-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathsgdp4.c
828 lines (666 loc) · 24.6 KB
/
sgdp4.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
/* > sgdp4.c
*
* 1.00 around 1980 - Felix R. Hoots & Ronald L. Roehrich, from original
* SDP4.FOR and SGP4.FOR
*
************************************************************************
*
* Made famous by the spacetrack report No.3:
* "Models for Propogation of NORAD Element Sets"
* Edited and subsequently distributed by Dr. T. S. Kelso.
*
************************************************************************
*
* This conversion by:
* Paul S. Crawford and Andrew R. Brooks
* Dundee University
*
* NOTE !
* This code is supplied "as is" and without warranty of any sort.
*
* (c) 1994-2004, Paul Crawford, Andrew Brooks
*
************************************************************************
*
* 1.07 arb Oct 1994 - Transcribed by arb Oct 1994 into 'C', then
* modified to fit Dundee systems by psc.
*
* 1.08 psc Mon Nov 7 1994 - replaced original satpos.c with SGP4 model.
*
* 1.09 psc Wed Nov 9 1994 - Corrected a few minor translation errors after
* testing with example two-line elements.
*
* 1.10 psc Mon Nov 21 1994 - A few optimising tweeks.
*
* 1.11 psc Wed Nov 30 1994 - No longer uses eloset() and minor error in the
* SGP4 code corrected.
*
* 2.00 psc Tue Dec 13 1994 - arb discovered the archive.afit.af.mil FTP site
* with the original FORTRAN code in machine form.
* Tidied up and added support for the SDP4 model.
*
* 2.01 psc Fri Dec 23 1994 - Tested out the combined SGP4/SDP4 code against
* the original FORTRAN versions.
*
* 2.02 psc Mon Jan 02 1995 - Few more tweeks and tidied up the
* doccumentation for more general use.
*
* 3.00 psc Mon May 29 1995 - Cleaned up for general use & distrabution (to
* remove Dundee specific features).
*
* 3.01 psc Mon Jan 12 2004 - Minor bug fix for day calculation.
*
* 3.02 psc Mon Jul 10 2006 - Added if(rk < (real)1.0) test for sub-orbital decay.
*
* 3.03 psc Sat Aug 05 2006 - Added trap for divide-by-zero when calculating xlcof.
*
*/
static const char SCCSid[] = "@(#)sgdp4.c 3.03 (C) 1995 psc SatLib: Orbital Model";
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
/* ================ single / double precision fix-ups =============== */
#include "sgdp4h.h"
#define ECC_ZERO ((real)0.0) /* Zero eccentricity case ? */
#define ECC_ALL ((real)1.0e-4) /* For all drag terms in GSFC case. */
#define ECC_EPS ((real)1.0e-6) /* Too low for computing further drops. */
#define ECC_LIMIT_LOW ((real)-1.0e-3) /* Exit point for serious decaying of orbits. */
#define ECC_LIMIT_HIGH ((real)(1.0 - ECC_EPS)) /* Too close to 1 */
#define EPS_COSIO (1.5e-12) /* Minimum divisor allowed for (...)/(1+cos(IO)) */
#define TOTHRD (2.0/3.0)
#if defined( SGDP4_SNGL ) || 0
#define NR_EPS ((real)(1.0e-6)) /* Minimum ~1e-6 min for float. */
#else
#define NR_EPS ((real)(1.0e-12)) /* Minimum ~1e-14 for double. */
//#define NR_EPS ((real)(1.0e-14)) /* Minimum ~1e-14 for double. */
//#define NR_EPS ((real)(1.0e-8)) /* Minimum ~1e-14 for double. */
#endif
#define Q0 ((real)120.0)
