-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaggregate_metrics.py
executable file
·423 lines (345 loc) · 15 KB
/
aggregate_metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#!/usr/bin/env python
"""
aggregate_metrics.py - A PostHocExplainerEvaluation file
Copyright (C) 2021 Zach Carmichael
"""
import os
import sys
import json
import traceback
from tqdm.auto import tqdm
import numpy as np
import sympy as sp
from joblib import Parallel
from joblib import delayed
from posthoceval.expl_utils import TRUE_CONTRIBS_NAME
from posthoceval.expl_utils import standardize_contributions
from posthoceval.expl_utils import is_mean_centered
from posthoceval.expl_utils import clean_explanations
from posthoceval.expl_utils import load_explanation
from posthoceval.expl_utils import save_explanation
from posthoceval.expl_utils import CompatUnpickler
from posthoceval import metrics
from posthoceval.models.synthetic import SyntheticModel
from posthoceval.utils import tqdm_parallel
from posthoceval.utils import CustomJSONEncoder
from posthoceval.utils import at_high_precision
from posthoceval.utils import atomic_write_exclusive
from posthoceval.results import ExprResult
def compute_true_means(true_expl):
true_means = {}
for k, v in true_expl.items():
# no nans or infs
true_means[k] = at_high_precision(np.mean, np.ma.masked_invalid(v))
return true_means
def compute_metrics(true_expl, pred_expl, n_explained, true_means):
# per-effect metrics
per_match_metrics = []
# TODO: no comment out these, maybe take in as parameter?
# commented out for now as saves compute...
for name, effect_wise_metric in (
# ('strict_matching', metrics.strict_eval),
('generous_matching', metrics.generous_eval),
# ('maybe_exact_matching',
# partial(metrics.generous_eval, maybe_exact=True)),
):
matching, goodness = effect_wise_metric(true_expl, pred_expl)
matching_results = []
agg_results = {}
contribs_true_all = []
contribs_pred_all = []
for match_goodness, (match_true, match_pred) in zip(
goodness, matching):
# for each pair in the match
# the "worse" the match, the more effects will be in match
# list needed so sum of single effect won't reduce to scalar
if match_true:
contribs_true = sum(
[true_expl[effect] for effect in match_true])
else:
contribs_true = np.zeros(n_explained)
contribs_true_all.append(contribs_true)
if match_pred:
contribs_pred = sum(
[pred_expl[effect] for effect in match_pred])
if true_means is not None:
# add the mean back for these effects (this will be the
# same sample mean that the explainer saw before)
contribs_pred += sum(
[true_means[effect] for effect in match_true])
else:
contribs_pred = np.zeros(n_explained)
contribs_pred_all.append(contribs_pred)
# now we evaluate the fidelity with various error metrics!
err_dict = {}
for err_name, err_metric in (
('rmse', metrics.rmse),
('mape', metrics.mape),
('mse', metrics.mse),
('nrmse_std', metrics.nrmse_std),
('nrmse_range', metrics.nrmse_range),
('nrmse_interquartile', metrics.nrmse_interquartile),
('nrmse_mean', metrics.nrmse_mean),
):
try:
err = at_high_precision(err_metric,
contribs_true, contribs_pred)
except ValueError:
tqdm.write(' isnan isinf')
tqdm.write(
f'contribs_true: {np.isnan(contribs_true).any()} '
f'{np.isinf(contribs_true).any()}')
tqdm.write(
f'contribs_pred: {np.isnan(contribs_pred).any()} '
f'{np.isinf(contribs_pred).any()}')
raise
err_dict[err_name] = err
err_name_agg = err_name + '_mean'
agg_results[err_name_agg] = (
agg_results.get(err_name_agg, 0.) + err)
matching_results.append({
'error': err_dict,
'true_effects': match_true,
'pred_effects': match_pred,
'goodness': match_goodness,
})
agg_results['goodness_mean'] = (
agg_results.get('goodness_mean', 0.) + match_goodness)
# compute means over all metrics
for err_name_agg, err in agg_results.items():
agg_results[err_name_agg] = err / len(matching)
# vector-wise metrics
contribs_true_all = np.stack(contribs_true_all, axis=1)
contribs_pred_all = np.stack(contribs_pred_all, axis=1)
for err_name, err_metric in (
('cosine_distances', metrics.cosine_distances),
