-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_analysis.py
363 lines (308 loc) · 16.3 KB
/
dataset_analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import time
from contextlib import contextmanager
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.feature_selection import chi2, SelectKBest
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.cluster import KMeans
from scipy.spatial import ConvexHull
from sklearn.preprocessing import StandardScaler, MinMaxScaler
@contextmanager
def timer(title):
t0 = time.time()
yield
print('{} - done in {:.0f}s'.format(title, time.time() - t0))
class WDBCAnalysis:
def __init__(self):
self.random_state = 20
self.column_stats = {}
self.wdbc_full = None
self.X = None
self.y = None
self.X_scaled = None
self.X_train = None
self.X_test = None
self.y_train = None
self.y_test = None
self.label_map_string_2_int = {'M': 1, 'B': 0}
self.features_selected = []
self.highly_correlated_features = []
self.cols = []
self.class_colours = np.array(['blue', 'red', 'green', 'darkviolet', 'lime', 'darkorange', 'goldenrod',
'cyan', 'silver', 'deepskyblue', 'mediumspringgreen', 'gold'])
self.clusters_stop = 5
self.feature_idx = {0: 0, 1: 0, 2: 0}
self.cluster_cols = [('PerimeterMax', 'AreaSe'),
('ConcavePointsMax', 'TextureMean')]
with timer('\nLoad dataset'):
self.load_data()
self.encode_target()
with timer('\nInitial Statistics'):
self.column_statistics()
self.row_count_by_target('Diagnosis')
with timer('\nSetting X and y'):
self.set_X_y()
with timer('\nFeature Selection'):
self.univariate_feature_selection()
self.random_forest_classifier()
with timer('\nCondensing X to selected features'):
self.X = self.X[self.features_selected]
with timer('\nDistributions - Full Dataset'):
self.correlation_heatmap()
self.update_X_drop_highly_corr()
self.scale(self.X)
self.distribution_multi_kde_scaled('full')
self.distplot(self.X, 'full')
self.kdeplot_with_target(self.wdbc_full, 'full')
self.linearity(self.wdbc_full, 'full')
self.cluster(self.wdbc_full, 'full', idx=self.feature_idx)
with timer('\nOutput Wrangled Dataset'):
self.write_csv()
with timer('\nDistributions - Training Subset'):
self.cols = ['ID'] + list(self.X.columns) + ['Diagnosis']
self.X = self.wdbc_full[self.cols]
self.set_y()
self.train_test_split()
self.scale(self.X_train)
self.distribution_multi_kde_scaled('train')
self.distplot(self.X_train, 'train')
self.kdeplot_with_target(self.X_train, 'train')
self.linearity(self.X_train, 'train')
self.cluster(self.X_train, 'train', idx=self.feature_idx)
def load_data(self):
self.wdbc_full = pd.read_csv('data/wdbc.data', header=None)
self.wdbc_full.columns = ['ID', 'Diagnosis', 'RadiusMean', 'TextureMean', 'PerimeterMean', 'AreaMean',
'SmoothnessMean', 'CompactnessMean', 'ConcavityMean', 'ConcavePointsMean',
'SymmetryMean', 'FractalDimensionMean', 'RadiusSe', 'TextureSe', 'PerimeterSe',
'AreaSe', 'SmoothnessSe', 'CompactnessSe', 'ConcavitySe', 'ConcavePointsSe',
'SymmetrySe', 'FractalDimensionSe', 'RadiusMax', 'TextureMax', 'PerimeterMax',
'AreaMax', 'SmoothnessMax', 'CompactnessMax', 'ConcavityMax', 'ConcavePointsMax',
'SymmetryMax', 'FractalDimensionMax']
print('\n', '_' * 40, 'Shape After Data Load', '_' * 40)
self.print_shape()
# Encode string class label to binary
def encode_target(self):
self.wdbc_full['Diagnosis'] = self.wdbc_full['Diagnosis'].map(self.label_map_string_2_int)
