-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdvc.yaml
100 lines (100 loc) · 2.78 KB
/
dvc.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
stages:
make_dataset:
desc: Create groups of datasets of different sizes & number of classes.
cmd: python src/data/make_dataset.py
deps:
- src/data/make_dataset.py
params:
- dataset_kwargs
- seeds
outs:
- data/generated
configure_train:
desc: Configure the model training pipeline.
cmd: python src/models/configure_train.py
deps:
- src/models/configure_train.py
params:
- train
outs:
- ${train.clf_dict}
- ${train.cross_validator}
train:
desc: Train models and get out-of-sample predicted probabilities on the training
sets.
cmd: python src/models/train.py
deps:
- data/generated/
- src/models/train.py
- ${train.clf_dict}
- ${train.cross_validator}
outs:
- data/pred_probs/
plot_avg_trace:
desc: Plot average traces of noise matrices used for noisy label generation.
cmd: python src/data/plot_avg_trace.py
deps:
- src/data/plot_avg_trace.py
params:
- dataset_kwargs.small.gamma
plots:
- data/images/avg_trace.svg
get_avg_accuracy:
desc: Get model performance metrics on test sets, with and without label errors.
cmd: python src/models/avg_accuracy.py
deps:
- data/generated
- src/models/avg_accuracy.py
outs:
- data/accuracy/results.csv:
persist: true
group_stats:
desc: Summarize model performance metrics for each group of datasets.
cmd: python src/models/group_stats.py
deps:
- data/accuracy/results.csv
- src/models/group_stats.py
metrics:
- data/accuracy/results_group.csv:
cache: false
outs:
- data/accuracy/results_group.tex:
cache: false
score_classes:
desc: Compute class label quality scores for each example in a dataset.
cmd: python src/evaluation/class_score.py
deps:
- data/pred_probs/
- src/evaluation/class_score.py
outs:
- data/scores/class_scores.pkl
aggregate:
desc: Aggregate class label quality scores for all classes into a single score.
cmd: python src/evaluation/score.py
deps:
- data/scores/class_scores.pkl
- src/evaluation/aggregate.py
- src/evaluation/score.py
params:
- eval
outs:
- data/scores/scores.pkl
rank_metrics:
desc: Compute label error detection metrics for aggregated scores.
cmd: python src/evaluation/eval_ranking_metrics.py
deps:
- data/scores/scores.pkl
- src/evaluation/eval_ranking_metrics.py
outs:
- data/scores/results.csv
plot_metrics:
desc: Plot the label error detection and ranking metrics for the aggregated scores.
cmd: python src/evaluation/plot_metrics.py
deps:
- data/scores/results.csv
- src/evaluation/plot_metrics.py
plots:
- data/images/scores/
metrics:
- data/scores/metrics.csv:
cache: false