forked from andy-yun/pytorch-0.4-yolov3
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecall.py
83 lines (71 loc) · 2.53 KB
/
recall.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
from PIL import Image, ImageDraw
from utils import *
from darknet import Darknet
def eval_list(cfgfile, weightfile, imglist):
#m = TinyYoloFace14Net()
#m.eval()
#m.load_darknet_weights(tiny_yolo_weight)
m = Darknet(cfgfile)
m.eval()
m.load_weights(weightfile)
eval_wid = m.width
eval_hei = m.height
use_cuda = True
if use_cuda:
m.cuda()
conf_thresh = 0.25
nms_thresh = 0.4
iou_thresh = 0.5
min_box_scale = 8. / m.width
with open(imglist) as fp:
lines = fp.readlines()
total = 0.0
proposals = 0.0
correct = 0.0
lineId = 0
avg_iou = 0.0
for line in lines:
img_path = line.rstrip()
if img_path[0] == '#':
continue
lineId = lineId + 1
lab_path = img_path.replace('images', 'labels')
lab_path = lab_path.replace('JPEGImages', 'labels')
lab_path = lab_path.replace('.jpg', '.txt').replace('.png', '.txt')
#truths = read_truths(lab_path)
truths = read_truths_args(lab_path, min_box_scale)
#print(truths)
img = Image.open(img_path).convert('RGB').resize((eval_wid, eval_hei))
boxes = do_detect(m, img, conf_thresh, nms_thresh, use_cuda)
if False:
savename = "tmp/%06d.jpg" % (lineId)
print("save %s" % savename)
plot_boxes(img, boxes, savename)
total = total + truths.shape[0]
for i in range(len(boxes)):
if boxes[i][4] > conf_thresh:
proposals = proposals+1
for i in range(truths.shape[0]):
box_gt = [truths[i][1], truths[i][2], truths[i][3], truths[i][4], 1.0]
best_iou = 0
for j in range(len(boxes)):
iou = bbox_iou(box_gt, boxes[j], x1y1x2y2=False)
best_iou = max(iou, best_iou)
if best_iou > iou_thresh:
avg_iou += best_iou
correct = correct+1
precision = 1.0*correct/proposals
recall = 1.0*correct/total
fscore = 2.0*precision*recall/(precision+recall)
print("%d IOU: %f, Recal: %f, Precision: %f, Fscore: %f\n" % (lineId-1, avg_iou/correct, recall, precision, fscore))
if __name__ == '__main__':
import sys
if len(sys.argv) == 4:
cfgfile = sys.argv[1]
weightfile = sys.argv[2]
imglist = sys.argv[3]
eval_list(cfgfile, weightfile, imglist)
else:
print('Usage:')
print('python recall.py cfgfile weightfile imglist')
#python recall.py test160.cfg backup/000022.weights face_test.txt