzBmx7uaKjRv4U683Tbjn93dVuTdCCCEmQwIgMaGjfb0czueIN1Zuyo7hB1sL43H27Bl/cfZct33bVlYkvcAn2lz+DH2jhWsbSNvFGbX+ZzS7kMfJpzi9LFDRMUj5oy9d27ZUtE9b2w/wyOAAKxYsrOh+J/KsjVfw0+NespPuH30fO31ySuMfsxk+176PPU0NtM1bSD5fvWleqqoQiTpkhlMUcia25VQ9CGppauR4cz2m4+AcPUr+YHtV+yOEEGJiEgCJCXX7i3trGipXZNOo9/a1MBZnj79uQpxp56MP0RCJ4ALh+gpPqaptoCvTjTsD0l+Px0oPoZi5U6bCGbZJeLGXZdA4cqSi/dm92wvmV8+Q9T8jtMVL6Egm6czncTMZOj/7aTJbnqBQKPD9H3yXBwb6ufqFL8YoWuRz1UuAkKiJ4thFMqk0hmFRyJszYhrcVU+5iocH+wEY+PP4ySSEEELMDBIAibPK7tzBNdk8VzQ2UVNXwQCotgkXiIdCHN0rU+DGYhgGA3v2AKA2N+GOk/q5HNRonHwkRP/wzFv/M5pjmViZQVTsEwkRDMugbeMlADRlszh+EdlyO3znl3my41IXDrN6waKK7HMqXvuMZ/GZAzppy6LYcZhj//N5vnnnlxgY6GfhwkU8+9m3kE4Vq1IAdUSyJkI+M4TpJxvIZQ0c2zkj2UWlXfKkC3kwlwFg6MGHKPbPjLTwQgghxiYBkDir3J7dXJ2sYX19I/VNFVy3EApRrKknb9sMH+2kUKhO4cWZ7IknNrE4HAagfvkSXKtyn8xH6poYtHKkM4MV22eprGwaN58i5I8UFC2DC254OgXHJq4otD+xuex9sDMZCg8/xMuXLGPNosXUJhJl3+dUrVu6jHUbLuE9u7bxYGqIPkXh19/7NgBvf/u7CIfDpIer+3+YTKgMD5wMLooFi2LBGjPleSWFQiGWXbqePekUiuPQddfvqtofIYQQZycBkDirbMdhAI4W8tQ3Vm4ECODwza/jnUcOsS+dYluF12rMBn/9631otV7h09iCyiWoQFGw6xo4PnQMl+plA5s018VMDZyYCle0DMLJGD+JRnn1E49x//YtZe9Cbs9uFKAjn+O85SvLvr9Svf2W57Ng1Wr+39493PbwA3TmcrzkJX/HTTfdjFm0yWWrlwAhGgujKibpoaETt7muSzZj4DpUfRToWU9/Kj/p7earhw+ys66yCUmEEEJMjQRA4qyKx7yF0YPhMKFQuKL7tmvqOf+ijQA8+ujDFd33TOc4Dn/84+/ZmhqmsHA+8UWtFdt3pLaRjOrQN9RVsX1Ol2MaWKl+VNfEdCyKlsGGG2/EdF1+85tflj2tc3bHNgB2pIa5eOmysu5rOqK2w1c+eDvvf98H+Nu/fQmf/ORned/7PkgopJLPm+Sy1Vv/U1sXwyhmyKYzp9xeyJsU8ibq6dkuKqyutoalG9fzx95uPvv5/676qJQQQojxSQAkxuUUi+B/2pqrqWyGsRGrL9gASAB0us2bH+f48WPcn8tw8fveVdEECGpjC0fT3RSNfMX2GQQrl8HODBJSHNJGhptuejaRSIQD+/exY+uWsu3XtSzSmzYBsGl4iCfN4BEgALtvgFc+/wV86EMf5sYbb0ZRFBRFYag/V9X6PzW1IYb6us/og+u6ZNNFfy1QdYOOm5/5NGKxKLt27eYXP/s/rHSqqv0RQggxNgmAxLiKHR0orsuAYRBqXlDx/Su2xTXdx/ivdRezf/dOMpnMxA+aI37zm18C8Kxn3URUtbELuYrsN5ysIxMJcby/stnTgmKlB3Hzw2TNLHUNddz61Kdzx0UbeOxrXy7bPnP6Htx8jmHThJaWGVMAdTzFoWGK3V1EwieDCcu0yaSqO/0tHDIZGhh7zVkhb5LPmVUfdWmoq+MFz34Wa2tqqf3hjzl255erGjQKIYQYmwRAYlwFv57FgWyGxtbKZ61yQ2GSAz0sSSRYnUhy3333VLwPM9HAwAB33fVr1tc38PwbnoU13A8VSkUdam7jWK6PTG64IvsLmus4GEN95DP9uIrFtZc/mQXxOMsGBti8qTxFUdOPPwrAo0MDXHP+hWXZR6Bcl2xHJ+QyKIpCOKySz5lVLYBa3xCnmE+RGR57RMUFMqkilmFXPS32s6+/jmRzIy3hMIWdO8k8+tDEDxJCCFFREgCJcZkDXl2L/bkMLfOqk7Y3O99bL3FhXT2/+91vqtKHmeaHP/wudrHIe9acT/zr3yDXcagi+w3XNpKOhjnSc7Ai+ysX17ZI9x2lWBjighe9EFNRWJZI8ov//Bi5XDbw/eWKBobj8OBAP9fOhgAIKAwMUjx6jGjYm/422JfDtquT/lpRoLZWpb/7+FlHUwzDIpMuVjsXAuFwmL995Yv4sV9YtvOb38AamvnZEoUQYi6RAEiMq+1lf8c/HzrAH3t6aK5aALQCgCfVNfDgg39leHioKv2YKYaGBvn+97/D+vpGIopCpKkRJVaBSz5VRW2ZT0fq+Kwd/Rktkxkkk+ol4uZovekmAG6KxfnQu96B4deYCcovc2netHUTNUuWML+xKdC2y8Z1SR86jJsexjIchgcrM8VyLLX1cVwnx0BP34TbZtNFclkTNVTdt7Z1568hctl6DmQzhEyTvZ/+JK5VuTpdQgghzk4CIDGuoaFBOvt6ydgWLW2Lq9KH7OJVAKypraVOgZ///CdV6cdM8YUvfI5Uaphnr/AW0tetW4trlL82S6x5Ab2KQUf3/rLvqxJsx2IoO0ixt5PF123EbWqiJRpjY3c3t77ptRzzsx9O18DAAD/84ffJ2jbP3Xh5IG1WijGcwuzvJz2Uq+r0t8bGKEN9xylOohaY47qkhvIYxerXBnruzc/k7qhK1rIId3Wx447PyHogIYSYISQAEmNyTIN9+/YA0DxvEbF4sir9sJJ15OctAeCKxma+851vBv4J/Wzx2GMP8+Mf/4C6cJiLYt5C+tq1S8q+33BNA/n6evZ17cMwq3chHLSB7CBWOETuqM6qV74ANxRiY2MTTx1O8cIXPofPf/7/0dPTXXL76U2P8+1PfIR8PscFK1Zy5WotwN6XnxIKUTQdeg51Vy2YqK2LEVILdB89PunHmKZNajCPbbtVDYJUVeXvXvdKfmnlcVyX2O7d/OlTH8dxqjOVUAghxEkSAIkzuK5Lx0f+A374QxbE4ixYfF5V+zO83Fs38ayFi+jt7eUnP/lhVftTDb29Pfzrv74H13V5+1OfgeI4JJYtIZQMlXW/ajSO27aQ/cOd9A1N/iJ0NkhlBylGQigo2NYgS176bFBVzOYmCoUCd975JZ797Ou57bbX8/3v/y/t7QewbXtSbRu9vRz5yv/w7IEBLm5o5B9vfi5KlVM0T1VifhuZgkLXnsO4uWzFgwlFgebWOIO9R8lNMQNkPm8yPJjHsd2qJkWIRMI89/V/zz2qw650ig/94Lu8/vWvYseO7VXrkxBCCKhsZUsxKxTaD2Ac7aQGGLZMLlyyqqr9GVp9Ma37NxFqbSK0fQtf+MIdXH/9s2hrm1/VflVKKjXMW97yJnp6urnovFWsN01coOmqDThlHJFRo3FCi5ZzIN/PoWN62fZTLensIGm7yLzaBozBHsL1Kkv+/jm8+aJLWLN5N9/+3vdJ7dlD79YtfPLBBwBIJpOcf/6FrF69lqVLl7J48VIWLVpEIpEkkUiQz+dp37Ob8I9/xHzXZW8mzVNueBbnL1hY5b92akKxGKGWNrr2D2Bm87j0EV8QQo3GcZzKTONqaq0BO8Wxw6WlXM9mvP+NhqYEoZBatZGXaDTKU17zMv5031/hcDubNz/Oq//+JTz18iu58YUv4rrrnk4iUZ0RdiGEmKskAPJpmqYCtwOvB5qAB4DbdF0/NxY9TEH/r7waM49l0uRtm0XL1lS1P04swb6/uY1Lz29j3a7tbNu2lfe975186UtfJxKJVrVv5Xbs2FHe8pY30d6+n+bmFj76rvdjfu+7xJcuIdqWxC1TABRK1qHMX8zBwgD6kW04FUqzXUmO63A81c28uiUw2ANAKKGSPbid61bN54Y7PsnOD38Gt3+A47j86dgxHuztZvPmx9m8+fEx25wfi/G289awuqaWjGWRvfxyXqBdCJMcOZoRFIWaZUsZSNv0dXqJB6xsjmJ3D7G2NtR4HMcubxCUrInSUO/Ssf/ApNb+jCebKeI6LvVNCaLRUBUz2SnccN1T2Hjxen795/to1vdzg2Hwo8/8Jx/+tw9w8aUbueSSjaxfv4FVq1bT0tI660YMhRBiNlFkUaZH07TbgduA1wJHgf8EzgPW6bo+1UUn7bbtrBwYCD6lbjis0tRUw+BgFssK/s089chDdH31y6Co/NO2TfTZNu/55I+IRqtfvLGtKUlrPMM7/uGVHB0e4pnPfBYf/einiMVige+r3Md5IrZt86tf/ZxPf/oTZDJp2trm84UvfIW1azWU/uPkD2wFJR/8jlWVWPMCCg0NtKeO0X50N7ZTvot3RYFwJIRl2lTjpSgZr+PJ511BTU8PVmbolPsc02H4sb2kdx04JYNXsa6O3nCYHabJwz3H6e7upt62eV5zK1c0NhFRVYqhEPUvewnNoSjFwVPbrQZVVUgkouTzxoQjODXLlmLUtKI/cZh8+tRzLJxMEJvXilpTg+3gFeAJWDwRYcGiOANd7Rzauy+QNqPREPUNCeLJCIpCWUexVFUhnohSGOdYK66L+qs/E+obAKCrUOD3vV3c29dHxvbOs7q6epYvX8H8+fNpazv51dTURF1dPbW1ddTV1VFXV1+W17/ZoFyv0c3NNYRC6kG8938hxDlKAiBA07Qo0Ae8W9f1L/m3NQLHgNfpuv6DKTY56wIg13VJP/IQ3d/8Oq5l0b54Ge/9xY9YsWY9r3nrJwLbz3QowAXxHM43Psfdx47ynSOHWHn+hfz7v3+U1avXBrqvagRAlmVx6FA7999/Lz/96f9x5EgHAFdftJ73v/E2ll73NGJhF7v7AJlDOyHAKT1KOEK0vhmnvok+ihzoOUDPQDCZ0M663yoHQACrlqxjXc1CzM4DuPaZqYrtoknhcD+59qPkDh9lpKPNNzyLtpe/AsdxMbqOc+gD7wOgZt06Fr/4ReSOdZE73lXRv2U8kwmAFFWlZtkSjJoW2ncdZ7hn7HTnaiRCrLmRcH09biSK67iBPXcNTQmamkMM9XZwSN8b6LQ1RVFI1kSprYsRjYVAUbxjEfCJN1EABIDjEGvvhE3bcbPe+4QDtBtFftXZwUN+DbbJiEaj1NTUEo/HSSQSxONxYrE48XiceDwx6nvsxO+xWJxYLOp/jxGLxYhGYyd+jsfjJJM11NbWUlNTSzQanXEjUhIACSGmQwIgQNO0K4BHAE3X9b2jbn8A2Kbr+m1TbLJsAdCBji6ObN1GIZvHsQxsI0dv5wE6Dh+kWCjQVyjQmctiGAYhF9bG46B4wcPoN/qaZA2x1nmsePKV3HDDTdR3HqHrzq8AEHnSBt5295/pOLyPZz3/9Vx9/QsD/ztKNW/PI8x75PcAFB2HbcNDHMznWLBqNRddcSUXv/DFJGpqADC6u7BTacarjBhfsRIl7M0CNXp7sIdPXvCFQip1dXHS6QK27RBbvhwbhUwmw3DHIbLd3WSzWXK5HLlc9sRXNpuly3Up2ja2bRM3TRKmieN4v9u2jWXbOLaD49gcNYrkbRvTNGFggIWRCBFVpSEcYUldPU9etpy6TAYlFGL1B99PNOmSPbwH15peJjwlFEaNJQjHk5CopRiLMuwUODJ4lO7+I5jTbH/S/ZgBAVAkHGX9ystYQgyz+wiOMf60Qsd0sIYKGL3D1KxeTeMVV0AkjquE6f7Fr2i45BIitTWk9L3ku3tnTNrjswVASjhMrKmR6Lw2MnaUw3uOk+pLTdhmOJkg0lBPOFkD0SiuouC6fjA0hT87FFKpqYvS0BhDVXJ0H2nneEdn2Y5dSFWJJyIkaiJEY2FCIa/Y60jfp7vfSQVAI0yT+NFelN37sI97GQebb3ku6Ysv5tChQwy1H2Dxli0MOw4DxQLpYpFUscBQPk8qn2N/JkNnwRulS4ZCrKmpxXZdRocDI39Pr1Gkz8+gGVNVViZrTm5z2k8Dhkmv/38QURTOq20gEksQjiUJxRKo0RrUaA1Ea0jFGumNt2JHGnAiNSx2TOxwHNV/4VUV7/9cURQy4SR9sSYUBUI4nJfv9u7zt0PxMjMpCuRDcfqSLSgKqK7L8uwxVFXB3ww7GuPFL72B6xaZEgAJIaZMAiBA07QXAj8Bkrqu50fd/iP/tlum2GS7bTsrU6lgpygd60/zypufzucvHL+a/O97uvhaxyEAGsIRvrph47jb3tPXw/8cakdRVNZecTPvjTv0rL+Bv9a08ctPvBI1HOVVX3iURH0zcGoccXpMMfrDQWWc209XahsNh3ew/M/fINl75uLoV2/dTN2SNbQsOo8Xh2wuyg2Mu/+fXv1icmoYo5DligObuGhw/BGPt+t7OJYeAuCVS5bxvAXjF4b95x1bT1yUvHjREl68aPxU1e/btZ0DOS9Q/psFi3jFkmVjbpdecRFHn/4K8vOXn3L72P++Jw/Y6Xe7J777F3u4uHjrYbxP20+/FBrbRK8aU3tZUU7dr3v2T5rL0S9FUVDVMF5OuJH9n7rxGY9VQEHxtnJdXMfBtR1cyzrjIto9/YFT6PiEf9NE97sj/0PKyd0r3mWk43LyywGzcOpF+6SeRlX1Rgf8rxM/n/jkxdvpif9j/2IY1zvvbMfGsW1s26RQKGCZlr9vZdT5qpw4/q7fqDt6G3eM7Tlte/fMx57oL5zo/0gnXf82r30Fd9TjvLbG6tvp+zv5u3dYR7dzarvNuV4u6N3GkabVHGlaA4rC2p6tvP7hj4176H+25iX8af7V2IU0K4YP8N593xx32x+qi/mp0wxmjqV2hk/Hx0/x/vO+Ib539AiYWdqiMT6//pJxt72ru4tvHDkETP49ByCuqnz70ivG3favA33c0e4twVWAH1525Sn3782k+Vx8Ofd+/3OBru2qr09IACTEHCBJEDwjKXhO/+i3ADSX0qCqKjQ11Uy84RTU1MZpWnMlXeYgAA4KrqJAKIobTuCqYYbPv4bQdc/wbnMKHGz/urfNiTde7zGuY9GzeC2Kuxj38P3oj/yG16HAoQxuzw4A3Ce9nO8cmBfo3xCMi+Giz3Je+gDa0G4W92+nYUCnrtCPaZn0HNxJz8GdtC9ZRktj07it/OoL7ybrL06vW7SEluaWcbctFHInfk47CscNExQVlJD/3f9SVZzLb0WN1IMaJmsc5njhoH8hOOpCy/sB+4aPoyYWoqhhBoyj7Bl8HFsJk47W0Rtv41hyMdubL2Yg3gqH8b6EKJtgX7PE5B1Va9g+f4X3iz95YDi8mtST3k1zoZ86M0XSypGw8yStLDG7yKHYcgajSyEKQ0qSg7UrCbk26sgY0KgINrvkZkJLbvJuzh7l2PZPnBhNUXBPjMQoQPyiv+eiC55PPOTQmu5g+C8fR8EB10VxHfC/XNdhwYWX8szLrqWYTaFmhhko5nFdxw9KT+XW1LJs5Wpc1yXiQp9tndzmtI3NWIIFS1ac+L3XOnV6ai4c4U0vfAr19YlSDrcQYo6TESBA07S/BX7M2CNAMV3X/2aKTZZlBAi86SL19QlSqTy27WA7sH9IZVe/StaEoq1QsMAY9YHYmU/xqSMEA0f2sPWX/82hx35z4vampRdw87/+hEgsecq247c5/n3uOD9P2M5k2xz59NV1yQ8cY7BjO9m+TnIDx8gPd2MbBSwjj23kvTdw1QtaFFVFDUUIxZJE4rWEYknC8VqiyQaiyUbi9Y2o0TrCiToiyQYiyXoiiXrU0NifG0xltGsq90809X46M/On03YQ/VJVhUgkjGlap4w8TKtfE+xzOksZqtWvibt89tfxkKoQjUUwiibOaf9M5Tw3J6KOXHSfNjg1+jujbxu1raq44z92gjZHb8cYtymKO26bE+0jFFJIJmPkc0Vc1x11n3tGH8baxxn9OX3/Z2znnrhNVSCk+v3w+xpSvNsjqkskBGEVwv52s9np74VBkREgIeYGGQHyjMylWgQcGHX7ImBrqY2Wc/G8bTsn2l9V77CqfhqNbVgBz/0M+/e/mYcffpCWlhae/vRnEo+reINgs0kL8LRptzL+AlvL/xJB8I5zmMHBYlWy7c0V3nGOMDhoyHEuM+9YxxgctGbmsfbzPszErpVi9HuhEEJMlgRAnq1ACu/K+QCcyAJ3KfD5qvWqwlavXsPq1dWt+SOEEEIIIUQ5SQAE6Lpe1DTt88AnNU3rBQ4Bn8IbGfppNfsmhBBCCCGECI4EQCd9CO943AkkgPuAG0sogiqEEEIIIYSYoSQA8um6bgPv8b+EEEIIIYQQ56BZngdGCCGEEEIIISZPAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnKG4rlvtPpyL8q7rxh2nPMc2FFKxbacsbYuT5DhXhhznypDjXDlyrCujHMdZVRUURSkAiUAbFkLMKBIAlccQEAOOV7kfQgghhJi8hUARaKxyP4QQZSQBkBBCCCGEEGLOkDVAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEEEIIIYSYMyQAEkIIIYQQQswZEgAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWeEq90BMTFN0z4APFPX9aeNum0DcAdwGdAPfE7X9U9XpYPniHGO83OBDwEXAH3A/wEf0nU9X5VOngPGOs6n3f9V4AZd11dUsl/nonHO6YXAfwE3AzbwO+Btuq73VaWT54BxjvNlwGeAS4Eh4PvAB3VdL1ajj7OVpmnNwMeAW4B6YBvwXl3XH/Dv34C8FwohpkhGgGY4TdPeDvzHabe1AH8E9uK96N8OfFjTtNdWvIPniHGO87XAz4CfABuANwMvBb5Y4e6dM8Y6zqfd/3zg9ZXqz7lsnHM6hvfacR7wTOA5eBfo3650/84V4xznVrzAcjdwCfAG4DXARyvcvXPBD4ArgZcBlwObgT9omna+vBcKIUolI0AzlKZpi4E7gWsB/bS73wgUgVt1XbeA3ZqmrQHeA3yjoh2d5SY4zm8C7tZ1/RP+7/s1TXs/8A1N094sn+RO3gTHeWSbhcBXgHuBFRXr3DlmgmP9crxju0rX9W5/+7cDX9Q0rV7X9VQFuzqrTXCcnwK0AO/SdT2N99rxHeBG4F8q2tFZTNO01cANwDW6rj/o3/Y2vNHLvwPyyHuhEKIEMgI0c10KDALrgUdOu+9a4D7/BX/E3YCmaVpbhfp3rjjbcf4M8K4xHhMG6srcr3PN2Y4zmqYpwLeA/wX+UtGenXvOdqxvAv48EvwA6Lr+e13XV0nwM2VnO879/vdbNU0LaZq2Ang28HDlundO6MMbpdw0coOu6y6gAM3Ie6EQokQyAjRD6br+K+BXAJqmnX73EmD7abcd878vA3rK2rlzyNmOs67rT4z+XdO0KPBOYLOsl5iaCc5ngHcAC4HnAu+rXM/OPRMc67XAfZqmfRB4NRABfg+8W9f1oQp2c9ab4LXjfk3TPgF8GG/9SggvsP+nyvZydvPPyd+Ovk3TtBcDq/DO248i74VCiBLICNDslMQb9h+t4H+PV7gvc4KmaWG80YkLgduq3J1ziqZp6/Hm7r9CphWWXT1e4HMx3hSiN+JN1/qFPwonAqBpWiNesPkF4ArgxcBq4H+q2K1ZT9O0a4CvA7/wA1B5LxRClERGgGanPBA77baRF/tshftyztM0rQ74EfB04EW6rp8xhUuURtO0OPA94CO6rm+rdn/mAAPIAC/Xdd0E0DTt1cCjeIvIH6ti384lnwQadV3/W//3zZqmDQJ/0jTt/+m6vrWKfZuVNE37G7zXiofx1rKBvBcKIUokI0Cz0xFg0Wm3jfx+tMJ9Oaf5C/PvB64GbvY/dRTBeTKwDvg3TdMymqZlgPcDy/zfX1Hd7p1zOgF9JPjx7fS/r6xCf85VT+HMYHJk/c/aCvdl1tM07S3AT/Gmwz17VBkCeS8UQpREAqDZ6T7gWk3TQqNuux7vwkbmPAdE07QmvAW184Cn6Lp+T5W7dC56FFiDNyVrg//1Jbx5/BuAX1apX+eq+4CLNU1LjLrtSf73/VXoz7nqCF5yhNFGjvO+CvdlVtM07Vbgv4HPAy89bZqsvBcKIUoiU+Bmp68D7wa+pmnaf+LNMX87Xp0aEZzP4tVLuQno1TRtwaj7enVdt6vTrXOH/0nuKRfemqYNAJau63JBHrwvAW8BvucnQmjwb7tH1/XNVe3ZueW/gN9pmvZh4JvAcrz6Yb/VdX1LFfs1q2iathavyOnPgI8DbaMSTuSR90IhRIlkBGgW8j/ZuhHQ8IrC3Y5Xb+JbVe3YOUTTNBWv6GkUbxTo+GlfS6vXOyFK42cvvBYv+9sjeFnMHgVeUM1+nWt0Xf8DcAteDZsteBfqvwVeUsVuzUYvwjtXX8CZr8F3yHuhEKJUiuu61e6DEEIIIYQQQlSEjAAJIYQQQggh5gwJgIQQQgghhBBzhgRAQgghhBBCiDlDAiAhhBBCCCHEnCEBkBBCCCGEEGLOkABICCGEEEIIMWdIACSEmNM0TVOq3QchhBBCVI4EQEKIOUvTtOcB3/J/fpqmaa6maU+rbq+EEEIIUU7handACCGq6J9H/bwZuArYVaW+CCGEEKICJAASQghA1/UU8HC1+yGEEEKI8lJc1612H4QQouI0TfsLcN2om54O3AM8Xdf1v2ia9m/Ay4D3Ah8BVgN7gFsBF7gDWA8cAN6m6/qfR7V9EfAJ4Kn+TX8G3qnrensZ/yQhhBBCTIKsARJCzFW3AU/4X1cB9WNssxT4L+CjwEuAZuDHwPeBr+IFSCrwA03TEgCapq0FHgTagNcA/wCcB/xV07S28v05QgghhJgMCYCEEHOSruu7gBSQ0nX9Yf/n0yWB23Rd/76u678EvggsAj6s6/qduq7/Avgg0Apo/mNuB/LAM3Vd/6mu6/+HN7qUAN5V1j9KCCGEEBOSNUBCCHF2D476ucv/PnqtUL//vdH/fj3eVLqcpmkjr7Ep4H7ghjL1UQghhBCTJAGQEEKchZ8c4XS5szykBXip/3W63kA6JYQQQoiSSQAkhBDBGgL+BHxmjPusynZFCCGEEKeTAEgIMZfZQCjgNu8FLgS26LpuAWiapgDfAfYDWwLenxBCCCGmQAIgIcRcNgRcpWnaM4CGgNr8D+Ah4Neapv0PUADeBDwfeFFA+xBCCCFEiSQLnBBiLvs8YAJ34WVpmzZd17cB1+LVCvpfvLTZC4Hn67r+0yD2IYQQQojSSSFUIYQQQgghxJwhI0BCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ0gAJIQQQgghhJgzJAASQgghhBBCzBkSAAkhhBBCCCHmDAmAhBBCCCGEEHOGBEBCCCGEEEKIOUMCICGEEEIIIcScIQGQEEIIIYQQYs6QAEgIIYQQQggxZ/x/1SzVk6S/5a0AAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 10.558 - 11.758) R-Score = 0.9973\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 12.117 - 19.817) R-Score = 0.9952\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 10.000 - 10.550) R-Score = 0.3902 & Fano Ratio = 0.0024\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 11.767 - 12.108) R-Score = 10^-3 & Fano Ratio = 0.0012\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 3 (t: 19.825 - 20.000) R-Score = 10^-1 & Fano Ratio = 0.0000\u001b[0m\n", + "Interpeak window 3 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
0110.0000010.550009.112041e+033.555077e+038.564681e+03135.98568562.9822240.390152interpeak0.01needs review
1211.7666712.108335.779000e+031.155481e+004.298102e+03137.57142931.2426940.000200interpeak0.01needs review
2319.8250020.000001.177637e+011.000001e+002.048615e-010.4898350.4182260.084916interpeak0.01needs review
0110.5583311.758332.810059e+062.802338e+065.279468e+0819379.71082727242.2449660.997252peak0.01valid
1212.1166719.816671.403344e+071.396639e+073.854511e+0815171.28177425406.6286170.995222peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 10.00000 10.55000 9.112041e+03 3.555077e+03 \n", + "1 2 11.76667 12.10833 5.779000e+03 1.155481e+00 \n", + "2 3 19.82500 20.00000 1.177637e+01 1.000001e+00 \n", + "0 1 10.55833 11.75833 2.810059e+06 2.802338e+06 \n", + "1 2 12.11667 19.81667 1.403344e+07 1.396639e+07 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 8.564681e+03 135.985685 62.982224 0.390152 \n", + "1 4.298102e+03 137.571429 31.242694 0.000200 \n", + "2 2.048615e-01 0.489835 0.418226 0.084916 \n", + "0 5.279468e+08 19379.710827 27242.244966 0.997252 \n", + "1 3.854511e+08 15171.281774 25406.628617 0.995222 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 needs review \n", + "1 interpeak 0.01 needs review \n", + "2 interpeak 0.01 needs review \n", + "0 peak 0.01 valid \n", + "1 peak 0.01 valid " + ] + }, + "execution_count": 10, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_peaks` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3139991.62113515061.4147981.807370e+064compound A171.373144µM
017.290.3480011.70371512525.2861051.503034e+066compound B56.928478nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.313999 1.621135 15061.414798 1.807370e+06 4 \n", + "0 17.29 0.348001 1.703715 12525.286105 1.503034e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.373144 µM \n", + "0 compound B 56.928478 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 12, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/M9t1k0yshIQQy9A4igjQFUUTBi2KBaxcsoIiCooIiKhZQ8IpKVxAVVOy9g9hAlJYhgfTey/Yp94/dxRBSNptNsgnf+zx5SGbOnD07GbLzzTnnO4wsyyCEEEIIIYSQcwHb3g0ghBBCCCGEkLZCARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBARAhhBBCCCHknKFs7wZ0UhUANADy27kdhBBCCPFcDAAbgOB2bgchpBUxsiy3dxs6I4ssy1pJap1zy7IMWqtu8i86z22DznPboPPcduhct43WOM8sy4BhGCsAnU8rJoT4FeoBah35kiQnlpWZfF6xUskiJMSAqiozBEHyef3Eic5z26Dz3DboPLcdOtdto7XOc2ioAQoFQ6M3COnkaA4QIYQQQggh5JxBARAhhBBCCCHknEEBECGEEEIIIeScQQEQIYQQQggh5JxBSRAIIYQQQvzYgQMHAuFM0U0PrgmpnwQgf+jQodWeFKYAiBBCCCHEDx04cIAF8DDDsHMYhlEBYNq7TYT4KVmWZceBAwfeAPDU0KFDG00PSQEQIYQQQoh/elihUM4zGkPsarXWzDAMLTBFSD1kWWbsdqu+qqp8nigKAPBkY+UpACKEEEII8TMHDhwwMgw7x2gMsQcGhpS2d3sI8Xcajc4CIKyionTOgQMHXmpsOByNJSWEEEII8T/RDMOo1Gqtub0bQkhH4eopVcE5Z65BFAARQgghhPgfFgBDw94I8Zzr/wuDJmIcCoAIIYQQQggh5wwKgAghhBBCCCHnDAqACCGEEELIOWPt2tWxV155Sf/2boenUlKOab/55qug9m5HZ0IBECGkQ8jLy8WaNc/hr78OtndTCCGEkDazZMn9PY8dO2Jo73Z0JhQAEUL8niRJmD9/LrZt24Q77rgROTnZ7d0kQgghpI1QHgxfo3WACCF+788/f8f5VhvOj4vHF0WF2LPnPdx9973t3SxCCGlzkiTBbDa32wNsvV4vsWzzXn706GFDr7rqmvwffvg2zOFwsC+9tD5Fr9dL69atifvnn7+MJpNJERQUJIwff1HpggWLco8fP6a7444b+7zyysbjAwYMMgPAvffemXTkyD/GL7744S+lUglZlnHZZRcN/O9/b8695prrS+q+ZklJsXL16mfjDh78I0gURSY5uVfNwoWLs5OSetjcZV5//ZWoTz7ZE1VdXa3s0aOnacmSxzLc++trc1xcV/trr/0v5scfvwsrLy9XdenSxTp79k15l1xyWQUA7Nr1dtjOnW/G3HTTrbmbNr0eV1lZoerdu2/1I488nrF166boH374JkypVMrTps0onDv37gIAsNlszMsvr4ndu/enkLKyUrVWq5MGDhxUuWTJo1mhoWHilVde0r+kpET97rtvxRw+fChww4Y3+PLyMsXLL7/Y5Y8/fg2urq5WJiYmmW6//c7ckSNH1bjf254974Xu2LEtpri4WBMfH28ZP/7i0k2bXu26d++fB7z5nbAs69X781cUABFC/N4fv+zFxRFR0CoU+K28DCf274Nww3+hDA5p76YRQkibkSQJ1113Va+UlOPtNhyqV68+NW+9tZtvbhD01VefRTz99AupoigwPXsm26677qo+QUHBjlWrXjwRGBgo/vjjd8EbNqzv2qdPP9PkyZdWhIeH2/fv32ccMGCQWRRFHDt2JNBms7F//XXAMHz4eaZDhw7qq6urlBMmXFxR97UEQcCCBfOSAUZevvypk2FhYcK6dWvi7r//nuTduz8+DAAlJSXqI0f+CXz66dWpdruNeeqpxxOfeurxbps2vck31OZ7770z6dSpk/p77rkvKzExyfrFF5+Grly5PIll2bRJk6ZUAkBpaYn6o48+iHzyyWfTzGYT++iji3vedNP1fSdOvLjklVc2Hf/ss4/Ctm/f2mXs2PEVvXv3tb7wwjNxv/22P3jx4qUZXbvG23ie1z3//FPdXnvtf7EPPfRY9saNbx6/+ebr+1xwwdiy22+fly+KIubPn5vscDiYxYsfSY+IiHS8885bkUuWLEx+8cVXUgYNGmL+5psvg1avXpU4Z87NOePGTaz47bdfjBs3vtq1pb8Tb95fsy6SNkQBECHE75X/dQBalQYWjQYTwiMxQWdA6d6fEDX1ivZuGiGEtLGOuS7Q2LETSgcNGmIGAIvFwkyYcHHp5MlTyrt2TbADQLdutxTt2vV2dFraCd3kyZdWDBt2XsXBg38YARQcOnTQoFAo5eTkXjV//PFb4PDh55l+/vnH4J49uZqIiEih7mvt2/eTMTMzQ7dly1tHevZMtgHA0qXLM7Zu3RhdVlaqBACFQiGvWLEqPSgoSASAKVOmFm/fvrVLQ20+cSJF++efvwcvX74y7aKLJlcCwN1335t/6lSafseObTHuAEgURWbhwsWZ7pv//v0HVp04kRLwwAMP5zAMg9tvvyv/3Xd3xqSmntD17t3X2rt3H9P48RPLzz9/dA0AdO2aYP/66y+qMjJO6QAgPDxCYFlW1ul0UkhIqPjdd18b09NP6Tds2HbU/RqPPPJ41okTKYYdO7ZFDxo05NTbb++IHjlyVNmtt84tBIAePXoW5+Rkaz7+eE9US34n3ry/llwzrYkCIEKIX7NYLNCVlQFRMTAOGIia/DwAQPkJHlFNHEsIIZ0Jy7J4663dfEcbAgcAcXFdTw890+l08uzZNxV99tnHIdu3bzPk5eVqMjPT9RUV5SpRlBgAGDNmXOWyZQ9HWCwW5rff9gf27duvukuXrta//z5oBFDwxx+/BV144biy+l4rNfWETq/Xi+7gBwCioqKFxYsfyXH/HBQUJLiDHwAIDDSKdrv9jDdWu808n6IDgGHDzqupXaZ//0HVb7yxKa72th49/n1djUYjRURE2RiGAQBotVoZAGw2GwsA06fPLPv55x8DV69e1SU3N0eTk5Oty8vL1fbq1fuM13FLS0vV6XR6sXZwwTAM+vTpV3Pw4J9GAMjIOKUfPfrC8trHDRw4uKZuANTc34k3789fUQBECPFrp06loachAAAQ1n8gxD9+BQDYc/Pas1mEENIuWJZFQECA1N7taC6NRnu6zWazmb3jjhs5q9XKjhkztnzSpCmlAwcOyrr77tt7ucucf/4F1SqVUvr1132Bf/11wDh+/MSyhIRuto8+ej86OztTnZFxSr98+cpT9b2WQqGU3TfkDWFZtsmetNptbigRgSSJjEKhOGOnSqU642eWbbgtTzzxaPy+fT+Fjhs3sXTkyAsqe/Xqk79jx7bo0tJidX3lZbn+tyZJEpRKpex8PVaW5aY7Cpv7O/Hm/fkrCoAIIX4t7QSPHnrncHdtUg9ouyYA2dlQVVVCliQwXjyJJIQQ0n5+/PE7Y3r6Kf3773/6d2RklAAA5eVlisrKSqU70FCr1fLAgYOrfvrph+DU1BMBS5Y8mhkX19XOMIz8yivrYmNiYq21ExrU1r17ktVkMilOnTqp6d49yQYApaUlymuvndHvySefTfWmzcnJvSwA8OefvwW4h8ABwOHDfwd06dLV4k2dZWWliq+++jxi8eKlpy6/fPrpHpucnCytVqurFXz9G2D06JFsMZvNiuPHj2pr9wIdO3Y0IC4u3goACQndLMeOHQ0AUOTef/To4UbnjXnyO+lM6M6BEOLXCo8dgYpl4WBZqCIjEZXMwSaKUMgyHEVFTVdACCHEr0RFRdsB4KOPPgjLzs5U//bb/oBFi+b3EEWRsdsdp+/2R40aXfH999+GG42BQlJSD5tGo5E5rnfN3r0/ho0cOaqiofrHjBlblZiYZH7iiUcSDxz4w5CScky7fPnSbkFBwY6BAwebvWkzx/W2Dho0pHLt2tXx33zzZVBaWqrm5ZdfjDlw4I/gq6++ttCbOo3GIFGn04t79/4UfOrUSc2xY0d0y5Y9nJCRka53OP49D1qtVszNzdEUFRUqx44dX9m1a4LliSce7f7LLz8HnjiRol2x4rH4nJws3axZ1xUCwHXXzcn/7bdfQjZtei3q1KmTmt273wn79NOPIxtri6e/k86CAiBCiF8rzspCid0Ge1AQGIZBYvckFNqdD/0cpWdlPiWEEOLnhgwZZr755tuzP/rog8g5c2b1W7XqyW79+g2svuCCMWU8/2+Gu/HjL6qUJJHp129glXvb4MFDq2RZxtixEyoaqp9lWTz77Jq0iIgo+5Il9/e85565vRQKhbx69bpUjUbjdXfGM8+sPjVixMiK1auf7XbrrXP6/vbbL8EPP7z85GWXTStv+uizKZVKPPLI46eysjJ1t9xyQ98HH7yvp81mY2+44cbc3NxsnclkYgHgiiuuKjp48I+gBQvuTFYqlVi7dv2Jbt26mx9//JGkuXNv6Z2Rka575pnVJ4YOHWECgPHjL6q6664FmZ988mHEzTdf3/fTTz+MmDx5SrF7iFx9PP2ddBaMJ2MESbOdEkUpsazM5POKlUoWISEGlJebIAgdbghwh0HnuW14cp4vv3wSsrOzsOn1rRg6YiQyMzPw26J7MSgoGJH/vQnBY8a2cas7Hrqe2w6d67bRWuc5NNQAhYJNB9DdZ5V66cCBA71YVvFFZGSXGrVa67fZtIj/2b9/b0B4eKSjdhKI9evXRX/11efhH3zw2ZH2bFtrs9ut2qKi3ABJEi8ZOnRoSkPlaA4QIcRvSZKEgoJ8AEBMnHMJg6ioaPxSVoqTphrcFhLans0jhBBC/M6vv/4S9MMP34U++ODDGQkJ3WzHjh3VffTRB1FTpkwtbu+2+QsKgAghfqu0tAQOhwMsyyIy0pm9U6vV4m9JRHleDmaoVAhv5zYSQggh/uTOOxfkWSwW9plnnkysrq5ShoaG2a+4YkbhbbfNK2jvtvkLCoAIIX4rPzcHa/sNQhUAxm4DlM4/WTExMSgvL0NhYT447qwMnYQQQsg5S6PRyA8/vCwbQHZ7t8VfURIEQojfKj51EtFaLbprNGC1utPboyOjEaXRoDKlweG9hBBCCCH1ogCIEOK3qrIyAQA1SuUZ6/0khYVjXf/BSPrzj/ZqGiGEEEI6KAqACCF+y1bgHK5s1+vP2B4Q5ZwPpJQkSA5Hm7eLEEIIIR0XBUCEEL/FVFY4/w09M9tbUEQkBMmZ+lasrm7rZhFCCCGkA6MAiBDitzRm54Ld2uiYM7aHhUegWhAAAGINBUCEEEII8RwFQIQQvxXo6uUxJnQ7Y3tYWBiqBOfQN+oBIoQQQkhzUABECPFLNTU1KLVaUWa3I7Jn8hn7wsLCUenqARKqqtqjeYQQQjw0evSwobt2vR3mafkffvjWOH36pf3GjRs5ZNWqlXGt2TZPrF27OvbKKy/p78s6m3NOcnKy1B999EGIL1//XNeu6wBxHDcOwPcN7E7neb47x3GDALwEYBiAUgBreZ5/vlYdLIBlAG4FEAJgL4A7eZ5Pq1WmxXUQQtpWQUEenkpNgdEYhJ8Su5+xLzQ0FNWu5AemkiIEtUcDCSGEeOS99z7522gMEj0tv2HD+rioqGjbSy+9ciIgINDj4zqS5pyTxx9/tFtkZKR92rTp5a3drnNFe/cA/QIgps7XJAACgKc4jgsD8DWAE3AGL8sArOA47qZadTwKYC6A2wCcD0AG8DnHcWoA8EUdhJC2l5eXBwCIiYk9a59KpcY/Nit25+XAEkQPxQghxJ9FRUULOp1O9rS8yWRS9OnT1xQf380eGhrWKQOg5p0TmWnd1px72rUHiOd5O4AC988cx6kArAHwHs/zGzmOewiADcA8nucFAMc5jusJYDGALa4A5X4AD/I8/5mrjmsA5AGYAeBtALf7oA5CSBsrKMgHAMTExNS7P12twvcZ6bhYp0VSWzaMEEJIs4wePWzoggWLMmbOnFW6dOkD3SRJYkJCQh3ff/9tmM1mZQcMGFT10EOPZUZFRQujRw8bCgDvvrsz5t13d8a89dbuw127Jtg3bFgf9fnnn0RWVlYoo6NjbDNnXlswffp/ygDgl19+DnzwwfuS58y5Oee9996NCQ+PsD355KpTs2df3e/aa2fnffrpR5FqtUrauvXtYwzDYPXqVXG//74/WBAEJjExyXznnfNzBg0aYna3d+fON8N37Xo7ury8TD1w4ODKyMgoe2Pv77bb5nB9+w6oLi8vU+3b91OoSqWSpk69smjSpCllzzyzotupU2mG6OhY64MPPpwxePBQc+1zcvHFl1TMmXN1327dupvXrn01DQB++umHwKVLH0h+6KHHTn7wwa6o48ePBRw/fizgyisvCdyz54vDV155Sf8JEyaVzp+/MK92GyIjo2wrVz6XUd/5eOONt48XFhao1qx5ruuhQweNCgUrJyf3Mi1YsCg7KamHrTV+7/6svXuA6roLQFcA97l+HgPgJ1fg4vYdAI7juEgAgwAEurYBAHierwBwEMCFPqyDENLGtP/8jZf7D8ZYjbbe/aGhzqHT5eU0IoAQcm4RLRa2oS/JZmPaomxL7N+/L6Sqqkr50kuv8I89tuLk8ePHAl9++cUugHNoWGhoqOPyy6cXvvfeJ3936dLVvmbNs10+/fSjyLvuWpC1adP2Y9On/6fwf/97MeHNN7dG1K73t9/2B7/yysbjS5Y8mqFQsDIA/PDDt6Fr1rzML1/+1MmgoCDx3nvv7JmXl6t58sln0155ZWNKr169Tffee2evw4f/1gHARx99EPLqqy/HT5/+n8ING9442rt3X9Pnn38S2dR72rNnd3RkZJR948Y3j06dekXRzp1vxi5efF/Pa665ruB//9twXK1WSatXr0qoe1xwcLD4wANL0//660DQhx++H1pWVqp49tmViRMnTiq59NLLK5599sW0nj2TTeeff0H5xo1vHm/Oea59PqxWK3vPPXdwkiRizZr/8WvW/I83GoOEO++8pXdeXq6qOfV2Bu3aA1Qbx3FaAEsBvMjzfL5rcxyAw3WKuqPdeNd+AMiup0y8D+sghLS1inJEajSw6w317g4JNCJGo4UtL6eNG0YIIe3r5D3zBje0T5fMVXZ98KHTc5hPLZw/UHY46n3gremWWJPwyDLe/XP64vv7S2ZzvfeG6tgu5m5PrGzWDXiDbdTpxGXLnsxUqVRycnIv6/79+0oPHPgjCHAODWNZVtbpdFJUVLRgMpnYjz/eE7Vo0UPpF100uRIAEhO72/Lz8zTvvfd29OzZNxa7673mmusK3L0ZWVkZagC47LJpxRzX2woAP//8Y2BqKm/Ys+fzv8PDIwQAWLhwce6xY0cD3n57e1T//gMz3n//3ahRo0aXz559UzEA9OjRs+D48aOGjIxTZ67IXUfXrvGWu+5akA8AN910e+HOndtjx4wZVzZp0pRKAJg0aUrphg2vdq3v2DFjxlZPmXJ50auvvtz122+/CjUYDOLixY9kAUBISKioVCpltVotudvsqdrn4513doRXV1cpn3lmdbpKpZIB4Iknns6YMeOy/rt3vxNRuzfpXOA3ARCA2QB0ANbW2qaHc/habVbXv1rXfjRQxr1yoi/q8IpS6fsONoWCPeNf0jroPLeNxs6z0mwBWBb6mJh6/y/11OlwR/9BMB08COWt9HtqDF3PbYfOddug89yxRUVF29w34QBgMASIgiDU28N04kSK1uFwMC+88Ey31atXdXNvF0WJEQQHY7FYTh/XrVviWUO54uMT3Pd8SEk5pgeAa6658oyMboIgMA6HnQGA7Ows3bhxE8tq7+/Tp19NUwFQbGzc6dfR6/USAHTp0uV0e9RqjSQIjgZ70RYufDDn4ME/gg4e/DNo/frNx5ozZ6ohtc/HiRO83mKxKC65ZNyg2mUcDgebnZ1Z/1CLTsyfAqA5cM79Ka21zQJAU6ec+5dkcu2Hq4ylThmTD+toNpZlEBJS/5NrXzAada1WN/kXnee2Ud951osCwKoRnZxU7/+lgPBQoKQUCsHRqv/XOhO6ntsOneu2ca6e56R16/9qaB/DsmfcOHdfvfZvT8smrnqh7oiZBsu2RO3g51/1Vy9JEgMADz+87FT37j2sdfdrNJrTB2q1Wqnufq1We3q/JEmMTqcTX3tt61k9WWq1WgIAhmEg12mKUqls8r0rlYqzyjCM5wF6YWGBqqKiXKVQKOT9+/ca+/cfYGn8iDNfThDEs4Kr2udDkiTExMRan3lm9VkZjg0GQ6dMNNEYvwiAOI6LADAKwFN1dmUDqJsCyv1zLgBVrW0n65Rx/4f3RR3NJkkyqqrMTRdsJoWChdGoQ1WVBaJ41v9z4iN0nttGQ+fZ4XAgmHV+cATEdkV5+dnPIlidM+hROIR695N/0fXcduhct43WOs9Go65D9CopdDqP33RrlW0rPXokWxUKhZyfn6d2D4EDgK1bN0ZmZqZrly1bmeVpXUlJPS0Wi0Vht9uYXr36nA6mHnvsoYQePXqa58y5uTghoZv5yJG/AwAUuffz/PFWfcomSRKeeOKRxISERPOkSZeUrl+/Ln7UqDFV/fr1dwVBzBnRjkKhlGtqTIraxxcVFapjY2PPChDdundPsvz44/dhRqNRdA+lEwQBDz54X/fx4yeUX375uZVi2y8CIDiDHxnAj3W2/wRgLsdxCp7n3dHpRAA8z/NFHMdVAqgCMA6u4IXjuGAAQwC87MM6vCIIrfd3RBSlVq2fONF5bht1z3PuqXToFc4/T8FdE+v9HWiDnSNUVbIMh80BRqE4qww5E13PbYfOddug89z5BQUFiRdffEnxm29u6WIwGMQhQ4bX/Pnn74Fbt26KmzHjPwVN1/Cv8eMnVm7Z0s2ybNnDSffcszArNraLfffutyO+//6b8IsvvuQEAFx77ZyCxx9f2mPDhvVREyZcXLF3749Bv/22PyQ4ONjROu8QeP31V6LT09P1Gze+cax79yTbDz98F/Lkk48lbtv29nGNRiPrdDqpqKhQk5ubo+rSJc7Ru3efmr17fwzdv39feUREpGP79q3RFou50Q/BadNmlO3atTNm8eL7ku68c36O0Rgkbt78esyhQweCbr993jk1/wfwnyxwAwGc4nm+bpfJZgBGAJs4juvDcdyNAO4F8DQA8DxvgzNIWcVx3DSO4wYAeAfOXp/3fVgHIaQNFZ1MBQCYJAlKXf1DXAyh/y6gLZl939tKCCHEPyxZ8mj2FVfMKHzjjS1dbrzx2n47dmyLmTXr+rx77mnexH2FQoG1a1890bNnsmnlymXdb711dp9//jkU+Mgjj58cM2ZsNQBcdNGkygcffPjUV199Hn7LLbP77t37U/C0adMLW+edAYcP/6N7++3tsbNn35jbvXuSDQAeeujRzJKSYs2aNc92AYBp02YUZ2dnaW+++fq+oiji7rvvy01O5mqWLn2w5z333NHLaDQKo0aNabQHJygoSFy37vWUoKBgYcmSRT3nzbuld1FRofqpp55Prd0bdq5g5LoDHdsBx3GvABjM8/z59ewbDmdihMEA8gG8wPP8y7X2K+AcOncTnEkUfgJwF8/zGb6so5lOiaKUWFbm+2E5SiWLkBADystN9NSrFdF5bhsNneevt2+D9ZOPoA4IxOSNW+s99tdff4HutfXQKRTotnIV1FFRbdTqjoeu57ZD57pttNZ5Dg01QKFg0wF091mlXjpw4EAvllV8ERnZpUat1p5zN6iEeMNut2qLinIDJEm8ZOjQoSkNlfOLIXA8z9/ZyL4/AJwVGNXaL8K5qOni1qyDENJ2Mixm/C/lKK64YgYmN1AmKCgI5YIAnUIByUxzgAghhBDiGX8ZAkcIIafl5ztHNURHxzRYxmgMwtfFhfiwqAAKo7GtmkYIIYSQDs4veoAIIaS2/LxcAEBMTN0Ejv8yGoPwQYEzULrHEIBzbhlrQgghhHiFAiBCiN+Zarbi+v6DoWskvW1AQAAUCgVEUURVVSW02nNuHTdCCCGEeIGGwBFC/IosywiCjEiNBmFR0Q2WYxgG0cHBiNFoUenqMSKEEEIIaQr1ABFC/Ep5WRlClc4BbRE9ejRa9j/RsbhAZ4B1/y/AoCFt0TxCCCGEdHDUA0QI8SsFJ1OhZFlIsgx9RGTjhdVqAICjpqYNWkYIIYSQzoACIEKIXynLSAcAVEMGo2h0YWswGue8HwelwSaEEEKIhygAIoT4lcqcHACARdl0XjdWqwMASBZLq7aJEEIIIZ0HzQEihPgVW3ERAEA0GJosy2q1QE0NYLe3drMIIcRvMAwUDMO0y0NsWZYlWYbYHq9NiK9QAERalVBRDmVwSHs3g3QgxTXV4GuqYUhKarKsyqAHSkABECHknMEwUEgME2O2Cu1yD6fXKgUWcr6/BUFr166O/e67r8L27PnicHOPTUtL1dx++419tm7dcTQ+vht9oJwDKAAirSbv3bdR89UXKOzaFWOWrWjv5pAO4sfSYhxLOYo1d9zZZFml3tlLpBCE1m4WIYT4BYZhWLNVUP56JF8yW4WGF0trBXqtkh3ZL0YZqFWysiz7VQDkrWPHjuiWLLm/h91uo2kh5xAKgEirkAUBNV99AQD44pefEXz4H/TvP6CdW0U6gvz8fABATExsk2WZkFB8XpiPkIREjGjthhFCiB8xWwXJZHG0aQDk0mkChVdeWRu9e/fbMV26xFnLykrV7d0e0nY6zUVM/IstOwsAUC048GlhAfbv/7mdW0Q6AovFgoryMgBAbGzTAZA6MhJbsjOxX3S0dtMIIYR4afToYUN37NgWcfPNN3Djx58/ZNas6X2++urzoNplvvnmy6AbbpjZe/z484fMmHFZvxdffD7WZrMx7v0pKce09957Z9LkyeMGjR173pAZMy7rt2XLxgbXSti6dWPkuHEjh3z55WfBDZU5cOD3oAceeDh93rx7cnzyRkmHQQEQaRXmzAwAwCmTMz3xsWNH27E1pKMoyMnCjiEj8MqAITComs4CZzAEAABMJloHiBBC/NmWLRvixo+fWPb669uODht2XuWKFY/1+OOP3wwA8P333xhXrlyeNGXK1JLNm3ccXbDg/qy9e38MXbr0gUQAMJvN7P33z0/WanXSunWvpmzZ8tbR0aMvLN+06dWuhw//o6v7Wtu3b43Ytm1T3COPPHFy8uRLKxpq06ZN2/kpU6Y2uJ90XjQEjrSKiowM578OB3oaAiDl0MMV0rTCtDSEsiwCVarTKa7rYhhApVJAECQEGPQIUqqgMVsgSxIYlp7pEEKIPxo//qKS2bNvKgaARYuW5B458nfgrl07I4cPPy99+/atMRMnTiq5/vr/FgNAYmJ3m1KpzFy8eGFyVlaGWq83SNOmTS+69trZRUajUQKAu+++L+/993dFp6am6Pr3H3B6LYSdO7eHb978etyyZU+mjRs3sap93i3xdxQAkVZhzs2BGkDPwECMDY/AgcpyCIIApZIuOdKwyuwshAIwsQwYhqm3jFLFIsech1h9FAx6AzYMGgoAEE01UAYa27C1hBBCPDVkyLDq2j9zXG/ToUMHjQCQnp6uP3kyzfD999+EuffLsvPftLRU7YQJF1ddd92cok8++TD05MlUfW5ujiYzM10PAKIonf6wKC8vV61fvzZBoVDIcXHxtrZ4X6RjortR0ioc5eVQAyhSqhELIEipQnl5GSIiGhyuSwjMBc4ECHattsEyVsmK4ppSBGuMCDAGoUIUoVUoIFmtAAVAhBDil5RKpVz7Z1mWwbIK2fm9xFx55X8Kpk2bXlr3uKioaEdRUaHy9ttv7B0YaBRGjhxVMXToiKoBAwaarrnmyjOyKzEMiyeeeCp18+bXY1euXJ64adObKSyNDCD1oKuCtIpTAQZ8mJ+HosBgAECoSo2SkuL2bRTxe44y52ef3EAgo1CwMAlm5FUWwuywwGgMhFVyZmIVzeY2aychhJDmOXbsyBmrW6ekHAtISkoyA0BcXLwlOztT2717ks39VViYr1q79oW4mppq9uOP94TV1FQrN2/ennLXXQvyp0y5rKKyssL1EP/fuCo4OMgxduz4qiVLHsk4dSpNv2XLhqg2fIukA6EAiLSKP6xm7MjNQnVEHAAgSKVCSVFhO7eK+Dum2jlCQh0WXu9+hYJBpbUadtGBKls1goKMsIjOAMhcUdFWzSSEENJMH3+8J2rPnvdC09JSNatWrYzLzMzQXXvtnEIAmDXr+oLff/81ZO3a1bFpaamavXt/Cnz22acSTaYaZVRUtBAVFW232WzsJ598GJKTk6X+8cfvjI8//kh3ALDb7Wfdy/bu3dc6ffrMgh07tsWePJmmaev3SvwfDYEjraK42NnbowqNhJRxFAqGQUV+Xju3ivg7tc0GaHUIaGANIBkSKi2VAIAqazWURiWsknMZDEtlRVs1kxBC2p1eq2zzh9gtec1Jk6YU7979dtSLLz6vS0hIMD/99POpffv2swDAZZdNK5dl+dTOnW/GvP/+u9F6vUEcNmxExX33PZjj3p+Scrxgw4b1XdetW82Gh0fYJ0++tGT//n3Bx48fNQA4a4jJvHn35O/b91PIypXLu23c+AZPQ+FIbRQAEZ+TbDYEVFcjTKWG2hAEM8MiADJqCqkHiDRMEAScrKwEKwgY0qNnvWXssgCLwzmv1SrYIUKE3ZUswVJZ2WZtJYSQ9iLLsqTXKoWR/WKUaIeRPHqtUpBludkLsCYmJlkefHBpgylhp069onzq1CvK69vHMAwWLVqSu2jRktza22+55Y7TNxbz5y/Mmz9/4eknrRqNRt616yOP1uAYNWpM9d69fx7wpCzpHCgAIj5ny8nGXcZgFPXqi6M6I8wKFQJEO6w0B4g0oqioEG9kZ0CpVOH3YcPP2s8wgENywCo4AyCbYIcoixBcAZC9uvqsYwghpLORZYgs5PzAdugBcr6+LMkyxPZ4bUJ8hQIg4nMO11yMCocdOoMRfEg0Pj7wI/SBhsYPJOe0vDzng72YmFjUN1SBYRjYJQdsgh0AYBcdcEgOnISMrMICnN9I5jhCCOlMZBmiLMsUhBDiJQqAiM+ZXMkOKh0O6A1GnOjSA19+8S4GV3Rp55YRf5afmwMGQGxs/fN/WJaBzW7/NwASHBAkAcfUahzMzkDvgIA2bC0hhBBP0fAy4m8oACI+Z3YNdTMzgEGpgk4fCACoqqIFmUnD7MePYceQEShQ1Z+wh2EYmO3/proWJAF2yYEAV+BjMtW0STsJIYQQ0rFRSgzic1bXZHSHwhlfByqU4AICEWCxtGeziJ+zlRRDybLQ6HT1F2CAGvuZa/1YHTYEGQwIUqpgLa937iwhhBBCyBmoB4j4nL26CioAoutJflxZPlb06otfK+gGlTRMrnAGzsrQ0Hr3SxBgcyVAcLMKNgwUZcweNBT5fEqrt5EQQgghHR/1ABGfE2pMAABZ45yUzgYYAQBahoHNZmvwOHJuU1qcvTu6qOh694uyBLvgOGObxWGFQucMtGW6tgghhBDiAQqAiM/lBxnxQX4uynXOuRmM3hkABSiVqK6meUDkbKIowuBa0DQ4PqH+MrIIu3hmACRIAhRa55A5RhBat5GEEEII6RQoACI+l67RYGduNioDggAAkk4PAAhQKCkRAqlXcXExwlQqAEBot8Sz9jMMA4cknBUAOUQBCq3aWYYCIEIIIYR4gOYAEZ+rqXEuSKnROdf9EdXOJ/QGpQJVVZXt1i7iv/KysxCicgYy2ojIs/azLCCIAhz19AAp9c7rSyHRkhiEkHMDw0DBMAwthEqIlygAIj6nKi9DlEYDrcbZ8yOpnXOBDAoliikAIvUoyM5Cblkp4sPC0DMw8Kz9DMNAkBxwiGf28giSCKXBeZ0pJLlN2koIIe2JYaDQsY4Y2W5ul3s4Rq0XLJIq39+CoLVrV8d+991XYXv2fHHY02N27doZ9t5770YVFRVpQkJCHJMmXVJy663zChQKRWs2lfgBCoCIT8myjGkVVbiy/2B8qnReXqLG+YSeZRiYysras3nET+WUFGNtehou79cPE9mzH2oyDAOLcHaSA0EUoXD3AMlSq7eTEELaG8MwrGw3K2v43yTJZmnTP3ysRscGcOcpGVUwK8uyXwVAzbVnz3uh//vfSwlz596Tdd5551cfPXpYv3btCwl2u4O555778tu7faR1+UUAxHHcHABLAHQHcBLAcp7nd7n2DQLwEoBhAEoBrOV5/vlax7IAlgG4FUAIgL0A7uR5Pq1WmRbXQTwj26ynJ5a5kx/ICiW+l1hk5JzCELOp/RpH/FZeXi4AIDa2S737GYaBxWE9a7sgCdAGG/FjSTGYgAAMb9VWEkKI/5BsFkm0mtrjyU+nmD/+0UcfRIwdO6F01qzrSwAgMbG7LTMzQ/vll5+FUwDU+bX7Rcxx3A0ANgN4DUA/AG8DeJvjuPM5jgsD8DWAE3AGL8sArOA47qZaVTwKYC6A2wCcD0AG8DnHcWpX/S2ug3hONDtTGQuSBKX+36FMv+uM+LyoABUmCoDI2QpzcsCg4QAIkOsNgERJhDI8FP/LOIn3y0patY2EEEK8M3r0sKE7dmyLuPnmG7jx488fMmvW9D5fffV5UO0y33zzZdANN8zsPX78+UNmzLis34svPh9rs9kY9/6UlGPae++9M2ny5HGDxo49b8iMGZf127Jl49mTRl22bt0YOW7cyCFffvlZcH375869O2f27JsK6m43mWr8onOAtK52/SVzHMcAWAFgDc/zL7k2r+A4bjSAca4vG4B5PM8LAI5zHNcTwGIAW1wByv0AHuR5/jNXndcAyAMwA85g6nYf1EE8JJmcAVCNKEClNZzernHNBzKZatqlXcS/Da+uwbwhI+AoLqp3vyCLZ83/AZxzgNSudYAsrnWECCGE+J8tWzbE/fe/t+Q89NBjGR9++H74ihWP9QgJCU0ZPvw80/fff2NcuXJ50q23zs0eNWpMVVZWhmbdujXxOTlZ2uefX3vKbDaz998/P7l//4HV69a9mqJUquQ9e3aHb9r0atdhw0ZU9+8/wFL7tbZv3xqxbdumuEceeeLkRRdNqnfy8YgRI894IltRUaH4/PNPIgYOHEzpas8B7d0DxAHoBuCt2ht5np/M8/zTAMYA+MkVuLh9B4DjOC4SwCAAga5t7mMrABwEcKFrky/qIB6SrM6/QRZRhMo19wcAwpVKcAEBcFAabFKHJEnQOhxQsiyCIutfBFWCCIfkqHefSq2CmmWhtNshSzQPiBBC/NH48ReVzJ59U3HPnsm2RYuW5CYl9TDt2rUzEgC2b98aM3HipJLrr/9vcWJid9vYsROq7rvvgcxff/0lJCsrQ202m9hp06YXPfzwsszk5F7W7t2TbHfffV8eAKSmpuhqv87OndvDN29+PW7ZsifTGgp+6qqpqWEXLZrfw+Gws/Pn35/t+3dP/E17d/Mlu/41cBz3JYDBANIBPMnz/McA4gDUzeaR5/o33rUfAOperHmu/fBRHV5RKn0fXyoU7Bn/+hvJ5g6AJOh0BrCss/d6gqkUN/Tqh58qK1vlvPiav5/nzkKhYJGfn49QpXMNoIik7vVeHw7GAUkWT19PtSk1SmwbPBwKhoFUVQFNeHirt7ujoeu57dC5bht0njueIUOGVdf+meN6mw4dOmgEgPT0dP3Jk2mG77//Jsy9X3Yl9kxLS9VOmHBx1XXXzSn65JMPQ0+eTNXn5uZoMjPT9QAgitLpD4by8nLV+vVrExQKhRwXF3925px6FBYWKBctmt+zsLBA88wzq09065Zob/m7Jf6uvQMgo+vfNwA8DuewtKsAfMhx3MUA9HAOX6vNPRFA69qPBsqEur73RR3NxrIMQkIMTRf0ktGoa7pQO6iyOwMgqyQiODQESteNraxWAzYT4LC16nnxNX89z53JkSOZCFc7p9tF9kiAvp7ro8zsAKtioNWdPS1Pa9CiUhKhVyihhKNDXV9tja7ntkPnum3Qee44lErlGWsVyLIMllXIzu8l5sor/1Mwbdr00rrHRUVFO4qKCpW3335j78BAozBy5KiKoUNHVA0YMNB0zTVXDqhdlmFYPPHEU6mbN78eu3Ll8sRNm95MYevJLOqWmsprFy1a0FMURebFF1/h+/TpZ2mwMOlU2jsAckfZz/E8v831/SGO44YAWAjAAkBT5xit61+Taz9cZSx1yrjHdvqijmaTJBlVVb6fk6BQsDAadaiqskAU/W+4TzmjxAf5uaiUJIx0yHA4nL9incIZCIkWK8rL/T8Rgr+f585CoWCRnXYSca6U6RalHrY61wfDMDBJVtSYLLAKZz+Ys+tE2CQJegVQlFsIRXhMm7S9I6Hrue3QuW4brXWejUYd9Sq1kmPHjhguvviS00PSUlKOBSQlJZkBIC4u3pKdnant3j3p9MPo/fv3BrzzzltRDz30WOYnn3wYVlNTrdy166MjKpVKdtXnin7/jauCg4McY8eOr4qMjLTPnXtzny1bNkTdcssdhfW1JzMzQ33vvXclBwQEiC+8sO5EXFzX+sdZk06p2QEQx3FKOJMTTASQCCAIQAmATACfA/iF53lPVyTMcf1bd4jaUQBTAWQAiK2zz/1zLgBVrW0n65T52/V9tg/q8IogtN6HnyhKrVq/t6p1euzMzUZIaBhG1FqYUlQ5Y1DG7vDLdjfEX89zZ1KYmoo4ADaWhaRQQapzvhUKFg5RgF1wQKpnsVOHJMDuGitRU15Bv69G0PXcduhct41z+TyzGl2bR2otec2PP94TlZCQaO3Xb4DpvffejcjMzNAtXvxoBgDMmnV9wTPPrOi+du3q2Esvvby0oCBf/cILz3QLDw+3R0VFC1FR0XabzcZ+8smHIcOHj6g5eTJN+8ora7sCgN1uP6tNvXv3tU6fPrNgx45tsePGTaxISupx1nC4J59c1k0QHOyjj65IValUcmFhwel74qio6LOz7pBOxeMAyJUtbR6cGdPiAJTDGfSYAHSFM2B5GEAex3GrALzO83xT4y//AlANYCSca++49QeQBuAXAHM5jlPwPO9ecGsiAJ7n+SKO4yoBVMEZkJ10tTMYwBAAL7vK/+SDOoiHTK4011qt/oztstrZ6aYQ6G8KOVNVjvM5iKCrfygLwziDHEGqf809URLhfmxnq6Esg4SQzk2WZYlR64UA7jwl2iGZFaPWC7LU/JWnJ02aUrx799tRL774vC4hIcH89NPPp/bt6xxydtll08plWT61c+ebMe+//260Xm8Qhw0bUXHffQ/muPenpBwv2LBhfdd161az4eER9smTLy3Zv39f8PHjRw0Aiuu+3rx59+Tv2/dTyMqVy7tt3PgGX3soXH5+nur48aOBADB37k196h67d++fB5r7/kjH4lEAxHHcCADbAIgA1gN4l+f5k/WU6w/gUgDzASzgOG42z/P7G6qX53kLx3HPAniM47hcAL8DmAVgEpxByjEADwLY5Co3AsC9cK7ZA57nbRzHvQxgFcdxxXD2GD0HZ6/P+66X2eyDOoiHrCUliNJoYNSdGQDBlQabFTv0wtGkFWQWFWFfVTX69+lb736GYWCvZ+ibmyhJEBjnHFg7pVknhHRysgzRIqnyGVVwu4zVkyVZkmU0+8M8MTHJ8uCDS3Ma2j916hXlU6deUV7fPoZhsGjRktxFi5bk1t5ee3jb/PkL8+bPX+hOcgWNRiPv2vXR0frqi4mJdVCQc27ztAfoTQBLeJ7/oLFCPM8fhnM42yqO466GM2hKbuKYJzmOMwNYCaALgOMAZvA8/wMAcBw3GcBaONNS5wN4oNZ8IQB4zPU+NgLQwdnjM5nnebur/qKW1kE8p/7rINb1H4wfHHV6erTOp/uqBp7ik3PXLxnp+KyiAu8+80K9+xkGsAoNdyaLkgjxdADk//PLCCGkpWQZoizL9IFKiJc8DYD6NzcY4Hn+XY7j9nhYdjWA1Q3s+wPA+Y0cK8KZPW5xI2VaXAfxjGRzJtiTFKoztlsj4/HO17uQZbHgelkGw5ydzpice6qqqlBRUQEAiIuLa7CcVbA2uE+URWSxDHJLi8Ep2zuvCyGEEEL8nUd3C972hFAPyrlHtjmf1EuqMy8tR0w3vJfv7Lm2WMzQ6ylVMQGys7MQpFRBFRTU4DUhQYJDbHjumChJOKRTY//Bk3giIKC1mkoIIcRLNNyM+BtP5wA91pxKeZ5/wrvmkA7PFQDJqjPXa1GpNGAYFrIswWQyUQBEAADZWZl4qd9AaBQK2AsLoI6KPquMKItNBEAidHrnHDOLhZZwIIQQQkjjPB0vsrzOzzIABs6kCCUAQgCo4VzXpwwABUDnKoczH5ekOnPpJVYS0SMoBILdArOZ5mkQp4KMdMS7hq0pg0PqLSNBgiA1EgDJErRaLZQMA2t1dYPlCCGEEEIAz4fAnc40wnHcRAA7AdwN4D13ammO4y4BsAnONNnkHMW6n9SrzwyA1FVlWNmjJ6ocjtOpsgmpyMwEANhUKrCauusVO0my1GAKbMDZAzTcaseNQ89D1sm0VmknIYQQQjoPb1IovgzgUZ7n3621rg54nv8CwCNwZnMj5yhWcF4S7nV/3CSlMymChmUpACKnWQudGUylwMB69zOMcwic0MgQOEmWwKic15dsp2mHhBBCCGmcNwFQPICsBvYVA4jyvjmko+NVKnxRVACH/swbWsk1J0ijUMBmMbdH04gfkiucSz6oIyLq3c8wjDMAamwInCSC0TivL8bhaLAcIYQQQgjg+Ryg2v4GcA/Hcd/wPH/6boPjOC2cC47+5qvGkY5nPyTszcrArIuCztguKf9NimCtocUqCeBw2KFz9dgExnWttwzDAKIowtHIArqSLIPRuobPCRQAEUI6P4aBgmGY9lkIVfZuIVRC/Ik3AdBDAL4EcJLjuC/wb6/PpQAMAMb6rnmko3EPb1PVGQInK5SQZBksw9BilQQAkJeXi0jXXLGg+Ph6y7h7gMRGeoAAgNW6eoAaCZQIIaQzYBgoZKUYYxYt7bLwmU6pExhBke9vQdDatatjv/vuq7A9e7447Okx27Ztivzoow8iS0tL1VFRUbarrrq64OqrryttzXYS/9Ds/zw8z//IcdwoOAOhywGEwpkJ7hsAT/A8T7OQz1GyJEFrtcCoVEJVJwkCGAYCGGeqQBP1ABEgIyMdf1dVQGkwILGBAAhgYBcFyE3UxWqcc4BYUfJpGwkhxN8wDMOaRYvy95xDksVhbdM/ejqVlh0RN0hpYAJZWZb9KgBqrh07tkVs27a5y333LcoYMGCw6Zdf9hpffvnFboGBQeKUKZdVtHf7SOvy6ukBz/MHAcz0cVtIBydWVeE+gxHSwKH4vk4PEAA4GGeudIHWaiFwBkCfFhaAHTEcVyd2hyCc/TnOMIBNsDVdmSuDnEKmAIgQcm6wOKySyW5pjz967TL0ztdqamoUc+bclHv55dPLASAhoVvJJ5/sifzzz9+MFAB1fl53n3IcNwXAxQBiADwMYDCAAzzPZ/qobaSDkWxWAIBVEqHS6M/a/6dSh6KsVHQZNLCtm0b8UGZmBgAgKSmpwTIMw8DqQQAkBurwR3kZ7AYDLvRVAwkhhPjE6NHDhs6bd0/Wt99+HZqeftIQFRVtvfnm23MnTZpS6S7zzTdfBm3dujE2NzdHFxISar/wwvFl8+bdk6/RaGQASEk5pn311Ze7HD9+LNBqtbBhYeH2yy+fXnTTTbcW1feaW7dujNy6dWPcQw89dmry5Esr6u6/4467CtzfOxwO5tNPPwrJzc3Rzp59U14rnALiZ5odxXMcp+c47isAnwK4GcDVcC6EOg/AAY7j+vq2iaSjkGzOG1WrKEGlOntNl4P6EOzKy0GVRE/pCVCQmY4wtRpJ3bs3UkqGXWg6tbUjMhTPnTyBj6ormyxLCCGk7W3ZsiFu/PiJZa+/vu3osGHnVa5Y8ViPP/74zQAA33//jXHlyuVJU6ZMLdm8ecfRBQvuz9q798fQpUsfSAQAs9nM3n///GStVietW/dqypYtbx0dPfrC8k2bXu16+PA/urqvtX371oht2zbFPfLIEyfrC35q+/XXXwImTBg15Pnnn04cM2ZcaVPlSefgTTfmUwCGApgIIBwA49o+G0AugBW+aRrpaETX0DarJEKhOnsInHtekIWGwBEA4SVlWD9gCGJ//aPBMiJEOBpZBNVNqXZ2ZlutVp+1jxBCiO+MH39RyezZNxX37JlsW7RoSW5SUg/Trl07IwFg+/atMRMnTiq5/vr/FicmdreNHTuh6r77Hsj89ddfQrKyMtRms4mdNm160cMPL8tMTu5l7d49yXb33fflAUBqasoZAdDOndvDN29+PW7ZsifTLrpoUpNPxZKSeljXr998bP78hRn79+8NfeGFZ7q0zhkg/sSbIXDXAHiI5/nvOY5TuDfyPF/AcdyTAP7ns9aRDsVWXQ0AsIoi1JqzHsggSKFEnFYHiZIgnPOqq6sR6FrcNLhbQoPlRFlqMgMcACjVziQIdisF14QQ4o+GDBlWXftnjuttOnTooBEA0tPT9SdPphm+//6bMPd+2ZX9Ji0tVTthwsVV1103p+iTTz4MPXkyVZ+bm6PJzEzXA4AoSu4H8SgvL1etX782QaFQyHFx8R5MIAUiIiKFiIhIoV+//pby8nLVzp3bY+fPvz9PrVY3lX+HdGDeBEDBADIa2FcOIMDbxpCOzVpdBQCwSRKUKvVZ+8dWFWJ2v4HYV1XV1k0jfiYjIx0xGmcvYVAjAZAMCYIHPUAauwNvDRkBlmEgyzIYhmnyGEIIIW1HqVSeEVDIsgyWVcjO7yXmyiv/UzBt2vSzUlBHRUU7iooKlbfffmPvwECjMHLkqIqhQ0dUDRgw0HTNNVcOqF2WYVg88cRTqZs3vx67cuXyxE2b3kxh2foHO3333dfGuLiu9uTkXqeHDiQl9bQIgoMpKytVRkfH0MJynZg3Q+COALi+gX2Xu/aTc5DNtcCpA0B9f3BEpfMpvWynvynnuszMdMRonQGQNiamwXKSLEEQm+4BYvVaKFnWGQAJTZcnhBDSto4dO2Ko/XNKyrGApKQkMwDExcVbsrMztd27J9ncX4WF+aq1a1+Iq6mpZj/+eE9YTU21cvPm7Sl33bUgf8qUyyoqKytcD/H/jauCg4McY8eOr1qy5JGMU6fS9Fu2bIhqqD0bN74at2XLxuja244e/ccQEBAgREZG0Y1KJ+dNAPQkgNkcx30C4FY4r7yxHMetA3AngGd92D7SgdgNBnxZVIBjtvrnYUhKV6+Qg/6unOsy0k8h2tUDpOsSW28ZhgFEWfSoB0ih+zfpho0W2iWEEL/z8cd7ovbseS80LS1Vs2rVyrjMzAzdtdfOKQSAWbOuL/j9919D1q5dHZuWlqrZu/enwGeffSrRZKpRRkVFC1FR0XabzcZ+8smHITk5Weoff/zO+Pjjj3QHALvdfta9bO/efa3Tp88s2LFjW+zJk2lnZ2UCMGvWDfl79/4Y9uabWyNOnTqp2bnzzfA9e96Lvu66OXkN9RqRzsObhVA/5DjuBgDPALjUtfkFAEUA5vI8v9uH7SMdiDkkFJuyMhAd2xUD6tkvu4bFMRQAnfNKTp2CimUhMQw04eGwVJ0dNDMM04wASA1JlsEyDCzVldAFB7dCqwkhxH/oVNo2v0tvyWtOmjSlePfut6NefPF5XUJCgvnpp59P7du3nwUALrtsWrksy6d27nwz5v33343W6w3isGEjKu6778Ec9/6UlOMFGzas77pu3Wo2PDzCPnnypSX79+8LPn78qAFAcd3Xmzfvnvx9+34KWblyebeNG9/g6wY106ZNLxdFIf3tt3fEbNr0Wtfw8HD7HXfcnTVr1vUl3r5H0nF4uxDqWwDe4jiOAxAGoAJACs/zlN/4HGaxOJ+8a7VnJ0AAagVAYodePJr4gK0gFzAYIRmNYBSKesswDCCKEgQPkiAwSgXskgStQnF6KCYhhHRGsixLOqVOGBE3SIl2WJRUp9AJstD8VacTE5MsDz64NKeh/VOnXlE+deoV5fXtYxgGixYtyV20aElu7e233HJHofv7+fMX5s2fv/D0Gj4ajUbeteujo421afr0mWXTp88s8/xdkM6i2QEQx3HfAbiT5/kUnuf5OvsGANjO83x9HQCkk7NUVCBQqYROc3YKbACQXamxFRQAndMkSUJKbi72BFbj6osubqSkqwfIg+tFkiTYZRlaAFYKgAghnZgsQ2QERb6BCWyXcVqyIEuyDPogJx2aRwEQx3Gj8e9ThnFwzvmJrKfoVAANL+tOOjXDoUPYNGgY9kkNZI5UuwIgWgj1nJaXl4v0qkrkWMx4cNa1DZZjGMAhCpDRdCZSUZbgcJWzm8w+ayshhPgjWYYoyzIFIYR4ydMeoFsBzIEz4YEM4BU4F0CtfWfizjv7ls9aRzoUyW53/quo/7KyhMXg44I85AkirmvLhhG/kpaWCgBITEyCUtnwnyCGYWAX7R7VKckS0ux2ZNTUoG/zR2YQQghpRXv3/nmgvdtASG2eBkALAGyBM8j5DsBdAI7VKSPCOReo0fGWpPOSHc6bVbmBAMgaFY83c7LAsiyt1XIOS0s7gd4BgeiTmARZbrh3h2EAm6cBkCThfZsJ6SdP4TW93ldNJYQQQkgn5FEAxPN8JYAfAYDjuPEADgAI4Hm+wLUtBEBXnudpDaBzmSu7m+xa76culWsInCRJsNvt0GjqzUxJOrns1BN4vFdfoLQUksWCxtZOtgkeLeQNSZagda0rZGsgDTshhBBCCOBd9pC/AXwA4Ida284DcIjjuD0cx9Hj13OU3EQApFYoEKZWI1KtgdVqacumET9iysoAAIh6AxSN9NZIkODwYBFUwDkHSKN1BtQWCwVAhBBCCGmYNwHQMwD6Ani41rbvAFwBYBiAJ3zQLtIBudNby6r6AyB9VQnWDxiCZVwfWCwUAJ2LBEGAosyZ5VTdpUujZSVZgujBGkCAs1dxukKD7UNGQMuntLidhBBCCOm8vAmApgFYxPP8++4NPM/beZ7/GM6g6GpfNY50LIzgelqvqn9om6R0rgOkVbDUA3SOys7OQqzaeR0EJnZvtKwEyaNFUAFAhgylgoWaZSHSEDhCCCGENMKbhVADAdS7UBWAQgDh3jeHdGTZKhWO5efCEs/Vu989NE7DKigA8nO5uTl47bX/wWKxYM6cm9G/v2+W9kpLO4GuOuewN02XuEbLOgMgz4bAAYDEKpxH2T1LnEAIIYSQc5M3PUAHAdzSwL6bAPzjfXNIR/a7ksXL6SdhCgiud7+7B0jNsrDQWi1+q7KyAnfccRM++ugDfP31F7jttjn4+++/fFJ3Wloq4nQ6AIDGgyFwnvYAAYCkVDj/tXmWOIEQQggh5yZvAqAnAVzJcdyfHMct5TjuNo7jHuY47jcA/wGw3KctJB2G1eoceqRscAjcv3ODLDU1bdIm0nyvvfYKTIUFuI3rjYXDzoNOFPHII0tg80FgkZlyHMEqNWQA6pjYBssxDCDKIkTR8wBIVrkCIAf1ABFCCPFfo0cPG7pr19thjZU5eTJNM3r0sKHXX/+fPm3VrnNJswMgnue/BnA5nIugPgHgNQAr4BxOdwXP81/4tIWkw5CtFqgYBiqVuv79tdYHcphNbdUs0gxVVZX4/uM9WNGrHy4ODMJIMFjTbxBQXITdu99pcf3HT6Tgf+kn4Rg2HGwjadAZhoEoNa8HSHYtqirbHS1uJyGEENKePvzwvfCYmFhrZmaG7sCB3w3t3Z7OxpseIPA8/znP88MBGADEATDyPD+U5/lPfdo60qHcBQV2DD0PgZJUfwGGgd218KWtproNW0Y89d133+A/4RGI1GigDI+Apms8HNExKLLbsGPHNgiC53Ny6iorK0Nmfh5+LC1G4uz/NlrW3QPUnDlAcPUAMS1oIyGEENLeRFHE999/G3bRRZNKu3SJs77//q6I9m5TZ+NNEgQAAMdxvQFcDCAGwMscxw0G8DfP8826s+U4LgFARj27buN5fiPHcYMAvARniu1SAGt5nn++1vEsgGUAbgUQAmAvgDt5nk+rVabFdZDGybIMFcMAABiNtsFyf0oMykvy0Z1uUv3SwW+/wnWhzjwmsfPugjoqChGiBP2vPyMvLxfff/8NLr74Eq/qTkk5BgBISOgGg6HhxU8BZw+QJIsep8EGAItBiyNVlbAa6EEZIYT4E5PJxL700vNdfvnl5xCLxaLo1q27+a67FmQPGTLMDAB//vm74fXXX+mSnn5Sr1Ao5OHDR1YsXLg4JyQkRASAK6+8pP/06TML//77r8BDhw4aDYYA8frr/5vXo0dPy5o1zybk5+dpEhISLY89tiI9MbG7LSsrQ33ddf/pv2jRQ+nvvPNWdEFBnjY+vpv57rvvzR4+/LzTQ1Dee+/dsN2734kqKMjTBgUFOSZPvqz4jjvuKmBZFu46nn12zYlRo8acvrcdPXrY0AULFmXMnDmrdO3a1bGHDx8KHD58ZMXHH++Jqq6uViYnczUPPPBwZs+eyTYAyM3NUT377Mr4o0cPG/V6g3DrrXNzmjpfP/74nbG8vEw1cuQFVXa7g3n//XdjysvLs93ng7Rcs3uAOI5TcBy3AcARAC8CeBBAFJwBxCGO4xpP7XS2AQCsAGLhDKbcXzs4jgsD8DWAE3AGL8sArOA47qZaxz8KYC6A2wCcD+fQvM85jlO72tviOkjT3IugAgA0DS9u+Q2rxrbsTFAKBP9jt9uhz8gAyzBAYiK0Cd3AanXQGwy46qprAAAf7nm/iVoalpJyDOPDIjC2R0/ITQbADOyiALkZ9RfHhOOJE8fxp8Krjm1CCCGtZMmShd3/+OO34PvvX5KxYcMbx7p0ibMuWbIwubS0RHnw4J/6RYvmc/HxCdaXX3495bHHVpw6cSIlYP78uclSrREl27Zt7jJ8+MjKzZt3HB02bHjF+vVr4194YVXCnXfOz169+mW+oqJctW7dmjOy67z22stdZ826vuC117Yci4uLsy5efF9yZmaGGgC2bNkQuW7dmoRLL51avHHjm0dvvPG23A8+2BX93HNPNes+NjX1hOGffw4FPv30C6nPPruGLy4uUj///FMJgHPtu4UL706uqqpSrV79Mv/YYytOvfPOjpim6vz004/CIyIi7QMHDjZfcsllZQ6Hg/ngg12NzhkizePNncIjAK6Hs7ckGgDj2n4/AAWAlc2srz8Anuf5fJ7nC2p9WQDcDsAGYB7P88d5nt8CYA2AxQDgClDuB7CM5/nPeJ7/G8A1ALoAmOGq3xd1kCbItVIPM2pdg+WUrkxwNlqrxe8cPXoERpaFJMuIGn/RGfsuO38UFiT2QM/sLJSVlXpV/8kjhzEvMQlTK6ubzNTGMIBdbF4yA7XGeW1RinVCCPEfaWmpmr/+OhC0YMH9mePHX1TVvXuSbenS5VkTJlxcUlZWpti5883orl0TLI888ngWx/W2jho1pnrZsidPpaef1P/ww7dGdz2DBg2pvPbaG0q6dUu0z5p1Q5EoiswVV8wouuCCC6sHDRpivuCCC8uyszPPuAH5z39mFVxxxYyy5ORe1uXLn8oMCAgUdu9+O0KWZeza9XbMlClTi2bPvqk4KamH7corryq7/vr/5n322ceRlZWVCk/fnyiKzIoVz6T369ffMmLESNO0aTOKeD4lAAD27v3RmJubo33ssRXpAwYMMg8bNsK0ZMlj6Y3VV15epjhw4I/g0aMvLAOAnj2TbQkJiebPP/+EhsH5kDcB0M0AHnMFEqfvhHie/wfAY3AOi2uOAQCONbBvDICfeJ6v/bj4OwAcx3GRAAbBuS7Rd7XaUQFnqu4LfVgHaYJ77RVBkqBsZAicXqlCiEoFO6XB9juHDh3A65np2G4MQPCIEdCoGCiVzj8RUfoAXBAWjonhkfjukw+9qt+S4fybLxqNUDQxTI1hAJvQvABIoXZmGaTgmhBC/AfPH9cDwODBw04PPdNoNPKSJY/m9OyZbMvMzND17t33jNSwffr0s+j1ejE19cTpISVdu3Y9/eRMp9NJABAX9+82tVotOxz2M+5rhw8/7/TQNZVKJXfvnmTOyEjXlZQUK6uqKpUDBw4643WHDh1RLYoik5Z2ouEbmTqMxiBHSEjo6aFpAQEBoiAIDACkpaXqDAaDmJjY/XQ7+/cfYFGrNQ1MlgY+/PD9MEEQmEmTLi1zbxs7dnxZfn6edu/enwI9bRdpnDdzgKIAHGpgXw6cc2iaoz+AfI7jfgaQDCAVwAqe57+EM8HC4Trl81z/xrv2A0B2PWXiXd/7og6vuG8efUnhGt6j8LNhPoLoHAJnlySo1FqwLFNvuauFGsQOHIqDZaWtcn58xV/Pc2s6dOggAKDP8POg00hw5B6BKiQaioAoKPr1hclohKGqClXffQvlzbc2q+7KykqEWpw9MwE9e57+3Td0nhUKFnbJ3uB1VJ+IKhM2DhyKMonx62urPZyL13N7oXPdNug8dxxKpVIGAIZh6h3VLMsymHr+1MuyfPpYAFAolGcd39RnRO3j3XWyLCvLroRMTJ0XliSRAZzBUu1j3BwOx1kvqFKd3a66r1mXQqFo8Jivv/4iHADuuuvW0+mv3XXs2bM7YvToCymLlA94EwClAbgUwDf17Bvn2u8R1/CzZAAmAA8AqAFwA5zzby4GoIdz+Fpt7se7Wtd+NFAm1PW9L+poNpZlEBLSepOxjcaGh5m1h4piV3Y3SUJAYAB0uvqnT0kKJSA6wEpCq54fX/G389yaeP44AGDU+cPAVORCKs2EJJihDwqB0hiEHjdci/xXXsMgMKgozkVicrLHdR88+Ct6BTpHMsQMH3rW777ueRZEAayCgbaB66g+slYNo0oFi9gxrq32cC5dz+2NznXboPPs/5KSeloA4O+//zKMGTO2GnDOjZkx47L+t946NychoZvl2LEjZ2TGOXLksM5isSi6d09q0ZjmI0f+0ffp088CAHa7nTl16qRh0qQpxRERkYLRaBQOHforYPLkSyvc5Q8c+DNAqVTKCQmJNrPZxAJAdXX16eFw6eknG16/oR4c19tsNpsVKSnHtL169bECziGBFou53iF2hw//o8vMzNBdddU1+Zdc8m8PEAC8/PKLXf/447fgwsICZVRUNGWSaiFvAqAXAbzmCl4+hjNhQE+O48YDWARgoacV8Txv5zguGIDA87w7ADngyjC3CIAFQN2Lzd0taXLth6uMpU4Zd1erL+poNkmSUVXl+2FeCgULo1GHqioLRLHBHtQ2V1Zlwb7SEpglEbESC4ul/uFLOsb5tM5htqC83H/XAvLX89xaysrKMD8kHHJwOKIkCaaCHDgsdsCaBwRGgYlQI3jY+TiO1xCsVGLvqxsQ/Ohyj+vf9/MvuMCd+S2u2+nffYPnWSHBYrXB2sB1VB9J7fxzppTh19dWezjXruf2ROe6bbTWeTYadR2iV4lhoGAYpl0aKsuyJMvwOBtZjx49bSNGjKxYu/aFeIZhsqKjY+zbtm2KFgQHO2rU6OrY2C72hQvv7vXkk8vir7762qLS0hLliy8+n5CQkGgePXpsi3o7tm3b3CU0NFyIj4+3bd68IcZms7IzZ84qYRgG06fPLNix440usbFdbBdcMKbqn38OGXbufCP2oosmFwcFBYlGo1GMiIi07dr1dlRiYnerxWJh161b3VWpVHmcn+eCC8ZUJyX1NK1YsSxx4cIHshQKpfzii8/F1+15cvvoo/fD1WqNdOONtxbWzfh2ww035j/wwALje++9G37nnfMLWnJeiBcBkCs1dQSApQDmwZkEYScAO4BneZ5/tZn11XenchjAJXAOS6u7XLz751wAqlrbTtYp87fre1/U4RVBaL0PP1GUWrX+5rLq9HgpPQ0KhRKPMgpIUv1/H0TW+dBDsjv8qv0N8bfz3FqO/fMPEvUGKBgGBr0alvxyQJIByLAV50IbHANRUsHcpw+Cjx1DUGoqHHYBDOvZ52/eX39Bq1BAUKmgiIw+65yedZ4ZEQ5RaPA6qpfa2VukROv+3+vIzpXr2R/QuW4b5+J5ZhgoNJIjRjSbvV7KpCUUer1gY1X5zQmCli9/Kn316lVdV65c1t1ut7M9eiSbnntu7Ynw8AghPDxCWLFiVermza/H3n77TX10Op04YsTIinvvXZRTeyiaN6ZMmVr86qvrupaVlap69Eg2rVnzCh8dHeMAgNtum1eoUqnkPXt2R23cuL5raGiY/aqrri649dZ5BYBzeNzSpcvT1659If6OO27qExYWbp8z5+a8bds2qRp/1X+xLIs1a15OXbXqyfjFixcmq9VqaebM6/KLiorO6kmy2+3Mzz//EDpmzNiy+tJdn3/+BTVJST1MX331WcTcuXcXsB5+/pL6Nfs/D8dxITzPP81x3P/gTBkdBqACwK88z5c1evDZdQ0A8AuAS3ie31tr1zAAR+GcazSX4zgFz/Pui2EinFnjijiOqwRQBefQu5OuOoMBDAHwsqv8Tz6ogzTBanWOKlRrGu8dlhSuvxu102aTdpdz6CBCGQZWhgFgBWqlHrVXl0FrqYZCF46B189B+uJFCFMqkf7Nl+g+aUqTdQuCAEV+HhDTBcqEbh4FTRKk5i2CCoDVOzt2VQ08WSOEkM6AYRhWNJuVpb/9JglmS5tGf0q9jg077zwlExjMyrLscQBkNBql5ctXZgLIrG//2LHjq8aOHV/V0PF79nxxxlzu+Phu9r17/zxQe9v8+Qvz5s9fmFd725AhQ2vuvvve/IbqvfHGW4tuvPHWoob2Dxs2wvTGG+8cr73tiitmnL7Xre81Z86cVTpz5qzTScJCQ8PEVavWnJH57aabzn5NtVotf/HFD40+eN+27e2UxvYTz3nz9OB3juMe4Xn+HQBftvD1j7i+1nMcNw9ACZxpq88HMBxAIZzrDG3iOO5ZACMA3Avnmj3ged7GcdzLAFZxHFcM54Kqz8HZ6+NesGSzD+ogTbCazVAwDDSNZIADAEnpuuQoAPIrlkznZ5IlwADRfOaIA9lhh1BZBEVABEKiovGeRo3MjHQkpqV6FAClpBzHR7nZyHI4sO7BhzxqjyRLEJqxCCoAsFpnD5CaZVyTaikQIoR0XoLZIgkmU3t0f1HXA+nwvLmIQ+AMVFqM53kJwOUAfgewC8BfAM4DcDHP84d5ni8CMBkAB2da6mUAHuB5flutah4DsAnARgD7AAgAJvM8b3e9RovrIE2z//0Xdg49DwtiG18/THb1ADEiLWbsTxSutX0UkeEQLWePSnVUlYIVnL18EZdOxceF+fj02689qvvXX/dBAhDUtx8MyVyT5RkGEGUJYnMDIFcPkJJh4aBU2IQQQghpgDc9QC8BeI7juPsBHOF5vrglDXAdf0sj+/+As0eoof0inIuaLm7NOkjjBIsVagASy6Kx1cMqjKH4NuUgyoOD2qppxANBNhug1SEwPg6i7ezkHYKpCrCbwKpDMH78RXjyyWU4eTIVaWmp6NGjZ6N1//rrLwCAkSNHedQWhmEgSiKEZgbJrEGLk6Ya2CUJ0SYz1FrKDkUIIeei+obIEVKbNwHQHAAJcKXB5riznujKPM+3y8Q80n4Eq/OmWWQaD4CKIuPxZuYp9FQ33RNA2obJVIMohfO/bGT3OEA+O+uoZLdCMlVAoQuD0WjEqPMvgOPwYZStexGOZU9AFRpWb90Wixl9ioowML4bRnRP8qg9DANIktjsIXCMRoWl/DFIkoRRzTyWEEIIIecObwKV7T5vBenwBKszi7nYxAR3pcqZJMFGQ5T8Rlb6KaSaatBFb0CPcCMclfUvu+CoLIEmvBscACZNvgy2gkIEm0yo+PYbRMy8pt5j/ty3FxeHRUCjUCC6gSDpbIxXQ+BkyNBqtTCbzaeTchBCCGl/o0cPG+r+vm7PzP79+wIefPBe7uef/zi9fe3a1bHvvvtWTH11jRs3sfTJJ1dlNFVHS9u6dOnyk1OmTK2ou//OO2/t+c8/h4wLFizK6NKli/3BB+9LBoDevfvUbNjwBt/S1ydtw5sAKB3AdzzP5/i6MaTjkmyuAEjRWP8PoFIqoWMVYGw0vcpfZOXmYFUajyGDB2MM03DQIVqqwQgWADqMGzce961ehX7GIJT98B1CL5sKhf7sxUfTv/gUIxUKVKlU0DajB8ghCpDRvOynkixBczoAatHaeYQQQnzsllvmZl966dQzsgX/8svPgcuXL02S5TP/3t988+0F11xz3RmZ0t57793w3bvfjpk164ZCT+poCYVCIX///TchdQOgsrJSxbFjRwLdPw8bdl7Ne+998vfzzz8dX1FR7nF6bNL+vEmCsBrONNWEnCbZnQGQzDYeAHUpycO2IcNxY2h4WzSLeCAzMwMA0K1rHER7wz0ngsUE2WaGQsHCYAhAwIBByLKYwdhsKP1oz1nl7XY7Ygqcn1PqwUM8zsrGMAzsYvMDZEmSsLhLPF4fOAS27KxmH08IIaT1BAQEiFFR0QLgXB7hqace7/rQQ4t6RkZG2eopK0VFRQvuL7PZrNi9+52YW265I6dfv/4WT+poiX79BlQdPPhnsMViOeOD68svPwvp0SP5dKYgtVotR0VFC2q1+txajKoT8CYAKgIQ7ON2kA5OtjtvWE+nuW6I2rVWSzOf7pPWk+0KgOLjYk8HsvWRBQdEcyUUCufnwSVTpmJbtjN9dsV338KakXFG+b93v4sErRZWSUKva671uD0MA9i8CYBkGYFKJYJVathr6ltfmRBCOg+lXscqDYa2/dLrfJICu6amRpGaesLw9NPPp15xxVUNrsPj9tJLz8d17drVcu21s08n3mpuHQBw221zuKVLH+jW1LaRIy+olCQZP/zw7RkZm3744dvQceMmNGvNS+KfvBkCtwHA/ziOGw/nGj6FdQvwPP9GSxtGOpZKtRo5FeWoiu2GxvK7MVpXqmLQWi3+YkBhIaYPGgar2QpZaHx9JqGqDOpwAQCD8eMn4LnnVmJ/WSnODw1D/qv/Q/zSx6AIDIRYUwP2+28BAJmhIRgQFNysNtmF5gdAMmS4l04VLDQEjhDSOcmyLCn0eiHsvPOUaIc1eRR6vSDIcot6PIKDg8UtW3akAMCuXW83OkH00KGD+j///D141arVJ9ha84ybU0dzabVaaejQYZW1h8EVFRUqeZ4PWLnyuVOvvvpyvC9fj7Q9bwKgF1z/zm5gvwyAAqBzzKkgIzan8bgoeSC6NlKOVTtTE6tZFna7HRqNpm0aSBqkt9kRoNFAbTx7Dk9dotUERrQB0EKlUmPWrBvw2itrwQUFI7SkGGb+OAKHjUD2118iUJZRZLOi180PNKs9MmQ4RO8WyhVcAbWD5gARQjopWYZoY1X5TGBwuyxIKsiyJMtos1SbO3duj0pK6mm64IILq5su7Tvjx19Utnr1qkSLxcLodDr5iy8+Dendu091eHiE0PTRxN95858nsYmv7j5rHekwLBbn3BGVuvGAhnGtzaJhWcoE5wckSUKIK2gIjm76AZpoNQEOK1jWecx//nMNFHoDVhw/jOw+fRA4bAQA4LVf9+FIVSW+MOjRs0/fZrVJlCUIkncPF0VXuwTKAkcI6cRkGaIkyY72+GrL4MdkMrG//74/ZOrUaS1ac9Ib48dfVAng9DC4H3/8LnTChItp+Fsn0eweIJ7nM93fcxynB2AEUMrzvHePbEmnYHUNOWoyAFI5h8CpWRZWqxVGIy2I2p5KiwoRqnImrgmPjQCExufOSHYbJGsNFLowSJKIoKBgzJ17N5577iksffctGEaNRkZGOj7/8jN8DuCtt3Y3u00SRIiSdw/YJJYFJECkAIgQQjq8H3/8zijLMi6+eEqFr+p0OBxMYz+76XQ6eejQ4RXff/9NyIABg0ynTp00TJo0Jc1X7SDty6vuU47jxnActx9AFYBcAFaO4/a75gWRc9CEggJsHzIC8bbGhx7JKjUAZw+QvZEJ96RtFJxMA8swcMgyVDq1R8eI1WVgmH+TWMyadT3OP/8CWK1WzJ17M555ZgUA4Lbb5qFPn37NbpMMudmLoJ5um6sHSKLeRUII6fD+/vuvwG7dEs3BwcE+63UqLCw8/aRWlmWUlJQ0+OE3fvxF5QcP/hn8yScfhg0cOLgyKCiIVtnuJJodAHEcNwrAN3BmglsB4E4ATwIIBfAlx3Hn+7KBpGNgJQlqlgWrbPwmWlRr8XtVFfaXl9JilX6gIsvZoVsDuckECG6ipQZsrSxtCoUCq1evw7Rp06FUqqDX6zFv3j2YN+8er9okyZLXAVCNSol0swk0A4gQQjq+9PRTuoSERJ/+ST95MtWwadNrURkZ6epnn30qrrH1e8aPv6iSYRh59+63o2n4W+fiTRKEJwH8DGAyz/On71I4jnscwJcAHgcwyTfNIx2Fwj1no4khcJJGh40lxagoK8ZoG/UAtbeqvFxEAbAqlZAcnmVeE61mMIINDKuEe905nU6PJ554Go888jhYloWyqXToDWAYQJRFiF4GQH+GBuDrn3/G3AvHenU8IYQQ/1FRUa7iuF4+Xdegd+8+NXv3/hSyY8e22J49k02DBw+tbKisRqORhw0bUfnbb78GT5w4qcFypOPx5i5lBIBrawc/AMDzvMRx3DpQBrhzkkKWAYYB41rnpzFKlTNIslEA1O6Kq6tRXVmOoMRunvcAWc2QHRawukCI4pnJCtRqz4bRNYRhGFcSBO8CIJXG+SCPri1CCOkYZs6cVTpz5qzS+va9++6HR1taR12RkVG2lSufy2ho/969fx6o/fPTT7+Q3lQZ0vF4MweoGkBD3YVqALSwyzno9MKmHgRAapXamQWOUhW3uyM1VXgmlUd17yTAw8VpZUmEaK4+nQnO10TJ+x4gldr5TMdK1xYhhPiVmpoaRWFhgXfDA/yU3W5nCgsLlHa7vV1SkhPvefML2wfgYY7jAmpv5DguEMBDcA6PI+cYpSvuZTS6Jss+HRmBN4eMgFBa0trNIk0oLHSuYxwRFNBEyTOJNeVgmRatg1cvhmFaNAeIq7bhpX4DwRWctT4zIYSQdrRp06tdr7pq6sD2bocv/fnnbwFXXTV14P79+0Lauy2kebyJxJcAOADgFMdxnwAoABANYCoALYCbfNc80hHIsnz6QvIkAHIA0AFwmOkpfXurdAWh4YH6Zh0n2ixQi3Y03BnsHYYBBEmA5OUi4xqGQYxWB7Pds/lMhBBCWp+/DBnbsOEN3pf1jRo1ptpf3htpHm/WAUpzZXpbBuBSOLO/lQH4HsDjPM8f820Tid8TRRw1m8GIAlht0zfS7hVeBIu5ddtFGiXLMh6OiII6MgbBQvN6XP5NhKCGLHs2dM4TDMPAJnq/pJiscv5JY0TKVEoIIYSQ+nk1FpPn+WMcxy3geb4AADiOCwUQR8HPuYlRKvF8xklYLGYs0jU9lMrBOIfLCZQGu11VV1YiWKkCyzAIDjPi39C0aaLNAtluBas3QhR9GQABDrEFvTeuJAisl0PoCCGEENL5ebMOUDDHcV8D+KHW5hEADnEct4fjuOaNpSEdnizLpyedK5WNp8EGANEVAIkUALWr0sx0sAwDQZaga+YQOEgiREtrJEJgYBW8D4AYtTsA8v38JEIIIYR0Dt4kQXgGQF8AD9fa9h2AKwAMA/CED9pFOhC73X56GJRC1XQaZIFxXnaijQKg9lSemwMAqJFkQPS898dNNFWA9TBznKdkSHC0YAgcTgdAvm0XIYQQQjoPb4bATQOwiOf5990beJ63A/iY47gQOBdKXeSj9pEOoCb9FN4YPBwldhvKFU0HQCKrAEQRko0mqrenmsJCBACwsgwkD9cAqk20mqGW7PByJG29WpIBDgAYjfP6U3qZRIEQQgghnZ83PUCBAMob2FcIINz75pCOyFpTDa1CAY1CAYVC0WT5fJUO+8tKUeXj3gPSPJYSZwY4h0oJWWh+D5BkszgTIfhwFJwECaLU/LacPl6nQYHVijIv3g8hhBBCzg3ePLo9COAWAJ/Xs+8mAP+0qEWkw7GbTM5/PcwGdigwHD+c+hJXDxvams0iTXBUOp9jyFoNPF0EtTbRZoHssIHVBUIUfdPjIqFlPUD2mDDMP3IIkZFRuNInLSKEEP/DMFAwDNMui2/KsizJMijTDOnQvAmAngTwOcdxfwL4AEARgAg45wANhXM9IHIOsZvNYOB5DjGl2jlMyWaztVqbSNOKrDbUVJYjuEukV8fLogDJWgPWEAFfZZ2WIUNsQQCkUDv/pNlofhkhpJNiGChYho2xWwXfjT9uBrVWKUiQ8v0tCFq7dnXsd999FbZnzxeHPT3mttv+m3z8+NHA2tuSk3vVbN683afrBRH/4806QF9zHHc5nMkOngDAwPn4+BCAK3ie/8KnLSR+z242QQNAgGdjoVQqZ6Y4u5UWQm1PBywm7EvlsWLqRK/rEE2VUPho0CvDAKIktqgHSKlyB0AUXBNCOieGYVi7VVAeP5Iv2axCm0541GiVbO9+MUqVVsHKsuxXAZA3srMzdfPm3ZN10UWTT0/tUKvVND7/HODtOkCfw9kLpIVzIdRKnudNPm0Z6TAEiwUa/JveuilDq4rw36Hn4XBVdes2jDSqxDUHKMxo8LoO0WqCSrQDaHruV9MYiHLLAiCVJGFVn/5QMywkSQLLtssIEUIIaXU2qyBZLY72yPjSKf6w5ufnqWpqapQDBgyuiYqKpomj55gWdZ/yPG8FkOejtpAOymFx9uQIHg5HZhTOxTcZocM/POrQKkudAVBoUNOL1zZEtFnASA74IgBiGECUpZYNgdOqkKh3BnQ2kwm6wMAmjiCEENLaRo8eNnTevHuyvv3269D09JOGqKho68033547adKUSneZb775Mmjr1o2xubk5upCQUPuFF44vmzfvnnyNRiMDQErKMe2rr77c5fjxY4FWq4UNCwu3X3759KKbbrq1qL7X3Lp1Y+TWrRvjHnrosVOTJ19aUXd/SsoxHcMw6NkzmcZMn4M6RRRP2pdNweJ4dRVKPVwUU1Y612phfDVxhDSbKIp4Ki4BWwcPQ3ALEhhIdgtkh9UnC6IyjKsHyIs1idwUOu3p72011MNICCH+YsuWDXHjx08se/31bUeHDTuvcsWKx3r88cdvBgD4/vtvjCtXLk+aMmVqyebNO44uWHB/1t69P4YuXfpAIgCYzWb2/vvnJ2u1OmnduldTtmx56+jo0ReWb9r0atfDh//R1X2t7du3RmzbtinukUeeOFlf8AMAaWmpOr3eID7xxKMJl18+acDMmdP6vvji87E2m83XK3wTP9QuE+hI51IaGobl/DEMHjYKV3hQXnYtlspKtFZLeykvKUaA0vnfPyg0CJC9mzMj2W2Q7Raw2lBILVx81D0HSGzBGj6MSgFBlqBkWFgpACKEEL8xfvxFJbNn31QMAIsWLck9cuTvwF27dkYOH35e+vbtW2MmTpxUcv31/y0GgMTE7jalUpm5ePHC5KysDLVeb5CmTZtedO21s4uMRqMEAHfffV/e++/vik5NTdH17z/g9KTinTu3h2/e/HrcsmVPpo0bN7Gqofakp5/SORwOZsCAQTWzZ99YcPz4Uf2GDa92LSwsUD/99PMZrXw6SDujAIi0mNXq7D1WqbVNlHRRO5MgKCgAajel2VlgAIiyDKVGAakFAwBEcyWYoLgWt4lhGNjF5i/IWpskS7BLMpQKwFpD0xIJIcRfDBky7IynUhzX23To0EEjAKSnp+tPnkwzfP/9N2Hu/e6VNdLSUrUTJlxcdd11c4o++eTD0JMnU/W5uTmazMx0PQCIonS6x6a8vFy1fv3aBIVCIcfFxTf6ZG/FimcyampqsoOCgkQA6N27r1WpVMnPPruye1FRYU5kZBTNC+rEKAAiLeYOgNQajWcHuLLAKTxcN4j4XmV+HoIBmGQJaMGcGwAQzTVQ+ygbql20t+h4SZbhcF1XdjMFQIQQ4i+USuUZH/qyLINlFbLze4m58sr/FEybNr207nFRUdGOoqJC5e2339g7MNAojBw5qmLo0BFVAwYMNF1zzZUDapdlGBZPPPFU6ubNr8euXLk8cdOmN1MaSoajUCjgDn7ckpM5CwDk5+epKQDq3LwKgDiOCwfwAICLAcQAmAxgOoBDPM9/6LvmkY6gS+oJvD5wCI55OnfD1VOkpPin3ViKixEMwMKykISW/Y2X7Bawoh2AukX1MAwDm9CyAAgAHK5FXd0L9BJCCGl/x44dMVx88SWnkx6kpBwLSEpKMgNAXFy8JTs7U9u9e9LpXpv9+/cGvPPOW1EPPfRY5ieffBhWU1Ot3LXroyMqlUp21eea+/PvzURwcJBj7NjxVZGRkfa5c2/us2XLhqhbbrmjsL723HzzDVzXrvHWxx9/KtO97fDhfwxKpVJOTEyixAidXLMDII7jEgHsA6AD8DOAga56kgE8ynHcFTzPf+pNYziOSwZwEMDdPM9vdW0bBOAlAMMAlAJYy/P887WOYQEsA3ArgBAAewHcyfN8Wq0yLa6DNIy12RCsUkOl8CwTmGQIwqHKChSJAia3cttI/WzlZQAAh1LR8h4gmwWyYAej0EBuUa+e3OIeIAColCRINisMjpYNpyOEEH+m0SrbPJFVS17z44/3RCUkJFr79Rtgeu+9dyMyMzN0ixc/mgEAs2ZdX/DMMyu6r127OvbSSy8vLSjIV7/wwjPdwsPD7VFR0UJUVLTdZrOxn3zyYcjw4SNqTp5M077yytquAGC3289qU+/efa3Tp88s2LFjW+y4cRMrkpJ6nDUcbvz4iWUbN77adefON03nnz+66vDhQ4bNm1+Lu+KKGYXueUak8/KmB+gFAEUAxgGoAWAHAJ7nr+c4TgfgYQDNDoA4jlMB2AHAUGtbGICvAewBMBfASACvcBxXyvP8FlexR137bgKQC+BZONco6svzvN0XdTT3vZxzXD0IstKzHgBreBesSU2BUqnE3a3ZLtIgR6XzIZyoVrW4LslmBQQrWJURouh9ACRCatEaQG4brNU4dSIN/5t7V4vrIoQQfyPLsqTWKoXe/WKUaIdsvmqtUpDk5k/inTRpSvHu3W9Hvfji87qEhATz008/n9q3bz8LAFx22bRyWZZP7dz5Zsz7778brdcbxGHDRlTcd9+DOe79KSnHCzZsWN913brVbHh4hH3y5EtL9u/fF3z8+FEDgOK6rzdv3j35+/b9FLJy5fJuGze+wdcdCjd79k3FLMvigw92R7322ivxwcHBjmnTZhTeccddBd6dGdKReBMATQRwM8/zFRzH1X3k/xqAd71sy+MA6qZtuh2ADcA8nucFAMc5jusJYDGALRzHqQHcD+BBnuc/AwCO466Bc22iGQDe9lEdpBGMewiV0rObaZXaGSgJggBBEKBU0lS0tlYqCKiuKIchKqnFdcmSCMlqAmtg0JLM5pIsQvBBanSN1jnHzGajEQyEkM5HliFKkPJVWkW7LGUiyZIky82f+JmYmGR58MGlOQ3tnzr1ivKpU68or28fwzBYtGhJ7qJFS3Jrb689vG3+/IV58+cvPL02pUajkXft+uhoY226/vr/Frszz5Fzi7f/eRqaNKBB7cGYHuI47kIAdwD4b51dYwD85Apc3L5zHsJFAhgEINC1DQDA83wFnMPoLvRhHaQR7vV8ZLVnSRCUqn97iugmtX0cERx4Jo2HqWuUT+oTTZVgWrhyggy5RYuguqlcvVru5ByEENLZyDJESZId7fHlTfBDiL/x5tH7zwAe4jjuGwDuOwzZNY9mHpzzgzzGcVwwgDcB3MPzfDbHcbV3xwE4XOcQd3Qf79oPANn1lIn3YR1eUbbC8FyF64GPon0e/NSLdd20Miq1Rwti6gU7tg4eBhYMBMHRKueppfzxPPtSZaXzIVtIoN4ni5jKdguUsgBJ6dk8MLfa51mADAlSi9szUaHBtb37QZOZ4ZfXVnvo7NezP6Fz3TboPBNCWsKbAGgJnEFOGoDv4ezxWQSgD4AecPa4NMd6APt5nn+rnn16OIev1eYOurSu/WigTKgP62g2lmUQEmJouqCXjMazFj5uNwrXAphKnR46XdPzgFjGAL3CeelpVHKrnqeW8qfz7Es1Vc45QOEhRmg9+J01RcEI0KokGAxGr443GnUot9ihUDEtbk8oyyLJEIBCm8Wvr6320FmvZ39E57pt0HnuGPbu/fNAe7eBkNqaHQDxPH+E47hhAJYDmABAhDMd9o8A5vA8X7e3pUEcx82GM2Dq30ARC5zD6mpzr7Zpcu2Hq4ylThl3Dlxf1NFskiSjqsrs7eENUihYGI06VFVZIIr+kaSkWBJhsljgUGlgsTSdM4IR/h0lWZRXhABjeGs2zyv+eJ59aZ5aB+Pg4VBXmWC1BLW4PlashrKmBg6HulmZ4NznubraArNgg9lihdXesrwjIssCEGGrMaO8nFJhA53/evYndK7bRmudZ6NRR71KhJwDvJp9zvN8KoDrffD6NwOIAlB36NurHMc9ACATQGydY9w/5wJQ1dp2sk6Zv13fZ/ugDq8IQut9+Imi1Kr1N8e75hocP34Mc6dcj0DJg5tf5t9hUpaqGr95H/Xxp/PsK7IsQ8ew0CoU0AUaIHnyO2uCZLVCtFkhq2WvzpckyRBEAXZBaHF7JIUzABJttk73u2upzng9+ys6122DzjMhxBveLoTKwJk8wIB6EinwPP+Th1XdAOd6QrWlAngMwDsArgUwl+M4Bc/z7kl3E50vwRdxHFcJoArOlNwnXW0LBjAEwMuu8j/5oA7SCPdkc6XKsyQIYBjYJQlqloXdTE/o25qpphoG15pNxuBAH9UqQzJXgQ2q+6zBc6Is+iQNtnMekgMyrQNECCGEkHp4sxDqCAC78G/yAPeMZdn1vQzAo5nQPM/n1t3m6gkq4nk+k+O4zQAeBLCJ47hnAYwAcC+ca/aA53kbx3EvA1jFcVwxgAwAz8HZ6/O+q0pf1EEa4c7kplR5vqaMXQbUAAVA7aCisBCsK2Wb3qCFJJy1PpxXRHMVVLJ3T2IZhoEoiT7JAie7EzFQAEQIIYSQenjTA7QGgAPAjQByALRa37Orh2YygLVwpqXOB/AAz/PbahV7DM73sRHO3qSfAEx2L2DqizpIw2RZxmMRMbCHRiKvGeOwHa5s6Q6zpYmSxNcqCgugBmCTpH8fX/iAaLdCLTngZccy7GJD2fWbR1a5Xl/wTX2EEEII6Vy8uVMZAmAWz/Mf+roxAMDzPFPn5z8AnN9IeRHORU0XN1KmxXWQBogiQlUqQKVCoVrbdHmXDFFCtqka4XST2uZqiosRCsAKGZKPgg4AkGwWMIINDKtEM/IgAHD2ANlF3zxvkDQqVDkcsDd/oXJCCCGEnAO8SXVShFbs9SEdi2j7d/gUo9U3UvJM7zqAJ0+kwKTzcN4Q8RlzWQkAwM6ygA+GnLmJditkwebVOj4MA9h8FABldQnHrX8fwE8az4dkEkIIIW1l9OhhQ3ftejusvn1ZWRnq0aOHDa39NWHCBYPnzLmm9zfffNXytK0EgHc9QP8DsITjuO94nqcJHOc49xweSZbBqj1fj0HlSphgtfpm/gnxXKXFgsKKchgifZt+XBYckO1WMDpnFrZmHQsZNh/NRVKpnYGPxWJtoiQhhBDin5YuXX5yyJBhNbIsM9XVVYrPP/8kdMWKR5OioqKP9+8/gOYPtJA3AVBPOBc9LeA47iiAuovdyDzPT2xxy0iHYK2uBgDYJQlKtQaeZjBWqZ2LXdpsFAC1tRxJwqY0Htf3T8ZkH9ctmCqgCOna7OMkWfJJBjgAULoCIHdyDkIIIaSjCQoKEqOiogUAiI6OcfTsyeX99NMPoZ999nFY//4Dctq7fR2dNwFQDwCHav1cd7yLD6dVE39nrakB4JxQzzAKeDr54wpGxH2DhiEvM7M1m0fqUVFRDgAICvB8yKKnJKsJSklAc/8MiLJvMsABQIjZhseSe9MilIQQ4idMJhP70kvPd/nll59DLBaLolu37ua77lqQPWTIMDMA/Pnn74bXX3+lS3r6Sb1CoZCHDx9ZsXDh4pyQkBARAK688pL+06fPLPz7778CDx06aDQYAsTrr/9vXo8ePS1r1jybkJ+fp0lISLQ89tiK9MTE7rasrAz1ddf9p/+iRQ+lv/POW9EFBXna+Phu5rvvvjd7+PDzTo9eeu+9d8N2734nqqAgTxsUFOSYPPmy4jvuuKuAZVm463j22TUnRo0aU+0+ZvToYUMXLFiUMXPmrNK1a1fHHj58KHD48JEVH3+8J6q6ulqZnMzVPPDAw5k9eybbACA3N0f17LMr448ePWzU6w3CrbfO9Tp40Wg09MHmI80OgHieH98aDSEdk93kDIAckCE1Y+a7mmURoFRCpqf0ba6ivAwAENwaAZDNClZywJnkvBnHQYIg+iYA0gDoZwxCkY/qI4QQ0jJLlizsnpOTrbv//iUZCQmJtq1bN0YvWbIweefO949kZmaoFy2az1100eSS++9fnFVaWqJ66aUX4ufPn5u8bdvO4yzrnK6+bdvmLrfdNi97/vz7s7dt2xi9fv3a+NjYOOvddy/INhgCxMcffyRp3bo1XVavXnfK/bqvvfZy17lz78nu3buPedu2TdGLF9+XvGXLW0cTErrZt2zZELlt2+a4W265PXvUqDFVhw//bXjllZfiq6oqlYsXP+JxkJKaesKg0WjFp59+IdVsNrFPP/1E4vPPP5Xw2mtbTwiCgIUL707W6w3i6tUv83a7nVmz5tmE5p4/QRDw4Yfvh+Xm5mqXLl2e3tzjydm8y1dLiIvdISDTbEINGDDNyPwlKhSACMh2WqulrY2qrMJ/Bw9HTUWNz+sW7RZAsINRaCA3IyCWZRmC5KOMdBrn/DIlmpmKjhBCiM+lpaVq/vrrQNCTT65KHTduYhUALF26PGvNmmfFsrIyxc6db0Z37ZpgeeSRx7Nch1iDg0NO3X77jX1++OFb44QJF1cBwKBBQyqvvfaGEgCYNeuGoq+//jLiiitmFF1wwYXVAHDBBReW/fbbL8G1X/s//5lVcMUVM8oAYPnypzKvumpq4O7db0csXLg4d9eut2OmTJlaNHv2TcUAkJTUw1ZZWaHcvPn1uLlz78n39P2JosisWPFMekhIqAgA06bNKNq2bWMcAOzd+6MxNzdH++ab7x5JTOxuA4AlSx5Lnzfv5j5N1bt06YM9WZaVAcBut7OyLGPy5EuLe/XqQ/N/fMCjAIjjOBHA+TzP/85xnAQ0emch8zxPgdU5whochAeOHUZ0TBfnyrIekljnJSI7aKmltqYUBGhVagha32fgk2yuTHAqI0TR8wBElEWfzQFidc45QEoajUsIIe2O54/rAWDw4GGnh55pNBp5yZJHcwAgMzNDN2jQ0Krax/Tp08+i1+vF1NQTencA1LVr19OThnU6nQQAcXH/blOr1bLDYT8ju/Hw4eedHrqmUqnk7t2TzBkZ6bqSkmJlVVWlcuDAQWc8CRw6dET1hg3rmbS0E9qIiAiPntAajUEOd/ADAAEBAaIgCAwApKWl6gwGg+gOfgCgf/8BFrW66aFs8+ffnzFw4GATAFgsFvbw4b8Nmza9FieKjzLLl6+k+QMt5Gmg8gSci566v6dHqwTAvxPNNRrP1wACAEnhDoCoB6itqV3r42gMnmft85QsiZCsJrCGSDRnBJovAyDGFdhREmxCCGl/SqVSBgCGqX+ciCzLYOp5XiXL8uljAUChUJ51fFPLLtQ+3l0ny7Kye4QCU+eFJUlkAGewVPsYN4fDcdYLqlRnt6vua9alUCiavI+OiopydO+edDpw6tu3n6W0tET19tvbY++/f0l2YGAgzQdqAY8CIJ7nH6/1/fJWaw3pcNyphpsdACmdt6cMLYTa5rSuP7t6o6FV6hfNlVA0M8O2KEk+S4LAaJzzj1SsN8ucEUII8aWkpJ4WAPj7778MY8aMrQacc1pmzLis/623zs1JSOhmOXbsSEDtY44cOayzWCyK7t2TWjTc68iRf/R9+vSzAIDdbmdOnTppmDRpSnFERKRgNBqFQ4f+Cpg8+dIKd/kDB/4MUCqVckJCos1sNrEAUF1drXDvT08/2ayhExzX22w2mxUpKce0vXr1sQLOIYEWi1nR1LGNkSSJhji0kKdD4C5sTqU8z//kXXNIR6M4wWNN34HIVjVv0rvsCoBAAVCbcjjsMCicgYHB6PskCAAgWs1QSg40Z51lURYhiL65Fhid81pUMgwkQQCrpBG5hJDOhWGgYBimXZ7yyLIsybLni7316NHTNmLEyIq1a1+IZxgmKzo6xr5t26ZoQXCwo0aNro6N7WJfuPDuXk8+uSz+6quvLSotLVG++OLzCQkJiebRo8dWN/0KDdu2bXOX0NBwIT4+3rZ584YYm83Kzpw5q4RhGEyfPrNgx443usTGdrFdcMGYqn/+OWTYufON2IsumlwcFBQkGo1GMSIi0rZr19tRiYndrRaLhV23bnVXpVLl8SioCy4YU52U1NO0YsWyxIULH8hSKJTyiy8+F1+356k+lZWVisLCAiXgnGd06NBBw0cffRA1dOjwiqCgIMry00Ke3hn8gH+HvTX0W5Nd+2QALYpsScch1VSji06HymYeZ9UacKKmGuVGY6u0i9SvsrISAa7hh4bA1ukBkuxWMKIdgOe9goIkQpR905vP6LWwSxLskgSbyQRdEC2cTQjpPBgGCgUjxDhs5nZ5uqPS6AURyvzmBEHLlz+Vvnr1qq4rVy7rbrfb2R49kk3PPbf2RHh4hBAeHiGsWLEqdfPm12Nvv/2mPjqdThwxYmTFvfcuyqk9FM0bU6ZMLX711XVdy8pKVT16JJvWrHmFj46OcQDAbbfNK1SpVPKePbujNm5c3zU0NMx+1VVXF9x667wCwDk8bunS5elr174Qf8cdN/UJCwu3z5lzc962bZs8HmHNsizWrHk5ddWqJ+MXL16YrFarpZkzr8svKipqsidp5crlSe7vFQqFHBIS6hgzZmzp/Pn353pzLsiZGE8yNXEcN7Y5lfI8/6PXLeocTomilFhWZmq6ZDMplSxCQgwoLzdBENp/+OcPq55CbOoJHGEVYGcv9fi4Y4f24d1NKzFo0BBs3fpWK7bQO/52nn3lFJ8C4blnAAAJc2cAnn9+eYzV6BDYZxTsqiBITayM6z7PR/NT8UfWPz55fVmQ8MjV9wIAfvrpNxiNFAB11uvZH9G5bhutdZ5DQw1QKNh0AN19VqmXDhw40ItlFV9ERnapUau1p9eMYFlGJdoqu5w8elCy26xtepGpNVo2qe8QVqEJypUk2W8n8Ta0hg/p/Ox2q7aoKDdAksRLhg4dmtJQOU/nAJ3rAQ1pgGR3zs+TWEUzBjwBKteQOSutA9SmqivKcayiHME6HRJYAK3w0SnZbYBgA6N2dwg3zS767nOUUbBgWRaSJMFqtVIARAjplOw2q2SzmNsjyqYJlqTD86r7lOO4cAAPALgYQAyAyQCmAzjE8/yHvmse8Xey3ZnG2p3VzVMqtXN4lM1KAVBbqrLbsSqNRx8uGRN8lHTgLLIE0VIDNiDa40xwNsHWdCFPMYBao4HVYoHN5sN6CSGEENIpNDsA4jguEcA+ADoAPwMY6KonGcCjHMddwfP8pz5tJfFb7gBIbuZE83BzJV7pPxjllFG9TVVVOZdaMAYENFGyZURzJVQerowrSRJsgm/Xg7q9awKMYGDNywW6xvu0bkIIIf4tPr6bfe/ePw+0dzuI//KmG/MFAEUAEgHMgCspAs/z1wP4CMDDPmsd8XuyK4vb6axuHlIqVQjXaGBsnyQ256yqynIAgDGgdTLAuUlWCxgPh7UJsuCzNYDcknUGDDAGwV7Z3PQchBBCCOnsvLn7nAhgBc/zFTh7gP9rAPq1tFGk47DIEopsVjjUzUqND0bjXIRTSZns25Th1Cm8MXg4Joqte+JFuxWM5FkAJIqiz9YAchNcb89hNvu0XkIIIYR0fN6mUGxowQ4NPJ31TDqF33Q6fHr4EGYOugB9m3Eco3UGQGrqAWpTYk0NtAoFVIrWzVQv2a2QHVawal2TmeBEWYIg+XY9KHcAJFgpACKEkPY2evSwoe7v3UPTrrxySv+SkmL1meXGlj3zzAvpAOBwOJi1a1+I/f77b8PMZrOie/ck84IFi7L69x/Q4OKoP//8Y+DGjeu75ORk64KDQxxXXDGjcM6cm4u9bbc7mxwAvPLKxuMDBgw660Nl5sxpffPz87TPPrvmRG5urvqll57vBgBjx44vXbnyuQxvX5u0Lm8CoJ8BPMRx3DcA3DPYZY7jWADz4JwfRM4RNlcWN5WqeT1ACo1zCJaGZeFwOKBSNW8IHfGObHF+brDa5i1c21yS3QbZYQOrZTwIgESfD4ETXMuVOSwtWkScEEKIj9xyy9zsSy+dWgYA1dXVbGlpiXr58qfS+vcfcHrNEK1Wd/oDY8WKR+P/+OP34PvvX5KRkJBge+WVtV2WLFnY86233jta30KgBw78bnj44UXJF100uXjp0uUZmZkZmhdffD6hpqZGceed8wta0naFQiF//fUXIXUDoCNHDusKCvJPL3o3deoVZRdeOK5yyZKFPVryeqT1efP4fQmA3gDSALwJZ4/PIgAHAIwG4PliMKTDs1icAZBS3bwbalbrDIDULAurhZ7StxXWFbCy2uYFrM0nQzJXgWUbH2rHMM5FUH0dAImu1xUoyyAhhPiFgIAAMSoqWgCAlJRjOlmWMWzYiJqoqGjB/eUObDIzM9TfffdN+P33L8m46KJJlT17ctZly1ZmqFQq+fDhv+udxLp9+7bo7t2TTMuWPZmVnNzLevHFl1TeeuvcnN2734mx2WwtGvfdr9+Aqn37fg6pu/2rrz4L5bjeNe6fdTqdHBUVLSiVShoN5eea3QPE8/wRjuOGAVgOYAKcKyleDOBHAHN4nj/s0xYSvzbJasVlvfuh1Nq8J+2s5t+/XzZTDQJprZY2oXA4AIaFSt/aARAgWqqgkptaooKBKPl+DpDEMoAMiFZKg00I6ZzUGm2bjyH31WueOJGiDw4OdgQHB9f7x3/v3h+D9Hq9OGHCRacz2QQHB4t79nze4D1mXl6udsiQ4WdkvunTp6/Zbrexhw4dNJx33vk1dY+57bY5XI8enKmmplrx66+/hMiyxIwYcX75ww8vywoICDj9ATZu3MTyl156vts//xzS1+4F2rv3p5AZM2YWpqQca93UqsTnvJoDxPN8KoDrfdwW0gGFyUCkIQBVbPPmlMhKFXKsFlhFEQPMNEyprSgFEVCxUBt0rf5aos0KtWQH0PDwRoZxD4Hz7RwgkWUhCjJEh2/TaxNCSHuTZVlSafRCUt8hSrTDoqQqjV4Q5SafbjXq1KmTOo1GKy1ceHcSz6cYjMYgYdKkS0r++99biliWRXZ2liYyMsr2+eefhOzc+WZ0WVmZOjGxu2nBgvtzkpN71du1Hxwc4igpKTpjOEpOTo4GAEpLSxq83/38848jp02bXrh+/abjx48f0b/wwrOJ27ZttN1117357jJdunSxJyX1MNUeBvfXXwf0ZrNJMWrUmKpXX325JaeDtANvF0LtDkDL8/wxjuOCAawE0BXALp7n3/Rh+4ifU8rOXl6mmVngwLJ4JD0dZlMVPmhimBTxHY3rM0vbymmwAWciBEZ0gGFUkBsYDMAwTKsMgfvGqMbyr3/CvWMu9Gm9hBDS3mQZoghlvkIT1C5ZhERZlmQZLfqjnZmZoTObzYoJEy4uu/XWuXkHDvwRsHXrxriqqkrlggWL8sxmk6KwsFCzffu2mLlz78oJDDQK27Ztipk/fy735pvvHo2IiDzrqdkll1xWsnr1qsT333839PLLp5dnZ2epN29+PZZhGNjt9gbPVWxsF+vChYtzAaBHj562b7/9OvTIkcNn9eiMGTOu/LPPPo64//4luQDw1VdfhI4ceUGFUqmg4W4dULP/83AcdwmA4wBudm16FcDtAOIAbOU47hbfNY/4O3cE7U5r3Rwq17whazOHzxHvnTLVIKWmGvqg1u+tF21WyA4bGKbxANchCpAbipC8pHLNcXIn6SCEkM5EliFKkuxoj6+WBj8AsH79phPvvvvh4alTryjv06efZfbsm4qvvvra/I8++iBKkiQolSrZYjErHn985amxYydUDRkyzPzMM6tPAcCePe+F1Vfn9On/Kbvhhv/m/u9/LyVMnHjBkLvvvr3XjBkziwAgICCwwTbHxXU94ybEYDCIgiCc9cF1ySWXlRUXF2n++eeQXpZl7Nv3U8ikSZeUtexMkPbiTQ/QYwC+AvA4x3FBAKYDeJrn+cc4jnsSwAIAm3zYRuLHVK6bW0bT/B4Fd+Y4m43mabQFu92Ol0+mAgC+i72h1V9PFuyQ7RawuoYzwTEMYBN9//tXqZ3D7igAIoQQ/6NSqWSVSnXGB0NSUrLFZrOxFRXlioiISLtCoZBrD3fT6XRyZGSUPT8/r8EhJ3fccXfBbbfdWVBYWKCKjIxypKWd0MqyjG7dEhv8MKjbDif5rAAoLq6ro0ePnqavv/4ixGazMZIkMiNHXlCdk5PVumlVSavwpvt0IIAXeZ6vBjAZziBqt2vf1wB6+qhtpANwB0CsVttEybPdHRmJl/sPgpCT7etmkXpUVTnnhjIMA4O6bdKOi+aqRnuAGIaBTfD9PJ0ku4hFScmIzW9R5lNCCCE+JkkSrrzykv6vvLI2uvb2Y8eOGIzGICE0NEwcMmRYjSiKzKFDB08/XbVYLExhYaGmS5e4ep+avfnmlojHH38knmVZxMTEOhQKBb766ouQiIhIe48ePX3ypO3CC8eX7d+/L+Trr78MHTXqwnKWpbUMOypvfnMW/NtzNAVAIc/z/7h+jgZQ4YN2kQ5AFgQo3QGQuvk9QMFKJSI1WjhqzkrMQlpBVVUVAMAYGACmjdYrFi01YJsYLWEVfN8DFCwBI0JCEWg2NV2YEEJIm2FZFqNGjSn/4INd0Z988mFIevopzc6db4bv2bM7avbsm3IB4Lzzzq/p129A1VNPPZ7466+/BPD8ce0jjzyY+P/27jw+jrp+/PhrZu/NfTS90vuYQqEUCsgpoNyiooKg8kNFEUG+iAcgyqEiCggiCCiCoKgcHogCIij3fbT0bqdt0jZN2uZONnvPzszvj9mU9EiTbPZImvfz8cgj6ezsZz6Z3WbnPZ/P5/12uVT7zDM/0w69AdF2t2k6nzGzZs2OP//8c+MeffTP1Vu2bPY+8sgfq//+98cmXnDB1xqz1fdTTjm9s7l5u+/FF/9bdcopMv1tNMtkCtxrwHc1TasEPgs8CKBp2iLg+vTjYgww4nHaEgm8qooaCA75ktpIf09Jscq86NlUz0MHH0aHZWKb2U060B8rGUM1k8CeZwhYOSiCCmB7nD9tSio/v6cQQojB+/a3r2osLi5J/e53907u7OzwjhtXk7jwwku2fO5z57X17vPzn99Rd/vtt9T+6Ec/mJVIJFVNmxe+/fa79aqq6hTAU0/9s/KOO26d/vDDf1sxder05FFHHdtz2WXf2fToo3+a+Nvf3j1l/PiJie9+9+qNZ5zxyc5s9XvSpMnG3LlauL293bto0eFyh20UyyQA+hbwNPBnYDXwk/T2p4EoTqFUMQYYClyy4n0AbvAXYw4xKWZKcQYgpVhlfkTbO6hyufApQL5GgBJxMJMoqnePmeBSdvZrAEGfAChPgZ4QQojBc7vdXHLJZdsvueSyfucpl5SUWNddd0MD0LCnx88++9z2s88+t73vtrPOOqf9rLPOad/T/nty330P6btuu/HGn2/q/Xnq1OnJ1157b3Hfx3/3uz/t9Jw97SNGviFPgdN1fSMwH5io6/oBuq73vnnPBPbTdb0ui/0TI1g8HbgoioKqDj2WNtMBkClJEPIi3uXcBEsOkJUtm6ykkwmuv3nSFlZORoBIr3FSc9G2EEKIIQuHw67m5u0ZlV8ZLXqn5e0pi5wYWTJavaXruq3revMu294C3Ok02WIM6A2AfD5/v3Ve9iaVvii2ZAQoL5LpJAgpd/4WbdpmCisRRe2n1pNlW5h2DoIUn/MZ67KGVatPCCFElvzud7+Z8pnPnHFQofuRS0899c/Kz3zmjIPWr19XVOi+iL0bciSuado04F7gOPqb2A+u4XRKjA7Rhs3cOO8AOm0LK4MIyFRdYJkyApQnqZ4eACx3fm/AmZEuXHuo2qAozhS4XIwAKekaU2o/6beFEELkz1iZIranaXliZMrkSuh24Cjgt8DROOt+3gROBg4EPj2UxjRNqwFuA04FAsDLwBW6rq9OP74QuAM4FGgH7tR1/dY+z1dxki98FajAScJwia7rG/rsM+w2xO6MUDdziovZbiTpzOBCM+ry0BTpJpHlIphiz6xo1PkhTymwdxw3HsVjGew64KwoCqZlkrJ2K+g9fH7nd3TJe0sIIYQQu8hkLsxxwDW6rn8TJwNcQtf1q3CCi5eBTw6xvX8Bs3BSah+Gk2b7f5qmBTVNq8KpLbQu3f71wA2apn25z/OvBb4OXAgcibO6+xlN07wA2WhD7Fky4lxQGxkmVX67uIpvrVpGXUlxdjsm9iydbU/15/dtbSbjYBp7fsy2cpIEITK+ki8sfptbOlqz3rYQQgghRrdMAqBiYGn659XAQgBd103gbuAjg20oHZxsBC7Udf09XdfXADcAE3ESLXwNSAAX67q+Rtf1B3FGoK5KP98LfAe4Xtf1f+u6vgw4B5jMByNR2WhD7IERcwIgM8NF9Z70NKV4XNJg50N7ymBtuAeKh16zaTisZBxSid3WAX0wApT9AMjt82DY9o51akIIIYQQvTIJgLbhFDwF2ABUapo2Mf3vDmD8YBvSdb1d1/XP6bq+CkDTtPHAd4FGnODqWOAVXdf7zpF5wdlVq8EJvkrS23rb7AKWAB9Ob8pGG2IPzHTgksowAHJ7fABykZonL8djXLd2Fea0CQPvnEVmwgmAFGXXAAiSloGdg5TcLq8zuzeRkPeWEEIIIXaWyRqgp3GmkDXquv6GpmmNOIVRfwhcADRl0hFN036LMwUtAXxC1/WIpmm1wIpddt2a/j4VqE3/vGUP+0xN/5yNNjLizkG2LZdL3el7IfUmLzBVtd8sX3ujJaOcsv8Cujs6c3KuhmMkneds6ekJAVAW9Gf0emXOxoqH8ZRNom8M5HarJGNJABRVySwlZT98Clw6YxYBtweXS9kt+Bpr9sX380gl5zo/5DwLIYYjkwDoOpy1ND8GTgS+D/wBuDz9+Dcy7MsvcbLLXQw8oWnaMUAQJyDqq/eWrj/9OP3sU5n+ORttDJmqKlRU5C4LYmlpIGdtD5Yrva7DcrkIBoa+rqTI7WJqMEi9mcrpuRqOkXCes6U3AKoqL8afwes1HC4jQlGRB0X177TdCjvT33y+7CZmsIoCHFQ1DoCyIg8uny+r7Y9W+9L7eaSTc50fcp6FEJkYcgCk63o78KHeaW+6rv9Z07TNOMkD3tF1/eVMOtIn69vX0m1dipMQYdcrl94rqEj6cdL7xHbZJ5L+ORttDJll2YRC0Uyf3i+XS6W0NEAoFMM0C1vjJBJL4E2lMPwBYuk7+UORShdPVVImnZ0Zn+qcGEnnOVt+PKEWa/wkPLEE8Qxer+GwwmGUUJik/cGfHLdHJZxeR5ZIGNhZTFlt9Bnham5qJVBRkbW2R6N98f08Usm5zo9cnefS0oCMKo1AkUhEffzxv1T9v//35VaAH/zgiuktLc2+++57SM/VMRsbG7xLliwu+sQnPtWZaRt//eujVXfccev0/tKA5+P3OOaYQxd985vf3bQvpOduaNjk/fznzzrwlltuX3fUUcf2DKetjAuC6Lq+TdO0eThpo7fpuv7zobaRXoPzUeAv6SQK6LpuaZq2GicJwRZg0i5P6/13E+Dps61ul32WpX/ORhsZSaVy9+FnmlZO2x+MzdXVfGfpexx/4hkcn8HFq+3urdVS+N+lPyPhPGdDPBqlwuO81YuLg1h5ro+TikexjQSpPhPdbNUmaTpL82zLzmqfFJ8H07ZxKQrhrhCekrKstT2a7Svv59FAznV+yHkeGx544Lfjn3/+2ereAOjKK6/ZYuUggU5fP/rRtdNramqSwwmAxMiV0W0OTdO+kh71WYVTM2edpmmbNE373BCbmgQ8jJNau7dtD3AIThKEV4BjNU3rW1j1o4Cu63oLToASAo7v8/zy9PNfTW/KRhtiD3qTF3i8mU0vUtLTktxSqyXnuluad/wcLM7/lBErEcfeJROcZZuYuagBBLjcbpKWc1GUiIRzcgwhhBD5Ydv2Tgs5y8rKzIqKytxGQNhje/HoPm7II0Capl0K3Ak8AfwAaMHJCvc54E+apqV0Xf/rIJtbBjwL3KNp2oVAZ7rNCpxU1XHgSuB3mqbdAhyOs9bo6wC6ric0TbsLuFnTtFZgE/BznFGfx9PHeCALbYg96E1f7fH6B9izHx7nQtwt8U/O9bS0ABA1TVRFIQeJ1/bKMhLYyRiqv3LHSI+FhWHmJgBSFAXDtgjgIikBkBBCFFR3d7frF7+4ufadd94sT6VSyowZs6KXXHJZ48KFh0QBotGoetNNP57y3nvvlkejUdfkyZPj5533pa2nnXZG1513/mLSX/7y8ERwpnM9/PDfVtx7792TeqeOvfHGqyXf+9535v7sZ7euu+OO26a2tLT4pk+fHr3mmh9vfO65ZyqeeuqJ8aZpKscee3z7D37wwy2KomDbNvff/5vxzz33THVra4vP4/FY8+btH/7ud69umDZtevLCC8/X1qxZXbxmzeriM888teSJJ/6zIplMKnfeedukl156oSoWi7pqa6fGLrjgwq3HHfeRUO/v+cwzT5f/4Q/3T2pu3u6fNWtOZOHCQ0L9nZNepmlx440/nPLSS89Xud1u+6STTm277LLvNLndziX6O++8VfTAA7+dVFe3vsgwDHX8+AmJz3/+/G2f/OSnO3rb+Oc/H6987LE/T9i2bau/vLzCOOOMT7Z85SsXNe96rNbWFvc3vnGhVl5eYfzyl/dsCAaD1ssvv1B6332/ntzU1BioqRmf+MxnPrv9zjt/Mf3hh/+2YurU6ckzzzz1wA996Kiu999fXNrd3e257rof1x1xxNE9f/jD72r+/e8na9ra2rzV1dXJz3zmnO2f+9x5bQBvvPFqyZVXfmtubxuw+/S1H/zgiumWZSkVFZXGiy8+X5VIxNUFCxaGrr76us3jx09IAaxZs8p/++0/n7phw/qiiooK45xzPr9tWG/EPjKZAvdN4C5d1y/bZftDmqbdD/wQGFQApOu6rWnaOcDPgMeAcpxRl2N1XW8A0DTtFJyAawlOCu4rdF3/Q59mrkv/HvcDAZwRn1N0XU+mj9Ey3DbEns3Ytp1r5u5HZzKzVMOKzwmc3Pm+Gh+DIu1tBIC4bUOOpw30x4yGUMtrd/zbsq2c1ADqZaTfVonIyFpfJoQQw2HbEE1lNXHmkATdWENJrGnbNpdffskct9tt/eQnt2woLS01n3zyiarLL79k3q9+de+aAw88KParX/1i0qZNG4M33XTb+rKy8tTf//7YuJtuumHm/PkHrLzggq9tj8Vi6uuvv1x5330Pra6uHrfbnTPLsrjnnjunXHXVDzZ5vX7ruuu+N+sb37hwv4MPXtR9xx2/1t999+3ie+65c9oRRxwVOvHEU7offPC+mr/+9ZGJV1zx/Y3z5u0X27KlwXfbbTdPu/32W6b88pf31N1yyy83fPvbl86prh6XvOqqaxoArr32qukNDQ2Bq6++duOECZOSL730fPl11109+9prb6g78cSTu9999+2in/70h7POPvtz204//ePt7733Tsm99941YDbhdevWFldVVRm/+tW9axsbt/h+8YtbpsfjcfX7379+y9atTZ7vfe/bc0855WOtV175g4ZUylAeeujBCbff/vPpRx55dKimZnzq6af/VXHrrT+bcd55X2o68cRTOlevXhm8/fZbphcVFZvnnvuFtt7jtLe3uS+99GtaVVV18he/uGtDIBCwV6xYHrjuuqtnn3HGJ1uuv/7G+rVrVwXvuuuX03bt47PPPjPuxz/+2frS0lJzv/3mx26++cYpL7/8fNXFF1/WcOCBB0XeeOPV0nvvvWtqMplQv/jFr7QM9r3x5puvVxxzzHEdd9xxj751a5P3Zz+7YeZdd/1y8g033LS5u7vb9Z3v/J82d+688D333LemubnZe/vtN+/Wt0xlEgDVAk/289gjwBeG0piu693AJemvPT3+Lk5ShP6eb+IUNb1qL/sMuw2xu+JYjGmlZSwmw1FiX5D2ZIIuszAX5GNJrLPDCYAKOKBvRntw2c5rrShg2iYpK5XhRNyBGenAOhnNfjISIYQoBNuG8/4TnKd3ugqWOnVehRn+46lRfbBB0GuvvVKyfr1e9MQTzyzrDV6+/e2rmlavXlX86KN/Gn/ggQdt2rZtqy8QCJrTps1IlJWVmd/85nebDj54UU9ZWYVZXFxsBQIBS1VVu3dkYE++/OULmxYtOjwCcNRRx3Q99dQ/a6677obNwWDQmjNHi//pT3+YXFe3PnDiiad0T5kyNfHd71698aSTTu0GmDJlWvLtt9/sfOWVlyoAKioqTbfbbXu9Xqu6elyqvr7O9/rrr1bedddv1/SOWs2aNbu5rm5D4LHH/jThxBNP7v7rXx+pmTtXC1922be3AsyePSdRX18X+Pe//1Wzt/NTVlZu3HDDzRv9fr89b97+8dbW1qZ7771r6uWXX9GUTCaVc889b+tXv/r1ZlVVe3/PbS+99HxVfX2dv6ZmfPhvf3t0/JFHHt1x0UXf2J7uVyIajbj8/sCOxXGhULf70ksvmltdPS5x222/qvP7/TbAI4/8cfyMGTOjV1zx/UaAOXPmJjo6Ojz33ffrKX37ePDBh3R/+MPH9zhthdRnn3163Fe+ctGWM8/8TEf6mK1btzb5Hnvs4Ynnn3/BoAOgQCBgXn/9TzZ7PB577tx58TfffL198eJ3ywCefvqfFclkUv3Rj362qayszJw3b/94LBbd8pOfXD9rsO3vTSYB0Ls4a2j+u4fHDgaWD6tHYtRQe6cveTNLqWxUjufi5e/j8/s5LYv9ErtLdHUBYBQwu5GVjKGaScCLoiikLJOUaeYsALqjq4XGLVu55+t7vLcihBCjUv4nMQ/P2rWrgwDnnHPmgX23p1IpxTCSCsB5531p+zXXXDn7k5885aA5c+ZGDjnksO7TTjujo6ysbNB3SGfMmLVjOorP57fKysqNYDC4Iwjwej1WIpFUAU466dTuxYvfLbrzztsmNTU1+hobtwQaG7f4KyoqjD21vXr1yiDAd77zf1rf7aZpKsFg0ATYvHlT8OCDF3X3ffzAAxeEBwqAZs2aHe0NSAAWLFgYSaVSSl3dBt+BBy6IfeYzn21/6KEHajZv3uhvamryb9pUHwSwLFMBaGjYHPjwhz/S0bfNc875YOQH4I9//P1k00wpux6rvn5DcNdpeoccclgP/HqnPk6eXLvj3G7YsM5vmqZy8MGH7jS/fOHCQ8JPPvnE+NbWlkHHFuPHT0h4PJ4d/SkqKjZTqZTi9K0uOH78xHjf98CiRYdlbU77oDqpadqH+/zzEeB2TdNKgL8A23HW7JwKXAZclK3OiZFNTacetT2ZJUHweJzAKRGP4/w9l/WGudJjGHT3hDAqCpcNzUzEwUyiqE4AZFrOCJAb18BPzuR4Hg8JyyKR3LXElxBCjE6KAn88NaqPpilwlmUpgUDAvPfe36/Z9TGv12sBHHro4ZF//OOZ5a+++lLpu+++Xfrcc89UP/ronyb95Ce3rD/22OMGle7Y49l5RfHeCn7/9rf3jH/kkT9OPuGEE9sWLjyk57Of/VzLSy+9UP7qqy/tsf6jbTvXO7/85T1ri4qKd0o76HK57A/22zlxgtvtGTBYVVV1p316s9v5fF57/Xrdf+mlX5s3ffrM6KJFh3Ufc8zx3ZWVlcb//d9F+/U9/kCvx4EHLgidfvon2m688fpZL774v44TTjgxlH4uljVwsgev17fb77hrgXErnXiob0DTN8eVYaR2O07ffT/Qd9PQz+dgDTZKe2mXHik4BUu/vss2gEcZ5BogMbqp6Te7kuEIkLtP4JRIJPFJscqc2eL1cK++ms9+7CTOKFAfrGQc20igBkpRFEhZKVKWmbMAyONz3pfxuARAQoh9h6JAkYdRk/t71qw5sVgs5komE8q8efvvGEm47rqrp82ePSd6/vkXtN55522TDjrokPDJJ5/WffLJp3Wbprnl3HM/Nf/FF/9Xceyxx/UoipLVUa+//OXhSeeee97W3mljAH/+80MTdk5K+8Ex58zRYgDNzc3eE088aMcoz+233zJZUVT78su/u3XmzFnRNWtWFfdtYc2alQNOVdy0qT5oWRa9U9yWLHmvxOv1WtOmzUjceuvPaktLy4x7731wXe/+//3vf8rAWVsFMHnylLiur9npOD/72Y+nNDdv9/7yl/fUAXz4wyd0nnbax7pefPG/Hbfffsv0RYsOX1laWmpNnz4juutzV6xYutc+z549N+5yuewlS94tPuCAA3fUz1y6dElJWVm5UV5eYXo8TmAbCoV2fMBv3rxxSBd5c+bMjb7wwn+r2tvb3FVV1SmA5cvfz9rUz8HeQTgB+EifrxMG2CbGAFc6ACLDLHAet5sb5s3n5v0PJN4tafZzKRRyRrhLgoWrmm6bKax4BFVVUBSFZGqPMw2y5khfgEumz0Ld0pDT4wghhOjfCSd8tHvatOmx66///qzXXnulpL6+znfLLTfWvvji/6p7p601NTX5fvnLn0997bVXSrZs2ex9+ul/VbS1tfoOPHBBGCAQCFiRSMS1YcN6n2EYw54uUlVVnVyy5N1SXV/jX79+ne/2238+6Z133io3DGPHdXEgELBaWpp9TU2Nnnnz9o8fcsih3Xfeeeu05557pmzTpo3e++//zfjHH//rhMmTJycAPv/5L27fvHlT4Oabb6zdsGG97x//+FvlM888NW6gvrS3t3uvvfaq6WvXrvb/+99Plj/88EOTzjzzrGafz2fX1IxPdnS0e1944b+lW7Zs9j7zzFPld975i2kAyaQzffDzn/9/295447WK3//+/pqNG+t9//rXPyqee+6Zccccc1zXrse68sofbEkmk8qtt/50CjhTDzdurCu69dabJm/YsN73n/88Xf7HP/5+Muw+wtOrrKzMPPHEU9r+/Oc/TH7iib9X1tfX+f74xwfHPfvsv8d96lNnNSuKwrx5+8f8fr/14IP3Tayvr/O9+ebrxb/73b21/bW5J2eccWZHaWlZ6gc/uHLGypUrAm+++Vrx3XffMWXgZw7OoEaAdF1/OVsHFPuO3uxtSoYBkMvjZXZRMS5FId7TQ1nNhGx2T/TR0+MEQKVFwYL2w4x046p2fk6YuR2Zmenysn/1OLZ3jPri10IIMWq5XC7uvPM3626//ZbaG2+8fmYikVAnTZocv+aaH9X1Tm/7wQ9+uPm2226actNNP54RDofd1dXjkl/84lcaP/WpszsATj751M5nn/139Ve/ev782267Ux9un37wgx9u/MUvbp568cVf2c/v91tz5mjhSy65bPOvf/2raQ0Nm7xTp05PfuITn2699dafTr/ggi/M//e/X1h6002/qL/jjlsn33nnbdPC4Yi7pqYm8Y1vXL757LM/1w5w4IELYj/5yS3r7733rtpnnnmqpra2Nnb22Z/b9tBDD9TurS+HHnp4l8vlsr/xjQv38/l81qmnntHyjW98cyvA+edf0NLQsNl/8803zjTNlDJ+/MT4l7701aY//vHBSStXrig64YQTQyeddGp3V1fX5r/85eEJv//9/bVVVdXJCy+8uOGss87Z7cOvunpc6sILL2m8/fZbpn/kI893Hn/8R0PXXvvjDfff/5vap556YvzEiZPip5/+8ZbHHvvzJI/H2++o29VXX9dwzz13pB544LeTQ6Fuz/jxExIXXXRpQ28a7JKSEuuqq66pv//+39RecMEX5k+cOCl+8cWXbbnmmivnDvY1Kioqsu6889f6Lbf8dOo3v/n1eUVFxanzz79g6y9/+fPpg21jbxR7EEUoNU17BbhM1/Wlg21Y07RDgV/qun5M5t0btepN05rR0ZH99Ltut0pFRRGdnZGCV79+/UvnUelysfyo0/DNPTyjNmY8cD0BlwvfpZcxbeEhWe5h5kbSec6GZy66gPJYjMj+Mzn2xEML1g9f9UR8sw/DVr2saFtDfcdm/AEv8VhyR32gbEnc8jAHpKBp9mxO+N41WW17tNnX3s8jmZzr/MjVea6sLMLlUjcCM7PWaIYWL148T1Vd/6mpmRz2ev2Z1ZsQYi/ef39x0O122wceeNCOqWxPPPH3yl/+8tbp//vfq0t6axGNJslk3N/S0lRsWeapixYtWtvffoP9ze4A/qNp2nvAn4B/6bq+W27ZdGKEU3ASIRxMP6mtxb7hh00NtLa28N0zvkimq3cStk0ApFhljvlSKaq8PkxfZuu1ssVKxFFNA0P1YJi5LbNlulRIWVjJfaecl22adP7vOVS/n9KjjkH1eArdJSGEEKPU2rVrgg888NvaK664euP++8+Pbdq0yffHPz446eijj+kYjcHPUAx2CtzfNU17Gadg6P2AW9O01cBGIIJTwHQKcABgpPc5T9f13arQin1HLObcMPD4Ml9XkkyPQCbCEgDlks+ywKXiLynwFLhEDNtIYHt8GDkuyGq7VGDfCoAUl4tUawtdL71IdOUKJl7yf/3O0xZCCCH25txzv9DW3t7m+fWvfzW1s7PDU1pamjr22OM7Lr30W02F7luuDTq803W9DbhM07QfAWfhJDyYCZQBbcAanJGiJ3Vdl0n3Y0A87gRAbk9ma4AAei9NZQQot/zpJI2B4sIGQFYygW3EsJUSUma/9eyycyy3C0iBkdtkC/nkcqlMOO1Uul99hfD7S+h54zVKjz620N0SQggxCimKwqWXXr7t0ksv31bovuTbkMe30sHNvekvMUYlekJcOWM2ScvC7fZkXJXNSF+YJyPZXy8lHLZlUZROr1lSWjzA3jnvDVY0hFVeTcrKdQDkBhL7VAD03DNP8sC993C8v4jjAkE6nnmakiOPRlELV+BWCCGEGG327Ql+ImeiXd0sLCvHtG3qvX6MDNegRlDoMpIYxr4zTWmkiXV3o6anSRWXFzoAAjMexbQMjFyPAHmc8gNKKrfHyYfQW29Q99S/eOiVF1kV6qZOVTn0oENg+3bi+hoC+80vdBeFEEKIUUNuG4qMxNJplROWherKfCH2Y5aLry1bQlvFHosviyzobnbqvCUsk6JAYZMgANimgWk6RVBzafO4Mi5cuphXSwof9A1XxysvU7R9O7OKijntkEOZNXkKb7Q7M4173n2nwL0TQuSIBdi2bctCPyEGKf3/xYa9FwuWAEhkJBHuAcCwLaxBpFLvj8fr5I/rXU8ksi/c08PanhCb4nGwC5+W10qlMK0kRo6nwClBH90pg0git/WGcs1KJomtd4qAb/d6ufzjn+K6cz7Puz1OMfKOt97Etgr/ugohsm67bdtGMhkv7OJNIUaRZDIetG3bAPa6rkmmwImMJCJhVMCwGVb9Fm+6iGpvRjmRfWG3i+v01UytnczJI+FC2TIxUklM2ySXtzXdXmdkMpEY3eUzIvpaXLZNezLBiUcdg0tVqSopZf/5B9LQ0Um3ZaIl4hCQayQh9iWLFi0KLV68+KFQqPNioMrr9UcVRcluwTQh9hG2bSvJZDwYCnV6bdv63aJFi3r2tr8EQCIjiXCEAJBShhcAHaJYfFLbH2VzQ/Y6J3bS3e2MFJSNlKlgikIiGXXSNw9j9HAgpSmLL0+ZRkVsdI8AbXz5RfzA2miUU2d/UET7jMOP4Lzbb8GybY7oaGPy5KmF66QQIld+apopurraz1cUJQg5vW8kxGhm27Zt2Lb1O+CnA+08qABI07Tzh9IDXdcfGsr+YvRJRsNOAISScQY4gDJVYb+SUjZKGuycCYWcAKikqKjAPXGobg+xeJjeSbq54gc+Mn4i3TkMsvIhtHYNfsBVMw5Pn8J0NWXlHDJrNu9tWM+z//k3F3zl64XrpBAiJxYtWmQBP1m8ePEdts1EZOmCEP2xgG0Djfz0GuwI0O+H0AEbkABoH2fE4li2TWqY6Xdtd3pR/j6UqnikCa5cyW8WHELDMOo1ZZXqIpaIotgmdi4/y33OeyvzJO2FZ1sWpdEoqCoTZ87e7fFj9juAxRvWs+rF57HO/wqqJ/OEJEKIkSt9UTeoCzshxMAGGwDNyGkvxKjTUV3NJYvf5tBDj+CMYbRjeZyLVMUY/amKRyo73EOl10urZ2TMeLXdbhLJLrBMyGX9moATDHhG8YyR5s2baIhGmOj3M3fWrN0eP0rbj+kb65nkD9C87H0mHnp4AXophBBCjC6DuiLSdX3zYBvUNG30Xm2IQetNWuD2B4bVju1xssApOa4JM6alXyvFX/gU2ACWy0XSiAMmiiuHffI77y2PomCbJorLlbtj5cji1Su5Zu0q5s+dyx0uz25rpipLSlgLTALWv/yiBEBCCCHEIGR0S1jTtHOB4wAvHyzIU4Ei4EigNiu9EyNWLBYFwOcb3rQqO50G22WOgOxk+yglnQbaHfAVuCcOy+3GSMaxXTh/QXKlT80jK5HAFRx9WdLeffdtAA7df37/CSNKyyCZJFZfl8eeCSGEEKPXkAMgTdOuB64HutPPN9Jf43AWIN2XzQ6KkamksZFvz5xDYpiBi+J1RpBcIyE98z7KlV5f5QkOb7QuK1QVSwEjlcQyLVyBspwdyuX3Ytk2qqJgJxMwCgOgVSuXAzB/6vR+96mcPBk2bqQ0EsG2bSe7nhBCCCH6lckE/C8CfwIqgduBJ3VdHw8cBrQDq7LXPTFS+UMhjqisonq4C8z9AeKmSdIys9MxsRuP6Zxbf1HhAyDV5SFl2xipJHYqiZLDwqxun5d4+nc346OvFlA0GuWKohJunb+A2aWl/e43Y9ZsLNumyu1h86rleeyhEEIIMTplEgBNBv6o67oNLAaOAtB1fTFwI/DV7HVPjFS2kXS+u4aXdaqnahLnv/8ud7S1ZKNbYg986alT/pLCj4AobjcmvQFQCuzcBb4en4crV6/gomWLUcrLc3acXNmw7H3KPV5q/QEqSvofKfMFgrSnA711r72ar+4JIYQQo1YmAVCED8p3rAdmaJrWe2t5KZIxbkywe9NWe4a3iMPrddYQ9SZVENm3LZGgMRalqLTwhVAVl4cUljMFLmVADpNfeLweWpIJOg2DeHL0pVnfsmQxAN2KgjVAlsSEz1nf1anrOe+XEEIIMdplEgC9gzMNDqAOSAEnpv+9HzC6y66LQelNW92bxCBTHl9vABQddp/E7mzb5kf6Kr69ajml1blbbzNYqtuNYaWwLBPbTGHnMAByud071sMkEqNvClx3/QYAkkVBbHPvI2XK+PE81rSFNxob8tE1IYQQYlTLJAvcT4H/aZpWruv6xzVN+xPwB03TXgROAf6R1R6KEUntvSDzDm8EyK+6+N5sDb/LhWUkUYc5oiR2FolEMNOvVUnAh5OnpHAUt4d46oN7JLYR7z+72XCPpSicPGEiE9weYhs3wrianBwnZ9rawOPFV1U14K612n78/V+PoygKkUiYoqLCj/YJIYQQI9WQR4B0XX8FOBR4LL3pUuBvwDzgr8BlWeudGLFcOwKg4aXBdvmDHFJewf4lpcR7wlnomegrFOoGwOv14nMXvg6O6vIQMz4YjbGMBHYOMwAeUV7Jx8ZPJLG1KWfHyAXLsihNOuvsysdPGHD/iuJixldUYNs2a9ZIHhohhBBibzKqA6Tr+nJgefrnOPC1bHZKjHwuywKXC8U3vMxi3kAQw7LwqCrxUBfBysos9VAAhFav5DcLDqExlczpdLPBslwu4vE+I0CpFLaV4oNyYtmVTDebikZy0n6ubNu2lXHp0dCK8eMH9ZyDJ02h1YINSxZz6KEfymX3hBBCiFEt00KoZcBHcAqf7jaKpOv6Q8Pslxjh7u7uoHHTRi456SyGs7JEVV0kegOgnp6s9U84Yu3tVHq9hBRyNtVsKCyXi1Qq+cG/zXQiBMULw02pvgep3gBolCXZqNuwno3hHqaWljHO58ccRBKHj5eUMm6OxmurVuahh0IIIcTolUkh1NNwprr1l1PXBiQA2sdFYzESloXbXzTsthK2TTGQCEsAlG3xzk6KAMOVSb6T7LPcbpJ91wCZKeyUgZKjtV8p1fm9U6OsDtDGTfXcXr+eUz7yUQ4aZFzoLS+HtjaUFkkpL4QQQuxNJiNAPwPWAN8GGin0qmpREL1Z29ye4WWBA0imRyYSYVkDlG3JUAgAawSs/0FVsVQFo88IELaNZSRQvLlZtG+ozhCQNcoCoPr6OgBmTK7FMgaXwrtywkTMtjaqLIuurk7Kyyty2UUhhBBi1MokAJoHfFLXdam4N4Z9qbqGRHklww9/IJm+w52UACjrzIhzTi1PRrNds0p1eTBse+cACCcTnGLn5j6KlR75Gm0BUMPGOhRg+iDX/wAUVVYRAmoDQdav0zns8CNy1j8hhBBiNMvkqmgzUJqtDmiaVomTWvuMdLvLge/puv5a+vGFwB04mefagTt1Xb+1z/NV4Hrgq0AF8Bpwia7rG/rsM+w2xAdShsFR5U6ygnVuL8NdWp9UFJKWRUJqAWWdFXXOqeIrfHpxxe3GZA8BkJlCsVJA9kepLLcbLDATo6s82aJwlO8ccjiu1jYoGdxIjqu4GMu2KXa7WbZ6lQRAu0h1ddL2+N+Ib96Mf+ZMqj91Fu7SrH2UCSGEGEUyWRjwM+B6TdOmZ6kPjwJHAOcChwFLgOc0TZunaVoV8F9gHU7wcj1wg6ZpX+7z/GuBrwMXAkfirEF6RtM0L0A22hA7i4W6dvzs8g9/6tL9MYPzlrxD17hxw25L7ExJj3yo/sK/lVW3hxQWhrFzMGKbKbDMHUVLs2lNwM3lK5eycfq0rLedK93dXZQrCl5VpbS4ZNDPU1wuouk1T53r9Fx1b1RKhUJsuflnhN54nWRTI6FXX6Hxlp9hyqizEEKMSZmMAH0BmAzUaZrWCux6297WdX3WYBrSNG02cBJwtK7rb6S3fRM4Dfg8EAMSwMW6rqeANZqmzQGuAh5MByjfAa7Udf3f6eefA2wFPo0TXH0tC22IPmLdTm0Z07ZRvH4whjd9yZNOpR2JjK5UxaNBt2mixKK4iicWuisoLg9J08DaZbqbbaawTQPF48t6ojqryM/WeJzQINfRjARbtmyhxudMLvUNIQACMAMBiEZJbG3MRddGrfZ/Po7R2kLY5eI9r4ejLGD7Nloe/TMTv3pRobsnhBAizzIZAWoEnsDJ9PYM8PIuX68Moa024GPA4t4Nuq7bOEVBKoFjgVfSgUuvFwBN07QaYCFQkt7W+/wunFGkD6c3ZaMN0Ucs5GRrS1gWdhbqt/j8TgAUHWW1WkaDZ4wE3161HHtS4UfXVPfORVA/YGMn45CDESCv3wkkotHRM72yqbGBGq/Tb8U/tELDnqlTuaN+Pc/W12HlsMDsaPNsPMazLdv50fL3uefVl7j+/XexbZued97GaG0tdPeEEELk2ZBHgHRd//LAew26rS7g3323aZp2NjALeBa4EVixy9O2pr9PBWrTP2/Zwz5T0z/XZqGNjLjd2U897Eov6nYVMK2xEXECoKRtYwOqOrwL10VuF6fP1ijZvCkn5ywTI+E8Z0NPj5MFrqwoMOzXabhUj4dYqnunOKd32ptlJHBjQZb7WOVyc86kWqZs3zZi3lsDad68kRlu50+z6vNim4MPZCbPnsM7oW6MVIrm5q1MmeL8CdtX3s+Z+M9//s0v7r4DgE984kzOnD6V3//+99y1sQ5l6hTuqK7M6ntjLJ/rfJLzLIQYjkzqAO0tKLCAcDqwGTJN044GHgD+qev6k5qm3Y4zfa2v3lvIfj6oRbSnfSrTPwez0MaQqapCRcXwa+T0p7Q0kLO2B+KyklhAEvD53HiGOW1pvMfFovIKGnp6cnrOMlHI85wNvQFQVXkx/kBh1wG5An5SPW24PbsnO1CxcKk2Hm828gp+oNLj5iOTagl1h0bce6s/0W1NACTdbvzeoc9SnjFxEuu2NLBtWwMLFuy302Oj/f08VJ2dndx0008AuOSSS/jud75F44Y1zJpYxtU/uY3I0vf5858f5Fvf+lbWjz3WznWhyHkWQmQikzVAmxigZLumaR3AHbqu/2SwjWqa9kngYeAt4HPpzTHYLdNy75yQSPpx0vvEdtmndz5VNtoYMsuyCYWyP+3G5VIpLQ0QCsUwh3BnOJu6WtopAlJAJJocaPcBpVTnbZiKxensHBnT4EbCeR4uK5HguuoJ9JRX4QPiseG/VsPhsiAej5EyzB3bFEXB5VZJJRKoySSG5cLO4kIgMx1AqKY5Yt5bA+lpbAJUzGCAWAav2VHjxzM7kWTFO4s5/PBjgH3j/ZyJv195NV+vrOadymq+/vVLadnayNaGTVRXVPKlcz7N3Q/8ibvvvpvTTjqd8ZNrB25wEMbquc63XJ3n0tKAjCoJMQZkEgB9Efgt8BLwCLAdqAHOwkllfQNQDFyjaVq7ruu/HqhBTdMuxUlT/Thwnq7rvaMxW4BJu+ze++8mwNNnW90u+yzLYhsZSaVy9+FnmlZO29+brooqLl7yDvvvdwCfsIZ/sWqni6naSaNgv1N/CnmehyvW1k6Fx0Oxy0VRMICVhddqWFSVpJHcJdGB8w8rZWClDGyXP6v97E3/7bbtUfM6NrS28Lbbw8I5czI6F8epHoqmTucZXd/tdx7N7+ehCoVClG9pZGJpOdOPPgbFNmnb2kjKcJaDHrHoYN5+5S1OVFxsvv46Ku/5LYqavQvfsXSuC0nOsxAiE5n8tf8c8Kiu66fpuv6QruvP6br+J13XzwTuAxbpun4FTiB08UCNaZp2MfAr4C7gnD7BDzgJFY7VNK3vnJmPArqu6y04AUoIOL5Pe+XAIcCrWWxD9BGLx4hbFpZvaAu0+2N7nXbU1OjJ1DUa9LQ0O99TKUoKPP1NcbkxFUim+q/HYyVjWU+FrQSd4NqT7fRyOZJMJnmtYTO31a2n6kMfyqgNO+jM6jW2b8tm10adZ//8Byb6fBi2zaFfOI94JERPV+eOxxVF4bQzTkYrKqE4laJ16fsF7K0QQoh8yiQAOh5nqtqePI4TXIBTTHSv6bA1TZuLM/LzD5z6QjWapk1If5XhrAcqBX6nadr+mqZ9Cbg8vS/pYOku4GZN0z6hadoC4DGcUZ/H04fJRhuij95sbf5AcIA9B8dOB1Iu0xxgTzEU4XR2q6hloe591mrOKW4PKXv3GkB92UYSxc7ue0ApctYHuBQFOzXckr2519TUiG3bBAMBSjO8wVBU6SxdDMZiJJOFnfZYKLZt0/TKywDEa2rwFAXoatuOae78Hpg7ZxbrTOfGy8p//C3v/RRCCFEYmQRA7cBB/Tx2EM5oCjjT4AaadH8WzhS0TwHbdvm6Iz1Ccwqg4aSlvh64Qtf1P/Rp4zrgd8D9wOs4S1NO0XU9CZCNNsTOvA0NfH3aTA5Ud1/MnhG/szjdLfPlsyra3g5AXAEKnBJZ9XhJYe99BChlgJXdAEgNfrD8z4rvKQX3yLJlSwMlbjdTamuxMgxeiquqAZjs89PQsDmb3RuWqL6WrhdfyOoar/6sW6czI/2erz3uBMxkjHCfAs69FEXBPdspkuvf0oApN2GEEGJMyGQN0J+BH2uaZgB/A1pw1gB9Gvgh8BtN0ypwRlne2ltDuq7/FPjpAPu8Cxy5l8dNnKKmV+WyDfEBb0cHHxlXw6ostaekAyDVlgAom+JdnXiBZIHTX4NTA8iwUrvdge/LTiXBMlDcHuwsrQNyB3wkLQuvqmIl4riKi7PSbq40NTbwmwWHgKpipAsOD5WrpBSAKYEgG+s3MHv2nGx2MSNut0rXM08TXrkCo62FcWefm9PjvfD0PzkhXUR23BFHkIiFiYV79rjvjKM/RPLhf1Lt9rDihf+y8KRTc9o3IYQQhZfJCNA1wKPAL4AGnHTRDel//xn4PnAacHB6X7GPsRPOXXzb7Rlgz8GJjpvE5xa/zY8aG7LSnnAYIecC2nRnaaRuGBS3h6gR2+s+tmU50+CyuA7IG/Bx7dpVfG/9Gtxl5VlrN1c6t2zBo6q4AFvJbEG+q7gYC5tit5vG9euy28EhsC2LVChEQ8NGvnHx1/j9i88D0Pnsf4isXJ6749o22998A1VRSJaV4a+pJtTZ3m9hWG8wwLZ0HaD1z/0nZ/0SQggxcmRSCDUFXKBp2o3ACUA10Ai8ruv6RgBN054BJu+S0EDsI2zDmZpje7KzsN7nL8a0baKR0ZGmeLQIp1JEY1HipYWvf6O4PMSMPd+B78tKxlCD5Vk7rtfvY2N6zZqlKBQ+FNy7eDpxQdLrzXjaouJyEVNdFFkWofq6gZ+QIz3vvMX23z/AE9u38fImpx8By+Rj4yey7jf3sPDOe7Kada3Xli0NbGlpZrmicvTpH8NKJYn27H00zTVtMmxswt3YRCqVwu3OZHKEEEKI0SLjv/K6rtexc9rovo917mm72EcY6WxtWSpa6fU7C9VjsSi2baFkeOdb7GxdcTH3rVrOuWecXOiuYLvdxKMDr8GxUgYu2ySzwendef0fvEdjsRjFI3wKnNXZAW4vdtHwgtb2iRP5yf/+Q2DK3upW51bHf5+DVIpYIsbMGftx9plfZc2Kt+hpq6ckDm89eD9HfuVrWT/uG2+8xpLuLtQ5c/nsWZ/FSISIRfd+c2XcQfNZsWItb7e3MXXZ+yxadFjW+yWEEGLkGFQApGlaPfApXdeXaZq2kb0XQrV1Xd9r9jcxuqnpOhr4slOB2+f1838zZhNwqYTbOyiprs5Ku2NdVzrlb3lx4UeATLeb5F4ywPWyU0kwU6D6IAuL5d0eN0dVVTPZ5ye0YR3FCw8Zdpu55I5EoMyLp6RkWO1UT5tOXSSCf9PG9NSv/N5USG7fRnLzJkzbZolh8a1v/piiohJmz5zPusd+waJ4iO4XXyD6uS8QDGb3/fnmm68BcNRRx+ByqURjEZLxvU+/VCrLeaWqlJfXrmLiKy9JACSEEPu4wX4qvswH2d1eHuDrlSz3UYwwanohu+LNTh0gt9fH4RUVHFpeSaSjLSttCujsTAdAJYUOgBQs1+ACICuVwjYNspW3QVEUjquu4exJtcQ3bcxOozliGAbF6VTdgYqKYbU1sbwCj9tNPB5n27at2ejekLSlU1Av6+7ilI9/kaKiDwK6Gad/mZRtM9Pv5/Ff35XV4xpGko1Ll1Dm9nDkkUejKDY93R2Deu5B+2kAvPrqS1ntkxBCiJFnUCNAuq5/uc/PX8pZb8So4LZscAFZqgOkKApxy8anQqxLZk9my8e6ujh1/oKsFxcdKsXtJoWFsZcU2DvYNnYyDr4S9j7QPHjJ9K+f7Bl4DVIhtbQ0My49rbSofHgBkGrbnDV9JmoszsaN9Uyblt+pcK2vvkwAWGXDGQs/vNNjrpIKttdM5c1lb/KqvoYzL/pG1qYmLlu2lI9VVHHCnP2o2rQJa75GPBIe1HPnz5vDOJ+fivYOtmxpYEoBpw8KIYTIrYzmRWiaVqJp2uT0z15N067QNO1OTdM+PNBzxeh3T3srFy1bTGRC9i4Q4ukF3/FQaIA9xWBV2jZTA0GKg9kJVDPVWwMoYQyuDo9lxFGzWBDVSA8nGSM8ycb27dtYGupiRTyGa5hT4AA+VV7JJydOYsu6tVno3eAZra0EYjFM22by0aeg7qFeWPFpF/CW6mZ7Tzf//Gf26k0vXvwu89NpwANTp5EyEiRi0UE9twi4+8CFXDF7Lm+88N+s9UkIIcTIM+QASNO0w4HNwP+lN90J3AycB7ygadonstc9MRJ1RsJ0Ggbu4PAv0nr1jg0kQpnVPhE7s02TQDqZREl5YafAqW4vKaxBTYEDsAwDshkAuZzzkIoO7kK4ULZv38Y/tm3lOZ8H1zCTIChuN9H0yF/Xhg3Z6N6g1b/wPwDWR8IcsPC4Pe6jKAonf/RTADz66J/6TVE9VHXvL6bG58dWFIq1uRiJGInBFsANBgi7XaiKwtb33slKf4QQQoxMmYwA3QisBe7VNC2AE/jco+t6JfA74AdZ7J8YgSLpO+meLK0BAkimL9YSI3ya0miRCn8w7ae0LHuBaiYUt4d4Kok9yEK3TiIEAyVLC4FS6TpI1iBHAgqld63OxJoazERy2O0Zfuf/p7E9v2uAXtpYx58bG2iorMbn6T+QW3TAMRwzfiJaLM7SpUuGfVzTNKEhXUtswkRcgQCRnu5Bv+8AUuMqAVAbm5z2hBBC7JMyCYA+BNyQrvnzUSAA/DH92KPAAVnqmxiBUobBF8dP5PzaafjU7NXKSKZHK0b6NKXRoqelGXBqAZWVZCdbX6ZUj5docvDBh1MQNZG1tUu9hWCtwY4EFEh7UxNlbg/jK6uws3Dx7S0tA8ATCmFnIaPeYP3n7Tf45/atVBzx0b3u5+9q5bIp0/hC7VSeeeqfwz5uXd0GZnmd2mTlCxaAbRILD+2GSnDmNABm+Xzo+pph90kIIcTIlEkAZPHBjKXTgS6gd75AKTCyb7OKYYl2d/HRcTWcMWEibm/2LqxT6XUCEgBlR6h5OwAR08TnKnD5T7eHiLH3NMS7shIxlCwlQbC8HueHxMiuy1y+bSv3LVzEoS3ZyYRYNm4cAONUFx0dg8uENlyNjVvYuLEel8vFvNkH73Vfc/xUDK+fIrebza+/RjI5vFGvZcveZ//0+p/i/fbHSiVJDJD+ejeTagCYGSxi8VtvDKs/QgghRq5MAqD3gK9qmnYkcA7wlK7rtqZpNcD30o+LfVQkfSGVsqyspcEGeM5TwucWv83GqsqstTmWhVtbAYgrYKfTlhfKYGsA9WWlkihWdvrdVOTj+2tWsnbKlKy0lyuu9LRFT5YyovnLywGo9Qeor99jzeqsW/LkExxdWcXRCw5GVQYolKyo2NP3B2C+18vbb785rGOvX/wu431+LCA4Zy4pIzFg/Z/dFBcRc7twqypb33t3WP0RQggxcmUSAF2BM/XtdSAF/CS9fSUwB7gmO10TI1Gsq8v5bllYZC+9squoBNO26ZE1QFkRiUXZEovSXdgM2EBvADS06WeWYYCZyso0OLskwIZImFbDGHZbuWLbNoGkEyQOtwZQL1exs/ar0utlk56fTHD20vf55sw5fGzyNFKpgdfeGLVO7Z1F5ZW8OMzMa4tXreDO+vXEDlmEpyhIMhEnOdRRP0XBqHZuwihNjaRShb15IIQQIjeGHADpuv4+MBs4Epip6/r69EMXAwfour44i/0TI0ysuwuABDammZ3MTQD+gLNYuqdH0mBnw/aiIr6zajkv+TLKdJ81ituDqTDoFNi9bDOFnUpkJRGCL+BM1RzJwXVPTw9VLmeqXmmWRkEVj4cXvF4ueP896pu2ZKXNvTFNk4qYM+JSMnfBoJ6TmjgDS3VR4/Ox4c03Ms4G19bWSt2WBl7v7GDO+V9GURRi4RCZ1JLyHTyfu7ds5qmmLWzYsC6j/gghhBjZMro60nW9R9f1t3Vdj/TZ9ndd17dnr2tiJEqkA5QkCpaVvYXV07H5vxmzmNbckrU2x7KudEHZ8pLsTKfKlOr2YtgWyeTQExBYyeysAyrx+zhj/ERmt7UOu61c2b59GzU+Z8qYr7g0a+0WjRtH2EzlZQrc+mXvMyFdyLVy3qGDe5Lbi1U7C4DZisKKFcsyOnZvFrk5c+Y6RVVtk1g0s4BXmVhDz4RxhFIpli59P6M2hBBCjGyFvT0sRp3eNNWGkq0l6o5Kl8KxVeMYFxvZmbpGi670VMXy4pFQBNUa8hQ4AMtIoljDz4YW8Lk5f8o0FsXiec2GNhTNDZsodqezKno8WWt3arWTCCEfAVDdqy8D0K6AoQ5+fWDvNLhaf4AXX3w+o2OvWfwun5gwkePnzQfAMg2Sw8j6N2fmdACWLRt+em4hhBAjjwRAYkh668sYanbfOorfmQLnLvCC/X3FvLo6bp2/gJlKgafAebzEUgmsIdRi6WUbSbCMYa8DcqWDQBWwh5lpLFc6N24EnBSa2YzRagNB/l/tVD6suHbU78qVkK4DkKgaRyI++PVWyWnzWfGh47lz4wZeeeWljI4dWb2a82qncUwkgqIomEaSZCLzAGh+dRWfnjgZO/07CSGE2LdIACSGpLmqiq8vW8ILvuxlgAMg6CzY9mRxWt1YFozHmRoIUuQfIBNXjqluL5Eh1ADqy0oZ2Knk8AOgkgBWOqqwYkPMCpYnzZ0dPLV9G00lRdhZXHgfdKl8fMIkjqsax4YNG7LW7p5409Mug9NmDy2I8/qZddCxuFwu6us30NTUOKTjxuNxStJrE4v32x9VVZwMcMMIgKahcu7kKSxQVZqbmzNuRwghxMgkAZAYknA8ToeRxAj0X+E9E2qxU7Qxy2HVmOVLF9L0l2b3dRoq2+MZUhHUXVmJKIoyvKDYGwwQTZ8Pa6hpkfOkrqOdhxo30zZ9elbb7c0EV+3zsX7lqqy23VdHRzuT0lP4SmfOH/LzFXwcdNAhuBSFV199aUjPXbNmFfOKnLVu4w5ehKoqxKJh7AwTKgC4aycAoBWXsGypTIMTQoh9jQRAYkgiEWcKnM+f3bUlrpJyAAKqOmLXaYwWtm3T++oUlRU2CYLpdpPIIAFCr2ysA/IFfcTSAZAZHZkB0Pbt2wCoKcleAgQA1evdUZl626rcBUBr167m2rWr+H13J2rNtCE/PxmO8JXKau47aBFvvvzikJ678t13mBJw3vHBuRoKdjoDXObsqgoMoMTtof7dt4fVlhBCiJFHAiAxJOVNTfy/2qlMzXK77hKn9onf5SLa053l1scWOxHHm542VlKR3QvqIVEULLd7yCmw+7KMxLDXAfmDASLptWXJ0Mh8b9ntbZS63YwrKcl62wmvF4BQ/cast91r7do1tCWTGNNmkDAz+Fhxe6k0LYrdblLr1xGNDn69UtdyJ3NcNBjEVVKSToAwzEBXVQkXO+nTo+tlHZAQQuxrJAASQ1Id6ubjEyZRk+V21eAHF+rdLSM3XfFoEGtvByBumlSWFy4AUj2+dArszC9G7VQK2xhePSBfwE84va4m2tGecTu5kkql+FJZBfcvPJSqHGRBdKenwdGeu99dTxdanTNbI5nIYA2ToqDOcWoHHVJSxttvvzWop9m2TaDFWaPjnT0HANM0hrX+p5drsjMNrqwnTGyErh0TQgiRGQmAxJCohpPdSfEFstqu4nLxzQ3r+fzit4mSvQKrY1Fno7OIPJRKUeLPXkrloVI9XgysYY0AAViJ4dUDUl0qf2lr4ftrVpKYNHlYfcmF1pZmxqXr55RWZKcIal+l46oBKEkaObuQr968ic9MnMysipqM64MlaucBcEhZOa+/MrhpcI2NW5judt7jk44+FlVVMI0EyUQioz705Z8+BQCtqJjVq1cOuz0hhBAjhwRAYkjUVHo9RpbXAAEYXj8p26anJ5z1tseS7u4uGqJR2iwTZRgLwYdL9XhJWAZGanippy0jgWINLzNaq1thQyS8YyrcSNJcX4dXVbFsG9WX/ax9xVVOAFTl9eakHlA0GmGRy8M5k6cw3pf5mrNE+URMn58it5vm994d1FrAZcve56o1K3jISFB6wIGoqkIyESdlZCHdeU0VFjalbjerF787/PaEEEKMGBIAiSFxpy+o1SxngQPwB52Lp9AIXacxWrT5vHx39XL+mopDVsvVDo3q8RFOZJ4BrpdlJMAc3jqgYJHzfu1JF/IdSTo31gMQAiwj+wGau7yCO7o7uHL1Curqsp8Ke92qlUzyO/kb/ZNnZ96QouLWnGlwmqKi62sGfMqyZe9j2jaVBy1E9flQFIVYJEuvscfDy7Xj+NL777JkTe4SSAghhMg/CYDEkPjSd2XVouyvLTm+pJT/mzELc1N91tseS9rTaz2qCrj+BwCPl3By+MU3bdPENuLDWgc0vbiIj42fgLlm9bD7k23hdN2bmMed1RpAvRSXi+rqcQDU12c/AGpYshhVUYgCSdfwEtlb050U2oeVV/DqILLBLVv2PgAHHXSws8G2SESzN4I8btYMLGD58qWSnVIIIfYhEgCJIfGn78Ir6bo92TTH6+HYqnFYkgRhWNrb24DCB0Cmx0NiGAkQdmorHkUdxtqwWf4AX5wyHf+G9VnpTzYZbc7rZQayu66ur2npaXAbcvD7hzasAyBSXEwiObyU5dGqKfRUVvHE9q28/tore923Y/s2LvH6Ob92GgfNPxAA20xmZf1Pr+lTa3G73bS3t9PYuCVr7QohhCgsd6E7IEYPyzQJulwAKEVlWZ9cZbjdYCZJRWQN0HBMWbOG2+YvoMNVuAQIKAqm2008SwGQZSTBNEDxZDSrzwz4IGphx7OfZW241B6nZo2rOHc1m7RAgCtmzaV9e3PW21ZaWsDjxTVhMiljeGvOUpZK+QWX8cy5p6C0NtPe3kZVOnjb1dqn/sUkfwDPOC9V4yegKAqpVHYywPXyulx8e7/5TLBg5XvvMGVKtgsACCGEKAQZARKDFo1FuWjZYr6zahmukuxnq0p5nOkzZmT406bGMl80wpRAkJLA8KYjDYfq8ZG0LRLJ4a8BAmcdkG0aqBmuA7L8Ti0cNYujA9nyfqibp5u34R03LmfHqAkWcVhFJdNsspoJzjAMKpJOwoHg9LlZadPnLmH//Q/Atm1e28soUCJd/6e9uhpFUVBVhZSRwMjma6yqzAkEqQ0E2L74vey1K4QQoqAkABKDFolE6DQMtiYNVG/2L66tdGptW2puDIsnvZA+UJa7EYWBqF4fBmbWRoCwbaxEJPNECEHn/epKp3EfKWzb5n8Nm/jDls2UTZ2Ws+OU1YwHYFogyMYsrgPaWF/H+HTmuuJp87LSZjSa5Pgjj+aEqnE0vPC/Pe5jhsPUpG+UVBxxFICTAS4ew8xypr9YuVNHyWrYnNV2hRBCFI4EQGLQejNoFRcXk5PsyoH0BXt85N2lH00CtvPiFKcv3ApB9fqJpZJZvRi1EnEUO7P2lBInC5zHHN4alWzr6ekhkr6Qry7KXcDqKi4mZdsE3W4aVq7IWrtr9TVcuHQxv7NNUkXZGRWORZIcVVzGxTNmsaCjc49T2rb8+yk8isKmaIQFJ54EgKJALBLKSh/68k+rBWBcMkkslp0RTSGEEIUlAZAYtPCmjZxfO42PjhuPmYMISAk6i/ZH2l360cS2LIoU5791WWX2E1UMlurxEkpkdy2XZSQglVk6bHeFEwy6ASuZhRoxWbJtYz2zi4qZUlmFN4fHUVSVUDqLXte6tVlrV9fXYgGVc+eRHOb6n16plMX4j36cqGky0edj1RP/2Olx27IIvfISAGuDQcrKygGwzBSJHAQowZnOyNysYBErl76f9faFEELk34hKgqBp2jXAibquH99n20LgDuBQoB24U9f1W/s8rgLXA18FKoDXgEt0Xd+QzTYEGE1NnDFhInWpFIkcZIR1lTgX7B5rZN2lH00irS2oioJl21RVFm4EyPL4iIazm83PTqWcdNieALY5tDegt7wE07ZxKQpWNILqzWW4MXidK5fz0/0OYJuZwkzkNjBLBQIQjZHaujVrba5d66QVnz1LI5HI3mhfNKlSX17GAT1hrBefx/r0Z1A9zmsWevMN/PE44VSKmhNP3PEc2zSymgFuh9JiItgUqSqb336Dw448OvvHEEIIkVcjZgRI07TLgR/vsq0K+C+wDid4uR64QdO0L/fZ7Vrg68CFwJE4OaKe0TTNm602hCOZzlaVVHPztknUzuWrS9/j+2tWYuVkjt2+rzVdVLM7laI44CtYP0yvh3iWEiDs1G48gmoP/b0RKC3ip+vXclvLNtQcTjUbqki6BlDU48HO8fS8QJUzRc2fpWKwtm1zeFc335g+i1nF5VhDDEr3JhZJMvlTZ9ORTFKSSrH9r4/teCw6YQLPtTbz922NHH/iKYCz/ieVSmJkMQPcDopCd3oNWXTduuy3L4QQIu8KHgBpmjZZ07RngJ8A+i4Pfw1IABfrur5G1/UHgduBq9LP9QLfAa7Xdf3fuq4vA84BJgOfzmIbAkiFnSlNhjs36ZUDZVWEUimSqRQ9Pdmfyz8WdLa1sikaoc22oEDrXRS3FwObeCL7AZBlJMAynAUfQxAoDbIi1M3S5u0o7pEz8J1qdUbJzDxk7Bs3uZaEaRKNRolkIdV8Y+MWDiku4bjqcVQUV2Whhx+IRgwOOvQonoo776HwC8+z7b7fYNs2Tzz3DPdv3sjWSZOZMGEiAIqiYBpJksncrB9UJo2nMRZjU1OjFEQVQoh9QMEDIOAQoBNYALy9y2PHAq/out53bsULgKZpWg2wEChJbwNA1/UuYAnw4Sy2IQArfdGU8uQmAHJ7PPgDQQC6ujpycox93VbgytUreNIDGRXMyQKX10cSi1iOAiDbSAw5Hba/2HlfJRIJ4vGRk2XQHXZGY9Si3E9XrJ46hW/Xr+MX9etZl4WRjLqlSyjzeDBtG7N8QhZ6+AHTtIj0JFhw1tk83NgAQGzTRnp6evjLXx4B4Nxzv7Bjf1VViEfD2DkaOS49YhFX6qt4fPNGtmxpyMkxhBBC5E/BAyBd15/Udf3zuq7X7+HhWmDX8tu9E9inph+nn316K9Zlow0BO4pIpjy5m1r1/2qnc9mM2XRmcZ3CWNLcvB2A8dUVBeuD6gsQN5MYqRzcjbfBiodRlKEFd26fhwUVlZwxfiKt6foxI0Ewve4nUFGe82MpqsqsiZMBWLduzbDba16xHIAejwfDzjA9+V70dMf59KfO5m0FfrBmJf+LhPnRj35AZ2cHM2bM5CMfOWnHvopi5yQDXC+P18PMac7HwfLlS3N2HCGEEPkxcuaC7FkQZ/paX72TvP3px+lnn96crNloIyNud/bjS5dL3el7PvUWkbR9AVQ1+xc8AB8qKaZUVWlr3paT8zdYhTzPw9Ha2gzA+MrynL1GA3H5/IQSPYOapdab0c35PrigxjISuC0DWx3KSKTCR8ZP4KjiUqKrV+I+uvAL2W3Loiz9+5dVV+f09epte/aECby1djXr9NXD/v+VTI+EpKqqMZJm1vsfjxl43F5uuOFGLrroq9zz0vMAuN1urr32RwT6rnGzUxiJRE7P4ewZU6mr38i6ZUtwn/mpfvcbrX87Rhs5z0KI4RjpAVAM2HW4oXeyfCT9OOl9YrvsE8liG0OmqgoVFUWZPn1ApaWBnLXdH1fKSU+tFhcTCOQmP0RMUSkFjFBXTs/fYBXiPA/HgoYGDpu/ANvtwZ+j12ggalGQWHcbbo9r0M9xDeVi3E6h2gae4NDeH0mv8+fODodGxHsrtKURt6KQsiwmTZxIwD3485WpQysrOXj+AsIbNw/7HPhD3RAoomTWHFRVwR/I7tRY2wbLtDnttJO5//77+fnPfw7A1VdfzUc+8pGd9o30dKMoZk7f88dWVXHuwkNZv37DoM7daPvbMVrJeRZCZGKkB0BbgEm7bOv9dxPg6bOtbpd9eue5ZKONIbMsm1Ao+2sgXC6V0tIAoVAM08xvprR/mCnWr1rGqYccS0ksNyl7bdUFtknPthY6OzOOP4etkOd5OIriCSYGgnQE/MRz9BrtnYKCQjjSQ8oYOAmDoii43CpmyhrC4nITJdyD6S7CsgY/FS6ZTn0dbeso6Hur1+Yt23mwYROlPh9ftxViOXy9VFXB5/NQU1GFOxCkw0jS0tKFJ8P1fB0dHUxSnY+P8rkH0BLNTe2u1pYwwRIvhx12NH/5ywejdn1fP1VVSETDhENhjBzWeKqcNBF/XROTkiaNjc0U9ZNNcLT+7RhtcnWeS0sDMqokxBgw0gOgV4Cva5rm0nW992rqo4Cu63qLpmndQAg4nnTwomlaOU5ihbuy2EZGUqncffiZppXT9vdka3c3W2Ix3CWVQ7rwHIqE2wtGjGR3V95/vz0pxHkejqBlgwpl1RU5e432RvX6SNo2sXiYwcUzzk62bQ9yf4eZiKGmkliKe9C5HlJBH0RN7HB4RLymTZ2dPNOynelTpnBhMj/Ff2sm19K2dCmVHi/rl7zP3EWHZtTOyqVLiVsmpm1D9VSs1txkX+vpjpNMmHstvOx2qyTjcRLxHKTA7qNoxlSMV96hyutl5SuvsOikU/e6/2j72zFayXkWQmRipN/meAAoBX6nadr+mqZ9Cbgc+BmArusJnCDlZk3TPqFp2gLgMZxRn8ez2IYAuru7APAFc5exKuV1pjNYWUjTO9YkYlFKXM40qqqaYS1fy5jL5yeBSSyR2xEWMxnHTg0tG5xd4kxbUnN8oTxYjY1O3pWJ1ePydkzV46E1nR69acm7Gbej163nO6uW88eqCowc3keLRpIkE6m9ru1RVZVYODu1jfbK7WZb+seWd3ZNWCqEEGI0GdEBkK7rLcApgIaTlvp64Apd1//QZ7frgN8B9wOvAyngFF3Xk9lqQ4CVTHK6P8CnJk7C7wsO/IRMj5MOruxI9qcP7uua6+tRFYWUbVNWUZhin6ovQE8ygmnluAaRbaezwQ3hOaVOAOTN4TSpoYisXc3MYBFTK7NbQ2cgYY8TsEQ2rM+4DV13ssjN1vYnkUgNsHfm4jGDWDS51ylJtmUSj+YhAALCFaUAqA2b83I8IYQQuTGipsDpuv6lPWx7FzhyL88xcYqaXrWXfYbdxlgXa2/jlKpxJC2LdcHSnB1HLamA1s24Rshd+tGkZcN6SoGQZaJYZmGqAHn9dMdb83IoMx7DVZwExTOoaXCuyjJgG17bxjKSqJ7CJInoNXfTZm7a/0BWBvK7iNtVXg6dXXjb2zNuY+1aJwCaM1sjGc9dAATQ1RGjorr/pAOWmSSZyM0UvF35Z0+H91YywTCwDAM1RzXRhBBC5NaIHgESI0f3NqcuTyhl4PbmbgSoZ/ZCLly6mJ+vXysV14eoq2ETADG3G9vM7UVpf0yfj2gsP9MXnaKocVR1cH/GfNVl3LR+Lb+NR1HU3Gdc2xvbNClNT0UrqcrfFDiAqklO6bPxpkXKGPrao1gsysXBYn48bz7TiitIJnM72hcJJ/pNqKEoCmYqSTJPxW0n7DeHnpRBQHWx+a038nJMIYQQ2ScBkBiUcItTXyZs2eRybX2weiLdKYNYIrFjzZEYnPbOTjZFIySK/APvnAOKx0tSgWg8T+u3bBsz1oPK4BZAl1aXs6S7i6Xbt6G4ChsAGa0tuBSFuGlSXV2d12NPnjadTbEob3a0U79m1ZCfv3bZUmYEi5hXXIKvLPfBWzScJBFL7XEanKoqpJIJkon8jBi7PR7eSSX5c2MDKzZvzMsxhRBCZJ8EQGJQoq1tAMSGtOhi6NweD8Ul5QA0Nzfn9Fj7mvd6Qly5egXt2rSCHN/lC5LAJBLPz3oMACsRh1RiR0HVvSkud6Zutre3YWQw8pFNnXUbANgaj1FTnLsppXvidrl4NB7jN5vrWbF+3ZCf3/iukwAgpCgkdiuxln2plEWoO77HRAiqqhCPhrH2kiUu29qmT+af27fy+oqMqyQIIYQoMAmAxKAkujoAiOf4zrlipvjSlGlcNmM2rdu35vRY+5qmJierWO24AmWA8wfpSUYx8zj9zjKSWIkoyl6yhPXylwRZUF7Bx2om0LLs/Tz0rn/t63Tnu2XhG+QUvmzav3YKACtWDP08xDY4wVusspJEPD+BZKgrhmXuaejZJhoO5aUPveZrcwB495238xp4CSGEyB4JgMSgpLqdiwzDnduF47bq4qhAgGOqqulMpwkWg9PY2AjA5KrCBED4/HREu/J+WDMWRrUGvhC3sPjoxMmcP2UaXe8vyUPP+hdLv7ej3sIkYtivdgoq0LpiBfYQL+KDnc7NEP/MOTnNANdXJLzndNi2mb/1P71mTptCZTDAfEWl/tWX8npsIYQQ2TGissCJkctK19lIenM85UVRiKgqZbZFz1YZARqs7u4ufj59FmEzRY3Pw6Crg2aNQsrnI9qZv+lvvaxEzKkJ5Cnaa/HXlGWS8DsBR7y1JV/d2yO7zZlSahX1n90sl+ZNnsKvFxxChddL+7q1VM/bf1DPC/eEqE2PAk9YdBgtOc4A1yseM4iEE1QFi7HSKdYVBcyUQSLPAZDb7eb8ORpHefy0/fc5Zh/3kbweXwghxPDJCJAYlKWVlXxn1TI2l+W+ZknU7QRZhb5IHU2aNqynwutlSiCIvwBJEFSfnwQW4Wh+pyMB2JaFFQ2hKgMHfWaxE3CYnZ257tZeveP384ctm1ArKwpy/LKiIlrTUxUbXnlp0M9b/+YbBF1uEpZF8ZS5ew04s62zPUrfxJCqqmIk4yQLkDLfmDQegKLt27FThcm4KIQQInMSAIlBaYuE2RKLoZTm/oIt4U9fpEoWuEHblq7LErZtIMdFSPfAHSgiahnEEnnKALcLMx6FVHLAZAhqdTkArnBh+tlrcVszTzdvpzLPRVD76vI5gXJs9epBP6e+bj3vdnbQ6PMSieX3wj/Sk8BIpHa8xk4ChEhe15z1Gn/gfoQMAx8QSa/nEkIIMXpIACQGpTcltT9YkvNjWcVlzg89hb1IHU3a6+sASPg82AXIcKb6i+iIdRWsdpNlJLHi4T1mCuvLM8FJ2+w3jILWmdq0aRMAk8rKC9aH0ilOIoTynh6sQRYSfXtjPT+vW8fWRYeRyHMAFI0kiYaTuN29H1s20Z6uvPah1/SptSyPONM9G174b0H6IIQQInMSAIkBWYbBYd0hzpwwiYA/92sWlMoJAHgTCVIyvWRQ4ulCtUpZCflf/wMpv5/uSFfej9uXGetBMZOwlxioaPpEADyAFYnkp2O7aFn8LpplU+XxUltWmClwAPvN1WhJxPEoCi3vvjPg/rZt8/77iwFYcNDCvGWA++D40NEe2fH2ts0kiVg0r33opaoqneXOzaDk6lVStFkIIUYZCYDEgMyuLg5zuTlrUi3+ktxfsLmqnACozO1m69amnB9vX6B2dwMQrMn/lCrV6yehKoRj3Xk/dl9mIoadjKLuJa10+aTxdBlJABIFWmPW9r/nuHzWHE6bMpWAL/d1dPpTUVxCXXq0sPHVlwbcv3Gdjhrqxu32oM2eTzxPCRD66gkldmSDSxmJvCdA6Kts/lySlkUwaZDcsrlg/RBCCDF0EgCJARldzoLxjmSSQHHuA6BI7RyuaWnlR/pqGhrkwmIgsViMMtNZ9zNuyoS8H98VKCJqG0QKkABhJzaYke69psQurS7j7s0b+e6q5YQKlII6lc5umCouLsjx+0qVlwPg3rRpwHTYm//9FL868GC+t2AhtuXCTOW/Bk40nCASTuL1ujAS8bynwO7rgAP2Z0l3J5Zt07K0sHWlhBBCDI0EQGJAkebtAHQaSfzBspwfz/Z48Y+biA1skTurA9q0qZ7GWIymRJzyidV5P74rUEx7tBPLLnxRSDMedUaBXHv+02Zh01FaQkMsSkNTY557B1YigS899c5bWaB6TX1MmjmLJ7Y1cVfTlgEnTlob1gPgmTSZcCj/mdcgPQ2uLYKiqETD3QUtRFpcVMSbqs0ly9/n7WThAjEhhBBDJwGQGFCoyZmG1m1ZeH35SbFcOW4SAA0NDXk53mi2YcN67t1cz8NeFW9l7pNU7EzBCAToCnfk+bh7Ztu2Mwpk73l6VspMMWPWTADq6tbns2sAJJqaUIAuI0nNuJq8H39XB82czT9am3mvsYHVq1f1u58R6mZcOt10zVFHE4vlP9FGr57uOEYiQSxc4BFHYNr8eXQYSZ79z78HzEAohBBi5JAASAwo3tIMQER15e2YR2LznVlziW7amLdjjlarVq0AYL+5s7GSg8vmlS2uQJC4YhMqcAKEvsx4FDsR2WNGOMNKMW/aFM4YPxHPe+/lvW+Jzc77eWM0WtAECL28Hg+Hz50HwIsv9p/NbNOz/8GlKNRHIyz48EeJFzAAiscM4tEoiUThR10OP+QgABYvWUJH87YC90YIIcRgSQAkBmS0tQIQ8eZvwfaUZIwPVVSiSDHUAa1ZvgwFWLCfhmXkNwByB0sJpWJE4z15Pe7e2JaFGU6PAu0SAyVNg2kTxnP+lGnM7cp/2u7uNU7NnfXhHqaPgBEggGP3m8/0QJBxb71F92uv7nGfrrfeAGBraQkuxUM8zymw+woEPUR6wsQLlMWvr5rqKhbMmM73Zs1l2/XXYiWThe6SEEKIQZAASAwsnWEs7g/m7ZBWOhOcLxYjGi38hc5IFY/HOSgc5g8HH8bczvxnYbOLimnuac37cQeSikewE7vXBbJtm+r5GinLwq8oJNry2/doeh1Nl9dDsT8/00kH8qE5GgsrKjkkEGTrv/6xWzKExNYmyrq7sWybiiOPJhxKFDTtcyDoJRzqJh6NowxQ9ykfDjx4AZP8AdyGQfi9gdOJCyGEKDwJgMSA3pw+nStWLaezNH+Ltq0qp17LRJ8fXZdK6/1Zu3Y1U3x+/C4XZeW5r9HUl+rxEXe76O5py+txB8W2SYW7UM3kbmszqqZNZGt6quCW997Na7fenTWL2+rW4a4el9fj7k3A58OeOJGomcLV0UHPW2/u9Pi2F58H4L2uTo4+9XTCPfkdZdyV36/S3dFONGqMiHU3hy9ayP9anWnCLc8+U+DeCCGEGAwJgMSAmtpa2RyL4i/P35SdZDrYmuj3s3Zt/4uzx7oVy5cxPegEPt7K3Gfo68tdXEaPmRhR63/6MuMxrFiIXcsCJawkofToy/blS/Pap2X1dbzd2cH0CRPzetyBnLzocB7f5iQ7af7LI5g9H0xp/G8kzJ3161lbUUbNuInEYoWb5qWqCh6vRbg7RDxqYKasggdBVRXlbKssxbAsrKYmYhvrC9ofIYQQA5MASAyoOb24t6gsf0U2k6XOsSb6/KxNr5sQu1v1zpuUeTzYgLs0z1OqisvYHm7GHgHpr/uT6ulCMaI7TYVLmgbuyU6WweSWLXntz5o1TjA/e4Ss/+mlTa6lIRikMRbDDodpvP1WwkvfJx6P88ijf+a1jnaO+vTZJBMpYtHCJUAIFHmxzAThUA/JZIp4zBgR0+COPOZI3upsB6Dj+f6TSQghhBgZJAASexVZtZKjIzEOL6+gqCSPAVBxBTbgd7loWidT4PYkmUzSsXYtAGplBXY/qZ9zQfX6iXlctHePvPU/fVkpg1S4ExVzR0KEZCpJzaKDAaiIRLDSRWRzbfP99/Ihy6bE7Wb2hEl5OeZQfPkjJ3NbnU5PKkWiYTNbf30Xv7//N3R0tDNx4iROP/0MekKJghRA7RUs8hALd2Gkkw1EI0ks09ot2UW+HXzg/rwRDQPQ9cabJNpHRlp4IYQQeyYBkNir6No1HBUsYkFpOaUVeVy34HKRKColZpp0NzUSjxem8OJI9v77i5nsdgNQOq0WO5W/O/Oekgo6U1F6wp15O2amUpEe7FgIV3qkIJFKst9JJxC3TPyKQv37S3LeBzMcJv7Wm3yudipzJk2mOBDI+TGHav6UqcxfeDBXrV7OG6Eu2hSFpx5+CIDLL78Ct9tNT3dh/x8GAyrdHR8EF4l4ikQ8tceU5/nkcrmYesgC1vaEUCyL7c/8p6D9EUIIsXcSAIm9ijRsBqApHqO0PH8jQACbT7uA72zZxPqeEMvzvFZjNHj99VfQip3Cp74J+UtQgaJglpSxrWsrNoXLBjZoto0R6tgxFS6RSuIO+vi718sX33+XV1cszXkXomvXoAANsSgzp83I+fEydfkZZzJh1mx+uW4tl7z1Go3RKJ/97Oc59dTTMBIm0UjhEiB4fW5UxaCnq2vHNtu2iYST2BYFHwU6+YQP8/fWZu7bvJFVJflNSCKEEGJoJAASe5XY6iyM7nS7cbnceT22WVTKvAMWAfDOO2/l9dgjnWVZ/Pe/z7Is1E184nj8k6rzdmxPcTlh1aKta3vejjlclpEkFWpHtQ0MK0UilWThKadg2DZPP/2vnKd1jqxcDsDKUDcHTZma02MNh9e0+O211/P9q6/hM5/5LDfffDtXX30tLpdKLGYQjRRu/U9xiY9kIkykJ7zT9njMIB4zUHfNdpFnJcVFTFm0gP+2NnP7Xb8q+KiUEEKI/kkAJPplJRKQvtsaLcpvhrFes/dbCEgAtKslS95j27atvBoNc9DVV+Q1AYJaXkVTTzOJZCxvx8yGVDSMGe7EpVj0JMOceurpeDwe6jasZ+WypTk7rp1K0bN4MQCLu7s4cASPAAGYbR2cd+anuO66GzjllNNQFAVFUehqjxa0/k9RsYuutubd+mDbNpGeRHotUGGDjtNOPB6fz8vq1Wv45z/+SqonVND+CCGE2DMJgES/Eg0NKLZNRzKJq3JC3o+vmCmObt7KL+YfxIY1qwiHwwM/aYx4+ul/AXDyyafiVU3MeDQvx3UHSwh7XGxrz2/2tGxJ9XRix7qJGBFKykq4+MMncMcBC3n3d/fm7JhRfS12LEq3YUBV1YgpgNqfRFc3iebteNwfBBMpwyQcKuz0N7fLoKtjz2vO4jGDWNQo+KhLWUkJnzr9ZOYWFVP82N/Yev+9BQ0ahRBC7JkEQKJf8XQ9i7pImPLq/Getsl1ugh0t1AYCzA4EeeWVF/Peh5Goo6ODZ555igWlZZx50smkutshT6moXZU1bI22EY525+V42WZbFsmuNmLhdmwlxbGHfYgJfj9TOzpYsjg3RVF73nsHgHe6Ojh63v45OUZW2TaRhkaIhlEUBbdbJRY1CloAtbTMTyIWIty95xEVGwiHEqSSZsHTYp/+0eMIVpZT5XYTX7WK8DtvDvwkIYQQeSUBkOiX0eHUtdgQDVM1rjBpeyPjnfUS+5eU8p//PF2QPow0jz32Z8xEgqvmzMP/wINEGzbl5bju4nJ6vG62tGzMy/FyxTZT9LQ1kYh3sd9Zn8ZQFKYGgvzzlp8SjUayfrxoIknSsnijo51jR0MABMQ7Okk0bcXrdqa/dbZFMc3CpL9WFCguVmlv3rbX0ZRkMkW4J1HoXAi43W4+c95Z/C1dWLbx9w+S6hr52RKFEGIskQBI9Kvm3M/z7U11/LelhcqCBUDTATiwpIw33nid7u6ugvRjpOjq6uSRR/7EgtJyPIqCp6IcxZeHSz5VRa0aT0No26gd/ekrHO4kHGrFY0epPvVUAE71+bnuim+RTNeYyZZ/RXu4aNliimprGV9ekdW2c8a26dm0Gbunm1TSorszP1Ms96S41I9tReloaRtw30hPgmjEQHUV9qNt/rw5eA5dQF0kjMswWHfrzdip/NXpEkIIsXcSAIl+dXV10tjWSthMUVUzuSB9iEyeBcCc4mJKFHjiib8XpB8jxd1330ko1M3p052F9CXz52Inc1+bxVc5gVYlSUPzhpwfKx9MK0VXpJNEayOTj1uEXVFBldfHouZmLr7oy2xNZz8cro6ODh577BEipsnHFx2WlTbzJdkdwmhvp6crWtDpb+XlXrratpEYRC0wy7YJdcVIJgpfG+jjp53IC16VSCqFe/t2Vt5xm6wHEkKIEUICILFHlpFk/fq1AFSOm4TPHyxIP1LBEmLjagE4vLySP/3p91m/Qz9avPvuW/ztb49S4nZzgM9ZSF88tzbnx3UXlRErLWX99vUkjcJdCGdbR6STlNtFtEln1nmfwna5WFRewYe7Q3z60x/jrrt+SUtLc8bt9yx+j4du+gmxWJT9ps/giNlaFnufe4rLRcKwaNnUXLBgorjEh0uN09y0bdDPMQyTUGcM07QLGgSpqsrnLziPf6ViWLaNb80a/vfzn2FZhZlKKIQQ4gMSAInd2LZNw09+DI89xgSfnwmTZxa0P93TnHUTJ0+cRGtrK3//+2MF7U8htLa28IMfXIVt21z+4Y+gWBaBqbW4gq6cHlf1+rFrJrKhu5G2rsFfhI4GoUgnCY8LBQUz1UntOaeDqmJUVhCPx7n//t9w+ukf5ZJLvsojj/yR+vo6TNMcVNvJ1la2/PbXnN7RwUFl5XzjtI+jFDhF81AFxtcQjitsX7sZOxrJezChKFBZ7aeztYnoEDNAxmIG3Z0xLNMuaFIEj8fNx7/6/3hRtVjdE+K6R//MV796PitXrihYn4QQQkB+K1uKUSFeX0eyqZEioDtlsH/trIL2p2v2QVRvWIyrugLXiqXcffcdfPSjJ1NTM76g/cqXUKibSy+9iJaWZg6YOYsFhoENVBy5ECuHIzKq149r0jTqYu1s2qrn7DiF0hPppMdMMK64jGRnC+5Sldr/9zG+fsDBzFmyhocefoTQ2rW0LlvKzW+8BkAwGGTevP2ZPXsuU6ZMYfLkKUyaNIlAIEggECAWi1G/dg3uv/2F8bbNunAPx5x0MvMmTCzwbzs0Lp8PV1UN2zd0YERi2LThn+BC9fqxrPxM46qoLgIzxNbNmaVcj4Sd/xtlFQFcLrVgIy9er5djvnQu/3vlddhcz5Il7/HF//dZPnzYEZzy6bM47rgTCAQKM8IuhBBjlQRAaZqmqcD1wFeBCuA14BJd1/eNRQ9D0P6kU2Pm3XAPMdNk0tQ5Be2P5Quw/pOXcMi8GuavXsHy5cu4+urv8JvfPIDH4y1o33Jt69YmLr30IurrN1BZWcWNV3wf4+E/459Si7cmiJ2jAMgVLEEZP5mN8Q70Lcux8pRmO58s22JbqJlxJbXQ2QKAK6AS2biC42aN56Q7bmbVDbdht3ewDZv/bd3KG63NLFnyHkuWvLfHNsf7fHxz5hxmFxUTTqWIHHYYn9L2h0GOHI0IikLR1Cl09Ji0NTqJB1KRKInmFnw1Nah+P5aZ2yAoWOSlrNSmYUPdoNb+9CcSTmBbNqUVAbxeVwEz2SmcdNwxLDpoAU89/wqV+gZOSib5y223cMMPr+GgQxZx8MGLWLBgIbNmzaaqqnrUjRgKIcRoosiiTIemadcDlwBfBpqAW4CZwHxd14e66KTeNK0ZHR3ZT6nrdqtUVBTR2Rkhlcr+h3no7TfZft+9oKj83/LFtJkmV938F7zewhdvrKkIUu0P862vnEdTdxcnnngyN974c3w+X9aPlevzPBDTNHnyySe49dabCId7qKkZz913/5a5czWU9m3E6paBEsv+gVUVX+UE4mVl1Ie2Ut+0BtPK3cW7ooDb4yJlmBTiT1HQX8KHZh5OUUsLqXDXTo9ZhkX3u+voWV23UwavREkJrW43Kw2Dt1q20dzcTKlp8onKag4vr8CjqiRcLkrP/SyVLi+Jzp3bLQRVVQgEvMRiyQFHcIqmTiFZVI3+/mZiPTu/x9zBAL5x1ahFRZgWTgGeLPMHPEyY5Kdjez2b1q3PSpter4vSsgD+oAdFIaejWKqq4A94ifdzrhXbRn3yeVxtHQBsj8d5tnU7L7e1ETad91lJSSnTpk1n/Pjx1NR88FVRUUFJSSnFxSWUlJRQUlKak79/o0Gu/kZXVhbhcqkbcT7/hRD7KAmAAE3TvEAbcKWu679JbysHtgIX6Lr+6BCbHHUBkG3b9Lz9Js2/fwA7laJ+8lS+98+/MH3OAr502U1ZO85wKMB+/ijWg3fywtYm/rRlEzPm7c+PfnQjs2fPzeqxChEApVIpNm2q59VXX+bxx//Kli0NABx1wAK+/7VLmHLc8fjcNmZzHeFNqyCLU3oUtwdvaSVWaQVtJKhrqaOlIzuZ0PZ63AIHQACzauczv2giRmMdtrl7qmIzYRDf3E60vono5iZ6O1p50snUfO4LWJZNcvs2Nl1zNQBF8+cz+eyziG7dTnTb9rz+Lv0ZTACkqCpFU2tJFlVRv3ob3S17Tneuejz4Kstxl5Zie7zYlp21166sIkBFpYuu1gY26euyOm1NURSCRV6KS3x4fS5QFOdcZPmNN1AABIBl4atvhMUrsCPO54QF1CcTPNnYwJvpGmyD4fV6KSoqxu/3EwgE8Pv9+Hx+/H4/fn+gz3ffjn/7fH58Pm/6uw+fz4fX69vxs9/vJxgsori4mKKiYrxe74gbkZIASAgxHBIAAZqmHQ68DWi6rq/rs/01YLmu65cMscmcBUB1DdvZsmw58UgMK5XETEZpbayjYfNGEvE4bfE4jdEIyWQSlw1z/X5QnOCh7wd9UbAIX/U4pn/oCE466VRKG7ew/f7fAuA5cCHffOF5Gjav5+Qzv8pRH/101n+PTI1b+zbj3n4WgIRlsby7i42xKBNmzeaAw4/goE+fTaCoCIBk83bMUA/9VUb0T5+B4nZmgSZbWzC7P7jgc7lUSkr89PTEMU0L37RpmCiEw2G6GzYRaW4mEokQjUaJRiM7viKRCNttm4RpYpomfsMgYBhYlvNv0zRJmSaWaWFZJk3JBDHTxDAM6OhgoseDR1Upc3uoLSnlQ1OnURIOo7hczL72+3iDNpHNa7FTw8uEp7jcqL4Abn8QAsUkfF66rThbOptobt+CMcz2B92PERAAedxeFsw4lFp8GM1bsJL9Tyu0DItUV5xkazdFs2dTfvjh4PFjK26a//kkZQcfjKe4iJC+jlhz64hJe7y3AEhxu/FVlOMdV0PY9LJ57TZCbaEB23QHA3jKSnEHi8DrxVYUbDsdDA3h13a5VIpKvJSV+1CVKM1b6tnW0Jizc+dSVfwBD4EiD16fG5fLKfba2/fhHndQAVAvw8Df1IqyZj3mNifjYOUZH6fnoIPYtGkTXfV1TF66lG7LoiMRpyeRIJSI0xWLEYpF2RAO0xh3RumCLhdziooxbZu+4UDv79OaTNCWzqDpU1VmBIs+2GeXnzqSBq3p/wceRWFmcRkeXwC3L4jLF0D1FqF6i8BbRMhXTqu/GtNThuUpYrJlYLr9qOk/vKri/D9XFIWwO0ibrwJFARcWM2PNzmPp/VCczEyKAjGXn7ZgFYoCqm0zLbIVVVVI74bp9XH2OSdx3CRDAiAhxJBJAARomvZp4O9AUNf1WJ/tf0lvO2OITdabpjUjFMruFKWt7T2cd9oJ3LV//9Xkn23Zzu8aNgFQ5vZw38JF/e77YlsLv95Uj6KozD38NL7nt2hZcBKvF9Xwr5vOQ3V7Of/udwiUVgI7xxG7xhR9bw4q/WzfVaZtlG1eybTnHyTYuvvi6C8uW0JJ7RyqJs3kbJfJAdGOfo//+FFnE1XdJOMRDq9bzAGd/Y94XK6vZWtPFwDn1U7lExP6Lwz77ZXLdlyUnD2plrMn9Z+q+urVK6iLOoHyJydM4gu1U/e4X8/0A2g64QvExk/bafue//t+cMJ2fdje8T19sYeNjbMexrnbvuul0J4N9FdjaH9WlJ2Pa+/9TnMu+qUoCqrqxskJ13v8nXfe7bkKKCjOXraNbVnYpoWdSu12EW3v+sQhdHzA32mgx+3e/0PKB4dXnMtIy+aDLwuM+M4X7YN6GVXVGR1If+34ecedF+egO/4fpy+GsZ33nWmZWKaJaRrE43FSRip9bKXP+1XZcf7tdKN2333sPezPLvvbuz93R39hR/97O2mntzntK9h9nue0tae+7Xq8D/7tnNa+7ezcbmW0lf1al7OlYjZbKuaAojC3ZRlffeun/Z76f8z5LP8bfxRmvIfp3XV8b/3v+933MXUyj1uVYESZYoa51d9/ivcn2rp4uGkLGBFqvD7uWnBwv/s+07ydB7dsAgb/mQPgV1UeOuTwfvd9vaONO+qdJbgK8NihR+z0+LpwD3f6p/HyI3dmdW1XaWlAAiAhxgBJguDoTcGz663fOFCZSYOqqlBRUTTwjkNQVOynYs4RbDc6AbBQsBUFXF5sdwBbddM972hcx33E2WbF2Vj/gLPPjg9e5zm2laJl8lwUezL25lfR336aC1BgUxi7ZSUA9oGf409147L6O2THQXDA7czsqUPrWsPk9hWUdeiUxNsxUgYtG1fRsnEV9bVTqSqv6LeVJ+++kkh6cXrJpFqqKqv63Tcej+74ucdS2JY0QFFBcaW/p79UFeuwi1E9paC6iSQ3sy2+MX0h2OdCy/kB86SfoQYmoqhuOpJNrO18D1Nx0+MtodVfw9bgZFZUHkSHvxo243wJkTPZ/ZslBq9JLWLF+OnOP9KTB7rdswkdeCWV8XZKjBDBVJSAGSOYiuAzE2zyTaPTOwW80KUE2Vg8A5dtovaOAfWJYCO1p+GqPdXZHGli64qbdoymKNg7RmIUwH/A/+OA/c7E77Ko7mmg+6WfoWCBbaPYFqS/bNtiwv6HcOKhx5KIhFDD3XQkYti2lQ5Kd2YXFTN1xmxs28ZjQ5uZ+mCfXXY2fAEm1E7f8e/W1M7TU6NuDxd9+hhKSwOZnG4hxBgnI0CApmmfAf7GnkeAfLquf3KITeZkBAic6SKlpQFCoRimaWFasKFLZXW7SsSAhKkQT0Gyzw2x3V/inUcIOrasZdm/fsWmd5/esb1iyn6c9oO/4/EFd9q3/zb7f8zu5+cB2xlsm713X22bWMdWOhtWEGlrJNqxlVh3M2YyTioZw0zGnA9w1QlaFFVFdXlw+YJ4/MW4fEHc/mK8wTK8wXL8peWo3hLcgRI8wTI8wVI8gVJU157vGwxltGsojw809X44M/OH03Y2+qWqCh6PG8NI7TTyMKx+DXDM4SxlKFS/Bu7y3v+Ou1QFr89DMmFg7fKfKZfvzYGovRfduwxO9f1O32199lUVu//nDtBm3/3YwzZFsfttc6BjuFwKwaCPWDSBbdt9HrN368OejrFbf3Y9/m772Tu2qQq41HQ/0n11Kc52j2rjcYFbBXd6v9Fs18/CbJERICHGBhkBcvTOpZoE1PXZPglYlmmjuVw8b5rWjvZnlVrMKh1GYwunw8dvY8OGr/PWW29QVVXFCSeciN+v4gyCjSZVwPHDbqX/Bbap9JfIBuc8u+nsTBQk295Y4ZxnD52dSTnPOeacax+dnamRea7TeR9GYtcy0fezUAghBksCIMcyIIRz5VwHO7LAHQLcVbBe5dns2XOYPbuwNX+EEEIIIYTIJQmAAF3XE5qm3QXcrGlaK7AJ+DnOyNDjheybEEIIIYQQInskAPrAdTjn434gALwCnJJBEVQhhBBCCCHECCUBUJqu6yZwVfpLCCGEEEIIsQ8a5XlghBBCCCGEEGLwJAASQgghhBBCjBkSAAkhhBBCCCHGDAmAhBBCCCGEEGOGBEBCCCGEEEKIMUMCICGEEEIIIcSYIQGQEEIIIYQQYsyQAEgIIYQQQggxZkgAJIQQQgghhBgzJAASQgghhBBCjBmKbduF7sO+KGbbtt+ycnNuXS4V07Ry0rb4gJzn/JDznB9ynvNHznV+5OI8q6qCoihxIJDVhoUQI4oEQLnRBfiAbQXuhxBCCCEGbyKQAMoL3A8hRA5JACSEEEIIIYQYM2QNkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZ7kJ3QAxM07RrgBN1XT++z7aFwB3AoUA7cKeu67cWpIP7iH7O88eB64D9gDbgr8B1uq7HCtLJfcCezvMuj98HnKTrRNUAnwAACAZJREFU+vR89mtf1M97eiLwC+A0wAT+A3xT1/W2gnRyH9DPeT4UuA04BOgCHgGu1XU9UYg+jlaaplUCPwXOAEqB5cD3dF1/Lf34QuSzUAgxRDICNMJpmnY58ONdtlUB/wXW4fzRvx64QdO0L+e9g/uIfs7zscA/gL8DC4GvA+cA9+S5e/uMPZ3nXR4/E/hqvvqzL+vnPe3D+dsxEzgR+BjOBfpD+e7fvqKf81yNE1iuAQ4GLgS+BNyY5+7tCx4FjgDOBQ4DlgDPaZo2Tz4LhRCZkhGgEUrTtMnA/cCxgL7Lw18DEsDFuq6ngDWaps0BrgIezGtHR7kBzvNFwAu6rt+U/vcGTdO+DzyoadrX5U7u4A1wnnv3mQj8FngZmJ63zu1jBjjXn8M5t7N0XW9O7385cI+maaW6rofy2NVRbYDzfAxQBVyh63oPzt+OPwGnAN/Na0dHMU3TZgMnAUfruv5Gets3cUYvPw/EkM9CIUQGZARo5DoE6AQWAG/v8tixwCvpP/i9XgA0TdNq8tS/fcXezvNtwBV7eI4bKMlxv/Y1ezvPaJqmAH8A/gi8lNee7Xv2dq5PBZ7vDX4AdF1/Vtf1WRL8DNneznN7+vvFmqa5NE2bDpwOvJW/7u0T2nBGKRf3btB13QYUoBL5LBRCZEhGgEYoXdefBJ4E0DRt14drgRW7bNua/j4VaMlp5/YhezvPuq6/3/ffmqZ5ge8AS2S9xNAM8H4G+BYwEfg4cHX+erbvGeBczwVe0TTtWuCLgAd4FrhS1/WuPHZz1Bvgb8ermqbdBNyAs37FhRPY/19+ezm6pd+T/+67TdO0s4FZOO/bG5HPQiFEBmQEaHQK4gz79xVPf/fnuS9jgqZpbpzRif2BSwrcnX2KpmkLcObuf0GmFeZcKU7gcxDOFKKv4UzX+md6FE5kgaZp5TjB5t3A4cDZwGzg1wXs1qinadrRwAPAP9MBqHwWCiEyIiNAo1MM8O2yrfePfSTPfdnnaZpWAvwFOAE4S9f13aZwicxomuYHHgZ+ouv68kL3ZwxIAmHgc7quGwCapn0ReAdnEfm7BezbvuRmoFzX9c+k/71E07RO4H+apv1S1/VlBezbqKRp2idx/la8hbOWDeSzUAiRIRkBGp22AJN22db776Y892Wfll6Y/ypwFHBa+q6jyJ4PAfOBH2qaFtY0LQx8H5ia/vcXCtu9fU4joPcGP2mr0t9nFKA/+6pj2D2Y7F3/MzfPfRn1NE27FHgcZzrc6X3KEMhnoRAiIxIAjU6vAMdqmubqs+2jOBc2Muc5SzRNq8BZUDsOOEbX9RcL3KV90TvAHJwpWQvTX7/Bmce/EPhXgfq1r3oFOEjTtECfbQemv28oQH/2VVtwkiP01Xue1+e5L6OapmkXA78C7gLO2WWarHwWCiEyIlPgRqcHgCuB32madgvOHPPLcerUiOy5HadeyqlAq6ZpE/o81qrrulmYbu070ndyd7rw1jStA0jpui4X5Nn3G+BS4OF0IoSy9LYXdV1fUtCe7Vt+AfxH07QbgN8D03Dqh/1b1/WlBezXqKJp2lycIqf/AH4G1PRJOBFDPguFEBmSEaBRKH1n6xRAwykKdz1OvYk/FLRj+xBN01ScoqdenFGgbbt8TSlc74TITDp74bE42d/exsli9g7wqUL2a1+j6/pzwBk4NWyW4lyo/xv4bAG7NRqdhfNe/RS7/w2+Qz4LhRCZUmzbLnQfhBBCCCGEECIvZARICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhxJimaZpS6D4IIYQQIn8kABJCjFmapn0C+EP65+M1TbM1TTu+sL0SQgghRC65C90BIYQooG/3+XkJcCSwukB9EUIIIUQeSAAkhBCArush4K1C90MIIYQQuaXYtl3oPgghRN5pmvYScFyfTScALwIn6Lr+kqZpPwTOBb4H/ASYDawFLgZs4A5gAVAHfFPX9ef7tH0AcBPw4fSm54Hv6Lpen8NfSQghhBCDIGuAhBBj1SXA++mvI4HSPewzBfgFcCPwWaAS+BvwCHAfToCkAo9qmhYA0DRtLvAGUAN8CfgKMBN4XdO0mtz9OkIIIYQYDAmAhBBjkq7rq4EQENJ1/a30z7sKApfouv6Iruv/Au4BJgE36Lp+v67r/wSuBaoBLf2c64EYcKKu64/ruv5XnNGlAHBFTn8pIYQQQgxI1gAJIcTevdHn5+3p733XCrWnv5env38UZypdVNO03r+xIeBV4KQc9VEIIYQQgyQBkBBC7EU6OcKuont5ShVwTvprV61Z6ZQQQgghMiYBkBBCZFcX8D/gtj08lspvV4QQQgixKwmAhBBjmQm4stzmy8D+wFJd11MAmqYpwJ+ADcDSLB9PCCGEEEMgAZAQYizrAo7UNO0jQFmW2vwx8CbwlKZpvwbiwEXAmcBZWTqGEEIIITIkWeCEEGPZXYABPIOTpW3YdF1fDhyLUyvojzhpsycCZ+q6/ng2jiGEEEKIzEkhVCGEEEIIIcSYISNAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWZIACSEEEIIIYQYMyQAEkIIIYQQQowZEgAJIYQQQgghxgwJgIQQQgghhBBjhgRAQgghhBBCiDFDAiAhhBBCCCHEmCEBkBBCCCGEEGLMkABICCGEEEIIMWb8fyiEp46iIF+6AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Heavily-Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1526.76it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 106.00it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 2.230 - 20.430) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 0.9952 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.6283 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW6UlEQVR4nOzddXRc5drG4d/MxN2TNnXbdcdKkeJ2kMOHy8EdyuHg7hQrUJxSrLh7cYdSSl13m6YWadwzyej3xyQl9WSazETua62sNFvv2bV55jWL1+tFREREREQk2KzBDiAiIiIiIgIqTkREREREpJ1QcSIiIiIiIu2CihMREREREWkXVJyIiIiIiEi7oOJERERERETaBRUnIiIiIiLSLqg4ERERERGRdiEk2AGCoBwIB/KDnENERESarxtQDyQEOYeItCFLF1wh3u71eiM8ntZ/3Varhba4rmxLzzow9JwDQ885MPScA6OtnrPVasFisdQBka1+cRFpN7piy0m+x+PtW1pa06oXDQmxkpgYTWVlLS6Xp1WvLVvSsw4MPefA0HMODD3nwGjL55yUFI3NZlGvB5FOTmNORERERESkXVBxIiIiIiIi7YKKExERERERaRdUnIiIiIiISLvQFQfEi4iIiLSKefPmxeKb5lgf+IpsywPkjxs3rqq5J6g4EREREWmhefPmWYGbLRbr2RaLJRSwBDuTSDvk9Xq9znnz5r0G3D9u3LhdTuOn4kRERESk5W622UIujYtLdISFRdRaLBYtoiOyFa/Xa3E46qIqK8sudbtdAPfu6hwVJyIiIiItMG/evDiLxXp2XFyiIzY2sSTYeUTas/DwSDuQXF5ecva8efOe2FUXL/WPFBEREWmZDIvFEhoWFlEb7CAiHUFD62IovvFZO6XiRERERKRlrIBFXblEmqfh74qFZtQeKk5ERERERKRdUHEiIiIiIiLtgooTEREREWkXpk2b2v34448YEewczbVy5fKI7777Jj7YOToTFSci7cjixQuZOvUh3nvvbRwOR7DjiIiIyE7ceOP/Bi5fvjQ62Dk6E00lLNJOfPHFZ9x22w14PL71ib766nOeffYlwsLCgpxMREREtk9zIrQ2FSci7UBOzkbuued2PB4P++yzL0uWLGLevL957rmnuOqqa4IdT0REmsHj8VBbWxuUXilRUVEeq7Xlt544cfy4E088Jf+nn75Pdjqd1ieeeHZlVFSU58knH+uxePGCuJqaGlt8fLxr0qRDSiZPvjZ3xYrlkRdffM7QZ555ccXIkaNrAa6++rL+S5cujvvqq58WhISE4PV6OfroQ0b95z/n5Z5yyhnFW9+zuLgoZOrUh3rMnz833u12WwYNGlx9zTU3bOzff0B94zEvvPBM+ueff5xeVVUVMmDAwJobb7x9XeP+7WXu0aOn4/nnn+72888/JJeVlYVmZmbWnXXWuXlHHHF0OcB7772d/NZbM7ude+4FuTNmvNCjoqI8dMiQYVW33nrXuldemZHx00/fJYeEhHiPPfbfBZdccsUmgPr6estTTz3W/bfffkksLS0Ji4iI9IwaNbrixhtv25CUlOw+/vgjRhQXF4e9++6b3ZYsWRg7ffprZllZqe2ppx7PnDv3z4SqqqqQvn3711x00WW5e+89obrxtX388QdJb7zxareioqLwXr162SdNOrRkxoznev7229/z/Pk9sVqtfr2+9krFiUg7MGPG89TV2Rk3bg+efno6P/74Hf/731XMnPkyp5xyBunp6cGOKCIiO+HxeDj99BMHr1y5IihdfAYPHlr95pvvm/4UKN9882XqAw88utrtdlkGDhxUf/rpJw6Nj09wPvjg46tiY2PdP//8Q8L06c/2HDp0eM3hhx9VnpKS4pg9+/e4kSNH17rdbpYvXxpbX19vXbBgXvQee+xVs3Dh/KiqqsqQgw46tHzre7lcLiZPvnQQWLx33nn/muTkZNeTTz7W43//u3LQ++9/tgSguLg4bOnSxbEPPDB1tcNRb7n//rv63n//XX1mzJhp7ijz1Vdf1j87e03UlVf+d0Pfvv3rvvrqi6T77ruzv9VqzTrssCMrAEpKisM+/fSjtHvvfSirtrbGetttNww899wzhh188KHFzzwzY8WXX36a/Prrr2QecMCk8iFDhtU9+uiUHnPmzE644YZb1vXs2aveNM3IRx65v8/zzz/d/aabbt/44oszV5x33hlD9933gNKLLro03+12c9VVlwxyOp2WG264dW1qaprznXfeTLvxxmsGPf74MytHjx5b+913X8dPnfpg37PPPi/nwAMPLp8z54+4F198rufu/p748/pa/AclQDTmRCTICgsL+OyzTwC46qprsFqtHHzwYYwdOx6n08kbb7wS3IAiItJMHXPdkwMOOKhk9OixtePG7Vljt9stBx10aMnNN9++fsSIkfY+ffo6/vOf8wsTEhKdWVmrIgHGj9+rfP78uXEACxfOj7bZQryDBg2unjt3TizAr7/+nDBwoFGdmprm2vpev//+S9z69esi77zzvuy9955QPXCgUXfLLXeu22effctKS0tCAGw2m/eeex5cO2zYcPuYMeNqjzzymKK1a9dE7SjzqlUrI/7++6+Eq666ZsOhhx5RMWDAwPorrrg6f4899ip/441XNy/653a7Lddcc8P64cNH2Pfcc++aESNGVYaHh3muu+7mnAEDBtZfdNHl+QCrV/te55AhQ2tuvPHWtRMm7FfVs2dvxyGHHFYxatTYynXrsiMBUlJSXVar1RsZGelJTExy//zzD3Fr12ZH3XHHvdn77rt/1aBBg+tuvfWuDT179rK/8carGQBvv/1Gxt57Tyi94IJLCgYMGFh/xhn/KTriiKMLd/f3xJ/X116p5UQkyGbN+hyXy8moUWMYNWrM5u3/+c95zJ//N5999glXXnkNoaGhQUwpIiI7Y7VaefPN982O1q0LoEePnpu7U0VGRnrPOuvcwi+//Czx9ddfjc7Lyw1fv35tVHl5Wajb7bEA7LffgRV33HFzqt1ut8yZMzt22LDhVZmZPesWLZofB2yaO3dO/P77H1i6vXutXr0qMioqyj1w4KDN90xPz3DdcMOtOY0/x8fHu+Lj492NP8fGxrkdDscWL65pZtNc2Vg0VTc9ZsSI0VWvvTajR9NtAwb8c9/w8HBPamp6vcViASAiIsILUF9fbwU44YSTSn/99efYqVMfzMzNzQnPydkYmZeXGzF48JAt7tMoK2t1ZGRklLtpq4TFYmHo0OHV8+f/HQewbl121MSJ+5c1PW/UqDHVn3328RZdJFr6e+LP62uvVJyIBNlXX30BwNFHH7vF9gkT9iMpKZnS0hL++ONXDjjgoGDEExGRZrJarcTExHiCnaOlwsMjNmeura21XnzxOUZdXZ11v/0OKDvssCNLRo0aveGKKy4a3HjMPvvsWxUaGuL588/fYxcsmBc3adLBpb1796n/9NMPMzZuXB+2bl121J133pe9vXvZbCHexjfLO2K1WnfZAtU0844GpXs8bovNZttiZ2ho6BY/W607znL33bf1+v33X5IOPPDgkr333rdi8OCh+W+88WpGSUnRdmeq8Xq3/9I8Hg8hISFe3/2sXq931w1sLf098ef1tVcqTkSCKCdnIytWLMdms3HIIYdvsS80NJQjjzyGN954lW+//VrFiYiItLnGrkkffvjForS0dBdAWVmpraKiIqSxCAgLC/OOGjWm8pdffkpYvXpVzI033ra+R4+eDovF4n3mmSe7d+vWva7p4Pam+vXrX1dTU2PLzl4T3q9f/3qAkpLikNNO+/fwe+99aLU/mQcNGmwH+PvvOTGHHHJ4ReP2JUsWxWRm9rT7c83S0hLbN9/MSr3hhluy//WvEza3dOTkbIiIiIhsUhj98+Z/wIBB9traWtuKFcsimraeLF++LKZHj151AL1797EvX74sBtjclWvZsiU7HafUnN+TzqRdN+uIdHazZ/8OwKhRY0hKStpm/4EH+gqS33//dfMUwyIiIm0lPT3DAfDppx8lb9y4PmzOnNkx11571QC3221xOJyb34lPmDCx/Mcfv0+Ji4t19e8/oD48PNxrGEOqf/vt5+S9955QvqPr77ffAZV9+/avvfvuW/vOmzc3euXK5RF33nlLn/j4BOeoUWNq/clsGEPqRo8eWzFt2tRe3333dXxW1urwp556vNu8eXMTTj75tAJ/rhkXF++OjIxy//bbLwnZ2WvCly9fGnnHHTf3XrdubZTT+c9ziIiIcOfm5oQXFhaEHHDApIqePXvb7777tn5//PFr7KpVKyPuuef2Xjk5GyJPPfX0AoDTTz87f86cPxJnzHg+PTt7Tfj777+T/MUXn6XtLEtzf086CxUnIkH055++4mSfffbd7v7Ro8cSExNLWVkpy5YtCWQ0ERHpgsaOHV973nkXbfz004/Szj771OEPPnhvn+HDR1Xtu+9+pab5z0xkkyYdUuHxuC3Dh4+qbNw2Zsy4Sq/XywEHHFS+o+tbrVYeeuixrNTUdMeNN/5v4JVXXjLYZrN5p059cnV4eLjfzQBTpkzN3nPPvcunTn2ozwUXnD1szpw/Em6++c41Rx99bNmuz95WSEgIt956V/aGDesjzz//zGHXX//fgfX19dYzzzwnNzd3Y2RNTY0V4LjjTiycP39u/OTJlw0KCQlh2rRnV/Xp06/2rrtu7X/JJecPWbdubeSUKVNXjRu3Zw3ApEmHVF5++eT1n3/+Sep5550x7IsvPkk9/PAjixq7fW1Pc39POgtLc/q9dTLZbrenb2lpTateNCTESmJiNGVlNbhc+oS7LXWWZ+12uznwwH2oqqpk5sx3GDFi1HaPu+66q/n226+46KLLuOyyqwKWr7M85/ZOzzkw9JwDoy2fc1JSNDabdS3Qr1Uv7Id58+YNtlptX6WlZVaHhUW02ylZpf2ZPfu3mJSUNGfTCQGeffbJjG++mZXy0UdfLg1mtrbkcNRFFBbmxng87iPGjRu3cmfHquVEJEhWrlxOVVUlsbFxDB06fIfHTZgwEYC5c+cEKpqIiIi0gT///CP+2muvGvT777/E5uRsCPvmm1nxn376UfqkSYdsd3azrkgD4kWCZMmSRQCMHDkam822w+PGjh0PwNKli6mvryc8PDwg+URERKR1XXbZ5Dy73W6dMuXevlVVlSFJScmO4477d8GFF17arldtDyQVJyJBsmTJYgBGjBi50+N69epNSkoqxcVFLF26mHHj9ghEPBEREWll4eHh3ptvvmMjsDHYWdordesSCZKlSxuLk+2PNWlksVgYM2YcAPPn/93muURERESCRcWJSBBUVlawfv06AIYPH7HL48eO9RUnCxfOb8tYIiIiIkGl4kQkCBpbTXr16k18fMIujx8xYjQAy5cvpQvOsCciIiJdhIoTkSBYtmwZAMOH73y8SaNBgwxCQkIpKysjLy+3LaOJiIiIBI2KE5EgWL3aBGDQoMHNOj4sLIyBAwcCvtYTERERkc5IxYlIEGRlrQZg4MBBzT6ncS2U5cuXtUkmERERkWBTcSISYA6Hg/Xr1wIwYIA/xYlaTkREpHVMnDh+3HvvvZ3c3ON/+un7uBNOOGr4gQfuPfbBB+/r0ZbZmmPatKndjz/+iF3PLNMCLXkmOTkbwj799KPE1rx/V6d1TkQCbO3abNxuN7GxcaSlpTX7vGHDfP/2LlvmGxRvsVjaKqKIiHQRH3zw+aK4uHh3c4+fPv3ZHunpGfVPPPHMqpiY2Gaf15G05JncdddtfdLS0hzHHntCWVvn6irUciISYE27dLWkwOjfvz8hISFUV1exaVN+W8UTEZEuJD09wxUZGdnsaSBrampsQ4cOq+nVq48jKSm5UxYnLXsmXn1S2MrUciISYFlZq4CWdekCCA0No0+fvmRlrWb16lV069a9LeKJiEgXMnHi+HGTJ1+77qSTTi255Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hmjhx/DiAd999q9u7777V7c0331/Ss2dvx/Tpz6bPmvV5WkVFeUhGRrf6k046bdMJJ/xfKcAff/wae/31/x109tnn5XzwwbvdUlJS6++998Hss846efhpp52V98UXn6aFhYV6Xnnl7eUWi4WpUx/s8ddfsxNcLpelb9/+tZdddlXO6NFjaxvzvvXWzJT33ns7o6ysNGzUqDEVaWnpjp29vgsvPNsYNmxkVVlZaejvv/+SFBoa6jnmmOMLDzvsyNIpU+7pk52dFZ2R0b3u+utvXjdmzLjaps/k0EOPKD/77JOH9enTr3batOeyAH755afYW265btBNN92+5qOP3ktfsWJ5zIoVy2OOP/6I2I8//mrJ8ccfMeKggw4rueqqa/KaZkhLS6+/776H123vebz22tsrCgo2hT722MM9Fy6cH2ezWb2DBg2umTz52o39+w+ob4vf9/ZMLSciAbZ6dWNxMrDF5zYWNI0FjoiItC9uu926oy9Pfb0lEMfujtmzf0+srKwMeeKJZ8zbb79nzYoVy2OfeurxTPB1d0pKSnL+618nFHzwweeLMjN7Oh577KHML774NO3yyydvmDHj9eUnnPB/BU8//XjvmTNfSW163TlzZic888yLK2688bZ1NpvVC/DTT98nPfbYU+add96/Jj4+3n311ZcNzMvLDb/33oeynnnmxZWDBw+pufrqywYvWbIoEuDTTz9KfO65p3qdcML/FUyf/tqyIUOG1cya9fku+0d//PH7GWlp6Y4XX5y57Jhjjit8662Z3W+44b8DTznl9E1PPz19RVhYqGfq1Ad7b31eQkKC+7rrblm7YMG8+E8++TCptLTE9tBD9/U9+ODDio866l/lDz30eNbAgYNq9tln37IXX5y5oiXPuenzqKurs1555cWGx+PmsceeNh977GkzLi7eddll5w/Jy8sNbcl1OwO1nIgE2Jo1LZ+pq9HAgYP46qsvWLXKbO1YIiLSCtZceemYHe2LHGRU9Lz+pqzGn7OvuWqU1+nc7gfF4X36Vve+9Y7N/9ivveF/Izy1tdt93xbWPbO2z933tejN8Q4zRka677jj3vWhoaHeQYMG182e/XvJvHlz48HX3clqtXojIyM96ekZrpqaGutnn32cfu21N6095JDDKwD69u1Xn5+fF/7BB29nnHXWOUWN1z3llNM3NbYCbNiwLgzg6KOPLTKMIXUAv/76c+zq1Wb0xx/PWpSSkuoCuOaaG3KXL18W8/bbr6ePGDFq3Ycfvps+YcLEsrPOOrcIYMCAgZtWrFgWvW5ddtTOXlPPnr3sl18+OR/g3HMvKnjrrde777ffgaWHHXZkBcBhhx1ZMn36cz23d+5++x1QdeSR/yp87rmnen7//TdJ0dHR7htuuHUDQGJikjskJMQbFhbmaczcXE2fxzvvvJFSVVUZMmXK1LWhoaFegLvvfmDdv/999Ij3338ntWkrTFeg4kQkgOx2O/n5vn9j+vbt1+LzGwsatZyIiEhbSE/PqG98gwwQHR3jdrlc222ZWbVqZYTT6bQ8+uiUPlOnPtincbvb7bG4XE6L3W7ffF6fPn236Z7Uq1fvusZfr1y5PArglFOO32LmLZfLZXE6HRaAjRs3RB544MGlTfcPHTq8elfFSffuPTbfJyoqygOQmZm5OU9YWLjH5XLusPXpmmuuz5k/f278/Pl/xz/77EvLWzJGZ0eaPo9Vq8wou91uO+KIA0c3PcbpdFo3blwfsbv36mhUnIgEUE7OBgDi4uJJSGj5zIMDBxoArFu3FqfTQWhoWKvmExGR3dP/yWcX7GifxWrd4k1tv6nTFjX32L4PPrqkucfujqaFyT+2f3mPx2MBuPnmO7L79RtQt/X+8PDwzSdGRER4tt4fERGxeb/H47FERka6n3/+lW1agMLCwjwAFosF71ZRQkJCdvnaQ0Js2xxjsTR/ZENBwabQ8vKyUJvN5p09+7e4ESNG2nd+xpa3c7nc2xQ+TZ+Hx+OhW7fudVOmTM3a+rjo6OhOOenAzmjMiUgAbdiwHoBevbbp2tosGRndiImJxeVysW7d2taMJiIircAWGenZ0Ze1yZv1tjw2UAYMGFRns9m8+fl5Yf369a9v/Prllx/jZ858Kd1qbf7bzP79B9rtdrvN4ai3NL3WK6+8mPHDD98mAPTu3ad26dJFMU3PM80V0a37qrbk8Xi4++5b+/bu3bf2ssuu2vDmm69lLl26JPKfIyxb/j7ZQrzV1TW2pucXFhbs9JPEfv3624uLi8Pi4uLcja+7V6/e9U899XjmX3/Njm3t19TeqTgRCaD169cB0Lt3H7/Ot1gsmwfSNw6sFxERCYb4+Hj3oYceUTRz5suZH374btK6dWvD3n//neRXXpnRIzExqUVjMCZNOriid+8+9jvuuLn/b7/9EpudvSb8oYfu6/Hjj9+l9O3bvw7gtNPO3vTXX38mTp/+bPqaNVnhr746I23OnNltugDiCy88k7F27dqoW265c90pp5xRPGTIsKp77729b33DJASRkZGewsKC8NzcnFCAIUOGVv/2289Js2f/HpOVtTr87rtv622319p2do9jj/13aUxMtPuGG/7bf968v6JXrzYjbrvthr4LF86LHzjQ2EUrTeej4kQkgHa35QSgf/8BgG8xRxERkWC68cbbNh533L8LXnvt5cxzzjlt+BtvvNrt1FPPyLvyypYN4rbZbEyb9tyqgQMH1dx33x39LrjgrKGLFy+MvfXWu9bst98BVQCHHHJYxfXX35z9zTezUs4//6xhv/32S8Kxx55Q0DavDJYsWRz59tuvdz/rrHNy+/XrXw9w0023rS8uLgp/7LGHMgGOPfbfRRs3bog477wzhrndbq644r+5gwYZ1bfccv3AK6+8eHBcXJxrwoT9drpAY3x8vPvJJ19YGR+f4LrxxmsHXnrp+UMKCwvC7r//kdWDBw/dprtcZ2fxbt15r/PLdrs9fUtLa1r1oiEhVhIToykrq8Hl2qZbpbSijvyszz33DBYsmMeUKY9yxBFH+3WNmTNf4dFHp3DIIYfzyCNPtHLCf3Tk59yR6DkHhp5zYLTlc05KisZms64FWj6bSCubN2/eYKvV9lVaWmZ1WFhEl3vzKNJSDkddRGFhbozH4z5i3LhxK3d2rFpORAKoNVpOGmf5WrdOLSciIiLSuag4EQmQ6upqSkqKAejVq4/f12ksTtavX4fb3eUm8RAREZFOTMWJSIBs2LAOgOTkFGJiYnZ+8E5kZHQjPDwcp9NJXl5uK6UTERERCT4VJyIB0hpdusA3aLBxti8NihcREZHORMWJSIDs7jTCTfXpo3EnIiIi0vmoOBEJkNzcHAAyM3vu9rX69OkLwNq1WohRREREOo+QYAdoyjCMQcB84ArTNF9p2DYaeAIYD5QA00zTfCRYGUX81Tg+JDMzc7evpRm7REREpDNqNy0nhmGEAm8A0U22JQPfAqvwFSd3APcYhnFuUEKK7IbG4qR7990vThpbTlSciIiISGfSnlpO7gKqttp2EVAPXGqapgtYYRjGQOAG4OUA5xPxm8vloqBgE9A6xUnjuJWysjLKyspITEzc7WuKiIiIBFu7aDkxDGN/4GLgP1vt2g/4paEwafSD7xQjLVD5RHZXQcEm3G43oaGhpKSkbveY+rxc6tata9b1oqKiycjoBsC6dRp3IiLSXlgs2KxWS2igvywWbMF+7SKtIegtJ4ZhJAAzgStN09xoGEbT3T2AJVudktfwvRdQ6O99Q0Jaty6z2axbfJe20xGfdUFBPuBrNQkLC8HjdJL34nQyTj6J0LR06hxuyn/6gYoffyDjjDNJOuTQXV6zd+/ebNqUT17eRvbYY3yrZ+6Iz7kj0nMODD3nwOjqz9liweaxWLrV1rkC/v4qKiLEZcWb7/XS7lbnnTZtavcffvgm+eOPv9r6Pd0uZWWtDr/oonOGvvLKG8t69erjaIt80r4EvTgBngVmm6b55nb2ReHr1tVUXcP3CH9vaLVaSEyM3vWBfoiLi2yT68q2OtKzLi8vAqBPn94kJkaT9cxzVM75E2dxEY7zrqakoo7oslpCvV42vT6TyMgwuh9z1E6vOWBAf+bM+ZOiovw2+/MMHes5d2R6zoGh5xwYXfU5WywWa22dK+TPpfme2jqXJ1D3jYoIse49vFtIbESI1ev1trvixF/Lly+NvPHG/w1wOOq7ZrXbRQW1ODEM4yx8XbdG7OAQOxC+1bbGoqTG3/t6PF4qK2v9PX27bDYrcXGRVFbacbsD9u9Rl9QRn/Xq1b6B62lpGeT8OZ+Cr78Fi4WqvQ4hK6vYd9CoQ0m3hJE4/2fWzngZd2IKMUOH7fCa6em+sSurVmVRVub3X4cd6ojPuSPScw4MPefAaMvnHBcX2WFaZGrrXJ4auzPQf9A6xsNppmeemZbx/vtvd8vM7FFXWloSFuw8EjjBbjk5D0gHtu7O9ZxhGNcB64HuW53T+HPu7tzY1UYfaLjdnja7tmypIz3rnBzfGicZ6d0oeOctAEL22BczPAOPx7v5uPzh+2OrqiBu9ULypr9A77vuxRa1/VaRHj1866WsX7++TZ9DR3rOHZmec2DoOQeGnnPHMXHi+HGXXnrlhu+//zZp7do10enpGXXnnXdR7mGHHVnReMx3330d/8orL3bPzc2JTExMcuy//6TSSy+9Mj88PNwLsHLl8ojnnnsqc8WK5bF1dXZrcnKK41//OqHw3HMv2G73+1deeTHtlVde7HHTTbdnH374UeXbO2bevL/ir7vu5rXx8fHu66//76A2efHSLgW7yj4TGAKMbvIFcDtwFPALsJ9hGE0HeR0MmKZp+j3eRCTQ8vJ8xUnfiAjqsrOxhIaSP3J/3E0KEwAsFnL3PBJXfDKusjJK3nt7h9fs2bMXABs3bmiz3CIi0vm9/PL0HpMmHVz6wguvLhs/fq+Ke+65fcDcuXOiAX788bu4++67s/+RRx5T/NJLbyybPPl/G3777eekW265ri9AbW2t9X//u2pQRESk58knn1v58stvLps4cf+yGTOe67lkyeJt+ve9/vorqa++OqPHrbfevWZHhQnAjBmvm0ceecwO90vnFdSWE9M0t2n9aGhBKTRNc71hGC8B1wMzDMN4CNgTuBq4JJA5RXZXXp5vHoeMXN9366jxFDu3/9fPGxLKxgn/os+sVyn/4w8Sj/03oduZKrix5aSysoKKinLi4xPaJryIiHRqkyYdUnzWWecWAVx77Y25S5cuin3vvbfS9thjr7Wvv/5Kt4MPPqz4jDP+UwTQt2+/+pCQkPU33HDNoA0b1oVFRUV7jj32hMLTTjurMC4uzgNwxRX/zfvww/cyVq9eGTlixEh7433eeuv1lJdeeqHHHXfcm3XggQdXBufVSnsX7G5dO2WaZqFhGIcD0/CtHJ8PXGea5qvBTSbSfE6nk4KCTUTbbIRkrwGgbPAeeHdyjj2tF4V7H0G//fYkKi0Fp3Pb8Y2RkVGkpqZRVFTIhg0bGDEioW1egIiIdGpjx47fYp05wxhSs3Dh/DiAtWvXRq1ZkxX944/fJTfu9zb8B5aVtTrioIMOrTz99LMLP//8k6Q1a1ZH5ebmhK9fvzYKwO32WBrPKSsrC3322Wm9bTabt0ePXltPdiSyWbsrTkzTtGz181xgnyDFEdlthYUFeDwewiMjST7mWKrXb6AwIgl2MVayxNgDqzOC1HoX4TYrXu+25UyvXr0oKipk48b1jBgxsq1egoiIdGIhISFb/Afj9XqxWm1e3689luOP/79Nxx57QsnW56WnZzgLCwtCLrronCGxsXGuvfeeUD5u3J6VI0eOqjnllOO3+E/JYrFy9933r37ppRe633ffnX1nzJi50moN9ugCaY/0p0KkjTWON4lNSyfjxH9Td/zZOJo5iUtxmZ284hrcpUV4Pdue07NnbwA2bFjfeoFFRKRLWb586RYzr6xcuTymf//+tQA9evSyb9y4PqJfv/71jV8FBfmh06Y92qO6usr62WcfJ1dXV4W89NLrKy+/fHL+kUceXV5RUd7w4fc/NU9CQrzzgAMmVd54463rsrOzol5+eXp6AF+idCAqTkTaWON4k27dulPv9FBSYd/FGf/wAmVvvkbW9ddRu2jBNvs1KF5ERHbXZ599nP7xxx8kZWWtDn/wwft6rF+/LvK0084uADj11DM2/fXXn4nTpk3tnpW1Ovy3336Jfeih+/vW1FSHpKdnuNLTMxz19fXWzz//JDEnZ0PYzz//EHfXXbf2A3A4HNu8zxwyZFjdCSectOmNN17tvmZN1tbLRYi0v25dIp1NYWEBPSMj2SM+kcriMsqrWtbVttYSRrTXS8nnnxI1eiwWyz89HxtbTjZuVMuJiEh7ERUREtAPf3f3focddmTR+++/nf74449E9u7du/aBBx5ZPWzYcDvA0UcfW+b1erPfemtmtw8/fDcjKiraPX78nuX//e/1OY37V65csWn69Gd7PvnkVGtKSqrj8MOPKp49+/eEFSuWRQNFW9/v0kuvzP/9918S77vvzj4vvviaqe5d0pRle/3YO7lst9vTt7S0dRetCwmxkpgYTVlZjeZ2b2Md7Vnfc8/tRM+ZwzEZ3bDuMYGlQw9p0fm2uloGfjgNq9NB5uRriG4ytmTlyhWceuoJJCYm8uOPs1s1d0d7zh2VnnNg6DkHRls+56SkaGw261qgX6te2A/z5s0bbLXavkpLy6wOC4uoa9xusWDzWCzdautcAf/wNyoixGX1evO9Xlq0QvzEiePHTZ587bqTTjp1mzElIq3F4aiLKCzMjfF43EeMGzdu5c6OVcuJSBsrKCjg2Lg4AGoy+rb4fHdEFGUDx5K8/E/Kv/9mi+KkZ0/fdMJlZWVUVlYS13AfEREJPK8XtxVvfmyAW0589/Z6WlqYiLRHakcTaWM1RQX0aVjlvSKtt1/XKB2yJ16LhZqlS3Hk/bM8UHR0DMnJKQDk5GjciYhIsHm9uD0erzPQXypMpLNQcSLSxhKqqwHwpKRS4Q316xrOmASqew0GoOL7b7fY1zgoXjN2iYhIS/3229/z1KVL2hMVJyJtyG63k2nx/TXz9uqP2+3/GK+SIXsCULlgAR6nc/P2xpXic3NzdiOpiIiISPBpzIlIGyos3MSA6BgAHBm9dutatWm92HTAvxl+9CTCIsM3DzbNzOwBQE6OihMRERHp2NRyItKGCvLz6dcw3qQmqfvuXcxiobTPcPKqXMA/0wk3FieNiz2KiIiIdFQqTkTaUEFhATcsX8LnFgtVEQmtcs3Ckhoq7Q5wOoB/unXl5GxsleuLiIiIBIuKE5E2tKmggPz6OgpS07A7W2fOf1f2anLvvoNNL00HIDPTV5xs2pSPy+VqlXuIiIiIBIOKE5E2VFi4CYCYuORWu6Y7NBxvfg6V8+fjqqggNTWVsLAw3G43BQWbWu0+IiIiIoGm4kSkDfXMyeFf6d1IioxttWvWJ2VgT80Et5vqOX9gtVrp3j0TUNcuERER6dhUnIi0Ea/Xy2iHk7N69iYuPLpVr102cCwA5T//hNfj2TwoXtMJi4hIINXU1Fhnznw5tfHnW265rs+FF55ttOU9c3I2hH366UeJu3ON9957O3nixPHjdrQ/EK9j4sTx49577+3W61oRRBs2rAubOHH8uD/++HW3P41VcSLSRlylpURYLLg8HrypPVr12hV9huEJC8dRUEBd1qrN407UciIiIoH00ksvpH/wwTsZjT9ff/2tGx966PGstrznXXfd1mfOnD/i2/IeEjwqTkTaSPXabADy6uoIi01p1Wt7Q8Oo6D0MgKo/ficz09etS9MJi4hIIHm9XkvTn+Pj492JiUnuNr6rZdfHSEelRRhF2kjZKhOAXEc9cRGt260LoLz/SBJXz6di7lx6HnssoIUYRUSCyeuFWldwPviNCsFj8eMte0VFhW3q1Ad7/PXX7ASXy2Xp27d/7WWXXZUzevTYWoDa2lrrlCl39/z777kJtbW1tszMzLozzzwn78gjjymfNm1q93fffbMb+Loovfnm+0uef/7p7oWFBeHTp79m/vHHr7E33vi/QQ888MiqJ554tFdhYWF4nz59am+99e6133wzK/Hzzz9Od7vdlv32O7Dkllvu3GixWPB6vbz44nPp33wzK6WoqDA8NDTUM3jw0Oprr71pQ+/efRwXXni2sWLF8pgVK5bHHH/8EbEff/zVEofDYZk27dHuP/30Q7LdXmvr0aOX/bzzLsw74ICDKhtf56xZXyS8+uqL3QsKNkX07z+wZvTosZU7eiaN3G4P9913Z8+ffvo+OSQkxHvooUcUX3XV/3JDQnxvn//668/ol156ofuaNaujnU6nNT09o/7008/OP+64f5c2XuOTTz5MeuedNzLy8/MiEhISncccc1zh+edfXLD1vYqKCkMuv/xCIyEh0fn4489kRUVFeX7++Ye46dOfzczNzYlMS0uvP/HEkzdNmza1z5tvvr+kV68+juOPP2LEXntNKF+wYF5cRUVF6O23371m7733rXr11RlpX375WVpxcXFYSkqK48QTT9l02mlnFgP88cevsddf/99BjdcAX5es00//vxEPPfTYqgkT9qu65Zbr+ng8HktiYpLzxx+/T66vr7OOHDm68qabbl+fnp7hAlixYlnEY4893Csra3V0YmKi85RTTs9v+Z++7VNxItJGajesJwwosdqI9+d/jF2wp/Wkcsh4eu+/N964KEBjTkREgsXrhTO/ihpsltla/9OoZhic6K6eeUSt2ZL/brxeL1dffdnAkJAQz733PpQVFxfn/uyzj5OvvvqywU8++fyKESNG2Z98cmr3devWRk2Z8ujq+PgE1wcfvJM6Zco9/YYNG770vPMu2mS3262///5z0vTpry1PSUndZj57j8fDM89M63nDDbesCwuL8Nx++439L7/8wiFjxoyreOKJZ825c+fEPPPMtN577z2h8pBDDq94+eXpae+991a36667ee3gwUPsGzduCH/00Qd7P/bYQz0ff/yZNQ899HjWNddcMTAlJdVxww23bgC47bYb+mzYsCHypptuW5uR0d3x00/fJ9x++00DbrvtnjWHHHJYxdy5c6Lvv//O/ieddFr+UUf9q+Tvv/+Kff75p3rt6vmsWrUyJjk52fnkk8+vzMnZGD516kN96urqrDfffMfGvLzc0BtvvGbQ4YcfXXT99bdscLmcltdeeznjscce7rPPPvtWpqWlu7744tPERx55oO+ZZ56Te8ghh5ctX7406rHHHuoTHR3jPvXUM4ob71NSUhxyxRUXGcnJKY6pU5/KioyM9C5Zsjjy9ttvGnDMMccV3nHHfdkrVy6Leuqpx3tvnfHrr2el3n33A6vj4uLcQ4YMsz/44H09f/75++RLL71qw4gRo2r++OPXuOeff6qXw1Fv/c9/zi9s7p+N2bN/T5w48YDSJ554xszLyw174IF7+j311OOZ99wzZX1FRYXtf/+70hg0aHD1M89MX1FQUBD22GMPbpPNXypORNqIt9D3wUhFRFTb3MBiIWfPo4jPTKFXsu+vcllZKTU11URHx7TNPUVEZIcs4A12hpb47bdfYlevNqM//njWosbC4pprbshdvnxZzNtvv54+YsSodfn5eeGRkVHu3r371sfHx7snT742d8yYcVXx8YnumJgYT2RkpMdqtXobP1HfnnPPvTB33Lg9awAmTJhY/vnnn6Tdfvs966OiojwDBxp1r7/+auaaNasjDznk8IqePXvVX3vtTWsPPfSICoCePXs75syZXfbLLz8lAiQmJrlDQkK8YWFhnpSUVFd29prw33//Nempp15Y0dja07//gII1a7Ii33nn9YxDDjms4r333kobNMiovuqqa/IABgwYWJ+dvSbyyy8/TdvZ84mPT3Dec8+DayMiIryDBw+tKyoqyn3++ad6XX31dbkOh8Ny6qln5l1wwSUFVqu18XXm//TT98nZ2Wsi0tLSq99//+30ffbZt/Tiiy/f1JCrvra2xhYREbl54bPKyoqQK664eFBKSmr9o48+uSYiIsIL8NZbM9P79u1Xe911N+cADBw4qL60tDR0+vRnezbNOGbM2Ir99z+wynetSuvXX3+Rev75F288/vgTSxvuWZSXlxv+zjtvdjv77POaXZxERka677jj3vWhoaHeQYMG182e/XvJvHlz4wG++OKTRIfDYb3rrgfWxcfHuwcPHlpnt9duvPfeO/o39/o7o+JEpA143W5Cq6oAqI3ZrQlFdqmgtIa+3bsRHx9PRUUFubm5DBrUphOMiIjIViwWmHlErdmRunWtXLk8CuCUU44f0XS7y+WyOJ0OC8CZZ56z6dZbrx9w3HGHjxo4cFDN2LF7VBx55DGl8fHxzR5X0rdv/7rGX4eHR3ji4xOcUVFRm9+gh4WFeurrHVaAQw89omLevLnR06Y92j03Nyc8J2djZE7OxojExETn9q69fPnSKID//e/KLf7jc7vdlqioKDfA+vXrosaMGVfRdP+IESOrd1Wc9O8/oLaxWAAYOXJ0jcvlsqxZkxU+YsRI+4knnlzy2msvpa1fvzYiNzc3Yt267CgAj8dtAdiwYX3k/vsfVNr0mqec8k+LCcDMma9kut0uy9b3ys7Oitq669nYsXtUwbNbZMzM7LH52WZlrYpwu92WMWPGVzc9ZvTosdWfffZxelFRYbPf96enZ9SHhoZuzhMdHeN2uVwWX7Y1Uenp3eqa/hkYN26P6u1dxx8qTkTagMVm44v+/fj5k4/of+CxbXqv6px88pf9yjG9+vLGkoXk5uaoOBERCQKLBaJD8ez6yPbB4/FYIiMj3c8//8qKrfeFhYV5AMaP37Pmo49mLf7115/i5s6dE/fNN7NS3n779e733vvQ6v32O6CqOfcJDQ3ZokXJat1xFfXCC8+kv/XWzMxJkw4pHj16bNXJJ59W+NNPPyT8+utPSds73uv1Pe7HH39mZXR0zBbP3mazef85bstB9CEhobts5bJarVsc4/H43ouHh4d5V682I6644qLBffr0qx03bo+KiRMPrEhKSnJeeeXFQ5ref1cF44gRIyuPOurY4vvuu6P/jz9+Vzpp0iGVDefi8ex64H9YWPg2r9Gy1U09Ht9jaVpseJu8MqfTtc19mh77j6abWv48m0uzdYm0kU0lJWyw1xIRndCm94nIzcb+7ZfsH+XrPqbphEVEpDn69x9ot9vtNoej3tKvX//6xq9XXnkx44cfvk0AmDbt0e5//fVn7GGHHVlxyy13bnz//c+WpqWl1//443eJABaLpVW7sr377pvdTz31zLzbb79nw2mnnVU8btyeNbm5ORHeLe7yzz0HDjTsAAUFBWFNX8Mnn3yQ8tFH76cA9OvXv3bFimVb9HdesWLpLscGrVuXHdX4xh5g/vy/Y8PCwjy9e/etf/fdt1Lj4uKdzz//8qqLLrqs4OCDD60oLi4KBd9YHoDMzJ51prlii/s88MDdPa+++rLN3Z/2339S2ZFHHl0+YcLE0scee6hPZWWlFaBPn761W5+7ZMnCnWYeMGBQnc1m886fP3eL17pw4fzY+PgEZ0JCojs01Fd0VlZW2hr3r1+/NnxXz6KpgQMH1ebn54WXlBRvbuRYvHhBq421anFxYhhGiGEYhxiG8YBhGG8bhjHLMIyZhmHcaxjGvoZhaHo3EaCkxNdyGxO33Q97Wk1ln6F4bSEkuj30jYrSdMIiItIskyYdXNG7dx/7HXfc3P+3336Jzc5eE/7QQ/f1+PHH71Iau2Ll5uaGP/74w71+++2X2I0b14d98cWnicXFReEjRoysBoiMjPTU1NTYsrJWhzudzt1+D5icnOKYP39unGmuiFi9elX4Y4893P2vv/5McDqdm9+zRkZGegoLC8Jzc3NCBw8eWjd27PiKadMe6f3NN7Pi161bG/bii8+lf/jhexmZmZn1AKef/p9N69evi3zwwft6ZGWtDv/oo/eTZs36PHXHKXxKSkrCbrvthj4rVy6P+PLLzxLefPO17scf/38F4eHh3rS0dEdpaUnYDz98G7dx4/qwWbM+T5g2bWpvAIfD1yXu9NPPyv/jj98SX3nlxbS1a7PDP/30o8RvvpmVOnHiAeVb3+v662/Z6HA4LI88cn9P8HWnW7t2TfQjj0zJzMpaHf7VV18kzJz5SiZs2zLSKD4+3n3IIYcXv/HGq5kff/xBUnb2mvCZM19O/frrL1NPOOH/CiwWC4MHD7VHRER4Xn55erfs7DXhs2f/HjNjxvM9dnTN7TnmmONL4+LiXbfccn3fpUuXRM6e/VvM008/0XPXZzZPs4sTwzDCDMOYDGQD3wAXAYOAGGAMcDnwK7DRMIwrDcNoURUm0pmUffctB9TVMzgmlpi4th1z4gmLoKrnIAD2T05Vy4mIiDSLzWZj2rTnVg0cOKjmvvvu6HfBBWcNXbx4Yeytt961prHL1i233Ll+5MjRVVOm3N33rLNOGf7aay9l/uc/5+eccMJJpQCHHXZEWUJCovOCC84etnjxwt2eAeaWW+5cW19fb7300vOHTJ58yeB167IjL7vsqvVVVZUhGzasCwM49th/F23cuCHivPPOGOZ2u5kyZWr2PvtMLJs27dHe55xz+vBvvpmVcvnlV68/6aTTSgBGjBhpv/feh1YvWbIw9oILzh72wQfvpJ900mm7nPp2/Pg9y202m/fyyy8c8tRTj/U+4ohjCi+/fHIewNlnn1c4YcJ+pQ8+eF+/c889Y9jrr7/a7ZxzLshNSUl1LF26JBp842euuOK/67/44tPUc889fdirr87IvPDCSzf83/+dUrL1vVJSUl0XXnhZzg8/fJfy00/fxw0ZMqzuttvuzpo798+ECy44a9irr87oftRR/yoECA0N22Fr1U033b7h6KOPLXzppRcyzzvvjGGff/5J2sUXX7HhggsuKQCIjY313HDDrdm5uRsjzzvvjGHTpj3a6+KLr9jYkuIkOjraM23as2ZISIh38uRLBj/wwD19Tz759E3NvsAuWLzeXbfGGYaxJ/Aq4AbeAN41TXPNdo4bARwFXABYgLNM05zdWmFbSbbb7elbWlrTqhcNCbGSmBhNWVkNLleH6W7aIXWEZ53z6MPUrljGM2vXMOLyB0hO7d6m94vZYNLrx3codTh4uLqSDz78fLev2RGec2eg5xwYes6B0ZbPOSkpGpvNuhbo16oX9sO8efMGW622r9LSMqvDwiLqdn2GSMssWDAvKiQkxDtixCh747aPP/4g6fHHH+nz3Xe/zm9ca6WjcDjqIgoLc2M8HvcR48aNW7mzY5v7ymYCN5qm+dHODjJNcwmwBHjQMIyT8RU0g5p5D5FOo77A94FMfn0d+7RxywlATWZ/XKFhJAEx5WV4vd4dNvuKiIhI+7Zy5Yqol156ocd11920dujQYfZ169aFz5z5cvd9951Y2tEKk5Zq7qsbYZqmoyUXNk3zXcMwPm55JJGOzeN04C71zRxY6oHw8Mg2v6fXFkJlr8EkrVnMnjFxlJQUk5Kyy+60IiIi0g6deuoZxSUlxaHPPvtkr7Ky0tC4uDjXfvsdWHrFFf/NDXa2ttas4qSlhcnunifSkTkLiwCodbnwxMQF7L5V/UYQvmoBtR43OTkbVZyIiIh0UBaLhSuuuDr/iiuu3uXYmM6mWcWJYRi3t+Sipmne7V8ckY7PWegbE5ZXX0dMbELA7luT0ZcXah2sztnAsLwcRo8eG7B7i4iIiLSG5nbrunOrn734Bry7gWIgEQgDHEApoOJEuixHQQEAm+rqiE7ICNyNrVaiE32L3ebldfpWXxGRYPIA3q0X9hOR7Wv4u+KFXS9S2qyphE3TtDZ+AYcCJcCpQIRpmt1M04zAN0tXCXCN38lFOgF3RQUABfV1xLbxGidbS0z2FUM1a9bgcapXpYhIG9nk9XqdDkfdbk+dK9IVOBx1UV6v1wnsspuaP8P9nwJuM03z3aYbTdP8yjCMW4H7gLf9uK5Ip5B6ymk8t2wRsxbMZZ9xbT9TV1OJKRncYQxlWFEx9mVLiB49LqD3FxHpCsaNG1c5b9681yoryy4FksPCImpbe6V0kc7A6/VaHI66qMrKsjCv1zNj3LhxVbs6x5/ipBewYQf7ioB0P64p0qnkl5RQ63a3+QKMW0tMzmBNTTXDYuOo+muOihMRkbZzv9vtory85GyLxRKFr7u7iGzJ6/V6nV6vZwZwf3NO8Kc4WQRcaRjGd6ZpOhs3GoYRAVwPzPHjmiKdSnFxMQAxQejW9UFpMcdmdKdqwULS6uxYI9p+KmMRka5m3LhxHuDeefPmPeH10o1mdpUX6WI8QH5zWkwa+VOc3AR8DawxDOMr/mktOQqIBg7w45oinYKrqpKCF1/gUK+XVRDwlpPo2ARyXG7y6ux0B2qXLCZmj70CmkFEpCtpeNPV7DdeIrJzLa7yTdP8GZiAr4XkX8C1wJHAd8A40zQXtmZAkY7EWVREzbKlDGtorQh0cWKxWEhMzuDPMt8ikNXz/w7o/UVERER2hz8tJ5imOR84qZWziHR4robuXIX19VgsVqJj4gOeITGlG39mLebf3TKpWrSItPp6rOHhAc8hIiIi0lJ+FScAhmEciW9a4W7AzcAYYJ5pmutbKZtIh+Ms8RUnRfX1RMfGY7XaAp4hMTmDP5f8SbnVRoLDgX35UqLHaGC8iIiItH8t7tZlGEaUYRjfAF8A5wEn41uE8VJgnmEYw1o3okjH4SwuAqDIUR/wwfCNEpJ9E+Z96fBgPe9K4vcYH5QcIiIiIi3lz8wS9wPjgIOBFP6ZOu8sIBe4p3WiiXQ8zuJ/Wk4CPd6kUWKKbyHGP4sLKE7ogdMdlBgiIiIiLeZPcXIKcJNpmj/iW4YeANM0NwH3AhNbKZtIh9PYravQEcTiJLkbAGXFmyittFNtd2KzaYZLERERaf/8GXOSAKzbwb4yIMbfMCIdmdfrxVvvAHwD4gcHrVtXGgD1dbXYN65j09IfcSREkfx/pwQlj4iIiEhz+fNx6lLgjB3s+1fDfpEux2Kx0P+Rx3gxLpbiILachIVFbB7vYi/Kwfvnz5T99CMep3MXZ4qIiIgElz/Fyb3AWYZhfA5cgK9r1wGGYTwJXAY81Ir5RDoUqxU2lZTgJfBrnDTVOO5kncOJKzoOT10ddSuXBy2PiIiISHP4swjjJ8CZwEjgWXwD4h/Ft+7JJaZpvt+qCUU6EIvFQknDuJNgzdYFvumEAcpKCqjoNRiA6nlzg5ZHREREpDn8GiVrmuabpmn2AobgGwA/HOhumuaM1gwn0pFU/vUnGx59mFEeD9A+Wk7KSjZR1XuIL9/8+XhdrqBlEhEREdmVFg+INwzjB+Ay0zRXmqZpbrVvJPC6aZojWyugSEdRv2ED1UuWkGrzLbwY1OKkyYxdtak9cUXFEFJbjd1cQdSwEUHLJSIiIrIzzSpODMOYyD+tLAfiG2OStp1DjwH6t040kY7FVVYGQKnDQVh4JOHhkUHL0rTlBKuVyp6DSTL/pnreXBUnIiIi0m41t+XkAuBsfIPfvcAz+MaaeJsc07gY45utlk6kA3GVlQJQ4nAEtdUEILFhlfiKskLcbjeVvYeQkJeFLSF442BEREREdqW5xclk4GV8BcgPwOXA1lP/uIFyYFlrhRPpSDYXJ04HMUkZQc0SE5eELSQUt8tJZVkRtow+bDz9GnqN7oHVasHj8e76IiIiIiIB1qzixDTNCuBnAMMwJgHzgJiGVeExDCMR6GmaptY4kS7J6/Vu0a0rNcgtJ1arlcTkDIoLNlJWsonElAxq6lyUV9URHxWLx+MOaj4RERGR7fFntq5FwEfAT0227QUsNAzjY8MwolojmEhH4q6u2jwTVpnTEdRphBttnk64eNPmbZuKKqlauRKvVy0nIiIi0v74U5xMAYYBNzfZ9gNwHDAeuLsVcol0KO6qaqzR0ditVlxeL7FBbjmBpoPi830bPB4inrmfDQ/chyNnYxCTiYiIiGyfP8XJscC1pml+2LjBNE2HaZqf4StYTm6tcCIdRXj37gx++lmebfg52APiYTstJ1Yr9iTfFMO1ixYEK5aIiIjIDvlTnMQCZTvYVwCk+B9HpOOyWCwUlpYAEBPbDoqTptMJN6hsWC2+ct7fQckkIiIisjP+FCfzgfN3sO9cYLH/cUQ6LovFQklxEQAx8e1gzEnKtmNOqnsMxGuxUr9xI87iwmBFExEREdmuFq8QD9wLzDIM4298A+MLgVR8Y07G4VuIUaRLKf74A+rXraUfXhbQPrp1JTR067LXVmGvrSYyKgZ3RBS16b2I3rSO2oULiD/k8CCnFBEREflHi1tOTNP8FvgXvgUY7waeB+7BV+gcZ5rmV62aUKQDqFuzhpqlS4mx2rBYrETHxAc7EuHhkUTHJgBQXlKweXtVL8P3ff78YMQSERER2SF/unVhmuYs0zT3AKKBHkCcaZrjTNP8olXTiXQQzoYFGEudDqJj47FabUFO5JPQsFL8FuNOevrGndSuXoWrsjIouURERES2x6/iBMAwjCHARcCVQIJhGBMNw4httWQiHUjTBRjbQ5euRptn7GpSnLhi4inc+0gS/ncL4YnBb+ERERERadTiMSeGYdiA54DzAAu+7l3vAXcA/QzDOMA0zZxWTSnSjnnq7Hjr6wHfAow92sECjI22NygeoNjYg5SYZDJtVtxurRYvIiIi7YM/A+JvBc4ALgC+ABrf9fwP+BS4D/hPcy9mGEYa8ChwBBAJ/AxcZ5rm8ob9o4En8C3wWAJMM03zET9yi7QJV3mF77vVSp3H085aTnzrmjRtOWlUWmGn3uHxv/lUREREpJX5877kPOB20zRfxlcsAGCa5mLgduDQFl7vU6A/cCSwB2AHvjMMI8owjGTgW2AVvuLkDuAewzDO9SO3SJtwVfqKE7vV99epPaxx0uiflpP8bfbVmyvImf48tUsWBTqWiIiIyHb503KSDizcwb4coNnvzBqKj7XAvaZpLmvYdk/D9YcBhwD1wKWmabqAFYZhDARuAF72I7tIq/PW12ONjqbSbgcgth2scdKoccxJeWkhHo97i4H64etXUbdsNlVWL1EjRgUrooiIiMhm/rScZAFH7WDfgQ37m8U0zRLTNE9rUpikA9fiK3KWA/sBvzQUJo1+8B1qpPmRXaTVRY8YyZBnnuPF2lqgfaxx0iguIRmrLQSP20VleckW+6oaVouvWrgIr8u1vdNFREREAsqflpPHgecNwwgDPsM3IH6gYRiT8BUW1/gTxDCMF4AL8bWUHGuaZo1hGD2AJVsdmtfwvRe+BSD9EhLSuj3tbTbrFt+l7bTHZ22zWSgpKQZ8LSdWqyXIiXys1hASk9MpKcylorSApJT0zfvq03vijowBezXO7FVEDR2+xbnt8Tl3RnrOgaHnHBh6ziKyu1pcnJim+aJhGKnALcCl+GbsegtwAA+Zpvmcn1kex7eg46XAx4ZhTASi8BUrTdU1fI/w8z5YrRYSE6P9PX2n4uIi2+S6sq329KxdLg9lZb6WidS0dCIjw4Kc6B/Jad0pKcylqqJgm1y1fYcQu3wudUsWkbnvXts9vz09585Mzzkw9JwDQ89ZRPzlz1TCiaZpPmAYxtPAPkAyUA78aZpmqb9BmszOdVHDda/ANzg+fKtDG4uSGn/v5fF4qays9ff07bLZrMTFRVJZacft9rTqtWVL7e1Z57/6CvZNm+gTEoIJhITFYLc7gh1rs8ZxJ5tyN2yTq7z7QGKXz6V4zlwSTz4di+WfFp/29pw7Kz3nwNBzDoy2fM5xcZFqkRHpAvzp1vWXYRi3mqb5DvD17ty8YdzIwcC7pmm6AUzT9BiGsRzIBDYC3bc6rfHn3N25t8vVNv85ud2eNru2bKm9POuaVatw5OYQbrUSFh5JaFgEHo832LE2S0zx/ZUpLsjbJld1Rh88IaG4SkupXbuO8F69tzm/vTznzk7POTD0nANDz1lE/OXPRxCJQHEr3b878CZwQOMGwzBCgbH4BsT/AuzXsPBjo4MB0zRNv8ebiLQmV0U54FuAsT0Nhm+UnOorTkqLtq3nvbYQqrv3x5reDepatzVRREREpKX8aTl5AnjYMIz/AUtN0yzajfsvwtf68oxhGBcCZfjGsiQCj+EbX3I9MMMwjIeAPYGrgUt2454ircbrcuGprgag3OkksR2tcdIoKS0TgNLifDweD1brlp9J5O53AqG9U4kelIrLpdXiRUREJHj8KU7OBnoD3wEYhrH1fq9pms26rmmaXsMwTgEeAN4BEoBfgf1M09zQcP3DgWnAfCAf3+rxr/qRW6TVNS7A6LFYqHK56Bnf/oqThKR0rFYbLqeDqooS4hNTt9jvDQmlvKoOu8NNmA287adHmoiIiHQx/hQnr7dmANM0K4DLGr62t38uvgHyIu2Oq9xXnNTZfH+VYuLazwKMjWw2GwnJ6ZQW5VFSmLtNcQJQWV1PZUU1SVYHlna0iKSIiIh0Lf4UJ2uBH0zTzGntMCIdjbthvEk1vuaGmHbYrQsgOTWT0qI8Sovy6GeM3mZ/1NrlFM/8mPohg+k++X+BDygiIiKCfwPipwLjWzuISEfkdTqxRcdQ3rDCemw77NYFkNww7qSkKG+7++sTUrG4nFQvX47bbg9kNBEREZHN/ClOCvGNDRHp8mL33Ishzz7HjFLfEj/tteUkafOMXdsvThzxKTjik8Htpm7FskBGExEREdnMn25d04GnDcOYBCwFCrY+wDTN13Y3mEhH4cVLaalvdfiYdjpeIznNV5yUbGc64UaVPQaRUjGb6oULiB6rxlEREREJPH+Kk0cbvp+1g/1eQMWJdBkOh4vKijKAdrnOCUBSqq9bV1lxPh6PG6vVts0xVT0NUpbNpmrRQtJcLggJC3RMERER6eL8KU76tnoKkQ4q/4VnsZeV0TsigvV1dUTHxAc70nbFJ6ZgCwnB7XJRUVZMYnL6NsfYU3vgjoiCmhrqsrMIHTo0CElFRESkK2txcWKa5vrGXxuGEQXEASWmaTpbM5hIR1C7ysRdXo7NYiE6Nn67LRLtgdVqIzGlG8WbNlJalLvd4gSrlarMgSSsWUTtooXEqjgRERGRAPNnQDyGYexnGMZsoBLIBeoMw5jdMA5FpEvwejy4KysBKHM6222XrkbJDV27Sgq3PygeoHzAaOoPPJr4SQcFKpaIiIjIZi0uTgzDmIBvdfgE4B58iyfeCyQBXxuGoQUTpUtwV1eDxwNAhcvZbmfqarSrGbsAajN6UzR0H1yJqVgsgUomIiIi4uPPmJN7gV+Bw03TdDduNAzjLuBr4C7gsNaJJ9J+uat8rSaOkBDcXm+7namrUXJDcVJSuOMZuwCqah1UVjtIiI4ORCwRERGRzfzp1rUn8ETTwgTANE0P8GTDfpFOr7FLl72hiaGjtJzsbDphABwOin7+mfx33glAKhEREZF/+FOcVAGhO9gXBqgziHQJrobipKqha1d7H3OSktETgLLiTbicO56/wuaoI/TTNyn6/HMcZWWBiiciIiLiV3HyO3CzYRgxTTcahhEL3ISvy5dI5+d2Y4uJoczhACC2nXfrio1LIjwiCq/Xs9PWE1d0HPaU7uD1Uvb3vAAmFBERka7OnzEnNwLzgGzDMD4HNgEZwDFABHBu68UTab/iJuxLyoEHcPnBBwLtv1uXxWIhNaMXOetWUlywkfTufXZ4bFWPQUQW51EyZy7dxmuOCxEREQmMFrecmKaZBewD/AgcBVzb8P1HYG/TNBe3akKRdszr9VJWVgLQ7gfEwz9du4ryN+z0uKqeBgDlixbjqa9v81wiIiIi4Oc6J6ZpLgcmm6aZYZpmGDAUuK9hu0iXUVVTTX2dHWj/Y04AUtMbipOCjTs9rj4xDWdMAl6Hg9oV+mstIiIigeHPOicJhmF8C/zUZPOewELDMD5uWDVepNPLn/4cOQ8/TN+oaELDIggPjwx2pF1qbDkp3rTz4gSLhaqegwCoWjC/rWOJiIiIAP61nEwBhgE3N9n2A3AcMB64uxVyibR79qzVeNZmE2KxtPvB8I1S03sBUFyYg8fj3umx1b18XbscFRVtnktEREQE/CtOjgWuNU3zw8YNpmk6TNP8DF/BcnJrhRNpr7xe7+Z1Tsqd7X91+EYJyWnYQkJxu5yUlxTu9NjajN6UXHQLyZdOxmrVDOEiIiLS9vwpTmKBHS1+UACk+B9HpGPw1tfhbVgrpNLl7BDjTQCsVhspaT0AKCrY+aB4rDaqQ6Ior6rHZvNreJqIiIhIi/jzjmM+cP4O9p0LaLYu6fRcFb5WE5fFQr3H0yFm6mrU7HEnDQpKa3DW2tsykoiIiAjg3zon9wKzDMP4G/gIKARS8Y05GYdvvRORTs1d5StO7FZffd9RunVBkxm7Nu2i5QTA68H6xvOs2riGvvfeT2haehunExERka7Mn3VOvgX+BXjxDX5/HrgHX6FznGmaX7VqQpF2yNUw3qTK7RtUHhvfgYqTbr5B8buaThgAixW3wwkeN7VLFrVxMhEREenq/F3nZJZpmnsA0UAPIM40zXGmaX7RqulE2iuXC1tsLKUOB9CxWk5S0v/p1uX1end5/D9TCi9o01wiIiIi/nTr2sw0zTogr5WyiHQYsXvuRfLEfTl/370AiInrOGNOklMzsVpt1NfVUlleTHxi6k6Pr+5lkP7X19SuMnFXV2OLiQlQUhEREelqNAWPiJ9cbhcVFb6J62I6ULeukNBQUtJ9M3YV5K7d5fHO2ETqE9PA48G+bElbxxMREZEuTMWJiJ9KSkrwejxYLFaiY+KDHadF0jP7AlCQt+viBKCyh69rV/VCrRYvIiIibUfFiYgfNr08g8Jp0xgYHUNUTDxWqy3YkVokvbuvONnUjJYTgKqevtXiqxYvwdOwvouIiIhIa9utMSciXVXdmiwsm/IJs1o71ExdjVraclKX0p3q/iPI3GMUVnY9iF5ERETEH34VJ4ZhpADXAYcC3YDDgROAhaZpftJ68UTap8aphMudzg41U1ejxuKkpCAXp9NBaGjYzk+wWNgw8QTShmYQFh2Jw+EOQEoRERHpalrcrcswjL74VoG/CMgB0vAVOYOADwzDOLpVE4q0M16XC09tDQCVLicxcR2vOImNSyIyOg6v19O8xRgbFJTW4PKo5URERETahj9jTh7Ftyp8X+DfgAXANM0zgE+Bm1stnUg75KqqAsADVLtcHWoa4UYWi4X07n0AKMjNbvZ51fmFFHz1LY58zSAuIiIirc+f4uRg4B7TNMthm87nzwPDdzeUSHvmrvJ16bJbLHihQ7acQJNxJ7nrmn1O9C9fUPb2TKr/+rONUomIiEhX5u9sXa4dbA9n24JFpFNxV1YAUOX2jbuIje94LScAGS0cFA9Q2Thr1/x5bZJJREREujZ/ipNfgZsMw4huss1rGIYVuBT4vVWSibRTXqcLW2wsZQ4HQIccEA9bTifs9TbvM4XqzAF4LVbqc3NxFhW2ZTwRERHpgvwpTm4EhgBZwEx8LSXXAvOAicAtrZZOpB2KGTOWIU8/wwNrVvl+7qDdulK79cZqtWGvqaSirKhZ53jCI6nN6A1A7aIFbRlPREREuqAWFyemaS4FxgM/AJMAN74phbOACaZpLmzNgCLtUU1NDXX2WgBiOmi3rtDQMNK6+wqNvA2rmn1eVU/favFVC7RavIiIiLQuv9Y5MU1zNXBGK2cR6TCKiooBCA2LIDw8Mshp/Ne91yA25WSTt2E1Q0dPbNY5VT0NMv76mtpVq3BXVWGLjW3jlCIiItJV+LsIowUYDUSzndYX0zR/2b1YIu1XwcxXqMjKYkhMLJsiYoIdZ7dk9hrE/D++Inf96maf44xJoD45g/CyIhwb1xM5VBP0iYiISOtocXFiGMaewHtAj4ZNlobv3oZfewFbq6QTaYfqsrOx5eYQYbN12PEmjbr3GghA3sbVeL1eLBbLLs7wydn3eAaN6EvcoO44nVotXkRERFqHPy0njwFO4Bx8K8R7WjOQSHvnaljnpNzpJLYDLsDYVFr33thCQqm311BalEdyWmazzqtPTKOk3oLTrb/+IiIi0nr8KU7GAqeapvlJa4cRae+8Hg/uhhXiK51OUjvoYPhGNlsIGT36kbvOJG/D6mYXJwDlVXXU1LmICbPipXktLiIiIiI7489UwoWotUS6KE9tLTQsvljhchLbwbt1gW/cCUBuC2bsArBkm+Q/cA+FM19ti1giIiLSBflTnDwN3LjVIowiXYK7oUtXHeDyeonp4N264J9xJ7nrW1acgAXPxnVULpiP16PPK0RERGT3+dOtayAwFNhkGMYyoHar/V7TNA/e7WQi7ZCr0lecVDW0nnT0AfEAPfoOBiBvw2pcTichoaHNOq8mozeesAiorKR+bTYR/Qe0ZUwRERHpAvxpORkALAT+Buz4Zuhq+uXPNUU6BK/TiS0ujlJHPUCHHxAPkJyaSVRMPG6Xk7yNzZ9SGKuNqkxfQVKj1eJFRESkFbS45cQ0zUltEUSkI4gePoL+Ux/nxNFDgY67OnxTFouFXv2GsXLxH2zIXkavfkObfW5VT4P4tUupmj+f5H+f1IYpRUREpCtQK4dIC5WWlgBgtdqIio4LcprW0au/ryDZsGZ5i86rzhyA12rDsSkfx6a8togmIiIiXUizWk4Mw3AD+5im+ZdhGB58Cy3uiNc0Tb9WnhfpCIqKCgGIjkvAau0c9X3v/r5V3jdmL8fj8TT7dXnCwqnN6EN03hpqFy0kLKN7W8YUERGRTq65RcTd+BZcbPz1zooTkU6r8O03cS5dzMi4eIo7wXiTRhk9+hEaFo69torighzSuvVq9rnlfYcRGR9NZO/ebZhQREREuoJmFSemad7V5Nd3tlkakXaubt1awjZtItJq6xQzdTWy2ULo0Wcwa1ctYn3WkhYVJxUDRhOauA8DB3drw4QiIiLSFTS3W9f+LbmoaZq/+BdHpH1rXOekwuXsFGucNNVn4EjWrlpEtrmAPfY7ukXnVlTVU213kRQThtutNU9ERETEP83t1vUT/3TlsuzgGG/DPi9g271YIu2Tu2Gdkwqnk/ROVpz0HzyGH7+YydpVi/F43FitzR865nR5KFi9llBPJVGjx7VhShEREenMmvvuQ9MHS5fncTrx2O0AVLqcxMR3nm5d4FspPiIyhjp7NXkbVtOr35BmnxtWXgSvPktuaCj9H38Ka3h4GyYVERGRzqq5Y05+busgIu2du6rK993rpcbt7hQLMDZltdroO2gkKxb9wZqVC1pUnDjiU3DGJhJaVYZ9+VKix6j1RERERFrOr3lQDcNIMQzjQcMw5huGkW8YxkjDMO4wDOO41g4o0l40jjepcrsBOt2YE4B+g8cAkG22cMV3i4XKngYA1fPntXYsERER6SJaXJwYhtEXWAxchG964TR8LTCDgA8Mw2jZSFqRDsLrcGCLi6fUUQ/QqWbratTfGAvAxuwV1NlrWnRuZe/BAFQtXIDX5Wr1bCIiItL5+dNy8ihQCPQF/k3DAHnTNM8APgVubrV0Iu1I5MBBpN11NzcuXwJ0zuIkKbUbyWk98HjcrF42t0Xn2lN74oqKwWO3YzdXtFFCERER6cz8KU4OBu4xTbOcbRdjfB4YvruhRNqr4uIiACKj4wgJCQ1ymrYxZNQ+AKxYNLtlJ1osVPb0tZ7UqGuXiIiI+MGvMSfAjvpshKPV46UTayxOYjthq0mjwSMnALBq2VycTkeLzq3q5StOqpcvw+vVPwUiIiLSMv4UJ78CNxmGEd1km9cwDCtwKfB7qyQTaWeKP/qA0A8+YHxCIjHxnW8wfKPuvQYSm5CMo95O1vL5LTq3JqM3RUecQdpt92Cz+fvZh4iIiHRVzV9l7R834itAsoAf8bWUXAsMBQYA+7XkYoZhJAH3A8cAcfgG299omuZvDftHA08A44ESYJppmo/4kVtkt9StX09UcTExthAcsZ235cRqtTJ4xD7M/fVzlsz7lT6DxrbgZBvF6f2pcnhJsFnxeNxtF1REREQ6nRZ/tGma5lJ8hcIP+BZndAOH4itWJpimubCFl3wb2Bs4FdgDmA98YxjGYMMwkoFvgVUN97wDuMcwjHNbmltkdzVOJVzhchLbiVtOAIaN9X3GsPjvX3A46lp0rhfIL67B7UVdu0RERKRF/Gk5wTTN1cAZu3tzwzAG4Cts9jVN84+GbZOBI4HTATtQD1xqmqYLWGEYxkDgBuDl3b2/SEs0FieVTidpnXCNk6Z69RtGQnI65SUFrFw0m+HjDmzR+a6fviHrlSV0P/9CIvr2a5uQIiIi0un4uwhjP8Mwhjb8OsEwjKcNw/jUMIyzWnipYuBoYPPUPqZpevFNT5yEr4vYLw2FSaMffLc10vzJLuIPr9eLu7JJy0knHhAPvq5do/c8GIAFc75r8fmWTTm4NuVTu7BlY1ZERESka2txy4lhGEcAnwBP4htr8hxwIrAEeMUwjDDTNGc051oN0xF/udX1TwL6A18D9zVct6m8hu+98K234peQkNYdrNs4+FeDgNteMJ61227fvLBgpctFXEIyVqslYPcPhjH7HMJPs94ke+VCKsuLSEhq/ucBVb2HELduOZV/zyX1/07CYuncz2p36N+OwNBzDgw9ZxHZXf5067od+Aa4yzCMeOAE4AHTNG83DONeYDLQrOJka4Zh7Au8BHximuZnhmE8hq9bV1ONHeAj/LkHgNVqITExetcH+iEuLrJNrivbCuSzttf5Wk3sbjcOj4eU9HQiI8MCdv9giOzRmwFDxpC1YgHz//iSo0+6qNnnugcOw/vbJzgKCgivLCG6T+82TNo56N+OwNBzDgw9ZxHxlz/FySjgWNM0qwzDOLnhGu837PsW+J8/QQzDOA54E/gTOK1hsx3f2ilNNRYlNf7cB8Dj8VJZWevv6dtls1mJi4ukstKO2+1p1WvLloLxrOsKyrDFxVFWWABAaFgMdnvL1gDpaKxWCxMP+TdZKxbw509fMPHQUwkLb+5nAhZqMvsRs2EVeT/9RspxKW2atSPTvx2BoeccGG35nOPiItUiI9IF+FOc2JucdyRQYJrm4oafM4Dyll7QMIwr8E0X/CFwpmmaja0lG4HuWx3e+HNuS+/TlMvVNv85ud2eNru2bCmQzzoksycR/7uWq48+jNCwCELDIvF4Ov9MVENG7UVSSjdKi/OZP/tb9tz/mGafW9FzMDEbVlHx91wSjj62DVN2Dvq3IzD0nANDz1lE/OXPRxC/AdcahnEacDK+ggLDMMbhm+r3t5ZczDCMS/GNX3kKOKVJYQLwC7CfYRi2JtsOBkzTNP0ebyLij82rw3fyaYSbslpt7DPpeAB++/bdFq0YX9XTwGuxUr9xI86GFicRERGRnfGnOPkvkAm8AawF7m3Y/gW+Llc3NvdChmEMwtdi8hHwAJBmGEZGw1c8vvEnccAMwzCGGoZxDnB1w7EiAdVYnMR08pm6tjZ23yOIS0ihsryYeb9/uesTGnjCI6nqM4TwvSZ0+skDREREpHX4swjjWmAY0M00zeGmaW5q2HU8MMQ0zTUtuNz/AaH4BtXnb/X1REPryOGAgW9xxjuA60zTfLWluUV2R+mXn5Mw6yv2TUomtpOvcbK10NAw9j/CNwzsl6/fwV5b3exzc/Y/kZrDTiK8W7e2iiciIiKdiL+LMHqBgq22/WkYRrRhGJNM0/yqmde5H7h/F8fMBfbxJ6dIa6nfuIHY8nLiQkJxJyQHO07Ajdn7UP788WOKCzby/Wevcswplzf73JLKOuocbkLUeCIiIiK74M86J72B54EDgB3NpWrbwXaRDslVVQVApctJbHzXK05sthCOPuVyXp12I3///iUj95hEr35Dm3VueaWdkpWrSAizEN5/YBsnFRERkY7MnzEnjwETgBeABcDvwCPAYsCLr4uWSKeyeXV4p5O4LlicAPQdOJLRex0CXi8fvPoQ9tqqZp0Xay6g4tH7KXz3nTZOKCIiIh2dP8XJAcCtpmlOBl4G6k3TvAEYD/wMHNeK+UTaBXeVrzipdLmI7YLduhodceIlJKZ0o6K0kA9fewS3273Lc6p6DMSLBfuaLJwlxQFIKSIiIh2VP8VJDLCw4dfLgdEApmm6gaeBg1ojmEh74fV4cFf7BoH7Wk667oKCEZFRnHTeTdhCQlm9bC6fv/MkXu/O13txR8Zgz/CtEF87f14gYoqIiEgH5U9xko9vsUWALCDJMIzGqXhKgfTWCCbSXrirq6HhDXiVy9ml1jnZnu49B/B/59yAxWJlwexv+Pydp/B4dt6CUtHbNz6lcu6cQEQUERGRDsqf4uQL4B7DMCaYprkRyMG3KGMscB67uXK7SHvjsdshJoZyp4Pw6FhCw8KDHSnohoyawL9OuwosFub9Pou3p9+70ymGK3sPxmuxYM/OxtmwXoyIiIjI1vwpTm4HyoG7G36+GZjcsO0M4NHWCCbSXoSlp1N66mlctGh+lx0Mvz1j9zmMkxu6eK1aOofnHryC9WuWbfdYX9euPgDUzP87gClFRESkI/FnEcYS0zT3As5q+PkN4EB8K8MfZJrmc62aUKQdKCz0LesTo+JkC0NHT+S8qx8mMSWDitJCXn78Oj5543Fqqiq2Oba8oWtXzbLtFzAiIiIifi3CCGCaZr5hGIOBRCDfNM2HWy+WSPvSWJyo5WRbmb0HcfH1T/H1Ry+wYPY3LPjzG1Ys+oMDjzqdPfY7BpvN989MZZ+hRHbvRt/DJwQ5sYiIiLRX/nTrwjCM8w3DWA8sA34DVhmGsc4wjNNaNZ1IO1D23bcMWbiQSSmpXXoa4Z2JiIziuNOv5vxrHiWjRz/q7NV89cELPHP/pZhL5+D1evGER1KYkElVnYuQEL/+6REREZFOrsXvEAzDuAKYDswD/gMcCZwLrABeNwzjpFZNKBJkjrwcUuvqSQoNU8vJLvTsO4SLrnuCf516FdGxCZQU5vLW83cx8+lbKMhbi9vtZVNJzS6nHxYREZGuyZ9uXZOBp0zTvGqr7a8ZhvEicCfw3u4GE2kvXE1Wh09Vy8kuWa02xu17BMPG7s+v37zDnz99RLa5kOemXMm4CYdz4YABrMrNotf1NxCalrHrC4qIiEiX4U/fih7AZzvY9xbQz/84Iu2Pu6oKgApX116AsaUiIqM49LhzufyW5xk6eiJer4e/f5/Fxj9/wF1eRvU8zdolIiIiW/KnOJkLHLyDfWOAxf7HEWl/XJW+macqXS6NOfFDUko3Tj7/Zs6Z/CDdeg7g9+JCAFZ89AFlZWVBTiciIiLtSbO6dRmGsX+TH98CHmtYdPFdYBO+GbuOAK4CLm7tkCLB1Nitq9rjISo6LshpOq4+A0Zw4bWPs+inT3BtWEyKByafeTI3P/oEgwcPDXY8ERERaQea23LyE/Bjw9dTQBhwKfADsBz4Hd/ijAnA260dUiRYPA4H1NcD4I2OxWrVLFO7w2q1MuagEyhP7QHAEK+X8847k99++yXIyURERKQ9aO6A+EltmkKknfLYa3FHRuKsriYkNinYcTqNuiF7wa8fcnD3HryTl8PkyZdyzz1TOOqofwU7moiIiARRs4oT0zR/busgIu1RSHwCi/bdlylT7mXYmInBjtNpVPUchCc0jASng3MPP4qXv/6SW2+9AavVyhFHHB3seCIiIhIkzeqjYhjGL4ZhjG7JhQ3DGG8Yxm9+pRJpRxpXh4/RGietxhsaRtnAMYTtdxBXXH8jJ5zwf3g8Hm655Xp++OHbYMcTERGRIGlut64ngK8Mw/gbeB341DTN2q0Pahgkfzi+QfFjgMtaK6hIsDQWJ1qAsXUV7HE4Ed3i6J+exm233Y3H4+GTTz7kppuu5cUXX2PEiFHBjigiIiIB1txuXR8YhvEzvkHvLwIhhmEsB9YCNfgGwvcEhgPOhmPONE2zoC1CiwRK+S8/cdCmApyp6URrGuFWV1pZR3Wdi+gwG7fddjelpSX8+uvPXHXVpbz22tv07Nkr2BFFREQkgJo99ZBpmsUNq8L3xrdK/Cp8BcleQDKwArgQ6Gma5lUqTKQzcOTl0gMLyWFhWoCxDVRV1VE0fxGVv/5CSEgIDz44lcGDh1JWVsp//3s5drs92BFFREQkgJrbrWsz0zRLgOcbvkQ6NVeFbwHGcqeT/vGarau1RZbkUfflS+SHh9N//J5ERUUzbdqznHbaiWRlrea+++7knnumYLFYgh1VREREAkCLNojsRH1pCeArTuISU4OcpvOxp2TijE3EW19P7eKFAKSlpTNlyqNYrVY+//wTPvro/eCGFBERkYBRcSKyE46yMt/3sHBCQ8OCnKYTslgo7zMMgKo5f27evMcee3HFFVcDMGXKPWRnrwlGOhEREQkwFSciO+GtrvZ9j4kLcpLOq6LfCACqlizG3fC8Ac455wImTJiIw+Hg1ltvwOl0BiuiiIiIBIiKE5Ed8DidWB0OAKyaRrjNOBJSqU/OALebmvl/b95utVq54477iIuLZ/nypcyYoWFuIiIinZ2KE5Ed8NTWUBcaQp3bTViCZupqS+V9hgNQ8cfvW2xPT0/n5ptvB2D69GdZsWJZwLOJiIhI4DRrti7DMM5uyUVN03zNvzgi7UdIfAJvJSQwa9bnHHnihcGO06lV9BtB2vzvcVVV4amzY42I3LzviCOO5ocfvuObb2Zxzz13MHPmO9hstiCmFRERkbbS3KmEX2nBNb2AihPpFAoK8gGIiVO3rrbkiopl3fGXMm7/UYTFROJyebbYf8MNt/DHH7+xfPlS3n33TU477awgJRUREZG21NxuXX1b8NWv9WOKBEd+vq84iUtMC3KSzs8el0J+cQ3e7SxpkpycwuTJ/wPgqacep6BAa7yKiIh0Rs1qOTFNc31zL2gYhlZLk06h9IfvuTQ+kV9dbuITNeYkEIrL7VRX1RHmsGOLi99i34knnsxnn33E4sWLePjh+3nkkSeClFJERETaSotXiAcwDONU4AAgDGgsRqxANLAP0KNV0okEUWV2FoNjYllRXUVMXGKw43QNS+ax8aVZxI8eQ/r5F22xy2q1csstd3H66Sfy3XdfM2fObPbaa58gBRUREZG20OLZugzDuAN4EzgVOBk4HjgaOBs4AfisFfOJBI29uAjwLcBotWoAdiDUxySC3U7lvL9x19Zus98wBnPSSacC8OijU3C73YGOKCIiIm3In6mE/wO8DiQBjwGfmaaZDuwBlACa61M6BWd5OQCeyJjgBulC6lK640hIxetwUDN/7naPueSSK4iNjWPVKpNPPvkwwAlFRESkLflTnGQCM03T9ALzgAkApmnOA+4DLmi9eCLB462p8f0iNiGoOboUi4Wy/iMBqPz99+0ekpCQyEUXXQbA008/QU1N9XaPExERkY7Hn+KkBt90wQCrgb6GYTQuSrAQ34xdIh1eSH0dANYETSMcSBX9RuK1WKhdvQpHwabtHnPqqafTq1dvSkqKmTHjhQAnFBERkbbiT3HyF76uXQBrABdwSMPPQ4D6VsglElSe+npCPb4aPDQxNchpuhZXVCw1mf0BqP7zj+0eExoaxn//ez0Ar7/+Cvn5eQHLJyIiIm3Hn+LkfuAUwzA+M02zHt/4k1cNw/gAeBT4ujUDigSDx15LhcdDrctFRFJGsON0OeX9R/m+//E7Xo9nu8cceOBBjB+/Jw6HgxdeeCaQ8URERKSNtLg4MU3zF2A88E7DpiuA94HBwHvAVa2WTiRIQhISuWFdFucs/JvoeLWcBFpVT4PKcQeSMvlabCHbnynNYrFw5ZX/BeDTTz9i3brsQEYUERGRNuDXOiemaS4GFjf8ug64aOdniHQsdXV1lJaWAhATrzEngea1hZAzfH/Sw+JItlnxeLY/ZfCoUWM44IBJ/Pzzjzz77FM8+ODUACcVERGR1uTvIozxwEH4Fl3cpvXFNM3XdjOXSFAVFOQDEBERSYSmEg6avKJqeqTGbF7pdXsuv/xqfvnlJ77++kvOPfdCBg8eErB8IiIi0rpaXJwYhnEkvu5bUTs4xAuoOJEOreTbb7h78DCW4es+JMFRvXoVG759m/jBg0g47MjtHjNokMERRxzNrFmf8/TTj/Pkk88HOKWIiIi0Fn8GxD8ArAAOAPrjmzq46Ve/VksnEiR1uTkMjoklPSYu2FG6NGtpCfWLF1D2w/c7HBgPcOmlV2Kz2fj1159ZsGB+ABOKiIhIa/KnW9dg4DjTNH9t7TAi7YW7ogIAb0x8kJN0bZW9h9Bt7lc4i4uxr1hO1LDh2z2uV6/eHH/8iXzwwbs899yTPP/8ywFOKiIiIq3Bn5aT9YA+TpZOzdKwOrwlISXISbo2b0go5X0bVoz/9eedHnvBBZcQEhLKnDmz1XoiIiLSQfnbresOwzD6tHIWkXYjwuUEIDQ5PchJpGzQGAAqF8zH1dCitT3dunXn2GOPB2D6dK17IiIi0hH5063rDCATWGMYRhFQu9V+r2ma/Xc7mUiQeD0eohvmhwpL6xHkNFKfmI49rSeRhRup/vN3Eg4/aofHnn/+xXzyyYf88cdvLFmyiBEjRgUwqYiIiOwuf1pOcoCP8c3INQv4eauvX1ornEgwVBduwmax4PF6iUzvFew4ApQO8LWelP30004Hxmdm9uCYY44D0KrxIiIiHVCLW05M0zy3LYKItBeb1q+nqL4ei9VCSEQ0DueO3wxLYFT2GUpK9kISD9wfK168Ozn2/PMv5rPPPubXX39m+fKlDB26/UH0IiIi0v74s87Jzj5K9gDVpmmW+51IJMjy6uxMXrKAgYOGcKZLhUl74A0NY83h5xA/JJ2Q8DCczu2vGA++mbuOOupffP75J7zwwrM8/vjTAUwqIiIiu8Ofbl3rgLU7+FoPlBiGUWQYxq2tFVIkkPLycgFIy+iOd2cf0UvA5RVWU9+MgvGCCy7GYrHw00/fs3LligAkExERkdbgT3HyH8ABfAOcCxzZsO0zfKvD3w28AtxqGMalrRNTJHByc3MASE7JCHIS2VpJcQX5335PxQ/f7vS4Pn36cXjDwHnN3CUiItJx+DNb12nA29sZe/K6YRjPAuNM0zzWMIxy4FLg2d3MKBJQmdnZ3D14GDU2W7CjyFbCc9dS8/1b2COjiJ2wH9aIiB0ee+GFl/L111/y/fffsmZNFv37DwhgUhEREfGHPy0nBwJv7mDfh8DBDb/+DdCUwtLhxNTWMjgmlviI6GBHka1UZw7AGZeEx15L9V+zd3ps//4DmDTpEABefnl6IOKJiIjIbvKnOCkBdrR4wCigsuHXMUCNP6FEginC5QIgLKVbkJPINiwWSozxAJR9/x3eXQwKOu+8iwCYNevzzd31REREpP3ypzh5A7jbMIzJhmFkGoYR2vD9SuBO4A3DMBKBq4E/Wy+qSNurrKwgvqE7V3i6FmBsj8oHjMYTEkp9bi51q8ydHjt8+Aj22msCbreb1157KUAJRURExF/+FCe3Am8DU4ENQF3D96n4Cpeb8Q2SH9NwrEiHsXHdWhJCwwDwxCYHOY1sjycsgor+IwEo/+G7XR5//vm+1pOPP/6AkpLiNs0mIiIiu6fFxYlpmi7TNM8DBgEXA7fgm61rkGmaF5um6cC3cnymaZqLWzWtSBvLXb0KALfXS31oeJDTyI6UDN4TgKr583AUFOz02D322Ivhw0dSX1/PG2+8Foh4IiIi4id/ZusCwDTNNcCaHewr8zuRSBCVrF9HH8Bus7GTdf4kyBwJqVT3GEhiTBhWdr7uicVi4fzzL+a//72cd999k3PPvZDY2NgAJRUREZGWaFZxYhhGNnCCaZqLDMNYi289kx3xmqapWbqkQyrOz6ewvp6Q5GScWh2+Xdt44ElYeybTPzMNj2vnleQBB0yiX78BZGdn8e67b3L++RcHKKWIiIi0RHO7df3MP7Nw/byLr19aOaNIwMwtyOeKJQtYt98hwY4iu+C1hVBQUkN5dT02287/KbNarZx33oUAvPHGa9TV1QUiooiIiLRQs1pOmi64aJrmOW0VxjCMW4FDTNM8sMm20cATwHh80xhPM03zkbbKIF3bxo0bAEhKy6Q2yFlk1+z1LnKycnCtXUjCEUdhbZjMYHsOP/wonnlmGnl5uXz88QeceuoZAUwqIiIizeHPbF0YhhFrGEZmw6/DDMO4zjCMaYZh7O9vEMMwrgbu3mpbMvAtsApfcXIHcI9hGFuvTi+y26qqqigrKwUgPikjyGmkWbxevC9No/iTj6mes/OZy0NDQ/nPf84H4NVXZ+B0OgORUERERFqgxcWJYRh7AuuBKxs2TQMeBM4EfjAM49gWXi/TMIxZwL3A1osWXATUA5eaprnCNM2XgceAG1qaW2RXNm5cz5V9B/DA8FGEb8oLdhxpDouFkkHjACj75iu8np2PEzruuH+TlJRMfn4eX331RSASioiISAv403JyH7ASeN4wjEh8RckzpmkmATPwTS3cEmOBMmAkMGerffsBv5im6Wqy7QfAMAwjzY/sIju0ceMG+kdH0z8iEucuBlhL+1E+cCyesHDq8/KoXbpkp8dGRERw5pn/AeDll6fj2UUxIyIiIoHlz1TCewGnmKa51jCMY4BIYGbDvrfxFSvNZprmZ8BnAIZhbL27B7D1u43Gj7R7AYUtuVdTISF+9WjbocYBubsamCu7r62edc7GDewV5lvbxBkdj9ViadXrdzRWq2WL7+1WRATlg8aStHQ2ZbM+J27MaCw7+b077bQzePnl6WRnr+HXX3/k4IMPDWDYbenfjsDQcw4MPWcR2V3+FCcefF2tAI4CyoG/Gn6Og1YdRxzV5F6NGqfZifD3olarhcTEaL9D7UxcXGSbXFe21drPujRvA2HWhv9Q4xKJdO1sxuyuIzw8NNgRdql23P4krphL7erVWHPWkjByxA6PTUyM5pxzzuHJJ5/k5Zenc+KJx+20mAkU/dsRGHrOgaHnLCL+8qc4+Ru4wDAMO3AK8Llpmt6GblY3NuxvLXZg62W6G4uSGn8v6vF4qaxs3bmYbDYrcXGRVFbacbvVVaQttdWzLlm7HmyhuMLDqaxz4ejiqzBarRbCw0Opr3fi8bTzQs0aQfmgMSSumMv6t97F27PfTg//v/87nRdeeIGFCxfy1VffsffeEwIUdFv6tyMw9JwDoy2fc1xcpFpkRLoAf4qT64CvgFOBInwD2QGW4hvDcnjrRANgI9B9q22NP+fuzoVdbbTAntvtabNry5Za+1nXFxVBRneIT6De4cLbzt+PB4rH423/xQlQNHQC8dlLsHXvgaveAbYd//MWH5/Iv/99Em+99TrPP/8s48fvHcCk26d/OwJDzzkw9JxFxF8t/gjCNM0FwABgH6CfaZqrG3ZdCgw3TXNeK+b7BdjPMAxbk20H+2KYfo83EdlaRUU5YfW+HoShKWkqTDogV0w8WSdfg/eIfxMaseP1ThqdffZ5hISEMHfuHBYtWhCAhCIiIrIrfrWPmqZZZZrmHNM0a5ps+8A0zU2tFw2Al/CNY5lhGMZQwzDOAa4GHmjl+0gXl52djQcocbkgURPBdVQuawjr8yuob8Z4oW7duvOvfx0PwIsvPtfGyURERKQ52nXnzYbWkcMBA5iPbxHG60zTfDWowaTTWbt2Dd8WFfB6TCT2A44OdhzZDYWltWxauIzyZqxjcu65F2K1Wvn1159ZuXJ5ANKJiIjIzvgz5qTNmKZ5zna2zcXXhUykzaxduwaAvn3649AaJx2atbKMqpefpBovEUOHE9Gr9w6P7dWrN4cffhSzZn3Oiy8+xyOPTAtgUhEREdlau245EQmU7OxsAHr36dvlZ+nq6JwxCVT1HQZA6Scf7fL488+/GIDvvvuGrKzVuzhaRERE2pKKExFg3do1PDViNMMWLMBVXR3sOLKbCkcdgNdipXrRQuxrsnZ67IABAzcvxPjSSy8EIp6IiIjsgIoT6fLsdjt1xcWkhUcQUlRIXfvq7Sh+cMQnUzFgFAClH3+wy+MvuOASAL766gs2bFjfptlERERkx1ScSJe3fv06kkJ9q6Bb4xNwqFdXp1A4cn+8Nhs1K1ZQu2Lng92HDBnGxIkH4PF4ePnl6QFKKCIiIltTcSJd3tq1a0gLDwfAmpiES6tHdwqumHjKBo0DoOSj9/HuYvGaCy7wjT357LNPyM/Pa/N8IiIisi0VJ9LlrV2bvbk48SQkBzmNtKaiERNxJaYSPfEALLs4dvToseyxx164XE5efXVGQPKJiIjIllScSJeXnb2G9LAIAJyxiUFOI63JHRnD6mMvoXrIeELDdj2W6MILLwXgww/fo7i4qK3jiYiIyFZUnEiXl5W1anPLiTNGxUln48XCuvwKqutcWHbRfLLHHnsxcuRoHA6HWk9ERESCQMWJdGl2u50NG9ZT7nRiTUjEEZsQ7EjSBkrL7Wz45nvW330H7traHR5nsVi46KLLAHj33bcoKioMVEQRERFBxYl0cWvWZOHxeHi9oow+Dz9GTWrPYEeStuD14vjha+rWr6d81hc7PXTfffdj5MhR1NfXa90TERGRAFNxIl3a6tUmAIMGGThdHq0O31lZreSPPRiA0m+/xlm04/EkFouFyy6bDMD777/Dpk35AYkoIiIiKk6ki1u1asvipF6LnHRa1ZkDqc3sh9flouTD93Z67F577cO4ceNxOp28+OJzAUooIiIiKk6kS1u92mRSciqHZ6+l7IN3tMZJZ2axkD/2ELxYqJz7F3ZzxU4O/af15OOPPyA3NydQKUVERLo0FSfSZXm9XlavNsmIiCC0rg6nvS7YkaSN1SdlUD7YtzBjwesz8bpcOzx23Lg92HvvCbhcLl544ZlARRQREenSVJxIl1VYWEBFRQXpEb41ThyaRrhLKBg9CU9kDI78PGqXL93psZdf7ms9+fzzT1i/fl0A0omIiHRtKk6kyzLNlQD0iI0DwBGTEMQ0Eiie8Ehy9jkazr2S+HHjdnrsiBGj2G+/A3C73Tz//NMBSigiItJ1qTiRLmvFimUApIWGAVAXHR/MOBJA1T0N1oWlUlxRR0jIzv8ZvOyyqwCYNevzzQWtiIiItA0VJ9JlLV++lGibjQivF4Da6ITgBpKAqq1zsSannNpNBdStWb3D44YMGcbhhx+F1+vl8ccfDmBCERGRrkfFiXRJXq+XZcuW0j0iEgBrQiJ13pAgp5JAK1uyjHW33ULec8/sdOX4K6/8LyEhocye/Tt//PFbABOKiIh0LSpOpEsqLCykuLgIq9VKxMBBhPTtrwUYu6CapG64omJxlZVR8sG7OzyuR4+enHrq6QA8/vgjuN36syIiItIWVJxIl7S8YZYmT0YGA267DctJ5wQ3kASFNySUnL2PAaD855+oWb5sh8decMElxMTEsmrVSr744tNARRQREelSVJxIl7Rs2RIAhg4djheorHUGN5AETW1Gb8qH7AFA4Wsv46nb/no3CQmJXHDBJQA8/fQT1O3gOBEREfGfihPpkhpbToYPGYbL5aWuXsVJV5Y/5mDcsQk4i4sp3kn3rtNOO5Nu3bpTULCJN954NYAJRUREugYVJ9Ll+AbDL8ECjPzpR9ZcezWO0rJgx5Ig8oaGkbNPQ/euH3+gdsXy7R4XHh7OFVdcDcCMGc9TWFgQqIgiIiJdgooT6XLWrVtLRUUF3WJisLhcuCoqqLWFBzuWBFlNt36UDp9A6KTDiRs2ZIfHHXnkMYwcOYra2loef/yRACYUERHp/FScSJezYME8APYxfG9AbSmp1Lm8wYwk7cSmsQezbuj+lNs9O1yc0Wq1cuONt2GxWPjyy8+YN29ugFOKiIh0XipOpMtpLE5GZfb0bUjNwO1WcSKAxUJFdT3mhlLq653Ys7a/OOPQocM58cSTAXjwwXtxuVyBTCkiItJpqTiRLmfhwvkA9I6OBsCVnB7MONIO5W0oZM1dd7Lx4SnY12Rt95grrriauLh4Vq0yef/9dwKcUEREpHNScSJdSnFxERs3bsBisRBXVw9AXUJqkFNJe+MOjaA6PBbcbvKffwZXVeU2xyQkJG4eHP/0009QXFwU4JQiIiKdj4oT6VIaW00GDRyEq2ATAPZ4FSeyFYuFnL3/hSsxBVdpKQXTn8Pr8Wxz2IknnszQocOoqqpkypR7gxBURESkc1FxIl3KvHl/AzBmxGji9t6H8AGDqI6MD3IqaY88YeGs3+//8IaGUrN8OaWffLjNMTabjdtvvxebzcZ3333NDz98F4SkIiIinYeKE+lS5syZDcC4vfeh+7nnkzD5OuwODYaX7atPTCNvn38BUPLF51T+9ec2xwwePIT//Od8AB544C4qK7ftAiYiIiLNo+JEuoyCggKys7OwWCzsuefeWK0WqmuduD0qTmTHKvoOp2z4PgAUv/8uHqdjm2MuuugyevXqTVFREU88obVPRERE/KXiRLqMP//8HfBNAxvlcuFxOiivrg9yKukI8sccTOWIfYi57BrCoyK32R8REcHtt98DwAcfvMuff/4R6IgiIiKdgooT6TIa3zDuvfcEcqY+zIqLLqRu9aogp5IOwWolZ+yhrKywUlbtIDTUhte7ZYvb+PF7ctJJpwFw++03UVFRHoSgIiIiHZuKE+kSPB7P5vEme48Zh7OgADweaqKTgpxMOpLSyjqWZRdTNHceedMew+PYsovXNddcR+/efSgsLODee+/cpoARERGRnVNxIl3CqlUrKS0tISIikkFxvtm5bCmpVFvCgpxMOppN+WUUzJhOzZLF5D/3NN4mq8NHRkZx//0PExISwrfffsUXX3waxKQiIiIdj4oT6RJ+/PF7wNely52zEQBLZi8cTncwY0kH5A0NY/0B/4c3JJSaxYsoeGXGFmugDBs2gosvvgKABx64m5yGP28iIiKyaypOpEtoLE4mTTqYuvXrAKhPzQxiIunIatN7s/HA/8NrtVL552wKX391iwLlvPMuZPTosdTU1HDttZOpq6sLYloREZGOQ8WJdHq5uTmsWrUSq9XK/vtPom7tWgDsSd2CnEw6surMgeTtdwJYLFT88jMFr7y0uUCx2Ww8+OBUEhMTWblyOVOm3BPktCIiIh2DihPp9H766QcAxowZR6zFgqu0BCwWKuPTgpxMOrqKPsPI2//fYLVS+cdvVP3x6+Z96ekZTJkyFavVyscff8BHH70fxKQiIiIdg4oT6fS++WYWAJMmHYIlJIS0U08n6sCDqXbbgpxMOoPyPsPIPeBEGLMXsRP3x2q1bN631177cNllVwG+8SeLFy8MUkoREZGOQcWJdGo5ORtZtGgBVquVww8/EltMDGlHHYn70ONxuT27voBIM1T0GsLK0Udg5lTi9gJuF+7qagDOO+8iDjzwIBwOB1dffTm5uTnBDSsiItKOqTiRTu3LLz8DfJ9gp6b6unG5PV5KKzVAWVqXx+PFXFfCsrXF5M6YzsYp9+EsKsJqtXL//Q9jGEMoLS3hyisvobKyMthxRURE2iUVJ9Jpeb3ezetMHH30sbhraqj4/Veq8wqoqnXs4myRlvN6Yb2ZQ9VKE8emfDY8cA+1q0yioqKZNu1ZUlPTyM7O4rrrrsbh0J9BERGRrak4kU5r/vy/Wb9+HRERkUyadDC1K1dQ8PIM8qZNpapGbwylbTijYsk6/Fxcqd1xV1aS8+hDlH3/LWlp6Tz55HNERkYxZ84f3HTT/3A1WcBRREREVJxIJ/bOO28CcNRRxxAdHUPN0sW+Hf0MnC6NN5G244qKZfWhZ2MfOBLcboreeoOCl6YzqG9/pk59ktDQUL7//lvuuONmPB79WRQREWmk4kQ6paKiQn744VsATjnlDLxeLzVLfMVJVY8BwYwmXYQ3NIy1+xxHyd6H+6Yanv0H+c89xT777MvDDz+BzWbjiy8+5Z577lCBIiIi0kDFiXRK7777Fi6XizFjxmEYg3HkbMRdXo4lLIyyxB7BjiddhcVCgbEXGw47E29sPDGHHU1oqJUDDzyI++57CIvFwnvvvcPkyZNxOp3BTisiIhJ0Kk6k06mqquKtt14H4IwzzgagevEiAEIGDqayXp9SS2BVp/dh5XGXs8ydwKayOmyhViampvPwTbcTEhLChx9+yNVXX0FdnWaRExGRrk3FiXQ6b7/9OtXVVfTvP5CDDjoUgKq5fwFg7zsErzeY6aSr8tpCKCyr5e/lmzAXZZM/4wV6//gD08+7iOjISH7++UcuueQ8SktLgh1VREQkaFScSKdSUVHOzJmvAHDBBRdjtVpxlpbi3JQPNhsl3QcFN6B0efZ6F+aGUhzd++B1OomeP5+XDziYPdPSWbhwPmeccRKmuTLYMUVERIJCxYl0Ks899zSVlRUMGDCQww47EoDQpCQGPfEksRdcQblTf+Ql+JzRCaze/xQKJ50I0TFQXMy1vfpy14jR2MrKOOec0/n661nBjikiIhJweqcmnUZW1mrefdc3ffB1192MzWbbvM8aHU1xSm/cHvXpknbCYqG41zBWHXcZ9eMmgtXKkPAIpgwfhcVRzw03/Je77roNu7022ElFREQCRsWJdAou1/+3d+/xUZV3Hsc/Z67J5B4IhgTwQuFBBKQo4r2oqHVRqbZW67avl9rWVnvRXW11Vy22rtvWuuta3fLq1sur2626tbUXu9hqtSoRL1wqRi6PIFeTAAkJCQlJJjPn7B9nEmIkCmSSmYTv+/Wa1zl55smZ3zx5MnN+53nOOQkWLvxnkskkc+eew5w5pwDgdrQTCDi0dSRo2K2dPMk+bjSX7XMuYPOlX6Nr0jQKzjqXz139JRzH4be/fZKvXvkZqlOXwRYRERnpQpkOQCQdHn30Z6xeXU1BQSH/9E/f6SmvefDH0NlJcv5lNLdGMxihyIfrKChl/amXEg7CaXMKmTpjNk/e8z1uLC3jjTtv4/VpM7j85lspKCjIdKgiIiKDRiMnMuwtXVrFokUPAHDLLbdxxBFHANC+fj3t69bSvnUL29szGaHIgetKwta6Fjoj4/nyxVcScBxOLhnFmTU1rPjaV6h68D9ItLVlOkwREZFBoeREhrV3393ArbfehOu6LFhwKfPnXwyA53k0/O43AIRPPIWdbk4mwxQ5aPGuJNuOPZMtl1zH9nHH0Om6VEQijHnzTew3r+etu79LUuejiIjICKPkRIatTZs2cu21V9HS0syMGcdz22134jgOAK3L3qDdroNQiPrpp+PqRHgZptoKy2g85/Os/+w/sKy0nNrODsKOQ+PaNVx17VX85S9/IplM0rFlM25XPNPhioiIDIjOOZFhadmyZVxzzRdpbNzF5MlTeOCBnxKJRABItLSw83/9q3aFPnEedYlIJkMVSYtAXhF5F11LbWszVc89zsaNS6lubODmm2/kyHHj+UHlBILBIPnTppM3fQa5U44lPLqsJ2EXEREZDpScyLCSTCZ5/PH/5r777iUej2PMsSxa9DBFRcUAeMkkdf+1iGRzM6HysWyZdBJeu5vZoEXSKJZfxLRLvspR864g/+WnWb7kjyQa6tldOppRkSitK1fQunIFAKFRo4iZYyk89TRiU47NcOQiIiIfbVgkJ8aYALAQ+BJQAlQB11trN2Q0MBlS1dVvce+932fVqr8BMG/eedx11w/IzY311PFcl0A4jBON0jz/72lWYiIjVH5BMWfP/wKnz7uM6uUvcvdrzxLe+Q4nFpcwvaCQj+UXwK5dtCytoiM/j4nHTcV1Id7QQPNLfyV65FFEK8cRHjMGJ6AZviIikh0cz8v+ufjGmIXA9cDVQA1wD3AMcJy19mAnWW9MJt2jGxvTe7WbUChASUkeTU1tJBLaIU6XZDLJ0qVV/OpXj7FkyUsAxGJ53HHH7cyffwlun6YOBBwSXV2883o11i1iGHTvrBUIOOTmRmhvj+ucnUGUznau376VN19/nrWrXqFt13am5BdwXEEhrzbtoiU3j1knzObcykqOqq7u+R0nFCZcXk60opJIRQUFJ55EpLx8oG8r6+gzemgMZjuXluYRDAY24X//i8gIlfUjJ8aYCHAT8G1r7eJU2eVALXAp8EQGw5NBsHPnDqqrV1FV9TJVVS9RX18PQCAQ4MILF/CNb9zA1KmT/C+/9nZaXllC29o1TPjmDXS5sGF7G+u9YoZD4i2STmXlEzh3wdXMu/gqGnZsY91br1K1ejk18TqSe/fy3LOL2ZKXz1mjyzg6L59xuTEiiS7i720j/t42ABKlJVRUjsXzoGX5Mhp+9xTh0WWEiksIFhURKizyl0VFRCoqCebmZvhdi4jISJL1yQkwEygAXugusNbuNsasBM5Eycmw4Xke7e172bNnDy0tzezZs4f6+nrq6mqpra2hpmYb1q6joaH+fb9XVFTERRd9issuu4LxYytxGxvY+cKL7Fy+kj0rV+K2+zcx2fH6craVHMXWumaNmMhhzXEcysonUFY+gTPOu5yueCfvbbFsWV/N1k1r+MV7G9m7ZRMOUBaJMj43l3G5Mcbl5PLkjV+nJeBQOmo0F48p5+xgiHht7f5f57OXUzDjePLy8uh6q5qWPy0mEIsRjMUIxPII5sUIxGIEIlHyZ59EpGwMAF2NjcS31xGIRglEIjiRKE4kghMK4gRDBKJRnGBwCFtMRESyRdZP6zLGXAr8BohZa9t7lf8qVXbhQW5yYzLpHt3Skt678i1dvYWXfrKI8s5WYF+bOj2rHv8XLqUT/8o5M5OtTHQ7enaiHd7/d1gcLKQtdaXn4912JrsdqXr7ttftGSefllTd47wOpnudfaLbV/dPxGj0/LpT6eTjvH9WXO94n/WibE/VNU4XJzuJ/W4T4Nm4w9Z4F26yi0lOkjOjQfBc8Dw8zwXPxU0mwPN4ekcttrXV325+ARcfMXbf6zv+uwzl5BHNL2Xt1PNwZy8gGI4ydtMbzPnzfR9oq9aCMVRP+SQrKk+l09Xc+XRxHAgGAySTrpK9QZSJdvY8j67WBvZut+zd/g4djdvobNxGR9N7xJu3+/+7QHE4zITcGGWRKMXhMCXhCMXhcM/jng3vsDV1r5WLjhjLF8Yf2e9r3re7nXeSDk4gwOnREFfG+v9ffcTLZ00gB8cJMNPr4NPeHpJAEud9SxeHxYECbNAfvZnodvJJtwUP8FKfFG6v9VfChVgnBw+ocOOck2zBf6d9P1VgRaiA9antlnldnN21e1/79az5n8hvhfKxIf/ctxK3i7O7mj7Y5qnl2mAea0N5ABS4Ceb1qts3hg3BXN4O5QOQ6yU5P97Yb5ttCuayKlU34rlcEN/Vb91tgRxWhgsACHoeF8Yb+q1bG4iyLFzY8/OCzvp+6+4MRHg1XEz52LHcf8s1RMPpPf5ZWJiraV0ih4HhMHLSfbZz3z3uDqD0UDYYCDiUlOQNKKi+7n/kCeZuWcWc0WX91vnpihfZk/B38M+acBSzx/Q/r/vRN6toiPuJw+njJjC7vKLfur+sfp2aDj/ZOqliHCdUjOu37q/XrGDbXv98m4+Xj2XWuD47E72uOvq7dauoad0DwLSyI5h55NH9bveZbevY2bzbrzuqjBOOnthv3aqmJohFIVpIaWkZs0v62UlJtPJyvJyXNvlfuDN2xTgZj7ZQjJrYeNaWTKW69HjWFh+H5wSgpd+XFJG+nNEwdgqMfX9xMBmHlhpoa6ClbSdv763Ha62HvfWwdxd07sFra4XOZgjkQciFRAdVjQ1s3NtGLBgkPxgiLxQiLxgkFgyREwywua6WXZ3+QZb60lFsLa8kEgiQEwwQCQSIOAFCqRPzt69fztaW3QAcM6qMnJ7Pkw9mby3rX2dzk7/TPraklCMnTu73LT9nX2PjLn/nuriomGmTpvRbd/n61bxbvwOAaEEhM83Ufuuu3rKaDdvrAJgYy+OEqdP7rbtp6zo21L4HQGVOLrOnHd9v3e3vWTa8txWA0ZEIJ82Y1W/dptr1bNi6GYCCUIg5M0/st25Hw0Y2bH4XgEggwJxZJ/Vb99XGzWzYuL7n5zknntxv3ZXNTWxYb9kAvHD+mVx53gn91hUR6c9wGDn5NPBr9j9yErXWLjjITQ7KyMnarTt55mc/p7C1Gf8LNLWX7/hH7QDeLK4kEQgCDhPaGhkT95OE7tsQeL0yg7eLK4kHQ+A4VLY1cUTHnp7t7eP/sK64ko5QBByH8r1NlLc3vy82D6fnNdYXV9IejuLgULZ3N+V7ex2167kfgr/cXFxBWyQXx3EoaW9mbOu+I3FO95HG1K/UjBpPe14JwVCYks42ypt3+NMzgkGcgL8MRXIJRXLYM3EW8RI/MYvu3kHR1rf7tOa+N7mnYhLto8cDEOjqJBDvIBErJBwJE+9K6LySQeQ4DpFwSO08yEZCOycTXSTiHSS7Okl0dZKMp5aJuL8e78B1k3iph+u6Peue6+ImU+vJJLgJXM/FTY26hpMJYsk4jusS9FyCnkfAcwm6Lg4eDdE82kP+vYzy4h2M6dyD43ng+Z+oDh6O54+d7IwV0xSK4nlQ0NXBUW27/E+bVLt3j594QE1OEQ3RPPA88hOdTGrbhYfXkx/1/iiuySlgR9QfichLxJnSWt+nzr6/a21OIbU5/khEbrKLaXt27KvnvX9Mpi6ngK25xQBEkwlmttT1+zfYEc1nc6wEgJCb5ITm/U/FA6iP5LExzz+2F/BcZu+u6bduYySX9Xmje36e07St37q7wznYgjLGV1Zw+zUXEUjzPXY0ciJyeBgOIyfdn4QVwLu9yiuAVYe60XRfReTYCWM49cE7dSWYA9adHBbCnFMPsC5AhFAoTklJmKamTrX1IPKvuhNSOw+ykdPO4dQjP9OB7Jeu1jU01M4iMlDDYYL+KvwJO3O7C4wxxcAsYElmQhIRERERkXTL+pETa22nMeZB4IfGmHpgM/Aj/BGVpzIZm4iIiIiIpE/WJycp38GP9SEgF3gZOP8QbsAoIiIiIiJZalgkJ9baJHBL6iEiIiIiIiPQcDjnREREREREDgNKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCo7neZmOYai1e56X47rpf9/BYIBk0k37duWD1NZDQ+08NNTOQ0PtPDQGq50DAQfHcTqA3LRvXESyxuGYnOwGokBdhuMQERGRAzcW6ASKMxyHiAyiwzE5ERERERGRLKRzTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQqhTAcwEhhjAsBC4EtACVAFXG+t3ZDRwEYYY8yRwOb9PPVla+1DQxzOiGSMuR2YZ62d26tsJnA/cCKwC/ixtfbejAQ4QvTTzo8CV/WpWmOtHTeEoQ17xphS4F+BC4FC4C3gVmttVer5mag/D9gBtLP6s4gcEo2cpMcdwFeBLwOnAB7wjDEmktGoRp4ZQAdQAYzt9fhlJoMaKYwxNwLf61M2CngOeAd/Z24hcJcx5uohD3CE2F87p8zA39nr3bc/PnSRjRhPACcDVwCzgZXAs8aYKerPadVvO6eeV38WkUOikZMBSiUgNwHfttYuTpVdDtQCl+J/gEt6TAestbYu04GMJMaYSuAh4AzA9nn6WqATuM5amwDWGmMmAbcAjw5poMPch7WzMSYITAXustZuz0B4I4Ix5mPAucBp1tqlqbIbgAuAK4F21J8H7KPa2RjzXdSfReQQaeRk4GYCBcAL3QXW2t34R5HOzExII9YMYE2mgxiBZgFN+O37ep/nzgBeTu3IdXsBMMaYMUMU30jxYe08CchB/XugGoD5wIruAmutBzhAKerP6fJR7az+LCKHTCMnA9c9f3Zbn/JaYMIQxzLSTQfqjDFLgMnAevwjc3/ObFjDm7X2aeBpAGNM36fHAdV9ympTywnAzkENbgT5iHaejj8d9EZjzAWACywGbrfWNg9lnMNZ6sDQ4t5lxpjLgInAn4G7UX8esANoZ/VnETlkGjkZuFhq2dmnvAP/yJGkQWr63GT8Ey9vB/4OWIZ/bs85mYxthIux/74N6t/pNA1/B24zcBFwM34f/33qghtyCIwxpwGPAL9PJYfqz4NgP+2s/iwih0wjJwPXnlpGe62D/0XXNvThjEzW2rgxphhIWGu7dy5WGGOOxf/iez5jwY1s7fh9u7funTj17/S5E7gvdUQa4G1jTB3wKv7Jxn2ngclHMMYsAB4DXgM+lypWf06zftr5TtSfReQQKTkZuO7pXBXAu73KK4BVQx/OyGWt3d/OQzXwyaGO5TCyDb8v99b9c80QxzJipebr7+5T3D39aBzamTsoxpiv418u+Cng870OaKg/p1F/7az+LCIDoeHVgVsFtABzuwtSR/hnAUsyE9LIY4yZYYxpNcac3uepE4HVmYjpMPEycEbqalLdzsG/aprm56eJMeYxY0zfc6dmp5Y6qfggGGOuAx4AHgQu75WYgPpz2nxYO6s/i8hAaORkgKy1ncaYB4EfGmPq8efY/gj/CN1TmYxthHk79ViU+lJswL/M7Sns+9KT9HsE+DbwsDHmHuAk4Eb8+/pI+jwG/MEYcxv+5ccnA/8JPGatXZvRyIYRY8xk/CP5vwW+D4zpdfGBdtSf0+IA2ln9WUQOmUZO0uM7wMP49zB4BUgA51tr4xmNagSx1rr4J1a+ATwJ/A2YA5xrre179R1Jk9TR5PMBg3957IXAt6y1P89oYCOMtfaPwGXAp/GnvzyMf3Dji5mMaxj6DBAGLgHq+jzuV39Om49qZ/VnETlkjud5mY5BREREREREIyciIiIiIpIdlJyIiIiIiEhWUHIiIiIiIiJZQcmJiIiIiIhkBSUnIiIiIiKSFZSciIiIiIhIVlByIiJZyRjjZDoGERERGVpKTkQk6xhjLgZ+nlqfa4zxjDFzMxuViIiIDLZQpgMQEdmPf+y1vhI4BViToVhERERkiCg5EZGsZq1tAV7LdBwiIiIy+BzP8zIdg4hID2PMi8AnehWdBfwVOMta+6Ix5k7gCuBW4F+AjwHrgOsAD7gfmAG8C9xgrX2+17anAT8AzkwVPQ/cZK3dOIhvSURERA6QzjkRkWxzPfC31OMUoHA/dcYD/w7cDXwWKAV+DTwO/Aw/eQkATxhjcgGMMZOBpcAY4Crgi8AxwCvGmDGD93ZERETkQCk5EZGsYq1dA7QALdba11LrfcWA6621j1tr/wD8BKgA7rLWPmSt/T1wBzAaMKnfWQi0A/OstU9Za5/EH5XJBb41qG9KREREDojOORGR4Wppr/XtqWXvc1N2pZbFqeU5+NPD9hpjuj/7WoAlwLmDFKOIiIgcBCUnIjIspU6U72vvh/zKKODy1KOv+rQEJSIiIgOi5EREDhe7gb8A/7af5xJDG4qIiIjsj5ITEclGSSCY5m2+BEwF3rTWJqDnLvT/A2wA3kzz64mIiMhBUnIiItloN3CKMeZsoChN2/we8CrwR2PMIqAD+ArwKeAzaXoNERERGQBdrUtEstGDQBfwDP7VtAbMWvsWcAb+vVB+gX/p4bHAp6y1T6XjNURERGRgdBNGERERERHJCho5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkK/w/SRWYKRZEJ1kAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.22it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.230 - 20.430) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 1 (t: 0.000 - 2.220) R-Score = 1.0441 & Fano Ratio = 10^-5\u001b[0m\n", + "Interpeak window 1 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 20.440 - 24.990) R-Score = 1.0077 & Fano Ratio = 