-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrtm-graphs.py
executable file
·551 lines (483 loc) · 17.8 KB
/
rtm-graphs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
#!/usr/bin/env python
# This is a very crude script for plotting graphs based on rtm-bench logs.
#
# Copyright (c) 2013 Carl G. Ritson <[email protected]>
#
# This file may be freely used, copied, or distributed without compensation
# or licensing restrictions, but is done so without any warranty or
# implication of merchantability or fitness for any particular purpose.
#
import re, sys
import copy as pycopy
def warn(*s):
print("".join(map(str, s)), file=sys.stderr)
def die(*s):
warn(*s)
sys.exit(1)
confidence = 0.95
has_confidence = False
try:
from numpy import *
import numpy as np
from scipy.stats.distributions import norm
has_confidence = True
except:
die("numpy or scipy not available")
can_plot = False
try:
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from matplotlib.backends.backend_pdf import PdfPages
can_plot = True
except:
pass
def line_styles():
#colours = ['#7fc97f','#beaed4','#fdc086','#a6cee3','#1f78b4','#b2df8a','#66c2a5','#fc8d62','#8da0cb','#1f78b4']
colours = ['#404040', '#808080', '#000000', '#606060', '#808080']
styles = ['-', '-', ':', '--', ':']
markers = ['', '', '', '', '']
widths = [1.5, 1.5, 1.4, 1.4, 1.0]
result = []
for i in range(5):
result.append({
'c': colours[i],
'ls': styles[i],
'm': markers[i],
'lw': widths[i]
})
result.reverse()
return result * 4
def counter_names():
return {
0: 'unknown',
1: 'xabort',
2: 'conflict',
4: 'conflict',
6: 'conflict-retry',
8: 'overflow',
14: 'conflict-ovfw-retry',
41: 'failure',
42: 'success'
}
def counter_order():
return [42, 41, 0, 2, 4, 6, 14, 8]
def ordered_counters(counters):
order = counter_order()
result = []
for cv in order:
if cv in counters:
result.append((cv, counters[cv]))
return result
def new_test_entry(mode=None, thread=None, n_threads=1):
entry = {
'test': None,
'thread': int(thread),
'n_threads': n_threads,
#'mode': mode,
'count': 0,
'op_size': 0,
'stride': 0,
'ns': 0,
'cycles': 0,
'counters': {}
}
return entry
def dup_entry(entry):
return pycopy.deepcopy(entry)
def enhance_entry(entry):
# count successful transactions (xabort is a success)
success = 0
for c in [42, 1]:
if c in entry['counters']:
success += entry['counters'][c]
if entry['ns'] > 0:
entry['bpns'] = float(entry['op_size'] * success) / float(entry['ns'])
if ('ns_e' in entry) and (entry['ns_e'] > 0.0):
entry['bpns_e'] = entry['ns_e']
else:
entry['bpns_e'] = 0.0
else:
entry['bpns'] = 0.0
entry['bpns_e'] = 0.0
if (entry['op_size'] > 0) and (success > 0):
entry['nspb'] = float(entry['ns']) / float(entry['op_size'] * success)
if 'ns_e' in entry:
entry['nspb_e'] = entry['ns_e']
else:
entry['nspb_e'] = 0.0
else:
entry['nspb'] = 0.0
entry['nspb_e'] = 0.0
pcc = {}
pcc_e = {}
for (c, v) in entry['counters'].items():
pcc[c] = (float(v) / float(entry['count'])) * 100.0
if 'counters_e' in entry:
pcc_e[c] = entry['counters_e'][c] / float(entry['count'])
else:
pcc_e[c] = 0.0
entry['pcc'] = pcc
entry['pcc_e'] = pcc_e
def parse_test(mode, threads):
# in case of single threaded tests with thread shifting
# the threads dictionary will have sleeper
test_line = re.compile(r'test = (\S+), count = (\d+), op_size = (\d+), stride = (\d+)')
mode_line = re.compile(r'[ux]_(read|write|cas|abortn|abortm)')
timing_line = re.compile(r'ns = (\d+), cycles = (\d+)')
counter_line = re.compile(r'counter (\d+) = (\d+)')
data = {}
thread_mode = {}
n_threads = len(threads.keys())
for (thread, lines) in threads.items():
data[thread] = []