#define S0 ((real)78.0)
#define XJ2 ((real)1.082616e-3)
#define XJ3 ((real)-2.53881e-6)
#define XJ4 ((real)-1.65597e-6)
#define XKMPER (6378.135) /* Km per earth radii */
#define XMNPDA (1440.0) /* Minutes per day */
#define AE (1.0) /* Earth radius in "chosen units". */
#if 0
/* Original code constants. */
#define XKE (0.743669161e-1)
#define CK2 ((real)5.413080e-4) /* (0.5 * XJ2 * AE * AE) */
#define CK4 ((real)0.62098875e-6) /* (-0.375 * XJ4 * AE * AE * AE * AE) */
#define QOMS2T ((real)1.88027916e-9) /* (pow((Q0 - S0)*AE/XKMPER, 4.0)) */
#define KS ((real)1.01222928) /* (AE * (1.0 + S0/XKMPER)) */
#else
/* GSFC improved coeficient resolution. */
#define XKE ((real)7.43669161331734132e-2)
#define CK2 ((real)(0.5 * XJ2 * AE * AE))
#define CK4 ((real)(-0.375 * XJ4 * AE * AE * AE * AE))
#define QOMS2T ((real)1.880279159015270643865e-9) /* (pow((Q0 - S0)*AE/XKMPER, 4.0)) */
#define KS ((real)(AE * (1.0 + S0/XKMPER)))
#endif
static const real a3ovk2 = (real)(-XJ3 / CK2 * (AE * AE * AE));
/* ================= Copy of the orbital elements ==================== */
static double xno; /* Mean motion (rad/min) */
static real xmo; /* Mean "mean anomaly" at epoch (rad). */
static real eo; /* Eccentricity. */
static real xincl; /* Equatorial inclination (rad). */
static real omegao; /* Mean argument of perigee at epoch (rad). */
static real xnodeo; /* Mean longitude of ascending node (rad, east). */
static real bstar; /* Drag term. */
double SGDP4_jd0; /* Julian Day for epoch (available to outside functions. */
/* ================== Local "global" variables for SGP4 ================= */
static int imode = SGDP4_NOT_INIT;
static real sinIO, cosIO, sinXMO, cosXMO;
static real c1, c2, c3, c4, c5, d2, d3, d4;
static real omgcof, xmcof, xlcof, aycof;
static real t2cof, t3cof, t4cof, t5cof;
static real xnodcf, delmo, x7thm1, x3thm1, x1mth2;
static real aodp, eta, omgdot, xnodot;
static double xnodp, xmdot;
static long Isat=0; /* 16-bit compilers need 'long' integer for higher space catalogue numbers. */
double perigee, period, apogee;
long Icount = 0;
int MaxNR=0;
extern int Set_LS_zero; /* From deep.c */
/* =======================================================================
The init_sgdp4() function passes all of the required orbital elements to
the sgdp4() function together with the pre-calculated constants. There is
some basic error traps and the detemination of the orbital model is made.
For near-earth satellites (xnodp < 225 minutes according to the NORAD
classification) the SGP4 model is used, with truncated terms for low
perigee heights when the drag terms are high. For deep-space satellites
the SDP4 model is used and the deep-space terms initialised (a slow
process). For orbits with an eccentricity of less than ECC_EPS the model
reverts to a very basic circular model. This is not physically meaningfull
but such a circluar orbit is not either! It is fast though.
Callinr arguments:
orb : Input, structure with the orbital elements from NORAD 2-line
element data in radian form.
The return value indicates the orbital model used.