self.wdbc_full['Diagnosis'].astype(int)
def column_statistics(self):
print('\n', '_' * 40, 'Column Statistics', '_' * 40)
for col in self.wdbc_full:
self.column_stats[col + '_dtype'] = self.wdbc_full[col].dtype
self.column_stats[col + '_zero_num'] = (self.wdbc_full[col] == 0).sum()
self.column_stats[col + '_zero_num'] = self.column_stats[col + '_zero_num'] + (self.wdbc_full[col] == '?').sum()
self.column_stats[col + '_zero_pct'] = (((self.wdbc_full[col] == 0).sum() / self.wdbc_full.shape[0]) * 100)
self.column_stats[col + '_nunique'] = self.wdbc_full[col].nunique()
print('\n- {} ({})'.format(col, self.column_stats[col + '_dtype']))
print('\tzero {} ({:.2f}%)'.format(self.column_stats[col + '_zero_num'],
self.column_stats[col + '_zero_pct']))
print('\tdistinct {}'.format(self.column_stats[col + '_nunique']))
# Numerical features
if self.wdbc_full[col].dtype != object:
self.column_stats[col + '_min'] = self.wdbc_full[col].min()
self.column_stats[col + '_mean'] = self.wdbc_full[col].mean()
self.column_stats[col + '_quantile_25'] = self.wdbc_full[col].quantile(.25)
self.column_stats[col + '_quantile_50'] = self.wdbc_full[col].quantile(.50)
self.column_stats[col + '_quantile_75'] = self.wdbc_full[col].quantile(.75)
self.column_stats[col + '_max'] = self.wdbc_full[col].max()
self.column_stats[col + '_std'] = self.wdbc_full[col].std()
self.column_stats[col + '_skew'] = self.wdbc_full[col].skew()
self.column_stats[col + '_kurt'] = self.wdbc_full[col].kurt()
print('\tmin {}'.format(self.column_stats[col + '_min']))
print('\tmean {:.3f}'.format(self.column_stats[col + '_mean']))
print('\t25% {:.3f}'.format(self.column_stats[col + '_quantile_25']))
print('\t50% {:.3f}'.format(self.column_stats[col + '_quantile_50']))
print('\t75% {:.3f}'.format(self.column_stats[col + '_quantile_75']))
print('\tmax {}'.format(self.column_stats[col + '_max']))
print('\tstd {:.3f}'.format(self.column_stats[col + '_std']))
print('\tskew {:.3f}'.format(self.column_stats[col + '_skew']))
print('\tkurt {:.3f}'.format(self.column_stats[col + '_kurt']))
def set_X_y(self):
self.X = self.wdbc_full.copy()
# Remove individual sample ID and target label
self.X.drop(['ID', 'Diagnosis'], axis=1, inplace=True)
# Set y as target class label
self.y = pd.Series(self.wdbc_full.Diagnosis)
# Get feature importance by chi-squared
def univariate_feature_selection(self):
print('\n', '_' * 40, 'Univariate Feature Selection With Chi-squared', '_' * 40)
k = 15
kbest = SelectKBest(score_func=chi2, k=15)
fit = kbest.fit(self.X, self.y)
print(fit.scores_)
cols = kbest.get_support()
features_selected = self.X.columns[cols]
print(features_selected)
# Get feature importance by RFC
def random_forest_classifier(self):
print('\n\n', '_' * 40, 'Random Forest Classifier', '_' * 40)
data = pd.DataFrame(columns=['Feature', 'Random Forest Importance Score'])
k = 15
model = RandomForestClassifier(n_estimators=100, random_state=self.random_state)
model.fit(self.X, self.y)
ranked = list(zip(self.X.columns, model.feature_importances_))
ranked_sorted = sorted(ranked, key=lambda x: x[1], reverse=True)
print(ranked_sorted)
for f in ranked_sorted[:k]:
self.features_selected.append(f[0])
data = data.append({'Feature': f[0], 'Random Forest Importance Score': f[1]},
ignore_index=True)
fig, ax = plt.subplots(figsize=(25, 7))
ax = sns.barplot(x='Feature', y='Random Forest Importance Score', data=data, color='palevioletred')
