forked from msminhas93/DeepLabv3FineTuning
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
105 lines (88 loc) · 4.17 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import copy
import csv
import os
import time
import numpy as np
import torch
from tqdm import tqdm
def train_model(model, criterion, dataloaders, optimizer, metrics, bpath,
num_epochs):
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_loss = 1e10
# Detect if we have a GPU available
if torch.backends.mps.is_available() and torch.backends.mps.is_built():
device = torch.device("mps")
elif torch.cuda.is_available():
device = torch.device("cuda:0")
else:
device = torch.device("cpu")
print(f"Using device: {device}")
model.to(device)
# Initialize the log file for training and testing loss and metrics
fieldnames = ['epoch', 'Train_loss', 'Test_loss'] + \
[f'Train_{m}' for m in metrics.keys()] + \
[f'Test_{m}' for m in metrics.keys()]
with open(os.path.join(bpath, 'log.csv'), 'w', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for epoch in range(1, num_epochs + 1):
print('Epoch {}/{}'.format(epoch, num_epochs))
print('-' * 10)
# Each epoch has a training and validation phase
# Initialize batch summary
batchsummary = {a: [0] for a in fieldnames}
for phase in ['Train', 'Test']:
if phase == 'Train':
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
# Iterate over data.
for sample in tqdm(dataloaders[phase], desc=f'{phase} Epoch {epoch}'):
inputs = sample['image'].to(device)
masks = sample['mask'].to(device)
# track history if only in train
with torch.set_grad_enabled(phase == 'Train'):
outputs = model(inputs)
loss = criterion(outputs['out'], masks)
# Convert outputs to predicted classes
#y_pred = outputs['out'].data.cpu().numpy().ravel() # Case of binary classification
_, preds = torch.max(outputs['out'], 1) # Change: Multi-class prediction
y_pred = preds.data.cpu().numpy().ravel()
y_true = masks.data.cpu().numpy().ravel()
for name, metric in metrics.items():
batchsummary[f'{phase}_{name}'].append(
metric(y_true, y_pred)) # Change to support Accuracy metric and IOU
#for name, metric in metrics.items(): # Case of binary classification
# if name == 'f1_score':
# Use a classification threshold of 0.1
#batchsummary[f'{phase}_{name}'].append(
#metric(y_true > 0, y_pred > 0.1))
#else:
# batchsummary[f'{phase}_{name}'].append(
# metric(y_true.astype('uint8'), y_pred))
# backward + optimize only if in training phase
if phase == 'Train':
loss.backward()
optimizer.step()
batchsummary['epoch'] = epoch
epoch_loss = loss
batchsummary[f'{phase}_loss'] = epoch_loss.item()
print('{} Loss: {:.4f}'.format(phase, loss))
for field in fieldnames[3:]:
batchsummary[field] = np.mean(batchsummary[field])
print(batchsummary)
with open(os.path.join(bpath, 'log.csv'), 'a', newline='') as csvfile:
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writerow(batchsummary)
# deep copy the model
if phase == 'Test' and loss < best_loss:
best_loss = loss
best_model_wts = copy.deepcopy(model.state_dict())
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Lowest Loss: {:4f}'.format(best_loss))
# load best model weights
model.load_state_dict(best_model_wts)
return model