-
Notifications
You must be signed in to change notification settings - Fork 124
/
Copy pathrun_CIL.py
72 lines (61 loc) · 2.29 KB
/
run_CIL.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
import argparse
import logging
from carla.driving_benchmark import run_driving_benchmark
from carla.driving_benchmark.experiment_suites import CoRL2017
from agents.imitation.imitation_learning import ImitationLearning
try:
from carla import carla_server_pb2 as carla_protocol
except ImportError:
raise RuntimeError(
'cannot import "carla_server_pb2.py", run the protobuf compiler to generate this file')
if (__name__ == '__main__'):
argparser = argparse.ArgumentParser(description=__doc__)
argparser.add_argument(
'-v', '--verbose',
action='store_true',
dest='debug',
help='print debug information')
argparser.add_argument(
'--host',
metavar='H',
default='localhost',
help='IP of the host server (default: localhost)')
argparser.add_argument(
'-p', '--port',
metavar='P',
default=2000,
type=int,
help='TCP port to listen to (default: 2000)')
argparser.add_argument(
'-c', '--city-name',
metavar='C',
default='Town01',
help='The town that is going to be used on benchmark'
+ '(needs to match active town in server, options: Town01 or Town02)')
argparser.add_argument(
'-n', '--log_name',
metavar='T',
default='test',
help='The name of the log file to be created by the scripts'
)
argparser.add_argument(
'--avoid-stopping',
default=True,
action='store_false',
help=' Uses the speed prediction branch to avoid unwanted agent stops'
)
argparser.add_argument(
'--continue-experiment',
action='store_true',
help='If you want to continue the experiment with the given log name'
)
args = argparser.parse_args()
log_level = logging.DEBUG if args.debug else logging.INFO
logging.basicConfig(format='%(levelname)s: %(message)s', level=log_level)
logging.info('listening to server %s:%s', args.host, args.port)
agent = ImitationLearning(args.city_name, args.avoid_stopping)
corl = CoRL2017(args.city_name)
# Now actually run the driving_benchmark
run_driving_benchmark(agent, corl, args.city_name,
args.log_name, args.continue_experiment,
args.host, args.port)