-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathsolution.cpp
128 lines (98 loc) · 4.42 KB
/
solution.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
SYCL Academy (c)
SYCL Academy is licensed under a Creative Commons
Attribution-ShareAlike 4.0 International License.
You should have received a copy of the license along with this
work. If not, see <http://creativecommons.org/licenses/by-sa/4.0/>.
*/
#include <benchmark.h>
#include <image_conv.h>
#include <algorithm>
#include <iostream>
#include <sycl/sycl.hpp>
#include "../helpers.hpp"
class image_convolution;
inline constexpr util::filter_type filterType = util::filter_type::blur;
inline constexpr int filterWidth = 11;
inline constexpr int halo = filterWidth / 2;
int main() {
constexpr auto inputImageFile = "../Images/dogs.png";
constexpr auto outputImageFile = "../Images/blurred_dogs.png";
auto inputImage = util::read_image(inputImageFile, halo);
auto outputImage = util::allocate_image(
inputImage.width(), inputImage.height(), inputImage.channels());
auto filter = util::generate_filter(util::filter_type::blur, filterWidth);
try {
sycl::queue myQueue{sycl::gpu_selector_v};
std::cout << "Running on "
<< myQueue.get_device().get_info<sycl::info::device::name>()
<< "\n";
auto inputImgWidth = inputImage.width();
auto inputImgHeight = inputImage.height();
auto channels = inputImage.channels();
auto filterWidth = filter.width();
auto halo = filter.half_width();
auto globalRange = sycl::range(inputImgHeight, inputImgWidth);
auto localRange = sycl::range(16, 16);
auto ndRange = sycl::nd_range(globalRange, localRange);
auto inBufRange =
sycl::range(inputImgHeight + (halo * 2), inputImgWidth + (halo * 2)) *
sycl::range(1, channels);
auto outBufRange =
sycl::range(inputImgHeight, inputImgWidth) * sycl::range(1, channels);
auto filterRange = filterWidth * sycl::range(1, channels);
auto scratchpadRange = localRange + sycl::range(halo * 2, halo * 2);
{
auto inBuf = sycl::buffer{inputImage.data(), inBufRange};
auto outBuf = sycl::buffer<float, 2>{outBufRange};
auto filterBuf = sycl::buffer{filter.data(), filterRange};
outBuf.set_final_data(outputImage.data());
auto inBufVec = inBuf.reinterpret<sycl::float4>(inBufRange /
sycl::range(1, channels));
auto outBufVec = outBuf.reinterpret<sycl::float4>(
outBufRange / sycl::range(1, channels));
auto filterBufVec = filterBuf.reinterpret<sycl::float4>(
filterRange / sycl::range(1, channels));
util::benchmark(
[&] {
myQueue.submit([&](sycl::handler& cgh) {
sycl::accessor inputAcc{inBufVec, cgh, sycl::read_only};
sycl::accessor outputAcc{outBufVec, cgh, sycl::write_only};
sycl::accessor filterAcc{filterBufVec, cgh, sycl::read_only};
auto scratchpad =
sycl::local_accessor<sycl::float4, 2>(scratchpadRange, cgh);
cgh.parallel_for<image_convolution>(
ndRange, [=](sycl::nd_item<2> item) {
auto globalId = item.get_global_id();
auto groupId = item.get_group().get_group_id();
auto localId = item.get_local_id();
auto globalGroupOffset = groupId * localRange;
for (auto i = localId[0]; i < scratchpadRange[0];
i += localRange[0]) {
for (auto j = localId[1]; j < scratchpadRange[1];
j += localRange[1]) {
scratchpad[i][j] =
inputAcc[globalGroupOffset + sycl::range(i, j)];
}
}
sycl::group_barrier(item.get_group());
auto sum = sycl::float4{0.0f, 0.0f, 0.0f, 0.0f};
for (int r = 0; r < filterWidth; ++r) {
for (int c = 0; c < filterWidth; ++c) {
auto idx = sycl::range(r, c);
sum += scratchpad[localId + idx] * filterAcc[idx];
}
}
outputAcc[globalId] = sum;
});
});
myQueue.wait_and_throw();
},
100, "image convolution (tiled)");
}
} catch (const sycl::exception& e) {
std::cout << "Exception caught: " << e.what() << std::endl;
}
util::write_image(outputImage, outputImageFile);
SYCLACADEMY_ASSERT(true);
}