-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathview_generative_model.py
executable file
·96 lines (84 loc) · 3.66 KB
/
view_generative_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
#!/usr/bin/env python
"""
Usage:
>> server.py --time 60 --batch 64
>> ./make_gif.py transition --name transition --time 15 --batch 64
"""
import os
os.environ["KERAS_BACKEND"] = "tensorflow"
import time
import cv2
from keras import callbacks as cbks
from keras import backend as K
import logging
import tensorflow as tf
import numpy as np
from scipy.misc import imsave, imresize
from tqdm import *
from server import client_generator
mixtures = 1
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description='MiniBatch server')
parser.add_argument('model', type=str, default="transition", help='Model definitnion file')
parser.add_argument('--name', type=str, default="transition", help='Name of the model.')
parser.add_argument('--host', type=str, default="localhost", help='Data server ip address.')
parser.add_argument('--port', type=int, default=5557, help='Port of server.')
parser.add_argument('--time', type=int, default=1, help='How many temporal frames in a single input.')
parser.add_argument('--batch', type=int, default=256, help='Batch size.')
parser.add_argument('--epoch', type=int, default=200, help='Number of epochs.')
parser.add_argument('--gpu', type=int, default=0, help='Which gpu to use')
parser.add_argument('--loadweights', dest='loadweights', action='store_true', help='Start from checkpoint.')
parser.set_defaults(skipvalidate=False)
parser.set_defaults(loadweights=False)
args = parser.parse_args()
MODEL_NAME = args.model
logging.info("Importing get_model from {}".format(args.model))
exec("from models."+MODEL_NAME+" import get_model, load, save")
# try to import `cleanup` from model file
try:
exec("from models."+MODEL_NAME+" import cleanup")
except:
cleanup = old_cleanup
model_code = open('models/'+MODEL_NAME+'.py').read()
with tf.Session() as sess:
K.set_session(sess)
g_train, d_train, sampler, saver, loader, [G, E, T] = get_model(sess=sess, name=args.name, batch_size=args.batch, gpu=args.gpu)
print("loading weights...")
G.load_weights("./outputs/results_autoencoder/G_weights.keras".format(args.name))
E.load_weights("./outputs/results_autoencoder/E_weights.keras".format(args.name))
checkpoint_dir = './outputs/results_' + args.name
T.load_weights(checkpoint_dir+"/T_weights.keras")
if not os.path.exists("./video_"+args.name):
os.makedirs("./video_"+args.name)
# get data
data = client_generator(hwm=20, host="localhost", port=5557)
X = next(data)[0] # [:, ::2]
sh = X.shape
X = X.reshape((-1, 3, 160, 320))
X = np.asarray([cv2.resize(x.transpose(1, 2, 0), (160, 80)) for x in X])
X = X/127.5 - 1.
x = X.reshape((sh[0], args.time, 80, 160, 3))
# estimate frames
z_dim = 512
I = E.input
E_out = E(I)
O = G.input
G_out = G(O)
print "Sampling..."
for i in tqdm(range(128)):
x = x.reshape((-1, 80, 160, 3))
# code = E.predict(x, batch_size=args.batch*args.time)[0]
code = sess.run([E_out[0]], feed_dict={I: x, K.learning_phase(): 1})[0]
code = code.reshape((args.batch, args.time, z_dim))
inp = code[:, :5] # context is based on the first 5 frames only
outs = T.predict(inp, batch_size=args.batch)
imgs = sess.run([G_out], feed_dict={O: outs.reshape((-1, z_dim)), K.learning_phase(): 1})[0]
# imgs = G.predict(outs[:, 0], batch_size=args.batch)
x = x.reshape((args.batch, args.time, 80, 160, 3))
x[0, :-1] = x[0, 1:]
x[0, -1] = imgs[0]
imsave("video_"+args.name+"/%03d.png" % i, imresize(imgs[0], (160, 320)))
cmd = "ffmpeg -y -i ./video_"+args.name+"/%03d.png ./video_"+args.name+"/output.gif -vf fps=1"
print(cmd)
os.system(cmd)