-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathexampleScript.m
148 lines (97 loc) · 5.18 KB
/
exampleScript.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
% Example script for some of the functions in the spikes repository.
%
% These functions make it easy to work with spiking data from kilosort/phy
% (or, for many functions, from anywhere)
%
% Please make an issue if this function is missing some dependencies.
%
% See https://github.com/cortex-lab/neuropixels/wiki/Other_analysis_methods
% for more explanation.
%% add the repositories to your path
addpath(genpath('C:\...\github\spikes'))
addpath(genpath('C:\...\github\npy-matlab'))
%% set paths for where to find your data
myKsDir = 'C:\...\data\myKilosortOutputDirectory';
myEventTimes = load('C:\...\data\someEventTimes.mat'); % a vector of times in seconds of some event to align to
%% Loading data from kilosort/phy easily
sp = loadKSdir(myKsDir)
% sp.st are spike times in seconds
% sp.clu are cluster identities
% spikes from clusters labeled "noise" have already been omitted
%% Plotting a driftmap
[spikeTimes, spikeAmps, spikeDepths, spikeSites] = ksDriftmap(myKsDir);
figure; plotDriftmap(spikeTimes, spikeAmps, spikeDepths);
%% basic quantification of spiking plot
depthBins = 0:40:3840;
ampBins = 0:30:min(max(spikeAmps),800);
recordingDur = sp.st(end);
[pdfs, cdfs] = computeWFampsOverDepth(spikeAmps, spikeDepths, ampBins, depthBins, recordingDur);
plotWFampCDFs(pdfs, cdfs, ampBins, depthBins);
%% Plotting some basics about LFPs
lfpD = dir(fullfile(myKsDir, '*.lf.bin')); % LFP file from spikeGLX specifically
lfpFilename = fullfile(myKsDir, lfpD(1).name);
lfpFs = 2500; % neuropixels phase3a
nChansInFile = 385; % neuropixels phase3a, from spikeGLX
[lfpByChannel, allPowerEst, F, allPowerVar] = ...
lfpBandPower(lfpFilename, lfpFs, nChansInFile, []);
chanMap = readNPY(fullfile(myKsDir, 'channel_map.npy'));
nC = length(chanMap);
allPowerEst = allPowerEst(:,chanMap+1)'; % now nChans x nFreq
% plot LFP power
dispRange = [0 100]; % Hz
marginalChans = [10:50:nC];
freqBands = {[1.5 4], [4 10], [10 30], [30 80], [80 200]};
plotLFPpower(F, allPowerEst, dispRange, marginalChans, freqBands);
%% Computing some useful details about spikes/neurons (like depths)
[spikeAmps, spikeDepths, templateYpos, tempAmps, tempsUnW, tempDur, tempPeakWF] = ...
templatePositionsAmplitudes(sp.temps, sp.winv, sp.ycoords, sp.spikeTemplates, sp.tempScalingAmps);
%% load synchronization data
syncChanIndex = 385;
syncDat = extractSyncChannel(myKsDir, nChansInFile, syncChanIndex);
eventTimes = spikeGLXdigitalParse(syncDat, lfpFs);
% - eventTimes{1} contains the sync events from digital channel 1, as three cells:
% - eventTimes{1}{1} is the times of all events
% - eventTimes{1}{2} is the times the digital bit went from off to on
% - eventTimes{1}{2} is the times the digital bit went from on to off
% To make a timebase conversion, e.g. between two probes:
% [~,b] = makeCorrection(syncTimesProbe1, syncTimesProbe2, false);
% and to apply it:
% correctedSpikeTimes = applyCorrection(spikeTimesProbe2, b);
%% Looking at PSTHs aligned to some event
% if you now have a vector of relevant event times, called eventTimes (but
% not the cell array as above, just a vector):
window = [-0.3 1]; % look at spike times from 0.3 sec before each event to 1 sec after
% if your events come in different types, like different orientations of a
% visual stimulus, then you can provide those values as "trial groups",
% which will be used to construct a tuning curve. Here we just give a
% vector of all ones.
trialGroups = ones(size(eventTimes));
psthViewer(sp.st, sp.clu, eventTimes, window, trialGroups);
% use left/right arrows to page through the clusters
%% PSTHs across depth
depthBinSize = 80; % in units of the channel coordinates, in this case µm
timeBinSize = 0.01; % seconds
bslWin = [-0.2 -0.05]; % window in which to compute "baseline" rates for normalization
psthType = 'norm'; % show the normalized version
eventName = 'stimulus onset'; % for figure labeling
[timeBins, depthBins, allP, normVals] = psthByDepth(spikeTimes, spikeDepths, ...
depthBinSize, timeBinSize, eventTimes, window, bslWin);
figure;
plotPSTHbyDepth(timeBins, depthBins, allP, eventName, psthType);
%% Loading raw waveforms
% To get the true waveforms of the spikes (not just kilosort's template
% shapes), use the getWaveForms function:
gwfparams.dataDir = myKsDir; % KiloSort/Phy output folder
apD = dir(fullfile(myKsDir, '*ap*.bin')); % AP band file from spikeGLX specifically
gwfparams.fileName = apD(1).name; % .dat file containing the raw
gwfparams.dataType = 'int16'; % Data type of .dat file (this should be BP filtered)
gwfparams.nCh = 385; % Number of channels that were streamed to disk in .dat file
gwfparams.wfWin = [-40 41]; % Number of samples before and after spiketime to include in waveform
gwfparams.nWf = 2000; % Number of waveforms per unit to pull out
gwfparams.spikeTimes = ceil(sp.st(sp.clu==155)*30000); % Vector of cluster spike times (in samples) same length as .spikeClusters
gwfparams.spikeClusters = sp.clu(sp.clu==155);
wf = getWaveForms(gwfparams);
figure;
imagesc(squeeze(wf.waveFormsMean))
set(gca, 'YDir', 'normal'); xlabel('time (samples)'); ylabel('channel number');
colormap(colormap_BlueWhiteRed); caxis([-1 1]*max(abs(caxis()))/2); box off;