-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathIndividual copy.py
121 lines (114 loc) · 3.82 KB
/
Individual copy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
from GetParam import Param, random, INFINITE
from heapq import heappush, heappop
from queue import PriorityQueue
import numpy as np
import time
class Individual():
def __init__(self, param: Param):
self.param = param
self.G = param.G
self.geneSize = param.D
self.cost = 0
self.genes = np.zeros((param.D,), dtype=np.int32)
self.isEval = False
self.kount = 0
def init(self):
self.genes = np.random.permutation(self.param.D)
self.eval()
def isValidGene(self):
s = set(self.genes)
if len(s) == len(self.genes):
return True
return False
def eval(self):
if self.isEval:
return self.cost
distance = np.full((self.param.N,), INFINITE, dtype=np.int64)
duyet = np.full((self.param.N,), False)
distance[self.param.s] = 0
currQueue = list()
currColorIndex = 0
heappush(currQueue,(0, self.param.s))
while len(currQueue) > 0 and currColorIndex < self.param.D:
tmpDuyet = []
nextQueue = []
while len(currQueue)>0:
d_v, v= heappop(currQueue)
if duyet[v]:
continue
distance[v] = min(d_v, distance[v])
duyet[v] = True
tmpDuyet.append(v)
for w, u in self.G[v][self.genes[currColorIndex]]:
if not duyet[u]:
heappush(currQueue,(d_v+w, u))
if currColorIndex +1 < self.param.D:
for w, u in self.G[v][self.genes[currColorIndex+1]]:
_thisvar = d_v +w
if distance[u] > _thisvar:
distance[u] = _thisvar
heappush(nextQueue,(_thisvar, u))
currQueue = nextQueue
currColorIndex += 1
for i in tmpDuyet:
duyet[i] = False
self.isEval = True
self.cost = distance[self.param.t]
return self.cost
def fake(self):
if self.isEval:
return self.cost
distance = np.full((self.param.N,), float('inf'))
duyet = np.full((self.param.N,), False)
distance[self.param.s] = 0
trace = [(-1, -1,-1, 0)]*self.param.N
q = PriorityQueue()
q.put((0,self.param.s, -1, -1, 0))
while (not q.empty()):
d_v, v, _t, _c,_w = q.get()
if duyet[v]:
continue
duyet[v] = True
trace[v] = (_t, _c, _w)
distance[v] = min(d_v, distance[v])
for i in range(self.param.D):
for pair in self.G[v][i]:
w, u = pair
if not duyet[u]:
q.put((d_v+w, u, v, i,w))
# print((d_v+w, u, v, i))
return (distance[self.param.t], trace)
def processTrace(self, trace, u, v):
end = v
while trace[end] != (-1, -1, 0):
u, c, w = trace[end]
print(f"{u} -> {end}: {w} color {c}")
end = u
def show(self):
print(self.genes)
if __name__ == "__main__":
# TEST_PATH = "IDPC-DU\\test.txt"
# TEST_PATH = "IDPC-DU\\set1\\idpc_10x10x1000.idpc"
TEST_PATH = "IDPC-DU\\set1\\idpc_10x5x425.idpc"
t = Param()
t.buildGraph(TEST_PATH)
from itertools import permutations
ll = []
for i in range(t.D):
ll.append(i)
per = permutations(ll)
res = float('inf')
iii = 0
# for gene in per:
# i = Individual(t)
# i.genes = gene
# print(i.fake())
# iii += 1
# if iii%10000==0:
# print(f'{iii}/{res}')
i = Individual(t)
i.genes = [4,0,3,2,1]
res, trace = i.fake()
i.processTrace(trace, i.param.s, i.param.t)
# res = i.eval()
print(res)