-
Notifications
You must be signed in to change notification settings - Fork 515
/
Copy pathdemo.py
executable file
·98 lines (80 loc) · 3.72 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
# coding: utf-8
__author__ = 'cleardusk'
import sys
import argparse
import cv2
import yaml
from FaceBoxes import FaceBoxes
from TDDFA import TDDFA
from utils.render import render
#from utils.render_ctypes import render # faster
from utils.depth import depth
from utils.pncc import pncc
from utils.uv import uv_tex
from utils.pose import viz_pose
from utils.serialization import ser_to_ply, ser_to_obj
from utils.functions import draw_landmarks, get_suffix
from utils.tddfa_util import str2bool
def main(args):
cfg = yaml.load(open(args.config), Loader=yaml.SafeLoader)
# Init FaceBoxes and TDDFA, recommend using onnx flag
if args.onnx:
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'
from FaceBoxes.FaceBoxes_ONNX import FaceBoxes_ONNX
from TDDFA_ONNX import TDDFA_ONNX
face_boxes = FaceBoxes_ONNX()
tddfa = TDDFA_ONNX(**cfg)
else:
gpu_mode = args.mode == 'gpu'
tddfa = TDDFA(gpu_mode=gpu_mode, **cfg)
face_boxes = FaceBoxes()
# Given a still image path and load to BGR channel
img = cv2.imread(args.img_fp)
# Detect faces, get 3DMM params and roi boxes
boxes = face_boxes(img)
n = len(boxes)
if n == 0:
print(f'No face detected, exit')
sys.exit(-1)
print(f'Detect {n} faces')
param_lst, roi_box_lst = tddfa(img, boxes)
# Visualization and serialization
dense_flag = args.opt in ('2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'ply', 'obj')
old_suffix = get_suffix(args.img_fp)
new_suffix = f'.{args.opt}' if args.opt in ('ply', 'obj') else '.jpg'
wfp = f'examples/results/{args.img_fp.split("/")[-1].replace(old_suffix, "")}_{args.opt}' + new_suffix
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
if args.opt == '2d_sparse':
draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp)
elif args.opt == '2d_dense':
draw_landmarks(img, ver_lst, show_flag=args.show_flag, dense_flag=dense_flag, wfp=wfp)
elif args.opt == '3d':
render(img, ver_lst, tddfa.tri, alpha=0.6, show_flag=args.show_flag, wfp=wfp)
elif args.opt == 'depth':
# if `with_bf_flag` is False, the background is black
depth(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True)
elif args.opt == 'pncc':
pncc(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp, with_bg_flag=True)
elif args.opt == 'uv_tex':
uv_tex(img, ver_lst, tddfa.tri, show_flag=args.show_flag, wfp=wfp)
elif args.opt == 'pose':
viz_pose(img, param_lst, ver_lst, show_flag=args.show_flag, wfp=wfp)
elif args.opt == 'ply':
ser_to_ply(ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
elif args.opt == 'obj':
ser_to_obj(img, ver_lst, tddfa.tri, height=img.shape[0], wfp=wfp)
else:
raise ValueError(f'Unknown opt {args.opt}')
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='The demo of still image of 3DDFA_V2')
parser.add_argument('-c', '--config', type=str, default='configs/mb1_120x120.yml')
parser.add_argument('-f', '--img_fp', type=str, default='examples/inputs/trump_hillary.jpg')
parser.add_argument('-m', '--mode', type=str, default='cpu', help='gpu or cpu mode')
parser.add_argument('-o', '--opt', type=str, default='2d_sparse',
choices=['2d_sparse', '2d_dense', '3d', 'depth', 'pncc', 'uv_tex', 'pose', 'ply', 'obj'])
parser.add_argument('--show_flag', type=str2bool, default='true', help='whether to show the visualization result')
parser.add_argument('--onnx', action='store_true', default=False)
args = parser.parse_args()
main(args)