-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathevaluate.py
executable file
·129 lines (111 loc) · 4.64 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
#!/usr/bin/env python
import time
from options.options import AdvanceOptions
from models import create_model
from util.visualizer import Visualizer
from dataloaders.nyu_dataloader import NYUDataset
from dataloaders.kitti_dataloader import KITTIDataset
from dataloaders.dense_to_sparse import UniformSampling, SimulatedStereo
import numpy as np
import random
import torch
import cv2
import utils
import os
# def colored_depthmap(depth, d_min=None, d_max=None):
# if d_min is None:
# d_min = np.min(depth)
# if d_max is None:
# d_max = np.max(depth)
# depth_relative = (depth - d_min) / (d_max - d_min)
# return 255 * plt.cm.viridis(depth_relative)[:,:,:3] # H, W, C
# def merge_into_row_with_pred_visualize(input, depth_input, rgb_sparse,depth_target, depth_est):
# rgb = 255 * np.transpose(np.squeeze(input.cpu().numpy()), (1,2,0)) # H, W, C
# rgb_sparse = 255 * np.transpose(np.squeeze(rgb_sparse.cpu().numpy()), (1,2,0))
# depth_input_cpu = np.squeeze(depth_input.cpu().numpy())
# depth_target_cpu = np.squeeze(depth_target.cpu().numpy())
# depth_pred_cpu = np.squeeze(depth_est.cpu().numpy())
# d_min = min(np.min(depth_input_cpu), np.min(depth_target_cpu), np.min(depth_pred_cpu))
# d_max = max(np.max(depth_input_cpu), np.max(depth_target_cpu), np.min(depth_pred_cpu))
# depth_input_col = colored_depthmap(depth_input_cpu, d_min, d_max)
# depth_target_col = colored_depthmap(depth_target_cpu, d_min, d_max)
# depth_pred_col = colored_depthmap(depth_target_cpu, d_min, d_max)
# img_merge = np.hstack([rgb, rgb_sparse,depth_input_col, depth_target_col,depth_pred_col])
# return img_merge
if __name__ == '__main__':
test_opt = AdvanceOptions().parse(False)
sparsifier = UniformSampling(test_opt.nP, max_depth=np.inf)
#sparsifier = SimulatedStereo(100, max_depth=np.inf, dilate_kernel=3, dilate_iterations=1)
test_dataset = KITTIDataset(test_opt.test_path, type='val',
modality='rgbdm', sparsifier=sparsifier)
### Please use this dataloder if you want to use NYU
# test_dataset = NYUDataset(test_opt.test_path, type='val',
# modality='rgbdm', sparsifier=sparsifier)
test_opt.phase = 'val'
test_opt.batch_size = 1
test_opt.num_threads = 1
test_opt.serial_batches = True
test_opt.no_flip = True
test_data_loader = torch.utils.data.DataLoader(test_dataset,
batch_size=test_opt.batch_size, shuffle=False, num_workers=test_opt.num_threads, pin_memory=True)
test_dataset_size = len(test_data_loader)
print('#test images = %d' % test_dataset_size)
model = create_model(test_opt, test_dataset)
model.eval()
model.setup(test_opt)
visualizer = Visualizer(test_opt)
test_loss_iter = []
gts = None
preds = None
epoch_iter = 0
model.init_test_eval()
epoch = 0
num = 5 # How many images to save in an image
if not os.path.exists('vis'):
os.makedirs('vis')
with torch.no_grad():
iterator = iter(test_data_loader)
i = 0
while True:
try: # Some images couldn't sample more than defined nP points under Stereo sampling
next_batch = next(iterator)
except IndexError:
print("Catch and Skip!")
continue
except StopIteration:
break
data, target = next_batch[0], next_batch[1]
model.set_new_input(data,target)
model.forward()
model.test_depth_evaluation()
model.get_loss()
epoch_iter += test_opt.batch_size
losses = model.get_current_losses()
test_loss_iter.append(model.loss_dcca.item())
rgb_input = model.rgb_image
depth_input = model.sparse_depth
rgb_sparse = model.sparse_rgb
depth_target = model.depth_image
depth_est = model.depth_est
### These part save image in vis/ folder
if i%num == 0:
img_merge = utils.merge_into_row_with_pred_visualize(rgb_input, depth_input, rgb_sparse,depth_target, depth_est)
elif i%num < num-1:
row = utils.merge_into_row_with_pred_visualize(rgb_input, depth_input, rgb_sparse,depth_target, depth_est)
img_merge = utils.add_row(img_merge, row)
elif i%num == num-1:
filename = 'vis/'+str(i)+'.png'
utils.save_image(img_merge, filename)
i += 1
print('test epoch {0:}, iters: {1:}/{2:} '.format(epoch, epoch_iter, len(test_dataset) * test_opt.batch_size), end='\r')
print(
'RMSE={result.rmse:.4f}({average.rmse:.4f}) '
'MSE={result.mse:.4f}({average.mse:.4f}) '
'MAE={result.mae:.4f}({average.mae:.4f}) '
'Delta1={result.delta1:.4f}({average.delta1:.4f}) '
'Delta2={result.delta2:.4f}({average.delta2:.4f}) '
'Delta3={result.delta3:.4f}({average.delta3:.4f}) '
'REL={result.absrel:.4f}({average.absrel:.4f}) '
'Lg10={result.lg10:.4f}({average.lg10:.4f}) '.format(
result=model.test_result, average=model.test_average.average()))
avg_test_loss = np.mean(np.asarray(test_loss_iter))