-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathquantile_regression.py
449 lines (370 loc) · 14.1 KB
/
quantile_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
import functools
import numpy as np
import pandas as pd
import tensorflow as tf
import tensorflow.keras as keras
from pylab import *
ion()
tf.keras.backend.set_floatx("float64")
def set_seed(seed=1):
import random
random.seed(seed)
import numpy as np
np.random.seed(seed)
import tensorflow as tf
if hasattr(tf, "reset_default_graph"):
tf.reset_default_graph()
if hasattr(tf.random, "set_random_seed"):
tf.random.set_random_seed(seed)
else:
tf.random.set_seed(seed)
def get_data(seed=1, m=250, n_x=1, n_tau=11, L=2):
"""
x ~ U(-2, 2)
y ~ N(mu(x), sigma(x))
"""
set_seed(seed)
x = (2 * np.random.rand(m, n_x).astype(np.float64) - 1) * 2
i = np.argsort(x[:, 0])
x = x[i] # to make plotting nicer
sigma = 0.4 * (1 + 5 / (10 * x[:, [0]] ** 2 + 1))
mu = x ** 2 + 0.3 * x
z = np.random.randn(m, 1).astype(np.float64)
y = mu + sigma * z
# yc and tau are same dimension, similar functionality
# this is confusing because mu, sigma are across samples mu(x)
# want yc for all x here.
# cheating to know the ranges, but whatever.
# will be good to see what happens where there is no data.
yc_max = np.max(y)
yc_min = np.min(y)
yc = np.linspace(yc_min, yc_max, n_tau).astype(np.float64)
yc = yc[:, None]
# A = np.random.randn(n_x, 1)
# y = y.dot(A) # y is 1d
tau = np.linspace(1.0 / n_tau, 1 - 1.0 / n_tau, n_tau).astype(np.float64)
tau = tau[:, None]
return locals()
def make_layers(
*, dims, activation="tanh", final_activation=None, kernel_constraint="nonneg", kernel_initializer="uniform"
):
"""
A utility for making layers.
If all kernels are non-negative you should have monotonic property.
"""
if kernel_initializer == "uniform":
kernel_initializer = keras.initializers.RandomUniform(minval=0, maxval=1)
if kernel_constraint == "nonneg":
kernel_constraint = keras.constraints.NonNeg()
layers = list()
for i, dim in enumerate(dims):
if i == len(dims) - 1:
activation = final_activation
layers.append(
tf.keras.layers.Dense(
dim,
kernel_initializer=kernel_initializer,
kernel_constraint=kernel_constraint,
activation=activation,
dtype=tf.float64,
)
)
return layers
def reduce_layers(input, layers):
return functools.reduce(lambda x, y: y(x), [input] + layers)
def logit(x):
check = tf.reduce_min(x)
tf.debugging.assert_greater(check, tf.cast(0.0, tf.float64), message=f"logit got {check} < 0")
tf.debugging.assert_less(check, tf.cast(1.0, tf.float64), message=f"logit got {check} > 1")
return tf.math.log(x) - tf.math.log(1 - x)
def final_reduce(J):
# the choice of sum and mean is somewhat arbitrary
# generally J.shape[2] == 1
# generally we want to be extrinsic in n_samples, intrinsic in n_tau/n_yc
return tf.reduce_sum(tf.reduce_mean(J, axis=[1, 2]), axis=0)
def rho_quantile_loss(tau_y, u):
tau, y = tau_y
tf.debugging.assert_rank(y, 2, f"y should be rank 2")
u = y[:, None, :] - u[None, :, :]
# tf.debugging.assert_rank(y, 3, f'y should be rank 3')
tf.debugging.assert_rank(tau, 2, f"tau should be rank 2")
tau = tau[None, :, :]