entry = new_test_entry(mode=mode, thread=thread, n_threads=n_threads)
for line in lines:
if test_line.match(line):
if entry['test'] is not None:
enhance_entry(entry)
data[thread].append(entry)
m = test_line.match(line)
entry = new_test_entry(mode=mode, thread=thread, n_threads=n_threads)
entry['test'] = m.group(1)
entry['count'] = int(m.group(2))
entry['op_size'] = int(m.group(3))
entry['stride'] = int(m.group(4))
elif timing_line.match(line):
m = timing_line.match(line)
entry['ns'] = int(m.group(1))
entry['cycles'] = int(m.group(2))
elif counter_line.match(line):
m = counter_line.match(line)
entry['counters'][int(m.group(1))] = int(m.group(2))
elif mode_line.match(line):
thread_mode[thread] = line
if entry['test'] is not None:
enhance_entry(entry)
data[thread].append(entry)
if len(data[thread]) == 0:
del data[thread]
key = []
for thread in range(n_threads):
if (thread in data) and (len(data[thread]) > 0):
key.append(thread_mode[thread])
# in case of single threaded tests with thread shifting
# the data from sleeper threads are thrown away
return (key, data)
def parse_log(fn):
mode = None
memory = "isolated"
mode_line = re.compile(r'(single|homogenous|heterogenous) thread tests')
memory_line = re.compile(r'(isolated|shared) memory tests')
thread_line = re.compile(r'(\d+): (.+)')
thread_mode_line = re.compile(r'(\d+): ([ux]_)?(read|write|cas|sleeper|abortn|abortm)')
buffer = {}
data = []
in_reset = False
n = 0
fh = open(fn, 'r')
for line in fh:
n += 1
if mode_line.match(line):
if len(buffer.keys()) > 0:
(key, results) = parse_test(mode, buffer)
data.append(([mode,memory] + key, results))
buffer = {}
in_reset = True
m = mode_line.match(line)
mode = m.group(1)
elif thread_mode_line.match(line):
m = thread_mode_line.match(line)
thread = int(m.group(1))
if not in_reset:
if len(buffer.keys()) > 0:
(key, results) = parse_test(mode, buffer)
data.append(([mode,memory] + key, results))
buffer = {}
in_reset = True
elif memory_line.match(line):
m = memory_line.match(line)
memory = m.group(1)
if thread_line.match(line):
m = thread_line.match(line)
thread = int(m.group(1))
i_line = m.group(2)
if not (thread in buffer):
buffer[thread] = []
buffer[thread].append(i_line)
if in_reset and len(buffer[thread]) >= 3:
in_reset = False
# flush reminding data
if len(buffer.keys()) > 0:
(key, results) = parse_test(mode, buffer)
data.append(([mode,memory] + key, results))
fh.close()
return data
def plot_entries(pages, data, threads, rate_title, rate_keys, error_title, error_keys):
mt = len(threads) > 1
# combined rate graph
fig = plt.figure()
ax = fig.add_subplot(111)
ls = line_styles()
for thread in threads:
for key in rate_keys:
if mt:
label = "%d:%s" % (thread, key)
else:
label = key
xs = []
ys = []
yerr = []
for entry in data:
if (entry['thread'] == thread) and (entry['test'] == key):
xs.append(entry['op_size'])
ys.append(entry['bpns'])
yerr.append(0.0)
if len(xs) > 0 and len(ys) > 0:
style = ls.pop()
ax.plot(xs, ys, c=style['c'], ls=style['ls'], marker=style['m'], label=label, lw=style['lw'])
else:
print(rate_keys, thread, label, 'no data')
if rate_title is not None:
ax.set_title(rate_title)
#ax.set_ylim(min_y, max_y)
ax.set_ylabel('bytes/ns')
ax.set_xlabel('bytes/op')
if plot_log:
ax.set_xscale("log")
ax.legend(loc='best', ncol=2)
fig.savefig(pages, format='pdf')
# error graphs
for thread in threads:
for key in error_keys:
if mt:
label = "%d:%s" % (thread, key)
else:
label = key
fig = plt.figure()
ax = fig.add_subplot(111)
counters = {}
names = counter_names()
for entry in data:
if (entry['thread'] == thread) and (entry['test'] == key):
for c in entry['pcc'].keys():
