-
Notifications
You must be signed in to change notification settings - Fork 46
/
Copy pathcityscapes.py
75 lines (58 loc) · 2.11 KB
/
cityscapes.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
from __future__ import print_function
import torch.utils.data as data
import os
import random
import glob
from PIL import Image
from utils import preprocess
_FOLDERS_MAP = {
'image': 'leftImg8bit',
'label': 'gtFine',
}
_POSTFIX_MAP = {
'image': '_leftImg8bit',
'label': '_gtFine_labelTrainIds',
}
_DATA_FORMAT_MAP = {
'image': 'png',
'label': 'png',
}
class Cityscapes(data.Dataset):
CLASSES = [
'road', 'sidewalk', 'building', 'wall', 'fence', 'pole', 'traffic light',
'traffic sign', 'vegetation', 'terrain', 'sky', 'person', 'rider', 'car',
'truck', 'bus', 'train', 'motorcycle', 'bicycle'
]
def __init__(self, root, train=True, transform=None, target_transform=None, download=False, crop_size=None):
self.root = root
self.transform = transform
self.target_transform = target_transform
self.train = train
self.crop_size = crop_size
if download:
self.download()
dataset_split = 'train' if self.train else 'val'
self.images = self._get_files('image', dataset_split)
self.masks = self._get_files('label', dataset_split)
def __getitem__(self, index):
_img = Image.open(self.images[index]).convert('RGB')
_target = Image.open(self.masks[index])
_img, _target = preprocess(_img, _target,
flip=True if self.train else False,
scale=(0.5, 2.0) if self.train else None,
crop=(self.crop_size, self.crop_size) if self.train else (1025, 2049))
if self.transform is not None:
_img = self.transform(_img)
if self.target_transform is not None:
_target = self.target_transform(_target)
return _img, _target
def _get_files(self, data, dataset_split):
pattern = '*%s.%s' % (_POSTFIX_MAP[data], _DATA_FORMAT_MAP[data])
search_files = os.path.join(
self.root, _FOLDERS_MAP[data], dataset_split, '*', pattern)
filenames = glob.glob(search_files)
return sorted(filenames)
def __len__(self):
return len(self.images)
def download(self):
raise NotImplementedError('Automatic download not yet implemented.')