======================================================================= */
int init_sgdp4(orbit_t *orb)
{
LOCAL_REAL theta2, theta4, xhdot1, x1m5th;
LOCAL_REAL s4, del1, del0;
LOCAL_REAL betao, betao2, coef, coef1;
LOCAL_REAL etasq, eeta, qoms24;
LOCAL_REAL pinvsq, tsi, psisq, c1sq;
LOCAL_DOUBLE a0, a1, epoch;
real temp0, temp1, temp2, temp3;
long iday, iyear;
/* Copy over elements. */
/* Convert year to Gregorian with century as 1994 or 94 type ? */
iyear = (long)orb->ep_year;
if (iyear < 1957)
{
/* Assume 0 and 100 both refer to 2000AD */
iyear += (iyear < 57 ? 2000 : 1900);
}
if (iyear < 1901 || iyear > 2099)
{
fatal_error("init_sgdp4: Satellite ep_year error %ld", iyear);
imode = SGDP4_ERROR;
return imode;
}
Isat = orb->satno;
/* Compute days from 1st Jan 1900 (works 1901 to 2099 only). */
iday = ((iyear - 1901)*1461L)/4L + 364L + 1L;
SGDP4_jd0 = JD1900 + iday + (orb->ep_day - 1.0); /* Julian day number. */
epoch = (iyear - 1900) * 1.0e3 + orb->ep_day; /* YYDDD.DDDD as from 2-line. */
#ifdef DEBUG
fprintf(stderr, "Epoch = %f SGDP4_jd0 = %f\n", epoch, SGDP4_jd0);
#endif
eo = (real)orb->ecc;
xno = (double)orb->rev * TWOPI/XMNPDA; /* Radian / unit time. */
xincl = (real)orb->eqinc;
xnodeo = (real)orb->ascn;
omegao = (real)orb->argp;
xmo = (real)orb->mnan;
bstar = (real)orb->bstar;
/* A few simple error checks here. */
if (eo < (real)0.0 || eo > ECC_LIMIT_HIGH)
{
fatal_error("init_sgdp4: Eccentricity out of range for %ld (%le)", Isat, (double)eo);
imode = SGDP4_ERROR;
return imode;
}
if (xno < 0.035*TWOPI/XMNPDA || xno > 18.0*TWOPI/XMNPDA)
{
fatal_error("init_sgdp4: Mean motion out of range %ld (%le)", Isat, xno);
imode = SGDP4_ERROR;
return imode;
}
if (xincl < (real)0.0 || xincl > (real)PI)
{
fatal_error("init_sgdp4: Equatorial inclination out of range %ld (%le)", Isat, DEG(xincl));
imode = SGDP4_ERROR;
return imode;
}
/* Start the initialisation. */
if (eo < ECC_ZERO)
imode = SGDP4_ZERO_ECC; /* Special mode for "ideal" circular orbit. */
else
imode = SGDP4_NOT_INIT;
/*
Recover original mean motion (xnodp) and semimajor axis (aodp)
from input elements.
*/
SINCOS(xincl, &sinIO, &cosIO);
theta2 = cosIO * cosIO;
theta4 = theta2 * theta2;
x3thm1 = (real)3.0 * theta2 - (real)1.0;
x1mth2 = (real)1.0 - theta2;
x7thm1 = (real)7.0 * theta2 - (real)1.0;
a1 = pow(XKE / xno, TOTHRD);
betao2 = (real)1.0 - eo * eo;
betao = SQRT(betao2);
temp0 = (real)(1.5 * CK2) * x3thm1 / (betao * betao2);
del1 = temp0 / (a1 * a1);
a0 = a1 * (1.0 - del1 * (1.0/3.0 + del1 * (1.0 + del1 * 134.0/81.0)));
del0 = temp0 / (a0 * a0);
xnodp = xno / (1.0 + del0);
aodp = (real)(a0 / (1.0 - del0));
perigee = (aodp * (1.0 - eo) - AE) * XKMPER;
apogee = (aodp * (1.0 + eo) - AE) * XKMPER;
period = (TWOPI * 1440.0 / XMNPDA) / xnodp;
/*
printf("Perigee = %lf km period = %lf min del0 = %e\n",
perigee, period, del0);
*/
if (perigee <= 0.0)
{
fprintf(stderr, "# Satellite %ld sub-orbital (apogee = %.1f km, perigee = %.1f km)\n", Isat, apogee, perigee);
}
if (imode == SGDP4_ZERO_ECC) return imode;
if (period >= 225.0 && Set_LS_zero < 2)
{
imode = SGDP4_DEEP_NORM; /* Deep-Space model(s). */
}
else if (perigee < 220.0)
{
/*
For perigee less than 220 km the imode flag is set so the
equations are truncated to linear variation in sqrt A and
quadratic variation in mean anomaly. Also the c3 term, the
delta omega term and the delta m term are dropped.
