-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathInverseModelTraining.py
130 lines (98 loc) · 4.52 KB
/
InverseModelTraining.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python2
import glob
import numpy as np
from operator import itemgetter
from keras.models import Sequential, load_model
from keras.layers import Activation, Dense
from keras import optimizers
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
#training_files = sorted(glob.glob('data/data_*'))
training_files = ['data/data_5']
model_file = 'weights/ForwardModel.h5'
inverse_model_file = 'weights/InverseModelCombined.h5'
# Load the model
forwardModel = load_model(model_file)
# Load each data file into quasi-3D structure, note, since axis1 varies in length
# it is a list of 2D numpy arrays, this is resolved below with padding
training_data = [np.loadtxt(f ,delimiter=',',skiprows=1) for f in training_files]
for i in range(len(training_data)):
print training_files[i], ":", training_data[i].shape
# Create blank 2D array with 'outside' shape equal to that of data
input_training_data_n = [[]]*len(training_data)
# Get max length, to pad the other trajectories with 0s
max_len = max([td.shape for td in training_data],key=itemgetter(0))[0]
# Cube positions
p_cube1 = [0.18529411764705872, -0.46270270270270264,-0.07]
p_cube2 = [-0.17867647058823533, -0.47783783783783784,-0.07]
p_cube3 = [0.1874999999999999, -0.6983783783783784,-0.07]
p_cube4 = [-0.17647058823529416, -0.7027027027027026,-0.07]
# Cube order matches that of trajectories in data files
p_cubes = np.array([p_cube1, p_cube3, p_cube2, p_cube4])
# Delete columns for time, frozen joints, gripper
out_tr_dat = [np.delete(data,[0,3,7,8],axis=1) for data in training_data]
# Build input data for Inverse Model based on Forward Model predictions
for i in range(len(training_files)):
input_training_data_n[i] = []
for j in out_tr_dat[i]:
prediction = forwardModel.predict(np.array([j]))
input_training_data_n[i].append(prediction - p_cubes[i])
# Concate to reduce redundant dimension, i.e. [[x,y,z]] -> [x,y,z]
input_training_data_n[i] = np.copy(np.concatenate(input_training_data_n[i]))
# Pads trajectories with less steps than the highest count trajectory, pads bottom with zero
input_training_data_n[i] = np.pad(input_training_data_n[i],
((0, max_len - len(input_training_data_n[i])), (0,0)), 'constant')
for i in range(len(out_tr_dat)):
out_tr_dat[i] = np.pad(out_tr_dat[i], ((0, max_len - len(out_tr_dat[i])), (0,0)), 'constant')
out_tr_dat = np.array(out_tr_dat)
input_training_data_n = np.array(input_training_data_n)
# Plot the trajectories
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
for data in input_training_data_n:
X = -data[:,0]
Y = -data[:,1]
Z = -data[:,2]
surf = ax.scatter(X, Y, Z)
plt.show()
# Define the Inverse Model
InverseModel = Sequential()
InverseModel.add(Dense(200, activation="sigmoid", kernel_initializer="uniform", input_shape=(6,)))
InverseModel.add(Dense(200, activation="sigmoid", kernel_initializer="uniform"))
InverseModel.add(Dense(5))
InverseModel.compile(optimizer='adam',loss='mse',metrics=['accuracy'])
# Define the final input and output data
input_training_data = input_training_data_n[:,:-1]
out_tr_dat = out_tr_dat[:,1:]
input_training_data_t = np.concatenate((input_training_data_n[:,[0]], input_training_data_n[:,:-2]), axis=1)
# Put matrices side by side
input_training_combined = np.concatenate((input_training_data, input_training_data_t), axis=2)
out_tr_dat = np.concatenate(out_tr_dat)
input_training_combined = np.concatenate(input_training_combined)
# Train the Model
history = InverseModel.fit(input_training_combined,out_tr_dat,batch_size=1, epochs=1)
# Save the Model
InverseModel.save(inverse_model_file)
def plotperformance(history):
range_epochs = range(0, len(history[history.keys()[0]]))
plt.figure()
plt.title("performance")
plt.xlabel("epoch")
plt.ylabel("loss/accuracy")
plt.ylim(0, 1)
for res in history.keys():
plt.plot(range_epochs, history[res], label=res)
plt.legend(loc='upper right')
plt.show()
plotperformance(history.history)
if False != False: # ;), if X_Test and y_Test are defined this will plot receiver operator characteristic
scores = model.evaluate(X_Test, y_Test)
print scores
from sklearn.metrics import roc_curve, auc
fpr, tpr, _ = roc_curve(y_Test, model.predict(X_Test))
roc_auc = auc(fpr, tpr)
plt.plot(fpr,tpr,color='darkorange',label='ROC curve (area = %0.2f)' % roc_auc)
plt.legend(loc="lower right")
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.show()