-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathplane_tracker_wtrain.py
138 lines (113 loc) · 5 KB
/
plane_tracker_wtrain.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
# Author: Bharath Kumar
# Contact: [email protected]
# Reference: opencv.org
import cv2
import numpy as np
from collections import namedtuple
import glob
FLANN_INDEX_KDTREE = 1
FLANN_INDEX_LSH = 6
flann_params= dict(algorithm = FLANN_INDEX_LSH,
table_number = 6,
key_size = 12,
multi_probe_level = 1)
MIN_MATCH_COUNT = 10
PlanarTarget = namedtuple('PlaneTarget', 'image, rect, keypoints, descrs, data')
TrackedTarget = namedtuple('TrackedTarget', 'target, p0, p1, H, quad, imageIdx')
class planeTracker:
def __init__(self):
self.detector = cv2.ORB_create(nfeatures=1000)
self.matcher = cv2.FlannBasedMatcher(flann_params, {})
self.targets = []
self.frame_key_points = []
def track(self, frame):
self. frame_key_points, frame_descriptors = self.detect_features(frame)
if len(self.frame_key_points) < MIN_MATCH_COUNT:
return []
matches = self.matcher.knnMatch(frame_descriptors, k=2)
matches = [m[0] for m in matches if len(m)==2 and m[0].distance < m[1].distance*0.75]
if len(matches) < MIN_MATCH_COUNT:
return []
# For multiple reference images
matches_by_id = [[] for _ in range(len(self.targets))]
for m in matches:
matches_by_id[m.imgIdx].append(m)
tracked = []
for imgIdx, matches in enumerate(matches_by_id):
if len(matches) < MIN_MATCH_COUNT:
continue
target = self.targets[imgIdx]
p0 = [target.keypoints[m.trainIdx].pt for m in matches]
p1 = [self.frame_key_points[m.queryIdx].pt for m in matches]
p0, p1 = np.float32((p0, p1))
H, mask = cv2.findHomography(p0, p1, cv2.RANSAC, 3.0)
mask = mask.ravel() != 0
if mask.sum() < MIN_MATCH_COUNT:
continue
p0, p1 = p0[mask], p1[mask]
x0, y0, x1, y1 = target.rect
quad = np.float32([[x0, y0], [x1, y0], [x1, y1], [x0, y1]])
quad = cv2.perspectiveTransform(quad.reshape(1, -1, 2), H).reshape(-1, 2)
print(imgIdx)
track = TrackedTarget(target=target, p0=p0, p1=p1, H=H, quad=quad, imageIdx=imgIdx)
tracked.append(track)
tracked.sort(key = lambda t: len(t.p0), reverse=True)
return tracked
def add_target(self, image, rect):
x0, y0, x1, y1 = rect
_key_points, _descriptors = self.detect_features(image)
key_points = []
descriptors = []
for kp, des in zip(_key_points, _descriptors):
x, y = kp.pt
if x0 <= x <= x1 and y0 <= y <= y1:
key_points.append(kp)
descriptors.append(des)
descriptors = np.uint8(descriptors)
self.matcher.add([descriptors])
target = PlanarTarget(image=image, rect=rect, keypoints=key_points, descrs=descriptors, data=None)
self.targets.append(target)
def detect_features(self, frame):
key_points, descriptors = self.detector.detectAndCompute(frame, None)
if descriptors is None:
descriptors = []
return key_points, descriptors
class VideoPlayer:
def __init__(self):
self.cap = cv2.VideoCapture(2)
self.frame = None
self.tracker = planeTracker()
cv2.namedWindow("PlaneTracker")
train_images = glob.glob("./data/train_images/test/*")
train_images = sorted(train_images)
print(train_images)
with open("./data/train_images/rect.txt") as file:
lines = file.readlines()
lines = [line.split(',') for line in lines]
for index, train_image in enumerate(train_images):
line = [int(point) for point in lines[index]]
print(line)
train_image.split('/')[-1].split('.')[0]
frame = cv2.imread(train_image)
x, y, _ = frame.shape
self.tracker.add_target(frame, (line[0], line[1], line[2], line[3]))
# self.tracker.add_target(frame, (0, 0, y, x))
def play(self):
while True:
ret, frame = self.cap.read()
self.frame = frame.copy()
frame = self.frame.copy()
tracked = self.tracker.track(self.frame)
for tr in tracked:
cv2.polylines(frame, [np.int32(tr.quad)], True, (255, 255, 255), 2)
for (x, y) in np.int32(tr.p1):
cv2.circle(frame, (x, y), 2, (255, 255, 255))
frame = cv2.putText(frame, 'Face ' + str(tr.imageIdx), (50, 50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
# self.rect.draw(frame)
cv2.imshow("PlaneTracker", frame)
ret = cv2.waitKey(1)
if ret == ord('q'):
break
if __name__ == "__main__":
player = VideoPlayer()
player.play()