10^-5\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1w0lEQVR4nOzdd3QU5dcH8O9s3/Tee0iGDgI2BAFFigWxIlh+ihVFsCCgICKCCC8CAiK9SFVQEVAsiAooogaRkmRI770nW6e8f2wWAyQk2WySTbifc3LY7LS7D0l27zzlMpIkgRBCCCGEEELam6y9AyCEEEIIIYQQgJITQgghhBBCiIOg5IQQQgghhBDiECg5IYQQQgghhDgESk4IIYQQQgghDoGSE0IIIYQQQohDoOSEEEIIIYQQ4hAoOSGEEEIIIYQ4BEpOCCGEEEIIIQ5B0d4BsCwbDiC9nk3Pchy3gWXZvgA+AjAAQAmAFRzHLWm7CAkhhBBCCCFtod2TEwC9ARgARAGQ6jxfwbKsN4AfAewD8AKAmwCsZlm2hOO4zW0dKCGEEEIIIaT1OEJy0gsAx3Fc3uUbWJZ9BYARwCSO43gACSzLxgCYAcDW5KQcgBrAFdcjhBBCiMMKhOUzgUc7x0EIaUWOkJz0BhDfwLbBAI7WJiZWRwC8ybKsH8dxhTZcTy1JkkYUpUgbjr0qmYyBKEqN70hajNq6bVA7tw1q57ZB7dw2WqudZTIGDMPY/byEEMfiCMlJLwB5LMseAxALIAnAexzHfQ8gBMDZy/bPrf03DIAtyUmeKEqRlZV6W+Otl1wug5ubFjU1BgiCaNdzk0tRW7cNaue2Qe3cNqid20ZrtrObmxZyOUOjHgjp5No1OWFZVgVLQlID4A0A1QAeA3CIZdk7ADjB0oVbl6H2X42t15XJGHh6Ott6+FW5uWlb5bzkStTWbYPauW1QO7cNaue2Qe1MCLFVuyYnHMeZWJb1AMBzHGdNQuJYlu0GYBoAPSzzQ+qyJiU1tl5XFCVUVupsPbxe1rtFlZV6uivXyqit2wa1c9ugdm4b1M5tozXb2dJzQhUQCOns2n1YF8dx9SUZZwGMApAFIOiybdbvc1pyXZ5vnTcnQRBb7dzkUtTWbYPauW1QO7cNaue2Qe1MCLFVu96CYFm2N8uy1SzLDrps0wAA5wEcBTCYZVl5nW23w7K6ly3zTQghhBBCCCEOqr17Ts7Vfn3CsuwkAMUAngNwM4DrARQAmA5gI8uyiwHcAOAVWGqeEEIIIYS0WFxcnCssSxXTuDFC7EsEkNe/f/+qph7Q3nNORJZl7wHwAYA9sKxdfgrAHRzHnQUAlmVHAlhR+3wegDc4jtvaPhETQgghpLOIi4uTAXiLYWRPMAyjBEBrFRNiX5IkSea4uLhPAbzfv3//Rsd7tnfPCTiOKwLw9FW2/wVLTwohhBBCiD29JZcrJrm5eZpUKo2OYRgqhEOIHUmSxJhMBqfKyrJJgsADwPzGjmn35IQQQgghpK3FxcW5MYzsCTc3T5Orq2dJe8dDSGelVmv1ALzLy0ueiIuL+6ixIV40tpIQQggh16IAhmGUKpXGvrUFCCFXqO2ZVMIyt+uqKDkhhBBCyLVIBoChoVyEtL7a3zMGTcg9KDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBiNytWLA0aO3ZUr/aOo6kSE+M1hw//4N7ecRALSk4IIYQQQsg1a+bM12Pi4885t3ccxIKSE0KIw9PzwICdrhiw0xV6vr2jIYQQ0rnQmgiOhOqcEEIIIYTUEkUROp2u3W7eOjk5iTJZ8y4/aNCA/g88MC7vl19+8jabzbKPPvok0cnJSVy5clnImTP/uNXU1Mjd3d35YcOGl0ydOi0nISFe+/zzT3ZfvXpDQu/efXUA8MorL0afO3fG7bvvfvlHoVBAkiTcddfwPv/738ScceMeLb78msXFRYqlSxeHnDr1l7sgCExsbNfq116bkRUd3cVo3WfdutX+Bw/u86+qqlJ06RJTM3PmnHTr9vpiDgkJNa1d+3Hgr78e8S4rK1MGBwcbHn/8qdxRo+4qB4A9e3Z779q1LfCpp57J2bhxXUhFRbmyW7ceVbNnv5u+ZcvGgF9+OeytUCikMWPuL3jhhcn5AGA0GplVq5YFHT9+1LO0tESl0WjFPn36Vsyc+Xaml5e3MHbsqF7FxcWqzz/fGXj27GnX9es/5crKSuWrVi0P/uuvPzyqqqoUkZHRNc8992LOTTcNrLa+tn37vvDasWNrYFFRkTosLEw/bNgdJRs3rgk9fvzvOFv+T2QymU2vrzOi5IQQQgghBJbEZMKEB7omJia02xCfrl27V+/cuZdrboLyww/f+i5c+GGSIPBMTEysccKEB7q7u3uYFy1afsHV1VX49dcjHuvXfxLavXvPmpEj7yz38fExnTjxm1vv3n11giAgPv6cq9FolP3zT5zz9dffWHP69CmnqqpKxW233VF++bV4nsfUqZNiAUaaO/f9FG9vb37lymUhr7/+cuzevQfOAkBxcbHq3LkzrgsXLk0ymYzM+++/G/n+++9GbNy4jWso5ldeeTE6NTXF6eWXX82MjIw2fPfdN14LFsyNlslkySNGjK4AgJKSYtX+/V/5zZ+/OFmnq5G9/faMmKeeerTH7bffUbx69caEb7/d7719+5bgIUOGlXfr1sPw4YcfhJw8ecJjxoxZ6aGhYUaO47RLlrwfsXbtx0Fvvjkna8OGbQkTJz7a/ZZbhpQ+99ykPEEQMGXKC7Fms5mZMWN2mq+vn/mzz3b6zZz5Wuzy5asT+/btpzt8+Hv3pUsXRT7xxMTsoUNvLz958ne3DRvWhLb0/8SW19esH5IOgpITQgghhJCLOmbdkyFDbivp27efDgD0ej1z2213lIwcObosNDTcBAAREU8X7tmzOyA5+YJ25Mg7ywcMuLH81Km/3ADknz59ylkuV0ixsV2r//rrpOv1199Yc+zYrx4xMWy1r6/fFYNpf/vtqFtGRrp28+ad52JiYo0AMGvW3PQtWzYElJaWKABALpdL7723KM3d3V0AgNGj7y7avn1LcEMxX7iQqPn77z895s5dkDx8+MgKAJg8+ZW81NRkpx07tgZakxNBEJjXXpuRYf1g3qtXn8oLFxJd3njjrWyGYfDccy/lff75rsCkpAvabt16GLp1614zbNjtZTffPKgaAEJDw00//vhdZXp6qhYAfHx8eZlMJmm1WtHT00s4cuRHt7S0VKf167eet15j9ux3My9cSHTesWNrQN++/VJ3794RcNNNA0ufeeaFAgDo0iWmKDs7S33gwD7/lvyf2PL6WvIz46goOSGEODwGQL/a90emfUMhhHRiMpkMO3fu5TrasC4ACAkJvTicSqvVSo8//lTht98e8Ny+fatzbm6OOiMjzam8vEwpCCIDAIMHD6145523fPV6PXPy5AnXHj16VgUHhxr+/feUG4D8v/466X7rrUNL67tWUtIFrZOTk2BNTADA3z+AnzFjdrb1e3d3d96amACAq6ubYDKZLnlhdWPmuEQtAAwYcGN13X169epb9emnG0PqPtely3/XVavVoq+vv5FhLO8OGo1GAgCj0SgDgPvue6j02LFfXZcuXRSck5Otzs7O0ubm5mi6du12yXWskpOTtFqtk1D3gz/DMOjevWf1qVN/uwFAenqq06BBt5bVPa5Pn+uqL09Omvt/Ysvr64woOSGEODyNAlg3XN/eYRBCrgEymQwuLi5ie8fRXGq15mLMOp1O9vzzT7IGg0E2ePCQshEjRpf06dM3c/Lk57pa97n55luqlEqF+Mcfv7n+80+c27Bht5eGh0cY9+//MiArK0OVnp7qNHfugtT6riWXKyTrh+WGyGSyRnug6sbc0KR0URQYuVx+yUalUnnJ9zJZw7HMm/d22G+/HfUaOvT2kptuuqWia9fueTt2bA0oKSlS1be/JNX/0kRRhEKhkCzXk0mS1HgHW3P/T2x5fZ0RJSeEEEIIIZ3Ir78ecUtLS3X68stv/vXz8+cBoKysVF5RUaGwJgEqlUrq0+e6yqNHf/FISrrgMnPm2xkhIaEmhmGk1atXBgUGBhnqTm6vKyoq2lBTUyNPTU1RR0VFGwGgpKRYMX78/T3nz1+cZEvMsbFd9QDw998nXazDugDg7Nl/XYKDQ226O1VaWiL/4YdDvjNmzEq95577LvZ0ZGdnajQabZ3E6L8P/126xOp1Op08IeG8pm7vSXz8eZeQkDADAISHR+jj48+7ACi0bj9//uxV5yk15f+EWHTaLiFCCCGEkGuRv3+ACQD27//KOysrQ3Xy5AmXadOmdBEEgTGZzBc/iQ8cOKj8559/8nFzc+Wjo7sY1Wq1xLLdqo8f/9X7ppsGljd0/sGDh1RGRkbr5s2bHRkX95dzYmK8Zu7cWRHu7h7mPn2u09kSM8t2M/Tt269ixYqlYYcPf++enJykXrVqeWBc3F8eDz88vsCWc7q5uQtarZNw/PhRj9TUFHV8/DntO++8FZ6enuZkNv/XDhqNRsjJyVYXFhYohgwZVhEaGq6fN+/tqN9/P+Z64UKi5r335oRlZ2dqH3lkQgEATJjwRN7Jk797bty41j81NUW9d+9n3t98c8DvarE09f+EUM8JIaQD0PPAPV9bbkoduLcGWvrLRQghDerXb4Bu4sTnsvbt+8J/x46twZ6eXqbBg4eW+vj4mjjuv5XIhg0bXrF8+RKmZ88+ldbnrruuf+XZs/+6DRlyW3lD55fJZFi8eFny0qWLQ2fOfD0GAHr06Fm1dOnKJLVabXM3wAcfLE1dvvz/gpcuXRyh0+nkoaGh+rfempsyevRdDcZyNQqFArNnv5u6Zs3KkKeffqyHs7ML37Nn76rHHnsyZ+/e3YE1NTUyZ2dn8d57HyjctGltyNSpL2p37foifsWKTy4sXbo45N13Z0ebzTwTGRml++CDpRf697+hBgCGDRteWVhYkLF7946Abds2B0dGRulGjhxddOjQwQYTlKb+nxCAacqYuU4mVRDEyNLSGrueVKGQwdPTGWVlNeD5DjdUtUOhtm4bjtTOeh4Y/LkrAODYw1WdKjlxpHbuzKid20ZrtrOXlzPkclkagCh7nC8uLq6rTCb/zs8vuFql0nTKVY9I6zhx4riLj4+fue6CAJ98sjLghx8O+Xz11bfn2jM2R2UyGTSFhTkuoiiM6t+/f+LV9u1Eb/GEEEIIIYS0rj/++N39l1+OeE2f/lZ6eHiEMT7+vHb//q/8R4++u6i9Y+sMKDkhhBBCCCGkiV58cWquXq+XffDB/MiqqkqFl5e36d577y949tlJnbZqe1ui5IQQQgghhJAmUqvV0ltvvZMFIKu9Y+mMaLUuQgghhBBCiEOg5IQQQgghhBDiEGhYFyEO5Nz3h5Dz809Q+fnj5udfhMaZVhcELOWxunsJFx8TQgghpHOinhNCHMSvq5ZD8fluRBYXQ336FKZPfg4GA61uCQAaBfDpKB0+HaWDhm6pEEIIIZ0WJSeEOICUkyfgc+oUZAyDVAZYlp2Jo//EYeXKZe0dGiGEEEJIm6HkhBAHkLx5I5QyGdIYBnes2Yip8xYCAHbv3o6MjPT2DY4QQgghpI1QckJIO0v/Jw6RPA9RkhD97POQy+UYNOhWDBl0K4Z6eiPuow/bO8R2Z+CBe752xj1fO8PAt3c0hBDiWAYNGtB/z57d3k3d/5dffnK77747ew4delO/RYsWhLRmbE2xYsXSoLFjR/Wy5zmb0ybZ2Zmq/fu/8rTn9YntaPQ2Ie0s8fPdiAKQIZdh5A03XXz+qTvvgZPBBGN5OSqLi+Dm49t+QbYzCUBejeziY0IIIf/54ouD/7q5uQtN3X/9+k9C/P0DjB99tPqCi4trk4/rSJrTJu+++3aEn5+facyY+8paOy7SOOo5IaQdiaKIPxITkGvQw/nmgZds6z3qLhTwPNQyOeK2f9pOERJCCHF0/v4BvFarbfK9m5qaGnn37j1qwsIiTF5e3p0yOWlem0i0EKQDoZ4TQtpRYmI89qUl4wcnJ/y8Yesl22QyGXRRUUBmJvjz59opQkIIIY5u0KAB/adOnZb+0EOPlMya9UaEKIqMp6eX+eeff/I2Gg2y3r37Vr755pwMf/8AftCgAf0B4PPPdwV+/vmuwJ07954NDQ03rV//if+hQwf9KirKFQEBgcaHHhqff999D5YCwO+/H3OdPv3V2CeemJj9xRefB/r4+Brnz1+U+vjjD/ccP/7x3G++2e+nUinFLVt2xzMMg6VLF4X8+ecJD57nmcjIaN2LL07J7tu3n84a765d23z27NkdUFZWqurT57oKPz9/09Ve37PPPsH26NG7qqysVPnbb0e9lEqlePfdYwtHjBhd+sEH70WkpiY7BwQEGaZPfyv9uuv66+q2yR13jCp/4omHe0REROlWrFiTDABHj/7iOmvWG7Fvvjkn5auv9vgnJMS7JCTEu4wdO8p1377vzo4dO6rXbbeNKJky5bXcujH4+fkbFyz4v/T62uPTT3cnFBTkK5ct+7/Q06dPucnlMik2tmvN1KnTsqKjuxhb4/+9s6KeE0La0dGjvwAAbrrpFqg1miu2x9x5NwAgWBBQWVTUlqERQsg1S9DrZQ19iUYj0xb7tsSJE795VlZWKj76aDU3Z857KQkJ8a6rVi0PBizDnby8vMz33HNfwRdfHPw3ODjUtGzZ4uBvvtnv99JLUzM3btwef999DxZ8/PHy8G3btlwynvjkyRMeq1dvSJg58+10uVwmAcAvv/zktWzZKm7u3PdT3N3dhVdeeTEmNzdHPX/+4uTVqzckdu3areaVV17sevbsv1oA2L//K881a1aF3XffgwXr1396vlu3HjWHDh30a+w17du3N8DPz9+0YcO283fffW/hrl3bgmbMeDVm3LgJ+R9/vD5BpVKKS5cuCr/8OA8PD+GNN2al/fNPnPvXX3/pVVpaIl+8eEHk7bePKL7zznvKFy9enhwTE1tz8823lG3YsC2hOe1ctz0MBoPs5ZefZ0VRwLJlH3PLln3Mubm58y+++HS33NwcZXPOe62jnhNC2lHW8WNQy2S49dah9W6P7H89fuN5+CkUOLP/Kwx6+rm2DZAQQq5BKS9Puq6hbdpYtiJ0+pvJ1u9TX5vSRzKb673Zq46IrA6f/Q5n/T5txuu9RJ2u3s9eqqBgXcS8Bc36cNxgjFqt8M478zOUSqUUG9vVcOLEbyVxcX+5A5bhTjKZTNJqtaK/fwBfU1MjO3Bgn/+0aW+mDR8+sgIAIiOjjHl5ueovvtgd8PjjT168MzZu3IR8ay9AZma6CgDuumtMEct2MwDAsWO/uiYlcc779h3618fHlweA116bkRMff95l9+7t/r169Un/8svP/QcOHFT2+ONPFQFAly4x+QkJ553T01OdrvaaQkPD9C+9NDUPAJ566rmCXbu2Bw0ePLR0xIjRFQAwYsTokvXr14TWd+zgwUOqRo++p3DNmlWhP/30g5ezs7MwY8bsTADw9PQSFAqFpFKpRGvMTVW3PT77bIdPVVWl4oMPlqYplUoJAObNW5h+//139dq79zPfur0w5OooOSGknZTmZOF/Gi3G9x0Av/4D6t2HYRhU+fvDr6QEVf+cauMICSGEdET+/gFG6wdkAHB2dhF4nq+3Z+bChUSN2WxmPvzwg4ilSxdFWJ8XBJHheTOj1+svHhcREXnF8KSwsPCL1YITE+OdAGDcuLGXrLzF8zxjNpsYAMjKytQOHXp7ad3t3bv3rG4sOQkKCrl4HScnJxEAgoODL8ajUqlFnjc32Pv02mvTs0+d+sv91Km/3T/5ZFN8c+boNKRue1y4wDnp9Xr5qFFD+9bdx2w2y7KyMq4cGkEaRMkJIe3kwpGf4AWgTBTRM/SKnuiLfK+/Efy3B1FRWgJJksAw1968PQZAVO2iK9feqyeEtLXolZ/809A2Ria75ENt1NIV/zZ138hFH55t6r4tUTcx+U/9pxdFkQGAt956JzUqqovh8u1qtfrigRqNRrx8u0ajubhdFEVGq9UKa9duuaIHSKVSiYDlppt0WSgKhaLR165QyK/Yh2GaPjuhoCBfWV5eppTL5dKJE8fdevXqrb/6EZdejueFK95+6raHKIoIDAwyfPDB0uTL93N2du6Uiw60FppzQkg7KTt7BgBQ5eF+1f26jxqNZ86exgfxZ5GTk90WoTkcjQL4/C4dPr9LBw3dUiGEtDK5Vis29CWr82G9NfdtK126xBrkcrmUl5erioqKNlq/jh792X3btk3+MlnTPypGR8fo9Xq93GQyMnXPtWXLhoAjR370AIDw8AjduXP/utQ9juMSnO37qi4liiLmzZsdGR4eqXvxxSmZO3d+Gnzu3Fntf3swl/4/yRVSdXWNvO7xhYUFqqtdIyoqWl9cXKxyc3MTrK87LCzcuGrV8uA//zzhau/X1JlRckJIO1EXFwMAnGO7XnU/JxdXxPboCQD4++8/Wz0uQggh1w53d3fhjjtGFW3btjn4yy8/90pPT1Pt3fuZ95YtG0M8Pb2aNQdj2LDbK8LDI/TvvPNW9PHjR11TU1PUixcvCPn558M+kZHRBgAYP/6J/D///MNz/fpP/FNSktVbt270O3nyRKsWQFy3bnVAWlqa06xZc9PHjXu0uFu3HlXz58+JNNYuQqDVasXCwgJ1Tk62EgC6deteffz4r14nTvzmkpycpJ437+1wvV4nv9o1xoy5v9TFxVmYMePV6Li4P52TkjjN22/PiDx9Os49JoZtpJeG1EXJCSHtQFdZiYDa4VlRDUyGr+v6628EAPz95x+tGRYhhJBr0MyZb2fde+/9BZ9+ujn4ySfH99yxY2vgI488mvvyy82bxC2Xy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpgwePKQKAIYPH1ExffpbqT/8cMjn6acf73H8+FGPMWPuK2idVwacPXtGu3v39qDHH38yJyoq2ggAb775dkZxcZF62bLFwQAwZsz9RVlZmZqJEx/tIQgCJk9+NSc2lq2eNWt6zMsvP9/Vzc2NHzhw8FULNLq7uwsrV65LdHf34GfOnBYzadLT3QoLC1Tvv78kqWvX7lcMlyMNY6TLB/51fqmCIEaWltbY9aQKhQyens4oK6sBz18xJJPYUWdo67PffQP13j2o4Hn03/QpGus2P/ntAZRv/xTOKjUGbdneJjE6UjsbeOCJ7y1zJT8d2bmGdjlSO3dm1M5tozXb2cvLGXK5LA1AlD3OFxcX11Umk3/n5xdcrVJp6MMjIa3IZDJoCgtzXERRGNW/f//Eq+1LPSeEtIOCs5Y5kaUqVaOJCQCw/QYg0skZfgoFSnOyWjs8hyMBSK2QI7VC3sCUTkIIIYR0BpScENIO/q0ow4aMNFSEN7xKV10eAYEo5C1Df5OPHW3N0AghhBBC2g0lJ4S0g7+Sk/BDUQF8bh7Y5GOqXCyLm5SeP9daYRFCCCGEtCtKTghpYyaTCcnJSQCArl27N/k4ZXgEAECWn98aYRFCCCGEtDtKTghpYymn/sZgDw909/VDYGBQk48L7NcfAODD8xBFmtBLCCGEkM6HkhNC2lj+yT8wKSIaT4VHNavae5ebBoKXRLjI5ci/wLVihIQQQggh7YOSE0LamKF2tS2zh0ezjlM7O4PjefxWUozUpGsrOWEABDqLCHQW0fR0jhBCCCEdTSeqFkBIxyAvKwcAaIJDmn3s3yEh+Oab/XgpPw+D7ByXI9MogAP32rc2ESGEEEIcD/WcENLG3M1mAIA3yzb7WJbtCgDguAS7xkQIIYQQ4gio54SQNlRVUgRPheXXLrTvdc0+Pja2KxgARUnJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKHMf/6BEkAFzyM2qPnDurqERWDrdddDI5ejqqQIrt6+9g/SARl44LnDTgCAdcN10NBfLkJIK2EYyEWGCdQZ+Hb5S+OkUfAySHmOlqCsWLE06MiRH7z37fvubHOPTU5OUj/33JPdt2zZcT4sLMLUGvGRzoPe4glpQ8WJCQgEUK6Q23S8T1AQUiQJGgBpf55E79F32zU+RyUBiC+VX3xMCCGthWEYmc7AK/44lyfqDHybrtvupFHIbuoZqHDVKGSSJDlUcmKr+Phz2pkzX+9iMhlpKgFpEkpOCGlD5wx6bLyQgFuH3mbzOcpVSniKEorOnweukeSEEELams7AizV6c3sUleo0H+JXr14RsHfv7sDg4BBDaWmJqr3jIR1Dp/kFIKQj4DLTcaayAq49etl8DtHTCwBgysuxV1iEEEI6sEGDBvTfsWOr78SJj7HDht3c75FH7uv+ww+H3Ovuc/jw9+6PPfZQt2HDbu53//139Vy+fEmQ0Wi8uDp7YmK85pVXXoweOXJo3yFDbux3//139dy8eYNfQ9fcsmWD39ChN/X7/vtvPRraJy7uT/c33ngrbdKkl7Pt8kLJNYGSE0LaUFpaGgAgMjLK5nNoQ0MBAMqKSrvERAghpOPbvHl9yLBht5euW7f1/IABN1a8996cLn/9ddIZAH7++bDbggVzo0ePvrt406Yd56dOfT3z+PFfvWbNeiMSAHQ6nez116fEajRaceXKNYmbN+88P2jQrWUbN64JPXv2jPbya23fvsV369aNIbNnz0sZOfLO8oZi2rhxOzd69N0NbiekPjSsi5A2YjIYMFCSkOvlg7CQUJvP48N2B06fhrvA2zE6QgghHdmwYcOLH3/8qSIAmDZtZs65c/+67tmzy+/6629M2759S+Dtt48ofvTR/xUBQGRklFGhUGTMmPFabGZmusrJyVkcM+a+wvHjHy90c3MTAWDy5Fdzv/xyT0BSUqK2V6/eeut1du3a7rNp07qQd96Znzx06O10l4zYHSUnhLSRPC4RDwQEwSSK8PXzt/k84f36Ie+znXCXK1CWmwPPoGA7RkkIIaQj6tdvQFXd71m2W83p06fcACAtLc0pJSXZ+eefD3tbt0u1q4skJydpbrvtjsoJE54oPHjwa6+UlCSnnJxsdUZGmhMACIJ4cehXWVmZ8pNPVoTL5XIpJCTM2Bavi1x7KDkhpI0UcglwB1AqiZArbP/Vc/X2wZc1VcirrMTI9LRrJjnxULfHvFRCCOkYFArFJYsZSpIEmUwuWR6LzNixD+aPGXNfyeXH+fsHmAsLCxTPPfdkN1dXN/6mmwaW9+9/Q2Xv3n1qxo0b27vuvgwjw7x57ydt2rQuaMGCuZEbN25LlMlohgCxL/qJIqSNVGakAwB0KnWLz3XS0xO7c7KQmpfb4nN1BFoFcPiBGhx+oAZauqVCCCFXiI8/51z3+8TEeJfo6GgdAISEhOmzsjI0UVHRRutXQUGecsWKD0Oqq6tkBw7s866urlJs2rQ98aWXpuaNHn1XeUVFee1f2/9yHg8Pd/OQIcMqZ86cnZ6amuy0efN624cBENIASk4IaSOmwkIAgOTh3siejYuKigYApKamtPhchBBCOr4DB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyS2/40ZIHQ51D5Jl2VgApwBM5jhuS+1zfQF8BGAAgBIAKziOW9JeMRJiK3lFBQBA5R/Q4nNFRUbDU6lEdUpSi89FCCHkSk4aRZvfwG3JNUeMGF20d+9u/+XLl2jDw8N1CxcuSerRo6ceAO66a0yZJEmpu3ZtC/zyy88DnJychQEDbih/9dXp2dbtiYkJ+evXfxK6cuVSmY+Pr2nkyDuLT5z4zSMh4bwzgKLLrzdp0st5v/121HPBgrkRGzZ8ytHwLmIvDpOcsCyrBLADgHOd57wB/AhgH4AXANwEYDXLsiUcx21ujzgJsZWT2QTIFXAPj2zxubo4OWNtn/4oM5jsEJnjM/DAlF8sq1muGKqHxmH+chFCOhtJkkQnjYK/qWegAu0wwsRJo+AlSWr2JLvIyGj99OmzGqwncvfd95bdffe9ZfVtYxgG06bNzJk2beYlBbSefvr5AuvjKVNey50y5bWLY4nVarW0Z8/+802JbeDAwVXHj/8d15R9CXGkt/h3AVRd9txzAIwAJnEcxwNIYFk2BsAMAJSckA6DN5vhxVje4/y7dm3x+cL69UPhF3vgqVCgsrgIbj6+LT6nI5MAnCpUXHxMCCGtRZIgyCDlubZDz4nl+pIoSRDa49qEOAKH6INjWfZWAM8D+N9lmwYDOFqbmFgdsRzCNli1lBBHU1CQj9fOn8GilCQExrY8OfHwD0Q5b/m1yPyHbkYRQog9SRIEUZTM7fFFiQm51rV7zwnLsh4AtgF4meO4LJZl624OAXD2skOsXYphAAptva7CzjdE5HLZJf+S1tMR2zovPwf5RgO0QYHQaO0zd7BSIYcHgLKUZChG278tHKmd6y6QqZDL0IKVmB2OI7VzZ0bt3DaondsHDZkinYkjvMV/AuAEx3E769nmBMuwrroMtf9qbL2gTMbA09O58R1t4OambZXzkit1pLYuLs4HAERGRtrtZ090dwcqKmEqyGu1n2fAMdpZbf7vsYenM5yU7RdLa3GEdr4WUDu3DWpnQoit2jU5YVn2cViGbvVqYBc9gMtvM1uTkhpbryuKEiordbYeXi+5XAY3Ny0qK/UQBCoW15o6YltX/nUKDwQGw9/dG2VlV/7oymQMBAkw8yK0KnmTXpfM2weoqIS5oKjec7aUI7Wz3gxY18ooL6uBsRMlJ47Uzp0ZtXPbaM12dnPTUo8MIdeA9u45mQjAH8Dlw7nWsCz7BoAMAEGXHWP9PgctwPOt8+YkCGKrnZtcqiO1tVtePsYFhyJdqbwiZoYBzAKD+PRSlFcZ0T3KG75u6kZfm3NoOJCaCo1e36rt4AjtzAt1H4vgmfaLpbU4QjtfC6id2wa1MyHEVu19C+IxAN0A9K3zBQBzANwJ4CiAwSzLyuscczsAjuM4m+ebENLWVAbLaETnwMtzbUChkCOrsBopWeUoKtOBSy+FwSyCaeQDuH+v3vg6LxcH8nIgSZ1/DSuNXIJG3vlfJyGEEHIta9eeE47jruj9qO1BKeQ4LoNl2U0ApgPYyLLsYgA3AHgFlponhHQYrqIIyGTwCI+45HmGYaAzCsjIq4RYm2AUlNagoEyHCH9XmM0NL9oS2qMHduVlQxRFFBcXwde38y5gp1UAx8dVt3cYhBBCCGll7d1zclW1vSMjAbCwVI5/B8AbHMdtbdfACGkGQ3U13GuXlwq4bBlhhYJBUYUepZX6i89JEpBdUAVTI0MilEoVgoNDAAAZGen2DZoQQgghpB2095yTK3Acx1z2/V8Abm6ncAhpsbwLiQAAgyDAM+jSYV28COQWVePyUVklFXpU6szwclFddVIpGxoOl7Iy5J0/Bwy4we6xE0LItYhhIGcYhoow1rFixdKgI0d+8N6377vLSzw0aM+eXd5ffPG5f2FhodrT09M8YsSo4meemZQvl8sbP5hcsxwuOSGksylJTYEbgHJJgkz233udTMagWm9GWaXhimNMZhEFpTXwcVNDuMpb1G1OzujStQdS4s+3QuSOwygA049ZliZdPFgPNb2vEUJaCcNArpWZAyWTrl0+IzEqJ14vKvMcMUFpjn37vvD6+OOPwl944eXMG2+8uer8+bNOK1Z8GG4ymZmXX341r73jI46LkhNCWllVdjbcAOhVl65/K5fLUF5tRI3eXO9xJRUGmHgRV5sXr/IPAMrLwZSX2y1eRyRKwG+5iouPCSGktTAMI5NMOkU1d1IUjfo2XXJMptbKXNgbFYzSQyZJUodOTvbv/8p3yJDbSh555NFiAIiMjDJmZKRrvv/+Wx9KTsjVUHJCSCtLkDFYfPY0Ro+6CyPrPC9KQEFpw/V2KquNqDHycNMoIDbwidwjIhLgEuFsvLxWKSGEkJYQjXpRMNS0x3rIzR5ONmjQgP6TJr2c+dNPP3qlpaU4+/sHGCZOfC5nxIjRFdZ9Dh/+3n3Llg1BOTnZWk9PL9Ottw4rnTTp5Ty1Wi0BQGJivGbNmlXBCQnxrgaDXubt7WO65577Cp966pl6V0fdsmWD35YtG0LefHNO6siRd5Zfvv2FFyZne3l585c/X1NTTZ89yVU59IR4QjqDnIJ85BkNcI2IuPgcwwAGs4DKGlODx+mNPCqrjVctOhbQvQcAwEsmA2+uvweGEEJI57d58/qQYcNuL123buv5AQNurHjvvTld/vrrpDMA/PzzYbcFC+ZGjx59d/GmTTvOT536eubx4796zZr1RiQA6HQ62euvT4nVaLTiypVrEjdv3nl+0KBbyzZuXBN69uwZ7eXX2r59i+/WrRtDZs+el1JfYgIAN9xwU02XLjEX75yVl5fLDx066Nunz3WVrdQEpJOg5ISQVpaba1kxOygo+OJzMpkMOgOPqqskJwBQWKbH1UYxBbJdYRZFKGUy5CYm2CNcQgghHdCwYcOLH3/8qaKYmFjjtGkzc6Kju9Ts2bPLDwC2b98SePvtI4offfR/RZGRUcYhQ26rfPXVNzL++ON3z8zMdJVOVyMbM+a+wrfeeicjNrarISoq2jh58qu5AJCUlHhJcrJr13afTZvWhbzzzvzk4cNHVNQXy+Wqq6tl06ZN6WI2m2RTpryeZf9XTzoT6lojpJXdqNMjKjAYgR6eF5+TyxmUVRnAX2UlLgCo1plgNAtoaP63XKFAqSTCHzLkJ5xHWK/edoycEEJIR9Gv34Cqut+zbLea06dPuQFAWlqaU0pKsvPPPx/2tm63rhKZnJykue22OyonTHii8ODBr71SUpKccnKy1RkZaU4AIAjixamPZWVlyk8+WREul8ulkJCwJo0nLijIV0ybNiWmoCBf/cEHSy9ERERe/a4cueZRckJIKzLp9Rjq4gqZqxs8/PwvPi+IEkrrWaXrctV6M/RGAW7ahued6NQagOdRmZ5mt7gJIYR0LAqF4pI3CUmSIJPJJctjkRk79sH8MWPuK7n8OH//AHNhYYHiueee7Obq6sbfdNPA8v79b6js3btPzbhxYy+548UwMsyb937Spk3rghYsmBu5ceO2xLqrUF4uKYnTTJs2NUYQBGb58tVc9+499Q3uTEgtGtZFSCsqSE6CjGFgEkV4h4VffN5oFhtcpasug5FHtd581XknRYGBWJeeigsmuhlFCCHXqvj4c851v09MjHeJjo7WAUBISJg+KytDExUVbbR+FRTkKVes+DCkurpKduDAPu/q6irFpk3bE196aWre6NF3lVdUlNfewP4v5/HwcDcPGTKscubM2empqclOmzev90cDMjLSVa+88lKsRqMR16zZlECJCWkqSk4IaUVFKUkAgHJRhLXolEzGwGAWmpScAEBppR7MVdYTVnfvgcPFhUgszG9xvI5KqwD+nlCFvydUQUv9vYQQcoUDB/b579v3hVdycpJ60aIFIRkZ6drx458oAIBHHnk0/88///BcsWJpUHJykvr48aOuixe/H1lTU63w9w/g/f0DTEajUXbw4Nee2dmZql9/PeL27ruzowDAZDJd8VmxW7cehvvueyh/x46tQSkpyer64pk//50InjfL3n77vVSlUikVFOQrrF+t2xKko2v2DwjLsgoAQwHcDiASgDuAYgAZAA4B+J3jOKpEQAiAyqwsuADQKf/7VZPJZNDpzTAYr1hhsV7VOjNMfMO/UiEhoQCA7GyaY0gIIfYiU2vb/AZuS645YsToor17d/svX75EGx4erlu4cElSjx6W3oq77hpTJklS6q5d2wK//PLzACcnZ2HAgBvKX311erZ1e2JiQv769Z+Erly5VObj42saOfLO4hMnfvNISDjvDKDo8utNmvRy3m+/HfVcsGBuxIYNn3J1h3fl5eUqExLOuwLACy881f3yY48f/zvO1tdJOr8mJycsy6oATALwOoAQAGWwJCQ1AEIB3A3gLQC5LMsuArCO4zgqvkCuacZiy99zwcnp4nOMDCitavqvRo3eDBMvQC1nLk5grCs0JBRdXVwRXFMDgechV9BNKUIIsZUkSSKjcuJd2BsVaIcRJozKiZdEqdn1VSIjo/XTp8/Kbmj73XffW3b33feW1XtNhsG0aTNzpk2bmVP3+aeffr7A+njKlNdyp0x5Ldf6vVqtlvbs2X++vvMFBgaZKQEhtmrSpxiWZW8AsBWAAOATAJ9zHJdSz369ANwJYAqAqSzLPs5x3Ak7xktIhyJWlAMAGHePi8/xgoTqRpYQrktnMMNgEqB1VkIQrsxO/P0DMCe2GxQyGQqSLiCo2xU3qTo8owDM+V0DAJg30AB1Q8uXEUJIC0kSBL2ozGOUHu0y9F0SJVGS0KGrwxPSEk29xboNwEyO47662k4cx50FcBbAIpZlH4YloYltWYiEdFxynWX+n9r74uqNMPMidMamF0w085bJ896uagjCle9XSpUKZaIIX5kM+VxCp0xORAn4KUsJAJgrNb7KGSGEtIQkQZAkiRIEQtpBU5OTXhzHNWspII7jPmdZdl/zQyKk8/i0vAQlGRl4e/yjACyT4Y0GHjpD0+abWJVXGRDm79Lg9mqlEr6ShMqM9JaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5FVkI88owF+4ZZlhGUyBnojD2MTJ8Nb1eh58PUM6bISXF0BAIb8zrtiFyGEEEI6v6bOOZnTnJNyHDfPtnAI6Tz0ej0qKioAAH5+AQAsyUlFtQnNXc5OZzTDLIgN/sIqfX2BykqgvNzmeAkhhBBC2ltTh3XNvex7CQADywT5YgCeAFQATABKAVByQq55BckX8Hx4JIoFEa61PRuCBFTpmr+Ind7Iw2QSoNLUXyneJTQMSEmBxkDzMQghhBDScTV1WJfM+gXgDgAlAB4BoOE4LpDjOA0sq3SVAHit1aIlpAMpTUnG7b7+GOrjC6a2iiLPi9A3c74JYKkUbzALkMnqr8bo08Wy7oQHAFFs9gqUhBBCCCEOwZZl8lYBeJvjuM85jru4kgXHcd8BmA1ggb2CI6Qjq8q1LAdvqK07wjCAWRBhMDU/OZEkoEpnupjkXC6kR0+sz0jD0pQLKC+rdxl7QgghhBCHZ0u1tjAAmQ1sKwLgb3s4hHQexqJCAIBZqwVQu1KXnofeaNvqlJXVJstgynpoXV3xLwMUVlYgJzcbXnWWLu4MNHLg2MNVFx8TQgghpHOypefkXwAvsyyrrPsky7IaANMBnLRHYIR0dELtZHjGzc3yL8NAbxJgMtuWnOiNPHi+4SFboaGhAICsrIbuHXRcDANoFZavBjqPCCGEENIJ2JKcvAngNgApLMuuY1l2AcuyGwCkAugD4HV7BkhIRyWrqQEAqGp7MWQyBlXNqAx/OYOJh7meyfBW3QKCcKu3D6rjz9t8DUIIIdeempoa2bZtm32t38+a9UbEs88+wbbmNbOzM1X793/l2ZJz7Nmz23vQoAH9G9reFq9j0KAB/ffs2d0phitkZqarBg0a0P/334+5tmcczU5OOI77FcBAWHpI7gEwDcBoAIcB9Oc47rQ9AySko1KbLImIS0AgAEuV8ypdC5ITIw+TWWxwUnwvlRqTI7vAtRMWYjQJwNwTGsw9oYGJajYTQohdbdq0zv+LLz4LsH4/ffrsrMWLlye35jXfffftiJMnf3dvzWuQjsmWOSfgOO4UgIfsHAshnYpLbTUT95AwAABv42R4K0PtkDBGowDqqZTiHBwMZGVBpdPZfA1HJUjAwTTLSNIZ19NyyYQQYk+SJF1y18vd3b0NbgNJNEiX1Mum5AQAWJYdDcuywoEA3gJwHYA4juMy7BQbIR2WyWTCS/+egpdShR3dugMAzILU7MrwdYmihBoDD193DYR63ja8IqOBP/6AGy0lTAgh15SKigr50qWLQv7884QHz/NMZGS07sUXp2T37dtPBwA6nU72wQfzQv/++y8PnU4nDw4ONjz22JO5o0ffXb5ixdKgzz/fGQhYhijt3Ln37Nq1HwcVFhao16//lPv992OuM2e+Hrtw4ZILH330YVhhYaE6IiJCN3v2vLQffjjkefDgPn9BEJjBg4eWzJo1N4thGEiShA0b1vj/8MMhn6KiQrVSqRS7du1ePW3am5nh4RGmZ599gk1IiHdJSIh3GTt2lOu+fd+dNZlMzIoVHwb98ssRb71eJw8JCdNPnPhs7pAht1VaX+ehQ994bN26IaigIF8THR1T07dvv8qG2sRKEEQsWDA39JdffvJWKBTSHXeMKp4y5fUcRe1Kmn/++Yfzpk3rglJSkpzNZrPM3z/AOGHCE3n33nt/qfUcX3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr7g8msVFRUqXnrpWdbDw9O8fPnqZCcnJ/HXX4+4rV//SXBOTrbWz8/f+MADD+evWLE0YufOvWfDwiJMY8eO6nXjjQPL//knzq2iokI5Z868lJtuuqVq69aNft9+e8CvuLhY5ePjY3rggXH548c/VgwAv/9+zHX69FdjrecALEOyJkx4sNfixcsuDBw4uGrWrDciRFFkPD29zD///JO30WiQ9e7dt/LNN+dk+PsH8ACQkHBes2zZ/4UlJyc5e3p6mseNm5DXoh9EO2n2sC6WZZ1Ylv0BwDcAJgJ4GJYijJMAxLEs28O+IRLS8RQVFcIoiiiRRHj6+EAmY2AyCzC0cExSZY2xwQnhQT16AgDc5QrUlJfWvxMhhJCrkiSgxgxZe31JDU8tbCBeCa+88mJMbm6Oev78xcmrV29I7Nq1W80rr7zY9ezZf7UAsHLl0qD09DSnDz74MGnr1l3n+ve/vuKDD96LysxMV02c+Fz+PffcV+Dl5WX+4ouD/wYHh14x/lgURaxevSJ0xoxZ6StXrk2oqKhQvPTSs90yMzO0H330Cfe//z2d/d133/j99NMP7gCwefN6vz17dgU+99yL2du2fXbu3XffT8nNzdEsW7Y4FAAWL16eHBMTW3PzzbeUbdiwLQEA3n57RkRc3N/ub775dtq6dVvjb711aNmcOW92OXzYcs6//jrp/P77c6MHDhxcvn79p+eHDx9Z8sUXnwU21j4XLiS6lJeXKVeuXJv4+usz0w8f/sFn8eIFoQCQm5ujnDnztdjIyGj92rVbEtat2xIfE8PWLFv2fxGFhQUKAPjmm/2eS5YsjBwy5LbSDRu2nZ848bnsHTu2Bu3evcOn7nVKSooVkyc/x3p7+5g++uiTJCcnJ/Hs2TPaOXPe7NKnz3VV69ZtPf/YY//L3bhxbejlMX7//SHfyZNfzVy0aOmFAQNurF60aEHoZ5/tCHrssSdzN27cdv7ee+8vWLt2VdjWrRv9mvOzceLEb56VlZWKjz5azc2Z815KQkK866pVy4MBS0L7+usvs05OTsLq1esTpkx5PXPnzk+DmnP+1mJLz8n7APoDuB3AMViqwgPA4wC+B/AegPvtEh0hHVRBQT4AwN8/AAzDgGEYmPiWDesCAL2Bh9DApHiPgECkCjxc5ArknD+P2FsGt+hahBByrZEk4LHvnLpyZXLn9oqhq6dQvW2UjmvqyoTHjx91TUrinPftO/Svj48vDwCvvTYjJz7+vMvu3dv9e/Xqk56Xl6vWap2E8PBIo7u7uzB16rSc667rX+Xu7im4uLiIWq1WlMlkkvWOen2eeurZnP79b6gBgIEDB5UfPPi135w572U4OTmJMTGsYfv2rcEpKUna4cNHVoSGhhmnTXsz7Y47RlUAQGhouOnkyRNlR4/+4gkAnp5egkKhkFQqlejj48unpqaof/vtmNeqVesSrL090dFdClJSkrWffbY9YPjwERV79uzyi41lq6dMeS0XALp0iTGmpqZov/12/1U/sLu7e5jfe29Rmkajkbp27W4oKirKWbt2Vdgrr7yRYzKZmEceeSz3mWdeKJDJZNbXmffLLz95p6amaPz8/Kv37t3tf/PNt5Q+//xL+bVxGXW6GrlGo704TKGyskIxefLzsT4+vsYPP1yZotFoJADYtWubf2RklO6NN97KBoCYmFhjaWmpcv36Ty5JUK67rl/FrbcOrbKcq1L2/fff+D799PNZY8c+UFp7zaLc3Bz1Z5/tDHziiYmFTfvJALRarfDOO/MzlEqlFBvb1XDixG8lcXF/uQPAN9987WkymWTvvrsw3d3dXejatbtBr9dlzZ//TnRTz99abElOxgF4k+O4n1mWvVhxgOO4fJZl5wP42G7REdJBVZw7g+fDI2HwsSx+IpMx0OnNaO4dscsZTDx4QWqo3AkqGAYuAIqTkyg5IYQQGzD1TepzYImJ8U4AMG7c2F51n+d5njGbTQwAPPbYk/mzZ0/vcu+9I/vExMTW9Ot3fcXo0XeXNmduSWRk9MUJf2q1RnR39zA7OTld/ICuUilFo9EkA4A77hhVERf3l/OKFR8G5eRkq7Ozs7TZ2VkaT09Pc33njo8/5wQAr7/+8iUrawmCwDg5OQkAkJGR7nTddf0r6m7v1at3dWPJSXR0F501WQCA3r371vA8z6SkJKt79eqtf+CBh0s+/XSTX0ZGmiYnJ0eTnp7qBACiKDAAkJmZob311tsuGY4wbtyjxXW/37ZtS7Ag8Mzl10pNTXa6fOhZv37XVwGfXBJjcHDIxbZNTr6gEQSBue66AdV19+nbt1/1gQP7/IuKCpv82d3fP8CoVCovxuPs7CLwPM9YYktx8vcPNNT9Gejf//rq+s7T1mxJTjwApDewrQyAi63BENJZmDMzcbuvP1LUagCW2hyVLVipy8poEmAWRKjlTL2JjlGjBUwmVGdntfhahBByrWEYYNsoHafjbSq1YBdOCojNqeckiiKj1WqFtWu3JFy+TaVSiQAwYMANNV99dejMsWO/uP3110m3H3445LN79/ag+fMXJw0ePKSqKddRKhWXvOs0tHIkAKxbt9p/165twcOGDS/u27df1cMPjy/85ZcjHseO/eJV3/6SZMlxli9fnejs7HLJxEm5XC79t9+lk+gVCmWjiaRMJrtkH1G0fBZXq1VSUhKnmTz5ua4REVG6/v2vrxg0aGiFl5eX+eWXn+9W9/qN/X/06tW78s47xxQvWPBO9M8/Hy4dNmx4Ze2xEMXGJ/6rVOorXiNz2UXF2vmkdZONup8DzGb+iuvU3fc/dZ9qfnu2BVuSk3MAHgXwQz3b7qndTsg1TSgrszyoLcAoiBL0hpYN6QIAo4mHiRehUSgg1ZOdFIWHY9c3+9ErNAQjWnw1Qgi59jAM4KxEh1lZJDo6Rq/X6+Umk5Hp2rX7xTvwc+a8Gd6lS4zuiScmFq1Y8WFQnz79qkeMGF0xYsToCkEQsh555L4eP/982HPw4CFVDMPY9UPp55/vDHrkkcdyrUOhAGDHjk8DLn3b+u+aMTGsHgAKCgpUw4f3udg7smzZ4mCGkUmvvDItNyoqWpeQcP6SG+AJCecaHX6Xnp7qJIoirMO2Tp3621WlUonh4ZHGJUsWhri5uZvXrt18wbr/jz9+5w7g4ntscHCogeMSLrnOwoXzQgsK8lXLl69OAYBbbx1WNnr0XeU///xj6bJliyP697/hnJubmxgREam7/NizZ09fNeYuXWINcrlcOnXqL5eePXvprc+fPn3K1d3dw+zh4SkolZaks7Ky8uIIpoyMNHVjbVFXTEys7siRH71LSooV3t4+PACcOfNPuw1nrMuWOwPzATzOsuxBAM/AkoINYVl2JYAXASy2Y3yEdEjWAoxKL8tNIl6QYGzhfBMAMJotywk3dMfKrWs3/FtZgeS83BZfy5Fo5MCP91fjx/uroZE3vj8hhFwrhg27vSI8PEL/zjtvRR8/ftQ1NTVFvXjxgpCffz7sYx2KlZOTo16+/P/Cjh8/6pqVlaH65pv9nsXFRepevXpXA4BWqxVramrkyclJarPZ3OIlfr29fUynTv3lxnEJmqSkC+ply/4v6M8///Awm80XP3dqtVqxsLBAnZOTrezatbuhX78BFStWLAn/4YdD7unpaaoNG9b4f/nlnoDg4GAjAEyY8L/8jIx07aJFC0KSk5PUX3211+vQoYO+DUdhUVJSonr77RkRiYnxmm+/PeCxc+enQWPHPligVqslPz9/U2lpierIkR/dsrIyVIcOHfRYsWJpOACYTJYhcRMmPJ73++/HPbds2eCXlpaq3r//K88ffjjkO2jQkPLLrzV9+qwsk8nELFnyfihgGU6XlpbivGTJB8HJyUnq7777xmPbti3BwJU9I1bu7u7C8OEji3fs2Bq8b98XXqmpKept2zb7fv/9t7733fdgAcMw6Nq1u16j0YibN68PTE1NUZ848ZvLxo1rQxo6Z33uvntsqZubOz9r1vTIc+fOak+cOO7y8ccfXTFZvz3YUoTxawCPAegNy6A5BsCHsNQ9eYHjuL12jZCQDkhlMgIAnPwtNa14QYLR3PJl4yUJ0BnMDf5RCw211FTJysps8bUcCcMAnhoJnhqpwdXKCCHkWiSXy7FixZoLMTGxNQsWvBP1zDOPdz9z5rTr7NnvpliHbM2aNTejd+++VR98MC/y8cfH9fz0003B//vf09n33fdQKQCMGDGqzMPD0/zMM0/0OHPmtFNLY5o1a26a0WiUTZr0dLepU1/omp6eqn3xxSkZVVWViszMdBUAjBlzf1FWVqZm4sRHewiCgA8+WJp6882Dylas+DD8yScn9Pzhh0M+L730SsZDD40vAYBevXrr589fnHT27GnXZ555oscXX3zm/9BD4xtd+nbAgBvK5XK59NJLz3ZbtWpZ+KhRdxe+9NLUXAB44omJhQMHDi5dtGhB1FNPPdpj+/atgU8++UyOj4+v6dy5s86AZf7M5MmvZnzzzX7fp56a0GPr1o3Bzz47KfPBB8eVXH4tHx9f/tlnX8w+cuSwzy+//OTWrVsPw9tvz0v+668/PJ555vEeW7duDLrzznsKAUCpVDXYW/Xmm3My77prTOGmTeuCJ058tMfBg1/7Pf/85MxnnnmhAABcXV3FGTNmp+bkZGknTny0x4oVH4Y9//zkrOYkJ87OzuKKFZ9wCoVCmjr1ha4LF74X+fDDE/IbP7L1MfUNDWkqlmVZAN4AygEkchzXEbpBUwVBjCwtrbHrSRUKGTw9nVFWVgOe7wjN0HF1hLb+88nH4KFQwDzhMfQafgeqDDyOn86BvgV1TqzYCC/0ifaGqZ5liQvycjH/0YcRoNHgjS8PQKXR2nydjtDOnQG1c9ugdm4brdnOXl7OkMtlaQCi7HG+uLi4rjKZ/Ds/v+BqlUpD1V2J3f3zT5yTQqGQevXqc3F41r59X3gtX74k4vDhY6estVauBSaTQVNYmOMiisKo/v37J15t32a3CsuyRwC8yHFcIsdx3GXbegPYznFc7+ael5DOgjeZ4Ca3jD3yDgsHwzAw8yKMLaxxYnW15YR9/fzxfEQUVDIZchMTENG3n12u2d5MArDslGU47av9jFDR0C5CCCEOLjExwWnTpnUhb7zxZlr37j306enp6m3bNgfdcsug0mspMWmuJrUMy7KD8N8QsKGwzDGpb+m2uwG0+/rIhLSnkqxMyBgGoiTBJzzCsoywgYfY0nWEaxnNAnix/uWEZXI5yiQR/pCh8ALXaZITQQL2JKkAAFOuM7ZzNIQQQkjjHnnk0eKSkmLlJ5+sDCsrK1W6ubnxgwcPLZ08+dWc9o7NkTU1bXsGwBOwTH6XAKyGZa5J3U9b1s9KO+0WHSEdUInRgKdO/YlIf3/sVirBMEC1vuXLCFsZTTx4XoKygRljOrUa4AVUZqTb7ZqEEEIIaR6GYTB58it5kye/0ujcGPKfpiYnUwFshiUBOQLgJQDxl+0jwDL35Ly9giOkIyouLoJRFMF4eAIAxNpJ7PZiNAsw8wLUGgXEeoZ3iW7uQGkpTIVNLiJLCCGEEOIQmpSccBxXAeBXAGBZdhiAOAAuHMfl1z7nCSCU4ziqcUKueUVFRQAAn9rq8JZlhO0z3wQATCYBJl6sXbHryuRE7R8AlJZCXllx5cGEEEIIIQ7Mljon/wL4CsAvdZ67EcBplmX3sSzb4iXoCOnIZIkJeCE8Cn2dXQEAgijaZRlhK0GUYDBdpdZJeAQAwMlov6FkhBBCCCFtwZbk5AMAPQC8Vee5IwDuBTAAwDw7xEVIh6UpKsJtvn4IVijAMAxMvFjvsr8tUaM3N1jvw79rVwCAp0wG3my/4WSEEEIIIa3NluRkDIBpHMd9aX2C4zgTx3EHYElYHrZXcIR0RDK9ZTlzpZcXZDJYlhG2Y88JANToTWho8a+AGBaLU5LwxvkzKCyieSeEEEII6ThsWWTZFUBZA9sKAPjYHg4hHZ/KZALkcjj5+lt6TswCzHYuRmZdTrg+SrUaRW6uyCsrQU5OFoKCgu167faglgP7x1RffEwIIYSQzsmWnpNTAJ5uYNtTAM7YHg4hHZ9TbZeGW1AQGIZBjR1X6rIymoUGCzECQEhIGAAgMzPT7tduDzIGCHKREOQioYGpNoQQQgjpBGxJTuYDGMuy7N8sy85iWfZZlmXfYln2JIAHAcy1a4SEdCACz1+sDu8VGgaGscwPsTeTydIb09C8k95+fnggMBjmc2ftfm1CCCGkNRw+/L07xyVoWnKOZ599gp01640IO4VkkxUrlgaNHTuqV1P3nzXrjYhnn32Cbc2Y6pIkCXv3fuZdVFSoAIA9e3Z7Dxo0oH9bXb8xzU5OOI77EcA9sKxhOg/AWgDvwTJE7F6O476za4SEdCCl2VmQ11aH9w4Lt6ysZbTvfBMAlqFignU54StFq7UYFxwKj/zOUffJLAAf/aPGR/+oYefpO4QQQhxAVlaGau7cWV1KSoqV7R1LZ/fHH7+5LF/+fxF6vU4GAHfffW/pF18c/Le947KyZc4JOI47BOAQy7IaAF4AKjiOq7FrZIR0QCWZmZABqBIEqDQaCKIEUyt8mjaaBfBXqXXiGhYGJCdBazDa/drtgZeAbQkqAMBzvYygdy5CCOlcpIZWeSF2J0nSJXc2tVqtpNVq+faK53I2JScAwLJsNwB3AAgEsIpl2esA/MtxXJW9giOkoymWMXj91J/oHcPietQWYGyF5ESSAJ2Rh6+7BkI9p/djWZiP/AQPAKIoQiazZQQnIYRcm2rMDY8skTOQNIr/7gpdbV8ZA0lr477NceTIj26bN68PzsnJ1qjVGrFfv/4V06a9leXp6Sn8/vsx1+nTX43duXPv2bCwCBMAZGamqyZMeLDX4sXLLgwcOLgKADZv3uD39ddf+FdUlCtjY7tW9+rVp+rw4e989u377iwApKWlqpcsWRiamBjvqtVqhbFjHyz49tsDvuPHP5730EOPlADAnj27vD//fFdAcXGR2sfH13jnnWOK/ve/iYXW96Avvvjc+/PPdwYUFBSoXVxc+IEDB5e9/vqM7IKCPOWECQ/2AoDp01+NffjhCXlTpryWe+FCouajjz4MSUyMd9VotELPnr2rXnttepa/fwAPAEajkVm6dFHI0aO/ePE8z4wadWeReJX5mAAwaNCA/pMmvZz5008/eqWlpTj7+wcYJk58LmfEiNEXKxcfPvy9+5YtG4JycrK1np5epltvHVY6adLLeWq1WgKAxMR4zZo1q4ITEuJdDQa9zNvbx3TPPfcVPvXUM/Uukbllywa/LVs2hLz55pzUkSPvLG/s/zM7O0u5atXykDNnTrsZDAZZ167dqidPfiW7e/eeeus+X3/9pddnn+0IyMvL1Xh4eJrvvvvewqeffr6gsfisPw8AMGHCg72mTp2WDgAffbQk4vjxv+MAoKysVL5q1fLgv/76w6OqqkoRGRld89xzL+bcdNPAasAybO3s2dOu119/U/mBA/v8q6qqFLGxbPUbb7yVERMT2+K7os1OTliWlQNYA2AiAOtt2z0A3gEQxbLsEI7jslsaGCEdUVFRIYyiCJWPLxiGgZkXWqXnBAB0BnODw7qCuvZAmiRBK5ejJDMDvhGRrRIDIYR0RkP2uF7X0LZ+fnzFuuH6ZOv3I7506WMUmHqTju5eQvWno3Sc9fu797n0qjIz9X72inYXdJ/dpUtobqwlJcWKefPmdHn66eezhg4dVpGXl6dcuHBe1LJli0Lmzfsgoynn2LZts++2bZuCX3hhcma/ftdX//DDIc9du7YFe3t7mwBAp9PJXn31xdjAwGDDRx+tSaypqZYvW7Y4rKioUG09x65d23y2bNkQ8uKLUzP79LmuOj7+nNPHH38UVlxcqHrjjbeyz58/p125cmn4G2+8ldanT9+a5OQkzcKF86Lc3d35F16YnLdy5dqEl19+vtusWXNTBg8eWpmXl6ucMuUFdtCgIWVTp76eoNfrZRs2rAl64YWJ3bZv33Pe2dlZXLhwXtjff590nzbtzfTg4GDj5s3rAzkuwSUgIOCqH5A3b14f8r//PZ395ptz0r/++kuf996b08XT0yvx+utvrPn558NuCxbMjX7mmReyBg4cXJmZma5euXJZWHZ2pmbJkhWpOp1O9vrrU2J79epTtXLlmkSFQint27fXZ+PGNaEDBtxQ1atXb33da23fvsV369aNIbNnz0sZPnxERUMxWVVVVclefPGZrv7+/qb58xclqdUaaePGNUGvvPIiu2nT9viQkDDTN9/s91yyZGHkY489mTN8+Miy+PhzTsuWLY5wdnYRxoy5r/Rq8Q0YcGP1rFlzUxYsmBu9cuXahK5du+sPHvzay3p9QRAwZcoLsWazmZkxY3aar6+f+bPPdvrNnPla7PLlqxP79u2nA4CkpAvOarVGWLjwwySdrka2cOG8yCVL3g9fu3bLhab8zF2NLT0nswE8CuAZAN8AyK99/nUA+wEsAPC/lgZGSEdUXFwEAPD19b1Y46S1kpMavbnBbnC1szPKBAHeCgVy489TckIIIZ1Ubm6ukufNTGBgoCk0NNwUGhpuWrhwSRLPC01e2/CLLz4LuOuuMYUPPzyhBAC6dInJT06+4JyamuwEAN9887VnZWWVYvPm/0v19PQSAGDOnPfSnnvuye7Wc+zatS3ooYfG59177/2lABAREWmqqamWr169Ivzll1/LycrKUAMMQkJCjSEhYaaQkDCTh4fnBRcXV0Eul8Pb25sHAHd3d8HFxUXcsGFNgIeHp3n27HcvLju5aNGy1LvvHt7n228PeI4adVfZL7/85D1p0suZt99+RwUAvPvuwvQHHrjbtbHXO2zY8OLHH3+qCACmTZuZc+7cv6579uzyu/76G9O2b98SePvtI4offfR/RQAQGRllVCgUGTNmvBabmZmucnJyFseMua9w/PjHC93c3EQAmDz51dwvv9wTkJSUqK2bnOzatd1n06Z1Ie+8Mz956NDbK5vyf/H11194V1dXKTZt2p7g4+PLA8D77y9JffDBe3rt3r3Dd9q0N3P27t3tf/PNt5Q+//xL+QAQHd3FqNPVyDUarajT1cgai8/d3V0AAG9vb16r1V7yQeLXX4+4paWlOq1fv/V8t249DAAwe/a7mRcuJDrv2LE1oG/ffqkAIAgC8957H6RZfx7GjLm/cOvWDSFNeY2NsSU5mQhgDsdxm2t7UQAAHMedYVl2DiwV5Am5JrkmJ+OF8Ci4qTWtVuPEynSVWicAUK1QwBtAeVpqq1yfEEI6q18fqvqnoW1y5tKhVz/cX93gRGLZZfseHFvd4BKKl+/bVL169dbfcsvg0rlzZ3VZsWKpqU+f6yoHDhxUcccdo8qbcnxpaYm8uLhY1atXn+pLz9unypqccFyiU2BgkMH6QRQAunfvqddqnQQAKC4uUpSWlip37NgavGvXtiDrPpIkwWw2M5mZ6eqhQ2+v+PLLPdUvvfRsN3//AGPfvv0qb711aHmfPtfp6osrOfmCU25ujvb222+5pBfLbDbLMjLSNCkpSRqe55mePftcnPOs0WikiIjIes9XV79+Ay6ZgsCy3WpOnz7lBgBpaWlOKSnJzj//fNj7v9dhjSlJc9ttd1ROmPBE4cGDX3ulpCQ55eRkqzMy0pwAQBDEiwlhWVmZ8pNPVoTL5XIpJCSsyUOdUlNTtAEBgUZrYmJ9XV26xNSkpaU6AUBmZob21ltvK6173LhxjxZbHzclvoYkJydptVonwZqYAADDMOjevWf1qVN/u1mfc3NzN9f9eXBxcRF4nrfLYv+2JCf+AE43sC0bgKfN0RDSwXlUlKOfrx+ylCowDAO9sfXml5lqa500NIDZ7OICVFdDn5fbajEQQkhn5KxEk+8qtda+zbFo0bK0pKQLuceP/+oeF/eX26JF86O++mpv9bp1/w2xqdvRbjb/9yFSLrd8FBTFhj+4yuVySFLD20XR8rKeeeaFrJtvHnRFD0FISKhJpVJJ69ZtuXD27L/a338/5h4X97fb7NkzYoYMua1k/vxF6ZcfI0kS06NHr8o33njrioJd7u7uQlZWpqp2v0u2KRSKRpO8y/eRJAkymVyyPBaZsWMfzB8z5r6Sy4/z9w8wFxYWKJ577slurq5u/E03DSzv3/+Gyt69+9SMGze2d919GUaGefPeT9q0aV3QggVzIzdu3JbYlPmfkiTVO2RbFEVGLrfEKJfLpYZKCTQ1vqtcv94R46IoXtJuSmXj7WwrW2bJJgO4s4FtQ2u3E3JNUpksNU20vr5gGKC6FWqcWJnMInih4VonFV274pVzp3GMb70YCCGEtK+4uD+dFy6cFxoTE2t86qlnC1etWpc8deq09Pj4c65FRYUKpVIlAkBlZeXF0S4ZGWkX54q4u7sLPj4+pnPnzjrXPW9CwvmL33fpEqvLz89Xl5WVXjxHUtIFtV6vkwOAr68f7+bmxufkZKujoqKN1q/z5884ffLJymBJknDkyI9uq1YtD+zVq4/++ecn569bt+XC+PGP5/z++zFPAFd8IA8Pj9Dn5GRpg4NDTNbzeXp68suWLQ5NTIzXxsSwBqVSKf3zz98u1mN4nkd6uqWX4Gri489d8loTE+NdoqOjdQAQEhKmz8rK0NR9HQUFecoVKz4Mqa6ukh04sM867CrxpZem5o0efVd5RUV57c3+/z6ve3i4m4cMGVY5c+bs9NTUZKfNm9f7NxYXAERFddHn5eWqrTVIAMBgMDCpqclOYWERegAIDg41cFzCJa9h4cJ5oa+88mJ0U+JjGKbBxKJLl1i9TqeTJyScv6TeTHz8eZeQkDBDQ8fZky3JyXIAU1mWXQVgOCyvNIZl2dcBTAPwsf3CI6Rjca69e+QaGAhBBAyt3HNi5huudeIXE4tcgwEZ2VmtFkNbUcuBz+6swWd31kAtb3x/Qgi5Vri4uArfffeN75IlC4NTU1PU8fHntEeO/Ojl7x9g9Pb24bt27a7XaDTi5s3rA1NTU9QnTvzmsnHj2pC67x0PPTQ+/9tvD/jt3fuZd2pqinrTpnV+J0785mVZ9wgYM+a+UldXV3727BmR586d1cbF/ek8b97bUYAlqWAYBvff/3D+t98e8Nu6daNfWlqq+vvvv/VYteqjcKVSKarVakkuV+Czz3YEbdq0zi8jI111+vQpp5MnT3jExLA1AODs7CIAQFLSBW1FRYV83LhHC3U6nXzmzNeizp49oz1//pz2rbfeiEpOTnKOje2qd3Z2Fu+8857CHTu2Bh06dNAjKYnTzJs3O7ysrFTVWJsdOLDPf9++L7ySk5PUixYtCMnISNeOH/9EAQA88sij+X/++YfnihVLg5KTk9THjx91Xbz4/ciammqFv38A7+8fYDIajbKDB7/2zM7OVP366xG3d9+dHQUAJpPpis/V3br1MNx330P5O3ZsDUpJSVZfvv1y99wzttTJyVl4661p0adO/e1U+7ojDQaD/KGHHikCgAkTHs/7/ffjnlu2bPBLS0tV79//lecPPxzyHTRoSHlT4nNychYBID7+vFN1dfUlMQ8ZMqwiNDRcP2/e21G//37M9cKFRM17780Jy87O1D7yyISCxuK3h2YP6+I4bgPLsr4AZgGYBMtP7i4AJgCLOY5bY98QCekYRFGEa22XrVdtAcbWmgwP1M45ERqudRIaGg4AyMpq0mItDk3GANEerTN3hxBCOjKW7WZ4++15KVu3bgo6dOign0wmk3r06FW1ZMmKJJlMBldXV3HGjNmpGzasCZk48dEegYFBhkmTpmTNnj091nqORx/9X1FlZaV869aNwatWLVd0796jaujQ24sTEs67AoBarZb+7/+WJ3344QdhL7/8XDdnZxd+3LgJeWvXfhymVColAHjmmRcK1GqNuH//l36bNq0LcXd352+//Y7iqVOn5QDAkCHDKqdMeT19797dAdu3bwlWqVTiddcNqHj99RnZAODl5S0MGza8ePPmDSHZ2VnqWbPmZi1b9nHi6tUrQl55ZVJXmUwuxcayNUuXruR8ff14AHjttRnZKpVKXLVqeZjBoJcPHDi4tH//68sba7MRI0YX7d2723/58iXa8PBw3cKFS5J69LAs03vXXWPKJElK3bVrW+CXX34e4OTkLAwYcEP5q69Oz7ZuT0xMyF+//pPQlSuXynx8fE0jR95ZfOLEbx61vU1Fl19v0qSX83777ajnggVzIzZs+JS72vAuDw8PYcWKNdyKFR+GTJ/+Clv7f1y1YsWaxPBwy1LQd9wxqqK8vDzj8893BmzZsiHE29vH9OyzkzIffHBciSRJaCy+bt166Pv27VfxwQfvRT32WFaOu7vHxTupCoUCK1Z8cmHp0sUh7747O9ps5pnIyCjdBx8svdC//w1tUtOQaW7RG5ZlPTmOK2NZ1g3AzYBlzi2APziOK73qwY4hVRDEyNJS+7avQiGDp6czyspqwLfSBGhi4ahtXZKdhZK5bwMAIlauhlzrjN/P5KKkQt/Ikba7uXcQgr2dwfNXJkE1NdX4vwfGIFCjwbi1G+HhH9iscztqO3c21M5tg9q5bbRmO3t5OUMul6UBiLLH+eLi4rrKZPLv/PyCq1UqTZsMV3FUP/982C0mhtWHhIReHAf8zjtvhefn56rXrt1yITMzXZWWlqoZMuS2i/NJ8vJylQ89NKb3kiUrOGv9i45g0KAB/adOnZZurc1C2obJZNAUFua4iKIwqn///olX29eWCfF/siw7m+O4zwB8b1uIhHQ+JRnpAIAqgYfayQmGVlxG2EpnMKOhGzDOzi64MyAIHgoFcs+da3Zy4kjMArDpvKWnfmIPE5Q0tIsQQuzmu+++9d6wYY32tdemZ/j5+Zv//POk67Fjv3hNmjQlEwCMRqPs7bdnxjzxxMTsO+4YVVZZWSFfu/bjYH//AGP//te3yd10cu2wJTnxBFDc6F6EXGMqcnPgDqAG+K8AYz09Gvak0199TkulXAYPAKWpKcDtd7RqLK2Jl4D15yxDdZ/oboKyneMhhJDOZObM2ZlLliwMffvtN7vodDq5v7+/8dlnJ2VZexdiYljDjBmzU3fu/DRw585Pg5RKldS7d5/Kjz5afcE6rIsQe7ElOfkIwP/VToA/x3HcFWPrCLkW5apUeDHuJG698WYMYxiYhdbvOTGaeQhXqXVicnIG9HrU5GS3ahyEEEI6Lk9PL2HBgv9Lv9o+d901puyuu8aUtVFIreb48b/j2jsGcnW2JCdPAAgHcBgAWJa9fLvEcVyTz8uyrB+ADwGMAqAF8CuANziOi6/d3heWhGgAgBIAKziOW2JD3IS0quLiIpglCU6+fpDJGBiMPJo5pavZLMsJS2ho8Xm5tzeQnQ2xhIbWEkIIIcTx2ZKcbLdzDPsBiABGwzIi5j0Ah1mW7QJLsvIjgH0AXgBwE4DVLMuWcBy32c5xENIiRUWFAABfXz8wDKAztN4ywlYmswBBkhr8RdYGBQPZ2VDpGi2YSwghhBDS7mxJTtIAHOE4rsXjRFiW9a4933yO487XPvceLBXoe8BSR8UIYBLHcTyABJZlYwDMAEDJCXEoodnZmBQRhUCVChKAGkPrFz808QJ4XoRSKb+iSi4AeEfHAH+ehLvYusPLCCGkAxIBSJIkNVj5nBBiH7W/ZxIsv3dXZUsRxqWwDLFqMY7jSjiOG18nMfGHpZBjNoB4AIMBHK1NTKyOWHZl/ewRAyH2EqjTY5iPH7xV6lavcWJlMoswX6VKfHDPHgAAF5kcNeUdYaVvQghpM/mSJJlNJkOjFcUJIS1jMhmcJEkyA8hrbF9bek4KAXjYcNxVsSy7DsCzsPSUjOE4roZl2RAAZy/bNbf237DaWGyiUNiSlzVMLpdd8i9pPY7a1lpRBGQyuAcHQ5IAXhAhk7XuDTlBECEIEpRKOQThypsRPsHBeD49BaklxfistASxPj5NPrcjtbOiTqeQQi6Dwpa/XA7Kkdq5M6N2bhsdqZ379+9fGRcX92llZdkkAN4qlUbHMAytPEWIHUmSxJhMBqfKyjKVJIkb+/fvX9XYMba8xa8H8DHLssMAnANwRSl7juM+teG8ywGshaXq/D6WZQcBcIIlWanLWihJY8M1AAAyGQNPT2dbD78qNzdtq5yXXMmR2rpudfjwHizkSjlkchm0WlWrX5uXrt4W2pBgmIuLUFKSD0/Pfs0+vyO0s5sI7B9neezv44wO8Lmn2Ryhna8F1M5towO18/uCwKO8vOQJhmGcgAbXFyGE2EaSJMksSeJGAO835QBbkpMPa/99vKEgADQ7OamzOtdzsFSenwxAD0B92a7WpMTmoj+iKKGy0r4ThOVyGdzctKis1Nd7B5vYjyO2dVluLlS1yYnWNxA1NSZUVRuh17f+vJOKKgOqqw0wNzCMLDg4DKdPn8b584m4+eYhTT6vo7VzWO1fgsqK9o3D3hytnTsraue20Zrt7OamtXuPTP/+/UUA8+Pi4j6SJATCtuHuhJCGiQDymtJjYmVLchJpwzH1qp03cjuAzzmOEwCA4ziRZdl4AMEAsgAEXXaY9fucllyb51vnzUkQxFY7N7mUI7V1fkoqAKBGEKB2ckZZjRkGIw/xKjVI7KVGZwLPN9wWvby8ERIeBc2/Z2xqL0dq586M2rltUDu3jY7WzrUfnJr84YkQ0nqanZxwHJdhfcyyrBMANwAlHMfZcos4CMBOWIaGHak9pxJAP1iWGC4A8ALLsnJr8gJLMsNxHGfzfBNC7K0iNxtuAKolCQzDgOdFmNvojdnEi+CvkgSFuLmjn68fsio6bpeDWQB2cZa68ONZM5Tydg6IEEIIIa3CpmmlLMsOBrAYwPWoHZ/JsuyfAN7iOO7nZpzqXwDfw1K75FkAZQBmAfAEsAyW+SXTAWxkWXYxgBsAvAJLzRNCHEZNYSHcABgUCjAMA72x9WucWJnMAkSx4UKMPrFdgZN/wEPqOHcxL8dLwIrTlhGdD8WaoWzneAghhBDSOpo9tpJl2YGwVIf3gKVg4osA5gPwAvA9y7I3N/VcHMdJAMbB0mvyGYA/a88zmOO4zNrekZEAWACnALwDS/X4rc2Nm5DWlKpR49G4k/jDzxcMw6CmDQowWpnNwlV7TkL79AEAuMoVKMlucXkiQgghhJBWY0vPyXwAxwCMrDPUCizLvgtLL8i7AEY09WQcx1XAkuC82MD2v2CZIE+IwyoqKoJZkuDq5w9JkqA3tv5EeCtT7XwTlar+QozOHp4o5Xl4KRTIPvMvvENC2iw2QgghhJDmsGVVihsAfFQ3MQEsE9kBrKzdTsg1pbi4CADg4+PbZgUYrUxmAWZBhOwqv81VtYVBypIvtFFUhBBCCCHNZ0vPSRXQ4JBvFWiNcHIN6lVcjOiIKASpVOBFqc0mwwOAuXbyPcMwsKzkfSXezQ2orIQ+t0WL3BFCCCGEtCpbek5+A/AWy7IudZ9kWdYVwJuwDPki5JoSLUoY5uMHL2fnNu85AQCDia9NTuqnDAgAAJjKy9soIkIIIYSQ5rOl52QmgDgAqSzLHgSQDyAAwN2wFEh8yn7hEeL46laH9wwJa9NlhK10hqsnJ0433ozHd29HcEQk7m3DuAghhBBCmsOWOifJtStyvQPgTlhW1yoF8DOAd62V3gm5VlQVF0Ndm5z4RUXCLIht3nOiN5jrnQxvFRETC6MoIjMzEzzPQ6GwaRXxdqOSAWtu1118TAghhJDOyaa3+doEZCrHcQEcx6kAdAewgBITci0qyUgDAOgEAa6enhfngLSlxgoxBgQEQq1Wg+fNyO2A807kMmCAv4AB/gLklJwQQgghnVazb5+yLOsBYA+AUABda5++AcC3LMvuBzCB4zid3SIkxMGV52TDBUBVbXV4g6ntapxYNVaIUSaT4bEYFsEmM3JP/IawsPA2jY8QQgghpClsuQf5AYAeAN6q89wRAPcCGABgnh3iIqTDqM7PBwAYFHIwDANdGxZgtDI30nMCAF1c3dHTzR1VKcltFJX98CLw+QUlPr+gRBt3ShFCCCGkDdmSnIwBMI3juC+tT3AcZ+I47gAsCcvD9gqOkI5AX1oCAODVGksBRkPbFWC0MpkF8IJ41Unx8PICAPCFBW0Ulf2YRWDx3xos/lsDMyUnhBBCSKdlS3LiCqCsgW0FAHxsD4eQjuecWoVH404iOSIcvCjB1A639s28AJ4XcbXcxCkkFACgqqpuo6gIIYQQQprHluTkFICnG9j2FIAztodDSMdTVFQIsyTBIyAQYjvUOAEAs1msrRLfcHbiE2uZIuYutH18hBBCCCFNYct6ovMBHGJZ9m8AXwEoBOALy5yT/rDUOyHkmlFUVAQA8PHxhdDG1eGtJAAGk3DVYV3h112H3F3b4aZQoCQnG97BIW0XICGEEEJIEzS754TjuB8B3APL56F5ANYCeA+WROdejuO+s2uEhDi4YQYjXoyIhp9a0y41Tqx0BvNVh3W5eHmjlLdM1s889XcbRUUIIYQQ0nQ2VWLjOO4QLL0nGliKMFZwHFdj18gI6SB6q9XQaJ2g8vQEL4gw8+2VnDS+SliFSgXGYEBZenrrB0QIIYQQ0kwtKmfGcZyB47hcSkzItaq6tAQamRwA4B8VCZ6XYG6n5aTMZqHR5YS5rl3x/JlTOFVV2UZREUIIIYQ0nU09J4QQi6J0S3V4vSDAzccXZYXVuHp60HpMvAhBaLgQIwBExsQCAFJSktomKDtRyoDlQ3QXHxNCCCGkc6LkhJAWKM/OgjOs1eEBfTsUYLQy8wIESbrqL3WXLjEALMmJVFvRviNQyIBBwbTKGCGEENLZUXJCSAtU5+fDGYBBbhnapTO2Y3JiFsHzEpRKBlID3TfhYRF4M6YrwrRaFGekwTciqm2DJIQQQgi5ChogQUgLGIqLAQBmtRq8IMFkbr/kxMQ3XiXeydkZIc4u8FapkfXPqTaMrmV4ETiQqsCBVAXaYaVmQgghhLQRm3pOWJb1AfAGgDsABAIYCeA+AKc5jvvafuER4tiMlRUAAMnZGaLUfpPhAcBkrpucNDzzpUqthq8goDTpQtsF10JmEXj3Dy0AYHhYFRR0W4UQQgjplJr9Fs+ybCQsVeCfA5ANwA+WJCcWwBcsy95l1wgJcWC/yxg8GncSxWxXCKIEUzstIwwAktR4IUYAEL29AQDm3Ny2CIsQQgghpMlsuf/4ISxV4SMB3A9YFgfiOO5RAPsBvGW36AhxcMXFRTBLEnyCgsAL7dtzAgB6oxmyRn6rncMjAABqWk6YEEIIIQ7GluTkdgDvcRxXjivHjqwF0LOlQRHSURQVFQIAfH19LdXh27HnBGhaIcaAHr0AAF6iBFGkCRyEEEIIcRy2jtxu6BOQGlcb7E5IJzNOpcFLEdHwdXEBz4swt/NsbaNZgNBIIcaIfv3BSyKc5HLkX+DaKDJCCCGEkMbZkpwcA/Amy7LOdZ6TWJaVAZgE4De7REaIg6upqEA/VzcM8fGFr38gjGYBYiOJQWszmwUIjeRHaicn5AgC4qsqkcYltE1ghBBCCCFNYEtyMhNANwDJALbB0lMyDUAcgEEAZtktOkIcWHFtdXijKMDN1wf6dqxxYmXmRQhNGKr1a0gI5nLxOJef1wZREUIIIYQ0TbOTE47jzgEYAOAIgGEABFiWFE4GMJDjuNP2DJAQR1WenQkAqBIlyOUy6Azmdo7IspywIFqq1V8Ny3YDAHBcYhtE1XJKGfDBID0+GKSHkpYRJoQQQjotm+qccByXBOBRO8dCSIdSlZcHLQC9XAZBAoym9p0MD1h6Tsy8CI1CAamhMvEAuna1JCepHWRYl0IGDA9r/54pQgghhLQuW4swMgD6AnBGPb0vHMcdbVlYhDg+a3V4k0oNQWj/yfCAtUq81GghxtioaCzv2QcBag3K8/LgERjYdkESQgghhDSg2ckJy7I3ANgDIKT2KesAEqn2sQRAbpfoCHFg5vIyywNnZ4gS2n0ZYQAQBEshyMaGdbl7+0ClUELGMEg9+Tv6jX2gbQK0ES8Cv2Rb/lwNDeGpQjwhhBDSSdnSc7IMgBnAk7BUiG//28WEtAO+pgYAIHd3By+I7V6A0cpg5ButEg8AlRoNfHgeJfHxgIMnJ2YRmHlcCwA49nAVJSeEEEJIJ2VLctIPwCMcx31t72AI6UgOmox4N+4k5t1zD/jaHgtHoDM0LTmBvz+QkwMhN6f1gyKEEEIIaQJb7j8WgnpLCEFRUSF4SYJPYJClAKMD9ZyIV5kMb+URywIAnGuqWzskQgghhJAmsSU5+RjAzMuKMBJyzSkuLgIA+Pn5wcyL4BurfthGTHzjVeIBIPyGmwAAvjI5dJWVrR0WIYQQQkijbBnWFQOgO4B8lmXPA9Bdtl3iOO72FkdGiAPTV1VhSkAgyrx84OvphTKT4yxzazaLEESp0TsP/tFdkC3wcJcrkHT8GPrceVebxEcIIYQQ0hBbkpMuAE7X+f7ywe1NGOxOSMdWnJGG3m4eMIki3L29kZNR3t4hXWSu7TmRNfKbKJPJkKHRoDg3Fz4ZqejTNuERQgghhDSo2ckJx3HDWiMQQjqSsqxMaABUiSIYhoHe2P7V4a1MtUPMVEr5VQsxAkDl9TdgzYqluCM1BQ+2UXyEEEIIIQ2xqQgjIde6qrw8aADoZDLwouQwk+EBwGQWwPMiGJUcjc2L79WrNwDg3LkzbRCZ7ZQy4J2b9BcfE0IIIaRzalJywrKsAOBmjuP+ZFlWxNVKT1vmnFDSQzo1fe1keLNaBVF0nGWEAVhWDhNEyGQMxEYmxnfv3hMKRgZNRTkKszPhFxLWRlE2j0IG3BPlOPN6CCGEENI6mppEzIOl4KL1ceNLARHSifFllurwkpMzBFGCmXecnhMJgMEkNKnWibOzCxb1uQ6hCiVSjvwEvyeeav0ACSGEEEIa0KTkhOO4d+s8nttq0RDSQUjVVQAs1eHNggiz2XF6TgBAb+DRlDqMAGB09wBqalCRcL5VY2oJXgT+yJMDAG4KFKhCPCGEENJJNXVY163NOSnHcUdtC4eQjkE0GAAAam+f2urwjtNzAgA6Y9OHQGmiooCzZ6EsKmrFiFrGLAKv/OoEADj2cBUlJ4QQQkgn1dRhXb/gv6FcDd2PlWq3SQDkLQuLEMe2uawE6SnJ+Hji0+AFEWYHmnMCACYzD15o2ujLsJtugXj2LPxECSa9DiqtUytHRwghhBBSv6YmJ7R8MCF1FBcXgZck+AUGwmDkG10Vq62ZzSLEJgYVNeB6/LNmFVzlCiT8/DMVYySEEEJIu2nqnJNfWzsQQjoKk8mE8vJyAIC/vx/yKx1vFSkTL0AQm9aFKZPLUaTRwNXMI/+vPyg5IYQQQki7sWnJX5ZlfQC8AeAOAIEARgK4D8BpjuO+tl94hDiewtRkzI7thhKzGe7uHkgtLGnvkK5gNlsKMSoUTJN6dRSRUcCFC5BlZ7V+cIQQQgghDWj2tFKWZSMBnAHwHCzLC/vBkuTEAviCZVm67Uo6tbKMdPR2c0dvdw+IkqXooaMx8QLMgtik5YQBIGzIMHyWk4WtKckwmx2n2j0hhBBCri22rHnzIYBCAJEA7kftBHmO4x4FsB/AW3aLjhAHVJWXBwDQ11aHd6QCjFZmXrRUiW9ictLl+htxWFeNc6XFSEyMb+XoCCGEEELqZ0tycjuA9ziOK8eVxRjXAujZ0qAIcWS62iV3TSoVRNEyhMrRiKIEo1locq0TmUyGfv2uBwCcPHmiFSOzjVIGTB9gwPQBBihpGWFCCCGk07L1bb6hGcBqUPV40smZy0oBAJKTk0MuI2ylN/KQyZqYnQAYeMNNuN7DE8Lvv7ViVLZRyICHY814ONZMNU4IIYSQTsyWt/ljAN5kWda5znMSy7IyAJMAON4nG0LsqbY6vMzdHbwgOlwBRiu9oXlzR27q2RtvdGFxKyNDRWFhK0VFCCGEENIwW5KTmQC6AUgGsA2WnpJpAOIADAIwy27REeKA5HpLdXiNt7el58QBJ8QDgMFkWU64qUJ79UYBz0POMDj3jWMtuieIwN8FcvxdIG/WayKEEEJIx9Ls5ITjuHMABgA4AktxRgGWJYWTAQzkOO60PQMkxNFIZhMAwMXfH0aTCEF0zJGMZl6EKDbvk3yVr6/l39P/tEZINjOJwAs/OeGFn5xgouSEEEII6bRsqnPCcVwSgEftHAshHcIHGWmoLC/DZ9NnQG903GV3TWYBgtS8OxC+N94EfHcI3pWVEAXH7BEihBBCSOdl09RSlmWjWJbtXvvYg2XZj1mW3c+y7OP2DY8Qx2I2m1BWVgpBkhAQFAidwfGqw1uZeQG8IDZ5xS4A6DXqLugFAe5yBc4f+an1giOEEEIIqYctRRhHAUgAMLH2qTWwFGQMAbCFZdmn7RceIY6lpMRSDV6hUMDV3RNGs+MmJyZz82qdAIDGxQV5Wg0AIOP771orNEIIIYSQetnSczIHwA8A3mVZ1h3AfQAWchzXD8BCAFPtGB8hDqXo/DnMie2GZ6JjIYGByQFrnFiZeRFmQWpWcgIArgNuAADUZGdBkhxzPg0hhBBCOidbkpM+AJZzHFcFYCQs81b21m77EUCMnWIjxOFUZmagp5s7YpydITpodXgraw2WZuYm6PvAw5h+IQHvnfsXZ86caZ3gCCGEEELqYUtyosd/E+lHAyjgOM76CSYAQHlzTsayrBfLsmtYls1mWbaSZdnjLMsOqrO9L8uyv7IsW8OybCbLstNsiJkQu9AXFgAAzGp17TLCjttzAlgKMTa358TZ3R0xN94MADhw4EBrhEUIIYQQUi9bkpPjAKaxLDsewMMAvgQAlmX7A3indntz7AZwE4BHAFwP4BSAH1iW7cqyrDcsvTEXYFm++B0A77Es+5QNcRPSYuayMgCA5OICXpActjq8lc7Q/OQEAEaOHA0A+G7fPpiNRnuH1WwKBpjS14ApfQ1QNP/lEEIIIaSDsGUp4VcBfANgB4B4APNrn/8GgA6WIo1NwrJsF1hqpNzCcdzvtc9NhaVHZgIsvTRGAJM4juMBJLAsGwNgBoDNNsROSMtUWarDKzw8wfOiQ885ASw9J6IN80aGDBmG57uwGOzmjr8+340bxrfvQnxKOfBEd8ddtpkQQggh9mFLEcY0AD0ABHIc15PjuPzaTWMBdOM4LqUZpysGcBcs1eWt55cAMAC8AAwGcLQ2MbE6AoBlWdavubET0lJKo6U6vNbPD6bapXodmZkXbCoSqVSqEBkdDZVMhvJff7F/YIQQQggh9bC1CKMEoOCy5/5gWdaZZdlhHMc1aQ1SjuPKAXxb9zmWZR8CEA3gewALAJy97LDc2n/DABQ2P3oLhcKmEi8Nkstll/xLWk97trWWFwCFAu7BwTCYBMhkjj3GiBdESJJtP+/dHhkP48cfI8zMoyD5AoK7dm2FCJtGEIGEUstr6OYlojP9mtHfjrZB7dw2qJ0JIS3V7OSEZdlwAGsBDAGgamA3uS3BsCx7C4BNAL7mOO4Ay7LLYBnWVZeh9l+NLdcAAJmMgaens62HX5Wbm7ZVzkuu1NZtLUkSJFEAoEBot1iUixK02oZ+BRyDTC6HXCmHp1vzf10GjLgNu1d/jFAwOLN5PXquW9MKETaNzgw8tt3yOOFFwEnZbqG0Gvrb0TaondsGtTMhxFa29JwsAzAQwDoAt8Ayz+QEgBEAegG435ZAWJa9F8BOAH8AGF/7tB6A+rJdrZ+yamy5DgCIooTKSp2th9dLLpfBzU2Lyko9BAcf6tPRtVdbV1RUYPKZfyBnGPwVFoXMzGro9aY2u74tGElEjc4EmSg2u2aJXC6D3113Age/hV9uPtITU+Hu799KkV6d3gwAlhsK5WU1MHai5IT+drQNaue20Zrt7OampR4ZQq4BtiQnQwDM5jhuBcuyLwEYy3HcDJZl34KlOOO9APY354Qsy04G8BEsK389xnGctbckC0DQZbtbv8+xIfaLeL513pwEQWy1c5NLtXVb5+XlAQBc3NwgV2lgNJVDtGE+R1symgSYzAJElQyCYMPE+IlPYt/X+xEgV+C3VSsw4p33WiHKxtVdFI0XRPCOPZrOJvS3o21QO7cNamdCiK1suQXhAuB07eN4AH0BgOM4AcDHAG5rzslYlp0EYCWAVQDG1UlMAOAogMEsy9YdJna75XKczfNNCLFFYW2NEz8/fwii5PA1ToDaKvG8aNNywgAgl8uBG28CADilpKC8rNSe4RFCCCGEXMKW5CQPlmKLAJAMwItl2cDa70sBNHncB8uysbD0mHwFYCEAP5ZlA2q/3GGZf+IGYCPLst1Zln0SwCu1+xLSpvT//os5sd0wyssHguDY1eHrsqUQY123Pj8J3xt0mHH+X2zavN6OkRFCCCGEXMqW5OQbWAohDuQ4LgtANixFGV0BTETzhls9CEAJ4D5Ykp66Xx/V9o6MBMDCUpzxHQBvcBy31Ya4CWkRPj8PPd3cEaTRgBdEmMwdIzmxtRCjlUKpxHUvTEaNIGDnzu1ISUm2Y3SEEEIIIf+xZc7JHFiqtc8DMBzAWwC2wtKjAQAvNfVEHMe9D+D9Rvb5C8DNNsRJiF2JFRUAAJmbO8yCZbhUR6A3mps9Gf5yt9wyGLfeOhRHj/6CXfPexsz1W6FQOfZKZYQQQgjpeGwpwljCcdyNAB6v/X4HgKGwVIa/jeO49ltvlJBWJNNZVnhT+3hfnMvREZjMAvgWTtxnGAazZs3FqzFd8bBSjZ/en2en6JpGwQDP9jTi2Z5GKDrhZHhCCCGEWNhUhBEAOI7LY1m2KwBPAHkcx/2f/cIixPFozGZALodLYBD0RnN7h9NkZrMIQZRsGsNZl79/AMKHDAVOn0Z4Vhb++nwXrn94fKPH2YNSDjzf27GXbSaEEEJIy9n0eYVl2adZls0AcB7AcQAXWJZNZ1m2bT6pENIOXGDpffAMDUONnm/naJrOxAsQ7LTk8dDJryDZ2RkyhoHy0LeI//mwXc5LCCGEEALYkJzU1iRZDyAOwP8AjAbwFIAEANtZln3IrhES4gCMNTVwlVs6Gn2iomAwdqDkxCyAb8Fywpe7bcEiZEoSnORyGD/disRfj9jlvFcjSkBKuQwp5TI4eGkZQgghhLSALcO6pgJYxXHclMue/5Rl2Q0A5gLY09LACHEkhZkZKDeboJUr4BYQBFNixymzY+ZFmAURMpkcgh0WGNO4uODGxR/izzdeRahcDsOWzTiRmYmbH3+y5SdvgFEAxn1rqRB/7OEqaG0ekEoIIYQQR2bLsK4QAAca2LYLQJTt4RDimIoNBjz37ym8VZALgIGpAxRgtGppIcb6uHr7oP/CJUhnAAXDYNW61Vi0aD70er3drkEIIYSQa48tyclfsFRpr891AM7YHg4hjqmwMB8A4OPnD16QYO4gBRit9EazXZMTAPDw98fQlWvwe1gYzldVYteu7Xj44Xtx7Mu9EMWOk7wRQgghxHE0aXAEy7K31vl2F4BltUUXPweQD8uKXaMATAHwvL2DJKS9FRYWALCsWGXuQAUYrWr0LSvE2BCVRoNn5s5H9xEj8c47syAUFcLnmwP4+duDCJrwGLrdNtzu1ySEEEJI59XUkdu/AKg7DZUBMAnAC5c9BwC7QXNOSCfjmhCPObHdYNZowPNihxrWBQB6Iw+xhYUYr2bgwMH4+utD+PbDxRDS0hDKMMDO7fhh7+fo9twkhPa9rtWuTQghhJDOo6nJybBWjYIQB6cpr0CUmzsytVqYeAG80LGSEzMvQBBad5krJydnPPj2u8hOOI8zH69ElF6PCJMJNSuX4wcPD/Sb/Ap8IiNbNQZCCCGEdGxNSk44jvu1tQMhxJEpjQaAkcHJzx+6DrSMsJXJLECQWl6IsSlCuvVAyKo1SDz2K5I/3YwuYBBRUYHUubOxf9AgjH/sSWi12jaIhBBCCCEdTZM+q7Ase5Rl2b7NOTHLsgNYlj1uU1SEOBin2p4S9+Bg1Og7TnV4K5NZbPPenq6Dh+DO9VtQcfc9SOd5fFOQhxUff4R77x2FAwf2QWrGMDMFAzzezYTHu5mgsP/UGUIIIYQ4iKYO6/oIwHcsy/4NYDuA/RzH6S7fqXaS/EhYJsVfB+BFewVKSHvhzWa4y+UAAJ+oLsgzdcCeE95SiFGjUUBs4yqG1499AMI9Y2H+9gD+XL0CeXm52L34fSi/OYgbZr8Dr5DQRs+hlANTrzO2QbSEEEIIaU9NHdb1BcuyvwKYA2ADAAXLsvEA0gDUAPAAEAqgJwBz7T6PcRxX0BpBE9KWijPSoWAYCJIE7/AIZKSUt3dIzWYyCzALUu2KXa2fnMjlDORyGRhJACPygEzCA2PvwV1334UtWzYj4qcjCOJ5JM1+E9rxj6L3yNGtHhMhhBBCHF+T6yxzHFcMYArLsu8CeBCWSfJRANwBFANIgKWH5QDHcSWtECsh7aI4NQUqABWCAEap6nDLCAOAIEgwmQW0wmrCl1Ao5FDADBgqIFSVwlxVBpE3AaIIRi6HTKXFcw/dicToMORt3g5fhQLmz3bhaGoKbp00ucHzihKQX2MJPsBZgoyGdhFCCCGdUpOTE6vaxGNt7RchnV5pfj7UJhOqlQrwtR/yOyKdwQyGcWqVc8tkDFQyAVJ1IYyFGTCVF0M0GerfOS8d4b6uCJz5Io4u3YBIAAFxf+O7eXMwas68eg8xCsCY/S4AgGMPV0Hb7L9chBBCCOkI2mLxHkI6tHSIeP7MKRzx9QXfAQswWtUYzK3Sc6JUyqAWqmDOOo9q7m8YCrMbTkwAABL4mkrIqgow7OVHkO7pCgCIyszE97NmUHV5Qggh5BpGyQkhjcjPzwcA+AcGwcyLMPEd88OzwSRAsPNkeLVKBllVPnTJ/0CXkwzR3LxJ65KhBkPGD0dGgBcAoOxCIj75+CO7xkgIIYSQjoMGRxDSiPz8PABAUFAQDCahzVe7sheTWYA9VxPWKAGxJAO6jAQIhhrbTySKuHXsYPz43R/4vy9OQkji4OXjg/HjH7dfsIQQQgjpECg5IaQRQ0pLMSi2G4LUKugMHa/GiZUlOZEgt8O5NEpALE5DTUYCRJN9lvi9Y9RNyFUAq3d/jcWL34e/Wovb7n/QLucmhBBCSMdAyQkhjQhmGLi5uUPm4wudoePVOLEym0WYeREKJYNm1D+8glrJWBKT9IRmD+NqzBO334iS0jK4JGbC58DXSPD2Rrchw+x6DUIIIYQ4riYlJyzLPtGck3Ic96lt4RDiWHSVlXCTW35NfGNikVzecZMTS60TEU4qRbOqs9elVskglWZaekzsnJgAAMMwmHL/HTixfj80jBxlmzeiJCoaToFhdr8WIYQQQhxPU3tOtjTjnBIASk5Ip1CQnAQA0AsCXHz9YSrsuHVFrVXiZTLGpnkzSqUcqMyDLiOhkdW4WkahUKD3I8NxYfv38FOq8Pe7czBo5To8FGMCAMipxgkhhBDSaTU1OYls1SgIcVBlGWlwAVApSRAlpsOu1AUAkgTojTwYRtPsYxUKGeSGMugyEyDoq1shuku5e7rB+44BMB45jUiZDMcWzcOMufNb/bqEEEIIaV9NSk44jsto6glZlqX7mqTTqMzOhgsAvVIJnu+4NU6sLLVOmvcryjCAQjDAkHMB5srSVorsSlFdI3EiNQdBmSUIz8rC2e++Ra9Rd7bZ9QkhhBDS9myaEM+y7CMAhgBQAbB+0pEBcAZwM4AQu0RHSDszFhUCAARnJ5g7cAFGK53B3Oz5JkqZBFNeGgxF2a0UVcNuGn0Ljqz7CtGQI/eLg/DsdwuCfd1bpZgkIYQQQtpfs5MTlmXfAfAOgIra4821X74ARADr7RkgIe2pqroaZSYTZJ4hlgnlHXhYF2CZFM83Y76JJEkQy/Ogz0lBi5b4shHDMLh+3B04uf0w5o7YBhwGjj1cBS2tM0gIIYR0SrZUiP8fgO0AvAAsA3CA4zh/ANcDKAFw3n7hEdK+ftLX4Pkzp2Du179DLyNsZa110hQyGQOhqhSGnKRWWZmrqdw8XOF6x4CL3//558l2i4UQQgghrcuW5CQYwDaO4yQAcQAGAgDHcXEAFgB4xn7hEdK+LlaHDw5Gjd7UztG0nMksgBfEJg2LUoCHMS8F5sqS1g+sEX1i/luT45P/W4Ca8rJ2jIYQQgghrcWW5KQGluWCASAJQCTLstra70+DVvYinYQkScjPzwcA+AcEwmDq2PNNAMBYW4ixsUnxSqUMYlkeTMVtP8+kMVO9fHF0Ia3cRQghhHRGtiQnf8IytAsAUgDwAIbXft8NQPuN/yDEjsrzc7EoOhZzYrvBy9sXxg4+GR7AxXkzV0tOZDIGClMVDHnJkARzG0bXNM5yBSKKi3H+15/bOxRCCCGE2Jktycn7AMaxLHuA4zgjLPNPtrIs+wWADwF8b88ACWkvBReSEKDRIMzJGUq1BqZO0HMiihIMJgEyWcPJiUouwVSY0abLBjdHJiNAzjDI27oJAt/x5wERQggh5D/NTk44jjsKYACAz2qfmgxgL4CuAPYAmGK36AhpR6XpqQCAShkDcyeocWJVozc3OOdEqZRDqiqCoaDJpY3aHDt6IAyCgDCZHMc+WdXe4RBCCCHEjmxakJPjuDMAztQ+NgB4zp5BEeIIanJy4APApNHAzIudYlgXANToTfWuCmwptqiHPi8Foslw1d6VtiaHiNFuyQCAAD9v/ObjgqgyPdxOxaGioADu/v7tHCEhhBBC7MHWIozuAG6DpejiFb0vHMd92sK4CGl3fEmx5YG7B8y82OFrnFgZG6h1olTIIRTnwFha0A5RXZ1KJmJ2wO8Xv7/lvqH4Z+3XCFCq8PuHizB68dL2C44QQgghdmNLEcbRsAzfcmpgFwkAJSekw5NVVQEANP7+qDE43sRwW1lrndS9qyCTMZAbK1Cdlw5Ijp+EqVQqKPtGQzyXiWQuAcnJSejSJaa9wyKEEEJIC9kyIX4hgAQAQwBEw7J0cN2vKLtFR0g7cjJb6pq4hYWhRtfxa5xY1VfrRCWXYCrOBF9d3m5xXY0kAXpRAb2ouDgkrd/gftgu1mBjRhpWrFjSvgESQgghxC5sGdbVFcC9HMcds3cwhDgKSZJQrNdDrVbDLyoapZ1gpS4ro8mynLBGoYAkSVAoZICuGIaCzPYOrUEGSYHhyRMAAIe77ISWsazS9b8HR+K7Mwk4evRX/PnnH7jh/9u77/g47jr/46+ZLepdbrLcHU/i2E7sFJzmJIQQSCCUHJ3fES7hKMcduR/1BxxwwB1HJ5CjJnC5QAgc5I5yCSUJIaQX99geV8lVttXL1im/P3ZlK4qUWNJqZ7V6Px8PPXZ3djTz0Xi8O5/5fr+f7/lrgwxTREREJmg8LSetQHWuAxEpJF1dXfzzjmf5203raVqxqijKCA9KDpvrJIxD8ug+vGQ84MjGbv6sRl532UuYW1rKjm9/U6WFRUREprjxduv6tGVZC3Mci0jBOHQoMzP6jBkzMUORoqnUBZkuUrGkg2ka2dLBx0i2Hwk6rHF751Xr+NzpK1gbjvLYbd8POhwRERGZgPF063obMBfYY1nWcSA27H3ftu0lE45MJECHDx8CYO7c5qKa42RQZq4Tg5ATI97Wgu9M3QH/DfU1bKwvZ2lvitBjj5L8P9dTUj5avQ4REREpZONJTg5mf0SK11NP8M0VZ3O4ti4zx0kRdeuCTHJihgzcjqMkuwqvdPBYXXDtpez+j3tpCId56Ftf58qPfiLokERERGQcxpyc2Lb9zskIRKSQeO3tzC4tJV5VRSKVqW5VTHzfx0j2kTzaCt7U/9vKK8vpa26gpq2H2u3b6e3ooLqhIeiwREREZIzGM8/J/Bd42wP6bdvuHndEIgUgNNAPQOms2QwkiqeM8KDqiijpriOketqDDiVnzr/6IrZ8/1c0hCM8+q2v84rPfD7okERERGSMxtOtq4XMRIujsiyrE7jZtm1dHciUVJF2IBymdsEC+uPFVQGqrCRMbThB/Ehr0KGcMhOPyytbTjwfSSQaIbVkDrS2M6u1la4jh6mb05THKEVERGSixlOt6x1ACvgD8E7gldllvyGTtHwW+A/gk5ZlvTc3YYrkj+s41JqZ/xoNS04jmSyu5GTujAroOUK8u+M5EzEWshLT4/NND/H5pocoMUfvhnbelWvZm0pw9+GD/PS/fprHCEVERCQXxtNy8hbgrhHGnvzYsqzvAOfYtn2tZVndwHuB70wwRpG8OrZ3LxHTxPV9ZixdRuvOjqBDypmKsggzSlN02S00RH0MXqQZdIoJhUOYF6/gN9/eSNlPf8yb33499fUaeyIiIjJVjKfl5DLgzlHeuxu4Ivv8YUAlhWXKObpzOwBdrguhSFFV6mpqLMfsbWOgs4O04zJlmk7GYN3q5ZyxaB7xeJzbb7816HBERERkDMaTnHQAZ43y3llAb/Z5JTAwnqBEgnTsaBs7+/voiEQyZYSLZI6TyvIIM0qSdB9qASCV8pgqqUncC3PRzr/mop1/Tdx74QZfwzB4z7VXcF5tHcuefIoju3blKUoRERGZqPF06/oJ8FnLstLAL4BjwEzg9cBngO9allUH3AQ8npswRfJnx8AAP9zxLG9601u5yHFJFUnLSVNDOUZPC7HuLgAc18Pzi6lT10nnn3kazsJFzAtH2fDdbzHnq98MOiQRERE5BeNpOfkkcBfwNWA/kMg+fo1M4vJxMoPkV2fXFZlSDhzYD8CCBQsZiKeLYkxGVXmUxpIk3YdOVujKJCcBBjWJTNOkes0yAOZ3dXNg+7aAIxIREZFTMebkxLZtx7btvwGWAe8GPkGmWtcy27bfbdt2CrgXmGvb9uacRiuSBwf2Zy7gFyyYT3+sOOY4aWosg+7DxHq6TyxzPQ/P85kyfbvGaOUFqzjkpomaJpu+/+2gwxEREZFTMJ5uXQDYtr0H2DPKe13jjkgkQJ7n8ZHyCvpWnMXcmjo6i6CMcFVFlIZIgu5D+5+z3HF9XM8nbJr4RdE+9FyGYVBzrgUb9rKwp5f9255l/vIzgw5LREREXsApJSeWZe0FXmfb9ibLsvbxwtVHfdu2VaVLpqT21n1UhsKUmyFmLz6Nw/t6X/yXCtzchjLo2Ue8t/s5y13Xw/U8DMOkSIeesPz8FTz2zE7mmmE2ff/bzP/GvwcdkoiIiLyAU205+TMnq3D9meKaGkHkhCPbtlFGpozw4tIykqmp3QhYVRGlfoRWE8j8J06nPSgtttlOTjIMg7rzTodndrOot4+WrVtYuGJl0GGJiIjIKE4pORk64aJt29dPWjQiAevcu5u5QF8kTMrxSKamdreuplFaTQZNlTLJJh4XVBw88XwsTj93Of/75LPcs7eFprvu4HOf/9JkhCgiIiI5MK4xJ5ZlVQHVtm0fsiwrCnwAmAf8wrbth3IZoEg+JY4cAcCtqiKVdqfMxftIqsozY016Dj+/1WSQ43r4U6BPV4np8ZW5D4zrdw3DYMk1F/LM5zew4Z7fcsON72HhwsU5jlBERERyYczVuizLOh9oBf4+u+ibwBeBtwMPWJZ1be7CE8kvIzsHSGTmrEwZ4cK/bh/VnIYy6Gl7ToWu4RyneMsJD3XGwmbWrT4Tz/O4VZW7RERECtZ45jn5F2AH8D3LssrIJCXftm27HriNTGnhcbEs65OWZT04bNnZlmX92bKsAcuy9luW9aHxbl/kxZTGEwBULVgwpcsID85r0nO49QXXc1wPt4jLCQ9146su5zWzm3jVwcPs3rA+6HBERERkBONJTl4CfM627X3AFUAZcEf2vbuAFeMJxLKsm4DPDlvWAPwR2AmcC3wa+JxlWe983gZEJsj3fXb29rB7oJ+Z1unEElN3vMmchjKMniMv2GoC4Lo+nudjFHh2EvfCXLHrLVyx6y3EvfFVQF82v4nLm+dSH42y9dbv5ThCERERyYXxfMt7QDL7/GqgG3gy+7oaiI1lY5ZlzQVuBS4B7GFv/212X++1bdsBtluWdRrwUeBH44hdZFSdnR18e89ODMPg0RVncXhnZ9AhjUtleSQzG/ze0ceaDHI8D9f1MCKFX0444Ucm9PuGYTBz7Qp4fDunxePsfOYplp1zXo6iExERkVwYT8vJ08CNlmVdALwJ+K1t275lWTOBj2XfH4s1QBewCnhi2HuXAA9lE5NBDwBWdn8iOdPa2gLAnDlzMEORKVupq6mhHHrbiHWfWhnkVNrFMAq75SRXlpy9jMO4REyTbT/8QdDhiIiIyDDjaTn5MPA74M3AceDz2eVbySQ7V41lY7Zt/wb4DYBlWcPfbga2DFt2OPs4Hzg2ln0NFQ6PJy8bXShkPudRJs9kHesDe3ZiAosXLyXteqQcF9OcWhftFWURZpSm6Nm3/5QTjqTjYRg87281sq8N0xjXXYxcMod0OzNNY0L/LrMvWgmPbGNZPMGu9U9yxvlrcxHiuOmzIz90nPNDx1lEJmrMyYlt2xssy1oKLAe22rY9kH3rvcAjtm235TC+ck52IRuUyD6WjnejpmlQV1cx7qBeSHV12aRsV54v18e6fP0z3LHmfFrq6/GBUDhM2fiGNwRmwexKQgMtpPt7iYRDp/x7ZihEtGTki4mSkol1p8oF3z35t5SWRiidwIXPmWtX8MCjW5ljmmy77VYuvOqKXIQ4YfrsyA8d5/zQcRaR8RrXpZdt230M64Jl2/YvcxLRc8WBkmHLBpOSAcbJ83x6e8c0NOZFhUIm1dVl9PbGcd2xTRInYzNZx9pv7yRimlTNnEl7d5x4fGpV66ooi1Btxuja30LaOfX5WZJJg2TKwUk/d7lhGpSUREgm0/gB1xtODBkEn0ikMcyJdbmbc/FK+MuzLIknePiPD3LmucGNPdFnR37oOOfHZB7n6uoytciITAOFfl/4ANA0bNng60MT2bDjTM6Xk+t6k7Ztea5cH+vqdBrCYeqWLqO3P4k3xSYAmV1fhtGzn/6ujjH9XtrxcFwPI2QydFT84CWA7/mBH4uh+/c8H4+JxbPgzKX896ObuWPrVpb88Ad88+xzJhrihOmzIz90nPNDx1lExqvQb0E8BFxiWdbQ/ilXALZt2+MebyIyXH9XB/XhTK4+96w1JJJTazB8RVmExpLUi85rMhLH9TLlhAt4eI2Jz+qyNlaXtWFOMDEZdM6162hLJXnooQfZsmVzTrYpIiIiE1PoyckPyZQnvs2yrOWWZV0P3AR8IcigpPjs37gBgF7XoXp2E4nUqXeLKgRNDeWYvW0MdI29/LHn+6TSXkFX7CoxXW6Z9wdumfcHSszc/NvMn9XIKy/KtJjc/t1v5mSbIiIiMjEFnZxkW0euAixgPZlJGD9s2/btgQYmRad9xw4Aus0QybQ7pVpOKsoiNJaOr9VkUDLtFPg0jJPjna9Yx98tWsL18RSbHnow6HBERESmvYIac2Lb9vUjLHsKuCD/0ch0MnAgM2Fhuroqk5xMoTlOMq0m+8fVajIo7Xh4hT4L4yRontXIshmNRD2DzXf8B2etuyzokERERKa1gm45EcmXvX29PNrZgTF/Pv2xdMHPlj4oF60mkCkQUcjj/+NemGv2vJFr9ryRuJfbeyrN684GYLnrseHBB3K6bRERERkbJSciwH0H9/ONvbuou+hiegamTgnhpsbxjzUZynG9TNnPAh530u2W0u2Oe3qjUTWfvpC2EIRNkz0//s+cb19EREROnZITmfbS6RQHst26FixYRDyRfpHfKAyVZRFmlCTpOTSxVhPIdOtyC7xi12SaN9h64nk8ff8fgg1GRERkGlNyItPevu3bqTdDVFVW0TBj9pQZDN/UWA69bQx0T6zVBLIVu5zCrtg1mZqsBbSFM60n++78Mf5U6dcnIiJSZJScyLR35OGHuGXVaj5hnUHK8YhPgeSkqjxKY45aTQYlU9OzYteg+ZeuBmCR4/LEww8FHI2IiMj0pOREpr1YawsAfm0tidTUqNQ1t7EMuo8Q6+7K2TZTaQ93GrcYzDltPk+Xh/iHrRv57m3fU+uJiIhIAJScyLQX6uwAoHzBAvpiqYKv1FVdEaUhkqD7UEtOtzs4U/x0dum163BDJhs3ruexxx4OOhwREZFpR8mJTHt16UxLyYwVK+npTwYczYub21iG132IeG9PTrfrnBgUX3idu0x8Ti9p5/SSdkwmL4FqrK3mussz0yr9z3f/Xa0nIiIieVZQkzCK5Nvxln3UhMN4vs/8Neez9XBhJye1VSXUh+N0HszdWJNBacfDdf3Mp0KBXZOXmC63LbgnL/t62xUXcsb+TqxoKY/9z91c+Lrr8rJfERERUcuJTHOtzzwFQIfrEq2uIZ4s7DLCzQ2leJ0HSPT35XzbPj7JtFuQLSf51FhfQ0V9NQDdv/5vtZ6IiIjkkZITmdY67R0A9JWVkki5xBKFOxi+oaaMWnOAzoP7J20fU6EYQD6c8YoLcDyPpaEwj//szqDDERERmTaUnMi0tq27m7uPHCKxYAGxRJq04wUd0ogMA5oboqSPt5KKDUzaftLpwhwUn/BCXLf39Vy39/UkvNCk769+TiMHKyIAxH9/L67rTvo+RURERMmJTHOPtuzhrkMHqL/wIrr6Cne8yYy6cqr8XroOHZjU/Tiui+v5FNqEJz4GbU4lbU4lfp6CW3X1RSRcl+ZQmCfu+FFe9ikiIjLdKTmRaSsej7Nnz24ATj9jBf2xVMARjSxkGjTXhUm2tZBOJiZ1X2nHw3Gn70zxQ9XNqONgTSkA3oMPkkrEA45IRESk+Ck5kWlr59NPsqKikgUzZ1HXMKNgx5vMbqigIt1F1+GDk74v1/NJOUpOBp1/7aX0OQ7xVJJf3XlH0OGIiIgUPZUSlmnr+CMP84llZ7AvZJJMe8QShVepKxoxmVsDAy17cZ38xJdIOtRURPOyr0JXVV3BoWVz+PTPf0P1wf28/Lo3UlNTG3RYIiIiRUstJzJtpQerXs2ZQyyRJpkqvEHPc2dUEo0fp/vokbztM5V2C3JQfFBe9rK1LJnXRE9vDz/4wXeDDkdERKSoKTmRaauqP1P1qvHMFXQW4GD4irIIs8sdeg/sxffyV0UsnZ0pXjJCpskH3vBKIoZB7IH7aNnwTNAhiYiIFC0lJzIt9R4/zsxwplfjwgsvoW+g8JKTeTPKMXoP09dxPK/7TTtuwQ2KN/BZGO1mYbQbI4Dp689fvpSPr17Nm5uasb/3nbzvX0REZLpQciLT0u5HHgKgw3GontNMLF5Y403qq0tpiMToat2T9327nk8q7VJAuQmlpstPFv6anyz8NaVmMN3vzrjiPFzfZ5HjsP5/fhlIDCIiIsVOyYlMS+2bNwHQU1ZKPOUwUECD4U3DYH5jCc6xVhL9fYHEEE86AbRPFLZF1kL2RjMZW9+v/ptUsvBa20RERKY6JScyPR3MlOWNLFxEfyxNKl04M8PPbiynyuum82BLYDGk0hp3MpJzXnspA67DnFCYB7/+5aDDERERKTpKTmTa8TyP7+/eyXdb9tB86WV09hTO5Hol0RDNNQYDB3fjpIKbFDLluDhu4SQnCS/E21qu5W0t15LwQoHFUddQS1dzAwAzbZsju3YFFouIiEgxUnIi087evbvZ3dnOYwMDLD5vLX0FNDP8/FmVRAfa8lo6eCTptIvjFE5rko9BS6qWllQtPsEOhll7zSUcclKUh0KsV+uJiIhITik5kWlnw4b1AJx11tk4nkF/gQyGr6sqYWY0Tlfr7ryWDh6JT2bcCX7htJ4UilA4xIxLz2Z9Txc3P/0Ejz/+aNAhiYiIFA0lJzLtxB/5C1fNmMXaFSuJJZyCmBk+ZBosmFGKc7yVWE930OEAkEg5BdW1q5CctvI09i1o5FgqyRe+8FkSiUTQIYmIiBQFJScy7Szr7uGGBYs4e9582nviBdE4MHdGJVVOBx379wUdygmptEu6gLp2FZq/vfZlzKirobW1hf/81teCDkdERKQoKDmRaeXAls3Uh8M4vsfSy15KT3/w5WAryiLMrXLpPbALN104418yyYlbUJMxFpLK8lI+8pZX8675i7h4+w6efeC+oEMSERGZ8pScyLSy64+/B+AwEK6sDXwwvGHAolnlGF0H6D12NNBYhvP8zLgT5Saju2T1cpbOaiRsmrTf8R8kY7GgQxIREZnSlJzItJLaZQPgzpvHQDzNQCzY8SZNjRXU0UN7y+5A4xhNIulQCNOdGPjMDvczO9yPUUDTQxqGwarXX06fk5375AufCzokERGRKU3JiUwbTjrNrESmG9e8iy+hvTuOF+CAk4qyCPNqoO/ATtKJwplrZaiU4+G4HgFX76XUdPnl4rv55eK7KTXdYIMZpn5GHQPLmgCYf/gw2/6k7l0iIiLjpeREpo0dDz5ARShEzHU57dKX0t0XXIUl0zBYPLscs2s/PW2HA4vjxQwOijfVt+sFnX/lWvbgEjIM2m//EQPdXUGHJCIiMiUpOZFpY+9TT+J4Hm0lJTiE6R0IbrxJ86xKar0u2vcV9gzjvg8DCQcNPHlhhmGw+q9eSq/jMDsc4cHPfDLokERERKYkJScybfzS3sbfbHya1MUX0RtLMRDQ5Is1lSU0Vzr0tOwgnSz8+TESyTRewANPkl6IG1qv5obWq0l6oUBjGU1dYy3+mqX0Omn+Z+N67rvv90GHJCIiMuUoOZFpoaOjnc2bN5LwPC585TUc7QymqlIkbLJkVgnusb30tR8LJIaxSqZc0q4XaElhD4MdyUZ2JBvxgh4A8wJWXXgWj86u4qnuLj772U9x+PChoEMSERGZUpScyLTw0J/ux/d9li9fQW39THr68j+/iQEsaaqiPN5WsNW5RpJyPJIpF8Ms3KSgkNzw2pexfPF8ent7+PxHbiIxMBB0SCIiIlOGkhOZFsr/8Hv+9YwVvO68l9AfTwcy+WLTjEoaQ720796G5xZWxakX0x9P4wdY2WwqCYdD/Ou738zaWbO4MVzC/R//iI6diIjIKVJyIkWvr6OduY7D0opKzrn4Yo51xTLlcfOorqqE+TUufS3bSQ7053XfuZBIOjiuH3hJ4aliTkMd179iHeWhEKcNDPCnb3wl6JBERESmBCUnUvTW/+ynRE2TY47D/HPX0tGd3zlFykrCLJkVxWvbRe+xtrzuO1eSKZdk2lVJ4TFYfckaWurKAJi9ZQub7vltwBGJiIgUPiUnUvRSG54BYGDBAmJJl648jjcJh0xOm1tBSc8Bjrfuzdt+c83Hpz+WUknhMbr0jVeyB4ewaZL++V20bNwQdEgiIiIFTcmJFLWje3YzL1sGd8Ub38TRzhipdH7GexgGLJ1bRU3yKEd3b8P38tuVLNfiSYe0E9xs8bWhBLWhwi+9PJRpmqx9+ytpc9JUh8Mc+sZXaT+wP+iwRERECpaSEylqm392J6ZhcMDzmH3mKo535a+E8KKmamYYXRzfuQU3FdyEj7mSSLokUy6mmf+PjTLT4X+X/Jz/XfJzykwn7/ufiPLKchZfdxmdTpoZ4TC/+9THiceDKWUtIiJS6JScSNHyXJfynTsBMFeupDeWprMnP3fe58+qoinaT+euzSRjxVFK1senL5ZChafGbsacRmqvPJcHuzr4xsZn+Md/fD/JZP4rxomIiBQ6JSdStJ566glu27ebZ3p7WHvDjRw63p+XKl1NMyqYX5mgd88WYj3dk76/fIol0qQcN9AJGaeqRdZC1rzxCiIlUR5//FE+/KF/IJVQC4qIiMhQSk6kaP3s5z9lfU83LavXYFbU0p6HLl1zGipYVJ2mf98W+jqOT/r+8i2ZdoklnLxPyJj0Qrz/wMt5/4GXk/RCed13Lq1csoCv/cM7KC2JsqSlhT/d9PckY0pQREREBik5kaK0f38rDz54PwBvfevbON4dn/RZ4ZsaK1hcm2agZSs9R6dmyeBT0TeQwnXz27fLw2BDfDYb4rPxpvhkK2uWLeKr17+BK2bMYpHj8se/ew99nZ1BhyUiIlIQlJxIUdr4tS/zhtlNvOyidcxbuISDR/uYzMvp5pmVLKpJM7BvCz1thydxT8GLJdLEUw5mSB8f43XueSvoX7WIlOex2Id7r7+BjoMHgg5LREQkcLq6kKJzaPs2lvb1cV1TM3/z2tfT2ZvgePfkdJ0xDFg4p5qFlXH692yi5+iRSdlPIfF8n57+JJ5Gxk/I6ovPxll7OgOuw1zDZMv/+ygtG9cHHZaIiEiglJxI0dn87W8RNgxa8Vl+1dW0HumdlG5IoZDBac01zCvppXvnBnqPH835PgrVQDxNIuli5nnsSbE5Y80ZlF95Dp1OmpmhMB03f42nfvGzoMMSEREJjJITKSrb/nQfS+JxAJrf+nY6ehO0deS+lG9ZSZgz51czyz/G8e3PMNA1vcYMOK5HT39yUrvKTReLT1/E0rdfyWE3TYUZ4pZvfZ0f/egHeFN80k4REZHxUHIiRcN1HI78+D8B2FNSwhkvezn7DvdkZjXPofqaUs6cV0blQCttz64n2d+X0+1PFX2xFLGkE8ikjMVm1tyZnHvjtfy5zGBTTzc33/xV3ve+Gzl6pLjHL4mIiAynqwopGn/6yheZZ5gkXJc1//hB2jpjHGnvz9n2Q6bBwjnVnN7oYx7ZRtv2zTip6TuRnuN6dPUmcfM09qTUSFNqpPOyryCUlJXwjndcy8ff+QbKSkto3bCevR/7MI/86Af4Gt8jIiLTRDjoAERyYc+unZRtexaiUdpXruT0xafx1LajORtrUlURZdGsMqqdDnp27qC/sz0n253q+mMp+mMRaipL8CZxgssy0+H+0346adsvFIZh8JqL1nDWknmsv+s+GiIReOQRfvf4Y6z8wP+lefmKoEMUERGZVGo5kSmvv7+fD374A3xq+1aeNuCKD32UliO9HM/BpIvhkMnCOdWsmBOiomsXR7c8qcRkCM/36exNkEy7eZ+YsZgtnD2Da95zHXurSnB9nyWuR9dXvsTvPvNJBrq7gg5PRERk0ig5kSktmUzy0Y/+Iy0t+wjX1/Oqr36DY90J9hzsntB2DQNmNVRw1qJK5oWOM7Dzadp2bsNJpXITeBGJJx26ehP4Pkzx+RELSklplMvf9gqMK85mv5umxDRZfPAgz9709/zx618hnda5KCIixUfJiUxZqXicB276O7xt2ygtLeUb3/gW4dIqtrd0kEy549qmYUBjbRmrFtVwWnUM4+AmDm9+kr6O4zmOvrh09yXpGUhhGpPzkZL0TD506KV86NBLSXrT62Nr0bKFXPie13Fk8Sw6nTS14TAP/u63XHPNldx++2309U3PggwiIlKcNOZEpqTOw0e4/33vZ4kP7124mMRfv4Ol1go27W6nsycx5u2FTIOG2jLm1Eao8vtJH9vFscMHSSfHvq3pyPN92rtihEMGVeXRnI8/8TB5bKD5xHOYXmV2Q6EQa1++ltSlKR7//eOs37eTYx2dfP3rX2bjXT/h5ctXsvj1f4V10SVBhyoiIjIhSk5kytl87z103/ljFoTCJFyX5CtewZrLXsa2fR0cPDq2u8jlpWEaa8uYWQllTh/Jowc41naIdEJJyVilXY9jnTEMw6CyLDKpA+Snq2hJlHXXrmPtKy/kvo02P773z7yyspaFPT3wo9v4863fJ71sGdZrr2PeGcuDDldERGTMpkRyYlmWCXwauBGoAx4G3mfb9u5AA5O8at/fwlM3f51F3d00hsJ0Og4N73oX1tp1bN3bQcvhnlPaTmlJmLqqEhoqw1SHk5ixY8RaDnLk+DFcp3hL1eZDMu1ytGMAv74804LieWimxtyLRsJcfd6ZXLXmdDY9uY2WzXtodn3mhEKwZw/xr36JP7susfnzmf3a61ixYgWRSDTosEVERF7UlEhOgH8C3gO8EzgEfAm417KsM23b1qjQIrdnz27u/uXPuWDrFpZES8Aw2FdRxiWf/iyp0lrW28c4+gKzwIdMg8ryKNUVUerKTSpCKUKpHlLHj9Dd2U6899SSGjk1ybTLkfYB0rUeNZUlhEzwPGUokyEUCrHmgpVwwUq6OnvY8shmQgeO0WSEmBMK8cTWzfy/X/2S0tJSzlq1mtc1zaXu9OUseslaZi5aHHT4IiIiz1PwyYllWVHgg8BHbNu+J7vsTcBh4PXAXQGGJ5NgoKuTXQ//hbYnHuPHe3aydfu2zBvN8zl35izqXvMarn7jW9hzoItd29oYiJ9s7TDItIyUlYapKItQVWJQFfWIuAmIHyXZdpye7i4SfT2a2G4SOa7H0Y4Y8YRDXXUpZSVhwMdXkjJp6uprWPfqzJiTrs4+tj+9jeMHfOo7auns7qZ10wYWez4cPEj3fX9gv+vQHY6QqqkhOns2VaefQfPqc5g5c6ZaWUREJDAFn5wAZwNVwAODC2zb7rYsaz2wDiUnU0oqHqOvv5/+2AC9vX30tuwlsWM7qfZ2jN5eKhNxGs0Q5YbBYoCDBwmFQlx66eVc/LrrOHvtOjp6k6zfcYzO7gFKo2FqKksojYQoj/qUh33CpAm5Sbz4cdLtXcT7++js68VJTt/Z3IPg49MzkCSWSFNVUUJNZZSSSAjTNPB9JSqTqa6+igtf/hIuBN7n+7R29PLslt3s3XOI6mSaejNEdShMte9Ddzd0d/Pz+//IL44cAuD0mbN499x5pCMRvNIyqCjHrKgiXF1FSVU1pfPmUdE8n/LycqLhCKXhEKVV1ZSUlmIYqictIiLjNxWSk+bs44Fhyw8D88e70XA4t+VIH322lT9/+zvMTvYz2MneOHHtlXnyv5F6ktmJIM52+1niJU70xzeGdcz/rVlFzAhl1vViWN7JC+vh695DBT1GCB+fVX6SlX7yZAzD4rzHL6ODEOCzghRrSGXXObnNwd+5x43Sll13ueGw1kgP255/ct10iP1pF89Ns9JwuKYsTBifMBAyIIxB1IRSM8S/7drB+p5uAC5vmMF7Fy05uclQ5pTsSDsciFSw+FV/z9JzX0ukqoHfp13ufdwFrwzTKMX3qjB8D9918N00nuPguS6u4+M5Jr5fDVQj42MYYDgmvu8xoUamNJAAs9MgFDKJhE3CIRPTyMyIPngt6w/7/zKU4588824+fi5ho4gSGyNzXFzXY2IH+kWc+XI4M/PUj/cRat1M+dHd1PS2UZXo42hpNWb4OJ6TIhyPMzcUBs+HWCzzc/zk5KM/ObifX7UdBmBReTlfXL4KANf3Sfs+ju+T9sEB/tgf509xBzMUYkY4wjuqoviGgY+RfeTE681GCU8bZRhAJT7XMnDyk2zwPMm+3mWWsMEsB6AMn1e7Q7pnnkiQMo8toVLWR6oxQyam4/Lq1MgTqfrAQbOEpyOZzw3D97l2lHUB2swoT0RqTrx+dbIdc5RBVsfNKI8OWffqZAeRUarOdRkRHorWnnh9VaqDUn/kdXuNMH+K1p14fUWqk0p/5FLqA0aI+6L1J15fluqixndGXDdpmPwu2nDi9cXpbhq8kcfkpTG4p6Qx+8pg9uzZ3PyxGyiJTIVLDBEpNFPhk6M8+zj8tncCqGccTNOgrq5iQkENd/MP7+Ky1k28pHHGqOt875kH6XMyXwSXz1/IeTNnj7ruDzc+THt2wr9LmudzzuymUde9Y+sTHErEAXhJUzOrm5pHXfeu7c9wIJYZn7F69hzOal4w6rq/2L2JQ/2Z6lcrZsxi5YJFo6776/3bOJpNONyGGcwbmnAMUxEKQ0k1lFSzv7yBJ9MRjoWr6Sht5EjNUvbNXUdf3dKTv3A0+yNTn8Pz/yeP0W96luUklGlv9rkw7CPI8H1C8S4OdO/h3zq3UDPQRk2ig2qnj1o3RoWfosx3OBatgwoH0nHKwie/RkKGQWhYy4nR30lPNpGpLivntPpVQ971n/O488guDhzK3IeaVVLCmpWrn79q1rHDe2k50ApAbSTCuWedM+qf2tO2l92tewEoC4U4b/V5o66b7tjH7n2ZWism8JJz14667tPdnezevfPE63PXnE/EHPnG1+beHv5z5/YTr88++1wqwyN/Be/s7+OHO+458fqDq1bTEC0Zcd3W2AA/2HbvidfvX3EWTaVlI67blkjw3a2/O/H6xjNWsrhi5O/CrlSKWx77/YnXf20t5/SqkW/2xFyHbz7+hxOvdwMPvOJS3vry0f9NRERGYxR6v3vLsq4DfgGU27YdH7L850CJbduvGeMm97qut6i3N/7ia47B9v3HuPcHt1PT35P5Dj3x/Xzyi3pjXTOOGQLDYP5AJzOS/c9bh+ydxG21zaRCYTCgaaCLWclMkvDc9pDM3US7tolkOIqBwaxYNzPj3ZxoXxl2B3FP7RwSkRIMw6Ah1sOsWNeJdY0h6/oGHKieTSya+ZKrS/Qxc6BzyF9snIgX4EjNLOKVdYTCUSrdFHWJfoiU4EeimJFS/GgpoYoazNqZmDWNmOHIiS0NvWHuw4vePTYMg3A4hOO4GjcyiQI5zoYx7SaZN4zMwHbXdSe14STnBv+hfB8/MYAX68OP92WeJ/rxEjH8VIJ4tJyBaBm+5xJKxJjZsR9cFzwXPAc8F991MXyP9pJKjpVW4+MTdVJYXYcwBlsM/ExL7eC5eKy0kkMV9eBD2EuzsvNgZjWyn2jZY+nj0x4tp7W8DsMwMF2X1T2HRv2zOiPl7KlsOLHP87sOZv/c5//jdEXK2Fl18obUeV0HMEf5R+yJlLKjauaJ1+d0HSQ8SmtIX7iEbdWzTrxe3X2IqDdya0gsFGFLzZwTr1f1HKHMHbmFIxEKs6nm5I2uFb1tVDgj15RJmSE21M498Xp571GqnJHvLLiGydN1mZtiBjB3zmw+9a7X5rwlsLq6jFDI3AeomoNIEZsKLSeD3bmagD1DljcBm8a7UcfJ7RwMZ8yfyYW3fIauroGcb7v4pLM/4xMOm9TVVdDVldCxnkQ6zvlRHMfZBGqyP4Xp5HHWZ/Rk+Jvso46ziExUbgdeTI5NQC9w2eACy7JqgTXAX4IJSUREREREcq3gW05s205alnUL8EXLso4DLcCXybSo3B1kbCIiIiIikjsFn5xkfYpMrLcCZcBDwFWagFFEREREpHhMieTEtm0X+Gj2R0REREREitBUGHMiIiIiIiLTgJITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERAqC4ft+0DHkW9z3/VLPy/3fHQqZuK6X8+3K8+lY54eOc37oOOeHjnN+TNZxNk0DwzASQFnONy4iBWM6JifdQAlwJOA4RERE5NTNAZJAbcBxiMgkmo7JiYiIiIiIFCCNORERERERkYKg5ERERERERAqCkhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCCEgw6gGFiWZQKfBm4E6oCHgffZtr070MCKjGVZC4CWEd56l23bt+Y5nKJkWdYngZfZtn3ZkGVnAzcD5wIdwDdt2/5KIAEWiVGO84+A64etesi27eY8hjblWZZVD/wr8CqgGtgMfMy27Yez75+NzucJO4XjrPNZRMZFLSe58U/Ae4B3ARcAPnCvZVnRQKMqPquABNAEzBny85MggyoWlmXdBHx22LIG4I/ATjIXc58GPmdZ1jvzHmCRGOk4Z60ic7E39Nxenb/IisZdwFrgzcB5wHrgD5Zlna7zOadGPc7Z93U+i8i4qOVkgrIJyAeBj9i2fU922ZuAw8DryXyAS26sBGzbto8EHUgxsSxrLnArcAlgD3v7b4Ek8F7bth1gu2VZpwEfBX6U10CnuBc6zpZlhYDlwOds224LILyiYFnWUuBK4CLbth/NLvsA8ErgrUAcnc8T9mLH2bKsf0bns4iMk1pOJu5soAp4YHCBbdvdZO4irQsmpKK1CtgWdBBFaA3QReb4PjHsvUuAh7IXcoMeACzLsmbmKb5i8ULH+TSgFJ3fE9UOXAM8M7jAtm0fMIB6dD7nyosdZ53PIjJuajmZuMH+sweGLT8MzM9zLMVuJXDEsqy/AMuAXWTuzP0+2LCmNtu2fwP8BsCyrOFvNwNbhi07nH2cDxyb1OCKyIsc55VkuoPeZFnWKwEPuAf4pG3bPfmMcyrL3hi6Z+gyy7LeACwBfg/8CzqfJ+wUjrPOZxEZN7WcTFx59jE5bHmCzJ0jyYFs97llZAZefhK4GniKzNieK4KMrciVM/K5DTq/c2kFmQu4FuDVwIfInOO/yhbckHGwLOsi4IfAr7LJoc7nSTDCcdb5LCLjppaTiYtnH0uGPIfMF91A/sMpTrZtpyzLqgUc27YHLy6esSzrDDJffPcHFlxxi5M5t4cavIjT+Z07nwG+nr0jDbDVsqwjwGNkBhsP7wYmL8KyrNcAdwKPA2/JLtb5nGOjHOfPoPNZRMZJycnEDXbnagL2DFneBGzKfzjFy7btkS4etgCvyHcs08gBMufyUIOvD+U5lqKV7a/fPWzxYPejZnQxNyaWZb2fTLngu4G3D7mhofM5h0Y7zjqfRWQi1Lw6cZuAXuCywQXZO/xrgL8EE1LxsSxrlWVZ/ZZlXTzsrXOBZ4OIaZp4CLgkW01q0BVkqqapf36OWJZ1p2VZw8dOnZd91KDiMbAs673At4BbgDcNSUxA53POvNBx1vksIhOhlpMJsm07aVnWLcAXLcs6TqaP7ZfJ3KG7O8jYiszW7M93sl+K7WTK3F7AyS89yb0fAh8BbrMs60vA+cBNZOb1kdy5E/i1ZVmfIFN+fBnw78Cdtm1vDzSyKcSyrGVk7uT/N/AFYOaQ4gNxdD7nxCkcZ53PIjJuajnJjU8Bt5GZw+ARwAGusm07FWhURcS2bY/MwMongf8CNgAvAa60bXt49R3Jkezd5KsAi0x57E8DH7Zt+/ZAAysytm3/FngDcB2Z7i+3kbm5cUOQcU1BfwVEgNcBR4b93KzzOWde7DjrfBaRcTN83w86BhEREREREbWciIiIiIhIYVByIiIiIiIiBUHJiYiIiIiIFAQlJyIiIiIiUhCUnIiIiIiISEFQciIiIiIiIgVByYmIFCTLsoygYxAREZH8UnIiIgXHsqxrgduzzy+zLMu3LOuyYKMSERGRyRYOOgARkRH83yHP1wMXANsCikVERETyRMmJiBQ027Z7gceDjkNEREQmn+H7ftAxiIicYFnWg8ClQxZdDvwJuNy27Qcty/oM8GbgY8DngaXADuC9gA/cDKwC9gAfsG37/iHbXgH8G7Auu+h+4IO2be+dxD9JRERETpHGnIhIoXkfsCH7cwFQPcI684CvAf8CvBGoB34B/BT4AZnkxQTusiyrDMCyrGXAo8BM4HrgBmAx8IhlWTMn788RERGRU6XkREQKim3b24BeoNe27cezz4crB95n2/ZPbdv+NfBtoAn4nG3bt9q2/Svgn4BGwMr+zqeBOPAy27bvtm37v8i0ypQBH57UP0pEREROicaciMhU9eiQ523Zx6FjUzqyj7XZxyvIdA+LWZY1+NnXC/wFuHKSYhQREZExUHIiIlNSdqD8cLEX+JUG4E3Zn+GO5yQoERERmRAlJyIyXXQD9wFfHeE9J7+hiIiIyEiUnIhIIXKBUI63+WdgObDRtm0HTsxC/2NgN7Axx/sTERGRMVJyIiKFqBu4wLKslwI1OdrmZ4HHgN9alvUdIAG8G3gt8Fc52oeIiIhMgKp1iUghugVIA/eSqaY1YbZtbwYuITMXyh1kSg/PAV5r2/bdudiHiIiITIwmYRQRERERkYKglhMRERERESkISk5ERERERKQgKDkREREREZGCoOREREREREQKgpITEREREREpCEpORERERESkICg5ERERERGRgqDkRERERERECoKSExERERERKQhKTkREREREpCAoORERERERkYKg5ERERERERArC/wd9d3h/ja1S9QAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 478.57it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 8.65it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Interpeak Window 2 (t: 16.470 - 79.990) R-Score = 10^-2 & Fano Ratio = 0.0382\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture and has an appreciable Fano \n", + "factor compared to peak region(s). This suggests you have missed a peak in this \n", + "region. Consider adding manual peak positioning by passing `known_peaks` \n", + "to `fit_peaks()`.\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACI00lEQVR4nOzddZhU1/3H8ff4zvriroEDIQQS4iHubbSWJm3SeBtP07i7/RojaaRxT6PEmjSNu5QYBDi4Lc4arI3c+/tjZmGBXdgdZm3283qefWbn3jPnfs/MMsx3jnlc10VERERERKSteds6ABEREREREVByIiIiIiIi7YSSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C/62DqANlAEhYEkbxyEiIiJN1xuoBQrbOA4RaUGeTrhDfLXrulmOk/52e70eWqLe9iTT26j2dXyZ3sZMbx9kfhvVvtTr9Xg8NUA47ZWLSLvRGXtOljiOO7ikpDKtlfr9XoqKcqioqCIWc9Jad3uR6W1U+zq+TG9jprcPMr+Nal/qunTJwefzaNSDSIbTnBMREREREWkXlJyIiIiIiEi7oORERERERETaBSUnIiIiIiLSLnTGCfEiIiIiaTFp0qQ8Essc6wtfkY05wJJx48atbuoDlJyIiIiINNOkSZO8wGUej/d4j8cTADxtHZNIO+S6rhudNGnSk8BN48aN2+wyfkpORERERJrvMp/Pf3p+flEkGMyq8ng8mbt5jUiKXNf1RCI12RUVpafH4zGAGzb3GCUnIiIiIs0wadKkfI/He3x+flEkL69oVVvHI9KehULhaqBrWdmq4ydNmnT35oZ4tavkxBgzHPgOOMta+3jy2FjgbmAHYBUwwVr797aKUURERDq9Xh6PJxAMZlW1dSAiHUGydzHbdekNbDI5aTeTt4wxAeAZIKfesa7Af4EZJJKTq4HrjTEntkmQIiIiIonPTx4N5RJpmuS/FQ9NyD3aU8/JtWycSZ0G1AKnW2tjwDRjzDDgYuCxVo5PRERERERaULvoOTHG7An8GfjTBqf2AD5JJiZ1Pkg8xPRorfhERERERKTltXlyYowpBJ4CzrbWLtzgdD9gw2OLk7cDWjg0EREREWlFEybc0efIIw8e3dZxNNX06VOz3nvv3YK2jiOTtIdhXfcDX1prn23gXDaJYV311SRvs7bkon5/evMyn8+73m2mqamp4amnnmaPPXbDmG3aOpwWkemvYaa3DzK/jZnePsj8Nqp9Ipnlkkv+NmzffQ9Ytf/+B5a3dSyZok2TE2PMcSSGbjWWIVcDoQ2O1SUllale1+v1UFSUs/mCKcjPD7dIvW3tnnse5fbbb+Ohh/L57rvvyM9vmeevPcjU17BOprcPMr+Nmd4+yPw2qn0imUJrIqRbW/ecnAT0BBYaY+off8AYcyEwH+izwWPq7henelHHcamoSO/qfz6fl/z8MBUV1cTjm938ssN5//0P6ZcVZrA/yNfvfsCYPfdu65DSLtNfw0xvH2R+GzO9fZD5bVT7UpefH273PTKO41BVVdUmQWZnZzteb/MvPX78DuN+/eujl3z00ftdo9Go9+6775+enZ3t3HPPnf1++un7/MrKSl9BQUFsn332X3XuuRcUT5s2NfznP5+w9X33PTxt223HVgGcd94ZQ6dM+Sn/nXc++t7v9+O6Lr/85f5j/vSnk4qPPvoPKze85sqVK/x33HFbv++++7YgHo97hg8fseb88y9eOHToVmtHy/zzn/f1fPPNiT1Xr17t32qrYZWXXHLVvLrzDcXcr1//yIMP/qP3xx9/0LW0tDTQt2/fmuOOO3HxwQf/sgzgxRef7/rcc0/1PvHEU4ofeeSf/crLywIjR45afcUV1857/PFHen300Xtd/X6/e/jhv1r2l7+ctRSgtrbWc++9d/b57LNPikpKVgWzssLOmDFjyy+55MoFXbp0jR955MGjV65cGXzhhWd7T578Q95DDz1pS0tLfPfee1ffb7/9qnD16tX+wYOHVp522hnFu+yy25q6tk2c+HKXZ555oveKFStCAwYMqN5nnwNWPfLIA/0/++x/k1J5Tbxeb0rta6/aOjn5I7Dh1yszgauAfwHHAH8xxvistfHk+f0Aa61dviUXjsVa5j+FeNxpsbrb0i8qqxi1zRgAFn/7LbHd9mzjiFpOpr6GdTK9fZD5bcz09kHmt1HtyzyO43Dssb8eMX36tDYZWjBixNZrnn32JZtKgvLuu//ufvPNt8+Mx2OeYcOG1x577K+3LigojN56610z8vLy4h9//EHhQw/d33/rrbepPOigX5R169Yt8uWXn+dvu+3Yqng8ztSpU/Jqa2u9338/KWfHHXeu/OGH77JXr67w77vvAWUbXisWi3HuuacPB497zTU3ze7atWvsnnvu7Pe3v509/KWX3pgMsHLlyuCUKT/l3XzzHTMjkVrPTTddO/imm64d9MgjT9nGYj7vvDOGzpkzO/vss/+6YPDgoTXvvPNWlxtvvGao1+uddeCBh5QDrFq1Mvj666/2uOGG22ZVVVV6r7zy4mEnnviHUfvtd8DK++57ZNq///1616effrzvXnvtUzZy5Kia22+/pd/XX39ZePHFl8/r339ArbU2/Pe/3zTowQf/0efSS69a+PDDT0076aQ/bL377nuVnHba6Uvi8TjnnPOX4dFo1HPxxVfM7d69R/Rf/3q2xyWXnD/8rrvumz527PZV7733n4I77rh18PHHn7Ro7733K/v66y/yH374gf5b+pqk0r5m/6G0kjZNTqy1G/V+JHtQlltr5xtjHgUuAh4xxtwG7AScB/ylNePs7CrLShmVve69tmbJ4k2UFhER6aw65r4ne+2176qxY7evAqiurvbsu+8Bqw466JDS/v0HRgAGDTp5+YsvPt9r1qwZ4YMO+kXZDjvsXPbdd9/mA0t/+OG7HJ/P7w4fPmLNt99+nbfjjjtXfvrpx4XDhpk13bv3iG14rc8//yR//vx54ccee3bKsGHDawEuv/yaeY8//nCvkpJVfgCfz+def/2tcwsKCuIAhxxy6Iqnn368b2Mxz5gxPet///um8Jprbpy1//4HlQOcddZ5S+bMmZX9zDNP9K5LTuLxuOf88y+eX/fBfPToMRUzZkzPvfDCyxZ5PB5OO+3MJS+88FzvmTNnhEeOHFUzcuTWlfvss1/prruOXwPQv//AyH//+07FvHlzwgDdunWPeb1eNxwOO0VFXeIffPDf/Llz52Q/9NATP9dd44orrl0wY8b0nGeeeaLX2LHbz3n++Wd67bLLbiWnnPKXZQBbbTVsxaJFC0NvvDGx55a8Jqm0b0v+ZlpSW/ecbJK1drkx5iBgAomd45cAF1prn2jbyDqXpdauf2D1moYLioiIdFJer5dnn33JdrRhXQD9+vVfO5wqHA67xx134vJ///uNoqeffiJn8eLi0Pz5c7PLykoD8bjjAdhjj73Lr776su7V1dWer7/+Mm/UqG1W9+3bv+bHH7/LB5Z+++3XBXvuuXdJQ9eaOXNGODs7O16XmAD07NkrdvHFVyyqu19QUBCrS0wA8vLy45FIZL3G1Y/Z2ulhgB122Hm9DyijR49d/eSTj/Srf2yrrdZdNxQKOd2796z1eDwAZGVluQC1tbVegKOO+m3Jp59+nHfHHbf2LS5eFFq0aGF48eLirBEjRjb4QWjWrJnhcDg7Xv+Dv8fjYeutt1nz3Xf/yweYN29O9vjxe5bWf9yYMdut2TA5ae5rkkr72qt2l5xYaz0b3P8W2LWNwhGgZP5c6q+R569tt8m2iIhIm/F6veTm5na48WyhUNbamKuqqrx//vMJpqamxrvHHnuVHnjgIavGjBm74KyzThtRV2bXXXdfHQj4na+++jzv++8n5e+zz34lAwcOqn399Vd6LVw4Pzhv3pzsa665cU5D1/L5/G7dh+XGeL3ezfZA1Y+5sUnpjhP3+Hy+9U4GAoH17nu9jcdy3XVXDvj880+67L33fqt22WX38hEjtl7yzDNP9Fq1akWwofKu23DTHMfB7/e7iet5XdfdfAdbc1+TVNrXXrW75ETan6oVKygAIo5D0OslHItv9jEiIiLS8Xz88Qf5c+fOyX7llbd+7NGjZwygtLTEV15e7q9LAoLBoDtmzHYVn3zyUeHMmTNyL7nkyvn9+vWPeDwe97777unTu3efmvqT2+sbMmRoTWVlpW/OnNmhIUOG1gKsWrXSf8wxv9rmhhtum5lKzMOHj6gG+N//vs6tG9YFMHnyj7l9+/avTqXOkpJVvnfffbv7xRdfPueww45a29OxaNGCrKyscL3EaN2H/622Gl5dVVXlmzbt56z6vSdTp/6c26/fgBqAgQMHVU+d+nMusHbu9M8/T97kPKWmvCaZpF1360j7EClP/Dtf7iT+LeZu5hsPERER6Zh69uwVAXj99Ve7Llw4P/j111/mXnDBOVvF43FPJBJd+wFgt93Gl3344fvd8vPzYkOHblUbCoVcY0au+eyzj7vusstuZY3Vv8cee1UMHjy06rrrrhg8adK3OdOnT8265prLBxUUFEbHjNkupaVUjRlZM3bs9uUTJtwx4L33/lMwa9bM0L333tV70qRvC3/3u2OWpVJnfn5BPBzOjn/22SeFc+bMDk2dOiV89dWXDZw3b252NLruecjKyooXFy8KLV++zL/XXvuU9+8/sPq6664c8sUXn+bNmDE96/rrrxqwaNGC8O9/f+wygGOPPX7J119/UfTIIw/2nDNnduill/7V9a233uixqVia+ppkCvWcyGbFKxNDK9eEsiAeI+zzEa2tIRDaon0wRUREpJ3Zfvsdqk466bSFEye+3POZZ57oW1TUJbLHHnuXdOvWPWLtupXI9tln//K77vq7Z5ttxlTUHdtuu3EVkyf/mL/XXvuWNVa/1+vlttvunHXHHbf1v+SSvw0DGDVqm9V33HHPzFAolHI3wC233DHnrrv+r+8dd9w2qKqqyte/f//qyy67ZvYhh/yy0Vg2xe/3c8UV18554IF7+p188h9H5eTkxrbZZtvVf/zjCcUvvfR878rKSm9OTo5zxBG/Xv7oow/2O/fcM8LPPffy1AkT7p9xxx239bv22iuGRqMxz+DBQ6puueWOGePG7VQJsM8++1csX75s/vPPP9Prqace6zt48JCqgw46ZMXbb7/ZaILS1NckU3iaMu4tw8yJx53BJSUp7+HYIL/fS1FRDqWllRm3fOLrfzuXrUpLmVbUnc9+/IbKWIxbX36Doq7d2jq0tMrk1xAyv32Q+W3M9PZB5rdR7Utdly45+HzeucCQtFacgkmTJo3wen3v9OjRd00wmKWJmNJkX375WW63bj2i9RcEuP/+e3q9++7b3V599d9T2jK2lhSJ1GQtX16c6zjxg8eNGzd9U2U1rEs26zOfl2O/+4Y5/YfyZVUV35SVsrpydVuHJSIiItKhfPXVFwUXXHDO8M8//yRv0aIFwXfffbvg9ddf7bnPPvs3uLpZZ6RhXbJZ5eVlAGTl5pOTk09NVSXl5RWbfpCIiIiIrOeMM85dXF1d7b3llhsGr15d4e/SpWvkiCN+tezUU09v17u2tyYlJ7JZZWVlAIRz8jAFRbixCGuKF8LoMW0bmIiIiEgHEgqF3Msuu3ohsLCtY2mvlJzIZv3KHyA6dDghPByal8tWhfksmzevrcMSERERkQyj5EQ2a0QwRDiczbRgmIjPDzhEKjSsS0RERETSSxPiZZOceJywzweAPzuPmC8AQLwmpT2NREREREQapeRENqkqORkewJuTT9yf6GxzqrVyooiIiIikl5IT2aTK0sTKdo7r4glm4wRCALi1tZt6mIiIiIhIsyk5kU2qKisHoMZxcPDgBhPJCZFIG0YlIiIiIplIyYlsUs3qRHJS67rEHQc3mAWAJxZty7BEREQkDcaP32Hciy8+37Wp5T/66P38o476xTZ7773L9rfeemO/loytKSZMuKPPkUcePDqddTbnOVm0aEHw9ddfLUrn9Ts7rdYlm1Szeg0hxyECuC6Ud+nB/V++R9GQoRzc1sGJiIjIFnn55Td/zM8viDe1/EMP3d+vZ89etXfffd+M3Ny8Jj+uI2nOc3LttVcO6tGjR+Tww48qbem4Ogv1nMgmrS7I59jvvuEf1VUARAu78+GqFdiqyjaOTERERLZUz569YuFw2G1q+crKSt/WW4+qHDBgUKRLl64ZmZw07zlxPS0bTeejnhPZpKqqRFISDGcDEEreVlauabOYREREJD3Gj99h3LnnXjDvt7/9/arLL79wkOM4nqKiLtEPP3y/a21tjXfbbcdWXHrpVfN79uwVGz9+h3EAL7zwXO8XXniu97PPvjS5f/+BkYceur/n22+/2aO8vMzfq1fv2t/+9pilRx31mxKAL774NO+ii/46/PjjT1r08ssv9O7WrXvtDTfcOue44363zTHHHLf4rbde7xEMBpzHH39+qsfj4Y47bu33zTdfFsZiMc/gwUOrzjjjnEVjx25fVRfvc8891e3FF5/vVVpaEhwzZrvyHj16bnIS7KmnHm9Gjdp2dWlpSeDzzz/pEggEnEMPPXL5gQceUnLLLdcPmjNnVk6vXn1qLrrosnnbbTeuqv5zcsABB5cdf/zvRg0aNKRqwoQHZgF88slHeZdffuHwSy+9avarr77Yc9q0qbnTpk3NPfLIg/MmTnxn8pFHHjx6330PXHXOOecvrh9Djx49a2+88f/mNfR8PPnk89OWLVsauPPO/+v/ww/f5ft8Xnf48BGV5557wcKhQ7fqdCsQqedENqmyMtFDkpVMSsJ+P2PyCxjsNPlLFhERkU4jXl3tbezHqa31tEbZLfHll58XVVRU+O+++z571VXXz542bWrevffe1RcSw526dOkSPeywo5a9/PKbP/bt2z9y55239X3rrdd7nHnmuQseeeTpqUcd9Ztl//jHXQOfeurx7vXr/frrLwvvu+/haZdccuU8n8/rAnz00ftd7rzzXnvNNTfNLigoiJ933hnDFi8uDt1ww22z7rvv4ekjRoysPO+8M0ZMnvxjGOD1118teuCBewccddRvlj300JM/jxw5qvLtt9/ssbk2TZz4Uq8ePXpGHn74qZ8PPfSI5c8991Sfiy/+67Cjjz526T/+8dC0YDDg3HHHrQM3fFxhYWH8wgsvn/v995MKXnvtlS4lJat8t9124+D99jtw5S9+cVjZbbfdNWvYsOGVu+66e+nDDz81rTnPc/3no6amxnv22X82jhPnzjv/Ye+88x82P78gdsYZJ49cvLg40Jx6M4F6TmSTsubP48Khw1njTWzEmOu6XD58JFXxjOzJFRER2SKzzz59u8bOhYeb8v4XXTqr7v6c888Z40ajDX5RHBo0eM3AK662dffnXvy30U5VVYOf24J9+lYNuu7GZn04bjTGcDh+9dU3zA8EAu7w4SNqvvzy81WTJn1bAInhTl6v1w2Hw07Pnr1ilZWV3jfemNjzggsunbv//geVAwwePKR2yZLFoZdffr7XccedsKKu3qOPPnZpXS/AggXzggC//OXhK4wZWQPw6acf582caXMmTnz7x27duscAzj//4uKpU3/Off75p3uOHj1m3iuvvNBzt93Glx533IkrALbaatjSadN+zpk3b072ptrUv/+A6jPPPHcJwIknnrbsueee7rPHHnuXHHjgIeUABx54yKqHHnqgf0OP3WOPvVYfcshhyx944N7+77//bpecnJz4xRdfsQCgqKhL3O/3u8Fg0KmLuanqPx//+tcz3VavrvDfcssdcwOBgAtw3XU3z/vVr345+qWX/tW9fi9MZ6DkRDbJX1rKjkVd+NmT+FLGn5sPQJbXi+s6eDzqfBMREckUPXv2qq37gAyQk5Mbj8ViDfbMzJgxPSsajXpuv/2WQXfcceuguuPxuOOJxaKe6urqtY8bNGjwRsOTBgwYuHZH5+nTp2YDHH30keutvBWLxTzRaMQDsHDhgvDee+9XUv/81ltvs2ZzyUmfPv3WXic7O9sB6Nu379p4gsGQE4tFG+19Ov/8ixZ99923Bd9997+C++9/dGpz5ug0pv7zMWOGza6urvYdfPDeY+uXiUaj3oUL52dt6bU6GiUnsklOcrNFxx/ABwRyCwDwejxUlZeTU6jV80REROoMvef+7xs75/F61/tQO+SOCT82tezgW2+f3NSyW6J+YrJOw9U7juMBuOyyq+cMGbJVzYbnQ6HQ2gdmZWU5G57Pyspae95xHE84HI4/+ODjG/UABYNBB8Dj8eBuEIrf799s2/1+30ZlmvPl6rJlSwNlZaUBn8/nfvnlZ/mjR29bvelHrH+5WCy+UeJT//lwHIfevfvU3HLLHbM2LJeTk9Pphqroa2/ZtORmi24gCIA/Ow8n+c5QVVbS6MNEREQ6I1847DT24633Yb0ly7aWrbYaXuPz+dwlSxYHhwwZWlv388knHxY89dSjPb3epn/MHDp0WHV1dbUvEqn11K/r8ccf7vXBB/8tBBg4cFDVlCk/5tZ/nLXTctLbqvU5jsN1110xeODAwVVnnHHOgmeffbLvlCmTw+tKeNZ/nXx+d82aSl/9xy9fviy4qWsMGTK0euXKlcH8/Px4XbsHDBhYe++9d/X95psv89LdpvZOyYlsWjSx2aIbSm6+6PUScRLJfs1qrdglIiLSWRUUFMQPOODgFU899VjfV155ocu8eXODL730r66PP/5Iv6KiLs2ag7HPPvuVDxw4qPrqqy8b+tlnn+TNmTM7dNttN/b78MP3ug0ePLQG4Jhjjl/6zTdfFT300P09Z8+eFXriiUd6fP31ly06hOOf/7yv19y5c7Mvv/yaeUcf/YeVI0eOWn3DDVcNrk0uQhAOh53ly5eFiosXBQBGjtx6zWeffdzlyy8/z501a2bouuuuHFhdXeXb1DUOP/xXJbm5OfGLL/7r0EmTvsmZOdNmXXnlxYN/+GFSwbBhZjO9NJlHyYlskrduJ/jQuiGPkWTPSa2WExYREenULrnkyoVHHPGrZU8++VjfE044Zptnnnmi9+9//4fFZ5/dvEncPp+PCRMemDFs2PDKG2+8esgppxy39U8//ZB3xRXXzt5jj71WA+y//4HlF1102Zx3332728knHzfqs88+KTz88KOWtUzLYPLkn8LPP/90n+OOO6F4yJChtQCXXnrl/JUrV4TuvPO2vgCHH/6rFQsXLsg66aQ/jIrH45x11l+Lhw83ay6//KJhZ5/95xH5+fmx3XbbY5MbNBYUFMTvueef0wsKCmOXXHLBsNNPP3nk8uXLgjfd9PeZI0ZsvdFwuUzncTccvJf55sTjzuCSkvRuIuj3eykqyqG0tJJYbKNhlR3Wf085gYHAT8NGExz/K8LhIDl3X0S3QIDYMcey9X4HtnWIaZOpr2GdTG8fZH4bM719kPltVPtS16VLDj6fdy4wJK0Vp2DSpEkjvF7fOz169F0TDGZ1ug+PIs0VidRkLV9enOs48YPHjRs3fVNlNSFeNsnrOOD1QmBdz8lbq9dQXVHCcaFQG0YmIiIiIplGw7pkkx5cU8Gxk76mrGe/tce+jzl8sHIF1d607fkkIiIiIqLkRDattraGmOviD61bmCIQSPSY1NSoJ1tERERE0kfDumST6hIQv3/dKnh9QyEK8guIlWgpYRERERFJHyUnsknHFBQRy84hK75uRcADswJsPXwkxQsXtmFkIiIiIpJplJzIJu2Qm0fQ62VqvY2U4l4fEMep1bAuEREREUmfNk9OjDE9gNuBg4Ew8DFwobV2avL8Y8AJGzys2FrbD2lRTjxOMJmUeEPZa4/HvT5w4ji1kbYKTUREREQyUHuYEP86MBQ4BNgRqAbeM8bUfRreFrgJ6F3vZ7s2iLPTqalctxeMJ2tdcuL4EjmtE6lt9ZhEREREJHO1ac+JMaYrMBe4wVr7c/LY9cAPwChjzHfA1sD11tqlbRZoJ1W7ZvXa3z3BbOq263R8foiCE4m2TWAiIiIikpHaNDmx1q4Cjqm7b4zpCVwALAKmAsOArOTv0spqVieSk6jj4PH5wUmkJ44/kCgQVXIiIiJSn8eDz+PxtPrIFNd1Hdcl3trXFUm3Np9zUscY80/gVKAWONxaW2mMGQ24wHnGmEMAB/g3cIW1tnxLruf3p/d9w+fzrnebCWI1VQBEXRc84K3bdDGQSE48sWjan8e2lImvYX2Z3j7I/DZmevsg89uo9mU2jwef4/H0rqqJtfrnq+wsf8yLu6Q9JigTJtzR54MP3u06ceI7k5v72FmzZoZOO+2ErR9//JmfBwwYpMmunUC7SU6Au4AHgdOBicaY8cA2JBKSecBhJHpS/g6MNsbsa611UrmQ1+uhqCgnHTFvJD8/vPlCHcQCN9EzEnFdQqEAbnJcV2lBd5746St6bL01x7XQ89iWMuk1bEimtw8yv42Z3j7I/DaqfZnJ4/F4q2pi/q+mLHGqamIpfUZJRXaW37vLNr39eVl+r+u67S45SdXUqVPCl1zyt60ikdrOme12Uu0mOam3OtdpwK7AWcDJwJ3W2rJksSnGmCXAlyQmz3+dyrUcx6WiomqLY67P5/OSnx+moqKaeLzV3o9aVKk/ixO/+4b+vfvyp6oIXq+HUChAWU4Bby1byu5bDaO0tHLzFXUQmfga1pfp7YPMb2Omtw8yv41qX+ry88MdpkemqibmVFZHW/sF7hhPThPdd9+EXi+99Hzvvn371ZSUrApu/hGSKdp6QnwPYD/gBWttHMBa6xhjpgJ9rbUuULbBw+q6BPuRYnICEGuhLzTicafF6m5tlVXVRByHeDCI47hrj9ftFl9dXZ0xba0vk17DhmR6+yDz25jp7YPMb6PaJ+3F+PE7jDv99LMXvP/+f7vMnTs7p2fPXjUnnXRa8YEHHrJ2+Px77/2n4PHHH+5TXLwoXFTUJbLnnvuUnH762UtCoZALMH361KwHHri377RpU/Nqaqq9Xbt2ixx22FHLTzzxlOUNXfPxxx/u8fjjD/e79NKr5hx00C/KGiozadI3BRdeeNncgoKC+EUX/XV4izRe2qW2zrL7AM8Ce9UdMMYEgO2BqcaYZ40x/9ngMTsmbzVJvoXV1CQ2WQwEQ+sdD/u8DMvJpYuWEhYREenwHnvsoX777LNfyT//+cTPO+ywc/n111+11bfffp0D8OGH7+XfeOM1Qw855NCVjz76zM/nnvu3BZ999nGXyy+/cDBAVVWV929/O2d4VlbYueeeB6Y/9tizP48fv2fpI4880H/y5J82Gt/39NOPd3/iiUf6XXHFdbMbS0wAHnnkaXvIIYc2el4yV1sP6/oR+A9wnzHmVKAUuBwoAu4kscfJ68aYy4HngeHAP4BnrbXT2ibkzsNdtIgzBg2lNpy93vGutTXcOHIblsVibRSZiIiIpMs+++y/8rjjTlwBcMEFlxRPmfJj3osvPtdjxx13nvv004/33m+/A1f+4Q9/WgEwePCQWr/fP//ii88fvmDBvGB2do5z+OFHLT/mmOOW5+fnOwBnnfXXxa+88mKvmTOnh0eP3ra67jrPPfd0t0cf/We/q6++Ydbee+9X0TatlfaurZcSdo0xRwM3A/8CCoFPgT2stQuABcaY35JIWC4nMcTrWeCKNgm4syldxd7dujObxBJqdTyhxBchbZ3ZioiIyJbbfvsdVte/b8zIyh9++C4fYO7cudmzZ8/K+fDD97rWna9bIGfWrJlZ++57QMWxxx6//M03X+sye/bM7OLiRaH58+dmA8TjjqfuMaWlpYH7758w0Ofzuf36DdDQC2lUm3++TC4JfEbyp6HzLwMvt2pQAkC8JvHeEfeuP/rPm5VITgKtHpGIiIikm9/vd+vfd10Xr9fnJn53PEce+Zulhx9+1KoNH9ezZ6/o8uXL/KeddsLIvLz82C677FY2btxOFdtuO6by6KOP3LZ+WY/Hy3XX3TTz0Uf/2efGG68Z/MgjT033ett6doG0R/qrkEbFaxPJieP1rXfcG8oCIODxbPQYERER6VimTp2y3r4A06dPzR06dGgVQL9+A6oXLpyfNWTI0Nq6n2XLlgQmTLi935o1q71vvDGx65o1q/2PPvr09DPPPHfJIYf8sqy8vCz55fe6nKewsCC61177VFxyyRXz5syZlf3YYw/1bMUmSgei5EQa5SQnvDu+9ZMTTygxByXg9aD8REREpGN7442JPSdOfLnLrFkzQ7feemO/+fPnhY855vhlAL///R+WfvPNV0UTJtzRZ9asmaHPPvsk77bbbhpcWbnG37Nnr1jPnr0itbW13jfffK1o0aIFwY8//iD/2muvGAIQiUQ2+pw5cuSomqOO+u3SZ555os/s2bNCG54XafNhXdJ+uZHERqyO179eFuutm3Pi8RKtjeAPavlxERGROtlZ/lb98ndLr3fggYeseOml53veddffwwMHDqy6+ea/zxw1aptqgF/+8vBS13XnPPfcU71feeWFXtnZOfEddtip7K9/vWhR3fnp06ctfeih+/vfc88d3m7dukcOOugXK7/88vPCadN+zgFWbHi9008/e8nnn39SdOON1wx6+OEnrYZ3SX1KTqRRbjSxQ7zrX//PxJuVtfb32qpKJSciIiKA67pOdpY/tss2vf208uiU7Cx/zHXdlDaXGTx4aPVFF12+qLHzhx56ROmhhx5R2tA5j8fDBRdcUnzBBZcU1z9+8sl/Xlb3+znnnL/4nHPOX1x3PxQKuS+++PrPTYltt932WP3ZZ/+b1JSykhmUnEjjYnXJyfpT333BMM8XLyTqOPwtWUZERKSzc13iXtwlea3cc5K4tuu4LvHWvq5Iuik5kUZ9lZ3NLZ9+zC9/dxL1t2b1+gO8tnwZ8XiMsx230ceLiIh0Nq5L3HVdJQkiKVJyIo2qikQoj0Uha6MNXvEHgsTjMaJRLVUuIiLSUWnIlLQ3Sk6kUTU1iU1dA8GNF9MYkJ2D4/NQs3pNa4clIiIiIhlKyYk0anRNLcMGDCK/tmajc+f3H0DXQIDo0iUwYus2iE5EREREMo2SE2nU0LhD/x69+CkW2+hc3ZFosndFRERERGRLaWFpaZSvbmfXwMZLBa9NTqqUnIiIiIhIeig5kUZ53U0lJ4mt4WMNDPkSEREREUmFkhNplD+Zm3gCG0+Ij3kSyUm8Vqt1iYiIiEh6KDmRRvmStw0lJ/G1PSdKTkREREQkPZScSKP8ifwDTwNLCcc9iT+deI2GdYmIiHRWlZWV3qeeeqx73f3LL79w0KmnHm9a8pqLFi0Ivv76q0VbUseLLz7fdfz4HcY1dr412jF+/A7jXnzx+a4teY3WsmDBvOD48TuM++KLT/O2tC4lJ9Iof7J3BP/Gc06meny8uHgRq7M33qBRREREOodHH/1nz5df/levuvsXXXTFwttuu2tWS17z2muvHPT1118UtOQ1pO1oKWFp1AXTf8brxDn1t2du9Icy3R/mx8WLGNDA7vEiIiLSObiu66l/v6CgIN4KV/Vsvox0VEpOpEGO47CiugoAf3DjBMQfCABQq9W6REREAHBdqIq1zaiUbD+OJ4WP7OXl5b477ri13zfffFkYi8U8gwcPrTrjjHMWjR27fRVAVVWV95Zbruv/v/99W1hVVeXr27dvzR//eMLiQw45tGzChDv6vPDCs70hMUTp2Wdfmvzgg//os3z5stBDDz1pv/ji07xLLvnb8Jtv/vuMu+++fcDy5ctDgwYNqrriiuvmvvvu20VvvjmxZzwe9+yxx96rLr/8moUejwfXdXn44Qd6vvvu291WrFgeCgQCzogRW6+54IJLFwwcOChy6qnHm2nTpuZOmzY198gjD86bOPGdyZFIxDNhwu19Pvrog67V1VW+fv0GVJ900qmL99pr34q6dr799luFTzzxcJ9ly5ZmDR06rHLs2O0rGntO6sTjDjfeeE3/jz56v6vf73cPOODgleec87divz/x8fmbb77KefTRf/aZPXtmTjQa9fbs2av22GOPX3LEEb8qqavjtdde6fKvfz3Ta8mSxVmFhUXRQw89YvnJJ/952YbXWrFiuf/MM081hYVF0bvuum9Wdna28/HHH+Q/9ND9fYuLF4V79OhZ++tf/27phAl3DHr22ZcmDxgwKHLkkQeP3nnn3cq+/35Sfnl5eeCqq66bvcsuu69+4olHevz732/0WLlyZbBbt26RX//66KXHHPPHlQBffPFp3kUX/XV4XR2QGJJ17LG/GX3bbXfO2G23PVZffvmFgxzH8RQVdYl++OH7XWtra7zbbju24tJLr5rfs2evGMC0aT9n3Xnn/w2YNWtmTlFRUfToo49d0vy/voYpOZEGRSKRtb97fX6cDc7n+f30zQrDmjWtG5iIiEg75Lrwx3eyR9hSX05bXH9EUXzNUwdX2eYkKK7rct55Zwzz+/3ODTfcNis/Pz/+xhsTu5533hkj7rnnwWmjR4+pvueeO/rMmzc3+5Zbbp9ZUFAYe/nlf3W/5Zbrh4watc2Uk046bWl1dbX3888/7vLQQ09O7dat+0a7NjuOw333Teh/8cWXzwsGs5yrrrpk6Jlnnjpyu+3Gld999/3222+/zr3vvgkDd9llt4r99z+o/LHHHurx4ovP9b7wwsvmjhgxsnrhwgWh22+/deCdd97W/6677pt92213zTr//LOGdevWPXLxxVcsALjyyosHLViwIHzppVfO7dWrT+Sjj94vvOqqS7e68srrZ++//4Hl3377dc5NN10z9Le/PWbJL35x2Kr//e+bvAcfvHfA5p6fGTOm53bt2jV6zz0PTl+0aGHojjtuG1RTU+O97LKrFy5eXBy45JLzhx900C9XXHTR5QtisajnyScf63Xnnf83aNddd6/o0aNn7K23Xi/6+99vHvzHP55QvP/+B5VOnTol+847bxuUk5Mb//3v/7Cy7jqrVq30n3XWaaZr126RO+64d1Y4HHYnT/4pfNVVl2516KFHLL/66hvnTJ/+c/a99941cMMY//Oft7tfd93NM/Pz8+MjR46qvvXWG/t//PH7XU8//ZwFo0ePqfzii0/zH3zw3gGRSK33T386eXlT/za+/PLzovHj9yq5++777OLFxcGbb75+yL333tX3+utvmV9eXu7729/ONsOHj1hz330PTVu2bFnwzjtv3Si2VCk5kQbVrK7gT/0HEnUcfD4/zgbZyU6xGs7YZgxzlqQtURYREenQPNTtXtwxfPbZJ3kzZ9qciRPf/rEusTj//IuLp079Off555/uOXr0mHlLliwOhcPZ8YEDB9cWFBTEzz33guLtthu3uqCgKJ6bm+uEw2HH6/W6dd+oN+TEE08tHjdup0qA3XYbX/bmm6/1uOqq6+dnZ2c7w4aZmqeffqLv7Nkzw/vvf1B5//4Dai+44NK5BxxwcDlA//4DI19//WXpJ598VARQVNQl7vf73WAw6HTr1j02Z87s0Oeff9rl3nv/Oa2ut2fo0K2WzZ49K/yvfz3da//9Dyx/8cXnegwfbtacc875iwG22mpY7Zw5s8P//vfrPTb1/BQUFEavv/7WuVlZWe6IEVvXrFixovjBB+8dcN55FxZHIhHP73//x8WnnPKXZV6vt66dSz766P2uc+bMzurRo+eal156vueuu+5e8uc/n7k0GVdtVVWlLysrvPZTVUVFuf+ss/48vFu37rW3337P7KysLBfgueee6jl48JCqCy+8bBHAsGHDa0tKSgIPPXR///oxbrfd9uV77rn36kRdFd7//Oet7ief/OeFRx7565LkNVcsXlwc+te/nu19/PEnNTk5CYfD8auvvmF+IBBwhw8fUfPll5+vmjTp2wKAt956rSgSiXivvfbmeQUFBfERI7auqa6uWnjDDVcPbWr9m6LkRBoUWV3BL3v2xnFdZns27qF2fImFht1oo+9FIiIinYbHA08dXGU70rCu6dOnZgMcffSRo+sfj8Vinmg04gH44x9PWHrFFRdtdcQRB40ZNmx45fbb71h+yCGHljRnbsngwUPXjgEPhbKcgoLCaHZ29toP6MFgwKmtjXgBDjjg4PJJk77NmTDh9j7FxYtCixYtDC9atDCrqKgo2lDdU6dOyQb429/OXm9lrXg87snOzo4DzJ8/L3u77caV1z8/evS2azaXnAwdulVVXbIAsO22YytjsZhn9uxZodGjt63+9a9/t+rJJx/tMX/+3Kzi4uKsefPmZAM4TtwDsGDB/PCee+5bUr/Oo49e12MC8NRTj/eNx2OeDa81Z86s7A2Hnm2//Y6r4f71Yuzbt9/a53bWrBlZ8Xjcs912O6w3rGXs2O3XvPHGxJ4rVixv8uf+nj171QYCgbXx5OTkxmOxmCcR2+zsnj1719T/Gxg3bse0DaVRciINqq1KzDeJug54vLDBwC7Xl5hzQkzJiYiICCQSlJzARiOh2y3HcTzhcDj+4IOPT9vwXDAYdAB22GGnyldfffunTz/9KP/bb7/Of/fdt7s9//zTfW644baZe+yx1+qmXCcQ8K/Xo+T1Np5F/fOf9/V87rmn+u6zz/4rx47dfvXvfnfM8o8++qDw008/6tJQeddNPN133XXf9Jyc3PWee5/P564rt/4ker8/sNleLq/Xu14Zx0l8Fg+Fgu7MmTbrrLNOGzFo0JCqceN2LB8/fu/yLl26RM8++88j619/cwnj6NHbVvziF4evvPHGq4d++OF7Jfvss39F8rE4zuYn/geDoY3a6Nngok5y+Ev9ZMOt17JoNLbRdeqXXaf+oeY/n02lpYSlQdHqagBiLjjOxn9vbnIyGPFWWJRDRERE0m7o0GHV1dXVvkik1jNkyNDaup/HH3+41wcf/LcQYMKE2/t8881XeQceeEj55Zdfs/Cll96Y0qNHz9oPP3yvCMDj8aR1KNsLLzzb5/e//+Piq666fsExxxy3cty4nSqLixdluetdZd01hw0z1QDLli0L1m/Da6+93O3VV1/qBjBkyNCqadN+zq1fw7RpUzY7N2jevDnZTr1x7d9997+8YDDoDBw4uPaFF57rnp9fEH3wwcdmnHbaGcv22++A8pUrVwQgMZcHoG/f/jXWTlvvOjfffF3/8847Y+3wpz333Kf0kEN+WbbbbuNL7rzztkEVFRVegEGDBldt+NjJk3/YZMxbbTW8xufzud999+16bf3hh+/yCgoKo4WFRfFAIJF0VlRU1O21zfz5czfe0G4Thg0bXrVkyeLQqlUr13Zy/PTT92mba9Xs5MQY4zfG7G+MudkY87wx5m1jzFPGmBuMMbsbY7S8WwaIVid6CaOui+M28L6T7DnxKDkRERHpkPbZZ7/ygQMHVV999WVDP/vsk7w5c2aHbrvtxn4ffvhet7qhWMXFxaG77vq/AZ999knewoXzg2+99XrRypUrQqNHb7sGIBwOO5WVlb5Zs2aGotHoFn8G7Nq1W+S7777Nt3Za1syZM0J33vl/fb755qvCaDS69jNrOBx2li9fFiouXhQYMWLrmu2336F8woS/D3z33bcL5s2bG3z44Qd6vvLKi7369u1bC3DssX9aOn/+vPCtt97Yb9asmaFXX32py9tvv9m98SgSVq1aFbzyyosHTZ8+Nevf/36j8Nlnn+xz5JG/WRYKhdwePXpGSkpWBT/44L/5CxfOD7799puFEybcMRAgEkkMiTv22OOWfPHFZ0WPP/5wj7lz54Ref/3Vonfffbv7+PF7lW14rYsuunxhJBLx/P3vN/WHxHC6uXNn5/z977f0nTVrZuidd94qfOqpx/vCxj0jdQoKCuL773/QymeeeaLvxIkvd5kzZ3boqace6/6f//y7+1FH/WaZx+NhxIitq7OyspzHHnuo95w5s0Nffvl57iOPPNivsTobcuihR5bk5xfELr/8osFTpkwOf/nlZ7n/+Mfd/Tf/yKZpcnJijAkaY84F5gDvAqcBw4FcYDvgTOBTYKEx5mxjTLOyMGlfojXJnhPW7/qr4yY3ZvQ4Sk5EREQ6Ip/Px4QJD8wYNmx45Y03Xj3klFOO2/qnn37Iu+KKa2fXDdm6/PJr5m+77djVt9xy3eDjjjt6myeffLTvn/508qKjjvptCcCBBx5cWlhYFD3llONH/fTTD9lbGtPll18zt7a21nv66SePPPfcv4yYN29O+Iwzzpm/enWFf8GCeUGAww//1YqFCxdknXTSH0bF43FuueWOObvuOr50woTbB55wwrHbvPvu293OPPO8+b/97TGrAEaP3rb6hhtumzl58g95p5xy/KiXX/5Xz9/+9pjNruizww47lfl8PvfMM08dee+9dw48+OBDl5955rmLAY4//qTlu+22R8mtt9445MQT/zDq6aef6H3CCacUd+vWPTJlyuQcSMyfOeusv85/663Xu5944rGjnnjikb6nnnr6gt/85uhVG16rW7fusVNPPWPRBx+81+2jj97PHzlyVM2VV14369tvvyo85ZTjRj3xxCN9fvGLw5YDBALBRnurLr30qgW//OXhyx999J99TzrpD6PefPO1Hn/+81kLTjnlL8sA8vLynIsvvmJOcfHC8Ekn/WHUhAm3D/jzn89a2JzkJCcnx5kw4X7r9/vdc8/9y4ibb75+8O9+d+zSJlewGR63oU+eGzDG7AQ8AcSBZ4AXrLWzGyg3GvgFcArgAY6z1n6ZrmDTZE487gwuKalMa6V+v5eiohxKSyuJxTrMcNNG/fDGRLJfm8iyWIxVJ18HJMaIhsNBqqsjlP73BXZdNI35uBzw8BNtHG16ZNpruKFMbx9kfhszvX2Q+W1U+1LXpUsOPp93LjAkrRWnYNKkSSO8Xt87PXr0XRMMZmnDL0m777+flO33+93Ro8dU1x2bOPHlLnfd9fdB77336Xd1e610FJFITdby5cW5jhM/eNy4cdM3VbapLXsKuMRa++qmCllrJwOTgVuNMb8jkdAMb+I1pB2pG9bVWL9IVU4BbyxdjLdbdw5ovbBEREREMt706dOyH330n/0uvPDSuVtvPap63rx5oaeeeqzP7ruPL+loiUlzNbV1o621kc0XW8da+4IxZmLzQ5L2oKpLF66a/AODhg7noAbOVxZ05elFCzA5bbLXlIiIiEjG+v3v/7By1aqVgfvvv2dAaWlJID8/P7bHHnuXnHXWX4vbOraW1qTkpLmJyZY+TtpereOwpLaGro1k5/7knJPaSG1rhiUiIiKS8TweD2eddd6Ss846r9Ptdt2k5MQYc1VzKrXWXpdaONJeRJJJRyAQbPB8wOejayBIrvY5EREREZE0aeqwrms2uO+SmPAeB1YCRUAQiAAlQJOTE2NMD+B24GAgDHwMXGitnZo8Pxa4G9gBWAVMsNb+van1S2p8y5ZxdJ9+BHy+Bs8XRKq5f8z2lCk5ERGRzscB3A039hORhiX/rbhsuKt3A5q0lLC11lv3AxxAIkn4PZBlre1trc0isUrXKuD8Zsb7OjAUOATYEagG3jPGZBtjugL/BWaQSE6uBq43xpzYzGtIMwVXreTXffphGllazhNMrBQdaMbScyIiIhliqeu60UikZouXzhXpDCKRmmzXdaPAZoeppTLd/17gSmvtC/UPWmvfMcZcAdwIPN+UipLJx1zgBmvtz8lj1wM/AKOA/YFa4HRrbQyYZowZBlwMPJZC7NJETjQKgOtpOH/1BsMA+D0ePJ6G90IRERHJROPGjauYNGnSkxUVpacDXYPBrKp075Qukglc1/VEIjXZFRWlQdd1Hhk3btzqzT0mleRkALCgkXMrgJ5Nrchauwo4pu6+MaYncAGwCJgKXAt8kkxM6nwAXGqM6WGtXd7M2KWJ6pITx9dwcuIJJZKTkNeL4zh4GkliREREMtRN8XiMsrJVx3s8nmwSw91FZH2u67pR13UeAW5qygNSSU5+BM42xrxnrY3WHTTGZAEXAV+nUCfGmH8Cp5LoKTncWltpjOlHYt+U+hYnbwcAKScnfn96P0z7kh/ifY18mO9wknNJXK8fnzfxfuutd+vPCq8t6kRqCOXktn6MaZZxr+EGMr19kPltzPT2Qea3Ue3LHOPGjXOAGyZNmnS369KbJg6VF+lkHGBJU3pM6qSSnFwK/AeYbYx5h3W9Jb8AcoC9UqgT4C7gQeB0YKIxZjyQTSJZqa9uJ9asFK+D1+uhqKhl9ufIzw9vvlAH4HOT2y/6/YTD66/YFQoF8BUVrL0f8MRb7PlsC5nyGjYm09sHmd/GTG8fZH4b1b7MkfzQ1eQPXiKyac1OTqy1HxtjdiORpBwGdCGxYtd7wHXW2lmpBFJvda7TgF2Bs0hMjg9tULQuKalM5ToAjuNSUVGV6sMb5PN5yc8PU1FRTTy+2YUI2r1YbWKLGsfro7o68bvX6yEUClBbGyUeW9d7vXJZCd7sggbr6Ugy7TXcUKa3DzK/jZnePsj8Nqp9qcvPD3eKHhmRzi6VnhOstd8Bv93SiyeXEd4PeMFaG0/W7RhjpgJ9gYVAnw0eVnd/i3bIjMVa5j+FeNxpsbpbkxtNDOtyfD4cZ/05fo7j4uLh3ZUriMVjHB2LZUSb62TKa9iYTG8fZH4bM719kPltVPtERBqWUnICYIw5hMSywr2By4DtgEnW2vnNqKYP8CywjMREd4wxAWB7EksMLwP+Yozx1SUvJJIZq8nwLev77DD//PYrxh9+DEMbKfP0sqXUVFfya3/De6GIiIiIiDRHs5MTY0w2MJHEMr8VQB7wfyTmimxnjNmrblngJviRxPyV+4wxpwKlwOUkNnW8k8T8kouAR4wxtwE7AecBf2lu3NI8ZfE4c6sq2SXc+FwSnz8AQCQSbbSMiIiIiEhTpTJ48yZgHIkejG6sWzrvOBJDra5vakXWWhc4mkSvyb+Ab0jMYdnDWrsg2TtyEGCA70hswnihtfaJFOKWZohEEusQ+P3BRsvkB0MUBQJEq9M7f0dEREREOqdUhnUdDVxqrf3QGLN2PI+1dqkx5gbgH82pzFpbDpyR/Gno/LckJshLKxpSXUNBrz7kRzdcLG2dy/v1o0dgMLWLFsE2Y1oxOhERERHJRKkkJ4XAvEbOlQIdf8MLYetYnAH9BvBjpPHkpG4SUKy2ptEyIiIiIiJNlcqwrinAHxo5d1jyvHRwPje5Qleg8WFdseSIvliNkhMRERER2XKp9JzcALxqjOkKvAG4wF7GmBNJTFQ/Jo3xSRvx1iUnyUnvDanrOYlHIi0fkIiIiIhkvGb3nFhrXwP+CGwL3E9iQvztJPY9+Yu19qW0RihtwkciOfEENtwDc524J9FzouRERERERNIh1U0YnwWeNcYYoCtQBky31mrHpQzhS3acbCo5qRvWFa9tfF6KiIiIiEhTpbLPyQfAGdba6dZau8G5bYGnrbXbpitAaRtr/zA2kZw43kTHmxNVz4mIiIiIbLkmJSfGmPGsGwK2N4k5Jj0aKHooNLqhuHQg/uSQLW+o8eRkHj6WrlxCv2Djk+ZFRERERJqqqT0npwDHk5j87gL3kZhr4tYrU7cZ47Npi07azG3zZkM0yq+OLKSxKfHf+bP4cd4c/par1aNFREREZMs1NTk5F3iMRALyAXAmMHWDMnESc09+Tldw0nZseRmO4+DLym60jC+5klc0Gm2tsEREREQkgzUpOUnu4v4xgDFmH2ASkGutXZo8VgT0t9Zqj5MMEIvFcJzE2gbeTSwlHPT5CXt9RKurWys0EREREclgqWzC+CPwKvBRvWM7Az8YYyYaYxr/ql06hNrKNRzaszcHde+Jz+NrtNxe8Rqe2H5HBi5c2IrRiYiIiEimSiU5uQUYBVxW79gHwBHADsB1aYhL2lBNxWqO7z+QkwcOxhtovOfE8SX+fNxYvNEyIiIiIiJNlUpycjhwgbX2lboD1tqItfYNEgnL79IVnLSNSFUVAFHHweNtvOfE9SZHBcZjrRGWiIiIiGS4VJKTPKC0kXPLgG6phyPtQaQmkZzEXBfXbbyc60smLuo5EREREZE0SCU5+Q44uZFzJwI/pR6OtAd1E9yjrovjNJ6duL5Ez4knruRERERERLZcs3eIB24A3jbG/I/ExPjlQHcSc07GkdiIUTqwaE01PhJrQ2+q5wRfcj6Ko+RERERERLZcs3tOrLX/BQ4jsQHjdcCDwPUkEp0jrLXvpDVCaXV1PScxwNlEduImlxn2JJcdFhERERHZEqn0nGCtfZtE70kW0AUot9ZWpjUyaTOx2log0XOyKdVZOXxRsopY164tH5SIiIiIZLxU5pwAYIwZCZwGnA0UGmPGG2Py0haZtJnqvHyut1N5vbZmk+VKCrpz15yZfBqtbaXIRERERCSTNbvnxBjjAx4ATgI8JIZ3vQhcDQwxxuxlrV2U1iilVdV6PExeXUHc1/gywgD+5LCuSCTSGmGJiIiISIZLpefkCuAPwClALxIJCsDfAB9wY3pCk7YSiSR6QvyB4CbL+QPBRHYaibZCVCIiIiKS6VJJTk4CrrLWPgasqjtorf0JuAo4IE2xSRtxV67kgO492Mrf+O7wAN0qy/nXDrtwVm5+K0UmIiIiIpkslQnxPYEfGjm3CChKORppF0LLl3HqwCHMBDbVJ+JJ9qxsevCXiIiIiEjTpNJzMgv4RSPn9k6elw7MSQ7Tcryb/vOoS05SWvJNRERERGQDqXyuvAt40BgTBN4gMSF+mDFmH+AC4Pz0hSdtwYkmk5PNTIj3BEIA+D2eTZYTEREREWmKZicn1tqHjTHdgcuB00lMiH8OiAC3WWsfSG+I0trcaGL1LXczPSfeUBaQSE48ns3sJi8iIiIishmpLCVcZK292RjzD2BXoCtQBnxlrS1Jc3zSBtxYLHHr9bOpPhFPMNFzEvB4cF0XNllaRERERGTTUhnW9Y0x5gpr7b+A/6Q7IGl7dcmJ4/VtcrK7N5joOfF6PERrIwRCoVaITkREREQyVSrJSRGwMt2BSDsST/acbG7OSSjMd2WlRF2XfrXVSk5EREREZIukslrX3cD/GWP2Sc49kQwzIxzm/2ZZFhV02WQ5XyjMLbMst8+eQVQTTkRERERkC6XSc3I8MBB4D8AYs+F511rb5HqNMV2Am4BDgXzgJ+ASa+1nyfOPASds8LBia22/FGKXJlgBfFtWyuCcvE2W83p9eL0+HCdORLvEi4iIiMgWSiU5eTrNMTwP9AB+T+Jz8ZnAu8aY7a2104FtSSQv99R7TDzNMUg9kUhitS5/YNM7xNeVidTGiURqWzosEREREclwqSQnc4EPrLWLtvTixpitgAOA3a21XySPnQscAhxrjLkW2Bq43lq7dEuvJ03To6qa8V26kht3Nlt2wohRFPr9RJYshr79WyE6EREREclUqcw5uQPYIU3XXwn8EphUd8BaW7cmbRdgGJAFTE3T9aQJtq2t5Zwhw+hevWazZb0eT2K1ruqaVohMRERERDJZKj0ny4HCdFzcWlsG/Lv+MWPMb4GhJJYpHk1iB/rzjDGHAE6y/BXW2vItubbfn0pe1jifz7vebUfmS05u9/gDeL3r9i6p+73+sViybDxam/bntLVl0mvYkExvH2R+GzO9fZD5bVT7REQ2LZXk5CHgH8aYfYApwLINC1hrn0wlGGPM7sCjwGvW2jeSw7ocYB5wGImelL8Do40x+1prNz/uqAFer4eiopxUHrpZ+fnhFqm3NXldBzxe/FlZhMPBjc6HQuvmosSSt37iLfactrZMeA03JdPbB5nfxkxvH2R+G9U+EZGGpZKc3J68Pa6R8y7Q7OTEGHME8CzwFXBM8vA1wJ3JHhaAKcaYJcCXwI7A1829DoDjuFRUVKXy0Eb5fF7y88NUVFQTb8JcjfbM67rggbjHR3V1ZN1xr4dQKEBtbRTHSfSY1P0BrSlfQ2lpZRtEmz6Z9Bo2JNPbB5nfxkxvH2R+G9W+1OXnh9UjI9IJpJKcDE53EMaYs0jsn/IK8EdrbS2snX9StkHxycnbfqSYnADEYi3zn0I87rRY3a3FW7dniT+0Ngmpz3HctcdjJIZ4RWtqOny762TCa7gpmd4+yPw2Znr7IPPbqPaJiDSs2cmJtXZ+3e/GmGwSe5OsstamtNGFMeZ0EssETwD+Wn+oljHmWaCrtfageg/ZMXmrSfItxFeXjzRhKeG6NZ3jtVpKWERERES2TCo9Jxhj9gBuI5EoeJLHvgEus9Z+2Ix6hpPoMXkVuBnoUW9Tx2oSw7xeN8ZcTmI/lOHAP4BnrbXTUoldNs+XvPX4Q5stW+xCRXkZPXy+zZYVEREREdmUZg/eNMbsRmJ3+ELgeuAM4AYSS//+xxizazOq+w0QAI4Clmzwc7e19k3gt8CvSQzneoTE0K+Tmxu3NN2zK5YxYc5MYgVFmy37H8fLTTOnU1FQ0AqRiYiIiEgmS6Xn5AbgU+Aga+3andqTK2v9B7gWOLApFVlrbyKx+/umyrwMvJxCnJKiSeWlrFmzhr3CuZst6/Mnhn7V7SovIiIiIpKqVJa92IlEr0a8/sHkXJF7kuelA6tLNLy+zeeu/mRyEo0qORERERGRLZNKz8lqEkOxGhIkOQdFOibHcRiXk0cs28HH5ueRHOyJ87ftdmD57DmtEJ2IiIiIZLJUek4+By4zxqw35scYkwdcSmLIl3RQkepq/jp0GBduZfA3Ic0MeL1k+/y46jkRERERkS2USs/JJcAkYI4x5k1gKdALOBTIAk5MX3jS2iJV6zan9IayNlve8fogDm40ttmyIiIiIiKb0uyeE2vtLGBX4EPgF8AFydsPgV2stT+lNUJpVZHqdclJU5YSdrzJoV9xJSciIiIismVS2ufEWjvVGHOutXYpgDGmC9DPWquNETu4aHV14tZxwOtl3TaLDXOTyYkbU3IiIiIiIlsmlX1OCo0x/wU+qnd4J+AHY8zE5K7x0kHVJod1xVwX13U3UxrcuhW9lJyIiIiIyBZKZUL8LcAo4LJ6xz4AjgB2AK5LQ1zSRqI1iZ6TGC6Os/nya5OT+KZ7WERERERENieV5ORw4AJr7St1B6y1EWvtGyQSlt+lKzhpfbHamsStS5N6TqqDWUxfs5oyj1aQFhEREZEtk0pykgeUNnJuGdAt9XCkrUWywvxj7mzeWF2O04TkZGFhD66a/jNf+VL5UxIRERERWSeVT5TfASc3cu5EQKt1dWARn4+PV61gcjxOE3KTtTvE1+0qLyIiIiKSqlRW67oBeNsY8z/gVWA50J3EnJNxJPY7kQ6qLskIBIJNKu+rS05qa1ssJhERERHpHJqdnFhr/2uMOYzExPfrAA/gAj8AR1hr30lrhNKqYmVlbFdQSJcmbMAI0Kd6NQ9suz0lTehlERERERHZlFT3OXmbRO9JFtAFKLfWVqY1MmkTviWLuXTYCOY5DlWbL47P66VLMEiNVusSERERkS2UUnJSx1pbAyxOUyzSDsSTw7ocb9OmI3mSw798qOtERERERLaMlliS9Th1yUkTlwb2+JPJiXITEREREdlCSk5kPU4kMbG9qT0nBEIA+FoqIBERERHpNJScyHqcaDRx621auuFNJid+7cEoIiIiIltIyYmsx4nFAHCbmJx4gsnkBGUnIiIiIrJlUpoQb4zpBlwIHAD0Bg4CjgJ+sNa+lr7wpLW5a3tOvE1LN0Jh5lVVUuu4jPXQpI0bRUREREQa0uyeE2PMYBK7wJ8GLAJ6kEhyhgMvG2N+mdYIpVUtyc7mkflzWZCT16Tybm4hF02dzJXTp+A4TgtHJyIiIiKZLJVhXbeT2BV+MPArEpswYq39A/A6cFnaopNWt8Lv5z8rlrEyJ79J5et2iAeIRKItFZaIiIiIdAKpJCf7Addba8tgo80tHgS22dKgpO1Eo4mlhP31ko5N8QfWlat7rIiIiIhIKlLdhDHWyPEQGycs0oGEKyvZOi+f3CZOHvF5fdy1zRiCHi+1pSXk5jZtOJiIiIiIyIZS6Tn5FLjUGJNT75hrjPECpwOfpyUyaRNbl5dzjdmaAVWrm1Te4/XSPRiiWyhEpKqqhaMTERERkUyWSs/JJSQSkFnAhyR6Si4Atga2AvZIW3TS6jzxxKR2TxOHdQHEXJcAEKmubqGoRERERKQzaHbPibV2CrAD8AGwDxAnsaTwLGA3a+0P6QxQWpenbsWtZiYnANEa9ZyIiIiISOpSmnNirZ0J/CHNsUg7kEpyUrdGV6ymNv0BiYiIiEinkeomjB5gLJBDA70v1tpPtiwsaSte1wWPJ7Wek9qalgpLRERERDqBZicnxpidgBeBfslDdRuJu8nfXcCXluik1XldBzy+Zs05idfd1ig5EREREZHUpdJzcieJkTwnkNghfou2BTfGdAFuAg4F8knsPn+Jtfaz5PmxwN0k5rmsAiZYa/++JdeUxvnqlhAOhJr8mJVxh3isirwmLj8sIiIiItKQVJKT7YHfW2tfS1MMzwM9gN8DK4AzgXeNMdsn7/8XmAj8BdgFuM8Ys8pa+1iari/1fFxVSay8nBF7FRFu4mMeq6xh0dxp3HXqaS0am4iIiIhktlSSk+VsYW9JHWPMViRW+trdWvtF8ti5wCHAsUA1UAucbq2NAdOMMcOAiwElJy3gy9UVLF66mGG5BU1+TN1u8tFodDMlRUREREQal8omjP8ALtlgE8ZUrQR+CUyqO2CtrZu70oXEnimfJBOTOh8AxhjTIw3Xlw1EoxEAvM2Yc1KXnEQikRaJSUREREQ6h1R6ToaR2HBxqTHmZ2DDzS1ca+1+TanIWlsG/Lv+MWPMb4GhwH+AG4HJGzxscfJ2AIlenJT4/ankZY3z+bzr3XZUfTxe8rJzCHq8eL2e9c7V3d/w+KFZAQaM2hbmz0/789qaMuU1bEymtw8yv42Z3j7I/DaqfSIim5ZKcrIV8EO9+54Nzm94v8mMMbsDjwKvWWvfMMbcSWJYV311S0JlpXodr9dDUVE6On42lp/f1Jka7dMF/QYS8nqZ63XwhoMNlgmF1u9VKfR56RfOZlm0psWe19bU0V/Dzcn09kHmtzHT2weZ30a1T0SkYc1OTqy1+7REIMaYI4Bnga+AY5KHq4ENl42qS0oqU72W47hUVKR3N3Ofz0t+fpiKimri8bRMyWkTAU8it4y6Ppzq9Ydpeb0eQqEAtbVRHGfdylzxZD4aqaqhtDTll6XNZcpr2JhMbx9kfhszvX2Q+W1U+1KXnx9Wj4xIJ5DSJozpZow5i8Rywa8Af7TW1vWWLAT6bFC87n7xllwzFmuZ/xTicafF6m5p0dpavMnkhEBovQSkPsdx109OvD5w4sSj0Q7b9vo68mvYFJnePsj8NmZ6+yDz26j2iYg0rEnJiTEmDuxqrf3GGOOQ2GixMa61tslJjzHmdOAeYALwV2tt/XezT4C/GGN81tq6vf72A6y1NuX5JtKwSPW6Xg9PoOmj5lyvFxxwtVqXiIiIiGyBpiYR15HYcLHu97TstmeMGU6ix+RV4GaghzGm7nQ1ifknFwGPGGNuA3YCziOx54mkWaSqeu3v3mBWkxeMdrw+ANxYbDMlRUREREQa16TkxFp7bb3fr0nj9X8DBICjkj/1PWGtPcEYcxCJXpXvgCXAhdbaJ9IYgyRFqhPzcBzXBX8AIvHNPCLB9SWTk6iSExERERFJXVOHde3ZnEqttZ80sdxNwE2bKfMtsGtzri+piVQnek6irtOsvrFaX5AVtbXUpqdDTUREREQ6qaYO6/qIdR9XG1squG7zRBfwbVlY0hZiPh/PFy8kGAwx2m16ojG1sCd3f/Qmhw8+iiNbLjwRERERyXBNTU5aZPlgaV8iXh+vLCmmS5eubNOMThC/P7EfSm1tzWZKioiIiIg0rqlzTj5u6UCk7UUiiX1NAsFQYt5JE/kDiU0Za2sjmykpIiIiItK4lPY5McZ0Ay4EDgB6AweRmND+g7X2tfSFJ60pWrmGgeFsCrPCuI3scdKQ/jVruHHENlRVpXdjSxERERHpXJq91aoxZjDwE3AaieWFe5BIcoYDLxtjfpnWCKXVOIsW8X+jtuWkwqJmTW0PeWBYbi6FGbjbsYiIiIi0nmYnJ8DtwHJgMPArkhPkrbV/AF4HLktbdNKq4pHaxK2nsTUPGubxhwDwuUpORERERCR1qSQn+wHXW2vL2HjB2QeBbbY0KGkbseSE9uYmJyTnnHibMU9FRERERGRDqSQnAI3tthciTbvHS+uLJye0O83tOQnU9ZykPSQRERER6URSSU4+BS41xuTUO+YaY7zA6cDnaYlMWp0TqUtOmvlnEcwCUlxdQUREREQkKZXPk5eQSEBmAR+S6Cm5ANga2ArYI23RSatyotHErbeZPSfBxD4nSk5EREREZEs0u+fEWjsF2AH4gMTmjHESSwrPAnaz1v6QzgCl9cRT7DnxBMOsjkWpjDc22k9EREREZPNS+rLbWjsT+EOaY5E2Vp4dZuKSYnK2GkHfZjwuVtidk3+YRDAY5JsWi05EREREMl2qmzAOAbKstVONMYXAjUB/4EVr7VNpjE9a0aqsLJ4tXsj+o3doVnLi8ydW60rsMO+SXF1aRERERKRZUtmE8WBgGnBS8tADJDZk7Ac8bow5OX3hSWuKJId1+ZNLAzeV3x/cqA4RERERkeZKZbWuq4B3gWuNMQXAUcDN1trtgZuBc9MYn7QiT1UlPUMhwl5fsx7n9/m4avhIrhsxiuryihaKTkREREQyXSrJyRjgLmvtauAgEkPDXkqe+y8wLE2xSSsbumw594zejm0qVzfrcT5/gG3yCxiRm0e0ak0LRSciIiIimS6V5KSadXNVDgGWWWt/St7vBZSlIS5pC7HEUsKuv3nDujxeLxHHAaC2qjLtYYmIiIhI55DKhPjPgAuMMV2A3wGPARhjxgFXJ89LRxSPJ26bmZwARF2XIBCpqkpvTCIiIiLSaaTSc/JXoC/wDDAXuCF5/C0gi8QmjdIBeeOJ3g+aOSEeEskJQKy2Np0hiYiIiEgn0uyeE2vtXGPMKKCHtXZZvVNHAt9ba/XptIPybEHPSSyZnESrq9MZkoiIiIh0Iqn0nGCtdTdITLDWfgX4k0sNSwfkdet6ToKbLtiAur3hI0pORERERCRFze45McYMBB4E9gIa+xTbvLVopV3wOi54PRAINfuxNS5UxWLEo9rnRERERERSk0rPyZ3AbsA/ge+Bz4G/Az+R2B78qLRFJ63qp0gtby9bSjS3oNmPnVBRyQk//I/Krl1bIDIRERER6QxSSU72Aq6w1p5LYqWuWmvtxcAOwMfAEWmMT1rRx5WreWzhPGoLuzX7sf7kULBaTYgXERERkRSlkpzkAj8kf58KjAWw1saBfwD7piMwaX11iYU/hQnxdY+JRDSsS0RERERSk0pysoTEZosAs4AuxpjeyfslQM90BCatLycep8AfwOdv/vY3+4YCXDZsBMGFC1ogMhERERHpDFJJTt4CrjfG7GatXQgsIrEpYx5wElCczgCl9Vzepz8PjR1Hdm1Nsx/by+dlbEEh3orVLRCZiIiIiHQGqSQnVwFlwHXJ+5cB5yaP/QG4PR2BSevzezwAeANZzX6s4038KTka1iUiIiIiKUplE8ZVwM51Q7mstc8YY+YDuwLfWGs/TnOM0gocxyGYTDA8oVSSEx/EY7ixaLpDExEREZFOovmTC5KstUuMMSOAImCJtfb/0heWtLZIVdXa3z3BVJMTcKNKTkREREQkNSklJ8aYk0kM7+pX79hC4FJr7XOpBmOMuQLY31q7d71jjwEnbFC02FrbD0mbmso1a3/3ZmVDvHmPd7yJfTfdWGwzJUVEREREGtbsOSfGmLOAh4BJwJ+AQ4ATgWnA08aY36YSiDHmPNbNY6lvW+AmoHe9n+1SuYY0LlJZCYDjuni8zV9K2PElkhOiSk5EREREJDWp9JycC9xrrT1ng+NPGmMeBq4BXmxqZcaYvsDDwB6A3eCcD9gauN5auzSFWKWJaqsSyUnUdXCTE+Obw/UFcFwXJ67kRERERERSk8pqXf2ANxo59xwwpJn1bQ+Ukugh+XqDc8OALBKbPUoLirrw7vJlfF5RjuO4zX78lMJe/H7S13yWk90C0YmIiIhIZ5BKz8m3wH7Afxs4tx3wU3Mqs9a+QTLZMcZseHo04ALnGWMOARzg38AV1try5oW9Pr8/lbyscT6fd73bjiaeFeThBXPp1r0H53vA692496TuWEPngqEQAJFIbdqf29bS0V/Dzcn09kHmtzHT2weZ30a1T0Rk05qUnBhj9qx39zngzuSmiy8AS0ms2HUwcA7w5zTGtw2JhGQecBiJnpS/A6ONMftaa51UKvV6PRQV5aQtyPry88MtUm9LCwYTCUcoFCKUFSSwid6TUGjjOSnh7ES7o7FYiz23raWjvoZNlentg8xvY6a3DzK/jWqfiEjDmtpz8hGJHow6HuB04C8bHAN4nmbMOdmMa4A7rbVlyftTjDFLgC+BHdl4GFiTOI5LRUXV5gs2g8/nJT8/TEVFNfF4SjlTm1q1vIRcn5/sQJCqyloaSk28Xg+hUIDa2uhGQ7+K1qzmb0OH4a6pprS0snWCTrOO/hpuTqa3DzK/jZnePsj8Nqp9qcvPD6tHRqQTaGpysk+LRtEIa61LYuf5+iYnb/uRYnICEIu1zH8K8bjTYnW3pNjsOTy63Q4siseo2MycE8dxN0pOsh2HnYu6stDtmO2vr6O+hk2V6e2DzG9jprcPMr+Nap+ISMOalJy01a7vxphnga7W2oPqHd4xeatJ8mkUq60BIO5J8VupQBAAXwqT6UVEREREoImrdRljPjHGjG1OxcaYHYwxn6UU1TrPAgcYYy43xgxNTop/FHjWWjttC+uWeuI1tQA4KSwjDOAJJibE+1wlJyIiIiKSmqYO67obeMcY8z/gaeB1a+1GkzaSk+QPIjEpfjvgjC0Jzlr7ZnJTx8uTP2UkEpYrtqRe2Vi8NpGcxL2p9pwkk5N0BSQiIiIinU5Th3W9bIz5GLiKxIaJfmPMVGAuUAkUAv1JrK4VTZb5o7V2WXOCsdae0NC1gZebU480XzxS13OSWnLiSSYnqaxNLSIiIiICzfgsaa1dCZxjjLkW+A2JSfJDgAJgJTCNRA/LG9baVS0Qq7QgJxJJ3PpS6/vwJod1+VMbFSYiIiIi0vwvupOJx4PJH8kQTjQKgOtNLTnxBLMACKQ4Z0VERERERKNwBICKQIBPV62AwcPpmsLj4/ld+cOkr3E8Hibhsm7bGxERERGRptFuRgLAonCYe+bOZm5BUUqP9weDRF2XuOMQi8XSHJ2IiIiIdAZKTgSA2uQ+Jz5/MKXH++s9LpKcvyIiIiIi0hwa1iUAxKpr8Hs8+P2BlB7v8/k5c9BQAl4vtRXlZGfnpDlCEREREcl0Sk4EgHGrVvK7cTvzU0VpSo/3+nzs1qVrMjlZDb3SHKCIiIiIZLwmJSfGmOObU6m19snUwpG24onHAXBT7DkBiLouAaCmck2aohIRERGRzqSpPSePN6NOF1By0sF44w4AnkBqc04gkZwARKur0hKTiIiIiHQuTU1OBrdoFNLmPE4iOdmynpPEbaRKyYmIiIiINF+TkhNr7fymVmiM0QYXHZDXdcDjxRMIpVxH3QLC6jkRERERkVSkNCHeGPN7YC8gyLrd9rxADrAr0C8t0Umr8bkueMAT2IKek7pb9ZyIiIiISAqanZwYY64GrgbKk4+PJn+6Aw7wUDoDlNbhS84XIZCVch1RTyJPjVZXpyMkEREREelkUtmE8U/A00AX4E7gDWttT2BHYBXwc/rCk9Yyvbqab0tLcHLzU67jqVqH47/7hrLu3dMYmYiIiIh0FqkkJ32Bp6y1LjAJ2A3AWjsJuBE4JX3hSWt5fsUy/m/2DGKFqScW8UCIGsehJrnbvIiIiIhIc6SSnFSSWC4YYCYw2BgTTt7/Aa3s1SHV1CSGYvmDqU+IDwSDybpq0xKTiIiIiHQuqSQn35AY2gUwm8QiTfsn748E9Mm0g3Fdl0hNorfD7099n5MxPg9/GTiE7MXF6QpNRERERDqRVFbrugl4zxhTaK09zBjzNPCEMeZD4CDg1bRGKC0uWl3NM9vtSMxxmOO6a5cEbq5+Hti+ew/mlpWnNT4RERER6Rya3XNirf0E2AH4V/LQWcBLwAjgReCctEUnraJ6zWoA/F4v3lB2yvU4vkSu60YjaYlLRERERDqXlPY5sdb+BPyU/L0GOC2dQUnrqlldAUDcdfEGQhB1UqrHXZucRDdTUkRERERkY6luwlgA7Eti08WNel+stU9uYVzSimrWrAEg4ji4a/fUbD7Xn9zAMZrqwDARERER6cxS2YTxEBLDtxob/+MCSk46kEhlJQBR18Wp24wxBU7dZPq4khMRERERab5Uek5uBqYB5wOLSOwKLx1YbWUlQSAKOE7qyYkbSCQn3lg8PYGJiIiISKeSSnIyAjjCWvtpuoORthGpSiQnMdiinhOSPSdeR/mqiIiIiDRfKvuczAfy0x2ItJ0IHiaVlTLPibMlucnyrn3484+T+FdEO8SLiIiISPOlkpzcDFxtjBmU5likjazJyebWWZb/bGE9nqxsSqNRKpK7zYuIiIiINEcqw7r+APQFZhtjVgBVG5x3rbVDtzgyaTU1yd3hg6GsLaonEAwl66vd4phEREREpPNJJTlZlPyRDLE2OQmEtqieXCfGn/oPJJi1ZUmOiIiIiHROzU5OrLUntkQg0nYKZs7k6e13Yqa7ZatsZXk87NGzN6u1lLCIiIiIpCCVfU4GbOK0A6yx1palHJG0OidSS9Drxev1swXz4fGEElvfBD2pTGUSERERkc4ulWFd82DTn2GNMSXA3dbaG5pTsTHmCmB/a+3e9Y6NBe4GdgBWAROstX9vXsiyKW4kAoDj823B/vDgzUokJyGvF8eJ4/X60hCdiIiIiHQWqXzF/ScgArwLnAgckjz2Bomk5TrgceAKY8zpTa3UGHNe8rH1j3UF/gvMIJGcXA1cb4zR0LI0cqOJ5MT1p5KrruML56z9vWbNmi2qS0REREQ6n1Q+jR4DPN/A3JOnjTH3A+OstYcbY8qA04H7N1WZMaYv8DCwB2A3OH0aUAucbq2NAdOMMcOAi4HHUohdGhKNAuD4Ayllq3V8yZ4TgNo1a8jOL9jCwERERESkM0nls+jewLONnHsF2C/5+2dAU5YU3h4oBbYFvt7g3B7AJ8nEpM4HgDHG9GhqwLIZ0eTTm9zhPVVef4BYcnf42kr1nIiIiIhI86TSc7IKGENiuNWGxgAVyd9zgcrNVWatfYPEkDCMMRue7gdM3uDY4uTtAGB5kyJugN+f3knbPp93vduOxOskV+kKBPF6G591UnduU2VqXRc/EKuuTPtz3NI68mvYFJnePsj8NmZ6+yDz26j2iYhsWirJyTPAdcaYKPASiQShB/Ar4BrgAWNMEXAe8NUWxpdNYlhXfTXJ25Q30/B6PRQV5Wy+YAry88MtUm9LKvFA1eoK4rl5hMOb7z0JhQKNnrtx0UJKy0p4plthiz3HLa0jvobNkentg8xvY6a3DzK/jWqfiEjDUklOriCRjNyR/KnjAI8ClwG/AbYD9t3C+KqBDXcGrEtKNtsr0xjHcamo2HBj+y3j83nJzw9TUVFNPO6kte6W9mE0yjd2Kqcd/FvC1ZFGy3m9HkKhALW1URyn4QXbVrkeSqMRSsrWUFqa8kvUJjrya9gUmd4+yPw2Znr7IPPbqPalLj8/rB4ZkU4glU0YY8BJxpgbgX2AbiR2jP/cWjsXwBjzNtDXWrthr0dzLQT6bHCs7n7xllQci7XMfwrxuNNidbeUmppqALz+YKNJR32O4zZaLhBI9LxUVVV1uOehTkd8DZsj09sHmd/GTG8fZH4b1T4RkYalvHastXY2MLuRc6UpR7S+T4C/GGN81tq67cv3S1zCpjzfRNZXU5MYKRcIbNhJ1Xx75uWT7RtIdPHizRcWEREREamnScmJMWYOcJS19kdjzFw2vQmja61tyipdTfEocBHwiDHmNmAnEnNZ/pKm+gU4I5xL7phxzKtavcV1jcvOYmh+DitWrExDZCIiIiLSmTS15+Rj1q3C9TGb2SE+Xay1y40xBwETgO+AJcCF1tonWuP6nUW2x0O+348vsGVLCQPEPInxwLHq9M7pEREREZHM16TkpP6Gi9baE1oqmIbqttZ+C+zaUtcUCHmSSwSH87Y464x5fYCj5EREREREmi2lOSfGmDwg31pbbIwJAucC/YGXrLWfpDNAaVmO4xDyJno7vOFc4pspvzlxrw9ch3h1zeYLi4iIiIjU0+w1+YwxOwHzgbOThyYAtwJ/BD4wxhyevvCkpdWsWYO3ruckO2+L64v5E/muU6vkRERERESaJ5UFw28EpgMPGmPCJJKS+6y1XYBHgMvTGJ+0sOry8rW/e8Nbvmmi409s0OjWNr5fioiIiIhIQ1JJTnYGrk/uabIfEAaeSp57HtgmTbFJK6gqT6z6XBOPg8e3xfU5/uSk+qiSExERERFpnlSSEweo21zxF0AZ8E3yfj6gmdAdSE1NDVNXVzC3tqZJGzBuzuzCXvx1yg98GQykIToRERER6UxSSU7+B5xijNkVOBp401rrGmN6AJckz0sHUR0Mco2dygNlJWlJTpzsPIpraiiprk5DdCIiIiLSmaSyWteFwDvA74EVwA3J41NIJDsHpSc0aQ1VVYmOrnA4Oy3JSTAUXq9eEREREZGmanbPibX2e2ArEnuPDLHWzkyeOh3Yxlo7KY3xSQurSyKywtlp2Vmz0I3z2z79GBONpaE2EREREelMUtrnxFq7Gvh6g2MvpyUiaVW+mTP455jtWZiG3eEB8lyXA/r0Y3lMyYmIiIiINE8qc04kg8Qr11AYCJLlTc+fQt1yxJoOLyIiIiLNpeSkk4snJ67HfSl1om2kLjkJJTd2FBERERFpKiUnnZxTk9jJ3fGnKznJBSDk9eI4TlrqFBEREZHOQclJJ+fUJrasWbt54hbyZucB4PN4iFRVpqVOEREREekclJx0dsmd3J1AemaJ+LNz1/5eWVaWljpFREREpHNQctLJeeqW/A2E0lKf1x+gJh4HoKaiPC11ioiIiEjnkJ6JBtJhlTkO86oqiYVz0vbHcOvCBZSvqeCuNM1jEREREZHOQT0nndxHToyLpk5mRa/+aatzsethUU01NZFI2uoUERERkcyn5KSTq9shPhjMSludgVCirupqTYgXERERkabTuJtOrro6kZzUJRTpsFNuHlm9+xIpLoYd01atiIiIiGQ4JSed3J/Dufi3GcOq2pq01blLdhbD8/uzfNmytNUpIiIiIplPyUkn183nIzsYpDyUg5umOqNeX+JW+5yIiIiISDNozkkn5jgOWd7En4AvNz9t9cZ9iZw3VlmVtjpFREREJPMpOenEqspK8Xo8AHhzC9NWb8yf2NAxXq3kRERERESaTslJJ7Zm1UoA4q6LN5STtnrj/sSGjm51ddrqFBEREZHMp+SkE6ssKQGg2onj4ElbvU7dssS12udERERERJpOyUknVlVWCkCNC3HHSVu9blYYAG80mrY6RURERCTzKTnpxKqrq5lXVclK18WJp2utLljepQ9XTJvCv6PpW55YRERERDKfkpNOrCw7h4umTuZFSNsywgCe/CJmVK6hePWaNNYqIiIiIplOyUkntmbNagCyc9I3GR4gK5y7Xv0iIiIiIk2hTRg7sbrkISsrvclJtt/PL3r0IicYSmu9IiIiIpLZOkRyYowZCMxr4NSp1tqHWzmcjNF19mzu2mYMi9I4GR4gOxDkhAGDcFyXeCyGz98h/sxEREREpI11lE+N2wI1wBDWnx5R3jbhZAZvZSV9ssKU+HxprdeXV5So3+OhsrSU/O7d01q/iIiIiGSmjpKcjAastXZJWweSUWprAXDr9iVJE39WNlHHIeD1UlmyUsmJiIiIiDRJR5kQvy0wta2DyDR1+5C4ofQmJ3g8VCeHiq1ZtSq9dYuIiIhIxupIPSdLjDGfAsOBmcD11tr/pFqh35/evMzn86532xH4YjEAPOEcvN7N7xBfV6YpZWtcl3ygtqIs7c91S+mIr2FzZHr7IPPbmOntg8xvo9onIrJp7T45McYESSQklcCFwBrgj8DbxpgDrLXvN7dOr9dDUVF6V6iqk58fbpF6W0LQiYPXhz+/iHA42OTHhUKBzZapIZHAuDVVLfZct5SO9BqmItPbB5nfxkxvH2R+G9U+EZGGtfvkxFobMcYUAjFrbW3y8CRjzEjgAqDZyYnjuFRUVKUxysS3RPn5YSoqqonH07v6VUsJOS54wc3Op7o6stnyXq+HUChAbW0Ux9n0to0+TyI5Wb1iJaWllWmJt6V1xNewOTK9fZD5bcz09kHmt1HtS11+flg9MiKdQLtPTgCstQ19up0MHJxqnbFYy/ynEI87LVZ3uq2M1BKPx/HmF2022ajPcdzNlv/YE+KJaT/wu7327DDPR52O9BqmItPbB5nfxkxvH2R+G9U+EZGGtfuvIIwx2xpj1hhjxm9wagfg57aIKRNEIhEunzqZMyZ/j7d737TXX5FbwIzKNayq6hi9JiIiIiLS9jpCz8mU5M/9xpjTgZXAacCuwI5tGVhHVlZWCoDP5yMQDBOrjae1/nBOfvI6ZWmtV0REREQyV7vvObHWOsBhwDfAi8D3wM7AAdbayW0ZW0dWUZHYvzI3L5+WGPbcOxjgkB69KFi6NP2Vi4iIiEhG6gg9J1hrVwAnt3UcmWT19Gnctc0YlgGxFshO+gK/HjCI+as1rEtEREREmqZDJCeSftUrV9AnK0zMcVjTjMnwTeUmh3UF4+kdLiYiIiIimavdD+uSllFblhjWFfH5WqR+b34RACE3/YmPiIiIiGQmJSedVHR1BQCxQNM3X2wOX35XAHK8+hMTERERkabRJ8dOKr5mTeI2GGqR+v2FPQAIeb1UJSffi4iIiIhsipKTzqq6CoB4VnaLVB/IzSfmJCbaVyxd0iLXEBEREZHMouSkk/JV1yR+yStokfo9Xi9r6pKTZVpOWEREREQ2T6t1dVLlkVpWui6e5NyQlvBEWQXLVyzmAk+LXUJEREREMoh6Tjqpfy5eyBk/fU9kkGmxayzNymVm5RpWaJd4EREREWkCJSedUDwep6SkBIDs3MIWu05eQRcAVq5c0WLXEBEREZHMoWFdnVB5eRnxeByPx0MonE9NtGX2IhmYnUufHr3wzpnTIvWLiIiISGZRctIJrZw2jQnbjGVZPIaDF2iZXdyHBvzsMmAQc1ao50RERERENk/Dujqh8uJF9MrKokcoi2isZRITADevEIBAbaTFriEiIiIimUPJSSdUtXwZADU+H27LjOgCwFOU2IgxO7mksIiIiIjIpig56YRqVixP3GaFW/Q6/i69AMj3enGUoIiIiIjIZig56YScslIAYjn5LXqdUPd+AAS8XsqWLG7Ra4mIiIhIx6fkpBPyV1Ylfins1qLX8WVlUR6LAbBspm3Ra4mIiIhIx6fkpBPKTiYM3m69WvxapcnbkrlaTlhERERENk3JSSfjOA7Lq6tYFakl0Kt/i1/vQ38Ol06dzGzNORERERGRzVBy0smsWrWSa+1UzpzyI/4eg1r8elXd+zK7qpKFSzXnREREREQ2TclJJ7Nw4QIAevToRdz1tPj1irr2BmBB8roiIiIiIo3RDvGdzJzZswDoN2Aw0VjLD7XqXtiFQ3r0ondpWYtfS0REREQ6NiUnnUz2N1/zj9HbMaugqFWu17VLTw4YMAjHdaksLyOnoLBVrisiIiIiHY+GdXUygbIyuodC5OR3aZXrZXXrTUUshtfjYf7/vm2Va4qIiIhIx6Sek04mPxoFvx9/74Gtc0GPh2V4yQeW//wTW+93QOtcV6QDcxyHRYsWMm3aVObMmcXy5ctZuXI5tbW1+HweXNdDYWERXbt2Y+DAQQwbNpytthpOXl5eW4cuIiKyRZScdCLL58ymyO/HcV2yho2hppWuW56dD5E11CzQpHiRxixbtpTPP/+UL774lK+//orVqyua9Xiv18vIkaPYaadd2H33Pdhuu3H4fL4WilZERKRlKDnpRGZ/9gldgWXxOPFgLrTChHiASPc+UDyDQElJq1xPpKOorq7ivffeZeLEl5k0af1hj8FgkGHDDMOHG3r16k337j3Izc0hLy9MaelqVq1axYoVK5gzZzazZs1g6dIl/PzzZH7+eTKPPfYQXbt2Y7/9DuSggw5h++13wONp+dX5REREtpSSk06kfNpUugLlObk4rZSYAASHj4PiGfTGw5rSEnKLWme+i0h75LouP/74Pa+99irvvvtvKisrAfB4PIwePYbdd9+D3XYbz4gRWxMIBNZ7rN/vpagoh9LSSmIb/Btetmwp33zzFV9//SUff/whq1at5IUXnuWFF56lf/+BHHnkrzj88KPo3r1Hq7VVRESkuZScdCKhZcvA6yXaeyCtOdgju/9WrIrFKPT5mP7JR+xwxK9a8eoi7cOKFct5883XeO21V5g3b+7a4/37D+Dww3/FYYcdQa9evVOuv2fPXhx22JEcdtiRRKMRvv76K959923ee+8/LFw4n3vuuZP77pvA+PF7cuSRv2H8+D03Sn5ERETampKTTqKkpIRvly0lVlBAzrg9W22+CQAeD68E8vhs0iccPXobdmjNa4u0oWg0wieffMTEiS/zxRefEY/HAcjKCnPAAQdx5JG/bpEhV4FAkPHj92T8+D255JIrePfdd3j11Zf48cfv+fjjD/n44w/p2rUbhx56BEce+WsGDx6S1uuLiIikSslJJ/Hxxx/wbPECvg4P5+SivhBtvWFdAEXb7kb1tx/y9ttvcc45f8Pr1SrWkplc1+Xnn6fwxhuv8s47b1FeXr723Nix23Pkkb/mgAMOIicnt1Xiyc7O4cgjf82RR/6aOXNmM3HiS7zxxmusWrWSJ554hCeeeIQxY7bjqKN+06pxiYiINKRDJCfGGC9wNXAKUAR8BpxhrZ3VpoF1IK+++hIAu+xxAJFWTkwAho3akaxwDsuXLWXSZ5+w4557t3oMIi3FdV1mzZrBhx++zzvvvMWcObPXnuvevQeHHnoERxxxFIMGtW0PxZAhQzn//Is5++zz+fTTj5k48SU+++wTfvzxe3788XtuvfVG9t57X/bb7wB2330PwuHsNo1XREQ6nw6RnABXAn8BTgSKgduAt40xo6y1kTaNrAOY9PqrFBUvIuAPsPX2+xBtgxgCgSD7b78He5YWU/7kYzjj91TviXRoVVWV/PDDd3z11Rd8+OH7LFy4bqnsUCjEPvvsz+GHH8nOO+/W7pb0DQQC7Lvv/uy77/4sX76MN998jYkTX2bBgvm8/fabvP32m4RCIXbbbQ923308O+20K/37D9CKXyIi0uLafXJijAkCfwMustb+O3nsaGAx8Cvg+TYMr90rX76Mmlde5szBW7F7fgFxTw64bpvEsvX4X9L3v08RwMNHd9/Ovn+9sE3iEGmueDzOggXzmT59KtOnT+P77//H1Kk/E4vF1pYJBoPsuuvu7LPP/uy334EdZkPEHj16ctJJp3Hiiafy008/8P77/+X999+luHgRH374Hh9++B4AvXr1ZocddmLkyFGMHLk1xozQEDAREUm7dp+cAGOBPOCDugPW2jJjzHfAnig5aZDjOPz07zepePkFevn9lMRiFB1+IpVtlJgAZPcbyveFvdipYjl9pkzhP1dfzs5nnEVhz9RXKBLZUo7jsHp1BWVlpZSWllJWVsayZUspLl5IcfEiiouLmTdvLjU11Rs9tk+fvuy4487sscde7LbbeLKzc9qgBenh8XgYM2Y7xozZjr/+9UJmzLB89NH7fPPNV/z00w8sXbqEN998jTfffG3tY3r37kP//gPo168//fsPoGfPXnTp0jX504XCwiL8/o7w34yIiLQXHrcNP6w2hTHmV8DLQLa1trre8ReSxw5tZpVz4nFncEXFxh80tsQXP8/n4/vup3ftanABXBIDIBK3rguv+wqIJIdFbB+vZCunFg/rnn8PrO3VmEgOlckatqeWUW7tujJr6wZceMUJUuZ6cV2Xcd4Yu1JDD+LkJz8UlMdivLbjyazov/sWtdHjAZ/PSzzupNz54sZj7PbWBexGFQAx12FpzOUtN4uZwXx8wTC93Si7O2tg7bPjwfUk2u4CP/pzmecLA9A1XsvuscZ30p7iy2F2smxRPMKeG5Vd15DpvjAzA7nE43Hy3Rj71iu74b+Tmd4sfvZlg+uS48Y5IN54DHM8QX70JmLIch0OcRovO98T5DtPoqzfdTlsbdmNn/BF+PnGm5gT4HFdjnJXN1aUJR4fX3qy8Xo9OI7LEU4FjQ2qW4GXTwmvvX8olQQbqtSFErx8WK/sIVSRzcZzmlygwvXyX7LWHjuIanI3qjdxvxIP77jryu5LDUWehsvW4OFNJ7T20D6+KF3d+PolXQfXiRONx3mubA3xSDXxaA375oTp7fc22Jvo4vLIgnlr7x/Yqy/Du/UhlFtEKL8r4cKeBLLW9Rz8tPsJuL7Ev7kB0z+iaHnjU+Km7PpH4oFE+/rN/IyuS6Y3WnbqTr8nmrxO3zlf03PJzzhxF7eB12T6Dr+hNrsQgF7zJtFzwfeN1jtjuyOozusOQI+FP9J77reNlrUj9mPeymJWzPyWrot+ZOSaFcRqqxos+87ypSxKJnLDc3LZq3tPvL4AHp8fb/LH4/WDx8OXjp/FniBen4/+XtjZE8Hj8eLxesBd/0/5O18OC32J56yXE2GX+JrkmXpDzZK//ujLWfse0d2Nsnu0fP1y9Uzx5zDbl/h3VORE2TNa1ujzMN2XjfUnEtB8J8Y+0dJGy870hZnqT7xuOW6c/SPrNqH1eDzrvafM8YWZnCwbcuMcHGl8w9oF3iy+DyR65fyuwy8jqxotW+wN8b9AfuKarsvhkZWNll3qDfJ1oGDt/cNqVzT6HrHSG+DzQOHa+4fUrlzvPWJm76FcfdXZhALpTUzz88P4fN65gJaXE8lgHeErrboZmbUbHK8BUtrNz+v1UFSU3m847370efae/yM7deveaJkHvvuY1clhIPsNGMy4Hj0bLfvQT1+yMpKYTrNXvwGM6dWn4YIeeHTqJIqTHwZ279OPrfr0A/zUxON8QQEvjruM8iIDaxquorVN2vsJJn1/N0es+JgBQR/9AhCZM40FJYn/OLsUFLHjMNPo43+a/SOzViwHIJSXzy5m60bLzpg7hdnLlgAwLCeXXUZu02jZ+QumMXNJMQD9w2F2GTWm0bLLimcwt3ghAD2CIXbddrtGy5Ytm828hfMAKPAH2HXsuEbL1qycx7x5cwDI8nrZdfudGi37eclK5s9JfAD2ALvusEujZSeVlvL8LLv2/k7b70SwkTk/UyrKeWbGtLX3x40dR56/gf0wPDBjzWqenP7z2kNjR29Ht1CowXoXVFfx2NSf1t7fZtQY+obDDZZdVlvDw5M/WXt/65HbMKSRIURl0QgP/vjp2vtbma3ZOi+/gZIequMeHihelwiM6T6CsQWFDdbruPDYsJOgYACeosGMLn6ZnVd+A7EKKKmAkrnrlb+2+8lEfYnn6fTp0xi39OMG6wW4pesfWZPcY+Sk6TPYcfF7jZa9s/A3rMpKlP3DzFnstPDdRsvel3cYi3MSZX8zZy67zmu83keyD2RufqLsYfMWsPucxss+HdqT6UX7wMh9ODD33+w78xESHdob+9bNZtGqpVBVQt+sMAc0+p7o8s2sn1lclvggPqCoK7sNHZbISOIbl540+0fmrEq8RxQVFLLLsBGNxjt59o/MTr5HZOXls/Mm3iPs3MnMqvcesfMm3iPmzf+ZWfXeI3bexHvEkoXTmFXvPWLnTbxHlBTPYFa994idN/EeUbVyFrPqvUfsvJn3iFn13iN23tR7RFkpz9R7jxi3mfeIJ+q9R4zd4D3ivfef5YPDD+HYAxtvh4hIYzpCz8mvgZdouOckZK09oplVtkjPybQFy3n7oSfIX5NYNtT1eNZ+T+fiAY+HH4v6EfMmv1mtKqFbbWJnaDyJ83W9BHg8TC/qR9Tnx+Px0KuylK41FXjw4CbLrv0W0ONhTlFfIv4gHo+HrlVldI1HcPoMwz9qd7zh9I1793g8BAN+ItHYRj0JqYrOm4I7axLL4i4lLsQiNRTUVrLV6hV4kt8Ne9zEt8QeF/DAvOwiloUSH1TzozVsvWZFYxGzILuQJVmJD6q5sVpGrV7WaNnF4QKW5HbBcRzC0QjbVCxpuKQnUXZRdhEAoXiUMWXFjbZxeVY+83O7AhBwYowtXdRIBLAilMe85LfZXsdhXMn8xsKlJJTLnPxkguu67LBybsNlgfJQDrMKe+P1enEch3HL56zXa1ff6kAYW9R37f3tVs7F5zTwadHjoTKQxfQu/dce2nbFPIJObOOyQLU/xNRuA9feH7VyHlnxhpdniPgCTOm+7svREavmkx3d8PuJxD+FqNfH5J7D1pUtXUh2TRX1v3f3eLx4fX4IhLDDdsEfDOEPZjFw8XTyayvxh8J4vRtPWl+022/W/t51+peESxp/nRftchQk6yia+S05Kxp57YDFOx6GE0gkcYWzvyN32ZxGyy4Z9wviocR3NIXzfiJ/6Swcx6WhLrKlYw8klp34e89f8DP5i6ZtVKbOsm33JZqb+H4nb9F0ChZMabTs8lF7ESlI/F3mLplF4dwfGi27cuR4aop64Thx/PMm02X2JOKxKE4suvbWicdwXYc5RX0pDWbjxOMUVpUyqHRxshfLXfseU3c7J7cbK4OJL5UKI1UMX5NIPtZ/GhJ35m7wHjFydWPvEbAgXMiSrMT7ZOI9YnmjZRdl5VMcTvQuZMcjjK5o7P0EFmflsTBcCEAoHmNs3fuJp17PSTL2ZaFc5iXfTwJOnO3LFzda74pgDnNyEq+bz3XYYRPvPauC2czKSbz34LrsXNbwew9AWSALm7sukdypbBGeRt7nK/whpuX1WHt/XFkxftdZ277yoaM4/6xjG+mrSp16TkQ6h46QnOwEfA1sZa2dXe/4Z8CP1tozm1nlnHjcGVxSUpnOMPH7vRQV5VBaWkks1vpL9baGTG+j2tfxZXobM719kPltVPtS16VLjpITkU6gI6zl+iNQAexdd8AYUwhsD3za8ENERERERKSjafdzTqy1tcaYe4FbjTErgHnA/wELgVfaMjYREREREUmfdp+cJF1FItaHgTDwCXCQNmAUEREREckcHSI5sdbGgYuTPyIiIiIikoE6wpwTERERERHpBJSciIiIiIhIu6DkRERERERE2gUlJyIiIiIi0i4oORERERERkXZByYmIiIiIiLQLSk5ERERERKRdUHIiIiIiIiLtgpITERERERFpFzyu67Z1DK2t2nXdLMdJf7t9Pi/xuJP2etuTTG+j2tfxZXobM719kPltVPtS4/V68Hg8NUA47ZWLSLvRGZOTMiAELGnjOERERKTpegO1QGEbxyEiLagzJiciIiIiItIOac6JiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaReUnIiIiIiISLug5ERERERERNoFJSciIiIiItIuKDkREREREZF2QcmJiIiIiIi0C0pORERERESkXVByIiIiIiIi7YKSExERERERaRf8bR1AJjDGeIGrgVOAIuAz4Axr7aw2DSwNjDFXAPtba/eud2wscDewA7AKmGCt/XubBJgCY0wX4CbgUCAf+Am4xFr7WfL8WDpw+wCMMT2A24GDgTDwMXChtXZq8vxYOngb6xhjhgPfAWdZax9PHhtLB26fMWYgMK+BU6daax/u6O2rY4w5HrgEGALMBq6x1r6YPDeWDtpGY8zewIeNnJ5rrR3SkdsHYIwJANcAx5H4f+8H4GJr7RfJ82PpwO0TkbajnpP0uBL4C3AqsCvgAm8bY4JtGtUWMsacB1y3wbGuwH+BGST+07kauN4Yc2KrB5i654FdgN8DO5L4YPuuMWZEhrQP4HVgKHAIiTZWA+8ZY7IzqI11H5CeAXLqHcuE9m0L1AB9gN71fp7JkPZhjPkj8CjwILANiX+Xzxtjds2ANn7B+q9bb+BAIAbclAHtA7gCOInEl3LbAdNJ/L/XJ0PaJyJtRD0nWyiZgPwNuMha++/ksaOBxcCvSPyH26EYY/oCDwN7AHaD06cBtcDp1toYMM0YMwy4GHisVQNNgTFmK+AAYPd63/CdS+JD/LEkPsR32PbB2g/nc4EbrLU/J49dT+KbzVHA/nTwNtZzLbB6g2Md+m80aTRgrbVLNjyR/NKgQ7fPGOMBrgfutNbenTx8vTFmPLB38qfDttFaGwGW1t1PJtF3Ai8ne74upQO3L+kI4Flr7bsAxpi/kUhUdgWG0/HbJyJtRD0nW24skAd8UHfAWltG4tv4PdsmpC22PVBK4tvbrzc4twfwSfI/nDofACY5lKi9Wwn8EphUd8Ba6wIeoAsdv31Ya1dZa4+pl5j0BC4AFgFTyYA2Ahhj9gT+DPxpg1OZ0L5tSbxWDcmE9hlgEPBs/YPW2oOstTeTGW2s70ygP/DX5P1MaN8q4FBjzCBjjI91Xwr8QGa0T0TaiJKTLdcvebtwg+OLgQGtHEtaWGvfsNYea62d08DpfjTcVugA7bXWlllr/22tra07Zoz5LYkhUP+hg7dvQ8aYf/L/7d1/yJ1lHcfxt1akE0wsVy2CitgXpY0Y/Vq5/LFsIJgz1CVolJK1YQiGUVgrzEUkhZa0oKL5Iy2M0VSSImm11KdfulqKX1KDLEpDkAfnlq1Of1zXmafTk2w9P8593b5fcLhvrvOc89wfnpvz3N9zXfd1lW9wzwIuyMzd9CBjRBwFXA98ODPHszSfj9JzsjgidkTEoxHxs4hYU5/rQ76ldXtERPwgIh6LiJ9HxGm1vQ8ZAYiIw4DLgKtGesL6kO9iyjC1P1CKks8CZ2fmQ/Qjn6QJsTiZvUV1+/ex9r3AYQt8LAthETNnhQbzRsTbKOPet2XmrfQsH3AVZcz3DcD3ImIF/ci4Gbg7M2+c4bmm89WhokspkzV8AjgV+CVlPP9qGs9XHVm311F6T94J/BDY1qOMQ+dRJqX40khbH/IdS+lhX0u5h++bwHURsZx+5JM0Id5zMnt76vaFI/tQPoB3L/zhzLs9lKyjhv9smsobEadTLoymgHNqc2/yAYzMznUhZSz4RTSeMSLOowwbWfY/fqTpfJn5dO0Z2jfSw/friDiWMjyv6XzV03V7ZWZeW/d31uL5EvqRcei9lHtNHh9pazpfnU3uW8DqzNxRm38VEcdR7gNrOp+kybLnZPaGXddLxtqXUMb4980jzJwV4M8LfCz/t4i4CNgKfB84NTOHhWXz+SJicUScU8eBA5CZ/6Lcw/AK2s94PvBS4JGIeDIinqztX42I+2g/H5m5e3ToYbWLZ4bLNJ2PZz4bd4213we8mn5kJCKOAd7Kf0+M0nq+NwEvoPTojZqi9Pq1nk/SBFmczN5vgGnK7DLA/vHwK4AdM7+kaT8FVo1e+AKrKTMLPTahYzooEbEe+DJwDbBu7CKw+XyUi4AbgROGDXW2oBWUAqX1jOdShpS8fuQBsJEyBKrpfBGxvBZdx4899QbKxXvT+ap7KbOsvWWsfRnwIP3ICKUwGVDWGRrVer7hl3LLx9qXAb+n/XySJuiQwWAw6WNoXkRsoswadD5l4bQrKTPRLKtTSjYrIrYArxouwlhnWnmAso7G5ynfoG0GPjQyPKOzoizY9zvgNmDD2NPDoQjN5oP907TeTjkHP0AZF34ZsIZyIb+XxjOOi4gB8P7M3NKDc/RQyjoZRwDrKTPMXUg5X98IPErD+YaiLPD6Ucpn5y8o6w5dTrmIvZ9+ZNwInJuZS8fa+3CObgeOoZyXf6IMX/s4cDzwMA3nkzRZ9pzMjY3ANyhrg9xJmcFkTeuFyUzqt15rKFOB3kNZXOvShv7hnEkZjnAG8Jexx9U9yDecGnkdZerO71Au/I4GVmXmH/uQ8dm0nq8OwTuN8ne7mdLL8GbglMzc1Xq+ocy8grLC+CZKMXIW8O7M3N6XjMDLKFPu/ofW89Vz9HTKZ8wWytTsJ1PuQZlqPZ+kybLnRJIkSVIn2HMiSZIkqRMsTiRJkiR1gsWJJEmSpE6wOJEkSZLUCRYnkiRJkjrB4kSSJElSJ1icSOqkupikJEl6DrE4kdQ5EfEu4Nq6f2JEDCLixMkelSRJmm/Pn/QBSNIMLhnZvwdYSVlFXJIk9ZjFiaROy8xpYGrSxyFJkubfIYPBYNLHIEn7RcR24ISRppOAHwMnZeb2iPg08B7gY8AVwGuBB4D1wAC4GlgOPARcnJl3jLz364DPAW+vTXcAH8nMh+cxkiRJOkDecyKpazYA99bHSuDIGX7mlcAXgU3A2cDRwHeBm4CvUYqXQ4FvR8ThABGxFLgLWAy8D7gAeA1wZ0Qsnr84kiTpQFmcSOqUzLwfmAamM3Oq7o9bBGzIzJsy8xbgK8AS4DOZ+fXM3AZ8EngJEPU1nwL2AO/IzK2ZeTOlV+Zw4NJ5DSVJkg6I95xIatVdI/t/rdvRe1Mer9uj6nY1ZXjYUxEx/OybBnYAp8zTMUqSpINgcSKpSfVG+XFPPctLXgysq49xf5uTg5IkSbNicSLpueIJ4EfAF2Z4bt/CHookSZqJxYmkLvon8Lw5fs+fAMcBOzNzH+xfhf4G4EFg5xz/PkmSdJAsTiR10RPAyog4GXjRHL3n5cDdwG0RsRnYC3wQWAucOUe/Q5IkzYKzdUnqomuAfwC3U2bTmrXM/C2wirIWyvWUqYdfDqzNzK1z8TskSdLsuAijJEmSpE6w50SSJElSJ1icSJIkSeoEixNJkiRJnWBxIkmSJKkTLE4kSZIkdYLFiSRJkqROsDiRJEmS1AkWJ5IkSZI6weJEkiRJUidYnEiSJEnqBIsTSZIkSZ1gcSJJkiSpE/4Nit+4PwOLXecAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.25it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 3.530 - 16.460) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 47.000 - 52.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 3.520) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 16.470 - 46.990) R-Score = 1.0034 & Fano Ratio = 0.0404\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 53.000 - 79.990) R-Score = 1.0034 & Fano Ratio = 0.0398\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACckElEQVR4nOzdd3hT5dsH8O852eketIW2QFmHDQJuEBAXDkR/LtxbUQQHCgouBFFeBAQcbBAQFVDcGxeKC0QZ7aGlAyilpXtk55z3jyRQRmkb0pam3891cTXJOXnO/TSlzZ1n3IKqqiAiIiIiImpqYlMHQEREREREBDA5ISIiIiKi0wSTEyIiIiIiOi0wOSEiIiIiotMCkxMiIiIiIjotMDkhIiIiIqLTApMTIiIiIiI6LTA5ISIiIiKi04K2qQNoAqUADADymjgOIiIiqrvWAOwAIps4DiJqQEILrBBvVVXVqCiB77coCmiIdk8nwd5H9q/5C/Y+Bnv/gODvI/vnf7uCINgAmALeOBGdNlriyEmeoqgpxcVVAW1UqxURFRWC8nILXC4loG2fLoK9j+xf8xfsfQz2/gHB30f2z3/R0SHQaATOeiAKclxzQkREREREpwUmJ0REREREdFpgckJERERERKcFJidERERERHRaaIkL4omIiIgO27JlSxg8WxXzQ1uiwFIA5PXv37+irk9gckJEREQt0pYtW0QAzwiCeLsgCDoAQlPHRBRkVFVVnVu2bHkHwMv9+/evdRs/JidERETUUj2j0WhHh4dHOfR6o0UQhOAtQEPUBFRVFRwOm7m8vGS02+0CgKm1PYfJCREREbU4W7ZsCRcE8fbw8ChHWFhUUVPHQxSsDAaTFUBMaWnR7Vu2bHm9tilenFtJRERELVGCIAg6vd5oaepAiIKdd2RSB8/arpNickJEREQtkQhA4FQuoobn/X8moA65B5MTIiIiIiI6LTA5ISIiIiKi0wKTEyIiIiIKmLlzZ7UZOfKyXk0dR12lpe0yfvfdNxFNHQd5MDkhIiIiohZr4sQnOu/atSOkqeMgDyYnRETNgNUF9H0nBO1eB6zOpo6GiCiYcE+E0wnrnBARERF5KYoCi8XSZB/ems1mRRTrd/mBAwf0/9//bsz78cfvY5xOp/j662+lmc1mZd682Un//fdPeFVVlSYiIsI1dOhFRePGjc9NTd1leuCBO7u/+ebi1N69+1oA4NFHH+q4Y8d/4V999eM/Wq0Wqqriiisu6nPHHXfn3njjLYXHXrOw8JB21qwZSVu3/hXhdruFLl26Vj7++IR9HTt2svvOWbjwzfjPPtsQX1FRoe3UqXPVxInPZfuOnyjmpKRkx4IFb7T+6aeNMSUlJbrExETbbbfddeCyy64oBYC1a9+LWbNmZeu77ro3d8mShUllZaW6bt16VEye/GL28uVLEn788bsYrVarjhhxbf6DD445CAB2u12YP392m02bfo4qLi7SG40mpU+fvmUTJz67Nzo6xj1y5GW9CgsL9R988G7r7du3hS1a9I5cUlKsmT9/TuJff/0eWVFRoU1J6Vh1//0P5Z5zznmVvr5t2LA+evXqFa0PHTpkaNu2rXXo0IuLlix5O3nTpr+3+POaiKLoV/+CEZMTIiIiIngSk5tv/l/XtLTUJpvi07Vr98p3310n1zdB+eabL1pNn/5autvtEjp37mK/+eb/dY+IiHS++uqc3WFhYe6fftoYuWjRW8ndu/esuvTSy0tjY2Mdmzf/Gt67d1+L2+3Grl07wux2u/jPP1tCzjzz7Kpt27aaKyrKtRdeeHHpsddyuVwYN250F0BQX3jh5T0xMTGuefNmJz3xxCNd1q37dDsAFBYW6nfs+C9s+vRZ6Q6HXXj55RdTXn75xfZLlqyUa4r50Ucf6piZucf8yCOP7U1J6Wj76qvPo6dNe6GjKIoZl1wyvAwAiooK9Z988lHc1KkzMiyWKvHZZyd0vuuuW3oMG3Zx4ZtvLkn94otPYlatWp44ePDQ0m7dethee+2VpD/+2Bw5YcKk7OTktnZZlk0zZ77cfsGCN9o8/fRz+xYvXpl69923dD///MHF998/Os/tdmPs2Ae7OJ1OYcKEyVmtWsU533//3biJEx/vMmfOm2l9+/azfPfd1xGzZr2acvvtd+8fMmRY6R9//Ba+ePHbyaf6mvjTv3r9kDQTTE6IiIiIDmuedU8GD76wqG/ffhYAsFqtwoUXXlx06aXDS5KT2zkAoH37ewrWrn0vISNjt+nSSy8vHTDg7NKtW/8KB3Bw27atIRqNVu3SpWvlX3/9EXbmmWdX/fLLT5GdO0uVrVrFuY691q+//hyek5NtWrbs3R2dO3exA8CkSS9kL1++OKG4uEgLABqNRn3ppVezIiIi3AAwfPiVh1atWp5YU8y7d6cZ//77z8gXXpiWcdFFl5YBwJgxj+ZlZmaYV69e0dqXnLjdbuHxxyfk+N6Y9+rVp3z37rTQJ598Zr8gCLj//ofzPvhgTev09N2mbt162Lp16141dOiwknPPHVgJAMnJ7RzffvtVeXZ2pgkAYmNbuURRVE0mkxIVFe3euPHb8KysTPOiRSt2+q4xefKLe3fvTgtZvXpFQt++/TLfe291wjnnnFd8770P5gNAp06dD+3fv8/w6acb4k/lNfGnf6fyM3O6YnJCRNQMCAD6x7uh02ogCE0dDVFwEkUR7767Tm5u07oAICkp+fB0KpPJpN52210FX3zxadSqVStCDhzINeTkZJlLS0t0brciAMCgQUPKnn/+mVZWq1X444/NYT169KxITEy2/fvv1nAAB//664+ICy4YUnyia6Wn7zaZzWa3LzEBgPj4BNeECZP3++5HRES4fIkJAISFhbsdDsdRHasesyynmQBgwICzK6uf06tX34p33lmSVP2xTp2OXNdgMCitWsXbBe8vRqPRqAKA3W4XAeCaa64v/uWXn8JmzXo1MTd3v2H//n2mAwdyjV27djvqOj4ZGekmk8nsrv7GXxAEdO/es3Lr1r/DASA7O9M8cOAFJdWf16fPGZXHJif1fU386V8wYnJCRNQMGLXAkkttiIoKQUkJ4Drus0wiCgRRFBEaGqo0dRz1ZTAYD8dssVjEBx64U7LZbOKgQYNLLrlkeFGfPn33jhlzf1ffOeeee36FTqdVfv/917B//tkSPnTosOJ27drbP/nkw4R9+3L02dmZ5hdemJZ5omtpNFpVqOVTElEUax2Bqh5zTYvSFcUtaDSaow7qdLqj7otizbFMmfJs219//Tl6yJBhReecc35Z167d81avXpFQVHRIf6LzVfXEXVMUBVqtVvVcT1RVtfYBtvq+Jv70LxgxOSEiIiIKIj/9tDE8KyvT/OGHn/8bFxfvAoCSkmJNWVmZ1pcE6PV6tU+fM8p//vnHyPT03aETJz6bk5SU7BAEQX3zzXltWrduY6u+uL26Dh062qqqqjSZmXsMHTp0tANAUVGhdtSoa3tOnToj3Z+Yu3TpagWAv//+I9Q3rQsAtm//NzQxMdnqT5vFxUWab775stWECZMyr7rqmsMjHfv37zUajaZqidGRN/+dOnWxWiwWTWrqTmP10ZNdu3aGJiW1tQFAu3btrbt27QwFUOA7vnPn9pOuU6rLa0IeQTskRERERNQSxccnOADgk08+itm3L0f/xx+bQ8ePH9vJ7XYLDofz8Dvx884bWPrDD9/HhoeHuTp27GQ3GAyqJHWr3LTpp5hzzjmvtKb2Bw0aXJ6S0tEyZcrklC1b/gpJS9tlfOGFSe0jIiKdffqcYfEnZknqZuvbt1/Z3Lmz2n733dcRGRnphvnz57TesuWvyBtuGJXvT5vh4RFuk8ns3rTp58jMzD2GXbt2mJ5//pl22dlZZqfzyPfBaDS6c3P3GwoK8rWDBw8tS05uZ50y5dkOv/32S9ju3WnGl156ru3+/XtNN910cz4A3Hzz7Xl//PFb1JIlC+IzM/cY1q17P+bzzz+NO1ksdX1NiCMnRETNgtUFjFhvhiACn48EdPxTRkQ16NdvgOXuu+/ft2HD+vjVq1ckRkVFOwYNGlIcG9vKIctHdiIbOvSisjlzZgo9e/Yp9z12xhn9y7dv/zd88OALS2tqXxRFzJgxO2PWrBnJEyc+0RkAevToWTFr1rx0g8Hg9zDAK6/Mypwz5/8SZ82a0d5isWiSk5Otzzzzwp7hw6+oMZaT0Wq1mDz5xcy3356XdM89t/YICQl19ezZu+LWW+/MXbfuvdZVVVViSEiIcvXV/ytYunRB0rhxD5nWrFm/a+7ct3bPmjUj6cUXJ3d0Ol1CSkoHyyuvzNrdv/9ZVQAwdOhF5QUF+Tnvvbc6YeXKZYkpKR0sl146/NCXX35WY4JS19eEAKEuc+aCTKbbraQUF1cFtFGtVvTOBa+Cy9XspqrWSbD3kf1r/oK5j1YXMOiDMADA5lFV0AnB1T+fYH4NAfbvVERHh0CjEbMAdAhEe1u2bOkqipqv4uISK/V6Y1DuekQNY/PmTaGxsXHO6hsCvPXWvIRvvvky9qOPvtjRlLGdrhwOm7GgIDdUUdyX9e/fP+1k555WIyeSJHUBsBXAGFmWl3sf6wvgdQADABQBmCvL8symipGIiIiIWq7ff/8t4scfN0Y/9dQz2e3atbfv2rXT9MknH8UPH37loaaOLRicNsmJJEk6AKsBhFR7LAbAtwA2AHgQwDkA3pQkqUiW5WVNEScRERERtVwPPTTugNVqFV95ZWpKRUW5Njo6xnH11dfm33ff6KCt2t6YTpvkBMCLACqOeex+AHYAo2VZdgFIlSSpM4AJAJicEBEREVGjMhgM6jPPPL8PwL6mjiUYnRa7dUmSdAGABwDcccyhQQB+9iYmPhs9T5FOuisCERERERE1L02enEiSFAlgJYBHZFk+NgNNwvFZ6QHv17YNHBoRERERETWi02Fa11sANsuy/O4JjpnhmdZVnW9HDeOpXFSrDWxeptGIR30NNpUlJfhl9mtod/456HX5iKYOp0EE+2sY7P0DgruPOgA9YhVoRBFarQhtkG4lHMyvIcD+ERHVpkmTE0mSboNn6lavGk6xAjAc85gvKfF7L2BRFBAV1TBbSoeHmxqk3ab23bQX0G7vXlizsqAZfhnCoyKaOqQGE6yvoU+w9w8I3j5+cYvvVnD2r7pgfQ192D8iohNr6pGTuwHEA9gnSVL1x9+WJOlJADkA2hzzHN/9XH8vqigqysv9KmBaI41GRHi4CeXlVrjdwbd3vXt3BiCIMGk0+HPDp+g74pqmDinggv01DPb+AcHfx2DvHxD8fWT//BcebuKIDFEL0NTJya04/iPAdADPAXgfwCgAD0qSpJFl2e09PgyALMtywalcuKGKX7ndSlAW1opUFMD7R6FQloOyjz7B+hr6BHv/gODvY7D3Dwj+PrJ/REQn1qQfQciynCvLckb1f95DBbIs5wBYCiAcwBJJkrpLknQngEcBTG+aiFum0oMHEabx5LGTU3fgH5eziSMianlsLmD4ehPOX+qpFk9E5DNw4ID+a9e+F1PX83/88fvwa665vOeQIef0e/XVaUkNGVtdzJ07q83IkZfVNMXfL/X5nuzfv1f/yScfRQXy+uS/ph45OSlZlgskSboUwFx4KsfnAXhSluUVTRtZy3Jg1w5oAZQ4HNhdVYn2h05p0IqI/KACyKsSj9wJ0gXxRFR/69d/9m94eIS79jM9Fi16Kyk+PsH++utv7g4NDavz85qT+nxPXnzx2fZxcXGOESOuKWnouKh2p11yIsuycMz9vwCc20ThEIAijQbP/bsFRlEDACgoONTEEREREZFPfHxCvcZTq6qqNGeffW5p27btHQ0VU1Or3/dE5cc9p5HTLjmh009xaQlKnE7Eh5sxMioa0VZrU4dEREREXgMHDug/btz47Ouvv6lo0qQn2yuKIkRFRTt/+OH7GLvdJvbu3bf86aefy4mPT3ANHDigPwB88MGa1h98sKb1u++u256c3M6xaNFb8V9++VlcWVmpNiGhtf3660cdvOaa64oB4Lfffgl76qnHutx++93716//oHVsbCv71KmvZt522w09R4267cDnn38Sp9frlOXL39slCAJmzXo16c8/N0e6XC4hJaWj5aGHxu7v27ff4Z2I1qxZGbt27XsJJSXF+j59ziiLi4s/aZJ03323Sz169K4oKSnW/frrz9E6nU658sqRBZdcMrz4lVdeap+ZmRGSkNDG9tRTz2SfcUZ/S/XvycUXX1Z6++039GjfvoNl7ty3MwDg559/DJs06ckuTz/93J6PPlobn5q6KzQ1dVfoyJGXhW3Y8NX2kSMv63XhhZcUjR37+IHqMcTFxdunTfu/7BN9P955573U/PyDutmz/y9527at4RqNqHbp0rVq3Ljx+zp27HRsWQw6CW57QbUqLi4GAHRs1wE3J7XFhSFhUBQudCQiouDktlrFmv4pdrvQGOeeis2bf40qLy/Xvv76m/Jzz720JzV1V9j8+XMSAc90p+joaOdVV12Tv379Z/8mJiY7Zs+ekfj555/EPfzwuL1Llqzadc011+W/8cacditXLm9Vvd0//tgc+eabi1MnTnw2W6MRVQD48cfvo2fPni+/8MLLeyIiItyPPvpQ5wMHcg1Tp87IePPNxWldu3arevTRh7pu3/6vCQA++eSjqLffnt/2mmuuy1+06J2d3br1qPryy8/iauvThg3rEuLi4h2LF6/ceeWVVxesWbOyzYQJj3W+8cabD77xxqJUvV6nzJr1artjnxcZGel+8slJWf/8syXi448/jC4uLtLMmDEtZdiwSwovv/yq0hkz5mR07tyl6txzzy9ZvHhlan2+z9W/HzabTXzkkQckRXFj9uw35Nmz35DDwyNcDz10T7cDB3J19Wm3pePICdXKlJ2J25PaQRvXBigrgl4UUVlchPDYVrU/mYiIqJnZ88joM2o6ZuoilSU/9bRvAx9kPj62j+p0nvDDXkP7lMp2k5+XffezJjzRS7FYTvjeS98m0dJ+yrR6vTmuMUaTyf3881NzdDqd2qVLV9vmzb8WbdnyVwTgme4kiqJqMpmU+PgEV1VVlfjppxvix49/Ouuiiy4tA4CUlA72vLwDhvXr30u47bY7D8/lvvHGmw/6RgH27s3WA8AVV4w4JEndbADwyy8/haWnyyEbNnz5b2xsKxcAPP74hNxdu3aGvvfeqvhevfpkf/jhB/HnnTew5Lbb7joEAJ06dT6YmrozJDs703yyPiUnt7U+/PC4PAC4667789esWdVm0KAhxZdcMrwMAC65ZHjRokVvJ5/ouYMGDa4YPvyqgrffnp/8/fffRIeEhLgnTJi8FwCioqLdWq1W1ev1ii/muqr+/Xj//dWxFRXl2ldemZWl0+lUAJgyZXr2tdde0WvduvdbVR+FoZNjckK1iigqRr+E1thuMMKpKNCJIioO5TM5ISIiOg3FxyfYfW+QASAkJNTtcrlOODKze3ea0el0Cq+99kr7WbNebe973O1WBJfLKVit1sPPa98+5bjpSW3btrP5bqel7TIDwI03jjxq5y2XyyU4nQ4BAPbt22saMmRYcfXj3bv3rKwtOWnTJunwdcxmswIAiYmJh+PR6w2Ky+WscfTp8cef2r91618RW7f+HfHWW0t3mUwmtaZz66r692P3btlstVo1l102pG/1c5xOp7hvX47xuCdTjZicUK20ds//PTU0HFWKgkhRRFVhURNHRdSyCAA6RCieInRcuknUoDrOe+ufmo4JonjUm9oOs+b+W9dzU159bXtdzz0V1ROTI07cvKIoAgA888zzmR06dLIde9xgMBx+otFoPG5Ot9FoPHxcURTBZDK5FyxYftwIkF6vVwBAEASox4Si1Wpr7btWqznuHEGo++qE/PyDutLSEp1Go1E3b94U3qtX71oW0B59OZfLfdxv3urfD0VR0Lp1G9srr8zKOPa8kJCQoNwRraFwzQnVSufyjHKKIRGwen+jWIoLmzIkohbHqAU+vNqK724DTPxYiahBaUwmpaZ/YrU36w15bmPp1KmLTaPRqHl5B/QdOnS0+/79/PMPEStXLo0Xxbq/VezYsbPVarVqHA67UL2t5csXJ2zc+G0kALRr196yY8e/odWfJ8upIYHt1dEURcGUKZNT2rVLsTz00Ni97777TuKOHdurFQEXjn6dNFq1srJKU/35BQX5+pNdo0OHjtbCwkJ9eHi429fvtm3b2efPn5P455+bwwLdp2DG5IRqpfMmJII5FDbvpxTWEm4FTkRE1NxFRES4L774skMrVy5L/PDDD6Kzs7P069a9H7N8+ZKkqKjoeq3BGDp0WFm7du2tzz//TMdNm34Oy8zcY5gxY1rSDz98F5uS0tEGAKNG3X7wzz9/j1q06K34PXsyDCtWLIn744/NDVoAceHCNxOysrLMkya9kH3jjbcUduvWo2Lq1OdS7N5NCEwmk1JQkG/Izd2vA4Bu3bpXbtr0U/Tmzb+GZmSkG6ZMebad1WrRnOwaI0ZcWxwaGuKeMOGxjlu2/BmSni4bn312Qsq2bVsiOneWuM1pPTA5oVoZvAOZgjkMDm+tE3t5eRNGRERERIEyceKz+66++tr8d95ZlnjnnaN6rl69ovVNN91y4JFH6reIW6PRYO7ct3d37tylatq05zvce+9t3f/7b1vY5Mkv7hk0aHAFAFx00SVlTz31TOY333wZe889t/XYtOnnyBEjrslvmJ4B27f/Z3rvvVVtbrvtztwOHTraAeDpp5/NKSw8ZJg9e0YiAIwYce2hffv2Gu+++5YebrcbY8Y8ltuli1Q5adJTnR955IGu4eHhrvPOG3TST2UjIiLc8+YtTIuIiHRNnDi+8+jR93QrKMjXv/zyzPSuXbsfN12Oaiaox078C36ZbreSUlxcFdBGtVoRUVEhKCmpgssVXNvs7rj7duhFEWlX3oFfvl6HtG2/YdT9D+Lmux5o6tACKphfQyD4+wcEdx9tLuD2r0Og0Yh457Iq6BBc/fMJ5tcQYP9ORXR0CDQaMQtAh0C0t2XLlq6iqPkqLi6xUq838s0jUQNyOGzGgoLcUEVxX9a/f/+0k53Lmct0Ug5LFfTe+aZiSCSsIRHYZ7WiuCqwyR0RnZwKILNMPHKHi+KJiCgIcVoXnVSl1YYH/92Kx3f8C01oBEwhnjVdZWWc1kVEREREgcXkhE6qylKFYqcDRQIAUYPWgoprWycirphbCRMRERFRYHFaF51UZWUFACAkJAxut4oEtwsDEpORVWlp4siIiIiIKNgwOaGTsuzbh9uT2sEeEgJFVQGjZ1tw0V2v3QWJiIiIiGrF5IROynEwD1cmtMY+txtVAGAwAwC07uDbZYaIiIiImhaTEzopR4VnWpdT46lvIpo9RVy1LW8LaqImJQBoHaJAI4rcqYuIiIIWkxM6KVdVpefr4eQkFACgb7KIiFomoxb48n9Wbw0JwMWZlUREFIS4WxedlMviWfju1uoAABqzZythg8CPbomIiIgosDhyQiel2u0APMmJFoA2JBwAYBRFqKoCQWB+S0REwUUQoBGa6A+cqqqKqsLdFNcmOh0wOaGTUh0Oz1eNd+QkIhrPpu2Eze3GGqsNZrO5KcMjajFsLuD+r43QaoCFF/GXN1FDEQRoFEFobbG5muS/mdmodYlQ8063BGXu3FltNm78JmbDhq+21/e5GRnphvvvv7P78uWrd7Zt297REPFR8ODfNzo5lxMAoOo8q0z0phDsrqqEqqqw2SxMTogaiQpgV5Fn7ZeqgoviiRqIIAiixebS/r4jT7HYXI26NaXZqBXP6dlaG2bUiqqqnlbJib927dphmjjxiU4Oh51TLahOmJzQSf1h0OONPzZj2HV90RGAIAjQG0yw2yyoqqpCdHRsU4dIREQUcBabS6myOpti3/ygeRP/5ptzE9ate691YmKSrbi4iHvpUJ0wOaGTKrHbsd9mheJdCA8AF7aKh9FlhyU/H0hu14TRERER0cCBA/qPHv3I3u+//zY6K2tPSHx8gu3uu+/PveSS4WW+c7777uuI5csXt8nN3W+Kiop2XHDB0OLRox/JMxgMKgCkpe0yvv32/MTU1F1hNptVjImJdVx11TUFd911b8GJrrl8+eK45csXJz399HOZl156eemJztmy5c+IJ598JisiIsL91FOPdWmQzlPQCZrsnBqGzWYDAOh0hsOPXR4djVGJbWE9mNdUYREREVE1y5YtSho6dFjxwoUrdg4YcHbZSy891+mvv/4IAYAffvgufNq0FzoOH35l4dKlq3eOG/fE3k2bfoqeNOnJFACwWCziE0+M7WI0mpR5895OW7bs3Z0DB15QsmTJ28nbt/9nOvZaq1Ytb7VixZKkyZOn7KkpMQGAJUtWycOHX1njcaIT4cgJnVR3ux3JrRMR7j5SVMHhnezuslQ1VVhERERUzdChFxXedttdhwBg/PiJuTt2/Bu2du2auDPPPDtr1arlrYcNu6TwllvuOAQAKSkd7FqtNmfChMe77N2brTebQ5QRI64pGDXqtoLw8HAFAMaMeezAhx+uTUhPTzP16tXb6rvOmjWrYpcuXZj0/PNTM4YMGVbeNL2lYMbkhE7qDEFEQmIy/qtW8c3p+2q1nvhJRERE1Kj69RtQUf2+JHWr2rZtazgAZGVlmffsyQj54YfvYnzHVdXzNSMj3XjhhReX33zz7QWfffZx9J496ebc3P2GnJwsMwC43crh7TdKSkp0b701t51Go1GTktraG6Nf1PIwOaGT0np/eQmGI6O6Lu/W7y4mJ0SNKsqgQhC5TRcRHU+r9f3F9lBVFaKoUT23FWHkyOsOjhhxTdGxz4uPT3AWFORr77//zm5hYeGuc845r7R//7PKe/fuU3XjjSN7Vz9XEERMmfJy+tKlC9tMm/ZCypIlK9NEkSsEKLD4E0UnpfPdMBzZMtjt/UXk9q5HIaKGZ9ICP9xowT/3AyZd7ecTUcuya9eOkOr309J2hXbs2NECAElJba379uUYO3ToaPf9y8/P082d+1pSZWWF+OmnG2IqKyu0S5euSnv44XF5w4dfUVpWVur9APtIzhMZGeEcPHho+cSJk7MzMzPMy5Ytim/ELlILweSETkoveD6l1RiPjJwcTk7sTE6IiIhOB59+uiF+w4b10RkZ6YZXX52WlJOTbRo16vZ8ALjpplsO/vnn71Fz585qk5GRbti06eewGTNeTqmqqtTGxye44uMTHHa7Xfzss4+j9u/fq//pp43hL744uQMAOByO494rduvWw3bNNdcfXL16RZs9ezIMxx4nOhWc1kU1UhQFBm8iIhiPfCDjFrWA4oDbziKvREQUnMxGbaN/gHsq17zkkuGH1q17L37OnJmmdu3aWaZPn5neo0dPKwBcccWIElVVM9esWdn6ww8/SDCbQ9wDBpxV+thjT+33HU9LSz24aNFbyfPmzRJjY1s5Lr308sLNm3+NTE3dGQLg0LHXGz36kbxff/05atq0F9ovXvyOzOldFChMTqhGTqsVonfkRDSFHh7Y/ccYhvVbf8YlvXo0XXBELYzNBYz73gidFpgzmL+8iRqKqqqK2ah1ndOztRZNMMPEbNS6VFWtd/HHlJSO1qeemrS/puNXXnl1yZVXXl1yomOCIGD8+Im548dPzK3++D33PJDvuz127OMHxo59/IDvvsFgUNeu/WRnXWI777xBFZs2/b2lLucS8e8b1chafrh2E0RTCNze2xXGEKRVVuAst/vETySigFMBbMnXeG6rALgunqhBqCrcItS8sCYYOfFcX1VUFfwDSy0WkxOqkU1V8cTOf2HW6nGHVg+4PWMnOr1neqmVu3UREVEQUlW4VVVlgkDUBJicUI1sDjv2Wa0IDdVCqTbAHKequCwuHtElpU0WGxEREXlwyhQFEyYnVCObd6tgo9EEt6JA8K4/SXTbcW3bFGRWsUI8EREREQUOkxOqkS3/IP7XOhHu0FCoKuDNTaDqPNO6RK45ISIiIqIAYnJCNXLm5+PGxGQccLlQWu1xVW8EAIjuem8mQkRERERUIyYnVCOn1QIAcIlHbwskeBfEa+q/0yERnQKjVoXAbbqIiCiIMTmhGrksnt24XMIxuyl6R060inrsU4iogZi0wO83WxAVFYKSEsDlauqIiIiIAo/lPKlGLu9WwW5Rc9TjgsEEgJktEREREQUW319Sjdze3boUzdHJicabnOgaPSIiIqKGJwjQCMKx0wYaB4swUkvH5IRqpDgdnq/HJCeuiBhMT0+DqtNiheCtVk1EDcruBh79yQCdDnjlfEBT+1OIyA+CAI1JdLZWHZYmeY8k6M0uq6LLO90SlLlzZ7XZuPGbmA0bvtpe1+esXbsmZv36D+ILCgoMUVFRzksuuazw3ntHH9Ro+BuMasbkhGqkOrzJiag5agmuxhyGf8pKIYoiVFUFuECXqMEpKrAp1/MrWzkX0PC/HVGDEARBVB0WbaX8h6LYrY2684toMImh0tlaQRcpNvcK9Rs2rI9+443X2z344CN7zz773IqdO7eb5859rZ3D4RQeeeSxvKaOj05fTE6oRpnh4Vj64/c4Y8hwdKv2uM67W5eiKHA6XdDpOMGLiIiCi2K3Km5bVVNsSxkU64E/+eSjVoMHX1h00023FAJASkoHe05OtvHrr7+IZXJCJ8PkhGpUrirYXVWJribzUY/rdHoMiWkFvSjCVlEGXXRsE0VIREREAwcO6D969CN7v//+2+isrD0h8fEJtrvvvj/3kkuGl/nO+e67ryOWL1/cJjd3vykqKtpxwQVDi0ePfiTPYDCoAJCWtsv49tvzE1NTd4XZbFYxJibWcdVV1xTcdde9BSe65vLli+OWL1+c9PTTz2Veeunlpccef/DBMfujo2OO21ewqqqS7z3ppIIiO6eGYbfbARwZKfHRaHV4oH0H3NsuBVVFxU0RGhEREVWzbNmipKFDhxUvXLhi54ABZ5e99NJznf76648QAPjhh+/Cp017oePw4VcWLl26eue4cU/s3bTpp+hJk55MAQCLxSI+8cTYLkajSZk37+20Zcve3Tlw4AUlS5a8nbx9+3+mY6+1atXyVitWLEmaPHnKnhMlJgBw1lnnVHXq1Nnuu19aWqr58svPWvXpc0Z5A30LKEgwe6UatSovx+VxCYg+QUEFh6LApNHA4S3USERERE1n6NCLCm+77a5DADB+/MTcHTv+DVu7dk3cmWeenbVq1fLWw4ZdUnjLLXccAjxTrLRabc6ECY932bs3W282hygjRlxTMGrUbQXh4eEKAIwZ89iBDz9cm5Cenmbq1au31XedNWtWxS5dujDp+eenZgwZMqxOiUZlZaU4fvzYTk6nQxw79ol9DdF/Ch5MTqhGHS0WXNS2Pf6124475vJu0eW0MDkhIiJqav36Daiofl+SulVt27Y1HACysrLMe/ZkhPzww3cxvuO+nTYzMtKNF154cfnNN99e8NlnH0fv2ZNuzs3db8jJyTIDgNutHN5+o6SkRPfWW3PbaTQaNSmprR11kJ9/UDt+/NjO+fkHDa+8Mmt3+/YpjlPvLQUzJidUM7d3HeAJFrw7fMmJzXrcMSIiImpcWq32qI39VVWFKGpUz21FGDnyuoMjRlxTdOzz4uMTnAUF+dr777+zW1hYuOucc84r7d//rPLevftU3XjjyN7VzxUEEVOmvJy+dOnCNtOmvZCyZMnKNFGseYVAerpsHD9+XGe32y3MmfOm3L17T75poFpxzQnVSKN4kxOt/rhjvoleTk7rImoUJi2w7fYq5IwDTNwgj4iOsWvXjpDq99PSdoV27NjRAgBJSW2t+/blGDt06Gj3/cvPz9PNnftaUmVlhfjppxtiKisrtEuXrkp7+OFxecOHX1FaVlbq/QD7SM4TGRnhHDx4aPnEiZOzMzMzzMuWLYqvKZ6cnGz9o48+3MVoNCpvv700lYkJ1VW9R04kSdICGAJgGIAUABEACgHkAPgSwG+yLLMsXxAQFAUQRUB3suTk+ClfREREzZ1oMDX6B7incs1PP90Q365diq1nz95V69d/0ConJ9s0YcKz2QBw0023HHzllZc6zJ07q83ll19VdPBgnv61115pHxsb64iPT3DFxyc47Ha7+NlnH0edeeZZlXv2ZBjffHNuMgA4HI7jYurWrYftmmuuP7h69Yo2Q4YMK+3YsdNxU7ymTn2+vcvlFJ999qV0nU6n5ucfPPyeMz4+4fjFrERedU5OJEnSAxgN4AkASQBK4ElIqgAkA7gSwDMADkiS9CqAhbIs12k+Ip2etL4JqTrDccdc3sKLrhOsRyEiImquVFVVBL3ZFSqdrUUTzDAR9GaXqqj1rq9yySXDD61b9178nDkzTe3atbNMnz4zvUcPz2jFFVeMKFFVNXPNmpWtP/zwgwSzOcQ9YMBZpY899tR+3/G0tNSDixa9lTxv3iwxNraV49JLLy/cvPnXyNTUnSEADh17vdGjH8n79defo6ZNe6H94sXvyNWnd+XlHdClpu4MA4AHH7yr+7HP3bTp7y317R+1HHVKTiRJOgvACgBuAG8B+ECW5T0nOK8XgMsBjAUwTpKk22RZ3hzAeKkRabxDuYL++OTkS7sTZdkZuHXkyEaOiqhlsruBib8aoNcBz58NaJo6IKIgpapwWxVdnqCLbJKp76qiKqqKeleHT0npaH3qqUn7azp+5ZVXl1x55dUlJzomCALGj5+YO378xNzqj99zzwP5vttjxz5+YOzYxw/47hsMBnXt2k92nqi91q3bOJmAkL/qOnKyEsBEWZY/OtlJsixvB7AdwKuSJN0AT0LT5dRCpKbiW1on6I3HHcsRtNhTVor/nWQhHBEFjqIC3+V4fmU/eyagEWp5AhH5TVXhVlW13gkCEZ26ur6z7FVbYnIsWZY/ANCz/iHR6WLxoYOYtjsVzoiY445ptZ4Vub5CjUREREREp6pOIyeyLPu1J7W/z6PTg1xejoqKcgw3hhx3rJ1Oi/iYWIjFhU0QGREREflwChUFk7quOXmuPo3KsjzFv3DodGL3LnbXnGC3rrM0QO+UTsg5mH/cMSIiIiIif9R1zckLx9xXAQjwLJAvBBAFQA/AAaAYAJOTZk5xuzE0IgpOVYFOOH5yu1vUAG4XVIezCaIjIiIiomBU12ldh9emSJI0DMAaAGMArJdl2e19/DIAS+DZapiaOVtVFe5plwIAkEXtcduGKKIGcAOKkzP3iIiIiCgw/NlqaT6AZ2VZ/sCXmACALMtfAZgMYFqggqOm46iqPHxbMJiOO65qvHmti3WUiIiIiCgw6l0hHkBbAHtrOHYIQLz/4dDpwm6pAgC4VRWCRgu41KOOK97kRHUyOSFqDEYNsHlUFSKjQmCrANzc5JSIiIKQPyMn/wJ4RJIkXfUHJUkyAngKwB+BCIyalr3KAgBwKgpU9fg1J0dGTrjmhKgxCAJg0gFmnec2ERFRMPInOXkawIUA9kiStFCSpGmSJC0GkAmgD7jmJCg4LN7kRFWhqOpxx1VvnROBH98SERE1a1VVVeLKlcta+e5PmvRk+/vuu11qyGvu379X/8knH0WdShtr174XM3DggP41HW+MfgwcOKD/2rXvHV8QrhnauzdbP3DggP6//fZLWFPGUe/kRJblnwCcB88IyVUAxgMYDuA7AP1lWd4WyACpaTisnmldLgCqcnxykh8ajdcz0/GPRtPIkRG1TA438Oyvejzxjec2EVGgLF26MH79+vcTfPefemryvhkz5mQ05DVffPHZ9n/88VtEQ16Dmid/1pxAluWtAK4PcCx0GnFabdDCm5yc4LglJBy/FhfhHE7rImoUbhX4dI9nxPKJvoDIqV1EFCDqMfO3IyIiGuEjkBPMGSeCn8kJAEiSNBzAxQBaA3gGwBkAtsiynBOg2KgJ2UNCMCc9DbHxrXH+CY5rvYUZ7XZ74wZGRERERykrK9PMmvVq0p9/bo50uVxCSkpHy0MPjd3ft28/CwBYLBbxlVemJP/991+RFotFk5iYaLv11jsPDB9+ZencubPafPDBu60BzxSld99dt33BgjfaFBTkGxYtekf+7bdfwiZOfKLL9Okzd7/++mttCwoKDO3bt7dMnjwl65tvvoz67LMN8W63Wxg0aEjRpEkv7BMEAaqqYvHit+O/+ebL2EOHCgw6nU7p2rV75fjxT+9t16694777bpdSU3eFpqbuCh058rKwDRu+2u5wOIS5c19r8+OPG2OsVosmKamt9e677zswePCF5b5+fvnl55ErVixuk59/0NixY+eqvn37ldf0PfFxuxVMm/ZC8o8/fh+j1WrViy++rHDs2CdytVrPW+A///w9ZOnShW327EkPcTqdYnx8gv3mm2/Pu/rqa4t9bXz88YfR77+/OiEv74AxMjLKeeWVVxfcc88Dx1WhPnSoQPvww/dJkZFRzjlz3swwm83KTz9tDF+06K3E3Nz9pri4ePv//nfDwblzZ7V/991129u2be8YOfKyXmeffV7pP/9sCS8rK9M999yUPeecc37FihVL4r744tO4wsJCfWxsrON//7vx4KhRtxYCwG+//RL21FOPdfG1AXimZN1883W9ZsyYvfu88wZVTJr0ZHtFUYSoqGjnDz98H2O328TevfuWP/30cznx8QkuAEhN3WmcPfv/2mZkpIdERUU5b7zx5rxT+kEMkHpP65IkySxJ0jcAPgdwN4Ab4CnCOBrAFkmSegQ2RGoKNgH4p6wUOeKJf0TMUHFmZBSSuVsXEREFEVUFqpwQm+rfCZZ51hKvikcffajzgQO5hqlTZ2S8+ebitK5du1U9+uhDXbdv/9cEAPPmzWqTnZ1lfuWV19JXrFizo3//M8teeeWlDnv3Zuvvvvv+g1dddU1+dHS0c/36z/5NTEw+roCZoih48825yRMmTMqeN29BallZmfbhh+/rtndvjun119+S77jjnv1fffV53PfffxMBAMuWLYpbu3ZN6/vvf2j/ypXv73jxxZf3HDiQa5w9e0YyAMyYMSejc+cuVeeee37J4sUrUwHg2WcntN+y5e+Ip59+NmvhwhW7LrhgSMlzzz3d6bvvPG3+9dcfIS+//ELH884bVLpo0Ts7L7ro0qL1699vXdv3Z/futNDS0hLdvHkL0p54YmL2d999EztjxrRkADhwIFc3ceLjXVJSOloXLFieunDh8l2dO0tVs2f/X/uCgnwtAHz++SdRM2dOTxk8+MLixYtX7rz77vv3r169os17762OrX6doqJC7Zgx90sxMbGO119/K91sNivbt/9neu65pzv16XNGxcKFK3beeusdB5YsWZB8bIxff/1lqzFjHtv76quzdg8YcHblq69OS37//dVtbr31zgNLlqzcefXV1+YvWDC/7YoVS+Lq87OxefOvUeXl5drXX39Tfu65l/akpu4Kmz9/TiLgSWifeOIRyWw2u998c1Hq2LFP7H333Xfa1Kf9huLPyMnLAPoDGAbgF3iqwgPAbQC+BvASgGsDEh01Gd+IiM47QnKsaIcNT3aSkOdmckJERMFBVYFbvzJ3lUs0IU0VQ9cod+XKyyxyXXfl27Tp57D0dDlkw4Yv/42NbeUCgMcfn5C7a9fO0PfeWxXfq1ef7Ly8AwaTyexu1y7FHhER4R43bnzuGWf0r4iIiHKHhoYqJpNJEUVR9X2ifiJ33XVfbv/+Z1UBwHnnDSz97LOP45577qUcs9msdO4s2VatWpG4Z0+66aKLLi1LTm5rHz/+6ayLL76sDACSk9s5/vhjc8nPP/8YBQBRUdFurVar6vV6JTa2lSszc4/h119/iZ4/f2Gqb7SnY8dO+Xv2ZJjef39VwkUXXVK2du2auC5dpMqxYx8/AACdOnW2Z2buMX3xxScnfcMeERHpfOmlV7OMRqPatWt326FDh3IXLJjf9tFHn8x1OBzCTTfdeuDeex/MF70fxt511315P/74fUxm5h5jXFx85bp178Wfe+75xQ888PBBb1x2i6VKYzSaFN81ysvLtGPGPNAlNraV/bXX5u0xGo0qAKxZszI+JaWD5cknn9kPAJ07d7EXFxfrFi1666gE5Ywz+pVdcMGQCk9b5eLXX3/e6p57Htg3cuT/ir3XPHTgQK7h/fffbX377XcX1O0nAzCZTO7nn5+ao9Pp1C5duto2b/61aMuWvyIA4PPPP45yOBziiy9Oz46IiHB37drdZrVa9k2d+nzHurbfUPxJTm4E8LQsyz9IknR4NbQsywclSZoK4I2ARUdNRi0qwuCYVojUG054XNB5HtfW8xMeIiKi05lw4qWWp620tF1mALjxxpG9qj/ucrkEp9MhAMCtt955cPLkpzpdffWlfTp37lLVr9+ZZcOHX1lcn7UlKSkdbb7bBoNRiYiIdJrN5sNv0PV6nWK3O0QAuPjiy8q2bPkrZO7c19rk5u437N+/z7R//z5jVFTUCReq7tq1wwwATzzxyFE7a7ndbsFsNrsBICcn23zGGf3Lqh/v1at3ZW3JSceOnSy+ZAEAevfuW+VyuYQ9ezIMvXr1tv7vfzcUvfPO0ricnCxjbm6uMTs70wwAiuIWAGDv3hzTBRdcWFy9zRtvvKWw+v2VK5cnut0u4dhrZWZmmI+detav35kVwFtHxZiYmHT4e5uRsdvodruFM84YUFn9nL59+1V++umG+EOHCur83j0+PsGu0+kOxxMSEup2uVyCJ7Y95vj41rbqPwP9+59ZeaJ2Gps/yUkkgOwajpUACK1PY5IkxQF4DcBlAEwAfgLwpCzLu7zH+wJ4HcAAAEUA5sqyPNOPuKketAfz8HBKR2QIAo4b3wUgGIwAAO7VRUREwUIQgJWXWWSLy69SCwFh1kKpTy0jRVEEk8nkXrBgeeqxx/R6vQIAAwacVfXRR1/+98svP4b/9dcf4d9882Xse++tajN16oz0QYMGV9TlOjrd0R9HiifZlWPhwjfj16xZmTh06EWFffv2q7jhhlEFP/64MfKXX36MPtH5qurJcebMeTMtJCRUqX5Mo9GoR847ehG9VqurNZEURfGocxTF817cYNCr6emyccyY+7u2b9/B0r//mWUDBw4pi46Odj7yyAPdql+/ttejV6/e5ZdfPqJw2rTnO/7ww3fFQ4deVO59LhSl9oX/er3huD4Kx1xUUTzflurJRvUpgE6n67jrVD/3iOoP1f/72Rj8SU52ALgFwDcnOHaV93h9fAJAgWc74ip4poV9J0lSJ3iSlW8BbADwIIBzALwpSVKRLMvL/Iid6khxeFISt3ji9EPwjqjouNcGEREFEUEAQnRQaj/z9NCxY2er1WrVOBx2oWvX7oc/gX/uuafbderU2XL77Xcfmjv3tTZ9+vSrvOSS4WWXXDK8zO1277vppmt6/PDDd1GDBg2uEAQhoG9KP/jg3TY33XTrAd9UKABYvfqdhKPX0xy5ZufOkhUA8vPz9Rdd1Ofw6Mjs2TMSBUFUH310/IEOHTpaUlN3HvUBeGrqjlqn32VnZ5oVRYFv2tbWrX+H6fV6pV27FPvMmdOTwsMjnAsWLNvtO//bb7+KADxreQAgMTHZJsupR11n+vQpyfn5B/Vz5ry5BwAuuGBoyfDhV5T+8MO3xbNnz2jfv/9ZO8LDw5X27VMsxz53+/ZtJ425U6cuNo1Go27d+ldoz569rL7Ht23bGhYREemMjIxy63SepLO8vPzwm7ScnKwTT3WpQefOXSwbN34bU1RUqI2JiXUBwH///dNk0xmr8+eTgakAbpMk6TMA98KTgg2WJGkegIcAzKhrQ5IkxQDIAnCfLMt/y7KcCk9y0hpADwD3A7ADGC3Lcqo3IZkNYIIfcVM9KHZPcqLUkJyIOhMAQAuB1aqJGoFRA2y8oQpb7wOMfu+zSETBZujQYWXt2rW3Pv/8Mx03bfo5LDNzj2HGjGlJP/zwXaxvKlZubq5hzpz/a7tp089h+/bl6D///JOowsJDhl69elcCgMlkUqqqqjQZGekGp9N5yn/VY2JiHVu3/hUuy6nG9PTdhtmz/6/Nn3/+Hul0Og+/7zSZTEpBQb4hN3e/rmvX7rZ+/QaUzZ07s90333wZkZ2dpV+8+O34Dz9cm5CYmGgHgJtvvuNgTk626dVXpyVlZKQbPvpoXfSXX37WquYoPIqKivTPPjuhfVraLuMXX3wa+e6777QZOfK6fIPBoMbFxTuKi4v0Gzd+G75vX47+yy8/i5w7d1Y7AHA4PFPibr75trzfftsUtXz54risrEzDJ598FPXNN1+2GjhwcOmx13rqqUn7HA6HMHPmy8mAZzpdVtaekJkzX0nMyEg3fPXV55ErVy5PBI4fGfGJiIhwX3TRpYWrV69I3LBhfXRm5h7DypXLWn399RetrrnmunxBENC1a3er0WhUli1b1Dozc49h8+ZfQ5csWZBUU5sncuWVI4vDwyNckyY9lbJjx3bT5s2bQt944/XjFus3BX+KMH4M4FYAveGZNCfAMy3regAPyrK8rh5tFcmyPEqW5Z0AIElSPDxFHfcD2AVgEICfZVmuvkBro+dUqV47FlD9qE5vclJDkUXB6JnWpWOxBaJGIQhAtBGIMYMfCBDRYRqNBnPnvr27c+cuVdOmPd/h3ntv6/7ff9vCJk9+cY9vytakSS/k9O7dt+KVV6ak3HbbjT3feWdp4h133LP/mmuuLwaASy65rCQyMsp577239/jvv23mU41p0qQXsux2uzh69D3dxo17sGt2dqbpoYfG5lRUlGv37s3WA8CIEdce2rdvr/Huu2/p4Xa78corszLPPXdgydy5r7W7886be37zzZexDz/8aM71148qAoBevXpbp06dkb59+7awe++9vcf69e/HX3/9qFq3vh0w4KxSjUajPvzwfd3mz5/d7rLLrix4+OFxBwDg9tvvLjjvvEHFr746rcNdd93SY9WqFa3vvPPe3NjYVo4dO7aHAJ71M2PGPJbz+eeftLrrrpt7rFixJPG++0bvve66G4uOvVZsbCvXffc9tH/jxu9if/zx+/Bu3XrYnn12SsZff/0eee+9t/VYsWJJm8svv6oAAHQ6fY2jVU8//dzeK64YUbB06cLEu+++pcdnn30c98ADY/bee++D+QAQFhamTJgwOTM3d5/p7rtv6TF37mttH3hgzL76JCchISHK3LlvyVqtVh037sGu06e/lHLDDTcfrP2ZDU9Q67tnXTWSJEkAYgCUAkiTZdnvYVBJkhYCuA+ekZIRsix/I0nSfwC+lGV5QrXzugPYCeBMWZb/9uNSmW63klJebq39zHrQaESEh5tQXm6F291sRoNr9NlT49GhoAA7QsKgveFxAJ75pQaDDna7E9bCfPT52LOgq8vCRdDWsHC+OQm21/BYwd4/IPj7GOz9A4K/j+yf/8LDTdBoxCwAHQLR3pYtW7qKouaruLjESr3eaKv9GUT1888/W8xarVbt1avP4TedGzasj54zZ2b77777Zauv1kpL4HDYjAUFuaGK4r6sf//+aSc7t97fFUmSNgJ4SJblNFmW5WOO9QawSpbl3vVtF8AcAAvgqZeyQZKkgQDM8CQr1fl+gRj9uAYAz5vsqKiGmVYXHm5qkHYbm8a7YEzQ6mAyHb2dsMGggxAdhQXZmXAoChYZNQiLOC2mKQZEsLyGNQn2/gHB2Ue7C3jpF8/tZweZYAjyv2nB+BpWx/4RBb+0tFTz0qULk5588ums7t17WLOzsw0rVy5rc/75A4tbUmJSX3X6zngTBd8UsCHwrDE50bSqKwH4tT9ytd257gdwLoAxAKwAjv1I3peUVPlzHQBQFBXl5RZ/n35CwfZpmMu75sSt0cBq9dyuPnLiUjT4vtCz1fahonK4lOb/nyzYXsNjBXv/gODuo9UJrPzP8yHAmN5WGMTg6p9PML+GAPt3KrwjJwFtk6gh3XTTLYVFRYW6t96a17akpFgXHh7uGjRoSPGYMY/lNnVsp7O6vqO8F8Dt8Cx+VwG8Cc9ak+pzwnwT3d6t68W9Cc4wAB/IsuwGAFmWFUmSdgFIBLAPwLHVKn33T+mFdbka5o+C2600WNuNKdWgxyfbdqN7SlckK0dP/VMUFYAAjVYHt8sJq9WGsLDm32efYHkNaxLs/QOCs4+uatUIFLcClxJc/TtWML6G1bF/RMFPEASMGfNo3pgxj9a6NoaOqGtyMg7AMngSkI0AHoZnwXp1bnjWnuysx/XbwJPM5HvbhSRJOgD94NliOB/Ag5IkaXzJCzzJjCzLcp0rZFL95asqNpcUo31oRI3n9IqIhMblhK28DIhLaMToiIiIiCgY1Sk5kWW5DJ7iiJAkaSiALQBCZVk+6H0sCkCyLMv1rXHyL4Cv4aldch88RRwnAYiCZ8tgG4CnACyRJGkGgLMAPApPzRNqQHa7Z6mPVquv8ZyHk9shQquFveAQ0Emq8TwiIiIiorrwZ/LmvwA+AvBjtcfOBrBNkqQNkiTVeQs6WZZVADfCM2ryPoA/AUQDGCTL8l7v6MilACQAWwE8D0/1+BV+xE31EGe14uyoaISqNQ/Lu7w7vTltgd35jIiIiIhaJn9WMb8CT4HEMdUe2wjganjqnkyBp1ZJnXhHZR7y/jvR8b/gWSBPjehslxvXdeyCf6017zvgKz7jtAZ2cwEiIiIiapn8GTkZAWC8LMsf+h6QZdkhy/KnAJ4BcEOggqOmI3pHTERdzdO6fMmJy8bt4YmIiIjo1PkzchIGz9qQE8kHEOt/OHS60PiKc56kuKLLu0Gb08ppXUQNzaABPr/WgogIMwwuQHHX/hwiIqLmxp+Rk60A7qnh2F0A/vM/HDpdaLy5iaCrudalS/AkJ4rD0RghEbVoogAkhqpIDvfcJiIiCkb+JCdTAYyUJOlvSZImSZJ0nyRJz0iS9AeA6wC8ENAIqUkcHlLT1Txy4vaOnLi8O3sRERER+eu7776OkOXUmj8VrYP77rtdmjTpyfYBCskvc+fOajNy5GW96nr+pElPtr/vvtsbbdtTVVWxbt37MYcOFWgBYO3a92IGDhzQv7GuX5t6JyeyLH8L4Cp4CjBOAbAAwEvwvJ+9WpblrwIaITUJrfeTWeEk07r+UkUszslCRWhII0VF1HI53cCsv3WY9ovnNhFRMNm3L0f/wguTOhUVFeqaOpZg9/vvv4bOmfN/7a1WiwgAV155dfH69Z/929Rx+fiz5gSyLH8J4EtJkozwbP1bJstyzds6UbOj9Y6KCCcZOcnQ6LHzUD766/l7hKihuVTgnV2eDSrukgAdp3YRURBRfWtdqcGpqnrUXxCTyaSaTCZXTec3Nr+SEwCQJKkbgIsBtAYwX5KkMwD8K8tyRaCCo6azeH8OtIqKQaHhNQ6v+Qo02jmti4iIgkiVs+aZJRoBqlELtS7nigJUk5/n1sfGjd+GL1u2KDE3d7/RYDAq/fr1Lxs//pl9UVFR7t9++yXsqace6/Luu+u2t23b3gEAe/dm62+++bpeM2bM3n3eeYMqAGDZssVxH3+8Pr6srFTXpUvXyl69+lR8991XsRs2fLUdALKyMg0zZ05PTkvbFWYymdwjR16X/8UXn7YaNeq2vOuvv6kIANauXRPzwQdrEgoLDxliY1vZL798xKE77ri7QBQ93V6//oOYDz54NyE/P98QGhrqOu+8QSVPPDFhf35+nu7mm6/rBQBPPfVYlxtuuDlv7NjHD+zenWZ8/fXXktLSdoUZjSZ3z569Kx5//Kl98fEJLgCw2+3CrFmvJv3884/RLpdLuOyyyw8pysm/hQMHDug/evQje7///tvorKw9IfHxCba7774/95JLhpf5zvnuu68jli9f3CY3d78pKiraccEFQ4tHj34kz2AwqACQlrbL+Pbb8xNTU3eF2WxWMSYm1nHVVdcU3HXXvQUnuuby5Yvjli9fnPT0089lXnrp5aW1vZ779+/TzZ8/J+m//7aF22w2sWvXbpVjxjy6v3v3nod3IPr44w+j339/dUJe3gFjZGSU88orry64554H8muLz/fzAAA333xdr3HjxmcDwOuvz2y/adPfWwCgpKRYM3/+nMS//vo9sqKiQpuS0rHq/vsfyj3nnPMqAc+0te3bt4WdeeY5pZ9+uiG+oqJC26WLVPnkk8/kdO7c5ZTfFNY7OZEkSQPgbQB3AxDgmd61Fp4CiR0kSRosy/L+Uw2Mmo6qqvjlkOf/1wXGmmtqxmhF9AgLh1BW3lihERERNbjBa8POqOlYvzhX2cKLrBm++5d8GNrH7hZOmHR0j3ZXvnOZRfbdv3JDaK8Kp3DC914dI9yW96+wpNY31qKiQu2UKc91uueeB/YNGTK0LC8vTzd9+pQOs2e/mjRlyis5dWlj5cplrVauXJr44INj9vbrd2blN998GbVmzcrEmJgYBwBYLBbxscce6tK6daLt9dffTquqqtTMnj2j7aFDBYenV6xZszJ2+fLFSQ89NG5vnz5nVO7atcP8xhuvty0sLNA/+eQz+3fu3GGaN29WuyeffCarT5++VRkZ6cbp06d0iIiIcD344Ji8efMWpD7yyAPdJk16Yc+gQUPK8/IO6MaOfVAaOHBwybhxT6RarVZx8eK32zz44N3dVq1auzMkJESZPn1K27///iNi/PinsxMTE+3Lli1qLcupoQkJCSd9g7xs2aKkO+64Z//TTz+X/fHHH8a+9NJznaKiotPOPPPsqh9++C582rQXOt5774P7zjtvUPnevdmGefNmt92/f69x5sy5mRaLRXziibFdevXqUzFv3ttpWq1O3bBhXeySJW8nDxhwVkWvXr2P2sJ01arlrVasWJI0efKUPRdddElZTTH5VFRUiA89dG/X+Ph4x9Spr6YbDEZ1yZK32zz66EPS0qWrdiUltXV8/vknUTNnTk+59dY7cy+66NKSXbt2mGfPntE+JCTUPWLENcUni2/AgLMrJ016Yc+0aS90nDdvQWrXrt2tn332cbTv+m63G2PHPtjF6XQKEyZMzmrVKs75/vvvxk2c+HiXOXPeTOvbt58FANLTd4cYDEb39OmvpVssVeL06VNSZs58ud2CBct31+Vn7mT8GTmZDOAWAPcC+BzAQe/jTwD4BMA0AHecamDUdBzVdt/SavWoaXr7maoL/aXuyMw7WMMZRERE1JAOHDigc7mcQuvWrR3Jye0cycntHNOnz0x3udx1nvy5fv37CVdcMaLghhtuLgKATp06H8zI2B2SmZlhBoDPP/84qry8Qrts2f9lRkVFuwHguedeyrr//ju7+9pYs2Zlm+uvH5V39dXXFgNA+/YpjqqqSs2bb85t98gjj+fu25djAAQkJSXbk5LaOpKS2joiI6N2h4aGuTUaDWJiYlwAEBER4Q4NDVUWL347ITIyyjl58ot7fdd49dXZmVdeeVGfL774NOqyy64o+fHH72NGj35k77BhF5cBwIsvTs/+3/+uDKutv0OHXlR42213HQKA8eMn5u7Y8W/Y2rVr4s488+ysVauWtx427JLCW2654xAApKR0sGu12pwJEx7vsndvtt5sDlFGjLimYNSo2wrCw8MVABgz5rEDH364NiE9Pc1UPTlZs2ZV7NKlC5Oef35qxpAhw+r0Se7HH6+Pqays0C5duio1NraVCwBefnlm5nXXXdXrvfdWtxo//uncdeveiz/33POLH3jg4YMA0LFjJ7vFUqUxGk2KxVIl1hZfRESEGwBiYmJcJpPpqKGmn37aGJ6VlWletGjFzm7detgAYPLkF/fu3p0Wsnr1ioS+fftlAoDb7RZeeumVLN/Pw4gR1xasWLE4qS59rI0/ycndAJ6TZXmZdxQFACDL8n+SJD0HTwV5asZsVZU4MzIKTkWFKGrhVk58nip6X36Xs/GCIyIiamA/XV/xT03HNMLRU6++ubayxoXE4jHnfjaycntdz62rXr16W88/f1DxCy9M6jR37ixHnz5nlJ933sCyiy++rLQuzy8uLtIUFhbqe/XqU3l0u30qfMmJLKeZW7duY/O9EQWA7t17Wk0msxsACgsPaYuLi3WrV69IXLNmZRvfOaqqwul0Cnv3ZhuGDBlW9uGHaysffvi+bvHxCfa+ffuVX3DBkNI+fc6wnCiujIzd5gMHck3Dhp1/1CiW0+kUc3KyjHv2pBtdLpfQs2efw2uejUaj2r59ygnbq65fvwFHLUGQpG5V27ZtDQeArKws8549GSE//PBdzJF++GJKN1544cXlN998e8Fnn30cvWdPujk3d78hJyfLDABut3I4ISwpKdG99dbcdhqNRk1KalvnqU6ZmXtMCQmt7b7ExNevTp06V2VlZZoBYO/eHNMFF1xYXP15N954S6Hvdl3iq0lGRrrJZDK7fYkJAAiCgO7de1Zu3fp3uO+x8PAIZ/Wfh9DQULfL5QrIakh/kpN4ANtqOLYfQJTf0dBpwVFehic7SVBUFVmiBqhh/qai8SQnquu0WUNFRER0ykJ0qOFjucY7tz5efXV2Vnr67gObNv0UsWXLX+Gvvjq1w0cfratcuPDIFJvq682dziNvIjUaz1tBRan5jatGo4Gq1nxcUTzduvfeB/ede+7A40YIkpKSHXq9Xl24cPnu7dv/Nf322y8RW7b8HT558oTOgwdfWDR16qvZxz5HVVWhR49e5U8++czeY49FRES49+3bq/eed9QxrVZba5J37DmqqkIUPRXeVFURRo687uCIEdcUHfu8+PgEZ0FBvvb+++/sFhYW7jrnnPNK+/c/q7x37z5VN944snf1cwVBxJQpL6cvXbqwzbRpL6QsWbIyzbf25mRUVYUgHP+tVhRF0Gg8MWo0GvUEpwAA6hrfSa5/ostDUZSjvm86Xe3fZ3/5U+ckA8DlNRwb4j1OzZjd4vnQwamqUE88jRYAoGq8u3QxOSEiImoSW7b8GTJ9+pTkzp272O+6676C+fMXZowbNz57164dYYcOFWh1Or0CAOXl5Ydnu+TkZB1eKxIREeGOjY117Nix/ai6AKmpOw/f79Spi+XgwYOGkpLiw22kp+82WK0WDQC0ahXnCg8Pd+Xm7jd06NDR7vu3c+d/5rfempeoqio2bvw2fP78Oa179epjfeCBMQcXLly+e9So23J/++2XKADHvSFv1669NTd3nykxMcnhay8qKso1e/aM5LS0XabOnSWbTqdT//nn71Dfc1wuF7Kzs2peLOu1a9eOo/qalrYrtGPHjhYASEpqa923L8dYvR/5+Xm6uXNfS6qsrBA//XSDb9pV2sMPj8sbPvyK0rKyUu+H/Ufer0dGRjgHDx5aPnHi5OzMzAzzsmWL4muLCwA6dOhkzcs7YPDVIAEAm80mZGZmmNu2bW8FgMTEZJsspx7Vh+nTpyQ/+uhDHesSnyAINSYWnTp1sVosFk1q6s6j6s3s2rUzNCmpra2m5wWSP8nJHADjJEmaD+AieHraWZKkJwCMB/BG4MKjpuC0eqZLulT1pFv7qd5PW+Bm0QWihmbQAOtGWPDtrYDB730WiSjYhIaGub/66vNWM2dOT8zM3GPYtWuHaePGb6Pj4xPsMTGxrq5du1uNRqOybNmi1pmZewybN/8aumTJgqTqycD11486+MUXn8atW/d+TGbmHsPSpQvjNm/+NRresgIjRlxTHBYW5po8eULKjh3bTVu2/BkyZcqzHQBPUiEIAq699oaDX3zxadyKFUvisrIyDV9//UXk/Pmvt9PpdIrBYFA1Gi3ef391m6VLF8bl5GTrt23bav7jj82RnTtLVQAQEhLqBoD09N2msrIyzY033lJgsVg0Eyc+3mH79v9MO3fuMD3zzJMdMjLSQ7p06WoNCQlRLr/8qoLVq1e0+fLLzyLT02XjlCmT25WUFOtr+559+umG+A0b1kdnZKQbXn11WlJOTrZp1Kjb8wHgpptuOfjnn79HzZ07q01GRrph06afw2bMeDmlqqpSGx+f4IqPT3DY7Xbxs88+jtq/f6/+p582hr/44uQOAOBwOI57X92tWw/bNddcf3D16hVt9uzJqLk+g9dVV40sNptD3M88M77j1q1/m739TrHZbJrrr7/pEADcfPNteb/9tilq+fLFcVlZmYZPPvko6ptvvmw1cODg0rrEZzaHKACwa9dOc2Vl5VExDx48tCw5uZ11ypRnO/z22y9hu3enGV966bm2+/fvNd100835tcUfCPX+EyfL8mJJkloBmARgNDw/uWsAOADMkGX57cCGSI2tenJysi35VK1n5ESoaVEKEQWMKACdIlVERQElJWiYuSFE1OxIUjfbs89O2bNixdI2X375WZwoimqPHr0qZs6cmy6KIsLCwpQJEyZnLl78dtLdd9/So3XrNrbRo8fumzz5qS6+Nm655Y5D5eXlmhUrliTOnz9H2717j4ohQ4YVpqbuDAMAg8Gg/t//zUl/7bVX2j7yyP3dQkJCXTfeeHPeggVvtNXpdCoA3Hvvg/kGg1H55JMP45YuXZgUERHhGjbs4sJx48bnAsDgwUPLx459InvduvcSVq1anqjX65UzzhhQ9sQTE/YDQHR0jHvo0IsKly1bnLR//z7DpEkv7Js9+420N9+cm/Too6O7iqJG7dJFqpo1a57cqlWcCwAef3zCfr1er8yfP6etzWbVnHfeoOL+/c8sre17dsklww+tW/de/Jw5M03t2rWzTJ8+M71HD882vVdcMaJEVdXMNWtWtv7www8SzOYQ94ABZ5U+9thT+33H09JSDy5a9FbyvHmzxNjYVo5LL728cPPmXyO9o02Hjr3e6NGP5P36689R06a90H7x4nfkk03vioyMdM+d+7Y8d+5rSU899ajkfY0r5s59O61dO89W0BdffFlZaWlpzgcfvJuwfPnipJiYWMd9943ee911Nxapqora4uvWrYe1b99+Za+88lKHW2/dlxsREXl4CoxWq8XcuW/tnjVrRtKLL07u6HS6hJSUDpZXXpm1u3//sxqlpqFQ36I3kiRFybJcIklSOIBzAcQAKAXwuyzLxSd98ukh0+1WUoqLA/v91WpFREWFoKSkCi5X837bsPO7b6B7710UuVw4dO9LULw/I6IowGTSw2p1QFFUlH29Guce3IMsUcClC5c1cdSnLphewxMJ9v4Bwd/HYO8fEPx9ZP/8Fx0dAo1GzALQIRDtbdmypasoar6Ki0us1OuNjTJd5XT1ww/fhXfuLFmTkpIP73Dz/PPPtDt48IBhwYLlu/fuzdZnZWUaBw++8PB6kry8A7rrrx/Re+bMubKv/kVzMHDggP7jxo3P9tVmocbhcNiMBQW5oYrivqx///5pJzvXn8kBf0qSNFmW5fcBfO1fiHQ6c9qs0AFwA4cTkxMpC43Cyn05CGvbDpc2WnRELZPTDSzaoYPJBNzSyTfZgojo1H311Rcxixe/bXr88ady4uLinX/++UfYL7/8GD169Ni9AGC328Vnn53Y+fbb795/8cWXlZSXl2kWLHgjMT4+wd6//5mN8mk6tRz+JCdRAAprPYuaLZfNs+NdbStJqkIj8Wl+HnonJDR8UEQtnEsFFvznmUp9YwdAx+yEiAJk4sTJe2fOnJ787LNPd7JYLJr4+Hj7ffeN3ucbXejcWbJNmDA5891332n97rvvtNHp9Grv3n3KX3/9zd2+aV1EgeJPcvI6gP/zLoDfIcvycXPrqHmzhZjxXnYmIhNao+dJztPqPG+UHPY6b99NREREp5moqGj3tGn/l32yc664YkTJFVeMKGmkkBrMpk1/b2nqGOjk/ElObgfQDsB3ACBJ0rHHVVmWuZdMM2bVavFdYQF6tkk6aXJiEEV0NIcglrt1EREREVEA+JNErAp4FHRacTg86+G0Ot1Jz4u0WzC9ey8cYp0TIiIiIgoAf5KTLAAbZVneH+hg6PSglJWiV1g4ErQnT04EvWe7bg6TERFRM6QAUFVV5Qouogbm/X+mog474ftThHEWgAF+PI+aCfOBXDwrdcfAWraZFnWe4qFa/lonIqLm56Cqqk6Hw1ZrRXEiOjUOh82sqqoTQF5t5/rzoXcBgEg/nkfNhOJweL6epEgQAAgGT3Ki46amRETUzPTv3798y5Yt75SXl4wGEKPXGy2CIHDnKaIAUlVVcDhs5vLyEr2qKkv69+9fUdtz/ElOFgF4Q5KkoQB2ADiulL0sy+/40S6dJlSnZ82JqtGc9DzRl5yIIlRVhSAwSSFqKHoRWHW5FeFhJug1gBp89fuImsLLbrcLpaVFtwuCYAZLCBEFmqqqqlNVlSUAXq7LE/xJTl7zfr2tpiAAMDlpxhRvcqKImpP+lhb1nuREIwhwOWzQGUyNEB1Ry6QRgZ6xCqKigJISIAiLixM1uv79+ysApm7ZsuV1VUVr+DfdnYhqpgDIq8uIiY8/yUmKH8+hZkT17r6lampLTo4kI7YqC5MTIiJqlrxvnOr85omIGk69kxNZlnN8tyVJMgMIB1Aky7IzkIFRE/IlJ+LJfzxEgwlrD+yHU1HwiJMvP1FDcrqBVWk6mMzAte0494SIiIKTX7vASpI0CMAMAGfC+zdSkqQ/ATwjy/IPgQuPmoQvOdHWsuZEo8GHBflwu5wYDa4hJGpILhWYs1UPABiRDOiYnRARURCq99xKSZLOg6c6fCSAlwA8BGAqgGgAX0uSdG4gA6TGl2XQY8W+bBwKi6z1XK23Fordbm/gqIiIiIgo2PkzcjIVwC8ALpVl2e17UJKkFwF8DeBFAJcEJjxqCnsF4Kv8gxgVFoXWtZybaA6BIgD2qspGiY2IiIiIgpc/u1KcBeD16okJAMiyrACY5z1OzZjD4Vk/oqmlQjwAPJncFjN69IYzr9aaOkREREREJ+VPclIBoKZ3rXpwnWazF2a1onNIKEx1qFvi8n51Wm0NGxQRERERBT1/kpNfATwjSVJo9QclSQoD8DQ8U76oGRvkdGFat56Iryqv9VxfcuKyWxs2KCIiIiIKev6sOZkIYAuATEmSPgNwEEACgCsBGAHcFbjwqCmIigKIIlRN7dO6XN6BMjcXxBMRERHRKfKnzkmGd0eu5wFcDs8uXcUAfgDwoizLuwIbIjU2UfVsCyzoDLWe6/ZO/XLZOK2LqCHpRWDRJVaEhZmg1wAqK8QTEVEQ8qvOiSzLuyRJGifL8kEAkCQpGkASE5PgoIEvOdHXeq7bO3Li4sgJUYPSiMCZCQqiooCSEsDF5ISIiIKQP3VOIiVJ+hbAj9UePgvANkmSNnirxlMzpvHWU6xTciJ4foQUh6MhQyIiIiKiFsCfBfGvAOgB4Jlqj20EcDWAAQCmBCAuakKH68LXYVpXqqDBh3m5qDAZGzQmopbOpQDvpWmx4l/AyVETIiIKUv4kJyMAjJdl+UPfA7IsO2RZ/hSehOWGQAVHTUPn3UFY1NeenOzSGvFe7j6UGpmcEDUkpwK88qcBz/0IuNy1nk5ERNQs+bPmJAxASQ3H8gHE+h8OnQ4+LSyAxuVGN3P4kVGUGmi9U7/sXHNCRERERKfIn5GTrQDuqeHYXQD+8z8cOh18mpeHdXm5EELCaj03VKNBgsEIVFU1QmREREREFMz8GTmZCuBLSZL+BvARgAIAreBZc9Ifnnon1EwpigKXywkA0Gj13n27anaO24aHe/XFngN5DR8cEREREQW1eo+cyLL8LYCrAKjwLH5fAOAleBKdq2VZ/iqgEVKjsttsSDGHINlogqipbVIXoIje/Nab0BARERER+cvfOidfwjN6YoSnCGOZLMuc1xME7OVleLV7LwBAhqiBu5ZdgVSNLznhCl0iIiIiOjV+JSc+sizbABwIUCx0GnBYLAAARVUhiFpAOfnErsPJidvV0KERERERUZA7peSEgo/dm5w4VQUQRAAnHxFRtToAgODmyAlRQ9KJwNwLbQgNNUKnAcBaJ0REFISYnNBRXDYrAMCpekZPauVNTmqd/0VEp0QrAhckuREVBZSUeIoyEhERBRt/thKmIOaweJITl6rWKzkRFb5TIiIiIqJTw+SEjuK02wAALgBqHfKNSnM4vsjPQxrXnBA1KJcCfJyhxdpdnmrxREREwcivaV2SJMUCeBLAxQBaA7gUwDUAtsmy/HHgwqPG5rJZoYdnpYlah5GTyohYvLsvB91CQzG2waMjarmcCvD8bwYAwOZRgE5o4oCIiIgaQL1HTiRJSoGnCvz9APYDiIMnyekCYL0kSVcENEJqVDadHusP7MdfTketBRgBQOud1mV32Bs2MCIiIiIKev5M63oNnqrwKQCuBSAAgCzLtwD4BMAzAYuOGp3dZMT7B/bjzzquIdFptIjU6WBysggjEREREZ0af5KTYQBekmW5FDjuw/UFAHqealDUdOx2BwBApzfU6fxIuwUL+/TH2OhWDRkWEREREbUA/i6Ir2n1swHHJyzUjLirKtHGaESETlen8wVvEqPl/HciIiIiOkX+JCe/AHhakqSQao+pkiSJAEYD+DUgkVGTMObkYE7PvrhcqFu2IeqNAAAtmJ0QERER0anxZ7euifAkIBkAfoBnpGQ8gO4AOgEYFLDoqNEpTs+0LkWsW94qGDzJia6OyQwRERERUU3qPXIiy/IOAAMAbAQwFJ5dZy+GJ1k5T5blbYEMkBqX4vAlJ5o6nS/qTQAArSjC6X0uEQWeTgRmXGDDm5cDurr99yQiImp2/KpzIstyOoBbAhwLnQYUl2c5kVrH5ERjNB6+bbdUQafXN0hcRC2dVgQuae9GVBRQUuIpykhERBRs/C3CKADoCyAEJxh9kWX551MLi5qK6t0SWBHFOq0i8Y2cAIDDUgVERjVQZEREREQU7OqdnEiSdBaAtQCSvA/53sOq3tsqAE46aKZ8yYmqqdsSd1Grww9Fh+Bwu3GDq6ZN3IjoVLkUYGO2BqGFwFnRTR0NERFRw/Bn5GQ2ACeAO+GpEM/JBcGkntO6AGBpXh7sNgtGCv7uTE1EtXEqwFM/e6ZRbh4F6LgHBRERBSF/kpN+AG6SZfnjQAdDTS9Pr0Nafh5CW7dDXcsqanU62G2Aw2Fv0NiIiIiIKLj581F3AThaErSytFqs2JeDQ5ExdX5OiM6AMK0WDqulASMjIiIiomDnT3LyBoCJxxRhpCDh8G4HrNHWrUI8ADyXnIwlfQfAuW9fQ4VFRERERC2AP9O6OsNTcPGgJEk7ARz7cbkqy/KwU46MmoTGZkO0Tg+9pu55q28ZvMtua5igiIiIiKhF8Cc56QRgW7X7xy7L5DLNZmyIxYo7+/TDv+WldX6O2/uSu2xcc0JERERE/qt3ciLL8tCGCIROD6KqABAg1GNal8ubjrpsHDkhIiIiIv/5VYSRgpeoqIAoANq6V3p3eZcuuTmti6jB6ETgxfPsCAkxQKsBtyUhIqKgVKfkRJIkN4BzZVn+U5IkBZ5CizVRZVmuc9IjSVI0gJcBXAkgHMB/ACbKsrzJe7wvgNcBDABQBGCuLMsz69o+1Y9G9by0gt5Q5+e4Bc/QidvOaV1EDUUrAld3ciEqyoCSEk9RRiIiomBT1yRiCjwFF323T5ac1Nd7AOIA3ATgEICHAXwjSVI/7/1vAWwA8CCAcwC8KUlSkSzLywIYA3mJvpe2HiMniigCUOH27vRFREREROSPOiUnsiy/WO32C4G6uCRJnQBcDOB8WZZ/8z42DsBwADcDsAKwAxgty7ILQKokSZ0BTADA5KQBaL25iaCre3KyV9DiUOEBxOt7NVBURORSgN/2axBaCvQOb+poiIiIGkZdp3VdUJ9GZVn+uY6nFgK4AsCWas9VJUkSAEQD6ADgZ29i4rMRwNOSJMXJslxQn7iodod/IPR1T0626UOwNXsPHgm5qkFiIiLAqQBjNxoBAJtHATrui0hEREGortO6fsSRqVw1/UlUvcdUAJq6NCrLcimAL6o/JknS9QA6AvgawDQA24952gHv17bwVKv3i1brT/3Jmmm8dUE09agPcjr6raIMepcLCSHhEMWjX2rf/WMf1+k8O3s5nY6Af18bU7C8hjUJ9v4Bwd1HbbXJtKJGRDP+r3ZSwfwaAuwfEVFt6pqcNMr2wZIknQ9gKYCPZVn+VJKk2fBM66rOtyWU0d/riKKAqKiGKXAfHm5qkHYbywcHD6CqqgpTY+NgMJ149MRgOHqbYaPRCJ0gQFRcDfZ9bUzN/TWsTbD3DwjOPhqcR26Hh5tgrvtu381SML6G1bF/REQnVtc1Jz81dCCSJF0N4F0AvwMY5X3YCuDYbaN8SUmVv9dSFBXl5ccWtj81Go2I8HATysutcLub7zY6du+OW063CsV69AJ3URRgMOhgtzuhKEc+xj3bUo6H+5+NzKy9KCnx+2VpcsHyGtYk2PsHBHcfrU4A8CT/5eVW2MXg6p9PML+GAPt3KsLDTRyRIWoB/KpzIklSLIAn4VnM3hrApQCuAbBNluWP/WhvDDzbBX8I4FZZln2jJfsAtDnmdN/9XD9CP8zVQPtwut1Kg7Xd0FwuF0IgwKnRQBS0RyUg1SmKetQxReP5MVKdrmbb9+qa82tYF8HePyA4++hyH7mtuBW4lODq37GC8TWsjv0jIjqxen8EIUlSCjy1SO6HZ3vhOHiSnC4A1kuSdEU92xsNYB6A+QBurJaYAMDPAAZJklR9DcswADIXwweevbISi/r2x/IzzjxqfnttVG9yArfr5CcSEREREZ2EPyMnr8GzEH0IgEoADgCQZfkWSZJMAJ4B8HldGpIkqQs8IyYfAZgOIE6SJN9hKzzrT54CsESSpBkAzgLwKDw1TyjAHJYjU7IEgwlwn+TkalSNZ/K74K7jE4iIiIiITsCfyZvDALzk3Wnr2M/XFwDoWY+2rgOgg2dKWN4x/173jo5cCkACsBXA8wCelGV5hR9xUy0cVs86HLeqQtTUI2/VMjkhamg6EZh4lh1ThgDaOu2HSERE1Pz4teYEQE3zdwyoR/V4WZZfBvByLef8BeDcuodG/nJYrAAAp6KghuUmJ+ZLToJ8DjxRU9KKwE1dXYiKMqCkxFOUkYiIKNj4M3LyCzxFEKvvGatKkiQCGA3g14BERo3OafMkJy6oUNW6Zyeqt5q8WK+MhoiIiIjoaP6MnEyEJwHJAPADPCMl4wF0B9AJwKCARUeNymGxQgTgUgGlHsmJwxSKP0qKYQsNbbjgiFo4twL8c1BEWBXQmSUkiIgoSNV75ESW5R0ABgDYCE9xRjc8WwpnADhPluVtgQyQGs+RkRPUuI3wiVRExuG1PbvxdVVlA0VGRA4FuO8bE25aDzi4vIuIiIKUX2tOZFlOB3BLgGOhJubUaPBbYQEEcwji6jFDS6vzrDlxOOy1nElEREREVDN/izB2AGCUZXmXJEmRAKYBSAawVpbllQGMjxqRzWzCW9mZ6NS5K26tx/O0Ws+aE6edyQkRERER+c+fIoyXAUgFcLf3obfhKciYBGC5JEn3BC48akwOhxPAkZGQuoqwVeG9/mfjpdZJDREWEREREbUQ/uzW9RyAbwC8KElSBDw1SqbLstwPnkKK4wIYHzUiu9UCgyhC7919q64EvRGiIEArCA0UGRERERG1BP4kJ30AzJFluQKeAolaAOu8x74F0DlAsVEjM2ZlYWW/s3BzPUdORIMBAKBjckJEREREp8Cf5MSKI2tVhgPIl2X5P+/9BAClAYiLmoDbu2ZEqWeSIRo8+5rqRBFOpzPgcRERERFRy+DPgvhNAMZLkhQN4AYAywBAkqT+AJ73HqdmSHE6AABuUVOv54n6I0UXnFYLdLqIgMZFRIBWAB7t54DJrIdWhKfCFBERUZDxZ+TkMQCJAFYDyAIw1fv45wCM8BRppGZIsXuSE0VTv+REMBxJTmxVVQGNiYg8dBrgzp5OPNjfc5uIiCgY1XvkRJblLEmSegCIk2U5v9qhkQD+kWWZ+8k2U6p35ESt58iJRquDoqoQBQEOi6UhQiMiIiKiFsCfkRPIsqwek5hAluXfAWi9Ww1TM6R614vUd+QEgoB/K8rxd2kxnN4Eh4gCy60AOwpF/HvQc5uIiCgY1XvkRJKkdgAWABgMoKY9ZznpoBlSXS7PV039lyLNPXAAVZVlOEdvCHRYRATAoQC3fuGZQrl5FKDj5nhERBSE/FkQPxvAeQAWAjgfgAXAZgCXAOgF4NqARUeNqkgUUVBcBCUuCVH1fK6vcKPDwVl9REREROQff6Z1DQYwWZblcfDs1GWXZXkCgAEAfgJwdQDjo0Yk63WYnZmOvJi4ej9Xq2VyQkRERESnxp/kJBTANu/tXQD6AoAsy24AbwC4MBCBUeNzODzrRTTa+hVhBIAJrVtjdb+z4MrKCnRYRERERNRC+JOc5MFTbBEAMgBES5LU2nu/GEB8IAKjxue0WQEAOl1NS4lqphFE6EQRLrst0GERERERUQvhT3LyOYCXJEk6T5blfQD2w1OUMQzA3QByAxkgNZ7hFis+GHAOksuK6/1ct++rjckJEREREfnHn+TkOQClAKZ47z8DYJz3sVsAvBaIwKjxiYqn5LTgx8iJW/BsHeSycythIiIiIvKPP0UYiwCc7ZvKJcvyakmScgCcC+BPWZZ/CnCM1EhEVQEEDeBHcuISPHmum9O6iBqEVgAe6O2AyaSHVgSgNnVEREREgefPVsIAAFmW8yRJ6gogCkCeLMv/F7iwqCloVe/Iid5Y7+cq3pETxcGRE6KGoNMAo/s6ERWlR0kJ4C1LREREFFT8Sk4kSboHnuldSdUe2wfgaVmW1wQoNmpkGt8nsXo/pnWJGgBuJidERERE5Ld6rzmRJGkMgEUAtgC4A8BwAHcBSAWwSpKk6wMaITUaje+rrv4jJ0WiFjvKy2DR+LOMiYhqo6hARqmA3UWe20RERMHIn5GTcQDmy7I89pjH35EkaTGAFwCsPdXAqPHpvFOz4Me0rj8NYfhr90948EKWuSFqCHY3cN0nZgDA5lGATmjigIiIiBqAP8lJEoBPazi2Bp4du6gZ2l5RDqMgwGgOrfdaW613Eb3dzgrxREREROQff+bg/AVgWA3HzgDwn//hUFNRVRWvZ6Zjenoa1NDIej9fq/NUlXc4mJwQERERkX/qNHIiSdIF1e6uATDbW3TxAwAH4dmx6zIAYwE8EOggqeG5XE4oigIA0Gj1h4sq1lU/exXu7NsfeXkHAx8cEREREbUIdZ3W9SOO3lVfADAawIPHPAYA74FrTpode7XiiRqdHu56blOqE0WEaXUocHJ/UyIiIiLyT12Tk6ENGgU1OVvRIazpfzbsbjcOChoASr2er2o907rqndUQEREREXnVKTlh1ffgZ6usgkYQoBFFqEL9twHyJSeCUr+khoiIiIjIp04L4iVJ+lmSpL71aViSpAGSJG3yKypqdE5rleerqkBV/Sii4EtO3PVdrUJEdaEVgNu7O3B/P0DLckJERBSk6jqt63UAX0mS9DeAVQA+kWXZcuxJ3kXyl8KzKP4MAA8FKlBqWPYqK0QALhXwZ/BD1Xq2EhY5ckLUIHQa4PEBTkRF6VFSArg4g5KIiIJQXad1rZck6ScAzwFYDEArSdIuAFkAqgBEAkgG0BOA03vOrbIs5zdE0BR4TpsFBgBOqH6NnAjeOicaf0ZdiIiIiIhQjyKMsiwXAhgrSdKLAK6DZ5F8BwARAAoBpMIzwvKpLMtFDRArNSCn1QoDADcEKEr9EwyXwYyMqkqUeeudEFFgKSqQWymgUgOY+RkAEREFqXpXiPcmHgu8/yhIuKw2z1cB9a4ODwAV0QmYm7oD7dq1x6jAhkZEAOxu4IoPzQCAzaMAXf33rSAiIjrtcVklAQDsAvBfeSny/Hy+r0K83eGo5UwiIiIiohNjckIAgIrwcEzdnYZvBY1fz9d6F8Q77PZAhkVERERELUi9p3VRcLJ7kwq9Xu/X80MdVrzR6wxwAyEiIiIi8heTEwJwJDnR6vxLTjQ6PVoZDLBzK2EiIiIi8hOTEwIARGXuwbK+A7DH7d/Yh6A3AQB0ggC32w2Nxr/pYURERETUctUpOZEk6fb6NCrL8jv+hUNNxuFAiFYLrejfMiSNwQgAEAUBDqsVptDQQEZHRERERC1AXUdOltejTRUAk5NmRvXusqWKGvizQ6loNB++7bBWMTkhCjCNANwgOWEw6KAR4d+e30RERKe5uiYnKQ0aBTU51eX0fNVq/UpOBO2RtSr2KgvQKkCBEREAQK8BnjnbgagoHUpKABd3nyAioiBUp+REluWcujYoSRJLgzVHLjcAQBX9W4YkiCIcigK9KMJhrQpkZERERETUQvj1TlSSpJsADAagBw5/0C4CCAFwLoCkgERHjefwyInO7yb22W0QFBWSwxmoqIjIS1WBYhugWACBU7qIiChI1Ts5kSTpeQDPAyjzPt/p/dcKgAJgUSADpMYh+EZOTiE5mb4/F+VlRXjfaAxUWETkZXMDF34QAgDYPArQcYyaiIiCkD9bM90BYBWAaACzAXwqy3I8gDMBFAHYGbjwqLEUQ8Xuygo4TebaT66BxlsjxeFglXgiIiIiqj9/kpNEACtlWVYBbAFwHgDIsrwFwDQA9wYuPGosm6BictpOHGrV2u82tN5RF4d35y8iIiIiovrwJzmpwpFNLNMBpEiSZPLe3wbu7NUs2Ww2AIBO7/+UrPtjYzC3Z1+4c7IDFBURERERtST+JCd/wjO1CwD2AHABuMh7vxsAzulphmw2KwBAp/M/OYnUaJBgNMJtsQQqLCIiIiJqQfzZretlAN9JkhQpy/JVkiStArBCkqQfAFwK4KOARkiN4i69ESG9z0CupcLvNlyCZ4Wu2878lIiIiIjqr94jJ7Is/wxgAID3vQ+NAbAOQFcAawGMDVh01GjCICBWbzi8qN0fiuD5cWJyQkRERET+8KvOiSzL/wH4z3vbBuD+QAZFjc+3LaloMJ38xJNwe0dOFC6IJwo4jQBc1dEJg14HjYgjK/+IiIiCiL9FGCMAXAhP0cXjRl9kWX7nFOOiRqb3jnoIBrPf73ncoghAgZtbCRMFnF4DvHS+A1FROpSUAC5XU0dEREQUeP4UYRwOz/StmgpiqACYnDQjiqLAIHqSE9FohtvfdgQNoCpQWSGeiIiIiPzgz8jJdACpAB4HsB+eqvDUjNmrqg7fFk3+JydVGi0OVJbDzvkmRAGnqoDVCRicnttERETByJ/kpCuAq2VZ/iXQwVDTsFWUH74t6kP8Tjc3myIx6/cfcPdZZwUoMiLysbmBQR+EAAA2jzqyToyIiCiY+JOc5AAID3Qg1HRsVisyqiqhFUUIOj1g928yu87gqZHiq5lCRERERFQf/hRhnA7geUmS2gc4FmoiDq0Gz6TuwJScLCiK//NFdDoDAMDCIoxERERE5Ad/Rk5uAZAIYI8kSYcAHPtOVJVlueMpR0aNxmq1AQAMRuMpJSedXTZc2r0XqgqLAhUaEREREbUg/iQn+73/KEj4pmEZDEYop7DS1iSKaG8OQTZ36yIiIiIiP9Q7OZFl+a6GCISajisrE/N7nYFDgnBKIyeqd1qXqPi73xcRERERtWT+1Dlpe5LDCoBKWZZL/Y6IGp2rshJxBgPsbjcqTqEdQe9ZEK9RuLs0EREREdWfP9O6soGTF7KQJKkYwOuyLE/1JyhqXE6rZ1qXS/Rnf4RqvLt1aViEgSjgRAG4qJ0Lep0WoohafgsTERE1T/4kJ3cAWAjgRwBrABwEEAfgOgBXAngJQCiAyZIkFcmy/FZgQqWG4rZ5FsS7TzE5EY1mAICOb5qIAs6gAWYOtiMqSouSEsDl347fREREpzV/kpNRAN47wdqTVZIkvQWgvyzLIyRJKgUwGgCTk9Oc27sgXhE1p9SOYDABYHE4IiIiIvKPPx+VDwHwbg3HPgQwzHt7EwBuKdwMuO0OAICiOcXkxBSKEocDZU7u1kVERERE9efPyEkRgD4Avj3BsT4Ayr23QwFU1adhSZImA7hIluUh1R7rC+B1AAO8154ry/LMekdNNVIcds9XjT8/Dkeoka3wwH9bIQgCtqoqBIFDKESBYnUBg94NAQBsHsURSiIiCk7+vBtdDWCKJElOAOsAFMCz5uRaAC8AeFuSpCgAjwL4va6NSpL0KIApAH6u9lgMPEnQBgAPAjgHwJvetSzL/IidTsCqqthvtcIWHgXjKbSj03u2ElZVFQ6HHQbDqbRGRERERC2NP8nJZHiSkVnefz4KgKUAnoFncfwZAC6srTFJkhIBLAYwCIB8zOH7AdgBjJZl2QUgVZKkzgAmAGByEiBpIWa8v/NfjOzeD31PoR1fcgIAVquVyQkRERER1Ys/RRhdAO6WJGkagKEAYuGpGP+rLMtZACBJ0pcAEmVZttehyX4ASgD0BvAcgPbVjg0C8LP3mj4bATwtSVKcLMsF9Y2fjmfz7tZVPbnwhyhq8JzUHWZRA0tBPiIjowIRHhERERG1EH4vMpBleQ+APTUcK6lHO58C+BQAJEk69nASgO3HPHbA+7UtPFPK/KLVnmJNj2NoNOJRX5sTu92TnOgNRohizRPZfcdOdk5bsxmhGi2cleUB/x43tOb8GtZFsPcPCO4+aqtt0S1qRDSz/151FsyvIcD+ERHVpk7JiSRJmQCukWX5X0mSsnDy8l+qLMuB2qXLDM+0rups3q9+zxkSRQFRUSF+B3Uy4eGmBmm3IZ1XXoGLevRGoa0SJpO+1vMNBl2NxxzenwzR7Wiw73FDa46vYX0Ee/+A4OyjodomeOHhJphr/m8YFILxNayO/SMiOrG6jpz8hCO7cP2ExqtNbAVw7FwjX1JSr53AqlMUFeXlFr+DOhGNRkR4uAnl5Va43UpA225oZqcTbU1mlKkCrFZHjeeJogCDQQe73QlFOfGPgMFbHb70UBFKSvx+iZpEc34N6yLY+wcEdx+tTgDwJPzl5VbYxeDqn08wv4YA+3cqwsNNHJEhagHqlJxUL7goy/KdDRbN8fYBaHPMY777uafSsMvVMH8U3G6lwdpuKKJbAUQRilZfY9JRnaKoNZ7nhGfKl72yqtl9H3ya42tYH8HePyA4+6gowMBEF3Q6LaAGX/+OFYyvYXXsHxHRifm15kSSpDAA4bIs50qSpAcwDkAygHWyLP988mfXy88AHpQkSSPLstv72DAAMhfDB45WVQCIEE3mU27LN/PEaQnsyBRRS2fQAPOH2REVpUVJCeBy1f4cIiKi5qbe46OSJJ0FIAfAI96H5gJ4FcCtADZKkjQicOFhKYBwAEskSeouSdKd8NRPmR7Aa7R4Ou8giGA89TUiLsHzI+W0Wk+5LSIiIiJqWfyZvDkNQBqABZIkmeBJSt6UZTkawBIAkwIVnHd05FIAEoCtAJ4H8KQsyysCdQ0C9N7Nt0TTqScnNlFEmdMJp9NZ+8lERERERNX4M63rbAA3yrKcJUnSlQBMAFZ6j70HT7LilxOtZ5Fl+S8A5/rbJtXO4B3tEE1hONUZwp9ozPhv60aMv/iiUw+MiA6zuoCLPzBDALDxekBX847eREREzZY/yYmCI9v7Xg6gFMCf3vvhALjYoBlxOhwodNhhFDUQzaGnnJzovVXhbTZO6yIKNJuLGQkREQU3f5KTvwHcK0mSFcCNAD6TZVmVJCkOwETvcWombHY7Ht3xLwBgeljUKS+y1ek8Oz9brbZaziQiIiIiOpo/ycmTAL4CcBOAQwCmeh/fAc8alksDExo1Bot3Vy2NRgtB1AJwn/wJteipOnGp1B1K7int9ExERERELVC9F8TLsvwPgE7wrAPpIMtyuvfQaAA9ZVneEsD4qIFZrZ5CiSazGXUocVKrcEFA97BwmLhbFxERERHVk191TmRZrgDwxzGPrQ9IRNSoLDk5mNG9F0qAOhVgrI3qndYlcLcuIiIiIqonv5ITCh720lK0N4fA6HKhRDn1ar6q3rMgXmSFOCIiIiKqJyYnLZyjshIhAJyCADUA07pUgwkAoHGf2toVIjqaAKB/vBs6rQYCN+0iIqIgxeSkhXNUVQIAXKI/9TiPJ3gLOWoDMApDREcYtcCSS22IigpBSQlOeWc9IiKi01Fg3pFSs+Xy7tblDlBy4qsyrwvAKAwRERERtSxMTlo4l3dXLbcmMINogikMDkWBU+G0LiIiIiKqH07rauEUu6dYoqINzI+CO7Y1bt36J7RaHatxEgWQ1QWMWG+GIAKfjwR0XHdCRERBiCMnLZzd5UKxwwGHVh+Q9gxGMwDA5XLC6XQEpE0i8iixCyhmCSEiIgpiTE5auJ0hZjz431bsjEsMSHt6g/Hw7crKqoC0SUREREQtA6d1tXAW74L46knFqRBFDR7vJCFMo0HVwQOIiooKSLtEREREFPyYnLRwVqsnOTEEKDkBgG6hYYjQamEpLgpYm0REREQU/JictHBnl1fgAqk7ymyWgLVp91ZztJWVBaxNIiIiIgp+XHPSwsW63OgaFg6TRhewNu3wbCNkrygPWJtEREREFPw4ctLC6VQFgAjRFBqwNh2CJzlxVFYGrE2ilk4A0D3GDa1GA4HbCBMRUZBictLCGbyV3IWQ8IC16RQ8A3LOKu7WRRQoRi3w7hU2REWFoKQEcLmaOiIiIqLA47SuFs4oen4ExEAmJxoNAMBlCdw6FiIiIiIKfkxOWjCHzQqDNznRhEUErF2XqIVDUeC02wPWJhEREREFPyYnLVhlUeHh29qQwNUj+Sk0Frdu/RNp4WEBa5OopbO5gOHrTTh/KWDllC4iIgpSXHPSglWWlKLE4YBGFAGNFnC7A9KuwWQGAFgsXHNCFCgqgLwq8cgdLoonIqIgxOSkBbNoNXjgv62IiW2FxxU1YO3qDZ7kpIK7dRERERFRPTA5acEqKioAACEhoXC7A5ecJKtuPNmxC4TikoC1SURERETBj2tOWrBK78hGSEgoFDVwyUmYVoszo6KR4HQGrE0iIiIiCn4cOWnB1PTdeFHqjiJzSEDb9dVM0QdwqhgRERERBT+OnLRgSmkJuoWFI04T2BxVDPVsS2zkgl0iIiIiqgeOnLRgbm+RRLdWF9B2NWGebYnNoghFUSCKzIGJTpUAoEOEAo1G5E5dREQUtJictGCKLznR6QM6hKYLjwEAaAURlrIShEbFBLB1opbJqAU+vNqKqKgQlJQALtY6ISKiIMSPtFsybwV3RW8IaLMacyhcqgIAqCgoCGjbRERERBS8mJy0YKLDk5zAFOAF8aIIi1uBU1FQUVwc0LaJiIiIKHgxOWnBNL6tfkNCA9725LyDuGXrn6g06APeNlFLZHMB135swkUrASundBERUZDimpMWzOlywSFqIIZEBrxtrcmT8JSXlwW8baKWSAWQWSYeucNF8UREFIQ4ctKCzcrdh1u3/glbUoeAt200e5KTiorygLdNRERERMGJIyctlKqqKCsrBQAYzeEBb/98sxHXdOwCTUZGwNsmIiIiouDEkZMWymazwuFwAAAMprCAt99ao8WZUdHQFHFBPBERERHVDUdOWqjivXsxReqOUpcLGp0BToc7oO279QbAaoNitQS0XSIiIiIKXkxOWqiKgwfQNSwcpS4XDilqwNt3G8yAtQyC1RbwtomIiIgoOHFaVwtVeagQAGAF4HIrAW9fDfGsY9F4p44R0akRALQOUZAUBu7URUREQYsjJy2UrbQY4QDsogg18AMnQFgUAMDgZkEGokAwaoEv/2dFVFQISkoAF/9rERFREOLISQtlL/XUH3FqGyY/1UTGAgDMDZH4EBEREVFQYnLSQrm89UdcekODtK+LivN8FQS4fJXoiYiIiIhOgtO6Wiil3JucGEOgaYD2tdEJuP2fv2Bzu7GxohzR0TENcBWilsPmAu7/2gitBlh4EX95ExFRcOLISQvlsNngUBSooYEvwAgAGq0WGm+V+OLioga5BlFLogLYVaTBfwVomHViREREpwEmJy3U+qoK3Lr1TxSnSA12jZDQSABASQkLMRIRERFR7TgzoIUqKvJsJWwKb7jpVpdFxyAhxABr6i7gzHMa7DpEREREFByYnLRAqqqisPAQACDEu+VvQ2hvNKKnSY99B/Ma7BpEREREFDyYnLRA5YcO4dmUTih1OmEyhsHeQPPXHToD4LLC6d22mIiIiIjoZLjmpAUq3puNLqFh6BkeAegaZithAHCawwAAajmTEyIiIiKqHZOTFqhk/34AQKWqwulSGuw6inc9i85ma7BrELUkUQYV0aamjoKIiKjhMDlpgSr27wMAVGk0UJSG25NUiPYUYjS73A12DaKWwqQFfrjRgn/uB0y6po6GiIioYTA5aYFsBfkAALuxYT+C1cUlAwAiRZFV4omIiIioVkxOWiCltAQA4AyNaNDr6OOSoagqHKqCIu9oDRERERFRTbhbVwuks1g9NyJjG/Q6Gp0O47KykF9cgFVVlYhv0KsRBTebCxj3vRE6LTBnMH95ExFRcOLISQtktdvgUBRoWrVu8GvpIzyL4g8ePNDg1yIKZiqALfka/J4LqA23VIyIiKhJMTlpYRRFwYupO3Hb1j+hpnRv8OtFxSYAAPZzWhcRERER1YIzA1qYvLwDcLmc0Ol0MIZEwe5s2I9g+0RGY3gnCcZt2xr0OkRERETU/HHkpIXJzNwDAEhKbofG2OE3JiwK/SOjEFFe3vAXIyIiIqJmjclJC2P59Re80q0Xhickwt2ANU58tG1SAABRqmdKGRERERFRTZictDBK3gF0CAlBbGh4o1zP2E6CoqoI0WhQtDe7Ua5JRERERM0Tk5MWxlBRCQBQW7VplOtpjWYUulwAgL1btzTKNYmCiaIoKNybg/TNv0EvuGAQXEj75Sfs27kdVd6aRURERMGCC+JbEIfVgjjvbUPHnnA10nULtAbEQUHRzu3Atdc30lWJmh+3y4W0n37Ajr05+C9jN1JTd6GjpQr3JbWDEcByLDx8rhVALoC1xUXIiY1B9+49cUav3ujdvSeiWjfOhw9ERESBxuSkBcn47VfoRRGVbhd0iZ3hcjTOGpCqqDig9CDU3NxGuR5Rc1JVVop/1r6Him3b0KqqEuEaLX7LysBPRYUAgNDwCCiqikq3Gy6oUABoIcAsitCLIjKLDmFLZjr+/PN37IiMwviOXfCPqsKVkoKOl12ODgPOgiAITdtJIiKiOmJy0oLkbf0byQAKNFrYGykxAQC1rQRbUS6KKiugqirfKFGL53a5sO2zT5D//bdoU1mJOI3GM6qp0cLqdqNHp07oMfxCdGvXBsmxkYgNNUOvFSBAgdGog83qgFsFysssGFN6NrIPlWL7nhxE5ORDFAQkCQKQkwP3grfwy5vzYOvYGb1vuhkJnTo3ddeJiIhOislJC+LckwEAsMTGN+piI1O3s3DPytlwOh04a08GOvENErVQe/Zk4PPPP8bmr77Ei22SEAYAGg2KXC6UxUYirnsHdO3TGV3VYyddumFzipicNwSiRsTUhB+ggxsR4SZEhJvQvW0CLu/fFQCQf7AY6X+nwr0vH0mqgASNFsjOQun0qZijFTFoxDW48MKLYDKZG7v7REREtWJy0kI4nQ7szj+I8LBwaHuehcbc1FdnNKF9595I3/U3fv31JyYn1KIU7s3BtjWrsG/XTrz+79bDj28LD0d4q1i0HtAD/Xp3BNxOz4HjEhMPBSJ+q0ry3E4QAZy4UFF8QjTirzwfAFBWVontm/4DsvOg2h34atd//9/encfHedX3Hv88M6N9l2VZki15ie0TJ97ixHbsxMapSXwJUFMKpOQFhaRsyeW+aEkh9BZCLgHaQlualttAoQEKCaFAbhZILilZ7XhJ4njDjk9iy44t27IsWbL2ZWae+8d5ZE+EJjexZM2S7/v1mtfI5znz6Pys55l5fuecOQ//d+tmCgoK+eTKK1lw5WoWvWs9kZyc8QtYRERkDJScvEVs3ryJuw8e4P9UTuILcy6lbwKndQHMuXgpr+x9gR2P/5aPfORjE/q7RSZaX1cX2352Lz3PbaU+FqXBCzE1ksOP8/NZfNkSrr3iUlaY6UTiQUIynJiMs7KyYq5850oAmk608amd0/n1xudpaW7hklPtFPz6V7zw4AO019Uy5z1/zOxll5+XdoiIiLxRGZGcGGNCwJeBjwEVwEbgZmvt/pQ2LIM88MAvAVi1Zt2EJyYA8xas4PLdz3Bhbj52wzOYVasnvA0i51NfXy/bHnqAzg3PUNfTQ3U47DZ4IY7FosRmTuVnN6yntCAMfhzi5ychSWbalEnccM1KPnr1Cva80sSxZ3dS2ztIZSRCZctJ4v/2HZ68638TnTOHOe98NzMWXTKh7RMREYEMSU6ALwGfAm7ArZ75DeBRY8zF1trBlLYsA7y8aSM92909RhZffnVK2lBSUUWsqAyIc/CnP1FyIhkvHo9z8IXn2WH3smHb82ze/CxXlpTxyRmzIBzmVDTK6epK5ly5hJUNk/GjwVuVP/GdA4k8z2P+3HqYW09//wC7t+yh175KfdxjajgMjY3cfetn2ZWfz+rVV3HFssuZP38BReUVKW23iIi8NaR9cmKMyQVuAT5vrX0kKLsOOAa8F7gvhc1Le72dnRz73ne55YK5vJCTS25xLdFYai6OupetI/7cI8waHGTTj+5m5UduTEk7RM7FqaYjNG7ZzKl9LxE/1sSk3j7KIhFeOHyIp1qaATg6OYfG0kJqFhkWL5qNFyQkZxKTNJOfn8fSNUtgzRJOtXawZ9Nu/KaT7Ojs5HDzcQ4dOsjhXz/MJ2bMpNmHgcmTKZk9h9qFi2lYfAk5eXmpDkFERLJM2icnwGKgBHhiuMBa22GMeRFYjZKTUcXjcfY9+TjH7/kx9eEw3bEoVe/7OL0pSkwASi5ayo6dz7BksIfSp5/iv442seKmT1NcUZmyNon4vk9vRzvtx47S2dxMd2srHUODHOzppqnpCF1Hm7g+DuWRCKVA6fALIxEG43HmNdRzwTuuYtWiC5lZVYo/2O+2p2lCkkxlVTmr/nAVAEv638Xz+4+wccdLNBxrI+KFmOYBbW3Q1kZs6xZsPE6b7/NUWSlF06ZRWzuV+sIiyvPyKKmeTOmUWsqm1BDJzU1tYCIiklEyITmZFjwfGVF+DGg4151GIuO7mO6mPa/y9L/eRe1AF/gAPu5uHu7Z9+GhcBmDXgjwWRLrYXZ8AADPvcDV993PD1BET7CHJQxwsT9wts6ZfQM+3B/PpcMP4fs+S0JRVtJPFTHKIxHqQyF6YzEeWvABjg8uhTFcL3kehMMhYrH4cDPfvLV/i/erv+CScJTpjY0cvuXP+cqpHjpLqokUFHO5N8h0P0o8NPrf55HcSQx5btuiaBczYv1Jf9Vvcivp99y8//nRbi6I9SWt+3hOBd2hHEJhDzPQzdxYT9K6T+VUcDrkTp050R4ujvYmqenzTKSMtpBbCemCaC+L4r2v2Z5oQ6iYEyF3ITcz3s9lr9OGZ0OFHPVc3Yb4ICviyetuCRVyiBw8D+qJckWs+8y2xGMO4DmvgFc8194aP8pav/dMO0fenWYbeezFtaGKGNfSS7IDYwe57CIX3/epIMZ6b/jv9vv1d/sRtvmubilx3hcaSFp3bzzCFt+1t8CPc31kwJ1viecIEAL2Dvk83jtAdLCP/Oggt0+pINfzyPc8IsHxFgHKgW0nW/juq40A5IZC3LxkGXHfpyUaozmcT3tpNafrFzI0ZwVEcgGfX/QDTaOGPy6i/tmIvtVyGZHzveZeNRRcAy3xOL840Uhh41YmnTxI1UAXdSEoCIepBX678Wm6om6FsRvqZ/COKTUMAW3Boy8WY8D3GfLhG6e66QrnEcnNZ1VBDgvCcXw84p6Hj4fvDT9C/DpcRlcoB88LMT/ei/n/nL/D5+SFsV7mRUeeD2f/757OKePU8DkZ62NBrOc1x0riUbYpp4yToVzAY0asj0XRbpLZGimlOexGkqbF+rk02pW07va8Mg57eeD71MYGWBbtTF43UszhcAEA1fFBVgydTlp3d6SIxrBbIroyPsSqoY6kdfeGi3gl4uqWxaOsGWpPWteGC9kXKQKgOB5l7evUPRAppHXabO689UbycjLhEkNE0k0mvHMML8Y/MKK8HzinLvdQyKOiomhMjRrpzrvvY82rO1lWNTlpne+8ePZDfG3DTC6tnpK07vd2baZ10GUSb5vWwKKautErenD33m0c7Xcf3FfUTWN23TTA9eo+Fy/kPxf9Ja1TLoHkn6sTatvae7jqub/h3R0vUBb2ePnQHuLsAWD9zNksnVRFsuuu7zz/BD0xt4TqVdNnsnxy8v/DH2x7mlND7v9w5bTpLK+pTVr33u0bOD7gLpgvqZvG8rppSev+cuezHOpzScb8mjqWTUueIz+8ZysHut1FytzqGpY2zEha97GXXuBgp7vwmFk1mctmXJC07pMvb+dQh7tAmFo5iUtnJV+eedMru3n1lLvbeFV5BUtmm6R1nz/4EodbWwAoKynlEnNR0ro7j7zMkRNuOlN+UTGL5s3//Qwm8NLRRo4cPwpAuKCQhRcvTLrfA82v0nTU9UVE8/JYsCD5F7OPnGzi6JFXASjPyWH+okuT1m3uaqH1kEs48kMhKqe+9lwdjMfpjMXp9D26imrwFizHK28gWtbA/8yPcHzKUgaKRhxvKTqnHu6Y4OW4C+bBxe88++94lMktO6lt2U7P6mvxuo7C6SP00sLxwSglIY/iiOsYKAiHKQhe1nH8AKejbiGA0vrpXDRllHPSd4+7d27ixIB7218+tZ6ltVOTNu9nuzZxODgnF9VOZdnU+qR1H/zdZg70uD/chVNqWF4/I2ndx/ZsZX+XSxxmVFWzfMaspHWf3vc8+4NzsrayiuWzZietu+Xlbew/1QZARXkFy1/nnNy+fzv7W08CUFRaxvK585LW3du4i/3BFENTXMLyCy9OWvfAod+xv/kYADMKCln+Oudk0+G97D/mMu/avHyWL1ictG7rUcsDGx/giXWruf6a5OejiEgynn/OXeATwxjzx8AvgEJrbV9C+X8Cedba9W9yl42xWHxmZ2fyXrhz8dLhFh793o8o6z6N6+D03FADgOfGRnZV1BMNu3ywoecUVQPdwTYv6O31gos7j32V0xiK5OLhUdNzikn9ncH+zu5z+Hc0VkxlMCcPD49Jve1URgfw6+aQe9FKQiXl4xajB4TDYWKx2Ch92G+eH4/Td3gvzW0n6O1oZai/h/qO41T0d+LFRr+Hw7byOmIhd9Ezo+cU1QPJRwx2lNcyGPSmNvS2U9Of/EpyV1kNA+EcPM9jam87dX3JezJ3l9bQG3EjBrV9ndT3j+zJPHuFvq+kmu7coNezv4uG3vazxwWv7aV9pbiaztwCPM+jqr+bhp62YHfembpesO+DJZPpyC0EDyoGepje3RpU9Ubs1+Nw8STa84rxPCgb6md6Z0vS9h4tnsSp/BIAigf7mNn12rp+QtubiypoKygHoGCon1mnm38/OQnqtxSW01pYDnjkRQeZ1XHsNe1NbEtrYSkni1y/Q24syqz2o6PuE6C9oJSW4kkARGIxLmhvwvPODuD4Ca/pLq6kvaqenNx8Irn5TOrtwMsvxissIVw1lVBJ5dn2pOnbohu9DM7BNG0jAB7EBvuJtR3D72jB7+/G7+ultbCMoegQQwN9lJ86RnlvB148BvG4WyjAj+PFY3i+z97SGvo9Dz8eZ2pvB7X9yUci9pROoS8YwarrO83U1zl/Xyqtpivszt+a/i4aejuS1t1XMpnOSD4A1QPdzOw9lbTuy0VVtOe6vrSqgR4u6G1LWvdAcRWtuYXgQ8VgL3N7WpPWbSys5GReMQBlQ31c2H0yad1XCypoDs7fkugAF3WdSFr3SEE5x/LdJMXC6CALupqT1j2aX0pTcK7nx4ZY1Hk8ad3m/BJisy/ito+tTzqSeq5KSwsIh0MHgeRZoohkvEwYORmezlUHHEgorwN2nutOo9HxnRIxr6Gald++nfb2nnHf99gkm3L05kUiISoqimhv7x+/GM0s3sznzEfH57eO6mx86fY3HB/ZHh+MNcbx7bA4H87LOXhe1QSPNy7bj1PFJyLy+sb3ixfnx06gE1gzXGCMKQeWABtS0yQRERERERlvaT9yYq0dMMZ8G/g7Y8xJ4BDwTdyIyv2pbJuIiIiIiIyftE9OArfh2vp9oAB4BlinGzCKiIiIiGSPjEhOrLUx4NbgISIiIiIiWSgTvnMiIiIiIiJvAUpOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLnu/7qW7DROvzfT8/Hh//uMPhELFYfNz3m06yPUbFl/myPcZsjw+yP0bFd25CIQ/P8/qBgnHfuYikjbdictIB5AHHU9wOEREReeNqgQGgPMXtEJHz6K2YnIiIiIiISBrSd05ERERERCQtKDkREREREZG0oORERERERETSgpITERERERFJC0pOREREREQkLSg5ERERERGRtKDkRERERERE0oKSExERERERSQtKTkREREREJC0oORERERERkbSg5ERERERERNKCkhMREREREUkLkVQ3IBsYY0LAl4GPARXARuBma+3+lDZsHBhjvgi83Vq7JqFsMXAncBnQBvyztfbvU9LAc2CMqQS+DrwLKAV2AV+w1m4Mti8mg+MDMMZUA/8A/DegAHga+Jy1dm+wfTEZHuMwY8xc4EXg09baHwZli8ng+Iwx04FDo2z6uLX2+5ke3zBjzJ8CXwBmAQeA2621Pw+2LSZDYzTGrAGeTLL5oLV2VibHB2CMyQFuBz6M+9zbAdxqrd0UbF9MBscnIqmjkZPx8SXgU8DHgRWADzxqjMlNaavGyBjz58BXRpRNAv4LeBn3ofNl4A5jzA0T3sBzdx9wOfAnwFLche1jxpgLsyQ+gIeAC4B34GLsA35rjCnMohiHL5DuAYoSyrIhvoVAP1AH1CY87smS+DDGfAi4G/guMB93Xt5njFmRBTFu4rV/t1rgGiAKfD0L4gP4InAjrlPuEmAf7nOvLkviE5EU0cjJGAUJyC3A5621jwRl1wHHgPfiPnAzijFmKvB9YBVgR2z+BDAA3GStjQIvGWPmALcCP5jQhp4DY8xs4GrgioQevs/gLuKvx13EZ2x8cObi/CDwVWvtnqDsDlzP5sXA28nwGBP8L6BrRFlGH6OBBYC11h4fuSHoNMjo+IwxHnAH8C1r7Z1B8R3GmCuBNcEjY2O01g4CzcP/DpLobwG/DEa+/ooMji+wHrjXWvsYgDHmFlyisgKYS+bHJyIpopGTsVsMlABPDBdYaztwvfGrU9OkMVsCtON6b7eO2LYKeCb4wBn2BGCCqUTprhV4J7BtuMBa6wMeUEnmx4e1ts1a+8GExGQK8JdAE7CXLIgRwBizGvgk8JERm7IhvoW4v9VosiE+A8wA7k0stNaus9b+DdkRY6L/DtQDfxH8OxviawPeZYyZYYwJc7ZTYAfZEZ+IpIiSk7GbFjwfGVF+DGiY4LaMC2vtw9ba6621jaNsnsbosUIGxGut7bDWPmKtHRguM8a8HzcF6jdkeHwjGWP+DdeD+37gz6y1PWRBjMaYcuDHwP+w1o6MJePjw42cVBtjNhhjThhjNhpj1gXbsiG+ucFzkTHmN8aYFmPMVmPMu4PybIgRAGNMPvDXwD8ljIRlQ3yfwU1TO4hLSr4OfMBae4DsiE9EUkTJydgVBs8DI8r7gfwJbstEKGT0WCED4zXGXIGb9/6gtfZhsiw+4J9wc75/AjxgjFlCdsR4F7DZWnvvKNsyOr5gquhc3GINXwSuBZ7HzedfS4bHFygNnv8DN3pyDfAY8GAWxTjsw7hFKf45oSwb4puHG2F/D+47fD8A/sMYs5DsiE9EUkTfORm7vuA5L+FncG/APRPfnPOuDxdrouEPm4yK1xizHndhtAX4YFCcNfEBJKzO9QncXPBPk+ExGmM+jJs2siBJlYyOz1o7GIwMRRNG+LYZY+bhpudldHyBweD5m9baHwU/7wiS58+SHTEO+1Pcd03aEsoyOr5gNbl7gLXW2g1B8QvGmItw3wPL6PhEJLU0cjJ2w0PXdSPK63Bz/LPNEUaPFeDoBLflnBljPg3cDzwCXGutHU4sMz4+Y0y1MeaDwTxwAKy1cdx3GKaS+THeCEwBjhhjuo0x3UH5d4wxe8j8+LDW9iROPQzs5ux0mYyOj7PvjbtHlO8BZpIdMWKMmQys5PcXRsn0+JYBObgRvURbcKN+mR6fiKSQkpOx2wl04laXAc7Mh18CbBj9JRntGWBV4oUvsBa3slBLitr0phhjbgL+Bfg2cN2Ii8CMjw93EXAv8LbhgmC1oCW4BCXTY/wQbkrJ4oQHwG24KVAZHZ8xZmGQdF05YtNluIv3jI4vsB23ytrlI8oXAPvJjhjBJSY+7j5DiTI9vuFOuYUjyhcAr5D58YlICnm+76e6DRnPGPM13KpBN+JunPZN3Eo0C4IlJTOWMeaHwIzhmzAGK63sw91H4xu4HrS7gE8lTM9IW8bdsO93wK+Am0dsHp6KkLHxwZllWh/FHYMfx80L/2tgHe5Cvp8Mj3EkY4wP3GCt/WEWHKMh3H0yioCbcCvMfQJ3vC4FTpDB8Q0z7gavn8e9dz6Hu+/QV3AXsXvJjhhvAz5krZ07ojwbjtGngMm447IJN33tr4ArgUYyOD4RSS2NnIyP24B/x90b5FncCibrMj0xGU3Q67UOtxToi7iba30ugz5w3oebjvBHwPERjzuzIL7hpZGvwy3d+TPchV8lsMpaezgbYnw9mR5fMAXv3bi/289xowzLgauttbszPb5h1tqv4u4w/jVcMvJ+4L3W2qeyJUagBrfk7mtkenzBMboe9x7zQ9zS7H+A+w7KlkyPT0RSSyMnIiIiIiKSFjRyIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhaUnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJScikpaCm0mKiIjIW4iSExFJO8aYPwR+FPy8xhjjG2PWpLZVIiIicr5FUt0AEZFRfDbh5xeBFbi7iIuIiEgWU3IiImnNWtsJbEl1O0REROT883zfT3UbRETOMMY8Bbwtoegq4EngKmvtU8aY24E/Ab4AfBWYDewDbgJ84E5gIXAA+Iy19vGEfc8H/hZYHRQ9DtxirW08jyGJiIjIG6TvnIhIurkZ2B48VgClo9SpB/4R+BrwAaAS+AXwU+B7uOQlBNxnjCkAMMbMBTYB1cBHgT8DZgHPGmOqz184IiIi8kYpORGRtGKt3Qt0Ap3W2i3BzyMVAjdba39qrX0I+FegDrjDWvt9a+2DwJeAKsAEr/ky0Ae83Vp7v7X257hRmQLgc+c1KBEREXlD9J0TEclUmxJ+bg6eE7+b0hY8lwfPa3HTw3qNMcPvfZ3ABuDq89RGEREReROUnIhIRgq+KD9S7+u8ZBJwXfAY6eS4NEpERETGRMmJiLxVdAC/Bf5hlG3RiW2KiIiIjEbJiYikoxgQHud9Pg1cBOyw1kbhzF3ofwLsB3aM8+8TERGRN0nJiYikow5ghTHmD4CycdrnV4DNwK+MMXcB/cAngfcA7xun3yEiIiJjoNW6RCQdfRsYAh7FraY1ZtbaXcAq3L1QfoxbergWeI+19v7x+B0iIiIyNroJo4iIiIiIpAWNnIiIiIiISFpQciIiIiIiImlByYmIiIiIiKQFJSciIiIiIpIWlJyIiIiIiEhaUHIiIiIiIiJpQcmJiIiIiIikBSUnIiIiIiKSFpSciIiIiIhIWlByIiIiIiIiaUHJiYiIiIiIpAUlJyIiIiIikhb+Hxxlzwq+L5mVAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50: {'width': 3}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/search.html b/search.html new file mode 100644 index 0000000..1d911f8 --- /dev/null +++ b/search.html @@ -0,0 +1,143 @@ + + + + + + Search — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+
    +
  • + +
  • +
  • +
+
+
+
+
+ + + + +
+ +
+ +
+
+
+ +
+ +
+

