This repository has been archived by the owner on Jan 4, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathOrdinals.v
399 lines (364 loc) · 9.68 KB
/
Ordinals.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
Require Import Classical.
Declare Scope ordinal_scope.
Inductive Ordinal : Type :=
| ordS : Ordinal -> Ordinal
| ord_sup: forall {I:Type}, (I->Ordinal) -> Ordinal.
(*
Fixpoint ord_le (alpha beta:Ordinal) : Prop :=
match alpha with
| ordS alpha =>
(fix gt_alpha (beta:Ordinal) : Prop :=
match beta with
| ordS beta => ord_le alpha beta
| ord_sup J beta => exists j:J,
gt_alpha (beta j)
end) beta
| ord_sup I0 alpha => forall i:I0, ord_le (alpha i) beta
end.
*)
Inductive ord_le : Ordinal -> Ordinal -> Prop :=
| ord_le_respects_succ: forall alpha beta:Ordinal,
ord_le alpha beta -> ord_le (ordS alpha) (ordS beta)
| ord_le_S_sup: forall (alpha:Ordinal) (J:Type)
(beta:J->Ordinal) (j:J), ord_le (ordS alpha) (beta j) ->
ord_le (ordS alpha) (ord_sup beta)
| ord_sup_minimal: forall (I:Type) (alpha:I->Ordinal)
(beta:Ordinal), (forall i:I, ord_le (alpha i) beta) ->
ord_le (ord_sup alpha) beta.
Definition ord_lt (alpha beta:Ordinal) :=
ord_le (ordS alpha) beta.
Definition ord_eq (alpha beta:Ordinal) :=
ord_le alpha beta /\ ord_le beta alpha.
Definition ord_ge (alpha beta:Ordinal) :=
ord_le beta alpha.
Definition ord_gt (alpha beta:Ordinal) :=
ord_lt beta alpha.
Open Scope ordinal_scope.
Notation "alpha < beta" := (ord_lt alpha beta) : ordinal_scope.
Notation "alpha <= beta" := (ord_le alpha beta) : ordinal_scope.
Notation "alpha == beta" := (ord_eq alpha beta)
(at level 70) : ordinal_scope.
Notation "alpha > beta" := (ord_gt alpha beta) : ordinal_scope.
Notation "alpha >= beta" := (ord_ge alpha beta) : ordinal_scope.
Lemma ord_le_respects_succ_converse: forall alpha beta:Ordinal,
ordS alpha <= ordS beta -> alpha <= beta.
Proof.
intros.
inversion_clear H.
assumption.
Qed.
Lemma ord_le_S_sup_converse: forall (alpha:Ordinal)
(J:Type) (beta:J->Ordinal), ordS alpha <= ord_sup beta ->
exists j:J, ordS alpha <= beta j.
Proof.
intros.
inversion H.
exists j.
assumption.
Qed.
Lemma ord_sup_minimal_converse: forall (I:Type)
(alpha:I->Ordinal) (beta:Ordinal),
ord_sup alpha <= beta -> forall i:I, alpha i <= beta.
Proof.
intros.
inversion H.
Require Import Eqdep.
apply inj_pair2 in H2.
destruct H2.
apply H3.
Qed.
Lemma ord_le_trans: forall alpha beta gamma:Ordinal,
alpha <= beta -> beta <= gamma -> alpha <= gamma.
Proof.
induction alpha.
induction beta.
induction gamma.
intros.
apply ord_le_respects_succ.
apply IHalpha with beta.
apply ord_le_respects_succ_converse; trivial.
apply ord_le_respects_succ_converse; trivial.
intros.
apply ord_le_S_sup_converse in H1.
destruct H1 as [i].
apply ord_le_S_sup with i.
apply H; trivial.
intros.
pose proof (ord_sup_minimal_converse _ _ _ H1).
apply ord_le_S_sup_converse in H0.
destruct H0 as [i].
apply H with i; trivial.
intros.
pose proof (ord_sup_minimal_converse _ _ _ H0).
constructor.
intro.
apply H with beta; trivial.
Qed.
Lemma ord_le_sup: forall (I:Type) (alpha:I->Ordinal) (i:I),
alpha i <= ord_sup alpha.
