Skip to content
This repository has been archived by the owner on Jul 2, 2021. It is now read-only.

Latest commit

 

History

History

segnet

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 

SegNet

Preparation

Please create class_weight.npy using calc_weight.py first. Just run:

$ python calc_weight.py

Start training

First, move to this directory (i.e., examples/segnet) and run:

$ python train.py [--gpu <gpu>]

PlotReport extension uses matplotlib. If you got RuntimeError: Invalid DISPLAY variable error on Linux environment, adding an environment variable specification is recommended:

$ MPLBACKEND=Agg python train.py [--gpu <gpu>]

NOTE

Experimental settings

We used the completely same parameters for all settings.

Implementation Optimizer Learning rage Momentum Weight decay Model code
Ours MomentumSGD 0.1 0.9 0.0005 segnet_basic.py
Original MomentumSGD 0.1 0.9 0.0005 segnet_basic_train.prototxt

Quick Demo

Here is a quick demo using our pretrained weights. The pretrained model is automatically downloaded from the internet.

$ wget https://raw.githubusercontent.com/alexgkendall/SegNet-Tutorial/master/CamVid/test/0001TP_008550.png
$ python demo.py [--gpu <gpu>] [--pretrained-model <model_path>] 0001TP_008550.png

Comparizon with the paper results

Implementation Global accuracy Class accuracy mean IoU
Ours 82.7 % 67.1 % 49.4 %
Original 82.8 % 62.3% 46.3 %

The evaluation can be conducted using chainercv/examples/semantic_segmentation/eval_semantic_segmentation.py.

Reference

  1. Vijay Badrinarayanan, Alex Kendall and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation." PAMI, 2017.
  2. Vijay Badrinarayanan, Ankur Handa and Roberto Cipolla "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Robust Semantic Pixel-Wise Labelling." arXiv preprint arXiv:1505.07293, 2015.
  3. Original implementation