© Copyright 2023, Griffin Chure & Jonas Cremer.

+
+ + Built with Sphinx using a + theme + provided by Read the Docs. + + +
+
+
+
+
+ + + + + + + + + \ No newline at end of file diff --git a/searchindex.js b/searchindex.js new file mode 100644 index 0000000..be9005b --- /dev/null +++ b/searchindex.js @@ -0,0 +1 @@ +Search.setIndex({"docnames": ["citation", "getting_started/algorithm", "index", "io", "methodology/baseline", "methodology/fitting", "methodology/peak_detection", "methodology/problem", "methodology/scoring", "quant", "quickstart", "tutorials/calibration_curve", "tutorials/quickstart"], "filenames": ["citation.rst", "getting_started/algorithm.ipynb", "index.rst", "io.rst", "methodology/baseline.ipynb", "methodology/fitting.ipynb", "methodology/peak_detection.ipynb", "methodology/problem.ipynb", "methodology/scoring.ipynb", "quant.rst", "quickstart.ipynb", "tutorials/calibration_curve.ipynb", "tutorials/quickstart.ipynb"], "titles": ["Credit", "Methodology", "About", "hplc.io", "Step 1: Baseline Correction", "Step 3: Fitting Peaks", "Step 2: Detecting Peaks", "The Problem", "Step 4: Scoring the Reconstruction", "hplc.quant", "Quickstart", "Absolute Quantitation", "Quickstart"], "terms": {"thi": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "packag": [0, 2, 4, 10, 12], "i": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "primarili": [0, 9], "written": 0, "griffin": [0, 2, 4, 5, 6, 7, 8, 12], "chure": [0, 4, 5, 6, 7, 8, 12], "contribut": [0, 12], "from": [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "jona": 0, "cremer": 0, "who": 0, "ar": [0, 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "both": 0, "stanford": 0, "univers": 0, "support": 0, "nation": 0, "scienc": 0, "foundat": 0, "postdoctor": 0, "research": 0, "fellowship": 0, "under": [0, 1, 4, 5, 6, 7, 8, 9, 12], "award": 0, "number": [0, 4, 5, 8, 9], "2010807": 0, "If": [0, 3, 8, 9, 10, 11, 12], "you": [0, 1, 2, 6, 7, 8, 9, 10, 11, 12], "end": [0, 9], "up": [0, 2, 8, 10, 11, 12], "us": [0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 12], "your": [0, 4, 6, 8], "great": 0, "pleas": [0, 2, 8], "consid": [0, 1, 5, 6, 7, 8, 9, 10, 12], "project": 0, "The": [0, 2, 3, 4, 6, 9, 10, 12], "being": 0, "activ": [0, 1, 6], "develop": [0, 1, 2], "improv": [0, 12], "so": [0, 4, 5, 6], "ensur": 0, "version": 0, "misc": 0, "10": [0, 1, 5, 6, 7, 8, 9, 10, 11, 12], "5281": 0, "zenodo": 0, "8197910": 0, "doi": 0, "url": 0, "http": 0, "org": 0, "author": 0, "keyword": [0, 6, 9], "github": 0, "titl": [0, 5, 6], "cremerlab": 0, "0": [0, 1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "2": [0, 4, 5, 7, 8, 9, 10, 11, 12], "00": [0, 1, 4, 5, 6, 7, 8, 10, 12], "publish": 0, "year": 0, "2023": [0, 12], "note": [1, 4, 5, 6, 9, 10, 12], "notebook": [1, 4, 5, 6, 7, 8, 11, 12], "chang": [1, 6, 7], "lot": 1, "h": [1, 7], "igh": [1, 7], "p": [1, 6, 7], "erform": [1, 7], "l": [1, 7], "iquid": [1, 7], "c": [1, 7, 8, 10, 12], "hromatographi": [1, 7], "hplc": [1, 2, 5, 6, 7, 8, 10, 11, 12], "an": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "analyt": [1, 2, 5, 6, 7, 11], "techniqu": [1, 2, 7], "which": [1, 2, 5, 6, 7, 8, 9, 10, 11, 12], "allow": [1, 2, 4, 5, 6, 7, 9, 10, 12], "quantit": [1, 2, 4, 5, 6, 7, 8], "character": [1, 2, 7, 12], "chemic": [1, 2, 5, 7], "compon": [1, 5, 7, 8], "while": [1, 2, 4, 7, 8, 11], "mani": [1, 2, 7, 8, 10, 12], "technic": [1, 2, 7], "detail": [1, 2, 7], "now": [1, 2, 4, 7, 10, 11, 12], "autom": [1, 2, 7, 10, 12], "programmat": [1, 2, 7], "clean": [1, 2, 7], "process": [1, 2, 7, 9], "result": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12], "data": [1, 2, 4, 5, 6, 7, 8, 10, 11, 12], "can": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "cumbersom": [1, 2, 7], "often": [1, 2, 4, 6, 7, 10, 12], "requir": [1, 2, 7, 8], "extens": [1, 2, 7], "manual": [1, 2, 7, 8, 10, 12], "labor": [1, 2, 7], "scenario": [1, 7], "where": [1, 4, 5, 6, 7, 8, 9, 11], "have": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "environment": [1, 7], "sampl": [1, 4, 5, 6, 7, 8, 10, 12], "contain": [1, 3, 5, 7, 9, 10, 12], "sever": [1, 4, 6, 7], "differ": [1, 5, 7, 8, 11], "speci": [1, 5, 7], "through": [1, 2, 4, 5, 7, 9, 10, 11, 12], "principl": [1, 7], "chromatograph": [1, 2, 4, 5, 6, 7], "separ": [1, 2, 3, 4, 7], "instrument": [1, 7, 11], "decompos": [1, 7], "its": [1, 5, 6, 7, 9, 10, 12], "measur": [1, 5, 6, 7, 8, 10, 11, 12], "time": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "take": [1, 4, 5, 7, 8, 9], "each": [1, 4, 5, 6, 7, 9, 11], "pass": [1, 4, 6, 7, 8, 9, 10, 12], "column": [1, 3, 4, 5, 7, 9, 10, 12], "mai": [1, 4, 6, 7, 8, 9, 10, 12], "look": [1, 5, 7, 8, 11], "someth": [1, 7, 10, 12], "like": [1, 4, 5, 7, 8, 10, 11, 12], "import": [1, 4, 5, 6, 7, 8, 10, 11, 12], "panda": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], "pd": [1, 4, 5, 6, 7, 8, 11], "matplotlib": [1, 4, 5, 6, 7, 9, 11], "pyplot": [1, 4, 5, 6, 7, 11], "plt": [1, 4, 5, 6, 7, 11], "seaborn": [1, 2, 4, 5, 6, 7], "sn": [1, 4, 5, 6, 7], "set": [1, 4, 6, 7, 9, 10, 11, 12], "load": [1, 3, 4, 5, 6, 7, 8, 11], "read_csv": [1, 4, 5, 6, 7, 8], "sample_chromatogram": [1, 5, 6, 7, 8], "txt": [1, 5, 6, 7, 8, 10, 12], "plot": [1, 4, 5, 6, 7, 9, 11], "fig": [1, 4, 6, 7, 9], "ax": [1, 4, 6, 7, 8, 9, 10, 11, 12], "subplot": [1, 6, 7], "time_min": [1, 5, 6, 7, 8], "intensity_mv": [1, 5, 6, 7, 8], "k": [1, 4, 5, 6, 7, 11], "set_xlim": [1, 6, 7], "20": [1, 4, 5, 6, 7, 8, 10, 12], "set_xlabel": [1, 6, 7], "min": [1, 4, 5, 6, 7, 10, 12], "set_ylabel": [1, 6, 7], "mv": [1, 5, 6, 7], "text": [1, 3, 4, 5, 7, 8, 9, 10, 11, 12], "39": [1, 4, 6, 7, 8, 10, 11, 12], "By": [1, 5, 7, 8, 10, 12], "ey": [1, 6, 7, 8], "six": [1, 7], "individu": [1, 7, 9], "compound": [1, 4, 5, 6, 7, 9, 10, 11, 12], "some": [1, 6, 7], "isol": [1, 6, 7, 10, 12], "e": [1, 3, 7, 9], "g": [1, 6, 7, 9], "11": [1, 6, 7, 8, 10, 11, 12], "other": [1, 4, 5, 7, 10, 12], "overlap": [1, 4, 5, 6, 7], "13": [1, 6, 7, 10, 11, 12], "15": [1, 7, 10, 12], "indic": [1, 7, 8, 9], "similar": [1, 7, 10, 12], "elut": [1, 7], "particular": [1, 4, 7, 12], "mobil": [1, 4, 7], "phase": [1, 4, 5, 7], "easi": [1, 6, 7], "u": [1, 7, 8, 11], "see": [1, 4, 5, 7, 9, 10, 11, 12], "do": [1, 4, 5, 7], "we": [1, 4, 5, 6, 7, 8, 10, 11, 12], "quantifi": [1, 7, 8, 9, 11], "them": [1, 7, 8], "teas": [1, 4, 7], "apart": [1, 7], "easier": [1, 5, 7, 10, 12], "sai": [1, 7, 12], "than": [1, 5, 6, 7, 8, 10, 12], "There": [1, 4, 6, 7], "tool": [1, 7], "avail": [1, 7, 9], "open": [1, 7], "sourc": [1, 7], "happytool": [1, 7], "proprietari": [1, 7], "chromeleon": [1, 7], "howev": [1, 4, 5, 7, 8, 10, 12], "case": [1, 6, 7, 8, 9, 10, 12], "simpli": [1, 7], "onli": [1, 4, 7, 9, 10, 12], "non": [1, 4, 5, 7, 9], "region": [1, 5, 6, 7, 9, 10, 12], "py": [1, 2, 5, 6, 7, 8, 11], "fit": [1, 4, 6, 7, 9, 11], "skewnorm": [1, 5, 7], "distribut": [1, 7, 9, 10, 12], "either": [1, 7, 8], "singular": [1, 7], "highli": [1, 6, 7], "one": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "go": [1, 6, 7, 10, 12], "abov": [1, 4, 6, 7, 8], "few": [1, 4, 6, 7], "line": [1, 3, 4, 6, 7, 11], "python": [1, 2, 6, 7], "code": [1, 4, 5, 6, 7, 8, 11, 12], "show": [1, 4, 6, 7, 8, 9, 10, 11, 12], "power": [1, 4, 7], "quant": [1, 4, 5, 6, 7, 8, 10, 11, 12], "chrom": [1, 4, 5, 6, 7, 8, 10, 11, 12], "col": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12], "fit_peak": [1, 5, 6, 7, 8, 9, 10, 11, 12], "displai": [1, 7, 9, 10, 11, 12], "time_rang": [1, 7, 9], "head": [1, 10, 11, 12], "perform": [1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12], "100": [1, 4, 5, 6, 7, 8, 9, 10, 11, 12], "299": [1, 5, 6, 7, 8, 10, 12], "lt": [1, 4, 5, 6, 7, 8, 10, 11, 12], "663": 1, "24it": 1, "": [1, 3, 5, 6, 7, 8, 9, 10, 11, 12], "deconvolv": [1, 6, 7, 8], "08": [1, 7, 10], "96": 1, "retention_tim": [1, 7, 9, 10, 11, 12], "scale": [1, 4, 5, 7, 9, 10, 11, 12], "skew": [1, 7, 9, 10, 11, 12], "amplitud": [1, 5, 7, 9, 10, 11, 12], "area": [1, 5, 7, 9, 10, 11, 12], "peak_id": [1, 7, 9, 10, 11, 12], "90": [1, 7, 10, 12], "157450": 1, "674286": 1, "23250": 1, "349387": 1, "790042e": 1, "06": [1, 7, 10, 11, 12], "17": [1, 7, 10, 12], "582866": 1, "839860": 1, "42250": 1, "783974": 1, "070094e": 1, "14": [1, 6, 7, 10, 11, 12], "45": [1, 7, 10, 12], "353036": 1, "019153": 1, "35229": 1, "583555": 1, "227550e": 1, "53": [1, 7, 10, 12], "312563": 1, "630787": 1, "14891": 1, "041452": 1, "786925e": 1, "16": [1, 7, 10, 12], "52": [1, 7, 10, 12], "344266": 1, "984167": 1, "10770": 1, "656732": 1, "292479e": 1, "detect": [1, 2, 4, 5, 7, 8, 9], "quantif": [1, 2, 7, 9, 10, 12], "algorithm": [1, 5, 6, 7, 9, 10, 12], "involv": [1, 7, 10, 12], "follow": [1, 2, 4, 6, 7, 8, 9, 10, 12], "background": [1, 4, 6, 7, 8, 9, 10, 12], "statist": [1, 4, 5, 7, 9, 10, 12], "nonlinear": [1, 7, 9], "iter": [1, 7, 9, 11], "snip": [1, 7, 9], "automat": [1, 6, 7, 8, 9, 10, 12], "given": [1, 4, 5, 6, 7, 8, 9], "threshold": [1, 7, 9], "criteria": [1, 7, 8], "promin": [1, 5, 7, 8, 9, 10, 12], "least": [1, 5, 9], "stack": 1, "heavili": [1, 5, 12], "group": 1, "singl": [1, 5, 10, 11, 12], "For": [1, 4, 6, 7, 8, 9], "n": [1, 7, 9], "normal": [1, 6, 7, 9, 10, 12], "disttribut": [1, 7], "infer": [1, 4, 5, 6, 7, 8, 9, 10, 12], "properti": [1, 5, 6, 7, 9, 10, 12], "locat": [1, 5, 6, 7, 9, 10, 12], "maximum": [1, 5, 6, 7, 9, 10, 12], "valu": [1, 3, 4, 5, 6, 7, 9, 10, 11, 12], "width": [1, 4, 5, 6, 7, 9, 10, 12], "half": [1, 5, 6, 7, 9, 10, 12], "initi": [1, 7, 9, 10, 12], "guess": [1, 7, 9, 10, 12], "optim": [1, 7, 9], "minim": [1, 5, 6, 7, 9], "procedur": [1, 4, 5, 6, 7, 9], "repeat": [1, 5, 7], "best": [1, 5, 11], "paramet": [1, 3, 6, 7, 8, 9, 10, 11], "expect": [1, 11], "across": [1, 4, 9], "entir": [1, 5, 9, 11], "observ": [1, 4, 5, 7, 8, 9, 10, 12], "comput": [1, 4, 5, 7, 9, 10, 11, 12], "over": [1, 4, 5, 8, 9, 11], "store": [1, 9, 11], "all": [1, 5, 7, 8, 9, 10, 12], "rest": 1, "examin": [1, 5], "implement": [1, 2, 5, 9], "welcom": 2, "document": [2, 5], "provid": [2, 3, 5, 9, 10, 12], "limit": [2, 6, 9], "yet": [2, 4], "robust": [2, 5], "interfac": 2, "accur": 2, "effici": 2, "peak": [2, 4, 7, 9, 11], "chromatographi": [2, 5, 11], "specif": [2, 7, 10, 12], "high": 2, "liquid": [2, 4], "mixtur": [2, 4, 6, 7, 8, 9, 10, 12], "goal": [2, 11], "reduc": [2, 4], "make": [2, 8, 11], "run": [2, 4, 9], "most": [2, 6, 9], "consum": 2, "step": [2, 7, 9], "pip": 2, "upgrad": 2, "depend": [2, 4, 5, 6], "3": [2, 4, 6, 7, 8, 10, 11, 12], "9": [2, 4, 9, 10], "newer": 2, "numpi": [2, 4, 5, 9, 11], "scipi": [2, 5, 6, 9, 11], "tqdm": 2, "termcolor": 2, "occur": 2, "variou": [2, 11], "featur": 2, "branch": 2, "merg": 2, "releas": [2, 4, 5, 6, 7, 8, 12], "upon": 2, "approv": 2, "submit": 2, "issu": 2, "bug": 2, "report": [2, 7, 9, 10, 12], "tracker": 2, "when": [2, 5, 10, 11, 12], "file": [2, 3, 9, 10, 11, 12], "reproduc": 2, "exampl": [2, 4, 5, 6, 8, 10, 12], "demonstr": [2, 4, 5, 12], "problem": [2, 5, 6, 8], "request": 2, "also": [2, 9, 10, 11, 12], "made": [2, 8], "though": [2, 5, 6, 10, 12], "discret": [2, 6, 8, 10, 12], "maintain": [2, 6], "what": [2, 5, 8], "worth": 2, "load_chromatogram": [3, 10, 11, 12], "fname": 3, "delimit": 3, "dropna": 3, "fals": [3, 9, 11], "pars": [3, 11], "chromatogram": [3, 4, 5, 6, 7, 9, 11], "return": [3, 4, 5, 9, 11], "datafram": [3, 4, 9, 10, 11, 12], "str": 3, "path": 3, "must": [3, 5, 9], "xslx": 3, "list": [3, 9, 10, 11, 12], "dict": [3, 9], "desir": 3, "present": [3, 4, 8, 9, 10, 12], "renam": [3, 10, 12], "kei": [3, 9, 12], "assum": [3, 5], "begin": [3, 6], "without": 3, "need": [3, 7, 8, 10, 12], "skip": 3, "ani": [3, 8, 9], "charact": 3, "bool": [3, 9], "true": [3, 4, 6, 9, 11], "nan": [3, 9], "drop": 3, "df": [3, 4, 5, 6, 8, 9, 10, 11, 12], "type": [3, 9], "core": [3, 9], "frame": [3, 9], "prose": [4, 5, 6, 7, 8, 11, 12], "In": [4, 5, 6, 8, 9, 10, 11, 12], "analysi": [4, 6, 9], "carri": 4, "absorpt": [4, 7], "substrat": 4, "term": [4, 8, 10, 12], "stationari": [4, 5], "solvent": 4, "ideal": [4, 5], "world": 4, "satur": 4, "held": 4, "stabl": 4, "temperatur": 4, "pressur": 4, "cours": 4, "don": 4, "t": [4, 5, 6, 7, 8, 9, 10, 12], "live": 4, "perfect": [4, 8, 9], "variat": [4, 6], "ineffect": 4, "equilibr": 4, "drift": 4, "complex": 4, "whole": 4, "cell": 4, "metabolom": 4, "extract": 4, "sheer": 4, "low": [4, 6], "abund": 4, "convolv": [4, 5], "bumpi": 4, "would": [4, 5, 6, 8, 12], "more": [4, 8, 9, 10, 12], "effect": [4, 9], "out": [4, 6, 8, 9, 10, 11, 12], "due": [4, 9], "our": [4, 11], "interest": [4, 10, 11, 12], "nuisanc": 4, "known": [4, 9, 10, 11], "dataset": 4, "sample_baselin": 4, "csv": [4, 10, 11, 12], "color": [4, 5, 6, 11], "label": [4, 5, 6, 9, 11], "lw": [4, 5, 6], "true_background": 4, "dodgerblu": [4, 5, 6], "legend": [4, 5, 6, 11], "xlabel": [4, 5, 6, 8, 10, 11, 12], "ylabel": [4, 5, 6, 8, 10, 11, 12], "5": [4, 5, 6, 7, 8, 9, 10, 11, 12], "wa": [4, 6], "simul": 4, "three": 4, "larg": [4, 5, 8], "dash": 4, "blue": 4, "But": [4, 8], "know": [4, 8, 10, 11, 12], "realiti": 4, "clever": 4, "trick": 4, "wai": 4, "rang": [4, 5, 9, 10, 12], "polynomi": 4, "function": [4, 5, 7, 8, 9, 10, 11, 12], "machin": [4, 10, 11, 12], "learn": 4, "model": [4, 5], "beyond": 4, "emploi": 4, "method": [4, 5, 6, 8, 9, 10, 11, 12], "linear": [4, 5, 9, 10, 11, 12], "clip": [4, 7, 9], "hi": 4, "correct_baselin": [4, 5, 9], "class": [4, 9, 10, 12], "work": [4, 10, 12], "first": [4, 5, 6, 11, 12], "dynam": 4, "applic": 4, "ll": [4, 8], "oper": [4, 10, 12], "prevent": [4, 9], "enorm": 4, "domin": [4, 10, 12], "lead": [4, 10, 12], "erasur": 4, "smaller": [4, 8], "still": [4, 6, 8], "mathemat": [4, 5, 6, 8], "compress": 4, "rightarrow": [4, 5, 8, 9], "s_": [4, 8, 9], "achiev": [4, 6], "ln": 4, "left": [4, 5, 8, 9], "sqrt": [4, 5, 9], "right": [4, 5, 9], "tag": [4, 5, 8], "squar": [4, 5], "root": 4, "select": 4, "enhanc": 4, "small": [4, 6, 7, 8, 9, 10, 12], "order": [4, 9], "magnitud": [4, 9], "appli": [4, 5, 12], "yield": [4, 8], "visual": [4, 7, 8, 10, 12], "np": [4, 5, 11], "s_ll": 4, "r": [4, 5, 7, 8, 9, 10, 12], "y": 4, "axi": [4, 9], "ha": [4, 6, 7, 8, 9, 10, 12], "been": [4, 11], "compar": [4, 5, 6, 7, 8, 9, 10, 12], "size": [4, 6, 8, 9, 10, 11, 12], "two": [4, 6, 8, 9, 10, 12], "With": [4, 5, 6, 11], "window": [4, 7, 8, 9, 10, 12], "w": 4, "m": 4, "point": [4, 6, 8, 9], "_": [4, 5, 6, 11], "lls_m": 4, "lls_": 4, "frac": [4, 5, 8, 9, 10, 12], "averag": [4, 8, 9], "boundari": [4, 9], "increas": [4, 6, 8, 9, 10, 12], "next": [4, 5, 6], "To": [4, 5, 8, 9, 10, 12], "action": 4, "200": 4, "defin": [4, 5, 6, 8, 9, 10, 12], "def": 4, "min_filt": 4, "eq": [4, 5, 8], "s_lls_filt": 4, "copi": 4, "len": 4, "everi": 4, "ten": [4, 9], "f": [4, 5, 6, 8, 9, 10, 11, 12], "As": [4, 5, 6, 8, 9, 10, 11, 12], "actual": 4, "becom": 4, "eventu": 4, "approach": [4, 10, 12], "onc": [4, 6, 10, 12], "expand": [4, 6], "back": 4, "convert": [4, 9], "exp": [4, 5], "remov": [4, 6], "leav": 4, "4": [4, 5, 6, 7, 10, 11, 12], "s_prime": 4, "reconstruct": [4, 5, 7, 9, 10, 12], "s_subtract": 4, "true_sign": 4, "almost": [4, 8], "exactli": [4, 8, 10, 12], "describ": [4, 5, 10, 12], "morh\u00e1c": [4, 9], "matousek": [4, 9], "2008": [4, 9], "good": [4, 8, 11], "rule": 4, "thumb": 4, "choos": 4, "typic": [4, 7, 8, 10, 12], "preserv": 4, "minut": [4, 6], "wide": 4, "gener": [4, 5, 9], "advis": 4, "approxim": [4, 5, 9, 10, 12], "underestim": [4, 12], "includ": [4, 5, 9, 10, 12], "object": [4, 6, 8, 9, 10, 11, 12], "call": [4, 5, 6, 8, 9, 10, 11, 12], "187": 4, "490": 4, "64it": 4, "0x17eb01450": 4, "gt": [4, 5, 6, 8, 10, 11, 12], "2024": [4, 5, 6, 7, 8], "within": [4, 5, 6, 7, 8, 9, 10, 12], "creativ": [4, 5, 6, 7, 8, 12], "common": [4, 5, 6, 7, 8, 11, 12], "cc": [4, 5, 6, 7, 8, 12], "BY": [4, 5, 6, 7, 8, 12], "gplv3": [4, 5, 6, 7, 8, 12], "licens": [4, 5, 6, 7, 8, 12], "respect": [4, 5, 6, 7, 8, 9, 12], "meat": [5, 10, 12], "abil": 5, "well": [5, 7, 8, 9, 10, 12], "theme": 5, "reconstitut": [5, 10, 12], "signal": [5, 7, 8, 9, 10, 11, 12], "should": [5, 8, 9, 11], "physic": [5, 11], "how": [5, 6, 8, 10, 12], "interact": [5, 6], "captur": 5, "exceedingli": 5, "rare": 5, "phenomenolog": [5, 8], "descript": 5, "shape": 5, "relat": [5, 9, 10, 11, 12], "concentr": [5, 6, 8, 9, 10, 11, 12], "calibr": [5, 9, 10, 12], "curv": [5, 9, 10, 12], "control": [5, 6], "experi": 5, "excel": 5, "It": [5, 8, 11], "doe": [5, 9], "rather": 5, "outlin": [5, 6], "execut": [5, 6], "total": [5, 8, 9], "whose": [5, 9], "intens": [5, 6, 9, 10, 12], "s_i": [5, 8, 9], "weight": 5, "A": [5, 7, 8, 9, 10, 11, 12], "pi": [5, 9], "sigma_i": 5, "tau_i": 5, "1": [5, 6, 7, 8, 9, 10, 11, 12], "erf": [5, 9], "alpha_i": 5, "sigma": [5, 9], "error": [5, 9], "tau": 5, "retent": [5, 9, 10, 12], "varianc": 5, "alpha": [5, 9], "becaus": [5, 6], "break": 5, "symmetri": 5, "tail": 5, "unskew": 5, "mean": [5, 6, 8], "simplifi": 5, "symmetr": 5, "about": [5, 6, 8], "get": [5, 8, 10, 11, 12], "sens": [5, 8], "impact": 5, "stat": [5, 11], "output": 5, "alpha_rang": 5, "arang": 5, "01": [5, 6, 8, 9, 10, 12], "constant": 5, "loc": 5, "pdf": 5, "add": [5, 6, 8, 10, 11, 12], "necessari": [5, 6], "0x1788ded40": 5, "neg": 5, "toward": 5, "shorter": 5, "even": [5, 6, 8, 10, 12], "height": [5, 6, 9], "maxima": [5, 6, 7], "thei": [5, 6, 10, 12], "ident": [5, 8, 11], "flexibl": 5, "trace": [5, 6], "broad": [5, 10, 12], "arrai": 5, "broken": 5, "down": [5, 9], "multipl": [5, 9], "independ": 5, "distant": 5, "influenc": [5, 6], "let": [5, 8], "real": [5, 6, 10, 12], "correct": [5, 6, 7, 8, 9, 10, 12], "baselin": [5, 6, 7, 8, 9, 10, 12], "time_window": [5, 6, 8, 9], "assign": 5, "modifi": [5, 8, 9, 10, 12], "buffer": [5, 6, 9, 12], "filter": [5, 6, 8, 9], "_assign_window": [5, 6], "50": [5, 10, 12], "first_peak": 5, "window_typ": [5, 8, 10, 12], "window_id": [5, 6, 8, 10, 12], "intensity_mv_correct": 5, "3935": 5, "20it": 5, "0x1789c3280": 5, "determin": [5, 7, 8, 9], "proport": 5, "find": [5, 6], "trust": 5, "curve_fit": [5, 9], "estim": [5, 7, 8, 9, 10, 12], "ii": 5, "reason": 5, "These": [5, 6, 8, 11], "a_0": 5, "tau_0": 5, "sigma_0": 5, "maxim": 5, "alpha_0": 5, "gaussian": 5, "find_peak": [5, 6, 9], "peak_width": [5, 6], "access": 5, "via": [5, 7], "attribut": [5, 9], "window_prop": [5, 9], "prop": 5, "p0": 5, "65992": 5, "999952423": 5, "98": 5, "16630057317687066": 5, "permiss": [5, 6], "inform": [5, 9, 10, 11, 12], "t_": [5, 8], "max": [5, 6, 8, 9], "correspond": [5, 8, 9], "minimum": [5, 9], "sigma_": [5, 9], "dt": 5, "interv": [5, 8], "inf": [5, 9], "overridden": 5, "dictionari": [5, 9, 10, 12], "specifi": 5, "give": [5, 8, 11], "lower": [5, 9], "upper": [5, 9], "_dt": 5, "widow": 5, "cost": 5, "_fit_skewnorm": 5, "param_opt": 5, "print": [5, 8, 9, 10, 11, 12], "33773945e": 5, "04": 5, "09020036e": 5, "59217385e": 5, "7": [5, 10, 11], "03685471e": 5, "6": [5, 6, 7, 9, 10, 11, 12], "fill_between": 5, "0x178c7f7c0": 5, "adequ": [5, 9], "integr": [5, 7, 8, 9, 11], "seri": 6, "veri": [6, 8, 9, 10, 12], "spot": 6, "difficult": [6, 12], "particularli": 6, "noisi": [6, 8, 9, 10, 12], "pronounc": 6, "librari": 6, "identifi": [6, 9], "findpeak": 6, "peakutil": 6, "matur": 6, "won": 6, "cover": 6, "hood": 6, "leverag": 6, "hand": 6, "relev": 6, "rel": [6, 8, 9], "nearest": 6, "surround": 6, "except": 6, "close": [6, 8], "sensit": [6, 9], "detector": 6, "nearbi": 6, "much": [6, 8], "higher": 6, "drown": 6, "complet": [6, 12], "subsum": 6, "medium": 6, "bacteri": 6, "growth": 6, "slew": 6, "crop": [6, 7, 9, 10, 12], "between": [6, 7, 9, 10, 11, 12], "xlim": 6, "index": [6, 7], "local": [6, 9], "TO": 6, "creat": 6, "signal_norm": 6, "peak_loc": 6, "origin": [6, 8, 9], "overlai": 6, "vertic": 6, "vline": 6, "linestyl": 6, "0x16b293640": 6, "greater": 6, "equal": 6, "unit": [6, 9, 10, 11, 12], "bonafid": 6, "otherwis": 6, "care": 6, "figsiz": 6, "8": [6, 10, 11, 12], "sharex": 6, "nsignal": 6, "prominecn": 6, "enumer": 6, "set_titl": 6, "tight_layout": 6, "choic": [6, 8], "resolv": 6, "degre": 6, "argument": [6, 9], "restrict": [6, 9, 10, 12], "done": [6, 8, 10, 12], "3788": 6, "10it": 6, "02": 6, "03": [6, 10], "figur": [6, 8, 9, 10, 11, 12], "640x480": [6, 8, 10, 11, 12], "attempt": 6, "part": 6, "same": [6, 11], "major": 6, "explor": 6, "slice": 6, "nearli": 6, "lowest": 6, "contour": 6, "enough": 6, "anoth": [6, 9], "_assign_peak_window": 6, "window_df": 6, "d": 6, "groupbi": 6, "0x16b494790": 6, "togeth": 6, "onward": 6, "extent": 6, "extend": 6, "account": [6, 8], "default": [6, 8, 9, 10, 12], "75": 6, "0x16b65d240": 6, "orang": 6, "stage": 6, "constitu": [7, 8, 12], "refract": 7, "wavelength": 7, "score": [7, 9, 10, 12], "assess_fit": [7, 8, 9, 10, 12], "3337": 7, "39it": 7, "card": [7, 10, 12], "success": [7, 8, 10, 12], "558": [7, 8, 10], "758": [7, 8, 10], "9973": [7, 8, 10], "12": [7, 8, 10, 12], "117": [7, 8, 10], "18": [7, 12], "533": 7, "9977": 7, "interpeak": [7, 8, 9, 10, 12], "review": [7, 8, 10, 12], "000": [7, 8, 10, 12], "550": [7, 8, 10], "3902": [7, 8, 10], "amp": [7, 8, 10, 12], "fano": [7, 8, 9, 10, 12], "ratio": [7, 8, 9, 10, 12], "0025": 7, "factor": [7, 8, 9, 10, 12], "accept": [7, 8, 9, 10, 12], "check": [7, 8, 10, 12], "767": [7, 8, 10], "108": [7, 8, 10], "0013": 7, "542": 7, "19": [7, 8, 10, 12], "0000": [7, 8, 10, 12], "158768": [7, 10], "691961": [7, 10], "23380": [7, 10, 12], "386403": [7, 10], "805646e": [7, 10], "594481": 7, "903504": 7, "43149": 7, "069679": 7, "177888e": 7, "349681": 7, "996021": 7, "34710": 7, "567508": 7, "165268e": 7, "313476": 7, "615613": 7, "15048": 7, "965059": 7, "805876e": 7, "339247": 7, "909114": 7, "10805": 7, "797978": 7, "296696e": 7, "29": [7, 10, 12], "339253": 7, "565266": 7, "12533": 7, "541284": 7, "504024e": 7, "agreement": [7, 11], "after": [8, 9], "subtract": [8, 9, 10, 12], "split": [8, 9, 11], "irrit": 8, "3977": 8, "22it": [8, 10], "nice": 8, "rea": 8, "nder": 8, "urv": 8, "auc": 8, "correctli": 8, "state": 8, "sum": [8, 9], "limits_i": 8, "n_": 8, "limits_": [8, 9], "repres": [8, 9, 11], "th": 8, "denot": 8, "deviat": [8, 9], "caus": 8, "quantiti": 8, "larger": 8, "fact": 8, "short": [8, 9], "practic": [8, 9], "never": 8, "shown": 8, "_score_reconstruct": 8, "r_score": 8, "reconstruction_scor": [8, 10, 12], "997252": [8, 10], "995222": [8, 10], "390152": [8, 10], "000200": [8, 10], "084916": [8, 10], "row": [8, 9], "whether": [8, 9], "suffici": 8, "dear": 8, "reader": 8, "my": 8, "job": 8, "just": 8, "li": 8, "outsid": 8, "thu": 8, "alwai": [8, 9], "terribl": 8, "usual": 8, "nois": [8, 9], "better": [8, 10, 12], "thought": 8, "predict": 8, "sequenc": 8, "langl": [8, 9], "rangl": [8, 9], "wherea": 8, "adjust": [8, 9, 10, 12], "big": 8, "why": 8, "els": 8, "zero": [8, 9], "miss": [8, 9, 10, 12], "anyth": 8, "substant": 8, "again": [8, 10, 12], "arbitrari": 8, "pretti": 8, "toler": [8, 9, 10, 12], "817": [8, 10], "9952": [8, 10], "0024": [8, 10], "0012": [8, 10], "825": [8, 10], "tell": 8, "seem": 8, "realli": 8, "poorli": [8, 10, 12], "subject": 8, "decis": 8, "far": 8, "deem": [8, 9], "rtol": [8, 9, 10, 12], "1e": 8, "fail": [8, 10, 12], "bound": [8, 9, 10, 12], "posit": [8, 9, 10, 12], "shoulder": [8, 10, 12], "pair": [8, 10, 12], "own": [8, 9], "bad": 8, "thing": 8, "awai": [8, 9], "page": 8, "sole": 8, "discrimin": 8, "judgement": 8, "properli": [8, 11], "none": 9, "base": [9, 11], "integ": 9, "unmixed_chromatogram": 9, "matrix": 9, "probabl": 9, "densiti": 9, "ndarrai": 9, "quantified_peak": 9, "afer": 9, "fano_tol": 9, "verbos": [9, 11], "assess": [9, 10, 12], "float": [9, 11], "valid": [9, 10, 12], "perfectli": 9, "evalu": 9, "inerpeak": 9, "below": [9, 10, 12], "summari": [9, 12], "screen": 9, "problemat": 9, "score_df": 9, "boolean": 9, "paramt": 9, "r_t": 9, "cast": 9, "purpos": 9, "epsilon": 9, "leq": 9, "poor": 9, "durat": [9, 11], "2_": 9, "f_": 9, "free": [9, 12], "return_df": 9, "precis": 9, "int": 9, "dimens": 9, "undertaken": 9, "befor": 9, "progress": 9, "bar": 9, "decim": 9, "round": 9, "corrected_df": 9, "summar": 9, "here": [9, 11, 12], "place": [9, 10, 12], "avoid": 9, "start": 9, "option": 9, "cropped_df": 9, "deconvolve_peak": 9, "known_peak": [9, 10, 12], "param_bound": 9, "integration_window": 9, "max_it": 9, "1000000": 9, "optimizer_kwarg": 9, "directli": [9, 11], "instead": 9, "makeup": 9, "dure": 9, "modif": 9, "entri": 9, "form": 9, "ad": [9, 10, 12], "replac": 9, "empti": 9, "protocol": 9, "peak_prop": 9, "realist": 9, "regim": 9, "serious": 9, "slow": 9, "tenth": 9, "standard": [9, 11], "rel_height": 9, "approx_peak_width": 9, "return_peak": 9, "peak_kwarg": 9, "wil": 9, "enforc": [9, 10, 12], "prefer": 9, "promim": 9, "want": 9, "pad": 9, "side": 9, "constrain": 9, "docstr": 9, "addit": 9, "peak_df": 9, "norma": 9, "2s_": 9, "map_peak": [9, 10, 11, 12], "param": [9, 11], "loc_toler": 9, "include_unmap": 9, "map": [9, 10, 11, 12], "user": [9, 10, 12], "arbitrarili": 9, "slope": [9, 10, 11, 12], "intercept": [9, 10, 11, 12], "concentraion": 9, "name": [9, 10, 11, 12], "glucos": 9, "unmap": 9, "remain": 9, "popul": 9, "tabl": [9, 11], "v0": 9, "accommod": 9, "affect": 9, "_ax": 9, "meant": [10, 12], "rapidli": [10, 12], "possibl": [10, 12], "brief": [10, 12], "raw": [10, 12], "off": [10, 11, 12], "absolut": [10, 12], "intellig": [10, 12], "read": [10, 12], "io": [10, 11, 12], "00000": [10, 12], "00833": [10, 12], "01667": [10, 12], "02500": [10, 12], "03333": [10, 12], "annoi": [10, 12], "varieti": [10, 12], "instanti": [10, 11, 12], "21": [10, 12], "come": [10, 12], "deconvolut": [10, 12], "luckili": [10, 12], "3574": 10, "88it": 10, "09": [10, 12], "86": 10, "594721": 10, "905471": 10, "43163": 10, "880069": 10, "179666e": 10, "349615": 10, "995742": 10, "34698": 10, "966317": 10, "163876e": 10, "313999": 10, "621135": 10, "15061": [10, 12], "414798": 10, "807370e": 10, "347275": 10, "990202": 10, "10936": 10, "991812": 10, "312439e": 10, "348001": 10, "703715": 10, "12525": [10, 12], "286105": 10, "503034e": 10, "composit": [10, 12], "time_start": [10, 12], "time_end": [10, 12], "signal_area": [10, 12], "inferred_area": [10, 12], "signal_vari": [10, 12], "signal_mean": [10, 12], "signal_fano_factor": [10, 12], "applied_toler": [10, 12], "statu": [10, 12], "55000": 10, "112041e": 10, "555077e": 10, "564681e": 10, "135": 10, "985685": 10, "62": 10, "982224": 10, "76667": 10, "10833": 10, "779000e": 10, "155481e": 10, "298102e": 10, "137": 10, "571429": 10, "31": 10, "242694": 10, "82500": 10, "177637e": 10, "000001e": 10, "048615e": 10, "489835": 10, "418226": 10, "55833": 10, "75833": 10, "810059e": 10, "802338e": 10, "279468e": 10, "19379": 10, "710827": 10, "27242": 10, "244966": 10, "11667": 10, "81667": 10, "403344e": 10, "07": 10, "396639e": 10, "854511e": 10, "15171": 10, "281774": 10, "25406": 10, "628617": 10, "10547": [10, 12], "205": [10, 12], "\u00b5m": [10, 12], "b": [10, 12], "26401": [10, 12], "54": [10, 12], "nm": [10, 12], "quant_peak": [10, 12], "171": [10, 12], "373144": 10, "56": [10, 11, 12], "928478": 10, "successfulli": [10, 12], "id": [10, 12], "reflect": [10, 12], "predomin": [10, 12], "example_overlap": [10, 12], "249": [10, 12], "1526": 10, "76it": [10, 12], "106": 10, "00it": 10, "230": 10, "430": 10, "9788": [10, 12], "220": 10, "440": 10, "24": [10, 12], "990": [10, 12], "6283": 10, "second": [10, 12], "forc": [10, 12], "convolut": [10, 12], "around": [10, 12], "0441": 10, "0077": 10, "did": [10, 11, 12], "enforced_loc": [10, 12], "shallow": [10, 12], "example_shallow": [10, 12], "exclud": [10, 12], "478": 10, "57it": 10, "65it": [10, 12], "530": 10, "460": [10, 12], "520": 10, "470": [10, 12], "79": [10, 12], "0382": 10, "appreci": [10, 12], "suggest": [10, 12], "25it": 10, "47": [10, 12], "46": [10, 12], "0034": 10, "0404": 10, "0398": 10, "meaning": 11, "solut": 11, "prepar": 11, "configur": 11, "direct": 11, "tutori": 11, "lactos": 11, "aqueou": [11, 12], "preprocess": 11, "glob": 11, "lactose_mm_6": 11, "memori": 11, "modul": 11, "remind": 11, "quickli": 11, "281241": 11, "654727": 11, "8004": 11, "452381": 11, "960534": 11, "285711": 11, "fundamen": 11, "loop": 11, "new": 11, "hold": 11, "blank": 11, "cal_curv": 11, "conc": 11, "conc_mm": 11, "concat": 11, "278964": 11, "628399": 11, "747": 11, "231615": 11, "89667": 11, "793809": 11, "278928": 11, "630503": 11, "1540": 11, "484760": 11, "184858": 11, "171143": 11, "280372": 11, "644400": 11, "3896": 11, "669057": 11, "467600": 11, "286844": 11, "appear": 11, "o": 11, "markers": 11, "mm": 11, "simpl": 11, "regress": 11, "linregress": 11, "fit_param": 11, "conc_rang": 11, "linspac": 11, "cal": 11, "0x13e3d5120": 11, "test_data": 11, "measured_conc": 11, "known_conc": 11, "concaten": 11, "true_conc_mm": 11, "281449": 11, "664460": 11, "10715": 11, "647302": 11, "285878e": 11, "118521": 11, "280590": 11, "649293": 11, "5316": 11, "675668": 11, "380011e": 11, "05": 11, "981028": 11, "279968": 11, "639223": 11, "2600": 11, "400896": 11, "120481e": 11, "899415": 11, "279544": 11, "636299": 11, "2154": 11, "143764": 11, "584973e": 11, "557426": 11, "confirm": 11, "versu": 11, "everyth": 11, "fall": 11, "equival": 11, "0x13ed7b7f0": 11, "43": 12, "44": 12, "49": 12, "3464": 12, "73it": 12, "158762": 12, "691800": 12, "461934": 12, "805655e": 12, "594750": 12, "905677": 12, "43165": 12, "789520": 12, "179895e": 12, "349607": 12, "995704": 12, "34697": 12, "471686": 12, "163697e": 12, "314009": 12, "621208": 12, "835818": 12, "807420e": 12, "347376": 12, "991205": 12, "10939": 12, "067960": 12, "312688e": 12, "348123": 12, "705571": 12, "991656": 12, "503119e": 12, "40": 12, "41": 12, "910": 12, "900": 12, "000000": 12, "000000e": 12, "99": 12, "91": 12, "12001": 12, "463355": 12, "204": 12, "39806": 12, "241758e": 12, "800298": 12, "000039": 12, "map_compound": 12, "377934": 12, "931685": 12, "1499": 12, "35it": 12, "62it": 12, "810": 12, "090": 12, "800": 12, "9963": 12, "2596": 12, "92it": 12, "0145": 12, "0019": 12, "461": 12, "48it": 12, "080": 12, "0369": 12, "89it": 12, "0016": 12, "0154": 12, "55": 12, "0002": 12, "0153": 12, "happen": 12, "stringent": 12, "were": 12, "suppli": 12, "bounding_exampl": 12, "inferred_amplitud": 12, "known_amplitud": 12, "statement": 12, "3f": 12, "1365": 12, "51it": 12, "02it": 12, "94": 12, "971": 12, "narrowli": 12, "101": 12, "08it": 12, "ve": 12}, "objects": {"hplc": [[3, 0, 0, "-", "io"], [9, 0, 0, "-", "quant"]], "hplc.io": [[3, 1, 1, "", "load_chromatogram"]], "hplc.quant": [[9, 2, 1, "", "Chromatogram"]], "hplc.quant.Chromatogram": [[9, 3, 1, "", "assess_fit"], [9, 3, 1, "", "correct_baseline"], [9, 3, 1, "", "crop"], [9, 3, 1, "", "deconvolve_peaks"], [9, 4, 1, "", "df"], [9, 3, 1, "", "fit_peaks"], [9, 3, 1, "", "map_peaks"], [9, 4, 1, "", "peaks"], [9, 4, 1, "", "quantified_peaks"], [9, 4, 1, "", "scores"], [9, 3, 1, "", "show"], [9, 4, 1, "", "unmixed_chromatograms"], [9, 4, 1, "", "window_props"]]}, "objtypes": {"0": "py:module", "1": "py:function", "2": "py:class", "3": "py:method", "4": "py:attribute"}, "objnames": {"0": ["py", "module", "Python module"], "1": ["py", "function", "Python function"], "2": ["py", "class", "Python class"], "3": ["py", "method", "Python method"], "4": ["py", "attribute", "Python attribute"]}, "titleterms": {"credit": 0, "cite": 0, "hplc": [0, 3, 4, 9], "py": [0, 4], "methodologi": 1, "The": [1, 5, 7, 8], "problem": [1, 7], "how": [1, 4, 7], "It": [1, 7], "work": [1, 7], "step": [1, 4, 5, 6, 8], "1": [1, 4], "correct": [1, 4], "drift": 1, "baselin": [1, 4], "2": [1, 6], "identif": 1, "peak": [1, 5, 6, 8, 10, 12], "maxima": 1, "includ": 1, "obscur": 1, "3": [1, 5], "clip": [1, 6], "chromatogram": [1, 8, 10, 12], "Into": 1, "window": [1, 5, 6], "4": [1, 8], "per": 1, "estim": 1, "constitu": 1, "signal": [1, 4, 6], "5": 1, "6": 1, "integr": 1, "evalu": 1, "composit": 1, "mixtur": 1, "about": 2, "instal": 2, "contribut": 2, "io": 3, "what": 4, "": 4, "subtract": 4, "us": 4, "snip": 4, "algorithm": 4, "log": 4, "transform": 4, "iter": 4, "minimum": 4, "filter": 4, "invers": 4, "mani": 4, "implement": 4, "fit": [5, 8, 10, 12], "skew": 5, "normal": 5, "distribut": 5, "default": 5, "set": 5, "initi": 5, "guess": 5, "paramet": [5, 12], "bound": 5, "optim": 5, "detect": [6, 10, 12], "select": 6, "topograph": 6, "promin": 6, "score": 8, "reconstruct": 8, "region": 8, "between": 8, "gener": [8, 11], "report": 8, "card": 8, "assess": 8, "comput": 8, "uncertainti": 8, "quant": 9, "quickstart": [10, 12], "load": [10, 12], "view": [10, 12], "quantifi": [10, 12], "deconvolv": [10, 12], "heavili": 10, "overlap": [10, 12], "subtl": [10, 12], "absolut": 11, "quantit": 11, "calibr": 11, "curv": 11, "test": 11, "constrain": 12, "With": 12, "known": 12}, "envversion": {"sphinx.domains.c": 3, "sphinx.domains.changeset": 1, "sphinx.domains.citation": 1, "sphinx.domains.cpp": 9, "sphinx.domains.index": 1, "sphinx.domains.javascript": 3, "sphinx.domains.math": 2, "sphinx.domains.python": 4, "sphinx.domains.rst": 2, "sphinx.domains.std": 2, "nbsphinx": 4, "sphinx": 60}, "alltitles": {"Credit": [[0, "credit"]], "Citing hplc-py": [[0, "citing-hplc-py"]], "Methodology": [[1, "Methodology"]], "The Problem": [[1, "The-Problem"], [7, "The-Problem"]], "How It Works": [[1, "How-It-Works"], [7, "How-It-Works"]], "Step 1: Correcting for a Drifting Baseline": [[1, "Step-1:-Correcting-for-a-Drifting-Baseline"]], "Step 2: Identification of Peak Maxima and Including Obscured Peaks": [[1, "Step-2:-Identification-of-Peak-Maxima-and-Including-Obscured-Peaks"]], "Step 3: Clipping the Chromatogram Into Windows": [[1, "Step-3:-Clipping-the-Chromatogram-Into-Windows"]], "Step 4: Per-Window Estimation of Constituent Signals": [[1, "Step-4:-Per-Window-Estimation-of-Constituent-Signals"]], "Steps 5 & 6: Integration of Signal and Evaluating Composition of Mixture": [[1, "Steps-5-&-6:-Integration-of-Signal-and-Evaluating-Composition-of-Mixture"]], "About": [[2, "about"]], "Installation": [[2, "installation"]], "Contributing": [[2, "contributing"]], "hplc.io": [[3, "module-hplc.io"]], "Step 1: Baseline Correction": [[4, "Step-1:-Baseline-Correction"]], "What\u2019s in a baseline?": [[4, "What's-in-a-baseline?"]], "Subtraction using the SNIP algorithm": [[4, "Subtraction-using-the-SNIP-algorithm"]], "Log-transformation of the signal": [[4, "Log-transformation-of-the-signal"]], "Iterative Minimum Filtering": [[4, "Iterative-Minimum-Filtering"]], "Inverse Transformation and Subtraction": [[4, "Inverse-Transformation-and-Subtraction"]], "How many iterations?": [[4, "How-many-iterations?"]], "Implementation in hplc-py": [[4, "Implementation-in-hplc-py"]], "Step 3: Fitting Peaks": [[5, "Step-3:-Fitting-Peaks"]], "The Skew-Normal Distribution": [[5, "The-Skew-Normal-Distribution"]], "Fitting Peak Windows": [[5, "Fitting-Peak-Windows"]], "Default settings for initial guesses of parameters": [[5, "Default-settings-for-initial-guesses-of-parameters"]], "Default bounds for parameters": [[5, "Default-bounds-for-parameters"]], "Optimization of parameters": [[5, "Optimization-of-parameters"]], "Step 2: Detecting Peaks": [[6, "Step-2:-Detecting-Peaks"]], "Selecting peaks by topographic prominence": [[6, "Selecting-peaks-by-topographic-prominence"]], "Clipping the signal into peak windows": [[6, "Clipping-the-signal-into-peak-windows"]], "Step 4: Scoring the Reconstruction": [[8, "Step-4:-Scoring-the-Reconstruction"]], "The Reconstruction Score": [[8, "The-Reconstruction-Score"]], "Scoring the regions between peaks": [[8, "Scoring-the-regions-between-peaks"]], "Generating a chromatogram report card": [[8, "Generating-a-chromatogram-report-card"]], "Assessing the fit \u2260 computing uncertainty": [[8, "Assessing-the-fit-\u2260-computing-uncertainty"]], "hplc.quant": [[9, "module-hplc.quant"]], "Quickstart": [[10, "Quickstart"], [12, "Quickstart"]], "Loading and viewing chromatograms": [[10, "Loading-and-viewing-chromatograms"], [12, "Loading-and-viewing-chromatograms"]], "Detecting and Fitting Peaks": [[10, "Detecting-and-Fitting-Peaks"], [12, "Detecting-and-Fitting-Peaks"]], "Quantifying Peaks": [[10, "Quantifying-Peaks"], [12, "Quantifying-Peaks"]], "Deconvolving Heavily-Overlapping and Subtle Peaks": [[10, "Deconvolving-Heavily-Overlapping-and-Subtle-Peaks"]], "Absolute Quantitation": [[11, "Absolute-Quantitation"]], "Generating a Calibration Curve": [[11, "Generating-a-Calibration-Curve"]], "Testing the Calibration": [[11, "Testing-the-Calibration"]], "Deconvolving Overlapping and Subtle Peaks": [[12, "Deconvolving-Overlapping-and-Subtle-Peaks"]], "Constraining Peaks With Known Parameters": [[12, "Constraining-Peaks-With-Known-Parameters"]]}, "indexentries": {"hplc.io": [[3, "module-hplc.io"]], "load_chromatogram() (in module hplc.io)": [[3, "hplc.io.load_chromatogram"]], "module": [[3, "module-hplc.io"], [9, "module-hplc.quant"]], "chromatogram (class in hplc.quant)": [[9, "hplc.quant.Chromatogram"]], "assess_fit() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.assess_fit"]], "correct_baseline() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.correct_baseline"]], "crop() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.crop"]], "deconvolve_peaks() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.deconvolve_peaks"]], "df (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.df"]], "fit_peaks() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.fit_peaks"]], "hplc.quant": [[9, "module-hplc.quant"]], "map_peaks() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.map_peaks"]], "peaks (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.peaks"]], "quantified_peaks (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.quantified_peaks"]], "scores (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.scores"]], "show() (hplc.quant.chromatogram method)": [[9, "hplc.quant.Chromatogram.show"]], "unmixed_chromatograms (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.unmixed_chromatograms"]], "window_props (hplc.quant.chromatogram attribute)": [[9, "hplc.quant.Chromatogram.window_props"]]}}) \ No newline at end of file diff --git a/tutorials/calibration_curve.html b/tutorials/calibration_curve.html new file mode 100644 index 0000000..fd184d5 --- /dev/null +++ b/tutorials/calibration_curve.html @@ -0,0 +1,597 @@ + + + + + + + Absolute Quantitation — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Absolute Quantitation

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

A common goal in chromatography is to quantify with physically meaningful units the concentration of an analyte in a solution. While Chromatography will not give that to you directly off the instrument, you can prepare a “standard curve”–a set of solutions where you know the concentration of the analyte of interest. With a properly configured machine, one can make a direct linear relation between the integrated area of a peak and the concentration of the analyte. In this tutorial, we will use +hplc-py to quantify a standard curve of a lactose solution and then use the .map_peaks method of the Chromatogram object to test our calibration curve.

+
+

Generating a Calibration Curve

+

Here, we will use hplc-py to quantify aqueous solutions of lactose in different concentrations. These files have been preprocessed to have the known lactose concentration in the file name.

+
+
[1]:
+
+
+
import glob
+
+# Get the list of files
+files = glob.glob('data/calibration/lactose*.csv')
+print(files[0])
+
+
+
+
+
+
+
+
+data/calibration/lactose_mM_6.csv
+
+
+

We can load this file into memory as a chromatogram using the load_chromatogram function from the io module and instantiate a Chromatogram object.

+
+
[2]:
+
+
+
from hplc.io import load_chromatogram
+from hplc.quant import Chromatogram
+
+# Load and display the first file.
+df = load_chromatogram(files[0], cols=['time', 'signal'])
+chrom = Chromatogram(df)
+chrom.show()
+
+
+
+
+
[2]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>, <Axes: xlabel='time', ylabel='signal'>]
+
+
+
+
+
+
+../_images/tutorials_calibration_curve_5_1.png +
+
+

As a reminder, we can quickly quantify this single peak by calling the .fit_peaks method.

+
+
[4]:
+
+
+
# Quantify the peak
+peaks = chrom.fit_peaks(verbose=False)
+chrom.show()
+peaks.head()
+
+
+
+
+
[4]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_id
013.560.2812411.6547278004.452381960534.2857111
+
+
+
+
+
+
+../_images/tutorials_calibration_curve_7_1.png +
+
+

While it’s useful to know the various parameters returned by the fitting, we are fundamen We are interested in the integrated area of the peak (integrated over the entire duration of the chromatogram). Using a for loop and getting the concentration of lactose from each file name, we can generate a new Pandas DataFrame which will hold the calibration information.

+
+
[5]:
+
+
+
import pandas as pd
+# Set up a blank dataframe for the calibration curve.
+cal_curve = pd.DataFrame([])
+
+# Iterate through each file and perform the quantitation
+for f in files:
+    df = load_chromatogram(f, cols=['time', 'signal'])
+    chrom = Chromatogram(df)
+    peaks = chrom.fit_peaks(verbose=False)
+
+    # Get the concentration of lactose from the file name
+    conc = float(f.split('_')[-1][:-4])
+
+    # Add the concentration to the peak table and add it
+    # to the instantiated calibration dataframe
+    peaks['conc_mM'] = conc
+    cal_curve = pd.concat([cal_curve, peaks])
+
+cal_curve
+
+
+
+
+
[5]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_idconc_mM
013.560.2812411.6547278004.452381960534.28571116.0
013.560.2789641.628399747.23161589667.79380910.5
013.560.2789281.6305031540.484760184858.17114311.0
013.560.2803721.6444003896.669057467600.28684413.0
+
+
+

We can now plot the peak area as a function of time, which we expect to appear linear.

+
+
[7]:
+
+
+
import matplotlib.pyplot as plt
+
+# Plot the calibration curve.
+plt.plot(cal_curve['conc_mM'], cal_curve['amplitude'], 'o', markersize=10)
+plt.xlabel('lactose concentration [mM]')
+plt.ylabel('integrated peak area [a.u.]')
+
+
+
+
+
[7]:
+
+
+
+
+Text(0, 0.5, 'integrated peak area [a.u.]')
+
+
+
+
+
+
+../_images/tutorials_calibration_curve_11_1.png +
+
+

We can perform a simple regression on these data to get a calibration curve.

+
+
[8]:
+
+
+
import numpy as np
+from scipy.stats import linregress
+
+#  Compute the best fit calibration curve
+fit_params = linregress(cal_curve['conc_mM'], cal_curve['area'])
+slope = fit_params[0]
+intercept = fit_params[1]
+
+# Plot the fit over the data
+conc_range = np.linspace(0, 8, 100)
+cal = intercept + slope * conc_range
+plt.plot(cal_curve['conc_mM'], cal_curve['area'], 'o', markersize=10, label='measurement')
+plt.plot(conc_range, cal, '-', color='k', label='fit')
+plt.xlabel('lactose concentration [mM]')
+plt.ylabel('integrated peak area [a.u.]')
+plt.legend()
+
+
+
+
+
[8]:
+
+
+
+
+<matplotlib.legend.Legend at 0x13e3d5120>
+
+
+
+
+
+
+../_images/tutorials_calibration_curve_13_1.png +
+
+
+
+

Testing the Calibration

+

We also have a set of lactose solutions with known concentrations that we did not use when fitting the calibration curve. We can use the .map_peaks method when quantifying these test data to see if we get the same concentrations out that we know the peaks represent.

+
+
[11]:
+
+
+
# Load the test data
+files = glob.glob('data/test/lactose*.csv')
+
+# Instantiate a dataframe to store the results
+test_data = pd.DataFrame([])
+
+# Iterate through each file and quantify the peaks
+for f in files:
+    df = load_chromatogram(f, cols=['time', 'signal'])
+    chrom = Chromatogram(df)
+    peaks =  chrom.fit_peaks(verbose=False)
+
+    # Now, use the map_peaks method to quantify the signal based off our
+    # calibration curve
+    mapping = {'lactose': {'retention_time': 13.56,
+                           'slope': slope,
+                           'intercept': intercept,
+                           'unit': 'mM'}}
+    measured_conc = chrom.map_peaks(params=mapping)
+
+    # Parse the known concentration from the file name
+    known_conc = float(f.split('_')[-1][:-4])
+
+    # Add it to the dataframe and concatenate
+    measured_conc['true_conc_mM']  = known_conc
+    test_data  = pd.concat([test_data, measured_conc])
+test_data
+
+
+
+
+
[11]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunittrue_conc_mM
013.560.2814491.66446010715.6473021.285878e+061lactose8.118521mM8.0
013.560.2805901.6492935316.6756686.380011e+051lactose3.981028mM4.0
013.560.2799681.6392232600.4008963.120481e+051lactose1.899415mM2.0
013.560.2795441.6362992154.1437642.584973e+051lactose1.557426mM1.5
+
+
+

It looks like it’s in good agreement! We can confirm this by plotting the measured value versus the true value. If in agreement, everything should fall on the identity line.

