We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
When I am trying to run examples/cifar10.py with Inception-Resnet-v2, i am getting the following error:
RuntimeError: Calculated padded input size per channel: (1 x 1). Kernel size: (3 x 3). Kernel size can't be greater than actual input size
Tried to run this:
import argparse import torch import torchvision import torchvision.transforms as transforms from torch.autograd import Variable import torch.nn as nn import torch.optim as optim from cnn_finetune import make_model parser = argparse.ArgumentParser(description='Inception-Resnet-v2-TRAIN') parser.add_argument('--batch-size', type=int, default=32, metavar='N', help='input batch size for training (default: 32)') parser.add_argument('--test-batch-size', type=int, default=64, metavar='N', help='input batch size for testing (default: 64)') parser.add_argument('--epochs', type=int, default=100, metavar='N', help='number of epochs to train (default: 100)') parser.add_argument('--save-model', type=int, default=10, metavar='N', help='number of epochs after which the model will be saved (default: 10)') parser.add_argument('--lr', type=float, default=0.01, metavar='LR', help='learning rate (default: 0.01)') parser.add_argument('--momentum', type=float, default=0.9, metavar='M', help='SGD momentum (default: 0.9)') parser.add_argument('--no-cuda', action='store_true', default=False, help='disables CUDA training') parser.add_argument('--seed', type=int, default=1, metavar='S', help='random seed (default: 1)') parser.add_argument('--log-interval', type=int, default=100, metavar='N', help='how many batches to wait before logging training status') parser.add_argument('--model-name', type=str, default='resnet50', metavar='M', help='model name (default: resnet50)') parser.add_argument('--dropout-p', type=float, default=0.2, metavar='D', help='Dropout probability (default: 0.2)') args = parser.parse_args() use_cuda = not args.no_cuda and torch.cuda.is_available() device = torch.device('cuda' if use_cuda else 'cpu') def train(model, epoch, optimizer, train_loader, criterion=nn.CrossEntropyLoss()): total_loss = 0 total_size = 0 model.train() for batch_idx, (data, target) in enumerate(train_loader): data, target = data.to(device), target.to(device) optimizer.zero_grad() output = model(data) loss = criterion(output, target) total_loss += loss.item() total_size += data.size(0) loss.backward() optimizer.step() if batch_idx % args.log_interval == 0: print('Train Epoch: {} [{}/{} ({:.0f}%)]\tAverage loss: {:.6f}'.format( epoch, batch_idx * len(data), len(train_loader.dataset), 100. * batch_idx / len(train_loader), total_loss / total_size)) def main(): model_name = args.model_name classes = ( 'plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck' ) model = make_model( model_name, pretrained=True, num_classes=len(classes), pool=nn.AdaptiveMaxPool2d(1), dropout_p=args.dropout_p ) model = model.to(device) transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( mean=model.original_model_info.mean, std=model.original_model_info.std), ]) train_set = torchvision.datasets.CIFAR10( root='./data', train=True, download=True, transform=transform ) train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=True, num_workers=2 ) optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum) # Use exponential decay for fine-tuning optimizer scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.975) # Train for epoch in range(1, args.epochs + 1): train(model, epoch, optimizer, train_loader) scheduler.step(epoch) if epoch % args.save_model == 0: torch.save(model.state_dict(), './checkpoint/' + 'ckpt_' + str(epoch) + '.pth') if __name__ == '__main__': main()
The text was updated successfully, but these errors were encountered:
No branches or pull requests
When I am trying to run examples/cifar10.py with Inception-Resnet-v2, i am getting the following error:
RuntimeError: Calculated padded input size per channel: (1 x 1). Kernel size: (3 x 3). Kernel size can't be greater than actual input size
Tried to run this:
The text was updated successfully, but these errors were encountered: