-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathversafit.c
175 lines (141 loc) · 3.7 KB
/
versafit.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
// Versatile Fitting Routine
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <string.h>
int OUTPUT=1; // Print output on screen (1 = yes; 0 = no)
int ERRCOMP=0; // Set reduced Chi-Squared to unity (1 = yes; 0 = no)
int dsmin(double **,double *,int,double,double (*func)(double *));
double **simplex(int,double *,double *);
void simplex_free(double **,int);
double parabolic_root(double,double,double,double);
// Versafit fitting routine
//
// Inputs:
// m: number of datapoints
// n: number of parameters
// a: parameters
// da: expected spread in parameters
// func: function to fit (Chi-squared function)
// dchisq difference in Chi-squared
// tol: tolerance
// opt: options
// - n: no output
void versafit(int m,int n,double *a,double *da,double (*func)(double *),double dchisq,double tol,char *opt)
{
int i,j,k,l,nfunk,kmax=50;
double chisqmin;
double *b,*db;
double **p,*y;
double d[2],errcomp;
// Decode options
if (strchr(opt,'n')!=NULL) OUTPUT=0;
if (strchr(opt,'e')!=NULL) ERRCOMP=1;
// Intialize y
y=(double *) malloc(sizeof(double) * (n+1));
if (dchisq>=0.) {
// Compute simplex and minimize function
p=simplex(n,a,da);
nfunk=dsmin(p,y,n,tol,func);
// Average parameters
for (i=0;i<n;i++) {
a[i]=0.;
for (j=0;j<=n;j++)
a[i]+=p[j][i];
a[i]/=(double) (n+1);
}
simplex_free(p,n);
// Compute minimum
chisqmin=func(a);
// Compute error compensation
if (ERRCOMP) errcomp=sqrt(chisqmin/(double) (m-n));
}
// Basic Information
if (OUTPUT) {
printf("VersaFIT:\n");
if (m!=0)
printf("Number of datapoints: %i\n",m);
printf("Number of parameters: %i\n",n);
printf("Chi-squared: %14.5f\n",chisqmin);
if (m!=0)
printf("Reduced Chi-squared: %14.5f\n",chisqmin/(double) (m-n));
if (ERRCOMP) printf("Error compensation: %.4f\n",errcomp);
printf("Number of iterations: %i\n",nfunk);
printf("\nParameters:\n");
// No error estimation
if (dchisq==0.) {
for (i=0;i<n;i++)
printf(" a(%i): %12.5f\n",i+1,a[i]);
}
}
// With error estimation
if (dchisq!=0.) {
b=(double *) malloc(sizeof(double) * n);
db=(double *) malloc(sizeof(double) * n);
for (i=0;i<n;i++) {
if (da[i]!=0.) {
for (j=0;j<n;j++) {
b[j]=a[j];
db[j]=da[j];
}
d[0]=-da[i];
db[i]=0.;
for (k=0;k<kmax;k++) {
b[i]=a[i]+d[0];
// Minimize
p=simplex(n,b,db);
nfunk+=dsmin(p,y,n,tol,func);
// Average parameters
for (l=0;l<n;l++) {
b[l]=0.;
for (j=0;j<=n;j++)
b[l]+=p[j][l];
b[l]/=(double) (n+1);
}
d[0]=parabolic_root(d[0],func(b),chisqmin,dchisq);
simplex_free(p,n);
if (fabs(chisqmin+dchisq-func(b))<tol) break;
}
d[1]=-d[0];
db[i]=0.;
for (k=0;k<kmax;k++) {
b[i]=a[i]+d[1];
// Minimize
p=simplex(n,b,db);
nfunk+=dsmin(p,y,n,tol,func);
// Average parameters
for (l=0;l<n;l++) {
b[l]=0.;
for (j=0;j<=n;j++)
b[l]+=p[j][l];
b[l]/=(double) (n+1);
}
d[1]=parabolic_root(d[1],func(b),chisqmin,dchisq);
simplex_free(p,n);
if (fabs(chisqmin+dchisq-func(b))<tol) break;
}
da[i]=0.5*(fabs(d[0])+fabs(d[1]));
if (ERRCOMP) da[i]*=errcomp;
}
}
free(b);
free(db);
if (OUTPUT)
for (i=0;i<n;i++)
printf(" a(%i): %12.5f +- %9.5f\n",i+1,a[i],da[i]);
}
if (OUTPUT) printf("\nTotal number of iterations: %i\n",nfunk);
free(y);
return;
}
// Compute root
double parabolic_root(double x,double y,double y0,double dy)
{
double a;
if (fabs(x)<1e-9) {
printf("Division by zero in function 'parabolic_root'\n");
x=1e-9;
}
a=(y-y0)/(x*x);
return sqrt(fabs(dy/a))*x/fabs(x);
}