+
+
[14]:
+
+
+
# Plot the measured versus known value of the test set
+plt.plot(test_data['true_conc_mM'], test_data['concentration'], 'o',
+         markersize=10, label='measurements')
+plt.plot([0, 10], [0, 10], 'k--', label='equivalence')
+plt.xlabel('true lactose concentration [mM]')
+plt.ylabel('measured lactose concentration [mM]')
+plt.legend()
+
+
+
+
+
[14]:
+
+
+
+
+<matplotlib.legend.Legend at 0x13ed7b7f0>
+
+
+
+
+
+
+../_images/tutorials_calibration_curve_17_1.png +
+
+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/calibration_curve.ipynb b/tutorials/calibration_curve.ipynb new file mode 100644 index 0000000..b3175f4 --- /dev/null +++ b/tutorials/calibration_curve.ipynb @@ -0,0 +1,629 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Absolute Quantitation \n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "A common goal in chromatography is to quantify with physically meaningful units\n", + "the concentration of an analyte in a solution. While Chromatography will not\n", + "give that to you directly off the instrument, you can prepare a \"standard\n", + "curve\"--a set of solutions where you *know* the concentration of the analyte of\n", + "interest. With a properly configured machine, one can make a direct linear\n", + "relation between the integrated area of a peak and the concentration of the analyte. \n", + "In this tutorial, we will use `hplc-py` to quantify a standard curve of a lactose \n", + "solution and then use the `.map_peaks` method of the `Chromatogram` object to \n", + "test our calibration curve. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Generating a Calibration Curve\n", + "Here, we will use `hplc-py` to quantify aqueous solutions of lactose in different \n", + "concentrations. These files have been preprocessed to have the known lactose \n", + "concentration in the file name. " + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "data/calibration/lactose_mM_6.csv\n" + ] + } + ], + "source": [ + "import glob \n", + "\n", + "# Get the list of files\n", + "files = glob.glob('data/calibration/lactose*.csv')\n", + "print(files[0])" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can load this file into memory as a chromatogram using the `load_chromatogram`\n", + "function from the `io` module and instantiate a `Chromatogram` object." + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 2, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABai0lEQVR4nO3dd5zdVZ3/8de90xMyyaR3EkI4FIFIEVmNgOBiF8v+rGtbVGR1ZS3gKs3eYcG+AoqFRdcKChaWRYqKGIpKOZCEkN4nmZSZSWbm/v743puZDCmTycz93vJ6Ph553Dvfcu7nntyU9z3ne76ZXC6HJEmSJFWDbNoFSJIkSVKxGIAkSZIkVQ0DkCRJkqSqYQCSJEmSVDUMQJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVWjNu0CKtQmoAFYlXIdkiRp4KYAncCYlOuQNIwyuVwu7RoqUXsul2vs6Rmevs1mMwxX2+plPxeH/Vwc9nPx2NfFMRz9nM1myGQyHUDTkDYsqaQ4AjQ8VvX05GZv3LhtyBuurc3S0jKStrbtdHX1DHn7StjPxWE/F4f9XDz2dXEMVz+PHTuSmpqMszekCuc1QJIkSZKqhgFIkiRJUtUwAEmSJEmqGgYgSZIkSVXDRRAkSZKq1IIFC0aRLP/tl+IqZz3AqhNPPHHLQA42AEmSJFWZBQsWZIGPZDLZN2cymTogk3ZN0kHI5XK5nQsWLPgu8OkTTzxxn8tDGoAkSZKqz0dqamrf3dzcsqO+vnF7JpPx5lUqW7lcLrNjR8eItrbWd3d3dwF8cl/HG4AkSZKqyIIFC5ozmeybm5tbdowa1bIh7XqkodDQ0NQOjNu0acObFyxYcNW+psM531OSJKm6TM5kMnX19Y3b0y5EGkr50cw6kuva9soAJEmSVF2yQMZpb6o0+c90hv1kHAOQJEmSpKphAJIkSZJUNQxAkiRJ0hC4+uorpp5zzguPTbuOgXrssUcab7vtt6PTrqPYDECSnuaBBxbw5S9fye2330Yu5xRxSZIq0Yc//IG5jzzy95Fp11FsLoMtaTc33fQzLr30P3b9/Na3nssFF3wwxYokSdLwqM4vOQ1AknZZs2Y1n/70xwCYM2cuixY9wXe+cw3z55/GiSeenHJ1kqTh1NPTw/bt21ObHTRixIiebPbAXv65zz3pxFe/+rWr7rjjf8ft3Lkze9VVX39sxIgRPV/+8pXT//rXB5q3bdtWM3r06K4zzjhrw/ve98EVjz76SNO73vXWo7/2tWsePe64edsBLrjg/Dl///tfm3/96zseqK2tJZfL8ZKXnHX8W97y9hWvfe0b1/d/zfXr19VeccXnp99//32ju7u7M0ccceTW97//omVz5hzeWTjmv/7ra5N++cufT9qyZUvt4YfP3fbhD1+6pLB/TzVPnz5jxze/+dUpv//97eNaW1vrpk2b1vHP//y2lS984Us2AfzP/9w47r//+3tT3va2c1dce+1/Td+8eVPdUUcds+Xiiz+25DvfuXbyHXfcNq62tjb38pe/as15571nNUBnZ2fmK1+5curdd9/ZsnHjhvrGxqae44+ft/nDH75k6dix47rPOeeFx65fv77+Rz+6Ycrf/vbgqG9967uxtXVjzVe+8p/T7rvvT2O2bNlSO3v2nG3vfOf5K5797H/YWnhvP//5T8b+4AfXT1m3bl3DzJkz28844wUbrr32GzPuvvsvCwbze5LNZgf1/g6GAUjSLtdc8w06OjqYN+8Errvu+3zqU5fzk5/8iC9/+Uq+850b0i5PkjRMenp6eMMbXn3kY489mtp0qCOPPHrrDTf8OB5oCPrtb2+Z8JnPfOmJ7u6uzNy5R3S+4Q2vPnr06DE7P/e5/3x81KhR3b///e1jvvWtr884+uhnbDv77BdvGj9+/I4//vGe5uOOm7e9u7ubRx75+6jOzs7sAw8sGHnyyadse/DB+0ds2dJW+/znv2BT/9fq6urife979xGQyV1++acXjRs3ruvLX75y+gc+8N4jfvzjm/8GsH79+vq///2voz7zmSue2LGjM/PpT39s9qc//bFZ1177vbi3mi+44Pw5ixcvGvHe9/770tmz53T8+te/GvupT10+J5vNLvzHf3zRZoANG9bX33TTzyZ+8pOfX7h9+7bsJZdcNPdtb3vjMWee+YL1X/vatY/ecstN477//e9MO+20MzYdddQxHV/60men33vvH8dcdNFHl8yYMbMzxtj0xS9+etY3v/nVqf/xH5cuu+aa7z369re/8ejnPOe0je9857tXdXd382//dt4RO3fuzFx00cVPTpgwcecPf3jDxA9/+P1H/Od/fu2xefNO2H7bbb8ZfcUVn5v95je/ffnpp5+56d57/9B8zTXfmHGwvyeDeX8H9CHpxwAkCYDt27fxq1/dBMC//uu/kc1mOe+89/CLX/yMBx+8nxgfI4QjU65SkjR8yvO+QKed9vwN8+adsB2gvb098/znv2DD2We/qHXGjEN3AMya9S9r/+d/bpy8cOHjTWef/eJNJ510yqb777+vGVj94IP3j6ypqc0dccSRW++7795RJ598yra77vr9mLlzw9YJEyZ29X+te+65s/mpp5Y0ffvbN/x97twjOgE++tHLl3znO9dM3rhxQy1ATU1N7hOf+NyTo0eP7gZ40Yteuu773//OtL3V/PjjjzX+5S9/HnP55Z9aeNZZZ28GeM97Lli1ePHCET/4wfVTCgGou7s78/73X/RU4T//xx57fNvjjz92yIc+9JHlmUyGd77zX1f96Ef/PeWJJx5vOuqoYzqOOurobWeccWbrqac+dyvAjBmH7vjd737dtmTJ4iaA8eMndGWz2VxTU1NPS8vY7ttv/13zk08uHvGtb13/cOE1Lr74Y0sff/yxkT/4wfWT5807YfGNN/5g8rOf/Q8bzz33vDUAhx8+d93y5csabr7555MO5vdkMO/vYD4zBiBJANx222/Zvn07M2ceykknnQLAhAkTOf3053Pbbb/h5z//MRdddHHKVUqShkM2m+WGG34cy20KHMD06TN2TT1ramrK/fM/v23tLbfc3PL9718/cuXKFQ1PPfXkiE2bWuu6u3syAPPnn775sss+MqG9vT1z771/HHXMMc/YMm3ajI6HHrq/GVh93333jn7e807fuKfXeuKJx5tGjBjRXQg/AJMmTe666KKLlxd+Hj16dFch/ACMGtXcvWPHjt3eWN+aY3ysCeCkk07Z2veYY4+dt+W73712et9thx/e+7oNDQ09EyZM6sxkMgA0NjbmADo7O7MAr3zlP228667fj7riis9NW7FiecPy5cuaVq5c0XjkkUft9joFCxc+0dTUNKK7b7jIZDIcffQztt5//1+aAZYsWTziuc99Xmvf844//plb+wegA/09Gcz7OxgGIEkA/N///S8AL37xyyj8ZQPw8pefw223/Ybbb7+NCy/86G77JEmVI5vNcsghh/SkXceBamho3FXz9u3bs+9611tDR0dHdv7801r/8R9ftOH44+ctfc973rlrCsOppz5nS11dbc+f/nTPqAceWNB8xhlnbjz00FmdN93008nLlj1Vv2TJ4hGXX/6pxXt6rZqa2tz+/h3MZrP7HUnrW/PeFiLo6enO1NTU7Lazrq5ut5+z2b3X8vGPXzLznnvuHHv66WduePazn7P5yCOPXvWDH1w/ecOGdfV7Oj6X2/Nb6+npoba2Npe8XjY3kNVhD/T3ZDDv72AYgCTR2dnJH/94DwCnnXbGbvue9axTaWxsYs2a1Tz22CMcddQxaZQoSdJ+/f73tzc/+eTiET/96a8emjhxUhdAa+vGms2bN9cWgkZ9fX3u+OOf2XbnnXeMeeKJxw/58IcveWr69Bk7MplM7mtf+/LUKVOmdvRd0KCvww6b07Ft27aaxYsXNRx22JxOgA0b1te+/vWvesYnP/n5JwZT8xFHHNkO8Je/3HtIYQocwN/+9tAh06bNaB9Mmxs3bqj57W9vnXDRRR9d/LKXvXLXiM3y5UsbGxub+oSv3oBx+OFHtG/fvr3m0Ucfbuw7CvTIIw8fMn36zA6AQw+d1f7IIw8fAqwt7H/44b/t87qxgfyeFFtJBaAQwsXAWTHG0/tsmwJcAbwI6AZ+Dbwvxrg+vz8LXAacC7QAdwPnxxgX9mljHnAVcBKwAbg6xvjFPvv324ZUyR588H46OtqZMGEiRx559G77Ghsb+Yd/eC633/477r77TgOQJKlkTZo0eQfATTf9bNzZZ7+odeXKlfX/9V9fndbd3Z3ZsWPnrv/t/8M/PHfT1VdfOau5eVRXIeyEcNTWu+/+/bhXvvI1e11lbP7809pmz56z/eMfv3j2e9/7/mUjR47s/upXr5o+evSYnccf/8ztf/rTHw74pqIhHNUxb94Jm6+++oqZwNJZsw7r+PWvfzV2wYL7xnz4w5fscSRqf5qbR3c3NY3ovvvuO8ccc8xx2zs62rM//OENE5cseXLEnDlztxWOa2xs7F6xYnnD2rVrak877YzNM2Yc2v7xj19y2Hvf++/Lxo+fsPOHP7xh4vLlS5ve//4PLQV4wxvevOqyyz4y99prvznpjDPO2nT//X855Fe/unnivmoZ6O9JMZXMjVBDCBcAH++3rQH4HXAYcBbwEuAE4Lt9DrsEOA94B3AqSZS8NYRQn29jXL6Nx0kC0GXAJ0IIbxtoG1KlW7DgPgBOPvmUPU5xO+WUUwG47757i1qXJEkH4oQTTtr+9re/c9lNN/1s4pvf/LpnfO5zn5z1jGccv+U5z5m/McbeFe7OOOOszT093ZlnPOP4tsK2Zz7zxLZcLsdppz1/097az2azfP7zVy6cMGHSjg9/+ANz3/ve846sqanJXXHFl59oaGgY9HDGZz97xeJnPevZm6644vOzzj33zcfce+8fxnzkI5cveslLXt66/7Ofrra2losv/tjipUufavqXf3nTMRde+O9zOzs7s29601tXrFixrGnbtm1ZgFe84tVr77//vtHve9/5R9TW1nL11V9/fNasw7Z/7GMXzznvvH85asmSJ5s++9krHj/xxGdtAzjjjLPa/vVf3/fUL3/5iwlvf/sbj/nVr34x4eyzX7SuMEVuTwb6e1JMmbTv8h5CmAZcA8wHlgFrCiNAIYS3Al8B5sQY1+S3nQ18DXgm0AGsBy6MMX4jv38MsBJ4e4zxxhDCfwD/CsyKMXblj/k08KoY45H5kLPPNgbxthZ3d/fM3rhx2/6PPEC1tVlaWkbS2rqNrq6ym6ZbNqqtn//lX97EggV/4ZJLPs6rX/3/nrb/yScX88pXvpj6+nruuus+GhoahuR1q62f02I/F499XRzD1c9jx46kpib7JMkXrxVrwYIFR2azNb+eOHHa1vr6xoNaTUvV5Y9/vPuQ8eMn7uy7CMTXv/7lyb/97a3jf/azW/6eZm0AO3Z0NK5du+KQnp7uF5544omP7e24UhgBOgFoBY4D+n+9/ELgfwvhByDG+JsY45wYYxswDxgF3N5n/ybgfuB5+U3zgTsL4SfvdiCEECYOsA2pYnV1dfH3v/8NgBNOOGmPx8yaNZtx48azY8cOHnnk4WKWJ0mSSsSf/vSH0R/84L8dcc89d45avnxp/W9/e+vom2762aQzzjhrj6vmlarUrwGKMd4M3AwQQui/+wjgzhDCJcBbgDrgNySjNZuAwtKAy/qdtxKYmX8+HfjbHvaTP2YgbQxKbe3Q58uamuxujxoe1dTPixc/SWdnJyNHjmTOnMPY2xKkxx57HHfccTuPPfZ3Tj55z0HpQFVTP6fJfi4e+7o47GcpHeef/76V7e3t2c9+9pOzt2xpqx07dtyOV7ziVWve8Y537/W6qVKUegDaj2aS4PO/wBtIFii4EvhFCOF0YET+uP4rdXQAY/PPR+xlP0DjANs4YNlshpaW4ZvW2NzcNGxtq1c19PPSpYsAOPbYYxk3btRejzvppBO4447beeKJx4b8s10N/VwK7Ofisa+Lw36WiquhoSH3kY9ctoynDxyUlVIPQDuArcDrY4w7AUIIbwH+TLKgQWFpwIY+zyEJNoULcNrz++m3n/wxA2njgPX05Ghr2z7Y0/eqpiZLc3MTbW3tdHc7v3y4VFM//+UvDwAwd+6RtLbu/SM/Z04yQnv//Q/s87gDUU39nCb7uXjs6+IYrn5ubm5yVEmqAqUegJYD2UL4yStcgDAbWJJ/PhVY1OeYqcBD+efL8j/Tbz/ACpJpdftrY1CG8wLY7u4eL7Atgmro58I1PUccceQ+3+uRRz4DgCVLnmTjxk00NzcPWQ3V0M+lwH4uHvu6OOznQesBSHkdLGnI9flM7/MvhlL/muNO4PgQQt8x7mPzjwtJAkobcHphZ34FtxOAu/q0MT+EUNOnjTOBGGNcO8A2pIrU09NDjI8CcNRRR+/z2JaWFqZOnQbAo4+6EIIklbENkOvq6eku9S/CpQPS09NVC7kukhWe96rUA9A3SG5+ekMI4RkhhOeQLJn9fzHG+2OMnSTLZH8uhPDyEMJxwA9JRn1+mm/jOpJria4NIRydX1r7AuAzAANsQ6pIy5YtZdu2bTQ0NDBr1v5XfT366GQU6JFHUl/pUpI0eK25XG51e/u2vV/4KZWh9vbto3K53Gpg076OK+nkH2NcH0KYT7Lwwb0kCxX8DHh/n8MuJXkf1wBNJCM+Z8cYd+TbWJu/d9DVJEtbrwI+FGO8fqBtSJXqsceS0Z+5cwO1tfv/6+CYY47lttt+41LYklTGTjzxxJ4FCxZ8sb19y5fb2urGNTQ0bdvDPbClspHLQWdn+8j29i09uVzuCyeeeOI+p8CVVACKMb51D9ueAF66j3O6gYvyv/Z2zH3AqQfThlSJFi58HIAjjnjaEvR7NHfuEQAsWrRw2GqSJBXFTd3d3cds3rzh9ZlM5pC0i5EOVi6X25rL9fw3+dvr7EtJBSBJxbVkyZMAzJ49sJuez5lzOABLly5h584d1NXVD1ttkqThk/+G/FMLFiz4ci7HZEr/sghpX3qA1SeeeGLbQA42AElV7KmnkgB06KGzB3T85MlTGDFiBNu3b2fp0qW7ApEkqTzl/8M4oP80SpXCtC9VqZ6eHpYufQqAQw+dNaBzMpkMhx2WhJ7Fi50GJ0mSyo8BSKpSq1evoqOjg9raOqZNmz7g8wqjPl4HJEmSypEBSKpShet/ZsyYMaAV4AoOO2wOAIsXL9rPkZIkSaXHACRVqQO9/qdgzpy5gCNAkiSpPBmApCr11FNLAJg168ACUGEE6KmnlrBz586hLkuSJGlYGYCkKlWYAnegAWjKlKmMGDGCrq6dLF++bDhKkyRJGjYGIKlKFUaABroCXEEmk2HmzOScpUuXDGlNkiRJw80AJFWhHTt2sHr1KgBmzjz0gM+fMWMmAEuXLh3SuiRJkoabAUiqQqtXryKXy9HY2MjYseMO+PxCAFq2zAAkSZLKiwFIqkIrViwHYOrUaWQymQM+vzBqtGzZU0NalyRJ0nAzAElVaOXKFQBMnTrwG6D21RuAHAGSJEnlxQAkVaHeADRtUOcXpsCtXLmCnTt3DFldkiRJw80AJFWhgw1A48dPoLGxiZ6enl1tSZIklQMDkFSF+l4DNBjJUtiuBCdJksqPAUiqQqtWJaM206YNLgBB35XgXAhBkiSVDwOQVGU6OztZt24dMPhFEABmzEgWQli61AAkSZLKhwFIqjKF0Z+mphGMGTNm0O30jgAtG4qyJEmSisIAJFWZwqIF06YN7h5ABYXrh1atWjkkdUmSJBWDAUiqMge7AlxB4fyVK1eQy+UOui5JkqRiMABJVWb16tUATJ489aDamTIlOb+jo53W1taDrkuSJKkYDEBSlVmzphCAJh9UO/X19UyYMBHAewFJkqSyYQCSqszatWsAmDTp4AIQ7D4NTpIkqRwYgKQqUxgBmjhx0kG3ZQCSJEnlxgAkVZFcLseaNY4ASZKk6mUAkqrIli1baG/fDjgCJEmSqpMBSKoia9cm09/GjBlDY2PjQbdnAJIkSeXGACRVkcL0t4kTD376G3gvIEmSVH4MQFIVKSyAMGnSwU9/A+8FJEmSyk9t2gX0FUK4GDgrxnj6XvZ/C3hBjHFWn21Z4DLgXKAFuBs4P8a4sM8x84CrgJOADcDVMcYvHkgbUiXoDUBDMwKU3AtoAuvWrWPVqhWMHTt2SNqVJEkaLiUzAhRCuAD4+D72n0MSUPq7BDgPeAdwKpADbg0h1OfPGwf8DnicJABdBnwihPC2gbYhVYqhvAdQwaRJU4DecCVJklTKUg9AIYRpIYRbgU8CcS/HTAH+C/h9v+31wAeAy2KMt8QYHwJeC0wDXpU/7J1AJ/DuGOOjMcZvA1cCFx1AG1JFGMp7ABVMnjx5t7YlSZJKWeoBCDgBaAWOA+7tvzOEkAGuB74H3NFv9zxgFHB7YUOMcRNwP/C8/Kb5wJ0xxq4+592eNB0mDrANqSIM5T2ACgoLKqxebQCSJEmlL/VrgGKMNwM3A4QQ9nTIvwNTgJcB/9Fv3/T847J+21cCM/sc87c97Cd/zEDakCqCI0CSJKnapR6A9iWEcBzJNTvzY4ydewhII/KPnf22dwBj+xyzp/0AjQNsY1Bqa4d+gK2mJrvbo4ZHJfZzR0cHW7duAWDKlMlD9vmcMiW5Bmjt2tUH3GYl9nMpsp+Lx74uDvtZ0sEo2QAUQmgEbgA+GWP8614Oa88/NvR5Dkmw2dbnmIZ+5xXuALltgG0csGw2Q0vLyMGevl/NzU3D1rZ6VVI/L126AYDGxkZmzJhEJpMZknbnzp0NJAssDPYzX0n9XMrs5+Kxr4vDfpY0GCUbgIBTgGOAy0MIl+W31QO1IYStwLuAJ/LbpwKL+pw7FXgo/3xZ/mf67QdYAdQNoI0D1tOTo61t+2BP36uamizNzU20tbXT3d0z5O0rUYn9vGjRUgDGjx/Ppk1D99kcObIFSK4B2rBhC9nswL+RrcR+LkX2c/HY18UxXP3c3NzkqJJUBUo5AP0ZmNtv27+RrMx2OrAG2AG05X9eBBBCGEOysMJX8ufcCZwXQqiJMXbnt50JxBjj2hDC5gG0MShdXcP3j193d8+wtq9EJfVzYQGEsWPHD+l7amkZRzabpaurizVr1jJhwsQDbqOS+rmU2c/FY18Xh/0saTBKNgDFGNuB3W5EGkLYCHT1u8npV4DPhRDWAUuAL5CM+vw0f8h1wIXAtSGEzwPPAi4gue8P+WuL9teGVPbWr18PwPjxE4a03draWsaPn8DatWtYs2bNoAKQJElSsVTCOO+lwLXANcA9QBdwdoxxB0CMcS1wNhBIlra+DPhQjPH6gbYhVYING4YnAEHfleBWDXnbkiRJQ6mkRoBijG/dz/7Lgcv7besmuanpRfs47z7g1H3s328bUrlbt24dkFwDNNSSewE95FLYkiSp5FXCCJCkAdiwIQlA48YNfQAqjAB5M1RJklTqDEBSlShcAzRhwtBPgZs0yZuhSpKk8mAAkqrE+vXDNwI0aVJyM1QDkCRJKnUGIKkK9PT0sHFjciPU4V0EwQAkSZJKmwFIqgKbN2+mq6sLgLFjxw55+4UpcOvWraW7u3s/R0uSJKXHACRVgfXr1wLQ0tJCXV39kLc/fvwEampq6Orq2rXctiRJUikyAElVoLAAwnBc/wNQU1Oza2rdmjVrhuU1JEmShoIBSKoChVGZceOG/vqfgt6V4LwZqiRJKl0GIKkKDOdNUAsmT05WgvNeQJIkqZQZgKQqULgJ6nCsAFcwYcJEoHe5bUmSpFJkAJKqQOEaoOEcASoEoHXr1g7ba0iSJB0sA5BUBYbzJqgFBiBJklQODEBSFSgsgjBhwvBNgZs4MWnbACRJkkqZAUiqAoVFEIZzFThHgCRJUjkwAEkVrqOjg61btwDFuQZo69atbN++bdheR5Ik6WAYgKQKV5j+Vl9fz6hRzcP2OiNHHsKIESOA3hEnSZKkUmMAkipc701Qx5PJZIb1tZwGJ0mSSp0BSKpwGzduBKClZeywv5YBSJIklToDkFThWluTADR27Lhhfy0DkCRJKnUGIKnCbdy4AYCxYx0BkiRJMgBJFc4pcJIkSb0MQFKF650CN/wBaOJEA5AkSSptBiCpwvVOgSveNUBr17oMtiRJKk0GIKnCpTUFLpfLDfvrSZIkHSgDkFThijkFbvz4CQB0dLSzdevWYX89SZKkA2UAkipYLpejtbUVKM4IUFNTE6NGNQNeByRJkkqTAUiqYFu2bKGraydQnAAErgQnSZJKmwFIqmCtrckCCCNHjqSxsbEor2kAkiRJpcwAJFWwYi6AUDBhQnIdkAFIkiSVIgOQVMGKuQBCQeFeQGvXGoAkSVLpMQBJFayY9wAqcAqcJEkqZbVpF9BXCOFi4KwY4+l9tr0MuBQ4ClgP/A9waYyxPb8/C1wGnAu0AHcD58cYF/ZpYx5wFXASsAG4Osb4xT7799uGVI6KuQJcgQFIkiSVspIZAQohXAB8vN+2+cDPgJ8A84DzgNcCX+tz2CX57e8ATgVywK0hhPp8G+OA3wGPkwSgy4BPhBDeNtA2pHJVGAEyAEmSJCVSHwEKIUwDrgHmA7Hf7ncBt8cYP5v/eWEI4SPAt0MI55EElQ8AF8YYb8m391pgJfAq4EbgnUAn8O4YYxfwaAhhLnBRvp36AbQhlaXCIghpTYHL5XJkMpmivbYkSdL+lMII0AlAK3AccG+/fV8CPrSHc2qBUSSjQqOA2ws7YoybgPuB5+U3zQfuzIefgtuBEEKYOMA2pLJUWAShmCNA48cnq8Dt3LmTzZs3Fe11JUmSBiL1EaAY483AzQAhhP77Huj7c5/RmvtjjOtDCIWAsqxfsyuBmfnn04G/7WE/+WOmD6CNQamtHfp8WVOT3e1Rw6NS+rkQgCZMGD8sn8c9qa1tZMyYMWzatImNG9czfvzeR58qpZ9Lnf1cPPZ1cdjPkg5G6gFooEIItcD3gKPpHZkZkX/s7Hd4BzC2zzF72g/QOMA2Dlg2m6GlZeRgT9+v5uamYWtbvcq9nwsB6NBDpw7r57G/KVOmsGnTJtrb2wb0uuXez+XCfi4e+7o47GdJg1EWASiEMAr4EXAG8JoYY2GqXHv+saHPc0iCzbY+xzT0a7Ix/7htgG0csJ6eHG1t2wd7+l7V1GRpbm6ira2d7u6eIW9fiUro556enl3XANXVjaC1ddAf5wM2dux4ABYteorjj9/761ZCP5cD+7l47OviGK5+bm5uclRJqgIlH4BCCFOAW4HZwItijP/XZ3dh2tpUYFGf7VOBh/ocM7Vfs4WfVwB1A2hjULq6hu8fv+7unmFtX4ly7ufW1lZ6epLaR40aXdT3UbgOaM2atQN63XLu53JiPxePfV0c9rOkwSjprzlCCC0kixNMAJ7bL/xAElDagNP7nDOGZGGFu/Kb7gTmhxBq+px3JhBjjGsH2IZUdgrT30aNaqaurrgruhcC0Pr1LoUtSZJKS6mPAF0JHAa8EFgXQpjcZ9+6GGNnCOErwOdCCOuAJcAXSEZ9fpo/7jrgQuDaEMLngWcBF5Dc94cBtiGVncI9gMaOLd4KcAUTJhQC0Lqiv7YkSdK+lGwACiFkSW56Wk+fJar7mE0SVi4leR/XAE0kIz5nxxh3AMQY14YQzgauJlnaehXwoRjj9X3a2mcbUjlK4x5ABd4MVZIklaqSCkAxxrf2ed5DEkb2d043yU1NL9rHMfcBpx5MG1K5SeMeQAWFKXDr1jkCJEmSSktJXwMkafB6A1BL0V+79xqgdeRyuaK/viRJ0t4YgKQKtWlTKwBjxqQXgHbu3Elb2+aiv74kSdLeGICkCpVmAGpoaGD06NGA1wFJkqTSYgCSKlRr6yYgnSlwAOPHFxZC8DogSZJUOgxAUoVKcwQIdr8OSJIkqVQYgKQKlXYA8l5AkiSpFBmApApVCEBpTYEr3Ato7VqvAZIkSaXDACRVoPb2djo7OwEYM2ZMKjU4BU6SJJUiA5BUgQqjP3V1dYwYMTKVGgxAkiSpFBmApArU9/qfTCaTSg1eAyRJkkqRAUiqQK2t6V7/A73XAK1bt5ZcLpdaHZIkSX0ZgKQKlPYKcNA7Ba6jo4OtW7emVockSVJfBiCpApVCAGpqauKQQw4BnAYnSZJKhwFIqkCbNm0C0g1A0HchBJfCliRJpcEAJFWgwjVAaS2BXdB7LyBHgCRJUmkwAEkVKO2boBY4AiRJkkqNAUiqQIUANHr0mFTrcClsSZJUagxAUgUqhUUQoHcEaN06A5AkSSoNBiCpApXKFLi+9wKSJEkqBQYgqcLkcjlaWzcBpTMC5BQ4SZJUKgxAUoXZtm0bXV07gfQDkNcASZKkUmMAkipMYfpbY2MjTU1NqdZSmAK3bds2tm/flmotkiRJYACSKk6p3AQVYOTIQ2hqGgG4EIIkSSoNBiCpwpTKCnAFXgckSZJKiQFIqjC9AWhMuoXkeR2QJEkqJQYgqcK0tpbWCFDvUtgGIEmSlD4DkFRhSuUeQAW9N0P1XkCSJCl9BiCpwngNkCRJ0t4ZgKQKU2oByGuAJElSKTEASRWm9AKQ1wBJkqTSUZt2AX2FEC4Gzooxnt5n2zzgKuAkYANwdYzxi332Z4HLgHOBFuBu4PwY48KhbEMqF62tmwCvAZIkSdqTkhkBCiFcAHy837ZxwO+Ax0nCy2XAJ0IIb+tz2CXAecA7gFOBHHBrCKF+qNqQyklhBGj06DHpFpJXmAK3ZUsbHR0dKVcjSZKqXeojQCGEacA1wHwg9tv9TqATeHeMsQt4NIQwF7gI+HY+oHwAuDDGeEu+vdcCK4FXATcOURtSWejp6WHz5k1A6UyBGzWqmfr6enbs2MGGDeuZNm162iVJkqQqVgojQCcArcBxwL399s0H7swHl4LbgRBCmAjMA0bltwEQY9wE3A88bwjbkMrC1q1b6O7uBkrnRqiZTKbPdUBOg5MkSelKfQQoxngzcDNACKH/7unA3/ptW5l/nJnfD7BsD8fMHMI2BqW2dujzZU1NdrdHDY9y7ectWzYDMGLESEaObEq5ml4TJkxkxYrlbNy4frc/F+Xaz+XGfi4e+7o47GdJByP1ALQfI0imr/VVuIigMb+fvRwzdgjbOGDZbIaWlpGDPX2/mptL5z+3lazc+nnRonYAxo0bO6yfvwM1depkHnwQtm3bvMe6yq2fy5X9XDz2dXHYz5IGo9QDUDvQ0G9bY/5xW34/+WPa+x2zbQjbOGA9PTna2rYP9vS9qqnJ0tzcRFtbO93dPUPevhLl2s/Llq0GoLl5NK2tg/74DrkxY5LvEp56avludZVrP5cb+7l47OviGK5+bm5uclRJqgKlHoCWAVP7bSv8vAKo67NtUb9jHhrCNgalq2v4/vHr7u4Z1vaVKLd+3rBhA5AsgFBKdY8bl6wEt3bt2j3WVW79XK7s5+Kxr4vDfpY0GKX+NcedwPwQQk2fbWcCMca4liSgtAGnF3aGEMaQLKxw1xC2IZWFUrsJakHhXkDr13szVEmSlK5SHwG6DrgQuDaE8HngWcAFJPfsIcbYGUL4CvC5EMI6YAnwBZJRn58OYRtSWdi0aRNQegGocC8gV4GTJElpK+kAFGNcG0I4G7iaZFnqVcCHYozX9znsUpL3cQ3QRDLic3aMccdQtSGVi9IdAUqWwXYESJIkpa2kAlCM8a172HYfcOo+zukmuanpRfs45qDbkMpBa2sSgFpaxqRbSD+F+wC1trayc+cO6urqU65IkiRVq1K/BkjSASjVEaAxY8ZQW5usN1JYqEGSJCkNBiCpgpRqAMpkMowfPx7wOiBJkpQuA5BUQUo1AEHvSnDr1nkdkCRJSo8BSKoQ3d3dbN68GYCWltILQIXrgFwIQZIkpWlAiyCEEN58II3GGL87uHIkDVZbWxu5XA6A5ubRKVfzdN4LSJIklYKBrgL3nQNoMwcYgKQiK0x/O+SQUdTV1aVczdN5LyBJklQKBhqAZg9rFZIOWu/1P2PSLWQvvAZIkiSVggEFoBjjUwNtMISQGXw5kgar9x5AY1OuZM+8BkiSJJWCQd0INYTwOuA0oB4oBJ4sMJLkhqPTh6Q6SQO2efMmoHRHgApT4AxAkiQpTQccgEIIlwGXAZvz5+/M/5oA9ADfGsoCJQ1MKS+BDb1T4DZsWE9XVxe1tYP6/kWSJOmgDGYZ7LcA3wfGAlcCN8cYJwEnAxuAh4euPEkD1TsFrjQDUEvLWLLZLLlcjo0bN6RdjiRJqlKDCUDTgO/FGHPAAuAfAGKMC4BPAecOXXmSBqrUR4BqamoYN2484DQ4SZKUnsEEoG0kS10DPAHMDiE05X9+EFeMk1JR6gEIvA5IkiSlbzAB6M8k0+AAFgFdwFn5n48COoegLkkHqNSXwYbe64DWrvVeQJIkKR2DCUCfBl4bQrg5xthJcj3Q9SGEnwBfAn4zlAVKGpjW1k1AqY8AuRS2JElK1wEHoBjjncBJwA/zm94D/Bg4Evgf4N+GrDpJA1YOU+AKI0AGIEmSlJZBrUMbY/wr8Nf88w7gnUNZlKQD09XVxZYtbUBpByCvAZIkSWkb7I1QRwPPJ7nx6dNGkWKM3z3IuiQdgLa2zQBkMhmam5tTrmbvxo9PpsB5DZAkSUrLYG6E+iKSqW4j9nJIDjAASUVUuAdQc3NzSd9g1BEgSZKUtsH8T+kzwKPA+4HlQM+QViTpgJXD9T/QOwK0ceMGenp6GNw6LJIkSYM3mAB0JPCKGONdQ12MpMEpBKDRo8ekW8h+jBs3jkwmQ1dXF5s2tTJx4oS0S5IkSVVmMF+/PgWU7kUGUhUqTIFraSntEaDa2lpaWsYCXgckSZLSMZgA9BngshDCrCGuRdIglcsUOPBeQJIkKV2DmQL3RmAasCiEsA7Y3m9/LsY456ArkzRgmzdvAsojAI0fP4EYHzUASZKkVAwmAC3P/5JUIgpT4MohABVWglu3zgAkSZKK74ADUIzxbcNRiKTB27RpE1D61wBBMgIEsG6d1wBJkqTiG8x9gGbuY3cPsDXGuGnQFUk6YF4DJEmSNDCDmQK3hORmp3sVQtgIXBVj/ORgipJ0YHoD0Jh0CxmA3puhOgIkSZKKbzCrwL0F2AH8Fngb8KL8tptJgtHHge8AF4cQ3j00ZUral3IKQL1T4BwBkiRJxTeYEaDXAzfu4Vqg74cQvg6cGGN8eQhhE/Bu4OsHWaOkfdi5cwdbt24FymMKXCEArV+/jlxun4PJkiRJQ24wI0CnAzfsZd9PgTPzz+8GXA5bGmaFBRCy2SyjRpX+PYoLAWjnzp27lu+WJEkqlsGMAG0Ajgd+t4d9xwNt+eeHANsGWdduQgh1wOXAPwMtwIPARTHGP+T3zwOuAk7K13d1jPGLfc7PApcB5+bPvxs4P8a4sM8x+2xDKlWFEDF69GhqamrSLWYA6uvrGTNmDJs2bWLdunXMnj097ZIkSVIVGUwA+gHw8RDCTuDHwFpgIvAqkpDyjRBCC3AB8KehKZOLgbeTXGu0GLgIuDWEcBTQSRLGfg6cBzwb+FoIYUOM8dv58y/J73sbsAL4fP78Y2KMO0II4wbQhlSSyukeQAXjx0/YFYAkSZKKaTAB6GKSwHNF/ldBD3Ad8BHgNcAzgecfbIF5rwBuiDH+FiCE8AGS0ZxTgSNIQtC7Y4xdwKMhhLkkIenbIYR64APAhTHGW/LnvxZYSRLabgTeua82hug9SMOinJbALhg/fgILFz7BunVr0i5FkiRVmQO+BijG2BVjfDtJ8HgX8FGSkZkjYozvijHuAG4FpsUY/zpEdW4AXhpCmBVCqKE3sDwIzAfuzAeXgtuBEEKYCMwDRuW3Fd7DJuB+4Hn5TftrQypZhWuAyikAFe4F5AiQJEkqtsGMAAEQY1wELNrLvtZBV7Rn7wN+CDwJdJOMNr0mxrgohDAd+Fu/41fmH2cChQsMlu3hmMJNXffXxqBuWFJbO5g1Jvatpia726OGRzn1c1vbJgDGjm0Zls/ccJg4MQlAGzasB8qjn8tZOX2ey519XRz2s6SDMaAAFEJYDLwyxvhQCOFJ9n0j1FyMcahXfzsKaAXOIbmG5x3Ad0MIzwNGkIwG9dWRf2zM72cvx4zNP99fGwcsm83Q0jJyMKcOSHNz07C1rV7l0M/bt28BYPLkicP6mRtKhx6afC+xcWMSgMqhnyuB/Vw89nVx2M+SBmOgI0C/p3d1t9+z7wA0pEIIh5IsvHBmjPGu/Oa/hBCOBj4GtAMN/U4rhJZt+f3kj2nvd0xhlbr9tXHAenpytLVtH8yp+1RTk6W5uYm2tna6u3uGvH0lyqmfV69OppE1Nh5Ca+uQLLw47EaNSqbrrViRDLSWQz+Xs3L6PJc7+7o4hqufm5ubHFWSqsCAAlDfm57GGN8aQhgFNMcYV4QQGkimqE0HfhJj/P0Q1/gsoA64r9/2PwEvBp4CpvbbV/h5Rf7cwrZF/Y55KP982X7aGJSuruH7x6+7u2dY21eiHPq5tXUjAM3No0u+1oLx4ycBsHr1aqA8+rkS2M/FY18Xh/0saTAO+GuOEMKzSELHe/ObrgI+A7wJ+N8QwsuHrjyg99qd4/ptPxZ4ArgTmJ9fHKHgTCDGGNeShJw2khu4Ft7DGOAEoDCitL82pJJVWAShpaV8FkGYNCkJQOvWraW7uzvlaiRJUjUZzCIInwIeA74ZQmgiCT5fjzG+J4TwTZJV4W4awhr/TBJUrg8hnA8sB94MnAU8l+S+QBcC14YQPk8yYnQByf18iDF2hhC+AnwuhLAOWAJ8gSRY/TT/Gtftqw2plJXjMtjjxo2ntraWrq4u1q5dS2Njc9olSZKkKjGYia6nAJ+IMT5JMkrSBHwvv+9G4BlDVBsAMcYekvsA3Q58B1hAcn+hM2OMf8qP0JwNBJKlrS8DPhRjvL5PM5cC1wLXAPcAXcDZ+SW7GWAbUkkqxwBUU1OzaynsVatWpVyNJEmqJoMZAeqhd8W0FwObSEZpAJqBIb/yP7+s9r/mf+1p/30kN0Xd2/ndJDc1vWgfx+yzDakUdXZ2sn178keunAIQwMSJk1i1aiUrV65k9uyQdjmSJKlKDGYE6C/AuSGEU4HXAr+MMebyNwz9cH6/pCIoXP9TU1PDqFGj0i3mAE2ePAVwBEiSJBXXYEaAPgT8GngdsA74ZH7730kC1dlDU5qk/SlMfxs9egyZTCblag5MYSGElStX7udISZKkoXPAI0AxxgeAw0mmix0WY3wiv+vdwDNijAuGsD5J+1CO1/8UTJrkCJAkSSq+wYwAEWPcAtzbb9tPhqQiSQNWCEAtLWPSLWQQCiNABiBJklRM3u5YKmOFa4DKcwRoMuAUOEmSVFwGIKmMlfcUuCQArVmzxpuhSpKkojEASWWsnANQ4Wao3d3drF+/Lu1yJElSlTAASWWstbV8A1Dfm6GuWbMm5WokSVK1MABJZax3BGhMuoUMUu80uNUpVyJJkqqFAUgqY+W8CAL0rgS3erUrwUmSpOIwAEllrJyvAQKYPDm5F9Dq1Y4ASZKk4jAASWWs3KfATZ6cTIFzBEiSJBWLAUgqU+3t2+no6ABg7NixKVczOIURIBdBkCRJxWIAksrUxo0bAaivr2fEiJEpVzM4LoIgSZKKzQAklalCAGppGUsmk0m5msEpTIFbu9aboUqSpOIwAEllqrU1CUDlOv0Nkpuh1tTU0N3dzYYN69MuR5IkVQEDkFSmCgGopaV8A1BNTc2upbCdBidJkorBACSVqcIUuLFjx6VcycGZOnUqYACSJEnFYQCSylTvCFB53gOoYMoUV4KTJEnFYwCSytTGjRuAShoB8l5AkiRp+BmApDLV2prcBLWcrwGC3hGg1audAidJkoafAUgqU5UyBW7atGkArF69MuVKJElSNTAASWWqdxns8p4CN336dABWrTIASZKk4WcAkspQLperiGWwoTcArVu3js7OzpSrkSRJlc4AJJWh9vbtdHR0AOV9I1RIpvA1NY0AnAYnSZKGnwFIKkOFBRAaGhp2hYdylclkdl0HtHKlAUiSJA0vA5BUhvreBDWTyaRczcGbMiVZCnvlyhUpVyJJkiqdAUgqQ62tyT2Ayn0FuILCCJALIUiSpOFmAJLKUGEEqKWlvFeAK5g6NVkIwREgSZI03AxAUhmqlHsAFUyd6hQ4SZJUHLVpFzBQIYQ3Ax8GDgMWAZfHGP8nv28ecBVwErABuDrG+MU+52aBy4BzgRbgbuD8GOPCPsfssw2plPTeA6i8V4ArcAqcJEkqlrIYAQohvAm4Dvgm8AzgRuDGEMKpIYRxwO+Ax0nCy2XAJ0IIb+vTxCXAecA7gFOBHHBrCKE+3/5A2pBKRqVNgZsyJQlAa9euYefOHSlXI0mSKlnJjwCFEDLAJ4ArY4xX5Td/IoTwXOD0/K9O4N0xxi7g0RDCXOAi4Nv5kPMB4MIY4y35Nl8LrAReRRKm3rmvNoryRqUDUGlT4MaNG0dDQwOdnZ2sXr2aGTNmpl2SJEmqUOUwAhSAWcANfTfGGM+OMX4GmA/cmQ8uBbcDIYQwEZgHjMpvK5y7CbgfeF5+0/7akEpK7xS4yhgBymQyu5bCdhqcJEkaTiU/AgQckX8cGUL4DfBM4EngkzHGm4HpwN/6nVP4H9TM/H6AZXs4pvA18/7aWDuYwmtrhz5f1tRkd3vU8Cj1fi5MgZswYdywfM6KpW8/T5s2nSVLnmT16pVl/Z5KUal/niuJfV0c9rOkg1EOAag5//hd4GMk09JeDfwihPACYATJ9LW+OvKPjfn97OWYwhXk+2vjgGWzGVpaRg7m1AFpbm4atrbVqxT7OZfLsWlTKwCzZ88Y1s9ZsTQ3NzFr1kzuuQdaW9dVxHsqRaX4ea5U9nVx2M+SBqMcAlDhiugvxBivzz9/MIRwAvB+oB1o6HdOIbRsy+8nf0x7v2O25Z/vr40D1tOTo61t+2BO3aeamizNzU20tbXT3d0z5O0rUcr9vG3bVjo6knyezTbS2jqoj2hJ6NvP48dPAmDRoifL+j2VolL+PFca+7o4hqufm5ubHFWSqkA5BKDl+cf+U9QeBl4KLAGm9ttX+HkFUNdn26J+xzyUf75sP20MSlfX8P3j193dM6ztK1GK/bxu3QYAGhsbqa9vLLn6BqO7u4fJk5M/citWLK+I91SKSvHzXKns6+KwnyUNRjl8zfEAsAV4dr/txwILgTuB+SGEmj77zgRijHEtSchpI1ktDoAQwhjgBOCu/Kb9tSGVjN4V4CrjHkAFhUUQVq50EQRJkjR8Sn4EKMbYHkL4PHBpCGEF8GfgdcA/koSUR4ALgWvzxz0LuIDkvj/EGDtDCF8BPhdCWEcyYvQFklGfn+Zf5rp9tSGVkg0bkhGgcePGp1zJ0Jo6NbkX0Jo1q9m5cwd1dfUpVyRJkipRyQcggBjjJ0MI24FPAdOAR4FXxRjvAAghnA1cTbK09SrgQ32uFwK4lOS9XgM0kYz4nB1j3JFvf+0A2pBKwvr164Dk3jmVZMKEiTQ2NtLR0cHKlSs59NBZaZckSZIqUFkEIIAY4xXAFXvZdx9w6j7O7SZZPe6ifRyzzzakUrFhw3qg8kaAMpkM06fPYOHCJ1i+fJkBSJIkDYtyuAZIUh/r1ycBaPz4CSlXMvSmT09uzbVs2VMpVyJJkiqVAUgqMxs3VuYIEMDMmYUA1P++xZIkSUPDACSVmcIIUKVdAwSOAEmSpOFnAJLKTO81QJU3BW7GjCQALV/uCJAkSRoeBiCpzBSWwR4/vvKmwPUNQD093txQkiQNPQOQVEa2b99Ge/t2oDKnwE2ePIXa2lp27NjB2rVr0i5HkiRVIAOQVEYK1/80NY1gxIiRKVcz9Gpra5kyJbkh6rJlS1OuRpIkVSIDkFRGCtf/VOL0t4IZM2YABiBJkjQ8DEBSGanUm6D21XsdkAFIkiQNPQOQVEYqeQnsgsJS2EuXGoAkSdLQMwBJZaSSl8AuKNwM1aWwJUnScDAASWWkMAJUydcAFUaAli9fSi6XS7kaSZJUaQxAUhnZuDEJQGPHVvIUuBlkMhm2bt1Ka2tr2uVIkqQKYwCSykjvCFDlToFraGhg4sRJACxduiTdYiRJUsUxAEllpBpWgQOYNeswAJYseTLlSiRJUqUxAEllIpfL9QlAlTsFDmD27NmAAUiSJA09A5BUJrZsaWPnzp1ANY0ALU65EkmSVGkMQFKZKFz/M2pUMw0NDSlXM7xmz04C0JNPGoAkSdLQMgBJZWLDhnVAZS+BXVAYAVq+fBk7d+5IuRpJklRJDEBSmdiwYQNQ2UtgF0ycOJGRI0fS3d3N0qVL0y5HkiRVEAOQVCaqYQnsgkwm43VAkiRpWBiApDKxfn0yBa7SF0Ao8DogSZI0HAxAUplYu3YNwK6bhFa6WbNcCluSJA09A5BUJnoD0MSUKykOR4AkSdJwMABJZWLdurUATJhQHQGo7zVAuVwu5WokSVKlMABJZSCXy7F2bRKAqmUK3MyZM6mpqWHbtm27wp8kSdLBMgBJZWDr1q20t28HqicA1dXVM336DMDrgCRJ0tAxAElloHD9z6hRzTQ1NaVcTfEUrgNavHhRypVIkqRKYQCSykC1Xf9TcNhhcwBYtOiJlCuRJEmVwgAklYFqWwGu4PDDjwDgiSceT7kSSZJUKWrTLuBAhBCOAO4H3hNj/E5+2zzgKuAkYANwdYzxi33OyQKXAecCLcDdwPkxxoV9jtlnG1Laqu0eQAVz5yYBaOHCx8nlcmQymZQrkiRJ5a5sRoBCCHXAD4CRfbaNA34HPE4SXi4DPhFCeFufUy8BzgPeAZwK5IBbQwj1B9CGlKpqnQI3a9Zsamtr2bp1K6tWrUy7HEmSVAHKJgABHwO29Nv2TqATeHeM8dEY47eBK4GLAPIh5wPAZTHGW2KMDwGvBaYBrxpIG1IpqLYlsAvq6uqZNWs2kIwCSZIkHayyCEAhhOcB7wLe0m/XfODOGGNXn223J6eEicA8YFR+GwAxxk0k0+ieN8A2pNRV6xQ4gLlzA+B1QJIkaWiU/DVAIYQxwPeA98YYl4UQ+u6eDvyt3ymFeTIz8/sBlu3hmJkDbGPQd2CsrR36fFlTk93tUcOj1Pp53bokAE2ZMnlYPldpGUg/hxC49dZfsmjRExX13oup1D7Plcy+Lg77WdLBKPkABHwd+GOM8YY97BtBMn2tr478Y2N+P3s5ZuwA2xiUbDZDS8vI/R84SM3N1XMvmDSVQj93dXWxfv16AObOnTWsn6u07Kufn/nM4wBYvHhhRb73YiqFz3O1sK+Lw36WNBglHYBCCP9MMkXt2L0c0g409NtWCC3b8vvJH9Pe75htA2xjUHp6crS1bR/s6XtVU5OlubmJtrZ2urt7hrx9JUqpn1etWkVPTw+1tXXU1Y2ktXXQH8uSM5B+njp1FgALFy5k9eqNNDT0/+Oq/Smlz3Ols6+LY7j6ubm5yVElqQqUdAAC3g5MAvpPfftGCOFDwFPA1H7nFH5eAdT12bao3zEP5Z8v208bg9bVNXz/+HV39wxr+0qUQj8vX558DCdNmkRPD/T0VN7v+776efz4ibS0tNDa2sojjzzKscceV+TqKkcpfJ6rhX1dHPazpMEo9a853gQcRbKYQeEXwKXAi4E7gfkhhJo+55wJxBjjWpKQ0wacXtiZv6boBOCu/Kb9tSGlavXq5JK0yZOnpFxJOjKZDEcddQwAjz76cMrVSJKkclfSI0AxxqeNwORHgtbGGJ8KIVwHXAhcG0L4PPAs4AKS+/4QY+wMIXwF+FwIYR2wBPgCyajPT/NN7rMNKW2rV68CYMqU/gOV1ePoo5/BH/5wN4888ve0S5EkSWWu1EeA9ik/QnM2EEiWtr4M+FCM8fo+h10KXAtcA9wDdAFnxxh3HEAbUmpWrUoCULWOAAEcfXQyAvTII44ASZKkg1PSI0B7EmPM9Pv5PuDUfRzfTXJT073e2HR/bUhpqvYpcJCMAAEsWvQEHR0dNDYOeoFGSZJU5cp6BEiqBk6Bg0mTJtPSMpbu7m6eeCKmXY4kSSpjBiCpxDkFLlkIoTAK9PDDXgckSZIGzwAklbCtW7eyZUsbAJMnT065mnQVrgNyJThJknQwDEBSCStMf2tuHs3IkYekXE26CkthuxKcJEk6GAYgqYQVAlA1T38rOOaYZArc4sWLaG9vT7kaSZJUrgxAUgkrrAA3ZYoBaOLESYwbN57u7m5ifDTtciRJUpkyAEklbOXK5F7AjgAlCyEce+xxADz00AMpVyNJksqVAUgqYcuXLwdg+vQZKVdSGo4//gQAHnzQACRJkgbHACSVsOXLlwEwbZoBCGDevCQAPfTQA+RyuZSrkSRJ5cgAJJWwQgByBChx9NHHUFdXx8aNG1i2bGna5UiSpDJkAJJKVFvbZtraNgMwffr0lKspDQ0NDbtuiPrgg/enXI0kSSpHBiCpRK1YkVz/M3bsOEaMGJlyNaWjMA3OACRJkgbDACSVKKe/7dkzn3kiAPff/5eUK5EkSeXIACSVKAPQnp1wwklks1mWLHmSNWvWpF2OJEkqMwYgqUQZgPasubmZo446BoD77vtTytVIkqRyYwCSSpT3ANq7Zz3r2QD8+c8GIEmSdGAMQFKJWr48WebZAPR0J598CpAEIO8HJEmSDoQBSCpBO3fuZPXqVYA3Qd2TZz7zBGpr61i9ehVLlz6VdjmSJKmMGICkErR8+TK6u7tpahrBxIkT0y6n5DQ1jeD44+cB8Ic/3JVuMZIkqawYgKQS9OSTiwGYPXs2mUwm5WpK03OfexoAd999Z8qVSJKkcmIAkkrQkiVJAJo167CUKyld8+cnAei+++6lvb095WokSVK5MABJJah3BMgAtDdz5hzOlClT2bFjh8thS5KkATMASSVoyZInAZg1a3bKlZSuTCazaxrcXXf9PuVqJElSuTAASSUml8s5AjRAhWlwd9xxOz09PSlXI0mSyoEBSCoxGzasZ+vWLWSzWWbMODTtckras5/9DxxyyCGsW7eWv/71wbTLkSRJZcAAJJWYwujPtGnTaWhoSLma0lZfX89ppz0fgN/97jcpVyNJksqBAUgqMU895fU/B+Kss84G4LbbfuM0OEmStF8GIKnELFz4BACzZ89JuZLycOqpz2HEiBGsWbPaaXCSJGm/DEBSiYnxMQBCODLlSspDY2Mjz3/+CwD45S9/kXI1kiSp1BmApBLS09PD448bgA7Uy152DgC//vUtdHZ2pluMJEkqaQYgqYSsXLmCbdu2UVdXx6GHeg3QQJ188ilMnjyFrVu3cMcd/5t2OZIkqYTVpl3A/oQQxgKfBl4KNAN/BT4cY7w7v38ecBVwErABuDrG+MU+52eBy4BzgRbgbuD8GOPCPsfssw2pWGJ8FIDDD59LXV1dytWUj2w2y0tf+gquueYb/PznP+Hss1+cdkmSJKlElcMI0I3As4HXAScD9wO/DSEcGUIYB/wOeJwkvFwGfCKE8LY+518CnAe8AzgVyAG3hhDqAQbYhlQUhet/jjjC6W8H6pxzXk0mk+GPf7xn10p6kiRJ/ZV0AAohHA68gGTE5u4YYwTeB6wA3gC8E+gE3h1jfDTG+G3gSuCi/Pn1wAeAy2KMt8QYHwJeC0wDXpV/mX22IRWT1/8M3vTpM5g//zQAfvSjG1OuRpIklaqSDkDAeuAlwILChhhjDsgAY4H5wJ0xxq4+59wOhBDCRGAeMCq/rXD+JpJRpOflN+2vDaloHAE6OK973RsB+MUvfsL27dtSrkaSJJWikr4GKB9Wbum7LYTwT8Ac4DfAp4C/9TttZf5xJjA9/3zZHo6ZmX8+fT9trB1E6QDU1g59vqypye72qOGRRj9v3LiRVauSj97RRx89LJ+fUjPU/fzc585n1qzZLFnyJD//+Y9585udyQr+vVFM9nVx2M+SDkZJB6D+QgjPAa4DfhFjvDmEcCXJ9LW+OvKPjcCI/PM9HTM2/3zEftoYlGw2Q0vLyMGevl/NzU3D1rZ6FbOf77vvHgDmzp3LoYdOKdrrloKh7Of3vOdf+eAHP8j111/Hu951Lo2Ng/5jXHH8e6N47OvisJ8lDUbZBKAQwiuAG4A/Aa/Pb24HGvodWvjfzrb8fvLHtPc7pjA/Zn9tDEpPT462tu2DPX2vamqyNDc30dbWTnd3z5C3r0Qa/Xz33X8A4Nhjj6e1tTqmbw1HP5955guZPPlLrF69iuuuu57Xv/5NQ9JuOfPvjeKxr4tjuPq5ubnJUSWpCpRFAAohvIdkmeqfAm+KMRZGbJYBU/sdXvh5BVDXZ9uifsc8NMA2Bq2ra/j+8evu7hnW9pUoZj8/8MADABx33DOr7vd2KPs5k6nlrW89l89+9hN885tf5yUveQUjRgzfaGw58e+N4rGvi8N+ljQYJf81Rwjh3cCXga8Ar+0TfgDuBOaHEGr6bDsTiDHGtSQhpw04vU97Y4ATgLsG2IY07Hbu3MnDDyeXoh1//DNTrqb8vfrV/8SMGYeyfv06rrvuW2mXI0mSSkhJB6AQwhEkIz8/Az4DTAwhTM7/Gk1yPVAzcG0I4egQwluBC/LHkg9LXwE+F0J4eQjhOOCHJKM+P82/zD7bkIohxsfo7Oxk9OjRHHrorLTLKXt1dfX8+79/CIDvfvc6Vq48qMFcSZJUQUo6AAGvIZnG9kpgVb9fV+VHaM4GAsnS1pcBH4oxXt+njUuBa4FrgHuALuDsGOMOgAG2IQ2rBx+8H4Bjj51HNlvqfyzLwxlnnMnJJ5/Cjh07uOqqL6VdjiRJKhElfQ1QjPHTwKf3c8x9wKn72N9NclPTvd7YdH9tSMPt3nuTBRBOPPGklCupHJlMhg9+8D94/etfxW9+cwtnn/1inv/8s9IuS5IkpcyvmqWU7dixg/vu+zMAp5763JSrqSwhHMlb3vIvAHziE5ewYcP6lCuSJElpMwBJKXvwwfvp6Ghn/PgJhHBk2uVUnHe/+70cccSRtLa2cvnlHyWXy6VdkiRJSpEBSErZPfckCxI++9n/QCaTSbmaylNfX8+nP/156urquOuu33PNNd9MuyRJkpQiA5CUsj/+8W4AnvOc+SlXUrkOP/wILrroowB89av/ya9//auUK5IkSWkxAEkpWrZsKY8/Hslmszz72c9Ju5yK9prXvI43vektAFx66X9w3333plyRJElKgwFIStGtt/4SgGc969m0tLSkXE3l+/d/v5DTTz+THTt28N73vos//OGu/Z8kSZIqigFISkkul+OWW24G4MUvflnK1VSHmpoaPvvZL/Hc555GR0cH73vf+dx222/SLkuSJBWRAUhKyWOPPcKSJU/S0NDA85//grTLqRqNjY1ceeWXOfPMF7Bz504++MH38eUvX0l3d3fapUmSpCIwAEkp+elPfwzA8553BoccckjK1VSXurp6Pve5K3nDG94MwLXXfpPzzns7y5cvS7kySZI03AxAUgo2btzITTf9FID/9/9el3I11am2tpYLL/wIn/nMF2lsbOK+++7lNa95Gd/5zrXs2LEj7fIkSdIwMQBJKbjxxu/T2dnJ0Uc/g5NOOiXtcqrai170Un70o59z8smn0NHRwX/+5xc455wXcdNNP6Orqyvt8iRJ0hAzAElFtnnzJn74wx8A8Na3nuvNT0vAzJmH8l//9R0uv/xTTJgwgZUrV3Dppf/BS15yFt/61jfYuHFD2iVKkqQhYgCSiuzLX76SzZs3M2fOXM4808UPSkUmk+Gcc17NTTf9lve974O0tIxlzZrVfPWr/8nZZ5/OBReczy233My2bVvTLlWSJB2E2rQLkKrJX//6ID/5yY8A+MhHLqWmpiblitRfU1MTb3vbubzxjW/mt7+9lRtv/AF///tfueOO27njjttpaGhg3rwTOOmkU3jWs07h6KOfQV1dXdplS5KkATIASUWyfv06PvShC8jlcrz0pa/gxBNPTrsk7UN9fT0vfekreOlLX8ETT0R++9tf85vf3MLSpU9x771/5N57/8hXv5osqz1nzlyOOCJwxBGBuXOTx+bm0Wm/BUmStAcGIKkINm/exAUX/Ctr1qxm1qzZXHjhR9MuSQdg7twk2Jx//r+xePEi7rvvXv7yl3v5y1/+zKZNm3j44b/x8MN/2+2cyZOnMHv2YUyZMpUpU6YyefIUJk+ewoQJExg3bgKHHHKI139JkpQCA5A0zBYtWsgHPvBelix5kubm0Vx11ddobm5OuywNQiaTYc6cw5kz53Be97o30tPTw7JlT/H445HHH4888UQkxsdYtWolq1evYvXqVXttq6GhgXHjxjNmzBhGjBjJyJEjd3s85JBDnra9/zEjR46kvr7eICVJ0gEwAEnDZNWqlfz3f3+PG274Pl1dO5k8eQpf+co3OfTQ2WmXpiGSzWY59NDZHHrobF7wghfu2r5lyxaeeCKydOlTu4LQqlWrWL16JRs2bGDr1i10dnaycuUKVq5ccVA11NbW7haKGhrqqa2tpa6ujtraeurq6qivr2PkyCZ6ejK79hV+1dbu/tj3V01NDTU1tdTUZMlma6ipyVJTU0s2m83vS37V1tb2eSw8r6G2ti5/7NPb6P05+WWIkyQViwFIOgi5XI4tW9rYuHEDGzduZOnSp1i8eBEPPLCAhx/+Gz09PQA873mnc/HFH2PixEkpV6xiGDVqFCeccBInnHDSHvd3dHSwYcN61q9fx+bNm9m+fRvbtm172uO2bVv7/Lx9t30dHe0AdHV10da2mba2zcV8i0Mum00CUW1tEogKz7PZGrLZTP4xu+tXJpPJB6csNTVZMpnefcn5u/+c7M/kz82SybDreXJcBsjsel7Ynslk9thW72tmyGQy+TYz1NZmaWpqoLOzCyjs620jeY3dz8lk2HUcJEGwEAh7H9n1c29Y3Nuxu5/T97i9HbvryL221ffx6TXtuc09v8ZQqK+v5YUvPAsXs5U0GAagMtLT08N1113HmjUr6OjYQXd3D7lcjp6e3se+z3O5wvMcuVxPfn+OXC4HJI/Jc/LPC6/Ud1vv897HwnOetq//8cnr7P243V/r6cf1trH7tsJ76u7u3vW++77/wusWXqv/e+67b0/bC3UV2kteNrdbe7317d3JJ5/CP//z25g//zS/4dYujY2NTJs2nWnTpg+6je7ubrZv394nLCXhaOfOnf1+7SCX66auLsvmzVvp7NzBzp076erq2uOxXV1ddHXt3HVMd3d3/s9ZN93dPX1+7qG7u4vu7h66unbu2t7d3UVXV3f+3C66urryx3bv889M4c9vV9fOQfeJqss//dM/cdlln0q7DEllyABURpYtW8oVV3w+7TK0ByNHjqSlZSzTps3gsMMO48gjj+aUU05l8uQpaZemClVTU8OoUaMYNWrUfo+trc3S0jKS1tZtdHX1FKG6PcvlcnsIVEmISn7u7hOYunYFriQcde/2xUehreTnvl+CJMcV2is8L3xp0feLkr5fFiXH9QC5Pl8W9eS/aOptv++XLkkbvV8s5XI9ZDJQV1dDe/uOPjXldmu393kPfb/cKYwYP/0LInbbvqcviXbf3nv83o/Z+zkHcvz+j9v/F0WDUVdXyznnnDMsbUuqfAagMjJz5qF85jNfYOPGtXR0dAF9p3D0TqnYfZpHZtd0jsI0jN7zMk+bTrGnKQ17ms6w76kPT9/W//jC1JC9HbfnNnY/bvcpMTV93ndmV/t9p5fsvu3p2/u+Tm1tljFjRtLW1k53d2636Sl9p6tkMhkOOWQUDQ0NB/4bKlWZ5M9WLbW1lftPT6mEzUrXt58l6UBV7r9CFSiTyfCyl73Cf1yLwP/ESJIkVSavHpQkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoaBiBJkiRJVcMAJEmSJKlqGIAkSZIkVQ3vA5QXQsgClwHnAi3A3cD5McaFqRYmSZIkacg4AtTrEuA84B3AqUAOuDWEUJ9qVZIkSZKGjAEIyIecDwCXxRhviTE+BLwWmAa8KtXiJEmSJA0ZA1BiHjAKuL2wIca4CbgfeF46JUmSJEkaal4DlJief1zWb/tKYOZgG62tHfp8WVOT3e1Rw8N+Lg77uTjs5+Kxr4vDfpZ0MAxAiRH5x85+2zuAsYNpMJvN0NIy8qCK2pfm5qZha1u97OfisJ+Lw34uHvu6OOxnSYNhAEq05x8b+jwHaAS2DaK9KQDd3T0HWdbTZTKQzWbp6ekhlxvy5pVnPxeH/Vwc9nPx2NfFMVz9nM1myGQyU4auRUmlyACUKEx9mwos6rN9KvDQINrrzGQy1NRkVh10ZXuRzTrsXwz2c3HYz8VhPxePfV0cw9DPU3j6bBBJFcYAlHgIaANOJx+AQghjgBOArwyivTFDVJckSZKkIZTJOUYPQAjhU8C7gLcDS4AvALOAY2OMO9KrTJIkSdJQcQSo16Uk/XEN0ATcCZxt+JEkSZIqhyNAkiRJkqqGV2lKkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqqGAUiSJElS1TAASZIkSaoatWkXoP0LIVwMnBVjPL3PtpcBlwJHAeuB/wEujTG2p1JkBdhLP78O+AgwF1gJ/Bfw+RhjLpUiK8Ce+rnf/m8BL4gxzipmXZVoL5/pbwNv7Xfoihjj9CKWVlH20s9TgCuAFwHdwK+B98UY16dSZAXo388hhDuA0/Zy+FtijN8tUmmSyowjQCUuhHAB8PF+2+YDPwN+AswDzgNeC3ytyOVVjL3084uA7wHfAI4GPgRcDFxQ5PIqxp76ud/+c4Bzi1VPJdtHXx8HfBqY0ufXM4tXWWXZy98dDcDvgMOAs4CXACcA/od8kPbyeX4Vu3+OpwC/Ah4j+TdSkvbIEaASFUKYBlwDzAdiv93vAm6PMX42//PCEMJHgG+HEM6LMXYWsdSytp9+ngJ8NsZYCJZPhhD+meQ/NFcWr8ryt59+LhwzhWSE7ffArKIVV2H21dchhBqSMP+JGOPqFMqrGPv5TL+e5DM8J8a4Jn/8BcDXQgjNMca2IpZa1vbVzzHGjf2OfT1wNnBCjHFL0YqUVHYcASpdJwCtJN/W3ttv35dIRiP6qwVGDXNdlWav/RxjvC7GeAkk/3EMIbwQOB34bbGLrAD7+jwTQsgA15OMuN1R1Moqz776ei7QCDxS7KIq0L76+YXA/xbCD0CM8TcxxjmGnwO2z787CkIII4EvAFfGGP9WpNoklSlHgEpUjPFm4GaAEEL/fQ/0/TmEUA98ALjf+eUHZl/9XBBCmAksBmqA3wBfL1Z9lWIA/fzvJCNuLwP+o3iVVZ799PWxQA64ID/Fswe4Bbg4xri5mHWWu/308xHAnSGES4C3AHUkf3dcGGPcVMQyy95A/o7OO4/kC8BPFaEsSWXOEaAyF0KoJfnW/Gjg/JTLqVSbgJOBfwKOJ+lvDZEQwnHAZcAbnb457J5BEnqWkITNDwIvBn4RQvDfg6HTTBJ8jgfeALwTeC5JP2fSLKwS5ad2/hvwNYO8pIFwBKiMhRBGAT8CzgBeE2Pc6/QADV5+ysoDwAP5f2hvDCFcGGN8KuXSyl4IoRG4AfhkjPGvaddTBS4nmSK0Kf/z30MIq4A/koR8/w4ZGjuArcDrY4w7AUIIbwH+DJwE3JdibZXodGAm8K2U65BUJgxAZSp/wfitwGzgRTHG/0u5pIqTX22vPcb4lz6b/55/nAoYgA7eKcAxwOUhhMvy2+qB2hDCVuBdMcYfpFZdhckv376p3+bC9RLTMQANleVAthB+8h7OP87GADTUzgH+HGNcnHYhksqDUx7KUAihBbgdmAA81/AzbD7A01d7OwXoAh4vfjkV6c8kF+YfT7Kk+zySZcdX5p/flFJdFSmEcEMI4Tf9Np+cf3RhhKFzJ3B8CKGpz7Zj848LU6in0j2X5N9ESRoQR4DK05Uk95d4IbAuhDC5z751McbudMqqOF8E7gghfIzkup8TgM8DV8UYN6RaWYXI37h3t/8QhhA2Al0xRv+jOPRuAG4KIXwUuJHkYv2vAjfEGB9NtbLK8g3gPcAN+YUQRue3/V+M8f5UK6sw+WnJx5CsACdJA+IIUJnJX6j8WpJpQrcDq/r9mpFedZUlxng3yQ0MXwz8leQf2C8BF6ZZlzRYMcZfkizm8WqSqW/XAj8F/iXNuipNfjXO+SSrv91LsorZn4FXpllXhRpH0s9+KSVpwDK5XC7tGiRJkiSpKBwBkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRVtRBCJu0aJElS8RiAJFWtEMLLgevzz08PIeRCCKenW5UkSRpOtWkXIEkpen+f5/cDpwKPpFSLJEkqAgOQJAExxjbgT2nXIUmShlcml8ulXYMkFV0I4Q7gtD6bzgD+DzgjxnhHCOFy4HXAh4FPAocDjwHvBnLAVcBxwCLgfTHG/+3T9jOAzwLPy2/6X+ADMcbFw/iWJEnSAHgNkKRqdT7wQP7XqUDzHo6ZAVwBfAr4f8BY4MfAfwPfIglIWeDGEEITQAjhCOAPwETgrcC/AIcB94QQJg7f25EkSQNhAJJUlWKMjwBtQFuM8U/55/2NAM6PMf53jPEm4GvAVOATMcZrYoy/AC4BxgMhf85lQDtwVozxpzHG/yEZXWoCPjSsb0qSJO2X1wBJ0r79oc/z1fnHvtcKbcg/jsk/nkkylW57CKHwd2wbcBfwgmGqUZIkDZABSJL2Ib84Qn/b93HKOOC1+V/9rRuSoiRJ0qAZgCRpaG0CbgO+tId9XcUtRZIk9WcAklTNuoGaIW7z98DRwIMxxi6AEEIG+D6wEHhwiF9PkiQdAAOQpGq2CTg1hPB8YPQQtflx4I/AL0MIXwc6gHcB5wCvGaLXkCRJg+QqcJKq2VeAncCtJKu0HbQY41+B+ST3CvoeybLZU4BzYow/HYrXkCRJg+eNUCVJkiRVDUeAJEmSJFUNA5AkSZKkqmEAkiRJklQ1DECSJEmSqoYBSJIkSVLVMABJkiRJqhoGIEmSJElVwwAkSZIkqWoYgCRJkiRVDQOQJEmSpKphAJIkSZJUNQxAkiRJkqrG/wegqbbjWm7bmwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "from hplc.io import load_chromatogram\n", + "from hplc.quant import Chromatogram \n", + "\n", + "# Load and display the first file. \n", + "df = load_chromatogram(files[0], cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As a reminder, we can quickly quantify this single peak by calling the `.fit_peaks`\n", + "method. " + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
013.560.2812411.6547278004.452381960534.2857111
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 13.56 0.281241 1.654727 8004.452381 960534.285711 1" + ] + }, + "execution_count": 4, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW9klEQVR4nOzdd3zbxf3H8ZeGZctDHnHs7J1cQggJhLZAmWUXymr7o0ChQIGyoaUQdphllBnCKntT9mhZpYywScMmyWUnju3Eew9Z4/eHZDDGiW1Ftjzez8fDD8nfu+99P7o4tj66+945wuEwIiIiIiIig4Ez0QGIiIiIiIj0FiVAIiIiIiIyaCgBEhERERGRQUMJkIiIiIiIDBpKgEREREREZNBQAiQiIiIiIoOGEiARERERERk0lACJiIiIiMig4U50AANUFZAMFCc4DhEREem64UAzkJXgOESkBznC4XCiYxiIGsPhcEoo1DN963Q66Km25Xvq596hfu4d6ufeo77uHT3Rz06nA4fD0QR449qwiPQpGgHqGcWhUHh8RUV93Bt2u51kZ6dRU9NAIBCKe/sSoX7uHern3qF+7j3q697RU/2ck5OGy+XQ7A2RAU73AImIiIiIyKChBEhERERERAYNJUAiIiIiIjJoKAESEREREZFBQ4sgiIiIiPRhixYtyiCyRLc+uBbpWAgonj17dm1XKisBEhEREemDFi1a5AQudDicxzgcjiTAkeiYRPqocDgcblm0aNHDwN9mz5692eUhlQCJiIiI9E0XulzuU3y+bL/Hk9LgcDi0wZRIB8LhsMPvb0qtqak8JRgMAFy1ufpKgERERET6mEWLFvkcDucxPl+2PyMjuzzR8Yj0dcnJ3kZgSFVV+TGLFi26dXPT4TSXVERERKTvGeZwOJI8npSGRAci0l9ER0qTiNwzt0l9agTIGHMxsJe1dvc2x4YDNwH7A0HgNeAsa21ZtNwJzAVOALKB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyIiIiK9yAk4NO1NpOui/18cdDLI02dGgIwxZwNXtDuWDPwHmADsBRwAbAc83KbaJcDJwInAjkAYeNUY44m2MSTaxjIiCdBc4EpjzHFdbUNERERERAaGhI8AGWNGAvcCuwC2XfERwDhgorV2Y7T+2cAdxhgf0AScA5xnrX0lWn44UAQcBjwJnAQ0A6dYawPAEmPMZGAO8EA0yemsDRERERERGQD6wgjQdkAlsA3wSbuy/YD/tiY/ANba1621E621NcAsIAN4q015FfAZsGv00C7Agmjy0+otwBhj8rrYhoiIiIgMAPPm3TTikEP2m5HoOLpq6dLFKW+++UZmouMYSBI+AmStfRl4GcAY0754CrDAGHMJ8AcgCXidyGhNFTAqWq+g3XlFwJjo81HA1x2UE63TlTZi4nbHP790uZw/eJSeMZj7ORwKUfnWWzQXF5G5406kTprUY9cazP3cm9TPvUd93TvUzzKYnH/+OZN/8Yu9y/faa5/qRMcyUCQ8AeqEj0ji81/gSCILFNwMvGiM2R1IjdZrbndeE5ATfZ66iXKAlC620W1Op4Ps7LRYT++Uz+ftsbble4Oxn+2Nt1C24D0Aqt55m2kXX0D2dtv26DUHYz8ngvq596ive4f6WQYHrYMRb309AfIDdcAR1toWAGPMH4BPiSxo0Bitl9zmOUQSm/ro88ZoOe3KidbpShvdFgqFqamJ/8qVLpcTn89LTU0jweBmN7mVLTBY+7n2iy8iyY/TCUOGgr+Z+rpGqIz5v8JmDdZ+7m3q596jvu4dPdXPPp+3z48qhUIhGhoaEhZkampqyOns3uV33nn72b/+9eHF77zz3yEtLS3OW2+9c2lqamrotttuHvXVV5/76uvrXZmZmYE99tir/Kyz/lq4ZMli75/+dOxWd9xx75JttpnVAHD22adO/Oabr3yvvfbO5263m3A4zAEH7DXzD384vvDww48qa3/NsrJS9003XT/qs88WZgaDQceUKVPr/vKXOQUTJ0767gPvf/zjjvx//euF/NraWvekSZPrzz//0jWt5R3FPGrUaP/dd98+/N133xpSWVmZNHLkyKajjz6uaL/9DqgCePrpJ4c88cQjw4877oTC++77x6jq6qqkadOm11588eVrHnzwvmHvvPPmELfbHT7ooMM2nnzy6RsAmpubHfPn3zzi/fcXZFdUlHtSUryhmTNnVZ9//iXrcnKGBA85ZL8ZZWVlnqeeenz4119/kXHPPQ/bysoK1/z5t4xcuPDjrNraWvf48RPrTzrp1MIddtiprvW1vfDCszmPPfbQ8NLS0uQxY8Y07rHH3uX33XfX6Pff/9+iWP5NnE5nTK+vr+rrCdB6wNma/ER9G30cD6yJPh8BrGxTZwTwZfR5QfR72pUDFBKZVtdZGzEJBHruj18wGOrR9iVisPVz6b9ejjxOmMyDqwoZM2Ycp4+eRGo4TDDYc59ADbZ+ThT1c+9RX/eOwdbPoVCII4/89dSlS5f03BSTTkydulXd448/Y7ubBL3xxitDr7nmxuXBYMAxefKU5iOP/PVWmZlZLdddd8uyjIyM4LvvvpV1zz13jt5qq63r9933l1W5ubn+jz76wLfNNrMagsEgixd/k9Hc3Oz8/PNFaT/5yc/qv/jis9Ta2hr3L36xd1X7awUCAc4665Qp4AhfdtnfVg4ZMiRw2203jzrnnDOmPPPMy18DlJWVeb755quMa665abnf3+z4298uH/+3v10+7r77HrGbivnss0+duGrVytQzzvjzuvHjJza99tq/c66++rKJTqdzxT777F8NUF5e5nnppefzrrrq+hUNDfXOSy6ZM/m4446avueee5fdccd9S1555aUhjz764Mjddtujatq06U033njtqE8++ShrzpyL1owePabZWuu94Ya/jbv77ttHXHDBpQX33vvIkuOPP2qrn/98t4qTTjqlOBgMcuaZJ09paWlxzJlz8eqhQ/Na/vnPx/POP/8vU2655Y6ls2Zt1/Dmm69n3nTTdeOPOeb49bvvvmfVJ5986Lv33rtGb+m/SSyvr1s/JL2orydAC4CzjDFea23r6EzrTWsriCRDNcDuRJMXY0wWkYUV5rdp42RjjMtaG4we2xOw1toSY0x1F9oQGfCaCwtpWrGcsMPBRc8+TlVLCws/hTXrLA/ce0+iwxMREQD6575Au+32i/JZs7ZrAGhsbHT84hd7l++77/6Vo0eP9QOMG/fHkqeffnLYihXLvPvu+8uq7bf/WdVnny30ARu++OKzNJfLHZ4yZWrdwoWfZPzkJz+rf++9d7MmTzZ1Q4fmBdpf64MPFvjWrl3jfeCBx7+ZPHlKM8BFF1225sEH7x1WUVHuBnC5XOErr7xudWZmZhBg//0PLH300QdHbirmZcuWpvzvf59mXXbZ1Sv22mvfaoDTTz+7eNWqFamPPfbQ8NYEKBgMOv7ylzlrW9/8z5gxs2bZsqXp55574XqHw8FJJ51W/NRTTwxfvnyZd9q06U3Tpm1Vv8cee1buuOPOdQCjR4/1/+c/r9WsWbPKC5CbOzTgdDrDXq83lJ2dE3zrrf/4Vq9elXrPPQ9923qNiy++fN2yZUvTHnvsoWGzZm236sknHxu2ww47VZxwwskbASZNmly6fn1B8ssvv5C/Jf8msby+LfmZ6Ul9PQG6CzgdeDy6EEJm9Njb1trPAIwx84HrjDGlREaE/k5k1Oe5aBv3A+cB9xljrgd+CpxNZN8frLXNXWhDZMDzbyjGkZrKZxuKqWppYfyUWRSsXsw3//uA12+bxx6/OwL3kKGJDlNEZNByOp08/vgztr9NgQMYNWr0d1PPvF5v+Oijjyt55ZWXsx999KG0oqLC5LVrV6dWVVUmBYMhB8Auu+xePXfuhUMbGxsdn3zyUcb06VvXjhw5uunLLz/zARsWLvwkc9ddd6/o6FrLly/zpqamBluTH4D8/GGBOXMuXt/6fWZmZqA1+QHIyPAF/X7/D15Y25itXeoF2H77n9W1rTNjxqzahx++b1TbY5MmfX/d5OTk0NCh+c0OhwOAlJSUMEBzc7MT4NBDf1vx3nvvZtx003UjCwvXJ69fX+AtKipMmTp12g+u02rFiuVerzc12Da5cDgcbLXV1nWfffY/H8CaNatSd95518q2582cuW1d+wSou/8msby+vqpPJ0DW2jJjzC5EFj74hMhCBc8Df2lT7VIir+NewEtkxGdfa60/2kaJMWZfYB6Rpa2LgXOttQ91tQ2RwSBj9vbc+d/XePnDBYwaP41jTr+aj95+nplfLWDs559RPXYsQw48ONFhiogMak6nk/T09H437y85OeW7mBsaGpx/+tOxpqmpybnLLrtV7rPP/uUzZ85ad/rpJ01trbPjjj+vTUpyhz7++IOMzz9f5Ntjjz0rxo4d1/zSS88NKyhY61mzZlXqZZddvaqja7lc7nDrG/JNcTqdnY6ktY15UwsRhEJBh8vl+kFhUlLSD753OjcdyxVXXDLmgw8W5Oy++57lO+zw8+qpU7cqfuyxh4aVl5d6OqofDnf80kKhEG63Oxy5njMcDnc+UNjdf5NYXl9f1acSIGvtsR0cWw4cuJlzgkQ2NZ2zmToLgR23pA2Rga6pqYmXXnqRukCAg/c/CofDwU92OZDPFv6HnwDF77+nBEhERLbYu+++5Vu9elXqc8/9+8u8vPwAQGVlhau6utrdmmh4PJ7wzJnb1ixY8E7W8uXL0s8//5K1o0aN9jscjvAdd9w2YvjwEU1tFzRoa8KEiU319fWuVatWJk+YMLEZoLy8zH3EEYdtfdVV1y+PJeYpU6Y2Avzvf5+kt06BA/j66y/TR44c3bjpMzetoqLc9cYbrw6dM+eiVb/61aHfjdisX78uJSXF2yb5+j7BmDRpSmNDQ4NryZJvU9qOAi1e/G36qFFjmgDGjh3XuHjxt+lASWv5t99+vdn7xrrybzKQ9OnhKRHpHaGWFt5b8BZ1dbVk5eQxwcwCICnJQ3By5Lm7rIxgQ/xXNhQRkcElP3+YH+Cll54fUlCw1vPJJx+l//WvZ04KBoMOv7/lu3f7O+20c9Xbb/831+fLCEycOKk5OTk5bMy0uvfff3fIDjvsVLWp9nfZZbea8eMnNlxxxcXjFy1amLZ06eKUyy67aFxmZlbLzJnbxvSHzJhpTbNmbVc9b95NY9588/XMFSuWJ8+ff8vwRYsWZv3f/x2xMZY2fb7MoNebGnz//QVZq1atTF68+Bvv3LkXjl2zZnVqS8v3/ZCSkhIsLFyfXFKy0b3bbntUjx49tvGKKy6Z8OGH72UsW7Y05corLx2zfv067+9+d+RGgCOPPKb4k08+zL7vvrvzV61amfzMM/8c8u9/v5y3uVi6+m8yUCgBEhHKnv4nuc88w25DhjJ9u91oO7974g77UNTUiBOoWdx+T2EREZHu2W677RuOP/6kgpdeej7vmGN+t/V11101buutZ9b+/Oe7VFj7/Qp3e+yxV3UoFHRsvfXMmtZj2247uyYcDrPbbr+o2lT7TqeT66+/ecXQofn+888/Z/IZZ5w81eVyhW+66bblycnJMQ9nXHvtTat++tMdqm666fpxJ5xwzPRPPvkw68ILL1t5wAEHVXZ+9o+53W4uvvjyVevWrfX+8Y+/n37eeX+e3Nzc7Pz9748tLCws8NbX1zsBDj741yWffbYw86yzTp3idruZN+/OZePGTWi4/PKLJ5588h+nrVmz2nvttTctmz37p/UAe+yxV81pp5219l//enHo8ccfNf3f/35x6L777l/aOkWuI139NxkoHF2ZIyjdtioYDI2vqIj/3ilut5Ps7DQqK+sH1dKfvW2w9fOayy/FX7COm1cuY9qxFzJmwlbflYXDYcpvP49dMzKo22oa2/0lfjNFB1s/J4r6ufeor3tHT/VzTk4aLpdzNTAhbo3GaNGiRVOdTtdreXkj6zyelD67mpb0PR999H56bm5eS9tFIO6887Zhb7zxau7zz7/yTSJj62l+f1NKSUlheigU3G/27NlLN1VPI0Aig1w4EKC5MLIwzvqQg1HjzA/KHQ4HjbmRlUHrV3V4v6mIiIj0ER9//GHmX/965pQPPliQsX79Os8bb7ya+dJLz+fvscdeHa6aNxj1qUUQRKT3+YuLcIRC1AUC+CYYnE7Xj+okTZwBiz8gs6GRcCiEI4YlUEVERKTnnXrqWUWNjY3Oa6+9anxtbY07J2eI/+CDD9t44omnbEh0bH2FEiCRQa65oACAtY0NjN56dod1srb6Gbe/8jDL62q5b2Mxw4eP7LCeiIiIJFZycnL4wgvnFhDZ01I6oI9xRQa5poK1AKxtqGfsxK07rJOSls7y1GyKmpr4+usvezM8ERERkbhSAiQyyNWsWAFAQXMzeSPGbrLeyLFTAPj2W60EJyIiIv2XpsCJDHIVyclsqKulzpeDy7XpXwkTRo4jL38Ymd8M6AVkREREZIDTCJDIIPexJ4lLl34LI8Zvtt6o/DH8YfQ4fhp20NLc4ebbIiIiIn2eEiCRQW7p0sUA5I/c/LYXaeOn0hwK4XE6WfPlZ70RmoiIiEjcKQESGcQCdXWsaE2ARk3cbF2ny01pKLJxcsHnSoBERESkf1ICJDKIFTz+CPPGT+bQESPJGz6u0/q13nQAqlau6OHIRERkoNh55+1nP/30k0O6Wv+dd/7rO/TQX269++47bHfddVeP6snYumLevJtGHHLIfjPi2WZ3+mT9+nWel156Pjue1x/stAiCyCBWu24tKQ4HjvQskpI8ndZvyRkGG1cTLi3thehERGQgePbZf33p82UGu1r/nnvuHJWfP6z51lvvWJaentHl8/qT7vTJ5ZdfMi4vL89/0EGHVvZ0XIOFEiCRwawy8rs0NCSvS9Udw8fBxtVktrQQDodxOBw9GJyIiAwE+fnDAt2pX19f7/rZz3asGjNmnL+nYkq07vVJWH9s40xT4EQGqVBLC8nR1dwcQ0d26ZykMZG9gPKTPBQXFfZYbCIiMnC0ne510UXnjrvggnPGX3/91aP23/8XM3/xi522PfvsUydu3LjB3Vq3rKzU89RTTwzfeeftZ69bt8YTDof5xz/uyD/00F/O+MUvdtr2yCN/vdXzzz+T09r+hx++l7HzztvP/sc/7sjfd9/dZx111G+nrV69Knnnnbefffvttw7/5S/3nHnIIfvNqKqqclVXV7vmzr1w7P777zFz7713mXXSScdO+eKLz1LbxvvEE4/kHnbYAVvvsceO25199qkT6+pqXZt7fSeeeIy55ZYbRsyde+HYvfbaedv9999j5u233zp8+fJlyX/849Fmjz123O6II3691eefL/ruOq19UlVV5TrooH22OfPMkye1li1Y8E7GLrv8ZPYrr7ycdeKJx5glSxanv/vu20Nap+Edcsh+M+bNu2lE+xguuujccZvqj2AwSFFRYdK55549Ye+9d5213367zzzzzJMnrVy5Ijnmf9h+TAmQyCDVUlqKA2gMBknJG9Olc0KZQ7m2pJQTvlzE6jWrejZAERHpULCx0bmpr1Bzs6M36m6Jjz76ILumpsZ966132EsvvXLlkiWLM+bPv2UkRKaG5eTktPzqV4dufPbZf305cuRo/803Xz/y3/9+Ke+0085ad999jy4+9NDfbLz99lvGPvLIg0PbtvvJJx9l3XHHvUvOP/+SNS6XMwzwzjv/zbn55vn2ssv+tjIzMzN49tmnTi4qKky+6qrrV9xxx71Lp06dVn/22adO/frrL70AL730fPZdd80fc+ihv9l4zz0Pfztt2vT6V1/9V6fTJF544ZlheXn5/nvvfeTbAw88uOSJJx4ZMWfOnycffviRG26//Z4lHk9S6KabrvvRbuNZWVnBc8+9aPXnny/KfPHF53IqKspd119/9fg999yn7Je//FXV9dffsmLy5Cn1O+7488p7731kSXf6uW1/NDU1Oc84408mFApy882325tvvt36fJmBU0/947SiosKk7rQ7EGgKnMgg5S/ZCEBxUxOZuV0bAcLppHnIcJrXrWTVqpX8/Oe79mCEIiLSkZVnnLLtpsq8U0z16PMu+G6lmlV/OXNmuKWlww+8k8eNrxt78Vzb+v3qOefMCDU0dPje0DNiZMO4K67u1hvwTcbo9Qbnzr1qbVJSUnjKlKlNH330QfmiRQszITI1zOl0hr1ebyg/f1igvr7e+fLLL+T/9a8XrN5rr32rAcaPn9BcXFyU/OyzTw47+uhjv7sp9fDDj9wwceKkZoB169Z4AA444KBSY6Y1Abz33rsZy5fbtBdeePXL3NyhAYC//GVO4eLF36Y/+eSj+TNmzFzz3HNP5e+0086VRx99XCnApEmTNyxZ8m3amjWrUtmM0aPHNJ522lnFAMcdd9LGJ554dMQuu+xesc8++1cD7LPP/uX33HPX6I7O3WWX3Wr33/9XJXfdNX/0f//7Rk5aWlpwzpyL1wFkZ+cE3W532OPxhFpj7qq2/fHPfz6WW1tb47722ptWJyUlhQGuuOKaNYcddsCMZ57559Azz/xLUXfa7u+UAIkMUjVrVgOwsbmJIUNHdFL7e0OHjQXeZ+XK5T0UmYiIDGT5+cOaW9+EA6SlpQcDgUCHI0zLli1NaWlpcdx447XjbrrpunGtx4PBkCMQaHE0NjZ+d964ceN/tEv3mDFjm1qfL126OBXg8MMP+cGKboFAwNHS4ncAFBSs8+6++54Vbcu32mrrus4SoBEjRn13ndTU1BDAyJEjv4vH40kOBQItmxxF+8tfzlv/2WcLMz/77H+Zd955/2Kv1xveVN2uatsfy5bZ1MbGRtd+++0+q22dlpYWZ0HB2pQtvVZ/owRIZJAqI8zHZSUUOVxs6+n6FGDjy2LSmPGwZk3PBSciIps08bY7P99UmcPp/MEb5wk3zfuyq3XHX3fj112tuyXaJj/f67j5UCjkALjwwrmrJkyY1NS+PDk5+bsTU1JSQu3LU1JSvisPhUIOr9cbvPvuB380kuXxeEIADoeDcLtQ3G53p6/d7Xb9qI7D0fU7TTZu3JBUVVWZ5HK5wh999L5vxoxtGjd/xg8vFwgEf5Rcte2PUCjE8OEjmq699qYf7WORlpY2IFfa2xzdAyQySK0MhbhzzSpW+rq3tcCI1DT2yctndLOfcPu/EiIi0uNcXm9oU1/ONglBT9btLZMmTWlyuVzh4uIiz4QJE5tbvxYseDvzkUfuz3c6u/5WduLEyY2NjY0uv7/Z0batBx+8d9hbb/0nC2Ds2HEN33zzZXrb86xdkhbfV/VDoVCIK664ePzYseMbTj31zHWPP/7wyG+++dr7fQ3HD/+dXO5wXV29q+35JSUbN7uXxYQJExvLyso8Pp8v2Pq6x4wZ2zx//i0jP/30o4x4v6a+TgmQyCC1JrqIQe6wDqckb1LSyAlAdCW44kE1ZVhERHpZZmZmcO+99yt95JEHRj733FM5a9as9jzzzD+HPPjgfaOys3O6dU/MHnvsWT127LjGuXMvnPj++wsyVq1amXz99VePevvtN3PHj5/YBHDEEcds+PTTj7PvuefO/JUrVyQ/9NB9eZ988lGPbkL6j3/cMWz16tWpF1102ZrDDz+qbNq06bVXXXXp+ObowhNerzdUUrIxubBwfRLAtGlb1b3//rs5H330QfqKFcuTr7jikrGNjQ2bXanuoIMOq0hPTwvOmfPniYsWfZq2fLlNueSSOeO/+GJR5uTJppPRpoFHCZDIIBQOhahctZIkh4PcvC4ugBAVyIosupPj8bBmue2ktoiIyJY5//xLCg4++LCNDz/8wMhjjz1i68cee2j47353VNEZZ3Tvxn2Xy8W8eXctmzx5Sv3VV8+dcMIJR2/11VdfZFx88eUrd9llt1qAvfbap/q88y5c9cYbr+b+8Y9HT3///QVZBx106MaeeWXw9ddfeZ988tERRx99bOGECRObAS644JK1ZWWlyTfffP1IgIMOOqy0oGBdyvHHHzU9GAxy+ul/LpwyxdRddNF5k884409TfT5fYKeddtnsJqmZmZnB2277x9LMzKzA+ef/dfIpp/xxWknJRs/f/nbD8qlTt/rR1MKBzqEpLD1iVTAYGl9RUR/3ht1uJ9nZaVRW1hMI/Giqq8TJQO/nlspKVp/7ZwKhEG/vdhgjJ2zTrfPHP3gFXgcs2WEHDj7h5JjjGOj93Feon3uP+rp39FQ/5+Sk4XI5VwMT4tZojBYtWjTV6XS9lpc3ss7jSRl0b1BFYuH3N6WUlBSmh0LB/WbPnr10U/U0AiQyCPnLIquGVra0kJEzrNvnV7sjWwbUrlsb17hEREREepoSIJFBqCK6BHZZi5+0jCHdPr/BG7lfsqW0JK5xiYiIiPQ0JUAig1D1unUA1DmcuFybvW+yQ4HMXACC1TVxjUtERESkpykBEhmE6jcUA9CUHNveZ1UzduYPny/krmVLCAS6tQiPiIiISEIpARIZhIKVkU2uW9J8MZ2fOnQEAaeLQCCgpbBFRESkX1ECJDIIOevrAAhn5sR2vtPJkLwRABQUaCEEERER6T/ciQ6gLWPMxcBe1trdN1F+D7C3tXZcm2NOYC5wApANvA+caq1d0abOLOBWYHugHJhnrb2hO22IDCRftbQQLiuF6TvE3MYRecPwpqawYZmFnXaJY3QiIiIiPafPjAAZY84GrthM+SFEEpT2LgFOBk4EdgTCwKvGGE/0vCHAf4BlRBKgucCVxpjjutqGyEDzQtF67lyzCvfwsTG3MSXJzazMLGrWrolfYCIiIiI9LOEjQMaYkcC9wC5Ah9vKG2OGA/8A3gXGtTnuAc4BzrPWvhI9djhQBBwGPAmcBDQDp1hrA8ASY8xkYA7wQBfbEBkwAoEAGzduACAjMy/mdpqSU6GxhsZoWyIiIiL9QV8YAdoOqAS2AT5pX2iMcQAPAY8A77QrngVkAG+1HrDWVgGfAbtGD+0CLIgmP63eijRt8rrYhsiAsWH1Koa6k0j1eEhOy4y5nZaM7MiT6uo4RSYiIl3hcOByOh1JifhyOOj+3gkifUzCR4CstS8DLwMYYzqq8mdgOPAr4IJ2ZaOijwXtjhcBY9rU+bqDcqJ1utJGTNzu+OeXLpfzB4/SMwZyP1d88iHzZszi26ammPYA+k52HpSsJbmpGZfLgcPh6HYTA7mf+xL1c+9RX/eOwdzPDgeukMMxvKEpkJD3cKkp7oCTcHE4TDAR19+UefNuGvHWW28MeeGF19q/5+vUihXLk0866ditHnzwsW/HjBnn74n4pG9JeAK0OcaYbYjcs7OLtba5gwQpNfrY3O54E5DTpk5H5QApXWyj25xOB9nZabGe3imfz9tjbcv3BmI/N5eXkgL4k1PI8cZ+m1vKyDFgF5LjdhMKNZGbmxtzWwOxn/si9XPvUV/3jsHYzw6Hw9nQFHB//E1xqKEpEOrNa6emuJ07bD3cnZHidobD4T6VAMVq8eJvvOeff84kv7958GXTg1ifTYCMMSnA48BV1tqvNlGtMfqY3OY5RBKb+jZ1ktud17r7Y30X2+i2UChMTU1DrKdvksvlxOfzUlPTSDDYq7/3BpWB3M8NG0vJBFq8qTQ2xv5BV9gbmT431JPM4sXLmDGj+29EBnI/9yXq596jvu4dPdXPPp+334wqNTQFQvWNLYn4IesfHdQFd9wxb9gzzzw5fOTIUU0VFeVa+GoQ6bMJEPAzYDpwmTFmbvSYB3AbY+qAPwHLo8dHACvbnDsC+DL6vCD6Pe3KAQqBpC60EZNAD34wEwyGerR9iRiI/RyqrYk8pvkIhcIxt+NPjSRAHqeTdWvXMm3ajJjbGoj93Bepn3uP+rp3qJ/7h5133n72Kaecse6///1PzurVK9Py84c1HX/8SYX77LP/dzeRvvnm65kPPnjviMLC9d7s7Bz/rrvuUXHKKWcUJycnhwGWLl2cctdd80cuWbI4o6mp0TlkSK7/V786tOS4404o6eiaDz54b96DD9476oILLl21776/rOqozqJFn2aee+6FqzMzM4PnnffnKT3y4qVP6stZ/KfAZGAmkYUKZgF3Ebk3ZxbwEpEEpQbYvfUkY0wWkYUV3oseWgDsYoxpe7PDnoC11pZ0sQ2RASOpKTrbM3PIFrUT8KZzgzOVE79cRPGG4jhEJiIiA9UDD9wzao899qz4xz8e+nb77X9WfeWVl05auPCTNIC3337Td/XVl03cf/8Dy+6//7FvzzrrnHXvv/9uzkUXnTseoKGhwXnOOWdOSUnxhm677a6lDzzw+Lc777xr5X333TX666+/+tH0g0cffXDoQw/dN+rii69YuankB+C++x61++9/4CbLZeDqsyNA1tpG4AcbkRpjKoBAu01O5wPXGWNKgTXA34mM+jwXrXI/cB5wnzHmeuCnwNlE9v0hem9RZ22IDBjeYBCcTtzZsS+BDYDDQUpOpI2ioqJOKouIyGC2xx57lR199HGlAH/96/mF33zzZcbTTz+R95Of/Gz1o48+OHzPPfcpO+qoP5QCjB8/odntdq+dM+cvU9atW+NJTU0LHXTQoSVHHHF0ic/nCwGcfvqfi5577ulhy5cv9c6Ysc13tzA88cSjufff/49Rc+detWL33fesScyrlb6uzyZA3XApkddxL+AlMuKzr7XWD2CtLTHG7AvMI7K0dTFwrrX2oa62ITJQhAMB0qKrtblyh29xe1k5+QAUFRVucVsiIjJwbbfd9rVtvzdmWv0XX3zmA1i9enXqypUr0t5++83vpiaEozO0V6xYnvKLX+xdc+SRx5T8618v5qxcuTy1sHB98tq1q1MBgsHQd0uQVlZWJt1557yxLpcrPGrUmPaLW4l8p08lQNbaYzspvwy4rN2xIJFNTeds5ryFwI6bKe+0DZGBoKG+nueKC8lO8jA8d1TnJ3RietDP9MlTWV1WFofoRERkoHK73T+46TQcDuN0usKR5yHHIYf8ZsNBBx1a3v68/PxhLSUlG90nnXTstIwMX2CHHXaqmj37pzXbbDOz/vDDD9mmbV2Hw8kVV/xt+f33/2PE1VdfNv6++x5Z6nT25bs9JFH0UyEyiJRVVfBU0XoeLt2AMyml8xM6keNysm1mFkP8LYTDsS+oICIiA9vixd/8YG+QpUsXp0+cOLEBYNSoMY0FBWtTJkyY2Nz6tXFjcdK8eTeOqqurdb788gtD6upq3fff/+jS0047q3j//Q+oqq6uin6I//3fnqyszJbddtuj5vzzL16zatWK1AceuCe/F1+i9CNKgEQGkY0bNwIwdOgwtmABuO84hkSm0eW43ZSXaxRIREQ69vLLL+S/8MKzOStWLE++7rqrR61du8Z7xBHHbAT43e+O2vDppx9nz5t304gVK5Ynv//+gozrr//b+Pr6Ond+/rBAfv4wf3Nzs/Nf/3oxe/36dZ53333Ld/nlF08A8Pv9P3ovO23a9KZDD/3thscee2jEypUr2m+FItK3psCJSM8qW7OaYckp5OUOjUt7oehKckM9yRQWric3Tu2KiMjmpaa4e/1D7C255j777F/6zDNP5t9yyw3esWPHNlxzzQ3Lp0/fuhHggAMOqgyHw6ueeOKR4c8999Sw1NS04Pbb/7Tqz38+b31r+dKlSzbcc8+do2+77SZnbu5Q/777/rLso48+yFqy5Ns0oLT99U455YziDz5YkH311ZeNu/feh62mwklbDk1b6RGrgsHQ+IqKmPdR3SS320l2dhqVlfXa+6AHDdR+fvPSCxlTVMTXnhRcR5y3xe2566qZ8uytBEIhCv7vd+y73y+7d/4A7ee+Rv3ce9TXvaOn+jknJw2Xy7kamBC3RmO0aNGiqU6n67W8vJF1Hk9KU+txhwNXyOEY3tAUSMiH2Kkp7oAzHC4Ohwl29Zydd95+9lln/XXNb3/7ux/d4yMST35/U0pJSWF6KBTcb/bs2Us3VU8jQCKDSLAmsiJoMC0dVyd1uyKQmkEIcDudVK5fF4cWRURkc8Jhgk7CxRkJGAGKXD8c6k7yI9IXKQESGURcDQ2RJ76c+DTodFLrdJEZCtKgpbBFRHpFOEwwHA4rCRGJkRIgkUHE09ICLhfOrNy4tdmYlIKrvpraCs1sEBGRH3v//f8tSnQMIm3pjjCRQSQtulyoKyd+K4N+aH7G8V/8j/9pFTgRERHpB5QAiQwS/qYm0pyRO388Q4bFrd2MIXkAbNiwIW5tioiIiPQUJUAig0R5QQFOh4NQOIzTF7/lqjOzIm2VlZXS0uKPW7siIiIiPUH3AIkMEpU1VbxQtJ6stAzG4ATis3Rsjr+RC6dMo7alhZKSEkaOHBWXdkVERER6gkaARAaJsvo6nipazztOB4Fg/PbNcBJmli+TrTIyKCnZGLd2RURERHqCEiCRQaK0NLJRdlZO/FaAAwik+gDITvKwsVhLYYuIiEjfpgRIZJCoLS5ieHIKOb7MuLYb8KYTBJwOBxUFBXFtW0RERCTelACJDBJDVq3i1hmz2DEQ573zHA7qo6vL1RcXxbdtEREZ9Orr652PPPLAd6v3XHTRueNOPPEY05PXXL9+neell57P3pI2nn76ySE777z97E2V98br2Hnn7Wc//fSTQ3ryGr1l3bo1np133n72hx++l7GlbSkBEhkkHI0NAITTtvj3xo80JqUA0FyuzVBFRCS+7r//H/nPPvvP7/ZvOO+8iwuuv/6WFT15zcsvv2TcJ598GN8pE9JnaBU4kUHC3dwMThdkZMW9bX9qBjTXE66ujnvbIiIyuIXDYUfb7zMzM+M8laHDqzo6ryP9lRIgkUEiJRgEpwtXZi7x/ssRysimrnQ99XW1cW5ZRETaCoehIZC4GTypbkKObqYG1dXVrptuum7Up59+lBUIBBzjx09sOPXUM9fPmrVdA0BDQ4Pz2muvGP2//y3MamhocI0cObLp978/tmj//Q+smjfvphFPPfX4cIhM53r88We+vvvu20eUlGxMvueeh+2HH76Xcf7550y55poblt16641jSkpKkseNG9dw8cVXrH7jjVez//WvF/KDwaBjl112L7/oossKHA4H4XCYe++9K/+NN17NLS0tSU5KSgpNnbpV3V//esG6sWPH+U888RizZMni9CVLFqcfcsh+GS+88NrXfr/fMW/ejSPeeeetIY2NDa5Ro8Y0Hn/8iUW77faLmtbX+eqr/8566KF7R2zcuCFl4sTJ9bNmbVezqT5pFQyGuPrqy0a/885/h7jd7vDee+9XduaZ5xS63ZG36J9++nHa/ff/Y8TKlcvTWlpanPn5w5qPPPKY4oMPPqyitY0XX3wu55//fGxYcXFRSlZWdsuBBx5c8sc//ulHy7KWlpa4TzvtRJOVld1yyy13rEhNTQ29++5bvnvuuXNkYeF6b15efvOvf/1/G+bNu2nc448/8/WYMeP8hxyy34yf/Wynqs8/X+Srrq5OuvTSK1busMPPax966L68V155Oa+srMyTm5vr//WvD99wxBG/LwP48MP3Ms47789TWtuAyPS1I4/8zYzrr7952U477VJ70UXnjguFQo7s7JyWt9/+75Dm5ibnNtvMqrnggkvX5ucPCwAsWfJtys03/33MihXL07Kzs1sOP/zI4u795G2aEiCRQSAcDpNK5C+WK3to3BOgku335tznHgDgL34/Ho8nzlcQEZFwGH7/WupUW+lKS1QMU7ODdY/s12C7mgSFw2HOPvvUyW63O3TVVdev8Pl8wZdffmHI2WefOvW22+5eMmPGzMbbbrtpxJo1q1OvvfbG5ZmZWYFnn/3n0GuvvXLC9Olbf3P88SdtaGxsdH7wwbs599zz8OLc3KGB9tcIhULccce80XPmXLTG40kJXXrp+RNPO+3EadtuO7v61lvvtAsXfpJ+xx3zxu6ww041e+21b/UDD9yT9/TTTww/99wLV0+dOq2xoGBd8o03Xjf25puvH33LLXesvP76W1b85S+nT87NHeqfM+fidQCXXDJn3Lp167wXXHDJ6mHDRvjfeee/WZdeesGkSy65cuVee+1TvXDhJ2l/+9tlE3/72yOKf/nLX5X/73+fZtx99/wxnfXPsmVL04cMGdJy2213L12/viD5ppuuH9fU1OS88MK5BUVFhUnnn/+XKfvue0DpeeddtC4QaHE8/PADw26++e/jdtzx5zV5efmBf//7pewbbrhm/O9/f2zhXnvtW7l48TepN998/bi0tPTg7353VFnrdcrLy9ynn36SGTIk13/TTfNXeL3e8Ndff+W99NILJh144MElc+devWrp0m9T58+/ZWz7GF9//dWhV1xxzXKfzxecNm1643XXXT363Xf/O+SUU85cN2PGzPoPP3zPd/fd88f4/c3OP/zhjyVd+8mAjz76IHvnnXeruPXWO2xRUaHnmmuunDB//i0jr7zy2rXV1dWuc845w0yZMrXujjvuWbJx40bPzTdf96PYYqUESGQQqKmuxhf9NCkpZxj+OLefmp5JUpKHlhY/GzduYPToTn/ni4hIDBwQTnQM3fH++wsyli+3aS+88OqXrcnLX/4yp3Dx4m/Tn3zy0fwZM2auKS4uSvZ6U4Njx45vzszMDJ511l8Lt912dm1mZnYwPT095PV6Q06nM9w6MtCR4447sXD27J/WA+y0085V//rXi3mXXnrl2tTU1NDkyabp0UcfGrly5XLvXnvtWz169Jjmv/71gtV7771fNcDo0WP9n3zyUeWCBe9kA2Rn5wTdbnfY4/GEcnOHBlatWpn8wQfv5cyf/48lraNWEydO2rhy5QrvP//56LC99tqn+umnn8ibMsXUnXnmX4oAJk2a3Lxq1UrvK6+8lLe5/snMzGq58srrVqekpISnTt2qqbS0tPDuu+ePOfvscwv9fr/jd7/7fdEJJ5y80el0tr7O4nfe+e+QVatWpuTl5dc988yT+Tvu+POKP/3ptA3RuJobGupdKSne7zb8q6mpdp9++p+m5OYObb7xxttWpqSkhAGeeOKR/PHjJzSce+6F6wEmT57SXFFRkXTPPXeObhvjtttuV73rrrvXRtqqcb7++r+H/vGPfyo45JBfV0SvWVpUVJj8z38+PvyYY47vcgLk9XqDc+detTYpKSk8ZcrUpo8++qB80aKFmQD//veL2X6/33n55desyczMDE6dulVTY2NDwVVXzZ3Y1fY3RwmQyCBQVrAOp8NBKBwmmJYJLfH9++lwOMgakkfphvVKgEREeojDAY/s12D70xS4pUsXpwIcfvghM9oeDwQCjpYWvwPg978/dsPFF5836eCD9505efKU+u22+0n1/vsfWNGde33Gj5/Y1Po8OTkllJmZ1ZKamvpdEuDxJIWam/1OgL333q960aKFafPm3TiisHB98vr1Bd716wtSsrOzWzpqe/Hib1IBzjnnjB+s2BYMBh2pqalBgLVr16Ruu+3sH9wIO2PGNnWdJUATJ05qaE1IALbZZlZ9IBBwrFy5InnGjG0af/3r/yt/+OH789auXZ1SWFiYsmbNqlSAUCjoAFi3bq13111/UdG2zcMP/37kB+CRRx4cGQwGHO2vtWrVitT20/S22+4ntXDnD2IcOXLUd327YsWylGAw6Nh22+3r2taZNWu7updffiG/tLSky7lFfv6w5qSkpO/iSUtLDwYCAUcktpWp+fnDm9r+DMye/ZO6jtqJhRIgkUGgsqqC14vWk5eVzfCQg3h/gOj0N3PWsBF4crLZuCFuU3RFRKQdhwPSkgh1XrNvCIVCDq/XG7z77geXtC/zeDwhgO23/2n988+/+tV7773jW7jwE98bb7ya++STj4646qrrl++yy25durk0Kcn9gz9sTuems7R//OOO/CeeeGTkHnvsVTZr1na1//d/R5S8885bWe+9905OR/XD4Uh333LLHUvT0tJ/0Pculyv8fb0fLpzgdid1+sfW6XT+oE4oFHm/n5zsCS9fblNOP/2kqePGTWiYPfsn1TvvvHt1Tk5Oyxln/Gla2+t3lpDOmLFNzS9/eVDZ1VfPnfj2229W7LHHXjXRcwmFOl/sweNJ/tFrdLS7aCgU6Za2CU24zStraQn86Dpt636v7aHu92dXaRlskUGgpLaWp4vW835yCoFg/P9uhtxJTHI7GZeaRuV6bYYqIiIREydObmxsbHT5/c2OCRMmNrd+PfjgvcPeeus/WQDz5t044tNPP87YZ5/9qy+66LKCZ555+Zu8vPzmt99+MxvA4XDE9VO7p556fMTvfvf7oksvvXLdEUccXTZ79k/rCwvXp4R/cJXvrzl5smkE2Lhxo6fta3jxxWdzn3/+mVyACRMmNixZ8m162xaWLPmm03u11qxZldqaPAB89tn/MjweT2js2PHNTz31xFCfL7Pl7rsfWHbSSadu3HPPvavLykqTIHJvFcDIkaObrF3yg+tcc80Vo88++9Tvportuuselfvvf0DVTjvtXHHzzdePq6mpcQKMGze+of25X3/9xWZjnjRpSpPL5Qp/9tnCH7zWL774LCMzM6slKys7mJQUSWxrampcreVr165O7qwv2po8eUpDcXFRcnl52XeDNV999Xnc7n3rdgJkjHEbY/YyxlxjjHnSGPOqMeYRY8xVxpifG2O0bKBIH1NeHhkNz8ruob3QnM7vNkNt2LihZ64hIiL9zh577Fk9duy4xrlzL5z4/vsLMlatWpl8/fVXj3r77TdzW6etFRYWJt9yy9/HvP/+goyCgrWef//7peyystLkGTO2qQPwer2h+vp614oVy5NbWlq2+H3mkCG5/s8+W+izdknK8uXLkm+++e8jPv3046yWlpbv3hd7vd5QScnG5MLC9UlTp27VtN1221fPm3fD2DfeeDVzzZrVnnvvvSv/ueeeHjZy5MhmgCOP/MOGtWvXeK+77upRK1YsT37++WdyXn31X0M3HUVEeXm555JL5oxbunRxyiuvvJz1+OMPjzjkkN9sTE5ODufl5fsrKso9b731H19BwVrPq6/+K2vevJvGAvj9kemDRx55dPGHH76f/eCD9+atXr0q+aWXns9+441Xh+68825V7a913nkXFfj9fscNN/xtNESmHq5evTLthhuuHblixfLk1177d9Yjjzw4En48wtMqMzMzuNde+5Y99thDI1944dmcVatWJj/yyANDX3/9laGHHvqbjQ6Hg6lTt2pMSUkJPfDAPcNXrVqZ/NFHH6Tfd9/dozbVZkcOPPCQCp8vM3DRReeN/+abr70fffR++u233zq68zO7pssJkDHGY4w5C1gFvAGcBEwB0oFtgdOA94ACY8wZxphuZXoi0nNqi4oYnpxCTg/sAdSqdTNUf3lZJzVFRGSwcLlczJt317LJk6fUX3313AknnHD0Vl999UXGxRdfvrJ1ettFF122dpttZtVee+0V448++vCtH374/pF/+MMf1x966G8rAPbZZ7/KrKzslhNOOGb6V199kbqlMV100WWrm5ubnaec8sdpZ5118tQ1a1Z5Tz31zLW1tTXudevWeAAOOuiw0oKCdSnHH3/U9GAwyLXX3rRqxx13rpw378axxx575NZvvPFq7mmnnb32t789ohxgxoxtGq+66vrlX3/9RcYJJxwz/dln/5n/298e0emc8O23/2mVy+UKn3baidPmz7957H77HVhy2mlnFQEcc8zxJTvttEvFddddPeG4446a/uijDw0/9tgTCnNzh/q/+ebrNIjcz3T66X9e++9/vzT0uOOOnP7QQ/eNPPHEU9b95jeH/2hn8tzcoYETTzx1/VtvvZn7zjv/9U2bNr3pkkuuWLFw4cdZJ5xw9PSHHrpvxC9/+asSgKQkzyZH3S644NJ1BxxwUMn99/9j5PHHHzX9X/96Me9Pfzp93QknnLwRICMjIzRnzsWrCgsLvMcff9T0efNuHPOnP51e0J0EKC0tLTRv3p3W7XaHzzrr5KnXXHPl+P/7vyPj9gmrIxzufFTRGPNT4CEgCDwGPGWtXdlBvRnAL4ETAAdwtLX2o3gF24+sCgZD4ysq6uPesNvtJDs7jcrKegKBfjMFuN8ZaP387JmnMqOhgRVD8vAfeHKPXCPjxbsZXbWR1wN+znjw8S6dM9D6ua9SP/ce9XXv6Kl+zslJw+VyrgYmxK3RGC1atGiq0+l6LS9vZJ3Hk9LU+Rki3fP554tS3W53eMaMmY2tx1544dmcW265Ydybb773WeteRP2J39+UUlJSmB4KBfebPXv20k3V6+orewQ431r7/OYqWWu/Br4GrjPG/B+RpGlKV4MWkZ7haGwAIJzm67FrBNMyoWoj7sbGziuLiIhIQi1duiT1/vv/Merccy9YvdVW0xvXrFmT/MgjD4z4+c93ruiPyU93dPXVzbDWdmvrEGvtU8aYF7ofkojEW1KzHzwenBnZPXeRzFwoXEZKS4BQKETrngUiIiLS9/zud0eVlZeXJd15521jKisrknw+X2CXXXavOP30PxcmOrae1qUEqLvJz5aeJyLxlRJdYcbZU4sgAM7sodQFAvhDQaqqKsnJ6blriYiIyJZxOBycfvrZxaeffvag27+iSwmQMebS7jRqrb0itnBEJN78fj8Z0dGYpOx8emqCWt3Ebbjiob9TU1XBbiUblQCJiIhIn9TVKXCXtfs+TGSRgyBQBmQDHsAPVAAxJUDGmIuBvay1u7c59ivgUmBa9FpPA5daaxuj5U5gLpGFF7KB94FTrbUr2rQxC7gV2B4oB+ZZa29oU95pGyL9VVlpCb7oXF5nVm7PXcjhwJc5hJqqCkpKSpg6daueu5aIyMAXAsLtN9cUkU2L/n8Jw+Y3C+7SJH1rrbP1C9ibSBLxOyDFWjvcWptCZPW3cuAvsQRsjDmbdomTMWYX4HngWWAWcDJwOHBHm2qXRI+fCOxI5EW/aozxRNsYAvwHWEYkAZoLXGmMOa6rbYj0Z5XFRbijI0D+5LjtIdahjMzIqE9ZWWmPXkdEZBDYEA6HW/z+pi1e9llksPD7m1LD4XALsNlpfbEs8TAfuMRa+1Tbg9ba16IjOFcDT3a1MWPMSOBeYBfAtiv+E/CWtfba6PcrjDEXAg8YY04mkqicA5xnrX0l2t7hQBFwWDSOk4Bm4BRrbQBYYoyZDMyJtuPpQhsi/VZldRULitYzLHcow3ARGbjtGUemJOHdahuKCtb12DVERAaD2bNn1yxatOjhmprKU4AhHk9Kg8Ph6HzvEpFBKBwOO/z+ptSamkpPOBy6b/bs2bWbqx9LAjQG2NS7m1Igv5vtbQdUAtsQmeo2rk3ZjXQ8hOUGMois058BvNVaYK2tMsZ8BuxKJHnZBVgQTX5avQVcYIzJi16vszZE+q3yujqeKlrPT0aN4Vc9vC/JUAfkpKayqmRjj15HRGSQ+FswGKCqqvwYh8ORSuT2AxH5sXA4HG4Jh0P3AX/rrHIsCdCXwBnGmDettS2tB40xKcB5wCfdacxa+zLwcrSN9mWft/2+zWjNZ9baMmPMrtGignbNFhFJ1ABGEdmbqH050TqjutBGTNzu+C8D7HI5f/AoPWMg9XN1dSUAmVnZ4ABnN3Zi7q7mZC80tBCorOzSz/9A6ue+TP3ce9TXvWOw9PPs2bNDwFWLFi26NRxmOF28dUFkEAoBxZ2N/LSKJQG6AHgdWGmMeY3vR31+CaQBu8XQZqeMMW4iG7JuRWRkBqB1Xmxzu+pNQE6bOh2VA6R0sY1uczodZGf33P0WPp+3x9qW7w2Efm6prmB4cgq5viy83p69rS2U7oOGGhz1dd36+R8I/dwfqJ97j/q6dwyWfo6+qevSGzsR6Vy3EyBr7bvGmJ2IJEK/IpIklAFvAlf0xMppxpgM4ClgD+A31trWUabWFX2T2zyHSGJT36ZOcrsmU6KP9V1so9tCoTA1NQ2xnr5JLpcTn89LTU0jwWDPTmcazAZSP6evWsutM2axrrqKhsae3ZrLm5oJrMfZ2EhlZef/fQZSP/dl6ufeo77uHT3Vzz6fd8CPKolIbCNAWGs/A34b51g6ZIwZDrwKjAf2t9a+3aa4ddraCGBlm+MjiEzVa60zol2zrd8XAkldaCMmgR683yIYDPVo+xIxEPo51BBJxEPeNEKhnr1/NpwZWWY7NRiisbGZpKSkTs6IGAj93B+on3uP+rp3qJ9FJBYxJUAAxpj9iSyJPRy4ENgWWGStXRun2DDGZBNZnMAH7GytbX8vz5dADbA70eTFGJNFZGGF+dE6C4CTjTEua23r8ld7AtZaW2KMqe5CGyL9lrOpCZI8kJbR89fKGgpAdlIS5eVlDBs2vMevKSIiItId3U6AjDGpwAvAXkQShwzg78ApwLbGmN2std/GKb6biaz0th9QaowZ1qas1FrbbIyZD1xnjCkF1kRjKQCei9a7n8jiDPcZY64HfgqcTWTfH7rYhki/5QkEIMmDMz2rx68VTPNRFwzSEAxSWlqiBEhERET6nFgmuv4NmE1kFCWX75dkPJrIlLIr4xGYMcZJZNNTD5FRoOJ2X6OjVS8F7iOyl9AHQADY11rrB7DWlgD7Agb4jMhGqOdaax9qc7nNtiHSX4XDYZLDkWlvLl/Ma3p0WePQUVxeXcvfli+ltLSkx68nIiIi0l2xTIE7HLjAWvu2McbVetBau8EYcxVwe6zBWGuPbfM8BHS6vEt0Wtuc6Nem6iwEdtySNkT6o/r6etKdkf+mrqzcXrlmRvQ6ZWWlvXI9ERERke6IZQQoi8g0sY5UAumxBiMi8VVRUY7PHfmcw5Ge2SvXTM+IjDRpBEhERET6olgSoG+AozZR9qtouYj0ARXlZfy7ZAPv1dfRnNxz+1K1tW/Yzw3Tt8G5bl2vXE9ERESkO2KZAncV8LwxZgjwMhAGdjPGHEdkYYEj4hifiGyByqoqni5az7TsbI52eiAY7PykLZTlcDDSm8qyqsoev5aIiIhId3V7BMha+yLwe2Ab4E4iiyDcSGRfoJOttc/ENUIRiVlFRTkAWVk5BHppU8ZAanS57bqY9xEWERER6TGxboT6OPC4McYAQ4AqYGl04QIR6SOqS0oYkZLCUF9mj2+C2iqckQ2l60hqbu6V64mIiIh0Ryz7AL0FnGqtXWqtte3KtgEetdZuE68ARSR2nsL13LL1LErr6uitNdkc2ZHNUNOBpqYmUlJSeunKIiIiIp3rUgJkjNmZ76fL7U7knp+8DqoeCEyMT2gisqUCtTUABJN7MQnJjCyDnZ3kobS0hNGjx/TetUVEREQ60dURoBOAY4gseBAG7iBy70/bOTWtG6I+HrfoRGSLhBsaAAilpPbaNYPRe4ByPElKgERERKTP6WoCdBbwAJEk5y3gNGBxuzpBIvcCfRuv4ERkyziamiA5BdIyeu2aLak+6kNhqlpaCJds7LXrioiIiHRFlxIga2018C6AMWYPYBGQbq3dED2WDYy21moPIJE+JKmlBZJTem0TVICgN42bnSl8tfgTzi0v67XrioiIiHRFLBuhfgk8D7zT5tjPgC+MMS8YY3pvro2IbFIoFCI5FFmY0eXL6dVrp0evV6IRIBEREeljYkmArgWmAxe2OfYWcDCwPXBFHOISkS1UU1NNuisyyOvK7N0EKC2aAJWV9dbacyIiIiJdE0sCdBDwV2vtc60HrLV+a+3LRJKi/4tXcCISu4qKChaUl/LfygoCWR0t2thzdmiu5cbp25BfogRIRERE+pZYEqAMoHITZRuB3NjDEZF4qago55WSDbza4qc5I7tXr53hcjHam4qnvr5XrysiIiLSmVgSoM+AP26i7Djgq9jDEZF4qaioACArO4dAMNxJ7fgKZUSmwHla/L16XREREZHOdHUZ7LauAl41xvyPyGIIJcBQIvcAzSayGaqIJFhVWSkjU1LIz8wiEAj16rWd2ZEpdz6Hg8bGBrxerY0iIiIifUO3R4Cstf8BfkVkE9QrgLuBK4kkUwdba1+La4QiEpOWDcXcvPUsjmpqIhjs3QSI6CII2UkeSkt1H5CIiIj0HbGMAGGtfZXIKFAKkANUW2s12V+kD/FXRW7V8ycl0bsT4CCQ5gMiCVBZWSljxozt5QhEREREOhbLPUAAGGOmAScBZwBZxpidjTG9t928iGxWS00tAEFPSq9fO5Aa+VWQ7nZTVlzU69cXERER2ZRujwAZY1zAXcDxgIPIVLingbnABGPMbtba9XGNUkS6LdwQGZQNpnh7/dqhpGSqwlDVWE/Vxg29fn0RERGRTYllBOhi4CjgBGAYkSQI4BzABVwdn9BEZEs4mpoACHvTE3BxBw/4hnHe4q8prq3p/euLiIiIbEIsCdDxwKXW2geA8taD1tqvgEuBveMUm4hsAbc/ugR1WmJmpqb5InsPlZaWJOT6IiIiIh2JJQHKB77YRNl6oHd3XBSRHwmHw3iCAQCcGZkJiSEjcwiAVoETERGRPiWWVeBWAL8E3uygbPdouYgkUFNTIwsryilvamb7EeMTEsP0xhp2nr4Ny+rqEnJ9ERERkY7EkgDdAtxtjPEALxNZBGGyMWYP4K/AX+IXnojEorKyknfLy/iwppptR0+GmqZejyHVk8xobypFNdW9fm0RERGRTel2AmStvdcYMxS4CDiFyCIITwB+4Hpr7V3xDVFEuqsqugdQVlY2wVBv7wIU4czOAyDD4aCpqYmUlN5fjltERESkvW7fA2SMybbWXgOMIDIV7vfAgcAIa+2lcY5PRGJQVVnByJQURmTnEAgEExKDIzMXgJzoZqgiIiIifUEsU+A+NcZcbK39J/B6vAMSkS1XXVLKzVvPAmCV388W7Hkcs0CaD4DspCRKSzYyatToXo9BREREpL1Y3hVlA2XxDkRE4qc+OuLSArQ4XAmJIRDdfyjZ5aK8uCghMYiIiIi0F0sCdCvwd2PMHtF7gUSkj2mqrACg2eUiGEzMPUBhdxKN0UvXFBUmJAYRERGR9mKZAncMMJboMtjGmPblYWttLO1ijLkY2Mtau3ubY7OIJF3bE9l4dZ619oY25U5gLnACkdGp94FTrbUr4tmGSH/ir64CIJDkSWgcZa4kgnVVVFeUd15ZREREpBfEkqg8GvcoAGPM2cAVwII2x4YA/wFeAE4GdgDuMMaUW2sfiFa7JFp2HFAIXA+8aoyZbq31x6ONnni9Ij0pUFMbeUxO7Mprrw6bxJsvPcCvJk5IaBwiIiIirWJJgFYDb1lr18cjAGPMSOBeYBfAtis+CWgGTrHWBoAlxpjJwBzggeheROcA51lrX4m2dzhQBBwGPBmnNkT6lXBjPeAklOJNaBzpvhwArQInIiIifUYs9wDdRGQqWbxsB1QC2wCftCvbBVgQTVxavQUYY0weMAvIiB4DwFpbBXwG7BrHNkT6FUdTMwDh1PSExpGRGUmASkuVAImIiEjfEMsIUAmQFa8ArLUvAy9Dh/cTjQK+bnesdTmpMdFygIIO6oyJYxsxcbvjv/Swy+X8waP0jP7ez4urKml0VLH1zvvgdDoSFscEfz03TZ/JupbmDv8/9Pd+7i/Uz71Hfd071M8isiViSYDuAW43xuwBfANsbF/BWvvwlgYWlUpk+lpbTdHHlGg5m6iTE8c2us3pdJCdnRbr6Z3y+RI7tWmw6I/9HA6Hea+4kHeCQW7ZejZeZ+IWQnBmZTHK66UhGMDrdZGS0vE9Sf2xn/sj9XPvUV/3DvWziMQilgToxujj0ZsoDwPxSoAageR2x1rfQdVHy4nWaWxXpz6ObXRbKBSmpqYh1tM3yeVy4vN5qalpJBgMxb19iejP/VxTU0MwGATAleSlpi5x63gkp2YDkJPkYfnyNT/aDLU/93N/on7uPerr3tFT/ezzeTWqJDIIxJIAjY97FJtWAIxod6z1+0Igqc2xle3qfBnHNmISCPTcH79gMNSj7UtEf+znsrJy8pOTweMBXIRCgU7P6Skt3gwAspKS2FC8gWHDRnZYrz/2c3+kfu496uveoX4WkVh0+2MOa+3a1i+glMjUsaJ2x+NlAbCLMabtVvZ7RsKwJUQSlBpg99ZCY0wWkYUV3otjGyL9RlVVJVdP3ZrbzHQo/dEM1V4V8KYRCodxO51UFLa/zU5ERESk98U0zmuM2cUY8xGRxKEQaDLGfBS9Lyie7gd8wH3GmK2MMccCZwPXAFhrm4H5wHXGmIOMMdsA/yQy6vNcHNsQ6TeqKspJd0cGd/2eBM+Pd7qoJ7IIQ21RUSeVRURERHpetxMgY8xOwJtEVoK7EjgVuIrIggGvG2N2jFdw0RGafQFDZFnqucC51tqH2lS7FLiPyF5CHwABYN/WDUzj0YZIf1JTUoLTEUk6/Entb3/rfQ2uSDLWWFqS4EhEREREYrsH6CoiU8P2tdYGWw8aYy4HXgcuB/aJJRhr7bEdHFsIbDKpisYwJ/q1qTpb3IZIf1FfXgZAk8NBIOQgsi5J4lQnp9JQXkx1TXVC4xARERGB2KbA/RS4tW3yA2CtDQG3RctFJEGaKysBaHG7CYYSm/wA/G/s1sxZ/DVf1dUmOhQRERGRmBKgWr5fOa09D5C4XRdFBH91FQCBpMTt/9NWui+ynVZJiabAiYiISOLFkgB9AFxojElve9AYkwFcgFZOE0moYF1d5DG5401He1tGZiQBKi0tTXAkIiIiIrHdA3Q+sAhYZYz5F7ABGAYcSGTz0OPiF56IdNe6+jpeLS/HTJuZ6FAAGBZo5qbpM6kJtOD3+/F4+sbIlIiIiAxOsewDtILIggJvA78E/hp9fBvYwVr7VVwjFJFu+aayggcK1lIzZZtEhwKAJ83HKK+XESkplJVpFEhEREQSK6Z9gKy1i4GzrLXDrLUeYCvg6uhxEUmgqqrIIgip6RkJjiQikOYDICvJQ+mG4gRHIyIiIoNdLPsAZRlj/gO80+bwT4EvjDEvGGNS4xWciHRPIBAgqbGJTHcSXm/fSICCyakEwpHV6CrXr09wNCIiIjLYxTICdC0wHbiwzbG3gIOB7YEr4hCXiMSgpqaGP0+YzD2zZpOxoY8kGw4HddHFIWuLCxMcjIiIiAx2sSRABwF/tdY+13rAWuu31r5MJCn6v3gFJyLdU1VVSYY7srZJqI+MAAHUuyIxNekeIBEREUmwWBKgDKByE2UbgdzYwxGRLVFVVYkvmgC1eLwJjuZ7TUmRJblbKjf1q0NERESkd8SSAH0G/HETZccBWgVOJEGqystIjSZA/qS+sQ8QQEN6Jqsb6qmM7lEkIiIikiix7AN0FfCqMeZ/wPNACTCUyD1As4nsByQiCVBbUgJACPC7PdASTmxAUasnzuLR15/FmKmcluhgREREZFCLZR+g/wC/AsJEFjy4G7iSSDJ1sLX2tbhGKCJdVl9eBkCz00kglOBg2kj35QBQUrIxwZGIiIjIYBfLCBDW2leJjAKlADlAtbW2Pq6RiUi3NUfvsWlxuwkG+8boD0BGZiQBqqyspKXFT1KSJ8ERiYiIyGAVUwLUylrbBBTFKRYR2UJljQ28srGYydv+JNGh/ICPMDdvPZNkp5OysjKGDx+R6JBERERkkIplEQQR6aPW1NbyYMFaNkyeluhQfiDs8TIyxUuuJ5myYn1mIiIiIomjBEhkAKmqikyB86b6EhzJD4WSPDSHI1PyKgvWJTgaERERGcyUAIkMIMGaajLdSaSkpCc6lB9yOKjDAUDdhuIEByMiIiKDmRIgkQHklymp3DNrNsMKViU6lB+pd0VuOWwqK01wJCIiIjKYxbQIgjEmFzgX2BsYDuwLHAp8Ya19MX7hiUhX+f1+vNHnruiy031Jk8cLTbW0RFeqExEREUmEbo8AGWPGA18BJwHrgTwiidQU4FljzAFxjVBEuqSqqpIMdxIAzoysxAbTgYA3Oi2vti6xgYiIiMigFssUuBuBEmA8cBhEJvZba48CXgIujFt0ItJlVVVV+NyRQd1ASlqCo/mxZt8QVtXXU9KgBEhEREQSJ5YEaE/gSmttFdB+p8W7ga23NCgR6b7ICFAkAWrxeDup3fsqJ83i/CVf83zh+kSHIiIiIoNYrIsgBDZxPJkfJ0Ui0guqSktJdrkA8PfBBCg9M3JfUkVFOS0tLQmORkRERAarWBKg94ALjDFt59iEjTFO4BTgg7hEJiLdUldaAkQ+nWhxxLS+SY9KTfPhjCZoFRXlCY5GREREBqtY3iWdTyTJWQG8TWTE56/AVsAkYJe4RSciXVZdV8u/NxYzccJkHKG+NxDrBG6ePpMsl4vSggLy84clOiQREREZhLo9AmSt/QbYHngL2AMIElkOewWwk7X2i3gGKCJdU1Jfx0MFa7FjxhEM9r0ECKcTn9uN1+WiunBdoqMRERGRQSqmeTLW2uXAUXGORUS2QGV0f500X2aCI9m0OpykAXXFxYkORURERAapWDdCdQCzgDQ6GEWy1i7YsrBEpLsaKyrIdCeR1rrfTh9U706CUAuNZaWJDkVEREQGqW4nQMaYnwJPA6OihxzRx3D0eRhwxSU6Eemy6Y2NnDZrNiWrV1I29meJDqdDzZ4UaGohWFWV6FBERERkkIplBOhmoAU4FlgPhOIZUEeMMUnAZcDRQDbwBTDHWvthtHwWcCuRe5PKgXnW2hvanO8E5gInRM9/HzjVWruiTZ3NtiHS17la/JCcgiMtI9GhbFJLagY01UJdbaJDERERkUEqlgRoO+B31toX4x3MZlwMHA/8AVgFzAFeNcZMA5qB/wAvACcDOwB3GGPKrbUPRM+/JFp2HFAIXB89f7q11m+MGdKFNkT6rHA4THIwCIAjIyuxwWxGKCMbKopIampOdCgiIiIySMWSAJXQC6M+7RwMPG6tfQPAGHMOkdGcHYEpRJKgU6y1AWCJMWYykSTpAWOMBzgHOM9a+0r0/MOBIuAw4EngpM210XsvUyQ2TU2NpDoit+O5oxuO9kWh7GGsWvwphQFthCoiIiKJEctGqLcD57fbCLWnlQMHGmPGGWNcfJ+wfEFk36EF0cSl1VuAMcbkEVmsISN6DABrbRXwGbBr9FBnbYj0aZWVlfjcSZFv0rMSGsvmBMZvxflLvuYfKyyBQKDzE0RERETiLJYRoMlENj3dYIz5FmhoVx621u65xZH90FnAP4HVRPYdCgG/sdauNMaMAr5uV78o+jiG7xdrKOigzpjo887aKIklaLc7lvxy81wu5w8epWf0t36ura3GlxT57xxKScXpdHRyRmKk+7JwOp2EQiGqqytISxsB9J9+7q/6289zf6a+7h3qZxHZErEkQJOIjLy0av9OqyfeeU0DKoFDiNzDcyLwsDFmVyCVyGhQW03Rx5RoOZuo0zpXqLM2us3pdJCd3XODZD6ft8falu/1l34OtDSQER0BcmRk4nV5EhzRpvkyc6iqLKOpqfa7/u0v/dzfqZ97j/q6d6ifRSQW3U6ArLV79EQgm2KMGQs8BuxprX0vevh/xpitgMuBRiC53WmtSUt9tJxoncZ2deqjzztro9tCoTA1Ne0Hx7acy+XE5/NSU9NIMNjbt2INHv2tnwvWFrKkZAPj8ofjw01joz/RIW3Sn0ePYfy48RR+vJAJE0y/6uf+qr/9PPdn6uve0VP97PN5NaokMgjEtBFqL/spkAQsbHf8Y+CXwFpgRLuy1u8Lo+e2HlvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpLP5dXVfNQwVp+Yaaxd9BBKNR3Y05xe0hxQmlR8XdvXPpLP/d36ufeo77uHepnEYlFlxIgY0wQ2NFa+6kxJkRks9NNCVtr45lYtd67sw3waZvjM4DlRBKhk40xLmttMFq2J2CttSXGmGqgBtidaAJkjMkispz3/Gj9BZtrI46vRaRHVFVVApCZmUWgj3/q3OD2QMhPS3l5okMRERGRQairicoVRDY9bX2+uQQo3j4F3gMeMsacGo3jGGAvYGci+wKdB9xnjLmeyIjR2UT288Fa22yMmQ9cZ4wpBdYAfyeSWD0Xvcb9m2tDpK+rqygnOykJX7qPYKg3/3t2X3NKGjT4CVVXJzoUERERGYS6lABZay9v8/yyHoum42uHjDEHA1cBDwLZRFZs29Na+zGAMWZfYB6Rpa2LgXOttQ+1aeZSIq/1XsBLZMRnX2utP3qNki60IdJn5ZSUcvfM2ZQVrY9tycJeFEjzQUMlzoaYbq8TERER2SJdnQK3a+e1vmetXRBbOJtsrxI4LfrVUflCIpuibur8IJFNTedsps5m2xDp0xrrASchb29uzxWbkC8HSteS7NdmqCIiItL7ujoF7h2+n/a2qWWuw9GyMODasrBEpDucTc2Q4oXU9ESH0ilHzjBYCRm9OpNWREREJKKrCVCvLn0tIt3jCQQAcKT5EhxJ55KGjmBVfR3lLS1s36JRIBEREeldXb0H6N2eDkREYhMOh0mOLnvtzMxOcDSdSx4yjAuWLiYcDnFAdRVD87ISHZKIiIgMIjEtV22MyQXOBfYGhgP7AocCX1hrX4xfeCLSmbq6OtJdkVmnLt+QBEfTOafTRbovi9rqCsrKSpk8eVyiQxIREZFBpNvbHRtjxgNfAScRWZI6j0giNQV41hhzQFwjFJHNqqqqxOeO7veblpnYYLoo3ZcDQMmGDQmORERERAabbidAwI1ACTAeOIzoogjW2qOAl4AL4xadiHSqqqqSDyrKWNhQT3NqRqLD6ZLfDhnCw9v+hNAnHyc6FBERERlkYkmA9gSutNZW8eMNUe8Gtt7SoESk6yorK3misICXwyH83v6RALmSvaS4XLRUViY6FBERERlkYkmAAAKbOJ7Mj5MiEelBVVWRJCIzM5tAMJTgaLrG37pfUW1tYgMRERGRQSeWBOg94AJjTNsdF8PGGCdwCvBBXCITkS6pLi8jOymJLJ+PQKB/JEDBjMhqdUmNTQmORERERAabWFaBO59IkrMCeJvIiM9fga2AScAucYtORDrlKirk7pmzqaqro7ifjACRNRSKV+ANbmowWURERKRndHsEyFr7DbA98BaRDVKDRJbDXgHsZK39Ip4BisjmtVTXABDwJBPuJxNQ3bkjAEjDQUiboYqIiEgvimkfIGvtcuCoOMciIjEI1dcBEEzxJjiSrvMOHUlLKESS00ndxo2Q1vc3cBUREZGBIdaNUCcAKdbaxcaYLOBqYDTwtLX2kTjGJyKdaWwEpwu8aZ3X7SNS0zP5sraGcCjEsI0l5ExQAiQiIiK9I5aNUPcDlgDHRw/dRWRT1FHAg8aYP8YvPBHpjNvvByCc5ktwJF3ncDi4t6qGv69cRmmLP9HhiIiIyCASyypwlwJvAJcbYzKBQ4FrrLXbAdcAZ8UxPhHphCcQWUjAkZGZ4Ei6x5eVC0BRUVGCIxEREZHBJJYEaCZwi7W2FtiXyDS6Z6Jl/wEmxyk2EelEMBgkJbrygcuXk+BouiczeygARevWJTgSERERGUxiSYAa+f7eof2Bjdbar6LfDwOq4hCXiHRBTU0Ni6orWVBeiiN/dKLD6ZbZqV4e3vYnDP/f54kORURERAaRWBKg94G/GmOOAP4PeA7AGDMbmBstF5FeUFVVyUsbinmwrITA0BGJDqdb3OlZpLhcuBsaEh2KiIiIDCKxJEB/BkYCjwGrgauix/8NpBDZKFVEekFVVSUAWZnZBAL9ZBPUKEdOPgCpgWCCIxEREZHBpNvLYFtrVxtjpgN51tqNbYoOAT631jbHKzgR2bzK8nKyk5LIycoiEOxfCZB76CgAUh0OQk2N4E5OcEQiIiIyGMQyAoS1Ntwu+cFa+zHgji6TLSK9oLFwPXfPnM1fU1L7XQKUNnQEddEV7Bo2bEhwNCIiIjJYdHsEyBgzFrgb2A3wbKKaa0uCEpGuaawoB6DZ5ep3U+C8qemUtfhJd7spW7mCUaPGJjokERERGQS6nQABNwM7Af8Afg40AB8B+wAzgMPiFp2IbJa/ugqAlqQkgqFwYoPpJofDQVU05Kp16xiV2HBERERkkIhlCtxuwMXW2rOAB4Bma+0cYHvgXeDgOMYnIpsRqKmNPHpSEhxJbAqdSSysrKAy0JLoUERERGSQiCUBSge+iD5fDMwCsNYGgduBX8QjMBHpXLihHoCQNzXBkcTmq/Qc/r5yGaucMd2OKCIiItJtsbzrKCay4SnACiDHGDM8+n0FkB+PwESkc86myKKL4dT0BEcSG19WLgBFRUUJjkREREQGi1gSoH8DVxpjdrLWFgDriWyMmgEcDxTGM0AR2bSkFn/kSZovsYHEKDM7kgBVFCsBEhERkd4RyyIIlxK53+cKYC/gQuAh4Oxo+WlxiUxEOvV1VSW19fVMyO+fSwgMSc/k4W1/gqe+kXAggMMdy68kERERka6LZSPUcuBnrdPerLWPGWPWAjsCn1pr341zjCLSAb/fz78LCwC4ceJ06IdbEKfmDscBOB0OglUVuHPzEh2SiIiIDHAxf9xqrS02xkwFsoFia+3f4xeWiHSmsrICAJfbTVJyKjT3vwzIl5NHqd/PKK+XhuIN+JQAiYiISA+LKQEyxvyRyFS4UW2OFQAXWGufiFNs7a95DHA+MAFYCVxmrX06WjYLuJXI1LxyYJ619oY25zqBucAJRBK294FTrbUr2tTZbBsifU1FeRk5SR48mZkE+9ceqN9J8aZREWhhFF4q1q7CN2ObRIckIiIiA1y3F0EwxpwO3AMsAv4A7A8cBywBHjXG/DauEUau+XvgfuBuYGvgSeBJY8yOxpghwH+AZUSSl7lEFmk4rk0TlwAnAycSmaoXBl41xnii7XelDZE+pWrjBu6auR3zxk0k0A9HfyCyGWqN0wVA7fr1CY5GREREBoNYRoDOAuZba89sd/xhY8y9wGXA01saWCtjjAO4ErjZWntr9PCVxpidgd2jX83AKdbaALDEGDMZmAM8EE1yzgHOs9a+Em3zcKAIOIxIMnXS5tqI12sRiaeaDRsYQuQHN4ALCCY4otg0RDdxbS4tSXAkIiIiMhjEsgz2KODlTZQ9QWSKWjwZYBzweNuD1tp9rbXXALsAC6KJS6u3AGOMySOyUWtG9FjruVXAZ8Cu0UOdtSHS5zSWlUYenU5a+uscOMCfmgFAqLIqsYGIiIjIoBDLCNBCYE8iU8ba2xb4aosi+rEp0cc0Y8zr0WusBq6y1r5MJCH7ut05rZuKjOH7+5QKOqgzJvq8szZi+mja7Y7/7vYul/MHj9Iz+kM/+6sqAWhJ8gDgdDoSGU5MnE4HzVlDWLhsPSlZWezUA/9npH/8PA8U6uveoX4WkS3RpQTIGLNrm2+fAG6Obnz6FLCByMIC+wFnAn+Kc4ytOzw+DFxOZFrar4EXjTF7A6n8eAHgpuhjSrScTdTJiT7vrI1uczodZGenxXJql/h83h5rW77Xp/u5vg6AoNeL1+tJcDCxC+aP5u+vPs1uo0Zycg/+n5E+/vM8wKive4f6WURi0dURoHeILBzQygGcQmRhgbbHIHJPTdzuAQKiW93zd2vtQ9HnXxhjtgP+AjQCye3OaU1a6qPlROs0tqtTH33eWRvdFgqFqalpiOXUzXK5nPh8XmpqGgn242lPfV1/6OeW6hoAgimpNDb6O6ndNzmdDrJyIrNM169fT1VVPeFwJydJt/WHn+eBQn3dO3qqn30+r0aVRAaBriZAe/RoFJvXujRU+ylq3wIHAmuAEe3KWr8vBJLaHFvZrs6X0ecFnbQRk0Cg5/74BYOhHm1fIvpyPzsbG8GdRCgtg1Co/2YN2UOGAVBbspGWhkZIav9ZhMRLX/55HmjU171D/SwisehSAmStfbenA9mMz4FaYAci+/e0mgGsAD4ETjbGuKy1rctg7QlYa22JMaYaqCGyWtxKAGNMFrAdMD9af8Hm2uipFyayJZbW1VIXCDJ6xz0THcoWyR6Sx0WTpzIzM4vSjz5k6K6J/LxFREREBrqu3gO0ADjTWvtFVxs2xmwP3GKt3TnG2ACw1jYaY64HLjXGFAKfAr8D9iGSpCwGzgPui9b7KXA20el51tpmY8x84DpjTCmREaO/Exn1eS56mfs314ZIX/RG4XoaGxu4etL0RIeyRZI8ydRHZ9BWrV3D0ATHIyIiIgNbV6fA3Qq8Zoz5H/Ao8JK19kc3uEQXRtiXyEII2wKnxiNIa+1VxpgG4GpgJJFNVw+z1r4Tve6+wDwiS1sXA+e2uV8I4FIir/VewEtkxGdfa60/2n5JF9oQ6TMaGxtpbIz8F0xJzaSlqZMT+ri66Ep29cVFndQUERER2TJdnQL3rDHmXSKJxL2A2xizmMhy1PVAFjAa2Bpoidb5vbV2Y7wCtdbeBNy0ibKFwI6bOTdIZPW4OZups9k2RPqSysoKhiR5aHSA25MCTe0XMexfGr3pQJCW0rJEhyIiIiIDXJf3AbLWlgFnGmMuB35DZGGECUAmUEZkVOZW4GVrbXkPxCoiURUbN3LnzO0AKGxsJLY9jfuOlowcqCvFVVeX6FBERERkgOv2RqjR5Obu6JeIJEB1cRFDgZZwGL8jCQh2dkrfNmQY1JXibWkhHAzicLkSHZGIiIgMUP37Y2ORQaquZAMAjQ4HgX68BHYrT94o/KEQLiBYVZnocERERGQAUwIk0g81lVdEHt1uWgbAHhjZucN4t6yU/1SU43R3e2BaREREpMv0TkOkH2qJjpK0eAbGpqGZOXnctm41AMclJZGa4HhERERk4NIIkEg/FKqtBSCY4k1wJPHh8aSQlpEFQHHx+sQGIyIiIgOaEiCR/qghsgdQ0Jue4EDiJzM7j3SXmw1LlyY6FBERERnAujQFzhhzTHcatdY+HFs4ItIVKxvrqaqtI3/mDokOJW5+OiSXI/NyqH/zTTjg4ESHIyIiIgNUV+8BerAbbYYBJUAiPWhBWSnFxUVcOHEankQHEyfBzFyoKyGpvj7RoYiIiMgA1tUEaHyPRiEiXRYOh6moiOw17E3N7O87AH3HMWQ41JXgCYUINdTjTE1LdEgiIiIyAHUpAbLWru1qg8YYR+zhiEhnGhsbSA+FCTkcpKRlUN+U6IjiI33oCCqXLyTb4yFQVopnjBIgERERib+YlsE2xvwO2A3wAK0JjxNIA3YERsUlOhH5kfLSUu6cuR0ARf4AkJTYgOIkKyePjf7maAJUhmfMuESHJCIiIgNQtxMgY8xcYC5QHT2/Jfo1FAgB98QzQBH5oYr1BXiBYDhMc1IyNPf/jVABsnLyKWluYmp6BjUFBaRut32iQxIREZEBKJZlsP8APArkADcDL1tr84GfAOXAt/ELT0TaqykuBKABCAyUG4AAT3IKldEB5Zp1axIbjIiIiAxYsSRAI4FHrLVhYBGwE4C1dhFwNXBC/MITkfbqN24EoMHloiUwMEZ/WhUnpfLqxmJK0nT/j4iIiPSMWBKgeiJLXQMsB8YbY1q3o/8CrRgn0qOayiMrwPmTBsoC2N8rz8rjgYK1LAkNrMRORERE+o5YEqBPiUyDA1gJBIC9ot9PA5rjEJeIbEKouhqAFm9qgiOJv5yhwwFYu7bLC0+KiIiIdEssCdDfgMONMS9ba5uJ3A/0kDHmWeBG4PV4BigiP+SIbhQaSk1PcCTxlzN0BKkuFy0F6wg3NiQ6HBERERmAup0AWWsXANsD/4weOh14BpgKPA2cGbfoRORHljc28HZZCU25IxIdStzl5A7n4inT+KM7iQa7NNHhiIiIyAAU0z5A1tqvgK+iz5uAk+IZlIhs2tslGyguLuL88VNJSXQwcZYzdDjFTY1MSkunYX0BabO2S3RIIiIiMsDEuhFqJvALIhuf/mgUyVr78BbGJSIdCIfDlJeXAZCakcVAWyrAm5rB2mBkjZWq1asYmuB4REREZOCJZSPU/YlMddvUHdhhQAmQSA+oqa4mEwdVDgepqZnUNYc7P6mfqU2O/GppKipKcCQiIiIyEMUyAnQNsAT4C7AeBtyH0CJ9VnnBOm7fZltC4TAFOPh+RfqBw+/LBlpwVFUlOhQREREZgGJJgKYCB1tr34t3MCKyeZUF68gA6kIhAiFHosPpEaEhI6BiLZ6WFkKNDTgH4HLfIiIikjixLIO9FvDFOxAR6Vzdxg0ANDid+APBBEfTMzLyRlLp9wPQUlKS4GhERERkoIklAboGmGuMGRfnWESkE02lpZFHdxLhgTf7DYisBPfyxmKeq6rEk5OV6HBERERkgIllCtxRwEhgpTGmFGi/W2HYWjtxiyMTkR8JVFUC4E/xJjiSnpOTO4L7NxbjKNnAnPSBt9mriIiIJFYsCdD66JeI9LJwXS0AQW9agiPpOWkZWXiSvfibGyksXM+oUeMSHZKIiIgMIN1OgKy1x/VEICLSOVdjEwCh9EwG5hII4HA4yBs6HHf5Bgre/4BRvxuX6JBERERkAIllH6AxmykOAXXW2qqYIxKRTfq2oZ519XXk/GR3khIdTA+alDeCU4flEXj7LcKHH4nDMVDTPREREeltsUyBW0Mnm48YYyqAW621V8US1GbanQJ8BpxurX0wemwWcCuwPVAOzLPW3tDmHCcwFzgByAbeB0611q5oU2ezbYj0Fa9tLKasrJQLRg3s2+wceaMJla7CHQwSqq7GlZWV6JBERERkgIhlFbg/AH7gDeA4YP/osZeJJEZXAA8CFxtjTolPmGCMSQIeA9LaHBsC/AdYRiR5mQtcaYxpO03vEuBk4ERgx2iMrxpjPN1oQyThgsEgFRXlAKSkZSY4mp41ZNgYNjRHpvu1bCxOcDQiIiIykMQyAnQE8GQH9wI9aoy5E5htrT3IGFMFnALcuYUxtrocqG137CSgGTjFWhsAlhhjJgNzgAeiSc45wHnW2lcAjDGHA0XAYcCTnbURp9hFtlhlWSm57iSqAi0ke300+UOJDqnH5OaPprCxkREpXvxFhaSYaYkOSURERAaIWEaAdgce30TZc8Ce0efvA3GZp2OM2RX4E5GRprZ2ARZEE5dWb0VOMXnALCAjegyA6P1JnwG7drENkT6h3C5l/jbbcvs22xEcuLkPAEPyRlLQ1AhAzepVCY5GREREBpJYRoDKgZlEpo21NxOoiT5PB+pjjOs7xpgs4BHgDGttgTGmbfEo4Ot2pxRFH8dEywEKOqjTuphDZ23EvBW92x1Lfrl5LpfzB4/SM/piP9dtLCYDqANCoTBOZ/9fGKD1NbR/LckpKVS6PADUrlnTI/+XBpO++PM8UKmve4f6WUS2RCwJ0GPAFcaYFuAZIglCHpEpZZcBdxljsoGzgY/jEOOdwEfW2o5GnVKJTF9rqyn6mBItZxN1crrYRkycTgfZ2T23V4vPN3A3wuxL+lI/B6oi9/80ud2keD0Jjia+kpN/vKZdc3YuAOHSUrKyUrUSXBz0pZ/ngU593TvUzyISi1gSoIuJJDw3Rb9ahYD7gQuB3wDbAr/YkuCMMUcTmaI2YxNVGoHkdsdak5b6aDnROo3t6rSOTnXWRkxCoTA1NQ2xnr5JLpcTn89LTU0jwYE+DyqB+mI/1xZtIBto8iTjavQnOpy4cDodJCcn0dzcQij0w8UlgzkjeHTJx0z46Y5sU1kHDn3SG6u++PM8UKmve0dP9bPP59WoksggEMtGqAHgeGPM1cAeQC6wHvjAWrsawBjzKjDSWtt+ZKW7jgfygfZT3+4yxpwLrAVGtDun9ftC+G6rlBHAynZ1vow+L+ikjZgFAj33xy8YDPVo+xLRl/o5VFUFQEtqBo7QZlei73dCofCPEqCs/NG89Pbz/LRkI3/EQbCP/Dv0Z33p53mgU1/3DvWziMQilhEgAKy1K/lhUtG2rDLmiH7o90D78e3lwKXAP4msSHeyMcZlrQ1Gy/eMhGBLjDHVRO5J2r011ug9RdsB86P1F2yujTi9DpEt5mqIDGKGfFmJDaSX5A4bDcCa1aui098GVtInIiIiidGlBMgYswo41Fr7pTFmNZt/JxK21sZl9Tdr7Y9GYKIjQSXW2rXGmPuB84D7jDHXAz8lcu/RydHzm40x84HrjDGlRDZx/TuRUZ/nok1utg2RviKlpQWcThyZQxMdSq/IzR9FVlIS4/3NVCxciG/b2YkOSURERAaAro4Avcv3q7u9Sx/5KDY6yrMvMI/I0tbFwLnW2ofaVLuUyOu8l8ho0gJgX2utvxttiCTch9VV+IIBsvNGJjqUXpGWnsn2Q4dx0oiRbHj5RSVAIiIiEhddSoDabnpqrT22x6LpAmuto933C4EdN1M/SGRT0zmbqbPZNkQSLRAI8MTqFYRCIS4dOqrzEwaI+rQsAAIbNyY2EBERERkwYroHyBiTAfistYXGGA9wFjAaeMZauyCeAYoIlJeXEwqFcLlcJKf5aAl0fs5AEModAS3VuJubCdbV4krPSHRIIiIi0s91e61HY8xPiay+dkb00DzgOiILFrxljDkofuGJCEDJ2jXkJyczNCeXQLDz+gNF9oixlDRHtuUKbCjqpLaIiIhI52JZ7P5qYClwtzHGSyTxucNamwPcB1wUx/hEBGj4/H/cNmNbTh05mnCfuAOvd+QNH8e6xsh+Ws3rt2hVehEREREgtgToZ8CV0T1/9iSysMAj0bInga3jFJuIRDWXlgGRTVAHk/wR41nbEEmA6lZ1uOq+iIiISLfEkgCFgNYNTn8JVAGfRr/3AQ1bHpaItBWsimyt1exNS3AkvSstI5MN0V9TNStXJDgaERERGQhiSYD+B5xgjNkROBz4l7U2bIzJA86PlotIHLka6gEIZWQlNpAEqMzM5aaVy7BmaqJDERERkQEglgToXCJT3z4AAsBV0ePfAJOBi+MTmoi0Sva3RJ5kDklsIAmQPmI8H1dW8PX6ApxOR+cniIiIiGxGtxMga+3nwCQi++ZMsNYujxadAmxtrV0Ux/hEBr1wKERGdOUDR86wBEfT+/KGjwNg+fJlSoBERERki8W0D5C1thb4pN2xZ+MSkYj8QKCqCrfDQTAcxpk7ItHh9Lr8keMYleLFVJRT/dGHpP1kh0SHJCIiIv1YLFPgRKQX1TU28HTRel4r2UBaZl6iw+l1Q/PHYDJ8/GZoPhv/+2aiwxEREZF+TgmQSB9XUlfH00XrebG2BocrKdHh9Dp3UhI1aZkANBcUEB5MGyGJiIhI3CkBEunjiouLABgydPDd/9PKMWwcwXAYV3MzoeqqRIcjIiIi/ZgSIJE+rmrlcvKTk8nNGZroUBImb+wUipoaAfCvX5/gaERERKQ/UwIk0sflffUVt83Ylu3SMhIdSsKMGDOZNQ2RPZab1q1NcDQiIiLSnykBEunjPI2RkY9wVm6CI0mcvOHjWBsdAapcujjB0YiIiEh/pgRIpA8LB4OkBYMAOIYMT3A0ieNOSqLcGxkBa1yrESARERGJnRIgkT4sUFWJy+EgEArhHoR7ALXVMmwccxZ/zRtjxuLQfqgiIiISIyVAIn1Y44ZiAEr9zaRmDt4pcAD5Y6ewuqGeb5YsxunUry4RERGJjd5FiPRhFatXA1DW0kKy15fgaBJrxJjJACxd8o1GgERERCRmSoBE+rCatWsij07XoB/1yBs+lpFp6fw+dyjLbpuX6HBERESkn3InOgAR2bSStFQ+LVpP89DhZCc6mARzudwMGzaaPbMz8X/5BeFQCMcgTwpFRESk+/TuQaQPW9HUxFNF6ykbxJugtuUZPYXGYBBnIEBLcXGiwxEREZF+SAmQSB+2fn0BADm5g3cJ7LZGT5zOyvo6AJrXrEpwNCIiItIfKQES6aNCTY24C9cz1JNMZs6wRIfTJ4yesBUroglQjV2a4GhERESkP1ICJNJHNa1bx5GuJOaaaWRk5SU6nD4hw5fDBlcSANVLFic4GhEREemPlACJ9FH169cDUNzUREa2RoBaNeaPA8BdWUmwri6xwYiIiEi/owRIpI+qXLUCgLJQiNS0jARH03cMmTid9Y0NlIfDhKqrEh2OiIiI9DNaBlukj2osLMQL1HtSEh1KnzJ24tZc8NTthFxuPh6Wn+hwREREpJ/RCJBIHxWqKAegOSMrsYH0Mbn5o/BkZNPS4ufzLz5LdDgiIiLSzygBEumDwqEQyQ0NAARztABCWw6Hg/FTZgLw4fvvEw4EEhyRiIiI9Cf9YgqcMSYH+BtwIOADvgLOt9a+Hy2fBdwKbA+UA/OstTe0Od8JzAVOALKB94FTrbUr2tTZbBsivamlrAx3OIw/FMI1dFSiw+lzJphZ7Fiyml2++orGJd+SOmNmokMSERGRfqK/jAA9CewA/A74CfAZ8IYxZqoxZgjwH2AZkeRlLnClMea4NudfApwMnAjsCISBV40xHoAutiHSa1xpaTxZW80ThetIz9Z9Lu1FRoAceBwOqr/9OtHhiIiISD/S50eAjDGTgL2Bn1trP4weOwvYHzgSaASagVOstQFgiTFmMjAHeCCa5JwDnGetfSV6/uFAEXAYkeTqpM210WsvViQq5PHw0soVBAItnD1ES2C3l5k9lKWOyOc35Z9/zvDf/T7BEYmIiEh/0R9GgMqAA4BFrQestWHAAeQAuwALoolLq7cAY4zJA2YBGdFjredXERlF2jV6qLM2RHpVUdF6AoEWkpNT8GUNTXQ4fZJ/1BQA3OXlBKP3S4mIiIh0ps+PAEWTlVfaHjPG/BaYCLwOXA20nwNTFH0cA7TeQFHQQZ0x0eejOmmjJIbQcbvjn1+6XM4fPErPSHQ/b3znLaZn+GjMHYbb7UpIDL3B6XT84LE7RmyzI0ULnmFEihf/8iVkzP5JvMMbMBL98zyYqK97h/pZRLZEn0+A2jPG/By4H3jRWvuyMeZmItPX2mqKPqYAqdHnHdXJiT5P7aSNbnM6HWRnp8Vyapf4fN4ea1u+l4h+DgeD+D74gLlmK+7zpOH1eno9ht6WnJzU7XOmzdyeL//9ICNSvGz46APG7LV7/AMbYPR7o/eor3uH+llEYtGvEiBjzMHA48DHwBHRw41AcruqrUlLfbScaJ3GdnXqu9hGt4VCYWpq4j8tx+Vy4vN5qalpJBgMxb19iUhkP/tLNuIMhfCHQjiHjqKx0d+r1+9NTqeD5OQkmptbCIXC3T5/Y2YuAHVffUNFRR0OR/dHkgYD/d7oPerr3tFT/ezzeTWqJDII9JsEyBhzOpFlqp8Dfm+tbR2xKQBGtKve+n0hkNTm2Mp2db7sYhsxCQR67o9fMBjq0fYlIhH93LBuPQBFTY1k5I6MKTHob0KhcEyv021m88UXb1GalsYMfwu4+s2vtITQ743eo77uHepnEYlFv/iYwxhzCnAbMB84vE3yA7AA2MUY0/ZGiT0Ba60tIZLk1AC7t2kvC9gOeK+LbYj0mub1kdvVChobGJKnPYA2Z9LMHblmheWeLxZRVlmR6HBERESkH+jzCZAxZgqRkZ/ngWuAPGPMsOhXJpH7gXzAfcaYrYwxxwJnR+sSTZbmA9cZYw4yxmwD/JPIqM9z0ctstg2R3lSzfBkAqxsbyRnafmBS2vJlDmH0+K0AePPN1xMcjYiIiPQHfT4BAn5DZBrboUBxu69boyM0+wKGyNLWc4FzrbUPtWnjUuA+4F7gAyAA7Gut9QN0sQ2RXtG8bi0AFZ4UkpIG/gIIW2qrbX9OhttNweuvazlsERER6VSfnzBvrf0b8LdO6iwEdtxMeZDIpqZzYm1DpDcE6+pw1tYC0JSt/X+6YtrMndl76ceMdrnZ8NH7jNxzn0SHJCIiIn1YfxgBEhk0nCkp/Hf4MOavXoFv+LhEh9MvZGbnsjz6q6zgzf8kOBoRERHp65QAifQhDrebj9auZkF5GbnDxyc6nH6jcdK2AKSXlBBsauqktoiIiAxmSoBE+pBgMMiyZRaAYaMmJDia/mPYjvtR0tyMx+Fg+RuvJjocERER6cOUAIn0IasfeZAd0zPI9KaRkzs80eH0G960DFZ4UgEofOu/CY5GRERE+jIlQCJ9RKC2htD773HKuIkMHzkWp9PV+UnyncD0HQDIq6mhrqI8wdGIiIhIX6UESKSPaFqxAohsgOrT/T/dlrPd7mxsacHtcPDB008mOhwRERHpo5QAifQRjSuWA7C0rpa8EUqAusvpcvHxqGmc/OVn3POf1wiHw4kOSURERPogJUAifUTjimUA2Lpa8kdqAYRYjN7tYJpcLlasWM4nn3yU6HBERESkD1ICJNIHhPx+mlavAWB5Q4NWgItRijeNbXeMbIT6yL13JzgaERER6YuUAIn0AU1rVkMoSKXfT9LwsSQleRIdUr+12477cqnZiqP9LXy28JNEhyMiIiJ9jBIgkT7AX1wMRO7/GTl2aoKj6d+8+WMY78skx+PhrX/cqXuBRERE5AeUAIn0AVm77c7faqt4vHAdoydMS3Q4/ZvLRcWkbQGYVFPDu+++neCAREREpC9RAiTSB9TW1vLlMsvG5mZGj98q0eH0e40zdyUEbJXh4+l5N9HS4k90SCIiItJHKAESSbBwOMzixV8RDofJzh1GRmZOokPq9wJpPqrGTwdgB4eDJ554NMERiYiISF+hBEgkwUoef4TwE0+wdYaP0eM1/S1eKrbZFYCfZOXw0oP3smFDcYIjEhERkb5ACZBIAoVDIeq/+JycujpcDgcTp26X6JAGDH/WUGpHG5wOB7ukZXDJJecTCoUSHZaIiIgkmBIgkQRqWrmSQGUlDcEAi2trmDhtdqJDGlBKtt2DjT/7BU+VlrBw4Sc89thDiQ5JREREEkwJkEgC1Ub3qVlYWcnQURNJz8hKbEADTHN2HtXTd+WPp50DwLx5N7F48TcJjkpEREQSSQmQSIKEQyFqFy0E4MPKciZupdGfnhAIhpg2ey/22G0P8l1uzjzzFIqLixIdlsigFg5//xWKfgVDka9AB18twciXP/rVEkz0KxCR/syd6ACke9bVOPisCurqXAQCDsJAGAeEoXW7xzDRPyyt34c3fbz9OR0+b9N+27LNicfWk51dpyvXaPs6Ntd+uN2j0+nA64XGRjfBYPjH9X5wruPH1+jguu3PzSz4lm2qq6kLBvmqppqZo/fiveq879rroLnNHOtaDO3rd63tH8Yd07mbeE0OwO12EQgEf/Dz2JVzN32sTXzRg0PWFnMkaQSnzeCsL//H//3xFHY+52mSvL5Nt9eu/8IdlHV0/c39XLX9ZnPt/uA1d+FnqbM4cDhISgJ/S8r3G8N2sd32l+js9YXDHfx7xeE1dKcvY42/K7F/d/pmf39AKOTt8Gd6S/ui435wdFh3c3Fv7vpb+v9hc78n4+lPs+GU6XFvVkQGASVA/UiNHw57yUsgBJCS6HAGieQea/m0b98F4OOKMoKpQ/kya18cNa4eu95g5gmncXDQSZ7LyVHjDPevWsKrNx6L6zeP4kjJTHR4vUg/X71HEyx6mkaBRCRWSoD6kfQkOGB8gDV1SQQCkd/8jtav6IdrDke44+O0ln9fRtvnbcp+9Py7uuEfnt+ZTip1pY3O6ji60EhHVdr3S9vnDgc4HA48HjctLQFCofCPyjs6p+Nrhzd5Dq6fsuI/H/NGyUbyZ/2aMRlV39Xf5GvoqJ0OrtfhuZs81mbspIPKmz8/lni/P8fpcLQZAQq3P6XNuR28ri7HGjl30ezfsv8Ht7NfTiZf1o1gUdFn5Lz4G35z4YOk+YZssv1N/Yxs6tpd/fnYbP0OKn73s9RJjB2VuVwOUtNSaKhvIhQM97v4uxRP+991HZS1b2ez5/3gdXX8O6CjuN1uJ74ML7W1jQSDoc3W31zfdaXPO+obHB3086bO6+L1NxV3V/5tutTXHcS9+dcIHreTkXlpVFYiItJtjnBHY+6ypVYFg6HxFRX1cW/Y7XaSnZ1GZWU9gYCW9O0pvdHPjY0N7Lbbjvj9zZx03jxGjJ7UI9fpyyJTDT00Nvq/SzR70oiFr5G1+FNIS2PO4q9ZXVrC6NFjuOGGeRgztcevnyj6vdF71Ne9o6f6OScnDZfLuRqYELdGRaTP0Ri9SIK8/sYr+P3N5OaPZvioiYkOZ1Ao3nZPWobkQ309f995N0aPGElBwTqOOeZwXnjhWfSBkIiIyMCnBEikl1W++QblLz7H4w8+AMC2O+6Doytz+WSLhd1JrNn1t4STUwgVFHDXMcfx85/vSnNzM5dddhGnn34ShYXrEx2miIiI9CAlQCK9KFhXR/mLz1P+8ksMra4iOSWV2Tvtn+iwBpUWXw7rdvk1oXGTGHbwYcyffzdnnPFnkpKS+OCD9/j1r3/F/Pm3UFNTk+hQRUREpAcoARLpRWXPPU2osZENoRAfVpSz/c4HkOJNTXRYg079yIks2/1IVlUGcLpdnHDCyTz1z+eZPXt7mpoauffeuzjwwL2ZP/8WNmwoTnS4IiIiEkdKgER6Sf3XX1G94F0A7ly2BLcnmR12PzjBUQ1eoTAsXVPOivVVlL/2Cp6XXuTuW+/kppvmM2HCJGpqqrn33rs44IC9OOecM3j33bfw+/2JDltE/r+9O49vo7zzOP4ZHZblK4ljx7FzEMjxcEMuILuEhKsBeiy0tJSy20JLC0v7orBsobvblpae0KW0r6W0u2XL9uBoaaFQyhVCaEs5Eki44QkhOAe5bMeOb1nSzP4xY8UxVi4cKZa+71eU0Yx+mvn5sTzSb56ZRyIi75GGwRbJgWRLM5tvuxWAx9q28XpnB6d96CIqR1XnObPilk572FcamfqHe3GSfay77lrmffZSFtx9H0uXPsZvfnMHy5c/y5Ili1myZDEVFRUsXHgqJ554EnPmHEdNTW2+fwQRERHZSxoGe//QMNgj3HC2c7qri/XXf4e+je/Q5Dhc+fyzjBo3kUuu+S8ikegwZTwy5XoY7GxKt21iypP3EmptBsdh1IKTqfmHcwhXVrJ69Zvcc8/dLF78ME1NW3d63iGHTGX27LkYcxjGHMq0adOJH4CnNGq/kTtq69zQMNgi8l6oAAoYY0LAtcDFwBjgSeAya+3qfVidCqARbjjbuW/LZtZ/91t09vRw5YrltAMXXXEDEybPGJ5kR7ADpQACCCUTHLRyMfHXV/jzZWWMOX0RY05/H6HSOK7r8uKLK1my5FGWL1/GqlVvvGvYbMdxmDRpMjNmHMqMGYZDDplKfX0D9fUNjBlTnbfR/rTfyB21dW6oABKR90KnwO3wVeBS4CLgHeAG4CFjzBHWWp34L3vF8zzwPJxQiEhtDfdFoyx95m9sS/Zx7oXXqPg5ALnRGG8f9wGqDj6ahuceha0baV38CGMXnQFAKBRi5szZzJw5G4Dt29t4/vnlvPDCSt5807JqlaWlpZl169aybt1aHnvskZ3WH4vFqKsbT23tOGpraxk7tpaamhrGjKmmvLyc8vJyysrKqaiooKxsx3w0Wty9hCIiIsNNBRBgjCkBrgKuttY+GCw7D9gIfBi4K4/pyQjipVJ0vfwS2x76E5UnzOPlSIjrb/gu72xYjxMK8cHzL+fI2QvynabsQnvtZNoXfZrajW9QXQLtbphR4RBhB9Zc9w0i1WMpO+ww4tNncPKCUzjllNMzz21paWbVKsuqVW+wapVl3bq1bN68kaamJhKJRKY42huxWOxdhdGuCqZYLEY0WkI0Gs3cSktjjB1bRW9vGscJZ5aXlOwcF4lE9Z1UIiJS8FQA+Y4FKoHH+xdYa9uMMSuAk1ABJFkkt20juXULiXc20P7qK/Susji9vQCstW9w+YvPA1A5aixn/+OVTD10Vj7TlT0VCtE08XCagLUvbaRmdJy67q30rnkL1rxF53PLAHCiUUoaJlDS0EDFzNmMnTWbefNqOGHu8aS2txEuL8eJlZJMJtm6dQubNr1Dc3Mzzc3NtLQ009zcRFtbG93dXXR2dtLd3UVXVxddXZ2ZEecSiQSJRILW1m05+dEHF0ThcHjQLUI4HAqm/rJoNJKJjUT8+5FIZMB8hFAoNOC5YUKhMJGIP+2PG7iNSCSc2UYoFAqe338/TDjsTwc/NnDav51wOITjhDJT/zlOsCyM4ziZ9TiOEyzzY4baXiQSUaEoIjKCqQDyTQym6wct3whM3teVRiLDP8r43b+8jfIVz+O63o7rD7zMf2wtjbG2zL8IO5x2mdm2PYjZca2CA3h4NJWU8FZZ3F/muhy/fdAXP3o77jRHo7wRL/XnXJf5HZ1ZYqElEubl0liwWY+TuroJB/ednVdLazjEilg0k+KC3gTRIFcnk7Y/v92BpyLhTOzCZIr4UNewedABLA352/Q8j1OBSpxMm2Xy8KDL83jITfmt4nmcGo5Q7YSC7Xt4gONB1IE+z+PORE9mPZ+Pl1MX3vFn5ABtyT7+3NzMA1s2ES+rYM6J7+ekRR8jVnrgXRyfb6GQs9P0QNSXTLOxqZON6RjV51xM1da1lG5YA5vW4/X1kVjbSGJtI/Hx4yktPQHP8+ht3sLbX77GX0E4TDgexykpoTYaZVw0ypgFC6m+6NOAX0Rv+uUv/A/UIQcc/0O4i0c67cLUqSSnT6erq4vulmaiTz1FKpUimUqSSqVIJVMkk0lS6RTrXJdXPJdkMgnJJKfg4LouruvieS7pdDozv6qzg8e2bMbzPMKOw2cmT8naBm93d7F408bM/GcnHwxOcsjYDT09PLR1c2b+wkkHEXWG3hduSvTywJYd37N0wYTJxMPhIWOb+xL8YfOOHM5rmEhllkFEtqeS3L1xQ2b+I/UTGBMtGTK2K53iznd27Po/NL6ecSWlQ8Ym3DS/2rAO8K/3en9dPQ2lcXDAwcFxHBwHHCeEC/ymZWum4FpQNYqGkpJM3MDn4MD93V04QQE2pyTGhHAkEwP+evu3u9hNkQ6ee3QoxAQntFNs8A8ch7+FQySDgm96ymWC5wXbJci3PweHleVl9AXtP7m3j4b+Yd+dAZMgkVerKukJhwGHhp5eJvT27hwXxDqAHVVFV9D+43q6mdDVDcG+dbA3qyrpCE77rE0kmNzVvfM6g3vdJVHmXHYJM2YcMeTvSkRkV1QA+fo/mSYGLe8F9mmc4lDIYcyY8veU1GCtra3c8sMf8OOjZ2aNWb3mLe5Z1whAVSTCR4+dkzV2/bq13N+4BoBYKMQFs47LGtu0cSMPrnkzM3/RnBOyxrZvbeXR1TYz/8mZc4ll+VDzyrbtPL7q9cz8BcfMpirLNQ+ruzp58vVXMvOfOGomtbHYkLHre7pZ9upLO2KPOJqJ8bLMm3eGA1sTvbz48guZRR8/7EimlVcMud6OVJLXX38tM984dTpuvIxNiV5sRwcbwmH6xtUxYc48Lj1mDjPnzCNWGh9yXTIS1QP+35/jeZR0tuJu2oDb3ET3pOlsau0hGgmRbuuESARSKUinSXcOOmCQ6CVeHsNxHHpbXTpfWJl9i5MamDJ3JjiQ2NrEil//Omvs/DPex9RLPwdAsr2D5Z+8KGvsuWefw/9deTnpdJrezk5e+OSns8aGDzuUL5x7Dq7rkkqlcK+/ESdLbE99HSf93Ql+cZZKcejDjxFOp4eMbS0vo+bMRaTTadLpNIveaqQ0PfQF7VtDDi3Tp5JOp/0DFUmX0VmyaEqneC4WzeQ7v6aOhiwFUEuyj3tbmvA8D9d1OX7MWKbv4u+/vwDyPI9ZVaM4smrUkLF9rstPB+wHp42uZnZF1ZCxAD985aVMQXDWIdM4rroma+yPXlxBr+u307wphzCzZtzOAf0r8jxuXrGM7Sm/WJ02aQpH1Y3Put6bn32arX3+2+AnJkzi5PoJWWP/e9nTrO/pAfwCc+GESVljf77sGd7s8v8GPlBXz4JJB2WNveP55bza4R+MO712HKccNPRYBKs6O7jpppu4/fbbs65LRCQbjQIHGGM+AvwOKLPW9gxY/lsgZq3d22+rXJNOuwe3t/fsPnIvLX34TySfeRrX8/w3ucwRN/9OV2UFbdV+zRZ2XcZveCfzoX/g0TuAnopy2mv9N9mQ5zFu3XoGHmcb+Lze8jI66uoy87WNjXiZre683mRZnI76+sx8deNanKD3Z3BsqixOZ0NDZtGoxrU4aXfgIcTgMQe3tJTuyZMyp55UNDbipNI7HRklOCrqlkTpPfjgTGzp242EksmdTlvpP/LpRaP0TZuaWRZtbCTc10c4HMJNBz1AjgORCF4sRvqggzJHT6ORCBWVo6isrKS6upqyMvXy7I1QyKGsLEZ3dyLvo8DtF8k+Ul1duN3deMkkbjKJ25ekpLaG0vH+B9FUZydty5aD5/o9i64/gIbnueB6xA+eQuVhh/mxXV00P7o46+biU6YwauaxALiJBFsefBDwX6uRcIhU2s30XsYnTWL0HP8AiZdKsfn++7Out7RhAmNOOD4zv+n392SNjdXVUX3i32fmN993P14qNUSkR8nYGsYu3HFN3JYHHsBNDD4O5YuOHk3Nqadm5rc+9DDp7qFH2oxUVFK76H2Z+abFi0m1tw8ZG47HGXfWWZn55seXkmzdhj+Oif978IsjDycapuq00zM9aZ3PPEOypSX4fQWDn+ARCjmkPI/o/JNwXT82+dLLeC0tmV5p/1ftFzGe55GaOxcv6IUOvbkaZ9u2zO9q4NTzPHqOPgrCYVzXJbp2HZFdxLbPmIEXDeO6HqUbNxFrbR2Qgxf0DvrPaZ48iXQ0iud5lDe3UNHWNqCXxssUVh4eTRMaSAZFZUVrK5Wtbf1R74rfUldLXyyG50FlRwdj2rb3vyHtVMJ6QPO4cSTipYBHeUcHo7e17rTdfqnSUk743MXU1U30e0qHSVVVXKPAiRQBFUCAMeY44FlgmrX2rQHLnwRetNZ+fi9XqWGwRzi1c26onXND7Zw7auvc0DDYIvJeDP9FKiPTi0A7sLB/gTFmNDAL+Gt+UhIRERERkeGma4AAa23CGHMzcL0xpgloBL6PPyhC9nM9RERERERkRFEBtMPX8NvjViAO/AVYpC9BFREREREpHCqAAtbaNHBNcBMRERERkQKka4BERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGg4nuflO4dC1ON5Xqnr7p+2DYdDpNPuflm37KB2zg21c26onXNHbZ0b+6OdQyEHx3F6gfiwrlhEDigqgPaPNiAGbMpzHiIiIrLn6oEEMDrPeYjIfqQCSEREREREioauARIRERERkaKhAkhERERERIqGCiARERERESkaKoBERERERKRoqAASEREREZGioQJIRERERESKhgogEREREREpGiqARERERESkaKgAEhERERGRoqECSEREREREioYKIBERERERKRoqgEREREREpGhE8p2A7J4x5ivAadbahQOWfRD4GnAY0AzcDXzNWtuTlyQLQJZ2/jjw78B0YCPwP8AN1lovL0kWgKHaedDjPwNOt9ZOyWVehSjLa/o24MJBoe9YayfmMLWCkqWd64EfAGcCaeBh4IvW2ua8JFkABrezMeYJYEGW8E9Za3+Zo9REZIRRD9ABzhhzBXDdoGXzgXuB3wPHApcC5wG35Di9gpGlnc8EfgX8FDgc+BLwFeCKHKdXMIZq50GPnw1cnKt8Ctku2vpo4DtA/YDbzNxlVliy7DtiwGLgEOA04P3ALEAfyPdRltfzh9n5dVwP/Al4A/89UkRkSOoBOkAZYyYAtwLzATvo4UuAx6213wvmVxtj/h24zRhzqbU2kcNUR7TdtHM98D1rbX9h+bYx5p/wP9DclLssR77dtHN/TD1+D9ufgSk5S67A7KqtjTFh/GL+m9bazXlIr2Ds5jV9Pv5reKq1dksQfwVwizGmylrbnsNUR7RdtbO1dtug2POBRcAsa21HzpIUkRFHPUAHrllAK/7R2mcHPXYjfm/EYBGgcj/nVWiytrO19ufW2q+C/8HRGHMGsBB4NNdJFoBdvZ4xxjjAL/B73J7IaWaFZ1dtPR0oBV7LdVIFaFftfAawpL/4AbDWPmKtnariZ6/tct/RzxhTDnwfuMla+3KOchOREUo9QAcoa+0fgT8CGGMGP7Zy4LwxpgS4Clih88v3zq7auZ8xZjKwBggDjwA/yVV+hWIP2vlK/B63DwL/lrvMCs9u2voowAOuCE7xdIEHga9Ya7fnMs+RbjftPAP4izHmq8CngCj+vuNqa21bDtMc8fZkHx24FP8A4LdzkJaIjHDqARrhjDER/KPmhwOX5TmdQtUGzAU+ChyD394yTIwxRwPXAhfo9M397kj8oqcRv9j8V+As4D5jjN4Phk8VfuFzDPAJ4HPAifjt7OQzsUIUnNp5OXCLCnkR2RPqARrBjDGVwG+Bk4FzrbVZTw+QfRecsrISWBm80d5ljLnaWrs2z6mNeMaYUuAO4FvW2pfynU8R+Dr+KUJtwfwrxphNwNP4Rb72IcOjD+gEzrfWJgGMMZ8ClgFzgOV5zK0QLQQmAz/Lcx4iMkKoABqhggvGHwIOBs601i7Nc0oFJxhtr8da+9yAxa8E0wZABdB7dzxwBPB1Y8y1wbISIGKM6QQusdbenrfsCkwwfHvboMX910tMRAXQcNkAhPqLn8CrwfRgVAANt7OBZdbaNflORERGBp3yMAIZY8YAjwO1wIkqfvabq3j3aG/HAylgVe7TKUjL8C/MPwZ/SPdj8Ycd3xjcvz9PeRUkY8wdxphHBi2eG0w1MMLw+QtwjDEmPmDZUcF0dR7yKXQn4r8niojsEfUAjUw34X+/xBlAkzFm/IDHmqy16fykVXD+E3jCGPMN/Ot+ZgE3AD+y1rbkNbMCEXxx704fCI0x24CUtVYfFIffHcD9xpj/AO7Cv1j/x8Ad1trX85pZYfkp8AXgjmAghFHBsqXW2hV5zazABKclH4E/ApyIyB5RD9AIE1yofB7+aUKPA5sG3SblL7vCYq19Ev8LDM8CXsJ/g70RuDqfeYnsK2vtA/iDeXwE/9S3/wXuAT6Tz7wKTTAa53z80d+exR/FbBlwTj7zKlBj8dtZB6VEZI85nuflOwcREREREZGcUA+QiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjRUAIlIUTPGOPnOQURERHJHBZCIFC1jzIeAXwT3FxpjPGPMwvxmJSIiIvtTJN8JiIjk0b8MuL8CmAe8lqdcREREJAdUAImIANbaduCZfOchIiIi+5fjeV6+cxARyTljzBPAggGLTgaWAidba58wxnwd+DjwZeBbwDTgDeCfAQ/4EXA08BbwRWvtkgHrPhL4HnBSsGgJcJW1ds1+/JFERERkD+gaIBEpVpcBK4PbPKBqiJhJwA+AbwMfA6qB3wF3Aj/DL5BCwF3GmDiAMWYG8BQwDrgQ+AxwCPA3Y8y4/ffjiIiIyJ5QASQiRcla+xrQDrRba58J7g9WBlxmrb3TWns/cAvQAHzTWnurtfY+4KtADWCC51wL9ACnWWvvsdbejd+7FAe+tF9/KBEREdktXQMkIrJrTw24vzmYDrxWqCWYjg6mp+KfStdtjOnfx7YDfwVO3085ioiIyB5SASQisgvB4AiDde/iKWOB84LbYE3DkpSIiIjsMxVAIiLDqw14DLhxiMdSuU1FREREBlMBJCLFLA2Eh3mdfwYOB16w1qYAjDEO8GtgNfDCMG9PRERE9oIKIBEpZm3APGPMKcCoYVrndcDTwAPGmJ8AvcAlwNnAucO0DREREdlHGgVORIrZzUASeAh/lLb3zFr7EjAf/7uCfoU/bHY9cLa19p7h2IaIiIjsO30RqoiIiIiIFA31AImIiIiISNFQASQiIiIiIkVDBZCIiIiIiBQNFUAiIiIiIlI0VACJiIiIiEjRUAEkIiIiIiJFQwWQiIiIiIgUDRVAIiIiIiJSNFQAiYiIiIhI0VABJCIiIiIiRUMFkIiIiIiIFA0VQCIiIiIiUjT+H4Xi/Ik+Sr6LAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Quantify the peak\n", + "peaks = chrom.fit_peaks(verbose=False)\n", + "chrom.show()\n", + "peaks.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "While it's useful to know the various parameters returned by the fitting, we are\n", + "fundamen We are interested in the integrated area of the peak (integrated over\n", + "the entire duration of the chromatogram). Using a for loop and getting the concentration \n", + "of lactose from each file name, we can generate a new Pandas DataFrame which \n", + "will hold the calibration information." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idconc_mM
013.560.2812411.6547278004.452381960534.28571116.0
013.560.2789641.628399747.23161589667.79380910.5
013.560.2789281.6305031540.484760184858.17114311.0
013.560.2803721.6444003896.669057467600.28684413.0
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... area peak_id conc_mM\n", + "0 13.56 0.281241 1.654727 ... 960534.285711 1 6.0\n", + "0 13.56 0.278964 1.628399 ... 89667.793809 1 0.5\n", + "0 13.56 0.278928 1.630503 ... 184858.171143 1 1.0\n", + "0 13.56 0.280372 1.644400 ... 467600.286844 1 3.0\n", + "\n", + "[4 rows x 7 columns]" + ] + }, + "execution_count": 5, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import pandas as pd\n", + "# Set up a blank dataframe for the calibration curve. \n", + "cal_curve = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and perform the quantitation \n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Get the concentration of lactose from the file name \n", + " conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add the concentration to the peak table and add it \n", + " # to the instantiated calibration dataframe\n", + " peaks['conc_mM'] = conc\n", + " cal_curve = pd.concat([cal_curve, peaks])\n", + "\n", + "cal_curve" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can now plot the peak area as a function of time, which we expect to appear linear. " + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "Text(0, 0.5, 'integrated peak area [a.u.]')" + ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkcAAAG1CAYAAADz8VB4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABUb0lEQVR4nO3deVxU9f4/8NcZBhhWRUTwiiuKiCCoYKSS5NqVrC/hkvfivouaS7jfxHK71wXF3FJQU8slyMq0e9Esy2sKlFuAu+QCYoiMsg3MnN8f/pg7IyQzeJiBfD0fDx4y53zOhzdvKF+e8zlnBFEURRARERERAEBm7gKIiIiIahOGIyIiIiIdDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIB8MRERERkQ65uQuoq0RRhEbzYj5cXCYTXtjvXUrsozTYR2mwj9JgH6VRU32UyQQIglDlOIajatJoRDx4UGDuMkxOLpfByckOSmUhyso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKg6HPGyGhEREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBW/mJiIioVhBFEY8KVVCJAkqKVFBYWhj0XCKpMRwRERGRWRUWl+LkhWwcTb2N+w+LtNtd6tugd2d3dPN1g63C0mT1MBwRERGR2Vy8nosNn19ESakaT58j+v1hET49dgWJJ64jMswHPq2cTVIT1xwRERGRWVy8nou1B85BVaoGADz9hiHlr1Wlaqw9cA4Xr+eapC6zh6PS0lLExMQgJCQEHTt2xN/+9jf8/PPP2v3p6emIiIiAv78/QkJCEBcXp3e8RqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBERkWkVFpdiw+cXIYoVQ9HTRACiCGz4/CIKi0trvDazh6NNmzYhISEBS5YswcGDB9GqVSuMGzcO9+7dQ15eHkaNGoUWLVogISEBU6dOxbp165CQkKA9fuPGjdi7dy+WLFmCffv2QRAEjBs3DiqVCgAMmoOIiIhM6+SFbJSUqqsMRuVEACWlapy8mF2TZQGoBWuOjh07htdffx3du3cHAMydOxcHDhzA2bNncfPmTVhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0xJFEUdTbxt9nADgaMpt9O7sXqN3sZn9zFH9+vVx/Phx3L59G2q1Gvv27YOVlRXatWuHlJQUBAYGQi7/X4YLCgrCjRs3kJubi4yMDBQUFCAoKEi739HREd7e3khOTgaAKucgIiIi03pcVKp3V5qhRAD3HxahoLhM+qJ0mP3M0YIFCzBjxgz06tULFhYWkMlkWLduHZo1a4bs7Gx4enrqjW/UqBEA4O7du8jOfnJqrXHjxhXGZGVlAUCVczg7V3/lu1xu9mxpchYWMr0/qXrYR2mwj9JgH6XBPhquTGPoxbTKlao1Nfp3sNnD0bVr1+Do6IgNGzbA1dUVBw4cwJw5c7B7924UFxfDyspKb7y1tTUAoKSkBEVFT1JnZWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32sWoyy+eLH26NHOFoZ1X1wGoyazi6c+cOoqKisGPHDgQEBAAAfH19cfXqVaxfvx4KhUK7sLpceaCxtbWFQqEAAKhUKu3n5WNsbJ78clY1R3VpNCKUysJqH19XWVjI4OhoA6WyCGq1xtzl1FnsozTYR2mwj9JgHw0niiIaOdngfl6RwQuygSdrjlycbFBWokKeyvi71hwdbQw6s2fWcHT+/HmUlpbC19dXb7ufnx9OnDiBv/zlL8jJydHbV/7a1dUVZWVl2m3NmjXTG+Pl5QUAcHNze+Ycz6Os7MX95VerNS/09y8V9lEa7KM02EdpsI+G6dXJHZ8eu2LUMSKAXp3doVaLqPoBANVn1guj5WuFLl26pLf98uXLaN68OQIDA5Gamgq1Wq3dd+rUKbRs2RLOzs7w8vKCvb09Tp8+rd2vVCqRlpamPRNV1RxERERket183WBtaVHhqdh/RBAAa0sLdPNxq9G6ADOHow4dOiAgIABz5szBTz/9hJs3b2Lt2rU4deoUxo8fj/DwcDx+/BgLFizA1atXkZiYiJ07d2LChAkAnqw1ioiIwKpVq3Ds2DFkZGRgxowZcHNzQ58+fQCgyjmIiIjI9GwVlogM84EgoMqAJPz/j8i3fEzyHmuCKIo1d17KAPn5+Vi7di2+++475Ofnw9PTEzNnzkSXLl0APLn0tnTpUqSlpcHFxQWjR49GRESE9ni1Wo01a9YgMTERxcXFCAwMxHvvvQd3d3ftmKrmqA61WoMHDwqea466SC6XwcnJDnl5BTxt/BzYR2mwj9JgH6XBPlbP0++tphtKyl9bW1og8i0f+LR8vis+DRrYGbTmyOzhqK5iOOJ//M+DfZQG+ygN9lEa7GP1FRaX4uTFbBxNua33/COX+jboHeCObj6NYat4/mXShoYjs9/KT0RERC82W4Ul+gQ0Re/O7iguVcPaxholRSVQWFrU6JOw/wifVEVERES1giAIcLC1gmsDWzjYWpklGAEMR0RERER6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh1mDUenT59G27ZtK/3o1asXACA9PR0RERHw9/dHSEgI4uLi9ObQaDSIjY1FcHAw/Pz8MHr0aGRmZuqNqWoOIiIionJmDUcdO3bEjz/+qPcRHx8PuVyOiRMnIi8vD6NGjUKLFi2QkJCAqVOnYt26dUhISNDOsXHjRuzduxdLlizBvn37IAgCxo0bB5VKBQAGzUFERERUTm7OL25lZQUXFxft69LSUixfvhx9+/bFoEGDsGXLFlhZWSE6OhpyuRweHh7IzMzE1q1bER4eDpVKhfj4eERFRaFHjx4AgJiYGAQHByMpKQmhoaHYv3//M+cgIiIi0lWr1hzt2bMHWVlZmDdvHgAgJSUFgYGBkMv/l+GCgoJw48YN5ObmIiMjAwUFBQgKCtLud3R0hLe3N5KTkw2ag4iIiEiXWc8c6SopKcHmzZsxYsQINGrUCACQnZ0NT09PvXHl++7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcsl9eqbGkSFhYyvT+pethHabCP0mAfpcE+SqM29LHWhKMvvvgCJSUlGDZsmHZbcXExrKys9MZZW1sDeBKmioqKAKDSMfn5+QbNUV0ymQAnJ7tqH1/XOTramLuEPwX2URrsozTYR2mwj9IwZx9rTTg6ePAg+vbtCycnJ+02hUKhXVhdrjzQ2NraQqFQAABUKpX28/IxNjY2Bs1RXRqNCKWysNrH11UWFjI4OtpAqSyCWq0xdzl1FvsoDfZRGuyjNNhHadRkHx0dbQw6I1UrwtGDBw/wyy+/YMKECXrb3dzckJOTo7et/LWrqyvKysq025o1a6Y3xsvLy6A5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+1ooLoz///DMEQUCXLl30tgcGBiI1NRVqtVq77dSpU2jZsiWcnZ3h5eUFe3t7nD59WrtfqVQiLS0NAQEBBs1BREREpKtWhKOMjAw0bdpUeymsXHh4OB4/fowFCxbg6tWrSExMxM6dO7VnmKysrBAREYFVq1bh2LFjyMjIwIwZM+Dm5oY+ffoYNAcRERGRrlpxWe33339H/fr1K2x3dnbGtm3bsHTpUoSFhcHFxQWzZ89GWFiYdsy0adNQVlaGhQsXori4GIGBgYiLi9MuwjZkDiIiIqJygiiKormLqIvUag0ePCgwdxkmJ5fL4ORkh7y8Al5Tfw7sozTYR2mwj9JgH6VRk31s0MDOoAXZteKyGhEREVFtwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEiH3JBBw4cPr9bkgiBg586d1TqWiIiIyBwMOnN05swZPH78GKIoGvzx+PFjnDlzpqbrJyIiIpKUQWeOACA6OhodOnQweOKzZ8/i7bffrlZRREREROZi0JmjiRMnwtXV1aiJGzdujIkTJ1arKCIiIiJzMejM0fTp042e2NXVtVrHEREREZmTpHer3bp1C/PmzZNySiIiIiKTkjQcPXjwAJ9//rmUUxIRERGZlKThyM/PDxkZGVJOSURERGRSfAgkERERkQ6Db+Uvl5ycXOWYwMDAahVDREREZG5Gh6Nhw4ZBEIRnjklPT692QURERETmZHQ4+vjjjytsKywsRGpqKr744gvExsZKUhgRERGRORgdjrp06VLp9pCQENja2mLTpk3YsmXLcxdGREREZA6SLsju3LkzTp8+LeWURERERCYlaTg6evQo7O3tpZySiIiIyKSMvqw2fPjwCts0Gg2ysrJw9+5djBs3zugiDh48iI8++gi3bt1Cs2bNMGXKFPz1r38F8GRx99KlS3Hx4kXUr18fw4YNw5gxY/S+9ocffogDBw5AqVSic+fOWLRoEZo3b64dU9UcREREROWMPnMkimKFD5lMhrZt2+L99983+v3UvvjiC8yfPx9DhgzBoUOH0L9/f8ycORO//PIL8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO3xGzduxN69e7FkyRLs27cPgiBg3LhxUKlUAGDQHERERETljD5ztGvXLsm+uCiKWLduHUaMGIERI0YAACIjI/Hzzz/jzJkzOHPmDKysrBAdHQ25XA4PDw9kZmZi69atCA8Ph0qlQnx8PKKiotCjRw8AQExMDIKDg5GUlITQ0FDs37//mXMQERER6TLrE7KvX7+OO3fuYMCAAXrb4+LiMGHCBKSkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vbWPqyyqjmIiIiIdBl95uhZbt26hY0bN2L58uUGjb958yaAJ89JGjNmDNLS0uDu7o5JkyahZ8+eyM7Ohqenp94xjRo1AgDcvXsX2dnZAIDGjRtXGJOVlQUAVc7h7Oxs3DepQy5/8d59xcJCpvcnVQ/7KA32URrsozTYR2nUhj5KGo4ePHiAzz//3OBw9PjxYwDAnDlzMGXKFLz77rv497//jcmTJ2P79u0oLi6GlZWV3jHW1tYAgJKSEhQVFQFApWPy8/MBoMo5qksmE+DkZFft4+s6R0cbc5fwp8A+SoN9lAb7KA32URrm7KOk4cjPzw8ZGRkGj7e0tAQAjBkzBmFhYQCAdu3aIS0tDdu3b4dCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbmydNrWqO6tJoRCiVhdU+vq6ysJDB0dEGSmUR1GqNucups9hHabCP0mAfpcE+SqMm++joaGPQGSlJw5Gx3NzcAKDCZa/WrVvju+++Q5MmTZCTk6O3r/y1q6srysrKtNuaNWumN8bLy0v7NZ41x/MoK3txf/nVas0L/f1LhX2UBvsoDfZRGuyjNMzZx2qFo+zsbPz88896Z2Q0Gg2KioqQkpKCmJgYg+bx9vaGnZ0dzp07h4CAAO32y5cvo1mzZujUqRP27t0LtVoNCwsLAMCpU6fQsmVLODs7w8HBAfb29jh9+rQ2HCmVSqSlpSEiIgIAEBgY+Mw5iIiIiHQZHY6OHDmCqKgolJWVQRAEAE9uyS//vFWrVgbPpVAoMHbsWGzYsAGurq7o0KEDvv76a5w8eRI7duxA69atsW3bNixYsABjx47F+fPnsXPnTixevBjAk7VGERERWLVqFRo0aIAmTZpg5cqVcHNzQ58+fQAA4eHhz5yDiIiISJfR4WjLli3w9vZGdHQ09uzZg7KyMowfPx7ff/89YmJiMH/+fKPmmzx5MmxsbBATE4N79+7Bw8MD69evx0svvQQA2LZtG5YuXYqwsDC4uLhg9uzZ2vVJADBt2jSUlZVh4cKFKC4uRmBgIOLi4rSLsJ2dnaucg4iIiKicIIqiaMwBfn5+WLVqFfr06YNDhw5h27ZtOHjwIABg5cqVOH/+vKQPiqyt1GoNHjwoMHcZJieXy+DkZIe8vAJeU38O7KM02EdpsI/SYB+lUZN9bNDAzqAF2UY/REAmk6F+/foAgBYtWuD69evQaJ4UHxwcjKtXrxo7JREREVGtYXQ4atWqFVJTUwE8CUelpaVIT08H8GQx9NO3zRMRERHVJUavOXr77bexaNEiFBYWYubMmXjppZcwf/58DBw4ELt370b79u1rok4iIiIikzD6zNGgQYOwYMEClJaWAgA++OADlJSUYOnSpSgrK8OCBQskL5KIiIjIVAw6c6TRaCCT/S9H/f3vf9d+3rRpUxw5cgR5eXlo0KDBM48jIiIiqu0MSi7t27fH+fPn/3C/IAgVgtG5c+d4iY2IiIjqHIPOHImiiLS0NKPeqPXKlSvVLoqIiIjIXAxekG3sE6V1n5pNREREVFcYFI4+/vjjmq6DiIiIqFYwKBx16dKlpusgIiIiqhV4KxkRERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdEgejq5duyb1lEREREQmY/Qbz+bn52P16tVITk5GaWkpRFEE8OS5RoWFhcjPz0d6errkhRIRERGZgtFnjpYtW4aEhAS0aNECFhYWcHBwgK+vL0pLS6FUKvH+++/XRJ1EREREJmF0OPrhhx8wZcoUbNq0CW+//Tbc3Nywdu1afPPNN2jbti2uXr1aE3USERERmYTR4UipVKJz584AgDZt2uDixYsAADs7O4wePRrfffedpAUSERERmZLR4cjJyQmPHj0CADRv3hy5ubnIy8sDALi6uuLevXvSVkhERERkQkaHo5dffhmbN2/G7du34e7ujvr16yMxMREAcPz4cTg5OUleJBEREZGpGB2O3nnnHeTm5mLu3LkQBAHjx4/HypUr0aVLF+zYsQPh4eE1UScRERGRSRh9K3+TJk1w+PBh3Lx5EwAwatQoNGzYED///DM6dOiAsLAwqWskIiIiMhmjwxEAKBQKeHl5AQBKSkrw+uuvY8CAAZIWRkRERGQO1XpC9vXr1zF9+nR06dIFHTt2RFpaGqKjo7Fr1y6p6yMiIiIyKaPDUXp6OgYOHIhff/0VAwYM0D4h29LSEsuWLcPnn38ueZFEREREpmL0ZbV//vOf8PHxQXx8PABgz549AIAFCxaguLgYH3/8MdcdERERUZ1l9Jmjs2fPYuTIkZDL5RAEQW9f//79tQu1iYiIiOoio8ORtbU1iouLK9338OFDWFlZPXdRREREROZidDjq1q0bYmNjkZ2drd0mCAIKCgoQHx+Prl27SlogERERkSkZveYoKioKQ4YMwWuvvQYvLy8IgoAVK1bgxo0bEEURa9asqYk6iYiIiEzC6DNHjRs3xhdffIERI0ZAFEU0a9YMhYWFeP3115GYmIimTZvWRJ1EREREJmH0maPNmzejV69emDFjRk3UQ0RERGRWRp852rZtG7KysmqiFiIiIiKzMzoctWjRAleuXJGsgDt37qBt27YVPg4cOADgyUMnIyIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETljL6sFhISgpiYGBw/fhxt2rSBs7Oz3n5BEBAZGWnwfJcuXYK1tTWOHj2q99wkBwcH5OXlYdSoUejduzcWL16Ms2fPYvHixahfvz7Cw8MBABs3bsTevXuxfPlyuLq6YuXKlRg3bhwOHToEKysrg+YgIiIiKmd0OPrwww8BACkpKUhJSamw39hwdPnyZbRs2RKNGjWqsG/nzp2wsrJCdHQ05HI5PDw8kJmZia1btyI8PBwqlQrx8fGIiopCjx49AAAxMTEIDg5GUlISQkNDsX///mfOQURERKTL6HCUkZEhaQGXLl1C69atK92XkpKCwMBAyOX/KzMoKAhbtmxBbm4u7ty5g4KCAgQFBWn3Ozo6wtvbG8nJyQgNDa1yjqfPfBEREdGLzehwVJVHjx7BwcHB4PGXL1+Gi4sL/va3v+HmzZto3rw5Jk+ejODgYGRnZ8PT01NvfPkZprt372ofRNm4ceMKY8oXjVc1x/OEI7nc6CVbdZ6FhUzvT6oe9lEa7KM02EdpsI/SqA19NDocqVQq7NixA2fOnEFpaSlEUQQAiKKIwsJCXL16FefOnTN4rps3b8LGxgazZ8+Gra0tvvzyS4wbNw7bt29HcXFxhbcjsba2BgCUlJSgqKgIACodk5+fDwBVzlFdMpkAJye7ah9f1zk62pi7hD8F9lEa7KM02EdpsI/SMGcfjQ5H//rXv7B79254enriwYMHsLa2RoMGDXD58mWUlpZiypQpBs9lZWWF5ORkyOVybYDx8fHBtWvXEBcXB4VCAZVKpXdMeaCxtbWFQqEA8CRklX9ePsbG5klTq5qjujQaEUplYbWPr6ssLGRwdLSBUlkEtVpj7nLqLPZRGuyjNNhHabCP0qjJPjo62hh0RsrocPSf//wHI0eOxNy5c7FlyxakpaVh3bp1uHfvHiIiIqDRGPeNVBZQPD098eOPP8LNzQ05OTl6+8pfu7q6oqysTLutWbNmemO8vLwAoMo5nkdZ2Yv7y69Wa17o718q7KM02EdpsI/SYB+lYc4+Gn1B78GDB9o7w9q2bYsLFy4AeBI0xo8fj8OHDxs8V0ZGBjp27FjhrreLFy+idevWCAwMRGpqKtRqtXbfqVOn0LJlSzg7O8PLywv29vY4ffq0dr9SqURaWhoCAgIAoMo5iIiIiHQZHY4cHBy0l6latGiBrKwsPH78WO+1oTw9PdGmTRssXrwYKSkpuHbtGpYvX46zZ89i4sSJCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyWW5iIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1QICArBr1y4EBgbC3d0dNjY2SEpKQlhYGH755RfY29sbPJdMJsPmzZuxatUqTJ8+HUqlEt7e3ti+fTvatm0L4MnblSxduhRhYWFwcXHB7NmzERYWpp1j2rRpKCsrw8KFC1FcXIzAwEDExcVp1zA5OztXOQcRERFROUEsv93MQJcuXcLf//53tGvXDrt27cKqVauwc+dOtGnTBpcuXcLQoUOxcOHCmqq31lCrNXjwoMDcZZicXC6Dk5Md8vIKeE39ObCP0mAfpcE+SoN9lEZN9rFBA7uaWZDdtm1bHDlyBJcvXwYAzJo1C/b29vj555/Rs2dPjB8/3vhqiYiIiGqJaj0E0sXFBS4uLgCevF3IxIkTJS2KiIiIyFz4GE8iIiIiHQxHRERERDoYjoiIiIh0MBwRERER6TA6HKWnp//hPqVSiXnz5j1XQURERETmZHQ4GjlyZKUB6ciRI+jfvz+++uorSQojIiIiMgejw1H79u0xcuRI/PrrrwCAe/fuYfLkyZgxYwbc3d3x2WefSV4kERERkakY/ZyjzZs3Y8aMGRg1ahSGDRuGnTt3wsLCAosXL8aQIUNqokYiIiIikzH6zJGVlRViY2PxyiuvYMOGDWjfvj2OHDnCYERERER/CgadOUpOTq6wbdCgQbh58yYuXryI06dPo2HDhtp9gYGB0lVIREREZEIGhaNhw4ZBEATta1EUIQgCyt+zdsaMGdrXgiA88442IiIiotrMoHD08ccf13QdRERERLWCQeGoS5cuNV0HERERUa1g9N1qAHD27FmcOXMGpaWl2ktroiiisLAQqamp2L9/v6RFEhEREZmK0eFoz549WLJkiTYU6ZLJZOjevbskhRERERGZg9G38u/evRvdu3fH6dOnMWbMGAwePBhnz57FunXrYG1tjTfeeKMm6iQiIiIyCaPD0e3btxEREYF69erB19cXqampUCgU6NevHyZMmMDF20RERFSnGR2OLC0toVAoAAAtWrRAZmYmSktLAQCdOnXCzZs3JS2QiIiIyJSMDkft2rXD8ePHAQDNmzeHRqPB2bNnAQDZ2dmSFkdERERkakYvyB41ahSmTJmC/Px8LF++HL169cLs2bPRr18/fPXVV+jcuXNN1ElERERkEkafOerduzc2b96M1q1bAwDef/99tGzZEnv37kWrVq3w3nvvSV4kERERkalU6zlHISEhCAkJAQA4OTkhPj5eypqIiIiIzKZa4QgAvv/+e/z3v/9FTk4OZs6cifT0dLRv3x5NmjSRsj4iIiIikzI6HBUVFSEyMhL//e9/YW9vj4KCAowdOxaffvop0tLSsHv3brRp06YmaiUiIiKqcUavOVqzZg1+/fVX7NixAz/99JP2Sdn/+te/4OrqinXr1kleJBEREZGpGB2Ojhw5gpkzZyIoKAiCIGi3u7i4YNKkSUhNTZW0QCIiIiJTMjocKZXKP1xXVK9ePRQWFj53UURERETmYnQ4atOmDb766qtK93377bdcb0RERER1mtELsidNmoQpU6bg4cOHePXVVyEIApKTk5GYmIi9e/di9erVNVEnERERkUkIYvmKaiN89dVXWL16td7bhTg7O2P69OkYNGiQpAXWVmq1Bg8eFJi7DJOTy2VwcrJDXl4Byso05i6nzmIfpcE+SoN9lAb7KI2a7GODBnawsKj6olm1nnM0YMAADBgwANevX8fDhw/h6OiIVq1aQSYz+iodERERUa1S7YdAXrt2DSkpKcjPz4ezszNsbGz4AEgiIiKq84wORyUlJYiKikJSUhJ0r8jJZDIMGTIE7733nt4t/kRERER1idHXwVauXInvv/8ec+fOxXfffYfz58/j+PHjiIqKQmJiIj766KNqF3Pjxg107NgRiYmJ2m3p6emIiIiAv78/QkJCEBcXp3eMRqNBbGwsgoOD4efnh9GjRyMzM1NvTFVzEBEREZWr1kMgZ8yYgREjRsDNzQ1WVlZo3LgxRo0ahalTp2Lfvn3VKqS0tBTvvvuu3nOS8vLyMGrUKLRo0QIJCQmYOnUq1q1bh4SEBO2YjRs3Yu/evViyZAn27dsHQRAwbtw4qFQqg+cgIiIiKmf0ZbXCwkK0atWq0n1eXl7Iy8urViHr16+HnZ2d3rb9+/fDysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0NrXIOIqqbRFHEo0IVVKKAkiIVFJYWvKRPRJIwOhz169cPu3fvRvfu3SvcnfbFF1/g1VdfNbqI5ORk7Nu3DwcPHkRISIh2e0pKCgIDAyGX/6/MoKAgbNmyBbm5ubhz5w4KCgoQFBSk3e/o6Ahvb28kJycjNDS0yjmcnZ2NrpeIzKewuBQnL2TjaOpt3H9YpN3uUt8GvTu7o5uvG2wVlmaskIjqOqPDka+vL9atW4fQ0FCEhoaiUaNGePjwIb799lucP38eI0aMwIcffggAEAQBkZGRz5xPqVRi9uzZWLhwIRo3bqy3Lzs7G56ennrbGjVqBAC4e/eu9jlLTx/XqFEjZGVlGTTH84QjufzFe3RB+fMhDHlOBP0x9rF6zl/LxfrPzqOkVI2nzxH9/rAInx67gsQT1zF1YAd08OA/fAzF30dpsI/SqA19NDocffDBBwCehJryEKRr+/bt2s8NCUfR0dHw9/fHgAEDKuwrLi6GlZWV3jZra2sAT+6aKyp68q/Gysbk5+cbNEd1yWQCnJzsqh74J+XoaGPuEv4U2EfD/ZyRgzV7z0LEk7tkn356bflrVZkaa/aexaKxQejk1cikNdZ1/H2UBvsoDXP20ehwlJGRIdkXP3jwIFJSUv7wvdoUCoV2YXW58kBja2sLhUIBAFCpVNrPy8fY2NgYNEd1aTQilMoX7012LSxkcHS0gVJZBLWaT4CtLvbROAXFpVi24wxEUawQip725AkjIpbtOIO173SHHS+xVYm/j9JgH6VRk310dLSpuSdkSyUhIQG5ubl664wAYNGiRYiLi8Nf/vIX5OTk6O0rf+3q6oqysjLttmbNmumN8fLyAgC4ubk9c47n8SI/Hl6t1rzQ379U2EfDnPjlLkpK1QaPFwGUlKpx4uxd9AloWnOF/cnw91Ea7KM0zNlHs4ajVatWobi4WG9b3759MW3aNPTv3x9ff/019u7dC7VaDQsLCwDAqVOn0LJlSzg7O8PBwQH29vY4ffq0NhwplUqkpaUhIiICABAYGPjMOYiodhNFEUdTbxt9nADgaMpt9O7szrvYiMgoZl015urqiubNm+t9AE/exLZJkyYIDw/H48ePsWDBAly9ehWJiYnYuXMnJkyYAODJWqOIiAisWrUKx44dQ0ZGBmbMmAE3Nzf06dMHAKqcg4hqt8dFpXp3pRlKBHD/YREKisukL4qI/tTMeuaoKs7Ozti2bRuWLl2KsLAwuLi4YPbs2QgLC9OOmTZtGsrKyrBw4UIUFxcjMDAQcXFx2kXYhsxBRLVXicrwy2mVKS4pg70N1x0RkeEEUfcN0shgarUGDx4UmLsMk5PLZXByskNeXgGvqT8H9tFwjwpVeCf2x2ofH/tOMMNRFfj7KA32URo12ccGDewMWpDNhzEQUa1mb2MJl/o2FZ5rVBUBTx4Maaeo1SfIiagWMuj/Gl5eXkYtaExPT692QUREugRBQO/O7vj02BWjjhMB9A7gYmwiMp5B4SgyMlL7P5iSkhJs374dLVq0QL9+/eDi4qJ9Qvbly5cxadKkGi2YiF483XzdkHjiOlSl6iqfcwQAggBYyS3Qzcetxmsjoj8fg8LR1KlTtZ/Pnz8fISEhWL9+vd6/yCZOnIioqCj8+uuv0ldJRC80W4UlIsN8sPbAOUCs+HRsXcL//4h8y4fvsUZE1WL0mqMjR45gyJAhlZ6qfvPNN/HDDz9IUhgRkS6fVs6YPsgPVpZPnlf29P+Byl9bWVpg+mA/+LTkc8yIqHqMXqloZ2eHmzdvIjg4uMK+tLQ01KtXT5LCiIie5tPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJ6DkY/X+Q0NBQrFmzBnK5HD179kSDBg2Qm5uLb775Bhs2bMC4ceNqok4iIgBPLrH1CWiK3p3dUVyqhrWNNUqKSqCwtODiayKShNHhaNasWcjKysLixYvx/vvva7eLoojBgwcjMjJS0gKJiCojCAIcbK3g5GSLvDyRz5UhIskYHY6srKwQGxuLK1euICUlBUqlEk5OTggKCtJ781ciIiKiuqjaF+bbtGmjfcf7pk2bat/UlYiIiKguq9YTsk+fPo1BgwahS5cuGDBgAK5cuYJZs2ZhxYoVUtdHREREZFJGh6NTp05hzJgxUCgUePfdd1H+1mze3t74+OOPsX37dsmLJCIiIjIVo8PR2rVr0atXL+zatQsjRozQhqPx48dj7NixOHDggORFEhEREZmK0eEoPT0d4eHhAFDhttlu3brhzp070lRGREREZAZGhyMHBwfcv3+/0n1ZWVlwcHB47qKIiIiIzMXocNSrVy/ExMTgwoUL2m2CICA7OxubN29GSEiIlPURERERmVS1HgJ57tw5DB48GA0bNgQAzJw5E9nZ2WjcuDFmzpwpeZFEREREpmJ0OKpXrx4OHDiAgwcP4qeffsLDhw/h4OCAYcOG4a233oKNjU1N1ElERERkEkaHo+TkZHh7e2Pw4MEYPHiw3j6lUolvv/0WoaGhkhVIREREZEpGrzkaPnw4rl27Vum+tLQ0zJs377mLIiIiIjIXg84czZkzB1lZWQCevMFsdHQ07O3tK4y7efOmdh0SERERUV1k0Jmjfv36QRRF7QMfAWhfl3/IZDL4+/tj+fLlNVYsERERUU0z6MxRz5490bNnTwDAsGHDEB0dDQ8PjxotjIiIiMgcjF5ztGvXrmcGoz9aj0RERERUFxh9t1p+fj5Wr16N5ORklJaWai+1iaKIwsJC5OfnIz09XfJCiYiIiEzB6DNHy5YtQ0JCAlq0aAELCws4ODjA19cXpaWlUCqVeP/992uiTiIiIiKTMDoc/fDDD5gyZQo2bdqEt99+G25ubli7di2++eYbtG3bFlevXq2JOomIiIhMwuhwpFQq0blzZwBAmzZtcPHiRQCAnZ0dRo8eje+++07SAomIiIhMyehw5OTkhEePHgEAmjdvjtzcXOTl5QEAXF1dce/ePWkrJCIiIjIho8PRyy+/jM2bN+P27dtwd3dH/fr1kZiYCAA4fvw4nJycJC+SiIiIyFSMDkfvvPMOcnNzMXfuXAiCgPHjx2PlypXo0qULduzYgfDw8Jqok4iIiMgkjL6Vv0mTJjh8+DBu3rwJABg1ahQaNmyIn3/+GR06dEBYWJjUNRIRERGZjNHhaOLEiRg+fDi6du2q3TZgwAAMGDBA0sKIiIiIzMHoy2rJycmwsLCoiVqIiIiIzM7ocNStWzccOHAAJSUlkhSQm5uLqKgoBAUFoWPHjhg/frzes5LS09MREREBf39/hISEIC4uTu94jUaD2NhYBAcHw8/PD6NHj0ZmZqbemKrmICIiIipn9GU1a2trHDlyBElJSXB3d4ezs7PefkEQsHPnToPnmzRpEmQyGbZu3QpbW1usW7cOI0eORFJSEoqLizFq1Cj07t0bixcvxtmzZ7F48WLUr19fu/B748aN2Lt3L5YvXw5XV1esXLkS48aNw6FDh2BlZYW8vLwq5yAiIiIqZ3Q4ys7ORseOHbWvy99b7Y9eP0teXh7c3d0xadIktGnTBgAwefJkvPnmm7hy5QpOnToFKysrREdHQy6Xw8PDA5mZmdi6dSvCw8OhUqkQHx+PqKgo9OjRAwAQExOD4OBgJCUlITQ0FPv373/mHERERES6jA5Hu3btkuyLOzk5Yc2aNdrXv//+O+Li4uDm5obWrVtj/fr1CAwMhFz+vzKDgoKwZcsW5Obm4s6dOygoKEBQUJB2v6OjI7y9vZGcnIzQ0FCkpKQ8c46nz3wRERHRi83ocFRT/vGPf2jP8mzatAm2trbIzs6Gp6en3rhGjRoBAO7evYvs7GwAQOPGjSuMycrKAoAq53iecCSXG71kq86zsJDp/UnVwz5Kg32UBvsoDfZRGrWhj0aHIy8vLwiCUOk+QRBga2uLZs2aYcSIEXjzzTcNnnfEiBEYMmQIPv30U0RGRuKTTz5BcXExrKys9MZZW1sDAEpKSlBUVAQAlY7Jz88HgCrnqC6ZTICTk121j6/rHB1tzF3CnwL7KA32URrsozTYR2mYs49Gh6O5c+dizZo1aNasGV577TW4uLjg999/x9GjR3Hp0iW8+eabuH//PubNmwdLS0v079/foHlbt24NAPjggw9w9uxZ7N69GwqFAiqVSm9ceaCxtbWFQqEAAKhUKu3n5WNsbJ40tao5qkujEaFUFlb7+LrKwkIGR0cbKJVFUKs15i6nzmIfpcE+SoN9lAb7KI2a7KOjo41BZ6SMDkfnz59H165dsWnTJr0zSJGRkXjnnXfw6NEjxMbG4p///Ce2b9/+zHCUm5uLU6dO4a9//av22UkymQweHh7IycmBm5sbcnJy9I4pf+3q6oqysjLttmbNmumN8fLyAoAq53geZWUv7i+/Wq15ob9/qbCP0mAfpcE+SoN9lIY5+2j0Bb3jx49j6NChlV5aGzhwII4ePQoAeOWVV/SeV1SZnJwczJo1C2fOnNFuKy0tRVpaGjw8PBAYGIjU1FSo1Wrt/lOnTqFly5ZwdnaGl5cX7O3tcfr0ae1+pVKJtLQ0BAQEAECVcxARERHpMjoc2djYaBdCP+3u3buwtLQE8OThjOWf/xEvLy90794dixcvRkpKCi5fvow5c+ZAqVRi5MiRCA8Px+PHj7FgwQJcvXoViYmJ2LlzJyZMmADgyVqjiIgIrFq1CseOHUNGRgZmzJgBNzc39OnTBwCqnIOIiIhIl9GX1Xr37o01a9bA2dkZvXv31m7/9ttvERMTg169ekGlUuGzzz5Du3btnjmXIAhYu3YtVq9ejenTp+PRo0cICAjAnj178Je//AUAsG3bNixduhRhYWFwcXHB7Nmz9d7cdtq0aSgrK8PChQtRXFyMwMBAxMXFaRdhOzs7VzkHERERUTlBNOapjQAKCgowefJknD59GpaWlqhfvz7y8vKgVqvRtWtXxMTE4Mcff8TcuXOxbds2dOnSpaZqNyu1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLCrmQXZdnZ22LlzJ06dOoWffvoJeXl5cHNzQ5cuXbTrfPz9/fGf//wHbm5uxldOREREZEbVfgjkyy+/DB8fH+Tk5KBp06bau80AaC+JEREREdU11Xr85OnTpzFo0CB06dIFAwYMwJUrVzBr1iysWLFC6vqIiIiITMrocHTq1CmMGTMGCoUC7777rvaNZr29vfHxxx9j+/btkhdJREREZCpGh6O1a9eiV69e2LVrF0aMGKENR+PHj8fYsWNx4MAByYskIiIiMhWjw1F6ejrCw8MBoMKDILt164Y7d+5IUxkRERGRGRgdjhwcHHD//v1K92VlZcHBweG5iyIiIiIyF6PDUa9evRATE4MLFy5otwmCgOzsbGzevBkhISFS1kdERERkUkbfyj9r1iycO3cOgwcPRsOGDQEAM2fORHZ2Nho3boyZM2dKXiQRERGRqRgdjurVq4cDBw7g4MGD+Omnn/Dw4UM4ODhg2LBheOutt2BjY1MTdRIRERGZhNHhKDk5Gd7e3hg8eDAGDx6st0+pVOLbb79FaGioZAUSERERmZLRa46GDx+Oa9euVbovLS0N8+bNe+6iiIiIiMzFoDNHc+bMQVZWFgBAFEVER0fD3t6+wribN29q1yERERER1UUGnTnq168fRFHUPvARgPZ1+YdMJoO/vz+WL19eY8USERER1TSDzhz17NkTPXv2BAAMGzYM0dHR8PDwqNHCiIiIiMzB6AXZu3btqok6iIiIiGoFo8NRUVERNm/ejOPHj6OoqAgajUZvvyAIOHr0qGQFEhEREZmS0eFo6dKlSEhIQJcuXdCuXTvIZEbf8EZERERUaxkdjv7zn/9gxowZGD9+fE3UQ0RERGRWRp/2KSsrQ4cOHWqiFiIiIiKzMzocde/eHSdOnKiJWoiIiIjMzujLav3798eiRYvw4MED+Pn5Vfpeav/3f/8nRW1EREREJieIuk92NICXl9ezJxQEpKenP1dRdYFarcGDBwXmLsPk5HIZnJzskJdXgLIyTdUHUKXYR2mwj9JgH6XBPkqjJvvYoIEdLCyqvmhm9JmjY8eOVasgIiIiorrA6HDUpEmTmqiDiIiIqFYwKBzNmzcPkydPRtOmTTFv3rxnjhUEAcuWLZOkOCIiIiJTMygcnT59GiNGjNB+/iyCIDx/VURERERmYlA4+vbbbyv9nIiIiOjPhu/9QURERKSD4YiIiIhIB8MRERERkQ6GIyIiIiIdDEdEREREOhiOiIiIiHSYPRw9fPgQ7733Hl555RV06tQJQ4cORUpKinZ/eno6IiIi4O/vj5CQEMTFxekdr9FoEBsbi+DgYPj5+WH06NHIzMzUG1PVHERERETlzB6OZs6ciXPnzmHNmjX47LPP0L59e4wZMwbXrl1DXl4eRo0ahRYtWiAhIQFTp07FunXrkJCQoD1+48aN2Lt3L5YsWYJ9+/ZBEASMGzcOKpUKAAyag4iIiKic0e+tJqXMzEycPHkSn376KTp16gQAWLBgAU6cOIFDhw5BoVDAysoK0dHRkMvl8PDwQGZmJrZu3Yrw8HCoVCrEx8cjKioKPXr0AADExMQgODgYSUlJCA0Nxf79+585BxEREZEus545cnJywkcffQQfHx/tNkEQIIoi8vPzkZKSgsDAQMjl/8twQUFBuHHjBnJzc5GRkYGCggIEBQVp9zs6OsLb2xvJyckAUOUcRERERLrMeubI0dFRe8an3JEjR/Dbb7+he/fuiImJgaenp97+Ro0aAQDu3r2L7OxsAEDjxo0rjMnKygIAZGdnP3MOZ2fnatcvl5v9qqTJWVjI9P6k6mEfpcE+SoN9lAb7KI3a0EezhqOnpaamYv78+ejVqxd69uyJ5cuXw8rKSm+MtbU1AKCkpARFRUUAUOmY/Px8AEBxcfEz56gumUyAk5NdtY+v6xwdbcxdwp8C+ygN9lEa7KM02EdpmLOPtSYcHT16FO+++y78/PywZs0aAIBCodAurC5XHmhsbW2hUCgAACqVSvt5+RgbGxuD5qgujUaEUllY7ePrKgsLGRwdbaBUFkGt1pi7nDqLfZQG+ygN9lEa7KM0arKPjo42Bp2RqhXhaPfu3Vi6dCn69OmDVatWac/0uLm5IScnR29s+WtXV1eUlZVptzVr1kxvjJeXl0FzPI+yshf3l1+t1rzQ379U2EdpsI/SYB+lwT5Kw5x9NPuF0U8++QQffPAB/v73v2Pt2rV6l8ACAwORmpoKtVqt3Xbq1Cm0bNkSzs7O8PLygr29PU6fPq3dr1QqkZaWhoCAAIPmICIiItJl1nB048YNLFu2DH369MGECROQm5uL+/fv4/79+3j06BHCw8Px+PFjLFiwAFevXkViYiJ27tyJCRMmAHiy1igiIgKrVq3CsWPHkJGRgRkzZsDNzQ19+vQBgCrnICIiItJl1stq//73v1FaWoqkpCQkJSXp7QsLC8OKFSuwbds2LF26FGFhYXBxccHs2bMRFhamHTdt2jSUlZVh4cKFKC4uRmBgIOLi4rRnoJydnaucg4iIiKicIIqiaO4i6iK1WoMHDwrMXYbJyeUyODnZIS+vgNfUnwP7KA32URrsozTYR2nUZB8bNLAzaEG22dccEREREdUmDEdEREREOhiOiIiIiHQwHBERERHpYDgiIiIi0sFwRERERKSD4YiIiIhIR614bzWqG0RRxKNCFVSigJIiFRSWFhAEwdxlERERSYrhiKpUWFyKkxeycTT1Nu4/LNJud6lvg96d3dHN1w22CkszVkhERCQdhiN6povXc7Hh84soKVXj6XNEvz8swqfHriDxxHVEhvnApxXfyJeIiOo+rjmiP3Txei7WHjgHVakaAPD0+8yUv1aVqrH2wDlcvJ5r0vqIiIhqAsMRVaqwuBQbPr8IUawYip4mAhBFYMPnF1FYXGqK8oiIiGoMwxFV6uSFbJSUqqsMRuVEACWlapy8mF2TZREREdU4hiOqQBRFHE29bfRxAoCjKbchioZGKiIiotqH4YgqeFxUqndXmqFEAPcfFqGguEz6ooiIiEyE4YgqKFGpn+v44hKGIyIiqrsYjqgCayuL5zpeYc0nRBARUd3FcEQV2NtYwqW+TYXnGlVFwJMHQ9opGI6IiKjuYjiiCgRBQO/O7gbfqVZOBNA7wJ1vKUJERHUawxFVqpuvG6wtLQw+eyQIgLWlBbr5uNVoXURERDWN4YgqZauwRGSYDwQBVQYk4f9/RL7lw/dYIyKiOo/hiP6QTytnTB/kByvLJwu0nw5J5a+tLC0wfbAffFryvdWIiKju48pZeiafVs5YHdkVJy9m42jKbb3nHzWsb4PeAe7o5tMYtlyETUREfxL8G42qZKuwRJ+Apujd2R3FpWpY21ijpKgECksLLr4mIqI/HV5WI4MJggAHWyu4NrCFg60VgxEREf0pMRwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItJRq8LRxo0bMWzYML1t6enpiIiIgL+/P0JCQhAXF6e3X6PRIDY2FsHBwfDz88Po0aORmZlp1BxERERE5WpNONqxYwdiY2P1tuXl5WHUqFFo0aIFEhISMHXqVKxbtw4JCQnaMRs3bsTevXuxZMkS7Nu3D4IgYNy4cVCpVAbPQURERFRObu4C7t27hwULFiA1NRUtW7bU27d//35YWVkhOjoacrkcHh4eyMzMxNatWxEeHg6VSoX4+HhERUWhR48eAICYmBgEBwcjKSkJoaGhVc5BREREpMvsZ45+/fVX1KtXD19++SX8/Pz09qWkpCAwMBBy+f8yXFBQEG7cuIHc3FxkZGSgoKAAQUFB2v2Ojo7w9vZGcnKyQXMQERER6TL7maOePXuiZ8+ele7Lzs6Gp6en3rZGjRoBAO7evYvs7GwAQOPGjSuMycrKMmgOZ2fnatcul5s9W5qchYVM70+qHvZRGuyjNNhHabCP0qgNfTR7OHqW4uJiWFlZ6W2ztrYGAJSUlKCoqAgAKh2Tn59v0BzVJZMJcHKyq/bxdZ2jo425S/hTYB+lwT5Kg32UBvsoDXP2sVaHI4VCoV1YXa480Nja2kKhUAAAVCqV9vPyMTY2NgbNUV0ajQilsrDax9dVFhYyODraQKksglqtMXc5dRb7KA32URrsozTYR2nUZB8dHW0MOiNVq8ORm5sbcnJy9LaVv3Z1dUVZWZl2W7NmzfTGeHl5GTTH8ygre3F/+dVqzQv9/UuFfZQG+ygN9lEa7KM0zNnHWn1hNDAwEKmpqVCr1dptp06dQsuWLeHs7AwvLy/Y29vj9OnT2v1KpRJpaWkICAgwaI7aQhRFPCpU4feHRXhUqIIoiuYuiYiI6IVUq88chYeHY9u2bViwYAHGjh2L8+fPY+fOnVi8eDGAJ2uNIiIisGrVKjRo0ABNmjTBypUr4ebmhj59+hg0h7kVFpfi5IVsHE29jfsPi7TbXerboHdnd3TzdYOtwtKMFRIREb1YanU4cnZ2xrZt27B06VKEhYXBxcUFs2fPRlhYmHbMtGnTUFZWhoULF6K4uBiBgYGIi4vTLsI2ZA5zuXg9Fxs+v4iSUjWEp/b9/rAInx67gsQT1xEZ5gOfVrXnLBcREdGfmSDy+k21qNUaPHhQUO3jL17PxdoD5yCKwLN+AAIAQQCmD/KrFQFJLpfByckOeXkFvKb+HNhHabCP0mAfpcE+SqMm+9iggZ1BC7Jr9ZqjP6vC4lJs+PxilcEIeLJfFIENn19EYXGpKcojIiJ6oTEcmcHJC9koKVVXGYzKiQBKStU4eTG7JssiIiIiMByZnCiKOJp62+jjBABHU27zLjYiIqIaxnBkYo+LSvXuSjOUCOD+wyIUFJdJXxQRERFpMRyZWIlKXfWgZyguYTgiIiKqSQxHJmZtZfFcxyusa/XTF4iIiOo8hiMTs7exhEt9mwrPNaqKgCcPhrRTMBwRERHVJIYjExMEAb07uxt8p1o5EUDvAHcIgrGxioiIiIzBcGQG3XzdYG1pYfDZI0EArC0t0M3HrUbrIiIiIoYjs7BVWCIyzAeCgCoDkvD/PyLf8uF7rBEREZkAw5GZ+LRyxvRBfrCyfLJA++mQVP7aytIC0wf7wael+d86hIiI6EXA1b1m5NPKGasju+LkxWwcTbmt9/yjhvVt0DvAHd18GsOWi7CJiIhMhn/rmpmtwhJ9Apqid2d3FBSXobikDAprOewUci6+JiIiMgOGo1pCEATY21jC3obrioiIiMyJa46IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDkEURWPfA5UAiKIIjebFbJ2FhQxqtcbcZdR57KM02EdpsI/SYB+lUVN9lMkEg54hyHBEREREpIOX1YiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEREREZEOhiMiIiIiHQxHRERERDoYjoiIiIh0MBwRERER6WA4IiIiItLBcERERESkg+GIiIiISAfDEVXLxo0bMWzYMHOXUSc9fPgQ7733Hl555RV06tQJQ4cORUpKirnLqnNyc3MRFRWFoKAgdOzYEePHj8fVq1fNXVaddePGDXTs2BGJiYnmLqVOunPnDtq2bVvh48CBA+Yurc45ePAg+vfvD19fX4SGhuLIkSMmr0Fu8q9Idd6OHTsQGxuLwMBAc5dSJ82cORO5ublYs2YNGjRogE8++QRjxoxBYmIiPDw8zF1enTFp0iTIZDJs3boVtra2WLduHUaOHImkpCTY2NiYu7w6pbS0FO+++y4KCwvNXUqddenSJVhbW+Po0aMQBEG73cHBwYxV1T1ffPEF5s+fjzlz5iAkJASHDh3CzJkz4ebmho4dO5qsDp45IoPdu3cPY8eOxbp169CyZUtzl1MnZWZm4uTJk1i0aBECAgLQqlUrLFiwAK6urjh06JC5y6sz8vLy4O7ujg8++AC+vr7w8PDA5MmTcf/+fVy5csXc5dU569evh52dnbnLqNMuX76Mli1bolGjRnBxcdF+KBQKc5dWZ4iiiHXr1mHEiBEYMWIEmjdvjsjISHTt2hVnzpwxaS08c0QG+/XXX1GvXj18+eWX2LBhA+7cuWPukuocJycnfPTRR/Dx8dFuEwQBoigiPz/fjJXVLU5OTlizZo329e+//464uDi4ubmhdevWZqys7klOTsa+fftw8OBBhISEmLucOuvSpUv83XtO169fx507dzBgwAC97XFxcSavheGIDNazZ0/07NnT3GXUaY6OjujRo4fetiNHjuC3335D9+7dzVRV3faPf/wD+/fvh5WVFTZt2gRbW1tzl1RnKJVKzJ49GwsXLkTjxo3NXU6ddvnyZbi4uOBvf/sbbt68iebNm2Py5MkIDg42d2l1xs2bNwEAhYWFGDNmDNLS0uDu7o5JkyaZ/O8eXlYjMqPU1FTMnz8fvXr1YvCsphEjRiAhIQFvvPEGIiMj8euvv5q7pDojOjoa/v7+Ff6lTsZRqVS4efMmHj9+jOnTp+Ojjz6Cr68vxo0bh1OnTpm7vDrj8ePHAIA5c+bg9ddfR3x8PLp164bJkyebvI88c0RkJkePHsW7774LPz8/vUtEZJzySxkffPABzp49i927d2P58uVmrqr2O3jwIFJSUvDVV1+Zu5Q6z8rKCsnJyZDL5bCysgIA+Pj44Nq1a4iLi8PLL79s5grrBktLSwDAmDFjEBYWBgBo164d0tLSsH37dpP2kWeOiMxg9+7dmDp1Kl555RVs3bqVizaNlJubi0OHDkGtVmu3yWQyeHh4ICcnx4yV1R0JCQnIzc1FSEgIOnbsqL0TaNGiRQgNDTVzdXWPra2tNhiV8/T0xL1798xUUd3j5uYG4EnfdLVu3Rq3b982aS08c0RkYp988gk++OADDBs2DPPnz4dMxn+jGCsnJwezZs2Cs7Oz9l+TpaWlSEtL4+VJA61atQrFxcV62/r27Ytp06ahf//+ZqqqbsrIyMDQoUOxdetWBAQEaLdfvHiRi7SN4O3tDTs7O5w7d06vj5cvX0azZs1MWgvDEZEJ3bhxA8uWLUOfPn0wYcIE5ObmavcpFAo+E8VAXl5e6N69OxYvXowlS5bA0dERmzdvhlKpxMiRI81dXp3g6upa6XZnZ2c0adLExNXUbZ6enmjTpg0WL16MRYsWwcnJCfv378fZs2fx2Wefmbu8OkOhUGDs2LHYsGEDXF1d0aFDB3z99dc4efIkduzYYdJaGI6ITOjf//43SktLkZSUhKSkJL19YWFhWLFihZkqq1sEQcDatWuxevVqTJ8+HY8ePUJAQAD27NmDv/zlL+Yuj14wMpkMmzdvxqpVqzB9+nQolUp4e3tj+/btaNu2rbnLq1MmT54MGxsbxMTE4N69e/Dw8MD69evx0ksvmbQOQRRF0aRfkYiIiKgW42IHIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREelgOCIiIiLSwXBEREREpIPhiOhPjk/rMA0p+8yfGZF5MRwR1RI9e/bE3LlzJZ3z6tWrGDp0qKRzUkWbNm1CXFycJHNV9jNr27Yt1q9fL8n8z3L79m20bdtW+5GZmVntuRITE7Xz3Lhxo9IxJ06c0I4BgAMHDmhf821gyJwYjoj+xI4cOYJffvnF3GX86a1duxZFRUWSzFXZz2zfvn0YNGiQJPMbYtKkSdi3bx8aN2783HPJZDIcOXKk0n2HDx/We92rVy/s27cPPXr0eO6vS/Q8GI6IiGo5f39/7TuWm0KzZs3g7+9f4V3mq6NTp06VhiOVSoWjR4+iXbt22m0NGjSAv78/GjRo8Nxfl+h5MBwR1VK3b9/G7Nmz0b17d7Rv3x4vv/wyZs+ejby8PO0YURSxZ88ehIaGokOHDujTpw+2bt0KURSxfv16fPjhhwD0L8uUlJRgw4YNeO211+Dr64u+ffvio48+gkaj0c5769YtTJo0CS+99BL8/PwwZMgQfP/993r1Xb58GRMmTECnTp3QqVMnREZG4tatW1V+XydPnsTf//53dOzYEd27d8d7772H/Px87f6bN29i2rRp6NatG/z9/TFs2DCkpqbq9aVt27Y4cuQIpk2bho4dOyIwMBALFixAQUGBQb0pl5KSgoiICPj5+aFLly6YM2cOHjx4oN2fmJgIb29vnDt3DkOGDIGvry9CQkKwdetW7ZjyS0Iffvih9vP169ejT58++PDDD/HSSy+hd+/eyMvLQ3FxMVavXo2+ffvCx8cHnTp1wqhRo5Cenq49rrKf2dOX1XJycjBv3jz06NEDHTp0wMCBA3Hs2DG9Prdt2xZ79uzBggUL0KVLF3Ts2BHTpk3D77//XuXPSNf69evx2muv4ejRo3j99dfh6+uLN998E7/88gvOnj2LQYMGoUOHDnj99ddx6tSpCsf3798fly9fxrVr1/S2nzhxAoIg4JVXXjGqHiJTYDgiqoWKioowfPhwXLt2DYsWLUJcXBwiIiJw6NAhrFmzRjtuzZo1WLp0KXr06IFNmzZh0KBBiImJwcaNGzFo0CAMHDgQwP8uy4iiiIkTJ2Lbtm0YOHAgNm/ejNdeew1r167FokWLAAAajQYTJkxAYWEh/vWvf2Hjxo2oX78+Jk+erF2DcuPGDbz99tvIzc3FihUrsHTpUty6dQtDhw5Fbm7uH35f33//PcaOHYv69esjJiYGUVFR+PbbbzFt2jQAT9bbvPXWW7h16xYWLlyIVatWQRAEjBgxAmfOnNGba9GiRWjSpAk2btyIsWPHIiEhAZs3bzaoNwCQnJyMkSNHQqFQYO3atZg/fz7OnDmD4cOHo7i4WDuPRqPB9OnT0b9/f3z00Ufo3LkzVq1ahR9++EHbWwAYOHCg9nMAuHv3LpKSkrBmzRpMnz4dTk5OmD17Nj777DOMHz8e8fHxmDt3Li5fvowZM2ZAFMVKf2ZP+/333zFw4ECcOXMGM2bMwPr169GkSRNERkbiyy+/1BsbExMDjUaDNWvWYPbs2fjuu++wbNmyP/z5/JHs7GwsX74cEydOxNq1a5Gfn49p06Zh5syZGDx4MNasWQONRoMZM2bo9Q4AunXrhnr16lU4e3T48GH06dMHlpaWRtdDVONEIqoVXn31VXHOnDmiKIpiWlqaOHToUDEzM1NvzIQJE8S+ffuKoiiK+fn5Yvv27cVly5bpjVm+fLk4atQoURRFMTY2VvT09NTu++6770RPT0/xiy++0Dtmw4YNoqenp3jlyhUxJyenwhilUikuW7ZMvHTpkiiKojhz5kzx5ZdfFh89eqQdk5eXJ3bu3FlcsWLFH36Pb731lvh///d/etu++eYbsW/fvmJ2drb4zjvviF26dBGVSqV2f2lpqdivXz9x4MCBoiiK4q1bt0RPT0/x3Xff1Ztn2LBh4uuvv25wb4YMGSK+/vrrYllZmXb/9evXxXbt2om7d+8WRVEUExISRE9PT3H//v3aMSUlJaKvr6/4/vvva7d5enqKsbGx2tflfT958qTecaNHjxa//vprvZri4+NFT09P8d69e3rH6tKd/1//+pfYvn178bffftMbM2LECLFbt26iWq3WHjN06FC9MXPnzhX9/f3FP1Le24SEhArfy/fff6/dtmXLFtHT01M8cOCAdts333wjenp6imlpaXq9u3Xrljhv3jztz0YURbGwsFD09/cXT548Wen3O2fOHPHVV1/9wzqJahrPHBHVQu3atcMnn3wCd3d33Lp1Cz/88APi4+Nx/fp1lJaWAgDOnj2L0tJS9OnTR+/YuXPnIj4+vtJ5z5w5AwsLC/Tv319v+xtvvAEAOH36NBo2bIjWrVvjH//4B+bOnYvDhw9DFEXMmzcPnp6eAICffvoJL730EhQKBcrKylBWVgZ7e3sEBATgv//9b6Vfu7i4GL/++it69+6tt71fv37497//DVdXV5w5cwavvvoqHBwctPvlcjlCQ0Nx4cIFvctm/v7+evO4ubmhsLDQoN4UFRXh3Llz6NGjB0RR1H4PTZs2hYeHB06ePKl3XMeOHbWfW1lZoUGDBtqv9Szl/So/Li4uDv3790dOTg6Sk5Oxb98+HD9+HAC0P9eqnDlzBh07dkTTpk31tr/xxhu4f/8+rl+/rt1WWY+qu3C8U6dO2s8bNmxYYf769esDAJRKZYVjn760dvz4cdja2uKll16qVi1ENU1u7gKIqHLbt2/Hli1bkJeXh4YNG6J9+/awsbHBo0ePAAAPHz4EAKMWr+bn58PJyQlyuf5/+i4uLgCAR48eQRAExMfHY9OmTUhKSsLnn38OS0tL9O7dG9HR0ahfvz4ePnyIw4cPV7jb6Fn15OfnQxRFODs7P7O+8r94dTVs2BCiKOLx48fabTY2NnpjZDKZdj1RVb1RKpXQaDTYunWr3vqhctbW1nqvFQrFH36tZ3n6e/nhhx+wbNkyXL9+HXZ2dmjbti3s7OwAGP5so/z8fLi7u//h19INJ8/qkbHs7e0rbHu6L38kKCgITk5OOHLkCKZMmYLDhw/jtddeg4WFRbVqIappDEdEtdBXX32FFStWYNasWRg4cKD2L/l33nkHFy5cAAA4OjoCAB48eIBWrVppj83KykJmZiY6d+5cYd569eohLy8PZWVlegEpJycHAODk5AQAcHV1RXR0NBYtWoSMjAx888032Lp1K+rVq4fFixfDwcEBXbt2xahRoyp8jaeDVzl7e3sIgqC34Bl4ctfSqVOn0KFDB9SrV6/SBcP379/X1lde67NU1RsfHx8IgoCRI0ciNDS0wvFPhwop/Pbbb4iMjESvXr2wZcsWNGvWDACwZ88e7folQxjSo9pGLpejb9+++OabbzBy5EicOHECO3bsMHdZRH+Il9WIaqHU1FQ4ODhg/Pjx2mBUUFCA1NRU7V1lHTp0gKWlZYW7lHbu3Il33nkHgiBAJtP/T7xLly5Qq9UVzviUL+Tt3LkzfvnlF3Tt2hXnz5+HIAho164dZsyYAU9PT2RnZ2vnuXr1Ktq1awdfX1/4+vrCx8cHO3bsQFJSUqXfk52dHdq1a1eh3h9//BHjx49HdnY2AgMDcfz4ce3ZMQBQq9X4+uuv4evra/Ct5VX1RqFQwNvbG9evX9fW7+vrizZt2uDDDz/E6dOnDfo65Z7uc2UuXryIkpISTJgwQRuMAGiDUfkZnarmCgwMxC+//FLhzsAvv/wSLi4uaN68uVG1m0r//v1x5coVbNu2DQ0bNtS7VElU2/DMEVEt1KFDB3z66adYsWIFXn31VeTk5CAuLg6///476tWrB+DJJaPhw4dj586dsLKyQlBQEC5cuIDdu3dj5syZkMvl2jMohw4dgp+fH1555RW89NJLWLRoEXJycuDt7Y0zZ85g69atCAsLQ+vWrVFSUgKFQoHZs2dj6tSpaNiwIf773/8iPT0dw4cPBwBMnjwZb7/9NiZMmIChQ4fC2toa+/btw9GjRxEbG/uH39e0adMwadIkTJ8+HW+99RYePHiA1atX49VXX0W7du0wZcoUnDhxAsOHD8f48eNhZWWF3bt349atW9i2bZvB/TOkNzNnzsT48eMxa9YsvPHGG1Cr1YiPj8e5c+cwadIko35ejo6O+OWXX5CcnIyAgIBKx7Rv3x5yuRwrV67E6NGjoVKpkJiYiO+++w4AtGuYnv6ZPb22aNSoUfjyyy8xatQoTJkyBU5OTjh48CB++uknLFu2zKCgZg5dunSBi4sLtm3bhpEjR0IQBHOXRPSHaud/RUQvuLCwMERGRuLIkSMYN24cYmNjERAQgPfffx8PHz7E1atXAQBRUVGYNWsWDh8+jPHjx+Pzzz/H/PnzMXr0aABA37594evri7lz5yIuLg6CIGDLli14++238fHHH2P8+PH45ptvMGPGDCxduhTAk/U28fHxaNOmDZYuXYoxY8bg2LFjeP/99/HWW28BALy8vLBnzx4IgoDZs2dj2rRpuH//PjZs2IC+ffv+4ff16quvYsuWLbh9+zYiIyOxZs0a/PWvf8Xq1asBAG3atMEnn3yChg0bYv78+YiKioIoivj444/RtWtXo3pYVW+6d++OuLg4ZGdnY9q0aZg9ezYsLCywffv2CguZqzJx4kRcuHAB48aNQ1ZWVqVjmjdvjtWrV+PevXuYNGkS3nvvPQDArl27IAgCUlJSAFT8mT3NxcUFn376KXx8fLB06VK88847yMrKwsaNGxEeHm5U3aYkk8nQr18/lJaWVnopk6g2EcTqrs4jIqI/ldu3b6NXr15Yvny5Ngibw9y5c3HmzBl8++23ZquBXmw8c0RERHp+++03nD17FiqVyqRf98GDBzh79myFRftEpsZwREREejZt2oQhQ4b84SXCmnLs2LFK36qGyNR4WY2IiIhIB88cEREREelgOCIiIiLSwXBEREREpIPhiIiIiEgHwxERERGRDoYjIiIiIh0MR0REREQ6GI6IiIiIdDAcEREREen4f227+pq/cmwKAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import matplotlib.pyplot as plt\n", + "\n", + "# Plot the calibration curve. \n", + "plt.plot(cal_curve['conc_mM'], cal_curve['amplitude'], 'o', markersize=10)\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "We can perform a simple regression on these data to get a calibration curve. " + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjsAAAHECAYAAADf+usKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB8AElEQVR4nO3dd1gUZ9fH8e/SQUBAUYzYYxd7L7FHHzUxMZaY2HtXVIoVRQXFghU1Khq7MbbEqE9sacYeSwwae6eoIEhfduf9w9d9QrCwuLCwns91kcDszPA7u8ge5r5nRqUoioIQQgghhIkyM3YAIYQQQojsJM2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs3OK4SEhNCzZ0+9t9u9ezft2rXDw8OD9u3bs3///mxIJ4QQQojMkmbnJdatW8fixYv13m7Pnj1MnDiRbt26sXfvXtq1a8fYsWM5d+5cNqQUQgghRGZYGDtAbhIZGcmkSZM4e/YspUqV0mtbRVFYtGgRvXv3pnfv3gAMHz6cP/74g1OnTlGjRo3siCyEEEKIN5AjO//w119/kT9/fr777juqVauW4fGjR4/SqVMnqlatSuvWrVm4cCGpqakA3Lx5kwcPHvDRRx+l22bNmjUMHjw4R/ILIYQQIiM5svMPLVq0oEWLFi997JdffmH06NFMmDCBRo0acffuXWbMmMGtW7dYtGgRt2/fBiAxMZH+/fsTFhaGu7s7Q4cOfeU+hRBCCJH95MhOJq1YsYLOnTvTvXt3ihcvTuPGjZk+fToHDhzg/v37xMfHA+Dj40OHDh0IDQ2lUaNGDBs2jOPHjxs5vRBCCPHukiM7mRQWFsbFixfZtWuXbpmiKADcuHEDS0tLAPr378+nn34KQMWKFQkLC2Pt2rU0aNAg50MLIYQQQpqdzNJqtQwYMEDXyPyTq6srV65cAaBcuXLpHnv//ff56aefciKiEEIIIV5ChrEyqWzZsty8eZMSJUroPiIjIwkKCiIhIYFKlSqRL18+Lly4kG67q1evUrx4cSOlFkIIIYQc2cmkgQMHMmbMGJYsWUKHDh2IiIhg8uTJvPfee7i6ugIwYMAAli1bRuHChalatSo//PADx44dY926dcYNL4QQQrzDpNnJpLZt2xIcHMzKlStZuXIl+fPnp3nz5nh5eenWGTZsGLa2tgQHBxMZGUmZMmVYsmQJ9erVM2JyIYQQ4t2mUl7MshVCCCGEMEEyZ0cIIYQQJk2aHSGEEEKYNGl2hBBCCGHSZIIyzy8OqNVmz9QlMzNVtu07N5D68j5Tr1Hqy/tMvUZTrw+yp0YzMxUqlSpT60qzA2i1CtHRCQbfr4WFGc7O+YiLSyQtTWvw/Rub1Jf3mXqNUl/eZ+o1mnp9kH01urjkw9w8c82ODGMJIYQQwqRJsyOEEEIIkybNjhBCCCFMmjQ7QgghhDBpMkFZD1qtFo0mTY/1VSQnm5OamoJGY3oz7aU+/ZibW2BmJn9fCCFETpNmJxMURSEuLpqkpHi9t3382Ayt1jRn2IPUpy9bW3scHV0yfbqkEEKItyfNTia8aHTs7Z2xsrLW643K3Fxlkkc9XpD6MkdRFFJTU4iPjwEgf/4Cb71PIYQQmSPNzhtotRpdo2Nv76j39hYWZiZ77QSQ+vRhZWUNQHx8DA4OzjKkJYQQOUR+276BRqMB/vdGJcTbePFzpM/cLyGEEG9HjuxkkqHmWCiKQnySmpRUDdZW5tjbWsr8jXeIvNZCCJHzpNnJIYnJao79GcGhs/d59DRJt9zVyZZWtdxp5OGGnY2lERMKIYQQpkmanRxw6eYTlu26RIpaw7//rn/8NIkth6+x85ebDP+0ClVKy8RVIYQQwpBkzk42u3jjCQu3XyBV/Xzuz7/P63nxdapaw8LtF7h080mO5hOGpSgK+/fvJSYm2thRhBBC/D9pdrJRYrKaJd9eRFEyNjn/pgCKAst2XSIxWZ0T8UQ2OH/+D2bNmkZycrKxowghhNFduRJGQIA/t27dMmoOaXay0bE/I0hRa97Y6LygAClqDccuRWRnLJGNFMV0rzkkhBCZpSgKW7duomfPbmzevJH9+/cbNY80O9lEURQOnb2v93Yq4NCZ+9nyptm4cW0OHjzAqFFDaNGiEd26fcJvv/3Cb7/9QvfunWjVqjHjxo3i6dOnum1u377F+PGjaN26CR07tmH69Mk8efJY9/izZ8+YNy+QTp3a07RpPT7+uA3z5gWSkvK/IxubN2+ga9eONG/egC5dPmbdutW6+tasWUnnzh+ly7lv3/c0blxb93Xnzh+xePF8evToQrt2LfnjjzMoisKmTV/TpUtHWrZsRJ8+X/Djj//7x/THH2do2rQef/xxhh49utCiRUMGD+7L3bt3+PrrNXz00Yf85z8tCA4OSvdcHzv2K/369dA9PytXhpCampruOfzuu12MGTOMFi0a8ckn/2HDhrW67zlq1BAAunT5mH37vn+bl0sIIfKkuLg4vLxGM3v2DNRqNc2bt6Rnz55GzSTNTjaJT1KnO+sqsxTg0dMkEpKz5zosixbNo1OnLmzYsI1SpUozffpkvv56DVOnziAoaCFhYZfYuHEdAI8fP2L48AG8915RVq1az5w5C0lIiGfIkP4kJT2vzd9/KmFhl5gxYw5bt+5i5EhP9u37nj17dgHw22+/sH59KF5eE9iyZRdDhozg66/XpGtMMmP37h2MHj2eBQuWUKVKVb76KoSdO7czZsx41q/fRpcunzNv3mx27tyu20aj0bBkyQJ8faeycuVaYmKiGTKkH3fu3Gbp0q8YPHg4O3Z8w++//wbAiRO/M2WKLx9//AkbNmxj3DhfDh8+yIwZU9NlCQlZxH/+04F16zbTvv3HrFy5jAsXzuHhUY1Zs4IAWLXqa1q2bJ2l10gIIfKqS5f+pHv3Thw69CMWFpaMHz+BxYtDcHBwMGouORsrm6Skat5q++SUNOxtDX8qetu2HWjWrCUAHTt24rfffmHQoGFUrFgZgLp163Hz5g0Adu36lgIFCjJ2rI9ue3//2bRv35KjRw/Rrt1H1K1bjypVqlO2bDkAihR5j507v+HGjWsAPHx4H2trK4oUKYqbmxtubm4ULFiIwoXd9Mpdv34j6tSpB0BSUhLbtm1mypTpNGrUBICiRd2JiAhn8+b1dOrURbfdgAFDqVLFA4BmzVrwzTdb8PaehI2NDSVKlCQ09Ctu3rxBo0ZNWL8+lA4dPuaTTzrr9unjM5HhwwcTHv6QIkXeA+A///mINm3aATBw4FB27tzOxYvnqVatBg4Oz6+y7eTkjLW1jV41CiFEXvX8aPt6Fi6cR1qamvfeK0pQ0EKqVPHIFdcXk2Ynm1hbmb/V9jbW2fPSFC9eQvf5izfj994rqltmZWVNaurzM8KuXr3CnTu3ad26Sbp9pKamcvv288lmn33WlZ9++okff9zP/fv3uHnzOg8fPsDdvTgAH37Yjh9++I7PP/+UMmXKUqdOPZo2bY6bm37Njrt7Md3nt2/fJDU1hZkz/QgImK5brtFoSE1NTTeE9u96XVwKYGPzvybEysqK1NQUXb2XL//F/v17dY+/GOK6ffuWrtkpUaJkumz58uVDrZZJ5UKId1Ns7FP8/Cbx00+HAWjZsjV+frNwdNT/FkvZRZqdbGJva4mrky2PnyZleoIyPJ+zU9DJlnw22fPSWFhk3O+r7tGk1SrUrFmbceN8Mzxmb++AoiiMH+/J9evXaN26Lc2bt2Tw4OEEBc3Srefk5MTatZu5dOkip0+f5OTJ42zdupH+/QfTt+9AIOOk3rS0jEN41tb/u12HVvt8fX//2RkaDwBLS6tX1vu6+1FptQpffNGL//yng27ZixuBFihQULfMysoqw7YyMVkI8S66ePE8Pj5jCQ9/iKWlJePG+dKt2xe54mjOP8mcnWyiUqloVctdr0YHns/ZaVXbPVf8oJQuXYY7d25TqFBh3N2L4e5eDEdHRxYvns/Nm9e5evVvfv/9N2bMmMPQoSP58MP/4O5ejAcP7une/P/7333s2vUtVatWp3//wXz11To++ugTDh/+EQBLS0sSEhLSNQv37997ba4SJUpibm5ORES4Lpe7ezGOHz/Gli0bsnyDzRf1/nOfjx49YtmyRSQmJmRqH7nhdRNCiOym1Wr5+us19OvXg/DwhxQrVpz167fy+edf5srfg9LsZKNGHm5YW5pnuGryq6hUYG1pTqMq+g3xZJdPP+1MfHw806ZN4tq1v7l+/RrTpk0iLOwvSpUqTYECBTA3t+DIkYM8fPiAK1fCmDLFlydPnqBWPz+DKSUlhWXLFnHgwA+Ehz/kwoVznDt3lipVqgLg4VGN+PhnbNy4jvDwh/z444E3nsVkb2/PJ598xqpVyzlw4AcePLjP/v17Wb58MS4uWb8C9Zdf9uLnn4+wZs1K7t69w9mzp5k5cxrPnsWlO7LzOra2dgBcu3aVxMTELGcRQojcKiYmhtGjhxIcPJe0tDTatGnHli07dXM/cyMZxspGdjaWjOxclQVbz8EbLiyo+v+P4Z2q5Jp7ZL33XlGWLl3JihVLGTZsAObm5lSuXJXFi5fj7OwCwNSp01m1agW7dm3HxaUADRs2plu3L/j1159RFIWPP/6UZ8/iWLduNVFRkTg4ONCsWUuGDh0FQI0atRg0aBg7dnzD2rWrqV69BiNGjGHmTL/XZhs5cizOzi6sWbOSx48f4epaiL59B9KjR58s19u8eSumT4cNG0LZuHEdDg6ONG78AUOGjMz0PsqUeZ8GDRrh5zeBQYOG0717jyznEUKI3ObcubP4+IwlKioSKysrvL0n8dlnXXPl0Zx/Uiky2QCNRkt09MuHKdTqVJ48CadAgSLp5oJkloWFGeevPkp3b6x/PuEvvra2NGd4pypUKZW37o1lYWFGWprW2DGyjaHre9ufJ0OzsDDD2TkfMTEJJvk6Sn15n6nXmFfq02q1hIZ+xfLlS9BoNJQsWYqgoIWUK1f+jdtmV40uLvkwN8/cAJUc2ckBVUoXYP7whhy7FMGhM+nvel7QyZZWtd1pVKUIdtk0KVkIIYTIqujoJ0yc6MWJE78D0L79x0ya5IedXT4jJ8s8eXfNIXY2lrSuXYxWtdxJSE4jOSUNG2sL8tlY5PrDf0IIId5Np0+fZOLE8Tx69AgbGxt8fafQsWOnPPe+Jc1ODlOpVNjbWmbLBQOFEEIIQ9BoNKxevYKVK5eh1WopXfp9goIW8P775YwdLUuk2RFCCCGEzuPHj5g40YtTp04Az6+27+s7WXe2aV6Uq049DwkJeePNwq5du8agQYOoV68eDRo0YNSoUTx8+DCHEgohhBCm68SJ3+na9RNOnTqBra0dM2fOYfr0gDzd6EAuanbWrVvH4sWLX7tOTEwMffv2JV++fGzcuJFVq1YRExPDgAEDSElJyaGkQgghhGlJS0tj6dKFDB3an+joJ5QtW47Nm7+lQ4eOxo5mEEYfxoqMjGTSpEmcPXuWUqVKvXbdQ4cOkZSUxOzZs3W3D5g7dy5Nmzbljz/+oEGDBjkRWQghhDAZkZGRTJw4jrNnzwDQuXM3xo+fkO4+gnmd0Zudv/76i/z58/Pdd9+xbNkyHjx48Mp1GzRowLJly9LdJ+mF2NjYt8phYfGq+0Nlfcb5i8nqKhWY4tWMpL6sMzdXvfJnLie9uEZFZq9VkddIfXmfqddo7Pp+/fVnJk70JiYmhnz58uHnN4N27Tq8eUM9GLtGyAXNTosWLWjRokWm1nV3d8fd3T3dspUrV2JtbU2dOnWynMHMTIWz88uvF5CcbM7jx2Zv9eZkqv9IX5D6Mk+rVWFmZkb+/Ha56q8mR0dbY0fIVlJf3mfqNeZ0fWq1mqCgIEJCQgCoUqUKy5cvp3Tp0tn2PY35Ghq92Xkb69evZ/PmzUyYMIECBbJ+5WGtViEu7uX3MUpNTUGr1aLRKHpf+VGlev5GqdFoTfbIh9SnH41GQavVEhubSFKSxjA7fQvm5mY4OtoSF5eERpN7r96aVVJf3mfqNRqjvvDwh3h5jeX8+T8A6N79S8aP98Xa2pqYmMzd9Fgf2VWjo6OtaV9BWVEUFi1axPLlyxk8eDB9+vR5632+qpHRaLL+LvfiDTK3NAJ//32FmTOncv/+PRo3bkpMTDRLl34FwMWL51EUqFateqb3l9vqM7TsrC8rzXN20mi0uSqPoUl9eZ+p15hT9f300xGmTp1AXFws9vYOTJs2k1at2gCvfh80FGO+hnmu2VGr1UyYMIG9e/fi7e1N//79jR0pz1i3bjUqlYr167dhaWmJnd3/TiUcNmwAEyf66dXsCCGEyBvU6lQWLZrPxo1fA1C5sgdz5izA3b2YkZPljDzX7Hh7e3Pw4EHmz59P+/btjR0nT4mPf0a5chUoVqy4saMIIYTIIQ8e3MfHZyyXLl0E4MsvezNmzLhccTPinJKrmx2NRkN0dDQODg7Y2Niwc+dO9u3bh7e3N3Xr1uXRo0e6dV+sk1MURSE5OemN672Y82FINja2et+XpHPnj4iICAfgwIEfcHMrgptbEZYu/YrGjWsDEBAwnXPnzjJp0jSD5hVCCGEchw//iJ/fJOLjn+Hg4Ii/fyDNm7c0dqwcl6ubnfDwcFq2bElgYCCdOnVi7969AAQFBREUFJRu3Rfr5ARFUejT5wsuXDiXI9/v36pXr8natZv0anhWrVrPhAnjKFSoMKNHj2PJkmAeP37eLO7Zc4COHdsyatQ42rX7KLtiCyGEyCGpqaksWDCHrVs3AVC1ajVmz17Ae+8VNXIy48hVzc7s2bPTfe3u7s7ff/+t+zo0NDSnI71SXrvjq7OzMxYWFlhbW1OgQEEsLf93I9ICBQoCYG9vj729vbEiCiGEMIC7d+/g4+PJ5cthAPTpM4Dhw0en+73/rslVzU5eoVKpWLt2U54axhJCCGH6/vvf/fj7TyYhIQEnJydmzJhDkyZNjR3L6KTZySKVSpWpG6NZWJiZ9OmSQgghjC85OZl58wL59tttANSoUYvZs+dTuLCbkZPlDtLsCCGEEHnY7ds38fb25OrVv1GpVPTvP5ghQ0ZgYSFv8S/IMyEAsLW14/btW8TGPiV/fidjxxFCCJEJP/zwPTNn+pGUlIizswsBAXNp0KCRsWPlOtLsCAA+//xLNm9ez927t5k9e4Gx4wghhHiNpKQkgoJmsWvXtwDUqVOPgIC5uLoWMnKy3EmlKKZ6sf/M02i0REe//H4ganUqT56EU6BAkSxdgMnU5+xIffp5258nQ7OwMMPZOR8xMQkm+TpKfXmfqdeYlfpu3LiOt7cnN25cQ6VSMWjQMAYNGoa5uXk2p82a7HoNXVzymfa9sYQQQoh30Z49OwkMnEFychIFC7oSGDiXOnXqGztWrifNjhBCCJHLJSYmEBDgz969ewCoX78hs2YF6a6TJl5Pmh0hhBAiF7t27W+8vT25desmZmZmDB06iv79B2FmlrkhHCHNjhBCCJErKYrCzp3bCQqaRUpKCq6uhZg9ez61atUxdrQ8R5qdTJJ53MIQ5OdICJEZCQnxzJjhx4EDPwDQqFETZsyYg4uLi5GT5U3S7LzBi9ntqakpWFlZGzmNyOtSU1MAMDeXf3pCiJe7ciUMLy9P7t27g7m5OSNGjKF37/4ybPUW5DfuG5iZmWNra098fAwAVlbWet2XSqtVodGY7l/zUl/mKIpCamoK8fEx2Nrayy8tIUQGiqLwzTdbmDcvELVajZtbEWbPnk/16jWNHS3Pk2YnExwdnx82fNHw6MPMzAyt1vSuDfGC1KcfW1t73c+TEEK88OzZM6ZMmcihQ/8FoGnT5kyfHoCTk7ORk5kGaXYyQaVSkT9/ARwcnNFo0jK9nbm5ivz57YiNTTTJox9Sn777s5AjOkKIDC5cuMCgQYO4f/8+FhYWjB49jh49+ug1iiBeT5odPZiZmWFmlvmr3lpYmGFjY0NSksZkr/wp9QkhRNYoisKGDV+zYEEQarWaIkXeIygoGA+PasaOZnKk2RFCCCFyWFxcLH5+kzh69BAALVu2xs9vFo6OjkZOZpqk2RFCCCFy0J9/XsDb25Pw8IdYWlri5+dHx45dTHI6QG4hzY4QQgiRA7RaLRs3rmPx4gWkpaVRrFhx5s1bSOPG9YiJSQCk2cku0uwIIYQQ2ezp0ximTPHl119/BuDDD//DlCn+ODvnN3Kyd4M0O0IIIUQ2OnfuLL6+44iMjMDKygovr4l07txNzrbKQdLsCCGEENlAq9Wydu0qQkIWo9FoKFGiJEFBCylfvoKxo71zpNkRQgghDCw6+gmTJnlz/PgxANq1+4hJk/zIl8/eyMneTdLsCCGEEAZ0+vRJJk4cz6NHj7CxscHXdwodO3aSYSsjkmZHCCGEMACNRsPq1StYuXIZWq2W0qXLEBQUzPvvlzN2tHeeNDtCCCHEW3r8+BETJ3px6tQJADp27ISv72Rsbe2MnEyANDtCCCHEWzlx4ncmTfLmyZPH2NraMXHiVD766BNjxxL/IM2OEEIIkQVpaWmsXLmM1atXoCgKZcuWIyhoIaVKlTZ2NPEv0uwIIYQQeoqMjGTixHGcPXsGgE6duuDtPQkbGxsjJxMvI82OEEIIoYdjx35l8mRvYmJisLOzY8oUf/7znw7GjiVeQ5odIYQQIhPUajUhIYtZu3YVAOXLVyQoKJgSJUoaN5h4I2l2hBBCiDeIiAjHx2csFy6cA6Br1y8YN84Ha2trIycTmSHNjhBCCPEaP/98hKlTJxAbG4u9vT1+fjNp3bqtsWMJPUizI4QQQryEWp3K4sUL2LBhHQCVKlUhKCgYd/dixg0m9CbNjhBCCPEvDx7cx8dnLJcuXQTgiy96MWbMeKysrIycTGSFNDtCCCHEPxw5chA/v0k8exaHg4Mj06cH0KJFK2PHEm9Bmh0hhBACSE1NJTg4iC1bNgLg4VGN2bPnU7Sou5GTibclzY4QQoh33r17d/Hx8SQs7C8AevXqx8iRnlhaWho5mTAEaXaEEEK803788QD+/pOJj48nf/78zJgxhw8+aGbsWMKApNkRQgjxTkpJSWHevNls374FgOrVazJ79nzc3IoYOZkwNGl2hBBCvHPu3LmFl5cnV69eAaBfv0EMGzYKCwt5WzRFZsYO8E8hISH07NnztevExMQwbtw46tSpQ506dZgyZQqJiYk5lFAIIURet3//Xrp3/4yrV6/g7OxCSMgqRo0aK42OCcs1zc66detYvHjxG9cbNWoU9+7d061/7Ngxpk+fngMJhRBC5GVJSUlMnz6FCRPGk5iYSO3addm2bRcNGzYxdjSRzYzexkZGRjJp0iTOnj1LqVKlXrvuuXPnOHXqFPv27aNMmTIA+Pv7M2DAAMaOHUvhwoVzIrIQQog85ubNG3h7j+H69WuoVCoGDRrGoEHDMDc3N3Y0kQOMfmTnr7/+In/+/Hz33XdUq1btteueOXMGV1dXXaMDULduXVQqFWfPns3uqEIIIfKg777bxRdfdOb69WsULOjKypVrGTp0pDQ67xCjH9lp0aIFLVq0yNS6kZGRFCmSfpa8lZUVTk5OhIeHv1UOCwvD933m5mbp/m9qpL68z9RrlPryvrepMTExkZkzp/Hdd7sBqF+/IbNnz6NgwYKGjPhW5DXMGUZvdvSRlJT00vuSWFtbk5KSkuX9mpmpcHbO9zbRXsvR0Tbb9p0bSH15n6nXKPXlffrWePnyZYYMGcL169cxMzNj3LhxjByZe4/myGuYvTLV7PTq1StLO1epVHz99ddZ2vZlbGxsSE1NzbA8JSUFOzu7LO9Xq1WIizP8GV3m5mY4OtoSF5eERqM1+P6NTerL+0y9Rqkv79O3RkVR2LFjO4GBM0hJSaFQoUIEBQVTu3Yd4uKScyCxfuQ1zDpHR9tMHy3KVLNz6tQpKlWqRL58mT/6kZCQwOXLlzO9fma4ublx6NChdMtSU1N5+vTpW09OTkvLvh8yjUabrfs3Nqkv7zP1GqW+vC8zNSYkxDNz5jT2798LQKNGTZgxYw4uLi65/vmR1zB7ZXoYa9q0aVStWjXTOz5//jyff/55lkK9Sp06dZg3bx537tyhRIkSAJw8eRKAmjVrGvR7CSGEMC5FUXiWmEqqoiIlKRUbS3NUKtVL171y5TLe3mO4e/cO5ubmjBgxht69+2NmZrpzYUTmZarZGTJkiN5HTooUKcKQIUOyFOoFjUZDdHQ0Dg4O2NjYUK1aNWrWrImnpyfTpk0jMTERPz8/PvnkEzntXAghTERisppjf0Zw6Ox9Hj1N0i13dbKlVS13Gnm4YWfz/AadiqKwfftW5s0LJDU1lcKF3Zg9ewE1asgfwOJ/MtXsjBkzRu8dFy5cOEvb/VN4eDgtW7YkMDCQTp06oVKpWLp0KdOnT6d3795YW1vTtm1bJkyY8FbfRwghRO5w6eYTlu26RIpaw7+P4Tx+msSWw9fY+ctNhn9ahRKuVsyYMZUff9wPwAcfNMPfPxAnJ+ecDy5yNZWiKIqhdnbv3j1CQkIIDAw01C5zhEajJTo6weD7tbAww9k5HzExCSY5Fiv15X2mXqPUl7dcuvmEhdsvoCjwujcmFZAYfYcnFzYQFfkQCwsLRo8eR48efV45zJVbmdpr+DLZVaOLS75MT1A26GBmdHQ0u3btMuQuhRBCvAMSk9Us23XpjY2OoihEXj3KlUPziIp8iJvbe6xdu4mePfvmuUZH5ByDXmenWrVqXLlyxZC7FEII8Q449mcEKWrNa9dJS03kzskNxD64AED+otUY6u2Hh0elnIgo8rA8dVFBIYQQpkdRFA6dvf/adRKe3OLWsTWkJkajMrOgaPVPKVS2Gb9fjuXjDxQ5qiNeS+9m5/Tp029cp06dOlkKI4QQ4t0Tn6ROd9bVPymKQtTfh3lwYTcoWqzyFaR0owHYuRQH4NHTJBKS07C3tczBxCKv0bvZ6dmz5xs7aENfTFAIIYTpSkl9+fBVWko8t0+uJ+7hJQCcitWkRJ0vMbdKf9uB5BRpdsTr6d3srF+/PsOyxMREzp49y549e1i8eLFBggkhhHg3WFtlvF9V/KMb3Pp9Deqkp6jMLHCv2ZmCZZq89I9tG2uZkSFeT++fkLp16750ebNmzbCzs2P58uWsXLnyrYMJIYR4N9jbWuLqZMvjp0loFS2Rlw/y8M/vQdFi7VCIUg37Y+dcLMN2KqCgky35bKTZEa9n0FPPa9Wqpbt9gxBCCJEZKpWKVrXcSU1+xo1fQnh4cQ8oWpyL16bCh74vbXTg+SnqrWq7y+Rk8UYGbYcPHTqEvb29IXcphBDiHWCnvseV/wY+H7Yyt6RYza4UKN3wlY2MSgVWFuY0quKWw0lFXqR3s9OrV68My7RaLeHh4Tx8+JCBAwcaJJgQQgjTp9FoWLNmJStWLEWr1WLjWJjSDQdi4/TeK7dR/f/H8E5VdPfIEuJ19G52XnZ3CTMzM8qXL8+QIUP47LPPDBJMCCGEaXv8+BGTJnlz8uRxAD766BM6dh/Bmv03dPfG+uc7zouvrSzNGd6pClVKFTBCapEX6d3sbNiwITtyCCGEeIecPHmciRO9ePLkMTY2tkycOJWPP/4UgEqlC3PsUgSHzqS/63lBJ1ta1XanUZUi2MmkZKEH+WkRQgiRY9LS0vjqqxBWrVqOoii8/35ZgoIWUrp0Gd06djaWtK5djFa13ElWa7C2tSYlKQUbS3OZjCyyxKBnY927d48JEyYYcpdCCCFMRFRUJIMH9+Grr0JQFIVPP+3Chg3fpGt0/kmlUuFgZ0VhFzsc7Kyk0RFZJnc9F0IIke2OHfuVbt0+4ezZM9jZ2REQMBc/vxnY2tq+eWMh3pLc9VwIIUS2SUtLIyRkEaGhqwAoV64Cc+cGU6JEKSMnE+8SmbMjhBAiW0REhOPrO47z5/8AoGvXLxg3zgdra2sjJxPvmiw1OxEREfzxxx+kpqbqlmm1WpKSkjhz5gzBwcEGCyiEECLv+eWXn5gyxYfY2Fjs7e2ZOnUmH37Y1tixxDtK72Zn//79eHl5kZaWppsspiiK7vPSpUsbNqEQQog8Q61Ws2TJAtavXwtApUqVmTMnmGLFihs5mXiX6T1BeeXKlVSqVImdO3fSqVMnPv74Y3744Qe8vLywsLBg4sSJ2ZFTCCFELvfgwX369euha3S++KIX69ZtkUZHGJ3eR3Zu3brFvHnzqFSpEg0aNGD16tWUKVOGMmXK8OTJE1asWEGjRo2yI6sQQohc6siRQ/j5TeTZszgcHByZPj2AFi1aGTuWEEAWjuyYmZnh5OQEQMmSJbl58yZarRaAJk2acP36dYMGFEIIkXulpqYyZ84sxo4dwbNncXh4VGPr1p3S6IhcRe9mp3Tp0pw9exZ43uyo1WouX74MQFxcXLpJy0IIIUzXvXt36dOnO1u2PL+NUK9efQkN3UDRou5GTiZEenoPY33++ef4+fmRmJjI2LFjqVevHhMnTqRz585s3LiRypUrZ0dOIYQQuciPPx7A338y8fHx5M+fnxkzZvPBB82NHUuIl9K72enSpQupqancv38fgBkzZjBw4EBmzZpF0aJFmTRpksFDCiGEyB1SUlKYN28227dvAaB69ZrMnj0fN7ciRk4mxKtlqtnRarWYmf1vxOvLL7/UfV6sWDH2799PTEwMLi4ur91OCCFE3nXnzi28vDy5evX5lfL79RvE0KEjsbS0NHIyIV4vU51I5cqVuXjx4isfV6lUGRqdCxcuyJCWEEKYiH37vqd798+4evUKzs4uhISsYtSosdLoiDwhU0d2FEUhLCyMlJSUTO/42rVrWQ4lhBAid0hKSiIoKIBdu7YDUKtWHQID51GoUGEjJxMi8zI9Z2f69Ol67fifV1UWQgiR99y8eQNv7zFcv34NlUrFwIFDGTRoGBYWcltFkbdk6id2/fr12Z1DCCFELvLdd7sICPAnOTmJAgUKEhAwl3r1Ghg7lhBZkqlmp27dutmdQwghRC6QlJRIQIA/33+/G4B69Rowa1YQBQu6GjeYEG9BjkUKIYQA4Pr1q3h5jeHWrZuYmZkxZMgI+vcfjLm5ubGjCfFWpNkRQoh3nKIo7Nr1LXPmzCQlJQVX10IEBs6jdm05qi9MgzQ7QgjxDktIiGfmzGns378XgIYNGzNzZlCGy4kIkZdJsyOEEO+oK1cu4+PjyZ07tzE3N2f48NH06TNALgYrTI7Bf6Jv3Lhh6F0KIYQwIEVR2L59K716dePOndsULuzG6tUb6NdvkDQ6wiTpfWQnNjaW+fPnc/r0adRqNYqiAM//8SQmJhIbG6u7C7oQQojc5dmzZ8yYMZUff9wPwAcfNMPfPxAnJ2cjJxMi++jdwgcEBLBjxw5KliyJubk5Dg4OeHh4oFariYuLw9/fPztyCiGEeEthYZfo3r0TP/64HwsLC8aN82HRouXS6AiTp3ez8+uvvzJixAiWL1/O559/jpubGwsXLuTAgQOUL1+e69evZ0dOIYQQWaQoClu2bKB37+7cv3+PIkXeY+3aTfTs2VeudC/eCXo3O3FxcdSqVQuAsmXLcunSJQDy5ctHv379+OmnnwwaUAghRNbFxcUybtwo5syZhVqtpnnzVmzbtgsPj2rGjiZEjtF7zo6zszPPnj0DoESJEjx58oSYmBicnZ0pXLgwkZGRBg8phBBCf3/+eQEfn7E8fPgACwtLxo71onv3nnI0R7xz9D6y06BBA1asWMH9+/dxd3fHycmJnTt3AnD06FGcnWXsVwghjElRFDZsWEvfvl/y8OED3N2L8fXXm/nii17S6Ih3kt7NzujRo3ny5Am+vr6oVCoGDRrE3LlzqVu3LuvWreOzzz7Ta39arZbFixfTpEkTqlWrRr9+/bhz584r13/06BFjx46lXr161KtXj9GjRxMREaFvGUIIYZKePo1h9OihzJ8/h7S0NFq3bsuWLTupXNnD2NGEMBq9h7GKFi3Kvn37uH37NgB9+/alYMGC/PHHH1StWpVPP/1Ur/2FhISwdetWAgMDKVy4MHPnzmXgwIHs3bsXKyurDOt7enqi0WhYu3YtANOnT2fYsGG6o0tCCPGuOn/+D3x9xxEREY6VlRXjx0+gS5fP5WiOeOdl6QrKNjY2VKhQAYCUlBQ6dOjARx99pPd+UlNTCQ0NxcvLi6ZNmwIQHBxMkyZNOHjwIO3bt0+3flxcHKdPn2b58uVUqlQJgEGDBjFs2DDdvCEhhHjXaLVa1q5dxdKlC9FoNBQvXoKgoIVUqFDR2NGEyBWydKnMmzdvMmbMGOrWrUuNGjUICwtj2rRpbNiwQa/9XLlyhYSEBOrXr69b5ujoSKVKlTh9+nSG9a2trbGzs2P37t3Ex8cTHx/Pnj17KFmyJPnz589KKUIIkac9efKE4cMHsWjRfDQaDW3btmfLlh3S6AjxD3of2bl8+TJffvklBQoU4KOPPmLz5s0AWFpaEhAQgL29faaHsl7MtSlSpEi65YUKFSI8PDzD+tbW1syaNQt/f39q166NSqXC1dWVjRs3vvUlzi0sDH+JdHNzs3T/NzVSX95n6jWaen1//HEGb++xREREYG1tzcSJU+nUqbNJDVuZ+mto6vVB7qhR72Znzpw5VKlShdDQUAA2bdoEwKRJk0hOTmb9+vWZbnaSkpIAMszNsba2JjY2NsP6iqLw999/U6NGDQYMGIBGoyE4OJjhw4ezZcsW7O3t9S0HADMzFc7O+bK0bWY4Otpm275zA6kv7zP1Gk2tPo1Gw5IlS5g/fz5arZb333+flStX6qYXmCJTew3/zdTrA+PWqHezc/78eRYsWICFhQUajSbdY+3atWPv3r2Z3peNjQ3wfO7Oi8/h+TwgW9uMT8oPP/zA5s2bOXr0qK6xWbFiBc2bN2fHjh307t1b33IA0GoV4uISs7Tt65ibm+HoaEtcXBIajdbg+zc2qS/vM/UaTbG+x48f4+s7jhMnjgPQpUsXfH2nYG1tQ0xMgpHTGZ4pvob/ZOr1QfbV6Ohom+mjRXo3O9bW1iQnJ7/0sadPn770DKpXeTF8FRUVRfHixXXLo6KiXvoXytmzZylVqlS6Izj58+enVKlSurPDsiotLft+yDQabbbu39ikvrzP1Gs0lfpOnjzOxIlePHnyGBsbW6ZM8aNPn57ExCSYRH2vYyqv4auYen1g3Br1HkBr1KgRixcvTndtG5VKRUJCAqGhoTRs2DDT+6pQoQL29vacPHlStywuLo6wsDBq166dYf0iRYpw584dUlJSdMuSkpK4f/8+JUqU0LcUIYTIEzQaDSEhixkypB9Pnjzm/ffLsnnzt3Ts2MnY0YTIE/Rudry8vEhMTKRt27Z8+eWXqFQqZs+eTdu2bQkPD2fs2LGZ3peVlRU9evRg3rx5HD58mCtXruDp6YmbmxutW7dGo9Hw6NEj3ZGkTz75BIAxY8Zw5coV3fpWVlZ06iT/6IUQpicqKpJBg/rw1VchKIrCp592YcOGbyhduoyxowmRZ+jd7BQpUoQ9e/bQu3dvFEWhePHiJCYm0qFDB3bu3EmxYsX02t+oUaPo3LkzkydPpnv37pibm7NmzRqsrKwIDw+ncePG7Nu3D3h+ltbmzZtRFIXevXvTt29fLC0t2bJlC46OjvqWIoQQudrvv/9Kt26fcvbsaezs7AgImIuf34yXzmkUQryaSlEURZ8NVqxYQcuWLSlbtmx2ZcpxGo2W6GjDT+yzsDDD2TmfyY6nS315n6nXmFfrS0tLIyRkMaGhXwFQrlwF5s4NpkSJUunWy6v16cPUazT1+iD7anRxyZfpCcp6H9lZvXr1S6+BI4QQ4u1FRkYwcGBvXaPTpUt3NmzYlqHREUJknt7NTsmSJbl27Vp2ZBFCiHfar7/+TLdun3Du3Fns7e2ZMyeYSZP8sLa2NnY0IfI0vU89b9asGcHBwRw9epSyZctSoECBdI+rVCqGDx9usIBCCGHq1Go1S5cu5Ouv1wBQqVJl5swJplix4m/YUgiRGXo3O0uXLgXgzJkznDlzJsPj0uwIIUTmPXz4AF/fsVy8eAGA7t174unppdc1y4QQr6d3s3PlypXsyCGEEO+cI0cO4ec3kWfP4rC3d8DfP4AWLVobO5YQJkfvZudNnj17hoODg6F3K4QQJiM1NZWFC+exefN6AKpUqcqcOQsoWtTdyMmEME16NzupqamsW7eOU6dOoVareXHmuqIoJCYmcv36dS5cuGDwoEIIYQru37+Ht/cYwsL+AqBXr76MHOmJpaUMWwmRXfRudoKCgti4cSPlypUjOjoaa2trXFxcuHr1Kmq1mhEjRmRHTiGEyPMOHjzA9OmTiY+PJ3/+/Pj7B9K0aQtjxxLC5Ol96vmPP/5Inz59+O677+jZsydVqlRh+/bt/PjjjxQtWhSt1jQviiSEEFmVkpJCQIA/Xl5jiI+Pp1q1GmzduksaHSFyiN7NTnR0NE2bNgWgfPny/PnnnwAULlyYQYMG6W7tIIQQAu7cuU3v3t355pvNAPTrN5DVq9dTpMh7Rk4mxLtD72EsBwcHUlNTgecXGAwPDyc+Ph57e3vd10IIIeDAgR/w959CYmIizs7OzJwZRKNGTYwdS4h3jt5HdmrXrs2GDRtITEzE3d0dW1tbDh48CMC5c+ewt7c3eEghhMhLkpOT8fefgq/vOBITE6lVqzZbt+6WRkcII9G72RkxYgTnz59n8ODBWFhY8MUXXzB16lQ6derEokWLaNOmTXbkFEKIPOHWrZv07NmVnTu3o1KpGDhwKCtXrqNw4cLGjibEO0vvYazy5cuzf/9+rl69CsC4ceOwt7fnjz/+oEWLFgwaNMjgIYUQIi/4/vvdzJo1neTkJAoUKMisWUHUr9/Q2LGEeOdl6aKCrq6uuLq6As9vDzFkyBCDhhJCiLwkKSmR2bNnsmfPTgDq1q1PQMBcChZ0NXIyIQRkwxWUhRDiXXL9+jW8vT25efM6ZmZmDBkygv79B2Nubm7saEKI/yfNjhBCZIGiKOzevYM5c2aSnJyMq6srAQHzqFOnnrGjCSH+RZodIYTQU0JCPAEB/vzww3cANGjQiFmzgnBxKWDkZEKIl5FmRwgh9PD331fw9h7DnTu3MTc3Z9iwUfTtOxAzM71PbhVC5BC9/3Vevnz5lY/FxcUxYcKEtwokhBC5kaIobN++lZ49u3Lnzm0KFSrM6tXr6d9/sDQ6QuRyev8L7dOnz0sbnv3799OuXTu+//57gwQTQojcIj4+Hl/fccyaNY3U1FSaNGnKtm27qVGjlrGjCSEyQe9mp3LlyvTp04e//voLgMjISIYNG4anpyfu7u58++23Bg8phBDGEhZ2ie7dO/Hf/+7DwsICT08vFi1ajrOzs7GjCSEySe85OytWrMDT05O+ffvSs2dPvv76a8zNzZk+fTrdunXLjoxCCJHjFEVh69aNLFgQhFqtpkiR95gzZwFVq1Y3djQhhJ70PrJjZWXF4sWL+eCDD1i2bBmVK1dm//790ugIIUxGXFwc48ePYs6cWajVapo1a8m2bbuk0REij8rUkZ3Tp09nWNalSxdu377NpUuXOHnyJAULFtQ9VqdOHcMlFEKIHPTnnxfx8fHk4cMHWFhY4unpxRdf9ESlUhk7mhAiizLV7PTsmf4fuqIoqFQqFEUBwNPTU/e1SqV67RlbQgiRGymKwsaNX7No0XzS0tQULerOnDnBVKniYexoQoi3lKlmZ/369dmdQwghjCY29ilTp07g55+PAtCq1YdMnToTR0dHIycTQhhCppqdunXrZncOIYQwigsXzuHjM5aIiHAsLS0ZN86Xbt2+kGErIUxIlq6gfP78eU6dOoVardYNZSmKQmJiImfPnuWbb74xaEghhDA0rVbL11+HsnRpMBqNhmLFSjB3bjAVKlQydjQhhIHp3exs2rSJmTNn6pqcfzIzM6Nx48YGCSaEENklOjqaKVN8OXbsFwDatm3H5Mn+2NvbGzmZECI76H3q+caNG2ncuDEnT56kf//+dO3alfPnz7No0SKsra35+OOPsyOnEEIYxB9/nKFbt084duwXrK2tmTLFn8DA+dLoCGHC9G527t+/T48ePcifPz8eHh6cPXsWGxsb2rRpw+DBg2UysxAiV9JqtaxatYIBA3rx6FEUJUuWYsOGb/jss64yP0cIE6d3s2NpaYmNjQ0AJUuW5M6dO6jVagBq1qzJ7du3DRpQCCHe1uPHjxk2bADLli1Eq9XSoUNHNm/+lnLlyhs7mhAiB+jd7FSsWJGjR5+fnlmiRAm0Wi3nz58HICIiwqDhhBDibf3222907tyREyd+x8bGlunTA5g5cw52dvmMHU0IkUP0nqDct29fRowYQWxsLIGBgbRs2RJvb2/atGnD999/T61achdgIYTxaTQaVqxYwsqVISiKQpkyZQkKCqZMmfeNHU0IkcP0PrLTqlUrVqxYwfvvP/+F4e/vT6lSpdi6dSulS5dm6tSpBg8phBD6iIqKZPDgvqxYsQxFUejUqTMbN34jjY4Q76gsXWenWbNmNGvWDABnZ2dCQ0MNmUkIIbLs999/Y9Ikb2JiorG1tSMoaA7Nm7chLU1r7GhCCCPJUrMD8PPPP/P7778TFRXF2LFjuXz5MpUrV6Zo0aKGzCeEEJmSlpbG8uVLCA39CkVRKFeuAgsWLKJGjSrExCQYO54Qwoj0bnaSkpIYPnw4v//+O/b29iQkJDBgwAC2bNlCWFgYGzdupGzZstmRVQghXioyMgJf33GcO3cWgC5dPmf8+Anky2dr5GRCiNxA7zk7CxYs4K+//mLdunWcOHFCdyXloKAgChcuzKJFiwweUgghXuWXX36iW7dPOHfuLPny5WPOnGAmTZqGtbW1saMJIXIJvZud/fv3M3bsWOrXr5/uQlyurq4MHTqUs2fPGjSgEEK8jFqtZsGCIEaNGsLTp0+pWLESW7fuok2b/xg7mhAil9G72YmLi3vlvJz8+fOTmJio1/60Wi2LFy+mSZMmVKtWjX79+nHnzp1Xrq9Wq5k/fz5NmjShevXq9OjRg8uXL+v1PYUQedvDhw/o378H69c/Pzmie/cefP31VooVK27kZEKI3EjvZqds2bJ8//33L33syJEjes/XCQkJYevWrcycOZNt27ahUqkYOHAgqampL11/2rRpfPvtt8yYMYMdO3bg5OTEwIEDefbsmb6lCCHyoKNHD/P55524ePECDg6OLFiwBB+fyVhZWRk7mhAil9K72Rk6dCh79uxh8ODBbN++HZVKxenTp5kxYwZbtmxhwIABmd5XamoqoaGhjBw5kqZNm1KhQgWCg4OJjIzk4MGDGda/d+8e3377LYGBgTRr1owyZcoQEBCAlZUVly5d0rcUIUQeolanEhQUgKfncOLiYqlSpSpbt+6kRYvWxo4mhMjl9D4bq1WrVsydO5f58+fz888/AzB79mwKFCjAtGnTaNu2bab3deXKFRISEqhfv75umaOjI5UqVeL06dO0b98+3fq//fYbjo6OfPDBB+nWP3LkiL5lCCHykPv37+Ht7UlY2PM/anr27MOoUWOxtJSjOUKIN8vSdXY++ugjPvroI27evMnTp09xdHSkdOnSmJnpd6Doxb20ihQpkm55oUKFCA8Pz7D+7du3KVasGD/++CNfffUVkZGRVKpUCV9fX8qUKZOVUnQsLPQ+yPVG5uZm6f5vaqS+vC8v1Hjw4H+ZMmUC8fHx5M/vxKxZs2nWrEWmts0L9b0NU68PTL9GU68PckeNWb6o4I0bNzhz5gyxsbEUKFAAW1tbvS8omJSUBJBhrN3a2prY2NgM68fHx3P37l1CQkLw9vbG0dGR5cuX88UXX7Bv3z4KFCiQpVrMzFQ4O2ffTQEdHU37Wh9SX96XG2tMTk5mxowZrFu3DoDatWsTEhKSpQuX5sb6DMnU6wPTr9HU6wPj1qh3s5OSkoKXlxcHDx7UXWMHwMzMjG7dujF16tR0p6S/jo2NDfB87s6Lz198D1vbjE+KpaUlz549Izg4WHckJzg4mKZNm7Jr1y695gv9k1arEBen31lkmWFuboajoy1xcUloNKZ3qXqpL+/LrTXeuXOb8ePHcPlyGAD9+w9kxIgxWFpa6nU15Nxan6GYen1g+jWaen2QfTU6Otpm+miR3s3O3Llz+fnnn/H19aVNmza4uLjw5MkTDhw4wMKFC3Fzc2Pw4MGZ2teL4auoqCiKF//fKaNRUVFUqFAhw/pubm5YWFikG7KysbGhWLFi3L9/X99S0snO++ZoNFqTvi+P1Jf35aYaDxz4gRkzppKQkICzszMzZsyhcePn8/SymjE31ZcdTL0+MP0aTb0+MG6NWbqooKenJ71798bNzQ0rKyuKFClC3759GTlyJNu2bcv0vipUqIC9vT0nT57ULYuLiyMsLIzatWtnWL927dqkpaXx559/6pYlJydz7949SpQooW8pQohc5Pmw1VR8fceRkJBAzZq12bp1t67REUKIrNL7yE5iYiKlS5d+6WMVKlQgJiYm0/uysrKiR48ezJs3DxcXF4oWLcrcuXNxc3OjdevWaDQaoqOjcXBwwMbGhtq1a9OwYUN8fHzw9/fHycmJxYsXY25uTseOHfUtRQiRS9y6dRNv7zFcu3YVlUrFgAFDGDx4OBYWWZ5WKIQQOnof2WnTpg0bN25Eq814KGrPnj00b95cr/2NGjWKzp07M3nyZLp37465uTlr1qzBysqK8PBwGjduzL59+3TrL1myhLp16zJixAg6d+5MfHw869evx8XFRd9ShBC5wN69e/jii85cu3YVF5cChISsZvjw0dLoCCEMRqX8c5ZxJmzatIlFixZRoEAB2rdvT6FChXj69ClHjhzh4sWL9O7dm3z5np/ZpFKpGD58eLYENySNRkt0dOYnPWaWhYUZzs75iIlJMMmxWKkv7zNmjUlJicyZM4vdu3cAUKdOPQIC5uLqWshg38PUX0NTrw9Mv0ZTrw+yr0YXl3yZnqCsd7PzsonDr9y5SpUn7lslzU7WSH15n7FqvH79Gt7enty8eR0zMzMGDx7OgAFDMDc3N+j3MfXX0NTrA9Ov0dTrg9zR7Oh9nPjKlSt6BxJCCABFUdizZyezZ88gOTmZggVdCQycR5069YwdTQhhwmRQXAiRIxITEwgI8Gfv3j0ANGjQiFmzgnBxydrFQIUQIrOk2RFCZLurV//G23sMt2/fwtzcnKFDR9Kv3yC9bzEjhBBZIc2OECLbKIrCjh3fEBQ0i9TUVAoVKsycOQuoUaOWsaMJId4h0uwIIbJFfHw8M2dO5cCB55eOaNKkKf7+s3F2djZyMiHEu0aaHSGEwV25EoaXlyf37t3BwsKCkSM96dmzrwxbCSGMQpodIYTBKIrCtm2bmT9/Nmq1miJF3mPOnAVUrVrd2NGEEO+wTDU7FSpUyPSdzIE8cW0dIYRhxcXF4e8/mUOHfgSgWbMWTJ8eQP78TsYNJoR452Wq2Rk+fLiu2UlJSWHt2rWULFmSNm3a4OrqqruC8tWrVxk6dGi2BhZC5D6XLv2Jj48nDx7cx8LCEk9PL774oqdefyQJIUR2yVSzM3LkSN3nEydOpFmzZixZsiTdL7IhQ4bg5eXFX3/9ZfiUQohcSVEUNm78mkWL5pOWpqZoUXfmzAmmShUPY0cTQggdvWcL7t+/n27dur30L7aOHTvy66+/GiSYECJ3i419iqfncObPn01amppWrdqwdesuaXSEELmO3s1Ovnz5uH379ksfCwsLI3/+/G+bSQiRy124cI7PP+/ETz8dwdLSkgkTpjJ37kIcHByMHU0IITLQ+2ys9u3bs2DBAiwsLGjRogUuLi48efKEAwcOsGzZMgYOHJgdOYUQuYBWq+Xrr0NZujQYjUZDsWIlmDs3mAoVKhk7mhBCvJLezc64ceMIDw9n+vTp+Pv765YrikLXrl0ZPny4QQMKIXKHmJgYJk/24dixXwBo27Y9U6ZMJ18+eyMnE0KI19O72bGysmLx4sVcu3aNM2fOEBcXh7OzM/Xr16d48eLZkVEIYWR//HEGX99xREVFYm1tjbf3JDp16iJnWwkh8oQsX1SwbNmyuLm5ERUVRbFixTA3NzdkLiFELqDValmz5iuWL1+MVqulZMlSzJ27kLJlyxs7mhBCZFqWmp2TJ08yb948Ll26hEqlYvv27axatQo3Nzd8fX0NnVEIYQRPnjxm0iRvTpz4HYAOHToyceJU7OzyGTmZEELoR++zsY4fP07//v2xsbFh/PjxKIoCQKVKlVi/fj1r1641eEghRM46ffoE3bp9yokTv2NjY8P06QHMnDlHGh0hRJ6kd7OzcOFCWrZsyYYNG+jdu7eu2Rk0aBADBgxg+/btBg8phMgZGo2GFSuWMnhwPx4/fkTp0u+zadO3dOzYydjRhBAiy/Rudi5fvsxnn30GkGFyYqNGjXjw4IFhkgkhctSjR1EMGdKPFSuWotVq+eSTz9i0aTtlyrxv7GhCCPFW9J6z4+DgwKNHj176WHh4uFxUTIg8QlEUniWmkqqo+PWnn5juN4Ho6CfY2toxefI02rf/2NgRhRDCIPRudlq2bElwcDDlypWjUqXnFxJTqVRERESwYsUKmjVrZuiMQggDSkxWc+zPCA6dvU9UdDzhl34gIuy/gEIR99LMnxdMpQpytpUQwnRk6aKCFy5coGvXrhQsWBCAsWPHEhERQZEiRRg7dqzBQwohDOPSzScs23WJFLUGdeJTbh0PJf7RdQAKlmlM4RqdWfJDBMOtClKldAEjpxVCCMPQu9nJnz8/27dvZ/fu3Zw4cYKnT5/i4OBAz5496dSpE7a2ttmRUwjxli7dfMLC7RdQFIh9+Be3T6xDk5qAmYUNxet+gUvx2gCkqjUs3H6BMV2qScMjhDAJejc7p0+fplKlSnTt2pWuXbumeywuLo4jR47Qvn17gwUUQry9xGQ1y3ZdQqvR8ODid0ReOQiArXMxSjXsj41DId26yv//Z9muS8wf3hA7G0vjhBZCCAPR+2ysXr16cePGjZc+FhYWxoQJE946lBDCsI79GcGzp4/4+/ACXaPjWrYp5VuNT9fovKAAKWoNxy5F5HBSIYQwvEwd2fHx8SE8PBx4fgbHtGnTsLfPePO/27dv6+bxCCFyB0VR2Lzjey4fWY0mNRFzS1uK1+2Bc7Ear91OBRw6c59WtdzlHlhCiDwtU0d22rRpg6IougsIArqvX3yYmZlRvXp1AgMDsy2sEEI/anUqgbMDOHdgMZrUROxcSlChzYQ3Njrw/OjOo6dJJCSnZX9QIYTIRpk6stOiRQtatGgBQM+ePZk2bRplypTJ1mBCiLfz4MF9fHzGcunSRQAKlW/Be1U/wcxcv6l6ySlp2NvKvB0hRN6l9wTlDRs2vPbxGzduSCMkhJEdPvwjfn6TiI9/hoODI67Vv8CpaNUs7cvGOkv3CxZCiFxD799isbGxzJ8/n9OnT6NWq3VDW4qikJiYSGxsLJcvXzZ4UCHEm6WmprJgwRy2bt0EQNWq1QkMnMfi7+/x+GkSyhu2/ycVUNDJlnw20uwIIfI2vc/GCggIYMeOHZQsWRJzc3McHBzw8PBArVYTFxeHv79/duQUQrzB3bt36N37c12j06fPANas2UDRou60quWuV6MDz+fstKotk5OFEHmf3s3Or7/+yogRI1i+fDmff/45bm5uLFy4kAMHDlC+fHmuX7+eHTmFEK/x3//up3v3Tly+HIaTkxNLlqxkzJjxWFo+n2vTyMMNa0tzMtu2qFRgbWlOoypu2RdaCCFyiN7NTlxcHLVq1QKgbNmyXLp0CYB8+fLRr18/fvrpJ4MGFEK8WnJyMrNmTcPHx5OEhARq1qzNtm27adKkabr17GwsGf5pFVQq3tjwqP7/Y3inKnJBQSGESdC72XF2dubZs2cAlChRgidPnhATEwNA4cKFiYyMNGxCIcRL3b59k169urF9+1ZUKhUDBgzhq6/WUbjwy4/GVCldgDFdqmFlaQ5kbHpefG1lac6YrtWoUkpuFSGEMA16NzsNGjRgxYoV3L9/H3d3d5ycnNi5cycAR48exdnZ2eAhhRDp/fDD93Tv3pmrV//GxaUAISGrGTFiDBYWr59MXKV0AeYPb0j3VmUp6JT+PnYFnWzp3qos84c3kkZHCGFS9D7NYvTo0fTs2RNfX182btzIoEGDmDNnDitXruTZs2cMHz48O3IKIYCkpCSCgmaxa9e3ANSpU4+AgLm4uma85cOr2NlY0rp2MVrVcidZrcHa1pqUpBRsLM1lMrIQwiTp3ewULVqUffv2cfv2bQD69u1LwYIF+eOPP6hatSqffvqpoTMKIYAbN67j7e3JjRvXUKlUDB48nIEDh2Jubp6l/alUKhzsrHB2tiMmRiEtTWvgxEIIkTvo3ewMGTKEXr160bBhQ92yjz76iI8++sigwYQQ/7Nnz04CA/1JTk6mYEFXAgPnUqdOfWPHEkKIPEHvOTunT5/O8l+SQgj9JCYmMHmyD35+E0lOTqZ+/YZ8881uaXSEEEIPejc7jRo1Yvv27aSkpGRHHiHE/7t27W++/LILe/fuwczMjBEjxhASshoXF5k8LIQQ+tB7GMva2pr9+/dz8OBB3N3dKVAg/S9elUrF119/nen9abVali5dyvbt23XX8PHz86NEiRJv3Pb7779n/PjxHD58GHd3d31LESJXUhSFnTu3ExQ0i5SUFAoVKszs2fOpWbO2saMJIUSepPeRnYiICGrUqEHVqlVxcXFBUZR0H1qtfpMcQ0JC2Lp1KzNnzmTbtm2oVCoGDhxIamrqa7d78OAB06dP1ze+ELlafHw8EyaMY8aMqaSkpNCo0Qds27ZbGh0hhHgLBr/ruT5SU1MJDQ3Fy8uLpk2fX/E1ODiYJk2acPDgQdq3b//S7bRaLV5eXlSuXJkTJ04YLI8QxnTlShje3p7cvXsHc3NzRo4cS69efTEz0/tvEiGEEP9g1N+iV65cISEhgfr1/zfZ0tHRkUqVKnH69OlXbrdixQrUajWDBw/OiZhCZCtFUdi2bTM9e3bj7t07uLkVYc2aDfTp018aHSGEMAC9j+xUqFDhlRceU6lU2NnZUbx4cXr37k3Hjh1fu6+IiAgAihQpkm55oUKFCA8Pf+k2Fy9eJDQ0lG+//dagt6awsDD8m4q5uVm6/5saqe/tPXv2DD+/Sfz44wEAmjdvycyZgeTP75Rt3/Of5DXM20y9PjD9Gk29PsgdNerd7Pj6+rJgwQKKFy9O27ZtcXV15fHjxxw6dIi///6bjh078ujRIyZMmIClpSXt2rV75b6SkpIAsLKySrfc2tqa2NjYDOsnJiYyfvx4xo8fT8mSJQ3W7JiZqXB2zmeQfb2Mo6Ptm1fKw6S+rDl//jxDhw7l7t27WFpaMnHiRAYOHGiUqxjLa5i3mXp9YPo1mnp9YNwa9W52Ll68SMOGDVm+fHm6X8rDhw9n9OjRPHv2jMWLFzNnzhzWrl372mbHxsYGeD5358XnACkpKdjaZnxSZs6cScmSJfn888/1jf1aWq1CXFyiQfcJz7tYR0db4uKS0GhM7+q0Ul/WKIrCxo3rmT8/iLQ0NUWLujNvXjAeHtV4+tTwP4evI69h3mbq9YHp12jq9UH21ejoaJvpo0V6NztHjx5l4cKFL/3rs3PnzowePRqADz74gK1bt752Xy+Gr6KioihevLhueVRUFBUqVMiw/o4dO7CysqJGjRoAaDQaADp06MDHH3+Mv7+/vuXoZOel8jUarUlfil/qy7zY2Kf4+U3ip58OA9CyZWv8/Gbh6Oho1OdQXsO8zdTrA9Ov0dTrA+PWqHezY2trq5tr828PHz7E0tISeH7G1IvPX6VChQrY29tz8uRJXbMTFxdHWFgYPXr0yLD+jz/+mO7rCxcu4OXlxVdffUWZMmX0LUWIHHXx4nl8fMYSHv7838m4cT506/al3HxTCCGymd7NTqtWrViwYAEFChSgVatWuuVHjhwhODiYli1bkpqayrfffkvFihVfuy8rKyt69OjBvHnzcHFxoWjRosydOxc3Nzdat26NRqMhOjoaBwcHbGxsMlxo8EXT9d5772W4uKEQuYVWq2XDhrUsWRJMWloaxYoVJygomIoVKxs7mhBCvBP0bnZ8fHy4c+cOI0aMwNLSEicnJ2JiYtBoNDRs2BBfX18OHTrE4cOHWb169Rv3N2rUKNLS0pg8eTLJycnUqVOHNWvWYGVlxf3792nZsiWBgYF06tQpSwUKYUwxMTFMnerLr7/+DECbNu2YMsUfe3t7IycTQoh3h0pRFCUrGx4/fpwTJ04QExODm5sbdevWpXbt51d5ffjwIWZmZri5uRk0bHbRaLRERycYfL8WFmY4O+cjJibBJMdipb7XO3fuLL6+44iMjMDKygpv70l89lnXXDVsJa9h3mbq9YHp12jq9UH21ejiki/7Jii/0KBBA6pUqUJUVBTFihVLdyf09957L6u7FSLP02q1rF27ipCQxWg0GkqWLEVQ0ELKlStv7GhCCPFOylKzc/LkSebNm8elS5dQqVRs376dVatW4ebmhq+vr6EzCpFnREc/YdIkb44fPwZA+/YfM2mSH3Z22XcdJyGEEK+n9+UMjx8/Tv/+/bGxsWH8+PG8GAWrVKkS69evZ+3atQYPKURecPr0Sbp1+4Tjx49hY2PDtGmzmDlzjjQ6QghhZHo3OwsXLqRly5Zs2LCB3r1765qdQYMGMWDAALZv327wkELkZhqNhpUrlzF4cF8ePXpE6dLvs3Hjdj755LNcNT9HCCHeVXo3O5cvX+azzz4DyPCLvFGjRjx48MAwyYTIAx4/fsTQof1ZvnwJWq2WTz75jE2btvP++2WNHU0IIcT/03vOjoODA48ePXrpY+Hh4Tg4OLx1KCHyghMnfmfiRC+io59ga2vHpEl+dOjw+pvfCiGEyHl6NzstW7YkODiYcuXKUalSJeD5EZ6IiAhWrFhBs2bNDJ1RiFwlLS2NFSuWsmbNShRFoWzZcgQFLaRUqdLGjiaEEOIl9G52xo0bx4ULF+jatSsFCxYEYOzYsURERFCkSBHGjh1r8JBC5BaRkZFMnDiOs2fPANC5czfGj5+Q7ka2Qgghche9m538+fOzfft2du/ezYkTJ3j69CkODg707NmTTp06vfRu5UKYgt9++4UpU3yIiYnBzs6OqVNn0LZte2PHEkII8QZ6NzunT5+mUqVKdO3ala5du6Z7LC4ujiNHjtC+vbwBCNOhVqtZtCiYdeue3/6kQoVKzJmzgBIlSho3mBBCiEzR+2ysXr16cePGjZc+FhYWxoQJE946lBC5xYMHD+jTp4eu0enW7Qu+/nqLNDpCCJGHZOrIjo+PD+Hh4QAoisK0adNeeiPD27dv6+bxCJHXHT16mClTJvD06VPs7e3x85tJ69ZtjR1LCCGEnjJ1ZKdNmzYoisI/7xn64usXH2ZmZlSvXp3AwMBsCytETlCrU5k3L5CRI4fy9OlTKleuwtatu6TREUKIPCpTR3ZatGhBixYtAOjZsyfTpk2jTJky2RpMCGN48OA+Pj5juXTpIgADBgxg+PAxqFRZvmeuEEIII9P7N/iGDRuyI4cQRnf48I/4+U0iPv4ZDg6OzJo1m88+60hMTAJpaVpjxxNCCJFFejc7SUlJrFixgqNHj5KUlIRWm/5NQKVScejQIYMFFCK7paamsmDBHLZu3QRA1arVmD17AcWLFzNyMiGEEIagd7Mza9YsduzYQd26dalYsSJmZnqf0CVErnH37h18fDy5fDkMgN69+zNixBgsLS2NnEwIIYSh6N3s/Pjjj3h6ejJo0KDsyCNEjvnvf/fj7z+ZhIQEnJyc8PefzQcfNDN2LCGEEAamd7OTlpZG1apVsyOLEDkiOTmZ+fNns337VgBq1KjF7NnzKVzYzcjJhBBCZAe9x6AaN27ML7/8kh1ZhMh2t2/fpFevbmzfvhWVSkX//oNZtepraXSEEMKE6X1kp127dvj5+REdHU21atVeei+sTz75xBDZhDCoH374npkz/UhKSsTZ2YVZs4Jo2LCxsWMJIYTIZno3O2PGjAFg9+7d7N69O8PjKpVKmh2RqyQlJREUNItdu74FoE6degQEzMXVtZCRkwkhhMgJejc7hw8fzo4cQmSLGzeu4+3tyY0b11CpVAwaNIxBg4Zhbm5u7GhCCCFyiN7NTtGiRbMjhxAGt2fPTgIDZ5CcnETBgq4EBMylbt36xo4lhBAih2Wq2ZkwYQLDhg2jWLFib7yruUqlIiAgwCDhhMiKxMQEAgL82bt3DwD16jUkICCIAgXkJrVCCPEuylSzc/LkSXr37q37/HVUKtXbpxIii65d+xtvb09u3bqJmZkZQ4eOon//QXLxSyGEeIdlqtk5cuTISz8XIrdQFIWdO7cTFDSLlJQUXF0LMXv2fGrVqmPsaEIIIYxMbuUs8rz4+HhmzpzKgQP7AGjUqAkzZszBxcXFyMmEEELkBtLsiDztypUwvLw8uXfvDubm5owY4Unv3v1k2EoIIYSONDsiT1IUhW++2cK8eYGo1Wrc3Iowe/Z8qlevaexoQgghchlpdkSe8+zZM6ZPn8yhQ/8FoGnT5kyfHoCTk7ORkwkhhMiNpNkRecpff/2Jt7cnDx7cx8LCktGjx9GjR285C1AIIcQrSbMj8gRFUdi8eQPBwXNJS1Pz3ntFmTMnGA+PqsaOJoQQIpeTZkfkerGxT/Hzm8RPPz2/VUmLFq2ZNm0Wjo6ORk4mhBAiL5BmR+RqFy+ex8dnLOHhD7G0tGTcOB+6dftShq2EEEJkmjQ7IlfSarWsX7+WpUuDSUtLo1ix4syZs4BKlaoYO5oQQog8RpodkevExMQwdaovv/76MwAffvgfpk6dgb29vZGTCSGEyIuk2RG5yrlzZ/HxGUtUVCRWVlZ4e0/ks8+6ybCVEEKILJNmR+QKWq2WtWtXERKyGI1GQ4kSJQkKWkj58hWMHU0IIUQeJ82OMLro6CdMmuTN8ePHAGjf/mMmTfLDzi6fkZMJIYQwBdLsCKM6ffokEyeO59GjR9jY2ODrO4WOHTvJsJUQQgiDkWZHGIVGo2H16hWsXLkMrVZL6dLvExQUzPvvlzV2NCGEECbG6LeG1mq1LF68mCZNmlCtWjX69evHnTt3Xrn+tWvXGDRoEPXq1aNBgwaMGjWKhw8f5mBi8bYeP37E0KH9Wb58CVqtlo4dO7Fp0zfS6AghhMgWRm92QkJC2Lp1KzNnzmTbtm2oVCoGDhxIampqhnVjYmLo27cv+fLlY+PGjaxatYqYmBgGDBhASkqKEdK/uxRF4VliKpHRiTxLTEVRlExtd+LE73Tr9imnTp3A1taOmTPnMH16ALa2dtmcWAghxLvKqMNYqamphIaG4uXlRdOmTQEIDg6mSZMmHDx4kPbt26db/9ChQyQlJTF79mysra0BmDt3Lk2bNuWPP/6gQYMGOV7DuyYxWc2xPyM4dPY+j54m6Za7OtnSqpY7jTzcsLOxzLBdWloaK1cuY/XqFSiKQtmy5QgKWkipUqVzMr4QQoh3kFGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/O0Ow0aNCAZcuW6Rqdf4qNjc32vO+6SzefsGzXJVLUGv49ffjx0yS2HL7Gzl9uMvzTKlQpXUD3WGRkJBMnjuPs2TMAfPZZV7y8JmJjY5OD6YUQQryrjNrsREREAFCkSJF0ywsVKkR4eHiG9d3d3XF3d0+3bOXKlVhbW1OnTp23ymJhYfgRPXNzs3T/z8su3njCwu0XeDFa9e9Bqxdfp6o1LNx+gbGf16BqmQL89tsvTJjgRUxMDHZ2+Zg2bQbt2nXIyehZZkqv36uYeo1SX95n6jWaen2QO2o0arOTlPR8GMTKyirdcmtr60wdqVm/fj2bN29mwoQJFChQ4I3rv4qZmQpn5+y7poujo2227TsnxCepWbrjIgoZm5x/e/H44u3n8LC7yKqvVgBQuXJlVqxYQenSeW/YKq+/fplh6jVKfXmfqddo6vWBcWs0arPzYhgjNTU13ZBGSkoKtravflIURWHRokUsX76cwYMH06dPn7fKodUqxMUlvtU+Xsbc3AxHR1vi4pLQaLQG339O+e+puySnajK9fkp8NFeOh3Li8U0Aunf/kvHjfbG2tiYmJiG7Yhqcqbx+r2PqNUp9eZ+p12jq9UH21ejoaJvpo0VGbXZeDF9FRUVRvHhx3fKoqCgqVHj5bQLUajUTJkxg7969eHt7079/f4NkSUvLvh8yjUabrfvPToqi8OOpe5le/+mDi9w5uQFNagIWVrYEzAzkww/bAtn7HGenvPz6ZZap1yj15X2mXqOp1wfGrdGozU6FChWwt7fn5MmTumYnLi6OsLAwevTo8dJtvL29OXjwIPPnz88wgVkYXnySOt1ZV6+i1aTx8OIeov4+DICdS3FKNRxAwyYtszuiEEII8VpGbXasrKzo0aMH8+bNw8XFhaJFizJ37lzc3Nxo3bo1Go2G6OhoHBwcsLGxYefOnezbtw9vb2/q1q3Lo0ePdPt6sY4wrJRMDF+lxD/m1u+hJEbfBqBQuRa8V60jZuaWJKekYW+b8VR0IYQQIqcY/XYRo0aNIi0tjcmTJ5OcnEydOnVYs2YNVlZW3L9/n5YtWxIYGEinTp3Yu3cvAEFBQQQFBaXbz4t1hGFZW5m/9vGn988/H7ZSJ2FuaUuJer1wcq+me9zG2ug/YkIIId5xRn8nMjc3x8vLCy8vrwyPubu78/fff+u+Dg0NzcloArC3tcTVyZbHT5PSnYml1ah5cH4Xj679BEC+AqUo2bAf1vmenxWnAgo62ZLPxug/YkIIId5x8k4kXkulUtGqljtbDl/TLUt59ohbv68hMeYuAIUqtKJo1Y6ozP53FEgBWtV2l7uXCyGEMDppdsQbNfJwY+cvN0lVa4i+e5Y7pzahTUvG3CofJev3Iv97HunWV6nAysKcRlXcjJRYCCGE+B/TvWSjMBg7G0sGti/L3TNbuPX7GrRpyeQrWIaKbSdmbHT+/2N4pyovvUeWEEIIkdPkyI54ozt3bjF7qiePrl8BoHDFNhT16AD/GLZS8XzoysrSnOGdqlClVNavaC2EEEIYkjQ74rX27fuemTP9SExMxNnZhSl+AWjsy3DoTPq7nhd0sqVVbXcaVSmCnUxKFkIIkYvIu5J4qaSkJIKCZrFr17cA1KpVh8DAeRQqVBiAVrXcSVZrsLa1JiUpBRtLc5mMLIQQIleSZkdkcPPmDby9x3D9+jVUKhUDBw5l8ODhmJv/Y9hKpcLBzgpnZztiYhSTv8y5EEKIvEuaHZHOd9/tIiDAn+TkJAoUKEhAwFzq1Wtg7FhCCCFElkmzIwBISkokIMCf77/fDUC9eg0JCAiiQIGCxg0mhBBCvCVpdgTXrv2Nt7cnt27dxMzMjKFDR9Kv36B0w1ZCCCFEXiXNzjtMURR27fqWOXNmkpKSgqtrIQID51G7dl1jRxNCCCEMRpqdd1RCQjwzZ05j//7nN1dt1KgJM2bMwcXFxcjJhBBCCMOSZucddOXKZby9x3D37h3Mzc0ZMWIMvXv3x8xMLqgthBDC9Eiz8w5RFIXt27cyb14gqampFC7sxuzZC6hRo6axowkhhBDZRpodE6EoCvFJalJSNVhbmWNva5nuIn/Pnj3D338KBw8eAOCDD5rh7x+Ik5OzsSILIYQQOUKanTwuMVnNsT8jOHQ2/e0bXJ1saVXLnUYebty++Tc+PmO5d+8uFhYWjBo1lp49+8oVj4UQQrwTpNnJwy7dfMKyXZdIUWv4d9vy+GkSmw9dZdlXq7l/bidpaWqKFHmPoKBgPDyqGSWvEEIIYQzS7ORRl24+YeH2CyjK86+Vfz2uTk3kzqkNxN6/AEDteh+wYO5cHB3z52xQIYQQwsik2cmDEpPVLNt1CUXJ2OQAJDy5xa1ja0hNjEZlZoF79U5YlG2BhZVdjmcVQgghjE2anTzo2J8RpKg1GZYrikLU34d5cGE3KFqs7V0p1bA/di7FSU3TcuxSBK1rF8v5wEIIIYQRSbOTxyiKwqGz9zMsT0uJ5/bJ9cQ9vASAU7GalKj7JeaWtgCogENn7tOqlrtMTBZCCPFOkWYnj4lPUqc76wog/tENbh0PRZ0Y83zYqmZnCpZpkq6pUYBHT5NISE7D3tYyh1MLIYQQxiPNTh6Tkvq/4StF0RJ5+SAP//z++bCVQ6Hnw1bOrx6qSk6RZkcIIcS7RZqdPMba6vmdyNXJz7hz4mviIsIAcC5Rh+K1u2NuafPa7W2s5SUXQgjxbpF3vjzG3tYS88Q7/PnjCtTJsajMLSlWsysFSjd87VwcFVDQyZZ8NvKSCyGEeLfIO18eotFoWL16BWe+X4aiaLFxdKNUwwHYOr33xm0VoFVtmZwshBDi3SPNTh7x+PEjJk3y5uTJ4wC4lmlA0RpdMbOwfuO2KhVYWZjTqIpbdscUQgghch0zYwcQb3by5HG6dfuUkyePY2Njy8yZcwieOw8LS+sMt4n4N9X/fwzvVAU7G5mYLIQQ4t0jzU4uptFoCAlZzJAh/Xjy5DHvv1+WLVt20KFDR6qULsCYLtWwsnw+YfnfTc+Lr60szRnTtRpVShXI0exCCCFEbiHDWLlUVFQkEyaM5+zZ0wB8+mkXvL0nYmtrq1unSukCzB/ekGOXIjh0Jv1dzws62dKqtjuNqhTBTiYlCyGEeIfJu2Au9PvvvzJpkg8xMdHY2dkxefJ02rX76KXr2tlY0rp2MVrVcichOY3klDRsrC3IZ2Mhk5GFEEIIpNnJVdLS0ggJWUxo6FcAlCtXgblzgylRotQbt1WpVNjbWsoFA4UQQoh/kWYnl4iICMfXdxznz/8BQJcu3Rk/3hdr6zefbSWEEEKIV5NmJxf45ZefmDLFh9jYWOzt7Zk6dSYfftjW2LGEEEIIkyDNjhGp1WqWLFnA+vVrAahUqTJz5gRTrFhxIycTQgghTIc0O0by4MF9fH3H8eefFwDo3r0nnp5eWFlZGTmZEEIIYVqk2TGCI0cO4ec3kWfP4nBwcGT69ABatGhl7FhCCCGESZJmJwelpqaycOE8Nm9eD4CHRzVmz55P0aLuRk4mhBBCmC5pdnLIvXt38fEZS1jYJQB69erLyJGeWFrKsJUQQgiRnaTZyQH//e9+/PwmER8fT/78+ZkxYzYffNDc2LGEEEKId4I0O9koJSWFCRNmsn7982Gr6tVrMnv2fNzcihg5mRBCCPHuMPqNQLVaLYsXL6ZJkyZUq1aNfv36cefOnVeuHxMTw7hx46hTpw516tRhypQpJCYm5mDizImLi+XLL7vqGp1+/QaxatXX0ugIIYQQOczozU5ISAhbt25l5syZbNu2DZVKxcCBA0lNTX3p+qNGjeLevXusW7eOxYsXc+zYMaZPn57Dqd/szJlTXLlyGRcXF1auXMOoUWOxtJRbOQghhBA5zajNTmpqKqGhoYwcOZKmTZtSoUIFgoODiYyM5ODBgxnWP3fuHKdOnSIwMJDKlSvToEED/P392bNnD5GRkUao4NU++KA5S5eu4MiRIzRq1MTYcYQQQoh3llGbnStXrpCQkED9+vV1yxwdHalUqRKnT5/OsP6ZM2dwdXWlTJkyumV169ZFpVJx9uzZHMmcWRYWFjRr1gJXV1djRxFCCCHeaUadoBwREQFAkSLp57EUKlSI8PDwDOtHRkZmWNfKygonJ6eXrq8PCwvD933m5mbp/m9qpL68z9RrlPryPlOv0dTrg9xRo1GbnaSkJIAMt0iwtrYmNjb2peu/7HYK1tbWpKSkZDmHmZkKZ+d8Wd7+TRwdbbNt37mB1Jf3mXqNUl/eZ+o1mnp9YNwajdrs2NjYAM/n7rz4HJ6fsm1rm/FJsbGxeenE5ZSUFOzs7LKcQ6tViIsz/Bld5uZmODraEheXhEajNfj+jU3qy/tMvUapL+8z9RpNvT7IvhodHW0zfbTIqM3OiyGpqKgoihf/352+o6KiqFChQob13dzcOHToULplqampPH36lMKFC79VlrS07Psh02i02bp/Y5P68j5Tr1Hqy/tMvUZTrw+MW6NRBwkrVKiAvb09J0+e1C2Li4sjLCyM2rVrZ1i/Tp06REREpLsOz4tta9asmf2BhRBCCJHnGPXIjpWVFT169GDevHm4uLhQtGhR5s6di5ubG61bt0aj0RAdHY2DgwM2NjZUq1aNmjVr4unpybRp00hMTMTPz49PPvnkrY/sCCGEEMI0GX3696hRo+jcuTOTJ0+me/fumJubs2bNGqysrAgPD6dx48bs27cPAJVKxdKlS3F3d6d3796MGTOGDz74gGnTphm3CCGEEELkWipFURRjhzA2jUZLdHSCwfdrYWGGs3M+YmISTHIsVurL+0y9Rqkv7zP1Gk29Psi+Gl1c8mV6grLRj+wIIYQQQmQnaXaEEEIIYdKk2RFCCCGESZNmRwghhBAmTZodIYQQQpg0ORsLUBQFrTZ7ngZzczOTvQQ4SH2mwNRrlPryPlOv0dTrg+yp0cxMhUqlytS60uwIIYQQwqTJMJYQQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O0IIIYQwadLsCCGEEMKkSbMjhBBCCJMmzY4QQgghTJo0O9lAq9WyePFimjRpQrVq1ejXrx937twxdqxsERISQs+ePY0dw+CePn3K1KlT+eCDD6hZsybdu3fnzJkzxo5lME+ePMHLy4v69etTo0YNBg0axPXr140dK1vcunWLGjVqsHPnTmNHMagHDx5Qvnz5DB/bt283djSD2b17N+3atcPDw4P27duzf/9+Y0cymJMnT7709StfvjwtW7Y0djyDUKvVBAcH06xZM2rUqMEXX3zBH3/8YZQs0uxkg5CQELZu3crMmTPZtm0bKpWKgQMHkpqaauxoBrVu3ToWL15s7BjZYuzYsVy4cIEFCxbw7bffUrlyZfr378+NGzeMHc0ghg4dyr1791i1ahXffvstNjY29OnTh6SkJGNHMyi1Ws348eNJTEw0dhSD+/vvv7G2tubXX3/lt99+03189NFHxo5mEHv27GHixIl069aNvXv30q5dO8aOHcu5c+eMHc0gatSoke51++233wgNDcXCwoIhQ4YYO55BLF++nB07djBz5kx2795N6dKlGThwIJGRkTmeRZodA0tNTSU0NJSRI0fStGlTKlSoQHBwMJGRkRw8eNDY8QwiMjKSAQMGsGjRIkqVKmXsOAZ3584djh07hp+fH7Vr16Z06dJMmjSJwoULs3fvXmPHe2sxMTG4u7szY8YMPDw8KFOmDMOGDePRo0dcu3bN2PEMasmSJeTLl8/YMbLF1atXKVWqFIUKFcLV1VX3YWNjY+xob01RFBYtWkTv3r3p3bs3JUqUYPjw4TRs2JBTp04ZO55BWFlZpXvdnJycCAwM5MMPP6RLly7GjmcQhw8fpkOHDjRu3JgSJUrg6+tLfHw858+fz/Es0uwY2JUrV0hISKB+/fq6ZY6OjlSqVInTp08bMZnh/PXXX+TPn5/vvvuOatWqGTuOwTk7O/PVV19RpUoV3TKVSoWiKMTGxhoxmWE4OzuzYMECypYtC8Djx49Zs2YNbm5uvP/++0ZOZzinT59m27ZtzJkzx9hRssXff/9tUq/XP928eZMHDx5kOEq1Zs0aBg8ebKRU2WvTpk2Eh4czYcIEY0cxGCcnJ44ePcr9+/fRaDRs27YNKysrKlasmONZLHL8O5q4iIgIAIoUKZJueaFChQgPDzdGJINr0aIFLVq0MHaMbOPo6EjTpk3TLdu/fz93796lcePGRkqVPaZMmcI333yDlZUVy5cvx87OztiRDCIuLg5vb28mT56c4d+iqbh69Squrq588cUX3L59mxIlSjBs2DCaNGli7Ghv7fbt2wAkJibSv39/wsLCcHd3Z+jQoSb5uyclJYUVK1bQu3dvChUqZOw4BjNp0iQ8PT1p2bIl5ubmmJmZsWjRIooXL57jWeTIjoG9mPNgZWWVbrm1tTUpKSnGiCTe0tmzZ5k4cSItW7Y0uV+0vXv3ZseOHXz88ccMHz6cv/76y9iRDGLatGlUr17dZOav/Ftqaiq3b98mPj6eMWPG8NVXX+Hh4cHAgQM5fvy4seO9tfj4eAB8fHzo0KEDoaGhNGrUiGHDhplEff+2Z88eUlJSTO5kjxs3buDo6MiyZcvYtm0bnTp1wsfHhytXruR4FjmyY2AvxstTU1PTjZ2npKRga2trrFgiiw4dOsT48eOpVq0aCxYsMHYcg3sxDDJjxgzOnz/Pxo0bCQwMNHKqt7N7927OnDnD999/b+wo2cbKyorTp09jYWGh+8OqSpUq3LhxgzVr1tCgQQMjJ3w7lpaWAPTv359PP/0UgIoVKxIWFsbatWvzfH3/tnv3bj788EOcnZ2NHcVgHjx4gJeXF+vWraN27doAeHh4cP36dZYsWcKyZctyNI8c2TGwF4fMo6Ki0i2PiorCzc3NGJFEFm3cuJGRI0fywQcfsGrVKpOY+AnPTzvfu3cvGo1Gt8zMzIwyZcpk+LnNi3bs2MGTJ090p7vWqFEDAD8/P9q3b2/kdIZjZ2eX4QhyuXLljHKmi6G9+F1Zrly5dMvff/997t+/b4xI2SY6Oppz587Rrl07Y0cxqIsXL6JWq/Hw8Ei3vFq1arphypwkzY6BVahQAXt7e06ePKlbFhcXR1hYmK67Fbnf5s2bmTFjBl9++SULFy7M8KaSl0VFRTFu3Lh0Z7Wo1WrCwsIoU6aMEZMZxrx589i3bx+7d+/WfQCMGjWKr776yrjhDOTKlSvUqFEjw7WfLl26ZBKTlitVqkS+fPm4cOFCuuVXr141ynyP7PTHH3+gUqmoW7eusaMY1Is//P/+++90y69evUqJEiVyPI8MYxmYlZUVPXr0YN68ebi4uFC0aFHmzp2Lm5sbrVu3NnY8kQm3bt0iICCA1q1bM3jwYJ48eaJ7zMbGBgcHByOme3sVKlSgcePGTJ8+nZkzZ+Lo6MiKFSuIi4ujT58+xo731goXLvzS5QUKFKBo0aI5nCZ7lCtXjrJlyzJ9+nT8/Pxwdnbmm2++4fz583z77bfGjvfWbGxsGDBgAMuWLaNw4cJUrVqVH374gWPHjrFu3TpjxzOoK1euUKxYMZOb5lC1alVq166Nj48Pfn5+uLm5sXv3bo4fP87mzZtzPI80O9lg1KhRpKWlMXnyZJKTk6lTpw5r1qwxqaMDpuy///0varWagwcPZrg20qeffsrs2bONlMwwVCoVCxcuZP78+YwZM4Znz55Ru3ZtNm3axHvvvWfseCITzMzMWLFiBfPmzWPMmDHExcVRqVIl1q5dS/ny5Y0dzyCGDRuGra2t7jplZcqUYcmSJdSrV8/Y0Qzq8ePHODk5GTuGwZmZmRESEsLChQuZMGECsbGxlCtXjnXr1lG9evUcz6NSFEXJ8e8qhBBCCJFDZM6OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI4QQQgiTJs2OEEIIIUyaNDtCCCGEMGnS7AghhBDCpEmzI0QeI5fGyhmGfJ7lNRPCuKTZESKbtGjRAl9fX4Pu8/r163Tv3t2g+xQZLV++nDVr1hhkXy97zcqXL8+SJUsMsv/XuX//PuXLl9d93LlzJ8v72rlzp24/t27deuk6v/zyi24dgO3bt+u+btGiRZa/txBvS5odIfKQ/fv3c+7cOWPHMHkLFy4kKSnJIPt62Wu2bds2unTpYpD9Z8bQoUPZtm2b7uaMb8PMzIz9+/e/9LF9+/al+7ply5Zs27aNpk2bvvX3FeJtSLMjhBA5rHr16ri5ueXY9ytevDjVq1c3yP35atas+dJmJzU1lUOHDlGxYkXdMhcXF6pXr46Li8tbf18h3oY0O0LkkPv37+Pt7U3jxo2pXLkyDRo0wNvbm5iYGN06iqKwadMm2rdvT9WqVWndujWrVq1CURSWLFnC0qVLgfTDICkpKSxbtoy2bdvi4eHBhx9+yFdffYVWq9Xt9969ewwdOpR69epRrVo1unXrxs8//5wu39WrVxk8eDA1a9akZs2aDB8+nHv37r2xrmPHjvHll19So0YNGjduzNSpU4mNjdU9fvv2bUaNGkWjRo2oXr06PXv25OzZs+mel/Lly7N//35GjRpFjRo1qFOnDpMmTSIhISFTz80LZ86coUePHlSrVo26devi4+NDdHS07vGdO3dSqVIlLly4QLdu3fDw8KBZs2asWrVKt86LIZilS5fqPl+yZAmtW7dm6dKl1KtXj1atWhETE0NycjLz58/nww8/pEqVKtSsWZO+ffty+fJl3XYve83+PYwVFRXFhAkTaNq0KVWrVqVz584cPnw43fNcvnx5Nm3axKRJk6hbty41atRg1KhRPH78+I2v0T8tWbKEtm3bcujQITp06ICHhwcdO3bk3LlznD9/ni5dulC1alU6dOjA8ePHM2zfrl07rl69yo0bN9It/+WXX1CpVHzwwQd65REiJ0izI0QOSEpKolevXty4cQM/Pz/WrFlDjx492Lt3LwsWLNCtt2DBAmbNmkXTpk1Zvnw5Xbp0ITg4mJCQELp06ULnzp2B/w2DKIrCkCFDWL16NZ07d2bFihW0bduWhQsX4ufnB4BWq2Xw4MEkJiYSFBRESEgITk5ODBs2TDeH49atW3z++ec8efKE2bNnM2vWLO7du0f37t158uTJK+v6+eefGTBgAE5OTgQHB+Pl5cWRI0cYNWoU8Hy+SqdOnbh37x6TJ09m3rx5qFQqevfuzalTp9Lty8/Pj6JFixISEsKAAQPYsWMHK1asyNRzA3D69Gn69OmDjY0NCxcuZOLEiZw6dYpevXqRnJys249Wq2XMmDG0a9eOr776ilq1ajFv3jx+/fVX3XML0LlzZ93nAA8fPuTgwYMsWLCAMWPG4OzsjLe3N99++y2DBg0iNDQUX19frl69iqenJ4qivPQ1+7fHjx/TuXNnTp06haenJ0uWLKFo0aIMHz6c7777Lt26wcHBaLVaFixYgLe3Nz/99BMBAQGvfH1eJSIigsDAQIYMGcLChQuJjY1l1KhRjB07lq5du7JgwQK0Wi2enp7pnjuARo0akT9//gxHd/bt20fr1q2xtLTUO48Q2U4RQmSL5s2bKz4+PoqiKEpYWJjSvXt35c6dO+nWGTx4sPLhhx8qiqIosbGxSuXKlZWAgIB06wQGBip9+/ZVFEVRFi9erJQrV0732E8//aSUK1dO2bNnT7ptli1bppQrV065du2aEhUVlWGduLg4JSAgQPn7778VRVGUsWPHKg0aNFCePXumWycmJkapVauWMnv27FfW2KlTJ+WTTz5Jt+zAgQPKhx9+qERERCijR49W6tatq8TFxekeV6vVSps2bZTOnTsriqIo9+7dU8qVK6eMHz8+3X569uypdOjQIdPPTbdu3ZQOHTooaWlpusdv3rypVKxYUdm4caOiKIqyY8cOpVy5cso333yjWyclJUXx8PBQ/P39dcvKlSunLF68WPf1i+f92LFj6bbr16+f8sMPP6TLFBoaqpQrV06JjIxMt+0//XP/QUFBSuXKlZW7d++mW6d3795Ko0aNFI1Go9ume/fu6dbx9fVVqlevrrzKi+d2x44dGWr5+eefdctWrlyplCtXTtm+fbtu2YEDB5Ry5copYWFh6Z67e/fuKRMmTNC9NoqiKImJiUr16tWVY8eOvbReHx8fpXnz5q/MKUR2kyM7QuSAihUrsnnzZtzd3bl37x6//voroaGh3Lx5E7VaDcD58+dRq9W0bt063ba+vr6Ehoa+dL+nTp3C3Nycdu3apVv+8ccfA3Dy5EkKFizI+++/z5QpU/D19WXfvn0oisKECRMoV64cACdOnKBevXrY2NiQlpZGWloa9vb21K5dm99///2l3zs5OZm//vqLVq1apVvepk0b/vvf/1K4cGFOnTpF8+bNcXBw0D1uYWFB+/bt+fPPP9MNU1WvXj3dftzc3EhMTMzUc5OUlMSFCxdo2rQpiqLoaihWrBhlypTh2LFj6barUaOG7nMrKytcXFx03+t1XjxfL7Zbs2YN7dq1IyoqitOnT7Nt2zaOHj0KoHtd3+TUqVPUqFGDYsWKpVv+8ccf8+jRI27evKlb9rLnKKsTqWvWrKn7vGDBghn27+TkBEBcXFyGbf89lHX06FHs7OyoV69elrIIkd0sjB1AiHfF2rVrWblyJTExMRQsWJDKlStja2vLs2fPAHj69CmAXpM5Y2NjcXZ2xsIi/T9lV1dXAJ49e4ZKpSI0NJTly5dz8OBBdu3ahaWlJa1atWLatGk4OTnx9OlT9u3bl+FsmtfliY2NRVEUChQo8Np8L95I/6lgwYIoikJ8fLxuma2tbbp1zMzMdPNx3vTcxMXFodVqWbVqVbr5Ny9YW1un+9rGxuaV3+t1/l3Lr7/+SkBAADdv3iRfvnyUL1+efPnyAZm/tk5sbCzu7u6v/F7/bDZe9xzpy97ePsOyfz8vr1K/fn2cnZ3Zv38/I0aMYN++fbRt2xZzc/MsZREiu0mzI0QO+P7775k9ezbjxo2jc+fOujft0aNH8+effwLg6OgIQHR0NKVLl9ZtGx4ezp07d6hVq1aG/ebPn5+YmBjS0tLSNTxRUVEAODs7A1C4cGGmTZuGn58fV65c4cCBA6xatYr8+fMzffp0HBwcaNiwIX379s3wPf7dSL1gb2+PSqVKNwEYnp+Vc/z4capWrUr+/PlfOoH20aNHunwvsr7Om56bKlWqoFKp6NOnD+3bt8+w/b+bBEO4e/cuw4cPp2XLlqxcuZLixYsDsGnTJt38n8zIzHOU21hYWPDhhx9y4MAB+vTpwy+//MK6deuMHUuIV5JhLCFywNmzZ3FwcGDQoEG6RichIYGzZ8/qzpqqWrUqlpaWGc7C+frrrxk9ejQqlQozs/T/ZOvWrYtGo8lwRObFxNZatWpx7tw5GjZsyMWLF1GpVFSsWBFPT0/KlStHRESEbj/Xr1+nYsWKeHh44OHhQZUqVVi3bh0HDx58aU358uWjYsWKGfL+9ttvDBo0iIiICOrUqcPRo0d1R68ANBoNP/zwAx4eHpk+FfpNz42NjQ2VKlXi5s2buvweHh6ULVuWpUuXcvLkyUx9nxf+/Ty/zKVLl0hJSWHw4MG6RgfQNTovjri8aV916tTh3LlzGc58++6773B1daVEiRJ6Zc8p7dq149q1a6xevZqCBQumGxoUIreRIztC5ICqVauyZcsWZs+eTfPmzYmKimLNmjU8fvyY/PnzA8+HaHr16sXXX3+NlZUV9evX588//2Tjxo2MHTsWCwsL3RGOvXv3Uq1aNT744APq1auHn58fUVFRVKpUiVOnTrFq1So+/fRT3n//fVJSUrCxscHb25uRI0dSsGBBfv/9dy5fvkyvXr0AGDZsGJ9//jmDBw+me/fuWFtbs23bNg4dOsTixYtfWdeoUaMYOnQoY8aMoVOnTkRHRzN//nyaN29OxYoVGTFiBL/88gu9evVi0KBBWFlZsXHjRu7du8fq1asz/fxl5rkZO3YsgwYNYty4cXz88cdoNBpCQ0O5cOECQ4cO1ev1cnR05Ny5c5w+fZratWu/dJ3KlStjYWHB3Llz6devH6mpqezcuZOffvoJQDcH6N+v2b/n5vTt25fvvvuOvn37MmLECJydndm9ezcnTpwgICAgU42XMdStWxdXV1dWr15Nnz59UKlUxo4kxCvlzn9FQpiYTz/9lOHDh7N//34GDhzI4sWLqV27Nv7+/jx9+pTr168D4OXlxbhx49i3bx+DBg1i165dTJw4kX79+gHw4Ycf4uHhga+vL2vWrEGlUrFy5Uo+//xz1q9fz6BBgzhw4ACenp7MmjULeD5fJTQ0lLJlyzJr1iz69+/P4cOH8ff3p1OnTgBUqFCBTZs2oVKp8Pb2ZtSoUTx69Ihly5bx4YcfvrKu5s2bs3LlSu7fv8/w4cNZsGAB//nPf5g/fz4AZcuWZfPmzRQsWJCJEyfi5eWFoiisX7+ehg0b6vUcvum5ady4MWvWrCEiIoJRo0bh7e2Nubk5a9euzTCx902GDBnCn3/+ycCBAwkPD3/pOiVKlGD+/PlERkYydOhQpk6dCsCGDRtQqVScOXMGyPia/ZurqytbtmyhSpUqzJo1i9GjRxMeHk5ISAifffaZXrlzkpmZGW3atEGtVr906FCI3ESlZHV2mxBCiFzt/v37tGzZksDAQF1jawy+vr6cOnWKI0eOGC2DeLfJkR0hhDBxd+/e5fz586Smpubo942Ojub8+fMZJrELkdOk2RFCCBO3fPlyunXr9sohuexy+PDhl96aRIicJsNYQgghhDBpcmRHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJk2ZHCCGEECZNmh0hhBBCmDRpdoQQQghh0qTZEUIIIYRJ+z90dTHceAKPZwAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "import numpy as np\n", + "from scipy.stats import linregress\n", + "\n", + "# Compute the best fit calibration curve\n", + "fit_params = linregress(cal_curve['conc_mM'], cal_curve['area'])\n", + "slope = fit_params[0]\n", + "intercept = fit_params[1]\n", + "\n", + "# Plot the fit over the data\n", + "conc_range = np.linspace(0, 8, 100)\n", + "cal = intercept + slope * conc_range\n", + "plt.plot(cal_curve['conc_mM'], cal_curve['area'], 'o', markersize=10, label='measurement')\n", + "plt.plot(conc_range, cal, '-', color='k', label='fit')\n", + "plt.xlabel('lactose concentration [mM]')\n", + "plt.ylabel('integrated peak area [a.u.]')\n", + "plt.legend()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Testing the Calibration\n", + "We also have a set of lactose solutions with known concentrations that we did not use when fitting the \n", + "calibration curve. We can use the `.map_peaks` method when quantifying these test \n", + "data to see if we get the same concentrations out that we know the peaks represent. " + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunittrue_conc_mM
013.560.2814491.66446010715.6473021.285878e+061lactose8.118521mM8.0
013.560.2805901.6492935316.6756686.380011e+051lactose3.981028mM4.0
013.560.2799681.6392232600.4008963.120481e+051lactose1.899415mM2.0
013.560.2795441.6362992154.1437642.584973e+051lactose1.557426mM1.5
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew ... concentration unit true_conc_mM\n", + "0 13.56 0.281449 1.664460 ... 8.118521 mM 8.0\n", + "0 13.56 0.280590 1.649293 ... 3.981028 mM 4.0\n", + "0 13.56 0.279968 1.639223 ... 1.899415 mM 2.0\n", + "0 13.56 0.279544 1.636299 ... 1.557426 mM 1.5\n", + "\n", + "[4 rows x 10 columns]" + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the test data \n", + "files = glob.glob('data/test/lactose*.csv')\n", + "\n", + "# Instantiate a dataframe to store the results\n", + "test_data = pd.DataFrame([])\n", + "\n", + "# Iterate through each file and quantify the peaks\n", + "for f in files:\n", + " df = load_chromatogram(f, cols=['time', 'signal'])\n", + " chrom = Chromatogram(df)\n", + " peaks = chrom.fit_peaks(verbose=False)\n", + "\n", + " # Now, use the map_peaks method to quantify the signal based off our \n", + " # calibration curve\n", + " mapping = {'lactose': {'retention_time': 13.56,\n", + " 'slope': slope,\n", + " 'intercept': intercept,\n", + " 'unit': 'mM'}}\n", + " measured_conc = chrom.map_peaks(params=mapping)\n", + "\n", + " # Parse the known concentration from the file name\n", + " known_conc = float(f.split('_')[-1][:-4])\n", + "\n", + " # Add it to the dataframe and concatenate\n", + " measured_conc['true_conc_mM'] = known_conc\n", + " test_data = pd.concat([test_data, measured_conc])\n", + "test_data" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "It looks like it's in good agreement! We can confirm this by plotting the measured \n", + "value versus the true value. If in agreement, everything should fall on the identity line. " + ] + }, + { + "cell_type": "code", + "execution_count": 14, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 14, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjYAAAG1CAYAAADqer7eAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB6t0lEQVR4nO3dd1xT1//H8VcSpiAyHKi4rRNxrzrrnq2z7j2r1i1QFy5wb9yz7j1q1Q53a93bqnXg3gKCyApJfn/wNb8iWgkmBMLn+Xj023Lvzck7J/mSD+eee65Cp9PpEEIIIYSwAEpzBxBCCCGEMBYpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwpbIQQQghhMaSwEUIIIYTFkMJGCCGEEBZDChshhBBCWAwrcwcwB51Oh1Zr/AWXlUqFSdoViUlfpwzp55Qh/ZwypJ9Thqn6WalUoFAoPnlcuixstFodISFvjdqmlZUSFxcHwsMjiYvTGrVtkZD0dcqQfk4Z0s8pQ/o5ZZiyn11dHVCpPl3YyKkoIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWI11OHk6K+CuntGi1miQdr9UqiI5WERsbg0Yjs+5NyVL6WqWyQqmUvy2EEMKYpLB5j06nIyoqgoiIsCQXNe+8eqVEq5XZ9inBUvra3t4RJyfXJF3CKIQQ4tOksHlPeHgIUVER2Nk5YGeXAaVSleQvHZVKkaZHENKStN7XOp2O2NgYIiJCAciUyc3MiYQQwjJIYfMvWq2GqKi3ODo64+iYyeDHW1kpZX2EFGIJfW1jYwtAREQoGTO6yGkpIYQwAvlN+i8ajQbQYWtrZ+4oIp14V9xoNHFmTiKEEJYhVRU2CxcupFOnTgm2Xb9+nY4dO1KqVClq1qzJihUrUiCJ8eY76HQ63kTG8up1FG8iY9Hp0u7pE2F8MrdGCCGMK9Wcilq9ejXz5s2jfPny+m2hoaF069aNOnXqMH78eC5evMj48eNxdnamZcuWZkz7aZHRao5fecaBc494+TpKvz2Lsz11ynpQpYQ7GeyszZhQCCGEsDxmL2yeP3/OqFGjOHfuHPny5Uuwb8uWLdjY2DBu3DisrKwoUKAA9+/fZ9myZam6sLkaFMyCnVeJUWsSjf28eh3FxoO32HEsiP7NPfHML5NGhRBCCGMx+6mov//+m0yZMvHTTz9RsmTJBPvOnj1L+fLlsbL6//qrUqVK3L17l+Dg4JSOmiRXg4KZs/USser4S8XfP/H07udYtYY5Wy9xNSh1vg7xaTqdjv37fyY0NMTcUYQQQvyP2UdsatWqRa1atT6479mzZxQqVCjBtqxZswLw5MkT3NySP9phZZW4ptNqkz/fQaGAt9FqFuy8ik6XuKB5n+5//7Ng51Vm9v9STksZ4N20FIUCzDll6eLF8/j7j2Pr1p8+uy2VSvHBz6Q5qVTKBP8WpiH9nDKkn1NGauhnsxc2/yU6OhobG5sE22xt468iiYmJSXa7SqUCFxeHDzyfilevlMn+kvnz3CNi1Elf1E9H/MjNyWvPqVcht8HPl96Z+xeUUqnQ50huUaLVKlAqlWTKlAE7u9R5NZ6Tk725I6QL0s8pQ/o5ZZizn1N1YWNnZ0dsbGyCbe8KmgwZMiS7Xa1WR3h4ZKLtsbExaLVaNBpdMtZI0fH7mYfJyvPr6Yd8VTqnUa+QqVq1HH5+k9izZxdXr14hS5YsfP/9UAAWLJjDy5cvKFmyDGPGTMDZ2RmAe/fuEhg4m0uXLpAhQwbKlCnPgAGDcXPLDMCbN29YsiSQv/76k+DgV2TK5Ez16jX5/vsh+kvkN2xYy65d23j58gWZM2ehceOv6dKlBwqFghUrlrB//89s27ZHn3Pfvj0EBIznzz/PAtCqVVOqV6/J6dMnCQkJYdKkqZQuXZYNG9awa9cOQkJekStXHjp27Ezdug3Q6eD8+bMMGdKf2bMXMGvWVJ48ecwXXxRm1KhxHD58gG3bNhMXF0e9eg0YPHiEvp+PH/+DFSuWcO/eXbJkyUKdOvXp0qWHvpiuWrUc3t6jOHTody5fvoSTkxMtW35Lp07dOH/+LAMH9gWgRYsmjBzpR/36jViyZAEHDvxKaGgI2bPn4Ntv29GsWauPvk8aTfytO8LCIomKMmyla1NTqZQ4OdkTHh6FRpO21wxKzaSfU4b0s+kEBd1h+vQpTJ48DTc3N5P1s5OTfZL+oE3VhY27uzsvXrxIsO3dz9myZfustj9UuHzOSrZvItW8CI369IHv0QEvX0fxNjoOR3vjno6aO3cGw4f/gI/PaObPn8X48aPJmzcfY8dOJCoqilGjvFm3bjUDBgzm1auX9O/fk9q16zFgwBCio6NZuXIJffv2YM2aTdjb2+Pv78eLF8+ZOHEqrq6uXL16mcmTJ5A7d16+/bYdf/55jDVrVjJx4mRy5crL339fZtIkP7Jnz0H9+o2SnHvXru1MnTqbjBkzkj9/QZYuXchvv+1n6FAf8ubNx8WL55k2bTLh4W9o0aI1EL8G0fz5s/D1HYutrQ2jRnnTt293KlX6ksDApVy4cI4ZMyZToUJlqlSpxsmTfzFmjC8DBw6hfPlKPH78iNmzp/HgwX0mTpyiz7Jw4VyGDPFm6FAffv11H0uWLMDLqxQlSpTE338ao0Z5s2zZj+TPX4CdO7dy+PBBxo8PIEuWrBw/fowZM6aQL19BSpYs9Z+vOXnFdMrQaLSpNpslkX5OGdLPxrVnzy78/ccTHR3F1KmTmTx5GmDefk7VhU358uXZtGkTGo0GlUoFwIkTJ8iXL99nza8xhZjYz/trOzrG+IVNgwZNqFmzNgDffNOCP/88Ru/e/ShatDgAFSpUJCjoDgA7d27DzS0zQ4f66B8/YcIUGjeuzeHDB2jUqCnly1fEy6s0X3wRP+8pe/Yc7NixhTt3bgHw5MkjbG1tyJ49J+7u7ri7u5M5c1ayZXM3KHelSlUoX74iAFFRUWzevIExY8ZTpUo1AHLm9ODFi6ds2LBGX9gA9Oz5HZ6eJQCoWbMWW7ZsxNt7FHZ2duTJk5eVK5cSFHSHKlWqsWbNSpo0+Vo/mpIzpwcjRoxk4MC+PH36hOzZcwDQsGFTfVHWq9d37NixlcuXL1KyZGkyZnQCwNnZBVtbOx4/foy9vR05cuTEzS0zLVu2IXfuvOTOLacZhRCWJSoqksmTJ/LTTzsBqFixMoMGDTNzqnipurBp2bIly5cvZ9SoUfTs2ZPLly/z448/Mn78eHNHS8TWRvVZj7ezNf5bkTt3Hv1/vztVlCNHTv02GxtbYmPjr8q6efMG9+/fo27dagnaiI2N5d69uwA0b96aP/88xm+/7efRo4cEBd3myZPHeHjEf3HXq9eIvXt/om3b5hQo8AXly1ekRo2vcHc3rLDx8Mil/+9794KIjY1h0iQ/AgL+/33XaDTExsYSExP90dfr6uqWYN6KjY0NsbEx+td7/frf7N//s37/u8UT7927qy9s8uTJmyCbg4MDarX6g7lbtGjNsWOHad68EYULF6VChUrUqlUXFxdXg16/EEKkZrdv38LbewhBQbdRKpX07TuAHj366AcgzC1VFzZubm4sX74cf39/mjdvTpYsWfD29qZ58+bmjpaIo701WV3seRka9ckrov5NAWR2tsfBzvhvxb8vk3/nY/cj0mp1lClTjmHDfBPtc3TMiE6nw8dnCHfu3KZu3QZ89VVt+vTpz7Rp/vrjnJ2dWbVqA1evXubMmVOcOnWCTZvW0aNHH7p16wWQaOXluLjEtxJ4N0H8XS6IHz36d5Hx7iaY1tb/P7n8/df7X/de0mp1tG/fmYYNmyTa925OEZBo8vqHXsM7uXLlZvPmXVy4cJYzZ07xxx9HWLNmJSNH+n3weYQQIq05efIvBg/uR3R0NFmyZGXy5BmUK1fB3LESSFWFzZQpUxJt8/LyYvPmzWZIYxiFQkHd8rlY/9tNgx6nA+qU8zD70vr58xfg4MHfyJo1m/7LPDw8jEmT/GjbtiMODo6cOHGcJUtWU7y4JxBflDx+/FA/CvTrr/uIiIigZctv8fIqRY8efZg6dRIHD/5Gt269sLa25u3bt+h0Ov3rffTovydc58mTF5VKxbNnT/WnogC2b99MUNAdRowYmezXe//+vQSjQxcunGPLlo0MH+6Lvf2nZ/S//55t3boJFxcX6tSpT/nylejXbxCDB/fj4MHfpLARQliEYsU8cXV1I1++/Pr5lqmNXNBvRFW9smNrrUrynaYUCrC1VlHF07BTNabQvHkrIiIiGDduFLdu/cPt27cYN24U1679Tb58+XFzc0OlUnHo0O88efKYGzeuMWaML8HBwajV8VeuxcTEsGDBXH75ZS9Pnz7h0qULXLhwDk9PLwBKlChJRMQb1q1bzdOnT/jtt1/Yt2/Pf8XC0dGRZs1asmzZIn75ZS+PHz9i//6fWbBgLq6uyZ9n1aFDZ44ePcSKFUt48OA+586dISBgAm/ehCcYsfkv9vbxV+bdunWTyMhIQkKCmT17Gn/+eZRnz55y8uRf3Lr1j/71CyFEWvT48SP9SLWTkxOrVq1n/vwlqbKogVQ2YpPWOdhZ07+5J3O2XoJPLNKn+N8//Vt4porF+XLkyElg4BIWLw6kX7+eqFQqihf3Yt68Rfo5IqNGjWflyiXs3LkVV1c3vvyyKm3atOePP46i0+n4+uvmvHkTzurVy3nx4jkZM2akZs3afPfdQABKly5L79792L59C6tWLadUqdIMGDCYSZP8/jPb998PxcXFlRUrlvDq1UuyZMlKjx69ad++S7Jf71df1WH8eFi7diXr1q0mY0YnqlSpps+aFAUKFKRy5Sr4+f1A79796dGjDxqNhlmzphEaGoKrqxvNm7emU6duyc4phBDmotPp2LZtM9OnB+DtPZJWrdoCGHxBSEpT6NLh7aY1Gi0hIW8TbVerYwkOfoqbW/YEczeSyspKSVycNtG9ov7dwe9+trVW0b+FJ575UtfVXWnFu75O6z73M2dKVlZKXFwcCA19axF9nVpJP6cM6WfDREREMGHCGH77bT8AderUZ/r0OZ+cNmHKfnZ1dUj769ikVZ753ZjZ/0uOX33GgbMJ7+6d2dmeOuU8qOKZnQwmmDAshBBCfI5r167i4zOUhw8fYGVlxcCBQ+nUqZvZ54ImlXyzmkgGO2vqlstFnbIevI2OIzomDjtbKxzsrNLMh0MIIUT6odPp2LRpHbNmTUOtVpM9ew6mTp2Fl1cpc0cziBQ2JqZQKHC0tzb64ntCCCGEMd2+fZPp0yej1Wr/Nw/RHyenTOaOZTApbIQQQgjBF18U/t+9/2xp165Tmj27IIWNEEIIkQ7pdDo2bFhLlSpVyZs3P4B+MdW0TAobIYQQIp0JC3vN2LE/cPToYXbvLsy6dVs/uNJ6WiSFjRBCCJGOXLx4Hl/fYTx79hQbGxtat26HtbXlzAOVwkYIIYRIB7RaLT/+uILAwDloNBpy587DtGlzKFKkqLmjGZUUNkIIIYSFe/PmDb6+wzh+/BgADRs2YfTocTg4OJo5mfHJvaJEsu3bt4eqVcsZrb1WrZqyYsUSo7UnhBAinp2dHRERb7C1tcXPbxIBAdMtsqgBGbERn6F27bpUrFjZ3DGEEEJ8gEajQavVYm1tjbW1NVOmzCQi4g1ffFHY3NFMSkZsRLLZ2tol+U7YQgghUk5w8Cv69evFvHkz9duyZ89h8UUNSGFj0SIiIpg61Z8mTepQv34NBg7sy40b1/T79+zZRdu2zalduwrDhw9kw4a1tGrVVL+/atVy7Nu3J0Gb/z5d9O9TUf7+4+jVK+Hdtl+8eE716hU4e/Y0AHv3/kS3bu2pVasKdepUZcCA3vzzz42P5r9y5RL9+/eiVq0qtGjRmJkzp/L2bUSCLOvWrWbUqBHUrVuNxo1rM2/eTOLi4vTH3LhxncGD+1G3bjWaNq3HtGn+REXF37tLp9Oxfv2PtG79DbVrV6Fr1/b6G74JIURadfr0Sdq0ac6pU3+xbdsWXrx4bu5IKUoKGwNERUV+9J+YmJgkHxsdHZ3sY5NKp9MxYsRAHj16wNSpc1i69EeKFy/Bd9/14ObNG/z22y/MmDGZVq3asGrVBjw9vVi+fHGy+6ZhwyZcv/43jx491G/77bf9ZM6chTJlynH06GFmzJjMt9+2Z8OGbcydu5iYmBimTJnwwfZu377FoEH9KF++Ij/+uBE/P3/++ec6Q4YM4N83pF+5cimlSpVl5cr1dO/em61bN3HgwK8APH36hO+/742LiytLlqwiIGA658+fY/r0AACWLl3Ijh1bGTx4OGvWbKZ167bMmDGFHTu2JrsfhBDCXDQaDQsXzqNPn268evWSAgW+YN26LWTNms3c0VKUzLExQOXKZT66r2rVGixevEz/81dfVSE6OuqDx5YtW54VK9bqf27UqDahoaEfPLZYMU82bNhmcNZz585w5cpl9uz5HRcXFwD69OnPlSuX2Lp1E/fuBVG7dj1atWoLQNeuPfnnn+vcunXT4OcCKF26LDly5OS33/bTvXtvIL6wadCgMUqlkkyZMuHjM5oGDRoD4O6enaZNmzFjxuQPtrdx4xrKlStP1649AciVKzfjxvnz7bffcOHCOSpUqABAxYqVad26rf6Yn3/ezeXLF2nQoDE//bSTjBmdGDVqHFZW8R91X9/RXLx4nqioKDZv3sCYMeOpUqUaADlzevDs2VM2bFhDixatk9UPQghhDi9ePGfkyBH6EfLmzVvj7T0Se3t7MydLeVLYWKibN+NP8Xz77dcJtsfGxhITE8Pdu0HUq9cowb7Spcsmu7BRKBQ0aNCY3377he7de3Pr1j8EBd1h0qRpAJQqVYZ79+6yevVyHj16yIMH97l9+yZarfaD7f3zzz88evSAunWrJdp3//49fWGTJ0++BPscHBz1p6Lu3LlF4cJF9UXNuxylSpXh+vW/iY2NYdIkPwICxuv3azSa//VRNLa2dsnqCyGESElxcXH06NGZhw/vkyFDBkaPHk+jRk0//UALJYWNAU6cOP/RfUqlKsHPhw8f/+ixCkXCM4D79h1M8rFJpdVqcXBwYMWKdYn2WVtb06FDqwSndOK3J15O+/1j/j1/5X2NGjVl1aplXL/+NwcP/k6JEl7kzp0HgAMHfmXixLHUrduAokWL06TJNwQF3WHWrKkfbEun01KvXkM6d+6eaJ+zs0uC1/KxzCqV1Udv4qbVxh8zYcIU8uTJm2j/h/pCCCFSIysrKwYMGMSKFUuZPn12oj/40hspbAxgb5/B7McmVf78BXn79i2xsbHkz19Av33q1EkULPgFhQoV4fLli3z7bTv9vuvX/07QhpWVVYLJum/fRhAaGvLR53R3z07p0mU5fPgAhw79TpcuPfT71q5dRdOmzRg+/Af9tj/+OArEFyLvFyD58hXg7t07eHjk0m978OAegYFz6du3P87OTp/sg7x58/H777+g0WhQqeILz6NHDzNnznTWrt2CSqXi2bOn+lNRgP403YgRIz/ZvhBCmMvz58948eI5JUqUBKB+/UbUrl0vwQh1eiWThy1UxYqV+eKLQowd+wPnzp3h0aOHLFgwl717fyJPnnx06tSVY8cOs379jzx8+IAdO7by66/7ErRRokRJdu/ewT//3CAo6DaTJvl98v80jRo1ZdeuHbx+/Zratevpt2fNmo0rVy7xzz83ePz4EZs3r2fHji1A/Omx97Vt25GbN/9h+vQA7t4N4u+/rzJu3GgePLiPh0fuJPVBy5bfEhYWxowZk7l37y6XLl1g0aL5lC9fEUdHR5o1a8myZYv45Ze9PH78iP37f2bRonm4urolqX0hhDCHP/44Sps2zRg8uD+vXr3Ub5eiJp70goVSqVTMnr2QhQvn4uf3A1FRUeTJkw9//2mUKxc/P2XChMksW7aI5csXU7JkaZo0+YZTp07o2xg+/AdmzpzCd991x9nZhbZtOxAZ+eEJ0e/UrFmbWbOmUa1aDRwd/39VyyFDvJk2zZ8BA3pjY2NNwYKFGD16PH5+I7l27SqlS5dN0I6nZwlmzQpk+fJF9OjRCXt7O8qUKU///oOTfAfazJmzMHt2IIsWzad7945kzOhI7dr16NOnPwDffz8UFxdXVqxYwqtXL8mSJSvduvWiY8euSWpfCCFSklqtJjBwDj/+uAKAYsWKJ7oiV4BC9/4kinRAo9ESEvI20Xa1Opbg4Ke4uWVP1hwLKyslcXEfngybFqxYsYT9+39m27Y9nz7YzNJ6X7/zuZ85U7KyUuLi4kBo6FuL6OvUSvo5ZaT1fn7y5DG+vkO5fPkSAO3adWLIkBFJ/kMvpZiyn11dHVCpPn2iSUZshBBCiFTs8OGD+PmNJDw8jIwZnRg/3p9ateqaO1aqlaTCpnbt2slqXKFQcODAgWQ9VgghhBDxV5WGh4fh6enF1KmzyJnTw9yRUrUkFTaPHz+mRo0auLq6JrnhkJAQjh07luxgIuX16NGHHj36mDuGEEKIfxk1yo/8+QvQuXO3VHfKOjVK8qmo/v374+XlleSGL168yNGjR5MVSgghhEivDhz4lcOHDzJp0lQUCgUZMjjIH50GSFJhM3HiRHLlyvXpA/8ld+7cTJw4MVmhhBBCiPQmJiaGWbOmsnnzBgC+/LIqjRt//YlHifclqbBp3drw++a4urom63GpQ7q7UEyYSTq8KFEI8QH379/Dx2coN25cA6B7917Uq9fQzKnSpiQVNkWLFk1ygwqFgmvXriU7kDnFr06rICYmGmtrW3PHEelAbGz8GhQqlVygKER69csve5k4cSxv377FxcWFSZOmJVgRXRgmSb9N3/1VWaxYMapVq/bB+/NYAqVShb29AxERr4mLU2NnlwGlUvXR+w29T6tVoNHIX+ApIa33tU6nIzY2hoiIUOztHVEqZRFwIdKjRYvms2TJAgDKli1HQMBMsmXLZuZUaVuSCptly5axb98+Dhw4wKZNm6hbty6NGzemUqVKSf7STyucnFyxtrYlIuI10dGJF/H7L0ql8qN3qxbGZSl9bW/viJNT0q82FEJYlqpVq7Nq1TK6du1J79795LYIRmDQysOxsbEcO3aM/fv3c+jQIRwcHGjQoAFNmzalZMmSpsxpVB9befjfdDodWq0WrVaTpDZVKgWZMmUgLCwyTY8kpAWW0tcqlVWqHqlJ6yu1phXSzykjNfXzgwf3yZ07j/7n58+fW8woTZpbedjGxoY6depQp04doqOjOXToEPv376dz585kzpyZxo0b06hRI4oUKZLs4KmFQqFApVLp7wr9KVZWSuzs7IiK0pj9/zSWTvpaCJEWRUVFMnnyRH79dR9r126hUKHCABZT1KQWyf5z0c7OjkaNGjF//nz++usvvv76a1auXEnz5s2NmU8IIYRI827fvkWHDt/y0087UavVXL58wdyRLNZnncwLCgpi//79/PLLL9y6dYvMmTPToEEDY2UTQggh0jSdTseuXduZOnUS0dHRZMmShYCAGZQvX9Hc0SyWwYXN3bt3ExQzzs7O1KtXj9GjR1OhQgWLm0wshBBCJEdk5FsmTRrHvn17AKhcuQr+/tNwdXUzczLLlqTC5v79++zfv5/9+/dz8+ZNnJycqFOnDj4+PlSqVCnJ81CEEEKI9GLXru3s27cHlUpF//6D6Nq1Z6q+YMBSJKmwqV+/PiqVijJlyjBmzBiqVq2qvyTt+fPniY7PkSOHcVMKIYQQaUybNh24du1vWrb8ltKly5o7TrqR5FNRGo2GM2fOcPbs2U8ee/369c8KJYQQQqQ1ERERrFixhD59+mNnZ4dKpWLSpKnmjpXuJKmwmTx5sqlzCCGEEGnW9et/4+09hIcPHxAREcGoUX7mjpRuJamwkUu4hRBCiMR0Oh2bN69n5sypqNVqsmfPQdOm35g7VrqWrMu9Y2NjCQoK4s2bNx/cX758+c8KJYQQQqR24eHhjB8/ioMHfwegZs3ajB/vT6ZMzuYNls4ZXNicOHGCYcOGERoaCvz/DTIVCgU6nQ6FQiFzbIQQQli0f/65wdChA3j8+BFWVtYMGTKC9u07yZInqYDBhU1AQAAuLi6MGzcOZ2dnE0QSQgghUjcnJyfevHmDh0cupk6dRfHiJcwdSfyPwYXNgwcPmD17NrVq1TJFHiGEECJViomJwdbWFoDs2XOwYMFS8ubNT8aMGc2cTPybwSsFFS5cWH8aSgghhEgPLl48T7NmDTl27LB+W4kSJaWoSYUMHrEZOXIkw4cPR6lU4uXlhb29faJjZIE+IYQQlkCr1fLjjysJDJyNRqNh+fLFVKtWU+bSpGLJvipq5MiRH90vk4eFEEKkFjqdjjeRscTqFMRExWJnrUpSYRISEsKYMb4cP34MgAYNGjNmzHgpalI5gwubcePGoVKpGDJkCFmyZDFFJiGEEOKzRUarOX7lGQfOPeLl6yj99izO9tQp60GVEu5ksLP+4GPPnz+Lj89QXr58ga2tLd7eo2jRorUUNWmAwYVNUFAQc+fO5auvvjJFHiGEEOKzXQ0KZsHOq8SoNbxfirx6HcXGg7fYcSyI/s098cyf8G7bQUF36NmzM1qtlrx58zFt2hwKFSqccuHFZzF48nCePHmIior69IFCCCGEGVwNCmbO1kvEqjUA6N7b/+7nWLWGOVsvcTUoOMH+/PkL0Lx5K5o0+YYNG7ZJUZPGGDxiM2jQIKZOnUqmTJkoVaoUDg4OpsglhBBCGCwyWs2CnVfR6RIXNO/T/e9/Fuy8SvtKVhQrUhg3t8wA/PDDWKyskjUNVZiZwe/azJkzefXqFT179vzgfoVCwbVr1z47mBBCCGGo41eeEfO/kZqk0Gq13D3/MwPX7adChcosWrQcpVIpRU0aZvA717hxY1PkEEIIIT6LTqfjwLlHST4+Nuo1906sIuLFLQCyZ89OXFwcNjY2poooUkCSCpuHDx/i7u6OtbU1AwYMSFLDsbGxPH/+nFy5cn1WQAC1Wk1gYCC7d+8mLCyMokWLMnz4cMqUKfPZbQshhLAMEVHqBFc//Zfwp9e4d3I1cTERKK1syV2uHcN9hmFj8+GrpETakaTJw/Xq1TN4bZrr169Tr169ZIV636JFi9i+fTuTJk1i165d5M+fn169evH8+XOjtC+EECLti4n99CkonVbD40u7uX00kLiYCOydPShSzxfXvBWIjolLgZTC1JI0YqPT6Th69ChBQUFJbvj+/fvJDvW+gwcP0qRJE6pWrQqAr68vW7du5eLFi9SvX99ozyOEECLtsrVRffIYrUbN60cXAMhcsBoepVqitIo/9WRnK/NqLEGS38UFCxYY3LixFjJydnbm8OHDdOzYkezZs7N582ZsbGwoWrSoUdoXQgiR9jnaW5PF2Z5Xr6M+ekWUytqOfF/2JPrNM1xzlwNAAWR2tsfBTgobS5Ckd/HgwYOmzvGfRo0axZAhQ6hduzYqlQqlUsncuXPJnTt3stu0sjJ4CZ//pFIpE/xbmI70dcqQfk4Z0s/GVa9CLtb/dlP/s06r4fHl3djYO5O1cC0AMrh4kMHFI8Hj6lfIhbX1p0d8xH9LDZ/nJBU2OXPmNHWO/3Tnzh2cnJxYsGAB2bJlY+vWrfj4+LBu3TqKFClicHtKpQIXF9Osv+PklPimoMI0pK9ThvRzypB+No4m1Quy/cgdYtQaoiOCuffXSt4G30WhVOHsUQobB9cExysUYGutonH1gjjay8RhYzHn51mh0+k+tYaRWT1+/Jj69euzevVqypUrp9/evn17XFxcknWKTKPREh5u3NWTVSolTk72hIdHodFojdq2SEj6OmVIP6cM6Wfju3wnmDEzVnPv1Fo0sZGorO3JXaEjLrlKJzhOQXxhM6xtaUoUcPtwY8Igpvw8OznZJ2kkKNWfULx8+TJqtZoSJUok2F6yZEmOHTuW7Hbj4kzzC0Sj0ZqsbZGQ9HXKkH5OGdLPxqFWx/Lz5kXc+WMNABlc85D/yx7YOGbWH6MgftVhG2sV/Vt4UjSPi/S9kZnz85zqC5vs2bMD8M8//+Dl5aXffvPmTfLkyWOuWEIIIVIZjUZDz55duHQp/qqntu06U7JGW45cfJ5gfZvMzvbUKedBFc/sZJAJwxYn1b+jXl5elCtXDh8fH/z8/HB3d2fXrl2cOHGCDRs2mDueEEKIVEKlUlGrVh3u3g1i4sTJ1KgRP1m4QcV8RKs12NrbEhMVg521ymhX7YrUJ9XPsQEICwtjzpw5HDlyhLCwMAoVKsTQoUOpUKFCstrTaLSEhLw1akYrKyUuLg6Ehr6VIU0Tk75OGdLPKUP6+fPExMQQHPyKHDniL3LRarWEhASTOXOWBMdJP6cMU/azq6tDkubYGFzYhISE4O/vz5EjR4iKiuL9h6eFm2BKYZO2SV+nDOnnlCH9nHwPHtzH23sIMTHRrF+/lQwZPn61q/RzykgNhY3Bp6LGjRvH0aNHady4Me7u7iiVsvaCEEKIlPXLL3uZOHEsb9++xcXFhfv371G0aHFzxxKpgMGFzR9//MHIkSNp06aNKfIIIYQQHxUdHc306QFs374FgDJlyjF58kyyZctm5mQitTC4sLGxsTHKHbuFEEIIQ9y9G4S392Bu3bqJQqGgZ8++9OnTHyurVH8djEhBBp9Hqlu3Lj///LMpsgghhBAfNWfOdG7duomrqxsLFy6nf/9BUtSIRAz+RBQrVow5c+bw8OFDSpYsiZ2dXYL9CoWC/v37Gy2gEEIIATB69Hhsbe0YMeIHsmTJau44IpUy+KqoT92bSaFQcP369c8KZWpyVVTaJn2dMqSfU4b088fdvn2LY8cO0717789uS/o5ZaTJq6Ju3LiRrEBCCCFEUuh0Onbv3sGUKROJjo4md+481KlT39yxRBrxWScn79y5w5s3b3B1dSV37tzGyiSEECKdiox8i7//ePbu/QmASpW+pEyZcp94lBD/L1mFzc8//8zUqVN59eqVflvmzJkZNmwYzZo1M1Y2IYQQ6cjNm/8wYsQg7t+/h1KppF+/gXTv3lvWSxMGMbiwOXToECNGjKBSpUoMHTqUzJkz8+LFC3766Sd++OEHnJ2dqVmzpgmiCiGEsFQ//bSTSZP8iI2NJWvWbEyZMlNGakSyGFzYLFq0iAYNGjB79uwE21u2bMmQIUNYsmSJFDZCCCEMkjGjE7GxsVStWoOJE6fg4uJi7kgijTJ4fO/mzZs0b978g/uaN28uk4uFEEIkSXR0tP6/v/qqNkuXrmbevEVS1IjPYnBh4+LiwuvXrz+4LzQ0FBsbm8/NJIQQwoLpdDo2bVpH06b1eP78mX57hQqVZD6N+GwGf4IqV67M/PnzefLkSYLtjx8/ZsGCBVSpUsVo4YQQQliW8PBwhg8fyJQpk3j58oX+nk9CGIvBc2yGDh1Ky5YtadCgAaVKlSJLliy8fPmSixcvkilTJoYNG2aKnEIIIdK4K1cu4+MzhCdPHmNlZc3gwcPp0KGzuWMJC2PwiE2WLFnYuXMnnTp1Ijo6mqtXrxIdHU2nTp3YuXMnOXPmNEVOIYQQaZROp2Pt2tV069aBJ08ekzOnB6tXb6Bjxy4oFApzxxMWJlnr2Li5uTFixAhjZxFCCGGBtmzZyMyZUwCoU6ceY8dOwsnJycyphKVKUmETGBhI69atyZYtG4GBgf95rNwEUwghxL99/XVzdu/ewddfN6dNm/YySiNMKsmFTfXq1aWwEUII8UlarZbffttPvXoNUSqV2Nvbs3btZlQqlbmjiXQgSYXNv9emkXVqhBBCfExoaCijR/tw/PgxHj9+RI8efQCkqBEpxuDJw4GBgTx//vyD+x49esSECRM+O5QQQoi05/z5s7Rp04zjx49ha2uLi4uruSOJdMjgwmbBggUfLWwuXbrE1q1bPzuUEEKItEOr1bJs2WJ69uzMixfPyZs3H2vXbqFFi9bmjibSoSSdimrbti2XLl0C4i/ba9OmzUePLVGihHGSCSGESPWCg18xapQ3J0/+BUCTJt8wcuRYMmRwMHMykV4lqbDx9/dn//796HQ6FixYQMuWLXF3d09wjFKpxMnJiXr16pkkqBBCiNTn5csXnDt3Bjs7O3x9x/DNNy3kqidhVkkqbAoUKMCAAQOA+Kue3l36LYQQIn0rUqQYkyZNpUCBLyhY8AtzxxHC8AX63hU4r169Qq1Wo9PpgPhzrFFRUZw9e5Z27doZN6UQQohU4eXLF4wbN4p+/QZSvHj81IP69RuZOZUQ/8/gwubGjRsMHTqUu3fvfnC/QqGQwkYIISzQiRPHGTXKm5CQYF6+fMGmTTvlbtwi1TG4sJk2bRrh4eH4+Phw+PBhbGxs+Oqrrzh27BjHjh1jzZo1psgphBDCTOLi4li8OJAVK5ag0+n44otCTJ06W4oakSoZ/Km8dOkSgwYNomvXrjRu3JjIyEjat2/P4sWLqVOnDmvXrjVFTiGEEGbw/PkzevfuyvLli9HpdLRq1Ya1a7eQL19+c0cT4oMMHrGJjY0lX758AOTPn59//vlHv69Fixb4+fkZL50QQgizefjwAZ06fcvr169xcHBgzJgJNGjQ2NyxhPhPBo/Y5MiRg4cPHwKQJ08eIiIiePToEQA2NjaEhYUZN6EQQgizyJnTA0/PkhQpUowNG7ZLUSPSBINHbOrVq8eMGTOwt7enQYMG5M+fn9mzZ9O7d29WrlxJrly5TJFTCCFECnj27CmZMmXC3j4DSqWSgIDp2NraYmtra+5oQiSJwSM2AwYMoGzZsmzfvh2AH374gQMHDtCsWTNOnjzJ999/b/SQQgghTO/IkUN8+20zJk+eqN/m5OQkRY1IUwwesYmOjmbevHmo1WoAqlWrxs8//8zVq1cpXrw4uXPnNnpIIYQQpqNWxzJ37kzWrfsRgDt3bhMZ+VZuiyDSJINHbFq3bs2+ffuwtrbWb8uVKxcNGzaUokYIIdKYx48f0bVrB31R07FjF1avXi9FjUizDB6xCQsLw8XFxRRZhBBCpKCDB3/Dz28UERFvcHLKxIQJk6lZs5a5YwnxWQwesencuTPTpk3j5MmThISEmCKTEEIIE3v7NgJ///FERLzBy6sUmzbtkKJGWASDR2x2797NkydP6Nat2wf3KxQKrl279tnBhBBCmI6DgyOTJk3l9OmT9O8/KMH0AiHSMoMLm6ZNm8ot6YUQIg369df4+ZG1atUF4Msvq/Lll1XNnEoI4zK4sPnU5dzPnj1LdhghhBDGFx0dzYwZk9m2bTOOjo4ULVqc7NlzmDuWECZh8BybokWLcvny5Q/uO3v2LA0bNvzsUEIIIYzj3r0gOnduw7Ztm1EoFLRt25EsWbKaO5YQJpOkEZuVK1cSGRkJgE6nY+vWrRw7dizRcRcuXMDGxsa4CYUQQiTL3r0/MWnSOKKiInFxcSUgYDqVK1cxdywhTCpJhU1sbCyBgYFA/OTgrVu3JjpGqVSSMWNGvvvuO+MmFEIIYRCtVsvEiWPZuXMbAOXLVyQgYLqM1Ih0IUmFTd++fenbty8ARYoUYcuWLXh5eZk0mBBCiORRKpXY2dmjUCjo06c/vXp9h0qlMncsIVKEwZOHb9y4YYocQgghPoNOpyM6Ohp7e3sAhgwZQf36DSlVqoyZkwmRsgwubACOHz/O4cOHiYqKQqvVJtinUCgICAgwSjghhBCfFhn5loCACTx58pilS1djZWWFjY2NFDUiXTK4sFm+fDkzZszA1tYWV1fXRGvayBo3QgiRcm7e/Adv78Hcu3cXpVLJhQvnKF++orljCWE2Bhc269evp2nTpvj7+8sVUEIIYSY6nY7t27cwfXoAMTExZMmSlSlTZlK2bHlzRxPCrAwubIKDg2nVqpUUNUIIYSYRERFMmjSWX37ZB0CVKtWZOHEKrq6uZk4mhPkZvEBfsWLFuHXrlimyCCGESILRo3345Zd9qFQqBg0azvz5i6WoEeJ/DB6xGTlyJIMHDyZDhgyULFlSPwP/33LkkKW6hRDCVL7/fgj379/Fz2+STBAW4j0KnU6nM+QBxYsXR6vVotPpPjpR+Pr160YJZyoajZaQkLdGbdPKSomLiwOhoW+Ji9N++gEi2aSvU4b0c8pISj+Hh4dz9uxpatWqo9+m1WpRKg0edE+35POcMkzZz66uDqhUn/7MGzxiM2nSpGQFEkIIYbirV6/g4zOEZ8+esnz5GkqXLgsgRY0QH2FwYdO8eXNT5BBCCPEvOp2O9evXMGfODOLi1OTIkVMu2hAiCZK1QF9sbCzbtm3jr7/+4uXLlwQEBHD69GmKFy8ut1oQQojPFBb2Gj+/kRw5cgiA2rXr4ufnj5OTk5mTCZH6GTyWGRISQsuWLfH39+f+/ftcvnyZ6Ohojh49SqdOnbhw4YIpcrJr1y4aNWpEiRIlaNy4Mfv37zfJ8wghhDldunSBtm1bcOTIIaytrfH1HcOMGfOkqBEiiQwubKZNm8bbt2/Zt28fO3fu5N3c47lz51KiRAnmzZtn9JC7d+9m5MiRtGnThp9//plGjRoxdOhQkxVRQghhLtev/83Tp0/IlSs3a9Zsom3bDrKiuxAGMPhU1OHDhxk5ciR58uRBo9Hot9va2tK9e3d8fX2NGlCn0zF37ly6dOlCly5dAOjfvz/nz5/n9OnTlC5d2qjPJ4QQ5tSmTQc0Gi3ffNMCR0dHc8cRIs0xeMQmJiYGZ2fnD+5TqVSo1erPzZRAUFAQjx8/pmnTpgm2r1ixgj59+hj1uYQQIqWdP3+WVq1a8ebNGyD+fnsdOnSWokaIZDJ4xKZEiRJs2LCBGjVqJNq3Z88ePD09jRLsnXv37gEQGRlJjx49uHbtGh4eHnz33XfUqlUr2e1aWRn3Usl319Yn5Rp78Xmkr1OG9LNpabVali9fwoIF89BoNCxeHMiIET+YO5bFks9zykgN/WzwAn1nz56la9euFChQgBo1arBs2TK6du3K3bt3+fPPP1m+fDmVKlUyWsDdu3fj7e2Nh4cHAwYMoEiRIvz6668sXryYVatWUblyZYPb/K/FBYUQwtRevXrFwIEDOXr0KAAtWrRgypQpODg4mDmZEGmfwYUNwJkzZ5g5cyaXL19Gq9WiUCgoVqwYQ4cOpUqVKkYNuG/fPoYMGYKfnx/t27fXb+/duzcAS5cuNbhNjUZLeHiU0TJCfHXq5GRPeHgUGo2samlK0tcpQ/rZNE6fPoWPzzBevnyBnZ0do0f70bVrJ968iZZ+NiH5PKcMU/azk5O9aVYeBihfvjybNm0iOjqasLAwHB0dsbe3N8lKmO7u7gAUKlQowfaCBQty5MiRZLdrqiW1NRqtLNedQqSvU4b0s/H88steRo4cgVarJX/+AkybNociRQqjUCikn1OI9HPKMGc/J6sSWbRoET169MDOzo5s2bJx9epVqlSpwurVq40cL/5u4g4ODly6dCnB9ps3b5I7d26jP58QQphKhQqVcXPLzDfftGD9+q0ULPiFuSMJYXEMHrFZvnw5gYGBdO7cWb8tT548fPPNN8ycORN7e3vatGljtIB2dnb07NmTBQsWkC1bNry8vNi7dy/Hjx83SSElhBDGdPv2LX0B4+rqyubNO3F1dTNzKiEsl8GFzZYtWxgyZAg9e/bUb3N3d8fX1xdXV1fWrFlj1MIGoF+/ftjb2zN79myeP39OgQIFmD9/PhUrVjTq8wghhLHExcWxZMkCli9fzMSJU2jS5BsAKWqEMDGDC5vnz59TvHjxD+4rUaIECxYs+OxQH9KtWze6detmkraFEMKYnj9/zsiRwzh37iwAN25c0xc2QgjTMniOTa5cufjrr78+uO/UqVP6yb5CCJEe/fnnMdq2bca5c2fJkCEDU6bMZPhwWZ9GiJRi8IhNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRAiVVOr1SxYMJfVq5cDUKRIMaZOnUWePHnNG0yIdMbgwqZDhw48e/aMVatWJZi8q1Kp6NKlC127djViPCGESBuuXr2sL2ratGnP0KE+2NramjmVEOlPshboA3jz5g0XLlwgLCwMJycnvLy8cHFxMXY+k9BotISEvDVqm1ZWSlxcHAgNfStrJJiY9HXKkH423LJli8mbNy916zZI8mOkn1OG9HPKMGU/u7o6mG6BPoCMGTNSvXr15D5cCCHSNLU6lkWLAmnZ8lty5vQAoFevvmZOJYQwuLCJiopi8eLFHD58mKioKLTahBWZQqHgwIEDRgsohBCpzePHj/DxGcrVq5c5ffoka9ZsMsnK60IIwxlc2Pj7+7N9+3YqVKhA0aJF5f/MQoh05eDB3/DzG0VExBsyZnSiR48+8ntQiFTE4MLmt99+Y8iQIfqbUAohRHoQGxvLrFlT2bRpPQBeXiWZMmUWOXLkNHMyIcS/GVzYxMXF4eXlZYosQgiRKr18+YJBg77j2rW/AejSpQcDBgzG2trazMmEEO8zePy0atWqHDt2zBRZhBAiVcqUyRmdToezszPz5i1myJARUtQIkUoZPGLTqFEj/Pz8CAkJoWTJktjb2yc6plmzZsbIJoQQZhMTE4NKpcLKygobGxtmzJiHlZUV2bLJ6upCpGYGr2NTpEiR/25QoeD69eufFcrUZB2btE36OmWk536+dy8Ib+8h1KxZm379Bpr0udJzP6ck6eeUkSbXsTl48GCyAgkhRFqwd+8eJk3yIyoqkpCQEDp16kbGjBnNHUsIkUQGFzY5c/7/FQBRUVFERETg7Ows55uFEGlaVFQU06b5s3PnNgDKlatAQMB0KWqESGOStfLw2bNnmT59OleuXOHdmSwvLy+GDBlCpUqVjBpQCCFM7c6d23h7D+HOnVsoFAp69fqOPn36o1KpzB1NCGEggwub8+fP07VrV3LlykW/fv3InDkzL168YO/evfTs2ZO1a9dSunRpU2QVQgiji4qKpGfPToSGhpI5cxYCAqZToYL8gSZEWmXw5OHOnTujVCpZsWJFgr9mtFotPXr0QKFQsHLlSqMHNSaZPJy2SV+njPTUz7t2bWf//r0EBEzDzS1zij53eupnc5J+ThmpYfKwwevYXLlyhc6dOycaolUqlXTs2JHLly8b2qQQQqSoW7f+4cqV//9d9c03LVi0aHmKFzVCCOMzuLBxcHAgLi7ug/vUajUGDgAJIUSK0el07NixlY4dv2X48IG8fh0KxC9TIfd7EsIyGPz/5DJlyrB48WLevk14KiciIoKlS5dSrlw5o4UTQghjefs2gh9+GM6ECWOIiYmhYMEvkL/DhLA8Bk8eHjZsGC1atKBOnTrUrFmTLFmy8PLlS44cOUJMTAwBAQGmyCmEEMl248Z1vL0H8+DBfVQqFQMGDKZLlx4ySiOEBTK4sMmTJw+bN28mMDCQY8eOERYWRqZMmahYsSIDBgygYMGCpsgphBAG0+l0bN26iRkzJhMbG4u7e3amTJlJqVJlzB1NCGEiyVrHpmDBgowaNYosWbIA8Pr1a549eyZFjRAi1Tl16i9iY2OpUeMrxo8PwNnZxdyRhBAmZPA4bHh4ON26daNTp076bZcvX6ZZs2b069ePqKgoowYUQghDvbuIQaFQ4Ofnz+jR45gzZ6EUNUKkAwYXNjNmzODWrVsMHTpUv61SpUosXLiQq1evMm/ePKMGFEKIpNLpdKxfv4YxY3z1xY2TkxOtWrVFoVCYOZ0QIiUYXNgcOnQIHx8f6tWrp99mY2NDrVq1GDp0KPv37zdqQCGESIrw8DCGDv2e6dMD+Pnn3Rw//oe5IwkhzMDgOTZv377Fycnpg/vc3NwIDQ397FBCCGGIy5cv4uMzlKdPn2Btbc3Qod5UqVLN3LGEEGZg8IhN8eLF2b59+wf37dixg8KFC392KCGESAqtVsuPP66ge/eOPH36BA+PXPz440bateskp56ESKcMHrH57rvv6NWrFy1atKBu3bq4ubkREhLCwYMH+fvvv1m8eLEpcgohRCITJ/qxc+dWAOrVa8iYMRPImDGjmVMJIczJ4MKmSpUqLFq0iHnz5jFv3jx0Oh0KhYKiRYuycOFCqlevboqcQgiRSOPGTdm//2eGDfOhVas2MkojhEjeOjY1atSgRo0axMTE8Pr1azJmzEiGDBmMnU0IIRLQarUEBd2mYMFCAJQrV4H9+w/h4iKXcQsh4n3WeuK2trZky5ZNihohhMmFhAQzYEBvOnVqy717QfrtUtQIIf5NbpQihEj1zp49TZs2zfjrrz/R6bQEBd0xdyQhRCqVrFNRQgiREjQaDcuXL2bJkgVotVry5y/AtGmz9aeihBDifVLYCCFSpVevXjJy5AhOnz4JwNdfN+eHH8Zgby+nvoUQHyeFjRAiVdq+fQunT5/Ezs6eUaP8aNq0mbkjCSHSgGQVNiEhIaxYsYK//vqLly9fsnz5cg4cOECRIkWoU6eOsTMKIdKh7t178+zZUzp16kb+/AXMHUcIkUYYPHn44cOHfP3112zZsoVs2bIRHByMRqPh7t27DBw4kCNHjpggphDC0j1//pypUyehVscCYG1tjZ/fJClqhBAGMXjEZurUqbi5ubF27VoyZMiAp6cnADNnziQmJobFixdTs2ZNY+cUQliw48f/YPRob0JDQ7Gzs2fQoGHmjiSESKMMHrE5ceIE/fr1w8nJKdEqn23atOHWrVtGCyeEsGxqtZp582bSv38vQkNDKVy4KM2atTB3LCFEGpasOTYqleqD22NjY2VJcyFEkjx79hQfn6FcunQBgG+/bc+wYT7Y2tqaOZkQIi0zeMSmXLlyLF26lMjISP02hUKBVqtl48aNlClTxqgBhRCW58yZU7Rp04xLly7g6OjItGlzGDlyrBQ1QojPZvCIzbBhw2jXrh316tWjYsWKKBQKVqxYwZ07d7h//z4bNmwwRU4hhAXJls2duLg4ihXzZNq02Xh45DJ3JCGEhTB4xKZQoUJs376dihUrcurUKVQqFX/99Re5c+dm06ZNFC1a1BQ5hRBp3Nu3Efr/zp07D0uXrmb16g1S1AghjCpZc2zy5s3LzJkzjZ1FCGGhDh06wIQJo5k6dTYVK1YGoHjxEmZOJYSwRMkqbB4+fEhMTAwFCxYkPDyc2bNn8/TpUxo0aECzZs2MHFEIkVbFxsYye/Z0Nm5cC8DGjev0hY0QQpiCwaeijh07RsOGDdm+fTsAfn5+bNmyhefPn/PDDz+wdetWo4cUQqQ9Dx8+oGvXdvqipnPn7kyfPse8oYQQFs/gwmbhwoVUrVqV/v378+bNG37//Xd69+7Nzp076d27N2vWrDFFTiFEGvLbb7/Qrl0Lrl37m0yZMjFv3mKGDvXG2tra3NGEEBbO4MLmxo0bdOnSBUdHR/744w80Gg3169cHoEqVKty/f9/oIYUQacfFi+fx9h5MREQEpUqVYfPmXVSvXtPcsYQQ6YTBc2xsbW2Ji4sD4I8//sDNzY0iRYoA8OrVK5ycnIybUAiRppQsWZomTb4ha9Zs9Os3ECurZE3lE0KIZDH4N07ZsmVZuXIlYWFh7N+/nxYt4pc/v3r1KoGBgbJAnxDp0G+//ULFipXIlMkZhULBhAmTUSoNHhAWQojPZvBvnh9++IHnz58zfPhwPDw8+O677wDo06cPsbGxDB8+3OghhRCpU1RUFOPHj8HbezB+fiPR6XQAUtQIIczG4BGbXLlysXfvXoKDg8mcObN++4IFCyhWrBg2NjZGDSiESJ2Cgu7g7T2Y27dvoVAoKFSoCFqt9qP3khNCiJSQrJPfCoWCsLAwfv/9d968eYOLiwtlypSRokYIC6HT6XgTGUusTkFMVCx21qoEN7j96aedBARMIDo6Cje3zPj7T6NSpS/NmFgIIeIZXNjodDr8/PzYunWrftgZ4oud5s2b4+/vL3f4FiKNioxWc/zKMw6ce8TL11H67Vmc7alT1oMyBZ2YM2sye/bsAqBixcr4+08jc+YsZkoshBAJGVzYLF++nO3btzNw4EC+/vprsmTJwosXL9i9ezeLFi3iiy++oFu3bqbIyt27d2nRogVjxozRT1oWQhjH1aBgFuy8Soxaw/t/mrx6HcXGg7fY8ns0d0+eRKlU8t1339O9e2859SSESFUMLmy2bdtGz5499ZOGATw8POjfvz9qtZqtW7eapLBRq9UMHz6cyMhIo7ctRHp3NSiYOVsv8W4QVvevfTqdDh3xo7JapR2ZS3emT7XctG5axxxRhRDiPxl86cLTp0+pVKnSB/dVrFiRR48efXaoD5k/fz4ODg4maVuI9CwyWs2CnVfR6RIWNAAadTT3Tq4mOOg4EL/fwTUvh25aExmtTvGsQgjxKQYXNjlz5uTGjRsf3Hft2jVcXV0/O9T7zpw5w+bNm5k6darR2xYivTt+5Rkxak2ioiYy9CE3fptC6P0zPLqwnbiYt0B8cROj1nD86rMUzyqEEJ9i8KmoJk2aMH/+fLJmzUrDhg1RKpVotVr27dvHggULaNu2rVEDhoeH4+3tzejRo8mePbvR2rWyMu46GyqVMsG/helIXxuPTqfj4PlHiba9uv0Hjy5sQ6eNw9remXxf9sDK9v9HTBXAwXOPaFAxt1ws8Jnk85wypJ9TRmroZ4MLm169enH27FmGDRuGj48Pzs7OvH79Go1GQ4UKFRg0aJBRA44bN45SpUrRtGlTo7WpVCpwcTHNaS0nJ3uTtCsSk77+fGERMbwI/f+rnzSxUdw/s57XD88D4JTDk7wVO2Nl65jgcTrgRWgUVrY2ODnIMg/GIJ/nlCH9nDLM2c8GFzY2NjasWrWKo0ePcubMGcLCwsiUKRPly5enRo0aRg23a9cuzp49y549e4zarlarIzzcuJOQVSolTk72hIdHodFojdq2SEj62nj+fUm3VqPmxu9TiXnzAhRKcpZsTtbCtf5zRObZi3A0zvJF8Tnk85wypJ9Thin72cnJPkkjQQYXNoGBgbRu3ZoaNWokKmQePXrEypUrGTt2rKHNftD27dsJDg6mZs2aCbb7+fmxYsUK9u7dm+y24+JM88HWaLQma1skJH39+ayU/1+0KFXWuOapQHDQX+Sr0gMHt3yffLy1SinvgZHI5zllSD+nDHP2s8GFzYIFC6hevTrZsmVLtO/SpUts3brVaIXNjBkziI6OTrCtXr16DBw4kEaNGhnlOYRIz7TqSByVb3mrdUAHuBdrQJZCNbGyyfCfj1MAmZ3tcbCTO3cLIVKXJP1Watu2LZcuXQLiJxa2adPmo8eWKFHCOMngg8UTgJubGzlz5jTa8wiRHl25cglv7yGgsiNb5UEoVdYolMpPFjUQP8emTjkPmTgshEh1klTY+Pv7s3//fnQ6HQsWLKBly5a4u7snOEapVOLk5ES9evVMElQIYRw6nY61a1cxb94s4uLiyJHTA4X6DQqVa6JLvj9EoQAbKxVVPN0/fbAQQqSwJBU2BQoUYMCAAUD86qOtW7dOMJoSFxeHUqlEqTT95V3//POPyZ9DCEv1+nUoY8f+wLFjRwCoV68hY8ZM4P7LWOZsvQQfWKTv3xT/+6d/C08y2FmnQGIhhDCMwZXIgAED2LFjBz169NBvO3fuHFWqVGH16tXGzCaEMKILF87Tpk1zjh07go2NDaNGjWPq1FlkzJgRz/xuDG5dEhvr+Ps+vX+C6d3PNtYqBn9bEs98bimaXQghkipZN8EMDAykc+fO+m158uThm2++YebMmdjb2//nHBwhRMrT6XTMnz+L58+fkTt3HqZNm0ORIkUTHOOZ342Z/b/k+NVnHDib8O7emZ3tqVPOgyqe2ckgE4aFEKmYQqfTJeW0ul69evX49ttv6dmzZ6J9S5cuZffu3Z91GXZK0Gi0hIS8NWqbVlZKXFwcCA19K5cSmpj0dfI8efKYFSuWMHSoNw4Ojv95rE6nI1qtwdbelpioGOysVTJR2ETk85wypJ9Thin72dXVIUnr2Bh8Kur58+cUL178g/tKlChhsptgCiEMc/bsaVauXKr/OUeOnIwZM+GTRQ3Ez6XLmMGGbK4ZyJjBRooaIUSaYfCYcq5cufjrr7+oXLlyon2nTp1KdLWUECJlaTQaVqxYwuLFgWi1WooWLU7lylXMHUsIIVKEwYVNu3btCAgIIC4ujjp16uDm5kZISAgHDhxgzZo1DB8+3BQ5hRBJ8OrVS0aN8ubUqRMANG3ajFKlSps5lRBCpByDC5sOHTrw7NkzVq1aleAqKJVKRZcuXejatasR4wkhkurUqROMHDmC4OBX2NnZM3LkWL7+urm5YwkhRIpK1uUNw4YNo3fv3ly4cIGwsDCcnJzw8vLCxcXF2PmEEEmwatUy5s2bhU6no2DBL5g2bQ758xcwdywhhEhxyb5uM2PGjFSvXj3R9jt37lCggPxCFSIlubtnR6fT0bx5a7y9R2JvL3fcFkKkTwYXNmFhYcycOZMzZ86gVqt5d7W4TqcjMjKSsLAwrl+/bvSgQoiEIiIicHSMv8KpYcMmeHjkokSJkmZOJYQQ5mXw5d4BAQFs376dvHnzolKpyJgxIyVKlECtVhMeHs6ECRNMkVMI8T9xcXHMmzeL5s0bERz8Sr9dihohhEhGYfPHH38wYMAAFi1aRNu2bXF3d2fOnDn88ssvFC5cmNu3b5sipxACePbsKT17dmblyqW8fPmCgwd/N3ckIYRIVQwubMLDwylbtiwAX3zxBVevXgXAwcGB7t27c+TIEaMGFELEO3bsCG3aNOPixfM4Ojoybdocvv22nbljCSFEqmLwHBsXFxfevHkDxN8jKjg4mNDQUFxcXMiWLRvPnz83ekgh0jO1Ws38+bNYs2YVAMWKFWfq1NnkypXbzMmEECL1MXjEpnLlyixevJhHjx7h4eGBs7MzO3bsAODw4cNyybcQRrZixRJ9UdO+fWdWr94oRY0QQnyEwYXNoEGDCA4OxtfXF4VCQe/evZk+fToVKlRg9erVtGzZ0hQ5hUi3OnXqSokSJZk1KxBv75HY2NiYO5IQQqRaBp+KypkzJ/v27ePevXsAdOvWjcyZM3P+/Hm8vLxo3lxWOhXic8TGxvLzz7tp3rwVCoUCBwdH1qzZJDeiFEKIJEjWAn12dnYUKVJE/3PTpk1p2rSp0UIJkV49evQQb+/BXLv2N5GRkXTs2AVAihohhEiiJBU2P/zwQ5IbVCgUBAQEJDuQEOnV77//wvjxo4mIiCBTpkzkzi3zaIQQwlBJKmxOnTqV5AblL0shDBMTE8PMmVPZsmUDAKVKlWHKlJm4u2c3czIhhEh7klTYHDp0yNQ5hEiX7t+/h7f3EP75J/42JN2796Zfv4FYWSX7Nm5CCJGuyW9PIcwoLOw1d+7cwsXFFX//qXz5ZTVzRxJCiDRNChshUphOp9OfsvXyKoW//3RKly5D1qzZzJxMCCHSPoPXsRFCJF9Q0B06dWrDrVv/6LfVr99QihohhDASKWyESCF79uyifftWXL16malT/c0dRwghLJKcihLCxKKiIpk8eSI//bQTgIoVK+PvP83MqYQQwjIlqbB58uSJQY3myJEjWWGEsDS3b9/E23sIQUF3UCqV9O07gB49+qBSqcwdTQghLFKSCptatWoZtD7N9evXkx1ICEtx/frfdOvWgejoaLJkycrkyTMoV66CuWMJIYRFS1JhExAQoC9swsLCmDFjBpUrV6Zhw4ZkyZKF169fc+jQIY4cOYKvr69JAwuRVhQqVIQSJUpibW3NpEnTcHV1NXckIYSweAqdTqcz5AH9+/fH1dWViRMnJtrn7+/PrVu3WL16tbHymYRGoyUk5K1R27SyUuLi4kBo6Fvi4rRGbVsklJr7+vbtW+TKlRtbW1sA3rx5g4ODA0pl2punn5r72ZJIP6cM6eeUYcp+dnV1QKX69O9Sg3/bHj9+nAYNGnxwX82aNblw4YKhTQqR5ul0OrZt20T79i2ZOXOqfnvGjBnTZFEjhBBplcG/cV1cXLh48eIH9508eZJs2WQ9DpG+RERE4OMzlEmTxhEbG8uzZ09Qq9XmjiWEEOmSwZd7t27dmoULFxIVFUWtWrVwdXXl1atX/PLLL2zcuJGRI0eaIqcQqdL163/j7T2Ehw8fYGVlxcCBQ+nUqZvcDFYIIczE4MLmu+++482bN6xevZoVK1YA8cPwdnZ2DBo0iA4dOhg9pBCpjU6nY/Pm9cycORW1Wk327DmYOnUWXl6lzB1NCCHSNYMLG4VCgY+PD/369ePixYuEhYXh4uJC6dKlyZAhgykyCpHqhIQEs2DBPNRqNV99VYfx4/1xcspk7lhCCJHuJXvlYQcHB7JkyYJOp6NkyZLExsZKYSPSDTe3zEyYMJmnTx/Trl0nOfUkhBCpRLIKm927dzNz5kxevnyJQqFg69atzJ8/H2tra2bOnImNjY2xcwphVjqdjnXrVpM3b36qVasBwFdf1TZzKiGEEO8z+Kqoffv24ePjQ6VKlZg1axZabfx16vXq1ePYsWMsXLjQ6CGFMKewsNcMHtyPmTOnMmaMDyEhIeaOJIQQ4iMMHrFZvHgxbdu2Zdy4cWg0Gv32Fi1aEBwczJYtWxg8eLAxMwphNhcvnsfXdxjPnj3FxsaGfv0G4eLiYu5YQgghPsLgEZu7d+9St27dD+4rWbIkz58//+xQQpibVqtl1apl9OjRiWfPnpI7dx7WrNnMt9+2k/k0QgiRihlc2Li5uXHnzp0P7rtz5w5ubm6fHUoIc1KrY/n++77MnTsTjUZDw4ZN2LhxO0WKFDV3NCGEEJ9g8KmoRo0aMW/ePLJmzUqNGvGTKBUKBVevXmXhwoU0adLE6CGFSEnW1jZkzZoNW1tbfHxG07x5KxmlEUKINMLgm2DGxsbSr18//vzzT5RKJVqtFgcHByIjIylXrhzLli3Dzs7OVHmNQm6CmbaZoq+1Wi2RkZE4OjoCEB0dzaNHDylY8AujtJ8WyWc6ZUg/pwzp55SRGm6CafCIjY2NDcuXL+f48eOcPHmS169fkzFjRipUqECNGjXkL1uR5gQHv2LUKG8UCgULFixDqVRiZ2eXrosaIYRIqwwubPr27Uvnzp2pUqUKVapUMUUmIVLM6dMnGTlyBK9evcTOzp7bt29RqFBhc8cSQgiRTAZPHj5z5gwqlcoUWYRIMRqNhoUL59GnTzdevXpJwYJfsH79VilqhBAijTO4sKlSpQpbt24lJibGFHmEMLkXL57Tp083li5diE6no3nz1qxdu4UCBQqaO5oQQojPZPCpKFtbW/bv38/vv/+Oh4dHosu7FQoFP/74o9ECCmFMOp0Ob+8hXLx4ngwZMjB69HgaNWpq7lhCCCGMxOARm2fPnlG6dGm8vLxwdXVFp9Ml+OfdLRaESI0UCgW+vqMpUaIkGzdul6JGCCEsjMEjNmvXrjVFDiFM5vnzZ1y5cok6deoDUKRIMdas2SRX8AkhhAUyeMRGiLTkjz+O0qZNM3x9h/P331f026WoEUIIy2TwiE2tWrU++aVw8ODBZAcSwhjUajWBgXP48ccVABQrVhwnp0xmTiWEEMLUDC5sKlSokKiwefv2LVeuXCEmJoYuXboYLZwQyfHkyWN8fYdy+fIlANq168SQISOwsbExczIhhBCmZnBhM2XKlA9uV6vVDBgwgKioqM8OJURyHTlyiLFjfyA8PIyMGZ0YP96fWrU+fDd6IYQQlsdoc2ysra3p1KkT27ZtM1aTQhjs7t0gwsPD8PT0YtOmHVLUCCFEOmPwiM1/CQ0N5e1b495cEuD169fMmjWLI0eOEBERQeHChRk2bBjlypUz+nOJtEen0+lPj3bp0h0nJye+/roZ1tZy6kkIIdIbgwubXbt2Jdqm0Wh4+vQp69atM0mxMXToUIKDg5k1axaurq5s2LCBHj16sGPHDgoUKGD05xOpl06n401kLLE6BTFRsfx59CBr165iyZKV2NtnQKlU0rLlt+aOKYQQwkwMLmx8fX0/uq906dKMGTPmswK97/79+xw/fpyNGzdSpkwZAEaNGsWxY8f4+eefGTRokFGfT6ROkdFqjl95xoFzj3j5OgqtRs3jizt4eesoAKt/XM13ffuZOaUQQghzM7iw+dCl3AqFAkdHR5ycnIwS6t9cXFxYunQpnp6eCZ5Pp9MRFhZm9OcTqc/VoGAW7LxKjFqDAoh+84K7f60gKvQhANmK1uPimyJcDQrGM7/bfzcmhBDCohlc2OTMmTPRtri4OCIiIowS6H1OTk7UqFEjwbb9+/fz4MEDqlatmux2rayMuzahSqVM8G9hHJfvBDNn6yV0uvifg++f5cGZDWjjorGydSRPpS5kyl6cOA3M2XqJoW1L41VAihtjkM90ypB+ThnSzykjNfSzQqd795WRNHFxcSxevJjcuXPz9ddfc+LECQYNGsSbN2+oUKEC8+bNI1Mm0y2Edu7cOXr27EnlypVZuHBhstr492RTkXpFRKnpNuFXYtQadDp4cfMwj85vBcAxS0HyVu6OTQZn/fEKBdhaq1g1tj6O9tZmSi2EEMKcDB6xmT9/PsuXL2fkyJEABAQE4OLiwoABA1i1ahUzZ85kwoQJRg8KcODAAYYPH07JkiWZNWtWstvRanWEh0caMVl8derkZE94eBQajdwI1Bh+Pf2A6FiN/mfnXKV5du1XMuevQnbPRiiUqgTH63QQE6th77Hb1KuQO6XjWhz5TKcM6eeUIf2cMkzZz05O9kkaCTK4sPn5558ZOnQoHTp0ICgoiFu3bjFlyhSaNWuGs7Mz06ZNM0lhs27dOvz9/albty4zZsz47FVk4+JM88HWaLQmazs90el0/Hb6IW+D7+HglhcAG3tnijfyQ2Vj/5+P/fX0Q74qnVNG5YxEPtMpQ/o5ZUg/pwxz9rPBJ8FevHhByZIlATh27BhKpZLq1asD4O7uzps3b4ybENiwYQMTJ06kQ4cOzJkzR5bGTwdehoRx9tel/PP7NEIfntdv/1RRowNevo7ibXSciRMKIYRIjQwubLJmzcqjR48A+P333ylatCiurq4AXLhwAXd3d6MGvHv3LgEBAdStW5c+ffoQHBzMy5cvefnypUmKKGF+t2/foleP9gTfPQEKBbFvgw1uIzpGChshhEiPDD4V9fXXXzN58mT27NnDuXPnGDt2LAD+/v5s3LiRvn37GjXgr7/+ilqt5vfff+f3339PsK958+YfvXeVSHt0Oh27d+9gypSJREdHY22XibyVu5ExWyGD27KzNeqi2kIIIdIIg3/7Dxw4EDs7O86cOcOwYcNo3749AFeuXKF79+589913Rg3Yt29foxdLIvWJjHyLv/949u79CYDKlatgW+hb3sRYY8hlewogs7M9DnZS2AghRHpk8G9/hUJBnz596NOnT4LtmzZtMlookbbpdDoiotTExGqwtVHhaG/9yYm858+fY+/en1CpVPTvP4iuXXty8NxjNh68ZdhzA3XKecjEYSGESKeS9Wfts2fPOH/+PLGxsfptWq2WqKgozp49y+zZs40WUKQd79/24J0szvbUKetBlRLuZLD78PoyVatWp3//QZQrV4HSpcsCUKWEOzuOBRGr1iRp1EahABsrFVU8jTvPSwghRNphcGGzf/9+RowYQVxcnP6v4n8veJc/f37jJhRpwvu3Pfi3V6+j2HjwFjuOBdG/uSee+d2IiIhg1qyp9OkzgGzZsgHQq1fC05gZ7Kzp39yTOVsvgY7/LG4U//unfwvPjxZPQgghLJ/BV0UtWbKEYsWKsWPHDlq0aMHXX3/N3r17GTFiBFZWVvqF+0T6cTUo/rYHser4xfTeL0De/Ryr1jBn6yX2/H6cdu1asGPHVsaM8eG/Fr/2zO/G4NYlsbGOX4zv/aLp3c821ioGf1sSz3xyOwUhhEjPDB6xuXv3LjNmzKBYsWJUrlyZ5cuXU6BAAQoUKEBwcDCLFy+mSpUqpsgqUqHIaDULdl5F94kRFQCtTserm0cZu3kHOm0c2bPnYMCAwZ+cD+OZ342Z/b/k+NVnHDib8DRXZmd76pTzoIpndjLIhGEhhEj3DP4mUCqVODs7A5A3b16CgoLQarUolUqqVavGjh07jJ1RpGLHrzwjRq355HFxsZE8OL2O148uAlC81JcsmjcbJ6ek3Vcsg501dcvlok5ZD6LVGmztbYmJisHOWiUThYUQQugZfCoqf/78nDt3DogvbNRqNdevXwcgPDw8wYRiYdl0Oh0Hzj365HHR4c+58etkXj+6iEKpwqN0K3JW7EnGjE4GP6dCoSBjBhuyuWYgYwYbKWqEEEIkYPCITdu2bfHz8yMyMpKhQ4dSsWJFRo4cSatWrVi3bh3Fixc3RU6RCkVEqROcFvoYmwwuKK1ssHFwI9+XPXBwy8ursGjeRsfJXbiFEEIYlcGFTevWrYmNjdXfVmHChAn07t0bf39/cubMyahRo4weUqROMbEfPwUVFxuJytoOhUKJ0sqGAtW+Q2WTASubDPpjomOksBFCCGFcyZpt2aFDB/1/586dm/379xMaGqq/Z5RIH2xtVB/cHvHqDnf/WkmWgtVxL1Y//ljHzImOk9seCCGEMLZkf7PcuXOH48eP8+LFCzp16sTDhw+xsbHB0dHRmPlEKuZob00WZ3tevY5CB+h0Wp7fOMCTyz+BTkvIvVNkLVwLpSrhqIzc9kAIIYSpGPzNotFo8PPzY/v27fqF+Ro2bMiCBQt48OAB69evN/odvkXqpFAoqFPWg40Hb6GOfsP9U2sIf/o3AC65y5G7fPtERQ3IbQ+EEEKYjsFXRS1atIg9e/YwadIkjh8/rl9czccnfqE1uZ1C+lKlhDsxIUHc+DWA8Kd/o1BZk7t8e/JW7obK2i7R8QoF2FrLbQ+EEEKYhsGFzfbt2xk4cCAtW7bUr2cDUKRIEQYOHMjx48eNmU+kcjFREdw+Gog6Kgw7p2wUqetN5gJVPzgaI7c9EEIIYWoGn4p69eoVRYsW/eC+bNmyER4e/tmhRNrh4uLCkCHD+fPkWWLdGxKHNQoSrkL87mcbaxX9W3jKbQ+EEEKYjMGFTZ48eTh69Chffvllon2nT58mT548RgkmUq/Tp0+SMWNGihaNX7OoTZsOtG3bMf7u3nLbAyGEEGZk8LdMly5dGDt2LGq1mq+++gqFQsH9+/c5deoUK1euxNfX1xQ5RSqg0WhYsmQBy5YtImdODzZu3EHGjBn1p53+fduDt9FxRMfEYWdrhYOdlUwUFkIIkSKStUBfSEgIixcvZuPGjeh0OoYOHYq1tTU9e/akXbt2psgpzOzlyxf88MNwzp49DUD58hWxsvrwx0ehUOBoby2L7wkhhEhxyTov0KdPHzp06MD58+cJCwvDycmJkiVLJphMLCzHiRPHGTXKm5CQYOztMzB69HgaN25q7lhCCCFEIsme8ODo6Ej16tWNmUWkMhqNhkWL5rNixRJ0Oh2FChVh+vTZ5MmTz9zRhBBCiA8yuLAJCwtj3rx5nD9//oNXQCkUCg4cOGCUcMK8FAoF16//jU6no3Xrtgwb5oudXeK1aYQQQojUwuDCZsyYMRw8eJBq1apRpEgRU2QSZvZuRWmlUsnEiVM5f/4MderUN3csIYQQ4pMMLmz++usvvL296dKliynyCDNSq9UEBs4hLOw148b5A+Dq6ipFjRBCiDTD4MLGwcGBfPlkjoWlefr0CT4+Q7l8+SIArVq1xdOzhHlDCSGEEAYy+JYKHTp0YNWqVbx9+9YUeYQZHDlyiDZtmnP58kUcHTMyc+Y8KWqEEEKkSQaP2HTs2JGdO3dSo0YN8ufPn2gyqUKh4McffzRaQGE6anUsc+bMZP36+PerePESTJs2m5w5PcycTAghhEgegwubsWPHcvfuXfLly4etra3+7t7vvP+zSL2GDv2eP/44CkCnTl0ZOHAo1tY2Zk4lhBBCJJ/Bhc2hQ4cYOnQovXv3NkUekYLatu3IlSuXGD8+gBo1apk7jhBCCPHZDC5sbGxsKFFC5l+kRTExMQQF3dbfvLJKlWrs3XsABwdHMycTQgghjMPgycPNmjVj48aNaLVaU+QRJnL//j26dGlHr15defz4kX67FDVCCCEsicEjNo6Ojvz111/UqlULLy8vHBwcEuxXKBQEBAQYLaD4fL/8speJE8fy9u1bXFxceP78mUwQFkIIYZEMLmx27NiBk5MTAFevXk20X6FQfH4qYRTR0dFMnx7A9u1bAChTphyTJ88kW7ZsZk4mhBBCmEayJg+L1O/u3SC8vQdz69ZNFAoFPXv2pU+f/lhZJfu+p0IIIUSqJ99yFmrHji3cunUTV1c3/P2nUblyFXNHEkIIIUxOChsL9f33Q1Gr1fTo0YcsWbKaO44QQgiRIgy+KkqkTrdv32LChDHExcUB8Zfl+/qOkaJGCCFEuiIjNmmcTqdj9+4dTJkykejoaHLm9KBHjz7mjiWEEEKYhRQ2aVhk5FsmTRrHvn17AKhcuQrNm7cycyohhBDCfKSwSaP++ecG3t6DuX//Hkqlkn79BtK9e2+USjm7KIQQIv2SwiYN+u23Xxg92pvY2FiyZs3GlCkzKVOmnLljCSGEEGYnf96nQfnzF0CpVFK1ag02b94lRY0QQgjxPzJik0a8fh2Ks7MLAAULfsHatZspUOALOfUkhBBC/It8K6ZyOp2OTZvW0bBhbS5ePK/f/sUXhaWoEUIIId4jIzapWHh4OOPHj+Lgwd8B2Lt3D6VKlTFzKiGEECL1ksImlbpy5TI+PkN48uQxVlbWDBkygvbtO5k7lhBCCJGqSWGTyuh0Otat+5G5c2cSF6cmZ04Ppk6djadnCXNHE0IIIVI9maSRyhw5coiZM6cQF6emTp16bNy4Q4oaIYQQIolkxCaVqVmzFg0aNKJUqbK0adMehUJh7khCCCFEmiGFjZlptVq2bdtMo0ZNcXR0RKFQMHnyTClohBBCiGSQwsaMQkNDGT3ah+PHj3Hu3BmmTIkvaKSoEUIIIZJHChszOX/+LL6+w3jx4jm2traUL1/R3JGEEEKINE8KmxSm1WpZsWIpixbNQ6vVkjdvPqZNm0OhQoXNHU0IIYRI86SwSUEhISGMHDmckyf/AqBJk28YOXIsGTI4mDmZEEIIYRmksElROu7cuYWdnR2+vmP45psWMp9GCCGEMCIpbExMq9Xq7+nk6urGjBnzcHBwpGDBL8ycTAghhLA8aWKBPq1Wy7x586hWrRolS5ake/fu3L9/39yxPunlyxf06dONvXt/0m8rWbK0FDVCCCGEiaSJwmbhwoVs2rSJSZMmsXnzZhQKBb169SI2Ntbc0T7qxInjtGnTnDNnTjF79nSio6PNHUkIIYSweKm+sImNjWXlypV8//331KhRgyJFijB79myeP3/O77//bu54icTFxREYOId+/XoSEhJMoUKFWbbsR+zs7MwdTQghhLB4qb6wuXHjBm/fvqVSpUr6bU5OThQrVowzZ86YMVliT548oUePzixfvhidTkerVm1Ys2Yz+fLlN3c0IYQQIl1I9ZOHnz17BkD27NkTbM+aNStPnz5NdrtWVsat6SIi3tC4cQOCg4NxcHDAz28ijRo1MepziHgqlTLBv4VpSD+nDOnnlCH9nDJSQz+n+sImKioKABsbmwTbbW1tCQsLS1abSqUCFxfjrh3j4uJAmzZtOHbsGIsXLyZfvnxGbV8k5uRkb+4I6YL0c8qQfk4Z0s8pw5z9nOoLm3dzU2JjYxPMU4mJicHePnkdp9XqCA+PNEq+d1QqJd7e3vTu3R8rK2tCQ98atX3x/1QqJU5O9oSHR6HRaM0dx2JJP6cM6eeUIf2cMkzZz05O9kkaCUr1hc27U1AvXrwgd+7c+u0vXrygSJEiyW43Ls74H2xra2usrKxN0rZITKPRSl+nAOnnlCH9nDKkn1OGOfs51Z9sLFKkCI6Ojpw6dUq/LTw8nGvXrlGuXDkzJhNCCCFEapPqR2xsbGzo2LEjM2bMwNXVlZw5czJ9+nTc3d2pW7euueMJIYQQIhVJ9YUNwMCBA4mLi2P06NFER0dTvnx5VqxYkWhCsRBCCCHStzRR2KhUKkaMGMGIESPMHUUIIYQQqViqn2MjhBBCCJFUUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYUtgIIYQQwmJIYSOEEEIIiyGFjRBCCCEshhQ2QgghhLAYCp1OpzN3iJSm0+nQao3/slUqpdFv0y4+TPo6ZUg/pwzp55Qh/ZwyTNXPSqUChULxyePSZWEjhBBCCMskp6KEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksDECrVbLvHnzqFatGiVLlqR79+7cv3/f3LEszuvXrxk7dizVq1enTJkytGvXjrNnz5o7lkW7e/cupUuXZseOHeaOYpF27dpFo0aNKFGiBI0bN2b//v3mjmRx1Go1s2fPpmbNmpQuXZr27dtz/vx5c8eyKAsXLqRTp04Jtl2/fp2OHTtSqlQpatasyYoVK1IsjxQ2RrBw4UI2bdrEpEmT2Lx5MwqFgl69ehEbG2vuaBZl6NChXLp0iVmzZrFt2zaKFy9Ojx49uHPnjrmjWSS1Ws3w4cOJjIw0dxSLtHv3bkaOHEmbNm34+eefadSoEUOHDuXChQvmjmZRFi1axPbt25k0aRK7du0if/789OrVi+fPn5s7mkVYvXo18+bNS7AtNDSUbt26kTdvXrZv387333/P3Llz2b59e4pkksLmM8XGxrJy5Uq+//57atSoQZEiRZg9ezbPnz/n999/N3c8i3H//n2OHz+On58f5cqVI3/+/IwaNYps2bLx888/mzueRZo/fz4ODg7mjmGRdDodc+fOpUuXLnTp0oU8efLQv39/vvzyS06fPm3ueBbl4MGDNGnShKpVq5InTx58fX2JiIjg4sWL5o6Wpj1//pyePXsyd+5c8uXLl2Dfli1bsLGxYdy4cRQoUICWLVvStWtXli1bliLZpLD5TDdu3ODt27dUqlRJv83JyYlixYpx5swZMyazLC4uLixduhRPT0/9NoVCgU6nIywszIzJLNOZM2fYvHkzU6dONXcUixQUFMTjx49p2rRpgu0rVqygT58+ZkplmZydnTl8+DCPHj1Co9GwefNmbGxsKFq0qLmjpWl///03mTJl4qeffqJkyZIJ9p09e5by5ctjZWWl31apUiXu3r1LcHCwybNZffoQ8V+ePXsGQPbs2RNsz5o1K0+fPjVHJIvk5OREjRo1Emzbv38/Dx48oGrVqmZKZZnCw8Px9vZm9OjRiT7Xwjju3bsHQGRkJD169ODatWt4eHjw3XffUatWLfOGszCjRo1iyJAh1K5dG5VKhVKpZO7cueTOndvc0dK0WrVqffSz+uzZMwoVKpRgW9asWQF48uQJbm5uJs0mIzafKSoqCgAbG5sE221tbYmJiTFHpHTh3LlzjBw5ktq1a8sXgZGNGzeOUqVKJRpNEMYTEREBgI+PD02aNGHlypVUqVKFfv36ceLECTOnsyx37tzBycmJBQsWsHnzZlq0aIGPjw83btwwdzSLFR0d/cHvRCBFvhdlxOYz2dnZAfFzbd79N8S/efb29uaKZdEOHDjA8OHDKVmyJLNmzTJ3HIuya9cuzp49y549e8wdxaJZW1sD0KNHD5o3bw5A0aJFuXbtGqtWraJy5crmjGcxHj9+zIgRI1i9ejXlypUDoESJEty+fZv58+ezYMECMye0THZ2dokunnlX0GTIkMHkzy8jNp/p3VD9ixcvEmx/8eIF7u7u5ohk0datW8f3339P9erVWbZsWYJiUny+7du3ExwcrL80tnTp0gD4+fnRuHFjM6ezHO9+N7w/XF+wYEEePXpkjkgW6fLly6jVakqUKJFge8mSJfWnA4Xxubu7f/A7ESBbtmwmf34ZsflMRYoUwdHRkVOnTunP2YaHh3Pt2jU6duxo5nSWZcOGDUycOJFOnToxcuRIlEqpy41txowZREdHJ9hWr149Bg4cSKNGjcyUyvIUK1YMBwcHLl26pB9JALh586bM/TCid394/vPPP3h5eem337x5kzx58pgrlsUrX748mzZtQqPRoFKpADhx4gT58uUz+fwakMLms9nY2NCxY0dmzJiBq6srOXPmZPr06bi7u1O3bl1zx7MYd+/eJSAggLp169KnT58EM+vt7OzImDGjGdNZjo/9NeXm5kbOnDlTOI3lsrOzo2fPnixYsIBs2bLh5eXF3r17OX78OKtXrzZ3PIvh5eVFuXLl8PHxwc/PD3d3d3bt2sWJEyfYsGGDueNZrJYtW7J8+XJGjRpFz549uXz5Mj/++CPjx49PkeeXwsYIBg4cSFxcHKNHjyY6Opry5cuzYsWKRJOnRPL9+uuvqNVqfv/990TrAzVv3pwpU6aYKZkQydOvXz/s7e31614VKFCA+fPnU7FiRXNHsxhKpZKFCxcyZ84cfvjhB8LCwihUqBCrV6+mVKlS5o5nsdzc3Fi+fDn+/v40b96cLFmy4O3trZ9PZmoKnU6nS5FnEkIIIYQwMZmkIIQQQgiLIYWNEEIIISyGFDZCCCGEsBhS2AghhBDCYkhhI4QQQgiLIYWNEEIIISyGFDZC/I8lr3xgya8ttTB2H8t7JkTySGEjBHDw4EF8fHzMmmHHjh0ULlzY6PcKWrRoEStWrDBqmyKh27dv065dO6O19/57Nn/+fAoXLmy09v+Lr68vhQsXpnDhwgwfPvyz2qpVqxaFCxdm2LBhHz3m22+/pXDhwsyfPx+A6tWr659/x44dn/X8In2SwkYIYPXq1Tx9+tTcMUxizpw5REVFmTuGRdu/fz8XLlwwWnvvv2etW7dm8+bNRmv/U7JkycLmzZsZOHDgZ7elVCo5dOiQ/u7O//bo0SMuXbqUYNvixYsJDAz87OcV6ZcUNkIIkcq5u7un6C0AbGxsKFWqlFFuyFmmTBkiIyM5evRoon379u2jaNGiCbYVK1Ys0TYhDCGFjUj3OnXqxOnTpzl9+jSFCxfm1KlTnDp1isKFC7Np0ya++uorvvzyS/788098fX2pVatWgsc/evQo0bD569evGTt2LF9++SUlSpTg22+/5cSJEwZn27p1Ky1atKBUqVJ4eXnxzTffsG/fvgTHPHjwgIEDB1KhQgXKly9Pr169uHXrFoD+9EVgYGCCUxlXrlyhR48eVKxYkTJlytC3b1/9Y95Zu3YtDRo0oESJElSrVo1x48YRERGh36/Valm6dCl169bF09OT+vXrs3bt2k++prdv3zJ58mSqV69OqVKlaNGiBYcOHdLv12g0rF+/nqZNm+Ll5UXNmjWZMWNGgr/4fX196dq1K9u3b6d+/fp4enry9ddfJ/ry/K++AYiJiWHatGnUqFEDT09PmjZtmqh/a9Wqxbx585g6dSpffvklXl5e9OjRg7t37wLxp4nejTD8+5RK4cKFCQwMpGXLlpQtW5aFCxcCcObMGXr06EH58uXx9PSkVq1azJ8/H61W+9H37EOnovbt20eLFi0oXbo0VapUYezYsYSFhen3z58/n7p163LkyBGaNm2qf4927tz5yffofYULF2bjxo34+vpStmxZKlSowKRJk4iOjmbq1KlUqlSJihUrMmrUqEQjM7ly5cLT05P9+/cnanffvn00btzY4DxC/BcpbES65+fnR7FixShWrBibN2+mePHi+n2zZ8/Gx8cHHx+fJP/FHBMTQ5cuXTh48CBDhgwhMDAQd3d3evbsaVBxs379esaOHUvt2rVZsmQJ06dPx9ramhEjRvDkyRMAXrx4QevWrQkKCsLPz48ZM2YQFhZG165dCQkJ0Z++aNWqlf6/T548Sbt27dBqtfj7+zNp0iSePn1K27ZtuXPnDgB79+5l6tSpdOjQgRUrVtC/f392797NpEmT9PnGjRvHvHnz+Prrr1m8eDENGjQgICCABQsWfPQ1abVaevbsyc6dO+nduzeLFi2iUKFCDBgwgFOnTgEwduxYAgICqFWrFosWLaJDhw6sW7eOfv36JZhQe/XqVVasWMHAgQNZsGABVlZWDBw4UP/l/qm+0el09O/fn02bNtGtWzcWLVpE6dKlGTJkCLt27UqQe82aNQQFBTF58mQmTZrE1atX8fX1BeJPE7Vq1QqAzZs307p1a/3jFi1aRP369Zk1axa1a9fmxo0bdO3aFWdnZ2bPns2iRYsoU6YMgYGB7N27V9/G++/Z+xYuXMiQIUMoWbIk8+bNo3///vz666906tSJ6Oho/XEvX75kwoQJdO7cmaVLl+Lh4YGvr6/+fTbEjBkzsLGxITAwkG+++Ya1a9fSrFkznj59yvTp02nbti3btm37YHHbqFEjjhw5kiBbUFAQN27coFGjRgZnEeK/yN29RbpXsGBBHB0dARIVL23btqVBgwYGtbd7925u3LjBli1bKFmyJBA/IbJTp07MmDGD7du3J6mdhw8f0r17d/r376/f5uHhQYsWLTh//jw5cuRg1apVREdHs2rVKrJkyQJA0aJFadOmDRcvXtSPLv37VMbMmTPJlSsXy5cvR6VSAVC1alXq1q3L/PnzmTNnDqdOnSJnzpx06NABpVJJhQoVyJAhA6GhoQDcvXuXLVu2MHToUHr37q1vQ6FQsGTJEtq3b4+Li0ui13Ts2DHOnz/PwoULqV27NgCVKlXi/v37nDx5Ejc3N7Zt28bgwYP57rvvAKhSpQpZs2bF29ubY8eOUaNGDQDevHnDjh079KdLMmTIQMeOHTl58iT169f/ZN/Y2tryxx9/MHv2bP2Xa7Vq1YiKimLGjBk0adIEK6v4X5FOTk4sXLhQ318PHjxg/vz5hIaG4u7ujru7O5D48+Pl5aXvH4Bdu3bx5ZdfMn36dJRKpf71HTlyhDNnztC0aVN9Gx87/RQWFsaiRYto3bo1fn5++u2FChWiQ4cO7Nixg/bt2wMQFRWFv78/lStXBiBv3rx89dVXHD16lAIFCiRq+78UKFCACRMmAFC+fHm2bduGWq1mxowZWFlZUa1aNQ4dOsT58+cTPbZhw4ZMnz6do0ePUr9+fSB+tKZ06dLkzJnToBxCfIqM2AjxH5JzJcqJEyfIkiULxYsXJy4ujri4ODQaDV999RVXr15NcLrgv/j6+jJixAjevHnDlStX2LNnD+vXrwdArVYDcO7cOUqVKqX/4gbImjUrhw8fTnTKDCAyMpIrV67QqFEj/Zc0xH9xf/XVV/pRk0qVKnHv3j1atGjBwoULuXbtGk2bNqVLly5A/KiPTqejVq1a+tcYFxdHrVq1iImJ4dy5cx98TWfPnsXa2pqvvvpKv02hULBx40YGDRrE6dOnAWjatGmCxzVu3BiVSqXPB+Dq6ppgDsi74uLdpNtP9c2JEydQKBTUqFEj0Wt4+fJlglNWJUqUSNBf7z/XxxQqVCjBz82aNWPZsmWo1Wpu3brFgQMHmD9/PhqNRv+efsrFixeJjY1N1EflypUjZ86cCfoIEhZb73JHRkYm6bn+rXTp0vr/trKywsXFBU9PT33xB+Ds7MybN28SPTZHjhyUKlUqwemoffv20aRJE4NzCPEpMmIjxH9wc3Mz+DGvX7/m5cuXCU5p/dvLly/JlCnTJ9t58OABY8eO5eTJk1hZWZE/f359ofXulMzr16/x8PBIcrY3b96g0+nInDlzon2ZM2fWfyk1atQIrVbLhg0bCAwMZO7cueTMmZNhw4bRuHFjXr9+DfDR+RHPnz//4PbXr1/j7OysH61437ui79/FCPz/F+m/vzTt7e0THKNQKAD0c1U+1TevX79Gp9NRpkyZD+5/8eKFfhLr+8/1Lv+75/qY9/s5OjqaiRMnsnv3buLi4vDw8KB06dJYWVkled2ad330qffwnX9nf5c7OWvkvBvV/Fjbn9KwYUP91V7379/n3r17Bo+GCpEUUtgIYQCFQoFGo0mw7f2/fjNmzEjevHmZMWPGB9tISiGi1Wrp3bs31tbWbNmyhWLFimFlZcXt27f56aefEjxXSEhIosefOHECDw8PcuXKlSibQqHg1atXiR7z8uVLnJ2d9T83adKEJk2a8ObNG/7880+WLVvGiBEjKFeuHE5OTgD8+OOPODg4JGorR44cH3xdGTNm5PXr12i12gTFzfXr14mLi9MXfC9fvkzQT2q1mtDQ0A+e3vqYT/VNxowZyZAhA2vWrPng4/PkyZPk50oqf39/fv31V+bMmcOXX35JhgwZAPSnipLiXR+9evUq0emkly9fJnrPU4sGDRowZcoUjh49yvXr16lUqVKy/nAQ4lPkVJQQ8NERhPc5ODgQGhqa4MqP9+cUVKhQgadPn+Lm5kaJEiX0/5w4cSLBvJb/Ehoayt27d2nVqhVeXl764f5jx44B/z9SUK5cOS5evEhwcLD+sSEhIfTq1YuDBw8mem0ZMmTA09OTffv2JSjQ3rx5w5EjRyhbtiwAgwcPZsCAAUB8gdCwYUP69euHRqPhxYsXlC9fXp/z36/x9evXzJkzRz+i875y5cqhVqsTXL2k0+kYNWoUixYtokKFCgDs2bMnweP27t2LRqPR50uKT/VNhQoViIyMRKfTJXgNt27dYsGCBcTFxSX5uZL6+Tl37hwVK1akTp06+qLm6tWrhISEJBj9+a/2SpYsiY2NTaI+Onv2LE+ePPnoCJS5ZcuWjbJly/Lbb7+xf/9+uRpKmIyM2AhB/ByTCxcucOLECYoVK/bR47766ivWrl3LyJEjad26Nbdu3WLlypUJipUWLVqwbt06unXrRt++fcmePTt//fUXy5Yto2PHjlhbW38yj5ubGzlz5mT9+vW4u7vj5OTEn3/+yY8//gj8/9yOrl27smvXLnr06EHfvn2xtbVlyZIlZM2alWbNmiV4bWfOnKFcuXIMGzaMHj160LNnTzp27IharWbp0qXExsbqi5lKlSrh5+fH1KlTqV69OuHh4QQGBpI3b16KFCmCtbU1X3/9NWPGjOHx48d4enpy9+5dZs+ejYeHB3nz5v3g66pZsyalS5fmhx9+YNCgQeTJk4c9e/Zw8+ZNxowZQ8GCBWnevDmBgYFER0dTsWJFrl+/TmBgIBUrVqRatWpJeTuT1DdOTk6UL1+efv360a9fPwoUKMDly5eZP38+VatWxdXVNcnP9W4E6+eff6ZkyZIfHTXx8vJi//79bNy4kQIFCnDjxg0WLVqEQqFIMF/n/ffs35ydnenduzeBgYFYW1tTu3ZtHj16xNy5cylYsCAtWrRIcu6U1rBhQyZPnoxCoaBu3brmjiMslBQ2QgAdOnTg6tWr9OrVi8mTJ5M1a9YPHlelShV8fHxYu3Ytv/32G8WLFycwMJC2bdvqj8mQIQPr169n5syZTJ8+nTdv3ujnp3Tv3j3JmRYuXIi/vz++vr7Y2NhQsGBBFi1aREBAAGfPnqVTp05kz56dDRs2MH36dH744QdsbGyoUKEC06dP159W6tu3LwsXLqRXr17s27ePypUrs2rVKubNm8fQoUOxsbGhXLlyTJ06lS+++AKIvxpMrVazadMmNmzYgJ2dHZUrV2bEiBH6wmzy5MksWbKETZs28ezZM9zc3GjUqBGDBw/+6KiUSqVi2bJlzJw5k/nz5xMZGUmRIkVYvny5fnKqv78/efLkYfv27axYsYKsWbPSqVMn+vfvn+SRESBJfbN06VLmzp3LkiVLCA4OJlu2bHTt2jXBlWhJUa9ePXbv3o2vry+tWrVi3LhxHzzO19cXtVrNnDlziI2NxcPDg++++47bt29z6NAhNBoNKpUq0Xv2vu+//57MmTOzbt06tm7dirOzMw0aNGDw4MEGzXtJaQ0aNMDf35+aNWvqi0EhjE2hkzutCSGE+B9fX19Onz6dYNHElPbo0SNq167N5MmTU/UIlEidZI6NEEKIBGJjY7l48SIPHjxI8ee+du0a169fT/HnFZZDTkUJIYRI4OXLl7Rp04amTZt+9Oo+U+nbt+9HlwsQIinkVJQQQgghLIacihJCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExZDCRgghhBAWQwobIYQQQlgMKWyEEEIIYTGksBFCCCGExfg/dvjTanouEpsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Plot the measured versus known value of the test set\n", + "plt.plot(test_data['true_conc_mM'], test_data['concentration'], 'o', \n", + " markersize=10, label='measurements')\n", + "plt.plot([0, 10], [0, 10], 'k--', label='equivalence')\n", + "plt.xlabel('true lactose concentration [mM]')\n", + "plt.ylabel('measured lactose concentration [mM]')\n", + "plt.legend()\n" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} diff --git a/tutorials/quickstart.html b/tutorials/quickstart.html new file mode 100644 index 0000000..211dd01 --- /dev/null +++ b/tutorials/quickstart.html @@ -0,0 +1,1084 @@ + + + + + + + Quickstart — hplc-py 0.2.1 documentation + + + + + + + + + + + + + + + + + + + + + + + + +
+ + +
+ +
+
+
+ +
+
+
+
+ +
+

Quickstart

+

Notebook Code: License: MIT Notebook Prose: License: CC BY 4.0

+
+

This package is meant to get you from chromatogram to quantified peaks as rapidly as possible. Below is a brief example of how to go from a raw, off-the-machine data set to a list of compounds and their absolute concentrations.

