-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcompute_mexa.py
92 lines (72 loc) · 3.82 KB
/
compute_mexa.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import os
import json
import pickle
import numpy as np
from tqdm import tqdm
from scipy.spatial.distance import cosine
import argparse
def cosine_similarity(array1, array2):
cosine_dist = cosine(array1, array2)
cosine_similarity = 1 - cosine_dist
return cosine_similarity
def mexa(matrix):
n = len(matrix) # size of the square matrix
count = 0
for i in range(n):
# Get the diagonal element
diag_element = matrix[i][i]
# Get the row and column
row = matrix[i]
column = matrix[:,i]
# Check if the diagonal element is strictly greater than all other elements in its row (excluding itself)
if diag_element > max(np.delete(row, i)):
# Check if the diagonal element is strictly greater than all other elements in its column (excluding itself)
if diag_element > max(np.delete(column, i)):
count += 1
# Normalized count
count_norm = count / n
return count_norm
def compute_distance(lang, embedding_type='embd_weighted', num_sents=100):
with open(os.path.join(embedding_path, f"{lang}.pkl"), "rb") as pickle_file:
lang_embd = pickle.load(pickle_file)
similarities_dict = {}
for layer in lang_embd.keys():
pivot_embd_layer = pivot_embd[layer][:num_sents]
lang_embd_layer = lang_embd[layer][:num_sents]
# Initialize the similarities_dict matrix for each layer
num_actual_sentences = min(len(pivot_embd_layer), len(lang_embd_layer))
similarities_dict[layer] = np.zeros((num_actual_sentences, num_actual_sentences))
# Compute similarities
for p_id, pivot_single in enumerate(pivot_embd_layer):
for l_id, lang_single in enumerate(lang_embd_layer):
similarities_dict[layer][p_id, l_id] = cosine_similarity(pivot_single[embedding_type], lang_single[embedding_type])
alignments = {}
for layer in lang_embd.keys():
alignments[layer] = mexa(similarities_dict[layer])
return alignments
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Process embeddings and compute alignments.')
parser.add_argument('--pivot', type=str, default='eng_Latn', help='Pivot language code (default: eng_Latn)')
parser.add_argument('--file_ext', type=str, default='.pkl', help='File extension for embedding files (default: .pkl)')
parser.add_argument('--embedding_path', type=str, required=True, help='Path to the directory containing embedding files.')
parser.add_argument('--save_path', type=str, required=True, help='Path to save the results.')
parser.add_argument('--num_sents', type=int, default=100, help='Maximum number of sentences to process (default: 100)')
parser.add_argument('--embedding_type', type=str, choices=['embd_weighted', 'embd_lasttoken'], default='embd_weighted', help='Type of embedding to use (default: embd_weighted)')
args = parser.parse_args()
# Set the global variables based on input arguments
pivot = args.pivot
file_ext = args.file_ext
embedding_path = args.embedding_path
save_path = args.save_path
num_sents = args.num_sents
embedding_type = args.embedding_type
# Load the pivot embeddings
with open(os.path.join(embedding_path, f"{pivot}{file_ext}"), "rb") as pickle_file:
pivot_embd = pickle.load(pickle_file)
languages = [filename[:-len(file_ext)] for filename in os.listdir(embedding_path) if filename.endswith(file_ext)]
for lang in tqdm(languages):
alignment_lang = compute_distance(lang, embedding_type=embedding_type, num_sents=num_sents)
save_filepath = os.path.join(save_path, f"{lang}.json")
os.makedirs(os.path.dirname(save_filepath), exist_ok=True)
with open(save_filepath, "w") as json_file:
json.dump(alignment_lang, json_file)