if c not in counters:
counters[c] = names[c]
ls = line_styles()
for (cv, cn) in ordered_counters(counters):
xs = []
ys = []
yerr = []
for entry in data:
if (entry['thread'] == thread) and (entry['test'] == key):
xs.append(entry['op_size'])
if cv in entry['pcc']:
ys.append(entry['pcc'][cv])
yerr.append(entry['pcc_e'][cv])
else:
ys.append(0.0)
yerr.append(0.0)
if len(xs) > 0 and len(ys) > 0:
style = ls.pop()
ax.plot(xs, ys, c=style['c'], ls=style['ls'], marker=style['m'], label=cn, lw=style['lw'])
else:
print(error_keys, thread, key, cv, cn, 'no data')
if error_title is not None:
ax.set_title(error_title + ' ' + label)
ax.set_ylim(0.0, 100.0)
ax.set_ylabel('%')
ax.set_xlabel('bytes/op')
if plot_log:
ax.set_xscale("log")
ax.legend(loc='best', ncol=1)
fig.savefig(pages, format='pdf')
def select_data(key, data, precise = False):
selected = []
for (k, v) in data:
if len(key) <= len(k):
match = (not precise) or (len(key) == len(k))
for i in range(len(key)):
if k[i] != key[i]:
match = False
if match:
selected.append((k, v))
return selected
def as_list(x):
if isinstance(x, list):
return x
else:
return [ x ]
def unbox(x):
if isinstance(x, list):
return x[0]
else:
return x
def add_entry(dst, src):
if 'cn' in dst:
dst['count'].append(src['count'])
dst['cycles'].append(src['cycles'])
dst['ns'].append(src['ns'])
dst['cn'] += 1
for (k, v) in src['counters'].items():
if k in dst['counters']:
dst['counters'][k].append(unbox(v))
else:
dst['counters'][k] = as_list(v)
else:
dst['count'] = [dst['count'], src['count']]
dst['cycles'] = [dst['cycles'], src['cycles']]
dst['ns'] = [dst['ns'], src['ns']]
dst['cn'] = 2
for (k, v) in dst['counters'].items():
dst['counters'][k] = as_list(v)
for (k, v) in src['counters'].items():
if k in dst['counters']:
dst['counters'][k] = [unbox(dst['counters'][k]), unbox(v)]
else:
dst['counters'][k] = as_list(v)
def avg_with_error(_d):
try:
d = list(map(float, _d))
except:
print(_d)
raise
if has_confidence:
n = len(d)
avg = mean(d)
sd = std(d)
alpha = 1.0 - confidence
intv = norm.ppf(1.0 - alpha/2.0) * (sd / sqrt(n))
return (avg, intv)
else:
n = len(d)
if n > 0:
return (sum(d) / float(n), 0.0)
else:
return (0.0, 0.0)
def avg_entry(entry):
if 'cn' in entry:
(entry['count'], entry['count_e']) = avg_with_error(entry['count'])
(entry['cycles'], entry['cycles_e']) = avg_with_error(entry['cycles'])
(entry['ns'], entry['ns_e']) = avg_with_error(entry['ns'])
entry['counters_e'] = {}
for (k, v) in entry['counters'].items():
(entry['counters'][k], entry['counters_e'][k]) = avg_with_error(entry['counters'][k])
del entry['cn']
enhance_entry(entry)
def sum_data(data, maintain_threads=False):
master = {}
for (k, v) in data:
for (tn, td) in v.items():
if maintain_threads:
kn = "|".join(k + [ str(tn) ])
else:
kn = "|".join(k)
if kn in master:
md = master[kn]
for i in range(len(td)):
add_entry(md[i], td[i])
else:
master[kn] = dup_entry(td)
result = []
for (k, v) in master.items():
for entry in v:
avg_entry(entry)
result.append(entry)
return result
def flatten_data(data):
result = []
for (k, v) in data:
for (tn, td) in v.items():
result.extend(td)
return result
def cl_data(data):
result = []
for entry in data:
if (entry['op_size'] % 64) == 0:
result.append(entry)
return result
def lt_data(n, data):
result = []
for entry in data:
if (entry['op_size'] <= n):
result.append(entry)
return result
def report_entry(entry):
print(", ".join(map(str,[entry['test'], entry['op_size'], float(entry['ns']) / float(entry['count']), float(entry['cycles']) / float(entry['count'])])))
def plot_data(fn, data):
ops_read = ['x_read32', 'x_read64', 'u_read32', 'u_read64']
