-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrt_yolo.py
116 lines (94 loc) · 3.6 KB
/
trt_yolo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
"""trt_yolo.py
This script demonstrates how to do real-time object detection with
TensorRT optimized YOLO engine.
"""
import os
import time
import argparse
import cv2
import pycuda.autoinit # This is needed for initializing CUDA driver
from utils.yolo_classes import get_cls_dict
from utils.camera import add_camera_args, Camera
from utils.display import open_window, set_display, show_fps
from utils.visualization import BBoxVisualization
from utils.yolo_with_plugins import TrtYOLO
WINDOW_NAME = 'TrtYOLODemo'
def parse_args():
"""Parse input arguments."""
desc = ('Capture and display live camera video, while doing '
'real-time object detection with TensorRT optimized '
'YOLO model on Jetson')
parser = argparse.ArgumentParser(description=desc)
parser = add_camera_args(parser)
parser.add_argument(
'-c', '--category_num', type=int, default=80,
help='number of object categories [80]')
parser.add_argument(
'-m', '--model', type=str, required=True,
help=('[yolov3|yolov3-tiny|yolov3-spp|yolov4|yolov4-tiny]-'
'[{dimension}], where dimension could be a single '
'number (e.g. 288, 416, 608) or WxH (e.g. 416x256)'))
args = parser.parse_args()
return args
def loop_and_detect(cam, trt_yolo, conf_th, vis):
"""Continuously capture images from camera and do object detection.
# Arguments
cam: the camera instance (video source).
trt_yolo: the TRT YOLO object detector instance.
conf_th: confidence/score threshold for object detection.
vis: for visualization.
"""
full_scrn = False
fps = 0.0
tic = time.time()
while True:
if cv2.getWindowProperty(WINDOW_NAME, 0) < 0:
break
img = cam.read()
if img is None:
break
boxes, confs, clss = trt_yolo.detect(img, conf_th)
img = vis.draw_bboxes(img, boxes, confs, clss)
img = show_fps(img, fps)
cv2.imshow(WINDOW_NAME, img)
toc = time.time()
curr_fps = 1.0 / (toc - tic)
# calculate an exponentially decaying average of fps number
fps = curr_fps if fps == 0.0 else (fps*0.95 + curr_fps*0.05)
tic = toc
key = cv2.waitKey(1)
if key == 27: # ESC key: quit program
break
elif key == ord('F') or key == ord('f'): # Toggle fullscreen
full_scrn = not full_scrn
set_display(WINDOW_NAME, full_scrn)
def main():
args = parse_args()
if args.category_num <= 0:
raise SystemExit('ERROR: bad category_num (%d)!' % args.category_num)
if not os.path.isfile('yolo/%s.trt' % args.model):
raise SystemExit('ERROR: file (yolo/%s.trt) not found!' % args.model)
cam = Camera(args)
if not cam.isOpened():
raise SystemExit('ERROR: failed to open camera!')
cls_dict = get_cls_dict(args.category_num)
yolo_dim = args.model.split('-')[-1]
if 'x' in yolo_dim:
dim_split = yolo_dim.split('x')
if len(dim_split) != 2:
raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim)
w, h = int(dim_split[0]), int(dim_split[1])
else:
h = w = int(yolo_dim)
if h % 32 != 0 or w % 32 != 0:
raise SystemExit('ERROR: bad yolo_dim (%s)!' % yolo_dim)
trt_yolo = TrtYOLO(args.model, (h, w), args.category_num)
open_window(
WINDOW_NAME, 'Camera TensorRT YOLO Demo',
cam.img_width, cam.img_height)
vis = BBoxVisualization(cls_dict)
loop_and_detect(cam, trt_yolo, conf_th=0.3, vis=vis)
cam.release()
cv2.destroyAllWindows()
if __name__ == '__main__':
main()