-
Notifications
You must be signed in to change notification settings - Fork 253
/
Copy pathdetect_shot.py
62 lines (48 loc) · 2.34 KB
/
detect_shot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright (c) 2024 Bytedance Ltd. and/or its affiliates
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import subprocess
import tqdm
from multiprocessing import Pool
paths = []
def gather_paths(input_dir, output_dir):
for video in sorted(os.listdir(input_dir)):
if video.endswith(".mp4"):
video_input = os.path.join(input_dir, video)
video_output = os.path.join(output_dir, video)
if os.path.isfile(video_output):
continue
paths.append([video_input, output_dir])
elif os.path.isdir(os.path.join(input_dir, video)):
gather_paths(os.path.join(input_dir, video), os.path.join(output_dir, video))
def detect_shot(video_input, output_dir):
os.makedirs(output_dir, exist_ok=True)
video = os.path.basename(video_input)[:-4]
command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
# command = f"scenedetect --quiet -i {video_input} detect-adaptive --threshold 2 split-video --high-quality --filename '{video}_shot_$SCENE_NUMBER' --output {output_dir}"
subprocess.run(command, shell=True)
def multi_run_wrapper(args):
return detect_shot(*args)
def detect_shot_multiprocessing(input_dir, output_dir, num_workers):
print(f"Recursively gathering video paths of {input_dir} ...")
gather_paths(input_dir, output_dir)
print(f"Detecting shot of {input_dir} ...")
with Pool(num_workers) as pool:
for _ in tqdm.tqdm(pool.imap_unordered(multi_run_wrapper, paths), total=len(paths)):
pass
if __name__ == "__main__":
input_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/high-resolution"
output_dir = "/mnt/bn/maliva-gen-ai-v2/chunyu.li/ads/shot"
num_workers = 50
detect_shot_multiprocessing(input_dir, output_dir, num_workers)