*/
imode = SGDP4_NEAR_SIMP; /* Near-space, simplified equations. */
}
else
{
imode = SGDP4_NEAR_NORM; /* Near-space, normal equations. */
}
/* For perigee below 156 km the values of S and QOMS2T are altered */
if (perigee < 156.0)
{
s4 = (real)(perigee - 78.0);
if(s4 < (real)20.0)
{
fprintf(stderr, "# Very low s4 constant for sat %ld (perigee = %.2f)\n", Isat, perigee);
s4 = (real)20.0;
}
else
{
fprintf(stderr, "# Changing s4 constant for sat %ld (perigee = %.2f)\n", Isat, perigee);
}
qoms24 = POW4((real)((120.0 - s4) * (AE / XKMPER)));
s4 = (real)(s4 / XKMPER + AE);
}
else
{
s4 = KS;
qoms24 = QOMS2T;
}
pinvsq = (real)1.0 / (aodp * aodp * betao2 * betao2);
tsi = (real)1.0 / (aodp - s4);
eta = aodp * eo * tsi;
etasq = eta * eta;
eeta = eo * eta;
psisq = FABS((real)1.0 - etasq);
coef = qoms24 * POW4(tsi);
coef1 = coef / POW(psisq, 3.5);
c2 = coef1 * (real)xnodp * (aodp *
((real)1.0 + (real)1.5 * etasq + eeta * ((real)4.0 + etasq)) +
(real)(0.75 * CK2) * tsi / psisq * x3thm1 *
((real)8.0 + (real)3.0 * etasq * ((real)8.0 + etasq)));
c1 = bstar * c2;
c4 = (real)2.0 * (real)xnodp * coef1 * aodp * betao2 * (eta *
((real)2.0 + (real)0.5 * etasq) + eo * ((real)0.5 + (real)2.0 *
etasq) - (real)(2.0 * CK2) * tsi / (aodp * psisq) * ((real)-3.0 *
x3thm1 * ((real)1.0 - (real)2.0 * eeta + etasq *
((real)1.5 - (real)0.5 * eeta)) + (real)0.75 * x1mth2 * ((real)2.0 *
etasq - eeta * ((real)1.0 + etasq)) * COS((real)2.0 * omegao)));
c5 = c3 = omgcof = (real)0.0;
if (imode == SGDP4_NEAR_NORM)
{
/* BSTAR drag terms for normal near-space 'normal' model only. */
c5 = (real)2.0 * coef1 * aodp * betao2 *
((real)1.0 + (real)2.75 * (etasq + eeta) + eeta * etasq);
if(eo > ECC_ALL)
{
c3 = coef * tsi * a3ovk2 * (real)xnodp * (real)AE * sinIO / eo;
}
omgcof = bstar * c3 * COS(omegao);
}
temp1 = (real)(3.0 * CK2) * pinvsq * (real)xnodp;
temp2 = temp1 * CK2 * pinvsq;
temp3 = (real)(1.25 * CK4) * pinvsq * pinvsq * (real)xnodp;
xmdot = xnodp + ((real)0.5 * temp1 * betao * x3thm1 + (real)0.0625 *
temp2 * betao * ((real)13.0 - (real)78.0 * theta2 +
(real)137.0 * theta4));
x1m5th = (real)1.0 - (real)5.0 * theta2;
omgdot = (real)-0.5 * temp1 * x1m5th + (real)0.0625 * temp2 *
((real)7.0 - (real)114.0 * theta2 + (real)395.0 * theta4) +
temp3 * ((real)3.0 - (real)36.0 * theta2 + (real)49.0 * theta4);
xhdot1 = -temp1 * cosIO;