+
+

Loading and viewing chromatograms

+

Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using hplc.io.load_chromatogram().

+
+
[43]:
+
+
+
# Load the chromatogram as a dataframe
+from hplc.io import load_chromatogram
+df = load_chromatogram('data/sample.txt',
+                                 cols=['R.Time (min)', 'Intensity'])
+df.head()
+
+
+
+
+
[43]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
+
+
+

By providing the column names as a dictionary, you can rename the (often annoying) default column names to something easier to work with, such as “time” and “signal” as

+
+
[44]:
+
+
+
# Load chromatogram and rename the columns
+df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',
+                                                              'Intensity': 'signal'})
+df.head()
+
+
+
+
+
[44]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
+
+
+

This dataframe can now be loaded passed to the Chromatogram class, which has a variety of methods for quantification, cropping, and visualization and more.

+
+
[45]:
+
+
+
# Instantiate the Chromatogram class with the loaded chromatogram.
+from hplc.quant import Chromatogram
+chrom = Chromatogram(df)
+
+# Show the chromatogram
+chrom.show()
+
+
+
+
+
[45]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>, <Axes: xlabel='time', ylabel='signal'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_7_1.png +
+
+

The crop method allows you to crop the chromatogram in place to restrict the signal to a specific time range.

+
+
[47]:
+
+
+
# Crop the chromatogram in place between 8 and 21 min.
+chrom.crop([10, 20])
+chrom.show()
+
+
+
+
+
[47]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>, <Axes: xlabel='time', ylabel='signal'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_9_1.png +
+
+

Note that the crop function operates in place and modifies the loaded as data within the Chromatogram object.

+
+
+

Detecting and Fitting Peaks

+

The real meat of the package comes in the deconvolution of signal into discrete peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline, detection of peaks, and fitting of skew-normal distributions to reconstitute the signal. Luckily for you, all of this is done in a single method call Chromatogram.fit_peaks()

+
+
[49]:
+
+
+
# Automatically detect and fit the peaks
+peaks = chrom.fit_peaks(buffer=0)
+peaks
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3464.65it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00,  6.73it/s]
+
+
+
+
[49]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_id
010.900.1587620.69180023380.4619342.805655e+061
013.170.5947503.90567743165.7895205.179895e+062
014.450.349607-2.99570434697.4716864.163697e+063
015.530.3140091.62120815061.8358181.807420e+064
016.520.3473761.99120510939.0679601.312688e+065
017.290.3481231.70557112525.9916561.503119e+066
+
+
+

To see how well the deconvolution worked, you can once again call the show method to see the composite compound chromatograms.

+
+
[40]:
+
+
+
# View the result of the fitting.
+chrom.show()
+
+
+
+
+
[40]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_15_1.png +
+
+

You can also call assess_fit() to see how well the chromatogram is described by the inferred mixture. This is done through computing a reconstruction score \(R\) defined as

+
+\[R = \frac{\text{Area estimated through inference} + 1}{\text{Area observed in signal} + 1}.\]
+

This is computed for regions with peaks (termed “peak windows”) and regions of background (termed “interpeak windows”) if they are present.

+
+
[41]:
+
+
+
# Print out the assessment statistics.
+scores = chrom.assess_fit()
+scores.head()
+
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 2.910 - 17.460) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0
+A+, Success:  Interpeak Window 2 (t: 17.470 - 19.990) R-Score = 1.0000 & Fano Ratio = 0
+
+--------------------------------------------------------------------------------
+
+
+
+
[41]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
010.002.901.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
1217.4719.991.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
012.9117.4612001.012001.463355204.398068.241758e+0024.8002981.000039peak0.01valid
+
+
+
+
+

Quantifying Peaks

+

If you know the parameters of the linear calibration curve, which relates peak area to a known concentration, you can use the map_compounds method which will map user provided compound names to peaks.

+
+
[11]:
+
+
+
# Define the two peaks of interest and their calibration curves
+calibration = {'compound A': {'retention_time': 15.5,
+                              'slope': 10547.6,
+                              'intercept': -205.6,
+                              'unit': 'µM'},
+               'compound B': {'retention_time': 17.2,
+                              'slope': 26401.2,
+                              'intercept': 54.2,
+                              'unit': 'nM'}}
+quant_peaks = chrom.map_peaks(calibration)
+quant_peaks
+
+
+
+
+
[11]:
+
+
+
+
+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3140091.62120815061.8358181.807420e+064compound A171.377934µM
017.290.3481231.70557112525.9916561.503119e+066compound B56.931685nM
+
+
+

Successfully mapping compounds to peak ID’s will also be reflected in the show method.

+
+
[13]:
+
+
+
# Show the chromatogram with mapped compounds
+chrom.show()
+
+
+
+
+
[13]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_22_1.png +
+
+
+
+

Deconvolving Overlapping and Subtle Peaks

+

Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a “shoulder” on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example.

+
+
[15]:
+
+
+
# Load, fit, and display a chromatogram with heavily overlapping peaks
+df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])
+chrom = Chromatogram(df)
+peaks = chrom.fit_peaks()
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1499.35it/s]
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 99.62it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+F, Failed:  Peak Window 1 (t: 1.810 - 21.090) R-Score = 0.9788
+Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds
+or add manual peak positions (if you have a shouldered pair, for example). If
+you have a very noisy signal, you may need to increase the reconstruction
+tolerance `rtol`.
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 0.9963 & Fano Ratio = 10^-5
+C-, Needs Review:  Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.2596 & Fano Ratio = 0
+Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor
+compared to peak region(s). This is likely acceptable, but visually check this region.
+
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+../_images/tutorials_quickstart_24_2.png +
+
+

However, if you know there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to estimate the peak convolution including more than one peak.

+
+
[16]:
+
+
+
# Enforce a manual peak position at around 11 time units
+peaks = chrom.fit_peaks(known_peaks=[12])
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00,  2.92it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 1.810 - 21.090) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 1.0145 & Fano Ratio = 10^-5
+A+, Success:  Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.0019 & Fano Ratio = 0
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+../_images/tutorials_quickstart_26_2.png +
+
+

Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If enforced_locations are provided, these are used as initial guesses when performing the fitting.

+

This approach can also be used if there is a shallow, isolated peak that is not automatically detected.

+
+
[17]:
+
+
+
# Load and fit a sample with a shallow peak
+df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])
+chrom = Chromatogram(df)
+peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Performing baseline correction:   0%|          | 0/249 [00:00<?, ?it/s]
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 461.48it/s]
+Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 10.76it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 2.910 - 17.080) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0
+F, Failed:  Interpeak Window 2 (t: 17.090 - 79.990) R-Score = 10^-3 & Fano Ratio = 0.0369
+Interpeak window 2 is not well reconstructed by mixture and has an appreciable Fano
+factor compared to peak region(s). This suggests you have missed a peak in this
+region. Consider adding manual peak positioning by passing `known_peaks`
+to `fit_peaks()`.
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+../_images/tutorials_quickstart_29_3.png +
+
+

As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value to provide a better initial guess.

+
+
[18]:
+
+
+
# Add the location of the second peak
+peaks = chrom.fit_peaks(known_peaks={50 : {'width': 5}}, prominence=0.5)
+chrom.show()
+score = chrom.assess_fit()
+
+
+
+
+
+
+
+
+Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 17.89it/s]
+
+
+
+
+
+
+
+
+-------------------Chromatogram Reconstruction Report Card----------------------
+
+Reconstruction of Peaks
+=======================
+
+A+, Success:  Peak Window 1 (t: 2.910 - 17.080) R-Score = 1.0000
+A+, Success:  Peak Window 2 (t: 45.000 - 54.990) R-Score = 1.0000
+
+Signal Reconstruction of Interpeak Windows
+==========================================
+
+A+, Success:  Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0
+A+, Success:  Interpeak Window 2 (t: 17.090 - 44.990) R-Score = 1.0016 & Fano Ratio = 0.0154
+A+, Success:  Interpeak Window 3 (t: 55.000 - 79.990) R-Score = 1.0002 & Fano Ratio = 0.0153
+
+--------------------------------------------------------------------------------
+
+
+
+
+
+
+../_images/tutorials_quickstart_31_2.png +
+
+
+
+

Constraining Peaks With Known Parameters

+

If you have a chromatogram with two completely overlapping peaks, it can be very, very difficult to deconvolve the mixture. However, if you happen to know the parameters of one of the constituents (say, from characterization of an isolated aqueous mixture of that compound), you can apply more stringent bounds to that particular peak. Say for example we have a mixture of two compounds with retention times of 10 and 10.6 and you know that the first peak has an amplitude of 100 units. +If you were to only supply the locations of the known peaks, you would underestimate the contribution from the first peak.

+
+
[19]:
+
+
+
# Load a chromatogram that is very heavily overlapping
+df = load_chromatogram('data/bounding_example.csv', cols=['time', 'signal'])
+chrom = Chromatogram(df)
+
+# Fit the peaks providing only the known retention times
+peaks = chrom.fit_peaks(known_peaks = [10, 10.6])
+inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]
+known_amplitude = 100
+
+# Print a summary statement demonstrating the underestimation
+print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')
+chrom.show()
+
+
+
+
+
+
+
+
+Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1365.51it/s]
+Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.02it/s]
+
+
+
+
+
+
+
+Inferred amplitude for peak 1 is 94.971. Known value is 100.000
+
+
+
+
+
+
+
+
+
+
+
+
[19]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_33_4.png +
+
+

You can constrain the parameter bounds for the amplitude of peak 1 more narrowly than the other peak by passing a dictionary to the known_peaks parameter of fit_peaks().

+
+
[20]:
+
+
+
# Define more stringent bounds as a dictionary with the retention time as the key
+# and the parameter bounds as a value.
+bounds = {10: {'amplitude':[99, 101]}, # Known parameters for peak 1
+          10.6 : {} # Allow free inference for second peak
+          }
+peaks = chrom.fit_peaks(known_peaks=bounds)
+inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]
+
+# Print a summary statement demonstrating the improvement.
+print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')
+chrom.show()
+
+
+
+
+
+
+
+
+Deconvolving mixture:   0%|          | 0/2 [00:00<?, ?it/s]
+
+
+
+
+
+
+
+Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00,  2.08it/s]
+
+
+
+
+
+
+
+Inferred amplitude for peak 1 is 99.000. Known value is 100.000
+
+
+
+
+
+
+
+
+
+
+
+
[20]:
+
+
+
+
+[<Figure size 640x480 with 1 Axes>,
+ <Axes: xlabel='time', ylabel='signal (baseline corrected)'>]
+
+
+
+
+
+
+../_images/tutorials_quickstart_35_5.png +
+
+

Here, we’ve only bounded the amplitude parameter, but you can also provide bounds for location, scale, and skew.

+
+

© Griffin Chure, 2023. This notebook and the code within are released under a Creative-Commons CC-BY 4.0 and GPLv3 license, respectively.

