-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstitcher.py
243 lines (192 loc) · 9.02 KB
/
stitcher.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import math
import logging
import os
import numpy as np
import cv2
import tqdm
from grid import create_grid
logger = logging.getLogger('main')
def compute_gradients(img):
# Assume img is grayscale for simplicity
grad_x = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
grad_y = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=3)
grad_mag = np.sqrt(grad_x**2 + grad_y**2)
return grad_mag
def find_best_overlap(imgA, imgB,
min_overlap=1,
max_overlap=10,
pixel_weight=0.5,
grad_weight=0.5):
# Ensure same height
assert imgA.shape[0] == imgB.shape[0], 'Images must have the same height for horizontal stitching.'
# Convert to grayscale if needed
if len(imgA.shape) == 3:
grayA = cv2.cvtColor(imgA, cv2.COLOR_BGR2GRAY)
else:
grayA = imgA.astype(np.uint8)
if len(imgB.shape) == 3:
grayB = cv2.cvtColor(imgB, cv2.COLOR_BGR2GRAY)
else:
grayB = imgB.astype(np.uint8)
# Compute gradients
gradA = compute_gradients(grayA)
gradB = compute_gradients(grayB)
_, wA = grayA.shape
_, wB = grayB.shape
if max_overlap is None:
max_overlap = min(wA, wB) // 2 # heuristic
best_score = float('inf')
best_overlap = None
# Scan possible overlaps
for overlap in range(min_overlap, max_overlap+1):
# Extract overlap strips
stripA = grayA[:, wA - overlap:] # right side of A
stripB = grayB[:, :overlap] # left side of B
# Extract corresponding gradients
gradStripA = gradA[:, wA - overlap:]
gradStripB = gradB[:, :overlap]
# Compute pixel difference (mean absolute difference)
pixel_diff = np.mean(np.abs(stripA.astype(np.float32) - stripB.astype(np.float32)))
# Compute gradient difference
grad_diff = np.mean(np.abs(gradStripA - gradStripB))
# Weighted score
score = pixel_weight * pixel_diff + grad_weight * grad_diff
# Track best
if score < best_score:
best_score = score
best_overlap = overlap
return best_overlap
def compute_gradients(img):
# Assume img is grayscale
grad_x = cv2.Sobel(img, cv2.CV_32F, 1, 0, ksize=3)
grad_y = cv2.Sobel(img, cv2.CV_32F, 0, 1, ksize=3)
grad_mag = np.sqrt(grad_x**2 + grad_y**2)
return grad_mag
def find_best_vertical_overlap(imgTop, imgBottom,
min_overlap=10,
max_overlap=None,
pixel_weight=0.5,
grad_weight=0.5):
# Ensure same width
assert imgTop.shape[1] == imgBottom.shape[1], 'Images must have the same width for vertical stitching.'
# Convert to grayscale if needed
if len(imgTop.shape) == 3:
grayTop = cv2.cvtColor(imgTop, cv2.COLOR_BGR2GRAY)
else:
grayTop = imgTop.astype(np.uint8)
if len(imgBottom.shape) == 3:
grayBottom = cv2.cvtColor(imgBottom, cv2.COLOR_BGR2GRAY)
else:
grayBottom = imgBottom.astype(np.uint8)
# Compute gradients
gradTop = compute_gradients(grayTop)
gradBottom = compute_gradients(grayBottom)
hTop, _ = grayTop.shape
hBottom, _ = grayBottom.shape
if max_overlap is None:
max_overlap = min(hTop, hBottom) // 2 # heuristic
best_score = float('inf')
best_overlap = None
# Scan possible overlaps vertically
for overlap in range(min_overlap, max_overlap + 1):
# Bottom strip of top image
stripTop = grayTop[hTop - overlap:, :]
gradStripTop = gradTop[hTop - overlap:, :]
# Top strip of bottom image
stripBottom = grayBottom[:overlap, :]
gradStripBottom = gradBottom[:overlap, :]
# Compute pixel difference
pixel_diff = np.mean(np.abs(stripTop.astype(np.float32) - stripBottom.astype(np.float32)))
# Compute gradient difference
grad_diff = np.mean(np.abs(gradStripTop - gradStripBottom))
# Weighted score
score = pixel_weight * pixel_diff + grad_weight * grad_diff
if score < best_score:
best_score = score
best_overlap = overlap
return best_overlap
def clip_image(img, top_clip, bottom_clip, left_clip, right_clip):
return img[top_clip:img.shape[0]-bottom_clip, left_clip:img.shape[1]-right_clip]
def blend_images(imgA, imgB, overlap_width, direction='horizontal'):