xnodot = xhdot1 + ((real)0.5 * temp2 * ((real)4.0 - (real)19.0 * theta2) +
(real)2.0 * temp3 * ((real)3.0 - (real)7.0 * theta2)) * cosIO;
xmcof = (real)0.0;
if(eo > ECC_ALL)
{
xmcof = (real)(-TOTHRD * AE) * coef * bstar / eeta;
}
xnodcf = (real)3.5 * betao2 * xhdot1 * c1;
t2cof = (real)1.5 * c1;
/* Check for possible divide-by-zero for X/(1+cosIO) when calculating xlcof */
temp0 = (real)1.0 + cosIO;
if(fabs(temp0) < EPS_COSIO) temp0 = (real)SIGN(EPS_COSIO, temp0);
xlcof = (real)0.125 * a3ovk2 * sinIO *
((real)3.0 + (real)5.0 * cosIO) / temp0;
aycof = (real)0.25 * a3ovk2 * sinIO;
SINCOS(xmo, &sinXMO, &cosXMO);
delmo = CUBE((real)1.0 + eta * cosXMO);
if (imode == SGDP4_NEAR_NORM)
{
c1sq = c1 * c1;
d2 = (real)4.0 * aodp * tsi * c1sq;
temp0 = d2 * tsi * c1 / (real)3.0;
d3 = ((real)17.0 * aodp + s4) * temp0;
d4 = (real)0.5 * temp0 * aodp * tsi * ((real)221.0 * aodp +
(real)31.0 * s4) * c1;
t3cof = d2 + (real)2.0 * c1sq;
t4cof = (real)0.25 * ((real)3.0 * d3 + c1 * ((real)12.0 * d2 +
(real)10.0 * c1sq));
t5cof = (real)0.2 * ((real)3.0 * d4 + (real)12.0 * c1 * d3 +
(real)6.0 * d2 * d2 + (real)15.0 * c1sq * ((real)2.0 *
d2 + c1sq));
}
else if (imode == SGDP4_DEEP_NORM)
{
#ifdef NO_DEEP_SPACE
fatal_error("init_sgdp4: Deep space equations not supported");
#else
imode = SGDP4_dpinit(epoch, omegao, xnodeo, xmo, eo, xincl,
aodp, xmdot, omgdot, xnodot, xnodp);
#endif /* !NO_DEEP_SPACE */
}
return imode;
}
/* =======================================================================
The sgdp4() function computes the Keplarian elements that describe the
position and velocity of the satellite. Depending on the initialisation
(and the compile options) the deep-space perturbations are also included
allowing sensible predictions for most satellites. These output elements
can be transformed to Earth Centered Inertial coordinates (X-Y-Z) and/or
to sub-satellite latitude and longitude as required. The terms for the
velocity solution are often not required so the 'withvel' flag can be used
to by-pass that step as required. This function is normally called through
another since the input 'tsince' is the time from epoch.
Calling arguments:
tsince : Input, time from epoch (minutes).
withvel : Input, non-zero if velocity terms required.
kep : Output, the Keplarian position / velocity of the satellite.
The return value indicates the orbital mode used.
