-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathresidual_wrapper.py
162 lines (135 loc) · 5.94 KB
/
residual_wrapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
"""Residual Policy environment wrapper."""
from gym.spaces import Tuple, Box
from baselines.common.vec_env import VecEnvWrapper
import numpy as np
class ResidualWrapper(VecEnvWrapper):
"""Wrapper for residual policy learning.
https://arxiv.org/abs/1812.06298
Requires a callable which returns an action. The chosen action is added to
the observation.
"""
def __init__(self, venv, act_fn):
"""Init."""
super().__init__(venv)
self.act_fn = act_fn
self._ob = None
if not isinstance(self.action_space, Box):
raise ValueError("ResidualWrapper can only be used with continuous "
"action spaces.")
self.observation_space = Tuple([self.observation_space,
self.action_space])
bound = self.action_space.high - self.action_space.low
self.action_space = Box(-bound, bound)
self._action = None
def reset(self):
"""Reset."""
ob = self.venv.reset()
self._action = np.asarray(self.act_fn(ob))
if hasattr(self.act_fn, 'reset'):
# reset joystick to zero action
self.act_fn.reset()
return (ob, self._norm_action(self._action))
def step(self, action):
"""Step."""
action = self._add_actions(np.asarray(action), self._action)
ob, rs, dones, infos = self.venv.step(action)
for i, info in enumerate(infos):
info['action'] = action[i]
info['assistant_action'] = np.asarray(action)[i]
info['player_action'] = self._action[i]
self._action = self.act_fn(ob)
return (ob, self._norm_action(self._action)), rs, dones, infos
def _clip_action(self, ac):
return np.maximum(np.minimum(ac, self.venv.action_space.high),
self.venv.action_space.low)
def _add_actions(self, ac1, ac2):
return self._clip_action(ac1 + ac2)
def _norm_action(self, ac):
high = self.venv.action_space.high
low = self.venv.action_space.low
return 2 * (ac - low) / (high - low) - 1.0
def step_wait(self):
"""Step wait."""
return self.venv.step_wait()
if __name__ == '__main__':
import unittest
import gym
from dl.rl import ensure_vec_env, VecFrameStack
class ZeroActor(object):
"""Output zeros."""
def __init__(self, action_space):
"""Init."""
self.action_space = action_space
def __call__(self, ob):
"""Act."""
batch_size = ob.shape[0]
return np.zeros_like([self.action_space.sample()
for _ in range(batch_size)])
class RandomActor(object):
"""Output random actions."""
def __init__(self, action_space):
"""Init."""
self.action_space = action_space
def __call__(self, ob):
"""Act."""
batch_size = ob.shape[0]
return np.asarray([self.action_space.sample()
for _ in range(batch_size)])
class Test(unittest.TestCase):
"""Tests."""
def test_zero_actor(self):
"""Test."""
env = gym.make("LunarLanderContinuous-v2")
env = ensure_vec_env(env)
actor = ZeroActor(env.action_space)
env = ResidualWrapper(env, actor)
ob, ac = env.reset()
assert np.allclose(ac, 0)
assert ac.shape == (1, *env.action_space.shape)
assert ob.shape == (1, *env.observation_space.spaces[0].shape)
assert ac.shape == (1, *env.observation_space.spaces[1].shape)
assert isinstance(env.observation_space, Tuple)
residual_ac = [env.action_space.sample()]
(ob, ac), _, _, infos = env.step(residual_ac)
rac = np.minimum(np.maximum(residual_ac[0], -1), 1)
assert np.allclose(infos[0]['action'], rac)
assert np.allclose(ac, 0)
assert ac.shape == (1, *env.action_space.shape)
assert ob.shape == (1, *env.observation_space.spaces[0].shape)
assert ac.shape == (1, *env.observation_space.spaces[1].shape)
def test_random_actor(self):
"""Test."""
env = gym.make("LunarLanderContinuous-v2")
env = ensure_vec_env(env)
actor = RandomActor(env.action_space)
env = ResidualWrapper(env, actor)
ob, ac = env.reset()
assert ac.shape == (1, *env.action_space.shape)
assert ob.shape == (1, *env.observation_space.spaces[0].shape)
assert ac.shape == (1, *env.observation_space.spaces[1].shape)
assert isinstance(env.observation_space, Tuple)
for _ in range(10):
residual_ac = [env.action_space.sample()]
(ob, ac_next), _, _, infos = env.step(residual_ac)
rac = np.minimum(np.maximum(residual_ac[0] + ac[0], -1), 1)
assert np.allclose(infos[0]['action'], rac)
ac = ac_next
def test_vec_env_wrapper(self):
"""Test."""
env = gym.make("LunarLanderContinuous-v2")
env = ensure_vec_env(env)
actor = RandomActor(env.action_space)
env = ResidualWrapper(env, actor)
env = VecFrameStack(env, 4)
ob, ac = env.reset()
assert ac.shape == (1, 4*env.action_space.shape[0])
assert ob.shape == (1, *env.observation_space.spaces[0].shape)
assert ac.shape == (1, *env.observation_space.spaces[1].shape)
assert isinstance(env.observation_space, Tuple)
for _ in range(10):
residual_ac = [env.action_space.sample()]
(ob, ac_next), _, _, infos = env.step(residual_ac)
rac = np.minimum(np.maximum(residual_ac[0] + ac[0][-2:], -1), 1)
assert np.allclose(infos[0]['action'], rac)
ac = ac_next
unittest.main()