+
+
+ + +
+
+ +
+
+
+
+ + + + \ No newline at end of file diff --git a/tutorials/quickstart.ipynb b/tutorials/quickstart.ipynb new file mode 100644 index 0000000..99fdf28 --- /dev/null +++ b/tutorials/quickstart.ipynb @@ -0,0 +1,1261 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Quickstart\n", + "\n", + "Notebook Code: [![License: MIT](https://img.shields.io/badge/License-GPLv3-blue.svg)](https://www.gnu.org/licenses/gpl-3.0) Notebook Prose: [![License: CC BY 4.0](https://img.shields.io/badge/License-CC_BY_4.0-lightgrey.svg)](https://creativecommons.org/licenses/by/4.0/)\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This package is meant to get you from chromatogram to quantified peaks as rapidly \n", + "as possible. Below is a brief example of how to go from a raw, off-the-machine \n", + "data set to a list of compounds and their absolute concentrations. " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Loading and viewing chromatograms\n", + "Text files containing chromatograms with time and signal information can be intelligently read into a pandas DataFrame using `hplc.io.load_chromatogram()`." + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
R.Time (min)Intensity
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " R.Time (min) Intensity\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load the chromatogram as a dataframe\n", + "from hplc.io import load_chromatogram\n", + "df = load_chromatogram('data/sample.txt', \n", + " cols=['R.Time (min)', 'Intensity'])\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "By providing the column names as a dictionary, you can rename the (often annoying)\n", + "default column names to something easier to work with, such as \"time\" and \"signal\"\n", + "as " + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
timesignal
00.000000
10.008330
20.016670
30.025000
40.03333-1
\n", + "
" + ], + "text/plain": [ + " time signal\n", + "0 0.00000 0\n", + "1 0.00833 0\n", + "2 0.01667 0\n", + "3 0.02500 0\n", + "4 0.03333 -1" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Load chromatogram and rename the columns\n", + "df = load_chromatogram('data/sample.txt', cols={'R.Time (min)':'time',\n", + " 'Intensity': 'signal'})\n", + "df.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This dataframe can now be loaded passed to the `Chromatogram` class, which \n", + "has a variety of methods for quantification, cropping, and visualization and\n", + "more." + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 45, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAABkz0lEQVR4nO3deXxkVZ3//1ctSSpJZ+uFZukGEejDTrOpqI0gaos6i6iDOo6KCgo//cpXZBkFGgRRUVGQr+gMqKggMyouOOA2jGwKg40g0HCa3d6gt2ydVJZafn/cOlWVSlVSVbmV2t7PxyOPqtx769Q5fau788nnnM8JJJNJREREREREmkGw2h0QERERERGZLwqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahAEhERERERJpGuNodaFADQBuwpcr9EBERkeLtAYwDvVXuh4hUUCCZTFa7D40omkwmI4lEZf5sg8EAlWq7FjT6+KDxx6jx1b9GH6PGV/8qMcZgMEAgEBgD2n1tWERqijJAlbElkUjuu3PniO8Nh8NB+vo6GRoaJRZL+N5+tTX6+KDxx6jx1b9GH6PGV/8qNcaFCzsJhQKavSHS4LQGSEREREREmoYCIBERERERaRoKgEREREREpGkoABIRERERkaahIggiIiIiTWrt2rVdeOW/9UtxqWcJYMvRRx89XMzFCoBEREREmszatWuDwGcCgeD7A4FACxCodp9E5iCZTCYn165d+33giqOPPnrG8pAKgERERESaz2dCofCZ3d19E62tkdFAINDYG0dJQ0smk4GJibGOoaH+M+PxGMDlM12vAEhERESkiaxdu7Y7EAi+v7u7b6Krq29Htfsj4oe2tvYosGhgYMf7165de/VM0+E031NERESkueweCARaWlsjo9XuiIifUtnMFrx1bQUpABIRERFpLkEgoGlv0mhSn+kAs8Q4CoBERERERKRpKAASEREREZGmoQBIRERERMQH11xz1Z7/+I9vPqza/SjWk0+ui/z+97/tqXY/5psCIBEp2qZNG7nuum+wc6eKBomIiNS7Cy4454B16x7rrHY/5pvKYItI0a677hv86le/YP16y9e+dm21uyMiIiJz0px1MBQAiUjRfvWrXwDwP//z+yr3RERE/JZIJBgdHa3a7KCOjo5EMFja27/2tccc/Y53nLrlD3/470WTk5PBq6++7smOjo7EN77xtWV//etfukdGRkI9PT2xE098w45PfvLTm554Yl37Rz/6wYO/+c3rnzj88JWjAGeffdZ+jz321+5f//oPfwmHwySTSd761jcc8YEPfGjTqaf+8/bc99y+fVv4qquuXPbQQw/2xOPxwIoVB+761KfO37DffvuPu2v+7d++ufRXv/r50uHh4fD++x8wcsEFFz/vzufr87Jlyye+/e3/t8ddd925qL+/v2WvvfYa+5d/OW3zm9/81gGAH//4lkU/+tEP9jjttI9suuGGf1s2ODjQctBBhwxfeOGlz3/vezfs/oc//H5ROBxO/v3fn/LSxz728RcBxsfHA9de+7U977337r6dO3e0RiLtiSOOWDl4wQUX/W3hwkXxf/zHNx+2ffv21v/8z5v3ePTRh7v+/d+/b/v7d4auvfbrez344P29w8PD4X333W/kjDPO2vSqV716lxvbz3/+04U33XTjHtu2bWvbe++9oyee+MYdN9zwreX33vvnteXck2AwWNb45kIBkIiIiEiTSyQSvPe97zjwySefqNp0qAMPPHjXzTf/xJYaBP32t7cv+cIXvvpUPB4LHHDAivH3vvcdB/f09E5+6UtfX9/V1RW/6647e//9369bfvDBh46sXv2WgcWLF0/86U/3dR9++MrReDzOunWPdY2Pjwf/8pe1ncce+8qRhx9+qGN4eCj8+te/cSD3vWKxGJ/85JkrIJC85JIrnlm0aFHsG9/42rJzzvnEip/85LZHAbZv39762GN/7frCF656amJiPHDFFZfue8UVl77shht+YAv1+eyzz9rv2Wef6fjEJ/7v3/bdd7+xX//6vxZ+/vOX7BcMBp9+05tOHgTYsWN76y9/+bPdLr/8yqdHR0eCF110/gGnnfbPh5x00hu3f/ObNzxx++2/XPTDH35vr9e97sSBgw46ZOyrX/3isgce+FPv+ed/9vnly/cet9a2f+UrV7zs29/+f3v+679evOH663/wxIc+9M8Hv+Y1r9t5xhlnbonH4/yf//OxFZOTk4Hzz7/wuSVLdpv8j/+4ebcLLvjUiq9//ZtPrlx51Ojvf/+bnquu+tK+73//hzaecMJJAw888Mfu66//1vK53pNyxlfShySHAiARERERAepzX6DXve71O1auPGoUIBqNBl7/+jfuWL365P7ly/eZAHjZyz689cc/vmX3p59e37569VsGjjnmlQMPPfRgN/Diww8/1BkKhZMrVhy468EHH+g69thXjtxzz129Bxxgdi1Zslss973uu+/u7hdeeL79u9+9+bEDDlgxDvDZz17y/Pe+d/3uO3fuCAOEQqHkZZd96bmenp44wMknv23bD3/4vb0K9Xn9+icjf/7z//Zecsnnn37DG1YPAnz842dvefbZpztuuunGPVwAFI/HA5/61PkvuB/+DzvsiKH1659ccO65n9kYCAQ444z/b8t//ueP9njqqfXtBx10yNhBBx08cuKJJ/Ufd9xrdwEsX77PxO9+9+uh559/th1g8eIlsWAwmGxvb0/09S2M33nn77qfe+7Zjn//9xsfd+9x4YWX/m39+ic7b7rpxt1Xrjzq2VtuuWn3V73q1Ts/8pGPvQSw//4HbNu4cUPbbbf9fOlc7kk545vLZ0YBkIiIiEiTCwaD3HzzT2y9TYEDWLZseXrqWXt7e/Jf/uW0rbffflvfD394Y+fmzZvaXnjhuY6Bgf6WeDwRAFi16oTBNWs+syQajQYeeOBPXYcccujwXnstH3vkkYe6gRcffPCBnuOPP2Fnvvd66qn17R0dHXEX/AAsXbp77PzzL9zovu/p6Ym54Aegq6s7PjExMWVg2X229sl2gGOOeeWu7GsOO2zl8Pe/f8Oy7GP7759537a2tsSSJUvHA4EAAJFIJAkwPj4eBHj729+185577uq66qov7bVp08a2jRs3tG/evCly4IEHTXkf5+mnn2pvb++IZwcXgUCAgw8+dNdDD/25G+D555/teO1rj+/Pft0RRxy5KzcAKvWelDO+uVAAJCIiIiIEg0EWLFiQqHY/StXWFkn3eXR0NPjRj37QjI2NBVetel3/m9508o4jjlj5t49//IwD3TXHHfea4ZaWcOL+++/r+stf1nafeOJJO/fZ52Xjv/zlrbtv2PBC6/PPP9txySWffzbfe4VC4aT7gbyQYDA4ayYtu8+FChEkEvFAKBSacrKlpWXK98Fg4b587nMX7X3ffXcvPOGEk3a86lWvGTzwwIO33HTTjbvv2LGtNd/1yWT+oSUSCcLhcNJ7v2AymZw9UVjqPSlnfHOhAEhEihKPx2e/SEREpIruuuvO7ueee7bj1lv/65HddlsaA+jv3xkaHBwMu0CjtbU1ecQRRw7dffcfep96av2CCy646IVly5ZPBAKB5De/+Y0999hjz7HsggbZXv7y/cZGRkZCzz77TNvLX77fOMCOHdvD73nPKYdefvmVT5XT5xUrDowC/PnPDyxwU+AAHn30kQV77bU8Wk6bO3fuCP32t3csOf/8zz77d3/39nTGZuPGv0Uikfas4CsTYOy//4ro6Oho6IknHo9kZ4HWrXt8wbJle48B7LPPy6Lr1j2+ANjqzj/++KMzrhsr5p7MN+0DJCJFmZiYmPJ9IlF3vyQUEZEGt3Tp7hMAv/zlzxZt2PBC6wMP/GnBpz/9f/aPx+OBiYnJ9E/7r371awf+53/+e3F3d1dsv/32H29ra0sac9Cue++9a9GrXvXqgULtr1r1uqF9991v9HOfu3DftWsf7HzyyXWRSy757Mt6enonjzjiyNFy+mzMQWMrVx41eM01V+39+9//pufpp59qu/bar++xdu2Dvf/0T+95qZw2u7t74u3tHfF7772799lnn2lbt+6x9jVrPrPP888/1zE5mflziEQi8U2bNrZt3fpS+HWvO3Fw+fJ9op/73EUv/+Mf7+lav/7JyGWXXbz3xo1/a3/3u9/7EsB73/v+LQ888Me+G2749tJnn32m7Sc/+Y9F//Vft+02U1+KvSfzSRkgESnKxMTUX4aNj4/R3t5Rpd6IiIhMd9RRx4x+6ENnbPj5z3+69Kabbtyrr2/hxKpVJ+xcvHjJhLWZCncnnviGwa9//SuBQw89YsgdO/LIo4ceffSR7te97vUDhdoPBoNceeXXnr7qqiuXX3DBOQcAHHLIocNXXfWNp9ra2spOZ3zxi1c9+/Wvf3mvq6668mWjo6Oh5cuXRz/zmUueOfnktxbsy0zC4TAXXnjps9/61jeWffjD7zuks3NB7NBDDx9+3/s+uOknP7llj5GRkWBnZ2fiH/7hHVu/851vL/vkJ89q/9GPfrrummuuW3/VVVcuu/TSC/ebnIwF9t335aNf/OJV648++hUjACee+IahrVtfeuGWW27a/Qc/+O5e++778tHVq0/edscdvyoYBBV7T+ZToJh5fFKyZ+PxxL47d4743nA4HKSvr5P+/hFiscb7DXyjjw/qd4xbt77Em970uvT3d9/9AN3dPdOuq9fxFavRxweNP0aNr/5VaowLF3YSCgWfA17uW6M1aO3atQcGg6Ff77bbXrtaWyNzqqYlzeVPf7p3weLFu01mF4G47rpv7P7b396x+Gc/u/2xavYNYGJiLLJ166YFiUT8zUcfffSTha5TBkhEipI7BW5ycrJKPREREZFquP/+P/b84Q93LjzvvM88v88+Lxtft+7x9l/+8mdLTz75bduq3bdSKAASkaKMjU39JWFuQCQiIiKN7ayzPrk5Go0Gv/jFy/cdHh4KL1y4aOIf/uGUl04//cwXq923UigAEpGi5K4BUgZIRESkubS1tSU/85k1G4AN1e7LXKgKnIgUZXx8asZHGSARERGpRwqARKQouRmgWEwZIBGROpUAUB0saTRZn+kZq6MoABKRooyPTw2AlAESEalbOyAZSyTiWgohDSWRiIUhGQO2z3SdAiARKYrWAImINIz+ZDL5YjQ60lXtjoj4KRod7Uomky8CAzNdp8hfRIqiNUAiIo3h6KOPTqxdu/Yr0ejwN4aGWha1tbWPBALV7pVI+ZJJGB+Pdkajw4lkMvnlo48+esYpcAqARKQoygCJiDSUX8bj8UMGB3e8JxAILKh2Z0TmKplM7komEz8CbpvtWgVAIlKU8fGp+wBNTioDJCJSr1K/If/82rVrv5FMsjtaFiH1LQG8ePTRRw8Vc3FVAyBjzAnA/xQ4/Zy19uXGmJXA1cAxwA7gGmvtV7LaCAJrgI8AfcC9wFnW2qezrplzGyLNLrcIgjJAIiL1L/UDY1E/NIo0impH+38E9sj5ehMQA64wxiwCfgesxwte1gCXGWNOy2rjIuBjwOnAcUASuMMY0wrgRxsiMn3Nj9YAiYiISD2qagbIWjsBvOi+N8a0AF8Dfmqtvd4Y86/AOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qo1Tgc3AKcAtwBk+tCHS9JQBEhERkUZQ7QxQrv8PWA7839T3q4C7U4GLcydgjDG7ASuBrtQxAKy1A8BDwPE+tiHS9KYXQVAGSEREROpPzRRBMMZEgM8CX7fWbkkdXgY8mnPp5tTj3qnzABvyXLO3j22UJRz2P74MhYJTHhtNo48P6neMuQFPMpnM+xmv1/EVq9HHB40/Ro2v/jXDGEWkcmomAAL+BWgHrsk61oE3fS2bK0UVSZ2nwDULfWyjZMFggL6+znJfPqvu7vaKtV0LGn18UI9jnFpSv7U1OONnvP7GV5pGHx80/hg1vvrXDGMUEf/VUgD0fry1PzuyjkWBtpzrIqnHkdR5UtdEc64Z8bGNkiUSSYaGRst9eUGhUJDu7naGhqLE4zPu8VSXGn18UL9jHBqa+tdh164o/f3T/4rU6/iK1ejjg8Yfo8ZX/yo1xu7udmWVRJpATQRAxpglwKuBK3JObQD2zDnmvt8EtGQdeybnmkd8bKMssVjl/uOJxxMVbb/aGn18UH9jHBuLTvl+YiI2Y//rbXylavTxQeOPUeOrf80wRhHxX638muPVeKWn78o5fjewyhgTyjp2EmCttVvxApQh4AR30hjTCxwF3ONjGyJNb3zcWwPU2upVh4/HYzNdLiIiIlKTaiIDBBwBPGutzZ0z9h3gPOAGY8yVwCuAs/H27MFaO26MuRb4kjFmG/A88GW8rM+tPrYh0vRcFbiOjg4mJiaIxRQAiYiISP2plQzQ7sCO3IOpDM1qwOCVpV4DnGutvTHrsouBG4DrgfvwNlFdndpjyJc2RCSzD1BHh1f4IB6PV7M7IiIiImWpiQyQtfasGc49CBw3w/k43qam51eyDZFml50BAk2BExERkfpUKxkgEalxbg2QC4BiMWWAREREpP4oABKRorgMUHu7mwKnDJCIiIjUHwVAIlKUzBogNwVOGSARERGpPwqARKQoLgDq7FQRBBEREalfCoBEpCiZKXBuDZCmwImIiEj9UQAkIrNKJpPKAImIiEhDUAAkIrOKxSZJJpOA1gCJiIhIfVMAJCKzciWwIXsK3GS1uiMiIiJSNgVAIjIrt/4HoL29HVAGSEREROqTAiARmZVb/9Pa2ko4HAa0EaqIiIjUJwVAIjXq6afXc/bZZ/Hkk09UuyvpDFBbWyQdAGkjVBEREalH4Wp3QETyu/jif2Xduse5//4/cv/9D1e1L2NjLgBqIxQKAZoCJyIiIvVJGSCRGrVu3eMAjI2NVbknmQxQ9hQ4ZYBERESkHikAEpFZuTVAXgZIa4BERESkfikAEpFZZTJAbYTDmgInIiIi9UsBkIjMyu0D1NbWms4AaQqciIiI1CMFQCIyq+wMkIogiIiISD1TACQis8qsAYqkA6BYTBkgERERqT8KgERkVpl9gNqyNkJVACQiIiL1RwGQiMzK7QM0tQy2psCJiIhI/VEAJCKzys4ABYPePxsKgERERKQeKQASkVm5NUAqgiAiIiL1TgGQiMxqYiJTBjsY9AKgRCJRzS6JiIiIlEUBkEgdqHawkZ0BclPgEgllgERERKT+KAASqQPVrrg2Pj4GeGuA3BS4agdlIiIiIuVQACRSg3LX18Rik1XqiSd7H6BgMABAPK4ASEREROqPAiCRGpSb8ZmcrJUAKHsNkKbAiYiISP1RACRSg3IzPtWeApcpgx3JWgOkDJCIiIjUHwVAIjWo1jJAbiPU7DVAKoMtIiIi9UgBkEgNyg2Aqh1s5NsIVRkgERERqUcKgERqUK0FQK4K3NQy2AqAREREpP4oABKpQblT3qpdcGB83NsINRKJpIsgJJNJkslkNbslIiIiUrJwtTsAYIx5P3AB8HLgGeASa+2PU+dWAlcDxwA7gGustV/Jem0QWAN8BOgD7gXOstY+nXXNnNsQmU+5RRCqXXI6kwFqJRTK/N4kHo8TDtfEPyMiIiIiRal6BsgY8z7gO8C3gUOBW4BbjDHHGWMWAb8D1uMFL2uAy4wxp2U1cRHwMeB04DggCdxhjGlNtT/nNkTmW+1NgfPWAGVngEDT4ERERKT+VPVXt8aYAHAZ8DVr7dWpw5cZY14LnJD6GgfOtNbGgCeMMQcA5wPfTQUo5wDnWWtvT7V5KrAZOAUvmDrDhzZE5lUsNjXgqf4UOC8Aam1tm5YBEhEREakn1c4AGeBlwM3ZB621q621XwBWAXenAhfnTsAYY3YDVgJdqWPutQPAQ8DxqUN+tCEyr3IDnmoHGlOrwGUyQMmkMkAiIiJSX6o9eX9F6rHTGPMb4EjgOeBya+1twDLg0ZzXbE497p06D7AhzzV7p5770UZZwmH/40v32/fs38I3kkYfHxQ3xkAgt7hAsiKfp2Ikk0nGxrw1QJ2d7bS2Zv7ZCASmf84b/R42+vig8ceo8dW/ZhijiFROtQOg7tTj94FL8aalvQP4hTHmjUAH3vS1bGOpx0jqPAWuWZh67kcbJQsGA/T1dZb78ll1d7dXrO1a0Ojjg5nH2NnZlvN9a0U/TzNx098Ali5dSEdHR/r7rq62gv1q9HvY6OODxh+jxlf/mmGMIuK/agdAE6nHL1trb0w9f9gYcxTwKSAKtOW8JpJ6HEmdJ3VNNOeakdRzP9ooWSKRZGhotNyXFxQKBenubmdoKFr1ymCV0Ojjg+LGODAwMu37/v6yP45zMjw8nH4ejcaJxcbS3+/cuQuYWiuk0e9ho48PGn+MGl/9q9QYu7vblVUSaQLVDoA2ph5zp6g9DrwNeB7YM+ec+34T0JJ17Jmcax5JPd/gQxtlicUq9x9PPJ6oaPvV1ujjg5nHmFsEYXJysmp/HiMjXiAfCAQIBELE40kCgQDJZJKJicL9avR72Ojjg8Yfo8ZX/5phjCLiv2r/muMvwDDwqpzjhwFPA3cDq4wxoaxzJwHWWrsVL0AZwqsWB4Axphc4CrgndciPNkTmVW7Rg9yAaD65KXBtbW0EAgEAQiHvr1Oj/nZZREREGldVM0DW2qgx5krgYmPMJuB/gXcDb8ILUtYB5wE3pK57BXA23p49WGvHjTHXAl8yxmzDyxh9GS/rc2vqbb7jQxsi8yp3f51q7reTHQA5LhBSFTgRERGpN9WeAoe19nJjzCjweWAv4AngFGvtHwCMMauBa/DKUm8Bzs1aLwRwMd44rgfa8TI+q621E6n2t861DZH5lhvwVLMMtiuB3dqaCYBCoRCTk5NVL88tIiIiUqqqB0AA1tqrgKsKnHsQOG6G18bxqsedP8M1c25DZD7VUgbIlcCORCLpY8GgN3u2mv0SERERKUe11wCJSB65mZV4PFbgysqbmPASodkZILcZau6GrSIiIiK1TgGQSA3KXVtTzWIDLgOUvQbIlYlVEQQRERGpNwqARGpQbmBRzUyLWwOUHQBlMkAKgERERKS+KAASqUG5AU81iw3kqwKnNUAiIiJSrxQAidSgRCI55fvaDYC0BkhERETqiwIgkRqUG1hUdx8gtwYoUwUusxGqAiARERGpLwqARGpQLe0DND7uqsC1po9pCpyIiIjUKwVAIjWotgKg6fsAKQMkIiIi9UoBkEgNyg0sqrnWxq0Byt4HKBAIAJBMJvO+RkRERKRWKQASqUG5gUU199txAVAkkr0PkDJAIiIiUp8UAInUoNzAIh6PVaknmX2AsjNA2gdIRERE6pUCIJEaNH0NUPUCjbGxfFXgvH86lAESERGReqMASKQG5QZA1VwDFI1GAWhvzwRAygCJiIhIvVIAJFKDamkfIJcBikTa08dUBltERETqlQIgkRqUSEwtghCLVW8NUDQ6CkB7e74ASFPgREREpL4oABKpQbmBRTXLTbsMUL4AqJprk0RERETKoQBIpAblBhbVnGrm1gBlT4FzZbCVARIREZF6owBIpAYlk7UTAI2NuSIIygCJiIhI/VMAJFKDcstLV3MKXCYDlF0GWxkgERERqU8KgERq0PR9gKoXaGTWAHWkjwUCrghC9QIzERERkXIoABKpQbkBUO6UuPmSTCbTU+CmZoBUBU5ERETqkwIgkRo0fSPU6mRaxsfH09Pvpq4B8qbAVTMzJSIiIlIOBUAiNWh6AFSdQMOt/4HcKnDaCFVERETqkwIgkRqUG/BUK9Bw099aW1vThQ8gkwHSFDgRERGpNwqARGrQ9H2AqjMFLt8eQJCdAVIRBBEREakvCoBEatD0fYCqk2nJtwcQZFeBUwZIRERE6osCIJEaVHsZoMiU4y4DpI1QRUREpN4oABKpQS6zEgx6f0WrVQY73x5AoDVAIiIiUr8UAInUIFf0IBwOT/m+ku655y4uvfRCtm/flj4WjY4C0zNALjBTFTgRERGpN+Fqd0BEpssOgCYmJuYl0Fiz5jPs3LmDSCTC+edfCGRngKauAVIAJCIiIvVKGSCRGpQJgFqmfF8pO3ZsZ+fOHQCsXfvn9PHCVeDcFDgFQCIiIlJfFACJ1KD5ngK3bdvW9PPsKXCFq8AF5qVfIiIiIn6r+hQ4Y8w+wPN5Tp1urb3eGLMSuBo4BtgBXGOt/UrW64PAGuAjQB9wL3CWtfbprGvm3IbIfIrHveIC8xUAbd++Pf18584djI2NEYlEGB311gDlBkDKAImIiEi9qoUM0OHAGLAnsEfW103GmEXA74D1eMHLGuAyY8xpWa+/CPgYcDpwHJAE7jDGtAL40YbIfJvvDFB21gfgpZe2ADAysguABQu6ppx3+wC5QE1ERESkXlQ9AwQcBlhr7ZbcE8aYs4Fx4ExrbQx4whhzAHA+8N1UgHIOcJ619vbUa04FNgOnALcAZ/jQhsi8yg2AKl0G263/cbZt28Y+++zLrl0uAFow5bzbByiZrM7+RCIiIiLlqpUM0LoC51YBd6cCF+dOwBhjdgNWAl2pYwBYaweAh4DjfWxDZF65/XVcEYRKbzjqAh1n586dAIyMjADQ2dk55bwyQCIiIlKvaiUDtMUYcw+wAngKuMxa+xtgGfBozvWbU497p84DbMhzzd6p5360UZZw2P/40v3m3T02mkYfHxQ3RpdZCYdD7khFPk+OK3bgDA7uJBwOMjrqBUbd3d1T3r+lxetXIDC9X41+Dxt9fND4Y9T46l8zjFFEKqeqAVBq+tkKYAQ4F9gFvA9v/c0bgQ686WvZxlKPkdR5ClyzMPXcjzZKFgwG6OvrnP3CMnV3t89+UR1r9PHBzGMMhbwqa5FIW/r7Sn6eYrGpH//R0WH6+jrTgdHSpYumvH97u9evlpZQwX41+j1s9PFB449R46t/zTBGEfFfVQMga+2EMaYXiFlr3U9ga40xBwGfBqJAW87L3Jb0I6nzpK6J5lwzknruRxslSySSDA2NlvvygkKhIN3d7QwNRSs+LaoaGn18UNwYx8cngcxUs/HxCfr7y/44zqq/fxCAnp5eBgcH2Lz5Jfr7RxgYGEpdEZ7y/pOT3tS3aHR8Wr8a/R42+vig8ceo8dW/So2xu7tdWSWRJlD1KXDW2nw/1T0KvBlvWtqeOefc95uAlqxjz+Rc80jquR9tlCUWq9x/PPF4oqLtV1ujjw9mHqNbWxMKhWe91g9urc+yZcsZHBxgx47txGIJdu0aBiAS6Zzy/smkl6GanIzPMIbGvoeNPj5o/DFqfPWvGcYoIv6r6q85jDGHG2N2GWNem3PqGOBx4G5glTEmlHXuJLyqcVvxApQh4ISsNnuBo4B7Uof8aENkXk3fB6iy1dZcALR8+XJgehGE6VXgvL9Ola5OJyIiIuK3ameAHkt9XWeMORPYjle2+jjgWOAl4DzgBmPMlcArgLPx9uzBWjtujLkW+JIxZhvehqpfxsv63Jp6j+/40IbIvHIBz3yVwY5Gvemae+3lAqAdJJPJ9D5A06vAeRmgRp1eIyIiIo2rqhkga20C+Dvgf4EfA38BXgm80Vr7aCpDsxoweGWp1wDnWmtvzGrmYuAG4HrgPiAGrLbWTqTeY85tiMy3TBlsNwWusuWms6fAgZcBGh8fT79vbgCkDJCIiIjUq2pngLDWbgM+PMP5B/EyQoXOx/E2NT2/km2IzKfMRqjeErVKbzg6OuplgJYv9yq/Dw0NMjDQD3jZnvb2jinXB4PaB0hERETqk0qdiNSgTAAUnvJ9pUSjrtz17un3fP755wBYsKArHfA47vtKB2YiIiIiflMAJFKDcqfAue8rZXLSm+3Z1tbGwoWLAHj66acA6O3tm3a9MkAiIiJSrxQAidSg3CIIlawCF4vF0oFMW1sbixZ5AdAzzzwNQF9f77TXuACo0pkpEREREb8pABKpQdPLYFcu0JiYGE8/b21tY+HCxQA888zsGSAFQCIiIlJvFACJ1KDcIgiVDDTGxzPFDltbW1m82AuAnn3WywD19PROe00wGKp4v0REREQqQQGQSA2azyIIExMT6fcKhULpKXC7dnl7APX15csABSreLxEREZFKUAAkUoNyA6BK7rfjpsC1trYCsGjRkinn+/oWTXuNMkAiIiJSrxQAidSg6RuhVnIKnBcAtbW1AbB06dIp5/fYY49pr9EaIBEREalXCoBEalA1MkAtLV4GaJ99Xjbl/O67KwASERGRxqEASKQGucCipaXyRRDcGiCXAVq+fJ8p55ctWz7tNZkASPsAiYiISH1RACRSg6YXQajcPkAuAGpt9QKgSCRCb29v+vzixUumvSYTAFWuXyIiIiKVoABIpAa5NT+hkCs2ULlMi1sD1Nrakj728Y//X0KhEJ/85KfzvkYZIBEREalX4Wp3QESmc4HF/EyBcwFQW/rYO995Kqec8q50oJNLVeBERESkXikDJFKDcjdCTSYrPwXOrQFyCgU/3jntAyQiIiL1SQGQSA1ygYWbAhePV34KnKsCVwxlgERERKReKQASqUG5+wBVIwM0E2WAREREpF4pABKpQa66WqYKXOXLYLe2Fp8ByhRnUAAkIiIi9UUBkEgNymSAWqZ8XwmuCEIpGaBAQFXgREREpD4pABKpQfO5D1CmDHYpGSDtAyQiIiL1SQGQSA1y+wDNxxS4ycnJ1Hu1zHJlhjJAIiIiUq8UAInUoNwiCJUMNFyFuZaW4rcFUwZIRERE6pUCIJEa5AILF5RUMtCIxWIAhELFB0DKAImIiEi9UgAkUoNyiyAkk5WbAheLuSlwxQdAbpNUVYETERGReqMASKQGTS+CULlAw02Bc6Wti6EASEREROqVAiCRGjSfAZCbAqcMkIiIiDQDBUAiNSaZTFYpACq+Clww6GWLXLU6ERERkXqhAEikxiSTmYIHmTVAySnH/ZQpglDKFLhAql8KgERERKS+KAASqTFuTQ5MDUoqlQVyAVApZbAzGSBVgRMREZH6ogBIpMZkBzotLS15j/spUwShlADIZYC0D5CIiIjUFwVAIjUmO9DJLkxQuSlwpZfBdpkpZYBERESk3hT1E48x5v2lNGqt/X553RGR7M1Fs7MylQo2XLulBEBuI1RlgERERKTeFPsTz/dKaDMJKAASKVN2ZbXsKXCVKjhQThGEUEhlsEVERKQ+FRsA7VvRXqQYY1YADwEft9Z+L3VsJXA1cAywA7jGWvuVrNcEgTXAR4A+4F7gLGvt01nXzLkNkfmSHehkZ2USicpWgSulDLbLAGVnq0RERETqQVEBkLX2hWIbNMYEyumIMaYFuAnozDq2CPgd8HPgY8CrgG8aY3ZYa7+buuyi1LnTgE3AlcAdxphDrLUTfrRRznhEypWdAQqHs6vAVSbYyARA5WSANAVORERE6kvxk/6zGGPeDbwOaAVcwBPEC16OA5aV0eylwHDOsTOAceBMa20MeMIYcwBwPvBdY0wrcA5wnrX29lTfTgU2A6cAt/jUhsi8cRmgQCCQLjcNlS+DXc4aIGWAREREpN6UXAXOGLMGuBl4N/BPwD8CbwXeD7wduK2MNo8HPgp8IOfUKuDuVODi3Om9xOwGrAS6UscAsNYO4E2jO97HNkTmjStKEAwGCQYzf0UrlW0ppwiCWy+kNUAiIiJSb8rJAH0A+GHq8VJgH2vtB4wxRwO3A4+X0pgxphf4AfAJa+0GY0z26WXAozkv2Zx63JtMpmlDnmv29rGNsoTD/lcZd1OP3GOjafTxwexjDKRyqsFgkJaWEIFAgGQySTBYmc9UPO79bqC1taXo9ltaMgFQ7msa/R42+vig8ceo8dW/ZhijiFROOQHQXsAPrLVJY8xa4D0A1tq1xpjP4xUSuLaE9q4D/mStvTnPuQ686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg8JjHBmJAF6Wpa+vk2AwSDwep6urrSKfKTeNra+vq+j2R0cXAF4Z7EKvafR72Ojjg8Yfo8ZX/5phjCLiv3ICoBG8UtcATwH7GmParbVR4GFKqBhnjPkXvClqhxW4JAq05RyLZPUjmnrelvXcXTPiYxslSySSDA2NlvvygkKhIN3d7QwNRacslm8UjT4+mH2MO3d6S+ECgSD9/SPpAKi/f4S2trI/kgVNTHgboY6OTtLfX1z7w8Pe7xBcv7I1+j1s9PFB449R46t/lRpjd3e7skoiTaCcAOh/8aa//R54BogBb8Bb+3MQ0zMpM/kQsBTInfr2LWPMucALwJ45r3HfbwJaso49k3PNI6nnG3xooyyxWOX+44nHExVtv9oafXxQeIwTE25fniCxWCK9DmhyMlaRPxNXBCEQCBXdfjLpzdNLJArfp0a/h40+Pmj8MWp89a8Zxigi/ivn1xxXAKcaY26z1o7jrQe60RjzU+CrwG9KaOt9eEHTyqwvgIuBtwB3A6uMMdn1eU8CrLV2K16AMgSc4E6m1hQdBdyTOuRHGyLzxlWBcxXgMhXXKvOfvFsDVEoRBBeUJRIJkkmVwhYREZH6UXIGyFp7tzHmGODw1KGPAwngNcCPgU+V0Nam3GOpTNBWa+0LxpjvAOcBNxhjrgReAZyNt2cP1tpxY8y1wJeMMduA54Ev42V9bk016UcbIvPGTecIBgNTHitfBrv4fYCyq9Mlk0kCgbK2/xIRERGZd2XtA2St/Svw19TzMby9dnxnrd1qjFkNXINXlnoLcK619sasyy7GG8f1QDtexme128DUjzZE5pMrSuAyQO6xUgHQ5GT5GSDw1gFlfy8iIiJSy8rdCLUHeD3exqfTfvKx1n6/3A5ZawM53z+It7lqoevjeJuanj/DNXNuQ2S+uP1+XFCRPd2sEtw+QKFQKQFQJlukKXAiIiJST0oOgIwxJ+NNdesocEkSKDsAEml2mQyQC4AqPQXOqwJXWgYo83sKF0CJiIiI1INyMkBfAJ7AW+uzEW/9j4j4xAU6odDUKXCuOILfXABTWgCUnQHSPwEiIiJSP8oJgA4E/sFaqwppIhXgAiBXWCAzBc7/qWaJRCIr4Cp3DZACIBEREakf5axcfgHo9rsjIuLJrMlxZbDdFDj/p5q5CnBQfhEEZYBERESknpQTAH0BWGOMeZnPfRERMkUFXJDhAqFKrAFyewBB+WWwlQESERGRelLOFLh/BvYCnkntmzOacz5prd1vzj0TaVIuA+SCjEwGyP8pcK4ENkA43FL065QBEhERkXpVTgC0MfUlIhXgMj2ZfYDcGiD/p8BlV3ArZQoceP1KJBKqAiciIiJ1peQAyFp7WiU6IiKeTADkiiBUbgqcK4EdCARK3sw0GAyliihoHyARERGpH+XsA7T3DKcTwC5r7UDZPRJpcpl9gFwGyAuEKrHhqCuCUGr2B7L3J1IGSEREROpHOVPgnsfb7LQgY8xO4Gpr7eXldEqkmbmMSijkNkL1Hisx1SxTca6cAKhymSkRERGRSimnCtwHgAngt8BpwMmpY7fhBUafA74HXGiMOdOfboo0D5dRCQRcAFS5jVDdFLi5ZYAUAImIiEj9KCcD9B7gljxrgX5ojLkOONpa+/fGmAHgTOC6OfZRpKm4stKZDFBgynE/xWJesNXSogyQiIiINIdyMkAnADcXOHcrcFLq+b2AymGLlMhlejJrgCpZBMFbA1TeFDhXnU4BkIiIiNSPcgKgHcARBc4dAQylni8ARsrplEgzy90HqJJTzeZSBMFlqBQAiYiISD0pZwrcTcDnjDGTwE+ArcBuwCnAJcC3jDF9wNnA/f50U6R5ZMpgT10DVIlAIx53GaBQya91a5RUBU5ERETqSTkB0IV4Ac9VqS8nAXwH+AzwTuBI4PVz7aBIs5keAFUu0+JPBkj7AImIiEj9KGcj1BjwIWPM54ETgcXARuA+a+1zAMaYO4C9rLXjfnZWpBkUDoD8z7RkAqCWkl+rDJCIiIjUo3IyQABYa58Bnilwrr/sHok0ORcAuWlp7rHWpsBVsl8iIiIilVJUAGSMeRZ4u7X2EWPMc8y8EWrSWqvqbyJlckUQXIYlEKhkGezyp8C5fikAEhERkXpS7E89d5Gp7nYXMwdAIjIHmQxQMPVYyY1QvWCrvDVAygCJiIhI/Snqp57sTU+ttR80xnQB3dbaTcaYNuCTwDLgp9bauyrTVZHmkFkD5AUYLhOkDJCIiIjI3JW8D5Ax5hXAC8AnUoeuBr4AvA/4b2PM3/vXPZHmkwmAvADDZYIqkwGaBJQBEhERkeZRzkaonweeBL5tjGnHC3yus9YuBG4APutj/0SajquqNj0D5H+1Ndem9gESERGRZlFOAPRK4LJUyeuTgHbgB6lztwCH+tQ3kaY0fQ2QywD5v/RO+wCJiIhIsyknAEoAbn+ftwADwP+mvu8GRufeLZHm5db6uAyL2weoMhmgue8DVIl+iYiIiFRKOfsA/Rn4iDEmCpwK/MpamzTG7AZckDovImVyU8rctDQ3Fa4ya4Dmsg9Q5TJTIiIiIpVSTgB0LvBr4N3ANuDy1PHH8DJKq/3pmkhzclPKXObHFUOoRBW4ycm5VIFTBkhERETqT8lT4Ky1fwH2B44DXm6tfSp16kzgUGvtWh/7J9J0MkUQXAAUmnLcTy54mUsVuEpkpkREREQqpZwMENbaYeCBnGM/9aVHIk0uUwZ7agaoEsUG5lIG2+0DVInMlIiIiEillFMEQUQqKFMFbuoaIGWAREREROZOAZBIjXFBSW4VuEpsODqXIgiVXJskIiIiUikKgERqTO4+QPMRAJVTBruS1elEREREKqWsNUB+SpXP/irwZrxNVe8CzrXWrkudXwlcDRwD7ACusdZ+Jev1QWAN8BGgD7gXOMta+3TWNXNuQ2S+ZNYAeQGGy85UIgBy+wCVlwFSFTgRERGpP7WQAfolsB9wMnAsEAV+b4zpMMYsAn4HrMcLXtYAlxljTst6/UXAx4DT8SrTJYE7jDGtAH60ITKfMgGQN8XMFRuoRAA0lzLYLgDSPkAiIiJST6qaAUoFJ88Bl1trH08duwx4GDgEeAMwDpxprY0BTxhjDgDOB76bClDOAc6z1t6eev2pwGbgFOAW4Awf2hCZN5ky2PORASq/CIIyQCIiIlKPqpoBstbusNa+Jyv4WQp8GtgIrANWAXenAhfnTu9SsxuwEuhKHXNtDgAPAcenDvnRhsi8cUUF3BqgSm44Opcy2JVcmyQiIiJSKbUwBQ4AY8y/AS8C7wI+bK0dAZYBG3Iu3Zx63Dt1ngLX7J167kcbIvPGBRQu8HGBUCWmmmWKICgAEhERkeZQ9SIIWb4OfBs4E/i5Mea1QAfe9LVsY6nHSOo8Ba5ZmHruRxtlCYf9jy/dD8PusdE0+vigmDF6AUVLS5hwODhlvx2/P1Nuul1LS0vJbbt+BQLJKa9t9HvY6OODxh+jxlf/mmGMIlI5NRMAZVV9OwOvEMHH8QoitOVcGkk9jqTOk7ommnPNSOq5H22ULBgM0NfXWe7LZ9Xd3V6xtmtBo48PCo/RBROdnRH6+jrp6PA+vm1tYd8/U6kkDt3dHSW3HYm0ztivRr+HjT4+aPwxanz1rxnGKCL+q3YRhN2Ak4D/tNbGAay1CWPMOmAvvGlpe+a8zH2/CWjJOvZMzjWPpJ770UbJEokkQ0Oj5b68oFAoSHd3O0ND0YbcgLLRxwezj3FsbAKA8fEY/f0jTEx4WZqRkTH6+8uOyfOKRr3E5+RkouS24/Fk3n41+j1s9PFB449R46t/lRpjd3e7skoiTaDaGaA9gZuBl0gVITDGtABH4ZXHfgn4mDEm5AIkvIDJWmu3GmMGgSHgBFLBizGmN/X6a1PX3+1DG2WJxSr3H088nqho+9XW6OODwmOMxdzHNEAslkivBYrFYr7/mUxOTqaeBctoO5BqI3+/Gv0eNvr4oPHHqPHVv2YYo4j4r9oB0CPAb4BvGmNOB/qBz+JtRvo1vHU45wE3GGOuBF4BnI23Zw/W2nFjzLXAl4wx24DngS/jZX1uTb3Hd3xoQ2TeuGpvmTU2bh8g/4sg+LEPUCX6JSIiIlIp1S6DnQROxcv+/Afwv3iFB1ZZa/9mrd0KrAYMXlnqNcC51tobs5q5GLgBuB64D4gBq621E6n3mHMbIvNpehU4tw+Q/2Ww43E/AiDtAyQiIiL1o9oZIKy1g8BZqa985x/EK4pQ6PVxvE1Nz5/hmjm3ITJfXADk5qFXMtPiTxlsZYBERESkfmiln0iNcRmVYDCUeqxcpsVNt1MGSERERJqFAiCRGuMyKsFgIPXopsD5v9DXZYBCoXICoMr1S0RERKRSFACJ1JjpGSBXBKESAZBXBa68DFDl+iUiIiJSKQqARGqM29MiswaocpmW3IpzpVAGSEREROqRAiCRGpNMTq0CV9kMkDcFrqVFGSARERFpDgqARGpMblZmPtYAhcMtJb9WGSARERGpRwqARGqMCyhclbVKVlvLFEEoZwqcqsCJiIhI/VEAJFJjcgMgtxbIrQ3y01z2AXL90j5AIiIiUk8UAInUmNwAyK0FcmuD/JSZbld6AOT6pQyQiIiI1BMFQCI1JncNUGUzQOWXwc5kgLQGSEREROqHAiCRGjO9ClxoynE/uWCrnADI9a+UwOyll17kox89je9974aS309ERETEDwqARGrM9H2AXKBRuSII5WWASg/MfvrT/+SBB/7E17/+ZYaHh0t+TxEREZG5UgAkUmPcmhqX+clUW/O/2MBcAqBAwNsHqJQM0Lp1j6efP/nk4zNcKSIiIlIZCoBEaowLKNxGo5UqN51MJudUBrucDNCLL25OP9+0aVPJ7ykiIiIyVwqARGqMCygqnQHKnlI3X2uAtm/fln7+0ksvlvyeIiIiInOlAEikxhRaA+R3BmhqANRS8utd/4rNAE1MTDAwMJD+/sUXFQCJiIjI/FMAJFJjXKCTWwXO73LTrgQ2lDcFLpMBKi4w27lzR87320t+TxEREZG5UgAkUmPcVDcXlLi1QP4HQLH087nsA5RMFjc1b9euqVXfBgcHS35PERERkblSACRSYzJV4CqbAfJvDVBxGaDh4V1Tvh8cHCj5PUVERETmSgGQSI1xAUUmAHJrgPwNgCYnMxXgXEnrUpS6BmhkxAuAXLClDJCIiIhUgwIgkRrjppTlBkB+b4Qaj5e/BxBk96u4AMhNgdtzz70AGBoaLHr6nIiIiIhfFACJ1BgX6GTWAJWWaSnWXPYAgszUvGL7tWuXlwFyAVAsFmNkZKSs9xYREREplwIgkRrjprplqsCVvt9OMVwAVE4JbMgUZyg+A+QFQIsXL6G1tRXQOiARERGZfwqARGqMC4DcGhuXofE7A+SmwM1XBsitAVqwYAGdnQtSx5QBEhERkfmlAEikxrgAyAUYpWZaipXJAM11DVBxa5PcGqDOzgV0dnYCCoBERERk/ikAEqkxmSpwgdRjZTJAsZj3PuUGQK5ynNu3aDZuCtyCBQvo6PACoNFRBUAiIiIyvxQAidQYF+hkMkCVqQI31wyQmzrn9i2ajQt2Ojo6lQESERGRqlEAJFJj3FQ3twYoUwXO35LRsdgkMJcMkNufqLh+jY2NAxCJRJQBEhERkapRACRSY1xGZXoVOL/3AZpabrtULkArNgM0MeEFQG1tbSxY4BVBUAAkIiIi800BkEiNcRmV6fsA+Z0BmlsZ7EwGqLi1SePjXgDU2tqWzgCNjIyW9d4iIiIi5VIAJFJjXEbFBT6VywDNdQ1QaQHQxMQE4GWAOjs7AGWAREREZP4pABKpMW4NUCYAcsUGKlMGu/x9gEoNgFwGqDUrA6QASEREROaXAiCRGjM9A+TKTdfaPkClBWZuCpyXAVIRBBEREamO8n7y8ZExZiFwBfA2oBv4K3CBtfbe1PmVwNXAMcAO4Bpr7VeyXh8E1gAfAfqAe4GzrLVPZ10z5zZE5osLKDJrgEorN12szD5A5a0BKjUwy2SA2lQGW0RERKqmFjJAtwCvAt4NHAs8BPzWGHOgMWYR8DtgPV7wsga4zBhzWtbrLwI+BpwOHAckgTuMMa0AfrQhMl+ygwlXZCCz1qZSZbDLnQJXWmA2Pu6tAYpE2lQGW0RERKqmqgGQMWZ/4I142ZZ7rbUW+CSwCXgvcAYwDpxprX3CWvtd4GvA+anXtwLnAGustbdbax8BTgX2Ak5JvY0fbYjMi+xCBy7wyVRbq62NUDMZoOICs0pkgB588H7e9a6/5yc/uWVO7YiIiEjzqHYGaDvwVmCtO2CtTQIBYCGwCrjbWhvLes2dgDHG7AasBLpSx9zrB/CySMenDvnRhsi8yC517TIsbipcra4BSiZn71cymWRsbAzw1gC1t3tV4MbGomW9t/PVr17JU0+t54tfvJxoVCW1RUREZHZVXQOUCjRuzz5mjHkXsB/wG+DzwKM5L9ucetwbWJZ6viHPNXunni/zoY2yhMP+x5cuK+AeG02jjw9mHuPkZCYAam0NEQ4HaWnJBEB+fqZcRqmlpaWsdgv1K9/4XAlsgI6O9nQZ7LGxaNljGh0dxdonAC+Ye/LJdRx77CvKaqsUzf4ZbQQaX/1rhjGKSOVUvQhCNmPMa4DvAL+w1t5mjPka3vS1bGOpxwjQkXqe75qFqecdPrRRsmAwQF9fZ7kvn1V3d3vF2q4FjT4+yD/GlpZMALRoUTft7e2Mji4AvCyKn5+p1lbvB4eOjkhZ7fb0eK8JBMj7+uzxDQ1lpu8tXdrHyIj3V2t8fLzsMT33nJ2SMXv2Wcub3nRiWW2Vo1k/o41E46t/zTBGEfFfzQRAxph/AG4G7gfekzocBdpyLo2kHkdS50ldE825xi0u8KONkiUSSYaG/J+SEwoF6e5uZ2gomt4vppE0+vhg5jEOD+9KPx8aGmNsLMHwsBevx+Nx+vv9KxowPOx9PhMJymp3ZMT7ncHkZGzK6/ONb/v2/qzXTeISQiMjo2WPad269VO+X7/+GV//fApp9s9oI9D46l+lxtjd3a6skkgTqIkAyBjzcbwy1bcC77PWumzMBmDPnMvd95uAlqxjz+Rc84iPbZQlFqvcfzzxeKKi7Vdbo48P8o9xYmIy63ySWCxBMpkpN+3nn4l7r2AwVFa7rl+F7lX28dFR73cLbW1txONJWlq8AotjY1EmJ+MEAoGS33/LlhenfL9x44Z5/cw062e0kWh89a8Zxigi/qv6rzmMMWcC3wCuBU7NCn4A7gZWGWOy6/SeBFhr7Va8AGUIOCGrvV7gKOAeH9sQmRfZv8mcvg9QYsqUr7nKFEEodx+g4qvTZVeAA9JFEBKJBJOTkwVfN5Nt27YCcPDBhwKwefOmstoRERGR5lLVDJAxZgVe5udnwBeA3Ywx7nQUbz3QecANxpgrgVcAZ+Pt2YO1dtwYcy3wJWPMNuB54Mt4WZ9bU+340YbIvMiuqOYCjOx9euLxeNlV23Jl9gGaWxW4YqrTuT2A2tq8ACgSiaTPRaOjtLaWvuXW1q0vAXDEEUeybt1jbNmymWQyWVY2SURERJpHtTNA78SbgvZ2YEvO19WpDM1qwOCVpV4DnGutvTGrjYuBG4DrgfuAGLDaWjsB4EcbIvPF7QPkgh/IZIKyz/vBv32AZg+AXAbIBUDhcJiWFi/z5Mpjl8oFQAcffEi6HZXCFhERkdlUuwz2FcAVs1zzIHDcDOfjeJuanl/JNkTmgwsmXHYFIBTK/DWNx2NMr+lRnslJf/YBKi4DNDUAAohE2pmcnJw1aInH41OCQGfHju0ALF++N5FIO2NjUXbu3ElHR+WqL4qIiEj9q3YGSESyuGAiuwpR9g//sVgtZYDcGqDiAyC3Bggy0+AKZYCSySTnnns2r3/9q3nssdytvGB4eAiA7u4eFi70ymrv3LmjhBGIiIhIM1IAJFJDXDARCMzfFDg3Fa1U5QVAmbU+7e3e/h3RaP4A6Kmn1vO73/2awcFBbrrpxinnkskku3Z5JcMXLFjAwoWLANi5c2eJoxAREZFmowBIpIa4ACc7AxQMBtPBhjcFzh9zL4JQehW43ClwQMEpcA899Of087/+9eEp56LR0fSfVVdXtzJAIiIiUjQFQCI1xFWBy14DlP19LRVBcEFaIjF7ae5ypsD97W8vpJ9v2rSR4eHh9Pduw9hwOEwkEklngHbsUAAkIiIiM1MAJFJD3D5ArsKa40phu6DFD3MNgNw0veIyQFPLYENmL6BoNJr3Nbn7+mzatCH93K3/6erqIhAI0NPTC8DQ0EBxnRcREZGmpQBIpIZkpsBNDUrcOqDKZIDKWwPk+lRaBih7DZDLABUXAG3ZsiX93GWDFizoAqC7uxuAoaGhovouIiIizUsBkEgNcdmU3LLPLiDyNwCa2xogt+HoXNcAFZoC9+KLXsCz774vT32/OX1u1y4vAOrq6ko9egFQ9jQ5ERERkXwUAInUEFfmOjcoyWSAamcKXCYDVMo+QJH0sUwVuOlFEGKxGENDgwAcfPChQG4GyMv0TM8ADZY2CBEREWk6CoBEaogLcHIzQJk1QLVTBCGTAZo9AMqsAcpMgZupCIILZAKBAPvttz8A27dvS593JbCVARIREZFSKQASqSFuipsrMe24KXDFTDcr9b3mIwPkgpzsKnCZDND0NUD9/f2AF9gsXrwkdSyzx09uBsgFQsoAiYiIyGwUAInUkEJBSWWKILg1QOUVQXBV4JLJJMnkzIUQZl4DND0AGhwcAKC3t5e+Pm+PHxcUwfQMkJsCpwyQiIiIzEYBkEgNyVSByy2CUHtT4LI3a50tC1TqPkADAwNAbgA0UwbIC4B27Rr2NUgUERGRxqMASKSGZKbA5a4BclXgaqcIgssAwexT8/KtAZppH6CBAS/b09PTS19fH+AFQC7TlKkC1z3lEWBkZFdpAxEREZGmogBIpIbMlgGqzD5AfmSAipsClz8DNNMUuD4WLlyYamOC0dERIHsfoAWpdlvT7WkvIBEREZmJAiCRGpJZAzQ1AHIZIT8zQJOTc9sINbtQw2wZoEwZ7OKKILgAp6urm/b2jnRws3PnzmnnnUwlOAVAIiIiUpgCIJEakimDnb8Igr9rgOa2EWr2NL3Z1gCVWgTBZXo6OzsBpq0DykyBW5B+jQuAlAESERGRmSgAEqkh8bgXSOSWwXYZoUpMgWtpKTcACqSfu34XMj7u1gAVVwRhZMQLgDo6vHVCbh2QWxuULwPkpsO54EhEREQkHwVAIjXEZYCml8GuvSII2RmgZLK4DFCx+wBFo6MAdHR4GaDeXlcIoXAApM1QRUREpBgKgERqSDWKIOROtytWdpZqtgyQy/IUOwXOZYDcFDgXAA0M9DM5OZl+jcv6QGY6nAIgERERmYkCIJEaUqgMtgtSamkfoEAgQCDgTYObPQPkTYFrbc2UwXZT4PJlgHKnwGUCoIH0JqgAnZ2ZAMjtCaQpcCIiIjITBUAiNaRQFbjMGiA/p8DNrQgCZLJAs2Wm8leB60ifyy2ikDsFLnsNkKvy1tHRMaXvmQBI+wCJiIhIYQqARGpIPe0DBJkAyG1QWkj+NUCR9PPx8amFEApNgevv75+2CarT1aUMkIiIiMxOAZBIDSlcBtvfIgjxeDwdtJS7DxCUkgGaXgWurS0TAOVOg3NlsF2WqLe3F3AZILcJateU12gKnIiIiBRDAZBIDSlUBtvvfYCyA5a5ZYC8fs2UAYrH4+npdtkZoGAwWHAd0OioNwUuXxEENwXOZXwcFwCpCIKIiIjMRAGQSA0pXAbbCzQSCX8CoMnJifTzuQRAoZD3T4ibTpePK4AAEIm0TTnnMjxuzY/Xt8n0a/LtA+QCnO7u3Clw2gdIREREZqcASKSGzNcaoMnJyfTz7MpspXLB08wB0Hj6eUvL1PdyAY7L+HjPR7LOT80ADQ4OMjAwAORbA+T2AVIRBBERESlMAZBIDXFT4AoFQH5NgXMZllAoNO29SuHWD80UALkKcOFweFq2yW2GOjUA8p63trbS0uK139PTC3hT7TZv3gjkmwKnDJCIiIjMTgGQSA3JFEHILYPtbxEElwHKzciUygUo2RmlXC4Aypdpchmg7DVAuXsAufdxa3z+9rcXAOju7pnSVvYaoNmq0omIiEjzUgAkUkPmawqcywC5AKZcmSlwswdA2RXgnPZ2b4pbvilwbvqb49YBuQCoUBGEWGwy/Z4iIiIiuRQAidSQTACUvwiC32uA5rL+B0pbA5RdAc5xU+CyiyDkVoBz3DqgLVs2A9PXAHV2dhIIBABNgxMREZHCFACJ1JBMAJRbBnv2QKMULgM0HwGQ2wMoXwCUmQI3PQPkKsQ5bi8gJzcDFAwG6ezUOiARERGZmQIgkRpSaCPUcNjvDJDfU+BmzwC1tU0PtvIVQXBrgAplgJzcMtiQCYq0F5CIiIgUUv4GIBVgjLkQeIO19oSsYyuBq4FjgB3ANdbar2SdDwJrgI8AfcC9wFnW2qf9bENkPhReA1SrGaDiq8DNnAHKFEFwwVB2EQTIrAFyFi5cPK09VwlOAZCIiIgUUjMZIGPM2cDnco4tAn4HrMcLXtYAlxljTsu67CLgY8DpwHFAErjDGNPqVxsi86VQGexiig2UIlMFrvJFEFwGKBKJTDvnprkVUwQhNwO0ePH0AMitC9q1S3sBiYiISH5VzwAZY/YCrgdWATbn9BnAOHCmtTYGPGGMOQA4H/huKkA5BzjPWnt7qr1Tgc3AKcAtPrUhMi8KlcEuptx0KTJV4PxZAzRzGezC7+UCoOw1QMVMgQuHW6aVwQbtBSQiIiKzq4UM0FFAP3A48EDOuVXA3anAxbkTMMaY3YCVQFfqGADW2gHgIeB4H9sQmReFpsC54MEFLnPl1gDNdQqcC8xmngI3BkAkUmwRhPxT4BYvXpJ+vmjRonTFt2yuFLYCIBERESmk6hkga+1twG0Axpjc08uAR3OObU497p06D7AhzzV7+9hGWcJh/+NLVx0st0pYo2j08cHMY0wmvSlwLS0tUz4/LniIx2O+fK7clLW2trY5tecCoEQinm4nd3yTk5kpcLnvtWCBl+UZG4umz7lgaMGCBVOuN2ZF+vny5cvz9ru72wuARkZ2VeTvH+gz2gg0vvrXDGMUkcqpegA0iw686WvZxlKPkdR5Clyz0Mc2ShYMBujr65z9wjJ1d7dXrO1a0Ojjg/xjDIW8rEZXV/uUz09Pj3ue8OVz1dLivU9HR2RO7XV0eOt6WluD09px43PJrK6uzmnXLFniTWubmBhPn5ucHEudWzjl+t7eFbS3txONRjniiMPz9nvJkkXpNir59w+a9zPaSDS++tcMYxQR/9V6ABQFcufNuJXUI6nzpK6J5lwz4mMbJUskkgwNjc5+YYlCoSDd3e0MDUXTC+YbSaOPD2Ye4+io98P/+Hic/v7Mx8/NMBsZiU45Xq7BQa9IQCAQmlN7iVT3h4ZG0u3kjq+/fyj1XuFp75VMhlKvH06fGxwcSp2dfv3ll3+R3//+t3zgA6fn7XdLi/dXe/v2nb78OeXT7J/RRqDx1b9KjbG7u11ZJZEmUOsB0AZgz5xj7vtNQEvWsWdyrnnExzbKEotV7j+eeDxR0farrdHHB/nHGIt5a4ACgeCUc64M9vj4hC9/LmNjXsIzHG6ZU3uuXxMTk9PaceOLRr2grqWlddo1ra1ewDI6Opo+t2uXF7hEIu3Trj/ppNWcdNJqIP/fL1c5bmhouOKfn2b9jDYSja/+NcMYRcR/tf5rjruBVcaY7BXhJwHWWrsVL0AZAk5wJ40xvXiFFe7xsQ2ReTFbEYRYzJ8iCP7tAzT7/kRuH6B8RRDyVYFzRRByq8AVwxVBGB4emuVKERERaVa1ngH6DnAecIMx5krgFcDZeHv2YK0dN8ZcC3zJGLMNeB74Ml7W51Yf2xCZF4XKYLtAZWLC7zLY/uwDNHMZbC8DVPxGqF4GqL299ABI+wCJiIjIbGo6A5TK0KwGDF5Z6jXAudbaG7Muuxi4AW8vofuAGLDaWjvhVxsi86VwBsgLVPwrg+02Qp2PMtheBqitLd9GqN4C5tHRUZLJJFB4H6BiaB8gERERmU1NZYCstR/Mc+xB4LgZXhPH29T0/BmumXMbIvPBrQFya2uc1lZ/N0L1ax+gcNgFQDNlgApPgXMZoEQiwfj4OJFIpOA+QMXQPkAiIiIym5rOAIk0GxdI5E5NC4e9QMUFLnM1n2uAJibGU+81PQCKRDIlbKPRKPF4nLExbzqcK2hQikwAtCudURIRERHJpgBIpIa4DI8LLBy/M0BuLZF/a4AKB0BjY94aoEhk+hS4UCiUPj46OjJlLVA5U+DcRqjxeHxKYQURERERRwGQSA1xmZTcwMSt1fFrDZArTJAvKClFKVXgCmWbsrM2bv1PKBQqKzsVibSn108ND6sQgoiIiEynAEikhrgpcJXOAGWyMnPbRT1TBGH2NUD5iiAAdHVlSle7CnAdHZ0EAoGS+xMIBFQIQURERGakAEikhmSqs+XPAPm1Bsits5lrBqitrS3V3ljBazIB0PQ1QJAdAA2nA6Bypr852gtIREREZqIASKSGFJ4C528GyK8pcC6D5IKcfFwRhMIBkLd3z9QMUOkV4HLb015AIiIiko8CIJEaUrgIgpcBisfj6b2C5iIa9WcKnAtqXECVz0xFECA3A+RKYM8lA6QpcCIiIlKYAiCRGlJog9LsjJAfWaDZgpJiuXU9M02Bm6kMNkBXVw/gZYDmsgmqo72AREREZCYKgERqSOEiCJmAyI9KcJk1QHPLALnNTWeaAlfsGqChocwUuPb28qfAuQyQqsCJiIhIPgqARGpIoSII4XB2BsiPAMjL2LS3+5MBKjQFLplMpt+ruDVA3hS4uWSAsqvKiYiIiORSACRSQwoVQQgEAuljtZQBykyBy58Byu7r7GWwhxke9qatuSxOOVQEQURERGaiAEikRiSTyYJFECATQLg1NXN5H7/WAGWmwOXPAEWjo+nn7e35g63sDNDQ0CAA3d09ZfdJRRBERERkJgqARGpEPB4nmUwC0zNAkAkg3DSxck1OTpJIJAA/1gB5ry9UBMH1ta2tLW9QB1MzQEND3rS17u7usvuUHVCJiIiI5FIAJFIj3PQ3mDkAikajc3ofN/0NCq/LKdZsZbAzZa0LFzVw2Z7sDJALYsrR29sHQH9/f9ltiIiISONSACRSI7LLW2cXPXBcZbS5BkBubUxbW1veQKsUbgrd+Ph4OnuVzU2Bm6mqW1+fF7Ds2LE9KwNU/hS4xYsXp9sTERERyaUASKRGZGeA8k0Xy2SA5jYFzgVAbr+cucjOIOUrhV1MBmjx4iWAVzBh06aNAPT0lB8ALVrkBUDbt2/LG5SJiIhIc1MAJFIjXHnrUChEMDj9r6ZfU+BccYC5VFpzsiu7ZU+tc4oJgNra2tIZn507dwBzWwPkAqDJycl0VTkRERERRwGQSI0otAeQ498UOC8o6OycewAUDofThRDylZ12AVB7+8z7+rhpa87ChYvK7lNbW1s6u6VpcCIiIpJLAZBIjXBT4PKt/wH/psAND3uBiqu+NlcuW+MKGGRzfZ0pAwSZaXDgBVV9fQvn1KdFi7wASgGQiIiI5FIAJFIjMhmg/OWia3EKHGQHQNPLThcbAC1Zslv6+eLFS/JOASyFCiGIiIhIIQqARGpEJgM0XwGQXxkgb/1OvgBoZGQEmD0A2mefl6Wf77bb0jn3adEiL6O0bdu2ObclIiIijUUBkEiNcHvpZBcWyObWAM11I1Q/q8DBzFPgXFA0274+++9/QPr5fvsdMMOVxdl9990BePHFzXNuS0RERBqLAiCRGuHKSBcKgFwQMTw8PdNSiv7+nUBmw9C5mqlfLiiaraz1UUcdky7+cPTRx8y5T3vuuQyATZs2zbktERERaSz559qIyLwbG3MZoLa8510QkS/TUgq3LsYVCpgrNwVucHB6vwYHBwDo6emdsY3e3j6uueZbPPfcM5x88tvm3Kdly5YDsGnThjm3JSIiIo1FAZBIjXABUCSSPwPkAqB8gUYpduzw9trxKwByFdy2bn1p2jnXVxckzeS4417Dcce9xpc+LVvmZYA2btxAMpkkEAj40q6IiIjUP02BE6kRmTVA+TNA3d29wNwzQG6z0YULF89yZXH23HMvADZvnj7drNgpcH7bY4+9CAQCjI6OpscrIiIiAgqARGrGbEUQ/MgAJZPJdEDgVwZozz33BGDLlukFB1xf5zsAamtrS0+De+qp9fP63iIiIlLbFACJ1IixMa8IQiQy8xqg4eEh4vF4We/R37+TiYkJAoHAlM1H58JlgLZufSk9jQ+8st5uDZBfBRdKYcxBADz55BPz/t4iIiJSuxQAidSI2TJAbh1NMplMBxal2rDhbwAsXbo7ra2tZbWRa+HCRSxevIRkMskTT6xLH9+2bSuJRIJwuIWFC/3JNpXioIMOBuDJJx+f9/cWERGR2qUASKRGuDLYhYogtLS0pLM2L730YlnvsXGjVxXNTQ/zQyAQ4NBDDwfg4YfXpo9v2bIFgKVLlxIMzv8/NYccchgAa9f+mWQyOe/vLyIiIrVJAZBIjciUwc4fAAHsvvseQCa4KNULLzwP+BsAAbzmNasAuP3229LBhgu2XJ/n25FHHk17ewfbtm3FWk2DExEREY8CIJEaEY1GgcIZIIDdd98dgBdfnF5woBhPPulNUVuxwpT1+kJWrz6ZSCTCU0+t5+c/v7Wi71Wstra2dFnt2277RVX6ICIiIrVHAVCKMSZojLnUGLPJGDNqjPmtMWb/avdLmsfw8BAAXV3dBa/ZYw+v4tqGDeVt8PnEE956mIMOOrSs1xfS3d3D6aefCcCll17Eddddx113/SH1Xof4+l6leMc7/gmAW2/9cd4qdSIiItJ8FABlXAR8DDgdOA5IAncYY/xZKS4yi127dgHQ1dVV8Jr9918BwPr1T5bc/saNG9i2bRuhUIgDDzywvE7O4AMf+DBvecvfEYvFuPzyy3nhhedpa2tj1aoTfH+vYr361a/l8MNXEo2O8olPfDQ9BVBERESaV7jaHagFqSDnHOA8a+3tqWOnApuBU4Bbqtg9aRK7dg0DMwdArrSztU+SSCRKKi5w113/A8DKlUfR3t4xh57mFw6H+fznr+QVr3gFN930fQYGBvnkJ8+hr2/+S2A7gUCAK674Mh/84Ht5+umnOOWUt/LKVx7H0Ucfy377HcCSJUtYsmQ3urq6iUQiBAKBqvVVRERE5ocCIM9KoAu40x2w1g4YYx4CjkcBkMyD4WEvAFqwoHAAtN9++7NgwQJ27Rrmscf+yuGHryyq7cnJSX7yE+9jfNJJb5xzXwsJBAK8852ncvrpH6K/f4RYLFGx9yrWsmXLufHGH3HFFZ/jvvvu5o9/vJc//vHevNdGIu20t0dSj+1EItOfd3R00NvbRSAQpq3NO9bW1ko43EJLSwvhcDjrq4VQKJT+8gKsAIEA6WArEAhkHZ/tnHfenZt6fOZzmePkvCbTJ3eupSVELDbK4GCUeDw5pV/u+qntFOqrazdzfebPoTri8TjJZJzJyUkmJydzPqOFqwXOVkhwpkqD5Z6buT+Fz4VCAVpakoyMTP87ONPbzVYtsRJ9nflc4Xdra2uhr69zhv6IiBSmAMizLPWYu7BiM7B3uY2Gw/7OMBwcHOTd7z6l4PqPfD9UFPpBo7Tjha6dW7ul9i1fPwq3UZm+Ff6zyNdGgRZSPxi6//gDgQDHHvtKNm709uhZsmRxwc9OONzGa197PL/+9e387Gc/4aijjpp2zYYNf+OBB+7nkUcepr9/J0NDg2zcuIGtW7fS3d3D29/+Dt8/m9lCoeCUx1qwzz578+1vX89zzz3LPffcxaOP/pUNG/7G1q0vsX37dhIJ74fEsbEoY2NRoL+6HW5goVCInp5eent76evro7e3j97eXrq6upmcnEzdgzEGBwcYHBxkYMB7dGvkQqEQwWAw6zFMKBQkGAylH8PhEMFgiHg8zvj4OBMTE0xOTjA+Pp6+11L/zj77bD760Y9XuxsiUocUAHncfKDxnONjwMJyGgwGA77/dioej6azBPnk+02a9j+pD7/5zR3p5wceuB89PYU/O2ee+dF0ALTHHrtx5JFH0t/fz0MPPcR9991XMECORCJcc83V7L337r73P5/u7vZ5eZ9S9PUdxlFHHTblWDweZ2xsjGg0yujoKNFodMbnuV+jo6OMjY2lsgmx9GO+L/f3Mfsx39dM18x0rFCb2cedYtv1WzweZ+fOHezcuaOs18diMZ97JPUoFArR1dVVk//OiEjtUwDkiaYe27KeA0SAkXIaTCSSDA2NzrVfU4RC7fzhD/cBkwwPjxGPzz51o9APMaUfL/7aufQlFAqyYEGEXbvGiMXic+5j5f9cSjsOXnDsxphIJHniiXVccMGn0+fj8RD9/YU/dvvtdxDve98H+OEPb+Sb3/zmtPPhcJjDDz+CY499JXvssQfd3T309PSw//4rWLRo0Yxt+yEUCtLd3c7QUDTnM1rbQqF2urramWEJVuq6+hxfKbLHGIvF8wRGLmDKFzS55+QJppKMjY0xMDDAwEA/AwMD9Pf3Mzg4wNDQEK2tramphhG6u3vo7e2lp6eHnp5eurq6CAQCxOMJEok48XicRCJBPB5Pf7nv3WNLS5iWllZaW72vtrY2Wlq8qYpdXZE8/47OlP2d+Zx3fqZzM722vPcsdM7dv3zjm73NGbrpXVFyfypxLhQK0tPT4fvfw+7u9prKXotIZSgA8rhfme8JPJN1fE/gkXIbrcT6h3C4hb6+XsLh2lhf4bdwOEhfX2fNrB+phNwx7rPPy7nrrj9wxx2/4sQT30A8nvkBs5BzzrmAww5byW9/ezvbtm1jwYIFrFhxIMce+0qOPPIoOjryZ5Dm8880Hk807D2Exh8feGP0Po/g/eAbmPIDcjlLeTo7u1m0aDc/ule2cDhIT08niUS4Ie9hOBwkEokQjcaB2hjfzGuPZnxl3qOBgHe8Gf4eioj/FAB5HgGGgBNIBUDGmF7gKODaqvVKmsaFF17CypVH8aY3nVzU9YFAgNWrT2b16uKuFxERERGPAiDAWjtujLkW+JIxZhvwPPBlvMzQrdXsmzSHzs4FnHrqe6vdDREREZGGpwAo42K8P4/rgXbgbmC1tXaiqr0SERERERHfKABKsdbGgfNTXyIiIiIi0oBU6kRERERERJqGAiAREREREWkaCoBERERERKRpKAASEREREZGmoQBIRERERESahgIgERERERFpGgqARERERESkaSgAEhERERGRpqEASEREREREmoYCIBERERERaRoKgEREREREpGkEkslktfvQiKLJZDKSSFTmzzYUChKPJyrSdi1o9PFB449R46t/jT5Gja/+VWKMwWCAQCAwBrT72rCI1BQFQJUxALQBW6rcDxERESneHsA40FvlfohIBSkAEhERERGRpqE1QCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDQNBUAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINI1wtTsgxTHGBIE1wEeAPuBe4Cxr7dNV7ZiPjDH7AM/nOXW6tfb6ee6Or4wxFwJvsNaekHVsJXA1cAywA7jGWvuVqnRwjgqM77vAB3Mu3WStXTaPXSubMWYhcAXwNqAb+CtwgbX23tT5ldT5/StijPV+D3cDvgq8GWgH7gLOtdauS51fSR3fwyLGV9f3L5sxZgXwEPBxa+33UsdWUsf3T0SqRxmg+nER8DHgdOA4IAncYYxprWqv/HU4MAbsCeyR9XVTNTs1V8aYs4HP5RxbBPwOWI/3n/ca4DJjzGnz3sE5yje+lMPxfrjOvpdHzl/P5uwW4FXAu4Fj8X74+q0x5sAGun8Fx5g6X+/38JfAfsDJeOOLAr83xnQ0yD0sOL7U+Xq/fwAYY1rw/h/ozDrWCPdPRKpEGaA6kApyzgHOs9benjp2KrAZOAXvh5hGcBhgrbVbqt0RPxhj9gKuB1YBNuf0GcA4cKa1NgY8YYw5ADgf+O68drRMM43PGBMCDgYus9a+WIXuzYkxZn/gjcBrrLV/TB37JN4Pmu/F+0Gz3u/fjGM0xlxKfd/DRcBzwOXW2sdTxy4DHgYOAd5AHd/D2cZnjHmIOr5/OS4FhnOO1f2/oSJSPcoA1YeVQBdwpztgrR3A+23t8dXpUkUcDqyrdid8dBTQjzeuB3LOrQLuTv3H7dwJmNS0lnow0/gOACLU7/3cDrwVWOsOWGuTQABYSGPcv9nGWNf30Fq7w1r7nqzgYCnwaWAj3pjq+h4WMb66vn+OMeZ44KPAB3JO1fX9E5HqUgaoPrj52htyjm8G9p7nvlTSYcAWY8w9wArgKbzfXv6mut0qj7X2NuA2AGNM7ullwKM5xzanHvcGtla0cz6YZXyH4U3TPNsYczKQAG4HLrTWDs5nP8uR+gXD7dnHjDHvwptu9Bvg89T//Rtg5jHW9T3MZoz5N7zpw+PA31trR4wxdf930Ckwvrq/f8aYXuAHwCestRty/p1pmPsnIvNPGaD64OZzj+ccH8P7DV/dS03zW4G3EPtC4C3Ag3jrnE6qZt8qpIP89xMa454eivcD1/PA3+H9ZvotwC9SBT3qijHmNcB3gF+kAr+Gu395xthI9/DreOtEfgj83BhzFI11D7/O9PE1wv27DviTtfbmPOca6f6JyDxTBqg+RFOPbVnPwftHfmT+u+M/a+1E6rd9MWut+09trTHmILz/uP+7ap2rjCje/czm/tNuhHt6CfC1VJYB4DFjzBbgT3iLtXOnzNUsY8w/ADcD9wPvSR1uqPtXYIyX0CD3MKsq2hl4RWQ+TgPdwwLj+zB1fP+MMf+CN83tsAKXNMz9E5H5pwCoPripb3sCz2Qd3xN4ZP67UxnW2nz/aT2KV+K10WzAu3/Z3Peb5rkvvkutJRnIOeymqyyjxn/4cowxH8crs3sr8L6s4Lxh7l+hMdb7PUytAzkJ+E9rbRzAWpswxqwD9qLO7+Fs46v3+wd8CFgK5E59+5Yx5lzgBer4/olIddVLGrzZPQIMASe4A6lsyVHAPdXpkr+MMYcbY3YZY16bc+oY4PFq9KnC7gZWpaqlOSfhVcGr+7nrxpibjTG5a7eOTT3WxaJsY8yZwDeAa4FTs4IfaJD7N9MYG+Ae7omX1XqdO5Aqp3wUXv/r/R7OOL4GuH/vAw7CKwLkvgAuxpvKV+/3T0SqKJBMJqvdBymCMebzeJVwPoQ3p/vLwMuAw6y1E9XrmT9Sc9L/iLfPw5l4FarOAM4CjrXW5i52rSvGmO8BL3MbhaZ+e/sk3j4eVwKvwJvv/jFr7Y1V6mbZ8ozvbXhjuwivTPsK4P/hzef/5yp1s2ipTRcfA36F9xnM5qbe1PX9K2KMq6jvexgA7sD7d/J0vIqFnwVW4/0wPUYd38Mixnc4dXz/8jHGJIHTrLXfa7R/Q0VkfikDVD8uBm7A23flPiAGrG6E4Ae8qRt4C3X/F/gx8BfglcAb6z34ySf1G8rVgMErZ74Gbwf3hviP21r7K+BdwDvwpt3cgDfF6sPV7FcJ3gm0AG8HtuR8Xd0g92+2Mdb1PUxNATsVrzTyf+D927IQWGWt/Vu938MixlfX92829X7/RKS6lAESEREREZGmoQyQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAIlIU0ttKCkiIiJNQgGQiDQtY8zfAzemnp9gjEkaY06obq9ERESkksLV7oCISBV9Kuv5Q8BxwLoq9UVERETmgQIgERHAWjsE3F/tfoiIiEhlBZLJZLX7ICIy74wxfwBel3XoROB/gBOttX8wxlwCvBu4ALgc2B94EjgTSAJXA4cDzwCftNb+d1bbhwJfBI5PHfpv4Bxr7bMVHJKIiIgUQWuARKRZnQX8JfV1HNCd55rlwFXA54F/AhYCPwF+BPw7XoAUBG4xxrQDGGNWAH8EdgM+CHwYeDlwnzFmt8oNR0RERIqhAEhEmpK1dh0wBAxZa+9PPc/VAZxlrf2RtfaXwDeBPYHLrLXXW2t/AVwELAZM6jVrgCjwBmvtrdbaH+Nll9qBcys6KBEREZmV1gCJiMzsj1nPX0w9Zq8V2pF67E09noQ3lW7UGOP+jR0C7gHeWKE+ioiISJEUAImIzCBVHCHX6AwvWQScmvrKtc2XTomIiEjZFACJiPhrAPg98NU852Lz2xURERHJpQBIRJpZHAj53OZdwMHAw9baGIAxJgD8EHgaeNjn9xMREZESKAASkWY2ABxnjHk90ONTm58D/gT8yhhzHTAGfBT4R+CdPr2HiIiIlElV4ESkmV0LTAJ34FVpmzNr7V+BVXh7Bf0Ar2z2HsA/Wmtv9eM9REREpHzaCFVERERERJqGMkAiIiIiItI0FACJiIiIiEjTUAAkIiIiIiJNQwGQiIiIiIg0DQVAIiIiIiLSNBQAiYiIiIhI01AAJCIiIiIiTUMBkIiIiIiINA0FQCIiIiIi0jQUAImIiIiISNNQACQiIiIiIk1DAZCIiIiIiDSN/x9BSrJHQNxRyAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Instantiate the Chromatogram class with the loaded chromatogram.\n", + "from hplc.quant import Chromatogram\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Show the chromatogram\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "The `crop` method allows you to crop the chromatogram *in place* to restrict\n", + "the signal to a specific time range. \n" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
, ]" + ] + }, + "execution_count": 47, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB9yklEQVR4nO3dd5xcdb3/8deU7T29k/5NQkhCEjqhd70WrgiWn12uoF65egH1gqAoVhAQsVFEFLheBQWliZRQBEIakHLSQ3rZbO9Tfn+cOTuTzZaZ2TNt5/18PHjs7jlnvvOd7x6y85nP9/v5esLhMCIiIiIiIvnAm+kOiIiIiIiIpIsCIBERERERyRsKgEREREREJG8oABIRERERkbyhAEhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG84c90B4aoeqAI2JPhfoiIiEj8xgIdQHWG+yEiKeQJh8OZ7sNQ1BYOh4tDodSMrdfrIVVtS5TGOT00zumhcU4fjXV6pGKcvV4PHo+nHShxtWERySrKAKXGnlAoPOXQoRbXG/b7vdTUlNHY2EogEHK9fbFpnNND45weGuf00VinR6rGediwMnw+j2ZviAxxWgMkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lARBBEREZE8tXz58grs8t/6UFxyWQjYs2jRoqZ4LlYAJCIiIpJnli9f7gW+6fF4P+HxeAoAT6b7JDII4XA43LV8+fLfATcvWrSo3/KQCoBERERE8s83fT7/FZWVNZ2FhcWtHo9Hm1dJzgqHw57OzvbSxsa6K4LBAMB3+7teAZCIiIhIHlm+fHmlx+P9RGVlTWdFRU1tpvsj4oaiopI2YHh9fe0nli9ffnt/0+E031NEREQkv4zxeDwFhYXFrZnuiIibItnMAux1bX1SACQiIiKSX7yAR9PeZKiJ3NMeBohxFACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIgL7rjj1nEf+MAFx2S6H/Fav35t8bPPPlOV6X6kmwIgEckJW7du4dZbf8j69Wsz3RUREZEh4etf/9qMtWvfKct0P9JNZbBFJOt1dnZyxRWfZe/ePTzyyJ947LGnGTZsWKa7JSIikuPysw6GAiARyXrPP/9P9u7dA0BzcxNPPPE4H//4JzPcKxGRoSUUCtHa2pqx2UGlpaUhrzexpz/11MWL/v3fL93zwgv/HN7V1eW9/fZfrC8tLQ397Gc/nfDWWysrW1pafFVVVYEzzzyn9itf+e9d69atLfmP//jUnLvuunvdvHkLWgGuuurKae+881blU0+9sNLv9xMOh3nPe86Z/8lPfmbXpZd+7GDP5zx48ID/1lt/NGHFimVVwWDQM3PmrOavfvXaHdOmTe9wrvn1r+8a/be//WV0U1OTf/r0GS1f//q3tjnne+vzhAkTO3/1q5+PffHF54bX1dUVjB8/vv3//b9P777ggvfUA/zf/z08/KGHHhj76U9/btc99/x6QkNDfcHs2Uc3XXfdt7f99rf3jHnhhWeH+/3+8Pved/G+L3zhS3sBOjo6PHfe+dNxL7+8tObQodrC4uKS0Pz5Cxq+/vXr3x02bHjwAx+44JiDBw8W/vGPD459++1VFb/5ze+surpDvjvvvG38smWvVTc1NfmnTJnWcvnlV+468cSTm53X9pe//HnYH/5w/9gDBw4UTZo0qe3MM8+tveeeX058+eU3lyfzO/F6vUm9vsFQACQiWe/1118FwOv1EgqFePXVlxQAiYi4KBQK8dGP/vus9evXZWw61KxZc5offPBPVqJB0DPPPDHy+9+/ZWMwGPDMmDGz46Mf/fc5VVXVXT/84W0bKioqgi+++Fz1b37zi4lz5sxtOf/8i+pHjBjR+a9/vVI5b96C1mAwyNq171R0dHR4V65cXnbccSe0rFq1orSpqdF/1lnn1vd8rkAgwFe+csVM8IRvvPHmzcOHDw/87Gc/nfC1r3155p/+9PjbAAcPHix85523Kr7//Vs3dnZ2eG6++dtTbr7525PvuecBq68+X3XVldO2bNlc+uUv/9e7U6ZMa3/qqb8P+973bpzm9Xo3nXfehQ0AtbUHCx977NFR3/3ujza1trZ4r7/+2hmf/vTHjj777HMP3nXXPeueeOKx4b///W/Hn376mfWzZx/dfsstP5jw+uv/qr722v/ZNnHipA7Lskp+8pObJ//qVz8f941vfGvH3Xc/sO4zn/nYnFNOOf3Q5ZdfsScYDPKf//mFmV1dXZ5rr71u68iRo7r+938fHPX1r3915m233bV+wYKFrc8++3TVrbf+cMonPvGZnWeccXb966+/Wnn33b+cONjfSTKvL6GbpAcFQCKS9ZYtex2AK6/8T+688zZWrVpBKBQi0T+SIiLSn9zcF+j008+qXbBgYStAW1ub56yzzq09//wL6yZOPKoTYPLkz+7/v/97eMymTRtKzj//ovrFi0+oX7FiWSWwd9WqFWU+nz88c+as5mXLXq847rgTWl566cXqGTNM88iRowI9n+uVV5ZWbt++reS++x58Z8aMmR0A//M/N2777W/vHnPoUK0fwOfzhW+66Ydbq6qqggAXXvjeA7///W/H99XnDRvWF7/55hvVN974vU3nnHN+A8CXvnTVni1bNpX+4Q/3j3UCoGAw6PnqV6/d7rz5P+aY+Y0bNqwvv/rqb+70eDxcfvkX9/zxjw+N3bhxQ8ns2Ue3z549p+XMM8+uO+mkU5sBJk48qvMf/3iqcdu2LSUAI0aMDHi93nBJSUmopmZY8Lnn/lG5deuW0t/85v41znNcd923392wYX3ZH/5w/5gFCxZuefjhP4w58cSTD33uc1/YBzB9+owDO3fuKHr88b+MHszvJJnXN5h7RgGQiGS1/fv3sWPHu3i9Xi655DJ++cuf09rayt69exg3bvzADYiIyIC8Xi8PPvgnK9emwAFMmDCxe+pZSUlJ+P/9v0/vf+KJx2t+//v7y3bv3lW0ffvW0vr6uoJgMOQBWLLkjIYbbvjmyLa2Ns/rr/+r4uij5zaNHz+xffXqFZXA3mXLXq867bQzDvX2XBs3bigpLS0NOsEPwOjRYwLXXnvdTufnqqqqgBP8AFRUVAY7OzsPe2Gxfbas9SUAixef0Bx7zTHHLGj63e/umRB7bPr06PMWFRWFRo4c3eHxeAAoLi4OA3R0dHgBPvjBSw699NKLFbfe+sPxu3btLNq5c0fJ7t27imfNmn3Y8zg2bdpYUlJSGowNLjweD3PmzG1eseLNSoBt27aUnnrqaXWxj5s//9jmngFQor+TZF7fYCgAEpGstnHjBgAmT55CVVU1kydPZtOmjWzZslkBkIiIi7xeL+Xl5aFM9yNRRUXF3X1ubW31/sd/fMq0t7d7lyw5ve688y6snT9/wbtf+tLls5xrTjrplKaCAn/otddeqVi5cnnlmWeefeiooyZ3PPbYI2N27NheuG3bltIbb/zelt6ey+fzh5035H3xer0DZtJi+9xXIYJQKOjx+XyHnSwoKDjsZ6+377585zvXT3rllaXDzjjj7NoTTzylYdasOXv+8If7x9TWHijs7fpwuPeXFgqF8Pv9Yfv5vOFweOBEYaK/k2Re32AoABKRrLZpkx0ATZ8+E4CpU6dHAqBNnHrqaZnsmoiIZJkXX3yucuvWLaWPPPL31aNGjQ4A1NUd8jU0NPidQKOwsDA8f/6xjUuXvlC9ceOG8q9//frtEyZM7PR4POG77vrZuLFjx7XHFjSINXXqtPaWlhbfli2bi6ZOndYBUFt70P+Rj1w897vf/dHGZPo8c+asNoA333y93JkCB/D226vLx4+f2JZMm4cO1fqeeebJkdde+z9b/u3fPtidsdm5893i4uKSmOArGmBMnz6zrbW11bdu3Zri2CzQ2rVryidMmNQOcNRRk9vWrl1TDux3zq9Z83a/68bi+Z2kmybQi0hWczJA06fPAGDq1GkAbNmyOWN9EhGR7DR69JhOgMcee3T4jh3bC19//V/l//3f/zk9GAx6Oju7ut/tn3zyqfXPP//PEZWVFYFp06Z3FBUVhY2Z3fzyyy8OP/HEk+v7an/JktMbp0yZ1vqd71w3ZfnyZWXr168tvvHG/5lcVVXdNX/+sa3J9NmY2e0LFixsuOOOWyc9++zTVZs2bSy6887bxi5fvqz6wx/+yL5k2qysrAqWlJQGX355afWWLZuL1q59p+SGG7551LZtW0u7uqLjUFxcHNy1a2fR/v37/KeffmbDxIlHtX3nO9dPffXVlyo2bFhffNNN35q0c+e7JZdd9tF9AB/96Cf2vP76qzX33POr0Vu2bC7605/+d/jf//74qP76Eu/vJJ2UARKRrLZ5s/2BmhMATZkyFYDt27dlqksiIpKlFi5c3PqZz1y+4y9/+fPoP/zh/vE1NcM6lyw549CIESM7LSta4e7MM89puO22n3jmzp3f6Bw79thFjW+/vbry9NPPqu+rfa/Xy49+9NNNt976o4lf//rXZgAcffTcpltv/dnGoqKipNMZP/jBrVtuu+3H42+99UeTW1tbfRMnTmz75jdv3Hzhhe/psy/98fv9XHfdt7f88pc/m/DZz3786LKy8sDcufOaPv7xT+36058eHtvS0uItKysLvf/9/77/3nt/NeErX7my5KGH/rz2jjt+seHWW3804dvfvm5aV1fAM2XK1NYf/ODWDYsWHd8CcOaZ5zTu379v+8MP/2HMAw/cN37KlKmt559/4YEnn/xbn0FQvL+TdPLEM49PErYlGAxNOXSoxfWG/X4vNTVl1NW1EAjk3DTdnKFxTo94xvnUU4+jubmJP//5b0ybNp3Vq1fyyU9+hLFjx/Hkk8+luce5Sfdz+mis0yNV4zxsWBk+n3crMNW1RrPQ8uXLZ3m9vqdGjRrfXFhYPKhqWpJf/vWvl8tHjBjVFVsE4he/+NmYZ555csSjjz7xTib7BtDZ2V68f/+u8lAoeMGiRYvW93WdMkAikrWamppobm4CYNy4cQCMGWN/3b9/H8FgEJ/Pl7H+iYiI5JPXXnu16oUXnht2zTXf3HbUUZM71q5dU/LYY4+OvvDC9x7IdN8SoQBIRLLW3r27AaiurqakpBSAESNG4Pf7CQQCHDx4kNGjR/fXhIiIiLjkyiu/srutrc37gx98d0pTU6N/2LDhne9//8X7Pv/5K/Zmum+JUAAkIllrzx47AHKyPgA+n4+RI0exZ89u9u7drQBIREQkTYqKisLf/OYNO4Adme7LYKgKnIhkrT179gAwduy4w46PGTMWgL17c+oDJxEREckCCoBEJGtFM0BjDzvu/Lxv356090lEZAgIAagOlgw1Mfd0v9VRFACJSNZy1gA5BRAcI0eOBODgwZxacykiki1qIRwIhYJaCiFDSigU8EM4ABzs7zoFQCKStXbv7j0DNGzYCABqa2vT3icRkSGgLhwO721ra6nIdEdE3NTW1loRDof3AvX9XafIX0Sy1t69zhqg8YcdHz58OAC1tf1+wCMiIr1YtGhRaPny5T9pa2v6WWNjwfCiopIWjyfTvRJJXjgMHR1tZW1tTaFwOPzjRYsW9TsFTgGQiGSlrq5ODhzYD8DYsYdngJwA6NAhZYBERJL0WDAYPLqhofYjHo+nPNOdERmscDjcHA6HHgIeH+haBUAikpX27dtHOBymsLCQYcOGH3bOmQJ36NChTHRNRCTnRT4h/97y5ct/Fg4zBi2LkNwWAvYuWrSoMZ6LMxoAGWPOAJ7v4/RWy7KmGmMWALcDi4Fa4A7Lsn4S04YXuAH4HFADvAxcaVnWpphrBt2GiKRXbAU4T4+5GU4GqK7uEKFQCK9Xf7dFRJIRecMY15tGkaEi0+8aXgXG9vjvPCAA3GyMGQ78A9iAHbzcANxkjPl0TBvXA18APg+cBISBJ40xhQButCEi6ecEQD3X/wBUV9cAEAwGqa+vT2e3REREJMdlNANkWVYn0L2ToTGmAPgp8GfLsu42xnwD6ACusCwrAKwzxswArgXuiwQoXwOusSzriUgblwK7gYuBh4HLXWhDRNIsWgBh7BHnCgoKqK6upr6+nkOHDjJs2LB0d09ERERyVKYzQD19EZgI/Ffk5yXA0kjg4ngOMMaYUcACoCJyDADLsuqBFcBpLrYhImkWzQCN6/W8sy5I64BEREQkEVlTBMEYUwz8D3CbZVnO9u4TgLd7XLo78nVS5DzAjl6umeRiG0nx+92PL30+72FfJTU0zunR3zg7GaDx48f3+v9SVVUVAC0tTSn5f20o0f2cPhrr9NA4i8hgZE0ABPw/oAS4I+ZYKfb0tVjtka/FkfP0cY0zJ8aNNhLm9XqoqSlL9uEDqqwsSVnbEqVxTo/exnnfPjsAmjlzaq//L40YYWeAurraUvr/2lCi+zl9NNbpoXEWkWRkUwD0Cey1P7Ebe7QBRT2uK458bYmcJ3JNW49rWlxsI2GhUJjGxtZkH94nn89LZWUJjY1tBIP97vEkg6BxTo++xjkcDrNr1y4AysuHUVd35P+KpaX2thV79x7o9bxE6X5OH411eqRqnCsrS5RVEskDWREAGWNGAicDN/c4tQPouQDA+XkXUBBzbHOPa1a72EZSAoHU/fELBkMpbV9sGuf06DnOhw7V0tHRgcfjYcSIUb3+DioqKgGoq6vX7yhOup/TR2OdHhpnEUlGtnzMcTJ26ekXexxfCiwxxvhijp0NWJZl7ccOUBqBM5yTxphqYCHwkottiEgaOQUQRowYQWFh79Xoq6qqAWhoqE9Tr0RERGQoyIoMEDAf2GJZVs85Y/cC1wD3GGN+BBwPXIW9Zw+WZXUYY+4EfmiMOQBsA36MnfV5xMU2RCSNBqoAB1BZaRdBaGxsSEufREREZGjIlgBoDFDb86BlWfuNMedjF0ZYAewBrrYs6/6Yy76F/Truxi6isBQ4P7LHkCttiEh67dljF0AYM6bvAMipAtfQoABIRERE4pcVAZBlWVf2c24ZcFI/54PYm5pem8o2RCR9EskAKQASERGRRGTLGiARkW7OHkBjx47t8xonA6QpcCIiIpIIBUAiknX27LFLYPeXAYoWQVAAJCIiIvFTACQiWcfJAPW3Bqiy0i6D3dbWSmenluuJiIhIfBQAiUhWaWtrpa6uDug/A1ReXoHH4wE0DU5ERETipwBIRLLK3r17ASgrK6OioqLP67xeb3cWSNPgREREJF4KgEQkq8Su/3EyPH2prKwGoLGxMdXdEhERkSFCAZCIZJV49gByRCvB1aeySyIiIjKEKAASkawSzx5ADk2BExERkUQpABKRrBINgPreA8hRVlYOQGtrS0r7JCIiIkOHAiARySp798afASovt4skNDU1p7RPIiIiMnQoAJKUqaur4/rrv87f/vbXTHdFcsju3XYAFM8aoPLyMgBaWhQAiYiISHwUAEnK/Pznt/H443/huuuuZceOdzPdHckBwWCQ/fv3ATBu3MABkDMFTgGQiIiIxEsBkKREOBzmlVde6v751VdfzmBvJFccOLCfYDCI3+9nxIiRA17vBEDNzQqAREREJD4KgCQl6uvruxezA6xd+04GeyO5wimBPWrUaHw+34DXl5crAyQiIiKJUQAkKbFz547Dft62bWuGeiK5JHYT1HhoCpyIiIgkSgGQpMTu3TsBKCkpBeDdd7dlsDeSK/butTNA8QZAThGE5maVwRYREZH4KACSlNi1yw6AFi5cDNgV4bq6OjPZJckBiWyCCrFrgJpS1icREREZWhQASUo4AdCcOUfj9xcAcPDgwUx2SXKAswZozJiBN0EFTYETERGRxCkAkpRwAqDx4ycwYsQIQAGQDCzRDFBFhb0RanNzC+FwOGX9EhERkaFDAZCkxIEDBwD7k3ynnPHBgwcy2SXJcuFwmN277SII48ePj+sxTgYoEOiis1NTLEVERGRgCoAkJerqDgFQUzMsJgOkAEj6Vl9fT1tbKwBjxsSXASotLe3+XtPgREREJB4KgMR1oVCIhoZ6AGpqapQBkrg4JbBHjBhJUVFRXI/xer2UlTmV4BQAiYiIyMAUAInrmpoaCQaDAFRXKwCS+DjT38aNiy/741AhBBEREUmEAiBxnTP9rby8nMLCwu4pcLW1tZnslmS5aAGE+Nb/OMrLVQpbRERE4qcASFxXV1cP2NkfgIqKKgCamhoy1SXJAdEMUGIBUHQvIG2GKiIiIgNTACSuiy2AAFBZWQlAY2Njxvok2S/REtgOZw2QpsCJiIhIPBQAievq6+sAuwACKACS+CSbAYpOgVMAJCIiIgNTACSuczJA0SlwdgDU1KQASPrmBECJZ4C0BkhERETipwBIXOeUwHYCICcD1NraSldXV6a6JVmssbGxO4OTaBW40lJ7ClxbW5vr/RIREZGhRwGQuK6pyf4k3sn8lJdXHHFOJNbu3TsBe91YSUnpAFcfrqSkBLADbBEREZGBKAAS10UDIHtqkt/v716orkpw0pvdu5MrgABQWmoHTG1tCoBERERkYAqAxHVOABSb+amstEthNzYqAyRH2rUruQIIEBsAaQqciIiIDMyf6Q4AGGM+AXwdmApsBm60LOv/IucWALcDi4Fa4A7Lsn4S81gvcAPwOaAGeBm40rKsTTHXDLoNiZ+zGL2iIhoAVVRUsmfPbmWApFd79jgBUOIZIGfKXGur9gESERGRgWU8A2SM+ThwL/ArYC7wMPCwMeYkY8xw4B/ABuzg5QbgJmPMp2OauB74AvB54CQgDDxpjCmMtD/oNiQxTgAUmwFygiGVwpbeKAMkIiIi6ZLRDJAxxgPcBPzUsqzbI4dvMsacCpwR+a8DuMKyrACwzhgzA7gWuC8SoHwNuMayrCcibV4K7AYuxg6mLnehDUmAU82r9ylwCoDkSMnuAQSxGSCtARIREZGBZToDZIDJwIOxBy3LOt+yrO8DS4ClkcDF8RxgjDGjgAVAReSY89h6YAVwWuSQG21IApz9fmKnwDlFEFpatFmlHGkwRRCcKnAqgiAiIiLxyPQaoJmRr2XGmKeBY4GtwHcty3ocmAC83eMxuyNfJ0XOA+zo5ZpJke/daCMpfr/78aXP5z3sa7bp7Oyks7MTgOrqqu4xcCrCtbW1pmRc3Jbt4zxU+HxempqauveOmjRpYsL3R/TeasuJeysTdD+nj8Y6PTTOIjIYmQ6AKiNffwd8G3ta2r8DfzXGnAuUYk9fi9Ue+VocOU8f1wyLfO9GGwnzej3U1JQl+/ABVVaWpKztwTh4MLoOY8KEUfh8PgCGD7c3RQ0GO1M6Lm7L1nEeSt555x0Ahg8fzoQJoxN+/JgxwwFob2/LqXsrE3Q/p4/GOj00ziKSjEwHQJ2Rrz+2LOv+yPerjDELga8CbUBRj8cUR762RM4TuaatxzVOSSg32khYKBSmsdH9KTk+n5fKyhIaG9sIBkOutz9YO3bsBewpb42N7d3Hvd4CAGpr66mry/5qXdk+zkOFz+dl27ZtAEyYMDGpe6OrywNAc3NLTtxbmaD7OX001umRqnGurCxRVkkkD2Q6ANoZ+dpzitoa4L3ANqDnogDn511AQcyxzT2uWR35focLbSQlEEjdH79gMJTS9pNVX++s/6k8rH/OQvXm5uas7HdfsnWch5J3330XgHHjJiQ11kVF9ucZgUAXbW3tFBSoeGNfdD+nj8Y6PTTOIpKMTH/MsRJoAk7scfwYYBOwFFhijPHFnDsbsCzL2o8doDRiV4sDwBhTDSwEXooccqMNiVO0BHb5YcdLS+2pSVqoLj05GaCJE5NbcucUQQCVwhYREZGBZTQDZFlWmzHmR8C3jDG7gDeAy4DzsIOUtcA1wD2R644HrsLeswfLsjqMMXcCPzTGHMDOGP0YO+vzSORp7nWhDYmTU+XNCXgc0SpwmqIkh9u+fTtgT4FLRkFBIX5/QSQD1NZdcl1ERESkN5meAodlWd81xrQC3wPGA+uAiy3LegHAGHM+cAd2Weo9wNUx64UAvoX9Ou4GSrAzPudbltUZaX//YNuQ+Dl7sTgBj8MJiFpbFQDJ4ZwAKNkMENiboTY2NmgvIBERERlQxgMgAMuybgVu7ePcMuCkfh4bxK4ed20/1wy6DYmP8wa0tLT0sOPKAElvurq62LXL3gR1/PgJA1zdt5KSkkgApPtLRERE+pfpNUAyxDgBkFP0wOEEQHqDKrH27NlNKBSiuLiYkSNHJd2OE3BrDZCIiIgMRAGQuMopctDXFDhlgCTWjh12BbgJEybi8XiSbscphKApcCIiIjIQBUDiKifD01cRhM7OTrq6utLeL8lOTgA0mPU/EM04qsqgiIiIDEQBkLiqrzVAsQGRpsGJY8eOHUDyFeAcmgInIiIi8VIAJK7qaw1QQUEBhYX2BpWaBieOaAZocAGQc78puBYREZGBKAASVzlTkHpmgECFEORITgZosFPglAESERGReCkAElf1NQUOYtdptKe1T5KdwuEwO3e6EwBFM0BaAyQiIiL9UwAkruovACoutit1tbfrTarAoUO1tLW14vF4GDdu/KDaUhU4ERERiZcCIHGVMwWu5xog+1hJ5BplgCS6/mfcuHHd68OSFZ0CpwBIRERE+qcASFzlFDjoPQNUDGidhti2bdsKwJQpUwbdVjS7qOBaRERE+qcASFwVnQJXdsQ5JyvU3q4ASGD79m0ATJs2bdBtOcG1AiAREREZiAIgcU04HO63CpwyQBIrNQGQ7i0RERHpnwIgcU1XVxeBQADofw2QPqUXiE6BczMA6ujoGHRbIiIiMrQpABLXxO7v018VOC1Ul2AwyI4d2wG3AiAnuFYGSERERPqnAEhc46z/KSoqwu/3H3FeGSBx7N69i66uLoqKihg/fnAlsEFrgERERCR+CoDENf3tAQRaAyRRzvS3SZMm4/UO/p+hoiIFQCIiIhIfBUDimv72AIo9rmlK4mYJbICSEgVAIiIiEh8FQOKagTJAzptUZYBk+3Y7AJo82Z0ASPsAiYiISLwUAIlrBp4Cp4XqYnMyQEcdNdmV9mLLYIfDYVfaFBERkaFJAZC4xgmASkqO3ATVPu5UgVMAlO+cDNCUKVNdac8JrsPhMJ2dna60KSIiIkOTAiBxTVubXQbbCXR6UqUuAWhububAgQOAe1PgioqKur/v6ND9JSIiIn1TACSucTI7fa8BKj3sOslPW7duAWD48BFUVla60mZBQUF36fW2NgVAIiIi0jcFQOIaJ7PjZHp6il2nIflr8+aNAEyfPsPVdnV/iYiISDwUAIlrnMyOsx6jJ60BEoBNmzYAMG2a2wGQKsGJiIjIwBQAiWsGzgCpCpzA5s2bAPczQM46IK0BEhERkf4oABLXOG88+yqCEJsBUqni/LVpU6qmwCkDJCIiIgNTACSuiTcDpFLF+auxsYEDB/YDMHXqdFfb1hogERERiYcCIHGN88azqKj/IggAbW2taemTZBdn+tvYseMoLy93tW3n/lIVOBEREemPP9MdkKFjoAyQ3++noKCArq4uTVPKclu3buE3v/kF4XCYz372cqZPn+lKu870N7cLIED0vtMaIBEREemPAiBxjZMB6qsKHNh7AXV1NagSXBbbv38fn/vcJ6itPQjAyy8v5b77fu9KEORUgHN7/Q9oo10RERGJj6bAiWucqUd9ZYBiz2kKXPa6/fZbqK09yNSp05g7dx5NTY1861vfIBgMDrpty1oPwIwZ7mSUYqnKoIiIiMRDAZC4xvnkvaSk7wDIqQSnT+mz0969e3jqqb8DcNNNP+C2235OeXkFa9eu4amnnhhU28FgsDsAmj376EH3tSdlgERERCQeGZ8CZ4w5CtjWy6nPW5Z1tzFmAXA7sBioBe6wLOsnMY/3AjcAnwNqgJeBKy3L2hRzzaDbkIHFMwXOOacpcNnpqaeeIBgMsmjRYo4++hgAPvnJz/Dzn9/OAw/cx0UXvRePx5NU2+++u522tlaKi0s46qjJLvba5hTfUAAkIiIi/cmGDNA8oB0YB4yN+e8PxpjhwD+ADdjByw3ATcaYT8c8/nrgC8DngZOAMPCkMaYQwI02JD4DFUGIPadpStnp+eefBeC88y7qPnbJJZdRXFzM+vVrefPNN5Jue926NQAYMwufzze4jvZCGSARERGJR8YzQMAxgGVZ1p6eJ4wxVwEdwBWWZQWAdcaYGcC1wH2RAOVrwDWWZT0RecylwG7gYuBh4HIX2pA4xJcBct6kdqSlTxK/+vo63nprFQBnnHF29/Hq6hre85738ec//5G//vURjjvuhKTaX79+LQCzZ88ZdF97E51eqeBaRERE+pYtGaC1fZxbAiyNBC6O5wBjjBkFLAAqIscAsCyrHlgBnOZiGzKAcDgcVwaoqKgIUKnibLRy5QrC4TBTp05n9OjRh51773s/AMBzz/0j6emLa9faGaBZs1ITACkDJCIiIvHIlgzQHmPMS8BMYCNwk2VZTwMTgLd7XL878nVS5DzAjl6umRT53o02kuL3ux9f+nzew75mi66uTkKhEADl5WV9vnbnU/quro6UjI9bsnWcU2n16hUALFq06IjfzeLFixg/fgK7du3kpZee56KL3ptQ26FQqDsDNHfu3O723Rxn597q7MzueysT8vF+zhSNdXponEVkMDIaAEWmn80EWoCrgWbg49jrb84FSrGnr8VyPt4tjpynj2uGRb53o42Eeb0eamrKkn34gCor+55mlgkNDdEE29ixwykoKOj1uooKe0y83nBKx8ct2TbOqfT226sAOPXUk3v93XzoQ//O7bffzlNP/Y2PfezShNreunUrzc3NFBYWsnjx/CPuDzfGefjwKgCCwa6cuLcyIZ/u50zTWKeHxllEkpHRAMiyrE5jTDUQsCzLCUCWG2NmA/8NtAFFPR7mzK9qiZwnck1bj2taIt+70UbCQqEwjY3u73Xj83mprCyhsbGNYDDkevvJ2r+/FgC/309zcyfQ2et1Ho99y9XVNVJXl/Twply2jnOqBINB1qyxp6hNnWp6/d2cffYF3H777SxdupStW3dSXV0Td/svvvgKYJe/jr0/3BznUMj+JLipqTmr761MyLf7OZM01umRqnGurCxRVkkkD2R8CpxlWb29U3kbuAB7Wtq4Huecn3cBBTHHNve4ZnXkezfaSEogkLo/fsFgKKXtJ6q52Q72iouL++1XYaEdi7a1tWdV//uSbeOcKlu3bqW9vZ3i4hLGjZvY62ueNGkKM2fOYsOG9TzzzDNcfPElcbe/cqU9vW7+/GN7bduNcS4osO+t1ta2vPidJSNf7udsoLFOD42ziCQjox9zGGPmGWOajTGn9ji1GFgDLAWWGGNia+aejV01bj92gNIInBHTZjWwEHgpcsiNNmQAzsJzZy+WvjhFELRQPbtY1joAZs6c2W+J6vPOuwCAp59+MqH2V69eCcCCBccm2cOBOUUQOjpUYVBERET6lukM0DuR/35hjLkCOIhdtvok4DhgH3ANcI8x5kfA8cBV2Hv2YFlWhzHmTuCHxpgD2Buq/hg76/NI5DnudaENGUC0BHb/AVD0TaoCoGyyYcN6AGbOnNXvdeeffxF33nkby5a9xqFDtQwbNnzAtpuamti0aSNgZ4BSRXtMiYiISDwymgGyLCsE/BvwBvB/wErgBOBcy7LejmRozgcMdlnqG4CrLcu6P6aZbwH3AHcDrwAB4HzLsjojzzHoNmRg0RLY/S9IjZbB1qf02WTr1q0ATJs2vd/rJk6cxJw5RxMKhXj22Wfianv16pWEw2EmTpzE8OEjBt3Xvjj3nrKLIiIi0p9MZ4CwLOsA8Nl+zi/Dzgj1dT6IvanptalsQ/oXbwbImSKnDFB22b59GwBHHTV5wGvPO+8i1q5dw9NPP8GHP/yRAa9/7TW7AMLixcltoBovZYBEREQkHip1Iq5oaxt4E9TY8+3tygBli2AwyM6d7wIwadLkAa931gGtWPEm+/fvG/D61157FYATTzw5+U7GIRpc694SERGRvikAEldEM0DxToFTBihb7N27h87OTvz+AsaO7Vkw8Ujjxo1n3rz5hMNhnn326X6vPXBgP5s2bcTj8XD88Se61eVelZTYAVAgEKCrqyulzyUiIiK5SwGQuML51N15E9oXTYHLPs70t0mTJvVbAS7WeeddBAxcDe5f/7Knv82aNZuamvj3DUpGbPCtdUAiIiLSFwVA4op4M0DFxU4ZbE1TyhbvvrsdgEmTjor7MeeeewEej4fVq1eyd++ePq/75z/tQglLlpwxqD7Go6CgAK/X/idN64BERESkLwqAxBXRKnDKAOWaaAZoctyPGT16NMceuwiAZ57pPQvU1NTEq6++DETXDaWSx+Ppvr+UARIREZG+KAASVyReBU4ZoGyxY4dTACH+DBDABRe8B4BHH/0TodCRO7EvXfo8XV1dTJkylWnTZgy+o3FwMowKsEVERKQvCoDEFdEqcPFNgdMb1Oyxd+9uAMaNG7gAQqyLLvo3ysrK2Lp1C6+88tIR5x955I8AnHfehXg8nsF3NA7RDJACbBEREemdAiBxRaJT4PQGNXs4a3jGjEksACovL+fiiy8B4Le//Q3hcLj73Lp1a1i+/E18Ph8XX/xh9zo7AFUZFBERkYEoABJXJFMGO/YNs2RGU1MTzc3NAIwZMybhx3/sY5+kqKiI5cvf7C6JHQ6Huf32WwA7+zN69Gj3OjwArTETERGRgSgAEldEM0BF/V7nZIhCoRCBgPZqybR9++zsT2VlFaWlZQk/fsyYsXziE58B4KabbmDVqhX8+td38dprr+L3F3Dllf/pan8Hoo12RUREZCD+THdAhob4M0DRKXLt7R0UFBSmtF/Svz17nOlvY5Nu4/Ofv4J//esV3nnnLT71qY92H/+v/7qaiRMnDbqPiXACIGWAREREpC/KAIkr4l0DVFhY2L0gXm9SM8/JAI0dm3wAVFhYyF13/YZzz70An89HRUUlV1/9TT760f/nVjfjFp1iqQyQiIiI9E4ZIHFFvBkge6+WItrb2/UmNQs4GaDRo5MPgMCeQvfjH99GR0fHYRuSppv2ARIREZGBKAMkrnCCmYEyQBD9lF5vUjPPqQA3mAxQrKKioowFPxC7Bkj3loiIiPROAZC4oq0tvgwQqFJXNomWwHYnAMo0lcEWERGRgSgAElfEuwYIYgMgTYHLtP379wEwalT6SlWnkoJrERERGYgCIHGFEwCVlAycAXJKZWuaUubV1h4EYMSIkRnuiTui95aCaxEREemdAiAZtHA4HFMEQRmgXNHa2kJraysAI0aMyHBv3KEMkIiIiAxEAZAMWmdnJ+FwGEisCILepGZWbW0tYK/bSmYT1GwU3QdIwbWIiIj0TgGQDJqT/YHDNzrtiyp1ZYeDB53pbyO692bKdSqDLSIiIgNRACSD5rzZLCgowO8feGspTYHLDrW1BwAYPnxoTH+D2AyQAiARERHpnQIgGbR4N0F1aApcdojNAA0V2mNKREREBqIASAatrc0pgV0U1/XRKXDKAGWSUwFu+PChUQEOVARBREREBqYASAbNebOpDFBuGYoZIJXBFhERkYEoAJJBS2QTVNCn9NliKK4B0r0lIiIiA1EAJIOW7BogfUqfWUMxA6QCGyIiIjIQBUAyaIlmgFSpKzsMxTVAurdERERkIAqAZNDa2pwMUKJT4PQpfaaEQqHujVCHUgZIBTZERERkIAqAZNCiGSAVQcgVjY0NBAJdAAwbNjzDvXFP7L0VDocz3BsRERHJRgqAZNCSnQKnvVoyx1n/U1VVRWFhYYZ74x4nuxgKhejq6spwb0RERCQb+eO5yBjziUQatSzrd8l1R3JR8huhappSpjjrf0aMGJXhnrgrNghvb28fUsGdiIiIuCOuAAj4bQJthgEFQHnEyeSUlKgMdq44dMhe/zNs2LAM98RdBQUFeDwewuFw5P6qzHSXREREJMvEGwBNSWkvIowxM4EVwJcsy/pt5NgC4HZgMVAL3GFZ1k9iHuMFbgA+B9QALwNXWpa1KeaaQbchfUs0A6SF6plXX18HQE3N0AqAPB4PRUXFtLe3KcMoIiIivYorALIsa3u8DRpjPMl0xBhTAPwBKIs5Nhz4B/AX4AvAicBdxphay7Lui1x2feTcp4FdwI+AJ40xR1uW1elGG8m8nnyS+EaoKoKQaXV1dgBUXV2T4Z64r7i4iPb2Nq0xExERkV7FmwE6jDHmMuB0oBBwAh4vdvByEjAhiWa/DTT1OHY50AFcYVlWAFhnjJkBXAvcZ4wpBL4GXGNZ1hORvl0K7AYuBh52qQ3pR+IBkMpgZ1p9fT0A1dXVGe1HKtiZyHoF2CIiItKrhKvAGWNuAB4ELgM+DHwAeA/wCeCDwONJtHka8B/AJ3ucWgIsjQQujufsh5hRwAKgInIMAMuy6rGn0Z3mYhvSDycAcgKbgRQXFx32OEm/6BS4oZcBUpENERER6U8yGaBPAr+PfP02cJRlWZ80xiwCngDWJNKYMaYaeAD4smVZO4wxsacnAG/3eMjuyNdJRDNNO3q5ZpKLbSTF73e/yrjP5z3sazZwPmkvKyuN6zWXlZV2Py4VY+SGbBxnNzU02AHQ8OHDM/o7SMU4O5nIrq7OrL2/0m2o38/ZRGOdHhpnERmMZAKg8cADlmWFjTHLgY8AWJa13BjzPexCAncm0N4vgH9ZlvVgL+dKsaevxXLSBsWR8/RxjbO62402Eub1eqipKRv4wiRVVsZXcCAdAgF7mdSIEdVxveZQyB7Wrq4uKiuL8fl8Ke3fYGTTOLupsbEBgIkTx6b0Po2Xm+PsBNh+fzgrXls2Gar3czbSWKeHxllEkpFMANSCXeoaYCMwxRhTYllWG7CKBCrGGWP+H/YUtWP6uKQNKOpxzJln1RI5T+Sath7XtLjYRsJCoTCNja3JPrxPPp+XysoSGhvbCAZDrrefjJYW+3UGAlBXN/CQtbcHu7/fu/cQpaWl/VydGdk4zm6qrbXLYPt8xXH9zlIlFePs99t7/9TWNmT0tWWToX4/ZxONdXqkapwrK0uUVRLJA8kEQG9gT397FtgMBIBzsNf+zObITEp/PgOMBnpOffulMeZqYDswrsdjnJ93AQUxxzb3uGZ15PsdLrSRlEAgdX/8gsFQSttPRFubHTcWFBTF1SefL7o5ZUtLG4WF8a0dyoRsGme3hMPh7ipwFRVVWfH63BznwkL7847W1raseG3ZZCjez9lKY50eGmcRSUYyH3PcDFxqjHncsqwO7PVA9xtj/gzcAjydQFsfxw6aFsT8B/At4CJgKbDEGBM7R+pswLIsaz92gNIInOGcjKwpWgi8FDnkRhvSj0SrwPl8Pvx+O+5Upa70a21toaurCxi6ZbBBRTZERESkdwlngCzLWmqMWQzMixz6EhACTgH+D/hqAm3t6nkskgnab1nWdmPMvcA1wD3GmB8BxwNXYe/Zg2VZHcaYO4EfGmMOANuAH2NnfR6JNOlGG9IPZyPUeKvAgf0mtbm5SwFQBjglsIuLiykpGXrz56Nl1nVviYiIyJGS2gfIsqy3gLci37dj77XjOsuy9htjzgfuwC5LvQe42rKs+2Mu+xb267gbKMHO+JzvbGDqRhvSv/Z2e9ZjIm+mi4tLaG5u7n6spM9Q3gQVoplIlcEWERGR3iS7EWoVcBb2xqdHTKOzLOt3yXbIsixPj5+XYW+u2tf1QexNTa/t55pBtyG9C4fD3RmgeKfAQexeLfqUPt2cPYCGagDkZIA0BU5ERER6k3AAZIy5EHuqW1+lu8JA0gGQ5JbOzk7CYbsoYGIBkKYpZUo0AKrObEdSxFkDpAyQiIiI9CaZDND3gXXYa312Yq//kTwVG8AkugYIoK1NAVC6DfUpcAquRUREpD/JBECzgPdblqUKadIdwPj9Bfj98d9OxcX2eiG9SU0/JwNUUzO0AyBNgRMREZHeJFMGeztQ6XZHJDcls/4HYtcAaZpSug31NUAqgy0iIiL9SSYA+j5wgzFmsst9kRyU6B5Ajuin9G2u90n6N9QDIE2BExERkf4kMwXuY8B4YHNk35zWHufDlmVNG3TPJCc4bzITDYCin9IrA5RuQz8AUnZRRERE+pZMALQz8p9I0hkgrQHKnLq6emAoV4HTGiARERHpW8IBkGVZn05FRyQ3OVPYEqkAZ1+vT+kzpampAYCqqqoM9yQ1tBGqiIiI9CeZfYAm9XM6BDRbllWfdI8kpzhT2LQGKHc0NjYCUFExNGuZaA2QiIiI9CeZKXDbsDc77ZMx5hBwu2VZ302mU5I7olXgShJ6XHSakj6lT6f29vbuzEhl5dDMAEUDIN1bIiIicqRkqsB9EugEngE+DVwYOfY4dmD0HeC3wHXGmCvc6aZkq+gaoKKEHhedpqRP6dOpsdGe/ub1eikrK8twb1IjWmBD2UURERE5UjIZoI8AD/eyFuj3xphfAIssy3qfMaYeuAL4xSD7KFks2QyQpillRnT6WwVebzKff2S/6PRKZYBERETkSMm8AzoDeLCPc48AZ0e+fxlQOewhzplmlOxGqKrUlV5NTXYAVFlZndmOpFC0wEY74XC/s3VFREQkDyUTANUC8/s4Nx9ojHxfDrQk0ynJHW1tg10DpAAonZwpcJWVQ7MAAkTvrVAoRCDQleHeiIiISLZJZgrcH4DvGGO6gD8B+4FRwMXAjcAvjTE1wFXAa+50U7KVE8A4n7rHS6WKM8OZAjeUA6DYkuzt7R0UFBRmsDciIiKSbZIJgK7DDnhujfznCAH3At8EPgQcC5w12A5KdnPW8JSUaA1QLogGQEOzAhxAYWEhHo+HcDhMR0c7FRUVme6SiIiIZJFkNkINAJ8xxnwPOBMYAewEXrEsayuAMeZJYLxlWfp4f4iLVoFLbA1QtFKXAqB0amioB4Z2Bsjj8VBUVEx7e5syjCIiInKEZDJAAFiWtRnY3Me5uqR7JDnFqQIXO+0oHtFKXQqA0skpgjBUN0F1FBcX0d7epvtLREREjhBXAGSM2QJ80LKs1caYrfS/EWrYsixVf8sTTqnhxDNA9pQ5fUKfXvkwBQ5iA2ztBSQiIiKHizcD9CLR6m4v0n8AJHkk+X2AoqWKJX2cKnBVVUM9AHLuLwXYIiIicri4AqDYTU8ty/qUMaYCqLQsa5cxpgj4CjAB+LNlWS+mpquSjaJrgJKrAqcpSumVD1XgQPeXiIiI9C3hfYCMMccD24EvRw7dDnwf+DjwT2PM+9zrnmS7aACUXAYoEAgQCARc75f0LroR6tAOgKJVBpUBEhERkcMlsxHq94D1wK+MMSXYgc8vLMsaBtwD/I+L/ZMs50xhS3YNUGwbknpOBqiiIl+mwOneEhERkcMlEwCdANwUKXl9NlACPBA59zAw16W+SQ6IboSaaBW46JQ5fUqfHuFwOC/KYEM0wNYUOBEREekpmQAoBDjvWC8C6oE3Ij9XAq2D75bkimgRhMQCIHuvFjsIamtTpa50aG9vp6urCxj6VeCcNWkKrkVERKSnZPYBehP4nDGmDbgU+JtlWWFjzCjg65HzkieiZbATWwMEdtaoo6NDb1LTxJn+5vP5KCsry3BvUiu6BkgZIBERETlcMhmgq7Gnvr0CBIDvRo6/A8wArnOna5Lturq6CATsjEKiVeDsx+hNajo1NdklsCsrK/F4PBnuTWo52UVNgRMREZGeEg6ALMtaCUwHTgKmWpa1MXLqCmCuZVnLXeyfZLHYzE2yGSCIZpEktaIFEIb2+h+IvbcUAImIiMjhkpkCh2VZTcDrPY792ZUeSc5w1v94PB4KCwsTfryTNXLakdSK7gE0tNf/QGx2UcG1iIiIHC6ZKXAiQPTNZXFxSVJTqrRXS3o1NkanwA11KoMtIiIifVEAJElzqrcls/7HfpzWAKVTQ0M+BUCaAiciIiK9UwAkSXPeXCaz/gf0JjXdmpryYxNUgJISZRdFRESkd0mtAXJTpHz2LcAF2JuqvghcbVnW2sj5BcDtwGKgFrjDsqyfxDzeC9wAfA6oAV4GrrQsa1PMNYNuQ47kZG4S3QPIEV0DpAAoHfJrCpyyiyIiItK7bMgAPQZMAy4EjgPagGeNMaXGmOHAP4AN2MHLDcBNxphPxzz+euALwOexK9OFgSeNMYUAbrQhvXMCF+fNZqKczJHepKaHUwShqmroZ4Cia4CUARIREZHDZTQDFAlOtgLftSxrTeTYTcAq4GjgHKADuMKyrACwzhgzA7gWuC8SoHwNuMayrCcij78U2A1cDDwMXO5CG9ILp3pbshkgvUlNr3ysAuesUxMRERFxZDQDZFlWrWVZH4kJfkYD/w3sBNYCS4ClkcDF8Zx9qRkFLAAqIsecNuuBFcBpkUNutCG9iK4BSjYA0pvUdMrPKXAKrkVERORw2TAFDgBjzK+BvcAlwGcty2oBJgA7ely6O/J1UuQ8fVwzKfK9G21ILwYbAGmvlvSKFkHIhwBIZbBFRESkdxkvghDjNuBXwBXAX4wxpwKl2NPXYjnvaIoj5+njmmGR791oIyl+v/vxpc/nPexrJnV22kNWUlKS1GstLS3pbicVYzUY2TTObnHKYNfUVGfNeKdqnMvKnPVl2XdvZcJQvJ+zlcY6PTTOIjIYWRMAxVR9uxy7EMGXsAsi9Nxkxkk3tETOE7mmrcc1LZHv3WgjYV6vh5qasmQfPqDKyuRKT7vJ4wkCUFVVkdRrramxMxHhcCClYzUY2TDObgiHw90ZoEmTxmbdeLs9ziNH1gB2cJ1trzWThsr9nAs01umhcRaRZGS6CMIo4Gzgj5ZlBQEsywoZY9YC47GnpY3r8TDn511AQcyxzT2uWR353o02EhYKhWlsbE324X3y+bxUVpbQ2NhGMBhyvf1E1Nc3AeDx+KirSzxWDIU8ADQ2Nif1+FTKpnF2Q2trK11dXQCEw/6sGe9UjXNnZxiAtrb2rHmtmTTU7udsprFOj1SNc2VlibJKInkg0xmgccCDwD4iRQiMMQXAQuzy2PuALxhjfE6AhB0wWZZl7TfGNACNwBlEghdjTHXk8XdGrl/qQhtJCQRS98cvGAyltP14tLbaAV5hYXFSfSkosBNzbW1tGX8tfcmGcXZDXV09AH6/n8LCkqx7TW6Ps99vV7Dv6GjPuteaSUPlfs4FGuv00DiLSDIyHQCtBp4G7jLGfB6oA/4HezPSn2Kvw7kGuMcY8yPgeOAq7D17sCyrwxhzJ/BDY8wBYBvwY+yszyOR57jXhTakF21tKoKQK5wKcBUVlXg8ngz3JvWceysYDNLV1UVBQcEAjxAREZF8keky2GHgUuzsz/8Cb2AXHlhiWda7lmXtB84HDHZZ6huAqy3Luj+mmW8B9wB3A68AAeB8y7I6I88x6Dakd9F9gJKbg+2UKnaqyUnqRPcAGvoV4ODwzXkVYIuIiEisTGeAsCyrAbgy8l9v55dhF0Xo6/FB7E1Nr+3nmkG3IUdy3lgWF/esMREf53EKgFIvnzZBBSgsLMTj8RAOh2lvb6O8vDzTXRIREZEsoZV+kjS3MkDaqyX1GhrqgfzJAHk8npi9gJQBEhERkSgFQJI0bYSaO/JpE1SHEwApwygiIiKxFABJ0pw3lrHrLRKhDFD65NsUOND9JSIiIr1TACRJcysD5FSTk9RxqsBVVeVjAKQMo4iIiEQpAJKkOWuASkqSXQPkrNFoJxwOu9YvOVK+VYEDKClRlUERERE5kgIgSZrzyboTyCTKKZ4QDofp6upyrV9yJCcAyq81QMoAiYiIyJEUAEnSBlsFLrZ8ttOWpEZTkz0FLr/WAEUzjCIiIiIOBUCStLa2wU2B8/sL8Pl8kbb0JjWVGhqcACj/MkDOfSoiIiICCoAkScFgkM7OTiD5AMjj8XQ/tr291bW+yZHysQqck2HUFDgRERGJpQBIkhL7qXpJSWnS7TgBkD6lT51wONy9D1A+ZoA0BU5ERERiKQCSpLS12Rkbr9dLYWFh0u0UF5dG2lMAlCptba0EAgFAZbBzWTgc5g9/+B0f+MCF/Md/fIZNmzZmuksiIiI5SQGQJCV2/Y/H40m6nWgGSFPgUsWZ/ub3FyRdsCIXOVPghkoZ7Hvu+RU//vHNbNu2lddff5VPf/pj7Nq1M9PdEhERyTkKgCQp0QAo+elv9uM1BS7VYvcAGkywmmucYG8oTIF7993t/OIXPwPgM5+5nDlz5tLU1Mi3v31dhnsmIiKSexQASVKcjE2yBRAc0SIIuf8mNVs1NuZfBTiILYOd+1PgfvvbuwkGg5x88ql8+cv/xY9/fBsFBQW88cZrvPHGa5nunoiISE5RACRJGWwJbIeTQdIUuNSJzQDlE2cNUK4H162tLTzxxN8A+NznvoDH42H8+AlcfPElADz00O8z2T0REZGcowBIkuIEQINdU1JcrL1aUs3JAFVU5E8BBBg6a4BeeOE52tvbmDhxEsceu6j7+Ic//FEAli59ngMH9meqeyIiIjlHAZAkRWuAcocTAOVTBTgYOmWwn3vuWQDOP/+iw9ZwTZs2nXnz5hMMBruvERERkYEpAJKkuLcGSGWwUy3fp8Dl8hqgUCjEm2++DsApp5x2xPkzzzwXgOefVwAkIiISLwVAkhT31gCpDHaqRQOg/MoADYUpcBs2WNTX11NaWsrcuccccf6ss84G4M03l9HU1JTu7omIiOQkBUCSlPZ2twMgZYBSJVoFLr8CoKGQAXrjjX8BsHDhcRQUFBxx/qijpjBlylQCgS5effXldHdPREQkJykAkqREp8BpDVC2y9cy2E6BjVxeA7RsmT397fjjT+jzmpNPXgLQPVVORERE+qcASJLidhlsJ6Mk7mtoyO8iCLk6BS4cDrNmzTsALFiwsM/rFi06DoDly5elpV8iIiK5TgGQJMWtAEhlsFMv39cA5eoUuP3793PoUC0+n4+ZM2f1ed2iRYvxeDxs2bKZ2tqDaeyhiIhIblIAJElxfyNUBUCp0thYD+RfABTNAOXmvbVu3RoApk6d1v1BQW+qqqqZMWMmAMuXv5mWvomIiOQyBUCSFK0Byg2hUKi7Oli+ToHL1QzQ2rX29LfZs48e8NqFCxcDsGrVipT2SUREZChQACRJURns3NDc3EwoFALyLwPkTIELBoN0dXVluDeJczJAs2fPGfDauXPnAbBmzdsp7ZOIiMhQoABIkuJ+AKQMUCo4FeCKi0soLCzMcG/Sy8kAQW5mgSxrPQCzZg2cATr66GMij1lHIBBIab9ERERynQIgSUo0ABrsFDitAUqlfC2BDVBUVNT9fa6Vwm5qamL//n0ATJs2fcDrjzpqMuXl5bS3t7N586ZUd09ERCSnKQCSpETXALmTAWpvb+ueqiXuydcS2AAej6c7CMq1Utjbtm0BYOTIkXEFr16vt3utkKbBiYiI9E8BkCTF7TLYkJvTlLJdtAR2/mWAIHYz1Ny6t5wszpQp0+J+jDMNTgGQiIhI/xQASVLcmgJXXBwNoDQNzn3RKXDVme1IhkQrweVWBmjrVjsDNHVqIgHQXIDuzVNFRESkdwqAJGGhUKh7b5XBZoB8Pl/3NCVVgnNfQ0M9kJ9T4CB2L6BcC4A2A8llgDZt2kBnZ2dK+iUiIjIUKACShMV+mj7YACi2DWWA3JfvU+By9d7assUOgKZOnRr3Y8aOHUd5eQWBQIBt27amqmsiIiI5z5/pDhhjhgE3A+8FKoG3gK9blvVy5PwC4HZgMVAL3GFZ1k9iHu8FbgA+B9QALwNXWpa1KeaaQbchUbFvJmNLDSerpKSU+vp6ZYBSIDoFLj8zQKWlTpXB3Lm3Ojs72bVrJ5BYBsjj8TBjxkxWrlzOxo0WM2eaVHVRREQkp2VDBuhh4ETgMuA4YAXwjDFmljFmOPAPYAN28HIDcJMx5tMxj78e+ALweeAkIAw8aYwpBHCjDTmcEwAVF5fg9Q7+FiotLQOgpaVl0G3J4aIZoPwOgFpbcycA2r17J+FwmJKSUoYPH5HQY6dPnwnAxo0bUtE1ERGRISGjGSBjzHTgXOAUy7JejRz7CnAh8FGgDegArrAsKwCsM8bMAK4F7osEKF8DrrEs64nI4y8FdgMXYwdXl7vQhsRwqwS2o6zMDoBaWxUAuS3f1wDlYgC0Y8cOACZOnIjH40nosTNmKADqTSAQ4KGHHuDxx/9KZ2cHp556Gpdf/sW8nRoqIpLvMp0BOgi8B1juHLAsKwx4gGHAEmBpJHBxPAcYY8woYAFQETnmPL4eO4t0WuSQG21IDLdKYDucAEgZIPfl+xQ4p0phLgVAO3e+C8D48RMTfuyMGfa0t02bFAA5urq6+K//+iK33PJDNmxYz7ZtW/n97+/nIx+5mD17dme6eyIikgEZzQBFAo0nYo8ZYy4BpgFPA98Dem5q4fzFmgRMiHy/o5drJkW+n+BCG0nx+92PL30+72FfM6Gz0y6CUFpa6sprLC8vB6C9vTUlY5aMbBhnNzhT4GpqqrNmbGOlepzLy+3guqOjLStff2+c9T+TJk1KuM+zZtkB0L59e2lpaerO/A2V+zkZd9xxBy+99CLFxcV87WvXMGLESG655Yfs3LmT//zPK3j44T91V6J0Qz6PdTppnEVkMDJeBCGWMeYU4F7gr5ZlPW6M+Sn29LVYTgmyYsDZhKa3a4ZFvi91oY2Eeb0eamrKkn34gCor3cm+JMPrDQFQUVHuymusqbHfpIVCXSkds2Rkcpzd4GSAJk0am3VjGytV4zxsWDUAwWBnVr/+WPv22Z/PGDM94T7X1JQxfvx4du3axb59O5g8edxh53P9fk7U2rVruf/+ewH42c9+xkUXXQTAKaecwEUXXcTGjRb33fcrvvGNb7j+3Pk21pmicRaRZGRNAGSMeT/wIPAa8JHI4Tag50dzTtmxlsh5Ite09bjGmU/lRhsJC4XCNDa6P+3G5/NSWVlCY2MbwWDI9fbjceBAHQAFBUXU1Q1+2prfb/96Dh6sc6U9N2TDOA9WZ2dn93TFcLgga8Y2VqrH2estAKCuriErX39vtmyxS1gPHz46qT5PmzaDXbt2sXz5KmbOtDdHHQr3czJuvPE7BINBzjnnPE466fTu8Swtreb667/NV77yRX7zm9/w/vd/iLFjxw3QWnzydazTLVXjXFlZoqySSB7IigDIGPMl7DLVjwAftyzLycbsAHr+VXJ+3gUUxBzb3OOa1S62kZRAIHV//ILBUErb709Lix3YFRcXu9IHZ51Gc3Nzxl5TXzI5zoN16JAdqHo8HkpKyrL6daRqnIuK7E+Hm5tbsvr1O0KhEDt32rNxx46dkFSfp0+fwdKlL2BZ1hGPz+X7OVGbNm3klVdewuPx8JWv/PcRr/u0085i0aLjWL58GXfddSc33PBdV58/n8Y6kzTOIpKMjH/MYYy5AvgZcCdwaUzwA7AUWGKM8cUcOxuwLMvajx2gNAJnxLRXDSwEXnKxDYkRrQJXOsCV8VERhNRoaHAKIFS6Uq48F+XaPkAHDhygo6MDn8+XdEbCKYSQ75XgHnroAQDOPPMcJk48cjmnx+PhS1/6LwD+/vfHOHToUFr7JyIimZPRd0XGmJnYmZ9Hge8Do4wxYyL/VWGvB6oE7jHGzDHGfAq4KnItkWDpTuCHxpj3GWPmAf+LnfV5JPI0brQhMZwMkLN/z2A57agMtrvyfQ8gyL0y2Lt22dmfMWPGUlBQMMDVvZs+fQYAmzdvIhwOu9a3XNLe3s5TT/0dgI9+9P/1ed2CBccyZ85cOjs7+fOf/5iu7omISIZl+mPhD2FPQfsgsKfHf7dHMjTnAwa7LPUNwNWWZd0f08a3gHuAu4FXgABwvmVZnQButCGHcwKVsjJlgLJZY2M9oAAIcicA2rHDLoE9YULiJbAdRx01Ba/XS3NzEwcPHnCraznllVeW0tLSwtix41i4cHGf13k8Hj72sU8A8Oij/5e3AaOISL7JdBnsm4GbB7hmGXBSP+eD2JuaXpvKNiTKCVTcygApAEqNaAYofzd7dKZp5soUOKcE9vjxEwa4sm+FhYWMHz+RHTu2s3XrFkaOHOVW9wals7OTgoKChDd3TcZTT9m7K5x33oUDTv8866xzKS0tZffuXaxatZJjj12Y8v6JiEhmZToDJDnIyQBpClx2c9YAOXvB5KNcywA5G3OOGzd+UO1MnToVgC1bNg9wZeq9/vq/uOSS93H88fO44IIz+fOf/5jSTEtHRwcvvfQCAOeff+GA15eUlHDWWecC8OSTf0tZv0REJHsoAJKEOW8mnczNYCkDlBoNDfUAVFZWZ7QfmRQNrnMjANq7dw/AoEsyT5kyDYCtWzMbAL344nN88Yuf7y7IsG/fXm666Vv8/Oe3p+w5V65cTnt7OyNHjmL27KPjesxFF/0bAP/4x1MEg8GU9U1ERLKDAiBJmNtT4JQBSo36ersMdk1NTYZ7kjm5lgFyAqAxY8YOqp0pU+wM0NatWwbdp2Tt27eP66//BoFAgAsueA9PPPFPvvjFqwC4++5f8txz/0jJ87766ssAnHTSKXFPtzvuuBMoL6+gru4Q77zzVkr6JSIi2UMBkCQsWgTB7QxQbrxJzRV1dQqAnDVAgUAXXV3ZXdMkFAq5FgBNnZr5DNCvfnUnjY0NzJkzl5tu+gHjxo3n85//Ap/85GcB+MEPvtu9Ua+bXnvtFcAOgOJVUFDAKacsAWDp0hdc75OIiGQXBUCSsGgGyJ0qcE4GKBDoorMzu9+k5hInA1Rdnc8BUEn399meBTp0qJauri48Hg+jRo0eVFuTJ9sZoAMHDtDU1ORG9xKya9dOHnvsUQCuvvobh5X0vvLK/2Ts2HHs37+P3//+/r6aSMqBA/vZsMHC4/Fw4onxB0AAp512BkD3+iERERm6FABJwtwvghANpLQOyD0KgOxP9gsLC4HsD4D27LGzPyNHjkp6DyBHRUVFd/W3bdvSPw3uoYceIBAIcMIJJ3PssYsOO1dUVMSXv2xvQPrAA/e5WqHvtddeBWD27KMTznyefPISvF4vGzZY3cUoRERkaFIAJAlzghS3psD5/X6Ki4sBrQNykzMFLp8DIMiddUD79rkz/c3hTINLdyW4rq4u/v73xwH42Md634T0/PMvYsKEiTQ2NvD3vz/m2nOvWPEmAMcff2LCj62pqWHevAUAvPzyUtf6JCIi2UcBkCQkHA67ngGKbUsZIHeEw2EVQYhw1gFlewDkZIAGWwHOMXnyFCD9hRD+9a+Xqas7xLBhwznppFN7vcbn83HZZR8H4KGH/uBaWezVq1cCJL2Xj7NuaNmy113pj4iIZCcFQJKQzs7O7jKxbmWAYttSAOSOpqam7t9TVVV1ZjuTYU5wne2bobpVAMGRqVLYTzxh76Vz4YXv7Xcq3/vffzHFxcVs3ryRtWvfGfTzNjTUd2e75s07Nqk2jjvuBMAOgFK5V5GIiGSWAiBJSGyAErvAfLCiGaBm19rMZ072p6SktHt6Yb7KlSlwe/fa607GjnV7Clz6MkCBQIBXXnkJgHPOOb/faysqKjjjjLMAuqfMDcbq1asAO/OVbNbzmGPmUVxcTF3dITZv3jjoPomISHZSACQJcaa/FReX4PP5XGu3vFwBkJs0/S3KCYCyPbvoTIEbM8adKXDOXkC7du2go6PDlTYH8tZbq2hqaqSqqop58+YPeP1FF70PgKee+juBQGBQz71q1QoA5s9PLvsDUFBQyIIF9vQ5TYMTERm6FABJQtwugOCoqKgEyEjJ3qFIFeCicmWjXbenwI0YMZLy8gpCoRDbt29zpc2BvPzyi4BdUS2eD0hOOukUqqqqOHSotjuASZaz/scJYJLlFFB44w0FQCIiQ5UCIElIKgogQGwA1Ohqu/lKm6BGlZeXA9l9b7W3t3PoUC3g3hQ4j8fD1Kl2FihdleBefdXehPTUU0+P6/qCggJOO+1MAJ5//p9JP29XVxdr1rwNDC4DBNF1QCtWLCMUCg2qLRERyU4KgCQhqc8AZe+b1FyiDFCUc281N2dvdnHfvr2AvWarsrLKtXadQgjpCICampqwrHUAHH/8CXE/7swzzwHghRf+mXThActaT3t7O1VVVd3V75I1a9YciouLaWhoYNu2rYNqS0REspMCIElINAAqHeDKxFRUVACaAueW+vp6QAEQxGaAsnd9mTP9bezYsXg8HtfaTWcAtHLlcsLhMJMmHdW9CWs8TjrpZIqKiti1aycbN25I6rmd6XPz5i3A6x3cn7WCggKOPvoYIDqtTkREhhYFQJIQZwpcSYm7GSDnU+/GRmWA3KAMUFQ0uM7ee2vPHrsCnFvrfxzpnALnbEK6aNFxCT2upKS0e/+d559/Nqnndmv9j8OZRjfYdUkiIpKdFABJQlI3BS7736TmkugaoOrMdiQLRKfAZX8GyO0AyMkAbdu2tXtfqFRZsWIZAAsXLk74sWeccTYAS5e+kPBjw+GwKxXgYjmBlDJAIiJDkwIgSYizmWTqiiBoCpwb6uoOAcoAQXQKXDavAYpOgXOnBLZj3LjxFBYW0tnZyc6dO11tO1ZXVxfr1q0FkgtCTj31NADWrHmb2tqDCT12z57dHDiwH7/f3z11bbCcEt7btm3t/jBBRESGDgVAkpBUrQGqrLQDoMbGBlfbzVeaAheVC8F1dA8gdzNAPp+vuyjAhg3Jra+Jx9atW+jq6qK8vJwJEyYm/PgRI0YyZ85cAF566cWEHutkaYyZ7drmzNXVNd37KL31lrJAIiJDjQIgSYizUWlZWbmr7ebCm9RcogAoKjcyQKlZAwQwdao9DW7jxo2ut+1Yv97O/hgzK+kiBKeddgYQ3UsoXk4A5Nb0N4czDW7VKgVAIiJDjQIgSYizRqe8vMLVdmPXACVbCldsXV1d3cUkhg0bluHeZJ5zr2ZrABQOh1M2BQ5g2rQZAFiW5XrbjvXr7fLXxsxJuo0lS+y9g1599WW6ujrjftxbb60C3A+AnPa0DkhEZOhRACQJcUoJOwGLW5wpcF1dXbS3t7vadr6pqztEOBzG6/VSVVWd6e5knJNdbGlpSXkhgGTU1dXR0dGBx+Nh1KjRrrc/bdp0ILVT4Jz9f2bNmp10G7NnH82IESNpbW1l+fI343pMW1srlrUegAULUhMArVnzdkIBmYiIZD8FQJIQ51N0twOg0tKy7qkzqgQ3OM4i8mHDhuPz+TLcm8yrqIhO13SmcGYTZ/rbiBEjKCwsdL392ClwoVDI9fbD4XB3EGJM8gGQ1+vtLoYQ7zqgd955m2AwyOjRYxg9ekzSz92byZOnUF1dTUdHR3eGS0REhgYFQJIQp5Sw21PgPB6PNkN1SW1tLQDDh4/IcE+yQ0FBIcXFxUB23lt79+4FYMwY96e/AUyYMImCggLa2trYvXuX6+3v2rWT5uYmCgoKuoOtZDnrgOIth52q9T9g/5t0zDHzI8+zyvX2RUQkcxQASUKia4DcLYIA2gzVLQcPHgBg+PDhGe5J9nAC9uwMgFJXAAHA7/czebJd0WzTpk2ut+8UQJg+fQYFBQWDauuEE07C7y9gx47tbN++dcDrU7X+xzFv3rGHPY+IiAwNCoAkIdEpcJWut63NUN1x6JAyQD1lcyW4PXucAMjdKVyxpk+31wFt2eJ+AOTG9DdHWVk5ixcfBwycBQqFQinNANntLgAUAImIDDUKgCRugUCA1lZ7I1S3p8CBSmG75eBBew2QAqCobL63nD2AUlEBzjF9ul0JbtMm90thOxmgwRRAiBXvNLiNGzfQ0NBASUkpxsxy5bl7mjv3GLxeL3v37mHfvn0peQ4REUk/BUASt9gF5LELy90SfZOqzVAH49AhBUA95UIGaOzY8Sl7DmdtTmqmwA2+BHasJUvOAGDlyuX9BqxvvPEaAAsXLh701Lu+lJaWMX36TEAbooqIDCUKgCRuTgGE4uJiCgrcr1ZVVWWvAaqvr3e97XwSzQBpDZAjm/cCiu4BlJo1QBDNAG3dutnVSnCHDtVy4MB+PB4PM2fOdKXNiRMnMWXKVAKBAP/61yt9XrdsmR0AHX/8Ca48b180DU5EZOhRACRxcz6NTcX0N4CaGnvTzrq6QylpP184a4BGjBiZ4Z5kD2d9WbYV2Ojo6OguW57KKXATJ06isLCQtra27oyTG5zsz8SJkygrcy8r7GyKunTp872eDwQCLF++DIDjjz/Rteftzbx5CwBVghMRGUoUAEncnE/PU1EBDmIDoLqUtJ8vnAzQsGHKADmqq6sBaGjIrumVTgW4kpLS7iqIqeD3+5k2zZ4Gt3mze+uAohugujP9zeFMg3vllZd63bx25crltLS0UF1dzcyZqVn/43AKLKxbt4bOTm2IKiIyFCgAkrilPgNUAygDNBidnZ00Ntpv8keM0BogR3V1dt5bsQUQPB5PSp9rxgx7GtzmzZtda9PJALlVAMGxYMFCyssrqKs7xJo1bx9x/rnn/gHA6aeflfLNfidOnERNTQ1dXV3dBR9ERCS3+TPdgVjGmOuAcyzLOiPm2ALgdmAxUAvcYVnWT2LOe4EbgM8BNcDLwJWWZW1ysw2JLYGtKXDZyplO5ff7U5pRyDXZem9FCyCkbv2Pw1mjk5oMkLsBUEFBAaecsoSnn36Cp59+snsaGkA4HOa5554F4KyzznH1eXvj8XiYN28BL774PKtXrzqsLyIikpuyJgNkjLkK+E6PY8OBfwAbsIOXG4CbjDGfjrnseuALwOeBk4Aw8KQxptCtNsQWnQKX2gDo0KHsepOaS/bvt0v1jhw5Cq83a/73zjjn3sq2AhvRACh1638cxhjAvb2AWltb2L59W6RtdwMggPe+9/0APPbYo7S1tXUfX716Jfv27aWkpJQTTzzF9eftjRP0qBCCiMjQkPF3SMaY8caYJ4HvAlaP05cDHcAVlmWtsyzrPuCnwLWRxxYCXwNusCzrCcuyVgOXAuOBi11sQ4hWgUt1ANTQUO9qpap84uxVMnp06jbVzEXZOwXO2QQ19RkgJwDavHkTgUBg0O1t2GARDocZOXJkSkqun3LKEiZMmEhTUyNPPPF49/E//vEhAM455zyKiopcf97eKAASERlaMh4AAQuBOmAe8HqPc0uApZZlxf61fg4wxphRwAKgInIMAMuy6oEVwGkutiFAU5NdQSt1U+DsN6nBYLB7HYskZt++vYACoJ5i15eFw+EM9yYqWgI7dXsAOaZMmUJJSSkdHR3dmZvBsKz1gHv7//Tk9Xq59NKPAvDrX99FW1sbW7Zs5plnngTgsss+lpLn7c3cucfg8/nYt29v9/9jIiKSuzK+BsiyrMeBxyH6CWWMCUDPFbBODddJkfMAO3q5ZpKLbSTF73c/vvT5vId9TSdnI9SqqsqUvDa/v5iKigqamppobKxnxIjMVTHL5DgPxsGDdgZozJgxKfkduS1d4zxypJ2h6OzspKurndLSspQ+X7ycDNCECeNS+vvy+bx4vV5mzZrFypUr2LhxPcYMbt+eDRvs9T+zZ89OWd8/8pGP8dBDv2f37l1cc81X2L9/P4FAgNNPP5P58+en5Dl7U1FRzsyZhnXr1vLOO6sZP77vKYu5+m9HrtE4i8hgZDwAGkAp9vS1WO2Rr8WR8/RxzTAX20iY1+uhpiZ1b7IqK0tS1nZfOjrsefijRg1P2WsbPnw4TU1NBAJtKR2/eGVinAfj0CG7CMKUKZOyYvzilepxrq4upbi4mPb2doLBdmpqRqX0+eIRCoW6swmzZ89Iy+9r/vx5rFy5gm3bNg36+TZutGcsL158bAr7XsYdd9zORz/6UV56aSlg/xvxgx/cnPb7+/jjj2PdurWsW/c2l132oQGvz7V/O3KVxllEkpHtAVAb0HOSd3Hka0vkPJFr2npc0+JiGwkLhcI0NrYm+/A++XxeKitLaGxsIxhM7zqZgwftDTb9/mLq6pIemn5VVdUA29i+fRczZ6bmOeKRyXEejB07dgFQWTksZb8jN6VznKura9i7dw/btu2koiLzeyTt37+Prq4ufD4fhYXlKf19OeM8dapdCnvVqtWDej67JLQ9BW7ixGkp7fusWfP41a/u5f7776W4uJgvfekrVFQMT/v9PWvWXADeeGNZv8+dq/925JpUjXNlZYmySiJ5INsDoB1Az7kGzs+7gIKYY5t7XLPaxTaSEgik7o9fMBhKafu9qaurB6Cioiplz+2s1aitrU376+tNJsZ5MJyMwogRo3Kq3+kY55oaOwA6cCA77q0dO3YCMGrUaMCblj451drWrVtLV1cw6b2HNm3aRGdnJ+Xl5YwZMy7lfT/22MUce+zi7p8z8fs75pgFAKxdu5aWlrYBCzDk2r8duUrjLCLJyPaPOZYCS4wxsTvdnQ1YlmXtxw5QGoEznJPGmGrswgovudiGYFdnA6iqqk7Zc0T3a6lL2XMMVcFgkAMH9gMqgtAbpxJcfX123FtOAYR0VIBzzJgxE7/fT0NDw6AW8zsboM6cOStvyq2PHz+BYcOGEwh0sW7dmkx3R0REBiHb/3LdC1QC9xhj5hhjPgVcBXwfwLKsDuBO4IfGmPcZY+YB/4ud9XnExTaE6B4q1dXVKXsOJwN06FBtyp5jqDp0qJZAIIDX601JWeJcl22boe7cadddGT9+wgBXuqewsJCpU6cB0SAmGc5jU7H/T7ZyNkQFlcMWEcl1WR0ARTI05wMGuyz1DcDVlmXdH3PZt4B7gLuBV4AAcL5lWZ1utSHQ0dFBe7u9RCqVGaCRI+3F6U4mQ+K3d6/9if7w4SPw+7N9dmv6ZVt20QmAJkyYmNbnnTlzFgDr169Nug3LsgOgWbPyJwACmD9/AaAASEQk12XVuyTLsj7Vy7FlwEn9PCaIvanptf1cM+g28p2T/fH5fCnbBwiiU7ecDT0lfrt322tK0plRyCWxewFlgx073gVg4sRBVdtP2KxZc/jb3/6adAYoHA537wE0a1Zq9gDKVk4GaPXqVYTD4aTXUImISGZldQZIsoez/qeysiqlf/RHjbIDoP37FQAlKlMZhVwxYsRIIHuyi5n6fc2ZczQAa9a8ldSmsLt376KpqRG/v4CpU6e63b2sNmfOXPz+Ag4c2M+uXTsz3R0REUmSAiCJS0ODPW0olet/AEaNsqfAHTx4gEAgkNLnGmoUAPXPrraWHcF1Z2dndxGCdGeAZs8+Gr/fz4EDB7oLMSRi7dp3AJg5cyYFBYVudy+rlZSUcMwx8wBYtuz1DPdGRESSpQBI4uJMgUvl+h+w16/4fD6CwSC1tSqEkAgFQP3LpumVu3btJBwOU1pa2r02KV1KSkqYOdMAya1lWbvWroA2e/bRbnYrZxx33AkAvPHGaxnuiYiIJEsBkMTFmQKX6gyQz+frLoSQDZ/U5xIFQP1zMkBNTY20tbUNcHVqOet/JkyYlJF1JLFrWRLlBEBz5sx1sUe5wwmAli17PakphCIiknkKgCQu6coAQXQa3P79ye9Tkm+6uqJTqhQA9a68vJzS0lIg88H1zp1OAYTM/K6cAOjttxPb6zkcDnfvgXP00fkZAM2bt4CioiIOHjzAtm1bM90dERFJggIgiUs6NkF1OIUQBrNRY77ZvXs3oVCI4uIS7QHUB4/HE7MOKLP31o4dTrYuvet/HE4AtG7dWjo6OuJ+3K5dO2lsbKCgoIBp06anqHfZraioiAULFgKaBicikqsUAElc0rEJqsNZq7F/f3ZU68oFu3Y5b6gnqDRvP7JlHZDz+8pUBmj8+AkMGzacQKCre0pbPNascQogzMq7AgixFi92psEpABIRyUUKgCQujY0NQHoyQKNH25/SJ1OhKl85U3EmTjwqwz3JbuPGjQfIeAnj6HqtzGSAPB4PCxcuBhJ7E+9UgHNKaeer4493CiG8TjAYzHBvREQkUQqAJC7pzACNGTMOsPcbkfhs2rQRIG+nJcXL2STWCUAyoauri3fftdcATZqUuYD1xBPtvaFff/3VuB/zzjv2mqGjjz4mJX3KFUcffQyVlVU0Njbw1luJraMSEZHMUwAkcamrOwRAdXVNyp/LeVO4Y8f2lD/XULF58yZAAdBAnD13MhkA7dy5g0Cgi5KSUsaOHZexfhx/vB0ArV69mra21gGv7+zs5O233wLg2GMXprRv2c7v93PyyacA8NJLL2SyKyIikgQFQBKX2tqDAIwYMTLlz+Wsi6irq6OxsTHlz5frwuFwTAA0I8O9yW7jx9v3llOFLRO2bt0MwJQpUzO6XmvixEmMHTuOQKCLFSuWD3j92rXv0NnZSU3NMCZNmpz6Dma5JUvOAODll1/MbEdERCRhCoBkQG1tbbS0tACkpcJYWVl5d6D17rvKAg1k//79NDc34fP5mDx5Sqa7k9Wc4PrAgQMZ2wto82Y7AJo6dVpGnt/h8Xg48cSTgfimwa1caQdJxx67SIU2gJNPXoLH42HDBkvrFUVEcowCIBnQoUO1ABQXF1NWVpaW59Q0uPht3myv/5k4cRKFhflbmSselZVVVFZWAZkLrrdssbN1mQ6AAE44wZ4G9/LLLw147YoVbwJ2ACRQU1PDMcfMB2Dp0hcy2xkREUmIAiAZ0MGDBwAYNmx42j75dQIgZYAG5gRAWv8zMI/H0z1Ozril29atWwCYMiXzAdDJJy/B7/ezZcum7n71prOzkzffXAbA4sXHpat7We+ss84F4JlnnsxwT0REJBEKgGRAtbV2BmjEiPRtsOksVlcANLA1a94GYNas/C5NHK/p0+11Ups2bUj7cweDQbZtswONbMgAVVZWcvzxJwLwz38+0+d1K1a8SVtbKyNHjmTWrDnp6l7WO++8CwBYvnwZ+/dndm8pERGJnwIgGZBTAGH48NQXQHA4GaDt27el7TlzlVOG95hj5mW4J7nBKRThlA5Pp23bttLe3k5xcQkTJmRmE9Sezj77PACefbbvAOill+yF/qeccprW/8QYN2488+bNJxwO8+yzT2e6OyIiEicFQDIgZwrc8OHD0/acU6c605Q2aaPBftTWHmT37l14PJ6835slXk4GaMMGK+3PvW7dGgBmzZqNz+dL+/P35swzz8HvL2D9+rWsX7/2iPPhcLh7jcupp56W5t5lv/POuwiAp556IsM9ERGReCkAkgEdOLAfSE8FOMfkyVMoLi6mra1VhRD64ezLMmXKNCoqKjLcm9wwa9YcPB4Pe/fu6b6302XtWjsAmj07e6YrDhs2jLPPttey/OlP/3vE+XfeeYsdO7ZTXFzMSSedku7uZb3zzrsAr9fLW2+tYsuWzZnujoiIxEEBkAxo3769AIwZMzZtz+nz+Zg50wCwbt2Rn0qL7a23VgEwb978zHYkh5SXl3dngZzxSxcnAzRnTvYEQAAf+tCHAXjiicepq6s77Nxf//oIYC/4LysrT3vfst2oUaM57bQzAPjzn/+Y2c6IiEhcFADJgPbutQOg0aPHpPV5jbEXW69fvy6tz5tL3njjNQAWLFiY4Z7klnnzFgCwevWqtD1nMBjsvpezKQMEsHjxCcyePYfW1lZ+85tfdB8/ePAAjz32KAAf/OCHMtW9rPehD10GwOOP/4X29vYM90ZERAaiAEgGtG+fvclfOjNAYK+TAAVAfamvr+uuAHfSSadmuDe5ZeHCxQC8/vq/0vacW7Zsoq2tleLiEqZMmZq2542Hx+PhK1/5bwD++MeHeOcd+7667baf0NnZybx581m8+PhMdjGrnXTSKYwdO47GxgaefPLvme6OiIgMQAGQ9Ku5uZnm5mYAxoxJbwbICYDWrVtDKBRK63Pngtdee5VwOMz06TMYPXp0pruTU5y1LJa1Lm3rgJYtex2ABQuOzZoCCLFOPPFkzj77XAKBLq688nNceeXn+Nvf/orX6+VrX/u6qr/1w+fzcemlHwPgnnt+rcItIiJZTgGQ9GvvXjv7U1FRSWlpWVqfe+ZMQ0lJKY2NDRkpWZztXnnlJcDezFISM2zYcObMmQvQXeEs1ZYtewOA4447IS3Pl4wbb7yZuXPn0djYwKuvvgzAV796LfPnH5vhnmW/D3/4Mqqrq9m2bSuPP/54prsjIiL9UAAk/YoWQEhv9gegoKCQhQsXAdG1LmLr6Ojg+ef/CcCSJadnuDe56Zxz7P1vnngi9W9WQ6EQy5cvA+jeeDQbVVRUcO+9v+eGG77LZz5zOffd9yAf//gnM92tnFBaWsbHPvYpAH7605/S1dWV2Q6JiEifFABJv3bu3AHYG/5lwnHH2W8Wly1TABTrpZdeoLm5idGjx7Bo0XGZ7k5Ouuiif8Pj8bB8+bKUb7hrWetobGygrKws6wog9FRYWMgHP/gh/vM/v8qxx6q4RiIuu+xj1NTUsGnTJv7wh99lujsiItIHBUDSr3fftffgmTTpqIw8//HH29OFli9fRiAQyEgfstHf/vYYYL+J93r1v3EyxowZ272x5/3335PS53KydccffxJ+vz+lzyWZU1FRwVe/eg0Ad911Z3cGXUREsoveOUm/3n13GwCTJk3OyPMbM5uamhqam5s1DS5i584dLF36PADvec/7Mtyb3PaZz1wO2HvdpKraYDgc5tlnnwbgnHPOT8lzSPZ4//s/yKJFi2htbeGb37xaH9yIiGQhBUDSrx073gUylwHy+Xycc84FADz1lMrLAjzwwH2EQiFOOWVJ94aekpxjj13EuedeQDAY5DvfuY6Ojg7Xn+Odd95iy5bNFBUVdW+YKUOX1+vl1ltvpbS0jOXLl3HXXXdkuksiItKDAiDpUzAYZOfOnUDmAiCACy98DwDPPfePlLxBzSW7d+/iL3/5MwCf+tRnM9yboeGaa75JRUUla9eu4frrv+764vX//d8HATjvvAupqKhwtW3JTtOnT+fGG28C4N57f82DD2o9kIhINlEAJH16993tBAJdFBeXMHp0+qvAORYsWMiYMWNpbm7O+yzQrbf+iI6ODo477gQWL87ecsq5ZOTIUdxyyx34/QU888yTfOlL/8G+fftcaXv79m08+eTfALr3iZH8cNFF7+Xyy68E4Ec/upl77/014XA4w70SERFQACT9sCx7TcTMmTMzutDe6/Vy2WUfB+C3v707bzdF/cc/nuLZZ5/G6/VyzTXf1MaULjr++BO55ZbbKSkp5fXXX+WDH7yQu+66g/37kw+EQqEQN9/8HYLBIKeddgZz5x7jYo8lF1xxxZf51Kc+B8Add9zK1Vd/hdragxnulYiIKACSPjmLwo2Zk+GewIc+dCnl5RVs3bqFp59+ItPdSbt3393Od77zLQA+9anPMWOGyXCPhp7TTz+LBx54mHnzFtDa2sqvf30XF110Nl/4wmd48MHfsWnThrgXtIdCIX784+/z+uuvUlxczNe+dm2Key/ZyOPxcNVV/83//M+N+P1+nn32GT7wgYu4++5f0tjYmOnuiYjkLdVjjTDGeIEbgM8BNcDLwJWWZW3KaMcyyMkAGTMrwz2B8vJyPvnJz/Dzn9/OLbf8kFNOOY3KyspMdyst9u/fxxe/+Hmamho55pj5XHHFlzPdpSFr+vSZ/Pa3D/Lss8/w0EMPsHLlcl577VVee+1VAIqLSzBmFtOnz2DChImMHz+RMWPGUFpaSnFxCc3NTWzYYPGnP/0vb721CoDrrvs2Rx01JYOvSjLtkksuY+7cY/jOd65n3bq13Hnnbdx7768588xzOPfcCzjuuOMpKyvPdDdFRPKGR3OSbcaYG4ArgU8Du4AfAVOBoy3L6kywuS3BYGjKoUMtLvcS/H4vNTVl1NW1EAikbipYV1cXZ5xxIi0tLTz88CPMmpX5LFBnZycf/vD72bZtK2eccRa33PIzfD5fSp4rXeM8kC1bNvPFL36ePXt2M378BH73u4cZPnxExvrjtmwZ575s27aFpUtf4OWXl/LOO2/R2toa92OLi0u47robee9735/CHsYn28d5KOlvrAOBAE8//ST33vtrNm/e2H3c6/Uyc+YsjjlmHpMnT2Xy5ClMnDiJkSNHUlJSmu6XkBNSdU8PG1aGz+fdiv33X0SGKAVAgDGmEDgIXGNZ1i8jx6qB3cBnLMt6OMEmcz4AWrVqBZ/61Eepqqri+ef/lTWbbb799lt89rMfp7Ozkw9+8EPdU0vcluk3jF1dnTz88IP8/Oe30d7ezqRJR3HXXXczYcLEtPcllTI9zokIhUJs376NtWvXsH37Vnbu3MHOnTs4cGA/7e1ttLW1UVJSyvjxEzj55FP50IcuZdSo0ZnuNpBb45zr4hnrUCjE22+v5umnn+SFF/7J7t27+myvtLSUESNGMmLESKqraygrK6O8vJzSUvtrWVk5ZWVlFBQUUlhYSEFBAYWFBRQUON/bx/3+6Pderw+fz4vX68Pr9eL1evH5fDm1rlABkIgMhqbA2RYAFcBzzgHLsuqNMSuA04BEA6Cc9+qrLwP2zvXZEvwAHHPMPL7zne/zzW9ezaOP/okdO97lhhu+y8SJkzLdtUHr6upk48YNLF36Ao8++qfuXeRPOOEkfvCDW6mpqclwD/Ob1+tlypSpTJmi90UyOF6vl/nzj2X+/GO55ppvsm/fPlatWoFlrWP79q1s27aNXbt20t7eRmtrK+++u513392e8n55PJ4eAZG3O1Dy+byH/excFw2mDv/Zvjb2up4/H9lmz8c5QVlvjysqKuLjH/8Iw4ePTfm4iMjQowDINiHydUeP47uBpN9Z+/3uBg4NDQ1cdtnF7NjRs5u96/kHzOuN/iEpL69g8uTJHH/8iVx00b8xZky0zHUoFOLvf38MgDPPPMv11zFY733vv1FcXMQ3vnE1b775Bh/4wIVccMF7eN/7PsBxxx1PYWHhoJ/D5/Me9hXsAKWxsYnGxgYaGxtpamqksdH5L3qsvb2DYDBAMBgkEAgQCES/DwYDBAJBAoEugsFg5HgXXV1d7N2797BF9iNGjOTKK7/MJZdcmlOfzCait3EW92mc0yeZsR4/fizjx7+H97znPd3HwuEwra0tHDx4kIMHD3DgwAHq6+tpbW2hubmZ5ubm7u9bWlro6uqks7OTrq4uOjsP/76rK/p9f1U0w+Fw979Lbu+HlQoHD+7j5pt/nOluiEgO0hQ4wBjzceABwGdZVijm+O+AcZZlnZNgk1vC4fAUt9+0Hjx4kNNPP536+npX2y0oKOCSSy7hqquuYvz48Tz66KN86UtfoqqqiuXLl1NSUuLq87ll69atXHfddbzwwgvdxwoLC5k9ezZTp05l3LhxjB49mrKyMkpKSiguLsbj8XT/gXf+yLe0tNDSYr+RaGpqoqGhgYYGO6Bxvm9oaKCtrS3lr6miooKTTz6ZCy+8kPe9730UFRWl/DlFJH84H8iEQqEjvjrf9/y5v699PSYYDB4WUPX8ub9z8fTF6/VyySWXMHPmzFQMk6bAiQxxCoAAY8y/A38CSi3Laos5/kegyLKsRFcxbwkGQ1MaG91/wxwIdOHxBGhqaicYjH6S1zPYCoVChMMhgsEQodCRf0Dq6uqwrHU888xTLF/+JmAHQqecsoQ333yD5uZmrrzyy1x5ZfZXHHv77bd49NE/889//iMte2xUVFRQUVFJZWUllZVVVFRUUFlZFfm5kuLiYnw+P36/H7/f1/29z+ejoKAAn8+Hz+fD7y/A7/dFzvkZPXoMY8aMGbLZnt74fF4qK0tobGw77H4Wd2mc00djnR6pGufKyhKtARLJA5oCZ3PmlI0DNsccHwesTrbRVCw29vsLqKmpxucb3MLPo46CBQsWcemlH2flyhXcddftLFv2Oi+8YC+DWrhwMZ/+9OU5sWB69uy5zJ49l29841vs2rWTdevWsHv3Lvbu3cPBgwdpb2+jvb2d9vZ2gMPmlvv9BZSVlVFaWtq9qLiysorq6krGjh2Fz1dEaWl5d6BTXl6RsspzAMFgGMi/DyWCwVBO3Gu5TuOcPhrr9NA4i0gyFADZVgONwBlEAqBIFbiFwJ0Z61WaHHvsQn7969/yzjtvsWrVSkaOHMnZZ59LQUFBpruWEI/Hw4QJE12plKaqWSIiIiJDkwIgwLKsDmPMncAPjTEHgG3Aj7EzQ49ksm/p4vF4OOaY+RxzzPxMd0VEREREJGUUAEV9C3s87gZKgKXA+UlsgioiIiIiIllKAVCEZVlB4NrIfyIiIiIiMgRpUwgREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhCYfDme7DUNQWDoeLQ6HUjK3P5yUYDKWkbYnSOKeHxjk9NM7po7FOj1SMs9frwePxtAMlrjYsIllFAVBq1ANFwJ4M90NERETiNxboAKoz3A8RSSEFQCIiIiIikje0BkhERERERPKGAiAREREREckbCoBERERERCRvKAASEREREZG8oQBIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEREREREJG8oABIRERERkbzhz3QHZGDGmOuAcyzLOiPm2ALgdmAxUAvcYVnWTzLSwSGij3H+N+BbwGzgIPB/wLcsy2rLSCeHgN7Gucf53wDnWpY1OZ39Gor6uKfHArcCFwJB4CngK5ZlHcxIJ4eAPsZ5MXALsBCoBx4CrrcsqyMTfcxVxphhwM3Ae4FK4C3g65ZlvRw5vwD9LRSRBCkDlOWMMVcB3+lxbDjwD2AD9j/6NwA3GWM+nfYODhF9jPMS4FHgz8AC4AvApcBdae7ekNHbOPc4/wHgc+nqz1DWxz1dhP1vx1TgHOA92G/Qf5fu/g0VfYzzCOzAch1wLPB54FPA99LcvaHgYeBE4DLgOGAF8IwxZpb+FopIspQBylLGmPHA3cASwOpx+nKgA7jCsqwAsM4YMwO4FrgvrR3NcQOM838Az1mW9YPIz5uMMd8E7jPGfEGf5MZvgHF2rhkL/Bp4EZicts4NMQOM9Uewx3aaZVn7ItdfBdxljKm0LKsxjV3NaQOM86nAcOBqy7KasP/t+D1wPvDfae1oDjPGTAfOBU6xLOvVyLGvYGcvPwq0ob+FIpIEZYCy10KgDpgHvN7j3BJgaeQffMdzgDHGjEpT/4aK/sb5FuDqXh7jBypS3K+hpr9xxhjjAe4HHgBeSGvPhp7+xvoC4J9O8ANgWdbTlmVNU/CTsP7GuTby9QpjjM8YMxm4CHgtfd0bEg5iZymXOwcsywoDHmAY+lsoIklSBihLWZb1OPA4gDGm5+kJwNs9ju2OfJ0E7E9p54aQ/sbZsqyVsT8bYwqBrwErtF4iMQPczwD/BYwF/g34Rvp6NvQMMNYzgaXGmOuBTwIFwNPANZZl1aexmzlvgH87XjLG/AC4CXv9ig87sP9yenuZ2yL35BOxx4wxlwDTsO/b76G/hSKSBGWAclMpdto/Vnvka3Ga+5IXjDF+7OzEHODKDHdnSDHGzMOeu/8xTStMuUrswGc+9hSiy7Gna/01koUTFxhjqrGDzZ8DxwOXANOBX2SwWznPGHMKcC/w10gAqr+FIpIUZYByUxtQ1OOY8499S5r7MuQZYyqAPwJnAh+yLOuIKVySHGNMMfAg8F3Lst7KdH/yQCfQDHzEsqwuAGPMJ4E3sBeRL8tg34aSHwLVlmX9e+TnFcaYOuBZY8xtlmWtzmDfcpIx5v3Y/1a8hr2WDfS3UESSpAxQbtoBjOtxzPl5V5r7MqRFFua/BJwMXBj51FHccwJwNHCjMabZGNMMfBOYFPn5Y5nt3pCzE7Cc4CdiTeTrlAz0Z6g6lSODSWf9z8w09yXnGWO+BDyCPR3uophtCPS3UESSogAoNy0FlhhjfDHHzsZ+Y6M5zy4xxtRgL6gdCZxqWdbzGe7SUPQGMAN7StaCyH+/xJ7HvwB4LEP9GqqWAvONMSUxx46JfN2Ugf4MVTuwiyPEcsZ5Y5r7ktOMMVcAPwPuBC7tMU1WfwtFJCmaApeb7gWuAe4xxvwIe475Vdj71Ih7foq9X8oFwAFjzJiYcwcsywpmpltDR+ST3MPeeBtjDgEBy7L0htx9vwS+BDwYKYRQFTn2vGVZKzLas6HlVuApY8xNwG+Bo7D3D3vCsqxVGexXTjHGzMTe5PRR4PvAqJiCE23ob6GIJEkZoBwU+WTrfMBgbwp3A/Z+E/dntGNDiDHGi73paSF2FmhPj/8mZq53IsmJVC9cgl397XXsKmZvAB/MZL+GGsuyngHei72HzSrsN+pPAB/OYLdy0Yew79UPcuS/wbfrb6GIJMsTDocz3QcREREREZG0UAZIRERERETyhgIgERERERHJGwqAREREREQkbygAEhERERGRvKEASERERERE8oYCIBERERERyRsKgEQkrxljPJnug4iIiKSPAiARyVvGmPcB90e+P8MYEzbGnJHZXomIiEgq+TPdARGRDPpqzPcrgJOAtRnqi4iIiKSBAiAREcCyrEbgtUz3Q0RERFLLEw6HM90HEZG0M8a8AJwec+hM4HngTMuyXjDG3AhcBnwd+C4wHVgPXAGEgduBecBm4CuWZf0zpu25wA+A0yKH/gl8zbKsLSl8SSIiIhIHrQESkXx1JbAy8t9JQGUv10wEbgW+B3wYGAb8CXgI+A12gOQFHjbGlAAYY2YCrwKjgE8BnwWmAq8YY0al7uWIiIhIPBQAiUhesixrLdAINFqW9Vrk+55KgSsty3rIsqzHgLuAccBNlmXdbVnWX4HrgRGAiTzmBqANOMeyrEcsy/o/7OxSCXB1Sl+UiIiIDEhrgERE+vdqzPd7I19j1wrVRr5WR76ejT2VrtUY4/wb2wi8BJyboj6KiIhInBQAiYj0I1IcoafWfh4yHLg08l9PB1zplIiIiCRNAZCIiLvqgWeBW3o5F0hvV0RERKQnBUAiks+CgM/lNl8E5gCrLMsKABhjPMDvgU3AKpefT0RERBKgAEhE8lk9cJIx5iygyqU2vwP8C/ibMeYXQDvwH8AHgA+59BwiIiKSJFWBE5F8difQBTyJXaVt0CzLegtYgr1X0APYZbPHAh+wLOsRN55DREREkqeNUEVEREREJG8oAyQiIiIiInlDAZCIiIiIiOQNBUAiIiIiIpI3FACJiIiIiEjeUAAkIiIiIiJ5QwGQiIiIiIjkDQVAIiIiIiKSNxQAiYiIiIhI3lAAJCIiIiIieUMBkIiIiIiI5A0FQCIiIiIikjcUAImIiIiISN74/+TMGopUBW84AAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Crop the chromatogram in place between 8 and 21 min.\n", + "chrom.crop([10, 20])\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that the crop function operates **in place** and modifies the loaded as data\n", + "within the `Chromatogram` object." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## " + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Detecting and Fitting Peaks\n", + "The real meat of the package comes in the deconvolution of signal into discrete\n", + "peaks and measurement of their properties. This typically involves the automated estimation and subtraction of the baseline,\n", + "detection of peaks, and fitting of skew-normal distributions to reconstitute the \n", + "signal. Luckily for you, all of this is done in a single method call `Chromatogram.fit_peaks()`" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 299/299 [00:00<00:00, 3464.65it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 6.73it/s]\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_id
010.900.1587620.69180023380.4619342.805655e+061
013.170.5947503.90567743165.7895205.179895e+062
014.450.349607-2.99570434697.4716864.163697e+063
015.530.3140091.62120815061.8358181.807420e+064
016.520.3473761.99120510939.0679601.312688e+065
017.290.3481231.70557112525.9916561.503119e+066
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id\n", + "0 10.90 0.158762 0.691800 23380.461934 2.805655e+06 1\n", + "0 13.17 0.594750 3.905677 43165.789520 5.179895e+06 2\n", + "0 14.45 0.349607 -2.995704 34697.471686 4.163697e+06 3\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4\n", + "0 16.52 0.347376 1.991205 10939.067960 1.312688e+06 5\n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6" + ] + }, + "execution_count": 49, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Automatically detect and fit the peaks \n", + "peaks = chrom.fit_peaks(buffer=0)\n", + "peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "To see how well the deconvolution worked, you can once again call the `show` method\n", + "to see the composite compound chromatograms." + ] + }, + { + "cell_type": "code", + "execution_count": 40, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 40, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACHLUlEQVR4nOzdd3wb9f3H8ZeWbXlvO3H2uiQkISRAGWHvUUYXBQotFChQCrRl77LhV1agUPZeBcouGwKETULIvizbSbz3XpLu94fsYEKc2Irtk+T38/Hww7budPf+Wralj+47HJZlISIiIiIiYjen3QFERERERERAxYmIiIiIiIQJFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWHDbHcAGtUAsUGJzDhEREem9YUAbkGpzDhEZQI4huEJ8i2VZcYFA/7fb6XQwEMcNJ9HexmhvH0R/G9W+yBftbYz29sHAtNHpdOBwOFoBb78eWETCylC8clISCFhjq6ub+vWgbreTtLQE6uub8fkC/XrscBHtbYz29kH0t1Hti3zR3sZobx8MXBvT0xNwuRzq9SAS5TTmREREREREwoKKExERERERCQsqTkREREREJCyoOBERERERkbAwFAfEi4iIiPSLBQsWJBGc5lhv+Ir8VAAomT17dkNv76DiRERERKSPFixY4AQuczicJzscDg/gsDuTSBiyLMvqWLBgwRPAjbNnz97mFH4qTkRERET67jKXy31WcnJae0xMXLPD4YjuxWtEQmBZlqO9vTW+vr7mLL/fB3D9tu6j4kRERESkDxYsWJDscDhPTk5Oa09KSquyO49IOIuN9bYAGbW1VScvWLDgrm118VL/SBEREZG+yXU4HJ6YmLhmu4OIRILOq4seguOztkrFiYiIiEjfOAGHunKJ9E7n34qDXtQeKk5ERERERCQsqDgREREREZGwoOJERERERMLC3Lm3Dz/mmEOn252jt1auXB73/vvvptidI5qoOBGRqLJi3sf875KLeOuqy9i4Yb3dcUREJIpdcsnfJy5fvjTB7hzRRMWJiESNz+69h8rb72JMaSlt5kp+9euj+OyzT+2OJSIiUUtzIvQ3rXMiIlFh1Yfvk/LVVzgdDlZbAT53eWhtbeXCC8/nuef+y6hRo+2OKCJRLhAI0NzcbMsbv/Hx8QGns++nnjNn59m//OVxJfPmfZDR0dHhvOuu+1bGx8cH7r77jhGLF3+X3NTU5EpJSfHtt9+BVeedd0HRihXLvX/60x+m3nvvQytmzJjZDHD++WePX7p0cfLbb8/7zu12Y1kWRxxx4I6///2pRccdd2Ll5uesrKxw3377rSMWLvwmxe/3OyZNmtz4t79dvGH8+AltXfs88MC9OW+88UpOQ0ODe8KEiU2XXHJVQdf2LWUeMWJk+/33/2vYxx9/mFFTU+PJy8trPemkU4oPPfSIWoAXXngu49lnnxx2yimnFT388AMj6upqPVOm7NBwxRX/KHjssYdz5817P8PtdltHHfWLsjPPPKcUoK2tzXHPPXcMnz//k7Tq6qqYuDhvYMcdZ9ZdcsmV69PTM/zHHHPo9MrKypj//OeZYUuWLEp68MEnzJqaatc999yZ9803X6Y2NDS4x44d33TGGWcX7bbbHo1dbXvllZfSn3768WEVFRWxo0aNatlvv4OqHn743yPnz/92QSiPidPpDKl94UrFiYhEvIDPR9XTT5LhcLDM4SD2j9fwszYfa++7grXmYh78vxu57u777Y4pIlEsEAhwwgm/nLxy5QpbuvhMnjy18ZlnXjRDKVDeffd/WTfddNtqv9/nmDhxUtsJJ/xyakpKasctt9y5Kikpyf/xxx+mPvjgfSOnTp3WdMghh9dmZma2f/HFZ8kzZsxs9vv9LF++NKmtrc353XcLEnbZ5WdNixYtjG9oqHfvv/9BtZufy+fzcd55Z00Ch3XNNTeuzcjI8N199x0j/v73v0x68cXXlwBUVlbGLF26OOmmm25f3d7e5rjxxn+MvfHGf4x5+OEnzZ4yn3/+2ePXrVsb/5e//HX92LHjW99++830G264ZrzT6Vxz8MGH1QFUVVXGvPbay9nXX3/rmubmJueVV1488ZRTTtzhgAMOqrz33odX/O9/r2U89dRjefvss1/tlCk7tN52280jvvrqi9SLL768YOTIUW2maXr/+c8bx9x//7+GX3rpVRseeujJFaeeeuLUPffcp/qMM84q8fv9nHvumZM6OjocF198RX5WVnbH888/k33JJX+bdOed966cOXNW8/vvv5Ny++23jD355FM37rvvAbVfffV58kMP/Xvk9j4mobSvz78og0TFiYhEvAWPP0KGw0GDz0fCKX+jNeDA5XJz2K/OxvXsbeze3Mp377/LTgcebHdUEYlqkbnuyT777F81c+asZoCWlhbH/vsfVHXIIYfVjBw5uh1gzJg/lr/wwnO5a9as8h5yyOG1O+/8s9qFC79JBkoXLVqY4HK5rUmTJjd+881XSbvs8rOmTz/9OHXiRKMxKyvbt/m5Pvvsk+TCwgLvo48+s3TixEltAJdffk3BY489lFtdXeUGcLlc1nXX3ZKfkpLiBzjssCMrnnrqsbyeMq9atTLu22+/Tr3mmhvWHHjgIXUA55xzfsm6dWvin3768WFdxYnf73f87W8XF3a9MJ8+fcf6VatWJl544WUbHQ4HZ5zx55L//OfZYatXr/JOmbJD65QpU5v22++Amt13n9MIMHLk6Pb33nu7vqBgnRcgMzPL53Q6La/XG0hLS/d/+OF7yfn56+IffPDxZV3nuOKKf6xftWplwtNPP547c+asdc8993TubrvtUX3aaWeWAUyYMLFi48YNsa+//krO9jwmobRve35nBpKKExGJaJZl0fHF5wCszswhIykHWtoByMwdhSczB2fAR+F/X1BxIiIDxul08swzL5qR1q0LYMSIkZu6U3m9Xuukk04p/9//Xk976qnHE4qLi2ILC/Pja2trPH5/wAGw11771l199WVZLS0tjq+++iJphx2mNeTljWz9/vuFyUDpN998lbL33vtWb+lcq1ev8sbHx/u7ChOAnJxc38UXX7Gx6/uUlBRfV2ECkJSU7G9vb/9R47pnNs2VXoCdd/5ZY/d9pk+f2fDEEw+P6H7bhAk/nDc2NjaQlZXT5nA4AIiLi7MA2tranADHHvvr6k8//Tjp9ttvySsq2hi7ceMGb3FxUdzkyVN+dJ4ua9as9nq98f7uL/wdDgdTp05rXLjw22SAgoJ18XPm7F3T/X477rhT4+bFSV8fk1DaF65UnIhIRFtfsI4PijYwJz0T7y9/+ZPtTbMOgG/fYXxrKyUF+QwbM9aGlCIyFDidThITEwN25+ir2Ni4TZmbm5udf/rTH4zW1lbnXnvtU3PwwYdV7bjjzPXnnHPG5K59dt99zwaPxx348svPkr77bkHyfvsdUD169Ji21177b+6GDYUxBQXr4q+55oZ1WzqXy+W2ul4s98TpdG7zClT3zD0NSg8E/A6Xy/WjjR6P50ffO509Z7n22itHffbZJ+n77ntA1W677Vk3efLUkqeffjy3qqoiZkv7W9aWmxYIBHC73VbwfE7LsrZ9ga2vj0ko7QtXKk5EJKK9+vorvFRSRMGI0RyTPOwn22Om7kr5V2+R7XLx3QvPMezCS21IKSISGT7++MPk/Px18f/975vfZ2fn+ABqaqpddXV17q4iICYmxtpxx53qP/lkXurq1asSL7nkysIRI0a2OxwO69577x4+bNjw1u6D27sbN258a1NTk2vdurWx48aNbwOoqqp0H3/8L6Zdf/2tq0PJPGnS5BaAb7/9KrGrWxfAkiXfJ+bljWwJ5ZjV1VWud999K+viiy9f9/OfH7vpSsfGjevj4uK83QqjH178T5gwqaW5udm1YsWyuO5XT5YvX5Y4YsSoVoDRo8e0LF++LBEo79q+bNmSrY5T6s1jEk3C+rKOiMjWWJbFe++9C8DsPQ/e8r9oh4PizGBXZWv5ssELJyISgXJyctsBXnvt5YwNGwpjvvrqi8QLLjh3gt/vd7S3d2x6Jb7HHnNqP/rog8zk5CTf+PET2mJjYy3DmNI4f/7HGbvttkdtT8ffa6996seOHd987bVXjF2w4JuElSuXx11zzeVjUlJSO3bccafmUDIbxpTWmTNn1c2de/uo999/J2XNmtWx99xz57AFC75J/c1vji8L5ZjJySl+rzfeP3/+J6nr1q2NXb58qffqqy8bXVCQH9/R8cPPIS4uzl9UtDG2vLzMvc8++9WNHDm65dprrxz3+eefJq1atTLuuuuuGrVx43rvb397QhnACSecXPLVV5+nPfzw/Tnr1q2NffHF5zPefPP17K1l6e1jEi1UnIhIxFr9xWdk19eTEBvLyPE79bifc+cDARjrcLJhldnjfiIiQ92sWTs3n3rqGRtee+3l7JNP/u20W265fsy0aTs27LnnXtWm+cNMZPvtd2BdIOB3TJu2Y33XbTvtNLvesiz22Wf/2p6O73Q6ufXWO9ZkZeW0X3LJ3yf+5S9nTna5XNbtt9+9OjY2NuTLADfffPu6XXfdrfb2228dc9ppJ+/w1Vefp1522TVrjzjiqJpt3/un3G43V1zxj3Xr1xd6//jH3+1w0UV/ndjW1ub83e/+UFRUtMHb1NTkBDj66F+WL1z4Tcp55509ye12M3fufavGjBnX/I9/XDH+zDP/OKWgIN978823r5o9e9cmgP32O7D+z38+r/CNN17NOvXUE3d4881Xsw455LCKrm5fW9LbxyRaOHrT7y3KrPP7A2Orq5v69aBut5O0tARqaprw+SKuu2mvRHsbo719EH1t/OCyixhZXs73Tieek67A6XTg9cbQ0tJOIPDj/21pj1zDMJeTNZMnc/gFl9iUePtE2+O3JdHexmhvHwxcG9PTE3C5nPnAuH47aIgWLFgw2el0vZ2dndcYExMXtrMeSfj54ov5iZmZ2R3dJwS47767c999963Ml1/+31I7sw2k9vbWuPLyosRAwH/o7NmzV25tX405EZGIZFkWyaWl4HTSPn4HPNvYf2X2aF7+dh4uj5PDByWhiIjIj3355ecp8+Z9mH7RRZcVjB49pm358mXe1157Oeeww46ssDtbuFBxIiIRqWbdWlKcTjoCAeJn7rPN/R2zD2DeOy8Qs6COlpYWvF7vIKQUERH5wdlnn1fc0tLivPnm68c2NNS709Mz2o8++hdlp59+Vliv2j6YVJyISERa/f67pAGFPh/OhHS21UM1K3ckKWlZ1NVUsGjRAnbffc6g5BQREekSGxtrXXbZ1RuADXZnCVcaEC8iEalpxXIA6tIytlmYQHAhrJ2NGRyenUt+5wxfIiIiEl505UREIo5lWaTU14PTiTVuh17fb9f0LHbyjWFlQf4AphMREZFQ6cqJiEScihUrSHI6afP7SZi2e6/v55qwIwDDAwFaWkJal0tEREQGkIoTEYk4KytK+evSRTzZ2ACxSb2+n3vsDrQHAiS7Paz8fP4AJhQREZFQqDgRkYizeMliilpbaRs9vlfjTTZxuyl2BP/tlXz95cCEExERkZCpOBGRiLNkyWIARoyZ3Of71qZkA9BRqHEnIiIi4UbFiYhEFF9zE3tWV3NYdi7DRkzo8/2t0cGCJqWpBatPl11ERKLPnDk7z37hhecyerv/vHkfJB977OHT9t13t1m33HLDiIHM1htz594+/JhjDp3en8fsy89k48b1Ma+99nJaf55/qNNsXSISUQq+/ILdUlIZ742nKnMUgT7WF7ETdoQln5Dt8VBUkM+IseMGJqiISAR46aU3vk9OTvH3dv8HH7xvRE5Obttdd927KjExqdf3iyR9+Zn84x9XjsnOzm4/6qhjawY611ChKyciElFKFy4AoNzlImA5+n6A5DTuqKrllEXfYq5b08/pREQiS05Ors/r9fb6bZ6mpibX1Kk7NI0aNaY9PT0jKouTvv1MQnkikq1RcSIiEaV9fSEAzelZIR+jbdgY2gIBVqxY1l+xREQiUvcuTJdffuGYSy/9+9hbb71hxGGH7b/j/vvvsdP55589vqys1N21b2VlRcx//vPssDlzdp69fn1BjGVZPPDAvTnHHnv49P3332OnE0745dSXX34xvev4n3/+adKcOTvPfuCBe3MOOWTfmSee+Osp+fnrYufM2Xn2v/5117DDDz9gx2OOOXR6bW2tq66uznX11ZeNPuyw/XY86KC9Zp5xxh8mLVq0ML573meffTLzF784Ytp+++0+6/zzzx7f2Njg2lr7Tj/9ZOPOO/85/OqrLxt94IFzdjrssP12/Ne/7hq2evWq2D/+8SRjv/12n3X88b+c+t13Czadp+tnUltb6zrqqINnnHvumZv6EH/yybykvfbaZfb//vd66umnn2ysWLE88eOPP8ro6lp2zDGHTp879/bhm2e4/PILx/T08/D7/RQXF3kuvPD8cQcdtPfMQw/dd8dzzz1zwtq1a2JDfmAjmIoTEYko8U2NADjyxoZ8jOEjg88zy5cv7ZdMIiJd/C0tzp4+Am1tjsHYd3t88cVnafX19e677rrXvOqq69auWLE86Z577syDYHen9PT0jp///Niyl1564/u8vJHtd9xxa96bb76W/ec/n7f+4YefWn7ssb8q+9e/7hz95JOP/egdpK+++iL13nsfWnHJJVcWuFxOC2DevA/S77jjHvOaa25cm5KS4j///LMnFhcXxV5//a1r7r33oZWTJ09pOv/8sycvWfK9F+C1115O+/e/7xl17LG/KnvwwSeWTZmyQ9Nbb72Rva02vfLKi7nZ2TntDz305LIjjzy6/Nlnnxx+8cV/nXjccSeU/utfD66IifEEbr/9ltGb3y81NdV/4YWX53/33YKUV1/9b3p1dZXr1ltvGHvAAQdXHn74z2tvvfXONRMnTmraffc9ax566MkVffk5d/95tLa2Ov/ylz8ZgYCfO+74l3nHHf8yk5NTfGef/ccpxcVFnr4cNxpozImIRAxfUxPpnVMBe8ZMDfk4Y3LyOGXkGDKqarAsC4dDV+VFpH+s/ctZO/W0zTvJqBt50aWb+pOu+9u5O1odHVt8ozh2zNjG0VdcbXZ9n3/x36cHmpu3+LotZnhe85hrb+jTi+MeM3q9/quvvr7Q4/FYkyZNbv3ii8+qFiz4JgWC3Z2cTqfl9XoDOTm5vqamJufrr7+Sc8EFl+YfeOAhdQBjx45rKykpjn3ppedyTzrpDxVdxz3uuBNKx4+f0Aawfn1BDMARRxxVYRhTWgE+/fTjpNWrzYRXXnnr+8zMLB/A3/52cdHy5csSn3vuqZzp03cs+O9//5Ozxx5zak466ZQKgAkTJpauWLEsoaBgXTxbMXLkqJY///m8EoBTTjmj7Nlnnxq+1177Vh988GF1AAcffFjVgw/+e+SW7rvXXvs0HHbYz8v//e97Rn7wwbvpCQkJ/osvvmI9QFpaut/tdlsxMTGBrsy91f3n8fzzT2c2NNS7b7759nyPx2MBXHvtTQW/+MUR01988fmsc8/9W3Ffjh3pVJyISMTY8F1wvEl1Rzux2WP6PBi+S0buaPbOySVgWRQXrCNv7Ph+TCkiErlycnLbul4gAyQkJPp9Pt8W38FZtWplXEdHh+O2224ec/vtt4zput3vDzh8vg5HS0vLpvuNGTO2bfP7jxo1urXr65Url8cDHHfcMT+aecvn8zk6OtodABs2rPfuu+8B1d23T506rXFbxcnw4SM2nSc+Pj4AkJeXtylPTExswOfr6PFdqr/97aKNCxd+k7Jw4bcp9933yPK+jNHpSfefx6pVZnxLS4vr0EP3ndl9n46ODueGDYVx23uuSKPiREQiRsmK5aRbFuUOR2iD4Ts5klKp8/tJcbko+PYbFSci0m/G333fdz1tczidP3pRO+72ud/3dt+xt9y2pLf7bo/uhckPtnz4QCDgALjssqvXjRs3oXXz7bGxsZvuGBcXF9h8e1xc3KbtgUDA4fV6/fff/9hPrgDFxMQEABwOx08W3nW73dtsu9vt+sk+DkfvRzaUlZV6amtrPC6Xy/rii/nJ06fPaNn6PX58Op/P/5MnrO4/j0AgwLBhw1tvvvn2n8zSkpCQEJWTDmyNxpyISMT4rr2Nk7/7hq8ycrb7WJWuGABqVpnb2FNEpPdcXm+gpw9ntxfrA7nvYJkwYVKry+WySkqKY8aNG9/W9fHJJx+lPPnkIzlOZ+9fZo4fP7GlpaXF1d7e5uh+rMceeyj3ww/fSwUYPXpM89Kl3yd2v59prkjo31b9WCAQ4Nprrxg7evTY5rPPPnf9M888kbd06RLvD3s4fvw4udxWY2OTq/v9y8vLYrZ2jnHjxrdUVlbGJCcn+7vaPWrU6LZ77rkz7+uvv0jq7zaFOxUnIhIxVq1aSXsgQNLIidt9rKbEVAA6SoZUV14RkX6TkpLiP+igQyuefPLRvP/+9z/pBQX5MS+++HzGY489PCItLb1PYzD22++AutGjx7RcffVl4+fP/yRp3bq1sbfeesOIjz56P3Ps2PGtAMcff3Lp119/mfbgg/flrF27Jvbxxx/O/uqrLwZ0AcQHHrg3Nz8/P/7yy68pOO64EyunTNmh4frrrxrb1jkJgdfrDZSXl8UWFW30AEyZMrVx/vyP07/44rPENWtWx1577ZWjW1qatzqj2FFH/aI6MTHBf/HFfx2/YMHXCatXm3FXXnnx2EWLFqRMnGhs4ypN9FFxIiIRY1XnVY7s4WO2+1i+rDwAvA0N230sEZGh6pJLrtxw9NG/KHviiUfz/vCH46c9/fTjw3772xOL//KXvg3idrlczJ3771UTJ05quuGGq8eddtpJUxcvXpR0xRX/WLvXXvs0ABx44MF1F1102bp3330r849/PGmH+fM/ST3qqGPLBqZlsGTJYu9zzz01/KST/lA0btz4NoBLL72ysLKyIvaOO27NAzjqqF9UbNiwPu7UU0/cwe/3c845fy2aNMlovPzyiyb+5S9/mpycnOzbY4+9trpAY0pKiv/uux9YmZKS6rvkkgsmnnXWH6eUl5fF3HjjP1dPnjz1J93lop3D2rzzXvRb5/cHxlZXN/XrQd1uJ2lpCdTUNOHz/aRbZVSI9jZGe/sgsttYtWY1n19xCasaGxh/4Z3g/OkYQafTgdcbQ0tLO4FtjJb3Faxgxscv0ODzMe3+h4mNDf/p5CP58eutaG9jtLcPBq6N6ekJuFzOfGBcvx00RAsWLJjsdLrezs7Oa4yJiRtyLx5F+qq9vTWuvLwoMRDwHzp79uyVW9tXV05EJCJsXLgAIzGJ6WkZOFzbP3mJe8QE/JZFe8BPodkvM3CKiIjIdlJxIiIRoW5dcBKThtjYn8zWEhK3h2tqmzhr8Xes2bihHw4oIiIi20vFiYhEhI6yYLfitqT+G/uYPDy4IPCaNav67ZgiIiISOhUnIhIRYjsHrgeyhvfbMbsG1q9ereJEREQkHGgRRhEJe1YgQGogAE4nruFj++2445NSuWLSZKje6kQqIiIiMkh05UREwl79hvXEOJ20BwLEjZzUb8dNzcxlRnIq4z0xNDc399txRUREJDQqTkQk7G1ctYrKtjbKOjpwxiZu+w695ModTcCySHC72bBieb8dV0REREKj4kREwt661mbOXvIdjzuc/TNTVyfL5aa6cz2UspXL+u/AIiIiEhIVJyIS9vLz1wKQNXxUvx+71h0DQH1+fr8fW0RERPpGA+JFJOytW7cOgKzc/i9OmhKSobEaX1lpvx9bRIYehwOXw+EY9Dd/LcsKWBb+wT6vSH9TcSIiYc2yLH5VW8fek6bQmJrZ78f3pedCYzUxDY39fmwRGVocDlwBh2NYc6tv0F9fxce5fU6sknAsUObOvX34hx++m/HKK28v6et916xZHXvGGX+Y+thjTy8bNWpM+0Dkk/Ci4kREwlprVSXZbjeZSckszx3T78d3DR9L/drvqWpuIhAI4HSqt6uIhMbhcDibW33uL5eWBJpbfYHBOm98nNu527Rh7qQ4t9OyrLArTkK1fPlS7yWX/H1Ce3ub/jEPISpORCSslSwPDlSv6ujAk5SJP9CPI+IB1/gZnHHfNQT8fg4qLyU3t/8WeRSRoam51RdoaukYtOKkU1S9gL/33rm5L7743LC8vBGt1dVVMXbnkcETVr/IhmFMMgyj0TCMP3S7baZhGB8bhtFkGMZ6wzAusDGiiAyyqjWrAah1OPq9MAFwuT1kdK46X1hY0O/HFxEJZ3Pm7Dz76acfzzr11N8Z++23+6zf/vbYqe+++1ZK933ef/+dlN/97tdT9ttv91m/+MUR0+6885/D29raHF3bV65cHnf++WePP+SQfWfus8/PZv3iF0dMe/TRh7J7Oudjjz2Uve++u816553/pfa0z4IFX6dceOFl+Wed9ZeN/dJQiRhhU5wYhuEBngYSut2WAbwHrAJ2Bq4GrjMM4xRbQorIoGsqCj4vNcd6B+wc6Vl5ABQUrBuwc4iIhKtHH31wxH77HVD9wAOPL9t555/VXXfdVRO++earBICPPno/+YYbrhl/2GFHVj7yyNPLzjvv7+vnz/84/fLLLxwL0Nzc7Pz738+dFBfnDdx9979XPvroM8vmzNm75uGH/z1yyZLFP/nH/dRTj2U9/vjDI6644tq1hxxyeG1PmR5++CnzsMOO7HG7RK+wKU6AfwANm912BtAGnGWa5grTNB8F7gAuHuxwImIPf2UlAG1JKdvYM3QHpaQyd9pMYhYuHLBziIiEq/32O7DypJNOqZg4cVLbBRdcUjR+/ISmF154NhvgqaceG3bAAQdXnnji7yvGjh3Xts8++9f/9a8XFn755edp69cXxDQ3NzmPOurY8ssuu7pw0qTJrePGjW8755y/FgOsXr3yR8XJs88+lfnIIw+MuPrq69cceODBdXa0VcJfWIw5MQxjb+BPwExgfbdNewGfmKbp63bbh8ClhmFkm6ZZPngpRcQOMc1NwS8ycgbsHEkJSeS21lJdUzNg5xARCVezZu38ozeHDWNK06JFC5MB8vPz49euXZPw0UfvZ3Rt71oMd82a1XH7739Q/QknnFz+xhuvpq9duzq+qGhjbGFhfjyA3x/Y1PWrpqbGc999c0e7XC5rxIhRbYPRLolMthcnhmGkAk8CfzFNc4NhGN03jwA2n3auuPPzKCDk4sTt7t+LRi6X80efo1G0tzHa2weR2caq1lY8Dieu3NE4nY6t7tu1fVv7bc6ROQyqNuBtbe33/w39KRIfv76K9jZGe/tgaLQx2rjd7h8N6LMsC6fTZQW/DjiOOeZXpUcddWzV5vfLycntKC8vc59xxh+mJCUl+3bbbY/a2bN3rZ8xY8em4447Zkb3fR0OJ9dee+PqRx55YPgNN1wz9uGHn1yp2RFlS2wvToD7gC9M03xmC9viCXbr6q6183NcqCd0Oh2kpSVse8cQJCcPXL/4cBHtbYz29kHktLGjo4Prli/B7/dz/emXEevt3YQtsbGePp3HNWYCmF+T7nCSmBiDx9O3+w+2SHn8tke0tzHa2wdDo43RYvnypQkHHXTopm5WK1cuTxw/fnwzwIgRo1o2bCiMGzdu/KbXY198MT/x+eefybn00qsK33jj1YzGxgb3Cy+8ttTj8Vidx+t88H+oeVJTUzr22We/+uzs7PYzzzx16qOPPpjzxz/+qWyQmigRxNbixDCMkwh23Zrewy4tQOxmt3UVJU2hnjcQsKivbw717lvkcjlJTvZSX9+C3z/YswcOjmhvY7S3DyKvjYWFBfj9fmJj47Cc8bS0bH39LafTQWysh7a2DgJ9mNnLkTECgBSPh2ULlzB6krGNe9gj0h6/UER7G6O9fTBwbUxO9upqzAB5/fVXckaPHts6bdqMppde+k9WYWGB9+KLrywA+O1vTyy9+ebrxs2de/vwww//eVVpaUnMbbfdPCYzM7M9JyfXl5OT297W1uZ8441X03bZZdfGtWvXxN1779yRAO3t7T95wKZM2aH12GN/Xfr0048P33ffA2rHj5+gLl7yI3ZfOTkVyAE27871b8MwLgQKgc0XHej6vmh7TuwboLWR/P7AgB07XER7G6O9fRA5bcxflw/AsLyRBF/j9K7gCASsPhUneOJo8PtJcrkoWraUvHET+x52EEXK47c9or2N0d4+GBpt7El83OD2D93e8x188GEVL774XM6dd/7TO3r06Oabbvrn6h12mNYCcMQRR9VYlrXu2WefHPbf//4nNz4+wb/zzrvW/vWvF23s2r5y5YrSBx+8b+Tdd9/uzMzMaj/kkMMrv/jis9QVK5YlABWbn++ss/5S8tlnn6TdcMM1Yx566AlT3bukO7uLk98Bm1/3XQ1cBTwPHA+caRiGyzTNrhVPDwBMDYYXiX6+jz/iX9N3Ykn8wHTD7K7G4SIJqMnPH/BziUh0siwrEB/n9u02bZibQZ4RNT7O7bMsK6RqcOzY8S0XXXR5j+uJHHnk0TVHHnn0FmcMcTgcXHDBJUUXXHDJj9407t5l69xz/1Z87rl/6xozTGxsrPXCC68t6022PfbYq2H+/G8X9GZfiQ62Fiemaf7k6kfnFZRy0zQLDcN4BLgIeNgwjFuBXYHzgTMHM6eI2CNQWUlWbCyJCckDfq7quARaq0upq/nJmE8RkV6xLPxOrJKkQb5yEjy3FbAs/NveUyS82X3lZKtM0yw3DOMQYC6wECgBLjRN83F7k4nIYPA0BYeWWQM4jXCXxSOn8MbnH7BPbjYnDvjZRCRaWRZ+y7JUJIiEKOyKE9M0HZt9/w2wu01xRMQmlmWR4veD04krZ9SAny8tcxgA6wsLB/xcIiLhQl2mJNxoBJKIhKW26mrinE4ClkVM3rgBP196VnCujaKNG/D79aaniIiIHcLuyomICEDpyuUAVHd0EJOURV8m3wpFamIyd02bSWZMDOVFGxg2aszAnlBERER+QldORCQsVa1dDUAtDHhhAuCI9ZLsicHjdFK8vFeTyIiIiEg/U3EiImGpsr6BlY0NVMduvg7rwKkhOOStNn/doJ1TREREfqDiRETC0gpfB1etXMb32XmDds7GmDgAmoq2a41XERERCZGKExEJS0VFwfXA0jJyB+2cbQkpAPi11omIiIgtVJyISFgqKQ5evUhNH/g1TroEUjMB8DS3DNo5RURE5AcqTkQk7Fg+H5fGebln+k6kdV7NGAyOzOB0wkk+TSUsItIbTU1NzieffDSr6/vLL79wzOmnn2wM5Dk3blwf89prL6dtzzFeeOG5jDlzdp7d0/bBaMecOTvPfuGF5zIG8hyDZf36gpg5c3ae/fnnnyZt77FUnIhI2GkoLsLjcJLq8eDNHLwxJ57h41jT1IjZUE9DQ8OgnVdEJFI98sgDOS+99Pym/rcXXXTFhltvvXPNQJ7zH/+4csxXX30+eO9cyaDSOiciEnZKzZUAVHV04PB4sQZhKmEAR0YuN2zcQFNDHfuVFpOUNKBvmomIRDzLshzdv09JSRmES88/PqdEFxUnIhJ2agsLSAXqnc5BK0y6pKbn0NRQR1HRRiZOVHEiIr1nWdDss6dXSrybgCOEl+x1dXWu22+/ZcTXX3+R6vP5HGPHjm8+++xzN86cOasZoLm52XnzzdeO/Pbbb1Kbm5tdeXl5rb/73R+KDzvsyNq5c28f/p//PDMMgl2UnnnmxSX33/+v4eXlZbEPPviE+fnnnyZdcsnfJ9100z9X3XXXbaPKy8tjx4wZ03zFFdfmv/vuW2lvvPFKjt/vd+y1175Vl19+zQaHw4FlWTz00L9z3n33rcyKivJYj8cTmDx5auMFF1y6fvToMe2nn36ysWLF8sQVK5YnHnPMoUmvvPL2kvb2dsfcubcNnzfvw4yWlmbXiBGjWk499fTiffbZv76rnW+99Wbq448/NLysrDRu/PiJTTNnzqrv6WfSxe8PcMMN14ycN++DDLfbbR100KGV55779yK3O/jy+euvv0x45JEHhq9duzqho6PDmZOT23bCCSeXHH30L6q7jvHqq/9Nf/75p3NLSorjUlPTOo488ujyP/7xT2Wbn6uiotz95z+fbqSmpnXceee9a+Lj4wMff/xh8oMP3pdXVLTRm52d0/bLX/6mdO7c28c888yLS0aNGtN+zDGHTv/Zz/ao/e67Bcl1dXWeq666du1uu+3Z8PjjD2f/73+vZ1dWVsZkZma2//KXx5Uef/zvKgE+//zTpIsu+uukrmNAsEvWCSf8avqtt96xao899mq4/PILxwQCAUdaWnrHRx99kNHW1uqcMWNm/aWXXlWYk5PrA1ixYlncHXf836g1a1YnpKWldRx33Aklff/t2zIVJyISdppLikkFWmK9xAzyuVPTcyguXEXJhvWDfGYRiWSWBb97O36yWeNKsOP8k9P8jU8e2mz2pUCxLIvzzz97otvtDlx//a1rkpOT/a+//krG+eefPfnuu+9fMX36ji1333378IKC/Pibb75tdUpKqu+ll57Puvnm68btsMO0paeeekZpS0uL87PPPk5/8MEnlmdmZvk2P0cgEODee+eOvPjiywtiYuICV111yfg///n0KTvtNLvurrvuM7/55qvEe++dO3q33faoP/DAQ+oeffTB7BdeeHbYhRdelj958pSWDRvWx9522y2j77jj1pF33nnv2ltvvXPN3/52zsTMzKz2iy++Yj3AlVdePGb9+vXeSy+9Mj83d3j7vHkfpF511aUTrrzyurUHHnhw3TfffJVw443XjP/1r48vOfzwn1d9++3XSffff8+obf18Vq1amZiRkdFx9933r9y4cUPs7bffOqa1tdV52WVXbyguLvJccsnfJh1yyBEVF110+Xqfr8PxxBOP5t5xx/+N2X33Peuzs3N8b775Wto//3nT2N/97g9FBx54SM3y5Uvj77jj1jEJCYn+3/72xMqu81RVVbrPOecMIyMjs/322+9Z4/V6rSVLFnuvuurSCUceeXT51VffsG7lymXx99xz5+jNM77zzltZ11570+rk5GT/lCk7tNxyyw0jP/74g4yzzjp3/fTpOzZ9/vmnyffff8+o9vY25+9//8fy3v5ufPHFZ2lz5uxTfddd95rFxUUxN9103bh77rkz77rrbi6sq6tz/f3vfzEmTZrceO+9D64oKyuLueOOW36SLVQqTkQk7Pirg286tScmDXpxckR8HJfP2pXVy5YO8plFJNI5YJCv9W6f+fM/SVq92kx45ZW3vu8qLP72t4uLli9flvjcc0/lTJ++Y0FJSXGs1xvvHz16bFtKSor/vPMuKNppp9kNKSlp/sTExIDX6w04nU6r6x31LTnllNOLZs/etQlgjz3m1L7xxqvZV111XWF8fHxg4kSj9amnHs9bu3a198ADD6kbOXJU2wUXXJp/0EGH1gGMHDm6/auvvqj55JN5aQBpael+t9ttxcTEBDIzs3zr1q2N/eyzT9PvueeBFV1Xe8aPn1C2du0a7/PPP5V74IEH173wwrPZkyYZjeee+7digAkTJratW7fW+7//vZa9tZ9PSkpqx3XX3ZIfFxdnTZ48tbWioqLo/vvvGXX++RcWtbe3O377298Vn3bamWVOp7OrnSXz5n2QsW7d2rjs7JzGF198Lmf33fes/tOf/lzamautubnJFRfnDXSdo76+zn3OOX+alJmZ1XbbbXevjYuLswCeffbJnLFjxzVfeOFlGwEmTpzUVl1d7XnwwftGds+4006z6vbee9+G4LHqne+882bWH//4pw3HHPPL6s5zVhQXF8U+//wzw04++dReFyder9d/9dXXF3o8HmvSpMmtX3zxWdWCBd+kALz55qtp7e3tzn/846aClJQU/+TJU1tbWpo3XH/91eN7e/ytUXEiImHH09QEgNU5te9gcscn4m5rwKqrHfRzi0jkcjjgyUObzUjq1rVy5fJ4gOOOO2Z699t9Pp+jo6PdAfC73/2h9IorLppw9NGH7Dhx4qSmWbN2qTvssCOr+zK2ZOzY8a1dX8fGxgVSUlI74uPjN71Aj4nxBNra2p0ABx10aN2CBd8kzJ172/Cioo2xGzdu8G7cuCEuLS2tY0vHXr58aTzA3//+lx/1w/X7/Y74+Hg/QGFhQfxOO82u6759+vQZjdsqTsaPn9DcVSwAzJgxs8nn8znWrl0TO336jJZf/vI3VU888Uh2YWF+XFFRUVxBwbp4gEDA7wBYv77Qu/fe+1d3P+Zxx/1wxQTgyScfy/P7fY7Nz7Vu3Zr4zbuezZq1SwPc96OMeXkjNv1s16xZFef3+x077bRzY/d9Zs6c1fj666/kVFSU9/p1f05ObpvH49mUJyEh0e/z+RzBbGvjc3KGtXb/HZg9e5fGLR0nFCpORCTs5Le0UNvRDlmDN1NXFys1G2pKiGlu3fbOIiLdOByQ4CGw7T3DQyAQcHi9Xv/99z+2YvNtMTExAYCdd9616eWX31r86afzkr/55qvkd999K/O5554afv31t67ea699ejWtocfj/tEVJaez5yrqgQfuzXn22Sfz9tvvwMqZM2c1/OY3x5fPm/dh6qefzkvf0v6WFfxx33nnvSsTEhJ/9LN3uVzWD/v9eBC92+3Z5lUup9P5o30CgeBr8djYGGv1ajPunHPOmDxmzLjm2bN3qZszZ9+69PT0jr/85U9Tup9/WwXj9Okz6g8//KjKG264evxHH71fvd9+B9Z33pdAYNsD/2NiYn/SRsdmJw0Egj+W7sVG9/GcHR2+n5yn+74/6H5T33+evaWphEUkrFiWxYP5q7lq5TJcIyYO+vmdnQVRshXAGuzR+CIig2j8+IktLS0trvb2Nse4cePbuj4ee+yh3A8/fC8VYO7c24Z//fWXSQcffFjd5Zdfs+HFF19fmp2d0/bRR++nATgcjn79R/mf/zwz/Le//V3xVVddt/7440+qnD1716aioo1xP/53/MM5J040WgDKyspiurfh1Vdfynz55RczAcaNG9+8YsWyxO5HWLFi6TbHBhUUrIvvemEPsHDht0kxMTGB0aPHtv3nP89mJSendNx//6Orzjjj7LIDDjiorrKywgNseu7IyxvZaporfnSem266duT555+9qfvT3nvvV3PYYUfU7rHHnOo77rh1TH19vRNgzJixzZvfd8mSRVvNPGHCpFaXy2UtXPjNj9q6aNHCpJSU1I7U1DS/xxMsOuvr611d2wsL82O39bPobuLESc0lJcWxVVWVmy5yLF78Xb+NtepzcWIYhtswjAMNw7jJMIznDMN4yzCMJw3DuN4wjD0Nw9D0biISsvr6Ohobg1eHE1IGv1uXZ9gYANLdHmprqre+s4hIBNtvvwPqRo8e03L11ZeNnz//k6R169bG3nrrDSM++uj9zK6uWEVFRbF33vl/o+bP/yRpw4bCmDfffC2tsrIidvr0GY0AXq830NTU5FqzZnVsR0fHdr8GzMjIbF+48Jtk01wRt3r1qtg77vi/4V9//WVqR0fHptesXq83UF5eFltUtNEzefLU1lmzdq6bO/efo999962UgoL8mIce+nfOf//7Qm5eXl4bwAkn/L60sLDAe8stN4xYs2Z17Msvv5j+1ltvZPWcIqiqqirmyisvHrNy5fK4//3v9dRnnnli+DHH/KosNjbWys7Oaa+uror58MP3kjdsKIx56603UufOvX00QHt7sEvcCSecVPL55/PTHnvsoez8/HWxr732ctq7776VNWfOPrWbn+uiiy7f0N7e7vjnP28cCcHudPn5axP++c+b89asWR379ttvpj755GN58NMrI11SUlL8Bx54SOXTTz+e98orL6WvW7c29sknH816553/ZR177K/KHA4HkydPbYmLiws8+uiDw9atWxv7xRefJT788P0jejrmlhx55DHVyckpvssvv2js0qVLvF98MT/xX/+6a+S279k7vS5ODMOIMQzjPGAd8C5wBjAJSAR2Av4MfApsMAzjL4Zh9KkKExEBKF5fiBNIS88Ah2fwAySn47Ms3E4npatXDv75RUQGicvlYu7cf6+aOHFS0w03XD3utNNOmrp48aKkK674x9quLluXX35N4YwZMxtuvvnasSeddNy0J554JO/3v//jxmOP/XU1wMEHH1qTmprWcdppJ++wePGi+O3NdPnl1+S3tbU5zzrrj1POO+/MyQUF67xnn31uYUNDvXv9+oIYgKOO+kXFhg3r40499cQd/H4/N998+7rdd59TM3fubaP/8IcTpr377luZf/7z+YW//vXxVQDTp89ouf76W1cvWbIo6bTTTt7hpZeez/n1r4/f5tS3O++8a63L5bL+/OfTp9xzzx2jDz30yPI///m8YoCTTz61fI899qq+5ZYbxp1yyok7PPXU48P+8IfTijIzs9qXLl2SAMHxM+ec89fCN998LeuUU07Y4fHHH847/fSz1v/qV8dVbX6uzMws3+mnn73xww/fz5w374PkKVN2aL3yymvXfPPNl6mnnXbSDo8//vDwww//eTmAxxPT49WqSy+9av0RRxxV/sgjD+SdeuqJO7zxxqvZf/rTOetPO+3MMoCkpKTAxRdfsa6oaIP31FNP3GHu3NtG/elP52zoS3GSkJAQmDv3PtPtdlvnnXfm5Jtuum7sb35zQmmvD7ANjt50WzAMY1fgccAPPA38xzTNtVvYbzpwOHAa4ABOMk3zi/4K20/W+f2BsdXVTf16ULfbSVpaAjU1Tfh8EdPdtE+ivY3R3j6IjDZ+ed/dpHz7Ld/5fMSfdl2f7ut0OvB6Y2hpaScQCL2nQfYj15DpclK2/wHsdcJJIR+nv0XC47e9or2N0d4+GLg2pqcn4HI584Fx/XbQEC1YsGCy0+l6Ozs7rzEmJk4D1KTffffdgni3221Nn75jS9dtr7zyUvqdd/5zzPvvf7qwa62VSNHe3hpXXl6UGAj4D509e/ZW3/nrbcueBC4xTfPlre1kmuYSYAlwi2EYvyFY0Ezq5TlERGgtLSXd4cDltWWpAADWuTysqi4nqeYnb26JiIgMuJUrV8Q/8sgDIy688NL8qVN3aCkoKIh98slHh++555zqSCtM+qq3rZtummZ7Xw5smuZ/DMN4pe+RRGQoC9TWAtCRlIJdfUO/zhjJJ99+xm933cWmBCIiMpT99rcnVlZVVXruu+/uUTU11Z7k5GTfXnvtW33OOX8tsjvbQOtVcdLXwmR77yciQ5enuTn4Rdo2xyoOmNSMHAA2btxoWwYRERm6HA4H55xzfsk555y/zbEx0aZXxYlhGFf15aCmaV4bWhwRGeri/X5wOnFm5NqWITU9BwdQXaTiREREZDD1tlvXNZt9bxEc8O4HKoE0IAZoB6oBFSci0meBjnaSnMFJBF1ZI2zLMcLt5qlZu1Lv82FZVo/TNorIkBUArM0X9hORLev8W7Fg24uU9moqYdM0nV0fwEFAFfBbIM40zWGmacYRnKWrCvhbyMlFZEir2xC8UtHq9xOXMdy2HLE5I/A4naR5PFSW99vsiCISPUoty+pob2/d7qlzRYaC9vbWeMuyOoBtdlMLZbj/PcCVpmn+p/uNpmm+bRjGFcANwHMhHFdEhrjKqgrmV1Xi8XhIdsUE32OxgZWQQkcggMfppHTNarJyhtkTRETC0uzZs+sXLFjwRH19zVlARkxMXHN/r5QuEg0sy3K0t7fG19fXxFhW4OHZs2c3bOs+oRQno4D1PWyrAHJCOKaICKWtrczNX8O4CQYn2/k073BQa0EWUFOQD3vubWMYEQlTN/r9Pmprq052OBzxBLu7i8iPWZZldVhW4GHgxt7cIZTi5HvgL4ZhvG+aZkfXjYZhxAEXAV+FcEwREcrKgld70zOybU4CDS43WQRoLC62O4qIhKHZs2cHgOsXLFhwl2UxjF52lRcZYgJASW+umHQJpTi5FHgHWGsYxtv8cLXkcCAB2CeEY4qIULFxI04gJd2+aYS7tMR4ob2J9spKu6OISBjrfNHV6xdeIrJ1fa7yTdP8GNiD4BWSnwMXAIcB7wOzTdNc1J8BRWTomLxqFU/P/hnTXfavftuRkBL8or7W1hwiIiJDSUivAEzTXAj8up+ziMgQF9vehsvhwJWSYXcUWjOG8cXaJZTFe+2OIiIiMmSE/PakYRiHEZxWeBhwGbATsMA0zcJ+yiYiQ4hlWSQGLHA6cGXYPztW67hp3Pvcv0hOTuEiu8OIiIgMEX3u1mUYRrxhGO8CbwKnAr8huAjjWcACwzB26N+IIjIU+JqaiAuDBRi7pKQFx73U19fR1NRocxoREZGhIZSZJW4EZgMHAJn8MHXeSUARcF3/RBORoaSqYB0A9b4OYlPsHxAfGxdPfHwSaR4PpcVFdscREREZEkIpTo4DLjVN8yO6LZFmmmYpcD0wp5+yicgQUpWfD0BdIAAOl81pgm43JnP/jrOpXLHc7igiIiJDQijFSSpQ0MO2GiAx1DAiMnQ1FG0AoNEZHoUJQFNnkVS/oad1Z0VERKQ/hVKcLAVO7GHbzzu3i4j0SUVbO/OrKimNjbc7yibNnlgAWsrLbU4iIiIyNIQyW9f1wMuGYWQArxPs2rWPYRinAGcCx/djPhEZIsyONp7KX8Oh03Ymx+4wnVq9idDYRqCm2u4oIiIiQ0IoizC+CvwOmAHcR3BA/G0E1z050zTNF/s1oYgMCaWlpQAkp9k/GL6LPykNAFdTk81JREREhoZQF2F8BnjGMAwDyABqgZWmaQb6MZuIDCFNZaU4gaSUTLuj/CAtB0rW4O3osDuJiIjIkNDn4sQwjA+Bs03TXGmaprnZthnAU6ZpzuivgCIS/axAgL/ExHHu7J/xXRiNOXFn58FySHE48fl8uN0hr1srIiIivdCrZ1rDMObwQxewfQmOMcnewq5HAuP7J5qIDBWt1ZW4HQ4CloU7M8/uOJu4c0bxZU015W2tjCgvZdhw+xeHFBERiWa9fRvwNOBkgoPfLeBegmNNrG77dC3G+Ey/pRORIaFi7VoAajo6iIlPsTlNN3HxPFbXQHVlCQeWl6k4ERERGWC9LU7OAx4lWIB8CPwZ2HxVMj/BsSfL+iuciAwNNYUFeIE6LHA4trn/YEpOy6K6soSyslK7o4iIiES9XhUnpmnWAR8DGIaxH7AASOxcFR7DMNKAkaZpao0TEemzxuJivECz2xPS4ksDKSU1izSPh4r1hXZHERERiXqhvA74HngZmNfttp8BiwzDeMUwjPAZzSoiEaG9qhKAtlivzUl+6qhYJ/fvOJukVavsjiIiIhL1QilObgZ2AC7rdtuHwNHAzsC1/ZBLRIYQq64OAF9iss1JfsqXGBwD46ivtzmJiIhI9AulODkKuMA0zf923WCaZrtpmq8TLFh+01/hRGRoWNPRzvyqStrTc+2O8hNW57orntY2m5OIiIhEv1CKkySgpodtZUAYraAmIpHgvcpy5uavoS1vnN1RfsKZORyAJCuAZVnb2FtERES2RyjFyULgjz1sOwVYHHocERmKSkuDM2ElhtPq8J1ickYDkO72UN/Z/UxEREQGRijLHV8PvGUYxrcEB8aXA1kEx5zMJrgQo4hIrzTWVBPT2ooTSEjKsDvOT6Vk4Lcs3E4nZevWkDJrZ7sTiYiIRK0+XzkxTfM94OcEF2C8FrgfuI5goXO0aZpv92tCEYlqpd8t5L4dZ3H79J1weeLsjvNTTid1gQAA1QXrbA4jIiIS3UK5coJpmm8RvHoSB6QDdaZpNvVrMhEZEuo2rCcJaAqzxRe7W4yL+tJiJtarW5eIiMhACnm9M8MwpgBnAH8BUg3DmGMYRlK/JRORIaGpc7xJc0yszUl6tjAll6c2rqdAY05EREQGVJ+vnBiG4QL+DZwKOAh273oBuBoYZxjGPqZpbuzXlCIStXw11QB0xMXjsTlLT1LSsgAoLS2xOYmIiEh0C+XKyRXAicBpQC7BAgXg74ALuKF/oonIUOBoCC5u6EtKtTfIVqSkZZLq8dBWouJERERkIIVSnJwKXGWa5qNAVdeNpmkuBq4CDuqnbCIyBMS2tQe/SA2/aYS7jA/4eGDH2RwR0DonIiIiAymU4iQHWNTDto1AWshpRGTISeicCcuZEX6rw3dxZ48AIMXppKOjw+Y0IiIi0SuU4mQNcHgP2/bt3C4isk0Bn48PqiqYX1WJO3uk3XF65MrKAyDZ7aGiWEPqREREBkooUwnfCdxvGEYM8DrBAfETDcPYD7gA+Fv/xRORaFZbX88Thfk4HA6uTMm2O07P4uJpCQTwOp2Ur13D8NFj7U4kIiISlfpcnJim+ZBhGFnA5cBZBAfEPwu0A7eapvnvvhzPMIxs4DbgUMALfAxcaJrm8s7tM4G7gJ0JjnGZa5rmP/uaW0TCT2lpMQBp6Zk4nSEtuzRoaq3gP6ja9YV2RxEREYlafe7WZRhGmmmaNwHDCXbv+h1wJDDcNM2rQsjwGjAeOAzYBWgB3jcMI94wjAzgPWAVweLkauA6wzBOCeE8IhJmyvPzyfDEkJUZxldNOjW5ghMdN2vGLhERkQETyluVXxuGcYVpms8D72zPyTuLj3zgetM0l3Xedh3BAfc7AAcCbcBZpmn6gBWGYUwELgYe3Z5zi0gYWPgt9+04i0VOl91JtqklLh5aG+iortr2ziIiIhKSUAbEpwGV/XFy0zSrTNM8vlthkkNw3MpGYDmwF/BJZ2HS5cPgrkb4v9UqIlvlr60FoD0+yd4gvVCVlsPrpcWsam6yO4qIiEjUCuXKyV3A/xmG8XdgqWmaFf0RxDCMB4DTCV4pOco0zSbDMEYASzbbtbjz8yigPNTzud2h1GU9c7mcP/ocjaK9jdHePgi/Nrqagi/0reQ0nE7HNvbetq5j9MexNtc4ejJPvv4Uk+K9/f7/o7fC7fEbCNHexmhvHwyNNorIwAmlODkZGA28D2AYxubbLdM0Q54FjOAg+1cMw5gDxBMsVrpr7fwcF8I5gOALl7S0hFDvvlXJyd4BOW44ifY2Rnv7IHza6O3oAIcDd1YuXm9Mvx03NtbTb8fqkjMsOJ1wSUnxgP3/6K1wefwGUrS3MdrbB0OjjSLS/0IpIp7q9xRAt9m5zgB2B84hODg+drNdu4qSkPtWBAIW9fXNod59i1wuJ8nJXurrW/D7A/167HAR7W2M9vZBeLXRCgRI7PomNZeWlvbtPqbT6SA21kNbWweBfl7NPTYuhVSPh8yARWFBMckpKf16/N4Ip8dvoER7G6O9fTBwbUxO9upqjMgQEEpxkg98aJrmdq9E1jlu5ADgP6Zp+gFM0wwYhrEcyAM2EJwVrLuu74u259w+38A8Kfj9gQE7driI9jZGe/sgPNrYWlWFx+EgYFm4svL6tZgIBKx+L07cbg//njELp8NB0erVxM+c1a/H74twePwGWrS3MdrbB0OjjSLS/0J5C+J2gtP69ofhwDPAPl03GIbhAWYRHBD/CbCXYRjdp/I5ADBN0wx5vImI2K9i3RoAajs68MSn2humN5wu6gPBF1rVBfk2hxEREYlOoVw5KQdS++n83xOcjvhewzBOB2oILu6YBtxBcHzJRcDDhmHcCuwKnA+c2U/nFxGbVDU18V5JMbGJiYxyREZXjTqHi1Sgvmi7LxyLiIjIFoRSnDwI/MswjP2ApUDZ5juYpvlEbw5kmqZlGMZxwE3A8wSLnk+BvUzTXA9gGMYhwFxgIVBCcPX4x0PILSJhpKSlmaeL1rPD9FmMsjtMLzV7YsHfRmv5T/7tiYiISD8IpTi5rfPzST1st4BeFScApmnWAWd3fmxp+zcEB8iLSBQpLQ2utJ6aETlLFrV7E6GxDX9Njd1RREREolIoxcnYfk8hIkNO4/pCMmJiSEvNtDtKr/mT0qCxCldz/872JyIiIkF9Lk5M0yzs+towjHggGagyTbOjP4OJSHTbsaiIQ2bM4iuXa9s7h4v0HChZg7dd/+5EREQGQkijUA3D2MswjC+AeoJT+rYahvFF5zgUEZFtivf5AXCk59icpPccw8byWmkxb5UW4ff77Y4jIiISdfpcnBiGsQfB1eFTgesIjhW5HkgH3jEMQ+NDRGSrLJ+PRIcDAFdWns1pes8zbDTPlBTxQXkZlZWVdscRERGJOqGMObme4Ixah3QtnAhgGMY/CE4L/A/g4P6JJyLRqLG0BKfDQXsgQGzmCLvj9JrT6SIlNZOaqjLKykrIyYmcqz4iIiKRIJRuXbsCd3UvTCC4sjtwd+d2EZEela8NLsBY4+vAFeO1OU3fDE/PZkJCIhWFWohRRESkv4VSnDQAnh62xQCO0OOIyFBQu349AA04sCybw/TRiSlJ3DhlGu0rVtgdRUREJOqEUpx8BlxmGEZi9xsNw0gCLiXY5UtEpEfNZcE1TlpiYmxO0netnVd62qs05kRERKS/hTLm5BJgAbDOMIw3gFIgFzgSiANO6b94IhKNNgYCfFFShHfCFEbaHaaPOhJToLoJ6uvtjiIiIhJ1+nzlxDTNNQRXbP8IOBy4oPPzR8Bupmku7teEIhJ1zOYmninaQFXuKLuj9FkgObhoZExrq81JREREok9I65yYprkcOM80zVzTNGOAqcANnbeLiGxVSUmwW1dyBK0O38WZkQtAgtY5ERER6XehrHOSahjGe8C8bjfvCiwyDOOVzlXjRUR6FFtVSYYnJiKLE09O8GpPuttDc3OTzWlERESiSyhXTm4GdgAu63bbh8DRwM7Atf2QS0SilL+lmXNS07lvx1kkeZPtjtNnrvRsApZFjNNJ6bp1dscRERGJKqEUJ0cBF5im+d+uG0zTbDdN83WCBctv+iuciESfmsJCAJp8PuI6u0hFEsvl5p3GJh5Zn09FtWbsEhER6U+hzNaVBNT0sK0MiLx+GiIyaCrz1+EEavx+QvsXZL/P3F5WlZexW3WV3VFERESiSihXThYCf+xh2ymAZusSkR7Vb9wAQJPLSYStv7hJcloWAKWlJTYnERERiS6hvG15PfCWYRjfAi8D5UAWwTEnswmudyIiskUt5WWkAi0xcUTeEoxBWSnpTEhIpGV9od1RREREokoo65y8B/wcsAgOfr8fuI5goXO0aZpv92tCEYkq/ppgr9CO+ESbk4RuRwLcOGUaE8o15kRERKQ/hdTh2zTNtwhePYkD0oE60zQ1p6aIbJOzqRGAQFKazUm2Q1oWlK3D29FudxIREZGosl2jUU3TbAWK+ymLiAwBX7e2QnkZmTvuaXeUkLmy8mAlJOMgEAjgdIa0nq2IiIhsRs+oIjKoPiot5pmiDbiGjbE7Ssi6FmJM9Xiorii3OY2IiEj0UHEiIoPG7/dTXl4GQEJKBM86Hp9EWyAAQNma1TaHERERiR4qTkRk0JSvL2CC10tmnJfY+MhbHX4Th4M6KzgRck1hgb1ZREREokhkroAmIhGpcuFCrps8jYL2NpoDDrvjbJcGp5tsLBqLi+yOIiIiEjVCKk4Mw8gELgQOAoYBhwDHAotM03y1/+KJSDRpLCkiFmhyuYns0gRWxqfyifkdY8aNtTuKiIhI1Ohzty7DMMYSXAX+DGAjkE2wyJkEvGQYxhH9mlBEokZrRQUAbbFem5Nsv/KcMbxVXsqamiq7o4iIiESNUMac3EZwVfixwC8g+AaoaZonAq8Bl/VbOhGJKlZdHQC+hAgeb9IpJT0LgNLSUpuTiIiIRI9QipMDgOtM06wluEp8d/cD07Y3lIhEJ3dzMwBWarrNSbZfWnI6ExISSauptTuKiIhI1Ah1QLyvh9tj+WnBIiICQLzPB04nzvQcu6Nst8zYOG6cMo1Wv5/W1lbi4uLsjiQiIhLxQrly8ilwqWEYCd1uswzDcAJnAZ/1SzIRiSqWz0eiIzgM3p01wuY028+VkQtAnMtFWUG+zWlERESiQyhXTi4hWICsAT4ieKXkAmAqMAHYq9/SiUjUaGlu5tH1BaTHxGBkR35xgieGer+fZJeLynVrGT15it2JREREIl6fr5yYprkU2Bn4ENgP8BOcUngNsIdpmov6M6CIRIfy6kreqSjj1ZpqnJ7In60LoL5zQuS6jettTiIiIhIdQhpzYprmauDEfs4iIlGspKQEgKzsHAIBm8P0k0Z3DFg+WsrK7I4iIiISFUJdhNEBzAQS2MLVF9M0P9m+WCISbWrWrMZITCQzM/IHw3dp8yZAcx2+mmq7o4iIiESFPhcnhmHsCrwAdHUa71ro2er82gJc/ZJORKJG3LKlXDd5Ggu88XZH6Te+xDRorsPZ2Gh3FBERkagQypWTO4AO4A8EV4iPkg4aIjKQHA0NAPiTUu0N0o+acsfwyLcf0Z6ays/tDiMiIhIFQilOZgG/NU3z1f4OIyLRK6atDQBHWqbNSfqPc8RE3i4vI66hHsuycDgc276TiIiI9CiUdU7K0dUSEemjxM5R8M7M4TYn6T/JqcFCq7Wlhbq6WnvDiIiIRIFQipN/AZdstgijiEiPfE1NeJ3BfzcxUbAAYxe3x8O0rFx2S0unVAsxioiIbLdQunVNJLjgYqlhGMuA5s22W6ZpHrDdyUQkalQXFgDQ4OsgNjUbn2Vvnv501oiRZLlcVK1aCTNn2R1HREQkooVSnEwAFnX7fvNO1up0LSI/UpW/FhdQ6w8QwE1wUr/o0OB0kQU0FBXZHUVERCTi9bk4MU1zv4EIIiLRqzzg583CfNJzhzPZip7CBKDZ4wVfC20VFXZHERERiXihjDkREemTooYG3q0oY31qht1R+l17fBIAVn2dzUlEREQiX6+unBiG4Qd2N03za8MwAmy9T4ZlmmZIK8+LSHQqLS0BICUty+Yk/S+QnAH15bibNx9+JyIiIn3V2yLiWoILLnZ9HV39MkRkQDnWr8dITCQ9Jd3uKP3OkZEDG1cQ7/fbHUVERCTi9ao4MU3zH92+vmbA0ohIVNqjoYEjJk/jW0+M3VH6nSd7JABpThft7e3ExERfG0VERAZLb7t17d2Xg5qm+UlocUQk2liBAEmdk/i5o2iNky7urDweL1pPeUsLV5eVMmLkKLsjiYiIRKzeduuaxw9duXqaKtjq3GYBru2LJSLRorWqErfDgd+y8GRHX3GCJ4av/FBZW0N5RbmKExERke3Q2+JE0weLSEgq1q4FoKajA483GZ8/+oasJadlU1leTGlpsd1RREREIlpvx5x8PNBBRCQ6VRfkEw/UQ1QWJgBjUtLJSUunYc0au6OIiIhEtJCm/DUMIxO4EDgIGAYcAhwLLDJN89X+iycika6ppJh4oNnjidqFlXaPcbPj+EmsLCywO4qIiEhE6/NrBcMwxgKLgTMITi+cTbDImQS8ZBjGEf2aUEQiWltlJQDtcfE2Jxk4vsRUAByNjfYGERERiXChvJF5G1AOjAV+QecAedM0TwReAy7rt3QiEvFWOOGhwnwqMnLsjjJgrNRMAGLb2mxOIiIiEtlCKU4OAK4zTbOWny7GeD8wbXtDiUj0WF5dzbsVZXTkRu8sVq7M4QAkWdE5pkZERGSwhNoF3NfD7bFo9XgR6aa0tASApNQsm5MMHE9n4ZXm9lBfW2tvGBERkQgWSnHyKXCpYRgJ3W6zDMNwAmcBn/VLMhGJeIGODkY3N2EkJpKUnGF3nAHjTM7AZ1k4HQ7K1q6yO46IiEjECmW2rksIFiBrgI8IXim5AJgKTAD26rd0IhLR6tav58y8UbT6/RQkpxOwO9BAcTio9QfIdLuoLiiA2bvanUhERCQi9fnKiWmaS4GdgQ8JLs7oJzil8BpgD9M0F/VnQBGJXBVrVwNQ5fOBM9bmNAPrfcvFrWtMitta7Y4iIiISsUJa58Q0zdXAif2cRUSiTO36AlKBBqeTQJQPFt+Yms2333/JzOoqu6OIiIhErFAXYRwHxJmmudwwjFTgBmAk8IJpmk/2Yz4RiWAtpaWkAq2xXmLsDjPAUtKCA/5LSoptTiIiIhK5+lycGIZxKPAqcDfBsSb/Bn4JLAEeMwwjxjTNh/twvHTgRuBIIJngAo+XmKY5v3P7TOAugl3JqoC5pmn+s6+5RWTw+aurAehITIr64iQ7MYXd0tJJKim1O4qIiEjECmW2rquAd4F/GIaRAhwL3GSa5izgJuC8Ph7vOWA34LfALsBC4F3DMCYbhpEBvAesIlicXA1cZxjGKSHkFpFB5m4KrpjetUhhNBvhdvG38ZPYze+3O4qIiEjECqVb147AUaZpNhiG8ZvOY7zYue094O+9PZBhGBMIDqbf0zTNzztvOw84DDgBaAHagLNM0/QBKwzDmAhcDDwaQnYRGUTeDh84nTgycu2OMuDc2SMASHE48fv9uFwumxOJiIhEnlCunLTwQ1FzGFBmmubizu9zgdo+HKsSOAJY0HWDaZoW4ADSCU5L/ElnYdLlQ8AwDCM7hOwiMogeLy3i4cJ83MPG2B1lwHmyRwKQ4HZTWbTB5jQiIiKRKZQrJ/OBCzrHivyGzisYhmHMJtjtan5vD2SaZi3wv+63GYbxa2A88A7BgfZLNrtb12jTUUB53+MHud2h1GU9c7mcP/ocjaK9jdHePhjcNjY1NTK/uAiAOVl5WE7HgJ/T2XkO5yCc6ye8Xhr9fhJdLirWriFv3Lh+P4V+RyNftLcPhkYbRWTghFKc/BV4E3gaWA5c33n7m0AzwUUaQ2IYxp7AI8Crpmm+bhjGHQS7dXXXtYhAXKjncTodpKUlbHvHECQnewfkuOEk2tsY7e2DwWljWVnw6kFySgoJScn4A4M3lXBsrGfQztVdPQ4SgcaSDQP2Pwb0OxoNor19MDTaKCL9r8/FiWma+YZh7ABkm6ZZ1m3TMcB3pmluXkz0imEYRwPPAF8Cx3fe3AJsvnJbV1HSFMp5AAIBi/r65lDvvkUul5PkZC/19S34/dG5Dna0tzHa2weD28bVn33NnukZWNm5NDaF9G+hz5xOB7GxHtraOggMYjHUpc0dA5aP6oL11NSE/C+qR/odjXzR3j4YuDYmJ3t1NUZkCAh1EUYLKNvsti8Nw0gwDGM/0zTf7svxDMM4h+B0wf8FftetwNkADN9s967vi/qe/Ac+38A8Kfj9gQE7driI9jZGe/tgcNrYtmQx542byCKna9ALhUDAsqU46YhLgJY62ioqBvTnq9/RyBft7YOh0UYR6X+hrHMyGrgf2Ad6XLqg19PUGIZxFsE1U+YCfzVNs/t/sk+AMw3DcJmm2TU/5wGAaZpmyONNRGTgbVrjJCE56tc46VKUO5a333uelImTONbuMCIiIhEolCsndwB7AA8AexIcZ/IFcDAwHfhFbw9kGMYkgldMXia4Rkq2YRhdm1sIjj+5CHjYMIxbgV2B84EzQ8gtIoPI1di1xkmGzUkG0YgJfFNbw/CijXYnERERiUihdN7cB7jCNM3zCM7U1Waa5sUEF0n8GDi6D8f6FeAhuJBjyWYfd3VeHTkEMAguzng1cKFpmo+HkFtEBlF8RwcAziGwxkmXtM62lpaW0NHZfhEREem9UK6cJAKLOr9eDlwDYJqm3zCMfwG39fZApmneCNy4jX2+AXYPIaeI2MTy+UhyBKfzdeeMsDnN4ElMSmXPzGzSXS7KijYwYkz/TycsIiISzUK5clJCcLFFgDVAumEYwzq/rwZy+iOYiESuhuIinA4H7YEAsVmj7I4zaBwOB2eMGsNJI0dTapp2xxEREYk4oRQnbwLXGYaxh2maG4CNBBdlTAJOZTtn0RKRyFe2ahUA1b4OXDHxNqcZRA4HtQSvGNUWrLM5jIiISOQJpTi5CqgFru38/jLgvM7bTqQP3bpEJDqVWQFuXr2Sd9s78EXpWg49aXAHl2ZqLimxOYmIiEjkCWURxirgZ11duUzTfNowjEKC40K+Nk3z437OKCIRpqi6ioV1tXh2mGl3lEHXGp8EjVX4q6vsjiIiIhJxQlqEEcA0zRLDMCYDaUCJaZr/13+xRCSSFRcHe3emZQy9IWj+lAxorMLdOZWyiIiI9F4o3bowDOOPnVdLlgHzgVWGYRQYhnF8v6YTkYgUn5/PnukZZCen2R1l8GUOByChw2dzEBERkcjT5+LEMIxzgAeBBcDvgcOAU4AVwFOGYfy6XxOKSMTZqbGR88ZNJCfOa3eUQefJHQ1AuttFc3OTzWlEREQiSyjdus4D7jFN89zNbn/CMIyHCK578sL2BhORyGT5/T+scZI9dKYR7uLKyuOu9YVsbKjjtuIiJkyYZHckERGRiBFKt64RwOs9bHsW0KpjIkNYY0kJLoeDjkCA2JyhV5xYLjfrYuMpbGmmpKTY7jgiIiIRJZTi5BvggB627QQsDj2OiES60pUrAKjs6MDlGUJrnHSTmh6cCKC4eKPNSURERCJLr7p1GYaxd7dvnwXu6Fx08T9AKcEZuw4FzgX+1N8hRSRy1BSsJRWodzrxByy749jCSE1nQs4w2rVKvIiISJ/0dszJPKD7qwwHcBZw5ma3ATyHxpyIDFktxSWkAs1xXmLtDmOTqR43M0eOZkVJqd1RREREIkpvi5P9BjSFiESNrsUHfYkpQ7Y48admQ20pMS3NdkcRERGJKL0qTrTqu4j01gcd7ZSuXsnso04gwe4wNnFl50HBYpICFpZl4XA4tn0nERER6d2AeMMwPjEMY2ZfDmwYxs6GYcwPKZWIRKwVJUUsqKslJm/oTtznGTYWgAyPh7qaapvTiIiIRI7eduu6C3jbMIxvgaeA10zT/El/hc5B8ocQHBS/E3B2fwUVkfAXCATYuHEDACmp2TansY8jJYOOQACP00mxuYLU3efYHUlERCQi9LZb10uGYXwMXAU8BLgNw1gO5ANNQCowEpgGdHTu8zvTNMsGIrSIhKeyVSaHp2dS1NaKNzkDn9/uRDZxOKixIBuoXLMaVJyIiIj0Sq9XiDdNsxI41zCMfwC/IjhIfhyQAlQCKwheYXndNM2qAcgqImGufPEiThgxivz2NloDQ3ucRYPbQ7blp37DBrujiIiIRIxeFyddOguP+zs/REQ2qd+wHi/Q6InBNTSXONlkYfoI7v/kdXYensORdocRERGJEH0uTkREetJRUQFAe3wiXpuz2M0aPpaClmZS1+vKiYiISG/1arYuEZHecNTVAeBPzbA5if3Ss4YDsH59oc1JREREIoeunIhIv4lvbwOHE0fGMLuj2C4zNZMjcnLJiomloaGBpKQkuyOJiIiEPV05EZF+Yfl8JBMcBO8eNtrmNPaLjU/kpBGjOTxnGEWrTLvjiIiIRAQVJyLSL+qLNuJyOGgPBIjLGWN3HNtZLje1geCsAOWrVticRkREJDL0qluXYRgn9+Wgpmk+EVocEYlUZc3N/H3p9wxPTeVIjxd/YIhP1wXUutykE6Be405ERER6pbdjTh7rwzEtQMWJyBCzsaSIDa0txKWMVWHSqcWbCC31dJRpPVoREZHe6G1xMnZAU4hIxNu4MThlblZOns1Jwkd7cia01OPsnMVMREREtq5XxYlpmr3uk2AYxtBeFlpkiIpZtoyjc4cTn5Jud5TwkZUHZetIaO+wO4mIiEhECGkqYcMwfgvsA8QAXcWIE0gAdgdG9Es6EYkYI6uqmDViFF8nJtsdJWzE5I2FpZ+S6XbR3NxEfHyC3ZFERETCWp+LE8MwrgauBuo679/R+ZEFBIAH+zOgiIQ/KxAgxQqAw4krR9MId3Fkj+Sa/LXk11bzRNFGJk407I4kIiIS1kKZSvj3wFNAOnAH8LppmjnALkAVsKz/4olIJGguLyPG4cQXCBCbN8HuOOHD6aI+KZ0Wv5+NG9fbnUZERCTshVKc5AFPmqZpAQuAPQBM01wA3ACc1n/xRCQSFC9dAkBFRwee+BSb04SXtMxhAGzYoOJERERkW0IpTpoIThcMsBoYaxiGt/P7RWhmL5Ehp3rtGgDqXE5NI7yZ6SlpnDJyDI7luqgsIiKyLaEUJ18T7NoFsBbwAQd2fj8FaOuHXCISQZqLNgLQ4tWA782NiovjsJxcUiqr7I4iIiIS9kIpTm4EjjMM43XTNNsIjj953DCMl4DbgHf6M6CIhD+ruhqAjuQ0m5OEoczgui8J7e02BxEREQl/fS5OTNP8BNgZeL7zpnOAF4HJwAvAuf2WTkQiwn9aGrlg2WKaRk+yO0rYickbD0CWy01jY4PNaURERMJbSOucmKa5GFjc+XUrcEZ/hhKRyLJ2fSEVLc3EDxtjd5Sw48weQcCyiHO52LBiOVN2+ZndkURERMJWqIswpgD7E1x08SdXX0zTfGI7c4lIhGhubqKiogKA5PRhaDj8ZlwuqgMWmS4HpSuWqTgRERHZilAWYTyMYPet+B52sQAVJyJDxPqvvuT00WPZEAjg9Hjx+1WebK7WE0tmoIOGgny7o4iIiIS1UK6c3ASsAP4GbCS4KryIDFE1y5ZyUFYOK/w+FSY9aElIgYZK2srL7Y4iIiIS1kIpTiYDR5um+Wl/hxGRyNNSUhL87E0kzuYs4WrjuBnc8dit5I4bx6/tDiMiIhLGQplKuBBI7u8gIhKZHDXBaYR9qRk2JwlfySMm0Oj3UViQj9/vtzuOiIhI2AqlOLkJuNowjDH9nEVEIlB8WysAzqw8m5OEr5T0LDyeGDo6OiguLrI7joiISNgKpVvXiUAesNYwjAqgebPtlmma47c7mYiEPX9bGyk4AHCN0J99T5xOFyeOm8SwgI+NixYycuQouyOJiIiEpVCKk42dHyIyxFWuWonT4aDB10F8zhjUYalnOyQmMdphsXa1aXcUERGRsNXn4sQ0zVMGIoiIRJ7iFctJACr8AQJOD1rkpGeN3kRobaCtqNjuKCIiImErlHVOttYfIQA0mqZZG3IiEYkYqyyLOxZ+zZ677MFeKky2qi0lC1obcNbW2B1FREQkbIXSrauAbbw/ahhGNXCXaZrXhxJKRCJDfv5aWgMB4oaNtjtK2HPkjoKydSR1dNgdRUREJGyFMlvX74F24F3gFOCwztteJ1i0XAs8BlxhGMZZ/RNTRMJRfv46ALJyR9qcJPzFjJwIQLbbQ011lc1pREREwlMoV06OB57bwtiTpwzDuA+YbZrmUYZh1AJnAfdtZ0YRCUOW38/hjU1MGzWGtPRcu+OEPUd6Lu2BADFOJxuXLiZt7/3sjiQiIhJ2Qrlysi/wTA/b/gsc0Pn1fEBzi4pEqdqCAqZ449knI4vkHHXr2iaHg0oLGn0+itestjuNiIhIWAqlOKkCduxh245AfefXiUBTKKFEJPwVLV4EQLnPh8MdZ2+YCPFSSi6nLvqWJerWJSIiskWhdOt6GrjWMIwO4EWgHMgGfgFcA/zbMIw04Hzgy/6JKSLhpmbtanKA+pgYnAFN1dUbacPHAbBGV05ERES2KJTi5AqCxcjtnR9dAsAjwGXAr4CdgP23N6CIhKeOkhIAWhNTiLc5S6TIGT4GgNWrV9kbREREJEyFsgijDzjVMIwbgP2ATIIrxn9mmmY+gGEYbwF5pmm29WdYEQkfnoZgD85A5jCbk0SOnIwcLpwwiWGxXqoqKsjIyrI7koiISFgJ5coJAKZprgXW9rBNq4yJRDHLskjx+cHpxNV5NUC2zZ2QzKTkVOKcTgq/+5aMgw+zO5KIiEhY6VVxYhjGOuBY0zS/Nwwjn60vwmiZpqlZukSiWEt1NS1+H27cxI007I4TORwOKnAyEihfsRxUnIiIiPxIb6+cfMwPs3B9zDZWiBeR6La+oow/fb+Q3NQ0zo5PRePhe6/emwhtjbSuX293FBERkbDTq+Kk+4KLpmn+YcDSiEhEWLXKBCBrzHgVJn3Unp4DJY24aqrtjiIiIhJ2QhpzYhhGEpBsmmaRYRgxwHnASOBF0zQ/CTWMYRhXAAeaprlvt9tmAncBOxNcY2WuaZr/DPUcIrL9Vq8OFifDR4y1OUnkcQwfDyVrSfX5sCwLh8NhdyQREZGw0edFGA3D2BUoBP7SedNc4Bbgd8CHhmEcFUoQwzDOB67d7LYM4D1gFcHi5GrgOsMwTvnJAURk0ExfuZJLJ05mXHqO3VEiTszYKQBkeWIoLiywN4yIiEiYCWWF+BuAlcD9hmF4CRYl95qmmQ48DFzel4MZhpHXOfXw9YC52eYzgDbgLNM0V5im+ShwB3BxCLlFpB9YPh8jAxY7paSSmjvK7jiRJyGFSp+Pdc1NFKxYancaERGRsBJKcfIz4LrONU0OALzAk53bngOm9fF4s4AaYAbw1Wbb9gI+6VxbpcuHgGEYRnZfg4vI9qswV+JyOGjy+UgYOcnuOBHpXlc8l61YyuqyUrujiIiIhJVQipMAwasZAIcDtcDXnd8nA819OZhpmq+bpnmCaZrrtrB5BLBhs9uKOz/rLVsRGxQtWghAWcCP3xFjc5rIlDM8OFana2IBERERCQplQPy3wGmGYbQAxwFvmKZpdV7JuKRze3+J54dCqEtr5+e47Tmw2x1KXdYzl8v5o8/RKNrbGO3tg/5pY/3aNSQADd4EYh0Owmk8t9Pp+NHncDVsZHApKHPF8j79L9LvaOSL9vbB0GijiAycUIqTC4G3gd8CFQTHigAsJXgl5pD+iQZACxC72W1dRUlTqAd1Oh2kpSWEHGprkpO9A3LccBLtbYz29sF2trGiHABfZjap3vC8chIb67E7wlZNyhvB/02dTponBo/HIjExsU/31+9o5Iv29sHQaKOI9L8+FyemaX5nGMYEYCqw1DTNriLhLOAz0zT7sxP1BmD4Zrd1fV8U6kEDAYv6+j71Ptsml8tJcrKX+voW/P5Avx47XER7G6O9fdA/bYxvaganE3JH09LS3s8Jt4/T6SA21kNbWweBcF6AJTmb4V4vHoeTr9/7iJ323b9Xd9PvaOSL9vbBwLUxOdmrqzEiQ0BI65yYptnAZoPXTdN8qV8S/dgnwJmGYbhM0/R33nZA8HRm+fYc2OcbmCcFvz8wYMcOF9HexmhvH4Texo6WFkpbmnHFxuEZMzVsC4BAwArbbEFOyiwHIxxQvHAh0+fs26d763c08kV7+2BotFFE+l+4vwXxCMFB9g8bhjHVMIw/AOcDN9kZSmSo2lBSzJUrlnL2ymXEpufZHSei1XmTAGjO39JcICIiIkNTWBcnnVdHDgEMYCHBRRgvNE3zcVuDiQxRK1YsA2DcBIMo7ZEyaNqyRgAQU1NjcxIREZHwEVK3roFimuYftnDbN8Dug59GRDa3Yllw0cCRYybanCTyuUZPgY0rybagra2N2NjN5/4QEREZesL6yomIhJc9TZM7p+2IkZlrd5SI5xlt4LcsUjwe8hd/Z3ccERGRsKDiRER6paOxkQyHg+FxXhJHTbY7TuTzxLDSF+DTqgrWrV5ldxoREZGwoOJERHpl/bdfA1DZ3k587lib00SH9zJHcXf+Wr4vLLA7ioiISFhQcSIivVK6KNj1qMLlxOffxs7SK8NGTgBg6dIlNicREREJDypORKRX2tYXANCckm5vkCgyYsxkHEBjYT4tLS12xxEREbFdWM3WJSLhy1tXDw4HgWFj7I4SNVJTM3lo5s4kud2s/uYrZuy9r92RREREbKUrJyKyTb7mZtI6v44ZP83WLNHE4XJR63QBUNQ5pkdERGQoU3EiItu0Yd0aPqosZ2ljA95hE+yOE1VqE4NlX5tWihcREVFxIiLbtnjtGu4vzOdFtwefVobvVx3DxwEQX1dncxIRERH7qTgRkW1avHgRAGMnTLU3SBSKmTQLgDy3h8qyUpvTiIiI2EvFiYhslWVZVC5dgsvhYMTYKXbHiTrOzGE0+P14nE5Wffqx3XFERERspeJERLaqfkMhf05K4aEdZzMsb7zdcaKPw0GpOxaAyiWLbQ4jIiJiLxUnIrJVaz/9BIByvx+XN20be0soSrNH80LxRr4q2mB3FBEREVupOBGRrapdvgyAusQk/AHL5jTRKTBzb14o3sh7ixfR3t5udxwRERHbqDgRka3ylJcD0JE7yuYk0SszZwSJyam0t7ezbJm6domIyNCl4kREeuRrbiYjEJw72DNxR5vTRC+Hw4Exfgd2Tk1j9cfz7I4jIiJiG7fdAUQkfK2b/zFuh4OK9nbix0zF57c7UfQ6JD2TmS6DFZ3d6ERERIYiXTkRkR6VfP0VAKUxMfj8DpvTRLnx0wHIbm3TuBMRERmyVJyISI/mV5bz7Mb11IwcZ3eUqOeZNAufZZERE4P59Zd2xxEREbGFihMR2aJAIMD733/Hy6XFxM7Y0+44Uc8RG0exFbw6tfHz+TanERERsYeKExHZonXr1lBTU0NcnJeMnLF2xxkSalIyAWhbu8bmJCIiIvZQcSIiW7T6rTfZPS2DWdN2pF0D4QeFNSE4I1puayttbW02pxERERl8Kk5EZIsSli7lr+MnsmfOCLujDBkxU3ahPRAg3RPDko8/sjuOiIjIoFNxIiI/0d5QT5bPB4B76i42pxlCPDG84vJyzuLv+HylphQWEZGhR8WJiPyE+e47uBwOStrbSBw73e44Q0pg6q6Ut7fx2Wef2h1FRERk0Kk4EZGfqOicyrYsIYkOjTcZVOONWQCY5koqKytsTiMiIjK4VJyIyI9YlkViRfBFsW/sZJvTDD0JSSkcOXEqF46fxPevv2p3HBERkUGl4kREfqRi5UpSnU7aAwESdtrH7jhD0uzs4eySlk79gm/sjiIiIjKoVJyIyI+Y894HoNDvxxGfbnOaoal94k4A5DY00NraanMaERGRwaPiRER+5M3CAs78fiErR40nELDsjjMkxUzfg9ZAgAxPDIve/p/dcURERAaNihMR2aS9vZ1PP51HdUc7ObPUpcsujphYCt1xAJR+Os/WLCIiIoNJxYmIbPLVl5/T1NRERmYWqTnj7I4zpDWNnQpAakUFfr+mTBMRkaFBxYmIbNL+wvNcOnEyh87eHZ9fXbrsFLvTvvgsi+ExsSz9ZJ7dcURERAaFihMRAaC9sZHcpiZ2SklltLGT3XGGPEdCMoUON0vr6/jik4/sjiMiIjIoVJyICADLX38Fj9NJWXs7CcaudscRYPnOB3PtqhU8P+8DOjo67I4jIiIy4FSciAgANZ/NB6AoOZWOgMPmNAIwZvIsEpPTqKmp4csvP7M7joiIyIBTcSIiNFWUk9vSAoBjl33tDSObuFwups3amxS3h4Wvvmx3HBERkQHntjuAiNhv8fPPkOFwUNjeRuLEXejQYPiwseekGZzXUEpTZSWN9XWkpSXYHUlERGTA6MqJiOD7/nsAKoePUmESZhKn7kJTIECy28P8xx6xO46IiMiAUnEiMsRVVJTzWmE+yxrq8e5xmN1xZDMOl5t1abkAtH/9NZal4lFERKKXihORIe7ll1/kvfJSXnB7cGaMtjuObIFrzlEELIsJbg/fvPOu3XFEREQGjIoTkSGso6ODF154DoA5BxxNIKB35cORKyuPdU4PAEueetrmNCIiIgNHxYnIEPb1E4+ys8PJ8IwsxkzW2ibhrH7aHgCMrK2jpCDf5jQiIiIDQ8WJyBBlBQI4P/+MU0aN4aRd9qDdr38H4Sxup30o8wdw4+CtRx+2O46IiMiA0KsRkSFq8YvPk+Fw0Ojzkbj/L+2OI9vicLBixl6cveQ77nvrDWpra+xOJCIi0u9UnIgMQZZl0fDeOwCsSknD7820OZH0Rs4uB5CSN5aW5maee05jT0REJPqoOBEZgpa++grZFrT6/SQc8lu740gvORwO9j38eAC+fek/VJUU25xIRESkf6k4ERliAj4f1a/8F4AVCYkEkofZnEj6YvrsvThvh5lcNHocn95+q91xRERE+pWKE5EhZt6/7iMLBw0+Hwk//z1a0y+yOJ1O4mfuDcD4qiryFy+yN5CIiEg/UnEiMoS0t7fzr1de5quaalZnD8MXn213JAmBd/dDWR+wiHW6WHL3nVo1XkREooaKE5Eh5KGH7ufLVSaP1FSR9PNT7Y4joXI4qNrrWPyWxWQLPnzgXrsTiYiI9AsVJyJDxNplS3nwwX8DcOKp59NBrM2JZHvETpjB0uTgLGtJX3xOaaEWZhQRkcin4kRkCGipqaHytls4LW8kc3afw/AJu9gdSfqB64g/Uu7zk+r28M211+Dz+eyOJCIisl1UnIhEOcuy+OKaK0hzupiWksoxJ5yDz68xCtHAGRvHxr2OpaK9nWfM5dx771y7I4mIiGwXFSciUe7TW25kRFMTvkCA8r0Ow0rIsjuS9KO4STP5ZPZBrGhs4JFHHuD111+xO5KIiEjIVJyIRLFvHn+E3DWrAfh+2Ag8O+xlcyIZCFNm7cPeB/8agMduuYEvX3ze5kQiIiKhcdsdQEQGxrdPPEbiJx+Dw8H3cV5SjjwDX0DduaLVvkf8nsS6Sn7T3oDjzTf4vL2DPU74nd2xRERE+kRXTkSi0Huv/peYjz7A5XCw1OEk4YS/0+4L2B1LBpDT6WTnX59DqdON1+Ui9f13eX/u7XbHEhER6RMVJyJRxOfzcccd/8eFV1/GbWtX8b0nhvhTr6Ddrz/1ocAZ66X5hIsxnW7cTiejFi/m9XPPprm+zu5oIiIivaJXLCJRwvzgff7xhxN4/PGHARh/6DEk/P5SWjW77JDijInFd8LFLErOAMBobmbhuWfz9QsahyIiIuEvIsacGIbhBK4GTgPSgPnA2aZprrE1mEgYKFqymOUP3MfolhaOcnn4NjWNX5/xd7LGzKa9Q2NMhiKHy0XMsX/m22/eY8LiT8l2e3jh0Qd5fN77nHnmOUyfvqPdEUVERLYoIooT4ErgTOAUoAi4FXjLMIwdTNNstzWZiA38HR0sfu1lKt9/j5Ht7Yx2OAhYFhu9Xs678h5aY9Lway2TIS9+l4MonLwLa95+jNfKSmkr3shnn33Kr3aazZ6zdmGX351EYlqG3TFFREQ2CfvixDCMGODvwEWmaf6v87bjgGLgF8BzNsYTGRSWZVFWVsqSJd9T8MF7zC4rJ9HlIgHA4WC1ZeHb/yg8Y2fT6tfAd/mBJykVz6/P5+z9j+OreS/x5afvMKu1jbzvF1H43UKKXE4c4yYwbOddmLjHHGITEuyOLCIiQ1jYFyfATCAJ+LDrBtM0aw3DWAjsjYoTiQKBQIDGqipqi4uoLyuhsbyMpo0b6agox13fwLyKMt4oWAdAXpyXfabtSIPPx/qUVDx7HoZj5A5YvgA+FSbSg5SMYRz8y3OYc9DxNM57kYqKIrLcbsZYwNo1sHYNa599mpUBP1/n5jBy5GhGjBjJMJ+f5MwMUoblkTFiBDHxKl5ERGTgREJxMqLz84bNbi8GRoV6ULe7f+cC+HxZIR/fex+5bY1AsDuNY9NXQf/zpNPuCJ53pq+Rsf6WHo/3tjuVZocLgOn+JiYFtrBv58HfcafQ0LnvVH8zO2xp304fuJKoIrjv5EArM7rt69hs3w+diVQ4gr8iEwNtzLaacTgcWNZPuwt97Iin2OEBYFygjd2sH467+d7zHV7Wd/7qjbY6mEPPGT4jjnUEj5uHj/2t7vv++MhfEYuJB8uyyMXPoY7Wblt/vO+3gRiWdmbIxM/PnW3BXTofNKvb/b6z3CyyghlSCfALZ1uPeRcHXHwd8AAWSVgc5/5hX6cFHiuAmwAey+KrpmZer6rG19FKRqCDu6ZOAyAGSO/86DLG4cDhdJGcNxnPmFk8PnIKtZMOxueMCe5QQa84HOByOfH7A2zhYYx4al9vjIC9dsQKBEguXsCIVe8zqraQ0bST5HbTUlfL24sWbNr7yZ12wely0QA0AO2BAG2WRbtlsbLNx5PNflwxXpwuN6fHWbgdDgIOB5bDQYCur52UOTzMcydvOu5RvjpiCRbTVve/JAfUOT2870qm6y/s0I4a4uleeAdvtxzQgIsPYtI6fz4O9m+vIcna8iwQzQ4X78X88Je1d3staVbHFvdtx8lbsT90eduzo5bMwJb3DeDg9djMTd/v1lFHTqCnHscOXo/PJuC3AIudO+rJC7T1sC+8EZOJ3xFs704dDYwKtPa471sxGZueY2Zs4znm3Zh0WjqfN3bwNTHB39zjvh960mhwBv9fGr4mJm9l3489qbhzR/L4TX/B5dKcOyLSd5FQnMR3ft78v3crP3791mtOp4O0tP599++uR55j38Lv+VlmVo/7PPDtRzT4gk+a+44aw67ZuT3u+9h3n1DZHnxy22PEKHbJHd7jvs8s/Jyi1uCT0M7DR7Dz8BE97vvS0q8oaG4CYEbuMHYeMbrHfV9b9i0FjQ0AGFk5zBo99qeVRqd3Vi2isK4WgLEZWew0dnyPx523Zgnra6oByEtLZ6fxk3rc97P85WyoqgQgMyWVmRMn97jvN4Wr2FBRBkBKUjIzjKk97vt98Vo2lpUAEJuQwPQp03+oNDarOFYWFVBUUhTcFOdl+rSeBxOvLd9A8cb1AGTFxDJtxk5b2Cv4hL28vZnmmmCGWlfwRUKL309DwKI+4KDC6aUkJp2y+DwKR83AecwBNHm8NAEbAXp+fSDSO6mHwq6HAmAFAmRVfE9M1QqcI+uxagtw1xZQ4m8lOeAj2e3E7XAS43TSWRIT19hAdaG56XDGTrsQ2/m7/CMWLKsvJ998b9NN03ecTbLHs8VYa+obWbdi6abvp07fiezY2C3uu6GlmQeWvb3p+7N2mMFIb/wW9y1va+O+JT/se+qUaUxISNzivvUdHdz95Tubvj/RmMoOSclb3LfN7+eOL9/d9P2vJhjMSk3b4r4At334w74/HzeRn6X3PO7nnq8/oC0QLMwOHjN+q88xD377EfWdzzH7jBrDz7byHPPEwk+oaA8+rf5sxCh+tpXnmOcXzWdj53PMTsNH8LOtPMe8suRz1jY18drh+3LCwbN73E9EpCeOLb0LHk4Mw/gl8CIQb5pmS7fb/wPEmqZ5dB8Puc7vD4ytr+/5HaVQrFhfzlsPPk5yYx0/ft8dHJ2vdhemDMfnDD5xj2muIau9adN+m78D/33KcNpdwSfuEc015LY19LAnLEsdRqsr+HJhWEstw1rqt5jRAaxMyaXZHXySz2mpZ3hLz+sfrEnOodETBw4Hma0NjGiuweFgi+/YrkvKpiEm+IIgvbWREU1Vm8X9Iff6pCzqYoPFYUpbE6MaK3vMsDExk9q44IuHpI4WRtWXb9amH45bkpBOtTcZHA4SOloYXVfWbccf/9zK4tOojk8FIK6jjbF1JTgc4HA6sQLWD4+gw0FlfCqVnfvG+NoZW1v8k5yOzuNXe5OpSAjWzJ6Aj7E1Rd32cmLFxEFMHFZsPK1JGbSmD8cdE0dMrJf4hGRc8SkAWD1VgdvJ4XAQ43HT3uHb4hWwSKf2DaCAhb+2BH9dJY6WBqzmRtoCfqpjvHS0tWD5/YwpX4vD78MR8IPfH/xsBcDvo9HlYXVSTufBLGbUbMRtBX70D6XramiLJ5ZliTl0/S+dXltEbMDfedfuV6YtWl0eFifnbvq3O6O+FK+/h6shThffpfzwInxaQxkJvi1f4fA5nSxIydv0/dSGcpJ8W77CEXA4+Cb1hxfsRmMFqR09XOFwwDcZowkEAmDBxKZK0tt7fj76JjWPQOfVkHFN1T963tjcgs2eY3LaGnvcd1HyMNpcwfcnR7XUMqy1ocd9Fyfn0NL5HJPXUseI1i0/xwAsTcomZeQo/vm342ltacffj11Nk5O9uFzOfGBcvx1URMJOJBQnuwJfARNM01zb7fb5wPemaf65j4dc5/cHxlZX9/wPPhRut5O0tARqaprwRelK3NHexmhvH0R/G9W+yBftbYz29sHAtTE9PUHFicgQEAkdQr8H6oF9u24wDCMVmAV8ak8kERERERHpb2E/5sQ0zTbDMO4BbjEMowIoAP6P4AD5/9qZTURERERE+k/YFyedriKY9SHAC3wCHKIFGEVEREREokdEFCemafqBizs/REREREQkCkXCmBMRERERERkCVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFlSciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhYclmXZnWGwtViWFRcI9H+7XS4nfn+g348bTqK9jdHePoj+Nqp9kS/a2xjt7YOBaaPT6cDhcLQC3n49sIiElaFYnNQCsUCJzTlERESk94YBbUCqzTlEZAANxeJERERERETCkMaciIiIiIhIWFBxIiIiIiIiYUHFiYiIiIiIhAUVJyIiIiIiEhZUnIiIiIiISFhQcSIiIiIiImFBxYmIiIiIiIQFFSciIiIiIhIWVJyIiIiIiEhYUHEiIiIiIiJhQcWJiIiIiIiEBRUnIiIiIiISFtx2B4gUhmE4gauB04A0YD5wtmmaa3rYPwOYCxzeedMLwF9N02wahLghMQwjHbgROBJIBhYDl5imOb+H/X8PPLaFTRN7+rnYyTCM0UDBFjadbprmQ1vYP6IeQ8Mw9gU+6mFzvmma47Zwn4h5DA3DuAI40DTNfbvdNhO4C9gZqALmmqb5z20c59fAP4BxwCrgItM03x6g2L3WQ/t+DlwFTAEqCf4OXmWaZstWjpMPjNns5qdN0/xdf2fuqx7a+Cjwh812LTJNc8RWjhMRj6FhGPOAfXrY/femaT7Rw3HC5jHc1vNCNP0Nikh40JWT3rsSOBM4HdgdsIC3DMOI6WH/F4HxwAHAL4GDgXsHIef2eA7YDfgtsAuwEHjXMIzJPew/A5gHDNvsI3/Ak4ZmBtAKDOfHeZ/uYf9Ieww/56ePxcGAj+CLiy2JiMfQMIzzgWs3uy0DeI/gi5udCb55cJ1hGKds5Tj7EXy87wVmAu8ArxiGMWVAgvdSD+3bC3gZeIlg1jOB49jK76BhGEnAaIIvJLs/nn8egNh9sqU2dppB8Peze96dtnKciHkMgV/w07+tN4GVBB/bLR0n3B7DHp8XoulvUETCh66c9EJnAfJ3gu/u/K/ztuOAYoJPPs9ttv/uwL7AFNM0V3bedgbwtmEYl5qmWTyI8XvFMIwJwEHAnqZpft5523nAYcAJBN+93dx04HvTNEsHLej2mQ6YpmmWbGvHSHwMTdNsBzY9FoZheIA7gJe2dGWoU1g/hoZh5AEPAXsB5mabzwDagLNM0/QBKwzDmAhcDDzawyEvAf5rmuY9nd9faBjGnsB5BF/8D6pttO9PwIemad7c+f0awzAuAx41DONM0zTbtnDI6YAD+Mw0zdoBit0nW2ujYRguYCpwXR9+ByPmMTRNs3qzfY8HDgFmmabZ0MMhw+Yx7MXzQgsR/jcoIuFHV056ZyaQBHzYdUPnk8ZCYO8t7L8XUNL1orbTPIJXW+YMVMjtVAkcASzousE0TYvgk2R6D/eZASwf+Gj9pi95I/Ex3NyfgZHAX7eyT7g/hrOAGoI5v9ps217AJ50virp8CBiGYWRvfqDOrpl70u3vuNt9tvR3PBi21r7bgAu3cB83wf9HWzKD4O9tbX8F7Adba+NEII5e/g5G4GO4iWEYCcD/AXeYprlkK8cLp8dwW88L0fA3KCJhRldOeqer7/OGzW4vBkb1sP+P9jVNs90wjKoe9rdd5xPh/7rf1tkveDzBy+5sti0LyAH2NgzjXIJPVF8BF5umuWrAA4dmOlBiGManwCRgNcF3bH/SPiLwMezOMIw44HLgzp6uFEXCY2ia5uvA6wCGYWy+eQSw+Yu8ritao4DyzbalAgn0/u94wG2tfaZpftf9+25XcBeaplnZwyGnA02GYbwE7EHwZ/AowXEAgf5N3zvbeAynEyz4zzcM4zAgQPD/0BWmadZt4XCpRNBjuJkzCRaVN2zjkGHzGPbieeEGIvxvUETCj66c9E585+fNu1G0EnzXb0v7b6nLRU/7h53Oy+yPAK92PvlublrnZz9wMsH+yInAfMMwcgYnZe91vrCbRHBA5xUEB7l/Q3Dc0AFbuEukP4YnAV6CA/p7ElGP4RZs6TFq7fzc098lPdwnrB9TwzDcwJMEu0CdvZVdpwEpBLuaHgw8AFwPXDPAEUM1jWBBUgD8HLiA4N/mq53vsm8uIh/Dzu5r5wL39lB0dRe2j+EWnheGzN+giAweXTnpna6ZcWK7fQ3Bf6ZbmrmppXPfzfW0f1gxDONo4BngS+D4Le1jmuZHhmGkm6ZZ0+1+xwDrCc68c8vAJ+29zqseqYCvW1/9BZ2DMC8APtjsLhH9GBIsNl4yTbOqpx0i7THcgi09Rl0vcHr6u6SH+4TtY9o5QPo/wH7Ar0zT7LHrEHAgENdtPMOSzvv/f3v3H2pnXQdw/D0rYREzXRs6Wn+E+AEVA3HFRMu5xJKKJdr8s/QPmQQLQymsHFZoRsZoZWAKWcyBcSMZCtLwV5vmH82c/fhEjaDC4lqsi85E7fTH93vWs3PPvTvz3nPOc67vFxzOOc/5nnO+z/3e5zzP5/vzSxGxbVytJ/PYRunmdKg+fy4ingeepAy+7t3XiSxDyvi19wB3DZC2lWU4x3nhTXEMShotW04G022CXtOzfQ3w1znSH5W21tyvnCN9a0TEZ4EpSlP+ZfNNWdq8qK3PXwIO8v9ucK2SmS/1GUR8gP75neQyXEXpDrLrWGknrQx7zCqjxvO/9Un/L8oF0KDH8dhFxGnAE5Ty/OgcrZhHZOarfQZaH6B0pTl5OLl84zKz02dsRbebUL//wYkrw2oT8HRmHjxWwjaW4TznhSV/DEoaPYOTwfwamKHUfgFQa+HPpVw49HoceHed6aRrQ73fN5wsLlxEbAG+A+wANs8xG9CRtBHxQkQsb2xbQek69ZuhZ/Y4RcQ5EfFiRPQOZj+P/vmdyDKszqf0439svkSTVoZ9PA5cWLvMdG2kzMjW29e9O5D3FzSO4+pi+h/HYxURJ1MGCq8CLsjMudaw6aY/ISL+HBE39by0DvjHfK1o4xIROyOid8zXuno/a5D8pJVhwwXMHgQ+SxvL8BjnhSV9DEoaD7t1DSAzX4mIHcA3ImKa0j/6m5Rao6n6w7wK+HetUfolsBfYVX/Y3wF8H7g3M/vVJo1dRJxBWUjrp8CtwOrG4M6XgRc5eh93UwZD3hsR2yjjG24FpoEfjjTzg3mu3u6sZfICZSra9cC6pVCGDe8DDmbm4ebGPvs4aWXY6x7gRuDuiLgdeD/wORrTkUbEScCJmTldN90BPBgR+ym1wFdTZuO7enTZHti3KYvUfQSYjohTG69NZ+brzf3LzP9GxP3AjRHxB8psghspf6Oto878gHYCD9SL8V2UwPi7wM7M/B1MfBl2j7uzKOeMfq+3tgwHOC8s9WNQ0hjYcjK4rwB3U+az30tZ2O7SurbEWuB5ygJp3dqhyykL2T1C6S/+ELBl9Nke2BXA24BPUvaledvO7H38C6W2awXl77EHOARsmK8r2LjUftofB56mrLK9H/gAcEmd1nMplGHXqZSVmntNdBn2qjWzlwJBuYi7GbghM5uB1XbKxAfd9zwMfIZSjvspF34f65kyeuzqYPDNwImUGvfeY3JtTXrU/gFfBG4HbqO0PFwPbM3MQcY6jFxm7gaupCxyeoDyGzsFXNNINpFl2LCS8ts6V6tHm8tw3vPCUj4GJY3Psk6nM+48SJIkSZItJ5IkSZLaweBEkiRJUisYnEiSJElqBYMTSZIkSa1gcCJJkiSpFQxOJEmSJLWCwYmkVoqIZePOgyRJGi2DE0mtExGfoK5SHxEXRUQnIi4ab64kSdKwvXXcGZCkPq5vPP4VsJ6yWrYkSVrCDE4ktVpmzgBPjTsfkiRp+JZ1Op1x50GSjoiIR4EPNTZtAB4BNmTmoxGxDbgK+ALwNeB04PfAFqADbAfOAf4EbM3MPY3PPhu4Dfhg3bQH+HxmHhziLkmSpAE55kRS21wH7K+39cCKPmnWAncAXwc+BZwC/AS4D7iLErycAOyKiOUAEXEGsA9YDXwauAZ4L7A3IlYPb3ckSdKgDE4ktUpm/haYAWYy86n6uNfbgesy877MfAD4HrAG+Gpm/iAzfwZ8GXgXEPU9NwMvAx/OzKnMvJ/SKrMcuGGoOyVJkgbimBNJk2pf4/Hf631zbMo/6/076/1GSvewwxHR/e2bAZ4ALhlSHiVJ0nEwOJE0kepA+V6H53nLSmBzvfWaXpRMSZKkBTE4kfRmcQj4OfCtPq+9NtqsSJKkfgxOJLXR68BbFvkzHwPOBJ7JzNfgyCr0Pwb+CDyzyN8nSZKOk8GJpDY6BKyPiIuBkxbpM28BngR2R8SdwH+Aa4FNwBWL9B2SJGkBnK1LUhvtAF4FHqLMprVgmfkscCFlLZQfUaYePg3YlJlTi/EdkiRpYVyEUZIkSVIr2HIiSZIkqRUMTiRJkiS1gsGJJEmSpFYwOJEkSZLUCgYnkiRJklrB4ESSJElSKxicSJIkSWoFgxNJkiRJrWBwIkmSJKkVDE4kSZIktYLBiSRJkqRWMDiRJEmS1Ar/A3gNjU+ZY86KAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# View the result of the fitting. \n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can also call `assess_fit()` to see how well the chromatogram is described\n", + "by the inferred mixture. This is done through computing a reconstruction score $R$ \n", + "defined as \n", + "$$\n", + "R = \\frac{\\text{Area estimated through inference} + 1}{\\text{Area observed in signal} + 1}.\n", + "$$\n", + "This is computed for regions with peaks (termed \"peak windows\") and regions of \n", + "background (termed \"interpeak windows\") if they are present." + ] + }, + { + "cell_type": "code", + "execution_count": 41, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.460) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.470 - 19.990) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
window_idtime_starttime_endsignal_areainferred_areasignal_variancesignal_meansignal_fano_factorreconstruction_scorewindow_typeapplied_tolerancestatus
010.002.901.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
1217.4719.991.01.0000000.000001.000000e-090.0000001.000000interpeak0.01valid
012.9117.4612001.012001.463355204.398068.241758e+0024.8002981.000039peak0.01valid
\n", + "
" + ], + "text/plain": [ + " window_id time_start time_end signal_area inferred_area \\\n", + "0 1 0.00 2.90 1.0 1.000000 \n", + "1 2 17.47 19.99 1.0 1.000000 \n", + "0 1 2.91 17.46 12001.0 12001.463355 \n", + "\n", + " signal_variance signal_mean signal_fano_factor reconstruction_score \\\n", + "0 0.00000 1.000000e-09 0.000000 1.000000 \n", + "1 0.00000 1.000000e-09 0.000000 1.000000 \n", + "0 204.39806 8.241758e+00 24.800298 1.000039 \n", + "\n", + " window_type applied_tolerance status \n", + "0 interpeak 0.01 valid \n", + "1 interpeak 0.01 valid \n", + "0 peak 0.01 valid " + ] + }, + "execution_count": 41, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Print out the assessment statistics. \n", + "scores = chrom.assess_fit()\n", + "scores.head()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quantifying Peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "If you know the parameters of the linear calibration curve, which relates peak area\n", + "to a known concentration, you can use the `map_compounds` method which will map user provided compound names \n", + "to peaks." + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": {}, + "outputs": [ + { + "data": { + "text/html": [ + "
\n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
retention_timescaleskewamplitudeareapeak_idcompoundconcentrationunit
015.530.3140091.62120815061.8358181.807420e+064compound A171.377934µM
017.290.3481231.70557112525.9916561.503119e+066compound B56.931685nM
\n", + "
" + ], + "text/plain": [ + " retention_time scale skew amplitude area peak_id \\\n", + "0 15.53 0.314009 1.621208 15061.835818 1.807420e+06 4 \n", + "0 17.29 0.348123 1.705571 12525.991656 1.503119e+06 6 \n", + "\n", + " compound concentration unit \n", + "0 compound A 171.377934 µM \n", + "0 compound B 56.931685 nM " + ] + }, + "execution_count": 11, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Define the two peaks of interest and their calibration curves\n", + "calibration = {'compound A': {'retention_time': 15.5,\n", + " 'slope': 10547.6,\n", + " 'intercept': -205.6,\n", + " 'unit': 'µM'},\n", + " 'compound B': {'retention_time': 17.2,\n", + " 'slope': 26401.2,\n", + " 'intercept': 54.2,\n", + " 'unit': 'nM'}}\n", + "quant_peaks = chrom.map_peaks(calibration)\n", + "quant_peaks" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Successfully mapping compounds to peak ID's will also be reflected in the `show`\n", + "method." + ] + }, + { + "cell_type": "code", + "execution_count": 13, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 13, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA0AAAAG1CAYAAADQo5TBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzdd3gU1RoH4N/MbN9k0yuBkAQydJAmIkhTEEUUvVyxwLULFlBEQVFBERULKNjpCqKCiopdsaHYQJSWIYEkpPe6fcr9Y3cxhNTNJtmE732ePCQzZ86enQzZ+eac8x1GURQQQgghhBBCyNmAbe8GEEIIIYQQQkhboQCIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctagAIgQQgghhBBy1qAAiBBCCCGEEHLWoACIEEIIIYQQctZQtXcDOqlyAFoAee3cDkIIIYQ0XQwAO4Dgdm4HIaQVMYqitHcbOiOroig6WW6dc8uyDFqrbvIvOs9tg85z26Dz3HboXLeN1jjPLMuAYRgbAL1PKyaE+BXqAWodebKsJJSWmn1esUrFIiTEiMpKC0RR9nn9xIXOc9ug89w26Dy3HTrXbaO1znNoqBEcx9DoDUI6OZoDRAghhBBCCDlrUABECCGEEEIIOWtQAEQIIYQQQgg5a1AARAghhBBCCDlrUBIEQgghhBA/tm/fvkC4UnTTg2tC6iYDyBsyZEhVUwpTAEQIIYQQ4of27dvHAniIYdhZDMOoATDt3SZC/JSiKIpz3759bwJ4csiQIQ2mh6QAiBBCCCHEPz3Ecao5JlOIQ6PRWRiGoQWmCKmDoiiMw2EzVFaWzZEkEQCeaKg8BUCEEEIIIX5m3759JoZhZ5lMIY7AwJCS9m4PIf5Oq9VbAYSVl5fM2rdv34sNDYejsaSEEEIIIf4nmmEYtUajs7R3QwjpKNw9pWq45szViwIgQgghhBD/wwJgaNgbIU3n/v/CoJEYhwIgQgghhBBCyFmDAiBCCCGEEELIWYMCIEIIIYQQctZYvXpl7BVXXNy/vdvRVCkpR3TffPNVUHu3ozOhAIgQ0iHk5uZg1apn8ddf+9u7KYQQQkibWbTovp5Hjhwytnc7OhMKgAghfk+WZcydOxubN6/H7bffgOzsrPZuEiGEENJGKA+Gr9E6QIQQv/fnn7/jPJsdI+Pi8XlhPnbufB933XVPezeLEELanCzLsFgs7fYA22AwyCzbvJcfNWrokKuuujrv+++/DXM6neyLL76aYjAY5DVrVsX9889fJrPZzAUFBYnjxl1YMm/egpyjR4/ob7/9hj6vvLLu6IABgywAcM89dyQdOvSP6Ysvvv9LpVJBURRceumFA//3v5tyrr76uuLar1lcXKRaufKZuP37/wiSJIlJTu5VPX/+wqykpB52T5k33nglateunVFVVVWqHj16mhctejTDs7+uNsfFdXW8/vrLMT/8sDusrKxM3aVLF9vMmTfmXnzxpeUAsH37O2Hbtr0Vc+ONt+SsX/9GXEVFubp3775VDz/8WMamTeujv//+mzCVSqVMnXplwezZd+UDgN1uZ156aVXsnj0/hpSWlmh0Or08cOCgikWLHjkZGhomXXHFxf2Li4s17733dszBgwcC1659UygrK+VeeumFLn/88WtwVVWVKiEhyXzbbXfkjBgxstrz3nbufD9069bNMUVFRdpu3bpZx427qGT9+te67tnz5z5vficsy3r1/vwVBUCEEL/3xy97cFFEFHQch1/LSnBs788Qr/8fVMEh7d00QghpM7Is49prr+qVknK03YZD9erVp/rtt3cIzQ2Cvvrqs4innno+VZJEpmfPZPu1117VJygo2LlixQvHAgMDpR9+2B28du2rXfv06WeeNOmS8vDwcMfevT+bBgwYZJEkCUeOHAq02+3sX3/tMw4bdq75wIH9hqqqStX48ReV134tURQxb96cZIBRli598nhYWJi4Zs2quPvuuzt5x45PDgJAcXGx5tChfwKfemplqsNhZ5588rGEJ598rPv69W8J9bX5nnvuSDpx4rjh7rvvPZmQkGT74otPQ5cvX5rEsmzaxImTKwCgpKRY8/HHH0Y+8cQzaRaLmX3kkYU9b7zxur4TJlxU/Mor649+9tnHYVu2bOoyZsy48t69+9qef/7puN9+2xu8cOHijK5du9kFQdA/99yT3V9//eXYBx98NGvdureO3nTTdX3OP39M6W23zcmTJAlz585OdjqdzMKFD6dHREQ633337chFi+Ynv/DCKymDBg22fPPNl0ErV65ImDXrpuyxYyeU//bbL6Z1617r2tLfiTfvr1kXSRuiAIgQ4vfK/toHnVoLq1aL8eGRGK83omTPj4iacnl7N40QQtpYx1wXaMyY8SWDBg22AIDVamXGj7+oZNKkyWVdu8Y7AKB795sLt29/Jzot7Zh+0qRLyocOPbd8//4/TADyDxzYb+Q4lZKc3Kv6jz9+Cxw27FzzTz/9ENyzJ18dEREp1n6tn3/+0ZSZmaHfuPHtQz17JtsBYPHipRmbNq2LLi0tUQEAx3HKsmUr0oOCgiQAmDx5StGWLZu61NfmY8dSdH/++Xvw0qXL0y68cFIFANx11z15J06kGbZu3RzjCYAkSWLmz1+Y6bn5799/YOWxYykB99//UDbDMLjttjvz3ntvW0xq6jF97959bb179zGPGzeh7LzzRlUDQNeu8Y6vv/6iMiPjhB4AwsMjRJZlFb1eL4eEhEq7d39tSk8/YVi7dvNhz2s8/PBjJ48dSzFu3bo5etCgwSfeeWdr9IgRI0tvuWV2AQD06NGzKDs7S/vJJzujWvI78eb9teSaaU0UABFC/JrVaoW+tBSIioFpwEBU5+UCAMqOCYhq5FhCCOlMWJbF22/vEDraEDgAiIvremromV6vV2bOvLHws88+CdmyZbMxNzdHm5mZbigvL1NLkswAwOjRYyuWLHkowmq1Mr/9tjewb99+VV26dLX9/fd+E4D8P/74LeiCC8aW1vVaqanH9AaDQfIEPwAQFRUtLlz4cLbn56CgINET/ABAYKBJcjgcp72xmm0WhBQ9AAwdem51zTL9+w+qevPN9XE1t/Xo8e/rarVaOSIiys4wDABAp9MpAGC321kAmDZteulPP/0QuHLlii45Odna7OwsfW5ujq5Xr96nvY5HWlqqXq83SDWDC4Zh0KdPv+r9+/80AUBGxgnDqFEXlNU8buDAc6prB0DN/Z148/78FQVAhBC/duJEGnoaAwAAYf0HQvrjVwCAIye3PZtFCCHtgmVZBAQEyO3djubSanWn2myxWNjbb7+Bt9ls7OjRY8omTpxcMnDgoJN33XVbL0+Z8847v0qtVsm//vpz4F9/7TONGzehND6+u/3jjz+IzsrK1GRknDAsXbr8RF2vxXEqxXNDXh+WZRvtSavZ5voSEciyxHAcd9pOtVp92s8sW39bHn/8kW4///xj6NixE0pGjDi/olevPnlbt26OLikp0tRVXlHqfmuyLEOlUimu12MVRWm8o7C5vxNv3p+/ogCIEOLX0o4J6GFwDXfXJfWArms8kJUFdWUFFFkG48WTSEIIIe3nhx92m9LTTxg++ODTvyMjo0QAKCsr5SoqKlSeQEOj0SgDB55T+eOP3wenph4LWLTokcy4uK4OhmGUV15ZExsTE2urmdCgpsTEJJvZbOZOnDiuTUxMsgNASUmx6pprruz3xBPPpHrT5uTkXlYA+PPP3wI8Q+AA4ODBvwO6dOlq9abO0tIS7quvPo9YuHDxicsum3aqxyY7+6ROp9PXCL7+DTB69Ei2WiwW7ujRw7qavUBHjhwOiIvrZgOA+Pju1iNHDgcAKPTsP3z4YIPzxpryO+lM6M6BEOLXCo4cgppl4WBZqCMjEZXMwy5J4BQFzsLCxisghBDiV6Kioh0A8PHHH4ZlZWVqfvttb8CCBXN7SJLEOBzOU3f7I0eOKv/uu2/DTaZAMSmph12r1So837t6z54fwkaMGFleX/2jR4+pTEhIsjz++MMJ+/b9YUxJOaJbunRx96CgYOfAgedYvGkzz/e2DRo0uGL16pXdvvnmy6C0tFTtSy+9ELNv3x/B//3vNQXe1GkyBUl6vUHas+fH4BMnjmuPHDmkX7LkofiMjHSD0/nvedDpdFJOTra2sLBANWbMuIquXeOtjz/+SOIvv/wUeOxYim7Zske7ZWef1M+YcW0BAFx77ay83377JWT9+tejTpw4rt2x492wTz/9JLKhtjT1d9JZUABECPFrRSdPothuhzMoCAzDICExCQUO10M/Z8kZmU8JIYT4ucGDh1puuum2rI8//jBy1qwZ/VaseKJ7v34Dq84/f3SpIPyb4W7cuAsrZFli+vUbWOnZds45QyoVRcGYMePL66ufZVk888yqtIiIKMeiRff1vPvu2b04jlNWrlyTqtVqve7OePrplSeGDx9RvnLlM91vuWVW399++yX4oYeWHr/00qlljR99JpVKhYcffuzEyZOZ+ptvvr7vAw/c29Nut7PXX39DTk5Olt5sNrMAcPnlVxXu3/9H0Lx5dySrVCqsXv3qse7dEy2PPfZw0uzZN/fOyEjXP/30ymNDhgw3A8C4cRdW3nnnvMxduz6KuOmm6/p++ulHEZMmTS7yDJGrS1N/J50F05QxgqTZTkiSnFBaavZ5xSoVi5AQI8rKzBDFDjcEuMOg89w2mnKeL7tsIrKyTmL9G5swZPgIZGZm4NcF9+CcoGBE/u9GBI8e08at7njoem47dK7bRmud59BQIziOTQeQ6LNKvbRv375eLMt9ERnZpVqj0fltNi3if/bu3RMQHh7prJkE4tVX10R/9dXn4R9++Nmh9mxba3M4bLrCwpwAWZYuHjJkSEp95WgOECHEb8myjPz8PABATJxrCYOoqGjsLS1BusWMW0JoHSBCCCGkpl9//SXo++93hz7wwEMZ8fHd7UeOHNZ//PGHUZMnTylq77b5CwqACCF+q6SkGE6nEyzLIjLSlb1Tp9Phb1nC9zlZmKbWILyd20gIIYT4kzvumJdrtVrZp59+IqGqqlIVGhrmuPzyKwtuvXVOfnu3zV9QAEQI8Vt5OdlY038QKgEwdjugcv3JiomJQVlZKfLzc8HzZ2ToJIQQQs5aWq1WeeihJVkAstq7Lf6KkiAQQvxW0YnjiNLqkKDRgtXrT22PjoxGpEaLSkFox9YRQgghpCOiAIgQ4rcqMzMBANUq1Wnr/SSFheOlAecg6c8/2qtphBBCCOmgKAAihPgte4FruLLDYDhte0CUaz6QSpYhO51t3i5CCCGEdFwUABFC/BZTXu76NyT0tO1BEZEQZVfqW6mqqq2bRQghhJAOjAIgQojf0lpdC3brYmJO2x4WHoEqUQQASNUUABFCCCGk6SgAIoT4rUB3L48pvvtp28PCwlApuoa+UQ8QIYQQQpqDAiBCiF+qrq5Gsc2GUocDkT2TT9sXFhaOCncPkFhZ2R7NI4QQ0kSjRg0dsn37O2FNLf/999+apk27pN/YsSMGr1ixPK4129YUq1evjL3iiov7+7LO5pyT7OyTmo8//pBW/vahdl0HiOf5sQC+q2d3uiAIiTzPDwLwIoChAEoArBYE4bkadbAAlgC4BUAIgD0A7hAEIa1GmRbXQQhpW/n5uXgqNQUmUxB+TEg8bV9oaCiq3MkPzMWFCGqPBhJCCGmS99/f9bfJFCQ1tfzata/GRUVF21988ZVjAQGBTT6uI2nOOXnssUe6R0ZGOqZOnVbW2u06W7R3D9AvAGJqfU0EIAJ4kuf5MABfAzgGV/CyBMAynudvrFHHIwBmA7gVwHkAFACf8zyvAQBf1EEIaXu5ubkAgJiY2DP2qdUaHLTb8H5uNqxBwW3cMkIIIc0RFRUt6vV6panlzWYz16dPX3O3bt0doaFhnTIAat45UZjWbc3Zp117gARBcADI9/zM87wawCoA7wuCsI7n+QcB2AHMEQRBBHCU5/meABYC2OgOUO4D8IAgCJ+567gaQC6AKwG8A+A2H9RBCGlj+fl5AICYWgkQPE5o1NidkY4L9XoktWXDCCGENMuoUUOHzJu3IGP69Bklixff312WZSYkJNT53XffhtntNnbAgEGVDz74aGZUVLQ4atTQIQDw3nvbYt57b1vM22/vONi1a7xj7dpXoz7/fFdkRUW5Kjo6xj59+jX506b9pxQAfvnlp8AHHrg3edasm7Lff/+9mPDwCPsTT6w4MXPmf/tdc83M3E8//ThSo1HLmza9c4RhGKxcuSLu99/3BouiyCQkJFnuuGNu9qBBgy2e9m7b9lb49u3vRJeVlWoGDjynIjIyytHQ+7v11ll8374DqsrKStU///xjqFqtlqdMuaJw4sTJpU8/vaz7iRNpxujoWNsDDzyUcc45Qyw1z8lFF11cPmvWf/t2755oWb36tTQA+PHH7wMXL74/+cEHHz3+4Yfbo44ePRJw9OiRgCuuuDhw584vDl5xxcX9x4+fWDJ37vzcmm2IjIyyL1/+bEZd5+PNN985WlCQr1616tmuBw7sN3EcqyQn9zLPm7cgKymph701fu/+rL17gGq7E0BXAPe6fx4N4Ed34OKxGwDP83wkgEEAAt3bAACCIJQD2A/gAh/WQQhpY7p//sbL/c/BGK2uzv2hoa6h02VlNCKAEHJ2kaxWtr4v2W5n2qJsS+zd+3NIZWWl6sUXXxEefXTZ8aNHjwS+9NILXQDX0LDQ0FDnZZdNK3j//V1/d+nS1bFq1TNdPv3048g775x3cv36LUemTftPwcsvvxD/1lubImrW+9tve4NfeWXd0UWLHsngOFYBgO+//zZ01aqXhKVLnzweFBQk3XPPHT1zc3O0TzzxTNorr6xL6dWrt/mee+7odfDg33oA+PjjD0Nee+2lbtOm/adg7do3D/fu3df8+ee7Iht7Tzt37oiOjIxyrFv31uEpUy4v3LbtrdiFC+/tefXV1+a//PLaoxqNWl65ckV87eOCg4Ol++9fnP7XX/uCPvrog9DS0hLumWeWJ0yYMLH4kksuK3/mmRfSevZMNp933vll69a9dbQ557nm+bDZbOzdd9/Oy7KEVateFlatelkwmYLEO+64uXdubo66OfV2Bu3aA1QTz/M6AIsBvCAIQp57cxyAg7WKeqLdbu79AJBVR5luPqyDENLWyssQodXCbjDWuTsk0IQYrQ723Ow2bhghhLSv43fPOae+ffpkvqLrAw+emsN8Yv7cgYrTWecDb233hOr4h5cInp/TF97XX7ZY6rw31MR2sXR/fHmzbsDrbaNeLy1Z8kSmWq1WkpN72fbu/blk374/ggDX0DCWZRW9Xi9HRUWLZrOZ/eSTnVELFjyYfuGFkyoAICEh0Z6Xl6t9//13omfOvKHIU+/VV1+b7+nNOHkyQwMAl146tYjne9sA4KeffghMTRWMO3d+/nd4eIQIAPPnL8w5cuRwwDvvbInq339gxgcfvBc1cuSospkzbywCgB49euYfPXrYmJFx4vQVuWvp2rWb9c475+UBwI033lawbduW2NGjx5ZOnDi5AgAmTpxcsnbta13rOnb06DFVkydfVvjaay91/fbbr0KNRqO0cOHDJwEgJCRUUqlUikajkT1tbqqa5+Pdd7eGV1VVqp5+emW6Wq1WAODxx5/KuPLKS/vv2PFuRM3epLOB3wRAAGYC0ANYXWObAa7hazXZ3P/q3PtRTxnPyom+qMMrKpXvO9g4jj3tX9I66Dy3jYbOs8piBVgWhpiYOv8v9dTrcXv/QTDv3w/VLfR7aghdz22HznXboPPcsUVFRds9N+EAYDQGSKIo1tnDdOxYis7pdDLPP/9095UrV3T3bJckmRFFJ2O1Wk8d1717whlDubp1i/fc8yEl5YgBAK6++orTMrqJosg4nQ4GALKyTurHjp1QWnN/nz79qhsLgGJj4069jsFgkAGgS5cup9qj0WhlUXTW24s2f/4D2fv3/xG0f/+fQa++uuFIc+ZM1afm+Th2TDBYrVbu4ovHDqpZxul0sllZmXUPtejE/CkAmgXX3J+SGtusALS1ynl+SWb3frjLWGuVMfuwjmZjWQYhIXU/ufYFk0nfanWTf9F5bht1nWeDJAKsBtHJSXX+XwoIDwWKS8CJzlb9v9aZ0PXcduhct42z9TwnrXn1r/r2MSx72o1z4srVfze1bMKK52uPmKm3bEvUDH7+VXf1siwzAPDQQ0tOJCb2sNXer9VqTx2o0+nk2vt1Ot2p/bIsM3q9Xnr99U1n9GRpNBoZABiGgVKrKSqVqtH3rlJxZ5RhmKYH6AUF+ery8jI1x3HK3r17TP37D7A2fMTpLyeK0hnBVc3zIcsyYmJibU8/vfKMDMdGo7FTJppoiF8EQDzPRwAYCeDJWruyANROAeX5OQeAusa247XKeP7D+6KOZpNlBZWVlsYLNhPHsTCZ9KistEKSzvh/TnyEznPbqO88O51OBLOuD46A2K4oKzvzWQSrdwU9nFOscz/5F13PbYfOddtorfNsMuk7RK8Sp9c3+U23Vtm20qNHso3jOCUvL1fjGQIHAJs2rYvMzEzXLVmy/GRT60pK6mm1Wq2cw2FnevXqcyqYevTRB+N79OhpmTXrpqL4+O6WQ4f+DgBQ6NkvCEdb9SmbLMt4/PGHE+LjEywTJ15c8uqra7qNHDm6sl+//u4giDkt2uE4lVJdbeZqHl9YWKCJjY09I0D0SExMsv7ww3dhJpNJ8gylE0URDzxwb+K4cePLLrvs7Eqx7RcBEFzBjwLgh1rbfwQwm+d5ThAET3Q6AYAgCEIhz/MVACoBjIU7eOF5PhjAYAAv+bAOr4hi6/0dkSS5VesnLnSe20bt85xzIh0GzvXnKbhrQp2/A12wa4SqWlHgtDvBcNwZZcjp6HpuO3Su2wad584vKChIuuiii4veemtjF6PRKA0ePKz6zz9/D9y0aX3clVf+J7/xGv41btyEio0bu1uXLHko6e6755+Mje3i2LHjnYjvvvsm/KKLLj4GANdcMyv/sccW91i79tWo8eMvKt+z54eg337bGxIcHOxsnXcIvPHGK9Hp6emGdevePJKYmGT//vvdIU888WjC5s3vHNVqtYper5cLCwu0OTnZ6i5d4py9e/ep3rPnh9C9e38ui4iIdG7ZsinaarU0+CE4deqVpdu3b4tZuPDepDvumJttMgVJGza8EXPgwL6g226bc1bN/wH8JwvcQAAnBEGo3WWyAYAJwHqe5/vwPH8DgHsAPAUAgiDY4QpSVvA8P5Xn+QEA3oWr1+cDH9ZBCGlDhcdTAQBmWYZKX/cQF2Povwtoy9ZGRgoQQgjpsBYteiTr8suvLHjzzY1dbrjhmn5bt26OmTHjuty7727exH2O47B69WvHevZMNi9fviTxlltm9vnnnwOBDz/82PHRo8dUAcCFF06seOCBh0589dXn4TffPLPvnj0/Bk+dOq2gdd4ZcPDgP/p33tkSO3PmDTmJiUl2AHjwwUcyi4uLtKtWPdMFAKZOvbIoK+uk7qabrusrSRLuuuvenORkvnrx4gd63n337b1MJpM4cuToBntwgoKCpDVr3kgJCgoWFy1a0HPOnJt7FxYWaJ588rnUmr1hZwtGqT3QsR3wPP8KgHMEQTivjn3D4EqMcA6APADPC4LwUo39HFxD526EK4nCjwDuFAQhw5d1NNMJSZITSkt9PyxHpWIREmJEWZmZnnq1IjrPbaO+8/z1ls2w7voY2oBATFq3qc5jf/31F+hffxV6jkP35SugiYpqo1Z3PHQ9tx06122jtc5zaKgRHMemA0j0WaVe2rdvXy+W5b6IjOxSrdHozrobVEK84XDYdIWFOQGyLF08ZMiQlPrK+cUQOEEQ7mhg3x8AzgiMauyX4FrUdGFr1kEIaTsZVgteTjmMyy+/EpPqKRMUFIQyUYSe4yBbaA4QIYQQQprGX4bAEULIKXl5rlEN0dEx9ZYxmYLwdXEBPirMB2cytVXTCCGEENLB+UUPECGE1JSXmwMAiImpncDxXyZTED50B0p3GwNw1i1jTQghhBCvUABECPE7Uyw2XN//HOgaSG8bEBAAjuMgSRIqKyug051167gRQgghxAs0BI4Q4lcURUEQFERotQiLiq63HMMwiA4ORoxWh4q8nDZsISGEEEI6MuoBIoT4lbLSUoSqXAPaInr0aLDsf6Jjcb7eCNsvvwADB7dF8wghhBDSwVEPECHEr+QfT4WKZSErCgwRkQ0X1mgAAM7q6jZoGSGEEEI6AwqACCF+pTQjHQBQBQUM1+DC1mC0rnk/TkqDTQghhJAmogCIEOJXKrKzAQBWVeN53VidHgAgW62t2iZCCCGEdB40B4gQ4lfsRYUAAMlobLQsq9MB1dWAw9HazSKEEL/BMOAYhmmXh9iKosiKAqk9XpsQX6EAiLQqsbwMquCQ9m4G6UCKqquQUl2FgKSkRsuqjQagGBQAEULOGgwDTmaYGItNbJd7OINOJbJQ8vwtCFq9emXs7t1fhe3c+cXB5h6blpaqve22G/ps2rT1cLdu3ekD5SxAARBpNbnvvYPqr75AQdeuGL1kWXs3h3QQP5QU4UjKYay6/Y5Gy6oMrl4iThRbu1mEEOIXGIZhLTZR9euhPNliE+tfLK0VGHQqdkS/GFWgTsUqiuJXAZC3jhw5pF+06L4eDoedpoWcRSgAIq1CEUVUf/UFAODLX/Yg+OA/6N9/QDu3inQEeXl5AICYmNhGyzIhofi8IB8h8d0xvLUbRgghfsRiE2Wz1dmmAZBbpwkUXnlldfSOHe/EdOkSZystLdG0d3tI2+k0FzHxL/askwCAKtGJXQV52Lv3p3ZuEekIrFYrystKAQCxsY0HQJrISGzMysBeydnaTSOEEOKlUaOGDtm6dXPETTddz48bd97gGTOm9fnqq8+Dapb55psvg66/fnrvcePOG3zllZf2e+GF52Ltdjvj2Z+SckR3zz13JE2aNHbQmDHnDr7yykv7bdy4rt61EjZtWhc5duyIwV9++VlwfWX27fs96P77H0qfM+fubJ+8UdJhUABEWoUlMwMAcMLsSk985MjhdmwN6Sjys09i6+DheGXAYBjVjWeBMxoDAABmM60DRAgh/mzjxrVx48ZNKH3jjc2Hhw49t2LZskd7/PHHb0YA+O67b0zLly9Nmjx5SvGGDVsPz5t338k9e34IXbz4/gQAsFgs7H33zU3W6fTymjWvpWzc+PbhUaMuKFu//rWuBw/+o6/9Wlu2bIrYvHl93MMPP3580qRLyutr0/r1W4TJk6fUu590XjQEjrSK8owMAECZ04mexgDI2fRwhTSuIC0NoSyLQLX6VIrr2hgGUKs5iKKMAKMBQSo1tBYrFFkGw9IzHUII8Ufjxl1YPHPmjUUAsGDBopxDh/4O3L59W+SwYeemb9myKWbChInF1133vyIASEhItKtUqsyFC+cnnzyZoTEYjPLUqdMKr7lmZqHJZJIB4K677s394IPt0ampKfr+/QecWgth27Yt4Rs2vBG3ZMkTaWPHTqhsn3dL/B0FQKRVWHKyoQHQMyAQY8MjsK+iDKIoQqWiS47UryLrJEIBmFkGDMPUWUalZpFtyUWMIQpGgxFrBw0BAEjmaqgCTW3YWkIIIU01ePDQqpo/83xv84ED+00AkJ6ebjh+PM343XffhHn2K4rr37S0VN348RdVXnvtrMJduz4KPX481ZCTk63NzEw3AIAkyac+LMrKytSvvro6nuM4JS6um70t3hfpmOhulLQKZ3kZNACK1Bp0ARCkUqOsrBQREfUO1yUE5nxXAgSHTldvGZtsQ1F1CYK1JgSYTCiXJOg4DrLNBlAARAghfkmlUik1f1YUBSzLKa7vZeaKK/6TP3XqtJLax0VFRTsLCwtUt912Q+/AQJM4YsTI8iFDhlcOGDDQfPXVV5yWXYlhWDz++JOpGza8Ebt8+dKE9evfSmFpZACpA10VpFWcMBqxMy8HhYHBAIBQtQbFxUXt2yji98RS12efUk8gw3EszKIFuRUFsDitMJlMsMmuTKySxdJm7SSEENI8R44cOm1165SUIwFJSUkWAIiL62bNysrUJSYm2T1fBQV56tWrn4+rrq5iP/lkZ1h1dZVqw4YtKXfeOS9v8uRLyysqyt0P8f+Nq4KDg5xjxoyrXLTo4YwTJ9IMGzeujWrDt0g6EAqASKv4w2bB2zlZqIqIAwAEqdUoLixo51YRf8dUuUZIaMLC69zPcQwqbVVwSE5U2qsQFGSCVXIFQJaKijZrJyGEkOb55JOdUTt3vh+alpaqXbFieVxmZob+mmtmFQDAjBnX5f/++68hq1evjE1LS9Xu2fNj4DPPPJlgNleroqKixaioaIfdbmd37fooJDv7pOaHH3abHnvs4UQAcDgcZ9zL9u7d1zZt2vT8rVs3xx4/nqZt6/dK/B8NgSOtoqjI1dujComAnKGAYxiUu4c3EVIfjd0O6PQIqGcNIBkyym2uOa2VtiqoTCrYZNcyGNbysjZrJyGEtDeDTtXmD7Fb8poTJ04u2rHjnagXXnhOHx8fb3nqqedS+/btZwWASy+dWqYoyolt296K+eCD96INBqM0dOjw8nvvfSDbsz8l5Wj+2rWvdl2zZiUbHh7hmDTpkuK9e38OPnr0sBHAGUNM5sy5O+/nn38MWb58afd1694UaCgcqYkCIOJzst2OwKoqhGk00AYEw8KwCICC6vz89m4a8WOiKCKtohyMKGJIj551lnEqIqwOGwDALjogQYLDnSzBSj1AhJCzgKIoskGnEkf0i1GhHUbyGHQqUVGUZi/AmpCQZH3ggcX1poSdMuXysilTLq/zSRbDMFiwYFHOggWLcmpuv/nm208NLZk7d37u3Lnzcz0/a7VaZfv2j5u0BsfIkaOr9uz5c19TypLOgQIg4nP27CzcYQpGId8Hh/UmWDg1AiQHbDQHiDSgsLAAb2VlQqVS4/ehw87YzzCAU3bCJroS+9hEByRFgugOgBxVVWccQwghnY2iQGKh5AW2Qw+Q6/UVWVEgtcdrE+IrFAARn3OWlwMAyp1O6I0mHAuJxq79P0AfaGz4QHJWy811PdiLiYlFXUMVGIaBQ3bCLjoAAA7JCafsxHEoyCrMx4gGMscRQkhnoiiQFEWhIIQQL1EARHzO7E52UOF0wmA04ViXHvjii/dwTpcu7dwy4s/ycrLBAIiNrXv+D8sysDsccHgCINEJURZxRKPB/pMZ6BUQ0IatJYQQ0lQ0vIz4GwqAiM9Z3EPdLAxgVKmhNwQCACoraUFmUj/H0SN4e8i5yFPXnbCHYRhYHNZTCU9FWYRDdiLAHfiYzdVt1FJCCCGEdGSUEoP4nM09Gd3JueLrQE4FPiAAAVZrezaL+Dl7cRE4hoFWr6+7AAOYHebTNtmcdpiMRphUKtjKKAscIYQQQhpHPUDE5xxVlVADkNxP8uNK87CsVz/8SmmKSQOUclfgrAoNrXO/DPFUAgQPm2jHIEnBrEFDkSektHobCSGEENLxUQ8Q8Tmx2vWUXtG6JqWzASYAgI5hYLfb6z2OnN1UVgsAQB8VXed+SZHhEJ2nbbM6beD0rkBboWuLEEIIIU1AARDxubwgEz7My0GZ3jU3gzG4AqAAlQpVVTQPiJxJkiQY3QuaBneLr7uMIsEhnR4AibIITucaMseIYus2khBCCCGdAgVAxOfStVpsy8lCRUAQAEDWGQAAAZyKEiGQOhUVFSFMrQYAhHZPOGM/wzBwyuIZAZBTEsHpNK4yFAARQgghpAloDhDxuepq14KUWr1r3R9J63pCb1RxqKysaLd2Ef+Vm3USIWpXIKOLiDxjP8sCoiTCWUcPkMrgur5YmZbEIIScHRgGHMMwtBAqIV6iAIj4nLqsFFFaLXRaV8+PrHHNBTJyKhRRAETqkJedhZzSEsSHhaFnYOAZ+xmGgSg74ZRO7+URZQkqo+s6U8nKGccRQkhnwzDg9KwzRnFY2uUejtEYRKuszvO3IGj16pWxu3d/FbZz5xcHm3rM9u3bwt5//72owsJCbUhIiHPixIuLb7llTj7Hca3ZVOIHKAAiPqUoCqaWV+KK/ufgU5Xr8vL0ALEMAzOlKiZ1yCkqxOr0NFzWrx8msGc+1GQYBlbxzCQHoiSBc/cAcYrc6u0khJD2xjAMqzgsqmrhN1m2W9v0Dx+r1bMB/LkqRh3MKoriVwFQc+3c+X7oyy+/GD979t0nzz33vKrDhw8aVq9+Pt7hcDJ3331vXnu3j7QuvwiAeJ6fBWARgEQAxwEsFQRhu3vfIAAvAhgKoATAakEQnqtxLAtgCYBbAIQA2APgDkEQ0mqUaXEdpGlkm+3UxDJP8gOFU+E7mUVG9gkMpsUqSR1yc3MAALGxXerczzAMrE7bGdtFWYQu2IQfiovABARgWKu2khBC/Idst8qSzdweT346xfzxjz/+MGLMmPElM2ZcVwwACQmJ9szMDN2XX34WTgFQ59fuFzHP89cD2ADgdQD9ALwD4B2e58/jeT4MwNcAjsEVvCwBsIzn+RtrVPEIgNkAbgVwHgAFwOc8z2vc9be4DtJ0ssWVytgpy1AZ/h3K9LvehM8L81FuNtd3KDmLFWRng0H9ARCgwFZHACTJElThoXg54zg+KC1u1TYSQgjxzqhRQ4ds3bo54qabrufHjTtv8IwZ0/p89dXnQTXLfPPNl0HXXz+997hx5w2+8spL+73wwnOxdrud8exPSTmiu+eeO5ImTRo7aMyYcwdfeeWl/TZuXHfmpFG3TZvWRY4dO2Lwl19+FlzX/tmz78qeOfPG/NrbzeZqv+gcIK2rXX/JPM8zAJYBWCUIwovuzct4nh8FYKz7yw5gjiAIIoCjPM/3BLAQwEZ3gHIfgAcEQfjMXefVAHIBXAlXMHWbD+ogTeQJgMySCLXOeGq71j0fyEw9QKQOw6qqcceQc+EoKqxzv6hIcEhnZnkTZQka9zpAVvc6QoQQQvzPxo1r4/73v5uzH3zw0YyPPvogfNmyR3uEhISmDBt2rvm7774xLV++NOmWW2ZnjRw5uvLkyQztmjWrumVnn9Q999zqExaLhb3vvrnJ/fsPrFqz5rUUlUqt7Ny5I3z9+te6Dh06vKp//wHWmq+1ZcumiM2b18c9/PDjxy+8cGKdk4+HDx9x2hPZ8vJy7vPPd0UMHHgOpas9C7R3DxAPoDuAt2tuFARhkiAITwEYDeBHd+DisRsAz/N8JIBBAALd2zzHlgPYD+AC9yZf1EGaSLa5/gZZJQlq99wfAAhXqZBsDICT0mCTWmRZhs7pBMcwCIqsexFUGRJEue4012qNGmqGAedwQJFpHhAhhPijceMuLJ4588ainj2T7QsWLMpJSuph3r59WyQAbNmyKWbChInF1133v6KEhET7mDHjK++99/7MX3/9JeTkyQyNxWJmp06dVvjQQ0syk5N72RITk+x33XVvLgCkpqboa77Otm1bwjdseCNuyZIn0uoLfmqrrq5mFyyY28PpdLBz596X5ft3T/xNe3fzJbv/NfI8/yWAcwCkA3hCEIRPAMQBqJ3NI9f9bzf3fgCofbHmuvfDR3V4RaXyfXzJcexp//ob2e4JgGTo9UawrKv3eoK5BNf37ocfKypa5bz4mr+f586C41jk5eUhVOVaAygiKbHO68PJOCEp4qnrqSaVVoU3Bw8HxzCQK8uhDQ9v9XZ3NHQ9tx06122DznPHM3jw0KqaP/N8b/OBA/tNAJCenm44fjzN+N1334R59ivuxJ5paam68eMvqrz22lmFu3Z9FHr8eKohJydbm5mZbgAASZJPfTCUlZWpX311dTzHcUpcXLczM+fUoaAgX7VgwdyeBQX52qefXnmse/cER8vfLfF37R0Amdz/vgngMbiGpV0F4COe5y8CYIBr+FpNnokAOvd+1FMm1P29L+poNpZlEBJibLygl0wmfeOF2kGlwxUA2WQJwaEhULlvbGWNBrCbAae9Vc+Lr/nree5MDh3KRLjGNd0uskc8DHVcH6UWJ1g1A53+zGl5OqMOFbIEA6eCCo4OdX21Nbqe2w6d67ZB57njUKlUp61VoCgKWJZTXN/LzBVX/Cd/6tRpJbWPi4qKdhYWFqhuu+2G3oGBJnHEiJHlQ4YMrxwwYKD56quvGFCzLMOwePzxJ1M3bHgjdvnypQnr17+VwtaRWdQjNVXQLVgwr6ckScwLL7wi9OnTz1pvYdKptHcA5ImynxUEYbP7+wM8zw8GMB+AFYC21jE6979m9364y1hrlfGM7fRFHc0mywoqK30/J4HjWJhMelRWWiFJ/jfcp4xR4cO8HFTIMkY4FTidrl+xnnMFQpLVhrIy/0+E4O/nubPgOBZZaccR506ZblUZYK91fTAMA7NsQ7XZCpt45oM5h16CXZZh4IDC7AJw4bFt0vaOhK7ntkPnum201nk2mfTUq9RKjhw5ZLzoootPDUlLSTkSkJSUZAGAuLhu1qysTF1iYtKph9F79+4JePfdt6MefPDRzF27Pgqrrq5Sbd/+8SG1Wq2463NHv//GVcHBQc4xY8ZVRkZGOmbPvqnPxo1ro26++faCutqTmZmhueeeO5MDAgKk559fcywurquzrnKkc2p2AMTzvAqu5AQTACQACAJQDCATwOcAfhEEoakrEma7/609RO0wgCkAMgDUvpvx/JwDQF1j2/FaZf52f5/lgzq8Ioqt9+EnSXKr1u+tKr0B23KyEBIahuE1FqaUVa4YlHE4/bLd9fHX89yZFKSmIg6AnWUhc2rItc43x7FwSiIcohNyHYudOmURDvdYieryCvp9NYCu57ZD57ptnM3nmdXq2zxSa8lrfvLJzqj4+ARbv34DzO+//15EZmaGfuHCRzIAYMaM6/KffnpZ4urVK2MvueSykvz8PM3zzz/dPTw83BEVFS1GRUU77HY7u2vXRyHDhg2vPn48TffKK6u7AoDD4TijTb1797VNmzY9f+vWzbFjx04oT0rqccZwuCeeWNJdFJ3sI48sS1Wr1UpBQf6pe+KoqOi6J52STqPJAZA7W9ocuDKmxQEogyvoMQPoClfA8hCAXJ7nVwB4QxCExsZf/gWgCsAIuNbe8egPIA3ALwBm8zzPCYLgWXBrAgBBEIRCnucrAFTCFZAdd7czGMBgAC+5y//ogzpIE5ndaa51OsNp22Wtq9ONFelvCjldZbbrOYior3soC8O4ghxRrnvNPUmW4HlsZ6+mLIOEkM5NURSZ0RjEAP5cFdohmRWjMYiK3PyVpydOnFy0Y8c7US+88Jw+Pj7e8tRTz6X27esacnbppVPLFEU5sW3bWzEffPBetMFglIYOHV5+770PZHv2p6QczV+79tWua9asZMPDIxyTJl1SvHfvz8FHjx42Aiiq/Xpz5tyd9/PPP4YsX760+7p1bwo1h8Ll5eWqjx49HAgAs2ff2Kf2sXv2/Lmvue+PdCxNCoB4nh8OYDMACcCrAN4TBOF4HeX6A7gEwFwA83ienykIwt766hUEwcrz/DMAHuV5PgfA7wBmAJgIV5ByBMADANa7yw0HcA9ca/ZAEAQ7z/MvAVjB83wRXD1Gz8LV6/OB+2U2+KAO0kS24mJEabUw6U8PgOBOg81JHXrhaNIKMgoL8HNFNfr36VvnfoZh4Khj6JuHJMsQGdccWAelWSeEdHKKAskqq/MYdXC7jNVTZEVWFDT7wzwhIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3F5zeNvcufNz586d70lyBa1Wq2zf/vHhuuqLiYl1UpBzdmtqD9BbABYJgvBhQ4UEQTgI13C2FTzP/xeuoCm5kWOe4HneAmA5gC4AjgK4UhCE7wGA5/lJAFbDlZY6D8D9NeYLAcCj7vexDoAerh6fSYIgONz1F7a0DtJ0mr/2Y03/c/C9s1ZPj871dF9FARCpZW9GBj4vL8d7K56vcz/DADax/s5kSZYgnQqA/H9+GSGEtJSiQFIUhT5QCfFSUwOg/s0NBgRBeI/n+Z1NLLsSwMp69v0B4LwGjpXgyh63sIEyLa6DNI1sdyXYkzn1adttkd3w7tfbcdJqxfWKAoY5M50xOftUVlaivLwcABAXF1dvuQYDIEXCSZZBbkkRklXtndeFEEIIIf6uSXcL3vaEUA/K2Uexu25UZfXpl5Yzpjvez3P1XFutFhgMlKqYAFlZJxGsVkNlCqr3mpAhwynVn5xHkmUc0Guwd/9xPB4Q0FpNJYQQ4iUabkb8TVPnAD3anEoFQXjcu+aQDs8dACnq09drUau1YBgWiiLDbDZTAEQAAFknM/FC34HQchwcBfnQREWfUUZSJDil+pNnSLIEvcE1x8xqpSUcCCGEENKwpo4XWVrrZwUAA1dShGIAIQA0cK3rUwqAAqCzldP1pF5Wn770EitLSAoKhmi3wWKheRrEJT8jHd3cw9ZUwSF1lpEhQ5QbCIAUGTqdDiqGgZWywBFCCCGkEU0dAncq0wjP8xMAbANwF4D3PamleZ6/GMB6uNJkk7MU63lSrzk9ANJUluLJHsmodDpPpcompDwzEwBgV6vBamuvV+wiK3K9KbABVw/QMJsDNww5FyfTUlulnYQQQgjpPLxJofgSgEcEQXivxro6EAThCwAPw5XNjZylWNF1SSga3WnbZZUrKYKWZSkAIqfYClwZTOXAwDr3M4xrCJzYwBA4WZHBqN1JNxw07ZAQQgghDfMmAOoG4GQ9+4oARHnfHNLRCWo1vijMh9Nw+g2t7J4TpOU42K2W9mga8UNKuWvJB01ERJ37GYZxBUANDYGTJTBa95wzZ/3JEgghhBBCgKbPAarpbwB38zz/jSAIp+42eJ7XwbXg6G++ahzpePZCxp6TGZhxYdBp22XVv0kRbDRPgwBwOh3Qu3tsAuO61lmGYQBJkuBsYP0oWVHA6NzD50QKgAghnR/DgGMYpn0WQlW8WwiVEH/iTQD0IIAvARznef4L/NvrcwkAI4Axvmse6Wg8w9vUtYbAKZwKsqKAZRharJIAAHJzcxDpnisW1C2+zjKeHiCpgR4gAGB1rgCboYV2CSGdHMOAU1RSjEWytsvCZ3qVXmRELs/fgqDVq1fG7t79VdjOnV8cbOoxmzevj/z44w8jS0pKNFFRUfarrvpv/n//e21Ja7aT+Idm/+cRBOEHnudHwhUIXQYgFK5McN8AeFwQhDTfNpF0FIosQ2ezwqRSQV0rCQIYBiIYV6pAM/UAESAjIx0HKsqhMhqREN+tnlIMHJIIpZG6WK1rDhAryT5tIyGE+BuGYViLZFX9nn1AtjptbfpHT6/WscPjBqmMTCCrKIpfBUDNtXXr5ojNmzd0uffeBRkDBpxj/uWXPaaXXnqhe2BgkDR58qXl7d0+0rq8enogCMJ+ANN93BbSwUmVlbjXaII8cAi+q9UDBABOxpUrXaS1WghcAdBnhfngzh2G/3ZPgCie+TnOMIBdtDdemTuDHKdQAEQIOTtYnTbZ7LC2xx+9dhl652vV1dXcrFk35lx22bQyAIiP7168a9fOyD///M1EAVDn53X3Kc/zkwFcBCAGwEMAzgGwTxCETB+1jXQwst0GALDJEtRawxn796n0KDiZii6DBrZ104gfyszMAAAkJSXVW4ZhGNiaEABJgXr8UVYKh9GIC3zVQEIIIT4xatTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltffffvud+Z7vnU4n8+mnH4fk5GTrZs68MbcVTgHxM82O4nmeN/A8/xWATwHcBOC/cC2EOgfAPp7n+/q2iaSjkO2uG1WbJEOtPnNNl32GEGzPzUalTE/pCZCfmY5wjQZJiYkNlFLgEBtPbe2MDMWzx4/h46qKRssSQghpexs3ro0bN25C6RtvbD48dOi5FcuWPdrjjz9+MwLAd999Y1q+fGnS5MlTijds2Hp43rz7Tu7Z80Po4sX3JwCAxWJh77tvbrJOp5fXrHktZePGtw+PGnVB2fr1r3U9ePAffe3X2rJlU8TmzevjHn748eN1BT81/frrLwHjx48c/NxzTyWMHj22pLHypHPwphvzSQBDAEwAEA6AcW+fCSAHwDLfNI10NJJ7aJtNlsCpzxwC55kXZKUhcARAeHEpXhkwGLG//lFvGUmR4GxgEVQPlcbVmW2z2XzWPkIIIb4zbtyFxTNn3ljUs2eyfcGCRTlJST3M27dviwSALVs2xUyYMLH4uuv+V5SQkGgfM2Z85b333p/566+/hJw8maGxWMzs1KnTCh96aElmcnIvW2Jikv2uu+7NBYDU1JTTAqBt27aEb9jwRtySJU+kXXjhxEafiiUl9bC9+uqGI3Pnzs/Yu3dP6PPPP92ldc4A8SfeDIG7GsCDgiB8x/M859koCEI+z/NPAHjZZ60jHYq9qgoAYJMkaLRnPJBBEKdCF50eMiVBOOtVVVUh0L24aXD3ujPAAYAEudEMcACg0riSINhtFFwTQog/Gjx4aFXNn3m+t/nAgf0mAEhPTzccP55m/O67b8I8+xV39pu0tFTd+PEXVV577azCXbs+Cj1+PNWQk5OtzcxMNwCAJMmeB/EoKytTv/rq6niO45S4uG5NmEAKREREihERkWK/fv2tZWVl6m3btsTOnXtfrkajaSz/DunAvAmAggFk1LOvDECAt40hHZut0vWgxSbLUKk1Z+wfU1mAmf0G4ufKyrZuGvEzGRnpiNW6egmDGgiAFMgQm9ADpHU48fbg4WAZBoqigGGYRo8hhBDSdlQq1WkBhaIoYFlOcX0vM1dc8Z/8qVOnnZGCOioq2llYWKC67bYbegcGmsQRI0aWDxkyvHLAgIHmq6++YkDNsgzD4vHHn0zdsOGN2OXLlyasX/9WCsvWPdhp9+6vTXFxXR3Jyb1ODR1ISuppFUUnU1paooqOjqGF5Toxb4bAHQJwXT37LnPvJ2chu3t9HxFAXX9wJJXrKb3ioL8pZ7vMzHRE61wBkC4mpt5ysiJDlBrvAWINOqhY1hUAiY2XJ4QQ0raOHDlkrPlzSsqRgKSkJAsAxMV1s2ZlZeoSE5Psnq+Cgjz16tXPx1VXV7GffLIzrLq6SrVhw5aUO++clzd58qXlFRXl7of4/8ZVwcFBzjFjxlUuWvRwxokTaYaNG9dG1deedetei9u4cV10zW2HD/9jDAgIECMjo+hGpZPzJgB6AsBMnud3AbgFritvDM/zawDcAeAZH7aPdCAOoxFfFubjiL3ueRiyOwCCk/6unO0y0k8g2t0DpO8SW2cZhnHNAWpKDxCn/zfphr2ahlgSQoi/+eSTnVE7d74fmpaWql2xYnlcZmaG/pprZhUAwIwZ1+X//vuvIatXr4xNS0vV7tnzY+AzzzyZYDZXq6KiosWoqGiH3W5nd+36KCQ7+6Tmhx92mx577OFEAHA4HGfcy/bu3dc2bdr0/K1bN8ceP552ZlYmADNmXJ+3Z88PYW+9tSnixInj2m3b3grfufP96GuvnZVbX68R6Ty8WQj1I57nrwfwNIBL3JufB1AIYLYgCDt82D7SgVhCQrH+ZAaiY7tiQB37FZVrWBxDAdBZr/jECahZFjLDQBseDmvlmUEzwzDNCIA0kBUFLMPAWl0JfUhIazSbEEL8hl6ta/O79Ja85sSJk4t27Hgn6oUXntPHx8dbnnrqudS+fftZAeDSS6eWKYpyYtu2t2I++OC9aIPBKA0dOrz83nsfyPbsT0k5mr927atd16xZyYaHRzgmTbqkeO/en4OPHj1sBFBU+/XmzLk77+effwxZvnxp93Xr3hRqBzVTp04rkyQx/Z13tsasX/961/DwcMftt991csaM64q9fY+k4/B2IdS3AbzN8zwPIAxAOYAUQRAov/FZzGp1DYHT6c5MgAAAijsLHCN16MWjiQ/Y83MAowmyyQSG4+otJ8kyxCYkQWBUHByyDB3HwVZFPUCEkM5LURRZr9KLw+MGqdAOi5LqOb2oiM1fdTohIcn6wAOLs+vbP2XK5WVTplxeVtc+hmGwYMGinAULFuXU3H7zzbcXeL6fO3d+7ty580+t4aPVapXt2z8+3FCbpk2bXjpt2vTSpr8L0lk0OwDieX43gDsEQUgRBEGotW8AgC2CINTVAUA6OWt5OQJVKhi0Z6bABgDFnRqbowDorCbLMlJysvFhYBCuvuiiess1pwdIlmU4FAU6AHbKMkgI6cQUBRIjcnlGJrBdxmkpoiIrCuiDnHRoTQqAeJ4fhX+fMoyFa85PZB1FpwCof1l30qkZDxzA+kFD8bNcT+ZIdw8QRwuhntVyc3OQXlmJbKsVC6++pt5yDAM4JRGK0ngmUkmR4XRPhHW4k3EQQkhnpSiQFEWhIIQQLzW1B+gWALPgSnigAHgFrgVQa96ZePLOvu2z1pEORXY4XP9ydV9W1tAY7MrPQ44k4tq2bBjxK2lpqQCAhIQkqFT1/wliGAYOydGkOmVFRprDgYzqavRt/sgMQgghrWjPnj/3tXcbCKmpqQHQPAAb4QpydgO4E8CRWmUkuOYCNTjeknReitN1s6rUEwDZouPxZnYmWJaltVrOYmlpx9An0ITeCYkN9u4wDGBvagAky/jAbkb68RN43WBs/ABCCCGEnLWaFAAJglAB4AcA4Hl+HIB9AAIEQch3bwsB0FUQBFoD6Gzmzu6meNJd16J2D4GTZRkOhwNabZ2ZKUknl5V6DEv5PkBJKWSrFQ2tnWwXm7SQN2RFhs69rpC9njTshBBCCCGAd9lD/gbwIYDva2w7F8ABnud38jxv8EXDSMejNBYAqVQIU2sQodHCZrO2ZdOIHzGfzAAASAYjOEP9fy5kyHA2YRFUwDUHSKtzBdRWKwVAhBBCCKmfNwHQ0wD6AnioxrbdAC4HMBTA4z5oF+mAPOmtFXXdAZCxvBivDhyMpXwfWK0UAJ2NRFEEW+rKcqrp0qXBsrIiQ2pCBjjA1as4jdNiy+Dh0AkpLW4nIYQQQjovbwKgqQAWCILwgWeDIAgOQRA+gSso+q+vGkc6FkZ0P61X1z20TVa7FkLVsiz1AJ2lsrJOoovGdR0EJiQ2WFaG3KQU2ACgQIGKY6FhWUg0BI4QQgghDfBmIdRAAHUuVAWgAEC4980hHVmWWo0jeTmwduPr3O8ZGqfjOAqA/FxOTjZef/1lWK1WzJp1E/r3983SXmlpx9BV7xr2pu0S12BZVwDUtCFwACCznOsoR9MSJxBCCCHk7ORND9B+ADfXs+9GAP943xzSkf2uYvFS+nGYA4Lr3C+rXE/+NSwLq9nShi0jzVFRUY7bb78RH3/8Ib7++gvceussHDiw3yd1p6WlIk6vBwBomzAErqk9QAAgqzjXv/amJU4ghBBCyNnJmwDoCQBX8Dz/J8/zi3mev5Xn+Yd4nv8NwH8ALPVpC0mHYbO5hh6p6hsCVyM5grW6uk3aRJrv9ddfgbkgH7fyvTF/6LnQSxIeeeRB2H0QWGSmHEWwWgMFgCYmtt5yDANIigRJasY6f2p3AOSkHiBCCCH+a9SooUO2b38nrKEyx4+naUeNGjrkuuv+06et2nU2aXYAJAjC1wAug2sR1McBvA5gGVzD6S4XBOELn7aQdBiKzQo1w0Dtnutzxv4a6wM5Lea2ahZphsrKCnz3yU4s69UPFwUGYQQYrOo3CCgqxI4d77a4/qPHUvByehqcQ4eBbSANOsMwkOTm9gC5ri/F4WxxOwkhhJD29NFH74fHxMTaMjMz9Pv2/U4L3PmYNz1AEAThc0EQhgEwAogDYBIEYYggCJ/6tHWkQ7kTHLYOOReBslx3AYaB073wpb26qg1bRppq9+5v8J/wCERqtVCFR0DbtRuc0dEodNixdetmiGLT5+TUVlpaisy8XPxQUoyEmf9rsKynB6g5AZCnB4hpQRsJIYSQ9iZJEr777tuwCy+cWNKlS5ztgw+2R7R3mzobb5IgAAB4nu8N4CIAMQBe4nn+HAB/C4LQrDtbnufjAWTUsetWQRDW8Tw/CMCLcKXYLgGwWhCE52oczwJYAuAWACEA9gC4QxCEtBplWlwHaZiiKFAzDACA0erqLfenzKC0OA+JdJPql/Z/+xWuDXXlMYmdcyc0UVGIkGQYft2D3NwcfPfdN7jooou9qjsl5QgAID6+O4zG+hc/BVw9QLIiQWpGEgSrUYfDVZWwGulBGSGE+BOz2cy++OJzXX755acQq9XKde+eaLnzznlZgwcPtQDAn3/+bnzjjVe6pKcfN3AcpwwbNqJ8/vyF2SEhIRIAXHHFxf2nTZte8PfffwUeOLDfZDQGSNdd97/cHj16WleteiY+Ly9XGx+fYH300WXpCQmJ9pMnMzTXXvuf/gsWPJj+7rtvR+fn5+q6detuueuue7KGDTv31BCU999/L2zHjnej8vNzdUFBQc5Jky4tuv32O/NZloWnjmeeWXVs5MjRp+5tR40aOmTevAUZ06fPKFm9emXswYMHAocNG1H+ySc7o6qqqlTJyXz1/fc/lNmzZ7IdAHJystXPPLO82+HDB00Gg1G85ZbZ2Y2drx9+2G0qKytVjxhxfqXD4WQ++OC9mLKysizP+SAt1+weIJ7nOZ7n1wI4BOAFAA8AiIIrgDjA83zDqZ3ONACADUAsXMGU52srz/NhAL4GcAyu4GUJgGU8z99Y4/hHAMwGcCuA8+Aamvc5z/Mad3tbXAdpnGcRVACAtv7FLb9mNdiclQlKgeB/HA4HDBkZYBkGSEiALr47WJ0eBqMRV111NQDgo50fNFJL/VJSjmBceATG9OgJpdEAmIFDEqE0o/6imHA8JhzBn5xXHduEEEJayaJF8xP/+OO34PvuW5Sxdu2bR7p0ibMtWjQ/uaSkWLV//5+GBQvm8t26xdteeumNlEcfXXbi2LGUgLlzZyfLNUaUbN68ocuwYSMqNmzYenjo0GHlr766utvzz6+Iv+OOuVkrV74klJeXqdesWXVadp3XX3+p64wZ1+W//vrGI3FxcbaFC+9NzszM0ADAxo1rI9esWRV/ySVTitate+vwDTfcmvPhh9ujn332yWbdx6amHjP+88+BwKeeej71mWdWCUVFhZrnnnsyHnCtfTd//l3JlZWV6pUrXxIefXTZiXff3RrTWJ2ffvpxeEREpGPgwHMsF198aanT6WQ+/HB7g3OGSPN4c6fwMIDr4OotiQbAuLffB4ADsLyZ9fUHIAiCkCcIQn6NLyuA2wDYAcwRBOGoIAgbAawCsBAA3AHKfQCWCILwmSAIfwO4GkAXAFe66/dFHaQRSo3Uw4xGX285lTsTnJ3WavE7hw8fgollISsKosZdeNq+S88biXkJPdAj6yRKS0u8qv/4oYOY0z0JUyqqGs3UxjCAQ2peMgON1nVtUYp1QgjxH2lpqdq//toXNG/efZnjxl1YmZiYZF+8eOnJ8eMvKi4tLeW2bXsrumvXeOvDDz92kud720aOHF21ZMkTJ9LTjxu+//5bk6eeQYMGV1xzzfXF3bsnOGbMuL5QkiTm8suvLDz//AuqBg0abDn//AtKs7IyT7sB+c9/ZuRffvmVpcnJvWxLlz6ZGRAQKO7Y8U6EoijYvv2dmMmTpxTOnHljUVJSD/sVV1xVet11/8v97LNPIisqKrimvj9Jkphly55O79evv3X48BHmqVOvLBSElAAA2LPnB1NOTrbu0UeXpQ8YMMgydOhw86JFj6Y3VF9ZWSm3b98fwaNGXVAKAD17Jtvj4xMsn3++i4bB+ZA3AdBNAB51BxKn7oQEQfgHwKNwDYtrjgEAjtSzbzSAHwVBqPm4eDcAnuf5SACD4FqXaHeNdpTDlar7Ah/WQRrhWXtFlGWoGhgCZ1CpEaJWw0FpsP3OgQP78EZmOraYAhA8fDi0agYqletPRJQhAOeHhePC8Ejs3vWRV/VbM1x/8yWTCVwjw9QYBrCLzQuAOI0ryyAF14QQ4j8E4agBAM45Z+ipoWdarVZZtOiR7J49k+2ZmRn63r37npYatk+fflaDwSClph47NaSka9eup56c6fV6GQDi4v7dptFoFKfTcdp97bBh554auqZWq5XExCRLRka6vri4SFVZWaEaOHDQaa87ZMjwKkmSmLS0Y/XfyNRiMgU5Q0JCTw1NCwgIkERRZAAgLS1VbzQapYSExFPt7N9/gFWj0dYzWRr46KMPwkRRZCZOvKTUs23MmHGleXm5uj17fgxsartIw7yZAxQF4EA9+7LhmkPTHP0B5PE8/xOAZACpAJYJgvAlXAkWDtYqn+v+t5t7PwBk1VGmm/t7X9ThFc/Noy9x7uE9nJ8N8xEl1xA4hyxDrdGBZZk6y/1XrEbswCHYX1rSKufHV/z1PLcmz1o/fYadC71WhjPnENQh0eACosD16wuzyQRjZSUqd38L1U23NKvuiooKhFpdPTMBPXue+t3Xd545joVTdtZ7HdUlvNKMtQOHoExm/Praag9n4/XcXuhctw06zx2HSqVSAIBhmDpHNSuKAqaOP/WKopw6FgA4TnXG8Y19RtQ83lMny7KK4k7IxNR6YVmWGMAVLNU8xsPpdJ7xgmr1me2q/Zq1cRxX7zFff/1FOADceectp9Jfe+rYuXNHxKhRF1AWKR/wJgBKA3AJgG/q2DfWvb9J3MPPkgGYAdwPoBrA9XDNv7kIgAGu4Ws1eR7v6tz7UU+ZUPf3vqij2ViWQUhI603GNpnqH2bWHsqL3NndZBkBgQHQ6xtIhS05wcpiq54fX/G389yaBOEoAGDkeUPBlOdALsmELFpgCAqByhSEHtdfg7xXXscgMCgvykFCcnKT696//1f0CnSNZIgZNuSM333t8yxKIhgO0NVzHdVF0WkQpFbDJnWMa6s9nE3Xc3ujc9026Dz7v6SknlYA+Pvvv4yjR4+pAlxzY6688tL+t9wyOzs+vrv1yJFDp2XGOXTooN5qtXKJiUktGtN86NA/hj59+lkBwOFwMCdOHDdOnDi5KCIiUjSZTOKBA38FTJp0Sbmn/L59fwaoVColPj7BbrGYWQCoqqo6NRwuPf14/es31IHne1ssFguXknJE16tXHxvgGhJotVrqHGJ38OA/+szMDP1VV12dd/HF//YAAcBLL73Q9Y8/fgsuKMhXRUVFUyapFvImAHoBwOvu4OUTuBIG9OR5fhyABQDmN7UiQRAcPM8HAxAFQfAEIPvcGeYWALACqH2xebolze79cJex1irj6Wr1RR3NJssKKit9P8yL41iYTHpUVlohSfX2oLa50kor9pQUwypLiJVZWK11D1/SM66ndU6LFWVl/rsWkL+e59ZSWlqKuSHhQEg4omQZ1flZEK0OwJYLBEaBidAgeOh5OIrXEaxSYc9raxH8yNIm1//zT7/gfE/mt7jup3739Z5nlQyrzQ5bPddRXWSN68+ZSoFfX1vt4Wy7ntsTneu20Vrn2WTSd4heJYYBxzBMuzRUURRZUdDkbGQ9evS0Dx8+onz16ue7MQxzMjo6xrF58/poUXSyI0eOqoqN7eKYP/+uXk88saTbf/97TWFJSbHqhReei4+PT7CMGjWmRb0dmzdv6BIaGi5269bNvmHD2hi73cZOnz6jmGEYTJs2PX/r1je7xMZ2sZ9//ujKf/45YNy27c3YCy+cVBQUFCSZTCYpIiLSvn37O1EJCYk2q9XKrlmzsqtKpW5yfp7zzx9dlZTU07xs2ZKE+fPvP8lxKuWFF57tVrvnyePjjz8I12i08g033FJQO+Pb9dffkHf//fNM77//Xvgdd8zNb8l5IV4EQO7U1BEAFgOYA1cShG0AHACeEQThtWbWV9edykEAF8M1LK32cvGen3MAqGtsO16rzN/u731Rh1dEsfU+/CRJbtX6m8umN2B1eho4ToVHGA6yXPffB4l1PfSQHU6/an99/O08t5Yj//yDBIMRHMPAaNDAmlcOyAoABfaiHOiCYyDJalj69EHwkSMISk2F0yGCYZv2+Zv711/QcRxEtRpcZPQZ5/SM88xIcEpivddRnTSu3iIVWvf/Xkd2tlzP/oDOdds4G88zw4DTys4YyWLxeimTluAMBtHOqvOaEwQtXfpk+sqVK7ouX74k0eFwsD16JJuffXb1sfDwCDE8PEJctmxF6oYNb8TedtuNffR6vTR8+Ijye+5ZkF1zKJo3Jk+eUvTaa2u6lpaWqHv0SDavWvWKEB0d4wSAW2+dU6BWq5WdO3dErVv3atfQ0DDHVVf9N/+WW+bkA67hcYsXL01fvfr5brfffmOfsLBwx6xZN+Vu3rxe3fCr/otlWaxa9VLqihVPdFu4cH6yRqORp0+/Nq+wsPCMniSHw8H89NP3oaNHjymtK931eeedX52U1MP81VefRcyefVc+28TPX1K3Zv/n4Xk+RBCEp3iefxmulNFhAMoB/CoIQmmDB59Z1wAAvwC4WBCEPTV2DQVwGK65RrN5nucEQfBcDBPgyhpXyPN8BYBKuIbeHXfXGQxgMICX3OV/9EEdpBE2m2tUoUbbcO+wzLn/btRMm03aXfaB/QhlGNgYBoANqJF61FFVCp21Cpw+HAOvm4X0hQsQplIh/esvkThpcqN1i6IINi8XiOkCVXz3JgVNMmSIzVgDCABYg6tjV13PkzVCCOkMGIZhJYtFVfLbb7JosbZp9Kcy6Nmwc89VMYHBrKIoTQ6ATCaTvHTp8kwAmXXtHzNmXOWYMeMq6zt+584vTpvL3a1bd8eePX/uq7lt7tz5uXPnzs+tuW3w4CHVd911T1599d5wwy2FN9xwS2F9+4cOHW5+8813j9bcdvnlV566163rNadPn1EyffqMU0nCQkPDpBUrVp2W+e3GG898TY1Go3zxxfcNPnjfvPmdlIb2k6bz5unB7zzPPywIwrsAvmzh6x9yf73K8/wcAMVwpa0+D8AwAAVwrTO0nuf5ZwAMB3APXGv2QBAEO8/zLwFYwfN8EVwLqj4LV6+PZ8GSDT6ogzTCZrGAYxhoG8gABwCyyn3JUQDkV6yZrs8ka4ARkuX0EQeK0wGxohBcQARCoqLxvlaDzIx0JBxPRSIaD4BSUo7ik5wsnHQ68NLCh5rUHlmRIcnNW++N1bl6gDQs455US4EQIaTzEi1WWTSb26P7i7oeSIfnzUUcAleg0mKCIMgALgPwO4DtAP4CcC6AiwRBOCgIQiGASQB4uNJSLwFwvyAIm2tU8yiA9QDWAfgZgAhgkiAIDvdrtLgO0jjH339h25BzMS+24fXDFE8PkESLGfsTzr22DxcZDsl65qhUZ2UJWNHVyxdxyRR8UpCHT7/9ukl1//rrz5ABBPftD2PPxhMnMAwgKTLE5gZA7h4gFcPCSamwCSGEEFIPb3qAXgTwLM/z9wE4JAhCUUsa4D7+5gb2/wFXj1B9+yW4FjVd2Jp1kIaJVhs0AGSWRUOrh5WbQrE7ZT9Kg4PaqmmkCYLsdkCnhyk+DpL9zOQdorkScJjBakIwbtyFeOKJJTh+PBVpaano0aNng3X/+usvAIARI0Y2qS0Mw0CSJYjNDJJZow4nzNWwyzKizRZodJQdihBCzkZ1DZEjpCZvAqBZAOLhToPN83zt/YogCO0yMY+0H9HmummWmIYDoMLIbngr8wR6as64bkg7MZurEcm5/stGJsYByplZR2WHDbK5HJw+DCaTCSPPOx+OgwdRuuYFOJc8DnVoWJ11W60W9CksxMBu3TE8MalJ7WEYQJalZvcAMVo1HhKOQJZljGzmsYQQQgg5e3gTqGzxeStIhyfaXFnMpUYmuKvUriQJdhqi5DdOpp9AmrkaXQxG9AgzwVlR97ILzopiaMO7wwlg4qRLYc8vQLDZjPJvv0HE9KvrPObPn/fgorAIaDkO0fUESWdiIHkxB0iBAp1OB4vFciopByGEkPY3atTQIZ7va/fM7N37c8ADD9zD//TTH6e2r169Mva9996OqauusWMnlDzxxIqMxupoaVsXL156fPLkKeW1999xxy09//nngGnevAUZXbp0cTzwwL3JANC7d5/qtWvfFFr6+qRteBMApQPYLQhCtq8bQzou2e4OgLiG+n8AtUoFHcuCsdP0Kn9xMicbK9IEDD7nHIxm6g86JGsVGNEKQI+xY8fh3pUr0M8UhNLvdyP0kingjGcuPpr+xacYwXGoVKuha0YPkFMSoaB52U9lRYb2VADUorXzCCGE+NjNN8/OuuSSKadlC/7ll58Cly5dnKQop/+9v+mm2/Kvvvra0zKlvf/+e+E7drwTM2PG9QVNqaMlOI5Tvvvum5DaAVBpaQl35MihQM/PQ4eeW/3++7v+fu65p7qVl5c1OT02aX/eJEFYCVeaakJOkR2uAEhhGw6AuhTn4s3Bw3FDaHhbNIs0QWZmBgCge9c4SI76e05EqxmK3QKOY2E0BiBgwCCctFrA2O0o+WTnGeUdDgdi8l2fU5pzBjc5KxvDMHBIzQ+QZVnGwi7d8PqAwbBnnWz28YQQQlpPQECAFBUVLQKu5RGefPKxrg8+uKBnZGSUvY6yclRUtOj5slgs3I4d78bcfPPt2f369bc2pY6W6NdvQOX+/X8GW63W0z64vvzys5AePZJPZQrSaDRKVFS0qNFozq7FqDoBbwKgQgDBPm4H6eAUh+uG9VSa6/po3Gu1NPPpPmk92e4AqFtc7KlAti6K6IRkrgDHuT4PLp48BZuzXOmzy3d/C1vGacsc4O8d7yFep4NNltHr6mua3B6GAezeBECKgkCVCiEaDRzVda2vTAghnYfKoGdVRmPbfhn0PkmBXV1dzaWmHjM+9dRzqZdfflW96/B4vPjic3Fdu3a1XnPNzFOJt5pbBwDceussfvHi+7s3tm3EiPMrZFnB999/e1rGpu+//zZ07NjxzVrzkvgnb4bArQXwMs/z4+Baw6egdgFBEN5sacNIx1Kh0SC7vAyVsd3RUH43xr1OkAq0Vou/6F9QgGmDhsJmtkERG16fSawqhSZCBMBg3LjxePbZ5dhbWoLzQsOQ+9rLiF+8BFxgIKTqarDffQsAyAwNwYCg4Ga1ySE2PwBSoMCzdKpopSFwhJDOSVEUmTMYxLBzz1WhHdbk4QwGUVSUFvV4BAcHSxs3bk0BgO3b32lwguiBA/sNf/75e/CKFSuPsTXmGTenjubS6XTykCFDK2oOgyssLFAJghCwfPmzJ1577aVuvnw90va8CYCed/87s579CgAKgM4yJ4JM2JAm4MLkgejaQDlW60pNrGFZOBwOaLXatmkgqZfR7oBRq4U66Mw5PLVJNjMYyQ5AB7Vagxkzrsfrr6wGHxSM0OJiWFKOInDYcGR9/SUCFQWFdht63XR/s9qjQIFTFhsvWFf73AG1k+YAEUI6KUWBZGfVeUxgcLssSCoqiqwoaLNUm9u2bYlKSuppPv/8C6oaL+0748ZdWLpy5YoEq9XK6PV65YsvPg3p3btPVXh4hHcfUMSvePOfJ6GRr0SftY50GFara+6IWtNwQMO412bRsixlgvMDsiwj2B00BEc3/gBNspkBpw0s6zrmP/+5GpzBiGVHDyK7Tx8EDhsOAHj9159xsLICXxgN6Nmnb7PaJClys9cA8hDd7RIpCxwhpBNTFEiyrDjb46stgx+z2cz+/vvekClTprZozUlvjBt3YQWAU8Pgfvhhd+j48RfR8LdOotk9QIIgZHq+53neAMAEoEQQhIbHzpBOzeYectRoAKR2DYHTsCxsNhtMJloQtT2VFBYgVO1KXBMeGwGIDc+dkR12yLZqcPowyLKEoKBgzJ59F5599kk89N7beGHkKGRkpOPzLz/D5wDefntHs9skQ4LkZQ+QzLKADEgUABFCSIf3ww+7TYqi4KKLJpf7qk6n08k09LOHXq9XhgwZVv7dd9+EDBgwyHzixHHjxImT03zVDtK+vOo+5Xl+NM/zewFUAsgBYON5fq97XhA5C43Pz8eWwcPRzd7w0CNFrQHg6gFyNDDhnrSN/ONpYBkGTkWGWq9p0jFSVSkY5t8kFjNmXIfzzjsfNpsNs2ffhKefXgYAuPXWOejTp1+z26RAafYiqKfa5u4Bkql3kRBCOry///4rsHv3BEtwcLDPep0KCgpOPalVFAXFxcX1fviNG3dh2f79fwbv2vVR2MCB51QEBQXRKtudRLMDIJ7nRwL4Bq5McMsA3AHgCQChAL7kef48XzaQdAysLEPDsmBVDd9ESxodfq+sxN6yElqs0g+Un3R16FYDjSZA8JCs1WBrZGnjOA4rV67B1KnToFKpYTAYMGfO3Zgz526v2iQrstcBULVahQyLGTZKMkgIIR1eevoJfXx8gk8ndR4/nmpcv/71qIyMdM0zzzwZ19D6PePGXVjBMIyyY8c70TT8rXPxJgnCEwB+AjBJEIRTdyk8zz8G4EsAjwGY6JvmkY6Ck90JYRoZAidr9VhXXITy0iKMslMPUHurzM1BFACbSgXZ2bTMa5LNAka0g2FV8Kw7p9cb8PjjT+Hhhx8Dy7JQNZYOvR4MA0iKBMnLAOjP0AB8/dNPmH3BGK+OJ4QQ4j/Ky8vUPN/Lp+sa9O7dp3rPnh9Dtm7dHNuzZ7L5nHOGVNRXVqvVKkOHDq/47bdfgydMmFhvOdLxeHOXMhzANTWDHwAQBEHmeX4NKAPcWYlTFIBhwLjX+WmISu0KkuwUALW7oqoqVFWUISihe9N7gGwWKE4rWH0gJOn0TKgaTdOG0dWHYRhXEgQvAyC11vUgj3oXCSGkY5g+fUbJ9OkzSura9957Hx1uaR21RUZG2Zcvfzajvv179vy5r+bPTz31fHpjZUjH480coCoA9XUXagDQwi5noVMLmzYhANKoNa4scJSquN0dqq7E06kCqnonAU1cnFaRJUiWqlOZ4HxNkr3vAVJrXM90KMMgIYT4l+rqaq6gIN+74QF+yuFwMAUF+SqHw9EuKcmJ97z5hf0M4CGe5wNqbuR5PhDAg3ANjyNnGZU77mXc6/w05KnICLw1eDjEkuLWbhZpREGBax3jiKCARkqeTqouA8u0aB28OjEM06I5QHyVHS/2Gwg+/4z1mQkhhLSj9etf63rVVVMGtnc7fOnPP38LuOqqKQP37v05pL3bQprHm0h8EYB9AE7wPL8LQD6AaABTAOgA3Oi75pGOQFGUUxdSUwIgT4Jjp4V6gNpbebFraYXwQEOzjpPsVmgkB+rvDPYOwwCiLEL2cpFxLcMgRqeHxdG0+UyEEEJan78MGVu79k3Bl/WNHDm6yl/eG2keb9YBSnNnelsC4BK4sr+VAvgOwGOCIBzxbROJ35MkHLZYwEgiWF3jN9KemSai1dK67SINUhQFiyOjoY2KRbDYvB6XfxMhaKAovku5xjAMHJL3S4opatefNMbLhVQJIYQQ0vl5NRZTEIQjPM/PEwQhHwB4ng8FEEfBz9mJUanwXMZxWK0WLNA3PpRKZFzD5USaqN6uqioqEKxSg2UYBIeZ8G/fXOMkuxWKwwbWYIIk+TIAAhxSC3pv3EkQWC+H0BFCCCGk8/NmHaBgnue/BvB9jc3DARzgeX4nz/PNG0tDOjxFUWBzJzRQqRpOgw38GwBJFAC1q5LMdLAMA1GRoW/mEDjIEiRrayRCYGATvQ+AGI0nAPL9/CRCCCGEdA7eJEF4GkBfAA/V2LYbwOUAhgJ43AftIh2Iw+E4NQyKUzeeBllkXJedRJm62lVZTjYAoFpWAKnpvT8ekrkcLOPbFUcVyHC2YAgcTgVAtBIqIYQQQurmzRC4qQAWCILwgWeDIAgOAJ/wPB8C10KpC3zUPtIBVKefwJvnDEOxw44yrvEASGI5QJIg22mienuqLihAAAAby0Bu4hpANUk2izsRgu+ymrYkAxwAMFrX9afyMokCIYQQQjo/b3qAAgGU1bOvAEC4980hHZGtugo6joOG5cBxXKPl89Q6/FpagqomrjtDWoe12JWG3KlWQRGb3wMk262uRAg+HAUnQ4YkN78tp47Xa5Fvs6HUi/dDCCGEkLODN49u9wO4GcDndey7EcA/LWoR6XAcZjMAwNnEgOZAYAS+P/EV/jt0SGs2izTCWeF6jqHotGjqIqg1SXYrFKcdrD4QkuSbHhcZLesBcsSEYe6hA4iMjMIVPmkRIYT4H4YBxzBMuyy+qSiKrCigTDOkQ/MmAHoCwOc8z/8J4EMAhQAi4JoDNASu9YDIWcRhsYBB03OIqTSuYUp2u73V2kQaV2izo7q8DMFdIr06XpFEyLZqsMYI+CrrtAIFUgsCIE7j+pNmp/llhJBOimHAsQwb47CJvht/3AwanUqUIef5WxC0evXK2N27vwrbufOLg0095tZb/5d89OjhwJrbkpN7VW/YsMWn6wUR/+PNOkBf8zx/GVzJDh4HwMD1+PgAgMsFQfjCpy0kfs9hMUMLQETTxkKp1a5McQ4bLYTanvZZzfg5TcCyyyZ4XYdkrgDno0GvDANIstSiHiCV2hMAUXBNCOmcGIZhHTZRdfRQnmy3iW064VGrU7G9+8Wo1DqOVRTFrwIgb2RlZernzLn75IUXTjo1tUOj0dD4/LOAt+sAfQ5XL5AOroVQKwRBMPu0ZaTDEK1WaAFITZwMMqSyEP8bci4OVla1bsNIg4rdc4DCTEav65BsZqglB4DG5341joHUwiQIalnG0737Q8OykGUZLNsuI0QIIaTV2W2ibLM62yPjS6f4w5qXl6uurq5WDRhwTnVUVDRNHD3LtKj7VBAEG4BcH7WFdFBOq6snR2zicGSGU4FlGDBih3941KFVlJYAAEKDGl+8tj6S3QpGdsIXARDDAJIitWwInE6NRKMroLObzdAHBjZyBCGEkNY2atTQIXPm3H3y22+/Dk1PP26Mioq23XTTbTkTJ06u8JT55psvgzZtWhebk5OtDwkJdVxwwbjSOXPuztNqtQoApKQc0b322ktdjh49EmizWdmwsHDHZZdNK7zxxlsK63rNTZvWRW7atC7uwQcfPTFp0iXltfenpBzRMwyDnj2Tacz0WahTRPGkfdk5FkerKlHSxEUxFZVrDhDjq4kjpNkkScKTXbph8znDENyCBAaywwrFafPJgqgMw0BSJIherEnkwel1p763V1MPIyGE+IuNG9fGjRs3ofSNNzYfHjr03Iplyx7t8ccfvxkB4LvvvjEtX740afLkKcUbNmw9PG/efSf37PkhdPHi+xMAwGKxsPfdNzdZp9PLa9a8lrJx49uHR426oGz9+te6Hjz4j772a23Zsili8+b1cQ8//PjxuoIfAEhLS9UbDEbp8ccfib/ssokDpk+f2veFF56Ltdvtvl7hm/ihdplARzqXktAwLBWO4JyhI3F5E8or7sVSWZnWamkvZcVFCFC5/vsHhQYBindzZmSHHYrDClYXCrmFi4965gBJLVjDh1FzEBUZKoaFjQIgQgjxG+PGXVg8c+aNRQCwYMGinEOH/g7cvn1b5LBh56Zv2bIpZsKEicXXXfe/IgBISEi0q1SqzIUL5yefPJmhMRiM8tSp0wqvuWZmoclkkgHgrrvuzf3gg+3Rqakp+v79B5yaVLxt25bwDRveiFuy5Im0sWMnVNbXnvT0E3qn08kMGDCoeubMG/KPHj1sWLv2ta4FBfmap556LqOVTwdpZxQAkRaz2Vy9x2qNrpGSbhpXEgSOAqB2U5J1EgwASVGg0nKQWzAAQLJUgAmKa3GbGIaBQ2r+gqw1yYoMh6xAxQG2apqWSAgh/mLw4KGnPZXi+d7mAwf2mwAgPT3dcPx4mvG7774J8+xX3M/U0tJSdePHX1R57bWzCnft+ij0+PFUQ05OtjYzM90AAJIkn+qxKSsrU7/66up4juOUuLhuDT7ZW7bs6Yzq6uqsoKAgCQB69+5rU6nUyjPPLE8sLCzIjoyMonlBnRgFQKTFPAGQRqtt2gHuLHCcQolW2ktFXi6CAZgVGWjBnBsAkCzV0PgoG6pDcrToeFlR4HRfVw4LBUCEEOIvVCrVaR/6iqKAZTnF9b3MXHHFf/KnTp1WUvu4qKhoZ2Fhgeq2227oHRhoEkeMGFk+ZMjwygEDBpqvvvqKATXLMgyLxx9/MnXDhjdily9fmrB+/Vsp9SXD4TgOnuDHIzmZtwJAXl6uhgKgzs2rAIjn+XAA9wO4CEAMgEkApgE4IAjCR75rHukIuqQewxsDB+NwU+duuHuKVBT/tBtrURGCAVhZFrLYsr/xst0KVnIA0LSoHoZhYBdbFgAB/y7I67BYWlwXIYQQ3zhy5JDxoosuPpX0ICXlSEBSUpIFAOLiulmzsjJ1iYlJp3pt9u7dE/Duu29HPfjgo5m7dn0UVl1dpdq+/eNDarVacdfnnvvz781EcHCQc8yYcZWRkZGO2bNv6rNx49qom2++vaCu9tx00/V8167dbI899mSmZ9vBg/8YVSqVkpCQRIkROrlmB0A8zycA+BmAHsBPAAa660kG8AjP85cLgvCpN43heT4ZwH4AdwmCsMm9bRCAFwEMBVACYLUgCM/VOIYFsATALQBCAOwBcIcgCGk1yrS4DlI/1m5HsFoDDde0TGCyMQgHKspRJImY1MptI3Wzl5UCAJwqruU9QA4rFNEBhtNCaVGvntLiHiAAqJBlyHY7jI6W10UIIf5Kq1O1eSKrlrzmJ5/sjIqPT7D16zfA/P7770VkZmboFy58JAMAZsy4Lv/pp5clrl69MvaSSy4ryc/P0zz//NPdw8PDHVFR0WJUVLTDbrezu3Z9FDJs2PDq48fTdK+8srorADgcjjPa1Lt3X9u0adPzt27dHDt27ITypKQeZwyHGzduQum6da913bbtLfN5542qPHjwgHHDhtfjLr/8ygLPPCPSeXnTA/Q8gEIAYwFUA3AAgCAI1/E8rwfwEIBmB0A8z6sBbAVgrLEtDMDXAHYCmA1gBIBXeJ4vEQRho7vYI+59NwLIAfAMXGsU9RUEweGLOpr7Xs467h4ET3a3xtjCu2BVagpUKhXubM12kXo5K1wP4SSNusV1yXYbINrAqk2QJO8DIAktWwPIY62tCieOpeHl2Xe0uC5CCPE3iqLIGp1K7N0vRoV2yOar0alEWWn+JN6JEycX7djxTtQLLzynj4+Ptzz11HOpffv2swLApZdOLVMU5cS2bW/FfPDBe9EGg1EaOnR4+b33PpDt2Z+ScjR/7dpXu65Zs5IND49wTJp0SfHevT8HHz162AigqPbrzZlzd97PP/8Ysnz50u7r1r0p1B4KN3PmjUUsy+LDD3dEvf76K92Cg4OdU6deWXD77Xfme3dmSEfiTQA0AcBNgiCU8zxf+5H/6wDe87ItjwGonbbpNgB2AHMEQRABHOV5vieAhQA28jyvAXAfgAcEQfgMAHievxqutYmuBPCOj+ogDWA8Q6hUTbuZVmtcgZIoihBFESoVTUVrayWiiKryMhijklpclyJLkG1msEYGLclsLisSRB+kRtfqXHPM7HYawUAI6XwUBZIMOU+t49plKRNZkWVFaf7Ez4SEJOsDDyzOrm//lCmXl02ZcnlZXfsYhsGCBYtyFixYlFNze83hbXPnzs+dO3f+qbUptVqtsn37x4cbatN11/2vyJN5jpxdvP3PU9+kAS1qDsZsIp7nLwBwO4D/1do1GsCP7sDFY7frED4SwCAAge5tAABBEMrhGkZ3gQ/rIA3wrOejqJuWBEGl/reniG5S28ch0Ymn0wSYu0b5pD7RXA6mhSsnKFBatAiqh9rdq+VJzkEIIZ2NokCSZcXZHl/eBD+E+BtvHr3/BOBBnue/AeC5w1Dc82jmwDU/qMl4ng8G8BaAuwVByOJ5vubuOAAHax3iie67ufcDQFYdZbr5sA6vqFpheC7nfuDDtc+Dnzqx7ptWRqNp0oKYBtGBTYOGgmUYiKKzVc5TS/njefaligrXQ7aQQINPFjGFwwaVIkJWNW0emEfN8yxCgQy5xe2ZwGkxo3c/6DIz/PLaag+d/Xr2J3Su2wadZ0JIS3gTAC2CK8hJA/AdXD0+CwD0AdADrh6X5ngVwF5BEN6uY58BruFrNXmCLp17P+opE+rDOpqNZRmEhBgbL+glk+mMhY/bDedeAJPTG6DXNz4PiGWMMLiHvWnVSquep5byp/PsS9WVrjlA4SEm6JrwO2sMx4jQqWUYjSavjjeZ9CizOsCpmRa3J5Rl0cMYgAK71a+vrfbQWa9nf0Tnum3Qee4Y9uz5c197t4GQmpodAAmCcIjn+aEAlgIYD0CCKx32DwBmCYJQu7elXjzPz4QrYOpfTxErXMPqavKstml274e7jLVWGc8iIL6oo9lkWUFlpe/T8HIcC5NJj8pKKyTJP5KUFMkSzFYrRLUWVmvjOSMY8d9RkoW5hQgwhbdm87zij+fZl+Zo9DCdMwyaSgtsTfidNYaVqqCqrobTqWlWJjjPea6qssIi2mGx2mBrYfY2iWUBSLBXW1BWRmsBAZ3/evYndK7bRmudZ5NJT71KhJwFvJp9LghCKoDrfPD6NwGIAlB76NtrPM/fDyATQGytYzw/5wBQ19h2vFaZv93fZ/mgDq+IYut9+EmS3Kr1N8d7lmocPXoEsydfh0C5CTe/zL/DpKyV1X7zPuriT+fZVxRFgZ5hoeM46AMNkJvyO2uEbLNBstugaBSvzpcsKxAlEQ5RbHF7ZM4VAEl2e6f73bVUZ7ye/RWd67ZB55kQ4g1vF0Jl4EoeYEQdiRQEQfixiVVdD9d6QjWlAngUwLsArgEwm+d5ThAEz6S7Ca6XEAp5nq8AUAlXSu7j7rYFAxgM4CV3+R99UAdpgGeyuaqJSRDAMHDIMjQsC4eFntC3NXN1FYzuNZtMwYE+qlWBbKkEG1T7WUPTSYrskyQIrnlITihOZ4vrIoQQQkjn481CqMMBbMe/yQM8M5YV9/cKgCbNhBYEIaf2NndPUKEgCJk8z28A8ACA9TzPPwNgOIB74FqzB4Ig2HmefwnACp7niwBkAHgWrl6fD9xV+qIO0gBPJjdO3fQ1ZRwKoAEoAGoH5QUFYN0p2wxGHWTxjPXhvCJZKqFWvHsSyzAMJFn0yTpAiicRAwVAhBBCCKmDNz1AqwA4AdwAIBtAq/U9u3toJgFYDVda6jwA9wuCsLlGsUfheh/r4OpN+hHAJM8Cpr6og9RPURQ8GhEDR2gkcpsxDtvpzpbutFgbKUl8rbwgHxoAdln+9/GFD0gOGzSyA/+OKm0eh1Rfdv3mUdTuP2uib+ojhBBCSOfiTQA0GMAMQRA+8nVjAEAQBKbWz38AOK+B8hJci5oubKBMi+sg9ZAkhKrVgFqNAo2u8fJumZKMLHM1wukpfZurLipCKAAbFMg+CjoAQLZbwYgOMKwazciDAMDVA+SQfPO8QdaqUSU64Wj+QuWEEEIIOQt4k+qkEK3Y60M6Fsn+7/ApRmdooOTp3nUCTxw7CrOh6UET8Q1LaTEAwMGygA+GnHlIDhsU0e7VOj4MA9h9FACd7BKOmw/sw49a73qiCCGEkNY0atTQIdu3vxNW176TJzM0o0YNHVLza/z488+ZNevq3t9881VQW7e1s/KmB+hlAIt4nt8tCAJN4DjLeebwyIoCVtP09RjU7oQJNptv5p+QpquwWlFQXgZjpG/TjyuiE4rdCkbvysLWrGOhwC76JgBSa1yBj9Vqa6QkIYQQ4p8WL156fPDgodWKojBVVZXc55/vCl227JGkqKjoo/37D6D5Ay3kTQDUE65FT/N5nj8MoPZiN4ogCBNa3DLSIdiqqgAADlmGSqNFUzMYqzWuxS7tdgqA2lq2LGN9moDr+idjko/rFi0V4LxYPlhWZIiyb4bjqdwBkCc5ByGEENLRBAUFSVFR0SIAREfHOHv25HN//PH70M8++ySsf/8B2e3dvo7OmwCoB4ADNX6uPd7Fh9Oqib+zVVcDcE2oZxgOTZ38cTkj4d5BQ5GbmdmazSN1KC8vAwAEBTR9yGJTyTYzVLKI5v4ZkBTJJymwASDEYsejyb1pEUpCCPETZrOZffHF57r88stPIVarlevePdFy553zsgYPHmoBgD///N34xhuvdElPP27gOE4ZNmxE+fz5C7NDQkIkALjiiov7T5s2veDvv/8KPHBgv8loDJCuu+5/uT169LSuWvVMfF5erjY+PsH66KPL0hMSEu0nT2Zorr32P/0XLHgw/d13347Oz8/VdevW3XLXXfdkDRt27qnRS++//17Yjh3vRuXn5+qCgoKckyZdWnT77XfmsywLTx3PPLPq2MiRo6s8x4waNXTIvHkLMqZPn1GyevXK2IMHDwQOGzai/JNPdkZVVVWpkpP56vvvfyizZ89kOwDk5GSrn3lmebfDhw+aDAajeMsts70OXrRaLX2w+UizAyBBEMa1RkNIx+QwuwIgJ5RmLWCpYVkEqFRQ6Cl9mysvKwUABLdGAGS3gZWdcCU5b8ZxkCFKvgmAtAD6mYJQ6KP6CCGEtMyiRfMTs7Oz9PfdtygjPj7BvmnTuuhFi+Ynb9v2waHMzAzNggVz+QsvnFR8330LT5aUFKtffPH5bnPnzk7evHnbUZZ1TVffvHlDl1tvnZM1d+59WZs3r4t+9dXV3WJj42x33TUvy2gMkB577OGkNWtWdVm5cs0Jz+u+/vpLXWfPvjurd+8+ls2b10cvXHhv8saNbx+Oj+/u2LhxbeTmzRvibr75tqyRI0dXHjz4t/GVV17sVllZoVq48OEmBympqceMWq1Oeuqp51MtFjP71FOPJzz33JPxr7++6Zgoipg//65kg8EorVz5kuBwOJhVq56Jb+75E0URH330QVhOTo5u8eKl6c09npzJq4VQCfFwOEVkWsyoBtOsZ/4SxwESoDgoC1xbG1lRif+dMwzV5dU+r1tyWKGIDjCcFkozUsEpiuKzIXDQuoIvFZqZio4QQojPpaWlav/6a1/QE0+sSB07dkIlACxevPTkqlXPSKWlpdy2bW9Fd+0ab3344cdOug+xBQeHnLjtthv6fP/9t6bx4y+qBIBBgwZXXHPN9cUAMGPG9YVff/1lxOWXX1l4/vkXVAHA+edfUPrbb78E13zt//xnRv7ll19ZCgBLlz6ZedVVUwJ37HgnYv78hTnbt78TM3nylMKZM28sAoCkpB72iopy1YYNb8TNnn13XlPfnyRJzLJlT6eHhIRKADB16pWFmzeviwOAPXt+MOXkZOveeuu9QwkJiXYAWLTo0fQ5c27q01i9ixc/0JNlWQUAHA4HqygKJk26pKhXrz40/8cHmhQA8TwvAThPEITfeZ6XgQbvLBRBECiwOkvYgoNw/5GDiI7p4lpZtolk1nWJKE5aaqmtqUQROrUGok7r87pluw0Q7WDVJkhS0wMQSZF8sggqALB6TwBEo3EJIaS9CcJRAwCcc87QU0PPtFqtsmjRI9kAkJmZoR80aEhlzWP69OlnNRgMUmrqMYMnAOrateupScN6vV4GgLi4f7dpNBrF6XSclt142LBzTw1dU6vVSmJikiUjI11fXFykqqysUA0cOOi0J4FDhgyvWrv2VSYt7ZguIiKiSU9oTaYgpyf4AYCAgABJFEUGANLSUvVGo1HyBD8A0L//AKtG0/hQtrlz78sYOPAcMwBYrVb24MG/jevXvx4nSY8wS5cup/kDLdTUQOVxuBY99XxPj1YJgH8nmmu1zUtnLXOeAIh6gNqaxr0+jtbY9Kx9TaXIEmSbGawxEs0ZgebLAIhxB3aUBJsQQtqfSqVSAIBhmDrvHRVFAVPH8ypFUU4dCwAcpzrj+MaWXah5vKdOlmUVzwgFptYLy7LEAK5gqeYxHk6n84wXVKvPbFft16yN47hG76OjoqKciYlJpwKnvn37WUtKitXvvLMl9r77FmUFBgbSfKAWaFIAJAjCYzW+X9pqrSEdjifVcLMDIJXr9pQRfbcQJ2kanfvPrsFkbJX6JXMFuGZm2JZk2WdJEBj3EDg1680yZ4QQQnwpKamnFQD+/vsv4+jRY6oA15yWK6+8tP8tt8zOjo/vbj1y5FBAzWMOHTqot1qtXGJiUouGex069I+hT59+VgBwOBzMiRPHjRMnTi6KiIgUTSaTeODAXwGTJl1S7im/b9+fASqVSomPT7BbLGYWAKqqqjjP/vT0480aOsHzvS0Wi4VLSTmi69Wrjw1wDQm0Wi1cY8c2RJZlGuLQQk0dAndBcyoVBOFH75pDOhrumIBVfQciS928Se+KOwACBUBtyul0wMi5AgOjyfdJEABAslugkp1ozjrLkiJBlHxzLTCeIXAMA1kUwapoRC4hpHNhGHAMw7TLUx5FUWRFafpibz169LQPHz6ifPXq57sxDHMyOjrGsXnz+mhRdLIjR46qio3t4pg//65eTzyxpNt//3tNYUlJseqFF56Lj49PsIwaNaaq8Veo3+bNG7qEhoaL3bp1s2/YsDbGbrex06fPKGYYBtOmTc/fuvXNLrGxXeznnz+68p9/Dhi3bXsz9sILJxUFBQVJJpNJioiItG/f/k5UQkKizWq1smvWrOyqUqmbPArq/PNHVyUl9TQvW7YkYf78+09ynEp54YVnu9XueapLRUUFV1CQrwJc84wOHNhv/PjjD6OGDBlWHhQURFl+Wqipdwbf499hb/X91hT3PgVAiyJb0nHI1VXootejopnH2XVGpFZXo8wU2CrtInWrqKhAgHv4oTGwdXqAZIcNjOQA0PReQVGWICm+6c1nDDo4ZRkOWYbdbIY+iBbOJoR0HgwDjmPEGKfd0i5Pd9RagyhBldecIGjp0ifTV65c0XX58iWJDoeD7dEj2fzss6uPhYdHiOHhEeKyZStSN2x4I/a2227so9frpeHDR5Tfc8+C7JpD0bwxefKUotdeW9O1tLRE3aNHsnnVqleE6OgYJwDceuucArVarezcuSNq3bpXu4aGhjmuuuq/+bfcMicfcA2PW7x4afrq1c93u/32G/uEhYU7Zs26KXfz5vVNHmHNsixWrXopdcWKJ7otXDg/WaPRyNOnX5tXWFjYaE/S8uVLkzzfcxynhISEOkePHlMyd+59Od6cC3I6pimZmnieH9OcSgVB+MHrFnUOJyRJTigtNTdesplUKhYhIUaUlZkhiu0//PP7FU8iNvUYDrEc2JmLm3zckQM/4731yzFo0GBs2vR2K7bQO/52nn3lhJAC8dmnAQDxs68Emv751WSsVo/APiPhUAc1mhrdc54P56Xij5P/+OT1FVHGw/+9BwDw44