======================================================================= */
int sgdp4(double tsince, int withvel, kep_t *kep)
{
LOCAL_REAL rk, uk, xnodek, xinck, em, xinc;
LOCAL_REAL xnode, delm, axn, ayn, omega;
LOCAL_REAL capu, epw, elsq, invR, beta2, betal;
LOCAL_REAL sinu, sin2u, cosu, cos2u;
LOCAL_REAL a, e, r, u, pl;
LOCAL_REAL sinEPW, cosEPW, sinOMG, cosOMG;
LOCAL_DOUBLE xmp, xl, xlt;
const int MAXI = 10;
#ifndef NO_DEEP_SPACE
LOCAL_DOUBLE xn, xmam;
#endif /* !NO_DEEP_SPACE */
real esinE, ecosE, maxnr;
real temp0, temp1, temp2, temp3;
real tempa, tempe, templ;
int ii;
#ifdef SGDP4_SNGL
real ts = (real)tsince;
#else
#define ts tsince
#endif /* ! SGDP4_SNGL */
/* Update for secular gravity and atmospheric drag. */
em = eo;
xinc = xincl;
xmp = (double)xmo + xmdot * tsince;
xnode = xnodeo + ts * (xnodot + ts * xnodcf);
omega = omegao + omgdot * ts;
switch(imode)
{
case SGDP4_ZERO_ECC:
/* Not a "real" orbit but OK for fast computation searches. */
kep->smjaxs = kep->radius = (double)aodp * XKMPER/AE;
kep->theta = fmod(PI + xnodp * tsince, TWOPI) - PI;
kep->eqinc = (double)xincl;
kep->ascn = xnodeo;
kep->argp = 0;
kep->ecc = 0;
kep->rfdotk = 0;
if(withvel)
kep->rfdotk = aodp * xnodp * (XKMPER/AE*XMNPDA/86400.0); /* For km/sec */
else
kep->rfdotk = 0;
return imode;
case SGDP4_NEAR_SIMP:
tempa = (real)1.0 - ts * c1;
tempe = bstar * ts * c4;
templ = ts * ts * t2cof;
a = aodp * tempa * tempa;
e = em - tempe;
xl = xmp + omega + xnode + xnodp * templ;
break;
case SGDP4_NEAR_NORM:
delm = xmcof * (CUBE((real)1.0 + eta * COS(xmp)) - delmo);
temp0 = ts * omgcof + delm;
xmp += (double)temp0;
omega -= temp0;
tempa = (real)1.0 - (ts * (c1 + ts * (d2 + ts * (d3 + ts * d4))));
tempe = bstar * (c4 * ts + c5 * (SIN(xmp) - sinXMO));
templ = ts * ts * (t2cof + ts * (t3cof + ts * (t4cof + ts * t5cof)));
//xmp += (double)temp0;
a = aodp * tempa * tempa;
e = em - tempe;
xl = xmp + omega + xnode + xnodp * templ;
break;
#ifndef NO_DEEP_SPACE
case SGDP4_DEEP_NORM:
case SGDP4_DEEP_RESN:
case SGDP4_DEEP_SYNC:
tempa = (real)1.0 - ts * c1;
tempe = bstar * ts * c4;
templ = ts * ts * t2cof;
xn = xnodp;
SGDP4_dpsec(&xmp, &omega, &xnode, &em, &xinc, &xn, tsince);
a = POW(XKE / xn, TOTHRD) * tempa * tempa;
e = em - tempe;
xmam = xmp + xnodp * templ;
SGDP4_dpper(&e, &xinc, &omega, &xnode, &xmam, tsince);
if (xinc < (real)0.0)
{
xinc = (-xinc);
xnode += (real)PI;
omega -= (real)PI;
}
xl = xmam + omega + xnode;
/* Re-compute the perturbed values. */
SINCOS(xinc, &sinIO, &cosIO);
{
real theta2 = cosIO * cosIO;
x3thm1 = (real)3.0 * theta2 - (real)1.0;
x1mth2 = (real)1.0 - theta2;
x7thm1 = (real)7.0 * theta2 - (real)1.0;
/* Check for possible divide-by-zero for X/(1+cosIO) when calculating xlcof */
temp0 = (real)1.0 + cosIO;
if(fabs(temp0) < EPS_COSIO) temp0 = (real)SIGN(EPS_COSIO, temp0);
xlcof = (real)0.125 * a3ovk2 * sinIO *