J = u * (tau - tf.where(u <= np.float64(0.0), np.float64(1.0), np.float64(0.0)))
return final_reduce(J)
def rho_expectile_loss(tau_y, u):
tau, y = tau_y
tf.debugging.assert_rank(y, 2, f"y should be rank 2")
u = y[:, None, :] - u[None, :, :]
# tf.debugging.assert_rank(y, 3, f'y should be rank 3')
tf.debugging.assert_rank(tau, 2, f"tau should be rank 2")
tau = tau[None, :, :]
J = u ** 2 * (tau - tf.where(u <= 0.0, 1.0, 0.0))
return final_reduce(J)
def logistic_loss(yc_y, u):
yc, y = yc_y
tf.debugging.assert_rank(y, 2, f"y should be rank 2")
tf.debugging.assert_rank(yc, 2, f"yc should be rank 2")
# p = tf.where(y[:, None, :] <= yc[None, :, :], np.float64(1.0), np.float64(0.0))
# J = p * tf.math.log(u[None, :, :]) + (1 - p) * tf.math.log(1 - u[None, :, :])
J = tf.where(y[:, None, :] <= yc[None, :, :], tf.math.log(u[None, :, :]), tf.math.log(1 - u[None, :, :]))
return final_reduce(-J)
class QuantileNetworkNoX(tf.keras.models.Model):
"""Deep quantile regression. Recall that quantile is defined as the arg min of
q(tau) = argmin_u E(rho(tau, Y - u)
where rho(tau, y) = y * (tau - (y < 0))"""
def __init__(self, *, dims):
super().__init__()
self._my_layers = make_layers(dims=dims, activation="tanh", kernel_constraint="nonneg")
def quantile(self, tau):
# tau is for example shape (11, 1)
# you treat tau dim like data, broadcast across it
tf.debugging.assert_rank(tau, 2, message=f"tau should be rank two for now")
u = logit(tau) # map from (0, 1) to (-infty, infty)
return reduce_layers(u, self._my_layers)
def call(self, inputs):
"""Use this signature to support keras compile method"""
tau, y = inputs
return self.quantile(tau)
class CDFNetworkNoX(tf.keras.models.Model):
"""Thresholded logistic regression.
P(yc) = argmin_u -E(I(Y < yc) * log(u) + (1 - I(Y < yc)) * log(1 - u))
Must be monotonic in yc and range in [0, 1]
"""
def __init__(self, *, dims):
super().__init__()
self._my_layers = make_layers(
dims=dims, activation="tanh", kernel_constraint="nonneg", final_activation="sigmoid"
)
def cdf(self, yc):
tf.debugging.assert_rank(yc, 2, message=f"yc should be rank two for now")
# no mapping, for now assume yc in (-infty, infty)
# if you have a weird domain for y, you should probably remap
return reduce_layers(yc, self._my_layers)
def call(self, inputs):
"""Use this signature to support keras compile method"""
yc, y = inputs
return self.cdf(yc)
def sanity_plot_nox(steps=1000):
l = get_data()
tau = l["tau"]
y = l["y"]
model = QuantileNetworkNoX(dims=[16, 16, 1])
opt = tf.keras.optimizers.Adam(learning_rate=0.01)
@tf.function
def one_step():
with tf.GradientTape() as tape:
loss = rho_quantile_loss((tau, y), model((tau, y)))
g = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(g, model.trainable_variables))
return loss
# model.compile(loss=rho_quantile_loss, optimizer=opt)
fig = figure(1)
fig.clf()
ax = fig.subplots(1, 1)
n = len(y)
p = np.linspace(1.0 / n, 1 - 1.0 / n, n)
i = y[:, 0].argsort()
ax.plot(p, y[i, 0], ".", label="data", alpha=0.5)
loss = list()
for i in range(steps):
loss.append(one_step())
q = model.quantile(tau).numpy().squeeze()
ax.plot(tau, q, "g.-", label='fit', linewidth=2)
ax.legend()
ax.set_xlabel("tau: $P(Y < y)$")