plt.savefig(fname='plots/full - feature selection RFC.png', dpi=300, format='png')
plt.show()
def scale(self, dataset):
df_temp = dataset.copy()
try:
df_temp = df_temp.drop(columns=['ID', 'Diagnosis'])
except KeyError:
pass
scaler = MinMaxScaler()
self.X_scaled = scaler.fit_transform(df_temp)
self.X_scaled = pd.DataFrame(self.X_scaled, columns=df_temp.columns)
def row_count_by_target(self, target):
print('\n\n', '_' * 40, 'Row Count By {}'.format(target), '_' * 40)
series = self.wdbc_full[target].value_counts()
for idx, val in series.iteritems():
print('\t{}: {} ({:6.3f}%)'.format(idx, val, ((val / self.wdbc_full.shape[0]) * 100)))
def print_shape(self):
print('\tRow count:\t', '{}'.format(self.wdbc_full.shape[0]))
print('\tColumn count:\t', '{}'.format(self.wdbc_full.shape[1]))
def distribution_multi_kde_scaled(self, dataset_name):
for col in self.X_scaled:
sns.kdeplot(self.X_scaled[col], shade=True)
plt.savefig(fname='plots/' + dataset_name + ' - distplot.png', dpi=300, format='png')
plt.show()
# Plot feature correlation
def correlation_heatmap(self, title='Correlation Heatmap', drop=False):
# Top x selected features
df_corr = self.wdbc_full[self.features_selected].copy()
corr = df_corr.corr()
plt.clf()
fig, ax = plt.subplots(figsize=(15, 15))
ax.set_title(title, size=16)
drop_self = np.zeros_like(corr) # Drop self-correlations
drop_self[np.triu_indices_from(drop_self)] = True
g = sns.heatmap(corr, cmap='coolwarm', vmin=-1, vmax=1, center=0, annot=True, fmt=".2f", mask=drop_self, cbar=True)
g.set_yticklabels(g.get_yticklabels(), rotation=0)
g.set_xticklabels(g.get_yticklabels(), rotation=45)
plt.savefig(fname='plots/full - corr heatmap top features.png', dpi=300, format='png')
plt.show()
# Drop highly correlated for 2nd heatmap
upper = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
self.highly_correlated_features = [column for column in upper.columns if any(upper[column] > 0.85)]
df_corr = df_corr.drop(df_corr[self.highly_correlated_features], axis=1)
corr = df_corr.corr()
plt.clf()
fig, ax = plt.subplots(figsize=(15, 15))
ax.set_title(title, size=16)
drop_self = np.zeros_like(corr) # Drop self-correlations
drop_self[np.triu_indices_from(drop_self)] = True
g = sns.heatmap(corr, cmap='coolwarm', vmin=-1, vmax=1, center=0, annot=True, fmt=".2f", mask=drop_self,
cbar=True)
g.set_yticklabels(g.get_yticklabels(), rotation=0)
g.set_xticklabels(g.get_yticklabels(), rotation=45)
plt.savefig(fname='plots/full - corr heatmap top feat after dropping highly corr.png', dpi=300, format='png')
plt.show()
def update_X_drop_highly_corr(self):
self.X = self.X.drop(self.X[self.highly_correlated_features], axis=1)
self.features_selected = list(self.X)
def distplot(self, dataset, dataset_name):
for col in self.features_selected:
if col == 'ID' or col == 'Diagnosis':
continue
plt.ylabel('Density')
sns.distplot(dataset[col], hist=True, color='palevioletred', kde=True, hist_kws={'edgecolor':'black'},
kde_kws={'linewidth': 4})
plt.savefig(fname='plots/' + dataset_name + ' - dist - col ' + col + '.png', dpi=300, format='png')
plt.show()
def kdeplot_with_target(self, dataset, dataset_name):
for col in self.features_selected:
sns.kdeplot(dataset.loc[dataset['Diagnosis'] == 1, col], shade=True, color='r')
sns.kdeplot(dataset.loc[dataset['Diagnosis'] == 0, col], shade=True, color='g')
plt.xlabel(col)
plt.ylabel('Density')
plt.legend(labels=['Malignant', 'Benign'])