+/wWSiAKizXs/+iM5122it8xwaagTHsekAEn1WqZf27dvXi2W5LyIju1RrNLpTa0awLKOW7BVdjh/eLzvstja9yDRaHZvUdzDLaYNyZFnx20m89a3hQzo/h8OmKyzMCZBl6eIhQ4ak1FeuqXOAzvaAhtRDdrjm58ks14wBT4DaPWTORusAtamq8jIcKS9DsF6PeBZAK3x0yg47INrBaDwdwo1zSL77HGU4FizLQpZl2Gw2CoAIIZ2Sw26T7VZLe0TZNMGSdHhedZ/yPB8O4H4AFwGIATAJwDQABwRB+Mh3zSP+TnG40lh7sro1lVrjGh5lt1EA1JYqHQ6sSBPQh0/GeB8lHTiDIkOyVoENiG5yJji7aG+8UFMxgEarhc1qhd3uw3oJIYQQ0ik0OwDieT4BwM8A9AB+AjDQXU8ygEd4nr9cEIRPfdpK4rc8AZDSzInm4ZYKvNz/HJRRRvU2VVnpWmrBFBDQSMmWkcyVUEc27XcryzLsom/Xg7qtazxMAGy5OUDXbj6tmxBCiH/r1q27Y8+eP/e1dzuI//KmG/N5AIUAEgBcCXdSBEEQrgPwMYCHfNY64vcUdxa3U1ndmkilUiFCq4WpfZLYnLUqK8oAAKaA1skA5yHbrWCaOKxN9OEaQB7JeiMGmILhqGhueg5CCCGEdHbe3H1OALBMEIRynDnA/3UA/VraKNJxWBUZhXYbnJpmpcYHo3XdgKspk32bMp44gTfPGYYJUuueeMlhAyM3LQCSJNFnawB5iO6357RYfFovIYQQQjo+b1Mo1rdghxZNnfVMOoXf9Hp8evAApg86H32bcRyr1QMANNQD1Kak6mroOA5qrnUz1csOGxSnDaxG32gmOEmRIcq+XQ/KU5toowCIEELa26hRQ4d4vvcMTbviisn9i4uLNKeXG1P69NPPpwOA0+lkVq9+Pva7774Ns1gsXGJikmXevAUn+/cfUO/iqD/99EPgunWvdsnOztIHB4c4L7/8yoJZs24q8rbdnmxyAPDKK+uODhgw6IwPlenTp/bNy8vVPfPMqmM5OTmaF198rjsAjBkzrmT58mczvH1t0rq8CYB+AvAgz/PfAPDMYFd4nmcBzIFrfhA5S9jdWdzU6ub1ALE6TwDEwOl0Qq1u3hA64h3F6vrcYHXNW7i2uWSHHYrTDlbHNCEA8v0QONG9yJzT2qJFxAkhhPjIzTfPzrrkkimlAFBVVcWWlBRrli59Mq1//wGn1gzR6fSnPjCWLXuk2x9//B58332LMuLj4+2vvLK6y6JF83u+/fb7h+taCHTfvt+NDz20IPnCCycVLV68NCMzM0P7wgvPxVdXV3N33DE3vyVt5zhO+frrL0JqB0CHDh3U5+fnnVr0bsqUy0svuGBsxaJF83u05PVI6/Pm8fsiAL0BpAF4C64enwUA9gEYBaDpi8GQDs9qdQVAKk3zbqhZnWsRTi3HwWajm9S2wroDVlbXvIC1+RTIlkqwbMND7RjGtQiqrwMgyf26ImUZJIQQvxAQECBFRUWLAJCSckSvKAqGDh1eHRUVLXq+PIFNZmaGZvfub8Lvu29RxoUXTqzo2ZO3LVmyPEOtVisHD/5d5yTWLVs2RycmJpmXLHniZHJyL9tFF11cccsts7N37Hg3xm63t2jcd79+Ayp//vmnkNrbv/rqs1Ce713t+Vmv1ytRUdGiSqWi0VB+rtk9QIIgHOJ5fiiApQDGw7WS4kUAfgAwSxCEgz5tIfFrE202TOndD0XNDGI8Q+AAwG6uRmCgyddNI3XgnE6AYaE2tHYABEjWSqiVxpaoYCDJks/nAEksAyiAZKM02ISQzkmj1bX5GHJfveaxYymG4OBgZ3BwcJ1//Pfs+SHIYDBI48dfeCqTTXBwsLRz5+f13mPm5uboBg8edlrmmz59+locDjt74MB+47nnnldd+5hbb53F9+jBm6urq7hff/0lRFFkZvjw88oeemjJyYCAgFMfYGPHTih78cXnuv/zzwFDzV6gPXt+DLnyyukFKSlHWje1KvE5r+YACYKQCuA6H7eFdEBhChBpDEAF27w5JYpKgxybDVZJxAAzzdNoK2pRAtQsNEZ944VbSLLboJGdaOjPDMN4hsD5dg6QxLKQRQWS07fptQkhpL0piiKrtQYxqe9gFdphUVK11iBKSqNPtxp04sRxvVark+fPvytJEFKMJlOQOHHixcX/+9/NhSzLIivrpDYyMsr++ee7QrZteyu6tLRUk5CQaJ43777s5ORedXbtBweHOIuLC08bjpKdna0FgJKS4no/iD7//JPIqVOnFbz66vqjR48eMjz//DMJmzevs9955z15njJdunRxJCX1MNccBvfXX/sMFouZGzlydOVrr73UktNB2oG3C6EmAtAJgnCE5/lgAMsBdAWwXRCEt3zYPuLnVIqrl5dpZhY4sCwWp5+AxVyJDxsZJkV8R+P+zNK1chpswJUIgZEcYBgVlHoGAzAM0ypD4HabNHjs6x9xz+gLfFovIYS0N0WBJEGVx2mD2iWLkKQosqKgRX+0MzMz9BaLhRs//qLSW26Znbtv3x8Bmzati6usrFDNm7cg12IxcwUFBdotWzbHzJ59Z3ZgoEncvHl9zNy5s/m33nrvcERE5BlPzS6++NLilStXJHzwwXuhl102rSwr66Rmw4Y3YhmGgcPhqPdcxcZ2sc2fvzAHAHr06Gn/9tuvQw8dOnhGj87o0WPLPvvsk4j77luUAwBfffVF6IgR55erVBwNd+uAmv2fh+f5iwEcBXCTe9NrAG4DEAdgE8/zN/uuecTfeSJoRtv8HgW1e94QzQFqO8fN1UipqoQhqPV76yW7DYrTDoZpOMB1SiKU+iIkL6ncc5w8SToIIaQzURRIsqw42+OrpcEPALz66vpj77330cEpUy4v69Onn3XmzBuL/vvfa/I+/vjDKFmWoVKpFavVwj322PITY8aMrxw8eKjl6adXngCAnTvfD6urzmnT/lN6/fX/y3n55RfjJ0w4f/Bdd93W68orpxcCQEBAYL1tjovretpNiNFolERRPOOD6+KLLy0tKirU/vPPAYOiKPj55x9DJk68uLRlZ4K0F296gB4F8BWAx3ieDwIwDcBTgiA8yvP8EwDmAVjvwzYSP6Z239x61vVp1rFqz00qzdNoCw6HAy8fTwUA7I6d2eqvp4gOKA4rWH39meAYBrBLvv/9qzWurIIUABFCiP9Rq9WKWq0+7YMhKSnZarfb2fLyMi4iItLBcZxSc7ibXq9XIiOjHHl5ufUOObn99rvyb731jvyCgnx1ZGSUMy3tmE5RFHTvnlDvh0HtdrgoZwRAcXFdnT169DR//fUXIXa7nZFliRkx4vyq7OyTrZtWlbQKb7pPBwJ4QRCEKgCT4Aqidrj3fQ2gp4/aRjoATwDE6nSNlDzTXZGReKn/IIjZWb5uFqlDZaVrbijDMDBq2ibtuGSpbLAHiGEY2EXfz9NJckhYkJSM2LwWZT4lhBDiY7Is44orLu7/yiuro2tuP3LkkNFkChJDQ8OkwYOHVkuSxBw4sP/U01Wr1coUFBRou3SJq/Op2VtvbYx47LGHu7Esi5iYWCfHcfjqqy9CIiIiHT169PTJk7YLLhhXunfvzyFff/1l6MiRF5SxLK1l2FF585uz4t+eo8kACgRB+Mf9czSAch+0i3QAiihC5QmANM3vAQpWqRCp1cFZfUZiFtIKKipcAZApMABMG61XLFmrwSoNJziwib7vAQqWgeEhoQi0mBsvTAghpM2wLIuRI0eXffjh9uhduz4KSU8/od227a3wnTt3RM2ceWMOAJx77nnV/foNqHzyyccSfv31lwBBOKp7+OEHEjiOVa644qoSwBMQ5askyTW6LSmph+3b/7d333FyVeXjxz/3Tp/tJZveyw0thIQiTXoVFQti4WdBEUFUvipYARVRQbpYaDZUwIKiCAJK75CQQspN2SSbzSbbd2enzy2/P+5ssinbZu/M7CbP+/VadjNz55wzd4bd+8w553n+99S4hx76Y+3WrVv8Dz74QO3f/vbwxIsv/nyjW2M/66xzO5ubdwSeffbpmrPOkuVvY1kuS+BeAr6uaVo18BHgNwCapi0GrsveLw4AmWSStlQKv6qihsLDvqTOZL8bUqyyIKKbN/HAEUfRbpnYprtJB/pjpROoVgbY9wqBfBRBBbB9zq82xSjM8xRCCDF0X/3qNxpLS8uM+++/e3JnZ4d/3Li61CWXXL71Yx+7qK33mJ/+9I6Nt91205Tvf/87s1OptKpp86O33fZzvaam1gB47LFHq++44+YZf/rTX1dOmzYjfdxxJ/Z8+ctf2/zQQ3+YeM89P586fvzE1Ne//q1N5533/k63xj1p0uTMvHlatL293b948dHyCdsYlksA9H/Av4E/AquBH2Zv/zcQxymUKg4AGQUuX/k2ANcHSjCHGQEZijMBKcUqCyPe0UGNx0NAAQo1A5RKgplGUQP7THRg2u7XAII+AVCBAj0hhBBD5/V6ufzyL++4/PIv97tOuayszLr22usbgIZ93X/BBR9tv+CCj7b3ve3DH76w/cMfvrB9X8fvy733/l7f87Ybbvjp5t6fp02bkX7ppbeW9L3//vv/sNtj9nWMGP2GvQRO1/VNwCHARF3XD9V1vffNez5wkK7rG10cnxjFktnARVEUVM/w95SY2QDIlCQIBZHscj4ESw+Slc1NVtrJBKf2k+rcwsrLDBDZPU5qPtoWQggxbNFo1NPcvCOn8itjRe+yvH1lkROjS067t3Rdt3Vdb97jttcAbzZNtjgA9AZAgUCw3zovAzGymwctmQEqiHQ2CYLhLdymTds0sFLx/gMg28K08xCkBJy/sR5rRLX6hBBCuOT++3819UMfOu/wYo8jnx577NHqD33ovMPXr19XUuyxiIENOxLXNG06cDdwEv0t7AfPSAYlxoZ4wxZumH8onbaFlUMEZKoesEyZASoQo6cHAMtb2A/gzFgXnn1UbVAUMPK0B0jJ1phS+0m/LYQQonAOlCVi+1qWJ0anXK6EbgOOA+4BjsfZ9/MqcCZwGPDB4TSmaVodcAtwNhACngeu0nV9dfb+hcAdwJFAO3Cnrus393m8ipN84XNAFU4Shst1Xd/Q55gRtyH2lol0M7e0lO2ZNF05XGjGPT62xbpJuVwEU+ybFY87PxQoBXYvMxnHZ2XYc8JZURRMy8KwBs4Sl5Og8xy9BdrrJIQQQoixI5e1MCcB39V1/Ss4GeBSuq5/Aye4eB54/zDb+ycwGyel9lE4abb/q2laWNO0GpzaQuuy7V8HXK9p2mf6PP4a4AvAJcCxOLu7n9A0zQ/gRhti39Ix54LayDGp8uulNfzfquVsLCt1d2Bi37LZ9tRgYd/WVjoJZmaf9+UrCUKsrppPLHmdG9tbXW9bCCGEEGNbLgFQKbAs+/NqYCGArusm8HPg1KE2lA1ONgGX6Lr+lq7ra4DrgYk4iRY+D6SAy3RdX6Pr+m9wZqC+kX28H/gacJ2u64/rur4cuBCYzK6ZKDfaEPuQSTgBkJnjpnpfdplSMilpsAuh3ciwticCpcOv2TQSVjoJxt6JEJwZoPwsgfMGfWRse+c+NSGEEEKIXrkEQNtxCp4CbACqNU2bmP13BzB+qA3put6u6/rHdF1fBaBp2njg60AjTnB1IvCCrut918g84xyq1eEEX2XZ23rb7AKWAu/O3uRGG2IfzGzgYuQYAHl9AQC5SC2Q55MJrtVXY06fMPjBLjJTTgCkKHsGQJC2Mth5WKbm8Ture1MpeW8JIYQQYne57AH6N84SskZd11/RNK0RpzDq94CLgW25DETTtHtwlqClgPfpuh7TNG0KsHKPQ5uy36cBU7I/b93HMdOyP7vRRk68eci25fGou30vpt7kBaaq9pvlayBaOs6ZBx9GpLMzL+dqJEbTeXZLJJsFriIczOn1yp2NlYziq5hE3xjI61XJJJylcYqq5JaSsh8BBb44YzYhnw+PR9kr+DrQ7I/v59FKznVhyHkWQoxELgHQtTh7aX4AnA58G/gdcGX2/i/mOJbbcbLLXQb8Q9O0E4AwTkDUV+9HusHs/fRzTHX2ZzfaGDZVVaiqyl8WxPLyUN7aHipPdl+H5fEQDg1/X0mJ18P0cAn1hpHXczUSo+E8uyUadbLA1VSWEszh9RoJTyZGSYkPRQ3udrsZdSZmAwF3EzNYJSEOrx0HQEWJD08g4Gr7Y9X+9H4e7eRcF4acZyFELoYdAOm63g4c07vsTdf1P2qatgUnecAbuq4/n8tA+mR9+3y2rStwEiLseeXSewUVy95P9pjEHsfEsj+70cawWZZNJBLP9eH98nhUystDRCIJTLO4NU5iiRR+wyATDJFIpIf9eEN13n6KYdLZmfOpzovRdJ7d8oMJU7DHT8aXSJHM4fUaCSsaRYlESdu7fuV4fSrR7D6yVCqD7WLK6kyfGa7mba2Eqqpca3ss2h/fz6OVnOvCyNd5Li8PyazSKBSLxdRHHvlzzf/7f59pBfjOd66a0dLSHLj33t/r+eqzsbHBv3TpkpL3ve8Dnbm28Ze/PFRzxx03z+gvDXghnscJJxy5+Ctf+frm/SE9d0PDZv/HP/7hw2666bZ1xx13Ys9I2sq5IIiu69s1TZuPkzZ6u67rPx1uG9k9OKcBf84mUUDXdUvTtNU4SQi2ApP2eFjvv7cBvj63bdzjmOXZn91oIyeGkb8/fqZp5bX9odhSW8vXlr3Fyaefx8k5XLza3t5aLcV/Lv0ZDefZDcl4nCqf81YvLQ1jFbg+jpGMY2dSGH0WutmqTcZ0ZoBsy3Z1TErAh2nbeBSFaFcEX1mFa22PZfvL+3kskHNdGHKeDwy//vU94//3vydrewOgq6/+7lYrDwl0+vr+96+ZUVdXlx5JACRGr5w+5tA07bPZWZ9VODVz1mmatlnTtI8Ns6lJwJ9wUmv3tu0DFuEkQXgBOFHTtL6FVU8DdF3XW3AClAhwcp/HV2Yf/2L2JjfaEPvQm7zA589teZGSXZbklTpAedfd0rzz53Bp4ZeMWKkk9h6Z4CzbzE8NIMDj9ZK2nIuiVCyalz6EEEIUhm3bu23krKioMKuqqvMbAWEf2JtH93PDngHSNO0K4E7gH8B3gBacrHAfA/6gaZqh6/pfhtjccuBJ4Beapl0CdGbbrMJJVZ0Ergbu1zTtJuBonL1GXwDQdT2ladpdwI2aprUCm4Gf4sz6PJLt49cutCH2oTd9tc8fHOTIfvicC3GvxD9519PSAkDcNFEVhULXB7UyKex0AjVYvXOmx8IiY+bn75eiKGRsixAe0hIACSFEUXV3d3tuvfXGKW+88WqlYRjKzJmz45df/uXGhQsXxQHi8bj6k5/8YOpbb71ZGY/HPZMnT05edNGnm84557yuO++8ddKf//ynieAs5/rTn/668u67fz6pd+nYK6+8WPbNb35t3o9/fPO6O+64ZVpLS0tgxowZ8e9+9webnnrqiarHHvvHeNM0lRNPPLn9O9/53lZFUbBtm/vu+9X4p556ora1tSXg8/ms+fMPjn79699qmD59RvqSSz6prVmzunTNmtWl559/dtk//vGflel0WrnzzlsmPffcMzWJRNwzZcq0xMUXX9J00kmnRnqf5xNP/Lvyd7+7b1Jz847g7NlzYwsXLor0d056mabFDTd8b+pzz/2vxuv12meccXbbl7/8tW1er3OJ/sYbr5X8+tf3TNq4cX1JJpNRx4+fkPr4xz+5/f3v/2BHbxuPPvpI9cMP/3HC9u1NwcrKqsx5572/5bOfvbR5z75aW1u8X/ziJVplZVXm9tt/sSEcDlvPP/9M+b33/nLytm2Nobq68akPfegjO+6889YZf/rTX1dOmzYjff75Zx92zDHHdb399pLy7u5u37XX/mDju951fM/vfnd/3eOP/6uura3NX1tbm/7Qhy7c8bGPXdQG8MorL5ZdffX/zettA/Zevvad71w1w7IspaqqOvPss/+rSaWS6oIFCyPf+ta1W8aPn2AArFmzKnjbbT+dtmHD+pKqqqrMhRd+fPuI3oh95LIE7ivAXbquf3mP23+vadp9wPeAIQVAuq7bmqZdCPwYeBioxJl1OVHX9QYATdPOwgm4luKk4L5K1/Xf9Wnm2uzzuA8I4cz4nKXrejrbR8tI2xD7NnP7Dr477yA607mlGlYCTuDkLfTV+AEo1t5GCEjaNuR52UB/zHgEtXIq4MzMWLaVtxkggEz2bZWKja79ZUIIMRK2DXHD1cSZwxL2Yg0nsaZt21x55eVzvV6v9cMf3rShvLzc/Ne//lFz5ZWXz//Zz+5ec9hhhyd+9rNbJ23evCn8k5/csr6iotL4298eHveTn1w/65BDDn3n4os/vyORSKgvv/x89b33/n51be24vf5wWJbFL35x59RvfOM7m/3+oHXttd+c/cUvXnLQEUcs7r7jjl/qb775eukvfnHn9He967jI6aef1f2b39xb95e/PDjxqqu+vWn+/IMSW7c2BG655cbpt91209Tbb//Fxptuun3DV796xdza2nHpb3zjuw0A11zzjRkNDQ2hb33rmk0TJkxKP/fc/yqvvfZbc6655vqNp59+Zvebb75e8qMffW/2BRd8bPu55763/a233ii7++67Bs0mvG7d2tKamprMz35299rGxq2BW2+9aUYymVS//e3rtjY1bfN985tfnXfWWe9pvfrq7zQYRkb5/e9/M+G2234649hjj4/U1Y03/v3vf1bdfPOPZ1500ae3nX76WZ2rV78Tvu22m2aUlJSaH/3oJ9p6+2lvb/NeccXntZqa2vStt961IRQK2StXrghde+235px33vtbrrvuhvq1a1eF77rr9ul7jvHJJ58Y94Mf/Hh9eXm5edBBhyRuvPGGqc8//7+ayy77csNhhx0ee+WVF8vvvvuuael0Sv3Upz7bMtT3xquvvlx1wgknddxxxy/0pqZt/h//+PpZd911++Trr//Jlu7ubs/XvvYlbd68+dFf/OLeNc3Nzf7bbrtxr7HlKpcAaArwr37uexD4xHAa03W9G7g8+7Wv+9/ESYrQ3+NNnKKm3xjgmBG3IfZWmkgwvbyCJeQ4SxwI05FO052nWQCxS6Kz3QmAijihb8Z78NjO3y1FAbN3CVye/oxnsoF1Ou5+MhIhhCgG24aL/hOer3d6ipY6dX6VGX3g7Lg+1CDopZdeKFu/Xi/5xz+eWN4bvHz1q9/Ytnr1qtKHHvrD+MMOO3zz9u1NgVAobE6fPjNVUVFhfuUrX992xBGLeyoqqszS0lIrFApZqqravTMD+/KZz1yybfHio2MAxx13Qtdjjz1ad+21128Jh8PW3Lla8g9/+N3kjRvXh04//azuqVOnpb7+9W9tOuOMs7sBpk6dnn799Vc7X3jhuSqAqqpq0+v12n6/36qtHWfU128MvPzyi9V33XXPmt5Zq9mz5zRv3Lgh9PDDf5hw+ulndv/lLw/WzZunRb/85a82AcyZMzdVX78x9Pjj/6wb6PxUVFRmrr/+xk3BYNCeP//gZGtr67a7775r2pVXXrUtnU4rH/3oRU2f+9wXmlVV7X2e25977n819fUbg3V146N//etD44899viOSy/94o7suFLxeMwTDIZ2bo6LRLq9V1xx6bza2nGpW2752cZgMGgDPPjgA+NnzpwVv+qqbzcCzJ07L9XR0eG7995fTu07xiOOWNT97nef3OO0FVGffPLf4z772Uu3nn/+hzqyfbY2NW0LPPzwnyZ+8pMXDzkACoVC5nXX/XCLz+ez582bn3z11Zfblyx5swLg3/9+tCqdTqvf//6PN1dUVJjz5x+cTCTiW3/4w+tmD7X9geQSAL2Js4fm6X3cdwSwYkQjEmOGmt3Ajj+3lMqZ6vF8YcVSAsEgZ7s4LrG3VJdTAyhTxOxGVjqBaqYBP4qiYFgmhmnmLQC6o6uFxq1N/OIL+/xsRQghxqTCL2IembVrV4cBLrzw/MP63m4YhpLJpBWAiy769I7vfvfqOe9//1mHz507L7Zo0VHd55xzXkdFRcWQPyGdOXP2zuUogUDQqqiozITD4Z1BgN/vs1KptApwxhlndy9Z8mbJnXfeMmnbtsZAY+PWUGPj1mBVVVVmX22vXv1OGOBrX/uS1vd20zSVcDhsAmzZsjl8xBGLu/vef9hhC6KDBUCzZ8+J9wYkAAsWLIwZhqFs3LghcNhhCxIf+tBH2n//+1/XbdmyKbht27bg5s31YQDLMhWAhoYtoXe/+9SOvm1eeOGumR+ABx747WTTNJQ9+6qv3xDec5neokVH9cAvdxvj5MlTdp7bDRvWBU3TVI444sjd1pcvXLgo+q9//WN8a2vLkGOL8eMnpHw+387xlJSUmoZhKM7YNobHj5+Y7PseWLz4KNfWtA9pkJqmvbvPPx8EbtM0rQz4M7ADZ8/O2cCXgUvdGpwY3dRs6lHbl1sSBJ/PCZxSySTO73PZb5gvPZkM3T0RMlXFy4ZmppJgplFUJwAyLWcGyItn8Afn0p/PR8qySKX3LPElhBBjk6LAA2fH9bG0BM6yLCUUCpl33/3bNXve5/f7LYAjjzw69ve/P7HixRefK3/zzdfLn3rqidqHHvrDpB/+8Kb1J5540pDSHft8u+8oHqjg9z33/GL8gw8+MPmUU05vW7hwUc9HPvKxlueee6byxRef22f9R9t2rnduv/0Xa0tKSndLO+jxeOxdx+2eOMHr9Q0arKqqutsxvdntAgG/vX69Hrziis/PnzFjVnzx4qO6Tzjh5O7q6urMl7506UF9+x/s9TjssAWRc899X9sNN1w3+9ln/9txyimnR7KPxbIGT/bg9wf2eo57Fhi3somH+gY0fXNcZTLGXv30PXaXvjcN/3wO1VCjtOf2GJGCU7D0C3vcBvAQQ9wDJMY2NftmV3KcAfL2CZxSqTQBKVaZN1v9Pu7WV/OR95zBeUUag5VOYmdSqKFyFAUMy8CwzLwFQL6A875MJiUAEkLsPxQFSnyMmdzfs2fPTSQSCU86nVLmzz9450zCtdd+a/qcOXPjn/zkxa133nnLpMMPXxQ988xzus8885xu0zS3fvSjHzjk2Wf/W3XiiSf1KIri6qzXn//8p0kf/ehFTb3LxgD++MffT9g9Ke2uPufO1RIAzc3N/tNPP3znLM9tt900WVFU+8orv940a9bs+Jo1q0r7trBmzTuDLlXcvLk+bFkWvUvcli59q8zv91vTp89M3Xzzj6eUl1dk7r77N+t6j3/66f9UgLO3CmDy5KlJXV+zWz8//vEPpjY37/DffvsvNgK8+92ndJ5zznu6nn326Y7bbrtpxuLFR79TXl5uzZgxM77nY1euXDbgmOfMmZf0eDz20qVvlh566GE762cuW7a0rKKiMlNZWWX6fE5gG4lEdv6B37Jl07Au8ubOnRd/5pmna9rb27w1NbUGwIoVb7u29HOonyCcApza5+uUQW4TBwBPNgAixyxwPq+XH8w/hBsPPoxkt6TZz6dIxJnhLgsXr2q6bRpYyRiqqqAoCmljnysNXHNsIMRlM2ahbm3Iaz9CCCH6d8opp3VPnz4jcd1135790ksvlNXXbwzcdNMNU5599r+1vcvWtm3bFrj99p9Oe+mlF8q2bt3i//e//1nV1tYaOOywBVGAUChkxWIxz4YN6wOZTGbEy0VqamrTS5e+Wa7ra4Lr168L3HbbTye98cZrlZlMZud1cSgUslpamgPbtjX65s8/OLlo0ZHdd9558/SnnnqiYvPmTf777vvV+Ece+cuEyZMnpwA+/vFP7diyZXPoxhtvmLJhw/rA3//+1+onnnhs3GBjaW9v919zzTdmrF27Ovj44/+q/NOffj/p/PM/3BwIBOy6uvHpjo52/zPPPF2+desW/xNPPFZ55523TgdIp53lgx//+P/b/sorL1X99rf31W3aVB/45z//XvXUU0+MO+GEk7r27Ovqq7+zNZ1OKzff/KOp4Cw93LRpY8nNN/9k8oYN6wP/+c+/Kx944LeTYe8Znl4VFRXm6aef1fbHP/5u8j/+8bfq+vqNgQce+M24J598fNwHPvDhZkVRmD//4EQwGLR+85t7J9bXbwy8+urLpffff/eU/trcl/POO7+jvLzC+M53rp75zjsrQ6+++lLpz39+x9TBHzk0Q5oB0nX9ebc6FPuP3uxtSo4BkMfrY25JKR5FIdnTQ0XdBDeHJ/ro6XECoPKScFHHYca68dQ6P6fM/M7MzPL4Obi2jh0dY774tRBCjFkej4c77/zVuttuu2nKDTdcNyuVSqmTJk1Ofve739/Yu7ztO9/53pZbbvnJ1J/85Aczo9Got7Z2XPpTn/ps4wc+cEEHwJlnnt355JOP137uc5885JZb7tRHOqbvfOd7m2699cZpl1322YOCwaA1d64WvfzyL2/55S9/Nr2hYbN/2rQZ6fe974OtN9/8oxkXX/yJQx5//JllP/nJrfV33HHz5DvvvGV6NBrz1tXVpb74xSu3XHDBx9oBDjtsQeKHP7xp/d133zXliSceq5syZUriggs+tv33v//1lIHGcuSRR3d5PB77i1+85KBAIGCdffZ5LV/84leaAD75yYtbGhq2BG+88YZZpmko48dPTH7605/b9sADv5n0zjsrS0455fTIGWec3d3V1bXlz3/+04Tf/va+KTU1telLLrms4cMfvnCvP361teOMSy65vPG2226aceqp/+s8+eTTItdc84MN9933qymPPfaP8RMnTkqee+57Wx5++I+TfD5/v7Nu3/rWtQ2/+MUdxq9/fc/kSKTbN378hNSll17R0JsGu6yszPrGN75bf999v5py8cWfOGTixEnJyy778tbvfvfqeUN9jUpKSqw77/ylftNNP5r2la98YX5JSanxyU9e3HT77T+dMdQ2BqLYQyhCqWnaC8CXdV1fNtSGNU07Erhd1/UTch/emFVvmtbMjg730+96vSpVVSV0dsaKXv365U9fRLXHw4rjzyEw9+ic2pj56+sIeTwEvvRlph++yOUR5m40nWc3PHHpxVQlkkQPnsmJpx9ZtHEEaicSnHMUlupnZdsa6ju2EAz5SSbSO+sDuSV105841IBtc+Zwyje/62rbY83+9n4ezeRcF0a+znN1dQkej7oJmOVaozlasmTJfFX1/KeubnLU7w/mVm9CiAG8/faSsNfrtQ877PCdS9n+8Y+/Vd9++80z/vvfF5f21iIaS9LpZLClZVupZZlnL168eG1/xw31md0B/EfTtLeAPwD/1HV9r9yy2cQIZ+EkQjiCflJbi/3D97Y10NrawtfP+xS57t5J2zYhIB2VYpX5FMgYVPv9GIHc9mu5xUolUcwMluojY+a3zJbpUcGwsNL7Tzkv2zTp/O9TqMEg5cedgOrzFXtIQgghxqi1a9eEf/3re6ZcddW3Nh188CGJzZs3Bx544DeTjj/+hI6xGPwMx1CXwP1N07TncQqG3gd4NU1bDWwCYjgFTKcChwKZ7DEX6bq+VxVasf9IJJwPDHyB3PeVpLIzkCkJgPIqYFuASrCsyEvgUgnsTArbFyCT54KstkcF9q8ASPF4MNpa6Xr2GeLvrGTi5V/qd522EEIIMZCPfvQTbe3tbb5f/vJn0zo7O3zl5eXGiSee3HHFFf+3rdhjy7chh3e6rrcBX9Y07fvAh3ESHswCKoA2YA3OTNG/dF2XRfcHgGTSCYC8vtz2AAH0XpqmYxIA5VMwm6QxVFrcAMhKp7AzCWylDMPst56dO315PYABmfwmWygkj0dlwtln0f3iC0TfXkrPKy9RfvyJxR6WEEKIMUhRFK644srtV1xx5fZij6XQhj2/lQ1u7s5+iQNUqifC1TPnkLYsvF5fzlXZMtkL83TM/f1SwmFbFiXZ9Jpl5aWDHJ330WDFI1iVtRhWvgMgL5DarwKgp574F/f/6hecEirhpFCYjif+Tdmxx6OoxStwK4QQQow1+/cCP5E38a5uFlZUYto29f4gmRz3oMZR6MqkyWT2n2VKo02iuxs1u0yqtLLYARCYyRimlSGT7xkgn1N+QDHy208hRF57hY3/epQHXnye1ZEu6lWVIw9fBDt2kNTXEDrokGIPUQghhBgz5GNDkZNENq1yyrJQPblvxH7I8vD55Utpq9pn8WXhgu5mp85byjIpCRU3CQI49YBMM4OR5z1AW8ZV8PnlS3iptPhB30h1vPA8Jc3NzCwJc86iI5k9eSqvtDsrjXvefKPIoxNC5IkF2LZty0Y/IYYo+/+LDQMXC5YASOQkFe0BIGNbWENIpd4fn9/JH9e7n0i4L9rTw9qeCJuTSbCLn5bXMgxnBijPAZASDtCVyRBN57feUL5Z6TSJ9U4R8GZ/gCvf+wGuu/ATvNnjFCPveO1VbKv4r6sQwnU7bNvOpNPJ4m7eFGIMSaeTYdu2M8CA+5pkCZzISSoWRQUyNiOq3+LPFlHtzSgn3Bf1erhWX820KZM5czRcKFsmGSONZed3aZrX78xMplJju3xGTF+Lx7ZpT6c4/bgT8Kgq1WVlHHzIYTR0dhKxTLRUEkJyjSTE/mTx4sWRJUuW/D4S6bwMqPH7g3FFUdwtmCbEfsK2bSWdToYjkU6/bVv3L168uGeg4yUAEjlJRWOEAEMZWQC0SLF4v3YwypYG9wYndtPd7cwUVJSNkqVgikIqHQdFgRHMHg6m3LD4zNTpVCbG9gzQpuefJQisjcc5e86uItrnHf0uLrrtJizb5piONiZPnla8QQoh8uVHpmnQ1dX+SUVRwoAshxNi32zbtjO2bd0P/Giwg4cUAGma9snhjEDX9d8P53gx9qTjUScAQsk5AxxAhapwUFk5myQNdt5EIk4AVD5K9sKoXh+JZJTeRbr5EgROHT+R7jwGWYUQWbuGIOCpG4evT2G6uopKFs+ey5sb1vHkfx7n4s9+oXiDFELkxeLFiy3gh0uWLLnDtpmIbF0Qoj8WsH2wmZ9eQ50B+u0wBmADEgDt5zKJJJZtY4ww/a7tzW7K349SFY824Xfe4VcLFtHgDRR7KA7VQyIVR7FN7Hz+LQ84763ck7QXn21ZlMfjoKpMnDVnr/tPOOgQ3tqwjnee/R/WJz+L6ss9IYkQYvTKXtQN6cJOCDG4oQZAM/M6CjHmdNTWcvmS1znyyHdx3gjasXzORaqSGfupikcrO9pDtd9Pq290rHi1vV5SmW6wTMhn/ZqQEwz4xvCKkebNm9gSjzEpGESbvXcAdKx2ENM31TMpGKJ5+dtMPPLoIoxSCCGEGFuGdEWk6/qWoTaoadrYvdoQQ9abtMAbDI2oHdvnzEooea4Jc0DLvlZqsPgpsAEsj4d0LAGYKJ48jinovLd8ioJtmigeT/76ypMla1ZxzdpVHDJvHnd4vHvtmaouK2MtMAlY//yzEgAJIYQQQ5DTR8Kapn0UOAnws2tDngqUAMcCU1wZnRi1Eok4AIFAcETt2Nk02Ko5CrKT7aeUlJMEwBMaHUvgLI+HTDqJ7cH5DZIvfWoeWakUnvDYy5L25puvA3DkwYf0nzCivALSaRL1Gws4MiGEEGLsGnYApGnadcB1QHf28Zns1zicDUj3ujlAMTqVNTby1VlzSY0wcFH8zgySdzSkZ95PebL7q3zhkc3WuUJVsVTFSYNtWnhCFXnryhP0Y9k2qqJgp1MwBgOgVe+sAOCQaTP6PaZ68mTYtInyWAzbtlEUmYQXQgghBpLLAvxPAX8AqoHbgH/puj4eOApoB1a5NzwxWgUjEd5VXUPtSDeYB4IkTZOMBEB54zOdgqPBkuIHQKrHh2HbZIw0tpFGyWNhVm/ATzL73M3k2KsFFI/HuaqknFsPWcCc8vJ+j5s5ey6WbVPj9bFl1YoCjlAIIYQYm3IJgCYDD+i6bgNLgOMAdF1fAtwAfM694YnRys6kne+ekWWd6qmdzCfffpPb25rdGJbYh0B26VSwrPgzIIrXi0lvAGSAbeatL1/AxzfWrOTS5UtQKivz1k++bFj+NpU+H5OCIarK+p8pC4RCtGcDvXUvvVio4QkhhBBjVi4BUIxd5TvWAzM1Tev9aHkZkjHugGD3pq32jWwTh9/v7CHqTaog3NeUSrI1EaekvPh1gBSPDwPLWQJnZCCPyS98fh/NqRSdmQzJ9NhLs7516RIAuhUFa5AsiamAs7+rU9fzPi4hhBBirMslAHoDZxkcwEbAAE7P/vsgYGyXXRdD0pu2ujeJQa58gd4AKD7iMYm92bbND/TVfG3VCspr87ffZqhUr5eMZWBZJrZpYOcxAPJ4vTv3w6RSY28JXHf9BgDSJWFsc+CZMmX8eP68bSuvNDYUYmhCCCHEmJZLFrgfAf/VNK1S1/X3apr2B+B3mqY9C5wF/N3VEYpRSc1ekNn+kc0ABVUP35yjEfB4sDJp1BHOKIndxWIxzOxrVRYK4OQpKR7F6yNp7PqMxMok+89uNtK+FIUzJ0xkgtdHYtMmGFeXl37ypq0NfH4CNTWDHjpFO4i//vMRFEUhFotSUlL82T4hhBBitBr2DJCu6y8ARwIPZ2+6AvgrMB/4C/Bl10YnRi1P9qJa8Y8sDbYnGGZRZRWHlJWT7Im6MTTRRyTSDYDf7yfgLX4dHMXjI5HZNRtjZ1LYeUyA8a7Kat4zfiKppm156yMfTNOkLO3ss6scP2HQ46tKSxlfVYVt26xZI3lohBBCiIHkVAdI1/UVwIrsz0ng824OSox+HssCjwclMLLMYv5QmIxl4VNVkpEuwtXVLo1QAERWv8OvFiyi0UjndbnZUNkeD8nkrhkg28hgWwa7yom5K51t1ojH8tJ+vmzf3kRddja0avz4IT3miElTabVsNix9iyOPPCafwxNCCCHGtFwLoVYAp+IUPt1rFknX9d+PcFxilPt5dweNmzdx+RkXMJKdJarqIdUbAPX0uDY+4Ui0t1Pt9xNRyNtSs+GwPB4MI73r36bhJEJQ/DDSlOr7YPQGQGMsyUb9xg3UR3uYVl7OuEAQcwhJHN5bVs64ufN5eZXMAAkhhBADyaUQ6jk4S936y6lrAxIA7efiiQQpy8IbHHlq5ZRtUwqkohIAuS3Z2UkJYHhyyXfiPsvrJd1nD5BtGthGBiVPe78M1XnexhirA7Rpcz2316/nrFNPY+EQ40J/ZaWzb6ilJa9jE0IIIca6XGaAfgysAb4KNFLsXdWiKHqztnl9I8sCB5DOzkykorIHyG3pSAQAcxTs/0FRsVSFTJ8ZIGwbK5NE8edn035GdaaArDEWANXXbwRg5uQpWJmhpfCunjAJs62NGsuiq6uTysqqfA5RCCGEGLNyCYDmA+/XdV0q7h3APl1bR6qyGr8Lq5bS2TbSEgC5zow559Ty5bTa1VWq10fGtncPgHASISh2fj5HsbIzX2MtANq6aSMKMGOI+38ASmqqiQBTQmHWr9M56uh35W18QgghxFiWy1XRFqDcrQFomlaNk1r7vGy7K4Bv6rr+Uvb+hcAdOJnn2oE7dV2/uc/jVeA64HNAFfAScLmu6xv6HDPiNsQuRibDcZVOsoJ1Pj8j3VqfURTSlkVKagG5zoo751QJFD+9uOL1YrKPAMg0UCwDcH+WyvJ6wQIzNbbKky2KxvnqoqPxtLZB2dBmcjwlpVi2TanXy/LVqyQA2kOms5P2R/5KcssmgrNmU/uBD+OtKH5tLCGEEIWXy8aAHwPXaZo2w6UxPAS8C/gocBSwFHhK07T5mqbVAE8D63CCl+uA6zVN+0yfx18DfAG4BDgWZw/SE5qm+QHcaEPsLhHp2vmzJzjypUv3JjJctPQNusaNG3FbYndKduZDDRb/rax6fRhYZDK7ByO2aYBl7Cxa6qY1IS9XvrOMTTOmu952vnR3d1GpKPhVlfLSsiE/TvF4iGf3PHWuW5uv4Y1JRnc3jTf9iMirL5NuaiLy0ots/emPMWXWWQghDki5zAB9ApgMbNQ0rRXY82N7W9f12UNpSNO0OcAZwPG6rr+Sve0rwDnAx4EEkAIu03XdANZomjYX+Abwm2yA8jXgal3XH88+/kKgCfggTnD1eRfaEH0kup3aMqZtO3WAMiNbvuTLptKOxcZWquKxoNs0URJxPKUTiz0UFI+PtJnB2mO5m5MIwUDxu5+ozioJ0pRMEhniPprRYOvWrdQFnL11gbKhB0AARigE8fiYq3uUb+2PPkKmtZUej4c3fT5OANixg5YH/8DES75Q7OEJIYQosFxmgBqBf+BkensCeH6PrxeG0VYb8B5gSe8Nuq7bOEVBqoETgReygUuvZwBN07Q6YCFQlr2t9/FdOLNI787e5EYboo9ExMnWlrQsbBfqtwSCTgAUH2O1WsaCJzIpvrpqBfak4s+uqd7di6DuYmNnkpCHGSB/0Akk4vGxs7yycesW6vzOuJXA8AoN+6dN48769TxZvxErjwVmx5r/JOI83drM9Sve5lcvPce1S9/Esm163nqTTFtrsYcnhBCiwIY9A6Tr+mcGP2rIbXUBj/e9TdO0C4DZwJPADcDKPR7WlP0+DZiS/XnrPo6Zlv15igtt5MTrdT/1sCe7qdtTxLTGmZgTAGVsGxtQ1ZFduC72ejh3jkbZli15OWe5GA3n2Q09PU4WuIqS0Ihfp5FSfT6SZvducU7vsjcrk8KLBS6Pscbj5cJJU5i6Y/uoeW8NpqVhM7O8zq9mNeDHNoceyEyeM5fXI91kDIPm5iamTnV+he0v7+dcPP74Y9z2y58BcP75H+D86dP4zW9/y531G1CnTeVnNdWuvjcO5HNdSHKehRAjkUsdoIGCAguIZgObYdM07Xjg18Cjuq7/S9O023CWr/XV+xFykF21iPZ1THX257ALbQybqipUVZXk+vBBlZeH8tb2YDxWGgtIYxMIePGNcNnSeJ+HxZVVNPRE8nrOclHM8+yG3gCoprKUYKi4+4A8oSCZnja8vr2THahYeFQbn3/kadX7qvZ5OXXSFCLdo++91Z/4dmf5WtrrJegf/irlmRMnsW5rA9u3N7BgwUG73TfW38/D1dHRwY033gDAFVdcwVf/7ys0bljDrAnlfPuHtxJdvow//vE3/N///Z/rfR9o57pY5DwLIXKRyx6gzQxSsl3TtA7gDl3XfzjURjVNez/wJ+A14GPZmxPAnldEvWtCYtn7yR6T2OOY3vVUbrQxbJZlE4m4v+zG41EpLw8RiSQwh/HJsJu6WtopATIoxOLpQY8fjKk6b0MjkaSzc3QsgxsN53mkrFSKa2sn0FNZQwBIJkb+Wo2Ex4JkMoGRMXfepigKHq+KkUqhptNkLA+2ixuBzGwAoZrmqHlvDaancRugYobDJHJ4zY4bP57ZqTQr31jC0UefAOwf7+dc/O3qb3Np9Tjeqq3j85+/nJambTQ1bKa2qppPf/SD3HX/A9x1112cfdrZTJg6ogn/nQ7Uc11o+TrP5eUhmVUS4gCQSwD0KeAe4DngQWAHUAd8GCeV9fVAKfBdTdPadV3/5WANapp2BU6a6keAi3Rd752N2QpM2uPw3n9vA3x9btu4xzHLXWwjJ4aRvz9+pmnltf2BdFXVcNnSNzj4oEN5nzXyi1UrW0zVTmeK9pz6U8zzPFKJtnaqfD5KPR5KwiEsF16rEVFV0pn0HokOnH9YRgbLyGB7gq6Oszf9t9e2x8zruLmlhVe9PhbNnZvTuThJ9VEybQaP6/pez3ksv5+Hq7u7m6rGRiZWVDL7hBNRbJO2pq0YGWc76DGLFvLGC69ypuJl6/euo+aX96Ko7l34HkjnupjkPAshcpHLb/uPAQ/pun6Oruu/13X9KV3X/6Dr+vnAvcBiXdevwgmELhusMU3TLgN+BtwFXNgn+AEnocKJmqb1XTNzGqDrut6CE6BEgJP7tFcJLAJedLEN0UcimSBpWVjD3KDdHzu77Ek1xk6mrrGgp6XZ+W4YlBV5+Zvi8WIqkDb6r8djpROup8JWS5z3qM/t9HJ5kkqleGXrFm6rX0/NMcfk1IYddlb1Gju2uzm0MefJP/6OiYEAGdtm8cc/QTIWoaerc+f9iqJw9nvOZFa4lBLTpOXtpUUcrRBCiELKJQA6GWep2r48ghNcgFNMdMB02JqmzcOZ+fk7Tn2hOk3TJmS/KnD2A5UD92uadrCmaZ8GrsweSzZYugu4UdO092matgB4GGfW55FsN260IfrozdYWDIUHOXJo7GwabI9pDnKkGI5oq5PdKm5ZqAOvWs07xevDsPeuAdSXnUmj2C6/B8JOAORRFGxjpCV786+paRu2bRMOhSjP8QOGkmpn62I4kSCdLu6yx2KxbZumF58HIFlXh68kRFf7Dkxz9/fA3LmzWW86H7ys+sffCj5OIYQQxZFLANQOHN7PfYfjzKaAswxusEX3H8ZZgvYBYPseX3dkZ2jOAjSctNTXAVfpuv67Pm1cC9wP3Ae8DBjAWbqupwHcaEPszt/QwBemz+Iwde/N7DkJOpvTvbJe3lXx9nYAkgpQ5JTIqtePgT3wDJCRBsvdAEgN79r+ZyX3lYJ7dNm6tYFyr5dpU6Zg5Ri8lNbUAjA5EKShYYubwxuR+No1dD37P1f3ePVH19cyM7t8cMpJp2CmE0S7u/Y6TlEUvHNmABDc2oApH8IIIcQBIZc9QH8EfqBpWgb4K9CCswfog8D3gF9pmlaFM8vy2kAN6br+I+BHgxzzJnDsAPebOEVNv5HPNsQu/o4OTh1XxyqX2lOyAZBnjCxTGiuSXZ34gXSR01+DkwI7Yxl7fQLfl21kwMqgeH3YLu0D8oYCpC0Lv6pipZJ4SktdaTdftjU28MsFi1BUlUxXF+RQZ8tTVg7A1FCYTfUbmDNnrruDzIHXq9L1n8eJvrOSTGsr4z7y0bz298y//8mppU4R2XHvehepRJREtGefx848/mhSf3qUWq+PFf97iiPOPCevYxNCCFF8ucwAfRd4CLgVaMBJF92Q/fcfgW8D5wBHZI8V+xk75XyKb3t9gxw5NPFxk/jYktf5XuPo+bR6f5CJdANgel2aqRsBxesjnkkMeIxtWc4yOBf3AflDAa5Zu4pvrl+Dt6LStXbzpXPrVnyqigrYOc6wekpLsbAp9XppXL/O3QEOg21ZGJEIDQ2buPwLn+e3z/4XgM6n/kN0xYjyywzcr22z49WXURWFdEUFwbpaIp3t/RaG9YdDbM/WAdrw9JN5G5cQQojRI5dCqAZwsaZpNwCnALVAI/CyruubADRNewKYvEdCA7GfsDPO0hzb587G+kCwFNO2icfGRprisSJqGMQTcZLlxa9/o3h8JDL7/gS+LyudQA1XutavPxhgU3bPmqUoFD8UHFgym7gg7ffnvGxR8XhIqB5KLItI/cbBH5AnPW+8xo7f/pq/72jihc31AIQsi/eMn8j6e37Bwjt+geJx/xVpaNjCttYWVnq8HH/OuVhGmnhP94CP8UyfApsa8W3bhmEYeL25LI4QQggxVuT8W17X9Y3snja6732d+7pd7Ccy2WxtLhWt9AedJAiJRBzbtlAUqcHghnWlpdy7agUfPe/MYg8F2+slGR98D45lZPDYJrlNTu/NH9z1Hk0kEpSO8iVwVmcHeP3YJSMLWtsnTuSG/z5JaOpUl0Y2fB1PPwWGQTKVZNbMg7jg/EtY+85rRFo2Ug689tv7OPazl7re76uvvsSS7i7UeRoXXHAhmVSERHzgD1fqFh7C2ytW83p7K1OXv83ixUe5Pi4hhBCjx5ACIE3T6oEP6Lq+XNO0TQxcCNXWdX3A7G9ibFOzdTQIuFOBO+AP8qWZswl5PETbOyirrXWl3QNdVzblb2Vp8WeATK+X9AAZ4HrZRhpMA9QAuLAnzOvzclxNLZMDQSIb1lG6cNGI28wnTzQGlX58ZWUjaqd2+gw2xKIEN2/KLv0q7IcK6R3bSW/ZjGnbvJ2xuPLKH1ASLmPOrINZ//CtLE5G6H72WeIfu4hw2N3356uvvgzAsccej8ejEk/ESCcHXn6pVFXw6rgKntNXM/WF5yQAEkKI/dxQ/yo+z67sbs8P8vWCy2MUo4ya3ciuuFQHyOsPcExVDUdWVhPraHelTQGdndkAqKzYAZCC5fEOmAGul2UY2GYGt/I2KIrCSbV1XDBpCsnNm9xpNE8ymQxl2f+3QlVVI2prYmUVPq+XZDLJ9u1NbgxvWNpecFJQL+/u4sz3foqS8K6Abua5n8GwbWYFgzzyy7tc7TeTSVO/bCkVXh/HHXcCimIT7e4Y0mMXHKQB8OKLz7k6JiGEEKPPkGaAdF3/TJ+fP5230YgxwWvZ4AGC7tQBUhSFRDZTV6JraBcrYnDv6eri7EMWuF5cdLgUrxeDgWsA7WTb2OkkBMoYeKJ56NLZp5/uGXwPUjG1tDQzLrustKRyZAGQatt8aPosPMkkmzbVM336NDeGOGStLz5PCFhlw3kL373bfZ6yKrbXTeO15a/yor6G8y/9omtLE5cte5vzqmo4Ze5B1GzahHXwvEGXv/U6ZN4cJoZC1HZ0sHVrA1OnFvacCSGEKJyc1kVomlamadrk7M9+TdOu0jTtTk3T3j3YY8XY9/P2Vi5dvoTYBPcuEJLZDd/JSGSQI8VQVVs200JhSsPuBKq56q0BlMoMrQ6PlUmiulgQNZOdTsqM8iQbO3Zs5+3uLlYkE3hGuAQO4INV1bx/4iS26mtcGN3QZVpbCSUSmLbN5OPPQt1HNruycy7mNY+XHT3dPPqoe/Wmlyx5k4OzacBD06ZjZFKkhhgAlagqdxxyOF+dPY9XnnnatTEJIYQYfYYdAGmadjSwBfhS9qY7gRuBi4BnNE17n3vDE6NRVyxKZyaDNzzyi7RevXMDqR4JgNxgmyYh1fnfu6yyuEvgVJ9/6DNAgJXJgJsBkMc5D0Y87lqb+bBjx3b+saOJpwM+PCNMgqB4vcSzM39dGze4Mbwh2/g/J3hYH4ty6MKT9nmMoiicddoHAHjooT/0m6J6uOqXLWV8IIitKJTMm0smlSQ11AK4oSBRnwdVUWh68w1XxiOEEGJ0ymUG6AZgLXC3pmkhnMDnF7quVwP3A99xcXxiFIplP0n3+d3ZAwSQzl6spWQGyBVGLLrz5/IK9wLVXCheH0kjjWUP7SLXSYSQQXFpI5CRrYNkJUZ3ANS7V2diXR1mKj3i9jJB5//PTDa1dqE8t7mePzY20FBdS8DXfyC36JATePeEScxPpnj77SUj7tc0TeyGbC2xCRPwhsPEo93YQ3zfARjjagBQt23DNN0LwoUQQowuuQRAxwDXZ2v+nAaEgAey9z0EHOrS2MQoZGQyfHr8RD41dToB1b1aGels6uvRvkxprOhpbgGcWkAVZe5k68uV6vMTTw89+HAKoqZc27vUWwjWGupMQJG0b9tGpc/H+OoabBcuvv3lFQD4IhFsFzLqDdWTr7/CozuaqH7X6QMeF+xu44op0/j45Kk88dijI+53w4b1zMnuoapasBBsk3h0eB+ohGc5y3pnBwLoBV46KIQQonByCYAsdq1YOhfoAnrXC5QDo/tjVjEi8a4uTh1Xx3vGT8TjUhpsACO7T0ACIHdEmncAEDNNAnkoNjksXh+xzMBpiPdkpRIoLiVBsPw+AOzU6K7LXLG9iXsOX8yRLW3utDduHADjVA8dHYVJLtLYuJVNm+rxer3Mn3vEgMeadVPJ+IOUeL00vPwSqRG+PsuXv81Bpc7+n5KDDsIy06QSw3vfMWk8ALPCJSx57ZURjUcIIcTolUsA9BbwOU3TjgUuBB7Tdd3WNK0O+Gb2frGfimUvpDKWhep3LwB6ylfGx5e8zqaaatfaPJBF25wZoKQCdja1crEMtQZQX5aRRrHcGfe2kgDfWfMOehGLgg6FN+osW/S5lBEtWFkJwJRgiPr6fdasdt3Sf/2D46trOH7BESj4Bz5YUbFnHAzAIYEgr7/+6oj6XrfkTSYEg1hAeO48jHRq0Po/eyktIe714FVVtsk+ICGE2G/lEgBdhbP07WXAAH6Yvf0dYC7wXXeGJkajRLdTWyZpWVgurqrxlJRh2DY9ozxV8VgRTcRpSMTpLm4GbKA3ABre8jMrk3H2AbmwDM4uC7E+FqU1kxlxW/li2zahtBMkhrKBy0h5Sp29X9V+P5v1ta60ORh72dt8ZdZczp00DcMYfO9NZopTe2dxZRXPPfvfEfW9dNVKfla/geSixfhKwqTTSdI5zCoZ45wPYdSmbRhGcT88EEIIkR/DDoB0XX8bmAMcC8zSdX199q7LgEN1XR/5blYxaiW6ugFIYWOa7mRuAgiGnM3SPZIFzhXN4RK+vmoFzwVyynTvGsXrw1QYcgrsXrZpYBtpVxIhBELOTOVoDq57enqo8Th76spra1xpU/H5eMbv57PL3mJjY4MrbQ7ENE2qskvOyuYtGNJjjIkzsVQPdYEAG159JedscK2tLdQ3buXlrg7mfPIzqKpKIhohl1pSgSMO5c6GzfyzcSsbNqzLaTxCCCFGt5yujnRd79F1/XVd12N9bvubrus73BuaGI1S2U3FaRQsF6eAZmBzxczZTMtu3hcj09XlzNRVlrmznCpXqtdPxrZIp4efgMBKu7MPqCwY4D3jJzCnrXXEbeXLjh3bqQs4WdsC2X0sbigZN44ew2DTpnrX2uzP+uVvMyGbhKB6/pFDe5DXjzV1DgBzFIWVK5fn1Pfy5W87bcyZR2lpKbZlkIzlFvAqE8YRnziOqGmwbNnbObUhhBBidCvux8NizEllP0VPK25tUXdUexTeXTOOulGeqWus6OrqAqCytMhFULM1gIa7BA7ASqdQrJFnQwsFvHxq6gwWJ5IFzYY2HM0Nmyn1ZrMq+nyutTut1kmEUIg9QBteeB6AdgUy6tBT5KcnO8vgJgdDPPvs/3Lqe/Vbb/De8RM5eb6zp8gyM0Ov/7MP82bPBGD58qU5tyGEEGL0kgBIDIuR3aidUd196yhBZwmcV9bcu2L+xo3cfMgCZilFXgLn85MwUkOuAdSXbWTAGvk+IE82CFQBOz3y+jr50LlpE+Ck0HQzRpsaLuH/TZnGuxXPzvpd+dKzTgcgVTOOVHLo+60y0w9m5TGn8LNNG3jhhedy6ju2Zg3/b+p0TojFUBQFM5Mmnco9ADqkupoLJk1B1fWc2xBCCDF6SQAkhqW5poYvLF/KswH3iqACEHY2bPvczKxwAAsnk0wLhSkNBoo6DtXrJzaMGkB9WUbG2Qc00gCoLISVjSqs4aZFLpDmzg7+taOJxrJSbBc/BAipCu+dMImTasaxYcMG19rdF3922WV4+tzhBXH+ILMXHI/H46G+fgPbtjUOq99kMkl5dxcApQcdjKoqGJnUiAKgaaqHCyZN4VDVQ3Nzc87tCCGEGJ0kABLDEk0m6cikyYT6r/CeC7XUKdroclh1wApkC2kGytx9nYbL9vmGVQR1T1YqjqKMLCj2h0PEs+fDGm5a5ALZ2NHOA40NtM+Y7mq7vZngagMB1r+zytW2+2pvb2NSdglf+ayDh/14RQly+OGL8CgKL7743LAeu2bNKrQSZ6/buCMWo6oKyXgUO8eECgDeyRMB0ErLWL5MlsEJIcT+RgIgMSyxmLMELhB0d2+Jp6wSgJCqjtp9GmOFbdv0vjollcVNgmB6vaRySIDQy8qkR7wPKBAOkMgGQGZ8dAZAO3ZsB6CuzL0ECACq37+zMvX2VfkLgHR9DdesXcVvuztR64YfxKWjMT5XVcu9hy/m1eefHdZj33nzDaaFnHd8eJ6Ggk08OrJsknZNJRmg1Otl4xuvjagtIYQQo48EQGJYKrdt4/9NmcY0l9v1llUBEPR4iPd0u9z6gcVOpfBnl42VVZYVbyCKguX1DjsFdl9WJjXifUDBcIhYthhsOjI631t2exsVXh/jytx/vVJ+pyBppH6T6233Wrt2DW3pNMaMWaTMHP6seP1UWTalXi/G+nXE40Pfr9S5YhkA8XAYT1kZlpkZ0fI3AFSVaHbvWFJSYQshxH5HAiAxLLWRbt47YRJ1Lrerhnd98t3dMnrTFY8FiY52AJKmSXVVRdHGofp6U2DnPutiGwZ2JjWiekCBUJBodl9NPHtuRhPDMPh0RRX3LlxMTcL9LIje7DI42vP33PVsodU5s+eRTuWwh0lRULO1gxaXVfD660ObdbFtm1B2j45/zlwAdwIgwDN5PACVPVESo3TvmBBCiNxIACSGRc1kszsFQ662q3g8fGXDej6+5HXiuFdg9UDU2bgVgIhhUBZ0L6XycKm+ABmsEc0AQXYf0AiSrqselT+3tfCdNe+QmjR5RGPJh9aWZsZl6+eUV1W73n75uFoAytKZvF3I127ZzIcmTmZ2VV3O9cFSk5x02IsqKnlpiMvgtm5tYKbPmeGadPyJuxIguJBOPzhjKgDzSkpZtWrliNsTQggxekgAJIZFNZy9FErA/foyGX8Qw7bp6Ym63vaBpLuri4Z4nDbLRMkh/bRbVJ+flJUhY4ws9bSzD2hkmdFavQrrY9GdS+FGk+b6jfhVFdO2UQPuZ+0rrXECoBq/Py/1gOLxGIs9Pi6cPJUJ/tyTbqSqJmIGQ4S9XlqXvDGkvYArVizjm2tW8gcjTfmhh6GqCulUEiPjQrrzuhosbMIeD6uXvDny9oQQQowaEgCJYfFmMyupLmeBAwiGnQ37kVG6T2OsaAv4+frqFfzFSLpbVGaYVF+AaCr3DHC9rEwKzMyIlsGFS5z3a0+2kO9o0rmpHoAewMq4H6B5K6u4s7uDq1evZONG91Nh6++8w6Sgk78xMGVu7g0pKl7NWQY3T/Gwdu3qQR+yfPnbGLZN5YKFqIEAqqqSjLn0Gvt8PDuljouXvcXSNflLICGEEKLwJAASwxLIXlCrJe5mqwI4qaycK2bOxtxc73rbB5L27F6Pmkr3X6Nh8fmJpUdefNM2TexMckSJEGaUlvCe8RMwh3BRXWjRbN2bhM/rag2gXorHQ23tOADq690PgLa+vQRVUYgDac/IEtlb050U2kdXVfHSEIqiLsumqF648AgAbMsgGXdvBnn87BnYODNNkp1SCCH2HxIAiWEJZi9ClTwEQPP8Pt5dMw5LkiCMSHt7GwA1lcVLgABg+nwkR5AAYbe2knHUEewNmx0M8ampMwiuX+/KeNyUaXNeLzPk7r66vqZll8Ft2OD+849ks6TFS0tJpUeWsjxeM5We6hr+vr2Jl158fsBjO3Zs5zJ/kIumTGPBIYcBvQkQUiMaQ18zpk3B6/XS0dFBY3ZvnRBCiLHPW+wBiLHDMgzCHg8ASlnVCLal71vG6wUzjRGTPUAjMXXNGm45ZAEdniL+760omF6vawFQ7zI4FB+5vPHMUADiFrYLm+PdpvY4NWs8pfmr2aSFQlw1ex7tO5pdb1tpaQGfH3XCZIzMyPacGZZK1We/zBMXnoXS2kx7exs12eBtT2se+ydTQmGC/gA1deNRFDANdzLA9fJ7PFx18KFMtOCdt95g6lS3CwAIIYQoBpkBEkMWTya4dPkSvrZqOZ4y97NVGT5n+YwZG/myqQNZIB5jaihMWXBky5FGQvUFSNsWqfTI9wCBkwjBNjOoOS6Ds4JOpjDVxdkBtyyNdPPYju34x7mdXH6XunAJR1VVM93G1UxwmUyGqrSTcKBkxjxX2vR5Sjnk4EOxbZuXXnqh3+NSK5YD0F5bi6IoqKqKmUmRcfM1VlVmBUNMCAbZIYkQhBBivyEBkBiyWCxGZyZDUzqD6nM/W5UVcJYA2VJzY0R82Y30oYr8zSgMRvUHyGC6NgOEbWMlY7nvAwo7waCnN437KGHbNv9r2MzvG7dQMS1/swsVdU5Nm+mhMJtc3Ae0qX4j47OZ60qmzXelzUQ8w0nHHs+pteNoeObpfR5jxmKMz35QUnnscQCoqkIqmcB0OdNfIltM2GpocLVdIYQQxSMBkBiy3gxapaWlWPnIrhzKXrAnR9+n9GNJKJv6urSqrGhjUH0BEkba1YtRK51EsXNrTylzssD5zJHtUXFbT08PseyFfG1J/gJWT2kphm0T9nppeMe9mjZr9TVcsmwJ99smRqk7s8KJWJrjSiv4wozZHN7Rtc8lbQ3//hc+RWFzPM6C084AQFEgEYu4Moa+gtOdekDj0mkSCXdmNIUQQhSXBEBiyKKbN/HJKdM5bdx4zDxEQErYSaww2j6lH0tsy6JEcf63rqguXhIE1R8gknJ3L5eVSYGRyWkWyJsNBr2AlXahRoxLtm+qZ25JKdOqa/HnsR9FVenJphHvWrfWtXbXrl2DBVTPm096hPt/ehmGxfhT30fcNJkQCPDO3/+22/22ZdGTzRCnh0NUVFQCYJkGqTwEKOHZzszc7HAJ7yx72/X2hRBCFN6oSoKgadp3gdN1XT+5z20LgTuAI4F24E5d12/uc78KXAd8DqgCXgIu13V9g5ttCMhs28Z5Eyay0TBI5SEjrKfMuWD3WaPrU/qxJNbagqooWLZNTXXxZoAsX4B41N1sfrZhOOmwfSFsc3hvQH9lGaZt41EUrHgM1Z/PcGPoOlYu54aDDmW7aWCm8huYGaEQxBMYTU2utanrawCYO3s+qZR7s33xtEJ9ZSWH9vRgP/cs1ocuQPU5r1nPa68STCaJGgbjzzhj52Nsy90McDuVlRLDpkRV2fL6Kxx17PHu9yGEEKKgRs0MkKZpVwI/2OO2GuBpYB1O8HIdcL2maZ/pc9g1wBeAS4BjcXJEPaFpmt+tNoQjnc1WlVbz87ZJTZnHJcuW8J0172DlZY3d/q81W1Sz2zAoDbm/T2uoTL+PpEsJEHZrNxlDtYf/3giVl/Dj9Wu5tWU7ah6Xmg1XvGmb893nw87z8rxgtbNELehSMVjbtjm6q5svzpjNrNIKrGEGpQOJx9NM/sCH6UinKTMMtv/54Z33xerG89/WZh7Zvo2TTj8LcPb/GJk0GRczwO2kKHRn95DF161zv30hhBAFV/QASNO0yZqmPQH8END3uPvzQAq4TNf1Nbqu/wa4DfhG9rF+4GvAdbquP67r+nLgQmAy8EEX2xCAEXWWNGW8vry0H6qoodvIkDIMenrcX8t/IOhsa2VzPEabbUGR9rsoXj8ZbJIp9wMgK50EK+Ns+BiGUHmYFZFu3m7egeIdPRPfRqszS2aG8p+xb9yUyaRMk3g8TsyFVPONjVtZVFrGSbXjqCqtcWGEuyRiaQ4/8jgeSzrvodiz/2P7Pb/Ctm3+/tTj3LNlE02TJzN+/AQAFEXBzKRJp/Ozf1CZPIHN8RgbtzVKQVQhhNgPFD0AAhYBncAC4PU97jsReEHX9b5rK54BNE3T6oCFQFn2NgB0Xe8ClgLvdrENAVjZiybDl58AyOvzEQyFAejq6shLH/u7JuDq1Sv5lw9yKpjjAo8/QBqLRD4CICONnUkNOx12sNR5X6VSKZLJ0ZNl0Bt1ZmPUkvwvV6ydNo2v1q/j1vr1rHNhJmPDsqVU+HxYto1ZNcGFEe5imjbRSIoFH76APzU62dcSDZvp6Ynwl788CMCFF35i5/GqqpBMRLHzNHNcfswivr1uDY9u2cTWrZINTgghxrqiB0C6rv9L1/WP67pev4+7pwB7lt/uXcA+LXs//RzTm1PWjTYE7CwiaeQhBXav/zdlBl+aOYdOF/cpHEiam3cAML62qmhjUAMhkmaajJGHT+NtsJJRFGV4wZ034GNBVTXvGT+B1hUr3B9XjsLZfT+hqsq896WoKrMnTgZg3bo1I26vZaVzHnt8PjJWjunJBxCNJPnQBz/C6wp8Z807PBWJ8L3vfZfOzk5mzZrNqaeevvNYRbFJRPM3a+zz+5g9YzoAK1Ysy1s/QgghCmP0rAXZtzDO8rW+ehd5B7P3088xvTlZ3WgjJ16v+/Glx6Pu9r2QeotI2oEQqur+BQ/AMWWllKsqbc3b83L+hqqY53kkWlubARhfXZm312gwnkCQSCo6pFVqvRndnO9DC2qsTAqvlcFWhzMTqXDq+AkcV1pOfPVKvMcfN4zH5odtWVRkn39FbW1eX6/etudOmMBra1ezTl894v+/UtmZkExNLZm06fr4k4kMHo+P66+/gUsv/RzrX3Am6b1eH9dc831Cffe42SaZdCqv53DOzGls3FjP+mVL8J7/gX6PG6u/O8YaOc9CiJEY7QFQAthzuqF3sXwsez/ZYxJ7HBNzsY1hU1WFqqqSXB8+qPLyUN7a7o/HcNJTq2VlhEL5yQ+RUFTKgUykK6/nb6iKcZ5HYkFDA0cdsgDb6yOYp9doMEpJmER3G16fZ8iP8QznYtzKoNoZfOHhvT9SfufXnR2NjIr3VmRrI15FwbAsJk2cSMg79POVq0XV1Rx+yAJim7aM+ByEIt0QKqFs9lxUVSEYcndprGWBZdqcc86Z3Hfffdx8880oisI3v/lNTjnllN2Ojfd0o2Dm9T1/YlUVHzviKNZt2DikczfWfneMVXKehRC5GO0B0FZg0h639f57G+Drc9vGPY5Z7mIbw2ZZNpGI+3sgPB6V8vIQkUgC0yxsprS/mwbr31nO2YveTVkiPyl7bdUDtklkRwudnTnHnyNWzPM8EiXJFBNDYTpCQZJ5eo0GpqCgEI31YGQGT8KgKAoer4ppWMPaXK5EezC9JVjW0B+Tzqa+jrd1FPW91WtLYzO/bthEuT/AZbZCIo+vl6oqBAI+xlfX4A2F6cikaWnpwpfjfr6Ojg4mqc6fj8p5h9ISz0/trraWKCVlfo466ngefnhX+um+r5+qKqTjMaKRKJk81niqmjIZf30TkwyDxsZmSvrJJjhWf3eMNfk6z+XlIZlVEuIAMNoDoBeAL2ia5tF1vfdq6jRA13W9RdO0biACnEw2eNE0rRInscJdLraRE8PI3x8/07Ty2v6+NHV3szWZwFtWNawLz+FIef2QSZDu6i7489uXYpznkQhbNqhQUZu/12ggqj9A2rZJJKMMLZ5xDrJte4jHO8xUAtVIYyneIed6MMMBiJvY0eioeE23dXTwn5ZmZkydyufThSn+WzdpCm1vL6Pa52f90reZt/jInNp5Z9kykpaJadtQOxWrNT+BR093knTKwBzgvez1qqSSCVLJPKTA7qNkxlQyz79Otd/POy+8wOIzzh7w+LH2u2OskvMshMjFaP+Y49dAOXC/pmkHa5r2aeBK4McAuq6ncIKUGzVNe5+maQuAh3FmfR5xsQ0BdHd3ARAI5y9jleF3ljPYMXdqlRxIUok4ZR5nGVVN3Yi2r+XMEwiSwiSRyu8Mi5lOYhvDywZnlznLltQ8XygPVWOjk3dlYu24gvWp+ny0ZtOjb1vyRs7t6BvX87VVK3igpooM+ckKCRCPpUmnBt5fpKoqiUL8vvB6acpG2y1vvJb//oQQQuTNqA6AdF1vAc4CNJy01NcBV+m6/rs+h10L3A/cB7wMGMBZuq6n3WpDgJVOc24wxAcmTiIYCA/+gFz7yQZXdsz95YP7u+b6elRFwbBtKqqKU+xTDYToSccwrTzXILLtbDa4YTym3AmA/HlcJjUc8bWrmR0uYVq1uzV0BhP1ORP/sY0bcm5D150scnO0g0mljEGOzl0ykSERSw+4JMm2DJIu1DUailh1BQBqg6TCFkKIsWxULYHTdf3T+7jtTeDYAR5j4hQ1/cYAx4y4jQNdor2Ns2rGkbYs1oXL89aPWlYFrVtGzaf0Y0nLhvWUAxHLRLHM4lQB8gfpTrYWpCszmcBTmgbFN6RlcJ7qCmA7ftvGyqRRfcVJEtFr7uYt/Pjgw3gnVNhN3J7KSujswt/ennMba9c6AdDcORrpZP4CIIDOzgRV4/pPOmCbGdKpwvy+CM6eAW+9w8SMgZXJoOapJpoQQoj8GtUzQGL06N7u1OWJGBm8/vzNAPXMWcgly5Zwy/q1UnF9mLoaNgOQ8HqxzfxelPbHDASIJwrzabyVSWJnkqjq0H6NBWoruHH9Wu5JxlHU/GdcG4htmpRll6KV1RRuCRxAzSSn9Nl408LIDH/vUSIR57JwKT+YfwjTS6tIp/M72xePpjD66UNRFAwjXbAAaMJBc+nOZAiqKltee7kgfQohhHCfBEBiSKItTn2ZqGWTz7314dqJdBsZ4qnUzj1HYmjaOzvZHI+RKgkOfnAeKD4/aQXiycIEQNhgxntQGdoG6PLaSpZ0d7Fsx3YUT3EDoHRLM15FIWma1NbWFrTvydNnsDkR57XOdurXrBr249cuX8bMcAnzS8sIVOQ/eItH06SSxj6XwamqgpFOkS7QjLHX5+MNM83vt25hRcOWgvQphBDCfRIAiSGJt7YBkBjWpovh8/p8lJZVAtDc3JzXvvY3b/VEuHr1Stq16UXp3xMIk8IsXAAEWOkEGKmdBVUHUlrpLN1sb28jk8PMh5u66p2M+03JJHWl+VtSui9ej4eHkgl+ubmelevXDfvxjW86yRMiikJqrxJr7jMMi+7uJB7P3q+xqiokE1GsfO8566Nz5hQea97OKyuWFaxPIYQQ7pIASAxJqqsDgGSePzlXTINPT53Ol2fOoXVHU1772t9s2+ZkFZsyrkgZ4IJhetJxDLNwwYWVyWCl4igDZAnrFSwLs6CyivfUTaBl+dsFGF3/2tfpznfLJDDEJXxuOnjKVABWrhz+eUhsWO98r67OawKEvnq6EpjG3lPPCjbxnkhBxtDr4HlzAHjjjdewLEm/LIQQY5EEQGJIjG7nIiPjze+mX1v1cFwoxAk1tXRm0wSLoWlsbARgck1xAiACQTrjXQXv1kxEUa3Bgy4Li9MmTuaTU6fT9fbSAoysf4nsezvuL04ihoOmTEUBWleuxB7mRXy40/kwJDhrLqlkYYLdWDRNOmXslQ7bMtOkk4mCjKHXrOlTqQ2HOVz1Uv/CswXtWwghhDtGVRY4MXpZUafORtqf5/0likJMVamwLXqaZAZoqLq7u/jpjNlETYO6gI8hVwd1jYIRCBDrLHz9JiuVcGoC+UoGLP5qWCapoBNwJFtbCjW8fbLbnCWlVkn/2c3yaf7kqfxywSKq/X7a9bXUHnTwkB4X7YkwJTsLPGHxUbTkOQNcr2QiQyyaoiZcunO5m6KAaWRIFTgA8nq9XDR3Hsf5grT99ynmnHxaQfsXQggxcjIDJIZkWU01X3tnOVsq8l+zJO519hUU+yJ1LNm2YT1Vfj9TQ2GCRUiCoAaCpLCIJQq7HAnAtiyseARVGTzoM0udgMPs7Mz3sAb0RijIbxs2o1ZXFaX/ipIS2rKZAhtefG7Ij1v/6iuEPV5SlkXptHkDBpxu62yP0zcxpKqqGOlkwTLA9ZWeNB6Akh3N2EZxMi4KIYTInQRAYkjaolG2JhMo5fm/YEsFsxepkgVuyLZn67JEbRso3IbwXt5QCXErU9AECH2ZyfiQkiGotZUAeKLFGWevJa3NPN6yg+oCF0HtqyvgBMqJ1UPPBFe/cT1vdnbQGPATixf2wj/WkyKdMna+xk4ChBhmEQKQCYcdRHcmQwCIZYvCCiGEGDskABJD0puSOhguy3tfVqlTbZ2e4l6kjiXt2axiqYAPuwgZztRgCR2JrqLVbrIyaaxkbK89InvyTnTSNgczmaLWmdq8eTMAkyoqizaG8qlOIoTKnihWKjWkx7y+qZ6fblxH0+KjSCUKG3jEY2kS0TRer/NnS8EmHukq6Bh6zZg2hRUxZ7lnwzP/LcoYhBBC5E4CIDEoK5Pm6O4IH5gwiVAw/3sWlOoJAPhTKQxZXjIkyWyhWqWijMLv/wEjGKQ71lXwfvsyEz0oZhoGiIFKp08EwAdYsVhhBraHlrfeZL5tU+P3M6WiOEvgAA6ap9GSSuJTFFqyqa0HYts2b7+9BIAFhy8sWAKEXf1DR3uM3nVwlpkmWeD9P71UVaWz0vkwKLN6tRRtFkKIMUYCIDEoo6uLIz1ePjRpCqGy/GcY89Q4AVCF10tT07a897c/ULu7AQjXFX5JleoPkFIVoonugvfdl5lKYKfjqAOkla6aPIGuTBqAVJH2mLX97ym+Mmsu50ydRiiQ/zo6/akqLWNjdraw8cXnBj2+cZ2OGunG6/WhzTmEZIESIPTV050inTKdAqiZNKlEvOBj6FV5yDxSpkkokyHdsLlo4xBCCDF8EgCJQRnZDeMd6TTB0sq89xebMpdrWlr5vr6aBqm2PqhEIkGF6ez7GTd1QsH794RKidsZYvHCJ0DYjQ1mrHvAlNhlNeX8fMsmrlq1gkiRUlAb2eyGRklpUfrvy6isBMC7efOg6bC3PP4YPzvsCL65YCG25cE0Cl8DJx5LEYum8Ps9TgKEIs0AARx66MEs6e7Csm1aV64o2jiEEEIMnwRAYlCxlmYAOjNpguGKvPdn+/wExk3EBrZulQBoMJs319OYiNOYSlI5sbbg/XtCpbTHO7Hs4heFNJNxZxbIs+9fbRY2HeVlbEnEadjWWODRgZVKEcguvfNXF6leUx+TZs3m0e1N/Hzb1kEXTprZAqi+SZOJ9hQ+8xpkl8G1xlEUhXi0u6iFSEtLSnjNY3Pp8qW8lizOckohhBC5kQBIDCqyzVmG1m1Z+AOFSbFcPW4SAA0NDQXpbyzbsGE9d2/ZxIN+FX91/pNU7E4hEwrRFe0ocL/7Ztu2Mwtk73t5lmEazJw9C4ANG9YVcmgApLZtQwG6MmnqxtUVvP89HT5rDo+07uDNxgZWD5ANLhPppi7pBD11xx1PIl74RBu9It0JMqk08Z4izzgCMw6dT7eR4cn/PD5oBkIhhBCjhwRAYlDJ7AxQTPUUrM9jsfna7LnEN28qWJ9j1apVKwE4aN4crPTQsnm5xRMKk1RsIkVOgNCXmYxjp/adES5jGcyfPpXzxk/Et2RJwceW2uK8nzfF40ytLF4ChF5+n4+j580H4Nlnn+73uM1P/QePorApHmfBu08jmSheAJRKGiRicdKp4i1/63XMooUAvLVkCe3bCz+jKIQQIjcSAIlBZdpaAYj7C7dhe2o6wTFVNShSDHVQa1YsRwEWHKRhZQobAHnD5USMBPFkT0H7HYhtWZjR7CzQHjFQ2swwfcIEPjl1OlpX4dN2d69xasasj/Ywvbb4M0AAJx50CDNCYca99hpdL72wz2O6Xn0FgKbyUjyKj1QREiD0CoV9xKNREkXK4tfXuJpqFsycwTVz57Pje9cNOZ24EEKI4pIASAwum2EsEQwXrEsrmwkukEgQjxf/Qme0SiaTHB6N8rsjjmJeZ+GzsNklpTT3tBa838EYyRh2KrrXLJBt29QeqmFYFkFFIdVW2LHHs8vuuvw+SoOFWU46mGPmaiysqmZRKMz2R/++VzKEVNM2Krq7sWybqmOPJxpJYVnFS/scCvuJRrpJxhMog9R9KoTDjljAuEAAr2EQfWvwdOJCCCGKTwIgMahXZszgqlUr6Cwv3KZtq8ap1zIxEETX9YL1O9asXbuaacEgQY+Hisr812jqS/UFSHo9dPe0FbTfIbFtjGgXqpnea29GzbQJbMt+Ur91CPVv3PTmnDn8dIOOt3ZcQfsdSCgQwJ44kbhp4OnspOe1V3e7f/uz/wPgra5Ojjv7XKLR4s5yBIMq3R3txOOZUbHv5ujFC/lvdqa65T9PSE0gIYQYAyQAEoNqamtlSyJOsLJwS3bS2WBrQiDI2rX9b84+0K1csZzpISfw8VfnP0NfX97SCnrM1Kja/9OXmUxgJSLsWRYoZaXpCTmzLztWLi/omJZv3MCbXZ3MmDCxoP0O5szFR/PIdifZSfOfH8Ts2bWk8elYlDvq17O2qpK6uokk4uliDRNVVfD5LWKRHpLxDKZhFT0IqqmqZEd1BWnLwtreRHJTfVHHI4QQYnASAIlBNTdvB6CkonBFNtPlTl+TgkHWrlldsH7HmlVvvEqFz4cNeMsLvKSqtIId0WbsUZD+uj9GTxdKJr7bUri0mcEzebLz89atBR3PmjVOMD9nFGSA60ubPIWGcJjGRAI7GqXxtpuJLnubZDLJgw/9kZc72jnugxeQThpFzQAXKvFjmSmikQjptEEykdlnsotCO/aEd/FqRzsA7f/rP5mEEEKI0UECIDGg2Kp3OD6W4OjKKkrKChgAlVZhA0GPh23rZAncvqRSKTrWrgVAra7C7if1cz6o/iBJn4f27tG3/6cvy8hg9HSiYu5MiJA20oxfvBCA6ngMK1tENt+23PMrjrFtyrxe5kyYVJA+h+Mzp57JLRt1ooZBqmELTb+8i9/e+0s6OtqZNGky5577HnoiqaIUQO0VDvtIRrtJp5xZqHg0jWlaeyW7KLQjDjuYVxNRALpffY1UW3txBySEEGJAEgCJAcXXruG4cAkLyispryrgvgWPh1RJOQnTpGtbI8lkcQovjmZvv72EyV4vAOXTp2Abhftk3ldWRYcRpyfaWbA+c2XEe7ATETzZmYKUkeag008maZkEUKh/O//psM1olOQbr/GxydOYO2kypaFQ3vscrkOmTuOQhUdw9eoVvBLpok1ReOzBBwD4yle+jtfrpae7uP8fhsMq3Z27gotU0iCVNFD3XOdYYB6PhxlHLmR1TwTFstjxnyeLOh4hhBADkwBIDCjWsAWAbckE5ZWFmwEC2HLOxXxt62Y29ERYsWJZQfseC1555UW0UqfwaWBC4RJUoCiYZRVs72rCZgxs+LZtMpGOnUvhUkYab0mQv/n9fHrZW7xYgH1A8bVrUICGRJxZ02fmvb9cXXne+UyYPYfb163l8tdeojEe5yMf+Thnn30OmZRJPFa8BAj+gBdVyRDpk+3QxiYWTWOZdtFngc48+QQeadnBrzZvZFV5aXEHI4QQYkASAIkBpZqcjdEdXi8ej7egfZsl5cw/dDEAb7zxWkH7Hu0sy+Lpp59keaSb5MTxBCcVLjj1lVYSVS3aunYUrM+RsjJpjEg7qp0hYxmkjDQLzzqLtGXx73//M++Zu2LvrADgnUg3h0+dlte+RsJvWtzz3ev49re+y4c+9BFuvPE2vvWta/B4VBKJDPFY8fb/lJYFSKeixHp2rzmVTGRIJTNFnwUqLSlh2lELeaatldt/dueo2JskhBBi3yQAEv2yUino7AIgXlLYDGO95hy0EJAAaE9Ll77F9u1NvBiPcvi3rsJbXrglVWplDdt6mkmlEwXr0w1GPIoZ7cSjWPSko5x99rn4/X42bljPO8uX5a1f2zDoWeIss1vS3cVho3gGCMBs7+Ci8z/Atddez1lnnYOiKCiKQld7vKgpnktKPXS3t+w1Btu2ifaksEwLipwR7pzTTiIQ8LNq9RoefeTPGN2Fr80lhBBicBIAiX6lGhpQsOlIp/HWFD5tr2IaHN/SxK2HLGDDmlVEo9GCj2G0+ve//wnAmWeejV81MZPxgvTrDZcR9XnY3l7Y7GluMXo6sRPdxDIxyirKuPTEk7n90MN58/6789ZnXF+LnYjTnclATc2oKYDan1RnF6nmHfi8u4IJI2MSjRR3+ZvXk6GrvWOf96cSGRKx4meEqygr44PnnolWWkb5X/5G032/krpAQggxCkkAJPrVW89iYyxKZRECINvjJdzewpRQmDmhMC+88GzBxzAadXR08MQTj3F4eQXnn3EmRnc7FCgVtae6jqZ4G9H42Pxk27Ys0l1tJKLt2IrBu486honBENM6Oli65M289NnzllNs9Y2uDo6ff3Be+nBbrKER4lEURcHrVUnEM0R7ihcAlVcESSV66OmO7PN+G4j2JDHSJkqRg6BzTjuJYGU5lR4vyTVr6Hn15aKORwghxN4kABL9ymTrWmyIR6kZV5y0vbHxzn6Jg8vK+c9//l2UMYw2Dz/8R8xUiqvnzif4698Qb9hckH69pZX0+L1sbdlUkP7yxTYNetq2kUp2cdCHP0hGUZgWCvPoTT8iHo+53l88nSFlmbzc0c6JYyQASnZ0ktrWhN+roCoKnW1xJ910ESgKlJSqtDdvH3A2JZ02iUaKny3S6/XykU99hL9mC8tue+B3ZDpHf7ZEIYQ4kEgAJPpV99GP89XNG3m6pYXquslFGUN8/HQADi0r55VXXqa7u6so4xgturo6efDBP7CgvBKfouCrqkQJFOATb1VFrRlPQ2T7mJ396Ssa7SQaacVnxak9+2wAzg4Eufaq/yOdTrva1z9jEb6wfCmlU6YwvrLK1bbzxrbp2bwFu6ebTNqiu7MwSyz3pbQ8CFaCjpbBa07FomlnKZynuH/aDpo3h8DRh7MhFsWTybD+5p9gZYqXQEIIIcTuJAAS/erq6qSxrZWoaRRtBig6aTYA80rLKFPgH//4W1HGMVr8/Od3Eol0c+4MZyN92SHzsNP5/9Q7UD2BViVNQ/PGvPdVCKZl0BXrJNXWyOSTF2NXVVHjD7C4uZnLLv0MTdnshyPV0dHOww8/SMw0ee/io1xps1DS3REy7e30dMWLuvytsjJAV9t2UkOoBWbZNpGuBOmUUfT9QOeddRrPBj1EDQNvczOrbr9Z9gMJIcQoIQGQ2Ccrk2b9+rUAVI+bRCAYLso4jJJyEuOmAHB0ZTV/+MNvXf+Efqx4883X+OtfH6LM6+XQgLORvnTelLz36y2pIFFezvod60lnir/EyC0dsU4Mr4d4o87siz6A7fGwuLKKk7ojfPCD7+FnP7uN5ubmnNvvWfImv/vxD0kk4hw0YybvmqO5OPr8UzweUhmLls3NRQsmSssCeNQkLU1NQ35MJmMS6UxgGnZRgyBVVfn4pz/Bv4wklm0T0HWevulHWFZxlhIKIYTYRQIgsRfbtmn44Q/g4YeZEAgyYcqsoo6ne7qzb+LMiZNobW3lb397uKjjKYbW1ha+/e2rsW2bK999KoplEZo2BU/Yk9d+VX8Qu24SG7obaevante+Ci0S6yTl86CgYBqdTLnwXPB4SFdXkUwmuf/+uzn33FO57LLP8uCDD1BfvxHTNIfUdrq1la33/Ir3dHZyeEUlXzznvShFTtE8XKHxdcSSCjvWbsGOxwoeTCgKVNcG6WzdRqxneBkgE4kM3V0JTNMualIEn8/Ley/5fzyr2qyIdHPNw3/k4osvYmUBiu8KIYToX2ErW4oxIVm/kfS2RkqAbiPDwZNnF3U8XXMOp3b9Ejy1VXhWLuPnP7+D0047k7q68UUdV6F0d3dxxRWX0trawqGzZrMgk8EGqo5diJXJ39Ik1R/EM2k6GxNtbG7S89ZPsfTEOukxU4wrrSDd2YK3XGXKRefyhUOPYO7SNTzw4EN0r1lD24rl3JjN5BUOh5k//2DmzJnH1KlTmTx5KpMmTSIUChMKhUgk4tSvXYP3r39hvG2zLtrDCWecyfwJhc+iOBKeQABPTR3bN3SQiSWwaSM4wYPqD2JZhVnGVVVTAmaEpi0NOT0+FnX+36ioCuHxqk6doCLw+3yc8OkLeealV1G3bmbZsqV85pMf5cQjj+GMD3yIk046hZKS0qKMTQghDlQSAGVpmqYC1wGfA6qAl4DLdV3fUNSBFUH7v5waM29Ge0iYJpOmzS3qeKxAiPXnX86i+XUcsmYlK1Ys51vf+hq/+tWv8fn8RR1bvjU1beOKKz5Pff1GqqtruOGqb5P50x8JTp2Cvy6MnacAyBMuQxk/mU3JDvStK7AKlGa7kCzbYnukmXFlU6CzBQBPSCW2aSUnzR7PGbf/hFU/vBW7rZ0d2Dzd1MQrrc0sXfoWS5e+tc82xwcCfGXWXOaUlBI1DGJHHcUHtINhiDNHo4KiUDJtKh09Jm2NbQAYsTip5hYCdXWowSCWmd8gKFzip6ICtm6oH9Len/7Eoiksy6aiMoQ/4CliJjuF0048jkULDuWxZ15k3NoNnJox+PPtN/PDH1zDYYcv4ogjFnH44Ucwe/Ycxo2rG3MzhkIIMZYosinToWnadcDlwGeAbcBNwCzgEF3Xh7vppN40rZkdHe6n1PV6VaqqSujsjGEY7v8xj7z+KjvuvRsUlS+tWEKbafKNG/+M31/84o111WFqA1Gu/OxFNHV3cfrpZ3LDDT8lEAi43le+z/NgTNPkn//8O7fcciPRaA91deP5+c/vYd48DaV9O4mNy0FJuN+xqhKonkCyooL6SBP129ZgWvm7eFcU8Po8GBmTYvwqCgfLOGbW0ZS0tGBEu3a7z8pYdL+1np5VG7ANY+ftqbIyWr1eVhkZXm3eQUtLM6WGwfurazm6sgqfqpLyeKj46IVUeXykOndvtxhUVSEU8pNIpAedwSmZOoV02Tj0pVtI9Oz+HvOGQwTG1aKWlGBaOAV4XBYM+ZgwKURn80Y26etdadPv91BWESIU9qEo5HUWS1UVgiE/yX7OtWLbqP96Bk+bU2agOZXkyZZmnssmnAEoLS1l2rTp1NWNZ9y48dTV1TFuXB3V1TWUlZVTVlZGWVk55eVlBIOhAzJYytfv6OrqEjwedRPO338hxH5KAiBA0zQ/0AZcrev6r7K3VQJNwMW6rj80zCbHXABk2zY9r79K829/jW0Y1E+exjcf/TMz5i7g01/+iWv9jIQCHBSMY/3mTp5p2sYftm5m5vyD+f73b2DOnHmu9lWMAMgwDDZt2shLL73AI4/8ha1bnaU/xx96ON/6/GVMPelkAl4bs3kj0c2rwMXN1IrXh7+8Gqu8ijZSbGzZSEuHO5nQBuy3yAEQwOwph3BIyUQyjRuxTWOv+81UhuSWduL124hv2UbvQKvPOIO6j12EZdmkm3ew+TvfBKDkkEOYfMGHiTftIL59R0GfS3+GEgApquoEP6U11K/eTnfLvtOdqz4fgepKvOXl2D4/tmW79tpVVIWoqvbS3bqFTfo6VxMGKIpCuMRPaVkAX8CDoijOuXD5jTdYAASAZeHf1IiyZCV21Pk7YQGb0mn+2djAqx1tQ+7P4/EQDpcQDAYIBILZL3/2eyD7te+f/f4Afr8fv9+Pz+fL3ubH5/PvvH3XMT58Pv/OY/x+p41iBV8SAAkhRkICIEDTtKOB1wFN1/V1fW5/CVih6/rlw2wybwFQ/dZmGlesxEwlUWyLeHc7m9a9w47tTSQTSTqNNNtTKWeztmEwx+/HtGws08S2TBQUQqEQoWCQwLg6Ji86kve8572UNmxhx333AOA7bCFfeeZ/NGxZz5kf+BzHnfpB159HrsatfZ1xrz8JQMqyWNHdxaZEnAmz53Do0e/i8A9eQKikBIB08w7MSI8TOe1DcMZMFK+zCjTd2oLZveuCz+NRKSsL0tOTxDQtAtOnY6LQ09NDZOsWojuaicdjO79isRjxeJxYLEYzNinTwDBMgpkMoUwGy7KwLBPTNDBMC8u0ME2TpkyKhGmSyWSgo4OJPh8+VaXC62NKWTnHTJtOWTSK4vEw55pv4w/bxLasxTZGlglP8XhRAyG8wTCESkgFAnRbSbZ2bqO5fSuZEbY/5HGMggDI5/WzYOaRTCFApnkrVrr/ZYVWxsLoSpJu7aZkzhwqjz4afEFs1Ufzo/+iYuFCfKUlRPR1JJpbR03a44ECIMXrJVBViX9cHVHTz5a124m0RQZt0xsO4asoxxsuAb8fW1Gw7WwwNIyn7fEolJQFqKjwo6oJWho30bRla97OnXMufIRK/PgDXjwexXkjZsc+0n6HFAD1yhgEtzWjrNmImQ2Wa97/fqILDmfLls10baxn4ttLiVgWnek03ckEkVSK7mScSCKBHomwLenM0oU9HuaWlGLaNn3Dgd7n05JO0Z7NoBlQVWaGS3Yds8dP7ek0bdljfYrCjD7H7v5cPSR8ASK+IP5QGcFQGTOCYVR/GCUQRvGFwRfC9oaxfWEiwRpawhPJWCqGaTEjsQNFAQWF3lwVavbliHtDtAerUFUF1baZFmvK3qegAKY/wAUXnsFJkzISAAkhhk0CIEDTtA8CfwPCuq4n+tz+5+xt5w2zyXrTtGZGIu4uUWpq7+Gic07hroP7ryb/ZMsO7m/YDECF18e9Cxf3e+yzbS38cnM9iqIy/5hzuDpo0X74GbwcHsfff/z/8Hj9fPaXbxCuqAZ2xRG9H/gpfW5Dod9j9nX7SJRufocpT/+GUOvWve771PKllE+ZS83kWXxYNTk03tFvO48c92Hiqo90MsbRG5dwaGf/Mx5X6mto6nECpE9Mmcb7J/RfF+mr7yynMXtR8uGJk/nI5Kn9HvutNSvZGHMC5fdPmMQnpkzb53GR6YfSeMoniNVN3+f9e1zS9ttf73G2beNcp2a/2xaWZWX/NTDbHtqLOJTfLDbOaAc61s1fUf01paDgUb2oKCg7z1//He+8R1HInkBsy3K+DAN7wAvf3c/fUM/ToMcMcJDz/52y+7gVBdsGq/fLgkzSuWgf1ilXVWcWIPu182eU3X5BKH1+GfRexFq2hZ39YMAyDZLJBEbGyJ5SZa/nbvd5DjbKbs/ZZtfxdp9zbGf/s+djndOgOFfc9I67d4C7n6+9++rTn713fzZKts9dX71P3rbZZ7uV8Tbmtb7D1uo5bK+eg43KnB3LuOiV/mfg/659nP+OPw4rFWVm53quXnd/v8c+5JvNP9SJ2EaSGUYHNyr1/R77SCTDQx0xMFNMVC3umNl/Eo9/N2/nd1u3AFDl83H34f3/zflvazP3bNkEOAHbb4/ovzbWi+1t/GyTswXXoyg8uPiY3e5fF+3hzuB0nn/wTlf3dpWXhyQAEuIAIEkQHL1Fbvb86DcJVOfSoKoqVFXt+1OzXJWUBqmaeww7Mp2911zYipr9hC2ErXjoPuhEPO8+EVQftp1m06bfYfde7KDuvNi1bZOWKRqKNRG74WXWvPZvLkaBTVHslncAsA77OL9eP87V5+COw+HQ25jVsxGtaw2T21dS0aFTlmwnY2Ro3rSK5k2rqJ8yjZrKqn5beezn39y55r5s0hRqqmv6PTaV3BXMRm2V7ekMKCoonuz37JeqYh19Gaq3AlQvsfQWtifrd11YAX2vBM0zfoInOBFULx3pRtZ2voWpeOnxl9EarKMpPJmV1YfTEayFBpwvIfLG3d9ZYjgqeL02m3Gzy/m2Q51H82HfoCbZRlkmQshMEDbihIw4ATNFvX8qnd6J4IUuy8Om0pl4bBO1dw6oT9AWnXo66uQzAbBiW2laedPO+5Q9oufE3DMpnfk+/B6oSjbT9voPdn2opWRDQ9tGsS0qTzid46cdiZrqoSTaQtfqx8G2wLawbWvXhwO2hVpRzeTpHhQFgqpCW5/kIDb2buM1giEmTp2JbduoQKux+/LUuNfHpR88gfLyUM5nXAhx4JIZIEDTtA8Bf2XfM0ABXdffP8wm8zIDBM7SrPLyEJFIAtO0iGfgrWYP7QmFuAHxjEI8A6bd59PL7A+7PnXc/fbOxrWs+OfPaHjr3zv7qZx6EGd+6294/LsXQO372D3b2dcxe/aby9ttKLNGCs6sRqKzic4tK4m3NZLobCLR1YyZTmKmE5jpBGCjqE7QoqgqqseHNxDGGyzFGwjjC5XiC1cQKKkkWFaJJ1CGN1SOP1yOL1yBL1SG6vEOMMeSn+dW6Lbc6Gso/SmKQiDgJZ0eeNbEzW0Gbp2nIR3j0nlyDP4/T3/9qYqCP+AjncoMeYmXm89vKO30nS3ebZa57337+HmfM9OKvVs7e7Y14H0DPIZ++lcUe+fxqqoSDjtL4GzL2vmYPWfO93yOOx+vgLMqz0bNTlCpilO0T1Wd78rOY0DtPQ52O363YwCPYqMoDKnNsWDPv4VukRkgIQ4MMgPk6F1LNQnY2Of2ScDyXBvN5+Z507QwDAu/AsdNGGE/i2bA+25hw4Yv8Nprr1BTU8Mpp5xOMKjiTIKNJTXAySNupf8Ntkb2S7jBOc9eOjtTRcm2d6BwzrOPzs60nOc8c861n85Od/em5E2fT6jGULL2nXr/FgohxHBIAORYDkRwrpw3ws4scIuAu4o2qgKbM2cuc+YUt+aPEEIIIYQQ+SQBEKDrekrTtLuAGzVNawU2Az/FmRl6pJhjE0IIIYQQQrhHAqBdrsU5H/cBIeAF4KwciqAKIYQQQgghRikJgLJ0XTeBb2S/hBBCCCGEEPshtdgDEEIIIYQQQohCkQBICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAkABICCGEEEIIccCQAEgIIYQQQghxwJAASAghhBBCCHHAUGzbLvYY9kcJ27aDlpWfc+vxqJimlZe2xS5yngtDznNhyHkuHDnXhZGP86yqCoqiJIGQqw0LIUYVCYDyowsIANuLPA4hhBBCDN1EIAVUFnkcQog8kgBICCGEEEIIccCQPUBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGt9gDEIPTNO27wOm6rp/c57aFwB3AkUA7cKeu6zcXZYD7iX7O83uBa4GDgDbgL8C1uq4nijLI/cC+zvMe998LnKHr+oxCjmt/1M97eiJwK3AOYAL/Ab6i63pbUQa5H+jnNApjxgAAB+1JREFUPB8J3AIsArqAB4FrdF1PFWOMY5WmadXAj4DzgHJgBfBNXddfyt6/EPlbKIQYJpkBGuU0TbsS+MEet9UATwPrcH7pXwdcr2naZwo+wP1EP+f5RODvwN+AhcAXgAuBXxR4ePuNfZ3nPe4/H/hcocazP+vnPR3A+d0xCzgdeA/OBfrvCz2+/UU/57kWJ7BcAxwBXAJ8GrihwMPbHzwEvAv4KHAUsBR4StO0+fK3UAiRK5kBGqU0TZsM3AecCOh73P15IAVcpuu6AazRNG0u8A3gNwUd6Bg3yHm+FHhG1/WfZP+9QdO0bwO/0TTtC/JJ7tANcp57j5kI3AM8D8wo2OD2M4Oc64/hnNvZuq43Z4+/EviFpmnluq5HCjjUMW2Q83wCUANcpet6D87vjj8AZwFfL+hAxzBN0+YAZwDH67r+Sva2r+DMXn4cSCB/C4UQOZAZoNFrEdAJLABe3+O+E4EXsr/wez0DaJqm1RVofPuLgc7zLcBV+3iMFyjL87j2NwOdZzRNU4DfAQ8AzxV0ZPufgc712cD/eoMfAF3Xn9R1fbYEP8M20Hluz36/TNM0j6ZpM4BzgdcKN7z9QhvOLOWS3ht0XbcBBahG/hYKIXIkM0CjlK7r/wL+BaBp2p53TwFW7nFbU/b7NKAlr4Pbjwx0nnVdf7vvvzVN8wNfA5bKfonhGeT9DPB/wETgvcC3Cjey/c8g53oe8IKmadcAnwJ8wJPA1bqudxVwmGPeIL87XtQ07SfA9Tj7Vzw4gf2XCjvKsS37nny8722apl0AzMZ5396A/C0UQuRAZoDGpjDOtH9fyez3YIHHckDQNM2LMztxMHB5kYezX9E0bQHO2v1PyLLCvCvHCXwOx1lC9Hmc5VqPZmfhhAs0TavECTZ/DhwNXADMAX5ZxGGNeZqmHQ/8Gng0G4DK30IhRE5kBmhsSgCBPW7r/WUfK/BY9nuappUBfwZOAT6s6/peS7hEbjRNCwJ/An6o6/qKYo/nAJAGosDHdF3PAGia9ingDZxN5G8WcWz7kxuBSl3XP5T991JN0zqB/2qadruu68uLOLYxSdO09+P8rngNZy8byN9CIUSOZAZobNoKTNrjtt5/byvwWPZr2Y35LwLHAedkP3UU7jkGOAT4nqZpUU3TosC3gWnZf3+iuMPb7zQCem/wk7Uq+31mEcazvzqBvYPJ3v0/8wo8ljFP07QrgEdwlsOd26cMgfwtFELkRAKgsekF4ERN0zx9bjsN58JG1jy7RNO0KpwNteOAE3Rdf7bIQ9ofvQHMxVmStTD79SucdfwLgX8WaVz7qxeAwzVNC/W57bDs9w1FGM/+aitOcoS+es/z+gKPZUzTNO0y4GfAXcCFeyyTlb+FQoicyBK4senXwNXA/Zqm3YSzxvxKnDo1wj234dRLORto1TRtQp/7WnVdN4szrP1H9pPc3S68NU3rAAxd1+WC3H2/Aq4A/pRNhFCRve1ZXdeXFnVk+5dbgf9omnY98FtgOk79sMd1XV9WxHGNKZqmzcMpcvp34MdAXZ+EEwnkb6EQIkcyAzQGZT/ZOgvQcIrCXYdTb+J3RR3YfkTTNBWn6KkfZxZo+x5fU4s3OiFyk81eeCJO9rfXcbKYvQF8oJjj2t/ouv4UcB5ODZtlOBfqjwMfKeKwxqIP47xXP8Dev4PvkL+FQohcKbZtF3sMQgghhBBCCFEQMgMkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhBBCCCGEOGBIACSEEEIIIYQ4YEgAJIQQQgghhDhgSAAkhDigaZqmFHsMQgghhCgcCYCEEAcsTdPeB/wu+/PJmqbZmqadXNxRCSGEECKfvMUegBBCFNFX+/y8FDgWWF2ksQghhBCiACQAEkIIQNf1CPBascchhBBCiPxSbNsu9hiEEKLgNE17Djipz02nAM8Cp+i6/pymad8DPgp8E/ghMAdYC1wG2MAdwAJgI/AVXdf/16ftQ4GfAO/O3vQ/4Gu6rtfn8SkJIYQQYghkD5AQ4kB1OfB29utYoHwfx0wFbgVuAD4CVAN/BR4E7sUJkFTgIU3TQgCaps0DXgHqgE8DnwVmAS9rmlaXv6cjhBBCiKGQAEgIcUDSdX01EAEiuq6/lv15T2Hgcl3XH9R1/Z/AL4BJwPW6rt+n6/qjwDVALaBlH3MdkABO13X9EV3X/4IzuxQCrsrrkxJCCCHEoGQPkBBCDOyVPj/vyH7vu1eoPfu9Mvv9NJyldHFN03p/x0aAF4Ez8jRGIYQQQgyRBEBCCDGAbHKEPcUHeEgNcGH2a0+trgxKCCGEEDmTAEgIIdzVBfwXuGUf9xmFHYoQQggh9iQBkBDiQGYCHpfbfB44GFim67oBoGmaAvwB2AAsc7k/IYQQQgyDBEBCiANZF3CspmmnAhUutfkD4FXgMU3TfgkkgUuB84EPu9SHEEIIIXIkWeCEEAeyu4AM8AROlrYR03V9BXAiTq2gB3DSZk8Eztd1/RE3+hBCCCFE7qQQqhBCCCGEEOKAITNAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDhgRAQgghhBBCiAOGBEBCCCGEEEKIA4YEQEIIIYQQQogDxv8HECmnYWz7MCkAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Show the chromatogram with mapped compounds\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Deconvolving Overlapping and Subtle Peaks\n", + "Often, compounds will have similar retention times leading to heavily overlapping peaks. If one of the compounds dominates the signal, the other compounds may only show up as a \"shoulder\" on the predominant peak. In this case, automatic peak detection will fail and will fit only a single peak, as in the following example." + ] + }, + { + "cell_type": "code", + "execution_count": 15, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1499.35it/s]\n", + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 99.62it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[41m\u001b[30mF, Failed: Peak Window 1 (t: 1.810 - 21.090) R-Score = 0.9788\u001b[0m\n", + "Peak mixture poorly reconstructs signal. You many need to adjust parameter bounds \n", + "or add manual peak positions (if you have a shouldered pair, for example). If \n", + "you have a very noisy signal, you may need to increase the reconstruction \n", + "tolerance `rtol`.\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 0.9963 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[43m\u001b[30mC-, Needs Review: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.2596 & Fano Ratio = 0\u001b[0m\n", + "Interpeak window 2 is not well reconstructed by mixture, but has a small Fano factor \n", + "compared to peak region(s). This is likely acceptable, but visually check this region.\n", + "\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACW80lEQVR4nOzddXgU59rH8e/uxt0TCC4ZXAo1KpSWttTb07fufqr09NTdS3uq1F2ou1B3pZTiOhCSAAkh7tlk9f1jE4qTLMlu5Pe5rlwhM8/M3Ptge+8jt8Xr9SIiIiIiIhJs1mAHICIiIiIiAkpORERERESkg1ByIiIiIiIiHYKSExERERER6RCUnIiIiIiISIeg5ERERERERDoEJSciIiIiItIhKDkREREREZEOISTYAQRBJRAOFAY5DhEREWm5HkAjkBDkOESkHVm6YYV4u9frjfB42v51W60W2uO+sjX1dWConwND/RwY6ufAaK9+tlotWCyWBiCyzW8uIh1Gdxw5KfR4vP3Ly+va9KYhIVYSE6Oprq7H5fK06b1lc+rrwFA/B4b6OTDUz4HRnv2clBSNzWbRrAeRLk5rTkREREREpENQciIiIiIiIh2CkhMREREREekQlJyIiIiIiEiH0B0XxIuIiIi0iblz58bi2+ZYH/iKbM0DFI4bN66mpRcoORERERFppblz51qBGy0W65kWiyUUsAQ7JpEOyOv1ep1z5859Dbh33LhxO93GT8mJiIiISOvdaLOFXBwXl+gIC4uot1gsKqIjsgWv12txOBqiqqsrLna7XQB37+waJSciIiIirTB37tw4i8V6ZlxcoiM2NrEs2PGIdGTh4ZF2ILmysuzMuXPnPrazKV6aHykiIiLSOhkWiyU0LCyiPtiBiHQGTaOLofjWZ+2QkhMRERGR1rECFk3lEmmZpr8rFlqQeyg5ERERERGRDkHJiYiIiIiIdAhKTkRERESkQ5g+/eGexx47ZWSw42ipFSuWRXz33TfxwY6jK1FyItKBLFq0gIcffoD33nsbh8MR7HBERERkB66//r+Dly1bEh3sOLoSbSUs0kF8/vln3HLLdXg8vvpEX301k6effomwsLAgRyYiIiLbpj0R2pqSE5EOID9/HXfddSsej4e9996HxYsXMnfu3zzzzBNcccVVwQ5PRERawOPxUF9fH5RZKVFRUR6rtfWP3nff8eOOP/6kwp9++j7Z6XRaH3vs6RVRUVGexx9/pNeiRfPj6urqbPHx8a5JkyaXTZ16dcHy5csiL7ro7GFPPfXC8lGjxtQDXHnlJQOXLFkU99VXP80PCQnB6/VyxBGTR5911rkFJ510WumWzywtLQl5+OEHes2bNyfe7XZbsrKG1F511XXrBg4c1Njc5rnnnkqfOfPj9JqampBBgwbXXX/9rXnN57cVc69evR3PPvtkj59//iG5oqIiNDMzs+GMM85ZP2XKEZUA7733dvJbb83occ455xe8+OJzvaqqKkOHDh1ec/PNd+S98sqLGT/99F1ySEiI9+ij/1X0739ftgGgsbHR8sQTj/T87bdfEsvLy8IiIiI9o0ePqbr++lvWJiUlu489dsrI0tLSsHfffbPH4sULYp9//jWzoqLc9sQTj2bOmfNnQk1NTUj//gPrLrzwkoK99ppQ2/zaPv74g6Q33ni1R0lJSXifPn3skyYdXPbii8/0/u23v+f683titVr9en0dlZITkQ7gxRefpaHBzrhxu/Pkk8/z44/f8d//XsGMGS9z0kmnkZ6eHuwQRURkBzweD6eeevyQFSuWB2WKz5Ahw2rffPN9058E5Ztvvki9776HVrndLsvgwVmNp556/LD4+ATn/fc/ujI2Ntb9888/JDz//NO9hw0bUXfooYdXpqSkOGbN+j1u1Kgx9W63m2XLlsQ2NjZa58+fG7377nvWLVgwL6qmpjrkwAMPrtzyWS6Xi6lTL84Ci/f22+9dnZyc7Hr88Ud6/fe/l2e9//5niwFKS0vDlixZFHvffQ+vcjgaLffee0f/e++9o9+LL84wtxfzlVdeMjAnZ3XU5Zf/Z23//gMbvvrq86R77rl9oNVqzT7kkMOqAMrKSsM+/fSjtLvvfiC7vr7Oesst1w0+55zThh900MGlTz314vIvvvg0+fXXX8mcOHFS5dChwxseemhar9mzZyVcd91Neb1792k0TTPywQfv7ffss0/2vOGGW9e98MKM5eeee9qwffaZWH7hhRcXut1urrji31lOp9Ny3XU356ampjnfeefNtOuvvyrr0UefWjFmzG713333dfzDD9/f/8wzz80/4ICDKmfP/iPuhRee6b2rvyf+vL5W/0EJEK05EQmy4uIiPvvsEwCuuOIqrFYrBx10CLvtNh6n08kbb7wS3ABFRKSFOmfdk4kTDywbM2a3+nHj9qiz2+2WAw88uOzGG29dM3LkKHu/fv0dZ511XnFCQqIzO3tlJMD48XtWzps3Jw5gwYJ50TZbiDcra0jtnDmzYwF+/fXnhMGDjdrU1DTXls/6/fdf4tasyYu8/fZ7cvbaa0Lt4MFGw0033Z639977VJSXl4UA2Gw271133Z87fPgI+9ix4+oPO+zIktzc1VHbi3nlyhURf//9V8IVV1y19uCDp1QNGjS48bLLrizcffc9K99449WNRf/cbrflqquuWzNixEj7HnvsVTdy5Ojq8PAwzzXX3Jg/aNDgxgsvvLQQYNUq3+scOnRY3fXX35w7YcJ+Nb1793VMnnxI1ejRu1Xn5eVEAqSkpLqsVqs3MjLSk5iY5P755x/icnNzom677e6cffbZvyYra0jDzTffsbZ37z72N954NQPg7bffyNhrrwnl55//76JBgwY3nnbaWSVTphxRvKu/J/68vo5KIyciQfbllzNxuZyMHj2W0aPHbjx+1lnnMm/e33z22SdcfvlVhIaGBjFKERHZEavVyptvvm92tmldAL169d44nSoyMtJ7xhnnFH/xxWeJr7/+avT69QXha9bkRlVWVoS63R4LwH77HVB12203ptrtdsvs2bNihw8fUZOZ2bth4cJ5ccCGOXNmx++//wHl23rWqlUrI6OiotyDB2dtfGZ6eobruutuzm/+OT4+3hUfH+9u/jk2Ns7tcDg2e3GbxmyaK5qTptpN24wcOabmtdde7LXpsUGD/nlueHi4JzU1vdFisQAQERHhBWhsbLQCHHfcCeW//vpz7MMP359ZUJAfnp+/LnL9+oKIIUOGbvacZtnZqyIjI6Pcm45KWCwWhg0bUTtv3t9xAHl5OVH77rt/xabXjR49tvazzz7ebIpEa39P/Hl9HZWSE5Eg++qrzwE44oijNzs+YcJ+JCUlU15exh9//MrEiQcGIzwREWkhq9VKTEyMJ9hxtFZ4eMTGmOvr660XXXS20dDQYN1vv4kVhxxyWNno0WPWXnbZhUOa2+y99z41oaEhnj///D12/vy5cZMmHVTet2+/xk8//TBj3bo1YXl5OVG3335PzraeZbOFeJvfLG+P1Wrd6QjUpjFvb1G6x+O22Gy2zU6GhoZu9rPVuv1Y7rzzlj6///5L0gEHHFS21177VA0ZMqzwjTdezSgrK9nmTjVe77ZfmsfjISQkxOt7ntXr9e58gK21vyf+vL6OSsmJSBDl569j+fJl2Gw2Jk8+dLNzoaGhHHbYkbzxxqt8++3XSk5ERKTdNU9N+vDDzxempaW7ACoqym1VVVUhzUlAWFiYd/TosdW//PJTwqpVK2Ouv/6WNb169XZYLBbvU0893rNHj54Nmy5u39SAAQMb6urqbDk5q8MHDBjYCFBWVhpyyin/GnH33Q+s8ifmrKwhdoC//54dM3nyoVXNxxcvXhiTmdnb7s89y8vLbN9882XqddfdlHPUUcdtHOnIz18bERERuUli9M+b/0GDsuz19fW25cuXRmw6erJs2dKYXr36NAD07dvPvmzZ0hhg41SupUsX73CdUkt+T7qSDj2sI9LVzZr1OwCjR48lKSlpq/MHHOBLSH7//deNWwyLiIi0l/T0DAfAp59+lLxu3Zqw2bNnxVx99RWD3G63xeFwbnwnPmHCvpU//vh9SlxcrGvgwEGN4eHhXsMYWvvbbz8n77XXhMrt3X+//SZW9+8/sP7OO2/uP3funOgVK5ZF3H77Tf3i4xOco0ePrfcnZsMY2jBmzG5V06c/3Oe7776Oz85eFf7EE4/2mDt3TsKJJ55S5M894+Li3ZGRUe7ffvslISdndfiyZUsib7vtxr55eblRTuc//RAREeEuKMgPLy4uCpk4cVJV79597XfeecuAP/74NXblyhURd911a5/8/LWRJ598ahHAqaeeWTh79h+JL774bHpOzurw999/J/nzzz9L21EsLf096SqUnIgE0Z9/+pKTvffeZ5vnx4zZjZiYWCoqylm6dHEgQxMRkW5ot93G15977oXrPv30o7Qzzzx5xP33391vxIjRNfvss1+5af6zE9mkSZOrPB63ZcSI0dXNx8aOHVft9XqZOPHAyu3d32q18sADj2SnpqY7rr/+v4Mvv/zfQ2w2m/fhhx9fFR4e7vcwwLRpD+fsscdelQ8//EC/888/c/js2X8k3Hjj7auPOOLoip1fvbWQkBBuvvmOnLVr10Sed97pw6+99j+DGxsbraeffnZBQcG6yLq6OivAMcccXzxv3pz4qVMvyQoJCWH69KdX9us3oP6OO24e+O9/nzc0Ly83ctq0h1eOG7dHHcCkSZOrL7106pqZMz9JPffc04Z//vknqYceelhJ87SvbWnp70lXYWnJvLcuJsft9vQvL69r05uGhFhJTIymoqIOl0ufcLenrtLXbrebAw7Ym5qaambMeIeRI0dvs90111zJt99+xYUXXsIll1wRsPi6Sj93dOrnwFA/B0Z79nNSUjQ2mzUXGNCmN/bD3Llzh1ittq/S0jJrw8IiOuyWrNLxzJr1W0xKSppz0w0Bnn768Yxvvvky5aOPvlgSzNjak8PREFFcXBDj8binjBs3bsWO2mrkRCRIVqxYRk1NNbGxcQwbNmK77SZM2BeAOXNmByo0ERERaQd//vlH/NVXX5H1+++/xObnrw375psv4z/99KP0SZMmb3N3s+5IC+JFgmTx4oUAjBo1BpvNtt12u+02HoAlSxbR2NhIeHh4QOITERGRtnXJJVPX2+1267Rpd/evqakOSUpKdhxzzL+KLrjg4g5dtT2QlJyIBMnixYsAGDly1A7b9enTl5SUVEpLS1iyZBHjxu0eiPBERESkjYWHh3tvvPG2dcC6YMfSUWlal0iQLFnSnJxse61JM4vFwtix4wCYN29uu8clIiIiEixKTkSCoLq6ijVr8gAYMWLkTtvvtpsvOVmwQMmJiIiIdF1KTkSCoHnUpE+fvsTHJ+y0/ciRYwBYtmwJ3XCHPREREekmlJyIBMHSpUsBGDFix+tNmmVlGYSEhFJRUUFh4fr2DE1EREQkaJSciATBqlUmAFlZQ1rUPiwsjMGDBwOoGKOIiIh0WUpORIIgO3sVAIMHZ7X4muZaKMuWLW2XmERERESCTcmJSIA5HA7WrMkFYNAgf5KTLltAVkREAmzffcePe++9t5Nb2v6nn76PO+64w0cccMBeu91//z292jO2lpg+/eGexx47Zec7y7RCa/okP39t2KeffpTYls/v7lTnRCTAcnNzcLvdxMbGkZaW1uLrhg/3/du7dKlvUbzFYmmvEEVEpJv44IOZC+Pi4t0tbf/880/3Sk/PaHzssadWxsTEtvi6zqQ1fXLHHbf0S0tLcxx99HEV7R1Xd6GRE5EA23RKV2sSjIEDBxISEkJtbQ0bNhS2V3giItKNpKdnuCIjI1u8DWRdXZ1t2LDhdX369HMkJSV3yeSkdX3i1SeFbUwjJyIBlp29EmjdlC6A0NAw+vXrT3b2KlatWkmPHj3bIzwREelG9t13/LipU6/OO+GEk8tuuumafh6Px5KYmOT88cfvkxsbG6yjRo2pvuGGW9ekp2e49t13/DiAd999q8e7777V480331/cu3dfx/PPP53+5Zcz06qqKkMyMno0nnDCKRuOO+7/ygH++OPX2Guv/U/WmWeem//BB+/2SElJbbz77vtzzjjjxBGnnHLG+s8//zQtLCzU88orby+zWCw8/PD9vf76a1aCy+Wy9O8/sP6SS67IHzNmt/rmeN96a0bKe++9nVFRUR42evTYqrS0dMeOXt8FF5xpDB8+qqaiojz0999/SQoNDfUceeSxxYccclj5tGl39cvJyY7OyOjZcO21N+aNHTuuftM+OfjgKZVnnnni8H79BtRPn/5MNsAvv/wUe9NN12TdcMOtqz/66L305cuXxSxfvizm2GOnxH788VeLjz12ysgDDzyk7Iorrlq/aQxpaemN99zzv7xt9cdrr729vKhoQ+gjj/yv94IF8+JsNqs3K2tI3dSpV68bOHBQY3v8vndkGjkRCbBVq5qTk8GtvrY5oWlOcEREpGNx2+3W7X15GhstgWi7K2bN+j2xuro65LHHnjJvvfWu1cuXL4t94olHM8E33SkpKcl51FHHFX3wwcyFmZm9HY888kDm559/mnbppVPXvvji68uOO+7/ip588tG+M2a8krrpfWfPnpXw1FMvLL/++lvybDarF+Cnn75PeuSRJ8zbb793dXx8vPvKKy8ZvH59Qfjddz+Q/dRTL6wYMmRo3ZVXXjJk8eKFkQCffvpR4jPPPNHnuOP+r+j5519bOnTo8Lovv5y50/nRH3/8fkZaWrrjhRdmLD3yyGOK33prRs/rrvvP4JNOOnXDk08+vzwsLNTz8MP3993yuoSEBPc119yUO3/+3PhPPvkwqby8zPbAA/f0P+igQ0oPP/yoygceeDR78OCsur333qfihRdmLG9NP2/aHw0NDdbLL7/I8HjcPPLIk+YjjzxpxsXFuy655Lyh69cXhLbmvl2BRk5EAmz16tbv1NVs8OAsvvrqc1auNNs6LBERaQOrL7947PbORWYZVb2vvSG7+eecq64Y7XU6t/lBcXi//rV9b75t4z/2udf9d6Snvn6b79vCembW97vznla9Od5ujJGR7ttuu3tNaGioNytrSMOsWb+XzZ07Jx58052sVqs3MjLSk56e4aqrq7N+9tnH6VdffUPu5MmHVgH07z+gsbBwffgHH7ydccYZZ5c03/ekk07d0DwKsHZtXhjAEUccXWIYQxsAfv3159hVq8zojz/+cmFKSqoL4KqrritYtmxpzNtvv54+cuTovA8/fDd9woR9K84445wSgEGDBm9YvnxpdF5eTtSOXlPv3n3sl146tRDgnHMuLHrrrdd77rffAeWHHHJYFcAhhxxW9vzzz/Te1rX77Tex5rDDjip+5pknen///TdJ0dHR7uuuu3ktQGJikjskJMQbFhbmaY65pTbtj3feeSOlpqY6ZNq0h3NDQ0O9AHfeeV/ev/51xMj3338nddNRmO5AyYlIANnt9o1FFPv3H9Dq65sTGo2ciIhIe0hPz2hsfoMMEB0d43a5XNscmVm5ckWE0+m0PPTQtH4PP3x/v+bjbrfH4nI5LXa7feN1/fr132p6Up8+fRuaf71ixbIogJNOOnaznbdcLpfF6XRYANatWxt5wAEHlW96ftiwEbU7S0569uy18TlRUVEegMzMzI3xhIWFe1wu53ZHn6666tr8efPmxM+b93f800+/tKw1a3S2Z9P+WLnSjLLb7bYpUw4Ys2kbp9NpXbduTcSuPquzUXIiEkD5+WsBiIuLJyGh9TsPDh5sAJCXl4vT6SA0NKxN4xMRkV0z8PGn52/vnMVq3exN7YCHpy9sadv+9z+03Qq8W7bdFZsmJv/Y9u09Ho8F4MYbb8sZMGBQw5bnw8PDN14YERHh2fJ8RETExvMej8cSGRnpfvbZV7YaAQoLC/MAWCwWvFuEEhISstPXHhJi26qNxdLylQ1FRRtCKysrQm02m3fWrN/iRo4cZd/xFZs/zuVyb5X4bNofHo+HHj16Nkyb9nD2lu2io6O75KYDO6I1JyIBtHbtGgD69NlqamuLZGT0ICYmFpfLRV5ebluGJiIibcAWGenZ3pd1kzfr7dk2UAYNymqw2WzewsL1YQMGDGxs/vrllx/jZ8x4Kd1qbfnbzIEDB9vtdrvN4Wi0bHqvV155IeOHH75NAOjbt1/9kiULYza9zjSXR7ftq9qcx+Phzjtv7t+3b//6Sy65Yu2bb76WuWTJ4sh/Wlg2/32yhXhra+tsm15fXFy0w08SBwwYaC8tLQ2Li4tzN7/uPn36Nj7xxKOZf/01K7atX1NHp+REJIDWrMkDoG/ffn5db7FYNi6kb15YLyIiEgzx8fHugw+eUjJjxsuZH374blJeXm7Y+++/k/zKKy/2SkxMatUajEmTDqrq27ef/bbbbhz422+/xObkrA5/4IF7ev3443cp/fsPbAA45ZQzN/z115+Jzz//dPrq1dnhr776Ytrs2bPatQDic889lZGbmxt1002355100mmlQ4cOr7n77lv7NzZtQhAZGekpLi4KLyjIDwUYOnRY7W+//Zw0a9bvMdnZq8LvvPOWvnZ7vW1Hzzj66H+Vx8REu6+77j8D5879K3rVKjPilluu679gwdz4wYONnYzSdD1KTkQCaFdHTgAGDhwE+Io5ioiIBNP119+y7phj/lX02msvZ5599ikj3njj1R4nn3za+ssvb90ibpvNxvTpz6wcPDir7p57bhtw/vlnDFu0aEHszTffsXq//SbWAEyefEjVtdfemPPNN1+mnHfeGcN/++2XhKOPPq6ofV4ZLF68KPLtt1/vecYZZxcMGDCwEeCGG25ZU1paEv7IIw9kAhx99L9K1q1bG3HuuacNd7vdXHbZfwqysozam266dvDll180JC4uzjVhwn47LNAYHx/vfvzx51bExye4rr/+6sEXX3ze0OLiorB7731w1ZAhw7aaLtfVWbxbTt7r+nLcbk//8vK6Nr1pSIiVxMRoKirqcLm2mlYpbagz9/U555zG/PlzmTbtIaZMOcKve8yY8QoPPTSNyZMP5cEHH2vjCP/Rmfu5M1E/B4b6OTDas5+TkqKx2ay5QOt3E2ljc+fOHWK12r5KS8usDQuL6HZvHkVay+FoiCguLojxeNxTxo0bt2JHbTVyIhJAbTFy0rzLV16eRk5ERESka1FyIhIgtbW1lJWVAtCnTz+/79OcnKxZk4fb3e028RAREZEuTMmJSICsXZsHQHJyCjExMTtuvAMZGT0IDw/H6XSyfn1BG0UnIiIiEnxKTkQCpC2mdIFv0WDzbl9aFC8iIiJdiZITkQDZ1W2EN9Wvn9adiIiISNej5EQkQAoK8gHIzOy9y/fq168/ALm5KsQoIiIiXUdIsAPYlGEYWcA84DLTNF9pOjYGeAwYD5QB003TfDBYMYr4q3l9SGZm5i7fSzt2iYiISFfUYUZODMMIBd4Aojc5lgx8C6zEl5zcBtxlGMY5QQlSZBc0Jyc9e+56ctI8cqLkRERERLqSjjRycgdQs8WxC4FG4GLTNF3AcsMwBgPXAS8HOD4Rv7lcLoqKNgBtk5w0r1upqKigoqKCxMTEXb6niIiISLB1iJETwzD2By4Cztri1H7AL02JSbMffJcYaYGKT2RXFRVtwO12ExoaSkpK6jbbNK5fT0NeXovuFxUVTUZGDwDy8rTuRESko7BYsFmtltBAf1ks2IL92kXaQtBHTgzDSABmAJebprnOMIxNT/cCFm9xyfqm732AYn+fGxLStnmZzWbd7Lu0n87Y10VFhYBv1CQsLASP08n6F54n44QTCE1Pp8HhpvKnH6j68XsyTjudpMkH7/Seffv2ZcOGQtavX8fuu49v85g7Yz93RurnwFA/B0Z372eLBZvHYulR3+AK+PurqIgQlxVvoddLh6vOO336wz1/+OGb5I8//mrL93Q7lZ29KvzCC88e9sorbyzt06efoz3ik44l6MkJ8DQwyzTNN7dxLgrftK5NNTR9j/D3gVarhcTE6J039ENcXGS73Fe21pn6urKyBIB+/fqSmBhN9lPPUj37T5wlxTjO+w9lVQ1EV9YT6vWy4fUZREaG0fPIw3d4z0GDBjJ79p+UlBS2259n6Fz93JmpnwND/RwY3bWfLRaLtb7BFfLnkkJPfYPLE6jnRkWEWPca0SMkNiLE6vV6O1xy4q9ly5ZEXn/9fwc5HI3dM9vtpoKanBiGcQa+qVsjt9PEDoRvcaw5Kanz97kej5fq6np/L98mm81KXFwk1dV23O6A/XvULXXGvl61yrdwPS0tg/w/51H09TdgsVCz18FkZ5f6Go2aTDqhJM77mdwXX8admELMsOHbvWd6um/tysqV2VRU+P3XYbs6Yz93RurnwFA/B0Z79nNcXGSnGZGpb3B56uzOQP9B6xyd00JPPTU94/333+6Rmdmroby8LCzY8UjgBHvk5FwgHdhyOtczhmFcA6wBem5xTfPPBbvyYFc7faDhdnva7d6yuc7U1/n5vhonGek9KHrnLQBC9tgHMzwDj8e7sV3hiP2x1VQRt2oB659/jr533I0tatujIr16+eqlrFmzpl37oTP1c2emfg4M9XNgqJ87j333HT/u4osvX/v9998m5eaujk5Pz2g499wLCw455LCq5jbfffd1/CuvvNCzoCA/MjExybH//pPKL7748sLw8HAvwIoVyyKeeeaJzOXLl8U2NNityckpjqOOOq74nHPO3+b0+1deeSHtlVde6HXDDbfmHHro4ZXbajN37l/x11xzY258fLz72mv/k9UuL146pGBn2acDQ4Exm3wB3AocDvwC7GcYxqaLvA4CTNM0/V5vIhJo69f7kpP+ERE05ORgCQ2lcOT+uDdJTACwWCjY4zBc8cm4Kiooe+/t7d6zd+8+AKxbt7bd4hYRka7v5Zef7zVp0kHlzz336tLx4/esuuuuWwfNmTM7GuDHH7+Lu+ee2wcedtiRpS+99MbSqVP/u/a3335Ouumma/oD1NfXW//73yuyIiIiPY8//syKl19+c+m+++5f8eKLz/RevHjRVvP7Xn/9ldRXX32x180337l6e4kJwIsvvm4edtiR2z0vXVdQR05M09xq9KNpBKXYNM01hmG8BFwLvGgYxgPAHsCVwL8DGafIrlq/3rePQ0aB77t19HhKt7Ne0hsSyroJR9Hvy1ep/OMPEo86jtCkpK3aNY+cVFdXUVVVSXx8QvsELyIiXdqkSZNLzzjjnBKAq6++vmDJkoWx7733Vtruu++Z+/rrr/Q46KBDSk877awSgP79BzSGhISsue66q7LWrs0Li4qK9hx99HHFp5xyRnFcXJwH4LLL/rP+ww/fy1i1akXkyJGj7M3Peeut11Neeum5Xrfddnf2AQccVB2cVysdXbCnde2QaZrFhmEcCkzHVzm+ELjGNM1XgxuZSMs5nU6KijYQbbMRkrMagIohu+P1bv8ae1ofivc6lAH77UlUeipO59brGyMjo0hNTaOkpJi1a9cycmRCO70CERHpynbbbfxmdeYMY2jdggXz4gByc3OjVq/Ojv7xx++Sm883//+Vnb0q4sADD64+9dQzi2fO/CRp9epVUQUF+eFr1uRGAbjdHkvzNRUVFaFPPz29r81m8/bq1WfLzY5ENupwyYlpmpYtfp4D7B2kcER2WXFxER6Ph7DISJKPOpraNesojkiCnayVLDP2wOqMILXRRbjNincb2UyfPn0oKSlm3bo1jBw5qr1egoiIdGEhISGb/Qfj9XqxWm1e3689lmOP/b8NRx99XNmW16WnZziLi4tCLrzw7KGxsXGuvfaaUDlu3B7Vo0aNrjvppGM3+0/JYrFy5533rnrpped63nPP7f1ffHHGCqs12KsLpCPSnwqRdta83iQuLZ2Mf/2LhmPOwNHCTVxKK+ysL63DXVaC17P1Nb179wVg7do1bRewiIh0K8uWLdls55UVK5bFDBw4sB6gV68+9nXr1kQMGDCwsfmrqKgwdPr0h3rV1tZYP/vs4+Ta2pqQl156fcWll04tPOywIyqrqiqbPvz+J+dJSIh3Tpw4qfr662/Oy8nJjnr55efTA/gSpRNRciLSzprXm/To0ZNGh4eyKvtOrviHF6h48zWyr7uG+oXztzqvRfEiIrKrPvvs4/SPP/4gKTt7Vfj999/Ta82avMhTTjmzCODkk0/b8NdffyZOn/5wz+zsVeG//fZL7AMP3Nu/rq42JD09w5WenuFobGy0zpz5SWJ+/tqwn3/+Ie6OO24eAOBwOLZ6nzl06PCG4447YcMbb7zac/Xq7C3LRYh0vGldIl1NcXERvSMj2T0+keqyCqpqWjfVtt4SRrTXS9nMT4kasxsWyz8zH5tHTtat08iJiEhHERUREtAPf3f1eYcccljJ+++/nf7oow9G9u3bt/6++x5cNXz4CDvAEUccXeH1enPeemtGjw8/fDcjKiraPX78HpX/+c+1+c3nV6xYvuH555/u/fjjD1tTUlIdhx56eOmsWb8nLF++NBoo2fJ5F198eeHvv/+SeM89t/d74YXXTE3vkk1ZtjWPvYvLcbs9/cvL27ZoXUiIlcTEaCoq6rS3ezvrbH191123Ej17Nkdm9MC6+wSWDJvcquttDfUM/nA6VqeDzKlXEb3J2pIVK5Zz8snHkZiYyI8/zmrTuDtbP3dW6ufAUD8HRnv2c1JSNDabNRcY0KY39sPcuXOHWK22r9LSMmvDwiIamo9bLNg8FkuP+obtbMfYjqIiQlxWr7fQ66VVFeL33Xf8uKlTr8474YSTt1pTItJWHI6GiOLighiPxz1l3LhxK3bUViMnIu2sqKiIo+PiAKjL6N/q690RUVQM3o3kZX9S+f03myUnvXv7thOuqKigurqauKbniIhI4Hm9uK14C2MDPHLie7bX09rERKQj0jiaSDurLSmiX1OV96rUPn7do3zoHngtFuqWLMGx/p/yQNHRMSQnpwCQn691JyIiweb14vZ4vM5Afykxka5CyYlIO0usrQXAk5JKFWF+3cMZk0BNnyEAVH3/7WbnmhfFa8cuERFprd9++3uupnRJR6LkRKQd2e12Mi2+v2bePgNxu/1f41U2dE8AqufPw+N0bjzeXCm+oCB/FyIVERERCT6tORFpR8XFGxgUHQOAM8O/KV3N7Gm9KZr4L4YffgBhkeEbF5tmZvYCID9fyYmIiIh0bho5EWlHRYWFDGhab1Kb1HPXbmaxUNZvBOtr3cA/2wk3JyfNxR5FREREOislJyLtqKi4iGuXLWamxUJNREKb3LO4rI5quwOcDuCfaV35+eva5P4iIiIiwaLkRKQdbSgqYkNjA0WpadidbbPnvytnFQV33c6Gl14AIDPTl5xs2FCIy+Vqk2eIiIiIBIOSE5F2VFy8AYCYuOQ2u6c7NBzv+nVUz5uLq6qK1NRUwsLCcLvdFBVtaLPniIiIiASakhORdtQ7P5+j0nuQFBnTZvdsTMrAnpoJbje1s//AarXSs2cmoKldIiIi0rkpORFpJ16vlzEOJ2f07kt8eHSb3rti8G4AVP78E16PZ+OieG0nLCIigVRXV2edMePl1Oafb7rpmn4XXHCm0Z7PzM9fG/bppx8l7so93nvv7eR99x0/bnvnA/E69t13/Lj33nu77aZWBNHatXlh++47ftwff/wau6v3UnIi0k5c5eVEWCy4PB48qb3b9N5V/YbjCQvHUVREQ/bKjetONHIiIiKB9NJLz6V/8ME7Gc0/X3vtzeseeODR7PZ85h133NJv9uw/4tvzGRI8Sk5E2kltbg4A6xsaCItNadN7e0PDqOo7HICaWX/Qq5e2ExYRkcDzer2WTX+Oj493JyYmudv5qZadt5HOSkUYRdpJxSoTgAJHI3ERbTutC6By4CgSV82j6q+/6HX00YAKMYqIBJPXC/Wu4HzwGxWCx+LHW/aqqirbww/f3+uvv2YluFwuS//+A+svueSK/DFjdqsHqK+vt06bdmfvv/+ek1BfX2/LzMxsOP30s9cfdtiRldOnP9zz3Xff7AG+KUpvvvn+4meffbJncXFR+PPPv2b+8cevsddf/9+s++57cOVjjz3Up7i4OLxfv371N998Z+4333yZOHPmx+lut9uy334HlN100+3rLBYLXq+XF154Jv2bb75MKSkpDg8NDfUMGTKs9uqrb1jbt28/xwUXnGksX74sZvnyZTHHHjsl9uOPv1rscDgs06c/1POnn35Ittvrbb169bGfe+4F6ydOPLC6+XV++eXnCa+++kLPoqINEQMHDq4bM2a36u31STO328M999ze+6efvk8OCQnxHnzwlNIrrvhvQUiI7+3zX3/9Gf3SS8/1XL16VbTT6bSmp2c0nnrqmYXHHPOv8uZ7fPLJh0nvvPNGRmHh+oiEhETnkUceU3zeeRcVbfmskpLikEsvvcBISEh0PvroU9lRUVGen3/+Ie7555/OLCjIj0xLS288/vgTN0yf/nC/N998f3GfPv0cxx47ZeSee06onD9/blxVVVXorbfeuXqvvfapefXVF9O++OKztNLS0rCUlBTH8ceftOGUU04vBfjjj19jr732P1nN9wDflKxTT/2/kQ888MjKCRP2q7nppmv6eTweS2JikvPHH79PbmxssI4aNab6hhtuXZOenuECWL58acQjj/yvT3b2qujExETnSSedWtj6P33bpuREpJ3Ur1lDGFBmtRHvz/8YO2FP60310PH03W8vvHGRgNaciIgEi9cLp38VNcSssLX9p1EtMCTRXTtjSr3Zmv9uvF4vV155yeCQkBDP3Xc/kB0XF+f+7LOPk6+88pIhjz/+7PKRI0fbH3/84Z55eblR06Y9tCo+PsH1wQfvpE6bdteA4cNHLDn33As32O126++//5z0/POvLUtJSd1qP3uPx8NTT03vfd11N+WFhUV4br31+oGXXnrB0LFjx1U99tjT5pw5s2Oeemp63732mlA9efKhVS+//Hzae++91eOaa27MHTJkqH3durXhDz10f99HHnmg96OPPrX6gQcezb7qqssGp6SkOq677ua1ALfccl2/tWvXRt5wwy25GRk9HT/99H3CrbfeMOiWW+5aPXnyIVVz5syOvvfe2weecMIphYcfflTZ33//Ffvss0/02Vn/rFy5IiY5Odn5+OPPrsjPXxf+8MMP9GtoaLDeeONt69avLwi9/vqrsg499IiSa6+9aa3L5bS89trLGY888r9+e++9T3VaWrrr888/TXzwwfv6n3762QWTJx9asWzZkqhHHnmgX3R0jPvkk08rbX5OWVlpyGWXXWgkJ6c4Hn74iezIyEjv4sWLIm+99YZBRx55TPFtt92Ts2LF0qgnnni075Yxfv31l6l33nnfqri4OPfQocPt999/T++ff/4++eKLr1g7cuTouj/++DXu2Wef6ONwNFrPOuu84pb+2Zg16/fEffedWP7YY0+Z69cXhN13310Dnnji0cy77pq2pqqqyvbf/15uZGUNqX3qqeeXFxUVhT3yyP1bxeYvJSci7cRT7Ps3oCoiqn0eYLGQv8fhxPdKoU+y769yRUU5dXW1REe33e5gIiLSMhbwBjuG1vjtt19iV60yoz/++MuFzYnFVVddV7Bs2dKYt99+PX3kyNF5hYXrwyMjo9x9+/ZvjI+Pd0+denXB2LHjauLjE90xMTGeyMhIj9Vq9TZ/or4t55xzQcG4cXvUAUyYsG/lzJmfpN16611roqKiPIMHGw2vv/5q5urVqyInTz60qnfvPo1XX31D7sEHT6kC6N27r2P27FkVv/zyUyJAYmKSOyQkxBsWFuZJSUl15eSsDv/991+TnnjiueXNoz0DBw4qWr06O/Kdd17PmDz5kKr33nsrLSvLqL3iiqvWAwwaNLgxJ2d15BdffJq2o/6Jj09w3nXX/bkRERHeIUOGNZSUlBQ8++wTfa688poCh8NhOfnk09eff/6/i6xWa/PrLPzpp++Tc3JWR6Slpde+//7b6XvvvU/5RRdduqEprsb6+jpbRETkxsJn1dVVIZdddlFWSkpq40MPPb46IiLCC/DWWzPS+/cfUH/NNTfmAwwenNVYXl4e+vzzT2+2iHXs2N2q9t//gBrfvaqtX3/9eep551207thjjy9vembJ+vUF4e+882aPM888t8XJSWRkpPu22+5eExoa6s3KGtIwa9bvZXPnzokH+PzzTxIdDof1jjvuy4uPj3cPGTKswW6vX3f33bcNbOn9d0TJiUg78Ho8hNX4RozrY3ZpQ5GdKiqvo3/PHsTHx1NVVUVBQQFZWe26wYiIiGzBYoEZU+rNzjSta8WKZVEAJ5107MhNj7tcLovT6bAAnH762RtuvvnaQcccc+jowYOz6nbbbfeqww47sjw+Pr7F60r69x/Y0Pzr8PAIT3x8gjMqKmrjG/SwsFBPY6PDCnDwwVOq5s6dEz19+kM9Cwryw/Pz10Xm56+LSExMdG7r3suWLYkC+O9/L9/sPz63222JiopyA6xZkxc1duy4qk3Pjxw5qnZnycnAgYPqm5MFgFGjxtS5XC7L6tXZ4SNHjrIff/yJZa+99lLamjW5EQUFBRF5eTlRAB6P2wKwdu2ayP33P7B803uedNI/IyYAM2a8kul2uyxbPisnJztqy6lnu+22ew08vVmMmZm9NvZtdvbKCLfbbRk7dnztpm3GjNmt9rPPPk4vKSlu8fv+9PSMxtDQ0I3xREfHuF0ul8UX2+qo9PQeDZv+GRg3bvfabd3HH0pORNqBxWrl84ED+PmTjxh4wNHt+qza/EIKl/3GkX3688biBRQU5Cs5EREJAosFokPx7Lxlx+DxeCyRkZHuZ599ZfmW58LCwjwA48fvUffRR18u+vXXn+LmzJkd9803X6a8/fbrPe+++4FV++03saYlzwkNDdlsRMlq3X4W9dxzT6W/9daMzEmTJpeOGbNbzYknnlL8008/JPz6609J22rv9fq6+9FHn1oRHR2zWd/bbDbvP+02X0QfEhK601Euq9W6WRuPx/dePDw8zLtqlRlx2WUXDunXb0D9uHG7V+277wFVSUlJzssvv2jops/fWcI4cuSo6sMPP7r0nntuG/jjj9+VT5o0ubrpWjyenS/8DwsL3+o1WrZ4qMfj65ZNkw3vJq/M6XRt9ZxN2/5j00Ot78+W0m5dIu1kQ1kZa+31REQntOtzIgpysH/zOftH+aaPaTthERFpiYEDB9vtdrvN4Wi0DBgwsLH565VXXsj44YdvEwCmT3+o519//Rl7yCGHVd100+3r3n//syVpaemNP/74XSKAxWJp06ls7777Zs+TTz59/a233rX2lFPOKB03bo+6goL8CO9mT/nnmYMHG3aAoqKisE1fwyeffJDy0UfvpwAMGDCwfvnypZvNd16+fMlO1wbl5eVENb+xB5g37+/YsLAwT9++/Rvfffet1Li4eOezz7688sILLyk66KCDq0pLS0LBt5YHIDOzd4NpLt/sOffdd2fvK6+8ZOP0p/33n1Rx2GFHVE6YsG/5I4880K+6utoK0K9f//otr128eMEOYx40KKvBZrN5582bs9lrXbBgXmx8fIIzISHRHRrqSzqrq6ttzefXrMkN31lfbGrw4Kz6wsL14WVlpRsHORYtmt9ma61anZwYhhFiGMZkwzDuMwzjbcMwvjQMY4ZhGHcbhrGPYRja3k0EKCvzjdzGxG3zw542U91vGF5bCIluD/2jorWdsIiItMikSQdV9e3bz37bbTcO/O23X2JzclaHP/DAPb1+/PG7lOapWAUFBeGPPvq/Pr/99kvsunVrwj7//NPE0tKS8JEjR9UCREZGeurq6mzZ2avCnU7nLr8HTE5OccybNyfONJdHrFq1MvyRR/7X86+//kxwOp0b37NGRkZ6iouLwgsK8kOHDBnWsNtu46umT3+w7zfffBmfl5cb9sILz6R/+OF7GZmZmY0Ap5561oY1a/Ii77//nl7Z2avCP/ro/aQvv5yZuv0ofMrKysJuueW6fitWLIv44ovPEt5887Wexx77f0Xh4eHetLR0R3l5WdgPP3wbt27dmrAvv5yZMH36w30BHA7flLhTTz2j8I8/fkt85ZUX0nJzc8I//fSjxG+++TJ1330nVm75rGuvvWmdw+GwPPjgvb3BN50uN3d19IMPTsvMzl4V/tVXnyfMmPFKJmw9MtIsPj7ePXnyoaVvvPFq5scff5CUk7M6fMaMl1O//vqL1OOO+78ii8XCkCHD7BEREZ6XX36+R07O6vBZs36PefHFZ3tt757bcuSRx5bHxcW7brrp2v5LliyOnDXrt5gnn3yszQq6tTg5MQwjzDCMqUAO8A1wIZAFxABjgUuBX4F1hmFcbhhGq7Iwka6k4rtvmdjQyNCYWGLi2nfNiScsgurevmlc+yenaORERERaxGazMX36MysHD86qu+ee2wacf/4ZwxYtWhB78813rG6esnXTTbevGTVqTM20aXf2P+OMk0a89tpLmWeddV7+ccedUA5wyCFTKhISEp3nn3/m8EWLFuzyDjA33XR7bmNjo/Xii88bOnXqv4fk5eVEXnLJFWtqaqpD1q7NCwM4+uh/laxbtzbi3HNPG+52u5k27eGcvffet2L69If6nn32qSO++ebLlEsvvXLNCSecUgYwcuQo+913P7Bq8eIFseeff+bwDz54J/2EE07Z6da348fvUWmz2byXXnrB0CeeeKTvlClHFl966dT1AGeeeW7xhAn7ld9//z0DzjnntOGvv/5qj7PPPr8gJSXVsWTJ4mjwrZ+57LL/rPn8809Tzznn1OGvvvpi5gUXXLz2//7vpLItn5WSkuq64IJL8n/44buUn376Pm7o0OENt9xyZ/acOX8mnH/+GcNfffXFnocfflQxQGho2HZHq2644da1RxxxdPFLLz2Xee65pw2fOfOTtIsuumzt+ef/uwggNjbWc911N+cUFKyLPPfc04ZPn/5Qn4suumxda5KT6Ohoz/TpT5shISHeqVP/PeS+++7qf+KJp25o8Q12wuL17nw0zjCMPYBXATfwBvCuaZqrt9FuJHA4cD5gAc4wTXNWWwXbRnLcbk//8vK6Nr1pSIiVxMRoKirqcLk6zXTTTqkz9HX+w/+jftlSnspdzchL7yM5tWe7Pi9mrUmfH9+h3OHgf7XVfPDhzF2+Z2fo565A/RwY6ufAaM9+TkqKxmaz5gID2vTGfpg7d+4Qq9X2VVpaZm1YWETDzq8QaZ358+dGhYSEeEeOHG1vPvbxxx8kPfrog/2+++7Xec21VjoLh6Mhori4IMbjcU8ZN27cih21bekrmwFcb5rmRztqZJrmYmAxcL9hGCfiS2iyWvgMkS6jcYPvA5nCxgb2bueRE4C6zIG4QsNIAmIqK/B6vdsd9hUREZGObcWK5VEvvfRcr2uuuSF32LDh9ry8vPAZM17uuc8++5Z3tsSktVr66kaapulozY1N03zXMIyPWx+SSOfmcTpwl/t2Diz3QHh4ZLs/02sLobrPEJJWL2L3mDjKykpJSdnpdFoRERHpgE4++bTSsrLS0KeffrxPRUV5aFxcnGu//Q4ov+yy/xQEO7b21qLkpLWJya5eJ9KZOUtKAKh3ufDExAXsuTUDRhK+cj52j5v8/HVKTkRERDopi8XCZZddWXjZZVfudG1MV9Oi5MQwjFtbc1PTNO/0LxyRzs9Z5FsTtr6xgZjYhIA9ty6jP8/VO1iVv5bh6/MZM2a3gD1bREREpC20dFrX7Vv87MW34N0NlAKJQBjgAMoBJSfSbTmKigDY0NBAdEJG4B5stRKTmA7A+vVdftRXRCSYPIB3y8J+IrJtTX9XvLDzIqUt2krYNE1r8xdwMFAGnAxEmKbZwzTNCHy7dJUBV/kduUgX4K6qAqCosYHYdq5xsqWEZF9yUrd6NR6HZlWKiLSTDV6v1+lwNOzy1rki3YHD0RDl9XqdwE6nqfmz3P8J4BbTNN/d9KBpml8ZhnEzcA/wth/3FekSUk86hWeWLuTL+XPYe1z779S1qcSUDG7NGsqIklLsSxcTPXZcQJ8vItIdjBs3rnru3LmvVVdXXAwkh4VF1Ld1pXSRrsDr9Vocjoao6uqKMK/X8+K4ceNqdnaNP8lJH2Dtds6VAOl+3FOkSyksK6Pe7W73AoxbSkzOYHV9HSPi4qmZM1vJiYhI+7nX7XZRWVl2psViicI33V1ENuf1er1Or9fzInBvSy7wJzlZCFxuGMZ3pmk6mw8ahhEBXAvM9uOeIl1KaWkpADEBntaVmJzBB+WlHJPRk5r580lrsGONaP+tjEVEuptx48Z5gLvnzp37mNdLD1o4VV6km/EAhS0ZMWnmT3JyA/A1sNowjK/4Z7TkcCAamOjHPUW6BFdNNRteeJaDvV5WQsBHTqJjE8h3uVnfYKcnUL9oITF77BXQGEREupOmN10tfuMlIjvW6izfNM2fgQn4RkiOAq4GDgO+A8aZprmgLQMU6UycJSXUL13K8KbRikAnJxaLhcTkDGaVlwFQM+/vgD5fREREZFf4M3KCaZrzgBPaOBaRTs/VNJ2ruLERi8VKdEx8wGNITOnB7OxFHN+zF7ULF+JpaMAaERHwOERERERay6/kBMAwjMPwbSvcA7gRGAvMNU1zTRvFJtLpOMt8yUlJYyPRsfFYrbaAx5CYnMGfi/+kymoj3unEvmwJ0buND3gcIiIiIq3V6mldhmFEGYbxDfA5cC5wIr4ijBcDcw3DGN62IYp0Hs7SEgBKHI0BXwzfLDHFV/jxC4cH6zmXEb+7EhMRERHpHPzZWeJeYBxwEJDCP1vnnQEUAHe1TWginY+z9J+Rk0CvN2nWXIhxVmkRpYm9cXq0u6WIiIh0Dv4kJycBN5im+SO+MvQAmKa5Abgb2LeNYhPpdJqndRU7gpecJCb3AKCidAPl1XZq7U5sNu1wKSIiIh2fP2tOEoC87ZyrAGL8DUakM/N6vXgdDsA3cmIEaVpXQnIaAI0N9djz17Bh6U844iNJ/r+TghKPiIiISEv583HqEuC07Zw7qum8SLdjsVgY+L9HeCEutmnNSXBGTsLCIjaud7EXr8M76ycqfvoRj9MRlHhEREREWsqf5ORu4AzDMGYC5+Ob2jXRMIzHgUuAB9owPpFOxWqFDWVleAl8jZNNNS+Kz3M4cUXH4WlooGHFsqDFIyIiItIS/hRh/AQ4HRgFPI1vQfxD+Oqe/Ns0zffbNEKRTsRisVDatGNXsHbrAt92wgAVZUVU9RkCQO1cFWQUERGRjs2vVbKmab5pmmYfYCi+BfAjgJ6mab7YlsGJdCbVf/3J2of+xxivb5+IjjByUlG2gZq+Q33xzZuH1+UKWkwiIiIiO9PqBfGGYfwAXGKa5grTNM0tzo0CXjdNc1RbBSjSWTSuXUvt4sWk2nyFF4OanGyyY1d9am9cUTGE1NdiN5cTNXxk0OISERER2ZEWJSeGYezLP6MsB+BbY5K2jaZHAgPbJjSRzsVVUQFAucNBWHgk4eGRQYtl05ETrFaqew8hyfyb2rlzlJyIiIhIh9XSkZPzgTPxLX73Ak/hW2vi3aRNc6W3N9ssOpFOxFVRDkCZwxHUURP4JzmpqijG7XZR3XcoCeuzsSUEbx2MiIiIyM60NDmZCryMLwH5AbgU2HLrHzdQCSxtq+BEOpPmkZMyp4OYpIygxhITm0hIaBgup4OqihJsGf1Yd+pV9BnTC6vVgsfj3flNRERERAKsRcmJaZpVwM8AhmFMAuYCMU1V4TEMIxHobZqmapxIt+T1ejeOnJQ7HKQGeeTEarWSkJROadE6KsuKSErpQV2Di4qaBuKjYvF43EGNT0RERGRb/NmtayHwEfDTJsf2BBYYhvGxYRhRbRGYSGfiqa3duBNWudMR1G2Em23cTrh0w8ZjRSXV1KxYgderkRMRERHpePxJTqYBw4EbNzn2A3AMMB64sw3iEulU3LU12KKjsVutuL1eYoM8cgKbLoov9B3weIh4+j7W3ncPjvx1QYxMREREZNv8SU6OBq42TfPD5gOmaTpM0/wMX8JyYlsFJ9JZhPXoifHk0zzd9HOwF8TDNkZOrFbsib5j9QvnByssERERke3yJzmJBSq2c64ISPE/HJHOy2KxUFxeBvgWpAfbZtsJN6nu66sWX61q8SIiItIB+ZOczAPO2865c4BF/ocj0nlZLBbKSksAiInvAGtOUrZec1LTKwuvxUrjunU4S4uDFZqIiIjINrW6QjxwN/ClYRh/41sYXwyk4ltzMg5fIUaRbqX04w9ozM1lAF7m0zGmdSU0Teuy19dgr68lMioGT3gk9Rl9iS7MpX7BfOInHxrkKEVERET+0eqRE9M0vwWOwleA8U7gWeAufInOMaZpftWmEYp0Ag2rV1O3dAkxVhsWi5XomPhgh0R4eCTRsQkAVJYVbTxe3dsAoGbevGCEJSIiIrJd/kzrwjTNL03T3B2IBnoBcaZpjjNN8/M2jU6kk3A21zhxOoiOjcdqtQU5Ip+Ni+Kbd+wCavr4kpP6VStxVVcHJS4RERGRbfErOQEwDGMocCFwOZBgGMa+hmHEtllkIp2Iq6IS8BVg7AhTupr9syj+n5ETV3Q8RXtNIeGqGwhPDP4Ij4iIiEizVq85MQzDBjwDnAtY8E3veg+4DRhgGMZE0zTz2zRKkQ7M09CAt7EBgAqng14doABjs4TkdGDzRfEAZcYelMckkWmz4narWryIiIh0DP4siL8ZOA04H/gcaH7X81/gU+Ae4KyW3swwjDTgIWAKEAn8DFxjmuaypvNjgMfwFXgsA6abpvmgH3GLtAtXVaXvu9VKg8fTsUZOknsAm28n3Ky8uoFGp8f/4VMRERGRNubP+5JzgVtN03wZX7IAgGmai4BbgYNbeb9PgYHAYcDugB34zjCMKMMwkoFvgZX4kpPbgLsMwzjHj7hF2oWrqgoAu9X316kj1Dhp9s92woVbnWs0V1Dw3LPUL9Hu3yIiItIx+DNykg4s2M65fKDF78yako9c4G7TNJc2Hbur6f7DgclAI3CxaZouYLlhGIOB64CX/YhdpM15GxuxRcdQba8HILYD1Dhp1rwgvrK8GI/HvdlC/fA1Jvals6ixeokaMSpYIYqIiIhs5M/ISTZw+HbOHdB0vkVM0ywzTfOUTRKTdOBqfEnOMmA/4JemxKTZD76mRpofsYu0ueiRoxjy1NO8UO9LTjrStK64hGSsthA8bhfVlWWbnavp46sWX7NgIV6Xa1uXi4iIiASUPyMnjwLPGoYRBnyGb0H8YMMwJuFLLK7yJxDDMJ4DLsA3UnK0aZp1hmH0AhZv0XR90/c++ApA+iUkpG1n2tts1s2+S/vpiH1ts1koKysFIC4+CavVEuSIfKzWEBKT0ykrLqCyfANJKekbzzWm98YdGQP2WhyrVxI9fMRm13bEfu6K1M+BoX4ODPWziOyqVicnpmm+YBhGKnATcDG+HbveAhzAA6ZpPuNnLI/iK+h4MfCxYRj7AlH4kpVNNTR9j/DzOVitFhITo/29fIfi4iLb5b6ytY7U1y6Xh4oK38hESlo6kZFhQY7oH8lpPSkrLqC2qniruOr7DyV22Rwalyyk1757bvP6jtTPXZn6OTDUz4GhfhYRf/mzlXCiaZr3GYbxJLA3kAxUAn+aplnubyCb7M51YdN9L8O3OD58i6bNSUmdv8/yeLxUV9f7e/k22WxW4uIiqa6243Z72vTesrmO1teFr7yMfcMG+oWEYAIhYTHY7Y5gh7VR87qTDQVrt4qrsudgYpfNoXT2HBJPPBWL5Z8Rn47Wz12V+jkw1M+B0Z79HBcXqREZkW7An2ldfxmGcbNpmu8AX+/Kw5vWjRwEvGuaphvANE2PYRjLgExgHdBzi8uafy7YlWe7XO3zn5Pb7Wm3e8vmOkpf161ahaMgn3CrlbDwSELDIvB4vMEOa6PEFN9fmdKi9VvFVZvRD09IGK7ycupz8wjv03er6ztKP3d16ufAUD8HhvpZRPzlz0cQiUBpGz2/J/AmMLH5gGEYocBu+BbE/wLs11T4sdlBgGmapt/rTUTaUnOdkwpnx6oO3yw51ZeclJdsnc97bSHU9hyANT0D7H4PRoqIiIi0CX9GTh4D/mcYxn+BJaZpluzC8xfiG315yjCMC4AKfGtZEoFH8K0vuRZ40TCMB4A9gCuBf+/CM0XajNflwlNbC0Cl00liB6px0iwpLROA8tJCPB4PVuvmn0kU7HccoX1Tic5KxeVStXgREREJHn+SkzOBvsB3AIZhbHnea5pmi+5rmqbXMIyTgPuAd4AE4FdgP9M01zbd/1BgOjAPKMRXPf5VP+IWaXOual8BRo/FQq3LRe/4jpecJCSlY7XacDkd1FSVEZ+Yutl5b0golTUN2B1uwmzg7Tgz0kRERKSb8Sc5eb0tAzBNswq4pOlrW+fn4FsgL9LhuCp9yUmjzYYXiInrOAUYm9lsNhJTMigrLqCsuGCr5ASguraRqqpakq0OLB2oiKSIiIh0L/4kJ7nAD6Zp5rd1MCKdjbtpvUlt088xHXBaF0BSqm874fKS9Qwwxmx1Pip3OWWv30ejYZB55X8DH6CIiIgI/i2IfxgY39aBiHRGXqcTW0wMFU0V1mM74LQugORU37qTspL12zzfmJCCxemgbvky3HZ7IEMTERER2cif5KQY39oQkW4vdo89GfrUM7xY7ivx05FHTgDKt5OcOOJTcMQng9tNw7IlgQxNREREZCN/pnU9DzxpGMYkYAlQtGUD0zRf29XARDoLL17Ky327a8d00PUayWm+5KRsG9sJN6vulUVK1SxqF84netzugQpNREREZCN/kpOHmr6fsZ3zXkDJiXQbDoeL6qa1Jx2xzglAUtO0rorSQjweN1arbas2Nb0NUpbOombBAtJcLggJC3SYIiIi0s35k5z0b/MoRDqpwueexl5RTt+ICNY0NBAdEx/skLYpPjEFW0gIbpeLqopSEpPTt2pjT+2FOyIK6utpyMkmdNiwIEQqIiIi3VmrkxPTNNc0/9owjCggDigzTdPZloGJdAb2VStxVVRgs1iIjo3f5ohER2C12khM6UHphnWUFRdsMznBaqUmczAJqxdSt2A+sUpOREREJMD8WRCPYRj7GYYxC6gGCoAGwzBmNa1DEekWvB4PrupqACqczg47patZ845d5TtYd1I5aDSNBxxOwoEHBSosERERkY1anZwYhjEBX3X4BOAufMUT7waSgK8Nw1DBROkW3LW14HYDUOVydtidupo179i1ve2EAeoz+lEybAKuxFQslkBFJiIiIuLjz5qTu4FfgUNN03Q3HzQM4w7ga+AO4JC2CU+k43LX+EZNHCEhuL3eDrtTV7Pk5u2Ei7efnADU1DuornWQEB0diLBERERENvJnWtcewGObJiYApml6gMebzot0ee6mKV32piGGzjNysv1pXQA4HBT//DOF77wTgKhERERE/uFPclIDhG7nXBigySDSLTSvN6lxewCI7eAjJykZvQGoKN2Ay7n9/StszkbCPn2TkpkzcVRUBCo8EREREb+Sk9+BGw3DiNn0oGEYscAN+KZ8iXR9bje2mBgqnA6g49Y4aRYbl0R4ZDRer4eykvzttnNFxWJP6QleLxV/zw1ghCIiItLd+bPm5HpgLpBjGMZMYAOQARwJRADntF14Ih1X3IR9SDlgIpcedADQ8ad1WSwWUtN7k5+3gpIN60jvuf2SRTW9sogsXU/Z7Dn0GK89LkRERCQwWj1yYppmNrA38CNwOHB10/cfgb1M01zUphGKdGBer5eKijKADr8gHv6Z2lW6Yd0O29X0NgCoXLAQT2Nju8clIiIiAn7WOTFNcxkw1TTNDNM0w4BhwD1Nx0W6jZq6Whob7EDHn9YFkJruS05KinacnDQmpuGMScDrdFK/XH+tRUREJDD8qXOSYBjGt8BPmxzeA1hgGMbHTVXjRbq8wuefIf9//6N/VDShYRGEh0cGO6SdaunICRYLNb2zAKiZP6+9wxIREREB/Bs5mQYMB27c5NgPwDHAeODONohLpMOzZ6/Ck5tDiMXS4Xfqapaa3geA0uJ8PB73DtvW9vFN7XJUVbV7XCIiIiLgX3JyNHC1aZofNh8wTdNhmuZn+BKWE9sqOJGOyuv1bqxzUuns+NXhmyUkp2ELCcXtclJZVrzDtvUZfSm78CaSL56K1aodwkVERKT9+ZOcxALbK35QBKT4H45I5+BtbMDbVCuk2uXsFOtNAKxWGylpvQAoKVq7k8Y2akOiqKxpxGbza3maiIiISKv4845jHnDeds6dA2i3LunyXFW+UROXxUKjx9Mpdupq1rzupGTDTpKTJkXldTjr7e0ZkoiIiAjgX52Tu4EvDcP4G/gIKAZS8a05GYev3olIl+au8SUndqsvv+8s07oAUjOa1p3sbFE8gNeD9Y1nWZm/mv533UtoWno7RyciIiLdmT91Tr4FjgK8+Ba/PwvchS/ROcY0za/aNEKRDsjVtN6kxu1bVB4b35mSk5ZtJwyAxYrL6QS3m/pFC9o3MBEREen2/K1z8qVpmrsD0UAvIM40zXGmaX7eptGJdFQuF7bYWModDqBzjZykpP+znbDX691p+9qmgow1C+a3a1wiIiIi/kzr2sg0zQZgfRvFItJpxO6xJ8n77sN5++wJQExc51lzkpyaidVqo7GhnurKUuITU3fYvrZ3Fumzv6J+5UrctbXYYmICFKmIiIh0N9qCR8RPLreLqirfxnUxnWhaV0hoKCnpvh27igpyd9reGZtIY2IaeDzYly5u7/BERESkG1NyIuKnsrIyvB4PFouV6Jj4YIfTKumZ/QHY0ILkBKC6l69afO0CVYsXERGR9qPkRMQPG15+keLp0xkcHUNUTDxWqy3YIbVKc3JStL5lyUlNU7X4mkWL8TTVdxERERFpa7u05kSku2pYnY1lQyFhVmun2qmrWXrP1iUnDck9qR04kszxo7Cy80X0IiIiIv7wKzkxDCMFuAY4GOgBHAocBywwTfOTtgtPpGNq3kq40unsVDt1NWseOSkrKsDpdBAaGrbjCywW1u57HKlDMwiLjsThcAcgShEREeluWj2tyzCM/viqwF8I5ANp+JKcLOADwzCOaNMIRToYr8uFp74OgGqXs1NVh28WG5dEZHQcXq+HksI1Lb6uuKIOl0cjJyIiItI+/Flz8hC+qvD9gX8BFgDTNE8DPgVubLPoRDogV00NAB6g1uXqlCMnFouF9J79gJZP7QKoKSyh6JtvcRRqB3ERERFpe/4kJwcBd5mmWQlbTT5/Fhixq0GJdGTuGt+ULrvFgheIiet8yQlARuYAAIoK8lp8TcwvM6l4cwa1s2e1U1QiIiLSnfm7W5drO8fD2TphEelS3NVVANS4fesuYjvhtC6A9Mx+QOtGTqqbq8XP05bCIiIi0vb8SU5+BW4wDCN6k2NewzCswMXA720SmUgH5XW6sMXFUeFwAHTKaV3wz45dGwpy8Xpb9plCba/BeK1WGtcX4Cwuas/wREREpBvyJzm5HhgKZAMz8I2UXA3MBfYFbmqz6EQ6oJixuzH0iSe5L9v0/dxJp3Wl9uiL1WrDXldNVUVJi67xhEVQn94XgPqFC9oxOhEREemOWp2cmKa5BBgP/ABMAtz4thTOBiaYprmgLQMU6Yjq6upoaLADdMrdugBCQ8NIa1oUv37tyhZft3Fql6rFi4iISBvzq86JaZqrgNPaOBaRTqOkpBSA0LAIwsMjgxyN/3r2GcyG/NUUrFnFsDH7tuia2t5Z8NdX1K9cibumBltsbDtHKSIiIt2Fv0UYLcAYIJptjL6YpvnLroUl0nEVzXiFquxshsbEsiEiJtjh7JLMPlnM++Mr1q9d1eJrnDEJNCZnEF5RgmNtHpHDR7ZjhCIiItKdtDo5MQxjD+A9oFfTIUvTd2/Tr72ArU2iE+mAGnJysBXkE2Gzddr1Js169hkMwPp1q/B4PFitLZvpmb/PMWSNHEBcVk+cTlWLFxERkbbhz8jJI4ATOBtfhXhPWwYk0tG5muqcVDqdxMZ1zvUmzdJ69sUWEkqjvY6K0kKS0zJbdF1jYjpljRacbv31FxERkbbjT3KyG3CyaZqftHUwIh2d1+PB3VQhvtrpJLWTLoZvZrOFkNFrAAV5JgVrV7Y4OQGorGmgrsFFTJgV78YBVBERERH/+bOVcDEaLZFuylNfD03FF6tcTmI7+bQu8K07AVq17gTAkmNSOO1uime82h5hiYiISDfkT3LyJHD9FkUYRboFd9OUrgbA5fUS08mndQH0bEpOCta0fDthHwuetblUz5uL16PPK0RERGTX+TOtazAwDNhgGMZSoH6L817TNA/a5chEOiBXtS85qWkaPYnt5NO6AHr199UtWb92FS6nk5DQ0BZdV5fRF09YBNTU0JCzmshBg9szTBEREekG/Bk5GQQsAP4G7Ph26Nr0y597inQKXqcTW1wcZY2NAMTEdv5pXcmpmUTFxON2OVm/rhVTu6w2anoNAqB+0fx2ik5ERES6k1aPnJimOak9AhHpDKJHjGTgw49y/JhhQOetDr8pi8VCnwHDWbHoD9bmLKXPgGEtvramt0F8zhJq5s0j+V8ntmOUIiIi0h1olEOklcrLywCwWm1ERccFOZq20WegLyFZu3pZq66r7TkIr9WGY8MGHBvWt0doIiIi0o20aOTEMAw3sLdpmn8ZhuHBV2hxe7ymafpVeV6kMygpKQYgOi6hxUULO7q+A0cAsDZnaauKMXrCwqnv0Y/ogtXUL5hP2JSe7RmmiIiIdHEtTSLuxFdwsfnXO0pORLqs4rffwLFkMaPi4intAjt1NcvoNYDQsHAa6mspLVpHWo++Lb62st9wImOjiejbr/0CFBERkW6hRcmJaZp3bPLr29stGpEOriEvj/ANG4i02rrENsLNbLYQevUbQu7KhazJXtKq5KRq0BhCd9+bwUN7tGOEIiIi0h20dFrX/q25qWmav/gXjkjH1lznpMrlJKYLFGDcVL/Bo8hduZAccz6773dEq66tqmmk1u4iKSYMt1s1T0RERMQ/LZ3W9RP/TOWybKeNt+mcF7DtWlgiHZO7qc5JldNJehcaOQEYOGQsP34+g9yVi/B43FitLV865nR5KFqVR5inmsgxu7VjlCIiItKVtfTdh7YPlm7P43TisdsBqHY5iYnvWiMnPfsMJiIyhgZ7LevXrqLPgKEtvjasqhRefYr8kFAGPvo41oiIdoxUREREuqqWrjn5ub0DEeno3DU1vu9eL3VuN7FdbOTEarXRP2sUyxf+weoV81uVnDjiknHGJhJaU4F9+RKix45vx0hFRESkq/JrH1TDMFIMw7jfMIx5hmEUGoYxyjCM2wzDOKatAxTpKJrXm9S43QBdakF8swFDxgKwesW81l1osVDd2wCgdl4rrxURERFp0urkxDCM/sAi4EJ82wun4RuByQI+MAyjdStpRToJr8OBLS6eckcjQJdbEA8wcIhvvUh+7goa7HWtura6r2+kpWbBfDxOZ5vHJiIiIl2fPyMnDwHFQH/gXzQtkDdN8zTgU+DGNotOpAOJHJxF2h13cv2yxUDXTE6SUnqQkt4bj8fNyqVzWnWtPbUXrqhYPHY7DebydopQREREujJ/kpODgLtM06xk62KMzwIjdjUokY6qtLQEgMjoOEJCQoMcTfsYMmovAFYsnNW6Czed2jVfU7tERESk9fxacwK4tnM8HFWPly6sOTmJ7YKjJs2GjJoAwMqlc3A6Ha26tqbvEADqli7B69U/BSIiItI6/iQnvwI3GIYRvckxr2EYVuBi4Pc2iUykgyn98H1CP/iA3RMSiYnveovhm/XsM5jYhGQcjXayl7VuBKQuvS8lU04j7da7sdn8/exDREREuquWV1n7x/X4EpBs4Ed8IyVXA8OAQcB+rbmZYRhJwL3AkUAcvsX215um+VvT+THAY8B4oAyYbprmg37ELbJLGtauJaq0lGhbCI4uuFNXM6vVypCRezPn15ksnvsr/bJaUVTRaqMkfSDVDi8JNisej7v9AhUREZEup9UfbZqmuQRfovADvuKMbuBgfMnKBNM0F7Tylm8DewEnA7sD84BvDMMYYhhGMvAtsLLpmbcBdxmGcU5r4xbZVc1bCVe5nF1yMfymhu/m+4xh0d+/4HA0tPr6DaV1eLxoapeIiIi0ij8jJ5imuQo4bVcfbhjGIHyJzT6maf7RdGwqcBhwKmAHGoGLTdN0AcsNwxgMXAe8vKvPF2mN5uSk2ukkrQuPnAD0GTCcxOQMKso2sGLhLEaMO6BV17t++obsV5fQ49zzieg/oH2CFBERkS7H3yKMAwzDGNb06wTDMJ40DONTwzDOaOWtSoEjgLnNB0zT9OLbnjgJ3xSxX5oSk2Y/+B5rpPkTu4g/vF4v7up/Rk668oJ48E3tGr3HgQDMn/1d62+woQBn4Xrq5s/deVsRERGRJq0eOTEMYwrwCfA4vrUmzwDHA4uBVwzDCDNN88WW3KtpO+Ivtrj/CcBA4Gvgnqb7bmp90/c++Oqt+CUkpG0X6zYv/tUi4PYXjL522+14Xb4cudrlIi4hGavVErDnB8PYvSfz05dvkrNiAdWVJSQktfzzgNp+Q4nPW0rN3L9JO+FELJau3Ve7Qv92BIb6OTDUzyKyq/yZ1nUr8A1wh2EY8cBxwH2mad5qGMbdwFSgRcnJlgzD2Ad4CfjENM3PDMN4BN+0rk01T4CP8OcZAFarhcTE6J039ENcXGS73Fe2Fsi+tjf4Rk3sbjcOj4eU9HQiI8MC9vxgiOzVl0FDx5K9fD7z/viCI064sMXXugcPw/trCI6iIsKry4ju17cdI+0a9G9HYKifA0P9LCL+8ic5GQ0cbZpmjWEYJzbd4/2mc98C//UnEMMwjgHeBP4ETmk6bMdXO2VTzUlJnT/PAfB4vFRX1/t7+TbZbFbi4iKprrbjdnva9N6yuWD0dUNRBba4OCqKiwAIDYvBbm9dDZDOxmq1sN/B/yJ7+Xz+/Olz9j34ZMLCW/qZgIW6zIHErDVZ/9OvpByT0q6xdmb6tyMw1M+B0Z79HBcXqREZkW7An+TEvsl1hwFFpmkuavo5A6hs7Q0Nw7gM33bBHwKnm6bZPFqyDui5RfPmnwta+5xNuVzt85+T2+1pt3vL5gLZ1yGZvYn479VcecQhhIZFEBoWicfT9XeiGjJqL5JSelBeWsi8Wd+wx/5Htfjaqt5DiFlrUjXnbxKOOKYdo+wa9G9HYKifA0P9LCL+8ucjiN+Aqw3DOAU4EV9CgWEY4/Bt9ftba25mGMbF+NavPAGctEliAvALsJ9hGLZNjh0EmKZp+r3eRMQfG6vDd+ECjFuyWq3sPelYAH779r1WVYyv6Z2F12qlMX8dzuIN7RShiIiIdCX+JCf/ATKBN4Bc4O6m45/jm3J1fUtvZBhGFr4Rk4+A+4A0wzAymr7i8a0/iQNeNAxjmGEYZwNXNrUVCajm5KSr1zjZ0m77TCEuIYXqylLm/v7Fzi9o4gmPpKbvUML3mIDVqqkYIiIisnP+FGHMBYYDPUzTHGGaZvNHoscCQ03TXN2K2/0fEIpvUX3hFl+PNY2OHAoY+Ioz3gZcY5rmq62NW2RXlH8xk4Qvv2KfpGRiu3iNky2FhoYxccqpAPzy9TvY62tafG3+/sdTd+gJhPfo0V7hiYiISBfibxFGL1C0xbE/DcOINgxjkmmaX7XwPvcC9+6kzRxgb3/iFGkrjevWEltZSVxIKO6E5GCHE3Bj9prMrB8/orRoHd9/9ipHnnRZi68tq26gweEmRLsJi4iIyE74U+ekL/AsMBHY3l6qtu0cF+mUXDW+0YJql5O4+O6385TNFsIRJ13Kq9Ov5+/fv2TU7pPoM2B4i66trLZTbq4iPhTCBw5u50hFRESkM/NnIvgjwATgOWA+8DvwILAI8OKboiXSpWysDu90dqsF8ZvqP3gUY/acDF4vH7zyAPV1LZveFWvOp/LBeyh+9+12jlBEREQ6O3+Sk4nAzaZpTgVeBhpN07wOGA/8DGjPUOly3DW+5KTa5SK2G07rajbl+H+TlNqTqooSPprxIG63e6fX1PQajBcL9tWrcTZtKiAiIiKyLf4kJzHAgqZfLwPGAJim6QaeBA5si8BEOgqvx4O7thbwjZx0x2ldzSIiozjhnBuwhYSyaukcZr7zOF7vjuu9uCNjsGf4KsTXzZ8biDBFRESkk/InOSnEV2wRIBtIMgyjeSueciC9LQIT6SjctbXQ9Aa8xtV9p3U169F7IP939nVYLFbmz/qGme88sdMRlKq+wwCo+euvQIQoIiIinZQ/ycnnwF2GYUwwTXMdkI+vKGMscC67WLldpKPx2O0QE0Ol00F4dCyhYeHBDinoho6ewNGnXgEWC3N//5J3XrgLe33tdttX9x2C12LBnpuDs0RTu0RERGTb/ElObgUqgTubfr4RmNp07DTgobYITKSjCEtPp/zkU7hw4Tzi4rvvepMtjd3rEE4890ZCQsNYueQvnrn/MtasXrrNtu7IGOoz+gFQN//vAEYpIiIinYk/RRjLTNPcEzij6ec3gAPwVYY/0DTNZ9o0QpEOoLjYV9YnVsnJZoaN2Ydzpj5AYkoPqsqLefnRa/jkjUepq6naqm1VP9/UrrqlSwIdpoiIiHQSfhVhBDBNs9AwjCFAIlBomub/2i4skY5Fycn2ZfbN4qJrH+frj55j/qxvmP/nNyxf+AcTDzuV3fc7gpCQUACq+w4jMiOD/odOCHLEIiIi0lH5M60LwzDOMwxjDbAU+A1YaRhGnmEYp7RpdCIdQMV33zJ0wQImpaR2622EdyQiMopjTr2S8656iIxeA2mw1/L1h8/x1L0XYy6ejdfrxRMeSXFiL2oa3YSE+PVPj4iIiHRxrX6HYBjGZcDzwFzgLOAw4BxgOfC6YRgntGmEIkHmWJ9PakMjSaFhWnOyE737D+XCax7lqFOuIDo2gfKS9bz13B289sRNbCjIxe32sqG0jh1vPiwiIiLdlT/TuqYCT5imecUWx18zDOMF4HbgvV0NTKSjcG1SHT5VIyc7ZbXaGDdhCsPH7s9v377DrB8/InflAp69/3J22/sQLszKYmX+Kvpccx2h6Rk7v6GIiIh0G/7MregFfLadc28BA/wPR6TjcdfUAFDl6t4FGFsrIjKKyUefw2U3Pcewsfvi9XqY+8dXrJv1Pe7KCmrnzgl2iCIiItLB+JOczAEO2s65scAi/8MR6Xhc1b6dp6pdLq058UNiSgYnnnsj50x9gB69B/F7aTEAyz/+kIqKiiBHJyIiIh1Ji6Z1GYax/yY/vgU80lR08V1gA74du6YAVwAXtXWQIsHUPK2r1uMhKjouyNF0Xn0HjeCCqx9l0c+f4MpbSApWrjjtBG56eDpDhgwLdngiIiLSAbR05OQn4MemryeAMOBi4AdgGfA7vuKMCcDbbR2kSLB4HA5obATAGx2H1apdpnaF1WplzKTjqEzrDcAw4JxzTufXX38ObmAiIiLSIbR0Qfykdo1CpIPy2OtxRUbiqq0lJDYx2OF0GQ1D94RfP+Sgnr14Z30+U6dezF133c8RRxwV7NBEREQkiFqUnJimqY81pVsKiU9g0T77MG3a3Qwfu2+ww+kyanpn4QkNI8Hp4NwpR/DSV59zyy3XYbVaOOywI4MdnoiIiARJi+aoGIbxi2EYY1pzY8MwxhuG8ZtfUYl0IM3V4WNU46TNeEPDqBg8lrD9DuTSa67juONOwOPxcNNN1/L9998EOzwREREJkpZO63oM+MowjL+B14FPTdOs37JR0yL5Q/Etih8LXNJWgYoES3NyogKMbato90OJ6BHHwPQ0brnlDrxeDx9//AE33ngNzz2XyujRY4MdooiIiARYS6d1fWAYxs/4Fr2/AIQYhrEMyAXq8C2E7w2MAJxNbU43TbOoPYIWCZTKX37iwA1FOFPTidY2wm2uvKqB2gYX0WE2brnlTsrLy/jll5+48spLeO21d+jdu0+wQxQREZEAavHWQ6ZpljZVhe+Lr0r8SnwJyZ5AMrAcuADobZrmFUpMpCtwrC+gFxaSw8JUgLEd1NQ2UDJvIdW//4LNZmPatIcYOnQYFRUVXHnlpdjtWw3QioiISBfW0mldG5mmWQY82/Ql0qW5qnwFGCudTgZq5KTNRZatp+GLlygMD2fgbnsQFRXNY489zamn/h+rV6/innvu4K67pmGxWIIdqoiIiASAijaI7EBjeRngS07iEjRy0tbsKZk44xLxNjZSv2gBAGlp6Uyb9hBWq5WZMz/hww/fC26QIiIiEjBKTkR2wFFR4fseFk5oaFiQo+mCLBYq+40AoHr2rI2Hx4/fg8sv/w8A999/N6tXZwclPBEREQksJSciO+CtrfV9j4kLciRdV1V/X3JSu3gx7qb+BjjrrPPYZ5/9cDgc3HLLdTidzmCFKCIiIgGi5ERkOzxOJ1aHAwCrthFuN46EVBqSe4DbTd28vzcet1qt3Hbb3cTFxbNs2VJefFHL3ERERLo6JSci2+Gpr6MhNIQGt5swrTdpV5VNoydVf/y+2fG0tHRuuuk2AJ5//mmWLVsS8NhEREQkcFq0W5dhGGe25qamab7mXzgiHUdIfAJvJSTw5ZczOez4C4IdTpdW3X8E6XO/x1VdjafBjjUicuO5Qw89nB9++I6vv/6Cu+++jRkz3sVmswUxWhEREWkvLd1K+JVW3NMLKDmRLqGoqBCAmDhN62pPrqhY8o65iHETxxAWE4nL5dns/LXX3sgff/zGsmVLeeedNzj11FZ9XiIiIiKdREundfVvxdeAtg9TJDgKC33JSVxiWpAj6frs8akUltbh3UZJk+TkFKZOvQqAJ598jKIi1XgVERHpilo0cmKa5pqW3tAwDFVLky6h/IfvuDg+kd9cbuITteYkEEor66mtaSDM0YAtbvMd0v71rxP59NOPWLRoIf/73z08+OD0IEUpIiIi7aXVFeIBDMM4GZgIhAHNyYgViAb2Bnq1SXQiQVS9ejVDYmJZXltDTFxisMPpFryL57PupS+IHzOG9PMu2uyc1Wrl5pvv5JRT/sV3333D7Nmz2HPPvYMUqYiIiLSHVu/WZRjGbcCbwMnAicCxwBHAmcBxwGdtGJ9I0NjLSgBfAUarVQuwA8ERmwB2O9V//427vn6r81lZBieeeAoADz00DbfbHeAIRUREpD35s5XwWcDrQBLwCPCZaZrpwO5AGbC07cITCR5nZSUAnsiY4AbSjTQk98SRmIrX6aRu3pxttrnookuJi4tn5UqTjz/+IMARioiISHvyJznJBGaYpukF5gITAEzTnAvcA5zfduGJBI+3rs73i9iEoMbRrVgsVAwYDUDVb79ts0lCQiIXXngJ4FscX7tJVXkRERHp3PxJTurwbRcMsArobxhGc1GCBfh27BLp9EIaGwCwJmgb4UCqGjASr8WCPXsVjqIN22xz0kmn0KdPX8rLy3jpJVWOFxER6Sr8SU7+wje1C2A14AImN/08FGhsg7hEgsrT2Eiox5eDh2gb4YByRcVSlzkIgNo//9hmm9DQMK666joAXn/9VQoL1wcsPhEREWk//iQn9wInGYbxmWmajfjWn7xqGMYHwEPA120ZoEgweOz1VHo81LlcRCalBzucbqdioG9qV+Xvv+P1eLbZZuLESey++544HA6ee+6pQIYnIiIi7aTVyYlpmr8A44F3mg5dBrwPDAHeA65os+hEgiQkIZHr87I5Z8HfRMenBjucbqe2dxbV4yaSMvVqbCHb3inNYrFw+eX/AeDTTz8iLy8nkCGKiIhIO/CrzolpmouARU2/bgAubMugRIKtoaGB8vJyAGLiteYk0Ly2EPJHTCQtPI5kmxWPZ9tbBo8aNYYDDjiQn376gaeffoL77384wJGKiIhIW/K3CGM8cCC+ootbjb6YpvnaLsYlElRFRYUAREREEqGthIOmsKSW3qkxGyu9bssll0zl559/5Ouvv+Cccy5gyJChAYtPRERE2larkxPDMA7DN30rajtNvICSE+nUyr79hjuHDGcpvulDEhy1q1ax9rt3iDcGk3DIYdtsk5VlMGXKEXz55UyeeOJRnnhCu3eJiIh0Vv4siL8PWA5MBAbi2zp4068BbRadSJA0FOQzJCaW9Ji4YIfSrVnLS2lcOI+KH77f7sJ4gIsvvhybzcZvv/3M/PlzAxihiIiItCV/pnUNAY4xTfPXtg5GpKNwV1UB4I2JD3Ik3Vt136H0mPMVztJS7MuXETV8xDbb9enTl2OPPZ4PPniXp59+nOeeeyWwgYqIiEib8GfkZA2gj5OlS7M0VYe3JKQEOZLuzRsSSuWAUQBU//rzDtuef/6/CQkJ5a+//tToiYiISCfl77Su2wzD6NfGsYh0GBEuJwChyapxEmwVg3cDoHr+PFxVldtt16NHT4455jgA1T0RERHppPyZ1nUakAmsNgyjBKjf4rzXNM2BuxyZSJB4PR6im/aHCkvrFeRopDExDXtabyKL11E763cSphyx3bbnnnshn3zyIbNm/c6iRQsYNWpM4AIVERGRXebPyEk+8DG+Hbm+BH7e4uuXtgpOJBhqizdgs1jweL1EpvcNdjgClA8eC0DFzz/vcGF8ZmYvjjzyGACee+7pgMQmIiIibafVIyemaZ7THoGIdBQb1qyhuLERq9VCSEQUDuf23wxLYFT3G05q9nwSD9gfK168O2h73nkX8dlnH/Pbbz+zdOlihg8fGbA4RUREZNf4U+ekzw5Oe4Ba0zQr/Y5IJMjWN9iZung+g7OGcrpLiUlH4A0JJXvKOcQNTSckPAync9sV4wF69+7DYYcdycyZn/D880/z6KNafyIiItJZ+DOtKw/I3c7XGqDMMIwSwzBubqsgRQJp/foCANIyeuLd0Uf0EnDri2tpbEHCeP75F2G1Wvnppx9YsWJZACITERGRtuBPcnIW4AC+Ac4BDms69hm+6vB3Aq8ANxuGcXHbhCkSOAUF+QAkp2inro6mrLSawm+/p+qHb3fYrl+/ARx66OGA1p6IiIh0Jv7s1nUK8PY21p68bhjG08A40zSPNgyjErgY0DsD6VQyc3K4a8hw6mz+/PWQ9hS2Ppe6797EHhlJ7IT9sEZEbLft+ef/m6+++pwffviW1auzGThwUAAjFREREX/4M3JyAPDmds59CBzU9OvfAG0pLJ1OTH09RkwscRHRwQ5FtlDXcyDO+GQ8dju1f83aYduBAwdx4IGTAXj55ecDEZ6IiIjsIn+SkzJg9HbOjQaqm34dA9T5E5RIMEW4XACEpfQIciSyFYuFsqzxAFR8/x3enSwKOvfcCwH48suZG6friYiISMflT3LyBnCnYRhTDcPINAwjtOn75cDtwBuGYSQCVwJ/tl2oIu2vurqKeJsNgPB0FWDsiCoHjcYTGkZjQQENK80dth0+fCR77jkBt9vNa6+9FKAIRURExF/+JCc3A28DDwNrgYam7w/jS1xuxLdIfmxTW5FOY11eLgmhYQB4YpODHI1siycsgqoBvtolld/veGE8wPnn+0ZPPv74A8rKSts1NhEREdk1rU5OTNN0maZ5LpAFXATchG+3rizTNC8yTdOBr3J8pmmai9o0WpF2VrBqJQBur5fG0PAgRyPbUzZkDwBq5s/DUbRhh23Hj9+TkSNH09jYyBtvvBqI8ERERMRPfm9HZJrmamD1ds5V+B2RSBCVrcmjH2C32dhBnT8JMkdCKrW9B5MYFYrVu+O6JxaLhXPPvZD//OdS3n33Lc4550JiY2MDFKmIiIi0RouSE8MwcoDjTNNcaBhGLr56JtvjNU1Tu3RJp1S6oZDixgZCklNxqjp8h7Zu4glYeiUxMDMNj3vHv1cTJ05iwIBB5ORk8+67b3LeeRcFKEoRERFpjZZO6/qZf3bh+nknX7+0cYwiATNnQyGXLV5A3v6Tgx2K7ITXFkJxeT2VdQ5sth3/U2a1WjnvPN/ak9dffxW73R6IEEVERKSVWjRysmnBRdM0z26vYAzDuBmYbJrmAZscGwM8BozHt43xdNM0H2yvGKR7W7duLQBJqT2pD3IssnP2Rhf5qwtw5SwgYcphWJs2M9iWQw89nCeffIz16wv45JMPOPnk0wMYqYiIiLSEP7t1YRhGrGEYmU2/DjMM4xrDMKYbhrG/v4EYhnElcOcWx5KBb4GV+JKT24C7DMPYsjq9yC6rqamhoqIcgPikjCBHIy3i9eJ9aTqln3xE7ewdF2UMCQnhrLPOA+DVV1/C6XQGIkIRERFphVYnJ4Zh7AGsAS5vOjQduB84HfjBMIyjW3m/TMMwvgTuBrYsWnAh0AhcbJrmctM0XwYeAa5rbdwiO7Nu3Rqu6D+IaSPGEL5hfbDDkZawWCgbvBsA5V9/jdez47UnxxzzL5KTUygsXM9XX30eiAhFRESkFfwZObkHWAE8axhGJL6k5CnTNJOAF/FtLdwauwEVwChg9hbn9gN+MU3TtcmxHwDDMIw0P2IX2a5169YyIDqaAREROF3aqquzqBy8G56wcByF66lfvOPdyyMiIjj99LMAePnl5/HsJJkRERGRwPJnK+E9gZNM08w1DONIIBKY0XTubXzJSouZpvkZ8BmAYRhbnu4FLN7iWPNH2n2A4tY8a1MhIX7NaNuu5gW5O1uYK7uuvfo6f90a9gzz1TZxRsdjtVja9P6djdVq2ex7hxURQWXWOJKW/EHFlzOJ220slh383p1yymm89NJz5OSs5pdffmDy5EMCGOzW9G9HYKifA0P9LCK7yp/kxINvqhXA4UAl8FfTz3HQpuuIozZ5VrOGpu8R/t7UarWQmBjtd1A7EhcX2S73la21dV+Xr19HmLXpP9S4RCJdO9oxu/sIDw8Ndgg7VTd+fxKX/0V9djbW/FwSRo3cbtvExGjOPvtsHn/8cV555QX+7/+O3WEyEyj6tyMw1M+BoX4WEX/5k5z8DZxvGIYdOAmYaZqmt2ma1fVN59uKHdiyTHdzUlLn7009Hi/V1W27F5PNZiUuLpLqajvundRckF3TXn1dlrsGbKG4wsOpbnDh6OZVGK1WC+HhoTQ2OvF4OniiZgmnMmssicvnkPfWu/TtPWCHzf/v/07l+eefZ8GCBXz11XfstdeEAAW6Nf3bERjq58Boz36Oi4vUiIxIN+BPcnIN8BVwMlCCbyE7wBJ8a1gObZvQAFgH9NziWPPPBbtyY1c7Fdhzuz3tdm/ZXFv3dUNxMfTIhLgEGh0uvB38/XigeDzejp+cACXDJxCfs5iQnpm4Gh1g2/4/b/HxiRx33P/x1luv8+yzTzN+/F4BjHTb9G9HYKifA0P9LCL+avVHEKZpzgcGAXsDA0zTXNV06mJghGmac9swvl+A/QzDsG1y7CBfGKbf601EtlRZWUG4wwFAaGqaEpNOyBUdT/YJ/8E75XhCI7Zf76TZWWedR0hIKHPmzGbBgnkBiFBERER2xq/xUdM0a0zTnG2aZt0mxz4wTXND24UGwEv41rG8aBjGMMMwzgauBO5r4+dIN5ebm4sHKHO5IFEbwXVWLlsoawqraGzBeqGMjB4cddQxALzwwrPtHZqIiIi0QIeevNk0OnIoYADz8BVhvMY0zVeDGph0Obm5q/m2pIjXYyKxTzwi2OHILigur6dw4VIqW1DH5JxzLsBqtfLbbz+zfPnSAEQnIiIiO+LPmpN2Y5rm2ds4NgffFDKRdpObuxqA/v0G4lCNk07NWl1B7cuPU4eXiGEjiOjTd7tt+/Tpy5QpR/DFF5/xwgvP8NBDjwcwUhEREdlShx45EQmUnJwcAPr1H9Dtd+nq7JwxCdT0Hw5A+Scf7rT9eeddBMD3339LdvaqnbQWERGR9qTkRATIy13NEyPHMmzePFy1tcEOR3ZR8eiJeC1WahcuxL6ThGPgwEEbCzG+9NJzgQhPREREtkPJiXR7drudhtJS0sLDCSkppqFjzXYUPzjik6kaNBqAso8/xLuT7dfOP//fAHz11eesXbum3eMTERGRbVNyIt3emjW5JIf6qqBb4xNwaFZXl1A8an+8Nhv1K5ZjX7Fsh22HDBnGvvtOxOPx8PLLzwcoQhEREdmSkhPp9nJzc0gNDwfAmpSMS9WjuwRXTDwVWeMAKPvog52OnlxwgW/05LPPPqawcH27xyciIiJbU3Ii3V5ubg5pTcmJJz4pyNFIWyoZuS+uxFSi99kfy07ajh49lj322AuXy8Urr7wQkPhERERkc0pOpNvLyVlNelgEAM7YxCBHI23JHRnDqqP/Te2w3QkN2/laoua1Jx999D4lJcXtHZ6IiIhsQcmJdHvZ2Ss3jpw4Y5ScdDVeLOQVVlHb4MKyk+GT3Xffk1GjxuBwOHjttZcCE6CIiIhspOREujW73c7atWuocDqxJibiiE0IdkjSDsor7az99gfW3Hk77vq67bazWCxceOElALz77lsaPREREQkwJSfSra1enY3H4+GNqgr6PfAIdam9gx2StAevF8f3X9GwJo+KLz/fYdN99tmPUaPG0NjYqLonIiIiAabkRLq1VatMALKyDJwuj6rDd1VWK4W7TQag4ttvcJaUbLepxWLh0kunAvD++++wYUNhQEIUERERJSfSza1cuXly0qgiJ11WbeYg6jMH4HW5KPvwvR223WOPvRg3bnecTicvvPBMgCIUERERJSfSra1aZTIpJZUpOblUfPCOapx0ZRYLhbsdjNdioXrOX9TvoDDjpqMnH3/8AQUF+YGKUkREpFtTciLdltfrZeVKk4zwCEIaGnDaG4IdkrSzxqR0Ko3xABS/8Tpel2u7bXfbbTx77TUBl8vFs88+GagQRUREujUlJ9JtFRcXUV1dRXqEr8aJQ9sIdwtFYyfhjozBUbie+qWLd9i2efRk5sxPWLMmNxDhiYiIdGtKTqTbMs0VAPSKjQPAEZMQxGgkUDxhERTsfQScfRnx48fvsO3IkaPZf/8D8Hg8PPOMRk9ERETam5IT6baWL18KQFpoGAAN0fHBDEcCqLa3QV54GqVVDYSE7PifwUsuuQKAr776nBUrlgciPBERkW5LyYl0W8uWLSHaZiPC6wWgPkrTurqT+gYXq/Mrqd9QTMPqVdttN2TIMKZMORyv18ujj/4vgBGKiIh0P0pOpFvyer0sXbqEnhGRAFgTEmnAFuSoJNAqliwj79YbWf/MU7jr67fb7vLLryIkJJQ///yDP/74LYARioiIdC9KTqRbKi4uprS0BKvVSsTgLEL6D1QBxm6oLjEDV2QsrooKyt5/Z7vtMjN7cfLJpwLw6KP/w+3WnxUREZH2oOREuqWlTbs0eTIyGHTLLVhOODu4AUlQeENCyd/7SAAqf/mZuqVLttv2ggsuJjY2jpUrTWbO/CRQIYqIiHQrSk6kW1q2zPcmdPjwkXiB6npncAOSoKlP70vF0D0AKJ7xCp4G+zbbxccncP75FwHw5JOP0dCgujgiIiJtTcmJdEsbk5Mhw3C5vDQ0KjnpzjaMPRB3bALO0lJK3393u+1OPvl0evToSXFxEW+88WoAIxQREekelJxIt+NbDL8YCzDqpx9ZffWVOMorgh2WBJE3NOyf6V0//Uj98mXbbBceHs5ll/0HgBdffJaioqKAxSgiItIdKDmRbicvL5eqqip6xMRgcblwVVVRbwsPdlgSZHU9BlA+cgKhkw4lbvjQ7bY77LAjGDVqDPX19dpaWEREpI0pOZFuZ/78uQDsbfjegNpSUmlweYMZknQQG8YeRN6w/ai0e7ZbnNFqtXLDDbdgsVj48suZzJ07J8BRioiIdF1KTqTbaU5ORmf29h1IzcDtVnIigMVCVa0Dc205jY1O7NnbLs44dOhwjj/+RADuv/9uXC5XIKMUERHpspScSLezYME8APpGRwPgSkoPZjjSAa1fW8LqO+9g3f+mYV+dvc02l112JfHx8axcafL++28HOEIREZGuScmJdCulpSWsW7cWi8VCXEMjAA2JaUGOSjoad2g4tWEx4HZT+MyTuGqqt2qTkJDIpZdeCcATTzxGSUlxgKMUERHpepScSLfSPGqSNTgLV9EGAOzxKcEMSToii4X8vY/ClZiCq6KCouefwevxbNXs+ONPZNiwEdTW1nD//XcHIVAREZGuRcmJdCtz5/4NwNiRY4jba2/CB2VRGxkf5KikI/KEhpO3/wl4Q8OoW7aM8k8+3KqNzWbjttvuxmaz8d133/DDD98GIVIREZGuQ8mJdCuzZ88CYNxee9PznPNImHoNdocWw8u2ORJSKZhwFABln8+k+q8/t2pjGEM466zzALjvvjuprt56CpiIiIi0jJIT6TaKijaQk5ONxWJhjz32wmq1UFvvxO1RciLbV91vOBUj9gag9L138DgcW7W56KJL6du3HyUlJap9IiIisguUnEi38eeffwAwbNgIopxOPE4HFTWNQY5KOoPCsQdRPWIvYi65ivDoyK3Oh4eHc+utdwHw4YfvMWvW74EOUUREpEtQciLdRnNystdeE8h/+EGWX3A+jdkrgxyVdApWK/njDmFFtY2KWgehoTa83s1H3MaN250TTzwVgFtvvYGqqsogBCoiItK5KTmRbsHj8Wxcb7LX2HE4i4vA66U2OinIkUlnUl7dwNKcUkr+nsf66Y9sNcXrP/+5hn79+lNSUsxdd922VQIjIiIiO6bkRLqFlStXUF5eRkREJFlxcQDYUlKps4QFOTLpbDYUVlD0wnPULV5E4TNP4t2kOnxkZCT33PMAISEhfPfd18yc+UkQIxUREel8lJxIt/Djj98DsPfe++DOzwfAktkHh9MdzLCkE/KGhpE38QS8IaHULVpI0csvbFYDZfjwkfz735cBMG3aXaxbtzZYoYqIiHQ6Sk6kW2hOTiZNOoiGvFwAGlMzgxmSdGL29D6sO+D/8FqtVM/+k+IZr2yWoJxzzgWMHTuOuro6rr56Kg0NDUGMVkREpPNQciJdXkFBPitXrsBqtbLffgfQkJcHQH1yj+AGJp1abeZg1u//L7BYqPr1F4peeXFjgmKz2Zg27SESE5MwzeVMm3ZXkKMVERHpHJScSJfXPGoyduw4Yi3gKi8Di4WauLQgRyadXVXfYb4ExWql+o/fqfn9143n0tMzmDbtIaxWKx9//AEffvheECMVERHpHJScSJf3zTdfAjBp0mQsIaGknXwqUQdMptZtC3Jk0hVU9htOwcT/gzF7ELvf/litlo3n9txzby69dCrgW3+ycOH8YIUpIiLSKSg5kS5t3bq1LFq0AKvVyqGHHoYtJoa0ww/DdfAxuNyend9ApAWq+gxhxdjDMPOrcXvB4nHjrq0FfOtPDjjgIBwOB1deeSkFBflBjlZERKTjUnIiXdoXX3wG+D7BTk31TeNye7yUV2uBsrQtj8eLmVfG0txSCl58gXXT7sFZUoLVauXeex9gyJBhVFSUc/nlF1FdXR3scEVERDokJSfSZXm9Xj7//FMAjjjiaNx1dVT9/iu16zdQW+/YydUiref1whozn+rly3FsKGTtfXdRv9IkKiqaxx57mrS0dHJyVnPNNVNxOPRnUEREZEtKTqTLmjt3DmvXriEiIpIDD5xM/YrlFL38IuunP0JNnd4YSvtwRsWSfeg5uFJ74q6uJv+hB6j47lvS0tKYPv0ZIiOjmD17Ftdf/19cmxRwFBERESUn0oW9886bABxxxFFERUVTt2QRAN6BQ3C6tN5E2o8rKpZVB59J/eBR4HZT8vYbFL30PFn9B/DII08QGhrKDz98y6233oDHoz+LIiIizZScSJdUXFzEjz9+B8BJJ52G1+ulbrEvOanNHBTM0KSb8IaGkbf3MZTtNcW31fCsPyh8+gn22msCDz74GCEhIXzxxWfcccctSlBERESaKDmRLum9997G5XIxduw4srIMHPnrcFdWYgkLoyJJleElQCwWiow9WHvI6Xhj44k55HBCQ61MnHgg99zzABaLhQ8+eI8rrrgCp9MZ7GhFRESCTsmJdDk1NTW89dbrAJx22pkA1C5cAEDI4CFUN+hTagms2vR+rDjmUpZ6EtlQ0YAt1Mo+qen878bbCAkJ4aOPPmLq1EtpaNAuciIi0r0pOZEu5+23X6e2toaBAwdz4IEHA1Dz9xwA7P2G4vUGMzrprry2EIor6vl72QbMhTkUvvAsfX/4nufPvZDoyEh++eUnLrroHMrLy4IdqoiISNAoOZEupaqqkhkzXgHg/PMvwmq14iwvx7mhEGw2yjKzghugdHv2RhfmmgocPfvhdTqJnjePlycexB7pGSxcOJ/TTjsB01wR7DBFRESCQsmJdCnPPPME1dVVDBo0mEMOOQyA0KQksh57nNgLLqPSqT/yEnzOmHhW7X8SxZOOh+gYKC3l6t79uGPkGGwVFZx11il8/fUXwQ5TREQk4PROTbqM7OxVvPvuWwBcc82N2Gy2jeesMdGUJvfF7dGcLukgLBZK+wz///buPD6q8t7j+OfMlmWSkACBEIJLFR5AQFxxqRYXqq1rXXu1r/tS2+rV9ta2XkttvWrtauu91urVLlZfvtpau2hra/W2Vq/K4gqKIPCwyZ5AQkhCwiSznHP/OJMQIqNAJpnJ8H2/XvOamWeeOfM7T56cOb/zPOcMKy64ga5jToFAgElFxdw15UgCiTizZ3+VO+74JrHYzlxHKiIiMmiUnEhBSCaT3HbbLaRSKWbOPIMZM04EwO2MEQg4dMSSNLVoJ0/yj1tUQsOMs1l70RdIjJ9CdOYsrrzmWhzH4c9/foLrrriExenLYIuIiBS6UK4DEMmGhx/+OUuXLqG8vIJbbrmtp3zT/T+Bri5S51xKa3tRDiMU+WCd5cNZedJFhINwYnUFk6Ydy+/u+hZfGV7N63fcymtHTOHym2+hvLw816GKiIgMGI2cyJA3f/4cfvrT+wGYPfubjB49GoDYyhXEli8jtn4dDTEnlyGK7LVECtY3tNEZruPa868g4DicUDWcUzdvZsEXrmPOfT8m0d6e6zBFREQGhJITGdJWr17F7Nk34bouF154Meeccz4AnufR9OcnAQgfdyJbXY2ayNAST6TYMOlU1n3qehrGHUaX61IbiTB60dusuPELvPOdb5HcqamKIiJSWJScyJC1Zs1qrr32KnbsaGPatCP5xjdux3H8EZL2N14nZpdDKETjlI/i6kR4GaI6KqppPv1KVl72Fd4YMYbNXZ2EHYeW5cu46tqreO65Z0kmk3SuX4ebiOc6XBERkX7ROScyJL3xxhtcc801NDc3M2HCRO6772dEIhEAkm1tbP3dYwCEPvZx6pORXIYqkhWB6DCi536eze1tzH3ut6xdM48lzU3cfPNXOGhsHXfVHUwwGKRsylSiU6dRMnES4ZHVPQm7iIjIUKDkRIaUVCrFY489yj333E0ikWDixMk88MBDDBtWCYCXSlH/8wdJtbYSqhnDuvHH48Xc3AYtkkWlZRVM+dR1HHLm5URffpo35j5NoqmJ7SOqGRkpon3hAtoXLgAgNGIEpWYSFSedTOnESTmOXERE5MMNieTEGBMAbgc+B1QBc4EbrLWrchqYDKrFixdx990/YNGitwCYNess7rzz+5SUlPbU8dwUgVAIp6iI1nOupFWJiRSosvJKTjvnM5w86xIWv/ki33v1OcJbLMdWDmdKeQXjy8ph2zba5s8lFi3h8CMm47oQ37aN1hdfoOjgQygaW0d41CicgGb4iohIfnA8L//n4htjbgduAK4GNgE/BD4CHGGt3ddJ1mtSKffQ5uaOrMYYCgWoqoqyfXsHyaR2iLMlmUwyb97L/P73jzNv3ssARKNRbrvtNj75yQtJpXbvv4GAQzKRYMVrS7BuBUOge+etQMChpCRCLBbXOTsDKJvt3NiwgUWv/5Nli+bT3lTPxLJyjiiv4JXt22griXLU0ccyq66OQxcv7nmPEwoTrqmhqHYskdpayo89nkhNTX9XK+9oGz04BrKdhw+PEgwG3sP//heRApX3IyfGmAhwE/A1a+0z6bLLgc3ARcDjOQxPsszzPBobt/L2228xf/4c5s59maamRgCCwSDnnnsBX/zijUyefDjbt3fgdnXSNm8OO5ctY9yXvkTChVUNHaz0hjEUEm+RbKquGceZ51/NmedfTWPDBpa/8wpzl77Bpng9qZ07+edzz7IuWsbpI0dxaDRKXUkpkWSC+MYNxDduACBZVUnt2DF4HrQteJOmPz1BeGQ1ocoqgsOGEaoY5t8PG0akdizBkpIcr7WIiBSSvE9OgOlAOfBCd4G1tsUYsxA4FSUnQ4bneXR2xmhr28GOHW20tbXS0FBPQ0M99fX1bNq0geXLl9HcvG2391VVVXHeeRdy8cWXM25MLW5zE1tfeJGtby5kx8KFuLEYAFtee5MNlYewvqFVIyZywKuuGUd1zThO+fhlJOJdbFq3grWrFrNhzVJ+vWkNHevW4AAjI0WMKymhrqSEuuJSnvjqv9OCw/ARIzl/1GjOCIWJb968x89wLr2MsmlHEo1GSS5ZQuszfyMYjRIsLSVQGiUYLSVQWkogUkTZsccTGTUKgERzM/GGegJFRQQiEZxIEU4kghMK4gRDBIqKcILBQWwtERHJF3k/rcsYcxHwBFBqrY31Kv99uuzcfVzkmlTKPbStLfbhNffB/HfX8dIDD1LT1Q7salPHo+f506Eq4o4/t3t6qp3D3M6enWiH3f8OfwuUs9Pxv5yPdGNMcDvT9XYtr9uzRGlzgnh4TPG6mOp1pV95/9/2f70SmgkCHpOJcxTx3ap2x+EB/3AjbEnXNU6SE5yk/5rnsdsFgDyPf8QDrE8kcFMJxjspTi0KgueC5+F5LngubioJnsdft2zGpn9EzpSVc/7oMbvay/GjCBWXUVw+nKWTZuEefyHBUIQx773OjL/f8762ai8fxeKJZ7Ng7El0uZo7ny2OA8FggFTKVbI3gHLVzvEdTexssOzcsoKu5g10Nm+gq3kDXa0N/v8uMCwU5uDSUqojRVSGw1SGw1SFIz2Pf7RqBeti/m+tnDt6DP867uCMn/fjlhjLU+AEAny0KMSVpZmTj0e8Mt4NFOM4AY70urjEayMFpHB2u3dxeCZYgQ0UA3CY28XZbhse4KW3FG6vx/PCFVinGA+odeOckWrDX9NeW5X0tm1BsJyVIf98tmo3zumJlp74PHa/Ato7oTJsKApAlZvg9MT2961T9/KXB0tZGioDoNxNcmai+X11uq0KlrIkXbfES3FWvJlM3gsWsyhUDkDEc/lEfFvGuhsCRSwMVwAQ8DzOizdlrFsfiPB6eFjP8wu6GjPW3RoI80qkipqaGu6dfQ1F4ewe/6yoKNG0LpEDwFAYOek+27mrT3knMHx/FhgIOFRVRfsVVF/3Pvw4M9ctYsbI6ox1frbgRXYk/R380w46hONGZZ7X/cjbc2mK+4nDR+sO4ria2ox1f7PkNTZ1+snWjNo6jqmty1j3j8sWsGGnf77NUTVjOLouvTOxh6uNPrViEZvadwAwpXo00w8+NONyn924lK2tLX7dEdUcc+hhGevObW6GkjAUDWP4yBqOq8xQMbGDl+I1vLTG/1tN21bKCXh0hKJsKq1jWdVk3hk+neWVk/GcALRl/EgR6csZAWMMjNm9OJiKQ9tm2NnIjo5GlnQ04nU0Qkcj7NwG8R14He3Q1QaBMgh7kIgxr7mJNTs7iAaDlAVDREMhosEgpcEQxcEAaxs209zpH2TZWjWC9WPGEgkEKA4GiAQCRJwAofSJ+Q2r3mR9entyyIhqinu2J+/P3tpWvMba7f6O+Oiq4Rx82ISMq/y8fZU12/yd68phlUwZPzFj3TfXvMvqxi0ARMrKmT7xiIx1l65byqoGf3TpI6VRjpk8NWPdteuXsWrzRgDGFhdz3JTpGetu2WhZtXE9ACMiEY6fdnTGuq2bV7Jq/XsAlAVDzDjq2Ix1O5saWbV2NQBhx2HGMTMy1n1t+zZWrV7Z8/y4Y2YQyHB56rdbW/jVyuWsAl4461Su+PgxGZcrIpLJUBg5uRj4I3seOSmy1l6wj4sckJGTZeu38uwvHqWivRX/CzS98Xb8o2wO8FblWJIBPx88qKOZUXE/SejezncfjXOAxZVjiYfCANR1bGdU547dEgin50ifw/LKWjrD/i+gj4m1MHpnC71r7nqfw8rKWjrD/lHG6lgrNR3NuwLoHpdJP19XWUtHxJ9PXhVrZUz7tvSadK8XPc83jhhHZ7SKYChMZVc7Na1b/OkZgSBOMEggGCIUKSEUKWbHYUcTr/ITs6KWLQxbv6RPa+5a0R2144mNHAdAINFFINFFsqSccCRMPJHUeSUDyHEcIuGQ2nmAFUI7p5IJUokukokuUvH0fe/n8U5cN4WXvrmu2/PYc930LYWbSuG4SVzPJeV5eK5L2E1Smuwi4HkEPZeA6xLwXIKei+N5bCuKEgsV4eERTXQxqrMNx/PHShwAz8PxIIDH1tJhNIf87V9ZPMYhHc3+ltTr3pruav+NxRU0FfmjFmWJTsZ3+AmQ11N3l03F5Wwp8kctSpNxJrU39qmza7n1xRVsKvZHLYpTCabu2LKrXq+/vwPUF5ezvqQSgIib5KjW+ox/g61FUd4r9Y/XhdwUx7TueSoeQFOklNXREf7neB7Ht2zMWLc5UsLK6Mie5zO2b8hYtzVczPLyasaNreXWa87LmMTsL42ciBwYhsLISfeWsBZY3au8Fli0vwvN9lVEJh00ipPuv+MDr1ByVVY/cajrTg4rYMZJe1kXIEwoFKeqKsz27V266s4A8q+6E1I7D7DCaedQ+pbdUels0dW6BofaWUT6ayhM0F+EP2FnZneBMaYSOBqYk5uQREREREQk2/J+5MRa22WMuR+4yxjTCKwFfoQ/ovJkLmMTEREREZHsyfvkJO02/FgfAkqAl4Gz9uMHGEVEREREJE8NieTEWpsCZqdvIiIiIiJSgIbCOSciIiIiInIAUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5wPM/LdQyDLeZ5XrHrZn+9g8EAqZSb9eXK+6mtB4faeXConQeH2nlwDFQ7BwIOjuN0AiVZX7iI5I0DMTlpAYqA+hzHISIiIntvDNAFVOY4DhEZQAdiciIiIiIiInlI55yIiIiIiEheUHIiIiIiIiJ5QcmJiIiIiIjkBSUnIiIiIiKSF5SciIiIiIhIXlByIiIiIiIieUHJiYiIiIiI5AUlJyIiIiIikheUnIiIiIiISF5QciIiIiIiInlByYmIiIiIiOQFJSciIiIiIpIXQrkOoBAYYwLA7cDngCpgLnCDtXZVTgMrMMaYg4G1e3jp89bahwY5nIJkjLkVONNaO7NX2XTgXuBYYBvwE2vt3TkJsEBkaOdHgKv6VN1kra0bxNCGPGPMcOB7wLlABfAO8HVr7dz069NRf+63vWhn9WcR2S8aOcmO/wT+Dfg8cCLgAc8aYyI5jarwTAM6gVpgTK/bb3IZVKEwxnwZuLNP2QjgOWAF/s7c7cC3jTFXD3qABWJP7Zw2DX9nr3ffPmrwIisYjwMnAJ8GjgMWAv8wxkxUf86qjO2cfl39WUT2i0ZO+imdgNwEfM1a+0y67HJgM3AR/gZcsmMqYK219bkOpJAYY8YCDwGnALbPy9cCXcD11toksMwYMx6YDTwyqIEOcR/UzsaYIDAZ+La1tiEH4RUEY8zhwCzgZGvt/HTZjcAngCuAGOrP/fZh7WyM+RbqzyKynzRy0n/TgXLghe4Ca20L/lGkU3MTUsGaBizNdRAF6GhgO377vtbntVOAl9M7ct1eAIwxZtQgxVcoPqidxwPFqH/3VxNwDrCgu8Ba6wEOMBz152z5sHZWfxaR/aaRk/7rnj+7oU/5ZuCgQY6l0E0F6o0xc4AJwEr8I3N/z21YQ5u19q/AXwGMMX1frgMW9ynbnL4/CNg6oMEVkA9p56n400G/bIz5BOACzwC3WmtbBzPOoSx9YOiZ3mXGmEuBw4C/A99F/bnf9qKd1Z9FZL9p5KT/StP3XX3KO/GPHEkWpKfPTcA/8fJW4JPAG/jn9pyRy9gKXCl77tug/p1NU/B34NYC5wH/gd/Hn0pfcEP2gzHmZOBh4Kl0cqj+PAD20M7qzyKy3zRy0n+x9H1Rr8fgf9F1DH44hclaGzfGVAJJa233zsUCY8wk/C++53MWXGGL4fft3rp34tS/s+cO4J70EWmAJcaYeuAV/JON+04Dkw9hjLkAeAx4FfiXdLH6c5ZlaOc7UH8Wkf2k5KT/uqdz1QKre5XXAosGP5zCZa3d087DYuDswY7lALIBvy/31v180yDHUrDS8/Vb+hR3Tz+qQztz+8QY80X8ywU/CXym1wEN9ecsytTO6s8i0h8aXu2/RUAbMLO7IH2E/2hgTm5CKjzGmGnGmHZjzEf7vHQs8G4uYjpAvAyckr6aVLcz8K+apvn5WWKMecwY0/fcqePS9zqpeB8YY64H7gPuBy7vlZiA+nPWfFA7qz+LSH9o5KSfrLVdxpj7gbuMMY34c2x/hH+E7slcxlZglqRvD6a/FJvwL3N7Iru+9CT7Hga+BvzSGPND4Hjgy/i/6yPZ8xjwF2PMN/EvPz4B+B/gMWvtspxGNoQYYybgH8n/E/B9YFSviw/EUH/Oir1oZ/VnEdlvGjnJjtuAX+L/hsE8IAmcZa2N5zSqAmKtdfFPrHwd+APwFjADmGWt7Xv1HcmS9NHkswCDf3ns24GbrbWP5jSwAmOtfRq4FLgYf/rLL/EPbnw2l3ENQZcAYeBTQH2f273qz1nzYe2s/iwi+83xPC/XMYiIiIiIiGjkRERERERE8oOSExERERERyQtKTkREREREJC8oORERERERkbyg5ERERERERPKCkhMREREREckLSk5EJC8ZY5xcxyAiIiKDS8mJiOQdY8z5wKPpxzONMZ4xZmZuoxIREZGBFsp1ACIie/DVXo8XAicCS3MUi4iIiAwSJSciktestW3Aq7mOQ0RERAae43lermMQEelhjHkR+FivotOA/wNOs9a+aIy5A/g08HXgO8DhwHLgesAD7gWmAauBG621z/da9hTgB8Cp6aLngZustWsGcJVERERkL+mcExHJNzcAb6VvJwIVe6gzDvhv4LvAZcBw4I/Ab4Ff4CcvAeBxY0wJgDFmAjAfGAVcBXwW+AgwzxgzauBWR0RERPaWkhMRySvW2qVAG9BmrX01/bivUuAGa+1vrbV/AR4AaoFvW2sfstY+BfwnMBIw6ffcDsSAM621T1pr/4A/KlMC3DygKyUiIiJ7ReeciMhQNb/X44b0fe9zU7al7yvT92fgTw/baYzp3va1AXOAWQMUo4iIiOwDJSciMiSlT5Tva+cHvGUEcHn61ldjVoISERGRflFyIiIHihbgn8B/7eG15OCGIiIiInui5ERE8lEKCGZ5mS8Bk4G3rbVJ6PkV+l8Dq4C3s/x5IiIiso+UnIhIPmoBTjTGnA4My9Iy7wReAZ42xjwIdALXARcCl2TpM0RERKQfdLUuEclH9wMJ4Fn8q2n1m7X2HeAU/N9C+RX+pYfHABdaa5/MxmeIiIhI/+hHGEVEREREJC9o5ERERERERPKCkhMREREREckLSk5ERERERCQvKDkREREREZG8oORERERERETygpITERERERHJC0pOREREREQkLyg5ERERERGRvKDkRERERERE8oKSExERERERyQtKTkREREREJC8oORERERERkbzw/4B5neh6ONIZAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load, fit, and display a chromatogram with heavily overlapping peaks\n", + "df = load_chromatogram('data/example_overlap.txt', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks()\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "However, if you *know* there is a second peak, and you know its approximate retention time, you can manually add an approximate peak position, forcing the algorithm to \n", + "estimate the peak convolution including more than one peak." + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 1/1 [00:00<00:00, 2.92it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 1.810 - 21.090) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 1.800) R-Score = 1.0145 & Fano Ratio = 10^-5\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 21.100 - 24.990) R-Score = 1.0019 & Fano Ratio = 0\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG4CAYAAABfBpgWAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC1kElEQVR4nOzdd3gU5RYH4N9s3/TeeyBDBwEbFwQEKRZEr4pi76IIFgQEpAlSLgIGVHoREBQLgooFUQFFRBApSYb03nuydcr9Y7MYIHWzSTbhvM+Th81OO/uRZPfMVw4jSRIIIYQQQgghpL3J2jsAQgghhBBCCAEoOSGEEEIIIYQ4CEpOCCGEEEIIIQ6BkhNCCCGEEEKIQ6DkhBBCCCGEEOIQKDkhhBBCCCGEOARKTgghhBBCCCEOgZITQgghhBBCiEOg5IQQQgghhBDiEBTtHQDLsuEA0urY9CzHcZtYlu0H4D0AAwEUA4jlOG5F20VICCGEEEIIaQvtnpwA6APAACAKgFTr+XKWZb0B/AhgH4AXANwE4AOWZYs5jtva1oESQgghhBBCWo8jJCe9AXAcx+VeuYFl2VcAGAFM4jiOBxDPsmxXADMA2JqclAFQA7jqeoQQQghxWIGwfCbwaOc4CCGtyBGSkz4A4urZNgTAkZrExOowgDdZlvXjOK7AhuupJUnSiKIUacOxDZLJGIii1PiOpMWordsGtXPboHZuG9TObaO12lkmY8AwjN3PSwhxLI6QnPQGkMuy7FEAMQASAbzNcdz3AEIAnLti/5yaf8MA2JKc5IqiFFlRobc13jrJ5TK4uWlRXW2AIIh2PTe5HLV126B2bhvUzm2D2rlttGY7u7lpIZczNOqBkE6uXZMTlmVVsCQk1QDeAFAF4BEAB1mWvQ2AEyxduLUZav7V2HpdmYyBp6ezrYc3yM1N2yrnJVejtm4b1M5tg9q5bVA7tw1qZ0KIrdo1OeE4zsSyrAcAnuM4axJyimXZ7gCmAdDDMj+kNmtSUm3rdUVRQkWFztbD62S9W1RRoae7cq2M2rptUDu3DWrntkHt3DZas50tPSdUAYGQzq7dh3VxHFdXknEOwBgAmQCCrthm/T67Jdfl+dZ5cxIEsdXOTS5Hbd02qJ3bBrVz26B2bhvUzoQQW7XrLQiWZfuwLFvFsuzgKzYNBHABwBEAQ1iWldfaNgKW1b1smW9CCCGEEEIIcVDt3XNyvubrQ5ZlJwEoAvAcgJsBXA8gH8B0AJtZll0O4AYAr8BS84QQQgghpMVOnTrlCstSxTRujBD7EgHkDhgwoLKpB7T3nBORZdm7ACwFsBeWtctPA7iN47hzAMCy7GgAsTXP5wJ4g+O47e0TMSGEEEI6i1OnTskAzGIY2WMMwygB0FrFhNiXJEmS+dSpUx8BeGfAgAGNjvds754TcBxXCODpBrafhKUnhRBCCCHEnmbJ5YpJbm6eJpVKo2MYhgrhEGJHkiQxJpPBqaKidJIg8ACwqLFj2j05IYQQQghpa6dOnXJjGNljbm6eJldXz+L2joeQzkqt1uoBeJeVFT926tSp9xob4kVjKwkhhBByLQpgGEapUmnsW1uAEHKVmp5JJSxzuxpEyQkhhBBCrkUyAAwN5SKk9dX8njFoQu5ByQkhhBBCCCHEIVByQgghhBBCCHEIlJwQQgghhBC7iY1dGTR+/Jje7R1HUyUkxGkOHfrBvb3jIBaUnBBCCCGEkGvWzJmvd42LO+/c3nEQC0pOCCEOT88DAz92xcCPXaHn2zsaQgghnQutieBIqM4JIYQQQkgNURSh0+na7eatk5OTKJM17/KDBw8c8N//Tsj95ZefvM1ms+y99z5McHJyEtesWRVy9uzfbtXV1XJ3d3d++PCRxVOnTsuOj4/TPv/8Ez0++GBTfJ8+/XQA8MorL0afP3/W7bvvfvlboVBAkiTcccfIvo8//lT2hAkPF115zaKiQsXKlctDTp8+6S4IAhMT063qtddmZEZHdzFa99mw4QP/r7/e519ZWano0qVr9cyZc9Os2+uKOSQk1LR+/fuBv/562Lu0tFQZHBxsePTRJ3PGjLmjDAD27t3jvXv3jsAnn3wme/PmDSHl5WXK7t17Vs6ZsyBt27bNAb/8cshboVBI48bdm//CC5PzAMBoNDJr164KOnbsiGdJSbFKo9GKffv2K585860MLy9vYfz4Mb2LiopUn376ceC5c2dcN278iCstLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqrK+tn37PvfatWt7YGFhoTosLEw/fPhtxZs3rws9duyvU7b8n8hkMpteX2dEyQkhhBBCCCyJycSJ/+2WkBDfbkN8unXrUfXxx59xzU1QfvjhW98lS95NFASe6do1xjhx4n97uLt7mJctW33R1dVV+PXXwx4bN34Y2qNHr+rRo28v8/HxMR0//ptbnz79dIIgIC7uvKvRaJT9/fcp5+uvv7H6zJnTTpWVFYpbb72t7Mpr8TyPqVMnxQCMNH/+O8ne3t78mjWrQl5//eWYzz47cA4AioqKVOfPn3VdsmRloslkZN55Z0HkO+8siNi8eQdXX8yvvPJidEpKstPLL7+aERkZbfjuu2+8Fi+eHy2TyZJGjRpbDgDFxUWq/fu/9Fu0aHmSTlcte+utGV2ffPLhniNG3Fb0wQeb47/9dr/3zp3bgocOHV7WvXtPw7vvLg05ceK4x4wZs9NCQ8OMHMdpV6x4J2L9+veD3nxzbuamTTvin3rq4R7/+c/Qkueem5QrCAKmTHkhxmw2MzNmzEn19fUzf/LJx34zZ74Ws3r1Bwn9+vXXHTr0vfvKlcsiH3vsqaxhw0aUnTjxu9umTetCW/p/Ysvra9YPSQdByQkhhBBCyCUds+7J0KG3Fvfr118HAHq9nrn11tuKR48eWxoaGm4CgIiIpwv27t0TkJR0UTt69O1lAwfeWHb69Ek3AHlnzpx2lssVUkxMt6qTJ0+4Xn/9jdVHj/7q0bUrW+Xr63fVYNrffjvilp6ept269ePzXbvGGAFg9uz5adu2bQooKSlWAIBcLpfefntZqru7uwAAY8feWbhz57bg+mK+eDFB89dff3rMn784aeTI0eUAMHnyK7kpKUlOu3ZtD7QmJ4IgMK+9NiPd+sG8d+++FRcvJri88casLIZh8NxzL+V++unuwMTEi9ru3XsaunfvUT18+IjSm28eXAUAoaHhph9//K4iLS1FCwA+Pr68TCaTtFqt6OnpJRw+/KNbamqK08aN2y9YrzFnzoKMixcTnHft2h7Qr1//lD17dgXcdNOgkmeeeSEfALp06VqYlZWpPnBgn39L/k9seX0t+ZlxVJScEEIcHgOgf837I9O+oRBCOjGZTIaPP/6M62jDugAgJCT00nAqrVYrPfrokwXffnvAc+fO7c45Odnq9PRUp7KyUqUgiAwADBkyrHzevFm+er2eOXHiuGvPnr0qg4NDDf/8c9oNQN7Jkyfcb7llWEld10pMvKh1cnISrIkJAPj7B/AzZszJsn7v7u7OWxMTAHB1dRNMJtNlL6x2zByXoAWAgQNvrKq9T+/e/So/+mhzSO3nunT597pqtVr09fU3Mozl3UGj0UgAYDQaZQBwzz33lxw9+qvrypXLgrOzs9RZWZnanJxsTbdu3S+7jlVSUqJWq3USan/wZxgGPXr0qjp9+i83AEhLS3EaPPiW0trH9e17XdWVyUlz/09seX2dESUnhBCHp1EAG0bq2zsMQsg1QCaTwcXFRWzvOJpLrdZcilmn08mef/4J1mAwyIYMGVo6atTY4r59+2VMnvxcN+s+N9/8n0qlUiH+8cdvrn//fcpt+PARJeHhEcb9+78IyMxMV6WlpTjNn784pa5ryeUKyfphuT4ymazRHqjaMdc3KV0UBUYul1+2UalUXva9TFZ/LAsXvhX2229HvIYNG1F8003/Ke/WrUfurl3bA4qLC1V17S9Jdb80URShUCgky/VkkiQ13sHW3P8TW15fZ0TJCSGEEEJIJ/Lrr4fdUlNTnL744pt//Pz8eQAoLS2Rl5eXK6xJgEqlkvr2va7iyJFfPBITL7rMnPlWekhIqIlhGOmDD9YEBQYGGWpPbq8tKiraUF1dLU9JSVZHRUUbAaC4uEjx0EP39lq0aHmiLTHHxHTTA8Bff51wsQ7rAoBz5/5xCQ4OtenuVElJsfyHHw76zpgxO+Wuu+651NORlZWh0Wi0tRKjfz/8d+kSo9fpdPL4+Aua2r0ncXEXXEJCwgwAEB4eoY+Lu+ACoMC6/cKFcw3OU2rK/wmx6LRdQoQQQggh1yJ//wATAOzf/6V3Zma66sSJ4y7Tpk3pIggCYzKZL30SHzRocNnPP//k4+bmykdHdzGq1WqJZbtXHTv2q/dNNw0qq+/8Q4YMrYiMjNYtXDgn8tSpk84JCXGa+fNnR7i7e5j79r1OZ0vMLNvd0K9f//LY2JVhhw59756UlKheu3Z14KlTJz0eeOChfFvO6ebmLmi1TsKxY0c8UlKS1XFx57Xz5s0KT0tLdTKb/20HjUYjZGdnqQsK8hVDhw4vDw0N1y9c+FbU778fdb14MUHz9ttzw7KyMrQPPjgxHwAmTnws98SJ3z03b17vn5KSrP7ss0+8v/nmgF9DsTT1/4RQzwkhpAPQ88BdX1luSh24uxpa+stFCCH16t9/oO6pp57L3Lfvc/9du7YHe3p6mYYMGVbi4+Nr4rh/VyIbPnxk+erVK5hevfpWWJ+77roBFefO/eM2dOitZfWdXyaTYfnyVUkrVy4PnTnz9a4A0LNnr8qVK9ckqtVqm7sBli5dmbJ69f+CV65cHqHT6eShoaH6WbPmJ48de0e9sTREoVBgzpwFKevWrQl5+ulHejo7u/C9evWpfOSRJ7I/+2xPYHV1tczZ2Vm8++7/FmzZsj5k6tQXtbt3fx4XG/vhxZUrl4csWDAn2mzmmcjIKN3SpSsvDhhwQzUADB8+sqKgID99z55dATt2bA2OjIzSjR49tvDgwa/rTVCa+n9CAKYpY+Y6mRRBECNLSqrtelKFQgZPT2eUllaD5zvcUNUOhdq6bThSO+t5YMinrgCAow9UdqrkxJHauTOjdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaTrnqEWkdx48fc/Hx8TPXXhDgww/XBPzww0GfL7/89nx7xuaoTCaDpqAg20UUhTEDBgxIaGjfTvQWTwghhBBCSOv644/f3X/55bDX9Omz0sLDI4xxcRe0+/d/6T927J2F7R1bZ0DJCSGEEEIIIU304otTc/R6vWzp0kWRlZUVCi8vb9Pdd9+b/+yzkzpt1fa2RMkJIYQQQgghTaRWq6VZs+ZlAshs71g6I1qtixBCCCGEEOIQKDkhhBBCCCGEOAQa1kWIAzn//UFk//wTVH5+uPn5l6BxptUFAUt5rB5ewqXHhBBCCOmcqOeEEAfx65rVUHy6B5FFRVCf+RtvvPQsDAZa3RIANArgozE6fDRGBw3dUiGEEEI6LUpOCHEAySeOw+fv05AxDFIYBquyMnD0zGnExq5s79AIIYQQQtoMJSeEOICkrZuhlMmQKmNw27pNmLpwCQBgz56dSE9Pa9/gCCGEEELaCCUnhLSztL9PIZLnIUoSop95HnK5HIMH34Khg2/BcC8fnFr9bnuH2O4MPHDXV8646ytnGPj2joYQQhzL4MEDB+zdu8e7qfv/8stPbvfcc3uvYcNu6r9s2eKQ1oytKWJjVwaNHz+mtz3P2Zw2ycrKUO3f/6WnPa9PbEejtwlpZwmf7kEUgHS5DKNvuOnS80+OvQtOBhOM5WWoKCqEm49v+wXZziQAudWyS48JIYT86/PPv/7Hzc1daOr+Gzd+GOLvH2B8770PLrq4uDb5uI6kOW2yYMFbEX5+fqZx4+4pbe24SOOo54SQdiSKIv5IiEe2Xg+Xm/9z2bY+Y+9APs9DLZPjrx3b2ylCQgghjs7fP4DXarVNvndTXV0t79GjZ3VYWITJy8u7UyYnzWsTiRaCdCDUc0JIO0pIiMO+1CT84OSEnx+6PAGRyWTQRUUBGRkQ4i60U4SEEEIc3eDBAwdMnTot7f77HyyePfuNCFEUGU9PL/PPP//kbTQaZH369Kt488256f7+AfzgwQMHAMCnn+4O/PTT3YEff/zZudDQcNPGjR/6Hzz4tV95eZkiICDQeP/9D+Xdc899JQDw++9HXadPfzXmsceeyvr8808DfXx8jYsWLUt59NEHej300KM533yz30+lUorbtu2JYxgGK1cuC/nzz+MePM8zkZHRuhdfnJLVr19/nTXe3bt3+OzduyegtLRE1bfvdeV+fv6mhl7fs88+xvbs2aeytLRE+dtvR7yUSqV4553jC0aNGluydOnbESkpSc4BAUGG6dNnpV133QBd7Ta57bYxZY899kDPiIgoXWzsuiQAOHLkF9fZs9+IefPNuclffrnXPz4+ziU+Ps5l/Pgxrvv2fXdu/PgxvW+9dVTxlCmv5dSOwc/P37h48f/S6mqPjz7aE5+fn6dctep/oWfOnHaTy2VSTEy36qlTp2VGR3cxtsb/e2dFPSeEtKMjR34BANx883+g1miu2t719jsBAMGCgIqiwrYMjRBCrlmCXi+r70s0Gpm22Lcljh//zbOiokLx3nsfcHPnvp0cHx/nunbt6mDAMtzJy8vLfNdd9+R//vnX/wQHh5pWrVoe/M03+/1eemlqxubNO+Puuee+/PffXx2+Y8e2y8YTnzhx3OODDzbFz5z5VppcLpMA4JdffvJatWotN3/+O8nu7u7CK6+82DUnJ1u9aNHypA8+2JTQrVv36ldeebHbuXP/aAFg//4vPdetWxt2zz335W/c+NGF7t17Vh88+LVfY69p377PAvz8/E2bNu24cOeddxfs3r0jaMaMV7tOmDAx7/33N8arVEpx5cpl4Vce5+HhIbzxxuzUv/8+5f7VV194lZQUy5cvXxw5YsSoottvv6ts+fLVSV27xlTffPN/Sjdt2hHfnHau3R4Gg0H28svPs6IoYNWq97lVq97n3Nzc+RdffLp7Tk62sjnnvdZRzwkh7Sjz2FGoZTIMGTKszu1RA2/AMT4WfgoFzn71JQY//VzbBkgIIdeg5JcnXVffNm0MWx46/c0k6/cpr03pK5nNdd7sVUdEVoXPmcdZv0+d8XpvUaer87OXKihYF7FwcbM+HNcbo1YrzJu3KF2pVEoxMd0Mx4//Vnzq1El3wDLcSSaTSVqtVvT3D+Crq6tlBw7s85827c3UkSNHlwNAZGSUMTc3R/3553sCHn30iUt3xiZMmJhn7QXIyEhTAcAdd4wrZNnuBgA4evRX18REznnfvoP/+Pj48gDw2mszsuPiLrjs2bPTv3fvvmlffPGp/6BBg0sfffTJQgDo0qVrXnz8Bee0tBSnhl5TaGiY/qWXpuYCwJNPPpe/e/fOoCFDhpWMGjW2HABGjRpbvHHjutC6jh0yZGjl2LF3Faxbtzb0p59+8HJ2dhZmzJiTAQCenl6CQqGQVCqVaI25qWq3xyef7PKprKxQLF26MlWpVEoAsHDhkrR7772j92effeJbuxeGNIySE0LaSUl2Jh7XaPFQv4HwG3h9vftV+vvDr7gYlX+fbsPoCCGEdFT+/gFG6wdkAHB2dhF4nq+zZ+bixQSN2Wxm3n13acTKlcsirM8LgsjwvJnR6/WXjouIiLxqeFJYWPilasEJCXFOADBhwvjLVt7ieZ4xm00MAGRmZmiHDRtRUnt7jx69qhpLToKCQi5dx8nJSQSA4ODgS/GoVGqR58319j699tr0rNOnT7qfPv2X+4cfbolrzhyd+tRuj4sXOSe9Xi8fM2ZYv9r7mM1mWWZm+tVDI0i9KDkhpJ1cPPwTvACUiiJ6hYTVu5/v9TeC//ZrlJcUQ5IkMMy1N2+PARBVs+jKtffqCSFtLXrNh3/Xt42RyS77UBu1Mvafpu4buezdc03dtyVqJyb/qvv0oigyADBr1ryUqKguhiu3q9XqSwdqNBrxyu0ajebSdlEUGa1WK6xfv+2qHiCVSiUCAMMwkK4IRaFQNPraFQr5VfswTNNnJ+Tn5ynLykqVcrlcOn78mFvv3n30DR9x+eV4Xrjq7ad2e4iiiMDAIMPSpSuTrtzP2dm5Uy460Fpozgkh7aT03FkAQKWHe4P79RgzFs+e/wdL484hOzurLUJzOBoF8OkdOnx6hw4auqVCCGllcq1WrO9LVuvDemvu21a6dIkxyOVyKTc3RxUVFW20fh058rP7jh1b/GWypn9UjI7uqtfr9XKTycjUPte2bZsCDh/+0QMAwsMjdOfP/+NS+ziOi3e276u6nCiKWLhwTmR4eKTuxRenZHz88UfB58+f0/67B3P5/5NcIVVVVctrH19QkK9q6BpRUdH6oqIilZubm2B93WFh4ca1a1cH//nncVd7v6bOjJITQtqJpqgIAOAc063B/ZxcXNG1R08AwF9//dnqcRFCCLl2uLu7C7fdNqZwx46twV988alXWlqq6rPPPvHetm1ziKenV7PmYAwfPqI8PDxCP2/erOhjx464pqQkq5cvXxzy88+HfCIjow0A8NBDj+X9+ecfnhs3fuifnJyk3r59s9+JE8dbtQDihg0fBKSmpjrNnj0/bcKEh4u6d+9ZuWjR3EhjzSIEWq1WLCjIV2dnZykBoHv3HlXHjv3qdfz4by5JSYnqhQvfCtfrdfKGrjFu3L0lLi7OwowZr0afOvWnc2Iip3nrrRmRZ86ccu/alW2kl4bURskJIe1AV1EB/5rhWVG3DGt0/+uvvxEA8Neff7RmWIQQQq5BM2e+lXn33ffmf/TR1uAnnnio165d2wMffPDhnJdfbt4kbrlcjtjYdRe7do2pXrx4XtQzzzza4+zZM65z5ixIHjJkaCUAjBw5qnz69FkpP/xw0Ofppx/teezYEY9x4+7Jb51XBpw7d1a7Z8/OoEcffSI7KiraCABvvvlWelFRoXrVquXBADBu3L2FmZkZmqeeerinIAiYPPnV7JgYtmr27OldX375+W5ubm78oEFDGizQ6O7uLqxZsyHB3d2DnzlzWtdJk57uXlCQr3rnnRWJ3br1uGq4HKkfI1058K/zSxEEMbKkpNquJ1UoZPD0dEZpaTV4/qohmcSOOkNbn/vuG6g/24tynseALR+hsW7zE98eQNnOj+CsUmPwtp1tEqMjtbOBBx773jJX8qPRnWtolyO1c2dG7dw2WrOdvbycIZfLUgFE2eN8p06d6iaTyb/z8wuuUqk09OGRkFZkMhk0BQXZLqIojBkwYEBCQ/tSzwkh7SD/nGVOZIlK1WhiAgBs/4GIdHKGn0KBkuzM1g7P4UgAUsrlSCmX1zOlkxBCCCGdASUnhLSDf8rLsDE9FeXhV9WLqpNHQCAKeMvQ36SjR1ozNEIIIYSQdkPJCSHt4GTSRfxYmA+fmwc1+ZhKF8viJiUXzrdWWIQQQggh7YqSE0LamMlkQlJSIgCgW7ceTT5OGR4BAJDl5bVGWIQQQggh7Y6SE0LaWPLpvzDEwwM9fP0QGBjU5OMC+w8AAPjwZogiTeglhBBCSOdDyQkhbSzvxB+YFBGNJ8OjmlXtvctNg8BLIlzkCuRd5FoxQkIIIYSQ9kHJCSFtzFCz2pbZw6NZx6mdnXGR5/FbcRFSEq+t5IQBEOgsItBZRNPTOUIIIYR0NJ2oWgAhHYO8tAwAoAkOafaxJ0NC8M03+/FSXi4G2zkuR6ZRAAfutm9tIkIIIYQ4Huo5IaSNuZvNAABvlm32sSzbDQDAcfF2jYkQQgghxBFQzwkhbaiyuBCeCsuvXWi//s0+PiamGxgAhYmJdo6MEEKIFcNAzjBMu9zAlSRJlCQI7XFtQhwBJSeEtKGMv/+GEkAZzyMmKLjZx3cJi8C2666HVi5HZXEhXL197R+kAzLwwHOHnAAAG0bqoKG/XISQVsIwkIsME6gz8O3yl8ZJo+BlkHIdLUGJjV0ZdPjwD9779n13rrnHJiUlqp977oke27btuhAWFmFqjfhI50Fv8YS0oaKEeAQCKFfIbTreJygIyZIELYCUEyfQ9/Y77Rqfo5IAxJXILz0mhJDWwjCMTGfgFX+czxV1Br5N12130ihkN/UKVLhqFDJJkhwqObFVXNx57cyZr3cxmYw0lYA0CSUnhLSh8wY9Nl2Mxy3DbrX5HGUqJTxFCUVxF4BrJDkhhJC2pjPwYrXe3B5FpTrNh/gPPogN+OyzPYHBwSGGkpJiVXvHQzqGTvMLQEhHwGWk4VxFOdx69rb5HKKnFwDAlJttr7AIIYR0YIMHDxywa9d236eeeoQdPvzm/g8+eE+PH3446F57n0OHvnd/5JH7uw8ffnP/e++9o9fq1SuCjEbjpdXZExLiNK+88mL06NHD+g0demP/e++9o9fWrZv86rvmtm2b/IYNu6n/999/61HfPqdO/en+xhuzUidNejnLLi+UXBMoOSGkDaWmpgIAIiOjbD6HNjQUAKAsr7BLTIQQQjq+rVs3hgwfPqJkw4btFwYOvLH87bfndjl58oQzAPz88yG3xYvnR48de2fRli27Lkyd+nrGsWO/es2e/UYkAOh0Otnrr0+J0Wi04po16xK2bv34wuDBt5Ru3rwu9Ny5s9orr7Vz5zbf7ds3h8yZszB59Ojby+qLafPmndzYsXfWu52QutCwLkLaiMlgwCBJQo6XD8JCQm0+jw/bAzhzBu4Cb8foCCGEdGTDh48sevTRJwsBYNq0mdnnz//junfvbr/rr78xdefObYEjRowqevjhxwsBIDIyyqhQKNJnzHgtJiMjTeXk5CyOG3dPwUMPPVrg5uYmAsDkya/mfPHF3oDExARt79599Nbr7N6902fLlg0h8+YtSho2bATdJSN2R8kJIW0kl0vAfwOCYBJF+Pr523ye8P79kfvJx3CXK1Cakw1PG1b9IoQQ0rn07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bpZrVRZKSEjW33npbxcSJjxV8/fVXXsnJiU7Z2Vnq9PRUJwAQBPHS0K/S0lLlhx/GhsvlcikkJMzYFq+LXHsoOSGkjRRw8XAHUCKJkCts/9Vz9fbBF9WVyK2owOi01GsmOfFQt8e8VEII6RgUCsVlixlKkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBjfp/a+DCPDwoXvJG7ZsiFo8eL5kZs370iQyWiGALEv+okipI1UpKcBAHQqdYvPdcLTE3uyM5GSm9Pic3UEWgVw6L/VOPTfamjplgohhFwlLu68c+3vExLiXKKjo3UAEBISps/MTNdERUUbrV/5+bnK2Nh3Q6qqKmUHDuzzrqqqVGzZsjPhpZem5o4de0dZeXlZzV/bf3MeDw9389ChwytmzpyTlpKS5LR160bbhwEQUg9KTghpI6aCAgCA5OHeyJ6Ni4qKBgCkpCS3+FyEEEI6vgMH9vnv2/e5V1JSonrZssUh6elp2oceeiwfAB588OG8P//8wzM2dmVQUlKi+tixI67Ll78TWV1dpfD3D+D9/QNMRqNR9vXXX3lmZWWofv31sNuCBXOiAMBkMl31WbF7956Ge+65P2/Xru1ByclJLb/jRkgtDnUPkmXZGACnAUzmOG5bzXP9ALwHYCCAYgCxHMetaK8YCbGVvLwcAKDyD2jxuaIio+GpVKIqObHF5yKEEHI1J42izW/gtuSao0aNLfzssz3+q1ev0IaHh+uWLFmR2LNnLz0A3HHHuFJJklJ2794R+MUXnwY4OTkLAwfeUPbqq9OzrNsTEuLzNm78MHTNmpUyHx9f0+jRtxcdP/6bR3z8BWcAhVdeb9Kkl3N/++2I5+LF8yM2bfqIo+FdxF4cJjlhWVYJYBcA51rPeQP4EcA+AC8AuAnAByzLFnMct7U94iTEVk5mEyBXwD08ssXn6uLkjPV9B6DUYLJDZI7PwANTfrGsZhk7TA+Nw/zlIoR0NpIkiU4aBX9Tr0AF2mGEiZNGwUuS1OxJdpGR0frp02fXW0/kzjvvLr3zzrtL69rGMAymTZuZPW3azMsKaD399PP51sdTpryWM2XKa5fGEqvVamnv3v0XmhLboEFDKo8d++tUU/YlxJHe4hcAqLziuecAGAFM4jiOBxDPsmxXADMAUHJCOgzebIYXY3mP8+/WrcXnC+vfHwWf74WnQoGKokK4+fi2+JyOTAJwukBx6TEhhLQWSYIgg5Tr2g49J5brS6IkQWiPaxPiCByiD45l2VsAPA/g8Ss2DQFwpCYxsTpsOYStt2opIY4mvyAfr174B0uTExEY0/LkxMM/EGW85dci42+6GUUIIfYkSRBEUTK3xxclJuRa1+49JyzLegDYAeBljuMyWZatvTkEwLkrDrF2KYYBKLD1ugo73xCRy2WX/UtaT0ds69zcLOQbjXAKCoJGa5+5gxUKOTwAlCYnQTHW/m3hSO1ce4FMhVyGFqzE7HAcqZ07M2rntkHt3D5oyBTpTBzhLf5DAMc5jvu4jm1OsAzrqs1Q86/G1gvKZAw8PZ0b39EGbm7aVjkvuVpHauuiojwAQGRkpN1+9kR3d6C8Aqb83Fb7eQYco53V5n8fe3g6w0nZfrG0Fkdo52sBtXPboHYmhNiqXZMTlmUfhWXoVu96dtEDuPI2szUpqbb1uqIooaJCZ+vhdZLLZXBz06KiQg9BoGJxrakjtnXFydO4LzAYfu7eKC29+kdXJmMgSIBZEKFVySHwjb8umbcPUF4Bc35hnedsKUdqZ70ZsK6VUVZaDWMnSk4cqZ07M2rnttGa7ezmpqUeGUKuAe3dc/IUAH8AVw7nWsey7BsA0gEEXXGM9ftstADfhA9/thAEsdXOTS7XkdraLTcPDwSHIk2pvCpmhgHMIoO41BKUVxrRI8obPm7qRl+bc2g4kJICjV7fqu3gCO3MC7Ufi+CZ9oultThCO18LqJ3bBrUzIcRW7X0L4hEA3QH0q/UFAHMB3A7gCIAhLMvKax0zAgDHcZzN800IaWsqg2U0onPglbk2oFDIkZlfheTMMhSU6pCQVgIDL4Jp5AO4f+8++Co3BwdysyFJnX8NK41cgkbe+V8nIYQQci1r154TjuOu6v2o6UEp4DgunWXZLQCmA9jMsuxyADcAeAWWmieEdBiuogjIZPAIj7jseYZhoDMKSM+tgFiTYOSXVCO/RIcIf1eYzfUv2hLasyd252ZBFEUUFRXC17fzLmCnVQDHJlS1dxiEEEIIaWXt3XPSoJrekdEAWFgqx88D8AbHcdvbNTBCmsFQVQX3muWlAq5YRlihkKGoXI+SCv2l5yQJyMqvhKmRIRFKpQrBwSEAgPT0NPsGTQghhBDSDtp7zslVOI5jrvj+JICb2ykcQlos92ICAMAgCPAMunxYFy9KyC6swpWjsorLDajUmeHpompwUmlMaDhcSkuRe+E8MPAGu8dOCCHXIoaBnGEYKsJYS2zsyqDDh3/w3rfvuytLPNRr797d3p9//ql/QUGB2tPT0zxq1JiiZ56ZlCeXyxs/mFyzHC45IaSzKU5JhhuAMkmCTPbve51MxqDKwKO0wnDVMSazgLySani7qSE08BY1wskZXbr1RHLchVaI3HEYBWD6UcvSpMuH6KGm9zVCSCthGMi1MnOgZNK1y2ckRuXE60VlriMmKM2xb9/nXu+//174Cy+8nHHjjTdXXrhwzik29t1wk8nMvPzyq7ntHR9xXJScENLKKrOy4AZAr7p8/Vu5XIayympU6811HldSboCJF9HQvHi1vz9QVgamrMxu8ToiUQJ+y1FcekwIIa2FYRiZZNIpqrgTomjUt+mSYzK1VubC3qhglB4ySZI6dHKyf/+XvkOH3lr84IMPFwFAZGSUMT09TfP999/6UHJCGkLJCSGtLF7GYPm5Mxg75g6MrvW8KAH5JfXX2ymvMqLayMNNo4BYzydy94gogOPgbLyyVikhhJCWEI16UTBUt8d6yM0eTjZ48MABkya9nPHTTz96paYmO/v7Bxieeuq57FGjxpZb9zl06Hv3bds2BWVnZ2k9Pb1Mt9wyvGTSpJdz1Wq1BAAJCXGadevWBsfHx7kaDHqZt7eP6a677il48sln6lwdddu2TX7btm0KefPNuSmjR99eduX2F16YnOXl5c1f+Xx1dRV99iQNcugJ8YR0Btn5ecg1GuAaEXHZ8wazgIpqU73H6Y08KqqMDRYdC+jREwDgJZOBN9fdA0MIIaTz27p1Y8jw4SNKNmzYfmHgwBvL3357bpeTJ084A8DPPx9yW7x4fvTYsXcWbdmy68LUqa9nHDv2q9fs2W9EAoBOp5O9/vqUGI1GK65Zsy5h69aPLwwefEvp5s3rQs+dO6u98lo7d27z3b59c8icOQuT60pMAOCGG26q7tKl66U7Z2VlZfKDB7/27dv3uopWagLSSVByQkgry8mxrJgdFBR86Tm5XAadgUdlA8kJABSU6tHQKKZAthvMogilTIachHh7hEsIIaQDGj58ZNGjjz5Z2LVrjHHatJnZ0dFdqvfu3e0HADt3bgscMWJU0cMPP14YGRllHDr01opXX30j/Y8/fvfMyEhT6XTVsnHj7imYNWteekxMN0NUVLRx8uRXcwAgMTHhsuRk9+6dPlu2bAiZN29R0siRo8rriuVKVVVVsmnTpnQxm02yKVNez7T/qyedCXWtEdLKbtTpERUYjEAPz0vPyeUMSisN4BtYiQsAqnQmGM0C6pv/LVcoUCKJ8IcMefEXENa7jx0jJ4QQ0lH07z+wsvb3LNu9+syZ024AkJqa6pScnOT888+HvK3bratEJiUlam699baKiRMfK/j666+8kpMTnbKzs9Tp6alOACAI4qWpj6WlpcoPP4wNl8vlUkhIWJPGE+fn5ymmTZvSNT8/T7106cqLERGRDd+VI9c8Sk4IaUUmvR7DXFwhc3WDh5//pecFUUJJHat0XalKb4beJDQ470Sn1gA8j4q0VLvFTQghpGNRKBSXvUlIkgSZTC5ZHovM+PH35Y0bd0/xlcf5+weYCwryFc8990R3V1c3/qabBpUNGHBDRZ8+fasnTBh/2R0vhpFh4cJ3Erds2RC0ePH8yM2bdyTUXoXySomJnGbatKldBUFgVq/+gOvRo5e+3p0JqUHDughpRflJiZAxDEyiCO+w8EvPG81ivat01WYw8qjSmRucd1IYGIgNaSm4aKKbUYQQcq2KizvvXPv7hIQ4l+joaB0AhISE6TMz0zVRUdFG61d+fq4yNvbdkKqqStmBA/u8q6oqFVu27Ex46aWpuWPH3lFWXl5WcwP735zHw8PdPHTo8IqZM+ekpaQkOW3dutEf9UhPT1O98spLMRqNRly3bks8JSakqSg5IaQVFSYnAgDKRBHWolMyGQODWWhScgIAJRV6MA2sJ6zu0ROHigqQUJDX4ngdlVYB/DWxEn9NrISW+nsJIeQqBw7s89+373OvpKRE9bJli0PS09O0Dz30WD4APPjgw3l//vmHZ2zsyqCkpET1sWNHXJcvfyeyurpK4e8fwPv7B5iMRqPs66+/8szKylD9+uthtwUL5kQBgMlkuuqzYvfuPQ333HN/3q5d24OSk5PUdcWzaNG8CJ43y9566+0UpVIp5efnKaxfrdsSpKNr9g8Iy7IKAMMAjAAQCcAdQBGAdAAHAfzOcRxVIiAEQEVmJlwA6JT//qrJZDLo9GYYjFetsFinKp0ZJr7+X6mQkFAAQFYWzTEkhBB7kam1bX4DtyXXHDVqbOFnn+3xX716hTY8PFy3ZMmKxJ49Lb0Vd9wxrlSSpJTdu3cEfvHFpwFOTs7CwIE3lL366vQs6/aEhPi8jRs/DF2zZqXMx8fXNHr07UXHj//mER9/wRlA4ZXXmzTp5dzffjviuXjx/IhNmz7iag/vys3NUcbHX3AFgBdeeLLHlcceO/bXKVtfJ+n8mpycsCyrAjAJwOsAQgCUwpKQVAMIBXAngFkAcliWXQZgA8dxVHyBXNOMRZa/54KT06XnGBlQUtn0X41qvRkmXoBazlyawFhbaEgoWBdXhFRXQ+B5yBV0U4oQQmwlSZLIqJx4F/ZGBdphhAmjcuIlUWp2fZXIyGj99Omzs+rbfuedd5feeefdpXVek2EwbdrM7GnTZmbXfv7pp5/Ptz6eMuW1nClTXsuxfq9Wq6W9e/dfqOt8gYFBZkpAiK2a9CmGZdkbAGwHIAD4EMCnHMcl17FfbwC3A5gCYCrLso9yHHfcjvES0qGI5WUAAMbd49JzvCChqpElhGvTGcwwmARonZUQhKuzE3//AMyL6Q6FTIb8xIsI6n7VTaoOzygAc3/XAAAWDjJAXd/yZYQQ0kKSBEEvKnMZpUe7DH2XREmUJHTo6vCEtERTb7HuADCT47gvG9qJ47hzAM4BWMay7AOwJDQxLQuRkI5LrrPM/1N7+1x6zsyL0BmbXjDRzFsmz3u7qiEIV79fKVUqlIoifGUy5HHxnTI5ESXgp0wlAGC+1PgqZ4QQ0hKSBEGSJEoQCGkHTU1OenMc16ylgDiO+5Rl2X3ND4mQzmN7WTFK0tMxd+LDACyT4Y0GHnpD0+abWJVVGhDm71Lv9iqlEr6ShIr0tJaESwghpAOiIVSkM2lSl2VzE5OWHkdIZ5GVn4dcowG+YREAalbqMgpNngxvVa3nwdcxpMtKcHUFABjyOu+KXYQQQgjp/Jo652Ruc07KcdxC28IhpPPQ6/UoLy8HYJkXAliSk7IqI5q7nJ3OaIZZEOv9hVX6+gIVFUBZmc3xEkIIIYS0t6YO65p/xfcSAAaWCfJFADwBqACYAJQAoOSEXPPyky7i+fAoFIsCXFwsQ7IECajUNX8RO72Rh8kkQFVPpXiX0DAgORkaA83HIIQQQkjH1dRhXTLrF4DbABQDeBCAhuO4QI7jNLCs0lUM4LVWi5aQDqQkOQkjfP0w1NsXTE0VRZ4Xmz3fBLBUijeYBchkdVdj9OnSFQDgAUAUm70CJSGEEEKIQ7Blmby1AN7iOO5TjuMurWTBcdx3AOYAWGyv4AjpyCpzLMvBG2rqjjAMYBZEGEzNT04kCajUmS4lOVcK6dkbG9NTsTL5IspK61zGnhBCCCHE4dlSrS0MQEY92woB+NseDiGdh7GwAABg1moB1Fqpy2jb6pQVVSbLYMo6aF1d8Q8DFFSUIzsnC17e3jZdw1Fp5MDRByovPSaEEEJI52RLz8k/AF5mWVZZ+0mWZTUApgM4YY/ACOnohJrJ8Iybm+VfxrJSl8lsW3KiNza8YldoaCgAIDOzvnsHHRfDAFqF5aueziNCCCGEdAK2JCdvArgVQDLLshtYll3MsuwmACkA+gJ43Z4BEtJRyaqrAQCqml4MmYxBRTMqw1/JYOJhFuqfT9I9IAhDvHxQGXfB5msQQgi59lRXV8t27Njqa/1+9uw3Ip599jG2Na+ZlZWh2r//S8+WnGPv3j3egwcPHFDf9rZ4HYMHDxywd++eTjFcISMjTTV48MABv/9+1LU942h2csJx3K8ABsHSQ3IXgGkAxgI4BGAAx3Fn7BkgIR2V2mRJRFwCAgFYqpxX6lqQnBh5mMxivZPie6vUeDmqC9zS0my+hqMyCcD84xrMP66BiWo2E0KIXW3ZssH/888/CbB+P336nMzly1cnteY1Fyx4K+LEid/dW/MapGOyZc4JOI47DeB+O8dCSKfiUlPNxD0kDADA2zgZ3spgsgwJYzQKoI5KKc7BwUBmJlR6nc3XcFSCBHydahlJOuN6Wi6ZEELsSZKky+56ubu7t8FtIIkG6ZI62ZScAADLsmNhWVY4EMAsANcBOMVxXLqdYiOkwzKZTHjpn9PwUqqwq3sPAIBZkGBsZmX42kRRQrWBh6+7BkIdbxtekdHAH3/ArYGhX4QQQjqf8vJy+cqVy0L+/PO4B8/zTGRktO7FF6dk9evXXwcAOp1OtnTpwtC//jrpodPp5MHBwYZHHnkiZ+zYO8tiY1cGffrpx4GAZYjSxx9/dm79+veDCgry1Rs3fsT9/vtR15kzX49ZsmTFxffeezesoKBAHRERoZszZ2HqDz8c9Pz6633+giAwQ4YMK549e34mwzCQJAmbNq3z/+GHgz6FhQVqpVIpduvWo2ratDczwsMjTM8++xgbHx/nEh8f5zJ+/BjXffu+O2cymZjY2HeDfvnlsLder5OHhITpn3rq2ZyhQ2+tsL7Ogwe/8di+fVNQfn6eJjq6a3W/fv0r6msTK0EQsXjx/NBffvnJW6FQSLfdNqZoypTXsxU1K2n++ecfzlu2bAhKTk50NpvNMn//AOPEiY/l3n33vSXWc3z11Rden3yyKyA3N0fj4eFpvvPOuwuefvr5/CuvVVhYoHjppWdZDw9P8+rVHyQ5OTmJv/562G3jxg+Ds7OztH5+/sb//veBvNjYlREff/zZubCwCNP48WN633jjoLK//z7lVl5erpw7d2HyTTf9p3L79s1+3357wK+oqEjl4+Nj+u9/J+Q99NAjRQDw++9HXadPfzXGeg7AMiRr4sT7ei9fvurioEFDKmfPfiNCFEXG09PL/PPPP3kbjQZZnz79Kt58c266v38ADwDx8Rc0q1b9LywpKdHZ09PTPGHCxNwW/SDaSbOHdbEs68Sy7A8AvgHwFIAHYCnCOAnAKZZle9o3REI6nsLCAhhFEcWSCE8fH8hkDMxmAYYWjkmqqDbWOyE8qGcvAIC7QoHqspK6dyKEENIgSQKqzZC115dU/7on9cQr4ZVXXuyak5OtXrRoedIHH2xK6Nate/Urr7zY7dy5f7QAsGbNyqC0tFSnpUvfTdy+fff5AQOuL1+69O2ojIw01VNPPZd311335Ht5eZk///zrf4KDQ68afyyKIj74IDZ0xozZaWvWrI8vLy9XvPTSs90zMtK17733Iff4409nfffdN34//fSDOwBs3brRb+/e3YHPPfdi1o4dn5xfsOCd5JycbM2qVctDAWD58tVJXbvGVN98839KN23aEQ8Ab701I+LUqb/c33zzrdQNG7bH3XLLsNK5c9/scuiQ5ZwnT55wfued+dGDBg0p27jxowsjR44u/vzzTwIba5+LFxNcyspKlWvWrE94/fWZaYcO/eCzfPniUADIyclWzpz5WkxkZLR+/fpt8Rs2bIvr2pWtXrXqfxEFBfkKAPjmm/2eK1YsiRw69NaSTZt2XHjqqeeydu3aHrRnzy6f2tcpLi5STJ78HOvt7WN6770PE52cnMRz585q5859s0vfvtdVbtiw/cIjjzyes3nz+tArY/z++4O+kye/mrFs2cqLAwfeWLVs2eLQTz7ZFfTII0/kbN6848Ldd9+bv3792rDt2zf7Nedn4/jx3zwrKioU7733ATd37tvJ8fFxrmvXrg4GLAnt66+/zDo5OQkffLAxfsqU1zM+/vijoOacv7XY0nPyDoABAEYAOApLVXgAeBTA9wDeBnCvXaIjpIPKz88DAPj7B4BhGDAMAyMvwtjC5ERv4CHUUSEeADwCApEi8HCRK5B9/gJiBg9p0bUIIeRaI0nAI985deNK5c7tFUM3T6Fqxxgd19SVCY8dO+KamMg579t38B8fH18eAF57bUZ2XNwFlz17dvr37t03LTc3R63VOgnh4ZFGd3d3YerUadnXXTeg0t3dU3BxcRG1Wq0ok8kk6x31ujz55LPZAwbcUA0AgwYNLvv666/85s59O93JyUns2pU17Ny5PTg5OVE7cuTo8tDQMOO0aW+m3nbbmHIACA0NN504cbz0yJFfPAHA09NLUCgUkkqlEn18fPmUlGT1b78d9Vq7dkO8tbcnOrpLfnJykvaTT3YGjBw5qnzv3t1+MTFs1ZQpr+UAQJcuXY0pKcnab7/d3+AHdnd3D/Pbby9L1Wg0UrduPQyFhYXZ69evDXvllTeyTSYT8+CDj+Q888wL+TKZzPo6c3/55SfvlJRkjZ+ff9Vnn+3xv/nm/5Q8//xLeTVxGXW6arlGo700TKGiolwxefLzMT4+vsZ3312TrNFoJADYvXuHf2RklO6NN2ZlAUDXrjHGkpIS5caNH16WoFx3Xf/yW24ZVmk5V4Xs+++/8X366eczx4//b0nNNQtzcrLVn3zyceBjjz1V0LSfDECr1Qrz5i1KVyqVUkxMN8Px478Vnzp10h0AvvnmK0+TySRbsGBJmru7u9CtWw+DXq/LXLRoXnRTz99abElOJgB4k+O4n1mWvVRxgOO4PJZlFwF4327REdJBlZ87i+fDo2DwsdxYkckY6PRmiM29JXYFg8mynHB971nlDAMXAEXJiZScEEKIDZi6JvU5sISEOCcAmDBhfO/az/M8z5jNJgYAHnnkibw5c6Z3ufvu0X27do2p7t//+vKxY+8sac7cksjI6EsT/tRqjeju7mF2cnK69AFdpVKKRqNJBgC33Tam/NSpk86xse8GZWdnqbOyMrVZWZkaT09Pc13njos77wQAr7/+8mUrawmCwDg5OQkAkJ6e5nTddQPKa2/v3btPVWPJSXR0F501WQCAPn36VfM8zyQnJ6l79+6j/+9/Hyj+6KMtfunpqZrs7GxNWlqKEwCIosAAQEZGuvaWW269bDjChAkPF9X+fseObcGCwDNXXislJcnpyqFn/ftfXwl8eFmMwcEhl9o2KemiRhAE5rrrBlbV3qdfv/5VBw7s8y8sLGjyZ3d//wCjUqm8FI+zs4vA8zxjiS3Zyd8/0FD7Z2DAgOur6jpPW7MlOfEAkFbPtlIALrYGQ0hnYc7MwAhfPySr1QAstTkqWrBSl5XRJMAsiFDLGdSV5xg1WsBkQlVWZouvRQgh1xqGAXaM0XE63qZSC3bhpIDYnHpOoigyWq1WWL9+W/yV21QqlQgAAwfeUP3llwfPHj36i9vJkyfcfvjhoM+ePTuDFi1anjhkyNDKplxHqVRc9q5T38qRALBhwwf+u3fvCB4+fGRRv379Kx944KGCX3457HH06C9ede0vSZYcZ/XqDxKcnV0umzgpl8ulf/e7fBK9QqFsNJGUyWSX7SOKls/iarVKSkzkNJMnP9ctIiJKN2DA9eWDBw8r9/LyMr/88vPda1+/sf+P3r37VNx++7iixYvnRf/886GS4cNHVtQcC1FsfOK/SqW+6jUyV1xUFC3NUjvZqP05wGzmr7pO7X3/Vfup5rdnW7AlOTkP4GEAP9Sx7a6a7YRc04TSUsuDmgKMgihBb7B9MryV0cTDxIvQKBSQ6shOCsPDsfub/egdGoJRLb4aIYRcexgGcFaiw6wsEh3dVa/X6+Umk5Hp1q3HpTvwc+e+Gd6lS1fdY489VRgb+25Q3779q0aNGls+atTYckEQMh988J6eP/98yHPIkKGVDMPY9UPpp59+HPTgg4/kWIdCAcCuXR8FXP629e81u3Zl9QCQn5+vGjmy76XekVWrlgczjEx65ZVpOVFR0br4+AuX3QCPjz/f6PC7tLQUJ1EUYR22dfr0X64qlUoMD480rlixJMTNzd28fv3Wi9b9f/zxO3cAl95jg4NDDRwXf9l1lixZGJqfn6davfqDZAC45ZbhpWPH3lH2888/lqxatTxiwIAbzru5uYkREZG6K489d+5MgzF36RJjkMvl0unTJ1169eqttz5/5sxpV3d3D7OHh6egVFqSzoqKiksjmNLTU9WNtUVtXbvG6A4f/tG7uLhI4e3twwPA2bN/t9twxtpsuTOwCMCjLMt+DeAZWFKwoSzLrgHwIoDldoyPkA7JWoBR6WW5ScQLEowtWEbYymi2LCdc3x0rt27d8U9FORJzclp8LUeikQM/3luFH++tgkbe+P6EEHKtGD58RHl4eIR+3rxZ0ceOHXFNSUlWL1++OOTnnw/5WIdiZWdnq1ev/l/YsWNHXDMz01XffLPfs6ioUN27d58qANBqtWJ1dbU8KSlRbTabW7zEr7e3j+n06ZNuHBevSUy8qF616n9Bf/75h4fZbL70uVOr1YoFBfnq7OwsZbduPQz9+w8sj41dEf7DDwfd09JSVZs2rfP/4ou9AcHBwUYAmDjx8bz09DTtsmWLQ5KSEtVffvmZ18GDX/vWH4VFcXGx6q23ZkQkJMRpvv32gMfHH38UNH78fflqtVry8/M3lZQUqw4f/tEtMzNddfDg1x6xsSvDAcBksgyJmzjx0dzffz/muW3bJr/U1BT1/v1fev7ww0HfwYOHll15renTZ2eaTCZmxYp3QgHLcLrU1GTnFSuWBiclJaq/++4bjx07tgUDV/eMWLm7uwsjR44u2rVre/C+fZ97paQkq3fs2Or7/fff+t5zz335DMOgW7ceeo1GI27dujEwJSVZffz4by6bN68Pqe+cdbnzzvElbm7u/OzZ0yPPnz+nPX78mMv777931WT99mBLEcavADwCoA8sg+YYAO/CUvfkBY7jPrNrhIR0QCqTEQDg5G+pacULEozmli8bL0mAzsDX+0ctNNRSUyUrK6PF13IkDAN4aiR4aqR6VysjhJBrkVwuR2zsuotdu8ZUL148L+qZZx7tcfbsGdc5cxYkW4dszZ49P71Pn36VS5cujHz00Qm9PvpoS/Djjz+ddc8995cAwKhRY0o9PDzNzzzzWM+zZ884tTSm2bPnpxqNRtmkSU93nzr1hW5paSnaF1+ckl5ZWaHIyEhTAcC4cfcWZmZmaJ566uGegiBg6dKVKTffPLg0Nvbd8CeemNjrhx8O+rz00ivp99//UDEA9O7dR79o0fLEc+fOuD7zzGM9P//8E//773+o0aVvBw68oUwul0svvfRs97VrV4WPGXNnwUsvTc0BgMcee6pg0KAhJcuWLY568smHe+7cuT3wiSeeyfbx8TWdP3/OGbDMn5k8+dX0b77Z7/vkkxN7bt++OfjZZydl3HffhOIrr+Xj48s/++yLWYcPH/L55Zef3Lp372l4662FSSdP/uHxzDOP9ty+fXPQ7bffVQAASqWq3t6qN9+cm3HHHeMKtmzZEPzUUw/3/Prrr/yef35yxjPPvJAPAK6uruKMGXNSsrMztU899XDP2Nh3w55/fnJmc5ITZ2dnMTb2Q06hUEhTp77QbcmStyMfeGBiXuNHtj6mrqEhTcWyLAvAG0AZgASO4zpCN2iKIIiRJSXVdj2pQiGDp6czSkurwfMdoRk6ro7Q1n8+8Qg8FAqYJz6C3iNvQ6WBx7Ez2dC3oM6JFRvhhb7R3jDVsfJXfm4OFj38AAI0GrzxxX6oNLa/x3SEdu4MqJ3bBrVz22jNdvbycoZcLksFEGWP8506daqbTCb/zs8vuEql0lB1V2J3f/99ykmhUEi9e/e9NDxr377PvVavXhFx6NDR09ZaK9cCk8mgKSjIdhFFYcyAAQMSGtq32a3CsuxhAC9yHJfAcRx3xbY+AHZyHNenueclpLMwG41wk1vGHvmER4BhGJjtsIywVUPLCfv6+eP5iCioZDLkxMcj4roBdrlmezMJwKrTluG0r/Y3QkVDuwghhDi4hIR4py1bNoS88cabqT169NSnpaWpd+zYGvSf/wwuuZYSk+ZqUsuwLDsY/w4BGwbLHJO6lm67E0C7r49MSHsqzsyAjGEgShK8w8Itywgb+BYvI2xlNAvgxbqXE5bJ5SiVRPhDhoLEi50mOREkYG+iCgAw5TpjO0dDCCGENO7BBx8uKi4uUn744Zqw0tISpZubGz9kyLCSyZNfzW7v2BxZU9O2ZwA8BsvkdwnAB7DMNan9acv6Welju0VHSAdUYjLiydN/ItLfH3uUSjAMgyp9y5cRtjLV1DpR1jO0VKdWA7yAivQ0u12TEEIIIc3DMAwmT34ld/LkVxqdG0P+1dTkZCqArbAkIIcBvAQg7op9BFjmnlywV3CEdERFRYUwiiIYD08AgChJ0NlhGWErg1mA2SxArVFArGN4l+jmDpSUwFTQ5CKyhBBCCCEOoUnJCcdx5QB+BQCWZYcDOAXAheO4vJrnPAGEchxHNU7INa+gJinw9bWMfLTXMsJWpppCjJZVOa5OTtT+AUBJCeQV5VcfTAghhBDiwGypc/IPgC8B/FLruRsBnGFZdh/Lsi1ego6QjkzOJeCF8Cj0dbLUihJE0S7LCFsJogS9Uah3OWG38AgAgJPRfkPJCCGEEELagi3JyVIAPQHMqvXcYQB3AxgIYKEd4iKkw1IXFuJWXz8E18w3MfFincv+tkS13gxZPb+9/mw3AICnTAbebLbrdQkhhBBCWpMtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOmI5HodAEDl6QmZDJZlhO3YcwIA1XoT6lv8K5DthuXJiXjjwlkUFNK8E0IIIYR0HLYssuwKoLSebfkAfGwPh5COT2UyA3I5nPz8LT0nZgFmOxcjsy4nXBeFSoVCN1fklhYjOzsTQUHBdr12e1DLgf3jqi49JoQQQkjnZEvPyWkAT9ez7UkAZ20Ph5COz6mmS8MtMAgMw9h1pS4ro1motxAjAISEhAEAMjIy7H7t9iBjgCAXCUEuEmT1LKFMCCGEkI7PluRkEYDxLMv+xbLsbJZln2VZdhbLsicA3Adgvl0jJKQD4c3mS9XhvcLCwTCwa40TK5PJ0htTz5x49PHzw72BwTCfP2f3axNCCCGt4dCh7905Ll7TknM8++xj7OzZb0TYKSSbxMauDBo/fkzvpu4/e/YbEc8++xjbmjHVJkkSPvvsE+/CwgIFAOzdu8d78OCBDlO1udnJCcdxPwK4C5Y1TBcCWA/gbViGiN3Ncdx3do2QkA6kJCsT8lrV4QVRgsFo3/kmACxDxS4tJ3y1aI0WDwaHwiOvc9R9MgvAe3+r8d7fath5+g4hhBAHkJmZrpo/f3aX4uIiZXvH0tn98cdvLqtX/y9Cr9fJAODOO+8u+fzzr/9p77isbJlzAo7jDgI4yLKsBoAXgHKO46rtGhkhHVBxZjrkACpFAUq1GoIowdQKn6aNZgE8X3+tE9fQMCAxEVqD0e7Xbg+8BOyIVwEAnuttBL1zEUJI5yLVt8oLsTtJki67s6nVaiWtVmv/Meg2sik5AQCWZbsDuA1AIIC1LMteB+AfjuMq7RUcIR1NIRhMO/0n+rHdcT1qCjC2QnIiSYDeyEPmroFQx+n9WBbmwz/BA4AoipDVt+4wIYSQq1Sb6x9ZImcgaRT/3hVqaF8ZA0lr477Ncfjwj25bt24Mzs7O0qjVGrF//wHl06bNyvT09BR+//2o6/Tpr8Z8/PFn58LCIkwAkJGRppo48b7ey5evujho0JBKANi6dZPfV1997l9eXqaMielW1bt338pDh77z2bfvu3MAkJqaol6xYkloQkKcq1arFcaPvy//228P+D700KO599//YDEA7N272/vTT3cHFBUVqn18fI233z6u8PHHnyqwvgd9/vmn3p9++nFAfn6+2sXFhR80aEjp66/PyMrPz1VOnHhfbwCYPv3VmAcemJg7ZcprORcvJmjee+/dkISEOFeNRiv06tWn8rXXpmf6+wfwAGA0GpmVK5eFHDnyixfP88yYMbcXig3MxwSAwYMHDpg06eWMn3760Ss1NdnZ3z/A8NRTz2WPGjX2UuXiQ4e+d9+2bVNQdnaW1tPTy3TLLcNLJk16OVetVksAkJAQp1m3bm1wfHycq8Ggl3l7+5juuuuegieffKbOJTK3bdvkt23bppA335ybMnr07WWN/X9mZWUq165dHXL27Bk3g8Eg69ate9Xkya9k9ejRS2/d56uvvvD65JNdAbm5ORoPD0/znXfeXfD008/nNxaf9ecBACZOvK/31KnT0gDgvfdWRBw79tcpACgtLZGvXbs6+OTJPzwqKysVkZHR1c8992L2TTcNqgIsw9bOnTvjev31N5UdOLDPv7KyUhETw1a98cas9K5dY1p8V7TZyQnLsnIA6wA8BcB623YvgHkAoliWHcpxXFZLAyOkIyoqKoRJFKH28QHDMDDzQqv0nABAtcFc77CuoG49kSpJ0MrlKM5Ih29EZKvEQAghndHQva7X1betvx9fvmGkPsn6/agvXPoaBabOpKOHl1D10RgdZ/3+zn0uvSvNTJ2fvaLdBd0nd+jimxtrcXGRYuHCuV2efvr5zGHDhpfn5uYqlyxZGLVq1bKQhQuXpjflHDt2bPXdsWNL8AsvTM7o3//6qh9+OOi5e/eOYG9vbxMA6HQ62auvvhgTGBhseO+9dQnV1VXyVauWhxUWFqit59i9e4fPtm2bQl58cWpG377XVcXFnXd6//33woqKClRvvDEr68KF89o1a1aGv/HGrNS+fftVJyUlapYsWRjl7u7Ov/DC5Nw1a9bHv/zy891nz56fPGTIsIrc3BzllCkvsIMHDy2dOvX1eL1eL9u0aV3QCy881X3nzr0XnJ2dxSVLFob99dcJ92nT3kwLDg42bt26MZDj4l0CAgIa/IC8devGkMcffzrrzTfnpn311Rc+b789t4unp1fC9dffWP3zz4fcFi+eH/3MMy9kDho0pCIjI029Zs2qsKysDM2KFbEpOp1O9vrrU2J69+5buWbNugSFQint2/eZz+bN60IHDryhsnfvPvra19q5c5vv9u2bQ+bMWZg8cuSo8vpisqqsrJS9+OIz3fz9/U2LFi1LVKs10ubN64JeeeVFdsuWnXEhIWGmb77Z77lixZLIRx55InvkyNGlcXHnnVatWh7h7OwijBt3T0lD8Q0ceGPV7Nnzkxcvnh+9Zs36+G7deui//vorL+v1BUHAlCkvxJjNZmbGjDmpvr5+5k8++dhv5szXYlav/iChX7/+OgBITLzorFZrhCVL3k3U6aplS5YsjFyx4p3w9eu3XWzKz1xDbOk5mQPgYQDPAPgGQF7N868D2A9gMYDHWxoYIR1RYU1dER8fv0s1TlorOdHpzfV2g6udnVEqCPBWKJATd4GSE0II6aRycnKUPG9mAgMDTaGh4abQ0HDTkiUrEnleaPLahp9//knAHXeMK3jggYnFANClS9e8pKSLzikpSU4A8M03X3lWVFQqtm79X4qnp5cAAHPnvp363HNP9LCeY/fuHUH33/9Q7t1331sCABERkabq6ir5Bx/Ehr/88mvZmZnpaoBBSEioMSQkzBQSEmby8PC86OLiKsjlcnh7e/MA4O7uLri4uIibNq0L8PDwNM+Zs+DSspPLlq1KufPOkX2//faA55gxd5T+8stP3pMmvZwxYsRt5QCwYMGStP/+907Xxl7v8OEjix599MlCAJg2bWb2+fP/uO7du9vv+utvTN25c1vgiBGjih5++PFCAIiMjDIqFIr0GTNei8nISFM5OTmL48bdU/DQQ48WuLm5iQAwefKrOV98sTcgMTFBWzs52b17p8+WLRtC5s1blDRs2IiKpvxffPXV595VVZWKLVt2xvv4+PIA8M47K1Luu++u3nv27PKdNu3N7M8+2+N/883/KXn++ZfyACA6uotRp6uWazRaUaerljUWn7u7uwAA3t7evFarveyDxK+/HnZLTU1x2rhx+4Xu3XsaAGDOnAUZFy8mOO/atT2gX7/+KQAgCALz9ttLU60/D+PG3VuwffumkKa8xsbYkpw8BWAux3Fba3pRAAAcx51lWXYuLBXkCbkmuackY1JEFNzVakvPiVm0e40Tq4ZqnQBAlUIBbwBlqSmtcn1CCOmsfr2/8u/6tsmZy4de/XBvVb0TiWVX7Pv1+Kp6l1C8ct+m6t27j/4//xlSMn/+7C6xsStNffteVzFo0ODy224bU9aU40tKiuVFRUWq3r37Vl1+3r6V1uSE4xKcAgODDNYPogDQo0cvvVbrJABAUVGhoqSkRLlr1/bg3bt3BFn3kSQJZrOZychIUw8bNqL8iy/2Vr300rPd/f0DjP369a+45ZZhZX37XqerK66kpItOOTnZ2hEj/nNZL5bZbJalp6dqkpMTNTzPM7169b0051mj0UgREZF1nq+2/v0HXjYFgWW7V585c9oNAFJTU52Sk5Ocf/75kPe/r8MaU6Lm1ltvq5g48bGCr7/+yis5OdEpOztLnZ6e6gQAgiBeSghLS0uVH34YGy6Xy6WQkLAmD3VKSUnWBgQEGq2JifV1denStTo1NcUJADIy0rW33HJrSe3jJkx4uMj6uCnx1ScpKVGr1ToJ1sQEABiGQY8evapOn/7Lzfqcm5u7ufbPg4uLi8DzvF0W+7clOfEHcKaebVkAPG2OhpAOzqOsHP19/JClVFlqnBjNrXYtk1mEIEr1DmA2u7gAVVXQ5+a0WgyEENIZOSvR5LtKrbVvcyxbtio1MfFizrFjv7qfOnXSbdmyRVFffvlZ1YYN/w6xqd3Rbjb/+yFSLrd8FBTF+j+4yuVySFL920XR8rKeeeaFzJtvHnxVD0FISKhJpVJJGzZsu3ju3D/a338/6n7q1F9uc+bM6Dp06K3FixYtS7vyGEmSmJ49e1e88casqwp2ubu7C5mZGaqa/S7bplAoGk3yrtxHkiTIZHLJ8lhkxo+/L2/cuHuKrzzO3z/AXFCQr3juuSe6u7q68TfdNKhswIAbKvr06Vs9YcL4PrX3ZRgZFi58J3HLlg1BixfPj9y8eUdCU+Z/SpJU55BtURQZudwSo1wul+orJdDU+Bq4fp0jxkVRvKzdlMrG29lWtsySTQJwez3bhtVsJ+SapDJbappofX1rapy0ZnIigBfqr3VS3q0bXjl/BkfM9q+zQgghxDGcOvWn85IlC0O7do0xPvnkswVr125Imjp1Wlpc3HnXwsIChVKpEgGgoqLi0miX9PTUS3NF3N3dBR8fH9P58+eca583Pv7Cpe+7dInR5eXlqUtLSy6dIzHxolqv18kBwNfXj3dzc+Ozs7PUUVHRRuvXhQtnnT78cE2wJEk4fPhHt7VrVwf27t1X//zzk/M2bNh28aGHHs3+/fejngCu+kAeHh6hz87O1AYHh5is5/P09ORXrVoempAQp+3alTUolUrp77//crEew/M80tIsvQQNiYs7f9lrTUiIc4mOjtYBQEhImD4zM11T+3Xk5+cqY2PfDamqqpQdOLDPOuwq4aWXpuaOHXtHWXl5Wc3N/n8/r3t4uJuHDh1eMXPmnLSUlCSnrVs3+jcWFwBERXXR5+bmqK01SADAYDAwKSlJTmFhEXoACA4ONXBc/GWvYcmShaGvvPJidFPiYxim3sSiS5cYvU6nk8fHX7is3kxc3AWXkJAwQ33H2ZMtyclqAFNZll0LYCQsr7Qry7KvA5gG4H37hUdIx+IkWqvDB0OQAIOx9VbmM5mthRjrzk78usYgx2BARnbHX59CLQc+ub0an9xeDbW88f0JIeRa4eLiKnz33Te+K1YsCU5JSVbHxZ3XHj78o5e/f4DR29uH79ath16j0Yhbt24MTElJVh8//pvL5s3rQ2q/d9x//0N53357wO+zzz7xTklJVm/ZssHv+PHfvCzrHgHjxt1T4urqys+ZMyPy/Plz2lOn/nReuPCtKMCSVDAMg3vvfSDv228P+G3fvtkvNTVF/f3333qsXfteuFKpFNVqtSSXK/DJJ7uCtmzZ4JeenqY6c+a004kTxz26dmWrAcDZ2UUAgMTEi9ry8nL5hAkPF+h0OvnMma9FnTt3VnvhwnntrFlvRCUlJTrHxHTTOzs7i7ffflfBrl3bgw4e/NojMZHTLFw4J7y0tETVWJsdOLDPf9++z72SkhLVy5YtDklPT9M+9NBj+QDw4IMP5/355x+esbErg5KSEtXHjh1xXb78ncjq6iqFv38A7+8fYDIajbKvv/7KMysrQ/Xrr4fdFiyYEwUAJpPpqs/V3bv3NNxzz/15u3ZtD0pOTlJfuf1Kd901vsTJyVmYNWta9OnTfznVvO5Ig8Egv//+BwsBYOLER3N///2Y57Ztm/xSU1PU+/d/6fnDDwd9Bw8eWtaU+JycnEUAiIu74FRVVXVZzEOHDi8PDQ3XL1z4VtTvvx91vXgxQfP223PDsrIytA8+ODG/sfjtodnDujiO28SyrC+A2QAmwfKTuxuACcByjuPW2TdEQjoGgefhJrf8jnuFhUEQWqfGidW/PSd11zoJDQ0HAGRmNmmxFocmY4Boj9aZu0MIIR0Zy3Y3vPXWwuTt27cEHTz4tZ9MJpN69uxduWJFbKJMJoOrq6s4Y8aclE2b1oU89dTDPQMDgwyTJk3JnDNneoz1HA8//HhhRUWFfPv2zcFr165W9OjRs3LYsBFF8fEXXAFArVZL//vf6sR3310a9vLLz3V3dnbhJ0yYmLt+/fthSqVSAoBnnnkhX63WiPv3f+G3ZcuGEHd3d37EiNuKpk6dlg0AQ4cOr5gy5fW0zz7bE7Bz57ZglUolXnfdwPLXX5+RBQBeXt7C8OEji7Zu3RSSlZWpnj17fuaqVe8nfPBBbMgrr0zqJpPJpZgYtnrlyjWcr68fDwCvvTYjS6VSiWvXrg4zGPTyQYOGlAwYcH1ZY202atTYws8+2+O/evUKbXh4uG7JkhWJPXtalum9445xpZIkpezevSPwiy8+DXBychYGDryh7NVXp2dZtyckxOdt3Phh6Jo1K2U+Pr6m0aNvLzp+/DePmt6mwiuvN2nSy7m//XbEc/Hi+RGbNn3ENTS8y8PDQ4iNXcfFxr4bMn36K2zN/3FlbOy6hPBwy1LQt902prysrCz9008/Dti2bVOIt7eP6dlnJ2Xcd9+EYkmS0Fh83bv31Pfr17986dK3ox55JDPb3d3j0p1UhUKB2NgPL65cuTxkwYI50WYzz0RGRumWLl15ccCAG9qkpiHT3KI3LMt6chxXyrKsG4CbAcucWwB/cBxX0uDBjiFFEMTIkhL7tq9CIYOnpzNKS6vBt9IEaGLhqG1dmJ6G0rfnAwAi1nwIudYJv5/NQXG5vuEDW+DmPkEI9nYGz1+dBOl01Vh+710I1GgwYf1mePgHNuvcjtrOnQ21c9ugdm4brdnOXl7OkMtlqQCi7HG+U6dOdZPJ5N/5+QVXqVSaNhmu4qh+/vmQW9eurD4kJPTSWOR582aF5+XlqNev33YxIyNNlZqaohk69NZL80lyc3OU998/rs+KFbGctf5FRzB48MABU6dOS7PWZiFtw2QyaAoKsl1EURgzYMCAhIb2tWVC/J8sy87hOO4TAN/bFiIhnU9xRjpkACoFHmonLQy8CFMdSYM96Qw86rsB4+TkjNsDguChUCDn/PlmJyeOxCwAWy5Yeuqf6mmCkoZ2EUKI3Xz33bfemzat07722vR0Pz9/859/nnA9evQXr0mTpmQAgNFolL311syujz32VNZtt40pragol69f/36wv3+AccCA69vkbjq5dtiSnHgCKGp0L0KuMeU5OfAEUA2m1QswWukamXBfIZfBA0BxchIw4rZWjaU18RKw8bxlqO5jPUxQtnM8hBDSmcycOSdjxYoloW+99WYXnU4n9/f3Nz777KRMa+9C166sYcaMOSkff/xR4McffxSkVKqkPn36Vrz33gcXrcO6CLEXW5KT9wD8r2YC/HmO464aW0fItShHpcTkUycw7ObBGM4wMAutV4DRymjmITRQ68Tk5Azo9dDlZLdqHIQQQjouT08vYfHi/6U1tM8dd4wrveOOcaVtFFKrOXbsr1PtHQNpmC3JyWMAwgEcAgCWZa/cLnEc1+TzsizrB+BdAGMAaAH8CuANjuPiarb3gyUhGgigGEAsx3ErbIibkFZVWFgAsyTBxd8fMhkDg5FHM6d0NZu11kl95N7eQFYWxGIaWksIIYQQx2dLcrLTzjHsByACGAugGsDbAA6xLNsFlmTlRwD7ALwA4CYAH7AsW8xx3FY7x0FIixQWWjoRfXwsNU50htZbRtjKVFMlvr5fZKfgECArCyodDQkmhBBCiOOzJTlJBXCY47gWF09gWda75nyLOI67UPPc27BUoO8JSx0VI4BJHMfxAOJZlu0KYAYASk6IQwnLzsakiCgEK1WQAFQbWq8Ao5WJF8DzIpRK+VVVcgHAK6oLcOIPuIu0OhEhhFxBBCBJklRv5XNCiH3U/J5JsPzeNciWIowrYRli1WIcxxVzHPdQrcTEH5ZCjlkA4gAMAXCkJjGxOmzZlfWzRwyE2EuQQY/hPn7wVqkhiK1b48TKZBZhbqBKfHCvngAAF5kc1WUdYaVvQghpM3mSJJlNJkOjFcUJIS1jMhmcJEkyA8htbF9bek4KAHjYcFyDWJbdAOBZWHpKxnEcV82ybAiAc1fsmlPzb1hNLDZRKGzJy+onrym+Z/2XtB5HbWsnUQJkgHtIMCQJ4AURMlnr3pATBBGCIEGplEMQrr4Z4RMcjOfTkpFSXIRPSooR4+PT5HM7UjsranUKKeQyKGz5y+WgHKmdOzNq57bRkdp5wIABFadOnfqooqJ0EgBvlUqjYxiGVp4ixI4kSWJMJoNTRUWpSpLEzQMGDKhs7Bhb3uI3AnifZdnhAM4DuKqUPcdxH9lw3tUA1sNSdX4fy7KDATjBkqzUZi2UpLHhGgAAmYyBp6ezrYc3yM1N2yrnJVdzpLYWBAFuNQVHwnvGQK6UQyaXQatVtfq1eanhttCGBMNcVIji4jx4evZv9vkdoZ3dRGD/BMtjfx9ndIDPPc3mCO18LaB2bhsdqJ3fEQQeZWXFjzEM4wSAhngRYl+SJElmSRI3A3inKQfYkpy8W/Pvo/UFAaDZyUmt1bmeg6Xy/GQAegDqK3a1JiU2z/AVRQkVFTpbD6+TXC6Dm5sWFRX6Ou9gE/txxLYuysyEsiY50XgHoLrahMoqI/SN1CGxh/JKA6qqDDDXM4wsODgMZ86cwYULCbj55qFNPq+jtXNYzV+CivL2jcPeHK2dOytq57bRmu3s5qa1e4/MgAEDRACLTp069Z4kIRC2DXcnhNRPBJDblB4TK1uSk0gbjqlTzbyREQA+5ThOAACO40SWZeMABAPIBBB0xWHW71tUuIHnW+fNSRDEVjs3uZwjtXV+SgoYAFWCAJXWCdXVZhiMPMQGlvm1l2qdGXwDbdHbyxsh4VHQ/HPWpvZypHbuzKid2wa1c9voaO1c88GpyR+eCCGtp9nJCcdx6dbHLMs6AXADUMxxnC23iIMAfAzL0LDDNedUAugPyxLD+QBeYFlWbk1eYElmOI7jbJ5vQoi9ledkwwOW7jyGYcDzIsxt9MZs4gXwQv1JUIi7B/r7+iGzvON2OZgFYDdnqQv/EGuGUt7OARFCCCGkVdg0rZRl2SEAlgO4HjXjM1mW/RPALI7jfm7Gqf4B8D0stUueBVAKYDYATwCrYJlfMh3AZpZllwO4AcArsNQ8IcRhVBXkwwOAQaEAwzDQG1u/xomVySxAFKV6B0r7xnQD/jgOD6nj3MW8Ei8BsWcsIzrvjzFD2c7xEEIIIaR1NHtsJcuyg2CpDu8BS8HEFwEsAuAF4HuWZW9u6rk4jpMATICl1+QTAH/WnGcIx3EZNb0jowGwAE4DmAdL9fjtzY2bkNaUrFLj4VMncNLfDwzDoLoNCjBamWsKMdYnpE8fAICrXIHirBaXJyKEEEIIaTW29JwsAnAUwOhaQ63AsuwCWHpBFgAY1dSTcRxXDkuC82I920/CMkGeEIdVWFgAsyTBLSAQkiRBb2z9ifBWJl4EL4hQ1VOI0dnDEyU8Dy+FAlln/4F3SEibxUYIIYQQ0hy2rEpxA4D3aicmgGUiO4A1NdsJuaYUFRUCAHx8fNusAKOVyWypEi9r4Le5sqYwSGnSxTaKihBCCCGk+WzpOakE6h3yrQKtEU6uQX1LS8BGRCFIpQIvSm02GR4AzDWT7xmGgWUl7zr2cXMDKiqgz2nRIneEEEIIIa3Klp6T3wDMYlnWpfaTLMu6AngTliFfhFxTukjAcB8/eDo5tXnPCQDoTXxNclI3VUAAAMBUVtZGERFCCCGENJ8tPSczAZwCkMKy7NcA8gAEALgTlgKJT9ovPEIcnyiKcJNZ1rb1Doto02WErXSGhpMT5xtvwqN7diIoPAJ3t2FchBBCCCHNYUudk6SaFbnmAbgdltW1SgD8DGCBtdI7IdeK0rw8qGsmfPhFRUAniG3fc2Iw1zkZ3iq8KwujKCIzMxM8z0OhsGkV8XajkgHrRuguPSaEEEJI52TT23xNAjKV47gAjuNUAHoAWEyJCbkWFaenAgB0ggCNi+ulOSBtycSLDS4nHBAQCI1GA543I6cDzjuRy4CB/gIG+guQU3JCCCGEdFrNvn3KsqwHgL0AQgF0q3n6BgDfsiy7H8BEjuN0douQEAdXnp0FdwBVsFSHN5jarsaJVWOFGGUyGR7pEoMgkxk5x39DWFh4m8ZHCCGEENIUttyDXAqgJ4BZtZ47DOBuAAMBLLRDXIR0GFX5+QAAg0IOhmGga8MCjFbmRnpOACDa1R293NxRmZzURlHZDy8Cn15U4tOLSrRxpxQhhBBC2pAtyck4ANM4jvvC+gTHcSaO4w7AkrA8YK/gCOkI9CXFAABerbEUYDS0XQFGK5NZAC+IDU6Kh5cXAIAvyG+jqOzHLALL/9Jg+V8amCk5IYQQQjotW5ITVwCl9WzLB+BjeziEdDxnlQo8fOoEUqKiwIsSTO1wa9/MWwoxNpSbOIWEAgBUlVVtFBUhhBBCSPPYkpycBvB0PdueBHDW9nAI6XiKigphliR4BgZCbIcaJwBgNoswCyJksvqzE58YyxQxd7Ht4yOEEEIIaQpb1hNdBOAgy7J/AfgSQAEAX1jmnAyApd4JIdeMwsJCAICPjy+ENq4ObyUBMJiEBod1hV93HXJ274SbXIHirCx4h4S0XYCEEEIIIU3Q7J4TjuN+BHAXLJ+HFgJYD+BtWBKduzmO+86uERLi4EaaebwYEQ0/tRrmdqhxYqUzmBsc1uXi5Y0S3jJZP+P0X20UFSGEEEJI09lUiY3juIOw9J5oYCnCWM5xXLVdIyOkA5AkCX3VGmicnOHk6QleEGHm2ys5aXyVsHKVCozBgNL0tNYPiBBCCCGkmVpUzozjOAPHcTmUmJBrVXlhATRyOQDALzIKPC/B3E7LSZnNAnih4eWEuW7d8PzZ0zhdWdFGURFCCCGENJ1NPSeEEIuitDQAgEEU4OzpiaKCKjScHrQeMy9CaKAQIwBExbAAgOTki20TlJ0oZcDqobpLjwkhhBDSOVFyQkgLlGdnwRVApSSBYQB9OxRgtDLxAkRJgryBfaKjuwAAkpOTIElSw3VRHIhCBgwOplXGCCGEkM6OkhNCWqAqPw+uAAxyy6+Szth+yYllOWEJCgUDqZ7um/CwCMzsyiJM64Si9FT4RkS1bZCEEEIIIQ2gARKEtIChuAgAYFarwQsSTOb27TmxFGKsvzfEydkZoc6u8FGpkfn36TaMrmV4ETiQosCBFAXaYaVmQgghhLQRm3pOWJb1AfAGgNsABAIYDeAeAGc4jvvKfuER4thMFTUTy52dIUrtNxkeAExmAbxgTU7qn/lSqVbDVxBQkthx5p2YRWDBH1oAwMiwSijotgohhBDSKTX7LZ5l2UhYqsA/ByALgB8sSU4MgM9Zlr3DrhES4sCOQcLDp06guHsPCKIEUzstIwwAktR4IUYAEL29AQDmnJy2CIsQQgghpMlsuf/4LixV4SMB3AtYFgfiOO5hAPsBzLJbdIQ4uKKiApglCd6BgeCF9u05AQC90QxZI7/VLuERAAA1LSdMCCGEEAdjS3IyAsDbHMeV4eqxI+sB9GppUIR0FIWFhQAAPz8/S3X4duw5AZpWiNG/Z28AgJcoQRRpAgchhBBCHIetI7fr+wSkRkOD3QnpZCZqnPBSRDR8nJ3B8yLM7Txb22QWIIgN/wpG9B8AXhLhJJcj7yLXRpERQgghhDTOluTkKIA3WZZ1rvWcxLKsDMAkAL/ZJTJCHFxVWSn6u7ljqI8vfP0DYDQLEBtJDFqbJTlpeB+1kxOyBQFxlRVI5eLbJjBCCCGEkCawJTmZCaA7gCQAO2DpKZkG4BSAwQBm2y06QhxYUWoqAMAoinD18YG+HWucWFmqxDfee/NrSAjmc3E4n5fbBlERQgghhDRNs5MTjuPOAxgI4DCA4QAEWJYUTgIwiOO4M/YMkBBHVZqVAQCoEEXIZAx0BnM7RwSYecuwrsYKv7NsdwBAQkLH6DlRyoClg/VYOlgPJS0jTAghhHRaNtU54TguEcDDdo6FkA6lKi8PzgAMcjkECTCa2ncyPACYzCJ4XoRGoYBUX5l4AN26WZKT1IsJbRVaiyhkwMiw9u+ZIoQQQkjrsrUIIwOgHwBn1NH7wnHckZaFRYjjMxRZVuoyq9UQhPafDA9YqsSbBanRQowxUV2wuldfBKg1KMvNgUdgUNsFSQghhBBSj2YnJyzL3gBgL4CQmqesA0ikmscSALldoiPEgfFlZQAAydkZooR2X0YYAATBUgiysWFd7t7eUCmUkDEMUk4cR//x/22bAG3Ei8AvWZY/V8NCeKoQTwghhHRStvScrAJgBvAELBXi2/92MSHtgNfpAAByd3fwgtjuBRitDEa+0SrxAFCh0cCH51EcFwc4eHJiFoGZx7QAgKMPVFJyQgghhHRStiQn/QE8yHHcV/YOhpCO5GuTAQtOncDCu+4CX9Nj4Qh0hqYlJ4y/P5CdDSEnuw2iIoQQQghpnC33HwtAvSWEoLCwALwkwScwyFKA0YF6TsQGJsNbucewAADn6qrWDokQQgghpElsSU7eBzDziiKMhFxzCgstE+L9/f1h5kXwjVU/bCMmvvEq8QAQfsNNAABfmRy6iorWDosQQgghpFG2DOvqCqAHgDyWZS8A0F2xXeI4bkSLIyPEgekrKzE1MAil3r7w8fBEqclxlrm1FGKUGr3z4B/dBdkCDze5AonHjqLv7Xe0SXyEEEIIIfWxJTnpAuBMre+vHNze+GB3Qjq4ovRU9HHzgEkU4e7tjez0svYO6RKz2dJzImvkN1EmkyFNo0VRTjZ80pLRt23CI4QQQgipV7OTE47jhrdGIIR0JKWZGdDAUh2eYRjoje1fHd7KVDPETKWUN1iIEQAqrr8e62KP4rbUFNzXRvERQgghhNTHpiKMhFzrKvNyoQGgl8nAi5JDFGC0MpkF8LwIRiVHY/Pie/fuAwA4f/5sG0RmO6UMmHeT/tJjQgghhHROTUpOWJYVANzMcdyfLMuKaKj0tGXOCSU9pFMz1EyGN6lUEEUJJrNjLCMMwLJymCBCJmMgNjIxvkePXlAwMmjKy1CQmQ6/0PA2irJ5FDLgrijHmddDCCGEkNbR1CRiISwFF62PG18KiJBOzFxaCsBSHV5wsJ4TCYDBJDSp1omzswuW9b0OoQolkg7/BL/Hn2r9AAkhhBBC6tGk5ITjuAW1Hs9vtWgI6SCkKkttELm7O8yCCLMD9ZwAgN7Aowm5CQDA6O4BVFejIiGuVWNqCV4E/siVAwBuChSoQjwhhBDSSTV1WNctzTkpx3FHbAuHkI5BNBgAAGovr5rq8I7TcwIAOmPTh0BpoqKBc2ehrBmq5ojMIvDKr04AgKMPVFJyQgghhHRSTR3W9Qv+HcpV3/1YqWabBEDesrAIcWzby0uQnHgRa594Erwgwsw7Vs+JycyDF5o2+jLspkEQz52FnyjBpNdBpXVq5egIIYQQQurW1OSElg8mpJbCwkIIkgS/wEAYjHyjq2K1NbNZhNjEoKIGXo+/162Fq1yB+J9/pmKMhBBCCGk3TZ1z8mtrB0JIR2E2m1FaWgIA8PPzQ2G1460iZeIFCGLTujBlcjkKNRq4mnnknfyDkhNCCCGEtBublvxlWdYHwBsAbgMQCGA0gHsAnOE47iv7hUeI4ylMTcacmO4oNpvg6emJ9OKS9g7pKmazpRCjQsE0qVdHERkFXLwIWVZm6wdHCCGEEFKPZk8rZVk2EsBZAM/BsrywHyxJTgyAz1mWpduupFMrSUtDHzd39HH3hATGoWqcWJl4AWZBbNJywgAQNnQ4PsnOxEfJSTCbHafaPSGEEEKuLbasefMugAIAkQDuRc0EeY7jHgawH8Asu0VHiAOqzM0FAOhkDHhRgsnBJsMDgJkXLVXim5icdLn+RhzSVeFcSRESHHhJYUIIIYR0brYkJyMAvM1xXBmuLsa4HkCvlgZFiCPTFxUAAExKFUTRMoTK0YiiBKNZaHKtE5lMhv79rwcAnDhxvBUjs41SBkwfaMD0gQYoaRlhQgghpNOy9W2+vhnAalD1eNLJmUssc0xEJyeHXEbYSm/kIZM1MTsBMOiGm3C9hyeE339rxahso5ABD8SY8UCMmWqcEEIIIZ2YLW/zRwG8ybKsc63nJJZlZQAmAXC8TzaE2NGl6vBubuAF0eEKMFrpDc2bO3JTrz54owuLWxgZyvLzWikqQgghhJD62ZKczATQHUASgB2w9JRMA3AKwGAAs+0WHSEOSK7XAQDUPj6WnhMHnBAPAAaTZTnhpgrt3QcFPA85w+DCtwdaLzAbCCLwV74cf+XLm/WaCCGEENKxNDs54TjuPICBAA7DUpxRgGVJ4SQAgziOO2PPAAlxNILJBABw8feH0SRCEB1zJKOZFyGKzfskX+HrCwCoPPN3a4RkM5MIvPCTE174yQkmSk4IIYSQTsumOiccxyUCeNjOsRDSISxLT0FFWRk+mT4DeqPjLrtrMgsQpObdgfC98Sbgu4PwLq+AKDhmjxAhhBBCOi+bppayLBvFsmyPmsceLMu+z7LsfpZlH7VveIQ4FpPJhNLSUgiShMDgIOgMjlcd3srMC+AFsckrdgFA7zF3QC8IcFcocOHwodYLjhBCCCGkDrYUYRwDIB7AUzVPrYOlIGMIgG0syz5tv/AIcSyFhZZlhJVKJVzdPWE0O25yYuJF8ILU5FonAKBxcUGuVgMASP/++9YKjRBCCCGkTrb0nMwF8AOABSzLugO4B8ASjuP6A1gCYKod4yPEoRTFXcDcmO54JjoGogSYHLDGiZXZLMLcjEKMVq4DbwAAVGdlQpIccz4NIYQQQjonW5KTvgBWcxxXCWA0LPNWPqvZ9iOArnaKjRCHU5GRjl5u7ujq7AzRQavDW1lrsDQzN0G//z6A6RcT8Pb5f3D27NnWCY4QQgghpA62JCd6/DuRfiyAfI7jrJ9gAgCUNedkLMt6sSy7jmXZLJZlK1iWPcay7OBa2/uxLPsry7LVLMtmsCw7zYaYCbELQ82wLpNKXbOMsOP2nACWQozN7TlxdndH1xtvAgAcOOBYSwoTQgghpHOzJTk5BmAay7IPAXgAwBcAwLLsAADzarY3xx4ANwF4EMD1AE4D+IFl2W4sy3rD0htzEZbli+cBeJtl2SdtiJuQFuNLSy0PXFzAC5LDVoe30hman5wAwJgxtwMAvtu3D2aj0d5hNZuCAab0M2BKPwMUzX85hBBCCOkgbFlK+FUA3wDYBSAOwKKa578BoIOlSGOTsCzbBZYaKf/hOO73muemwtIjMxGWXhojgEkcx/EA4lmW7QpgBoCtNsROSMtUVQIAFJ6e4HnRoeecAJaeE9GGeSO33DIML3RlMdjVHSc/3YMbHmrfhfiUcuCxHo67bDMhhBBC7MOWIoypAHoCCOQ4rhfHcXk1m8YD6M5xXHIzTlcE4A5Yqstbzy8BYAB4ARgC4EhNYmJ1GADLsqxfc2MnpKWUBksvgtbXF6aapXodmZkXbCoSqVSqEB7VBSqZDGW//mL/wAghhBBC6mBrEUYJQP4Vz/3Bsqwzy7LDOY77ronnKQPwbe3nWJa9H0A0gO8BLAZw7orDcmr+DQNQ0PzoLRQKm0q81Esul132L2k97dnWWkEAFAq4hwTDYBIgkzn2GCNeECFJtv2893zoIRjWrkWYmUd+0kUEd+vWChE2jSAC8SWW19DdS0Rn+jWjvx1tg9q5bVA7E0JaqtnJCcuy4QDWAxgKQFXPbnJbgmFZ9j8AtgD4iuO4AyzLroJlWFdthpp/NbZcAwBkMgaens62Ht4gNzdtq5yXXK2t21qSJEiiAFGSI7Q7i1JRglZb36+AY5DJ5ZAr5fB0a/6vy4DbhmP3+2sRBgZnt25Erw3rWiHCptGZgUd2Wh7Hvwg4KdstlFZDfzvaBrVz26B2JoTYypaek1UABgHYAOA/sMwzOQ5gFIDeAO61JRCWZe8G8DGAPwA8VPO0HoD6il2tn7KqbbkOAIiihIoKna2H10kul8HNTYuKCj0EBx/q09G1V1uXl5dj8tm/IWcYnAyNRHpGFfR6U5td3xaMJKJaZ4JMFJtds0Qul8H/ztuBA9/CLycPaQkpcPf3b6VIG6Y3A4DlhkJZaTWMnSg5ob8dbYPauW20Zju7uWmpR4aQa4AtyclQAHM4jotlWfYlAOM5jpvBsuwsWIoz3g1gf3NOyLLsZADvwbLy1yMcx1l7SzIBBF2xu/X7bBtiv4TnW+fNSRDEVjs3uVxbt3Vubi4AwNnVDXKVBkZTGUQb5nO0JaNJgMksQFTJIAjNj3Xok0/gyy/3I1ChwLG1sRg97+1WiLJxtRdF4wURvGOPprMJ/e1oG9TObYPamRBiK1tuQbgAOFPzOA5APwDgOE4A8D6AW5tzMpZlJwFYA2AtgAm1EhMAOAJgCMuytYeJjbBcjrN5vgkhtigosEyz8vPzgyBKDl/jBADMvG1V4q3kcjmYmyw1T5yTk1FaUmzP8AghhBBCLmNLcpILS7FFAEgC4MWybGDN9yUAmjzug2XZGFh6TL4EsASAH8uyATVf7rDMP3EDsJll2R4syz4B4JWafQlpU/p//sHcmO4Y4+0LQXDs6vC12VKIsbZbnp+E7w06zLjwD7Zs3WjHyAghhBBCLmdLcvINLIUQB3EclwkgC5aijK4AnkLzhlvdB0AJ4B5Ykp7aX+/V9I6MBsDCUpxxHoA3OI7bbkPchLSIkJeLXm7uCNJowAsiTOaOkZzYWojRSqFUov+kl1EtCNi9exeSkhLtGB0hhBBCyL9smXMyF5Zq7QsBjAQwC8B2WHo0AOClpp6I47h3ALzTyD4nAdxsQ5yE2JVQUQ4AkLm6wSxYhkt1BHqjudmT4a80aNBgDB06HL/++jP2vD0XMzduh0Ll2CuVEUIIIaTjaXZywnFcMYAbrUO5OI7bxbJsOiwJxJ8cx/1q5xgJcQhynWWFN5WPz6W5HB2B2SyCb+HEfYZhMGvWfFyXk4tBSjV+emchRs9fZKcIG6dggGd7GS89JoQQQkjnZFMRRgDgOC6XZdluADwB5HIc9z/7hUWI41GbzIBcDpeAAOiN5vYOp8lMZkuV+JYuwOnv74+IocOBM38jPDMTJz/ZjesnPNT4gXaglAPP93HsZZsJIYQQ0nI2fV5hWfbpmt6SCwCOAbjIsmway7Jt80mFkHbgUvOvZ1gYqvV8u8bSHCbekpzYw7DJU5Hk4gwZw0D53beIO3zILuclhBBCCAFsSE5qapJsBHAKwOMAxgJ4EkA8gJ0sy95v1wgJcQAmnQ6ucsuK1t7hkTAYO1ByYhbAt2A54SuNeOd/yJAkOMnlMO7YjvhffrLLeRsiSkBymQzJZTI4eGkZQgghhLSALT0nUwGs5TjuXo7jdnIc9wPHcR9xHDcWwFYA8+0aISEOoCgrE2VmEwyCAI/gkA6zjDBQU+tEECGzU2FltZMTblz+LjJFAc5yOfiPtuH3j7ba5+T1MArAhG+dMeFbZxg7TtMTQgghpJls+bgSAuBAPdt2A4iyPRxCHFORQY/n/jmNmblZYBgZTB2gAKNVSwsx1sXV2wcDl72LNAaQg8H7Gz/E0qVvQ6/X2+0ahBBCCLn22JKcnISlSntdrgNw1vZwCHFM1urw3r5+4AUJ5g7UcwK0vBBjXdx9/TB87Xr8Hh6OC5UV2LNnF+6/fxyOfv4pRLHjJG+EEEIIcRxNWq2LZdlban27G8CqmqKLnwLIg2XFrjEApgB43t5BEtLe8vLyAAABAQEwd6ACjFbVerPdkxMAUKrVeGbe2+hx22jMnz8bQmEhfL79Bj8f/AaBDz6MHiNH2f2ahBBCCOm8mrqU8C8Aak9DZQBMAvDCFc8BwB4Ae1scGSEOxCXuPObGdIdR6wyeFzvUsC7A0nMitrAQY0MGDRqMffu+xbcr/wc+JQWhjAzY8zF++GIvuj07CWHX9W+1axNCCCGk82hqcjK8VaMgxMGpS8sQ7eaODGcnmHgBvNCxkhOzHZcTro+TkzPumzMfWfFxOPtBLKJ0ekSYzNCtfQ8/uLuj/8uvwicyslVjIIQQQkjH1qTkhKq+k2udymgAZHI4+wdA14GWEbayVyHGpgjp3gMha9Yh4dgRJG3fgi5gEFFRgZQFc/DVoP9g4qNPQqvVtkEkhBBCCOlomvRZhWXZIyzL9mvOiVmWHciy7DGboiLEwWhrJnh7hISgWt9xqsNbmcxim/f2dBt8C27fuA0Vd92NNIHHt3m5WPNBLMaNG439+7+E1IxhZgoGeLS7CY92N0Fh/6kzhBBCCHEQTR3W9R6A71iW/QvATgD7OY7TXblTzST50bBMir8OwIv2CpSQ9mI2meBRU4DRp0sXZJs6YM8JbynEqNEoILZxFcOBd98D4c5xMH/7Nf78MBY5OdnY878lUH37Na6fPQ/eoWGNnkMpB6ZeZ2yDaAkhhBDSnpo6rOtzlmV/BTAXwCYACpZl4wCkAqgG4AEgFEAvAOaafR7hOC6/NYImpC0VpKZAwcggSBK8QyOQmljS3iE1m8kswCxINSt2tX5yIpczkMtlYCQBjMgDMgn/HX8H7rzzDmzdthXhPx1CMC8g6a1ZyH5wIvqMub3VYyKEEEKI42tqzwk4jisCMIVl2QUA7oNlknwUAHcARQDiYelhOcBxXHErxEpIuyhKSYYWQLkgQJIrOtwywgAgCBJMZgGtsJrwZRQKORQwA/pyCFXFMFeWQeRNgCiCkcshU2nx3H1jkBAVipxtO+GnUMD86R4cSUnCLS9Oqfe8ogTkVVuCD3CWIKOhXYQQQkin1OTkxKom8Vhf80VIp1dWkA+9yYRqpRJ8zYf8jkhnNINhnFrl3HI5AyUjQqrKhbEgHaayIogmQ90756Yh3M8VgW++hCMrNyKSBwJOn8bBBXMxdt7COg8xCsC4/S4AgKMPVELb7L9chBBCCOkI2mLxHkI6tFRJwgtnT+MnPx/wHbAAo5WlEKP9z6tUyqHiK2HOPI9K7iQMBVn1JyYAAAl8dQVkFXkY/tIEpHm6AgCiMzPw/ewZVF2eEEIIuYZRckJII/LzcwEAAYFBMPMiTHzH/PBsMNm/1olaxUBWkYPqpNPQZSdBMpuadbxk1GHoQyORHuAFACi7yOGDtavtGiMhhBBCOg4aHEFII/Ly8gAAgYFBMJiENl/tyl4stU7sdz6NEhCL06FLT4BgqLb9RKKIW8YPwaHv/8Dyz05ASEyAl48PJk58zH7BEkIIIaRDoOSEkEYMKy3FkJjuCFKpoDN0vBonVtZCjHI7nEujBMSiVFSnx0M02WeJ35Gjb0KOHHh/z1f43/+WwF+jxYh777fLuQkhhBDSMVByQkgjghkGbm7uYHx8oDN0vBonVmazCLMgQqFg0Iz6h1dRKxlLYpIWD9Fs39ojj464EcUlZXBOSIfvgf2I8/JGj2G32vUahBBCCHFcTUpOWJZt1vgKjuM+si0cQhyLoaoKbnLLr4lPl65Iqei4yYnJLMDMi3BSKppVnb02tVIGqTTD0mNi58QEABiGwcv3jsTxjfuhYeQo3bYFRVHRcA4Kt/u1CCGEEOJ4mtpzsq0Z55QAUHJCOoX8pEQAgF4Q4OYfCFNRx60rauIF8IIImYyxad6MUikHKnOhS49rZDWullEoFOjz4Ehc3Pk9/JQqnFo4F4PXbMT9XS2T7eVU44QQQgjptJqanES2ahSEOKji1BS4AKiQRIgS02FX6gIASQL0Bh6Mu6bZxyoUMsgNpdBlxEPQt2DyexO5e7rB+7aBMB4+g0iZDEeWLsCMBYtb/bqEEEIIaV9NSk44jktv6glZlqX7mqTTqMrJhgsAnUIJnu+4NU6sqg1mMM0sdsIwDBSCDoZsDuaKklaK7GpR3SLxR0o2AjOKEZGVhXMHv0bvsXe22fUJIYQQ0vZsmhDPsuyDAIYCUAGwftKRAXAGcDOAELtER0g7MxQWAAB4Jy3MHbgAo5XOYG72fBOlTIQpNw2GwuxWiqp+N479Dw5v3IdoUYbcL76FR/8hCPFzb5VikoQQQghpf81OTliWnQdgHoDymuPNNV++AEQAG+0ZICHtqbKqEiUmE2RBgZcmlHdkJrMAvhnzTSRJgliWA312Mlq0xJeNGIbB9Q/chj92/ogFo3YAPwFHH6iEltYZJIQQQjolWyrEPw5gJwAvAKsAHOA4zh/A9QCKAVywX3iEtK+fDQa8cPY0jNf179DLCFtZa500hUzGQKgshiE7sVVW5moqNw8XuI+6/tL3J0780W6xEEIIIaR12ZKcBAPYwXGcBOAUgEEAwHHcKQCLATxjv/AIaV85OZahTCGhIajWm9o5mpYzmS0rdjVlWJQCPIy5KW06z6Q+fbpEXHr84f/eQXVZ+8dECCGEEPuzJTmphmW5YABIBBDJsqy25vszoJW9SCchSdKl5CQgMBgGU8eebwIARrMIMy82OileqZRBLM2FsSizjSJrule8fXHknUXtHQYhhBBCWoEtycmfsAztAoBkADyAkTXfdwfQfuM/CLGj4qwsLO/CYm5Md/j4+sPYwSfDA/8WYmwoOZHJGChMlTDkJgGC4w1lc5YrEFFcjAs/H27vUAghhBBiZ7YkJ+8AmMCy7AGO44ywzD/ZzrLs5wDeBfC9PQMkpL3kJ3II0GgQ5uwChUoNUyfoORFFCQaTAJms/uREJZdgKkhziOFcdclgRMgZBnk7tkLgHS95IoQQQojtmp2ccBx3BMBAAJ/UPDUZwGcAugHYC2CK3aIjpB2VpqUBACplDMydoMaJVbXeXO+cE6VSDqmyAIb8jLYNqhm63X4zDIKAUJkcRz9Y097hEEIIIcSObFqQk+O4swDO1jw2AHjOnkER4giqcy3zTUwaLcy82CmGdQFAtd6EutbrYhhAIeihz02BaDI02LvS1uQQMdYtCQDg7+eN331dEFmih9vfp1GWlwePgIB2jpAQQggh9mBrEUZ3ALfCUnTxqt4XjuM+amFchLQ7obgYAMB4uMPMix2+xomV0SyAF65OT5QKOYSibBhL8tshqoapZCLmBPx+6ftB44fh7/VfIUCpwvF3l2Hs/1a1Y3SEEEIIsRdbijCOhWX4llM9u0gAKDkhHZ6sqhIAoPbzR7XB3M7R2I+11kntuwoyGQOZsRzVuWmA5PhJmEqlgvK6aIjnMpB0MQGJiRfRtWtMe4dFCCGEkBayZUL8EgDxAIYCiIZl6eDaX1F2i46QduRksiQkbmFhqNZ1/BonVnXVOlHJJZgLM8BXlbVbXA2RJEAvKqAXFZcK1fcf3B+7JB02p6ciNvbd9g2QEEIIIXZhy7CubgDu5jjuqL2DIcRRSJKEIoMeGrUaAdFdUNQJVuqystY60SgUkCQJCoUM0BXBUOC4k+ANkgIjkyYCAA51+RhaxrJK1+P/HYWD/8Th6NFf8eefx3HDDTe3Z5iEEEIIaSFbek7SAbjZOxBCHElpaQkWJlzA82f/RkCPXp1iGWErk+nyWicKmGHMT4Vo1LdzZM0X6u+De4fdiCCNBvH/b+/O4+So6/yPv6q6e2Z67plMjskkkzsFIQkJN0I4RFFxBRUXz58LHrui68ruev3UXV3R37q6IijKeoAnynqwnqggLCBykwNCQiUkmRxzJJmj5+qzjt8f3ROGIQPJTE9XT8/7+XjMo7ura6o+Xan01Ke+3+/n+/WvqbSwiIjINDfRbl2ftixrcZ5jESka7e3ZSl2zZ8/BDEVKplIXgOf7xFMOpmnkSgcfJtXdGXRYE3bVq8/j2hNWc3akjAe/882gwxEREZFJmEi3rrcDLcAuy7IOA/Ex7/u2bS+bdGQiAeroyCYn8+e3lNQcJyOyc50YhJw4ia42fGf6DvhvbKhj86wqavpThB9+iNQ7r6K8crx6HSIiIlLMJpKcHMj9iJSuxx7hq6vX0V7fkJ3jpIS6dUE2OTFDBm7PQVJ9xVc6+Hidfen57PzuHcwKh7n/a1/hlR/7ZNAhiYiIyAQcd3Ji2/ZVUxGISDHxenqYV1FBvLqGZDpb3aqU+L6PkRokdXAveNP/s0WrogwunEVdZz/127fT391NXVNT0GGJiIjIcZrIPCetL/K2BwzZth2bcEQiRSA8NARAdN5chpOlU0Z4RF11GZm+TtL93UGHkjdnXnIuT37zl8wKR3joxq/w6s98PuiQRERE5DhNpFtXG9mJFsdlWVYvcINt25+bSFAiQat0MhAKU7uwlaFEaVWAilaEqQslSXQWb+ngsUw8LqxuO/L8aMKRMJkV82HPYebt3UdfZzsNzS0FjFJEREQmayLVuv4GSAN3AlcBr8kt+w3ZpOWzwPeAT1mWdXV+whQpHCeTod7I/teYvcIilSqt5KSlqRL6O0nGup83EWMxKzc9Pjf/fj43/37KzfG7oZ120ZnsTif5RccBfvKz2woYoYiIiOTDRFpO3grcdpSxJz+yLOsm4FTbti+1LCsGXA3cNMkYRQrq4K5niZgmru8ze/lK9u7oCTqkvKmKRphdkaHvmTaayn0MXqIZdJoJhUOENqzmN1/fTPQnP+It77iSxsZZQYclIiIix2giLScXAD8e573bgYtyzx8AVFJYpp2D9nYAYp4LoUhJVepqaarEHOhiuK+HtOMybZpOjsOGdatYtWQhiUSC733v20GHIyIiIsdhIslJD3DyOO+dDAzknlcDwxMJSiRIhw4eZMfQID2RsmwZ4RKZ46S6MkJTeYpYexsA6bTHdElNEl6Yc3a8k3N2vJOE9+INvoZh8HeXXcTp9Q1Yjz1O586dBYpSREREJmsi3bpuBT5rWVYG+DlwCJgDvBH4DPBflmU1ANcAD+cnTJHCsRNxvvvM07ztbf+Hlzku6RJpOWlpqsTobyMe6wPAcT08v5Q6dT3njFUrcBYvYWG4jE3/9TWav/zVoEMSERGRYzCRlpNPAbcB1wH7gGTu8TqyicsnyA6SX59bV2Ra2b9/LwCtra0MJzIlMSajprKMWZEksfa9R5Zlk5MAg5pCpmlSd6oFQGtfjP3btwUckYiIiByL405ObNt2bNt+F7AS+Dvgk2Srda20bfvvbNtOA78HWmzbfjKv0YoUwP592RK7ixYtYiheGnOctDRFob+TeH/syDLX8/A8n2nTt+s4rT5rDQfcDGWmyZZvfSPocEREROQYTKRbFwC2be8Cdo3zXt+EIxIJkOd5fKyqmsHVJzO/to6eEigjXFNVRmMkSaz9+fOaOK6P6/mETRO/JNqHns8wDOpPPwE27mJx/wD7nt5K60mrgw5LREREXsQxJSeWZe0G3mDb9hbLsvbw4tVHfdu2VaVLpqWefW1Uh8JUmiHmLllB+56Bl/6lItcyKwqx3SQGYs9b7roerudhGCYlOvSEVaefxIOPP8MCM8KWb91E6w1fDzokEREReRHH2nJyH89V4bqP0poaQeSIjqefJgr0uS5LK6Kk0tO7EfBIq0nH/he85wOZjAcVpTbbyXMMw2DW6avgiZ0sHRykbeuTLF69NuiwREREZBzHlJyMnnDRtu0rpywakYDF9uwmCgyGw6Qdj1R6enfrGq/VZMR0KZNs4nF21YEjz4+HddqJ/PbRrfx+dxvzb/sR137ui1MRooiIiOTBhMacWJZVA9Tatt1uWVYZ8CFgIfBz27bvz2eAIoWU7OwAwKmpJp1xp83F+9G8WKvJCMf18KdBn65y0+M/W+6Z0O8ahsHy157DE5/bxKY7fsu73v0+lixZmucIRUREJB+Ou1qXZVlnAHuBD+YWfRX4D+AdwD2WZV2av/BECiw3B0hkzpxsGeHiv24f1/xZ2Qpd47WaADhO6ZYTHu3ExS2ct/4kPM/jO9/SuBMREZFiNZF5Tj4PPAN807KsKNmk5Bu2bTcCN5MtLTwhlmV9yrKse8csW2dZ1n2WZQ1blrXPsqwPT3T7Ii+lIpEEoHph67QuI1xTWcasshT9HftedD3H9XBLuJzwaO/9qwu5bN58Xtfeyc6NTwQdjoiIiBzFRJKTM4FrbdveA1wERIEf5t67DZhQrU7Lsq4BPjtm2SzgLmAHcBrwaeBay7KuesEGRCbJ933s/hjPDg8xZ9Uq4snpO96keVYUYs+f1+RoXNfH83yMIs9OEl6Yi3a+lYt2vpWEN7EK6CsXtXDhghYay8rYdvO38hyhiIiI5MNE/sp7QCr3/BIgBjyae10LxI9nY5ZltQDfATYA9pi3/za3r6tt23aA7ZZlrQA+Bnx3ArGLjKunp5tv7NqBaZo8uGY9XXZP0CFNSHVlhKbyFP279r7kuo7n4boeRqT4ywkn/ciktzHnrNXw8HZWJBLseOIxVp56eh4iExERkXyZSMvJ48B7LMs6G3gz8Fvbtn3LsuYAH8+9fzxOAfqAtcAjY97bANyfS0xG3ANYuf2J5M2ePbsBWLBgIYYZnraVuubPqnzBbPAvJp1xMYzibjnJl2XrVtKBS9g01XoiIiJShCbScvIR4A/AW4DDwOdyy7eSTXZedTwbs237N8BvACzLGvv2AuCpMcs6co+twKHj2ddo4fBE8rLxhULm8x5l6kzVsT6w+1lMYOnSpWRcj7TjYprT66K9Ohphdnma/t37jznhSDkehsELPquRe22YxoTuYuSTOarbmWkak/p3aT5nDfxlGyuTKXY+8Qgnnnl2PkKcMH13FIaOc2HoOIvIZB13cmLb9ibLspYDq4Cttm0P5966GviLbdtdeYyvkue6kI1I5h4rJrpR0zRoaKiacFAvprY2OiXblRfK97Gu3vQEPzrlDNrq6vGBUDhMdGLDGwKzqLma0PAeMsMDRMKhY/49MxSirPzoFxPl5ZPvTjVZvvvcZ6moiFAxiQufVWet5p6HttKMybZbbuZlr35FPkKcNH13FIaOc2HoOIvIRE3o0su27UHGdMGybfsXeYno+RJA+ZhlI0nJMBPkeT4DA8c1NOYlhUImtbVRBgYSuO7xTRInx2fKjnVPH2HTpHr2XLpjCRKJ6VWtqyoaodaI07d/Lxnn2OdnSaUMUmkHJ/P85YZpUF4eIZXK4Adcbzg5ahB8MpnBMCfX5a75nLXw560sSyR54K57Oem04Mae6LujMHScC2Mqj3NtbVQtMiIzQLHfF94PzB+zbOR1+2Q27DhT88fJdb0p27Y8X76PdW0mA+EwjStXMjCUwptmE4DMa4xC/z6G+o5vIH/G8XBcDyNkMnpU/MglgO/5gR+L0fv3PB+PycWz6KRl/M+DW/jh1q0su+XbfHXdqZMNcdL03VEYOs6FoeMsIhNV7Lcg7gc2WJY1un/KRYBt2/aEx5uIjDUc66MhnM3Vm1efTDI1vQbDV42MNWl/6QpdYzmuly0nXMTDa0x81ke7WB/twpxkYjLi1EvPoyud4v777+Wpp7bkZZsiIiIyOcWenNxCtjzxzZZlrbIs60rgGuDfgwxKSs/+zZsBGHAc6ppbSKaPvVtUMZjfVIkx0MVwrPe4f9fzfdKOV9QVu8pNlxsX3smNC++k3MzPv03r3CYuOec0AL5309fysk0RERGZnKJOTnKtI68CLGAj2UkYP2Lb9vcDDUxKTre9HYBYyCSVcadVy8mRVpOO4281GZFKO0U+DePUuPLVG/jAkuVclUyz5f57gw5HRERkxiuqMSe2bV95lGWPAcHW+pSSN7x/HwDpmppscjKN5jjJtprsY7jv+FtNRmQcD6/YZ2GcAgvmNrFydhNlHjz5w+9x8nkXBB2SiIjIjFbULScihbJ7cIAHe3tgYStD8UzRz5Y+YjJjTUZzHI9iHv+f8MK8dtcVvHbXFSS8/N5TWXj+yQCscj02/u/ded22iIiIHB8lJyLAnfvauH73TmZt2ED/8PQpITyZsSajOa6H6/oU86j4mFtBzJ3w9EbjarEW0xmCsGmy69Yf5H37IiIicuyUnMiMl0ql2Lcv2/KwdOlyEsnMS/xGccjOBp8i1t426W1lHA/X84o5N5lSi85fB8BJns/jd98ZbDAiIiIzmJITmfH2bH+aWaEw9XV11DfOnjaD4ec3VcJAF/FY36S35fk+mSKv2DWVmlcuoitsEDZN2n78I/zp0q9PRESkxCg5kRmv6y8PcOPa9fzfFSeQdjwS0yA5qakso6k8Rf+BtrxtMzlDK3aNWHTBegAWOy6PPHB/wNGIiIjMTEpOZMZL7GsDwK+vJ5meHpW6WpqiEOsg3h/L2zbTGQ93BrcYzFu+kMcrQ/zD1s3c9J3/UuuJiIhIAJScyIwX6s0OJo+2tjIYTxd9pa7aqjJmRZLEJlmha6yRmeJnsgsuOx8vFGLLlk08+OADQYcjIiIy4yg5kRmv0cm2lMw+aTX9Q6mAo3lpLU1RvL52EgP9ed2u43i4nl+U405MfE4o7+aE8m5Mpi6BmlVXw+Uvz06r9Ktvfl2tJyIiIgVWVJMwihRa7/591IbCeL7PglNOZ1tncVfqaqgppzEcpzfPrSaQq9jl+tlvhSK7Ji83XW5edEdB9vX2i16GtbebE8oqeOiXv+Blb3hTQfYrIiIiajmRGa7t8ccA6HYdKuoaSKSKOzlpmVWB23OA5NBg3rft45PKuEXZclJIsxpqqW6sA6D/179U64mIiEgBKTmRGa3P3g7AYHkFybRLPFm8g+Fn1UepN4fpm4JWkxHToRhAIZz46rNxPI9loTAP3XZr0OGIiIjMGEpOZEZ7qreX2zvbSS1ZTDzpkHG8oEM6KsOABY1lZA7tJR2PT9l+Mk5xDopPeiEu3/1GLt/9RpJeaMr319jcxP6qSHbfd/4B13WnfJ8iIiKi5ERmuD/v2slt7fuZfd559A0mgw5nXHMaKqnxB+jt2Del+3EcF9fzKbYJT3wMupxqupxq/AIFd/JrzyXhuiwIhXn4B7cUZJ8iIiIznZITmbESiTh79uwCwDrhJIbi6YAjOrqQabCgIUyyaw9OamqriWUcD8eduTPFj9bQVE97XQUA/n33kU4mAo5IRESk9Ck5kRnLfvRR1lbXsnjuXOobmop2vElzUxWVmT5iHe1Tvi/X80k7Sk5GnHnZ+Qy6Dsl0ml/d+oOgwxERESl5Sk5kxup++C98YuUJXL14WW4wfPFV6iqLhJhfC0Mdu3GdwsSXTDnF1qsrMNU1VbSvbOaj257kxu/fQn9/LOiQRERESpqSE5mxnP37s0/mNRNPZkili2/Qc8vsKsoSh+k/2FmwfaYzuXEnAsArLjqLZa3z6R/o59vfvinocEREREqakhOZsaqHhwBoXLWK3sHimxm+KhphXmWGgf278b3CVRHL5GaKl6yQafIPb3oNEcMgfs/d7Nn4eNAhiYiIlCwlJzIjDfV0MycUBmDRy85lcLj4kpPWOZWY/R0M9hwu6H4zjlt0g+INfBaXxVhcFsMIYPr6M1Yt5xPr1/OW+QvY8S21noiIiEwVJScyI+24/z4AehyHhpZFxBPFNd6ksa6CxnCc3n27C75v1/NJZ1yKKDehwnS5dfGvuXXxr6kwg+l+d+JFp+P6Pkscl43/8/NAYhARESl1Sk5kRjq0ZRMAA5WVJNIOw0U0GN40DVpnleMcaiM5NBhIDImUE0D7RHFbYi1md3k2Yxv89S9JT3FZZxERkZlIyYnMSEauLG9kyRKG4hnSmeKZGX7erEpqvBi9B/YGFkM6o3EnR3PqZRcw7Do0h8L873VfDDocERGRkqPkRGYcz/P41s4d/FfbLhacfwG9/cUzuV55WYgFdQZDB57FSQc3KWTacXHc4klOkl6It7ddytvbLiXphQKLo2FWHX0LmwCYt2MHnTt3BBaLiIhIKVJyIjPO7t272NXXw4NDQyw59QwGi2hm+Na51ZQNddHf1RFoHJmMi+MUT2uSj0Fbup62dD1+wLOwnPXaczngpImGQmz6yn8GGouIiEipUXIiM87mzRsBWLNmLY5nMFQkg+EbaiuYU5agd++z+H6wrRY+2XEnBBxHMQqFQsy5YD1P9Pdx/eOP8OCDDwQdkoiISMlQciIzTuIvD/Cq2XM5e/Ua4kmnKGaGD5kGi2aX4x5uIzEQCzocAJJpp6i6dhWTFauXs3fRbA6lU3zhC9eSTCaDDklERKQkKDmRGcX3fVb09fHuRUtY17qI7v5EUTQOtMyupjrTQ/e+tqBDOSKdcckUUdeuYvPeyy5idkMd+/bt5ftf/XLQ4YiIiJQEJScyo+zdsonGcBjH97FefjH9Q8GXg62ORmipcRnctxM3UzzjX7LJiVtUkzEWk+poBR9/+6W8t3UJG2ybrXffFXRIIiIi056SE5lRdt3zJwA6DQhV1wY+GN4wYPG8Soy+/QwcPhhoLGN5fnbciXKT8Z27bhXL584mbJj0/Oj7pIaHgw5JRERkWlNyIjNKJlf61V2wkOFEhuF4sONN5jdVU+/H6G7bGWgc40mmHIphuhMDn3nhIeaFhzCKbHrIky+/gEEnO/fJvf9+bdDhiIiITGtKTmTGcB2HuclsN66Wc8+lO5bAC3DASVU0wsI6j6F9O8gU6YDqtOPhuB4BV++lwnT5xdLb+cXS26kw3WCDGaOhqYGhlfMBaO3sZJu6d4mIiEyYkhOZMXb++V6qQiHirsuK8y4kNhhcQmAaBkvnVWL27af/YGdgcbyUkUHxpvp2vagzX3kWu3AIGQbdP/weQ7G+oEMSERGZlpScyIyx46EHcTyPzrIIrhFhYDi48SYL5lZT7/XSvac4u3ON8H0YTjpo4MmLMwyD9W+6iAHHYV44wv2f+VTQIYmIiExLSk5kxvjptq28a/PjeBdcyEA8zXBAky/W15SzoDpDf5tNJlWc3blGS6YyeAEPPEl5Id699xLevfcSUl4o0FjG09BUD6cuZ8DJ8D+bN3LXXX8IOiQREZFpR8mJzAiHDx9i69YnSXoe57zmtRzsjQcSRyRssnROOd6h3Qx2HwokhuOVSrtkXC/QksIeBs+kmngm1YQX9ACYF7Hm7JN5qLmWx2J9XHvtv9LR0R50SCIiItOKkhOZEf587z0ArF69luq6RvoHCz+/iQEsm19DZaKLw227Cr7/iUo7Hqm0i2EWb1JQTN512UWctGwRAwMDXPuRD5EYGgo6JBERkWlDyYnMCNV33cn/O3E1l516OkOJTCCTL7bMqaYpNED3s9vw3OKqOPVShhIZ/AArm00n4XCIz//tmzlr7lzeEynnnk9+VMdORETkGCk5kZI30N3NfMdheVU1p55zLof64tnyuAXUUFtBa63LYNs2UsPT7056KuXguH7gJYWni+ZZDVz1mvOpCoVZMRznf7/ypaBDEhERmRaUnEjJ2/jft1Jmmhx2HVpPP4ueWKKg+4+Wh1k2J4LbtZOBQ8U1C/yxSmZcUhlXJYWPw7pz19PWUAnAvK1b2fK73wQckYiISPFTciIlL7N5EwDDixYTT7n0FXC8SThksqKlivL+fRzeu7tg+8033/cZiqdVUvg4nX/FK9iFQ9g0yfzsv2nbvDHokERERIqakhMpaYf37GJhrgzuSX99BQd746QzhRnvYRiwvKWG2lQXB3dux/cK25Us3xIph4wT3Gzx9aEk9aHiL708mmmanP2O19DpZKgNh2m//jq69+0LOiwREZGipeREStrmn9yKaRjs91zmnbSWw32FKyG8dH4ts41eDu/YipsJbsLHfEmmXFJpF9Ms/NdG1HT43bKf8rtlPyVqOgXf/2REqytZ9qYL6HUyzA6H+cOnP0EiEUwpaxERkWKn5ERKlue6VO7YAUBo7ckMxDP09hfmznvrvBqaywbp3fkU6fhwQfY51Xx8BuNpVHjq+M2e10TDxadzX18P129+gmuu+QDJ5PRqBRIRESkEJSdSsh5//FFu3vMsTwz0c9a73kP74aGCVOlqmV1Fa1WS/l1PEe+PTfn+CimezJB23EAnZJyuFq9cxPorXkFZRTmPPPIQH/nwP5BOqgVFRERkNCUnUrJ++rOfsLE/Rtv69RhVdXQXoEtXc1MVi2szDO5+iqGe7infX6GlMi7xpFPwCRlTXoi/338xf7//YlJeqKD7zqc1y1r58gffSUV5Gcv27uXeaz5IKq4ERUREZISSEylJe/fu4e677wLgrW99O4djiSmfFX5+UxVL6zIM73mKgUNdU7qvIA0Op3Hdwvbt8jDYlJjHpsQ8vGk+2copK5fw5auu4BWz57LYcbnrA+9joKc36LBERESKgpITKUlbvvJlrmhu4eIN59O6ZDkHDg4ylZfTC+ZUs6QuzfCep+g/2DmFewpePJkhkXYwQ/r6mKjTTjuJ4ZOXkPY8lvrwh6veTc+B/UGHJSIiEjhdXUjJ6XhmO8sHB7l8/gKuvPQN9A4kORybmq4zhgGLm2tZXJ1g8NktJZ+YAHi+T/9QCk8j4ydl3TnrcM46kSHXocUw2fp/P6Z5UEREZMZTciIlZ/ONNxA2DPbis+pVl7C3c2BKuiGFQgYrFtSxoLyfmL2Jwe5Ded9HsRpOZEimXMwCjz0pNSeecgLVF5+WLTMcCtN7w3U8+rPbgg5LREQkMEpOpKRsv/duludKtLa+4530DCTp6sl/Kd9oeZiTWmuZ6x+ie/tGhmMza8yA43r0D6WmtKvcTLHEWszyd7ySDjdDpRniGzdezy23fAtvmk/aKSIiMhFKTqRkOJkMHT/4PgC7ysuxXv4K9nT0Z2c1z6PGugpWL4xSPbyXrqefIDU0mNftTxeD8TTxlBPIpIylZm7LHE57z6XcV2myuT/GV796HVdf/W4OdnYEHZqIiEhB6apCSsa9X/4iC02ThOtyyj/+M129cTq7h/K2/ZBpsLi5lhObfIyObXRtfxInPf1nfp8ox/WIDaRwCzT2pMLIUGFkCrKvIJRHy/mbd76OT151BdGKcvZu3sSej3+EB27+Fr7G94iIyAwRDjoAkXx4dodNdNtWKCund+1aTly6gse2HczbWJPaqjKWzI1Sm+kmtsNmqLf05jCZiMF4mup4hLrqcrwpnOAyajrcveInU7b9YmEYBpees56Tly/kidvuojESgYce5A+PPMzqf/hHFq5eE3SIIiIiU0otJzLtDQ0N8eGPXsO/bH+axwy48J8+QlvnAIfzMOliOGSyuLmW1c0hKvt20rn1MSUmo3i+T+9AklTGLfjEjKVs0dwm/up9l7O7tgLH91jmefRf9yX++OlPMhTrCzo8ERGRKaPkRKa1VCrFRz96DW1te4g0NnLpdddzuD/FrgOxSW3XMGDurCrWLaliYegwgzseo2vHNtwZ3I1rPImUQ99AEt+HaT4/YlEpKy/jwre9itArTmWvm6HMNFnS3s72az7Indd9iUxG56KIiJQeJScybaUTce655gP427dTURHl+uu/Rqi8hu1tPaTS7oS2aRjQ1BBl7ZI6VtTG4cCTdDz5KEM9ai15MbHBFP3DaUxjar5SUp7Jh9tfzofbX07Km1lfW4tXtHLu1W+kc9k8epwMdeEw9/3xd7z2ta/ke9+7mcHBmVmQQURESpPGnMi01NvRwd3v/yDLfLh68VJSV17Fcms1W57tprc/edzbC5kGTfVRmusjVPtDZA7t5GDHfpxUagqiLz2e79PdFyccMqipLMv7+BMPk4eGFxx5DjOrzK5pmpz1yjPJnHcKD935MJv27OBQTy/XX/8lttx2KxeftIYlr7+cEzacF3SoIiIik6LkRKadJ39/B7Ef/4hFoTBJzyX9mktYf97L2banhwMHj+8uclU0wqy6CuZUQ9QZJNW1j0MHO8gkjz/Bmekyrseh3jiGYVAdjUzpAPmZKlIe4bzXbeCsV5/NnzY9w4/+cD+vrq5nSX8/fP8W7rvl26RXrOSE17+RhatOCjpcERGR4zYtkhPLskzg08B7gAbgAeD9tm0/G2hgUlDd+/by6A3XsTQWoykUptdxmPXe92KddR5bd/fQ1tF/TNupKA/TUFPOrOowteEUZvwgw23tdB4+hOuUbqnaQkhlXA72DOM3VlJdGcH3fDRTY/6VRcJccsZqXn3aKjY/8jRtT+5igevTHArB7l0krvsS97kuwwsX0vyGy1m9eg2RSFnQYYuIiLykaZGcAP8CvA+4CmgHvgj83rKsk2zb1qjQErd79y5++t+3cu727SwvKwfDYE9llPP+7VpS5XVstA9x8EVmgQ+ZBtWVZdRWldFQaVIVShNK95M+3Emst5vEwLElNXJsUhmXzu5hmuqj1FWXEzLB85ShTAXTNDnl7DVw9hr6evt56i9PEtp/iPlGiOZQiEee3sonfn07FRUVnLx2Ha9vbqHhhFUsOfMs5i5dFnT4IiIiL1D0yYllWWXAPwMftW37jtyyNwMdwBuB2wIMT6bAYE83Ox+4n0OPPcr37G08s3MHAKEFrZw2ey6z3vgGLnnTm9m1v4+du7oYTjzX2mGQbRmprIhQGQ1TU25QU+YRcZOQ6CLZdZj+WIzkYL8mtptCjutxsCdOIunQWFdBRVkY8LMtKTIlGhrrOO91GwDo6x1k++PbOLzfp7Gnnt5YjLYtm1jmAe3t9N99F/tdh75whExdLWXzmqk54URa1p3CnDlzKStTK4uIiASj6JMTYB1QA9wzssC27ZhlWRuB81ByMq2kEwkGhwYZGBoiFosxvH8vKdsmdfgQxkA/NakUTWaIasOgGgh3dWGaJueffyEXXPEWVp/2MnoGUmx85hC9sWEqysLUVZdTEQlRWeZTGfYJkyHkJvHiA2QO95EYGqR3aECD2wvMx6d/OEU8maGmqpy66jLKIyFM08D3lahMpYbGGl528Zm8DHi/77Ovd5Cnn9rJrl3t1CUzNJohakNhan0fYv0Q6+dn9/yJn3UcAMCaM4erW1pJhyN40ShUVmJUVxOuqaW8toaKBQupXthKNFpJeSRCeShERU0tFdEohqF60iIiMnHTITlZkHvcP2Z5B9A60Y2Gw/ktR/rg03u57xs3MS81xEgne+PItVf2ye8ijaRyE0Gsc4dY5iWP9Mc3xnTM/61ZQ9wIZdf14ljecxfWY9e9gyr6jRA+Pmv9FGv85Kh1n+8OP0oPIcBnNWlOIZ1bx3/B79zhltGVW3eV4XCWkRmzPT/72offZUz2ZRw8J80aw+WvqiKEgRDZkyxsQJlpUGGG+MLOZ9jYHwPgwlmzuXrJqO4loewp2eM47AtXsux1H2LFGW8kXFnH7zIuv3nYBS+KaVTgezUYvofvOvhuBs9xcF0Hz/HwHBPfrwVqkYkxDDAcE9/3mFQjUwZIgtlrEAqZRMIm4ZCJaWRnRB+5lvXH/H8ZzfGfO/NuOHwaYaOEEhsje1xc12NyB/olrHolrMo+9RNDhPY9SeXBZ6nr76Q2NUhXeQ1muAzPSRNOJJkfCmfjicezP93PldP+8YF9/LKrA4DF0Uq+eNJaAFzfJ+N7OD5kfB8Hgz8NJbgnkcEwQ8yJRLiyphzPMPAx8A1yj9nXTxnlPGZEMYBqfC5leOTb9MgX08jrnUYZm0JVAETxeZ07pnvmkSTJoM0s54lILaGQiem6vC713Gd5/hE3OBAq47Fw9nvD8H0uy/SMe0i7jDIejjz3HXNpunvc+vyHjQh/idQdeX1JuoeycQZk9Rph7o/U5z6GwcXpXqL+0cujDxph7ilrOPL6onQv1eOsGzdC3FXWeOT1+ek+6n3nqOumDJM/lM068vrcTIxZ3tHH5DkY/K68KffKYF5zMzd87F2UR6bDJYaIFJvp8M1RmXsce9s7CTQyAaZp0NBQNamgxrrhltu4YO8WzmyaPe4633ziXgad7B+CC1sXc/qceeOue8vmB+jOTfi3YUErp86bP+66P9z6CO3JBABnzl/A+vkLxl33tu1PsD+eHZ+xfl4zJy9YNO66P392C+1D2epXq2fPZc2iJeOu++vd2ziUSzi8WbNZWD9+f/aqUBjK6yBaz77KRh5NhzlUVkdPdC6dNUvZ07KBwYblz/1Cx7ibkunG4YX/k4/Tb/pX5iWUGW/uqTD3+YsM3yeU7ONA326+0PsUdfEu6pLd1GYGqXfjVPlpor7DobJGqHIgkyAaCR35/ZBhEDJCz9/mcB/9ne0A1EUrWd64dkwgPiMpws7Onexvz96Hmltezilr1j9/tVEOd+2mbf/e7HbDEU5bd+q4H3Wgaze79u4GIGqGOP2U08ddN3O4m127s7VWDODM084ad90nYn3setY+8vrUU86gzDx6evLUQD8/2LH9yOt1606lJhw56ro7hgb57jO/P/L6n9aup6ms/Kjr7ovH+da259b9wEkn0xKNHnXdrmSSm7b+4cjr95y4mqVV1UddN5ZJc+NDfzzy+v9Yqzix5ug3exKuyw0P33nk9bPAPa86j7ddPP6/iYjIeIxi73dvWdblwM+BStu2E6OW/xQot237suPc5G7X9ZYMDCRees3jsH3fIX7/7e9TN9Sf/Rt65Ebvc3d8NzcswDFDYBi0DvcyOzX0gnUwsu0i2+oXkA6FwYD5w33MTWWTBP95bRfZu4l2/XxS4TIMDObGY8xJ9OfW5Xl3DwF21TeTjJRjGAaz4v3Mjfcx0hZjjFrXN2B/7TziZdk/cg3JQeYM9z5/36O231k/j2R1A6FwGdWuQ31qECNSDpFyKItilFVglFdCXRPhhrmYo/4oj75h7sNL3j02DINwOITjuBo3MoUCOc6GMeMmmTcMCIVCuK47pQ0neTfyD+X7+MlhvPggfmIw+zw5hJeM46eTJMoqGS6L4nsuoWScOT37wHXBc8FzwHPxXRfD9+gur+ZQRS0+PmVOGquvHcP3juzHgCPn4uGKag5UNYIPYS/Dmt5slzSf3Dda7lj6+PSUVdJW2YBhGJiey/pY+7gfqzdSya7qWUf2eUbfgRe0Vo+IRaLYNc/dkDq9bz/mOP+IA5EKttfMOfL61L4DhP2jl9seCpfzdO1zmeP6WAdl3tFbOOKhCE/VNR95vba/k6h79BaOZCjMlrrnbnStHuiiyjl6TZmMGWJjfcuR16sGDlLjHP3OgmuYPN6QvSlmAC3zm/nX91yW95bA2toooZC5B1ia1w2LSFGZDi0nI9255gO7Ri2fD2yZ6EYdJ79zMJzYOoeX3fgZ+vqG877t0pPJ/UxMOGzS0FBFX19Sx3oK6TgXRmkcZxOoy/0Up+eOs76jp8K7co86ziIyWfkdeDE1tgADwAUjCyzLqgdOAf4cTEgiIiIiIpJvRd9yYtt2yrKsG4H/sCzrMNAGfIlsi8rtQcYmIiIiIiL5U/TJSc6/ko31O0AUuB94lSZgFBEREREpHdMiObFt2wU+lvsREREREZESNB3GnIiIiIiIyAyg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRomD4vh90DIWW8H2/wvPy/7lDIRPX9fK+XXkhHevC0HEuDB3nwtBxLoypOs6maWAYRhKI5n3jIlI0ZmJyEgPKgc6A4xAREZFj1wykgPqA4xCRKTQTkxMRERERESlCGnMiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRCAcdQCmwLMsEPg28B2gAHgDeb9v2s4EGVmIsy1oEtB3lrffatv2dAodTkizL+hTwCtu2Lxi1bB1wA3Aa0AN81bbt/wwkwBIxznH+LnDlmFXbbdteUMDQpj3LshqB/wf8FVALPAl83LbtB3Lvr0Pn86Qdw3HW+SwiE6KWk/z4F+B9wHuBswEf+L1lWWWBRlV61gJJYD7QPOrn1iCDKhWWZV0DfHbMslnAXcAOshdznwautSzrqoIHWCKOdpxz1pK92Bt9bq8vXGQl4zbgLOAtwOnARuBOy7JO0PmcV+Me59z7Op9FZELUcjJJuQTkn4GP2rZ9R27Zm4EO4I1kv8AlP9YAtm3bnUEHUkosy2oBvgNsAOwxb/8tkAKutm3bAbZblrUC+Bjw3YIGOs292HG2LCsErAKutW27K4DwSoJlWcuBVwLn2Lb9YG7Zh4DXAG8DEuh8nrSXOs6WZf0bOp9FZILUcjJ564Aa4J6RBbZtx8jeRTovmJBK1lpgW9BBlKBTgD6yx/eRMe9tAO7PXciNuAewLMuaU6D4SsWLHecVQAU6vyerG3gt8MTIAtu2fcAAGtH5nC8vdZx1PovIhKnlZPJG+s/uH7O8A2gtcCylbg3QaVnWn4GVwE6yd+b+GGxY05tt278BfgNgWdbYtxcAT41Z1pF7bAUOTWlwJeQljvMast1Br7Es6zWAB9wBfMq27f5Cxjmd5W4M3TF6mWVZfw0sA/4IfB6dz5N2DMdZ57OITJhaTiavMveYGrM8SfbOkeRBrvvcSrIDLz8FXAI8RnZsz0VBxlbiKjn6uQ06v/NpNdkLuDbgdcCHyZ7jv8oV3JAJsCzrHOAW4Fe55FDn8xQ4ynHW+SwiE6aWk8lL5B7LRz2H7B+64cKHU5ps205bllUPOLZtj1xcPGFZ1olk//DdHVhwpS1B9twebeQiTud3/nwG+ErujjTAVsuyOoGHyA42HtsNTF6CZVmXAT8GHgbemlus8znPxjnOn0Hns4hMkJKTyRvpzjUf2DVq+XxgS+HDKV22bR/t4uEp4NWFjmUG2U/2XB5t5HV7gWMpWbn++rExi0e6Hy1AF3PHxbKsvydbLvh24B2jbmjofM6j8Y6zzmcRmQw1r07eFmAAuGBkQe4O/ynAn4MJqfRYlrXWsqwhy7LOHfPWacDTQcQ0Q9wPbMhVkxpxEdmqaeqfnyeWZf3YsqyxY6dOzz1qUPFxsCzrauBrwI3Am0clJqDzOW9e7DjrfBaRyVDLySTZtp2yLOtG4D8syzpMto/tl8jeobs9yNhKzNbcz025P4rdZMvcns1zf/Qk/24BPgrcbFnWF4EzgGvIzusj+fNj4NeWZX2SbPnxlcDXgR/btr090MimEcuyVpK9k/8/wL8Dc0YVH0ig8zkvjuE463wWkQlTy0l+/CtwM9k5DP4COMCrbNtOBxpVCbFt2yM7sPJR4GfAJuBM4JW2bY+tviN5krub/CrAIlse+9PAR2zb/n6ggZUY27Z/C/w1cDnZ7i83k7258e4g45qG3gREgDcAnWN+btD5nDcvdZx1PovIhBm+7wcdg4iIiIiIiFpORERERESkOCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5EREipJlWUbQMYiIiEhhKTkRkaJjWdalwPdzzy+wLMu3LOuCYKMSERGRqRYOOgARkaP4p1HPNwJnA9sCikVEREQKRMmJiBQ127YHgIeDjkNERESmnuH7ftAxiIgcYVnWvcD5oxZdCPwvcKFt2/dalvUZ4C3Ax4HPAcuBZ4CrAR+4AVgL7AI+ZNv23aO2vRr4AnBebtHdwD/btr17Cj+SiIiIHCONORGRYvN+YFPu52yg9ijrLASuAz4PXAE0Aj8HfgJ8m2zyYgK3WZYVBbAsayXwIDAHuBJ4N7AU+ItlWXOm7uOIiIjIsVJyIiJFxbbtbcAAMGDb9sO552NVAu+3bfsntm3/GvgGMB+41rbt79i2/SvgX4AmwMr9zqeBBPAK27Zvt237Z2RbZaLAR6b0Q4mIiMgx0ZgTEZmuHhz1vCv3OHpsSk/usT73eBHZ7mFxy7JGvvsGgD8Dr5yiGEVEROQ4KDkRkWkpN1B+rPiL/Mos4M25n7EO5yUoERERmRQlJyIyU8SAPwFfPsp7TmFDERERkaNRciIixcgFQnne5n3AKmCzbdsOHJmF/kfAs8DmPO9PREREjpOSExEpRjHgbMuyXg7U5WmbnwUeAn5rWdZNQBL4O+D1wJvytA8RERGZBFXrEpFidCOQAX5PtprWpNm2/SSwgexcKD8kW3q4GXi9bdu352MfIiIiMjmahFFERERERIqCWk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkK/x/0hYSRb6pqRAAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Enforce a manual peak position at around 11 time units\n", + "peaks = chrom.fit_peaks(known_peaks=[12])\n", + "chrom.show()\n", + "score = chrom.assess_fit()\n" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Note that even though we provided a guess of ≈ 12 time units for the position of the second peak, the algorithm did not force the peak to be exactly there. If `enforced_locations` are \n", + "provided, these are used as initial guesses when performing the fitting." + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "This approach can also be used if there is a shallow, isolated peak that is not\n", + "automatically detected." + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 0%| | 0/249 [00:00" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load and fit a sample with a shallow peak\n", + "df = load_chromatogram('data/example_shallow.