ax.set_ylabel('y')
ax.set_title('quantile')
fig.tight_layout()
fig.show()
return locals()
def cdfsanity_plot_nox(steps=1000):
l = get_data()
x = l["x"]
yc = l["yc"]
y = l["y"]
model = CDFNetworkNoX(dims=[16, 16, 1])
opt = tf.keras.optimizers.Adam(learning_rate=0.01)
@tf.function
def one_step():
with tf.GradientTape() as tape:
loss = logistic_loss((yc, y), model((yc, y)))
g = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(g, model.trainable_variables))
return loss
# # model.compile(loss=rho_quantile_loss, optimizer=opt)
fig = figure(1)
fig.clf()
ax = fig.subplots(1, 1)
n = len(y)
p = np.linspace(1.0 / n, 1 - 1.0 / n, n)
i = y[:, 0].argsort()
ax.plot(p, y[i, 0], ".", label="data", alpha=0.5)
loss = list()
for i in range(steps):
loss.append(one_step())
cdf = model.cdf(yc).numpy().squeeze()
ax.plot(cdf, yc, "g.-", label='fit', linewidth=2)
ax.legend()
ax.set_xlabel("$P(Y < y)$")
ax.set_ylabel('y')
ax.set_title('CDF')
fig.tight_layout()
fig.show()
return locals()
class QuantileNetwork(tf.keras.models.Model):
"""Deep quantile regression. Recall that quantile is defined as the arg min of
q(tau) = argmin_u E(rho(tau, Y - u)
where rho(tau, y) = y * (tau - (y < 0))
"""
def __init__(self, *, tau_dims, x_dims, final_dims):
super().__init__()
self._my_tau_layers = make_layers(dims=tau_dims, activation="tanh")
self._my_x_layers = make_layers(
dims=tau_dims, activation="tanh", kernel_constraint=None, kernel_initializer="glorot_uniform"
)
self._my_x_layers.append(lambda x: tf.square(x))
self._final_layers = make_layers(dims=final_dims, activation="linear")
def quantile(self, tau, x):
tf.debugging.assert_rank(tau, 2, message=f"tau should be rank two for now")
u = logit(tau) # map from (0, 1) to (-infty, infty)
u = reduce_layers(u, self._my_tau_layers)
v = reduce_layers(x, self._my_x_layers)
q = v[:, None, :] * u[None, :, :]
# this is a sum of monotonic functions with positive coef
q = reduce_layers(q, self._final_layers)
return q
def call(self, inputs):
"""Use this signature to support keras compile method"""
tau, y, x = inputs
return self.quantile(tau, x)
class CDFNetwork(tf.keras.models.Model):
"""
Monotonic in yc.
This stuff is what I am not clear on in terms of the structure of the network.
TODO: write a note about this.
TODO: need to think more on [epsilon, 1 - epsilon] vs [0, 1] bounds on output.
Possibly should train this or something mroe rigourous.
"""
def __init__(self, *, yc_dims, x_dims, final_dims, epsilon=1e-12):
super().__init__()
self._my_yc_layers = make_layers(dims=yc_dims, activation="tanh", kernel_constraint="nonneg")
self._my_x_layers = make_layers(
dims=yc_dims, activation="tanh", kernel_constraint=None, kernel_initializer="glorot_uniform"
)
self._my_x_layers.append(lambda x: tf.square(x))
# THIS LAST ONE MUST OUTPUT (0, 1)
self._final_layers = make_layers(dims=final_dims, activation="linear", final_activation="sigmoid")
self.epsilon = epsilon
def cdf(self, yc, x):
tf.debugging.assert_rank(yc, 2, message=f"yc should be rank two for now")
# HERE
u = reduce_layers(yc, self._my_yc_layers)
v = reduce_layers(x, self._my_x_layers)
p = v[:, None, :] * u[None, :, :]
