-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_utils.py
196 lines (172 loc) · 7.02 KB
/
compute_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import os
import sys
import json
import time
import tqdm
import numpy as np
import pandas as pd
import xarray as xr
import pickle as pkl
import requests as req
from pytrends.request import TrendReq
from itertools import chain
def dict_union(*args):
return dict(chain.from_iterable(d.items() for d in args))
def load_covid_df():
st_f_name="covid19API.json"
dw=False
print("Loading Covid-19 Data")
if os.path.exists(st_f_name):
time_in_secs=os.stat(st_f_name).st_mtime
if (time.time()-time_in_secs)>(60*60*24):
print("file on disc too old fetching new version")
dw=True
else:
print("couldn't find covid19API.json\nDownloading...")
dw=True
if dw:
a=json.loads(req.get("https://api.covid19api.com/all").content)
json.dump(a,open("covid19API.json","w+"))
return pd.read_json("covid19API.json")
def get_countries_dict(covid_df):
d=covid_df[["Country","Lat","Lon"]].copy().drop_duplicates()
countries_dict={}
for i in np.array(d):
lat=i[1]
lot=i[2]
country_name=i[0]
try:
countries_dict.update({country_name: countries_dict[country_name]+[(lat,lot)] })
except KeyError:
countries_dict.update({country_name:[(lat,lot)] })
print("Found",sum([len(i) for i in countries_dict.keys()]),"Population Centers in",len(countries_dict.keys()),"Countries")
return countries_dict
def get_mean_col(df,geo_dist_factor,countries_dict):
means_list=np.zeros(shape=(0,))
c_dict={}
idxes_file=np.array([[i[0],i[1]] for i in np.array(df.index)])
df=np.asarray(df)
for c_name in countries_dict.keys():
for c_idx in range(len(countries_dict[c_name])): # some contries have more than one city registred
x,y=countries_dict[c_name][c_idx]
idx_of_xny=np.where ( # numpy black magic search for x,y pairs that are within geo_dist_factor of the x,y pairs
(np.abs(idxes_file[:,0]-x)<=geo_dist_factor)
&
(np.abs(idxes_file[:,1]-y)<=geo_dist_factor)
)[0]
no2_amounts=df[idx_of_xny]
no2_amounts = no2_amounts[np.logical_not(np.isnan(no2_amounts))] # remove all NaNs
means_list=np.hstack([means_list,no2_amounts])
#after we are done appending NO2 ammounts of population centers to a
#mean and append and reset means_list
c_dict.update({c_name:np.mean(means_list)/1000000000000000}) #np.mean result somehow needs to be renormalized into range? why?
means_list=np.zeros(shape=(0,))
return c_dict
def compute_dates_no2_mean_dict(geo_dist_factor,data_dir,countries_dict,col_name="ColumnAmountNO2",save_as="dates_dict.pkl"):
print("Computing Mean NO2 per day per country")
try:
dates_dict=pkl.load(open(save_as,"rb"))
print("loaded dates_dict from file")
except FileNotFoundError:
dates_dict={}
for df_name in tqdm.tqdm([i for i in os.listdir(data_dir) if i.endswith(".nc4")]):
date=df_name.split("-")[-2].split("_")[-2]
y,md=date.split("m")
m=md[:2]
d=md[2:4]
date=pd.Timestamp('{0}-{1}-{2}'.format(y,m,d)) #because g_dict uses the same classes Consistancy FTW
if date in dates_dict.keys():
continue
df = xr.open_dataset(data_dir+df_name).to_dataframe()[col_name]
mean_dict=get_mean_col(df,geo_dist_factor,countries_dict)
dates_dict.update({date:mean_dict})
print("Saving data as",save_as)
with open(save_as, 'wb+') as handle:
pkl.dump(dates_dict, handle, protocol=pkl.HIGHEST_PROTOCOL)
return dates_dict
def compute_growth_dict(covid_df,save_as="g_dict.pkl"):
g_dict={}
# NOTICE:
'''
1-g_dict it offset from the actual case growth by 2 days (good enough I am not fixing it)
2-g_dict is sometimes negative if recovred cases are more than new cases (used by the weighting algo)
'''
g_rate=0
ccd=np.asarray(covid_df[["Country","Confirmed","Date"]])
for idx,row in enumerate(ccd):
country=row[0]
confirmed=row[1]
date=row[2]
try:
if date!=ccd[idx+1][2]:
g_rate=ccd[idx+1][1]-confirmed
except IndexError:
g_rate=0
continue
if country not in g_dict.keys():
g_dict.update({country:{date:g_rate}})
else:
if ccd[idx+1][0]==country:
g_dict[country].update({date:g_rate})
else:
pass
# not all countries report the same way
# countries in st2_ct report multipule times per day resulting in negative growth numbers
# these 2 blocks of code fix that
st2_ct=[]
keys_g_dict=[i for i in g_dict.keys()]
for c_name in keys_g_dict:
if min([d[1] for d in g_dict[c_name].items()])<0:
st2_ct.append(c_name)
g_dict.pop(c_name)
st2_ct_arr=np.array([i for i in ccd if i[0] in st2_ct])
lsum=0
new_d={}
for idx,row in enumerate(st2_ct_arr):
cname=row[0]
date=row[2]
try:
if row[2]==st2_ct_arr[idx+1][2]:
lsum+=row[1]
else:
if cname not in new_d.keys():
new_d.update({cname:{date:lsum}})
else:
new_d[cname].update({date:lsum})
except IndexError:
pass
g_dict=dict_union(g_dict,new_d)
print("saving g_dict as",save_as)
with open(save_as, 'wb+') as handle:
pkl.dump(g_dict, handle, protocol=pkl.HIGHEST_PROTOCOL)
return g_dict
def compute_search_penalty_country_dict(neg_terms,save_as="sp_dict.pkl"):
s_t=[i for i in neg_terms.keys()]
pytrend = TrendReq()
pytrend.build_payload(kw_list=s_t)# Interest by Region
df = pytrend.interest_by_region()
country_penalty_dict={}
for i in df.iterrows():
country=i[0]
total_penalty=0
for s_t_idx in range(len(s_t)):
search_intrest=i[1][s_t_idx]
total_penalty+=search_intrest*neg_terms[s_t[s_t_idx]] #multiply the penalty by the search term intrest
country_penalty_dict.update({country:total_penalty})
print("saving country_penalty_dict as",save_as)
with open(save_as, 'wb+') as handle:
pkl.dump(country_penalty_dict, handle, protocol=pkl.HIGHEST_PROTOCOL)
return country_penalty_dict
if __name__=="__main__":
geo_dist_factor=2 #in lat/lot degrees what's the range to consider in a city?
mean_col_name="ColumnAmountNO2" # what column of the data to consider for our operations?
data_dir="data/"
covid_df=load_covid_df()
countries_dict=get_countries_dict(covid_df)
compute_dates_no2_mean_dict(geo_dist_factor,data_dir,countries_dict,col_name=mean_col_name)
compute_growth_dict(covid_df)
try:
neg_terms=pkl.load(open("neg_terms.pkl","rb"))
compute_search_penalty_country_dict(neg_terms)
except FileNotFoundError:
print("Couldn't load neg_terms.pkl and compute Search term Penalties")