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "peaks = chrom.fit_peaks(prominence=0.5) # Prominence is to exclude shallow peak\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "As the second peak is broad, you can provide an estimate of the width of the peak at the half maximum value \n", + "to provide a better initial guess." + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 17.89it/s]\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "-------------------Chromatogram Reconstruction Report Card----------------------\n", + "\n", + "Reconstruction of Peaks\n", + "======================= \n", + "\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 1 (t: 2.910 - 17.080) R-Score = 1.0000\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Peak Window 2 (t: 45.000 - 54.990) R-Score = 1.0000\u001b[0m\n", + "\n", + "Signal Reconstruction of Interpeak Windows\n", + "==========================================\n", + " \n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 1 (t: 0.000 - 2.900) R-Score = 1.0000 & Fano Ratio = 0\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 2 (t: 17.090 - 44.990) R-Score = 1.0016 & Fano Ratio = 0.0154\u001b[0m\n", + "\u001b[1m\u001b[42m\u001b[30mA+, Success: Interpeak Window 3 (t: 55.000 - 79.990) R-Score = 1.0002 & Fano Ratio = 0.0153\u001b[0m\n", + "\n", + "--------------------------------------------------------------------------------\n" + ] + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAACce0lEQVR4nOzdd3gU5doG8Htm+6YXkkBCCW3oIGBDEBFFsWA5ehR7RVEECwoKNhRRPgQEDkoHAVERxd6xodhApCVDOiSEBNKT7Tvz/bG7EEpIsmwSsrl/15Uruzsz7zzvbso88zZBVVUQERERERE1NbGpAyAiIiIiIgKYnBARERER0RmCyQkREREREZ0RmJwQEREREdEZgckJERERERGdEZicEBERERHRGYHJCRERERERnRGYnBARERER0RlB29QBNIFSAAYA+U0cBxEREdVdawB2AJFNHAcRNSChBa4Qb1VV1agoga+3KApoiHLPJMFeR9av+Qv2OgZ7/YDgryPr53+5giDYAJgCXjgRnTFaYstJvqKoycXFVQEtVKsVERUVgvJyC1wuJaBlnymCvY6sX/MX7HUM9voBwV9H1s9/0dEh0GgE9nogCnIcc0JERERERGcEJidERERERHRGYHJCRERERERnBCYnRERERER0RmiJA+KJiIiIjti6dWsYPFMV86YtUWApAPIHDBhQUdcDmJwQERFRi7R161YRwDOCIN4hCIIOgNDUMREFGVVVVefWrVvfBvDKgAEDap3Gj8kJERERtVTPaDTaseHhUQ693mgRBCF4F6AhagKqqgoOh81cXl4y1u12AcDLtR3D5ISIiIhanK1bt4YLgnhHeHiUIywsqqip4yEKVgaDyQogprS06I6tW7e+UVsXL/atJCIiopYoQRAEnV5vtDR1IETBztsyqYNnbNcpMTkhIiKilkgEILArF1HD8/6eCahD7sHkhIiIiIiIzghMToiIiIiI6IzA5ISIiIiIAmbevNltrr328t5NHUddpabuMX733TcRTR0HeTA5ISIiIqIWa/LkJ7rs2bMrpKnjIA8mJ0REzYDVBfR7OwTt3wCszqaOhogomHBOhDMJ1zkhIiIi8lIUBRaLpclu3prNZkUU63f6wYMHDvjPf27K//HH72OcTqf4xhtvpprNZmX+/DlJO3b8E15VVaWJiIhwDRt2SdGECRPzUlL2mB544K4eCxcuTenTp58FAB599KFOu3btCP/qqx//0Wq1UFUVV155Sd8777wn76abbj18/DkPHz6knT17ZtK2bX9FuN1uoWvXbpWPPz5pf6dOne2+fRYvXhj/2Wcb4ysqKrSdO3epmjz5uWzf9pPFnJTU1rFo0f9a//TTppiSkhJdYmKi7fbb7z5w+eVXlgLA+vXvxqxbt7r13Xffl7ds2eKksrJSXffuPSumTn0xe+XKZQk//vhdjFarVUeNur7gwQfHHQQAu90uLFgwp83mzT9HFRcX6Y1Gk9K3b7+yyZOf3RcdHeO+9trLex8+fFj//vvvtN65c3vYkiVvyyUlxZoFC+Ym/vXX75EVFRXa5OROVWPGPJR33nmDKn1127hxQ/TatataHzp0yNCuXTvrsGGXFi1b9lbbzZv/3urPZyKKol/1C0ZMToiIiIjgSUxuueU/3VJTU5qsi0+3bj0q33nnA7m+Cco333zRasaM19PcbpfQpUtX+y23/KdHRESk87XX5u4NCwtz//TTpsglS95s26NHr6rLLruiNDY21rFly6/hffr0s7jdbuzZsyvMbreL//yzNeTss8+t2r59m7miolx78cWXlh5/LpfLhQkTxnYFBPWFF17JiImJcc2fPyfpiSce6frBB5/uBIDDhw/rd+3aETZjxuw0h8MuvPLKi8mvvPJih2XLVss1xfzoow91yszMMD/yyGP7kpM72b766vPo6dNf6CSKYvqIESPLAKCo6LD+k08+inv55ZnpFkuV+Oyzk7rcffetPYcPv/TwwoXLUr744pOYNWtWJg4dOqy0e/eettdffzXpjz+2RE6aNCW7bdt2dlmWTbNmvdJh0aL/tXn66ef2L126OuWee27tccEFQ4vHjBmb73a7MX78g12dTqcwadLUrFat4pzvvfdO3OTJj3edO3dhar9+/S3fffd1xOzZryXfccc9uRddNLz0jz9+C1+69K22p/uZ+FO/ev2QNBNMToiIiIiOaJ7rngwdenFRv379LQBgtVqFiy++tOiyy0aWtG3b3gEAHTrcW7h+/bsJ6el7TZdddkXpwIHnlm7b9lc4gIPbt28L0Wi0ateu3Sr/+uuPsLPPPrfql19+iuzSRaps1SrOdfy5fv315/CcnGzTihXv7OrSpasdAKZMeSF75cqlCcXFRVoA0Gg06ksvvZYVERHhBoCRI686tGbNysSaYt67N9X4999/Rr7wwvT0Sy65rAwAxo17ND8zM928du2q1r7kxO12C48/PinHd2Heu3ff8r17U0OffPKZXEEQMGbMw/nvv7+udVraXlP37j1t3bv3qBo2bHjJ+ecPrgSAtm3bO7799qvy7OxMEwDExrZyiaKomkwmJSoq2r1p07fhWVmZ5iVLVu32nWPq1Bf37d2bGrJ27aqEfv36Z7777tqE884bVHzffQ8WAEDnzl0O5ebuN3z66cb40/lM/Knf6fzMnKmYnBARNQMCgAHxbui0GghCU0dDFJxEUcQ773wgN7duXQCQlNT2SHcqk8mk3n773YVffPFp1Jo1q0IOHMgz5ORkmUtLS3RutyIAwJAhF5U9//wzraxWq/DHH1vCevbsVZGY2Nb277/bwgEc/OuvPyIuvPCi4pOdKy1tr8lsNrt9iQkAxMcnuCZNmprrex4REeHyJSYAEBYW7nY4HMdUrHrMspxqAoCBA8+trL5P7979Kt5+e1lS9dc6dz56XoPBoLRqFW8XvH8YjUajCgB2u10EgOuuu7H4l19+Cps9+7XEvLxcQ27uftOBA3nGbt26H3Men/T0NJPJZHZXv/AXBAE9evSq3Lbt73AAyM7ONA8efGFJ9eP69j2r8vjkpL6fiT/1C0ZMToiImgGjFlh2mQ1RUSEoKQFcJ9zLJKJAEEURoaGhSlPHUV8Gg/FIzBaLRXzggbskm80mDhkytGTEiJFFffv22zdu3Jhuvn3OP/+CCp1Oq/z++69h//yzNXzYsOHF7dt3sH/yyYcJ+/fn6LOzM80vvDA982Tn0mi0qlDLXRJRFGttgaoec02D0hXFLWg0mmM26nS6Y56LYs2xTJv2bLtff/05+qKLhhedd94FZd269chfu3ZVQlHRIf3J9lfVk1dNURRotVrVcz5RVdXaG9jq+5n4U79gxOSEiIiIKIj89NOm8KysTPOHH37+b1xcvAsASkqKNWVlZVpfEqDX69W+fc8q//nnHyPT0vaGTp78bE5SUluHIAjqwoXz27Ru3cZWfXB7dR07drJVVVVpMjMzDB07drIDQFHRYe3o0df3evnlmWn+xNy1azcrAPz99x+hvm5dALBz57+hiYltrf6UWVxcpPnmmy9bTZo0JfPqq6870tKRm7vPaDSaqiVGRy/+O3fuarVYLJqUlN3G6q0ne/bsDk1KamcDgPbtO1j37NkdCqDQt3337p2nHKdUl8+EPIK2SYiIiIioJYqPT3AAwCeffBSzf3+O/o8/toROnDi+s9vtFhwO55Er8UGDBpf+8MP3seHhYa5OnTrbDQaDKkndKzdv/inmvPMGldZU/pAhQ8uTkztZpk2bmrx1618hqal7jC+8MKVDRESks2/fsyz+xCxJ3W39+vUvmzdvdrvvvvs6Ij09zbBgwdzWW7f+Ffnf/44u8KfM8PAIt8lkdm/e/HNkZmaGYc+eXabnn3+mfXZ2ltnpPPo+GI1Gd15erqGwsEA7dOiwsrZt21unTXu242+//RK2d2+q8aWXnmuXm7vPdPPNtxQAwC233JH/xx+/RS1btig+MzPD8MEH78V8/vmncaeKpa6fCbHlhIioWbC6gFEbzBBE4PNrAR3/lRFRDfr3H2i5554x+zdu3BC/du2qxKioaMeQIRcVx8a2csjy0ZnIhg27pGzu3FlCr159y32vnXXWgPKdO/8NHzr04tKayhdFETNnzkmfPXtm28mTn+gCAD179qqYPXt+msFg8LsZ4NVXZ2fOnft/ibNnz+xgsVg0bdu2tT7zzAsZI0deWWMsp6LVajF16ouZb701P+nee2/rGRIS6urVq0/FbbfdlffBB++2rqqqEkNCQpRrrvlP4fLli5ImTHjItG7dhj3z5r25d/bsmUkvvji1k9PpEpKTO1pefXX23gEDzqkCgGHDLikvLCzIeffdtQmrV69ITE7uaLnsspGHvvzysxoTlLp+JgQIdekzF2Qy3W4lubi4KqCFarWity94FVyuZtdVtU6CvY6sX/MXzHW0uoAh74cBALaMroJOCK76+QTzZwiwfqcjOjoEGo2YBaBjIMrbunVrN1HUfBUXl1ip1xuDctYjahhbtmwOjY2Nc1afEODNN+cnfPPNl7EfffTFrqaM7UzlcNiMhYV5oYrivnzAgAGpp9r3jGo5kSSpK4BtAMbJsrzS+1o/AG8AGAigCMA8WZZnNVWMRERERNRy/f77bxE//rgp+qmnnslu376Dfc+e3aZPPvkofuTIqw41dWzB4IxJTiRJ0gFYCyCk2msxAL4FsBHAgwDOA7BQkqQiWZZXNEWcRERERNRyPfTQhANWq1V89dWXkysqyrXR0TGOa665vuD++8cG7artjemMSU4AvAig4rjXxgCwAxgry7ILQIokSV0ATALA5ISIiIiIGpXBYFCfeeb5/QD2N3UsweiMmK1LkqQLATwA4M7jNg0B8LM3MfHZ5DlEOuWsCERERERE1Lw0eXIiSVIkgNUAHpFl+fgMNAknZqUHvN/bNXBoRERERETUiM6Ebl1vAtgiy/I7J9lmhqdbV3W+GTWMp3NSrTaweZlGIx7zPdhUlZfjm9f/Dx0uOA+9R17d1OE0iGD/DIO9fkBw11EHoGesAo0oQqsVoQ3SqYSD+TMEWD8ioto0aXIiSdLt8HTd6l3DLlYAhuNe8yUlfs8FLIoCoqIaZkrp8HBTg5Tb1L6b/iI65OTAmpkJzWUjEB4V2dQhNZhg/Qx9gr1+QPDW8YtbfY+Cs37VBetn6MP6ERGdXFO3nNwDIB7AfkmSqr/+liRJTwLIAdDmuGN8z/P8PamiqCgv92sB0xppNCLCw00oL7fC7Q6+uevde9MAQYRJo8GfGz9Dv2uua+qQAi7YP8Ngrx8Q/HUM9voBwV9H1s9/4eEmtsgQtQBNnZzchhNvAaYBeA7AewBGA3hQkiSNLMtu7/bhAGRZlgtP58QNtfiV260E5cJaUYoKaDyPD8upQVlHn2D9DH2CvX5A8Ncx2OsHBH8dWT8iopNr0lsQsiznybKcXv3Lu6lQluUcAMsBhANYJklSD0mS7gLwKIAZTRNxy1RaUIBQjSczeTZ1N/5xu2o5gogCzeYCRm4w4YLlntXiiYh8Bg8eOGD9+ndj6rr/jz9+H37ddVf0uuii8/q/9tr0pIaMrS7mzZvd5tprL6+pi79f6vOe5Obu03/yyUdRgTw/+a+pW05OSZblQkmSLgMwD56V4/MBPCnL8qqmjaxlOZCyC1oAZU4n5MoKtDt0Wo1WROQHFUB+lXj0SZAOiCei+tuw4bN/w8Mj3LXv6bFkyZtJ8fEJ9jfeWLg3NDSszsc1J/V5T1588dkOcXFxjlGjritp6LiodmdcciLLsnDc878AnN9E4RCAIkHE8/9ug9Hb1/dQ4aEmjoiIiIh84uMT6tWeWlVVpTn33PNL27Xr4GiomJpa/d4Tlbd7ziBnXHJCZ57i0hIUOx2IM0XgmshoxFitTR0SEREReQ0ePHDAhAkTs2+88eaiKVOe7KAoihAVFe384YfvY+x2m9inT7/yp59+Lic+PsE1ePDAAQDw/vvrWr///rrW77zzwc62bds7lix5M/7LLz+LKysr1SYktLbfeOPog9ddd0MxAPz22y9hTz31WNc77rgnd8OG91vHxrayv/zya5m33/7fXqNH337g888/idPrdcrKle/uEQQBs2e/lvTnn1siXS6XkJzcyfLQQ+Nz+/Xrf2QmonXrVseuX/9uQklJsb5v37PK4uLiT5kk3X//HVLPnn0qSkqKdb/++nO0TqdTrrrq2sIRI0YWv/rqSx0yM9NDEhLa2J566pnss84aYKn+nlx66eWld9zx354dOnS0zJv3VjoA/Pzzj2FTpjzZ9emnn8v46KP18Skpe0JTUvaEXnvt5WEbN36189prL+998cUjisaPf/xA9Rji4uLt06f/X/bJ3o+33343paDgoG7OnP9ru337tnCNRlS7du1WNWHCxP2dOnU+flkMOgVOe0G1Ki4uBgB0at8Rtya1w/CQMCgKBzoSEVFwclutYk1fit0uNMa+p2PLll+jysvLtW+8sVB+7rmXMlJS9oQtWDA3EfB0d4qOjnZeffV1BRs2fPZvYmJbx5w5MxM///yTuIcfnrBv2bI1e6677oaC//1vbvvVq1e2ql7uH39siVy4cGnK5MnPZms0ogoAP/74ffScOQvkF154JSMiIsL96KMPdTlwIM/w8ssz0xcuXJrarVv3qkcffajbzp3/mgDgk08+inrrrQXtrrvuhoIlS97e3b17z6ovv/wsrrY6bdz4QUJcXLxj6dLVu6+66prCdetWt5k06bEuN910y8H//W9Jil6vU2bPfq398cdFRka6n3xyStY//2yN+PjjD6OLi4s0M2dOTx4+fMThK664unTmzLnpXbp0rTr//AtKli5dnVKf97n6+2Gz2cRHHnlAUhQ35sz5nzxnzv/k8PAI10MP3dv9wIE8XX3KbenYckK1MmVn4vakdtDFtQHKiqATRVQWFSG8VavaDyYiImpmMh4Ze1ZN20xdpbK2Tz3tm8AHmY+P76s6nSe92WvokFzZfurzsu951qQneisWy0mvvfRtEi0dpk2v18VxjTGaTO7nn385R6fTqV27drNt2fJr0datf0UAnu5OoiiqJpNJiY9PcFVVVYmffroxfuLEp7MuueSyMgBITu5oz88/YNiw4d2E22+/60hf7ptuuuWgrxVg375sPQBceeWoQ5LU3QYAv/zyU1hamhyyceOX/8bGtnIBwOOPT8rbs2d36Lvvronv3btv9ocfvh8/aNDgkttvv/sQAHTu3OVgSsrukOzsTPOp6tS2bTvrww9PyAeAu+8eU7Bu3Zo2Q4ZcVDxixMgyABgxYmTRkiVvtT3ZsUOGDK0YOfLqwrfeWtD2+++/iQ4JCXFPmjR1HwBERUW7tVqtqtfrFV/MdVX9/XjvvbWxFRXl2ldfnZ2l0+lUAJg2bUb29ddf2fuDD95rVb0Vhk6NyQnVKryoGP0T2mCnwQCHokAviqg4VMDkhIiI6AwUH59g910gA0BISKjb5XKdtGVm795Uo9PpFF5//dUOs2e/1sH3ututCC6XU7BarUeO69Ah+YTuSe3atbf5Hqem7jEDwE03XXvMzFsul0twOh0CAOzfv8900UXDi6tv79GjV2VtyUmbNklHzmM2mxUASExMPBKPXm9QXC5nja1Pjz/+VO62bX9FbNv2d8Sbby7fYzKZ1Jr2ravq78fevbLZarVqLr/8on7V93E6neL+/TnGEw6mGjE5oVpp7N7fvZBwWLzJSVXR4aYNiqiFEQB0jFA8i9Bx6CZRg+o0/81/atomiOIxF7UdZ8/7t677Jr/2+s667ns6qicmR528eEVRBAB45pnnMzt27Gw7frvBYDhyoNFoPKFPt9FoPLJdURTBZDK5Fy1aeUILkF6vVwBAEASox4Wi1WprrbtWqzlhH0Go++iEgoKDutLSEp1Go1G3bNkc3rt3n1oG0B57OpfLfcJf3urvh6IoaN26je3VV2enH79fSEhIUM6I1lA45oRqpXd5WjmF0AhYvX9RLMVFTRkSUYtj1AIfXmPFd7cDJt5WImpQGpNJqelLrHax3pD7NpbOnbvaNBqNmp9/QN+xYye77+vnn3+IWL16ebwo1v1SsVOnLlar1apxOOxC9bJWrlyasGnTt5EA0L59B8uuXf+GVj9OllNCAlurYymKgmnTpia3b59seeih8fveeeftxF27dlZbBFw49nPSaNXKyipN9eMLCwv0pzpHx46drIcPH9aHh4e7ffVu1669fcGCuYl//rklLNB1CmZMTqhWem9CIpjDYPPepbCWcCpwIiKi5i4iIsJ96aWXH1q9ekXihx++H52dnaX/4IP3YlauXJYUFRVdrzEYw4YNL2vfvoP1+eef6bR5889hmZkZhpkzpyf98MN3scnJnWwAMHr0HQf//PP3qCVL3ozPyEg3rFq1LO6PP7Y06AKIixcvTMjKyjJPmfJC9k033Xq4e/eeFS+//Fyy3TsJgclkUgoLCwx5ebk6AOjevUfl5s0/RW/Z8mtoenqaYdq0Z9tbrRbNqc4xatT1xaGhIe5Jkx7rtHXrnyFpabLx2WcnJW/fvjWiSxeJ05zWA5MTqpXB15BpDoNd9Pxu2svKmi4gIiIiCpjJk5/df8011xe8/faKxLvuGt1r7dpVrW+++dYDjzxSv0HcGo0G8+a9tbdLl65V06c/3/G++27vsWPH9rCpU1/MGDJkaAUAXHLJiLKnnnom85tvvoy9997be27e/HPkqFHXFTRMzYCdO3eY3n13TZvbb78rr2PHTnYAePrpZ3MOHz5kmDNnZiIAjBp1/aH9+/cZ77nn1p5utxvjxj2W17WrVDllylNdHnnkgW7h4eGuQYOGnPKubEREhHv+/MWpERGRrsmTJ3YZO/be7oWFBfpXXpmV1q1bjxO6y1HNBPX4jn/BL9PtVpKLi6sCWqhWKyIqKgQlJVVwuYJrmt1d99wBvSgi9ao78cvX6yFv/x03j3kAt9z9QFOHFlDB/BkCwV8/ILjraHMBd3wdAo1GxNuXV0GH4KqfTzB/hgDrdzqio0Og0YhZADoGorytW7d2E0XNV3FxiZV6vZEXj0QNyOGwGQsL80IVxX35gAEDUk+1L3su0yk5rBbovf1NNaGRsIZEYp/VguKqwCZ3RHRqKoDMMvHoEw6KJyKiIMTkhE6p0mLF2B3bYBY1eCgkAqYQz5iuMnbrIiIiIqIA45gTOqUqSxWKHA4cFgCIGrQWVFzXug3iiotrPZaIiIiIqD7YckKnVFlZAQAICQmDW1ERr7hxVWI7ZFVamjgyIiIiIgo2TE7olCy5+3F7Ujs4Q0KhKCpg8EwLrnHXa3ZBIiIiIqJaMTmhU3IcPIirE9og1+1GJQDhSHISfLPMEBEREVHTYnJCp2Sv8HTrcmk865uIZs+irrqWNwU1UZMSALQOUaARRc7URUREQYvJCZ2Sy+KZMtgp+pKTEACAvskiImqZjFrgy/9YvWtIAC72rCQioiDE2brolFze9UzcWk8eqwkJBwAYBAEC794SERERUQCx5YROSbV5Fs116/TQAND6khNRhOJ2Q/C2qBAREQULQYBGEIQmuYGrqqqiqnA3xbmJzgRMTujUHA4AgKLRQQNAEx6N51J3w+p2412bDSZvNy8ialg2FzDmayO0GmDxJfzjTdRQBAEaRRBaW2yuJvk1Mxu1LhFq/pmWoMybN7vNpk3fxGzc+NXO+h6bnp5mGDPmrh4rV67d3a5dB0dDxEfBg//f6NRcTgCAqvOMMtGbzJCrKqGqKqw2K5MTokaiAthT5GmpVFVwUDxRAxEEQbTYXNrfd+UrFpurUaemNBu14nm9WmvDjFpRVdUzKjnx1549u0yTJz/R2eGwcygB1QmTEzqlPwx6LPxjCy7+Tz90AiAIAvQGE+w2CyyWKkRHxzZ1iERERAFnsbmUKquzKebND5qL+IUL5yV88MG7rRMTk2zFxUWcS4fqhMkJnVKJ3Y79NivUkLAjrw1rFQ+T046qgwVAUvsmjI6IiIgGDx44YOzYR/Z9//230VlZGSHx8Qm2e+4ZkzdixMgy3z7fffd1xMqVS9vk5eWaoqKiHRdeOKx47NhH8g0GgwoAqal7jG+9tSAxJWVPmM1mFWNiYh1XX31d4d1331d4snOuXLk0buXKpUlPP/1c5mWXXVF6sn22bv0z4sknn8mKiIhwP/XUY10bpPIUdIImO6eGYfMOiNfqDEdeGxkdjdFJ7WA7mN9UYREREVE1K1YsSRo2bHjx4sWrdg8ceG7ZSy891/mvv/4IAYAffvgufPr0FzqNHHnV4eXL1+6eMOGJfZs3/xQ9ZcqTyQBgsVjEJ54Y39VoNCnz57+VumLFO7sHD76wZNmyt9ru3LnDdPy51qxZ2WrVqmVJU6dOy6gpMQGAZcvWyCNHXlXjdqKTYcsJnVIPux1JrRMR7j66qILT9927BgoRERE1rWHDLjl8++13HwKAiRMn5+3a9W/Y+vXr4s4++9ysNWtWth4+fMThW2+98xAAJCd3tGu12pxJkx7vum9ftt5sDlFGjbqucPTo2wvDw8MVABg37rEDH364PiEtLdXUu3cfq+8869atiV2+fHHS88+/nH7RRcPLm6a2FMyYnNApnSWISEhsix3VVnxzeUfiOq3Wmg4jIiKiRtS//8CK6s8lqXvV9u3bwgEgKyvLnJGRHvLDD9/F+Larqud7enqa8eKLLy2/5ZY7Cj/77OPojIw0c15eriEnJ8sMAG63cmT6jZKSEt2bb85rr9Fo1KSkdvbGqBe1PExO6JS03j9eguFoq67LO/W7i8kJUaOKMqgQRE7TRUQn0mp9/7E9VFWFKGpUz2NFuPbaGw6OGnVd0fHHxccnOAsLC7RjxtzVPSws3HXeeYNKBww4p7xPn75VN910bZ/q+wqCiGnTXklbvnxxm+nTX0hetmx1qihyhAAFFn+i6JR82esxyYn3D5HbxuSEqLGYtMAPN1nwzxjApGvqaIjoTLNnz65j5vZPTd0T2qlTJwsAJCW1s+7fn2Ps2LGT3fdVUJCvmzfv9aTKygrx0083xlRWVmiXL1+T+vDDE/JHjryytKys1HsJcDTniYyMcA4dOqx88uSp2ZmZ6eYVK5bEN2IVqYVgckKnpBc8d2lFo/nIa25fcmJniy4REdGZ4NNPN8Zv3LghOj09zfDaa9OTcnKyTaNH31EAADfffOvBP//8PWrevNlt0tPTDJs3/xw2c+YryVVVldr4+ARXfHyCw263i5999nFUbu4+/U8/bQp/8cWpHQHA4XCccK3YvXtP23XX3Xhw7dpVbTIy0g3Hbyc6HezWRTVSVRV6bxcSwXj0hoxb1AKKA4qNyQkREQUns1Hb6DdwT+ecI0aMPPTBB+/Gz507y9S+fXvLjBmz0nr27GUFgCuvHFWiqmrmunWrW3/44fsJZnOIe+DAc0ofe+ypXN/21NSUg0uWvNl2/vzZYmxsK8dll11xeMuWXyNTUnaHADh0/PnGjn0k/9dff46aPv2FDkuXvi2zexcFCpMTqpHDZoXWO75ENIUcadjdbgzDR9t+xiW9ejZdcEQtjM0FTPjeCJ0WmDuUf7yJGoqqqorZqHWd16u1Fk3Qw8Rs1LpUVa334o/JyZ2sTz01Jbem7VdddU3JVVddU3KybYIgYOLEyXkTJ07Oq/76vfc+UOB7PH784wfGj3/8gO+5wWBQ16//ZHddYhs0aEjF5s1/b63LvkT8/0Y1spYfWbsJojEMbu/jCmMIUiorMFBxn/xAIgo4FcDWAo3nsQqA4+KJGoSqwi1CzQ9rgpYTz/lVRVXBf7DUYjE5oRrZ3Aqe3L0DJp0Od+j0gNtzI0en93QvtXG2LiIiCkKqCreqqkwQiJoAkxOqkc1hR47VglBNGBTl6GwdcaqKy1rFI7qktOmCIyIiIgAAu0xRMGFyQjWy2WwAAKPR5ElOvN1I2rgduL59MrKquEI8EREREQUOkxOqka2gANe1bgOEhkFRVYjeaYVVnR4AILjY4k1EREREgcPkhGrkLCzA6MR2yHe7cMz0HnojAECj1HsyESIiIiKiGjE5oRo5rRYAgEs4bsIS74B4Tf1nOiSi02DUqhA4TRcREQUxJidUI5fFMxuXWzj2YkgweFtOVPWEY4ioYZi0wO+3WBAVFYKSEsDlauqIiIiIAo/LeVKNXN6pgt2i5pjXBb0JAKBjbkJEREREAcSWE6qRyztbl1tzbHIiGjzJiZa9S4iIKAgJAjSCcHyf5sbBRRippWNyQjVSHXYAJ7acuCNiMCMtFapOh1WCd7VqImpQdjfw6E8G6HTAqxcAmtoPISI/CAI0JtHZWnVYmuQaSdCbXVZFl3+mJSjz5s1us2nTNzEbN361s67HrF+/LmbDhvfjCwsLDVFRUc4RIy4/fN99Yw9qNPwLRjVjckI1Uh0OAICi0RwzBFdjDsM/ZaUQRRGqqgIcoEvU4BQV2Jzn+ZOtnA9o+GtH1CAEQRBVh0VbKf+hKHZro878IhpMYqh0rlbQRYrNfYX6jRs3RP/vf2+0f/DBR/ade+75Fbt37zTPm/d6e4fDKTzyyGP5TR0fnbmYnFCNMsPDseKnTeg39HJ0r/a6zjtbl6IocDpd0Ol0TRMgERFRA1HsVsVtq2qKaSmDYjzwJ5981Gro0IuLbr751sMAkJzc0Z6Tk238+usvYpmc0KkwOaEalasK5MoKSCbzMa/rdHoMjWkFvSjCWlEGXXRsE0VIREREgwcPHDB27CP7vv/+2+isrIyQ+PgE2z33jMkbMWJkmW+f7777OmLlyqVt8vJyTVFR0Y4LLxxWPHbsI/kGg0EFgNTUPca33lqQmJKyJ8xms4oxMbGOq6++rvDuu+8rPNk5V65cGrdy5dKkp59+LvOyy64oPX77gw+Oy42OjjlhXsGqqkpee9IpBUV2Tg3DbveMOfG1lPhotDo80D4Z97dPhqWoqClCIyIiompWrFiSNGzY8OLFi1ftHjjw3LKXXnqu819//RECAD/88F349OkvdBo58qrDy5ev3T1hwhP7Nm/+KXrKlCeTAcBisYhPPDG+q9FoUubPfyt1xYp3dg8efGHJsmVvtd25c4fp+HOtWbOy1apVy5KmTp2WcbLEBADOOee8qs6du9h9z0tLSzVffvlZq759zypvoLeAggSzV6pRq/JyjIxLQPRJFlRwqiq0OLpQIxERETWdYcMuOXz77XcfAoCJEyfn7dr1b9j69evizj773Kw1a1a2Hj58xOFbb73zEODpYqXVanMmTXq867592XqzOUQZNeq6wtGjby8MDw9XAGDcuMcOfPjh+oS0tFRT7959rL7zrFu3Jnb58sVJzz//cvpFFw2vU6JRWVkpTpw4vrPT6RDHj39if0PUn4IHkxOqUSeLBZe064B/7bYTtjlUFSYADov1xAOJiIioUfXvP7Ci+nNJ6l61ffu2cADIysoyZ2Skh/zww3cxvu2+mTbT09OMF198afktt9xR+NlnH0dnZKSZ8/JyDTk5WWYAcLuVI9NvlJSU6N58c157jUajJiW1s6MOCgoOaidOHN+loOCg4dVXZ+/t0CHZcfq1pWDG5IRq5vaOAzzJgHeX968aW06IiIianlarPWZif1VVIYoa1fNYEa699oaDo0Zdd0Jf7Pj4BGdhYYF2zJi7uoeFhbvOO29Q6YAB55T36dO36qabru1TfV9BEDFt2itpy5cvbjN9+gvJy5atThXFmkcIpKXJxokTJ3Rxu93C3LkL5R49evGOJtWKY06oRqLiTU60JyYnTt93JidEjcKkBbbfUYWcCYCJE+QR0XH27NkVUv15auqe0E6dOlkAICmpnXX//hxjx46d7L6vgoJ83bx5rydVVlaIn366MaayskK7fPma1IcfnpA/cuSVpWVlpd4b2EdznsjICOfQocPKJ0+emp2ZmW5esWJJfE3x5ORk6x999OGuRqNReeut5SlMTKiu6t1yIkmSFsBFAIYDSAYQAeAwgBwAXwL4TZZlLssXBERFAUQR0BlO2OYbheK0ndjli4iIqLkTDaZGv4F7Ouf89NON8e3bJ9t69epTtWHD+61ycrJNkyY9mw0AN99868FXX32p47x5s9tcccXVRQcP5utff/3VDrGxsY74+ARXfHyCw263i5999nHU2WefU5mRkW5cuHBeWwBwOBwnxNS9e0/bddfdeHDt2lVtLrpoeGmnTp1P6OL18svPd3C5nOKzz76UptPp1IKCg0euOePjE04czErkVefkRJIkPYCxAJ4AkASgBJ6EpApAWwBXAXgGwAFJkl4DsFiW5Tr1R6Qzk8bbdUs4aXLi6YLqYnJCRERBRFVVRdCbXaHSuVo0QQ8TQW92qYpa7/VVRowYeeiDD96Nnzt3lql9+/aWGTNmpfXs6WmtuPLKUSWqqmauW7e69Ycfvp9gNoe4Bw48p/Sxx57K9W1PTU05uGTJm23nz58txsa2clx22RWHt2z5NTIlZXcIgEPHn2/s2Efyf/3156jp01/osHTp23L17l35+Qd0KSm7wwDgwQfv7nH8sZs3/721vvWjlqNOyYkkSecAWAXADeBNAO/Lspxxkv16A7gCwHgAEyRJul2W5S0BjJcakcbblCvoT0xOvrI7UZadgduuvbaRoyJqmexuYPKvBuh1wPPnApqmDogoSKkq3FZFly/oIpuk67uqqIqqot6rwycnd7I+9dSU3Jq2X3XVNSVXXXVNycm2CYKAiRMn502cODmv+uv33vtAge/x+PGPHxg//vEDvucGg0Fdv/6T3Scrr3XrNk4mIOSvuracrAYwWZblj061kyzLOwHsBPCaJEn/hSeh6Xp6IVJT8Q2tO1lykiNokVFWgv+cYiAcEQWOogLf5Xj+ZD97NqARajmAiPymqnCrqlrvBIGITl9dryx715aYHE+W5fcB9Kp/SHSmWHHoIKbvTYEjIuaEbVrvIHnfQo1ERERERKerTi0nsiz7NSe1v8fRmSGlvBwVFeUYaQw9YVt7nRZx0bEQiw43QWRERETkwy5UFEzqOubkufoUKsvyNP/CoTOJ3bv4olanP2Hb2Rqgb8fO2Hew4IRtRERERET+qOuYkxeOe64CEOAZIH8YQBQAPQAHgGIATE6aOUVRcFFEFJyKAq1wYud2RdQAbhcUJxvHiIiIiCgw6tqt68jYFEmShgNYB2AcgA2yLLu9r18OYBk8Uw1TM2evqsJ97ZMBAHs1Ghw/Iblb1ABuQHU6TzyYiIiIiMgP/ky1tADAs7Isv+9LTABAluWvAEwFMD1QwVHTsVdVHnks6E0nbFc1nryWyQkRERERBUq9V4gH0A7Avhq2HQIQ7384dKawV1UBABRVBUQtjp9xXfElJy4u8krUGIwaYMvoKkRGhcBWAbg5ySkREQUhf1pO/gXwiCRJuuovSpJkBPAUgD8CERg1LbvFAgBwqgrUk/yY+FpOBCYnRI1CEACTDjDrPI+JiIiCkT/JydMALgaQIUnSYkmSpkuStBRAJoC+4JiToOCweFpOHKoKVVVP3MG7zglv3xIRETVvVVVV4urVK1r5nk+Z8mSH+++/Q2rIc+bm7tN/8slHUadTxvr178YMHjxwQE3bG6MegwcPHLB+/bsnLgjXDO3bl60fPHjggN9++yWsKeOod3Iiy/JPAAbB00JyNYCJAEYC+A7AAFmWtwcyQGoaDm/LiUsFFOXE5KQgNBpvZKZhu0bT2KERtUgON/Dsr3o88Y3nMRFRoCxfvjh+w4b3EnzPn3pq6v6ZM+emN+Q5X3zx2Q5//PFbREOeg5onf8acQJblbQBuDHAsdAZxWm3QAnDBM2/08Swh4fi1uAjnuTggnqgxuFXg0wxPi+UT/QCRXbuIKEBUVT3mL0pEREQj3AJR+VeMTsqv5AQAJEkaCeBSAK0BPAPgLABbZVnOCVBs1ITsIWa8kZaKmPjWuOAk230LMzrs9sYNjIiIiI5RVlammT37taQ//9wS6XK5hOTkTpaHHhqf269ffwsAWCwW8dVXp7X9+++/Ii0WiyYxMdF22213HRg58qrSefNmt3n//XdaA54uSu+888HORYv+16awsMCwZMnb8m+//RI2efITXWfMmLX3jTdeb1dYWGjo0KGDZerUaVnffPNl1GefbYx3u93CkCEXFU2Z8sJ+QRCgqiqWLn0r/ptvvow9dKjQoNPplG7delROnPj0vvbtOzjuv/8OKSVlT2hKyp7Qa6+9PGzjxq92OhwOYd6819v8+OOmGKvVoklKame95577DwwdenG5r55ffvl55KpVS9sUFBw0durUpapfv/7lNb0nPm63gunTX2j744/fx2i1WvXSSy8/PH78E3larecS+M8/fw9Zvnxxm4yMtBCn0ynGxyfYb7nljvxrrrm+2FfGxx9/GP3ee2sT8vMPGCMjo5xXXXVN4b33PnDCKtSHDhVqH374fikyMso5d+7CdLPZrPz006bwJUveTMzLyzXFxcXb//Of/x6cN292h3fe+WBnu3YdHNdee3nvc88dVPrPP1vDy8rKdM89Ny3jvPMuqFi1alncF198Gnf48GF9bGys4z//ueng6NG3HQaA3377Jeyppx7r6isD8HTJuuWWG3rPnDln76BBQyqmTHmyg6IoQlRUtPOHH76PsdttYp8+/cqffvq5nPj4BBcApKTsNs6Z83/t0tPTQqKiopw33XRL/mn9IAZIvbt1SZJkliTpGwCfA7gHwH/hWYRxLICtkiT1DGyI1BRsArCtrBQ54sl/RMwAzo6MQqKTA+KJiCh4qCpQ5YTYVF8nG+Z56nhVPProQ10OHMgzvPzyzPSFC5emduvWverRRx/qtnPnvyYAmD9/dpvs7Czzq6++nrZq1bpdAwacXfbqqy913LcvW3/PPWMOXn31dQXR0dHODRs++zcxse0JqysrioKFC+e1nTRpSvb8+YtSysrKtA8/fH/3fftyTG+88aZ855335n711edx33//TQQArFixJG79+nWtx4x5KHf16vd2vfjiKxkHDuQZ58yZ2RYAZs6cm96lS9eq88+/oGTp0tUpAPDss5M6bN36d8TTTz+btXjxqj0XXnhRyXPPPd35u+88Zf711x8hr7zyQqdBg4aULlny9u5LLrmsaMOG91rX9v7s3ZsaWlpaops/f1HqE09Mzv7uu29iZ86c3hYADhzI002e/HjX5ORO1kWLVqYsXrxyT5cuUtWcOf/XobCwQAsAn3/+SdSsWTOShw69uHjp0tW777lnTO7atavavPvu2tjq5ykqOqwdN26MFBMT63jjjTfTzGazsnPnDtNzzz3duW/fsyoWL161+7bb7jywbNmitsfH+PXXX7YaN+6xfa+9NnvvwIHnVr722vS27723ts1tt911YNmy1buvueb6gkWLFrRbtWpZXH1+NrZs+TWqvLxc+8YbC+XnnnspIyVlT9iCBXMTAU9C+8QTj0hms9m9cOGSlPHjn9j3zjtvt6lP+Q3Fn5aTVwAMADAcwC/wrAoPALcD+BrASwCuD0h01GTs3hYRnV5/0u3RDiue7CzhoJvJCRERBQdVBW77ytxNLtGENFUM3aLclasvt8h1nZVv8+afw9LS5JCNG7/8Nza2lQsAHn98Ut6ePbtD3313TXzv3n2z8/MPGEwms7t9+2R7RESEe8KEiXlnnTWgIiIiyh0aGqqYTCZFFEXVd0f9ZO6++/68AQPOqQKAQYMGl3722cdxzz33Uo7ZbFa6dJFsa9asSszISDNdcsllZW3btrNPnPh01qWXXl4GAG3btnf88ceWkp9//jEKAKKiot1arVbV6/VKbGwrV2ZmhuHXX3+JXrBgcYqvtadTp84FGRnppvfeW5NwySUjytavXxfXtatUOX784wcAoHPnLvbMzAzTF198csoL9oiISOdLL72WZTQa1W7detgOHTqUt2jRgnaPPvpknsPhEG6++bYD9933YIHovRl799335//44/cxmZkZxri4+MoPPng3/vzzLyh+4IGHD3rjslssVRqj0aT4zlFeXqYdN+6BrrGxreyvvz4/w2g0qgCwbt3q+OTkjpYnn3wmFwC6dOlqLy4u1i1Z8uYxCcpZZ/Uvu/DCiyo8ZZWLX3/9eat7731g/7XX/qfYe85DBw7kGd57753Wd9xxT2HdfjIAk8nkfv75l3N0Op3atWs325YtvxZt3fpXBAB8/vnHUQ6HQ3zxxRnZERER7m7detisVsv+l19+vlNdy28o/iQnNwF4WpblHyRJOjIaWpblg5IkvQzgfwGLjpqMWlyMoTGxiNAbTr6D93VNPe/wEBERncmEkw+1PGOlpu4xA8BNN13bu/rrLpdLcDodAgDcdttdB6dOfarzNddc1rdLl65V/fufXTZy5FXF9RlbkpzcyeZ7bDAYlYiISKfZbD5yga7X6xS73SECwKWXXl62detfIfPmvd4mLy/XkJu735Sbu98YFRV10oGqe/bsMgPAE088cszMWm63WzCbzW4AyMnJNp911oCy6tt79+5TWVty0qlTZ4svWQCAPn36VblcLiEjI93Qu3cf63/+89+it99eHpeTk2XMy8szZmdnmgFAUdwCAOzbl2O68MKLi6uXedNNtx6u/nz16pWJbrdLOP5cmZnp5uO7nvXvf3YF8OYxMSYmJh15b9PT9xrdbrdw1lkDK6vv069f/8pPP90Yf+hQYZ2v3ePjE+w6ne5IPCEhoW6XyyV4Ysswx8e3tlX/GRgw4OzKk5XT2PxJTiIBZNewrQRAaH0KkyQpDsDrAC4HYALwE4AnZVne493eD8AbAAYCKAIwT5blWX7ETfWgzc/Hw8mdkS4IOKF9F4CoN3r2a9ywiIiIGowgAKsvt8gWl19LLQSEWQulPmsZKYoimEwm96JFK1OO36bX6xUAGDjwnKqPPvpyxy+//Bj+119/hH/zzZex7767ps3LL89MGzJkaEVdzqPTaY9J2sRTzMqxePHC+HXrVicOG3bJ4X79+lf897+jC3/8cVPkL7/8GH2y/VXVk+PMnbswNSQkVKm+TaM5ehv0+IH7Wq2u1kRSFMVj9lEUz7W4waBX09Jk47hxY7p16NDRMmDA2WWDB19UFh0d7XzkkQe6Vz9/bZ9H7959yq+4YtTh6dOf7/TDD98VDxt2Sbn3WChK7QP/9XrDCXUUjjuponjelurJRvUugE6n64TzVN/3qOov1f/9bAz+XFvuAnArgG9Osu1q7/b6+ASAAs90xFXwdAv7TpKkzvAkK98C2AjgQQDnAVgoSVKRLMsr/Iid6khxeLp1KeLJpwoWfMkJ59ogIqIgIghAiA5K7XueGTp16mK1Wq0ah8MudOvW48gd+Oeee7p9585dLHfccc+hefNeb9O3b//KESNGlo0YMbLM7Xbvv/nm63r+8MN3UUOGDK0QBCGgF6Xvv/9Om5tvvu2ArysUAKxd+3bCseNpjp6zSxfJCgAFBQX6Sy7pe6R1ZM6cmYmCIKqPPjrxQMeOnSwpKbuPuQGekrKr1u532dmZZkVR4Ou2tW3b32F6vV5p3z7ZPmvWjKTw8AjnokUr9vr2//bbryIAHFnjLTGxrU2WU445z4wZ09oWFBzUz527MAMALrxwWMnIkVeW/vDDt8Vz5szsMGDAObvCw8OVDh2SLccfu3Pn9lPG3LlzV5tGo1G3bfsrtFev3lbf69u3bwuLiIh0RkZGuXU6T9JZXl5+5CItJyerhq4uJ9elS1fLpk3fxhQVHdbGxMS6AGDHjn+arDtjdf7cGXgZwO2SJH0G4D54UrChkiTNB/AQgJl1LUiSpBgAWQDul2X5b1mWU+BJTloD6AlgDAA7gLGyLKd4E5I5ACb5ETfVg2L3tJfUlpzoIHC1aqJGYNQAm/5bhW33A0Y2WRKR17Bhw8vat+9gff75Zzpt3vxzWGZmhmHmzOlJP/zwXayvK1ZeXp5h7tz/a7d5889h+/fn6D///JOow4cPGXr37lMJACaTSamqqtKkp6cZnE7naf9Xj4mJdWzb9le4LKcY09L2GubM+b82f/75e6TT6Txy3WkymZTCwgJDXl6urlu3Hrb+/QeWzZs3q/0333wZkZ2dpV+69K34Dz9cn5CYmGgHgFtuufNgTk626bXXpielp6cZPvrog+gvv/ysVc1ReBQVFemffXZSh9TUPcYvvvg08p133m5z7bU3FBgMBjUuLt5RXFyk37Tp2/D9+3P0X375WeS8ebPbA4DD4ekSd8stt+f/9tvmqJUrl8ZlZWUaPvnko6hvvvmy1eDBQ0uPP9dTT03Z73A4hFmzXmkLeLrTZWVlhMya9Wpienqa4auvPo9cvXplInBiy4hPRESE+5JLLju8du2qxI0bN0RnZmYYVq9e0errr79odd11NxQIgoBu3XpYjUajsmLFktaZmRmGLVt+DV22bFFSTWWezFVXXVscHh7hmjLlqeRdu3aatmzZHPq//71xwmD9puDPIowfA7gNQB94Os0J8HTLuhHAg7Isf1CPsopkWR4ty/JuAJAkKR6eRR1zAewBMATAz7IsVx+gtcmzq1SvGQuofhTv+iVqDYssigYTAEBXw2xeRBRYggBEG4EYM3hDgIiO0Gg0mDfvrb1dunStmj79+Y733Xd7jx07todNnfpihq/L1pQpL+T06dOv4tVXpyXffvtNvd5+e3ninXfem3vddTcWA8CIEZeXREZGOe+7746eO3ZsN59uTFOmvJBlt9vFsWPv7T5hwoPdsrMzTQ89ND6noqJcu29fth4ARo26/tD+/fuM99xza0+3241XX52def75g0vmzXu9/V133dLrm2++jH344UdzbrxxdBEA9O7dx/ryyzPTdu7cHnbffXf03LDhvfgbbxxd69S3AweeU6rRaNSHH76/+4IFc9pffvlVhQ8/POEAANxxxz2FgwYNKX7ttekd77771p5r1qxqfddd9+XFxrZy7Nq1MwTwjJ8ZN+6xnM8//6TV3Xff0nPVqmWJ998/dt8NN9xUdPy5YmNbue6//6HcTZu+i/3xx+/Du3fvaXv22Wnpf/31e+R9993ec9WqZW2uuOLqQgDQ6fQ1tlY9/fRz+668clTh8uWLE++559aen332cdwDD4zbd999DxYAQFhYmDJp0tTMvLz9pnvuubXnvHmvt3vggXH765OchISEKPPmvSlrtVp1woQHu82Y8VLyf/97y8Haj2x4glrfOeuqkSRJAhADoBRAqizLfjeDSpK0GMD98LSUjJJl+RtJknYA+FKW5UnV9usBYDeAs2VZ/tuPU2W63Upyebm19j3rQaMRER5uQnm5FW53s2kNrtFnkyaiY0EhdpvDoLnpcQCe/qUGgw52uxPWokL03bgQANB10WJoDcamDDcggu0zPF6w1w8I/joGe/2A4K8j6+e/8HATNBoxC0DHQJS3devWbqKo+SouLrFSrzfaaj+CqH7++WerWavVqr179z1y0blx44bouXNndfjuu1+2+dZaaQkcDpuxsDAvVFHclw8YMCD1VPvW+12RJGkTgIdkWU6VZVk+blsfAGtkWe5T33IBzAWwCJ71UjZKkjQYnuU0jl/lz/cHxO+rYVEUEBXVMN3qwsNNDVJuYxO9A8ag08FkOnY6YYNBByEqEouyM+FUFSw2aREWcUZ0UwyIYPkMaxLs9QOCs452F/DSL57Hzw4xwRDk/9OC8TOsjvUjCn6pqSnm5csXJz355NNZPXr0tGZnZxtWr17R5oILBhe3pMSkvur0zngTBV//nYvgGWNysm5VVwHwa37karNzjQFwPoBxAKwAjh/g40tKqvw5DwAoiorycou/h59UsN0Nc1cbc2K1eh5XbzlxKRp8f9gz1fahonK4lOb/SxZsn+Hxgr1+QHDX0eoEVu/w3AQY18cKgxhc9fMJ5s8QYP1Oh7flJKBlEjWkm2++9XBR0WHdm2/Ob1dSUqwLDw93DRlyUfG4cY/lNXVsZ7K6XlHeB+AOeAa/qwAWwjPWpHqfMF9Ht3fqenJvgjMcwPuyLLsBQJZlRZKkPQASAewHcPxqlb7np/XBulwN80/B7VYarOzGlKrX49OMNHQf3g1tlWO7/imKCkCARquD2+WE1WpDWFjzr7NPsHyGNQn2+gHBWUdXtdUIFLcClxJc9TteMH6G1bF+RMFPEASMG/do/rhxj9Y6NoaOqmtyMgHACngSkE0AHoZnwHp1bnjGnuyux/nbwJPMFHjLhSRJOgD94ZliuADAg5IkaXzJCzzJjCzLcp1XyKT6O6iq+K2kCO3DImrcp1d4JDRuJ2zlZUBcQiNGR0RERETBqE7JiSzLZfAsjghJkoYB2AogVJblg97XogC0lWW5vmuc/Avga3jWLrkfnkUcpwCIgmfKYBuApwAskyRpJoBzADwKz5on1IDsds9QH61OX+M+D7drj0itFvaCQqCzVON+RERERER14U/nzX8BfATgx2qvnQtguyRJGyVJqvMUdLIsqwBugqfV5D0AfwKIBjBEluV93taRywBIALYBeB6e1eNX+RE31UMrqxXnRkYj9BRdR1zemd6ctsDOfEZERERELZM/o5hfhWeBxHHVXtsE4Bp41j2ZBs9aJXXibZV5yPt1su1/wTNAnhrROS4XbuzcFTstlTXu4/R9tzI5ISIiIqLT50/LySgAE2VZ/tD3gizLDlmWPwXwDID/Bio4ajoa3/o3+uMnSzvKtzKmiy0nRERERBQA/rSchMEzNuRkCgDE+h8OnSl8yYlwijEnbu8EbWw5IWp4Bg3w+fUWRESYYXABirv2Y4iIiJobf1pOtgG4t4ZtdwPY4X84dKbQ+GYP1tW81qXLm5woDkcjRETUsokCkBiqom245zEREVEw8ic5eRnAtZIk/S1J0hRJku6XJOkZSZL+AHADgBcCGiE1CY33+ylbTgTPFZLLO7MXERERkb++++7rCFlOqfmuaB3cf/8d0pQpT3YIUEh+mTdvdptrr728d133nzLlyQ73339Ho017qqoqPvjgvZhDhwq1ALB+/bsxgwcPHNBY569NvZMTWZa/BXA1PAswTgOwCMBL8HQRu0aW5a8CGiE1CV9/P8FQ89+Iv1URy3KyUBEa2jhBEbVgTjcw+28dpv/ieUxEFEz278/Rv/DClM5FRYd1TR1LsPv9919D5879vw5Wq0UEgKuuuqZ4w4bP/m3quHz8GXMCWZa/BPClJElGeKb+LZNluSqgkVGT0nlbRQSdAWoN+6Rr9Nh9qAD9Dfw7QtTQXCrw9h5PS+bdEqBj1y4iCiKqWtPVBgWaqqrH/AcxmUyqyWRy1bR/Y/MrOQEASZK6A7gUQGsACyRJOgvAv7IsVwQqOGo6y3NzoFVVDAkNR03XQFqt50LJzm5dREQURKqcNfcs0QhQjdqj9+1Ota8oQDX5uW99bNr0bfiKFUsS8/JyjQaDUenff0DZxInP7I+KinL/9tsvYU899VjXd975YGe7dh0cALBvX7b+lltu6D1z5py9gwYNqQCAFSuWxn388Yb4srJSXdeu3Sp79+5b8d13X8Vu3PjVTgDIyso0zJo1o21q6p4wk8nkvvbaGwq++OLTVqNH355/4403FwHA+vXrYt5/f13C4cOHDLGxrexXXDHq0J133lMoip5qb9jwfsz777+TUFBQYAgNDXUNGjSk5IknJuUWFOTrbrnlht4A8NRTj3X9739vyR8//vEDe/emGt944/Wk1NQ9YUajyd2rV5+Kxx9/an98fIILAOx2uzB79mtJP//8Y7TL5RIuv/yKQ4py6rdw8OCBA8aOfWTf999/G52VlRESH59gu+eeMXkjRows8+3z3XdfR6xcubRNXl6uKSoq2nHhhcOKx459JN9gMKgAkJq6x/jWWwsSU1L2hNlsVjEmJtZx9dXXFd59932FJzvnypVL41auXJr09NPPZV522RWltX2eubn7dQsWzE3asWN7uM1mE7t16145btyjuT169DoyA9HHH38Y/d57axPy8w8YIyOjnFdddU3hvfc+UFBbfL6fBwC45ZYbek+YMDEbAN54Y1aHzZv/3goAJSXFmgUL5ib+9dfvkRUVFdrk5E5VY8Y8lHfeeYMqAU+3tZ07t4edffZ5pZ9+ujG+oqJC27WrVPnkk8/kdOnS9bQvCuudnEiSpAHwFoB7AAjwdO9aD88CiR0lSRoqy3Lu6QZGTUdVVfx8yPP7daGx5i5bMVoRPcLCIZSVN1ZoREREDW7o+rCzatrWP85VtvgSa7rv+YgPQ/va3cJJk44e0e7Kty+3yL7nV20M7V3hFE567dUpwm1570pLSn1jLSo6rJ027bnO9977wP6LLhpWlp+fr5sxY1rHOXNeS5o27dWcupSxevWKVqtXL0988MFx+/r3P7vym2++jFq3bnViTEyMAwAsFov42GMPdW3dOtH2xhtvpVZVVWrmzJnZ7tChwiPrDaxbtzp25cqlSQ89NGFf375nVe7Zs8v8v/+90e7w4UL9k08+k7t79y7T/Pmz2z/55DNZffv2q0pPTzPOmDGtY0REhOvBB8flz5+/KOWRRx7oPmXKCxlDhlxUnp9/QDd+/IPS4MFDSyZMeCLFarWKS5e+1ebBB+/pvmbN+t0hISHKjBnT2v399x8REyc+nZ2YmGhfsWJJa1lOCU1ISDjlBfKKFUuS7rzz3tynn34u++OPP4x96aXnOkdFRaeeffa5VT/88F349OkvdLrvvgf3Dxo0pHzfvmzD/Plz2uXm7jPOmjUv02KxiE88Mb5r7959K+bPfytVq9WpGzd+ELts2VttBw48p6J37z7HTGG6Zs3KVqtWLUuaOnVaxiWXjCirKSafiooK8aGH7usWHx/vePnl19IMBqO6bNlbbR599CFp+fI1e5KS2jk+//yTqFmzZiTfdttdeZdcclnJnj27zHPmzOwQEhLqHjXquuJTxTdw4LmVU6a8kDF9+gud5s9flNKtWw/rZ599HO07v9vtxvjxD3Z1Op3CpElTs1q1inO+9947cZMnP9517tyFqf369bcAQFra3hCDweieMeP1NIulSpwxY1ryrFmvtF+0aOXeuvzMnYo/LSdTAdwK4D4AnwM46H39CQCfAJgO4M7TDYyajqPa7FsarQ41dW8/W3VhgNQDmfkHa9iDiIiIGtKBAwd0LpdTaN26taNt2/aOtm3bO2bMmJXmcrnr3Plzw4b3Eq68clThf/97SxEAdO7c5WB6+t6QzMx0MwB8/vnHUeXlFdoVK/4vMyoq2g0Azz33UtaYMXf18JWxbt3qNjfeODr/mmuuLwaADh2SHVVVlZqFC+e1f+SRx/P2788xAAKSktrak5LaOZKS2jkiI6P2hoaGuTUaDWJiYlwAEBER4Q4NDVWWLn0rITIyyjl16ov7fOd47bU5mVdddUnfL774NOryy68s+fHH72PGjn1k3/Dhl5YBwIsvzsj+z3+uCqutvsOGXXL49tvvPgQAEydOztu169+w9evXxZ199rlZa9asbD18+IjDt9565yEASE7uaNdqtTmTJj3edd++bL3ZHKKMGnVd4ejRtxeGh4crADBu3GMHPvxwfUJaWqqpenKybt2a2OXLFyc9//zL6RddNLxOd3I//nhDTGVlhXb58jUpsbGtXADwyiuzMm+44ere7767ttXEiU/nffDBu/Hnn39B8QMPPHwQADp16my3WKo0RqNJsViqxNrii4iIcANATEyMy2QyHdPU9NNPm8KzsjLNS5as2t29e08bAEyd+uK+vXtTQ9auXZXQr1//TABwu93CSy+9muX7eRg16vrCVauWJtWljrXxJzm5B8Bzsiyv8LaiAABkWd4hSdJz8KwgT82YraoKAyKi4FIViBot3DVkJ4ro/fhdzpPvQERE1Az9dGPFPzVt0wjHdr365vrKGgcSi8ft+9m1lTvrum9d9e7dx3rBBUOKX3hhSud582Y7+vY9q3zQoMFll156eWldji8uLtIcPnxY37t338pjy+1b4UtOZDnV3Lp1G5vvQhQAevToZTWZzG4AOHz4kLa4uFi3du2qxHXrVrfx7aOqKpxOp7BvX7bhoouGl3344frKhx++v3t8fIK9X7/+5RdeeFFp375nWU4WV3r6XvOBA3mm4cMvOKYVy+l0ijk5WcaMjDSjy+USevXqe2TMs9FoVDt0SD5pedX17z/wmCEIktS9avv2beEAkJWVZc7ISA/54YfvYo7WwxdTmvHiiy8tv+WWOwo/++zj6IyMNHNeXq4hJyfLDABut3IkISwpKdG9+ea89hqNRk1Kalfnrk6ZmRmmhITWdl9i4qtX585dqrKyMs0AsG9fjunCCy8urn7cTTfdetj3uC7x1SQ9Pc1kMpndvsQEAARBQI8evSq3bfs73PdaeHiEs/rPQ2hoqNvlcgVkNKQ/yUk8gO01bMsFEOV3NHRGcJSXYVIXz4x2GYIGqOHvparx/vi4zpgxVERERKctRAelqfetj9dem5OVlrb3wObNP0Vs3fpX+Guvvdzxo48+qFy8+GgXm+rjzZ3OoxeRGu//ckWp+cJVo9FAVWveriieat1334P7zz9/8AktBElJbR16vV5dvHjl3p07/zX99tsvEVu3/h0+deqkLkOHXlz08suvZR9/jKqqQs+evcuffPKZfcdvi4iIcO/fv0/v3e+YbVqtttYk7/h9VFWFKHpWeFNVRbj22hsOjhp1XdHxx8XHJzgLCwu0Y8bc1T0sLNx13nmDSgcMOKe8T5++VTfddG2f6vsKgohp015JW758cZvp019IXrZsdapv7M2pqKoKQTjxrVYURdBoPDFqNBr1JLsAAOoa3ynOf7LTQ1GUY943na7299lf/qxzkg7gihq2XeTdTs2Y3eK56eBQFODk3WgBAIr3D5rK5ISIiKhJbN36Z8iMGdPadunS1X733fcXLliwOH3ChInZe/bsCjt0qFCr0+kVACgvLz/S2yUnJ+vIWJGIiAh3bGysY9eunSHVy01J2X3keefOXS0HDx40lJQUHykjLW2vwWq1aACgVas4V3h4uCsvL9fQsWMnu+9r9+4d5jffnJ+oqio2bfo2fMGCua179+5rfeCBcQcXL165d/To2/N+++2XKAAnXJC3b9/Bmpe335SYmOTwlRcVFeWaM2dm29TUPaYuXSSbTqdT//nn7yODY10uF7KzPa0Ep7Jnz65j6pqauie0U6dOFgBISmpn3b8/x1i9HgUF+bp5815PqqysED/9dKOv21Xqww9PyB858srSsrJS793ao9frkZERzqFDh5VPnjw1OzMz3bxixZL42uICgI4dO1vz8w8YfGuQAIDNZhMyM9PN7dp1sAJAYmJbmyynHFOHGTOmtX300Yc61SU+QRBqTCw6d+5qtVgsmpSU3cesJbFnz+7QpKR2tpqOCyR/kpO5ACZIkrQAwCXw1LSLJElPAJgI4H+BC4+agtPm6S7pUlUop5raT+OZQlioqd8XEQWMQQN8MMqCb28DDH7Ps0hEwSY0NMz91Veft5o1a0ZiZmaGYc+eXaZNm76Njo9PsMfExLq6dethNRqNyooVS1pnZmYYtmz5NXTZskVJ1ZOBG28cffCLLz6N++CD92IyMzMMy5cvjtuy5ddoeOfrHDXquuKwsDDX1KmTknft2mnauvXPkGnTnu0IeJIKQRBw/fX/PfjFF5/GrVq1LC4rK9Pw9ddfRC5Y8EZ7nU6nGAwGVaPR4r331rZZvnxxXE5Otn779m3mP/7YEtmli1QFACEhoW4ASEvbayorK9PcdNOthRaLRTN58uMdd+7cYdq9e5fpmWee7JienhbStWs3a0hIiHLFFVcXrl27qs2XX34WmZYmG6dNm9q+pKS45tWjvT79dGP8xo0botPT0wyvvTY9KScn2zR69B0FAHDzzbce/PPP36PmzZvdJj09zbB5889hM2e+klxVVamNj09wxccnOOx2u/jZZx9H5ebu0//006bwF1+c2hEAHA7HCdfV3bv3tF133Y0H165d1SYjI91w/PbjXX31tcVmc4j7mWcmdtq27W+zt97JNptNc+ONNx8CgFtuuT3/t982R61cuTQuKyvT8MknH0V9882XrQYPHlpal/jM5hAFAPbs2W2urKw8JuahQ4eVtW3b3jpt2rMdf/vtl7C9e1ONL730XLvc3H2mm2++paC2+AOh3v/iZFleKklSKwBTAIyF5yd3HQAHgJmyLL8V2BCpsTmtnuTEWUtyomo9Pz6Cu0FaqYmoGlEAOkeqiIoCSkrQMH1DiKjZkaTutmefnZaxatXyNl9++VmcKIpqz569K2bNmpcmiiLCwsKUSZOmZi5d+lbSPffc2rN16za2sWPH75869amuvjJuvfXOQ+Xl5ZpVq5YlLlgwV9ujR8+Kiy4afjglZXcYABgMBvX//m9u2uuvv9rukUfGdA8JCXXddNMt+YsW/a+dTqdTAeC++x4sMBiMyieffBi3fPnipIiICNfw4ZcenjBhYh4ADB06rHz8+CeyP/jg3YQ1a1Ym6vV65ayzBpY98cSkXACIjo5xDxt2yeEVK5Ym5ebuN0yZ8sL+OXP+l7pw4bykRx8d200UNWrXrlLV7Nnz5Vat4lwA8Pjjk3L1er2yYMHcdjabVTNo0JDiAQPOLq3tPRsxYuShDz54N37u3Fmm9u3bW2bMmJXWs6dnmt4rrxxVoqpq5rp1q1t/+OH7CWZziHvgwHNKH3vsqVzf9tTUlINLlrzZdv782WJsbCvHZZddcXjLll8jva1Nh44/39ixj+T/+uvPUdOnv9Bh6dK35VN174qMjHTPm/eWPG/e60lPPfWo5P2MK+bNeyu1fXvPVNCXXnp5WWlpac7777+TsHLl0qSYmFjH/feP3XfDDTcVqaqK2uLr3r2ntV+//mWvvvpSx9tu258XERF5pAuMVqvFvHlv7p09e2bSiy9O7eR0uoTk5I6WV1+dvXfAgHMaZU1Dob6L3kiSFCXLcokkSeEAzgcQA6AUwO+yLBef8uAzQ6bbrSQXFwf2/dVqRURFhaCkpAouV/O+bNj93bfQvbsWxS4XCu976UiCIooCTCY9rFYHFEVF6dfvYNDBdGSLAkYsXtHEUZ++YPoMTybY6wcEfx2DvX5A8NeR9fNfdHQINBoxC0DHQJS3devWbqKo+SouLrFSrzc2SneVM9UPP3wX3qWLZE1Kantkhpvnn3+m/cGDBwyLFq3cu29ftj4rK9M4dOjFR8aT5Ocf0N1446g+s2bNk33rXzQHgwcPHDBhwsRs39os1DgcDpuxsDAvVFHclw8YMCD1VPv60zngT0mSpsqy/B6Ar/0Lkc5kTpsVOgAu4JQtJ2WhkViTm4OwpPYY0WjREbVMTjewZJcOJhNwa2fUuDgqEVF9ffXVFzFLl75levzxp3Li4uKdf/75R9gvv/wYPXbs+H0AYLfbxWefndzljjvuyb300stLysvLNIsW/S8xPj7BPmDA2Y1yN51aDn+SkygAh2vdi5otl91zA6m2kSSW0Eh8cjAffeITGj4oohbOpQKLdni6Ut/UEdAxOyGiAJk8eeq+WbNmtH322ac7WywWTXx8vP3++8fu97UudOki2SZNmpr5zjtvt37nnbfb6HR6tU+fvuVvvLFwr69bF1Gg+JOcvAHg/7wD4HfJsnxC3zpq3mxmM97LyUJEfAJ6nWI/rc5zoeSw13n6biIiIjrDREVFu6dP/7/sU+1z5ZWjSq68clRJI4XUYDZv/ntrU8dAp+ZPcnIHgPYAvgMASZKO367Kssy5ZJoxq1aLbw8VoFfrxFMmJwZRREdzCGI5WxcRERERBYA/ScSagEdBZxSHwzMeTqvTnXK/SLsVr/bojSKuc0JEREREAeBPcpIFYJMsy7mBDobODEpZKXqFhSNBe+rkRNB7puvWnHIvIiKiM5ICQFVVlSO4iBqY9/dMRR1mwvdnEcbZAAb6cRw1E+YDeXhO6oEhtUwzLeg9i4fqBP5dJyKiZuegqqpOh8NW64riRHR6HA6bWVVVJ4D82vb1p+WkEECkH8dRM6E4Pd26lFMsEgQAojc50TI5ISKiZmbAgAHlW7dufbu8vGQsgBi93mgRBIEzTxEFkKqqgsNhM5eXl+hVVVk2YMCAitqO8Sc5WQLgf5IkDQOwC8AJS9nLsvy2H+XSGeJocnLqDluiwdOtSycIUFUFguBPQxwR1YVeBNZcYUV4mAl6DaAG3/p9RE3hFbfbhdLSojsEQTCDSwgRBZqqqqpTVZVlAF6pywH+JCeve7/fXlMQAJicNGOqw+H5rqklOdGbPN8FAS67DTojW8aJGopGBHrFKoiKAkpKgCBcXJyo0Q0YMEAB8PLWrVvfUFW0hn/d3YmoZgqA/Lq0mPj4k5wk+3EMNSOqd/YtVdSc8haSaDAdeWyrsjA5ISKiZsl74VTniyciajj1Tk5kWc7xPZYkyQwgHECRLMvOQAZGTedIcqKpJTnRG7HhQC4cioJHOJ0wUYNyuoE1qTqYzMD17dn3hIiIgpNfiyVKkjQEwEwAZ8P7P1KSpD8BPCPL8g+BC4+ahNubnGhP/eMhajT4oLAAbpcTD4JjCIkakksF5m7TAwBGtQV0zE6IiCgI1btvpSRJg+BZHT4SwEsAHgLwMoBoAF9LknR+IAOkxpet12P1/hwcCo2sdV+tdy0Uu93ewFERERERUbDzp+XkZQC/ALhMlmW370VJkl4E8DWAFwGMCEx41BT2CcBXBfkYHRGFhFr2bWMOgSIA9kp21SUiIiKi0+PPrBTnAHijemICALIsKwDme7dTM+ZweIYPaTWnXiEeAJ5s2w7/17MPnPm1rqlDRERERHRK/iQnFQBqumrVg+M0m71QqxWdQkJgrMPiir5h8E6brWGDIiIiIqKg509y8iuAZyRJCq3+oiRJYQCehqfLFzVjQ5wuzOjeG/GV5bXu60tOXExOiIiIiOg0+TPmZDKArQAyJUn6DMBBAAkArgJgBHB34MKjpiAqCiCKgK72Hw+Xt6HMbWdyQkRERESnx591TtK9M3I9D+AKeGbpKgbwA4AXZVneE9gQqbGJqmdaYEFrqHVft7frl4uzdRE1KL0ILBlhRViYCXoNoHKFeCIiCkJ+rXMiy/IeSZImyLJ8EAAkSYoGkMTEJDhofGuW6PS17uv2tZywWxdRg9KIwNkJCqKigJISwMXkhIiIgpA/65xESpL0LYAfq718DoDtkiRt9K4aT82YxpubCHVJTgTPj5Db4WjIkIiIiIioBfBnQPyrAHoCeKbaa5sAXANgIIBpAYiLmtCR5jRd7d26UgUNPsrPQ6XJ1KAxEbV0LgV4N1WLVf8CTraaEBFRkPInORkFYKIsyx/6XpBl2SHL8qfwJCz/DVRw1DS03hmERX3tyckerRHr8vajxGRs4KiIWjanArz6pwHP/Qi43LXuTkRE1Cz5M+YkDEBJDdsKAMT6Hw6dCT47XAitW0H3kPBas1ett+uXw8EB8URERER0evxpOdkG4N4att0NYIf/4dCZ4NP8fKw/kAuYw2vdN0SjQbzBALWyqhEiIyIiIqJg5k/LycsAvpQk6W8AHwEoBNAKnjEnA+BZ74SaKUVR4HI5AQAard43b1eNznPbMa73Wcg8cKDhgyMiIiKioFbvlhNZlr8FcDUAFZ7B74sAvARPonONLMtfBTRCalR2mw3J5hAkGU0QNZpa91dE7z4u16l3JCIiIiKqhb/rnHwJT+uJEZ5FGMtkWWa/niBgryjDaz16AwAyBA3ctTSdqFrvjxCTEyIiIiI6TX4lJz6yLNsAsD9PEHFYLAAARVUBra7WOUtVjc7zwM3pg4iIiIjo9JxWckLBx+5NTlyqCnhXfz8VVetJTgQmJ0QNSicC8y62ITTUCJ0GANc6ISKiIMTkhI7hslkBAE5V9bSe1MbbrUtw80qJqCFpReDCJDeiooCSEs+ijERERMHGn6mEKYg5LDYAnpaTuuQmqtazzomg8EqJiIiIiE4PkxM6htPbcuIC6tRyYjGF48uCfKS6OSCeqCG5FODjdC3W76l1KBgREVGz5Ve3LkmSYgE8CeBSAK0BXAbgOgDbZVn+OHDhUWNz2WzQA3ADUJXak5PKiBi8sz8H3UND8UiDR0fUcjkV4PnfDACALaMBXe1DwoiIiJqderecSJKUDM8q8GMA5AKIgyfJ6QpggyRJVwY0QmpUNp0OH+bn4W+no9YFGAFA6x0Qb3fYGzYwIiIiIgp6/nTreh2eVeGTAVwP75ROsizfCuATAM8ELDpqdHaTEe/m7cfvdRxDotNqEaHVweR0NnBkRERERBTs/ElOhgN4SZblUuCEm+uLAPQ63aCo6djtDgCATm+o0/6RdguW9BuACdGtGjIsIiIiImoB/B0QX9PoZwNOTFioGXFXVaK1wYhwna5O+ws6IwBAK7ADPBERERGdHn+Sk18APC1JUki111RJkkQAYwH8GpDIqEkY9+Xgjd79cFUdkw3B4Glh0TE5ISIiIqLT5M9sXZPhSUDSAfwAT0vJRAA9AHQGMCRg0VGjczs8Y0fcQt3yVtFgAuBJTlRVhcAkhYiIiIj8VO+WE1mWdwEYCGATgGHwzDp7KTzJyiBZlrcHMkBqXKrTM+ZE1WjqtL+o9yQnoiDAxRm7iBqMTgRmXmjDwisAXd1+PYmIiJodv9Y5kWU5DcCtAY6FzgCKd9YtVaxry4nxyGN7VRV01Z4TUeBoRWBEBzeiooCSEs+ijERERMHG30UYBQD9AITgJK0vsiz/fHphUVNRvcmJItbt1qzG260LABwWCxAd0yBxEREREVHwq3dyIknSOQDWA0jyvuQbZKB6H6sA2OmgmfIlJ6pGg7qMHhE1Wmw6fAguRcENbnfDBkfUgrkUYFO2BqGHgXOimzoaIiKihuFPy8kcAE4Ad8GzQjw7FwQR1ZtgKKK2zhnmioP5sNssuKaOXcGIqP6cCvDUz55uk1tGAzrOPUFEREHIn+SkP4CbZVn+ONDBUNM7qNNCLshHaOv2qOuyilqdDnYb4OCAeCIiIiI6Df7c6i4EW0uCVpZWi1X7c3Aosu5jR8w6A8K0WjislgaMjIiIiIiCnT/Jyf8ATD5uEUYKEg6HZyphrbZuK8QDwHNt22JZv4Fw7tvXUGERERERUQvgT7euLvAsuHhQkqTdAI6/Xa7Ksjz8tCOjJqGx2RCl00GnqXve6vJ9t9kaJigiIiIiahH8SU46A9he7fnxwzI5TLMZu8hixV19B2BHWWmdj3F5P3KXnWNOiIiIiMh/9U5OZFke1hCB0JlBUBUAAqCre7cu3wTCbDkhIiIiotPh1yKMFLxERQVEAYJWX+djXIKnC5ibs3URNRidCLw4yI6QEAO0GnBaEiIiCkp1Sk4kSXIDOF+W5T8lSVLgWWixJqosy3VOeiRJigbwCoCrAIQD2AFgsizLm73b+wF4A8BAAEUA5smyPKuu5VP9aFTvR6ure3LiFjzdutzs1kXUYLQicE1nF6KiDCgp8SzKSEREFGzqmkRMg2fBRd/jUyUn9fUugDgANwM4BOBhAN9IktTf+/xbABsBPAjgPAALJUkqkmV5RQBjIC9fciLUIzlRBBGACoUtJ0RERER0GuqUnMiy/GK1xy8E6uSSJHUGcCmAC2RZ/s372gQAIwHcAsAKwA5grCzLLgApkiR1ATAJAJOTBnBkVXidoc7H7Be1OHz4ABL0vRskJiLytJT8lqtBaCnQJ7ypoyEiImoYde3WdWF9CpVl+ec67noYwJUAtlY7VpUkSQAQDaAjgJ+9iYnPJgBPS5IUJ8tyYX3iotr5kpP6tJxs14dgW3YGHgm5umGCIiI4FWD8JiMAYMtoQMd5EYmIKAjVtVvXjzjalaumf4mqd5uKajfgT0WW5VIAX1R/TZKkGwF0AvA1gOkAdh532AHv93bwrFbvF63Wn/Una6bxrguiqcf6IGei3yvKoHe5kRAaDlE89qP2PT/+dZ13Zi+n0xHw97UxBctnWJNgrx8Q3HXUVutMK2pENONftVMK5s8QYP2IiGpT1+SkUaYPliTpAgDLAXwsy/KnkiTNgadbV3W++WqN/p5HFAVERTXMAvfh4aYGKbexvH/wAKqqqvBybBwMppO3nhgMx04zbDQaoRMEiIqrwd7XxtTcP8PaBHv9gOCso8F59HF4uAnmus/23SwF42dYHetHRHRydR1z8lNDByJJ0jUA3gHwO4DR3petAI4f/OBLSqr8PZeiqCgvP35h+9Oj0YgIDzehvNwKt7v5TqNj98645XKrUKyOY7aJogCDQQe73QlFOXob9xxLBR4ecC6yMnNQUuL3x9LkguUzrEmw1w8I7jpanQDgSf7Ly62wi8FVP59g/gwB1u90hIeb2CJD1AL4tc6JJEmxAJ6EZzB7awCXAbgOwHZZlj/2o7xx8EwX/CGA22RZ9rWW7AfQ5rjdfc/z/Aj9CFcDzcPpdisNVnZDc7lcMANwajQQBe0xCUh1iqIes03ReHrxqS5Xs617dc35M6yLYK8fEJx1dLmPPlbcClxKcNXveMH4GVbH+hERnVy9b0FIkpQMz1okY+CZXjgOniSnK4ANkiRdWc/yxgKYD2ABgJuqJSYA8DOAIZIkVR/DMhyAzMHwgWevqsLSfgOx6qyzj653Ugeqxtu/pPrVExERERFRPfnTcvI6PAPRLwJQCcABALIs3ypJkgnAMwA+r0tBkiR1hafF5CMAMwDESZLk22yFZ/zJUwCWSZI0E8A5AB6FZ80TCjCHpfLIY9FgAuqYa6haz4+R4GZyQkRERET+86fz5nAAL3ln2jr+9voiAL3qUdYNAHTwdAnLP+7rDW/ryGUAJADbADwP4ElZllf5ETfVwmGxAgAUVYWgqcdoW61nX0FhckLUUHQiMPkcO6ZdBGjrNB8iERFR8+PXmBMArhpeN6Aeq8fLsvwKgFdq2ecvAOfXPTTyl8PqmSTAqaqoR68uQOuZ1UsI8j7wRE1JKwI3d3MhKsqAkhLPooxERETBxp+Wk1/gWQSx+pyxqiRJIoCxAH4NSGTU6JxWzyzNLlWFUp8xJ96WE7GGAfRERERERHXhT8vJZHgSkHQAP8DTUjIRQA8AnQEMCVh01KgcVgtEeFpO6pOcOExh+LOkGPbQ0IYLjqiFcyvAPwdFhFUBXbiEBBERBal6t5zIsrwLwEAAm+BZnNENz5TC6QAGybK8PZABUuNx2jxjTtxAvbp1VUa2wqyMvfiyqrL2nYnILw4FuP8bE27eADg4vIuIiIKUX2NOZFlOA3BrgGOhJuYUNdhy+BAEsxlx9eiipdV5unXZHfZa9iQiIiIiqpm/izB2BGCUZXmPJEmRAKYDaAtgvSzLqwMYHzUim9mEhdkZ6NylG26rx3Fa74B4p53JCRERERH5z59FGC8HkALgHu9Lb8GzIGMSgJWSJN0buPCoMTkcTgBHW0LqKtxuwboB5+KVNkkNERYRERERtRD+zNb1HIBvALwoSVIEPGuUzJBluT88CylOCGB81IjsVgv0ogi9Tl+v4wS9ERpBgFYQGigyIiIiImoJ/ElO+gKYK8tyBTwLJGoBfODd9i2ALgGKjRqZMSsLa/qfg1vq2XIi6o0AAJ3gz48TEREREZGHP1eTVhwdqzISQIEsyzu8zxMAlAYgLmoCbocDAKDUswVENHrmNdUIAsedEBEREZHf/BkQvxnAREmSogH8F8AKAJAkaQCA573bqRlSvLNtKaKmXseJ+qOLLjisFugMhoDGRUSAVgAe7e+AyayHVoRnhSkiIqIg40/LyWMAEgGsBZAF4GXv658DMMKzSCM1Q4rd23JS7+TEeOSxvaoqoDERkYdOA9zVy4kHB3geExERBaN6t5zIspwlSVJPAHGyLBdU23QtgH9kWWa/nmZKcXlm61I19bvy0eh0cCkKtKIIh8XSEKERERERUQvg1whmWZbV4xITyLL8OwCtd6phaoZU35iTeiYnALCjsgJbS0vg9CY4RBRYbgXYdVjEvwc9j4mIiIJRvVtOJElqD2ARgKEAappzlp0OmiHV5fJ812hR30mB5x84gKrKMpxrMNa+MxHVm0MBbvvCM75ry2hAx5m7iYgoCPnTcjIHwCAAiwH8A+BXALMA7IBniOZ1AYuOGlWxKOL34iKUG831Pta3cKPDwV59REREROQff5KToQCmyrI8AZ6ZuuyyLE8CMBDATwCuCWB81IhkvQ6zM9NwICa+3sdqtExOiIiIiOj0+JOchALY7n28B0A/AJBl2Q3gfwAuDkRg1Pgc3jEnWm39FmEEgKdat8aa/ufAlZkZ6LCIiIiIqIXwJznJh2exRQBIBxAtSVJr7/NiAPW/7U5nBIfNCgDQ6msaSlQzrSBCL4pw22yBDouIiIiIWgh/kpPPAbwkSdIgWZb3A8iFZ1HGMAD3AMgLZIDUeEZarHh3wLloV1pc72Ndvu92JidERERE5B9/kpPnAJQCmOZ9/gyACd7XbgXweiACo8anUVSIggBBV/+WE7fgmTrIbeeYEyIiIiLyjz+LMBYBONfXlUuW5bWSJOUAOB/An7Is/xTgGKmRiKoCCBrAr+TEk+cyOSFqGFoBeKCPAyaTHloRnrkRiYiIgky9kxMfWZbzJUnqBiAKQL4sy/8XuLCoKYiq52pH0Bnqfayv5UTxDqonosDSaYCx/ZyIitKjpARwuWo/hoiIqLnxKzmRJOleeLp3JVV7bT+Ap2VZXheg2KiRaX13YvV+JCeiBoAbbiYnREREROSneo85kSRpHIAlALYCuBPASAB3A0gBsEaSpBsDGiE1Gl+mKvqxynuRqMWu8jJYNZrABkVEAABFBdJLBewt8jwmIiIKRv60nEwAsECW5fHHvf62JElLAbwAYP3pBkaNT+fpmQVBZ6x3d/a/DWH4a+9PePBiLnND1BDsbuCGT8wAgC2jj/6+EhERBRN/kpMkAJ/WsG0dPDN2UTO0q6ICRkGAwRxS72O13kH0dg6IJyIiIiI/+TOV8F8Ahtew7SwAO/wPh5qKqqqYm5mGV9JSoYZF1ft4rc6zqrzDweSEiIiIiPxTp5YTSZIurPZ0HYA53kUX3wdwEJ4Zuy4HMB7AA4EOkhqey+WEoigAAI1GD3c9jz/LYcGdfQegIP9g4IMjIiIiohahrt26fsSxs+oLAMYCePC41wDgXXDMSbNjtx+dZUuj08Ndz2lKtaKIcJ0Oh53OAEdGRERERC1FXZOTYQ0aBTU5W/FhvNP/HDhUBQdFDQClfgVoPN264K5vmwsRERERkUedkhOu+h78bJVV0IoiPD276j8NkKr1/CgJ7nomNUREREREXnUaEC9J0s+SJPWrT8GSJA2UJGmzX1FRo3NaqzzfVdW/NRS0ntm6RIUtJ0QNQSsAd/RwYEx/QOvPVCZERETNQF27db0B4CtJkv4GsAbAJ7IsW47fyTtI/jJ4BsWfBeChQAVKDcteZYUIwKWqUPzITtQjyQlXhyNqCDoN8PhAJ6Ki9CgpAVz1HBdGRETUHNS1W9cGSZJ+AvAcgKUAtJIk7QGQBaAKQCSAtgB6AXB697lNluWChgiaAs9ptcAAz4enqvVPMATvVMKiym5dREREROSfOi/CKMvyYQDjJUl6EcAN8AyS7wggAsBhACnwtLB8KstyUQPESg3IafMkJ24Aih/JicsQgvSqSlR4kxQiCixFBfIqBVRqADMbKImIKEjVe4V4b+KxyPtFQcJltXm+CwL8yE1QGR2PZ1J2oX37DrgpwLEREWB3A1d+aAYAbBkN6Oo/bwUREdEZj8MqCQBgF4Ad5WXIh3+3ZH0rxNsdjlr2JCIiIiI6OSYnBACoCAvHy3tT8I2g8et4rXdAvMNuD2RYRERERNSC1LtbFwUnuzep0OsNfh0f4rRjQe+zoLKrCRERERH5ickJATianGj1/g1o1+j0iDMY4FI4WxcRERER+YfJCQEAojIzsLzfQGT6uXiCqDcBALSiCLfLBY2WP1pEREREVD91uoKUJOmO+hQqy/Lb/oVDTcbhQKhWC50g+jUkXjQYjzy2Wywwh4cHLjYiIiIiahHqent7ZT3KVAEwOWlmFO8sW4pGA3+GjYhG85HHTmsVwOSEKKA0AvBfyQmDQQeNCPg5sR4REdEZra7JSXKDRkFNz9udS9Vo/UtOtDq4VRUaQYC9yhLY2IgIeg3wzLkOREXpUFJy5FeWiIgoqNQpOZFlOaeuBUqSxPmamiG1WnLiD0EQ4FQUaDQaOKxVgQyNiIiIiFoIv65EJUm6GcBQAHrgyI12EUAIgPMBJAUkOmo0gssJAFC1/s3WBQC5djs0UNHV4QxUWETkpapAsQ1QLIDALl1ERBSk6p2cSJL0PIDnAZR5j3d6v1oBUAAsCWSA1Ejcbs/300hOXs3LQ3lZEd4zm2vfmYjqxeYGLn4/BACwZTSgYxs1EREFIX9WiL8TwBoA0QDmAPhUluV4AGcDKAKwO3DhUWMpUVXsrayAw+h/YqHReVeJd3CVeCIiIiKqP3+Sk0QAq2VZVgFsBTAIAGRZ3gpgOoD7AhceNZbNUDE1dTcOxbX2uwytt9XF4Z35i4iIiIioPvxJTqpwdBLLNADJkiSZvM+3gzN7NUs2mw0AoNMba9mzZvfFxmBer35QsrMCFRYRERERtSD+JCd/wtO1CwAyALgAXOJ93h0A+/Q0QzabFQCg0/mfnERqNEgwGuGu4mxdRERERFR//szW9QqA7yRJipRl+WpJktYAWCVJ0g8ALgPwUUAjpEZxp86I0N5nIb+qwu8y3IJnhK6b3bqIiIiIyA/1bjmRZflnAAMBvOd9aRyADwB0A7AewPiARUeNJlwQ0MpgODKo3R9uwfPj5LbbAhUWEREREbUgfq1zIsvyDgA7vI9tAMYEMihqfL4JhAWj6ZT7nYqv5URhywlRwGkE4OpOThj0OmhEHB35R0REFET8XYQxAsDF8Cy6eELriyzLb59mXNTIdN7EQjSYoPhZhlsUASjs1kXUAPQa4KULHIiK0qGkBHC5mjoiIiKiwPNnEcaR8HTfqmlBDBUAk5NmRFEUGERPjikYQ/wvR9AAqgLFyRXiiYiIiKj+/Gk5mQEgBcDjAHIBv2+00xnCYbFA9LacaIxmuP0sx6LRIr+yHHaV/U2IAk1VAasTMDg9j4mIiIKRP8lJNwDXyLL8S6CDoaZhrSg78lgwmP1ON383RWLO7z/gnnPOCVBkRORjcwND3ve0bG4ZDeiEJg6IiIioAfiTnOQACA90INR0bFYrMqoqoRNFCDoDYPevM7vO4FkjxbdmChERERFRffizCOMMAM9LktQhwLFQE3FoNHg6ZRdeyMmCqvjfX0SnMwAALBZLoEIjIiIiohbEn5aTWwEkAsiQJOkQgOOvRFVZljuddmTUaKxWz7okBqMRyml0Zu/isuGyHr1RdbgoUKERERERUQviT3KS6/2iIOHrhmU0GKGcRsuJURTRwRyCbAdn6yIiIiKi+qt3ciLL8t0NEQg1HVd2Fhb07odDgnhayQn0nm5douLvfF9ERERE1JL5s85Ju1NsVgBUyrJc6ndE1OiclZWIMxhhd7tRcRrlCHrPgHiNwtmliYiIiKj+/OnWlQ3PQos1kiSpGMAbsiy/7E9Q1LhcVk+3Lrfoz/wI1ehNAAAtF2EgCjhRAC5p74Jep4Uoopa/wkRERM2TP8nJnQAWA/gRwDoABwHEAbgBwFUAXgIQCmCqJElFsiy/GZhQqaG4bIFJTkSjJznR8aKJKOAMGmDWUDuiorQoKQFc/s34TUREdEbzJzkZDeDdk4w9WSNJ0psABsiyPEqSpFIAYwEwOTnDuW2e2brcoua0yhG8yYmWi8MRERERkR/8uVV+EYB3atj2IYDh3sebAXBK4WZAsdk93zWnm5yEotTpQLmTt3SJiIiIqP78aTkpAtAXwLcn2dYXQLn3cSiAqvoULEnSVACXyLJ8UbXX+gF4A8BA77nnybI8q95RU40Uhy858efH4Sg1shXG/LsNgiDgH6gA2IRCFChWFzDknRAAwJbRgI6/XkREFIT8uRpdC2CaJElOAB8AKIRnzMn1AF4A8JYkSVEAHgXwe10LlSTpUQDTAPxc7bUYeJKgjQAeBHAegIXesSwr/IidTsKqqsizWmEPj4LhNMrReacSVlUVdrsdBoMxMAESERERUYvgT3IyFZ5kZLb3y0cBsBzAM/AMjj8LwMW1FSZJUiKApQCGAJCP2zwGgB3AWFmWXQBSJEnqAmASACYnAZIaYsZ7u//FtT36o99plONLTgDAarUyOSEiIiKievFnEUYXgHskSZoOYBiAWHhWjP9VluUsAJAk6UsAibIs2+tQZH8AJQD6AHgOQIdq24YA+Nl7Tp9NAJ6WJClOluXC+sZPJ7J5B8RXTy78IYoaTJV6IFQUYSk4iMjIqECER0REREQthN+DDGRZzgCQUcO2knqU8ymATwFAkqTjNycB2Hncawe839vB06XML1rtaa7pcRyNRjzme3Nit3uSE73BCFGsuSO7b9up9kk2mRGm1cJZWR7w97ihNefPsC6CvX5AcNdRW22KblEjopn9etVZMH+GAOtHRFSbOiUnkiRlArhOluV/JUnKwqmX/1JlWQ7ULF1meLp1VWfzfve7z5AoCoiKCvE7qFMJDzc1SLkN6fzyCgzv0RvFtkqYTPpa9zcYdDVuc3gXYBTdjgZ7jxtac/wM6yPY6wcEZx0NzqOPw8NNMNf8axgUgvEzrI71IyI6ubq2nPyEo7Nw/YTGW5vYCpwwRtuXlNRrJrDqFEVFebnF76BORqMRER5uQnm5FW63EtCyG5rZ6UR7cwjKVQFWq6PG/URRgMGgg93uhKKc/EfAl9qUHipCSYnfH1GTaM6fYV0Ee/2A4K6j1QkAnoS/vNwKuxhc9fMJ5s8QYP1OR3i4iS0yRC1AnZKT6gsuyrJ8V4NFc6L9ANoc95rved7pFOxyNcw/BbdbabCyG4roVgBRhKrT15h0VKcoao37+W7u2iurmt374NMcP8P6CPb6AcFZR0UBBie6oNNpATX46ne8YPwMq2P9iIhOzq8xJ5IkhQEIl2U5T5IkPYAJANoC+ECW5Z9PfXS9/AzgQUmSNLIsu72vDQcgczB84OhUBYAI0Wg+7bKc3rVNnFbraZdFREcZNMCC4XZERWlRUgK4uNYpEREFoXq3j0qSdA6AHACPeF+aB+A1ALcB2CRJ0qjAhYflAMIBLJMkqYckSXfBs37KjACeo8XTeRtBBOPpjxFxCZ4fKaclsN3miIiIiCj4+dN5czqAVACLJEkywZOULJRlORrAMgBTAhWct3XkMgASgG0AngfwpCzLqwJ1Djq60rRgOv3kxCaKKHc64XQ6a9+ZiIiIiKgaf7p1nQvgJlmWsyRJugqACcBq77Z34UlW/HKy8SyyLP8F4Hx/y6TaGbytHRpTGNy17FubTzVm7Ni2CRMvveT0AyOiI6wu4NL3zRAAbLrx6E0FIiKiYOJPcqLg6PS+VwAoBfCn93k4APbnaUacDgeKHHYYRQ0Ec+hpl6f3rgrvW9iRiALH5mJGQkREwc2f5ORvAPdJkmQFcBOAz2RZViVJigMw2budmgmb3Y5Hd/0LAJgRFnXag2x1Os/Mz1YOiCciIiKievInOXkSwFcAbgZwCMDL3td3wTOG5bLAhEaNweIduK7RaCGIWuA0O3b1VF0YIfUA8k5rpmciIiIiaoHqPSBeluV/AHSGZxxIR1mW07ybxgLoJcvy1gDGRw3MavUslGgym6EGYGnNCEFAz7BwmDhbFxERERHVk1/rnMiyXAHgj+Ne2xCQiKhRWfblYGaP3igF4K7DAoy1UXSeNeIFLsJARERERPXkz1TCFETspaXoYA5Ba72hTqvD10rvGRAvOJmcEBEREVH9+NVyQsHDUVmJEABOQYASgH5dqsEEANAopzspMRFVJwAYEO+GTquBwEm7iIgoSDE5aeEcVZ4xJy4xMI1ovoUcdYoSkPKIyMOoBZZdZkNUVAhKSnDaM+sRERGdiditq4VzWTzJiTtAyYnoS04C0EOMiIiIiFoWJictnMviWY/ErQlMI5pgCoNLUeBity4iIiIiqid262rhFLtnJfdAJSfumATcsu1PaLU6rsZJFEBWFzBqgxmCCHx+LaDjuBMiIgpCbDlp4ewuF0qdDri8UwCfLoO3W5fL5YTT6QhImUTkUWIXUGxt6iiIiIgaDpOTFm53iBlj/t2GXfGJASlPbzAeeVxZWRWQMomIiIioZWC3rhbO4l3JXac31rJn3YiiBo92lhAuiqg6eABRUVEBKZeIiIiIgh+TkxbOavUkJwbv+iSB0CM0DJFaLazFRQErk4iIiIiCH5OTFu6c8goMlnqg0pukBILdu5ijtaw0YGUSERERUfDjmJMWLtblRo+wcJi0moCVafd9r6gIWJlEREREFPzYctLC6RQFEEUIptCAlenw5ryOysqAlUnU0gkAesS4odVoIHAaYSIiClJMTlo4g/e7GBIesDKd3tXmnUxOiALGqAXeudKGqKgQlJQALldTR0RERBR47NbVwhm9t2A1gUxONJ4uYm5L4MaxEBEREVHwY3LSgjlsNhi9iYQmNCJg5bpEHVyKAqfdXvvOREREREReTE5asMriw0cei6GBW4/kl9AY3LLtT6REBK41hqils7mAkRtMuGA5YGWXLiIiClIcc9KCVZaUotTpgFYQAa0ecAfmikdvMgMAqixcIZ4oUFQA+VXi0SccFE9EREGIyUkLZtGIGPPvNsTEtsLjbiVg5eoNnuSksoID4omIiIio7pictGAV3nVIQkJC4VbUgJXbVnXjyU5dgZKSgJVJRERERMGPY05asErvVL8hIaFQApichGm1ODsqGq2dzoCVSURERETBjy0nLZianoYXpB4oNocEtmDvtMT6ACY8RERERBT82HLSgiklxegRFo44TWBzVN+0xEYO2CUiIiKiemDLSQvmWyTRrdUFtFxNWDQAwCyKUBQFosgcmOh0CQA6RijQaETO1EVEREGLyUkLplitnu86fUCvdbQRMZ7vgghLaTFCo2MDWDpRy2TUAh9eY0VUVAhKSgAX1zohIqIgxFvaLZnNBgBQ9IaAFqs1hcCpeKYmrjh0KKBlExEREVHwYnLSggkOOwBANZoDW64owqIocCoKKoqKAlo2EREREQUvJictmMY31W9IWMDLfu7gQdy67U9UGgPbKkPUUtlcwPUfm3DJasDKLl1ERBSkOOakBXO6XHCKGoje2bUCSWMMBQCUl5cFvGyilkgFkFkmHn3CQfFERBSE2HLSgs3J249bt/0JW9tOAS/baPYkJxUV5QEvm4iIiIiCE1tOWihVVVFWVgoAMJoD33IyyGzEdZ26QpuWHvCyiYiIiCg4seWkhbLZrHA4HAAAgyk04OW31mhxdlQ0xGIOiCciIiKiumHLSQtVvH8/XpR6oMzlgkZngNPuDmj5br0BsNqgetdSISIiIiKqDZOTFqri4AF0DwtHmcuFQ4oa8PIVQwhgLQOstoCXTURERETBiclJC1V56DDCAVgBuFyBT07UkDCgFNB4u44R0ekRALQOUaARRc7URUREQYvJSQtlKylGOAC7KEJRA5+cICwKAGBwc0EGokAwaoEv/2NFVFQISkoAF3+1iIgoCHFAfAtl987U5dA2TH6qiYwFAIQ0SOlEREREFIyYnLRQrnLP+iMuXcOs4K6NigcA6CDA5VuJnoiIiIjoFNitq4VyV1R4vpvMDZKh6qLjcec/f8HqdmNTRTmio2Ma4CxELYfNBYz52gitBlh8Cf94ExFRcGLLSQvlsFrhVBSooeENUr5Gq4XoXSW+mGudEJ02FcCeIg12FAINMUyMiIjoTMDkpIX6sKoCt277E0XJ3RrsHCGhkQCAkpLiBjsHEREREQUP9gxooYqKDgMATOEN193qsugYtA4xwLZnN3D2eQ12HiIiIiIKDkxOWiBVVXH48CEAQKh3yt+G0MFoRG+THrkHDzbYOYiIiIgoeDA5aYHKDx/C1OTOKHU6YTSGwd5A/dcdOgPgssLpnbaYiIiIiOhUmJy0QMX7siGFhsHiduOgzgA43A1yHpc5DCi3QvFOW0xEREREdCocEN8CleTmAgCqVBVOl9Jg51G841l0VluDnYOoJYkyqIg2NXUUREREDYfJSQtUnrsfAFCl0cCtNNycpEJ0HAAgxN0wLTNELYlJC/xwkwX/jAFMuqaOhoiIqGEwOWmBbIWFnu/Ghr0Fq4tvBwCI0Gi4SjwRERER1YrJSQuklJQAAFwNtACjj75VEtyqCqeioMjbWkNEREREVBMOiG+BdBYLAECNim3Q82h0OjyWnY2DRQVYa6lEfIOejSi42VzAhO+N0GmBuUP5x5uIiIITW05aILvdBpeiQBPbpsHPpQuPBgDk5x9o8HMRBTMVwNYCDX7PA9SGGypGRETUpJictDCKouCFlN24ddufUDt0b/DzRcUmAABy2a2LiIiIiGrBngEtTH7+AbhcTuh0OpjCYmBzNNxUwgDQNzIGIztLMGzf3qDnISIiIqLmjy0nLUxmZgYAIKltBzhdDd83JCYsEgMioxDFhRiJiIiIqBZMTloYy6+/YEb3XrgioU2DrnHio0nsCACIUj1dyoiIiIiIasLkpIVR8g+gU0goYht4GmEfU7uuUFQVZo0GRTmZjXJOIiIiImqemJy0MPqKCgCA2qrhZ+oCAK3RjEMuFwBg37Z/GuWcRMHE5XTiYNpepP78E/RwwSC4sOv7b5G9fRvKvAuqEhERBQsOiG9BHDYL4iEAAPSdesHVSOc9pDUgHgqKd+8E/nNjI52VqPlxOZ1I+f5b/JuTjR0ZaUhJ2YMuNhsebJ+MEAArseLIvg4ABQDmHz6ErJhodOvWAwP69EWf7r0Q265dU1WBiIjotDA5aUHSfvsNelFEldsNXWIXuBp4pi6fyqh4oDQfal5eo5yPqDmpLCnCtnfXwbJzB+KtVoRoNNialYEfig4BACLDwqGoKsrdbrigQgGghQCTIMCk0SCrpBhbszOwdetfSP0sCkldJOx0u+Fo3x4dL7scnc4dBFFkIzkRETUPTE5akPytf6MdgEKNBjZnIw5Oby/BVpSL4qpKqKoKQRAa79xEZyCX04ntGz/EoZ9+QJLFggRf8qDRoMrtQi+pC/p0vQTd2rVBu9hIRIUYoBUAAQqMJj1sVgcUVUBVlR2PlgxC1qES7M7ch5CsfABAokYD5OZCXbYUvy16C1XJyeh102gkduvRhLUmIiKqHZOTFsSVkQYAsMTEQ2jEFaZN3c7GfW/PhsPpwMCMdHTu3KXxTk50BklLk/HZZ5/gt6+/wEuJ7RAuCIAo4pDLiYq4GLTu1RlSr2T0UI7rdKm6YXOLmJo/DKJGxMsJP0AHN0LMOnQ1t0LXxFa4rF9XAEDR4TLIf+2BIycfiYqAOK0W2L8fFf/3GiaJAi64+hpccskImM0hTfAOEBERnRqTkxbC6XRgb8FBRIZFQNPrHDTmpL46owntu/RB2p6/8euvPzE5oRalICMdO957B3mpKZi74+ikENsiIhEVH4fEc3piQI9kCL6E5PjExEuBiN+qkjyPE0QA7pPuFxMbgUEjzwcAVFRYsPPXHXBn5gE2B77eswNf//U7ZsyYhgfOG4xeFwxGv2uuh1anC1yFiYiITgOTkxZiy5bfsDwrAx9Fx2By1wGwNtJ4E58uPc9G2p6/sf3773Dnnfc16rn/v727j5OrqvM8/rlV1c/PnU6nu9N5jjkQ8tAkhJBAYjRoxhEH1lUZXRVl1BHGXddBxXmNoivqzOrOOsz4Gh1xUFSUVYdBZGEHFQiEEAIJIZCHE5POYyedpDvd9PNDVd3949xOKk0XA0mnq27xfb9e9arqc0/dOr/qulX3d8+554pMtN7ODrb8/B4Gtm5hejLJDM9jWl4+NYWFLF62lHdeuZTl86YTSw67J6RJSM5XWVkxK//oCgCOnujg5u2zeGjDsxw72sqlnZ0U/b+H2frgb2ifMoU5117HvJWrLkg7REREXqtQJCfGmAjwZeBjQBWwAbjZWrs3ow0Lkfvv/1cAVr9l3YQnJgAXL1rB5dvXMz+/kD1PrmfeqjdPeBtELqTe3h6e+/W/0ffUBqb29VEXjboFnseRZAJmN3LvjddSVhgB34eRxGSCNNRWccPVV/DhtcvZta+Flg0vUNc7QGUsRmV7O9z1L6y/8/sMzp7NnHdcw+yll+n8MBERmXChSE6ALwGfBD4KtADfBB42xlxirR3KaMtCYM/TT9H7/BYAmq54e0baUFZZQ7K0EkjS/PN7lJxI6CXicZo3b2Lbnt08/uwzbN68iasqKrlp5hyIRmmLx+mur8GsWspVDVX48SAZ8SfwhK8xeJ7H/LmNzJ/byNDgMNuf2UHPrgNMS/jUR6Nw8CA//uKtPJ+fx+rVa1i57AoWLlhI2aSajLZbRETeGLI+OTHG5AO3AJ+31j4UlF0PHAXeDdybweZlvf7ublq+/z1umTOPLXn55JfWMRyf+J4TgN7L15Hc/BCzh4bYePddrLzhxoy0Q+RcnNi/j4PPbqbD7sZvaWHy4ACl0RjbDh/gqeOtABwvKaa5soSGpvksXTAT4u7YyenEJMvkF+Rx2eomWN1Ex6mX2bHxJRJHjrOtp5tDPd389Kd3c+Thh6ieOZvWZJL+mhpKZs+hbvFiZl66lPyi4kyHICIiOSbrkxOgCSgDHh0psNZ2GmO2AqtRcjKmZDLJ7sd+z7F7fsK0aJTeRIJJ77mBvgwlJgBl85fx/AtPsHSol/L1j/PbliOsuOkvKK2alLE2iSSTSXpOtdN59Chdx1vpbTvJqaEhmnu6aWk5QlfLET7iRSmPxagAKkaeGI0xmExgpk1n7jvXsnrxRUyrLMEfHnTL4+Hq1K2qruCqa64E4LLBYbbsO8KG7btpOHySiOfREI1CRwdseQ62PMfe5J20+Ul+V1ZKydRpNDRMZVppKZWxPEpra6mYUkdFXR35hUUZjkxERMIkDMlJY3B/eFT5UeCcL4Mci43vRck27jjI+n/6LvWD3eAD+MG12N2978MD0QqGvAjgsyTRy9yk24nx3BNc/WDIx/2U0BusYQmDXOIPnqlzet2AD/cl8+n0I/i+z5JInJUMUEOCyliMaZEIfYkEDyx8D0eHlrnLSp8jz4NoNEIikTz3kSlr/xYe/AxLo3FmNDdz6LOf4fb2Xl4uqyVWVMoV3hAz/Di+F8EfY7j7w/mTgvcQFsd7mJnoT/tSj+RX0++5cf8L4j3MeZW6j+ZV0R3JIxL1mDfYg0n0pq27Pq+Szoib3WhuvJdLEn2nl509RbPPk7EK2oK6s+N9NCX7zlqeakOklNZIPgAzEwMsS6Zvw0avmCNB3WnJIVYEdcc6Q+AZr4j9Xj6eB40kuCrRfXaFlH/mc14RezzX3il+nKv99G14ngJ24NpQQ4J30Hc6JG9UbNvI5wXfrbeSJNd5/a+If8RLfozn/Hx836eUJO+LDI409BV1d/kxnk7m4fs+Rfj8l9jg6W0kVcT32Tmc4Lc9gySGByiID3B7/WTyPI9CzyMWXGckP7htazvBnQeaAcjzPP7b0uUkfZ/j8QSteUV0lE2ha0YT8Tctx/digM+9vUD6t+u8xVM2iG+fuIzYhZ5zrwby3wptwK9OHqBo7yYmnWimZqCLhohPcTRKHREe27iB7rg7of+GaTN455R6kkBHcOtPJBj0fYZ9+GZ7N93RfKL5hawqymNR1Mf3PJJ4+J6Hj0fSi4Dn8WCknJ5oHngRFiT7uSg5evs98378LlbBy14Mz/MwiT7mJ/rS1n0ir4L2YJuck+hnYeLsbSf1k7Mxr4KTkQIAZib6WRzvSft2bY6Vcyzq6jYmBlga705b9/mCCg55BeD71CcGuTzelbbutlgpB6MuwatNDrFi+OW0dV+KlbAv6nqzqpPDrBruTFt3Z7SEP8Rc3YpknDXDHWnr7okWsyvmpp4u9eOsHUpfd1+smLbGudxx640U5IVhF0NEsk0YvjlGxg0MjiofAKrPZYWRiEdV1fjO8X/HXfey5uALXF4zOW2d721df/pHfO30WSytnZK27p3bn6ZtyGUSb26czuK6hrErenDXzi20DLgf7isbGpnb0AjEGEom2Zws5heLP0vblEsh/e/qhNqy9h7esvlvuKbzOaqiHnsO7iTh7wDgXTPnsOxV3sPvP/fY6fdwzfRZLH+V9/DuretPv4crGqezPN17CNy77UlaBgYAWNzQyPKGxrR1/237Rpr73A7NJXUNLG9MnyP/3x3PsK/H7aTMnTyFZTNmpa37211b2N/VCcCMSZO5bNactHXX79vGgY5TANRXTeKyOemnZ97U/CIH29sAqK6oZMmbLkpbd8uB3Rw6eRyAsrJyLjXpL9r30uE/cPi4u+hfQUkpTRcvGDs7AmxLM0eOtQDgFRaxaMHitOvd33qIIy2HAJicX8DCRZemrdtyooWWQwcAqIjlsaBpadq6xzvaOXVgHwD5kQhV0+rPWj6QSNCd9On2PbpK6vEWr8SrnE6iYjpfKMintW4ZQ0WjvnLS7ydeUL/pnODpuPMMXLwOLnZ/+skkNW0v0XBiC71r/gSvuwVePsyQf4yjQ3HKIh4l0QiR4Cr2I30nna3NvBwMcSufNoP5U+oZM0n14YfbNtE66LbJK6ZOY1n91LTN+8X2jRzsdwnJovoGLp+afpt84KWn2dfrvgxNbR3Lp89MW/eRnZvZ2+X+yTNqalk+c3bauk/sfpa9nW6nva56Estnv8o2uWcLe0+1A1BVWcXyuSZt3W17t7G37QQAxeUVLJ93cdq6u5q3s/eEG2JoSktZftGCtHWbD7zE3tajAMwoKmb5JYvS1m05vIu9Le74YH1BIcsXNqWt29ZiuX/D/Ty6bjUfeHv67VFEJB3Pz/DJmf8RY8x/Bn4FFFtr+1PKfwEUWGuvfZ2rbE4kkrO6utIfRT8Xuw6d4OE776ai5+XgiL/nuhoAPHcceXvVNOJRlw9O7z1FzWBPsMxzvSt4wc6dx+7qRoZj+Xh41PWeYtJAV7C+M+sceY3mqqkM5RXg4TGpr4Pq+CB+w5vIn7+SSFnluMXoAdFolEQikeaY9+vjJ5P0H9xB66kT9HW2MTzQS2PnMaoHut01H8Z4ka2VDcQjrjdkZu8pagfTH6p+oaKewZH3u6+TuoH0RzJfrKhjIJqH53k09HUytf9Vjk6WT6E35o6Q1vd3MX3g7Lop/VrY8il05xUCUDvQzfS+UUccU2ZD+kNpLV0FLhefNNDDjL5To175TN39pTV0FroEu3Kwl1k9bWctT314qKSGjqIyAMrj/czsPPGKJMILClpKqmkvKgfPo2Son9ldx89qo5+y6tbiatqKK8CDouFBZr987Kx1nTnQ73GyuJKTxZV4nkdBfIjZnUfTxnaquIITJS4JyEvGmX3qyJjvl4dHR1E5J0rdsMCon2BO+2E8z8P3/bNjjETpKZtEZ810YvmFxPIKqO7rxCssxiuuIFYzlUhp5Zn6Wfq16Hovg20wS9sIgAfJ4WGSp46R7DyBP9ALAz20FVcyNDxEfGiAyvYWKvo6IJnASyYhmQA/iZdM4pFkZ9kUBrwovp9kal8n9QOjehdS3oAd5XX0x1wvXv1/sP3uKq+lJ9h+pwx0M703fS/A7tLJdI1sv4M9zHrFNnnGnpIaOvKD7Xeol7m97Wnr7iutoS2/GHyoGupjXm9b2rrNxdWcLCgFoGK4n4t6Tqate7CoitZCt62XxQeZ3308bd3DhRUcLXKDFIvjQyzsbk1bt6WwnCNFlQAUJoZZ3HUsbd3WwjISc+dz28euHffJH8rLi4hGI/uB9FmiiIReGHpORoZzNQD7UsobgBfOdaXxcT734uLptaz8zlfo6Ogd93Wfn9HDG85dLBahqqqEjo6B8YvRzAHS9xCM9pHxedUxnYkv2/6H4yPX44PzjXH8tpUL5YJsgxdUTXB77XL9c6r4RERe3fieeHFhvAB0AWtGCowxlcAS4MnMNElERERERMZb1vecWGsHjTHfAf6nMeYkcAD4Fq5H5b5Mtk1ERERERMZP1icngdtwbf0BUAQ8AazTBRhFRERERHJHKJITa20CuDW4iYiIiIhIDgrDOSciIiIiIvIGoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkazg+b6f6TZMtH7f9wuTyfGPOxqNkEgkx3292STXY1R84ZfrMeZ6fJD7MSq+cxOJeHieNwAUjfvKRSRrvBGTk06gADiW4XaIiIjIa1cPDAKVGW6HiFxAb8TkREREREREspDOORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREsoKSExERERERyQpKTkREREREJCvEMt2AXGCMiQBfBj4GVAEbgJuttXsz2rBxYIz5InC1tXZNSlkTcAdwGdAO/IO19n9lpIHnwBhTDXwDuAYoB7YDX7DWbgiWNxHi+ACMMbXA3wF/BBQB64HPWWt3BsubCHmMI4wx84CtwKestT8KypoIcXzGmBnAgTEWfdxa+4OwxzfCGPNh4AvAbGAf8BVr7S+DZU2ENEZjzBrgsTSL91trZ4c5PgBjTB7wFeBDuN+9bcCt1tqNwfImQhyfiGSOek7Gx5eATwIfB1YAPvCwMSY/o606T8aY/w58dVTZJOC3wB7cj86XgduNMR+d8Aaeu3uBK4A/BZbhdmwfMcZclCPxATwAzAHegYuxH/idMaY4h2Ic2UG6ByhJKcuF+BYBA0ADUJ9yuydH4sMY80HgLuCfgQW47fJeY8yKHIhxI2f/3+qBtwNx4Bs5EB/AF4EbcQflLgV24373GnIkPhHJEPWcnKcgAbkF+Ly19qGg7HrgKPBu3A9uqBhjpgI/AFYBdtTiTwCDwE3W2jiwyxjzJuBW4IcT2tBzYIyZC7wNuDLlCN+ncTvxH8DtxIc2Pji9c74f+Jq1dkdQdjvuyOYlwNWEPMYU/wPoHlUW6s9oYCFgrbXHRi8IDhqEOj5jjAfcDnzbWntHUHy7MeYqYE1wC22M1tohoHXk7yCJ/jbwr0HP118R4vgC1wI/s9Y+AmCMuQWXqKwA5hH++EQkQ9Rzcv6agDLg0ZECa20n7mj86sw06bwtATpwR2+fGbVsFfBE8IMz4lHABEOJsl0b8E5gy0iBtdYHPKCa8MeHtbbdWvv+lMRkCvBZ4AiwkxyIEcAYsxr4c+CGUYtyIb5FuP/VWHIhPgPMBH6WWmitXWet/RtyI8ZUfwFMAz4T/J0L8bUD1xhjZhpjopw5KLCN3IhPRDJEycn5awzuD48qPwpMn+C2jAtr7W+stR+w1jaPsbiRsWOFEMRrre201j5krR0cKTPGvBc3BOrfCXl8oxljvo87gvte4M+stb3kQIzGmErgJ8B/tdaOjiX08eF6TmqNMU8aY44bYzYYY9YFy3IhvnnBfYkx5t+NMSeMMc8YY94VlOdCjAAYYwqBvwb+PqUnLBfi+zRumNp+XFLyDeB91tp95EZ8IpIhSk7OX3FwPziqfAAonOC2TIRixo4VQhivMeZK3Lj3X1trf0OOxQf8PW7M90+B+40xS8iNGL8LPG2t/dkYy0IdXzBUdB5usoYvAn8MPIsbz7+WkMcXKA/uf4zrPXk78Ajw6xyKccSHcJNS/ENKWS7EdzGuh/063Dl8PwR+bIxZRG7EJyIZonNOzl9/cF+Q8hjcF3DvxDfnguvHxZpq5McmVPEaY67F7RhtAt4fFOdMfAAps3N9AjcW/FOEPEZjzIdww0YWpqkS6vistUNBz1A8pYdvizHmYtzwvFDHFxgK7r9lrb07eLwtSJ7/ktyIccSHceeatKeUhTq+YDa5e4C11tong+LnjDHzceeBhTo+Ecks9Zycv5Gu64ZR5Q24Mf655jBjxwrQMsFtOWfGmE8B9wEPAX9srR1JLEMfnzGm1hjz/mAcOADW2iTuHIaphD/GG4EpwGFjTI8xpico/54xZgfhjw9rbW/q0MPAi5wZLhPq+Djz3fjiqPIdwCxyI0aMMZOBlbxyYpSwx3c5kIfr0Uu1CdfrF/b4RCSDlJycvxeALtzsMsDp8fBLgCfHfkqoPQGsSt3xBdbiZhY6kaE2vS7GmJuAfwS+A1w/aicw9PHhdgJ+Brx5pCCYLWgJLkEJe4wfxA0paUq5AdyGGwIV6viMMYuCpOuqUYsuw+28hzq+wPO4WdauGFW+ENhLbsQILjHxcdcZShX2+EYOyi0aVb4Q+APhj09EMsjzfT/TbQg9Y8zXcbMG3Yi7cNq3cDPRLAymlAwtY8yPgJkjF2EMZlrZjbuOxjdxR9C+C3wyZXhG1jLugn0vAQ8CN49aPDIUIbTxwelpWh/GfQY/jhsX/tfAOtyO/AAhj3E0Y4wPfNRa+6Mc+IxGcNfJKAFuws0w9wnc53UZcJwQxzfCuAu8fh733bkZd92hr+J2YneSGzHeBnzQWjtvVHkufEYfBybjPpdHcMPX/gq4CmgmxPGJSGap52R83Ab8C+7aIE/hZjBZF/bEZCzBUa91uKlAt+IurvW5EP3gvAc3HOE/AcdG3e7IgfhGpka+Hjd15//B7fhVA6ustYdyIcZXE/b4giF478L9336J62VYDrzNWvti2OMbYa39Gu4K41/HJSPvBd5trX08V2IE6nBT7p4l7PEFn9Frcd8xP8JNzf5W3Dkom8Ien4hklnpOREREREQkK6jnREREREREsoKSExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5EJCsFF5MUERGRNxAlJyKSdYwxfwLcHTxeY4zxjTFrMtsqERERudBimW6AiMgY/jLl8VZgBe4q4iIiIpLDlJyISFaz1nYBmzLdDhEREbnwPN/3M90GEZHTjDGPA29OKXoL8BjwFmvt48aYrwB/CnwB+BowF9gN3AT4wB3AImAf8Glr7e9T1r0A+FtgdVD0e+AWa23zBQxJREREXiOdcyIi2eZm4PngtgIoH6PONOB/A18H3gdUA78Cfg7ciUteIsC9xpgiAGPMPGAjUAt8BPgzYDbwlDGm9sKFIyIiIq+VkhMRySrW2p1AF9Blrd0UPB6tGLjZWvtza+0DwD8BDcDt1tofWGt/DXwJqAFM8JwvA/3A1dba+6y1v8T1yhQBn7ugQYmIiMhronNORCSsNqY8bg3uU89NaQ/uK4P7tbjhYX3GmJHvvi7gSeBtF6iNIiIi8jooORGRUApOlB+t71WeMgm4PriNdnJcGiUiIiLnRcmJiLxRdAK/A/5ujGXxiW2KiIiIjEXJiYhkowQQHed1rgfmA9ustXE4fRX6nwJ7gW3j/HoiIiLyOik5EZFs1AmsMMa8FagYp3V+FXgaeNAY811gAPhz4DrgPeP0GiIiInIeNFuXiGSj7wDDwMO42bTOm7V2O7AKdy2Un+CmHq4HrrPW3jceryEiIiLnRxdhFBERERGRrKCeExERERERyQpKTkREREREJCsoORERERERkayg5ERERERERLKCkhMREREREckKSk5ERERERCQrKDkREREREZGsoORERERERESygpITERERERHJCkpOREREREQkKyg5ERERERGRrKDkREREREREssL/B8s22P/aS/xIAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Add the location of the second peak\n", + "peaks = chrom.fit_peaks(known_peaks={50 : {'width': 5}}, prominence=0.5)\n", + "chrom.show()\n", + "score = chrom.assess_fit()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Constraining Peaks With Known Parameters\n", + "If you have a chromatogram with two *completely* overlapping peaks, it can be \n", + "very, very difficult to deconvolve the mixture. However, if you happen to know\n", + "the parameters of one of the constituents (say, from characterization of \n", + "an isolated aqueous mixture of that compound), you can apply more stringent \n", + "bounds to that particular peak. Say for example we have a mixture of two compounds \n", + "with retention times of `10` and `10.6` and you know that the first peak has \n", + "an amplitude of `100` units. If you were to only supply the locations of the \n", + "known peaks, you would underestimate the contribution from the first peak." + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Performing baseline correction: 100%|██████████| 249/249 [00:00<00:00, 1365.51it/s]\n", + "Deconvolving mixture: 100%|██████████| 2/2 [00:00<00:00, 14.02it/s]" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Inferred amplitude for peak 1 is 94.971. Known value is 100.000\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "\n" + ] + }, + { + "data": { + "text/plain": [ + "[
,\n", + " ]" + ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9bElEQVR4nOzdd3gUVfcH8O/M9vTeexs6CNh4QUBQwYLltWJ5FSsWREVBQUEUUX4ICIrSQUBUQBF7Q0UUFUEUSDKk996zfcrvj01iEhKyWTZtcz7Pw8Nmp527gd09c+89l5FlGYQQQgghhBDS09ieDoAQQgghhBBCAEpOCCGEEEIIIb0EJSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFeg5IQQQgghhBDSK1ByQgghhBBCCOkVKDkhhBBCCCGE9ArKng6gB1QD0AAo6uE4CCGEEGK/UABmAD49HAchpAsx/XCFeKMsy1pJcn67WZZBV5y3N3H1Nrp6+wDXbyO1r+9z9Ta6evuArmkjyzJgGMYEQOfUExNCepX+2HNSJElybGWl3qknVSpZ+Pq6o7bWAEGQnHru3sLV2+jq7QNcv43Uvr7P1dvo6u0Duq6Nfn7uUCgYGvVAiIujOSeEEEIIIYSQXoGSE0IIIYQQQkivQMkJIYQQQgghpFfo8TknHMdFA8huY9P9PM9v5DhuBIA3AIwGUAFgNc/zy7svQkIIIYQQQkh36PHkBMAwACYAcQCal/ao4TjOH8C3APYBeAjARQDWchxXwfP8lu4OlBBCCCGu5+jRo56wlSqmESWEOJcEoGjUqFF19h7QG5KToQB4nufPqMDBcdxs2Gqaz+R5XgCQwnFcIoC5ACg5IYQQQojDjh49ygJ4jmHYuxiGUQFgejomQlyMLMuy9ejRo+8CeGXUqFEdlvDrDcnJMADJ7WwbB+BgQ2LS6ACAZzmOC+J5vrTLoyOEEEKIq3pOoVDO9PLytajVWgPDMK69AA0h3UyWZcZiMbnV1lbNFEUBAF7u6JjekJwMBVDEcdzPAJIApAF4ief5rwFEADjRav/Chr+jADicnCiVzu25VSjYFn+7Ildvo6u3D3D9NlL7+j5Xb6Ortw/oO208evSoF8Owd3l5+Vo8PX0rejoeQlyVRqMzAvCvrq646+jRo290NMSrR5MTjuPUsCUkegBPA6gHcAeALzmOuwyAG2zDupozNfytdfS6LMvA19fd0cPPysvL9ReudfU2unr7ANdvI7Wv73P1Nrp6+4A+0cYQhmFUarXW0NOBEOLqGnom3WQZoQB6b3LC87yF4zgfAALP841JyFGO4wYCmAPACEDT6rDGpMThJd4lSUZtrXPfixQKFl5eOtTWGiGKrrnqr6u30dXbB7h+G6l9fZ+rt9HV2wd0XRu9vHTO7o1hATA0lIuQrtfw/4yBHUUnenxYF8/zbSUZJwBMAZAHIKzVtsafC87luoLQNR8Koih12bl7C1dvo6u3D3D9NlL7+j5Xb6Ortw/oH20khDhfjw4I5ThuGMdx9RzHjW21aTSAUwAOAhjHcZyi2bZJsFX3osnwhBBCCCGEuJCe7jk52fDnbY7jZgIoB/AAgIsBnA+gBMAzADZxHLcMwAUAZsO25gkhhBBCCOllVq9eEXbgwDf++/Z91bqoUa+Umpqszc/P10yefHlNT8dCerjnhOd5CcA1AP4AsBvAXwAuBHAZz/MnGnpHrgDAATgGYCGAp3me39ZDIRNCCCGEEBcyb95TicnJJ7umUhLptJ7uOQHP82UA7j3L9iOw9aQQQki7jAIw7j3bZ8vh2wCVHUupGQVg3IeeAICfb66DrsffEQkhhHQ/qonQm9BHMSGEEEJIA0mSYDAYemxkiZubm8Synbv82LGjR/33v7cU/fjj9/5Wq5V94423U93c3KQ1a1ZG/PPPX156vV7h7e0tTJw4ueLxx+cUpKQk6x588O5Ba9duTBk2bIQBAGbPfjj+5Ml/vL766se/lEolZFnGVVdNHv6//80ouOWW28tbX7O8vEy5YsWyiGPHjniLosgkJQ2of/LJuXnx8QlNS0CsX782+LPP9gXX1dUpExIS9fPmvZDduL2tmCMiIi3r1r0V+tNPB/yrqqpU4eHhpjvvvKdwypSrqgFg9+73/Xft2h56zz33FWzatD6ipqZaNXDg4LoFC17M3rp1U8iPP37nr1Qq5WnTbih56KFHiwHAbDYzb765MuzQoYO+lZUVaq1WJw0fPqJm3rznc/38/MXrrpsytLy8XP3hh++Fnjhx3HPDhnf5qqpKxZtvrgo/cuQ3n7q6OmVsbLz+gQceLrjoojH1jW3bt2+v386d20LLyso0UVFRxokTL6vYtOmdyEOH/jzqyO+EZVmH2ueKKDkhhBBCCIEtMZk+/b8DUlNTemyIz4ABg+rfe28P39kE5ZtvvghcuvT1NFEUmMTEJPP06f8d5O3tY33ttVWnPT09xZ9+OuCzYcPbkYMGDdFfccWV1QEBAZbDh3/xGjZshEEURSQnn/Q0m83sX38ddT///Av1x48fc6urq1Veeull1a2vJQgCHn98ZhLAyIsWvZLh7+8vrFmzMuKppx5L2rPn0xMAUF5erj558h/PpUtXpFksZuaVV16MfeWVF2M2bdrOtxfz7NkPx2dmZrg99tgTubGx8aavvvrcb8mSRfEsy6ZffvnUGgCoqChX79//cdDLLy9LNxj07PPPz028557bB0+adFn52rWbUr74Yr//jh1bw8ePn1g9cOBg0+uvvxrx+++HfebOnZ8dGRll5nlet3z5KzHr1r0V9uyzL+Rt3Lg9ZcaM2wf95z/jKx94YGaRKIqYNeuhJKvVysyduyArMDDI+sEH7wXNm/dk0qpVa1NHjBhp+O67r71XrHgt9q67ZuRPmDCp+vfff/XauPGdyHP9nTjSvk79I+kjKDkhhBBCCGnSN9c9GT/+0ooRI0YaAMBoNDKXXnpZxRVXTK2KjIy2AEBMzL2lu3e/H5Keflp3xRVXVo8efWH1sWNHvAAUHz9+zF2hUMpJSQPqjxz53fP88y/U//zzTz6JiVx9YGCQ0Ppav/xy0CsnJ1u3Zct7JxMTk8wAMH/+ouytWzeGVFZWKAFAoVDIL730Wpa3t7cIAFOnXl22Y8fW8PZiPn06Vfvnn3/4LFq0JH3y5CtqAODRR2cXZWamu+3cuS20MTkRRZF58sm5OY1fzIcOHV57+nSqx9NPP5fPMAweeOCRog8/3BWalnZaN3DgYNPAgYP0EydOqrr44rH1ABAZGW359tuvarOzM3UAEBAQKLAsK+t0OsnX1088cOBbr6ysTLcNG7adarzGggUv5p4+neq+c+e2kBEjRma+//7OkIsuGlN5330PlQBAQkJiWX5+nubTT/cFn8vvxJH2ncu/md6KkhNCiEtgAIwKFqFSKsDYMd+k8ZiRDZ+7dh5CCHFhLMvivff28H1tWBcARERENg2n0ul08p133lP6xRef+u7Ysc29sLBAk5OT5VZdXaUSRYkBgHHjJtQsXPhcoNFoZH7//bDn4MFD6sLDI01//33MC0DxkSO/e19yyYTKtq6VlnZa5+bmJjYmJgAQHBwizJ27IL/xZ29vb6ExMQEAT08v0WKxtGhY85h5PlUHAKNHX1jffJ+hQ0fUvfvupojmzyUk/HtdjUYjBQYGm5mGN36tVisDgNlsZgHg+utvqvz55588V6x4LbygIF+Tn5+nKyws0A4YMLDFdRqlp6fpdDo3sfkXf4ZhMGjQkPpjx/70AoDs7Ey3sWMvqWp+3PDh59W3Tk46+ztxpH2uiJITQohL0CqBTVeY4OvrjqoqQDjjXl/bx6yfbOz64AghfQbLsvDw8Ohzq0dqNNqmmA0GA/vgg3dzJpOJHTdufNXll0+tGD58RO6jjz4woHGfiy/+T51KpZR+++0Xz7/+Ouo1ceKkyujoGPP+/R+F5OXlqLOzM90WLVqS2da1FAqlzHRwF4hl2Q57oJrH3N6kdEkSGYVC0WKjSqVq8TPLth/L4sXPR/3yy0G/CRMmVVx00X9qBgwYVLRz57aQiooydVv7y3LbTZMkCUqlUrZdj5VlueMOts7+Thxpnyui5IQQQgghxIX89NMBr6ysTLePPvr876CgYAEAqqoqFTU1NcrGJECtVsvDh59Xe/Dgjz5paac95s17PiciItLCMIy8du2asNDQMFPzye3NxcXFm/R6vSIzM0MTFxdvBoCKinLlbbfdMOTll5elORJzUtIAIwD8+efvHo3DugDgxIm/PcLDIx26i1RZWaH45psvA+fOnZ95zTXXN/V05OfnarVaXbPE6N8v/wkJSUaDwaBISTmlbd57kpx8yiMiIsoEANHRMcbk5FMeAJoWBD916sRZ5ynZ8zshNi7bJUQIIYQQ0h8FB4dYAGD//o/98/Jy1L//fthjzpxZCaIoMhaLtemb+JgxY6t/+OH7AC8vTyE+PsGs0WhkjhtYf+jQT/4XXTSmur3zjxs3vjY2Nt6wePGC2KNHj7inpiZrFy2aH+Pt7WMdPvw8gyMxc9xA04gRI2tWr14R9d13X3unp6dp3nxzVejRo0d8br75thJHzunl5S3qdG7ioUMHfTIzMzTJySd1Cxc+F52dneVmtf77Omi1WrGgIF9TWlqiHD9+Yk1kZLRx8eLn43799WfP06dTtS+99EJUfn6u7tZbp5cAwPTpdxX9/vuvvps2rQvOzMzQ7Nnzgf/nn38adLZY7P2dEOo5IYS4CKMATNvrBoYFPr/O/nVOrvnEdrPr02v1tM4JIcQljBw52jBjxgN5+/btDd65c1u4r6+fZdy4CZUBAYEWnv+3EtnEiZNrVq1azgwZMry28bnzzhtVe+LE317jx19a3d75WZbFsmUr01esWBY5b95TiQAwePCQuhUr1qRpNBqHuwFefXVF5qpV/xe+YsWyGIPBoIiMjDQ+99yijKlTr2o3lrNRKpVYsODFzHfeWRNx7713DHZ39xCGDBlWd8cddxfs2fN+qF6vZ93d3aVrr/1v6ebN6yIef/xh3a5de5NXr3779IoVyyJefHFBvNUqMLGxcYZXX11xetSoC/QAMHHi5NrS0pKc99/fGbJ9+5bw2Ng4wxVXTC378svP2k1Q7P2dEICxZ8yci8kURSm2slLv1JMqlWzDWHc9BKHPDVW1i6u30dXbB7h2G5svqHj4Nj1UTMft62uLMLry76+Rq7fR1dsHdF0b/fzcoVCwWQDinHG+o0ePDmBZxVdBQeH1arXWJaseka5x+PAhj4CAIGvzggBvv70m5Jtvvgz4+OMvTvZkbL2VxWLSlpYWeEiSOGXUqFGpZ9u3l38UE0IIIYQQ0nv89tuv3j/+eMDvmWeey46OjjEnJ5/S7d//cfDUqVeX9XRsroCSE0IIIYQQQuz08MOPFxqNRvbVV1+OraurVfr5+VuuvfaGkvvvn+myq7Z3J0pOCCGEEEIIsZNGo5Gfe25hHoC8no7FFVG1LkIIIYQQQkivQMkJIYQQQgghpFegYV2EEJfAABjkL0IWrPht5XKoJSu4626AT0Li2Y/xE5seE0IIIaRnUXJCCHEJWiXwdP1WsJ9/BhVr6xQuXPoyCqdciUE33dLuMe9OcWi9MEIIIYR0ARrWRQhxCfn5eTj6/ntQsSwyLGakmoxQMgyYr75AwZE/ejo8QgghhNiBkhNCSJ8nyzIWLnwWq9JSsUcWMHnjFkxatwknBCsUDIPcDe9AFoSeDpMQQgghHaDkhBDS5/388084+vdJKB/6Hb9esxdQu8Hd3QNDn5yDWsGKytpa/PXLwTOOMwnANZ+445pP3GGi3IUQ0keNHTt61O7d7/vbu/+PP37vdf31Vw6ZMOGika+9tiSiK2Ozx+rVK8Kuu27KUGeeszOvSX5+rnr//o99nXl94jiac0II6fP+3LIRXko1DF4RKDYAkM0AAyQNOw/Lo6Ox45OPMHb3Bxg5/tIWx8kAivRs02NCCOmL9u797G8vL2/R3v03bHg7Ijg4xPzGG2tPe3h42n1cX9KZ1+TFF5+PCQoKskybdn1VV8dFOkY9J4SQPu30rz/jaoUSK4YMa3P7zfc+CJZlcejQT8jNzenm6AghpOsFB4cIOp3O7nsser1eMWjQYH1UVIzFz8/fJZOTzr0mMhVs7EUoOSGE9Gnpe3cDAAo1mja3R0VF46KLxsBNocAvu3Z0Z2iEENItmg9hmj//6Zhnn30qdtmyJRFTp146/NJLx5w3e/bD8SUlxcrGfcvLy9QffrgrdOzY0aNyc7PVsixj/fq1wddff+XQSy8dc9706f8d9PHHe/waz//rrz97jh07etT69WuDr7hiwojbb79pYFZWpmbs2NGj3nrrjdArr5w0/Lrrpgytrq5W1NTUKBYufC566tSJwy+7bNyIBx64O+n48WNuzePdtWt7wA03XDVk4sSLR86e/XB8fX2d4mztu//+u7hVq5aHLVz4XPTkyWPPmzp14vC33nojNC3ttObee+/kJk68eORtt/130F9/HW26TuNrUl1drZg27fJhs2Y9lNC47eDBHz3HjTt/1BdffOpz//13cSkpyR4//fSDf+PQsuuumzJ09eoVYa1jmD//6Zj2Xg9RFFFYWKB6+unZcZdddsmIKVMmDJ8166GEjIz0tj+cSLsoOSGE9FlWiwXBlZUAAL9LJrS73w0TJmH98FEYwvMQDFQ6mBBydqLRyLb3RzKbme7Y91wcPvyLb21trfKNN9byL7zwUkZKSrLnm2+uCgdsw538/Pys11xzfcnevZ/9HR4eaVm5cln455/vD3rkkcdzN23akXz99TeWvPXWqujt27cGNj/v778f9lm7dmPKvHnPZysUrAwAP/74vd/KlW/yixa9kuHt7S3Onv1wYmFhgebll5elr127MXXAgIH62bMfHnDixN86ANi//2Pfd955M+r6628s2bDh3VMDBw7Wf/nlZ0EdtWnfvj0hQUHBlo0bt5+6+uprS3ft2h42d+4TibfcMr34rbc2pKjVKmnFiteiWx/n4+MjPv30/Ky//jrq/cknH/lVVlYoli1bEjtp0uXlV155TfWyZavSExOT9Bdf/J+qjRu3p3TmdW7+ephMJvaxxx7kJEnEypVv8StXvsV7eXkLDz9878DCwgJVZ87b39GcE0JIn/XPF5/BU6FEvShi2NXXAJ+0vd+Yq6/Fsc/2I0itQcoXn2LojW2ve0IIIQCQ8djM89rbpkviaiKfeTa98efMJ2cNl63WNm/2amJi66MXLOQbf86a+9RQyWBo87uXOizcELN4Sae+HLcbo04nLlz4co5KpZKTkgaYDh/+peLo0SPegG24E8uysk6nk4KDQwS9Xs9++um+4Dlzns2aPPmKGgCIjY0zFxUVavbufT/kzjvvLms87y23TC+Oj08wA0BubrYaAK66aloZxw00AcDPP//kmZbGu+/b9+XfAQGBAgA8+eTcguTkUx7vv78jeOjQ4dkfffRh8JgxY6vuvPOeMgBISEgsTkk55Z6dnemGs4iMjDI+8sjjRQBwzz0PlOzatSNs3LgJlZdfPrUGAC6/fGrFhg3vRLZ17Lhx4+umTr2m9J133oz8/vtv/Nzd3cW5cxfkAoCvr5+oVCpltVotNcZsr+avxwcf7Ayoq6tVvvrqiiyVSiUDwOLFS7NvuOGqoXv2fBA4a9aThZ05d39GyQkhpM8qPvgjPAGUenpioEbb7n5ubm4o9fJGkMmE8t9/Ayg5IYS4sODgEHPjF2QAcHf3EAVBaLNn5vTpVK3VamVef/3VmBUrXotpfF4UJUYQrIzRaGw6LiYm1tz6+KioaFPj49TUZDcAuOWW61pU3hIEgbFaLQwA5OXl6iZMmFTZfPugQUPqO0pOwsIimq7j5uYmAUB4eHhTPGq1RhIEa7u9T08++Uz+sWNHvI8d+9P77bc3J3dmjk57mr8ep0/zbkajUTFlyoQRzfexWq1sXl5O+x9Q5AyUnBBC+iRJkuBXWQEoVfC78GIwAOK8JSgULNDGx5Pv+RcAPx+ET0UFZEkCw7INx9jmgtJsSEJIo/g1b//V3jaGZVt8qY1bsfpve/eNfe31E/buey6aJyb/avv0kiQxAPDccwsz4+ISTK23azSapgO1Wq3UertWq23aLkkSo9PpxHXrtp7RA6RWqyUAYBgGcqtQlEplh21XKhVn7MMw9s9OKCkpVlVXV6kUCoV8+PAhr6FDhxnPfkTLywmCeMbHRPPXQ5IkhIaGmV59dUV66/3c3d1dsuhAV6E5J4SQPinjr2PwVShhlSQMnXYdtErgo2uN+O5OQNfGbZfzrrkW9YIAd5ZF3m+/AgC0SuDDqwz48CoDtHSrhhDSQKHTSe39YZt9We/KfbtLQkKSSaFQyEVFheq4uHhz45+DB3/w3r59czDL2v9VMT4+0Wg0GhUWi5lpfq6tWzeGHDjwrQ8AREfHGE6e/Nuj+XE8n+Lu3Fa1JEkSFi9eEBsdHWt4+OFZue+99274yZMndP/uwbT8PSmUcn29XtH8+NLSEvXZrhEXF28sLy9Xe3l5iY3tjoqKNr/55qrwP/447OnsNrkySk4IIX3SET4ZM47/iY9UCug8O37f9/HzR57C9paX/dOPXRwdIYT0Dd7e3uJll00p2759S/hHH33ol52dpd6z5wP/rVs3Rfj6+nVqDsbEiZNqoqNjjAsXPhd/6NBBz8zMDM2yZUsifvjhu4DY2HgTANx2213Ff/zxm++GDW8HZ2Ska7Zt2xT0+++Hu3QBxPXr14ZkZWW5zZ+/KPuWW24vHzhwcN3LL78Qa24oQqDT6aTS0hJNQUG+CgAGDhxUf+jQT36HD//ikZ6eplm8+Ploo9Fw1opi06bdUOnh4S7OnftE/NGjf7inpfHa55+fG3v8+FHvxESug14a0hwlJ4SQPun33w/DIIqIuOg/dh/DRMcAAOTc7K4JihBC+qB5857Pu/baG0refXdL+N133zZk585tobfeenvhY491bhK3QqHA6tXvnE5MTNIvWbIw7r777hz0zz/HPRcseDFj3LjxdQAwefLlNc8881zmN998GXDvvXcOPnTooM+0adeXdE3LgBMn/tG9//6OsDvvvLsgLi7eDADPPvt8Tnl5mWblymXhADBt2g1leXm52hkzbh8siiIeffSJgqQkrn7+/GcSH3vswQFeXl7CmDHjzrpAo7e3t7hmzfpUb28fYd68OYkzZ947sLS0RP3KK8vTBgwYdMZwOdI+Rm498M/1ZYqiFFtZqXfqSZVKFr6+7qiq0kMQzhiS6RJcvY2u3j7AddooCALGj78Qer0eu3btxcCBg2ESgLu+dodCweLdKXqocGb7/vzhe7y3ZBEKlUrs+vIAzCKDu762zcF894reP7TLVX5/Z+PqbXT19gFd10Y/P3coFGwWgDhnnO/o0aMDWFbxVVBQeL1araUvj4R0IYvFpC0tLfCQJHHKqFGjUs+2by//KCaEkDOl/HQAcyNjcNJkAMcNBGCbuphZ09AZLKPNGe5Dx4zFodoaWCwW5ORkITgiDpk1iqZDCCGEENKzaFgXIaTPKfzjdwzw8MT5wWHozGRNjUaDYcNGAAD+/POPLoqOEEIIIY6i5IQQ0ucIuTm2B+HhnT52zPDzMDUoBNaDPzk5KkIIIYScKxrWRQjpU2RZho/BCKhUCGzoBemMoXEJGBsVA1O9HrLkmmP+CSGEkL6Kek4IIX1KUUY6AlUqSLKMxEvGd/p4buwlMIkitCyLcp7vgggJIYQQ4ihKTgghfUr6z7bhWOWyBHc//04f7+XtjULJtlhv7h+HnRobIYQQQs4NJSeEkD6lNjUZAKD39mnxPAMg1F1ChCfarNTVnMHHtt5XfVoaQt0lhLpLHR1CCCGEkG5Ac04IIX1KSWkJQiTALT6hxfNaJfDlf40N6ysAwlnWNXZPSAT+Pg7P8iJ8eq1z1zwihBBCiOOo54QQ0mcIgoD1ySdx399HETH1SofPE3XhRQAAf1mGYDQ6KzxCCCGEnCPqOSGE9Bm5uTkwm83Q6dwQFeP4ItEJ543CX1YrvJRKFJ78B1HnX+jEKAkhfR3DQMEwTI/cwJVlWZJliD1xbUJ6A0pOCCF9Bt8w3yQxMQkKhaLFNpMAPPC1FkoFsH7y2d/cVCoVtlvN+D0lBWFZI+FV4Yb1kw3Q0jsiIf0ew0AhMUyowST0yDuCm1YpsJCLeluCsnr1irADB77x37fvqxOdPTY9PU3zwAN3D9q6deepqKgYS1fER1wHfRQTQvoM6eeDWDv0POSHhJ6xTQaQXGFLWGQZHU6K90/iYEnLQL7gB1TajieEEIZhWINJUP52skgymIRuXQzJTatkLxoSqvTUKllZlntVcuKo5OSTunnznkqwWMw0lYDYhZITQkifwZSXIUCjgSUo6JzPxXEDgM+/cEJUhBBXZDAJkt5o7YmVWl3mS/zatatD9ux5PzQ8PMJUWVmh7ul4SN/gMv8BCCGuTZZl+FisAICAwUPP+XxcbDzuiog+5/MQQkhPGzt29KidO7cFzphxBzdx4sUjb731+kHffPOld/N9vvvua+877rhp4MSJF4+84YarhqxatTzMbDY39TGnpiZrZ89+OP6KKyaMGD/+wpE33HDVkC1bNrZ7J2jr1o1BEyZcNPLrr7/waW+fo0f/8H766eeyZs58LN8pDSX9AiUnhJA+oTQvFwEqFQAg9oJzn8CeMHAwLvELOOfzEEJIb7Bly4aIiRMnVa5fv+3U6NEX1rz00gsJR4787g4AP/zwndeSJYvip069unzz5p2nHn/8qdxDh37ymz//6VgAMBgM7FNPzUrSanXSmjXvpG7Z8t6psWMvqdq06Z3IEyf+0bW+1o4dWwO3bdsUsWDB4owrrriyur2YNm3awU+denW72wlpCw3rIoT0CTlHfocPgCpRRJL/uScVXt7eKJFcYkg3IYRg4sTJ5XfeeU8ZAMyZM6/g5Mm/PXfv3hV0/vkXZu3YsTV00qTLy2+//X9lABAbG2dWKpU5c+c+mZSbm612c3OXpk27vvS22+4s9fLykgDg0UefKPzoo90haWmpuqFDhzXVXN+1a0fA5s3rIxYufDl9woRJtT3TWuLKKDkhhPQJFakp8AFQq9M67Zz1bu5OOxchhPSkkSNH1zX/meMG6o8fP+YFAFlZWW4ZGenuP/zwnX/jdrmhCkh6epr20ksvq50+/a7Szz77xC8jI82toCBfk5OT5QYAoig1Df2qqqpSvf326miFQiFHRESZu6NdpP+h5IQQ0icIhQUAADYouN19fDUyGLaDMl3NKEND4WmpgcQw6LC8FyGE9GJKpbJF0UFZlsGyCtn2WGKuu+7G4mnTrq9ofVxwcIi1tLRE+cADdw/09PQSLrpoTPWoURfUDhs2XH/LLdcNa74vw7BYvPiVtM2b14ctWbIodtOm7aksSzMEiHNRckII6ROyqqshCwKCk7g2t+uUwA+3GODr646qKkAQOj5ncHwU1n0/A1WSBN3/3nVyxIQQ0n2Sk0+6X3bZlJrGn1NTkz3i4+MNABAREWXMy8vRxsXFN/V2HD58yOODD94LfvbZF3I+++wT//r6OuXu3ftPqlQqueF8DXNN/s15fHy8rePHT6wNCgqyPPTQjEFbtmwIvvfeB0u6qYmkn6B0lxDS6wmCgO2nU/ACn4yI8ROddt6woSMAAN4MA9Fkctp5CSGku3366b7gffv2+qWnp2lee21JRE5Otu622+4qAYBbb729+I8/fvNdvXpFWHp6mubQoYOey5a9EqvX1yuDg0OE4OAQi9lsZj/77BPf/Pxc9U8/HfB68cUFcQBgsVjO+K44cOBg0/XX31S8c+e2sIyMdE13t5W4Nuo5IYT0egUF+bBardBqtQgNDXPaeSO5AThutUKQJRSnn0b4kGEdH0QI6RfctMpuv4F7Lte8/PKpZXv2vB+8atVyXXR0tGHp0uVpgwcPMQLAVVdNq5JlOXPXru2hH330YYibm7s4evQF1U888Ux+4/bU1JTiDRvejlyzZgUbEBBoueKKK8sPH/7FJyXllDuAstbXmznzsaJffjnou2TJopiNG9/laXgXcRZKTgghvV7W6VSoGAYxMXFo7wPQJACPf6+FSgmsGm/fm5vIqPDEyMUwGg34v8oahDs3bEJIHyTLsuSmVQoXDQlVogdGmLhplYIsy51e/DE2Nt74zDPz211P5Oqrr626+uprq9raxjAM5syZVzBnzryC5s83H7I1a9aThbNmPVnY+LNGo5F3795/yp7YxowZV3fo0J9H7dmXEEpOCCG9nvGP37F95AVI051Rbr+JDOBoicL2WIZd89tlAKbAEWAAZGW/BVwy1hnhEkL6MFmGyEIu8uyBnhPb9WVJlkF1zkm/RckJIaTXE4qLwTIMdH5+XXaNrKysLjs3IaRvkWWIsixTgkBID6DkhBDS62nq6wCFEh7R0V12jTF5eV12bkII6Uo0ZIq4Epq9RAjp1SRJgm/DamFBAwd32XXCGBaimdYUI4QQQnoSJSeEkF6tKDMD3koVACBi2Iguuw7LMChJPtll5yeEEEJIx3pVcsJxXBLHcfUcx93d7LkRHMf9xHGcnuO4XI7j5vRgiISQbpb/z3EAQJUoQu3h0aXXKjrxT5eenxBCCCFn12uSE47jVAB2AnBv9pw/gG8BnAYwGsBCAC9xHHdPjwRJCOl2VelpAIB6TcfrfGmVMnSdnEmnVchQibYFGGtzsjsbHiGEEEKcqDdNiH8RQF2r5x4AYAYwk+d5AUAKx3GJAOYC2NLN8RFCekB2VRVyy8sQOuK8s+6nUwK/TTfA19cdVVWAIHR8bp0SOHRLPfY//yy0khlSebmToiaEEEKII3pFzwnHcZcAeBDA/1ptGgfgYENi0uiA7RAuqLviI4T0nN+LC7E2OwPKCy/qsmu4R0QCANR6fZddgxBCCCEd6/GeE47jfABsB/AYz/N5HMc13xwB4ESrQxpXJ40CUOrodZVOXltJoWBb/O2KXL2Nrt4+oG+2MTc3BwAQGxvb4f9bR9sXPHAAqn89hEpRdPp7gzP1xd9fZ7l6G129fYBrtJFhoGAYhhZhJKQH9HhyAuBtAId5nn+vjW1usA3ras7U8LfW0QuyLANfX/eOd3SAl1f7K1i7Cldvo6u3D+g7baytroa6vh4KhsHw4YPg5dX+/1uTADz0ue3xO1fpoLXj3a3xGKs8FT+efAIQzbhdy0J3lpXoe4O+8vs7F67eRldvH9B328gwUOhYa6hsMfTIdyRG7SYYJVVRb0tQVq9eEXbgwDf++/Z91fqmcbt2797lv3fvh8GlpaUaX19f6+WXTym/776ZxQqFoitDJX1cjyYnHMfdCdvQraHt7GIE0HoWbGNS4vD4C0mSUVtrcPTwNikULLy8dKitNUIUJaeeu7dw9Ta6evuAvtfG5EO/4Y2hI2CURAgCi6qq9v/bG63AD9m25KW6xggN23H7/j1GDU9vX9RVFuOff1KQlMR1eGxP6Gu/P0e4ehtdvX1A17XRy0vXLb0xDMOwssWgrOd/lySzsVt/SaxGx3pwFyoZlQ/b11eo37dvr99bb70R/dBDj+VeeOHFdadOnXBbvfr1aIvFyjz22BNFPR0f6b16uudkBoBgAK2Hc73DcdzTAHIAhLU6pvHngnO5sCB0zfuNKEpddu7ewtXb6OrtA/pOG4tTUxECoJZhIIoyALndfYVmH+OSKEGQOm5f82OioqJwqrIYmRkZiItLdDzobtBXfn/nwtXb6OrtA/p+GyWzURJN+p5oQN8dD9fM/v0fB44ff2nFrbfeXg4AsbFx5pycbO3XX38RQMkJOZueTk7uANC63zcNwAsAPgBwG4CHOI5T8Dzf+DViEgCe53mH55sQQvqG+rxcAICpG4ZZXeofgJlDR8D880Hgsildfj1CCHGWsWNHj5o587Hc77//1i8rK8M9ODjENGPGAwWXXz61pnGf77772nvr1o1hBQX5Ol9fP8sll0ysnDnzsSKNRiMDQGpqsvadd94MT0lJ9jSZjKy/f4DlmmuuL73nnvva/L61devGoK1bN0Y8++wLmVdccWV16+0PPfRovp+f/xl1E/X6+p7+7kl6uR79B8Lz/Bm9Hw09KKU8z+dwHLcZwDMANnEctwzABQBmA3ioO+MkhPQMoawMAMD4+nf5tXx9/RFUU4n8ioouvxYhhDjbli0bIv73v3vzn332hexPPvko4KWXXkjw9fVLPf/8C/U//PCd15Ili+Lvu++hvDFjxtXm5mZr1qxZGZWfn6tdvnx1psFgYJ96albS0KHD69aseSdVqVTJ+/btCdi06Z3I0aMvqBs6dJix+bV27NgauG3bpogFCxZnTJ58eU1b8VxwwUUtxuFWV1crvvzys8Dhw8+r7crXgfR9vbrrsKF35AoAHIBjsC3C+DTP89t6NDBCSLdQ1dcDAHThrUd3Op9HVJTtWiZTB3sSQkjvM3Hi5PI777ynLDExyTxnzryC+PgE/e7du4IAYMeOraGTJl1efvvt/yuLjY0zjx9/ae0TTzyd89tvv/rm5marDQY9O23a9aXPPbcwJylpgCkuLt786KNPFAJAWlpqi67rXbt2BGzevD5i4cKX09tLTFqrr69n58yZlWC1WthZs57Kc37riSvpdV1rPM8zrX4+AuDiHgqHENKDvEQBYNXwi0vo8msFJXHAwe/hA0AWRTBUTYYQ0oeMHDm6xULWHDdQf/z4MS8AyMrKcsvISHf/4Yfvmrqh5YYpfOnpadpLL72sdvr0u0o/++wTv4yMNLeCgnxNTk6WGwCIotT0vayqqkr19turoxUKhRwREdW6mmqbSkqKlXPmzEosKSnWvPrqitMxMbGWc28tcWW9LjkhhBAAqK2qgr9SBQAIHzKky68XMWAQiiUJapZFVU42/OLiu/yahBDiLEqlskXFEFmWwbIK2fZYYq677sbiadOuP2PcanBwiLW0tET5wAN3D/T09BIuumhM9ahRF9QOGzZcf8st1w1rvi/DsFi8+JW0zZvXhy1Zsih206btqSzb/iCctDReO2fO44miKDKrVq3lBw0aYmx3Z0Ia9OphXYSQ/isvOxO7C/Pxa10tPEPDO9xfpwSO36VHzuOATmXfNXRK4M/pdfhzeh0CfDxQJlgBAEWnTp5L6IQQ0u2Sk0+2WAgqNTXZIz4+3gAAERFRxry8HG1cXLy58U9JSZFq9erXI+rr69hPP93nX19fp9y8eUfqI488XjR16lXVNTXVDTew/815fHy8rePHT6ydN29BdmZmutuWLRuC24snJydbPXv2I0larVZ6553NKZSYEHt1uueE4zglgAmwVc2KBeANoBy2sr9fAviV5/n2630SQogdcouLsLeoAOeFhOBuhun4ACeoV6sBANWZGd1yPUJI78VqdN1+A/dcrvnpp/uCo6NjTUOGDNPv3fthYE5Otm7u3OezAeDWW28vfvXVl+JWr14RduWV11QUFxepX3/91ZiAgABLcHCIEBwcYjGbzexnn33ie/75F9RnZKRr165dHQkAFovljJgGDhxsuv76m4p37twWNmHCpOr4+IQzhni9/PLCGEGwss8//1KaSqWSS0qKm75zBgeHnFHFi5BGdicnHMepAcwE8BSACABVsCUkegCRAK4G8ByAQo7jXgOwnud5u8YjEkJIa7m5OQCAqKjobrumydsHfEE+hFq75ngSQlyQLMsSo3YTPLgLleiBESaM2k2QJbnT66tcfvnUsj173g9etWq5Ljo62rB06fK0wYNtvRVXXTWtSpblzF27tod+9NGHIW5u7uLo0RdUP/HEM/mN21NTU4o3bHg7cs2aFWxAQKDliiuuLD98+BeflJRT7gDKWl9v5szHin755aDvkiWLYjZufJdvPryrqKhQlZJyyhMAHnronkGtjz106M+jnW0f6T/sSk44jrsAwDYAIoC3AXzI8/wZtxY5jhsK4EoAswA8znHcnTzPH3ZivISQfqImMwPBGg0iIyLt2t8sAvN+0UCtAhZeCNgznd0sAi/8qgUALB5jQt3gwVjy/de4Kj4e159D7ISQvkuWIRolVRGj8umRoe+yJEuyjE6vDh8bG2985pn5+e1tv/rqa6uuvvraqra2MQyDOXPmFcyZM6/FEg/33vtgSePjWbOeLJw168nCxp81Go28e/f+U22dLzQ0zEoJCHGUvT0n2wHM43n+47PtxPP8CQAnALzGcdzNsCU0SecWIiGkPxpaVobrhp6HctG+G4iSDHyXY3tLe/58QGHHSDBJBr7Ps01QWSSbEBFhKyec17D4IyGkf5JliLIsdzpBIIScO3vvCgztKDFpjef5DwF0fYkdQohL8hJt3wv84hM73JdhGCial/5VsGAcmKcSEREBACgqyIcs09Q5QgghpLvZ1XPC87xDNakdPY4Q0r/VVlc3lREOG3zGcOUWGAaAgkFaXg0ANwBAekENBkd4QhY7l2CEh0dixeDhCNVqUVdYAK/wCEfCJ4SQbkVDqIgrsXfOyQudOSnP84sdC4cQQoDC1GSwDAOLJMEz5OyrwyuUCmQX14HPrgAQCgA4nV0BLw2DmGBPWK32j8zw9vaGSqGAgmFQnJpCyQkhhBDSzeydc7Ko1c8yAAa2CfLlAHwBqAFYAFQCoOSEEOKwisx0BAKoAcCcZYEvhYJBrcGKtNwqCM16SayChPTcKvh5aeGuVkCS7O9BqVOwCAZQmZkBTLrM8UYQQgghpNPsmnPC8zzb+AfAZQAqANwKQMvzfCjP81rYqnRVAHiyy6IlhPQLdXl5AACTRnPW/RiWRV5JHWrqz6xaXlVnRl5JHRSKzhXcsbrZ1jEzFhV2sCchhBBCnM2RMnlvAnie5/kPeZ5vGi/B8/xXABYAWOKs4Agh/ZOlzFZSX/LyancflmVQZ7CioLSu3X0KSutRZ7SCZe2fHM/4+QEAxIoKu48hhBBCiHN0eoV4AFEA2quzWQYg2PFwCCEEOKmvx4nCfIwefX67+yiULIqL6lCrt9XdUDES5kWegE6nhmCSIctATb0ZJVVGJIR5QZLOnHuiVQA/31zX9BgA3MLCgKIiqA0G5zeMEEIIIWflSM/J3wAe4zhO1fxJjuO0AJ4B8LszAiOE9F9HiguxuzAfPueNbHcfs1VCUXl9088MA6hZGWpWRvMqwkVl9TALba+VwjCATmn703iMb2wcAMBTpCUOCCGEkO7mSHLyLIBLAWRwHLee47glHMdtBJAJYDiAp5wZICGkf5EkCQUFtkWOw9uplqVUsqjRW1BZY+rwfBU1RtTqLXbPPQkdMAhp9fU4XlMNwXLmXBZCCHE1er2e3b59S2Djz/PnPx1z//13cV15zfz8XPX+/R/7nss5du9+33/s2NGj2tveHe0YO3b0qN273/fvymt0l9zcbPXYsaNH/frrz549GUenkxOe538CMAa2HpJrAMwBMBXAdwBG8Tx/3JkBEkL6l7KiQnBaHUJ1bggODmlzH4ZhUFyhh9Bs9XhBZvBJeQR2F4ZCkP/tOrEKEoorDWDamHdiEYFFh7VYdFgLS0NHSXBkFBam83gj4zRKy8ud2zhCCOmFNm9eH7x37wdNb7jPPLMgb9myVeldec0XX3w+5vfff/XuymuQvsmROSfgef4YgJucHAshhKAo+RSeTxoIvSRCpVK1uY/RKqKi2tjiOUlm8LfeNpn9cu+Wd14qqg0wW72hQEuiDHyWZbvG3PNtvTAKhQLh4eHIyclGfn4ewsLCndIuQgjprWRZbnH3xtvbuxvGtcr2Vyoh/YpDyQkAcBw3FbaywqEAngNwHoCjPM/nOCk2Qkg/VJWdCTcAdWzrVMJGoWBRXWdus3xwe6rrzKg3CvDzUEMU255/0lxERCTycrJRmJ0FXHCR3dchhJCeUFNTo1ix4rWIP/447CMIAhMbG294+OFZ+SNGjDQAgMFgYF99dXHkn38e8TEYDIrw8HDTHXfcXTh16tXVq1evCPvww/dCAdsQpffe23Ni3bq3wkpLSzQbNrzL//rrz57z5j2VtHTp8tNvvPF6VGlpqSYmJsawYMHirG+++dL3s8/2BYuiyIwbN6Fi/vxFeQzDQJZlbNz4TvA333wZUFZWqlGpVNKAAYPq58x5Njc6OsZy//13cSkpyR4pKcke1103xXPfvq9OWCwWZvXq18N+/PGAv9FoUERERBlnzLi/cPz4S2sb2/nll5/7bNu2MaykpFgbH5+oHzFiZG17r0kjUZSwZMmiyB9//N5fqVTKl102pXzWrKcKlErbV+A//vjNffPm9WEZGWnuVquVDQ4OMU+fflfRtdfeUNl4jk8++cjvgw92hhQVFWp9fHytV199bem99z5Y0vpaZWWlykceuZ/z8fG1rlq1Nt3NzU366acDXhs2vB1eUJCvCwoKNv/3vzcXr169Iua99/aciIqKsVx33ZShF144pvqvv4561dTUqF54YXHGRRf9p27btk1BX3zxaVB5ebk6ICDA8t//3lJ82213lAPAr7/+7PnMM08kNZ4DsA3Jmj79xqHLlq08PWbMuLr585+OkSSJ8fX1s/7ww/f+ZrOJHTZsRO2zz76QExwcIgBASsop7cqV/xeVnp7m7uvra73llulF5/QP0Uk6PayL4zg3juO+AfA5gBkAboZtEcaZAI5yHDfYuSESQvoTQ0EBAMCi07W5nVUwKKs2wtrOJPe2WAUJ5dUGKBT23aib4OGJHSMvgOefR+y+BiHENcgyoLeC7ak/sv1rxjbEK2P27IcTCwsLNC+/vCx97dqNqQMGDNTPnv3wgBMn/tYBwJo1K8Kys7PcXn319bRt23adHDXq/JpXX30pLjc3Wz1jxgPF11xzfYmfn591797P/g4Pj7S0voYkSVi7dnXk3Lnzs9esWZdSU1OjfOSR+wfm5ubo3njjbf5//7s3/6uvPg/6/vtvvAFgy5YNQbt37wp94IGH87dv/+Dkiy++klFYWKBduXJZJAAsW7YqPTExSX/xxf+p2rhxewoAPP/83JijR//0fvbZ57PWr9+WfMklE6peeOHZhO++s53zyJHf3V95ZVH8mDHjqjdsePfU5MlXVOzd+0FoR6/P6dOpHtXVVao1a9alPvXUvOzvvvsmYNmyJZEAUFhYoJo378mk2Nh447p1W1PWr9+anJjI6Veu/L+Y0tISJQB8/vl+3+XLl8aOH39p5caN20/NmPFA/s6d28Lef39nQPPrVFSUKx999AHO3z/A8sYbb6e5ublJJ078o3vhhWcThg8/r279+m2n7rjjf4WbNq2LbB3j119/Gfjoo0/kvvbaitOjR19Y/9prSyI/+GBn2B133F24adP2U9dee0PJunVvRm3btimoM/82Dh/+xbe2tlb5xhtr+RdeeCkjJSXZ8803V4UDtoT2qace49zc3MS1azekzJr1VO57770b1pnzdxVHek5eATAKwCQAP8O2KjwA3AngawAvAbjBKdERQvodsdJ2s4rx8Wlzu1WQUFljbHPb2VTUmGAR7PvU9wgIgrKiEmxthzflCCEuRJaBO75yG8BXKdx7KoYBvmL99ikGnrFz0NOhQwc909J49337vvw7ICBQAIAnn5xbkJx8yuP993cEDx06PLuoqFCj07mJ0dGxZm9vb/Hxx+cUnHfeqDpvb1/Rw8ND0ul0EsuycuMd9bbcc8/9BaNGXaAHgDFjxlZ/9tknQS+88FKOm5ublJjImXbs2BaekZGmmzz5iprIyCjznDnPZl122ZQaAIiMjLb8/vvhqoMHf/QFAF9fP1GpVMpqtVoKCAgUMjMzNL/88rPfm2+uT2ns7YmPTyjJyEjXffDBjpDJky+v2b17V1BSElc/a9aThQCQkJBozszM0H3xxf6zfmH39vaxvvTSa1larVYeMGCQqaysrGDdujejZs9+usBisTC33npH4X33PVTCsmxjO4t+/PF7/8zMDG1QUHD9nj3vB1988X8qH3zwkeKGuMwGg16h1eqa7pDV1tYoH330waSAgEDz66+vydBqtTIA7Nq1PTg2Ns7w9NPP5QNAYmKSubKyUrVhw9stEpTzzhtZc8klE+ps56plv/7688B7730w77rr/lvZcM2ywsICzQcfvBd6110zSu37lwHodDpx4cKXc1QqlZyUNMB0+PAvFUePHvEGgM8//8TXYrGwL764NNvb21scMGCQyWg05L388sJ4e8/fVRxJTm4B8CzP8z9wHNc07oLn+WKO414G8JbToiOE9DtKfT3AsNCGnHlDjGUZ1JvFprVNOqO23gyjWYC7RgFJOnuS4hUVBfCpcLN0/jqEkL6NATrZd9GzUlOT3QDglluuG9r8eUEQGKvVwgDAHXfcXbxgwTMJ1157xfDExCT9yJHn10ydenVlZ+aWxMbGN5VH1Gi0kre3j9XNza3pC7parZLMZgsLAJddNqXm6NEj7qtXvx5WUJCvyc/P0+Xn52l9fX2tbZ07OfmkGwA89dRjLSpriaLIuLm5iQCQk5Ptdt55o2qabx86dFh9R8lJfHyCoTFZAIBhw0boBUFgMjLSNUOHDjP+9783V7z77uagnJwsbUFBgTY7O9MNACRJZAAgNzdHd8kll1Y2P+ctt9zeolrK9u1bw0VRYFpfKzMz3a310LORI8+vA95uEWN4eETTa5uefloriiJz3nmj65vvM2LEyPpPP90XXFZWavd39+DgELNKpWqKx93dQxQEgbHFluEWHBxqav5vYNSo8+vbOk93cyQ58QGQ3c62KgAejgZDCCHuggCo1PCOjjljm0LBolZvhN7Y5ufbWemNVtQZrPDUqdpckLG5oCQO8rffwIthIIsiGEXb818IIa6FYYDtUwy8QXBoqQWncFNCsrfXBAAkSWJ0Op24bt3WlNbb1Gq1BACjR1+g//jjL//5+ecfvY4c+d3rm2++DHj//R1hL7+8LG3cuPF19lxHpVK2SNrYNiogNlq/fm3wrl3bwydOnFw+YsTIuptvvq30xx8P+Pz8849+be0vy7YcZ9Wqtanu7h4txuwqFAr53/1aTqJXKlUdJpIsy7bYp/H9X6NRy2lpvPbRRx8YEBMTZxg16vyasWMn1Pj5+Vkfe+zBgc2v39HvY+jQYbVXXjmtfMmShfE//PBd5cSJk2sbjoUkdTzxX63WnNFGptVFJcn2sjRPNpoPAbRahTOu03zffzV/qvOvZ3dwJDk5CeB2AN+0se2ahu2EENJpZrMZvg0T4YMTk87YLgMor3Js5XYZQFm1AeEBbh3uG5qQiFxJgpJlUZ2fD9/oaIeuSQjpexgGcFfB/kltPSw+PtFoNBoVFouZGTBgUNMd+BdeeDY6ISHRcNddM8pWr349bPjwkfWXXz615vLLp9aIoph3663XD/7hh+98x40bX8cwjFO/lH744Xtht956R2HjUCgA2Lnz3ZCW82n+vWZiImcEgJKSEvXkycObekdWrlwWzjCsPHv2nMK4uHhDSsqpFjfAU1JOdjj8Ljs7002SJDQO2zp27E9PtVotRUfHmpcvXxrh5eVtXbduy+nG/b/99itvwDaXBwDCwyNNPJ/S4jpLly6OLCkpVq9atTYDAC65ZGLV1KlXVf/ww7eVK1cuixk16oKTXl5eUkxMrKH1sSdOHD9rzAkJSSaFQiEfO3bEY8iQoU1jmI8fP+bp7e1j9fHxFVUqW9JZW1vbdOcsJydL09Fr0VxiYpLhwIFv/SsqypX+/gECAPzzz189NpyxOUfuDLwM4E6O4z4DcB9sn/njOY5bA+BhAMucGB8hpB8pKszH5txs7CstgV/DSu3NWQSp3SFdKkbCUxGnMD8hDap2Pmdr6s0tVovXKoBvb6jHtzfUQ9usc8TD0wsVgm3odVna6danIYSQXmPixEk10dExxoULn4s/dOigZ2ZmhmbZsiURP/zwXUDjUKyCggLNqlX/F3Xo0EHPvLwc9eef7/ctLy/TDB06rB4AdDqdpNfrFenpaRqr1XrOJX79/QMsx44d8eL5FG1a2mnNypX/F/bHH7/5WK3Wpu+dOp1OKi0t0RQU5KsGDBhkGjlydM3q1cujv/nmS+/s7Cz1xo3vBH/00e6Q8PBwMwBMn/6/4pycbN1rry2JSE9P03z88R6/L7/8LLD9KGwqKirUzz8/NyY1NVn7xRef+rz33rth1113Y4lGo5GDgoItlZUV6gMHvvXKy8tRf/nlZz6rV6+IBgCLxTYkbvr0O4t+/fWQ79atG4OysjI1+/d/7PvNN18Gjh07vrr1tZ55Zn6exWJhli9/JRKwDafLyspwX7781fD09DTNV1997rN9+9Zw4MyekUbe3t7i5MlXlO/cuS183769fpmZGZrt27cEfv31F4HXX39jCcMwGDBgkFGr1UpbtmwIzczM0Bw+/IvHpk3rIto7Z1uuvvq6Si8vb2H+/GdiT548oTt8+JDHW2+9ccZk/Z7gyCKMnwC4A8Aw2AbNMQBeh23dk4d4nt/j1AgJIf1GQWEhfqwowxGNCgq1usU2lmVgNAuoM7SdnDAM4K4Q4aEU0d77c73BApNZaBqOwDCAr1aGr1Y+45j6hhXlq3Kyz6lNhBDSlRQKBVavfud0YmKSfsmShXH33XfnoH/+Oe65YMGLGY1DtubPX5QzbNiIuldfXRx75523DHn33c3h//vfvfnXX39TJQBcfvmUKh8fX+t99901+J9/jnfcvdyB+fMXZZnNZnbmzHsHPv74QwOyszN1Dz88K6eurlaZm5utBoBp024oy8vL1c6YcftgURTx6qsrMi++eGzV6tWvR9999/Qh33zzZcAjj8zOuemm2yoAYOjQYcaXX16WduLEcc/77rtr8N69HwTfdNNtHZa+HT36gmqFQiE/8sj9A998c2X0lClXlz7yyOOFAHDXXTNKx4wZV/naa0vi7rnn9sE7dmwLvfvu+woCAgItJ0+ecAds82ceffSJnM8/3x94zz3TB2/btin8/vtn5t544y0Vra8VEBAo3H//w/kHDnwX8OOP33sNHDjY9Pzzi9OPHPnN57777hy8bdumsCuvvKYUAFQqdbu9Vc8++0LuVVdNK928eX34jBm3D/7ss0+CHnzw0dz77nuoBAA8PT2luXMXZBYU5OlmzLh98OrVr0c9+OCjeZ1JTtzd3aXVq9/mlUql/PjjDw1YuvSl2Jtvnl7c8ZFdj5E7W7OuGY7jOAD+AKoBpPI83xe6QTNFUYqtrNQ79aRKJQtfX3dUVekhdKLEaV/i6m109fYBvb+NH364C6+88iImTLgUq1atbbFNpVIgr0yP304Utns8yzLQ6dQwGi3tTnofMywMYf7uEISzzzvZ/uiDEAoLEHDpZFzz6OxOt6Ur9PbfnzO4ehtdvX1A17XRz88dCgWbBeDMblUHHD16dADLKr4KCgqvV6u1po6PIKRz/vrrqJtSqZSHDh3eNDxr3769fqtWLY/57rufjzWutdIfWCwmbWlpgYckiVNGjRqVerZ9HVnn5ADHcQMAgLf5lef5ZJ7nJY7jhnEc94+jgRNC+rfatNMY6umFuOC2S9dXnKWEsCAz+KIiDJ8UB0M4y/zD8hojGoYewyICrx3R4LUjGlha5SplcfF4IzMdqcbOly0mhBBCUlNT3J588jHum2++9M7Pz1UfOnTQc/v2LWH/+c/Yyv6UmHSWXa8Mx3Fj8W8iMwG2OSZtlW67GkCP10cmhPRNQQX5eJ4bhALpzLutFlFC3VlKCEsygz/rbWtiTfDMb/fOS53eAkvD3VxRBnan2YaPzTqv5YrzYWHhAIDCwoLONoMQQgjBrbfeXl5RUa56++01UVVVlSovLy9h3LgJlY8++gR9sJyFvWnbfQDugm3yuwxgLWxzTZqPm2i8Vfme06IjhPQraqMRUCihC2m5SC3DMDBaRNQbz33dkXqjFSarBJ2SxdmWMwgLCwcDoK6o/WFkhBBCSHsYhsGjj84uevTR2R3OjSH/sjc5eRzAFtgSkAMAHgGQ3GofEba5J6ecFRwhpH/xkCRAAfhEtSzdq1AwMNQLMBjbXbzYbnqjFUaTFR7eWsDafnIS6u2NnSMvAENrnRBCCCHdxq7khOf5GgA/AQDHcRMBHAXgwfN8ccNzvgAieZ6nNU4IIQ4x6PXwVdjekoITE1tsYxgG1bVmSOdQwKORJMmoqbcg2Fd31v3C4hOQDUDJMKjKy4VfTOw5X5sQQgghZ+fIOid/A/gYwI/NnrsQwHGO4/ZxHHfOJegIIf1PcUY6VCwLSZbhHdGy1LooAzX1ziumU1VngthONa9G7h6eqKS1TgghhJBu5Uhy8iqAwQCea/bcAQDXAhgNYLET4iKE9DPlmekAgFpZAtuqiolFEKF3wpCuRnqjtWlS/Nk0rnVSnZPjtGsTQgghpH2OJCfTAMzhef6jxid4nrfwPP8pbAnLzc4KjhDSf9Tk5QEADK0SE5ZlYLaIMJisTruWwWSF2SI2LcbYHovONvTLUEyT4gkhhJDu4EiRZU8AVe1sKwEQ4Hg4hJD+KttixhfZGRhxwcUtnmdZBgaTAKP57D0nKkbCrPAUaDVqqAQZZ5ueYjQJMJpFBOpU2D+tHgCgaWO+O+PtA5SVQays7GxzCCGEEOIAR3pOjgG4t51t9wCgRRgJIZ2WVVGOH8rLICUmtXieZRlU1XU834RhAB+lFb5qK5izd4hAhm3eiYJlEOYhI8xDRludKJrgYACAQl9vbzMIIYQQcg4cSU5eBnAdx3F/chw3n+O4+zmOe47juN8B3AhgkVMjJIT0C0UN64mEhbVc40QQ5bMuvuioWr2lw0nxnrHx+KWyHCf0eqdfnxBCSEvfffe1N8+naM/lHPfffxc3f/7TMU4KySGrV68Iu+66KUPt3X/+/Kdj7r//Lq4rY2pOlmXs2fOBf1lZqRIAdu9+33/s2NGjuuv6Hel0csLz/LcAroHt5uNiAOsAvATbELFreZ7/yqkREkL6hcCqKgzx9EJoQGCL5y2CBIOp48nwoszg26pQfFEaCFHuoOsEtnknBouEN/7S4I2/NLCKZ+4TNHgI3shMx4fZmXa3gxBCSOfl5eWoFy2an1BRUa7q6Vhc3W+//eKxatX/xRiNBhYArr762sq9ez/7u6fjauTInBPwPP8lgC85jtMC8ANQw/M83VokhDjEYrFguq8/3AKC4KX9d/0RlmVgNgl2TYYXZQaHa22JzX/cCzt8czOYrNBbJGxPUQMAHhhqRutPxPDwcABAfX0damtr4eXlZXebCCGE2E92wjpWxD6y3PIOnk6nk3U6nfNKYp4jh5ITAOA4biCAywCEAniT47jzAPzN83yds4IjhPQPpbk5cGtYgT0gLr7peZZlYDKLMHUwGd4RRrMAk+Xs59Xp3ODn6wfU16MwKxNew0c4PQ5CSO+jt7Y/skTBQNYqIduzL8tA1jm4b2ccOPCt15YtG8ILCvK1Go1WGjlyVM2cOc/l+fr6ir/++rPnM888kfTee3tOREXFWAAgNzdbPX36jUOXLVt5esyYcXUAsGXLxqBPPtkbXFNTrUpKGlA/dOjwuu+++ypg376vTgBAVlamZvnypZGpqcmeOp1OvO66G0u++OLTwNtuu7PoppturQCA3bt3+X/44a6Q8vIyTUBAoPnKK6eV/e9/M0pZ1tbsvXs/9P/ww/dCSkpKNB4eHsKYMeOqnnpqbn5JSZFq+vQbhwLAM888kXTzzdOLZs16svD06VTtG2+8HpGamuyp1erEIUOG1T355DN5wcEhAgCYzWZmxYrXIg4e/NFPEARmypQry6QOhuuOHTt61MyZj+V+//23fllZGe7BwSGmGTMeKLj88qk1jft8993X3lu3bgwrKMjX+fr6WS65ZGLlzJmPFWk0GhkAUlOTte+882Z4Skqyp8lkZP39AyzXXHN96T333Ffa1jW3bt0YtHXrxohnn30h84orrqzu6PeZn5+nevPNVRH//HPcy2QysQMGDKx/9NHZ+YMGDTE27vPJJx/5ffDBzpCiokKtj4+v9eqrry29994HSzqKr/HfAwBMn37j0Mcfn5MNAG+8sTzm0KE/jwJAVVWl4s03V4UfOfKbT11dnTI2Nl7/wAMPF1x00Zh6wDZs7cSJ457nn39R9aef7guuq6tTJiVx9U8//VxOYmKSuaP2daTTyQnHcQoA7wCYAYCBbXjXbgALAcRxHDee5/n8cw2MENJ/lGWkwR1AnSRCqWvZc1Jdb3bs07oDsmybd9KRp2LikKhQovLI7wAlJ4T0C+N3e57X3raRQULN+snG9MafL//IY7hZZNpMOgb5ifXvTjHwjT9fvc9jaJ2VafO7V7y3aPjgKkNKZ2OtqChXLl78QsK99z6YN2HCxJqioiLV0qWL41aufC1i8eJX7Vqkafv2LYHbt28Of+ihR3NHjjy//ptvvvTdtWt7uL+/vwUADAYD+8QTDyeFhoab3njjnVS9vl6xcuWyqLKyUk3jOXbt2h6wdevGiIcffjx3+PDz6pOTT7q99dYbUeXlpeqnn34u/9Spk7o1a1ZEP/30c1nDh4/Qp6enaZcuXRzn7e0tPPTQo0Vr1qxLeeyxBwfOn78oY9y4CbVFRYWqWbMe4saOHV/1+ONPpRiNRnbjxnfCHnpoxsAdO3afcnd3l5YuXRz155+/e8+Z82x2eHi4ecuWDaE8n+IREhJy1i/IW7ZsiPjf/+7Nf/bZF7I/+eSjgJdeeiHB19cv9fzzL9T/8MN3XkuWLIq/776H8saMGVebm5utWbNmZVR+fq52+fLVmQaDgX3qqVlJQ4cOr1uz5p1UpVIl79u3J2DTpnciR4++oG7o0GHG5tfasWNr4LZtmyIWLFicMXny5TXtxdSorq6Offjh+wYEBwdbXn75tTSNRitv2vRO2OzZD3ObN+9IjoiIsnz++X7f5cuXxt5xx90FkydfUZWcfNJt5cplMe7uHuK0addXni2+0aMvrJ8/f1HGkiWL4tesWZcyYMAg42effeLXeH1RFDFr1kNJVquVmTt3QVZgYJD1gw/eC5o378mkVavWpo4YMdIAAGlpp901Gq24dOnraQaDnl26dHHs8uWvRK9bt/WcVy12pOdkAYDbAdwH4HMAxQ3PPwVgP4AlAP53roERQvqP6twcuAPQsy3r+YqSjFr9Od+EaVdtfcfJiaBzAywWGIuKuiwOQghxVGFhoUoQrExoaKglMjLaEhkZbVm6dHmaIIgdT75rsHfvByFXXTWt9Oabp1cAQEJCYnF6+mn3zMx0NwD4/PNPfGtr65Rbtvxfpq+vnwgAL7zwUtYDD9w9qPEcu3ZtD7vpptuKrr32hkoAiImJtej19Yq1a1dHP/bYkwV5eTkagEFERKQ5IiLKEhERZfHx8T3t4eEpKhQK+Pv7CwDg7e0tenh4SBs3vhPi4+NrXbDgxdzGa7z22srMq6+ePPyLLz71nTLlqqoff/zef+bMx3InTbqsBgBefHFp9n//e7VnR+2dOHFy+Z133lMGAHPmzCs4efJvz927dwWdf/6FWTt2bA2dNOny8ttv/18ZAMTGxpmVSmXO3LlPJuXmZqvd3NyladOuL73ttjtLvby8JAB49NEnCj/6aHdIWlqqrnlysmvXjoDNm9dHLFz4cvqECZNq7fldfPLJXv/6+jrl5s07UgICAgUAeOWV5Zk33njN0Pff3xk4Z86zBXv2vB988cX/qXzwwUeKASA+PsFsMOgVWq1OMhj0bEfxeXt7iwDg7+8v6HS6Fvf/fvrpgFdWVqbbhg3bTg0cONgEAAsWvJh7+nSq+86d20JGjBiZCQCiKDIvvfRqVuO/h2nTbijdtm1jhD1t7IgjyckMAC/wPL+loRcFAMDz/D8cx70A2wryhBBiN2Ox7R6HRduySItVlGG0YzK8w9e1Yy4L4+MDlJZCrKK1TgjpL366qe6v9rYpmJadud/cUN/uRGK21b6fXVd/wt597TV06DDjf/4zrnLRovkJq1evsAwffl7tmDFjay67bEq1PcdXVlYoysvL1UOHDm9RM33o0OF1jckJz6e6hYaGmRq/iALAoEFDjDqdmwgA5eVlysrKStXOndvCd+3a3lRyUZZlWK1WJjc3WzNhwqSajz7aXf/II/cPDA4OMY8YMbL2kksmVA8ffp6hrbjS00+7FRYW6CZN+k+LXiyr1crm5GRpMzLStIIgMEOGDG+a86zVauWYmNg2z9fcyJGjW0xB4LiB+uPHj3kBQFZWlltGRrr7Dz985/9vOxpjStNeeulltdOn31X62Wef+GVkpLkVFORrcnKy3ABAFKWmhLCqqkr19turoxUKhRwREWX3XbbMzAxdSEiouTExaWxXQkKiPisr0w0AcnNzdJdccmmLD6Vbbrm9vPGxPfG1Jz09TafTuYmNiQkAMAyDQYOG1B879mfTxEsvL29r838PHh4eoiAIdifEZ+NIchIM4Hg72/IB+DocDSGkX7I2LnLo7d30HMMwsFjFDhdfPBcdzTkBAG1QMFBaCkU9rXVCSH/hroLU0/t2xmuvrcxKSztdeOjQT95Hjx7xeu21l+M+/nhP/fr1/w6xaT7f3Gr990ukQmH7KihJ7X9xVSgUkOX2t0uSrVn33fdQ3sUXjz2jhyAiItKiVqvl9eu3nj5x4m/dr7/+7H306J9eCxbMTRw//tKKl19+Lbv1MbIsM4MHD619+unncltv8/b2FvPyctUN+7XYplQqO0zyWu8jyzJYViHbHkvMddfdWDxt2vUVrY8LDg6xlpaWKB944O6Bnp5ewkUXjakeNeqC2mHDhutvueW6Yc33ZRgWixe/krZ58/qwJUsWxW7atD21ce7N2ciyDKaNxbokSWIUCluMCoVCbm89L3vjO8v127o8JElq8bqpVB2/zo5yZJ2TdABXtrNtQsN2Qgixm6LedhNL3ayMMMsyMFtFGMwd9244yp4SxV6RUQAAd6HXFDIhhJAmR4/+4b506eLIxMQk8z333F/65pvr0x9/fE52cvJJz7KyUqVKpZYAoLa2tmm0S05OVtNcEW9vbzEgIMBy8uQJ9+bnTUk51fRzQkKSobi4WFNVVdl0jrS00xqj0aAAgMDAIMHLy0soKMjXxMXFmxv/nDr1j9vbb68Jl2UZBw586/Xmm6tChw4dbnzwwUeL16/fevq22+4s+PXXn30BnPGFPDo6xlhQkKcLD4+wNJ7P19dXWLlyWWRqarIuMZEzqVQq+a+//vRoPEYQBGRn23oJziY5+WSLtqamJnvEx8cbACAiIsqYl5ejbd6OkpIi1erVr0fU19exn366r3HYVeojjzxeNHXqVdU1NdUNN/v//b7u4+NtHT9+Yu28eQuyMzPT3bZs2RDcUVwAEBeXYCwqKtQ0rkECACaTicnMTHeLiooxAkB4eKSJ51NatGHp0sWRs2c/HG9PfAzDtJtYJCQkGQ0GgyIl5VSLoQzJyac8IiKiOl4R2QkcSU5WAXic47g3AUyGraWJHMc9BWAOgLecFx4hpD/4qrICb2dnwH3w4KbnWJZBvVGAKNp3c0bFSHgolMfs2Eyo2n/fbYGRRLw5tgJ7pxmhUbS9T0BCAgDAi2EgU4JCCOllPDw8xa+++jxw+fKl4ZmZGZrk5JO6Awe+9QsODjH7+wcIAwYMMmq1WmnLlg2hmZkZmsOHf/HYtGldRPNk4Kabbiv+4otPg/bs+cA/MzNDs3nz+qDDh3/xs9U9AqZNu77S09NTWLBgbuzJkyd0R4/+4b548fNxgC2pYBgGN9xwc/EXX3watG3bpqCsrEzN119/4fPmm29Eq1QqSaPRyAqFEh98sDNs8+b1QTk52erjx4+5/f77YZ/ERE4PAO7uHiIApKWd1tXU1ChuueX2UoPBoJg378m4Eyf+0Z06dVL33HNPx6Wnp7knJQ0wuru7S1deeU3pzp3bwr788jOftDReu3jxguiqqkp1R6/Zp5/uC963b69fenqa5rXXlkTk5GTrbrvtrhIAuPXW24v/+OM339WrV4Slp6dpDh066Lls2Suxen29Mjg4RAgODrGYzWb2s88+8c3Pz1X/9NMBrxdfXBAHABaL5Yzv1QMHDjZdf/1NxTt3bgvLyEjXtN7e2jXXXFfp5uYuPvfcnPhjx/50a2h3rMlkUtx0061lADB9+p1Fv/56yHfr1o1BWVmZmv37P/b95psvA8eOHV9tT3xubu4SACQnn3Krr69vEfP48RNrIiOjjYsXPx/3668/e54+nap96aUXovLzc3W33jq9pKP4naHTw7p4nt/IcVwggPkAZsL2L3cXAAuAZTzPv+PcEAkhrkyWZRzJz4XZbMZTg4Y0Pc8wQHWd/TdpGAYIUpuh08gwGlsOYTjbMd6MAQl+OljbmRsflpCITEmCmmVRlZcDv9j4tnckhJAewHEDTc8/vzhj27bNYV9++VkQy7Ly4MFD65YvX53Gsiw8PT2luXMXZG7c+E7EjBm3Dw4NDTPNnDkrb8GCZ5Iaz3H77f8rq62tVWzbtin8zTdXKQcNGlw3YcKk8pSUU54AoNFo5P/7v1Vpr7/+atRjjz0w0N3dQ7jllulF69a9FaVSqWQAuO++h0o0Gq20f/9HQZs3r4/w9vYWJk26rPzxx+cUAMD48RNrZ816KnvPnvdDduzYGq5Wq6Xzzhtd89RTc/MBwM/PX5w4cXL5li0bI/Lz8zTz5y/KW7nyrdS1a1dHzJ49cwDLKuSkJE6/YsUaPjAwSACAJ5+cm69Wq6U331wVZTIZFWPGjKscNer86o5es8svn1q2Z8/7watWLddFR0cbli5dnjZ4sK1M71VXTauSZTlz167toR999GGIm5u7OHr0BdVPPPFMfuP21NSU4g0b3o5cs2YFGxAQaLniiivLDx/+xaeht6ms9fVmznys6JdfDvouWbIoZuPGd/mzDe/y8fERV69+h1+9+vWIZ56ZzTX8jutWr34nNTraVgr6ssum1FRXV+d8+OF7IVu3bozw9w+w3H//zNwbb7ylQpZldBTfwIGDjSNGjKx59dWX4u64I6/A29un6c6bUqnE6tVvn16xYlnEiy8uiLdaBSY2Ns7w6qsrTo8adUG3rGnIdHbRG47jfHmer+I4zgvAxQD8AVQD+I3n+b4wYzRTFKXYykrnvr5KJQtfX3dUVekhCF0ypLTHuXobXb19QO9sY0VFOSZNGguGYfDHH39DpbLd9GIULP5ILkZBqf1zPViWgU6nhtFoQUe17htFBHvigoHBkMT2X4+3b7wW9UYjrnnxZQwYfYHd8Thbb/z9OZurt9HV2wd0XRv9/NyhULBZAOKccb6jR48OYFnFV0FB4fVqtbZbhqv0Vj/88J1XYiJnjIiIbBpHu3Dhc9HFxYWadeu2ns7NzVZnZWVqx4+/tGk+SVFRoeqmm6YNW758Nd+4/kVfMHbs6FGPPz4nu3FtFtI9LBaTtrS0wEOSxCmjRo1KPdu+jkyI/4PjuAU8z38A4GvHQiSEEJvC9HRM9A+EyU3XlJgAgFWUOjUZXpQZHKwOhqpegYvci2BP4RtRZvBxrjf+NClx72ALVO0M7fpZrUJyOo9RtbUYYHdEhBDSN3z11Rf+Gze+o3vyyWdygoKCrX/88bvnzz//6Ddz5qxcADCbzezzz89LvOuuGfmXXTalqra2RrFu3VvhwcEh5lGjzu+Wu+mk/3AkOfEFUN7hXoQQYocqPgUzY+NRKv97h5VlGVhMQueTkxrbfMPz3YrsenMTZQZfl/oDpcA9Q6xAOwlNWFg4kpNPoqio0O54CCGkr5g3b0Hu8uVLI59//tkEg8GgCA4ONt9//8y8xt6FxETONHfugsz33ns39L333g1TqdTysGHDa994Y+3pxmFdhDiLI8nJGwD+r2EC/Eme588YW0cIIfbSFxYAAMzqf+cJsiwDk1WEqQvLCLfGgEG7yUloKPxUatRkZ3VbPIQQ0l18ff3EJUv+L/ts+1x11bSqq66aVtVNIXWZQ4f+PNrTMZCzcyQ5uQtANIDvAIDjuNbbZZ7nHTkvIaQfslbYOmJlr38X9WUYBnUGq12T2p2FYdtfO2oIq8DVw0eiIPeMcvuEEEIIcSJHkogdTo+CENJvMbW2NU6UfgEtnq+tt3tBXefE0X7HCTzCI4BTp6Czdt2aK4QQQghxLDnJAnCA5/l8ZwdDCOl/NGYToFTBPTSs6TmrKHfpyvBtEUQZynaqOwbEJwD42rbWiSSBsWOVX0JIrycBkGVZbr/blBDiFA3/z2TY/t+dlSOfsCsAjHbgOEIIOYNnw9gt3+iYpueETlbqcgZBav/9MjSRgyBJUDIMahvmyBBC+rxiWZatFoupwxXFCSHnxmIxucmybAVQ1NG+jvSclALwceA4Qghpoa6mBj5KFQAghLOtB8ayDMwmoVsnwwOA2SrBS61oc30UTy8vVAkCAtVqlKadhndEZLfGRghxvlGjRtUePXr03draqpkA/NVqrYFhGKo8RYgTybLMWCwmt9raKrUsS5tGjRpV19ExjiQnGwC8xXHcRAAnAZyxlD3P8+/aezKO44IAvA5gCgAdgJ8APM3zfHLD9hGwVQgbDaACwGqe55c7EDchpJcpKi7EK6dTEOXji5eDQgA0JCdWESZL55ITJSPh3pA0aDQqKGW53fkjrY+ZEXTaNhle8gfDKNHegXUsi0AAVTlUsYsQF/KKKAqorq64i2EYNwA0xIsQ55JlWbbKsrQJwCv2HOBIcvJ6w993thcEALuTEwD7YRt/NhWAHsBLAL7jOC4BtmTlWwD7ADwE4CIAazmOq+B5fkvnQyeE9CbFJcU4UVcLISKiaR4HwzCod6BSF8sA4RojdDoRRiNgzwLxLAOEaYwAAKPJC6yPFqLY9r4WrRYQBBiKOuyRJoT0EaNGjZIAvHz06NE3ZBmhcGy4OyGkfRKAInt6TBo5kpzEOnBMmziO84dtgv3LPM+fanjuJQDHAQwGMBmAGcBMnucFACkcxyUCmAuAkhNC+rjCQtuihiEh/06GBwPU6i3dHkut3gwwnu1vDwzEJ8eOIig6uhujIoR0h4YvTnZ/eSKEdJ1OJyc8z+c0PuY4zg2AF4AKnuc7XWOT5/kKALc1O18wgDkA8gEkA3gRwMGGxKTRAQDPchwXxPN8aWevSQjpPczpaZjoH4gkP/+m5wRRhtHc+ZK9oszgt5pAqAwKjNSVgLFjXJcoM/ijzlbCOMRggiie5RhuAHZ++jEuqx3U6dgIIYQQYh+HFkvkOG4cgGUAzkfD+EyO4/4A8BzP8z84eM71AO6HradkGs/zeo7jIgCcaLVrYcPfUbBNzneIsr2aoQ5SKNgWf7siV2+jq7cP6H1t9CsqxMzYeBQyTNP/Saskw2IVwZ5lUcS2CBKD76pDAQDnRZdCwXR8vCAx+L7G1mszxZIOUZahaue9ISIiHABQVFTg9PcPe/W2319XcPU2unr7gP7RRkJI1+l0csJx3BjYVofPhG1+SDGAMAC3Avia47jxPM8fdiCWVQDWAZgJYB/HcWMBuMGWrDRnavhb68A1ANgm3Pr6ujt6+Fl5eem65Ly9iau30dXbB/SeNqpNJoBh4RMd2fR/sqTSAJlhodOpO3UuhfRvMqLRqKBmO+45aX6MzDAAy8LXt+2qogMGJMBPpYZbVRV8vHU9utZJb/n9dSVXb6Ortw/oH20khDifIz0nLwP4GcAVPM83TR3lOO5FAF/DNhTr8s6etFl1rgcAXAzgUQBGAJpWuzYmJfpOR95AkmTU1hocPbxNCgULLy8damuNEMUO15fpk1y9ja7ePqD3tVEnCIBKDV1wGKqq9GBZBvV6M2pqjRDtmdHejKVZomE2WyF2vM5Ti2Nq64yo15uhYdFmOWEPN2+sHXYeWIZBHp8Fz5CQTsXnDL3t99cVXL2Nrt4+oOva6OWlo94YQvoBR5KTCwDc1jwxAQCe5yWO49agE5W6GsoITwLwYeP5Gs6TDCAcQB5svTLNNf58TiuhCULXfCiIotRl5+4tXL2Nrt4+oHe00WQywZdVAAD8YxMgCBJUKgXqDVZYHYhNapZoSJIMyY45J82PsVhl6I0C/Dw0bb427p4+qBKs8FepUZiaiviAoE7H6Cy94ffX1Vy9ja7ePqB/tJEQ4nyO3IKoA6BqZ5sanasRHgbgPQDjG5/gOE4FYCRsE+IPAhjHcZyi2TGTAPA0GZ6Qvq04Mx0ahQKSLMMvJgYAwDBAjb71SM7uU6s3o72pKgzDoK5hY1UWrXVCCCGEdAVHkpNfADzHcZxH8yc5jvME8CxsQ77s9TdsQ8HWchw3juO4IbD1vPgCWAlgM2zVwDZxHDeI47i7AcwGsNSBuAkhvUhZRjoAoE6WwKps9zsEUYbR1PlKXc6iN1rPOpzMpLGNMtUXnVPHLSGEEELa4ciwrnkAjgLI5DjuM9gmxIcAuBq2+SD32HsinudljuNugS3Z+ACAD2zJzTie53MBgOO4KwCsBnAMQBFsq8dvcyBuQkgvUpuXC28ABsW/b0OCJMNkbmcVxG5gMgsQRLnd7l/Z0wuoroa1orxb4yKEEEL6C0fWOUnnOO5iAAsBXAnAD0AlgB8AvNg4sb0T56sB8HDDn7a2H4FtgjwhxIVkCgK28skYe8lEjIdtSJdVkGCyCB0e2xYlI+Gu4Axo1CooGRl2TDmBkpFwR2B602OTRYRVlKBRMG2uUK8ODASqq8HU0lpthBBCSFdwqOxFQwLyOM/zITzPqwEMArCks4kJIaT/yiktwYm6Wijj4gDY5nRYBBEmi2M9JywDxGj1iHM3wN4lUhqPidHqwTKAySLAYpXAtDPxxCPMttaJ1txz82IIIYQQV9bp5ITjOB+O474F8GOzpy8AcJzjuH0Nq8YTQshZFRcXAQBCQ20F+FiWgckiwmLtuWFdFosI81kWgPRNTMInxYX4uqqimyMjhBBC+gdHek5eBTAYwHPNnjsA4FoAowEsdkJchBAXF1tTgwn+gQj18QNgS07q9BaHzyfKwJE6fxyu8oFo5xIpogz8WeePP+v8ITaMBKs3WNrtOQlLGoCd+bnYn5UBi8XxWAkhhBDSNkcmxE8DMIfn+Y8an+B53gLgU47jfGFbpHGOk+IjhLggURQxxd0Dnt6+8HC3rQwvy7bEwOFzyiy+rLQNuxoUWQalHZNORJnFV9URAIBh7lVQMBJqDdZ2C6L7+vpCq9XCZDKhqKgQ0dExDsdLCCGEkDM50nPiCaCqnW0lAAIcD4cQ0h+UFRbCU2krHxwYnwAAEETJ4fkmzmQyWyG00/XCMAwSwyOQ5O6BkrTT3RwZIYQQ4vocSU6OAbi3nW33APjH8XAIIf1BSRoPADBKElQetiWTBEl2uFKXM5ktIgSx/VWtb/YPxMsDh8B4/K9ujIoQQgjpHxwZ1vUygC85jvsTwMcASgEEwjbnZBRs650QQki7qnKyoQOaVlxnWQZGswhzr+g5EWARJLipFJDbqCcse3oCNbW01gkhhBDSBTrdc8Lz/LcAroFt7uhiAOsAvARbonMtz/NfOTVCQojLMTRU6jJrbSuuN5URNvd8z4nJIsJqldqt2KX0t41cZWpqujMsQgghpF9wpOcEPM9/CVvviRa2RRhreJ7XOzUyQojLspY39Dp4egGw9ZwYTAJEyc4yW11IECUYLQL8GE2b291Dw4DMTGhorRNCCCHE6RxKThrxPG8CUOikWAgh/QRTZ1thXenv3/Rc3TlU6nK2eoMVbGDb23xjYoBfDsGjrSXkCSGEEHJOzik5IYQQR+yvqsDukmI8cuPNAAAJgN5oPadzKhkJtwZmQaNRQsk0LFpixzG3BGQ2PW5UZ7CgvU6ckKQBqAbgxrIw1dRA6+19TnETQggh5F+OVOsihBCHybKMlMJ8nKitQciAAQAAUZTOeTI8ywBJbnUY4KFHO9NF2jwmUVeHRF1di2PMFqHdcsIBoWGoFWyJVGk6lRMmhBBCnIl6Tggh3aqurhZ6vW2KWnBwKADAKvaOMsKNTA3lhJVtJDksy+IHowHllZW4qb4eUd0fHiGEEOKyKDkhhHSroowM3BgajnqlEjqdDizLwGISzrnnRJSBf+p9oTYrwanL2lvk/YxjThp8AQBD3KqgaDjIbLGVE1ZrFJDaGN+V7uOL3/kUjKmuwuhzipoQQgghzTmUnHAcFwDgaQCXAQgFcAWA6wEc53n+E+eFRwhxNRVpPG4Oj0SVZJvjYSsjLJ1zz4kos9hfEQkAmBdZDqUdk05EmcWnlba+j4G6Giga5p2YLSIsVhGMVom2Jq+EhYUDAIqKqB4IIYQQ4kydnnPCcVwsbKvAPwAgH0AQbElOEoC9HMdd5dQICSEupa4gHwBgUKkANJQRNlrRm4pfiZIMg1lod62TyKAgJLl7wJqV1c2REUIIIa7NkQnxr8O2KnwsgBsA2+gJnudvB7AfwHNOi44Q4nLMpaUAAMndHQDAMEBtLyoj3KhObwHTztiwOJUaLw8cguG0SjwhhBDiVI4kJ5MAvMTzfDXOHO+wDsCQcw2KEOK65IaV1Vlf21wPUZJhNPWeyfCNDCYrJKntbT5R0QAAj/Z2IIQQQohDHC0l3N43CQ3sWl2AENJfqUxGAIAuJAQAIPSySl2NzBYRVrHt5CM4iQMAeLAKWBsqjxFCCCHk3DmSnPwM4FmO49ybPSdzHMcCmAngF6dERghxSW6CrSqXd0QUGAawOmGNk65gsggQ2lmJMSgyCnrBllCVpqd1Z1iEEEKIS3MkOZkHYCCAdADbYespmQPgKICxAOY7LTpCiEsxmUzwUygAAAHxCU2Vusy9tOfEYhXbnBSvUChQJdt6VSoyM7o7NEIIIcRldbqUMM/zJzmOGw1gEYBLAYiwlRT+CcBdPM+fcGqEhBCXUVJSjLnJJxDm4YkNsXG2NU6sIszWc+85UTISbgzIgVqthJKR7RpgqmQk3OCf3fS4ObNFhFWQwDAM2jqZsaHaWG1+7rmGTgghhJAGDq1zwvN8GoDbnRwLIcTFFRcXochsgi48HKxKBYZhoHdSGWGWAQa510CnU8NoBNoZkXXmMW41bW6TZBl6k4BAby3ENnInwd0d0Btgaqg+RgghhJBz5+gijAyAEQDc0cbQMJ7nD55bWIQQV9S4aGFISCgAWxnh+l5YRrhRnaH9csKGiEhs+uYrhAcHY3L3hkUIIYS4rE4nJxzHXQBgN4CIhqcaP7rlhscyAIVToiOEuBQTn4obQ8MR6OsHwFapy2B2znwTSQZS9d5QW5WIU1bYf4zRGwAwQFeD1tNLDCYrxHa6YNySOHy9cxsuqig7p7gJIYQQ8i9Hek5WArACuBu2FeKp0D8hxC7awkLcHB6JfMbW4SpIstMqdQkyiz3ltvVH5kVWQmnHpBNBZvFRRQwA4JnwE1C3Me9EkGS01XkSFhYOACgsLDinuAkhhBDyL0eSk5EAbuV5/hNnB0MIcW2KhjVBNIFBYBhAEHtnpa5GZosAQZChaqOuYWhoGBLdPRBmMkE0m6HQaLo/QEIIIcTFOJKclIJ6SwghDtBaLYBKDY/wiIYywiJMvXCNk0ZmiwiLIEKjVUJqNbwrKCgYC5IGQqdQoCwjHSGDBvdQlIQQQojrcGSdk7cAzGu1CCMhhJyVJEnwbhgg5RcT01RG2OKEMsJdxZacNJYTbkmtVqNKssVenpHe3aERQgghLsmRnpNEAIMAFHMcdwqAodV2mef5SeccGSHEpZQXF8GnYW2QoIQkp5YR7iqSLMNgEsC2U07YoLS9hdbk0VonhBBCiDM4kpwkADje7OfWtxTbKbxJCOnPStJPQwPALElQe3uDYWylenu7Or0ZDOPR5jbBzR0wGmEqLenmqAghhBDX5MgK8RO7IhBCiGurzM5GKIA6hgHDMBAkGUYnlRHuSgaz0G45YdbXFzAaIVVVdXNUhBBCiGtyaBFGQgjprGxBwKsnjmPSJRMwBrY1TpxVRhgAFIyEaf55UKuUUDAy7KgkDAUj4Rq/3KbHbTlbOWFtcDBQWAiVofXoVkIIIYQ4wq7khOM4EcDFPM//wXGchLN/7Ms8z1PSQwhpobCkCEVmE9SRUc3KCDszOQFGeFRBp1PDaLQtsGjPMcPdz97rcbZywt6R0cBff8FN6P09QIQQQkhfYG8SsRi2BRcbH/fiKayEkN6ouLgIABAWFtasjHDv/1J/tnLCgdwAvJ2ThWpZxvmy3GZVL0IIIYTYz67khOf5F5s9XtRl0RBCXFZ8RQUCQ8MR7u7ZJWWEJRlIN3hCIyoRydo30V6SgQyTpy0+bR3YNnKLluWEWyYnYbFx+LrMNhm+qqoKfn5+59QGQgghpL+zd1jXJZ05Kc/zBx0LhxDiqs5jFQgOjwSr1XZJGWFBZvF+WSwAYF5kNZR2dPAKMosPyuMAAM+En4C6jXknZysnrFarERgYiLKyMhQVFVByQgghhJwje4d1/Yh/bxm2N25BbtgmA1CcW1iEEFdSW1MDP6VtjZPgpCQwDFDfB8oIN6ozWNDeiK0hoREwCxLKkk8Bg4d2b2CEEEKIi7E3OaHywYQQhxVnpkPFspBkGR7BoRDEvlFGuJHRZG23nPBELy8MiE9EXkpyN0dFCCGEuB5755z81NWBEEJcV0VmBvwB1MoyGKUSoiTD5MRKXV3NbBEhiG2XE2Z9fIDiElrrhBBCCHECh0r+chwXAOBpAJcBCAVwBYDrARznef4T54VHCHEFtfn58AdgVCnBMIDFyWWEu5rJIkAQ2y4nrAkMBopLoNTXd39ghBBCiItp46P27DiOiwXwD4AHYCsvHARbkpMEYC/HcVc5NUJCSJ9nLrVVtLK6uTeUEZZg7gNlhBs1lhNm2yjn5RUZBQDQ0VonhBBCyDnrdHIC4HUApQBiAdyAhgnyPM/fDmA/gOecFh0hxCXI1dUAAIWvb1MZYbMTywh3NbNFhLWpnHBLAfHxAABvhoVECQohhBByThxJTiYBeInn+WqcuRjjOgBDzjUoQohr+aimCo+fOA5m5CgwDAODSXBqGWEAUDASpvoVYFpwMRSMfSdXMBKm+ORjik8+FG2UEW7UVE64jZ6T0IQkCJIEBcOgpiDP4fgJIYQQ4uCcEwDt3R7UgFaPJ4S0kldYgEqzCSEJiWAYoE7v/DLCCgY437MCOp0aRqNtgUV7jhntWWHX+dsrJ+zm7o5KUUAQq0bJ6dPwjY7tZOSEEEIIaeRIz8nPAJ7lOM692XMyx3EsgJkAfnFKZIQQl2A0GlFZaUsAwsIiIEoyjGZrD0fVeQaTFVI7nSs/SBJeS0tFEQ3rIoQQQs6JIz0n82BLQNIB/ABbT8kcAIMAJAAY57ToCCF9XkF6GmbGxKFKluHp6QlB7JoywpIM5JrcoZFUCGbs65mRZCDXbLvPEqXRo41RW03MFhFWUWqznHBNcDCOnjiOiRXlDkROCCGEkEad7jnhef4kgNEADsC2OKMIW0nhdABjeJ4/7swACSF9W1naaUwMCMIk/0AwDANrF5URFmQW75bEY0NeFAT5LFlGq2N2lCVgR1kCBPnsb4dmiwChnbFiYWHhAICiosLOBU0IIYSQFhyac8LzfBqA250cCyHEBdXm5cIfgEGlBMsysFr6VqWuRiarCKtVhEarhNQqSYkKCMQYX3+45WT3THCEEEKIi3B0EcY4AFqe55M5jvMBsARAJIDdPM9vd2J8hJA+zlRSDAAQ3D1sZYT72BonjWxrnTSWE26ZnIRrtZgdn4gKg6FngiOEEEJchCOLME4BkAJgRsNT78C2IGMEgK0cx93rvPAIIX1d4xonrK8fGIaB3mh1ehnh7iBJMgzmtssJB8QnAAC8wEBub9Y8IYQQQjrkSLWuFwB8A+BFjuO8AVwPYCnP8yMBLAXwuBPjI4T0cSqjrTfBLTTUVkbY4Pwywt2lTt92OeHQxCSIsgwVy6KW5p0QQgghDnMkORkOYBXP83UAroBtaNiehm3fAkh0UmyEEBfgKdrml/hGx9jKCJv63pCuRu2VE/bw8kaVYCuPXJLGd3NUhBBCiOtwJDkx4t+5KlMBlPA8/0/DzyEAqp0QFyHEBej19fBV2N4uAhOSGsoI993kxGwRIbQzbKuetb2dVtOkeEIIIcRhjkyIPwRgDsdxfgBuBrAFADiOGwVgYcN2QghBUVEhZhz/EzF+AfgwKqrLyggDgIKRMdmnCCqVAooz56y3e8wk78Kmxx0xWwRYRRmqNoZ2mbVawCpAX1TUycgJIYQQ0siR5OQJAJ8D2AkgGcDLDc9/DsAA2yKNhBCCwsICWGUZyqBAKFRKGExCl5URVjAyxniXQadTw2iU0c6SJGccc7FXmd3XOFs5YXh5AxUVECoqOhk5IYQQQhp1OjnheT6L47jBAIJ4ni9ptuk6AH/xPG/uzPkaemBeAXA1AC8A/wCYx/P8oYbtIwC8AdvCjxUAVvM8v7yzcRNCul9BQT4A2yKFLMvAYhX7ZBnhRmcrJ2yJT8Brv/2KqJGjcFnPhEcIIYT0eY7MOQHP83KrxAQ8z/8GQNlQargz3gdwEYBbAZwP4BiAbziOG8BxnD9sk+xPw5acLATwEsdx9zgSNyGkm6Wk4KHoOJzn6WUrI2wSuqyMsCQDBWYd8oxau3pNGo8pNOtQaNbZdYwkyTCY2i4n7JuQiKM1VThdWtLGkYQQQgixR6d7TjiOiwawDsB4AOp2dlPYea4EAJcB+A/P8782PPc4bBPtp8M2+d4MYCbP8wKAFI7jEgHMRcNcF0JI76UrL8OowCAUqtRdXkZYkFlsKrYVC5wXeQJKOyadCDKLzaVJAIBnwk9AzXS8Rkmdoe1ywmFh4QBsQ9kIIYQQ4hhHek5WAhgDYD2AvwD8AmA5bMOxZNjWPbFXOYCrABxtfILneRkAA8APwDgABxsSk0YHAHAcxwU5EDshpBupDEYAgHtoaJ8vI9yovXLCYWFhuMjXD+M0Guhp3gkhhBDiEEeSk/EAFvA8/zhsvRdmnufnwjbs6icA19p7Ip7nq3me/6L5PBWO424CEA/ga9hWnc9rdVjjCmdRDsROCOlGHpJt8rtPdEyfLyPcyGwRYRXPzE48Pb1wd1Qs7oiIRnFKcg9ERgghhPR9jlTr8gBwvOFxMoBFAMDzvMhx3FsAXnc0GI7j/gNgM4BPeJ7/lOO4lbAN62rO1PC31tHrAIBS6dB0m3YpFGyLv12Rq7fR1dsHdG8ba2tq4K9UAQDCBg6EKMuwClKb8zWcoXmLWJYBi46v0/IY2BWbRRAhyYCmjfeQOoaBH4Dq3CwoleM7DrqT6N9o3+fq7QP6RxsJIV3HkeSkCLbFFgEgHYAfx3GhPM8XAagEEOxIIBzHXQvgPQC/Abit4WkjAE2rXRuTEr0j1wFsX0B8fd0dPfysvLx0XXLe3sTV2+jq7QO6p40F/EmoWRaSLCNqcBJKqs1gWBY6XXtT1c6NQvo3sdBoVFCzHc85aX6MTqe26xiGZYF23kOsOttaJ+ayki57jwHo36grcPX2Af2jjYQQ53MkOfkctopZ+TzP/8pxXD5sizIuAjADQKdng3Ic9yhs5YI/AnBHs2FeeQDCWu3e+LPDs04lSUZtrcHRw9ukULDw8tKhttYIsY0hH67A1dvo6u0DureNmcdPwB9ArSyj3mBFnd6Mmjpjl1XrsjRLNMxmK0R03L7mxxiNFoh2JCdmE4N6vQW1KvaM11D09AQqq2AoLEZVlcP3T9pF/0b7PldvH9B1bfTy0lFvDCH9gCPJyQuwzS9ZDGAygOcAbAMwu2H7I505GcdxMwGsAbAawBM8zzd/JzsI4CGO4xQ8zzeu3DYJAM/zfKkDsTcRhK75UBBFqcvO3Vu4ehtdvX1A97SxKjcP/gAMKhUkSUa9wQJR7KLMBIDULNGQJBmSHdW6Wh4D+46BjHqjFQFemjNeQ5WfP1BZBdTWdunrS/9G+z5Xbx/QP9pICHE+RxZhrABwIcdxoQ0/7+Q4LgfAxQD+4Hn+J3vPxXFcEmw9Jh8DWAogiOO4xs1G2OafPANgE8dxywBcAFsS9FBn4yaEdK9TghWLjv2B/916By5ngPouLCMM2FZ7v8S7BCqlAooz10hs95hxXsVNj+1VpzeDYTzOeN49LBxIT4fW3Km1aAkhhBDSwJGeEwAAz/NFHMcNAOALoIjn+f9z4DQ3AlDBVn64dQnibTzP381x3BWw9aocg22+y9M8z29zNG5CSPcoKMiHRZIQEB0DQZJhMHdtpS4FI2OCTwl0OjWMRtmuRRUVjIzx3p1fNNFgFiC2cQG/2Djg4E/wAiDLcsNK8oQQQgixl0PJCcdx98I2vCui2XN5AJ7leX6Xvefhef4VAK90sM8R2HplCCF9SEGBrQp4WFg4BFGG2Sx2cETfYTYLEET5jHpg4YMG4+l0HsVmEz4wGuDm1nWT4gkhhBBX1OmZZQ2T1zfAtnDi/2Bbzf0eACkAdjSsU0II6cdkWcY1YPFgdBwifX0giFKXr3Eiy0CpRYMSs9ruSfeyDJRZNSizajo1Ud/UzlonPv4BSBVF5BmNKCjIt/+EhBBCCAHgWM/J4wDe5Hl+Vqvn3+U4biNs657sPtfACCF9V0VpCS7w8gbLMAgJi4DFKsFs6dqeE6vM4p0i25y1eZEnoLRj0olVZrGueAAA4JnwE1Az9k3eNVtFWAUJWq0SUqvhXZGRUUhOPom8vDwkJnLtnIEQQgghbXGkJl8EgE/b2bYLQJzj4RBCXEFB8imwDAOzJME9MABmqwiL1YWGdVkEmK1im4s2jggNw7UhYdD//VcPREYIIYT0bY4kJ0dgK+fblvMA/ON4OIQQV1CRmQEAqGUZsCyLeqPFnuJZfYYsA3qjtc0J74Pc3HF7RBS02dndHxghhBDSx9k1rIvjuEua/bgLwEqO4zwBfAigGLaKXVMAzALwoLODJIT0LfqG+RZmnQ4MA9TprT0ckfPVGSw4Y0Y8AF1oGFBUBLXe+YswEkIIIa7O3jknP6LlqgEMgJloud5I48f0+6A5J4T0a0J5ue2Bjy8EUYapi8sI9wSjqe1ywv4JCcCxo/AUXWcYGyGEENJd7E1OJnZpFIQQl6KsrwNYBbQhobB2Q6WunmCyiBBE+YyxsaEDB6MGgIdCAXNtDTRe3j0RHiGEENIn2ZWcdGbVd0IIgdkM6NzgGxsLqyB3eaWunmC2CLaKXUqmRRnioIhI5AlWeClVKExORuxFtEwTIYQQYi+7JsRzHHeQ47gRnTkxx3GjOY475FBUhJA+y2g04PlT/+COY38gYswYWASxW3pOFIyMi73KMM6vAgo7F2ZXMDIu8izFRZ6lUDCdm7JvsoiwCOIZk+IZhkFVw+Py9LROnZMQQgjp7+wd1vUGgK84jvsTwA4A+3meN7TeqWGS/BWwTYo/D8DDzgqUENI35OfbVobXenjCNyAQhZVGWAX71g85FwpGxmW+RdDp1DAaZbQxHaTNYyb7FDl0PYtVhNkignVXn7HWiUmrBQQR9fm5Dp2bEEII6a/sHda1l+O4nwC8AGAjACXHcckAsgDoAfgAiAQwBIC1YZ87eJ4v6YqgCSG9V16eLTmJiIgEyzKo01t6OKKuU2+0gvV3O+P5ouhobNy/D+MTE2nCHiGEENIJdq8Qz/N8OYBZHMe9COBG2CbJxwHwBlAOIAW2HpZPeZ6v6IJYCSF9gP74MTyfNBCGgEBIMlBv7J7kRJaBakEFk0UFjWzfNWUZqBFVAABvhRVtLFtyVnV6S4v5Jo184hORYzQgpzC/cyckhBBC+jm7k5NGDYnHuoY/hBDSglBYiKFe3sjX6rq1jLBVZrG6YCAAYF7kCSjtWPbRKrN4s2gQAOCZ8BNQM50bfmY0C7C2MX4sMjIKAJCXR8O6CCGEkM7odHJCCCFnw9TWAABUgUEQRMklK3U1MltECKJ0xhtpRFg4rgkORZgMCGYzlBpNj8RHCCGE9DV2VesihBB76UxmAIBXVCQsgmuucdLI1FBOuHXFrpCwcPw3LAKT/ANRwqf2UHSEEEJI30PJCSHEaQRBgE/D9/SgpAGwWEWYXLjnxGQRYLFKYNmWyYlKpUKVZBsiVnqakhNCCCHEXpScEEKcpjgvF74qNQAgdOBAGEzCGWV2XYkoyjCahTOSEwAwqG2vQ21uTneHRQghhPRZlJwQQpymKDUFAGCQJKi9PFGrN/dwRF2vVm9us8qX5O0FALCUUEV1QgghxF52TYjnOO6uzpyU5/l3HQuHENKXleflQrZaYFZrIIgyDCbXnW/SSG+0Qmyjd0gVFAxU14CpqemBqAghhJC+yd5qXVs7cU4ZACUnhPRDKfV1ePfvY7j9ltvxH6n7yggDAMvIGO1RDqVSAZYB7KgkDJaRMcqjvOmxI0xmAYIko3XniXdUNHD6NNwsrt97RAghhDiLvclJbJdGQQhxCbkN8yui4uJg7eZKXUpGxpX+hdDp1DAaZdgz1UXJyJjqW3BO1zVZRFgFCRoF02JBxqABgyB+9y18GBaS1QpWpTqn6xBCCCH9gV3JCc/zds/o5Diuk2ssE0JcRW5uNgAgJiYWFsG1K3U1aqzYpVUqITfLTiIHDcL01FPIN+jxSWUlgoODezBKQgghpG9waBFGjuNuBTAegBpoGs3AAnAHcDGACKdERwjpM0RRxH0aN+gTByDa1xcmiwiLtfuSE1kG9KICoqAAa+cILVkGDJICAODGim1ObO+IxSLCbBXBuqtaVCZTqzUw+/rBVF+H3NwsSk4IIYQQO3Q6OeE4biGAhQBqGo63NvwJBCAB2ODMAAkhfUNhdhYS3N0BAKHR0ciosnTr9a0yi9cLBgMA5kWegNKOSSdWmcXKwiEAgGfCT0DNSJ2+rgyg3mBBqJ/ujG0xMTHIy8tBdnY2zj//ok6fmxBCCOlvHCkl/D8AOwD4AVgJ4FOe54MBnA+gAsAp54VHCOkrCk+eAADUSxIUHp6oM3RvctKTavWWNlOhEUHBuDcqBuyxo90eEyGEENIXOZKchAPYzvO8DOAogDEAwPP8UQBLANznvPAIIX1FVVYGAKBOpYIgdm+lrp5mNAuwimemJ9HePrgiKAR+5eU9EBUhhBDS9ziSnOjxb5HONACxHMc1jmc4DqrsRUi/ZCq0Vb0SvbwgiFK/mAzfyGQRIIpnDgnzS0gEAHgK/SdRI4QQQs6FI8nJH7AN7QKADAACgMkNPw8EQEX9CemHmKpqAIA6OBhmq9ivek5MZgFmqwSWbTmjPmLocACAl0IBU011D0RGCCGE9C2OJCevALiF47hPeZ43wzb/ZBvHcXsBvA7ga2cGSAjpG3RmEwDAOzYWFqvYrWuc9LTGymRMq3JfgRGRqLZaAQD5//zTE6ERQgghfUqnkxOe5w8CGA3gg4anHgWwB8AAALsBzHJadISQPsFisaDSaECt1YrQQUNQb7S2WJDQ1UmSDL3RekbPCcMwqG54rvx0ak+ERgghhPQpDq1zwvP8PwD+aXhsAvCAM4MihPQteXm5eDWNh4eHB34bOgR/p1d2ewwsI2O4eyUUCgVYBrCjkjBYRsYwt8qmx+eiRm8GGM8znje7ewAmE/R5ued0fkIIIaQ/cHQRRm8Al8K26OIZvS88z797jnERQvqQnJxsAEBUVAxEmYHBbO32GJSMjGsD8qHTqWE0ypDsyDWUjIxp/nlOub7BJEBso2KXIjAQyMuDubL7EzZCCCGkr3FkEcapsA3fcmtnFxkAJSeE9CONyUl0dAysogSTuf9U6mpkMguwihIUrZ5XjRyFe/Z/hIQhw3Blj0RGCCGE9B2O9JwsBZAC4EkA+bCtCk8I6ce8TvyN1UNGoFar+//27ju+rru+//jr3CVdLWvLQ97ja8cjOyFAaEIgYZRRCL9QoED4FUraXwulTdgz4dcSKCWUH7RAoZQ2pGG1EEYLZJKQ4dhx4tg+XpJl7Xkl3b3O749zbWtdW5Yl3Sv5/Xw8ZEnnfs85n6+P7vic7yKVyhIrQMuJ40Aya+HNWtMe7+I47irxAH4ry4Tx7GclnkiTTGcp83txxgSwcuMmIpkMx461zPzgIiIi54mZJCebgdfZtv3IbAcjIguTf3iYpaWl+Gtq3WmEC7DGScrxcGf7dgA+tPI5fNMYdJJyPNzZ4e5z24rnCFgzv9cSS6ZJpjJUlPjGde9avXoNAKFQiFBoiOrqmhmfQ0REZLGbyVTCx4Cq2Q5ERBauitx0uTXr1xOJpchOZ8DHIpPJOETi6UkzdgWDZbxtg+EjGzdz/PHHChSdiIjIwjCT5ORvgE8aY9bMciwisgANDw3S5PMDsOqSiwmFz991WIfDiSm7hl1QXcNFS6oZ3L9//oMSERFZQGbSreutwArgiDGmD4hOeNyxbXv9OUcmIgtC655nCHo8JLNZypavJHagr9AhFUw0liI9RatRpqYGhoZIdLYXICoREZGFYybJSXvuS0SE3v37WA2EPB7SDsQS58/K8BPFEmlS6ckzdgVXroShIfyh4YLEJSIislCcdXJi2/bNcxGIiCxMkbZjACQrK0mlssST529ykm/GrnqzBZ59lupMGsdxsM5lWjAREZFFbCbrnKw6zcNZIGzbdmjGEYnIgtI5NIg/HKZi82YSqcx533Iy1Yxday69lO5776Hc42W0u4uqZcsLGKWIiEjxmkm3rlY4/RydxphB4C7btu+YSVAisnD89FgLXV2d/OtHPspoNFmwmbo8lsOWshBerwePxRlepcbsEwyd/PlcZbIO4Via+qpSMmNmU66ub2RvOk2j30/b7l1sU3IiIiIypZkkJ+8Avg48CHwP6AYagRuB3wduByqAjxljBmzb/trshCoixSYajdDV1QnAhg3rOdqbLFgsPsvhTQ1tBIMBYjGH6eRIPsvhjfXHZjWO4XAcllZM2j7i9xNMpwgda2HbrJ5RRERk8ZhJcvKHwD1TjD35N2PM14BLbdt+rTEmBNwCKDkRWaRaDh/Ca1ksqamlrLKaaFt3oUMquGgsTTozOTN6fv06PvIfd/P2HRdyXQHiEhERWQhmkpxcA7wuz2M/Av4z9/NvgY/M4PgiskD07HyS7158Oa2WRTqdJX4ejzc5IZpIkUpn8U0Y875mwyYAjhw5XICoREREFoaZLMI4AFyY57ELgZHczxVAZCZBicjCMNrags/jIVheXvDB8Mmsh88c28GHD2wmmZ3ebFjJrIc7jl/IHccvJJmdycvhZCdm7Jq4Uvz69RsAOHpUyYmIiEg+M2k5+XfgM8aYFPADoBd3zMkbgE8B/2iMqQHeDzw+O2GKSDHK9roLLnqbGoknM2o5wZ2xK5FMUxX0jZscYO2atdy6fhMrg2WM9nRT2bS0gFGKiIgUp5ncKvwYcA/wRaANiOe+fxE3cfkI8Erg4lxZEVmkglG3cXTJuvWMRBLTmSBr0XMcGIkmJ7Wc1NTWsbaikqWlpbTt3lWg6ERERIrbTBZhTAPvMsZ8FrgWqMddMf5R27ZbAIwxvwBW2LadmM1gRaR4JJNJ6i33/saybdvpDBdupq5iMxxOTpmohfw+6oEBez+84lXzHZaIiEjRm0m3LgBs2z4CHMnz2NCMIxKRBaH1+b1U+f1kHYdas4Ujh0OFDqloROPuoPiJMtU1EAoRb28vQFQiIiLFb1rJiTHmKPAHtm3vMca0cPrlzRzbttfPSnQiUrQ6ntnFCmAIyHgDxOKpQodUNGJxd1B8idfCGfNqGVy1CkIh/CHdvxEREZnKdFtOHuLULFwPMa21l0VkMWvt6uToQD9N69YXfKauYhNLpEgkMwTL/WTGrHmydPuF8Oyz1GayONkslmd2ZggTERFZLKaVnIxdcNG27XfOWTQismDs7Gjn0ZbDfOKP/ohIbOpuTPPJYzlsCI7g9XjwWEzrForHcthQOnLy59mSTGWJJtLUVpaQyWRObl93+RW0fPc7BD0e+g4fonGTmbVzioiILAYzGnNijKkEqmzb7jDGBID3ASuBH9i2/fBsBigixenQIRuATWYzoXDh577wWQ5vaWwlGAwQizlkp5Fr+CyHNze0zEk8Q6MJVjaUj9tWVlFJeyZNKpqgwT6g5ERERGSCs+5TYIy5AjgG/Hlu05eBzwFvA+43xrx29sITkWI0NDiAd3gYC1i7biORqMabTBSOJkllJmdIv25o4GMHnmdff18BohIRESluM+nw/FngAPBPxpggblLyVdu2a4F/Bj46i/GJSBE6+vRT3LX9Iv754ssJlASJajD8JLF4mlRmcle3TWYLAAcPHpjvkERERIreTJKTK4Hbc2uaXAcEge/mHrsH2DZLsYlIkep9fi8AEb+fZNodX1FoyayHv2nbxifsTSSz1pl3yO3zufZtfK59G8ns7A5OjyZSJJOZSYsxGrMZgCMH7Vk9n4iIyGIwkzEnWeBEB/NXASHgydzvVUB0psEYYz4GvMy27WvGbLsIuAu4DBgAvmzb9hdmeg4ROXextmMAZGpriCbSxIsgOQFIOWefYKQc7xxEAvF4mlgyQ1WZn+yYATCb1q3n77buYFlpKbFQiGB19ZycX0REZCGaya3CncAfG2OuAm4C7rNt2zHGNAIfyj1+1owx7wc+M2FbHfAr4CBucvJJ4HZjzM2TDiAi88Y35K7TUbZ6DcOjhR8MX4wcIDSamNRy0rSimQqfH5/lofWpJwoTnIiISJGaScvJrcAvgTcDfcAdue17cZOdG87mYMaYFcA3gauBif0c3oPbSnOLbdtpYL8xZiPwQeDbM4hdRM5RJpOhJpMBr4+GbdsZiig5yWckkiAzYdowy7IY9Puowe0et+XlZ/WSKSIisqiddcuJbdu7gQ3AVcA627YP5R66Bdhm2/bTZ3nIS3AXmd4BTLyNeDXwcC4xOeF+wORaakRknh0/fIimQAkAS3dcRDReHF26ilE0nppyxq5MbR0A8eNt8x2SiIhIUZvROie2bY8yIZGwbfuHMzzWT4GfAhgzac7/ZuC5Cds6c99XAb0zOSeAzze7g1+9Xs+474vRYq/jYq8fzE4d23Y+wVIg5GRZWV5FPDk6qetSIYytkcdj4eHMMQW8p8qUB31k0ymc2VuLkXgyQzKdpbLUhzPmwJXr18PgICXDobN6LdLf6MK32OsH50cdRWTuzCg5mUdlnBp8f0I89710pgf1eCxqasrPXHAGqqqCc3LcYrLY67jY6wfnVsfW/h4e6Wxn24UXckEW8HgIBgOzF9wMecfM0FVS4ifgmTrLsIDqyhLqK/34SUOru/2iVX58vjKG4h76QnHiycyU+58Nx4JM1qG6umzcdvOSFzHy1FPUZx0qy/34Amf3/6e/0YVvsdcPzo86isjsK/bkJAaUTNh2IimJzPSg2azDyMiMJxWbktfroaoqyMhIjMwUaxssBou9jou9fjA7dXx03z6e6Gxnxy230DMYIRpNznKUM5PKWqwuDeOxPCQTKTJMrl9ZqZ+1TWVUW6OketsJDYbY7AuAA4N7HmVJVTn1DcuoqW+iK1xCe1943ExbM9E7FKW+qoRU6lSy02S20ZVJU+71sefXD7HuqhdO61j6G134Fnv9YO7qWFUVVGuMyHmg2JOT48DyCdtO/N5xLgdOp+fmTSGTyc7ZsYvFYq/jYq8fzLyOjuOwb98+ADZt3srwaOKcP7zPFi8O72g6SjAYIBbLToqroaaMdXUevKGj9LYeJhlzb1Dc6vs+ANkIDEVCDHV1UNXQRPOqjVSsrONQR5jEObSihEbiJFMZMmP+vy2Pj4PA6EAfqw8fZtXlLzirY+pvdOFb7PWD86OOIjL7iv0WxMPA1caYsQsRXAfYtm3PeLyJiMzM8ZYjbPJ4aAiWsXrNOiILZGX4FQ0VbKrNkD7+LF37nz2ZmOQz0tdDz96nWBJtY+vKcspKZ34fJ5JnUHzr5i18peUIuzUoXkRE5KRibzn5FnAb8M/GmDuBK4D3A+8tZFAi56ujv3uMD27czIiTJeN4icaKPzlZ0VDB2qoEo0efZaS3Z9r7pRMJuvc/S9PGNFua17KvPUpsBjOTRWMp4skMFSXeca05W7duA2Dfvr1nfUwREZHFqqhbTnKtIzcABtiFuwjjrbZtf6eggYmcp4YO7AcgXF5ONJ4mViQrwwMksx6+cPwC7ji0gWRucHxjbRlrqlJ5E5OE4+N98Xfzvvi7STiT79VkMxm6D+6jJNTK5hXlBPxnv5p8LJEmFk9PmtFs69btWMBoy1FS8fjUO4uIiJxniqrlxLbtd06x7SncNVVEpMCc7i4A/M3NDI4U3wfqaPbUS9qSigDraiHetu+0LSZhyvI+BuBkM/Qc2seyLX42Na9k37Hhsxpn4zgwOBpnWd34mYtWr17DP+y4hMZAgJYnfsem37t22scUERFZrIq65UREiofjOFTn7vDXbd3BSBGvDB/we9nQVAq9RxjsOH7Ox8um0/Qe2kd1pp/VSyvPev/hcIL0hHEnHo+H0YAfgK7du845RhERkcVAyYmITEtHawvLcivDr7jsiqIeb7JmaQXBSCd9rYdn7ZipeIzQkX0sD8aprzm79RuisRTJKWYtyjY0AhBvbZmVGEVERBY6JSciMi1HHn0Er2Uxks2SraolXMTJSZ01TN+R/WQz576Q4liR0CCJzoOsrfNREpj++JNILEUsmcbrHT/upHKTAaB8ZHhW4xQREVmolJyIyLQM7n0OgNGqKsLRFKkiXr8g0n6YZHTG67Se1mB7GyWjHaxbVjHtfRKpDOFoCo9n/EvuuhddDUC95SEyMDCrcYqIiCxESk5EZFp+1X6cfzh6GM8llzBQhIPhrTGNEsM9XXN2Hiebpb/lIHWeME21px9MP9bA8OT/sxUbN9GXSuGxLA4+eP9shikiIrIgKTkRkTNKJBI8eWAfjwz2s+666wlHk4UOaZKldWVsqoiyzteHxfRm07JwWGP1sMbqmfY+AIlImFjnIVbVeimZ5vTCo9HkpHEnlmUxVO4mOP3PPjPt84uIiCxWRTWVsIgUp337niedTlFXV09twzIOdHUWOqRxSgJe1tfC50Z/Sbivi1Q6gzONXCNgZfh4yT0zOudQZzvLa5tYtXQ5h46fecxIJJoknspQ5vfijA1u8xa+/8ufkwn4efmMIhEREVk81HIiImfU8siDvLppKddu2040kS66mbpWN1UQCHcR6u6Yt3M62SxDxw7RGIhRU1lyxvKReIpofPKg+LXXvZzvd7bzq+f2kM0W7zgeERGR+aDkRETOyDmwn3esXMPV1TUMDMfPogPU3KupKqUhEGPw2OHxLRLzIDocIt13jFUNpXgs67RlHQcGhmOTVorftGkzpaVBRkdHOHr0yFyGKyIiUvSUnIjIaTmOQ+XoKAA1F2xnJFw8iy96LItV9SWk+44RGo5wa/yd/GX4j0g40+uxmnB83Ba/mdviN097n4kGj7dSlQ2xtO7Mg+OHwwlSExZj9Pv9XLFtB5dX13Dwgd/MKAYREZHFQmNOROS0OtuO0ewPALDiqhezp794BsM31ZVRlR2m+3grAANO1VkfY4Cz32esdDJBpOMIzasvpn/YSzKVf22VcDRFPJmh1GeNGxPzimXL2YBFy57d5xSLiIjIQqeWExE5rYMP/gafx8OIk4XaxqJZfNHv89Bc7SHaeYR0srCtOaHuTgLRXpobyk9bLhxNEk2k8XrHv/TWX3gRADWR6Lx3TRMRESkmSk5E5LQG9+wBIFxdw+BIgmy2OD48r2iooCTWx1ARzBzmZLMMHz9CU1mK8qA/b7lM1mFwOI41YXzK5pe+nFQ2S7XXS+fzz811uCIiIkVLyYmInFawvw+Aiq1bCY0Wx+KLZaU+lpWnGWk/ipPN341qPoUH+/EMd7Kq8fRjT4ZG46QnJHhVtbV05qYZOPybX89ZjCIiIsVOyYmI5NXd2cFSj7vI4KqrX8popDjGmzQ3luMZ7WK0v7fQoYwz2HaUWl+MmqrSvGVGI0niyQwTJ/dKLl8BQOKgPZchioiIFDUlJyKS19O7d/Ene57m24konmUrCUcLP95kSUWAen+c0PGWQocySTw8Sqa/jZV1JZOSjxPC0STReGrSuJOlV1wJQF00SjZTHK1BIiIi803JiYjktXPnk6Qch6WXX8FAKE62CAZrN9cHcYbaiQ6HJj223BpghWfwrI633BpguTUwS9HBYPsxqhiloXrq7l2ZrEP/cBxrwnonW6+7nngmQ6XXS+vOp2YtHhERkYVEUwmLSF47dz4JwCWXXlEU403qlgSp8UToz00dPFaJleaO0n/H7/OSSmeYTh5VYqW5veTfZjXGVDxGoqeFFcu2MzBskZliAoGhkTip9PjtpeXl/Mzn5YE9u3nX0cOsu/IFsxqXiIjIQqCWExGZUuexVv68sop3rlyD2biVkQKPN7EsaK4LkOo7RiIaKWgsZzLU2UFFOkRT3dRTC49EEsSS6UmrxTdc+QJ6kwme2vnEfIQpIiJSdJSciMiU9v78PtaUlfPCxiYy/jIiBV7fpLGmjEpnhMGOtoLGMR2ZVJJIVwsrllj4fZNfZiPRFKORFB7P+MeuuMJtLXnyySdIp9PzEquIiEgxUXIiIlMafc5d3yS2tIn+UKygsXg9Fs01PuJdLaQTUy+4mHB8fCz+Vj4U+UMSzvR6rCYcHx9PvI2PJ9427X2ma7i7k9LEAMvqJ7eeOEDvUBQmDJrfunU7L1+xklualrL3lz+b1XhEREQWAiUnIjJJKpWiYTQMQN3lLyAULuwK7EvryilLDRHq6jhtuU6njo5s7Vkdu9Opo9OpO5fwppTNZBjtOMqyiiwlAe+kx0PhOInU+Fm5vF4v16xdz2XVtfQ88vCsxyQiIlLslJyIyCTP/fZhlpaUkHEclr34pYwUMDnx+zwsX2IR6TxKJl34qYzPxkhvD/5IL80Nk1tPRsIJIvH0pCmFKy+6CICK3uJaw0VERGQ+KDkRkUmOPXg/AP2BAKGUh1Q6W7BYljdUUBLrI9TTXbAYZspxHIbbW2gMpigP+sc9lkxl6Q/FJw2K3/6a15POZmnwemnPda0TERE5Xyg5EZFJvMda3e8bNxZ0vEmwxMey8jSjHS042YW5MGF4sB9rpIvmhsnrnvSHoqQy46cUrmlaSnsuXzn4i5/PR4giIiJFQ8mJiIzT0dHO4f5+hlJJmq97BcMF7NLV3FCON9zDSP/C7uIUOt5CvT9GdWXJuO3D4QTRxOQphZ216wDIHjo4bzGKiIgUAyUnIjLO/ff/mn9tP8Y3/X6sFeuJxgszpW1leYCG0gSh40eZ1oqKRSw2Mkx28DjN9cFxE3RFYilCo/FJ4042vfo1ADRnswy1H5/HSEVERApLyYmIjHP//b8C4NqXvZyewWjB4ljZEMQZ6iAaGpr2PnXWCPXWyFmdp44R6ji7fWZi8Pgxqq1R6muC47Z3D0TITEi+1l58KcfTafaNjvD4A7+Z89hERESKhZITETmpr7uL2KGDWMALX3QtodF4QeKoWxKk1hNh6HjLtPcpsdJ8vvRf+PuK71JiTa+1p8RKc2fpt7mz9NvT3memkrEoye5Wmmv9eMd04xoacWftmti1q+Wqq/jMwf3c9/ijcxqXiIhIMVFyIiInPf3jH/CZzVv50iVX4C+vIRyd/6l7PZbFyvoAqd5jJCLheT//XBrsbKMiNcTSulNTC49Gk4RGE5O6dr3shlcC8MQTv2N4ODSfYYqIiBSMkhMROSm662n3h+XL6OqPFCSGpXVlVGZCDHYcK8j551ImlSLceZQVS6DEf2phxq7+8KSuXWvWrGPjxk2UAY/+14/nOVIREZHCUHIiIgB0H29jfdqdrnfZ9a9maGT+u3QF/F5WVHuIdBwhnUye1b5Jx8tn4jfxiciNJJ3JK7Ln2+f2xJu5PfHmae9zroZ7ughEe2lurDi5bXA4Tjg2uWvXWy+5gq9feCmlDz04L7GJiIgUmpITEQHgqe/9G0GvlxAOAXMJkdj8d+la2VhOSbSHUHfnWe/rYNHqNNGSbcLBOvMOY/Zpdaa/z7lysllCbYdpCiaoKg8AEI6l6B+OTeradcUb3wRAs2VxbPeueYlPRESkkJSciAiO4+Ds3QtAYsMmugfnv0tXVXmApmCSUNsRnGzhVqSfD5GhQZzB46xqLMPK5UTd/RGS6fH1Xr7J0JprTTnwg/+Y7zBFRETmnZITEWH/00+y0e8HYM1rb2RweH5XhbcsWNUYxBk8TmRoYF7PXSgDx45SzTBNte7g+IFQjNFYalLrSfkLrgKgprODdGr+W7NERETmk5ITEeGZ79+L17Lo9XkJVzaRTM1vy0VTXTnVjDBw7Oi8nreQUvEYsc4jrKzxEPB7SaQydPaFsSaMO7n8prcSzqSp9vp4+vtqPRERkcVNyYnIeW50dJR/ePgBPrp/L4HrX0XvwPx26SoJeFlV7SHWcZhUfH5bbAptqLOdkmgPq5vcwfE9g1GiiTSWdSpBKa2ooLu+AYDBX/+qIHGKiIjMFyUnIue5++77T2KxKJmmJpa95BWERhPzev7VTRUEwl0MdXXM63mLgZPNMtR6kMaSGDVVpYRG4/SHYvh841+at/7RO8k6Do2pNAefeaYwwYqIiMwDJSci5zHHcfjhf9wNwP9681vp6AvjnGGf2VRfE6QxEGWg9eCsDIKvIEaldXatLxVEqSB6zueeqehwiHRvC2saAng9Htp7w5MGxq/ecSH/HSzllmd38e3/UNcuERFZvJSciJzHnvjZT/lYdR3vWbeBq15yPf1D89etKuD3sqbOT6LrMPHRkXM+XomV5svBb/DVim9RYqWnvc9dpd/grtJvTHufudDf1kJFoo9VTRX0DUUZHE1Maj154TveRTST4d5772VoaLBAkYqIiMwtJSci5ynHcej80fcp8/m4YPUaBkYhnZm/gfBrllZQGu1m4HjbvJ2zWGXTaYZabZYFE1SWBWjrHiEzoQnrssuuYMuWC4jH49z7T18rTKAiIiJzTMmJyHlq1wO/5gLLfQlYcdPb6ZnHgfBNdeU0+sMMHNmPk83M23mLWWRokHTPEdY2BBgYjhEKj289sSyLP3vXu7lj81au2Lef/rZjBYxWRERkbig5ETkPOY5Dy93/jsey6A4GiTauJ5GanyShrNTHmhqLWPsh4uHRWTtu0vHyucQb+Gz09SQd77T3uTPxRu5MvHHa+8yl/rYWgrFumuvLONY1ysR2rJfc8ErKy8oo8Xh46v99uSAxioiIzCUlJyLnocfv+wnbHLffUMONb6WzLzwv5/V6LDYsL8cbamOw8/isHtvBws42cyCzAgfrzDuc2Mdpxnaap73PXMpmMvQf3ke9dwQnm2VwZHzricfjof51rwFgZV8f7c/vLVSoIiIic0LJich5Jp1O03XP9/BYFl2VlcSWGxLJ+Wk1Wbu8iiWpPvqOHABnPucFWzgSkTDhYwdYWp6iZyg2aezJNe+6mWM4BDwenv/KlwoSo4iIyFxRciJynrnnm99klcdD2nFY/o730tk3P2NNlteXszQQZuDw86STyXk550I13NNFtucIlb4U/cNx/P7xrSfr/vg9ZByHtak0O394bwEjFRERmV1KTkTOIz093dzxpS/xgb3P0nbBVvr8dfMyQ1ftklLWVGcJt+4jNjI85+dbDPpaD+MPHSOTShBPZsetGm9efDWt1dUAJH76E8KaWlhERBYJJSci5wnHcbjjjk8zOjpK85YtrLvpPfQNzv3ig5VlATY0+Eh3HmS4p2vOz7dYONksPYf24R1qIxpP4p247skHP8JQOs1oIsE37vpigaIUERGZXUpORM4T//31rzKy62l8Ph/vv/UTtHaNzPlq8OVBP2Z5KZ7+I/S1HZ3jsy0+mWSS3oPPkRloI5FKjxscv6SxCc8fvpWPHtjLd/7zBzz00P0FjFRERGR2KDkROQ8c3PU0tY89xgc3buZTb3k7aX8D0fjcroheVupj8/Ig/qEWeo/Y8zIAPkCKAKk532c+JaNRevbtJt5zjHR2/P/h5Te8kje/5e0AfPSjH6TlkF2IEEVERGaNr9ABiMjc6u1op+1LX2BVoIR+y8K86V3sb5u99UWmUhH0Y1YEKRlqofvgPpzs3I9rKbHS/GPwa/h9XlLpzLRyoRIrzddKvzrnsZ2reHiUzueeJuDzUla6Ydxj73//X/H8889hentp/+zt1Hzu81Q3LStQpCIiIudGLScii1hkdITfffSDrAqUEMlmWfInH6B9cG5nyqquLGHLilICg0dyiYlWgJ8N0ZFh2p55ipG2w5QETg2O9/sDfP4zf8NLG5fS5PPx9IdvY6S/v4CRioiIzJySE5FFanhwkF+978/Y4vOTymbxvOVmOqgmPXHhjFm0tK6cLU1ePN0H6FFiMusiI8O07n6S8PFDlJWAx+MmKQ2rVlP7nvcSzmRY6fHy5G0fINTTXeBoRUREzp6SE5FFqLuri4c+8Odc4PGSymaJvOK19FVvIJ6Ym3EmPq+HDc1L2LAkQaJ1D70th3DmeZHFlOPlS4nX8IXoq0k53unvk3wtX0q+dtr7FFosHOHwzscZbXmeoOfUCvIbX/hiyt5xM9FMhlUeD89+8K9p2/tcgaMVERE5O0pORBaZnTuf5C1vvZHdPV0ks1lir72R4XVXEo7NzaDv6soStq+pZCm9DO7fyVBXx5yc50yyWDybXcuezBqyWGfeIbfPc9m1PJddO+19ikEsmuDgrqcZPPA0gcQQJQEPlgWbr3kpZe/6Y0LpNEt9Pvr+7nM88i/fKnS4IiIi06bkRGSRiIZH+YfPfpp3v/sdDA4OsK+yktjb38vA8ouIzEFiUhLwsqG5iq2NEOg7QPdzO4mNhGb9PDK1ZDLNkedtOvf8Dqf/KEFvCp/Py6arf49VH/04ndkslV4f3/r21/nwh/+a3t6eQocsIiJyRgtiti5jjAf4JPDHQA3wW+BPbds+XNDARIpAMhHngX/6GsGnn2JrOo0PuOE1f8AfvO0v6ByIk5nlrlwlfi9NdWUsq8jij3QxdOAw0dDQrJ5DpieVyXL8WBeR4WGWrVlD+Yr1+MrqaN6yhdqv/CM//uKd7Nn1JLt/cR8PPPAb/uIPbuT6t76d+uaVhQ5dRERkSgsiOQE+DrwXuBnoAO4EfmGM2Wrb9txOPSRSpDoOHWT3v32HJa0trPUHwB8g7PHy2ds+TXDr1Rzvjc3q+arKA9RXl9IYzOCL9RE+2kpfb8+8jy2R8bKOQ/9QhGjsIPV9PdStaKakcTVVVdW87dO3s/X1b+DOO/8vx/c/z7YDB+j6xEd4orKKZS+7nh2veBU+v7/QVRARETmp6JMTY0wA+CvgNtu2f57bdhPQCbwBuKeA4YnMm0gkzPPP7+XQg/fTsH8fqzxeNlkW+APEsll6V6+j4vffRiLuJTp87omJZUFFMMCSyhLqyz2UWzEYPc5oewfhwf55WbtEpi8aT9HeMUBoaITamg6WNDVR2tDMFds3cs/d93D/3XcT+uUvWOrxsjESgf/6MTt/eC8DS6qp2LKFDdddz/ING7GshTP2RkREFp+iT06Ai4BK4P4TG2zbDhljdgEvQcmJLBKJWIzBjnaGuzoZ7elmtKuLeFcnztAQu0KD/OjAPhzHYU2wjDu37gCgG4f4BRdR9pLXEk96iEQdYGYtGQG/h2CJn/Kgn4pSL0tKsgScBFasl3hnNwMD/SSikVmsscy2rOMwEkkSjvZTNjBMVUUbVXV1BGvqePnrrsN502t5+mf/Q/v//Iqlo2FqfX5qIxHYuZO/vfce9qRTbNiwkYtXrmKTP0BpQyNVy5dT07yKysZGKuvqCZSWFrqaIiKyiC2E5KQ59/34hO2dwKqZHvTE9Juz5bHnj/HQV7/G0kSYEx8OLcZ/TPy5v5ak5Z73onSYtZn8d7d/6asmarlTm27PRNiUPVV27H1Nx4H/9i1hNFf2gkyUrdn8x/2Nt5JBy73sJhNjR57jAtzvraAv9yeyMZvgUieKZVlTduN5yCqj03K7h6xzkrzAiZFvie5HrCBtubKrnRQvdqJ5Y3iMUo7ixwFWkOY6xtRtwvGfoAQb97hLyXAD+f8fdmb97M2VrSfDazzxMRGMOa4Dux0fux23bDVZ3nCy7OR4n836eMrx4zgOlWS5yZccU9bB42TxZ7P4cXgqEuNnQ0OkkwnqnDRf2rwZcGepWJL7OqEtGsVxHMpql5NacyH3Na6m94JXMVqz1l23pHPqelrWiS8Lj2Xh8Vh4ox5wnFO/exx8HvAksljxLAymcFIJ0qk0mSRk0mXAutxX8co4p67G91JX45lGkjZ+n5fgtYq7i5plgZX24DjZfE+vU5LACHi6LbweD35fCn9JDG/wOrw3vhIrmyaw8yfUtO5mRbiX/ZEII4kYu3btpLmzgxuaV0Nr68lDDeS+4pkMX+jspgU/Hl+AK8pLubYsQAYPWcsibXnIWh4cLLDg15TR7fFjYbGeFJc7cffK5FpoTpRzsHjcX0W3txSPx2JFKsYl6dG81dvpraTdWwLA8myCK05Tdre3gmNeN6lqzCZ5YXokb9lnveUc9QYBqMumuDo9nLfsPm8ZB71lACzJprk2Hcpb1vaWccBXDlhUWRmujQ+S70bCEW+Qvb4KAIJOhuuTg3mP2+otZY+vEgC/k+VVyYG8ZY97Stnld8t6HIfXJPMv1tnlKeFJf9XJ31+X6MtT0qLX4+d3/uqTW9bXLOHLX7gVr1dz7ojI2VsIyUlZ7ntiwvY4UDuTA3o8FjU15ecU1ER3feserjm2hyvrG/KW+frOBxhNu4OTr1m1hisal+Yt+y+7H6Y/6X6wfWHzKi5fujxv2bt3PUZH3P0gftnyZi5b3py37A/3PkFL7u739qXLuKx5dd6yP9m7k9aw+4ZvGpq4ZPXavDfl//vgMxwbDgGwtq6Bi9euz3vcBw4/R9uQ+2a7oqaWi9dvylv20ZZ9tA24b6D1S6q5cOPmUw9OyAyeOnaQ433ujERVlVXsMBfkPe6ezsO093QBUFJezvYt26cuaMH+jhY6ctPjWqVBtm+7MO9xj/Qep6O9DYCGQAnbdlw8uVDuDdtORogMuMcd8rrJZdZxCGeyjGRhGB89viq6g00c3PY6vK9+BcmKRnqAu08cK//npvPaw5k81/M0Hsme/T4Lwol1MBPAxIav5e+F3EuL89I43sEjOH02fX2P89tkJ7XZGLVWmhqvhxKP+3db6vUSHh1kNPc6Utq0jA1VJ15HnNwJTy2++RP7GdpG3WRgU0Mjl65ed6roBA8c2Mnh3OtIU209V67bkLdav7N3cWTI/SBeV13DlRtM3rK7Dj/DkX73w3VF1RKu3LQlb9l9R5/jSK+7gKW/opIrN2/NW/Zw6/Mc6XbvDKwtK+PKC3bkLdvetp/Dne0ALC8t5cptF+Ut29d+kMPtxwCo8we48sJL8pYd6TzM4bYWAMq9Xq68+PK8ZRMDRznccgQAv2Vx5aVX5i37xNAxDh85ePL3yy+9Ek+eLn/PDIf47qEDJ3/3lFfwk0dewVuuvzTv8UVE8rGKfTCrMeaNwA+AMtu2Y2O23wuU2Lb9urM85NFMJrt2ZGR2Bwvvb+vlF9/4DkvCw+Pfc8e8lu+uXkHa434IXR0ZojERHlNu/Iv+s0uWk/S5d+ubo0M0xfPfFdy3ZDlxXwCAZdEQy2LDk453Ihh7yVKiPvduY2NsmBWx0LgSDpzsc364qomwvxSwqI+P0hwZHNew4IypXEtVA6MlbsJXEw+zMpz/7l1bVSPDubJLEhFWjvbljbejoo5QqXunrzIVZdVI74Qip/brLq9lMFgFWJQlY6wZ6clbtreshoHyagBKUwnWDHe5tbGsSR+a+suq6S+vASCQTrI2NLGZ4tRxh4JL6Ktwc2Z/NsXawQlrfvgDOIEgBILEq+qJ1a3AFyjFHyil0ufDU7sMvLO4GOD4RiAswOfzkk5nFuVAdsuyVL8ZH9z9xxr3+6kfnWScTKiP7HA/I5aHeDJOJp0iONJPVagb0kmsdMr9nklB1u1i2FLZSNhfAo5DXWyE5vAA4Lgtn46DNebnQxX1hAJBLMuiLh5mXST/68jh8joGT7zmJKNsDOdvBWgpr6WvxG2JWJKMYcL5WgHgWFkNPSdfc+JsGe3NW/Z4sJquoNu6UJZOsm2ke8pyjgOdwSrag0uwgGA2zfZQV962ve7SCtrKcq85mTQXDXfljaG3pJzWcvc1x5vNcOmk16dTBkrKOFJeB4DlOFwxNLFDwimDgTIOVdSf/P2KwePutZpCyFeKXdl48vcNdVV8+oM3E48lyWRmb2xaVVUQr9fTQrE344rIOVkILScnXj2XA0fGbF8O7JnpQdPp2R3Mu2VVIy/8yqcYGorkPfY7Z/WM88/n81BTU37aOi5kxVG/iQ2Es+tUHeOL/BqqfnOjLvc1d4rjeTh3Fnv9wK1jwO8lEs4u2jqKyNxZCB1C9wAjwDUnNhhjqoFLgEcKE5KIiIiIiMy2om85sW07YYz5CvA5Y0wf0Ap8HrdF5UeFjE1ERERERGZP0ScnOZ/AjfWbQBB4GLhBCzCKiIiIiCweCyI5sW07A3ww9yUiIiIiIovQQhhzIiIiIiIi5wElJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBctxnELHMN9ijuOUZrOzX2+v10Mmk5314xaTxV7HxV4/WPx1VP0WvsVex8VeP5ibOno8FpZlxYHgrB5YRIrK+ZichIASoKvAcYiIiMj0LQMSQHWB4xCROXQ+JiciIiIiIlKENOZERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGi4Ct0AAuFMcYDfBL4Y6AG+C3wp7ZtH85Tvg74MvCq3KbvA39p23ZkHsKdEWNMLfB/gd8HqoBngQ/Ztv3bPOXfAfzLFA9tzPf/UkjGmNVA6xQPvdu27W9OUX5BXUNjzDXAA3kebrFte90U+yyYa2iM+RjwMtu2rxmz7SLgLuAyYAD4sm3bXzjDcd4EfBpYBxwEbrNt+5dzFPa05anfa4BPAFuAfty/wU/Yth07zXFagDUTNv+7bdtvm+2Yz1aeOn4beOeEoh22bTef5jgL4hoaYx4Efi9P8XfYtv2veY5TNNfwTO8Li+k5KCLFQS0n0/dx4L3Au4GrAAf4hTEmkKf8D4D1wHXAG4Hrga/OQ5zn4h7gBcCbgcuBXcD/GGM25ym/A3gQWDbhq2XOI52ZHUAcWM74eP89T/mFdg0fY/K1uB5I4364mMqCuIbGmPcDn5mwrQ74Fe6Hm8twbx7cboy5+TTHuRb3en8VuAj4b+A/jTFb5iTwacpTv6uBHwM/xI31vcBNnOZv0BhTCazG/SA59nr+2RyEfVamqmPODty/z7HxXnya4yyYawi8gcnPrZ8BB3Cv7VTHKbZrmPd9YTE9B0WkeKjlZBpyCchf4d7d+Xlu201AJ+6bzz0Tyl8FXANssW37QG7be4BfGmM+bNt25zyGPy3GmA3Ay4EX2bb9WG7b+4BXAm/BvXs70XZgj23b3fMW6LnZDti2bXedqeBCvIa2bSeBk9fCGOMH/h744VQtQzlFfQ2NMSuAbwJXA/aEh98DJIBbbNtOA/uNMRuBDwLfznPIDwE/sm37K7nfbzXGvAh4H+6H/3l1hvr9CXC/bdt/m/v9sDHmI8C3jTHvtW07McUhtwMW8Kht26E5CvusnK6OxhgvcAFw+1n8DS6Ya2jb9uCEsn8I3ABcYtv2aJ5DFs01nMb7QowF/hwUkeKjlpPpuQioBO4/sSH3prELeMkU5a8Guk58qM15ELe15cVzFeQ56gdeDTx9YoNt2w7um2Rtnn12APvmPrRZczbxLsRrONGfASuBvzxNmWK/hpcAQ7hxPjHhsauBh3Mfik64HzDGmMaJB8p1zXwRY57HY/aZ6nk8H05Xv78Dbp1iHx/u69FUduD+3YZmK8BZcLo6bgRKmebf4AK8hicZY8qBzwN/b9v2c6c5XjFdwzO9LyyG56CIFBm1nEzPib7Pxyds7wRW5Sk/rqxt20ljzECe8gWXeyP8+dhtuX7B63Gb3ZnwWAPQBLzEGPMXuG9UTwAftG374JwHPDPbgS5jzCPAJuAQ7h3bSfVjAV7DsYwxpcBHgS/laylaCNfQtu2fAj8FMMZMfLgZmPgh70SL1iqgd8Jj1UA5038ez7nT1c+27d1jfx/TgrvLtu3+PIfcDkSMMT8EXoj7f/Bt3HEA2dmNfnrOcA234yb87zfGvBLI4r4Ofcy27eEpDlfNArqGE7wXN6n87BkOWTTXcBrvC59lgT8HRaT4qOVkespy3yd2o4jj3vWbqvxUXS7ylS86uWb2bwH/lXvznWhb7nsGeDtuf+QK4LfGmKb5iXL6ch/sNuEO6PwY7iD3p3DHDV03xS4L/Rr+ERDEHdCfz4K6hlOY6hrFc9/zPS/Js09RX1NjjA/4Lm4XqD89TdFtwBLcrqbXA18H7gA+NcchztQ23ISkFXgN8Ne4z83/yt1ln2hBXsNc97W/AL6aJ+kaq2iv4RTvC+fNc1BE5o9aTqbnxMw4JWN+BvfFdKqZm2K5shPlK19UjDGvA+4GHgf+cKoytm0/YIyptW17aMx+rwfacGfe+dzcRzp9uVaPaiA9pq/+07lBmH8N/GbCLgv6GuImGz+0bXsgX4GFdg2nMNU1OvEBJ9/zkjz7FO01zQ2Qvhe4FrjRtu28XYeAlwGlY8YzPJfb/2PGmE8VqvXkND6F280plPt9rzGmC/gd7uDriXVdkNcQd/zaKuAb0yhblNcwz/vCefEcFJH5pZaT6TnRBL18wvblQHue8uPK5u7c1+UpXzSMMf8H+BFuU/6rTjdl6dgPtbnfI8BRTnWDKyq2bUemGET8HFPHu5CvYQNud5B7zlR2oV3DCSZdozG/d0xRfhD3A9B0n8cFZ4xZBjyCez1fmacV8yTbtlNTDLR+DrcrTc3cRDlztm07U4ytONFNaKq/wQV3DXNeDzxp2/bRMxUsxmt4mveFRf8cFJH5p+RkevYAI7h3vwDI3YW/BPeDw0QPA825mU5OuDb3/bG5CfHcGWNuAf4B+ApwU57ZgE6WNcb0G2OCY7ZV4Xaden7Ogz1LxpgdxpiwMWbiYPbLmDreBXkNc16I24//odMVWmjXcAoPA1fnusyccB3ujGwT+7qfGMj7W8Y8j3NeytTP44IyxtTgDhRuAF5s23a+NWxOlPcYY1qNMR+d8NDlQM/pWtEKxRhztzFm4pivy3PfJw2SX2jXcIwXM3kQ+CTFeA3P8L6wqJ+DIlIY6tY1DbZtJ4wxXwE+Z4zpw+0f/Xncu0Y/yr0wNwDDuTtKTwCPAvfkXtgrgH8E/tW27anuJhWcMWYT7kJaPwb+BmgcM7gzBoQZX8f7cAdD/qsx5lO44xv+BugDvjOvwU/P3tzX13LXpB93KtqrgMsXwzUc40LgqG3b0bEbp6jjQruGE30LuA34Z2PMncAVwPsZMx2pMWYJELBtuy+36YvAz40xu3HvAr8Ldza+d81f2NP297iL1L0C6DPGLB3zWJ9t25mx9bNtO2uM+T5wmzHmIO5sgtfh/h+9b76Dn6a7gZ/kPozfg5sY/z/gbtu298OCv4Ynnndbcd8zpnq8aK/hNN4XFvtzUEQKQC0n0/cJ4J9x57N/FHdhuxtya0usBLpwF0g7cXfoDbgL2T2A21/8F8At8x/2tN0I+IE/wK3L2K+7mFzH47h3u6pw/z9+A4SAa0/XFaxQcv20XwM8ibvK9m7gSuDluWk9F8M1PGEp7krNEy3oazhR7s7sDYDB/RD3SeBW27bHJlZ34U58cGKf/wFuxr2Ou3E/+P3+hCmjCy43GPwmIIB7x33ic3Jlrui4+gEfBu4E/ha35eEDwPts257OWId5Z9v2fcCbcBc5fQ73NfZHwP8eU2xBXsMx6nBfW/O1ehTzNTzt+8Jifg6KSOFYjuMUOgYRERERERG1nIiIiIiISHFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiBQlY4xV6BhERERkfik5EZGiY4x5LblV6o0x1xhjHGPMNYWNSkREROaar9ABiIhM4QNjft4FXIW7WraIiIgsYkpORKSo2bY9Ajxe6DhERERk7lmO4xQ6BhGRk4wxDwK/N2bTtcADwLW2bT9ojPkU8GbgQ8AdwAbgAHAL4AB3ATuAI8D7bNv+zZhjbwP+FnhJbtNvgL+ybfvoHFZJREREpkljTkSk2PwpsDv3dRVQNUWZlcAXgc8C/wuoBX4AfA/4Bm7y4gHuMcYEAYwxm4DHgEbgncD/BtYBjxpjGueuOiIiIjJdSk5EpKjYtr0PGAFGbNt+PPfzRGXAn9q2/T3btn8CfBVYDtxu2/Y3bdv+L+DjQD1gcvt8EogBL7Nt+0e2bX8ft1UmCNw6p5USERGRadGYExFZqB4b83N37vvYsSkDue/Vue/X4XYPixpjTrz2jQCPAC+foxhFRETkLCg5EZEFKTdQfqLoaXapA27KfU3UNytBiYiIyDlRciIi54sQ8Gvg76Z4LD2/oYiIiMhUlJyISDHKAN5ZPuZDwAXAM7Ztp+HkKvT/BhwGnpnl84mIiMhZUnIiIsUoBFxljHkpsGSWjvkZ4HfAfcaYrwFx4E+A1wM3ztI5RERE5Bxoti4RKUZfAVLAL3Bn0zpntm0/C1yNuxbKd3GnHl4GvN627R/NxjlERETk3GgRRhERERERKQpqORERERERkaKg5ERERERERIqCkhMRERERESkKSk5ERERERKQoKDkREREREZGioORERERERESKgpITEREREREpCkpORERERESkKCg5ERERERGRoqDkREREREREioKSExERERERKQpKTkREREREpCj8f6xzLlpTy7muAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Load a chromatogram that is very heavily overlapping\n", + "df = load_chromatogram('data/bounding_example.csv', cols=['time', 'signal'])\n", + "chrom = Chromatogram(df)\n", + "\n", + "# Fit the peaks providing only the known retention times\n", + "peaks = chrom.fit_peaks(known_peaks = [10, 10.6])\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "known_amplitude = 100\n", + "\n", + "# Print a summary statement demonstrating the underestimation \n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "You can constrain the parameter bounds for the amplitude of peak 1 more narrowly \n", + "than the other peak by passing a dictionary to the `known_peaks` parameter of `fit_peaks()`." + ] + }, + { + "cell_type": "code", + "execution_count": 20, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "Deconvolving mixture: 0%| | 0/2 [00:00,\n", + " ]" + ] + }, + "execution_count": 20, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAycAAAG1CAYAAADjmIvIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy88F64QAAAACXBIWXMAAA9hAAAPYQGoP6dpAAC9CUlEQVR4nOzdd3hU1dYH4N8509N77+3QQcDGBQFBAQuWq1fFjhVFREVBQEEUUT4EDIrSQUBUQFFRrKiIomIQBZIc0nvvmX7K98ckmEomQ0KSYb3Pk4eZOW3tSZiZNXvvtRlZlkEIIYQQQgghPY3t6QAIIYQQQgghBKDkhBBCCCGEENJLUHJCCCGEEEII6RUoOSGEEEIIIYT0CpScEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBegZITQgghhBBCSK+g7OkAekA1AA2Aoh6OgxBCCCH2CwZgBuDVw3EQQroRcwGuEG+UZVkrSV3fbpZl0B3n7U2cvY3O3j7A+dtI7ev7nL2Nzt4+oHvayLIMGIYxAdB16YkJIb3KhdhzUiRJcnRlpb5LT6pUsvD2dkVtrQGCIHXpuXsLZ2+js7cPcP42Uvv6Pmdvo7O3D+i+Nvr4uEKhYGjUAyFOjuacEEIIIYQQQnoFSk4IIYQQQgghvQIlJ4QQQgghhJBeocfnnHAcFwkgu41ND/E8v5HjuGEA3gQwEkAFgESe51ecvwgJIYQQQggh50OPJycAhgAwAYgB0LS0Rw3Hcb4AvgWwD8CjAC4DsJbjuAqe57ec70AJIYQQ4nySkpLcYStVTCNKCOlaEoCiESNG1Nl7QG9ITgYD4Hmeb1WBg+O42bDVNJ/B87wAIIXjuHgAcwFQckIIIYQQhyUlJbEA5jMMew/DMCoATE/HRIiTkWVZtiYlJb0H4NURI0Z0WMKvNyQnQwAkt7NtDIBDDYlJo4MAnuc4LoDn+dJuj44QQgghzmq+QqGc4eHhbVGrtQaGYZx7ARpCzjNZlhmLxeRSW1s1QxQFAHilo2N6Q3IyGEARx3E/A0gAkAbgZZ7nvwYQBuBEi/0LG/6NAOBwcqJUdm3PrULBNvvXGTl7G529fYDzt5Ha1/c5exudvX1A32ljUlKSB8Ow93h4eFvc3b0rejoeQpyVRqMzAvCtrq64Jykp6c2Ohnj1aHLCcZwatoRED+BZAPUA7gJwgOO4qwC4wDasqylTw79aR6/Lsgy8vV0dPfysPDycf+FaZ2+js7cPcP42Uvv6Pmdvo7O3D+gTbQxiGEalVmsNPR0IIc6uoWfSRZYRDKD3Jic8z1s4jvMCIPA835iEJHEc1x/AHABGAJoWhzUmJQ4v8S5JMmpru/a1SKFg4eGhQ22tEaLonKv+Onsbnb19gPO3kdrX9zl7G529fUD3tdHDQ9fVvTEsAIaGchHS/Rr+nzGwo+hEjw/r4nm+rSTjBIDJAPIAhLTY1ni/4FyuKwjd86YgilK3nbu3cPY2Onv7AOdvI7Wv73P2Njp7+4ALo42EkK7XowNCOY4bwnFcPcdxo1tsGgngFIBDAMZwHKdosm0CbNW9aDI8IYQQQgghTqSne05ONvy8w3HcDADlAB4GcDmAiwGUAHgOwCaO45YDuATAbNjWPCGEEEIIIb1MYuLKkIMHv/Hdt++rlkWNeqXU1GRtfn6+ZuLEq2t6OhbSwz0nPM9LAK4H8AeA3QD+AnApgKt4nj/R0DsyCQAH4BiARQCe5Xl+Ww+FTAghhBBCnMi8ec/EJyef7J5KSaTTerrnBDzPlwF44Czbj8LWk0IIIe0yCsCY923vLUfuAFR2LKVmFIAxH7kDAH7+Xx10Pf6KSAgh5Pyjmgi9Cb0VE0IIIYQ0kCQJBoOhx0aWuLi4SCzbucuPHj1yxH//e1vRjz9+72u1Wtk333wn1cXFRVqzZlXYP//85aHX6xWenp7C+PETK558ck5BSkqy7pFH7huwdu3GlCFDhhkAYPbsx2JPnvzH46uvfvxLqVRClmVce+3EoffeO73gttvuLG95zfLyMuXKlcvDjh076imKIpOQ0K/+6afn5sXGxp1ZAmL9+rWB+/fvC6yrq1PGxcXr5817Mbtxe1sxh4WFW9atezv4p58O+lZVValCQ0NNd999f+HkyddWA8Du3R/47tq1Pfj++x8s2LRpfVhNTbWqf/+BdQsXvpS9deumoB9//M5XqVTKU6feXPLoozOLAcBsNjNvvbUq5PDhQ96VlRVqrVYnDR06rGbevBdyfXx8xRtvnDy4vLxc/dFH7wefOHHcfcOG9/iqqkrFW2+tDj169Devuro6ZXR0rP7hhx8ruOyyUfWNbdu3b6/Pzp3bgsvKyjQRERHG8eOvqti06d3ww4f/THLkd8KyrEPtc0aUnBBCCCGEwJaYTJv2336pqSk9NsSnX78B9e+/v4fvbILyzTdf+i9b9kaaKApMfHyCedq0/w7w9PSyvv766tPu7u7iTz8d9Nqw4Z3wAQMG6SdNuqbaz8/PcuTILx5DhgwziKKI5OST7mazmf3rryTXiy++VH/8+DGXurpa5ZVXXlXd8lqCIODJJ2ckAIy8ePGrGb6+vsKaNavCnnnmiYQ9ez4/AQDl5eXqkyf/cV+2bGWaxWJmXn31pehXX30patOm7Xx7Mc+e/VhsZmaGyxNPPJUbHR1r+uqrL3yWLl0cy7Js+tVXT6kBgIqKcvVnn30S8Mory9MNBj37wgtz4++//86BEyZcVb527aaUL7/8zHfHjq2hY8eOr+7ff6DpjTdeC/v99yNec+cuyA4PjzDzPK9bseLVqHXr3g55/vkX8zZu3J4yffqdA/7zn7GVDz88o0gURcya9WiC1Wpl5s5dmOXvH2D98MP3A+bNezph9eq1qcOGDTd8993XnitXvh59zz3T88eNm1D9+++/emzc+G74uf5OHGlfp/5I+ghKTgghhBBCzuib656MHXtlxbBhww0AYDQamSuvvKpi0qQpVeHhkRYAiIp6oHT37g+C0tNP6yZNuqZ65MhLq48dO+oBoPj48WOuCoVSTkjoV3/06O/uF198qf7nn3/yio/n6v39A4SW1/rll0MeOTnZui1b3j8ZH59gBoAFCxZnb926MaiyskIJAAqFQn755dezPD09RQCYMuW6sh07toa2F/Pp06naP//8w2vx4qXpEydOqgGAmTNnF2Vmprvs3LktuDE5EUWRefrpuTmNH8wHDx5ae/p0qtuzz87PZxgGDz/8eNFHH+0KTks7revff6Cpf/8B+vHjJ1RdfvnoegAID4+0fPvtV7XZ2Zk6APDz8xdYlpV1Op3k7e0jHjz4rUdWVqbLhg3bTjVeY+HCl3JPn0513blzW9CwYcMzP/hgZ9Bll42qfPDBR0sAIC4uviw/P0/z+ef7As/ld+JI+87lb6a3ouSEEOIUGAAjAkWolAowdsw3aTxmeMP7rp2HEEKcGMuyeP/9PXxfG9YFAGFh4WeGU+l0Ovnuu+8v/fLLz7137NjmWlhYoMnJyXKprq5SiaLEAMCYMeNqFi2a7280Gpnffz/iPnDgoLrQ0HDT338f8wBQfPTo755XXDGusq1rpaWd1rm4uIiNiQkABAYGCXPnLsxvvO/p6Sk0JiYA4O7uIVoslmYNaxozz6fqAGDkyEvrm+4zePCwuvfe2xTW9LG4uH+vq9FoJH//QDPT8MKv1WplADCbzSwA3HTTrZU///yT+8qVr4cWFORr8vPzdIWFBdp+/fo3u06j9PQ0nU7nIjb94M8wDAYMGFR/7NifHgCQnZ3pMnr0FVVNjxs69KL6lslJZ38njrTPGVFyQghxClolsGmSCd7erqiqAoRW3/W1fcz6icbuD44Q0mewLAs3N7c+t3qkRqM9E7PBYGAfeeQ+zmQysWPGjK26+uopFUOHDsudOfPhfo37XH75f+pUKqX022+/uP/1V5LH+PETKiMjo8yfffZxUF5ejjo7O9Nl8eKlmW1dS6FQykwH3wKxLNthD1TTmNublC5JIqNQKJptVKlUze6zbPuxLFnyQsQvvxzyGTduQsVll/2npl+/AUU7d24LqqgoU7e1vyy33TRJkqBUKmXb9VhZljvuYOvs78SR9jkjSk4IIYQQQpzITz8d9MjKynT5+OMv/g4ICBQAoKqqUlFTU6NsTALUarU8dOhFtYcO/eiVlnbabd68F3LCwsItDMPIa9euCQkODjE1ndzeVExMrEmv1ysyMzM0MTGxZgCoqChX3nHHzYNeeWV5miMxJyT0MwLAn3/+7tY4rAsATpz42y00NNyhb5EqKysU33xzwH/u3AWZ119/05mejvz8XK1Wq2uSGP374T8uLsFoMBgUKSmntE17T5KTT7mFhUWYACAyMsqYnHzKDcCZBcFPnTpx1nlK9vxOiI3TdgkRQgghhFyIAgODLADw2Wef+Obl5ah///2I25w5s+JEUWQsFuuZT+KjRo2u/uGH7/08PNyF2Ng4s0ajkTmuf/3hwz/5XnbZqOr2zj9mzNja6OhYw5IlC6OTko66pqYmaxcvXhDl6ellHTr0IoMjMXNcf9OwYcNrEhNXRnz33dee6elpmrfeWh2clHTU63//u6PEkXN6eHiKOp2LePjwIa/MzAxNcvJJ3aJF8yOzs7NcrNZ/nwetVisWFORrSktLlGPHjq8JD480LlnyQsyvv/7sfvp0qvbll1+MyM/P1d1++7QSAJg27Z6i33//1XvTpnWBmZkZmj17PvT94ovPA84Wi72/E0I9J4QQJ2EUgKl7XcCwwBc32r/OyfWf2r7s+vwGPa1zQghxCsOHjzRMn/5w3r59ewN37twW6u3tYxkzZlyln5+/hef/rUQ2fvzEmtWrVzCDBg2tbXzsootG1J448bfH2LFXVrd3fpZlsXz5qvSVK5eHz5v3TDwADBw4qG7lyjVpGo3G4W6A115bmbl69f+Frly5PMpgMCjCw8ON8+cvzpgy5dp2YzkbpVKJhQtfynz33TVhDzxw10BXVzdh0KAhdXfddV/Bnj0fBOv1etbV1VW64Yb/lm7evC7syScf0+3atTc5MfGd0ytXLg976aWFsVarwERHxxhee23l6REjLtEDwPjxE2tLS0tyPvhgZ9D27VtCo6NjDJMmTSk7cGB/uwmKvb8TAjD2jJlzMpmiKEVXVuq79KRKJdsw1l0PQehzQ1Xt4uxtdPb2Ac7dxqYLKh65Qw8V03H7+toijM78+2vk7G109vYB3ddGHx9XKBRsFoCYrjhfUlJSP5ZVfBUQEFqvVmudsuoR6R5Hjhx28/MLsDYtCPDOO2uCvvnmgN8nn3x5sidj660sFpO2tLTATZLEySNGjEg92769/K2YEEIIIYSQ3uO33371/PHHgz7PPTc/OzIyypycfEr32WefBE6Zcl1ZT8fmDCg5IYQQQgghxE6PPfZkodFoZF977ZXourpapY+Pr+WGG24ueeihGU67avv5RMkJIYQQQgghdtJoNPL8+YvyAOT1dCzOiKp1EUIIIYQQQnoFSk4IIYQQQgghvQIN6yKEOAUGwABfERCs+H3VCqhlKxJuuBlecfFnP8ZHPHObEEIIIT2LkhNCiFPQKoFn9VvB7t8PFWvrFC5KfgWFk6ZgwP9ub/eY9yY7tF4YIYQQQroBDesihDiF/Pw8/P3BLqhYFhkWM1JMRigYBszXB1Bw9PeeDo8QQgghdqDkhBDS58myjEWL5mPF6RR8LAuYuHELJry7Ef9YrVAwDPI2rIMsCD0dJiGEEEI6QMkJIaTPO3z4EJL+PgHlo7/j8PV7AbUL3NzcMeSZOai1WlFcU43jvx5udZxJAK7/1BXXf+oKE+UuhJA+avTokSN27/7A1979f/zxe4+bbrpm0Lhxlw1//fWlYd0Zmz0SE1eG3Hjj5MFdec7OPCf5+bnqzz77xLsrr08cR3NOCCF93m+bN8BNqYLJIwzFBgCyGWCAhCEXYXlUJN7/9GOM2b0La64Y1+w4GUCRnj1zmxBC+qK9e/f/7eHhKdq7/4YN74QFBgaZ33xz7Wk3N3e7j+tLOvOcvPTSC1EBAQGWqVNvquruuEjHqOeEENKnnf71MG5QKLFq4NA2t9/+wCNgWRY///wT8vJyz3N0hBDS/QIDgwSdTmf3dyx6vV4xYMBAfURElMXHx9cpk5POPScyFWzsRSg5IYT0ael7PwIAFGs1bW6PiIjEZZeNgptCiV92vnc+QyOEkPOi6RCmBQuejXr++Weily9fGjZlypVDr7xy1EWzZz8WW1JSrGzct7y8TP3RR7uCR48eOSI3N1styzLWr18beNNN1wy+8spRF02b9t8Bn3yyx6fx/L/++rP76NEjR6xfvzZw0qRxw+6889b+WVmZmtGjR454++03g6+5ZsLQG2+cPLi6ulpRU1OjWLRofuSUKeOHXnXVmGEPP3xfwvHjx1yaxrtr13a/m2++dtD48ZcPnz37sdj6+jrF2dr30EP3cKtXrwhZtGh+5MSJoy+aMmX80LfffjM4Le205oEH7ubGj798+B13/HfAX38lnblO43NSXV2tmDr16iGzZj0a17jt0KEf3ceMuXjEl19+7vXQQ/dwKSnJbj/99INv49CyG2+cPDgxcWVIyxgWLHg2qr3nQxRFFBYWqJ59dnbMVVddMWzy5HFDZ816NC4jI73tNyfSLkpOCCF9ltViQUBFJQDAe8y4dve7edwErB86HANPn4ZgoNLBhJCzE41Gtr0fyWxmzse+5+LIkV+8a2trlW++uZZ/8cWXM1JSkt3femt1KGAb7uTj42O9/vqbSvbu3f93aGi4ZdWq5aFffPFZwOOPP5m7adOO5JtuuqXk7bdXR27fvtW/6Xl///2I19q1G1PmzXshW6FgZQD48cfvfVateotfvPjVDE9PT3H27MfiCwsLNK+8sjx97dqNqf369dfPnv1YvxMn/tYBwGeffeL97rtvRdx00y0lGza8d6p//4H6Awf2B3TUpn379gQFBARaNm7cfuq6624o3bVre8jcuU/F33bbtOK3396QolarpJUrX49seZyXl5f47LMLsv76K8nz008/9qmsrFAsX740esKEq8uvueb66uXLV6fHxyfoL7/8P1UbN25P6czz3PT5MJlM7BNPPMJJkohVq97mV616m/fw8BQee+yB/oWFBarOnPdCR3NOCCF91j8H9sNDqYReFDHk+uuBT9veb9R1NyBp/2cIVGuQ8uV+DL7lf+c3UEJIn5LxxIyL2tumS+Bqwp97Pr3xfubTs4bKVmubX/ZqoqLrIxcu4hvvZ819ZrBkMLT52UsdEmqIWrK0Ux+O241RpxMXLXolR6VSyQkJ/UxHjvxSkZR01BOwDXdiWVbW6XRSYGCQoNfr2c8/3xc4Z87zWRMnTqoBgOjoGHNRUaFm794Pgu6++76yxvPedtu04tjYODMA5OZmqwHg2munlnFcfxMA/PzzT+5pabzrvn0H/vbz8xcA4Omn5xYkJ59y++CDHYGDBw/N/vjjjwJHjRpddffd95cBQFxcfHFKyinX7OxMF5xFeHiE8fHHnywCgPvvf7hk164dIWPGjKu8+uopNQBw9dVTKjZseDe8rWPHjBlbN2XK9aXvvvtW+Pfff+Pj6uoqzp27MBcAvL19RKVSKavVaqkxZns1fT4+/HCnX11drfK111ZmqVQqGQCWLFmWffPN1w7es+dD/1mzni7szLkvZJScEEL6rOKffoQ7gBJ3N/TTaNvdz8XFBaWengg0mlD+268AJSeEECcWGBhkbvyADACurm6iIAht9sycPp2qtVqtzBtvvBa1cuXrUY2Pi6LECIKVMRqNZ46Lioo2tzw+IiLS1Hg7NTXZBQBuu+3GZpW3BEFgrFYLAwB5ebm6ceMmVDbdPmDAoPqOkpOQkLAz13FxcZEAIDQ09Ew8arVGEgRru71PTz/9XP6xY0c9jx370/OddzYnd2aOTnuaPh+nT/MuRqNRMXnyuGFN97FarWxeXk77b1CkFUpOCCF9kiRJ8K6sAJQq+Fx6ORgAMZ4SFAoWaOPtyXvkJcDPh+BVWQlZksCwbMMxtrmgNBuSENIods07f7W3jWHZZh9qY1Ym/m3vvtGvv3HC3n3PRdPE5F9tn16SJAYA5s9flBkTE2dquV2j0Zw5UKvVSi23a7XaM9slSWJ0Op24bt3WVj1AarVaAgCGYSC3CEWpVHbYdqVS0WofhrF/dkJJSbGqurpKpVAo5CNHDnsMHjzEePYjml9OEMRWbxNNnw9JkhAcHGJ67bWV6S33c3V1dcqiA92F5pwQQvqkzOPH4KdUQZAkDL7+RmiVwMc3GPHd3YCuja9dhl9/A+oFAa4si7zffgUAaJXAR9ca8NG1BmjpqxpCSAOFTie198M2+bDenfueL3FxCSaFQiEXFRWqY2JizY0/hw794Ll9++ZAlrX/o2JsbLzRaDQqLBYz0/RcW7duDDp48FsvAIiMjDKcPPm3W9PjeD7FtWtb1ZwkSViyZGF0ZGS04bHHZuW+//57oSdPntD9uwfT/PekUMr19XpF0+NLS0vUZ7tGTEyssby8XO3h4SE2tjsiItL81lurQ//444h7V7fJmVFyQgjpk/5ITcYDx//EJ0oFdB4eHe7v5eOLXIXtJS/70I/dHB0hhPQNnp6e4lVXTS7bvn1L6Mcff+STnZ2l3rPnQ9+tWzeFeXv7dGoOxvjxE2oiI6OMixbNjz18+JB7ZmaGZvnypWE//PCdX3R0rAkA7rjjnuI//vjNe8OGdwIzMtI127ZtCvj99yPdugDi+vVrg7KyslwWLFicfdttd5b37z+w7pVXXow2NxQh0Ol0UmlpiaagIF8FAP37D6g/fPgnnyNHfnFLT0/TLFnyQqTRaDhrRbGpU2+udHNzFefOfSo2KekP17Q0XvvCC3Ojjx9P8oyP5zropSFNUXJCCOmTfv/9COoEASGX/8fuY9jIKACAnJ3dPUERQkgfNG/eC3k33HBzyXvvbQm97747Bu3cuS349tvvLHziic5N4lYoFEhMfPd0fHyCfunSRTEPPnj3gH/+Oe6+cOFLGWPGjK0DgIkTr6557rn5md98c8DvgQfuHnj48CGvqVNvKumelgEnTvyj++CDHSF3331fQUxMrBkAnn/+hZzy8jLNqlXLQwFg6tSby/LycrXTp985UBRFzJz5VEFCAle/YMFz8U888Ug/Dw8PYdSoMWddoNHT01Ncs2Z9qqenlzBv3pz4GTMe6F9aWqJ+9dUVaf36DWg1XI60j5FbDvxzfpmiKEVXVuq79KRKJQtvb1dUVekhCK2GZDoFZ2+js7cPcJ42CoKAsWMvhV6vx65de9G//0CYBOCer12hULB4b7IeKrRu358/fI9tLy9CsUqFj746CLPI4J6vbXMw35vU+4d2Ocvv72ycvY3O3j6g+9ro4+MKhYLNAhDTFedLSkrqx7KKrwICQuvVai19eCSkG1ksJm1paYGbJImTR4wYkXq2fXv5WzEhhLSWcugHzAmLxCmTERzXH4Bt6mJmTUNnsIw2Z7gPHjUav9fXwmKxICcnC4FhMcisUZw5hBBCCCE9i4Z1EUL6nMLff8NAdw9cGhSCzkzW1Gg0GDJkGADgzz//6KboCCGEEOIoSk4IIX2OkJsLAGBCQjp97Kghw3B9YDDEn37s4qgIIYQQcq5oWBchpM/xMhgAlQp+Db0gnTE4LgGjwyNh0hsgS8455p8QQgjpq6jnhBDSpxRmpMFfpQIAxF8xttPHc/8ZA6MoQsuyKE8965w8QgghhJxnlJwQQvqUjJ9/BgCUSSJcff06fbyHpycKJdtivblHf+vS2AghhBBybig5IYT0KdUppwAAeg/PZo8zAIJdJYS5o81KXU0ZvWzrfdWnpSHYVUKwq9TRIYQQQgg5D2jOCSGkTykvLUGYDOji4po9rlUCB/5rbFhfARDOsq6xa1w88PdxuJcX4fMbunbNI0IIIYQ4jnpOCCF9hiAIeDf5BKYf/xNhU651+DwRl10OAPCVZQhGY1eFRwghhJBzRD0nhJA+Izc3B2azGTqdCyKiHF8kOm7YcByzWuGuUKDw5AlEXHxJF0ZJCOnrGAYKhmF65AtcWZYlWYbYE9cmpDeg5IQQ0mfwqckAgPj4BCgUimbbTALw8NdaKBXA+olnf3FTqVTYZjXhj+RMhGVdBI8KF6yfaICWXhEJueAxDBQSwwQbTEKPvCK4aJUCC7motyUoiYkrQw4e/MZ3376vTnT22PT0NM3DD983YOvWnaciIqIs3REfcR70VkwI6TOEwz8jcdAwFAW1XnxRBpBcYUtYZBkdTooPSOgHIS0T+YIPUGk7nhBCGIZhDSZB+dvJIslgEs7rYkguWiV72aBgpbtWycqy3KuSE0clJ5/UzZv3TJzFYqapBMQulJwQQvoMtqwUQVotpICAcz4Xx/UDvviyC6IihDgjg0mQ9EZrT6zU6jQf4teuTQzas+eD4NDQMFNlZYW6p+MhfYPT/AcghDg3WZbhZbGNBvAbMOicz8dFx2J6eNQ5n4cQQnra6NEjR+zcuc1/+vS7uPHjLx9+++03DfjmmwPN6q1/993XnnfddWv/8eMvH37zzdcOWr16RYjZbD7Tx5yamqydPfux2EmTxg0bO/bS4TfffO2gLVs2tvtN0NatGwPGjbts+Ndff+nV3j5JSX94Pvvs/KwZM57I75KGkgsCJSeEkD6hLD8P/irbF29Rl1x6zueL6z8Ql3v7nvN5CCGkN9iyZUPY+PETKtev33Zq5MhLa15++cW4o0d/dwWAH374zmPp0sWxU6ZcV755885TTz75TO7hwz/5LFjwbDQAGAwG9plnZiVotTppzZp3U7dsef/U6NFXVG3a9G74iRP/6Fpea8eOrf7btm0KW7hwScakSddUtxfTpk07+ClTrmt3OyFtoWFdhJA+Ievo7/AGUC2KSPDzP+fzeXh6okQ6y2IohBDSh4wfP7H87rvvLwOAOXPmFZw8+bf77t27Ai6++NKsHTu2Bk+YcHX5nXfeWwYA0dExZqVSmTN37tMJubnZahcXV2nq1JtK77jj7lIPDw8JAGbOfKrw4493B6WlpeoGDx5ypub6rl07/DZvXh+2aNEr6ePGTajtmdYSZ0bJCSGkT6hMSYY3gFqttsvOqXdx67JzEUJITxo+fGRd0/sc119//PgxDwDIyspyychId/3hh+/OdBfLDVVA0tPTtFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROjP0q6qqSvXOO4mRCoVCDguLMJ+PdpELDyUnhJA+QSgsBAAwgYHt7uOtkcGwHZTpakIZHAx3Sw0khkGH5b0IIaQXUyqVzYoOyrIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZVmaIUC6FiUnhJA+IbemCgpRgl98QpvbdUrgh9sM8PZ2RVUVINgxYisgJgLrDk5HlSRBd+97XRwxIYScP8nJJ12vumpyTeP91NRkt9jYWAMAhIVFGPPycrQxMbFnejuOHDns9uGH7wc+//yLOfv3f+pbX1+n3L37s5MqlUpuOF/DXJN/cx4vL0/r2LHjawMCAiyPPjp9wJYtGwIfeOCRkvPURHKBoHSXENLrCYKArXwK5qecROi4K7vsvKFDLwIAeLMsRJOpy85LCCHn2+ef7wvct2+vT3p6mub115eG5eRk6+64454SALj99juL//jjN+/ExJUh6elpmsOHD7kvX/5qtF5frwwMDBICA4MsZrOZ3b//U+/8/Fz1Tz8d9HjppYUxAGCxWFp9Vuzff6DppptuLd65c1tIRka65ny3lTg36jkhhPR6BQX5sFqt0Gq1CA5uvQCjo8ITOPxltcIsiXBNT0PooMFddm5CSN/molWe9y9wz+WaV189pWzPng8CV69eoYuMjDQsW7YibeDAQUYAuPbaqVWyLGfu2rU9+OOPPwpycXEVR468pPqpp57Lb9yemppSvGHDO+Fr1qxk/fz8LZMmXVN+5MgvXikpp1wBlLW83owZTxT98ssh76VLF0dt3PgeT8O7SFeh5IQQ0utlnuahYBhERcWgvTdAkwA8+b0WKiWweqx9L24io8LTw5fAaDTg/yprENq1YRNC+iBZliUXrVK4bFCwEj0wwsRFqxRkWe704o/R0bHG555b0O56Itddd0PVddfdUNXWNoZhMGfOvII5c+YVNH286ZCtWbOeLpw16+nCxvsajUbevfuzU/bENmrUmLrDh/9MsmdfQig5IYT0eqY/fsP2iy5GuqtLu/vIAJJKFLbbMuya3y4DMPkPAwMgK/tt4IrRXREuIaQPk2WILOQi9x7oObFdX5ZkGWJPXJuQ3oCSE0JIr2ctKYaSZeHi5dNt18jKyuq2cxNC+hZZhijLMiUIhPQASk4IIb2epq4OUCjhFhnZbdcYk9fuaAhCCOnVaMgUcSY0e4kQ0qtJkgRvyVbK0r//gG67TiDDUMUuQgghpIdRckII6dWKsjLhpVIBAMKGDOu267AMg5Jku+Z2EkIIIaSb9KrkhOO4BI7j6jmOu6/JY8M4jvuJ4zg9x3G5HMfN6cEQCSHnWf7fxwEA1ZIIjbt7t16r6OQ/3Xp+QgghhJxdr0lOOI5TAdgJwLXJY74AvgVwGsBIAIsAvMxx3P09EiQh5LyrSj8NAKhTd7zOl1YpQ9fJmXRahQyVaBvOVZuT3dnwCCGEENKFetOE+JcA1LV47GEAZgAzeJ4XAKRwHBcPYC6ALec5PkJID8ipqkJhRTkChgw96346JfDbNAO8vV1RVQUIQsfn1imBw7fV47MXnodWMkMqL++iqAkhhBDiiF7Rc8Jx3BUAHgFwb4tNYwAcakhMGh20HcIFnK/4CCE957fiQiRmpUNx2eXddg3X8HAAgEav77ZrEEIIIaRjPd5zwnGcF4DtAJ7geT6P47imm8MAnGhxSOPqpBEASh29rrKL11ZSKNhm/zojZ2+js7cP6JttzM3NAQBER0d3+P/W0fYF9uuP8sM/o0QUu/y1oSv1xd9fZzl7G529fYBztJFhoGAYhhZhJKQH9HhyAuAdAEd4nn+/jW0usA3raqqx1qfW0QuyLANvb9eOd3SAh4euW87bmzh7G529fUDfaWNtTQ3YujowAIYOHQAPj/b/35oE4NEvbLffvVYHrR2vbo3HWOXJ+PHUbEA0414tC52udz8/feX3dy6cvY3O3j6g77aRYaDQsdZg2WLokc9IjNpFMEqqot6WoCQmrgw5ePAb3337vmr5pXG7du/e5bt370eBpaWlGm9vb+vVV08uf/DBGcUKhaI7QyV9XI8mJxzH3Q3b0K3B7exiBNByFmxjUuLw+AtJklFba3D08DYpFCw8PHSorTVCFKUuPXdv4extdPb2AX2vjcm//Ia3h1wEgyhCEFhUVbX/395oBX7ItiUv1TVGaNiO2/fvMWq4e3qjrrIY//yTgoQErsNje0Jf+/05wtnb6OztA7qvjR4euvPSG8MwDCtbDMp6/ndJMhvP6y+J1ehYN+5SJaPyYvv6CvX79u31efvtNyMfffSJ3Esvvbzu1KkTLomJb0RaLFbmiSeeKurp+Ejv1dM9J9MBBAJoOZzrXY7jngWQAyCkxTGN9wvO5cKC0D2vN6Ioddu5ewtnb6Oztw/oO20sTk1BEIB6loEoygDk9ndm/v0mThAlqBl0+MFIaPLWHx4ejuTKYmRmZCAmJv7cAu9mfeX3dy6cvY3O3j6g77dRMhsl0aTviQb03fFwTXz22Sf+Y8deWXH77XeWA0B0dIw5Jydb+/XXX/pRckLOpqf/A9wFoD+AYU1+AOBFANcAOARgDMdxTfv/JgDgeZ53eL4JIaRvqMvNAwCYtGcfHqJUKZBXVn/m/qnMSlhECSzL2H2tiX7+eHfIcLCHfnIsWEII6SGjR48csXPnNv/p0+/ixo+/fPjtt9804JtvDng23ee77772vOuuW/uPH3/58JtvvnbQ6tUrQsxm85kXydTUZO3s2Y/FTpo0btjYsZcOv/nmawdt2bKx3eJDW7duDBg37rLhX3/9pVdb2x99dGb+3XffX9zycb2+vqe/GCe9XI/+gfA836r3o6EHpZTn+RyO4zYDeA7AJo7jlgO4BMBsAI+ezzgJIT1DLLN9B8H4+LS7j1LJoqLWhJSsCgC299Gswmq4aRn0j/QBJPtGRnh5+8KnphKGqspzjpsQQs63LVs2hN177wP5zz//Yvann37s9/LLL8Z5e/ukXnzxpfoffvjOY+nSxbEPPvho3qhRY2pzc7M1a9asisjPz9WuWJGYaTAY2GeemZUwePDQujVr3k1VKlXyvn17/DZtejd85MhL6gYPHmJseq0dO7b6b9u2KWzhwiUZEydeXdNWPJdcclmzcbjV1dWKAwf2+w8delFtdz4PpO/r6Z6Ts2roHZkEgANwDLZFGJ/leX5bjwZGCDkvlPW2pY90IS1Hd/5LkGSk51VDb/y34rgMIDO/GhW1Jrurb7lFRNiuZTR1sCchhPQ+48dPLL/77vvL4uMTzHPmzCuIjY3T7969KwAAduzYGjxhwtXld955b1l0dIx57Ngra5966tmc33771Ts3N1ttMOjZqVNvKp0/f1FOQkI/U0xMrHnmzKcKASAtLbVZ1/WuXTv8Nm9eH7Zo0Svp7SUmLdXX17Nz5syKs1ot7KxZz+R1feuJM+l1XWs8zzMt7h8F0H0LHBBCei13QQTUCnjHxrW5XaVSoLDCgKLy1hPlTRYRWYU18Ha3b0mkgAQOOPQ9vADIogiGqskQQvqQ4cNHNlvImuP6648fP+YBAFlZWS4ZGemuP/zwnW/jdrlhCl96epr2yiuvqp027Z7S/fs/9cnISHMpKMjX5ORkuQCAKEpnPpdVVVWp3nknMVKhUMhhYREtq6m2qaSkWDlnzqz4kpJizWuvrTwdFRVtOffWEmfW65ITQggBgNrqavipVACA0IGD2txHkGTkFtdCECW01RFcXKFHTb0F3m7qDifHh/UbgCJRhEahQFV2FnzaSYgIIaQ3UiqVzSqGyLIMllXIttsSc+ONtxRPnXpTRcvjAgODrKWlJcqHH76vv7u7h3DZZaOqR4y4pHbIkKH62267cUjTfRmGxZIlr6Zt3rw+ZOnSxdGbNm1PZdn2e6fT0njtnDlPxouiyKxevZYfMGCQsd2dCWnQq4d1EUIuXHlZGfi0uBBH6+vgHhzaartCwaJGb0Fpla0suJqV8GLkP1jWLxVq1vYebbaIyC+rA9POxHidEvhzWh3+nFYHPy83lIm2oWFFp052U6sIIaR7JCefbLYQVGpqsltsbKwBAMLCIox5eTnamJhYc+NPSUmRKjHxjbD6+jr288/3+dbX1yk3b96R+vjjTxZNmXJtdU1NdcMX2P/mPF5entaxY8fXzpu3MDszM91ly5YNge3Fk5OTrZ49+/EErVYrvfvu5hRKTIi9Ot1zwnGcEsA42KpmRQPwBFAOW9nfAwB+5Xn+LPU+CSGkY7nFRfigIA8XXTQCd7bxzRzLMigq18NsOfuE97JKAwxhAjQK5swwhvbUq9UAgOqsDIfjJoQ4B1ajO+9f4J7LNT//fF9gZGS0adCgIfq9ez/yz8nJ1s2d+0I2ANx++53Fr732ckxi4sqQa665vqK4uEj9xhuvRfn5+VkCA4OEwMAgi9lsZvfv/9T74osvqc/ISNeuXZsYDgAWi6VVTP37DzTddNOtxTt3bgsZN25CdWxsXKshXq+8sihKEKzsCy+8nKZSqeSSkuIznzkDA4OElvsT0sju5ITjODWAGQCeARAGoAq2hEQPIBzAdQDmAyjkOO51AOt5nrdrPCIhhLSUm5sDAIiIiGxzu9Eioqyq48VUq+vNqKozI8zPFVbr2RMZk5cXkvPyINXVnXU/QojzkmVZYtQught3qRI9MMKEUbsIsiR3en2Vq6+eUrZnzweBq1ev0EVGRhqWLVuRNnCgrbfi2munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794paSccgVQ1vJ6M2Y8UfTLL4e8ly5dHLVx43t80+FdRUWFqpSUU+4A8Oij9w9oeezhw38mdbZ95MJhV3LCcdwlALYBEAG8A+AjnudbfbXIcdxg2NYnmQXgSY7j7uZ5/kgXxksIuUBUZWbAV61GeFh4q21KJYvKGhOq6/79/kOQGXxaFgGFgsVU7xywDUMRZBkoKq9HiK9rq/OYReDFX7UAgCWjTKgfMBCJ332Na+PicHM3tYsQ0rvJMkSjpCpiVF49MvRdlmRJltHp1eGjo2ONzz23IL+97dddd0PVddfdUNXWNoZhMGfOvII5c+Y1W+LhgQceKWm8PWvW04WzZj1d2Hhfo9HIu3d/dqqt8wUHh1gpASGOsrfnZDuAeTzPf3K2nXiePwHgBIDXOY77H2wJTcK5hUgIuRANLSvDzUOGo7yNiewMw6Ck0tAwEd5GkhmkGLwAANd5Nf+6s6rWDINZgFbZfGiXJAPf59km3S+WTQgLs5UTzs+nSpeEXMhkGaIsy51OEAgh587ebwUGd5SYtMTz/EcA2i6xQwghHXAXbJ8LfGJaV80yCxKqauxfj6ROb0GdwQKF4uwveWFhYQCA4oJ8yB1NUCGEEEJIl7Or54TneYdqUjt6HCHkwlZbXQ3fhjLCIQObD1dWKBjU6a2o0ds/pU2SZZRWGhDs43LW/UJDw5E4aBgCNBrUFxXAPSSs88ETQsh5RkOoiDOxd87Ji505Kc/zSxwLhxBCgMLUFCgYBlZJalVGmGVZVNaaO6zS1VJVnRlmQTprd7GnpyfAMmAZBkUpyZScEEIIIeeZvXNOFre4LwNgYJsgXw7AG4AagAVAJQBKTgghDqvITIc/gBoATIsywqIso7ym4ypdLdXpzdCbBHi5KCGK7Q/Zqm9YGb4yM9NWMJ0QQggh541dc054nmcbfwBcBaACwO0AtDzPB/M8r4WtSlcFgKe7LVpCyAWhNi8XAGDUaJo9zjCAySKiTt/5EaMmi4jaejPOtpoxAFhcbFW9jEWFZ92PEEIIIV3PkTJ5bwF4gef5j3iePzOuguf5rwAsBLC0q4IjhFyYrGW2kvqSh0ezx1mWhcEkoM7g2HS2smpjhwsxsj4+tmtXVDh0DUIIIYQ4rtMrxAOIAJDbzrYyAIGOh0MIIcApfT1Sigpw0YgRzR5nWQaVtaY2h2WpGAnzwk9Ap1NDMMltJiF1BgtMgnjmhU+rAH7+X92Z2wDgEhIKFBVBbej80DFCCCGEnBtHek7+BvAEx3Gqpg9yHKcF8ByA37siMELIheuP4kLsKsiD5/CRzR4XJRlVtW2XEGYYQM3KULMyGKbt89YbLDCaRSgUzJljdErbT+Mx3tHRAAB3kZY4IIQQQs43R5KT5wFcCSCD47j1HMct5ThuI4BMAEMBPNOVARJCLiySJKGgwLbIcWho82pZZkFCvdHq8LnNFhF1BstZ550E9xuAlLpaHK2uhGCxv1wxIYT0VXq9nt2+fYt/4/0FC56Neuihe7juvGZ+fq76s88+8T6Xc+ze/YHv6NEjR7S3/Xy0Y/TokSN27/7Atzuvcb7k5marR48eOeLXX39278k4Op2c8Dz/E4BRsPWQXA9gDoApAL4DMILn+eNdGSAh5MJSVlyEWLUGAVodAgL+HSWqULAwmgXUtzPfRJAZfFoeht2FwRDkdrpOAFRUG221BgFYRGDxES0WH9GisTJxYHgEXs5Iw9uZ6SgtL++ydhFCSG+1efP6wL17PwxqvP/ccwvzli9fnd6d13zppReifv/9V8/uvAbpmxyZcwKe548BuLWLYyGEEBQln8JL/QbCIElQq9VnHmdZBjX1FlgFqc3jJJnB33rbZParPdv/5qXeYIHFKtlqocvA/izbCNW5F9uGiykUCoSGhiInJxv5+XkICQlt50yEEOIcZLn5Nzqenp7nYVzrWb5FIhc0h5ITAOA4bgpsZYWDAcwHcBGAJJ7nc7ooNkLIBagqKxMuAGpbDL2SgXbnm3SG3miFySLCRa1oOGtrYWHhKMjNQWFWJnDJZed8TUII6U41NTWKlStfD/vjjyNegiAw0dGxhscem5U/bNhwAwAYDAb2tdeWhP/551Evg8GgCA0NNd11132FU6ZcV52YuDLko4/eDwZsQ5Tef3/PiXXr3g4pLS3RbNjwHv/rrz+7z5v3TMKyZStOv/nmGxGlpaWaqKgow8KFS7K++eaA9/79+wJFUWTGjBlXsWDB4jyGYSDLMjZufDfwm28O+JWVlWpUKpXUr9+A+jlzns+NjIyyPPTQPVxKSrJbSkqy2403Tnbft++rExaLhUlMfCPkxx8P+hqNBkVYWIRx+vSHCseOvbK2sZ0HDnzhtW3bxpCSkmJtbGy8ftiw4bXtPSeNRFHC0qWLw3/88XtfpVIpX3XV5PJZs54pUCptH4H/+OM3182b14dkZKS5Wq1WNjAwyDxt2j1FN9xwc2XjOT799GOfDz/cGVRUVKj18vK2XnfdDaUPPPBISctrlZWVKh9//CHOy8vbunr12nQXFxfpp58OemzY8E5oQUG+LiAg0Pzf//6vODFxZdT77+85ERERZbnxxsmDL710VPVffyV51NTUqF58cUnGZZf9p27btk0BX375eUB5ebnaz8/P8t//3lZ8xx13lQPAr7/+7P7cc08lNJ4DsA3JmjbtlsHLl686PWrUmLoFC56NkiSJ8fb2sf7ww/e+ZrOJHTJkWO3zz7+YExgYJABASsop7apV/xeRnp7m6u3tbb3ttmlF5/SH2EU6PayL4zgXjuO+AfAFgOkA/gfbIowzACRxHDewa0MkhFxI9IUFAACLTtfscYsgod7oWAnhZuc3WWGwCGcmxbdlvJs7dgy/BO5JR8/5eoSQvkWWAb0VbE/9dFTuvHW8MmbPfiy+sLBA88ory9PXrt2Y2q9ff/3s2Y/1O3Hibx0ArFmzMiQ7O8vltdfeSNu2bdfJESMurnnttZdjcnOz1dOnP1x8/fU3lfj4+Fj37t3/d2hoeKsXWkmSsHZtYvjcuQuy16xZl1JTU6N8/PGH+ufm5ujefPMd/t57H8j/6qsvAr7//htPANiyZUPA7t27gh9++LH87ds/PPnSS69mFBYWaFetWh4OAMuXr06Pj0/QX375f6o2btyeAgAvvDA3KinpT8/nn38ha/36bclXXDGu6sUXn4/77jvbOY8e/d311VcXx44aNaZ6w4b3Tk2cOKli794Pgzt6fk6fTnWrrq5SrVmzLvWZZ+Zlf/fdN37Lly8NB4DCwgLVvHlPJ0RHxxrXrduasn791uT4eE6/atX/RZWWligB4IsvPvNesWJZ9NixV1Zu3Lj91PTpD+fv3Lkt5IMPdvo1vU5FRbly5syHOV9fP8ubb76T5uLiIp048Y/uxRefjxs69KK69eu3nbrrrnsLN21aF94yxq+/PuA/c+ZTua+/vvL0yJGX1r/++tLwDz/cGXLXXfcVbtq0/dQNN9xcsm7dWxHbtm0K6MzfxpEjv3jX1tYq33xzLf/iiy9npKQku7/11upQwJbQPvPME5yLi4u4du2GlFmznsl9//33Qjpz/u7iSM/JqwBGwLZ28s+wrQoPAHcD+BrAywBu7pLoCCEXHLFhfRHGy+vMYwzDwGwVoT+HyfCNZBmorjUjyEvX7j6ufv5gKyrB1tad8/UIIX2HLAN3feXSj69SuPZUDP28xfrtkw18e1UHWzp8+JB7Whrvum/fgb/9/PwFAHj66bkFycmn3D74YEfg4MFDs4uKCjU6nYsYGRlt9vT0FJ98ck7BRReNqPP09Bbd3NwknU4nsSwrN36j3pb773+oYMSIS/QAMGrU6Or9+z8NePHFl3NcXFyk+HjOtGPHttCMjDTdxImTasLDI8xz5jyfddVVk2sAIDw80vL770eqDh360RsAvL19RKVSKavVasnPz1/IzMzQ/PLLzz5vvbU+pbG3JzY2riQjI1334Yc7giZOvLpm9+5dAQkJXP2sWU8XAkBcXLw5MzND9+WXn531A7unp5f15Zdfz9JqtXK/fgNMZWVlBevWvRUxe/azBRaLhbn99rsKH3zw0ZLGQin33/9Q0Y8/fu+bmZmhDQgIrN+z54PAyy//T+Ujjzxe3BCX2WDQK7Ra3ZkxxrW1NcqZMx9J8PPzN7/xxpoMrVYrA8CuXdsDo6NjDM8+Oz8fAOLjE8yVlZWqDRveaZagXHTR8JorrhhXZztXLfv111/4P/DAI3k33vjfyoZrlhUWFmg+/PD94HvumV5q318GoNPpxEWLXslRqVRyQkI/05Ejv1QkJR31BIAvvvjU22KxsC+9tCzb09NT7NdvgMloNOS98sqiWHvP310cSU5uA/A8z/M/cBynaHyQ5/lijuNeAfB2l0VHCLngKPX1AMNCG3hmbiYUCgbGegFGU7vvm51SU29GG0ulnOEREQXwPFwt595TQwjpW5j2xnv2UqmpyS4AcNttNw5u+rggCIzVamEA4K677iteuPC5uBtumDQ0Pj5BP3z4xTVTplxX2Zm5JdHRsWfG1Wo0WsnT08vq4uJy5gO6Wq2SzGYLCwBXXTW5JinpqGti4hshBQX5mvz8PF1+fp7W29u7zW+YkpNPugDAM8880ayyliiKjIuLiwgAOTnZLhddNKKm6fbBg4fUd5ScxMbGGRqTBQAYMmSYXhAEJiMjXTN48BDjf//7v4r33tsckJOTpS0oKNBmZ2e6AIAkiQwA5Obm6K644srKpue87bY7m1VL2b59a6goCkzLa2Vmpru0HHo2fPjFdcA7zWIMDQ0789ymp5/WiqLIXHTRyPqm+wwbNrz+88/3BZaVldr92T0wMMisUqnOxOPq6iYKgsDYYstwCQwMNjX9Gxgx4uL6ts5zvjmSnHgByG5nWxUAN0eDIYQQV6sAqNXwjIw68xjLMqiuM0Pq7HiHdhhMVliF9t+T/ePjgW+/hjvDQBZFMApFu/sSQpwHwwDbJxt4g+DQUgtdwkUJyd5eEwCQJInR6XTiunVbU1puU6vVEgCMHHmJ/pNPDvzz888/ehw9+rvHN98c8Pvggx0hr7yyPG3MmLF2dRGrVMpmL8As236Q69evDdy1a3vo+PETy4cNG173v//dUfrjjwe9fv75R5+29pdlW46zevXaVFdXt2ZVTxQKhfzvfs0n0SuVqg7fFFiWbbaPJNle+zUatZyWxmtnzny4X1RUjGHEiItrRo8eV+Pj42N94olH+je9fke/j8GDh9Rec83U8qVLF8X+8MN3lePHT6xtOBaS1PHEf7Va06qNTIuLSpLtaWmabDR9S7RahVbXabrvv5o+1Pnn83xwJDk5CeBOAN+0se36hu2EENJpZrMZPg2JQGDCv1+giZKMmvquW3NEb7JNim+cENlSSHwCciQJKpZFdX4evJskSoQQ58YwgKsKbZcF7IViY+ONRqNRYbGYmX79Bpz5Bv7FF5+PjIuLN9xzz/SyxMQ3QoYOHV5/9dVTaq6+ekqNKIp5t99+08AffvjOe8yYsXUMw3Tph9KPPno/5Pbb7ypsHAoFADt3vhfU/Pulf68ZH88ZAaCkpEQ9ceLQM70jq1YtD2UYVp49e05hTEysISXlVLMvwFNSTnY4/C47O9NFkqQz61sdO/anu1qtliIjo80rViwL8/DwtK5bt+V04/7ffvuVJ2CbywMAoaHhJp5PaXadZcuWhJeUFKtXr16bAQBXXDG+asqUa6t/+OHbylWrlkeNGHHJSQ8PDykqKtrQ8tgTJ46fNea4uASTQqGQjx076jZo0GBj4+PHjx9z9/T0snp5eYsqlS3prK2tPfPNWU5Olqaj56Kp+PgEw8GD3/pWVJQrfX39BAD455+/emw4Y1OOfDPwCoC7OY7bD+BB2FKwsRzHrQHwGIDlXRgfIeQCUlSYj215OdhfVgqf6Jgzj1tFGQbT2eebqBgJz4SdwoK4NKg6eJ81mQSYzCJcVAy+vbke395cD22TzhE3dw9UCrYhZGVpp9s5CyGE9Lzx4yfUREZGGRctmh97+PAh98zMDM3y5UvDfvjhO7/GoVgFBQWa1av/L+Lw4UPueXk56i+++My7vLxMM3jwkHoA0Ol0kl6vV6Snp2msVus5l/j19fWzHDt21IPnU7Rpaac1q1b9X8gff/zmZbVaz3zu1Ol0UmlpiaagIF/Vr98A0/DhI2sSE1dEfvPNAc/s7Cz1xo3vBn788e6g0NBQMwBMm3ZvcU5Otu7115eGpaenaT75ZI/PgQP7/duPwqaiokL9wgtzo1JTk7Vffvm51/vvvxdy4423lGg0GjkgINBSWVmhPnjwW4+8vBz1gQP7vRITV0YCgMViGxI3bdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj22uuW1nntuQZ7FYmFWrHg1HLANp8vKynBdseK10PT0NM1XX33htX371lCgdc9II09PT3HixEnlO3duC923b69PZmaGZvv2Lf5ff/2l/0033VLCMAz69Rtg1Gq10pYtG4IzMzM0R4784rZp07qw9s7Zluuuu7HSw8NTWLDgueiTJ0/ojhw57Pb222+2mqzfExxZhPFTAHcBGALboDkGwBuwrXvyKM/ze7o0QkLIBaOgsBDfl5fiiFoJRcMaJyzLwGwRYehgvgnDAK4KEW5KER29PssAqupNYFkG3loZ3lq51TF1CtvLY1VOtoOtIYSQ7qdQKJCY+O7p+PgE/dKli2IefPDuAf/8c9x94cKXMhqHbC1YsDhnyJBhda+9tiT67rtvG/Tee5tD7733gfybbrq1EgCuvnpylZeXt/XBB+8Z+M8/x13ONaYFCxZnmc1mdsaMB/o/+eSj/bKzM3WPPTYrp66uVpmbm60GgKlTby7Ly8vVTp9+50BRFPHaayszL798dFVi4huR9903bdA33xzwe/zx2Tm33npHBQAMHjzE+Mory9NOnDju/uCD9wzcu/fDwFtvvaPD0rcjR15SrVAo5Mcff6j/W2+tipw8+brSxx9/shAA7rlneumoUWMqX399acz99985cMeObcH33fdggZ+fv+XkyROugG3+zMyZT+V88cVn/vffP23gtm2bQh96aEbuLbfcVtHyWn5+/sJDDz2Wf/Dgd34//vi9R//+A00vvLAk/ejR37wefPDugdu2bQq55prrSwFApVK3+y3a88+/mHvttVNLN29eHzp9+p0D9+//NOCRR2bmPvjgoyUA4O7uLs2duzCzoCBPN336nQMTE9+IeOSRmXmdSU5cXV2lxMR3eKVSKT/55KP9li17Ofp//5tW3PGR3Y+Rz2EMN8dxHABfANUAUnme7wvdoJmiKEVXVuq79KRKJQtvb1dUVekhtLNIXF/n7G109vYBvb+NH320C6+++hLGjbsSq1evBWCLuazGhJ//KuhwzgnLMtDp1DAaLZCks+8bEeyBi/sFQGznedg28xFY8vMRNPEqXD9ztkPt6Wq9/ffXFZy9jc7ePqD72ujj4wqFgs0CENPhznZISkrqx7KKrwICQuvVau25L6JESAt//ZXkolQq5cGDh54ZnrVv316f1atXRH333c/H2hta7IwsFpO2tLTATZLEySNGjEg9276dflY4jjsI4DGe51N5nudbbBsCYAfP80M6e15CCKlJT0N/N3dEB/5bup5lGdTqLR0mJoLM4LuKECiVClzpkQ+2g4I7BpMV9WYJicdsw3SfGm6GusnQroqYWLx3+CfcZRqN6x1vEiGEkAtUamqKy+bN68Oeffb5rAEDBhqzs7M127dvCfnPf0ZXXkiJSWfZ9cxwHDca/w4BGwfbHJO2SrddB6DH6yMTQvqmgPw8vNRvIAqkf79tlWSguq7jyfCSzODPetuaWOPc8zscs2o0CTBaJOxOsw0fm3VR82uEhIQCAAoLCzvRAkIIIcTm9tvvLK+oKFe9886aiKqqSpWHh4cwZsy4ypkznyro6dh6M3vTtgcB3APbUG0ZwFrY5po0/WqycaDb+10WHSHkgqI2GgGFEi5B//acWEUJBnPXrG/SlNEkwGRp/7whIaFQMMyZFesJIYSQzmAYBjNnzi6aOXN2h3NjyL/sTU6eBLAFtgTkIIDHASS32EeEbe7Jqa4KjhByYXETJUABeIZHArBNcjdbJRg7qNTlCEmWUWdsPzkJ9vTEzuGXAABkQQBDXfCEEEJIt7Pr3Zbn+RoAPwEAx3HjASQBcON5vrjhMW8A4TzP0xonhBCHGPR6eDckAAHx8QAAlmVhtlpg7IaeEwCoPcvaKSGxcciSZahZFlV5efCJju6WGAghhBDyL0fWOfkbwCcAfmzy2KUAjnMct4/juHMuQUcIufAUZ2ZAzbKQZBleYbZS6yzLQG+0wtpNVY3OtnaKq5v7v2udpNNaJ4QQQsj54Ehy8hqAgQDmN3nsIIAbAIwEsKQL4iKEXGDKM9MBALWyBFalAmAb1lXdhSvDt3S2OScAUN+w1kk1rXVCCCGEnBeOJCdTAczhef7jxgd4nrfwPP85bAnL/7oqOELIhaMmLxcAYGgyt8MqytAbu36+SSNTBws7WnW2jmBDMc1lJIQQQs4HR2Z4ugOoamdbCQA/x8MhhFyockwmfJOThcEXX3rmMUGU7J5vomIkzApNgVajhkqQYc/6spIgYOuVlfD30kKjaGMHLy+gtBRiZaV9jSCEEELIOXGk5+QYgAfa2XY/gH8cD4cQcqHKrKzAt2UlEOMTANjmm1isEkx2JicMA3gprfBWW8EwHe/feIxWMiLcgwHbxjHaANtyTkp9vX0nJIQQQsg5cSQ5eQXAjRzH/clx3AKO4x7iOG4+x3G/A7gFwOIujZAQckEoKrItdhgSEgLAVh/ebBW7rVJXozqDBZLUdjeLe3Qsfiovw3G9vltjIIQQAnz33deePJ+iPZdzPPTQPdyCBc9GdVFIDklMXBly442TB9u7/4IFz0Y99NA9XHfG1JQsy9iz50PfsrJSJQDs3v2B7+jRI0ecr+t3pNPJCc/z3wK4HrYFGJcAWAfgZdiGiN3A8/xXXRohIeSC4FNVhX5u7gj28wdg6zmpN1rbTRxaEmUG31YF48tSf4iyfV0nosxgV5YXVhxVwiq23h4wcBDezs7A3pwsu9tBCCGk8/LyctSLFy+Iq6goV/V0LM7ut99+cVu9+v+ijEYDCwDXXXdD5d69+//u6bgaObSqGM/zBwAc4DhOC8AHQA3P8/TVIiHEIYIg4G5vH7j4BcBDY/vSjGGAmk5U6hJlBkdqbYnNf1wL7XpxE2UGB8u8gTLg0SFmtHxHbOzFqaurRW1tLTw8POyOhxBCiP1keyYKki4hy82/wdPpdLJOp+veYQqd4PCSxxzH9QdwFYBgAG9xHHcRgL95nq/rquAIIReGktwcuChsL0d+sXEAbJW6jB1U0+pKLMPA1iH8LxcXV/h5e4PVG1CYmQGPYRedt3gIIT1Hb21/ZImCgaxV/vticbZ9WQayzsF9O+PgwW89tmzZEFpQkK/VaLTS8OEjaubMmZ/n7e0t/vrrz+7PPfdUwvvv7zkRERFlAYDc3Gz1tGm3DF6+fNXpUaPG1AHAli0bAz79dG9gTU21KiGhX/3gwUPrvvvuK799+746AQBZWZmaFSuWhaemJrvrdDrxxhtvKfnyy8/977jj7qJbb729AgB2797l+9FHu4LKy8s0fn7+5muumVp2773TS1nW1uy9ez/y/eij94NKSko0bm5uwqhRY6qeeWZufklJkWratFsGA8Bzzz2V8L//TSuaNevpwtOnU7VvvvlGWGpqsrtWqxMHDRpS9/TTz+UFBgYJAGA2m5mVK18PO3ToRx9BEJjJk68p66i3ffTokSNmzHgi9/vvv/XJyspwDQwMMk2f/nDB1VdPqWnc57vvvvbcunVjSEFBvs7b28dyxRXjK2fMeKJIo9HIAJCamqx99923QlNSkt1NJiPr6+tnuf76m0rvv//B0rauuXXrxoCtWzeGPf/8i5mTJl1T3dHvMz8/T/XWW6vD/vnnuIfJZGL79etfP3Pm7PwBAwYZG/f59NOPfT78cGdQUVGh1svL23rddTeUPvDAIyUdxdf49wAA06bdMvjJJ+dkA8Cbb66IOnz4zyQAqKqqVLz11urQo0d/86qrq1NGR8fqH374sYLLLhtVD9iGrZ04cdz94osvq/78832BdXV1yoQErv7ZZ+fnxMcnnHP9/04nJxzHKQC8C2A6gMZ3890AFgGI4ThuLM/z+ecaGCHkwlGafhquAPSSBKVOBwCwdqJSV1dgGBZA67FdT0fFIk6hROXRPwBKTgi5IIzd7d7uf/bhAULN+onG9Mb7V3/sNtQsMm0mHQN8xPr3Jhv4xvvX7XMbXGdl2vzsFespGj681pDS2VgrKsqVS5a8GPfAA4/kjRs3vqaoqEi1bNmSmFWrXg9bsuS1HHvOsX37Fv/t2zeHPvrozNzhwy+u/+abA967dm0P9fX1tQCAwWBgn3rqsYTg4FDTm2++m6rX1ytWrVoeUVZWqmk8x65d2/22bt0Y9thjT+YOHXpRfXLySZe3334zory8VP3ss/PzT506qVuzZmXks8/Ozxo6dJg+PT1Nu2zZkhhPT0/h0UdnFq1Zsy7liSce6b9gweKMMWPG1RYVFapmzXqUGz16bNWTTz6TYjQa2Y0b3w159NHp/Xfs2H3K1dVVWrZsScSff/7uOWfO89mhoaHmLVs2BPN8iltQUNBZPyBv2bIh7N57H8h//vkXsz/99GO/l19+Mc7b2yf14osv1f/ww3ceS5cujn3wwUfzRo0aU5ubm61Zs2ZVRH5+rnbFisRMg8HAPvPMrITBg4fWrVnzbqpSqZL37dvjt2nTu+EjR15SN3jwEGPTa+3YsdV/27ZNYQsXLsmYOPHqmvZialRXV8c+9tiD/QIDAy2vvPJ6mkajlTdtejdk9uzHuM2bdySHhUVYvvjiM+8VK5ZF33XXfQUTJ06qSk4+6bJq1fIoV1c3cerUmyrPFt/IkZfWL1iwOGPp0sWxa9asS+nXb4Bx//5PfRqvL4oiZs16NMFqtTJz5y7M8vcPsH744fsB8+Y9nbB69drUYcOGGwAgLe20q0ajFZcteyPNYNCzy5YtiV6x4tXIdeu2nvOqxY70nCwEcCeABwF8AaC44fFnAHwGYCmAe881MELIhaM6JweuAOoavl1jWQZWs9jhIoldiWGZlh0nABrWOrFYYKS1TgghvVBhYaFKEKxMcHCwJTw80hIeHmlZtmxFmiCIdtYtBPbu/TDo2munlv7vf9MqACAuLr44Pf20a2ZmugsAfPHFp961tXXKLVv+L9Pb20cEgBdffDnr4YfvG9B4jl27tofceusdRTfccHMlAERFRVv0+nrF2rWJkU888XRBXl6OBmAQFhZuDguLsISFRVi8vLxPu7m5iwqFAr6+vgIAeHp6im5ubtLGje8GeXl5WxcufCm38Rqvv74q87rrJg798svPvSdPvrbqxx+/950x44ncCROuqgGAl15alv3f/17n3lF7x4+fWH733feXAcCcOfMKTp7823337l0BF198adaOHVuDJ0y4uvzOO+8tA4Do6BizUqnMmTv36YTc3Gy1i4urNHXqTaV33HF3qYeHhwQAM2c+Vfjxx7uD0tJSdU2Tk127dvht3rw+bNGiV9LHjZtQa8/v4tNP9/rW19cpN2/ekeLn5y8AwKuvrsi85ZbrB3/wwU7/OXOeL9iz54PAyy//T+UjjzxeDACxsXFmg0Gv0Gp1ksGgZzuKz9PTUwQAX19fQafTNXvn++mngx5ZWZkuGzZsO9W//0ATACxc+FLu6dOprjt3bgsaNmx4JgCIosi8/PJrWY1/D1On3ly6bdvGMHva2BFHkpPpAF7keX5LQy8KAIDn+X84jnsRthXkCSHEbo2LHFq0jfNNbJW67C0j3BWkdsY7M2fWOqk4b7EQQnrWT7fW/dXeNgXT/GuMb26ub3ciMdti3/031p+wd197DR48xPif/4ypXLx4QVxi4krL0KEX1Y4aNbrmqqsmV9tzfGVlhaK8vFw9ePDQZjXTBw8eWteYnPB8qktwcIip8YMoAAwYMMio07mIAFBeXqasrKxU7dy5LXTXru0hjfvIsgyr1crk5mZrxo2bUPPxx7vrH3/8of6BgUHmYcOG115xxbjqoUMvMrQVV3r6aZfCwgLdhAn/adaLZbVa2ZycLG1GRppWEARm0KChZ+Y8a7VaOSoqus3zNTV8+MhmUxA4rr/++PFjHgCQlZXlkpGR7vrDD9/5/tuOxpjStFdeeVXttGn3lO7f/6lPRkaaS0FBviYnJ8sFAERROpMQVlVVqd55JzFSoVDIYWERdg91yszM0AUFBZsbE5PGdsXFxeuzsjJdACA3N0d3xRVXNluA67bb7ixvvG1PfO1JT0/T6XQuYmNiAtjekwcMGFR/7NifZyZeenh4Wpv+Pbi5uYmCINidEJ+NI8lJIIDj7WzLB+DtcDSEkAuS0LjIYcOEc5ZloDcJEO2s1NUlMUgS1G0MzNAEBgKlpVBSOWFCLhiuKkg9vW9nvP76qqy0tNOFhw//5JmUdNTj9ddfifnkkz3169f/O8Sm6fcvVuu/HyIVDfP9JKn9D64KhQKy3P52SbI168EHH827/PLRrXoIwsLCLWq1Wl6/fuvpEyf+1v3668+eSUl/eixcODd+7NgrK1555fXslsfIsswMHDi49tln5+e23Obp6Snm5eWqG/Zrtk2pVHb4xtFyH1mWwbIK2XZbYm688ZbiqVNvavWNVGBgkLW0tET58MP39Xd39xAuu2xU9YgRl9QOGTJUf9ttNw5pui/DsFiy5NW0zZvXhyxdujh606btqY1zb85GlmUwbSzWJUkSo1DYYlQoFHJ763nZG99Zrt/W5SFJUrPnTaXq+Hl2lCPrnKQDuKadbeMathNCiN3YetuXWGp/W7UtMEBtveksR3Q9qyC1uXijZ3gEAMBF6DWFTAgh5IykpD9cly1bEh4fn2C+//6HSt96a336k0/OyU5OPuleVlaqVKnUEgDU1taeGe2Sk5N1Zq6Ip6en6OfnZzl58oRr0/OmpJw6cz8uLsFQXFysqaqqPHOOtLTTGqPRoAAAf/8AwcPDQygoyNfExMSaG39OnfrH5Z131oTKsoyDB7/1eOut1cGDBw81PvLIzOL167eevuOOuwt+/fVnbwCtPpBHRkYZCwrydKGhYZbG83l7ewurVi0PT01N1sXHcyaVSiX/9defbo3HCIKA7GxbL8HZJCefbNbW1NRkt9jYWAMAhIVFGPPycrRN21FSUqRKTHwjrL6+jv38832Nw65SH3/8yaIpU66trqmpbviy/9/P615entaxY8fXzpu3MDszM91ly5YNgR3FBQAxMXHGoqJCTeMaJABgMpmYzMx0l4iIKCMAhIaGm3g+pVkbli1bEj579mOx9sTHMEy7iUVcXILRYDAoUlJONVtvJjn5lFtYWMR5eWN2JDlZDeBJjuPeAjARtpbGcxz3DIA5AN7uuvAIIReCbysrsCEnC64DBgIAREmGoZOVulSMhEeDecyOzoSq/dfdVsc8EpSKmeFpYCSpzW+r/GLjAQAeDAOZEhRCSC/j5uYufvXVF/4rViwLzczM0CQnn9QdPPitT2BgkNnX10/o12+AUavVSlu2bAjOzMzQHDnyi9umTevCmr7e3XrrHcVffvl5wJ49H/pmZmZoNm9eH3DkyC8+trpHwNSpN1W6u7sLCxfOjT558oQuKekP1yVLXogBbEkFwzC4+eb/FX/55ecB27ZtCsjKytR8/fWXXm+99WakSqWSNBqNrFAo8eGHO0M2b14fkJOTrT5+/JjL778f8YqP5/QA4OrqJgJAWtppXU1NjeK22+4sNRgMinnzno45ceIf3alTJ3Xz5z8bk56e5pqQ0M/o6uoqXXPN9aU7d24LOXBgv1daGq9dsmRhZFVVpbqj5+zzz/cF7tu31yc9PU3z+utLw3JysnV33HFPCQDcfvudxX/88Zt3YuLKkPT0NM3hw4fcly9/NVqvr1cGBgYJgYFBFrPZzO7f/6l3fn6u+qefDnq89NLCGACwWCytPlf37z/QdNNNtxbv3LktJCMjXdNye0vXX39jpYuLqzh//pzYY8f+dGlod7TJZFLceuvtZQAwbdrdRb/+eth769aNAVlZmZrPPvvE+5tvDviPHj222p74XFxcJQBITj7lUl9f3yzmsWPH14SHRxqXLHkh5tdff3Y/fTpV+/LLL0bk5+fqbr99WklH8XeFTg/r4nl+I8dx/gAWAJgB21/uLgAWAMt5nn+3a0MkhDgzWZbxe34uzGYznhxoW1BXEOVOT4ZnGCBAbYZOI8NobD6E4WzH+KtsQ4GtVhEsq2q16GNIfDwyJQlqlkVVXg58omM7FRchhHQnjutveuGFJRnbtm0OOXBgfwDLsvLAgYPrVqxITGNZFu7u7tLcuQszN258N2z69DsHBgeHmGbMmJW3cOFzCY3nuPPOe8tqa2sV27ZtCn3rrdXKAQMG1o0bN6E8JeWUOwBoNBr5//5vddobb7wW8cQTD/d3dXUTbrttWtG6dW9HqFQqGQAefPDREo1GK3322ccBmzevD/P09BQmTLiq/Mkn5xQAwNix42tnzXome8+eD4J27NgaqlarpYsuGlnzzDNz8wHAx8dXHD9+YvmWLRvD8vPzNAsWLM5btert1LVrE8Nmz57Rj2UVckICp1+5cg3v7x8gAMDTT8/NV6vV0ltvrY4wmYyKUaPGVI4YcXF1R8/Z1VdPKduz54PA1atX6CIjIw3Llq1IGzjQVqb32munVsmynLlr1/bgjz/+KMjFxVUcOfKS6qeeei6/cXtqakrxhg3vhK9Zs5L18/O3TJp0TfmRI794NfQ2lbW83owZTxT98ssh76VLF0dt3Pgef7bhXV5eXmJi4rt8YuIbYc89N5tr+B3XJSa+mxoZaSsFfdVVk2uqq6tzPvro/aCtWzeG+fr6WR56aEbuLbfcViHLMjqKr3//gcZhw4bXvPbayzF33ZVX4OnpdeYNV6lUIjHxndMrVy4Pe+mlhbFWq8BER8cYXntt5ekRIy45L+Obmc4uesNxnDfP81Ucx3kAuByAL4BqAL/xPF951oN7h0xRlKIrK7v2+VUqWXh7u6KqSg9B6JYhpT3O2dvo7O0DemcbKyrKMWHCaDAMgz/++BtqtRpGQcYvxwtQZ7B06lwsy0CnU8NotNi9snyjYQkBSAj3hMXSupzwW7dMRZ3BgJuWLEO/kRd36rxdqTf+/rqas7fR2dsHdF8bfXxcoVCwWQBiuuJ8SUlJ/VhW8VVAQGi9Wq09v+NIe5kffvjOIz6eM4aFhVsbH1u0aH5kcXGhZt26radzc7PVWVmZ2rFjrzwzn6SoqFB1661Th6xYkcg3rn/RF4wePXLEk0/OyW5cm4WcHxaLSVtaWuAmSeLkESNGpJ5tX0cmxP/BcdxCnuc/BPC1YyESQohNYUYGxvj4weziApVKDZZlYLEKne45EWUGh6oDoapX4DLXIthT+EaUGRyuDQAARNSZ2u1t+VWtRnL6aVxaW4N+nYqKEEJ6v6+++tJ348Z3dU8//VxOQECg9Y8/fnf/+ecffWbMmJULAGazmX3hhXnx99wzPf+qqyZX1dbWKNatezs0MDDIPGLExVQthHQpR5ITbwDlHe5FCCF2qEpNwRMxcSiTbd+wMgwLo1mAtZPfuIoyg0M1tvmGF7sU2fXiJsoMfq4NAgDcbM6EILZ9zZCQUCQnn0RRUWGnYiKEkL5g3ryFuStWLAt/4YXn4wwGgyIwMND80EMz8hp7F+LjOdPcuQsz33//veD3338vRKVSy0OGDK198821pxuHdRHSVRxJTt4E8H8NE+BP8jzfamwdIYTYS19UAAAwq23zBFmW6fRwrq5gsgqwSnKbL4qhwcEIUGtQm5V53uMihJDu5u3tIy5d+n/ZZ9vn2munVl177dSq8xRStzl8+M+kno6BnJ0jyck9ACIBfAcAHMe13C7zPO/IeQkhFyBLua0jVnK3LeoryTLqDdazHdItzGYBFqsEtUbRar7KAFaBa4dchIK8vPMeFyGEEHIhcSSJ2NHlURBCLlhMnW1+pcrXthivIErndWX4RmaLCItVBKNVAi3mq7iHhQOnTsHFev6TJkIIIeRC4khykgXgIM/z+V0dDCHkwqMxmQGlEi7BIQAAqyjD3MnJ8F1BlACDSYC/pxZii4JdfjG28sHuDANZFMEoFG2cgRDSx0gAZFmW2135nBDSNRr+n8mw/b87K0cWYVwJYKQDxxFCSCtuku11yjsyqqFSlwhTG+V8z4dag6XNVeKD4zkIkgQlw6C2sOD8B0YI6Q7FsixbLRZThyuKE0LOjcVicpFl2QqgqKN9Hek5KQXg5cBxhBDSTF1tLbyVtpehgLh4MAwDiyB1uoxwVzGYrBDbWB/F3cMDlYKAALUapemn4Rke0QPREUK60ogRI2qTkpLeq62tmgHAV63WGhiGocpThHQhWZYZi8XkUltbpZZladOIESPqOjrGkeRkA4C3OY4bD+AkgFZL2fM8/569J+M4LgDAGwAmA9AB+AnAszzPJzdsHwZbhbCRACoAJPI8v8KBuAkhvUxRUQH+L+M0wj098VJwCFiWgcFotWt195aUjIQHgtKg0aiglOWW00baPWZ6wOkzt81mAYIoo60xHvUsiwAAVdnZnQ+OENJbvSqKAqqrK+5hGMYFaPO/PyHEcbIsy1ZZljYBeNWeAxxJTt5o+Pfu9oIAYHdyAuAz2MafTQGgB/AygO84jouDLVn5FsA+AI8CuAzAWo7jKnie39L50AkhvUlxSTH+qqmGMTgEDMuCYYBavdmhc7EMEKoxQqcTYTQC9iwQzzJAiMZ45r7JIsIqStAomFYJklmrBQQBhqIOe6QJIX3EiBEjJACvJCUlvSnLCIZjw90JIe2TABTZ02PSyJHkJNqBY9rEcZwvbBPsX+F5/lTDYy8DOA5gIICJAMwAZvA8LwBI4TguHsBcAJScENLHFRbaFjUMbpgML4gyDD1QqauRySLAIkjQKpWQW2QntQEB2PvnHwiOjOyh6Agh3aXhg5PdH54IId2n08kJz/M5jbc5jnMB4AGgguf5TtfY5Hm+AsAdTc4XCGAOgHwAyQBeAnCoITFpdBDA8xzHBfA8X9rZaxJCeg9TRjrG+Pgh3tcPACBIMswOToYXZQa/1fhDZVBguK4EjB3jukSZwR91tmtf4l4OS0M5YdZF1WqtEyaBw4effYyramscio8QQgghHXNosUSO48YAWA7gYjSMz+Q47g8A83me/8HBc64H8BBsPSVTeZ7XcxwXBuBEi10LG/6NgG1yvkOUyq7tuVUo2Gb/OiNnb6Oztw/ofW30LizAEzFxKIQMpZKF0SrZkgO288O+BYnBd9XBAICLIkuhaKvsVhvHfF9j67W52KMCDGsrJ6z0bV0qOCwsFIBtnkxXv37Yq7f9/rqDs7fR2dsHXBhtJIR0n04nJxzHjYJtdfhM2OaHFAMIAXA7gK85jhvL8/wRB2JZDWAdgBkA9nEcNxqAC2zJSlOmhn+1DlwDAMCyDLy9XR09/Kw8PHTdct7exNnb6OztA3pPG9UmE8Cw8IoMh7e3K4zl9WAULHQ6dafPpZD+TUY0GhXUbMc9J02P0enUULMyTFYJrq6aVglSPy4WAWoNPKqr4eWpA8P23Aev3vL7607O3kZnbx9wYbSRENL1HOk5eQXAzwAm8Tx/ZvwFx3EvAfgatqFYV3f2pE2qcz0M4HIAMwEYAWha7NqYlOg7HXkDSZJRW2tw9PA2KRQsPDx0qK01QhQ7XF+mT3L2Njp7+4De10YXqwCo1dAFhKC21oi6ejNqa032FNpqxdIk0TCbrRA7Xuep2TFGowUiK6O2zoSaWiNazoh3c/XCm4OHQcEwyOOz4B4U5ECU56a3/f66g7O30dnbB3RfGz08dNQbQ8gFwJHk5BIAdzRNTACA53mJ47g16ESlroYywhMAfNR4vobzJAMIBZAHW69MU433z2klNEHonjcFUZS67dy9hbO30dnbB/SONppMJng3rLTuEx0HSZJRZ7C0uc6IPaQmiYYkyZDsSHGaHwNIkGE02ybFsy2SE1d3L1QJVvip1ChMSUGsX4BDcXaF3vD7627O3kZnbx9wYbSRENL1HPkKog6Aqp1tanSuRngIgPcBjG18gOM4FYDhsE2IPwRgDMdxTQeATwDA02R4Qvq24qwMaBuTk6goMAxQr+90XY0uZ7YIsApSq5XiGYZBXcODVdlZPRAZIYQQ4vwcSU5+ATCf4zi3pg9yHOcO4HnYhnzZ62/YhoKt5ThuDMdxg2DrefEGsArAZtiqgW3iOG4Ax3H3AZgNYJkDcRNCepGyjHQAQK0kQqFWwyrKMPbQyvBNmS0iLIIEpo0J9WaNbZSpvqiw1TZCCCGEnDtHhnXNA5AEIJPjuP2wTYgPAnAdbPNB7rf3RDzPyxzH3QZbsvEhAC/YkpsxPM/nAgDHcZMAJAI4BqAIttXjtzkQNyGkF6nJzYUnAIPC9jIkSjLMvSE5sTaUE3ZtXU5Y9vAAqqphLS/voegIIYQQ5+bIOifpHMddDmARgGsA+ACoBPADgJcaJ7Z34nw1AB5r+Glr+1HYJsgTQpxIltWCnWmpGDX6CoxlAKsgObzGCQAoGQn3BGZAo1ZByciwZ1a9kpFwl3/6mduN6o0WBHm3rjSk9vMHqqrB1tFabYQQQkh3cKjsRUMC8iTP80E8z6sBDACwtLOJCSHkwpVbXoa/aqrBxsSCYRhYBAmmc0hOWAaI0uoR42qAvcukNB4TpdU3O6Zeb2015wQAXENsa51oLC0rnBNCCCGkK3Q6OeE4zovjuG8B/Njk4UsAHOc4bl/DqvGEEHJWRQ3zNoKDQ8CyDCwNw6l6A6NFgFVs3fXik8Bhb2E+vqygYV2EEEJId3Ck5+Q1AAMBzG/y2EEANwAYCWBJF8RFCHFy4dXVGO3ji2BvbzAMg3qj5ZzOJ8rA0TpfHKnyQht5RbvH/Fnniz/rfJsdY7YIbZY0DolPwIeF+fgiOxMWy7nFSwghhJDWHJkQPxXAHJ7nP258gOd5C4DPOY7zhm2RxjldFB8hxAmJoohr3dzh4eUDV62uS8oIizKLA5W2YVcDwsugtGPSiSiz+Ko6DAAwxLUKioZ5J2aLCKsgQatkmq3F6O3tA61WC5PJhOLiIkRERJ5TzIQQQghpzpGeE3cAVe1sKwHg53g4hJALQVlhITyUtuWS/GPje00Z4UaNyUnLcsIMw6BfaDgGuHugmE/toegIIYQQ5+VIcnIMwAPtbLsfwD+Oh0MIuRCUpPMAAJMkQeXu3lBGuHfMNwFs5YTNVhFsGzPr/+vrh8XcAJj+Pn7+AyOEEEKcnCPDul4BcIDjuD8BfAKgFIA/bHNORsC23gkhhLSrKicbOgB1DAOWZWASpF6xxklTepMVDNO6nLDk7gHU1MBSXtYDURFCCCHOrdM9JzzPfwvgethWEVgCYB2Al2FLdG7gef6rLo2QEOJ0DEVFAACzVgOGYWxrnPSSSl2N6vSWNssJq3x9AQBMXe15jogQQghxfo70nIDn+QOw9Z5oYVuEsYbneX2XRkYIcVqWigoAgOzu8W8Z4V40rAsATGYBQhsVu1xDQoHMTGhMtNYJIYQQ0tUcSk4a8TxvAlDYRbEQQi4QTK2t10Hl4wuGYaA3We1Z0P28MltECKLcqnvZOzIKOPwzPGQZsiy3mjRPCCGEEMedU3JCCCGO2F9dgX0lJXjkv7eCYYA6w7mvGaJkJNzunwWNRgklI8OebEfJSLjNL/PM7abMVgGCKEGjaF5OOCiBQzUALcvCXFMDrZfXOcdOCCGEEBtHqnURQojDZFlGckE+/qqpRmC//hBEGUbzuU+GZxkgwaUO/dz0aKPIVrvHxOvqEK+ra3WM2SLC0kY5Yb/gENRYbWuylKafPue4CSGEEPIvSk4IIedVXV0d9HrbFLWgoOBeV0a4kdkqwtJGOWGWZfG9yYB12ZkoNdBUO0IIIaQrUXJCCDmvijIzcGNQCK4Ki4CLiw5WUeqS5ESUgeP13kiq9oRo5wQWUQb+1nvjb713q2NkGTCYhDbnlGR5eeP78lIUVLW3Hi0hhBBCHOHQnBOO4/wAPAvgKgDBACYBuAnAcZ7nP+268AghzqY8jce0sAhUSVJDGWGxS8oIizKLzyrCAQDzwsuhtGPSiSiz+LwyAgDQX1cDRYt5J3WGtssJh4SEAgCKiqgeCCGEENKVOt1zwnFcNGyrwD8MIB9AAGxJTgKAvRzHXdulERJCnEp9QT4AwKhSgWEYWHrhAoyNjGYBYhvlhMMDAtDfzR1iVmYPREUIIYQ4L0eGdb0B26rw0QBuBsAAAM/zdwL4DMD8LouOEOJ0TKWlAADR1RUsy8BgEppVw+pNzBaxzbVOYlRqvNRvIIY0rNdCCCGEkK7hSHIyAcDLPM9Xo3WxznUABp1rUIQQ5yXXVAMAWC/vLisj3F3MFgFCGxNYvCIjAQBuktRqGyGEEEIc5+iE+PbGYGhg1+oChJALldJgBAC4BAVBkgCjydrDEbXPbBVhbaNiV2A8BwBwZRWw6ut7IjRCCCHEKTmSnPwM4HmO41ybPCZzHMcCmAHgly6JjBDilFxF23cbHuHhEKSuqdTVXdpb6yQgPAL1gq0dpelpPREaIYQQ4pQcSU7mAegPIB3Adth6SuYASAIwGsCCLouOEOJUzGYzvFkFAMAvJg5WUe6SSl3dRZJsC0S27DlRKBSolm1DuioyM3oiNEIIIcQpdbqUMM/zJzmOGwlgMYArAYiwlRT+CcA9PM+f6NIICSFOo7i4CC+knkKImzvejY2FsQsrdSkZCbf45UCtVkLJyHYNMFUyEm72zT5zuy31Rmuba50YVCoAQG1+nsMxE0IIIaQ5h9Y54Xk+DcCdXRwLIcTJFRcXIc9khDI4GEqNBtZ6S5cN62IZYIBrDXQ6NYxGoI0iW20f41Jz1n30RiukNsqJia6ugN4Ac0P1MUIIIYScO0cXYWQADAPgijaGhvE8f+jcwiKEOKPGRQuDg0PAsky764j0Ju1V7NKHhWPd1wcQERiICT0QFyGEEOKMOp2ccBx3CYDdAMIaHmoc7yA33JYBKLokOkKIUzGe5nFjUAiCvH3AMEC9sevKCEsykKr3hNqqRIzSvvVHJBlINXoCAPrpasC2sRq82SpClKRWL2quCRy+37kNl1WUnWPkhBBCCGnkSM/JKgBWAPfBtkI8FfonhNhFW1CAaWERyGdYyAD0hq4rIyzILPaU29YfmRdeCaUdk04EmcXHFVEAgOdCT0DdxryTxopdLioF5CbDu0JCQgEAhYUFXRA9IYQQQgDHkpPhAG7nef7Trg6GEOLcFHo9AEDj7w+rIPXqSl2NzBYRVkECq1FCbDK8Kzg4BP3d3BFiNkMwm6HUaHowSkIIIcQ5OJKclIJ6SwghDtBaLIBaDbeQMIiS3KvXOGkkiBJMZhGMW/PHAwICMTe+H1wUCpSnpyFo4KCeCZAQQghxIo6sc/I2gHktFmEkhJCzkiQJHg1zOnyjo2EVZJitXVNGuLvpjZZWa52o1WpUS7bkqjwzvSfCIoQQQpyOIz0n8QAGACjmOO4UAEOL7TLP81S8hhDSTHlJMbyUtrVBAuPjYRTEPtFzAtjWOmlrBotBaXsJrcnLPb8BEUIIIU7KkeQkDsDxJvdb1rdpo94NIeRCV5J2GhqGgUWWoPXxQU21CVahb4wQNVvENssJCy6ugNEIE611QgghhHQJR1aIH98dgRBCnFtlTjaCAdSBgULBQm/sukpd3c1kta3H0nIcLOvtDRiNkKuqeiQuQgghxNk4tAgjIYR0VrbVihUn/8b4MWMxFkBdF5YRBgAFI2Gqbx7UKiUUjAw7KglDwUi43if3zO32WBoqdmmVDJouFq8NDAIKC6E0tBzdSgghhBBH2JWccBwnAric5/k/OI6TcPa3fZnneUp6CCHNFJYUIc9khDI8AlZRhsnStZPhFQwwzK0KOp0aRqNtgUV7jhnq2nGvR2M5YZ1K2WytE8+ICOCvY3AV+8bEfkIIIaS3szeJWALbgouNt+142yeEkH8VFxcBAEJCQvpMGeFGFqsIs1UE66qC1CTr8ef6YU12JqplGSNlGQxDU+4IIYSQc2FXcsLz/EtNbi/utmgIIU4rqqIC3kEhCHNzhyBKsHRxGWFJBtIN7tCISoSzFruPyTC5AwBitXVg28ktZAAGkxUMo2v2eEhUDL4vt02Gr6qqgo+Pj8PxE0IIIcT+YV1XdOakPM8fciwcQoizGsEqEBQWAYVWC4sgdXnPiSCz+KAsGgAwL7waSjs6eAWZxYflMQCA50JPQH2WeSf1Bgtadoyo1Wr4+/ujrKwMRUUFlJwQQggh58jeYV0/4t+hXO2NW5AbtskAFOcWFiHEmdTW1sKnYY2ToIR4mBuGSfUlRrMIsY2JLENCwmCVZJSdOgkMHNwDkRFCCCHOw97khMoHE0IcVpyZDjXLQpJleISGI7fc2KzqVV9gtggQRLnVtzNj3T3QLzoO+akpPRIXIYQQ4kzsnXPyU3cHQghxXuWZGfADUC/LUKiUqDPYNyekNzFbbQsxqlosdsJ6eQHFJRCrKnskLkIIIcSZOFTyl+M4PwDPArgKQDCASQBuAnCc5/lPuy48QogzqMvPgx8Ag1IJUZJhNPe90rtmiwiLIEKjVTar2KUJCASKS6DU63swOkIIIcQ5tFzwuEMcx0UD+AfAw7CVFw6ALclJALCX47hruzRCQkifZyq1VbSyurj0uTLCjcxW21onLcsFe4RFAABchL6XcBFCCCG9TaeTEwBvACgFEA3gZjRMkOd5/k4AnwGY32XREUKcglRtW+iQ9faGVZT73GR4AJAaenzYFvWG/WLjAAAeDAuJEhRCCCHknDiSnEwA8DLP89VovRjjOgCDzjUoQohz+ay6Cs+c/BuKESNhFSSYu3h1eABQMBKm+BRgamAxFIx9s+0VjITJXvmY7JUPxVnKCDeqN1pb9ZwEx8XDKklQMAxq8vMcip0QQgghNg7NOQHQ3icLDWj1eEJICzmFBag0GRGUwMEqiN0yrEvBABe7V0CnU8NotC2waM8xI90r7L6G3miF1KLMmIurKyoFAYFqNUrSTsM7KrqzoRNCCCGkgSM9Jz8DeJ7jONcmj8kcx7EAZgD4pUsiI4Q4BaPRiMpKWwIQHh7e7nohfUFjOeGWvpclLD2dgiKx7w1XI4QQQnoTR3pO5sGWgKQD+AG2npI5AAYAiAMwpsuiI4T0eQUZ6XgoIhrVADw8PFCQW9Ut15FkINfkCo2kQiBjX6liSQZyzbbvWSI0erDtLTHbwGwVIUhSqxfO+sBA/H3iOArKyxyInBBCCCGNOt1zwvP8SQAjARyEbXFGEbaSwukARvE8f7wrAySE9G1laadxVUAgJvn5QwagN1i75TqCzOK9klhsyIuAIHeQZTQ5ZkdZHHaUxUGQO345NFvartgVEhIKACgqKux84IQQQgg5w6E5JzzPpwG4s4tjIYQ4odq8HPgC0CuVEESpT1bqamS2iLBaJbAaJcQmw7sifP1wha8f3HKyey44QgghxAk4ughjDAAtz/PJHMd5AVgKIBzAbp7nt3dhfISQPs5UUgIAEFxd++waJ40EUYLJIqJFxwlCXXSYGR2HCoOxZwIjhBBCnIQjizBOBpACYHrDQ+/CtiBjGICtHMc90HXhEUL6OqnKNsdE6ePTbWWEz6d6o6X1WicxtrVOPBkGstRxSWJCCCGEtM2Ral0vAvgGwEscx3kCuAnAMp7nhwNYBuDJLoyPENLHqYwGAIAuOBgWoW8P6wKAeoO1Vb304PgEiLIMJcOgtpDmnRBCCCGOciQ5GQpgNc/zdQAmwTY0bE/Dtm8BxHdRbIQQJ+DWUF7XJyoaZqttQnlfZra2Lifs5uGJKsE20b8kje+JsAghhBCn4EhyYsS/c1WmACjhef6fhvtBAKq7IC5CiBPQ6+vho7C9XARxHPTG7qnUdT6ZLSIEsXWCVcfaXk6raVI8IYQQ4jBHJsQfBjCH4zgfAP8DsAUAOI4bAWBRw3ZCCEFRUSEe+fsYonx8sScyElmZ1d12LQUjY6JXEVQqBRQM0GrsVTvHTPAsPHPbHmaLCKsoQ6lk0HSxeItWC1gF6KmcMCGEEOIwR5KTpwB8AWAngGQArzQ8/gUAA2yLNBJCCAoLC2CURMh+fhAZBczm7psMr2BkjPIsg06nhtEow55F6BWMjMs9Ordwom1omggXlQpyk+xE9vAEKiogVFR0NnRCCCGENOh0csLzfBbHcQMBBPA8X9Jk040A/uJ53tyZ8zX0wLwK4DoAHgD+ATCP5/nDDduHAXgTtoUfKwAk8jy/orNxE0LOv4KCfABAaGgoBEmG2dq3K3UBgMUqwmKRwLoykJpkQNbYOCw9chjRIy/BVT0YHyGEENKXOTLnBDzPyy0SE/A8/xsAZUOp4c74AMBlAG4HcDGAYwC+4TiuH8dxvrBNsj8NW3KyCMDLHMfd70jchJDzS05NwYMR0Rjm7tlQRrj7KnVJMlBg1iHPqLWr16TxmEKzDoVmnd3HAEC9ydJqlXjvuHj8XVuDtJLiTkRNCCGEkKY63XPCcVwkgHUAxgJQt7Obws5zxQG4CsB/eJ7/teGxJ2GbaD8Ntsn3ZgAzeJ4XAKRwHBcPYC4a5roQQnovXVkZrg4IRJFSaSsj3I3JiSCz2FRsKxY4L/wElHZMOhFkFptLEwAAz4WegJqxr5JYvd7aaiHGkJBQALahbIQQQghxjCM9J6sAjAKwHsBfAH4BsAK24VgybOue2KscwLUAkhof4HleBsAA8AEwBsChhsSk0UEAHMdxAQ7ETgg5j1QG2xonriGhtuFQfXyNk0ZGiwChRVdLSEgI/uPji/FaHfQV5T0UGSGEENK3OZKcjAWwkOf5J2HrvTDzPD8XtmFXPwG4wd4T8TxfzfP8l03nqXAcdyuAWABfw7bqfF6LwxpL4UQ4EDsh5Dxyayi56xMVBb2p9eKFfZWtnHDz1ri7e+Du8CjcHhqO4pTkHoqMEEII6dscqdblBuB4w+1kAIsBgOd5keO4twG84WgwHMf9B8BmAJ/yPP85x3GrYBvW1ZSp4V+to9cBAKXSoek27VIo2Gb/OiNnb6Oztw84v22sra2Fr9L2EhPcvx+yjVawLNPBUY5r2iKWZcCi42s1PwZ2x2cVRIiSDLWq+fNYyzDwAVCdmw2lcpxd5+oM+hvt+5y9fcCF0UZCSPdxJDkpgm2xRQBIB+DDcVwwz/NFACoBBDoSCMdxNwB4H8BvAO5oeNgIQNNi18akRO/IdQDbBxBvb1dHDz8rDw9dt5y3N3H2Njp7+4Dz08aCtFPQKBSQZBl+sTHITLWV+e0uCunfxEKjUUHNdtxP0/QYnU5t1zEAwCoUYFi21euI4KIFLAIspcXd9hoD0N+oM3D29gEXRhsJIV3PkeTkC9gqZuXzPP8rx3H5sC3KuBjAdACdng3KcdxM2MoFfwzgribDvPIAhLTYvfG+w7NOJUlGba3B0cPbpFCw8PDQobbWCLGN1aOdgbO30dnbB5zfNmb+dQK+AOpkGXqziNp6M4xGS7ddz9Ik0TCbrRDRcfuaHmM0WiDamZyYTEC93oxaNdvseRTd3IHKKuiLSlBV5fD3J+2iv9G+z9nbB3RfGz08dNQbQ8gFwJHk5EXY5pcsATARwHwA2wDMbtj+eGdOxnHcDABrACQCeIrn+aavZIcAPMpxnILn+caZtBMA8DzPlzoQ+xmC0D1vCqIoddu5ewtnb6Oztw84P22sysmFLwCjWgWLVYTJLDRbF6SrSU0SDUmSIdkxw6X5MbDrmEZ1Bgv8PbXNnkeVrx9QWQXU1nbr80t/o32fs7cPuDDaSAjpeo4swlgB4FKO44Ib7u/kOC4HwOUA/uB5/id7z8VxXAJsPSafAFgGIIDjuMbNRtjmnzwHYBPHccsBXAJbEvRoZ+MmhJxfpwQrXj52FPfcPg3DBQkmS/cuwKhgZFzhWQKVUgEFA9iTZygYGWM8is/c7ox6g6VVOWHX4BAgLQ1ac6fWoiWEEEJIA0d6TgAAPM8XcRzXD4A3gCKe5//PgdPcAkAFW/nhliWIt/E8fx/HcZNg61U5Btt8l2d5nt/maNyEkPOjoCAfRkmEf0zMeSkjrGBkjPMqgU6nhtEo27WoooKRMdazpOMd22A0C60qdvlExwCHfoIHAFmWWy3USAghhJCzcyg54TjuAdiGd4U1eSwPwPM8z++y9zw8z78K4NUO9jkKW68MIaQPKSiwVQEPDQ2DwSRAdpY6wg1MFlvFrqbpR+iAgXgqLRXFJhP2Gg1wcem+SfGEEEKIM+r0zLKGyesbYFs48V7YVnO/H0AKgB0N65QQQi5gsixjigw8EBGFMC8v1Om7f5iTLAOlFg1KzGq7EyFZBsqsGpRZNZ1OnswWEVZRaja0y8vXD+mShCKzCQUF+Z07ISGEEEIc6jl5EsBbPM/PavH4exzHbYRt3ZPd5xoYIaTvqigrxeWe3lAwDPz9g1BW1b3zTQDAKrN4t8g2Z21e+Ako7Zh0YpVZrCvuBwB4LvQE1Iz9k3fNFgFWQYJWqYTcJLMJD49AcvJJ5OXlIT6eO8sZCCGEENKSIzX5wgB83s62XQBiHA+HEOIMClJOQcEwsMgS1L5+MFm6d75JTzBbRZitYquFGy8KCsF/g0OhP36shyIjhBBC+i5HkpOjsJXzbctFAP5xPBxCiDOoyEgHYFsxXZBtQ6CcjSwDBpPQatJ7f1dX3BYaDm1OTg9FRgghhPRddg3r4jjuiiZ3dwFYxXGcO4CPABTDVrFrMoBZAB7p6iAJIX1Lfb5tvoVZq4NFkGDu5jLCPaVObwbDuDd7TBcSAhQVQa3v+kUYCSGEEGdn75yTH9F81QAGwAw0X2+k8evDD0BzTgi5oInl5QAAxtsblobhT86orXLCvrFxQFIS3CXnbDMhhBDSnexNTsZ3axSEEKeiqK8DWAV0wcEwmKxOV0a4UVvlhIP7D0QNADdWAXNtNTQeXj0UHSGEENL32JWcdGbVd0IIYc0WQKeDd0wM6vSWng6n2zSWE9YomDMJWEBYOHIFKzyVKhQmJyP6slE9GyQhhBDSh9g1IZ7juEMcxw3rzIk5jhvJcdxhh6IihPRZRqMBC0/9jfv+OorgS0fBYD4/800UjIzLPcowxqcCCjsXZlcwMi5zL8Vl7qVQMJ3v3jFbBFgEqdmkeIZhUN1wuyI9rdPnJIQQQi5k9g7rehPAVxzH/QlgB4DPeJ43tNypYZL8JNgmxV8E4LGuCpQQ0jfk59tWhle6usHVxxfmwqLzcl0FI+Mq7yLodGoYjTIkO3INBSNjopfj8ZmtIixWEayLClKTC5q0OkAQUJeX5/C5CSGEkAuRvcO69nIc9xOAFwFsBKDkOC4ZQBYAPQAvAOEABgGwNuxzF8/zJd0RNCGk98pr+EAeHh4OQXTeSl2ArZyw3mgF46Vr9nhhZCTe/XQvroyPpwl7hBBCSCfYvUI8z/PlAGZxHPcSgFtgmyQfA8ATQDmAFNh6WD7neb6iG2IlhPQB9X//hefj+8HsFwCLVTpvCzDKMlAtqGCyqKCR7ZvnIstAjagCAHgqrGDsHA7WVK3eArQ4zjs2DgUmE3IL8zt/QkIIIeQCZndy0qgh8VjX8EMIIc0IBQW4yNMLBRqNbdjTeUpOrDKLxIL+AIB54SegRMfjuqwyi7eKBgAAngs9ATUjdfq6JrMAscUYsvDwCABAXl5up89HCCGEXMg6nZwQQsjZMLU1AAB1QCD0RqsdKULfZrKIEES5WXWRsJBQ3BQcghAwEEwmKLXaHouPEEII6UvsqtZFCCH20ppMAACP8HDbkCcnZ7YIsApSsyFhQSGhuCEoBGN9/FByOrXngiOEEEL6GEpOCCFdRhAEeDVMwPCNS4DJiSfDNzJZRFgEsVk5YZVKhcqGoV6lPN9ToRFCCCF9DiUnhJAuU5yfB1+1GgDgG89dEMmJxSrCbBHBss1nxRsanofavJyeCIsQQgjpkyg5IYR0maLUFACASZIgubjBbD4/k+F7Wr3R2io5kT09AACWEqqoTgghhNjLrgnxHMfd05mT8jz/nmPhEEL6srLcHCgEAUaVClZBuiB6TgCgTm9pNfFfFRAIVNeAranpkZgIIYSQvsjeal1bO3FOGQAlJ4RcgFLr6zD/+J+45467EG8RYRU6X5rXUSwjY6RbOZRKBVgGsKdMGMvIGOFWfua2o4xmAYLY/HjPyCjg9Gm4WMwOn5cQQgi50NibnER3axSEEKeQm2ubXxERG4u681ypS8nIuMa3EDqdGkajDMmOXEPJyJjiXXDO1zZbRFhFqdkLakC//hC//QaeDAPJagWrUp3zdQghhBBnZ1dywvO83TM6OY5zYI1lQogzyM3NBgBEREah3uD8ZYQbmRrKCatUCsiyLSsK7z8A/0s5iQKDHl9UVSIgILCHoySEEEJ6P4cWYeQ47nYAYwGoATQmIywAVwCXAwjrkugIIX2GKIq4V62FIY5DiLsXCs7zfBNZBvSiAqKgAGvnCC1ZBgySAgDgworN1irpDJNFgMUqwU2jhNgwvEut1kD08YVVX4+cnCxKTgghhBA7dDo54ThuEYBFAGoajrc2/PgDkABs6MoACSF9Q2FONvq7uQMAfINDkZFdf16vb5VZvFEwEAAwL/wElHZMOrHKLFYVDgIAPBd6AmrGsTkyoijDaBbAemggNilQFhUVhby8HGRnZ+Piiy9z6NyEEELIhcSRUsL3AtgBwAfAKgCf8zwfCOBiABUATnVdeISQvqLg1AkAgEGSILu4XTCVuhrV6s2tel4u8g/AI5ExUB5L6pmgCCGEkD7GkeQkFMB2nudlAEkARgEAz/NJAJYCeLDrwiOE9BVVGekAgDqV0rYw4QWyxkkjvdEKscUs/Agvb0zwD4BXeXkPRUUIIYT0LY4kJ3r8W6QzDUA0x3G6hvvHQZW9CLkgmQoLAQCChwf0Risk2fHSvH2RySxAaJGceMclAAA8hAurF4kQQghxlCPJyR+wDe0CgAwAAoCJDff7A6Ci/oRciKqqAADqwCDU6i+8lwFTw7ouTYd2hQ8ZAgBwVyhgrK7umcAIIYSQPsSR5ORVALdxHPc5z/Nm2OafbOM4bi+ANwB83ZUBEkL6Bp3ZBABwj4qCwXTh9RQ0VuximmQn/qHhqLJaAQAFJ/7uqdAIIYSQPqPTyQnP84cAjATwYcNDMwHsAdAPwG4As7osOkJIn2CxWFBrNMIgCPDn+l9wk+EB20KMZqsIlv03OWEYBtUN98tPp/ZUaIQQQkif4dA6JzzP/wPgn4bbJgAPd2VQhJC+JS8vF6+mpcLNzQ3f9BsE0z9F5z0GlpEx1LUSCoUCLAPYUUkYLCNjiEvlmdvnqs5gQbCPrtljZlc3wGSCPi/vnM9PCCGEODtHF2H0BHAlbIsutup94Xn+vXOMixDSh+TkZAMAIiOjIIhyj/ScKBkZN/jlQ6dTw2iUIdmRaygZGVN9uy5pqNVb0LIOgNLfH8jLg6myssuuQwghhDgrRxZhnALb8C2XdnaRAVByQsgFpDE5iYqKhtEswCo4tphhX2cyC7CKzbMTxfARuPvTveg3eCiu7aG4/r+9O4+P66rvPv65s0ga7bJsyftuHzuxnT0hlKQJAQK0gbKVtWVvgbYP9GkJAcJSlhZCWcJDgRYKLRQIEFLKltJCQgIhJHGcxI6X402yrM1aR8vsy33+uGNbkjW2JEuaGfn7fr30knTn3Du/o6u5M797NhERkVIxk5aTfwD2A/8XaMdbFV5ELmDVT+/mMxfvIFoRYjiSLEgMrgvJrIM/65zRenG2fVKu1/gbdLJnLKI4XfFEmnQmS2DMcdZs2kwim+XYsZbzO7iIiMgFYCbJyRbgxdbaX892MCJSmoLhMCtDlQzU1TMaLUxyknJ93NG+HYDbVu0hMIVBJynXxx0d3j63rthDmXN+91piyTTJVIayigDZXL+yNWvWAhAOhwmHB6mvbziv5xAREVnIZjKV8DGgdrYDEZHSVZP0psutWbuOeOLCm6nrpHgifcaMXaFQJX+6yfDBzVs5/vBDBYxORESk+M0kOfkH4EPGmLWzHIuIlKCh8CBNAa8RtmnbJRfkNMInuS6MxlLj1joB2FLXwLbaOgYOaDphERGRs5lJt67XAiuAI8aYXiA64XHXWrvhvCMTkZLQuvtJQn4/KdelfOkK4j3dhQ6poIZGk2eMXck0NMDgIMnO9sIEJSIiUiJmkpy0575ERDixbx9rgbDPoSkNiVSm0CEVVCyROmPGrtCqVTA4SCA8VKCoRERESsO0kxNr7RvnIhARKU2RtlYAktU1BZupq5jEcjN2+cdsW7xlK+zeTX0mjeu6Z3T7EhEREc9M1jlZfZaHs8CotTY844hEpKR0DwxQFY0QMoaRaKLQ4RScNyg+S3W5//SMXZddzonv3kWVz89Idxe1y5YXOEoREZHiNJNuXa1w9jk6jTEDwJ3W2o/NJCgRKR0/OtZCV1cnX7v1NmKJwnXp8jkuWyvD+P0+fA7nuEqN2ScUPvXzbIgnMiRSGWoqAqeCaFjSzN50iqZgGW1P7GKbkhMREZFJzSQ5eT3wL8CvgO8A3UAT8HLgD4GPAtXA7caYfmvtl2YnVBEpNtFohK6uTgBWrl7H3mMT58eYPwHH5RVL2giFyojFXLJTyDUCjsvLFh+b1TiyrstoNElTXQWZMbnacLCMQDJJ5Fgr22b1GUVERBaOmSQnrwbummTsyX8YY74EXGGtfZExJgy8HVByIrJAtRw5jAM0LGokVFVLLDFS6JCKwtBoEiYMK3l64wa+fde3+NNLL+WmwoQlIiJS9GaSnNwAvDjPY/cAP8z9/BvgfTM4voiUiO6dj/HNy6/mmM8hFs+QvMBn6jopGj9zxq51GzYBcOTI4UKEJCIiUhJmsghjP3BJnscuAYZzP1cDkZkEJSKlYaTlKGU+H1WVVQxHCjsYPpn18ZFjO3jvgS0ks1ObDSuZ9fGx45fwseOXkMzO5HI4uXgiTTqdHbdtw4aNABw9quREREQkn5m0nHwL+IgxJgXcDfTgjTl5KfBh4MvGmAbgXcDvZidMESlGmd4eAHxNSxiJahrhk2KJNIlUhrKKwKkZu9atXcd7N21hVSjEyIluapqXFjhKERGR4jOTW4W3A3cBnwHagHju+2fwEpf3AS8ALsuVFZEFKhTxGker164nFk8XOJriEU+miacy+HynW3AaFjWysrKKxWXltO3aVcDoREREite0kxNrbdpa+yZgM/DnwPvxZvDabK39c2ttErgXWGGt3T2r0YpI0UgmkzTmFhNs3HIxsYSSk5NcF0YiyXHJCcBQ0Gus7j+4vxBhiYiIFL2ZdOsCwFp7BDiS57HBGUckIiWhdd9eGoJlANSsN8QO9Bc4ouIyNJI4YzrjTH0DhMPE29sLE5SIiEiRm1JyYow5CrzEWvuUMaaFsy9v5lprN8xKdCJStNqf3MVKYNB1qXYCpDPZc+5zIYkl0qTS2XEzCodWr4ZwmGBY929EREQmM9WWkwc4PQvXA0xp7WURWciOdXZwfKCfpnXrqB2JFzqcohNLpEllspT7HdzcFXPp9ktg924WZbK42SyOb/ZmCBMREVkIppScjF1w0Vr7hjmLRkRKxs6Odh46eoj3v/Z1RGKFH2/ic1w2hobx+3z4HKZ0C8XnuGysGD7182yKJVLEkxlCVUEyuTVP1l91NS3f/HdCPh+9hw/RtNnM6nOKiIiUuhmNOTHG1AC11toOY0wZ8E5gFXC3tfbB2QxQRIrToUMWgPUbNhFJpAocDQQcl9c0tRIKlRGLuWeM98i3z6uWtMxJPMlUlmg8TWNNOZmMtzhlZXUNx9IpkokEyw4eUHIiIiIywbT7FBhjrgaOAX+V2/R54JPA64D7jDEvmr3wRKQYDQ7044bDAKxavUHTCOcRHk3gTFgP8v7mZj5s97Gvt7cwQYmIiBSxmXR4/jhwAPhnY0wILyn5orV2EfCveFMLi8gCdnTX4/zTjsv46mVX4QuUE9c0wpMajSZJZ8Y34WzevAWAgwcPFCIkERGRojaT5OQa4KPW2hbgJiAEfDP32F3AtlmKTUSK1ImnvSWMEsEgQ5FUUcyQkcz6+Ie2bXzQbiaZdc69Q26fT7Zv45Pt20hmZ39weiyeJjlhFjNjvOSk5aCd9ecTEREpdTMZc5IFErmfXwiEgUdzv9cC0ZkGY4y5HXiOtfaGMdsuBe4ErgT6gc9ba/9xps8hIucv1tYGQLqhgeFI4hyl50/KnX6CkXL9cxCJJ5pIkUxmKKsIkM0Ngtm8bj13bruE5vIKYuEwofr6OXt+ERGRUjOTW4U7gbcYY64FXgn8xFrrGmOagNtyj0+bMeZdwEcmbGsE/hc4iJecfAj4qDHmjWccQETmjX9wAIDyVas13uQs4ok0sWRm3ErxzStXUeEP4HMcWh97pIDRiYiIFJ+ZJCfvxuvO9RCQBj6W2/40sAm4fToHM8asMMbcmzvOxH4Of4bXSvN2a+1+a+3Xgc8C75lB3CIyCzKZDIvS3uxTDVsuJhov/Exdxcp1YWg0MS45cRyHgaDXaN2zd0+hQhMRESlK005OrLVPABuBa4H11tpDuYfeDmyz1j4+zUNeDgwCO4CJtxGvAx601o69NXsfYHItNSIyz44fPUJTWRkAiy7aQVSD4c9qaDRBZsK8xplFjQAkjh8vREgiIiJFa0brnFhrR5iQSFhrfzDDY/0Y+DGAMWfM+b8SmHhrsTP3fTXQM5PnBAgEZnfwq9/vG/d9IVrodVzo9YPZqWPbY79jqeMw7GYJlVUBkXEtA4UytkY+n4OPc8c0fh/mpB7xZJqMO/6aU7NhAwwMUDYUnta1SP+jpW+h1w8ujDqKyNyZUXIyjyo5Pfj+pHjue8VMD+rzOTQ0VM04qLOprQ3NyXGLyUKv40KvH5xfHVt7u3i4q4OLtm2jOpEhFCqbxchmzj9mhq7y8iBlvnPPITZ2n1CobEr7TFcWBxeHhobKU9vM9b/H8GOPsTjrUlMVJFA2vb+h/kdL30KvH1wYdRSR2VfsyUkMKJ+w7WRSEpnpQbNZl+HhGU8qNim/30dtbYjh4RiZCVOHLhQLvY4LvX4wO3V8aN9+Huk4zofe+ueEh2PEYslZjnJmUlmHNRWj+BwfyUSKDOeuXyrrsKZ8FIB4LElmDpKTRDzF0EicioBz6m/evGU7XZk0Vf4AT/3iAdZf+8wpHUv/o6VvodcP5q6OtbUhtcaIXACKPTk5DiyfsO3k7x3nc+B0em7eFDKZ7Jwdu1gs9Dou9PrBzOvoui779u0DYP3GrfRFU6emyC00Py6vbz5KKFRGLJadUlx+XP6k6cip37NzcNqzuIRHEjTVV5z6mzuOnwPAUG8P6w8fYfVVz5jWMfU/WvoWev3gwqijiMy+Yr8F8SBwnTFm7EIENwHWWjvj8SYiMjPHW4+y3nFoqKhg+ap1mqlrisKj8TMSn7YtW/nysaM8efxYYYISEREpQsXecvI14FbgX40xdwBXA+8C3lbIoEQuVEcffpj3b97KqOsSSWTPmIVKJheJeSvFj70bdPHF2wDYt+/pwgQlIiJShIq65STXOnIzYIBdeIswvtta++8FDUzkAjWwfy8AI5WVhEeKZ2V4gGTWxz8ev4iPHdpIMju1WbeSWR+f6biYz3RcTDI7d5fDaDxFYsJijBdfvB2/4xBrbSEVj59lbxERkQtHUbWcWGvfMMm2x/DWVBGRAnO7uwDwLV9BNFZ8Xbqi2elf0mayz7SfI54imkhTEwqcGguzZs1avrDjMhqDZbQ88jCbf//GOY9DRESk2BV1y4mIFA/XdamLeXf467dcTETjTabMdWFwJI7jnG458fl8hINBALqe2FWo0ERERIqKkhMRmZKOY60sz63H0XjJFRoMP03Dowky7vgxOtklTQDEW1sKEZKIiEjRUXIiIlNy+KFfE/D5GHWzRCrqcDUWflpGYymSqfFTdtVsNgBUDQ8VIiQREZGio+RERKak/+k9AIxU1zAcKY6FF89XVej0eJOtq2u4aE0t65fX0dRQSTAwu5fHSCxFfMKg+PW/dx0Aix0fkf7+WX0+ERGRUqTkRESm5L72Nr7UeoTMJZcSKcLB8NNRW1XG1jV1bF9+egmlUM/TVPXuoTl+GFMX5fK1laxdVktZcHYuk4lkhtFYatwK1ys2baY3lcLnOBx84P5ZeR4REZFSVlSzdYlIcUokEjyyfx/pdIq33fhcjp4ovuTEwWV5WRTH55BvImG/z2H10hqWVSZxBw7T29nFWqcOgMH2ViJOxjuWz0/N4sWsXL6WxWuaONafpncwdt4x9g/FWNVUdTpmx2GwqpIlyRR9Tz0BL335eT+HiIhIKVNyIiLntG/fXtLpFI2Ni6mpayLR3l3okM4Q9Lm8ZdlhQqEyYjH3jBXZQ+UBNq2oojbVS/iAJTLodaP6QPldZxzLzWYY7jnBSF8vi1asZvOKTVSHamntGj6vsTYj0SSp9PjA3C0X8Z2f/RjKgjx35ocWERFZENStS0TO6ehvHuDmJc3cuH0HA8PFtfjiVFSHgly0qpLq0WOceHrnqcTkXNxslv7jrQwdeJyVwTBmVR1+39QWeJxMJOqNOxk7pfD6m57Df3Z38os9T5GdmFGJiIhcYJSciMg5Zffv481r1nFddS0jkdJKTqpDQbasqKCs/wjd+/eQTk5/MH8kPEDvvsdZ4vayeVXtjBOUSMxbjNHvP73/5s1bqKgIMTIyzNGjR2Z0XBERkYVCyYmInJXrulQPDwNQveViRot0MHwq63Bn+xY+eXgDqaz34T9UEcCsCBHsP8KJw/txs5lx+yTcALfG38it8TeScM/eyzURjdCz/0kas71sXFmLM4P8JOu6DAyNX4wxGAxyzbYdPKNhEYfu+8X0DyoiIrKAaMyJiJxV5/E2VpWVA7DkymfQ3lucyYmLw1CmLPczBAM+zIoqysMtdB8+gJuny1Q/tVN+jmQsSp/dTdPWy0ktq+do5/C04wyPJkhnxw9cuXnZcjbi0LL7yWkfT0REZCFRy4mInJX91X2U+XxEXJdI5WJKYe1Fn+OwaWUN1dFOThzalzcxmYlEZJSBw3tYXhFh2eKqc+8wwWg0SSKVGdfy0rjjUgAaIlFcrW4pIiIXMCUnInJWA08+AcBQXV3JLL64qrmGxuwAvYf2kk2nZ/340fAgkWP7WVvvUlddPq19R6JJovE0Pt/py+/Wm55LKpul3u+nc++e2Q5XRESkZCg5EZGzqujtBSBktjIaLc4uXRMtC8UYPLqPZCw6Z88R7u4k23OEjc3llAX9594hJ5NxGRyJj1spvnbRIjpzbVKHf6lxJyIicuFSciIieXV3dbLC733wbnrG9YzGSqPlJNF5ZMrTBZ+PvtbDhCKdrF9WnXfhx8kMDMXJTBh3klq2HID4QTuLEYqIiJQWJSciktfjux7nbbt38Y1EjMSiFee1AOFcGzuGY7CjbV6eM5vJ0Hf0AIv9w9MafzISTRKfMO6k+ZpnALA4GiWbyeTZU0REZGFTciIiee3c+SiJbJZFl19BeLS41zdZsaSK1ZUxVvoHpzWofLnTz3Jn5q0sicgokeOW1fVQFQpOaZ/Jxp1c9OznEs9kqPH7aX1854zjERERKWWaSlhE8tq581EAdlx6FSNFPBi+ujLIhvoMn1nyY2IDvaTSmSm18pQ7aT5a/h/n/fzhrk6W1TWyful69rYOkz3Hk2cyLn1DMZrqKzjZSBKqrubHAT/3PbmLtx49zPqrrznvuEREREqNWk5EZFKdbcd4W1UNr1u1hnXrtxAt0sUXfY7D+qWVMNDGcE93weLoazlEfXaQFU1T6941OBwnlR6fxDRf8wz6U0kee+x3cxGiiIhI0VNyIiKT2nPvT9hUXc0NTUuJZcuLdn2TFU1V1GUG6Ws5VNA4Uok4w20HWVmTpXoK3buGR5PEkulxq8VffbU37uTRRx8hPQdTIIuIiBQ7JSciMqnhp54EYHTJEoYixTnepDoUZGVNluE2SySR4fb4a7kt8moS7tR6rCbcAB9IvI4PJF435X3OZrinGwaPs25p5bjB7pMZjSUZiabw+09fhi++eDvPX7mav1q6nKfv/el5xyMiIlJqlJyIyBlSqRSNwyMA1F1xNcOjxTfexHFgbXMlzuBxhntOANDpNtKRXTSt43S6jXS6jbMWV3/rIercMMvPMXuX60LPYHRcEuP3+7lu7TouravnxG8enLWYRERESoWSExE5w57f/pqVFRVkXZfaK68nkSq+qW2XNVbRwBB9rYcLHco4qXicyPFDrKyDUMXZW2PCI3HiE/62NZdcBkB1T8+cxSgiIlKslJyIyBla7r8PgL6yIIOpqa9+Pl8qygOsqneItB8iFY8VOpwzhE90ERjuYG3z2VtPhkaTROLpcV27tt/yYtJuliV+P+17ds91qCIiIkVFyYmInMHX0uL9sH4jQyPFN95kbXMVgZEOwt2dhQ5lcq5Lf8shGv2jNC2qzFssmcrQF47j853u29WwdBkduZ8P/rfGnYiIyIVFyYmIjNPR0c6xgT6GUymWXHcTo9HiGm+yuCHE4kCEgdbD01pscb4lohHinYdZvchPWTD/pbYvHCWVGV+P7Lr13veDB+c0RhERkWKj5ERExrnvvl/wb8eP8S/BAPEl64tqCuFgwMeaxiCJ7iPER0cKHc45DXS0UxE9werm6rxlhkYTROOpca0nm1/4hwCszGYZ7Gif8zhFRESKhZITERnnvvv+F4DrbryJ8Ei8wNGMt6q5mspYDwPtbZM+3ugMs9gZntYxGxmmkentM1VuNsPgsUM0lydoqCmftEwklmJwJDFu3Mm6y6+kLZ1m9/AQD9//izmJTUREpBgpORGRU3pPdDN60OIAV1zz+wwV0RTCddXlLA0lGTx2iGzmzNnDyp00n6r4Nz5b/U3KnaktYFjupLmj4uvcUfH1Ke8zXdHwIJneFtY0VeD3Tb74SfdAhEx2fBtVyzOfyd8fOsBPH35oTuISEREpRkpOROSUx3/4Az6+dRufu/xqsr5qskUypsPnc1jbVEG2r5XIYH+hw5m2vrZWqlP9rGiavHtXeDhBJJ4e17Xruc97PgCPPPIwQ0Ph+QhTRESk4JSciMgpozsf835oXkp/Ec3StWJJFbXpAfqPHS10KDOSSSUZaTvEiuoM1ZXBMx4fiSYZGImP69q1du16Nm3aTI3j8NAP75nPcEVERApGyYmIANDdfpwNKa9rU+ONNxfNFMJVoSArarIMHz9EOpm/m1nS9fOR+Cv5YOTlJN2prc2SdP18NPEqPpp41ZT3manh3hMweJy1zVXjVoU/qasvQnpC167XXXYV/3zJFZQ/+MCcxiYiIlIslJyICACPfuc/qAoEGMYls2FHUXTpchxY11yJL9zOcE/3Wcu6OLS6zbRkm3GZfGxHvn1a3anvcz76Ww/T4IZZtvjMxRkHh+OMxsbP2nXVy/+YrOuyynE49uSuOY9PRESk0JSciAiu65LJrUYeW7eB/qHiaDVZ1lhFA0P0tRwqdCizIhWPMdp+kFV1EKoIjHssEkvRG47hD5y+LC/fbDiWS1YOfP+78xqriIhIISg5ERH279qJCXhjIZqe92KGI4WfpStUEWBVvUOk/RCpeKzQ4cyacHcX/uEO1i2tOqOtprsvQiKVHbet8pprAWjo6CCdSs1TlCIiIoWh5EREeOL73yXg89Hn9zNUs6zQ4eAA65ZW4R9uZ7C7s9DhzC7Xpf/oQRY5wyyd0L2rfyjGUCRJYEzryVWvei2jmTT1gQCP3/29+Y5WRERkXik5EbnAjYyM8IUH7uNDB/bi3vg8+sKFb6VYtriKRc4w/UcPQhGMfZltyViU6PGDrK53qBzTvSuVztLRMwpj2lQqqqvpblwMwMD//s98hyoiIjKvlJyIXOB+8pMfEotFSTQ1Uf+M55JMnbnA4XyqCgVZXQ+R45ZkLFrQWObSYHcngaHjrF86fvaunoEII/HxA+Mv/tM3kHVdFidTHHzqqQJEKyIiMj+UnIhcwFzX5e7vfhuAl77iNfQMFjYZ8Pkc1i+txDfYRrhr+t25qolR40yv5aeaKNUUoN6uS+/RgzQQZuWYxRmHI0l6BqLjBsav2XEp94YqePvuXXz9rrvmP1YREZF5ouRE5AL2yL0/5X31i3jzuo1c8YxnMzRa2IHwq5prqM8M0NtycNr7ljtpPh/6Cl+s/hrlTnrK+9xZ8RXurPjKlPeZTal4jOHWA6ysyVBXXXZqe3vPKLFEZlyLyrNe/ybi2Szf+973GBwcmPdYRURE5oOSE5ELlOu6HL/7u9QEglyyeg39o4WNp6G2ghWVCcKt+0knimMq4/kw3HsCt7eF9c0VBHOtJf3hGH1DsXED46+88mq2br2IeDzO97/8xUKFKyIiMqeUnIhcoHb96j4uzg28bnjJq+kfKtxA+PIyPxuaykifOMJof1/B4iiU3tbDVMVOsH55DQ6QdV3aukdIpE9PBuA4Dn/xprfyia3buHLffvra2goXsIiIyBxRciJyAXJdlyPf+iYBn48TFRWMLNlYsEmxfI7DxuXVVIy003fs6IyPk3T9fDLxUj4e/SOSrn/K+9yReBl3JF425X3mQjadpu/IPpb4h1m+xBt/cmIgQl94fOvJ9Te/gIpQiAq/n8f+6c5ChSsiIjJnlJyIXIAe/umP2Z7LRmpueQV9g4VrNVmzrIZF2QF6Du/HzWbPvUMeLg42u5IDmRW4ZyxveJZ93JVYd+WU95kridERRlr3s6YuQ0NtBZmMS2vXMMmMe2rsic/no/FFfwjAyt5e2vc9XcCIRUREZp+SE5ELTDqdpuPb38bvOHRXVxNZcRHZAjWbLG2sYkVFlMEjexfUKvAzNdzTTbr7EBubglRWBDjRH+HEQJRA4HSrzg1vfhPHcSn3+djz/z5XuGBFRETmgJITkQvMXV/9Vzb4/WRdl0WvenPBWk0aaspZ1+ASbdtPJKzZp07qO3aUYPgYm5dX4fM5tHQMEU2kcXLNJz6fj7VvfitZ12VDKs3Oe+4ucMQiIiKzR8mJyAXkxIluPva5z/LXe5+ixWyhp2wJhWgzqQ4F2dhcRrb7IINdHQWIoHi52Sw9h/ZTHetk88oaBoZiHO+JjBt7Yq67ntb6egDiP/oho+HBAkUrIiIyu5SciFwgXNflYx/7O0ZGRlixZSvLX/oWhiPzv65JqCKAWREi0H+U3tYj8/78pSCTTtFz8GkWZXrZuLKW1s5BBkYS+P2nL9nX3vo+wpk04XiMf77z0wWMVkREZPYoORG5QPz3V77M4OOPEwgEeMe7bqe9NzLvMYTKA2xZUUl5uJUThw/gFmqKsBKQisfoPfAUS+hn6aJKDreHSaZPTxhQ19yM8+rX8cEDe/nmf97NAw/cV8BoRUREZoeSE5ELwMEnn6DhoV/zvs1b+OCr/oRUoJFUeuYzY81EqCLAlpVVVA63ceLgXtxsZtafo4wUZaTmfJ/5kohG6LNP0ewMUBH00dYzMu68XfW85/Pq174egPe//z20HDxQqFBFRERmRaDQAYjI3Orp7KDl03ewrrycAQc2vPj1HOmZ30Hw1ZVBzPIQ5eEWug/uJZuZ/cSk3Enz5dCXCAb8pNKZKa3bUu6k+VJFca+2Hh8dodc+yRJzCSOpJjp6R2isLiOdS1Le9a6/Yd/ePWzr6+P433+Uhk9+mvrmpQWOWkREZGbUciKygEVGR/jN+25lXXk50WyWijf+FV2js58YnM2i2gouWl5OWf9huu3cJCYLXWJ0hN79u6iNdhKLxBiKpk4NkA8Gy7jj7z7OdUuaWBoIsvO2dzPc31/giEVERGZGyYnIAjU0OMjP/+odbAsESbsumZe9li7/4nlbCd4BVjZVs6UJ6NxP96H9c9KV60KRjEY5sf8JfH2HiY+OkMy4pwbIL1mzjoY3/xmRTIbVfj+/e/dfE+45UeCIRUREpk/JicgC1N3dzf1//Zds8/tJuy5DN72AnsVb5m2cSXnQj1ldx9qqCJEjT9B77AhznRWlXD+fS9zCP0b/gJTrP/cOJ/dJvojPJV805X0KKZ1M0nNgD7GW3cTDfWThVIKy6VnXE/rTNxDLZFjr8/HUrX9D216tIC8iIqVFyYnIArNz56O85jUvY8+JblJulpHnv5ihDdeSSM5Pq0VTQyXb11SyONlB397HGJ6nO/hZHHZn1/FUZi1ZnCnvsye7jj3ZdVPep9DcbJaeo4c4sft3RLtacMhQXu4NH9xy402E3vBmhjJplgUC9HzqEzz4ja8XOGIREZGpU3IiskBEI6N8/uN/x1vf+noGBvrZU1PNyKvfQt/Ky4nPQ2JSU1nGRWvr2NyQgPY9dO7dRSIyOufPe6Ea7j1By86H6LdPkIkMEgoFcBzY/Ps3sOq22+nOZqn2+/nnr3yJ9773b+lRNy8RESkBJTFblzHGB3wIeAvQAPwGeIe19nBBAxMpAslkgvv/5UuUP/oo2zJp/MDNt7yEW179l5wYSODOcVeu6sogyxorWVKegMGj9LUdJRGd/zVULkSpeJzW3U8y0tPN8s1bqGpeSTZQybItW2j4wpf54Wc/xf4nHmPvvT/h/vt/yTtf8nKe+7o3sHjFikKHLiIiMqmSSE6ADwBvA94IdAB3APcaYy621s7/EtciRaDj8CF2/ce/U3v0KOvKyqCsjGg2wMf/9oOUXXQ93f2JOXtun8+hobaCproyGoIJnOE2wkdbiYYH5+w5Jb/+7m6G+npZtmYVi9dsINS4lPKGGl79gQ9z0Ytewqc+9fd0HdjPdmvpvP02fldXy/Ln3MyO57+QQKBU3gZERORCUPTvSsaYMuBvgFuttT/LbXsl0Am8FLirgOGJzJtIZJS9e5/m4AP3s3jvXtb4/RjHgbIy4tksJ1avJfTC15FIBomNzn5iEvD7qK0uo766jMaQS3kmQnqwhfCJLmLDQ7P+fDI96XSG40da6W3voGnFMhatWEVF41KuuWIb3/nO97jvG99g8H9/TrPfz+bRCPzwHh67+7sM1NVTtfUiNj3neSzfsBHHKY2xNyIisjAVfXICXArUAPed3GCtDRtjdgHXo+REFohELMZAZztDnZ2M9JxgpKuLWFcHDAyyKzzAPQf24boua0OV3HHxDgBO4BLbcgkV199CLBUgknCB858Vy3GgojxAZXmQqlCAmgofNcE0wUyczHAn0a5eBgf6yaTUcFls4okUbUfb6G7roH5RHY3NTVQuXsrNf3wL7mtfweM/+hnt//M/LB2N0BgI0hiJwM7H+Mh3v8X+TIaNGzdx+cpVbCorp2JJM7XLl9OwajU1Tc3UNDZSVl5e6CqKiMgCVgrJycrc9+MTtncCq2d60JMLmM2W3+49xgNf/BJLE6Oc/HDoMP5j4s+Ci0g63vNemh5lXSb/Kt3/Hagn6nhTm27PRNicPV127H1N14WfB+oYyZW9KBPl4mz+4/7SX8OA4512k4mxI89xAe7zV9Ob+xfZlE1whRvFcRzcSaaEfcCppNMJArDeTfIMNzbp1LEu8BsnRFuu7Bo3xbPcaN4YfksFRwniAitI82zGxDvh+I9QjsU77lIy3Ez+v8PObJCnc2UXk+EWX3xMBKeP67rwhBvgSdcrW0+Wl54qe2a8u7MBHnODuK5LDVleGUiOKevic7MEs1mCuDwWifHTwUHSyQSNbprPGIPPcfABdbmvk9qiUVzXpXLRclJrL+GnS1bRe9ELCS/aQCbjQnfeqp7mgM+BwIgfN+vV0edzcBy85/U5+H0OAcfF7wMnksU3miGbTpJNJciksqSTDm62EWicwhPOr4x7+mx8J3UdvikkaeP3uR6/M0+LwMyQ44CT9uG62XPPzJwCOsDpBL/PRzAYIViRJlh5E75X/gG+VIKynT+ioXUXK0Z7ORCJMJxMsGvXTtZ3dbFuxSpobQUgCfTnvmKZDJ/o6KLdKcMXKOOZVSGuqwySwUfWcUg7PrKODxcHHPg5lfT6gjg4bCbF5W7cOzO5FpqT5VwcHgrW0esvx+dzWJ2Kckk6/4QKjwRq6PJ5idKqTJwrMvnL7vTX0O73yi7LJrgmPZK37BP+ao75KwBoyiZ5Zno4b9nd/iqO+kMANGZTXJfO34K431/FwUAl4NDgpLk+Pki+GwkH/ZXsD1QBUO2muSmZv7vkEX+IpwPVAFS4GW5ODuQte8xfwZOBGgCCbpYXJvMv1tnuK+fxYC0APtfllmRfnpIOXb4yHg2evmJtqq/hc59+z6lprkVEpqMUkpPK3PeJ/VTiwKKZHNDnc2hoqDqvoCa682t3ccOxp7hm8ZK8Zf5l5/2MpNMA3LB6LVc3Lc1b9t+eeJC+pPfB9pkrV3PV0uV5y35712/piHsfxK9cvpIrl6/MW/YHTz9CS26w8valy7hy5Zq8ZX/09E5aR703cbOkmcvXrMt7U/7nB5/k2FAYgHWNS7hs3Ya8x/3V4T20DXpvoCsaFnHZhs15yz7Uso+2fu9NcXFdPZdu2nL6wQmZwWPHDnK815uRqLamlh3morzHfarzMO0nugAor6pi+9btkxd04EBHCx1dHd6vFSG2b7sk73GP9Byno70NgCVl5WzbcdmZhXJv2DYZIdLvHXfQ78fnOGRdl9FMlmEXhghwwl9Ld6iZQ9tejP8Pnk+yuokTwLdOHku9qSb1YCbP+TyLX2env09JSQIT5ylY/jbIXVrcZ8fxDxzB7bWc6H2Yh5JdLMrGWOSkafD7KPN5/7chv5+R4X5GctecymUr2Fi7KndAF8jkvjx3799FW27Wtm3NS7li1drTRSf4+b5HOTziJQOrFjdxzdr1eavzwIGdHMmNcVq2qJFr1m/KW/Z3B3dxZMD7IL6ovoFrNpq8ZZ88/BRH+noAqKqt45rNW/OW3Xd0D0d6vDsDgepqrtmyLW/Zo617OdzdCcDaUCXX5Fo/J9Nx/ACHO7z7ccvKK7hm+6V5y/Z1HOTw8WMANASDXHPJFXnLjnQd5vCxFgCq/H6uueyqvGWT/S0cbvHmnPE7DtdccU3eso8ODnD4yMFTv1fU1PKjX7+Q1zwvfywiIvk4k90FLybGmJcBdwOV1trYmO3fA8qttS+e5iGPZjLZdcPD+e+qz8T+th7u/cq/Uzc6NP49d8wH6CfqV5D2eS0cayKDNCXG3Omb0M97d91ykgHvbv3K6CDN8fx3+vbVLSceKANgWTTMstjQGcc7GYytW0o04N1BbIoNsSIWHlfChVN9zg/XNjMarAAcFsdHWBkZGNew4I6pXEvtEkbKvYSvIT7KqtH8d+TaapsYypWtS0RYNdI7abwO0F69mHCFd6evJhVl9XDPhEKn9+uuWsRAqBZwqEzGWDt8Im/ZnsoG+qvqAahIJVg71OXVxnHO+NDUV1lPX1UDAGXpJOvCnZPE6h17IFRHb7WXMwezKdYNdIwvGCzDLQtBWYh47WJijSsIlFUQLKugxu/H17gM/HN7zyDg95POZHJ33t3Z6AVWNBzHIRDwk05nJm3hK3VzXj/HOf2qHvOSdAA3GScT7iU71MeQ4yeRjJFJp6gc6qFmqAcnncRJp3DTSXzpFLjeLHFHapuJBMrAdVkcDbMikmsxcN1c66f3M66LrVnCcLACx3FYHBthXTR/K8DB6sWEy7x7V42JCBsi+a85R6oa6T95fUpG2TSarxUAWioX0VvhtUTUpWKYkd68ZY9VNnAid32qTiW4aGTy6ZpdF9pDdXSGanGAqkyKi4e68770OkM1tIfqAajIpNgxlL9ptLuimrbK3PUpm+aySa5PJ/WUV9NS5V2f/NkMV4Y78pbtK6viSLXXQuq4LlcPTuy8cNpgMMTB6tM35jYtquHDt72JeCxJJjN7swXW1obw+30tQP6sVURKXim0nJy8Ii4HjozZvhx4aqYHTc/y9KpbVzfxzC98mMHBSN5jv2FWn3H+BQI+GhqqzlrHUlYc9UvmvubG6TrGF/g5VP3mxtx36SuO1+HcWej1A6+OZUE/kdHsgq2jiMydUugQ+hQwDNxwcoMxph64HPh1YUISEREREZHZVvQtJ9bahDHmC8AnjTG9QCvwKbwWlXsKGZuIiIiIiMyeok9Ocj6IF+tXgRDwIHCzFmAUEREREVk4SiI5sdZmgPfkvkREREREZAEqhTEnIiIiIiJyAVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRcFzXLXQM8y3mum5FNjv79fb7fWQy2Vk/bjFZ6HVc6PWDhV9H1a/0LfQ6LvT6wdzU0edzcBwnDoRm9cAiUlQuxOQkDJQDXQWOQ0RERKZuGZAA6gsch4jMoQsxORERERERkSKkMSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFFQciIiIiIiIkVByYmIiIiIiBSFQKEDKBXGGB/wIeAtQAPwG+Ad1trDeco3Ap8HXpjb9H3gr621kXkId0aMMYuAvwf+EKgFdgO3WWt/k6f864F/m+ShTfn+LoVkjFkDtE7y0FuttV+dpHxJnUNjzA3A/XkebrHWrp9kn5I5h8aY24HnWGtvGLPtUuBO4EqgH/i8tfYfz3GcVwB/B6wHDgK3Wmv/e47CnrI89bsF+CCwFejD+x/8oLU2dpbjtABrJ2z+lrX2dbMd83TlqePXgTdMKNphrV15luOUxDk0xvwK+P08xV9vrf1GnuMUzTk81/vCQnoNikhxUMvJ1H0AeBvwVuBawAXuNcaU5Sl/N7ABuAl4GfA84IvzEOf5uAt4BvAq4CpgF/A/xpgtecrvAH4FLJvw1TLnkc7MDiAOLGd8vN/KU77UzuFvOfNcPA9I4324mExJnENjzLuAj0zY1gj8L96Hmyvxbh581BjzxrMc50a88/1F4FLg58APjTFb5yTwKcpTv+uA/wR+gBfr24BXcpb/QWNMDbAG74Pk2PP5F3MQ9rRMVsecHXj/n2PjvewsxymZcwi8lDNfWz8FDuCd28mOU2znMO/7wkJ6DYpI8VDLyRTkEpC/wbu787PctlcCnXhvPndNKH8tcAOw1Vp7ILftz4D/Nsa811rbOY/hT4kxZiPwXOD3rLW/zW17J/AC4DV4d28n2g48Za3tnrdAz892wFpru85VsBTPobU2CZw6F8aYIPBZ4AeTtQzlFPU5NMasAL4KXAfYCQ//GZAA3m6tTQP7jTGbgPcAX89zyNuAe6y1X8j9/m5jzO8B78T78D+vzlG/Pwfus9Z+Ivf7YWPM+4CvG2PeZq1NTHLI7YADPGStDc9R2NNytjoaY/zARcBHp/E/WDLn0Fo7MKHsq4GbgcuttSN5Dlk053AK7wsxSvw1KCLFRy0nU3MpUAPcd3JD7k1jF3D9JOWvA7pOfqjN+RVea8uz5irI89QH/AHw+MkN1loX701yUZ59dgD75j60WTOdeEvxHE70F8Aq4K/PUqbYz+HlwCBenI9MeOw64MHch6KT7gOMMaZp4oFyXTN/jzGv4zH7TPY6ng9nq9+ngXdPsk8A73o0mR14/7fh2QpwFpytjpuACqb4P1iC5/AUY0wV8Cngs9baPWc5XjGdw3O9LyyE16CIFBm1nEzNyb7Pxyds7wRW5yk/rqy1NmmM6c9TvuByb4Q/G7st1y94A16zOxMeWwI0A9cbY/4P3hvVI8B7rLUH5zzgmdkOdBljfg1sBg7h3bE9o36U4DkcyxhTAbwf+Fy+lqJSOIfW2h8DPwYwxkx8eCUw8UPeyRat1UDPhMfqgSqm/jqec2ern7X2ibG/j2nB3WWt7ctzyO1AxBjzA+CZeH+Dr+ONA8jObvRTc45zuB0v4X+XMeYFQBbvOnS7tXZoksPVU0LncIK34SWVHz/HIYvmHE7hfeHjlPhrUESKj1pOpqYy931iN4o43l2/ycpP1uUiX/mik2tm/xrwX7k334m25b5ngD/F649cDfzGGNM8P1FOXe6D3Wa8AZ234w1yfwxv3NBNk+xS6ufwT4AQ3oD+fErqHE5isnMUz33P97okzz5FfU6NMQHgm3hdoN5xlqLbgDq8rqbPA/4F+Bjw4TkOcaa24SUkrcAtwN/ivTb/K3eXfaKSPIe57mv/B/hinqRrrKI9h5O8L1wwr0ERmT9qOZmakzPjlI/5GbyL6WQzN8VyZSfKV76oGGNeDHwb+B3w6snKWGvvN8YsstYOjtnvj4A2vJl3Pjn3kU5drtWjHkiP6av/eG4Q5t8Cv5ywS0mfQ7xk4wfW2v58BUrtHE5isnN08gNOvtclefYp2nOaGyD9PeBG4OXW2rxdh4DnABVjxjPsye1/uzHmw4VqPTmLD+N1cwrnfn/aGNMFPIw3+HpiXUvyHOKNX1sNfGUKZYvyHOZ5X7ggXoMiMr/UcjI1J5ugl0/Yvhxoz1N+XNncnfvGPOWLhjHmL4F78JryX3i2KUvHfqjN/R4BjnK6G1xRsdZGJhlEvIfJ4y3lc7gErzvIXecqW2rncIIzztGY3zsmKT+A9wFoqq/jgjPGLAN+jXc+X5CnFfMUa21qkoHWe/C60jTMTZQzZ611JxlbcbKb0GT/gyV3DnP+CHjUWnv0XAWL8Rye5X1hwb8GRWT+KTmZmqeAYby7XwDk7sJfjvfBYaIHgZW5mU5OujH3/bdzE+L5M8a8Hfh/wBeAV+aZDehUWWNMnzEmNGZbLV7Xqb1zHuw0GWN2GGNGjTETB7NfyeTxluQ5zHkmXj/+B85WqNTO4SQeBK7LdZk56Sa8Gdkm9nU/OZD3N4x5Hec8m8lfxwVljGnAGyi8BHiWtTbfGjYny/uMMa3GmPdPeOgq4MTZWtEKxRjzbWPMxDFfV+W+nzFIvtTO4RjP4sxB4GcoxnN4jveFBf0aFJHCULeuKbDWJowxXwA+aYzpxesf/Sm8u0b35C7MS4Ch3B2lR4CHgLtyF/Zq4MvAN6y1k91NKjhjzGa8hbT+E/gHoGnM4M4YMMr4Ov4EbzDkN4wxH8Yb3/APQC/w7/Ma/NQ8nfv6Uu6c9OFNRXstcNVCOIdjXAIctdZGx26cpI6ldg4n+hpwK/Cvxpg7gKuBdzFmOlJjTB1QZq3tzW36DPAzY8wTeHeB34Q3G9+b5i/sKfss3iJ1zwd6jTFLxzzWa63NjK2ftTZrjPk+cKsx5iDebII34f2N3jnfwU/Rt4Ef5T6M34WXGP8T8G1r7X4o+XN48nV3Md57xmSPF+05nML7wkJ/DYpIAajlZOo+CPwr3nz2D+EtbHdzbm2JVUAX3gJpJ+8OvRRvIbv78fqL3wu8ff7DnrKXA0HgJXh1Gft1J2fW8Tje3a5avL/HL4EwcOPZuoIVSq6f9i3Ao3irbD8BXAM8Nzet50I4hyctxVupeaKSPocT5e7M3gwYvA9xHwLeba0dm1jdiTfxwcl9/gd4I955fALvg98fTpgyuuByg8FfCZTh3XGf+JpclSs6rn7Ae4E7gE/gtTz8X+Cd1tqpjHWYd9banwCvwFvkdA/eNfYe4M1jipXkORyjEe/amq/Vo5jP4VnfFxbya1BECsdxXbfQMYiIiIiIiKjlREREREREioOSExERERERKQpKTkREREREpCgoORERERERkaKg5ERERERERIqCkhMRERERESkKSk5EpCgZY5xCxyAiIiLzS8mJiBQdY8yLyK1Sb4y5wRjjGmNuKGxUIiIiMtcChQ5ARGQS/3fMz7uAa/FWyxYREZEFTMmJiBQ1a+0w8LtCxyEiIiJzz3Fdt9AxiIicYoz5FfD7YzbdCNwP3Git/ZUx5sPAq4DbgI8BG4EDwNsBF7gT2AEcAd5prf3lmGNvAz4BXJ/b9Evgb6y1R+ewSiIiIjJFGnMiIsXmHcATua9rgdpJyqwCPgN8HPhjYBFwN/Ad4Ct4yYsPuMsYEwIwxmwGfgs0AW8A3gysBx4yxjTNXXVERERkqpSciEhRsdbuA4aBYWvt73I/T1QJvMNa+x1r7Y+ALwLLgY9aa79qrf0v4APAYsDk9vkQEAOeY629x1r7fbxWmRDw7jmtlIiIiEyJxpyISKn67Zifu3Pfx45N6c99r899vwmve1jUGHPy2jcM/Bp47hzFKCIiItOg5ERESlJuoPxE0bPs0gi8Mvc1Ue+sBCUiIiLnRcmJiFwowsAvgE9P8lh6fkMRERGRySg5EZFilAH8s3zMB4CLgCettWk4tQr9fwCHgSdn+flERERkmpSciEgxCgPXGmOeDdTN0jE/AjwM/MQY8yUgDvw58EfAy2fpOUREROQ8aLYuESlGXwBSwL14s2mdN2vtbuA6vLVQvok39fAy4I+stffMxnOIiIjI+dEijCIiIiIiUhTUciIiIiIiIkVByYmIiIiIiBQFJSciIiIiIlIUlJyIiIiIiEhRUHIiIiIiIiJFQcmJiIiIiIgUBSUnIiIiIiJSFJSciIiIiIhIUVByIiIiIiIiRUHJiYiIiIiIFAUlJyIiIiIiUhSUnIiIiIiISFH4/7k05P7nzyfiAAAAAElFTkSuQmCC", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "# Define more stringent bounds as a dictionary with the retention time as the key\n", + "# and the parameter bounds as a value.\n", + "bounds = {10: {'amplitude':[99, 101]}, # Known parameters for peak 1\n", + " 10.6 : {} # Allow free inference for second peak\n", + " }\n", + "peaks = chrom.fit_peaks(known_peaks=bounds)\n", + "inferred_amplitude = peaks[peaks['peak_id']==1]['amplitude'].values[0]\n", + "\n", + "# Print a summary statement demonstrating the improvement.\n", + "print(f'Inferred amplitude for peak 1 is {inferred_amplitude:0.3f}. Known value is {known_amplitude:0.3f}')\n", + "chrom.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "Here, we've only bounded the `amplitude` parameter, but you can also provide \n", + "bounds for `location`, `scale`, and `skew`.\n", + "\n", + "---\n", + "\n", + " © Griffin Chure, 2023. This notebook and the code within are released under a \n", + "[Creative-Commons CC-BY 4.0](https://creativecommons.org/licenses/by/4.0/) and \n", + "[GPLv3](https://www.gnu.org/licenses/gpl-3.0) license, respectively." + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "base", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.9" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}