-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathsync_av.py
executable file
·113 lines (91 loc) · 4.1 KB
/
sync_av.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import tqdm
from eval.syncnet import SyncNetEval
from eval.syncnet_detect import SyncNetDetector
from eval.eval_sync_conf import syncnet_eval
import torch
import subprocess
import shutil
from multiprocessing import Process
paths = []
def gather_paths(input_dir, output_dir):
# os.makedirs(output_dir, exist_ok=True)
for video in tqdm.tqdm(sorted(os.listdir(input_dir))):
if video.endswith(".mp4"):
video_input = os.path.join(input_dir, video)
video_output = os.path.join(output_dir, video)
if os.path.isfile(video_output):
continue
paths.append((video_input, video_output))
elif os.path.isdir(os.path.join(input_dir, video)):
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
def adjust_offset(video_input: str, video_output: str, av_offset: int, fps: int = 25):
command = f"ffmpeg -loglevel error -y -i {video_input} -itsoffset {av_offset/fps} -i {video_input} -map 0:v -map 1:a -c copy -q:v 0 -q:a 0 {video_output}"
subprocess.run(command, shell=True)
def func(sync_conf_threshold, paths, device_id, process_temp_dir):
os.makedirs(process_temp_dir, exist_ok=True)
device = f"cuda:{device_id}"
syncnet = SyncNetEval(device=device)
syncnet.loadParameters("checkpoints/auxiliary/syncnet_v2.model")
detect_results_dir = os.path.join(process_temp_dir, "detect_results")
syncnet_eval_results_dir = os.path.join(process_temp_dir, "syncnet_eval_results")
syncnet_detector = SyncNetDetector(device=device, detect_results_dir=detect_results_dir)
for video_input, video_output in paths:
try:
av_offset, conf = syncnet_eval(
syncnet, syncnet_detector, video_input, syncnet_eval_results_dir, detect_results_dir
)
if conf >= sync_conf_threshold and abs(av_offset) <= 6:
os.makedirs(os.path.dirname(video_output), exist_ok=True)
if av_offset == 0:
shutil.copy(video_input, video_output)
else:
adjust_offset(video_input, video_output, av_offset)
except Exception as e:
print(e)
def split(a, n):
k, m = divmod(len(a), n)
return (a[i * k + min(i, m) : (i + 1) * k + min(i + 1, m)] for i in range(n))
def sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold):
gather_paths(input_dir, output_dir)
num_devices = torch.cuda.device_count()
if num_devices == 0:
raise RuntimeError("No GPUs found")
split_paths = list(split(paths, num_workers * num_devices))
processes = []
for i in range(num_devices):
for j in range(num_workers):
process_index = i * num_workers + j
process = Process(
target=func,
args=(
sync_conf_threshold,
split_paths[process_index],
i,
os.path.join(temp_dir, f"process_{process_index}"),
),
)
process.start()
processes.append(process)
for process in processes:
process.join()
if __name__ == "__main__":
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/affine_transformed"
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/VoxCeleb2/temp"
temp_dir = "temp"
num_workers = 20 # How many processes per device
sync_conf_threshold = 3
sync_av_multi_gpus(input_dir, output_dir, temp_dir, num_workers, sync_conf_threshold)