plt.savefig(fname='plots/' + dataset_name + ' - kdeplot target - ' + col + '.png', dpi=300, format='png')
plt.show()
# Determine linear separability
def linearity(self, dataset, dataset_name):
buckets = [0, 1]
self.convex_hull(dataset, buckets, cola='ConcavePointsMax', colb='TextureMean', target='Diagnosis',
dataset_name=dataset_name)
self.convex_hull(dataset, buckets, cola='PerimeterMax', colb='AreaSe', target='Diagnosis',
dataset_name=dataset_name)
# Draw convex hull around 2 buckets of feature points
def convex_hull(self, df, buckets, cola, colb, target, dataset_name):
cmap = plt.get_cmap('Set1')
plt.clf()
plt.figure(figsize=(10, 6))
title = '{} vs {} - Label {}'.format(cola, colb, target)
plt.title(title, fontsize=16)
plt.xlabel(cola, fontsize=12)
plt.ylabel(colb, fontsize=12)
for i in range(len(buckets)):
bucket = df[df[target] == buckets[i]]
bucket = bucket.iloc[:, [df.columns.get_loc(cola), df.columns.get_loc(colb)]].values
hull = ConvexHull(bucket)
hull_color = self.class_colours[i]
plt.scatter(bucket[:, 0], bucket[:, 1], label=buckets[i], c=self.class_colours[i], alpha=0.4)
for j in hull.simplices:
plt.plot(bucket[j, 0], bucket[j, 1], color=hull_color)
plt.legend()
plt.savefig(fname='plots/' + dataset_name + ' - convex hull - ' + cola + ' ' + colb + '.png', dpi=300,
format='png')
plt.show()
# K-means clustering
def cluster(self, dataset, dataset_name, idx):
df_temp = dataset.copy()
try:
df_temp = df_temp.drop(columns=['ID', 'Diagnosis'])
except KeyError:
pass
sc = StandardScaler()
df_temp_cols = list(df_temp.columns)
df_temp = sc.fit_transform(df_temp)
df_temp = pd.DataFrame(df_temp, columns=df_temp_cols)
for cola, colb in self.cluster_cols:
for c in range(2, self.clusters_stop):
self.set_indexes(cola, colb, df_temp)
kmeans = KMeans(n_clusters=c, random_state=self.random_state)
kmeans.fit(df_temp)
y_km = kmeans.fit_predict(df_temp)
self.scatter_clusters(df_temp, dataset_name, c, y_km, idx)
def scatter_clusters(self, df, dataset_name, n_clusters, y_clusters, col_idx):
fig = plt.figure(figsize=(8, 6))
ax = fig.add_subplot(111)
df_x = df
if isinstance(df_x, pd.DataFrame):
df_x = df_x.values
title = str(n_clusters) + ' Clusters - ' + df.columns[col_idx[0]] + ' vs ' + df.columns[col_idx[1]]
plt.title(title, fontsize=12)
xlabel = df.columns[col_idx[0]]
ylabel = df.columns[col_idx[1]]
ax.set_xlabel(xlabel, fontsize=12)
ax.set_ylabel(ylabel, fontsize=12)
# 2 clusters minimum
for c in range(n_clusters):
ax.scatter(df_x[y_clusters == c, col_idx[0]], df_x[y_clusters == c, col_idx[1]], alpha=0.2,
edgecolors='none', s=20, c=self.class_colours[c])
plt.savefig(fname='plots/' + dataset_name + ' - ' + str(n_clusters) + ' Clusters - ' + xlabel + ' vs ' + ylabel
+ '.png', dpi=300, format='png')
plt.show()
def set_indexes(self, cola, colb, dataset):
self.feature_idx[0] = dataset.columns.get_loc(cola)
self.feature_idx[1] = dataset.columns.get_loc(colb)
def set_y(self):
self.y = self.X['Diagnosis']
def remove_target_from_X(self):
self.X.drop('Diagnosis', axis=1, inplace=True)
def train_test_split(self):
self.X_train, self.X_test, self.y_train, self.y_test = train_test_split(self.X, self.y, test_size=0.30,
random_state=self.random_state)
def write_csv(self):
cols = ['ID'] + list(self.X.columns) + ['Diagnosis']
self.wdbc_full[cols].to_csv('data/wdbc_selected_cols.csv', header=True, index=False)
wdbcAnalysis = WDBCAnalysis()