-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathifusion.py
253 lines (214 loc) · 7.45 KB
/
ifusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
import json
from glob import glob
import os
import numpy as np
import torch
from einops import rearrange
from liegroups.torch import SE3
from tqdm import trange
from dataset.finetune import FinetuneIterableDataset
from dataset.inference import MultiImageInferenceDataset, SingleImageInferenceDataset
from util.pose import latlon2mat, make_T, mat2latlon
from util.typing import *
from util.util import load_image, parse_optimizer, parse_scheduler, str2list
from util.viz import plot_image
def optimize_pose_loop(
model,
image_cond: Float[Tensor, "2 3 256 256"],
image_target: Float[Tensor, "2 3 256 256"],
T: Float[Tensor, "4 4"],
default_radius: float,
search_radius_range: float,
use_step_ratio: bool,
args,
**kwargs,
):
# init xi in se(3)
xi = torch.randn(6) * 1e-6
xi.requires_grad_()
optimizer = parse_optimizer(args.optimizer, [xi])
scheduler = parse_scheduler(args.scheduler, optimizer)
total_loss = 0.0
with trange(args.max_step) as pbar:
for step in pbar:
optimizer.zero_grad()
# se(3) -> SE(3)
T_delta = SE3.exp(xi).as_matrix()
T_ = T @ T_delta
latlon = mat2latlon(T_).squeeze()
theta, azimuth = latlon[0], latlon[1]
distance = (
torch.sin(torch.norm(T_[:3, 3]) - default_radius) * search_radius_range
)
idx = [0, 1] if torch.rand(1) < 0.5 else [1, 0]
batch = {
"image_cond": image_cond[idx],
"image_target": image_target[idx],
"T": torch.stack(
(
make_T(theta, azimuth, distance),
make_T(-theta, -azimuth, -distance),
)
)[idx].to(model.device),
}
if use_step_ratio:
loss = model(batch, step_ratio=step / args.max_step)
else:
loss = model(batch)
total_loss += loss
pbar.set_description(
f"step: {step}, total_loss: {total_loss:.4f}, loss: {loss.item():.2f}, theta: {theta.rad2deg().item():.2f}, azimuth: {azimuth.rad2deg().item():.2f}, distance: {distance.item():.2f}"
)
loss.backward()
optimizer.step()
scheduler.step(total_loss)
return total_loss, theta, azimuth, distance
def optimize_pose_pair(
model,
ref_image: Float[Tensor, "1 3 256 256"],
qry_image: Float[Tensor, "1 3 256 256"],
init_latlon: List[List],
**kwargs,
):
image_cond = torch.cat((ref_image, qry_image)).to(model.device)
image_target = torch.cat((qry_image, ref_image)).to(model.device)
init_T = latlon2mat(torch.tensor(init_latlon))
results = []
for T in init_T:
total_loss, theta, azimuth, distance = optimize_pose_loop(
model,
image_cond=image_cond,
image_target=image_target,
T=T,
**kwargs,
)
results.append(
(
total_loss.item(),
theta.rad2deg().item(),
azimuth.rad2deg().item(),
distance.item(),
)
)
results = torch.tensor(results)
best_idx = torch.argmin(results[:, 0])
pred_pose = results[best_idx][1:]
print(
f"[INFO] Best pose: theta: {pred_pose[0]:.2f}, azimuth: {pred_pose[1]:.2f}, distance: {pred_pose[2]:.2f}"
)
return pred_pose
def optimize_pose(
model,
image_dir: str,
transform_fp: str,
demo_fp: str,
id: str,
default_latlon: List[float] = [0, 0, 1],
**kwargs,
):
image_fps = sorted(glob(image_dir + "/*.png") + glob(image_dir + "/*.jpg"))
image_fps = [fp for fp in image_fps if fp != demo_fp]
id = list(range(len(image_fps))) if id == "all" else str2list(id)
ref_image = load_image(image_fps[id[0]])
qry_images = [load_image(image_fps[i]) for i in id[1:]]
out_dict = {"camera_angle_x": np.deg2rad(49.1), "frames": []}
out_dict["frames"].append(
{
"file_path": image_fps[0].replace(image_dir + "/", ""),
"transform_matrix": latlon2mat(torch.tensor([default_latlon])).squeeze(0).tolist(),
"latlon": list(default_latlon),
}
)
for qry_fp, qry_image in zip(image_fps[1:], qry_images):
assert ref_image.shape == qry_image.shape
pose = optimize_pose_pair(
model=model, ref_image=ref_image, qry_image=qry_image, **kwargs
)
pose = np.add(default_latlon, pose.unsqueeze(0))
out_dict["frames"].append(
{
"file_path": qry_fp.replace(image_dir + "/", ""),
"transform_matrix": latlon2mat(pose.clone()).squeeze(0).tolist(),
"latlon": pose.squeeze().tolist(),
}
)
# save poses to json
os.makedirs(os.path.dirname(transform_fp), exist_ok=True)
with open(transform_fp, "w") as f:
json.dump(out_dict, f, indent=4)
def finetune(
model,
image_dir: str,
transform_fp: str,
lora_ckpt_fp: str,
lora_rank: int,
lora_target_replace_module: List[str],
args,
):
model.inject_lora(
rank=lora_rank,
target_replace_module=lora_target_replace_module,
)
train_dataset = FinetuneIterableDataset(image_dir, transform_fp)
train_loader = train_dataset.loader(args.batch_size)
optimizer = parse_optimizer(args.optimizer, model.require_grad_params)
scheduler = parse_scheduler(args.scheduler, optimizer)
train_loader = iter(train_loader)
with trange(args.max_step) as pbar:
for step in pbar:
optimizer.zero_grad()
batch = next(train_loader)
batch = {k: v.to(model.device) for k, v in batch.items()}
loss = model(batch)
pbar.set_description(f"step: {step}, loss: {loss.item():.4f}")
loss.backward()
optimizer.step()
scheduler.step()
model.save_lora(lora_ckpt_fp)
model.remove_lora()
def inference(
model,
image_dir: str,
transform_fp: str,
test_transform_fp: str,
lora_ckpt_fp: str,
demo_fp: str,
lora_rank: int,
lora_target_replace_module: List[str],
use_single_view: bool,
use_multi_view_condition: bool,
n_views: int,
theta: float,
radius: float,
args,
):
if not use_single_view and lora_ckpt_fp:
model.inject_lora(
ckpt_fp=lora_ckpt_fp,
rank=lora_rank,
target_replace_module=lora_target_replace_module,
)
if not use_single_view and use_multi_view_condition:
test_dataset = MultiImageInferenceDataset
generate_fn = model.generate_from_tensor_multi_cond
else:
test_dataset = SingleImageInferenceDataset
generate_fn = model.generate_from_tensor
test_dataset = test_dataset(
image_dir=image_dir, transform_fp=transform_fp, test_transform_fp=test_transform_fp, n_views=n_views, theta=theta, radius=radius
)
test_loader = test_dataset.loader(args.batch_size)
for batch in test_loader:
batch = {k: v.to(model.device) for k, v in batch.items()}
out = generate_fn(
image=batch["image_cond"],
theta=batch["theta"],
azimuth=batch["azimuth"],
distance=batch["distance"],
)
if lora_ckpt_fp:
model.remove_lora()
out = rearrange(out, "b c h w -> 1 c h (b w)")
plot_image(out, fp=demo_fp)
print(f"[INFO] Saved image to {demo_fp}")
return out