# this is a sum of monotonic functions with positive coef
p = reduce_layers(p, self._final_layers)
return p
def call(self, inputs):
"""Use this signature to support keras compile method"""
yc, y, x = inputs
u = self.cdf(yc, x)
return self.epsilon + (1 - 2 * self.epsilon) * u
def sanity_plot(steps=1000):
l = get_data()
tau = l["tau"]
y = l["y"]
x = l["x"]
sigma = l["sigma"]
mu = l["mu"]
model = QuantileNetwork(tau_dims=[64, 64], x_dims=[64, 64], final_dims=[1])
opt = tf.keras.optimizers.Adam(learning_rate=0.01)
@tf.function
def one_step():
with tf.GradientTape() as tape:
loss = rho_quantile_loss((tau, y), model((tau, y, x)))
g = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(g, model.trainable_variables))
return loss
# does not work with, keras mangles dimensions
# model.compile(loss=rho_quantile_loss, optimizer=opt)
fig = figure(1, figsize=(12, 6))
fig.clf()
ax = fig.subplots(1, 2)
ax[0].plot(x[:, 0], y.squeeze(), ".", alpha=0.5, label='data')
ax[0].plot(x[:, 0], mu, label='mu')
ax[0].plot(x[:, 0], sigma, label='sigma')
ax[0].legend()
ax[0].set_ylabel("y")
ax[0].set_xlabel(f"x[:,0] (x.shape={x.shape})")
ax[0].set_title('generating process')
ax[1].plot(x[:, 0], y.squeeze(), ".", alpha=0.5)
loss = list()
for i in range(steps):
loss.append(one_step())
q = model.quantile(tau, x).numpy().squeeze()
ax[1].plot(x[:, 0], q, alpha=0.5)
ax[1].set_xlabel(f"x[:,0] (x.shape={x.shape})")
ax[1].set_title('inferred quantiles')
fig.tight_layout()
fig2 = figure(2, figsize=(12, 6))
ax = fig2.gca()
ax.semilogy(loss)
fig.show()
figure(1) # set it back
return locals()
def cdfsanity_plot(steps=5000):
l = get_data()
yc = l["yc"]
y = l["y"]
x = l["x"]
sigma = l["sigma"]
mu = l["mu"]
model = CDFNetwork(yc_dims=[64, 64], x_dims=[64, 64], final_dims=[1])
opt = tf.keras.optimizers.Adam(learning_rate=0.01)
@tf.function
def one_step():
with tf.GradientTape() as tape:
loss = logistic_loss((yc, y), model((yc, y, x)))
g = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(g, model.trainable_variables))
return loss
# does not work with, keras mangles dimensions
# model.compile(loss=rho_quantile_loss, optimizer=opt)
fig = figure(1, figsize=(12, 6))
fig.clf()
ax = fig.subplots(1, 2)
ax[0].plot(x[:, 0], y.squeeze(), ".", alpha=0.5, label='data')
ax[0].plot(x[:, 0], mu, label='mu')
ax[0].plot(x[:, 0], sigma, label='sigma')
ax[0].legend()
ax[0].set_ylabel("y")
ax[0].set_xlabel(f"x[:,0] (x.shape={x.shape})")
ax[0].set_title('generating process')
ax[1].plot(x[:, 0], y.squeeze(), ".", alpha=0.5)
loss = list()
for i in range(steps):
loss.append(one_step())
cdf = model.cdf(yc, x).numpy().squeeze()
# ax[1].plot(x[:, 0], cdf, alpha=0.5)
X = np.repeat(x, cdf.shape[1], axis=1)
Y = np.repeat(yc.T, cdf.shape[0], axis=0)
ax[1].contour(X, Y, cdf)
ax[1].set_xlabel(f"x[:,0] (x.shape={x.shape})")
ax[1].set_title('inferred cdf (contour plot)')
fig.tight_layout()
fig2 = figure(2, figsize=(12, 6))
ax = fig2.gca()
ax.semilogy(loss)
fig.show()
figure(1) # set it back
return locals()
if __name__ == '__main__':
ioff()
sanity_plot_nox()
savefig('q_nox.png')
sanity_plot()
savefig('q.png')
cdfsanity_plot_nox()
savefig('p_nox.png')
cdfsanity_plot()
savefig('p.png')