if direction == 'horizontal':
# Horizontal blending as before
overlapA = imgA[:, -overlap_width:]
overlapB = imgB[:, :overlap_width]
alpha = np.linspace(1, 0, overlap_width).reshape(1, -1, 1)
blended_region = (alpha * overlapA + (1 - alpha) * overlapB).astype(np.uint8)
stitched = np.concatenate([imgA[:, :-overlap_width], blended_region, imgB[:, overlap_width:]], axis=1)
return stitched
else:
# Vertical blending
overlapA = imgA[-overlap_width:, :]
overlapB = imgB[:overlap_width, :]
alpha = np.linspace(1, 0, overlap_width).reshape(-1, 1, 1)
blended_region = (alpha * overlapA + (1 - alpha) * overlapB).astype(np.uint8)
stitched = np.concatenate([imgA[:-overlap_width, :], blended_region, imgB[overlap_width:, :]], axis=0)
return stitched
def main(images, vert_clip_fraction: float, horz_clip_fraction: float, output_dir: str, write_intermediates: bool = False):
total_image_shape = images[0][0].shape
vert_clip = math.floor(total_image_shape[0]*vert_clip_fraction)
horz_clip = math.floor(total_image_shape[1]*horz_clip_fraction)
rows = len(images)
columns = len(images[0])
logger.debug(f'Clipping images, from {total_image_shape} to {vert_clip}, {horz_clip} (fractions {vert_clip_fraction}, {horz_clip_fraction})')
pbar = tqdm.tqdm(desc='Clipping Images', total=rows*columns)
clipped_images = np.zeros((rows, columns, total_image_shape[0] - 2 * vert_clip, total_image_shape[1] - 2 * horz_clip, 3), dtype=np.uint8)
for row_num, row in enumerate(images):
for col_num, image in enumerate(row):
clipped_img = clip_image(image,
top_clip=vert_clip,
bottom_clip=vert_clip,
left_clip=horz_clip,
right_clip=horz_clip)
clipped_images[rows - row_num - 1][col_num] = clipped_img
pbar.update()
pbar.close()
logger.debug(f'Clipped image shape: {clipped_images[0][0].shape}')
if write_intermediates and output_dir is not None:
create_grid(clipped_images, os.path.join(output_dir, 'stitcher-clipped.png'), 4)
# Memory cleanup
images = None
center_x = len(clipped_images) // 2
center_y = len(clipped_images[0]) // 2
logger.info(f'Using center {center_x}, {center_y}')
logger.info('Finding best overlaps')
# Compute horizontal overlap using the first two images in the top row
horiz_overlap = find_best_overlap(clipped_images[center_x][center_y], clipped_images[center_x][center_y + 1])
logger.info(f'Found horizontal overlap {horiz_overlap}')
# Compute vertical overlap using the first two images in the first column
vert_overlap = find_best_vertical_overlap(clipped_images[center_x][center_y], clipped_images[center_x + 1][center_y])
logger.info(f'Found vertical overlap {vert_overlap}')
logger.debug(f'Stitching {rows} rows')
# Now use horiz_overlap for stitching each row horizontally
stitched_rows = None
for row_index in tqdm.tqdm(range(rows), desc='Stitching Rows'):
logger.debug(f'Stitching row {row_index}')
row_strip = clipped_images[row_index][0]
for col_index in range(1, columns):
# Use the determined horizontal overlap width
row_strip = blend_images(row_strip,
clipped_images[row_index][col_index],
overlap_width=horiz_overlap,
direction='horizontal')
if stitched_rows is None:
stitched_rows = np.zeros((rows, *row_strip.shape), dtype=np.uint8)
stitched_rows[row_index] = row_strip
# Memory cleanup
clipped_images = None
logger.debug('Stitching to final image')
# Now stitch the rows together vertically using the determined vert_overlap
final_image = stitched_rows[0]
for r in tqdm.tqdm(range(1, rows), desc='Stitching Columns'):
logger.debug(f'Stitching column {r}')
final_image = blend_images(final_image,
stitched_rows[r],
overlap_width=vert_overlap,
direction='vertical')
if output_dir is not None:
logger.debug('Saving...')
if write_intermediates:
cv2.imwrite(os.path.join(output_dir, 'stitcher-out.png'), final_image)
np.save(os.path.join(output_dir, 'stitcher-out.npy'), final_image)
return final_image