forked from Chrpe17/BorMastersThesis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhyperparameter_eval_weightdecay.py
102 lines (86 loc) · 4.16 KB
/
hyperparameter_eval_weightdecay.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue May 17 11:10:59 2022
@author: Carl Johan Danbjørg
Code to build evaluationplot based on loss.
To be used with models with weight decay as hyperparameter, as wd-level is
placed in title
"""
import json
import pandas as pd
import matplotlib.pyplot as plt
import os
#metric=pd.DataFrame()
path='/Users/Data/Blue_ocean/Hyperparameters_r101/hypothesis2'
for f in os.scandir(path):
if f.is_dir():
w=['0.00025', '0.0005']
namesplit=f.name.split('_')
lr=namesplit[0]
gamma=namesplit[1]
if len(namesplit)>2:
wd=namesplit[2]
if wd in w:
print(namesplit[2])
metricpath=path+'/'+f.name+'/'
fig, ax1 =plt.subplots()
ax1.set_title(f'r50, learning rate: {lr}, gamma: {gamma}, weight decay: {wd}')
ax1.set_ylabel('loss')
ax1.grid(which='major', axis='y', linestyle='--',linewidth='0.5')
try:
metrics_df=pd.read_json(metricpath+'metrics.json', orient='records',lines=True)
mdf=metrics_df.sort_values('iteration')
if "total_loss" in mdf.columns:
print('total loss OK')
mdf1 = mdf[~mdf["total_loss"].isna()]
ax1.plot(mdf['iteration'], mdf['total_loss'],c='C0', label='train')
if "validation_loss" in mdf.columns:
print('accuracy loss OK')
mdf1 = mdf[~mdf["validation_loss"].isna()]
ax1.plot(mdf1["iteration"], mdf1["validation_loss"], c="C1", label="validation")
if "lr" in mdf.columns:
print('lr OK')
mdf2 = mdf[~mdf['lr'].isna()]
color2='C2'
ax2 =ax1.twinx()
ax2.set_yscale('log')
#ax2.set_ylim(0,0.1)
ax2.plot(mdf2["iteration"], mdf2["lr"],color=color2, label='learning rate')
#ax2.set_ylim(0,0.06)
#fig.tight_layout()
except:
metrics_df=pd.read_json(metricpath+'metrics.json', orient='records',lines=False)
mdf=metrics_df.sort_values('iteration')
if "total_loss" in mdf.columns:
print('total loss OK')
mdf1 = mdf[~mdf["total_loss"].isna()]
ax1.plot(mdf['iteration'], mdf['total_loss'],c='C0', label='train')
if "validation_loss" in mdf.columns:
print('val loss OK')
mdf1 = mdf[~mdf["validation_loss"].isna()]
ax1.plot(mdf1["iteration"], mdf1["validation_loss"], c="C1", label="validation")
if "lr" in mdf.columns:
print('lr OK')
mdf2 = mdf[~mdf['lr'].isna()]
color2='C2'
ax2 =ax1.twinx()
ax2.set_yscale('log')
ax2.plot(mdf2["iteration"], mdf2["lr"],color=color2, label='learning rate')
#ax2.set_ylim(0,0.06)
#fig.tight_layout()
# ax.set_ylim([0, 0.5])
#ax.legend()
ax1.set_ylim(0,0.8)
ax2.set_ylim(0.0000001,0.01)
#ax2.ylim(0,0.1)
#ax1.set_ylabel('loss')
ax2.set_ylabel('learning rate', color=color2)
handles,labels = [],[]
for ax in fig.axes:
for h,l in zip(*ax.get_legend_handles_labels()):
handles.append(h)
labels.append(l)
ax1.legend(handles,labels, loc='upper left')
plt.savefig(metricpath+"detailed_loss.png", dpi=300)
plt.show()