-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_evaluation.py
243 lines (208 loc) · 7.29 KB
/
run_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from typing import List
import argparse
import json
import torch
import numpy as np
from loguru import logger
from tqdm import tqdm
from pruning_study.datamodels import (
Dataset,
FinalResult,
HallucinationResult,
SummaryResult
)
from pruning_study.utils import (
get_model_and_tokenzier,
get_sequence_length,
create_results_path,
harmonize_data_format_and_add_prompts,
batchify,
save_results
)
from pruning_study.eval_funcs import ExperimentEvaluator
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--model-path',
type=str,
help='The path that models are saved in, without the model itself'
)
parser.add_argument(
'--model-name',
type=str,
help='Model name'
)
parser.add_argument(
'--data-path',
type=str,
help='Directory where data is stored.'
)
parser.add_argument(
'--dataset',
type=str,
help='Name of data file to use.'
)
parser.add_argument(
'--seed',
type=int,
default=0,
help='Seed for sampling the calibration data.'
)
parser.add_argument(
'--batch-size',
type=int,
default=1,
help='Batch size. Setting to 1 as default as our gpus are not that powerful'
)
parser.add_argument(
'--pruning-method',
default="fullmodel",
type=str,
help='if using pruned model and which to use',
choices=["fullmodel", "wanda", "sparsegpt", "magnitude"]
)
parser.add_argument(
'--device',
default="cpu",
type=str,
help='which device to use',
choices=["cuda", "mps", "cpu"]
)
parser.add_argument(
'--save-inbetween',
default=True,
type=bool,
help='Whether to save each result the moment is produced or wait till the end',
)
parser.add_argument(
'--prompt-id',
default="A",
type=str,
choices=["A", "B", "C"],
help='pick a prompt template from prompt list, A, B, C'
)
args = parser.parse_args()
DEVICE = args.device
np.random.seed(args.seed)
torch.random.manual_seed(args.seed)
logger.info(
f"Starting evaluation for {args.pruning_method} {args.model_name} on {args.dataset}"
)
# create results path
result_path: str = create_results_path(
model_name=args.model_name,
pruning_method=args.pruning_method,
dataset=args.dataset
)
logger.info(f"Results to be saved at {result_path}")
# get model and tokenizer
model, tokenizer = get_model_and_tokenzier(
model_name=args.model_name,
cache_dir=args.model_path,
torch_dtype=None,
device_map=DEVICE
)
# set model to eval
model.to(DEVICE)
model.eval()
logger.debug(f"Model and tokenizer succesfully loaded from {args.model_path}")
# get maximum allowable seq lenght
max_sequence_length: int = get_sequence_length(model.config)
# get evaluation functions
evaluation_functions = ExperimentEvaluator(
device=DEVICE
)
logger.debug("Evaluation scripts loaded - starting..")
# load data
with open(f"{args.data_path}/{args.dataset}.json", 'r', encoding='utf8') as f:
data_untreated = json.load(f)
dataset: Dataset = harmonize_data_format_and_add_prompts(
data_untreated=data_untreated,
model_type = args.model_name.split("-")[0].lower(),
prompt_id=args.prompt_id
)
# collect the results
full_results = {}
# evaluation
with torch.no_grad():
for indx, datapoints in tqdm(enumerate(batchify(dataset, batch_size=args.batch_size))):
# get only the prompts
prompts = [x.prompt for x in datapoints]
# padding side is always left for batch generation decoder-only
tokenizer.padding_side = "left"
# get model inputs
model_inputs = tokenizer(
prompts,
return_tensors="pt",
padding=True
)
model_inputs = model_inputs.to(DEVICE)
# just an assertion on lengths to not surpass model length
if len(model_inputs['input_ids']) > max_sequence_length:
raise ValueError("Should never happen; we tested it on all datasets")
# forward loops
output = model.generate(
**model_inputs,
max_length=max_sequence_length,
do_sample = False
)
# needed to remove the prompts
# **IMPORTANT STEP**
# since we padded all inputs are the same length
output_to_decode = output[
:,
model_inputs['input_ids'].size(1):
].cpu()
# decode the outputs
predictions = tokenizer.batch_decode(
output_to_decode,
skip_special_tokens=True
)
# evaluate summary / get reference
target_summaries: List[str] = [x.target_summary for x in datapoints]
summary_evaluations: SummaryResult = evaluation_functions.evaluate_summary(
prediction=predictions, reference=target_summaries
)
# evaluate hallucinations
documents: List[str] = [x.document for x in datapoints]
hallucination_results: HallucinationResult = evaluation_functions.evaluate_hallucunations(
prediction=predictions,
reference=documents
)
# empty any garbage
torch.cuda.empty_cache()
# collect the results
for point_indx, datapoint in enumerate(datapoints):
full_results[datapoint.id] = FinalResult(
id= datapoint.id,
document= datapoint.document,
generated= predictions[point_indx],
rouge={
'rouge1': summary_evaluations.rouge['rouge1'][point_indx],
'rouge2': summary_evaluations.rouge['rouge2'][point_indx],
'rougeL': summary_evaluations.rouge['rougeL'][point_indx],
},
bertscore={
'precision': summary_evaluations.bertscore['precision'][point_indx],
'recall': summary_evaluations.bertscore['recall'][point_indx],
'f1': summary_evaluations.bertscore['f1'][point_indx],
},
summac_zs=hallucination_results.summac_zs[point_indx],
harim_plus=hallucination_results.harim_plus[point_indx],
summac_conv=hallucination_results.summac_conv[point_indx]
).model_dump()
# save them intermedietary just for inspection and debugging
# + in case of any cuda mem failure
if args.save_inbetween:
save_results(
results=full_results,
results_path=result_path,
prompt_id=args.prompt_id
)
# save final results
save_results(
results=full_results,
results_path=result_path,
prompt_id=args.prompt_id
)
logger.success("Finished!")