Proof.
assert (forall beta:Ordinal, beta <= beta /\
forall (I:Type) (alpha:I->Ordinal) (i:I),
beta <= alpha i -> beta <= ord_sup alpha).
induction beta.
destruct IHbeta.
split.
apply ord_le_respects_succ; trivial.
intros.
apply ord_le_S_sup with i.
trivial.
split.
apply ord_sup_minimal.
intro.
destruct (H i).
apply H1 with i; trivial.
intros J alpha j ?.
apply ord_sup_minimal.
intro.
destruct (H i).
apply H2 with j.
apply ord_le_trans with (ord_sup o).
apply H2 with i; trivial.
trivial.
intros.
destruct (H (alpha i)).
apply H1 with i; trivial.
Qed.
Lemma ord_le_refl: forall alpha:Ordinal, alpha <= alpha.
Proof.
induction alpha.
apply ord_le_respects_succ; trivial.
apply ord_sup_minimal.
apply ord_le_sup.
Qed.
Lemma ord_le_S: forall alpha:Ordinal, alpha <= ordS alpha.
Proof.
induction alpha.
apply ord_le_respects_succ; trivial.
apply ord_sup_minimal.
intro.
apply ord_le_trans with (ordS (o i)).
apply H.
apply ord_le_respects_succ.
apply ord_le_sup.
Qed.
Lemma ord_lt_le: forall alpha beta:Ordinal,
alpha < beta -> alpha <= beta.
Proof.
intros.
apply ord_le_trans with (ordS alpha); trivial.
apply ord_le_S.
Qed.
Lemma ord_lt_le_trans: forall alpha beta gamma:Ordinal,
alpha < beta -> beta <= gamma -> alpha < gamma.
Proof.
intros.
apply ord_le_trans with beta; trivial.
Qed.
Lemma ord_le_lt_trans: forall alpha beta gamma:Ordinal,
alpha <= beta -> beta < gamma -> alpha < gamma.
Proof.
intros.
apply ord_le_trans with (ordS beta); trivial.
apply ord_le_respects_succ; trivial.
Qed.
Lemma ord_lt_trans: forall alpha beta gamma:Ordinal,
alpha < beta -> beta < gamma -> alpha < gamma.
Proof.
intros.
apply ord_lt_le_trans with beta; trivial;
apply ord_lt_le; trivial.
Qed.
Lemma ord_lt_respects_succ: forall alpha beta:Ordinal,
alpha < beta -> ordS alpha < ordS beta.
Proof.
intros.
apply ord_le_respects_succ; trivial.
Qed.
Lemma ord_total_order: forall alpha beta:Ordinal,
alpha < beta \/ alpha == beta \/ alpha > beta.
Proof.
induction alpha.
induction beta.
destruct (IHalpha beta) as [|[|]].
left; apply ord_lt_respects_succ; trivial.
right; left.
split.
apply ord_le_respects_succ; apply H.
apply ord_le_respects_succ; apply H.
right; right.
apply ord_lt_respects_succ; trivial.
destruct (classic (exists i:I, ordS alpha < o i)).
destruct H0 as [i].
left.
apply ord_lt_le_trans with (o i); trivial.
apply ord_le_sup.
destruct (classic (exists i:I, ordS alpha == o i)).
destruct H1 as [i].
right; left.
split.
apply ord_le_trans with (o i).
apply H1.
apply ord_le_sup.
apply ord_sup_minimal.
intro.
destruct (H i0) as [|[|]].
contradiction H0; exists i0; trivial.
apply H2.
apply ord_lt_le; trivial.
assert (forall i:I, ordS alpha > o i).
intros.
destruct (H i) as [|[|]].
contradiction H0; exists i; trivial.
contradiction H1; exists i; trivial.
trivial.
right; right.
apply ord_le_lt_trans with alpha.
apply ord_sup_minimal.
intro.
apply ord_le_respects_succ_converse.
apply H2.
apply ord_le_refl.
induction beta.
case (classic (exists i:I, o i > ordS beta)); intro.
destruct H0 as [i].
right; right.
apply ord_lt_le_trans with (o i); trivial.
apply ord_le_sup.
case (classic (exists i:I, o i == ordS beta)); intro.
right; left.
destruct H1 as [i].
split.
apply ord_sup_minimal.
intro j.
destruct (H j (ordS beta)) as [|[|]].
apply ord_lt_le; trivial.
apply H2.
contradiction H0; exists j; trivial.
apply ord_le_trans with (o i).
apply H1.
apply ord_le_sup.
left.
apply ord_le_respects_succ.