((real)3.0 + (real)5.0 * cosIO) / temp0;
aycof = (real)0.25 * a3ovk2 * sinIO;
}
break;
#endif /* ! NO_DEEP_SPACE */
default:
fatal_error("sgdp4: Orbit not initialised");
return SGDP4_ERROR;
}
if(a < (real)1.0)
{
fprintf(stderr, "sgdp4: Satellite %05ld crashed at %.3f (a = %.3f Earth radii)\n", Isat, ts, a);
return SGDP4_ERROR;
}
if(e < ECC_LIMIT_LOW)
{
fprintf(stderr, "sgdp4: Satellite %05ld modified eccentricity too low (ts = %.3f, e = %e < %e)\n", Isat, ts, e, ECC_LIMIT_LOW);
return SGDP4_ERROR;
}
if(e < ECC_EPS)
{
/*fprintf(stderr, "# ecc %f at %.3f for for %05ld\n", e, ts, Isat);*/
e = ECC_EPS;
}
else if(e > ECC_LIMIT_HIGH)
{
/*fprintf(stderr, "# ecc %f at %.3f for for %05ld\n", e, ts, Isat);*/
e = ECC_LIMIT_HIGH;
}
beta2 = (real)1.0 - e * e;
/* Long period periodics */
SINCOS(omega, &sinOMG, &cosOMG);
temp0 = (real)1.0 / (a * beta2);
axn = e * cosOMG;
ayn = e * sinOMG + temp0 * aycof;
xlt = xl + temp0 * xlcof * axn;
elsq = axn * axn + ayn * ayn;
if (elsq >= (real)1.0)
{
fprintf(stderr, "sgdp4: SQR(e) >= 1 (%.3f at tsince = %.3f for sat %05ld)\n", elsq, tsince, Isat);
return SGDP4_ERROR;
}
/* Sensibility check for N-R correction. */
kep->ecc = sqrt(elsq);
/*
* Solve Kepler's equation using Newton-Raphson root solving. Here 'capu' is
* almost the "Mean anomaly", initialise the "Eccentric Anomaly" term 'epw'.
* The fmod() saves reduction of angle to +/-2pi in SINCOS() and prevents
* convergence problems.
*
* Later modified to support 2nd order NR method which saves roughly 1 iteration
* for only a couple of arithmetic operations.
*/
epw = capu = fmod(xlt - xnode, TWOPI);
maxnr = kep->ecc;
for(ii = 0; ii < MAXI; ii++)
{
double nr, f, df;
SINCOS(epw, &sinEPW, &cosEPW);
ecosE = axn * cosEPW + ayn * sinEPW;
esinE = axn * sinEPW - ayn * cosEPW;
f = capu - epw + esinE;
if (fabs(f) < NR_EPS) break;
df = 1.0 - ecosE;
/* 1st order Newton-Raphson correction. */
nr = f / df;
if (ii == 0 && FABS(nr) > 1.25*maxnr)
nr = SIGN(maxnr, nr);
#if 1
/* 2nd order Newton-Raphson correction. */
else
nr = f / (df + 0.5*esinE*nr); /* f/(df - 0.5*d2f*f/df) */
#endif
epw += nr; /* Newton-Raphson correction of -F/DF. */
//if (fabs(nr) < NR_EPS) break;
}
/* Short period preliminary quantities */
temp0 = (real)1.0 - elsq;
betal = SQRT(temp0);
pl = a * temp0;
r = a * ((real)1.0 - ecosE);
invR = (real)1.0 / r;
temp2 = a * invR;
temp3 = (real)1.0 / ((real)1.0 + betal);
cosu = temp2 * (cosEPW - axn + ayn * esinE * temp3);
sinu = temp2 * (sinEPW - ayn - axn * esinE * temp3);
u = ATAN2(sinu, cosu);
sin2u = (real)2.0 * sinu * cosu;
cos2u = (real)2.0 * cosu * cosu - (real)1.0;
temp0 = (real)1.0 / pl;
temp1 = CK2 * temp0;
temp2 = temp1 * temp0;
/* Update for short term periodics to position terms. */
rk = r * ((real)1.0 - (real)1.5 * temp2 * betal * x3thm1) + (real)0.5 * temp1 * x1mth2 * cos2u;