ops_write = ['x_write32', 'x_write64', 'u_write32', 'u_write64']
ops_cas = ['x_cas32', 'x_cas64', 'u_cas32', 'u_cas64']
ops_wc = ['u_write64', 'x_write64', 'x_cas64']
ops_rw32 = ['x_read32', 'x_write32', 'x_cas32']
ops_rw64 = ['x_read64', 'x_write64', 'x_cas64']
ops_abort32 = ['x_abortn32', 'x_abortm32', 'x_cas32']
ops_abort64 = ['x_abortn64', 'x_abortm64', 'x_cas64']
st = sum_data(select_data(['single', 'isolated'], data))
st_64 = cl_data(st)
# zoom in for certain data
st_lt300 = lt_data(280, st)
st_lt1000 = lt_data(1000, st)
for entry in st:
if entry['op_size'] <= 64:
report_entry(entry)
mt_xrxr = lt_data(1000, sum_data(select_data(['homogenous', 'shared', 'x_read', 'x_read'], data, precise=True), maintain_threads=True))
mt_xwxw = lt_data(1000, sum_data(select_data(['homogenous', 'shared', 'x_write', 'x_write'], data, precise=True), maintain_threads=True))
mt_ucuc = lt_data(1000, sum_data(select_data(['homogenous', 'shared', 'u_cas', 'u_cas'], data, precise=True), maintain_threads=True))
mt_xcxc = lt_data(1000, sum_data(select_data(['homogenous', 'shared', 'x_cas', 'x_cas'], data, precise=True), maintain_threads=True))
mt_xcur = lt_data(1000, sum_data(select_data(['heterogenous', 'shared', 'x_cas', 'u_read'], data, precise=True), maintain_threads=True))
mt_xwuw = lt_data(1000, sum_data(select_data(['heterogenous', 'shared', 'x_write', 'u_write'], data, precise=True), maintain_threads=True))
pages = PdfPages(fn)
plot_entries(pages, st_64, [0], None, ops_read, '', ops_read)
plot_entries(pages, st_64, [0], None, ops_write, '', ops_write)
plot_entries(pages, st_64, [0], None, ops_cas, '', ops_cas)
plot_entries(pages, st_64, [0], None, ops_abort32, None, [])
plot_entries(pages, st_64, [0], None, ops_abort64, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_read, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_write, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_cas, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_rw32, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_rw64, None, [])
plot_entries(pages, st_lt1000, [0], None, ops_abort64, None, [])
plot_entries(pages, st_lt300, [0], None, ops_read, None, [])
plot_entries(pages, st_lt300, [0], None, ops_write, None, [])
plot_entries(pages, st_lt300, [0], None, ops_cas, None, [])
plot_entries(pages, st_lt300, [0], None, ops_rw32, None, [])
plot_entries(pages, st_lt300, [0], None, ops_rw64, None, [])
plot_entries(pages, st_lt300, [0], None, ops_abort64, None, [])
plot_entries(pages, mt_xrxr, [0,1], None, ['x_read32'], '', ['x_read32'])
plot_entries(pages, mt_xwxw, [0,1], None, ['x_write32'], '', ['x_write32'])
plot_entries(pages, mt_xcxc, [0,1], None, ['x_cas32'], '', ['x_cas32'])
plot_entries(pages, mt_xcur, [0,1], None, ['x_cas32', 'u_read32'], '', ['x_cas32', 'u_read32'])
plot_entries(pages, mt_xwuw, [0,1], None, ['x_write32', 'u_write32'], '', ['x_write32', 'u_write32'])
plot_entries(pages, mt_ucuc + mt_xcxc, [0,1], None, ['x_cas32', 'u_cas32'], None, [])
pages.close()
def write_data(fn, data):
fh = open(fn, 'wb')
pickle.dump(data, fh)
fh.close()
def read_data(fn):
fh = open(fn, 'rb')
data = pickle.load(fh)
fh.close()
return data
def main(args):
if len(args) < 2:
die('rtm-graph.py <log-file> <output-file> [<plot-log>]')
log_file = args[0]
out_file = args[1]
global plot_log
plot_log = False
if len(args) == 3:
plot_log = True
if not can_plot:
warn('unable to plot')
print('parsing', log_file)
data = parse_log(log_file)
for (name, entries) in data:
print(name)
print('plotting graphs to', out_file)
if can_plot:
plot_data(out_file, data)
if __name__ == "__main__":
main(sys.argv[1:])