Skip to content

Latest commit

 

History

History
234 lines (190 loc) · 7.17 KB

README.md

File metadata and controls

234 lines (190 loc) · 7.17 KB

metabase-python

main codecov Code style: black

An unofficial Python library for the Metabase API.

Installation

pip install metabase-python

Usage

Connection

Start by creating an instance of Metabase with your credentials.

from metabase import Metabase

metabase = Metabase(
    host="<host>",
    user="<username/email>",
    password="<password>",
)

Interacting with Endpoints

You can then interact with any of the supported endpoints through the classes included in this package. Methods that instantiate an object from the Metabase API require the using parameter which expects an instance of Metabase such as the one we just instantiated above. All changes are reflected in Metabase instantly.

from metabase import User

# get all objects
users = User.list(using=metabase)

# get an object by ID
user = User.get(1, using=metabase)

# attributes are automatically loaded and available in the instance
if user.is_active:
    print("User is active!")

# update any available attribute
user.update(is_superuser=True)

# delete an object
user.delete()

# create an object
new_user = User.create(
    using=metabase,
    first_name="<first_name>",
    last_name="<last_name>",
    email="<email>",
    password="<password>"
)

The methods .list(), .get(), .create(), .update(), .delete() are available on all endpoints that support them in Metabase API.

Some endpoints also support additional methods:

from metabase import User

user = User.get(1, using=metabase)

user.reactivate()   # Reactivate user
user.send_invite()  # Resend the user invite email for a given user.

Here's a slightly more advanced example:

from metabase import User, PermissionGroup, PermissionMembership

# create a new PermissionGroup
my_group = PermissionGroup.create(name="My Group", using=metabase)

for user in User.list():
    # add all users to my_group
    PermissionMembership.create(
        group_id=my_group.id,
        user_id=user.id,
        using=metabase,
    )

Querying & MBQL

You can also execute queries and get results back as a Pandas DataFrame. You can provide the exact MBQL, or use the Query object to compile MBQL (i.e. Metabase Query Language) from Python classes included in this package.

from metabase import Dataset, Query, Count, GroupBy, TemporalOption

dataset = Dataset.create(
    database=1,
    type="query",
    query={
        "source-table": 1,
        "aggregation": [["count"]],
        "breakout": ["field", 7, {"temporal-unit": "year"},],
    },
    using=metabase,
)

# compile the MBQL above using the Query object
dataset = Dataset.create(
    database=1,
    type="query",
    query=Query(
        table_id=2,
        aggregations=[Count()],
        group_by=[GroupBy(id=7, option=TemporalOption.YEAR)]
    ).compile(),
    using=metabase
)

df = dataset.to_pandas()

As shown above, the Query object allows you to easily compile MBQL from Python objects. Here is a more complete example:

from metabase import Query, Sum, Average, Metric, Greater, GroupBy, BinOption, TemporalOption

query = Query(
    table_id=5,
    aggregations=[
        Sum(id=5),                                  # Provide the ID for the Metabase field
        Average(id=5, name="Average of Price"),     # Optionally, you can provide a name
        Metric.get(5)                               # You can also provide your Metabase Metrics
    ],
    filters=[
        Greater(id=1, value=5.5)                    # Filter for values of FieldID 1 greater than 5.5
    ],
    group_by=[
        GroupBy(id=4),                              # Group by FieldID 4
        GroupBy(id=5, option=BinOption.AUTO),       # You can use Metabase's binning feature for numeric fields
        GroupBy(id=5, option=TemporalOption.YEAR)   # Or it's temporal option for date fields
    ]
)

print(query.compile())
{
    'source-table': 5,
    'aggregation': [
        ['sum', ['field', 5, None]],
        ['aggregation-options', ['avg', ['field', 5, None]], {'name': 'Average of Price', 'display-name': 'Average of Price'}],
        ["metric", 5]
    ],
    'breakout': [
        ['field', 4, None],
        ['field', 5, {'binning': {'strategy': 'default'}}],
        ['field', 5, {'temporal-unit': 'year'}]
    ],
    'filter': ['>', ['field', 1, None], 5.5]
}

This can also be used to more easily create Metric objects.

from metabase import Metric, Query, Count, EndsWith, CaseOption


metric = Metric.create(
    name="Gmail Users",
    description="Number of users with a @gmail.com email address.",
    table_id=2,
    definition=Query(
        table_id=1,
        aggregations=[Count()],
        filters=[EndsWith(id=4, value="@gmail.com", option=CaseOption.CASE_INSENSITIVE)]
    ).compile(),
    using=metabase
)

Endpoints

For a full list of endpoints and methods, see Metabase API.

Endpoints Support Notes
Activity
Alert
Automagic dashboards
Card
Collection
Dashboard
Database
Dataset
Email
Embed
Field
Geojson
Ldap
Login history
Metric
Native query snippet
Notify
Permissions
Premium features
Preview embed
Public
Pulse
Revision
Search
Segment
Session
Setting
Setup
Slack
Table
Task
Tiles
Transform
User
Util

Contributing

Contributions are welcome!

License

This library is distributed under the MIT license.