forked from NAG-DevOps/openiss-reid-tfk
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator.py
182 lines (145 loc) · 6.32 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
import os
import math
import h5py
import numpy as np
import tensorflow as tf
import keras.backend as K
from keras.utils import normalize
from data.preprocess import load_image, imagenet_process, img_to_array
def load_img_to_array(path, target_size):
img = load_image(path, target_size)
img = img_to_array(img)
return img
class Evaluator:
def __init__(self, dataset, model, img_h, img_w):
self.dataset = dataset
self.model = model
self.img_h = img_h
self.img_w = img_w
self.is_normalized = True
if self.is_normalized:
print('feature will be normalized')
def compute(self, max_rank=5):
self.q_pids, self.q_camids = Evaluator._get_info(self.dataset.query)
self.g_pids, self.g_camids = Evaluator._get_info(self.dataset.gallery)
# print('start preparation')
self._prepare_gallery_feats()
# print('shape of the gallery features: {}'.format(self.g_feats.shape))
self._prepare_query_feats()
# print('shape of query features: {}'.format(self.q_feats.shape))
# self.distmat = Evaluator._compute_euclidean_distmat(self.g_feats, self.q_feats)
self.distmat = Evaluator._compute_distmat(self.g_feats, self.q_feats)
# print('distmat shape: {}'.format(self.distmat.shape))
cmc, mAP = Evaluator._eval_func(self.distmat, self.q_pids, self.g_pids,
self.q_camids, self.g_camids, max_rank=max_rank)
# print('cmc: {}'.format(cmc))
# print('mAP: {}'.format(mAP))
return cmc, mAP
@staticmethod
def _get_info(datas):
pids = []
camids = []
for item in datas:
_, pid, camid = item
pids.append(int(pid))
camids.append(int(camid))
return np.asarray(pids), np.asarray(camids)
@staticmethod
def _prepare_features(model, dataset, img_h, img_w, is_normalized, batch_size=32):
N = len(dataset)
batch_num = np.ceil(N / batch_size).astype(np.int32)
feats = []
idx = 0
for _ in range(batch_num):
tmp = []
for _ in range(batch_size):
path, _, _ = dataset[idx]
target_size = (img_h, img_w)
img = load_img_to_array(path, target_size)
tmp.append(img)
idx += 1
if idx == N:
break
tmp = imagenet_process(np.asarray(tmp))
feat = model.predict(tmp)
feats.extend(feat)
feats = np.asarray(feats)
if is_normalized:
feats = normalize(feats)
return feats
def _prepare_gallery_feats(self):
self.g_feats = Evaluator._prepare_features(self.model,
self.dataset.gallery, self.img_h, self.img_w, self.is_normalized)
def _prepare_query_feats(self):
self.q_feats = Evaluator._prepare_features(self.model,
self.dataset.query, self.img_h, self.img_w, self.is_normalized)
@staticmethod
def _compute_distmat(g_feats, q_feats, bs=256):
mats = []
for _q_feat in q_feats:
_mat = np.linalg.norm(g_feats - _q_feat, axis=1, ord=2)
mats.append(_mat)
distmat = np.asarray(mats)
distmat = np.square(mats)
return distmat
# @staticmethod
# def _compute_distmat(g_feats, q_feats, squared=True):
# half = q_feats.shape[0] // 2
# g_feats = tf.convert_to_tensor(value=g_feats) # shape [num_gallery, 2048]
# q_feats = tf.convert_to_tensor(value=q_feats) # shape [num_query, 2048]
# g_feats = tf.expand_dims(g_feats, 0)
# q_feats = tf.expand_dims(q_feats, 1)
# tmp = tf.subtract(g_feats, q_feats[:half, :, :])
# dist1 = tf.norm(tmp, axis=2)
# tmp = tf.subtract(g_feats, q_feats[half:, :, :])
# dist2 = tf.norm(tmp, axis=2)
# dist = tf.concat([dist1, dist2], axis=0)
# return dist
@staticmethod
def _eval_func(distmat, q_pids, g_pids, q_camids, g_camids, max_rank=50):
num_q, num_g = distmat.shape
if num_g < max_rank:
max_rank = num_g
print("Note: number of gallery samples is quite small, got {}".format(num_g))
# keep in mind that the distmat stores the distance between the query and the gallery
# in such a format: the i-th row j-th column value in the matrix means how far the
# i-th query image away from the j-th gallery image
# get a sorted indices matrix, apply this mask can obtain a sorted version of X
indices = np.argsort(distmat, axis=1)
# get a matches indices matrix, which indicate a match between the query and gallery
matches = (g_pids[indices] == q_pids[:, np.newaxis]).astype(np.int32)
# compute cmc curve for each query
all_cmc = []
all_AP = []
num_valid_q = 0. # number of valid query
for q_idx in range(num_q):
# get query pid and camid
q_pid = q_pids[q_idx]
q_camid = q_camids[q_idx]
# remove gallery samples that have the same pid and camid with query
order = indices[q_idx]
remove = (g_pids[order] == q_pid) & (g_camids[order] == q_camid)
keep = np.invert(remove)
# compute cmc curve
# binary vector, positions with value 1 are correct matches
orig_cmc = matches[q_idx][keep]
if not np.any(orig_cmc):
# this condition is true when query identity does not appear in gallery
continue
cmc = orig_cmc.cumsum()
cmc[cmc > 1] = 1
all_cmc.append(cmc[:max_rank])
num_valid_q += 1.
# compute average precision
# reference: https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
num_rel = orig_cmc.sum()
tmp_cmc = orig_cmc.cumsum()
tmp_cmc = [x / (i + 1.) for i, x in enumerate(tmp_cmc)]
tmp_cmc = np.asarray(tmp_cmc) * orig_cmc
AP = tmp_cmc.sum() / num_rel
all_AP.append(AP)
assert num_valid_q > 0, "Error: all query identities do not appear in gallery"
all_cmc = np.asarray(all_cmc)
all_cmc = all_cmc.sum(0) / num_valid_q
mAP = np.mean(all_AP)
return all_cmc, mAP