uk = u - (real)0.25 * temp2 * x7thm1 * sin2u;
xnodek = xnode + (real)1.5 * temp2 * cosIO * sin2u;
xinck = xinc + (real)1.5 * temp2 * cosIO * sinIO * cos2u;
if(rk < (real)1.0)
{
#if 1
fprintf(stderr, "sgdp4: Satellite %05ld crashed at %.3f (rk = %.3f Earth radii)\n", Isat, ts, rk);
#endif
return SGDP4_ERROR;
}
kep->radius = rk * XKMPER/AE; /* Into km */
kep->theta = uk;
kep->eqinc = xinck;
kep->ascn = xnodek;
kep->argp = omega;
kep->smjaxs = a * XKMPER/AE;
/* Short period velocity terms ?. */
if (withvel)
{
/* xn = XKE / pow(a, 1.5); */
temp0 = SQRT(a);
temp2 = (real)XKE / (a * temp0);
kep->rdotk = ((real)XKE * temp0 * esinE * invR -
temp2 * temp1 * x1mth2 * sin2u) *
(XKMPER/AE*XMNPDA/86400.0); /* Into km/sec */
kep->rfdotk = ((real)XKE * SQRT(pl) * invR + temp2 * temp1 *
(x1mth2 * cos2u + (real)1.5 * x3thm1)) *
(XKMPER/AE*XMNPDA/86400.0);
}
else
{
kep->rdotk = kep->rfdotk = 0;
}
#ifndef SGDP4_SNGL
#undef ts
#endif
return imode;
}
/* ====================================================================
Transformation from "Kepler" type coordinates to cartesian XYZ form.
Calling arguments:
K : Kepler structure as filled by sgdp4();
pos : XYZ structure for position.
vel : same for velocity.
==================================================================== */
void kep2xyz(kep_t *K, xyz_t *pos, xyz_t *vel)
{
real xmx, xmy;
real ux, uy, uz, vx, vy, vz;
real sinT, cosT, sinI, cosI, sinS, cosS;
/* Orientation vectors for X-Y-Z format. */
SINCOS((real)K->theta, &sinT, &cosT);
SINCOS((real)K->eqinc, &sinI, &cosI);
SINCOS((real)K->ascn, &sinS, &cosS);
xmx = -sinS * cosI;
xmy = cosS * cosI;
ux = xmx * sinT + cosS * cosT;
uy = xmy * sinT + sinS * cosT;
uz = sinI * sinT;
/* Position and velocity */
if(pos != NULL)
{
pos->x = K->radius * ux;
pos->y = K->radius * uy;
pos->z = K->radius * uz;
}
if(vel != NULL)
{
vx = xmx * cosT - cosS * sinT;
vy = xmy * cosT - sinS * sinT;
vz = sinI * cosT;
vel->x = K->rdotk * ux + K->rfdotk * vx;
vel->y = K->rdotk * uy + K->rfdotk * vy;
vel->z = K->rdotk * uz + K->rfdotk * vz;
}
}
/* ======================================================================
Compute the satellite position and/or velocity for a given time (in the
form of Julian day number.)
Calling arguments are:
jd : Time as Julian day number.
pos : Pointer to posiition vector, km (NULL if not required).
vel : Pointer to velocity vector, km/sec (NULL if not required).
====================================================================== */
int satpos_xyz(double jd, xyz_t *pos, xyz_t *vel)
{
kep_t K;
int withvel, rv;
double tsince;
tsince = (jd - SGDP4_jd0) * XMNPDA;
#ifdef DEBUG
fprintf(stderr, "Tsince = %f\n", tsince);
#endif
if(vel != NULL)
withvel = 1;
else
withvel = 0;
rv = sgdp4(tsince, withvel, &K);
kep2xyz(&K, pos, vel);
return rv;
}
/* ==================== End of file sgdp4.c ========================== */