-
Notifications
You must be signed in to change notification settings - Fork 64
/
Copy pathpairwise_co-occurrence.R
51 lines (37 loc) · 1.59 KB
/
pairwise_co-occurrence.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
###read in community data file
comm.data<-read.csv(file.choose())
# this is a vector describing the different treatments from your data (ecosystems, for example)
trts<-as.vector((unique((comm.data$trt))))
results<-matrix(nrow=0,ncol=7)
options(warnings=-1)
#this loop will iterate through the different treatments in your data frame first
for(a in 1:length(trts)){
#pull the first element from the vector of treatments
trt.temp<-trts[a]
#subset the dataset for those treatments
temp<-subset(body.data, trt==trt.temp)
#in this case the community data started at column 4, so the loop for co-occurrence has to start at that point
for(b in 4:(dim(temp)[2]-4)){
#every species will be compared to every other species, so there has to be another loop that iterates down the rest of the columns
for(c in (4+b):(dim(temp)[2]-3)){
#summing the abundances of species of the columns that will be compared
species1.ab<-sum(temp[,b])
species2.ab<-sum(temp[,c])
#if the column is all 0's no co-occurrence will be performed
if(species1.ab >0 & species2.ab >0){
test<-cor.test(temp[,b],temp[,c],method="spearman",na.action=na.rm)
rho<-test$estimate
p.value<-test$p.value
}
if(species1.ab ==0 | species2.ab ==0){
rho<-0
p.value<-1
}
new.row<-c(trts[a],names(temp)[b],names(temp)[c],rho,p.value,species1.ab,species2.ab)
body.results<-rbind(results,new.row)
}
#The statment below can be used to print out how far along the loop is. X would be the total number of species and Z is the number of species*trts
#print((a*X+b)/Z)
}
}
head(results)