('euclidean_distances', metrics.euclidean_distances),
):
distances = err_metric(contribs_true_all, contribs_pred_all)
agg_results[err_name + '_mean'] = distances.mean()
per_match_metrics.append({
'matching_algorithm': name,
'all_results': matching_results,
'agg_results': agg_results,
})
# aggregate metrics
effect_detection_metrics = {
agg_name: agg_metric(true_expl, pred_expl)
for agg_name, agg_metric in (
('effect_detection_jaccard_index',
metrics.effect_detection_jaccard_index),
('effect_detection_precision', metrics.effect_detection_precision),
('effect_detection_recall', metrics.effect_detection_recall),
('effect_detection_f1', metrics.effect_detection_f1),
)
}
return {
'per_match_metrics': per_match_metrics,
'effect_detection_metrics': effect_detection_metrics,
}
def compute_true_contributions(expr_result, data_file, explainer_dir, expl_id):
tqdm.write('Generating model')
model = SyntheticModel.from_expr(
expr=expr_result.expr,
symbols=expr_result.symbols,
)
# check if contributions have been saved before
cached_dir = os.path.join(explainer_dir, TRUE_CONTRIBS_NAME)
os.makedirs(cached_dir, exist_ok=True)
cached_path = os.path.join(cached_dir, str(expl_id) + '.npz')
if os.path.exists(cached_path):
tqdm.write('Loading pre-computed explanations from disk...')
contribs = load_explanation(cached_path, model)
tqdm.write('Loaded.')
else:
tqdm.write(f'Generating explanations for {expl_id}')
tqdm.write(f'Loading data from {data_file}')
data = np.load(data_file)['data']
tqdm.write('Done loading.')
contribs = model.feature_contributions(data)
tqdm.write('Done explaining.')
# cache contribs
tqdm.write('Saving to disk.')
save_explanation(cached_path, contribs)
# might not be necessary, but `load_explanation` does this (so do it
# for consistency)
contribs = standardize_contributions(contribs)
effects = model.make_effects_dict()
return model, contribs, effects
def run(expr_filename, explainer_dir, data_dir, out_dir, debug=False,
n_jobs=1):
""""""
np.seterr('raise') # never trust silent fp in metrics
expr_basename = os.path.basename(expr_filename).rsplit('.', 1)[0]
os.makedirs(out_dir, exist_ok=True)
print('Loading', expr_filename, '(this may take a while)')
with open(expr_filename, 'rb') as f:
expr_data = CompatUnpickler(f).load()
true_explanations = {}
true_effects_all = {}
true_models = {}
all_results = []
for explainer in os.listdir(explainer_dir):
if explainer == TRUE_CONTRIBS_NAME:
continue
explainer_path = os.path.join(explainer_dir, explainer)
if not os.path.isdir(explainer_path):
continue
explanations = os.listdir(explainer_path)
explained = [*map(lambda x: int(x.rsplit('.', 1)[0]), explanations)]
assert len(explained) == len({*explained})
def run_one(expl_id, expr_result: ExprResult, true_expl, true_effects,
true_model):
tqdm.write(f'\nBegin {expl_id}.')
true_expl_orig = true_expl
if true_expl is None:
# compute true contributions
data_file = os.path.join(data_dir, f'{expl_id}.npz')
# cache result for later use (by other explainers)
try:
true_model, true_expl, true_effects = (
compute_true_contributions(expr_result, data_file,
explainer_dir, expl_id)
)
true_expl_orig = true_expl
except Exception as e:
e_module = str(getattr(e, '__module__', ''))
if e_module.split('.', 1)[0] != 'sympy':
# raise non-sympy exceptions...
raise
tqdm.write(f'Failed to compute feature contribs for '
f'{expl_id}!')
exc_lines = traceback.format_exception(
*sys.exc_info(), limit=None, chain=True)
for line in exc_lines:
tqdm.write(str(line), file=sys.stderr, end='')
return None
tqdm.write('Loading predicted explanation')
pred_expl_file = os.path.join(explainer_path, f'{expl_id}.npz')
pred_expl = load_explanation(pred_expl_file, true_model)
# check if explanation should be uncentered
true_means = None
if is_mean_centered(explainer):
true_means = compute_true_means(true_expl)
pred_expl, true_expl, n_explained = (
clean_explanations(pred_expl, true_expl))
if n_explained == 0:
tqdm.write(f'Skipping {expl_id} as all instance explanations '
f'by {explainer} contain nans')
return None
tqdm.write('Begin computing metrics.')