apply ord_sup_minimal.
intro.
destruct (H i (ordS beta)) as [|[|]].
apply ord_le_respects_succ_converse; trivial.
contradiction H1; exists i; trivial.
contradiction H0; exists i; trivial.
case (classic (exists j:I0, ord_sup o < o0 j)); intro.
left.
destruct H1 as [j].
apply ord_lt_le_trans with (o0 j); trivial.
apply ord_le_sup.
case (classic (exists i:I, o i > ord_sup o0)); intro.
destruct H2 as [i].
right; right.
apply ord_lt_le_trans with (o i); trivial.
apply ord_le_sup.
right; left.
split.
apply ord_sup_minimal; intro.
destruct (H i (ord_sup o0)) as [|[|]].
apply ord_lt_le; trivial.
apply H3.
contradiction H2; exists i; trivial.
apply ord_sup_minimal; intro j.
destruct (H0 j) as [|[|]].
contradiction H1; exists j; trivial.
apply H3.
apply ord_lt_le; trivial.
Qed.
Lemma ordinals_well_founded: well_founded ord_lt.
Proof.
red; intro alpha.
induction alpha.
constructor.
intros beta ?.
apply ord_le_respects_succ_converse in H.
constructor; intros gamma ?.
destruct IHalpha.
apply H1.
apply ord_lt_le_trans with beta; trivial.
constructor; intros alpha ?.
apply ord_le_S_sup_converse in H0.
destruct H0 as [j].
destruct (H j).
apply H1; trivial.
Qed.
Lemma ord_lt_irrefl: forall alpha:Ordinal, ~(alpha < alpha).
Proof.
intro; red; intro.
assert (forall beta:Ordinal, beta <> alpha).
intro.
pose proof (ordinals_well_founded beta).
induction H0.
red; intro.
symmetry in H2; destruct H2.
contradiction (H1 alpha H); trivial.
contradiction (H0 alpha); trivial.
Qed.
Inductive successor_ordinal : Ordinal->Prop :=
| intro_succ_ord: forall alpha:Ordinal,
successor_ordinal (ordS alpha)
| succ_ord_wd: forall alpha beta:Ordinal,
successor_ordinal alpha -> alpha == beta ->
successor_ordinal beta.
Inductive limit_ordinal : Ordinal->Prop :=
| intro_limit_ord: forall {I:Type} (alpha:I->Ordinal),
(forall i:I, exists j:I, alpha i < alpha j) ->
limit_ordinal (ord_sup alpha)
| limit_ord_wd: forall alpha beta:Ordinal,
limit_ordinal alpha -> alpha == beta ->
limit_ordinal beta.
Lemma ord_successor_or_limit: forall alpha:Ordinal,
successor_ordinal alpha \/ limit_ordinal alpha.
Proof.
induction alpha.
left; constructor.
destruct (classic (forall i:I, exists j:I, o i < o j)).
right; constructor; trivial.
destruct (not_all_ex_not _ _ H0) as [i].
assert (forall j:I, o j <= o i).
intro.
destruct (ord_total_order (o i) (o j)) as [|[|]].
contradiction H1; exists j; trivial.
apply H2.
apply ord_lt_le; trivial.
assert (ord_sup o == o i).
split.
apply ord_sup_minimal; trivial.
apply ord_le_sup.
case (H i); intro.
left; apply succ_ord_wd with (o i); trivial.
split; apply H3.
right.
apply limit_ord_wd with (o i); trivial.
split; apply H3.
Qed.
Lemma successor_ordinal_not_limit: forall alpha:Ordinal,
successor_ordinal alpha -> ~ limit_ordinal alpha.
Proof.
intros; red; intro.
induction H.
inversion_clear H0.
induction H as [I beta|].
assert (ord_sup beta <= alpha).
apply ord_sup_minimal.
intro.
apply ord_le_respects_succ_converse.
destruct (H i) as [j].
apply ord_le_trans with (beta j); trivial.
apply ord_le_trans with (ord_sup beta).
apply ord_le_sup.
apply H1.
contradiction (ord_lt_irrefl alpha).
apply ord_le_trans with (ord_sup beta); trivial.
apply H1.
apply IHlimit_ordinal.
split; apply ord_le_trans with beta;
(apply H0 || apply H1).
contradiction IHsuccessor_ordinal.
apply limit_ord_wd with beta; trivial.
split; apply H1.
Qed.