results = compute_metrics(true_expl, pred_expl, n_explained,
true_means)
results['model_kwargs'] = expr_result.kwargs
results['effects'] = [
{'symbols': effect_symbols,
'effect': sp.latex(true_effects[effect_symbols])}
for effect_symbols in true_expl
]
results['all_symbols'] = expr_result.symbols
results['expl_id'] = expl_id
tqdm.write('Done.')
return results, expl_id, true_expl_orig, true_effects, true_model
if debug: # debug --> limit to processing of 1 explanation
explained = explained[:1]
jobs = (
delayed(run_one)(
expl_id=expl_id,
expr_result=expr_data[expl_id],
true_expl=true_explanations.get(expl_id),
true_effects=true_effects_all.get(expl_id),
true_model=true_models.get(expl_id))
for expl_id in explained
)
with tqdm_parallel(tqdm(desc=explainer, total=len(explained))):
if n_jobs == 1 or debug:
# TODO: this doesn't update tqdm
packed_results = [f(*a, **kw) for f, a, kw in jobs]
else:
packed_results = Parallel(n_jobs=n_jobs)(jobs)
# now compute metrics for each model
explainer_results = []
for packed_result in packed_results:
if packed_result is None:
continue
# otherwise unpack
(results, expl_id, true_expl,
true_effects, true_model) = packed_result
# update cache for other explainers
true_explanations[expl_id] = true_expl
true_effects_all[expl_id] = true_effects
true_models[expl_id] = true_model
explainer_results.append(results)
all_results.append({
'explainer': explainer,
'results': explainer_results,
})
# Save to out_dir
out_filename = os.path.join(out_dir, expr_basename + '.json')
print('Writing results to', out_filename)
out_filename_actual = atomic_write_exclusive(
preferred_filename=out_filename,
data=json.dumps(all_results, cls=CustomJSONEncoder),
)
if out_filename_actual != out_filename:
print('Actually wrote results to', out_filename_actual)
if __name__ == '__main__':
import argparse
def main():
parser = argparse.ArgumentParser( # noqa
description='Compute metrics on previously produced explanations',
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)
parser.add_argument(
'expr_filename', help='Filename of the expression pickle'
)
parser.add_argument(
'--explainer-dir', '-E',
help='Directory where generated explanations for expr_filename '
'exist'
)
parser.add_argument(
'--data-dir', '-D',
help='Data directory where generated data for expr_filename exist'
)
parser.add_argument(
'--out-dir', '-O',
help='Output directory to save metrics'
)
parser.add_argument(
'--n-jobs', '-j', default=-1, type=int,
help='Number of jobs to use in generation'
)
parser.add_argument( # hidden debug argument
'--debug', action='store_true',
help=argparse.SUPPRESS
)
args = parser.parse_args()
explainer_dir = args.explainer_dir
data_dir = args.data_dir
out_dir = args.out_dir
err_msg = ('Could not infer --{arg} (guessed "{val}"). Please supply '
'this argument.')
expr_basename = os.path.basename(args.expr_filename).rsplit('.', 1)[0]
experiment_dir = os.path.dirname(args.expr_filename)
if os.path.basename(experiment_dir) == 'expr':
experiment_dir = os.path.dirname(experiment_dir)
if explainer_dir is None:
explainer_dir = os.path.join(
experiment_dir, 'explanations', expr_basename)
if not os.path.isdir(explainer_dir):
sys.exit(err_msg.format(arg='explainer-dir',
val=explainer_dir))
if data_dir is None:
data_dir = os.path.join(experiment_dir, 'data', expr_basename)
if not os.path.isdir(data_dir):
sys.exit(err_msg.format(arg='data-dir', val=data_dir))
if out_dir is None:
out_dir = os.path.join(experiment_dir, 'metrics', expr_basename)
run(out_dir=out_dir,
expr_filename=args.expr_filename,
explainer_dir=explainer_dir,
data_dir=data_dir,
n_jobs=args.n_jobs,
debug=args.debug)
main()